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1. Introduction

Copyright © 2023 Xiaowei Zhang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Differential evolution has made great achievements in various fields such as computational sciences, engineering optimization,
and operations management in the past decades. It is well known that the control parameter setting plays a very important role in
terms of the performance improvement of differential evolution. In this paper, a differential evolution without the scale factor and
the crossover probability is presented, which eliminates almost all control parameters except for the population size. The proposed
algorithm looks upon each individual as a charged particle to decide on the shift of the individual in the direction of the difference
based on the attraction-repulsion mechanism in Coulomb’s Law. Moreover, Taguchi’s parameter design method with the two-
level orthogonal array is merged into the crossover operation in order to obtain better individuals in the next generation by means
of better combination of factor levels. What is more, a new ratio of the signal-to-noise is proposed for the purpose of fair
comparison of the numerical experiment for the tested functions which have an optimal value with 0. Numerical experiments
show that the proposed algorithm outperforms the other 5 compared algorithms for the 10 benchmark functions.

strategy [7]. Reference [8] also employed a DE with

With its efficiency and effectiveness, differential evolution
(for short, DE) proposed by Storn and Price has been
successfully applied in many different engineering fields
[1, 2]. In order to keep improving the performance of DE,
various efforts have been devoted over the past decades.

The researchers proposed three discrete DEs for the
scheduling problems in the permutation flow shop envi-
ronment [3]. These approaches focus on converting vectors
of the continuous domain into permutation vectors of the
discrete domain and self-adjusting the control parameters of
these algorithms based on JADE [4] and SADE [5]. The
results show that these proposed approaches are promising
for scheduling problems.

For the parameter identification of solar cells, the
original FSDE in reference [6] was improved, which is the
hybridization between free search and DE with opposition-
based learning by using a simple greedy strategy instead of
a Gaussian noise update in the process of the potential
solution generation for the proposed best solution update

opposition-based learning for estimating optimum hourly
energy generation scheduling of a hydro-thermal system.

The authors emphasized the population initialization on
increasing the accuracy and convergence speed of DE and
designed a new DE variant with a modified initialization
scheme by combining the strengths of both chaotic maps
and oppositional-based learning strategy in order to gen-
erate the initial population with a good quality of mean
fitness and diversity of the solutions. Extensive simulation
studies on benchmark functions show that the proposed
algorithm outperforms its peers [9].

A cultural DE algorithm using a measure of population
diversity was proposed as an alternative method for solving
the economic load dispatch problems of thermal generators
[10]. Based on the cultural algorithm technique using
normative and situational knowledge sources, the proposed
algorithm is able to balance well the trade-off between the
exploration and the exploitation of the search space.

The scale factor F and the crossover probability Cr are
two vital parameters in DE, which usually greatly improve
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the performance. Various strategies for parameter setting
have been researched.

The values of F = 0.5 and Cr = 0.9 were suggested by
Storn and Price [1]. The F was set to the normal distribution
rand number with expectation 0 and standard deviation 1 for
multiobjective optimization in reference [11].

Qin and Suganthan considered F and Cr as the random
numbers following normal distribution F ~ N (0.5,0.3) and
Cr ~ N(Crm,0.1) according to the learning experience,
where the parameter Crm is set at 0.5 and updated once
every 25 generations [5].

Kim et al. proposed that the scale factor F is calculated by
the formula F=a+b-rand(0,1), where a+b<1 and
a,b>0 [12].

Ali and torn empirically obtained an optimal value
Cr =0.5 and calculated automatically the scale factor F using
the maximum and the minimum for focusing on the ex-
ploration at early generation and the exploitation at latter
generation [13].

The parameters F and Cr were given, respectively, fol-
lowing a-stable distribution S, (0,0.1,mean(Sg)) and
S,(0,0.1, mean (Sc,)) , where S; and S, denote the suc-
cessfully evolved individuals’ F and Cr based on some
feedbacks from the optimization process [14].

The scale factor F was set using the Tsallis distribution in
economic view for the optimization model in shell-and-tube
heat exchangers [15]. F is fist initialized with uniform
random values between 0.8 and 1.1, and then is determined
by F = F,,, + F2 - Py at each generation, where Py obeys a g-
Gaussian distribution or Tsallis distribution with the means
F,,,, and the variance F?, the parameter g is linked to the type
of distribution that assumes values from 1 to 3.

A self-adaptive scaling factor F = S - \/rand (0,1)* - d - b

was utilized in reference [16] for maximizing the profit of the
distribution company with the several constraints based on
the basic idea of the penalty function approach for solving
optimal planning of energy storage systems in order to
improve the rate of convergence of DE, where S, d, and b are
an acceleration factor, a linear decreasing factor, and a de-
celeration factor, respectively.

Based on the different setups created by a simple orthogonal
experimental design method, the paper [17] revealed that
DE/best/1/bin with F = 0.5 and Cr = 0.2 + 0.6 * rand (0, 1) is
promising to optimize the vector Jiles—Atherton vector hys-
teresis model from a workbench containing a rotational single
sheet tester. Similarly, the self-adapting parameter strategy was
used in reference [18].

Some researchers designed the novel selection operator
or employed the classical derivative-free methods in DE or
analyzed the search behavior in theory for improving the
performance of DE [19-22].

These versions of DE do improve the algorithm per-
formance. However, each of them only is superior to the
other in some special aspects. The best setting for the control
parameters can be different for different problems. Even
though the self-adapting parameter strategies seem to be able
to overcome the problem of parameter setting, some new
control parameters are used. Several references reported that

Journal of Mathematics

choosing the proper control parameters for DE is more
difficult than expected. How to set reasonably these pa-
rameters is a nuisance [2, 23, 24].

A differential evolution without the scale factor and the
crossover probability is presented in the paper. The algo-
rithm calculates dynamically the scale factor F using the
attraction-repulsion mechanism in Coulomb’s Law and
executes the crossover operation using Taguchi’s parameter
design method based on the orthogonal array. The proposed
algorithm avoids the parameter settings. Numerical exper-
iments show that the performance of the proposed algorithm
is superior to that of the other compared algorithms.

The paper is the extended version which has been further
researched based on “almost-parameter-free differential
evolution” proposed by Zhang and Liu [24]. There are four
different points between them. Firstly, this paper describes in
detail the idea and particulars of the proposed algorithm.
Secondly, we regard the scale factor F in the mutant
equations (13) and (14) in Section 4 as the two different
charges for the purpose of a better interpretation of the
algorithms’ idea and a better numerical experiment results.
Thirdly, the vital shortcoming of the original definition of
the ratio of the signal to noise (SNR) is analyzed in Section 4
and reveals the fact that it has thought of the optimal value of
the tested problem before being solved as 0, then presents
a modified definition of SNR for the sake of fairness. Finally,
a brief convergence analysis is given under two assumptions.

The main contributions of this paper, which distinguish
from the related literatures, are summarized as follows:

(i) Use the electromagnetism-like mechanism to decide
on the step length in the direction of the difference
for the mutation operation;

(ii) Employ Taguchi’s parameter design with a two-level
orthogonal array based on a new ratio of the signal
to noise that is proposed for the crossover
operation;

(iii) Eliminate almost all the control parameters of DE
except for the population size.

The remainder of the paper is organized as follows. In
Section 2, differential evolution algorithm is briefly in-
troduced. Taguchi’s parameter design method is described in
the next section. In Section 4, a DE without the parameters is
proposed and the convergence in probability is analyzed. In
Section 5, the results of numerical experiments are given.
Finally, we conclude this paper and consider the further
research issues.

2. Differential Evolution

Like other evolutionary algorithms (EAs), DE starts with an
initial population individual, followed by the successive
operations of mutation, crossover, and selection. However,
there are two main differences between them. (i) Mutation is
caused not by the small changes of the genes in EAs, but by
adding the weighted difference of two randomly selected
individuals to a third randomly selected one in DE. The
direction information from the current population is used to
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guide the search process. (ii) New individual is generated by
adopting a greedy selection scheme in DE, which is only
accepted if it improves on the fitness of the parent individual.

Storn and Price proposed several different mutation
strategies [1]:

DE/Rand/1: V = X,, + F- (X,, - X,3)
DE/Rand/2: V = X, + F+ (X,, = X3 + X,y — X,5)
DE/Best/2: V = Xpoq + F - (X,5 = X3 + X4 — X,5)

In the above, r1#r2#r3#rd4#r5, and they are the
random numbers distributing uniformly in [1, NP], where
NP is denoted by the population size. For the strategy DE/
x/y, x represents the individual being perturbed and y is
the number of difference vectors used to disturb x. Take
DE/rand/1 as an example, it means that the target indi-
vidual is randomly selected, and only one difference vector
is used.

Although there are several variants of DE, a common
variant, which is known as DE/rand/1, or “classic DE,” is the
most widely used in practice. Hence, this DE is described as
follows:

(i) Initialization: like other EAs, classic DE initializes
an initial population that distributes uniformly in
the feasible domain.

(ii) Mutation: for each parent vector X, a mutant vector
V; is generated according to (1) where the random
indexes r1, 72, and r3 are mutually distinct integers
following uniform distribution in [1, NP] and also
are different from the current index i. The scale
factor F is used to control the amplification of the
differential variation.

Vi = Xrl +F- (Xr2 - Xr3)' (1)

(iii) Crossover: the trial individual W is generated using
the parent and mutant individuals as follows:

{ VI, ifr(j)<Crorj = randn (i), 2

wi={""
X/, else.

In the above formula, j is denoted by the j-th
component of the individual, r(j) represents
a random number with uniform distribution in [0,
1] for each j, the crossover probability Cr is set to
a given number in (0, 1), and the integer randn (i) is
randomly chosen in [1,n], where n denotes the
dimension of the tested problem. The trial indi-
vidual is a stochastic combination of the parent and
mutant individuals. When Cr is equal to 0, at least
one of the components of the trial individual will
differ from the parent X; because of the condition
j = randn(i).

(iv) Selection: DE implements a very simple selection
procedure. The offspring is generated only if the
fitness of the offspring is better than that of the
parent. Due to the greedy selection scheme, all
the individuals of the next generation are as good

as or better than their counterparts in the current
generation.

X, = { W, if f(W) < f(X)) (3)

X;,  otherwise.

The above process ii-iv repeats until the number of
function evaluations or the number of the iterations reaches
a given constant, namely, the termination criteria are sat-
isfied. Further detailed descriptions about DE can be found
in references [1, 23].

3. Taguchi’s Parameter Design

Taguchi method [25] is a parameter design approach in the
production and process conditions optimization. It can
make high-quality products using less development and
manufacturing costs. Two major tools used in the Taguchi
method are the orthogonal array [26] and the signal-noise-
ratio (SNR), which are briefly described as follows.

The orthogonal array is a fractional factorial matrix,
which assures a balanced comparison among the factors or
its levels. A two-level orthogonal array is a matrix consisting
of 1 or 2 arranged in rows and columns. Each row represents
the combination of factor levels in each experiment, and
each column represents the special level of each factor. Let
the element 2 in the orthogonal array be —1, then all column
vectors are orthogonal to each other, namely, the dot
product is zero. Generally, a two-level orthogonal array is
denoted by L,, (2m=1), where m, which is equal to 2k rep-
resents the number of experiments; k is a positive integer; the
number 2 shows that each factor has two levels: 1 and 2;
m — 1 is the number of the factors or columns. The two-level
orthogonal arrays are commonly used in practice: L, (2°),
Ly (27), Lis(2"), and L;,(2°!). For more clearness, the
following table (see Table 1) shows the orthogonal array
Lg (27) with the canonical form.

There are 8 factors in the array Lg (27). For each factors, it
can choose either 1 or 2. In order to obtain the better or best
the combination of factor levels, only 8 experiments are
under considered in the two-level orthogonal array Lg(27)
instead of all combinations of the factors which can reach up
to 27 = 128 experiments. The notation E; represents the i-th
experiment or row, and C; the j-th column vector or factor.
For simplicity, the sign C;; denotes the level of the j-th
factor in the i-th experiment. For instance, C;, = 1,C, 3 = 2,
and C4=[12211221]". If each 2 in array Lg(27) is
thought of as -1, C;;; - C; = 0 for all i and j from 1 to 7.

The conception of the SNR is originally introduced in
communication and electronic engineering, which is defined
as the ratio of the signal to noise and is used to evaluate the
quality of communication. In 1957, Taguchi applied the SNR
conception to the design of engineering experiments, hence,
Taguchi parameter design method was proposed. This
method utilizes the SNR to evaluate quality and applies the
orthogonal array to arrange experiments. According to the
type of characteristic, the SNR can be classified into smaller-
the-better, larger-the-better and nominal-the-best. Given



TaBLE 1: The orthogonal array Lg (2”) with the canonical form.

C C, C, C, Cs Ce C,
E, 1 1 1 1 1 1 1
E, 1 1 1 2 2 2 2
E, 1 2 2 1 1 2 2
E, 1 2 2 2 2 1 1
Es 2 1 2 1 2 1 2
E, 2 1 2 2 1 2 1
E, 2 2 1 1 2 2 1
Eq 2 2 1 2 1 1 2

a set of characteristics y,, ¥,,...,¥,, then in the case of
smaller-the-better characteristic the SNR is as follows:

SNR=-10- log<% i i2> (4)

i=1 Vi

4. Differential Evolution without F and Cr

After the brief description about classical DE and Taguchi’s
parameter design, the ideals and the advantage of elimi-
nating the parameters in DE are described, respectively.
Finally, the differential evolution without the scale factor and
the crossover probability are proposed.

Besides the parameters F and Cr, classic DE has a control
parameter NP which are closely related to the problem
under consideration. The population size, NP, is typically
larger than a threshold value in order to obtain a global
optimum and improve the success rate of convergence.
However, too large NP may increase the number of function
evaluations. Generally, separable and unimodal functions
require the smallest population sizes, while parameter-
dependent multimodal functions require the largest pop-
ulations. For simplicity, the parameter NP is set as a con-
stant according to the dimension of the problem under
consideration.

The parameter F determines the amplification of the
difference. A high (low) value of F makes DE more ex-
ploratory (less exploratory). The parameter Cr controls the
distribution of coordinate points in the trial individual. A
high (low) value of Cr means that the coordinates of the
mutant individual dominate the trial individual. Between
the two parameters Cr and F, Cr is much more sensitive to
the problem’s properties and complexity such as the
multimodality, while F is more related to the
convergence speed.

Finding the optimal values for these parameters is
a difficult task as these values are problem specific, espe-
cially when one wants to strike a balance between reliability
and efliciency. Thus, the performance of DE depends on
how these control parameters are selected. However, how
to set well these parameters is generally based on trial and
error. An optimal parameter setting can be found via the
boring preliminary numerical experiments for a special
problem, whereas it is not probably optimal for the other
problems.
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In order to overcome these contradictions, we eliminate
the scale factor and the crossover probability with exception
of the population size by using the modified attraction-
repulsion mechanism and Taguchi method. In the following
subsections, how to eliminate these parameters is described
in detail.

4.1. Eliminating the Scale Factor F. According to the
attraction-repulsion mechanism in Coulomb’s Law,
electromagnetism-like (EM) algorithm [27, 28] first calcu-
lates the charge of each individual in terms of its objective
function value and then determines the resultant force
exerted on each particle by all other particles in the pop-
ulation. The charge of each particle determines its power of
attraction or repulsion. The particles with better objective
function values attract others while those with inferior
function values repel.

Like the method of calculating the force, the electro-
magnetic force exerted on the particle by other particles is
obtained by the vector addition following the parallelogram
law. For example, the charge of X, is less than that of X,
while is greater than that of X; in Figure 1. Thus EF,, is
arepulsive force and EF | ; is an attractive force acting on X
by X, and X, respectively. The resultant force EF, exerted
on X, is EF,, + EF| ;. In a similar way, the resultant forces
exerted on X,, and on X; can also be calculated.

The charge Q; of each X is determined by the objective
function value of itself relative to that of the current best
particle Xy

c=exp| -n- f(Xz) — f(Xbest)
< p( S ((x) —f(Xbesg))’ ©

where 7 is the dimension of the problem. The force vector
EF; ; exerted on X; by X is then determined by

[((x. _x & if )< ,
(XJ Xl) ”Xj—Xi"z’ f(X]>—f(Xz)>
EFi’j = 4
QQ; )
(X - X)) ||X)](||2 if f(X;)> f(X).
9 j_ 1

(6)

From (6), the particles with the relatively good objective
function values will attract the other particles in the pop-
ulation while the particles with the worse objective function
values repel the others. The resultant force vector EF,
exerted on a particle X; by other NP — 1 particles in the
population is calculated as follows:

NP
EF,= ) EF,, (7)
j=Lj#i

However, each particle has only one particle exerting
force on it in a version of EM proposed by Debels et al. [29].
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FiGure 1: Exertion of forces on X; by X, and X;.

In this approach, the charge Qlj of X; is calculated based on
the relative difference in the objective function values f (X;)
and f(X i)

f(x) - f(x))
f(Xworst) - f(Xbest) ’

where X .. and X, denote, respectively, the worst and
the best solutions, X]- is chosen randomly from the
population. By the new definition of Q/, obviously,
a better(worst) particle X gives the higher(lower) QJ
value. Moreover, if f(X )< f(X;), then Q! is positive,
otherwise, Q] is negative. After calculating the charge Q/
of X;, the particle X; moves to the new particle X; + EF, ;,
where

Q= (8)

=Q- (X;-x,). 9

It is obvious that when Qf is positive (negative), X i
attracts(repels) X;. This modified EM remains the basic ideal
of EM, moreover, it is more simple and easier to utilize.
Hence, for DE/Rand/1, the mutant individual V = X, + F -
(X,, — X,3) can be transformed to

V= Xrl +F- (Xrl _Xr3)
=X, +F- (Xr2 Xrl) +F- (Xrl - Xr3) (10)
:Xrl +F- (XrZ Xr1)+F,' (XrS_Xrl)’

where F = —F'. If we regard the scale factor F and F' in
equation (10) as the two different charges Q{ as shown in
equation (8), viz.

F2QLF 2Q7, (11)

then the equation (10) can be interpreted as the motion of
the particle X,, in the direction of the resultant force
F,, + F3,. The magnitude of the motion is determined by
the scale factors F and F'. Hence, the mutant individual is
modified in our algorithm as follows:

5
V= Xrl + Qﬁ ' (XrZ - Xrl) + Q:? : (Xr3 - Xrl)
_ X)) - X))
(e iy e %)
f(Xrl)_f(Xr3) (X..-X )
+f(Xworst) _f(Xbest) ( r rl) .
Similarly, we also have
V= Xrl + Q:g : (Xr3 - Xr2)
£ (%) = £ (X,5) ()
=X, (X, -X,),
f(Xworst) f(Xbest) ( r T2)
or
V= Xrl + Qg : (XrZ - Xr3) + Q:g : (Xr4 - XrS)
_ f(Xr3) — f(XrZ) X _
= Xrl +(f(XW0rSt) _ f(Xbest) (XrZ Xr3) (14)

f(XrS) B f(Xr4) _
+f(Xworst) _f(Xbest) . (Xr4 Xr5)>.

As described , equations (13) and (14) are easy to un-
derstand. The idea implied in equation (13) comes from
DE/rand/1: the individual X,, moves in the direction of
X,3 — X,,. The magnitude of the motion is not controlled
artificially in DE/Rand/1, but is determined self-adaptively
according to its charge obtained by the particle X,,. The
similar interpretation is also done for equation (14).

Besides the self-adaptation of F and the simplicity of
calculation, preliminary numerical experiments show that
the modified equations (12)-(14) can generally improve the
performance of DE, and equation (12) might avoid DE(DE/
Ra nd/1) searching wrongly in the direction of “up hill.” The
detailed description is as follows.

For six hump camel back function (see FO in Appendix),
it is well known that the optimal value is f* ({[- 0.08984,
0.71265], [0.08984, —0.71265]}) = —1.031628. Given X, =
[-0.07781,-0.73245] and X, = [0.97667, —0.0033774],
then two cases are given.

CASE 1 Let X, =[-039,-091221], X,,=[-
0.15301,0.28698], and X,; = [0.13566,-0.58573].
Thus, V = [-0.12891,-0.54275] can be obtained by
equation (12) (see Figure 2).

CASE 2 Let X, =[0.15961,0.48913], X,, =
[0.28105,0.86676], and X,; = [0.94169,—-0.23207].
Then, V = [-0.4222,0.97067], see Figure 3.

Figures 2 and 3 show the contour of SHCB on [-1, 112
with the corresponding function value marked. The stars
denote the optimal solutions; the circle denotes the indi-
vidual X,; two outer squares 10 represent X,, and X,,,
respectively; Two outer real line denote the shift of X,; in
direction of the force EF,,, and EF,, , respectively. The
mutant individual V obtained by equation (12) is denoted by
the diamond. The inner real line represents the shift of X, in
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sixhcb function

05

FiGure 2: Case 1.

*
-1

Ficure 3: Case 2.

direction of the resultant force EF,,. Two bunches of squares
locating in outer dashed line denote the motions of the
individual X, in directionsof F - (X,, — X,;)and F - (X,; —
X,,) with the different scale factor F, respectively. The scale
factor F is chosen orderly from the set {0.1,0.2,...,0.9, 1},
the corresponding results are shown in Figures 2 and 3 by
the squares with the different number marked. A bunch of
squares between outer squares gives the different mutant
individual V (see equation (15)). All squares can be matched
by the numbers locating in them.

V= Xrl +F- [(XrZ _Xrl) +(Xr3 _Xrl)]

15

=X +F- (X = Xy) +F- (X5 - Xpy). 1)

It is worth noting that equation (15) is different from
V=X,+F (X,, - X,5+X,,— X,5). Five different mu-
tually random individuals are selected in DE/Rand/2 while
three individuals in equation (15). However, If X, — X, and
X, — X,; are thought of as two new individual, then
equation (15) is the same as DE/rand/1 in essence. Thus

a comparison is done between equation (12) and equation
(15). The two formulas have the similar structure and is
easier to distinguish in the figures if some dissimilarities
appear in.

From Figure 2, only if F={0.2, 0.3, 0.4}, the mutant
individual obtained by equation (15) is better, whereas that
obtained by equation (12) is closer to the global optimal
solution. In Figure 3, it is very clear that equation (12) is
superior to equation (15). Though the function value of the
individual obtained by equation (15) for F = 0.2 is almost
same as that of obtained by equation (12), it moves
uphill wrong.

4.2. Avoiding the Crossover Probability Cr. Taguchi method
can obtain the better combination of the factor level with less
cost. In the paper, a two-level orthogonal array L,, (2" !) is
used. Since the number of factors (or variables) is 2F — 1,
where k is an integer greater than 1, the number of ex-
periments m is dependent on the dimension #n of the
problem. In our paper, m is given as follows:

m:min{2k|k>1,keZ,Zk—IZn}. (16)
For instance, if n = 4, then m>3;if n = 8, then m>4. In
equation (16), the minimal value m subjecting to m >n is
chosen for avoiding the possible repeating experiments.
In what follows, a simple algorithm generating the two-
level orthogonal array L,, (2™ ') is described. The algorithm
forms the array by using 2 x 2 Hadamard matrix H,.

Definition 1. if any two columns in a matrix H,, consisting
of 1 or —1 are orthogonal, then the matrix is called Hada-
mard matrix [30].

In the above definition, m denotes the order of the
Hadamard matrix H,, There are several operations on
Hadamard matrices which preserve the Hadamard property:

(i) Permuting rows (columns)

(ii) Changing the sign of some rows (columns)
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(iii) The Kronecker product Example 1. If H, = ( i _11 ), then
If H,, and H,, are known, then H,,,, can be obtained by
their Kronecker product, namely, by replacing all 1s in H,,
by H,, and all -1s by -H,,.
1 1 1 1
Hy,® Hy, =
2 @ g ( 1 1 ) ® ( 1 .1 )
.. 1 1 1. 1 1
1 -1 1 -1
a 11
1- —1- b
1 -1 1 -1
11 1 1
1 -1 1 -1
= Hy =
11 -1 -1
1 -1 -1 1
(17)
11 1 1
1 1 1 -1 1 -1
Hy® Hy = =
2@ ( 1 -1 > 11 1 1 4
1 -1 -1 1
11 1 1 1 1 1 1 E
1 -1 1 -1 1 -1 1 -1 Es
1 1 -1 -1 1 1 -1 -1 Ej
1 -1 -1 1 -1 -1 1 FE
Hg = !
1 1 1 -1 -1 -1 -1 E,
1 -1 I =1 =l 1 -1 1 Eg
11 -1 -1 -1 -1 1 1 E4
1 -1 -1 1 -1 1 1 -1 Eg
where ® denotes the Kronecker product. Hadamard matrix For simplicity, the SNR is calculated as follows:
of high order can be similarly generated from that of lower "
order: H,®H,= Hg, H,®Hg=H,, H,®H,; = H;,, SNR:Z_z’ (19)
H,®Hj;, = H,, etc. iafi

After a Hadamard matrix H,, is obtained, a two-level
orthogonal array L, (2™ ') can be given by discarding the
all-one column and changing —1s to 2s in H,,. However,
this obtained array is not generally canonical form.
Therefore, the simple exchange of rows can fix it for con-
sistency (see Table 1 and the gray part in Hy).

Recall the notations about the orthogonal array in Section
3: E; is denoted by the i-th experiment, C; by the j-th factor
and C; ; by the level of the j-th factor in the i-th experiment.
The effects of the factors can be defined as follows:

) SNR,

1<ism
C; j=level

ECj,level = (18)

where level = {1,2}, 1<i<m, and 1< j<m - 1. This con-
ception is used here to evaluate the level of the factor. If
Ec1>Ec the optimal level of the factor C; is 1, otherwise,
the optimal level is 2. When each Ec jevel 18 determined,
a new individual (an optimal or near-optimal combination)
is generated.

Example 2. An example min f (X) = || X||, is shown to il-
lustrate this process of Taguchi parameter design method
acting on two individuals, where X € R’. Without loss of

generality, let =1[0,8,1,0,-72,0,0] and
X =[0,0,-28,35,0,32,0]. This problem has 7 variables
(factors),  thus according to  equation (16):



m—1=2%-1=72n, the orthogonal array Lg (2”) is cho-
sen(See Table 1). If C;; is equal to 1 in Table 1, then the
corresponding C; ; in Table 2 is the j-th component V/ of the
mutant individual V, otherwise, the corresponding C; ; is X,
see bold in Table 2.

Next, calculate the function value f (X) and the SNR of
each combination of the factor level in Table 2, respectively.
All results appear in the two most right hand columns. Then
the effect of each factor is determined in terms of equation
(18) (take C, and C, as an example).

Ec, = Y SNR

i=1,2,3,4

=0.00015 + 0.00017 + 0.00006 + 0.00025 = 0.0006,

Ec,= )Y SNR

i=5,6,7,8

= 0.00077 + 0.00003 + 0.00092 + 0.00009 = 0.0018,

Ec,= Y SNR
i=1,4,6,7

=0.00015 + 0.00025 + 0.00003 + 0.00092 = 0.0014,

Ec,= Y SNR
i=2,3,5,8

=0.00017 + 0.00006 + 0.00077 + 0.00009 =~ 0.0011.
(20)

Finally, we obtain the new individual or the trial vector W.
The optimal level of the factor is decided by its effect. Since
Ec 1<Ec, 2 is the optimal level of the factor Ci;
Ec, 1> Ec,,, therefore the optimal level of the factor C, is 2.
The optimal levels of the other factors can be determined in
a similar way. The component W/ of the new individual W
consists of either V7 or X/ for all j, which is dependent on the
optimal level of the factor C;. If the optimal level is 1, then the
corresponding component of the new individual is that of the
individual V, otherwise, it is equal to that of the individual X.

Obviously, Taguchi parameter design method executes
only 8 experiments instead of all 2’ combinations of factor
levels for obtaining a new individual W with the lower
function value 1 (see the last row in Table 2). It is necessary to
mention that only the first # columns is used in orthogonal
array while the other columns are ignored if n<m — 1.

In reference [31], the hybrid Taguchi-genetic algorithm
(HTGA) is proposed for global numerical optimization with
the continuous variables, which uses the systematic rea-
soning ability of Taguchi parameter design to gain the better
genes in the crossover operation. The comparison results
between HTGA and OGA/Q [32] show that HTGA can find
the optimal or the near-optimal solutions with less function
evaluations and better average values. However, this supe-
riority is not very obvious for the tested function with
nonzeros optimal values. Let we recall the original definition
of SNR in the case of smaller-the-better characteristic, which
is described in equation (4), and change it to
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SNR =-10- log(% ; ﬁ) (21)

In Taguchi method, the item 1/nY7 1/(y; - s)* rep-
resents the average loss of quality, where s denotes the
ideal signal in the case of smaller-the-better character-
istic. Therefore, equation (21) shows that HTGA has
thought of the optimal value of the tested problem as
0 before this problem is solved. This is unfair and un-
reasonable. As described above, we found that the su-
periority of HTGA is not very obvious for those function
with nonzero optimal value from Tables IV and V on
page 273 and 275 in the reference [31], Hence, SNR is
modified as follows:

L 1
SNR= ) ——, (22)
; (fi_ ft )2

where f; is defined as the current optimal value after the ¢-th
iteration.

In what follows, the differential evolutions without the
scale factor and the crossover probability (for short,
DE~FCr) are proposed. For the sake of clarity, the flow-
charts of DE and DE~FCr(take DE~FCr2 as an example)
are also given in Figure 4, where cross() represents the
crossover operation in equation (2) and Taguchi() denotes
Taguchi parameter design method in equation (13) (see
Algorithm 1).

In Step 2, a termination criterion |f (X o)~
f (Xpe)l <e is given since f(Xorst) = f (Xpes) 1is the
denominator in Eq.(8). When this difference approxi-
mates to zero, the numerical stability of the algorithm
will lose.

Let X® be the population at the t-th generation.
Through Step 4-5 in DE\FCr, X transforms into the
next population X **_ Since the limitation of numerical
calculation accuracy and X“*D relies only on the state of
X®, the population sequence {X®},., generated by
DE\FCr can be described as finite-state Markov stochastic
process.

Suppose (i) the objection function f(X) has a unique
global optimal solution. Let S be the state space of the
stochastic process X*), $* be the state space of the global
optimal solution, and f* be the global optimal value.

Because of the limitation of state space or search space,
the probability that the algorithm can find the optimal
solution at the next generation is greater than 0 if it cannot
find at the ¢-th generation, hence, suppose (ii)
P{X(”l) =51 X0 = si} >p>0 for s;¢S* and s; € S*, where
p € (0,1).

Now, we consider the probability ngs*P{X (1) = Sj}
that the proposed algorithm can not find the global optimum
at the t + 1 generation.
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Step 1: Initialization: population P, population size NP, maximal generation T, current generation ¢ = 1, and e = 10719, j = 1.

Step 2: If t > T or | f (Xyoret) — f (Xpest)| <& then output the current optimal value f;.

Step 3: Mutation. For each X; € P, in the population, calculate the mutant individual according to equations (12) or (13) or equation
(14). The corresponding algorithm is denoted by DE\FCr1, DE\FCr2 and DE\FCr3, respectively.

Step 4: Crossover. Execute Taguchi parameter design method with the SNR denoted as equation (22) for the individual X; and the
mutant individual V;, so the trail individual W; is generated.

Step 5: Selection. If f(W;)< f(X;), then X; =W, andi=i+1.

Step 6: If i < = NP, goto Step 3; otherwise, t =t + 1, goto Step 2.

ArGoriTHM 1: (DE\FCr).

> Plx =) Jim P{f = f}=1- lim XY =g} =1

588" sgS*
= Z > P{X(”l) = sj,X(t) =5} @7)
;88" s€8 Equation (26) shows that the population sequence
generated by DE\FCr can convergence in probability to the
= Z Z p{x(t+1 5 |X }p{X(t) - Sz} global optimum.
s;#S* 5;€8
5. Numerical Experiments
=y ¥ P{X(”” =s;|x© = si}P{X(” i}
58" 588" The proposed Algorithms are executed in Matlab R2017 for
the known numerical benchmark functions listed in Ap-
n Z Z P{X(Hl) —. | x® = }P{X(t) _ Sz} pendix with the default parameters NP = 30 and T = 202.
Ry ! Based on this parameter setting, each DE\FCr needs 30 x
! ’ (m+ 1) function evaluations at each iteration for 30 di-
_ Z Z P{ X (D) | x® = Si} P{ x® } mensional tested func‘Fions. DEs With the four §trategies
S below are compared with our algorithms, respectively.
Strategy 1(DE): DE/Rand/1. F = 0.5, Cr = 0.9. This is
= Z P {X © = Si} a recommend parameters setting for DE/Rand/1 in
si#S* most of the references [1-13];

-y y P{X(”l) =s;| X = si}P{X“’ =s;}

s;€8" 5i¢ 8"
<(1-p) Z P{X(t) = 51}-
5;¢S*
(23)
It is very obvious that the current known optimal so-
lution still can be retained in the next generation from Step 5.

Once DE\FCr finds the optimal solution, the X! will
hold the current state S*. Hence, in the equation (23),

ZS ZS P{X(t”) =s;| X = s,}P{X(” =s}=0. (g
sjgﬁ * 5;€8*

Summarizing the result of equation (23), we have

0< Z {X(M)—s}<(l—p)z {

s g8* sgS*

—S} (25)

Because the sequence Y P{X® =g} is strictly
monotonic decreasing as t — 00, so

Jim gzs Px®=s}=0 (26)

Therefore,

Strategy 2(DEG): F ~ N(0,1), C, = 0.9 [11];

Strategy 3(DEO0.4): F=0.4+04-rand(0,1),
C, = 0.9 [12]
Strategy 4(DEM): C, = 0.5 and F is calculated by the

following formula [13]:

ax _ f(Xworst) } )
{0.4,1 f(Xbest) ’ f(Xbest) 1
F=
max {0.4,1 - ff((;i[::t)) ]», otherwise.
(28)

For Strategy 1-4, the population size NP and the
maximal generation T are set as 100 and 2000, respectively.
All algorithms are performed with 10 independent runs for
each tested function with 30 variables. According to these
settings, our algorithm has the almost same function eval-
uations as DEs with Strategy 1-4, that is, 100 + 100 x 2000 =
2000100 for DEs and 30 + 990 x 202 = 200010 for DE\FCr.
Hence, the results listed in Tables 3 and 4 are obtained under
the assumption of the not same but different function
evaluations. Obviously, the proposed algorithm evaluates 90
function values less than DEs. The average values of the
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TaBLE 2: The process of Taguchi parameter design method acting on the individuals V and X.

C, C, G, C, Cs Cs C, f(X) SNR
E, 0 8 1 0 =72 0 0 81 0.00015
E, 0 8 1 35 0 32 0 76 0.00017
E; 0 0 -28 0 =72 32 0 132 0.00006
E, 0 0 -28 35 0 0 0 63 0.00025
E; 0 8 -28 0 0 0 0 36 0.00077
E 0 8 -28 35 =72 32 0 175 0.00003
E, 0 0 1 0 0 32 0 33 0.00092
E, 0 0 1 35 =72 0 0 108 0.00009
Eq, 0.0006 0.0011 0.0013 0.0019 0.0003 0.0013 0.0014
Eq, 0.0018 0.0013 0.0011 0.0005 0.0021 0.0012 0.0011
w 0 0 1 0 0 0 0 1
TaBLE 3: Result comparisons among 7 algorithms for F1-F5.
Fun Alg Best Worst Mean Std #Elav
DE 6.445542E — 023 4.436277E - 022 2.290635E — 022 1.108992E — 022 200100
DEG 1.046763E - 040 4.175516E — 039 1.128546E - 039 1.247818E - 039 200100
DE0.4 1.348390E - 013 1.781579E - 012 6.963543E-013 5.084985E - 013 200100
F1 DEM 1.212964E - 011 8.731799E - 011 3.082813E-011 2.407010E - 011 200100
DE\FCr1 3.228810E - 022 2.671220E - 019 3.358173E - 020 8.252692E - 020 200010
DE\FCr2 2.611086E — 024 1.537412E + 001 1.546806E + 000 4.858513E + 000 200010
DE\FCr3 1.808723E - 025 2.760420E — 024 8.956028E — 025 9.805783E - 025 200010
DE 2.342126E - 012 1.023626E - 011 5.329959E - 012 2.673148E - 012 200100
DEG 4.440892E - 015 7.993606E - 015 7.638334E - 015 1.123467E - 015 200100
DE0.4 1.512876E - 007 4.988239E - 007 3.000771E - 007 1.363652E — 007 200100
F2 DEM 4.440892E - 015 7.993606E - 015 7.283063E - 015 1.497956E - 015 200100
DE\FCrl 3.135270E-013 2.617373E-011 7.357492E - 012 8.539221E-012 200010
DE\FCr2 3.996803E - 014 1.434325E - 008 1.434625E - 009 4.535629E - 009 200010
DE\FCr3 1.509903E - 014 1.927347E-013 6.483702E - 014 5.207955E - 014 200010
DE 4.262079E - 003 1.641628E — 002 8.883045E - 003 3.323616E — 003 200100
DEG 3.490604E - 003 1.002710E - 002 5.873780E - 003 1.893076E - 003 200100
DEO0.4 7.746132E - 003 1.612982E - 002 1.284244E - 002 2.895560E — 003 200100
F3 DEM 5.340829E - 002 8.776692E — 002 7.115915E - 002 9.972597E - 003 200100
DE\FCr1 1.040566E — 002 2.893510E - 002 1.649259E - 002 5.547522E - 003 200010
DE\FCr2 1.087789E — 002 3.538599E - 002 2.176316E - 002 7.961170E — 003 200010
DE\FCr3 2.047691E - 002 3.617698E — 002 2.779340E - 002 4.572319E - 003 200010
DE 4.869042F — 024 1.608507E — 022 4.278891F - 023 5.275054E — 023 200100
DEG 1.570545E — 032 4.146719E — 001 4.146719E — 002 1.311308E — 001 200100
DE0.4 2.196374E - 014 1.812240F - 013 7.778539E — 014 5.733436E - 014 200100
F4 DEM 1.962642E + 004 1.637335E + 005 8.747525E + 004 4.588788E + 004 200100
DE\FCr1 5.576314E — 024 1.036690E — 001 1.036690E — 002 3.278302E — 002 200010
DE\FCr2 1.176714E — E - 025 3.090863E — 001 4.789975E — 002 9.877257E — 002 200010
DE\FCr3 7.336740F — 027 8.506532E — 025 1.761171E — 025 2.553095E — 025 200010
DE 3.538508E - 023 2.902433E - 022 1.590376E — 022 8.749484E - 023 200100
DEG 1.349784E - 032 1.098737E — 002 1.098737E - 003 3.474510E - 003 200100
DEO0.4 1.032194E - 013 1.261348E - 012 5.065837E - 013 4.532350E-013 200100
F5 DEM 2.220360E + 004 1.152671E + 005 6.319184E + 004 3.036898E + 004 200100
DE\FCrl1 1.155559E - 021 1.691974E - 015 1.692275E - 016 5.350387E - 016 200010
DE\FCr2 3.452407E - 023 1.247897E + 000 2.167329E - 001 4.586437E - 001 200010
DE\FCr3 6.397232E - 026 2.198487E — 024 1.088356E — 024 6.533660E — 025 200010

The best results in the table are bolded.

obtained results are given in Tables 3 and 4. The number of
f (x) evaluations(#EVALU.), the best function value(BEST),

the worst function value(WORST), the mean of function

values(MEAN) and the standard deviation of the best

function values(STD.) are used for the comparisons among
these algorithms.

Table 3 summarizes the results obtained by the 7 al-
gorithms for F1-F5. For F1, DEG obtains the best mean of
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TABLE 4: Result comparisons among 7 algorithms for F6-F10.
Fun Alg Best Worst Mean Std #Elav
DE 0.000000E + 000 0.000000E + 000 0.000000E + 000 0.000000E + 000 200100
DEG 0.000000E + 000 1.969000E - 002 5.666035E — 003 6.872102E - 003 200100
DE0.4 7.412959E - 013 3.983369E - 012 1.929468E — 012 9.211849E-013 200100
F6 DEM 8.237855E - 014 2.578935E - 010 2.624131E-011 8.139491E - 011 200100
DE\FCr1 0.000000E + 000 7.396040E — 003 7.396040E — 004 2.338833E-003 167650
DE\FCr2 0.000000E + 000 1.477241E - 002 2.216845E - 003 4.986442E — 003 170175
DE\FCr3 0.000000E + 000 0.000000E + 000 0.000000E + 000 0.000000E + 000 148553
DE 1.346933E + 002 1.815693E + 002 1.604947E + 002 1.647296E + 001 200100
DEG 5.969754E + 000 2.089413E + 001 1.492438E + 001 4.115703E + 000 200100
DE0.4 1.447778E + 002 1.987496E + 002 1.736384E + 002 1.838650E + 001 200100
F7 DEM 8.895676E + 001 1.067928E + 002 1.005014E + 002 6.041157E + 000 200100
DE\FCr1 3.979836E + 000 8.954632E + 000 5.870258E + 000 1.654945E + 000 200010
DE\FCr2 0.000000E + 000 2.984877E + 000 6.964713E - 001 1.153657E + 000 152929
DE\FCr3 0.000000E + 000 0.000000E + 000 0.000000E + 000 0.000000E + 000 173891
DE 4.734026E + 000 9.125210E + 000 7.317988E + 000 1.118800E + 000 200100
DEG 3.129173E + 000 7.336176E + 001 2.244019E + 001 2.658720E + 001 200100
DE0.4 9.489415E + 000 1.273116E + 001 1.136916E + 001 9.699009E — 001 200100
F8 DEM 2.646006E + 001 4.035420E + 002 9.863638E + 001 1.151125E + 002 200100
DE\FCr1 2.198234E + 001 1.319067E + 002 6.198206E + 001 3.617924E + 001 200010
DE\FCr2 1.491798E + 001 1.011474E + 002 3.406901E + 001 2.894100E + 001 200010
DE\FCr3 1.130096E + 001 7.634987E + 001 2.707867E + 001 1.774072E + 001 200010
DE 6.212269E - 011 2.410512E — 010 1.249117E - 010 5.339068E — 011 200100
DEG 5.493251E — 023 3.940883E — 022 1.728275E — 022 1.114004E — 022 200100
DE0.4 1.482390F — 006 6.510805E — 006 3.673915E — 006 1.530019E — 006 200100
F9 DEM 6.282339E + 000 7.764649E + 001 6.079609E + 001 2.075941E + 001 200100
DE\FCr1 8.632854E — 016 4.274906E - 014 9.826062E — 015 1.315808E — 014 200010
DE\FCr2 1.792127E - 016 2.172822E - 001 2.702991E - 002 6.889298E - 002 200010
DE\FCr3 1.435442E-017 4.834137E-016 9.552152E - 017 1.422569E - 016 200010
DE 6.521876E — 005 4.212407E - 003 8.509549F — 004 1.555632E — 003 200100
DEG 7.185030E + 000 2.254554E + 001 1.543480E + 001 5.184946E + 000 200100
DE0.4 8.266525E — 003 5.784312E - 001 8.974530E — 002 1.759532E - 001 200100
F10 DEM 1.028353E - 004 2.981224E - 004 2.063294E - 004 5.460973E - 005 200100
DE\FCr1 9.550667E + 000 2.092655E + 001 1.313933E + 001 3.863092E + 000 200010
DE\FCr2 9.407884E + 000 2.291669E + 001 1.598827E + 001 4.119512E + 000 200010
DE\FCr3 2.517749E - 002 3.977652E - 001 1.628583E - 001 1.193423E - 001 200010

The best results in the table are bolded.

Stepl: Initialization

Step3: Mutation
V=X+F(X,-X)

]

Step4: Crossover
W= Cross (V, X))

]

Step5: Selection

Output:

Stepl: Initialization

Step3: Mutation
V.= X, + Q"; (Xr3 B Xyz)

]

Step4: Crossover
W, = Taguchi (V, X))

v

Step5: Selection

Step6: i <= NP?

(a)

Yes Step6: i <= NP? No

(®)

FiGURE 4: Flowcharts of DE and DE\FCr2. (a) DE. (b) DE\FCr2.
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TaBLE 5: Result comparisons between DE\FCr3 and DENSO for F1-F10.

Fun Alg Best Worst Mean Std #Elav
Fl DE\FCr3 1.808723E - 25 2.760420E - 24 8.956028E - 25 9.805783E - 25 200010
DENSO 8.585195E — 06 1.446810E - 05 1.210160E — 05 1.972164E - 06 200100
n DE\FCr3 1.509903E - 14 1.927347E-13 6.483702E - 14 5.207955E - 14 200010
DENSO 7.522790E - 04 1.429218E - 03 9.793750E - 04 2.043630E - 04 200100
3 DE\FCr3 2.047691E — 02 3.617698E - 02 2.779340E - 02 4.572319E-03 200010
DENSO 8.027579E - 03 2.113126E - 02 1.426177E - 02 3.372486E - 03 200100
Fa DE\FCr3 7.336740E-27 8.506532E-25 1.761171E-25 2.553095E-25 200010
DENSO 9.835739E - 07 5.804517E - 06 2.661288E — 06 1.493261E - 06 200100
5 DE\FCr3 6.397232E - 26 2.198487E - 24 1.088356E — 24 6.533660E - 25 200010
DENSO 1.551095E - 05 8.342158E - 05 3.712426E - 05 2.019380E - 05 200100
Fé6 DE\FCr3 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 148553
DENSO 2.194028E - 05 7.591791E - 03 8.146725E - 04 2.381668E — 03 200100
£7 DE\FCr3 0.000000E + 00 0.000000E + 00 0.000000E + 00 0.000000E + 00 173891
DENSO 1.245423E + 01 1.903578E + 01 1.599377E + 01 2.169709E + 00 200100
rs DE\FCr3 1.130096E + 01 7.634987E + 01 2.707867E + 01 1.774072E + 01 200010
DENSO 2.430580E + 01 2.530343E + 01 2.468209E + 01 3.004402E - 01 200100
F9 DE\FCr3 1.435442E + 17 4.834137E- 16 9.552152E-17 1.422569E - 16 200010
DENSO 2.975740E + 04 7.035782E + 04 5.295819E + 04 1.148206E + 04 200100
F10 DE\FCr3 2.517749E - 02 3.977652E - 01 1.628583E - 01 1.193423E- 01 200010
DENSO 2.013176E - 01 9.015901E - 01 4.872225E - 01 2.103323E-01 200100

The best results in the table are bolded.
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F1GURE 5: The mean of the current optimal values obtained by 7 algorithms with the number of function evaluations for F1-F6. (a) F1. (b) F2.

(c) F3. (d) F4. (e) F5. (f) Fe.

function values and the smallest standard deviation;
DE\ FCr1, DE\FCr3 and DE find the better results; The
means and standard deviations given by both DE0.4 and
DEM are worst among all algorithms; After 20 independent
runs DE\FCr2 finds a better function value, however, it
obtains the worst standard deviation because it encounters
twice the worst function value 15.37. For F2, DEG and DEM
find the best function values with the almost same precision
E - 15; The precision given by DE\FCr3 is E—14; DE and
DE\FCr1 give the precision of E—12; However, the lower

precisions provided by DE\FCr2 and DE0.4 are E—9 and
E -7 respectively. All of algorithms obtain the best function
values with the almost same precision for tested function F3.
For F4, the results given by DE\FCr3 are best, and those
provided by DE are a little bit less promising; DE0.4 find the
less promising optimum with the precision E — 14, while the
precisions provided by DEG and DE\FCr2 reach only E — 2;
DEM fails in finding the optima of F4 among 20 in-
dependent runs, and traps into the local optima. Both
DE\FCrl1, DE\FCr3, DE and DEO0.4 solve efficiently F5
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FIGURE 6: The mean of the current optimal values obtained by 7 algorithms with the number of function evaluations for F7-F10. (a) F7. (b)

F8. (c) F9. (d) F10.

with the precision E—24, E-22, E-16 and E-13 re-
spectively; The results given by DEG and DE\FCr2 are
worse; Similarly, DEM fails to solve F5.

In Table 4, Both DE\FCr3 and DE find the optima of
F6, however the fewer number of function evaluations
148533 is used by DE\ FCr3; The results obtained by DE0.4
and DEM are sightly worse than those obtained by
DE\FCr3 and DE; However, DE\FCrl, DE\FCr2 and
DEG have the lower precisions of about E—3. DE\FCr3

finds the optimum of tested function F7 with highest
precision and smallest STD and the fewer number of
function evaluations than the other algorithms; DE\FCr1
and DE\FCr2 reach the a little bit worse precision, and the
anther algorithms fail to find the optimum of F7 with
200100 function evaluations. For 30 dimensional Rose-
nbrock tested function F8, none of all algorithms is ob-
viously superior to the other one, namely, all algorithms
can not find a satisfactory optima. For F9, DEG produces
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a best results, while DE\FCr1 and DE\ FCr3 provides the
sightly worse results; The precisions of the mean function
values given by DE and DEO0.4 reach E—10 and E-6,
respectively; DEM can not find the reasonable result, and
only the mean value 60.796 is presented. DE and DEM find
the best means of function values of F10 with the precision
of E—4; The precisions given by DE0.4 and DE\FCr3 are
E -2 and E -1 respectively; DEG, DE\FCr1 and DE\FCr2
give the almost same results and fail to find a satisfactory
optima of F10.

In order to show further the efficiency of DE\FCr, the
means of the current optimal values obtained by 7 algo-
rithms with the almost same number of function evaluations
for each tested functions are respectively given in Figures 5
and 6. As mentioned in previous section,
|f (Xworst) — f (Xpest)| < € is used for the numerical stability,
hence each DE\FCr stops probably before the maximal
generation is reached. For convenience to draw the following
figures, the current optimal value is recorded repeatedly in
succeeding generations if the algorithm stops in advance
since we think that the algorithm cannot be improved greatly
in succeeding running.

Since the proposed algorithm is not same as the com-
pared algorithms in the number of function evaluations at
each iteration, it is inconvenient to draw the evolution
curves describing the variations of MEAN with the number
of function evaluations in a figure window for the reasonable
comparison among all algorithms. Therefore, the current
optimal values with the number of function evaluations
which is denoted by t-1cm{990, 100} for t=1,2,...,20
respectively are drawn in Figures 5 and 6 without consid-
ering the number of function evaluations costed by ini-
tialization. In fact, the sequence t-1lcm{990,100},¢ =
1,...,20is an arithmetic sequence with the initial term 9900
and the common difference 9900, where lcm denotes the
least common multiple. 990 and 100 represent the number of
function evaluations of DE\FCr and those of DEs at each
iteration, respectively. It needs to be emphasized that each
proposed algorithm evaluates 70(=100-30) less than the
compared algorithm at each given iteration as above.
Consequently, the current optimal value obtained by each
compared algorithm under the given number of function
evaluations is just recorded at certain generation which is
10+ (¢t = 1) - 10 for each DE\FCr and 99 + (t —1) - 99 for
DEs. Hence, only according to the recorded current optimal
value at each generation can the figures below be given
easily.

From each figure(see Figures 5 and 6), DEG outperforms
the other algorithms for F1, F2, and F9, whereas DE\FCr3
surpasses the other ones for F4-F7 and F10. For F1, F2, and
F9, DE\FCr3 is on the top three of 7 algorithms in terms of
the performance. However, For F4-F7 and F10, DEG drops
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out of the top three almost into the last three. It is worth
noting that both F3 and F8 don’t be considered because all
algorithms, especially DEG and DE\FCr3, obtain the almost
same results. We also find that DEG can obtain the optimum
with the higher precision at earlier generation than the other
algorithms and enters easily into the local optimum at latter
generation for F2, F4-F6, and F10. DE\FCr3 finds the
satisfactory results of most of tested functions except F8 and
also has not the tendency toward the local optimum with the
default parameters.

In a summary, DE\FCr3 does rather well in terms of the
performance, DEG and DE are a little bit less promising,
DE\FCr1 and DEQ.4 are even less promising, and DE\FCr2
and DEM are worst.

Furthermore, the numerical comparison experiments
are done between DE\FCr3 and DENSO (see Table 5).
DENSO is proposed in reference [19], which employs three
other candidate individuals to design a new selection op-
erator for improving the ability to escape the local optimum.
In Table 5, DE\FCr3 find the optima of the tested functions
F1,F2,F4,F5,F9 with higher precision. For F3,F8, F10,
Both algorithms have the almost same precision, however,
DE\FCr3 reduces 90 function evaluations. Obviously,
DE\FCr3 give the global minimal value 0 with the fewer
#ELAV for F6, F7.

6. Conclusion

For avoiding the settings of the parameters, the differential
evolutions without F and Cr are presented. The proposed
algorithms use the attraction-repulsion mechanism in Cou-
lomb’s Law and Taguchi parameter design method for the
purpose of eliminating the scale factor and the crossover
probability, respectively. Numerical experiments show that the
proposed algorithm DE\FCr3, which can balance well be-
tween exploration and exploitation, is superior to the compared
algorithms with other strategies and can find quickly the
optima or the near-optima of the problems. Although a smaller
population size 30 is given in the proposed algorithms for all 30
dimensional tested functions, this small population maybe lead
to the prematurity of algorithm such as F8. However a larger
population will expend too many function evaluations because
of using the two-level orthogonal array which is related with the
dimension of the problems. Obviously, In our algorithms the
number of function evaluations of each proposed algorithm at
each generation is (m + 1) - NP. Therefore, as for future work,
the following problems are going to be investigated: (i) decrease
the function evaluations at each generation and increase the
population size without the loss of the algorithmic perfor-
mance; (ii) analyze the accelerated convergence behavior of the
current optimal value f; after the t-th iteration in
equation (22).
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1
FO: 4x7 - 2.1x} + gx? + X%, — 4%x5 + 4x5, x € [-5,5]",

n
Fl: ) x},x € [-100,100]",
i=1

F2: —20exp| -0.2
i=1

n
F3: Y i-x; +rand[0,1],x € [-1.28,1.28]",

i=1

1< 1<
- Z xi2 - exp<— Z cos(27mx;) | +20 + exp (1), x € [-32,32]",
h =

4 . nl ) n
F4: . { 10sin’ (myy) + Z (yi— 1)2[1 +10sin’ (TT}’m)] +(y, - 1)2 + ;u(xi, 10, 100, 4),

i=1

x;+ 1,
i=1,..
4

1+

¥, Snu(x;,ak,m) =

10 i=1

n
+ Y u(x;,5,100,4), x € [-50,50]",
i=1

n

x;
4000 i

n
F6: Z
i=1

0,a<x;<a

[ Jcos ==+ 1,x € [~ 600,6001",
i=1 !

k(x;—a)",x;>a

,x € [-50,50]",

k(-x;—a)",x;< —a

Fs5: - {sin2 (3mx,) + fi (x;— 1) [1 + sin’ (37'rxi+1)] +(x, - 1) [1 +sin’ (Zﬂxn)] }

n
F7: 10n+ ) [} - 10 cos (27x;) ], x € [-5.12,5.12]",

i=1

n-1

F8: [100(x,.2 - x,.ﬂ)2 +(x; - 1)2],x € [-5,10]",

]
—

i

n n
F9: Y |x;| + [ ]|xil: x € [- 100, 100]"
i=1 i=1

F10: max {|x,|,i = 1,2,---,n},x € [~100,100]".
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In this paper, we study a coupled system of Hilfer type sequential fractional differential equations supplemented with Rie-
mann-Stieltjes integral multistrip boundary conditions. The standard tools of the fixed point theory are employed to prove the
existence and uniqueness results for the considered problem. Examples are constructed for the illustration of the obtained results.

1. Introduction

Fractional calculus is a generalization of the classical calculus.
Fractional differential equations become another necessary
tool in solving real-life problems in different research areas
such as physics, biology, engineering, and mechanics, see for
example the monographs and papers [1-11].

Boundary value problems of fractional differential
equations represent an important and interesting branch of
applied analysis. Usually, the researchers have given attention
in studying fractional differential equations involving Caputo
or Riemann-Liouville fractional derivative. But, Caputo or
Riemann-Liouville derivative was not considered appropriate

in studying some new models in engineering for example. To
avoid the difficulties, some new type fractional order deriv-
ative operators were introduced in the literature such as
Hadamard, Erdeyl-Kober, and Katugampola. Hilfer in [12]
introduced a new derivative, which generalizes both Rie-
mann-Liouville and Caputo derivatives. For some applica-
tions involving Hilfer fractional derivative, the interested
reader is referred to [13-16] and references cited therein.

In [17], Nuchpong et al. investigated a new class of
boundary value problems for fractional differential equa-
tions for involving sequential Hilfer type fractional deriv-
ative and subject to Riemann-Stieltjes integral multistrip
boundary conditions of the form

("D* + k"D Yu(2) = f(zu(2)), z € [c.d],

d Hi
w© =0, ud=1[ u@dH©+ Y u [ usds
¢ M

(1)
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where " D*F denotes the Hilfer fractional derivative operator

of order o, 1 <a <2, and parameter 3, 0<f<1, f: [c,d] x
. . . d .

R — R is a continuous function; JC x(s)dH (s) is the

Riemann-Stieltjes integral with respect to the function
H: [¢,d] — R, c>0, kop eR, c<y;<é<d, i=

in which "D%# and " D%#: indicate the Hilfer fractional
derivatives of orders «; and a,, 1 < &y, &, < 2, and parameters
B>y 0B, B, <1, f,g: [6,d] xRxR — R are contin-
uous functions, ¢>0, 0;, ( eR, and I%, 1% are the Rie-
mann-Liouville fractional integrals of order ¢, >0, (;5] >0,
i=12,....m j=12,...,n

( (HDal’ﬁl +

1u(c)=0, u(d) =

v(c)=0, wv(d)=

in which "D*# and "D%#: are the Hilfer fractional de-
rivatives of orders 1<a,a,<2 and parameters f3,[,,
0<p,5,<1, f1, [y [, d] xRxR — R are continuous

functions, If ()dH, (s), If ()dH, (s) are the Riemann-
Stieltjes integrals with respect to the functions H;:
[,d] — R, i=1,2,¢20, u,v, €R, n;, &, (., 0, € (¢, d),
i=12,...,m,r=12,...,p, A, Ay, 0y, 0, € R.

The remaining of this article has been regulated as
follows: In section 2 some concepts, lemmas and theorems
are recalled which will be applied throughout this paper.
In Section 3, an auxiliary lemma has been proved which
concerns a linear variant of system (3) and it is used to
convert the coupled system (3) into a fixed point problem.
The classical fixed point theorems have been applied in
order to obtain the results regarding the existence/

A J u(s)dH, (s) +
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1,2,...,n. Existence and uniqueness results are established
by using basic tools from fixed point theory.

The study of system of Hilfer type was initiated by
Wongcharoen et al. [18], by presenting the following system
of fractional differential equations:

HDal’ﬁlu(z) - f(z,u(z),v(z)), z € [c,d],
HDO‘Z’ﬁZV(Z) - g(Z,M(Z),V(z))) zZ € [C, d])
Ju)=0 u(d) = iél“’fv(f @

i=1
v(c)=0 v(d):i Piu(z
j=1

Inspired by the forenamed studies, this article considers
the existence and uniqueness of solutions for the following
coupled system of Hilfer type fractional differential equa-
tions with Riemann-Stieltjes integral multistrip boundary
conditions of the form

o' D" u(2) = f1(zu2),v(2) z € [ed],
("D + 6D ) (2) = £, (z,u(2),v(2)) z € [ed),

Alj v(9)dH, (s)+Zy,J v(s)ds, (3)

p 0,
v, J u(s)ds,
1 (r

r=

uniqueness in Section 4. Thus, the classical Banach fixed
point theorem is applied to obtain uniqueness result,
while Leray-Schauder alternative and Krasnosel’skii’s
fixed point theorems are applied to present existence
results. Examples are also constructed to illustrate the
obtained results.

2. Preliminaries

Now, the following items are reminded which will be applied
to fulfil the main results in the next steps.

Throughout the paper, the Banach space of all contin-
uous mappings from [c,d] to R are denoted by
% =C([c,d], R) which is equipped with the norm
Iyl = sup{ly (2)I;z € [c,d]}. It is clear that the space
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YXY, equipped  with norm
(e, )1l = llx]l + llyll, is a Banach space.

Also, AC" ([c, d], R) is the n-times absolutely continuous
functions defined as

AC"([e,d],R) ={f: [,d] — R; f" € AC([c,d], R)}.
(4)

For a real valued function g: (0,00) — R, the Rie-
mann- L10uv111e fractional integral of order # >0 is defined
by Ig(t) = j ((t—s)"'/T(1))g (s)ds, in which the right-
hand side is defined point-wise on (0, 00), see [2]. Besides,
for the function g, the Riemann-Liouville fractional de-
rivative of order §>0 is defined by {R}D°g(t) =

(1/T(n-90))(d/dt)" _[; (g(s)/(t—s)"™Nds, in  which
n = [6] + 1, where [8] denotes the integer part of a real
number J, see [2], while the Caputo fractional derivative is
defined by {€}D°g(t) = (1/T(n-9)) fg(l/ (t — )™
(d/ds)" g (s)ds, provided that the right-hand side exists.

Also, the Hilfer fractional derivative of order a and
parameter 8 of a function is defined by

Hpby(t) = P9 prpU-Po=ay, ), (5)

defined by

where n—-1<a<n, 0<B<1, t>a, D= (d/dt), see [12].
Note that if = 0 and 8 = 1, the Hilfer derivative is reduced
to the Riemann-Liouville and Caputo fractional derivatives,
respectively.

The following lemma will be applied to prove a lemma in
the next section which presents a pattern of existence of
solutions for system (1.3).

Lemma 1 (see [13]). Leth € L(c,d), ny —1<a<n;, ny €N,
0<B<1, IMm=@U-Ap e AC*[c,d]. Then, we have the fol-
lowing relation:
= -l _ k- (m-a)(1-p)
(I“HD“’ﬁh> (2)=h(z)- ) (z-c) — _
S T(k=(n —@)(1-P)+1)

- lim d—kk (1““”(”1‘&)}:) (2).

z—c* dZ

(6)

( “2ﬁ2+0- D"‘z 1ﬁ2)v(

( (HD“I’ﬁl + 0 HDal_l’ﬁl)u z) = h (2),

d
1 u(c) =0, u(d)—)tlj v(s)dH, (s)+ZM,I

Finally, we collect the fixed point theorems applied to
prove the main results in this paper.

Lemma 2 (Banach fixed point theorem, [19]). Let D be a
closed set in X and T: D — D satisfies

[Tu—Tv|<Mu -v|,
forsomel € (0,1), (7)

forallu, v € D.

Then T admits a unique fixed point in D.

Lemma 3 (Leray-Schauder alternative [20]). Let the set w be
closed bounded convex in X and O an open set contained in w
with 0 € O. Then, for the continuous and compact
T: U — w, either

(1) (a)T admits a fixed point in U, or

(2) (aa) there exists uweoU and pe (0,1) with
u = uT (u).

Lemma 4 (Krasnosel’skii fixed point theorem, [21]). Let N
indicate a closed, bounded, convex, and nonempty subset of a
Banach space Y and C,D be operators such that (i) Cx +
Dy € N where x, y € N, (ii) C is compact and continuous,
and (iii) D is a contraction mapping. Then, there exists z € N
such that z = Cz + Dz.

3. An Auxiliary Result
Lemma 5. Let ¢>0, 1<a, a,<2, 0<pB,B,<1
Y1 =0y + 2B — By, V2 =0 + 20, — ayp,

hy, hy € C([c,d],R) and © #0. Then, the solution of the
system

z € [¢,d],
z € [c, d],

&
v(s)ds, (8)

i=1 i

d p 0,
v(©) =0, v(d) = zJ u(s)dH, () + Y, L u(s)ds,
L 1

r= r
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is given by

u(z) = -0, Jz u(s)ds + I""hy (z)

_ A\ d s
+(z® rcil [G3( o, Cjcv(t)dthl(s)

n & s
A | I%hy (s)dH, (s) - . drd
A L 2 (s)dH, (s) - 0, ;#z Jm LV(l‘) tds
+ iyi r[ I"h, (s)ds> + 0, Jd u(s)ds — I"'hy (d)> 9)
i=1 Ni c

d s d
. GZ(—GIAZJ J u(8)dtdH, (s) + 1, J %, (s)dH, (3)

c

—alivr jjj u(t)dtds+z j ®h, (s)d5+02j v(s)ds
=1 .

—I"h, ()],

v(2) = o, J v(s)ds + Ih, (2)

(z - C)le d s
+ W Gl(—al/\z JC J‘ u(t)dth2 (S)

“, J %, (s)dH, (s) - alz J J (£)dtds

P
+Zvrj Ik, <s)ds>+a2j v(s)ds—I“%(d)) (10)

d d
+G4(—02)L1J J y(©)dtdH, (s) + ), J I*h, (s)dH, (s)

c

n & & d
-0, Z”i J.q J- v(t)dtds + Z/,t, L I"h, (s)ds> +0, J u(s)ds
i=1 i i ¢

i=1

~I"hy (d))],

where

(d-oh!
G =T =7 N
! r()’l)
d(z_c)}’z‘l n _ n_c)’z
G2=AILWdH1(z) Zl )y +(1) s
g B (11)
—C 2
Gy =5
’ F(Vz)
d(Z_C)YI_l p (er_c)h_((r_c)h
G, =1 ———dH X
v | Sy @ Y

0 = G,G; - G,G,. (12)
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Proof. Let (u,v) be a solution of system (5). By Lemma 2, we
have

_ a2 _ -1 z

we) =k (FZ(VIC)— ke (zr(ycl)—) 0 J _u(s)ds + 1%, (2),
_ 32 _ -1 z

v(z) =d, (rz(ch)_ ) +d, (zr(ycz))) -0, L v(s)ds + I*h, (2),

(13)

where k,, k,, d,, d, are the arbitrary constants, since (1 —
B2 —-a)=y,and (1 -4,)(2-a,) =y,. Applying u(c) =
0 and v(c) = 0, we deduce that k; = d; = 0. Thus, the pre-
vious equations become

(d- C)Vrl d (z - )Yz
“ T ‘dzwc I

c

~_———dH, (z)+z‘ul(f

(z—o!

OO REL I u(s)ds+ 190, (2),  (14)

u(z) =

_ el z
v(z) = dz% -0, J v(s)ds + I"?h, (2). (15)
2 c

Now, applying  the boundary
u(d) =\, j v(s)dH, (s)+z,1y,j v(s)ds and v(d) =

A, JC u(s)dH, (s) + Zr:l j{r u(s)ds, we get

conditions

)(V _ﬂ)_ c)“]

d s d n & s
=—02AIJ J v (£)dtdH, (s)+/llj [“h, (s)dH, (s)—GZZyiJ j v (£)deds
c c i=1 niJc

§ d
[®h, (s)ds + o, J u(s)ds — I, (d),

i=1 i
1 1 (16)
_ A\~ d _ o\ P DAY EPAY4
PGl {AZJ G i, @)+ Y =)~ ) ]
T(y,) ¢ T(n) =l Ty, +1)
d s d p 0, s
=—01Azj J u(t)dthz(s)+Azj i, (s)de(s)-UIZv,L J u (£)deds
cJe c e L Je
P 6 d
+ Y, j [, (s)ds + o, j v(s)ds — 1%, (d).
r=1 ¢ ¢
Consequently, we have the system where
kG, - d,G, = Q,, d,Gs - kG, = O, (17)
d rs d n & s
0, :—O'Z)LIJ- J v (£)dtdH, (s)mlj I“h, (s)dH, (s)—UZZyiJ J v (£)deds
cJc c i=1 n Jc
n & d
+ J I“h, (s)ds + 0, J u(s)ds — Ih, (d),
i= 1; ¢
1 d rs 6. rs (18)
0, :—alazj J u(t)dth2(5)+Azj 1R, (s)dH, (s) — olz j J u(f)deds
cJc =1 ( Jec

r=1

P
+ Zvrj IR, (s)ds + azj v(s)ds — I“h,d.



By solving the above system, we have

0,G; + Q,G,

k2 = )
(19)

G,Q, +G,Q,

dy=—"7-"—

Substituting the values of k, and d, into (10) and (14),
respectively, we obtain the solutions (9) and (10). We can
obtain the converse by direct computation. The proof is
finished. O

@, (u,v)(2)

— J u(s)ds + 1% £, (z,u(2), v(2))

L (z- on!
®r(y)

c
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4. Existence and Uniqueness Result

Due to Lemma 5, we define an operator @: % x ¥ — % x
¥ by
Q(u,v)(2) = (@, (u,v) (), @, (u,v) (2)), (20)

where

d rs
[G3<—02A1 j J v (#)dtdH, (s)

&
n

d n s
+/11J 1% £, (s, u(s), v (s))dH, (s)—aZZyiJ J v (1)dtds
¢ i=1 idc

n

+Z#ir

i=1 n

i d
‘ I £, (s,u(s), v(s))ds + 0, J u(s)ds — I f1(d, u(d), v(d))

(21)

d s d
. GZ(—UI/\Z J Lu(t)dthz (s)+ A, J 1% £ (s, (s), v (s))dH, (s)

c

r=1 r r=1

0,
I f1 (s, u(s), v(s))ds

p 0, s p
—0, Y, L I u(t)deds + Y v, L

d
‘o, j v(s)ds — I £, (d, u(d), v (d)),

Q, (u,v)(2)

o, J v(s)ds + 1% £, (z,u(2), v(2))

(z - C)}’z—l d

NGl R J
®F(Y2) ! .

c

JS u (t)dtdH, (s)

d p 0, rs
+1, J I f1 (s, (u(s),v(s))dH, (s) — 0, Z v, J( J u (t)dtds
c - L Je

4 (22)

P 6
+ ; v, J(, I f1 (s, u(s), v(s))ds + 0, J v(s)ds — I f, (d,u(d),v(d))

c

c

d
c

d rs
+G4(—02A1J Lv(t)dthl (s)+)L1J 1% £, (s, 1(s), v (s))dH, (s)

L &
— 0, Z Hi L
i=1

i i=1

d
+0, J u(s)ds — I f, (d,u(d),v(d))

J v(ndds+ Y g, J

&
I f, (s,u(s), v(s))ds

)}
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For convenience, we set

@, - 1 (d on ! |3| 1

T+ 1) 100G, @ e v 1)

S ey oo

ﬁ Y0~ = - c)“l“]>,
6= 3|< g 2ellE=9"" ==

+r(oilJr 1)J (s = c)"dH, (S)> G| (ICZ@IFC();_) l"((x21+ 1) =
@, =|oi|(d-0) +|G3|% d-0o| +|Gz|% (d -0, Ji(s—c)de ©)

G ST ol Sl - - @, o)

@, = %IGSH%HMJ (s— O)dH, (s) + |®|r( )|G3|02|Z|y1 [ e~ (- )]
+|Gz|%(d—6)|azl,
%= e e o
+|Gy| (|ClG<)|FC(); 1(l |r((x1+1)J (s— )" AH ) Zm[ O (- )%H])’
ey <;g;;g;;) . (a; 5
D5 =|oy|(d - ) +|G1|(|c;|_r—c()yz_)1 (d - 0)|o,] +|G4I% (d -0yl jj(s_ OdH, (5)
(d-o .
ol Sy o Y [0 ==
=y el [ =oar 0+ G| S5 [0, - -]
+|G4|(|Lé)|_r76()y2_)l(d—d|al|.

(24)



Now, Banach’s fixed point theorem is applied to present
the following uniqueness result.

Theorem 1. Let ® #0 and f,, f,: [c,d] x R* — R be two
continuous functions such that for all z € [c,d] and
U, v, € R, i=1,2, we have
|f1(z0,%) = f1 (28, 7,)| Sel(lﬁl — | +[7, - Vz|)>
|f2(2.0,%) = f1(2.5,,7,)| 362(|ﬁ1 — |+, - Vz|)-
(25)
where €,,€, are positive constants and u;, v; € R, i =1,2.

Then, there exists a unique solution of system (3) on [c,d]
provided that

6 (C1+D)+6,(6,+D,)+C3+C,+ D3+ D, < 1.
(26)

Journal of Mathematics

Proof . It suffices to display that the operator Q has a unique
fixed point. For this aim, Banach’s theorem will be applied.
Put  sup,c.4lf1(2,0,0):==M<co and sup,c.qlf,
(2,0,0)| = N<co. Now, we locate B, ={(u,v)e ¥x
Y |(u, v)| <7}, in which

M(€,+2,)+N(%,+9D,)
1-[6,(€,+D))+6,(€,+D,)+C3+ G4+ D3+ D,
(27)

r=

First, we indicate that @ (B,)<B,. Assume that (u,v) € B,
and z € [c,d]. Due to (), we have

|f1(zu(2),v(2)|<|f) (z,u(2),v(2) = f,(2,0,0)| +| f1(2,0,0)| <€, (lu(2)| +|v(2)]) + M = €, + M. (28)
Similarly, we have Hence, we infer that
|f2 (z,u(z),v(z))|s€2r+N. (29)
|@1 (u,v)(z)|
d
gr[lal|(d—c) (le)lr()|G3|(|02||A|J' —OdH, ()
1 &
o, | Z || J (s—c)ds +|oy|(d - c)>
i=1 Ni
d— ! d p 6,
+|G2|ﬁ <|01|| Ll j (s — O)dH, (5) +]o] ; v, Lr (s - O)ds
(d— on! 1
+|(72l(d—6))] + (flr +M)[F(oc1 + 1) |®|r(yl | 3l F(OC + 1) (30)

Gl ()

1 .
Vot (Wi [ oo

6, 3
o+ 1) Z]v |J-(r (s=¢) ‘ds>]

on! o
+(€2r+N)|:|®|r( | 3|< (@, +1);|P‘iljm (s—c)™ds

M
+4
[(a, +1)

=(6r+ M)%,

d
J (s = ) dH, (s)> 46,

_ )Yl‘l 1 ]
[OIT(y;) T(ay+1)

+(br + N)G, +1 (€5 +6,).
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Consequently,
|@, )| < (7 + M)E, + (6, + N)G, + 1 (5 + C,).
(31)
In the same way, we have
||Q2 (u, v)“ <(r+M)D, +(r + N)D, + 1 (D3 + D).
(32)

Hence,

1@, (1)) (2) = @, (113, v,) (2)]

1

@, V)< (&7 + M)(E, +D,) +(&,r + N) (€, +D,)
+1(C3+C+ Dy +D;)<r,
(33)
which yields that @ (B,)<B,.
Now, it is proved @: ¥ X ¥ — Y X % is a contrac-

tion. Applying condition (25), for any (u,v,), (uy,v,)
€ Y x % and for each z € [c,d], we have

(d—C)

<0, ([Jluy - ] +]v, - Vz”){r(‘xl + 1)

o o
’ 1®IT (y,)

< F(oc11+ 1)

r(oc1+2) Zl” J (S_C)ald5>}

(d

el =l o - oy

<F((x2+2) Z|yl j . (s —c)™ds +

(d-ch ! 1
O[T (y;) T(ay+1)

+|G,|

(d- C)Yﬁl

+|63| er(y;)

EADN j s—OdH, () +]G,| 4

(d_C)Yl—l
+||v1 _VZH |®|r()/1)

(d -
|®|r( |c3 |az|z|yl j <s_c>ds+|G2|W

(d=¢)|ay +|62|W

d
Gyflos ! j (s

1®IT (y,) |3| (o +1)

j (s — )M dH, (s)

|G|

Al d a
T(a, +1) J (s=c) dHl(s))

} +||u1 - u2||{|01| (d-c¢)

(34)

o (d - c)x

R

—c¢)dH, (s)

)Yl
L c>|02|}

=(6,%, + fz%z)(”ul - u2|| +”v1 - v2||) + ‘[53“141 - u2|| + %4||v1 - v2||

<((6,6,+6,%,) +€; + %4)("141 - u2|| +||v1 - v2||),

and hence

||Q1 (u,vy) - @, (uz,vz)" < (6,6, +6,%,)+ 65+ 9?4)(Hu1 - u2|| +Hv1 - VZH). (35)
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Furthermore, we deduce that
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”@2 (ug, 1) = @, (1, Vz)“ < (6,9, +6,92,) + D5 + 94)("”1 - ”2” +||V1 - Vz")- (36)

Using (25) and (33), we concluded that

1@ (11, v) = @ (1 vy)|| < (6, (61 + D)) +6,(6y + D) + G5+ 6y + Dy + D) ><(||u1 — | +]|v, - v2||). (37)

As 0, (61+9D))+6,(6,+D,)+63+C,+D3+D,<]1,
so the operator @ is a contraction and by applying Lemma 2,
the operator @ has a unique solution which is the solution of
the problem (3). The proof is finished. O

5. Existence Results

Two existence results are proved in this section.

5.1. Existence Result via Leray-Schauder Alternative. The
Leray-Schauder alternative (Lemma 3) is used in the proof
of our first existence result.

Theorem 2. Let ®+0 and f,, f,: [c,d]xR* — R be
continuous functions. Assume that

[(H,)] There exist real constants u;, v; >0 fori = 1,2 and
Uy, vy > 0 such that for all u,v € R, we have

|@, (u,v) ()]

<loi] [ a(olds + 1| £, Gtz v ()

|f1 (z,u(z),v(z))|£u0+u1|u| + uy|vl, (38)

|f2(z,u(z),v(z))| <y + vy lul + v,

If (6,+9)u+ (6,+D)v+65+D5<1  and
(61 +D)Duy + (6, +D)v, + €4+ Dy <1, where G, D;
fori=1,2,3,4 are given by (23) and (24), respectively, then
system (1.3) admits at least one solution on [c,d].

Proof . The functions f,, f, are continuous on [c,d] x R?.
Thus, the operator @ is continuous. Now, we will show that
the operator Q: ¥ x Y — Y x ¥ is completely contin-
uous. Let B, C ¥ x% be a bounded set, where
B, ={(u,v) € ¥ x ¥: |(u,v)|| <r}. Then, for any (u,v) € B,,
there exist positive real numbers P, and P, such that
|f1(z,u(t),v(2)| <Py and | f,(z,u(2z),v(2))| <P,.
Thus, for each (u,v) € B,, we have

@-o! [|G3|<|Uz|| [ [ wonarart,

Tlelr(y,)

i

d n & s
+|A1|J |f1(z,u(2),v(2)|dH, (s)+|az|2|yi|L J v (£)|dtds
Cc i=1 a

n éi
+ Z |uai| J”. I f, (s, u(s), v(s))|ds

d
+|01| L [t (s)lds + I"“lf1 (d,u(d),v(d))|)

+|Gz|<|a1 I, jd[j (e |aF, (9 +i01|§1 | jj ([ o]

d d
+|)L2| L ™ |f1 (s,u(s),v(s))lde(s) +|02| JC [v(s)|ds + I‘lefz(d,u(d),v(d))|
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+Z J I £y (s, (9), V(S))|ds>}

(d
Sr[|01|(d—c)+WU|G3|(|02HA|J ~OdH, (9)

+|02| Zl: Iﬂil J”. (s—c)ds +|01|(d _ c)>

d—cm! d p 0,
+|G2|ﬁ <|01|| A L (s —c)dH, (s) +|oy| ; v, J(, (s—c)ds

1 (d— ot G |
F((x1+1) OIT(y,) "' (a, +1)

o)t d
NGl (A ! J(s—c)“lde(s)

+|o, | (d - c))] + Pl[

1OIT (y,) I ZIF("‘l +1)
—o)*d
F(oc +1) Z|V|J (s—¢) s>j|
(d—C) n r" «
—o)%d
1®IT (y | o F(a2+1) ZI“’ n Crond
A J a d—oh! 1
e (s —¢)?dH, (s)) +|G
T(a,+1) | 2| |®|F(y1) T(a,+1)
=P, €, +P,E,+r(€;+F,),
(39)
le(u,< (€, +2,)P, +(€, +2D,)P
which yields @ r20P+ (& 2)P )
+7(63+ G4+ Dy + Dy).
|@, (u,v)| <€\ P, + B, P, + 7 (65 +B,). (40)
Next, we are going to prove that the operator @ is
Similarly, we obtain that equicontinuous. Let 7,7, € [¢c,d] with 7, <7,. Then, we
|@ V)| <D, P, + D,P, +7(Dy +D,).  (a1)  Dave

Hence, from the above inequalities, we get that the
operator @ is uniformly bounded, since

@, (,v) (7;) = @, (u,v) (1)
7 _ a—1 _ AR T, w1
S|01|r(12 -1)+P, J [(T2 ) (r2 =) ]ds+P1 J %ds

[(e) n o ()
[(72 O G C)ylfl] d
' [®IT (y,) [r(|G3||02||,\1| L (s —c)dH, (s)

n Ei
+|o, | Zl | J'ﬂ' (s —c)ds +|oy|(d - c)>

+|G2r|<|01||A2|J (s— C)de(S)+|01|Z L (s—c)ds
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1
+|02|(d—c))+P1[|G3|r(al

r(ocl +1) £ Z i |J S_C)alds>]

&
2| 1Gs <F(oc r1) 2 Z|Hz Jm (s—c)™ds

[l

A A

Journal of Mathematics

j (s — o)™ dH, (s)

oc+1)

d
+m J-C (S—C) del(S )+|G2|+1)]]

Therefore, we obtain

|G, () (1,) - @, (w,v) ()| — 0, asT; — 1,0 (44)

Analogously, we can get the following inequality:

|G, (u,v) (1,) = @y (u,v) (1,)] — 0, asT) — 1,0 (45)
Hence, the set @9, is equicontinuous. Accordingly,
Arzeld-Ascoli theorem implies that the operator @ is

completely continuous.

(43)

Finally, we shall show the boundedness of the set
={u,v) e ¥ xY: (u,v) = u@(u,v), 0<u<1}. Let any
(u,v) € Z, then (u,v) = u@(u,v). We have, forall z € [c,d],

u(z) = p@, (u,v)(z),

lull < (o + wyllull + IV E, + (vo + villull + v,V E, +ul €5 +IVIE,,

IVl < (g + uylull + u, VD, + (v + villull + v,lIvI) D, +1ul D5 + 11D,

which imply that

lull +lIvll < (€ + D) )uy + (€, + Dy)v, +

(46)
v(z) = @, (u,v) (2).
Then, we get
(47)
(€, +D))uy + (€, +D,)v, +E5 + Ds]lull (48)

+[(€1 + Dy)u, +(€, + D,))v, + G4 + Dy ]IV

Thus, we obtain

(6, + 91)“0 +(6, + D,)v,

. (49)
M

G, V) <

where M* = min{l — (€, + D))u; — (€,+ D,)v, — (E5+
D3),1 = (€, +D)Duy— (€, +D,)v, — (6, +D,)}, which
shows that the set Z is bounded. Therefore, by Ler-
ay-Schauder alternative (Lemma 3), the operator @ has at
least one fixed point. Hence, we deduce that problem (3)
admits a solution on [c, d], which completes the proof. [

5.2. Existence Result via Krasnosel’skii’s Fixed-Point Theorem.
Now, Krasnosel’skii’s fixed-point theorem (Lemma 4) is
applied to prove our second existence result.

Theorem 3. Assume that ®#0 and f,, f,: [c,d] x R?
— R are continuous functions satisfying condition (4.8) in
Theorem 4.1. Furthermore, suppose that there exist positive
constants R, and R, such that for all z € [c,d] and u,v € R,
we have

|f1 (z,u,v)|sR1, (50)
|f2 (z,u, v)| <R,.

IfE,+6,<1, D3+ D, <1and ((d-c)"/T(a; + 1))
+((d-¢)2/(d - ¢)™)¢, <1, then problem (1.3) admits a
solution on [c, d].

Proof . First, we decompose the operator @ defined by (1)
into four operators as
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z _ Al d s
S, (u,v)(z):—olj u(s)ds+(z®r8}) G3<—02A1J J. v(t)dtdH, (s)
c 1 cJc
§
1

d n s
+)L1J 1% £, (s, 1(s), v (s))dH, (s)—crzz#ij J v (£)deds
¢ i=1 i

n

& d
+ZyiJ I fz(s,u(s),v(s))ds+alj w(s)ds — I f, (d,u(d),v(d)))
i=1 i ¢

d s d
+G2(—01)L2J J u(t)dthz(s)+)LzJ 19 £, (s, 14(s), v (s))dH, (s)

c

P 0, s P 6,
— 01 Zi”r L JC u(t)dtds + Z; v, L I £, (s, u(s), v(s))ds

d
+0, J v(s)ds— I f, (d,u(d),v(d)))],

Sy (,v)(2) =1 f, (z,u(2),v(2)) I" fLu,v(2),

51
3 () (2) = - r()d+(z_76)yz_lc —/\rr (t)dtdH, (5) o
3(11)(2) = 0, | v(s)ds or(y) ok | | u ,(s
d p 0, rs
+A, J I £, (s,u(s), v(s))dH, (s) — o, Z v, J( J u (t)dtds
c o L Je
Pl d
sy, L £, (s,u(s),v(s))ds+azj v(s)ds — I £, (d, u (), v (d))
r=1 r c
d s d
+G4<—02)L1J J v (t)dtdH, (s)+AIJ 1 £, (s, u(s), v(s))dH, (5)
1 & s L &
-0, Zyi J J v(t)dtds + Zyi J I £, (s, u(s), v(s))ds
i=1 i ¢ i=1 Hi
d
+01J- u(S)ds—I“‘fl(d,u(d),V(d)))],
Sy () (2) =1 £, (z,u(z), v(2) I™ fLu, v(2).
Accordingly, @, (1,)(2) = &, (1,1) (2) + 8, (1,) () S @A 5D (53)
ccordingly, u, ) (2) = 8 () (2) + S, (u,v) (2 o
and Q@) = &) (@) + Sy 1) (@), Let Sa (V) (DI f2(2u(2),v(2)).
B, ={(u,v) € ¥ x ¥; I, v)l| < e} with Consequently, @, (x, y) + @, (u,v) € B, and we conclude
N @R, +G,R, DR, +D,R, (52) the condition (i) of Lemma 4. Now, it is indicateq that the
€2max 1_(%3+%4),1_(@3+94) . operator (&,,&8,) is a contraction mapping. For

(x1, ¥1)> (x5, ¥,) € B, we infer that
First, it is showed that @, (x, y) + @, (u,v) € B, for all (x,
y), (u,v) € B,. According to the proof of Theorem 1, we get

|<“5)2 (xp)/l)(z) - &, (xz’)’z)(z)l Slallfﬂpyl - f1xz)}’2| (2)

“ (d-c)™ (54)
<t =l =) @ <tz (b =]+ - 22]),
|094 (xp)’l)(z) -3, (x2>)/2) (z)| | SI%|f2xl’)’1 - fzxz))’zi(z) sz(nxl —x2|| +”)’1 - )’2“)10‘2 (1) (d)
(d-o)* (55)

< zm(”xl = x5 +[|y1 - yzll)-
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As  ((d=o)"/T(a; + 1)), + (d—c) /T (o, + 1)6, < 1,
the operator (&,, §,) is a contraction and the condition (iif)
of Lemma 4 is concluded. In the final step, the condition (i7)
of Lemma 4 is verified for the operator (§,,S5). As the

S, (u,v)(z)|§(‘_€1 -

[(a +1)

Journal of Mathematics

functions f,, f, are continuous, one can see that the op-
erator (&;,8;) is continuous. Furthermore, for (u,v) € B,,
as in the proof of Theorem 1, we have

)R1 +@,R, + (€5 +6,)e=P",

(56)

1 *
|§3 (u, V) (Z)| S@lRl +<@2 —IW>R2 + (93 + 94)8 = Q .

Hence, |($;,8,) (u,v)[|<P* + Q*, which implies that
(8, 8'5)B, is uniformly bounded. Now, we claim that the set
(&8, 85)B, is equicontinuous. For this aim, let 7,, 7, € [c,d]
with 7, <7,. For any (u,v) € B,, similar to the proofs of
equicontinuous for the operators @, and @, in 2, we can
show that |&, (u,v)(1,) =& (w,v)(t)], 185w, v)(1y)—
85 (u,v) (1)) — 0 as 7, — 1,. Consequently, the set
(&8, 83)B, is equicontinuous and by applying Arzela-Ascoli
theorem, the operator (&,,8;) will be compact on B,.
Therefore, by applying Lemma 4, problem (3) has at least one
solution on [c, d]. This completes the proof. O

Remark 1. In Theorem 2, the functions f, f, are bounded
by linear planes in three-dimension space. While, in

1
HD(5/4)(2/3) + %HD(IM)(Z/S))L{(Z) — fl (z,u(z),v(2)),
1
I_HD(3/4)(1/3)>V(Z) = f,(zu(2),v(2)),

(HD(7/4)(1/3) + -

Here, ) =5/4, a, =7/4, B, =2/3, B, =1/3, c=1/8,
d=13/8, A, =1/4, A, =1/5, H,(t)=e %, H,(t)=¢*,
n=2, u =2/7, u,=3/11, n, =1/2, n,=9/8, & =5/8,
& =5/4, p=3, v, = 4/13, v, = 5/17, v, = 6/19, {, = 1/4,
{, =3/4, {;=11/8, 6, = 3/8, 6, =7/8, and 6, = 3/2. Then,
we can compute that y, = 7/4, y, = 11/6, G, = 1.474766913,
G, = —0.03380798224, G; = 1.490431261, G, = 0.03704
876432, © = 2.199291254, €, = 1.765659740, €, = 0.00612
8241272, 5 = 0.1499796921, €, = 0.000526941741, D, =
1.242948896, 9, = 0.06369559511, 95 = 0.1998340850,
and 9, = 0.003945721441.

Theorem 3, f,, f, are bounded by fixed constants and also
satisfied Lipschitz condition in (25).

6. Examples

Now, we present some examples to show the benefits of our
results.

Example 1. Consider the following coupled system of Hilfer
type sequential fractional differential equations involving
Riemann-Stieltjes integral multistrip boundary conditions
of the form

z € [(1/8), (13/8)],

z € [(1/8), (13/8)],

(57)

13/8 5/8 3 (54
J v(s)d(e_ 25) 4= J v(s)ds + — J v (s)ds,
1/2 11 Joss

Jl3lsu(s)d(e_3s)+%J

3/8 7/8 3/2

u(s)ds.

11/8

5 6
u(s)ds+l—7 J u(s)ds+E J

1/4 3/4

(i) The Lipschitzian functions f, f,: [(1/8), (13/8)] x
R*> — R are given by

1 u2+2|u| sinlv] 1
tu,v) = Zcos2t, (58
frltwy) 8t+4(2(1+|u|)>+8t+5+2cos i, (58)
Falty ) = ——tan”"ul
JU, V) = an |u
2 8t +3
(59)

178 442 4 5|v| 1
+—— | ——— | +-log, t.
8t+7\5(1+|v|) 4
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From direct computation to (59)-(60), we get
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1 1
|f1 (t>”1)V1) -fi (t> “2)V2)| Sgl% - ”2' +6|V1 - V2|’

1 1
|f2 (t>u1a"1) - (t>u2>V2)| Szllh —uzl +§|V1 -V

for u,,u,, vy, v, € R. Setting ¢, = 1/5 and ¢, = 1/4,
we obtain £, (6, +9D))+¢, (6,+D,)+GE5+
@, + Dy + D, ~0.9734641265 < 1. By application
of our Theorem 1, the problem of Hilfer type se-
quential fractional differential system involving
Riemann-Stieltjes integral multistrip boundary

1 1 _
fitu,v) = Ecos2 it +—ue

1
fo(tu,v) = —sin® 7t +

3

We remark that |f,(t,u,v)|< (1/2)+ (1/5)|ul+
(1/3)|v] and | (tu,v)| < (1/3) + (1/4)|ul+
(1/2)|v|. Now, we choose the constants as in The-
orem 2 by u, =1/2, u; =1/5, u, = 1/3, v, = 1/3,
v, = 1/4, and v, = 1/2. Then, we can find that (&, +
Duy + (G, +Dy)v, + 65+

D, = 0.9748101164 < 1 and (6, +9D))u,+
(G, + D), + G, + D, ~0.7915367403 < 1. The

(60)

>

conditions (58) with (59)-(60) has a unique solution
on [(1/8), (13/8)].

(ii) Let the nonlinear functions f, f,: [(1/8), (13/8)] x
R? — R be defined by

15, 4
" [v| 7sin” u (61)
Y T3y

18 12
u cos v
—tan " u.

v
41+ T Y

benefit of Theorem 2 can be used to conclude that
the coupled system of Hilfer type sequential frac-
tional differential equations subject to boundary
conditions (58) with (62)-(63) has at least one so-
lution on [(1/8), (13/8)].

(iii) Suppose  that two  Lipschitzian functions
f1> f2: [(1/8), (13/8)] x R* — R are stated by

1 1 ] 1 1
Lu,v) = + + tan " |v|, 63
S ) 8t +1 8t+2(1+|u|) 8t +3 v (63)
1 Log . 1—(1—8t)2 vl
t,u,v) = —+—e sin|u| + —e — ). 64
fa ) 8t+4 3 ul 5 1+]v| (64)

Actually, we can compute the bounds of the above two
functions by |f, (t,u,v)| < (5/6) + (7/8), |f,(t,u,v)|<
(47/60), for all u,v € R. In addition, we can find that
[f1 G uy,vy) = fr(Euy, vy)l < (1/3)|uy —uy| + (1/4)|v, — v,
and | fo (tuy,vy) = fro (8 1y, vy)| < (1/3) [t; —u, |+
(1/5)|v; = v,|, and thus we can set ¢, =1/3 and ¢, =1/3
satisfying condition (4.8) in Theorem 1. Then, we obtain
€5+ €, = 0.1505066338 <1, I, + D, = 0.2037798064 < 1,
and  ((d-0)"/T(ay+ 1))+ ((d=0)"/ T, +1))e,
~ 0.9097463067 < 1 that all conditions in Theorem 3 are
tulfilled. In this step, we conclude that the problem (58) with
(64) has at least one solution on [(1/8), (13/8)]. Finally, we
observe that the uniqueness result cannot be obtained be-
cause (6, +D,)+¢, (6, +9D,)+65+C,+ D5+
2, = 1.380430597 > 1.

7. Conclusions

In the present research, we studied a coupled system of
Hilfer type sequential fractional differential equations sup-
plemented with Riemann-Stieltjes integral multistrip
boundary conditions. First, an auxiliary lemma, concerning
a linear variant of the considered problem, has been proved
which is pivotal to converting the coupled system into a fixed
point problem. Then, existence and uniqueness results are
established via standard fixed point theorems. Thus, the
classical Banach fixed point theorem is applied to obtain a
uniqueness result, while Leray-Schauder alternative and
Krasnosel’skii’s fixed point theorem are applied to present
the existence results. Numerical examples are also con-
structed to illustrate the obtained results. The obtained
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results are new and enrich the existing literature on coupled
systems of Hilfer type sequential fractional differential
equations.
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The purpose of this article is to demonstrate new generalized k-fractional Hadamard and Fejér-Hadamard integral inequalities for
(a, h —m)-convex functions. To prove these inequalities, k-fractional integral operators including the generalization of the
Mittag-Leffler function are used. The results presented in this article can be considered an important advancement of previously

published inequalities.

1. Introduction

Theory of convexity offers an effective and charming area of
research and is also a theory that featured prominently and
surprisingly in distinct disciplines such as mathematical
analysis, optimization, economics, finance, engineering and
game theory. Convexity theory is very closely related with
the theory of inequalities. Many inequalities well known in
the literature are direct applications of the properties of
convex functions. The usage of fractional integral operators
for getting the generalized types of classic inequalities has
become an important method in advanced mathematical
studies of inequalities.

One of the convexity theory studies in the literature
belongs to Gao et al. [1]. They presented a new type of
functions called n-polynomial harmonically exponential
type convex, and specified some of their algebraic features.
Mehrez and Agarwal [2] established new type of integral
inequalities for convex functions and indicated new in-
equalities for some special and g-special functions. Tariq
[3] defined the concept of p~harmonic exponential type
convex functions. Also, they investigated some integral
inequalities in the form of applications for some means.
Another study on convexity theory and inequalities was

presented by Butt et al. [4]. They presented the notion of
m-polynomial p-harmonic exponential type convex
functions and demonstrated various new integral in-
equalities. Srivastava et al. [5] obtained a new class of the
bi-close-to-convex functions described in the open unit
disk by using the Borel distribution series of the Mit-
tag-Leffler type. Also, the authors demonstrated the
Fekete-Szego type inequalities via the bi-close-to-convex
function class.

Fractional calculus, which is the study of integrals and
derivatives of fractional order, has expanded significantly
over the late nineteenth century. It ranges from chemical,
viscoelasticity, and statistical physics to electrical and me-
chanical engineering. The fundamental working doctrine of
fractional analysis is to present new fractional derivative and
integral operators, and to analyze the benefits of these op-
erators through the instrument of modeling studies, and
collations. Integral operators, which form a significant part
of fractional calculus, are now resources of many fields such
as inequality theory, engineering, statistics, mathematical
biology, and modeling, which take advantage of fractional
analysis. Many inequalities have been generalized through
the instrument of fractional integral operators and provide
construction of new approximations.
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One of the fractional calculus studies in the literature
belongs to Abdeljawad et al. [6]. They obtained generalized
Hermite-Hadamard type inequalities and generalized
Simpson type inequalities for (s,m)-convex functions with
the help of local fractional integration. Akdemir et al. [7]
used generalized fractional integral operators. By using these
operators, they proved new and general variants of Che-
byshev’s inequality. Butt et al. [8] established a general in-
tegral identity to acquire new integral inequalities of several
Hadamard types. For this purpose, they used a new version
of the Atangana-Baleanu integral operator. Khan et al. [9]
explored two fractional integral operators related to Fox
H-function owing to Saxena and Kumbhat. They proved
series expansion of the images of the M-series with the help
of these fractional operators. Another study to k-fractional
integrals was presented by Qi et al. [10]. They constructed
some generalized fractional integral inequalities of the
Hermite-Hadamard type via (a, m)-convex functions. Also,
they demonstrated that one can get and expand some
Riemann-Liouville fractional integral inequalities and
classical integral inequalities of Hermite-Hadamard’s type.
Tunc et al. [11] presented the generalized k-fractional in-
tegrals of a function with respect to the another function that
generalizes many several types of fractional integrals. Also,
they studied trapezoid inequalities for the functions whose
derivatives in absolute value are convex. Onalan et al. [12]
proved many Hermite—-Hadamard type integral inequalities
for functions whose absolute values of the second derivatives
are s-convex and s-concave using fractional integral oper-
ators with the Mittag-Leffler kernel. Zhu et al. [13] explored
a weighted integral identity of Simpson-like type. Relying on
this identity, they obtained some estimation-type results
connected with the weighted Simpson-like type integral
inequalities for the first order differentiable functions. Sri-
vastava et al. [14] established the homogeneous g-shift
operator and the homogeneous g-difference operator. Based
on these operators, they searched generalized Cauchy and
Hahn polynomials.

2. Preliminaries
Now let us define some important functions.
Definition 1 (see [15]). A function ¢: [a,b] — R is called a
convex function, if
¢ (e + (1 =mx) <ne () + (1 - ne(x) (1)
holds for all 1,k € [a,b] and # € [0, 1].
Definition 2 (see [16]). The function ¢: [0,b] — R, b>0, is
called the (a,m)-convex function, if
e(+mQ-mr)<n o) +m(1-1")e(x) (2)
holds for all 1, € [0,b],7% € [0,1] and (a,m) € [0, 112

Definition 3 (see [17]). A function ¢: [0,b] — R is said to
be (s,m)-convex, if
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em+m(l-mr)<re)+m(l-71")p(x) (3)
holds for all 1,k € [0,b], n € [0,1] and (s,m) € (0, 1].

Definition 4 (see [18]). A function ¢: [0,b] — R is said to
be (s, m)-convex in the second sense, if

e +m1 =)< () +m(1-n)’e(x) (4)
holds for all 1,k € [0,b] , # € [0,1] and (s,m) € (0, 112

Definition 5 (see [19]). Let JCR be an interval including
(0,1) and let h: ] — R be a nonnegative function. Then the
function ¢: [0,b] — R is called the (h —m)-convex func-
tion, if

om+m(1 -nx)<h(me () + mh(1 -n)e(x) (5)
holds for all 1, x € [0,b], n € [0,1] and m € [0,1].

Definition 6 (see [20]). Let J SR be an interval including
(0,1) and let h: ] — R be a nonnegative function. Then the
function ¢: [0,b] — R is called the (a,h—m)-convex
function, if

e(+m(1—mr)<h(n")e () + mh(1-1")g(x) (6)
holds for all ;,x € [0,b], 7 € [0,1] and (a,m) € [0, 112

Remark 1

(i) By takingm = a = 1 and h(x) = n in (6), we obtain
the definition of convex function (1).

(ii) By taking h(n) = n in (6), we obtain the definition of
(a, m)-convex function (2).

(iii) By taking h(n) = n and a = s in (6), we obtain the
definition of (s, m)-convex function (3).

(iv) By taking h(n) = n° and a = 1 in (6), we obtain the
definition of (s,m)-convex function in the second
sense (4).

(v) By taking a =1 in(6), we obtain the definition of
(h, m)-convex function (5).

(vi) By taking a =m = h(n) =1 in (6), we obtain the
definition of p-function described by Dragomir et al.
in [21].

Now let us represent some definitions of fractional in-
tegral operators that will form the basis for this article.

Definition 7 (see [22]). Let y,c,w, o, 1, € C,R (1), R (a) >0,
R@)>R(y)>0 with y,6>0, p>0, and 0<v<§+py. Let
¢ € L, [a,b], 1 € [a,b]. In that case, the generalized fractional
operators are defined by

(Fﬂii’,zv,i,udp) (5p) = L (=) EL S (w(e = ) B)o (n)dn,

b
(Fiove,0)wp = j (=0 "Ejo} (wln — 0 B)g (mdn,
(7)
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where
e X B=(y+nv,c—y) c n
B (1) = ) 2 ©u_ 1 (g)

B(y,c—y)

is generalized extended Mittag-Leffler function, and 5~
is the expansion of beta function described as below:

T(un+a) (1,5

n=0

1 -
ﬁ'};(l, K) = J ;1:—1 (1- rl)x—lef(p/n(lfn))dr]) (9)
0

$,7,0,v,¢ L=y : ¢(1//(l) - l//(77))
<V’Fﬂ>lx,l,w,u+¢> (la P) = Ja 1//([) _ W(T’]) E
b
,y,0:v,¢ L=y (/)(1//(77) - 1//(1))
<WF[4>06,1,1.U,177(P> ([’p) - j‘l 1//(7]) _ 1//([) E

Definition 9 (see [23]). Let ¢, y: [a,b] — R with0<a<b,
be the functions such that ¢ be positive and ¢ € L, [a, b] and
v be differentiable and strictly increasing. Let y,c,w,a,

where R (1), R (x), R (p) > 0.

Definition 8 (see [23]). Let ¢, y: [a,b] — R with0<a<b,
be the functions, ¢ be positive, ¢ € L, [a,b] and v be dif-
ferentiable and strictly increasing. Let (¢/1) be an increasing
on [a,00), y,c,w,a,l € C,R(),R(a)>0,R(c)>R(y)>0
with 4,6>0,p>0, and O<v<y+d. In that case, for
1 € [a,b], the fractional operators are described by

PO (w (y ()~ y () B)yr (e (),
(10)
VO (w (y ()~ w05 B (g (m)d.

LeC,R(ID,R(a)>0,R(c)>R(y)>0, 4,6>0,p>0, and
0<v<u+ 0. In that case, for 1 € [a,b], the united operators
are described by

(WFZ:i:Z’;mso) (1P) = j (W) =y )" ELr (w(y () = y () B (ne (dn,
‘ (11)
b
SO o)) = | (W) =y )T ELS (w(y (n) - w () B (0 (n)dn.
Iz , Iz

Recently, Yue et al. defined generalized k-fractional
operators including a further extension of Mittag-Leffler
function in [24] as noted below:

Definition 10. Let @,y: [a,b] — R with 0<a<b; be the
functions such that ¢ be positive and ¢ € L,[a,b] and y be

P50,v,¢ alk)—

(brrsren) 67 = [ -y

Fy,&v,c ( . ~) _ b
gk ‘u,(x,l,w,b—(P I7p

(v () = w ()

The following inequality is the admitted Hadamard
inequality.

Theorem 1. Let ¢: [a,b] — R with a<b, be a convex
function. In that case, the below inequality occurs:

()= .
0] < jq)(l)dlS

a+b
2

¢(a) er <P(b)_ (14)

b-

a

differentiable and strictly increasing. Let y,c,w, a, 1, € R and
a>k L,a>0,c>y>0with0<v<d+u, p20andu,§>0. In
that case, for 1 € [a,b], the right-left generalized k-fractional
operators (kprove @) and (’J,Fz v @) are defined by

v palwa+ Lol w,b—

EROT (w(y () = y ()5 BYyr (e ()dn, (12)
TUELOTE (w (y () - w ()" B)yr (g (n)dr. (13)

Theorem 2. Let ¢: [a,b] — R be a convex and
y: [a,b] — R be nonnegative and symmetric in respect of
((a + b)/2) and integrable. In that case, the below inequality

()]

b b

v (1)de

(15)

a+b
2

b
vodis [ poyas? 220 |

a



This inequality in [25] presented by Fejér is known as a
weighted type of Hadamard’s inequality.

Many authors have been established several refinements
and extensions of the Hadamard and the Fejér-Hadamard
inequalities for various fractional integral operators (for
details see, [2, 7, 11, 16, 17, 19-21, 26-34] and references
therein). This article aims to derive the Hadamard and
Fejér-Hadamard inequalities about generalized k-fractional
integrals  involving  Mittag-Leffler = functions via
(a, h — m)-convex functions. In the upcoming section, we
will  utilize k-fractional integral operators and
(a, h — m)-convexity to prove the two versions of the
Hadamard inequality and the Fejér-Hadamard inequality.

(p(ll/(a) +my (b) ) (kFy,S,v,c

2 v wrlwat

1)(mw(b); 5)
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3. The k-Fractional Inequalities of Hadamard
and Fejér—-Hadamard Type

In this section, we first describe the below generalized
k-fractional Hadamard’s inequality.

Theorem 3. Let h: ] — R is nonnegative, nonzero and
integrable function and @, y: [a,b] — R, 0<a <mb, be the
functions such that ¢ € L, [a,b] and ¢ be positive and y be
differentiable and strictly increasing. If ¢ is (a, h — m)-con-
vex, the below inequalities for k-fractional operators (12) and
(13) occur:

Sh(zl )R 0y ) Gny (8): ) +m“”<+‘h(22—;1>( RO @ w)(‘““);;,>

< [h<2—1a>(p(w(a)) +m(™ “h( a

+m[ ( )<p<w(b)>+m“”"“h<

where W = (w/ (my (b) — y(a))¥) for all 4 € [a,b].

Proof. Since ¢ is (a,h—m)-convex on [a,b], for all
I,k € [a,b], we have

¢<7W(I) * mW(K)) <h( )<p(w(:)) + mh(

5 >(p(1//(K)) (17)

Setting v (1) = ny(a) + m(1 — n)y(b) and y (x) = (y(a)/m)
(1 -#) + ny(b) in above inequality, we have

)so(w(b))] j \Cs
o

(a) . Ve _
V@ | [ o ELYY (wit's PR (1 -
0

m
(16)

ED (wit's PR (77 dy

n")dn,

(Tt

. )_h( Jo v (@) +m(1 -y o)

2% —1 y(a)
+mh< o )¢(7(1—n)+ng(b)>.

(18)

Multiplying both sides of (18) by 57k~ lEy 0 (wnts p),
then integrating over [0, 1], we have

(a)+m (b) 1 /k)— v,c
(p(u) Jon”") CELYY (wn'; B)dn

2

1
<he) [ A B s Bhony @) + m1 =y By

(19)

2°-1\ (! e
+mh( = )Jon”k) B (wr p)(p( )(1—11)+f11//(b)>
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By specifying v (1) = qy(a) + m(1 —n)y(b) and y(x) =
(y(a)/m)(1 -#) +ny(b) in (19), we have

v (my (b))
¢<M) J (rmy (b) — y (1) O EL2Y (@ (my (b) - w ()5 B)yr ()ds

v~ (my (b))
< h(%) j (my (B) -y () OB (@ (my (B) - v () B (w () (O (20)

a

a_ b
+m(T/k)+1h(2 - I)J o )(1//(")_?)(%) 1Ey6vc<— y(w(K) y(a )> >(P(w(K))1//I(K)dK
uli a)im

2
By usage k-fractional operators (12) and (13), the first To evidence the second side of (16), once again
side of (16) is achieved. (a, h — m)-convexity of ¢ over [a,b], for 5 € [0,1], we
achieve

W )go(w(a>+m<1—n)w<b>)+m‘f”‘“h(22 ) ((1— (@) )+w(b)>
sh(n“)[ (5 )cp(w(a))+m“”‘”h(22—;l><p(w(b>)] (21)

« 1 /k)+ 2°-1 (a)
+mh(1-7 )[h<?><p(w(b))+m( 1K) 1h<2—a>‘/’(wm(21 )]

Multiplying both sides of (21) by 5 (™/¥)- 1EY - 1 (wrts p),
next integrating over [0, 1], we achieve

1 ! 1/k)- v,c ~
h(5e) [ a7 L (wns B Gy (@) + ma (1 =y B

e (251 . e u
(2 [ e - Y e Jan

(22)
< [h(%)go(u/(a)) +m(”k)”h<22—;1)¢(w(b))] J (et lEzfzw(w’?”%?)h(’?a)dﬂ

+ m[h(z—i)so(w(b)) + m“’k)*‘h<22—21)¢( ‘”‘?)] jo 1 B (s B (1~ o)

m

Setting w (1) = yy(a) +m(1 - )y (b) and y(x) = (1-  Corollary 1. By usage (16), anymore k-fractional inequalities
n (v (a)/m) +ny(b) in (22), in that case by utilizing are offered as noted below:

k-fractional operators (12) and (13), the second side of (16) is
achieved. O (i) By choosing w = I and p = w = 0, we obtain
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mb
(P(a +2mb> J (mb — )P4,

1 mb 20‘ ~-1 b (t/k)-1
< h<?> J (mb - 1) o (Ddi + m(ﬂkmh( = ) Ja (K - %) ¢ (x)dx

2
" (23)
1 0(
a_ 1
N m|:h<21[x)(,0(b) " m(r/k)+1h<22[x1>(p(a2):| j n(‘r/k)—lh(l _ ﬂa)dr]
m 0
(ii) By choosing w = I and p = 0, we obtain
mb
(P(a +2mb>J (b — 1) - Ey(SVC(w(mb_l)y)
1 mb (1/k)— 1 y,0,v,¢ (— u
sh(?>I (mb — )07 B (3 (mb — 1)) (1)l
(e (25 =1 Jb ( _g)wk)‘l y,5,v,c<_ ,,( _g)“)
+m h(—2“ ) . K - EW’I wm”( k - ¢ (r)dk (24)
< |:h<21a)(,0(a) +m ‘r/k)+1h< 2 ) (b)] J- (1/k)- lEY(SVC(wI’]H)h(Y]a)dﬂ
2% -1 1
+m ( )fp(b) +m ™ =2 o J O R (wi)h (1 - ) dy.
2 m 0
(iii) By setting m = 1 and y = I, we obtain
a+b b (t/k)= 1 y,0,v,¢ u, =
o “57) | @0 B @ - s B
1y (® (e1k)- yavc =
<h(ye) | -0 B @0 05 Po)d
2" -1 ()= 1 yduvc f— b =
+h 5 J-a (k—a) Ey,‘r,l (W(x—a); p)e(x)dx (25)

<[ s (o] [ e e

| )e® (2 Yo | [ a0 B s =),

(iv) By choosing h(n) = and p = w = 0, we obtain
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(4‘”(“) ;’”‘““) |’ T ) -y )y (0
<G e - v o 0
(Y = gy g (26)
[( )(p (y(a)) +m'™ “(2‘; 1>q)(1//(b))] (T fak)
om [( <)oy ) + (22; l)so(‘”r;?))](ﬂffzak))
(v) By setting a = 1 and y = I, we get
so(“ e ) [ =0 5 s
<h(5) j'ﬂb (b — 0O BT (@5 b — ' ) (1)
en ) (e (e P
<[5 )o@+ m™ (3o @] [[ n B ot Bty
+m [ ( Jo®) +m “hG)fp(%)] JO OB (wis PR (1 - ndn
(vi) By setting a =m =1, h(n) =y and v = I, we get
q)(”;b)J (b= 0™ B (@ (b — s p)ds
%“ (b= OO (@ (b - s B (1)di + jb (k= a) OB (@ (1 - a)”;f?)q)(x)dx] (28)
< (ba) ; (P(b))“; nVED (wnt's B)dn + j O BN (wr's B) (1 - ﬂ)dﬂ]

Remark 2. 'The above k-fractional inequalities are farther in
line with already known conclusions as noted below: (i) By
choosing k = 1 in Corollary 1 (v), an inequality for extended
generalized fractional integrals is acquired. (ii) By choosing

k=1 and p =0 in Corollary 1 (v), Theorem 2.1 of [28] is
acquired. (iii) By choosingm = 1, and h () = 5 in Corollary 1
(v), Theorem 2.1 of [27] is acquired. (iv) By choosing p = w =
0 in Corollary 1 (v), Theorem 2.1 of [20] is acquired.



Remark 3. (i) By choosingk = 1 and p = 0 in Remark 1 (iii),
an inequality for extended generalized fractional integrals is
acquired. (ii) By choosing k = 1 and p = w = 0 in Remark 1
(iii), Theorem 2 of [29] is acquired. (iii) By choosing k = 1 in
Remark 1 (iv), Corollary 2.2 of [20] is acquired.

The below lemma is beneficial to offer the
Fejér-Hadamard’s inequality for generalized k-fractional
integrals.

k p.0,v¢ o ~ k y,0,v,¢ o
(b5 Yo 09 = (SR
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Lemma 1. Let ¢,y: [a,b] — R with 0<a<mb, be the
functions such that ¢ € L,[a,b] and ¢ positive and y be
differentiable and  strictly increasing. If @ (y (1) =
o(y(a) +my(b) —y (1), in that case for generalized
k-fractional operators (11) and (12), we get

v(a) _
m 7p)

(29)

1 »0,V,C ° = ,0,V5C ° (a) -
=3 [(;F};,imm‘/’ g) (my (b); p) +<I;Fz,i,l,wmﬂ,b7¢ W)(w ;P)],

for all 7 € [a,b].

('LFZZ‘:ZZ%M"W) (my (b); p)
J'wl (my (b))

a

J'll/‘l (my (b))

a
,1(

m

Proof. By description of generalized k-fractional operators
(12) and (13), we get

(my (b) -y (1)) O ELY (@ (my (b) - y (0); B) (97w) (yr (1)d

(30)

(my (B) = y (1) O ELY (@ (my (B) -y (0); B)e (v (0)yr ()d

g~ (my (b)) (t/k)=1 5y,0,v,¢ (— H. 5
- | (my (b) =y () ™ ELT (@ (my (B) = y (05 P (y (@) + my (b) =y (0)yr ().

Setting y(x) =y(a) +my(b)—y() in the above

equation and using ¢ (v (1)) = ¢ (v (a) + my(b) — v (1)), we
have

(SFrtie 0y oy ;)

b
| )=y @) B

v (y(a)m
b
JW’ Ly (a)/m)

This implies
,0,v,¢ o = ,0,v.¢ o (a) -
(SF1oe v ) omy  B) = (S5 0 w)("/?;p).
(32)

) 8,5
By addlng (IJ,F ,);,T,Z;,m
(32), we have

T/k)- 1 Ey,&v,c

(my (1) - v(a))' ot

¢ y) (my (b); D) on both sides of

(@ (my () - y(a); p)e (w () (n)dy (31)

(@ (my () - y (@) ) (¢"y) (w1 ()dy.

2(1;%2%“&01#) (my (0); P) = (IJF D PV )(w;a); ?’>

k y:0:v,¢ o L=
+(V/Fz,1,l,w,a+()0 V/) (I’Yﬂ// (b)7 P)
(33)

From equations (32) and (33), the result can be
obtained. O
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The first type of Fejér-Hadamard inequality is endued  differentiable and strictly increasing, r is a nonnegative and
through generalized k-fractional integrals as noted below: integrable function. If ¢ is (a,h—m)-convex and
o(v() =¢(y(a) +my((b) — (1)), in that case the below
Theorem 4. Let h: ] — R be nonnegative, nonzero, and  inequalities for generalized k-fractional operators (12) and
integrable function and @, y: [a,b] — R, 0 <a <mb, be the (13) occur:
functions such that ¢ € L, [a,b] and ¢ be positive and y be

(M)[(WFZ‘E{;M" )(mw(b) P+ (V Pt w)(w,(;);?ﬂ
gzh(zl J(EEL 07y ) oy ;)
+2m (r/k)+1h< = )( Fro ¢rw)<$§f’>
sz[h(z—i)sv(wa»+m<f”‘>“h<22—;1)so(w(b))] (34)
x[;n‘”’” YEVS Y (wis B)r (ny (@) + m (1 = )y (b)) (n*)dy
. 2m[h(zia)¢<w<b» . m‘f’k)*1h<zz—;1)¢(ﬁ?))]

1
x JO ETOTL R (wi's B)r (ny (@) + m (1= )y (B))h (1= n%)dn

where W = (w/ (my (b) — y(a))") for all € [a,b]. Multiplying both sides of (18) by
5 (7R- IEV‘SVC (wrt; P)r (ny(a) + m(1 - n)y (b)) and then
Proof. We demonstrate the claim as follows: 1ntegrat1ng over [0, 1], we have

1
«’(W) [ A B ot B O @)+ m (1 =y )

= h(%”‘) Jo TR (wit's B (ny (@) + m (1= )y (b)r (ny (@) +m (1 = )y (b))dn (35)

+mh<2 2_1)Ion’/k) 15,3?1”(%’2?)(/}( ¥ )+111//(b))r(f1w(a)+m(1— Dy (B)dn.

By specitying v (1) = yy (a) + m(1 — n)y (b) and y (k) = (1-nmy(a)+myy(b), in (35), then wusing ¢(y
(1= (y(a)im)+ny(b), that is y(a)+my®)-y()= () =¢(y(a)+my(b)-y()), we have

(P(l//(a)+mw(b)

v~ (my (b)) ()= 1 b "
3 )L (my (b) —y (1)) EW (w(my (b) -y (0); ) (r'v) (Dyr (e

v~ (my (b))
< h(%) J (my (B) -y (0) ™0 B (@ (my (B) - v (0) B) (9°9) () (F9) Dy (O (36)

a

21\ (° 1/’( )\ (e/k)-1 yavc< M( _M) )
e[ 0L g ) e
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This implies

(P(M)(szf;;w w)(ml//(b) p)<h< )(; z‘j;;M(prw)(mw(b);ﬁ)

2
(37)
06 1 O VsC W(a) —
n m(r/k)+lh<2—u><$FZleW b go r 1//)(7; Pl
Using Lemma 1 in the above inequality, we have the first To demonstrate second side of (34), multiplying both
side of (34). parts of (21) by 2ph- IEMVC (wrt; P)r (v (a)+

m (1 —n)y (b)) and then integrating over [0,1], we have

1
2h( ) [ O B s B v @)+ (1= )y (6 Gy (@) 4 m 1=y (D)
(a)

e, (25 =1\ ' (2 v -
+2m™ 1h<—> Jon( OB (wn'; B)r (ny (a) + m(1 —11)1//(b))<P<(1 —’1)1//7

P + ‘/’(b)>d’7

sz[h(zia)wtp(a)) “/k“h( )go(w(b))]

(38)
x joﬂ”’k) CERYY (wit's B)r (qy (@) + m (1 = )y (b)h (17)dy
1 e (25 -1
+2m[h(?)q>(w(b>> m 1h<—2a )<p<‘”ni?)>]
1
X .[o n(T/k)flevc (wr; P)r (ny (a) + m(1 = n)y (B)A (1 - 1*)dn.
Setting y () =ny(a)+m(A-n)y() and y(k) =
(1 -n)(w(a)/m) +ny(b), then using ¢ (v (1) = ¢ (y(a)+
my (b) — v (1)) in (38), we have
1 L V,C ~
2’1(2—)(51’251“& r w) (my (b); )
ram W E L e ) (Y5
1 k) +
SZ[h(z—u)sv(w(a)) ™ h( )go(w(b))]
(39)

x IO OB (wn; B)r (ny (a) + m (1 = )y (0))h (n")dy

eam (e oty +m o Z (1)

1
x [ 0 B s By @)+ m (L= )y 6D (L= )
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By usage Lemma 1 in the above inequality, we have the =~ Corollary 2. By using (34), some more k-fractional in-
second side of (34). O equalities are offered as noted below:

(i) By choosing y =1 and p = w = 0, we obtain

mb
‘P(a +2mb) J (mb - 1) ()ds

mb _ (t/k)-1
< zh(i“) J (mb = 1)1 (9o r) ()t + 2m T/k>+1h<2 _ 1) J (K - 3) (9or) (1)dx
2 2 (alm) m

a

(40)
SZ[h(zia)(p(a)+m(T/k)+lh( ) (b)“ @010 (na + m (1 - o)k (5%)dn

a 1
+ 2m[h<%><p(b) + m(T/k)+1h<22—ul><p(i2>] J 70 (na + m(1 - n)b)h (1 - 7%)dy.
m 0

(ii) By choosing p = 0 and v = I, we obtain

mb
¢<“ +2mb> J (mb — )"0 X (@ (mb — i )r (1)d

< 2h<2ia) me (mb — )™ lEl’:ﬁ:lV’c (W (mb 1)) (por) (de

a

(s (251 J' ( _ﬁ)wk)*l NVC( .‘4( _7>> R
+am h< 2" > @m " m By \wm\ k=2, (por)(r)ds (41)

< 2[h(%>(p(a) + m(T/k>+1h< ) (b)] J (w/ho- 1Ey8” (wy)r (na + m(1 — pb)h (4*)dn

1 e (251 a L 1 omdine .
+ Zrn[h(?)(p(b) +m P lh<7><p<ﬁ>] Jory( i IEZ:Z (wr)r (na+m (1 —npb)h(1 - 5%)dn.

(iii) By choosing m = 1 and y = I, we obtain

<a+b)J — o= Eyﬁvc(w(b—t)” p)r(nde

b
th(z—la J (b - ) O LEYY (Wb — 1) ) (por) (1)di

wt,l

wrl

oa b
v ) [ e e ) o) (s “

1 2% -1 e ~ «
sz[h(?>¢(a)+h( )(p(b)] JO (WOLERON (wn'; B)r (na + (1 = mb)h (")dn

+2[h<21a><p(b)+h(2 >(a)“ (C=LEIE (s B)r (na -+ (1 - bR (L - 17)d
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(iv) By choosing p = w = 0 and h(n) = 5, we obtain

5 (my (b) — v (1) ™ (ro y) (Dyr (D

a

(p(V’(a) + mv/(b)> J"”]('"‘”(b))

v (my (b))
) <211> I (my (B) =y )T (porey) Oyr ()ds

a_ b
+m<1/k)+1<22a11) jW(M) (v (x) - yia )) TR=1(goroy) (K)y! (k)dx (43)

m

<2 (e tvion e (E otw ] [ travier e vy

”’”[(z%“’““’m*m(ﬁk)“(—z 2;1)4’(&?)“0 O (@) + m (1= )y (0)) (1 - 17)dn.

m

(v) By choosing « = 1 and y = I, we obtain

mb
(,,(“ +2mb> J (mb — ) PO ERS (@ (mb — s B)r (1)ds

mb
<2h(3) J (mb - ) OB (@ (mb — 1 ) (p o) ()l

a

1 b a (1/k)-1 a\¥#
(t/k)+1 - _“ POvie [ —  u A R 44
+2m h(z) j(a/m) (;c m) Ey) (wm (K m) ,P) (por)(x)dx (44)

SZ[h(%)(p(u)+m(ﬁk)+1h(%>(p(b)]J;n(r/k) LEPY (wrfs B)r (na + m (1 - pb)h (n)d

+ Zm[h(%)(p(b) + m(T/k)“h<%)(p<iz>} J n(ﬂk Eyévc(wq P)r(na+m(1—nbh(l-n)dy.
0

m

(vi) By choosing « = m = 1, h(y) = n and, we obtain

b b V\C
(P<a; )J (b= L (@b - 05 p)r (0

b
< “ (b= TOER (@ (b - 15 ) (per) (1d

b
+J (k=)™ B (@ (- ) B) (9o 1) (00 (45)

< (p(@)+ 9 ()] j (0 B2 (wr; B)r (na + (1 = p)b)dn

+ Jo 5 1EZ$;C (wr"; p)r (na + (1 = n)b) (1 - n)dy].
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(vii) By choosing « =k =1 and y = I, we obtain
b mb c _
<p(“ +2m )J (mb — )" EVS (@ (mb — 1 p)r (s
1 mb yﬁvc u.
£2h<§>J' (mb-1)" E) (@(mb - )" p) (por) (1)ds
w1y (1 b a\— ,8,v,¢ " a\# _
+2m h<5>L / )(K—a) Eyy (wm <x—a) ;p)((por)(x)d;c (46)

<2[ (3 )o@ +m™'n(; )cp(b)H Tl

i s () [

Remark 4. The above k-fractional inequalities are farther in
line with foreknown conclusions as noted below: (i) By
choosing k =1 in Corollary 2 (vi), Theorem 2.2 of [27] is
acquired. (ii) By choosing p =0 in in Corollary 2 (vii),
Theorem 2.5 of 28] is acquired. (iii) By choosingk =1, p =
w =0 and h(n) =1 in Corollary 2 (v), an inequality for
m-convex functions via Riemann-Liouville integrals is ac-
quired. (iv) By choosingk = 1 and p = 0 in in Corollary 2 (vi),
an inequality for extended generalized fractional integrals is
acquired. (v) By choosingk = 1 and p = w = 0 in in Corollary
2 (vi), Theorem 4 of [26] is acquired. (vi) By choosing h (1) =

in in Corollary 3.2 (vii), Theorem 3.1 of [27] is acquired.

¢<W(ﬂ) + ml//(b)><k Fy,&v,c

2 v owrlw,y

(wr; P)r (na + m(1 - n)b)h(n)dy

T— lEy(Svc

e (Wi p)r (na+m(1—mb)h(1 - n)dn.

In the subsequent theorem, we offer another type of
Hadamard’s inequality.

Theorem 5. Let h: ] — R is nonnegative, nonzero and
integrable function and @, y: [a,b] — R, 0<a <mb, be the
functions such that ¢ € L, [a,b] and ¢ be positive and y be
differentiable and strictly increasing. If ¢ is (a, h —m)-con-
vex, in that case for generalized k-fractional operators (12)
and (13), we acquire

! (my (b)+y (a)/2)+ >(m‘/’(b) p)

1 k y:0.v,¢ o L=
s h(?)(melfv,w” (mw(b)+w(a)/2)+¢ V’) (my (b): p)

(wky+1y 2% 1 k prévc w(a).~
o T % J\ Y wrlwmty ! (my (b)+y (a)/2m) ‘/"V m 3P (47)

< [h(%)go(l//(a)) N m(T/k)+1h<20¢

where W = 24w/ (my (b) — y(a))*) for all n € [a,b].

Proof. Setting y (1) = (/2)y(a) + m(2-n/2)y(b) and
v(x) = (2 -1/2)(y(a)/m) + /2y (b) in (3.2), we have

)go(y/(b))] j
i e

v(a)

AL

T ,0,v,¢ ~ ¢
OB (wr” ;p)h(%)dn

’Y(T/k) lEzf{C(wﬂﬂ;f’)h(z - -f )dq,
o252 g e(zrw (7))
+mh<2“2; 1)¢(<2;n) Wr(:)%w(b))‘

(48)
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Multiplying both parts of (48) by #(/F- 1EY6VC (wn*; p)
and then integrating over [0, 1], we have

(a) + my (b) ! /k)— R ~
e | e

sh<21a> jo W(T/k) 1Ezf;6(wﬂﬂ;f,)¢(gw(a) + m(z;zﬂ>1//(b)>d’7

2" -1 (1/k)=1 y,0.v,¢ U, = 2-m\y(a) 1
+mh< = )Joﬂ Eyor (wn'; P (—2 )—m +2y(0) Jdy

By taking w() = (5/2)y(a)+m(2-yn/2)y(b) and To demonstrate the second side of (47), once again
v (x) = (2 -1/2)(y(a)/m) + /2y () in (49), in that case by

(a, h — m)-convexity of ¢ over [a,b], for 5 € [0, 1], we get
usage k-fractional operators (2.12) and (2.13), the first side of
(47) is acquired.

(49)

w(5e)o(Lvi@+m(25 v ) + ‘”k’“h<2a2;1)¢((2;”)w::)+gw(b))
gh(Z—)[ ( )g)(w(a))+m“”‘“h(22—;1>¢(w(b))]

(50)
(2T ot sn(Z ()]
m
Multiplying both sides of (50) by 57k~ ') Dne 1 (wn; p),
then integrating over [0, 1], we acquire
1 ! 1/k)— ,0,v,¢ 2-
) [ 2 o {25 o
+m"”‘)“h(—2 2ZI)J 0O ERL (s P)sv( —w gw(b))dﬂ
0
(51)

a 1 06
<[( )so(w(ammf/k“h(z zal)q)(w(b))]jo LB (o p)h( )

1 + 20‘—1 ! 1/k)— v,c (X
+m[h(2—a)cp(wb)>+m“’k> 1h<7)<p(‘”ni‘§)>”0n“’” B (wr p)h( )dn

v() = (52)y(a)+m(2-9n/2)y(b) and Corollary 3. By using (47), anymore k-fractional inequalities
v (x) = (2 -1/2)(y(a)/m) + /2y (D) in (51), in that case by are offered as noted below:

usage k-fractional operators (12) and (13), the second side of
(47) is acquired.

Choosing

0 (i) By choosing y =1 and p = w = 0, we have
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T

a+mb\ (M ——1
b-0Dk d
(P( 2 ) Ja+mb/2 (m [) !
T T T
1 mb —-1 —+1 /2%_1 a+mb/2 ave— 1
) [ 0 e (-2
T T (52)
1 —+1 (2-1 L= 1 [y
= h(y)(ﬁ(mmk | =5 Jo ®) j ke h( Lg )y
0 2
1 T+1 2% -1 1 f 1 /2% _ %
— k - a I P -1
+mlh(2a)¢(b)+m h( 5 )go(mz)] N h( 5 )dq,
(ii) By choosing p = 0 and v = I, we have
b\ (™ z
a+m " T Bvc
Nk V> _ M
(P( 2 )Lmk/z (mb =) E (@ (mb - 1))
1 m Z_ 1 S v,¢ (=
= h(?) me (mb—ok " EL (@(mb - 1)) ()ds
T a+mb T .
PR 2" -1 ZAYVEE Ve
+ mk h( o )Ji 2 (K—;)k EW (wm"(x——) )(p(K)dK (53)
m
1 z+1 2% -1 1 I 1 7
< [h(za)so(a)mk h( 7 >¢<b)] jonk E;E;C(wnﬂ)h(?)dq
! £+1 2°-1 d ' £_1 vowe sy (25 =1
+m h(z—a)¢(b)+m h< 5 >(P<F) Jon E,r (wy )h( - >d;1.
(iii) By choosing m = 1 and y = I, we acquire
a+b b (t/k)= 1 zy,0,v,¢ U=
(p< 2 >J,(u+b/2) (b_l) E’“Tl (U)(b—l) ’p)dl
1 b T/IK)— Ve (— ~
Sh(?) J-(a+b/2) (b= IE;ZZ‘:ZI’ (@b -0 p)p (s
20‘_1 b (t/k)= 1 y,0,v,c U, =
+h G j (k—a) E;y (W(x—a);p)e(x)dx (54)

s[( )<p<a>+h<2a 1>¢(b)]j (- ‘Elffc(wn“;ﬁ)h@—:)dn

+[( )(p(b)+h<2a 1><p(a)]j (701 8 (' p)h<2a2‘a’7 )dn.
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(iv) By choosing p = w = 0 and h(n) =y, we have

(my (b))
(M)J w (my (B) =y ()™ yr ()
~1(y (a)+my (b)/2)

1 y ! (my (b)) (eh)-1
<(3)] (my (6) = w ()™ g (y (D1 (e
Y= (y (a)+my (b)/2)

2% -1 ' (y (@) +my (b)/2m)
+ m(r/k)+1< 5 ) J (v (%) - W(a))(r/k)_l‘P(V/(K))llll (0)dx (55)
v~ (y(a)/m) m

1 w25 -1 k
< [(?)?’(V’(a» +m (2—a>¢(1l/(b)):| (m)

1 @i (25 =1\ (y(@\](k k
+m[<2“>"’("’(b))+m ( 2° )“’( m >]<T 2“(T+(xk)>'

(v) By choosing « =1 and y = I, we have

a+mb\ (M o) e — _
“’( 2 )J (b =) B (@ (mb — s P

mb
< h(l) J (mb — 1) ™0 B (T (b — 1), B)g () ds
2 a+mb/2 oo

1 (a+mb)/2 a\ (k-1 a\#
(T/k)+lh<*> J ( _7) Ey5v5<_ I4< _7> . ~> d 56
+m ) e ;D)o (x)dx (56)

<(3)otar e m ™ r )] [0 gy ot (L)

l (1/k)+1 i J (t/k)= 1 y,0,v,¢ ~ 2- n
+mh<2>[q)(b)+m ¢(m2>] OB (wn ,p)h<—2 )dn.

(vi) By choosinga =m =1, h(n) = nand y = I, we have

b\ (* _
q)(“ * ) J (b—1) 0" 1E;:f;,”(w (b—1); p)ds

2 (a+b/2)

1 ’ (1/k)= 1 2p,0,vs¢ v =
SE [ J(mb/z b-1) El”l (w (b-1) 7P)¢(l)dl
(57)

(a+b/2) -1 e ~
+ J (k—a)'" EZTI (W (x—a); p)o (x)dx]

a

(@+9®)\ (' « e
S(‘P - )JOW(/k) LELL) (wn's P)dn.
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Remark 5. The above k-fractional inequalities are farther in
line with foreknown conclusions as noted below: (i) By
choosing k = 1 in Corollary 3 (v), an inequality for extended
generalized fractional integrals is acquired. (ii) By choosing
k=1 and p =0 in Corollary 3 (v), Theorem 2.2 of [28] is
acquired.

The second type of the Fejér-Hadamard’s inequality for

generalized k-fractional integrals is dedicated as noted
below:

W(a) +my b))\« ,8,v,¢
(P(f (WFy,‘r,l,Tu,W’
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Theorem 6. Let h: | — R is nonnegative, nonzero and
integrable function and ¢, y: [a,b] — R, 0<a <mb, be the
functions such that ¢ € L, [a,b] and ¢ be positive and y be
differentiable and strictly increasing, r is a nonnegative and
integrable  function. If ¢ is (a,h—m)-convex and
o(v() =¢(y(a)+my((b) — y(1), in that case the below
inequalities for generalized k-fractional operators (12) and
(13) occur:

! <(mw(b)+w(a))/z)+ro‘l’> (my (b); p)

sh(zl )(’; iV (O () + Y (@)/2) 707 'y w) (my (b); )

2% -1 s
(t/k)+1 - k y.0,v,¢
o h( 2" )(WFWJ@W,W‘

< [h(%)(p(w(a)) N m(r/k)+1h< 0

Y-
XJ ’1(1/
0

oo \fv(a) -
(my Gy @y2m-P 7 w>( m ’P)

)?(W(b))]

(58)

8wt B)r( Ty @ + (2 )y ) ) (”a)dn

1 s, 201
+ m[h(z—a)(P(V/(b)) +m(™ lh(T>(p(wﬂ(;)>]

1
y J n(r/k
0

where w = (24w/ (my (b) — y(a))*) for all n € [a?,bP].

Proof. We demonstrate the claim as follows:

y(a) + my (b) (xlk)-
<p( 2 ) Jo 1

iz,

,V,C ~ 2-
L (' Py )+ m( =5

T ,V,C ~ 2
TR (wi's B)g ( w(a)+rn<

e (TN Gy T [ o

Multiplying (48) by 5™~ LEI 1 (wnt; B)r (n/2)y (a) +
m(2 —#/2)y (b)) and then 1ntegrat1ng over [0, 1], we have

Do) )dn
Dy ) )r(Ly @+ m(*"

Dy o) )an (59)

o) L () B Bt

By setting (1) = (#/2)y(a) +m(2-5/2)y(b) and

v (k) = (2 -4/2)(y(a)m) + /2y (b), that is,

v(@) +my®) - y() = 2-w2y(@ + mp2y®), i

(59), in that case by usage

o (v (1) = ¢(y(a) + my (b) — v (1)) and k-fractional integral
operators (12) and (13), the first side of (58) is acquired.

To demonstrate the second side of (58), multiplying both

parts of (50) by
- Ezflvc(wnu;f,) ( v (a) +m<2 )V’(b)) (60)

and then integrating over [0, 1], we have
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\V,C ~ 2 -
B (s By @)+ m( =

1
h<2_o¢> Jon(r/k
m(r/k +1h<2 2; 1) J W(T/k
0

< |:h<%)(/)(1//(a)) +m T/k)+lh( zx

y J ’1(T/k
0

+ m[h(;t)fp(llf(b)) + m(T/k)”h(—2 2_

y J ﬂ(r/k
0

Setting v (1) = (#/2)y(a) + m(2 — n/2)y (b) and v (k) =
2-7n/2)(y(a)/m) +n/2y(b) in (59), then by using
o (v (1) = ¢(y(a) + my (b) — v (1)) and k-fractional integral
operators (12) and (13), the second inequality of (58) is
obtained. O

)SD(V/(b))]

a+mb\ (™
b—
go( 2 )J((u+mb)/2) (m :

1 mb
< h(—) J (mb
2 ((a+mb)/2)

®_ (
+m(‘l’/k)+1h(2 - 1>J
2
1 2 -1
< [h(?>q)(a) + m(T/k)“h(z—a)q)(b)]

1 2 ¢
x J W(T/k)_lr@a + m(—ﬂ>b>h<n—a)d’7
0 2 2 2

D@ )r(Ly @) +m(*"

{5 ) o5

_ )R-
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D)y

(61)

525 s (Lt (25w )i 2 Y

)

05 s Ly + (25w ®) (zaz‘a”“)dn.

Corollary 4. By using (58), some more k-fractional in-
equalities are offered as noted below:

(i) By choosing y =1 and p = w = 0, we obtain

)01 ()

1((p“r) (1ds

(a+mb)/2) a\@h-1
(K - —) (¢r)(x)dx
m

(alm)

(62)

1 e (251
+m[h<2a>¢(b) +m ™ lh(za>‘/’(:lz)]

1 _ o o
x I ﬂ(r/k)_lr@a + m(—z n)b)h(z a
0 2 2 2

(ii) By choosing y = I and p = 0, we obtain
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a+mb\ (™ . e
¢< 5 )L(Mmb)/z) (mb — 1) 70~ EZ‘j, (@ (mb — )" Yr (1)ds

mb
<) | (b - )0 EY (@ (mb — ) (por) (0ds

2%) ) (armb)2) wrl

20‘ -1 ((a+mb)/2) (t/k)-1 _
+m(T/k)+1h(—a>J (K_ﬂ> Ey,a,lv,c<wmﬂ(x__> )(q)or)(;c)dx
2 (alm) m #o m
1 2" -1
< [h<?)¢(a) +m(f”‘)”h( N )(p(b)] (63)
XJI g5 (oL (2 Yo )a
0 T’] ‘u‘rl wl’] a m 2 20( ’1
1 2°-1
o2 )
2 2 m

(7/k)- 1 2,0, v,¢ n (2_’7> ) 20‘_71“
xjon Eyy (wn)( a+m(— bh 5 dn.

(iii) By choosing m = 1 and y = I, we obtain

+b\ (b ) » )
(p<a2 >J<+hxz> (b= ™ B (@ - s P)r (0

1 ! (t7k)= 1 p,0,v,¢ u. =
S”(?)LM)( )L (G (b - 1) B) (g0 r) (0

,T5l

«_ b
+h(_22w1>J (k= a) O BTN (T (k- @) B) (o) ()l (64)

S[ <1>‘P(“)+h<2“ 1)€0(b)“ (w0 lEzfzvc(wn";ﬁ)r(Zm(z;”)z:);;(gj)dq
5 e

(iv) By choosing p = w = 0 and h(n) =y, we obtain
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(my (b) = v () ™ (w ()1 (de

W(a) + m'(//(b) ”’”/’(b))
o)L

v (y(a)+my (b)/2)

1\ (v (my(®) —
<(3)] (mp (0) =y () O (per o) W1 ()
v (y(a)+my (b)/2)

s 2 1 v (v (a)+my (b)/12m) a) o
v~ (y(a)2) m

1 g [ 2% -
< [(?)so(w(a)) +m 1( >¢<w<b)>]

R C= ]

L v

(v) By choosing « = 1 and y = I, we get

(65)

b mb Ve — ~
(P(“ o > [ =D B @b - s B (0
a+mi

mb
h(l) j (mb - )™ B (G (b — 1), B) (9o ) (0

2/ ) (a+mbl2)

(a+mb/2) (t/k)-
() [ (- 2) El‘ir‘(wm”(x—%);ﬁ)wor)(x)dx (66)

2 (alm) m

IN

< (1)[¢(a)+m(1/km(/)(b)]j (e1k)- IE”VC(WWM?f’)r(g“+m(2_Tn)b)h(g)d’7
+mh< )[f(b)+ (T/k)”(/’(%)] J;ﬂwk)_lEZ:i,”(wq p)r( a+m(2;’7>b)h(2;—’7)dq.

(vi) By choosing a =m = 1,h(y) = n and v = I, we get

b
g,(“ i b) [ a0 B @ o P

(a+b/2)

\S)

1 (° RNCOE y8vc b ) d
[l -0 @ R e 0
(67)

(a+b/2)
[ Gem @ B @ - 0 7) (e )0

) (k—a) !”l

S(so(a);q)(b)) J;n(”k) £ (o' p)r(La (2—Tn)b)d,1_

Remark 6. Those as mentioned above k-fractional inequal-  choosing k = 1 in Corollary 4 (v), an inequality for extended
ities are farther in line with foreknown conclusions as by  generalized fractional integrals is obtained.
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We solve an optimal control problem governed by an evolution equation using bilinear regular feedback. Using optimization
techniques, we show how to approximate the flow of a reaction-diffusion bilinear system by a desired target. For application, we
consider the regional flow problem constrained by a bilinear distributed system. The paper ends by an example illustrating the

numerical approach of the proposed method.

1. Introduction

Bilinear systems form an important class of dynamic systems
for several reasons. Many industrial or natural processes
have a bilinear structure. For example, we can cite the
transfer of heat by conduction convection, the neutron
displacement in a nuclear reactor, and the dynamics of sense
organs [1]. Research has shown that bilinear systems are
sufficient to approach any nonlinear input-output behavior
(see [1,2]). The control has a double action in the system that
allows the adaptation of the model at different levels of input
signals. An example is provided by the functioning of sense
organ (see [1]).

Optimal control methods continue to provide solutions
to many real problems. We cite solutions of smoking models
by Mahdy et al. [3] and COVID-19 prediction by Ahmed
et al. [4]. Optimal control problems constrained by a dis-
tributed bilinear system are initiated by Bradley et al. and
Lenhart [5, 6]. In [7], Joshi studies the case of regular velocity
terms. Sonawane et al. [8] consider the optimal control for a
vibrating string with axial variable. Rao et al. studied plant
disease in [9].

Mall et al. propose a uniform method for optimal control
problems with control and state constraints (see [10]).
Chertovskih et al. in [11] give an indirect method for regular
state-constrained optimal control problems in flow fields.

Turgut et al. in [12] study an island-based crow search al-
gorithm for solving optimal control problems. Al-Hawasy
et al. in [13] consider the optimal control problems for triple
elliptic partial differential equations. Bonnet and Frank-
owska in [14] characterize the necessary optimality condi-
tions for optimal control problems in Wasserstein spaces.
Granada and Kovtunenko in [15] consider a shape derivative
for optimal control of the nonlinear Brinkman-Forchheimer
equation.

For fractional systems, Saidi [16] discusses some results
associated to first-order set-valued evolution problems with
subdifferentials. Jajarmi and Baleanu [17] consider the
fractional optimal control problems with a general derivative
operator. Huixian et al. [18] study an averaging result for a
class of impulsive fractional neutral stochastic evolution
equations. Jafariet al. [19] propose a numerical approach for
solving fractional optimal control problems with Mit-
tag-Leffler kernel. Mehandiratta et al. [20] study fractional
optimal control problems on a star graph. Heydari et al. [21]
propose a numerical solution for an optimal control
problems generated by Atangana-Riemann-Liouville frac-
tal-fractional derivative.

The flow problems are one of the most important
questions in mathematics. They have applications in several
fields such as physics, biology, and engineering. We cite here
the problem of controlling the blood flow in a vessel, where
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we need to calculate the gradient (flow) of the velocity of
blood as a rate of change of the blood flow (see [22]).

Recently, many researchers focused on the study of flow
problems using optimal control theory. They consider the
gradient state of a distributed system and ask if there is an
optimal control to reach a desired profile (see [23]). For this
approach, one of the most important ideas is called the
partial analysis. It has an objective to reach a target on a
specific subdomain of the system domain, w ¢ D (see
[24, 25]). For partial work on bilinear distributed systems,
Ouzehra et al. [26, 27] study the exact and approximate
controllability of reaction-diffusion equation using bilinear
control. Zerrik and Ould Sidi [28-31] use partial control
problems to orient the dynamics of infinite dimensional
systems towards the desired state in a specific area. Zine and
Ould Sidi in [32-34] deal with partial control problems in
the case of hyperbolic systems. Ould Sidi and Beinane
[35, 36] treat the partial flow control problems.

The objective of this paper is to control the flow of
equation (1) towards a desired target using the penalization
problem 3, and with a more regular spatiotemporal control
function. In Section 2, we show the existence of a solution to
the studied problems. Next, we give the characterization of
its solution considering different types of actions. Section 3 is
devoted to the study of the partial flow control problems
constrained by bilinear distributed systems with regular
optimal control time function. The paper ends by an ex-
ample illustrating the numerical approach of the proposed
method.

2. Flow Problem with Regular Control

Let us consider the system described by

1
@) =5]%a- 4"l s oaeay oy *

9 _ 4’
5, 4

ln
_Eg

where the desired flow is ¢* = (¢%,...,4%).

The main objective is to propose a method to steer the
flow of (1) to qd (x), using the functional (5) and considering
a more regular control space v € L?(0, M; H}(D)). We
characterize the solution of (4) through an extension of the
Lagrangian method.

2.1. Existence of Solution. In the next theorem, we study the
existence of a solution to the flow problem (4).

12 (0,M,H} (D))
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q,, (x,m) = q,.,. (x,m) —v(x,m)q, (x,m), T,
q(-x’ 0) = qO (X), D) (1)
q=4,=0, I1,

with a domain D ¢ IR" (n = 1,2, 3) is open bounded, and its
regular boundary is dD. Let M >0 and T = D x]0, M|,

I[1=0D x]0,M[, where the space of control is
v e L*(0, M, H{ (D)).
Let g, (x) € L*(D) and
o qe Lz(o,M;H(l)(D)) @)
4 € (0. M; H?(D)) |

represents the state space (see [5]). The system dynamic is
Qe = Aq = Y1, 0°q/0x?, and system (1) has a unique so-
lution g, in SN L*® (0, M; L* (D)) (see [37]).

We consider the operator V:

v: H' (D) — (L (D))”,

(3)

_(9% 99
q—)vq—(a—xl,...,axn).

The flow regular optimal control problem of system (1) is

min D, (v),
veL? (0,M,H} (D)) ¢ (4)

with £>0, and ®, is the cost penalty defined by

L [vﬁ1 (x,m) + vi (x, m)]dxdm

(5)

+ £ J [an (x,m) + vi (x, m)]dxdm,
r

Theorem 1. Let us consider q be the solution of the system
An = 9xx — V4% L
q(x,0) = q,(x), D, (6)
q=9,=0, IT.

Then, there exists an optimal control v, which is the
minimum of (4).

Proof. Let us consider the set {®,(v)|ve L*(0,M,
H} (D))} ¢ IR, which is a positive nonempty and admits
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lower bounded. Thus, by choosing a minimizing sequence
(v,),, which verifies

©" = lim ®(v,) = inf

O, (v).
H—+00 vel? (0,M,H} (D)) ‘ (7)

Then, the cost ®,(v,) is bounded, and it follows that
IV,ll2 0,01, 121 (D)) < B, with B as a positive constant.
We have

v,—v L*(0,M,Hy(D)),
q—q S
T =X S (8)
d.—A S,
q,—Y, S
1 (M /0q
0] =inf ) = 1 _ g
() =inf Y2 [ j(ax, q
i=1 D 1
< lim0 @, (v,) = inf O, (v).
Therefore, v is a solution of (4). O

2.2. Characterization of Solution. In this section, the aim is to
propose a formulation of the solution of our flow problem.
Therefore, we should introduce the so-called optimal
equation to find the differential of the functional @, (v) in
(5). The following lemma mentions the differential of @, (v)
with respecting v.

Lemma 2. A differential of the map

veL’(0,M,Hy(D)) — q(v) €8, (11)
is
q(v+ei)—q(l)A‘u’ (12)

where y = p(q,1) verifies
U = Bxx — VHx — qu> T,
u(x,0) =0, D, (13)
U= =0, I,

where g =q(v), v € L*(0, M; H} (D)), and d(q(v))l is the
derivative of v — q(v) with respect v.

Proof. We consider the solution of (13), verifying

"H"s < k1 IIqIILm (0.M;H} (D)) ||l||L2 (0.M,H} (D)) (14)

By passing to the limit in the equation g} (x,m) =
Qex — Vady» We deduce that g, (x,m) =¥, q—q,,, G = X
and vq, = A. Hence, we obtain

Im = 9xx — V(X, m)qx (9)

From the lower semicontinuity of @, (v):

2
) dx+fj [vfn+vi] dxdm
2)r n

(10)
Also,
e’ s < k2l (0. () 22 (0,00, 123 () (15)
Thus,
Neells  t0,001:123 (Dy) < K3l L2 (0,001 () (16)
Then, we obtain that [eL?*(0,M;L*(D)) —

p € €((0,M); Hy (D)) is bounded (see [5]).
If we putg; = q(v +1) and & = g; — g, then & is the state of

Enom) =8 —v(x,mE, (x,m) - 1(x,m)(q),, T

E(x,0)=0, D, (17)
£ = gx =0, I
Thus,

1EH oo (ro,nm1:622 () < allOll 2 (0,01, () (18)

Let y = £ — p which verifies the system
Vi = Vax + V0, m)y, (6, m) +1(x,m)€,, T,
y(x,0) =0, D, (19
y=7:=0 11,
y € €(0, M; H} (D)); consequently,
¥l (o2 () < kI (0.M,H} (D))? (20)

and we have

lq(v+1) = q() = d @ o rramy oy) =Wl (1oamss o) < KU (o s (o) (21)



where ki, k,, k;, k4, and k are a constant positive.
In the following, we define a family of optimal equations.

[ Jp; azpi o(vp;) 9q 4
_ = _ — —(: N r,
om  Jx> TTox ox; g
v, (x,0) = v, (x,M) =0, D,
J (22)
pi (x, M) = 0, D’
op;
=—=1=, IL
| Pi ax
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The next lemma characterizes the differential of
D, (v). O

Lemma 3. Let v € L?(0, M, H} (D)) be the solution of (4),
and we obtain

O, (v+B) -0, (v) < M Ou (x, m) d M
1 = - .
Jim g ; jD jo ox, ox, q; |dmdx + SJD .[o (V) + (vl)|dmdx (23)
Proof. The cost @, (v) (5) can be expressed by
LR M(og g4 ’ € Moy
D, (v) = 3 ;JD Jo (a_x,_ q; ) dmdx +EJD ,[0 [vm + vx]dmdx. (24)
If we putgg = q(v + pl) and g = q(v), using (59), we have
2 2
- n M ((9g,q/0x.) - g%) —((9g/ox.) - q°
o QOB -0 ) lj J (0qp/0x;) - 47 ) ~((0q/0x;) - 4 ) e
B—0 B p—0=2)pJo B
(25)
+ ﬁlﬂlo %J'D J [(vm +BL) =V + (v +BL) - vi]dmdx,
then
lim D, (v+Bl) - D, (v)
p—0 B
L M ((9g4/0x;) — (0g/0x;)) (O M
:/}lnoizlijp IO (045 xz)ﬁ (9q/9x;)) (a‘i/j+§i_ q?)dmdx+ﬁliLnOSJD JO (V) + (vil)] (e m)dmdx— (26)

S M ou (x, dg(x, M
- ; ID J u (x, m) ( q(x,m) qjl>dmdx + JD JO e[(vinl) + (v, )] (x, m)dmdx.

0 axl‘ axl‘

The following theorem proposes a solution of the
problem (4). O

Theorem 4. Let v € L*(0,M; H} (D)) be a solution of (4);
then,
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1, . Proof. Let 1€ L*(0,M;H} (D)) and
Vimm + Vax ¥ (Div(p;))qx = 0, @7 +pl € L*(0,M; H} (D)) for $>0. The extremal of @, is
realized at v; then,
where q = q(v) is the output of (1), where p; = (p1>---» Py)
and p, € C([0, M]; H (D)) is the solution of (22). 0< lim 2R -2 (28)
< fim B
Lemma 9 gives
n M M
< ; JD JO o E;iim) (8q g;;iM) - qf)dmdx + JD Jo e[(Vpul) + (vily)] (x, m)dmdx. (29)
Therefore, using (22), we obtain
n M 2
0< ZJ J ou(x,m) ( op;(x, m) 5] p,(); m) 8vp,(x m) dmdsx
SJplo  ox om Ox ox
(30)
M
+j j e[(v,1,,) + (v,1,)]dmdx.
plo
By a simple calculus, we have
2 Mou(x,m)( 0p;(x, m) ou p; (x,m) avp(x, m)
0< i i i (x, dmd
<;JDJ.0 ox; ( om x> ox pi % m)dmdx
(31)
M
. j j e[(v,) + (v,1,)]dmdx.
plo
From System(13), we obtain
0< ij J i (I(x, m)q,) p; (x,m)dmdx
i=19DJ0 ax o
M
e[ ] el + () )dme (2
pJlo
M nog
= JD Jo —1(x,m)q, ;a—xipi (x,m) | +e(v,l,) +e(v,l,)|dmdx.
Moreover, if [ = [(t) € L* (0, M; H}D), we deduce that the solution v of (4) must satisfy. O

<Za p; (x, m)) —ev, =0 (33)
which allow us to introduce
1
Viom T Vax ; (DiV (pz))qx =0, (34)

Remark 5. According to equation (2),

(1) If we consider a spatial control function v = v(x,)
then the variational formula becomes

e = = (DIV(p)as (35)



(2) If we consider a temporal control function v = v(m),
then the variational formula becomes

Vinm = _% (DIV (pl))qx (36)

3. Partial Flow Control Problem

3.1. Problem Statement. We consider the bilinear distributed
system (1), with a given g, € H' (D). System (1) can be
rewritten as follows:

q(m) = S(m)q, + J: S(m —s)v(s)q(s)ds, (37)

and the solution of (37) are often called the mild solution of
).
The existence of a unique solution g, (x,m) in
L*(0, M; Hy (D)) satisfying (37) can be deduced from [37].
We choose w € D, and

Yot (B2 (D))" — (L2 (D))"
q— X9 = 49w

(38)

and x'; its adjoint is given by

; qinD,
Xod = { (39)

0 € D~w,

ot (I (D)) — (I (0)) )
q— Xoq = 9qlo

Definition 6. Equation (1) is called partial flow controllable
on wcCD, to gd € (L*(w))" if there exists a control
ve L*(0,M,H} (D)) and &> 0 such that

Iva, 1) - 4]

<
@y =® (41)

where gd = (y‘f, .. .yi) is the desired flow in (L2 (w))".

Ouzehra in [26], studies the exact and approximate
controllability of distributed bilinear systems. The partial
flow control problem of (1) is

min,ep (o.p11 (0)) Pe (V) (42)

where @, is presented for £>0 by

0.0 = Juva 0 - g+ 5 [ [ ]
1G] 9g(M) Y 2 e 12
SR o5 e

(43)

The objective of the presented problem is to command
the flow of (1) to a target state gd (x), realizing (43), and find
v* € L*(0, M, H} (D)), verifying

Journal of Mathematics

o,(v') = min
veL? (0,M,H} (D))

(De (V) (44)

Remark 7. The existence of solutions for the partial flow
control problem can be proved in the same way as in the
proof of the previous section.

3.2. Characterization of Solution. Now, we are able to for-
mulate the solution of the flow problem (42).
Lemma 8. A differential of the map

veL’(0,M,Hy(D)) — q(v) €, (45)

Q(V‘i‘fl)_Q(l)A% (46)
€
where y = u(q,1) verifies
Hm = Bxx =Vl — qu’ L,
u(x,0) =0, D, (47)
H=pe=0, T,
where q = q(v), v € L*(0,M; H} (D)), and d(q(v))l is the
derivative of v — q(v) with respect v.

Proof. The output of equation (13) satisfies

lells <Ky ligll oo (0.M;H (D)) 1702 (0.M,H} (D))" (48)
Also,

e s < kalgll oo (0.0:11 (D)) L2 (0,00, 111 () (49)
Thus,

Nl (to.0a1:23 (0y) < 3l L2 (0.0, 121 () (50)

Then, we obtain that

1 € L*(0, M; L*(D)) — p € € ((0, M); Hy (D)) is bounded
(see [5]).

Ifwe putq; = g(v +1)and & = g, — g, then & is the state of
€, (x,m) =& —v(x,mi, (x,m) - 1(x,m)(q), T,
&(x,0) =0, D,
==, I

(51)

Thus,

1€l co (o () S Falllll 2 (0,01, () (52)
Let y = & — y which verifies the system
Vi = Vax + v, m)p, (6, m) + 1(x,m)€,, T,
y(x,0) =0, D, (53)

Y=yx=0 IL,
y € €(0, M; H} (D)); consequently,
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"yn%([O,M];H(l) (D)) S k"l”iz (0.M.H} (D))’ (54) and we have

IIq(v +1) - Q(V) - d(Q(V))l"g(o)M;Hl m) = ")’”?([0 MJ;H} (D)) < k"l"iz (0.M,H} (D)) (55)

We introduce the family of optimal systems in the case of ~ where ¥7 is the adjoint of ¥, defined from L (w) — L*(D)
partial controllability by

_(pi)m(x’ m) = (pi)xx(x’ m) + (V(m)pi)x(x’m)’ L, ~% q(X), X € w,
Xoq(x) = (57)
0, x € D\w.
_ aq (M) ~% d . . . .
1 pi(x,M) = o Xadi ) D, The following lemma mentions the differential of @, (v)
i with respecting v. O
pi(x,m) = (p;),(x,m) =0, I,

Lemma 9. If v € L*(0, M) is the control realizing (42), y is
(56)  the output of (47), and p; is the solution of (56), we deduce

D+ -D (V) [ .- [ [MOp; Ou(x,m) M ou M
Jim ; - wawxw“() o T i + J pla 2 Nam [+ JO 2l v, dm. (58)
Proof. The functional @, (v) given by (43) can take the form Let qg = (v + fl) and g = g(v), using (59), we have

n 2
D, (v) = % Z J-w<xw%— ¥ ) dx + sJ;W V2 (m)dm.  (59)

i=1

~ 2 2
ERAGI ELAGI J (% (995/0,) - ) ~(Ra (0@/0x) ~ 5)"
i=1 w

p—o B p—0 B (60)
+limij[(v + Bl )Z—VZ]dm
[3_)0 ﬁ 0 m m m :
Consequently,
0q3/0x; ) — (0g/0x;
lim DeVHAD O zlj T ((295/0,) - g ))(Xw(aqﬁ/axi)+xw (3g/0x;) - 2y )dx
B—0 ﬂ p—0 2 ﬁ
M C 0 (x M)_ (oq(x,M) _ M
. 2 U q = d
+ﬂ1210 Jo (2£lmvm +£ﬁlm)dm IZJ ., w( ox, XoYi |dx + Jo 2el,,v,,dm
n M
ZJ 8y(x,M)~wpl(x M)dx+2£J v, dm.
i=1 i 0
(61)

From (56) and (61), we deduce that



O, (v, +pl) -
B

Mop; ou
m

lim

p—0

VE)zz

i=1

sl

Now, we will deduce the solution of (42), exploiting the
family of optimal systems. O

Theorem 10. Let v € L*(0, M; H}) be the solution of the
partial flow problem, and q = q(v) is its corresponding state of
(1), we show that

S oo 0
; <Xwa—xl7 pri>L2 (0) — 2“:me =0, (63)

Journal of Mathematics

M

2¢l,,v,,dm.
0

0
'0x;

(x,m)

ox

oy

5m (62)

dm+JMp < )dm]dx+J

is a solution of problem (42), where p; € C ([0, M]; H} (D)) is
the unique solution of the adjoint system (56).

i

Proof. Let 1€ L*(0,M;H}(D)) with v+ pleL*(0,M;
H} (D)) for $>0. The functional ®, get its minimum at v,
and we deduce

O, (v+ph)-D
B

Using Lemma 9, replacing ou/0m in system (47), we have

0< lim W),

p—0

(64)

0< lim Vet B~ ()
p—0 B
n . M a‘M ap M 35 M
= Yy - 2 — - - : 2
lew w w“O ox, 5, 4 jo ox, (Bax = Vihy qu),z?zclrn]dx+ jo el v, dm
ST T i P p, qx M
2
0< lew “ e (am Ll vom )+ 1om) Sy | + jo el v dm (65)
> [ %4 dms [ 2,
= X _x;~ i212 (0w + 2 mVm
Zj 0 S Tu s ol + [ 21,
M " (7 %x. -
= Jo I(m) ; <X"’B_xi’x“’pi>y(“’) + 2¢l,,v,, [dm.
i aq a q
Consequently, for an arbitrary control I = I (m) we conclude 5t = prv(x, m) [0,1] x [0, 1],
n aq
l(m) <Xw—x7 pri> 2(w) — 2“:mel (m) =0. (66) 4 69
2, W Tub 460 =q(x)=2x,  [0,1] (69)
Then,
" o, L q=0, atx =0, 1.
Z <Xwa—; pri>L2(w) - stmm =0. (67)
i=1 Xi The operator —« (0*/0x?) admits a set of eigenfunctions
Consequently, ¢, (-) associated to the eigenvalues A, given by
-1 & _a . _ \/5 . ;
Vimm = 52 Z <Xwi§ XoPid12 (@) (68) 9 (%) sin (n7x)
e 5 Thox 5
O A, =an'm’, (70)
4. Example nzl.

In this section, we propose the numerical approach to
computing the solution of our method (68). We consider the
one dimensional bilinear equation

While the operator —a(0%/0x2) of system (69) and the
perturbation Bv(x,m)0q/0x commute, using Pazy [37], the
solution of (69) can be written as
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Step 1: Choose
The desired targ y7 et.
The convergence accuracy (.

Step 3: v such that |1 — 7

The subregion w and time M.

Step 2: Until [[v"*! —v"|| <{ repeat
Using (71), compute " associated to v".
Using (72), compute p” associated to v".
Using (74) and (75), compute v"*1,

ALGORITHM 1:Algorithm for calculating the solution of the problem (50).

n=N s
q(x,m) = Z e ce
n=1

The one dimensional adjoint system can be written as

=P (x,m) = p, (x,m) + (v(m)p), (x,m), [0,1] x[0,1],
Jg(M .
1 p(x,1) :<%—~wyd>, [0,1],
P(0> Wl) = (p)x (0) m) =0, [Oa 1]~
(72)

We define the perturbation function

_ - 9q(m).
fgp)= <va,

Xl (M)} 12 (- (73)

Using (68) and a finite difference schema, the optimal
control v can be found by solving

@, (V") = %Hxa)Vq” |

The following convergent Algorithm 1 allows the
implementation of our results.

Remark 11.

(1) The distributed bilinear systems (1), are considered
with the feedback map v(x,m)q, (x,m) as multi-
plication of the control by the velocity of the state
system. One can consider another different type of
perturbation.

(2) In the case of partial controllability, we use in general
temporal control feedback. This type of control is
compatible with real applications.

B jm (ov/ox) (x,m)dm
0

+
2 (o,LHL([0.1D) 21

9
< { is the minimum of (76).
90> V2 sin (n7x) > V2 sin (n7x). (71)
-1
me (x)m) =Zf(q’p)> [0’1] X[Oalla
(74)

v(0) = v, (1) =0, [0, 1].

By choosing € = 1/n, we define the following sequence of
control (v"),, solution of

n+1
me

Gom) === £(¢" "), [0.11%[0,1],
(75)

v(0) =v,,(1) =0, [0, 1],

where g" and p" are, respectively, the solution of (71) and
(72) perturbed by v* with v* = 0.
The penalty cost (43) becomes

1

[v, (x, tm)]zdxdm. (76)

11
J.J.
(3) For the simulation point of view, the obtained
control formula is easy to calculate numerically.
This encourages us to establish numerical ap-

proaches and simulations of the proposed problems
using Algorithm 1..

5. Conclusion

We consider the flow optimal control problem constrained
by a bilinear distributed system. The chosen optimal controls
are regular, and the existence of solutions is proved and
characterized using optimization techniques. Our method is
applied to the partial flow control problem allowing us to
control a flow on a specific subdomain of the system domain.
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Finally, as an example, we present the numerical approach,
which makes it possible to concretize the obtained results.

Data Availability

Data sharing is not applicable to this article as no new data
were created or analyzed in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank the Deanship of Graduate
Studies at Jouf University for funding and supporting this
research through the initiative of DGS, Graduate Students
Research Support (GSR) at Jouf University, Saudi Arabia.

References

[1] C. Bruni, G. DiPillo, and G. Koch, “Bilinear systems: an
appealing class of “nearly linear” systems in theory and ap-
plications,” IEEE Transactions on Automatic Control, vol. 19,
no. 4, pp. 334-348, 1974.

[2] R. Mohler, “Natural bilinear control processes,” IEEE
Transactions on Systems Science and Cybernetics, vol. 6, no. 3,
pp- 192-197, 1970.

[3] A. M. S. Mahdy, M. S. Mohamed, A. Y. Al Amiri, and
K. A. Gepreel, “Optimal control and spectral collocation
method for solving smoking models,” Intelligent Automation
& Soft Computing, vol. 31, no. 2, pp. 899-915, 2022.

[4] A. Ahmed, Y. AbuHour, and A. El-Hassan, “A novel COVID-
19 prediction model with optimal control rates,” Intelligent
Automation & Soft Computing, vol. 32, no. 2, pp. 979-990,
2022.

[5] M. E. Bradley, S. Lenhart, and J. Yong, “Bilinear optimal
control of the velocity term in a Kirchhoff plate equation,”
Journal of Mathematical Analysis and Applications, vol. 238,
no. 2, pp. 451-467, 1999,

[6] S. Lenhart, “Optimal control of a convective-diffusive fluid
problem,” Mathematical Models and Methods in Applied
Sciences, vol. 05, no. 02, pp. 225-237, 1995.

[7] H. R. Joshi, “Optimal control of the convective velocity co-
efficient in a parabolic problem,” Nonlinear Analysis: Theory,
Methods and Applications, vol. 63, pp. e1383-e1390, 2005.

[8] R.B. Sonawane, A. Kumar, and S. B. Nimse, “Optimal control
for a vibrating string with variable axial load and damping
gain,” IFAC Proceedings Volumes, vol. 47, no. 1, pp. 75-81,
2014.

[9] D. Srinivasa Rao, R. Babu Ch, V. Sravan Kiran et al., “Plant

disease classification using deep bilinear CNN,” Intelligent

Automation & Soft Computing, vol. 31, no. 1, pp. 161-176,

2022.

K. Mall, M. J. Grant, and E. Taheri, “Uniform trigonomet-

rization method for optimal control problems with control

and state constraints,” Journal of Spacecraft and Rockets,

vol. 57, no. 5, pp- 995-1007, 2020.

R. Chertovskih, D. Karamzin, N. T. Khalil, and F. L. Pereira,

“An indirect method for regular state-constrained optimal

control problems in flow fields,” IEEE Transactions on Au-

tomatic Control, vol. 66, no. 2, pp. 787-793, 2020.

[10

(11

Journal of Mathematics

[12] M.S. Turgut, O. E. Turgut, and D. T. Eliiyi, “Island-based crow
search algorithm for solving optimal control problems,”
Applied Soft Computing, vol. 90, pp. 106-170, 2020.

[13] J. A. Al-Hawasy and D. K. Jasim, “The continuous classical
optimal control problems for triple elliptic partial differential
equations,” Ibn AL-Haitham Journal For Pure and Applied
Sciences, vol. 33, no. 1, pp. 143-151, 2020.

[14] B. Bonnet and H. Frankowska, “Necessary optimality con-
ditions for optimal control problems in Wasserstein spaces,”
Applied Mathematics & Optimization, vol. 84, no. 2,
pp. 1281-1330, 2021.

[15] J. R. G. Granada and V. A. Kovtunenko, “A shape derivative
for optimal control of the nonlinear BrinkmanForchheimer
equation,” Journal of Applied and Numerical Optimization,
vol. 3, no. 2, pp. 243-261, 2021.

[16] S. Saidi, “Some results associated to first-order set-valued
evolution problems with subdifferentials,” Journal of non-
linear and variational analysis, vol. 5, no. 2, pp. 227-250, 2021.

[17] A.TJajarmiand D. Baleanu, “On the fractional optimal control
problems with a general derivative operator,” Asian Journal of
Control, vol. 23, no. 2, pp. 1062-1071, 2021.

[18] S. Huixian, G. Haibo, and M. Lina, “An averaging result for a
class of impulsive fractional neutral stochastic evolution
equations,” Journal of Nonlinear Functional Analysis,
vol. 2021, no. 30, pp. 1-17, 2021.

[19] H. Jafari, R. M. Ganji, K. Sayevand, and D. Baleanu, “A
numerical approach for solving fractional optimal control
problems with mittag-leffler kernel,” Journal of Vibration and
Control, Article ID 10775463211016967, 2021.

[20] V. Mehandiratta, M. Mehra, M. Mehra, and G. Leugering,
“Fractional optimal control problems on a star graph: opti-
mality system and numerical solution,” Mathematical Control
& Related Fields, vol. 11, no. 1, pp. 189-209, 2021.

[21] M. H. Heydari, “Numerical solution of nonlinear 2D optimal
control problems generated by atangana-riemann-liouville
fractal-fractional derivative,” Applied Numerical Mathemat-
ics, vol. 150, pp. 507-518, 2020.

[22] J. Stewart and T. Day, Biocalculus: Calculus, Probability, and
Statistics for the Life Sciences, Cengage Learning, Boston, MA,
2015.

[23] M. Ould Sidi, “Variational necessary conditions for optimal
control problems,” Journal of Mathematics and Computer
Science, vol. 21, no. 3, pp. 186-191, 2020.

[24] A. Boutoulout, A. Kamal, and S. Beinane, “Regional gradient
controllability of semi-linear parabolic systems,” Interna-
tional Review of Automatic Control REACO, vol. 6, no. 5,
pp. 641-653, 2013.

[25] A.ElJai, M. C. Simon, E. Zerrik, and A. J. Pritchard, “Regional
controllability of distributed parameter systems,” Interna-
tional Journal of Control, vol. 62, no. 6, pp. 1351-1365, 1995.

[26] M. Ouzahra, “Approximate and exact controllability of a
reaction-diffusion equation governed by bilinear control,”
European Journal of Control, vol. 32, pp. 32-38, 2016.

[27] M. Jidou Khayar and M. Ouzahra, “Partial controllability of
the bilinear reaction-diffusion equation,” International
Journal of Dynamics and Control, vol. 8, no. 1, pp. 197-204,
2020.

[28] E. Zerrik and M. Ould Sidi, “Regional controllability of linear
and semi linear hyperbolic systems,” International Journal of
Mathematics and Analysis, vol. 4, no. 44, pp. 2167-2198, 2010.

[29] E. H. Zerrik and M. Ould Sidi, “An output controllability of
bilinear distributed system,” International Review of Auto-
matic Control, vol. 3, no. 5, 2010.



Journal of Mathematics

(30]

(31]

[32

(33

[34

(35]

(36]

(37]

E. H. Zerrik and M. O. Sidi, “Regional controllability for
infinite-dimensional bilinear systems: approach and simula-
tions,” International Journal of Control, vol. 84, no. 12,
pp. 2108-2116, 2011.

E. H. Zerrik and M. O. Sidi, “Constrained regional control
problem for distributed bilinear systems,” IET Control Theory
& Applications, vol. 7, no. 15, pp. 1914-1921, 2013.

R. Zine and M. Ould Sidi, “Regional optimal control problem
with minimum energy for a class of bilinear distributed
systems,” IMA Journal of Mathematical Control and Infor-
mation, vol. 35, no. 4, pp. 1187-1199, 2018.

R. Zine, “Optimal control for a class of bilinear hyperbolic
distributed systems,” Far East Journal of Mathematical Sci-
ences (FJMS), vol. 102, no. 8, pp. 1761-1775, 2017.

R. Zine and M. Ould Sidi, “Regional optimal control problem
governed by distributed Bi-linear hyperbolic systems,” In-
ternational Journal of Control, Automation, and Systems,
vol. 16, no. 3, pp. 1060-1069, 2018.

M. O. Sidi and S. A. Beinane, “Regional gradient optimal
control problem governed by a distributed bilinear systems,”
TELKOMNIKA (Telecommunication Computing Electronics
and Control), vol. 17, no. 4, pp. 1957-1965, 2019.

M. Ould Sidi and S. A. Beinane, “Gradient optimal control
problems for a class of infinite dimensional systems,” Non-
linear Dynamics and Systems Theory, vol. 20, no. 3, pp. 316—
326, 2020.

A. Pazy, Semigroups of Linear Operators and Applications to
Partial Differential Equations, Springer-Verlag, New York,
NY, USA, 1983.

11



Hindawi

Journal of Mathematics

Volume 2022, Article ID 6504663, 17 pages
https://doi.org/10.1155/2022/6504663

Research Article

@ Hindawi

Common Fixed Point Theorems for F-Kannan—Suzuki Type
Mappings in TVS-Valued Cone Metric Space with

Some Applications

Lucas Wangwe (©) and Santosh Kumar

Department of Mathematics, College of Natural and Applied Sciences, University of Dar Es Salaam, Dar es Salaam, Tanzania

Correspondence should be addressed to Santosh Kumar; drsengar2002@gmail.com

Received 12 January 2022; Accepted 23 February 2022; Published 19 April 2022

Academic Editor: Sun Young Cho

Copyright © 2022 Lucas Wangwe and Santosh Kumar. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

This research paper generalizes and extends various fixed-point results that demonstrate common fixed-point theorems for
F-Kannan-Suzuki type mappings in TVS-valued cone metric spaces. The results are supported using interpretative exempli-
fications and applications that include nonlinear fractional as well as two-point periodic ordinary differential equations.

1. Introduction

The fixed-point theory is at the foundation of nonlinear
analysis, which is a prominent research area of mathematics.
Fixed point theory is, in fact, a simple, powerful, and useful
tool for nonlinear analysis. It also has fruitful applications in
mathematics and in various scientific domains, including
physics, chemistry, computer science, etc. As a result, this
theory has attracted a large number of researchers who are
guiding the theory’s growth in various areas.

In 1922, Banach [1] established a fixed point theorem in
metric space which states that if 2" is a complete metric space
and G — % is a contraction map, ie,
0(Go,Gg) <kp(o,¢) for all 0,6 € X and x € [0,1), then G
has a unique fixed point or Go = ¢ has a unique solution. In
addition to an acceptable contraction condition, the metrical
common fixed-point theorems usually include constraints
on commutativity, continuity, completeness, and appro-
priate containment of ranges of detailed maps. The goal of
researchers in this field is to weaken one or more of these
conditions. The use of weak conditions of commutativity is
to improve common fixed point theorems in analysis.
Connell [2] provided an example of a noncomplete metric
space X, but every contraction on it has a fixed point.
Kannan [3] proposed an alternative contractive condition

that was not the same as the Banach contraction condition.
Also, Subrahmanyam [4] proved the converse of Banach
fixed-point theorem using Kannan mapping. Furthermore,
to evaluate a fixed point for a stringent type Kannan con-
traction, the assumption of continuity of the mapping and
the compactness requirement on metric space are necessary.

In 2007, Huang and Zhang [5] generalised the Banach
fixed point theorem by introducing the structure of cone
metric by substituting real numbers with an ordered Banach
space and establishing a convergence criterion for sequences
in a cone metric space. In normal cone metric space, Huang
and Zhang [5] proved some fixed-point theorems for
Kannan type contractive conditions; nevertheless, Rezapour
and Hamlbarani [6] neglected this idea in some results by
Huang. For normal and nonnormal cones in cone metric
spaces, several authors have examined fixed point theorems
and common fixed-point theorems for self-mappings. We
refer to the reader [7-10] and the references therein. By
relaxing the normalcy criteria set by Huang and Zhang [5],
Beg et al. [11], investigated common fixed points for a pair of
maps on topological vector space (TVS) valued cone metric
spaces in 2009. They demonstrated that the class of TVS-
valued cone metric spaces is larger than the class of cone
metric spaces, used in [12-16] and the references therein.
Recently, Hu and Gu [17] proved some fixed point theorems
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of A-contractive mappings in Menger PSM-spaces. For a
class of contractive mappings, Reich and Alexander [18]
generalised fixed points and convergence results. In
Hausdroft TVS, Ram and Lai [19] presented the existence
results on generalised strong operator equilibrium problems.
In TVS-Cone Metric Spaces, Dubey and Mishra [20]
demonstrated some fixed-point results of single-valued
mapping for -distance. Using some facts about topological
vector space, Tas [21] constructed a new notion of a TVS
cone S- metric space. Lee [22] introduces chain recurrent set,
trapping region, attracting set and repelling set for a flow f
on a TVS-cone metric space. By using generalised metric
spaces, Ge and Yang [23] proved a common generalisation
of TVS-cone metric spaces, partial metric spaces and
b-metric spaces, and a unified approach is proposed for
some fixed point results. Later, Suzuki [24] and Rida et al.
[25] gave a generalisation of the Banach contraction prin-
ciple that characterises metric completeness.

Wardowski [26] used a new sort of contraction called
F-contraction to give an intriguing generalisation of the
Banach fixed point theorem. Many scholars have used his
method to build new fixed-point theorems since then. The
associated results and references can be found in [27-30]
and the references therein. Piri and Kumam [28], extended
Wardowski’s [26] results in 2014 by introducing the notion
of F-Suzuki contraction and obtained some intriguing re-
sults utilising the Secelean [29] concept. In the complete
b-metric spaces, Alsulami et al. [31] demonstrated fixed
points of generalised F-Suzuki type Contractions. Budhia
et al. [32] proved an extension of almost-F and F-Suzuki
contractions with graph and demonstrated some applica-
tions to fractional calculus whereas Chandok et al. [33]
formulated some fixed point results for the generalised
F-Suzuki type contractions in b-metric spaces. Derouiche
and Ramou [34] proved new fixed-point results for
F-contractions of Suzuki Hardy-Rogers type in b-metric
spaces and provided some applications. Beg et al. [11]
proposed a fixed point of orthogonal F-Suzuki contraction
mapping on 0-complete b-metric spaces with some appli-
cations. Mani et al. [35] introduced generalised orthogonal
F-contraction and orthogonal F-Suzuki contraction map-
pings and proved some fixed point theorems for a self-
mapping in orthogonal metric space. Vujakovic and
Radenovic [36] introduced certain fixed point results for
F-contraction of Piri-Kumam-Dung-type mappings in
metric spaces.

In 2019, Goswami et al. [27] introduced F-contractive
type mappings in b-metric spaces and proved some fixed
point results with suitable examples. Recently, Batra et al.
[37] noticed in their subsequent analysis that the definition
introduced by Goswami et al. [27] is not meaningful in
general. Therefore, they provided suitable examples to
support their opinion on this definition. Also, due to these
reasons, Batra et al. [37] presented F-contraction and
Kannan mapping concepts for defining F-Kannan map-
pings, which is, in a true sense, a generalisation of Kannan
mappings.

This paper aims to extend and generalise the results due
to Batra et al. [37], Filipovic et al. [38], Morales and Rojas [9],
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Rahimi et al. [39] and Wangwe and Kumar [40] using a pair
of two self-mappings in F-Kannan-Suzuki type mapping in
TVS-valued cone metric space, where we consider a map to
be sequentially convergent, one to one and continuous. By
doing so, we will extend several other results of the same
setting in the literature. Finally, we will provide some ap-
plications to the nonlinear Riemann-Liouville fractional
differential equation and nonlinear Volterra-integral dif-
ferential equation.

2. Preliminaries

The definitions, lemmas, and theorems will help us prove our
main points in the upcoming sections.

In 1968, Kannan [3] developed a new contractive con-
dition and proved the following theorem for self mappings
in complete metric spaces as a result of a generalisation of
the Banach fixed point theorem.

Theorem 1 (see [3]). Let G: &' — X be a self mapping on a
complete metric space (X, 0) such that

0(Go,Ge) <x{o(0,Go) + 0 (5, Go)}, (1)

forall 0,6 € X and 0 <k < (1/2). Then, G possesses a unique
fixed point 0* € X and for any o € L the iterate sequence
{G" 0} converges to o*.

Equation (1) is equivalent to
K
0(Go,Go) <2 {e(0,Go) + 0 (6, Go)}, (2)

for some k € (0, 1).

Definition 1 (see [11]). Let (&, 1) be always a topological
space and & a subset of &. Then, & is called a cone if the
following hold:

(i) & is a nonempty, closed and & # {0};

(ii) Ao + pg € & for all 0,¢ € &P and nonnegative real
number A, y;

(iii) n (-2) = {0}

For given cone PC&. If the interior of 2 (int%), is
nonempty we say that & is solid. If & is solid cone, then & is
a component of &, and in this case we use the notation 0 < ¢

to indicate that ¢ — o € int%. Note that if 0 < ¢ and ¢<v,
then o < v for all 0,¢, v € intP.

The following axioms satisfy TVS-valued cone complete
metric space.

Definition 2 (see [11]). Let & be a nonempty set and the
mapping o: £ x X — &, satisfies the following:

(i) 0<p(0,¢), for all 0,¢€ X and g(0,¢) =0 if and
only if 0 =g
(i) o(0,¢) = (s, 0), for all 0,6 € T;
(iii) o(0,¢)<p(0,v) + o(v,¢), for all o,¢,v € X
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Then, g is called a cone metric on &, and (', o) is called
topological vector space valued cone metric space.

Example 1 (see [12, 9, 41]). Let &= (Cy}» R?),
P={0,¢) € Elo,¢20} cR:, L=Rand o: Tx X — &
such that p(0,¢) =|o —¢ly(f), where w(t)=¢e'. Then,
(Z,%) is a TVS-valued cone metric space.

The following definition is due to Beg et al. [11] in TVS-
valued cone metric space.

Definition 3 (see [8]). Let (X, 0) be a topological vector
space valued cone metric space, and letx € 2 and {0, },.. , be
a sequence in 2. Then,

(i) {0,},5, converges to & whenever for every c € &
with 0 <« ¢ there is a natural number N such that
o(0,,0) <c for all n>N. We denote this by

lim o0, =00, — 0. 3)

n—~oo

(ii) {0,,},», is Cauchy sequence whenever for every
c € & with 0 <, there is a natural number N such
that o(0,,0,,) <c for all n,m=>N.

(iii) (T, o) is called topological vector space valued cone
metric space if every Cauchy sequence is
convergent.

Definition 4 (see [42]). Let & be a topological space. If (g,,)
is a sequence of points of X, and if n; <n, < ... <m;< ...1is
an increasing sequence of positive integers, then the se-
quence (g;) defined by setting ¢; = 0,, is called a subsequence
of the sequence (o,,). The space X is said to be sequentially
compact if every sequence of points of 2 has a convergent
subsequence.

Definition 5 (see [43]). Let (Z,d) be a metric space. A
mapping G: &' — & is said to be sequentially convergent if
we have, for every sequence {c,, }, if {Gg,, } is convergence then
{c,} also is convergence. G is said to be subsequentially
convergent if we have, for every sequence {c,}, if {Gg,} is
convergence then {¢,} has a convergent subsequence.

The extended version of sequentially convergent map-
pings in TVS-valued cone metric space is given as follows.

Definition 6 (see [9]). Let (', p) be a cone metric space, 2 is
a solid cone and G: & — Z. Then

(i) G is said to be continuous if

lim ¢,=0= lim Go, = Go, (4)

n—=a~oo n—~o0

for all 0, € X,

(ii) Gis said to be sequentially convergent if we have, for
every sequence (¢,), if Gg, is convergent, then ¢,
also is convergent,

(iii) G is said to be subsequentially convergent if we
have, for every sequence (g,) and Gg,, is convergent,
implies ¢, has a convergent subsequence.

In 2011, Filipovic et al. [38] generalised Theorem 3.1 and
Theorem 3.5 from [9] by using the sequentially convergent
mappings in cone metric space and considered & to be a
solid cone. They proved results on two self mappings as
follows.

Definition 7 (see [38]). Let (', 0) be a cone metric space
and T, f: &' — & two mappings. A mapping f is said to
be T- Hardy-Rogers contraction if there exists a;>0,i =

1,...,5 with Zle a; <1 such that for all 0,¢ € Z.
o(Tfo,Tfg)<a,0(To,T¢) +a,0(To, Tfo)+aso(TsTfg) (5)
+a40(To, Tf¢)+as0(Ts,Tfo).

Theorem 2 (see [38]). Let (X, ) be a complete cone metric
space and P a solid cone, in addition let T: X' — X be a
one-to-one, continuous mappings and f: X — X a
T-hardy-Rogers contraction. Then,

(i) For every o, € X the sequence T "o, is Cauchy.
(ii) There is v, €  such that lim Tf"oy = v,

(iii) T is sequentially convergent, then (f"o,) has a
convergent, subsequence.

n—~o0

(iv) There is a unique u, € & such that fu, =u,

(v) If T is sequentially convergent, then for each o, € &
the iterate sequence (f"0,) converges to u, .

Theorem 3 (see [38]). Let (X, 0) be a complete cone metric
space and P a solid cone, in addition let T: X' — X be a
one-to-one, continuous mappings and f: X — I such that
F(f)+ D and that

o(Tfo,Tf*0)zho(Ta, T fo), (6)

holds for some A € (0,1) and for all 0 € X',0# fo. Then f
has property P.

Remark 1 (see [44]). Let F(T) denote the fixed point set of a
map T. A map T has property & if F(T) = F(T") for each
n € N. We shall say that a pair of maps T and f has property
Qif F(T)NF(f) =F(T")NF(f") for each n e N.

Secelean [29] proved the following lemma.

Lemma 1 (see [29]). Let F: R* — R be an increasing
function and {x,} be a sequence of positive real numbers.
Then the following holds:

(a) If lim,_, F(w,) = —00, then lim,__, a, =0,
(b)If infF=-co and lim, , «a,=0, then
lim,_, F(a,) = —00,

Let ¥ be the set of all functions defined as F: R* — R,
which satisfies the following conditions:



(F1) F is strictly increasing i.e., for all a, § € R" such
that a < f=F (a) <F(f)

(F2") there is a sequence {a,},. of positive real
numbers such that lim F(a,) = —coorinfF = —c0

n—=~00

(F3") F is continuous on (0, 00)

The following function F: R* — R belongs to &:
(i) F(2)=lnz

(ii) F, (2) = —(1/2)

(iii) F5(2) =—(l/z) + z

Definition 8 (see [28]). Let (X,p) be a metric space. A
mapping G: & — X is said to be an F-Suzuki contraction
if there exists 7> 0, such that for all 0,¢ € & with Go + Gg¢

10(6,G0) <0(0, =7+ F((Ga, Ge) < F(e(0r ), (7)
where F € §.

In 2014, Piri and Kumam [28] established a general-
isation of Banach contraction principle, which is as follows:

Theorem 4 (see [28]). Let (X, 0) be a complete metric space
and G: X — X be a F-Suzuki contraction. Then G has a
unique fixed point c* € & and for every o, € I a sequence
{G"0,},en s convergent to o*.

Remark 2 (see [28]). We denote by § the set of all functions
satisfying F-suzuki type contraction condition due to
[28, 29] and let denote by & the set of all functions satistying
F-contraction condition by Wardowski [26], then

(i) F¢F
(i) F¢F
(i) FNF + D

For more details on F-Suzuki contraction mapping, one
can see [31-33] and the references therein.

Motivated by Batra et al. [37], we use the following
notations: Let 2 be a nonempty set and (', p) denotes the
metric space with metric p. Let the cardinality of a set A is
denoted by card{A} and Fix G is set of all fixed points of a
mapping G.

Batra et al. [37] gave a new generalisation family of
contraction called F-Kannan mapping and introduced the
following definition:

Definition 9 (see [37]). Let F be a mapping satisfying
(F1) - (F3). A mapping G: & — X is said to be an
F-Kannan mapping if the following holds:

(K1)
Go+G¢=Go+oor Go#¢. (8)

(K2) 3Y > 0 such that
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Y + F(o(Go,Gg) < F Q(U’Gf’)ge(c,Gc) o

for all o,¢ € &, with Go # Gg.

The remark presented below is due to Batra et al. [37].

Remark 3 (see [37]). By properties of F, it follows that every
F-Kannan mapping T on a metric space (Z,0), satisfies
following condition:

0 (0,Go) + 0 (6, Gg)

5 (10)

0(Go,Gg) <

for every 0,6 € .

Furthermore, it is concluded that Card{FixG} <1. Let G
be a self map of a metric space (2, ). G is said to be a Picard
operator (PO) if G has unique fixed point ¢* and
lim, , G'o=0"foralloeX.

Then the family of all functions F: R* — R satisfying
the condition (F1) — (F3) is denoted by #.

We recall the following examples from Batra et al. [37] of
such functions F: R™ — R which satisfies (F1) — (F3):

Example 2 (see [37]). Let F;: R* — R be defined as
F,(z) =In(z). Then clearly, (F1)- (F3) are satisfied by
F, (z). In fact (F3) holds for every k € (0, 1)

(11)

0(Go GC)SeY[Q(U’Ga) - Q(C,Gc)]

2

for all 0,¢ € & with Go # Gg.

Thus, if G: & — X is a Kannan mapping with constant
k € (0,1) satisfying

(12)

Q(GO’,G() < K[Q(U’ GU); Q(C, Gg)]’

for every o,¢ € 2, then it also satisfies (8) and (11) with
Y =In(1/x). In fact, whenever Go # Gg, then from (12), we
get Go# 0 or Gg#¢.

The following lemma introduced by Batra et al. [37].

Lemma 2 (see [37]). Let (X,p) be a metric space and
GX— X be a F-Kannan mapping.  Then,
0(G"0,G"™g) — 0 asn —> co for all 0 € X.

Batra et al. [37] introduced a F-Kannan mapping using
the properties by Subrahmanyam [4] which is an extension
of Goswami et al. [27] and Wardowski [26] results. They
proved the following result.

Theorem 5 (see [37]). Let (X, ) be a complete metric space
and suppose G: X — X is a F-Kannan mapping, then G is
a Picard operator (PO).
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Using the following definitions, we introduce some
fundamental properties for a fixed point and common fixed
point theorems.

Definition 10 (see [45]). Let (G, f) be a pair of self-map-
pings on a metric space (Z,p). Then coincidence point of
the pair (G, f) is a point 0 €  such that (Go) = (fo) = 0%,
then ¢* is called coincidence point of the pair (G, f). If
0" = 0, then o is said to be a common fixed point of f and G.

Definition 11 (see [46]). Let G, f be self-mappings of a
nonempty set . A point 0 € Z is coincidence point of G
and f ift = Go = fo. The set of coincidence point of G and
f is denoted by C(G, f).

Definition 12 (see [46, 47]). Let (T, f) be a pair of self-
mappings on a metric space (), 0). Then, the pair (T, f) is
said to be as follows:

(i) Commuting if, for all 0 € X, G(fo) = f (Go),

(ii) Weakly commuting if, for all o(G(fo), f(Go))

<0(Go, fo),

(iii) Compatible if lim, | o(Gfo,, fGo,) =0, when-
ever o0, is a sequence in X such that
lim, . Go,=lim, . fo,=t,

(iv) Weakly compatible if, for all G(fo)= f(Go), for
every coincidence point 0 € 2.

3. Main Results

To prove this section’s main results, we commerce by
obtaining a more general version of Definition 8 and 9 using
a pair of two self mappings in F-Kannan-Suzuki type
mapping setting. We denotes (X, ) as a TVS-valued cone
metric space.

Definition 13. Let F be a mapping satisfying (F1) — (F3). A
pair of two self mapping G, f: & — & is said to be an
F-Kannan-Suzuki type mapping if the following holds:

(FKSI)
Gfo+Gf¢=>Gfo+oorGfc#q. (13)

(FKS2) there exists 9> 0 such that
1
Eg(o, Go)<p(0,0)

0(Go,Gfo) +p(Gs, Gfg)

=9+ F(0(Gfo,Gf¢))<F 5

(14)
for all 0,6 € X, with Gfo#Gf¢and F € .

Following remark is motivated by the work of Batra et al.
[37] given as follows.

Remark 4. By properties of F, it follows that every
F-Kannan-Suzuki type mapping G on a TVS-valued cone
metric space (I, p), satisfies the following condition:

0(Go,Gfo) +0(Gs, Gfg)
> ,

0(Gfao,Gf¢)) < (15)

for every 0, € X.

We give the following examples in the context of a pair of
two self mappings:

Example 3. Let F;: R* — R be defined as F, (z) = In(z).
Then clearly, (F1) — (F3) are satisfied by F, (z). In fact (F3)
holds for every x € (0, 1). Moreover, condition (14) takes the
form:

0(Go,Gfo) +0(Gs, Gfg)
2

g(Gfa,ch))Ses[ ], (16)

for all 0,6 € & with Gfo#Gfs.
Thus, if G, f: £ — & is a Kannan mapping with
constant k € (0, 1) satistying

0(Go,Gfo) +0(Gg,Gfg)
2

Q(GfO‘,GfC))SK[ ] (17)

for every o,¢ € &. Then it also satisfies (16) and (14) with
9=1In(1/x).

Example 4. Let F,: R" — R be defined as F,(z) =
—-(1/2),z>0. Then, (F1)- (F3) are satisfied by F,(z).
Condition (14) takes the form:
e(Ga,Gfa)+9(Gc,ch)< 0(Gfo,Gfg)
2 “1-9(Gfo,Gfq)

for all 0,6 € & with Gfo#Gfs.

(18)

Example 5. Let F;: R* — R be defined as F;(z) =
—(1/z),z>0. Then, (F1)- (F3) are satisfied by F;(z).
Condition (14) takes the form:

0(Go,Gfo) +0(Gs, Gfg)
2
_2(Gfo,G fO([(e(Go,Gfo) +0(Ge, Gfe)/2]” - 1)
B 0(Gfo,Gf<) +9(0(Gfo,Gfc)’ - 1)

>

(19)
for all 0,¢ € X with Gfo#Gfs.

We prove the following lemma which is an extension of
Lemma 2.

Lemma 3. Let (', 0) be a complete TVS-valued cone metric
space and G, f: X — X be an F-Kannan-Suzuki type
mapping. Then,

Q(Gf"aO,Gf"”UO) —> Oasn — 00, (20)

foralloeX.



Proof. Suppose that 0, is an arbitrary pointin 2. If G f"x, =
G, for some n € N, then sequence {0, } .y, converges in
Z, and hence the sequence o(Gf"0,Gf"ao,) —
Oasn — oo forall 0 € X

Assume that G "0, # G f™""'0, for any n € N. Then, by
(14) with 9>0, we get

1
EQ(GO’GUO) <o(09,Gay)
=9+ F(Q(Gf"oo, Gf"+100))

<F Q(anilao’anf’o) + Q(anao:anHUo)
< 3 .

(21)
By Remark 4, we obtain

Q(an_lam anoo) + Q(anao: an+1‘70)
5 .

Q(ando, Gf"”ao) <
(22)
Using (22) in (21), as results yields to
9+ F(o(Gf"00,Gf"09)) < F(0(Gf"00, Gf " 05)).  (23)
Letting n — o0 in (23), we get
9+0<0,

24
9<0, =
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which is a contradiction. Hence, o (G f"0,, G f"'0,) — 0
as n — 00.

Motivated by Batra et al. [37] and Filipovic et al. [38], we
give a proof of an extended version of Theorem 2, 4, and 5 in
F-Kannan-Suzuki type mappings with a pair of two self-
mappings in complete TVS-valued cone metric space.

Theorem 6. Let (X,0) be a complete TVS-valued cone
metric space and P a solid cone, in addition let G: X — X
be a one-to-one, continuous mappings and f: X' — L a
G-F-Kannan-Suzuki type contraction. Then,

(i) For every 0, € X the sequence G f"0, is convergent
(ii) There is v* € X such that lim,_, G f"0, =v*
(iii) G is sequentially convergent, then (f"c,) has a
convergent, subsequence
(iv) There is a unique u* € X such that fu* = u*

(v) If G is sequentially convergent, then for each o, € X
the iterate sequence (f"o,) converges to u*

Proof. By (i), we prove that {Gf"o,} is a Cauchy sequence.
Let 0, € 4 be arbitrary. If G f"a, = G f"**'0, for somen € N,
then sequence {0,},. converges in & and hence the se-
quence 0 (G f"ay, Gf"'0,) — O0asn —> co forall 0 € Z.
Suppose that G f"o, # G f" g, for any n € N. Then, by (14),
Lemma 3 with 9>0, we get

% Q (Un’ Gon) < Q (Un’ Go-n):

9+ F(o(Gf"00,Gf" ay)) < F o

From Remark 4, we have

Q(anoo’ anHUO) s

IN

Zg(Gf"ao, Gf"“ao)

Q(anilao) anao) + Q(anao’ anﬂao)’

- n n N+ (25)
Gf" 1(70’Gf Uo) + Q(Gf 00, Gf 1‘70)
5 .
- Q(an_ 1‘70’ anxo) + Q(anUO’anHUo)
2 ,
(26)

Q(an(fo’ anﬂ%) < Q(Gfm 1‘70’ ango)-

Using (26) in (25), as results yields to
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G n—1 ’Gn + G n ,G n+1
9+F(Q(ano'oaanHO'()))SF[Q( f % f GO) > Q( f % f 00) >
n—1 n
9+ F(o(Gf"0p, G 0y)) < F[zg(Gf ‘270’ Gf “0) ) (27)
9+ F(g(Gf"ao, Gf”“oo)) < F[Q(anf Lo Gf”oo)].
_ n n+1
Letting “n— 0o in (27)’ we get Q(Un) 0n+1) < Q(fan—l’fan) - Q(f UO’f 00) (29)

9+0<o0,

28
9<0, 2

which is a contradiction. Hence, 0 (G "0y, G f"'0,) — 0
as n — co. Thus, {Gf"0,} converges.

Since G is sequentially convergent, using (v), we prove
that the iterate of a sequence f"o,, converge toafixedu € .
To see this, suppose 0, € X be an arbitrary point in 2. Let
the sequence {0,},., be defined by 0,,, = fo, = "0, =
ffroy, and o, = fo, = f"0,=ff" oy for n>1€eN.
Thus, we have

1
E Y (an’ Gan) < (Un’ Gan)

=o(ff" o0, 1"0y)-
equivalent to
0(Go,,Go,,1) <0(Gfo,.1,Gfo,)
=0(Gf"00, Gf"" 0,) (30)
=o(Gff" 1o Tf f"0,).

Let 0 = f" !0, and ¢ = f"0,, using inequality (14), we
obtain

Gf"™ 100, Gff" 1‘70) +0(Gf"00, Gf f"0y)

=9+ F(o(Gf f* 00, Gf f0,) < F[g(

0 (Gan—l> Gan) + Q (Gan’ G0n+l)

F(o(Ga,y GoM))sF[

Using Remark 4 and the increasing property of F, we
deduce

]

Q(Gfm Yo, Gf " 1‘70) +0(Gf"00, Gf f"0y)

Q(forHUw fon%) <

>

2

(32)
oG iy <10 oG )
and hence, )
20(G00 G0,) 0G0, G, ) <0(GoynGe). (1 F(e(GonGo,) SF(e(Go, nGo) -8 (39
0(Go,,Go,,,) <e(Go,_1,Go,). By induction and (36), we deduce
By (F1), this implics that F(0(Gy111Goyy2)) < F(0(Go 1,Ga,) - 20
F(0(G0,Gon)) <F(@(Go,1Ga)). (4 F(0(G0,0.G0,) <F(0(Go, 1,Ga,))~ 3%, (37)

Consequently, we get

‘9 +F (Q (Gan’ G0n+l)) <F (9 (Gan—l’ Gan))’ (35)

=F (9 (G(Tn’ G0n+1)) <F (Q (Gon—l’ Gan)) - }19

Letting n — oo in (37), we find that



[Nim F(e(Go,,Goy,,)) = —0o. (38)
Consequently, using Lemma 1 and property (F2") of F
results in

hm Q(Gan’ G0n+1) = 0 (39)

n——:u~o
Thus, there exists n € N such that

Q (Gan’ G0n+1) < Q(Go-n’ Gzo-n) < CQ (Un’ Gan) < 9 (Gn’ Gan)’

(40)
which is a contradiction. Hence, we have
lim ¢(o,,Go,) =0. (41)
n—~oo

Therefore, we have o(Go,,Go,,;) — 0 as n —> oo.
Denote «, = p(Go,,Go,,;) =0, for all n>1 and n € N, for
F-Kannan-Suzuki type mappings.

By (39), we prove that {Go,,} is a Cauchy sequence since
(Z,0) is complete. Consider n,m € N such that m>n.
Assume on the contrary that there exists ¢ > 0 and sequences
{p(m},2, and {g(n)},2, such that

p(n)>q(n)>n,0(Go G0y )

(42)
>, Q(Gap(n),l, Gaq(n)) <c¢, VneN.
Using (iii) of Definition 2, we get
Q(Gap(n), Gaq(n)) < Q(GUP(H), G()-p(n),l)
+ Q(Go'p(n)_l, Gaq(ﬂ)) (43)
< Q(Gap(n), Gop(n)_l) + C.
From (39) and the above inequality, we have
Jim 0(GOp(u Gogn) = c- (44)
From (F3"), (44), and (14), we get
!9 + F(Q(Gap(n), G(Tq(n)))
(45)
<F Q(GOpn-1:Gpm) + (GOp > Gy
< 3 .
Equivalently,
9+ F(c)<F(c),
(46)
9<0,

which is a contradiction. So, Go,, = Go,, for every m>n in
Z. Hence, {Go,} is a Cauchy sequence in 2. The com-
pleteness of & ensures the existence of u* € & such that

o(Gu*,u")= lim ¢(Go, Go,,) =0
n,M—00 (47)

nh;an(Gan,u )=0.

By (47) and Definition 6, it follows that Go,,,;, — u* as
n — 00. By sequential continuity of f and G, we have
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. n . .
u = lim f"o,= lim o0,= lim o,
n—~oo n—~oo n—=a~oo

lim fo,= fu".u"
n—a~o

. (48)
= lim Gf"0,= lim Go,= lim Go,,,
n—~oo n—ao00 n—ao00
= lim G’o,=Gu".
Uu—>~00

Since X is a complete metric space, there exists u* € &
such that

lim Go,=Gu" =u". (49)

n—~o

Now, we prove that u* is a fixed point of G. Thus, by (iii)
of Definition 2 and o (u*,Gu*) >0, we have

o(u",Gu")<po(u",Go,,,) + 0(Go,,,Gu"). (50)
By Remark 4, it implies that

(Gan’ Gan+1) + 0 (G0n+1’ Gu*)
> .

0(Ga,,,, Gu") <2 (51)

Applying (51) in (50), we obtain

Q (Gan’ G0n+1) + Q (G0n+1 > Gu*)

o(u",Gu') <0 (u", Gay) + ’

(52)
Letting n — oo and using in above inequality, we get

o(u",Gu")<o(u",Gu")

. o(u",Gu") +o(Gu",Gu")
2

o(u",Gu") <o (u",Gu") +M,
20(u",Gu") +o(u",Gu") (53)
2

o(u",Gu") <

20(u",Gu™) <20 (u",Gu") + o (u",Gu"),
20(u",Gu") - 20(u",Gu") <o (u",Gu"),
0<o(u’,Gu"),

which is a contradiction. Hence, Gu* = u*.

Next, we prove that u* is a unique fixed point of G.
Assume on contrary that there exists v* € int (&) such that
u* #v* or Gu* #Gv*. Let Go,, — v* and v* is a fixed point
of G. Using Remark 4 and (14), it follows that u* = v* or
Gu* = Gv* which is a contradiction. Thus, u* is a unique
fixed point of G.

Moreover, G is a subsequentially convergent, { f"0,} has
a convergent subsequence, there exists ¢* € X and
{f™x,}eo, such that

1- N — *.
Jm fxg =v (54)

Due to the continuity of G, it implies that

1- nk — *.
kinOOGf g, = Gv (55)



Journal of Mathematics 9

By (49), we conclude that Using Remark 4 and A = (1/2), we get
Gv' =u". (56)

o(Gff" oy, Tff™0y) SA(Q(Gf”"flao,fo"kflao) +0(Gf ™0y, Gf f™ay),
<A((Gf™ o, Gff" lay) + 0 (Gf f™ 00, Gf f™0y),
SAQ(GJMFIOO’ fonkilao) +A0(Gf f" 00, Gf f™0y)s (57)

(1-No(Gf 00, Gf f"0,) <ho(GF" 00, GF "y,
A -1 m,
0(GF f*'0Gf fa0) < 1= o(GF* "o, G f*ay).

Q(GfV*’ankHUo) =o(Gfv",Gf f™ay,)

* * * m+1 ny+1 * S)L[Q(GV*’GJ“V*)+Q(fon)HUO’fonkao)]-
0(Gfv',Gv')<o(Gfv'.Gf"  ay) +0(Gf™ " 05, GV"). (59)

(58)

Thus, using (iii) of Definition 2, we have

Using (57) and (59) in (58), we obtain
By Remark 4,

0(Gfv',Gv') <o (GY',Gfv') + 0(Gf ™00, GF F*0,)] + o(GF™ 0 G ),

* A . — N, N, *
SA[Q(GV*,va )+mQ(Gf o0 Gf f k"ao) +Q(Gf G0y GV )

* * A et =1 My My+1 *
<l (Gv',Gfv )+A<m) o(Gf™* o, Gf f™0y) + o(Gf™" 0y, Gv"), (60)

AN . 1 ) .
S]_A(I_A> Q(Gfk 1UO’fok 100)+m9(Gf k+10'0,GV ),

A 1

e
< (m) Q(ank_ '), fonk_lao) + m@(ankHU(w ankao)-

Suppose that Since G is one to one and continuous, fv* = v*. So, f has
a fixed point. As Gf"0, is sequentially convergent, we

A conclude that {G "0, } converges to the fixed point of f. O

M
- - c
(m) Q(ank IUOfofnk 10.0) :E' (6])
Next, we prove our second main results by extending
c Theorem 3 using an F-Kannan-Suzuki type mapping in

A _ -
mQ(ank 1‘70’ Gff™ 1(70) =5 (62) TVS-valued cone metric space.

Letting k — oo and using Definition 3, (61),and (62)in ~ Theorem 7. Let (X,p) be a complete TVS-valued cone
(60), we obtain metric space and & a solid cone. In addition, let G: X' — X
be a one-to-one, continuous and sequentially mappings and

Q(va*,Gv*)£§+%, (63) f: & —> X such that F(f)+ 3, 9>0 and that

1
which follows B 0(0,Go) <g(0,9)
(65)

o(Gfv',Gv) <c (64) =9+ F(o(Gfo,Gf’0)) <F(0(Go,Gf0)),
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holds for some A € (0,1) and for all 0 € X,0+ fo. Then f
has property Q.

Proof. By Remark 1, let u € F(G")NF(f") for some n € N.
Ifu = fu, thatis u is a unique fixed point of G and f. Hence,
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the proof completed. On contrary, we suppose u # fu. Let
o=u=f"'uand¢= fu= ff" 'usuchthat f* 1+ ffr!
and using (65), we get

%@(u, Gu) <o (u, fu),

o (u,Gu) <20(u, fu),
=9+ Flo(Gf f" 'w.Gf* f" 'u)| <Flo(Gf" 'u,Gf £ 'u)],
9+ F[o(Gf " 'w,Gf f'u)| <F[o(Gf" ', TG f"u)].

Consequently, we get
Flo(Gff" 'u,Gf f"u)| <F[o(Gf" 'w,Gf"u)| - 9. (67)

Repeating the same argument several times, we finally
obtain

Flo(Gff" 'u.Gf f"u)| <F[o(Gf" ', Gf"u)| - n9.
(68)

By following similar procedure as the proof of Theorem
6, we can conclude that o(Gu,Gfu) =c¢, ie, Gu=Gfu.
Since G is one to one and sequentially convergent, then
u= fu, which is a  contradiction. = Hence,
ue F(G")NFE(f"). O

We give an example where generalised Kannan mapping
will not be applicable. However, F- Kannan Suzuki type
mapping is applicable.

Example 6. Consider the sequence 2 ={0,1}U{(1/2),
(1/3), (1/4),...} and d be an Euclidean metric on 2. Then
(X, 0) is a TVS-valued cone complete metric space. Let the
mapping f: & —  be determined as follows:

f(o) =0,

Fanm=—

i+1

(69)

for n>2. Let there exist A € [0, (1/2)), so that, forall 0,¢ € X
condition (1) is satisfied although is not true for every A > 0.
That is a contradiction; hence, Kannan’s theorem cannot be
applicable.

The mapping G: & — X be determined as

G(0) =0,
| (70)
G(1/i) = =
2

For all i>2, G is continuous, one to one, and sub-
sequentially convergent.

(66)

We consider a sequence {0;} in & and assume that 2" is
sequentially compact in complete TVS-valued cone metric
space. By assumption X is sequentially compact with € = 1
we can cover the space & with finitely many balls of radius 1;
then one of them contains many {o;} for i >2; i.e., there is a
ball B, of radius 1 so that there is a subsequence of {o;}
whose members all belongs to B,. We denote this subse-
quence by {o;}; thus, all {o;} belongs to B;.

Similar by sequentially compactness conditions with
€ = (1/2), we can find a subsequence {aiz} of {0,»1} and a ball
B, of radius 1/2 so that all {‘712} belongs to B,. Continuing
this way, we obtain for any k>2 a subsequence {aik} of
{aik_l} and a ball B, of radius 27 % so that all {aik} belongs to
B,.

Now, let 7, j € N, j>i. Then, we show that (f,G) is a
F-Kannan-Suzuki type mapping in TVS-valued cone metric

space with respect to F,(z) = —(1/z) and 9>0. By using
(FKS2) and F, (z), we have

1
59(0,G0)<9(0,c)

(71)
:VQ(GG,GfG) +0(Gs,Gfg) - 0(Gfo,Gfg)

2 “1-9(Gfo,Gfq)
o(fo,Gg) for

To see this, we now calculate

o=1/i,¢=1/jix>1.
0(Go,Gfo) = o(T (1/i), Gf (1/i))

1 1|, (72)
s ‘E - QUG
0(Gfo,Gfq) = o(Gf (1/i),Gf (1/))
< |21/(i+1) _ 21/(j+1)|et' (73)
0(Gs,Gf¢) = 0(G(1/7),Gf (1/j))
(74)

N |21/j B 21/(j+1)|et.

Applying (72), (73), and (74) in (71) becomes
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1
59(0, Go) <o(0,9),

1
5 QUG (1) <e(1/i, 1/),

0(1/i,G(1/§)) < 20(1/i, 1/j),

1 1]
i 2/
2 —il,
—le
2.1

(75)

(G, Gf (1) +o(G/).Gf (1)) _  o(Gf (1), Gf (1/]))

2 T1-9(Gf(1/i),Gf(1/)))
Kl/zi) _(1/21/(i+1))'et +'21/]' _ 21/(j+1)'et |21/(i+1) _pUGHD] b
2 < 1- 9|21/(i+1) _ 21/(j+1) et'

Thus the inequality (71) and all conditions imposed in
Theorem 6 are satisfied. Hence, G and f has unique fixed
point that is v* = 0 in {PC&} € X, where & is a solid cone.

4. Some Applications

Two applications of the theorem stated in the previous part
will be presented in this section.

4.1. Existence of a Solution for Nonlinear Riemann-Liouville
Type Fractional Differential Equation. As a convolution
mapping, the nonlinear fractional differential equation is
equally and identically utilized in several applications in the
domains of science, engineering, and mathematics.

(i) In image processing: convolutional filtering is used
in many essential algorithms in digital image
processing, such as edge detection and related
procedures. An out-of-focus photograph is created
by convolutioning a crisp image with a lens
function in optics. This is referred to as bokeh in
photography. For example, applying blurring to a
picture in image processing software.

(ii) In digital data processing: Savitzky-Golay
smoothing filters are used for analyzing spectro-
scopic data in analytical chemistry. This can boost
the signal-to-noise ratio while reducing spectral
distortion along with a convolution in statistics
that is weighted in moving average.

(iii) In acoustics: reverberation is the convolution of
the original sound with echoes from objects sur-
rounding the sound source. Convolution is a
technique for mapping the impulse response of a
physical room to a digital audio stream in digital
signal processing. The imposition of a spectral or
rhythmic structure on a sound is known as

convolution in electronic music. This envelope or
structure is frequently derived from a different
sound. Filtering one signal via the other is called
convolution of two signals.

(iv) In electrical engineering: the output of a linear

time-invariant (LTI) system is obtained by the
convolution of one function (the input signal)
with a second function (the impulse response). At
any one time, the output is the sum of all previous
input function values, with the most recent values
often having the most influence (expressed as a
multiplicative factor). This component is pro-
vided by the impulse response function as a
function of the time since each input value
happened.

(v) In physics: a convolution operation can be found

whenever there is a linear system with a “super-
position principle.” For example, in spectroscopy,
line widening owing to the Doppler effect produces
a Gaussian spectral line form on its own, whereas
collision broadening produces a Lorentzian line
shape. The Line form is a convolution of Gaussian
and Lorentzian, which is a Voigt function, when
both effects are active. The measured fluorescence
in time-resolved fluorescence spectroscopy is a
sum of exponential decays from each delta pulse,
and the excitation signal may be considered as a
chain of delta pulses.

(vi) In computational fluid dynamics: the convolution

process is used in the large eddy simulation (LES)
turbulence model to reduce the range of length
scales required in computing, lowering the com-
putational cost.

(vii) In probability theory: the convolution of the dis-

tributions of two independent random variables is



12

the probability distribution of the sum of their
distributions.

(viii) In kernel density estimation: a distribution is es-
timated from sample points by convolution with a
kernel, such as an isotropic Gaussian.

(ix) In radiotherapy: in the handling of planning sys-
tems, the convolution-superposition algorithm is
used in the majority of recent computation codes.

The above applications of a convolution show that the
fractional derivative as convolution has multiple purposes. It
can represent memory, like in the instance of elasticity
theory. It may be understood as a filter, with the Caputo and
Caputo-Fabrizio types in particular being viewed as a filter
of the local derivative with power and exponent functions
(one can see in [48]).

The purpose of this section is to provide an application of
Theorem 6 to find a common solution of a nonlinear
fractional differential equation, where we can apply
F-Kannan-Suzuki type mappings in complete TVS-valued
cone metric spaces.

Here, we investigates the Riemann-Liouville derivative
fractional integral of order a>0. This form of fractional
derivative for a continuous function g: [0,00) — R
denoted by D¢ f, is given by

d n-1
CAVIOR 3 JRCAYD
(76)

_ 1 d " n—a-1
=T o) (E) Jo (t—s) g(s)ds,

where [a] denotes the integer part of the real number a and
n = [a] + 1, provided that the right hand side is pointwise

defined on (0,00). (see [49-54]). Also, the Rie-
mann-Liouville fractional integral of order « is given by
1 t
Ioc - J _ el , 77
(I5)g (1) T@) Ja (t=s)" "g(s)ds (77)

for a>0. The notation [«] stands for largest integer not
greater than «. If a =m € N, then (D}})g(t) = g™ (), for
t>0 and if & = 0, then (D)), )g(t) = g(¢) for t>0.

Journal of Mathematics

The following nonlinear fractional differential equation
with integral boundary valued conditions is inspired by
Kilbas et al. [55], Cabada and Hamdi [56], and Cabada and
Wang [50].

Dg,o(t) +g(t,a(t) =0,

a(0) = a' (0),

0<t<l,

| (78)
o (1) = /\J s(s)ds, 0<A<l,
0

where Df, denotes the Riemann-Liouville fractional de-
rivative of order « and g: [0,1] — & is a continuous
function.

We recall the following lemmas from Bai, and Lii [57].

Lemma 4. Let o> 0. If we assume 0 € C(0,1)NL(0, 1), then
the fractional differential equation:

Dj,o(t) =0, (79)
has
a(t) = Ct*  + Gyt P Ot Y, (80)
C,eR,i=1,2,...,N, as unique solution.

Since D§, I, 0(t) = o for all 0 € C(0,1)NL(0,1). From
Lemma 4, we deduce the following lemma.

Lemma 5. Assume that o € C(0,1) N L(0, 1), with fractional
derivative of order a> 0 that belongs to o € C(0,1) N L(0, 1).
Then,

I5.D5.a(t)=a(t) + Cit* 4+ Cyt* 2+ + Cpt* N, (81)
for some C; € R, i =1,2,...,N, as unique solution.
The unique solution of (78) is given by

o (t) = Jt Gt 5)g (s, u(s))ds. (82)

Recall that the Green function related to the problem
(78) is given by

A=) a4 As) = (a—-N) (£ —s5)*!

Gf (t,S) =

(1= N a-A+Ls)

(a =T ()

(@- NI (@) » Osssisl
(83)
0<t<s<l1
0(0,0) = sup {lo () — <Ol (2), (1)
te[0,1]

Consider the space 2 = (C[0,1],R"), &= CJ0,1] be
endowed with the ordering o<g¢ if o(t)<¢(t) for all
te€CJ[0,1] and define P e& by P={(0,6)¢€&:
a(t),¢(t)20} cR%, L =R.

This space defines the metric p: £ x £ — & such that

Vo,¢ € X and v (t) = €. Then, (X, ) is a TVS-valued cone
metric space. A function o € C([0,1],Z) is a unique so-
lution of the fractional differential integral equation (82) if
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and only if 0 = u* is a solution of the nonlinear fractional
differential equation (78).
Now, we prove the following theorem.

Theorem 8. Suppose the following condition hold:

(i) Gf(t,s) € C([0,1] x [0,1],X) >0 forallt,s € [0,1]

(ii) [, G (t.s)<y(s) for all t,s € [0,1]

(iii) g € C([0,1] x X, ) is sequentially continuous

(iv) there exists a continuous
g: [0,1] xR — R, such that

1g(t,0()) = gt (Nl <e 'y (s)la(s) —c(s)l, (85

function

for all t € [0,1] and 9> 0, such that

oA + aa+ 1)] - (a+ 1)[at +/\t]
ala+1)(a- )T ()

y(s) = (86)

IGfo-Gfgl =

0

1
j G (t,9)lg(5,0(5)) — g (5, ()lds,

1 1
j £ (6,99 (s,0(5))ds - jOGf(t,s)g(s,q(s))ds

13

Then, the fractional differential Equation 4.1 has a
common solution as a fixed point 0 € C([0,1],Z).

Proof. Let us define a map G, f: » — & by
1
Gfo(t) = J Gy (t,5)g(s,0(s))ds, (87)
0

for t € [0,1], then Gf"0, is sequentially continuous. This
implies that f € Gf"0, and f"o, possess a fixed point
u* € Gf. To prove the existence of fixed point of Gf, we
prove that G f is sequentially and contraction. To show G f is
sequentially continuous, let Gfo# Gfg, for all o,¢ € [0, 1].
By condition (iv), we have

>

—)" YNa=L+Ls)

th —)" M=+ As) -
0 (a =T ()

t [a/\+oc(oc+1)]—(0c+1)[(xt +At7]
ala+1)(a- AT (a)

|
[

This implies that

|G fo,Gfg] Se_sy(s)la—clet. (89)

Since y(s) < 1, we have

IGfo,Gfel<e °lo—qle. (90)

Thus, for each 0,¢ € X, we have

0(Gfo,Gfc)<e "M (o, ). (91)

Taking logarithms on both sides of (91) using F, (z) =
In(z) and the property of F, we get

In(e(Gfo,Gf¢)) <In(e”*M(0,)) (92)
equivalent to

9+ F(0(Gf0,Gf¢) < F(M(0,)), (93)

a—1 a—1
(a=A)(t~s) d”rt (1

,9 ¢
¢ (=T (a) e "lo(s) —c(s)le’,

]e%(s) —¢(s)l.

(88)

where

0(Go,Gfo) +0(Gg, ch).

5 (94)

M (o,¢) =

Using (94) in (93) and applying F-Kannan-Suzuki type
conditions leads to

1
59(0,G0)<9(0,c)

0(Go,Gfo) +0(Gs, Gfg) .

=9+ F(0(Gfo,Gf¢))<F 5

(95)

For y € [0,1), 9>0 satisfies F-Kannan-Suzuki type
mapping. Therefore, Gf is a contraction mapping on X.
Since all the conditions of Theorem 8 are satisfied. Therefore,
there exists u* € C([0, 1]) a common fixed point of G and f,
that is, u* is a solution to fractional nonlinear differential
equation (78). O
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4.2. The Existence of Coincidence Solution for Nonlinear
Volterra-Integral Equations. This section investigates the
coincidence solution for nonlinear Volterra-integral equa-
tions in the setting of TVS-valued cone metric spaces. Nieto
[58] initiated the study of the existing solution of an ordinary
differential equation. Since then, several authors utilized his
ideas to find the solution of ordinary differential equations.
In detail, one can see the literature in [55, 59-62] and the
references therein.

Integral equation methods help solve many problems of
the applied fields like mathematical economics and optimal
control theory because this problem is often reduced to
integral equations.

Integral equations appear in several forms. However, in
this section, we are interested with the integral equation,
namely, Volterra integral-differential equation which is of
the form

d"u

W.
(96)

W (6 0) = f (L) + rK(a, Lu(t)dt, whereu" =

The following integral equation inspired by [12, 63-66].

u(o,¢) =1(0,0) + J g(0,6eu(eq))de
e (97)
+j J- h(o, ¢ v, 1,u(v, 7))dedy,
0Jo

where [, g, h are given functions and u is unknown function
to be found.

Let C(G, f) be the class of continuous functions from
the set G to the set f. We denote &=R*xR", &, =
{I(0,¢5):0<s<0<00,¢e R} and &, ={l(0,¢s1):
0<s<0<00,0<t<¢<00}. We denote that [ € C(&,R),
geC(&, xR,R)and h e C(&, xR,R)

Denote & be the space of functions z € C(R* x R*,R)
satisfying

|z (0, 1) = O(" "), (98)

where A is a positive constant, that is,

|z (o, 9) SMO(eM“C)), (99)

for constant M, > 0. Let (X, ||.||) be a Banach space. Define a
norm in the space X by

lzlg = sup [lz(a,¢)le "],

(0,6)e& (100)
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Define the mapping G, f: &' x & — [0, 00) by

Gf'u(o,¢) =1(0,¢) + Jog(a, ¢ & u(s¢))de
0 (101)

g g
+J J h(o,¢ v, 1,u(v, 1))dedv,
0Jo
and

Gf'v(0,0) =1(a,¢) + rg(a, 66 v(e y))de
0 (102)

o (s
+J J ho, ¢, v, 7, v(v, 7))dedv,
0Jo

for u,v € . The coincidence fixed point of G f"u and G f"v
is also a solution of the Volterra integral-differential
equation (97).

Now we prove the results by establishing the existence
solution of a coincidence fixed point for a pair of self
mappings:

Theorem 9. Suppose the following conditions holds:

(i) For the continuous functions g,h € X, we have

lg (0,6 6u(e6) - glo,6ev(e, )<y, (0,6 8)|u—vl,
[h (0,6, 7,u(v, 7)) = h(0o, ¢, v, T,v(», )| <y, (0,6, v, 7)lu -,
(103)

where y, € C(&, [0,00)) and y, € C(&,, [0,00)).

(ii) There exists a nonnegative constant & such that 6 < 1
and

o o ¢
J 71 (0,6 8)e" ™ de + j J ¥ (0,67, 1) "V drdy < 8¢ 77,
0 0lJo

(104)

for all 0,6, 6,v,7 € & UE,.

Then, the nonlinear Volterra-integral equation (97) has a
unique solution in &, U &, which is the coincidence fixed
point of equations (101) and (102).

Proof. Let G, f: &' — X be two operators such that
Gf' e X and Gf"v € &. Now we verify that the two op-
erators are contractive maps in 2. Let u, v € 2. On contrary
we claim that G and f are not contractive maps in 2. From
equations (101) and (102), using condition (i) and (ii) of
Theorem 9, we have
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IGf"u—Gf™|y =1(0,0) + JO 900,66, u(e,)de + JO J; h(0, 67, u( D)drdy
—1(0,¢) — J: g(0,6,¢6v(g¢))de - J: J; h(o,¢ v, 1,v(v, 7))drdY,
< [ 19 cauto) - gosev o
" J r 1h(0, 6,9, 7,4 (%, 7)) = (0, 6,9, 7, v (3, 7)drdy,
o) (105)

[
< H 71 (0,607 de +
0

A(a+6)~

< de Slu—vlg,

/\(o+c)—9|u _ VIR’
n n -9 A(o+¢)
|Gf"u—Gf"v|, < e " u—v]ge T,

o(Gfu,Gfv)< 8e7‘9M(u, V),

<de

which is a contradiction. Hence u is a common fixed of G
and f, also a solution to integral (97).

From (105), since § < 1 and using FKS2 of Definition 13,
where

_ 0(Gu,Gfu) +o(Gv,Gfv)

M (u,v) 5

(106)

we have

o(Gfu,Gfv)<e "M (u,v). (107)

Using F| (z) = In z by taking natural logarithms in both
sides of (107), we get

Y+ 0(Gfu,Gfv)<M (u,v). (108)

By (106), we obtain a F-Kannan-Suzuki contraction as
defined in Definition 13. Thus, all conditions imposed in
Theorem 6 and Theorem 9 are satisfied. Hence, u* is a
common fixed point of G and f in X. O

5. Conclusion

The novelty of this study to fixed point theory is the fixed
point result given in Theorem 6. This theorem provides
the common fixed points conditions for a pair of two self
mappings in TVS-valued cone metric spaces. This paper
extended and generalised the results due to Batra et al.
[37], Filipovic et al. [38], Morales and Rojas [9], Rahimi
et al. [39], and Wangwe and Kumar [40] using a pair of
two self-mappings in F-Kannan-Suzuki type mapping in
TVS-valued cone metric space, where we consider a map
to be sequentially convergent, one to one and continuous.
By doing so, we extended several other results of the same
setting in the literature. These results have some appli-
cations in many areas of applied mathematics, especially
in nonlinear Riemann-Liouville fractional differential
equation and nonlinear Volterra-integral differential
equation.

T
J J v, (06,9, 1) O drdy | = vl
0Jo
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In this paper, we introduce two new subgradient extragradient algorithms to find the solution of a bilevel equilibrium problem in
which the pseudomonotone and Lipschitz-type continuous bifunctions are involved in a real Hilbert space. The first method needs
the prior knowledge of the Lipschitz constants of the bifunctions while the second method uses a self-adaptive process to deal with
the unknown knowledge of the Lipschitz constant of the bifunctions. The weak convergence of the proposed algorithms is proved
under some simple conditions on the input parameters. Our algorithms are very different from the existing related results in the
literature. Finally, some numerical experiments are presented to illustrate the performance of the proposed algorithms and to

compare them with other related methods.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. Let g: Hx H — R be a bifunction
with g (x, x) = 0 for all x € C. The equilibrium problem (EP
for short) is associated with g and C to find z € C such that

g(z,y)=20, VyeC. (1)

The solution set of (1) is denoted by EP (g, C).

If g(x,y) ={G(x),y—x) forall x, y € H, where G is a
mapping from H into itself, then the problem (1) becomes
the following variational inequality problem (VIP for short):

findx" € Csuchthat (G(x"),y —x") >0, VyeC. (2)

The solution set of (2) is denoted by VI (G, C).

The EP (1) has a simple form and is very general in the
sense that it includes, as special cases, the variational in-
equality problem, fixed point problem, complementarity
problem, optimization problem as well as the Nash equi-
librium problem; see,for example [1,2]. Many methods have
been proposed for approximating a solution of the EP (1).
Mastroeni [3] used the auxiliary problem principle which
was first introduced for solving the optimization problems to

solve EP (1) and presented the iteration algorithm in the
form

1
Xy € C, Xy = argmin{)tg (%, ¥) + 5")/ - xn"z: y € C},
(3)

where the stepsize A > 0. For obtaining the convergence of
this algorithm, the bifunction g is required to be strongly
monotone and Lipschitz-type continuous. To avoid the
hypothesis of the strong monotonicity, Quoc et al. [4] first
proposed the extragradient method (or the proximal-like
methods) in which two strongly convex problems are solved
at each iteration. The extragradient method is as follows:
x, € C and

1
V= argmin{/lg (x, ¥) + E"y - xn"z: y € C},
(4)
1
X,y = argmin{/lg(yn,y) +5||y - x,,"z: y € C}.

In 2018, Hieu [5] presented a new extragradient method
for solving the EP (1.1) as follows: x,, y, € C and
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1
X1 = argmin{lnf(ywy) +5ly- x|y e C},

1
Vo1 = argmin{lnﬂf Ow2)+5ly - X1y eC } n=0,
(5)

where {A,,} ¢ (0, 00) is a nonincreasing sequence and f is a
strongly pseudomonotone and Lipschitz-type continuous
mapping.

In 2011, Censor et al. [6] proposed a new method, which
is called the subgradient extragradient method, for solving
the VIP (2). In 2016, Hieu [7] extended this method to the EP
(1.1). In 2019, inspired by [5,7], Liu and Kong [8] introduced
the following subgradient extragradient method for solving
the EP (1): x,, ¥, € C and

1

X, = argmin{/\f(yo,y) +£||y - x0||2: ye€ C},
1

¥ = argmin{/\f(yo,y) +5||y - xlnzz y € C},

1
Xye1 = argmin{lf o y) +5ly - x| ye Hn},

. 1
| V1 = argmln{lf(yo,y) + 5||y - xn+1||2: ye€ C}, nx1,
(6)

where H, ={z e H:{x,-\w,_; - y,,z2—y,><0} and
W, €0,f(¥,.1>y,), and f is a pseudomonotone and
Lipschitz-type continuous mapping.

The advantage of equations (5) and (6) is that only one
value of f at y, is computed at each iteration. On the recent
methods for solving the EP (1), we refer the readers to
[9-15].

In this paper, our interest is the bilevel equilibrium
problem (BEP for short) which consists of the following:

findx € EP(g,C) suchthat f (X, y)>0, Vy e EP(g,C),
(7)

where f: Hx H — R with f(x,x) = 0 for all x € H. The
BEPs are the special cases of mathematical programs with
equilibrium constraints and also are the generalization of
variational inequality over equilibrium constraints, hierar-
chical minimization problems, and complementarity
problems. The methods for solving BEPs have been studied
extensively by many authors. Moudafi [16] introduced a
proximal method and proved the weak convergence to a
solution of the BEP (7). Dinh and Muu [17] proposed a
penalty and gap function method for solving the BEP (7).
Quy [18] introduced an algorithm by combining the
proximal method with the Halpern method for solving
bilevel monotone equilibrium and fixed point problem.
Yuying et al. [19] presented an extragradient method as
follows:

Journal of Mathematics
( . 1 2
Yu= argmln{lng () +5ly = v e C},

4 1
z,= argmin{/lng (Y ) + z”y - xnl'zz y € C},

L Xn+1 = HnXp + (1 - nn)zn - oUW, W, € azf (Zn’zn)’

(8)

where {a,} ¢ (0,1), {A,}c[LA] with A>0, and
{n,} < [0,1-a,]. Anh and An [20] proposed the following
subgradient extragradient method for solving the BEP (7):

( 1
y, = argmin{/\ng (%, ¥) + E”y - xn”z: y € C},

{z,= argmin{)tng (Y y) +%||z - xn"z: ze€ Hn}, 9)

| X1 = argmin{ﬁnf (z,py) + %"t _ Zn||22 s e C},

where H,={ve H:<{x,-Aw,—y,v—y,><0) with
w, €0,9(x,,y,), {A,} and {B,} are two nonnegative
sequences.

Observe that in the works mentioned above, the
bifunction g is monotone or pseudomonotone while f is
strongly monotone, and then, the algorithms have a strong
convergence. In this paper, inspired by [8,20], we propose
two new subgradient extragradient methods for solving the
BEP (7) where both the bifunction f and g are pseudo-
monotone. The first method needs the prior knowledge of
the Lipschitz constants of the bifunctions while the second
method uses a self-adaptive process to deal with the un-
known knowledge of the Lipschitz constant of the bifunc-
tions. The weak convergence of the proposed algorithms is
proved under some sufficient assumptions. Finally, some
numerical experiments are presented to illustrate the per-
formance of the proposed algorithms and to compare them
with other related methods.

2. Preliminaries

Let H be a real Hilbert space, R be the set of all real numbers,
and N be the set of all positive integers. We list some well-
known definitions and properties which will be used in our
following analysis.

Definition 1. A mapping F: H — H is said to be
(i) monotone if

(F(x)-F(y),x—y)=0, Vx,yeH,; (10)

(ii) pseudomonotone if
(F(y),x-y>20=(F(x),x - y)20, Vx,ye€H;

(11)
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(iii) L-Lipschitz continuous if there exists a constant
L>0 such that

IF(x) - FI<lx-yl, Vx,yeH. (12)

Definition 2. A bifunction f: H x H — R is said to be

(i) pseudomonotone on C if

f(x,)20=f(y,x)<0, Vx,yeC. (13)

(ii) Lipschitz-type continuous on C if there exists the
constants ¢; >0 and ¢, >0 such that

f2<fon+ f(n