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Diferential evolution has made great achievements in various felds such as computational sciences, engineering optimization,
and operations management in the past decades. It is well known that the control parameter setting plays a very important role in
terms of the performance improvement of diferential evolution. In this paper, a diferential evolution without the scale factor and
the crossover probability is presented, which eliminates almost all control parameters except for the population size.Te proposed
algorithm looks upon each individual as a charged particle to decide on the shift of the individual in the direction of the diference
based on the attraction-repulsion mechanism in Coulomb’s Law. Moreover, Taguchi’s parameter design method with the two-
level orthogonal array is merged into the crossover operation in order to obtain better individuals in the next generation by means
of better combination of factor levels. What is more, a new ratio of the signal-to-noise is proposed for the purpose of fair
comparison of the numerical experiment for the tested functions which have an optimal value with 0. Numerical experiments
show that the proposed algorithm outperforms the other 5 compared algorithms for the 10 benchmark functions.

1. Introduction

With its efciency and efectiveness, diferential evolution
(for short, DE) proposed by Storn and Price has been
successfully applied in many diferent engineering felds
[1, 2]. In order to keep improving the performance of DE,
various eforts have been devoted over the past decades.

Te researchers proposed three discrete DEs for the
scheduling problems in the permutation fow shop envi-
ronment [3]. Tese approaches focus on converting vectors
of the continuous domain into permutation vectors of the
discrete domain and self-adjusting the control parameters of
these algorithms based on JADE [4] and SADE [5]. Te
results show that these proposed approaches are promising
for scheduling problems.

For the parameter identifcation of solar cells, the
original FSDE in reference [6] was improved, which is the
hybridization between free search and DE with opposition-
based learning by using a simple greedy strategy instead of
a Gaussian noise update in the process of the potential
solution generation for the proposed best solution update

strategy [7]. Reference [8] also employed a DE with
opposition-based learning for estimating optimum hourly
energy generation scheduling of a hydro-thermal system.

Te authors emphasized the population initialization on
increasing the accuracy and convergence speed of DE and
designed a new DE variant with a modifed initialization
scheme by combining the strengths of both chaotic maps
and oppositional-based learning strategy in order to gen-
erate the initial population with a good quality of mean
ftness and diversity of the solutions. Extensive simulation
studies on benchmark functions show that the proposed
algorithm outperforms its peers [9].

A cultural DE algorithm using a measure of population
diversity was proposed as an alternative method for solving
the economic load dispatch problems of thermal generators
[10]. Based on the cultural algorithm technique using
normative and situational knowledge sources, the proposed
algorithm is able to balance well the trade-of between the
exploration and the exploitation of the search space.

Te scale factor F and the crossover probability Cr are
two vital parameters in DE, which usually greatly improve
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the performance. Various strategies for parameter setting
have been researched.

Te values of F � 0.5 and Cr � 0.9 were suggested by
Storn and Price [1]. Te F was set to the normal distribution
rand number with expectation 0 and standard deviation 1 for
multiobjective optimization in reference [11].

Qin and Suganthan considered F and Cr as the random
numbers following normal distribution F ∼ N(0.5, 0.3) and
Cr ∼ N(Crm, 0.1) according to the learning experience,
where the parameter Crm is set at 0.5 and updated once
every 25 generations [5].

Kim et al. proposed that the scale factor F is calculated by
the formula F � a + b · rand(0, 1), where a + b< 1 and
a, b> 0 [12].

Ali and to
..
rn empirically obtained an optimal value

Cr � 0.5 and calculated automatically the scale factor F using
the maximum and the minimum for focusing on the ex-
ploration at early generation and the exploitation at latter
generation [13].

Te parameters F and Cr were given, respectively, fol-
lowing α-stable distribution Sα(0, 0.1,mean(SF)) and
Sα(0, 0.1,mean(SCr)) , where SF and SCr denote the suc-
cessfully evolved individuals’ F and Cr based on some
feedbacks from the optimization process [14].

Te scale factor F was set using the Tsallis distribution in
economic view for the optimization model in shell-and-tube
heat exchangers [15]. F is fst initialized with uniform
random values between 0.8 and 1.1, and then is determined
by F � Fmu + F2

σ · PF at each generation, where PF obeys a q-
Gaussian distribution or Tsallis distribution with the means
Fmu and the variance F2

σ , the parameter q is linked to the type
of distribution that assumes values from 1 to 3.

A self-adaptive scaling factor F � S ·

������������

rand(0, 1)2 · d

􏽱

− b

was utilized in reference [16] for maximizing the proft of the
distribution company with the several constraints based on
the basic idea of the penalty function approach for solving
optimal planning of energy storage systems in order to
improve the rate of convergence of DE, where S, d, and b are
an acceleration factor, a linear decreasing factor, and a de-
celeration factor, respectively.

Based on the diferent setups created by a simple orthogonal
experimental design method, the paper [17] revealed that
DE/best/1/bin withF � 0.5 andCr � 0.2 + 0.6∗ rand(0, 1) is
promising to optimize the vector Jiles–Atherton vector hys-
teresis model from a workbench containing a rotational single
sheet tester. Similarly, the self-adapting parameter strategy was
used in reference [18].

Some researchers designed the novel selection operator
or employed the classical derivative-free methods in DE or
analyzed the search behavior in theory for improving the
performance of DE [19–22].

Tese versions of DE do improve the algorithm per-
formance. However, each of them only is superior to the
other in some special aspects. Te best setting for the control
parameters can be diferent for diferent problems. Even
though the self-adapting parameter strategies seem to be able
to overcome the problem of parameter setting, some new
control parameters are used. Several references reported that

choosing the proper control parameters for DE is more
difcult than expected. How to set reasonably these pa-
rameters is a nuisance [2, 23, 24].

A diferential evolution without the scale factor and the
crossover probability is presented in the paper. Te algo-
rithm calculates dynamically the scale factor F using the
attraction-repulsion mechanism in Coulomb’s Law and
executes the crossover operation using Taguchi’s parameter
design method based on the orthogonal array. Te proposed
algorithm avoids the parameter settings. Numerical exper-
iments show that the performance of the proposed algorithm
is superior to that of the other compared algorithms.

Te paper is the extended version which has been further
researched based on “almost-parameter-free diferential
evolution” proposed by Zhang and Liu [24]. Tere are four
diferent points between them. Firstly, this paper describes in
detail the idea and particulars of the proposed algorithm.
Secondly, we regard the scale factor F in the mutant
equations (13) and (14) in Section 4 as the two diferent
charges for the purpose of a better interpretation of the
algorithms’ idea and a better numerical experiment results.
Tirdly, the vital shortcoming of the original defnition of
the ratio of the signal to noise (SNR) is analyzed in Section 4
and reveals the fact that it has thought of the optimal value of
the tested problem before being solved as 0, then presents
a modifed defnition of SNR for the sake of fairness. Finally,
a brief convergence analysis is given under two assumptions.

Te main contributions of this paper, which distinguish
from the related literatures, are summarized as follows:

(i) Use the electromagnetism-like mechanism to decide
on the step length in the direction of the diference
for the mutation operation;

(ii) Employ Taguchi’s parameter design with a two-level
orthogonal array based on a new ratio of the signal
to noise that is proposed for the crossover
operation;

(iii) Eliminate almost all the control parameters of DE
except for the population size.

Te remainder of the paper is organized as follows. In
Section 2, diferential evolution algorithm is briefy in-
troduced. Taguchi’s parameter designmethod is described in
the next section. In Section 4, a DE without the parameters is
proposed and the convergence in probability is analyzed. In
Section 5, the results of numerical experiments are given.
Finally, we conclude this paper and consider the further
research issues.

2. Differential Evolution

Like other evolutionary algorithms (EAs), DE starts with an
initial population individual, followed by the successive
operations of mutation, crossover, and selection. However,
there are two main diferences between them. (i) Mutation is
caused not by the small changes of the genes in EAs, but by
adding the weighted diference of two randomly selected
individuals to a third randomly selected one in DE. Te
direction information from the current population is used to
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guide the search process. (ii) New individual is generated by
adopting a greedy selection scheme in DE, which is only
accepted if it improves on the ftness of the parent individual.

Storn and Price proposed several diferent mutation
strategies [1]:

DE/Rand/1: V � Xr1 + F · (Xr2 − Xr3)

DE/Rand/2: V � Xr1 + F · (Xr2 − Xr3 + Xr4 − Xr5)

DE/Best/2: V � Xbest + F · (Xr2 − Xr3 + Xr4 − Xr5)

In the above, r1≠ r2≠ r3≠ r4≠ r5, and they are the
random numbers distributing uniformly in [1, NP], where
NP is denoted by the population size. For the strategy DE/
x/y, x represents the individual being perturbed and y is
the number of diference vectors used to disturb x. Take
DE/rand/1 as an example, it means that the target indi-
vidual is randomly selected, and only one diference vector
is used.

Although there are several variants of DE, a common
variant, which is known as DE/rand/1, or “classic DE,” is the
most widely used in practice. Hence, this DE is described as
follows:

(i) Initialization: like other EAs, classic DE initializes
an initial population that distributes uniformly in
the feasible domain.

(ii) Mutation: for each parent vector Xi, a mutant vector
Vi is generated according to (1) where the random
indexes r1, r2, and r3 are mutually distinct integers
following uniform distribution in [1, NP] and also
are diferent from the current index i. Te scale
factor F is used to control the amplifcation of the
diferential variation.

Vi � Xr1 + F · Xr2 − Xr3( 􏼁. (1)

(iii) Crossover: the trial individual Wi is generated using
the parent and mutant individuals as follows:

W
j
i �

V
j
i , if r(j)≤Cr or j � randn(i),

X
j
i , else.

⎧⎨

⎩ (2)

In the above formula, j is denoted by the j-th
component of the individual, r(j) represents
a random number with uniform distribution in [0,
1] for each j, the crossover probability Cr is set to
a given number in (0, 1), and the integer randn(i) is
randomly chosen in [1, n], where n denotes the
dimension of the tested problem. Te trial indi-
vidual is a stochastic combination of the parent and
mutant individuals. When Cr is equal to 0, at least
one of the components of the trial individual will
difer from the parent Xi because of the condition
j � randn(i).

(iv) Selection: DE implements a very simple selection
procedure. Te ofspring is generated only if the
ftness of the ofspring is better than that of the
parent. Due to the greedy selection scheme, all
the individuals of the next generation are as good

as or better than their counterparts in the current
generation.

Xi+1 �
Wi, if f Wi( 􏼁<f Xi( 􏼁,

Xi, otherwise.
􏼨 (3)

Te above process ii–iv repeats until the number of
function evaluations or the number of the iterations reaches
a given constant, namely, the termination criteria are sat-
isfed. Further detailed descriptions about DE can be found
in references [1, 23].

3. Taguchi’s Parameter Design

Taguchi method [25] is a parameter design approach in the
production and process conditions optimization. It can
make high-quality products using less development and
manufacturing costs. Two major tools used in the Taguchi
method are the orthogonal array [26] and the signal-noise-
ratio (SNR), which are briefy described as follows.

Te orthogonal array is a fractional factorial matrix,
which assures a balanced comparison among the factors or
its levels. A two-level orthogonal array is a matrix consisting
of 1 or 2 arranged in rows and columns. Each row represents
the combination of factor levels in each experiment, and
each column represents the special level of each factor. Let
the element 2 in the orthogonal array be −1, then all column
vectors are orthogonal to each other, namely, the dot
product is zero. Generally, a two-level orthogonal array is
denoted by Lm(2m− 1), where m, which is equal to 2k, rep-
resents the number of experiments; k is a positive integer; the
number 2 shows that each factor has two levels: 1 and 2;
m − 1 is the number of the factors or columns. Te two-level
orthogonal arrays are commonly used in practice: L4(23),
L8(27), L16(215), and L32(231). For more clearness, the
following table (see Table 1) shows the orthogonal array
L8(27) with the canonical form.

Tere are 8 factors in the array L8(27). For each factors, it
can choose either 1 or 2. In order to obtain the better or best
the combination of factor levels, only 8 experiments are
under considered in the two-level orthogonal array L8(27)
instead of all combinations of the factors which can reach up
to 27 � 128 experiments. Te notation Ei represents the i-th
experiment or row, and Cj the j-th column vector or factor.
For simplicity, the sign Ci,j denotes the level of the j-th
factor in the i-th experiment. For instance, C3,4 � 1, C4,3 � 2,
and C6 � [1 2 2 1 1 2 2 1]T. If each 2 in array L8(27) is
thought of as −1, Ci≠j · Cj � 0 for all i and j from 1 to 7.

Te conception of the SNR is originally introduced in
communication and electronic engineering, which is defned
as the ratio of the signal to noise and is used to evaluate the
quality of communication. In 1957, Taguchi applied the SNR

conception to the design of engineering experiments, hence,
Taguchi parameter design method was proposed. Tis
method utilizes the SNR to evaluate quality and applies the
orthogonal array to arrange experiments. According to the
type of characteristic, the SNR can be classifed into smaller-
the-better, larger-the-better and nominal-the-best. Given
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a set of characteristics y1, y2, . . . , yn, then in the case of
smaller-the-better characteristic the SNR is as follows:

SNR � −10 · log
1
n

􏽘

n

i�1

1
y
2
i

⎛⎝ ⎞⎠. (4)

4. Differential Evolution without F and Cr

After the brief description about classical DE and Taguchi’s
parameter design, the ideals and the advantage of elimi-
nating the parameters in DE are described, respectively.
Finally, the diferential evolution without the scale factor and
the crossover probability are proposed.

Besides the parameters F and Cr, classic DE has a control
parameter NP which are closely related to the problem
under consideration. Te population size, NP, is typically
larger than a threshold value in order to obtain a global
optimum and improve the success rate of convergence.
However, too large NP may increase the number of function
evaluations. Generally, separable and unimodal functions
require the smallest population sizes, while parameter-
dependent multimodal functions require the largest pop-
ulations. For simplicity, the parameter NP is set as a con-
stant according to the dimension of the problem under
consideration.

Te parameter F determines the amplifcation of the
diference. A high (low) value of F makes DE more ex-
ploratory (less exploratory). Te parameter Cr controls the
distribution of coordinate points in the trial individual. A
high (low) value of Cr means that the coordinates of the
mutant individual dominate the trial individual. Between
the two parameters Cr and F, Cr is much more sensitive to
the problem’s properties and complexity such as the
multimodality, while F is more related to the
convergence speed.

Finding the optimal values for these parameters is
a difcult task as these values are problem specifc, espe-
cially when one wants to strike a balance between reliability
and efciency. Tus, the performance of DE depends on
how these control parameters are selected. However, how
to set well these parameters is generally based on trial and
error. An optimal parameter setting can be found via the
boring preliminary numerical experiments for a special
problem, whereas it is not probably optimal for the other
problems.

In order to overcome these contradictions, we eliminate
the scale factor and the crossover probability with exception
of the population size by using the modifed attraction-
repulsion mechanism and Taguchi method. In the following
subsections, how to eliminate these parameters is described
in detail.

4.1. Eliminating the Scale Factor F. According to the
attraction-repulsion mechanism in Coulomb’s Law,
electromagnetism-like (EM) algorithm [27, 28] frst calcu-
lates the charge of each individual in terms of its objective
function value and then determines the resultant force
exerted on each particle by all other particles in the pop-
ulation. Te charge of each particle determines its power of
attraction or repulsion. Te particles with better objective
function values attract others while those with inferior
function values repel.

Like the method of calculating the force, the electro-
magnetic force exerted on the particle by other particles is
obtained by the vector addition following the parallelogram
law. For example, the charge of X1 is less than that of X2
while is greater than that of X3 in Figure 1. Tus EF1,2 is
a repulsive force and EF1,3 is an attractive force acting on X1
by X2 and X3, respectively. Te resultant force EF1 exerted
on X1 is EF1,2 + EF1,3. In a similar way, the resultant forces
exerted on X2, and on X3 can also be calculated.

Te charge Qi of each Xi is determined by the objective
function value of itself relative to that of the current best
particle Xbest:

Qi � exp −n ·
f Xi( 􏼁 − f Xbest( 􏼁

􏽐
NP
j�1 f Xj􏼐 􏼑 − f Xbest( 􏼁􏼐 􏼑

⎛⎝ ⎞⎠, (5)

where n is the dimension of the problem. Te force vector
EFi,j exerted on Xi by Xj is then determined by

EFi,j �

Xj − Xi􏼐 􏼑 ·
QiQj

Xj − Xi

�����

�����
2 , if f Xj􏼐 􏼑≤f Xi( 􏼁,

Xi − Xj􏼐 􏼑 ·
QiQj

Xj − Xi

�����

�����
2 , if f Xj􏼐 􏼑>f Xi( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

From (6), the particles with the relatively good objective
function values will attract the other particles in the pop-
ulation while the particles with the worse objective function
values repel the others. Te resultant force vector EFi

exerted on a particle Xi by other NP − 1 particles in the
population is calculated as follows:

EFi � 􏽘

NP

j�1,j≠i
EFi,j. (7)

However, each particle has only one particle exerting
force on it in a version of EM proposed by Debels et al. [29].

Table 1: Te orthogonal array L8(27) with the canonical form.

C1 C2 C3 C4 C5 C6 C7

E1 1 1 1 1 1 1 1
E2 1 1 1 2 2 2 2
E3 1 2 2 1 1 2 2
E4 1 2 2 2 2 1 1
E5 2 1 2 1 2 1 2
E6 2 1 2 2 1 2 1
E7 2 2 1 1 2 2 1
E8 2 2 1 2 1 1 2
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In this approach, the charge Q
j
i of Xi is calculated based on

the relative diference in the objective function values f(Xi)

and f(Xj):

Q
j

i �
f Xi( 􏼁 − f Xj􏼐 􏼑

f Xworst( 􏼁 − f Xbest( 􏼁
, (8)

where Xworst and Xbest denote, respectively, the worst and
the best solutions, Xj is chosen randomly from the
population. By the new defnition of Q

j
i , obviously,

a better(worst) particle Xj gives the higher(lower) Q
j

i

value. Moreover, if f(Xj)≤f(Xi), then Q
j

i is positive,
otherwise, Q

j

i is negative. After calculating the charge Q
j

i

of Xi, the particle Xi moves to the new particle Xi + EFi,j,
where

EFi,j � Q
j
i · Xj − Xi􏼐 􏼑. (9)

It is obvious that when Q
j

i is positive (negative), Xj

attracts(repels) Xi. Tis modifed EM remains the basic ideal
of EM, moreover, it is more simple and easier to utilize.
Hence, for DE/Rand/1, the mutant individual V � Xr1 + F ·

(Xr2 − Xr3) can be transformed to

V � Xr1 + F · Xr2 − Xr3( 􏼁

� Xr1 + F · Xr2 − Xr1( 􏼁 + F · Xr1 − Xr3( 􏼁

� Xr1 + F · Xr2 − Xr1( 􏼁 + F
′
· Xr3 − Xr1( 􏼁,

(10)

where F � −F′. If we regard the scale factor F and F′ in
equation (10) as the two diferent charges Q

j

i as shown in
equation (8), viz.

F≜Q
r2
r1, F
′ ≜Q

r3
r1, (11)

then the equation (10) can be interpreted as the motion of
the particle Xr1 in the direction of the resultant force
F2,1 + F3,1. Te magnitude of the motion is determined by
the scale factors F and F′. Hence, the mutant individual is
modifed in our algorithm as follows:

V � Xr1 + Q
r2
r1 · Xr2 − Xr1( 􏼁 + Q

r3
r1 · Xr3 − Xr1( 􏼁

� Xr1 +
f Xr1( 􏼁 − f Xr2( 􏼁

f Xworst( 􏼁 − f Xbest( 􏼁
· Xr2 − Xr1( 􏼁􏼠

+
f Xr1( 􏼁 − f Xr3( 􏼁

f Xworst( 􏼁 − f Xbest( 􏼁
· Xr3 − Xr1( 􏼁􏼡.

(12)

Similarly, we also have

V � Xr1 + Q
r3
r2 · Xr3 − Xr2( 􏼁

� Xr1 +
f Xr2( 􏼁 − f Xr3( 􏼁

f Xworst( 􏼁 − f Xbest( 􏼁
· Xr3 − Xr2( 􏼁,

(13)

or

V � Xr1 + Q
r2
r3 · Xr2 − Xr3( 􏼁 + Q

r4
r5 · Xr4 − Xr5( 􏼁

� Xr1 +
f Xr3( 􏼁 − f Xr2( 􏼁

f Xworst( 􏼁 − f Xbest( 􏼁
· Xr2 − Xr3( 􏼁􏼠

+
f Xr5( 􏼁 − f Xr4( 􏼁

f Xworst( 􏼁 − f Xbest( 􏼁
· Xr4 − Xr5( 􏼁􏼡.

(14)

As described , equations (13) and (14) are easy to un-
derstand. Te idea implied in equation (13) comes from
DE/rand/1: the individual Xr1 moves in the direction of
Xr3 − Xr2. Te magnitude of the motion is not controlled
artifcially in DE/Rand/1, but is determined self-adaptively
according to its charge obtained by the particle Xr2. Te
similar interpretation is also done for equation (14).

Besides the self-adaptation of F and the simplicity of
calculation, preliminary numerical experiments show that
the modifed equations (12)–(14) can generally improve the
performance of DE, and equation (12) might avoid DE(DE/
Ra nd/1) searching wrongly in the direction of “up hill.” Te
detailed description is as follows.

For six hump camel back function (see F0 in Appendix),
it is well known that the optimal value is f∗( [−{ 0.08984,

0.71265], [0.08984, −0.71265]}) � −1.031628. Given Xbest �

[−0.07781, −0.73245] and Xworst � [0.97667, −0.0033774],
then two cases are given.

CASE 1 Let Xr1 � [−0.39, −0.91221], Xr2 � [−

0.15301, 0.28698], and Xr3 � [0.13566, −0.58573].
Tus, V � [−0.12891, −0.54275] can be obtained by
equation (12) (see Figure 2).
CASE 2 Let Xr1 � [0.15961, 0.48913], Xr2 �

[0.28105, 0.86676], and Xr3 � [0.94169, −0.23207].
Ten, V � [−0.4222, 0.97067], see Figure 3.

Figures 2 and 3 show the contour of SHCB on [−1, 1]2

with the corresponding function value marked. Te stars
denote the optimal solutions; the circle denotes the indi-
vidual Xr1; two outer squares 10 represent Xr2 and Xr3,
respectively; Two outer real line denote the shift of Xr1 in
direction of the force EFr1,r2 and EFr1,r3, respectively. Te
mutant individual V obtained by equation (12) is denoted by
the diamond.Te inner real line represents the shift of Xr1 in

X2

X1

X3

EF1,2

EF1,3

EF1

Figure 1: Exertion of forces on X1 by X2 and X3.
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direction of the resultant force EFr1. Two bunches of squares
locating in outer dashed line denote the motions of the
individual Xr1 in directions of F · (Xr2 − Xr1) and F · (Xr3 −

Xr1) with the diferent scale factor F, respectively. Te scale
factor F is chosen orderly from the set 0.1, 0.2, . . . , 0.9, 1{ },
the corresponding results are shown in Figures 2 and 3 by
the squares with the diferent number marked. A bunch of
squares between outer squares gives the diferent mutant
individual V (see equation (15)). All squares can be matched
by the numbers locating in them.

V � Xr1 + F · Xr2 − Xr1( 􏼁 + Xr3 − Xr1( 􏼁􏼂 􏼃

� Xr1 + F · Xr2 − Xr1( 􏼁 + F · Xr3 − Xr1( 􏼁.
(15)

It is worth noting that equation (15) is diferent from
V � Xr1 + F · (Xr2 − Xr3 + Xr4 − Xr5). Five diferent mu-
tually random individuals are selected in DE/Rand/2 while
three individuals in equation (15). However, IfXr2 − Xr1 and
Xr1 − Xr3 are thought of as two new individual, then
equation (15) is the same as DE/rand/1 in essence. Tus

a comparison is done between equation (12) and equation
(15). Te two formulas have the similar structure and is
easier to distinguish in the fgures if some dissimilarities
appear in.

From Figure 2, only if F � {0.2, 0.3, 0.4}, the mutant
individual obtained by equation (15) is better, whereas that
obtained by equation (12) is closer to the global optimal
solution. In Figure 3, it is very clear that equation (12) is
superior to equation (15). Tough the function value of the
individual obtained by equation (15) for F � 0.2 is almost
same as that of obtained by equation (12), it moves
uphill wrong.

4.2. Avoiding the Crossover Probability Cr. Taguchi method
can obtain the better combination of the factor level with less
cost. In the paper, a two-level orthogonal array Lm(2m− 1) is
used. Since the number of factors (or variables) is 2k − 1,
where k is an integer greater than 1, the number of ex-
periments m is dependent on the dimension n of the
problem. In our paper, m is given as follows:

m � min 2k
| k> 1, k ∈ Z, 2k

− 1≥ n􏽮 􏽯. (16)

For instance, if n � 4, then m≥ 3; if n � 8, then m≥ 4. In
equation (16), the minimal value m subjecting to m> n is
chosen for avoiding the possible repeating experiments.

In what follows, a simple algorithm generating the two-
level orthogonal array Lm(2m− 1) is described. Te algorithm
forms the array by using 2 × 2 Hadamard matrix H2.

Defnition 1. if any two columns in a matrix Hm consisting
of 1 or −1 are orthogonal, then the matrix is called Hada-
mard matrix [30].

In the above defnition, m denotes the order of the
Hadamard matrix Hm. Tere are several operations on
Hadamard matrices which preserve the Hadamard property:

(i) Permuting rows (columns)
(ii) Changing the sign of some rows (columns)
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(iii) Te Kronecker product

If Hm and Hn are known, then Hm·n can be obtained by
their Kronecker product, namely, by replacing all 1s in Hm

by Hn and all -1s by −Hn.

Example 1. If H2 �
1 1
1 −1􏼠 􏼡, then

(17)

where ⊗ denotes the Kronecker product. Hadamard matrix
of high order can be similarly generated from that of lower
order: H2 ⊗H4 � H8, H2 ⊗H8 � H16, H2 ⊗H16 � H32,
H2 ⊗H32 � H64, etc.

After a Hadamard matrix Hm is obtained, a two-level
orthogonal array Lm(2m− 1) can be given by discarding the
all-one column and changing −1 s to 2 s in Hm. However,
this obtained array is not generally canonical form.
Terefore, the simple exchange of rows can fx it for con-
sistency (see Table 1 and the gray part in H8).

Recall the notations about the orthogonal array in Section
3: Ei is denoted by the i-th experiment, Cj by the j-th factor
and Ci,j by the level of the j-th factor in the i-th experiment.
Te efects of the factors can be defned as follows:

ECj,level � 􏽘

1≤i≤m
Ci,j�level

SNRi.
(18)

For simplicity, the SNR is calculated as follows:

SNR � 􏽘
n

i�1

1
f
2
i

, (19)

where level � 1, 2{ }, 1≤ i≤m, and 1≤ j≤m − 1. Tis con-
ception is used here to evaluate the level of the factor. If
ECj,1>ECj,2, the optimal level of the factor Cj is 1, otherwise,
the optimal level is 2. When each ECj,level is determined,
a new individual (an optimal or near-optimal combination)
is generated.

Example 2. An example minf(X) � ‖X‖1 is shown to il-
lustrate this process of Taguchi parameter design method
acting on two individuals, where X ∈ R7. Without loss of
generality, let V � [0, 8, 1, 0, −72, 0, 0] and
X � [0, 0, −28, 35, 0, 32, 0]. Tis problem has 7 variables
(factors), thus according to equation (16):

Journal of Mathematics 7



m − 1 � 23 − 1 � 7≥ n, the orthogonal array L8(27) is cho-
sen(See Table 1). If Ci,j is equal to 1 in Table 1, then the
corresponding Ci,j in Table 2 is the j-th component Vj of the
mutant individual V, otherwise, the corresponding Ci,j is Xj,
see bold in Table 2.

Next, calculate the function value f(X) and the SNR of
each combination of the factor level in Table 2, respectively.
All results appear in the two most right hand columns. Ten
the efect of each factor is determined in terms of equation
(18) (take C1 and C7 as an example).

EC1 ,1 � 􏽘
i�1,2,3,4

SNRi

� 0.00015 + 0.00017 + 0.00006 + 0.00025 ≈ 0.0006,

EC1 ,2 � 􏽘
i�5,6,7,8

SNRi

� 0.00077 + 0.00003 + 0.00092 + 0.00009 ≈ 0.0018,

EC7 ,1 � 􏽘
i�1,4,6,7

SNRi

� 0.00015 + 0.00025 + 0.00003 + 0.00092 ≈ 0.0014,

EC7 ,2 � 􏽘
i�2,3,5,8

SNRi

� 0.00017 + 0.00006 + 0.00077 + 0.00009 ≈ 0.0011.

(20)

Finally, we obtain the new individual or the trial vectorW.
Te optimal level of the factor is decided by its efect. Since
EC1 ,1<EC1 ,2, 2 is the optimal level of the factor C1;
EC2 ,1>EC2 ,2, therefore the optimal level of the factor C2 is 2.
Te optimal levels of the other factors can be determined in
a similar way. Te component Wj of the new individual W

consists of either Vj or Xj for all j, which is dependent on the
optimal level of the factor Cj. If the optimal level is 1, then the
corresponding component of the new individual is that of the
individual V, otherwise, it is equal to that of the individual X.

Obviously, Taguchi parameter design method executes
only 8 experiments instead of all 27 combinations of factor
levels for obtaining a new individual W with the lower
function value 1 (see the last row in Table 2). It is necessary to
mention that only the frst n columns is used in orthogonal
array while the other columns are ignored if n<m − 1.

In reference [31], the hybrid Taguchi-genetic algorithm
(HTGA) is proposed for global numerical optimization with
the continuous variables, which uses the systematic rea-
soning ability of Taguchi parameter design to gain the better
genes in the crossover operation. Te comparison results
between HTGA and OGA/Q [32] show that HTGA can fnd
the optimal or the near-optimal solutions with less function
evaluations and better average values. However, this supe-
riority is not very obvious for the tested function with
nonzeros optimal values. Let we recall the original defnition
of SNR in the case of smaller-the-better characteristic, which
is described in equation (4), and change it to

SNR � −10 · log
1
n

􏽘

n

i�1

1
yi − 0( 􏼁

2
⎛⎝ ⎞⎠. (21)

In Taguchi method, the item 1/n􏽐
n
i�11/(yi − s)2 rep-

resents the average loss of quality, where s denotes the
ideal signal in the case of smaller-the-better character-
istic. Terefore, equation (21) shows that HTGA has
thought of the optimal value of the tested problem as
0 before this problem is solved. Tis is unfair and un-
reasonable. As described above, we found that the su-
periority of HTGA is not very obvious for those function
with nonzero optimal value from Tables IV and V on
page 273 and 275 in the reference [31], Hence, SNR is
modifed as follows:

SNR � 􏽘
n

i�1

1
fi − f

∗
t( 􏼁

2, (22)

wheref∗t is defned as the current optimal value after the t-th
iteration.

In what follows, the diferential evolutions without the
scale factor and the crossover probability (for short,
DE∖FCr) are proposed. For the sake of clarity, the fow-
charts of DE and DE∖FCr(take DE∖FCr2 as an example)
are also given in Figure 4, where cross() represents the
crossover operation in equation (2) and Taguchi() denotes
Taguchi parameter design method in equation (13) (see
Algorithm 1).

In Step 2, a termination criterion |f(Xworst) −

f(Xbest)|< ε is given since f(Xworst) − f(Xbest) is the
denominator in Eq.(8). When this diference approxi-
mates to zero, the numerical stability of the algorithm
will lose.

Let X(t) be the population at the t-th generation.
Trough Step 4-5 in DE\FCr, X(t) transforms into the
next population X(t+1). Since the limitation of numerical
calculation accuracy and X(t+1) relies only on the state of
X(t), the population sequence X(t)􏼈 􏼉t≥ 0 generated by
DE\FCr can be described as fnite-state Markov stochastic
process.

Suppose (i) the objection function f(X) has a unique
global optimal solution. Let S be the state space of the
stochastic process X(t), S∗ be the state space of the global
optimal solution, and f∗ be the global optimal value.

Because of the limitation of state space or search space,
the probability that the algorithm can fnd the optimal
solution at the next generation is greater than 0 if it cannot
fnd at the t-th generation, hence, suppose (ii)
P X(t+1) � sj | X(t) � si􏽮 􏽯> ρ> 0 for si∉S∗ and sj ∈ S∗, where
ρ ∈ (0, 1).

Now, we consider the probability 􏽐sj∉S∗P X(t+1) � sj􏽮 􏽯

that the proposed algorithm can not fnd the global optimum
at the t + 1 generation.
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􏽘
sj∉S∗

P X
(t+1)

� sj􏽮 􏽯

� 􏽘
sj∉S∗

􏽘
si∈S

P X
(t+1)

� sj, X
(t)

� si􏽮 􏽯

� 􏽘
sj∉S∗

􏽘
si∈S

P X
(t+1)

� sj X
(t)

􏼌􏼌􏼌􏼌􏼌 � si􏼚 􏼛P X
(t)

� si􏽮 􏽯

� 􏽘
sj∉S∗

􏽘
si∉S∗

P X
(t+1)

� sj X
(t)

􏼌􏼌􏼌􏼌􏼌 � si􏼚 􏼛P X
(t)

� si􏽮 􏽯

+ 􏽘
sj∉S∗

􏽘
si∈S∗

P X
(t+1)

� sj X
(t)

􏼌􏼌􏼌􏼌􏼌 � si􏼚 􏼛P X
(t)

� si􏽮 􏽯

� 􏽘
sj∉S∗

􏽘
si∉S∗

P X
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(23)

It is very obvious that the current known optimal so-
lution still can be retained in the next generation from Step 5.
Once DE\FCr fnds the optimal solution, the X(t+1) will
hold the current state S∗. Hence, in the equation (23),

􏽘
sj∉S∗

􏽘
si∈S∗

P X
(t+1)

� sj X
(t)

􏼌􏼌􏼌􏼌􏼌 � si􏼚 􏼛P X
(t)

� si􏽮 􏽯 � 0. (24)

Summarizing the result of equation (23), we have

0≤ 􏽘
sj∉S∗

P X
(t+1)

� sj􏽮 􏽯<(1 − ρ) 􏽘
si∉S∗

P X
(t)

� si􏽮 􏽯.
(25)

Because the sequence 􏽐si∉S∗P X(t) � si􏼈 􏼉 is strictly
monotonic decreasing as t⟶∞, so

lim
t⟶∞

􏽘
si∉S∗

P X
(t)

� si􏽮 􏽯 � 0. (26)

Terefore,

lim
t⟶∞

P f
∗
t � f

∗
􏼈 􏼉 � 1 − lim

t⟶∞
􏽘
si∉S∗

P X
(t)

� si􏽮 􏽯 � 1.

(27)

Equation (26) shows that the population sequence
generated by DE\FCr can convergence in probability to the
global optimum.

5. Numerical Experiments

Te proposed Algorithms are executed in Matlab R2017 for
the known numerical benchmark functions listed in Ap-
pendix with the default parameters NP � 30 and T � 202.
Based on this parameter setting, each DE\FCr needs 30 ×

(m + 1) function evaluations at each iteration for 30 di-
mensional tested functions. DEs with the four strategies
below are compared with our algorithms, respectively.

Strategy 1(DE): DE/Rand/1. F � 0.5, Cr � 0.9. Tis is
a recommend parameters setting for DE/Rand/1 in
most of the references [1–13];
Strategy 2(DEG): F ∼ N(0, 1), Cr � 0.9 [11];
Strategy 3(DE0.4): F � 0.4 + 0.4 · rand(0, 1),
Cr � 0.9 [12]
Strategy 4(DEM): Cr � 0.5 and F is calculated by the
following formula [13]:

F �

max 0.4, 1 −
f Xworst( 􏼁

f Xbest( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩, if

f Xworst( 􏼁

f Xbest( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1,

max 0.4, 1 −
f Xbest( 􏼁

f Xworst( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

For Strategy 1–4, the population size NP and the
maximal generation T are set as 100 and 2000, respectively.
All algorithms are performed with 10 independent runs for
each tested function with 30 variables. According to these
settings, our algorithm has the almost same function eval-
uations as DEs with Strategy 1–4, that is, 100 + 100 × 2000 �

2000100 for DEs and 30 + 990 × 202 � 200010 for DE\FCr.
Hence, the results listed in Tables 3 and 4 are obtained under
the assumption of the not same but diferent function
evaluations. Obviously, the proposed algorithm evaluates 90
function values less than DEs. Te average values of the

Step 1: Initialization: population P, population size NP, maximal generation T, current generation t � 1, and ε � 10− 100, i � 1.
Step 2: If t>T or |f(Xworst) − f(Xbest)|< ε, then output the current optimal value f∗t .
Step 3: Mutation. For each Xi ∈ Pt in the population, calculate the mutant individual according to equations (12) or (13) or equation
(14). Te corresponding algorithm is denoted by DE\FCr1, DE\FCr2 and DE\FCr3, respectively.
Step 4: Crossover. Execute Taguchi parameter design method with the SNR denoted as equation (22) for the individual Xi and the
mutant individual Vi, so the trail individual Wi is generated.
Step 5: Selection. If f(Wi)<f(Xi), then Xi � Wi and i � i + 1.
Step 6: If i< � NP, goto Step 3; otherwise, t � t + 1, goto Step 2.

ALGORITHM 1: (DE\FCr).
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obtained results are given in Tables 3 and 4. Te number of
f(x) evaluations(#EVALU.), the best function value(BEST),
the worst function value(WORST), the mean of function
values(MEAN) and the standard deviation of the best

function values(STD.) are used for the comparisons among
these algorithms.

Table 3 summarizes the results obtained by the 7 al-
gorithms for F1-F5. For F1, DEG obtains the best mean of

Table 2: Te process of Taguchi parameter design method acting on the individuals V and X.

C1 C2 C3 C4 C5 C6 C7 f(X) SNR

E1 0 8 1 0 −72 0 0 81 0.00015
E2 0 8 1 35 0 32 0 76 0.00017
E3 0 0 −28 0 −72 32 0 132 0.00006
E4 0 0 −28 35 0 0 0 63 0.00025
E5 0 8 −28 0 0 0 0 36 0.00077
E6 0 8 −28 35 −72 32 0 175 0.00003
E7 0 0 1 0 0 32 0 33 0.00092
E8 0 0 1 35 −72 0 0 108 0.00009
EC,1 0.0006 0.0011 0.0013 0.0019 0.0003 0.0013 0.0014
EC,2 0.0018 0.0013 0.0011 0.0005 0.0021 0.0012 0.0011
W 0 0 1 0 0 0 0 1

Table 3: Result comparisons among 7 algorithms for F1–F5.

Fun Alg Best Worst Mean Std #Elav

F1

DE 6.445542E− 023 4.436277E− 022 2.290635E− 022 1.108992E− 022 200100
DEG 1.046763E− 040 4.175516E − 039 1.128546E − 039 1.247818E − 039 200100

DE0.4 1.348390E− 013 1.781579E− 012 6.963543E− 013 5.084985E− 013 200100
DEM 1.212964E− 011 8.731799E− 011 3.082813E− 011 2.407010E− 011 200100

DE\FCr1 3.228810E− 022 2.671220E− 019 3.358173E− 020 8.252692E− 020 200010
DE\FCr2 2.611086E− 024 1.537412E+ 001 1.546806E+ 000 4.858513E+ 000 200010
DE\FCr3 1.808723E− 025 2.760420E− 024 8.956028E− 025 9.805783E− 025 200010

F2

DE 2.342126E− 012 1.023626E− 011 5.329959E− 012 2.673148E− 012 200100
DEG 4.440892E− 015 7.993606E− 015 7.638334E− 015 1.123467E− 015 200100

DE0.4 1.512876E− 007 4.988239E− 007 3.000771E− 007 1.363652E− 007 200100
DEM 4.440892E− 015 7.993606E− 015 7.283063E− 015 1.497956E− 015 200100

DE\FCr1 3.135270E− 013 2.617373E− 011 7.357492E− 012 8.539221E− 012 200010
DE\FCr2 3.996803E− 014 1.434325E− 008 1.434625E− 009 4.535629E− 009 200010
DE\FCr3 1.509903E− 014 1.927347E− 013 6.483702E− 014 5.207955E− 014 200010

F3

DE 4.262079E− 003 1.641628E− 002 8.883045E− 003 3.323616E− 003 200100
DEG 3.490604E− 003 1.002710E− 002 5.873780E− 003 1.893076E− 003 200100

DE0.4 7.746132E− 003 1.612982E− 002 1.284244E− 002 2.895560E− 003 200100
DEM 5.340829E− 002 8.776692E− 002 7.115915E− 002 9.972597E− 003 200100

DE\FCr1 1.040566E− 002 2.893510E− 002 1.649259E− 002 5.547522E− 003 200010
DE\FCr2 1.087789E− 002 3.538599E− 002 2.176316E− 002 7.961170E− 003 200010
DE\FCr3 2.047691E− 002 3.617698E− 002 2.779340E− 002 4.572319E− 003 200010

F4

DE 4.869042E− 024 1.608507E− 022 4.278891E− 023 5.275054E− 023 200100
DEG 1.570545E− 032 4.146719E− 001 4.146719E− 002 1.311308E− 001 200100

DE0.4 2.196374E− 014 1.812240E− 013 7.778539E− 014 5.733436E− 014 200100
DEM 1.962642E+ 004 1.637335E+ 005 8.747525E+ 004 4.588788E+ 004 200100

DE\FCr1 5.576314E− 024 1.036690E− 001 1.036690E− 002 3.278302E− 002 200010
DE\FCr2 1.176714E− E− 025 3.090863E− 001 4.789975E− 002 9.877257E− 002 200010
DE\FCr3 7.336740E− 027 8.506532E− 025 1.761171E− 025 2.553095E− 025 200010

F5

DE 3.538508E− 023 2.902433E− 022 1.590376E− 022 8.749484E− 023 200100
DEG 1.349784E− 032 1.098737E− 002 1.098737E− 003 3.474510E− 003 200100

DE0.4 1.032194E− 013 1.261348E− 012 5.065837E− 013 4.532350E− 013 200100
DEM 2.220360E+ 004 1.152671E+ 005 6.319184E+ 004 3.036898E+ 004 200100

DE\FCr1 1.155559E− 021 1.691974E− 015 1.692275E− 016 5.350387E− 016 200010
DE\FCr2 3.452407E− 023 1.247897E+ 000 2.167329E− 001 4.586437E− 001 200010
DE\FCr3 6.397232E− 026 2.198487E− 024 1.088356E− 024 6.533660E− 025 200010

Te best results in the table are bolded.
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Figure 4: Flowcharts of DE and DE\FCr2. (a) DE. (b) DE\FCr2.

Table 4: Result comparisons among 7 algorithms for F6–F10.

Fun Alg Best Worst Mean Std #Elav

F6

DE 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 200100
DEG 0.000000E+ 000 1.969000E− 002 5.666035E− 003 6.872102E− 003 200100

DE0.4 7.412959E− 013 3.983369E− 012 1.929468E− 012 9.211849E− 013 200100
DEM 8.237855E− 014 2.578935E− 010 2.624131E− 011 8.139491E− 011 200100

DE\FCr1 0.000000E+ 000 7.396040E− 003 7.396040E− 004 2.338833E− 003 167650
DE\FCr2 0.000000E+ 000 1.477241E− 002 2.216845E− 003 4.986442E− 003 170175
DE\FCr3 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 148553

F7

DE 1.346933E+ 002 1.815693E+ 002 1.604947E+ 002 1.647296E+ 001 200100
DEG 5.969754E+ 000 2.089413E+ 001 1.492438E+ 001 4.115703E+ 000 200100

DE0.4 1.447778E+ 002 1.987496E+ 002 1.736384E+ 002 1.838650E+ 001 200100
DEM 8.895676E+ 001 1.067928E+ 002 1.005014E+ 002 6.041157E+ 000 200100

DE\FCr1 3.979836E+ 000 8.954632E+ 000 5.870258E+ 000 1.654945E+ 000 200010
DE\FCr2 0.000000E+ 000 2.984877E+ 000 6.964713E− 001 1.153657E+ 000 152929
DE\FCr3 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 0.000000E+ 000 173891

F8

DE 4.734026E+ 000 9.125210E + 000 7.317988E + 000 1.118800E+ 000 200100
DEG 3.129173E + 000 7.336176E+ 001 2.244019E+ 001 2.658720E+ 001 200100

DE0.4 9.489415E+ 000 1.273116E+ 001 1.136916E+ 001 9.699009E− 001 200100
DEM 2.646006E+ 001 4.035420E+ 002 9.863638E+ 001 1.151125E+ 002 200100

DE\FCr1 2.198234E+ 001 1.319067E+ 002 6.198206E+ 001 3.617924E+ 001 200010
DE\FCr2 1.491798E+ 001 1.011474E+ 002 3.406901E+ 001 2.894100E+ 001 200010
DE\FCr3 1.130096E+ 001 7.634987E+ 001 2.707867E+ 001 1.774072E+ 001 200010

F9

DE 6.212269E− 011 2.410512E− 010 1.249117E− 010 5.339068E− 011 200100
DEG 5.493251E− 023 3.940883E− 022 1.728275E− 022 1.114004E− 022 200100

DE0.4 1.482390E− 006 6.510805E− 006 3.673915E− 006 1.530019E− 006 200100
DEM 6.282339E+ 000 7.764649E+ 001 6.079609E+ 001 2.075941E+ 001 200100

DE\FCr1 8.632854E− 016 4.274906E− 014 9.826062E− 015 1.315808E− 014 200010
DE\FCr2 1.792127E− 016 2.172822E− 001 2.702991E− 002 6.889298E− 002 200010
DE\FCr3 1.435442E− 017 4.834137E− 016 9.552152E− 017 1.422569E− 016 200010

F10

DE 6.521876E− 005 4.212407E− 003 8.509549E− 004 1.555632E− 003 200100
DEG 7.185030E+ 000 2.254554E+ 001 1.543480E+ 001 5.184946E+ 000 200100

DE0.4 8.266525E− 003 5.784312E− 001 8.974530E− 002 1.759532E− 001 200100
DEM 1.028353E− 004 2.981224E− 004 2.063294E− 004 5.460973E− 005 200100

DE\FCr1 9.550667E+ 000 2.092655E+ 001 1.313933E+ 001 3.863092E+ 000 200010
DE\FCr2 9.407884E+ 000 2.291669E+ 001 1.598827E+ 001 4.119512E+ 000 200010
DE\FCr3 2.517749E− 002 3.977652E− 001 1.628583E− 001 1.193423E− 001 200010

Te best results in the table are bolded.
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Figure 5: Continued.

Table 5: Result comparisons between DE\FCr3 and DENSO for F1–F10.

Fun Alg Best Worst Mean Std #Elav

F1 DE\FCr3 1.808723E− 25 2.760420E− 24 8.956028E− 25 9.805783E− 25 200010
DENSO 8.585195E− 06 1.446810E− 05 1.210160E− 05 1.972164E− 06 200100

F2 DE\FCr3 1.509903E− 14 1.927347E− 13 6.483702E− 14 5.207955E− 14 200010
DENSO 7.522790E− 04 1.429218E− 03 9.793750E− 04 2.043630E− 04 200100

F3 DE\FCr3 2.047691E− 02 3.617698E− 02 2.779340E− 02 4.572319E− 03 200010
DENSO 8.027579E− 03 2.113126E− 02 1.426177E− 02 3.372486E− 03 200100

F4 DE\FCr3 7.336740E-27 8.506532E-25 1.761171E-25 2.553095E-25 200010
DENSO 9.835739E− 07 5.804517E− 06 2.661288E− 06 1.493261E− 06 200100

F5 DE\FCr3 6.397232E− 26 2.198487E− 24 1.088356E− 24 6.533660E− 25 200010
DENSO 1.551095E− 05 8.342158E− 05 3.712426E− 05 2.019380E− 05 200100

F6 DE\FCr3 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 148553
DENSO 2.194028E− 05 7.591791E− 03 8.146725E− 04 2.381668E− 03 200100

F7 DE\FCr3 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 0.000000E+ 00 173891
DENSO 1.245423E+ 01 1.903578E+ 01 1.599377E+ 01 2.169709E+ 00 200100

F8 DE\FCr3 1.130096E+ 01 7.634987E+ 01 2.707867E+ 01 1.774072E+ 01 200010
DENSO 2.430580E+ 01 2.530343E+ 01 2.468209E+ 01 3.004402E− 01 200100

F9 DE\FCr3 1.435442E+ 17 4.834137E− 16 9.552152E− 17 1.422569E− 16 200010
DENSO 2.975740E+ 04 7.035782E+ 04 5.295819E+ 04 1.148206E+ 04 200100

F10 DE\FCr3 2.517749E− 02 3.977652E− 01 1.628583E− 01 1.193423E− 01 200010
DENSO 2.013176E− 01 9.015901E− 01 4.872225E− 01 2.103323E− 01 200100

Te best results in the table are bolded.
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function values and the smallest standard deviation;
DE\ FCr1, DE\FCr3 and DE fnd the better results; Te
means and standard deviations given by both DE0.4 and
DEM are worst among all algorithms; After 20 independent
runs DE\FCr2 fnds a better function value, however, it
obtains the worst standard deviation because it encounters
twice the worst function value 15.37. For F2, DEG and DEM

fnd the best function values with the almost same precision
E− 15; Te precision given by DE\FCr3 is E− 14; DE and
DE\FCr1 give the precision of E− 12; However, the lower

precisions provided by DE\FCr2 and DE0.4 are E− 9 and
E− 7 respectively. All of algorithms obtain the best function
values with the almost same precision for tested function F3.
For F4, the results given by DE\FCr3 are best, and those
provided by DE are a little bit less promising; DE0.4 fnd the
less promising optimum with the precision E− 14, while the
precisions provided by DEG and DE\FCr2 reach only E− 2;
DEM fails in fnding the optima of F4 among 20 in-
dependent runs, and traps into the local optima. Both
DE\FCr1, DE\FCr3, DE and DE0.4 solve efciently F5
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Figure 5:Temean of the current optimal values obtained by 7 algorithms with the number of function evaluations for F1–F6. (a) F1. (b) F2.
(c) F3. (d) F4. (e) F5. (f ) F6.
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with the precision E− 24, E− 22, E− 16 and E− 13 re-
spectively; Te results given by DEG and DE\FCr2 are
worse; Similarly, DEM fails to solve F5.

In Table 4, Both DE\FCr3 and DE fnd the optima of
F6, however the fewer number of function evaluations
148533 is used by DE\ FCr3; Te results obtained by DE0.4
and DEM are sightly worse than those obtained by
DE\FCr3 and DE; However, DE\FCr1, DE\FCr2 and
DEG have the lower precisions of about E − 3. DE\FCr3

fnds the optimum of tested function F7 with highest
precision and smallest STD and the fewer number of
function evaluations than the other algorithms; DE\FCr1
and DE\FCr2 reach the a little bit worse precision, and the
anther algorithms fail to fnd the optimum of F7 with
200100 function evaluations. For 30 dimensional Rose-
nbrock tested function F8, none of all algorithms is ob-
viously superior to the other one, namely, all algorithms
can not fnd a satisfactory optima. For F9, DEG produces
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Figure 6: Te mean of the current optimal values obtained by 7 algorithms with the number of function evaluations for F7–F10. (a) F7. (b)
F8. (c) F9. (d) F10.
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a best results, while DE\FCr1 and DE\ FCr3 provides the
sightly worse results; Te precisions of the mean function
values given by DE and DE0.4 reach E − 10 and E − 6,
respectively; DEM can not fnd the reasonable result, and
only the mean value 60.796 is presented. DE and DEM fnd
the best means of function values of F10 with the precision
of E − 4; Te precisions given by DE0.4 and DE\FCr3 are
E − 2 and E − 1 respectively; DEG, DE\FCr1 and DE\FCr2
give the almost same results and fail to fnd a satisfactory
optima of F10.

In order to show further the efciency of DE\FCr, the
means of the current optimal values obtained by 7 algo-
rithms with the almost same number of function evaluations
for each tested functions are respectively given in Figures 5
and 6. As mentioned in previous section,
|f(Xworst) − f(Xbest)|< ε is used for the numerical stability,
hence each DE\FCr stops probably before the maximal
generation is reached. For convenience to draw the following
fgures, the current optimal value is recorded repeatedly in
succeeding generations if the algorithm stops in advance
since we think that the algorithm cannot be improved greatly
in succeeding running.

Since the proposed algorithm is not same as the com-
pared algorithms in the number of function evaluations at
each iteration, it is inconvenient to draw the evolution
curves describing the variations of MEAN with the number
of function evaluations in a fgure window for the reasonable
comparison among all algorithms. Terefore, the current
optimal values with the number of function evaluations
which is denoted by t · lcm 990, 100{ } for t � 1, 2, . . . , 20
respectively are drawn in Figures 5 and 6 without consid-
ering the number of function evaluations costed by ini-
tialization. In fact, the sequence t · lcm 990, 100{ }, t �

1, . . . , 20 is an arithmetic sequence with the initial term 9900
and the common diference 9900, where lcm denotes the
least commonmultiple. 990 and 100 represent the number of
function evaluations of DE\FCr and those of DEs at each
iteration, respectively. It needs to be emphasized that each
proposed algorithm evaluates 70(�100−30) less than the
compared algorithm at each given iteration as above.
Consequently, the current optimal value obtained by each
compared algorithm under the given number of function
evaluations is just recorded at certain generation which is
10 + (t − 1) · 10 for each DE\FCr and 99 + (t − 1) · 99 for
DEs. Hence, only according to the recorded current optimal
value at each generation can the fgures below be given
easily.

From each fgure(see Figures 5 and 6), DEG outperforms
the other algorithms for F1, F2, and F9, whereas DE\FCr3
surpasses the other ones for F4–F7 and F10. For F1, F2, and
F9, DE\FCr3 is on the top three of 7 algorithms in terms of
the performance. However, For F4–F7 and F10, DEG drops

out of the top three almost into the last three. It is worth
noting that both F3 and F8 don’t be considered because all
algorithms, especially DEG and DE\FCr3, obtain the almost
same results. We also fnd that DEG can obtain the optimum
with the higher precision at earlier generation than the other
algorithms and enters easily into the local optimum at latter
generation for F2, F4–F6, and F10. DE\FCr3 fnds the
satisfactory results of most of tested functions except F8 and
also has not the tendency toward the local optimum with the
default parameters.

In a summary, DE\FCr3 does rather well in terms of the
performance, DEG and DE are a little bit less promising,
DE\FCr1 and DE0.4 are even less promising, and DE\FCr2
and DEM are worst.

Furthermore, the numerical comparison experiments
are done between DE\FCr3 and DENSO (see Table 5).
DENSO is proposed in reference [19], which employs three
other candidate individuals to design a new selection op-
erator for improving the ability to escape the local optimum.
In Table 5, DE\FCr3 fnd the optima of the tested functions
F1, F2, F4, F5, F9 with higher precision. For F3, F8, F10,
Both algorithms have the almost same precision, however,
DE\FCr3 reduces 90 function evaluations. Obviously,
DE\FCr3 give the global minimal value 0 with the fewer
#ELAV for F6, F7.

6. Conclusion

For avoiding the settings of the parameters, the diferential
evolutions without F and Cr are presented. Te proposed
algorithms use the attraction-repulsion mechanism in Cou-
lomb’s Law and Taguchi parameter design method for the
purpose of eliminating the scale factor and the crossover
probability, respectively. Numerical experiments show that the
proposed algorithm DE\FCr3, which can balance well be-
tween exploration and exploitation, is superior to the compared
algorithms with other strategies and can fnd quickly the
optima or the near-optima of the problems. Although a smaller
population size 30 is given in the proposed algorithms for all 30
dimensional tested functions, this small population maybe lead
to the prematurity of algorithm such as F8. However a larger
population will expend too many function evaluations because
of using the two-level orthogonal arraywhich is relatedwith the
dimension of the problems. Obviously, In our algorithms the
number of function evaluations of each proposed algorithm at
each generation is (m + 1) · NP. Terefore, as for future work,
the following problems are going to be investigated: (i) decrease
the function evaluations at each generation and increase the
population size without the loss of the algorithmic perfor-
mance; (ii) analyze the accelerated convergence behavior of the
current optimal value f∗t after the t-th iteration in
equation (22).

Journal of Mathematics 15



Appendix
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In this paper, we study a coupled system of Hilfer type sequential fractional di�erential equations supplemented with Rie-
mann–Stieltjes integral multistrip boundary conditions. �e standard tools of the �xed point theory are employed to prove the
existence and uniqueness results for the considered problem. Examples are constructed for the illustration of the obtained results.

1. Introduction

Fractional calculus is a generalization of the classical calculus.
Fractional di�erential equations become another necessary
tool in solving real-life problems in di�erent research areas
such as physics, biology, engineering, and mechanics, see for
example the monographs and papers [1–11].

Boundary value problems of fractional di�erential
equations represent an important and interesting branch of
applied analysis. Usually, the researchers have given attention
in studying fractional di�erential equations involving Caputo
or Riemann–Liouville fractional derivative. But, Caputo or
Riemann–Liouville derivative was not considered appropriate

in studying some new models in engineering for example. To
avoid the di�culties, some new type fractional order deriv-
ative operators were introduced in the literature such as
Hadamard, Erdeyl-Kober, and Katugampola. Hilfer in [12]
introduced a new derivative, which generalizes both Rie-
mann–Liouville and Caputo derivatives. For some applica-
tions involving Hilfer fractional derivative, the interested
reader is referred to [13–16] and references cited therein.

In [17], Nuchpong et al. investigated a new class of
boundary value problems for fractional di�erential equa-
tions for involving sequential Hilfer type fractional deriv-
ative and subject to Riemann–Stieltjes integral multistrip
boundary conditions of the form

HDα,β + kHDα− 1,β( )u(z) � f(z, u(z)), z ∈ [c, d],

u(c) � 0, u(d) � λ∫
d

c
u(s)dH(s) +∑n

i− 1μi ∫
μi

ηi
u(s)ds,




(1)
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where HDα,β denotes the Hilfer fractional derivative operator
of order α, 1< α< 2, and parameter β, 0≤ β≤ 1, f: [c, d] ×

R⟶ R is a continuous function; 􏽒
d

c
x(s)dH(s) is the

Riemann–Stieltjes integral with respect to the function
H: [c, d]⟶ R, c≥ 0, k, μi ∈ R, c< ηi < ξi ≤ d, i �

1, 2, . . . , n. Existence and uniqueness results are established
by using basic tools from fixed point theory.

(e study of system of Hilfer type was initiated by
Wongcharoen et al. [18], by presenting the following system
of fractional differential equations:

H
D

α1 ,β1u(z) � f(z, u(z), v(z)), z ∈ [c, d],

H
D

α2 ,β2v(z) � g(z, u(z), v(z)), z ∈ [c, d],

u(c) � 0 u(d) � 􏽘
m

i�1
θiI

ϕi v ξi( 􏼁,

v(c) � 0 v(d) � 􏽘
n

j�1
ζjI

ϕj u zi( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

in which HDα1 ,β1 and HDα2 ,β2 indicate the Hilfer fractional
derivatives of orders α1 and α2, 1< α1, α2 < 2, and parameters
β1, β2, 0≤ β1, β2 ≤ 1, f, g: [c, d] × R × R⟶ R are contin-
uous functions, c≥ 0, θi, ζ i ∈ R, and Iϕi , Iϕj are the Rie-
mann–Liouville fractional integrals of order ϕi > 0, ϕj > 0,
i � 1, 2, . . . , m, j � 1, 2, . . . , n.

Inspired by the forenamed studies, this article considers
the existence and uniqueness of solutions for the following
coupled system of Hilfer type fractional differential equa-
tions with Riemann–Stieltjes integral multistrip boundary
conditions of the form

H
D

α1,β1 + σH
1 D

α1− 1,β1􏼐 􏼑u(z) � f1(z, u(z), v(z)) z ∈ [c, d],

H
D

α2,β2 + σH
2 D

α2− 1,β2􏼐 􏼑v(z) � f2(z, u(z), v(z)) z ∈ [c, d],

u(c) � 0, u(d) � λ1 􏽚
d

c
v(s)dH1(s) + 􏽘

n

i�1
μi 􏽚

ξi

ηi

v(s)ds,

v(c) � 0, v(d) � λ2 􏽚
d

c
u(s)dH2(s) + 􏽘

p

r�1
]r 􏽚

θr

ζr

u(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

in which HDα1 ,β1 and HDα2 ,β2 are the Hilfer fractional de-
rivatives of orders 1< α1, α2 < 2 and parameters β1, β2,
0≤ β1, β2 ≤ 1, f1, f2: [c, d] × R × R⟶ R are continuous
functions, 􏽒

d

c
(·)dH1(s), 􏽒

d

c
(·)dH2(s) are the Riemann–

Stieltjes integrals with respect to the functions Hi:

[c, d]⟶ R, i � 1, 2, c≥ 0, μi, ]r ∈ R, ηi, ξi, ζr, θr ∈ (c, d),
i � 1, 2, . . . , n, r � 1, 2, . . . , p, λ1, λ2, σ1, σ2 ∈ R.

(e remaining of this article has been regulated as
follows: In section 2 some concepts, lemmas and theorems
are recalled which will be applied throughout this paper.
In Section 3, an auxiliary lemma has been proved which
concerns a linear variant of system (3) and it is used to
convert the coupled system (3) into a fixed point problem.
(e classical fixed point theorems have been applied in
order to obtain the results regarding the existence/

uniqueness in Section 4. (us, the classical Banach fixed
point theorem is applied to obtain uniqueness result,
while Leray-Schauder alternative and Krasnosel’skĭı’s
fixed point theorems are applied to present existence
results. Examples are also constructed to illustrate the
obtained results.

2. Preliminaries

Now, the following items are reminded which will be applied
to fulfil the main results in the next steps.

(roughout the paper, the Banach space of all contin-
uous mappings from [c, d] to R are denoted by
Y � C([c, d], R) which is equipped with the norm
‖y‖ � sup |y(z)|; z ∈ [c, d]􏼈 􏼉. It is clear that the space
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Y × Y, equipped with norm defined by
‖(x, y)‖ � ‖x‖ + ‖y‖, is a Banach space.

Also, ACn([c, d],R) is the n-times absolutely continuous
functions defined as

AC
n
([c, d],R) � f: [c, d]⟶ R; f

(n− 1) ∈ AC([c, d],R)􏽮 􏽯.

(4)

For a real valued function g: (0,∞)⟶ R, the Rie-
mann–Liouville fractional integral of order η> 0 is defined
by Iηg(t) � 􏽒

t

0((t − s)η− 1/Γ(η))g(s)ds, in which the right-
hand side is defined point-wise on (0,∞), see [2]. Besides,
for the function g, the Riemann–Liouville fractional de-
rivative of order δ > 0 is defined by RL􏼈 􏼉Dδg(t) �

(1/Γ(n − δ))(d/dt)n 􏽒
t

0(g(s)/(t − s)s− n+1)ds, in which
n � [δ] + 1, where [δ] denotes the integer part of a real
number δ, see [2], while the Caputo fractional derivative is
defined by C􏼈 􏼉Dsg(t) � (1/Γ(n − δ)) 􏽒

t

0(1/ (t − s)δ− n+1)

(d/ds)ng(s)ds, provided that the right-hand side exists.
Also, the Hilfer fractional derivative of order α and

parameter β of a function is defined by
H

D
α,β

u(t) � I
β(n− α)

D
n
I

(1− β)(n− α)
u(t), (5)

where n − 1< α< n, 0≤ β≤ 1, t> a, D � (d/dt), see [12].
Note that if β � 0 and β � 1, the Hilfer derivative is reduced
to the Riemann–Liouville and Caputo fractional derivatives,
respectively.

(e following lemma will be applied to prove a lemma in
the next section which presents a pattern of existence of
solutions for system (1.3).

Lemma 1 (see [13]). Let h ∈ L(c, d), n1 − 1< α≤ n1, n1 ∈ N,
0≤ β≤ 1, I(n1− α)(1− β)h ∈ ACk[c, d]. 7en, we have the fol-
lowing relation:

I
αH

D
α,β

h􏼒 􏼓(z) � h(z) − 􏽘

n1− 1

k�0

(z − c)
k− n1− α( )(1− β)

Γ k − n1 − α( 􏼁(1 − β) + 1􏼐 􏼑

· lim
z⟶c+

d
k

dz
k

I
(1− β) n1− α( )h􏼒 􏼓(z).

(6)

Finally, we collect the fixed point theorems applied to
prove the main results in this paper.

Lemma 2 (Banach fixed point theorem, [19]). Let D be a
closed set in X and T: D⟶ D satisfies

|Tu − Tv|≤ λ|u − v|,

for someλ ∈ (0, 1),

for all u, v ∈ D.

(7)

(en T admits a unique fixed point in D.

Lemma 3 (Leray–Schauder alternative [20]). Let the set ω be
closed bounded convex in X and O an open set contained in ω
with 0 ∈ O. 7en, for the continuous and compact
T: U⟶ ω, either

(1) (a)T admits a fixed point in U, or
(2) (aa) there exists u ∈ zU and μ ∈ (0, 1) with

u � μT(u).

Lemma 4 (Krasnosel’skĭı fixed point theorem, [21]). Let N

indicate a closed, bounded, convex, and nonempty subset of a
Banach space Y and C, D be operators such that (i) Cx +

Dy ∈ N where x, y ∈ N, (ii) C is compact and continuous,
and (iii) D is a contraction mapping. 7en, there exists z ∈ N

such that z � Cz + Dz.

3. An Auxiliary Result

Lemma 5. Let c≥ 0, 1< α1, α2 < 2, 0≤ β1, β2 ≤ 1,
c1 � α1 + 2β1 − α1β1, c2 � α2 + 2β2 − α2β2,
h1, h2 ∈ C([c, d],R) and Θ≠ 0. 7en, the solution of the
system

H
D

α1 ,β1 + σ1
H

D
α1− 1,β1􏼐 􏼑u(z) � h1(z), z ∈ [c, d],

H
D

α2 ,β2 + σ2
H

D
α2− 1,β2􏼐 􏼑v(z) � h2(z), z ∈ [c, d],

u(c) � 0, u(d) � λ1 􏽚
d

c
v(s)dH1(s) + 􏽘

n

i�1
μi 􏽚

ξi

ηi

v(s)ds,

v(c) � 0, v(d) � λ2 􏽚
d

c
u(s)dH2(s) + 􏽘

p

r�1
]r 􏽚

θr

ζr

u(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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is given by

u(z) � − σ1 􏽚
z

c
u(s)ds + I

α1h1(z)

+
(z − c)

c1− 1

ΘΓ c1( 􏼁
G3 − σ2λ1 􏽚

d

c
􏽚

s

c
v(t)dtdH1(s)􏼠􏼢

+ λ1 􏽚
d

c
I
α2h2(s)dH1(s) − σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds

+ 􏽘

n

i�1
μi 􏽚

ξi

ηi

I
α2h2(s)ds⎞⎠ + σ1 􏽚

d

c
u(s)ds − I

α1h1(d)⎞⎠

+ G2 − σ1λ2 􏽚
d

c
􏽚

s

c
u(t)dtdH2(s) + λ2 􏽚

d

c
I
α1h1(s)dH2(s)􏼠

− σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds + 􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1h1(s)ds + σ2 􏽚

d

c
v(s)ds

− I
α2h2(d)􏼁􏼃,

(9)

v(z) � − σ2 􏽚
z

c
v(s)ds + I

α2h2(z)

+
(z − c)

c2− 1

ΘΓ c2( 􏼁
G1 − σ1λ2 􏽚

d

c
􏽚

s

c
u(t)dtdH2(s)􏼠􏼢

+ λ2 􏽚
d

c
I
α1h1(s)dH2(s) − σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds

+ 􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1h1(s)ds⎞⎠ + σ2 􏽚

d

c
v(s)ds − I

α2h2(d)⎞⎠

+ G4 − σ2λ1 􏽚
d

c
􏽚

s

c
v(t)dtdH1(s) + λ1 􏽚

d

c
I
α2h2(s)dH1(s)􏼠

− σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds + 􏽘

n

i�1
μi 􏽚

ξi

ηi

I
α2h2(s)ds⎞⎠ + σ1 􏽚

d

c
u(s)ds

− I
α1h1(d)􏼁􏼃,

(10)

where

G1 �
(d − c)

c1− 1

Γ c1( 􏼁
,

G2 � λ1 􏽚
d

c

(z − c)
c2− 1

Γ c2( 􏼁
dH1(z) + 􏽘

n

i�1
μi

ξi − c( 􏼁
c2 − ηi − c( 􏼁

c2

Γ c2 + 1( 􏼁
,

G3 �
(d − c)

c2− 1

Γ c2( 􏼁
,

G4 � λ2 􏽚
d

c

(z − c)
c1− 1

Γ c1( 􏼁
dH2(z) + 􏽘

p

r�1
]r

θr − c( 􏼁
c1 − ζr − c( 􏼁

c1

Γ c1 + 1( 􏼁
,

(11)

Θ � G1G3 − G2G4. (12)
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Proof . Let (u, v) be a solution of system (5). By Lemma 2, we
have

u(z) � k1
(z − c)

c1 − 2

Γ c1 − 1( 􏼁
+ k2

(z − c)
c1− 1

Γ c1−( 􏼁
− σ1 􏽚

z

c
u(s)ds + I

α1h1(z),

v(z) � d1
(z − c)

c2− 2

Γ c2 − 1( 􏼁
+ d2

(z − c)
c2− 1

Γ c2( 􏼁􏼁
− σ2 􏽚

z

c
v(s)ds + I

α2h2(z),

(13)

where k1, k2, d1, d2 are the arbitrary constants, since (1 −

β1)(2 − α1) � c1 and (1 − β1)(2 − α2) � c2. Applying u(c) �

0 and v(c) � 0, we deduce that k1 � d1 � 0. (us, the pre-
vious equations become

u(z) � k2
(z − c)

c1− 1

Γ c1( 􏼁
− σ1 􏽚

z

c
u(s)ds + I

α1h1(z), (14)

v(z) � d2
(z − c)

c2− 1

Γ c2( 􏼁
− σ2 􏽚

z

c
v(s)ds + I

α2h2(z). (15)

Now, applying the boundary conditions
u(d) � λ1 􏽒

d

c
v(s)dH1(s) + 􏽐

n
i�1 μi 􏽒

ξi

ηi
v(s)ds and v(d) �

λ2 􏽒
d

c
u(s)dH2(s) + 􏽐

p
r�1 􏽒

θr

ζr
u(s)ds, we get

k2
(d − c)

c1− 1

Γ c1( 􏼁
− d2 λ1 􏽚

d

c

(z − c)
c2− 1

Γ c2( 􏼁
dH1(z) + 􏽘

n

i�1
μi

ξi − c( 􏼁
c2 − ηi − c( 􏼁

c2

Γ c2 + 1( 􏼁
⎡⎣ ⎤⎦

� − σ2λ1 􏽚
d

c
􏽚

s

c
v(t)dtdH1(s) + λ1 􏽚

d

c
I
α2h2(s)dH1(s) − σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds

+ 􏽘
n

i�1
μi 􏽚

ξi

ηi

I
α2h2(s)ds + σ1 􏽚

d

c
u(s)ds − I

α1h1(d),

d2
(d − c)

c2− 1

Γ c2( 􏼁
− k2 λ2 􏽚

d

c

(z − c)
c1− 1

Γ c1( 􏼁
dH2(z) + 􏽘

p

r�1
]r

θr − c( 􏼁
c1 − ζr − c( 􏼁

c1

Γ c1 + 1( 􏼁
⎡⎣ ⎤⎦

� − σ1λ2 􏽚
d

c
􏽚

s

c
u(t)dtdH2(s) + λ2 􏽚

d

c
I
α1h1(s)dH2(s) − σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds

+ 􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1h1(s)ds + σ2 􏽚

d

c
v(s)ds − I

α2h2(d).

(16)

Consequently, we have the system

k2G1 − d2G2 � Ω1, d2G3 − k2G4 � Ω2, (17)

where

Ω1 � − σ2λ1 􏽚
d

c
􏽚

s

c
v(t)dtdH1(s) + λ1 􏽚

d

c
I
α2h2(s)dH1(s) − σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds

+ 􏽘
n

i�1
μi 􏽚

ξi

ηi

I
α2h2(s)ds + σ1 􏽚

d

c
u(s)ds − I

α1h1(d),

Ω2 � − σ1λ2 􏽚
d

c
􏽚

s

c
u(t)dtdH2(s) + λ2 􏽚

d

c
I
α1h1(s)dH2(s) − σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds

+ 􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1h1(s)ds + σ2 􏽚

d

c
v(s)ds − I

α2h2d.

(18)

Journal of Mathematics 5



By solving the above system, we have

k2 �
Ω1G3 +Ω2G2

Θ
,

d2 �
G1Ω2 + G4Ω1
Θ

.

(19)

Substituting the values of k2 and d2 into (10) and (14),
respectively, we obtain the solutions (9) and (10). We can
obtain the converse by direct computation. (e proof is
finished. □

4. Existence and Uniqueness Result

Due to Lemma 5, we define an operator Q: Y × Y⟶Y ×

Y by

Q(u, v)(z) ≔ Q1(u, v)(z),Q2(u, v)(z)( 􏼁, (20)

where

Q1(u, v)(z)

� − σ1 􏽚
z

c
u(s)ds + I

α1f1(z, u(z), v(z))

+
(z − c)

c1− 1

ΘΓ c1( 􏼁
G3 − σ2λ1 􏽚

d

c
􏽚

s

c
v(t)dtdH1(s)􏼠􏼢

+ λ1 􏽚
d

c
I
α2f2(s, u(s), v(s))dH1(s) − σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds

+ 􏽘
n

i�1
μi 􏽚

ξi

ηi

I
α2f2(s, u(s), v(s))ds + σ1 􏽚

d

c
u(s)ds − I

α1f1(d, u(d), v(d))

+ G2 − σ1λ2 􏽚
d

c
􏽚

s

c
u(t)dtdH2(s) + λ2 􏽚

d

c
I
α1f1(s, u(s), v(s))dH2(s)􏼠

− σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds + 􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1f1(s, u(s), v(s))ds

+ σ2 􏽚
d

c
v(s)ds − I

α2f2(d, u(d), v(d)),

(21)

Q2(u, v)(z)

� − σ2 􏽚
z

c
v(s)ds + I

α2f2(z, u(z), v(z))

+
(z − c)

c2− 1

ΘΓ c2( 􏼁
G1 − σ1λ2 􏽚

d

c
􏽚

s

c
u(t)dtdH2(s)

+ λ2 􏽚
d

c
I
α1f1(s, (u(s), v(s))dH2(s) − σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds

+ 􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1f1(s, u(s), v(s))ds + σ2 􏽚

d

c
v(s)ds − I

α2f2(d, u(d), v(d))

+ G4 − σ2λ1 􏽚
d

c
􏽚

s

c
v(t)dtdH1(s) + λ1 􏽚

d

c
I
α2f2(s, u(s), v(s))dH1(s)􏼠

− σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds + 􏽘

n

i�1
μi 􏽚

ξi

ηi

I
α2f2(s, u(s), v(s))ds

+σ1 􏽚
d

c
u(s)ds − I

α1f1(d, u(d), v(d))􏼡􏼣.

(22)
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For convenience, we set

C1 �
1

Γ α1 + 1( 􏼁
+

(d − c)
c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 1( 􏼁

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
λ2

1
Γ α1 + 1( 􏼁

􏽚
d

c
(s − c)

α1dH2(s)􏼠

+
1

Γ α1 + 2( 􏼁
􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 θr − c( 􏼁

α1+1
− ζr − c( 􏼁

α1+1
􏽨 􏽩⎞⎠,

C2 �
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α2 + 2( 􏼁

􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ξi − c( 􏼁

α2+1
− ηi − c( 􏼁

α2+1
􏽨 􏽩⎛⎝

+
λ1
Γ α2 + 1( 􏼁

􏽚
d

c
(s − c)

α2dH1(s)􏼡 + G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁

1
Γ α2 + 1( 􏼁

,

C3 � σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c) + G3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
(d − c) σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + G2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
(d − c) σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
(s − c)dH2(s)

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1
2

θr − c( 􏼁
2

− ζr − c( 􏼁
2

􏽨 􏽩,

C4 �
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3 σ2

����
����λ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

d

c
(s − c)dH1(s) +

(d − c)
c1− 1

|Θ|Γ c1( 􏼁
G3‖ σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1
2

ξi − c( 􏼁
2

− ηi − c( 􏼁
2

􏽨 􏽩

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
(d − c) σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(23)

D1 �
1

Γ α2 + 1( 􏼁
+

(d − c)
c2− 1

|Θ|Γ c2( 􏼁
G1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α2 + 1( 􏼁

+ G4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c2− 1

|Θ|Γ c2( 􏼁
λ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α2 + 1( 􏼁

􏽚
d

c
(s − c)

α2dH1(s) +
1

Γ α2 + 2( 􏼁
􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ξi − c( 􏼁

α2+1
− ηi − c( 􏼁

α2+1
􏽨 􏽩⎛⎝ ⎞⎠,

D2 �
(d − c)

c2− 1

|Θ|Γ c2( 􏼁
G1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 2( 􏼁

􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 θr − c( 􏼁

α1+1
− ζr − c( 􏼁

α1+1
􏽨 􏽩 +

λ2
Γ α1 + 1( 􏼁

􏽚
d

c
(s − c)

α1dH2(s)⎛⎝ ⎞⎠

+ G4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c2− 1

|Θ|Γ c2( 􏼁

1
Γ α1 + 1( 􏼁

,

D3 � σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c) + G1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c2− 1

|Θ|Γ c2( 􏼁
(d − c) σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + G4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(d − c)

c2− 1

|Θ|Γ c2( 􏼁
(d − c) σ2‖ λ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

d

c
(s − c)dH1(s)

+ G4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c2− 1

|Θ|Γ c2( 􏼁
σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

i�1
μi

1
2

ξi − c( 􏼁
2

− ηi − c( 􏼁
2

􏽨 􏽩,

D4 �
(d − c)

c2− 1

|Θ|Γ c2( 􏼁
G1 σ1

����
����λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

d

c
(s − c)dH2(s) +

(d − c)
c2− 1

|Θ|Γ c2( 􏼁
G1‖ σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1
2

θr − c( 􏼁
2

− ζr − c( 􏼁
2

􏽨 􏽩

+ G4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c2− 1

|Θ|Γ c2( 􏼁
(d − c) σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(24)
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Now, Banach’s fixed point theorem is applied to present
the following uniqueness result.

Theorem 1. Let Θ≠ 0 and f1, f2: [c, d] × R2⟶ R be two
continuous functions such that for all z ∈ [c, d] and
ui, vi ∈ R, i � 1, 2, we have

f1 z, u1, v1( 􏼁 − f1 z, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ℓ1 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

f2 z, u1, v1( 􏼁 − f2 z, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ℓ2 u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑.

(25)

where ℓ1, ℓ2 are positive constants and ui, vi ∈ R, i � 1, 2.
7en, there exists a unique solution of system (3) on [c, d]

provided that

ℓ1 C1 + D1( 􏼁 + ℓ2 C2 + D2( 􏼁 + C3 + C4 + D3 + D4 < 1.

(26)

Proof . It suffices to display that the operator Q has a unique
fixed point. For this aim, Banach’s theorem will be applied.
Put supz∈[c,d]|f1(z, 0, 0)| ≔M<∞ and supz∈[c,d]|f2
(z, 0, 0)| ≔ N<∞. Now, we locate Br � (u, v) ∈ Y×􏼈

Y; ‖(u, v)‖≤ r}, in which

r≥
M C1 + D1( 􏼁 + N C2 + D2( 􏼁

1 − ℓ1 C1 + D1( 􏼁 + ℓ2 C2 + D2( 􏼁 + C3 + C4 + D3 + D4􏼂 􏼃
.

(27)

First, we indicate thatQ(Br)⊆Br. Assume that (u, v) ∈ Br

and z ∈ [c, d]. Due to (), we have

f1(z, u(z), v(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ f1(z, u(z), v(z)) − f1(z, 0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f1(z, 0, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ℓ1(|u(z)| +|v(z)|) + M � ℓ1r + M. (28)

Similarly, we have

f2(z, u(z), v(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ℓ2r + N. (29)

Hence, we infer that

Q1(u, v)(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ r σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c) +
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
(s − c)dH1(s)􏼠􏼢

+σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)ds + σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c)⎞⎠

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
σ1‖ λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

d

c
(s − c)dH2(s) + σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

p

r�1
]r 􏽚

θr

ζr

(s − c)ds⎛⎝

+σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c)􏼑􏽩 + ℓ1r + M( 􏼁
1

Γ α1 + 1( 􏼁
+

(d − c)
c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 1( 􏼁

􏼢

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c− 1

|Θ|Γ c1( 􏼁
λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 1( 􏼁

􏽚
d

c
(s − c)

α1dH2(s)􏼠

+
1

Γ α1 + 1( 􏼁
􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

θr

ζr

(s − c)
α1ds⎞⎠⎤⎥⎥⎦

+ ℓ2r + N( 􏼁
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α2 + 1( 􏼁

􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)
α2ds⎛⎝⎡⎢⎢⎣

+
λ1
Γ α2 + 1( 􏼁

􏽚
d

c
(s − c)

α2dH1(s)􏼡 + G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁

1
Γ α2 + 1( 􏼁

􏼣

� ℓ1r + M( 􏼁C1 + ℓ2r + N( 􏼁C2 + r C3 + C4( 􏼁.

(30)
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Consequently,

Q1(uv)
����

����≤ ℓ1r + M( 􏼁C1 + ℓ2r + N( 􏼁C2 + r C3 + C4( 􏼁.

(31)

In the same way, we have

Q2(u, v)
����

����≤ ℓ1r + M( 􏼁D1 + ℓ2r + N( 􏼁D2 + r D3 + D4( 􏼁.

(32)

Hence,

‖Q(u, v))‖≤ ℓ1r + M( 􏼁 C1 + D1( 􏼁 + ℓ2r + N( 􏼁 C2 + D2( 􏼁

+ r C3 + C4 + D3 + D3( 􏼁≤ r,

(33)

which yields that Q(Br)⊆Br.
Now, it is proved Q: Y × Y⟶Y × Y is a contrac-

tion. Applying condition (25), for any (u1, v1), (u2, v2)

∈Y × Y and for each z ∈ [c, d], we have

Q1 u1, v1( 􏼁(z) − Q1 u2, v2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ ℓ1 u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑
1

Γ α1 + 1( 􏼁
+

(d − c)
c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 1( 􏼁

􏼨

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
λ2

1
Γ α1 + 1( 􏼁

􏽚
d

c
(s − c)

α1dH2(s)􏼠

+
1

Γ α1 + 2( 􏼁
􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

θr

ζr

(s − c)
α1ds⎞⎠

⎫⎬

⎭

+ ℓ2 u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌×􏼨

1
Γ α2 + 2( 􏼁

􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)
α2ds +

λ1
Γ α2 + 1( 􏼁

􏽚
d

c
(s − c)

α2dH1(s)⎛⎝ ⎞⎠

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁

1
Γ α2 + 1( 􏼁

􏼩 + u1 − u2
����

���� σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c)􏽮

+ G3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

ΘΓ c1( 􏼁
(d − c) σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + G2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(d − c)

c1− 1

ΘΓ c1( 􏼁
(d − c)×

σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
(s − c)dH2(s) + G2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(d − c)

c1− 1

ΘΓ c1( 􏼁
σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

p

r�1
]r 􏽚

θr

ζr

(s − c)ds
⎫⎬

⎭

+ v1 − v2
����

����
(d − c)

c1− 1

|Θ|Γ c1( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
G3 σ2

����
����λ1| 􏽚

d

c
(s − c)dH1(s)􏼨

+
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)ds + G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

ΘΓ c1( 􏼁
(d − c) σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
⎫⎬

⎭

� ℓ1C1 + ℓ2C2( 􏼁 u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑 + C3 u1 − u2
����

���� + C4 v1 − v2
����

����

≤ ℓ1C1 + ℓ2C2( 􏼁 + C3 + C4( 􏼁 u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑,

(34)

and hence

Q1 u1, v1( 􏼁 − Q1 u2, v2( 􏼁
����

����≤ ℓ1C1 + ℓ2C2( 􏼁 + C3 + C4( 􏼁 u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑. (35)
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Furthermore, we deduce that

Q2 u1, v1( 􏼁 − Q2 u2, v2( 􏼁
����

����≤ ℓ1D1 + ℓ2D2( 􏼁 + D3 + D4( 􏼁 u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑. (36)

Using (25) and (33), we concluded that

Q u1, v1( 􏼁 − Q u2, v2( 􏼁
����

����≤ ℓ1 C1 + D1( 􏼁 + ℓ2 C2 + D2( 􏼁 + C3 + C4 + D3 + D4( 􏼁 × u1 − u2
����

���� + v1 − v2
����

����􏼐 􏼑. (37)

As ℓ1(C1 +D1) + ℓ2(C2 +D2) +C3 +C4 +D3 +D4<1,
so the operator Q is a contraction and by applying Lemma 2,
the operator Q has a unique solution which is the solution of
the problem (3). (e proof is finished. □

5. Existence Results

Two existence results are proved in this section.

5.1. Existence Result via Leray–Schauder Alternative. (e
Leray–Schauder alternative (Lemma 3) is used in the proof
of our first existence result.

Theorem 2. Let Θ≠ 0 and f1, f2: [c, d] × R2⟶ R be
continuous functions. Assume that

[(H1)] 7ere exist real constants ui, vi ≥ 0 for i � 1, 2 and
u0, v0 > 0 such that for all u, v ∈ R, we have

f1(z, u(z), v(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ u0 + u1|u| + u2|v|,

f2(z, u(z), v(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ v0 + v1|u| + v2|v|.
(38)

If (C1 + D1)u1 + (C2 + D2)v1 + C3 + D3 < 1 and
(C1 + D1)u2 + (C2 + D2)v2 + C4 + D4 < 1, where Ci, Di

for i � 1, 2, 3, 4 are given by (23) and (24), respectively, then
system (1.3) admits at least one solution on [c, d].

Proof . (e functions f1, f2 are continuous on [c, d] × R2.
(us, the operator Q is continuous. Now, we will show that
the operator Q: Y × Y⟶ Y × Y is completely contin-
uous. Let Br ⊂ Y × Y be a bounded set, where
Br � (u, v) ∈ Y × Y: ‖(u, v)‖≤ r􏼈 􏼉.(en, for any (u, v) ∈ Br,
there exist positive real numbers P1 and P2 such that
|f1(z, u(t), v(z))| ≤P1 and |f2(z, u(z), v(z))|≤P2.

(us, for each (u, v) ∈ Br, we have

Q1(u, v)(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
z

c
|u(s)|ds + I

α1 f1(z, u(z), v(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 σ2‖ λ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

d

c
􏽚

s

c
|v(t)|dt􏼔 􏼕dH1(s)􏼠􏼢

+ λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
f1(z, u(z), v(z))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dH1(s) + σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

􏽚
s

a
|v(t)|dtds

+ 􏽘
n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

I
α2 f2(s, u(s), v(s))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

+ σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
|u(s)|ds + I

α1 f1(d, u(d), v(d))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼡

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 σ1‖ λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
􏽚

s

c
|u(t)dt􏼔 􏼕dH2(s) + σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

θr

ζr

􏽚
s

c
|u(t)dt􏼔 􏼕ds⎛⎝

+ λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
I
α1 f1(s, u(s), v(s))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dH2(s) + σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

d

c
|v(s)|ds + I

α2 f2(d, u(d), v(d))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
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+􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1 f1(s, u(s), v(s))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds⎞⎠⎤⎥⎥⎦

≤ r σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c) +
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 σ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
(s − c)dH1(s)􏼠􏼢

+ σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)ds + σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c)⎞⎠

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
σ1‖ λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

d

c
(s − c)dH2(s) + σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

p

r�1
]r 􏽚

θr

ζr

(s − c)ds⎛⎝

+ σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c)􏼑􏽩 + P1
1

Γ α1 + 1( 􏼁
+

(d − c)
c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 1( 􏼁

􏼢

+ G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c− 1

|Θ|Γ c1( 􏼁
λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 1( 􏼁

􏽚
d

c
(s − c)

α1dH2(s)􏼠

+
1

Γ α1 + 1( 􏼁
􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

θr

ζr

(s − c)
α1ds⎞⎠⎤⎥⎥⎦

+ P2
(d − c)

c1− 1

|Θ|Γ c1( 􏼁
G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α2 + 1( 􏼁

􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)
α2ds⎛⎝⎡⎢⎢⎣

+
λ1
Γ α2 + 1( 􏼁

􏽚
d

c
(s − c)

α2dH1(s)􏼡 + G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
(d − c)

c1− 1

|Θ|Γ c1( 􏼁

1
Γ α2 + 1( 􏼁

􏼣

� P1C1 + P2C2 + r C3 + C4( 􏼁,
(39)

which yields

Q1(u, v)
����

����≤C1P1 + C2P2 + r C3 + C4( 􏼁. (40)

Similarly, we obtain that

Q2(u, v)
����

����≤D1P1 + D2P2 + r D3 + D4( 􏼁. (41)

Hence, from the above inequalities, we get that the
operator Q is uniformly bounded, since

‖Q(u, v)‖≤ C1 + D1( 􏼁P1 + C2 + D2( 􏼁P2

+ r C3 + C4 + D3 + D4( 􏼁.
(42)

Next, we are going to prove that the operator Q is
equicontinuous. Let τ1, τ2 ∈ [c, d] with τ1 < τ2. (en, we
have

Q1(u, v) τ2( 􏼁 − Q1(u, v) τ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌r τ2 − τ1( 􏼁 + P1 􏽚
τ1

c

τ2 − c( 􏼁
α1− 1

− τ2 − c( 􏼁
α1− 1

􏽨 􏽩

Γ α1( 􏼁
ds + P1 􏽚

τ2

τ1

τ2 − c( 􏼁
α1− 1

Γ α1( 􏼁
ds

+
τ2 − c( 􏼁

c1− 1
− τ2 − c( 􏼁

c1− 1
􏽨 􏽩

|Θ|Γ c1( 􏼁
r G3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 λ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
(s − c)dH1(s)􏼠􏼢

+ σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)ds + σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c)⎞⎠

+ G2r
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 σ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽚
d

c
(s − c)dH2(s) + σ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽘

p

r�1
]r 􏽚

θr

ζr

(s − c)ds⎛⎝
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+ σ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌(d − c)􏼑 + P1 G3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1

Γ α1 + 1( 􏼁
+ G2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1
Γ α1 + 1( 􏼁

􏽚
d

c
(s − c)

α1dH2(s)􏼠􏼢

+
1

Γ α1 + 1( 􏼁
􏽘

p

r�1
]r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

θr

ζr

(s − c)
α1ds⎞⎠⎤⎥⎥⎦

+ P2 G3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1

Γ α2 + 1( 􏼁
􏽘

n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽚

ξi

ηi

(s − c)
α2ds⎛⎝⎡⎢⎢⎣

+
λ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ α2 + 1( 􏼁
􏽚

d

c
(s − c)

α2dH1(s)􏼡 + G2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1

Γ α2 + 1( 􏼁
􏼣􏼣.

(43)

(erefore, we obtain

Q1(u, v) τ2( 􏼁 − Q1(u, v) τ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0, as τ1⟶ τ2. (44)

Analogously, we can get the following inequality:

Q2(u, v) τ2( 􏼁 − Q2(u, v) τ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0, as τ1⟶ τ2. (45)

Hence, the set QBr is equicontinuous. Accordingly,
Arzelá–Ascoli theorem implies that the operator Q is
completely continuous.

Finally, we shall show the boundedness of the set
Z � (u, v) ∈ Y × Y: (u, v) � μQ(u, v), 0≤ μ≤ 1􏼈 􏼉. Let any
(u, v) ∈ Z, then (u, v) � μQ(u, v). We have, for all z ∈ [c, d],

u(z) � μQ1(u, v)(z),

v(z) � μQ2(u, v)(z).
(46)

(en, we get

‖u‖≤ u0 + u1‖u‖ + u2‖v‖( 􏼁C1 + v0 + v1‖u‖ + v2‖v‖( 􏼁C2 +‖u‖C3 +‖v‖C4,

‖v‖≤ u0 + u1‖u‖ + u2‖v‖( 􏼁D1 + v0 + v1‖u‖ + v2‖v‖( 􏼁D2 +‖u‖D3 +‖v‖D4,
(47)

which imply that

‖u‖ +‖v‖≤ C1 + D1( 􏼁u0 + C2 + D2( 􏼁v0 + C1 + D1( 􏼁u1 + C2 + D2( 􏼁v1 +C3 + D3􏼃‖u‖􏼂

+ C1 + D1( 􏼁u2 + C2 + D2( 􏼁􏼁v2 + C4 + D4􏼂 􏼃‖v‖.
(48)

(us, we obtain

‖(u, v)‖≤
C1 + D1( 􏼁u0 + C2 + D2( 􏼁v0

M
∗ , (49)

where M∗ � min 1 − (C1 + D1)u1 − (C2+􏼈 D2)v1 − (C3+

D3), 1 − (C1 + D1)u2− (C2 + D2)v2 − (C4 + D4)}, which
shows that the set Z is bounded. (erefore, by Ler-
ay–Schauder alternative (Lemma 3), the operator Q has at
least one fixed point. Hence, we deduce that problem (3)
admits a solution on [c, d], which completes the proof. □

5.2. Existence Result via Krasnosel’skĭı’s Fixed-Point7eorem.
Now, Krasnosel’skĭı’s fixed-point theorem (Lemma 4) is
applied to prove our second existence result.

Theorem 3. Assume that Θ≠ 0 and f1, f2: [c, d] × R2

⟶ R are continuous functions satisfying condition (4.8) in
7eorem 4.1. Furthermore, suppose that there exist positive
constants R1 and R2 such that for all z ∈ [c, d] and u, v ∈ R,
we have

f1(z, u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤R1,

f2(z, u, v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤R2.
(50)

If C3 + C4 < 1, D3 + D4 < 1 and ((d − c)α1 /Γ(α1 + 1))l1
+((d − c)α2 /(d − c)α2)ℓ2 < 1, then problem (1.3) admits a
solution on [c, d].

Proof . First, we decompose the operator Q defined by (1)
into four operators as
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S1(u, v)(z) � − σ1 􏽚
z

c
u(s)ds +

(z − c)
c1− 1

ΘΓ c1( 􏼁
G3 − σ2λ1 􏽚

d

c
􏽚

s

c
v(t)dtdH1(s)􏼠􏼢

+ λ1 􏽚
d

c
I
α2f2(s, u(s), v(s))dH1(s) − σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds

+􏽘
n

i�1
μi 􏽚

ξi

ηi

I
α2f2(s, u(s), v(s))ds + σ1 􏽚

d

c
u(s)ds − I

α1f1(d, u(d), v(d))⎞⎠

+ G2 − σ1λ2 􏽚
d

c
􏽚

s

c
u(t)dtdH2(s) + λ2 􏽚

d

c
I
α1f1(s, u(s), v(s))dH2(s)􏼠

− σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds + 􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1f1(s, u(s), v(s))ds

+σ2 􏽚
d

c
v(s)ds − I

α2f2(d, u(d), v(d))􏼡􏼣,

S2(u, v)(z) � I
α1f1(z, u(z), v(z)) I

α1f1u, v(z),

S3(u, v)(z) � − σ2 􏽚
z

c
v(s)ds +

(z − c)
c2− 1

ΘΓ c2( 􏼁
G1 − σ1λ2 􏽚

d

c
􏽚

s

c
u(t)dtdH2(s)􏼠􏼢

+ λ2 􏽚
d

c
I
α1f1(s, u(s), v(s))dH2(s) − σ1 􏽘

p

r�1
]r 􏽚

θr

ζr

􏽚
s

c
u(t)dtds

+􏽘

p

r�1
]r 􏽚

θr

ζr

I
α1f1(s, u(s), v(s))ds + σ2 􏽚

d

c
v(s)ds − I

α2f2(d, u(d), v(d))⎞⎠

+ G4 − σ2λ1 􏽚
d

c
􏽚

s

c
v(t)dtdH1(s) + λ1 􏽚

d

c
I
α2f2(s, u(s), v(s))dH1(s)􏼠

− σ2 􏽘

n

i�1
μi 􏽚

ξi

ηi

􏽚
s

c
v(t)dtds + 􏽘

n

i�1
μi 􏽚

ξi

ηi

I
α2f2(s, u(s), v(s))ds

+σ1 􏽚
d

c
u(s)ds − I

α1f1(d, u(d), v(d))􏼡􏼣,

S4(u, v)(z) � I
α2f2(z, u(z), v(z)) I

α2f2u, v(z).

(51)

Accordingly, Q1(u, v)(z) � S1(u, v)(z) + S2(u, v)(z)

and Q2(u, v)(z) � S3(u, v)(z) + S4(u, v)(z). Let
Bε � (u, v) ∈Y × Y; ‖(u, v)‖≤ ε􏼈 􏼉 with

ε≥max
C1R1 + C2R2

1 − C3 + C4( 􏼁
,
D1R1 + D2R2

1 − D3 + D4( 􏼁
􏼨 􏼩. (52)

First, it is showed that Q1(x, y) + Q2(u, v) ∈ Bε for all (x,

y), (u, v) ∈ Bε. According to the proof of (eorem 1, we get

S2(u, v)(z)I
α1f1(z, u(z), v(z)),

S4(u, v)(z)I
α2f2(z, u(z), v(z)).

(53)

Consequently,Q1(x, y) + Q2(u, v) ∈ Bε and we conclude
the condition (i) of Lemma 4. Now, it is indicated that the
operator (S2,S4) is a contraction mapping. For
(x1, y1), (x2, y2) ∈ Bε, we infer that

S2 x1, y1( 􏼁(z) − S2 x2, y2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ I
α1 f1x1, y1 − f1x2, y2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(z)

≤ ℓ1 x1 − x2
����

���� + y1 − y2
����

����􏼐 􏼑I
α1(1)(d)≤ ℓ1

(d − c)
α1

Γ α1 + 1( 􏼁
x1 − x2

����
���� + y1 − y2

����
����􏼐 􏼑,

(54)

S4 x1, y1( 􏼁(z) − S4 x2, y2( 􏼁(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ∣ ≤ I
α2 f2x1, y1 − f2x2, y2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(z)≤ ℓ2 x1 − x2

����
���� + y1 − y2

����
����􏼐 􏼑I

α2(1)(d)

≤ ℓ2
(d − c)

α2

Γ α2 + 1( 􏼁
x1 − x2

����
���� + y1 − y2

����
����􏼐 􏼑.

(55)
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As ((d − c)α1 /Γ(α1 + 1))ℓ1 + (d − c)α2 /Γ(α2 + 1)ℓ2 < 1,
the operator (S2,S4) is a contraction and the condition (iii)

of Lemma 4 is concluded. In the final step, the condition (ii)

of Lemma 4 is verified for the operator (S1,S3). As the

functions f1, f2 are continuous, one can see that the op-
erator (S1,S3) is continuous. Furthermore, for (u, v) ∈ Bε,
as in the proof of (eorem 1, we have

S1(u, v)(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ C1 −
1

Γ α1 + 1( 􏼁
􏼠 􏼡R1 + C2R2 + C3 + C4( 􏼁ε � P

∗
,

S3(u, v)(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤D1R1 + D2 −
1

Γ α2 + 1( 􏼁
􏼠 􏼡R2 + D3 + D4( 􏼁ε � Q

∗
.

(56)

Hence, ‖(S1,S2)(u, v)‖≤P∗ + Q∗, which implies that
(S1,S3)Bε is uniformly bounded. Now, we claim that the set
(S1,S3)Bε is equicontinuous. For this aim, let τ1, τ2 ∈ [c, d]

with τ1 < τ2. For any (u, v) ∈ Bε, similar to the proofs of
equicontinuous for the operators Q1 and Q2 in 2, we can
show that |S1(u, v)(τ2) − S1(u, v)(τ1)|, |S3(u, v)(τ2)−
S3(u, v)(τ1)|⟶ 0 as τ1⟶ τ2. Consequently, the set
(S1,S3)Bε is equicontinuous and by applying Arzelá-Ascoli
theorem, the operator (S1,S3) will be compact on Bε.
(erefore, by applying Lemma 4, problem (3) has at least one
solution on [c, d]. (is completes the proof. □

Remark 1. In (eorem 2, the functions f1, f2 are bounded
by linear planes in three-dimension space. While, in

(eorem 3, f1, f2 are bounded by fixed constants and also
satisfied Lipschitz condition in (25).

6. Examples

Now, we present some examples to show the benefits of our
results.

Example 1. Consider the following coupled system of Hilfer
type sequential fractional differential equations involving
Riemann–Stieltjes integral multistrip boundary conditions
of the form

H
D

(5/4)(2/3)
+

1
20

H
D

(1/4)(2/3)
􏼒 􏼓u(z) � f1(z, u(z), v(z)), z ∈ [(1/8), (13/8)],

H
D

(7/4)(1/3)
+

1
15

H
D

(3/4)(1/3)
􏼒 􏼓v(z) � f2(z, u(z), v(z)), z ∈ [(1/8), (13/8)],

u
1
8

􏼒 􏼓 � 0,

v
1
8

􏼒 􏼓 � 0,

u
13
8

􏼒 􏼓 �
1
4

􏽚
13/8

1/8
v(s)d e

− 2s
􏼐 􏼑 +

2
7

􏽚
5/8

1/2
v(s)ds +

3
11

􏽚
5/4

9/8
v(s)ds,

v
13
8

􏼒 􏼓 �
1
5

􏽚
13/8

1/8
u(s)d e

− 3s
􏼐 􏼑 +

4
13

􏽚
3/8

1/4
u(s)ds +

5
17

􏽚
7/8

3/4
u(s)ds +

6
19

􏽚
3/2

11/8
u(s)ds.

(57)

Here, α1 � 5/4, α2 � 7/4, β1 � 2/3, β2 � 1/3, c � 1/8,
d � 13/8, λ1 � 1/4, λ2 � 1/5, H1(t) � e− 2t, H2(t) � e− 3t,
n � 2, μ1 � 2/7, μ2 � 3/11, η1 � 1/2, η2 � 9/8, ξ1 � 5/8,
ξ2 � 5/4, p � 3, ]1 � 4/13, ]2 � 5/17, ]3 � 6/19, ζ1 � 1/4,
ζ2 � 3/4, ζ3 � 11/8, θ1 � 3/8, θ2 � 7/8, and θ3 � 3/2. (en,
we can compute that c1 � 7/4, c2 � 11/6, G1 ≈ 1.474766913,
G2 ≈ − 0.03380798224, G3 ≈ 1.490431261, G4 ≈ 0.03704
876432, Θ ≈ 2.199291254, C1 ≈ 1.765659740, C2 ≈ 0.00612
8241272, C3 ≈ 0.1499796921, C4 ≈ 0.000526941741, D1 ≈
1.242948896, D2 ≈ 0.06369559511, D3 ≈ 0.1998340850,
and D4 ≈ 0.003945721441.

(i) (e Lipschitzian functions f1, f2: [(1/8), (13/8)] ×

R2⟶ R are given by

f1(t, u, v) �
1

8t + 4
u
2

+ 2|u|

2(1 +|u|)
􏼠 􏼡 +

sin|v|

8t + 5
+
1
2
cos 2 πt, (58)

f2(t, u, v) �
1

8t + 3
tan− 1

|u|

+
e

(1− 8t)

8t + 7
4v

2
+ 5|v|

5(1 +|v|)
􏼠 􏼡 +

1
4
loge t.

(59)
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From direct computation to (59)-(60), we get

f1 t, u1, v1( 􏼁 − f1 t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
5

u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
6

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

f2 t, u1, v1( 􏼁 − f2 t, u2, v2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
1
4

u1 − u2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
8

v1 − v2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(60)

for u1, u2, v1, v2 ∈ R. Setting ℓ1 � 1/5 and ℓ2 � 1/4,
we obtain ℓ1(C1 + D1) + ℓ2 (C2 + D2) + C3+

C4 + D3 + D4 ≈ 0.9734641265< 1. By application
of our (eorem 1, the problem of Hilfer type se-
quential fractional differential system involving
Riemann–Stieltjes integral multistrip boundary

conditions (58) with (59)-(60) has a unique solution
on [(1/8), (13/8)].

(ii) Let the nonlinear functions f1, f2: [(1/8), (13/8)] ×

R2⟶ R be defined by

f1(t, u, v) �
1
2
cos2 πt +

1
5

ue
− v4

+
|v|

15sin4 u

3 1 + v
14

􏼐 􏼑
, (61)

f2(t, u, v) �
1
3
sin2 πt +

u
18cos12 v

4 1 +|u|
17

􏼐 􏼑
+

v

π
tan− 1

u. (62)

We remark that |f1(t, u, v)|≤ (1/2)+ (1/5)|u|+

(1/3)|v| and |f2(t, u, v)|≤ (1/3) + (1/4)|u|+

(1/2)|v|. Now, we choose the constants as in (e-
orem 2 by u0 � 1/2, u1 � 1/5, u2 � 1/3, v0 � 1/3,
v1 � 1/4, and v2 � 1/2. (en, we can find that (C1 +

D1)u1 + (C2 + D2)v1 + C3 +

D3 ≈ 0.9748101164< 1 and (C1 + D1)u2+

(C2 + D2)v2 + C4 + D4 ≈ 0.7915367403< 1. (e

benefit of (eorem 2 can be used to conclude that
the coupled system of Hilfer type sequential frac-
tional differential equations subject to boundary
conditions (58) with (62)-(63) has at least one so-
lution on [(1/8), (13/8)].

(iii) Suppose that two Lipschitzian functions
f1, f2: [(1/8), (13/8)] × R2⟶ R are stated by

f1(t, u, v) �
1

8t + 1
+

1
8t + 2

|u|

1 +|u|
􏼠 􏼡 +

1
8t + 3

tan− 1
|v|, (63)

f2(t, u, v) �
1

8t + 4
+
1
3
e
1− 8t sin|u| +

1
5
e

− (1− 8t)2 |v|

1 +|v|
􏼠 􏼡. (64)

Actually, we can compute the bounds of the above two
functions by |f1(t, u, v)|≤ (5/6) + (π/8), |f2(t, u, v)|≤
(47/60), for all u, v ∈ R. In addition, we can find that
|f1(t, u1, v1) − f1(t, u2, v2)|≤ (1/3)|u1 − u2| + (1/4)|v1 − v2|

and |f2(t, u1, v1) − f2(t, u2, v2)|≤ (1/3) |u1 − u2|+

(1/5)|v1 − v2|, and thus we can set ℓ1 � 1/3 and ℓ2 � 1/3
satisfying condition (4.8) in (eorem 1. (en, we obtain
C3 + C4 ≈ 0.1505066338< 1, D3 + D4 ≈ 0.2037798064< 1,
and ((d − c)α1 /Γ(α1 + 1))ℓ1 + ((d − c)α1 / Γ(α2 + 1))ℓ2
≈ 0.9097463067< 1 that all conditions in (eorem 3 are
fulfilled. In this step, we conclude that the problem (58) with
(64) has at least one solution on [(1/8), (13/8)]. Finally, we
observe that the uniqueness result cannot be obtained be-
cause ℓ1(C1 + D1) + ℓ2 (C2 + D2) + C3 + C4 + D3+

D4 ≈ 1.380430597> 1.

7. Conclusions

In the present research, we studied a coupled system of
Hilfer type sequential fractional differential equations sup-
plemented with Riemann–Stieltjes integral multistrip
boundary conditions. First, an auxiliary lemma, concerning
a linear variant of the considered problem, has been proved
which is pivotal to converting the coupled system into a fixed
point problem. (en, existence and uniqueness results are
established via standard fixed point theorems. (us, the
classical Banach fixed point theorem is applied to obtain a
uniqueness result, while Leray–Schauder alternative and
Krasnosel’skĭı’s fixed point theorem are applied to present
the existence results. Numerical examples are also con-
structed to illustrate the obtained results. (e obtained
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results are new and enrich the existing literature on coupled
systems of Hilfer type sequential fractional differential
equations.
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�e purpose of this article is to demonstrate new generalized k-fractional Hadamard and Fejér–Hadamard integral inequalities for
(α, h − m)-convex functions. To prove these inequalities, k-fractional integral operators including the generalization of the
Mittag–Le�er function are used. �e results presented in this article can be considered an important advancement of previously
published inequalities.

1. Introduction

�eory of convexity o�ers an e�ective and charming area of
research and is also a theory that featured prominently and
surprisingly in distinct disciplines such as mathematical
analysis, optimization, economics, �nance, engineering and
game theory. Convexity theory is very closely related with
the theory of inequalities. Many inequalities well known in
the literature are direct applications of the properties of
convex functions. �e usage of fractional integral operators
for getting the generalized types of classic inequalities has
become an important method in advanced mathematical
studies of inequalities.

One of the convexity theory studies in the literature
belongs to Gao et al. [1]. �ey presented a new type of
functions called n-polynomial harmonically exponential
type convex, and speci�ed some of their algebraic features.
Mehrez and Agarwal [2] established new type of integral
inequalities for convex functions and indicated new in-
equalities for some special and q-special functions. Tariq
[3] de�ned the concept of p–harmonic exponential type
convex functions. Also, they investigated some integral
inequalities in the form of applications for some means.
Another study on convexity theory and inequalities was

presented by Butt et al. [4]. �ey presented the notion of
m–polynomial p-harmonic exponential type convex
functions and demonstrated various new integral in-
equalities. Srivastava et al. [5] obtained a new class of the
bi-close-to-convex functions described in the open unit
disk by using the Borel distribution series of the Mit-
tag–Le�er type. Also, the authors demonstrated the
Fekete–Szego type inequalities via the bi-close-to-convex
function class.

Fractional calculus, which is the study of integrals and
derivatives of fractional order, has expanded signi�cantly
over the late nineteenth century. It ranges from chemical,
viscoelasticity, and statistical physics to electrical and me-
chanical engineering. �e fundamental working doctrine of
fractional analysis is to present new fractional derivative and
integral operators, and to analyze the bene�ts of these op-
erators through the instrument of modeling studies, and
collations. Integral operators, which form a signi�cant part
of fractional calculus, are now resources of many �elds such
as inequality theory, engineering, statistics, mathematical
biology, and modeling, which take advantage of fractional
analysis. Many inequalities have been generalized through
the instrument of fractional integral operators and provide
construction of new approximations.
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One of the fractional calculus studies in the literature
belongs to Abdeljawad et al. [6]. *ey obtained generalized
Hermite–Hadamard type inequalities and generalized
Simpson type inequalities for (s, m)-convex functions with
the help of local fractional integration. Akdemir et al. [7]
used generalized fractional integral operators. By using these
operators, they proved new and general variants of Che-
byshev’s inequality. Butt et al. [8] established a general in-
tegral identity to acquire new integral inequalities of several
Hadamard types. For this purpose, they used a new version
of the Atangana–Baleanu integral operator. Khan et al. [9]
explored two fractional integral operators related to Fox
H-function owing to Saxena and Kumbhat. *ey proved
series expansion of the images of the M-series with the help
of these fractional operators. Another study to k-fractional
integrals was presented by Qi et al. [10]. *ey constructed
some generalized fractional integral inequalities of the
Hermite–Hadamard type via (α, m)-convex functions. Also,
they demonstrated that one can get and expand some
Riemann–Liouville fractional integral inequalities and
classical integral inequalities of Hermite–Hadamard’s type.
Tunc et al. [11] presented the generalized k-fractional in-
tegrals of a function with respect to the another function that
generalizes many several types of fractional integrals. Also,
they studied trapezoid inequalities for the functions whose
derivatives in absolute value are convex. Önalan et al. [12]
proved many Hermite–Hadamard type integral inequalities
for functions whose absolute values of the second derivatives
are s-convex and s-concave using fractional integral oper-
ators with the Mittag–Leffler kernel. Zhu et al. [13] explored
a weighted integral identity of Simpson-like type. Relying on
this identity, they obtained some estimation-type results
connected with the weighted Simpson-like type integral
inequalities for the first order differentiable functions. Sri-
vastava et al. [14] established the homogeneous q-shift
operator and the homogeneous q-difference operator. Based
on these operators, they searched generalized Cauchy and
Hahn polynomials.

2. Preliminaries

Now let us define some important functions.

Definition 1 (see [15]). A function φ: [a, b]⟶ R is called a
convex function, if

φ(ηι +(1 − η)κ)≤ ηφ(ι) +(1 − η)φ(κ) (1)

holds for all ι, κ ∈ [a, b] and η ∈ [0, 1].

Definition 2 (see [16]). *e function φ: [0, b]⟶ R, b> 0, is
called the (α, m)-convex function, if

φ(ηι + m(1 − η)κ)≤ ηαφ(ι) + m 1 − ηα( 􏼁φ(κ) (2)

holds for all ι, κ ∈ [0, b], η ∈ [0, 1] and (α, m) ∈ [0, 1]2.

Definition 3 (see [17]). A function φ: [0, b]⟶ R is said to
be (s, m)-convex, if

φ(ηι + m(1 − η)κ)≤ ηsφ(ι) + m 1 − ηs
( 􏼁φ(κ) (3)

holds for all ι, κ ∈ [0, b], η ∈ [0, 1] and (s, m) ∈ (0, 1].

Definition 4 (see [18]). A function φ: [0, b]⟶ R is said to
be (s, m)-convex in the second sense, if

φ(ηι + m(1 − η)κ)≤ ηsφ(ι) + m(1 − η)
sφ(κ) (4)

holds for all ι, κ ∈ [0, b] , η ∈ [0, 1] and (s, m) ∈ (0, 1]2.

Definition 5 (see [19]). Let J⊆R be an interval including
(0, 1) and let h: J⟶ R be a nonnegative function. *en the
function φ: [0, b]⟶ R is called the (h − m)-convex func-
tion, if

φ(ηι + m(1 − η)κ)≤ h(η)φ(ι) + mh(1 − η)φ(κ) (5)

holds for all ι, κ ∈ [0, b], η ∈ [0, 1] and m ∈ [0, 1].

Definition 6 (see [20]). Let J⊆R be an interval including
(0, 1) and let h: J⟶ R be a nonnegative function. *en the
function φ: [0, b]⟶ R is called the (α, h − m)-convex
function, if

φ(ηι + m(1 − η)κ)≤ h ηα( 􏼁φ(ι) + mh 1 − ηα( 􏼁φ(κ) (6)

holds for all ι, κ ∈ [0, b], η ∈ [0, 1] and (α, m) ∈ [0, 1]2.

Remark 1

(i) By taking m � α � 1 and h(η) � η in (6), we obtain
the definition of convex function (1).

(ii) By taking h(η) � η in (6), we obtain the definition of
(α, m)-convex function (2).

(iii) By taking h(η) � η and α � s in (6), we obtain the
definition of (s, m)-convex function (3).

(iv) By taking h(η) � ηs and α � 1 in (6), we obtain the
definition of (s, m)-convex function in the second
sense (4).

(v) By taking α � 1 in(6), we obtain the definition of
(h, m)-convex function (5).

(vi) By taking α � m � h(η) � 1 in (6), we obtain the
definition of p-function described by Dragomir et al.
in [21].

Now let us represent some definitions of fractional in-
tegral operators that will form the basis for this article.

Definition 7 (see [22]). Let c, c, w, α, l, ∈ C,R(l),R(α)> 0,

R(c)>R(c)> 0 with μ, δ > 0, 􏽥p≥ 0, and 0< v≤ δ + μ. Let
φ ∈ L1[a, b], ι ∈ [a, b]. In that case, the generalized fractional
operators are defined by

F
c,δ,v,c

μ,α,l,w,a+φ􏼒 􏼓(ι; 􏽥p) � 􏽚
ι

a
(ι − η)

α− 1
E

c,δ,v,c

μ,α,l w(ι − η)
μ
; 􏽥p( 􏼁φ(η)dη,

F
c,δ,v,c

μ,α,l,w,b−
φ􏼒 􏼓(ι; 􏽥p) � 􏽚

b

ι
(η − ι)α− 1

E
c,δ,v,c

μ,α,l
w(η − ι)μ; 􏽥p( 􏼁φ(η)dη,

(7)
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where

E
c,δ,v,c

μ,α,l (η; 􏽥p) � 􏽘
∞

n�0

β􏽥p(c + nv, c − c)

β(c, c − c)

(c)nv

Γ(μn + α)

ηn

(l)nδ
(8)

is generalized extended Mittag–Leffler function, and β􏽥p
is the expansion of beta function described as below:

β􏽥p(ι, κ) � 􏽚
1

0
ηι− 1

(1 − η)
κ− 1

e
− (􏽥p/η(1− η))dη, (9)

where R(ι),R(κ),R(􏽥p)> 0.

Definition 8 (see [23]). Let φ,ψ: [a, b]⟶ R with 0< a< b,
be the functions, φ be positive, φ ∈ L1[a, b] and ψ be dif-
ferentiable and strictly increasing. Let (ϕ/ι) be an increasing
on [a,∞), c, c, w, α, l ∈ C,R(l),R(α)> 0,R(c)>R(c)> 0
with μ, δ > 0, 􏽥p≥ 0, and 0< v≤ μ + δ. In that case, for
ι ∈ [a, b], the fractional operators are described by

ψF
ϕ,c,δ,v,c

μ,α,l,w,a+φ􏼒 􏼓(ι; 􏽥p) � 􏽚
ι

a

ϕ(ψ(ι) − ψ(η))

ψ(ι) − ψ(η)
E

c,δ,v,c

μ,α,l w(ψ(ι) − ψ(η))
μ
; 􏽥p( 􏼁ψ′(η)φ(η)dη,

ψF
ϕ,c,δ,v,c

μ,α,l,w,b− φ􏼒 􏼓(ι; 􏽥p) � 􏽚
b

ι

ϕ(ψ(η) − ψ(ι))
ψ(η) − ψ(ι)

E
c,δ,v,c

μ,α,l w(ψ(η) − ψ(ι))μ; 􏽥p( 􏼁ψ′(η)φ(η)dη.

(10)

Definition 9 (see [23]). Let φ,ψ: [a, b]⟶ R with 0< a< b,
be the functions such that φ be positive and φ ∈ L1[a, b] and
ψ be differentiable and strictly increasing. Let c, c, w, α,

l, ∈ C,R(l),R(α)> 0,R(c)>R(c)> 0, μ, δ > 0, 􏽥p≥ 0, and
0< v≤ μ + δ. In that case, for ι ∈ [a, b], the united operators
are described by

ψF
c,δ,v,c

μ,α,l,w,a+φ􏼒 􏼓(ι; 􏽥p) � 􏽚
ι

a
(ψ(ι) − ψ(η))

α− 1
E

c,δ,v,c

μ,α,l w(ψ(ι) − ψ(η))
μ
; 􏽥p( 􏼁ψ′(η)φ(η)dη,

ψF
ϕ,c,δ,v,c

μ,α,l,w,b− φ􏼒 􏼓(ι; 􏽥p) � 􏽚
b

ι
(ψ(η) − ψ(ι))α− 1

E
c,δ,v,c

μ,α,l w(ψ(η) − ψ(ι))μ; 􏽥p( 􏼁ψ′(η)φ(η)dη.

(11)

Recently, Yue et al. defined generalized k-fractional
operators including a further extension of Mittag–Leffler
function in [24] as noted below:

Definition 10. Let φ,ψ: [a, b]⟶ R with 0< a< b; be the
functions such that φ be positive and φ ∈ L1[a, b] and ψ be

differentiable and strictly increasing. Let c, c, w, α, l, ∈ R and
α> k, l, α> 0, c> c> 0 with 0< v≤ δ + μ, 􏽥p≥ 0 and μ, δ > 0. In
that case, for ι ∈ [a, b], the right-left generalized k-fractional
operators (k

ψF
c,δ,v,c

μ,α,l,w,a+φ) and (k
ψF

c,δ,v,c

μ,α,l,w,b− φ) are defined by

k
ψF

c,δ,v,c

μ,α,l,w,a+φ􏼒 􏼓(ι; 􏽥p) � 􏽚
ι

a
(ψ(ι) − ψ(η))

(α/k)− 1
E

c,δ,v,c

μ,α,l w(ψ(ι) − ψ(η))
μ
; 􏽥p( 􏼁ψ′(η)φ(η)dη, (12)

gkF
c,δ,v,c

μ,α,l,w,b− φ􏼒 􏼓(ι; 􏽥p) � 􏽚
b

ι
(ψ(η) − ψ(ι))(α/k)− 1

E
c,δ,v,c

μ,α,l w(ψ(η) − ψ(ι))μ; 􏽥p( 􏼁ψ′(η)φ(η)dη. (13)

*e following inequality is the admitted Hadamard
inequality.

Theorem 1. Let φ: [a, b]⟶ R with a< b, be a convex
function. In that case, the below inequality occurs:

φ
a + b

2
􏼠 􏼡≤

1
b − a

􏽚
b

a
φ(ι)dι ≤

φ(a) + φ(b)

2
. (14)

Theorem 2. Let φ: [a, b]⟶ R be a convex and
ψ: [a, b]⟶ R be nonnegative and symmetric in respect of
((a + b)/2) and integrable. In that case, the below inequality
occurs:

φ
a + b

2
􏼠 􏼡 􏽚

b

a
ψ(ι)dι≤ 􏽚

b

a
φ(ι)ψ(ι)dι≤

φ(a) + φ(b)

2
􏽚

b

a
ψ(ι)dι.

(15)
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*is inequality in [25] presented by Fejér is known as a
weighted type of Hadamard’s inequality.

Many authors have been established several refinements
and extensions of the Hadamard and the Fejér–Hadamard
inequalities for various fractional integral operators (for
details see, [2, 7, 11, 16, 17, 19–21, 26–34] and references
therein). *is article aims to derive the Hadamard and
Fejér–Hadamard inequalities about generalized k-fractional
integrals involving Mittag–Leffler functions via
(α, h − m)-convex functions. In the upcoming section, we
will utilize k-fractional integral operators and
(α, h − m)-convexity to prove the two versions of the
Hadamard inequality and the Fejér–Hadamard inequality.

3. The k-Fractional Inequalities of Hadamard
and Fejér–Hadamard Type

In this section, we first describe the below generalized
k-fractional Hadamard’s inequality.

Theorem 3. Let h: J⟶ R is nonnegative, nonzero and
integrable function and φ,ψ: [a, b]⟶ R, 0≤ a<mb, be the
functions such that φ ∈ L1[a, b] and φ be positive and ψ be
differentiable and strictly increasing. If φ is (α, h − m)-con-
vex, the below inequalities for k-fractional operators (12) and
(13) occur:

φ
ψ(a) + mψ(b)

2
􏼠 􏼡

k
ψF

c,δ,v,c

μ,τ,l,w,a+
1􏼒 􏼓(mψ(b); 􏽥p)

≤ h
1
2α

􏼒 􏼓
k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ􏼒 􏼓(mψ(b); 􏽥p) + m

(τ/k)+1
h

2α − 1
2α

􏼠 􏼡
k
ψF

c,δ,v,c

μ,τ,l,wmμ ,b−
φ°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡

≤ h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h ηα( 􏼁dη

+ m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h 1 − ηα( 􏼁dη,

(16)

where w � (w/(mψ(b) − ψ(a))μ) for all η ∈ [a, b].

Proof. Since φ is (α, h − m)-convex on [a, b], for all
ι, κ ∈ [a, b], we have

φ
ψ(ι) + mψ(κ)

2
􏼠 􏼡≤ h

1
2α

􏼒 􏼓φ(ψ(ι)) + mh
2α − 1
2α

􏼠 􏼡φ(ψ(κ)). (17)

Setting ψ(ι) � ηψ(a) + m(1 − η)ψ(b) and ψ(κ) � (ψ(a)/m)

(1 − η) + ηψ(b) in above inequality, we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡≤ h

1
2α

􏼒 􏼓φ(ηψ(a) + m(1 − η)ψ(b))

+ mh
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
(1 − η) + ηg(b)􏼠 􏼡.

(18)

Multiplying both sides of (18) by η(τ/k)− 1E
c,δ,v,c

μ,τ,l (wημ; 􏽥p),
then integrating over [0, 1], we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁dη

≤ h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ(ηψ(a) + m(1 − η)ψ(b))dη

+ mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
ψ(a)

m
(1 − η) + ηψ(b)􏼠 􏼡dη.

(19)
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By specifying ψ(ι) � ηψ(a) + m(1 − η)ψ(b) and ψ(κ) �

(ψ(a)/m)(1 − η) + ηψ(b) in (19), we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mψ(b) − ψ(ι))μ; 􏽥p( 􏼁ψ′(ι)dι

≤ h
1
2α

􏼒 􏼓 􏽚
ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mψ(b) − ψ(ι))μ; 􏽥p( 􏼁φ(ψ(ι))ψ′(ι)dι

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
b

ψ− 1(ψ(a)/m)
(ψ(κ) −

ψ(a)

m
)
(τ/k)− 1

E
c,δ,v,c

μ,τ,l wm
μ ψ(κ) −

ψ(a)

m
􏼠 􏼡

μ

; 􏽥p􏼠 􏼡φ(ψ(κ))ψ′(κ)dκ.

(20)

By usage k-fractional operators (12) and (13), the first
side of (16) is achieved.

To evidence the second side of (16), once again
(α, h − m)-convexity of φ over [a, b], for η ∈ [0, 1], we
achieve

h
1
2α

􏼒 􏼓φ(ηψ(a) + m(1 − η)ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ (1 − η)
ψ(a)

m
+ ηψ(b)􏼠 􏼡

≤ h ηα( 􏼁 h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣

+ mh 1 − ηα( 􏼁 h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣.

(21)

Multiplying both sides of (21) by η(τ/k)− 1E
c,δ,v,c

μ,τ,l (wημ; 􏽥p),
next integrating over [0, 1], we achieve

h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ(ηψ(a) + m(1 − η)ψ(b))dη

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ (1 − η)
ψ(a)

m
+ ηψ(b)􏼠 􏼡dη

≤ h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h ηα( 􏼁dη

+ m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h 1 − ηα( 􏼁dη.

(22)

Setting ψ(ι) � ηψ(a) + m(1 − η)ψ(b) and ψ(κ) � (1 −

η)(ψ(a)/m) + ηψ(b) in (22), in that case by utilizing
k-fractional operators (12) and (13), the second side of (16) is
achieved. □

Corollary 1. By usage (16), anymore k-fractional inequalities
are offered as noted below:

(i) By choosing ψ � I and 􏽥p � w � 0, we obtain
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φ
a + mb

2
􏼠 􏼡 􏽚

mb

a
(mb − ι)(τ/k)− 1dι

≤ h
1
2α

􏼒 􏼓 􏽚
mb

a
(mb − ι)(τ/k)− 1φ(ι)dι + m

(τ/k)+1
h

2α − 1
2α

􏼠 􏼡 􏽚
b

a

m

κ −
a

m
􏼒 􏼓

(τ/k)− 1
φ(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

h ηα( 􏼁dη

+ m h
1
2α

􏼒 􏼓φ(b) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

h 1 − ηα( 􏼁dη.

(23)

(ii) By choosing ψ � I and 􏽥p � 0, we obtain

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁dι

≤ h
1
2α

􏼒 􏼓 􏽚
mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁φ(ι)dι

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
b

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
􏼒 􏼓φ(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ( 􏼁h ηα( 􏼁dη

+ m h
1
2α

􏼒 􏼓φ(b) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ( 􏼁h 1 − ηα( 􏼁dη.

(24)

(iii) By setting m � 1 and ψ � I, we obtain

φ
a + b

2
􏼠 􏼡 􏽚

b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁dι

≤ h
1
2α

􏼒 􏼓 􏽚
b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁φ(ι)dι

+ h
2α − 1
2α

􏼠 􏼡 􏽚
b

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁φ(κ)dκ

≤ h
1
2α

􏼒 􏼓f(a) + h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h ηα( 􏼁dη

+ h
1
2α

􏼒 􏼓φ(b) + h
2α − 1
2α

􏼠 􏼡φ(a)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h 1 − ηα( 􏼁dη.

(25)

(iv) By choosing h(η) � η and 􏽥p � w � 0, we obtain
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φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1ψ′(ι)dι

≤
1
2α

􏼒 􏼓 􏽚
ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1φ(ψ(ι))ψ′(ι)dι

+ m
(τ/k)+1 2α − 1

2α
􏼠 􏼡 􏽚

b

ψ− 1(ψ(a)/m)
(ψ(κ) −

ψ(a)

m
)
(τ/k)− 1φ(ψ(κ))ψ′(κ)dκ

≤
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ(ψ(b))􏼢 􏼣

k

τ + αk
􏼠 􏼡

+ m
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ

ψ(a)

m
2􏼠 􏼡􏼢 􏼣

αk
2

τ(τ + αk)
􏼠 􏼡.

(26)

(v) By setting α � 1 and ψ � I, we get

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁dι

≤ h
1
2

􏼒 􏼓 􏽚
mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁φ(ι)dι

+ m
(τ/k)+1

h
1
2

􏼒 􏼓 􏽚
b

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
; 􏽥p􏼒 􏼓φ(κ)dκ

≤ h
1
2

􏼒 􏼓φ(a) + m
(τ/k)+1

h
1
2

􏼒 􏼓φ(b)􏼔 􏼕 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h(η)dη

+ m h
1
2

􏼒 􏼓φ(b) + m
(τ/k)+1

h
1
2

􏼒 􏼓φ
a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h(1 − η)dη.

(27)

(vi) By setting α � m � 1, h(η) � η and ψ � I, we get

φ
a + b

2
􏼠 􏼡 􏽚

b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁dι

≤
1
2

􏽚
b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁φ(ι)dι + 􏽚
b

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁φ(κ)dκ􏼢 􏼣

≤
φ(a) + φ(b)

2
􏼠 􏼡 􏽚

1

0
η(τ/k)

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁dη + 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁(1 − η)dη􏼢 􏼣.

(28)

Remark 2. *e above k-fractional inequalities are farther in
line with already known conclusions as noted below: (i) By
choosing k � 1 in Corollary 1 (v), an inequality for extended
generalized fractional integrals is acquired. (ii) By choosing

k � 1 and 􏽥p � 0 in Corollary 1 (v), *eorem 2.1 of [28] is
acquired. (iii) By choosing m � 1, and h(η) � η inCorollary 1
(v), *eorem 2.1 of [27] is acquired. (iv) By choosing 􏽥p � w �

0 in Corollary 1 (v), *eorem 2.1 of [20] is acquired.
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Remark 3. (i) By choosing k � 1 and 􏽥p � 0 in Remark 1 (iii),
an inequality for extended generalized fractional integrals is
acquired. (ii) By choosing k � 1 and 􏽥p � w � 0 in Remark 1
(iii),*eorem 2 of [29] is acquired. (iii) By choosing k � 1 in
Remark 1 (iv), Corollary 2.2 of [20] is acquired.

*e below lemma is beneficial to offer the
Fejér–Hadamard’s inequality for generalized k-fractional
integrals.

Lemma 1. Let φ,ψ: [a, b]⟶ R with 0≤ a<mb, be the
functions such that φ ∈ L1[a, b] and φ positive and ψ be
differentiable and strictly increasing. If φ(ψ(ι)) �

φ(ψ(a) + mψ(b) − ψ(ι)), in that case for generalized
k-fractional operators (11) and (12), we get

k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ􏼒 􏼓(mψ(b); 􏽥p) �

k
ψF

c,δ,v,c

μ,τ,l,wmμ,b−
φ°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡

�
1
2

k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°g􏼒 􏼓(mψ(b); 􏽥p) +

k
ψF

c,δ,v,c

μ,τ,l,wmμ ,b−
φ°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡􏼢 􏼣,

(29)

for all η ∈ [a, b]. Proof. By description of generalized k-fractional operators
(12) and (13), we get

k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ􏼒 􏼓(mψ(b); 􏽥p)

� 􏽚
ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mψ(b) − ψ(ι))μ; 􏽥p( 􏼁 φ°ψ( 􏼁(ι)ψ′(ι)dι

� 􏽚
ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mψ(b) − ψ(ι))μ; 􏽥p( 􏼁φ(ψ(ι))ψ′(ι)dι

� 􏽚
g− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mψ(b) − ψ(ι))μ; 􏽥p( 􏼁φ(ψ(a) + mψ(b) − ψ(ι))ψ′(ι)dι.

(30)

Setting ψ(η) � ψ(a) + mψ(b) − ψ(ι) in the above
equation and using φ(ψ(ι)) � φ(ψ(a) + mψ(b) − ψ(ι)), we
have

k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ􏼒 􏼓(mψ(b); 􏽥p)

� 􏽚
b

ψ− 1(ψ(a)/m)
(mψ(η) − ψ(a))

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(mψ(η) − ψ(a))
μ
; 􏽥p( 􏼁φ(ψ(η))ψ′(η)dη

� 􏽚
b

ψ− 1(ψ(a)/m)
(mψ(η) − ψ(a))

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(mψ(η) − ψ(a))
μ
; 􏽥p( 􏼁 φ°ψ( 􏼁(η)ψ′(η)dη.

(31)

*is implies

k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ􏼒 􏼓(mψ(b); 􏽥p) �

k
ψF

c,δ,v,c

μ,τ,l,wmμ,b−
φ°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡.

(32)

By adding (k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ)(mψ(b); 􏽥p) on both sides of

(32), we have

2 k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ􏼒 􏼓(mψ(b); 􏽥p) �

k
ψF

c,δ,v,c

μ,τ,l,wmμ,b−
φ°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡

+
k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°ψ􏼒 􏼓(mψ(b); 􏽥p).

(33)

From equations (32) and (33), the result can be
obtained. □
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*e first type of Fejér–Hadamard inequality is endued
through generalized k-fractional integrals as noted below:

Theorem 4. Let h: J⟶ R be nonnegative, nonzero, and
integrable function and φ,ψ: [a, b]⟶ R, 0≤ a<mb, be the
functions such that φ ∈ L1[a, b] and φ be positive and ψ be

differentiable and strictly increasing, r is a nonnegative and
integrable function. If φ is (α, h − m)-convex and
φ(ψ(ι)) � φ(ψ(a) + mψ(b) − ψ(ι)), in that case the below
inequalities for generalized k-fractional operators (12) and
(13) occur:

φ
ψ(a) + mψ(b)

2
􏼠 􏼡

k
ψF

c,δ,v,c

μ,τ,l,w,a+
r°ψ􏼒 􏼓(mψ(b); 􏽥p) +

k
ψF

c,δ,v,c

μ,τ,l,wmμ,b−
r°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡􏼢 􏼣

≤ 2h
1
2α

􏼒 􏼓
k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°r°ψ􏼒 􏼓(mψ(b); 􏽥p)

+ 2m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡
k
ψF

c,δ,v,c

μ,τ,l,wmμ ,b−
φ°r°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡

≤ 2 h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l
wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))h ηα( 􏼁dη

+ 2m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
t
(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))h 1 − ηα( 􏼁dη ,

(34)

where w � (w/(mψ(b) − ψ(a))μ) for all η ∈ [a, b].

Proof. We demonstrate the claim as follows:

Multiplying both sides of (18) by
η(τ/k)− 1E

c,δ,v,c

μ,τ,l (wημ; 􏽥p)r(ηψ(a) + m(1 − η)ψ(b)) and then
integrating over [0, 1], we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))dη

≤ h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ(ηψ(a) + m(1 − η)ψ(b))r(ηψ(a) + m(1 − η)ψ(b))dη

+ mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ (1 − η)
ψ(a)

m
+ ηψ(b)􏼠 􏼡r(ηψ(a) + m(1 − η)ψ(b))dη.

(35)

By specifying ψ(ι) � ηψ(a) + m(1 − η)ψ(b) and ψ(κ) �

(1 − η)(ψ(a)/m) + ηψ(b), that is ψ(a) + mψ(b) − ψ(ι) �

(1 − η)ψ(a) + mηψ(b), in (35), then using φ(ψ
(ι)) � φ(ψ(a) + mψ(b) − ψ(ι)), we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mψ(b) − ψ(ι))μ; 􏽥p( 􏼁 r°ψ( 􏼁(ι)ψ′(ι)dι

≤ h
1
2α

􏼒 􏼓 􏽚
ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mψ(b) − ψ(ι))μ; 􏽥p( 􏼁 φ°ψ( 􏼁(ι) r°ψ( 􏼁(ι)ψ′(ι)dι

+ mh
2α − 1
2α

􏼠 􏼡 􏽚
b

ψ− 1(ψ(a)/m)
(ψ(ι) −

ψ(a)

m
)
(τ/k)− 1

E
c,δ,v,c

μ,τ,l wm
μ ψ(ι) −

ψ(a)

m
􏼠 􏼡

μ

; 􏽥p􏼠 􏼡 φ°ψ( 􏼁(ι) r°ψ( 􏼁(ι)ψ′(ι)dι.

(36)
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*is implies

φ
ψ(a) + mψ(b)

2
􏼠 􏼡

k
ψF

c,δ,v,c

μ,τ,l,w,a+
r°ψ􏼒 􏼓(mψ(b); 􏽥p)≤ h

1
2α

􏼒 􏼓
k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°r°ψ􏼒 􏼓(mψ(b); 􏽥p)

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡
k
ψF

c,δ,v,c

μ,τ,l,wmμ ,b−
φ°r°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡.

(37)

Using Lemma 1 in the above inequality, we have the first
side of (34).

To demonstrate second side of (34), multiplying both
parts of (21) by 2η(τ/k)− 1E

c,δ,v,c

μ,τ,l (wημ; 􏽥p)r(ψ(a)+

m(1 − η)ψ(b)) and then integrating over [0, 1], we have

2h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l
wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))φ(ηψ(a) + m(1 − η)ψ(b))dη

+ 2m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))φ (1 − η)
ψ(a)

m
+ ψ(b)􏼠 􏼡dη

≤ 2 h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))h ηα( 􏼁dη

+ 2m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))h 1 − ηα( 􏼁dη.

(38)

Setting ψ(ι) � ηψ(a) + m(1 − η)ψ(b) and ψ(κ) �

(1 − η)(ψ(a)/m) + ηψ(b), then using φ(ψ(ι)) � φ(ψ(a)+

mψ(b) − ψ(ι)) in (38), we have

2h
1
2α

􏼒 􏼓
k
ψF

c,δ,v,c

μ,τ,l,w,a+
φ°r°ψ􏼒 􏼓(mψ(b); 􏽥p)

+ 2m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡
k
ψF

c,δ,v,c

μ,τ,l,wmμ,b−
φ°r°ψ􏼒 􏼓

ψ(a)

m
; 􏽥p􏼠 􏼡

≤ 2 h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))h ηα( 􏼁dη

+ 2m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηψ(a) + m(1 − η)ψ(b))h 1 − ηα( 􏼁dη.

(39)
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By usage Lemma 1 in the above inequality, we have the
second side of (34). □

Corollary 2. By using (34), some more k-fractional in-
equalities are offered as noted below:

(i) By choosing ψ � I and 􏽥p � w � 0, we obtain

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a
(mb − ι)(τ/k)− 1

r(ι)dι

≤ 2h
1
2α

􏼒 􏼓 􏽚
mb

a
(mb − ι)(τ/k)− 1

(φ ∘ r)(ι)dι + 2m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
b

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
(φ ∘ r)(κ)dκ

≤ 2 h
1
2α

􏼒 􏼓φ(a) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

r(ηa + m(1 − η)b)h ηα( 􏼁dη

+ 2m h
1
2α

􏼒 􏼓φ(b) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

r(ηa + m(1 − η)b)h 1 − ηα( 􏼁dη.

(40)

(ii) By choosing 􏽥p � 0 and ψ � I, we obtain

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁r(ι)dι

≤ 2h
1
2α

􏼒 􏼓 􏽚
mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁(φ ∘ r)(ι)dι

+ 2m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
b

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
􏼒 􏼓(φ ∘ r)(κ)dκ

≤ 2 h
1
2α

􏼒 􏼓φ(a) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ( 􏼁r(ηa + m(1 − η)b)h ηα( 􏼁dη

+ 2m h
1
2α

􏼒 􏼓φ(b) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ( 􏼁r(ηa + m(1 − η)b)h 1 − ηα( 􏼁dη.

(41)

(iii) By choosing m � 1 and ψ � I, we obtain

φ
a + b

2
􏼠 􏼡 􏽚

b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁r(ι)dι

≤ 2h
1
2α

􏼒 􏼓 􏽚
b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁(φ ∘ r)(ι)dι

+ 2h
2α − 1
2α

􏼠 􏼡 􏽚
b

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁(φ ∘ r)(κ)dκ

≤ 2 h
1
2α

􏼒 􏼓φ(a) + h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa +(1 − η)b)h ηα( 􏼁dη

+ 2 h
1
2α

􏼒 􏼓φ(b) + h
2α − 1
2α

􏼠 􏼡φ(a)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa +(1 − η)b)h 1 − ηα( 􏼁dη.

(42)
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(iv) By choosing 􏽥p � w � 0 and h(η) � η, we obtain

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

(r ∘ψ)(ι)ψ′(ι)dι

≤
1

2α− 1􏼠 􏼡 􏽚
ψ− 1(mψ(b))

a
(mψ(b) − ψ(ι))(τ/k)− 1

(φ ∘ r ∘ψ)(ι)ψ′(ι)dι

+ m
(τ/k)+1 2α − 1

2α− 1􏼠 􏼡 􏽚
b

ψ− 1
ψ(a)

m
􏼠 􏼡

(ψ(κ) −
ψ(a)

m
)
(τ/k)− 1

(φ ∘ r ∘ψ)(κ)ψ′(κ)dκ

≤ 2
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ(ψ(b))􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

r(ηψ(a) + m(1 − η)ψ(b)) ηα( 􏼁dη

+ 2m
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ

ψ(a)

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

r(ηψ(a) + m(1 − η)ψ(b)) 1 − ηα( 􏼁dη.

(43)

(v) By choosing α � 1 and ψ � I, we obtain

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l
w(mb − ι)μ; 􏽥p( 􏼁r(ι)dι

≤ 2h
1
2

􏼒 􏼓 􏽚
mb

a
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l
w(mb − ι)μ; 􏽥p( 􏼁(φ ∘ r)(ι)dι

+ 2m
(τ/k)+1

h
1
2

􏼒 􏼓 􏽚
b

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
E

c,δ,v,c

μ,τ,l
wm

μ κ −
a

m
􏼒 􏼓

μ
; 􏽥p􏼒 􏼓(φ ∘ r)(κ)dκ

≤ 2 h
1
2

􏼒 􏼓φ(a) + m
(τ/k)+1

h
1
2

􏼒 􏼓φ(b)􏼔 􏼕 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa + m(1 − η)b)h(η)dη

+ 2m h
1
2

􏼒 􏼓φ(b) + m
(τ/k)+1

h
1
2

􏼒 􏼓φ
a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa + m(1 − η)b)h(1 − η)dη.

(44)

(vi) By choosing α � m � 1, h(η) � η and, we obtain

φ
a + b

2
􏼠 􏼡 􏽚

b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁r(ι)dι

≤ 􏽚
b

a
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁(φ ∘ r)(ι)dι􏼢

+􏽚
b

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁(φ ∘ r)(κ)dκ􏼣

≤ (φ(a) + φ(b))[ 􏽚
1

0
η(τ/k)

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa +(1 − η)b)dη

+ 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa +(1 − η)b)(1 − η)dη].

(45)
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(vii) By choosing α � k � 1 and ψ � I, we obtain

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a
(mb − ι)τ− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁r(ι)dι

≤ 2h
1
2

􏼒 􏼓 􏽚
mb

a
(mb − ι)τ− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁(φ ∘ r)(ι)dι

+ 2m
τ+1

h
1
2

􏼒 􏼓 􏽚
b

(a/m)
κ −

a

m
􏼒 􏼓

τ− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
; 􏽥p􏼒 􏼓(φ ∘ r)(κ)dκ

≤ 2 h
1
2

􏼒 􏼓φ(a) + m
τ+1

h
1
2

􏼒 􏼓φ(b)􏼔 􏼕 􏽚
1

0
ητ− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa + m(1 − η)b)h(η)dη

+ 2m h
1
2

􏼒 􏼓φ(b) + m
τ+1

h
1
2

􏼒 􏼓φ
a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
ητ− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r(ηa + m(1 − η)b)h(1 − η)dη.

(46)

Remark 4. *e above k-fractional inequalities are farther in
line with foreknown conclusions as noted below: (i) By
choosing k � 1 in Corollary 2 (vi), *eorem 2.2 of [27] is
acquired. (ii) By choosing 􏽥p � 0 in in Corollary 2 (vii),
*eorem 2.5 of [28] is acquired. (iii) By choosing k � I, 􏽥p �

w � 0 and h(η) � η in Corollary 2 (v), an inequality for
m-convex functions via Riemann–Liouville integrals is ac-
quired. (iv) By choosing k � 1 and 􏽥p � 0 in inCorollary 2 (vi),
an inequality for extended generalized fractional integrals is
acquired. (v) By choosing k � 1 and 􏽥p � w � 0 in inCorollary
2 (vi),*eorem 4 of [26] is acquired. (vi) By choosing h(η) � η
in in Corollary 3.2 (vii), *eorem 3.1 of [27] is acquired.

In the subsequent theorem, we offer another type of
Hadamard’s inequality.

Theorem 5. Let h: J⟶ R is nonnegative, nonzero and
integrable function and φ,ψ: [a, b]⟶ R, 0≤ a<mb, be the
functions such that φ ∈ L1[a, b] and φ be positive and ψ be
differentiable and strictly increasing. If φ is (α, h − m)-con-
vex, in that case for generalized k-fractional operators (12)
and (13), we acquire

φ
ψ(a) + mψ(b)

2
􏼠 􏼡

k
ψF

c,δ,v,c

μ,τ,l,w,ψ− 1(mψ(b)+ψ(a)/2)+
1􏼒 􏼓(mψ(b); 􏽥p)

≤ h
1
2α

􏼒 􏼓
k
ψF

c,δ,v,c

μ,τ,l,w
̳
,ψ− 1(mψ(b)+ψ(a)/2)+

φ°ψ􏼒 􏼓(mψ(b); 􏽥p)

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡
k
ψF

c,δ,v,c

μ,τ,l,w
̳
mμ ,ψ− 1(mψ(b)+ψ(a)/2m)−

φ°ψ􏼒 􏼓
ψ(a)

m
; 􏽥p􏼠 􏼡

≤ h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
2α − ηα

2α
􏼠 􏼡dη,

(47)

where w � (2μw/(mψ(b) − ψ(a))μ) for all η ∈ [a, b].

Proof. Setting ψ(ι) � (η/2)ψ(a) + m(2 − η/2)ψ(b) and
ψ(κ) � (2 − η/2)(ψ(a)/m) + η/2ψ(b) in (3.2), we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡≤ h

1
2α

􏼒 􏼓φ
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓

+ mh
2α − 1
2α

􏼠 􏼡φ
2 − η
2

􏼒 􏼓
ψ(a)

m
+
η
2
ψ(b)􏼠 􏼡.

(48)
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Multiplying both parts of (48) by η(τ/k)− 1E
c,δ,v,c

μ,τ,l (wημ; 􏽥p)

and then integrating over [0, 1], we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁dη

≤ h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓dη

+ mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
2 − η
2

􏼒 􏼓
ψ(a)

m
+
η
2
ψ(b)􏼠 􏼡dη.

(49)

By taking ψ(ι) � (η/2)ψ(a) + m(2 − η/2)ψ(b) and
ψ(κ) � (2 − η/2)(ψ(a)/m) + η/2ψ(b) in (49), in that case by
usage k-fractional operators (2.12) and (2.13), the first side of
(47) is acquired.

To demonstrate the second side of (47), once again
(α, h − m)-convexity of φ over [a, b], for η ∈ [0, 1], we get

h
1
2α

􏼒 􏼓φ
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓 + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
2 − η
2

􏼒 􏼓
ψ(a)

m
+
η
2
ψ(b)􏼠 􏼡

≤ h
ηα

2α
􏼠 􏼡 h

1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣

+ mh
2α − ηα

2α
􏼠 􏼡 h

1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣.

(50)

Multiplying both sides of (50) by η(τ/k)− 1E
c,δ,v,c

μ,τ,l (wημ; 􏽥p),
then integrating over [0, 1], we acquire

h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓dη

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
2 − η
2

􏼒 􏼓
ψ(a)

m
+
η
2
ψ(b)􏼠 􏼡dη

≤ h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
2α − ηα

2α
􏼠 􏼡dη.

(51)

Choosing ψ(ι) � (η/2)ψ(a) + m(2 − η/2)ψ(b) and
ψ(κ) � (2 − η/2)(ψ(a)/m) + η/2ψ(b) in (51), in that case by
usage k-fractional operators (12) and (13), the second side of
(47) is acquired. □

Corollary 3. By using (47), anymore k-fractional inequalities
are offered as noted below:

(i) By choosing ψ � I and 􏽥p � w � 0, we have
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φ
a + mb

2
􏼠 􏼡 􏽚

mb

a+mb/2
(mb − ι)

τ
k

− 1
dι

≤ h
1
2α

􏼒 􏼓 􏽚
mb

a+mb/2
(mb − ι)

τ
k

− 1
φ(ι)dι + m

τ
k

+ 1
h

2α − 1
2α

􏼠 􏼡 􏽚
a+mb/2

a/m
κ −

a

m
􏼒 􏼓

τ
k

− 1
φ(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + m

τ
k

+ 1
h

2α − 1
2α

􏼠 􏼡φ(b)⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ 􏽚
1

0
η
τ
k

− 1
h

ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(b) + m

τ
k

+ 1
h

2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ 􏽚

1

0
η
τ
k

− 1
h

2α − ηα

2α
􏼠 􏼡dη .

(52)

(ii) By choosing 􏽥p � 0 and ψ � I, we have

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a+mb/2
(mb − ι)

τ
k

− 1
E

c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁dι

≤ h
1
2α

􏼒 􏼓 􏽚
mb

a+mb/2
(mb − ι)

τ
k

− 1
E

c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁φ(ι)dι

+ m

τ
k

+ 1
h

2α − 1
2α

􏼠 􏼡 􏽚

a + mb

2
a

m

κ −
a

m
􏼒 􏼓

τ
k

− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
􏼒 􏼓φ(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + m

τ
k

+ 1
h

2α − 1
2α

􏼠 􏼡φ(b)⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ 􏽚
1

0
η
τ
k

− 1
E

c,δ,v,c

μ,τ,l wημ( 􏼁h
ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(b) + m

τ
k

+ 1
h

2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ 􏽚

1

0
η
τ
k

− 1
E

c,δ,v,c

μ,τ,l wημ( 􏼁h
2α − ηα

2α
􏼠 􏼡dη .

(53)

(iii) By choosing m � 1 and ψ � I, we acquire

φ
a + b

2
􏼠 􏼡 􏽚

b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁dι

≤ h
1
2α

􏼒 􏼓 􏽚
b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁φ(ι)dι

+ h
2α − 1
2α

􏼠 􏼡 􏽚
b

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁φ(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
ηα

2α
􏼠 􏼡dη

+ h
1
2α

􏼒 􏼓φ(b) + h
2α − 1
2α

􏼠 􏼡φ(a)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
2α − ηα

2α
􏼠 􏼡dη.

(54)
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(iv) By choosing 􏽥p � w � 0 and h(η) � η, we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

ψ− 1(mψ(b))

ψ− 1(ψ(a)+mψ(b)/2)
(mψ(b) − ψ(ι))(τ/k)− 1ψ′(ι)dι

≤
1
2α

􏼒 􏼓 􏽚
ψ− 1(mψ(b))

ψ− 1(ψ(a)+mψ(b)/2)
(mψ(b) − ψ(ι))(τ/k)− 1φ(ψ(ι))ψ′(ι)dι

+ m
(τ/k)+1 2α − 1

2α
􏼠 􏼡 􏽚

ψ− 1(ψ(a)+mψ(b)/2m)

ψ− 1(ψ(a)/m)
(ψ(κ) −

ψ(a)

m
)
(τ/k)− 1φ(ψ(κ))ψ′(κ)dκ

≤
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ(ψ(b))􏼢 􏼣

k

2α(τ + αk)
􏼠 􏼡

+ m
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ

ψ(a)

m
2􏼠 􏼡􏼢 􏼣

k

τ
−

k

2α(τ + αk)
􏼠 􏼡.

(55)

(v) By choosing α � 1 and ψ � I, we have

φ
a + mb

2
􏼠 􏼡 􏽚

mb

a+mb/2
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁dι

≤ h
1
2

􏼒 􏼓 􏽚
mb

a+mb/2
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁φ(ι)dι

+ m
(τ/k)+1

h
1
2

􏼒 􏼓 􏽚
(a+mb)/2

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
; 􏽥p􏼒 􏼓φ(κ)dκ

≤ h
1
2

􏼒 􏼓 φ(a) + m
(τ/k)+1

f(b)􏽨 􏽩 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
η
2

􏼒 􏼓dη

+ mh
1
2

􏼒 􏼓 φ(b) + m
(τ/k)+1φ

a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁h
2 − η
2

􏼒 􏼓dη.

(56)

(vi) By choosing α � m � 1, h(η) � η and ψ � I, we have

φ
a + b

2
􏼠 􏼡 􏽚

b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l
�w (b − ι)μ; 􏽥p􏼐 􏼑dι

≤
1
2

[ 􏽚
b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁φ(ι)dι

+ 􏽚
(a+b/2)

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁φ(κ)dκ]

≤
φ(a) + φ(b)

2
􏼠 􏼡 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁dη.

(57)
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Remark 5. *e above k-fractional inequalities are farther in
line with foreknown conclusions as noted below: (i) By
choosing k � 1 in Corollary 3 (v), an inequality for extended
generalized fractional integrals is acquired. (ii) By choosing
k � 1 and 􏽥p � 0 in Corollary 3 (v), *eorem 2.2 of [28] is
acquired.

*e second type of the Fejér–Hadamard’s inequality for
generalized k-fractional integrals is dedicated as noted
below:

Theorem 6. Let h: J⟶ R is nonnegative, nonzero and
integrable function and φ,ψ: [a, b]⟶ R, 0≤ a<mb, be the
functions such that φ ∈ L1[a, b] and φ be positive and ψ be
differentiable and strictly increasing, r is a nonnegative and
integrable function. If φ is (α, h − m)-convex and
φ(ψ(ι)) � φ(ψ(a) + mψ(b) − ψ(ι)), in that case the below
inequalities for generalized k-fractional operators (12) and
(13) occur:

φ
ψ(a) + mψ(b)

2
􏼠 􏼡

k
ψF

c,δ,v,c

μ,τ,l,w
̳
,ψ− 1((mψ(b)+ψ(a))/2)+

r°ψ􏼒 􏼓(mψ(b); 􏽥p)

≤ h
1
2α

􏼒 􏼓
k
ψFμ,τ,l,w

,ψ− 1
((mψ(b) + ψ(a))/2) +

c,δ,v,c φ°r°ψ􏼒 􏼓(mψ(b); 􏽥p)

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡
k
ψF

c,δ,v,c

μ,τ,l,w
̳
mμ,ψ− 1((mψ(b)+ψ(a))/2m)−

φ°r°ψ􏼒 􏼓
ψ(a)

m
; 􏽥p􏼠 􏼡

≤ h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓h
ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓h
2α − ηα

2α
􏼠 􏼡dη,

(58)

where w � (2μw/(mψ(b) − ψ(a))μ) for all η ∈ [ap, bp].

Proof. We demonstrate the claim as follows:

Multiplying (48) by η(τ/k)− 1E
c,δ,v,c

μ,τ,l (wημ; 􏽥p)r((η/2)ψ(a) +

m(2 − η/2)ψ(b)) and then integrating over [0, 1], we have

φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓dη

≤ h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓dη

+ mh
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
2 − η
2

􏼒 􏼓
ψ(a)

m
+
η
2
ψ(b)􏼠 􏼡r

η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓dη.

(59)

By setting ψ(ι) � (η/2)ψ(a) + m(2 − η/2)ψ(b) and
ψ(κ) � (2 − η/2)(ψ(a)/m) + η/2ψ(b), that is,
ψ(a) + mψ(b) − ψ(ι) � (2 − η/2)ψ(a) + m(η/2)ψ(b), in
(59), in that case by usage
φ(ψ(ι)) � φ(ψ(a) + mψ(b) − ψ(ι)) and k-fractional integral
operators (12) and (13), the first side of (58) is acquired.

To demonstrate the second side of (58), multiplying both
parts of (50) by

η(τ/k)− 1
E

c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓, (60)

and then integrating over [0, 1], we have
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h
1
2α

􏼒 􏼓 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓dη

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁φ
2 − η
2

􏼒 􏼓
ψ(a)

m
+
η
2
ψ(b)􏼠 􏼡r

η
2

g(a) + m
2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓dη

≤ h
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(ψ(b))􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓h
ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
ψ(a)

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2
ψ(a) +

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓h
2α − ηα

2α
􏼠 􏼡dη.

(61)

Setting ψ(ι) � (η/2)ψ(a) + m(2 − η/2)ψ(b) and ψ(κ) �

(2 − η/2)(ψ(a)/m) + η/2ψ(b) in (59), then by using
φ(ψ(ι)) � φ(ψ(a) + mψ(b) − ψ(ι)) and k-fractional integral
operators (12) and (13), the second inequality of (58) is
obtained. □

Corollary 4. By using (58), some more k-fractional in-
equalities are offered as noted below:

(i) By choosing ψ � I and 􏽥p � w � 0, we obtain

φ
a + mb

2
􏼠 􏼡 􏽚

mb

((a+mb)/2)
(mb − ι)(τ/k)− 1

r(ι)dι

≤ h
1
2α

􏼒 􏼓 􏽚
mb

((a+mb)/2)
(mb − ι)(τ/k)− 1 φ°r( 􏼁(ι)dι

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
((a+mb)/2)

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
φ°r( 􏼁(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

r
η
2

a + m
2 − η
2

􏼒 􏼓b􏼒 􏼓h
ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(b) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

r
η
2

a + m
2 − η
2

􏼒 􏼓b􏼒 􏼓h
2α − ηα

2α
􏼠 􏼡dη.

(62)

(ii) By choosing ψ � I and 􏽥p � 0, we obtain
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φ
a + mb

2
􏼠 􏼡 􏽚

mb

((a+mb)/2)
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁r(ι)dι

≤ h
1
2α

􏼒 􏼓 􏽚
mb

((a+mb)/2)
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ( 􏼁(φ ∘ r)(ι)dι

+ m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡 􏽚
((a+mb)/2)

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
􏼒 􏼓(φ ∘ r)(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ( 􏼁r
η
2

a + m
2 − η
2

􏼒 􏼓b􏼒 􏼓h
ηα

2α
􏼠 􏼡dη

+ m h
1
2α

􏼒 􏼓φ(b) + m
(τ/k)+1

h
2α − 1
2α

􏼠 􏼡φ
a

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ( 􏼁r
η
2

a + m
2 − η
2

􏼒 􏼓b􏼒 􏼓h
2α − ηα

2α
􏼠 􏼡dη.

(63)

(iii) By choosing m � 1 and ψ � I, we obtain

φ
a + b

2
􏼠 􏼡 􏽚

b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁r(ι)dι

≤ h
1
2α

􏼒 􏼓 􏽚
b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁(φ ∘ r)(ι)dι

+ h
2α − 1
2α

􏼠 􏼡 􏽚
b

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁(φ ∘ r)(κ)dκ

≤ h
1
2α

􏼒 􏼓φ(a) + h
2α − 1
2α

􏼠 􏼡φ(b)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2

a +
2 − η
2

􏼒 􏼓b􏼒 􏼓h
ηα

2α
􏼠 􏼡dη

+ h
1
2α

􏼒 􏼓φ(b) + h
2α − 1
2α

􏼠 􏼡φ(a)􏼢 􏼣 􏽚
1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2

a +
2 − η
2

􏼒 􏼓b􏼒 􏼓h
2α − ηα

2α
􏼠 􏼡dη.

(64)

(iv) By choosing 􏽥p � w � 0 and h(η) � η, we obtain
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φ
ψ(a) + mψ(b)

2
􏼠 􏼡 􏽚

ψ− 1(mψ(b))

ψ− 1(ψ(a)+mψ(b)/2)
(mψ(b) − ψ(ι))(τ/k)− 1

r(ψ(ι))ψ′(ι)dι

≤
1
2α

􏼒 􏼓 􏽚
ψ− 1(mψ(b))

ψ− 1(ψ(a)+mψ(b)/2)
(mψ(b) − ψ(ι))(τ/k)− 1

(φ ∘ r ∘ψ)(ι)ψ′(ι)dι

+ m
(τ/k)+1 2α − 1

2α
􏼠 􏼡 􏽚

ψ− 1(ψ(a)+mψ(b)/2m)

ψ− 1(ψ(a)/2)
(ψ(κ) −

ψ(a)

m
)
(τ/k)− 1

(φ ∘ r ∘ψ)(κ)ψ′(κ)dκ

≤
1
2α

􏼒 􏼓φ(ψ(a)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ(ψ(b))􏼢 􏼣

+ m
1
2α

􏼒 􏼓φ(ψ(b)) + m
(τ/k)+1 2α − 1

2α
􏼠 􏼡φ

ψ(a)

m
2􏼠 􏼡􏼢 􏼣

× 􏽚
1

0
η(τ/k)− 1

r
η
2
ψ(a) + m

2 − η
2

􏼒 􏼓ψ(b)􏼒 􏼓h
2α − ηα

2α
􏼠 􏼡dη.

(65)

(v) By choosing α � 1 and ψ � I, we get

φ
a + mb

2
􏼠 􏼡 􏽚

mb

(a+mb/2)
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁r(ι)dι

≤ h
1
2

􏼒 􏼓 􏽚
mb

(a+mb/2)
(mb − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(mb − ι)μ; 􏽥p( 􏼁(φ ∘ r)(ι)dι

+ m
(τ/k)+1

h
1
2

􏼒 􏼓 􏽚
(a+mb/2)

(a/m)
κ −

a

m
􏼒 􏼓

(τ/k)− 1
E

c,δ,v,c

μ,τ,l wm
μ κ −

a

m
􏼒 􏼓

μ
; 􏽥p􏼒 􏼓(φ ∘ r)(κ)dκ

≤ h
1
2

􏼒 􏼓 φ(a) + m
(τ/k)+1φ(b)􏽨 􏽩 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2

a + m
2 − η
2

􏼒 􏼓b􏼒 􏼓h
η
2

􏼒 􏼓dη

+ mh
1
2

􏼒 􏼓 f(b) + m
(τ/k)+1φ

a

m
2􏼠 􏼡􏼢 􏼣 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2

a + m
2 − η
2

􏼒 􏼓b􏼒 􏼓h
2 − η
2

􏼒 􏼓dη.

(66)

(vi) By choosing α � m � 1, h(η) � η and ψ � I, we get

φ
a + b

2
􏼠 􏼡 􏽚

b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁r(ι)dι

≤
1
2

[ 􏽚
b

(a+b/2)
(b − ι)(τ/k)− 1

E
c,δ,v,c

μ,τ,l w(b − ι)μ; 􏽥p( 􏼁(φ ∘ r)(ι)dι

+ 􏽚
(a+b/2)

a
(κ − a)

(τ/k)− 1
E

c,δ,v,c

μ,τ,l w(κ − a)
μ
; 􏽥p( 􏼁(φ ∘ r)(κ)dκ]

≤
φ(a) + φ(b)

2
􏼠 􏼡 􏽚

1

0
η(τ/k)− 1

E
c,δ,v,c

μ,τ,l wημ; 􏽥p( 􏼁r
η
2

a +
2 − η
2

􏼒 􏼓b􏼒 􏼓dη.

(67)

Remark 6. *ose as mentioned above k-fractional inequal-
ities are farther in line with foreknown conclusions as by

choosing k � 1 in Corollary 4 (v), an inequality for extended
generalized fractional integrals is obtained.
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Hadamard’s inequalities for fractional integrals and related
fractional inequalities,” Mathematical and Computer Model-
ling, no. 57, pp. 2403–2407, 2013.

[30] D. Baleanu, M. Samraiz, Z. Perveen, S. Iqbal, K. S. Nisar, and
G. Rahman, “Hermite-Hadamard-Fejér type inequalities via
fractional integral of a function concerning another function,”
AIMS Mathematics, vol. 6, no. 5, pp. 4280–4295, 2021.

[31] E. Set, A. O. Akdemir, and E. A. Alan, “Hermite-Hadamard
and Hermite-Hadamard-Fejér type inequalities involving
fractional integral operators,” Filomat, vol. 33, no. 8,
pp. 2367–2380, 2019.
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We solve an optimal control problem governed by an evolution equation using bilinear regular feedback. Using optimization
techniques, we show how to approximate the �ow of a reaction-di�usion bilinear system by a desired target. For application, we
consider the regional �ow problem constrained by a bilinear distributed system. �e paper ends by an example illustrating the
numerical approach of the proposed method.

1. Introduction

Bilinear systems form an important class of dynamic systems
for several reasons. Many industrial or natural processes
have a bilinear structure. For example, we can cite the
transfer of heat by conduction convection, the neutron
displacement in a nuclear reactor, and the dynamics of sense
organs [1]. Research has shown that bilinear systems are
su�cient to approach any nonlinear input-output behavior
(see [1, 2]).�e control has a double action in the system that
allows the adaptation of the model at di�erent levels of input
signals. An example is provided by the functioning of sense
organ (see [1]).

Optimal control methods continue to provide solutions
to many real problems. We cite solutions of smoking models
by Mahdy et al. [3] and COVID-19 prediction by Ahmed
et al. [4]. Optimal control problems constrained by a dis-
tributed bilinear system are initiated by Bradley et al. and
Lenhart [5, 6]. In [7], Joshi studies the case of regular velocity
terms. Sonawane et al. [8] consider the optimal control for a
vibrating string with axial variable. Rao et al. studied plant
disease in [9].

Mall et al. propose a uniformmethod for optimal control
problems with control and state constraints (see [10]).
Chertovskih et al. in [11] give an indirect method for regular
state-constrained optimal control problems in �ow £elds.

Turgut et al. in [12] study an island-based crow search al-
gorithm for solving optimal control problems. Al-Hawasy
et al. in [13] consider the optimal control problems for triple
elliptic partial di�erential equations. Bonnet and Frank-
owska in [14] characterize the necessary optimality condi-
tions for optimal control problems in Wasserstein spaces.
Granada and Kovtunenko in [15] consider a shape derivative
for optimal control of the nonlinear Brinkman–Forchheimer
equation.

For fractional systems, Saidi [16] discusses some results
associated to £rst-order set-valued evolution problems with
subdi�erentials. Jajarmi and Baleanu [17] consider the
fractional optimal control problems with a general derivative
operator. Huixian et al. [18] study an averaging result for a
class of impulsive fractional neutral stochastic evolution
equations. Jafariet al. [19] propose a numerical approach for
solving fractional optimal control problems with Mit-
tag–Le©er kernel. Mehandiratta et al. [20] study fractional
optimal control problems on a star graph. Heydari et al. [21]
propose a numerical solution for an optimal control
problems generated by Atangana–Riemann–Liouville frac-
tal-fractional derivative.

�e �ow problems are one of the most important
questions in mathematics. �ey have applications in several
£elds such as physics, biology, and engineering. We cite here
the problem of controlling the blood �ow in a vessel, where
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we need to calculate the gradient (flow) of the velocity of
blood as a rate of change of the blood flow (see [22]).

Recently, many researchers focused on the study of flow
problems using optimal control theory. *ey consider the
gradient state of a distributed system and ask if there is an
optimal control to reach a desired profile (see [23]). For this
approach, one of the most important ideas is called the
partial analysis. It has an objective to reach a target on a
specific subdomain of the system domain, ω ⊂ D (see
[24, 25]). For partial work on bilinear distributed systems,
Ouzehra et al. [26, 27] study the exact and approximate
controllability of reaction-diffusion equation using bilinear
control. Zerrik and Ould Sidi [28–31] use partial control
problems to orient the dynamics of infinite dimensional
systems towards the desired state in a specific area. Zine and
Ould Sidi in [32–34] deal with partial control problems in
the case of hyperbolic systems. Ould Sidi and Beinane
[35, 36] treat the partial flow control problems.

*e objective of this paper is to control the flow of
equation (1) towards a desired target using the penalization
problem 3, and with a more regular spatiotemporal control
function. In Section 2, we show the existence of a solution to
the studied problems. Next, we give the characterization of
its solution considering different types of actions. Section 3 is
devoted to the study of the partial flow control problems
constrained by bilinear distributed systems with regular
optimal control time function. *e paper ends by an ex-
ample illustrating the numerical approach of the proposed
method.

2. Flow Problem with Regular Control

Let us consider the system described by

qm(x, m) � qxx(x, m) − v(x, m)qx(x, m), Γ,

q(x, 0) � q0(x), D,

q � qx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(1)

with a domain D ⊂ IRn(n � 1, 2, 3) is open bounded, and its
regular boundary is zD. Let M> 0 and Γ � D × ]0, M[,
Π � zD × ]0, M[, where the space of control is
v ∈ L2(0, M, H1

0(D)).
Let q0(x) ∈ L2(D) and

S �
q ∈ L

2 0, M; H
1
0(D)􏼐 􏼑

qm ∈ L
2 0, M; H

−2
(D)􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭, (2)

represents the state space (see [5]). *e system dynamic is
qxx � Δq � 􏽐

n
i�1 z2q/zx2

i , and system (1) has a unique so-
lution qv in S∩ L∞(0, M; L2(D)) (see [37]).

We consider the operator ∇:

∇: H
1
(D)⟶ L

2
(D)􏼐 􏼑

n
,

q⟶∇q �
zq

zx1
, . . . ,

zq

zxn

􏼠 􏼡.

(3)

*e flow regular optimal control problem of system (1) is

min
v∈L2 0,M,H1

0(D)( )
Φε(v), (4)

with ε> 0, and Φε is the cost penalty defined by

Φε(v) �
1
2
∇q − q

d
�����

�����
2

L2 0,M,H1
0(D)( )( )

n +
ε
2

􏽚
Γ

v
2
m(x, m) + v

2
x(x, m)􏽨 􏽩dxdm

�
1
2

􏽘

n

i�1

zq

zxi

− q
d
i

��������

��������

2

L2 0,M,H1
0(D)( )

+
ε
2

􏽚
Γ

v
2
m(x, m) + v

2
x(x, m)􏽨 􏽩dxdm,

(5)

where the desired flow is qd � (qd
1 , . . . , qd

n).
*e main objective is to propose a method to steer the

flow of (1) to qd(x), using the functional (5) and considering
a more regular control space v ∈ L2(0, M; H1

0(D)). We
characterize the solution of (4) through an extension of the
Lagrangian method.

2.1. Existence of Solution. In the next theorem, we study the
existence of a solution to the flow problem (4).

Theorem 1. Let us consider q be the solution of the system

qm � qxx − vqx, Γ,
q(x, 0) � q0(x), D,

q � qx � 0, Π.

⎧⎪⎨

⎪⎩
(6)

*en, there exists an optimal control v, which is the
minimum of (4).

Proof. Let us consider the set Φε(v)|v ∈ L2(0, M,􏼈

H1
0(D))} ⊂ IR, which is a positive nonempty and admits
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lower bounded. *us, by choosing a minimizing sequence
(vn)n which verifies

Φ∗ � lim
n⟶+∞
Φ vn( 􏼁 � inf

v∈L2 0,M,H1
0(D)( )
Φε(v). (7)

*en, the cost Φε(vn) is bounded, and it follows that
‖vn‖L2(0,M,H1

0(D))≤B, with B as a positive constant.
We have

vn⇀ v, L
2 0, M, H

1
0(D)􏼐 􏼑,

q
n⇀ q, S,

q
n
xx⇀ χ, S,

q
n
x⇀Λ, S,

q
n
m⇀Ψ, S.

(8)

By passing to the limit in the equation qn
m(x, m) �

qn
xx − vnqn

x, we deduce that qm(x, m) � Ψ, q↦qxx, qxx � χ
and vqx � Λ. Hence, we obtain

qm � qxx − v(x, m)qx. (9)

From the lower semicontinuity of Φε(v):

Φε(v) � inf
n

􏽘

n

i�1

1
2

􏽚
M

0
􏽚

D

zqn

zxi

− q
d
i􏼠 􏼡

2

dx +
ε
2

􏽚
Γ

v
2
m + v

2
x􏽨 􏽩

n
dxdm

≤ lim
n⟶0
Φε vn( 􏼁 � inf

v
Φε(v).

(10)

*erefore, v is a solution of (4). □

2.2.CharacterizationofSolution. In this section, the aim is to
propose a formulation of the solution of our flow problem.
*erefore, we should introduce the so-called optimal
equation to find the differential of the functional Φε(v) in
(5). *e following lemma mentions the differential of Φε(v)

with respecting v.

Lemma 2. A differential of the map

v ∈ L
2 0, M, H

1
0(D)􏼐 􏼑⟶ q(v) ∈ S, (11)

is

q(v + εl) − q(l)

ε
⇀μ, (12)

where μ � μ(q, l) verifies

μm � μxx − vμx − lqx, Γ,

μ(x, 0) � 0, D,

μ � μx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(13)

where q � q(v), v ∈ L2(0, M; H1
0(D)), and d(q(v))l is the

derivative of v⟶ q(v) with respect v.

Proof. We consider the solution of (13), verifying

‖μ‖S ≤ k1‖q‖L∞ 0,M;H1
0(D)( )‖l‖L2 0,M,H1

0(D)( ). (14)

Also,

μ′
����

����S
≤ k2‖q‖L∞ 0,M;H1

0(D)( )‖l‖L2 0,M,H1
0(D)( ). (15)

*us,

‖μ‖C [0,M];H1
0(D)( ) ≤ k3‖l‖L2 0,M,H1

0(D)( ). (16)

*en, we obtain that l ∈ L2(0, M; L2(D))⟶
μ ∈ C((0, M); H1

0(D)) is bounded (see [5]).
If we put ql � q(v + l) and ξ � ql − q, then ξ is the state of

ξm(x, m) � ξxx − v(x, m)ξx(x, m) − l(x, m) ql( 􏼁x, Γ,

ξ(x, 0) � 0, D,

ξ � ξx � 0, Π.

⎧⎪⎪⎨

⎪⎪⎩
(17)

*us,

‖ξ‖L∞ [0,M];H1
0(D)( ) ≤ k4‖θ‖L2 0,M,H1

0(D)( ). (18)

Let c � ξ − μ which verifies the system

cm � cxx + v(x, m)cx(x, m) + l(x, m)ξx, Γ,

c(x, 0) � 0, D,

c � cx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(19)

c ∈ C(0, M; H1
0(D)); consequently,

‖c‖C [0,M];H1
0(D)( ) ≤ k‖l‖

2
L2 0,M,H1

0(D)( ), (20)

and we have

‖q(v + l) − q(v) − d(q(v))l‖C 0,M;H1
0(D)( ) � ‖c‖C [0,M];H1

0(D)( ) ≤ k‖l‖
2
L2 0,M;H1

0(D)( ), (21)
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where k1, k2, k3, k4, and k are a constant positive.
In the following, we define a family of optimal equations.

−
zpi

zm
�

z
2
pi

zx
2 +

z vpi( 􏼁

zx
+

zq

zxi

− q
d
i􏼠 􏼡, Γ,

vx(x, 0) � vx(x, M) � 0, D,

pi(x, M) � 0, D,

pi �
zpi

zx
� 0, Π.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

*e next lemma characterizes the differential of
Φε(v). □

Lemma 3. Let v ∈ L2(0, M, H1
0(D)) be the solution of (4),

and we obtain

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� 􏽘

n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

zq

zxi

− q
d
i􏼠 􏼡dmdx + ε􏽚

D
􏽚

M

0
vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx. (23)

Proof. *e cost Φε(v) (5) can be expressed by

Φε(v) �
1
2

􏽘

n

i�1
􏽚

D
􏽚

M

0

zq

zxi

− q
d
i􏼠 􏼡

2

dmdx +
ε
2

􏽚
D

􏽚
M

0
v
2
m + v

2
x􏽨 􏽩dmdx. (24)

If we put qβ � q(v + βl) and q � q(v), using (59), we have

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� lim

β⟶0
􏽘

n

i�1

1
2

􏽚
D

􏽚
M

0

zqβ/zxi􏼐 􏼑 − q
d
i􏼐 􏼑

2
− zq/zxi( 􏼁 − q

d
i􏼐 􏼑

2

β
dmdx

+ lim
β⟶0

ε
2β

􏽚
D

􏽚
M

0
vm + βlm( 􏼁

2
− v

2
m + vx + βlx( 􏼁

2
− v

2
x􏽨 􏽩dmdx,

(25)

then

lim
β⟶0

Φε(v + βl) −Φε(v)

β

� lim
β⟶0

􏽘

n

i�1

1
2

􏽚
D

􏽚
M

0

zqβ/zxi􏼐 􏼑 − zq/zxi( 􏼁􏼐 􏼑

β
zqβ

zxi

+
zq

zxi

− 2q
d
i􏼠 􏼡dmdx + lim

β⟶0
ε􏽚

D
􏽚

M

0
vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃(x, m)dmdx

� 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

zq(x, m)

zxi

− q
d
i􏼠 􏼡dmdx + 􏽚

D
􏽚

M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃(x, m)dmdx.

(26)

*e following theorem proposes a solution of the
problem (4). □

Theorem 4. Let v ∈ L2(0, M; H1
0(D)) be a solution of (4);

then,
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vmm + vxx +
1
ε

Div pi( 􏼁( 􏼁qx � 0, (27)

where q � q(v) is the output of (1), where pi � (p1, . . . , pn)

and pi ∈ C([0, M]; H1
0(D)) is the solution of (22).

Proof. Let l ∈ L2(0, M; H1
0(D)) and

v + βl ∈ L2(0, M; H1
0(D)) for β> 0. *e extremal of Φε is

realized at v; then,

0≤ lim
β⟶0

Φε(v + βl) −Φε(v)

β
. (28)

Lemma 9 gives

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

zq(x, m)

zxi

− q
d
i􏼠 􏼡dmdx + 􏽚

D
􏽚

M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃(x, m)dmdx. (29)

*erefore, using (22), we obtain

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

−
zpi(x, m)

zm
−

z
2
pi(x, m)

zx
2 −

zvpi(x, m)

zx
􏼠 􏼡dmdx

+􏽚
D

􏽚
M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx.

(30)

By a simple calculus, we have

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

zμ(x, m)

zxi

−
zpi(x, m)

zm
−

z
2
pi(x, m)

zx
2 +

zvpi(x, m)

zx
􏼠 􏼡pi(x, m)dmdx

+ 􏽚
D

􏽚
M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx.

(31)

From System(13), we obtain

0≤ 􏽘
n

i�1
􏽚

D
􏽚

M

0

z

zxi

− l(x, m)qx( 􏼁pi(x, m)dmdx

+ 􏽚
D

􏽚
M

0
ε vmlm( 􏼁 + vxlx( 􏼁􏼂 􏼃dmdx

� 􏽚
D

􏽚
M

0
−l(x, m)qx 􏽘

n

i�1

z

zxi

pi(x, m)⎛⎝ ⎞⎠ + ε vmlm( 􏼁 + ε vxlx( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦dmdx.

(32)

Moreover, if l � l(t) ∈ L2(0, M; H1
0D), we deduce

−lqx 􏽘

n

i�1

z

zxi

pi(x, m)⎛⎝ ⎞⎠ − εvmml − εvxxl � 0, (33)

which allow us to introduce

vmm + vxx +
1
ε

Div pi( 􏼁( 􏼁qx � 0, (34)

that the solution v of (4) must satisfy. □

Remark 5. According to equation (2),

(1) If we consider a spatial control function v � v(x, )

then the variational formula becomes

vxx � −
1
ε

Div pi( 􏼁( 􏼁qx, (35)
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(2) If we consider a temporal control function v � v(m),
then the variational formula becomes

vmm � −
1
ε

Div pi( 􏼁( 􏼁qx. (36)

3. Partial Flow Control Problem

3.1. ProblemStatement. We consider the bilinear distributed
system (1), with a given q0 ∈ H1(D). System (1) can be
rewritten as follows:

q(m) � S(m)q0 + 􏽚
m

0
S(m − s)v(s)q(s)ds, (37)

and the solution of (37) are often called the mild solution of
(1).

*e existence of a unique solution qv(x, m) in
L2(0, M; H1

0(D)) satisfying (37) can be deduced from [37].
We choose ω ∈ D, and

χω: L
2
(D)􏼐 􏼑

n
⟶ L

2
(D)􏼐 􏼑

n

q⟶ χωq � q|ω,
(38)

and χ∗ω; its adjoint is given by

χ∗ωq �
q inD,

0 ∈ D∖ω,
􏼨 (39)

􏽥χω: L
2
(D)􏼐 􏼑⟶ L

2
(ω)􏼐 􏼑

q⟶ 􏽥χωq � q|ω.
(40)

Definition 6. Equation (1) is called partial flow controllable
on ω ⊂ D, to gd ∈ (L2(ω))n if there exists a control
v ∈ L2(0, M, H1

0(D)) and ε> 0 such that

χω∇qv(M) − g
d

�����

����� L2(ω)( )
n ≤ ε, (41)

where gd � (yd
1 , . . . yd

n) is the desired flow in (L2(ω))n.
Ouzehra in [26], studies the exact and approximate

controllability of distributed bilinear systems. *e partial
flow control problem of (1) is

minv∈L2 0,M,H1
0(D)( )Φε(v), (42)

where Φε is presented for ε> 0 by

Φε(v) �
1
2
χω∇q(M) − g

d
�����

�����
2

L2(ω)( )
n +

ε
2

􏽚
Γ

v
2
m(m)􏽨 􏽩dm

�
1
2

􏽘

n

i�1
􏽥χω

zq(M)

zxi

− y
d
i

��������

��������

2

L2(ω)

+
ε
2

􏽚
Γ

v
2
m(m)􏽨 􏽩dm.

(43)

*e objective of the presented problem is to command
the flow of (1) to a target state gd(x), realizing (43), and find
v∗ ∈ L2(0, M, H1

0(D)), verifying

Φε v
∗

( 􏼁 � min
v∈L2 0,M,H1

0(D)( )
Φε(v). (44)

Remark 7. *e existence of solutions for the partial flow
control problem can be proved in the same way as in the
proof of the previous section.

3.2. Characterization of Solution. Now, we are able to for-
mulate the solution of the flow problem (42).

Lemma 8. A differential of the map

v ∈ L
2 0, M, H

1
0(D)􏼐 􏼑⟶ q(v) ∈ S, (45)

is

q(v + εl) − q(l)

ε
⇀μ, (46)

where μ � μ(q, l) verifies

μm � μxx − vμx − lqx, Γ,

μ(x, 0) � 0, D,

μ � μx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(47)

where q � q(v), v ∈ L2(0, M; H1
0(D)), and d(q(v))l is the

derivative of v⟶ q(v) with respect v.

Proof. *e output of equation (13) satisfies

‖μ‖S ≤ k1‖q‖L∞ 0,M;H1
0(D)( )‖l‖L2 0,M,H1

0(D)( ). (48)

Also,

μ′
����

����S
≤ k2‖q‖L∞ 0,M;H1

0(D)( )‖l‖L2 0,M,H1
0(D)( ). (49)

*us,

‖μ‖C [0,M];H1
0(D)( ) ≤ k3‖l‖L2 0,M,H1

0(D)( ). (50)

*en, we obtain that
l ∈ L2(0, M; L2(D))⟶ μ ∈ C((0, M); H1

0(D)) is bounded
(see [5]).

If we put ql � q(v + l) and ξ � ql − q, then ξ is the state of

ξm(x, m) � ξxx − v(x, m)ξx(x, m) − l(x, m) ql( 􏼁x, Γ,

ξ(x, 0) � 0, D,

ξ � ξx � 0, Π.

⎧⎪⎪⎨

⎪⎪⎩

(51)

*us,

‖ξ‖L∞ [0,M]];H1
0(D)( ) ≤ k4‖l‖L2 0,M,H1

0(D)( ). (52)

Let c � ξ − μ which verifies the system

cm � cxx + v(x, m)cx(x, m) + l(x, m)ξx, Γ,

c(x, 0) � 0, D,

c � cx � 0, Π,

⎧⎪⎪⎨

⎪⎪⎩
(53)

c ∈ C(0, M; H1
0(D)); consequently,
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‖c‖C [0,M];H1
0(D)( ) ≤ k‖l‖

2
L2 0,M,H1

0(D)( ), (54) and we have

‖q(v + l) − q(v) − d(q(v))l‖C 0,M;H1
0(D)( ) � ‖c‖C [0,M];H1

0(D)( ) ≤ k‖l‖
2
L2 0,M,H1

0(D)( ). (55)

We introduce the family of optimal systems in the case of
partial controllability

− pi( 􏼁m(x, m) � pi( 􏼁xx(x, m) + v(m)pi( 􏼁x(x, m), Γ,

pi(x, M) �
zq(M)

zxi

− 􏽥χ∗ωy
d
i􏼠 􏼡, D,

pi(x, m) � pi( 􏼁x(x, m) � 0, Π,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

where 􏽥χ∗ω is the adjoint of 􏽥χω defined from L2(ω)⟶ L2(D)

by

􏽥χ∗ωq(x) �
q(x), x ∈ ω,

0, x ∈ D\ω.
􏼨 (57)

*e following lemma mentions the differential of Φε(v)

with respecting v. □

Lemma 9. If v ∈ L2(0, M) is the control realizing (42), μ is
the output of (47), and pi is the solution of (56), we deduce

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� 􏽘

n

i�1
􏽚
ω

􏽥χ∗ω􏽥χω 􏽚
M

0

zpi

zm

zμ(x, m)

zxi

dm + 􏽚
M

0
pi

z

zxi

zμ
zm

􏼠 􏼡dm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm. (58)

Proof. *e functional Φε(v) given by (43) can take the form

Φε(v) �
1
2

􏽘

n

i�1
􏽚
ω

􏽥χω
zq

zxi

− y
d
i􏼠 􏼡

2

dx + ε􏽚
M

0
v
2
m(m)dm. (59)

Let qβ � q(v + βl) and q � q(v), using (59), we have

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� lim

β⟶0
􏽘

n

i�1

1
2

􏽚
ω

􏽥χω zqβ/zxi􏼐 􏼑 − y
d
i􏼐 􏼑

2
− 􏽥χω zq/zxi( 􏼁 − y

d
i􏼐 􏼑

2

β
dx

+ lim
β⟶0

ε
β

􏽚
M

0
vm + βlm( 􏼁

2
− v

2
m􏽨 􏽩dm.

(60)

Consequently,

lim
β⟶0

Φε(v + βl) −Φε(v)

β
� lim

β⟶0
􏽘

n

i�1

1
2

􏽚
ω

􏽥χω
zqβ/zxi􏼐 􏼑 − zq/zxi( 􏼁􏼐 􏼑

β
􏽥χω zqβ/zxi􏼐 􏼑 + 􏽥χω zq/zxi( 􏼁 − 2y

d
i􏼐 􏼑dx

+ lim
β⟶0

􏽚
M

0
2εlmvm + εβl

2
m􏼐 􏼑dm � 􏽘

n

i�1
􏽚
ω

􏽥χω
zμ(x, M)

zxi

􏽥χω
zq(x, M)

zxi

− 􏽥χ∗ωy
d
i􏼠 􏼡dx + 􏽚

M

0
2εlmvmdm

� 􏽘
n

i�1
􏽚
ω
􏽥χω

zμ(x, M)

zxi

􏽥χωpi(x, M)dx + 2ε􏽚
M

0
lmvmdm.

(61)

From (56) and (61), we deduce that
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lim
β⟶0

Φε vε + βl( 􏼁 −Φε vε( 􏼁

β
� 􏽘

n

i�1
􏽚
ω
􏽥χ∗ω􏽥χω 􏽚

M

0

zpi

zm

zμ(x, m)

zxi

dm + 􏽚
M

0
pi

z

zxi

zμ
zm

􏼠 􏼡dm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm. (62)

Now, we will deduce the solution of (42), exploiting the
family of optimal systems. □

Theorem 10. Let v ∈ L2(0, M; H1
0) be the solution of the

partial flow problem, and q � q(v) is its corresponding state of
(1), we show that

􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) − 2εvmm � 0, (63)

is a solution of problem (42), where pi ∈ C([0, M]; H1
0(D)) is

the unique solution of the adjoint system (56).

Proof. Let l ∈ L2(0, M; H1
0(D)) with v + βl ∈ L2(0, M;

H1
0(D)) for β> 0. *e functional Φε get its minimum at v,

and we deduce

0≤ lim
β⟶0

Φε(v + βl) −Φε(v)

β
. (64)

Using Lemma 9, replacing zμ/zm in system (47), we have

0≤ lim
β⟶0

vε qε + βl( 􏼁 − vε qε( 􏼁

β

� 􏽘
n

i�1
􏽚
ω

􏽥χ∗ω􏽥χω 􏽚
M

0

zμ
zxi

zpi

zm
dm + 􏽚

M

0

z

zxi

μxx − vμx − lqx( 􏼁pidm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm

0≤ 􏽘
n

i�1
􏽚
ω

􏽥χ∗ω􏽥χω 􏽚
M

0

zμ
zxi

zpi

zm
+

z
2
pi

zx
2 + v(m)

zpi

zx
􏼠 􏼡 + l(m)

zqx

zxi

pidm􏼢 􏼣dx + 􏽚
M

0
2εlmvmdm

� 􏽘
n

i�1
􏽚

M

0
l(m)〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω)dm + 􏽚
M

0
2εlmvmdm

� 􏽚
M

0
l(m) 􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) + 2εlmvm
⎡⎣ ⎤⎦dm.

(65)

Consequently, for an arbitrary control l � l(m) we conclude

l(m) 􏽘
n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) − 2εvmml(m) � 0. (66)

*en,

􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) − 2εvmm � 0. (67)

Consequently,

vmm �
−1
2ε

􏽘

n

i�1
〈􏽥χω

zqx

zxi

; 􏽥χωpi〉L2(ω) . (68)

□

4. Example

In this section, we propose the numerical approach to
computing the solution of our method (68). We consider the
one dimensional bilinear equation

zq

zt
+ α

z
2
q

zx
2 � βv(x, m)

zq

zx
, [0, 1] ×[0, 1],

q(x, 0) � q0(x) � 2x, [0, 1],

q � 0, atx � 0, 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

*e operator −α(z2/zx2) admits a set of eigenfunctions
ϕn(·) associated to the eigenvalues λn given by

ϕn(x) �
�
2

√
sin(nπx);

λn � αn
2π2

,

n≥ 1.

(70)

While the operator −α(z2/zx2) of system (69) and the
perturbation βv(x, m)zq/zx commute, using Pazy [37], the
solution of (69) can be written as
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q(x, m) � 􏽘
n�N

n�1
e
αn2π2t < e

β 􏽚
m

0
(zv/zx)(x, m)dm

q0,
�
2

√
sin(nπx)>

�
2

√
sin(nπx). (71)

*e one dimensional adjoint system can be written as

−pm(x, m) � pxx(x, m) +(v(m)p)x(x, m), [0, 1] ×[0, 1],

p(x, 1) �
zq(M)

zx
− 􏽥χ∗ωy

d
􏼠 􏼡, [0, 1],

p(0, m) � (p)x(0, m) � 0, [0, 1].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(72)

We define the perturbation function

f(q, p) �〈􏽥χω
z2q(m)

zx2 ; 􏽥χωp(m)〉L2(ω). (73)

Using (68) and a finite difference schema, the optimal
control v can be found by solving

vmm(x, m) �
−1
2ε

f(q, p), [0, 1] ×[0, 1],

v(0) � vm(1) � 0, [0, 1].

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(74)

By choosing ε � 1/n, we define the following sequence of
control (vn)n solution of

v
n+1
mm(x, m) �

−n

2
f q

n
, p

n
( 􏼁, [0, 1] ×[0, 1],

v(0) � vm(1) � 0, [0, 1],

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(75)

where qn and pn are, respectively, the solution of (71) and
(72) perturbed by vn with v0 � 0.

*e penalty cost (43) becomes

Φn v
n

( 􏼁 �
1
2
χω∇q

n
− y

d
�����

�����
2

L2 0,1,H1
0([0,1])( )

+
1
2n

􏽚
1

0
􏽚
1

0
v

n
m x, tm( )􏼂 􏼃

2dxdm . (76)

*e following convergent Algorithm 1 allows the
implementation of our results.

Remark 11.

(1) *e distributed bilinear systems (1), are considered
with the feedback map v(x, m)qx(x, m) as multi-
plication of the control by the velocity of the state
system. One can consider another different type of
perturbation.

(2) In the case of partial controllability, we use in general
temporal control feedback. *is type of control is
compatible with real applications.

(3) For the simulation point of view, the obtained
control formula is easy to calculate numerically.
*is encourages us to establish numerical ap-
proaches and simulations of the proposed problems
using Algorithm 1..

5. Conclusion

We consider the flow optimal control problem constrained
by a bilinear distributed system.*e chosen optimal controls
are regular, and the existence of solutions is proved and
characterized using optimization techniques. Our method is
applied to the partial flow control problem allowing us to
control a flow on a specific subdomain of the system domain.

Step 1: Choose
*e desired targ yd et.
*e convergence accuracy ζ.
*e subregion ω and time M.

Step 2: Until ‖vn+1 − vn‖≤ ζ repeat
Using (71), compute qn associated to vn.
Using (72), compute pn associated to vn.
Using (74) and (75), compute vn+1.

Step 3: vn such that ‖vn+1 − vn‖≤ ζ is the minimum of (76).

ALGORITHM 1:Algorithm for calculating the solution of the problem (50).

Journal of Mathematics 9



Finally, as an example, we present the numerical approach,
which makes it possible to concretize the obtained results.
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)is research paper generalizes and extends various fixed-point results that demonstrate common fixed-point theorems for
F-Kannan–Suzuki type mappings in TVS-valued cone metric spaces. )e results are supported using interpretative exempli-
fications and applications that include nonlinear fractional as well as two-point periodic ordinary differential equations.

1. Introduction

)e fixed-point theory is at the foundation of nonlinear
analysis, which is a prominent research area of mathematics.
Fixed point theory is, in fact, a simple, powerful, and useful
tool for nonlinear analysis. It also has fruitful applications in
mathematics and in various scientific domains, including
physics, chemistry, computer science, etc. As a result, this
theory has attracted a large number of researchers who are
guiding the theory’s growth in various areas.

In 1922, Banach [1] established a fixed point theorem in
metric space which states that ifX is a complete metric space
and G: X⟶ X is a contraction map, i.e.,
ϱ(Gσ, Gς)≤ κϱ(σ, ς) for all σ, ς ∈ X and κ ∈ [0, 1), then G

has a unique fixed point or Gσ � σ has a unique solution. In
addition to an acceptable contraction condition, the metrical
common fixed-point theorems usually include constraints
on commutativity, continuity, completeness, and appro-
priate containment of ranges of detailed maps. )e goal of
researchers in this field is to weaken one or more of these
conditions. )e use of weak conditions of commutativity is
to improve common fixed point theorems in analysis.
Connell [2] provided an example of a noncomplete metric
space X, but every contraction on it has a fixed point.
Kannan [3] proposed an alternative contractive condition

that was not the same as the Banach contraction condition.
Also, Subrahmanyam [4] proved the converse of Banach
fixed-point theorem using Kannan mapping. Furthermore,
to evaluate a fixed point for a stringent type Kannan con-
traction, the assumption of continuity of the mapping and
the compactness requirement on metric space are necessary.

In 2007, Huang and Zhang [5] generalised the Banach
fixed point theorem by introducing the structure of cone
metric by substituting real numbers with an ordered Banach
space and establishing a convergence criterion for sequences
in a cone metric space. In normal cone metric space, Huang
and Zhang [5] proved some fixed-point theorems for
Kannan type contractive conditions; nevertheless, Rezapour
and Hamlbarani [6] neglected this idea in some results by
Huang. For normal and nonnormal cones in cone metric
spaces, several authors have examined fixed point theorems
and common fixed-point theorems for self-mappings. We
refer to the reader [7–10] and the references therein. By
relaxing the normalcy criteria set by Huang and Zhang [5],
Beg et al. [11], investigated common fixed points for a pair of
maps on topological vector space (TVS) valued cone metric
spaces in 2009. )ey demonstrated that the class of TVS-
valued cone metric spaces is larger than the class of cone
metric spaces, used in [12–16] and the references therein.
Recently, Hu and Gu [17] proved some fixed point theorems
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of λ-contractive mappings in Menger PSM-spaces. For a
class of contractive mappings, Reich and Alexander [18]
generalised fixed points and convergence results. In
Hausdroff TVS, Ram and Lai [19] presented the existence
results on generalised strong operator equilibrium problems.
In TVS-Cone Metric Spaces, Dubey and Mishra [20]
demonstrated some fixed-point results of single-valued
mapping for -distance. Using some facts about topological
vector space, Tas [21] constructed a new notion of a TVS
cone S- metric space. Lee [22] introduces chain recurrent set,
trapping region, attracting set and repelling set for a flow f

on a TVS-cone metric space. By using generalised metric
spaces, Ge and Yang [23] proved a common generalisation
of TVS-cone metric spaces, partial metric spaces and
b-metric spaces, and a unified approach is proposed for
some fixed point results. Later, Suzuki [24] and Rida et al.
[25] gave a generalisation of the Banach contraction prin-
ciple that characterises metric completeness.

Wardowski [26] used a new sort of contraction called
F-contraction to give an intriguing generalisation of the
Banach fixed point theorem. Many scholars have used his
method to build new fixed-point theorems since then. )e
associated results and references can be found in [27–30]
and the references therein. Piri and Kumam [28], extended
Wardowski’s [26] results in 2014 by introducing the notion
of F-Suzuki contraction and obtained some intriguing re-
sults utilising the Secelean [29] concept. In the complete
b-metric spaces, Alsulami et al. [31] demonstrated fixed
points of generalised F-Suzuki type Contractions. Budhia
et al. [32] proved an extension of almost-F and F-Suzuki
contractions with graph and demonstrated some applica-
tions to fractional calculus whereas Chandok et al. [33]
formulated some fixed point results for the generalised
F-Suzuki type contractions in b-metric spaces. Derouiche
and Ramou [34] proved new fixed-point results for
F-contractions of Suzuki Hardy-Rogers type in b-metric
spaces and provided some applications. Beg et al. [11]
proposed a fixed point of orthogonal F-Suzuki contraction
mapping on 0-complete b-metric spaces with some appli-
cations. Mani et al. [35] introduced generalised orthogonal
F-contraction and orthogonal F-Suzuki contraction map-
pings and proved some fixed point theorems for a self-
mapping in orthogonal metric space. Vujakovic and
Radenovic [36] introduced certain fixed point results for
F-contraction of Piri-Kumam-Dung-type mappings in
metric spaces.

In 2019, Goswami et al. [27] introduced F-contractive
type mappings in b-metric spaces and proved some fixed
point results with suitable examples. Recently, Batra et al.
[37] noticed in their subsequent analysis that the definition
introduced by Goswami et al. [27] is not meaningful in
general. )erefore, they provided suitable examples to
support their opinion on this definition. Also, due to these
reasons, Batra et al. [37] presented F-contraction and
Kannan mapping concepts for defining F-Kannan map-
pings, which is, in a true sense, a generalisation of Kannan
mappings.

)is paper aims to extend and generalise the results due
to Batra et al. [37], Filipovic et al. [38], Morales and Rojas [9],

Rahimi et al. [39] and Wangwe and Kumar [40] using a pair
of two self-mappings in F-Kannan–Suzuki type mapping in
TVS-valued cone metric space, where we consider a map to
be sequentially convergent, one to one and continuous. By
doing so, we will extend several other results of the same
setting in the literature. Finally, we will provide some ap-
plications to the nonlinear Riemann–Liouville fractional
differential equation and nonlinear Volterra-integral dif-
ferential equation.

2. Preliminaries

)edefinitions, lemmas, and theorems will help us prove our
main points in the upcoming sections.

In 1968, Kannan [3] developed a new contractive con-
dition and proved the following theorem for self mappings
in complete metric spaces as a result of a generalisation of
the Banach fixed point theorem.

Theorem 1 (see [3]). Let G: X⟶ X be a self mapping on a
complete metric space (X, ϱ) such that

ϱ(Gσ, Gς)≤ κ ϱ(σ, Gσ) + ϱ(ς, Gς)􏼈 􏼉, (1)

for all σ, ς ∈ X and 0≤ κ≤ (1/2). (en, G possesses a unique
fixed point σ∗ ∈ X and for any σ ∈ X the iterate sequence
Gnσ{ } converges to σ∗.

Equation (1) is equivalent to

ϱ(Gσ, Gς)≤
κ
2
ϱ(σ, Gσ) + ϱ(ς, Gς)􏼈 􏼉, (2)

for some κ ∈ (0, 1).

Definition 1 (see [11]). Let (E, τ) be always a topological
space and P a subset of E. )en, P is called a cone if the
following hold:

(i) P is a nonempty, closed and P≠ 0{ };

(ii) λσ + μς ∈ P for all σ, ς ∈ P and nonnegative real
number λ, μ;

(iii) P∩ (− P) � 0{ }.

For given cone P⊆E. If the interior of P(intP), is
nonempty we say thatP is solid. IfP is solid cone, thenP is
a component ofP, and in this case we use the notation σ≪ ς
to indicate that ς − σ ∈ intP. Note that if σ≪ ς and ς≤ υ,
then σ≪ υ for all σ, ς, υ ∈ intP.

)e following axioms satisfy TVS-valued cone complete
metric space.

Definition 2 (see [11]). Let X be a nonempty set and the
mapping ϱ: X × X⟶ E, satisfies the following:

(i) 0≤ ϱ(σ, ς), for all σ, ς ∈ X and ϱ(σ, ς) � 0 if and
only if σ � ς;

(ii) ϱ(σ, ς) � ϱ(ς, σ), for all σ, ς ∈ X;

(iii) ϱ(σ, ς)≤ ϱ(σ, υ) + ϱ(υ, ς), for all σ, ς, υ ∈ X.
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)en, ϱ is called a cone metric onX, and (X, ϱ) is called
topological vector space valued cone metric space.

Example 1 (see [12, 9, 41]). Let E � (C[0,1],R
2),

P � (σ, ς) ∈ E|σ, ς≥ 0{ } ⊂ R2, X � R and ϱ: X × X⟶ E

such that ϱ(σ, ς) � |σ − ς|ψ(t), where ψ(t) � et. )en,
(X,Σ) is a TVS-valued cone metric space.

)e following definition is due to Beg et al. [11] in TVS-
valued cone metric space.

Definition 3 (see [8]). Let (X, ϱ) be a topological vector
space valued conemetric space, and let x ∈ X and σn􏼈 􏼉n≥ 1 be
a sequence in X. )en,

(i) σn􏼈 􏼉n≥ 1 converges to X whenever for every c ∈ E
with 0≪ c there is a natural number N such that
ϱ(σn, σ)≪ c for all n≥N. We denote this by

lim
n⟶∞

σn � σ⇔σn⟶ σ. (3)

(ii) σn􏼈 􏼉n≥ 1 is Cauchy sequence whenever for every
c ∈ E with 0≪ c, there is a natural number N such
that ϱ(σn, σm)≪ c for all n, m≥N.

(iii) (X, ϱ) is called topological vector space valued cone
metric space if every Cauchy sequence is
convergent.

Definition 4 (see [42]). Let X be a topological space. If (σn)

is a sequence of points ofX, and if n1 < n2 < . . . < ni < . . . is
an increasing sequence of positive integers, then the se-
quence (ςi) defined by setting ςi � σni

is called a subsequence
of the sequence (σn). )e space X is said to be sequentially
compact if every sequence of points of X has a convergent
subsequence.

Definition 5 (see [43]). Let (X, d) be a metric space. A
mappingG: X⟶ X is said to be sequentially convergent if
we have, for every sequence ςn􏼈 􏼉, if Gςn􏼈 􏼉 is convergence then
ςn􏼈 􏼉 also is convergence. G is said to be subsequentially
convergent if we have, for every sequence ςn􏼈 􏼉, if Gςn􏼈 􏼉 is
convergence then ςn􏼈 􏼉 has a convergent subsequence.

)e extended version of sequentially convergent map-
pings in TVS-valued cone metric space is given as follows.

Definition 6 (see [9]). Let (X, ϱ) be a conemetric space,P is
a solid cone and G: X⟶ X. )en

(i) G is said to be continuous if

lim
n⟶∞

σn � σ⇒ lim
n⟶∞

Gσn � Gσ, (4)

for all σn ∈ X,
(ii) G is said to be sequentially convergent if we have, for

every sequence (ςn), if Gςn is convergent, then ςn

also is convergent,

(iii) G is said to be subsequentially convergent if we
have, for every sequence (ςn) and Gςn is convergent,
implies ςn has a convergent subsequence.

In 2011, Filipovic et al. [38] generalised)eorem 3.1 and
)eorem 3.5 from [9] by using the sequentially convergent
mappings in cone metric space and considered P to be a
solid cone. )ey proved results on two self mappings as
follows.

Definition 7 (see [38]). Let (X, ϱ) be a cone metric space
and T, f: X⟶ X two mappings. A mapping f is said to
be T- Hardy-Rogers contraction if there exists ai ≥ 0, i �

1, . . . , 5 with 􏽐
5
i�1 ai ≤ 1 such that for all σ, ς ∈ X.

ϱ(Tfσ, Tfς)≤ a1ϱ(Tσ, Tς) + a2ϱ(Tσ, Tfσ) + a3ϱ(Tς, Tfς)

+ a4ϱ(Tσ, Tfς) + a5ϱ(Tς, Tfσ).
(5)

Theorem 2 (see [38]). Let (X, ϱ) be a complete cone metric
space and P a solid cone, in addition let T: X⟶ X be a
one-to-one, continuous mappings and f: X⟶ X a
T-hardy-Rogers contraction. (en,

(i) For every σ0 ∈ X the sequence Tfnσ0 is Cauchy.
(ii) (ere is vσ0 ∈ X such that limn⟶∞Tfnσ0 � vσ0.

(iii) T is sequentially convergent, then (fnσ0) has a
convergent, subsequence.

(iv) (ere is a unique uσ0 ∈ X such that fuσ0 � uσ0.

(v) If T is sequentially convergent, then for each σ0 ∈ X
the iterate sequence (fnσ0) converges to uσ0.

Theorem 3 (see [38]). Let (X, ϱ) be a complete cone metric
space and P a solid cone, in addition let T: X⟶ X be a
one-to-one, continuous mappings and f: X⟶ X such that
F(f)≠∅ and that

ϱ Tfσ, Tf
2σ􏼐 􏼑≼λϱ(Tσ, Tfσ), (6)

holds for some λ ∈ (0, 1) and for all σ ∈ X, σ ≠fσ. (en f

has property P.

Remark 1 (see [44]). Let F(T) denote the fixed point set of a
map T. A map T has property P if F(T) � F(Tn) for each
n ∈ N. We shall say that a pair of maps T and f has property
Q if F(T)∩F(f) � F(Tn)∩F(fn) for each n ∈ N.

Secelean [29] proved the following lemma.

Lemma 1 (see [29]). Let F: R+⟶ R be an increasing
function and xn􏼈 􏼉 be a sequence of positive real numbers.
(en the following holds:

(a) If limn⟶∞F(αn) � − ∞, then limn⟶∞αn � 0,

(b) If infF � − ∞ and limn⟶∞αn � 0, then
limn⟶∞F(αn) � − ∞,

Let F be the set of all functions defined as F: R+⟶ R,
which satisfies the following conditions:
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(F1) F is strictly increasing i.e., for all α, β ∈ R+ such
that α< β⇒F(α)<F(β)

(F2″) there is a sequence αn􏼈 􏼉n∈N of positive real
numbers such that limn⟶∞F(αn) � − ∞ or infF � − ∞
(F3″) F is continuous on (0,∞)

)e following function F: R+⟶ R belongs to F:

(i) F1(z) � ln z

(ii) F2(z) � − (1/z)

(iii) F3(z) � − (1/z) + z

Definition 8 (see [28]). Let (X, ϱ) be a metric space. A
mapping G: X⟶ X is said to be an F-Suzuki contraction
if there exists τ > 0, such that for all σ, ς ∈ X with Gσ ≠Gς
1
2
ϱ(σ, Gσ)< ϱ(σ, ς)⇒τ + F(ϱ(Gσ, Gς))≤F(ϱ(σ, ς)), (7)

where F ∈ F.

In 2014, Piri and Kumam [28] established a general-
isation of Banach contraction principle, which is as follows:

Theorem 4 (see [28]). Let (X, ϱ) be a complete metric space
and G: X⟶ X be a F-Suzuki contraction. (en G has a
unique fixed point σ∗ ∈ X and for every σ0 ∈ X a sequence
Gnσ0􏼈 􏼉n∈N is convergent to σ∗.

Remark 2 (see [28]). We denote byF the set of all functions
satisfying F-suzuki type contraction condition due to
[28, 29] and let denote byF the set of all functions satisfying
F-contraction condition by Wardowski [26], then

(i) F⊈F
(ii) F⊈F
(iii) F∩F≠∅

For more details on F-Suzuki contraction mapping, one
can see [31–33] and the references therein.

Motivated by Batra et al. [37], we use the following
notations: Let X be a nonempty set and (X, ϱ) denotes the
metric space with metric ϱ. Let the cardinality of a set A is
denoted by card A{ } and FixG is set of all fixed points of a
mapping G.

Batra et al. [37] gave a new generalisation family of
contraction called F-Kannan mapping and introduced the
following definition:

Definition 9 (see [37]). Let F be a mapping satisfying
(F1) − (F3). A mapping G: X⟶ X is said to be an
F-Kannan mapping if the following holds:

(K1)

Gσ ≠Gς⇒Gσ ≠ σ orGς≠ ς. (8)

(K2) ∃Υ> 0 such that

Υ + F(ϱ(Gσ, Gς))≤F
ϱ(σ, Gσ) + ϱ(ς, Gς)

2
􏼢 􏼣, (9)

for all σ, ς ∈ X, with Gσ ≠Gς.

)e remark presented below is due to Batra et al. [37].

Remark 3 (see [37]). By properties of F, it follows that every
F-Kannan mapping T on a metric space (X, ϱ), satisfies
following condition:

ϱ(Gσ, Gς)≤
ϱ(σ, Gσ) + ϱ(ς, Gς)

2
, (10)

for every σ, ς ∈ X.

Furthermore, it is concluded that Card FixG{ }≤ 1. Let G

be a self map of a metric space (X, ϱ). G is said to be a Picard
operator (PO) if G has unique fixed point σ∗ and
limn⟶∞Gnσ � σ∗ for all σ ∈ X.

)en the family of all functions F: R+⟶ R satisfying
the condition (F1) − (F3) is denoted by F.

We recall the following examples from Batra et al. [37] of
such functions F: R+⟶ R which satisfies (F1) − (F3):

Example 2 (see [37]). Let F1: R
+⟶ R be defined as

F1(z) � ln(z). )en clearly, (F1) − (F3) are satisfied by
F1(z). In fact (F3) holds for every k ∈ (0, 1)

ϱ(Gσ, Gς)≤ e
− Υ ϱ(σ, Gσ) + ϱ(ς, Gς)

2
􏼢 􏼣, (11)

for all σ, ς ∈ X with Gσ ≠Gς.
)us, ifG: X⟶ X is a Kannanmapping with constant

κ ∈ (0, 1) satisfying

ϱ(Gσ, Gς)≤ κ
ϱ(σ, Gσ) + ϱ(ς, Gς)

2
􏼢 􏼣, (12)

for every σ, ς ∈ X, then it also satisfies (8) and (11) with
Υ � ln(1/κ). In fact, whenever Gσ ≠Gς, then from (12), we
get Gσ ≠ σ or Gς≠ ς.

)e following lemma introduced by Batra et al. [37].

Lemma 2 (see [37]). Let (X, ϱ) be a metric space and
G: X⟶ X be a F-Kannan mapping. (en,
ϱ(Gnσ, Gn+1σ)⟶ 0 as n⟶∞ for all σ ∈ X.

Batra et al. [37] introduced a F-Kannan mapping using
the properties by Subrahmanyam [4] which is an extension
of Goswami et al. [27] and Wardowski [26] results. )ey
proved the following result.

Theorem 5 (see [37]). Let (X, ϱ) be a complete metric space
and suppose G: X⟶ X is a F-Kannan mapping, then G is
a Picard operator (PO).
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Using the following definitions, we introduce some
fundamental properties for a fixed point and common fixed
point theorems.

Definition 10 (see [45]). Let (G, f) be a pair of self-map-
pings on a metric space (X, ϱ). )en coincidence point of
the pair (G, f) is a point σ ∈ X such that (Gσ) � (fσ) � σ∗,
then σ∗ is called coincidence point of the pair (G, f). If
σ∗ � σ, then σ is said to be a common fixed point of f and G.

Definition 11 (see [46]). Let G, f be self-mappings of a
nonempty set X. A point σ ∈ X is coincidence point of G

and f if t � Gσ � fσ. )e set of coincidence point of G and
f is denoted by C(G, f).

Definition 12 (see [46, 47]). Let (T, f) be a pair of self-
mappings on a metric space (X, ϱ). )en, the pair (T, f) is
said to be as follows:

(i) Commuting if, for all σ ∈ X, G(fσ) � f(Gσ),
(ii) Weakly commuting if, for all ϱ(G(fσ), f(Gσ))

≤ ϱ(Gσ, fσ),
(iii) Compatible if limn⟶∞ϱ(Gfσn, fGσn) � 0, when-

ever σn is a sequence in X such that
limn⟶∞Gσn � limn⟶∞fσn � t,

(iv) Weakly compatible if, for all G(fσ) � f(Gσ), for
every coincidence point σ ∈ X.

3. Main Results

To prove this section’s main results, we commerce by
obtaining a more general version of Definition 8 and 9 using
a pair of two self mappings in F-Kannan–Suzuki type
mapping setting. We denotes (X, ϱ) as a TVS-valued cone
metric space.

Definition 13. Let F be a mapping satisfying (F1) − (F3). A
pair of two self mapping G, f: X⟶ X is said to be an
F-Kannan–Suzuki type mapping if the following holds:

(FKS1)

Gfσ ≠Gfς⇒Gfσ ≠ σ orGfς≠ ς. (13)

(FKS2) there exists ϑ> 0 such that

1
2
ϱ(σ, Gσ)< ϱ(σ, σ)

⇒ϑ + F(ϱ(Gfσ, Gfς))≤F
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣,

(14)

for all σ, ς ∈ X, with Gfσ ≠Gfς and F ∈ F.

Following remark is motivated by the work of Batra et al.
[37] given as follows.

Remark 4. By properties of F, it follows that every
F-Kannan–Suzuki type mapping G on a TVS-valued cone
metric space (X, ϱ), satisfies the following condition:

ϱ(Gfσ, Gfς))≤
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
, (15)

for every σ, ς ∈ X.

We give the following examples in the context of a pair of
two self mappings:

Example 3. Let F1: R
+⟶ R be defined as F1(z) � ln(z).

)en clearly, (F1) − (F3) are satisfied by F1(z). In fact (F3)

holds for every κ ∈ (0, 1). Moreover, condition (14) takes the
form:

ϱ(Gfσ, Gfς)) ≤ e
− ϑ ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣, (16)

for all σ, ς ∈ X with Gfσ ≠Gfς.
)us, if G, f: X⟶ X is a Kannan mapping with

constant κ ∈ (0, 1) satisfying

ϱ(Gfσ, Gfς))≤ κ
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣. (17)

for every σ, ς ∈ X. )en it also satisfies (16) and (14) with
ϑ � ln(1/κ).

Example 4. Let F2: R
+⟶ R be defined as F2(z) �

− (1/z), z> 0. )en, (F1) − (F3) are satisfied by F2(z).
Condition (14) takes the form:

ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)
2

≤
ϱ(Gfσ, Gfς)

1 − ϑϱ(Gfσ, Gfς)
, (18)

for all σ, ς ∈ X with Gfσ ≠Gfς.

Example 5. Let F3: R
+⟶ R be defined as F3(z) �

− (1/z), z> 0. )en, (F1) − (F3) are satisfied by F3(z).
Condition (14) takes the form:

ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)
2

≤
ϱ(Gfσ, Gfς) [(ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς))/2]

2
− 1􏼐 􏼑

ϱ(Gfσ, Gfς) + ϑ ϱ(Gfσ, Gfς)2 − 1􏼐 􏼑
,

(19)

for all σ, ς ∈ X with Gfσ ≠Gfς.

We prove the following lemma which is an extension of
Lemma 2.

Lemma 3. Let (X, ϱ) be a complete TVS-valued cone metric
space and G, f: X⟶ X be an F-Kannan–Suzuki type
mapping. (en,

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑⟶ 0 as n⟶∞, (20)

for all σ ∈ X.
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Proof. Suppose that σ0 is an arbitrary point inX. If Gfnx0 �

Gfn+1σ0 for some n ∈ N, then sequence σn􏼈 􏼉n∈N converges in
X, and hence the sequence ϱ(Gfnσ0, Gfn+1σ0)⟶
0 as n⟶∞ for all σ ∈ X.

Assume that Gfnσ0 ≠Gfn+1σ0 for any n ∈ N. )en, by
(14) with ϑ> 0, we get
1
2
ϱ σ0, Gσ0( 􏼁< ϱ σ0, Gσ0( 􏼁

⇒ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑

≤F
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
⎡⎣ ⎤⎦.

(21)

By Remark 4, we obtain

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
.

(22)

Using (22) in (21), as results yields to

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑. (23)

Letting n⟶∞ in (23), we get

ϑ + 0≤ 0,

ϑ≤ 0,
(24)

which is a contradiction. Hence, ϱ(Gfnσ0, Gfn+1σ0)⟶ 0
as n⟶∞. □

Motivated by Batra et al. [37] and Filipovic et al. [38], we
give a proof of an extended version of)eorem 2, 4, and 5 in
F-Kannan–Suzuki type mappings with a pair of two self-
mappings in complete TVS-valued cone metric space.

Theorem 6. Let (X, ϱ) be a complete TVS-valued cone
metric space andP a solid cone, in addition let G: X⟶ X

be a one-to-one, continuous mappings and f: X⟶ X a
G-F-Kannan–Suzuki type contraction. (en,

(i) For every σ0 ∈ X the sequence Gfnσ0 is convergent
(ii) (ere is v∗ ∈ X such that limn⟶∞Gfnσ0 � v∗

(iii) G is sequentially convergent, then (fnσ0) has a
convergent, subsequence

(iv) (ere is a unique u∗ ∈ X such that fu∗ � u∗

(v) If G is sequentially convergent, then for each σ0 ∈ X

the iterate sequence (fnσ0) converges to u∗

Proof. By (i), we prove that Gfnσ0􏼈 􏼉 is a Cauchy sequence.
Let σ0 ∈ X be arbitrary. If Gfnσ0 � Gfn+1σ0 for some n ∈ N,
then sequence σn􏼈 􏼉n∈N converges in X and hence the se-
quence ϱ(Gfnσ0, Gfn+1σ0)⟶ 0 as n⟶∞ for all σ ∈ X.
Suppose that Gfnσ0 ≠Gfn+1σ0 for any n ∈ N. )en, by (14),
Lemma 3 with ϑ> 0, we get

1
2
ϱ σn, Gσn( 􏼁< ϱ σn, Gσn( 􏼁⇒

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
⎡⎣ ⎤⎦.

(25)

From Remark 4, we have

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤
ϱ Gf

n− 1σ0, Gf
n
x0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
,

2ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤ ϱ Gf
n− 1σ0, Gf

nσ0􏼐 􏼑 + ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑,

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤ ϱ Gf
n− 1σ0, Gf

nσ0􏼐 􏼑.

(26)

Using (26) in (25), as results yields to
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ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
⎡⎣ ⎤⎦,

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F
2ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑

2
⎡⎣ ⎤⎦,

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F ϱ Gf
n− 1σ0, Gf

nσ0􏼐 􏼑􏽨 􏽩.

(27)

Letting n⟶∞ in (27), we get

ϑ + 0≤ 0,

ϑ≤ 0,
(28)

which is a contradiction. Hence, ϱ(Gfnσ0, Gfn+1σ0)⟶ 0
as n⟶∞. )us, Gfnσ0􏼈 􏼉 converges.

Since G is sequentially convergent, using (v), we prove
that the iterate of a sequence fnσ0 converge to a fixed u ∈ X.
To see this, suppose σ0 ∈ X be an arbitrary point in X. Let
the sequence σn􏼈 􏼉n≥ 1 be defined by σn+1 � fσn � fn+1σ0 �

ffnσ0 and σn � fσn− 1 � fnσ0 � ffn− 1σ0, for n≥ 1 ∈ N.
)us, we have

ϱ σn, σn+1( 􏼁≤ ϱ fσn− 1, fσn( 􏼁 � ϱ f
nσ0, f

n+1σ0􏼐 􏼑

� ϱ ff
n− 1σ0, ff

nσ0􏼐 􏼑.
(29)

equivalent to

ϱ Gσn, Gσn+1( 􏼁≤ ϱ Gfσn− 1, Gfσn( 􏼁

� ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑

� ϱ Gff
n− 1σ0, Tff

nσ0􏼐 􏼑.

(30)

Let σ � fn− 1σ0 and ς � fnσ0, using inequality (14), we
obtain

1
2
ϱ σn, Gσn( 􏼁< ϱ σn, Gσn( 􏼁

⇒ϑ + F(ϱ Gff
n− 1σ0, Gff

nσ0􏼐 􏼑≤F
ϱ Gf

n− 1σ0, Gff
n− 1σ0􏼐 􏼑 + ϱ Gf

nσ0, Gff
nσ0( 􏼁

2
⎡⎣ ⎤⎦,

F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F
ϱ Gσn− 1, Gσn( 􏼁 + ϱ Gσn, Gσn+1( 􏼁

2
􏼢 􏼣 − ϑ.

(31)

Using Remark 4 and the increasing property of F, we
deduce

ϱ Gff
n− 1σ0, Gff

nσ0􏼐 􏼑≤
ϱ Gf

n− 1σ0, Gff
n− 1σ0􏼐 􏼑 + ϱ Gf

nσ0, Gff
nσ0( 􏼁

2
,

ϱ Gσn, Gσn+1( 􏼁<
ϱ Gσn− 1, Gσn( 􏼁 + ϱ Gσn, Gσn+1( 􏼁

2
,

(32)

and hence,

2ϱ Gσn, Gσn+1( 􏼁 − ϱ Gσn, Gσn+1( 􏼁< ϱ Gσn− 1, Gσn( 􏼁,

ϱ Gσn, Gσn+1( 􏼁< ϱ Gσn− 1, Gσn( 􏼁.
(33)

By (F1), this implies that

F ϱ Gσn, Gσn+1( 􏼁( 􏼁<F ϱ Gσn− 1, Gσn( 􏼁( 􏼁. (34)

Consequently, we get

ϑ + F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁, (35)

so

F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − ϑ. (36)

By induction and (36), we deduce

F ϱ Gσn+1, Gσn+2( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − 2ϑ,

F ϱ Gσn+2, Gσn+3( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − 3ϑ,

⇒F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − nϑ.

(37)

Letting n⟶∞ in (37), we find that
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lim
n⟶∞

F ϱ Gσn, Gσn+1( 􏼁( 􏼁 � − ∞. (38)

Consequently, using Lemma 1 and property (F2″) of F

results in

lim
n⟶∞
ϱ Gσn, Gσn+1( 􏼁 � 0. (39)

)us, there exists n ∈ N such that

ϱ Gσn, Gσn+1( 􏼁< ϱ Gσn, G
2σn􏼐 􏼑< cϱ σn, Gσn( 􏼁< ϱ σn, Gσn( 􏼁,

(40)

which is a contradiction. Hence, we have

lim
n⟶∞
ϱ σn, Gσn( 􏼁 � 0. (41)

)erefore, we have ϱ(Gσn, Gσn+1)⟶ 0 as n⟶∞.
Denote αn � ϱ(Gσn, Gσn+1) � 0, for all n≥ 1 and n ∈ N, for
F-Kannan–Suzuki type mappings.

By (39), we prove that Gσn􏼈 􏼉 is a Cauchy sequence since
(X, ϱ) is complete. Consider n, m ∈ N such that m> n.
Assume on the contrary that there exists c> 0 and sequences
p(n)􏼈 􏼉

∞
n≥1 and q(n)􏼈 􏼉

∞
n≥1 such that

p(n)> q(n)> n, ϱ Gσp(n), Gσq(n)􏼐 􏼑

≥ c, ϱ Gσp(n)− 1, Gσq(n)􏼐 􏼑≤ c,∀n ∈ N.
(42)

Using (iii) of Definition 2, we get

ϱ Gσp(n), Gσq(n)􏼐 􏼑≤ ϱ Gσp(n), Gσp(n)− 1􏼐 􏼑

+ ϱ Gσp(n)− 1, Gσq(n)􏼐 􏼑

≤ ϱ Gσp(n), Gσp(n)− 1􏼐 􏼑 + c.

(43)

From (39) and the above inequality, we have

lim
n⟶∞
ϱ Gσp(n), Gσq(n)􏼐 􏼑 � c. (44)

From (F3″), (44), and (14), we get

ϑ + F ϱ Gσp(n), Gσq(n)􏼐 􏼑􏼐 􏼑

≤F
ϱ Gσp(n)− 1, Gσp(n)􏼐 􏼑 + ϱ Gσp(n), Gσq(n)􏼐 􏼑

2
⎡⎣ ⎤⎦.

(45)

Equivalently,

ϑ + F(c)≤F(c),

ϑ≤ 0,
(46)

which is a contradiction. So, Gσn � Gσm for every m≥ n in
X. Hence, Gσn􏼈 􏼉 is a Cauchy sequence in X. )e com-
pleteness of X ensures the existence of u∗ ∈ X such that

ϱ Gu
∗
, u
∗

( 􏼁 � lim
n,m⟶∞
ϱ Gσn, Gσm( 􏼁 � 0

� lim
n⟶∞
ϱ Gσn, u

∗
( 􏼁 � 0.

(47)

By (47) and Definition 6, it follows that Gσn+1⟶ u∗ as
n⟶∞. By sequential continuity of f and G, we have

u
∗

� lim
n⟶∞

f
nσ0 � lim

n⟶∞
σn � lim

n⟶∞
σn+1

� lim
n⟶∞

fσn � fu
∗
.u
∗

� lim
n⟶∞

Gf
nσ0 � lim

n⟶∞
Gσn � lim

n⟶∞
Gσn+1

� lim
u⟶∞

G
2σn � Gu

∗
.

(48)

Since X is a complete metric space, there exists u∗ ∈ X
such that

lim
n⟶∞

Gσn � Gu
∗

� u
∗
. (49)

Now, we prove that u∗ is a fixed point of G. )us, by (iii)
of Definition 2 and ϱ(u∗, Gu∗)≥ 0, we have

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gσn+1( 􏼁 + ϱ Gσn+1, Gu

∗
( 􏼁. (50)

By Remark 4, it implies that

ϱ Gσn+1, Gu
∗

( 􏼁≤
ϱ Gσn, Gσn+1( 􏼁 + ϱ Gσn+1, Gu

∗
( 􏼁

2
. (51)

Applying (51) in (50), we obtain

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gσn+1( 􏼁 +

ϱ Gσn, Gσn+1( 􏼁 + ϱ Gσn+1, Gu
∗

( 􏼁

2
.

(52)

Letting n⟶∞ and using in above inequality, we get

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gu
∗

( 􏼁

+
ϱ u
∗
, Gu
∗

( 􏼁 + ϱ Gu
∗
, Gu
∗

( 􏼁

2
,

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gu
∗

( 􏼁 +
ϱ u
∗
, Gu
∗

( 􏼁

2
,

ϱ u
∗
, Gu
∗

( 􏼁≤
2ϱ u
∗
, Gu
∗

( 􏼁 + ϱ u
∗
, Gu
∗

( 􏼁

2
,

2ϱ u
∗
, Gu
∗

( 􏼁≤ 2ϱ u
∗
, Gu
∗

( 􏼁 + ϱ u
∗
, Gu
∗

( 􏼁,

2ϱ u
∗
, Gu
∗

( 􏼁 − 2ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gu
∗

( 􏼁,

0≤ ϱ u
∗
, Gu
∗

( 􏼁,

(53)

which is a contradiction. Hence, Gu∗ � u∗.
Next, we prove that u∗ is a unique fixed point of G.

Assume on contrary that there exists v∗ ∈ int(P) such that
u∗ ≠ v∗ or Gu∗ ≠Gv∗. Let Gσn⟶ v∗ and v∗ is a fixed point
of G. Using Remark 4 and (14), it follows that u∗ � v∗ or
Gu∗ � Gv∗ which is a contradiction. )us, u∗ is a unique
fixed point of G.

Moreover, G is a subsequentially convergent, fnσ0􏼈 􏼉 has
a convergent subsequence, there exists σ∗ ∈ X and
fnk x0􏼈 􏼉

∞
k�1 such that

lim
k⟶∞

f
nk x0 � v

∗
. (54)

Due to the continuity of G, it implies that

lim
k⟶∞

Gf
nkσ0 � Gv

∗
. (55)
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By (49), we conclude that

Gv
∗

� u
∗
. (56)

Using Remark 4 and λ � (1/2), we get

ϱ Gff
nk− 1σ0, Tff

nkσ0( 􏼁≤ λ(ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + ϱ Gf
nkσ0, Gff

nkσ0( 􏼁,

≤ λ(ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁,

≤ λϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + λϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁,

(1 − λ)ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁≤ λϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑,

ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁≤
λ

1 − λ
ϱ Gf

nk− 1σ0, Gff
nk− 1σ0􏼐 􏼑.

(57)

)us, using (iii) of Definition 2, we have

ϱ Gfv
∗
, Gv
∗

( 􏼁≤ ϱ Gfv
∗
, Gf

nk+1σ0􏼐 􏼑 + ϱ Gf
nk+1σ0, Gv

∗
􏼐 􏼑.

(58)

By Remark 4,

ϱ Gfv
∗
, Gf

nk+1σ0􏼐 􏼑 � ϱ Gfv
∗
, Gff

nkσ0( 􏼁

≤ λ ϱ Gv
∗
, Gfv
∗

( 􏼁 + ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁􏼂 􏼃.

(59)

Using (57) and (59) in (58), we obtain

ϱ Gfv
∗
, Gv
∗

( 􏼁≤ λ ϱ Gv
∗
, Gfv
∗

( 􏼁 + ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁􏼂 􏼃 + ϱ Gf
nk+1σ0, Gv

∗
􏼐 􏼑,

≤ λ ϱ Gv
∗
, Gfv
∗

( 􏼁 +
λ

1 − λ
ϱ Gf

nk − 1σ0, Gff
nk− 1σ0􏼐 􏼑􏼢 􏼣 + ϱ Gf

nk+1σ0, Gv
∗

􏼐 􏼑

≤ λϱ Gv
∗
, Gfv
∗

( 􏼁 + λ
λ

1 − λ
􏼠 􏼡

nk − 1

ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + ϱ Gf
nk+1σ0, Gv

∗
􏼐 􏼑,

≤
λ

1 − λ
λ

1 − λ
􏼠 􏼡

nk − 1

ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 +
1

1 − λ
ϱ Gf

nk+1σ0, Gv
∗

􏼐 􏼑,

≤
λ

1 − λ
􏼠 􏼡

nk

ϱ Gf
nk − 1σ0, Gff

nk − 1σ0􏼐 􏼑 +
1

1 − λ
ϱ Gf

nk+1σ0, Gf
nkσ0􏼐 􏼑.

(60)

Suppose that

λ
1 − λ

􏼠 􏼡

nk

ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 �
c

2
. (61)

λ
1 − λ
ϱ Gf

nk− 1σ0, Gff
nk− 1σ0􏼐 􏼑 �

c

2
. (62)

Letting k⟶∞ and using Definition 3, (61), and (62) in
(60), we obtain

ϱ Gfv
∗
, Gv
∗

( 􏼁≤
c

2
+

c

2
, (63)

which follows

ϱ Gfv
∗
, Gv
∗

( 􏼁≤ c. (64)

SinceG is one to one and continuous,fv∗ � v∗. So, f has
a fixed point. As Gfnσ0 is sequentially convergent, we
conclude that Gfnσ0􏼈 􏼉 converges to the fixed point of f. □

Next, we prove our second main results by extending
)eorem 3 using an F-Kannan–Suzuki type mapping in
TVS-valued cone metric space.

Theorem 7. Let (X, ϱ) be a complete TVS-valued cone
metric space andP a solid cone. In addition, let G: X⟶ X

be a one-to-one, continuous and sequentially mappings and
f: X⟶ X such that F(f)≠∅, ϑ> 0 and that

1
2
ϱ(σ, Gσ)< ϱ(σ, ς)

⇒ϑ + F ϱ Gfσ, Gf
2σ􏼐 􏼑􏼐 􏼑≤F(ϱ(Gσ, Gfσ)),

(65)
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holds for some λ ∈ (0, 1) and for all σ ∈ X, σ ≠fσ. (en f

has property Q.

Proof. By Remark 1, let u ∈ F(Gn)∩F(fn) for some n ∈ N.
If u � fu, that is u is a unique fixed point of G and f. Hence,

the proof completed. On contrary, we suppose u≠fu. Let
σ � u � fn− 1u and ς � fu � ffn− 1u such that fn− 1 ≠ffn− 1

and using (65), we get

1
2
ϱ(u, Gu)< ϱ(u, fu),

ϱ(u, Gu)< 2ϱ(u, fu),

⇒ϑ + F ϱ Gff
n− 1

u, Gf
2
f

n− 1
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, Gff

n− 1
u􏼐 􏼑􏽨 􏽩,

ϑ + F ϱ Gff
n− 1

u, Gff
n
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, TGf

n
u􏼐 􏼑􏽨 􏽩.

(66)

Consequently, we get

F ϱ Gff
n− 1

u, Gff
n
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, Gf

n
u􏼐 􏼑􏽨 􏽩 − ϑ. (67)

Repeating the same argument several times, we finally
obtain

F ϱ Gff
n− 1

u, Gff
n
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, Gf

n
u􏼐 􏼑􏽨 􏽩 − nϑ.

(68)

By following similar procedure as the proof of )eorem
6, we can conclude that ϱ(Gu, Gfu) � c, i.e., Gu � Gfu.
Since G is one to one and sequentially convergent, then
u � fu, which is a contradiction. Hence,
u ∈ F(Gn)∩F(fn). □

We give an example where generalised Kannan mapping
will not be applicable. However, F- Kannan Suzuki type
mapping is applicable.

Example 6. Consider the sequence X � 0, 1{ }∪ (1/2),{

(1/3), (1/4), . . .} and d be an Euclidean metric on X. )en
(X, ϱ) is a TVS-valued cone complete metric space. Let the
mapping f: X⟶ X be determined as follows:

f(0) � 0,

f(1/i) �
1

i + 1
,

(69)

for n≥ 2. Let there exist λ ∈ [0, (1/2)), so that, for all σ, ς ∈ X

condition (1) is satisfied although is not true for every λ> 0.
)at is a contradiction; hence, Kannan’s theorem cannot be
applicable.

)e mapping G: X⟶ X be determined as

G(0) � 0,

G(1/i) �
1
2i

.

(70)

For all i≥ 2, G is continuous, one to one, and sub-
sequentially convergent.

We consider a sequence σi􏼈 􏼉 in X and assume that X is
sequentially compact in complete TVS-valued cone metric
space. By assumption X is sequentially compact with ϵ � 1
we can cover the spaceXwith finitely many balls of radius 1;
then one of them contains many σi􏼈 􏼉 for i≥ 2; i.e., there is a
ball B1 of radius 1 so that there is a subsequence of σi􏼈 􏼉

whose members all belongs to B1. We denote this subse-
quence by σi􏼈 􏼉; thus, all σi􏼈 􏼉 belongs to B1.

Similar by sequentially compactness conditions with
ϵ � (1/2), we can find a subsequence σi2

􏽮 􏽯 of σi1
􏽮 􏽯 and a ball

B2 of radius 1/2 so that all σi2
􏽮 􏽯 belongs to B2. Continuing

this way, we obtain for any k≥ 2 a subsequence σik
􏽮 􏽯 of

σik− 1􏽮 􏽯 and a ball Bk of radius 2− k so that all σik
􏽮 􏽯 belongs to

Bk.
Now, let i, j ∈ N, j> i. )en, we show that (f, G) is a

F-Kannan–Suzuki type mapping in TVS-valued cone metric
space with respect to F2(z) � − (1/z) and ϑ≥ 0. By using
(FKS2) and F2(z), we have

1
2
ϱ(σ, Gσ)< ϱ(σ, ς)

⇒
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
≤
ϱ(Gfσ, Gfς)

1 − ϑϱ(Gfσ, Gfς)
.

(71)

To see this, we now calculate ϱ(fσ, Gς) for
σ � 1/i, ς � 1/j, i≥ 1.

ϱ(Gσ, Gfσ) � ϱ(T(1/i), Gf(1/i))

≤
1
2i

−
1

21/(i+1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t
.

(72)

ϱ(Gfσ, Gfς) � ϱ(Gf(1/i), Gf(1/j))

≤ 21/(i+1)
− 21/(j+1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t
.

(73)

ϱ(Gς, Gfς) � ϱ(G(1/j), Gf(1/j))

≤ 21/j − 21/(j+1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t
.

(74)

Applying (72), (73), and (74) in (71) becomes
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1
2
ϱ(σ, Gσ)< ϱ(σ, ς),

1
2
ϱ(1/i, G(1/i))< ϱ(1/i, 1/j),

ϱ(1/i, G(1/j)) < 2ϱ(1/i, 1/j),

1
i

−
1
2j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t < 2
1
i

−
1
j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t
,

2i
− i

2i
.i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t < 2
j − i

ij

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t
,

⇒
ϱ(G(1/i), Gf(1/i)) + ϱ(G(1/j), Gf(1/j))

2
≤
ϱ(Gf(1/i), Gf(1/j))

1 − ϑϱ(Gf(1/i), Gf(1/j))
,

⇒
1/2i

􏼐 􏼑 − 1/21/(i+1)
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t

+ 21/j − 21/(j+1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t

2
≤

21/(i+1)
− 21/(j+1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t

1 − ϑ 21/(i+1)
− 21/(j+1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t
.

(75)

)us the inequality (71) and all conditions imposed in
)eorem 6 are satisfied. Hence, G and f has unique fixed
point that is v∗ � 0 in P⊆E{ } ∈ X, where P is a solid cone.

4. Some Applications

Two applications of the theorem stated in the previous part
will be presented in this section.

4.1. Existence of a Solution for Nonlinear Riemann–Liouville
Type Fractional Differential Equation. As a convolution
mapping, the nonlinear fractional differential equation is
equally and identically utilized in several applications in the
domains of science, engineering, and mathematics.

(i) In image processing: convolutional filtering is used
in many essential algorithms in digital image
processing, such as edge detection and related
procedures. An out-of-focus photograph is created
by convolutioning a crisp image with a lens
function in optics. )is is referred to as bokeh in
photography. For example, applying blurring to a
picture in image processing software.

(ii) In digital data processing: Savitzky–Golay
smoothing filters are used for analyzing spectro-
scopic data in analytical chemistry. )is can boost
the signal-to-noise ratio while reducing spectral
distortion along with a convolution in statistics
that is weighted in moving average.

(iii) In acoustics: reverberation is the convolution of
the original sound with echoes from objects sur-
rounding the sound source. Convolution is a
technique for mapping the impulse response of a
physical room to a digital audio stream in digital
signal processing. )e imposition of a spectral or
rhythmic structure on a sound is known as

convolution in electronic music. )is envelope or
structure is frequently derived from a different
sound. Filtering one signal via the other is called
convolution of two signals.

(iv) In electrical engineering: the output of a linear
time-invariant (LTI) system is obtained by the
convolution of one function (the input signal)
with a second function (the impulse response). At
any one time, the output is the sum of all previous
input function values, with the most recent values
often having the most influence (expressed as a
multiplicative factor). )is component is pro-
vided by the impulse response function as a
function of the time since each input value
happened.

(v) In physics: a convolution operation can be found
whenever there is a linear system with a “super-
position principle.” For example, in spectroscopy,
line widening owing to the Doppler effect produces
a Gaussian spectral line form on its own, whereas
collision broadening produces a Lorentzian line
shape. )e Line form is a convolution of Gaussian
and Lorentzian, which is a Voigt function, when
both effects are active. )e measured fluorescence
in time-resolved fluorescence spectroscopy is a
sum of exponential decays from each delta pulse,
and the excitation signal may be considered as a
chain of delta pulses.

(vi) In computational fluid dynamics: the convolution
process is used in the large eddy simulation (LES)
turbulence model to reduce the range of length
scales required in computing, lowering the com-
putational cost.

(vii) In probability theory: the convolution of the dis-
tributions of two independent random variables is
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the probability distribution of the sum of their
distributions.

(viii) In kernel density estimation: a distribution is es-
timated from sample points by convolution with a
kernel, such as an isotropic Gaussian.

(ix) In radiotherapy: in the handling of planning sys-
tems, the convolution-superposition algorithm is
used in the majority of recent computation codes.

)e above applications of a convolution show that the
fractional derivative as convolution has multiple purposes. It
can represent memory, like in the instance of elasticity
theory. It may be understood as a filter, with the Caputo and
Caputo–Fabrizio types in particular being viewed as a filter
of the local derivative with power and exponent functions
(one can see in [48]).

)e purpose of this section is to provide an application of
)eorem 6 to find a common solution of a nonlinear
fractional differential equation, where we can apply
F-Kannan–Suzuki type mappings in complete TVS-valued
cone metric spaces.

Here, we investigates the Riemann–Liouville derivative
fractional integral of order α> 0. )is form of fractional
derivative for a continuous function g: [0,∞)⟶ R

denoted by Dα
af, is given by

D
α
0+( 􏼁g(t) �

d

dt
􏼠 􏼡

n− 1

I
α
0+( 􏼁g(t)

�
1
Γ(n − α)

d

dt
􏼠 􏼡

n

􏽚
t

0
(t − s)

n− α− 1
g(s)ds,

(76)

where [α] denotes the integer part of the real number α and
n � [α] + 1, provided that the right hand side is pointwise
defined on (0,∞). (see [49–54]). Also, the Rie-
mann–Liouville fractional integral of order α is given by

I
α
0( 􏼁g(t) �

1
Γ(α)

􏽚
t

a
(t − s)

α− 1
g(s)ds, (77)

for α> 0. )e notation [α] stands for largest integer not
greater than α. If α � m ∈ N, then (Dm

0+)g(t) � gm(t), for
t> 0 and if α � 0, then (D0

0+)g(t) � g(t) for t> 0.

)e following nonlinear fractional differential equation
with integral boundary valued conditions is inspired by
Kilbas et al. [55], Cabada and Hamdi [56], and Cabada and
Wang [50].

D
α
0+σ(t) + g(t, σ(t)) � 0, 0< t< 1,

σ(0) � σ′(0),

σ′(1) � λ􏽚
1

0
σ(s)ds, 0< λ< 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(78)

where Dα
0+ denotes the Riemann–Liouville fractional de-

rivative of order α and g: [0, 1]⟶ X is a continuous
function.

We recall the following lemmas from Bai, and Lü [57].

Lemma 4. Let α> 0. If we assume σ ∈ C(0, 1)∩L(0, 1), then
the fractional differential equation:

D
α
0+σ(t) � 0, (79)

has

σ(t) � C1t
α− 1

+ C2t
α− 2

+ · · · + CNt
α− N

, (80)

Ci ∈ R, i � 1, 2, . . . , N, as unique solution.

Since Dα
0+Iα0+σ(t) � σ for all σ ∈ C(0, 1)∩L(0, 1). From

Lemma 4, we deduce the following lemma.

Lemma 5. Assume that σ ∈ C(0, 1)∩ L(0, 1), with fractional
derivative of order α> 0 that belongs to σ ∈ C(0, 1)∩L(0, 1).
(en,

I
α
0+D

α
0+σ(t) � σ(t) + C1t

α− 1
+ C2t

α− 2
+ · · · + CNt

α− N
, (81)

for some Ci ∈ R, i � 1, 2, . . . , N, as unique solution.

)e unique solution of (78) is given by

σ(t) � 􏽚
t

a
G(t, s)g(s, u(s))ds. (82)

Recall that the Green function related to the problem
(78) is given by

Gf(t, s) �

t
α− 1

(1 − s)
α− 1

(α − λ + λs) − (α − λ)(t − s)
α− 1

(α − λ)Γ(α)
, 0≤ s≤ t≤ 1,

t
α− 1

(1 − s)
α− 1

(α − λ + λs)

(α − λ)Γ(α)
, 0≤ t≤ s≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(83)

Consider the space X � (C[0, 1],Rn), E � C[0, 1] be
endowed with the ordering σ ≤ ς if σ(t)≤ ς(t) for all
t ∈ C[0, 1] and define P ∈ E by P � (σ, ς) ∈ E:{

σ(t), ς(t)≥ 0} ⊂ R2, X � R.
)is space defines the metric ϱ: X × X⟶ E such that

ϱ(σ, ς) � sup
t∈[0,1]

|σ(t) − ς(t)|{ }ψ(t), (84)

∀σ, ς ∈ X and ψ(t) � et. )en, (X, ϱ) is a TVS-valued cone
metric space. A function σ ∈ C([0, 1],X) is a unique so-
lution of the fractional differential integral equation (82) if
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and only if σ � u∗ is a solution of the nonlinear fractional
differential equation (78).

Now, we prove the following theorem.

Theorem 8. Suppose the following condition hold:

(i) Gf(t, s) ∈ C([0, 1] × [0, 1], X)≥ 0 for all t, s ∈ [0, 1]

(ii) 􏽒
1
0 Gf(t, s)≤ c(s) for all t, s ∈ [0, 1]

(iii) g ∈ C([0, 1] × X,X) is sequentially continuous
(iv) there exists a continuous function

g: [0, 1] × R⟶ R+, such that

|g(t, σ(s)) − g(t, ς(s))|≤ e
− ϑ

c(s)|σ(s) − ς(s)|, (85)

for all t ∈ [0, 1] and ϑ> 0, such that

c(s) �
t
α− 1

[αλ + α(α + 1)] − (α + 1) αt
α

+ λt
α

􏼂 􏼃

α(α + 1)(α − λ)Γ(α)
. (86)

(en, the fractional differential Equation 4.1 has a
common solution as a fixed point σ∗ ∈ C([0, 1],X).

Proof. Let us define a map G, f: P⟶ E by

Gfσ(t) � 􏽚
1

0
Gf(t, s)g(s, σ(s))ds, (87)

for t ∈ [0, 1], then Gfnσ0 is sequentially continuous. )is
implies that f ∈ Gfnσ0 and fnσ0 possess a fixed point
u∗ ∈ Gf. To prove the existence of fixed point of Gf, we
prove that Gf is sequentially and contraction. To show Gf is
sequentially continuous, let Gfσ ≠Gfς, for all σ, ς ∈ [0, 1].
By condition (iv), we have

|Gfσ − Gfς| � 􏽚
1

0
Gf(t, s)g(s, σ(s))ds − 􏽚

1

0
Gf(t, s)g(s, ς(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤ 􏽚
1

0
Gf(t, s)|g(s, σ(s)) − g(s, ς(s))|ds,

≤ 􏽚
t

0

t
α− 1

(1 − s)
α− 1

(α − λ + λs) − (α − λ)(t − s)
α− 1

(α − λ)Γ(α)
ds + 􏽚

1

t

t
α− 1

(1 − s)
α− 1

(α − λ + λs)

(α − λ)Γ(α)
ds􏼢 􏼣e

− ϑ
|σ(s) − ς(s)|e

t
,

≤
t
α− 1

[αλ + α(α + 1)] − (α + 1) αt
α

+ λt
α

􏼂 􏼃

α(α + 1)(α − λ)Γ(α)
􏼢 􏼣e

− ϑ
|σ(s) − ς(s)|.

(88)

)is implies that

|Gfσ, Gfς|≤ e
− ϑ

c(s)|σ − ς|et
. (89)

Since c(s)< 1, we have

|Gfσ, Gfς|≤ e
− ϑ

|σ − ς|et
. (90)

)us, for each σ, ς ∈ X, we have

ϱ(Gfσ, Gfς)≤ e
− ϑ
M(σ, ς). (91)

Taking logarithms on both sides of (91) using F1(z) �

ln(z) and the property of F, we get

ln(ϱ(Gfσ, Gfς))≤ ln e
− ϑ
M(σ, ς)􏼐 􏼑 (92)

equivalent to

ϑ + F(ϱ(Gfσ, Gfς))≤F(M(σ, ς)), (93)

where

M(σ, ς) �
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
. (94)

Using (94) in (93) and applying F-Kannan–Suzuki type
conditions leads to

1
2
ϱ(σ, Gσ)< ϱ(σ, ς)

⇒ϑ + F(ϱ(Gfσ, Gfς)) ≤F
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣.

(95)

For c ∈ [0, 1), ϑ> 0 satisfies F-Kannan–Suzuki type
mapping. )erefore, Gf is a contraction mapping on X.
Since all the conditions of)eorem 8 are satisfied.)erefore,
there exists u∗ ∈ C([0, 1]) a common fixed point of G and f,
that is, u∗ is a solution to fractional nonlinear differential
equation (78). □
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4.2. (e Existence of Coincidence Solution for Nonlinear
Volterra-Integral Equations. )is section investigates the
coincidence solution for nonlinear Volterra-integral equa-
tions in the setting of TVS-valued cone metric spaces. Nieto
[58] initiated the study of the existing solution of an ordinary
differential equation. Since then, several authors utilized his
ideas to find the solution of ordinary differential equations.
In detail, one can see the literature in [55, 59–62] and the
references therein.

Integral equation methods help solve many problems of
the applied fields like mathematical economics and optimal
control theory because this problem is often reduced to
integral equations.

Integral equations appear in several forms. However, in
this section, we are interested with the integral equation,
namely, Volterra integral-differential equation which is of
the form

u
n
(t, σ) � f(t, σ) + 􏽚

σ

a
K(σ, t, u(t))dt, where u

n
�

d
n
u

dσn.

(96)

)e following integral equation inspired by [12, 63–66].

u(σ, ς) � l(σ, ς) + 􏽚
σ

0
g(σ, ς, ε, u(ε, ς))dε

+ 􏽚
σ

0
􏽚
ς

0
h(σ, ς, ], τ, u(], τ))dεd],

(97)

where l, g, h are given functions and u is unknown function
to be found.

Let C(G, f) be the class of continuous functions from
the set G to the set f. We denote E � R+ × R+,E1 �

l(σ, ς, s): 0≤ s≤ σ ≤∞, ς ∈ R+{ } and E2 � l(σ, ς, s, t):{

0≤ s≤ σ ≤∞, 0≤ t≤ ς≤∞}. We denote that l ∈ C(E,R),
g ∈ C(E1 × R,R) and h ∈ C(E2 × R,R)

Denote X be the space of functions z ∈ C(R+ × R+,R)

satisfying

|z(σ, t)| � O e
λ(σ+ς)

􏼐 􏼑, (98)

where λ is a positive constant, that is,

|z(σ, ς)|≤M0 e
λ(σ+ς)

􏼐 􏼑, (99)

for constant M0 > 0. Let (X, ‖.‖) be a Banach space. Define a
norm in the space X by

|z|X � sup
(σ,ς)∈E

|z(σ, ς)|e(− λ(σ+ς))
􏽨 􏽩. (100)

Define the mapping G, f: X × X⟶ [0,∞) by

Gf
n
u(σ, ς) � l(σ, ς) + 􏽚

σ

0
g(σ, ς, ε, u(ε, ς))dε

+ 􏽚
σ

0
􏽚
ς

0
h(σ, ς, ], τ, u(], τ))dεd],

(101)

and

Gf
n
v(σ, ς) � l(σ, ς) + 􏽚

σ

0
g(σ, ς, ε, v(ε, y))dε

+ 􏽚
σ

0
􏽚
ς

0
hσ, ς, ], τ, v(], τ))dεd],

(102)

for u, v ∈ X. )e coincidence fixed point of Gfnu and Gfnv

is also a solution of the Volterra integral-differential
equation (97).

Now we prove the results by establishing the existence
solution of a coincidence fixed point for a pair of self
mappings:

Theorem 9. Suppose the following conditions holds:

(i) For the continuous functions g, h ∈ X, we have

|g(σ, ς, ε, u(ε, ς)) − g(σ, ς, ε, v(ε, ς))|≤ c1(σ, ς, ε)|u − v|,

|h(σ, ς, ], τ, u(], τ)) − h(σ, ς, ], τ, v(], τ))|≤ c2(σ, ς, ], τ)|u − v|,

(103)

where c1 ∈ C(E1, [0,∞)) and c2 ∈ C(E2, [0,∞)).
(ii) (ere exists a nonnegative constant δ such that δ < 1

and

􏽚
σ

0
c1(σ, ς, ε)eλ(ε+ς)dε + 􏽚

σ

0
􏽚
ς

0
c2(σ, ς, ], τ)e

λ(]+τ)dτd]≤ δe
λ(σ+ς)− ϑ

,

(104)

for all σ, ς, ε, ], τ ∈ E1 ∪E2.

)en, the nonlinear Volterra-integral equation (97) has a
unique solution in E1 ∪E2 which is the coincidence fixed
point of equations (101) and (102).

Proof. Let G, f: X⟶ X be two operators such that
Gfv ∈ X and Gfnv ∈ X. Now we verify that the two op-
erators are contractive maps inX. Let u, v ∈ X. On contrary
we claim that G and f are not contractive maps inX. From
equations (101) and (102), using condition (i) and (ii) of
)eorem 9, we have
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Gf
n
u − Gf

n
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌X � l(σ, ς) + 􏽚

σ

0
g(σ, ς, ε, u(ε, ς))dε + 􏽚

σ

0
􏽚
ς

0
h(σ, ς, ], τ, u(], τ))dτd]

− l(σ, ς) − 􏽚
σ

0
g(σ, ς, ε, v(ε, ς))dε − 􏽚

σ

0
􏽚
ς

0
h(σ, ς, ], τ, v(], τ))dτd],

≤ 􏽚
σ

0
|g(σ, ς, ε, u(ε, ς)) − g(σ, ς, ε, v(ε, ς))|dε

+ 􏽚
σ

0
􏽚
ς

0
|h(σ, ς, ], τ, u(], τ)) − h(σ, ς, ], τ, v(], τ))|dτd],

≤ 􏽚
σ

0
c1(σ, ς, ε)eλ(σ+ς)dε + 􏽚

σ

0
􏽚
ς

0
c2(σ, ς, ], τ)e

λ(]+τ)dτd]􏼔 􏼕|u − v|X,

≤ δe
λ(σ+ς)− ϑ

|u − v|X,

≤ δe
λ(σ+ς)− ϑ

|u − v|X,

Gf
n
u − Gf

n
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌X ≤ δe

− ϑ
|u − v|Xe

λ(σ+ς)
,

ϱ(Gfu, Gfv) ≤ δe
− ϑ

M(u, v),

(105)

which is a contradiction. Hence u is a common fixed of G

and f, also a solution to integral (97).
From (105), since δ < 1 and using FKS2 of Definition 13,

where

M(u, v) �
ϱ(Gu, Gfu) + ϱ(Gv, Gfv)

2
, (106)

we have

ϱ(Gfu, Gfv) ≤ e
− ϑ

M(u, v). (107)

Using F1(z) � ln z by taking natural logarithms in both
sides of (107), we get

ϑ + ϱ(Gfu, Gfv)≤M(u, v). (108)

By (106), we obtain a F-Kannan–Suzuki contraction as
defined in Definition 13. )us, all conditions imposed in
)eorem 6 and )eorem 9 are satisfied. Hence, u∗ is a
common fixed point of G and f in X. □

5. Conclusion

)e novelty of this study to fixed point theory is the fixed
point result given in )eorem 6. )is theorem provides
the common fixed points conditions for a pair of two self
mappings in TVS-valued cone metric spaces. )is paper
extended and generalised the results due to Batra et al.
[37], Filipovic et al. [38], Morales and Rojas [9], Rahimi
et al. [39], and Wangwe and Kumar [40] using a pair of
two self-mappings in F-Kannan–Suzuki type mapping in
TVS-valued cone metric space, where we consider a map
to be sequentially convergent, one to one and continuous.
By doing so, we extended several other results of the same
setting in the literature. )ese results have some appli-
cations in many areas of applied mathematics, especially
in nonlinear Riemann–Liouville fractional differential
equation and nonlinear Volterra-integral differential
equation.
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In this paper, we introduce two new subgradient extragradient algorithms to find the solution of a bilevel equilibrium problem in
which the pseudomonotone and Lipschitz-type continuous bifunctions are involved in a real Hilbert space.*e first method needs
the prior knowledge of the Lipschitz constants of the bifunctions while the secondmethod uses a self-adaptive process to deal with
the unknown knowledge of the Lipschitz constant of the bifunctions. *e weak convergence of the proposed algorithms is proved
under some simple conditions on the input parameters. Our algorithms are very different from the existing related results in the
literature. Finally, some numerical experiments are presented to illustrate the performance of the proposed algorithms and to
compare them with other related methods.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. Let g: H × H⟶ R be a bifunction
with g(x, x) � 0 for all x ∈ C. *e equilibrium problem (EP
for short) is associated with g and C to find z ∈ C such that

g(z, y)≥ 0, ∀y ∈ C. (1)

*e solution set of (1) is denoted by EP(g, C).
If g(x, y) � 〈G(x), y − x〉 for all x, y ∈ H, where G is a

mapping from H into itself, then the problem (1) becomes
the following variational inequality problem (VIP for short):

find x
∗ ∈ C such that 〈G x

∗
( 􏼁, y − x

∗〉 ≥ 0, ∀y ∈ C. (2)

*e solution set of (2) is denoted by VI(G, C).
*e EP (1) has a simple form and is very general in the

sense that it includes, as special cases, the variational in-
equality problem, fixed point problem, complementarity
problem, optimization problem as well as the Nash equi-
librium problem; see,for example [1,2]. Many methods have
been proposed for approximating a solution of the EP (1).
Mastroeni [3] used the auxiliary problem principle which
was first introduced for solving the optimization problems to

solve EP (1) and presented the iteration algorithm in the
form

x0 ∈ C, xn+1 � argmin λg xn, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ C􏼚 􏼛,

(3)

where the stepsize λ> 0. For obtaining the convergence of
this algorithm, the bifunction g is required to be strongly
monotone and Lipschitz-type continuous. To avoid the
hypothesis of the strong monotonicity, Quoc et al. [4] first
proposed the extragradient method (or the proximal-like
methods) in which two strongly convex problems are solved
at each iteration. *e extragradient method is as follows:
x0 ∈ C and

yn � argmin λg xn, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ C􏼚 􏼛,

xn+1 � argmin λg yn, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ C􏼚 􏼛.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

In 2018, Hieu [5] presented a new extragradient method
for solving the EP (1.1) as follows: x0, y0 ∈ C and
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xn+1 � argmin λnf yn, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ C􏼚 􏼛,

yn+1 � argmin λn+1f yn, y( 􏼁 +
1
2

y − xn+1
����

����
2
: y ∈ C􏼚 􏼛, n≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where λn􏼈 􏼉 ⊂ (0,∞) is a nonincreasing sequence and f is a
strongly pseudomonotone and Lipschitz-type continuous
mapping.

In 2011, Censor et al. [6] proposed a new method, which
is called the subgradient extragradient method, for solving
the VIP (2). In 2016, Hieu [7] extended this method to the EP
(1.1). In 2019, inspired by [5,7], Liu and Kong [8] introduced
the following subgradient extragradient method for solving
the EP (1): x0, y0 ∈ C and

x1 � argmin λf y0, y( 􏼁 +
1
2

y − x0
����

����
2
: y ∈ C􏼚 􏼛,

y1 � argmin λf y0, y( 􏼁 +
1
2

y − x1
����

����
2
: y ∈ C􏼚 􏼛,

xn+1 � argmin λf y0, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ Hn􏼚 􏼛,

yn+1 � argmin λf y0, y( 􏼁 +
1
2

y − xn+1
����

����
2
: y ∈ C􏼚 􏼛, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where Hn � z ∈ H: 〈xn − λwn− 1 − yn, z − yn〉≤ 0􏼈 􏼉 and
wn− 1 ∈ z2f(yn− 1, yn), and f is a pseudomonotone and
Lipschitz-type continuous mapping.

*e advantage of equations (5) and (6) is that only one
value of f at yn is computed at each iteration. On the recent
methods for solving the EP (1), we refer the readers to
[9–15].

In this paper, our interest is the bilevel equilibrium
problem (BEP for short) which consists of the following:

find x ∈ EP(g, C) such thatf(x, y)≥ 0, ∀y ∈ EP(g, C),

(7)

where f: H × H⟶ R with f(x, x) � 0 for all x ∈ H. *e
BEPs are the special cases of mathematical programs with
equilibrium constraints and also are the generalization of
variational inequality over equilibrium constraints, hierar-
chical minimization problems, and complementarity
problems. *e methods for solving BEPs have been studied
extensively by many authors. Moudafi [16] introduced a
proximal method and proved the weak convergence to a
solution of the BEP (7). Dinh and Muu [17] proposed a
penalty and gap function method for solving the BEP (7).
Quy [18] introduced an algorithm by combining the
proximal method with the Halpern method for solving
bilevel monotone equilibrium and fixed point problem.
Yuying et al. [19] presented an extragradient method as
follows:

yn � argmin λng xn, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ C􏼚 􏼛,

zn � argmin λng yn, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ C􏼚 􏼛,

xn+1 � ηnxn + 1 − ηn( 􏼁zn − αnμwn, wn ∈ z2f zn, zn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where αn􏼈 􏼉 ⊂ (0, 1), λn􏼈 􏼉 ⊂ [λ, λ] with λ > 0, and
ηn􏼈 􏼉 ⊂ [0, 1 − αn]. Anh and An [20] proposed the following
subgradient extragradient method for solving the BEP (7):

yn � argmin λng xn, y( 􏼁 +
1
2

y − xn

����
����
2
: y ∈ C􏼚 􏼛,

zn � argmin λng yn, y( 􏼁 +
1
2

z − xn

����
����
2
: z ∈ Hn􏼚 􏼛,

xn+1 � argmin βnf zn, y( 􏼁 +
1
2

t − zn

����
����
2
: z ∈ C􏼚 􏼛,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where Hn � 〈v ∈ H: 〈xn − λnwn − yn, v − yn〉≤ 0〉 with
wn ∈ z2g(xn, yn), λn􏼈 􏼉 and βn􏼈 􏼉 are two nonnegative
sequences.

Observe that in the works mentioned above, the
bifunction g is monotone or pseudomonotone while f is
strongly monotone, and then, the algorithms have a strong
convergence. In this paper, inspired by [8,20], we propose
two new subgradient extragradient methods for solving the
BEP (7) where both the bifunction f and g are pseudo-
monotone. *e first method needs the prior knowledge of
the Lipschitz constants of the bifunctions while the second
method uses a self-adaptive process to deal with the un-
known knowledge of the Lipschitz constant of the bifunc-
tions. *e weak convergence of the proposed algorithms is
proved under some sufficient assumptions. Finally, some
numerical experiments are presented to illustrate the per-
formance of the proposed algorithms and to compare them
with other related methods.

2. Preliminaries

Let H be a real Hilbert space,R be the set of all real numbers,
and N be the set of all positive integers. We list some well-
known definitions and properties which will be used in our
following analysis.

Definition 1. A mapping F: H⟶ H is said to be

(i) monotone if

〈F(x) − F(y), x − y〉≥ 0, ∀x, y ∈ H; (10)

(ii) pseudomonotone if

〈F(y), x − y〉≥ 0⇒〈F(x), x − y〉≥ 0, ∀x, y ∈ H;

(11)
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(iii) L-Lipschitz continuous if there exists a constant
L> 0 such that

‖F(x) − F(y)‖≤ ‖x − y‖, ∀x, y ∈ H. (12)

Definition 2. A bifunction f: H × H⟶ R is said to be

(i) pseudomonotone on C if

f(x, y)≥ 0⇒f(y, x)≤ 0, ∀x, y ∈ C. (13)

(ii) Lipschitz-type continuous on C if there exists the
constants c1 > 0 and c2 > 0 such that

f(x, z)≤f(x, y) + f(y, z) + c1‖x − y‖
2

+ c2‖y − z‖
2
,

∀x, y, z ∈ C.

(14)

Remark 1. If F is L-Lipschitz continuous on H, then for each
x, y ∈ H, f(x, y) � 〈F(x), y − x〉 is Lipschitz-type con-
tinuous with the constants c1 � c2 � (L/2); see [21] for
details.

Let C be a nonempty closed and convex subset of H. For
each x ∈ H, there exists a unique point inC, denoted byPCx,
such that

PCx � argmin ‖y − x‖ : y ∈ C􏼈 􏼉, (15)

PC is said to be the metric projection from H onto C. *e
following lemma characterizes the property of PC.

Lemma 1. Let PC: H⟶ C be the metric projection. /en,

(i) z � PCx if and only if

〈x − z, y − z〉≤ 0, ∀y ∈ C. (16)

(ii) for all y ∈ C and x ∈ H,

y − PCx
����

����
2

+ PCx − x
����

����
2 ≤ ‖x − y‖

2
. (17)

Remark 2. For any given x ∈ H and v ∈ H with v≠ 0, let
T � x ∈ H: 〈v, x − x〉≤ 0{ }. *en, for all y ∈ H, the pro-
jection ΠT(y) is defined by

􏽙
T

(y) � y − max 0,
〈v, y − x〉

‖v‖
2􏼨 􏼩v. (18)

*e formula (18) gives us an explicit manner to compute
the projection of any point onto a half-space; see [22] for
details.

Definition 3.
(1) *e normal cone NC of C at x ∈ C is defined by

NC(x) � w ∈ H: 〈w, y − x〉≤ 0,∀y ∈ C􏼈 􏼉. (19)

(2) *e subdifferentiable of a convex function
g: C⟶ R at x ∈ H is defined by

zg(x) � w ∈ H: g(y) − g(x)≥ 〈w, y − x〉,∀y ∈ C􏼈 􏼉.

(20)

Lemma 2 (see [23]). Let g: C⟶ R be a convex sub-
differentiable and lower semicontinuous function on C. /en,
x∗ is a solution to the following convex problem:

min g(x): x ∈ C􏼈 􏼉, (21)

if and only if 0 ∈zg(x∗) + NC(x∗), where zg(x∗) denotes the
subdifferential of g and NC(x∗) is the normal cone of C at x∗.

For a proper, convex, and lower semicontinuous func-
tion: h: C⟶ (− ∞, +∞] and λ> 0, the proximal mapping
of h with λ is defined by

progλh(x) � argmin λh(y) +
1
2
‖x − y‖

2
: y ∈ C􏼚 􏼛, x ∈ C.

(22)

Lemma 3 (see [24, 25]). For all x, y ∈ C and λ> 0, the
following inequality holds:

λ h(y) − h progλh(x)( 􏼁( 􏼁≥ 〈x − progλh(x), y − progλh(x)〉.
(23)

Remark 3. From Lemma 3, we note that if x � progλh(x),
then

x ∈ argmin h(y): y ∈ C􏼈 􏼉 � x ∈ C: h(x) � min
y∈C

h(y)􏼨 􏼩.

(24)

Lemma 4 (see [26]). Let an􏼈 􏼉 and cn􏼈 􏼉 be two sequences of
nonnegative real numbers satisfying the condition

an+1 ≤ an + cn, ∀n ∈ N. (25)

If 􏽐ncn <∞, then limn⟶∞an exists.

3. Main Results

In this section, let N denotes the set of all positive integers,
N0 � N∪ 0{ }, H be a real Hilbert space, and C be a non-
empty closed convex subset of H. *e notation “⇀” denotes
the weak converge. Let f, g: H × H⟶ R be two bifunc-
tions satisfying the following conditions:

(A1) f and g are pseudomonotone on H

(A2) for each y ∈ H, lim supn⟶∞f(xn, y)≤f(x, y)

and lim supn⟶∞g(xn, y)≤g(x, y) for every se-
quence xn⇀x

(A3) f(x, ·) and g(x, ·) are convex, lower semi-
continuous, and subdifferentiable of H for each
x ∈ H

Journal of Mathematics 3



(A4) g and f are Lipschitz-type continuous on H with
the constants c1, c2 and d1, d2, respectively; that is,
for all x, y, z ∈ H,

g(x, z)≤g(x, y) + g(y, z) + c1‖x − y‖
2

+ c2‖y − z‖
2
,

f(x, z)≤f(x, y) + f(y, z) + d1‖x − y‖
2

+ d2‖y − z‖
2
.

(26)

In this section, the solution set of the BEP (7) is denoted
by Ω; that is, Ω� x ∈E(g,C): f(x,y)≥0,∀y ∈E􏼈 P(g,C)},
and assume that Ω≠∅.

Now, we introduce the first algorithm for finding a point
x ∈ Ω.

Remark 4. By using the notation “prog” in Section 2,
un, tn, xn+1, and yn+1 may be rewritten as

un � progβg xn,·( ) xn( 􏼁,

tn � progβg un,·( ) xn( 􏼁,

⎧⎪⎨

⎪⎩

xn+1 � progλf yn,·( ) xn( 􏼁,

yn+1 � progλf yn,·( ) xn+1( 􏼁.

⎧⎪⎨

⎪⎩

(27)

Note that since f(x, ·) and g(x, ·) are convex and lower
semicontinuous on H for each x ∈ H, for any given β> 0,
u ∈ H, and the closed convex subset D ⊂ H, from [27],
Proposition 12.15, and Definition 12.23, it follows that both

argmin βg(u, y) +
1
2
‖x − y‖

2
: y ∈ D􏼚 􏼛,

argmin βf(u, t) +
1
2
‖x − t‖

2
: t ∈ D􏼚 􏼛,

(28)

are a singleton. Hence, un, tn, xn+1, and yn+1 in Algorithm 1
are obtained uniquely at each step.

Remark 5. From (A1)–(A4), it follows that (i) EP(g, C) and
EP(f, C) are closed and convex; see [4]; (ii) g(x, x) � 0 and
f(x, x) � 0 for all x ∈ C; see [28].

*e following remark shows that the stop criterion in
Step 3 is meaning.

Remark 6. Suppose that xn+1 � yn � xn � un for some
n ∈ N. By un � xn, the definition of un, and Lemma 3, we get

β g un, y( 􏼁 − g xn, un( 􏼁( 􏼁 � β g xn, y( 􏼁 − g xn, xn( 􏼁( 􏼁≥ 0,

∀y ∈ C,

(29)

which with β> 0 Remark 5 implies that xn ∈ EP(g, C).
Similarly, by xn+1 � yn � xn, the definition of xn+1, and
Lemma 3, we can prove that xn ∈ EP(f, Hn). By the proof of
Lemma 4, we see EP(g, C) ⊂ Hn for all n ∈ N. So
f(xn, y)≥ 0 for all y ∈ EP(g, C). It follows that xn ∈ Ω.

Lemma 5. Assume that β ∈ (0, min (1/2c1), (1/2c2)􏼈 􏼉).

/en, C ⊂ Ck, EP(g, C) ⊂ Tn ⊂ Hn+1 for each n ∈ N0.

Proof. We first show that C ⊂ Ck for each n ∈ N0. By
Lemma 1 and the definition of uk, we have

0 ∈ z2 βg xn, y( 􏼁 +
1
2

xn − y
����

����
2

􏼚 􏼛 un( 􏼁 + NC un( 􏼁. (30)

*us, for wn ∈ z2g(xn, un), there exists wn ∈ NC(un)

such that

βwn + un − xn + wn � 0. (31)

So,

〈xn − un, y − un〉 � β〈wn, y − un〉 +〈wn, y − un〉,

∀y ∈ C.
(32)

Since wn ∈ NC(un), we have 〈wn, y − un〉≤ 0 for all y ∈
C. Hence, β〈wn, y − un〉≥ 〈xn − un, y − un〉 for all y ∈ C,
which implies that 〈xn − βwn − un, y − un〉≤ 0 for all y ∈ C.
*is shows that C ⊂ Cn for each N0.

Next, we show that EP(g, C) ⊂ Tn for each n ∈ N0. By
Lemma 3 and the definition of tn in Remark 4, we have

β g un, y( 􏼁 − g un, tn( 􏼁( 􏼁≥ 〈xn − tn, y − tn〉,

∀y ∈ Cn, ∀n ∈ N0.
(33)

Note, we have proved that C ⊂ Cn for each n ∈ N0. So
substituting any x′ ∈ EP(g, C) ⊂ C into (33), we obtain

β g un, x′( 􏼁 − g un, tn( 􏼁( 􏼁≥ 〈xn − tn, x′ − tn〉, ∀n ∈ N0. (34)

Since un ∈ C and g is pseudomonotone on H, we have
g(un, x′)≤ 0. *en, (34) implies that

〈xn − tn, tn − x′〉 ≥ βg un, tn( 􏼁, ∀n ∈ N0. (35)

Now applying (A4) to g, we have

g un, tn( 􏼁≥g xn, tn( 􏼁 − g xn, un( 􏼁

− c1 un − xn

����
����
2

− c2 tn − un

����
����
2
, ∀n ∈ N0.

(36)

Combining (35) and (36), we get

〈xn − tn, tn − x′〉

≥ β g xn, tn( 􏼁 − g xn, un( 􏼁 − c1 un − xn

����
����
2

− c2 tn − un

����
����
2

􏼒 􏼓,

∀n ∈ N0.

(37)

On the other hand, by the definition of wn ∈ z2g(xn, un),
we have

β g xn, y( 􏼁 − g xn, un( 􏼁( 􏼁≥ 〈βwn, y − un〉,

∀y ∈ H, ∀n ∈ N0.
(38)

Since tn ∈ Cn, we have
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〈xn − un, tn − un〉 ≤ β〈wn, tn − un〉, (39)

which with (38) implies that

β g xn, tn( 􏼁 − g xn, un( 􏼁( 􏼁≥ 〈xn − un, tn − un〉, ∀n ∈ N0.

(40)

From (37) and (40) and

2〈tn − xn, x′ − tn〉 � xn − x′
����

����
2

− tn − xn

����
����
2

− tn − x′
����

����
2
,

(41)

it follows that

xn − x′
����

����
2

− tn − xn

����
����
2

− tn − x′
����

����
2

≥ 2〈xn − un, tn − un〉 − 2βc1 xn − un

����
����
2

− 2βc2 un − tn

����
����
2
, ∀n ∈ N0.

(42)

Hence,

tn − x′
����

����
2 ≤ xn − x′

����
����
2

− tn − xn

����
����
2

− 2〈xn − un, tn − un〉 + 2β c1 xn − un

����
����
2

􏼒

+ c2 un − tn

����
����
2
􏼓

� xn − x′
����

����
2

− tn − un

����
����
2

− un − xn

����
����
2

+ 2β c1 xn − un

����
����
2

􏼒 + c2 un − tn

����
����
2
􏼓

� xn − x′
����

����
2

− 1 − 2βc1( 􏼁 xn − un

����
����
2

+ 1 − 2βc2( 􏼁 un − tn

����
����
2
, ∀n ∈ N0.

(43)

In particular, from 1 − 2βc1 > 0 and 1 − 2βc2 > 0, it fol-
lows that

tn − x′
����

����
2 ≤ xn − x′

����
����
2
, ∀n ∈ N0, (44)

which implies that x′ ∈ Tn. Since x′ ∈ EP(g, C) is arbitrary,
it follows that EP(g, C) ⊂ Tn for each n ∈ N0.

Finally, we prove that Tn ⊂ Hn+1 for each n ∈ N0. By the
definition of yn+1 in Remark 4 and Lemma 3, we have

0 ∈ λz2f yn, yn+1( 􏼁 + yn+1 − xn+1 + NTn
yn+1( 􏼁, ∀n ∈ N0.

(45)

*us, for vn ∈ z2f(yn− 1, yn), there exists wn ∈ NTn
(yn+1)

such that

λvn + yn+1 − xn+1 + wn � 0, ∀n ∈ N0. (46)

It follows that

〈xn+1 − yn+1, y − yn+1〉 � λ〈vn, y − yn+1〉

+〈wn, y − yn+1〉,

∀y ∈ Tn, ∀n ∈ N0.

(47)

Since wn ∈ NTn
(yn+1), we have 〈wn, y − yn+1〉≤ 0 for all

y ∈ Tn. Hence, λ〈vn, y − yn+1〉≥ 〈xn+1 − yn+1, y − yn+1〉 for
all y ∈ Tn and n ∈ N0, which with the definition of Hn+1
implies that Tn ⊂ Hn+1 for each n ∈ N0. *is completes the
proof. □

Lemma 6. Assume that β ∈ (0, min (1/2c1), (1/2c2)􏼈 􏼉) and
λ ∈ (0, (1/2d2 + 4d1)). Let xn􏼈 􏼉 be the sequence generated by
Algorithm 1. For all x∗ ∈ Ω, the limit of ‖x∗ − xn‖2􏽮 􏽯 exists,
and

λf yn, y( 􏼁≥ λ 〈xn − yn, xn+1 − yn〉 − c1 yn− 1 − yn

����
����
2

− c2 yn − xn+1
����

����
2

􏼔 􏼕

+〈xn − xn+1, y − xn+1〉, ∀y ∈ EP(g, C), ∀n ∈ N.

(48)

Proof. Since ‖x∗ − xn‖2􏽮 􏽯, from the definition of Hn, it
follows that

〈xn − λvn − yn, xn+1 − yn〉 ≤ 0, ∀n ∈ N, (49)

that is,

Initialization: Choose x0, y0, y− 1 ∈ C and the parameters β> 0 and λ> 0. Put n � 0.

Step 1. For given xn, solve the strongly convex problems:
un � argmin βg(xn, y) + 1/2‖xn − y‖

2
: y ∈ C􏽮 􏽯,

tn � argmin βg(un, t) + 1/2‖xn − y‖
2
: t ∈ Cn􏽮 􏽯,

⎧⎨

⎩

where Cn � v ∈ H: 〈xn − βwn − un, v − un〉≤ 0􏼈 􏼉withwn ∈ z2g(xn, un).

Step 2. Solve the strongly convex problems:
xn+1 � argmin λf(yn, y) + 1/2‖xn − y‖

2
: y ∈ Hn􏽮 􏽯,

yn+1 � argmin λf(yn, y) + 1/2‖xn+1 − y‖
2
: y ∈ Tn􏽮 􏽯,

⎧⎨

⎩

where Hn � z ∈ H: 〈xn − λvn − yn, z − yn〉≤ 0􏼈 􏼉with vn ∈ z2f(yn− 1, yn), Tn � z ∈ H: ‖z − tn‖≤ ‖z − xn‖􏼈 􏼉.

Step 3. If xn+1 � yn � xn � un, then the algorithm stops, xn ∈ Ω; otherwise, set n � n + 1 and return to Step 1.

ALGORITHM 1: (Extragradient-like method without prior constants).
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λ〈vn, xn+1 − yn〉 ≥ 〈xn − yn, xn+1 − yn〉, ∀n ∈ N. (50)

By vn ∈ z2f(yn− 1, yn) and the definition of sub-
differential, we have

f yn− 1, y( 􏼁 − f yn− 1, yn( 􏼁≥ 〈vn, y − yn〉, ∀y ∈ H, ∀n ∈ N.

(51)

Replacing y in (51) with xn+1, we get

f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁≥ 〈vn, xn+1 − yn〉, ∀n ∈ N.

(52)

Combining (50) and (52), we have

λ f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁( 􏼁≥ 〈xn − yn, xn+1 − yn〉,

∀n ∈ N.

(53)

By Lemma 3 and the definition of xn+1, we have

λ f yn, y( 􏼁 − f yn, xn+1( 􏼁( 􏼁≥ 〈xn − xn+1, y − xn+1〉,

∀y ∈ Hn, ∀n ∈ N.
(54)

Substituting y � x∗ ∈ Ω into (54), we obtain

λ f yn, x
∗

( 􏼁 − f yn, xn+1( 􏼁( 􏼁≥ 〈xn − xn+1, x
∗

− xn+1〉,

∀n ∈ N.

(55)
Note that (A1) implies that f(yn, x∗)≤ 0, which with

(55) leads to

λf yn, xn+1( 􏼁≤ 〈xn − xn+1, xn+1 − x
∗〉, ∀n ∈ N. (56)

On the other hand, by the Lipschitz-type continuity of f,
we have

f yn, xn+1( 􏼁≥f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁 − d1 yn − yn− 1
����

����
2

− d2 xn+1 − yn

����
����
2
, ∀n ∈ N.

(57)

By (56) and (57), we obtain

〈xn − xn+1, xn+1 − x
∗〉 ≥ λ f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁 − d1 yn − yn− 1

����
����
2

􏼒

− d2 xn+1 − yn

����
����
2
􏼓,

(58)

which with (53) implies that

〈xn − xn+1, xn+1 − x
∗〉 ≥ 〈xn − yn, xn+1 − yn〉 − λ d1 yn − yn− 1

����
����
2

+ d2 xn+1 − yn

����
����
2

􏼒 􏼓

�
1
2

yn − xn

����
����
2

+ xn+1 − yn

����
����
2

− xn+1 − xn

����
����
2

􏼒 􏼓 − λ d1 yn − yn− 1
����

����
2

+ d2 xn+1 − yn

����
����
2

􏼒 􏼓, ∀n ∈ N.

(59)

Since

〈xn − xn+1, xn+1 − x
∗〉

�
1
2

xn − x
∗����
����
2

− xn+1 − xn

����
����
2

− xn+1 − x
∗����
����
2

􏼒 􏼓,

(60)

by (59) we get

xn+1 − x
∗����
����
2 ≤ xn − x

∗����
����
2
‖
2

− yn − xn

����
����
2

− xn+1 − yn

����
����
2

+ 2λd1 yn − yn− 1
����

����
2

+ 2λd2 xn+1 − yn

����
����
2

≤ xn − x
∗����
����
2
‖
2

− yn − xn

����
����
2

− xn+1 − yn

����
����
2

+ 2λd1 yn − xn

����
���� + xn − yn− 1

����
����􏼐 􏼑

2
+ 2λd2 xn+1 − yn

����
����
2

≤ xn − x
∗����
����
2
‖
2

− yn − xn

����
����
2

− xn+1 − yn

����
����
2

+ 4λd1 yn − xn

����
����
2

+ xn − yn− 1
����

����
2

􏼒 􏼓 + 2λd2 xn+1 − yn

����
����
2

� xn − x
∗����
����
2
‖
2

− 1 − 4λd1( 􏼁 yn − xn

����
����
2

− 1 − 2λd2( 􏼁 xn+1 − yn

����
����
2

+ 4λd1 xn − yn− 1
����

����
2
, ∀n ∈ N.

(61)
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Fix N ∈ N. For all m ∈ N with m>N, by (61) we have

x
∗

− xm+1
����

����
2 ≤ x

∗
− xN

����
����
2

− 1 − 4λd1 + 2λd2( 􏼁( 􏼁 􏽘

m

n�N

xn+1 − yn

����
����
2

− 1 − 4λc1( 􏼁 􏽘

m

n�N

yn − xn

����
����
2

+ 4λc1 xN − yN− 1
����

����
2
.

(62)

Hence,

1 − 4λd1 − 2λd2( 􏼁 􏽘

m

n�N

xn+1 − yn

����
����
2

+ 1 − 4λd1( 􏼁 􏽘

m

n�N

yn − xn

����
����
2 < x

∗
− xN

����
����
2 <∞, ∀m>N, (63)

which with 4λd1 + 2λd2 < 1 leads to

􏽘

∞

n�1
xn+1 − yn

����
����
2 <∞,

􏽘

∞

n�1
yn − xn

����
����
2 <∞.

(64)

It follows that

lim
n⟶∞

xn − yn

����
����
2

� 0,

lim
n⟶∞

xn+1 − yn

����
����
2

� 0.
(65)

By (65) and the triangle inequality of norm, we obtain

xn − xn+1
����

����≤ xn − yn

����
���� + yn − xn+1

����
����⟶ 0, as n⟶∞,

(66)

yn − yn+1
����

����≤ yn − xn

����
���� + xn − xn+1

����
���� + xn+1 − yn+1

����
����⟶ 0,

as n⟶∞,

(67)

and

yn+1 − xn

����
����≤ yn+1 − yn

����
���� + yn − xn

����
����⟶ 0, as n⟶∞.

(68)

Note that (61) implies

xn+1 − x
∗����
����
2 ≤ xn − x

∗����
����
2

+ 4λd1 yn− 1 − xn

����
����
2
, ∀n ∈ N.

(69)

From (62) and (69) and Lemma 3, it follows that the limit
of ‖xn − x∗‖2􏽮 􏽯 exists.

Finally, by (54), (56), and (52), we get

λf yn, y( 􏼁≥ λf yn, xn+1( 􏼁 +〈xn − xn+1, y − xn+1〉

≥ λ f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁 − d1 yn− 1 − yn

����
����
2

− d2 yn − xn+1
����

����
2

􏼔 􏼕 +〈xn − xn+1, y − xn+1〉

≥ λ 〈xn − yn, xn+1 − yn〉 − d1 yn− 1 − yn

����
����
2

− d2 yn − xn+1
����

����
2

􏼔 􏼕 +〈xn − xn+1, y − xn+1〉, ∀y ∈ Hn, ∀n ∈ N.

(70)

Note that Lemma 4 has shown that
EP(g, C) ⊂ Tn ⊂ Hn+1 for each n ∈ N0. So by (70), we have

λf yn, y( 􏼁≥ λ 〈xn − yn, xn+1 − yn〉 − d1 yn− 1 − yn

����
����
2

− d2 yn − xn+1
����

����
2

􏼔 􏼕

+〈xn − xn+1, y − xn+1〉, ∀y ∈ EP(g, C), ∀n ∈ N.

(71)
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*is completes the proof. □

Theorem 1. If the parameters β and λ satisfy the conditions:

β ∈ 0, min
1
2c1

,
1
2c2

􏼨 􏼩􏼠 􏼡 and λ ∈ 0,
1

2d2 + 4d1
􏼠 􏼡, (72)

then the sequence xn􏼈 􏼉 generated by Algorithm 1 converges
weakly to the point x � limn⟶∞PΩxn.

Proof. Since yn+1 ∈ Tn for each n ∈ N0, by (66) we have

tn − yn+1
����

����≤ yn+1 − xn

����
����⟶ 0, as n⟶∞. (73)

Furthermore, by (68) and (73), we get

tn − xn

����
����≤ tn − yn+1

����
���� + yn+1 − xn

����
����⟶ 0, as n⟶∞.

(74)

From Lemma 5, it follows that xn􏼈 􏼉 is bounded. *is fact
with (74) implies that tn􏼈 􏼉 is also bounded.

Take x′ ∈ EP(g, C) and put
M � supn∈N(‖xn − x′‖ + ‖tn − x′‖). By (43) and (74), we
have

1 − 2βc1 xn − un

����
����
2

+ 1 − 2βc2( 􏼁 un − tn

����
����
2

􏼒 ≤ xn − x′
����

����
2

− tn − x′
����

����
2

≤ xn − tn

����
���� xn − x′

����
���� + tn − x′

����
����􏼐 􏼑

≤M xn − tn

����
����⟶ 0, as n⟶∞,

(75)

which with 1 − 2βc1 > 0 and 1 − 2βc2 > 0 implies

xn − un

����
����
2⟶ 0,

un − tn

����
����
2⟶ 0, as n⟶∞.

(76)

Since xn􏼈 􏼉 is bounded, there exists a subsequence xnk
􏽮 􏽯

of xn􏼈 􏼉 weakly converging to x ∈ H. By (73), we can con-
clude that unk

􏽮 􏽯 also weakly converges to x. Since C is closed
and un􏼈 􏼉 ⊂ C for all n ∈ N, it follows that x ∈ C. We show
that x ∈ EP(g, C). In fact, by (33), (36), and (40), we get

βg unk
, y􏼐 􏼑≥ β 〈xnk

− unk
, tnk

− unk
〉 − c1 unk

− xnk

�����

�����
2

− c2 tnk
− unk

�����

�����
2

􏼒 􏼓 +〈xnk
− tnk

, y − tnk
〉, ∀y ∈ C, ∀k ∈ N. (77)

Letting k⟶∞ in (77), by (74), (76), and (A2), we get

βg(x, ty)≥ lim sup
k⟶∞

g unk
, y􏼐 􏼑≥ 0,∀y ∈ C, (78)

which with β> 0 implies that x ∈ EP(g, C).

Next, we prove that x ∈ Ω. To end this, we need to show
that

f(x, y)≥ 0, ∀y ∈ EP(g, C). (79)

In fact, by (73), we have

λf ynk
, y􏼐 􏼑≥ λ 〈xnk

− ynk
, xnk+1 − ynk

〉 − d1 ynk− 1 − ynk

�����

�����
2

− d2 ynk
− xnk+1

�����

�����
2

􏼔 􏼕

+〈xnk
− xnk+1, y − xnk+1〉, ∀y ∈ EP(g, C), ∀k ∈ N0.

(80)

Letting k⟶∞ in (80), by (65)–(67) and (A2), we have

λf(x, y)≥ lim sup
k⟶∞

f ynk
, y􏼐 􏼑≥ 0, ∀y ∈ EP(g, C), (81)

which with λ> 0 implies that f(x, y)≥ 0 for all
y ∈ EP(g, C). So, x ∈ Ω.

Now, we prove that the whole sequence xn􏼈 􏼉 converges
weakly to the point x. Indeed, assume that there exists a
different subsequence xni

􏽮 􏽯 of xn􏼈 􏼉 converging weakly to x†

with x≠ x†. By arguing similarly as above, it follows that
x† ∈ Ω. Note that in the proof of Lemma 5, we have shown

that the limits of ‖xn − x†‖􏼈 􏼉 and ‖xn − x‖􏼈 􏼉 exist. So by
Opial’s theorem [29], we have

lim
n⟶∞

xn − x
����

���� � lim inf
k⟶∞

xnk
− x

�����

�����< lim inf
k⟶∞

xnk
− x

†
�����

�����

� lim
n⟶∞

xn − x
†����
���� � lim inf

i⟶∞
xni

− x
†

�����

�����

< lim inf
i⟶∞

xni
− x

�����

����� � lim
n⟶∞

xn − x
����

����.

(82)

It is a contradiction. Hence, x � x†. *erefore, the whole
sequence xn􏼈 􏼉 converges weakly to the point x.
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Finally, we prove x � limn⟶∞PΩxn. Let wn � PΩxn for
all n≥ 1. It is easy to see that wn􏼈 􏼉 is bounded from the
boundedness of xn􏼈 􏼉. We show that wn􏼈 􏼉 is a Cauchy se-
quence. By Lemma 1 and the definition of wn+1, we have

wn+1 − xn+1
����

����
2 ≤ wn − xn+1

����
����
2
, ∀n ∈ N0. (83)

Since wn ∈ Ω, replacing x∗ in (69) with wn, we get

wn − xn+1
����

����
2 ≤ xn − wn

����
����
2

+ 4λd1 yn− 1 − xn

����
����
2
, ∀n ∈ N.

(84)

From (83) and (84), it follows that

wn+1 − xn+1
����

����
2 ≤ xn − wn

����
����
2

+ 4λd1 yn− 1 − xn

����
����
2
, ∀n ∈ N.

(85)

From (64), (85), and Lemma 3, it follows that the limit of
‖wn − xn‖2􏽮 􏽯 exists. For all m, n ∈ N with m> n, since

wn ∈ Ω, by (69), we deduce

xm − wn

����
����
2 ≤ xm− 1 − wn

����
����
2

+ 4λd1 ym− 2 − xm− 1
����

����
2

≤ · · · ≤ xn − wn

����
����
2

+ 4λd1 􏽘

m− 1

k�n

yk− 1 − xk

����
����
2
.

(86)

From wm � PΩxm and wn ∈ Ω, by Lemma 1 and (86), we
have

wn − wm

����
����
2 ≤ wn − xm

����
����
2

− wm − xm

����
����
2

≤ xn − wn

����
����
2

+ 4λd1 􏽘

m− 1

k�n

yk− 1 − xk

����
����
2

− wm − xm

����
����
2
, ∀m> n.

(87)

Since limn⟶∞‖xn − wn‖2 exists, letting m, n⟶∞ in
(87), by (64), we get limn,m⟶∞‖wn − wm‖2 � 0. Conse-
quently, wn􏼈 􏼉 is a Cauchy sequence. Since Ω is closed, wn􏼈 􏼉

converges strongly to some x′ ∈ Ω. Now, we prove that
x � x′. In fact, it follows from Lemma 1, wn � PΩxn and
x ∈ Ω that 〈x − wn, wn − xn〉≥ 0. Since wn⟶ x′ and
xn⇀x, we have 〈x − x′, x′ − x〉≥ 0. *is shows that
x � x′ � limn⟶∞PΩxn. *is completes the proof. □

In Algorithm 1, c1 and c2 need to be known as the input
parameters. *e following algorithm is a modification in
which c1 and c2 do not need to be known. □

Remark 7. By (A4), we have

g xn, tn( 􏼁 − g xn, un( 􏼁 − g un, tn( 􏼁

≤ c1 un − xn

����
����
2

+ c2 tn − un

����
����
2

≤ c un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓,

(88)

where c � max c1, c2􏼈 􏼉. If g(xn, tn) − g(xn, un)− g(un, tn)≤ 0,
then

βn+1 � min βn,
μ un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

g xn, tn( 􏼁 − g xn, un( 􏼁 − g un, tn( 􏼁

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

≥min βn,
μ un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

c un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
� min βn,

μ
c

􏼚 􏼛≥ · · · ≥min β0,
μ
c

􏼚 􏼛,

(89)

Note that from the definition of βn+1, it follows that
βn+1 ≥min β0, (μ/c)􏼈 􏼉 still holds even if
g(xn, tn) − g(xn, un) − g(un, tn)≤ 0. Since βn􏼈 􏼉 is nonin-
creasing and bounded from below by min β0, (μ/c)􏼈 􏼉, there
exists β> 0 such that

lim
n⟶∞

βn � β. (90)

Similarly, we can conclude that there exists λ> 0 such
that

lim
n⟶∞

λn � λ> 0. (91)

Theorem 2. /e sequence xn􏼈 􏼉 generated by Algorithm 2
converges weakly to the point x � limn⟶∞PΩxn.

Proof. Repeating the proof of (37) and (40), we can get, for
all n ∈ N,

λn f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁( 􏼁≥ 〈xn − yn, xn+1 − yn〉,
(92)

and

λnf yn, xn+1( 􏼁≤ 〈xn − xn+1, xn+1 − x
∗〉. (93)
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By (92) and (93), we have

λn f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁 − f yn, xn+1( 􏼁( 􏼁≥ 〈xn − yn, xn+1 − yn〉 − 〈xn − xn+1, xn+1 − x
∗〉

�
1
2

yn − xn

����
����
2

+ xn+1 − yn

����
����
2

− xn+1 − xn

����
����
2

􏼒 􏼓 − xn − x
∗����
����
2

− xn+1 − xn

����
����
2

− xn+1 − x
∗����
����
2

􏼒 􏼓􏼔 􏼕, ∀n ∈ N.

(94)

By the definition of λn+1, in the case when
f(yn− 1, xn+1) − f(yn− 1, yn) − f(yn, xn+1)> 0, we have

f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁 − f yn, xn+1( 􏼁≤
μ yn − yn− 1

����
����
2

+ yn − xn+1
����

����
2

􏼒 􏼓

λn+1
, ∀n ∈ N. (95)

It is emphasized here that (95) still holds even if

f yn− 1, xn+1( 􏼁 − f yn− 1, yn( 􏼁 − f yn, xn+1( 􏼁≤ 0. (96)

So, combining (94) with (95), we obtain

xn+1 − x
∗����
����
2 ≤ xn − x

∗����
����
2

− xn − yn

����
����
2

+ xn+1 − yn

����
����
2

􏼒 􏼓 +
2μλn

λn+1
yn − yn− 1

����
����
2

+ yn − xn+1
����

����
2

􏼒 􏼓

≤ xn − x
∗����
����
2

− xn − yn

����
����
2

− 1 −
2μλn

λn+1
􏼠 􏼡 xn+1 − yn

����
����
2

+
4μλn

λn+1
yn − xn

����
����
2

+ xn − yn− 1
����

����
2

􏼒 􏼓

� xn − x
∗����
����
2

− 1 −
4μλn

λn+1
􏼠 􏼡 xn − yn

����
����
2

− 1 −
2μλn

λn+1
􏼠 􏼡 xn+1 − yn

����
����
2

+
4μλn

λn+1
xn − yn− 1

����
����
2
, ∀n ∈ N.

(97)

Initialization: Choose x0, y− 1, y0 ∈ C, the parameters β0, λ0 > 0, and μ ∈ (0, 1/4). Put n � 0.

Step 1. For given xn, solve the strongly convex problems:
un � argmin βng(xn, y) + 1/2‖xn − y‖

2
: y ∈ C􏽮 􏽯,

tn � argmin βng(un, t) + 1/2‖xn − y‖
2
: t ∈ Ck􏽮 􏽯,

⎧⎨

⎩

where Cn � v ∈ H: 〈xn − βnwn − un, v − un〉≤ 0􏼈 􏼉withwn ∈ z2g(xn, un).

Step 2. Solve the strongly convex problems:
xn+1 � argmin λnf(yn, y) + 1/2‖xn − y‖

2
: y ∈ Hn􏽮 􏽯,

yn+1 � argmin λn+1f(yn, y) + 1/2‖xn+1 − y‖
2
: y ∈ Tn􏽮 􏽯,

⎧⎨

⎩

where Hn � z ∈ H: 〈xn − λnvn − yn, z − yn〉≤ 0􏼈 􏼉with vn ∈ z2f(yn− 1, yn), Tn � z ∈ H: ‖z − tn‖≤ ‖z − xn‖􏼈 􏼉,

λn+1 �
λn, f(yn− 1, xn+1) − f(yn− 1, yn) − f(yn, xn+1)≤ 0,

min λn, μ(‖yn − yn− 1‖
2

+ ‖yn − xn+1‖
2
)/f(yn− 1, xn+1) − f(yn− 1, yn) − f(yn, xn+1)􏽮 􏽯, otherwise.􏼨

Step 3. Modify βn+1 by the following formula:

βn+1 �
βn, g(xn, tn) − g(xn, un) − g(un, tn)≤ 0,

min βn, μ(‖un − xn‖
2

+ ‖tn − un‖
2
)/g(xn, tn) − g(xn, un) − g(un, tn)􏽮 􏽯, otherwise.􏼨

Step 4. If xn+1 � yn+1 � xn � yn, then the algorithm stops, xn ∈ Ω; otherwise, set n � n + 1 and return to Step 1.

ALGORITHM 2: (Extragradient-like method without prior constants).
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Since λn⟶ λ> 0, it follows that
limn⟶∞(4μλn/λn+1) � 4μ< 1. *us, for a fixed number
ϵ ∈ (4μ, 1), there exists n0 ∈ N such that

4μλn

λn+1
< ϵ, ∀n≥ n0. (98)

By (97) and (98), we have

xn+1 − x
∗����
����
2 ≤ xn − x

∗����
����
2

− (1 − ϵ) xn − yn

����
����
2

− 1 −
ϵ
2

􏼒 􏼓 xn+1 − yn

����
����
2

+ ϵ xn − yn− 1
����

����
2
, ∀n≥ n0. (99)

which is a similar result with (61). On the other hand, for all x′ ∈ EP(g, C), repeating the
proof of (35) and (38), we have

〈xn − un, tn − un〉 +〈xn − tn, x′ − tn〉 ≤ βn g xn, tn( 􏼁 − g xn, un( 􏼁 − g un, tn( 􏼁􏼂 􏼃, ∀n ∈ N0. (100)

By the definition of βn+1, if
g(xn, tn) − g(xn, un) − g(un, tn)> 0, then

g xn, tn( 􏼁 − g xn, un( 􏼁 − g un, tn( 􏼁≤
μ un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

βn+1
, ∀n ∈ N0.

(101)

Note that the definition of βn+1 implies that (101) still
holds even if g(xn, tn)g(xn, un) − g(un, tn)≤ 0. So by (100)
and (101), we obtain

〈xn − un, tn − un〉 +〈xn − tn, x′ − tn〉≤
μβn un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

βn+1
, ∀n ∈ N0.

(102)

Now, by (102) and 2〈tn − xn, tn − x′〉 � ‖xn − x′‖2−
‖tn − xn‖2 − ‖tn − x′‖2, we have

tn − x′
����

����
2 ≤ xn − x′

����
����
2

− tn − xn

����
����
2

− 2〈xn − un, tn − un〉 +
2μβn un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

βn+1

� xn − x′
����

����
2

− tn − un

����
����
2

− un − xn

����
����
2

+
2μβn un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

βn+1

� xn − x′
����

����
2

− 1 −
2μβn

βn+1
􏼠 􏼡 xn − un

����
����
2

+ 1 −
2μβn

βn+1
􏼠 􏼡 un − tn

����
����
2
, ∀n ∈ N0.

(103)
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Since βn⟶ β> 0, it follows that
limn⟶∞(2μβn/βn+1) � 2μ< 1. *us, for a fixed number
τ ∈ (2μ, 1), there exists m0 ∈ N such that

2μβn

βn+1
< τ, ∀n≥m0. (104)

By (103) and (104), we have

tn − x′
����

����
2 ≤ xn − x′

����
����
2

− (1 − τ) xn − un

����
����
2

+(1 − τ) un − tn

����
����
2

≤ xn − x′
����

����
2
, ∀n≥m0.

(105)

Finally, by arguing similarly to the proof of Lemma 5 and
*eorem 1, we can obtain the desired conclusion. *is
completes the proof.

As an application of the results above, we consider the
following bilevel variational inequality problem (BVIP for
short):

findx ∈ VI(G, C) such that 〈F(x), y − x〉≥ 0,

∀y ∈ VI(G, C),
(106)

where F and G be the mappings from H into itself. We
denote the solution set of (106) by Γ, that is,

Γ � z ∈ VI(G, C): 〈F(z), y − z〉≥ 0, ∀y ∈ VI(G, C)􏼈 􏼉.

(107)
□

Corollary 1. Let H be a real Hilbert space and C be a
nonempty closed and convex subset of H. Let F, G: H⟶ H

be the pseudomonotone and Lipschitz continuous mappings
with the Lipschitz constants L1 and L2 satisfy the following
conditions:

(B) lim sup
n⟶∞
〈F xn( 􏼁, y − xn〉 ≤ 〈F(􏽢x), y − x〉 and lim sup

n⟶∞
〈G xn( 􏼁, y − xn〉 ≤ 〈G(􏽢x), y − x〉

for every sequence xn􏼈 􏼉 convergingweakly to 􏽢x.

(108)

Assume that Γ ≠∅. Take the parameters
β ∈ (0, (1/L1)), λ ∈ (0, (1/3L2)), the initial points
x0, y0, y− 1 ∈ H and generate the sequence xn􏼈 􏼉 in the fol-
lowing manner:

un � PC xn − βG xn( 􏼁( 􏼁,

tn � PCn
xn − βG un( 􏼁( 􏼁,

xn+1 � PHn
xn − λF yn( 􏼁( 􏼁,

yn+1 � PTn
xn+1 − λF yn( 􏼁( 􏼁, n≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(109)

where Cn � y ∈ H: 〈xn − βG(xn) − un, y − un〉≤ 0􏼈 􏼉, Hn �

y ∈ H: 〈xn − βF(yn− 1) − yn, y − yn〉≤ 0􏼈 􏼉, and Tn is defined
as in Algorithm 1. /en, the sequence xn􏼈 􏼉 generated by (109)
converges weakly to the point x � limn⟶∞PΓxn.

Proof. Let g(x, y) � 〈G(x), y − x〉 and f(x, y) � 〈F(x), y

− x〉 for all x, y ∈ H. Since F is pseudomonotone on H, it
follows that f(x, y) � 〈F(x), y − x〉≥ 0⇒f(y, x) � 〈F(y),

x − y〉≤ 0. So f is pseudomonotone on H. It is obvious that
f satisfies the condition (A3). In addition, if xn⇀􏽢x, by (B),
we have

limsup
n⟶∞

f xn, y( 􏼁 � limsup
n⟶∞
〈F xn( 􏼁, y − xn〉

≤ 〈F(􏽢x), y − 􏽢x〉 � f(􏽢x, y).

(110)

So f satisfies the condition (A2). Finally, since F is
L1-Lipschitz continuous, f is Lipschitz-type continuous
with the constant d1 � d2 � (L1/2); see Remark 1. *us, f

satisfies the conditions (A1)–(A4). Similarly, g also satisfies

the conditions (A1)–(A4). In particular, g satisfies (A4) with
c1 � c2 � (L2/2). So, the conditions on β and λ in Lemma 5
become the ones in Corollary 1. On the other hand, by
Algorithm 1,

un � argmin βg xn, y( 􏼁 +
1
2

xn − y
����

����
2
: y ∈ C􏼚 􏼛 (111)

is equivalent to un � PC(xn − βG(xn)). Similarly, tn, xn+1,
and yn+1 in Algorithm 1 are equivalent to tn, xn+1, and yn+1
in Corollary 1, respectively. By *eorem 1, the desired
conclusion can be obtained. *is completes the proof.

Since the proof process of the following corollary is
similar to the one of Corollary 3.1, we give the following
corollary and omit the proof process. □

Corollary 2. Let H be a real Hilbert space and C be a
nonempty closed and convex subset of H. Let F, G: H⟶ H

be the pseudomonotone and Lipschitz continuous mappings
with the Lipschitz constants L1 and L2 satisfying the condition
(B) in Corollary 3.1. Assume that Γ ≠∅. /e parameters
β0 > 0, λ0 > 0, μ ∈ (β0, (1/4)), the initial points
x0, y0, y− 1 ∈ H are taken, and the sequence xn􏼈 􏼉 is generated
by the following manner:

un � PC xn − βnG xn( 􏼁( 􏼁,

tn � PCn
xn − βnG un( 􏼁( 􏼁,

xn+1 � PHn
xn − λnF yn( 􏼁( 􏼁,

yn+1 � PTn
xn+1 − λn+1F yn( 􏼁( 􏼁, n≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(112)

where Cn, Hn, and Tn are defined as in Corollary 1,
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λn+1 �

λn, 〈F yn− 1( 􏼁 − F yn( 􏼁, xn+1 − yn〉 ≤ 0,

min λn,
μ yn − yn− 1

����
����
2

+ yn − xn+1
����

����
2

􏼒 􏼓

〈F yn− 1( 􏼁 − F yn( 􏼁, xn+1 − yn〉

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(113)

and βn+1 is modified by

βn+1 �

βn, 〈G xn( 􏼁 − G un( 􏼁, tn − un〉≤ 0,

min λn,
μ un − xn

����
����
2

+ tn − un

����
����
2

􏼒 􏼓

〈G xn( 􏼁 − G un( 􏼁, tn − un〉

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(114)
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Figure 1: Experiment in different Rm.
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*en, the sequence xn􏼈 􏼉 generated by (112) converges
weakly to the point x � limn⟶∞PΓxn.

Remark 8. Since Cn, Hn, and Tn are half-spaces, from Re-
mark 2, it follows that tn, xn+1, and yn+1 in Corollary 1 and 2
can be computed explicitly.

4. Numerical Examples

In this section, we give two examples to illustrate the
convergence of Algorithm 1 and 2.*e programs are written
in Matlab 2016b, and the examples are computed on a PC
Intel(R) Core (TM) i5-4260U CPU, 2.00GHz, Ram 4.00GB.

We first give the following example to illustrate the
effectiveness of Algorithm 1 and 2.

Example 1. Let H � Rm and C � x ∈ Rm: x1 ≥ 0,􏼈

xi ≥ 1,∀i ∈ 2, . . . , m{ }}. Let g: H × H⟶ R be defined by

g(x, y) � 􏽘
m

i�2
yi − xi( 􏼁‖x‖,

∀x � x1, . . . , xm( 􏼁, y � y1, . . . , ym( 􏼁 ∈ H.

(115)

It is known that g satisfies the conditions (A1)–(A4). In
particular, g is Lipschitz-type continuous with the constants
c1 � c2 � 2; see [30] for details. Let f: H × H⟶ R be
defined by

f(x, y) � 〈Ax, y − x〉, ∀x, y ∈ H, (116)

where Ax � ((x1/2), (x1 − 1/2), . . . , (xm − 1/2)). It is easy to
see that f satisfies the conditions (A1)–(A4). In particular, f

is Lipschitz-type continuous with the constants
d1 � d2 � (1/4). *e solution set of the bilevel equilibrium
problem (7) in this example is found as Ω � (0, 1, . . . , 1){ }.

We choose the initial points x0, y0, y− 1 randomly from
the interval (0,5) for Algorithm 1 and 2, the input parameters
λ � β � 0.1 for Algorithm 1, and λ0 � β0 � μ � 0.2 for
Algorithm 2. *e maximum iteration of 100 as the stop
criterion is used for Algorithm 1 and 2.*e numerical results
with the different dimensions m are shown in Figure 1. In
this figures, the x-axis represents the number of iterations
while the y-axis is for the value of Dn generated by Algo-
rithm 1 and 2, where

Dn � xn − (0, 1, . . . , 1)
����

����. (117)

From the computed results, we see the effectiveness of
Algorithm 1 and 2.

*e next example was ever used in [20]. Here, we use this
example to illustrate the convergence of Algorithm 1 and 2
and compare the computed results with Algorithm 2.1 in
[20].

Example 2. Let C � x ∈ R5: − 1≤ xi ≤ 1,∀i � 1, . . . , 5􏼈 􏼉 and
f: R5 × R5 be defined by

f(x, y) � 〈F(x) + Qy + q, y − x〉,∀x, y ∈ R5
, (118)

where Q � AAT + B + D with

A �

− 2 1 0 1 − 1

1 2 1 0 2

0 1 3 1 2

0 1 3 1 0

2 0 1 − 1 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B �

0 1 2 1 − 1

− 1 3 2 0 2

− 2 − 2 1 1 − 3

− 1 0 − 1 1 0

1 − 2 3 0 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D �

5 0 0 0 0

0 3 0 0 0

0 0 12 0 0

0 0 0 15 0

0 0 0 0 22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F(x) � ξx1 + ξx2 + sin x1( 􏼁, − ξx1 + ξx2 + sin x2( 􏼁, (ξ − 1)x3, (ξ − 1)x4, (ξ − 1)x5( 􏼁,

(119)

and q is a vector in R5.
Let f: R5 × R5 be defined by

g(x, y) � 〈Px + Py + p, y − x〉,∀x, y ∈ R5
, (120)

where p is a vector in R5 and P � 2P + I with
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P �

1 2 0 0 0

2 4 0 0 0

0 0 7 0 1

0 0 0 9 0

0 0 1 0 5.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (121)

It is known that f and g satisfy all the conditions re-
quired in [20] and Section 3 of this paper. In particular, f is
Lipschitz-type continuous with the constants

d1 � d2 � (1/2)(

�������������

2(2ξ2 + 2ξ + 1)

􏽱

+ ‖Q‖), where ‖Q‖ �

58.9677 and g is Lipschitz-type continuous with the con-
stants c1 � c2 � (1/2)‖P + I‖; see [20].

We choose the initial point x0 � y0 � y− 1 � (1, 1, 1, 1, 1)

for Algorithm 1 and 2 and x0 � (1, 0, 0, 1, 1) for Algorithm
2.1 in [20]. *e stop criterion is Dn ≤ 10− 3, where

Dn � max xn − yn

����
����, xn+1 − yn

����
����􏽮 􏽯 (122)

for the three algorithms.*e computed results are presented
in Tables 1–3 for Algorithm 1, 2, and Algorithm 2.1 in [20],
respectively. In Table 3, η � ξ − 1 − ‖Q‖.

From the computed results, we see that Algorithm 2
needs more CPU times and iterations over Algorithm 1 and
Algorithm 2.1 in [20]. *e course may be that Algorithm 2
involves a self-adaptive process of computing the values of
βn+1 and λn+1.

Table 1: Computed results for Algorithm 3.1 with the different parameters.

Test prob. ξ β λ No. iter. CPU-times (s)
1 65 (1/3c1) (1/7d1) 8 1.534 5
2 69 (1/3c1) (1/7d1) 17 1.711 3
3 55 (1/5c1) (1/7d1) 22 2.023 4
4 55 (1/5c1) (1/7d1) 13 1.7431
5 70 (1/5c1) (1/10d1) 15 1.711 3
6 80 (1/5c1) (1/10d1) 24 1.988 5
7 95 (1/8c1) (1/15d1) 35 2.2331
8 45 (1/8c1) (1/15d1) 21 1.993 5
9 100 (1/10c1) (1/10d1) 19 2.100 3
10 150 (1/10c1) (1/10d1) 22 2.002 3

Table 2: Computed results for Algorithm 3.2 with the different parameters.

Test prob. ξ β0 λ0 μ No. iteration CPU times (s)

1 65 (1/3c1) (1/7d1) 0.2 12 4.324 3
2 69 (1/3c1) (1/7d1) 0.2 23 4.001 2
3 55 (1/5c1) (1/7d1) 0.15 22 3.023 4
4 55 (1/5c1) (1/7d1) 0.15 32 5.111 3
5 70 (1/5c1) (1/10d1) 0.1 25 4.875 0
6 80 (1/5c1) (1/10d1) 0.1 29 5.114 6
7 95 (1/8c1) (1/15d1) 0.1 33 6.143 7
8 45 (1/8c1) (1/15d1) 0.12 31 5.887 5
9 100 (1/10c1) (1/10d1) 0.09 29 4.997 3
10 150 (1/10c1) (1/10d1) 0.09 31 5.880 3

Table 3: Computed results for Algorithm 2.1 in [20] with the different parameters.

Test prob. ξ βn λn No. iteration CPU times (s)

1 65 (2η/2d2
1(n2 + 2)) (1/2c1 + 100n) 8 1.500 2

2 69 (2η/2d2
1(2n2 + 12)) (1/2c1 + 200n) 7 0.887 2

3 55 (2η/2d2
1(2n2 + 20)) (1/2c1 + 500n) 12 1.687

4 55 (2η/2d2
1(2n2 + 15)) (1/2c1 + 600n) 13 1.400 3

5 70 (2η/2d2
1(2n2 + 20)) (1/2c1 + 1000n) 5 1.711 3

6 80 (2η/2d2
1(2n2 + 30)) (1/2c1 + 1000n) 5 1.422 2

7 95 (2η/2d2
1(n2 + 100)) (1/2c1 + 500n) 7 0.9831

8 45 (2η/2d2
1(n2 + 150)) (1/2c1 + 500n) 9 0.800 5

9 100 (2η/2d2
1(n2 + 200)) (1/2c1 + 1000n) 7 0.965 9

10 150 (2η/2d2
1(2n2 + 1)) (1/2c1 + 200n) 14 2.110 3
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5. Conclusion

We have proposed two iterative algorithms for finding the
solution of a bilevel equilibrium problem in a real Hilbert
space. *e sequence generated by our algorithms converges
weakly to the solution. Furthermore, we reported some
numerical results to support our algorithms. How to obtain
the strong convergence of Algorithm 1 and 2 without the
additional assumptions is our future investigation.
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In this study, a ratio-dependent predator-prey model is investigated. +e local stability and global stability of the nonnegative
boundary equilibrium and positive equilibrium of the model are discussed, respectively. Sufficient condition is obtained for the
existence of Hopf bifurcation at the positive equilibrium.

1. Introduction

Recently, the predator-prey models have been studied by
many authors [1–8]. In general, a predator-prey model has
the following forms:

_x � xf(x) − p(x)y,

_y � kp(x)y − yg(y),
􏼨 (1)

where x(t) and y(t) are the densities of the prey and predator
population at time t, respectively.+e functionf(x) represents
the growth of the prey population rate, g(y) represents the
growth rate of predator population, and p(x) represents the
functional response function of predator population to prey
population. In [1], Xu et al. used the function p(x) � x2/(x2 +

my2) as the functional response function of predator pop-
ulation to prey population. +e time delay due to the gestation
of the predator is discussed in [1].

It is noted that in model (1), each individual’s prey
admits the same risk to be attacked by predators and each
individual predator admits the same ability to feed on prey.
+is assumption seems not to be realistic for many animals.
In natural world, there are many species whose individuals
pass through an immature stage. Stage structure is a natural
phenomenon and represents, for example, the division of a

population into immature andmature individuals. In the last
two decades, stage-structured models have received great
attention [3–7, 9].

Based on above discussion, we study the following
predator-prey model:

_x1(t) � rx2(t) − d1 + r1( 􏼁x1(t) −
a1x

2
1(t)y2(t)

x
2
1(t) + my

2
2(t)

,

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t),

y1
.

(t) �
a2x

2
1(t − τ)y2(t − τ)

x
2
1(t − τ) + my

2
2(t − τ)

− r2 + d3( 􏼁y1(t),

y2
.

(t) � r2y1(t) − d4y2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where x1(t) and x2(t) are the densities of the immature and
mature prey at time t and y1(t) and y2(t) are the densities of
the immature and mature predators at time t. In model (2),
all parameters are positive constants. τ ≥ 0 is the time delay
due to the gestation of the predator. x2/(x2 + my2) is the
ratio-dependent functional response.

Model (2) is of the following initial conditions:
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x1(θ) � ϕ1(θ) ≥ 0,

x2(θ) � ϕ2(θ) ≥ 0,

y1(θ) � φ1(θ)≥ 0,

y2(θ) � φ2(θ)≥ 0, θ ∈ [−τ, 0),

ϕ1(0)> 0,

ϕ2(0)> 0,

φ1(0)> 0,

φ2(0)> 0,ϕ1(θ), ϕ2(θ), φ1(θ), φ2(θ)􏼁 ∈ C [−τ, 0], R
4
+0􏼐 􏼑.

(3)

+e organization of this study is as follows. In Section 2,
we discuss the local stability of the nonnegative boundary
equilibrium and the positive equilibrium of models (2) and
(3). +e existence of a Hopf bifurcation for models (2) and
(3) at the positive equilibrium is also established. Sufficient
conditions are derived for the global stability of the non-
negative boundary equilibrium and positive equilibrium of
models (2) and (3) in Section 3, respectively.

2. Local Stability and Hopf Bifurcation

In this section, by analyzing the corresponding characteristic
equations, we study the local stability of each of nonnegative
equilibria and the existence of a Hopf bifurcation at the
positive equilibrium of models (2) and (3).

If rr1 >d2(r1 + d1), model (2) has a nonnegative
boundary equilibrium E1(x1′, x2′, 0, 0), where

x1′ �
r rr1 − d2 r1 + d1( 􏼁􏼂 􏼃

a r1 + d1( 􏼁
2 ,

x2′ �
rr1 − d2 r1 + d1( 􏼁

a r1 + d1( 􏼁
.

(4)

If (H1)a2r2 > d4(r2+ d3), rr1 − d2(r1 + d1)/a1d2 >
d4(r2 + d3)/a2r2h, model (2) has a positive equilibrium
E+(x+

1 , x+
2 , y+

1 , y+
2 ), where

x
+
1 �

r

r1 + d1 + a1h/1 + mh
2x

+
2 ,

x
+
2 �

1
a

rr1

r1 + d1 + a1h/1 + mh
2 − d2􏼠 􏼡,

y
+
1 �

d4

r2
hx
∗
1+

y
+
2 � hx

+
1 ,

h �

���������������
a2r2 − d4 r2 + d3( 􏼁

md4 r2 + d3( 􏼁

􏽳

.

(5)

+e characteristic equation of model (2) at
E1(x1′, x2′, 0, 0) takes the following form:

λ2 + r1 + d1 + d2 + 2ax2′( 􏼁λ + rr1 − d2 r1 + d1( 􏼁􏽨 􏽩

· λ2 + g1λ + g0 + h0e
− λτ

􏽨 􏽩 � 0,
(6)

where g1 � r2 + d3 + d4, g0 � d4(r2 + d3), h0 � −a2r2.
When rr1 >d2(r1 + d1), all roots of equation,

λ2 + r1 + d1 + d2 + 2ax
+
2( 􏼁λ + rr1 − d2 r1 + d1( 􏼁 � 0, (7)

are negative. Now, we consider the roots of the following
equation. λ2 + g1λ + g0 + h0e

− λτ � 0. By calculating, we
obtain

g
2
1 − 2g0 � d

2
4 + r2 + d3( 􏼁

2 > 0, g
2
0 − h

2
0

� d
2
4 r2 + d3( 􏼁

2
− a2r2( 􏼁

2
.

(8)

When d4(r2 + d3)> a2r2, we get g2
0 − h2

0 > 0. +erefore,
E1 is locally stable for all τ > 0. When d4(r2 + d3)< a2r2, we
get g2

0 − h2
0 < 0. +us, E1 is unstable.

+e characteristic equation of model (2) at E+ is of the
form

λ4 + P3λ
3

+ P2λ
2

+ P1λ + P0

+ Q2λ
2

+ Q1λ + Q0􏼐 􏼑e− λτ
� 0,

(9)

where P3 � r1 + d1 + a1α + d2 + 2ax+
2 + r2 + d3 + d4, P2 �

d4(r2 + d3) + (r2 + d3 + d4) (r1 + d1 + a1α + d2 + 2ax+
2 ) +

(r1 + d1 + a1α)(d2 + 2ax+
2 ) − rr1, P1 � d4(r2 + d3)(r1 +

d1 + a1α + d2 + 2ax+
2 ) + (r2 + d3 + d4)[(r1 + d1 + a1α)(d2+

2ax+
2 ) − rr1], P0 � d4(r2 + d3)[(r1 + d1 + a1α)(d2 + 2ax+

2 )−

rr1], Q2 � −a2r2β, Q1 � −a2r2β(r1 + d1 + d2 + 2ax+
2 ), Q0 �

−a2r2β[(r1 + d1)(d2 + 2ax+
2 ) − rr1], α � 2mx+

1(y+
2 )3/[(x+

1 )2

m(y+
2 )2]2, β � (x+

1 )4/[(x+
1 )2 + m(y+

2 )2]2.

Let τ � 0; then, (9) has the following form:

λ4 + P3λ
3

+ P2 + Q2( 􏼁λ2 + P1 + Q1( 􏼁λ + P0 + Q0 � 0. (10)

Note that P3 > 0. When

H2( 􏼁􏼂 􏼃P3 P2 + Q2( 􏼁> P1 + Q1( 􏼁, P1 + Q1( 􏼁

· P3 P2 + Q2( 􏼁 − P1 + Q1( 􏼁􏼂 􏼃>P
2
3 P0 + Q0( 􏼁> 0,

(11)

then positive equilibrium E+ is locally asymptotically
stable.

Let (H1) and (H2) hold. If iω(ω> 0) is a solution of (9),
by calculation, we can obtain

ω8
+ f3ω

6
+ f2ω

4
+ f1ω

2
+ f0 � 0, (12)

where

2 Journal of Mathematics



f3 � P
2
3 − 2P2 � d

2
4 + r2 + d3( 􏼁

2
+ r1 + d1 + a1α( 􏼁

2
+ d2 + 2ax

+
2( 􏼁

2
+ 2rr1 > 0,

f2 � P
2
2 + 2P0 − 2P1P3 − Q

2
2 � d

2
4 r2 + d3( 􏼁

2
− a2r2β( 􏼁

2
􏽨 􏽩 + r1 + d1 + a1α( 􏼁 d2 + 2ax

+
2( 􏼁 − rr1􏼂 􏼃

2

+ d
2
4 + r2 + d3( 􏼁

2
􏽨 􏽩 r1 + d1 + a1α( 􏼁

2
+ d2 + 2ax

+
2( 􏼁

2
+ 2rr1􏽨 􏽩> 0,

f1 � P
2
1 − 2P0P2 + 2Q0Q2 − Q

2
1 � d

2
4 r2 + d3( 􏼁

2
− a2r2β( 􏼁

2
􏽨 􏽩 r1 + d1( 􏼁

2
+ d2 + 2ax

+
2( 􏼁

2
+ 2rr1􏽨 􏽩

+ d
2
4 + r2 + d3( 􏼁

2
􏽨 􏽩 r1 + d1 + a1α( 􏼁 d2 + 2ax

+
2( 􏼁 − rr1􏼂 􏼃

2

+ d
2
4 r2 + d3( 􏼁

2 2a1α r1 + d1( 􏼁 + a1α( 􏼁
2

􏽨 􏽩> 0,

f0 � P
2
0 − Q

2
0 � P0 + Q0( 􏼁 P0 − Q0( 􏼁,

(13)

when P0 >Q0, E+ is locally asymptotically stable for
all τ > 0. When P0 <Q0, ω0 is the positive root of (12);

in this case, (9) has a pair of roots ±iω0. By (12), we
obtain

τk �
2kπ
ω0

+
1
ω0

arccos
Q2ω

2
0 − Q0􏼐 􏼑 ω4

0 − P2ω
2
0 + P0􏼐 􏼑 + Q1ω0 P3ω

3
0 − P1ω0􏼐 􏼑

Q1ω0( 􏼁
2

+ Q2ω
2
0 − Q0􏼐 􏼑

2 , k � 0, 1, 2, . . . , . (14)

+erefore, E+ remains stable for τ < τ0. Differentiating (9) with respect to τ, we obtain that

dλ
dτ

􏼠 􏼡

−1

�
4λ3 + 3P3λ

2
+ 2P2λ + P1

−λ λ4 + P3λ
3

+ P2λ
2

+ P1λ + P0􏼐 􏼑
+

2Q2λ + Q1

λ Q2λ
2

+ Q1λ + Q0􏼐 􏼑
−
τ
λ
. (15)

Hence, we get

sgn
d(Reλ)

dτ
􏼨 􏼩

λ�iω0

� sgn Re
dλ
dτ

􏼠 􏼡

−1⎧⎨

⎩

⎫⎬

⎭
λ�iω0

� sgn
3P3ω

2
0 − P1􏼐 􏼑 P3ω

2
0 − P1􏼐 􏼑 + 2 2ω2

0 − P2􏼐 􏼑 ω4
0 − P2ω

2
0 + P0􏼐 􏼑

ω2
0 P1 − P3ω

2
0􏼐 􏼑

2
+ ω4

0 − P2ω
2
0 + P0􏼐 􏼑

2

⎧⎪⎨

⎪⎩

+
2Q2 Q0 − Q2ω

2
0􏼐 􏼑 − Q

2
1

Q3ω
3
0 − Q1ω0􏼐 􏼑

2
+ Q2ω

2
0 − q0􏼐 􏼑

2

⎫⎪⎬

⎪⎭

� sgn
4ω6

0 + 3f3ω
4
0 + 2f2ω

2
0 + f1

Q1ω0( 􏼁
2

+ Q2ω
2
0 − Q0􏼐 􏼑

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
> 0.

(16)

+erefore, as τ � τ0, ω � ω0, there is Hopf bifurcation.
From above discussion, we have the following results.

Theorem 1. For model (2) with (3), we have the
following:

(i) Let rr1 >d2(r1 + d1); if a2r2 < d4(r2 + d3), then E1 is
locally asymptotically stable; if a2r2 > d4(r2 + d3),
then E1 is unstable.

(ii) Assume (H1) and (H2) hold; if P0 >Q0, then E+ is
locally asymptotically stable for all τ ≥ 0; if P0 <Q0,
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then there exists a τ0 > 0, s.t., E+ is locally asymp-
totically stable if 0< τ < τ0 and unstable if τ > τ0.
When τ � τ0, models (2) and (3) undergo Hopf bi-
furcation at E+.

3. Global Stability

In this section, by using an iteration technique, we discuss
the global stability of the nonnegative equilibria E1 and E+ of
models (2) and (3), respectively.

Theorem 2. Let

H3( 􏼁􏼂 􏼃rr1 >d2 r1 + d1( 􏼁 +
a1d2

2
��
m

√ , a2r2 <d4 r2 + d3( 􏼁, (17)

hold; then, the nonnegative boundary equilibriumE1 of model
(2) is globally stable.

Proof. It follows from the positive solution of model (2), and
we can obtain

_x1(t)⩽rx2(t) − d1 + r1( 􏼁x1(t),

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t).

(18)

By Lemma 2.2 of [5] and comparison, we have

limsup
t⟶+∞

x1(t)≤
r rr1 − d2 r1 + d1( 􏼁􏼂 􏼃

a r1 + d1( 􏼁
2 ,

limsup
t⟶+∞

x2(t)≤
rr1 − d2 r1 + d1( 􏼁

a r1 + d1( 􏼁
.

(19)

+erefore, there is a positive number t1, for sufficiently
small positive number ε, such that as t> t1, x1(t)≤ x1′ + ε.
Hence, for t> t1 + τ, we derive that

_y1(t)≤
a2 x1′ + ε( 􏼁

2
y2(t − τ)

x1′ + ε( 􏼁
2

+ my
2
2(t − τ)

− r2 + d3( 􏼁y1(t),

uy
.

2(t) � r2y1(t) − d4y2(t).

(20)

By Lemma 2.2 of [5] and comparison, we can obtain

lim
t⟶+∞

y1(t) � 0,

lim
t⟶+∞

y2(t) � 0.
(21)

+erefore, there is a positive number t2.t1, such that if
t> t2, y2(t)< ε.

For t> t2, we derive from model (2) that

_x1(t)≥ rx2(t) − r1 + d1( 􏼁x1(t) −
a1

2
��
m

√ x1(t)

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t).

(22)

By Lemma 2.2 of [5] and comparison, we have

lim inf
t⟶+∞

x1(t)≥
r

a r1 + d1 + a1/2
��
m

√
( 􏼁

rr1

r1 + d1 + a1/2
��
m

√ − d2􏼢 􏼣 ≔ x1,

lim inf
t⟶+∞

x1(t)≥
1
a

rr1

r1 + d1 + a1/2
��
m

√ − d2􏼢 􏼣.

(23)

By model (2), it follows that

_x1(t)≥ rx2(t) − r1 + d1( 􏼁x1(t) −
a1ε
x1

x1(t),

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t).

(24)

By Lemma 2.4 of [3] and comparison, we obtain that

liminf
t⟶+∞

x1(t)≥
r rr1 − d2 r1 + d1( 􏼁􏼂 􏼃

a r1 + d1( 􏼁
2 ,

liminf
t⟶+∞

x2(t)≥
rr1 − d2 r1 + d1( 􏼁

a r1 + d1( 􏼁
,

(25)

which together with (19) and (21) yields

lim
t⟶+∞

x1(t), x2(t), y1(t), y2(t)( 􏼁 � x1′, x2′, 0, 0( 􏼁. (26)

Hence, the equilibrium E1(x1′, x2′, 0, 0) of model (2) is
globally stable. □

Theorem 3. Assume (H1), (H2), and P0 >Q0 hold; if

H4( 􏼁􏼂 􏼃
rr1 − d2 r1 + d1( 􏼁

a1d2
>

1
2

��
m

√ , a2r2 r1 + d1( 􏼁

< a1d4 r2 + d3( 􏼁h,

(27)

then the positive equilibrium E+(x+
1 , x+

2 , y+
1 , y+

2 ) of model (2)
is global stability.

Proof. Let
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Uxi
� limsup

t⟶+∞
xi(t),

Lxi
� liminf

t⟶+∞
xi(t),

Uyi
� limsup

t⟶+∞
yi(t),

Lyi
� liminf

t⟶+∞
yi(t), (i � 1, 2).

(28)

By the first two equations of model (2), we can obtain
that

_x1(t)≤ rx2(t) − d1 + r1( 􏼁x1(t),

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t).

(29)

By Lemma 2.2 of [5] and comparison, we have

Ux1
� limsup

t⟶+∞
x1(t)≤

r rr1 − d2 r1 + d1( 􏼁􏼂 􏼃

a r1 + d1( 􏼁
2 ≔M

x1
1 ,

Ux2
� limsup

t⟶+∞
x2(t)≤

rr1 − d2 r1 + d1( 􏼁

a r1 + d1( 􏼁
≔M

x2
1 .

(30)

So, for sufficiently small positive number ε, there exists a
positive number t1, such that if t> t1, then x1(t)≤M

x1
1 + ε.

For t> t1 + τ, by the last two equations of model (2), we
get

y1
.

(t)≤
a2 M

x1
1 + ε( 􏼁

2
y2(t − τ)

M
x1
1 + ε( 􏼁

2
+ my

2
2(t − τ)

− r2 + d3( 􏼁y1(t). _x2(t) � r2x1(t) − d4x2(t).

(31)

By Lemma 2.2 of [5] and comparison, we obtain

Uy1
� limsup

t⟶+∞
y1(t)≤

d4

r2
hM

x1
1 ≔M

y1
1 ,

Uy2
� limsup

t⟶+∞
y2(t) � hM

x1
1 ≔M

y2
1 .

(32)

Hence, Uy1
≤M

y1
1 , Uy2
≤M

y2
1 , in which

M
y1
1 �

a2r2 − d4 r2 + d3( 􏼁

mr2 r2 + d3( 􏼁
M

x1
1 ,

M
y2
1 �

a2r2 − d4 r2 + d3( 􏼁

md4 r2 + d3( 􏼁
M

x1
1 .

(33)

+erefore, for sufficiently small positive number ε, there
is t2 ≥ t1 + τ, such that if t> t2, y2(t)≤M

y2
1 + ε.

For t> t2, by the first two equations of model (2), we have

_x1(t)≥ rx2(t) − r1 + d1( 􏼁x1(t) −
a1

2
��
m

√ x1(t),

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t).

(34)

By Lemma 2.4 of [3] and comparison, we derive that

Lx1
� liminf

t⟶∞
x1(t)≥

r rr1 − d2 r1 + d1 + a1/2
��
m

√
( 􏼁􏼂 􏼃

a r1 + d1 + a1/2
��
m

√
( 􏼁

2 ≔ N
x1
1 ,

Lx2
� liminf

t⟶∞
x2(t)≥

rr1 − d2 r1 + d1 + a1/2
��
m

√
( 􏼁

a r1 + d1 + a1/2
��
m

√
( 􏼁

≔ N
x2
1 .

(35)

Hence, for sufficiently small positive number ε, there is
t3 ≥ t2, such that if t> t3, x1(t)≥N

x1
1 − ε.

For t> t3 + τ, it follows from the last two equations of
model (2) that

y1
.

(t)≥
a2 N

x1
1 − ε( 􏼁

2
y2(t − τ)

N
x1
1 − ε( 􏼁

2
+ my

2
2(t − τ)

− d3 + r2( 􏼁y1(t). _x2(t) � r2x1(t) − d4x2(t).

(36)

By Lemma 2.4 of [3] and comparison, we can obtain

Ly1
� liminf

t⟶+∞
y1(t)≤

d4

r2
hN

x1
1 ≔ N

y1
1 ,

Ly2
� limsup

t⟶+∞
y2(t) � hN

x1
1 ≔ N

y2
1 .

(37)

+erefore, for sufficiently small positive number ε, there
is a positive number t4 ≥ t3 + τ, such that if t> t4,
y2(t)≥N

y2
1 − ε. In this case, by the first two equations of

model (2), we have

_x1(t)≤ rx2(t) − d1 + r1( 􏼁x1(t)

−
a1 N

x1
1 − ε( 􏼁 N

y2
1 − ε( 􏼁

M
x1
1 + ε( 􏼁

2
+ m M

y2
1 + ε( 􏼁

2x1(t),

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t).

(38)

For sufficiently small positive number ε, if (H4) holds, by
Lemma 2.2 of [5] and a comparison argument, we can obtain

Ux1
� limsup

t⟶+∞
x1(t)≤

r rr1 − d2 r1 + d1 + a1N
x1
1 N

y2
1 / M

x1
1( 􏼁

2
+ m M

y2
1( 􏼁

2
􏼐 􏼑􏽨 􏽩

a r1 + d1 + a1N
x1
1 N

y2
1 / M

x1
1( 􏼁

2
+ m M

y2
1( 􏼁

2
􏼐 􏼑

2 ≔M
x1
2 ,

Ux2
� limsup

t⟶+∞
x2(t)≤

rr1 − d2 r1 + d1 + a1N
x1
1 N

y2
1 / M

x1
1( 􏼁

2
+ m M

y2
1( 􏼁

2
􏼐 􏼑

a r1 + d1 + a1N
x1
1 N

y2
1 / M

x1
1( 􏼁

2
+ m M

y2
1( 􏼁

2
􏼐 􏼑

≔M
x2
2 .

(39)
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+erefore, for sufficiently small positive number ε, there
is t5 ≥ t4, such that if t> t5, x1(t)≤M

x1
2 + ε.

From the last two equations of model (2), we obtain that
for t> t5 + τ,

y1
.

(t)≤
a2 M

x1
2 + ε( 􏼁

2
y2(t − τ)

M
x1
2 + ε( 􏼁

2
+ my

2
2(t − τ)

− d3 + r2( 􏼁y1(t),

_x2(t) � r2x1(t) − d4x2(t).

(40)

By Lemma 2.2 of [5] and comparison, if a2r2 >d4(r2 +

d3) holds, we have

Uy1
� limsup

t⟶+∞
y1(t)≤

d4

r2
M

x1
2 ≔M

y1
2 ,

Uy2
� limsup

t⟶+∞
y2(t)≤ hM

x1
2 ≔M

y2
2 .

(41)

Hence, for ε> 0 sufficiently small, there is a T6 ≥T5 + τ,
such that if t>T6, y2(t)≤M

y2
2 + ε.

Again, for sufficiently small positive number ε and t> t6,
by the first two equations of model (2), we have

_x1(t)≥ rx2(t) − d1 + r1( 􏼁x1(t)

−
a1 M

x1
2 + ε( 􏼁 M

y2
2 + ε( 􏼁

N
x1
1 − ε( 􏼁

2
+ m N

y2
1 − ε( 􏼁

2x1(t),

_x2(t) � r1x1(t) − d2x2(t) − ax
2
2(t).

(42)

By Lemma 2.4 of [3] and comparison, if (H4) holds, we
can obtain

Lx1
� liminf

t⟶+∞
x1(t)≥

r rr1 − d2 r1 + d1 + a1M
x1
2 M

y2
2 / N

x1
1( 􏼁

2
+ m N

y2
1( 􏼁

2
􏼐 􏼑􏽨 􏽩

a r1 + d1 + a1M
x1
2 M

y2
2 / N

x1
1( 􏼁

2
+ m N

y2
1( 􏼁

2
􏼐 􏼑

2 ≔ N
x1
2 ,

Lx2
� liminf

t⟶+∞
x2(t)≥

rr1 − d2 r1 + d1 + a1M
x1
2 M

y2
2 / N

x1
1( 􏼁

2
+ m N

y2
1( 􏼁

2
􏼐 􏼑

a r1 + d1 + a1M
x1
2 M

y2
2 / N

x1
1( 􏼁

2
+ m N

y2
1( 􏼁

2
􏼐 􏼑

≔ N
x2
2 .

(43)

So, there is a positive number t7 ≥ t6, for t> t7,
x1(t)≥N

x1
2 − ε.

For sufficiently small positive number ε and t> 7 + τ,
from the last two equations of model (2), we can derive

y1
.

(t)≥
a2 N

x1
2 − ε( 􏼁

2
y2(t − τ)

N
x1
2 − ε( 􏼁

2
+ my

2
2(t − τ)

− d3 + r2( 􏼁y1(t),

_x2(t) � r2x1(t) − d4x2(t).

(44)

By Lemma 2.4 of [3] and comparison, if
a2r2 >d4(d3 + r2), we have

Uy1
� limsup

t⟶+∞
y1(t)≥

d4

r2
N

x1
2 ≔ N

y1
2 ,

Uy2
� limsup

t⟶+∞
y2(t)≥ hN

x1
2 ≔ N

y2
2 .

(45)

Repeat the above process; for n≥ 2, we can obtain eight
sequences:

M
x1
n , M

x2
n , M

y1
n , M

y2
n , N

x1
n , N

x2
n , N

y1
n , N

y2
n (n � 1, 2, ), (46)

in which

M
x1
n �

r

r1 + d1 + a1N
x1
n−1N

y2
n−1/ M

x1
n− 1( 􏼁

2
+ m M

y2
n− 1( 􏼁

2M
x2
n ,

M
x2
n �

rr1 − d2 r1 + d1 + a1N
x1
n−1N

y2
n−1/ M

x1
n− 1( 􏼁

2
+ m M

y2
n− 1( 􏼁

2
􏼐 􏼑

a r1 + d1 + a1N
x1
n−1N

y2
n−1/ M

x1
n−1( 􏼁

2
+ m M

y2
n−1( 􏼁

2
􏼐 􏼑

,

M
y1
n �

d4

r2
hM

x1
n ,

M
y2
n � hM

x1
n ,

N
x1
n �

r

r1 + d1 + a1N
x1
n−1N

y2
n−1/ M

x1
n− 1( 􏼁

2
+ m M

y2
n− 1( 􏼁

2N
x2
n ,

N
x2
n �

rr1 − d2 r1 + d1 + a1M
x1
n M

y2
n / N

x1
n− 1( 􏼁

2
+ m N

y2
n− 1( 􏼁

2
􏼐 􏼑

a r1 + d1 + a1M
x1
n M

y2
n / N

x1
n−1( 􏼁

2
+ m N

y2
n−1( 􏼁

2
􏼐 􏼑

,

N
y1
n �

d4

r2
hN

x1
n ,

N
y2
n � hN

x1
n .

(47)

It is noted that

N
xi

n ≤ Lxi
≤Uxi
≤M

xi

n , N
yi

n ≤ Lyi
≤Uyi
≤M

yi

n , (i � 1, 2). (48)

Direct calculation, we have M
xi
n and M

yi
n as nonin-

creasing, and N
xi
n and N

yi
n as nondecreasing. +erefore,

the limits of sequences in M
xi
n , M

yi
n , N

xi
n , and N

yi
n exist. Let

limt⟶ +∞M
xi

n � xi,

limt⟶ +∞N
xi

n � xi,

limt⟶ +∞M
yi

n � yi,

limt⟶ +∞N
yi

n � y
i
, (i � 1, 2).

(49)
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We have

x1 �
r

r1 + d1 + a1x1y2/ x1( 􏼁
2

+ m y2( 􏼁
2x2,

x2 �
rr1 − d2 r1 + d1 + a1x1y2/ x1( 􏼁

2
+ m y2( 􏼁

2
􏼐 􏼑

a r1 + d1 + a1x1y2/ x1( 􏼁
2

+ m y2( 􏼁
2

􏼐 􏼑
,

y1 �
d4

r2
hx1,

y2 � hx1,

x1 �
r

r1 + d1 + a1x1y2/ x1( 􏼁
2

+ m y2􏼐 􏼑
2x2,

x2 �
rr1 − d2 r1 + d1 + a1x1y2/ x1( 􏼁

2
+ m y2􏼐 􏼑

2
􏼒 􏼓

a r1 + d1 + a1x1y2/ x1( 􏼁
2

+ m y2􏼐 􏼑
2

􏼒 􏼓

,

y1 �
d4

r2
hx1,

y2 � hx1.

(50)

Now, we prove that xi � xi, yi � y
i
, (i � 1, 2). By (50),

we can obtain

a r1 + d1( 􏼁 1 + mh
2

􏼐 􏼑 x1( 􏼁
2

+ a1h x1( 􏼁
2

􏽨 􏽩 � r 1 + mh
2

􏼐 􏼑 rr1 − d2 r1 + d1( 􏼁􏼂 􏼃 x1( 􏼁
3

−rd2a1h 1 + mh
2

􏼐 􏼑 x1( 􏼁 x1( 􏼁
2
,

a r1 + d1( 􏼁 1 + mh
2

􏼐 􏼑 x1( 􏼁
2

+ a1h x1( 􏼁
2

􏽨 􏽩 � r 1 + mh
2

􏼐 􏼑 rr1 − d2 r1 + d1( 􏼁􏼂 􏼃 x1( 􏼁
3

−rd2a1h 1 + mh
2

􏼐 􏼑 x1( 􏼁 x1( 􏼁
2
.

(51)

From above two equations, we have

a r1 + d1( 􏼁
2 1 + mh

2
􏼐 􏼑

2
− a1h( 􏼁

2
􏼔 􏼕 x1( 􏼁

2
+ x1( 􏼁

2
􏽨 􏽩 x1 + x1( 􏼁 x1 − x1( 􏼁

� 1 + mh
2

􏼐 􏼑 rr1 − d2 r1 + d1( 􏼁( 􏼁 x1( 􏼁
2

+ x1x1 + x1( 􏼁
2

􏼐 􏼑 + rd2a1h 1 + mh
2

􏼐 􏼑x1x1􏽨 􏽩 x1 − x1( 􏼁.

(52)

If x1 ≠ x1, then we obtain

a r1 + d1( 􏼁
2 1 + mh

2
􏼐 􏼑

2
− a1h( 􏼁

2
􏼔 􏼕 x1( 􏼁

2
+ x1( 􏼁

2
􏽨 􏽩 x1 + x1( 􏼁

� 1 + mh
2

􏼐 􏼑 rr1 − d2 r1 + d1( 􏼁􏼂 􏼃 x1( 􏼁
2

+ x1x1 + x1( 􏼁
2

􏽨 􏽩 + rd2a1h 1 + mh
2

􏼐 􏼑x1x1

. (53)

Since rr1 >d2(r1 + d1), x1 > 0, x1 > 0, therefore,
(r1 + d1)(1 + mh2)> a1h. +is is a contradiction. So,
x1 � x1. By (50), we have x2 � x 2y1 � y 1 and y2 � y2.
+erefore, the positive equilibrium E+ is globally stable.

4. Discussion

In this study, we have studied a ratio-dependent pred-
ator-prey model with stage structure for the prey and
predator. A time delay due to the gestation of the predator
is considered. By using the eigenvalue theory, we have
obtained the sufficient conditions for the local stability of
the nonnegative equilibria of model (2). +e existence of
Hopf bifurcation is given. By the iteration technique and
comparison arguments, sufficient conditions have been

established for the global stability of the nonnegative
equilibria. From +eorem 2, we know that if (H3) holds,
the predator population will go to extinction. By+eorem
3, we learn that if (H1) and (H4) hold, then both the
predator and prey species of model (2) are permanent
[10, 11].
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In this study, we present some new results on the existence of fixed points for multivalued generalized wb-contractive mappings in
the frame work of metric type spaces. Consequently, presented results unify and generalize several known metric fixed-point
results. In support of our main results, examples are provided to show that the results are genuine generalization of the known
corresponding results of metric fixed-point theory.

1. Introduction

'e concept of a metric space plays a vital role in the de-
velopment of metric fixed-point theory and nonlinear
functional analysis and also in various scientific branches. In
the literature, this notion of metric space has been extended
in several directions by reducing or modifying the metric
axioms. Czerwik [1, 2] introduced and studied the concept of
b-metric space (metric type space), where the triangle in-
equality replaced with the weaker condition. In fact, the
basic idea of b-metric was given by Bakhtin [3]. It has been
observed that the class of metric type spaces is effectively
larger than the class of metric spaces [1]. In literature, a
number of metric fixed-point results for single-valued and
multivalued mappings have been shown; see, for example,
[4–11] and references therein.

Using a concept of the Hausdorff–Pompieu metric,
Nadler [12] introduced a notion of multivalued contraction
mappings and proved splendid result in metric fixed-point
theory for such mappings, known as Nadler contraction
principle. Due to its importance, matric fixed-point theory
of multivalued contractions has been further developed in
various directions by a number of authors. A real gener-
alization of the Nadler contraction principle is obtained by

Mizoguchi and Takahashi [13]. Without using the idea of the
Hausdorff–Pompieu metric, a number of authors obtained
interesting fixed-point results and improved various results
of metric fixed-point theory including the results of Nadler
and Mizoguchi–Takahashi and others. See, for example,
[14–17] and references therein.

In [18] Kada et al. introduced a concept of generalized
distance, namely, w-distance on metric spaces, and im-
proved some classical results by replacing the involved
metric by a generalized distance. Based on this set up, a
number of authors studied fixed-point results of mappings
with respect to w-distance. Suzuki and Takahashi [19] in-
troduced notions of single-valued and multivalued weakly
contractive mappings and studied the existence of fixed
points for such mappings. Consequently, they generalized
the Banach contraction principle and Nadler contraction
principle. For further fixed-point results with applications,
see, for example, [20–24] and references therein. In [25],
Hussain et al. defined w-distance on metric-type spaces
called wt-distance (here, we call it wb-distance), and they
proved fixed-point and common fixed-point results for
single-valued mappings with respect to wb-distance. A
number of articles with applications on this topic can also be
found in [26–29] and references therein.

Hindawi
Journal of Mathematics
Volume 2022, Article ID 2171089, 10 pages
https://doi.org/10.1155/2022/2171089

mailto:alatif@kau.edu.sa
https://orcid.org/0000-0002-8973-1381
https://orcid.org/0000-0003-1662-0450
https://orcid.org/0000-0002-4268-2228
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2171089


2. Preliminaries

Now, we recall some notations, concepts, and facts which are
useful for our results.

Let (S, d) be a metric space. Let 2S denote a collection of
nonempty subsets of S,Cl(S) denote a collection of nonempty
closed subsets of S, CB(S) denote a collection of nonempty
closed bounded subsets of S, and K(S) denote a collection of
all nonempty compact subsets of S. An element u ∈ S is called
a fixed point of a multivalued mapping J: S⟶ 2S if
u ∈ J(u). We denote Fix(J) � u ∈ S: u ∈ J(u){ }. A sequence
un􏼈 􏼉 in S is called an orbit of J at u0 ∈ S if un ∈ J(un− 1), for all

n≥ 1. A map f: S⟶ R is called J-orbitally lower semi-
continuous at z ∈ S if, for any orbit un􏼈 􏼉 of J at u0 ∈ S with
un⟶ z implies f(z)≤ lim infn⟶∞f(un). For a constant
c ∈ (0, 1), we say a function ξc: [0,∞)⟶ [0, c) is a strong
MT-function if lim supr⟶s+ξc(r)< c, for all s ∈ [0,∞). In
case c � 1, the function ξ1 is denoted by ξ, known as
MT-function. It has been observed that a function ξ is
MT-function if and only if, for any strictly decreasing se-
quence un􏼈 􏼉 in [0,∞), we have 0≤ supnξ(un)< 1. For more
characterizations of MT-function, see [30].

Using the concept of Hausdorff–Pompieumetric, Nadler
[12] proved a multivalued version of the well-known Banach
contraction principle.

Theorem 1 (see [12]). Let (S, d) be a complete metric space
and let J: S⟶ CB(S) be a multivalued contraction map-
ping (that is, for a fixed constant h ∈ (0, 1) and for each
u, v ∈ S, H(J(u), J(v))≤ h d(u, v), where H is the Haus-
dorff–Pompieu metric on CB(S)). 9en, Fix(J)≠∅.

9is result known as Nadler contraction principle, which
has been generalized in various directions. 9e first real
generalization of 9eorem 1 is obtained by Mizoguchi and
Takahashi [13].

Theorem 2 (see [13]). Let (S, d) be a complete metric space
and let J: S⟶ CB(S) be a multivalued mapping. Assume
that there exists MT-function ξ such that, for each u, v ∈ S,

H(J(u), J(v))≤ ξ(d(u, v))d(u, v). (1)

9en, Fix(J)≠∅.
On the contrary, without using the concept of the

Hausdorff–Pompieu metric, Feng and Liu [16] generalized
9eorem 1 as follows.

Theorem 3 (see [16]). Let (S, d) be a complete metric space
and let J: S⟶ Cl(S) be a multivalued mapping. Suppose
that a real-valued function g on S, g(u) � d(u, J(u)), is lower
semicontinuous. 9en, Fix(J)≠∅ provided there exist con-
stants c, h ∈ (0, 1), h< c, such that, for any u ∈ S, there is
v ∈ J(u) satisfying

cd(u, v)≤g(u),

g(v)≤ hd(u, v).
(2)

Later, Klim and Wardowski [17] generalized 'eorem 3
as follows.

Theorem 4 (see [17]). Let (S, d) be a complete metric space
and let J: S⟶ Cl(S) be a multivalued mapping such that a
real-valued function g on S, g(u) � d(u, J(u)), is lower
semicontinuous.9en, Fix(J)≠∅ provided that there exists a
strong MT-function ξc such that, for any u ∈ S, there is
v ∈ J(u) satisfying

cd(u, v)≤g(u),

g(v)≤ ξc(d(u, v))d(u, v).
(3)

Using MT-functions, Klim and Wardowski [17] also
proved fixed-point result for compact valued mappings of
metric spaces as follows.

Theorem 5 (see [17]). Let (S, d) be a complete metric space
and let J: S⟶ K(S) be a multivalued mapping such that a
real-valued function g on S, g(u) � d(u, J(u)), is lower
semicontinuous. 9en, Fix(J)≠∅ provided that there exists
MT-function ξ such that, for any u ∈ S, there is v ∈ J(u)

satisfying

d(u, v) � g(u),

g(v)≤ ξ(d(u, v))d(u, v).
(4)

It is worth mentioning that 'eorem 4 generalizes
'eorem 1 and 'eorem 3 but does not generalize 'eorem
2 because the strong-MT-function ξc in 'eorem 4 is
stronger than the MT-function ξ used in'eorem 2 as c< 1.

However, some more general interesting fixed-point
results in this direction obtained by Ćirić [14, 15] unify and
generalize the corresponding abovementioned results.

In [18], Kada et al. introduced the concept of w-distance
as follows.

Let (S, d) be a metric space. A function
p: S × S⟶ [0,∞) is called w-distance on S if it satisfies the
following, for each u, v, t ∈ S:

(1) p(u, t)≤p(u, v) + p(v, t)

(2) A function p(u, ·): S⟶ [0,∞) is lower
semicontinuous

(3) For any ϵ> 0, there exists δ > 0 such that p(t, u)≤ δ
and p(t, v)≤ δ imply d(u, v)≤ ϵ

Using the concept of w-distances, they improved a
number of known important results of metric fixed-point
theory. Note that, in general, for u, v ∈ S, p(u, v)≠p(v, u)

and not either of the implications p(u, v) � 0⇔u � v nec-
essarily hold. Clearly, the metric d is a w-distance on S. Let
(W, ‖.‖) be a normed space. 'en, the functions p1, p2: W ×

W⟶ [0,∞) defined by p1(u, v) � ‖v‖ and
p2(u, v) � ‖u‖ + ‖v‖, for all u, v ∈W, are w-distances [18].
For more examples and properties of the w-distance, see
[18, 19, 24]. Using the concept of w-distance, Suzuki and
Takahashi [19] introduced single-valued and multivalued
weakly contractive mappings and then improved the Banach
contraction principle and Nadler contraction principle. For
further general fixed-point results in this direction, see
[20, 21, 23, 24] and references therein.
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Czerwik [1, 2] introduced a concept of b-metric space as
follows.

Let S be a nonempty set. Let Δ: S × S⟶ [0,∞) be a
function which satisfies the following, for all u, v, t ∈ S:

(1) Δ(u, v) � 0 if and only if u � v

(2) Δ(u, v) � Δ(v, u)

(3) Δ(u, v)≤ b[Δ(u, t) + Δ(t, v)], for some b≥ 1

'en, Δ is called a b-metric on S and (S,Δ) is known as
b-metric space (also known a metric-type space [8, 25]). In
the sequel, we also call it metric-type space. Obviously, for
b � 1, we obtain a standard metric on S. In fact, the class of
metric-type spaces is effectively larger than the class of
metric spaces. Indeed, let S � R be endowed with a mapping
Δ: S × S⟶ R+ defined by Δ(u, v) � (u − v)2, for each
u, v ∈ S. 'en, (S,Δ) is a metric-type space with b � 2, but it
is not a metric space [3]. For more examples of metric-type
spaces, see [1, 31]. It is worth to point out that, unlike the
case of standard metric, the b-metric Δ is not necessarily
continuous due to the modified triangle inequality. In
general, Δ is not continuous in each variable [5]. However, a
metric-type space can be endowed with a topology induced
by its convergence [5] and almost all the concepts and results
which are valid for metric spaces can be extended to the
framework of metric type spaces. In fact, for metric-type
spaces, the notions of convergence, Cauchy sequence, and
completeness and continuity can be defined similarly as in
metric spaces, see [4, 8, 25]. Let us recall few such useful
notions and facts in the framework of metric-type spaces.

Let (S,Δ) be a metric-type space and let un􏼈 􏼉 be a se-
quence in S. 'en,

(1) un􏼈 􏼉 converges in S if there exists u ∈ S such that
limn⟶∞Δ(un, u) � 0

(2) un􏼈 􏼉 is a Cauchy sequence in S if
limn,m⟶∞Δ(un, um) � 0

(3) (S,Δ) is complete if every Cauchy sequence in S is
convergent in S

(4) A real-valued function f on S is b-lower semi-
continuous at a point u ∈ S if
f(u)≤ lim infn⟶∞ bf(un) whenever un⟶ u

Recently, fixed-point theory for metric-type spaces
studied and developed by many authors, for example, see
[5, 7, 28, 32] and references therein.

Motivated by the work of Kada et al. [18] and Hussain
et al. [25] introduced wt-distance (here, we call it wb-dis-
tance) in the setting of metric-type space as follows.

Let (S,Δ) be a metric-type space with constant b≥ 1.
'en, a function pb: S × S⟶ [0,∞) is called a wb-distance
on S if, for any u, v, t ∈ S, the following hold:

(1) pb(u, t)≤ b[pb(u, v) + pb(v, t)]

(2) pb(u, ·): S⟶ [0,∞) is b-lower semicontinuous
(i.e., if, for any sequence vn􏼈 􏼉 in S, vn⟶ v ∈ S, then
pb(u, v)≤ lim infn⟶∞bpb(u, vn))

(3) For any ϵ> 0, there exists δ > 0 such that pb(t, u)≤ δ
and pb(t, v)≤ δ imply Δ(u, v)≤ ϵ

Remark 1. Note that, for b � 1, each wb-distance is a
w-distance. In general, wb-distance is not symmetric, see
[25]. In fact, the class of wb-distances is much larger than the
class of w-distance, see [28]. Every b-metric is wb-distance
[25], but the converse is not true, see [28].

Example 1 (see [25]). Let S � R and Δ(u, v) � (u − v)2;
then,

(1) 'e function pb: S × S⟶ [0,∞) defined by
pb(u, v) � |u|2 + |v|2 for every u, v ∈ S is a wb-dis-
tance on S

(2) 'e function pb: S × S⟶ [0,∞) defined by
pb(u, v) � |v|2 for every u, v ∈ S is a wb-distance on S

'e following result is an analogue of Lemma 1 of [18],
stated and used in [25, 26].

Lemma 1 (see [25]). Let (S,Δ) be a metric-type space with
constant b≥ 1 and let pb be a wb-distance on S. Let un􏼈 􏼉 and
vn􏼈 􏼉 be sequences in S; let αn􏼈 􏼉 and βn􏼈 􏼉 be sequences in [0,∞)

converging to zero. 9en, the following hold, for each
u, v, t ∈ S.

(i) If pb(un, v)≤ αn and pb(un, t)≤ βn, for any n ∈ N,
then v � t. In particular, if pb(u, v) � 0 and
pb(u, t) � 0, then v � t.

(ii) If pb(un, vn)≤ αn and pb(un, t)≤ βn, for any n ∈ N,
then Δ(vn, t)⟶ 0.

(iii) If pb(un, um)≤ αn, for any n, m ∈ N with m> n, then
un􏼈 􏼉 is a Cauchy sequence.

(iv) If pb(v, un)≤ αn, for any n ∈ N, then un􏼈 􏼉 is a Cauchy
sequence.

Lemma 2 (see [33]). Let A be a closed subset of a metric-type
space (S,Δ) and pb be a wb-distance on S. Suppose that there
exists z ∈ S such that pb(z, z) � 0. 9en, pb(z, A) � 0
⇔z ∈ A, where pb(z, A) � inf pb(z, w):􏼈 w ∈ A}.

Recently, some interesting results appeared in metric
fixed-point theory with respect to wb-distance on metric-
type spaces; for example, see [25–28] and references
therein.

Let A ∈ (0, +∞]. Consider a real-valued function ψ on
[0, A) satisfying the following conditions:

(1) ψ(0) � 0 and ψ(r)> 0, for each r ∈ (0, A).
(2) ψ is nondecreasing on [0, A).
(3) ψ is subadditive, that is,

ψ r1 + r2( 􏼁≤ψ r1( 􏼁 + ψ r2( 􏼁, for all r1, r2 ∈ (0, A). (5)

Examples and properties of such functions can be found
in [34].

We define

Ω[0, A) � ψ: ψ satisfies(1) − (3)􏼈 􏼉. (6)
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'e real-valued function ψ plays an important role in
metric fixed-point theory; for example, see [22, 34, 35] and
references therein. Among others, Latif and Abdou [22]
proved some interesting fixed-point results for multivalued
mapping with respect to w-distance. For example, the fol-
lowing results unify and extend a number of known metric
fixed-point results.

Theorem 6 (see [22]). Let (S, d) be a complete metric space
with a w-distance p. Let J: S⟶ Cl(S) be a multivalued
mapping such that a real-valued function g on S,
g(u) � p(u, J(u)), is lower semicontinuous. Assume that
there exist c ∈ (0, 1) and η ∈ Ω[0, A) such that, for any u ∈ S,
there is v ∈ J(u) satisfying

cη(p(u, v))≤ η(g(u)),

η(g(v))≤ ξc(p(u, v))η(p(u, v)),
(7)

where ξc is a strong MT-function. 9en, there exists w0 ∈ S

such that g(w0) � 0. Moreover, if p(w0, w0) � 0, then
w0 ∈ J(w0).

Theorem 7 (see [22]). Let (S, d) be a complete metric space
with a w-distance p. Let J: S⟶ Cl(S) be a multivalued
mapping such that a real-valued function g on S,
g(u) � p(u, J(u)), is lower semicontinuous. Assume that
there exists η ∈ Ω[0, A) such that, for any u ∈ S, there is
v ∈ J(u) satisfying

η(p(u, v)) � η(g(u)),

η(g(v)) ≤ ξ(p(u, v))η(p(u, v)),
(8)

where ξ is MT-function. 9en, there exists w0 ∈ S such that
g(w0) � 0. Moreover, if p(w0, w0) � 0, then w0 ∈ J(w0).

'e aim of this paper is to present some more general
results on the existence of fixed points related to multivalued
generalizedwb-contractive mappings defined onmetric-type
spaces. In particular, such mappings involve the function
ψ ∘pb, where ψ ∈ Ω[0, A) and the function pb is a wb-dis-
tance on ametric-type space. Consequently, our results unify
and generalize the corresponding several known metric
fixed-point results.

3. Results

Now, we present our first main result on the existence of
fixed points for multivalued mapping with respect to
wb-distance, which improve and generalize a number of
known fixed-point results including 'eorem 6.

'roughout this section, (S,Δ) is a complete metric-type
space and pb is a wb-distance on S.

Theorem 8. Let J: S⟶ Cl(S) be a multivalued mapping.
Assume that there exist a strong MT-function ξc and a
function ψ ∈ Ω[0, A) such that, for any u ∈ S, there is
v ∈ J(u) satisfying

cψ pb(u, v)( 􏼁≤ψ(q(u)),

ψ(q(v)) ≤ ξc pb(u, v)( 􏼁ψ pb(u, v)( 􏼁,
(9)

where q is a real-valued function on S defined by
q(u) � pb(u, J(u)). 9en,

(1) For any u0 ∈ S, there exist an orbit un􏼈 􏼉 of J at u0 and
z0 ∈ S such that limn⟶∞un � z0.

(2) pb(z0, J(z0)) � 0 if and only if the function q is
J-orbitally b-lower semicontinuous at z0. Moreover, if
pb(z0, z0) � 0, then z0 ∈ Fix(J).

Proof. Let u0 be an arbitrary but fixed element of S. 'en,
there exists u1 ∈ J(u0) such that

cψ pb u0, u1( 􏼁( 􏼁≤ψ q u0( 􏼁( 􏼁, (10)

ψ q u1( 􏼁( 􏼁≤ ξc pb u0, u1( 􏼁( 􏼁ψ pb u0, u1( 􏼁( 􏼁, (11)

ξc pb u0, u1( 􏼁( 􏼁< c. (12)

'us, we have

ψ q u0( 􏼁( 􏼁 − ψ q u1( 􏼁( 􏼁≥ c − ξc pb u0, u1( 􏼁( 􏼁􏼂 􏼃ψ pb u0, u1( 􏼁( 􏼁> 0.

(13)

Similarly, for u1 ∈ S, there exists u2 ∈ J(u1) such that

cψ pb u1, u2( 􏼁( 􏼁≤ψ q u1( 􏼁( 􏼁,

ψ q u2( 􏼁( 􏼁≤ ξc pb u1, u2( 􏼁( 􏼁ψ pb u1, u2( 􏼁( 􏼁,

ξc pb u1, u2( 􏼁( 􏼁< c,

(14)

ψ q u1( 􏼁( 􏼁 − ψ q u2( 􏼁( 􏼁≥ c − ξc pb u1, u2( 􏼁( 􏼁􏼂 􏼃

ψ pb u1, u2( 􏼁( 􏼁> 0.
(15)

Continuing this process, we obtain an orbit un􏼈 􏼉 of J at
u0 ∈ S such that un+1 ∈ J(un) satisfying

cψ pb un, un+1( 􏼁( 􏼁≤ψ q un( 􏼁( 􏼁, (16)

ψ q un+1( 􏼁( 􏼁≤ ξc pb un, un+1( 􏼁( 􏼁ψ pb un, un+1( 􏼁( 􏼁, (17)

ξc pb un, un+1( 􏼁( 􏼁< c, (18)

ψ q un( 􏼁( 􏼁 − ψ q un+1( 􏼁( 􏼁≥ c − ξc pb un, un+1( 􏼁( 􏼁􏼂 􏼃

· ψ pb un, un+1( 􏼁( 􏼁> 0,
(19)

which imply that

ψ q un+1( 􏼁( 􏼁<ψ q un( 􏼁( 􏼁, n ∈ N∪ 0{ }. (20)

While from (11), (12), and (14), it follows that

ψ pb u1, u2( 􏼁( 􏼁≤
1
c
ψ q u1( 􏼁( 􏼁≤

1
c
ξc pb u0, u1( 􏼁( 􏼁ψ pb u0, u1( 􏼁( 􏼁

<ψ pb u0, u1( 􏼁( 􏼁.

(21)
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'us, for each n ∈ N, we obtain

ψ pb un, un+1( 􏼁( 􏼁<ψ pb un− 1, un( 􏼁( 􏼁. (22)

By (20) and (22), we note that the sequences ψ(q(un))􏼈 􏼉

and ψ(pb(un, un+1))􏼈 􏼉 are decreasing. Now, since ψ is
nondecreasing, it follows that q(un)􏼈 􏼉 and pb(un, un+1)􏼈 􏼉 are
decreasing sequences and are bounded from below, thus
convergent. Now, by the definition of the function ξc, there
exists δ ∈ [0, c) such that

lim sup
n⟶∞

ξc pb un, un+1( 􏼁( 􏼁 � δ. (23)

'us, for any c0 ∈ (δ, c) with c0c
− 1 ∈ (0, b− 1), there

exists n0 ∈ N such that

ξc pb un, un+1( 􏼁( 􏼁< c0, for all n> n0, (24)

and thus, for all n> n0, we have

ξc pb un, un+1( 􏼁( 􏼁 × · · · × ξc pb un0+1, un0+2􏼐 􏼑􏼐 􏼑< c
n− n0
0 . (25)

Note that, for all n> n0, we have

ψ q un+1( 􏼁( 􏼁≤ ξc pb un, un+1( 􏼁( 􏼁ψ pb un, un+1( 􏼁( 􏼁

≤
1
c
ξc pb un, un+1( 􏼁( 􏼁ψ q un( 􏼁( 􏼁

≤
1
c
2ξc pb un, un+1( 􏼁( 􏼁ξc pb un− 1, un( 􏼁( 􏼁ψ q un− 1( 􏼁( 􏼁

⋮

≤
1
c

n ξc pb un, un+1( 􏼁( 􏼁 × · · · × ξc pb u1, u2( 􏼁( 􏼁􏼂 􏼃ψ q u1( 􏼁( 􏼁

�
ξc pb un, un+1( 􏼁( 􏼁 × · · · × ξc pb un0+1, un0+2􏼐 􏼑􏼐 􏼑

c
n− n0

×
ξc pb un0

, un0+1􏼐 􏼑􏼐 􏼑 × · · · × ξc pb u1, u2( 􏼁( 􏼁ψ q u1( 􏼁( 􏼁

c
n0

,

(26)

and thus,

ψ q un+1( 􏼁( 􏼁<
c0

c
􏼒 􏼓

n− n0ξc pb un0
, un0+1􏼐 􏼑􏼐 􏼑 × · · · × ξc pb u1, u2( 􏼁( 􏼁ψ q u1( 􏼁( 􏼁

c
n0

. (27)

Put λ � c0c
− 1 and since λ< 1, we have limn⟶∞λ

n− n0 � 0,
and hence, the decreasing sequence ψ(q(un))􏼈 􏼉 converges to
0. 'us, we have

lim
n⟶∞

q un( 􏼁 � 0. (28)

Now, we show that un􏼈 􏼉 is a Cauchy sequence. From (16),
(17), and (24), we note that, for all n> n0,

ψ pb un, un+1( 􏼁( 􏼁≤
1
c
ψ q un( 􏼁( 􏼁

≤
1
c
ξc pb un− 1, un( 􏼁( 􏼁ψ pb un− 1, un( 􏼁( 􏼁

< λψ pb un− 1, un( 􏼁( 􏼁

< λ2ψ pb un− 2, un− 1( 􏼁( 􏼁

⋮

< λnψ pb u0, u1( 􏼁( 􏼁.

(29)

'us, we have
ψ pb un, un+1( 􏼁( 􏼁≤ λnψ pb u0, u1( 􏼁( 􏼁, n ∈ N∪ 0{ }. (30)
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Now, for any n, m ∈ N, m> n,

ψ pb un, um( 􏼁( 􏼁≤ b ψ pb un, un+1( 􏼁( 􏼁 + ψ pb un+1, um( 􏼁( 􏼁( 􏼁

≤ bψ pb un, un+1( 􏼁( 􏼁 + b b ψ pb un+1, un+2( 􏼁( 􏼁 + ψ pb un+2, um( 􏼁( 􏼁( 􏼁( 􏼁

� bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + b

2ψ pb un+2, um( 􏼁( 􏼁

≤ bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + b

2
b ψ pb un+2, un+3( 􏼁( 􏼁 + ψ pb un+3, um( 􏼁( 􏼁( 􏼁( 􏼁

� bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + b

3 ψ pb un+2, un+3( 􏼁( 􏼁 + ψ pb un+3, um( 􏼁( 􏼁( 􏼁

⋮

≤ bψ pb un, un+1( 􏼁( 􏼁 + b
2ψ pb un+1, un+2( 􏼁( 􏼁 + . . . + b

m− n− 1 ψ pb um− 2, um− 1( 􏼁( 􏼁 + ψ pb um− 1, um( 􏼁( 􏼁( 􏼁

≤ bλnψ pb u0, u1( 􏼁( 􏼁 + b
2λn+1ψ pb u0, u1( 􏼁( 􏼁 + . . . + b

m− n− 1λm− 2ψ pb u0, u1( 􏼁( 􏼁 + b
m− n− 1λm− 1ψ pb u0, u1( 􏼁( 􏼁

� bλn 1 + bλ +(bλ)
2

+ · · · +(bλ)
m− n− 2

+ b
m− n− 2λm− n− 1

􏼐 􏼑ψ pb u0, u1( 􏼁( 􏼁.

(31)

Since λ< b− 1, thus, for m, n ∈ N with m> n> n0, we
obtain

ψ pb un, um( 􏼁( 􏼁≤
bλn

1 − bλ
ψ pb u0, u1( 􏼁( 􏼁. (32)

'us, since (bλn/(1 − bλ))⟶ 0 as n⟶ +∞, we have
limn,m⟶+∞ψ(pb(un, um)) � 0, and thus,

lim
n,m⟶+∞

pb un, um( 􏼁 � 0. (33)

By Lemma 1 (iii), un􏼈 􏼉 is Cauchy sequence in S. Since S is
complete, un􏼈 􏼉 converges to some point z0 ∈ S. Note that the
sequence un􏼈 􏼉 is an orbit of J at u0 ∈ S with un⟶ z0. Now,
suppose that the function q is J-orbitally b-lower semi-
continuous at z0; then, using (28), we have

0≤ q z0( 􏼁≤ lim inf
n⟶∞

bq un( 􏼁 � 0, (34)

and hence, q(z0) � pb(z0, J(z0)) � 0. Conversely, if
pb(z0, J(z0)) � q(z0) � 0, then, clearly, the function q is
J-orbitally b-lower semicontinuity at z0 because
q(z0) � 0≤ lim infn⟶∞bq(un). Furthermore, if
pb(z0, z0) � 0, then, since J(z0) is closed, it follows from
Lemma 2 that z0 ∈ J(z0).

If we consider in'eorem 8, a constant mapping ξc(s) �

τ and s ∈ (0,∞), where τ ∈ (0, c); then, we have the fol-
lowing result. □

Corollary 1. Let J: S⟶ Cl(S) be a multivalued mapping
satisfying that, for any constants c ∈ (0, 1) and for each u ∈ S,
there is v ∈ Lu

c such that

ψ(q(v)) ≤ τψ pb(u, v)( 􏼁, (35)

where Lu
c � v ∈ J(u): cψ(pb(u, v))≤ψ(q(u))􏼈 􏼉 and a real-

valued function q on S defined by q(u) � pb(u, J(u)) is
b-lower semicontinuous. 9en, there exists z0 ∈ S such that
q(z0) � 0. Furthermore, if pb(z0, z0) � 0, then z0 ∈ Fix(J).

Remark 2.

(1) 'eorem 8 generalizes the fixed-point result ('e-
orem 2.2 of [36]). Indeed, if we take ψ(s) � s, for all
s ∈ [0, A) and b � 1 (i.e., wb-distance as a w-dis-
tance) in 'eorem 8, then we get 'eorem 2.2 of
[36]. Consequently, 'eorem 8 also extends 'eo-
rem 4, which contains 'eorem 3.

(2) 'eorem 8 generalizes the fixed-point result ('e-
orem 2.1 of [22]) for wb-distance in the frame work
of metric-type spaces.

(3) 'eorem 8 contains 'eorem 2.1 of [35] as a special
case.

(4) Corollary 1 contains the fixed-point results (Cor-
ollary 2.2 of [22] and 'eorem 3.3 of [37]).

Now, without using b-lower semicontinuity of the
function q, we present a fixed-point result for multivalued
mappings which extends the fixed-point result of 'eorem
2.4 of [36] and reduces to 'eorem 2.4 of [22].

Theorem 9. Suppose that all the hypotheses of 9eorem 8
(except the b-lower semicontinuity of the function q) hold.
Assume that

inf ψ pb(u, z)( 􏼁 + ψ(q(u)): u ∈ S􏼈 􏼉> 0, (36)

for every z ∈ S with z ∉ J(z). 9en, Fix(J)≠∅.

Proof. Following the proof of 'eorem 8, there exists an
orbit un􏼈 􏼉 of J at u0 ∈ S, which turns as a Cauchy sequence in
a complete space S. 'en, there exists z0 ∈ S such that the
sequence un􏼈 􏼉 converges to z0. 'us, by the b-lower semi-
continuity of the function pb(un, ·), and from the proof of
'eorem 8, it follows that, for all n> n0,

ψ pb un, z0( 􏼁( 􏼁≤ lim inf
m⟶∞

bψ pb un, um( 􏼁( 􏼁≤
b
2λn

1 − bλ
ψ pb u0, u1( 􏼁( 􏼁,

(37)

where λ � c0/c< 1. Also, note that
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q un( 􏼁 � pb un, J un( 􏼁( 􏼁≤pb un, un+1( 􏼁, (38)

for all n, and since the function ψ is nondecreasing, we have

ψ q un( 􏼁( 􏼁≤ψ pb un, un+1( 􏼁( 􏼁, (39)

and thus,

ψ q un( 􏼁( 􏼁< λnψ pb u0, u1( 􏼁( 􏼁. (40)

Assume that z0 ∉ J(z0). 'en, we have

0< inf ψ pb u, z0( 􏼁( 􏼁 + ψ(q(u)): u ∈ S􏼈 􏼉

≤ inf ψ pb un, z0( 􏼁( 􏼁 + ψ q un( 􏼁( 􏼁: n> n0􏼈 􏼉

< inf
b
2λn

1 − bλ
ψ pb u0, u1( 􏼁( 􏼁 + λnψ pb u0, u1( 􏼁( 􏼁: n> n0􏼨 􏼩

�
b
2

− bλ + 1
1 − bλ

ψ pb u0, u1( 􏼁( 􏼁􏼨 􏼩inf λn
: n> n0􏼈 􏼉 � 0,

(41)

which is impossible, and hence, z0 ∈ Fix(J).
Using MT-functions (instead of strong MT-functions),

we present a fixed-point result for multivalued wb-con-
traction mappings which extends 'eorem 2.5 of [22] and
thus contains a number of known metric fixed-point
results. □

Theorem 10. Let J: S⟶ Cl(S) be a multivalued mapping.
Assume that there exist an MT-function ξ and a function
ψ ∈ Ω[0, A) such that, for any u ∈ S, there is v ∈ J(u)

satisfying

ψ pb(u, v)( 􏼁 � ψ(q(u)),

ψ(q(v)) ≤ ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁,
(42)

where q is a real-valued function on S defined by
q(u) � pb(u, J(u)). 9en,

(1) For any u0 ∈ S, there exist an orbit un􏼈 􏼉 of J at u0 and
z0 ∈ S such that limn⟶∞un � z0.

(2) pb(z0, J(z0)) � 0 if and only if the function q is
J-orbitally b-lower semicontinuous at z0. Moreover, if
pb(z0, z0) � 0, then z0 ∈ Fix(J).

Proof. Let u0 be an arbitrary but fixed element of S. 'en,
there is u1 ∈ J(u0) such that

ψ pb u0, u1( 􏼁( 􏼁 � ψ q u0( 􏼁( 􏼁,

ψ q u1( 􏼁( 􏼁≤ ξ pb u0, u1( 􏼁( 􏼁ψ pb u0, u1( 􏼁( 􏼁,

ξ pb u0, u1( 􏼁( 􏼁< 1.

(43)

Following the proof of 'eorem 8, there exists a Cauchy
sequence un􏼈 􏼉 in the complete space S such that un+1 ∈ J(un)

(that is, un􏼈 􏼉 is an orbit of J at u0) satisfying

ψ pb un, un+1( 􏼁( 􏼁 � ψ q un( 􏼁( 􏼁,

ψ q un+1( 􏼁( 􏼁≤ ξ pb un, un+1( 􏼁( 􏼁ψ pb un, un+1( 􏼁( 􏼁,

ξ pb un, un+1( 􏼁( 􏼁< 1.

(44)

Consequently, there exists z0 ∈ S such that the sequence
un􏼈 􏼉 converges to z0. Now, the rest of the proof follows as of
'eorem 8. □

Remark 3.
(1) For b � 1, 'eorem 10 reduces to 'eorem 2.5 of

[22].
(2) If we take b � 1 and ψ(s) � s, for each s ∈ [0, A) in

'eorem 10, the we obtain 'eorem 2.5 of [38].
(3) It turns out that 'eorem 10 also generalizes 'e-

orem 7 of [14] and 'eorem 2.4 of [35].

Using the same technique as in the proof of 'eorem 9,
we get the following fixed-point result (in the absence of the
b-lower semicontinuity of the function q), which contains
fixed-point result ('eorem 2.7 of [22]) as a special case.

Theorem 11. Suppose that all the hypotheses of 9eorem 10
except the b-lower semicontinuity of the function q hold.
Assume that

inf ψ pb(u, z)( 􏼁 + ψ(q(u)): u ∈ S􏼈 􏼉> 0, (45)

for every z ∈ S with z ∉ J(z). 9en, Fix(J)≠∅.

4. Example

Now, we present examples which show that ourmain results,
namely, 'eorems 8 and 10 are genuine generalizations of
'eorem 2.1 of [22] and 'eorem 2.5 of [22], respectively.

Example 2. Let S � [0, 1]. Define Δ(u, v) � (u − v)2, for all
u, v ∈ S. 'en, S is a metric-type space with b � 2. Define a
wb-distance function on S by pb(u, v) � v2, for all u, v ∈ S.
Let J: S⟶ Cl(S) be defined by

J(u) �

1
2
u
2

􏼚 􏼛; u ∈ 0,
15
32

􏼔 􏼓∪
15
32

, 1􏼒 􏼕,

0,
17
96

,
1
4

􏼚 􏼛; u �
15
32

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

Let A ∈ [1,∞) and let c � 1/2. Define a function
ψ: [0, A)⟶ R by ψ(s) � s1/2. Clearly, ψ ∈ Ω[0, A). Define
ξc: [0,∞)⟶ [0, c) as follows:

ξc(s) �

3
4
s
1/2

; s ∈ 0,
1
2

􏼔 􏼓,

3
8
; s ∈

1
2
,∞􏼔 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(47)

Clearly, ξc is a strong MT-function. Also, note that
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q(u) � pb(u, J(u)) �

1
4
u
4
; u ∈ 0,

15
32

􏼔 􏼓∪
15
32

, 1􏼒 􏼕,

0; u �
15
32

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(48)

Now, for each u ∈ [0, 15/32)t∪ n(q15/32, 1], we have
J(u) � (1/2)u2􏼈 􏼉. Take v � (1/2)u2 ∈ J(u); then, we have

pb(u, v) � q(u) �
1
4
u
4
. (49)

'us, for u ∈ [0, 1], u≠ 15/32, we have

cψ pb(u, v)( 􏼁≤ψ(q(u)), (50)

ψ(q(v)) � ψ pb

1
2
u
2
,
1
2

1
2
u
2

􏼒 􏼓
2

􏼠 􏼡􏼠 􏼡 � ψ
1
64

u
8

􏼒 􏼓 �
1
8
u
4

≤
3
16

u
4

� ξc pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(51)

Now, let u � 15/32; then, we have J(u) � 0, 17/96, 1/4{ }.
Clearly, there exists v � 0 ∈ J(u) such that

cψ pb(u, v)( 􏼁 � 0 � ψ(q(u)), (52)

ψ(q(v)) � ψ pb(0, 0)( 􏼁 � ξc pb(u, v)( 􏼁ψ pb(u, v)( 􏼁. (53)

Note that, for each u ∈ [0, 1], all the conditions of
'eorem 8 are satisfied, and hence, it follows that
Fix(J)≠∅. Note that Fix(J) � 0{ }.

Clearly, pb is not a metric d, even not a w-distance p on
S, and thus, J does not satisfy the hypotheses of 'eorem 2.1
of [22]. Note that the mapping J also does not satisfy the
hypotheses of 'eorem 2.5 of [22].

Example 3. Let S � 0{ }∪ (1/n): n ∈ N{ }. Denote
Λ � 0{ }∪ (1/2n): n ∈ N{ }. Clearly, Λ⊆S. Let
Δ: S × S⟶ [0,∞) be defined by

Δ(u, v) �

0; if u � v,

2; if u≠ v ∈ 0, 1{ },

|u − v|; if u≠ v ∈ Λ,

4; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)

'en, S is a metric-type space with b � 8/3 (see [28]).
Define a wb-distance pb: S × S⟶ [0,∞) by

pb(u, v) �

0; if u � v,

2; if u≠ v ∈ 0, 1{ },

max 3(u − v), 2(v − u){ }; if u≠ v ∈ Λ,

4; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(55)

Let J: S⟶ Cl(S) be defined by

J(u) �

1
11

u􏼚 􏼛; if u ∈ Λ,

0,
1
3

􏼚 􏼛; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(56)

Let A ∈ [1,∞). Define a function ψ: [0, A)⟶ R by
ψ(s) � s1/2. Clearly, ψ ∈ Ω[0, A). Define ξ: [0,∞)⟶ [0, 1)

as follows:

ξ(s) �

1
4

s; if s ∈ Λ,

1
2
; otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(57)

Clearly, ξ is MT-function. We need to examine the
following cases:

Case I: suppose u ∈ Λ∖ 0{ }; we have J(u) � (1/11)u{ }

and so

q(u) � pb(u, J(u)) � max 3 u −
1
11

u􏼒 􏼓, 2
1
11

u − u􏼒 􏼓􏼚 􏼛

�
30
11

u.

(58)

Take v � (1/11)u ∈ J(u); then, clearly, v ∈ Λ, and we
have

pb(u, v) � q(u) �
30
11

u. (59)

'us, for u ∈ Λ∖ 0{ }, we have

ψ pb(u, v)( 􏼁 � ψ(q(u)), (60)

ψ(q(v)) � ψ pb

1
11

u,
1

(11)
2 u􏼠 􏼡􏼠 􏼡

� ψ
30

(11)
2 u􏼠 􏼡 �

��
30

√

11
u
1/2

≤
1
2

��
30
11

􏽲

u
1/2

� ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(61)

Case II: suppose u � 0; then, we have
J(u) � (1/11)u{ } � 0{ }. Clearly, there exists
v � 0 ∈ J(u) such that

ψ pb(u, v)( 􏼁 � 0 � ψ(q(u)), (62)

ψ(q(v)) � ψ pb(0, 0)( 􏼁 � 0 � ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(63)

Case III: suppose u � 1; then, we have J(u) � 0, 1/3{ }.
Clearly, there exists v � 0 ∈ J(u) such that
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ψ pb(u, v)( 􏼁 �
�
2

√
� ψ(q(u)), (64)

ψ(q(v)) � ψ pb(0, 0)( 􏼁 � 0≤
1
�
2

√

� ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(65)

Case IV: suppose u � (1/3); then, we have
J(u) � 0, 1/3{ }. Clearly, there exists v � (1/3) ∈ J(u)

such that

ψ pb(u, v)( 􏼁 � 0 � ψ(q(u)), (66)

ψ(q(v)) � ψ pb

1
3
,
1
3

􏼒 􏼓􏼒 􏼓 � 0 � ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(67)

Case V: suppose u ∈ S∖(Λ∪ 1, (1/3){ }); then, we have
J(u) � 0, (1/3){ }. Clearly, there exists v � (1/3) ∈ J(u)

such that

ψ pb(u, v)( 􏼁 � 2 � ψ(q(u)), (68)

ψ(q(v)) � ψ pb

1
3
,
1
3

􏼒 􏼓􏼒 􏼓 � 0≤ 1 � ξ pb(u, v)( 􏼁ψ pb(u, v)( 􏼁.

(69)

Note that, for each u ∈ S, all the conditions of 'eorem
10 are satisfied, and hence, it follows that Fix(J)≠∅. Note
that Fix(J) � 0{ }.

Not that the wb-distance pb is not a metric d, even not a
w-distance p on S, and thus, J do not satisfy the hypotheses
of 'eorem 2.5 of [22].

5. Conclusion

Among others, Feng-Liu [16], Klim and Wardowski [17],
and Ćirić [14] studied the existence of fixed points for
multivalued contractive-type mappings without using the
Hausdorff–Pompieu metric, and consequently, they gener-
alized some classical known fixed-point results including
'eorems 1 and 2. In this study, we established some general
fixed-point results for multivalued generalized contractive
mappings on metric-type spaces (instead of normal metric
spaces) with respect to wb-distances. Presented results
generalize and improve a number of known fixed-point
results, including the corresponding fixed-point results
which are stated in Section 2. In support of our main fixed-
point theorems, examples are also provided. Note that the
family of metric-type spaces is effectively larger than one of
metric spaces, and hence, our theorems are more general,
different from the classical results.
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)e PID parameters determine the PID controller performance. A reformative artificial bee colony (RABC) algorithm is proposed
for the PID parameter optimization problem. )e algorithm balances the exploitation capability and exploration capability of the
ABC algorithm by introducing a global optimal solution and improving the food source probability. )e proposed algorithm is
validated by simulation with six benchmark functions, and the results show that the RABC algorithm has higher search accuracy
and faster search speed than other variants of the artificial bee colony algorithm. )e RABC algorithm-optimized PID controller
has better control with minimum overshoot and fast response, as verified by comparison with PSO-PID, DE-PID, and GA-PID
methods in three typical systems.

1. Introduction

)e PID controller has been the most widely used and
mature controller in the industrial production process [1].
Despite the emergence of various new controllers in the
control field, PID controllers are still in the dominant po-
sition with their simple structure, easy implementation, and
robustness. )e PID controllers are widely used in chemical,
electric power, metallurgy, and other industrial control sites.
In the industrial control process, more than 95% of the loops
have a PID structure [2]. )e suitability of controller pa-
rameters has an important impact on the quality of the
controller. With the development of modern industry, the
traditional PID controller can no longer meet the require-
ments of control systems with high order, time lag, and
nonlinearity. )e traditional method of PID parameter
optimization can no longer fully adapt to the exploitation of
modern industry, so it is very important to study a new and
efficient PID parameter optimization technique for engi-
neering practice [3].

For the optimization of the parameters of the PID
controller, the researchers used various optimization
techniques. Feng et al. [4] proposed an improved genetic
algorithm (IGA), to search for the PID controller pa-
rameters, for the robotic excavator. Özdemir et al. [5]

proposed a new metaheuristic optimization algorithm,
optical inspired optimization (OIO) algorithm to optimize
PID controllers. )e method has better performance in
terms of maximum overshoot and stabilization time. Chen
et al. [6] proposed a fuzzy PID controller optimized by an
improved ant colony algorithm. )e improvements of
nonlinear incremental evaporation rate and pheromone
incremental update were proposed in the IACO algorithm
to improve the quality of the solution. Hekimo glu et al. [7]
proposed atomic search optimization (ASO) algorithm and
chaotic ASO (ChASO) to determine the optimal parame-
ters of fractional-order proportional + integral + derivative
(FOPID) controller. Bingul et al. [8] proposed a new time-
domain performance criterion for the rectification design
of the proportional-integral-derivative (PID) controller in
an automatic voltage regulator (AVR) using the cuckoo
search algorithm. )is performance criterion is chosen to
minimize the maximum overshoot, rise time, stabilization
time, and steady-state error of the terminal voltage. Ekinci
et al. [9] used an improved kidney-inspired algorithm
(IKA) and a new objective function. )e main objective of
the method is to optimize the transient response of the
AVR system to obtain the optimal values of the three gains
(Kp, Ki, and Kd) of the PID controller by minimizing the
maximum overshoot, stabilization time, rise time, and peak
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time values of the terminal voltage and eliminating the
steady-state error. Batiha et al. [10] implemented two
optimization algorithms, particle swarm optimization
(PSO) and bacteria foraging optimization (BFO) algo-
rithms, for the purpose of tuning the fractional-order PID-
controller. Huang and Chuang [11] proposed an artificial
bee colony optimization (ABC) algorithm incorporating
fuzzy theory to optimize the PID controller by introducing
fractional-order proportional-integral-derivative (FOPID)
control strategy. Panoeiro et al. [12] optimized PID con-
troller parameters by bionic optimization technique. Op-
timization of PID parameters based on the Ziegler–Nichols
(ZN) rule was proposed in [13] as a fractional-order PID
controller optimization method based on radial basis
function (RBF) neural network. A fractional-order fuzzy
proportional integral differential (FOFPID) controller was
proposed by Sharma et al. [14]. )e cuckoo search algo-
rithm (CSA) optimization technique was used to optimize
all the controller parameters. Chang et al. proposed a new
adaptive genetic algorithm for PID controller design, and
they found that the fractional-order PID controller sig-
nificantly reduced the overshoot and stabilization time
compared to the optimized conventional PID controller
[15]. Bingul [16] used a differential evolution (DE) algo-
rithm for tuning the PID controller for unstable and time-
lagged integral processes. )e results show that the PID-
tuned DE has faster stabilization time, less or no overshoot,
and higher robustness. Cao and Cao [17] demonstrated
parameter optimization of a fractional-order controller
based on improved PSO. )e improved particle swarm
algorithm has a faster search speed and better solution than
the genetic algorithm. Maiti et al. [18] used PSO to design
fractional-order PID controllers. )ey significantly re-
duced the overshoot percentage, rise, and adjustment time
using the FOPID controller compared to the PID con-
troller. Alfi and Modares [19] used a novel adaptive PSO
(APSO) algorithm to find the optimal system parameters
for unstable nonlinear systems and optimal parameters for
PID controllers. Some scholars applied the particle swarm
algorithm (PSO) [20–22] to optimize the PID controller
parameters to improve the search speed. Improving the
PID structure is too tedious.)e exploitation capability and
exploration capability of intelligent algorithms in param-
eter optimization of PID controllers need further
improvement.

Artificial bee colony algorithm is a swarm intelligence
optimization algorithm, proposed by Karaboga, to simulate
the process of honey bee foraging [23]. )e algorithm is easy
to implement control with few parameters and has good
optimization performance. )erefore, the contributions of
this paper are as follows:

(1) )e RABC algorithm is proposed to improve the
exploitation capability and exploration capability of
the ABC algorithm.

(2) )e PID controller is based on the RABC algorithm
(RABC-PID). )e effectiveness of this controller is
verified by comparing it with the controllers opti-
mized by the other three methods.

)e rest of this paper is organized as follows. Section 2
introduces the basic artificial swarm algorithm, the
modified artificial swarm algorithm, and the superiority of
the modified artificial swarm algorithm verified by six
benchmark functions. )e principle of optimized PID
controller parameters and the whole optimization process
of the modified artificial swarm algorithm is introduced.
Section 3 establishes three typical models, and Section 4
conducts experimental simulations to validate the supe-
riority of the RABC algorithm by comparing it with three
other intelligent methods. Section 5 concludes the whole
paper.

2. Proposed Method

2.1. Basic Artificial Bee Colony Algorithm. )e basic artificial
bee colony algorithm divides the population into three types:
employed bees, following bees, and scout bees, and sets a
search phase for each type of artificial bee, i.e., employed bee
phase, following bee phase, and scout bee phase. Initially, the
algorithm uses random initialization to generate the initial
population, which is shown in the following:

X
j
i � X

j

min + rand(0, 1) X
j
max − X

j

min􏼐 􏼑, (1)

where i� 1, . . ., SN, j� 1, . . ., D. SN denotes the population
size, D denotes the problem dimension, rand (0, 1) is a
random number between 0 and 1, and X

j
max and X

j

min denote
the upper and lower bounds of the jth dimension of an
individual, respectively.

In the employed bee phase, the employed bee searches
for food sources by performing a random search of the
feasible domain by equation (2) and passes the food source
multiplication to the following bee waiting in the hive to
search for the food source.

V
j
i � X

j
i + φj

i X
j
i − X

j

k􏼐 􏼑, (2)

where k ∈ (1, . . ., SN) is a randomly selected indicator for
different i, which means that there is only one randomly
selected solution in generating the new candidate solution;
j ∈ (1, . . ., D) is a randomly selected indicator, which means
that only one dimension has changed between the new
candidate solution and the old one. φj

i is a random number
uniformly distributed on [−1, 1].

In the following bee stage, according to the food source
information passed back to the hive by the employed bee, the
following bee selects the food source using roulette
according to the probability calculated in equation (3) below,
and the nectar collection process still uses equation (2) to
update the food source randomly.

Pi �
fiti

􏽐
SN
j�1fitj

, (3)

where fiti denotes the adaptation value of the ith food source.
During the scout bee phase, scout bees discard all food

sources that have already been mined for honey, exceeding
the limit for all food sources. An employed bee on the
abandoned food source will then transform into a scout bee,
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randomly searching for new food sources according to
equation (1). )roughout the search process of the algo-
rithm, the food source corresponds to the candidate solution
of the optimization problem, and the quality of the food
source represents the merit of the candidate solution.

2.2. Reformative Artificial Bee Colony Algorithm. It is well
known that the exploration ability [24] and the exploitation
ability of an algorithm are two conflicting aspects that affect
the performance of an algorithm. In other words, the en-
hanced exploration ability of the algorithm will inevitably
affect the exploitation ability of the algorithm, which may
reduce the convergence speed of the algorithm, while the
enhanced exploitation ability of the algorithm will also in-
evitably affect the exploration ability of the algorithm, which
may lead the algorithm to fall into local optimum. )e
artificial bee colony algorithm can be seen to have stronger
exploration ability and weaker exploitation ability due to its
random search feature. In this paper, a reformative artificial
bee colony algorithm (RABC) is proposed. )e optimal
solution idea is proposed for the problem of the weak ex-
ploitation ability of the artificial bee colony algorithm. )e
algorithm selects the global optimal bee location and its food
source location when updating the location of the food
source. When the colony is updated, the bees are allowed to
refer to the global bee with the best food source and move to
the food source with better quality, and the global optimal is
updated as the colony is constantly updated, which allows
the bees to use the optimal food source as a reference when
acquiring food source information and improves the ex-
ploration capability of the algorithm to some extent.
Equation (2) for searching food sources is changed to the
following equation:

V
j
i � X

j

i,best + φj
i X

j

i,best − X
j
i􏼐 􏼑, (4)

where X
j

i,best is the global current optimal food source.
)e following probability of following bees is deter-

mined by the proportion of the current food source’s
fitness among all food sources. When some better food
sources do not differ much from the optimal food source,
it will lead to a lower probability of following the optimal
food source by the following bees. For some bad food
sources, due to the random selectivity of the following
bees, they have the opportunity to follow them instead,
which leads to a slower speed of finding the optimal food
source and shows a slow convergence speed in the al-
gorithm. Because of this, this paper proposes to take the
current optimal food source of the colony as a reference,
so that the following bees are more inclined to choose the
food source with high quality and improve the speed of
the colony to find the optimal food source. )us, the
probability Pi of following bees following the hiring bees is
changed to the following equation:

Pi �
0.8fiti

max fiti + 0.2
, (5)

where max fiti is the fitness value of the highest solution.

Both employed and following bees use equation (4) to
update the food source location, which allows a portion of the
bee’s information to be exchanged with the globally optimal
bee, ensuring that the bee is not disturbed by the locally
optimal bee, but also that the bee moves to a better food
source led by the globally optimal bee. Using equation (5) to
judge the quality of food sources, following bees are more
likely to follow honey-harvesting bees that have high-quality
food sources and thus exploit high-quality food sources.

2.3. Benchmark Function Simulation Verification. To check
the optimization performance of the RABC algorithm, the
same ABC, GABC [25], and GBABC [26] algorithms are
tested for comparison experiments on six benchmark
functions. )e basic characteristics of the test functions are
given in Table 1. )e test dimension of the test function is
D� 50. In the experiments, the population number SN is
100, the limit is 50, the maximum cycle number MaxCycle is
set to 5000, and the algorithm is run 30 times independently.
)e experimental results are shown in Table 2.

Table 2 gives the experimental results of the six
benchmark functions, including the mean and standard
deviation. From the table, we can see that the RABC al-
gorithm has the smallest standard deviation among the six
benchmark functions, which proves that the RABC algo-
rithm has the best stability. )e mean value is closest to the
optimal value, which proves that the RABC algorithm has
the highest search accuracy.

Figure 1 gives the benchmark function convergence
curve graph. From the figure, it can be seen that the RABC
algorithm outperforms both the basic artificial bee colony
algorithm and the other two improved artificial bee colony
algorithms in terms of convergence speed performance and
search accuracy. )e experimental results indicate that
RABC has better optimization performance.

2.4. PID Controller Based on RABC (RABC-PID). )e RABC
algorithm is used to optimize the PID parameters, which is
essentially a parameter optimization problem based on a
certain objective function, i.e., finding the optimal values in
the parameter space of Kp, Ki, and Kd variables to optimize
the control performance of the system. )e control block
diagram is shown in Figure 2.

)e RABC algorithm optimizes the PID parameters by
taking the error on the system as the evaluation function of
the RABC, i.e., the fitness function input, calculating the
value of the fitness function, and then adjusting the three
PID parameters according to the fitness of the function to
make the control performance of the system optimal.

)e selection of the objective function is an important
process. To achieve the optimal comprehensive performance
of the whole system, we need to use some indicators that can
reflect the comprehensive performance. At this stage, the
common comprehensive performance evaluation criteria are
mainly based on the connection between the deviation of the
system e (t)� r (t)− y (t) and time t. )ere are four main
comprehensive performance evaluation criteria: integral of
squared error (ISE), integral of time-weighted squared error
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(ITSE), integral of absolute error (IAE), integrated time
absolute error (ITAE) [27].

Integrated time absolute error (ITAE), which integrates
the speed, stability, and accuracy of the system, is widely
used to optimize the comprehensive performance index of
the PID controller. ITAE can be expressed as

ITAE � 􏽚
∞

0
t|e(t)|dt. (6)

To prevent the control from being too large, the weighted
integrated time absolute error (WITAE) is proposed. )e
ITAE performance index is used as the minimum adaptation
function for parameter selection, and the squared term of the
control input is added to the objective function. WITAE can
be expressed as

WITAE � 􏽚
t

0
J1t|e(t)| + J2tu(t)

2
􏽨 􏽩dt, (7)

where J1, J2 are the weights and WITAE is the adaptation
value. Once the overshoot is generated and the penalty
function is applied [28], equation (8) is used as the per-
formance evaluation criteria.

WITAE � 􏽚
t

0
J1t|e(t)| + J2tu(t)

2
+ J3|e(t)|􏽨 􏽩dt, (8)

where J3 is the weight value, J3≫ J1. Usually, J1 � 0.999,
J2 � 0.001, and J3 �100. )e fitness function is expressed as

fiti �

1
1 + WITAE

, WITAE≥ 0,

1 +|WITAE|, WITAE< 0.

⎧⎪⎪⎨

⎪⎪⎩
(9)

)e higher the value of fiti is, the higher the probability
that the food source will be selected for search. )e RABC

algorithm optimizes the PID controller parameters flow as
shown in Figure 3.

3. Three Typical Models

3.1. DC Motor Modeling. )e motor circuit structure is
shown in Figure 4. )e air-gap flux is constant, and the
control of the motor is realized by adjusting the voltage of
the armature circuit, to realize the regulation of the motor
speed. For such a motor object, some of its parameter
characteristics such as torque constant and viscous friction
coefficient are not available, so it can be regarded as a black
box in modeling, and the modeling can be completed by
using input and output data and using system identification.

First, determine the object model structure, and the air-
gap flux is known, so its electromagnetic torque Ti is pro-
portional to the armature current ia:

Ti � Kiia, (10)

where Ki is the torque constant of the motor.
)e armature circuit voltage balance equation can be

expressed as

ua � Raia + La

dia

dt
+ ea, (11)

where Ra and La are the resistance and inductance of the
armature circuit, respectively.

)e relationship between the motor’s counter-electro-
motive force ea and its angular velocity ω is as follows:

ea � Keω, (12)

where Ke is the counter-electromotive force constant. )e
equation of torque balance on the motor shaft can be
expressed as

Table 1: Benchmark function definition domain and optimal value.

Function Name Definition domain Optimal value
F1 Beale (−4.5, 4.5) 0
F2 Camel3 (−5, 5) 0
F3 Hump (−5, 5) 0
F4 Rastrigin (−5.12, 5.12) 0
F5 Goldstein (−2.2) 3
F6 Easom (−100, 100) −1

Table 2: Benchmark function experimental results.

Function ABC GABC GBABC RABC

F1 Mean
Std

0.00218509
0.00129199

0.000172577
0.000147622

0.000144142
9.31112e− 05

6.49866e − 05
2.46584e − 05

F2 Mean
Std

0.00338069
0.00235156

0.0024648
0.0025263

5.02474e− 05
1.80147e− 05

9.78549e − 06
1.96744e − 06

F3 Mean
Std

0.00130278
0.00040916

0.00134831
0.00025792

5.77273e− 05
6.32839e− 05

1.17531e − 05
4.90377e − 06

F4 Mean
Std

0.0287649
0.0374303

0.0123041
0.0081333

4.1950e− 10
4.3844e− 10

1.02564e − 11
8.64572e − 11

F5 Mean
Std

3.2728
0.337852

3.03062
0.00717374

3.0111
0.00522465

3.00295
0.00379628

F6 Mean
Std

−0.0548194
0.3775246

−0.351209
0.352833

−0.41055
0.0580604

−0.771196
0.00293816
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Ti � J
dω
dt

+ bω + TL, (13)

where J is the equivalent rotational inertia, b is the equivalent
viscous friction coefficient, and TL is the load torque. With
ua as input voltage and ω as output speed, the following
differential equation is obtained by eliminating ia, ea, and Ti:

LaJ
d2ω
dt

+ RaJ + bLa( 􏼁
dω
dt

+ KeKt + Rab( 􏼁ω

+
RaTL + LaT

Kt

� Ktua.

(14)

)e term of ((RaTL + LaT)/Kt) can be ignored without
participating in the calculation. )erefore, differential
equation (14) can be transformed into the following transfer
function (15) according to the Laplace transformation.

G(s) �
Kt

LaJs
2

+ RaJ + bLa( 􏼁s + KeKt + Rab( 􏼁
. (15)

At this point, the armature-controlled DC motor can be
viewed as an oscillating link. Usually, the inductance La in
the armature circuit is small, and if its effect is neglected,
transfer function (15) can be approximated as a first-order
transfer function, which can be expressed as follows:

G(s) �
K

Ts + 1
, (16)

where K � (Kt/(KeKt + Rab)) is the gain constant of the
motor and T � (RaJ/(KeKt + Rab)) is the time constant of
the motor.

3.2. Mathematical Model of Double Capacity Water Tank
(DCWT). )e double-volume tank is a typical second-
order time-lag system, which is schematically shown in
Figure 5.

In Figure 5, A1 and A2 represent the bottom area of the
tank, q1, q2, and q3 represent the water flow, R1 and R2
represent the resistance of the valves V1 and V2, which is
called liquid resistance of valve resistance, and Δq � (Δh/R).
According to the material balance on tank 1, there is the
following equation:

Δq1 − Δq2 � A1
dΔh1

dt
, (17)

Δq2 �
Δh1

R2
. (18)

)erefore, differential equations (17) and (18) can be
transformed into the following transfer functions (19) and
(20) according to the Laplace transformation.

ΔQ1(S) − ΔQ2(S) � A1SΔH1(S), (19)

ΔQ2(S) �
ΔH1(S)

R2
. (20)

Similarly, the differential equation and transfer function
of tank 2 can be obtained:

Δq2 − Δq3 � A2
dΔh2

dt
,

Δq2 �
Δh2

R3
,

ΔQ2(S) − ΔQ3(S) � A2SΔH2(S),

ΔQ3(S) �
ΔH2(S)

R2
.

(21)

)e transfer function of DCWT can be expressed as
follows:

Wo(S) �
ΔH2(S)

ΔQ1(S)
�

R2

A1R2S + 1( 􏼁 A2R3S + 1( 􏼁

�
K

T1S + 1( 􏼁 T2S + 1( 􏼁
,

(22)

where T1 � A1R2 is the time constant of tank 1, T2 � A2R3 is
the time constant of tank 2, and K is the amplification factor
of the dual-capacity object. If the system also has a pure
delay, transfer function (22) can be changed as follows:

Wo(S) �
ΔH2(S)

ΔQ1(S)
�

K

T1S + 1( 􏼁 T2S + 1( 􏼁
e

− τs
. (23)

Object
Function RABC

e (t)

e (t) y (t)r (t)

KP Ki Kd

+ -
PID

controller Control Object

Figure 2: PID parameter tuning block diagram of reformative artificial bee colony algorithm.
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Figure 3: )e flowchart of the reformative artificial bee colony algorithm for optimizing PID controller parameters.
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3.3. Position Control System for the Sliding Table (PCSST).
)e schematic diagram of the PCSST is shown in Figure 6. In
the figure, xi(S) is the given input signal; Ka is the given link;
yi(S) is the output signal; and B(s) is the sensor detection
link. e(s) is the error signal, which is converted to a voltage
signal to drive the servo motor after the amplification link
Kb. )e modeling process of the PCSST is explained as
follows.

3.3.1. Position Closed-Loop Model. )e schematic diagram
of the electro-hydraulic servo slide table position control
system in this study is shown in Figure 6. )ere are

photoelectric sensors installed on both sides of the x-axis
direction of the machine slide, which detect the slide
motion position in real time and use the position closed-
loop control to continuously correct the position error e (s)
to achieve zero-error position closed-loop control.
)erefore, the closed-loop position control model is
established as follows:

Ua(S) � Kb pwc(s) − pwf(s)􏽨 􏽩,

pwf(s) � Kwxh(s),
(24)

where Ua(S) is the position loop voltage; Kb is the position
amplification factor; pwc(s) represent the position loop

J b

TL

ω θ  

ua

Ra

ia

La

ea

+

-

Figure 4: Motor circuit structure diagram.

v1

v2

v3

R2

R3

h2

A2

q2

q3

R 1 q 1

h 1

A 1

Figure 5: Schematic diagram of dual-capacity water tank.
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Figure 6: Schematic diagram of the position control system of the machine tool sliding table.

8 Journal of Mathematics



initial pulses; pwf(s) represent the position loop sensor
feedback pulses; Kw is the position gain factor; and xh(s) is
the slide table movement.

3.3.2. Servomotor Model. )e servomotor drive model can
be expressed as follows:

_i

€θ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

−
r

l
−

pkλf

l

3pnλf

2J1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

ω
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

u

l

−
T

l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

where J1 is the servomotor inertia; λf is the motor
magnetic field coefficient; l is the inductance coefficient; pk
is the pole logarithm; i is the current value; θ is the ro-
tation angle; and T is the servomotor torque, and it can be
expressed as follows:

T � KTi �
3
2
Pnλfi, (26)

where KT is the torque coefficient.

3.3.3. Working Slide Drive Model. )e machine slide
completes the movement along the X-axis direction under
the ball screw thread drive, and the slide position movement
model can be simplified to a ball screw linear motion model
as follows:

xl(s) � iptθl �
Hhi

2π
θm, (27)

where xi(s) is the displacement of the table; i is the ratio of
the ball screw; Hh is the total ball screw travel; and θm is the
turning angle of the screw.

3.3.4. Closed-Loop Total Transfer Model of Table Position.
From the above three models, closed-loop series connection
to form the total transfer function of the electro-hydraulic
position closed-loop control system of the working slide of
the combined machine tool can be obtained.

G(s) �
x(s)

y(s)
�

KaKbKwKTipl

a3s
3

+ a2s
2

+ a1s
1

+ a0
. (28)

4. Simulation Validation

)e RABC balances the exploitation capability of the basic
artificial bee colony algorithm with the exploration capa-
bility. In this paper, we verify the superiority of the RABC
algorithm to optimize PID parameters by four intelligent
algorithms.

4.1. Performance Indicators of the Control System. )e per-
formance indicators of control systems are divided into
transient performance indicators and steady-state perfor-
mance indicators. Transient performance refers to the
transient behavior of the output of a control system during

Table 4: )e optimal parameters of the PID controllers of the three models.

Kp Ki Kd

RABC
DC

DCWT
PCSST

15.8565
8.456
5.9645

3.08603
5.61285
3.72379

−0.874396
0.573094
0.86088

PSO
DC

DCWT
PCSST

12.5
6.872
5.2364

2.9477
3.063
2.0749

−1.0005
0.13548
0.18095

DE
DC

DCWT
PCSST

14.56
5.465
5.22386

3.04633
2.871
1.959

−0.93457
0.15037
0.18219

GA
DC

DCWT
PCSST

13.5
4.2827
4.0379

1.462
2.84296
1.6632

−1.02
0.13236
0.14135

Table 3: Transfer function.

Model Coefficient setting Transfer function

DC K� 5
T� 6 G(s) � (5/(6s + 1))

DCWT

τ � 5
K� 10
T1 � 3
T2 � 5

G(S) � (10/(3s + 1)(5s + 1))e− 5τ

PCSST
a3 � 5, a2 � 3

a1 � 2.45, a0 � 18
KaKbKwKTipl � 16

G(s) � (16/(5s3 + 3s2 + 2.45s + 18))
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the transition process, which is the so-called transition
process in which the system is transferred from one steady
state to another under the action of an external input signal.
In control systems, the unit step response of the system is
generally used to define the indicators of the transient
performance of the system, which are usually rise time tr,
peak time tp, peak time tp, and overshoot σ %.

4.2. Simulation Verification. After simulation verification in
Matlab, three typical mathematical model transfer functions
are shown in Table 3.

To verify the optimization performance of the RABC
algorithm, the comparison with three intelligent algorithms
PSO, DE, and GA is verified. After the simulation verifi-
cation in Matlab, the optimal parameter setting of each
algorithm is obtained. )e parameters of each algorithm
were set as follows: PSO algorithm C1 �C2 � 2, initial value
of W is 0.9, Wmax � 0.9, Wmin � 0.4, Vmax � 1, Vmin � −1,
population size SN� 50, and iterations� 50. DE algorithm
crossover probability Pcr� 0.8, scaling factor F� 0.85,
population size SN� 50, and iterations� 50. GA algorithm
crossover probability Pc� 0.7, variation probability
Pm� 0.3, population size SN� 50, iterations� 50. RABC
algorithm population size SN is set to 50, limit number of
iterations is 50, and iteration number is set to 50.

)e simulation time for DC and PCSST is set to 1 s. )e
simulation time for DCWT is set to 1000 s, since DCWT is a
time-delay system. )e experimental results are shown in
Table 4.

From the unit step response curve in Figure 7, it can be
seen that the RABC algorithm has no overshoot amount in
the dual-capacity tank system, and the rise time, regulation
time, and peak time are the shortest. )e RABC algorithm
has almost no overshoot in the other two systems, and the
rise time, regulation time, and peak time are also the
shortest. )is indicates that the RABC algorithm optimizes

the PID controller parameters best. From the unit step
response convergence curve in Figure 7, it can be seen that
the RABC algorithm has the fastest convergence speed and
the highest convergence accuracy among the three systems.
)is also proves that the RABC algorithm optimizes the PID
controller parameters best.

From Table 5, it can be clearly seen that the adaptation
values obtained by the RABC algorithm in optimizing the
PID controller parameters are smaller than those of the
other three optimization algorithms for the DC motor,
dual-capacity water tank, and machine tool control sys-
tems. )is also fully illustrates that the RABC algorithm is
more accurate than the other three intelligent algorithms.
From Table 5, it can be also seen that the PID controller of
the dual-capacity water tank system optimized by the
RABC algorithm has a fast response, no overshoot, and
short regulation time and can enter the steady-state zone
quickly, which reflects a better control effect. )e PID
controller of the other two systems optimized by the RABC
algorithm has almost no overshoot, and the rise time,
regulation time, and peak time are also the shortest. In
summary, RABC algorithm-optimized PID controller has a
better control effect.

A good controller has some robustness to cope with
changes in parameters. For DC model, the parameter T is set
to 10, 15, and 20, respectively. For DCWT model, the pa-
rameter T1 is set to 5, 10, and 15, respectively. For PCSST
model, the parameter a3 is set to 15, 20, and 25, respectively.
)e simulation results are presented in Figures 8–10 and
Tables 6–8. It can be seen from Figures 8–10 that the method
still yields better results in the case of variation of model
parameters. From Tables 6–8, we can see that the RABC-PID
method still outperforms the other three methods in terms
of overshoot, rise time, regulation time, and peak time when
the parameters are changed through simulation experi-
ments, which also proves that the RABC-PID has stronger
robustness.

Table 5: Performance index.

tr tp σ % ts WITAE

RABC
DC

DCWT
PCSST

0.114
28

0.043

0.176
10

0.074

0.038882
0

0.089273

0.134
32

0.052

77.28
20.48
30.28

PSO
DC

DCWT
PCSST

0.124
60

0.095

0.241
100
0.103

0.049552
3.1078
1.9173

0.157
123
0.117

82.04
38.64
55.95

DE
DC

DCWT
PCSST

0.116
65

0.096

0.183
115
0.164

0.075293
1.1421
1.7873

0.138
82

0.118

78.05
37.38
56.65

GA
DC

DCWT
PCSST

0.127
68

0.126

0.293
116
0.305

0.082143
1.5401
0.15743

0.166
84
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Figure 8: Unit step response curve and convergence curve when the parameters T�10, T1 � 5, and a3 � 15.
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Figure 9: Unit step response curve and convergence curve when the parameters T�15, T1 � 10, and a3 � 20.
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Figure 10: Unit step response curve and convergence curve when the parameters T� 20, T1 � 15, and a3 � 25.

14 Journal of Mathematics



5. Conclusions

In this paper, we propose an RABC algorithm to optimize
the PID controller, to address the defects of the traditional
ABC algorithm that the following bees follow the employed
bees with too much randomness and the bee colony is not
easy to approach the optimal food source, resulting in slow
convergence and low accuracy, to increase the probability of
following the employed bees that have a higher quality food
source, and to introduce the global optimal bees to lead the
other bees to move to a better food source. )e RABC al-
gorithm can quickly obtain the optimized value of the theory
and improve the convergence speed and convergence

accuracy. )e PID controller optimized by the RABC al-
gorithm has the characteristics of no overshoot and fast
response and has a better control effect.
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Mann iteration is weakly convergent in infinite dimensional spaces. We, in this paper, use the nearest point projection to force the
strong convergence of a Mann-based iteration for nonexpansive and monotone operators. A strong convergence theorem of
common elements is obtained in an infinite dimensional Hilbert space. No compact conditions are needed.

1. Introduction: Preliminaries

In the real world, there are a lot of nonlinear phenomena,
which can be modelled into variational inequalities and
variational inclusions, such as signal processing, image re-
covery, and machine learning; see, e.g., [1–7] and the ref-
erences therein. Fixed point methods are powerful and
popular for dealing various nonlinear operator equations
and inequalities in abstract spaces, in particular, for varia-
tional inequalities and variational inclusions. Recently,
various efficient fixed point methods have been introduced
and investigated; see, e.g., [8–13] and the references therein.
Let T be a nonlinear operator on a Hilbert space H, which is
endowed with inner product 〈·, ·〉 and induced norm ‖ · ‖.
(e fixed point set of T is presented by Fix(T). Recall that T

is said to be contractive iff there is a real number a ∈ (0, 1)

such that

‖Tx − Ty‖≤ a‖x − y‖, ∀x, y ∈ H. (1)

Recall that T is said to be nonexpansive iff

‖Tx − Ty‖≤ ‖x − y‖, ∀x, y ∈ H. (2)

Recall that T is said to be firmly nonexpansive iff

‖Tx − Ty‖
2 ≤ 〈x − y, Tx − Ty〉, ∀x, y ∈ H. (3)

It is clear that the class of firmly nonexpansive mappings
is a special class of nonexpansive mappings. One knows the
projection operator (see below) is firmly nonexpansive. (e
class of nonexpansive operators is significant in various
nonlinear equations and mathematical programming
computation. It also has wide real applications in applied
and industrial fields. For various iterative methods, Mann
iteration is popular for dealing with fixed points of non-
expansive operators. It reads

xn+1 � 1 − αn( 􏼁Txn + αnxn, (4)

where αn􏼈 􏼉 is a real number sequence in the interval (0, 1).
However, the Mann iteration is weakly convergent only in
infinite dimensional spaces; see, e.g., [14] and the references
therein. To force the strong convergence without possible
compact assumptions, various regularized methods have
been investigated in Hilbert spaces and Banach spaces re-
cently; see, e.g., [15–19] and the references therein. One of
the efficient regularized methods is the Halpern iteration,
which reads

xn+1 � 1 − αn( 􏼁Txn + αnx, (5)

where αn􏼈 􏼉 is a real number sequence in the interval (0, 1)

and x is a fixed anchor. With some conditions on αn􏼈 􏼉, it was
proved that xn􏼈 􏼉 converges to x, which is a special fixed point
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of T, that is, the nearest point in Fix(T) to x. Halpern [20]
pointed out that conditions (c1) αn⟶ 0 as n⟶∞ and
(c2) 􏽐

∞
n�1 αn �∞ are necessary if the Halpern iteration

scheme converges in norm. In view of (c2), the Halpern
iteration may not be a fast iteration. Recently, a number of
researchers investigated the problem of removing (c2) with
the aid of projections; see, e.g., [21–24] and the references
therein. In 2000, Moudafi [25] further proposed the viscosity
approximation iteration, which reads as follows:

xn+1 � 1 − αn( 􏼁Txn + αnSxn, (6)

where S is a contraction. (is approximation method, which
improves the property of the class of nonexpansive mappings,
is popular from the viewpoint of variational inequalities. In-
deed, the fixed point also solves a monotone variational in-
equality with S. Another popular regularized method is the
hybrid projection method, which was considered by Nakajo
and Takahashi [18] for fixed points of nonexpansive mappings
first. Indeed, they studied the following algorithm:

x0 ∈ C,

yn � 1 − αn( 􏼁Txn + αnxn,

Qn � x ∈ C: 〈xn − x, xn − x0〉 ≤ 0􏼈 􏼉,

Cn � x ∈ C: x − yn

����
����≤ x − xn

����
����􏽮 􏽯,

xn+1 � ProjQn ∩Cn
x0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where C is a closed, convex, and nonempty subset of H and
ProjQn∩Cn

is the nearest point projection onto the inter-
section set. (ey obtained a strong convergence theorem for
nonexpansive mappings in a real Hilbert spaces without
compact assumption on T. For more general nonlinear
mappings though the projection-based method, we refer to
[26–30] and the references therein.

Let C be a convex and closed subset of a real Hilbert
space H. From now on, ProjC is borrowed to denote the
nearest projection onto subset C, i.e.,
ProjC(x) ≔ argmin ‖x − y‖, y ∈ C􏼈 􏼉. Let A be a nonlinear
mapping on H. Recall that A is said to be

(1) Strongly monotone iff there exists a positive constant
ξ such that 〈Ax − Ay, x − y〉≥ ξ‖x − y‖2, ∀x, y ∈ H

(2) Monotone iff 〈Ax − Ay, x − y〉≥ 0, ∀x, y ∈ H

(3) Cocoercive iff there exists a positive constant
∀x, y ∈ H such that 〈Ax − Ay, x − y〉≥ ξ‖Ax −

Ay‖2, ∀x, y ∈ H

Let B: H⇉H be a multivalued nonlinear mapping.
Next, we turn our attention to the class of multivalued
mappings. B is said to be a monotone mapping if and only if
for all x, y ∈ H, f ∈ By, and e ∈ Bx⇒ 〈e − f, x − x〉> 0.
(e symbol B− 1(0) is used to stand for the set of zero points
of B. Mapping B is said to be a maximally monotone
mapping iff the graph of B, Graph(B), is not contained in the
graph of any other monotone mapping properly. Let
JB
β � (I d + βB)− 1, where I d is the identity mapping and β
is a constant. (is operator is called the resolvent of B. Its
domain is denoted by Dom(B) in this paper. It is clear
B− 1(0) � Fix(JB

β ).

Consider the following variational inclusion problem,
which finds a point x ∈ C such that x ∈ (B + A)− 1(0), where
B is a multivalued maximally monotone mapping and A is a
ξ-cocoercive mapping. For the inclusion problem, splitting
methods (FB, PR, and DR) are popular for zero points of the
sum of the monotone mappings. Splitting methods were
considered by many authors for image recovery, signal
processing, and machine learning. (e FB-type splitting
method means an iterative method for which each iteration
involves only with the individual operators not the sum. In
this paper, with the condition that the solution set is
nonempty, we consider finding a θ ∈ C such that
θ ∈ F(T)∩ (B + A)− 1(0), where T is a nonexpansive map-
ping with a nonempty fixed point set, B is a multivalued
maximally monotone mapping, and A is a ξ-cocoercive
mapping. We establish a strong convergence with the aid of
hybrid projection and FB splitting in a Hilbert space. Our
strong convergence theorem requires less restriction on
parameter sequences and the operators.

To show our main findings, we also need the following
necessary tools.

(e nearest point projection operator ProjC has the
following property:

ProjCy − ProjCx
����

����
2 ≤ 〈y − x,ProjCy − ProjC(x)〉, ∀x, y ∈ H.

(8)

Lemma 1 (see [31]). Let H be a Hilbert space, and let C be a
convex, closed, and nonempty subset of H. Let T be a non-
expansive mapping on C. 'en, Fix(T) is convex and closed.

Remark 1. Let H be a Hilbert space, and let C be a convex,
closed, and nonempty subset of H. Let A: C⟶ H be a
ξ-cocoercive mapping, and let B: H⇉H be a multivalued
maximally monotone operator. (en, Fix(JB

β(I d − βA)) �

(B + A)− 1(0), where β is some constant and I d is the
identity mapping. Besides, the resolvent is firmly non-
expansive. From Lemma 1, we have that (B + A)− 1(0) is
convex and closed.

Lemma 2 (see [31]). Let H be a Hilbert space, and let C be a
convex, closed, and nonempty subset of H. Let T be a non-
expansive mapping on C. 'en, I d − T is demiclosed (let xn􏼈 􏼉

be a sequence weakly converging to x, and let
Txn − xn⟶∞ be n⟶∞. 'en, x is a fixed point of T ).

2. Main Results

Theorem 1. Assume that H is a Hilbert space and C is a
convex and closed subset in space H. Assume that A is a
single-valued ξ-cocoercive mapping from set C to space H and
B is a set-valued maximally monotone mapping from H to H.
Assume that T is a nonexpansive mapping from C to C, and
CSS(B, A, T) � (B + A)− 1(0)∩Fix(T) is nonempty. Assume
that αn􏼈 􏼉 and βn􏼈 􏼉 are positive real number sequences. Let
xn􏼈 􏼉 be a sequence in set C generated in the following iterative
process:
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x0 ∈ C,

yn � 1 − αn( 􏼁Txn + αnJ
B
βn

xn − βnAxn( 􏼁,

Qn � x ∈ C: 〈xn − x, xn − x0〉≤ 0􏼈 􏼉,

Cn � x ∈ C: x − yn

����
����≤ x − xn

����
����􏽮 􏽯,

xn+1 � ProjQn∩Cn
x0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where JB
βn

is the resolvent mapping (I d + βnB)− 1. Assume
that αn􏼈 􏼉 and βn􏼈 􏼉 satisfy the conditions (i) 1> αn ≥ α> 0 with
α being a fixed real number and (ii) 0< β≤ βn ≤ β′ < 2ξ with β
and β′ being two fixed real numbers. 'en, the sequence xn􏼈 􏼉

converges strongly to ProjCSS(A,B,T)x0.

Proof. From Lemma 1, we have that Fix(T) is convex and
closed. From Remark 1, we have that (B + A)− 1(0) is convex
and closed. Hence, CSS(B, A, T) is convex and closed. (is
shows that the metric (nearest point) projection onto the set
is well-defined.

Note that ‖x − yn‖2 ≤ ‖x − xn‖2 is equivalent to 2〈x, xn −

yn〉≤ ‖xn‖2 − ‖yn‖2. Let x and x′ be the points in Cn. (en,

2r〈x, xn − yn〉 ≤ r xn

����
����
2

− yn

����
����
2

􏼒 􏼓,

2(1 − r)〈x′, xn − yn〉 ≤ (1 − r) xn

����
����
2

− yn

����
����
2

􏼒 􏼓,

(10)

where r is a real number in (0, 1). Adding the two in-
equalities above, we have

2〈rx +(1 − r)x′, xn − yn〉 ≤ xn

����
����
2

− yn

����
����
2
, (11)

that is,

rx +(1 − r)x′ − yn

����
����≤ rx +(1 − r)x′ − xn

����
����. (12)

It shows that rx + (1 − r)x′ ∈ Cn. Cn is convex. (e
closedness of Cn is obvious. (e definition of ξ-cocoercive
mappings send us to the situation Id − βnA is a non-
expansive mapping for each n. Indeed, for any w, v ∈ C,

I d − βnA( 􏼁w − I d − βnA( 􏼁v
����

����
2

� β2n‖Aw − Av‖
2

− 2βn〈Aw − Av, w − v〉 +‖w − v‖
2

≤ βn βn − 2ξ( 􏼁‖Aw − Av‖
2

+‖w − v‖
2
.

(13)

(is indicates Id − βnA is a mapping of nonexpansive.
Observe that CSS(B, A, T) ⊂ Cn. Indeed, from the non-
expansivity of the resolvent, we have

yn − p
����

����≤ 1 − αn( 􏼁 Txn − p
����

���� + αn J
B
βn

xn − βnAxn( 􏼁 − p
�����

�����

� 1 − αn( 􏼁 Txn − Tp
����

���� + αn J
B
βn

xn − βnAxn( 􏼁 − J
B
βn

p − βnAp( 􏼁
�����

�����

≤ 1 − αn( 􏼁 xn − p
����

���� + αn Id − βnA( 􏼁xn − Id − βnA( 􏼁p
����

����

≤ xn − p
����

����, ∀p ∈ CSS(A, B, T).

(14)

So, we complete the proof CSS(A, B, T) ⊂ Cn.
On the contrary, it is obvious that Qn is convex and

closed. Next, one shows that CSS(B, A, T) ⊂ Qn ∩Cn. Bor-
rowing C0 � C, we have CSS(B, A, T) ⊂ Q0 ∩C0. Let xm be a
given vector, and CSS(B, A, T) ⊂ Qm ∩Cm for some positive
integer m. (ere is a vector xm+1 ∈ Qm ∩Cm with
xm+1 � ProjQm∩Cm

x0. (ere holds 〈x0 − xm+1, xm+1 − j〉≥ 0
for all j ∈ Qm ∩Cm. Borrowing CSS(B, A, T) ⊂ Qm ∩Cm, we
get CSS(B, A, T) ⊂ Qm+1. (us, CSS(B, A, T) ⊂ Qm+1 ∩
Cm+1. Hence, CSS(B, A, T) ⊂ Qn ∩Cn for all n.

One next observes that xn is a bounded sequence. As we
have showed that CSS(B, A, T) is convex and closed set in C,
a unique vector μ ∈ CSS(A, B, T) with μ � ProjCSS(A,B,T)x0 is
guaranteed. We have the construction of xn+1, that is,
ProjQn∩Cn

x0 � xn+1. So,

x0 − xn+1
����

����≤ x0 − ]
����

����, (15)

for each ] ∈ Qn ∩Cn. By μ ∈ CSS(A, B, T) ⊂ Qn ∩Cn, we
obtain

x0 − xn+1
����

����≤ x0 − μ
����

����, (16)

that infers xn is a bounded sequence. Our next step shows
‖xn+1 − xn‖⟶ 0 as n⟶∞. Because xn � ProjQn

x0 and
xn+1 ∈ Qn ∩Cn ⊂ Qn, one infers that

x0 − xn

����
����≤ x0 − xn+1

����
����. (17)

Borrowing the conclusion (xn is a bounded sequence),
one infers that the limit of ‖x0 − xn‖􏼈 􏼉 exists. We may
suppose that limn⟶∞‖x0 − xn‖ � d> 0. Observe

xn+1 − x0
����

����
2

− x0 − xn

����
����
2

≥ xn+1 − x0
����

����
2

− x0 − xn

����
����
2

− 2〈x0 − xn, xn − xn+1〉

� xn − x0
����

����
2

+ x0 − xn+1
����

����
2

+ 2〈xn − x0, x0 − xn+1〉

� xn − xn+1
����

����
2 ≥ 0,

(18)

thanks to 〈x0 − xn, xn − xn+1〉≥ 0 (xn+1 ∈ Qn and the
property of the metric projection). By the limit of the limit of
‖x0 − xn‖􏼈 􏼉, one infers limn⟶∞‖xn+1 − xn‖2 � 0.

Note that xn+1 is in Cn. So,

xn+1 − yn

����
����≤ xn+1 − xn

����
����. (19)
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(at indicates that xn+1 − yn⟶ 0 as n⟶∞. Fur-
thermore, xn − yn⟶ 0 as n⟶∞. Let

zn � JB
βn

(xn − βnAxn). For any p ∈ CSS(B, A, T), ξ-cocoer-
cive and resolvent operators send us to

p − zn

����
����
2

≤ J
B
βn

p − βnAp( 􏼁 − J
B
βn

xn − βnAxn( 􏼁
�����

�����
2

≤ p − βnAp( 􏼁 − xn − βnAxn( 􏼁
����

����
2

≤ p − xn

����
����
2

− 2ξ − βn( 􏼁βn Ap − Axn

����
����
2
.

(20)

So,

p − yn

����
����
2

≤ 1 − αn( 􏼁 Txn − p
����

����
2

+ αn zn − p
����

����
2

≤ 1 − αn( 􏼁 Txn − Tp
����

����
2

+ αn p − xn

����
����
2

− 2ξ − βn( 􏼁βn Ap − Axn

����
����
2

􏼒 􏼓

≤ p − xn

����
����
2

− αn 2ξ − βn( 􏼁βn Ap − Axn

����
����
2
.

(21)

(at is,

αn 2ξ − βn( 􏼁βn Ap − Axn

����
����
2 ≤ yn − xn

����
���� p − xn

����
���� + p − yn

����
����􏼐 􏼑.

(22)

By the fact that ‖yn − xn‖⟶ 0 as n⟶∞, we have
Axn − Ap⟶ 0 as n⟶∞. By the firm nonexpansivitity
of the resolvent operator, we also have

p − z
2
n

����
����

≤ 〈p − zn, p − βnAp( 􏼁 − xn − βnAxn( 􏼁〉

�
1
2

p − xn

����
����
2

+ p − zn

����
����
2

− xn − zn − βn Ap − Axn( 􏼁
����

����
2

􏼒 􏼓

≤
1
2

p − xn

����
����
2

+ p − zn

����
����
2

− xn − zn

����
����
2

− β2n Ap − Axn

����
����
2

+ 2βn xn − zn

����
���� Ap − Axn

����
����􏼒 􏼓

≤
1
2

p − xn

����
����
2

+ p − zn

����
����
2

− xn − zn

����
����
2

+ 2βn xn − zn

����
���� Ap − Axn

����
����􏼒 􏼓,

(23)

which holds that

p − zn

����
����
2 ≤ p − xn

����
����
2

− xn − zn

����
����
2

+ 2βn xn − zn

����
���� Ap − Axn

����
����,

p − yn

����
����
2 ≤ 1 − αn( 􏼁 Txn − Tp

����
����
2

+ αn J
B
βn

xn − βnAxn( 􏼁 − p
�����

�����
2

≤ 1 − αn( 􏼁 xn − p
����

����
2

+ αn zn − p
����

����
2

≤ xn − p
����

����
2

− αn xn − zn

����
����
2

+ 2βnαn xn − zn

����
���� Ap − Axn

����
����.

(24)
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So, αn‖xn − zn‖2 ≤ ‖xn − yn‖C + 2βnαn‖xn − zn‖‖Ap −

Axn‖, where C is some constant. By the requirement on the
control parameter and the result that Ap − Axn⟶∞ as
n⟶∞ and xn − zn⟶∞ as n⟶∞. With a simple
calculation, we have xn − Txn⟶∞ as n⟶∞. We have
the fact that (Id − βnA)xn ∈ (Id + βnB)zn. It holds

xn − zn

βn

− Axn ∈ Bzn. (25)

By the assumption that B is maximally monotone,

〈
xn − zn

βn

− Axn − u, zn − v〉 ≥ 0, (26)

for any u ∈ Bv. By the result that xn􏼈 􏼉 is a bounded sequence,
there is a subsequence xnm

􏽮 􏽯 converges to θ weakly. (e
ξ-cocoercive mappings yield Axnm

⟶ Aθ. It holds 〈− Aθ −

u, θ − v〉≥ 0. It shows 0 ∈ (B + A)(θ). Note that Id − T is
demiclosed (Lemma 2). One asserts θ ∈ Fix(T). One next
shows that θ � ProjCSS(B,A,T)x0 and xn converges to it
strongly. Set x � ProjCSS(B,A,T)x0. Since the functional ‖ · ‖ is
weakly lower semicontinuous, one has

x − x0
����

����≤ θ − x0
����

����≤ liminf
m⟶∞

x0 − xnm

�����

�����≤ limsup
m⟶∞

x0 − xnm

�����

�����≤ x − x0
����

����. (27)

One gets ‖x − x0‖ � limm⟶∞‖x0 − xnm
‖ � ‖θ − x0‖.

Since the framework is a Hilbert space, one gets xn⟶ θ as
n⟶∞. (is finishes this theorem. □

Let

zf(x) � z ∈ H: f(x) +〈y − x, z〉≤f(y),∀y ∈ H􏼈 􏼉, ∀, x ∈ H, (28)

where f: H⟶ (− ∞,∞] is a proper, convex, and lower
semicontinuous function. Rockfellar [32] proved that zf is a
multivalued maximally monotone operator. Let C be a
closed, convex, and nonempty subset of H and iC be the
indicator function of C, that is,

iCx �
0, x ∈ C,

∞, x ∉ C.
􏼨 (29)

Furthermore, we define the normal cone NC(v) of C at v

as follows:

NCv � z ∈ H: 〈z, y − v〉≤ 0,∀y ∈ H􏼈 􏼉, (30)

for any v ∈ C. (en, iC: H⟶ (− ∞,∞] is proper, convex,
and lower semicontinuous on H. ziC is a maximally
monotone operator. Let Resλx � (Id + λ ziC)− 1x. So,
ziCx � NCx and x ∈ C; we obtain

v � J
ziC
λ x⟺ v � ProjCx, (31)

where Proj
ziC
C is the metric projection onto C. (is yields

x ∈ (A + ziC)− 1(0)⟺x ∈ VI(A, C), where VI(A, C) de-
notes the classical variational inequality, that is, find a point
x ∈ C such that 〈Ax, y − x〉≥ 0 for all y ∈ C.

Corollary 1. Assume that H is a Hilbert space and C is a
convex and closed subset in space H. Assume that A is a
single-valued ξ-cocoercive mapping from set C to space H.
Assume that T is a nonexpansive mapping from C to C and
VI(A, C)∩ Fix(T) is nonempty. Assume that αn􏼈 􏼉 and βn􏼈 􏼉

are positive real number sequences. Let xn􏼈 􏼉 be a sequence
in set C generated in the following iterative process:

x0 ∈ C,

yn � 1 − αn( 􏼁Txn + αnProjC xn − βnAxn( 􏼁,

Qn � x ∈ C: 〈xn − x, xn − x0〉 ≤ 0􏼈 􏼉,

Cn � x ∈ C: x − yn

����
����≤ x − xn

����
����􏽮 􏽯,

xn+1 � ProjQn ∩Cn
x0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Assume that αn􏼈 􏼉 and βn􏼈 􏼉 satisfy the conditions (i)
1> αn ≥ α> 0 with α being a fixed real number and (ii)
0< β≤ βn ≤ β′ < 2ξ with β and β′ being two fixed real
numbers. (en, the sequence xn􏼈 􏼉 converges strongly to
ProjVI(A,C)∩Fix(T)x0.
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In this paper, we survey a common problem of the fixed point problem and the quasimonotone variational inequality problem in
Hilbert spaces. We suggest an iterative algorithm for finding a common element of the solution of a quasimonotone variational
inequality and the fixed point of a pseudocontractive operator. Convergence theorems are shown under some mild conditions.
Several corollaries are also obtained.

1. Introduction

Let H be a real Hilbert space with an inner product ·, ·〈 〉 and
an induced norm ‖ · ‖. Let C be a nonempty closed and
convex subset of H. Let f: C⟶ H be a nonlinear operator.
In this paper, our work is closely related to a classical
variational inequality of finding a point x† ∈ C such that

f x
†

􏼐 􏼑, x − x
†

􏽄 􏽅≥ 0, ∀x ∈ C. (1)

We use Sol(C, f) to denote the solution set of (1).
It is well known that variational inequality problems

provide a general mathematical framework for a large
number of problems arising in optimization [1–8]. For
example, constrained optimization problems such as LP and
NLP are special cases of variational inequalities, and systems
of equations and complementarity problems can be cast as
variational inequalities. /us, variational inequality prob-
lems have many applications, including those in trans-
portation networks [9], signal processing [10, 11], regression
analysis [12], equilibrium problems [13, 14], fixed point

problems [15–19], and complementarity problems [1, 20].
/ere are numerous iterative algorithms for solving varia-
tional inequalities and related problems, (see for examples
[21–31]).

Let φ: C⟶ R be a convex function. Letting
f(x) � ∇φ(x), the variational inequality (1) is equivalent to
the following minimization problem:

min
x∈C

φ(x), (2)

which implies that we can use the following projection-
gradient algorithm [32–35] to solve variational inequality
(1), i.e., an iterative sequence un􏼈 􏼉 generated by the recursive
form:

un+1 � projC un − ςnf un( 􏼁􏼂 􏼃, (3)

where ςn > 0 is the step size, and projC: H⟶ C is the
metric projection.

/e sequence un􏼈 􏼉 generated by the projection-gradient
algorithm is the convergent provided. f is strongly (pseudo)
monotone (see [25, 36]), or f is inverse strongly monotone
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(see [10, 35]). However, if f is plain monotone, then the
sequence un􏼈 􏼉 generated by (3) does not necessarily con-
verge. To overcome this flaw, many iterative methods have
been proposed, such as the proximal point method [37, 38],
Korpelevich’s extragradient method [39–41] and its variant
forms [42–44], the subgradient extragradient method
[45, 46], and Tseng’s method [47]. Especially, Bot et al. [48]
suggested the following Tseng-type forward-backward-for-
ward algorithm:

vn � PC un − λf un( 􏼁( 􏼁,

un+1 � μk vn + λ f un( 􏼁 − f vn( 􏼁( 􏼁( + 1 − μk( 􏼁un, ∀n≥ 0.
􏼨

(4)

Bot et al. [48] proved that the sequence un􏼈 􏼉 generated by (4)
converges weakly to an element in Sol (C, f) provided f is
pseudomonotone and sequentially weakly continuous.

Let Sold(C, f) be the solution set of the dual variational
inequality of (1), that is,

Sold(C, f) ≔ u ∈ C| f(x), x − u􏼊 􏼋≥ 0, ∀x ∈ C􏼈 􏼉. (5)

where Sold(C, f) is the closed convex. If C is convex and f is
continuous, then Sold(C, f) ⊂ Sol(C, f).

To show the convergence of the sequence un􏼈 􏼉, a
common condition Sol(C, f) ⊂ Sold(C, f) has been added,
that is,

f(x), x − u􏼊 􏼋≥ 0, ∀u ∈ Sol(C, f) and x ∈ C, (6)

which is a direct consequence of the pseudomonotonicity of
f. But this conclusion (that is, Sol(C, f) ⊂ Sold(C, f)) is
false, if f is quasimonotone.

/e main purpose of this paper is to introduce a self-
adaptive forward-backward-forward algorithm to solve
quasimonotone variational inequalities (1) and the fixed
point problem of pseudocontractive operators. /e algo-
rithm is designed such that the step-sizes are dynamically
chosen and its convergence is guaranteed without prior
knowledge of the Lipschitz constant of f. We prove that the
proposed algorithm converges weakly to a common element
of the solution of a quasimonotone variational inequality
and the fixed point of a pseudocontractive operator under
some additional conditions.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T: C⟶ C be a nonlinear operator. Fix(T) is
used to denote the set of fixed points of T, i.e.,
Fix(T): � x ∈ C|x � Tx{ }. “ ⇀ ” and “ ⟶ ” is used to
denote weak convergence and strong convergence, respec-
tively. Let un􏼈 􏼉 be a sequence in H. ωw(un) is used to denote
the set of all weak cluster points of un􏼈 􏼉, i.e.,
ωw(un) � u†: ∃ uni

􏽮 􏽯 ⊂ un􏼈 􏼉 such that uni
⇀u†(i⟶∞)􏽮 􏽯.

Let f: C⟶ H be a nonlinear operator.We recall thatf

is said to be

(i) pseudomonotone if

f x
†

􏼐 􏼑, x − x
†

􏽄 􏽅≥ 0 implies f(x), x − x
†

􏽄 􏽅≥ 0,

∀x, x
† ∈ C

(7)

(ii) quasimonotone if

f x
†

􏼐 􏼑, x − x
†

􏽄 􏽅> 0 implies f(x), x − x
†

􏽄 􏽅≥ 0,

∀x, x
† ∈ C

(8)

(iii) L-Lipschitz continuous if there exists some constant
L> 0 such that

f(x) − f x
†

􏼐 􏼑
�����

�����≤L x − x
†����
����, for allx, x

† ∈ C (9)

(iv) sequently weakly continuous if un⇀􏽥x implies that
f(un)⇀f(􏽥x).

We recall that an operator T: C⟶ C is said to be
pseudocontractive if

T(x) − T x
†

􏼐 􏼑
�����

�����
2
≤ x − x

†����
����
2

+ (I − T)x − (I − T)x
†����
����
2
,

(10)

for all x, x† ∈ C.
For fixed x ∈ H, there exists a unique x† ∈ C satisfying

‖x − x†‖ � inf ‖x − 􏽥x‖: 􏽥x ∈ C{ }. x† is denoted by projC[x].
/e projection projC has the following basic property: for
given x ∈ H,

x − projC[x], y − projC[x]􏼊 􏼋≤ 0, ∀y ∈ C. (11)

Applying this characteristic inequality, we have the
following equivalence relation:

x
† ∈ Sol(f, C)⇔x

†
� projC x

†
− ςf x

†
􏼐 􏼑􏽨 􏽩, ∀ς> 0. (12)

In a Hilbert space H, we have

ζu +(1 − ζ)u
†����
����
2

� ζ‖u‖
2

+(1 − ζ) u
†����
����
2

− ζ(1 − ζ) u − u
†����
����
2
,

(13)

∀u, u† ∈ H and ∀ζ ∈ [0, 1].

Lemma 1 (see [44]). LetC be a nonempty, convex, and closed
subset of a Hilbert space H. We assume that T: C⟶ C is an
L-Lipschitz pseudocontractive operator. =en, for all 􏽥u ∈ C

and u† ∈ Fix(T), we have

u
†

− T[(1 − ϖ)􏽥u + ϖT(􏽥u)]
����

����
2
≤ 􏽥u − u

†����
����
2

+(1 − ϖ)‖􏽥u − T[(1 − ϖ)􏽥u + ϖT(􏽥u)]‖
2
,

(14)

where 0<ϖ< 1/
�����
1 + L2

√
+ 1.

Lemma 2 (see [14]). Let C be a nonempty, convex, and closed
subset of a Hilbert space H. Let T: C⟶ C be a continuous
pseudocontractive operator. =en,

(i) Fix(T) ⊂ C is closed and convex
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(ii) T is a demiclosedness, i.e., un⇀􏽥z and T(un)⟶ z†

imply that T(􏽥z) � z†

3. Main Results

In this section, we introduce our main results. Let C be a
nonempty closed convex subset of a real Hilbert spaceH. We
assume that the following conditions are satisfied:

(C1): the operator f: H⟶ H is quasimonotone;
κ-Lipschitz continuous and satisfies the following
property (P):

H ∈ xn⇀x
† ∈ H as n⟶∞

liminf
n⟶+∞

f xn( 􏼁
����

���� � 0

⎫⎪⎬

⎪⎭
imply thatf x

†
􏼐 􏼑 � 0

(15)

(C2): the operator T: H⟶ H is pseudocontractive
and L-Lipschitz continuous
(C3): Γ: � Sold(C, f)∩ Fix(T)≠∅ and
x ∈ C: f(x) � 0􏼈 􏼉∖Sold(C, f) is a finite set

Remark 1. If the operator f is sequentially weakly con-
tinuous, then f satisfies the property (P).

Next, we present an iterative algorithm for finding a
common point in Γ. Let ζn􏼈 􏼉, αn􏼈 􏼉, and ϖn􏼈 􏼉 be three se-
quences in (0, 1). Let β ∈ (0, 1) and ς0 > 0 be two constants.

Algorithm 1. Initialization: let u0 ∈ H be an initial guess. We
set n � 0.

Step 1. Let the n-th iterate un be given. We compute

􏽢vn � 1 − ϖn( 􏼁un + ϖnT un( 􏼁

vn � 1 − αn( 􏼁un + αnT 􏽢vn( 􏼁
.􏼨 (16)

Step 2. Let the n-th step size ςn be known. We compute

wn � projC vn − ςnf vn( 􏼁􏼂 􏼃, (17)

and

un+1 � 1 − ζn( 􏼁vn + ζnwn + ζnςn f vn( 􏼁 − f wn( 􏼁􏼂 􏼃. (18)

Step 3. We update the n + 1-th step size by the fol-
lowing form:

ςn+1 �

min ςn,
β wn − vn

����
����

f wn( 􏼁 − f vn( 􏼁
����

����
􏼨 􏼩, if f wn( 􏼁≠f vn( 􏼁,

ςn, else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

We set n: � n + 1 and return to step 1.

Based on Algorithm 1, we have the following remark.

Remark 2. (i) By (17), if at some step
wn � vn � projC[vn − ςnf(vn)], then vn ∈ Sol(C, f). (ii) By
(19), ςn+1 ≤ ςn and ςn ≥min ς0, β/κ􏼈 􏼉 for all n, so limn⟶∞ςn �

ς† exists, and ς† ≥min ς0, β/κ􏼈 􏼉> 0.

Next, we prove the convergence of Algorithm 1.

Theorem 1. Suppose that 0< α < αn < α<ϖn <
ϖ< 1/

�����
1 + L2

√
+ 1(∀n≥ 0) and 0< liminfn⟶∞ζn ≤

limsupn⟶∞ζn < 1. =en, the sequence un􏼈 􏼉 generated by
Algorithm 1 converges weakly to some point in Γ.

Proof. Let 􏽥x ∈ Γ. Since 􏽥x ∈ Sold(C, f) ⊂ C, from (11) and
(17), we have

wn − vn + ςnf vn( 􏼁, wn − 􏽥x􏼊 􏼋≤ 0, (20)

which yields that

wn − vn, wn − 􏽥x􏼊 􏼋≤ ςn f vn( 􏼁, 􏽥x − wn􏼊 􏼋. (21)

Noting that wn ∈ C and 􏽥x ∈ Sold(C, f), we have

f wn( 􏼁, 􏽥x − wn􏼊 􏼋≤ 0. (22)

Combining (21) and (23), we obtain

wn − vn, wn − 􏽥x􏼊 􏼋 + ςn f vn( 􏼁 − f wn( 􏼁, wn − 􏽥x􏼊 􏼋≤ 0. (23)

In Hilbert space H, we have
x − y, x − z􏼊 􏼋 � 1/2(‖x − y‖2 + ‖x − z‖2 − ‖y − z‖2) for all

x, y, z ∈ H. Setting x � wn, y � vn, and z � 􏽥x, we deduce
wn − vn, wn − 􏽥x􏼊 􏼋 � 1/2(‖wn − vn‖2 + ‖wn − 􏽥x‖2− ‖vn − 􏽥x‖2).
/is together with (1) implies that

1
2

wn − vn

����
����
2

+ wn − 􏽥x
����

����
2

− vn − 􏽥x
����

����
2

􏼒 􏼓

+ ςn f vn( 􏼁 − f wn( 􏼁, wn − 􏽥x􏼊 􏼋≤ 0,

(24)

and it follows that

wn − 􏽥x
����

����
2 ≤ vn − 􏽥x

����
����
2

− 2ςn f vn( 􏼁 − f wn( 􏼁, wn − 􏽥x􏼊 􏼋

− wn − vn

����
����
2
.

(25)

Based on (18), we have
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un+1 − 􏽥x
����

����
2

� 1 − ζn( 􏼁 vn − 􏽥x( 􏼁 + ζn wn − 􏽥x( 􏼁 + ζnςn f vn( 􏼁 − f wn( 􏼁􏼂 􏼃
����

����
2

� 1 − ζn( 􏼁 vn − 􏽥x( 􏼁 + ζn wn − 􏽥x( 􏼁
����

����
2

+ ζ2nς
2
n f vn( 􏼁 − f wn( 􏼁
����

����
2

+ 2ζn 1 − ζn( 􏼁ςn vn − 􏽥x, f vn( 􏼁 − f wn( 􏼁􏼊 􏼋

+ 2ζ2nςn wn − 􏽥x, f vn( 􏼁 − f wn( 􏼁􏼊 􏼋.

(26)

Using (13) and from (26), we deduce

un+1 − 􏽥x
����

����
2

� 1 − ζn( 􏼁 vn − 􏽥x
����

���� + ζn wn − 􏽥x
����

����
2

− ζn 1 − ζn( 􏼁 vn − wn

����
����
2

+ ζ2nς
2
n f vn( 􏼁 − f wn( 􏼁
����

����
2

+ 2ζ2nςn wn − 􏽥x, f vn( 􏼁 − f wn( 􏼁􏼊 􏼋

+ 2ζn 1 − ζn( 􏼁ςn vn − 􏽥x, f vn( 􏼁 − f wn( 􏼁􏼊 􏼋.

(27)

According to (25) and (27), we obtain

un+1 − 􏽥x
����

����
2 ≤ vn − 􏽥x

����
���� − ζn 2 − ζn( 􏼁 vn − wn

����
����
2

+ ζ2nς
2
n f vn( 􏼁 − f wn( 􏼁
����

����
2

+ 2ζn 1 − ζn( 􏼁ςn vn − wn, f vn( 􏼁 − f wn( 􏼁􏼊 􏼋

≤ vn − 􏽥x
����

���� − ζn 2 − ζn( 􏼁 vn − wn

����
����
2

+ ζ2nς
2
n f vn( 􏼁 − f wn( 􏼁
����

����
2

+ 2ζn 1 − ζn( 􏼁ςn vn − wn

����
���� f vn( 􏼁 − f wn( 􏼁
����

����.

(28)

/anks to (19), ‖f(wn) − f(vn)‖≤ β‖wn − vn‖/ςn+1. /is
together with (28) implies that

un+1 − 􏽥x
����

����
2 ≤ vn − 􏽥x

����
���� − ζn 2 − ζn( 􏼁 vn − wn

����
����
2

+ ζ2nβ
2 ς2n
ς2n+1

wn − vn

����
����
2

+ 2ζn 1 − ζn( 􏼁β
ςn

ςn+1
vn − wn

����
����
2

� vn − 􏽥x
����

����
2

− ζn 2 − ζn − ζnβ
2 ς2n
ς2n+1

− 2 1 − ζn( 􏼁β
ςn

ςn+1
􏼢 􏼣 vn − wn

����
����
2
.

(29)

It is noted that 0< liminfn⟶∞ζn ≤ limsupn⟶∞ζn < 1
and limn⟶∞ςn/ςn+1 � 1. /en, we have
liminfn⟶∞ζn[2 − ζn − ζnβ

2ς2n/ς2n+1 − 2(1 − ζn)βςn/ςn+1]> 0.
So, there exists a positive constant θ and a positive integerN
such that when n≥N,\

ζn 2 − ζn − ζnβ
2 ς2n
ς2n+1

− 2 1 − ζn( 􏼁β
ςn

ςn+1
􏼢 􏼣≥ θ. (30)

In combination with (29), we get

un+1 − 􏽥x
����

����
2 ≤ vn − 􏽥x

����
���� − θ vn − wn

����
����
2
, n≥N. (31)

By (13) and (16), we obtain

vn − 􏽥x
����

����
2

� 1 − αn( 􏼁 un − 􏽥x( 􏼁 + αn T 􏽢vn( 􏼁 − 􏽥x( 􏼁
����

����
2

� 1 − αn( 􏼁 un − 􏽥x
����

����
2

+ αn T 􏽢vn( 􏼁 − 􏽥x
����

����
2

− αn 1 − αn( 􏼁 un − T 􏽢vn( 􏼁
����

����
2
.

(32)

Using Lemma 1, we have

T 􏽢vn( 􏼁 − 􏽥x
����

����
2

� T 1 − ϖn( 􏼁un + ϖnT un( 􏼁􏼂 􏼃 − 􏽥x
����

����
2

≤ un − 􏽥x
����

����
2

+ 1 − ϖn( 􏼁 un − T 􏽢vn( 􏼁
����

����
2
.

(33)

Substituting (33) into (32), we get

vn − 􏽥x
����

����
2 ≤ un − 􏽥x

����
����
2

+ αn − ϖn( 􏼁αn un − T 􏽢vn( 􏼁
����

����
2
, (34)

which results, together with (31), that

4 Journal of Mathematics



un+1 − 􏽥x
����

����
2 ≤ un − 􏽥x

����
����
2

− ϖn − αn( 􏼁αn un − T 􏽢vn( 􏼁
����

����
2

− θ vn − wn

����
����
2
, n≥N, (35)

which implies that

ϖn − αn( 􏼁αn un − T 􏽢vn( 􏼁
����

����
2

+ θ vn − wn

����
����
2 ≤ un − 􏽥x

����
����
2

− un+1 − 􏽥x
����

����
2
, n≥N. (36)

By assumption, liminfn⟶∞(ϖn − αn)αn > 0. From (35),
we conclude that ‖un+1 − 􏽥x‖≤ ‖un − 􏽥x‖, n≥N. /erefore,
limn⟶∞‖un − 􏽥x‖ exists, and the sequence un􏼈 􏼉 is bounded.

In combination with (36), we derive

lim
n⟶∞

un − T 􏽢vn( 􏼁
����

���� � 0, (37)

lim
n⟶∞

vn − wn

����
���� � 0. (38)

By (16), vn − un � αn(T(􏽢vn) − un), it follows from (37)
that

lim
n⟶∞

vn − un

����
���� � 0. (39)

From (38) and the Lipschitz continuity of f, we have

lim
n⟶∞

f vn( 􏼁 − f wn( 􏼁
����

���� � 0. (40)

According to the boundedness of the sequence un􏼈 􏼉, we
conclude that the sequence vn􏼈 􏼉 is bounded by (34) and the
sequence wn􏼈 􏼉 is bounded because of
‖wn‖≤ ‖vn‖ + ςn‖f(vn)‖ by (17).

Since T is L-Lipschitz continuous, we have

un − T un( 􏼁
����

����≤ un − T 􏽢vn( 􏼁
����

���� + T 􏽢vn( 􏼁 − T un( 􏼁
����

����

≤ un − T 􏽢vn( 􏼁
����

���� + Lϖn un − T un( 􏼁
����

����.
(41)

It follows that

un − T un( 􏼁
����

����≤
1

1 − Lϖn

un − T 􏽢vn( 􏼁
����

����. (42)

/is together with (37) implies that

lim
n⟶∞

un − T un( 􏼁
����

���� � 0. (43)

By virtue of (18), (38), and (40), we have

lim
n⟶∞

un+1 − vn

����
���� � 0. (44)

Next, we show that ωw(un) ⊂ Γ. Selecting any
x∗ ∈ ωw(un) and letting uni

􏽮 􏽯 to be a subsequence of un􏼈 􏼉

such that uni
⇀x∗ as i⟶∞, from (38) and (39), we have

vni
⇀x∗ andwni

⇀x∗. Taking into account (43) and Lemma 2,
we obtain that x∗ ∈ Fix(T). Next, we show that
x∗ ∈ Sol(C, f). Based on (11) and
wni

� projC[vni
− ςni

f(vni
)], we receive

wni
− vni

+ ςni
f vni

􏼐 􏼑, wni
− x

†
􏽄 􏽅≤ 0, ∀x† ∈ C, (45)

which yields

1
ςni

vni
− wni

, u − wni
􏽄 􏽅 + f vni

􏼐 􏼑, wni
− vni

􏽄 􏽅

≤ f vni
􏼐 􏼑, x

†
− vni

􏽄 􏽅, ∀x† ∈ C.

(46)

Owing to (39), limi⟶∞‖vni
− wni

‖ � 0. It follows from (46)
that

liminf
i⟶∞

f vni
􏼐 􏼑, x

†
− vni

􏽄 􏽅≥ 0, ∀x† ∈ C. (47)

/ere are two possible cases: liminf i⟶+∞‖f(vni
)‖ � 0

and liminf i⟶+∞‖f(vni
)‖> 0.

If liminf i⟶+∞‖f(vni
)‖ � 0, by vni

⇀x∗ and f satisfying
(16), we obtain that f(x∗) � 0. If liminf i⟶+∞‖f(vni

)‖> 0,
then there exists an integerI> 0 satisfying f(vni

)≠ 0 for all
i≥I. By (47), we achieve

liminf
i⟶+∞

f vni
􏼐 􏼑

f vni
􏼐 􏼑

�����

�����
, x

†
− vni

􏼪 􏼫≥ 0, ∀x† ∈ C. (48)

Let ξj􏽮 􏽯 be a positive strictly decreasing sequence such
that ξj⟶ 0 as j⟶ +∞. By virtue of (48), there exists a
strictly increasing subsequence nij

􏼚 􏼛 satisfying nij
≥I and

∀j≥ 0,

f vnij
􏼒 􏼓

f vnij
􏼒 􏼓

������

������

, x
†

− vnij
􏼪 􏼫 + ξj > 0, ∀x† ∈ C, (49)

which results that

f vnij
􏼒 􏼓, x

†
− vnij

􏼜 􏼝 + ξj f vnij
􏼒 􏼓

������

������> 0, ∀x† ∈ C,∀j≥ 0.

(50)

We set 􏽥vj � f(vnij
)/‖f(vnij

)‖2 for all j≥ 0. /en,
f(vnij

), 􏽥vj􏼜 􏼝 � 1 for each j≥ 0. Owing to (50), we have

f vnij
􏼒 􏼓, x

†
+ ξj f vnij

􏼒 􏼓

������

������􏽥vj − vnij
􏼜 􏼝> 0, ∀x† ∈ C,∀j≥ 0.

(51)

Since f is quasimonotone on H, by (51), we get

f x
†

+ ξj f vnij
􏼒 􏼓

������

������􏽥vj􏼒 􏼓, x
†

+ ξj f vnij
􏼒 􏼓

������

������􏽥vj − vnij
􏼜 􏼝≥ 0,

∀x† ∈ C,∀j≥ 0.

(52)

Since limj⟶+∞ξj‖f(vnij
)‖‖􏽥vj‖ � limj⟶+∞ξj � 0 and f

is Lipschitz continuous, limj⟶∞f(x + ξj‖f(vnij
)‖ 􏽥vj) � f(x).

Letting j⟶ +∞ in (52), we deduce
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f x
†

􏼐 􏼑, x
†

− x
∗

􏽄 􏽅≥ 0, ∀x† ∈ C, (53)

which means x∗ ∈ Sold(C, f).
Next, we show that x∗ is the unique weak cluster point of

un􏼈 􏼉 in Sold(C, f). Let x ∈ Sold(C, f) be another weak
cluster point of un􏼈 􏼉. /en, there exists a sequence un􏼈 􏼉 of
un􏼈 􏼉 satisfying unj

⇀x as j⟶ +∞. We note that for all
k≥ 0,

2 un, x
∗

− x􏼊 􏼋 � un − x
����

����
2

− un − x
∗����
����
2

+ x
∗����
����
2

− ‖x‖
2
. (54)

We note that limn⟶+∞‖un − x∗‖ and limn⟶+∞‖un − x‖

exist. From (54), limn⟶+∞ un, x∗ − x􏼊 􏼋 exists. Hence,

lim
i⟶+∞

uni
, x
∗

− x􏽄 􏽅 � lim
j⟶+∞

unj
, x
∗

− x􏼜 􏼝. (55)

Since uni
⇀x∗ and unj

⇀x, from (55), we have

x
∗
, x
∗

− x􏼊 􏼋 � x, x
∗

− x􏼊 􏼋, (56)

which implies that ‖x∗ − x‖2 � 0, and hence x∗ � x.
/erefore, un􏼈 􏼉 has the unique weak cluster point in
Sold(C, f). By the condition (C3),
x ∈ C, f(x) � 0􏼈 􏼉∖Sold(C, f) is a finite set. /erefore, un􏼈 􏼉

has finite weak cluster points in Sol(C, f) denoted by
q1, q2, . . . , qm. We set N0 � 1, 2, . . . , m{ } and
] � min ‖qj − qk‖/3, j, k ∈ N0, j≠ k􏽮 􏽯. Let qj, j ∈ N0 be any
weak cluster point in Sol(C, f) and u

j
ni

􏽮 􏽯 be a subsequence of
un􏼈 􏼉 satisfying u

j
ni
⇀qj as i⟶ +∞. /en, we have

lim
i⟶+∞

u
j
ni

,
qj − qk

qj − qk

�����

�����
􏼪 􏼫 � qj,

qj − qk

qj − qk

�����

�����
􏼪 􏼫,

∀k ∈ N0 and k≠ j.

(57)

By the definition of ], we have ∀k≠ j,

qj,
qj − qk

qj − qk

�����

�����
􏼪 􏼫 �

qj − qk

�����

�����

2
+

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

> ] +
qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����
.

(58)

In the light of (57) and (58), there exists an integer intji
such that when i≥ intji ,

u
j
ni
∈ x: x,

qj − qk

qj − qk

�����

�����
􏼪 􏼫> ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

k ∈ N0 , k≠ j.

(59)

We write

Sbj � ∩
m

k�1,k≠ j
x: x,

qj − qk

qj − qk

�����

�����
􏼪 􏼫> ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(60)

Taking into account (59) and (60), we have u
j
ni
∈ Sbj

when i≥max intji , j ∈ N0􏽮 􏽯.
Now, we show that un ∈ ∪m

j�1Sbj for a large enough n. If
not, there exists a subsequence unl

􏽮 􏽯 of un􏼈 􏼉 such that
unl
∉ ∪m

j�1Sbj. By the boundedness of unl
􏽮 􏽯, there exists a

subsequence of unl
􏽮 􏽯 convergent weakly to x∗. Without the

loss of generality, we still denote the subsequence as unl
􏽮 􏽯.

According to assumptions, unl
∉ ∪ m

j�1Sbj, so unl
∉ Sbj for

any j ∈ N0. /erefore, there exists a subsequence unls
􏼚 􏼛 of

unl
􏽮 􏽯 such that when ∀s≥ 0,

unls
∉ x: x,

qj − qk

qj − qk

�����

�����
􏼪 􏼫> ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

k ∈ N0, k≠ j.

(61)

/us,

x
∗ ∉ x: x,

qj − qk

qj − qk

�����

�����
􏼪 􏼫> ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

k ∈ N0, k≠ j,

(62)

which implies that x∗ ≠ qj and j ∈ N0. /is is impossible. So,
for a large enough positive integer N1, un ∈ ∪ m

j�1Sbj when
n≥N1.

Next, we show that un􏼈 􏼉 has the unique weak cluster
point in Sol(C, f). First, there exists a positive integer
N2 ≥N1 such that ‖un+1 − un‖< ] for all n≥N2. We assume
that un􏼈 􏼉 has at least two weak cluster points in Sol(C, f).
/en, there exists 􏽢n≥N2 such that u􏽢n ∈ Sbj and u􏽢n+1 ∈ Sbk,
where j, k ∈ N0 and m≥ 2, that is,

u􏽢n ∈ Sbj � ∩
m

k�1,k≠j
x: x,

qj − qk

qj − qk

�����

�����
􏼪 􏼫> ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(63)

and

u􏽢n+1 ∈ Sbk � ∩
m

j�1,j≠k
x: x,

qk − qj

qk − qj

�����

�����
􏼪 􏼫> ] +

qk

����
����
2

− qj

�����

�����
2

2 qk − qj

�����

�����

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(64)

/erefore,

u􏽢n,
qj − qk

qj − qk

�����

�����
􏼪 􏼫> ] +

qj

�����

�����
2

− qk

����
����
2

2 qj − qk

�����

�����
, (65)

and
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u􏽢n+1,
qk − qj

qk − qj

�����

�����
􏼪 􏼫> ] +

qk

����
����
2

− qj

�����

�����
2

2 qk − qj

�����

�����
. (66)

Combining (65) and (66), we achieve

u􏽢n − u􏽢n+1,
qj − qk

qj − qk

�����

�����
􏼪 􏼫> 2]. (67)

At the same time, we have

‖u􏽢n+1 − u􏽢n‖< ]. (68)

Based on (67) and (68), we deduce

2]< u􏽢n − u􏽢n+1,
qj − qk

qj − qk

�����

�����
g􏼪 􏼫≤ u􏽢n − u􏽢n+1

����
����< ]. (69)

/is leads to a contradiction./en, un􏼈 􏼉 has the unique weak
cluster point in Sol(C, f). So, the sequence un􏼈 􏼉 has the
unique weak cluster point x∗ ∈ Γ. /erefore, the sequence
un􏼈 􏼉 converges weakly to x∗ ∈ Γ. /is completes the
proof. □

Based on Algorithm 1 and/eorem 1, we can obtain the
following algorithms and the corresponding corollaries.

Algorithm 2. Initialization: let u0 ∈ H be an initial guess. We
set n � 0.

Step 1. Let the n-th iterate un and the n-th step size ςn be
given. We compute

wn � projC un − ςnf un( 􏼁􏼂 􏼃, (70)

and

un+1 � 1 − ζn( 􏼁un + ζnwn + ζnςn f un( 􏼁 − f wn( 􏼁􏼂 􏼃. (71)

Step 2. We update the n + 1-th step size by the following
form:

ςn+1 �

min ςn,
β wn − un

����
����

f wn( 􏼁 − f un( 􏼁
����

����
􏼨 􏼩, if f wn( 􏼁≠f un( 􏼁,

ςn, else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(72)

We set n: � n + 1 and return to step 1.

Corollary 1. We assume that the operator f: H⟶ H is
quasimonotone, κ-Lipschitz continuous and satisfies the
property (P). Suppose that Sold(C, f)≠∅,
x ∈ C: f(x) � 0􏼈 􏼉∖Sold(C, f) is a finite set and
0< liminfn⟶∞ζn ≤ limsupn⟶∞ζn < 1. =en, the sequence
un􏼈 􏼉 generated by Algorithm 2 converges weakly to some point
in Sol(C, f).

Algorithm 3. Initialization: let u0 ∈ C and ς0 > 0. We set
n � 0.

Step 1. For known un, we compute

un+1 � 1 − αn( 􏼁un + αnT 1 − ϖn( 􏼁un + ϖnT un( 􏼁􏼂 􏼃. (73)

Step 2. We set n: � n + 1 and return to step 1.

Corollary 2. We assume that T: C⟶ C is a pseudocon-
tractive and L-Lipschitz continuous operator. We suppose
that Fix(T) ≠∅ and 0< α < αn < α<ϖn <ϖ< 1/

�����
1 + L2

√
+

1(∀n≥ 0). =en, the sequence un􏼈 􏼉 generated by Algorithm 3
converges weakly to some point in Fix(T).
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In this article, we introduce a new type of generalized multivalued Hardy and Roger’s type proximal contractive and proximal
cyclic contractive mappings of b-metric spaces and develop some results for the existence of best proximity point(s). Moreover, we
obtain some results for the existence and uniqueness of best proximity points for single-valued mappings. Examples are given to
explain the main results.

1. Introduction

)e metric fixed point theory plays a very fundamental role
in many fields of mathematics especially in nonlinear
analysis and some related disciplines. )e fundamental tool
of this theory is the Banach contraction principle (shortly
BCP) [1] which states that if a self-mapping T: P⟶ P of a
complete metric space (P, ϱ) with metric ϱ satisfies

ϱ Tp1, Tp2( 􏼁≤ kϱ p1, p2( 􏼁, (1)

for all p1, p2 ∈ P, and for some k ∈ [0, 1), T has a unique
fixed point, that is, there exists a point p ∈ P, such that

ϱ(p, Tp) � 0. (2)

A mapping that satisfies (1) is known as Banach con-
traction. After this remarkable result, many mathematicians
contributed for the development of fixed-point theory by
producing many results with different generalized con-
tractive mappings in complete metric spaces, for details one
can see [2–8] and the references therein. One of the im-
portant generalizations of BCP was presented by Edelstein
[9] in 1962. Later on, many mathematicians generalized
Edelstein’s result, for instance Meir and Keeler [10] in 1969

and Reich [11] in 1971. Reich’s result has been further
generalized by Hardy and Roger [12] in 1973 as follows.

Theorem 1. Let (P, ϱ) be a metric space and T: P⟶ P a
self-mapping satisfying the following conditions for all
p1, p2 ∈ P:

(1)

ϱ Tp1, Tp2( 􏼁≤ αϱ p1, Tp1( 􏼁 + βϱ p2, Tp2( 􏼁 + cϱ p1, Tp2( 􏼁

+ δϱ p2, Tp1( 􏼁 + τϱ p1, p2( 􏼁,

(3)

where α, β, c, δ, τ are nonnegative reals.
Set Ω � α + β + c + δ + τ. 2en,

(a) If P is complete and Ω< 1, then T has a unique fixed
point

(b) If (1) is modified as

(1′) for all p1 ≠p2 implies

ϱ Tp1, Tp2( 􏼁< αϱ p1, Tp1( 􏼁 + βϱ p2, Tp2( 􏼁 + cϱ p1, Tp2( 􏼁

+ δϱ p2, Tp1( 􏼁 + τϱ p1, p2( 􏼁,

(4)
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and P is compact, T is continuous, and Ω � 1; then, T has a
unique fixed point.

Nadler [13] in 1969 generalized the BCP in the context of
multivalued mappings of complete metric spaces. Later on,
Nadler’s result has been generalized by Prolla [14] in 1983.

Meanwhile, the metric space has been generalized to
b-metric space; by then, the fixed point theory has been
further generalized for single-valued and multivalued
mappings in the context of b-metric space, for instance,
Bakhtin [15] in 1989 and Czerwik [16] in 1993.

For nonself mapping, T: R⟶ S (R and S are two
nonempty sets), such that R∩T(R) � ∅ (empty set); then, it
is not possible to find the fixed point of T. )e best way to
deal with such situation is to explore a point r in R, such that

ϱ(r,Tr) � ϱ(R, S), (5)

where

ϱ(R, S) � inf
r∈R,s∈S
ϱ(r, s), (6)

and if such a point in R exists, it is called the best proximity
point of T. If R � S, then the best proximity point becomes a
fixed point. So, best proximity point theory is the proper
generalization of fixed-point theory. Fan’s result [17] in 1969
was probably the first attempt in this direction.

Later on, many mathematicians extended Fan’s result
and developed some best proximity point results. For more
details, one can see [18]. Best proximity point theory has
been further developed by using different proximal con-
tractions, for more details, one can see references [19–23].

Kirk [24] in 2003 introduced cyclic contraction and
developed some fixed points results. Later on in 2006,
Eldered and Veeramani [25] developed some best proximity
point results for cyclic contractions.

Basha in 2019 [21] introduced proximal contractive and
proximal cyclic contractive mappings and developed some
results for the existence and uniqueness of best proximity
point.

Recently, in 2021, Hiranmoy et al. [26] introduced
proximal Kannan-type and proximal cyclic Kannan-type

contractive mappings in metric spaces (compare with [21])
and developed some best proximity point results.

Motivated by the contractive mappings of Hiranmoy, we
introduce the notion of multivalued Hardy and Roger’s type
proximal and cyclic proximal contractive mappings and
develop some results for the existence of best proximity
points in b-metric space. Furthermore, we give some ex-
amples to explain the results.

2. Preliminaries

)roughout this article, R,R+, N, N1, and ℘(P) denote the
set of reals, nonnegative reals, positive integers, nonnegative
integers, and collection of nonempty subsets of P,
respectively.

Definition 2. Let P be a nonempty set and b≥ 1 a real
number. )e mapping ϱb: P × P⟶ [0,∞) is a b-metric
and (P, ϱb) is called b-metric space if ϱb satisfies the fol-
lowing axioms:

(b1) ϱb(p1, p2) � 0 if and only if p1 � p2

(b2) ϱb(p1, p2) � ϱb(p2, p1)

(b3) ϱb(p1, p2)≤ b[ϱb(p1, p3) + ϱb(p3, p2)], for all
p1, p3, p2 ∈ P.

)roughout this paper, ϱ and ϱb denote metric and
b-metric, respectively. Now, suppose that R and S are two
nonempty subsets of (P, ϱb). Define

ϱb(R, S) � inf ϱb(r, s): r ∈ R, s ∈ S􏼈 􏼉,

R0 � r ∈ R: ϱb(r, s) � ϱb(R, S) for some s ∈ S􏼈 􏼉,

S0 � s ∈ S: ϱb(r, s) � ϱb(R, S) for some r ∈ R􏼈 􏼉.

(7)

Definition 3. A b-metric space (P, ϱb) is boundedly compact
if every bounded sequence in P has a convergent subse-
quence (compare with [27]).

Definition 4 (see [26]). Let R and S be two nonempty
subsets of (P, ϱ). A mapping T: R⟶ S is said to be a
proximal Kannan-type contractive mapping if

ϱ r1,Tr3( 􏼁 � ϱ(R, S)

ϱ r2,Tr4( 􏼁 � ϱ(R, S)

r3 ≠ r4

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

implies ϱ r1, r2( 􏼁<
1
2
ϱ r1, r3( 􏼁 + ϱ r2, r4( 􏼁( 􏼁,

ϱ r1,Tr3( 􏼁 � ϱ(R, S)

ϱ r2,Tr4( 􏼁 � ϱ(R, S)

r3 � r4

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

implies ϱ r1, r2( 􏼁≤
1
2
ϱ r1, r3( 􏼁 + ϱ r2, r4( 􏼁( 􏼁,

(8)

hold for all r1, r2, r3, r4 ∈ R.
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Definition 5. Let R and S be two nonempty subsets of
(P, ϱb). )en, a mapping T: R∪ S⟶ R∪ S is said to be
cyclic if T(R) ⊂ S and T(S) ⊂ R (compare with [26]).

Definition 6 (see [26]). Let R and S be two nonempty
subsets of (P, ϱ). A cyclic mapping T: R∪ S⟶ R∪ S is said
to be a proximal cyclic Kannan-type contractive mapping if

ϱ r1,Tr3( 􏼁 � ϱ(R, S)

ϱ r2,Tr4( 􏼁 � ϱ(R, S)

ϱ r3, r4( 􏼁> ϱ(R, S)

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

implies ϱ r1, r2( 􏼁<
1
2
ϱ r1, r3( 􏼁 + ϱ r2, r4( 􏼁( 􏼁,

ϱ r1,Tr3( 􏼁 � ϱ(R, S)

ϱ r2,Tr4( 􏼁 � ϱ(R, S)

ϱ r3, r4( 􏼁 � ϱ(R, S)

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

implies ϱ r1, r2( 􏼁 � ϱ(R, S),

(9)

that hold for all r1, r2, r3, r4 ∈ R.

In the following, we introduce a compact weak proximal
pair in b-metric space.

Definition 7. Let R and S be two nonempty subsets of
(P, ϱb).)e pair (R, S) is said to be a compact weak proximal
pair if for bounded sequences (rn) in R and (sn) in S with
ϱb(rn, sn)⟶ϱb(R, S) as n⟶∞, the sequences (rn) and
(sn) have convergent subsequences in R and S, respectively
(compare with [26]).

Remark 8. Note that if R � S in above definition, then (R, R)

is a compact weak proximal pair if and only if R is boundedly
compact.

Now, we present a lemma in the context of b-metric
space (analogous to [[26], Lemma 2.2]) that will be used in
the sequel to prove our main results.

Lemma 9. Let R and S be two nonempty subsets of (P, ϱb),
such that at least one of R and S is bounded, and (R, S) is a
compact weak proximal pair. 2en, R0 ≠∅, and hence, so is
S0.

Proof. As

ϱb(R, S) � inf ϱb(r, s): r ∈ R, s ∈ S􏼈 􏼉, (10)

so for each n ∈ N, there exists rn ∈ R and sn ∈ S, such that

ϱb(R, S)≤ ϱb rn, sn( 􏼁< ϱb(R, S) +
1
n

. (11)

)erefore, the sequence (ϱb(rn, sn)) converges to
ϱb(R, S). Now, we assume that R is bounded. So, there exists
a positive real number K, such that ϱb(rn, rm)≤K for all
n, m ∈ N, so we have

ϱb sn, sm( 􏼁≤ b ϱb sn, rn( 􏼁 + ϱb rn, sm( 􏼁( 􏼁

≤ b ϱb sn, rn( 􏼁 + b ϱb rn, rm( 􏼁 + ϱb rm, sm( 􏼁( 􏼁􏼂 􏼃,

(12)

which implies

ϱb sn, sm( 􏼁< b ϱb􏼂 (R, S) + 1 + b K + ϱb(R, S) + 1( 􏼁. (13)

)erefore, (rn) and (sn) are bounded sequences. So by
compact weak proximality of the pair (R, S), there exist
subsequences (rnk

) of (rn) and (snk
) of (sn), such that (rnk

)

converges to r⋆ ∈ R and (snk
) converges to s⋆ ∈ S. )erefore,

ϱb rnk
, snk

􏼐 􏼑⟶ϱb r⋆, s⋆( 􏼁 as k⟶∞. (14)

)us, we have

ϱb r⋆, s⋆( 􏼁 � ϱb(R, S). (15)

So, r⋆ ∈ R0 and s⋆ ∈ S0. Hence, R0 ≠∅ and S0 ≠∅.
Similarly, if S is bounded, then R0 ≠∅ and S0 ≠∅. □

Theorem 10 (see [26]). Let R and S be two nonempty subsets
of (P, ϱ), such that at least one of R and S is bounded, and
(R, S) is a compact weak proximal pair. Let T: R⟶ S be
a proximal Kannan-type contractive mapping and assume
that

(i) T(R0) ⊂ S0

(ii) If (rn) and (sn) are two bounded sequences in R and
S, respectively, such that (ϱ(rn, sn)) converges to
ϱ(R, S), then limn⟶∞ ϱ(rn, rn+1) � 0.

2en, T has a unique best proximity point in R.

Theorem 11 (see [26]). Let R and S be two nonempty
subsets of (P, ϱ), such that at least one of R and S is bounded,
and (R, S) is a compact weak proximal pair. Let
T: R∪ S⟶ R∪ S be a proximal cyclic Kannan-type con-
tractive mapping and assume that the following conditions
hold:

(i) T(R0) ⊂ S0 and T(S0) ⊂ R0

(ii) If (rn) and (sn) are two bounded sequences in R and
S, respectively, such that (ϱ(rn, sn)) converges to
ϱ(R, S), then limn⟶∞ ϱ(rn, rn+1) � 0.

2en, the following conditions hold:
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(a) 2ere exist r ∈ R and s ∈ S, such that ϱ(r,Tr) �

ϱ(R, S) and ϱ(s, Ts) � ϱ(R, S)

(b) If r ∈ R and s ∈ S, such that ϱ(r,Tr) � ϱ(R, S) and
ϱ(s, Ts) � ϱ(R, S), then ϱ(r, s) � ϱ(R, S).

Now, we introduce the notions of a new type of gen-
eralized multivalued Hardy and Roger’s proximal contrac-
tive and proximal cyclic contractive mappings.

Definition 12. Let R and S be two nonempty subsets of
(P, ϱb). A mapping T: R⟶℘(S) is said to be a new type of
generalized multivalued Hardy and Roger’s proximal con-
tractive mapping if

ϱb r1,Tr3( 􏼁 � ϱb(R, S)

ϱb r2,Tr4( 􏼁 � ϱb(R, S)

r3 ≠ r4

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

implies,

ϱb r1, r2( 􏼁< αϱb r1, r3( 􏼁 + βϱb r2, r4( 􏼁 +
c

b
2ϱb r3, r4( 􏼁

+
δ
b
ϱb r1, r4( 􏼁 +

τ
b
ϱb r2, r3( 􏼁

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

ϱb r1,Tr3( 􏼁 � ϱb(R, S)

ϱb r2,Tr4( 􏼁 � ϱb(R, S)

r3 � r4

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

implies

ϱb r1, r2( 􏼁≤ αϱb r1, r3( 􏼁 + βϱb r2, r3( 􏼁

+
δ
b
ϱb r1, r4( 􏼁 +

τ
b
ϱb r2, r3( 􏼁,

(16)

which hold for all r1, r2, r3, r4 ∈ R, where

α + β + c + 2τ � 1, β≠ 1, c + δ + τ < 1 (17)

,α, β, c, δ, τ ∈ R+.

Remark 13. If in the Definition 12, we replace
T: R⟶℘(S) by T: R⟶ S, then T is said to be a new type
of generalized Hardy and Roger’s proximal contractive
mapping.

Definition 14. Let R and S be two nonempty subsets of
(P, ϱb). A multivalued cyclic mapping T: R∪ S⟶
℘(R)∪℘(S) is said to be a new type of generalized multi-
valued Hardy and Roger’s proximal cyclic contractive
mapping if

ϱb r1,Tr3( 􏼁 � ϱb(R, S)

ϱb r2,Tr4( 􏼁 � ϱb(R, S)

ϱb r3, r4( 􏼁> ϱb(R, S)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

implies,

ϱb r1, r2( 􏼁< αϱb r1, r3( 􏼁 + βϱb r2, r4( 􏼁 +
c

b
2ϱb r3, r4( 􏼁

+
δ
b
ϱb r1, r4( 􏼁 +

τ
b
ϱb r2, r3( 􏼁

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

ϱb r1,Tr3( 􏼁 � ϱb(R, S)

ϱb r2,Tr4( 􏼁 � ϱb(R, S)

ϱb r3, r4( 􏼁 � ϱb(R, S)

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

impliesϱb r1, r2( 􏼁 � ϱb(R, S),

(18)

which hold for all r1, r2, r3, r4 ∈ R, where

α + β + c + 2τ � 1, α≠ 1, β≠ 1, c + δ + τ < 1, α, β, c, δ, τ ∈ R+
.

(19)

Remark 15. If in the Definition 14, we replace
T: R∪ S⟶℘(R)∪℘(S) by T: R∪ S⟶ R∪ S, then T is
said to be a new type of generalized Hardy and Roger’s
proximal cyclic contractive mapping.

3. Best Proximity Points Results for a New
Type of Multivalued Hardy and Roger’s
Proximal Contractive Mappings in
b-metric Space

)e following is our main result of this section.

Theorem 16. Let R and S be two nonempty subsets of (P, ϱb),
such that at least one of R and S is bounded and (R, S) is a
compact weak proximal pair. Let T: R⟶℘(S) be a new
type of generalized multivalued Hardy and Roger’s proximal
contractive mapping. Further assume that

(i) For each r ∈ R0, Tr ⊂ S0

(ii) If (rn) and (sn) are two bounded sequences in R and
S, respectively, such that (ϱb(rn, sn)) converges to
ϱb(R, S), then limn⟶∞ϱb(rn, rn+1) � 0.

2en, T has a best proximity point.

Proof. Lemma 9 implies R0 ≠∅. Let r0 ∈ R0; then, Tr0 ⊂ S0.
We can pick an element s1 ∈ Tr0 ⊂ S0, so that there exists
r1 ∈ R, such that
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ϱb r1, s1( 􏼁 � ϱb(R, S). (20)

Continuing this way, we can construct sequences (rn) in
R and (sn) in Trn− 1, such that

ϱb rn, sn( 􏼁 � ϱb(R, S), (21)

for all n ∈ N. )erefore,

ϱb(R, S)≤ ϱb rn, Trn− 1( 􏼁≤ ϱb rn, sn( 􏼁 � ϱb(R, S), (22)

that is,

ϱb rn, Trn− 1( 􏼁 � ϱb(R, S). (23)

If rn � rn− 1 for some n ∈ N, then rn− 1 is the best prox-
imity point of T, and the proof is completed. So, we may
assume that rn ≠ rn− 1 for all n ∈ N. Now, we show that (rn)

and (sn) are bounded sequences. As we have

ϱb rn, Trn− 1( 􏼁 � ϱb(R, S),

ϱb rn+1,Trn( 􏼁 � ϱb(R, S),

rn ≠ rn− 1,

(24)

so by the given condition, we obtain

ϱb rn, rn+1( 􏼁< αϱb rn, rn− 1( 􏼁 + βϱb rn+1, rn( 􏼁 +
c

b
2ϱb rn− 1, rn( 􏼁,

+
δ
b
ϱb rn, rn( 􏼁 +

τ
b
ϱb rn+1, rn− 1( 􏼁

≤ αϱb rn, rn− 1( 􏼁 + βϱb rn+1, rn( 􏼁

+ cϱb rn− 1, rn( 􏼁 + τ ϱb rn− 1, rn( 􏼁 + ϱb rn, rn+1( 􏼁( 􏼁,

(25)

which implies

(1 − (β + τ))ϱb rn, rn+1( 􏼁<(α + c + τ)ϱb rn− 1, rn( 􏼁. (26)

If 1 − (β + τ) � 0, then β + τ � 1, so (17) implies
α � c � τ � 0, and so β � 1, a contradiction. )erefore, 1 −

(β + τ)≠ 0 and 1 − (β + τ) � α + c + τ. Hence, we get

ϱb rn, rn+1( 􏼁< ϱb rn− 1, rn( 􏼁, (27)

that is,

ϱb rn, rn+1( 􏼁< ϱb rn− 1, rn( 􏼁< · · · < ϱb r0, r1( 􏼁 � K(say). (28)

As

ϱb rn, Trn− 1( 􏼁 � ϱb(R, S),

ϱb rm, Trm− 1( 􏼁 � ϱb(R, S),
(29)

so, if rn− 1 � rm− 1, then we have

ϱb rn, rm( 􏼁≤ b ϱb rn, rm− 1( 􏼁 + ϱb rm− 1, rm( 􏼁( 􏼁,

≤ b b ϱb rn, rn− 1( 􏼁 + ϱb rn− 1, rm− 1( 􏼁( 􏼁􏼂

+ϱb rm− 1, rm( 􏼁􏼃,

≤ b
2

+ b􏼐 􏼑K.

(30)

If rn− 1 ≠ rm− 1, then

ϱb rn, rm( 􏼁< αϱb rn, rn− 1( 􏼁 + βϱb rm, rm− 1( 􏼁 +
c

b
2ϱb rn− 1, rm− 1( 􏼁,

+
δ
b
ϱb rn, rm− 1( 􏼁 +

τ
b
ϱb rm, rn− 1( 􏼁

≤ (α + β)K +
c

b
2 b ϱb( rn− 1, rn( 􏼁 + b ϱb rn, rm( 􏼁 + ϱb rm, rm− 1( 􏼁( 􏼁􏼁􏼂 􏼃

+ δ ϱb rn, rm( 􏼁 + ϱb rm, rm− 1( 􏼁( 􏼁 + τ ϱb rm, rn( 􏼁 + ϱb rn, rn− 1( 􏼁( 􏼁,

(31)

which implies

1 − (c + δ + τ)ϱb rn, rm( 􏼁<(α + β + 2c + δ + τ)K( 􏼁, (32)

and by (2), c + δ + τ < 1. )erefore,

ϱb rn, rm( 􏼁<
(α + β + c + δ + τ)

1 − (c + δ + τ)
K. (33)

Hence, (rn) is a bounded sequence. Furthermore, for all
n, m ∈ N, we have

ϱb sn, sm( 􏼁≤ b ϱb sn, rn( 􏼁 + ϱb rn, sm( 􏼁( 􏼁

≤ bϱb(R, S) + b
2 ϱb rn, rm( 􏼁 + ϱb rm, sm( 􏼁( 􏼁

≤ b + b
2

􏼐 􏼑ϱb(R, S) + b
2(α + β + c + δ + τ)

1 − (c + δ + τ)
K.

(34)

)erefore, (sn) is also a bounded sequence. From (69), it
is clear that (ϱb(rn, rn+1)) is a decreasing sequence of
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nonnegative real numbers and hence convergent. Using
hypothesis (ii), (ϱb(rn, rn+1)) converges to 0. Now, by
compact weak proximality of the pair (R, S), there exist two
subsequences (rnk

) of (rn) and (snk
) of (sn), such that (rnk

)

converges to some r⋆ ∈ R and (snk
) converges to some

s⋆ ∈ S. Consequently,

ϱb rnk
, snk

􏼐 􏼑⟶ϱb r⋆, s⋆( 􏼁as k⟶∞. (35)

Consequently,

ϱb r⋆, s⋆( 􏼁 � ϱb(R, S). (36)

)us, r⋆ ∈ R0, which implies Tr⋆ ⊂ S0. For each ] ∈ Tr⋆,
there exists υ ∈ R, such that ϱb(υ, ]) � ϱb(R, S). Now,

ϱb(R, S)≤ ϱb υ, Tr⋆( 􏼁≤ ϱb(υ, ]) � ϱb(R, S), (37)

which implies

ϱb υ, Tr⋆( 􏼁 � ϱb(R, S). (38)

Moreover, we have

ϱb rnk+1, r⋆􏼐 􏼑≤ b ϱb rnk+1, rnk
􏼐 􏼑 + ϱb rnk

, r⋆􏼐 􏼑􏼐 􏼑. (39)

Letting k⟶∞, we get

lim
k⟶∞

rnk+1 � r⋆, (40)

then using the facts

ϱb rnk+1, Trnk
􏼐 􏼑 � ϱb(R, S),

ϱb υ, Tr⋆( 􏼁 � ϱb(R, S),
(41)

we get

ϱb rnk+1, υ􏼐 􏼑≤ αϱb rnk+1, rnk
􏼐 􏼑 + βϱb υ, r⋆( 􏼁 +

c

b
2ϱb rnk

, r⋆􏼐 􏼑

+
δ
b
ϱb rnk+1, r⋆􏼐 􏼑 +

τ
b
ϱb υ, rnk

􏼐 􏼑

≤ αϱb rnk+1, rnk
􏼐 􏼑 + βϱb υ, r⋆( 􏼁 + cϱb rnk

, r⋆􏼐 􏼑

+ δϱb rnk+1, r⋆􏼐 􏼑 + τϱb υ, rnk
􏼐 􏼑.

(42)

Letting k⟶∞, we get

[1 − (β + τ)]ϱb υ, r⋆( 􏼁≤ 0. (43)

It implies υ � r⋆. )us, we have ϱb(r⋆, Tr⋆) � ϱb(R, S),
that is, r⋆ is a best proximity point of T. )is completes the
proof.

Now, we give an example to explain our claim. □

Example 17. Let P � R, R � [1, 2], and S � [1/4, 1/2].
Consider

ϱb p1, p2( 􏼁 � p1 − p2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, (44)

for all p1, p2 ∈ R. )en, ϱb is a b-metric on P with b � 2. It
implies ϱb(R, S) � 1/4{ }, R0 � 1{ }, and S0 � 1/2{ }; now, de-
fine a mapping T: R⟶℘(S) as follows:

Tr �
1
2n: 1≤ n≤ r􏼚 􏼛. (45)

It implies for each r ∈ R0, Tr ⊂ S0. Now, we check T is a
new type of generalized multivalued Hardy and Roger’s
proximal contractive mapping. Let

r1, r2, r3, r4 ∈ R. (46)

)en, we discuss two possible cases.

Case 1: if

r1, r2, r3, r4 > 1, (47)

then

ϱb r1,Tr3( 􏼁≠ d(R, S),

ϱb r2,Tr4( 􏼁≠ d(R, S).
(48)

Case 2: if

r1 � r2 � r3 � r4 � 1, (49)

then

ϱb r1,Tr3( 􏼁 � d(R, S),

ϱb r2,Tr4( 􏼁 � d(R, S),

r3 � r4.

(50)

It implies

ϱb r1, r2( 􏼁 � 0≤ αϱb r1, r3( 􏼁 + βϱb r2, r4( 􏼁 +
δ
b
ϱb r1, r4( 􏼁

+
τ
b
ϱb r2, r3( 􏼁,

(51)

where

α + β + c + 2τ � 1, α≠ 1, β≠ 1, c + δ + τ < 1, (52)

α, β, c, δ, τ ∈ R+. So, all axioms of )eorem 16 are satisfied.
Hence, T has the best proximity points set 1{ }.

Theorem 18. Let R and S be two nonempty subsets of (P, ϱb),
such that at least one of R and S is bounded, and (R, S) is a
compact weak proximal pair. Let T: R⟶ S be a new type of
generalized Hardy and Roger’s proximal contractive mapping
and assume that

(i) For each r ∈ R0, Tr ∈ S0

(ii) If (rn) and (sn) are two bounded sequences in R and
S, respectively, such that (ϱb(rn, sn)) converges to
ϱb(R, S), then limn⟶∞ϱb(rn, rn+1) � 0

2en, T has a unique best proximity point.
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Proof. Existence of best proximity point follows from
)eorem 16. Now, to prove the uniqueness, consider r1 and
r2 be two distinct best proximity points of T. )en, we have

ϱb r1,Tr1( 􏼁 � ϱb(R, S),

ϱb r2,Tr2( 􏼁 � ϱb(R, S),

r1 ≠ r2.

(53)

It implies

ϱb r1, r2( 􏼁< αϱb r1, r1( 􏼁 + βϱb r2, r2( 􏼁 +
c

b
2ϱb r1, r2( 􏼁 +

δ
b
ϱb r1, r2( 􏼁 +

τ
b
ϱb r1, r2( 􏼁,

≤ αϱb r1, r1( 􏼁 + βϱb r2, r2( 􏼁 + cϱb r1, r2( 􏼁 + δϱb r1, r2( 􏼁 + τϱb r1, r2( 􏼁,

(54)

so

ϱb r1, r2( 􏼁<(c + δ + τ)ϱb r1, r2( 􏼁< ϱb r1, r2( 􏼁, (55)

a contradiction as c + δ + τ < 1. Hence, T has a unique best
proximity point. □

Corollary 19. If we take in 2eorem 18 b � 1 and
α � β � 1/2, c � δ � τ � 0, then we get 2eorem 10.

4. Best Proximity Points Results for a New
Type of Multivalued Hardy and Roger’s
Proximal Cyclic Contractive Mappings in
b-metric Space

In this section, we consider new type of multivalued Hardy
and Roger’s proximal cyclic contractive mapping for the
existence of best proximity points.

Theorem 20. Let R and S be two nonempty subsets of (P, ϱb),
such that at least one of R and S is a bounded subset of P and
(R, S) is a compact weak proximal pair. Let
T: R∪ S⟶℘(R)∪℘(S) be a new type of generalized
multivalued Hardy and Roger’s proximal cyclic contractive
mapping and assume that

(i) For each r ∈ R0, Ts ⊂ S0, and for each s ∈ S0, Ts ⊂ R0,
and

(ii) If (rn) and (sn) are two bounded sequences in R and
S, respectively, such that (ϱb(rn, sn)) converges to
ϱb(R, S), then limn⟶∞ϱb(rn, rn+1) � 0.

2en, there exist r ∈ R and s ∈ S, such that ϱb(r,Tr) �

ϱb(R, S) and ϱb(s, Ts) � ϱb(R, S), and furthermore,
ϱb(r, s) � ϱb(R, S).

Proof. Since (R, S) is a compact weakly proximal pair and at
least one of R and S is bounded, so by Lemma 9, it follows
that R0 ≠ 0 and S0 ≠ 0. Let r0 ∈ R0 and s0 ∈ S0 imply Tr0 ⊂ S0
and Ts0 ⊂ R0, so there exists r1 ∈ R and s1 ∈ S, such that

ϱb r1, ]1( 􏼁 � ϱb(R, S), (56)

]1 ∈ Tr0. Continuing this way, we construct sequences (rn)

in R, (sn) in S, (]n) in Trn− 1, and (υn) in Tsn− 1, such that

ϱb rn, ]n( 􏼁 � ϱb(R, S), (57)

and

ϱb sn, υn( 􏼁 � ϱb(R, S). (58)

It implies

ϱb(R, S)≤ ϱb rn, Trn− 1( 􏼁≤ ϱb rn, ]n( 􏼁 � ϱb(R, S), (59)

and

ϱb(R, S)≤ ϱb sn, Tsn− 1( 􏼁≤ ϱb sn, υn( 􏼁 � ϱb(R, S), (60)

for all n ∈ N. )us, we have

ϱb rn, Trn− 1( 􏼁 � ϱb(R, S),

ϱb sn, Tsn− 1( 􏼁 � ϱb(R, S).
(61)

First, we assume that R is bounded. )en, there exists a
positive real number K, such that ϱb(rn, rm)≤K for all
n, m ∈ N. )erefore, for all n, m ∈ N, we have

ϱb ]n, ]m( 􏼁≤ b ϱb ]n, rn( 􏼁 + ϱb rn, ]m( 􏼁( 􏼁,

≤ b ϱb(R, S) + b ϱb rn, rm( 􏼁 + ϱb rm, ]m( 􏼁( 􏼁( 􏼁,

≤ b ϱb(R, S) + bK + bϱb(R, S)( 􏼁,

(62)

implies

ϱb ]n, ]m( 􏼁≤ b + b
2

􏼐 􏼑ϱb(R, S) + b
2
K. (63)

)erefore, (]n) is bounded. Also, T is cyclic, so for each
s ∈ S, Ts ⊂ R, and so υn ∈ R, for all n ∈ N. )erefore, there
exists a positive real number K1, such that ϱb(υn, υm)≤K1. It
implies (υn) is bounded, so

ϱb sn, sm( 􏼁≤ b ϱb sn, υn( 􏼁 + ϱb υn, sm( 􏼁( 􏼁,

≤ b ϱb(R, S) + b ϱb υn, υm( 􏼁 + ϱb υm, sm( 􏼁( 􏼁( 􏼁,

≤ b + b
2

􏼐 􏼑ϱb(R, S) + b
2
K1.

(64)
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It implies (sn) is bounded.)us, (rn), (sn), (]n), and (υn)

all are bounded sequences. On a similar line, we can prove
(rn), (sn), (]n), and (υn) are bounded whenever S is
bounded. Since (R, S) is a compact weak pair, therefore,
there exist subsequences (rnk

), (snk
), (]nk

), and (υnk
) of (rn),

(sn), (]n), and (υn), respectively, such that rnk
⟶ r⋆ ∈ R,

snk
⟶ s⋆ ∈ S, ]nk

⟶ ]⋆ ∈ S, and υnk
⟶ υ⋆ ∈ R, as

k⟶∞. First, we show that ϱb(r⋆, Tr⋆) � ϱb(R, S). As we
have

ϱb rn, Trn− 1( 􏼁 � ϱb(R, S), (65)

and

ϱb rn+1,Trn( 􏼁 � ϱb(R, S), (66)

so if ϱb(rn− 1, rn)> ϱb(R, S), then we have

ϱb rn, rn+1( 􏼁< αϱb rn, rn− 1( 􏼁 + βϱb rn+1, rn( 􏼁 +
c

b
2ϱb rn− 1, rn( 􏼁

+
δ
b
ϱb rn, rn( 􏼁 +

τ
b
ϱb rn+1, rn− 1( 􏼁,

≤ αϱb rn, rn− 1( 􏼁 + βϱb rn+1, rn( 􏼁 + cϱb rn− 1, rn( 􏼁 + τ ϱb rn− 1, rn( 􏼁 + ϱb rn, rn+1( 􏼁( 􏼁

≤ (α + c)ϱb rn− 1, rn( 􏼁 + βϱb rn, rn+1( 􏼁 + τ ϱb rn− 1, rn( 􏼁 + ϱb rn, rn+1( 􏼁( 􏼁.

(67)

So,

(1 − (β + τ))ϱb rn, rn+1( 􏼁<(α + c + τ)ϱb rn− 1, rn( 􏼁. (68)

If 1 − (β + τ) � 0, then β + τ � 1, so (19) implies
α � c � δ � τ � 0, and β � 1 is a contradiction. )erefore,

ϱb rn, rn+1( 􏼁< ϱb rn− 1, rn( 􏼁. (69)

If

ϱb rn− 1, rn( 􏼁 � ϱb(R, S), (70)

then

ϱb rn, rn+1( 􏼁 � ϱb rn− 1, rn( 􏼁. (71)

)erefore,

ϱb rn, rn+1( 􏼁≤ ϱb rn− 1, rn( 􏼁, (72)

for all n ∈ N, and hence, the sequence (ϱb(rn, rn+1)) is a
convergent sequence of real numbers. By hypothesis (ii), it
follows that (ϱb(rn, rn+1)) converges to 0. Now,

ϱb rnk+1, r⋆􏼐 􏼑≤ b ϱb rnk+1, rnk
􏼐 􏼑 + ϱb rnk

, r⋆􏼐 􏼑􏼐 􏼑

⟶ 0 as k⟶∞
(73)

.
)erefore, limk⟶∞rnk+1 � r⋆. Again, we have
ϱb(rnk

, ]nk
)⟶ϱb(r⋆, ]⋆) as k⟶∞, and hence, we get

ϱb r⋆, ]⋆( 􏼁 � ϱb(R, S). (74)

So, r⋆ ∈ R0 implies Tr⋆ ⊂ S0. )us, there exists υ ∈ R,
such that

ϱb(υ, ]) � ϱb(R, S), (75)

where ] ∈ Tr⋆. It implies

ϱb υ, Tr⋆( 􏼁 � ϱb(R, S). (76)

If

ϱb rnk
, r⋆􏼐 􏼑 � ϱb(R, S), (77)

only for finitely many k, then we can exclude those rnk
from

(rnk
) and then assume

ϱb rnk
, r⋆􏼐 􏼑> ϱb(R, S) (78)

for all k. If

ϱb rnk
, r⋆􏼐 􏼑 � ϱb(R, S), (79)

for infinitely many k, then we can extract a subsequence(rnkl

)

from (rnk
), such that

ϱb rnkl

, r⋆􏼒 􏼓 � ϱb(R, S), (80)

for all l. )is gives

lim
l⟶∞
ϱb rnkl

, r⋆􏼒 􏼓 � ϱb(R, S) implies ϱb(R, S) � 0. (81)

From the relations

ϱb υ, Tr⋆( 􏼁 � ϱb(R, S),

ϱb rnkl
+1, Trnkl

􏼒 􏼓 � ϱb(R, S),

⎫⎪⎬

⎪⎭
(82)

and

ϱb rnkl

, r⋆􏼒 􏼓 � ϱb(R, S), (83)

we get

ϱb rnkl+1
, υ􏼒 􏼓 � ϱb(R, S) � 0, (84)

for all l. Taking limit as l⟶∞, we get
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ϱb r⋆, υ( 􏼁 � 0, (85)

so r⋆ � υ. )erefore, we have

ϱb r⋆, Tr⋆( 􏼁 � ϱb(R, S). (86)

Next, we assume that

ϱb rnkl

, r⋆􏼒 􏼓> ϱb(R, S), (87)

for all k; then, from relations

ϱb υ, Tr⋆( 􏼁 � ϱb(R, S),

ϱb rnkl
+1, Trnkl

􏼒 􏼓 � ϱb(R, S),

⎫⎪⎬

⎪⎭
(88)

we get

ϱb rnkl
+1, υ􏼒 􏼓< αϱb υ, r⋆( 􏼁 + βϱb rnkl

+1, rnkl

􏼒 􏼓

+
c

b
2ϱb r⋆, rnkl

􏼒 􏼓 +
δ
b
ϱb rnkl

+1, r⋆􏼒 􏼓 +
τ
b
ϱb υ, rnkl

􏼒 􏼓.

(89)

Taking limit as k⟶∞ in above, we get

ϱb υ, r⋆( 􏼁≤ αϱb υ, r⋆( 􏼁 +
τ
b
ϱb υ, r⋆( 􏼁,

ϱb υ, r⋆( 􏼁≤ αϱb υ, r⋆( 􏼁 + τϱb υ, r⋆( 􏼁.

(90)

It implies

(1 − (α + τ))ϱb υ, r⋆( 􏼁≤ 0. (91)

If α + τ � 1, then (19) implies β � c � τ � 0 which im-
plies α � 1, a contradiction, so

ϱb υ, r⋆( 􏼁 � 0 implies υ � r⋆. (92)

Hence,

ϱb r⋆, Tr⋆( 􏼁 � ϱb(R, S). (93)

Similarly, we can prove

ϱb s⋆, Ts⋆( 􏼁 � ϱb(R, S). (94)

Now, let r ∈ R, s ∈ S, such that

ϱb(r,Tr) � ϱb(R, S), (95)

and

ϱb(s, Ts) � ϱb(R, S). (96)

If ϱb(r, s)> ϱb(R, S), then

ϱb(r, s)< αϱb(r, r) + βϱb(s, s) +
c

b
2ϱb(r, s) +

δ
b
ϱb(r, s)

+
τ
b
ϱb(r, s),

(97)

so

ϱb(r, s)< cϱb(r, s) + δϱb(r, s) + τϱb(r, s). (98)

It implies

(1 − (c + δ + τ))ϱb(r, s)< 0, (99)

which further implies

ϱb(r, s)< 0, (100)

a contradiction. So, ϱb(r, s) � ϱb(R, S). )is completes the
proof. □

Theorem 21. Let R and S be two nonempty subsets of (P, ϱb),
such that at least one of R and S is a bounded subset of P and
(R, S) is a compact weak proximal pair. Let
T: R∪ S⟶ R∪ S be a new type of generalized Hardy and
Roger’s proximal cyclic contractive mapping and assume that

(i) For each r ∈ R0, Tr ∈ S0, and for each s ∈ S0, Ts ∈ R0,
(ii) If (rn) and (sn) are two bounded sequences in R and

S, respectively, such that (ϱb(xn, yn)) converges to
ϱb(R, S), then limn⟶∞ϱb(rn, rn+1) � 0.

2en, there exist r ∈ R and s ∈ S, such that ϱb(r,Tr) �

ϱb(R, S) and ϱb(s, Ts) � ϱb(R, S). Furthermore, ϱb(r, s) �

ϱb(R, S).

Proof. Following )eorem 20, we can get the required
result. □

Corollary 22. If we take b � 1, α � β � 1/2, and c � δ � τ �

0 in 2eorem 21, we get 2eorem 11.

5. Some Fixed Points Results

In this section, we derive some fixed points results from our
main results.

Theorem 23. Let (P, ϱb) be a boundedly compact b-metric
space; then,

(i) A mapping T: P⟶℘(P), such that for q1, q2 ∈ P,
there exist p1 ∈ Tq1 and p2 ∈ Tq2, such that

ϱb p1, p2( 􏼁< αϱb p1, q1( 􏼁 + βϱb p2, q2( 􏼁 +
c

b
2ϱb q1, q2( 􏼁

+
δ
b
ϱb p1, q2( 􏼁 +

τ
b
ϱb p2, q1( 􏼁, s.

(101)

For q1 ≠ q2

And

ϱb p1, p2( 􏼁≤ αϱb p1, q1( 􏼁 + βϱb p2, q2( 􏼁+

δ
b
ϱb p1, q2( 􏼁 +

τ
b
ϱb p2, q1( 􏼁

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (102)
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For q1 � q2, where

α + β + c + 2τ � 1, β≠ 1, c + δ + τ < 1, (103)

α, β, c, δ, τ ∈ R+.
(ii) If (pn) is a bounded sequence in P, then

limn⟶∞(pn, pn+1) � 0.
2en, Fix(T) (set of fixed points of T ) is nonempty

Theorem 24. Let (P, ϱb) be a boundedly compact b-metric
space; then,

(i) A mapping T: P⟶ P, such that for all q1, q2 ∈ P

with q1 ≠ q2,

ϱb Tq1, Tq2( 􏼁< αϱb Tq1, q1( 􏼁 + βϱb Tq2, q2( 􏼁 +
c

b
2ϱb q1, q2( 􏼁

+
δ
b
ϱb Tq1, q2( 􏼁 +

τ
b
ϱb Tq2, q1( 􏼁,

(104)

where

α + β + c + 2τ � 1, β≠ 1, c + δ + τ < 1, (105)

α, β, c, δ, τ ∈ R+.
(ii) If (pn) is a bounded sequence in P, then

limn⟶∞(pn, pn+1) � 0

2en, Fix(T) is singleton.

6. Conclusion

We presented a new type of generalized multivalued Hardy
and Roger’s proximal contractive and proximal cyclic
contractive mappings in b-metric spaces and developed
results for the existence of best proximity points. Further-
more, we have derived results for the existence and
uniqueness of best proximity points for new type of gen-
eralized Hardy and Roger’s proximal contractive and
proximal cyclic contractive mappings. Our results are the
generalization of the results already existing in literature.
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In this paper, we study a rational type common fixed-point theorem (CFP theorem) in complex-valued generalized b-metric
spaces (Gb-metric spaces) by using three self-mappings under the generalized contraction conditions. We find CFP and prove its
uniqueness. To justify our result, we provide an illustrative example. Furthermore, we present a supportive application of the three
Urysohn type integral equations (UTIEs) for the validity of our result. *e UTIEs are

c1(q) � 􏽚
k2

k1

Q1 q, r, c1(r)( 􏼁dr + ℏ1(q),

c2(q) � 􏽚
k2

k1

Q2 q, r, c2(r)( 􏼁dr + ℏ2(q),

c3(q) � 􏽚
k2

k1

Q3 q, r, c3(r)( 􏼁dr + ℏ3(q),

(1)

where q ∈ [k1, k2], c1, c2, c3, ℏ1, ℏ2, ℏ3 ∈ Υ, where Υ � C

([k1, k2],R
n) is the set of all real-valued continuous func-

tions defined on [k1, k2] and Q1, Q2, Q3: [k1, k2] ×

[k1, k2] × Rn⟶ Rn.

1. Introduction

In 1922, Banach [1] proved a “Banach contraction principle”
which is stated as “a single-valued contractive type mapping
in a complete metric space has a unique FP.” Later on, this
principle generalized in many directions, and some

researchers contributed to the theory of FP. In [2], Nazam
et al. presented the idea of weakly increasing F-contractions
and established some results in ordered partial-metric space
with an application. Hu and Gu [3] presented a new idea of
Menger probabilistic S-metric space by using the concepts of
probabilistic and S-metric spaces. *ey investigated its to-
pological characteristics and established some FP theorems
with illustrative examples.

Bakhtin [4] introduced the idea of b-metric space. After
that, Czerwik [5] established some FP results by using
b-metric spaces. In [6], Boriceanu et al. extended the concept
of fractal operator theory by introducing it in b-metric
spaces and presented some generalized CFP results. While,
Akkouchi [7] used the concept of an implicit relation in the
said spaces and established CFP results for contractive type
maps. Došenović at el. [8] discussed, complemented, im-
proved, generalized, and enriched some FP results of
(β − ψ1 − ψ2) contraction in ordered b-metric spaces. *ey
made a different approach of taking Picard’s sequence which
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help shorten the proof comparing other previous studies in
literature.*ey also complimented and enriched CFP results
for βq,ϕ s,ψ contraction maps.

Delfani et al. [9] contributed in ordered b-metric spaces
by establishing FP theorems. In these results, they intro-
duced the generalizations of F − ts and (ψ, ϕ, F − ts) con-
tractions. *ey also provided a suitable example to verify
their FP result. In [10], Karapinar et al. contributed in b-
metric spaces by generalizing it to prove FP results in view of
(α,ψ)-Meir-Keeler type contractions. *ese results im-
proved and unified some previous results. Abdeljawad et al.
[11] extended the b-metric spaces to double controlled
metric spaces by improving control functions α(c1, c2) and
μ(c1, c2) on the right side of b-triangle, that is,
d(c1, c2)≤ α(c1, c3)d (c1, c3) + μ(c3, c2)d (c3, c2), ∀c1, c2,

c3 ∈ Υ. *ey also provided some examples in which two
functions are not comparable.

Mustafa and Sims [12] introduced the generalized idea of
metric space and established some FP theorems by using
Dhage’s theory. Later on, Mustafa et al. [13] proved some
modified contractive-type FP results in this space. Abbas and
Rhoades [14] started to investigate CFP results in the said
spaces. In [15], Chugh et al. established the property P in
G-metric space and proved some results. In this context,
Mohanta et al. [16] contributed by establishing a CFP result
which improved and supplemented some of the existing
results. Mustafa introduced a mapping pair and obtained
many CFP results for different contraction conditions. He
supported these results through examples.

In 2014, Aghajani et al. [17] presented the idea of
Gb-metric space and proved a weakly compatible CFP
theorem. Aydi [18] improved, complemented, unified, and
generalized some well-known existing results in said spaces
and established some coupled and tripled coincidence point
results. Gupta in [19] extended some existing results from
literature and obtained various FP results in Gb-metric
spaces. In [20], Makran et al. proved general CFP theorem by
using multivalued maps and established its application.
Mebawondu et al. [21] proved FP results for a different
contraction type maps which involve C-class, αδs -admissible,
Suzuki-type maps in Gb-metric spaces.

Ege [22] gave the idea of complex-valued Gb-metric
space and proved “Banach contraction principle and
Kannan’s contraction theorems for FP.” Ege [23] used the
idea of α-series to prove CFP results in said spaces. He also
introduced α − ψ contraction maps to prove CFP results.
Kumar and Vashistha [24] introduced the idea of coupled FP
for mapping in the said space. *ey proved coupled FP
results and supported it by providing an example satisfying
their main result. Recently, Mehmood et al. [25] proved
some CFP theorems by using compatible single-valued
contractive type mappings on complex-valued b-metric
spaces with an application.

*is article presents a contraction theorem in complex-
valued Gb-metric spaces by using three self-maps to establish
a generalized CFP-theorem. *is result improves, extends,
and modifies some of the existing results (e.g, [22, 26]). We
present an example to support our work. We also present an

application of the three UTIEs for the existence of a common
solution to support our work. *is study is organized as
follows: Section 2 consists of preliminary concepts. In
Section 3, we present a CFP theorem with an illustrative
example. While in Section 4, we present an application to
support our main work. Finally, in Section 5, we discuss the
conclusion of our work.

2. Preliminaries

Let the complex numbers be denoted by C and zi, zii ∈ C.
Now, we define ≤ as zi ≤ zii, iff Re(zi)≤Re(zii) and
Im(zi)≤ Im(zii), where the real and imaginary parts of the
complex number are denoted by Re and Im, respectively.
Accordingly, zi ≤ zii, if any one of the following conditions
holds:

(1) Re(zi) � Re(zii) and Im(zi) � Im(zii),
(2) Re(zi)<Re(zii) and Im(zi) � Im(zii),
(3) Re(zi) � Re(zii) and Im(zi)< Im(zii),
(4) Re(zi)<Re(zii) and Im(zi)< Im(zii).

Particularly, we can write zi ≤ zii if zi ≠ zii and one of (2),
(3), and (4) is satisfied.

Remark 1 (see [27]). *e following given properties can be
held and verified if

(1) β1, β2 ∈ R and β1 ≤ β2⇒β1y≤ β2y ∀y ∈ C,
(2) 0≤ zi ≤ zii⇒|zi|< |zii|,
(3) zi ≤ zii and zii < ziii⇒zi < ziii.

Definition 1 (see [17]). Let Υ≠∅ set and b≥ 1 be a given real
number. A mapping G: Υ × Υ × Υ⟶ R+ is called a
Gb-metric if G holds the following axioms:

(1) G(c1, c2, c3) � 0 if c1 � c2 � c3

(2) 0<G(c1, c1, c2) for all c1, c2 ∈ Υ with c1 ≠ c2

(3) G(c1, c1, c2)≤G(c1, c2, c3) for all c1, c2, c3 ∈ Υ with
c2 ≠ c3

(4) G(c1, c2, c3) � G(p c1, c2, c3􏼈 􏼉), where p is a per-
mutation of c1, c2, c3

(5) G(c1, c2, c3)≤ b[G(c1, a, a) + G(a, c2, c3)] for all
c1, c2, c3, a ∈ Υ

*en, a pair (Υ, G) is called a Gb-metric space.
Note that each G-metric space is a Gb-metric space with

b � 1.

Definition 2 (see [22]). Let Υ≠∅ set and b≥ 1 be a given real
number. A mapping G: Υ × Υ × Υ⟶ C is called a com-
plex-valued Gb-metric if G holds the following axioms:

(1) G(c1, c2, c3) � 0 if c1 � c2 � c3

(2) 0<G(c1, c1, c2) for all c1, c2 ∈ Υ with c1 ≠ c2

(3) G(c1, c1, c2)≤G(c1, c2, c3) for all c1, c2, c3 ∈ Υ with
c2 ≠ c3

2 Journal of Mathematics



(4) G(c1, c2, c3) � G(p c1, c2, c3􏼈 􏼉), where p is a per-
mutation of c1, c2, c3

(5) G(c1, c2, c3)≤ b[G(c1, a, a) + G(a, c2, c3)] for all
c1, c2, c3, a ∈ Υ

*en, a pair (Υ, G) is called a complex-valued Gb-metric
space.

Example 1. Let Υ � 0,∞) and a mapping
G: Υ × Υ × Υ⟶ C be defined as

G c1, c2, c3( 􏼁 �
3
4

c1 − c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c2 − c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c3 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2

+ i
3
4

c1 − c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c2 − c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c3 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2
,

(2)

for all c1, c2, c3 ∈ Υ. *en, G is a complex-valued Gb-metric
with b � 2, but it is not G-metric. To see this, let
c1 � 3, c2 � 5, c3 � 7, a � 7/2, and we get G(3, 5, 7) � 576/16
+576/16i, G(3, 7/2, 7/2) � 9/16 + 9/16i, and G(7/2, 5, 7)

� 441/16 + 441/16i; thus,G(3, 5, 7) � 576/16 +576/16i

≰450/16 + 450 /16i � G(3, 7/2, 7/2) + G(7/2, 5, 7).
Clearly, property (5) of definition (2.3) is satisfied with

b � 2; hence,
G(c1, c2, c3) � (3/4|c1 − c2| + 3/4|c2 − c3| +3/4|c3

− c1|)
2 + i(3/4|c1 − c2| + 3/4|c2 − c3| + 3 /4|c3 − c1|)

2 is
Gb-metric.

Proposition 1 (see [22]). Let (Υ , G) be a complex-valued
Gb-metric space. /en, ∀c1, c2, c3 ∈ Υ.

(1) G(c1, c2, c3)≤ b(G(c1, c1, c2) + G(c1, c1, c3))

(2) G(c1, c2, c2)≤ 2bG(c1, c1, c2)

Definition 3 (see [22]). Let (Υ, G) be a complex-valued
Gb-metric space and cj􏽮 􏽯 be a sequence in Υ.

(1) cj􏽮 􏽯 is complex-valued Gb-convergent to c if for
every 0< a ∈ C, ∃k ∈ N, such that
G(c, cj, cm)< a,∀j, m≥ k.

(2) A sequence cj􏽮 􏽯 is called complex-valued Gb-Cauchy
if for every 0< a ∈ C, ∃k ∈ N, such that
G(cj, cm, cl)< a,∀j, m, l≥ k.

(3) If every complex-valued Gb-Cauchy sequence is
complex-valued Gb-convergent in (Υ, G), then a pair
(Υ, G) is called complex-valued Gb-complete.

Proposition 2 (see [22]). Let (Υ , G) be a complex-valued
Gb-metric space and cj􏽮 􏽯 be a sequence in Υ. /en, cj􏽮 􏽯 is
complex-valued Gb-convergent to c if and only if
|G(c, cj, cm)|⟶ 0 as n, m⟶∞.

Theorem 1 (see [22]). Let (Υ , G) be a complex-valued
Gb-metric space; then, for a sequence cj􏽮 􏽯 in Υ and a point
c ∈ Υ, the following are equivalent:

(1) cj􏽮 􏽯 is complex-valued Gb-convergent to c

(2) |G(cj, cj, c)|⟶ 0 as j⟶∞
(3) |G(cj, c, c)|⟶ 0 as j⟶∞
(4) |G(cm, cj, c)|⟶ 0 as j⟶∞

Proposition 3 (see [22]). Let (Υ , G) be a complex-valued
Gb-metric space and cj􏽮 􏽯 be a sequence in Υ. /en, cj􏽮 􏽯 is a
complex-valued Gb-convergent to c if and only if
|G(c, cj, cm)|⟶ 0 as j, m⟶∞.Proof: Assume that cj􏽮 􏽯

is complex-valued Gb-convergent to c and let

a �
ε
�
2

√ + i
ε
�
2

√ ,∀ε> 0. (3)

*en, we have 0< a ∈ C, and there is a natural number k,
such that G(c, cj, cm)< a for all n, m≥ k. *us,
|G(c, cj, cm)|< |a| � ε for all j, m≥ k, and so,
|G(c, cj, cm)|⟶ 0 as j, m⟶∞.

Suppose that |G(c, cj, cm)|⟶ 0 as j, m⟶∞. For a
given a ∈ C with 0< a, there exists a real number δ > 0, such
that for z ∈ C,

|z|< δ⇒z< a. (4)

Considering δ, we have a natural number k, such that
|G(c, cj, cm)|< δ for all j, m≥ k. *is means that
G(c, cj, cm)< a for all j, m≥ k, i.e., cj􏽮 􏽯 is complex-valued
Gb-convergent to c.

3. Main Result

Theorem 2. Let (Υ , G) be a complete complex-valued
Gb-metric space with coefficient b≥ 1 and
F1, F2, F3: Υ⟶ Υ be mappings satisfying

G F1c1, F2c2, F3c3( 􏼁≤ β1G c1, c2, c3( 􏼁 + β2W c1, c2, c3( 􏼁,

(5)

where
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W c1, c2, c3( 􏼁 � max

G c1, c2, F2c2( 􏼁, G F1c1, F1c1, c2( 􏼁, G F1c1, c2, c2( 􏼁,

G F2c2, F2c2, c3( 􏼁, G F2c2, c3, c3( 􏼁,

G c1, F1c1, F1c1( 􏼁 · G c2, F2c2, F2c2( 􏼁

1 + G c1, c2, c2( 􏼁
,

G c2, F2c2, F2c2( 􏼁 · G c3, F3c3, F3c3( 􏼁

1 + G F1c1, c3, c3( 􏼁
,

G c3, F3c3, F3c3( 􏼁 · G c1, F1c1, F1c1( 􏼁

1 + G F2c2, F3c3, F3c3( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6)

for all c1, c2, c3 ∈ Υ, β1, β2 ∈ 0, 1/3), such that
(β1 + β2)< 1/3, bβ2 < 1/3, and (β1 + 2bβ2)< 2/3. /en,
F1, F2, and F3 have a unique CFP in Υ.

Proof. Fix c0 ∈ Υ, and cj􏽮 􏽯 be a sequence in Υ, such that

c3n+1 � F1c3j,

c3j+2 � F2c3j+1,

c3j+3 � F3c3j+2∀n≥ 0.

(7)

Now, by using (5),

G c3j+1, c3j+2, c3j+3􏼐 􏼑 � G F1c3j, F2c3j+1, F3c3j+2􏼐 􏼑

≤ β1G c3j, c3j+1, c3j+2􏼐 􏼑

+ β2W c3j, c3j+1, c3j+2􏼐 􏼑.

(8)

*is implies that

G c3j+1, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2 W c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

(9)

where

W c3j, c3j+1, c3j+2􏼐 􏼑 � max

G c3j, c3j+1, F2c3j+1􏼐 􏼑, G F1c3j, F1c3j, c3j+1􏼐 􏼑, G F1c3j, c3j+1, c3j+1􏼐 􏼑,

G F2c3j+1, F2c3j+1, c3j+2􏼐 􏼑, G F2c3j+1, c3j+2, c3j+2􏼐 􏼑,

G c3j, F1c3j, F1c3j􏼐 􏼑 · G c3j+1, F2c3j+1, F2c3j+1􏼐 􏼑

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
,

G c3j+1, F2c3j+1, F2c3j+1􏼐 􏼑 · G c3j+2, F3c3j+2, F3c3j+2􏼐 􏼑

1 + G F1c3j, c3j+2, c3j+2􏼐 􏼑
,

G c3j+2, F3c3j+2, F3c3j+2􏼐 􏼑 · G c3j, F1c3j, F1c3j􏼐 􏼑

1 + G F2c3j+1, F3c3j+2, F3c3j+2􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� max

G c3j, c3j+1, c3j+2􏼐 􏼑, G c3j+1, c3j+1, c3j+1􏼐 􏼑, G c3j+1, c3j+1, c3j+1􏼐 􏼑,

G c3j+2, c3j+2, c3j+2􏼐 􏼑, G c3j+2, c3j+2, c3j+2􏼐 􏼑,

G c3j, c3j+1, c3j+1􏼐 􏼑 · G c3j+1, c3j+2, c3j+2􏼐 􏼑

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑 · G c3j+2, c3j+3, c3j+3􏼐 􏼑

1 + G c3j+1, c3j+2, c3j+2􏼐 􏼑
,

G c3j+2, c3j+3, c3j+3􏼐 􏼑 · G c3j, c3j+1, c3j+1􏼐 􏼑

1 + G c3j+2, c3j+3, c3j+3􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(10)
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*is implies that

W c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤max

G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+1, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+1, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j+2, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+2, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤max
G c3j, c3j+1, c3j+2􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(11)

By using Definition 2.3 (3) and after simplification, we
get that

W c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max G c3j+1, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (12)

Now, there are two possibilities:

(i) If |G(c3j+1, c3j+2, c3j+3)| is a maximum term in
|G(c3j+1, c3j+2, c3j+3)|, |G(c3j, c3j+1, c3j+2)|􏽮 􏽯, then

|W(c3j, c3j+1, c3j+2)| � |G(c3j+1, c3j+2, c3j+3)|; so,
after simplification, (3.3) can be written as

G c3j+1, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ a1 G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,where a1 � β1/ 1 − β2( 􏼁. (13)

(ii) If |G(c3j, c3j+1, c3j+2)| is a maximum term in
|G(c3j+1, c3j+2, c3j+3)|, |G(c3j, c3j+1, c3j+2)|􏽮 􏽯, then

|W(c3j, c3j+1, c3j+2)| � |G(c3j, c3j+1, c3j+2)|; so, after
simplification, (3.3) can be written as

G c3j+1, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ a2 G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,where a2 � β1 + β2( 􏼁. (14)

Let a: � max a1, a2􏼈 􏼉< 1/3; then, from (13) and (14), for
all n≥ 0, we have

G c3j+1, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ a G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (15)

Similarly,
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G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ a G c3j− 1, c3j, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (16)

Now, from (16) and (15) and by induction, we have that

G c3j+1, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ a G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ a
2
|G c3j− 1, c3j, c3j+1􏼐 􏼑

≤ · · · ≤ a
3j+1

G c0, c1, c2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(17)

Let m, n ∈ N and >n, and we have that

G cj, cm, cm􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ b G cj, cn+1, cn+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + b G cn+1, cm, cm( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ b G cj, cn+1, cn+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + b
2

G cn+1, cn+2, cn+2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + · · · + b
m− n

G cm− 1, cm, cm( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ ba
n

G c0, c1, c1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b
2
a

n+1
G c0, c1, c1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + · · · + b

m− n
a

m− 1
G c0, c1, c1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ ba
n

+ b
2
a

n+1
+ · · · + b

m− n
a

m− 1
􏽨 􏽩 G c0, c1, c1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� ba
n

+ b
2
a

n+1
+ · · · + b

m− n
a

m− 1
􏽨 􏽩 G c0, c1, c1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� ba
n 1 + ba + b

2
a
2

. . . + b
m− (n+1)

a
m− (n+1)

􏽨 􏽩 G c0, c1, c1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� ba
n

􏽘

m− (n+1)

t�0
b

t
a

t
G c0, c1, c1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ ba
n

􏽘

∞

t�0
b

t
a

t
G c0, c1, c1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
ba

n

1 − ba
G c0, c1, c1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⟶ 0, as n⟶∞.

(18)

By Proposition 2.5 (1), we have
|G(cj, cm, cl)|≤ b |G(cj, cm, cm)| + |G(cl, cm, cm)|􏽮 􏽯 for
n, m, l ∈ N. If we take limit as n, m, l⟶∞, we obtain
|G(cj, cm, cl)|⟶ 0. It implies cj􏽮 􏽯 is a Gb-Cauchy se-
quence. Since, Υ is complete complex-valued Gb-metric
space, ∃ξ ∈ Υ, such that, cj⟶ ξ, as n⟶∞ or
lim

n⟶∞
cj � ξ. We have to show that F1ξ � ξ; by contrary

case, let F1ξ ≠ ξ. Now by (5),

G F1ξ, c3j+2, c3j+3􏼐 􏼑 � G F1ξ, F2c3j+1, F3c3j+2􏼐 􏼑

≤ β1G ξ, c3j+1, c3j+2􏼐 􏼑

+ β2W ξ, c3j+1, c3j+2􏼐 􏼑.

(19)

*is implies that

G F1ξ, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 W ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (20)

where
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W ξ, c3j+1, c3j+2􏼐 􏼑 � max

G ξ, c3j+1, F2c3j+1􏼐 􏼑, G F1ξ, F1ξ, c3j+1􏼐 􏼑, G F1ξ, c3j+1, c3j+1􏼐 􏼑,

G F2c3j+1, F2c3j+1, c3j+2􏼐 􏼑, G F2c3j+1, c3j+2, c3j+2􏼐 􏼑,

G ξ, F1ξ, F1ξ( 􏼁 · G c3j+1, F2c3j+1, F2c3j+1􏼐 􏼑

1 + G ξ, c3j+1, c3j+1􏼐 􏼑
,

G c3j+1, F2c3j+1, F2c3j+1􏼐 􏼑 · G c3j+2, F3c3j+2, F3c3j+2􏼐 􏼑

1 + G F1ξ, c3j+2, c3j+2􏼐 􏼑
,

G c3j+2, F3c3j+2, F3c3j+2􏼐 􏼑 · G ξ, F1ξ, F1ξ( 􏼁

1 + G F2c3j+1, F3c3j+2, F3c3j+2􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� max

G ξ, c3j+1, c3j+2􏼐 􏼑, G F1ξ, F1ξ, c3j+1􏼐 􏼑, G F1ξ, c3j+1, c3j+1􏼐 􏼑,

G c3j+2, c3j+2, c3j+2􏼐 􏼑, G c3j+2, c3j+2, c3j+2􏼐 􏼑,

G ξ, F1ξ, F1ξ( 􏼁 · G c3j+1, c3j+2, c3j+2􏼐 􏼑

1 + G ξ, c3j+1, c3j+1􏼐 􏼑
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑 · G c3j+2, c3j+3, c3j+3􏼐 􏼑

1 + G F1ξ, c3j+2, c3j+2􏼐 􏼑
,

G c3j+2, c3j+3, c3j+3􏼐 􏼑 · G ξ, F1ξ, F1ξ( 􏼁

1 + G c3j+2, c3j+3, c3j+3􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(21)

*is implies that

W ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max

G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G F1ξ, F1ξ, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G F1ξ, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j+2, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+2, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G ξ, F1ξ, F1ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G ξ, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G F1ξ, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · Gξ, F1ξ, F1ξ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (22)

After simplification, we get that
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W ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤max

G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G F1ξ, F1ξ, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G F1ξ, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G ξ, F1ξ, F1ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G ξ, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G F1ξ, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G ξ, F1ξ, F1ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (23)

Now, there are six possibilities: (i) f |G(ξ, c3j+1, c3j+2)| is a maximum term in (23), then
(21) can be written as

G F1ξ, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (24)

Applying limn⟶∞ on both sides, we get

G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2|G(ξ, ξ, ξ)|. (25)

*is implies that |G(F1ξ, ξ, ξ)| � 0; thus,

F1ξ � ξ. (26)

(ii) If |G(F1ξ, F1ξ, c3j+1)| is a maximum term in (23),
then (21) can be written as

G F1ξ, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 G F1ξ, F1ξ, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (27)

Applying limn⟶∞ on both sides, we get

G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2 G F1ξ, F1ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 2bβ2 G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∵(Definition 2.5(2)).

(28)

*is implies that (1 − 2bβ2)|G(F1ξ, ξ, ξ)|≤ 0 is a
contradiction, where (1 − 2bβ2)≠ 0⇒ |G(F1ξ, ξ, ξ)|

� 0; thus,

F1ξ � ξ. (29)

(iii) If |G(F1ξ, c3j+1, c3j+1)| is a maximum term in (23),
then (21) can be written as

G F1ξ, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 G F1ξ, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (30)

Applying limn⟶∞ on both sides, we get

G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2 G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (31)

*is implies that (1 − β2)|G(F1ξ, ξ, ξ)|≤ 0 is a
contradiction, where (1 − β2)≠ 0⇒|G (F1ξ, ξ, ξ)|

� 0; thus,

F1ξ � ξ. (32)

(iv) If |G(ξ, F1ξ, F1ξ)|· |G(c3j+1, c3j+2, c3j+2)|/|1 +G(ξ,

c3j+1, c3j+1)| is a maximum term in (23), then (21)
can be written as

G F1ξ, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2
G ξ, F1ξ, F1ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · G c3j+1, c3j+2, c3j+2􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G ξ, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (33)
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Applying limn⟶∞ on both sides, we get

G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2
G ξ, F1ξ, F1ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · |G(ξ, ξ, ξ)|

|1 + G(ξ, ξ, ξ)|
.

(34)

*is implies that |G(F1ξ, ξ, ξ)| � 0; thus,

F1ξ � ξ. (35)

(v) If |G(c3j+1, c3j+2, c3j+2)| · |G(c3j+2, c3j+3, c3j+3)|/|1 +

G(F1ξ, c3j+2, c3j+2)| is a maximum term in (23),
then (21) can be written as

G F1ξ, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2
G c3j+1, c3j+2, c3j+2􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G F1ξ, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
(36)

Applying limn⟶∞ on both sides, we get

G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2
|G(ξ, ξ, ξ)| · |G(ξ, ξ, ξ)|

1 + G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(37)

*is implies that |G(F1ξ, ξ, ξ)| � 0; thus,

F1ξ � ξ. (38)

(vi) If |G(c3j+2, c3j+3, c3j+3)| · |G(ξ, F1ξ, F1ξ)|/|1+

G(c3j+2, c3j+3, c3j+3)| is a maximum term in (23),
then (21) can be written as

G F1ξ, c3j+2, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G ξ, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2
G c3j+2, c3j+3, c3j+3􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G ξ, F1ξ, F1ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (39)

Applying limn⟶∞ on both sides, we get

G F1ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2
|G(ξ, ξ, ξ)| · G ξ, F1ξ, F1ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|1 + G(ξ, ξ, ξ)|
.

(40)

*is implies that |G(F1ξ, ξ, ξ)| � 0; thus,

F1ξ � ξ. (41)

From (26)–(41), we get that ξ is a FP of F1, that is,

F1ξ � ξ. (42)

Next, we have to show that F2ξ � ξ; by contrary case, let
F2ξ ≠ ξ. Now by (5),

G c3j+1, F2ξ, c3j+3􏼐 􏼑 � G F1c3j, F2ξ, F3c3j+2􏼐 􏼑

≤ β1G c3j, ξ, c3j+2􏼐 􏼑 + β2W c3j, ξ, c3j+2􏼐 􏼑.
(43)

*is implies that

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 W c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(44)

where

W c3j, ξ, c3j+2􏼐 􏼑 � max

G c3j, ξ, F2ξ􏼐 􏼑, G F1c3j, F1c3j, ξ􏼐 􏼑, G F1c3j, ξ, ξ􏼐 􏼑,

G F2ξ, F2ξ, c3j+2􏼐 􏼑, G F2ξ, c3j+2, c3j+2􏼐 􏼑,

G c3j, F1c3j, F1c3j􏼐 􏼑 · G ξ, F2ξ, F2ξ( 􏼁

1 + G c3j, ξ, ξ􏼐 􏼑
,

G ξ, F2ξ, F2ξ( 􏼁 · G c3j+2, F3c3j+2, F3c3j+2􏼐 􏼑

1 + G F1c3j, c3j+2, c3j+2􏼐 􏼑
,

G c3j+2, F3c3j+2, F3c3j+2􏼐 􏼑 · G c3j, F1c3j, F1c3j􏼐 􏼑

1 + G F2ξ, F3c3j+2, F3c3j+2􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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� max

G c3j, ξ, F2ξ􏼐 􏼑, G c3j+1, c3j+1, ξ􏼐 􏼑, G c3j+1, ξ, ξ􏼐 􏼑,

G F2ξ, F2ξ, c3j+2􏼐 􏼑, G F2ξ, c3j+2, c3j+2􏼐 􏼑,

G c3j, c3j+1, c3j+1􏼐 􏼑 · G ξ, F2ξ, F2ξ( 􏼁

1 + G c3j, ξ, ξ􏼐 􏼑
,

G ξ, F2ξ, F2ξ( 􏼁 · G c3j+2, c3j+3, c3j+3􏼐 􏼑

1 + G c3j+1, c3j+2, c3j+2􏼐 􏼑
,

G c3j+2, c3j+3, c3j+3􏼐 􏼑 · G c3j, c3j+1, c3j+1􏼐 􏼑

1 + G F2ξ, c3j+3, c3j+3􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (45)

*is implies that

W c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � max

G c3j, ξ, F2ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+1, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+1, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G F2ξ, F2ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G F2ξ, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G ξ, F2ξ, F2ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G ξ, F2ξ, F2ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+2, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G F2ξ, c3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)

Now, there are eight possibilities:

(i) If |G(c3j, ξ, F2ξ)| is a maximum term in (46), then
after simplification, (44) can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 G c3j, ξ, F2ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(47)

Applying lim
n⟶∞

on both sides, we get

G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2 G ξ, ξ, F2ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (48)

*is implies that (1 − β2)|(Gξ, F2ξ, ξ)|≤ 0 is a
contradiction, where
(1 − β2)≠ 0⇒|G(ξ, F2ξ, ξ)| � 0; thus,

F2ξ � ξ. (49)

(ii) If |G(c3j+1, c3j+1, ξ)| is a maximum term in (46),
then (44) can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 G c3j+1, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(50)

Applying lim
n⟶∞

on both sides, we get

G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2|G(ξ, ξ, ξ)|. (51)

*is implies that |G(ξ, F2ξ, ξ)| � 0; thus,

F2ξ � ξ. (52)

(iii) If |G(c3j+1, ξ, ξ)| is a maximum term in (46), then
(44) can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2 G c3j+1, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(53)

Applying lim
n⟶∞

on both sides, we get

G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2|G(ξ, ξ, ξ)|. (54)
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*is implies that |G(ξ, F2ξ, ξ)| � 0; thus,

F2ξ � ξ. (55)

(iv) If |G(F2ξ, F2ξ, c3j+2)| is a maximum term in (46),
then (44) can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2 G F2ξ, F2ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(56)

Applying lim
n⟶∞

on both sides, we get

G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2 G F2ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ 2bβ2 G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∵(Proposition 2.5 (2)).
(57)

*is implies that (1 − 2bβ2)|G(ξ, F2ξ, ξ)|≤ 0 is a
contradiction, where (1 − 2bβ2)≠ 0⇒|G(ξ,

F2ξ, ξ)| � 0; thus,

F2ξ � ξ. (58)

(v) If |G(F2ξ, c3j+2, c3j+2)| is a maximum term in (46),
then (44) can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2 G F2ξ, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(59)

Applying lim
n⟶∞

on both sides, we get

G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2 G F2ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (60)

*is implies that (1 − β2)|G(ξ, F2ξ, ξ)|≤ 0 is a
contradiction, where (1 − β2)≠ 0⇒|G(ξ, F2ξ, ξ)|

� 0; thus,

F2ξ � ξ. (61)

(vi) If |G(c3j, c3j+1, c3j+1)| · |G(ξ, F2ξ, F2ξ)|/|1+

G(c3j, ξ, ξ)| is a maximum term in (46), then (44)
can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2
G c3j, c3j+1, c3j+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G ξ, F2ξ, F2ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
.

(62)

Applying lim
n⟶∞

on both sides, we get

G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)|

+ β2
|G(ξ, ξ, ξ)| · G ξ, F2ξ, F2ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|1 + G(ξ, ξ, ξ)|
.

(63)

*is implies that |G(ξ, F2ξ, ξ)| � 0; thus,

F2ξ � ξ. (64)

(vii) If |G(ξ, F2ξ, F2ξ)| · |G(c3j+2, c3j+3, c3j+3)|/|1+

G(c3j+1, c3j+2, c3j+2)| is a maximum term in (46),
then (44) can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2
G ξ, F2ξ, F2ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · G c3j+2, c3j+3, c3j+3􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
.

(65)

Applying lim
n⟶∞

on both sides, we get

G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2
G ξ, F2ξ, F2ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · |G(ξ, ξ, ξ)|

|1 + G(ξ, ξ, ξ)|
.

(66)

*is implies that |G(ξ, F2ξ, ξ)| � 0; thus,

F2ξ � ξ. (67)

(viii) If |G(c3j+2, c3j+3, c3j+3)|· |G(c3j, c3j+1, c3j+1)| /|1 +

G(F2ξ, c3j+3, c3j+3)| is a maximum term in (46),
then (44) can be written as

G c3j+1, F2ξ, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, ξ, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2
G c3j+2, c3j+3, c3j+3􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G F2ξ,3j+3, c3j+3􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
.

(68)

Applying lim
n⟶∞

on both sides, we get
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G ξ, F2ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2
|G(ξ, ξ, ξ)| · |G(ξ, ξ, ξ)|

1 + G F2ξ, ξ, ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(69)

*is implies that |G(ξ, F2ξ, ξ)| � 0; thus,

F2ξ � ξ. (70)

From (49) to (70), we find that ξ is a FP of F2, that is,

F2ξ � ξ. (71)

Now, we have to show that F3ξ � ξ; by contrary case, let
F3ξ ≠ ξ. Now, by (5),

G c3j+1, c3j+2, F3ξ􏼐 􏼑 � G F1c3j, F2c3j+1, F3ξ􏼐 􏼑

≤ β1G c3j, c3j+1, ξ􏼐 􏼑 + β2W c3j, c3j+1, ξ􏼐 􏼑.
(72)

*is implies that

G c3j+1, c3j+2, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2 W c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(73)

where

W c3j, c3j+1, ξ􏼐 􏼑

� max

G c3j, c3j+1, F2c3j+1􏼐 􏼑, G F1c3j, F1c3j, c3j+1􏼐 􏼑, G F1c3j, c3j+1, c3j+1􏼐 􏼑,

G F2c3j+1, F2c3j+1, ξ􏼐 􏼑, G F2c3j+1, ξ, ξ􏼐 􏼑,

G c3j, F1c3j, F1c3j􏼐 􏼑 · G c3j+1, F2c3j+1, F2c3j+1􏼐 􏼑

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
,

G c3j+1, F2c3j+1, F2c3j+1􏼐 􏼑 · G ξ, F3ξ, F3ξ( 􏼁

1 + G F1c3j, ξ, ξ􏼐 􏼑
,

G ξ, F3ξ, F3ξ( 􏼁 · G c3j, F1c3j, F1c3j􏼐 􏼑

1 + G F2c3j+1, F3ξ, F3ξ􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� max

G c3j, c3j+1, c3j+2􏼐 􏼑, G c3j+1, c3j+1, c3j+1􏼐 􏼑, G c3j+1, c3j+1, c3j+1􏼐 􏼑,

G c3j+2, c3j+2, ξ􏼐 􏼑, G c3j+2, ξ, ξ􏼐 􏼑,

G c3j, c3j+1, c3j+1􏼐 􏼑 · G c3j+1, c3j+2, c3j+2􏼐 􏼑

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑 · G ξ, F3ξ, F3ξ( 􏼁

1 + G c3j+1, ξ, ξ􏼐 􏼑
,

G ξ, F3ξ, F3ξ( 􏼁 · G c3j, c3j+1, c3j+1􏼐 􏼑

1 + G c3j+2, F3ξ, F3ξ􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(74)

*is implies that
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W c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� max

G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+1, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+1, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j+2, c3j+2, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+2, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G ξ, F3ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j+1, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G ξ, F3ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j+2, F3ξ, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(75)

After simplification, we get that

W c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� max

G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+2, c3j+2, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, G c3j+2, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G ξ, F3ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j+1, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

G ξ, F3ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j+2, F3ξ, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(76)

Now, there are six possibilities:

(i) If |G(c3j, c3j+1, c3j+2)| is a maximum term in (76),
then (73) can be written as

G c3j+1, c3j+2, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2 G c3j, c3j+1, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(77)

Applying lim
n⟶∞

on both sides, we get

G ξ, ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2|G(ξ, ξ, ξ)|. (78)

*is implies that |G(ξ, ξ, F3ξ)| � 0; thus,

F3ξ � ξ. (79)

(ii) If |G(c3j+2, c3j+2, ξ)| is a maximum term in (76),
then (73) can be written as

G c3j+1, c3j+2, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2 G c3j+2, c3j+2, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(80)

Applying lim
n⟶∞

on both sides, we get

G ξ, ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2|G(ξ, ξ, ξ)|. (81)

*is implies that |G(ξ, ξ, F3ξ)| � 0; thus,

F3ξ � ξ. (82)
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(iii) If |G(c3j+2, ξ, ξ)| is a maximum term in (76), then
(73) can be written as

G c3j+1, c3j+2, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ β2 G c3j+2, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(83)

Applying lim
n⟶∞

on both sides, we get

G ξ, ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2|G(ξ, ξ, ξ)|. (84)

*is implies that |G(ξ, ξ, F3ξ)| � 0; thus,

F3ξ � ξ. (85)

(iv) If |G(c3j, c3j+1, c3j+1)|· |G(c3j+1, c3j+2, c3j+2)|

/|1 + G(c3j, c3j+1, c3j+1)| is a maximum term in (76),
then (73) can be written as

G c3j+1, c3j+2, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2
G c3j, c3j+1, c3j+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G c3j+1, c3j+2, c3j+2􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j, c3j+1, c3j+1􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (86)

Applying lim
n⟶∞

on both sides, we get

G ξ, ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2
|G(ξ, ξ, ξ)| · |G(ξ, ξ, ξ)|

|1 + G(ξ, ξ, ξ)|
.

(87)

*is implies that |G(ξ, ξ, F3ξ)| � 0; thus,

F3ξ � ξ. (88)

(v) If |G(c3j+1, c3j+2, c3j+2)|/|1 + G(c3j+1, ξ, ξ)| is a
maximum term in (76), then (73) can be written as

G c3j+1, c3j+2, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2
G c3j+1, c3j+2, c3j+2􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 · G ξ, F3ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G c3j+1, ξ, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (89)

Applying lim
n⟶∞

on both sides, we get

G ξ, ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)| + β2
|G(ξ, ξ, ξ)| · G ξ, F3ξ, F3ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|1 + G(ξ, ξ, ξ)|
.

(90)

*is implies that |G(ξ, ξ, F3ξ)| � 0; thus,

F3ξ � ξ. (91)

(vi) If |G(ξ, F3ξ, F3ξ)|/|1 + G(c3j+2, F3ξ, F3ξ)| is a
maximum term in (76), then (73) can be written as

G c3j+1, c3j+2, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ β1 G c3j, c3j+1, ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + β2
G ξ, F3ξ, F3ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · G c3j, c3j+1, c3j+1􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + G c3j+2, F3ξ, F3ξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (92)

Applying lim
n⟶∞

on both sides, we get

G ξ, ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1|G(ξ, ξ, ξ)|

+ β2
G ξ, F3ξ, F3ξ( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · |G(ξ, ξ, ξ)|

1 + G ξ, F3ξ, F3ξ( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(93)

*is implies that |G(ξ, ξ, F3ξ)| � 0; thus,

F3ξ � ξ. (94)

From (79)–(94), we find that ξ is a FP of F3, that is,

F3ξ � ξ. (95)

Hence proved that ξ is a CFP of F1, F2 and F3, that is,

F1ξ � F2ξ � F3ξ � ξ. (96)

Uniqueness: assume that ξ∗ ∈ Υ is another CFP of the
mappings F1, F2, and F3, such that

F1ξ � F2ξ � F3ξ � ξ,

F1ξ
∗

� F2ξ
∗

� F3ξ
∗

� ξ∗.
(97)

*en, from (5), we have that

G ξ, ξ∗, ξ∗( 􏼁 � G F1ξ, F2ξ
∗
, F3ξ
∗

( 􏼁

≤ β1G ξ, ξ∗, ξ∗( 􏼁 + β2W ξ, ξ∗, ξ∗( 􏼁.
(98)
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*is implies that

G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1 G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + β2 W ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (99)

where

W ξ, ξ∗, ξ∗( 􏼁 � max

G ξ, ξ∗, F2ξ
∗

( 􏼁, G F1ξ, F1ξ, ξ∗( 􏼁, G F1ξ, ξ∗, ξ∗( 􏼁,

G F2ξ
∗
, F2ξ
∗
, ξ∗( 􏼁, G F2ξ

∗
, ξ∗, ξ∗( 􏼁,

G ξ, F1ξ, F1ξ( 􏼁 · G ξ∗, F2ξ
∗
, F2ξ
∗

( 􏼁

1 + G ξ, ξ∗, ξ∗( 􏼁( 􏼁
,

G ξ∗, F2ξ
∗
, F2ξ
∗

( 􏼁 · G ξ∗, F3ξ
∗
, F3ξ
∗

( 􏼁

1 + G F1ξ, ξ∗, ξ∗( 􏼁( 􏼁
,

G ξ∗, F3ξ
∗
, F3ξ
∗

( 􏼁 · G ξ, F1ξ, F1ξ( 􏼁

1 + G F2ξ
∗
, F3ξ
∗
, F3ξ
∗

( 􏼁( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� max

G ξ, ξ∗, ξ∗( 􏼁, G ξ, ξ, ξ∗( 􏼁, G ξ, ξ∗, ξ∗( 􏼁,

G ξ∗, ξ∗, ξ∗( 􏼁, G ξ∗, ξ∗, ξ∗( 􏼁,

G(ξ, ξ, ξ) · G ξ∗, ξ∗, ξ∗( 􏼁

1 + G ξ, ξ∗, ξ∗( 􏼁( 􏼁
,

G ξ∗, ξ∗, ξ∗( 􏼁 · G ξ∗, ξ∗, ξ∗( 􏼁

1 + G ξ, ξ∗, ξ∗( 􏼁( 􏼁
,

G ξ∗, ξ∗, ξ∗( 􏼁 · G(ξ, ξ, ξ)

1 + G ξ∗, ξ∗, ξ∗( 􏼁( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(100)

*is implies that

W ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � max

G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, G ξ, ξ, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

G ξ∗, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, G ξ∗, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

|G(ξ, ξ, ξ)| · G ξ∗, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

G ξ∗, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · G ξ∗, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

1 + G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

ξ∗, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 · |G(ξ, ξ, ξ)|

1 + G ξ∗, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (101)
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Now, by using Proposition 2.5 (2) and after simplifying,
we get that

W ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤max G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, 2b G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 . (102)

Clearly, 2b|G(ξ, ξ∗, ξ∗)| is a maximum term in (102), so
(99) can be written as

G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1 G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 2bβ2 G ξ, ξ∗, ξ∗( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (103)

*is implies that (1 − β1 − 2bβ2)|G(ξ, ξ∗, ξ∗)|≤ 0 is a
contradiction, where

(1 − β1 − 2bβ2)≠ 0⇒|G(ξ, ξ∗, ξ∗)| � 0⇒ξ � ξ∗. Hence
proved that F1, F2, and F3 have a unique CFP in Υ.

Corollary 1. Let (Υ , G) be a complete complex-valued
Gb-metric space with coefficient b≥ 1 and
F1, F2, F3: Υ⟶ Υ be mappings satisfying

G F1c1, F2c2, F3c3( 􏼁≤ β1G c1, c2, c3( 􏼁 + β2W c1, c2, c3( 􏼁,

(104)

where

W c1, c2, c3( 􏼁 � max

G c1, c2, F2c2( 􏼁, G F1c1, F1c1, c2( 􏼁, G F1c1, c2, c2( 􏼁,

G F2c2, F2c2, c3( 􏼁, G F2c2, c3, c3( 􏼁,

G c1, F1c1, F1c1( 􏼁 · G c2, F2c2, F2c2( 􏼁

1 + G c1, c2, c2( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (105)

for all c1, c2, c3 ∈ Υ, β1, β2 ∈ 0, 1/3), such that
(β1 + β2)< 1/3, bβ2 < 1/3, and (β1 + 2bβ2)< 2/3; then,
F1, F2, and F3 have a unique CFP in Υ.

Corollary 2. Let (Υ , G) be a complete complex-valued
Gb-metric space with coefficient b≥ 1 and
F1, F2, F3: Υ⟶ Υ be mappings satisfying

G F1c1, F2c2, F3c3( 􏼁≤ β1G c1, c2, c3( 􏼁 + β2W c1, c2, c3( 􏼁,

(106)

where

W c1, c2, c3( 􏼁 � max

G c1, c2, F2c2( 􏼁, G F1c1, F1c1, c2( 􏼁, G F1c1, c2, c2( 􏼁,

G F2c2, F2c2, c3( 􏼁, G F2c2, c3, c3( 􏼁,

G c2, F2c2, F2c2( 􏼁 · G c3, F3c3, F3c3( 􏼁

1 + G F1c1, c3, c3( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (107)

for all c1, c2, c3 ∈ Υ, β1, β2 ∈ 0, 1/3), such that
(β1 + β2)< 1/3, bβ2 < 1/3, and (β1 + 2bβ2)< 2/3; then,
F1, F2, and F3 have a unique CFP in Υ.

Corollary 3. Let (Υ , G) be a complete complex-valued
Gb-metric space with coefficient b≥ 1 and
F1, F2, F3: Υ⟶ Υ be mappings satisfying

G F1c1, F2c2, F3c3( 􏼁≤ β1G c1, c2, c3( 􏼁 + β2W c1, c2, c3( 􏼁,

(108)

where

W c1, c2, c3( 􏼁 � max

G c1, c2, F2c2( 􏼁, G F1c1, F1c1, c2( 􏼁, G F1c1, c2, c2( 􏼁,

G F2c2, F2c2, c3( 􏼁, G F2c2, c3, c3( 􏼁,

G c3, F3c3, F3c3( 􏼁 · G c1, F1c1, F1c1( 􏼁

1 + G F2c2, F3c3, F3c3( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (109)

16 Journal of Mathematics



for all c1, c2, c3 ∈ Υ, β1, β2 ∈ 0, 1/3), such that
(β1 + β2)< 1/3, bβ2 < 1/3, and (β1 + 2bβ2)< 2/3; then,
F1, F2, and F3 have a unique CFP in Υ.

Remark 2. If we put β2 � 0 and F1 � F2 � F3 in *eorem 2,
we get (*eorem 3.7 [22]).

Example 2. Let (Υ, G) be a complex-valued Gb-metric space,
where Υ � [0, 1] and G: Υ × Υ × Υ⟶ C, with G(c1,

c2, c3) � (3/4|c1 − c2| +3/4|c2 − c3| + 3/4|c3− c1|)
2 + i (3

/4|c1 − c2| + 3/4|c2 − c3| + 3/4|c3 − c1|)
2, for all c1, c2, c3

∈ Υ. Now, we define F1, F2, F3: Υ⟶ Υ as

F1c � F2c � F3c � ln 1 +
c

5 + c
􏼠 􏼡. (110)

Notice that

G c1, c2, c3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, W c1, c2, c3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ 0. (111)

In all regards, it is enough to show that
G(F1c1, F2c2, F3c3)≤ β1G(c1, c2, c3), for all
c1, c2, c3 ∈ [0, 1] and β1, β2 ∈ 0, 1/3), with β1 + β2 < 1/3,
bβ2 < 1/3, and β1 + 2bβ2 < 2/3.

G F1c1, F2c2, F3c3( 􏼁 �
3
4

F1c1 − F2c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

F2c2 − F3c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

F3c3 − F1c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2

+ i
3
4

F1c1 − F2c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

F2c2 − F3c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

F3c3 − F1c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2

�

3
4
ln 1 +

c1
5 + c1

􏼠 􏼡 − ln 1 +
c2

5 + c2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
ln 1 +

c2

5 + c2
􏼠 􏼡 − ln 1 +

c3
5 + c3

􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
3
4
ln 1 +

c3

5 + c3
􏼠 􏼡 − ln 1 +

c1

5 + c1
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

+ i

3
4
ln 1 +

c1

5 + c1
􏼠 􏼡 − ln 1 +

c2

5 + c2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
ln 1 +

c2

5 + c2
􏼠 􏼡 − ln 1 +

c3

5 + c3
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
3
4
ln 1 +

c3

5 + c3
􏼠 􏼡 − ln 1 +

c1

5 + c1
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

≤
3
4

c1

5 + c1
−

c2

5 + c2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4

c2

5 + c2
−

c3

5 + c3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4

c3

5 + c3
−

c1

5 + c1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

2

+ i
3
4

c1

5 + c1
−

c2

5 + c2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4

c2

5 + c2
−

c3

5 + c3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4

c3

5 + c3
−

c1

5 + c1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

2

≤
3
4
5c1 − 5c2

25

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
5c2 − 5c3

25

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
5c3 − 5c1

25

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

+ i
3
4
5c1 − 5c2

25

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
5c2 − 5c3

25

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
5c3 − 5c1

25

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

�
1
25

3
4

c1 − c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c2 − c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c3 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2

+i
3
4

c1 − c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c2 − c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c3 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(112)

G c1, c2, c3( 􏼁 �

3
4

c1 − c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c2 − c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c3 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2

+i
3
4

c1 − c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c2 − c3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
3
4

c3 − c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼒 􏼓
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (113)
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For c1, c2, c3 ∈ [0, 1], we discuss different cases with
β1 � 1/10, β2 � 1/20, and b � 2. Hence,

β1 + β2 �
1
10

+
1
20
<
1
3
, bβ2 � 2

1
20

􏼒 􏼓<
1
3

, (114)

β1 + 2bβ2 �
1
10

+ 2(2)
1
20
<
2
3

. (115)

Case 1: let c1 � 0, c2 � 0, c3 � 0; then from (112) and
(113), directly we get that G(F1c1, F2c2, F3c3)

≤ β1G(c1, c2, c3). Hence, (3.1) is satisfied with
β1 � 1/10, β2 � 1/20, and b � 2.
Case 2: let c1 � 0, c2 � 0, c3 � 1/2; then from (112) and
(113), we find G(F1c1, F2c2, F3c3)≤ β1G(c1, c2, c3) is
satisfy with β1 � 1/10, i.e.,

1
25

3
4

|0 − 0| +
3
4
0 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 0
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

+i
3
4

|0 − 0| +
3
4
0 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 0
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ β1

3
4

|0 − 0| +
3
4
0 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 0
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

+i
3
4

|0 − 0| +
3
4
0 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 0
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒
9
400

+ i
9
400
≤

9
160

+ i
9
160

.

(116)

Hence, (3.1) is satisfied with β1 � 1/10, β2 � 1/20, and
b � 2.

Case 3: let c1 � 1/2, c2 � 1/3, c3 � 1/4; then from (112)
and (113), we find G(F1c1, F2c2, F3c3)≤ β1G(c1, c2, c3)

is satisfy with β1 � 1/10, i.e.,

1
25

3
4
1
2

−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
3

−
1
4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
4

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

+i
3
4
1
2

−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
3

−
1
4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
4

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ β1

3
4
1
2

−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
3

−
1
4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
4

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

+i
3
4
1
2

−
1
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
3

−
1
4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
4

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒
9

1600
+ i

9
1600
≤

9
640

+ i
9
640

.

(117)

Hence, (3.1) is satisfied with β1 � 1/10, β2 � 1/20, and
b � 2.

Case 4: let c1 � 1/2, c2 � 1/2, c3 � 1; then from (112)
and (113), we find G(F1c1, F2c2, F3c3)≤ β1G(c1, c2, c3)

is satisfy with β1 � 1/10, i.e.,

1
25

3
4
1
2

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

+i
3
4
1
2

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ β1

3
4
1
2

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
2

+i
3
4
1
2

−
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1
2

− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
3
4
1 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒
9
400

+ i
9
400
≤

9
160

+ i
9
160

.

(118)

Hence, (3.1) is satisfied with β1 � 1/10, β2 � 1/20, and
b � 2.*us, all the conditions of*eorem 2 are satisfied with

noticing that the point 0 ∈ Υ, which remains fixed under
mappings F1, F2, and F3, is indeed unique.
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4. Applications

In this section, we present an application of the three UTIEs
to support our main work. Let Υ � C([k1, k2],R

n) be the set
of all real-valued continuous functions defined on [k1, k2].
Now, we state and prove a result based on the three UTIEs to
uplift our work.

Theorem 3. Let Υ � C([k1, k2],R
n), where [k1, k2]⊆R and

G: Υ × Υ × Υ⟶ C are defined as

G c1, c2, c3( 􏼁 �

c1(q) − c2(q)
����

����

+c2(q) − c3(q)
����

+c3(q) − c1(q)
����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

�����

1 + k
2
1

􏽱

e
i cot k1 , (119)

for all c1, c2, c3 ∈ Υ and q ∈ [k1, k2]. Consider the UTIEs are

c1(q) � 􏽚
k2

k1

Q1 q, r, c1(r)( 􏼁dr + ℏ1(q),

c2(q) � 􏽚
k2

k1

Q2 q, r, c2(r)( 􏼁dr + ℏ2(q),

c3(q) � 􏽚
k2

k1

Q3 q, r, c3(r)( 􏼁dr + ℏ3(q),

(120)

where r ∈ [k1, k2]. Let Q1, Q2, Q3: [k1, k2] × [k1, k2] ×Rn

⟶ Rn are such that Dc1
, Ec2

, Fc3
∈ Υ; for every

c1, c2, c3 ∈ Υ, we have that

Dc1
(q) � 􏽚

k2

k1

Q1 q, r, c1(r)( 􏼁dr,

Ec2
(q) � 􏽚

k2

k1

Q2 q, r, c2(r)( 􏼁dr,

Fc3
(q) � 􏽚

k2

k1

Q3 q, r, c3(r)( 􏼁dr.

(121)

If there exists μ ∈ (0, 1), such that for all c1, c2, c3 ∈ Υ,

Dc1
(q) − Ec2

(q) + ℏ1(q) − ℏ2(q)
�����

�����

+Ec2
(q) − Fc3

(q) + ℏ2(q) − ℏ3(q)
�����

+Fc3
(q) − Dc1

(q) + ℏ3(q) − ℏ1(q)
�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

�����

1 + k
2
1

􏽱

e
i cot k1 ≤ μM c1, c2, c3( 􏼁, (122)

where

M c1, c2, c3( 􏼁 � max A1 c1, c2, c3( 􏼁(q), A2 c1, c2, c3( 􏼁(q)􏼈 􏼉,

(123)

with

A1 c1, c2, c3( 􏼁(q) �

c1(q) − c2(q)
����

����

+c2(q) − c3(q)
����

+c3(q) − c1(q)
����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

�����

1 + k
2
1

􏽱

e
i cot k1 , (124)

A2 c1, c2, c3( 􏼁(q) � max

a1 c1, c2, c3( 􏼁(q), a2 c1, c2, c3( 􏼁(q),

a3 c1, c2, c3( 􏼁(q), a4 c1, c2, c3( 􏼁(q),

a5 c1, c2, c3( 􏼁(q), a6 c1, c2, c3( 􏼁(q),

a7 c1, c2, c3( 􏼁(q), a8 c1, c2, c3( 􏼁(q)

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (125)

where
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a1 c1, c2, c3( 􏼁(q) �

c1(q) − c2(q)

+Ec2
(q) + ℏ2(q) − c2(q)

+Ec2
(q) + ℏ2(q) − c1(q)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

�����

1 + k
2
1

􏽱

e
i cot k1 ,

a2 c1, c2, c3( 􏼁(q) � 2Dc1
(q) + ℏ1(q) − c2(q)􏼐 􏼑

2
�����

1 + k
2
1

􏽱

e
i cot k1 ,

a3 c1, c2, c3( 􏼁(q) � 2Dc1
(q) + ℏ1(q) − c2(q)􏼐 􏼑

2
�����

1 + k
2
1

􏽱

e
i cot k1 ,

a4 c1, c2, c3( 􏼁(q) � 2Ec2
(q) + ℏ2(q) − c3(q)􏼐 􏼑

2
�����

1 + k
2
1

􏽱

e
i cot k1 ,

a5 c1, c2, c3( 􏼁(q) � 2Ec2
(q) + ℏ2(q) − c3(q)􏼐 􏼑

2
�����

1 + k
2
1

􏽱

e
i cot k1 ,

a6 c1, c2, c3( 􏼁(q) �

4Dc1
(q) + ℏ1(q) − c1(q)

·Ec2
(q) + ℏ2(q) − c2(q)

⎛⎜⎝ ⎞⎟⎠

2
�����

1 + k2
1

􏽱

e
i cot k1􏼒 􏼓

2

1 + 2c1(q) − c2(q)( 􏼁
2

�����

1 + k
2
1

􏽱

e
i cot k1

,

a7 c1, c2, c3( 􏼁(q) �

4Ec2
(q) + ℏ2(q) − c2(q)

·Fc3
(q) + ℏ3(q) − c3(q)

⎛⎜⎝ ⎞⎟⎠

2
�����

1 + k2
1

􏽱

e
i cot k1􏼒 􏼓

2

1 + 2Dc1
(q) + ℏ1(q) − c3(q)􏼐 􏼑

2
�����

1 + k
2
1

􏽱

e
i cot k1

,

a8 c1, c2, c3( 􏼁(q) �

4Fc3
(q) + ℏ3(q) − c3(q)

·Dc1
(q) + ℏ1(q) − c1(q)

⎛⎜⎝ ⎞⎟⎠

2
�����

1 + k2
1

􏽱

e
i cot k1􏼒 􏼓

2

1 + 2Ec2
(q) + ℏ2(q) − Fc3

(q) − ℏ3(q)􏼐 􏼑
2

�����

1 + k
2
1

􏽱

e
i cot k1

.

(126)

/en, the three UTIEs, i.e., (120) have a unique common
solution.

Proof 1. Define F1, F2, F3: Υ⟶ Υ as

F1c1 � F1c1(q) � Dc1
(q) + ℏ1(q) � Dc1

+ ℏ1, c1(q) � c1,

F2c2 � F2c2(q) � Ec2
(q) + ℏ2(q) � Ec2

+ ℏ2, c2(q) � c2,

F3c3 � F3c3(q) � Fc3
(q) + ℏ3(q) � Fc3

+ ℏ3, c3(q) � c3.

(127)

*en, we have the following main two cases:

(1) If A1(c1, c2, c3)(q) is the maximum term in
A1(c1, c2, c3)(q), A2(c1, c2, c3)(q)􏼈 􏼉, then from
(122), (123), and (127), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ

c1 − c2
����

����

+c2 − c3
����

+c3 − c1
����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

�����

1 + k
2
1

􏽱

e
i cot k1 ,

(128)

For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy the hypothesis of *eorem 2 with μ � β1 and
β2 � 0 in (31). *en, the given three UTIEs i.e., (4.1)
have a unique common solution in Υ.

(2) If A2(c1, c2, c3)(q) is the maximum term in
A1(c1, c2, c3)(q), A2(c1, c2, c3)(q)􏼈 􏼉, then from
(123), we have that

M c1, c2, c3( 􏼁 � A2 c1, c2, c3( 􏼁(q). (129)

*en, there are furthermore eight subcases arising:

(i) If a1(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a1(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ

c1 − c2
����

����

+Ec2
+ ℏ2 − c2

�����

+Ec2
+ ℏ2 − c1

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

�����

1 + k
2
1

􏽱

e
i cot k1 ,

(130)
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For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy the hypothesis of *eorem 2 with μ � β2
and β1 � 0 in (31). *en, the given three UTIEs,
i.e., (4.1) have a unique common solution in Υ.

(ii) If a2(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a2(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ 2Dc1
+ ℏ1 − c2

�����􏼒 􏼓
2 �����

1 + k
2
1

􏽱

e
i cot k1 ,

(131)

For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy the hypothesis of *eorem 2 with μ � β2
and β1 � 0 in (5). *en, the given three UTIEs, i.e.,
(120) have a unique common solution in Υ.

(iii) If a3(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a3(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ 2Dc1
+ ℏ1 − c2

�����􏼒 􏼓
2 �����

1 + k
2
1

􏽱

e
i cot k1 ,

(132)

For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy the hypothesis of *eorem 2 with μ � β2
and β1 � 0 in (5). *en, the given three UTIEs, i.e.,
(120) have a unique common solution in Υ.

(iv) If a4(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a4(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ 2Ec2
+ ℏ2 − c3

�����􏼒 􏼓
2 �����

1 + k
2
1

􏽱

e
i cot k1 ,

(133)

For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy the hypothesis of *eorem 2 with μ � β2
and β1 � 0 in (5). *en, the given three UTIEs, i.e.,
(120) have a unique common solution in Υ.

(v) If a5(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a5(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ 2Ec2
+ ℏ2 − c3

�����􏼒 􏼓
2 �����

1 + k
2
1

􏽱

e
i cot k1 ,

(134)

For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy all the conditions of *eorem 2 with μ � β2
and β1 � 0 in (5). *en, the given three UTIEs, i.e.,
(120) have a unique common solution in Υ.

(vi) If a6(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a6(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ

4Dc1
+ ℏ1 − c1

�����

·Ec2
+ ℏ2 − c2

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2
�����

1 + k2
1

􏽱

e
i cot k1􏼒 􏼓

2

1 + 2c1 − c2
����􏼐 􏼑

2
�����

1 + k
2
1

􏽱

e
i cot k1

,

(135)

For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy all the conditions of *eorem 2 with μ � β2
and β1 � 0 in (5). *en, the given three UTIEs, i.e.,
(120) have a unique common solution in Υ.

(vii) If a7(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a7(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ

4Ec2
+ ℏ2 − c2

�����

·Fc3
+ ℏ3 − c3

�����
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2
�����

1 + k2
1

􏽱

e
i cot k1􏼒 􏼓

2

1 + 2Dc1
+ ℏ1 − c3

�����􏼒 􏼓
2 �����

1 + k
2
1

􏽱

e
i cot k1

,

(136)

For all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy all the conditions of *eorem 2 with μ � β2

and β1 � 0 in (5). *en, the given three UTIEs, i.e.,
(120) have a unique common solution in Υ.
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(viii) If a8(c1, c2, c3)(q) is the maximum term in (125),
then A2(c1, c2, c3)(q) � a8(c1, c2, c3)(q); now,
from (122), (127), and (129), we have that

G F1c1, F2c2, F3c3( 􏼁≤ μ

4Fc3
+ ℏ3 − c3

�����

·Dc1
+ ℏ1 − c1

�����

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2
�����

1 + k2
1

􏽱

e
i cot k1􏼒 􏼓

2

1 + 2Ec2
+ ℏ2 − Fc3

− ℏ3
�����􏼒 􏼓

2 �����

1 + k
2
1

􏽱

e
i cot k1

,

(137)

for all c1, c2, c3 ∈ Υ. *us, the maps F1, F2, and F3
satisfy all the conditions of *eorem 2 with μ � β2
and β1 � 0 in (5). *en, the given three UTIEs, i.e.,
(120) have a unique common solution in Υ. □

5. Conclusions

We have established a generalized CFP-theorem in complex-
valued Gb-metric spaces for three self-mappings. In this
result, we have used a generalized rational contraction
condition and proved a unique CFP-theorem. To justify our
result, we presented an illustrative example in the said space
by using three self-maps. Also, we present an application of
integral equations to get the existing result for a common
solution to support our work. By using this concept, one can
prove different contractive-type FP and CFP results for
many self-mappings in complex-valued Gb-metric spaces
with different types of integral operators.
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For different premodular, which is a generalization of modular, defined by weighted Orlicz sequence space and its prequasi
operator ideal, we have examined the existence of a fixed point for both Kannan contraction and nonexpansive mappings acting
on these spaces. Some numerous numerical experiments and practical applications are presented to support our results.

1. Introduction

-e spaces of all, bounded, r-absolutely summable, and null
sequences of real numbers will be denoted throughout the
article by RZ+

, l∞, lr, and c0, respectively, where Z
+ is the

set of nonnegative integers.

Definition 1. [1, 2] An Orlicz function is a function
M: [0,∞)⟶ [0,∞), which is continuous and strictly in-
creasing with M(0) � 0, M(v)> 0 for v> 0, and
M(v)⟶∞, as v⟶∞.

Definition 2. An Orlicz function M is said to satisfy
Δ2-condition for every values of v≥ 0, if there is k> 0, such
that M(2v)≤ kM(v). *e Δ2-condition is equivalent to
M(lv)≤ klM(v) for every values of l> 1 and v.

Lindentrauss and Tzafriri [3] utilized the idea of a convex
Orlicz function to define Orlicz sequence space:

lM � v ∈ RZ+

: ρ(ωv)<∞for someω> 0􏽮 􏽯,where ρ(v)

� 􏽘
∞

y�0
M vy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓.
(1)

(lM, ‖.‖) is a Banach space with the Luxemburg norm:

‖v‖ � inf ω> 0: ρ
v

ω
􏼒 􏼓≤ 1􏼚 􏼛. (2)

Every Orlicz sequence space contains a subspace that is
isomorphic to c0 or lr, for some 1≤ r<∞ ([4], -eorem
4.a.9). -e space of all bounded linear operators from a
Banach space X into a Banach space Y will be denoted by
B(X,Y) and if X � Y, we write B(X).
ex � 0, 0, . . . , 1, 0, 0, . . .{ }, while 1 lies in the xth place, with
x ∈ Z+.

Definition 3. [5] An s-number function is a mapping from
B(X,Y) into [0,∞)Z

+

which transforms every map
H ∈B(X,Y) to (sx(H))∞x�0 satisfying the next conditions:

(i) ‖H‖ � s0(H)≥ s1(H)≥ s2(H)≥ · · · ≥ 0, for every
H ∈B(X,Y),

(ii) sy+x− 1(H1 + H2)≤ sy(H1) + sx(H2), for every
H1, H2 ∈B(X,Y), and y, x ∈ Z+,

(iii) ideal property: sx(UTH) ≤ ‖U‖sx(T)‖H‖, for every
H ∈B(X0,X), T ∈B(X,Y) and U ∈B(Y,Y0),
where X0 and Y0 are any two Banach spaces,
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(iv) for H ∈B(X,Y) and ω ∈ R, we have
sx(ωH) � |ω|sx(H),

(v) rank property: If rank(H)≤x, then sx(H) � 0, for
all H ∈B(X,Y),

(vi) norming property: sl≥x(Ix) � 0 or sl<x(Ix) � 1,
where Ix explains the unit map on the x-dimensional
Hilbert space lx

2 .

-e xth approximation number, αx(W), is defined as

αx(H) � inf ‖H − Y‖: Y ∈B(X,Y) and rank(Y)≤x{ }.

(3)

Notations 1. -e sets SW, SW(X,Y), SappW , and S
app
W (X,Y) (cf.

[6]) are defined as follows:

SW ≔ SW(X,Y)􏼈 􏼉,where SW(X,Y)

≔ H ∈B(X,Y): sx(H)( 􏼁
∞
x�0 ∈W(􏼈 􏼉.Also

S
app
W ≔ S

app
W (X,Y)􏼈 􏼉,where S

app
W (X,Y)

≔ H ∈B(X,Y): αx(H)( 􏼁
∞
x�0 ∈W(􏼈 􏼉.

(4)

Fixed point theory, Banach space geometry, normal
series theory, ideal transformations, and approximation
theory are all examples of ideal operator theorems and
summability. Faried and Bakery [6] established the concept
of a prequasi operator ideal that encapsulates the quasi
operator ideal. Bakery and Abou Elmatty investigated the
sufficient (but not necessary) conditions on l(c, r) that
allowed Sl(c,r) to build a simple Banach prequasi operator
ideal in [7]. For varied weights and powers, the prequasi
operator ideal S

app
l(c,r) was once rigorously contained and

small prequasi operator ideal. Several mathematicians were
able to investigate many extensions for contraction maps
defined on the space or on the space itself thanks to the
Banach fixed point theorem [8]. Kannan [9] investigated an
example of a class of operators that perform the same fixed
point actions as contractions but are not continuous.
Kannan operators in modular vector spaces have only been
described by Ghoncheh [10]. He demonstrated the existence
of a Kannan mapping fixed point in complete modular
spaces with Fatou property. For more details on Kannan’s
fixed point theorems and modular vector spaces (see
[11–14]). Bakery and Mohamed [15] introduced the concept
of the prequasi norm on l((ra)) with variable exponent in
(0, 1]. -ey looked at the Fatou property of different pre-
quasi norms on l((ra)), as well as the sufficient requirements
on l((ra)) with the definite prequasi norm to construct
prequasi Banach and closed space. -ey also demonstrated
the existence of a fixed point of Kannan prequasi norm
contraction maps on l((ra)) and the prequasi Banach op-
erator ideal constructed by l((ra)) and s-numbers. Recently,
Reich and Zaslavski [16] showed the existence of a unique
fixed point for nonlinear contractive self-mappings of a
nonbounded closed subset of a Banach space.-ey extended
this conclusion to contractive mappings, which map into a
Banach space a closed subset of the space. For nonexpansive

mappings defined by an intersection of a finite number of
closed bounded and convex nonempty subsets in Banach
spaces, Dehici and Redjel [17] obtained certain fixed point
results. According to Bendahmane and Bendoukha [18], a
(p, q)-metric space is a generalization of the metric and
S-metric spaces. -ey equipped them a Hausdorff topology
and specified several fundamental features. Several well-
known findings from fixed point theory are generalized to
these new spaces. -e paper is structured as follows: we
present conditions on the weighted Orlicz sequence space
(lM(λ))μ, under definite prequasi norm of μ to construct
prequasi Banach and closed sequence space in Section 3.-e
Fatou property of lM(λ) has been investigated for various
prequasi norms. In Section 4, the existence of fixed point for
Kannan μ-contraction mapping acting on (lM(λ))μ
equipped with different prequasi norms are presented.
Several numerical experiments are shown to demonstrate
our results. In Section 5, the conditions for which the space
(lM(λ))μ satisfies the property (R) and has the μ-normal
structure property are presented. -e existence of a fixed
point of Kannan prequasi norm nonexpansive mapping on
(lM(λ))μ has been given. In Section 6, we explain the ex-
istence of a fixed point of Kannan prequasi norm contraction
mapping in the prequasi Banach operator ideal S(lM(λ))μ

. In
Section 7, we give some applications to the existence of
solutions of summable equations.

2. Definitions and Preliminaries

Here and after, the space of all functions μ: Y⟶ [0,∞) is
[0,∞)Y, θ is the zero vector of Y, [x/2] is the integral part of
x/2, F is the space of finite sequences, and B is the class of
each bounded linear mapping between any two Banach
spaces. Nakano [19] introduced the concept of modular
vector spaces.

Definition 4. Let Y be a vector space. A function μ ∈ [0,∞]Y

is called modular if the following conditions hold:

(i) If β ∈ Y, β � θ⇔ μ(β) � 0 and μ(β)≥ 0,
(ii) if β ∈ Y and |ω| � 1, then μ(ωβ) � μ(β),
(iii) assume β, η ∈ Y and ω ∈ [0, 1], then

μ(ωβ + (1 − ω)η)≤ μ(β) + μ(η).

-e concept of premodular vector spaces, which is more
general than modular vector spaces.

Definition 5. [6]-e linear space of sequences Y is said to be
a special space of sequences (sss), if:

(1) ex􏼈 􏼉x∈Z+ ⊆Y,
(2) Y is solid, i.e., for β � (βx) ∈ RZ+

, η � (ηx) ∈ Y and
|βx|≤ |ηx|, for all x ∈Z+, then β ∈ Y,

(3) If (βx)∞x�0 ∈ Y, then (β[x/2])
∞
x�0 ∈ Y.

Definition 6. [6] A subclass Yμ of Y is called a premodular
(sss), if we have μ ∈ [0,∞)Y that satisfies the following
conditions:
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(i) When β ∈ Y, β � θ⇔μ(β) � 0,
(ii) For every β ∈ Y and ω ∈ R, then there is B≥ 1 with

μ(ωβ)≤B|ω|μ(β),
(iii) μ(β + η)≤ J(μ(β) + μ(η)), for all β, η ∈ Y, holds for

some J≥ 1,
(iv) If x ∈Z+ and |βx|≤ |ηx|, then μ((βx))≤ μ((ηx)),
(v) For some J0 ≥ 1, we have

μ((βx))≤ μ((β[x/2]))≤ J0μ((βx)),
(vi) F � Yμ,
(vii) *ere exists ς> 0 such that

μ(ω, 0, 0, 0, . . .)≥ ς|ω|μ(1, 0, 0, 0, . . .), for all ω ∈ R.

Example 1. *e function μ(β) � (􏽐x∈Z+

���
|βx|5

􏽰
)5 is a pre-

modular (not a modular) on the vector space l1/5. As for every
β, η ∈ l1/5, one has

μ
β + η
2

􏼠 􏼡 � 􏽘
x ∈Z+

�������
βx + ηx

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

5

􏽳

⎛⎝ ⎞⎠

5

≤ 8(μ(β) + μ(η)). (5)

Definition 7. [15] Suppose Y is a (sss). -e function
μ ∈ [0,∞)Y is said to be prequasi norm on Y, if it holds the
settings (i), (ii), and (iii) of Definition 6.

Theorem 1. [15] Let Y be a premodular (sss), then it is
prequasi normed (sss).

Theorem 2. [15] Y is a prequasi normed (sss), when it is
quasi-normed (sss).

Definition 8. [20]

(i) *e prequasi norm μ on Xμ is said to be μ-convex,
when μ(ωβ + (1 − ω)η)≤ωμ(β) + (1 − ω)μ(η), for
all ω ∈ [0, 1] and β, η ∈ Xμ.

(ii) βx􏼈 􏼉x∈Z+⊆(X)μ is μ-convergent to β ∈ (X)μ, if and
only if, limx⟶∞ μ(βx − β) � 0. If the μ-limit exists,
hence it is unique.

(iii) βx􏼈 􏼉x∈Z+⊆(X)μ is μ-Cauchy, if limx,h⟶∞
μ(βx − βh) � 0.

(iv) Φ ⊂ (X)μ is μ-closed, if for every μ-converging
βx􏼈 􏼉x∈Z+ ⊂ Φ to β, then β ∈ Φ.

(v) Φ ⊂ (X)μ is μ-bounded, if
υμ(Φ) � sup μ(β − η): β, η ∈ Φ􏼈 􏼉<∞.

(vi) *e μ-ball of radius r≥ 0 and center β, for every
β ∈ (X)μ, is defined as

Bμ(β, r) � η ∈ (X)μ: μ(β − η)≤ r􏽮 􏽯. (6)

(vii) A prequasi norm μ on X satisfies the Fatou property,
if for every sequence ηx􏼈 􏼉⊆(X)μ with
limx⟶∞ μ(ηx − η) � 0 and any β ∈ (X)μ, we have
μ(β − η)≤ supminfx≥m μ(β − ηx).

Recall that the μ-balls are μ-closed under the Fatou
property.

Definition 9. [21] A subclass G of B is called an operator
ideal, if every vector G(X,Y) � G∩B(X,Y) holds the
following conditions:

(i) Ic ∈ G, where c indicates Banach space of one
dimension.

(ii) *e space G(X,Y) is linear over R.
(iii) If H ∈B(X0,X), T ∈ G(X,Y), and

V ∈B(Y,Y0), then VTH ∈ G(X0,Y0), where X0
and Y0 are normed spaces.

Recall that the quasi operator ideals are a special case of
the prequasi operator ideals.

Definition 10. [6] A function Υ ∈ [0,∞)G is said to be a
prequasi norm on the ideal G if the following conditions
verify:

(1) Suppose H ∈ G(X,Y), Υ(H)≥ 0 and Υ(H) � 0, if
and only if, H � 0,

(2) there exists D≥ 1 such that Υ(ωH)≤D|ω|Υ(H), for
every H ∈ G(X,Y) and ω ∈ R,

(3) we have J≥ 1 so that
Υ(H1 + H2)≤ J[Υ(H1) + Υ(H2)], for all
H1, H2 ∈ G(X,Y),

(4) we get ω≥ 1 so that if H ∈B(X0,X), T ∈ G(X,Y),
and V ∈B(Y,Y0), then Υ(VTH) ≤ω‖V‖Υ(T)‖H‖.

Theorem 3. [15] *e function Υ(H) � μ(sx(H))∞x�0 is a
prequasi norm on SYμ

, when Yμ is a premodular (sss).

Theorem 4. [6] If Υ is a quasi norm on the idealG, then Υ is
a prequasi norm on the ideal G.

Lemma 1. [22, 23] Assume M: (0,∞)⟶ [0,∞) is a
continuous function and strictly increasing with
limx⟶0 M(x) � 0, and if the functions M(x) and
ln(M(ex)) are convex on [0,∞), then

M
− 1

􏽘

∞

x�0
λxM βx + ηx( 􏼁⎛⎝ ⎞⎠≤M

− 1
􏽘

∞

x�0
λxM βx( 􏼁⎛⎝ ⎞⎠

+ M
− 1

􏽘

∞

x�0
λxM ηx( 􏼁⎛⎝ ⎞⎠.

(7)

λx, βx, ηx ∈ [0,∞), for all x ∈Z+ and 􏽐
∞
x�0 λx � 1.

3. Main Results

3.1. Properties of Different Prequasi Norms. In this section,
we have studied some topological structures and the Fatou
property of the weighted Orlicz sequence space, lM(λ), for
various prequasi norms.

Lemma 2. If M is a concave Orlicz function, then
M(x + y)≤M(x) + M(y), for all x, y ∈ [0,∞).

Proof. It is easy so omitted. □
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Theorem 5. (lM(λ))μ, where μ(β) � 􏽐
∞
y�0 λyM(|βy|), for

each β ∈ lM(λ), is a premodular (sss), ifM is a concave Orlicz
function or convex Orlicz function satisfying Δ2-condition.

Proof. Suppose M is a convex Orlicz function satisfying
Δ2-condition. First, we must demonstrate that lM(λ) is a
(sss):

(1)

(i) Let β, t ∈ lM(λ). AsM is a strictly increasing and
convex function satisfying Δ2-condition, we get

μ(β + η) � 􏽘
∞

y�0
λyM βy + ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤
k

2
􏽘

∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + 􏽘
∞

y�0
λyM ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎡⎢⎢⎣ ⎤⎥⎥⎦

�
k

2
(μ(β) + μ(η))<∞,

(8)

this implies β + η ∈ lM(λ).
(ii) Suppose ω ∈ R and β ∈ lM(λ). Since M satisfies
Δ2-condition, we have

μ(ωβ) � 􏽘
∞

y�0
λyM ωβy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤ k|ω| 􏽘
∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤D|ω|μ(β)<∞.

(9)

So ωβ ∈ lM(λ). -erefore, from conditions 1 (i)
and (ii), one has lM(λ) is linear. We have
ey ∈ lM(λ), for every y ∈Z+, as

(2) Let |βy|≤ |ηy|, for every y ∈ Z+ and η ∈ lM(λ).
Since M is a nondecreasing function, then

μ(β) � 􏽘
∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤ 􏽘
∞

y�0
λyM ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � μ(η)<∞,

(10)

one has β ∈ lM(λ).
(3) Assume (βy) ∈ lM(λ), we get

μ β[y/2]􏼐 􏼑􏼐 􏼑 � 􏽘
∞

y�0
λyM β[y/2]

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

≤ 2 􏽘

∞

y�0
λyM βy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 � 2μ βy􏼐 􏼑􏼐 􏼑<∞,

(11)

then (β[y/2]) ∈ lM(λ). Second, to prove that the
functional μ on lM(λ) is a premodular:

(i) Obviously, μ(β)≥ 0 and μ(β) � 0⇔β � θ.
(ii) -ere are D � max 1, k{ }≥ 1 with

μ(ωβ)≤D|ω|μ(β), for every β ∈ lM(λ) and
ω ∈ R.

(iii) -ere exists J � max 1, k/2{ }≥ 1 with
μ(β + η)≤ J(μ(β) + μ(η)), for every
β, η ∈ lM(λ).

(iv) Follows the proof part (2).
(v) Follows from the proof part (3) that J0 � 2≥ 1.
(vi) Obviously, F � lM(λ).
(vii) -ere exists 0< ς≤M0(|ω|)/|ω|M0(1), for ω≠ 0

or ς> 0, for ω � 0 so that μ(ω, 0, 0, 0, . . .)

≥ ς|ω|μ(1, 0, 0, 0, . . .).

If M is a concave Orlicz function. By applying Lemma 2
and the parallel proof follows. □

Theorem 6. If M is a concave Orlicz function or convex
Orlicz function satisfying Δ2-condition, then (lM(λ))μ is a
prequasi Banach (sss), where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for

each β ∈ lM(λ).

Proof. Suppose M is a convex Orlicz function satisfying
Δ2-condition. By using -eorem 5, the space (lM(λ))μ is a
premodular (sss). From -eorem 1, the space (lM(λ))μ is a
prequasi normed (sss). To prove that (lM(λ))μ is a prequasi
Banach (sss), let βr � (βr

y)
∞
y�0 be a Cauchy sequence in

(lM(λ))μ. -erefore, for all ϵ ∈ (0, 1), we have that for every
r, t≥ r0, we get

μ βr
− βt

􏼐 􏼑 � 􏽘

∞

y�0
λyM βr

y − βt
y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓< ϵ. (12)

Hence, for r, t≥ r0 and y ∈ Z+, one has |βr
y − βt

y|< ϵ
-en (βt

y) is a Cauchy sequence in R, for fixed y ∈ Z+. -is
gives limt⟶∞β

t
y � β0y, for constant y ∈ Z+. -erefore,

μ(βr − β0)< ϵ, for all r≥ r0. To investigate that β0 ∈ lM(λ),
one has μ(β0) � μ(β0 − βr + βr)≤ J(μ(βr − β0)
+μ(βr))<∞, so β0 ∈ lM(λ). -is implies that (lM(λ))μ is a
prequasi Banach (sss). If M is a concave Orlicz function. By
applying Lemma 2 and the parallel proof follows. □

Theorem 7. If M is a concave Orlicz function or convex
Orlicz function satisfying Δ2-condition, then (lM(λ))μ is a
prequasi closed (sss), where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for every

β ∈ lM(λ).

Proof. Let M be a convex Orlicz function satisfying
Δ2-condition. According to -eorem 5, the space (lM(λ))μ
is a premodular (sss). From -eorem 1, the space (lM(λ))μ
is a prequasi normed (sss). To prove that (lM(λ))μ is a
prequasi closed (sss), suppose βr � (βr

y)
∞
y�0 ∈ (lM(λ))μ and

limr⟶∞ μ(βr − β0) � 0, hence for all ϵ ∈ (0, 1), one has
r0 ∈ Z

+ so that for every r≥ r0, we have

μ βr
− β0􏼐 􏼑 � 􏽘

∞

y�0
λyM βr

y − β0y
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓< ϵ. (13)

-erefore, for r≥ r0 and y ∈Z+, one has |βr
y − β0y|< ϵ.

Hence, (βr
y) is a convergent sequence in R, for constant

y ∈Z+. So, limr⟶∞β
r
y � β0y, for constant y ∈Z+. Finally to

show that β0 ∈ lM(λ), one has
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μ β0􏼐 􏼑 � μ β0 − βr
+ βr

􏼐 􏼑≤ J μ βr
− β0􏼐 􏼑 + μ βr

( 􏼁􏼐 􏼑<∞. (14)

Hence, HTML translation failed. -is implies that
(lM(λ))μ is a prequasi closed (sss). If M is a concave Orlicz
function, by applying Lemma 2 and the parallel proof
follows. □

Theorem 8. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, then the function

μ(β) � M− 1(􏽐
∞
y�0 λyM(|βy|)) verifies the Fatou property, for

all β ∈ lM(λ).

Proof. Assume that ηb􏼈 􏼉⊆(lM(λ))μ such that limb⟶∞ μ
(ηb − η) � 0. As the space (lM(λ))μ is a prequasi closed
space, one has t ∈ (lM(λ))μ. Hence, for every β ∈ (lM(λ))μ,
from Lemma 1, we have

μ(β − η) � M
− 1

􏽘

∞

y�0
λyM βy − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠≤M
− 1

􏽘

∞

y�0
λyM βy − ηb

y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠ + M
− 1

􏽘

∞

y�0
λyM ηb

y − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎛⎝ ⎞⎠

≤ supj inf
b≥j

μ β − ηb
􏼐 􏼑.

(15)

Hence, μ satisfies the Fatou property. □

Theorem 9. If M is a concave Orlicz function, then the
function μ(β) � 􏽐

∞
y�0 λyM(|βy|) holds the Fatou property, for

all β ∈ lM(λ).

Proof. Suppose ηb􏼈 􏼉⊆(lM(λ))μ so that limb⟶∞
μ(ηb − η) � 0. As the space (lM(λ))μ is a prequasi closed
space; hence, η ∈ (lM(λ))μ. As M is continuous, concave
and M(0) � 0. -erefore, for every β ∈ (lM(λ))μ, one has

μ(β − η) � 􏽘
∞

y�0
λyM βy − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤ 􏽘
∞

y�0
λyM βy − ηb

y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+ 􏽘
∞

y�0
λyM ηb

y − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤ supj inf
b≥j

μ β − ηb
􏼐 􏼑.

(16)

Hence, μ satisfies the Fatou property. □

Theorem 10. *e function μ(β) � 􏽐
∞
y�0 λyM(|βy|) does not

satisfy the Fatou property, for all β ∈ lM(λ), if M is a strictly
convex Orlicz function satisfying Δ2-condition.

Proof. Since M is a strictly convex Orlicz function satisfying
Δ2-condition, then there exists k> 2 such that
2M(u)<M(2u)< kM(u), for all u≥ 0. Let the conditions be
fulfilled and ηb􏼈 􏼉⊆(lM(λ))μ with limb⟶∞ μ(ηb − η) � 0. As
the space (lM(λ))μ is a prequasi closed space; hence,
η ∈ (lM(λ))μ. Since M is continuous, then for any
β ∈ (lM(λ))μ, we have

μ(β − η) � 􏽘

∞

y�0
λyM βy − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤
k

2
􏽘

∞

y�0
λyM βy − ηb

y

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + 􏽘

∞

y�0
λyM ηb

y − ηy

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓⎡⎢⎢⎣ ⎤⎥⎥⎦≤
k

2
supj inf

b≥j
μ β − ηb

􏼐 􏼑. (17)

-erefore, μ does not hold the Fatou property. □

Example 2. For every β ∈ lM(λ), the function μ(β) � ln(1 +

􏽐
∞
y�0 λy(e|βy | − 1)) is a prequasi norm, not quasi, and not a

norm.

Example 3. For all β ∈ lM(λ), the function
μ(β) � (􏽐

∞
y�0 λy

���
|βy|

􏽱
)2 is a prequasi norm, quasi norm, and

not a norm.

Example 4. *e function μ(β) � inf κ> 0: 􏽐
∞
y�0 λyM􏽮

(|βy|/κ)≤ 1} is a prequasi norm, a quasi norm, and a norm
on lM(λ).

4. Kannan μ-Contraction Operator

We now define Kannan μ-Lipschitzian mapping acting on
(lM(λ))μ. -e sufficient conditions for a fixed point of
Kannan contraction mapping on (lM(λ))μ under various
prequasi norms are investigated.

Definition 11. An operator H: (lM(λ))μ⟶ (lM(λ))μ is
called a Kannan μ-Lipschitzian, if there exists ]≥ 0, so that

μ(Hβ − Hη)≤ ](μ(Hβ − β) + μ(Hη − η)), (18)

for every β, η ∈ (lM(λ))μ.

(1) -e operator H is said to be Kannan μ-contraction,
when ] ∈ [0, 1/2).
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(2) -e operator H is said to be Kannan μ-non-
expansive, whenever ] � 1/2.

A vector β ∈ (lM(λ))μ is called a fixed point of H, when
H(β) � β.

Theorem 11. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, and

H: (lM(λ))μ⟶ (lM(λ))μ is Kannan μ-contraction map-
ping, where μ(β) � M− 1(􏽐

∞
y�0 λyM(|βy|)), for all

β ∈ lM(λ); hence, H has a unique fixed point.

Proof. Assume that β ∈ lM(λ), one has Htβ ∈ lM(λ). Since
H is a Kannan μ-contraction mapping, we have

μ H
t+1β − H

tβ􏼐 􏼑≤ ] μ H
t+1β − H

tβ􏼐 􏼑 + μ H
tβ − H

t− 1β􏼐 􏼑􏼐 􏼑⇒

μ H
t+1β − H

tβ􏼐 􏼑≤
]

1 − ]
μ H

tβ − H
t− 1β􏼐 􏼑≤

]
1 − ]

􏼒 􏼓
2
μ H

t− 1β − H
t− 2β􏼐 􏼑≤ · · · ≤

]
1 − ]

􏼒 􏼓
t

μ(Hβ − β).

(19)

-erefore, for every t, v ∈Z+ with v> t, then we get

μ H
tβ − H

vβ􏼐 􏼑≤ ] μ H
tβ − H

t− 1β􏼐 􏼑 + μ H
vβ − H

v− 1β􏼐 􏼑􏼐 􏼑

≤ ]
]

1 − ]
􏼒 􏼓

t− 1
+

]
1 − ]

􏼒 􏼓
v− 1

􏼠 􏼡μ(Hβ − β).

(20)

So, Htβ􏼈 􏼉 is a Cauchy sequence in (lM(λ))μ. As the
space (lM(λ))μ is prequasi Banach space. -erefore, there is
η ∈ (lM(λ))μ such that limt⟶∞Htβ � η. To prove that
Hη � η. As μ holds the Fatou property, we obtain

μ(Hη − η)≤ supp inf
t≥p

μ H
t+1β − H

tβ􏼐 􏼑

≤ supp inf
t≥p

]
1 − ]

􏼒 􏼓
t

μ(Hβ − β) � 0,

(21)

hence Hη � η. Hence, η is a fixed point of H. To prove the
uniqueness of the fixed point. For different fixed points
ζ, η ∈ (lM(λ))μ of H. We have that

μ(ζ − η)≤ μ(Hζ − Hη)≤ ](μ(Hζ − ζ) + μ(Hη − η)) � 0.

(22)

-erefore, ζ � η. □

Corollary 1. Let M be a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) be convex, and
H: (lM(λ))μ⟶ (lM(λ))μ be Kannan μ-contraction
mapping, with μ(β) � M− 1(􏽐

∞
y�0 λyM(|βy|)), for every

β ∈ lM(λ), then H has a unique fixed point ζ such that
μ(Htβ − ζ)≤ ](]/1 − ])t− 1μ(Hβ − β).

Proof. From -eorem 11, there is a unique fixed point ζ of
H. Hence, one has

μ H
tβ − ζ􏼐 􏼑 � μ H

tβ − Hζ􏼐 􏼑≤ ] μ H
tβ − H

t− 1β􏼐 􏼑 + μ(Hζ − ζ)􏼐 􏼑 � ]
]

1 − ]
􏼒 􏼓

t− 1
μ(Hβ − β). (23)

□

Theorem 12. Suppose M is a concave Orlicz function, and
H: (lM(λ))μ⟶ (lM(λ))μ is Kannan μ-contraction map-
ping, where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for all β ∈ lM(λ); hence,

H has a unique fixed point.

Proof. It is easy so omitted. □

Definition 13. Assume (lM(λ))μ is a pr-quasi normed (sss),
H: (lM(λ))μ⟶ (lM(λ))μ and ζ ∈ (lM(λ))μ. *e operator
H is called μ-sequentially continuous at ζ, if and only if, when
limy⟶∞ μ(βy − ζ) � 0, then limy⟶∞ μ(Hβy − Hζ) � 0.

Theorem 14. Let M be a strictly convex Orlicz function
satisfying Δ2-condition, and H: (lM(λ))μ⟶ (lM(λ))μ,
where μ(β) � 􏽐

∞
y�0 λyM(|βy|), for every β ∈ lM(λ). *e el-

ement η ∈ (lM(λ))μ is the unique fixed point of H, if the next
conditions are satisfied:

(i) H is Kannan μ-contraction mapping,

(ii) H is μ-sequentially continuous at a point
η ∈ (lM(λ))μ,

(iii) *ere exists β ∈ (lM(λ))μ such that the sequence of
iterates Htβ􏼈 􏼉 has a subsequence Htpβ􏼈 􏼉 converging
to η.

Proof. Since M is a strictly convex Orlicz function satisfying
Δ2-condition, then there exists k> 2 such that
2M(u)<M(2u)< kM(u), for all u≥ 0. Let the conditions be
verified. If η is not a fixed point of H, then Hη≠ η. By the
conditions (ii) and (iii), we have

lim
tp⟶∞

μ H
tpβ − η􏼐 􏼑 � 0,

lim
tp⟶∞

μ H
tp+1β − Hη􏼐 􏼑 � 0.

(24)

As the operator H is Kannan μ-contraction, one can see
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0< μ(Hη − η) � μ Hη − H
tp+1β􏼐 􏼑 + H

tpβ − η􏼐 􏼑 + H
tp+1β − H

tpβ􏼐 􏼑􏼐 􏼑

≤
k
2

4
μ H

tp+1β − Hη􏼐 􏼑 +
k
2

4
μ H

tpβ − η􏼐 􏼑 +
k

2
]

]
1 − ]

􏼒 􏼓
tp− 1

μ(Hβ − β).

(25)

Since tp⟶∞, this gives a contradiction. Hence, η is a
fixed point of H. To prove that the uniqueness of the fixed
point η. For different fixed points η, ζ ∈ (lM(λ))μ of H.
-erefore, one has

μ(η − ζ)≤ μ(Hη − Hζ)≤ ](μ(Hη − η) + μ(Hζ − ζ)) � 0.

(26)

So, η � ζ. □

Example 15. Assume H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) �

�
t3

√
+

�
t4

√
and μ(β) � 􏽐

∞
y�0 λyM(|βy|), for all

β ∈ lM(λ) and

H(β) �

β
18

, μ(β) ∈ [0, 1),

β
20

, μ(β) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

As for each β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
18

􏼠 􏼡≤
1
��
174

√ μ
17β1
18

􏼠 􏼡 + μ
17β2
18

􏼠 􏼡􏼠 􏼡

�
1
��
174

√ μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(28)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
20

−
β2
20

􏼠 􏼡≤
1
��
194

√ μ
19β1
20

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
1
��
194

√ μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(29)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we obtain

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
20

􏼠 􏼡≤
1
��
174

√ μ
17β1
18

􏼠 􏼡 +
1
��
194

√ μ
19β2
20

􏼠 􏼡

≤
1
��
174

√ μ
17β1
18

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
1
��
174

√ μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(30)

Hence, the operator H is Kannan μ-contraction. As μ
verifies the Fatou property. From -eorem 11, the operator
H has a unique fixed point θ ∈ (lM(λ))μ.

Assume β(y)
􏽮 􏽯⊆(lM(λ))μ is such that limy⟶∞ μ

(β(y) − β(0)) � 0, where
β(0) ∈ (lM(λ))μ with μ(β(0)) � 1.
As the prequasi norm μ is continuous, one can see

lim
tp⟶∞

μ Hβ(y)
− Hβ(0)

􏼐 􏼑 � lim
tp⟶∞

μ
β(y)

18
−
β(0)

20
􏼠 􏼡

� μ
β(0)

180
􏼠 􏼡> 0.

(31)

-erefore, H is not μ-sequentially continuous at β(0).
Hence, the operator H is not continuous at β(0).

Let μ(β) � [􏽐
∞
y�0 λyM(|βy|)]4, for all β ∈ lM(λ).

As for all β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
18

􏼠 􏼡≤
8
17

μ
17β1
18

􏼠 􏼡 + μ
17β2
18

􏼠 􏼡􏼠 􏼡

�
8
17

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(32)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
20

−
β2
20

􏼠 􏼡≤
8
19

μ
19β1
20

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
8
19

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(33)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we get

μ Hβ1 − Hβ2( 􏼁 � μ
β1
18

−
β2
20

􏼠 􏼡≤
8
17

μ
17β1
18

􏼠 􏼡 +
8
19

μ
19β2
20

􏼠 􏼡

≤
8
17

μ
17β1
18

􏼠 􏼡 + μ
19β2
20

􏼠 􏼡􏼠 􏼡

�
8
17

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(34)

So, the operator H is Kannan μ-contraction and Ht(β) �

β/18t μ(β) ∈ [0, 1)

β/20t μ(β) ∈ [1,∞)
􏼨

Clearly, H is μ-sequentially continuous at θ ∈ (lM(λ))μ
and Htβ􏼈 􏼉 contains a subsequence Htpβ􏼈 􏼉 converging to θ.
From -eorem 14, then θ ∈ (lM(λ))μ is the unique fixed
point of H.
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Example 5. Assume H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) � t2 and μ(β) �

�������������
􏽐
∞
y�0 λyM(|βy|)

􏽱
, for all β ∈ lM(λ)

and

H(β) �

β
4

, μ(β) ∈ [0, 1),

β
5

, μ(β) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(35)

As for each β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
4

􏼠 􏼡≤
1
3

μ
3β1
4

􏼠 􏼡 + μ
3β2
4

􏼠 􏼡􏼠 􏼡

�
1
3

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(36)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
5

−
β2
5

􏼠 􏼡≤
1
4

μ
4β1
5

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
1
4

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(37)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we get

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
5

􏼠 􏼡≤
1
3
μ

3β1
4

􏼠 􏼡 +
1
4
μ

4β2
5

􏼠 􏼡

≤
1
3

μ
3β1
4

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
1
3

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(38)

Hence, the operator H is Kannan μ-contraction. As μ
satisfies the Fatou property. From-eorem 11, the operator
H has one fixed point θ ∈ (lM(λ))μ.

Suppose β(y)
􏽮 􏽯⊆(lM(λ))μ is so that

limy⟶∞ μ(β(y) − β(0)) � 0, where.
β(0) ∈ (lM(λ))μ with μ(β(0)) � 1. As the prequasi norm

μ is continuous, one can see

lim
y⟶∞

μ Hβ(y)
− Hβ(0)

􏼐 􏼑 � lim
y⟶∞

μ
β(y)

4
−
β(0)

5
􏼠 􏼡

� μ
β(0)

20
􏼠 􏼡> 0.

(39)

-erefore, H is not μ-sequentially continuous at β(0).
Hence, the map H is not continuous at β(0).

Let μ(β) � 􏽐
∞
y�0 λyM(|βy|), for every β ∈ lM(λ).

As for each β1, β2 ∈ (lM(λ))μ with μ(β1), μ(β2) ∈ [0, 1),
one has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
4

􏼠 􏼡≤
2
9

μ
3β1
4

􏼠 􏼡 + μ
3β2
4

􏼠 􏼡􏼠 􏼡

�
2
9

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(40)

For all β1, β2 ∈ (lM(λ))μwith μ(β1), μ(β2) ∈ [1,∞), one
has

μ Hβ1 − Hβ2( 􏼁 � μ
β1
5

−
β2
5

􏼠 􏼡≤
1
8

μ
4β1
5

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
1
8

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(41)

For all β1, β2 ∈ (lM(λ))μ with μ(β1) ∈ [0, 1) and
μ(β2) ∈ [1,∞), we obtain

μ Hβ1 − Hβ2( 􏼁 � μ
β1
4

−
β2
5

􏼠 􏼡≤
2
9
μ

3β1
4

􏼠 􏼡 +
1
8
μ

4β2
5

􏼠 􏼡

≤
2
9

μ
3β1
4

􏼠 􏼡 + μ
4β2
5

􏼠 􏼡􏼠 􏼡

�
2
9

μ Hβ1 − β1( 􏼁 + μ Hβ2 − β2( 􏼁( 􏼁.

(42)

So, the operator H is Kannan μ-contraction and.

Ht(β) �
β/4t μ(β) ∈ [0, 1)

β/5t μ(β) ∈ [1,∞)
􏼨

Obviously, H is μ-sequentially continuous at
θ ∈ (lM(λ))μ and Htβ􏼈 􏼉 has a subsequence Htpβ􏼈 􏼉 con-
verging to θ. From -eorem 14, then θ ∈ (lM(λ))μ is the
unique fixed point of H.

Example 16. Suppose H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) �

�
t3

√
+

�
t4

√
and μ(β) � (􏽐

∞
y�0 λyM(|βy|))4, for every

β ∈ lM(λ) and

H(β) �

1
18

e0 + β( 􏼁, β0 ∈ − ∞,
1
17

􏼒 􏼓,

1
17

e0, β0 �
1
17

,

1
18

e0, β0 ∈
1
17

,∞􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

As for each β, η ∈ (lM(λ))μ with β0, η0 ∈ (− ∞, 1/17),
one has

μ(Hβ − Hη) � μ
1
18

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
8
17

μ
17β
18

􏼠 􏼡 + μ
17t

18
􏼒 􏼓􏼠 􏼡

≤
8
17

(μ(Hβ − β) + μ(Hη − η)).

(44)
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For every β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/17,∞), then
for all ϵ> 0 one has

μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (45)

For every β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/17) and
η0 ∈ (1/17,∞), we get

μ(Hβ − Hη) � μ
β
18

􏼠 􏼡≤
1
17

μ
17β
18

􏼠 􏼡 �
1
17

μ(Hβ − β)

≤
1
17

(μ(Hβ − β) + μ(Hη − η)).

(46)

Hence, the operator H is Kannan μ-contraction. Evi-
dently, H is μ-sequentially continuous at 1/17e0 ∈ (lM(λ))μ,
and we have β ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/17) under
Htβ􏼈 􏼉 � 􏽐

t
n�1 1/18

ne0 + 1/18tβ􏼈 􏼉 contains a subsequence

Htpβ􏼈 􏼉 � 􏽐
tp

n�1 1/18ne0 + 1/18tpβ􏼚 􏼛 converging to 1/17e0.

From -eorem 14, the map H has a unique fixed point
1/17e0 ∈ (lM(λ))μ. Observe that H is not continuous at
1/17e0 ∈ (lM(λ))μ.

If μ(β) � 􏽐y∈Z+λyM(|βy|), for every β ∈ lM(λ). As for

all β, η ∈ (lM(λ)) μ with β0, η0 ∈ (− ∞, 1/17), one has

μ(Hβ − Hη) � μ
1
18

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
1
��
174

√ μ
17β
18

􏼠 􏼡 + μ
17t

18
􏼒 􏼓􏼠 􏼡

≤
1
��
174

√ (μ(Hβ − β) + μ(Hη − η)).

(47)

For each β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/17,∞), then
for all ϵ> 0 we get

μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (48)

For every β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/17) and
η0 ∈ (1/17,∞), this gives

μ(Hβ − Hη) � μ
β
18

􏼠 􏼡≤
1
��
174

√ μ
17β
18

􏼠 􏼡 �
1
��
174

√ μ(Hβ − β)

≤
1
��
174

√ (μ(Hβ − β) + μ(Hη − η)).

(49)

So, the operator H is Kannan μ-contraction. As μ sat-
isfies the Fatou property. From-eorem 11, the operator H

holds one fixed point 1/17e0 ∈ (lM(λ))μ.

Example 6. Assume H: (lM(λ))μ⟶ (lM(λ))μ, where
M(t) � t2 + 2t and μ(β) � 􏽐

∞
y�0 λyM(|βy|), for every

β ∈ lM(λ) and

H(β) �

1
6

e1 + β( 􏼁, β0 ∈ − ∞,
1
5

􏼒 􏼓,

1
5
e1, β0 �

1
5

,

1
6
e1, β0 ∈

1
5
,∞􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

As for each β, η ∈ (lM(λ))μ with β0, η0 ∈ (− ∞, 1/5), one
has

μ(Hβ − Hη) � μ
1
6

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
2
5

μ
5β
6

􏼠 􏼡 + μ
5t

6
􏼒 􏼓􏼠 􏼡

≤
2
5

(μ(Hβ − β) + μ(Hv − η)).

(51)

Suppose β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/5,∞), then for
any ϵ> 0 we obtain

μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (52)

Assume β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/5) and
η0 ∈ (1/5,∞), one can see

μ(Hβ − Hη) � μ
β
6

􏼠 􏼡≤
1
5
μ

5β
6

􏼠 􏼡 �
1
5
μ(Hβ − β)

≤
1
5

(μ(Hβ − β) + μ(Hη − η)).

(53)

Hence, the operator H is Kannan μ-contraction. Clearly,
H is μ-sequentially continuous at 1/5e1 ∈ (lM(λ))μ and
there exists β ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/5) under
Htβ􏼈 􏼉 � 􏽐

n�1
n�11/6

ne1 + 1/6tβ􏽮 􏽯 contains a subsequence

Htpβ􏼈 􏼉 � 􏽐
tp

n�1 1/6ne1 + 1/6tpβ􏼚 􏼛 converging to 1/5e1. From

-eorem 14, the operator H holds a unique fixed point
1/5e1 ∈ (lM(λ))μ. Observe that H is not continuous at
1/5e1 ∈ (lM(λ))μ.

If M(t) � t2 and μ(β) �
�������������
􏽐
∞
y�0 λyM(|βy|)

􏽱
, for every

β ∈ lM(λ).
Since for all β, η ∈ (lM(λ))μ with β0, η0 ∈ (− ∞, 1/5),

one has

μ(Hβ − Hη) � μ
1
6

β0 − η0, β1 − η1, β2 − η2, . . .( 􏼁􏼒 􏼓

≤
1
5

μ
5β
6

􏼠 􏼡 + μ
5η
6

􏼒 􏼓􏼠 􏼡

≤
1
5

(μ(Hβ − β) + μ(Hη − η)).

(54)

If β, η ∈ (lM(λ))μ with β0, η0 ∈ (1/5,∞), then for all
ϵ> 0 one has
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μ(Hβ − Hη) � 0≤ ϵ(μ(Hβ − β) + μ(Hη − η)). (55)

Assume β, η ∈ (lM(λ))μ with β0 ∈ (− ∞, 1/5) and
η0 ∈ (1/5,∞), we get

μ(Hβ − Hη) � μ
β
6

􏼠 􏼡≤
1
5
μ

5β
6

􏼠 􏼡 �
1
5
μ(Hβ − β)

≤
1
5

(μ(Hβ − β) + μ(Hη − η)).

(56)

So, the operator H is Kannan μ-contraction. As μ sat-
isfies the Fatou property. From-eorem 11, the operator H

contains one fixed point 1/5e1 ∈ (lM(λ))μ.

5. Kannan Nonexpansive Operator

We have presented in this section the uniform convexity of
the space (lM(λ))μ, where

lM(λ) � u ∈ RZ+

: ϱ(ωu)<∞, for someω> 0􏽮 􏽯, (57)

and ϱ(u) � 􏽐
∞
y�0 λyM(|uy|), under the Luxemburg norm

μ(u) � inf ω> 0: ϱ
u

ω
􏼒 􏼓≤ 1􏼚 􏼛. (58)

Definition 12.
(1) *e continuous function M is called strictly convex

(SC), if

M
v + t

2
􏼒 􏼓<

M(v) + M(t)

2
, (59)

for all v, t ∈ [0,∞) and v≠ t.
(2) [24] -e following statements are equivalent:

(i) M is a uniformly convex function on [0,∞).
(ii) For any ϵ> 0 and u0 > 0, there exists a number

δ ∈ (0, 1) such that for all u, v, and
|u − v|≥ ϵmax |u|, |v|{ }≥ ϵu0 imply

M
u + v

2
􏼒 􏼓≤

1 − δ
2

(M(u) + M(v)), (60)

if u≥ u0.
(iii) For any u0 > 0 and a ∈ (0, 1), there exists a

number δ ∈ (0, 1) such that

if u≥ u0.
(3) [25] A normed space (X, μ) is said to be strictly

convex if for any u, v ∈ X and b> 0 satisfying
μ(u)≤ b, μ(v)≤ b, and μ(u − v)> 0 imply
μ(u + v/2)< b.

(4) [26] A normed space (X, μ) is said to be uniformly
convex if for any b> 0 and ϵ> 0, there exists δ > 0
such that for all u, v ∈ X satisfying μ(u)≤ b, μ(v)≤ b

and μ(u − v)≥ ϵ imply μ(u + v/2)≤ b − δ.

Theorem 17. If limn⟶∞ μ(xn) � b, limn⟶∞ μ(yn) � b and
limn⟶∞ μ(xn + yn/2) � b imply limn⟶∞ μ(xn − yn) � 0,
for all xn􏼈 􏼉, yn􏼈 􏼉 ⊂ lM(λ) and b> 0, then lM(λ) is uniformly
convex, where M is a convex Orlicz function satisfying
Δ2-condition.

Proof. Let the conditions be satisfied and lM(λ) is not
uniformly convex, then there exists ϵ0 > 0 and
xn􏼈 􏼉, yn􏼈 􏼉 ⊂ lM(λ) such that μ(xn)≤ b, μ(yn)≤ b, μ(xn −

yn)≥ ϵ0 we get μ(xn + yn/2)> b − 1/n, for some b> 0. To
prove that limn⟶∞ μ(xn) � b, let limn⟶∞ μ(xn) � b1 < b

and limn⟶∞ μ(yn) � b. Since M is satisfying Δ2-condition,
we have limn⟶∞ ϱ(xn/b1) � 1 and limn⟶∞ ϱ(xn/b) � 1.
Hence,

lim
n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤

b1

2b
lim

n⟶∞
ϱ

xn

b1
􏼠 􏼡

+
1
2

lim
n⟶∞
ϱ

yn

b
􏼒 􏼓􏼓< 1.

(61)

-is is equivalent to limn⟶∞μ(xn + yn/2)< b. -is
contradicts limn⟶∞ μ(xn + yn/2)> b, so
limn⟶∞ ϱ(xn) � b. Similarly, we can prove that
limn⟶∞ ϱ(yn)b. Also since

1< lim
n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤ lim

n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤ lim

n⟶∞
ϱ

xn + yn

2b
􏼒 􏼓≤

1
2

lim
n⟶∞
ϱ

xn

b
􏼒 􏼓 + lim

n⟶∞
ϱ

yn

b
􏼒 􏼓􏼒 􏼓 � 1. (62)

-en limn⟶∞ ϱ(xn + yn/2b) � 1. -is implies
limn⟶∞ μ(xn + yn/2) � b. But limn⟶∞ μ(xn − yn)≥ ϵ0 > 0,
this gives a contradiction. □

Theorem 18. *e space lM(λ) is uniformly convex, if M is a
uniformly convex Orlicz function satisfying Δ2-condition.

Proof. Assume the settings are satisfied, limn⟶∞ μ(xn) � b,
limn⟶∞ μ(yn) � b, and limn⟶∞ μ(xn + yn/2) � b, we will
prove that limn⟶∞ μ(xn − yn) � 0. For any ϵ ∈ (0, 1/2), let
us choose u0 > 0 such that M(2u0)< ϵ. Since M is uniformly
convex, then there exists δ ∈ (0, 1) such that
|u − v|≥ ϵmax |u|, |v|{ }≥ ϵu0 imply
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M
u + v

2
􏼒 􏼓≤

1 − δ
2

(M(u) + M(v)). (63)

For each n ∈ Z+, put

Gn � i ∈Z+
:

xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< u0􏼨 􏼩,

En � i ∈Z+
:

xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< ϵmax

xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩< ϵu0􏼨 􏼩,

Fn � i ∈Z+
:

xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≥ ϵmax

xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩≥ ϵu0􏼨 􏼩.

(64)

-en we deduce

􏽘
i∈Gn

M
xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡≤M 2u0( 􏼁, (65)

and thus

􏽘
i∈En

M
xn(i) − yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡≤ 2ϵ 􏽘

i∈Z+

M
xn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + yn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2b
􏼠 􏼡

≤ ϵ 􏽘
i∈Z+

M
xn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 + 􏽘

i∈Z+

M
yn(i)

b

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡⎛⎝ ⎞⎠≤ 2ϵ.

(66)

Hence, we get

0←
μ xn( 􏼁 + μ yn( 􏼁

2
− μ

xn + yn

2
􏼒 􏼓

�
􏽐i∈Z+ M xn(i)/b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽐i∈Z+ M yn(i)/b( 􏼁

2

− 􏽘
i∈Z+

M
xn(i) + yn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2b
􏼠 􏼡

≥
􏽐i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽐i∈Fn
M yn(i)/b( 􏼁

2

− 􏽘
i∈Fn

M
xn(i) + yn(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2b
􏼠 􏼡

≥
􏽐i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽐i∈Fn
M yn(i)/b( 􏼁

2

−
1 − δ
2

􏽘
i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽘
i∈Fn

M yn(i)/b( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

�
δ
2

􏽘
i∈Fn

M xn(i)/b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 + 􏽘
i∈Fn

M yn(i)/b( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦.

(67)

Since u0 and ϵ are arbitrary, then
limn⟶∞ ϱ(xn − yn/2b) � 0. As M verifies Δ2-condition.
-erefore, limn⟶∞ μ(xn − yn) � 0. From -eorem 17, the
proof follows.

Here, we discuss the property (R) and the μ-normal
structure property of the space (lM(λ))μ. □

Definition 13. *e space (Y)μ holds the property (R), if for all
decreasing sequence Φx􏼈 􏼉x∈Z+ of μ-closed and μ-convex

nonempty subsets of (Y)μ so that supx∈Z+ dμ(β,Φx)<∞, for
some β ∈ (Y)μ; hence, we have ∩ x∈Z+Φx ≠∅.

Definition 14. *e space (Y)μ holds the μ-normal structure
property if for all nonempty μ-bounded, μ-convex, and
μ-closed subset Φ of (Y)μ not decreased to one point, there
exists β ∈ Φ with

supη∈Φ μ(β − η)< υμ(Φ) ≔ sup μ(β − η): β, η ∈ Φ􏼈 􏼉<∞. (68)

Theorem 19. If M is a uniformly convex Orlicz function
satisfying Δ2-condition, then

(1) AssumeΦ is a nonempty μ-closed and μ-convex subset
of (lM(λ))μ. For β ∈ (lM(λ))μ with

dμ(β,Φ) � inf μ(β − η): η ∈ Φ􏼈 􏼉<∞. (69)

*erefore, we have one ϕ ∈ Φ with
dμ(β,Φ) � μ(β − ϕ).

(2) (lM(λ))μ satisfies the property (R).

Proof. For (1), assume β ∉ Φ as Φ is μ-closed. So, one has
D ≔ dμ(β,Φ)> 0. -erefore, there is ηt ∈ Φ so that
limt⟶∞ μ(β − ηt) � D. To prove that ηt􏼈 􏼉 is a μ-Cauchy. For
any two subsequences ηta

􏽮 􏽯 and ηtb
􏽮 􏽯 ⊂ ηt􏼈 􏼉, we have

μ(ηta
+ ηtb

/2 − β)≥D, as lima⟶∞ μ(β − ηta
) � D and

limb⟶∞ μ(β − ηtb
) � D. Moreover,

μ
ηta

+ ηtb

2
− β􏼒 􏼓 � μ

ηta
− β
2

+
ηtb

− β
2

􏼠 􏼡<
1
2

(D + D) � D.

(70)

Journal of Mathematics 11



-erefore, we have lima,b⟶∞ μ(ηta
+ ηtb

/2 − β) � D.
Since the space (lM(λ))μ is uniformly convex, we get

lim
a,b⟶∞

μ ηta
− β − ηtb

− β􏼐 􏼑􏼐 􏼑 � lim
a,b⟶∞

μ ηta
− ηtb

􏼐 􏼑 � 0.

(71)

-us, ηt􏼈 􏼉 is a μ-Cauchy in Φ. Since Φ is closed and the
space (lM(λ))μ is complete, then there exists ϕ ∈ Φ with
μ(β − ϕ) � dμ(β,Φ). Since the space (lM(λ))μ is uniformly
convex, then it is (SC), which implies the uniqueness of ϕ. To
show (2), for some t0 ∈ Z

+, suppose β ∉ Φt0
. Since (dμ

(β,Φt))t∈Z+ ∈ l∞ is increasing. Set limt⟶∞dμ(β,Φt) � D,
when D> 0. Otherwise, β ∈ Φt, for each t ∈ Z+. From (1), we
have a unique ηt ∈ Φt with dμ(β,Φt) � μ(β − ηt), for all
t ∈ Z+. A consistent proof will show that ηt/2􏼈 􏼉μ-converges to
some η ∈ (lM(λ))μ. Since Φt􏼈 􏼉 are μ-convex, decreasing and
μ-closed, we get 2η ∈ ∩ t∈Z+Φt. □

Theorem 20. If M is a uniformly convex Orlicz function
satisfying Δ2-condition, then (lM(λ))μ has the μ-normal
structure property.

Proof. Let the conditions are satisfied.-eorem 18 gives that
(lM(λ))μ is uniformly convex. Assume Φ is a μ-bounded,
μ-convex, and μ-closed subset of (lM(λ))μ not decreased to
one point. Hence, υμ(Φ)> 0. Set D � υμ(Φ). Let β, η ∈ Φ
with β≠ η. Hence, μ(β − η/2)> 0. For every ϕ ∈ Φ, one has
μ(β − ϕ)≤D and μ(η − ϕ)≤D. As Φ is μ-convex, then
β + η/2 ∈ Φ. Hence,

μ
β + η
2

− ϕ􏼠 􏼡 � μ
(β − ϕ) +(η − ϕ)

2
􏼠 􏼡<D, (72)

for every ϕ ∈ Φ. So

supϕ∈Φ μ
β + η
2

− ϕ􏼠 􏼡<D � υμ(Φ). (73)
□

Lemma 3. Let the space (lM(λ))μ verify the (R) property and
the μ-quasi-normal property. Assume Φ is a nonempty
μ-bounded, μ-convex, and μ-closed subset of (lM(λ))μ.
Suppose H: Φ⟶Φ is a Kannan μ-nonexpansive mapping.
For x> 0. If Wx � β ∈ Φ: μ(β − H(β))≤x􏼈 􏼉≠∅. Set

Φx � ∩ Bμ(t, v): H Wx( 􏼁 ⊂Bμ(t, v)􏽮 􏽯∩Φ. (74)

-en Φx is a nonempty, μ-convex, μ-closed subset of Φ
with H(Φx) ⊂ Φx ⊂Wx and υμ(Φx)≤x.

Proof. As H(Wx) ⊂ Φx, this gives Φx ≠∅. Since the μ-balls
are μ-convex, and μ-closed, then Φx is a μ-closed and
μ-convex subset of Φ. To prove that Φx ⊂Wx. Assume
β ∈ Φx. If μ(β − H(β)) � 0, we have β ∈Wx. Otherwise,
suppose μ(β − H(β))> 0. Set

t � sup μ(H(ζ) − H(β)): ζ ∈Wx􏼈 􏼉. (75)

From the definition of t, then H(Wx) ⊂Bμ(H(β), t).
Hence, Φx ⊂Bμ(H(β), t), which implies μ(β − H(β))≤ t.

Assume d> 0. Hence, there is ζ ∈Wx so that
t − d≤ μ(H(ζ) − H(β)). -en

μ(β − H(β)) − d≤ t − d≤ μ(H(ζ) − H(β))

≤
1
2

(μ(β − H(β)) + μ(ζ − H(ζ)))

≤
1
2

(μ(β − H(β)) + x).

(76)

Since d is arbitrarily positive, we have μ(β − H(β))≤x,
then we have β ∈Wx. For H(Wx) ⊂ Φx, we get
H(Φx) ⊂ H(Wx) ⊂ Φx, this indicates Φx is H-invariant.
Consequent to prove that υμ(Φx)≤ x. As

μ(H(β) − H(η))≤
1
2

(μ(β − H(β)) + μ(η − H(η))), (77)

For every β, η ∈Wx. Let β ∈Wx. So
H(Wx) ⊂Bμ(H(β), x). From the definition of Φx, one has
Φx ⊂Bμ(H(β), x). Hence, H(β) ∈ ∩ η∈Φx

Bμ(η, x). -ere-
fore, we have μ(η − ζ)≤ x, for every η, ζ ∈ Φx, which implies
υμ(Φx)≤ x. -is finishes the proof.

In this part, we give enough settings on (lM(λ))μ so that
the Kannan μ− nonexpansive mapping defined on it con-
tains a fixed point. □

Theorem 21. Let (lM(λ))μ hold the μ-quasinormal property
and the (R) property. Assume Φ is a nonempty, μ-convex,
μ-closed, and μ-bounded subset of (lM(λ))μ. If H: Φ⟶Φ
is a Kannan μ-nonexpansive mapping, then H has a fixed
point.

Proof. Let xt � x0 + 1/t, for all t≥ 1, where
x0 � inf μ(β − H(β)): β ∈ Φ􏼈 􏼉. We have for each t≥ 1 that
Wxt

� β ∈ Φ: μ(β − H(β))≤ xt􏼈 􏼉≠∅. Suppose Φxt

explained as in Lemma 3. Clearly, Φxt
􏽮 􏽯 is a decreasing

sequence of nonempty μ-bounded, μ-closed, and μ-convex
subsets ofΦ. -e property (R) gives thatΦ∞ � ∩ t≥1Φxt

≠∅.
Let β ∈ Φ∞, we have μ(β − H(β))≤xt, for every t≥ 1. If
t⟶∞, one has μ(β − H(β))≤x0, which implies
μ(β − H(β)) � x0. Hence, Wx0

≠∅. So x0 � 0. Otherwise,
x0 > 0 which investigates that H has no fixed point. Assume
Φx0

as defined in Lemma 3. Since H has no fixed point and
Φx0

is H-invariant, hence Φx0
holds more than one point,

which gives, υμ(Φx0
)> 0. By the μ-quasinormal property,

one has β ∈ Φx0
with

μ(β − η)< υμ Φx0
􏼐 􏼑≤ x0, (78)

for every η ∈ Φx0
. By Lemma 3, we have Φx0

⊂Wx0
. By

definition of Φx0
, then H(β) ∈Wx0

⊂ Φx0
. Obviously, one

has

μ(β − H(β))< υμ Φx0
􏼐 􏼑≤ x0, (79)

which contradicts the definition of x0. So x0 � 0 this implies
that any point in Wx0

is a fixed point of H, i.e., H has a fixed
point in Φ.

According to-eorem 19,-eorem 20, and-eorem 21,
we obtain the next corollary: □
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Corollary 2. If M is a uniformly convex Orlicz function
satisfying Δ2-condition. Assume Φ is a nonempty, μ-convex,
μ-closed, and μ-bounded subset of (lM(λ))μ. Suppose
H: Φ⟶Φ is a Kannan μ-nonexpansive operator. *en H

holds a fixed point.

Example 7. Let H: Φ⟶Φ with H(β)

�
β/4, μ(β) ∈ [0, 1),

β/5, μ(β) ∈ [1,∞),
􏼨

where Φ � β ∈ (lM(λ))μ: β0 � β1 � 0􏽮 􏽯, where
ϱ(β) � 􏽐

∞
x�0 λx|βx|2, for every β ∈ (lM(λ))μ. As Example 5,

the operator H is Kannan μ-contraction mapping. So it is
Kannan μ-nonexpansive operator. Clearly,Φ is a nonempty,
μ-convex, μ-closed and μ-bounded subset of (lM(λ))μ. By
Corollary 2, the operator H has a fixed point in Φ.

6. KannanΥ− ContractionMapping on S(lM(λ))μ

For any two Banach spaces X and Y, we examine in this
section the existence of a fixed point of Kannan Υ− con-
traction mapping on S(lM(λ))μ

, where Υ(Q) � M− 1

(􏽐
∞
y�0 λyM(|sy(Q)|)), for all Q ∈ S(lM(λ))μ

(X,Y).

Theorem 22. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, then (S(lM(λ))μ

,Υ) is a
prequasi Banach operator ideal, where
Υ(Q) � μ((sy(Q))∞

y�0).

Proof. As -eorem 5, the space (lM(λ))μ is a premodular
(sss). -erefore, from -eorem 3, one has
Υ(Q) � μ((sy(Q))∞

y�0) is a prequasi norm on S(lM(λ))μ
.

Suppose Qr ∈ S(lM(λ))μ
(X,Y) is a Cauchy sequence. As

B(X,Y)⊇S(lM(λ))μ
(X,Y), one obtains

Υ Qr − Qt( 􏼁 � μ sy Qr − Qt( 􏼁􏼐 􏼑
∞
y�0􏼒 􏼓

≥ μ s0 Qr − Qt( 􏼁, 0, 0, 0, . . . ,( 􏼁 � M
− 1 λ0 Qr − Qt

����
����􏼐 􏼑.

(80)

Hence (Qr)r∈Z+ is a Cauchy sequence inB(X,Y). Since
B(X,Y) is a Banach space, so there is Q ∈B(X,Y) with
limr⟶∞‖Qr − Q‖ � 0. Since (sy(Qr))

∞
y�0 ∈ (lM(λ))μ, for

every r ∈ Z+. We have

Υ(Q) � μ sy(Q)􏼐 􏼑
∞
y�0􏼒 􏼓 � μ sy Q − Qr + Qr( 􏼁􏼐 􏼑

∞
y�0􏼒 􏼓≤ μ s[y/2] Q − Qr( 􏼁􏼐 􏼑

∞
y�0􏼒 􏼓 + μ s[y/2] Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑

≤ μ Qr − Q
����

����􏼐 􏼑
∞
y�0􏼒 􏼓 + 2μ sy Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑< ϵ.

(81)

-erefore, (sy(Q))∞
y�0 ∈ (lM(λ))μ, this implies

Q ∈ S(lM(λ))μ
(X,Y). □

Theorem 23. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, then (S(lM(λ))μ

,Υ) is
a prequasi closed operator ideal, where
Υ(Q) � μ((sy(Q))∞

y�0).

Proof. As -eorem 5, the space (lM(λ))μ is a premodular
(sss). -erefore, from -eorem 3, one has
Υ(Q) � μ((sy(Q))∞

y�0) is a prequasi norm on S(lM(λ))μ
.

Assume Qr ∈ S(lM(λ))μ
(X,Y), for every r ∈Z+ and

limr⟶∞Υ(Qr − Q) � 0. Hence, there is ς> 0 and since
B(X,Y)⊇S(lM(λ))μ

(X,Y), we get

Υ Qr − Q( 􏼁 � μ sy Qr − Q( 􏼁􏼐 􏼑
∞
y�0􏼒 􏼓≥ μ s0 Qr − Q( 􏼁, 0, 0, 0, . . .( 􏼁

� M
− 1 λ0 Qr − Q

����
����􏼐 􏼑.

(82)

Hence (Qr)r∈Z+ is convergent in B(X,Y). i.e.,
limr⟶∞‖Qr − Q‖ � 0 and while (sy(Qr))

∞
y�0 ∈ (lM(λ))μ,

for all r ∈ Z+ and (lM(λ))μ is a premodular (sss). Hence, we
have

Υ(Q) � μ sy(Q)􏼐 􏼑
∞
y�0􏼒 􏼓 � μ sy Q − Qr + Qr( 􏼁􏼐 􏼑

∞
y�0􏼒 􏼓

≤ μ s[y/2] Q − Qr( 􏼁􏼐 􏼑
∞
y�0􏼒 􏼓 + μ s[y/2] Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑

≤ μ Qr − Q
����

����􏼐 􏼑
∞
y�0􏼒 􏼓 + 2μ sy Qr( 􏼁

∞
y�0􏼐 􏼑􏼐 􏼑< ϵ,

(83)

we have (sy(Q))∞
y�0 ∈ (lM(λ))μ, then Q ∈ S(lM(λ))

μ(X,Y). □

Definition 15. A prequasi norm Υ on the ideal S(lM(λ))μ
,

where Υ(Q) � μ((sy(Q))∞
y�0), satisfies the Fatou property if

for any sequence Qy􏽮 􏽯
y∈Z+⊆S(lM(λ))Υ

(X,Y) with
limy⟶∞Υ(Qy − Q) � 0 and any V ∈ S(lM(λ))μ

(X,Y), then
Υ(V − Q)≤ supy inf

j≥y
μ(V − Qj).

Theorem 25. *e prequasinorm Υ(Q) � M− 1

(􏽐
∞
y�0 λyM(sy(Q))), for all Q ∈ S(lM(λ))μ

(X,Y) does not
satisfy the Fatou property, if M is a convex Orlicz function
satisfying Δ2-condition and ln(M(ex)) is convex.

Proof. Assume the settings are satisfied and
Qt􏼈 􏼉t∈Z+⊆S(lM(λ))μ

(X,Y) with limt⟶∞Υ(Qt − Q) � 0.
Since the space S(lM(λ))μ

is a prequasi closed ideal, then,
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Q ∈ S(lM(λ))μ
(X,Y). Hence, for any V ∈ S(lM(λ))μ

(X,Y), we
have

Υ(V − Q) � M
− 1

􏽘

∞

y�0
λyM sy(V − Q)􏼐 􏼑⎛⎝ ⎞⎠≤M

− 1
􏽘

∞

y�0
λyM s[y/2] V − Qj􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠ + M

− 1
􏽘

∞

y�0
λyM s[[y/2]] Qj − Q􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

≤ 2 supt inf
j≥t

M
− 1

􏽘

∞

y�0
λyM sy V − Qj􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠.

(84)

Hence, Υ does not satisfy the Fatou property. □

Definition 16. An operator P: S(lM(λ))μ
(X,Y)

⟶ S(lM(λ))μ
(X,Y) is called a Kannan Υ-Lipschitzian, if

there exists ]≥ 0, so that for every Q, T ∈ S(lM(λ))μ
(X,Y), we

have

Υ(PQ − PT)≤ ](Υ(PQ − Q) + Υ(PT − T)). (85)

(1) If ] ∈ [0, 1/2), the operator P is said to be Kannan
Υ-contraction.

(2) If ] � 1/2, the operator P is said to be Kannan
Υ-nonexpansive.

Definition 17. An operator P: S(lM(λ))μ
(X,Y)⟶

S(lM(λ))μ
(X,Y) is said to be Υ-sequentially continuous at V,

if and only if, when limt⟶∞Υ(Qt − V) � 0, then
limt⟶∞Υ(PQt − PV) � 0.

Theorem 26. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is conve, and

P: S(lM(λ))μ
(X,Y)⟶ S(lM(λ))μ

(X,Y). *e point
T ∈ S(lM(λ))Υ

(X,Y) is the unique fixed point of P, when the
following conditions are satisfied:

(i) P is Kannan Υ-contraction mapping,
(ii) P is Υ-sequentially continuous at a point

T ∈ S(lM(λ))μ
(X,Y),

(iii) *ere exists V ∈ S(lM(λ))μ
(X,Y) so that the sequence

of iterates PtV􏼈 􏼉 has a subsequence Ptj V􏼈 􏼉 con-
verging to T.

Proof. Let the conditions be verified. If T is not a fixed point
of P, then PT≠T. From the conditions (ii) and (iii), we have

lim
tj⟶∞
Υ P

tj V − T􏼐 􏼑 � 0,

lim
tj⟶∞
Υ P

tj+1
V − PT􏼐 􏼑 � 0.

(86)

Since P is Kannan Υ-contraction mapping, one can see

0<Υ(PT − T) � Υ PT − P
tj+1

V􏼐 􏼑 + P
tj V − T􏼐 􏼑 + P

tj+1
V − P

tj V􏼐 􏼑􏼐 􏼑

≤ 2Υ P
tj+1

V − PT􏼐 􏼑 + 4Υ P
tj V − T􏼐 􏼑 + 4]

]
1 − ]

􏼒 􏼓
tj− 1
Υ(PV − V).

(87)

Since tj⟶∞, we have a contradiction. Hence, T is a
fixed point of P. To prove the uniqueness of the fixed point
T. Let we have two different fixed points
T, U ∈ S(lM(λ))μ

(X,Y) of P. -erefore, one has

Υ(T − U)≤Υ(PT − PU)

≤ ](Υ(PT − T) + Υ(PU − U)) � 0.
(88)

Hence, T � U. □

Example 8. Assume P: S(lM(λ))μ
(X,Y)⟶ S(lM(λ))Υ

(X,Y),
where Υ(Q) � 􏽐

∞
y�0 λy

�����
sy(Q)

􏽱
, for every Q ∈ S(lM(λ))μ

(X,Y)

and

P(Q) �

Q

26
, Υ(Q) ∈ [0, 1),

Q

37
, Υ(Q) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(89)

As for every Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1),Υ(Q2)

∈ [0, 1), one has

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

26
−

Q2

26
􏼒 􏼓≤

2
5
Υ

25Q1

26
􏼒 􏼓 + Υ

25Q2

26
􏼒 􏼓􏼒 􏼓

�
2
5
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(90)
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For each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1),Υ(Q2) ∈ [1,∞),

we get

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

37
−

Q2

37
􏼒 􏼓≤

1
3
Υ

36Q1

37
􏼒 􏼓 + Υ

36Q2

37
􏼒 􏼓􏼒 􏼓 �

1
3
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁. (91)

For each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1) ∈ [0, 1) and

Υ(Q2) ∈ [1,∞), one can see

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

26
−

Q2

37
􏼒 􏼓≤

2
5
Υ

25Q1

26
􏼒 􏼓 +

1
3
Υ

36Q2

37
􏼒 􏼓≤

2
5
Υ

25Q1

26
􏼒 􏼓 + Υ

36Q2

37
􏼒 􏼓􏼒 􏼓

�
2
5
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(92)

So, the operator Q is Kannan Υ-contraction and Pt(Q) �

Q/26t
, Υ(Q) ∈ [0, 1),

Q/37t
, Υ(Q) ∈ [1,∞).

􏼨

Clearly, P is Υ-sequentially continuous at the zero op-
erator Θ ∈ S(lM(λ))μ

and PtQ􏼈 􏼉 has a subsequence Ptj Q􏼈 􏼉

converging to Θ. From -eorem 27, the zero operator
Θ ∈ S(lM(λ))μ

is the unique fixed point of P. Suppose with
limt⟶∞Υ(Q(t) − Q(0)) � 0 − b ±

�������
b2 − 4ac

√
/2a, where

Q(0) ∈ S(lM(λ))μ
with Υ(Q(0)) � 1. From the continuously of

the prequasi norm Υ, one has

lim
t⟶∞
Υ PQ

(t)
− PQ

(0)
􏼐 􏼑 � lim

t⟶∞
Υ

Q
(t)

26
−

Q
(0)

37
􏼠 􏼡

� Υ
11Q

(0)

962
􏼠 􏼡> 0.

(93)

So P is not Υ-sequentially continuous at Q(0). -is
implies the operator P is not continuous at Q(0).

Example 9. Suppose P: S(lM(λ))μ
(X,Y)⟶ S(lM(λ))Υ

(X,Y),

where Υ(Q) �
��������������
􏽐
∞
y�0 λy(sy(Q))2

􏽱
, for every

Q ∈ S(lM(λ))Υ
(X,Y) and

P(Q) �

Q

5
, Υ(Q) ∈ [0, 1),

Q

6
, Υ(Q) ∈ [1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(94)

As for each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1),Υ(Q2) ∈

[0, 1), one can see

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

5
−

Q2

5
􏼒 􏼓≤

�
2

√

4
Υ

4Q1

5
􏼒 􏼓 + Υ

4Q2

5
􏼒 􏼓􏼒 􏼓

�

�
2

√

4
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(95)

For every Q1, Q2 ∈ S(lM(λ))μ
withΥ(Q1),Υ(Q2) ∈ [1,∞),

this implies

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

6
−

Q2

6
􏼒 􏼓≤

�
2

√

5
Υ

5Q1

6
􏼒 􏼓 + Υ

5Q2

6
􏼒 􏼓􏼒 􏼓

�

�
2

√

5
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(96)

For each Q1, Q2 ∈ S(lM(λ))μ
with Υ(Q1) ∈ [0, 1) and

Υ(Q2) ∈ [1,∞), one obtains

Υ PQ1 − PQ2( 􏼁 � Υ
Q1

5
−

Q2

6
􏼒 􏼓≤

�
2

√

4
Υ

4Q1

5
􏼒 􏼓 +

�
2

√

5
Υ

5Q2

6
􏼒 􏼓

≤
�
2

√

4
Υ

4Q1

5
􏼒 􏼓 + Υ

5Q2

6
􏼒 􏼓􏼒 􏼓

�

�
2

√

4
Υ PQ1 − Q1( 􏼁 + Υ PQ2 − Q2( 􏼁( 􏼁.

(97)

So, the operator Q is Kannan Υ-contraction and.

Pt(Q) �
Q/5t

, Υ(Q) ∈ [0, 1),

Q/6t
, Υ(Q) ∈ [1,∞).

􏼨

Evidently, P is Υ-sequentially continuous at the zero
operator Θ ∈ S(lM(λ))μ

and PtQ􏼈 􏼉 has a subsequence Ptj Q􏼈 􏼉

converging to Θ. From -eorem 27, the zero operator
Θ ∈ S(lM(λ))μ

is the unique fixed point of P. Suppose
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Q(t)􏼈 􏼉⊆ S(lM(λ))μ
with limt⟶∞Υ(Q(t) − Q(0)) � 0, where

Q(0) ∈ S(lM(λ))μ
with Υ(Q(0)) � 1. From the continuously of

the prequasi norm Υ, one has

lim
t⟶∞
Υ PQ

(t)
− PQ

(0)
􏼐 􏼑 � lim

t⟶∞
Υ

Q
(t)

5
−

Q
(0)

6
􏼠 􏼡

� Υ
Q

(0)

30
􏼠 􏼡> 0.

(98)

So P is not Υ-sequentially continuous at Q(0). Hence, the
operator P is not continuous at Q(0).

7. Applications on Summable Equations

We investigate here a solution to (101), which studied by
many authors (see [27–29]), in (lM(λ))μ.

βx � rx + 􏽘
∞

y�0
D(x, y)h y, βy􏼐 􏼑. (99)

Suppose H: (lM(λ))μ⟶ (lM(λ))μ constructed by

H βx( 􏼁x∈Z+ � rx + 􏽘
∞

y�0
D(x, y)h y, βy􏼐 􏼑⎛⎝ ⎞⎠

x∈Z+

. (100)

Theorem 27. If M is a convex Orlicz function satisfying
Δ2-condition and ln(M(ex)) is convex, D: Z+2⟶ R,
h: Z+ × R⟶ R, r: Z+⟶ R, and for all x ∈Z+, there
exists ] ∈ [0, 1/2), with

M 􏽘
y∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠

≤M(]) M rx − βx + 􏽘
∞

y�0
D(x, y)f y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + M rx − ηx + 􏽘
∞

y�0
D(x, y)f y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(101)

then equation (101) hold a solution in (lM(λ))μ, where
μ(β) � M− 1(􏽐

∞
x�0 M(|βx|)), for every β ∈ lM(λ).

Proof. Suppose the setups are verified. We have

μ(Hβ − Hη) � M
− 1

􏽘
x∈Z+

λxM Hβx − Hηx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠ � M

− 1
􏽘

x∈Z+

λxM 􏽘
m∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ ]M
− 1

􏽘
x∈Z+

λxM rx − βx + 􏽘
∞

m�0
D(x, y)h y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

+ ]M
− 1

􏽘
x∈Z+

λxM rx − ηx + 􏽘
∞

m�0
D(x, y)h y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� ](μ(Hβ − β) + μ(Hη − η)).

(102)

In view of -eorem 11, there exists a unique solution of
equation (101) in (lM(λ))μ. □

Example 10. For the space (lM(λ))μ, where
μ(β) �

���������

􏽐x∈Z+ |βx|4
4

􏽱

, for all β ∈ lM(λ). Assume the sum-
mable equations are defined as

βx � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

siny, (103)

where v> 2 and let H: (lM(λ))μ⟶ (lM(λ))μ is defined by

H βx( 􏼁x∈Z+ � e
− (3x+6)

+ 􏽘
∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

siny⎛⎝ ⎞⎠

x∈Z+

. (104)
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We have

􏽘

∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

(siny − siny)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4

≤
1
81

e
− (3x+6)

− βx + 􏽘
∞

y�0
(− 1)

x βx

x2 + y2 + 1
􏼠 􏼡

v

siny

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4

+ e
− (3x+6)

− ηx + 􏽘
∞

y�0
(− 1)

x ηx

x2 + y2 + 1
􏼠 􏼡

v

siny

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(105)

By -eorem 27, the summable equations (105) have one
solution in (lM(λ))μ.

Theorem 30. If M is a concave Orlicz function,
D: Z+2⟶ R, h: Z+ × R⟶ R, r: Z+⟶ R, and for
every x ∈Z+, there exists ] ∈ [0, 1/2), with

M 􏽘
y∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠

≤ ] M rx − βx + 􏽘
∞

y�0
D(x, y)f y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + M rx − ηx + 􏽘
∞

y�0
D(x, y)f y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(106)

then equation (101) contains one solution in (lM(λ))μ, where
μ(β) � 􏽐

∞
x�0 M(|βx|), for each β ∈ lM(λ).

Proof. Suppose the setups are verified. One has

μ(Hβ − Hη) � 􏽘

x∈Z+

λxM Hβx − Hηx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑􏼑 � 􏽘

x∈Z+

λxM 􏽘

y∈Z+

D(x, y) h y, βy􏼐 􏼑 − h y, ηy􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠

≤ ] 􏽘
x∈Z+

λxM rx − βx + 􏽘

∞

y�0
D(x, y)h y, βy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠ + 􏽘
x∈Z+

λxM rx − ηx + 􏽘

∞

y�0
D(x, y)h y, ηy􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� ](μ(Hβ − β) + μ(Hη − η)).

(107)

In view of -eorem 12, there exists a unique solution of
equation (101) in (lM(λ))μ. □

Example 11. For the space (lM(λ))μ, where
μ(β) � 􏽐x∈Z+

���
|βx|3

􏽰
, for every β ∈ lM(λ). Assume the sum-

mable equations

βx � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v

, (108)

where v> 2 and let H: (lM(λ))μ⟶ (lM(λ))μ is defined by

H βx( 􏼁x∈Z+ � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v

⎛⎝ ⎞⎠

x∈Z+

.

(109)

It is easy to see that

􏽘

∞

y�0
(− 1)

x e βx| |

x2 + y2 + 1
􏼠 􏼡

v

(− 1)
y

− (− 1)
y

( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1/3

≤
1
3

e
− (3x+6)

− βx + 􏽘
∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1/3

+ e
− (3x+6)

− ηx + 􏽘
∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1/3
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(110)
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By -eorem 30, the summable equation (105) has an
unique solution in (lM(λ))μ.

Example 12. Given the sequence space (lM(λ))μ, where
μ(β) �

���������

􏽐x∈Z+ |βx|2
􏽱

, for all β ∈ lM(λ). Consider the sum-
mable equations (110), with x≥ 2 and v> 2 and let
H: Φ⟶Φ, where Φ � β ∈ (lM(λ))μ: β0 � β1 � 0􏽮 􏽯, de-
fined by

H βx( 􏼁x≥ 2 � e
− (3x+6)

+ 􏽘

∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v

⎛⎝ ⎞⎠

x≥ 2

.

(111)

Obviously, Φ is a nonempty, μ-convex, μ-closed, and
μ-bounded subset of (lM(λ))μ. It is easy to see that

􏽘

∞

y�0
(− 1)

x e βx| |

x2 + y2 + 1
􏼠 􏼡

v

(− 1)
y

− (− 1)
y

( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤
1
9

e
− (3x+6)

− βx + 􏽘
∞

y�0
(− 1)

x+y e βx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

+ e
− (3x+6)

− ηx + 􏽘
∞

y�0
(− 1)

x+y e ηx| |

x2 + y2 + 1
􏼠 􏼡

v
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(112)

By -eorem 27 and Corollary 2, the summable equation
(110) have a solution in Φ.

8. Conclusion

We explored the presence of a fixed point for both Kannan
contraction and nonexpansive mappings working on
various premodular, which is a generalization of modular,
defined by weighted Orlicz sequence space and its pre-
quasi operator ideal. Numerous numerical experiments
and practical applications are used to substantiate our
findings.
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In this paper, we discuss some (coincidence) best proximity point results for generalized proximal contractions and
λ − μ-proximal Geraghty contractions in controlled metric type spaces. To clarify our study, various examples are given and some
conclusions are drawn.

1. Introduction and Preliminaries

To solve the equation �Tp � p (�T is a mapping defined on
a subset of a metric space, a simplified linear space, or a to-
pological vector space), fixed point theory is an important
tool. A nonself-mapping �T: J⟶ K may not have a fixed
point. From this perspective, the best approximation theorem
and the best proximity point are relevant. A classical best
approximation theorem was due to Fan [1], i.e., if J is
a nonempty compact convex subset of a Hausdorff locally
convex topological vector space X with a seminorm p and
�T: J⟶ X is a continuousmapping, then there is an element
p in J satisfying the condition that Ψ(p, �Tp) � Ψ(�Tp, J).
Many subsequent extensions and variations of Fan’s theorem
have occurred, including references [2, 3].

However, even though the best approximation theorems
provide an approximate solution to the equation �Tp � p,
they do not provide an ideal approximate solution. More-
over, the theorem of the best proximity point specifies
adequate criteria for the presence of an element p to reduce
the error Ψ(p, �Tp). For a nonself-mapping �T: J⟶ K,
Ψ(p, �Tp) is at least Ψ(J, K) for all p in J, then the best
proximity point theorem establishes a globally optimal so-
lution of error Ψ(p, �Tp) by constraining an approximate

solution p of the equation �Tp � p to the condition that
Ψ(p, �Tp) � Ψ(J, K). Such an ideal approximate solution
�Tp � p is the best proximity point of the nonself-mapping
�T: J⟶ K. For sure, the best proximity point hypotheses
are a logical augmentation of fixed point hypotheses, on the
grounds that the best proximity point is a fixed point in the
light of self-mappings.

+e best proximity point hypotheses have been dem-
onstrated in [4]. Anuradha and Veeramani have tested the
proximal pointwise contractions for the presence of a best
proximity point [2]. Generally, several best proximity point
theorems were analyzed for multiple variants of contractions
in [5–14]. A best proximity point theorem for contraction
mappings was presented in [15]. Some interesting common
best proximity theorems have been discussed in [7, 15].

Nadler [16] was the first who generalized the Banach
contraction principle for multivaluated mappings. Later,
several works appeared in this direction. For more details,
see [17–20]. +e best proximity point hypotheses for dif-
ferent sorts of multivalued mappings have likewise been
obtained in [21, 22].

Recently, the authors in [23] introduced a controlled
metric type space in which the function of extended b-metric
spaces was substituted by a function α(p, q) depending on
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the parameters of the left-hand side of the triangular in-
equality.+e primary goal of this article is to include the best
proximity point theorems for generalized and modified
proximal contractions in the context of complete controlled
type metric spaces, thus providing an optimal approximate
solution to the equation �Tp � p. It is acknowledged that the
previous best proximity point theorems include the well-
known Banach contraction principle and some of its
generalizations.

First, we state the following useful definitions in the
sequel.

Definition 1 (see [6]). Let (X,Ψ) be a metric space having
a pair of nonempty subsets (J, K) such that J0 is nonempty.
+e pair (J, K) has the P-property if and only if

Ψ p1, q1( 􏼁 � Ψ(J, K)

Ψ p2, q2( 􏼁 � Ψ(J, K)
􏼩, impliesΨ p1, p2( 􏼁 � Ψ q1, q2( 􏼁,

(1)

where p1, p2 ∈ J0 and q1, q2 ∈ K0.

Definition 2 (see [24]). Let (X,Ψ) be a metric space having
a pair of nonempty subsets J and K. Let �T: J⟶ K and
μ: J × J⟶ [0,∞). +e mapping �T is said to be μ-proximal
admissible if

μ p1, p2( 􏼁≥ 1

Ψ u1,
�Tp1􏼐 􏼑 � Ψ(J, K)

Ψ u2,
�Tp2􏼐 􏼑 � Ψ(J, K)

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, implies μ u1, u2( 􏼁≥ 1, (2)

for all p1, p2, u1, u2 ∈ J.

Definition 3 (see [25]). Let B(X) represent the closed and
bounded subsets of X. Let H be the Pompeiu–Hausdroff
metric induced by metric Ψ defined by

H(J, K) � max sup
a∈J

D(a, K), sup
b∈K

D(b, J)􏼨 􏼩, (3)

for J, K⊆B(X), where

D(a, K) � inf Ψ(a, b): b ∈ K{ }. (4)

Definition 4 (see [23]). Let X be a nonempty set, and
consider α: X × X⟶ [1,∞) as a function. Let
Ψ: X × X⟶ [0,∞) satisfying

(1) Ψ(p1, p2) � 0 if and only if p1 � p2

(2) Ψ(p1, p2) � Ψ(p2, p1)

(3) Ψ(p1, p2)≤ α(p1, p3)Ψ(p1, p3)+ α(p3, p2)Ψ(p3, p2),
for all p1, p2, p3 ∈ X, then (X,Ψ) is called a controlled
metric type space

From now on, (X,Ψ) is a controlled metric type space.

Definition 5 (see [23]). A sequence pn􏼈 􏼉 in a controlled
metric type space (X,Ψ) converges to some p inX if for each
positive ε, there is some positive Nε such that Ψ(pn, p)< ε
for each n≥Nε. It can be written as

lim
n⟶∞

pn � p. (5)

Definition 6 (see [23]). +e sequence pn􏼈 􏼉 in a controlled
metric type space (X,Ψ) is said to be a Cauchy sequence, if
for every ε> 0,Ψ(pn, pm)< ε for all m, n≥Nε, where Nε ∈ N.

Definition 7 (see [23]). A controlled metric type space
(X,Ψ) is said to be complete if every Cauchy sequence is
convergent in X.

Definition 8 (see [23]). Let p ∈ X and ε> 0.

(1) +e open ball K(p, ε) is defined as follows:

K(p, ε) � q ∈ X,Ψ(p, q)< ε􏼈 􏼉. (6)

(2) +e mapping �T: X⟶ X is said continuous at
p ∈ X if for all ε> 0, there exists δ > 0 such that

�T(K(p, δ))⊆K(�Tp, ε). (7)

Clearly, if �T is continuous at p in the controlled metric
type space (X,Ψ), then pn⟶ p implies that �Tpn⟶ �Tp

as n⟶∞.

Definition 9 (see [26]). Define the function
H: L(X) × L(X)⟶ [0,∞] by

H(J, K) �
max sup

a∈J
D(a, K), sup

b∈K
D(b, J)􏼨 􏼩, if themaximumexists,

∞, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(8)
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for J, K⊆L(X) (it represents the set of closed subsets of X ),
where

D(a, K) � inf Ψ(a, b): b ∈ K{ }, forK ⊂ X. (9)

Let J and K be two nonempty subsets of X. Define

J0 � p ∈ J: Ψ(p, q) � Ψ(J, K) for some q ∈ K􏼈 􏼉,

K0 � q ∈ K: Ψ(p, q) � Ψ(J, K) for somep ∈ J􏼈 􏼉,
(10)

where

Ψ(J, K) � inf Ψ(p, q): p ∈ J, q ∈ K􏼈 􏼉(distance of a set J to a setK),

(11)

and we will denote

D
∗
(p, q) � Ψ(p, q) − Ψ(J, K), for allp ∈ J, q ∈ K.

(12)

Theorem 1 (see [26]). Be function H: L(X) ×L(X)

⟶ [0,∞] is a generalized Pompeiu–Hausdroff controlled
metric space on L(X).

Remark 1 (see [26]). Let (L(X), H) be a generalized
Pompeiu–Hausdroff-controlled metric type space. +en, the
following assertions hold (for all bounded and closed subsets
J, K, C, andD of X ):

(1) H(C, D) � 0 is equivalent to C � D

(2) H(C, D) � H(D, C)

(3) H(J, C)≤maxsupa∈Jα(a, b), α(b, J)H(J, K) +

max α(b, C), supc∈Cα(c, b), H(K, C)

Theorem 2 (see [26]). If (X,Ψ) is a complete controlled
metric space with limn,m⟶∞α(pn, pm)k< 1, for all pn, pm

∈ X, where k≥ 1 , then (L(X),H) is complete.

2. Coincidence Best Proximity Points for
Generalized Proximal Contractions

In this section, we will discuss some best proximity point
theorems using the multivalued concept on a controlled
metric space (X,Ψ).

From now and onward, J and K are nonempty subsets of
a controlled metric type space (X,Ψ) (until otherwise
stated). Define α: X × X⟶ [1,∞) by α∗(p, J) �

inf α(p, a), for all a ∈ J􏼈 􏼉 and α∗(J, K) � inf α(a, b), for all{

a ∈ J and b ∈ K}, where α: X × X⟶ [1,∞) and J and K

are nonempty subsets of X.

Definition 10 (see [26]). A mapping �T: X⟶B(X) is
continuous in a controlled metric type space (X,Ψ) at p ∈ X

if for all ε> 0, there exists δ > 0 such that
�T(K(p, δ))⊆K(�Tp, ε), (13)

where K(p, ε) is given as

K(p, ε) � q ∈ X,Ψ(p, q)< ε􏼈 􏼉. (14)

Clearly, if �T is continuous at p, then pn⟶ p implies
that �Tpn⟶ �Tp as n⟶∞.

We introduce the following.

Definition 11. Let (X,Ψ) be a controlled metric type space
having two nonempty subsets J and K. Let �T: J⟶ K be
a mapping. A point p ∈ J is said to be a best proximity point
of the mapping �T if

Ψ(p, �Tp) � Ψ(J, K). (15)

Definition 12. Let (X,Ψ) be a controlled metric type space
having two nonempty subsets J and K. A nonempty set J is
said to be approximately compact with respect to K if every
sequence pn􏼈 􏼉 in J satisfying the condition that
D(q, pn)⟶ D(q, J) for some q in K has a convergent
subsequence.

Definition 13. Given �T: J⟶B(K) and g
⌣

: J⟶ J. A pair
of mappings (g

⌣
, �T) is said to be a β-generalized proximal

contraction if there exists a real number β ∈ [0, 1) such that

D g
⌣

u1,
�Tp1􏼐 􏼑 � Ψ(J, K)

D g
⌣

u2,
�Tp2􏼐 􏼑 � Ψ(J, K)

⎫⎪⎬

⎪⎭
, impliesH �Tu1,

�Tu2􏼐 􏼑≤ βH �Tp1,
�Tp2􏼐 􏼑, (16)
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for all u1, u2, p1, andp2 in J. Definition 14. Amapping �T: J⟶B(K) is said to be a β�T-
generalized proximal contraction if there exists β ∈ [0, 1)

such that

D u1,
�Tp1􏼐 􏼑 � Ψ(J, K)

D u2,
�Tp2􏼐 􏼑 � Ψ(J, K)

⎫⎪⎬

⎪⎭
, impliesH �Tu1,

�Tu2􏼐 􏼑≤ βH �Tp1,
�Tp2􏼐 􏼑, (17)

for all u1, u2, p1, andp2 in J.
Note that, if we take g

⌣
� IJ (the identity mapping on J),

then every β-generalized proximal contraction will reduce to
a β�T-generalized proximal contraction.

Definition 15. Let (X,Ψ) be a controlled metric type space
having two nonempty subsets J and K. Let �T: J⟶ K and
g
⌣

: J⟶ J be mappings. A point p ∈ J is said to be a co-
incidence best proximity point of the pair of mappings
(g

⌣
, �T) if

Ψ(g
⌣

p, �Tp) � Ψ(J, K). (18)

Remark 2. If we take g
⌣

� IJ (the identity mapping over J),
then every coincidence best proximity point becomes a best
proximity point of the mapping �T.

If J∩K≠∅ or Ψ(J, K) � 0, then every best proximity
point will reduce to a fixed point of the mapping �T.

Our first main result is stated as follows:

Theorem 3. Let (X,Ψ) be a controlled metric type space
having two nonempty subsets J and K. Let �T: J⟶B(K)

and g
⌣

: J⟶ J be one-to-one and continuous mappings.
Assume that K is a closed subset and J is approximately
compact with respect to K with �T(J0)⊆K0 and J0⊆g

⌣
(J0).

Further, assume that the pair (g
⌣

, �T) is a β-generalized
proximal contraction such that

sup
m≥1

lim
i⟶∞

max sup
qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭max sup
qi∈�Tpi

α qi, qm( 􏼁, α qm, �Tpi􏼐 􏼑
⎧⎨

⎩

⎫⎬

⎭ <
1
k

, (19)

and limn⟶∞α∗(g
⌣

pn, �Tpn−1) � 1, where k ∈ (0, 1). Ben,
there exists a coincidence best proximity point of the pair
(g

⌣
, �T).

Proof. Let p0 be an arbitrary element in J0. Since �T(J0) is
contained in K0 and J0 is contained in g

⌣
(J0), there exists an

element p1 in J0 such that

D g
⌣

p1,
�Tp0􏼐 􏼑 � Ψ(J, K). (20)

Again, since �Tp1 is an element of �T(J0) which is con-
tained inK0 and J0 is contained in g

⌣
(J0), it follows that there

is an element p2 in J0 such that

D g
⌣

p2,
�Tp1􏼐 􏼑 � Ψ(J, K). (21)

+is process can be continued by selecting pn in J0
satisfying the condition as follows:

D g
⌣

pn, �Tpn−1􏼐 􏼑 � Ψ(J, K). (22)

Having selected pn􏼈 􏼉 satisfying the condition, there exists
an element pn+1 in J0 satisfying

D g
⌣

pn+1,
�Tpn􏼐 􏼑 � Ψ(J, K), (23)

for every integer n≥ 0.
Since the pair (g

⌣
, �T) is a β-generalized proximal con-

traction, by using equations (22) and (23), we obtain

H �Tpn+1,
�Tpn􏼐 􏼑≤ βH �Tpn, �Tpn−1􏼐 􏼑, for each n≥ 1.

(24)

We deduce that

H �Tpn+1,
�Tpn􏼐 􏼑≤ βn

H �Tp1,
�Tp0􏼐 􏼑, for each n≥ 0. (25)

Now, we have to prove that �Tpn􏽮 􏽯 is a Cauchy sequence,
for all natural numbers n, m ∈ N with n<m,
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H �Tpn, �Tpm􏼐 􏼑≤max sup
qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpn, �Tpn+1􏼐 􏼑

+ max sup
qn+1∈�Tpn+1

α qn+1, qm( 􏼁, α qm, �Tpn+1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpn+1,

�Tpm􏼐 􏼑

≤max sup
qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpn, �Tpn+1􏼐 􏼑

+ max sup
qn+1∈�Tpn+1

α qn+1, qn+2( 􏼁, α qn+2,
�Tpn+1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
max sup

qn+1∈�Tpn+1

α qn+1, qm( 􏼁, α qm, �Tpn+1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpn+1,

�Tpn+2􏼐 􏼑

+ max s sup
qn+1∈�Tpn+1

α qn+1, qm( 􏼁, α qm, �Tpn+1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
max sup

qn+2∈�Tpn+2

α qn+2, qm( 􏼁, α qm, �Tpn+2􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpn+2,

�Tpm􏼐 􏼑

≤max sup
qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpn, �Tpn+1􏼐 􏼑

+ 􏽘
m−2

i�n+1
􏽙

i

j�n+1
max sup

qj∈�Tpj

α qj, qm􏼐 􏼑, α qm, �Tpj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠max sup

qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpi,

�Tpi+1􏼐 􏼑

+ 􏽙
m−1

k�n+1
max sup

qnk
∈�Tpk

α qk, qm( 􏼁, α qm, �Tpk􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
H �Tpm−1,

�Tpm􏼐 􏼑

≤max sup
qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βn
H �Tp0,

�Tp1􏼐 􏼑

+ 􏽘
m−2

i�n+1
􏽙

i

j�n+1
max sup

qj∈�Tpj

α qj, qm􏼐 􏼑, α qm, �Tpj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠max sup

qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βi
H �Tp0,

�Tp1􏼐 􏼑

+ 􏽙

m−1

k�n+1
max sup

qnk
∈�Tpk

α qk, qm( 􏼁, α qm, �Tpk􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βm−1

H �Tp0,
�Tp1􏼐 􏼑

≤max sup
qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βn
H �Tp0,

�Tp1􏼐 􏼑

+ 􏽘
m−2

i�n+1
􏽙

i

j�n+1
max sup

qj∈�Tpj

α qj, qm􏼐 􏼑, α qm, �Tpj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠max sup

qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βi
H �Tp0,

�Tp1􏼐 􏼑

+ 􏽙
m−1

k�n+1
max sup

qnk
∈�Tpk

α qk, qm( 􏼁, α qm, �Tpk􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
max sup

qm−1∈�Tpm−1

α qm−1, qm( 􏼁, α qm, �Tpm−1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βm−1

H �Tp0,
�Tp1􏼐 􏼑

� max sup
qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βn
H �Tp0,

�Tp1􏼐 􏼑
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+ 􏽘
m−2

i�n+1
􏽙

i

j�n+1
max sup

qj∈�Tpj

α qj, qm􏼐 􏼑, α qm, �Tpj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠max sup

qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βi
H �Tp0,

�Tp1􏼐 􏼑

≤max sup
qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βn
H �Tp0,

�Tp1􏼐 􏼑

+ 􏽘
m−2

i�n+1
􏽙

i

j�0
max sup

qj∈�Tpj

α qj, qm􏼐 􏼑, α qm, �Tpj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠max sup

qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βi
H �Tp0,

�Tp1􏼐 􏼑.

(26)

Assume that

Sm−2 � 􏽘

m−2

i�n+1
􏽙

i

j�0
max sup

qj∈�Tpj

α qj, qm􏼐 􏼑, α qm, �Tpj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠max sup

qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βi

. (27)

+en, we obtain

H �Tpn, �Tpm􏼐 􏼑≤H �Tp0,
�Tp1􏼐 􏼑 βn max sup

qn∈�Tpn

α qn, qn+1( 􏼁, α qn+1,
�Tpn􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ Sm−1 − Sn( 􏼁

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (28)

Using the ratio test, we have

ai � 􏽙
i

j�0
max sup

qj∈�Tpj

α qj, qm􏼐 􏼑, α qm, �Tpj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
max sup

qi∈�Tpi

α qi, qi+1( 􏼁, α qi+1,
�Tpi􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
βi

, (29)

where (ai+1/ai)< (1/k). Taking limit as n, m⟶∞, we
obtain

lim
n⟶∞

H �Tpn, �Tpm􏼐 􏼑 � 0. (30)

+at is, �Tpn􏽮 􏽯 is a Cauchy sequence in the complete
generalized Pompeiu–Hausdroff controlled metric type
space (B(X),H); hence, it converges to some q in K (as the
set K is closed). +erefore,

Ψ(q, J)≤Ψ q, g
⌣

pn􏼐 􏼑≤ α∗ q, �Tpn−1􏼐 􏼑D q, �Tpn−1􏼐 􏼑 + α∗ �Tpn−1, g
⌣

pn􏼐 􏼑D �Tpn−1, g
⌣

pn􏼐 􏼑

� α∗ q, �Tpn−1􏼐 􏼑D q, �Tpn−1􏼐 􏼑 + α∗ �Tpn−1, g
⌣

pn􏼐 􏼑Ψ(J, K).
(31)

Taking limn⟶∞ on both sides of the above inequality, we
have
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lim
n⟶∞
Ψ q, g

⌣
pn􏼐 􏼑≤ lim

n⟶∞
α∗ q, �Tpn−1􏼐 􏼑D q, �Tpn−1􏼐 􏼑 + α∗ �Tpn−1, g

⌣
pn􏼐 􏼑Ψ(J, K)􏽨 􏽩

≤Ψ(J, K)

≤Ψ(q, J).

(32)

+erefore,Ψ(q, g
⌣

pn)⟶Ψ(q, J). In view of the fact that
J is approximately compact with respect to K, g

⌣
pn􏽮 􏽯 has

a subsequence g
⌣

pnk
􏽮 􏽯 converging to some z � g

⌣
p ∈ J for

some p ∈ J0. +us,

Ψ(z, q) � lim
k⟶∞

D g
⌣

pnk
, �Tpnk−1

􏼐 􏼑 � Ψ(J, K). (33)

+erefore, z is a member of J0. Since J0 is contained in
g
⌣

(J0) and z � g
⌣

p for some p in J0, g
⌣

pnk
⟶ g

⌣
p and g

⌣ is
a one-to-one continuous mapping, so pnk

⟶ p. Since �T is
continuous, it can be concluded that �Tpnk

⟶ �Tp. +is
implies that

D(g
⌣

p, �Tp) � lim
k⟶∞

D g
⌣

pnk
, �Tpnk−1

􏼐 􏼑 � Ψ(J, K). (34)

+at is, p is a coincidence best proximity point of the pair
(g

⌣
, �T).
To prove the uniqueness of the coincidence best prox-

imity point of the pair of mappings (g
⌣

, �T), suppose that
there is another coincidence best proximity point q≠p of the
pair (g

⌣
, �T). We have

D(g
⌣

p, �Tp) � Ψ(J, K),

D(g
⌣

q, �Tq) � Ψ(J, K).
(35)

As the mapping �T is one-to-one on the set J and p≠ q,
one has H(�Tp, �Tq)> 0. Since the pair (g

⌣
, �T) is a β-gener-

alized proximal contraction, one can write

(0< )H(�Tp, �Tq)≤ βH(�Tp, �Tq)<H(�Tp, �Tq). (36)

It is a contradiction. □

Corollary 1. Let �T: J⟶B(K) and α∗: X × X⟶
[1,∞) be mappings, where K is a closed subset and J is
approximately compact with respect to K with �T(J0)⊆K0.
Suppose that �T is a continuous and β�T-generalized proximal
contraction such that

sup
m≥1

lim
i⟶∞

α∗ pi, pi+1( 􏼁α∗ pi, pm( 􏼁<
1
k

,

lim
n⟶∞

α∗ pn, �Tpn−1􏼐 􏼑 � 1, where k ∈ (0, 1),

(37)

then there exists a unique best proximity point of �T.

Proof. If we take identity mapping g
⌣

� IJ (g
⌣ is identity on J),

the remaining proof is same as in +eorem 3 □

Definition 16. Let �T: J⟶ K and g
⌣

: J⟶ J. A pair of
mappings (g

⌣
, �T) is said to be a β-modified proximal con-

traction if there exists β ∈ [0, 1) such that

Ψ g
⌣

u1,
�Tp1􏼐 􏼑 � Ψ(J, K)

Ψ g
⌣

u2,
�Tp2􏼐 􏼑 � Ψ(J, K)

⎫⎪⎬

⎪⎭
, impliesΨ �Tu1,

�Tu2􏼐 􏼑≤ βΨ �Tp1,
�Tp2􏼐 􏼑,

(38)

for all u1, u2, p1, andp2 in J.

Definition 17. A mapping �T: J⟶ K is said to be a β�T-
modified proximal contraction if there exists β ∈ [0, 1) such
that

Ψ u1,
�Tp1􏼐 􏼑 � Ψ(J, K)

Ψ u2,
�Tp2􏼐 􏼑 � Ψ(J, K)

⎫⎪⎬

⎪⎭
, impliesΨ �Tu1,

�Tu2􏼐 􏼑≤ βΨ �Tp1,
�Tp2􏼐 􏼑,

(39)

for all u1, u2, p1, andp2 in J.
Note that if we take g

⌣
� IJ (the identity mapping on J),

then every β-modified proximal contraction is a β�T-modified
proximal contraction.

Theorem 4. Let �T: J⟶ K and g
⌣

: J⟶ J be two con-
tinuous and one-to-one mappings, where K is a closed subset
and J is approximately compact with respect to K with
�T(J0)⊆K0 and J0⊆g

⌣
(J0). If the pair (g

⌣
, �T) is a β-modified

proximal contraction and

sup
m≥1

lim
i⟶∞

α pi, pi+1( 􏼁α pi, pm( 􏼁<
1
k

,

lim
n⟶∞

α g
⌣

pn, �Tpn−1􏼐 􏼑 � 1, where k ∈ (0, 1),

(40)

then there exists a unique coincidence best proximity point of
the pair (g

⌣
, �T).

Proof. Let p0 be an arbitrary element in J0. Since �T(J0) is
contained in K0 and J0 is contained in g

⌣
(J0), there exists an

element p1 in J0 such that

Ψ g
⌣

p1,
�Tp0􏼐 􏼑 � Ψ(J, K). (41)

Since �Tp1 is an element of �T(J0) which is contained in
K0 and J0 is contained in g

⌣
(J0), it follows that there exists an

element p2 in J0 such that

Ψ g
⌣

p2,
�Tp1􏼐 􏼑 � Ψ(J, K). (42)

By continuing this process, we can construct a sequence
pn􏼈 􏼉 in J0, satisfying the condition as follows:

Ψ g
⌣

pn, �Tpn−1􏼐 􏼑 � Ψ(J, K). (43)

Having chosen pn􏼈 􏼉 in J0, there exists an element pn+1 in
J0, such that

Ψ g
⌣

pn+1,
�Tpn􏼐 􏼑 � Ψ(J, K), (44)
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for every positive integer n. Since the pair (g
⌣

, �T) is a β-
modified proximal contraction from equations (43) and
(44), we obtain

Ψ �Tpn+1,
�Tpn􏼐 􏼑≤ βΨ �Tpn, �Tpn−1􏼐 􏼑. (45)

Recursively, we have

Ψ �Tpn+1,
�Tpn􏼐 􏼑≤ βnΨ �Tp1,

�Tp0􏼐 􏼑. (46)

Now, we have to prove that �Tpn􏽮 􏽯 is a Cauchy sequence.
For all natural numbers n, m ∈ N with n<m, we have

Ψ �Tpn, �Tpm􏼐 􏼑≤ α �Tpn, �Tpn+1􏼐 􏼑Ψ �Tpn, �Tpn+1􏼐 􏼑 + α �Tpn+1,
�Tpm􏼐 􏼑Ψ �Tpn+1,

�Tpm􏼐 􏼑

≤ α �Tpn, �Tpn+1􏼐 􏼑Ψ �Tpn, �Tpn+1􏼐 􏼑 + α �Tpn+1,
�Tpm􏼐 􏼑α �Tpn+1,

�Tpn+2􏼐 􏼑Ψ �Tpn+1,
�Tpn+2􏼐 􏼑

+ α �Tpn+1,
�Tpm􏼐 􏼑α �Tpn+2,

�Tpm􏼐 􏼑Ψ �Tpn+2,
�Tpm􏼐 􏼑

≤ α �Tpn, �Tpn+1􏼐 􏼑Ψ �Tpn, �Tpn+1􏼐 􏼑 + α �Tpn+1,
�Tpm􏼐 􏼑α �Tpn+1,

�Tpn+2􏼐 􏼑Ψ �Tpn+1,
�Tpn+2􏼐 􏼑

+ α �Tpn+1,
�Tpm􏼐 􏼑α �Tpn+2,

�Tpm􏼐 􏼑α �Tpn+2,
�Tpn+3􏼐 􏼑Ψ �Tpn+2,

�Tpn+3􏼐 􏼑 + α �Tpn+1,
�Tpm􏼐 􏼑

α �Tpn+2,
�Tpm􏼐 􏼑α �Tpn+3,

�Tpm􏼐 􏼑Ψ �Tpn+3,
�Tpm􏼐 􏼑

≤ α �Tpn, �Tpn+1􏼐 􏼑Ψ �Tpn, �Tpn+1􏼐 􏼑 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α �Tpj,

�Tpm􏼐 􏼑⎛⎝ ⎞⎠α �Tpi,
�Tpi+1􏼐 􏼑Ψ �Tpi,

�Tpi+1􏼐 􏼑

+ 􏽙

m−1

k�n+1
α �Tpk, �Tpm􏼐 􏼑Ψ �Tpm−1,

�Tpm􏼐 􏼑

≤ α �Tpn, �Tpn+1􏼐 􏼑βnΨ �Tp0,
�Tp1􏼐 􏼑 + 􏽘

m−2

i�n+1
􏽙

i

j�n+1
α �Tpj,

�Tpm􏼐 􏼑⎛⎝ ⎞⎠α �Tpi,
�Tpi+1􏼐 􏼑βiΨ �Tp0,

�Tp1􏼐 􏼑

+ 􏽙
m−1

k�n+1
α �Tpk, �Tpm􏼐 􏼑βm−1Ψ �Tp0,

�Tp1􏼐 􏼑

≤ α �Tpi,
�Tpi+1􏼐 􏼑βnΨ �Tp0,

�Tp1􏼐 􏼑 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α �Tpj,

�Tpm􏼐 􏼑⎛⎝ ⎞⎠α �Tpi,
�Tpi+1􏼐 􏼑βiΨ �Tp0,

�Tp1􏼐 􏼑

+ 􏽙
m−1

k�n+1
α �Tpk, �Tpm􏼐 􏼑α �Tpm−1,

�Tpm􏼐 􏼑βm−1Ψ �Tp0,
�Tp1􏼐 􏼑

� α �Tpn, �Tpn+1􏼐 􏼑βnΨ �Tp0,
�Tp1􏼐 􏼑 + 􏽘

m−1

i�n+1
􏽙

i

j�n+1
α �Tpj,

�Tpm􏼐 􏼑⎛⎝ ⎞⎠α �Tpi,
�Tpi+1􏼐 􏼑βiΨ �Tp0,

�Tp1􏼐 􏼑

≤ α �Tpn, �Tpn+1􏼐 􏼑βnΨ �Tp0,
�Tp1􏼐 􏼑 + 􏽘

m−1

i�n+1
􏽙

i

j�0
α �Tpj,

�Tpm􏼐 􏼑⎛⎝ ⎞⎠α �Tpi,
�Tpi+1􏼐 􏼑βiΨ �Tp0,

�Tp1􏼐 􏼑.

(47)

Assume that

Sl � 􏽘
l

i�0
􏽑

i

j�0
α �Tpj,

�Tpm􏼐 􏼑⎛⎝ ⎞⎠α �Tpi,
�Tpi+1􏼐 􏼑βi

. (48)

It follows that

Ψ �Tpn, �Tpm􏼐 􏼑≤Ψ �Tp0,
�Tp1􏼐 􏼑 βnα �Tpn, �Tpn+1􏼐 􏼑 + Sm−1 − Sn( 􏼁􏽨 􏽩.

(49)

Using the ratio test, we have

ai � 􏽙
i

j�0
α �Tpj,

�Tpm􏼐 􏼑α �Tpi,
�Tpi+1􏼐 􏼑βi

, where
ai+1

ai

<
1
k

.

(50)

By applying limit m, n⟶∞ in inequality (49), we get

lim
n⟶∞
Ψ �Tpn, �Tpm􏼐 􏼑 � 0, (51)

which shows that �Tpn􏽮 􏽯 is a Cauchy sequence; hence, it is
convergent to some q in K (as the set K is closed). +erefore,
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Ψ(q, J)≤Ψ q, g
⌣

pn􏼐 􏼑≤ α q, �Tpn−1􏼐 􏼑Ψ q, �Tpn−1􏼐 􏼑 + α �Tpn−1, g
⌣

pn􏼐 􏼑Ψ �Tpn−1, g
⌣

pn􏼐 􏼑

� α q, �Tpn−1􏼐 􏼑Ψ q, �Tpn−1􏼐 􏼑 + α �Tpn−1, g
⌣

pn􏼐 􏼑Ψ(J, K).
(52)

Taking limit n⟶∞ on both sides of the above in-
equality, we have

lim
n⟶∞
Ψ q, g

⌣
pn􏼐 􏼑≤ lim

n⟶∞
α q, �Tpn−1􏼐 􏼑Ψ q, �Tpn−1􏼐 􏼑 + α �Tpn−1, g

⌣
pn􏼐 􏼑Ψ(J, K)􏽨 􏽩

≤Ψ(J, K)

≤Ψ(q, J).

(53)

+erefore,Ψ(q, g
⌣

pn)⟶Ψ(q, J). In view of the fact that
J is approximately compact with respect to K, g

⌣
pn􏽮 􏽯 has

a subsequence g
⌣

pnk
􏽮 􏽯 converging to some z � g

⌣
p ∈ J for

some p ∈ J0. It follows that

Ψ(z, q) � lim
k⟶∞
Ψ g

⌣
pnk

, �Tpnk−1
􏼐 􏼑 � Ψ(J, K). (54)

+erefore, z is an element of J0. Since J0 is contained in
g
⌣

(J0), we have z � g
⌣

p for some p in J0. As g
⌣

pnk
⟶ g

⌣
p and

g
⌣ is a one-to-one continuous mapping, pnk

⟶ p. Since �T is
continuous, it can be concluded that �Tpnk

⟶ �Tp. Hence,

Ψ(g
⌣

p, �Tp) � lim
k⟶∞
Ψ g

⌣
pnk

, �Tpnk−1
􏼐 􏼑 � Ψ(J, K). (55)

To prove the uniqueness, suppose that q is another
coincidence best proximity point of the pair (g

⌣
, �T) such that

p≠ q. +en,

Ψ(g
⌣

p, �Tp) � Ψ(J, K),

Ψ(g
⌣

q, �Tq) � Ψ(J, K).
(56)

Since the pair (g
⌣

, �T) is a β-modified proximal con-
traction, we have

0<Ψ(�Tp, �Tq)≤ βΨ(�Tp, �Tq)<Ψ(�Tp, �Tq), (57)

which is a contradiction (as �T is one-to-one mapping on J).
Hence, the pair (g

⌣
, �T) has a unique coincidence best

proximity point. □

Corollary 2. Let �T: J⟶ K be a given continuous mapping,
where K is a closed subset and J is approximately compact
with respect to K with �T(J0)⊆K0. If �T is a β�T-modified
proximal contraction and suppose that

sup
m≥1

lim
i⟶∞

α pi, pi+1( 􏼁α pi, pm( 􏼁<
1
k

,

lim
n⟶∞

α pn, �Tpn−1􏼐 􏼑 � 1, where k ∈ (0, 1),

(58)

then there exists a unique best proximity point of �T.

Proof. If we take g
⌣

� IJ (the identity mapping over the set
J), the remaining proof is same as +eorem 4. □

Example 1. Let X � 0, 1, 2, 3, 4, 5{ }. Consider the function Ψ
given as Ψ(p, p) � 0 and Ψ(p, q) � Ψ(q, p), where

Ψ 0 1 2 3 4 5
0 0 1/14 1/13 1/15 1/12 1/11
1 1/14 1/15 4/5
2 1/13 2/3 0 1/9 1/8 1/15
3 1/15 3/4 1/9 0 7/8 8/9
4 1/12 1/15 1/8 7/8 0 1/4
5 1/11 4/5 1/15 8/9 1/4 0

3/42/30

Take α: X × X⟶ [1,∞) to be symmetric which is
defined as α(p, q) � 19p + 21q. It is easy to see that (X,Ψ) is
a controlled metric type space. Take J � 0, 1, 2{ } and
K � 3, 4, 5{ }. Obviously, Ψ(J, K) � (1/15), J0 � J, and
K0 � K. Now, consider �T: J⟶ K as follows:

�Tp �
3, if p � 0, 1{ },

5, if p � 2.
􏼨 (59)

Clearly, �T(J0)⊆K0. Define g
⌣

: J⟶ J by

g
⌣

p �

0, if p � 0,

1, if p � 2,

2, if p � 1.

⎧⎪⎪⎨

⎪⎪⎩
(60)

We get J0⊆g
⌣

(J0). Now, we have to show that the pair
(g

⌣
, �T) satisfies

Ψ(g
⌣0, �T1) � Ψ(0, 3) � Ψ(J, K),

Ψ(g
⌣1, �T2) � Ψ(2, 5) � Ψ(J, K),

(61)

where u1 � 0, u2 � 1, p1 � 1, and p2 � 2. Since the pair
(g

⌣
, �T) is a β-modified proximal contraction:

Ψ(�T0, �T1)≤ βΨ(�T1, �T2), (62)

for every β ∈ [0, 1), the pair (g
⌣

, �T) is a β-modified proximal
contraction. Hence, 0 is the unique coincidence best prox-
imity point of �T and g

⌣.

Definition 18. Let �T: J⟶ K and g
⌣

: J⟶ J. A pair of
mappings (g

⌣
, �T) is said to be a β− proximal contraction if

there exists β ∈ [0, 1) such that

Ψ g
⌣

u1,
�Tp1􏼐 􏼑 � Ψ(J, K)

Ψ g
⌣

u2,
�Tp2􏼐 􏼑 � Ψ(J, K)

⎫⎪⎬

⎪⎭
, impliesΨ g

⌣
u1, g

⌣
u2􏼐 􏼑≤ βΨ p1, p2( 􏼁,

(63)

for all u1, u2, p1, andp2 in J.

Definition 19. A mapping �T: J⟶ K is said to be a β�T-
proximal contraction if there exists β ∈ [0, 1) such that

Ψ u1,
�Tp1􏼐 􏼑 �Ψ(J,K)

Ψ u2,
�Tp2􏼐 􏼑 �Ψ(J,K)

⎫⎪⎬

⎪⎭
, impliesΨ u1,u2( 􏼁≤βΨ p1,p2( 􏼁, (64)

for all u1, u2, p1, andp2 in J.
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Note that, if we take g
⌣

� IJ, then every β-proximal
contraction is a β�T-proximal contraction.

Theorem 5. Let �T: J⟶ K and g
⌣

: J⟶ J be continuous
mappings, where K is a closed subset and J is approximately
compact with respect to K with �T(J0)⊆K0 and J0⊆g

⌣
(J0).

Suppose that g
⌣ is an expansive mapping and the pair (g

⌣
, �T) is

a β-proximal contraction such that

sup
m≥1

lim
i⟶∞

α pi, pi+1( 􏼁α pi, pm( 􏼁<
1
k

,

lim
n⟶∞

α g
⌣

pn, �Tpn−1􏼐 􏼑 � 1, where k ∈ (0, 1),

(65)

then there exists a unique coincidence best proximity point of
the pair (g

⌣
, �T).

Proof. Let p0 be an arbitrary element in J0. Since �T(J0) is
contained in K0 and J0 is contained in g

⌣
(J0), there exists an

element p1 in J0 such that

Ψ g
⌣

p1,
�Tp0􏼐 􏼑 � Ψ(J, K). (66)

Again, since �Tp1 is an element of �T(J0) which is con-
tained inK0 and J0 is contained in g

⌣
(J0), it follows that there

is an element p2 in J0, such that

Ψ g
⌣

p2,
�Tp1􏼐 􏼑 � Ψ(J, K). (67)

+is process can be continued by selecting pn in J0 so
that

Ψ g
⌣

pn+1,
�Tpn􏼐 􏼑 � Ψ(J, K). (68)

Since the pair (g
⌣

, �T) is a β-proximal contraction, we have

Ψ g
⌣

pn+1, g
⌣

pn􏼐 􏼑≤ βΨ pn, pn−1( 􏼁. (69)

As g
⌣ is an expansive mapping, one writes

Ψ pn+1, pn( 􏼁≤Ψ g
⌣

pn+1, g
⌣

pn􏼐 􏼑≤ βnΨ p1, p0( 􏼁, (70)

so we have

Ψ pn+1, pn( 􏼁≤ βnΨ p1, p0( 􏼁. (71)

We claim that pn􏼈 􏼉 is a Cauchy sequence. For all natural
numbers n, m ∈ N with n<m, we have

Ψ pn, pm( 􏼁≤ α pn, pn+1( 􏼁Ψ pn, pn+1( 􏼁 + α pn+1, pm( 􏼁Ψ pn+1, pm( 􏼁

≤ α pn, pn+1( 􏼁Ψ pn, pn+1( 􏼁 + α pn+1, pm( 􏼁α pn+1, pn+2( 􏼁Ψ pn+1, pn+2( 􏼁

+ α pn+1, pm( 􏼁α pn+2, pm( 􏼁Ψ pn+2, pm( 􏼁

≤ α pn, pn+1( 􏼁Ψ pn, pn+1( 􏼁 + α pn+1, pm( 􏼁α pn+1, pn+2( 􏼁Ψ pn+1, pn+2( 􏼁

+ α pn+1, pm( 􏼁α pn+2, pm( 􏼁α pn+2, pn+3( 􏼁Ψ pn+2, pn+3( 􏼁 + α pn+1, pm( 􏼁

α pn+2, pm( 􏼁α pn+3, pm( 􏼁Ψ pn+3, pm( 􏼁

≤ α pn, pn+1( 􏼁Ψ pn, pn+1( 􏼁 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α pj, pm􏼐 􏼑⎛⎝ ⎞⎠α pi, pi+1( 􏼁Ψ pi, pi+1( 􏼁

+ 􏽙
m−1

k�n+1
α pk, pm( 􏼁Ψ pm−1, pm( 􏼁

≤ α �Tpn, �Tpn+1􏼐 􏼑βnΨ p0, p1( 􏼁 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α pj, pm􏼐 􏼑⎛⎝ ⎞⎠α pi, pi+1( 􏼁βiΨ p0, p1( 􏼁

+ 􏽙
m−1

k�n+1
α pk, pm( 􏼁βm− 1Ψ p0, p1( 􏼁

≤ α pn, pn+1( 􏼁βnΨ p0, p1( 􏼁 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α pj, pm􏼐 􏼑⎛⎝ ⎞⎠α pi, pi+1( 􏼁βiΨ p0, p1( 􏼁

+ 􏽙
m−1

k�n+1
α pk, pm( 􏼁α pm−1, pm( 􏼁βm− 1Ψ p0, p1( 􏼁

� α pn, pn+1( 􏼁βnΨ p0, p1( 􏼁 + 􏽘
m−1

i�n+1
􏽙

i

j�n+1
α pj, pm􏼐 􏼑⎛⎝ ⎞⎠α pi, pi+1( 􏼁βiΨ p0, p1( 􏼁

≤ α pn, pn+1( 􏼁βnΨ p0, p1( 􏼁 + 􏽘
m−1

i�n+1
􏽙

i

j�0
α pj, pm􏼐 􏼑⎛⎝ ⎞⎠α pi, pi+1( 􏼁βiΨ p0, p1( 􏼁.

(72)
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Assume that

Sl � 􏽘
l

i�0
􏽑

i

j�0
α pj, pm􏼐 􏼑⎛⎝ ⎞⎠α pi, pi+1( 􏼁βi

. (73)

+en, we obtain

Ψ pn, pm( 􏼁≤Ψ p0, p1( 􏼁 βnα pn, pn+1( 􏼁 + Sm−1 − Sn( 􏼁􏼂 􏼃.

(74)

Using the ratio test, we have

ai � 􏽙
i

j�0
α pj, pm􏼐 􏼑α pi, pi+1( 􏼁βi

, where
ai+1

ai

<
1
k

. (75)

By taking limit as n, m⟶∞, (74) becomes

lim
n⟶∞
Ψ pn, pm( 􏼁 � 0. (76)

+erefore, pn􏼈 􏼉 is a Cauchy sequence in the complete
controlled metric type space (X,Ψ); hence, it is convergent
to some p in J (as set J is closed). Since g

⌣ and �T are
continuous, we have

Ψ(g
⌣

p, �Tp) � lim
n⟶∞
Ψ g

⌣
pn+1,

�Tpn􏼐 􏼑 � Ψ(J, K). (77)

Hence, p is the unique coincidence best proximity point
of the pair (g

⌣
, �T). To prove the uniqueness, suppose that q is

another coincidence best proximity point of the pair (g
⌣

, �T)

such that p≠ q. +en,

Ψ(g
⌣

p, �Tp) � Ψ(J, K),

Ψ(g
⌣

q, �Tq) � Ψ(J, K).
(78)

Since the pair (g
⌣

, �T) is a β-modified proximal con-
traction, we have

Ψ(p, q)≤Ψ(g
⌣

p, g
⌣

q)≤ βΨ(p, q)<Ψ(p, q), (79)

which is a contradiction. Hence, the pair (g
⌣

, �T) has a unique
coincidence best proximity point. □

Corollary 3. Let �T: J⟶ K be a continuous mapping,
where K is closed subset and J is approximately compact with
respect to K with �T(J0)⊆K0. If �T is a β�T-proximal contraction
and suppose that

sup
m≥1

lim
i⟶∞

α pi, pi+1( 􏼁α pi, pm( 􏼁<
1
k

,

lim
n⟶∞

α pn, �Tpn−1􏼐 􏼑 � 1, where k ∈ (0, 1),

(80)

then there exists a best proximity point of �T.

Proof. If we take identity mapping g
⌣

� IJ, the remaining
proof is same as +eorem 5. □

3. Coincidence Best Proximity Points for
Geraghty Type Proximal
Contractive Mappings

First, we need to define a generalized Geraghty type prox-
imal contractive mapping.

From now and onward, F is a class of all nondecreasing
functions λ: [0,∞)⟶ [0, 1) such that for any bounded
sequence tn􏼈 􏼉 of positive real numbers, λ tn􏼈 􏼉⟶ 1 implies
tn⟶ 0.

Definition 20. Let (X,Ψ) be a controlled metric type space
having a pair of nonempty subsets (J, K) such that J0 is
nonempty.+en, a pair (J, K) has the P-property if and only
if

Ψ p1, q1( 􏼁 � Ψ(J, K)

Ψ p2, q2( 􏼁 � Ψ(J, K)
􏼩 impliesΨ p1, p2( 􏼁 � Ψ q1, q2( 􏼁.

(81)

Definition 21. Let �T: J⟶B(K), g⌣: J⟶ J aremappings.
A pair (g

⌣
, �T) is said to be a λ − μ-proximal Geraghty con-

traction if μ: J × J⟶ [0,∞) is such that

μ(p, q)≥ 1

D(g
⌣

u, �Tp) � Ψ(J, K)

D(g
⌣

v, �Tq) � Ψ(J, K)

⎫⎪⎪⎬

⎪⎪⎭
implies that μ(p, q)H(�Tp, �Tq)≤ λ(M(u, v, p, q))M(u, v, p, q), (82)

where

M(u, v, p, q) � max Ψ(g
⌣

p, g
⌣

q),
D(g

⌣
p, �Tp) − α∗(g

⌣
q, �Tp)Ψ(J, K)

α∗(g
⌣

p, g
⌣

q)
,􏼨

D
∗
(g

⌣
u, �Tp),

D(g
⌣

u, �Tq) − α∗(g
⌣

v, �Tq)Ψ(J, K)

α∗(g
⌣

u, g
⌣

v)
􏼩,

(83)

for all u, v, p, q ∈ J, where λ ∈ F.
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Definition 22. A mapping �T: J⟶B(K) is said to be
a (λ − μ)�T-proximal Geraghty contraction if
μ: J × J⟶ [0,∞) is such that

μ(p, q)≥ 1

D(u, �Tp) � Ψ(J, K)

D(v, �Tq) � Ψ(J, K)

⎫⎪⎪⎬

⎪⎪⎭
, implies that μ(p, q)H(�Tp, �Tq)≤ λ(M(u, v, p, q))M(u, v, p, q), (84)

where

M(u, v, p, q) � max Ψ(p, q),
Ψ(p, �Tp) − α∗(q, �Tp)Ψ(J, K)

α∗(p, q)
,􏼨

Ψ∗(u, �Tp),
Ψ(u, �Tq) − α∗(v, �Tq)Ψ(J, K)

α∗(u, v)
􏼩,

(85)

for all u, v, p, q ∈ J, where λ ∈ F.
If we take g

⌣
� IJ (the identity mapping over J), then

every λ − μ-proximal Geraghty contraction will reduce to
a λ − μ-generalized proximal Geraghty contraction.

Theorem 6. Let �T: J⟶B(K), g
⌣

: J⟶ J, and
μ: J × J⟶ [0, +∞) be mappings, where J is a closed subset
and the pair (J, K) satisfies the P-property with �T(J0)⊆K0
and J0⊆g

⌣
(J0). If a pair of continuous mappings (g

⌣
, �T) is

a λ − μ-proximal Geraghty contraction, where �T is μ-proxi-
mal admissible, then there exist elements p0, p1 ∈ J0 such that
D(g

⌣
p1,

�Tp0) � Ψ(J, K) and μ(p0, p1)≥ 1. If pn􏼈 􏼉 is a se-
quence in J such that μ(pn, pn+1)≥ 1 and suppose that

sup
m≥1

lim
i⟶∞

α∗ pi, pi+1( 􏼁α∗ pi, pm( 􏼁<
1
k

, where k ∈ (0, 1),

(86)

then the pair (g
⌣

, �T) has a unique coincidence best proximity
point p∗ ∈ J.

Proof. From the given condition, there exist p0, p1 ∈ J0
such that D(g

⌣
p1,

�Tp0) � Ψ(J, K) and μ(p0, p1)≥ 1. As
�T(J0)⊆K0, there exists p2 ∈ J0 such that
D(g

⌣
p2,

�Tp1) � Ψ(J, K). As �T is μ-proximal admissible,
μ(p0, p1)≥ 1,

D g
⌣

p1,
�Tp0􏼐 􏼑 � Ψ(J, K),

D g
⌣

p2,
�Tp1􏼐 􏼑 � Ψ(J, K),

(87)

using the P-property Ψ(g
⌣

p1, g
⌣

p2) � H(�Tp0,
�Tp1). Since

the pair (g
⌣

, �T) is a λ − μ-proximal Geraghty contraction with
μ(p1, p2)≥ 1, we have

Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑≤ λ M p0, p1, p1, p2( 􏼁( 􏼁M p0, p1, p1, p2( 􏼁, (88)

where

M p0, p1, p1, p2( 􏼁≤max Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑,
D g

⌣
p0,

�Tp0􏼐 􏼑 − α∗ g
⌣

p1,
�Tp0􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p0, g
⌣

p1􏼐 􏼑
,

⎧⎨

⎩

D
∗

g
⌣

p1,
�Tp0􏼐 􏼑,

D g
⌣

p1,
�Tp1􏼐 􏼑 − α∗ g

⌣
p2,

�Tp1􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p1, g
⌣

p2􏼐 􏼑

⎫⎬

⎭

≤max Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑,
α∗ g

⌣
p0, g

⌣
p1􏼐 􏼑Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑 + α∗ g

⌣
p1,

�Tp0􏼐 􏼑D g
⌣

p1,
�Tp0􏼐 􏼑

α∗ g
⌣

p0, g
⌣

p1􏼐 􏼑

⎧⎨

⎩

−
α∗ g

⌣
p1,

�Tp0􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p0, g
⌣

p1􏼐 􏼑
,D g

⌣
p1,

�Tp0􏼐 􏼑 − Ψ(J, K),
α∗ g

⌣
p1, g

⌣
p2􏼐 􏼑Ψ g

⌣
p1, g

⌣
p2􏼐 􏼑

α∗ g
⌣

p1, g
⌣

p2􏼐 􏼑

+
α∗ g

⌣
p2,

�Tp1􏼐 􏼑D g
⌣

p2,
�Tp1􏼐 􏼑 − α∗ g

⌣
p2,

�Tp1􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p1, g
⌣

p2􏼐 􏼑

⎫⎬

⎭

≤max Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑,Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑, 0,Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑􏽮 􏽯,

(89)
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and we have

M p0, p1, p1, p2( 􏼁≤max Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑,Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑􏽮 􏽯.

(90)

If

max Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑,Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑􏽮 􏽯 � Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑, (91)

then inequality (88) becomes

Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑≤ λ Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑􏼐 􏼑Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑, (92)

which is a contradiction. So, we can conclude that

Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑≤ λ Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑. (93)

Further, by the fact that �T(J0)⊆K0, there exists p3 ∈ J0
such that D(g

⌣
p3,

�Tp2) � Ψ(J, K). As �T is μ-proximal ad-
missible mapping, where μ(p2, p3)≥ 1,

D g
⌣

p2,
�Tp1􏼐 􏼑 � Ψ(J, K),

D g
⌣

p3,
�Tp2􏼐 􏼑 � Ψ(J, K),

(94)

using the P-Property, we haveΨ(g
⌣

p2, g
⌣

p3) � H(�Tp1,
�Tp2).

Since the pair (g
⌣

, �T) is a λ − μ-proximal Geraghty mapping
with μ(p2, p3)≥ 1, one writes

Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑≤ λ M p2, p3, p1, p2( 􏼁( 􏼁M p2, p3, p1, p2( 􏼁,

(95)

where

M p2, p3, p1, p2( 􏼁≤max Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑,
D g

⌣
p1,

�Tp1􏼐 􏼑 − α∗ g
⌣

p2,
�Tp1􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p1, g
⌣

p2􏼐 􏼑
,

⎧⎨

⎩

D
∗

g
⌣

p2,
�Tp1􏼐 􏼑,

D g
⌣

p2,
�Tp2􏼐 􏼑 − α∗ g

⌣
p3,

�Tp2􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p2, g
⌣

p3􏼐 􏼑

⎫⎬

⎭

≤max Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑,
α∗ g

⌣
p1, g

⌣
p2􏼐 􏼑Ψ g

⌣
p1, g

⌣
p2􏼐 􏼑 + α∗ g

⌣
p2,

�Tp1􏼐 􏼑D g
⌣

p2,
�Tp1􏼐 􏼑

α∗ g
⌣

p1, g
⌣

p2􏼐 􏼑

⎧⎨

⎩

−
α∗ g

⌣
p2,

�Tp1􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p1, g
⌣

p2􏼐 􏼑
,D g

⌣
p2,

�Tp1􏼐 􏼑 − Ψ(J, K),
α∗ g

⌣
p2, g

⌣
p3􏼐 􏼑Ψ g

⌣
p2, g

⌣
p3􏼐 􏼑

α∗ g
⌣

p2, g
⌣

p3􏼐 􏼑

+
α∗ g

⌣
p3,

�Tp2􏼐 􏼑D g
⌣

p3,
�Tp2􏼐 􏼑 − α∗ g

⌣
p3,

�Tp2􏼐 􏼑Ψ(J, K)

α∗ g
⌣

p2, g
⌣

p3􏼐 􏼑

⎫⎬

⎭

≤max Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑,Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑, 0,Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑􏽮 􏽯,

(96)

and we have

M p2, p3, p1, p2( 􏼁≤max Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑,Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑􏽮 􏽯.

(97)

If

max Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑,Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑􏽮 􏽯 � Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑, (98)

then inequality (95) becomes

Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑≤ λ Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑􏼐 􏼑Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑, (99)

which is a contradiction. +us,

Ψ g
⌣

p2, g
⌣

p3􏼐 􏼑≤ λ Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑􏼐 􏼑Ψ g
⌣

p1, g
⌣

p2􏼐 􏼑. (100)

Similarly, we can construct a sequence pn􏼈 􏼉⊆J0, where
μ(pn, pn+1)≥ 1 for all n ∈ N∪ 0{ },

D g
⌣

pn, �Tpn−1􏼐 􏼑 � Ψ(J, K),

D g
⌣

pn+1,
�Tpn􏼐 􏼑 � Ψ(J, K),

(101)

using the P-property Ψ(g
⌣

pn, g
⌣

pn+1) � H(�Tpn, �Tpn−1).
Since the pair (g

⌣
, �T) is a λ − μ-proximal Geraghty con-

traction with μ(pn, pn+1)≥ 1, we get

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑≤ λ M pn, pn+1, pn−1, pn( 􏼁( 􏼁M pn, pn+1, pn−1, pn( 􏼁,

(102)

where
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M pn, pn+1, pn−1, pn( 􏼁≤max Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑,
D g

⌣
pn−1,

�Tpn−1􏼐 􏼑 − α∗ g
⌣

pn, �Tpn−1􏼐 􏼑Ψ(J, K)

α∗ g
⌣

pn−1, g
⌣

pn􏼐 􏼑
,

⎧⎨

⎩

D
∗

g
⌣

pn, �Tpn−1􏼐 􏼑,
D g

⌣
pn, �Tpn􏼐 􏼑 − α∗ g

⌣
pn+1,

�Tpn􏼐 􏼑Ψ(J, K)

α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑

⎫⎬

⎭

≤max Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑,
α∗ g

⌣
pn−1, g

⌣
pn􏼐 􏼑Ψ g

⌣
pn−1, g

⌣
pn􏼐 􏼑 + α∗ g

⌣
pn, �Tpn−1􏼐 􏼑D g

⌣
pn, �Tpn−1􏼐 􏼑

α∗ g
⌣

pn−1, g
⌣

pn􏼐 􏼑

⎧⎨

⎩

−
α∗ g

⌣
pn, �Tpn−1􏼐 􏼑Ψ(J, K)

α∗ g
⌣

pn−1, g
⌣

pn􏼐 􏼑
D g

⌣
pn, �Tpn−1􏼐 􏼑 − Ψ(J, K)

α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑 + α∗ gpn+1,
�Tpn􏼐 􏼑D g

⌣
pn+1,

�Tpn􏼐 􏼑􏼐

α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑
−
α∗ g

⌣
pn+1,

�Tpn􏼐 􏼑Ψ(J, K)

α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑

⎫⎬

⎭

≤max Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑,Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑, 0,Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑􏽮 􏽯.

(103)

After simplification, we have

M pn, pn+1, pn−1, pn( 􏼁≤max Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑,Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑􏽮 􏽯.

(104)

If

max Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑,Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑􏽮 􏽯 � Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑,

(105)

then inequality (102) becomes

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑≤ λ Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑􏼐 􏼑Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑,

(106)

which is a contradiction. So, we conclude that

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑≤ λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑.

(107)

Further,

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑≤ λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑≤Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑,

(108)

which shows that Ψ(g
⌣

pn, g
⌣

pn+1)􏽮 􏽯 is a decreasing sequence.
Since λ ∈ F, from (108), we have

λ Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑􏼐 􏼑≤ λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑,

λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑≤ λ Ψ g
⌣

pn−2, g
⌣

pn−1􏼐 􏼑􏼐 􏼑.
(109)

Continuing on the same lines, we can write

λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑≤ λ Ψ g
⌣

pn−2, g
⌣

pn−1􏼐 􏼑􏼐 􏼑≤ · · · ≤ λ Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑.

(110)

Using inequality (107),

Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑≤ λ Ψ g
⌣

pn−2, g
⌣

pn−1􏼐 􏼑􏼐 􏼑Ψ g
⌣

pn−2, g
⌣

pn−1􏼐 􏼑.

(111)

From inequalities (107) and (111), we have

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑≤ λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑

≤ λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑λ Ψ g
⌣

pn−2, g
⌣

pn−1􏼐 􏼑􏼐 􏼑

· Ψ g
⌣

pn−2, g
⌣

pn−1􏼐 􏼑.

(112)

Following on similar lines, we have

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑≤ λ Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑􏼐 􏼑λ Ψ g
⌣

pn−2, g
⌣

pn−1􏼐 􏼑􏼐 􏼑, . . . , λ Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑

� λn Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑.
(113)

We deduce

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑≤ λn Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑. (114)

From (108), suppose that Ψ(g
⌣

pn−1, g
⌣

pn)> 0, so we can
conclude

Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑

Ψ g
⌣

pn−1, g
⌣

pn􏼐 􏼑
≤ λ Ψ g

⌣
pn−1, g

⌣
pn􏼐 􏼑􏼐 􏼑≤ 1, for all n≥ 1.

(115)

Let l � limn⟶+∞Ψ(g
⌣

pn−1, g
⌣

pn). Using equation (108)
and letting n⟶ +∞, we obtain that
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l

l
� 1≤ lim

n⟶+∞
λ Ψ g

⌣
pn−1, g

⌣
pn􏼐 􏼑􏼐 􏼑≤ 1. (116)

+us, limn⟶+∞Ψ(g
⌣

pn−1, g
⌣

pn) � 1. Using the definition
of λ, we conclude that

lim
n⟶+∞
Ψ g

⌣
pn−1, g

⌣
pn􏼐 􏼑 � 0. (117)

Now, we have to show that g
⌣

pn􏽮 􏽯 is a Cauchy sequence.
For all natural numbers n, m ∈ N with n<m, we have

Ψ g
⌣

pn, g
⌣

pm􏼐 􏼑≤ α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑 + α∗ g
⌣

pn+1, g
⌣

pm􏼐 􏼑Ψ g
⌣

pn+1, g
⌣

pm􏼐 􏼑

≤ α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑 + α∗ g
⌣

pn+1, g
⌣

pm􏼐 􏼑α∗ g
⌣

pn+1, g
⌣

pn+2􏼐 􏼑Ψ g
⌣

pn+1, g
⌣

pn+2􏼐 􏼑

+ α∗ g
⌣

pn+1, g
⌣

pm􏼐 􏼑α∗ g
⌣

pn+2, g
⌣

pm􏼐 􏼑Ψ g
⌣

pn+2, g
⌣

pm􏼐 􏼑

≤ α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑 + α∗ g
⌣

pn+1, g
⌣

pm􏼐 􏼑α∗ g
⌣

pn+1, g
⌣

pn+2􏼐 􏼑Ψ g
⌣

pn+1, g
⌣

pn+2􏼐 􏼑

+ α∗ g
⌣

pn+1, g
⌣

pm􏼐 􏼑α∗ gpn+2, g
⌣

pm􏼐 􏼑α∗􏼐 g
⌣

pn+2, g
⌣

pn+3􏼐 􏼑Ψ g
⌣

pn+2, g
⌣

pn+3􏼐 􏼑 + α∗ g
⌣

pn+1, g
⌣

pm􏼐 􏼑

α∗ g
⌣

pn+2, g
⌣

pm􏼐 􏼑α∗ g
⌣

pn+3, g
⌣

pm􏼐 􏼑Ψ g
⌣

pn+3, g
⌣

pm􏼐 􏼑

≤ α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑Ψ g
⌣

pn, g
⌣

pn+1􏼐 􏼑

+ 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α∗ g

⌣
pj, g

⌣
pm􏼐 􏼑⎛⎝ ⎞⎠α∗ g

⌣
pi, g

⌣
pi+1􏼐 􏼑Ψ g

⌣
pi, g

⌣
pi+1􏼐 􏼑 + 􏽙

m−1

k�n+1
α∗ g

⌣
pk, g

⌣
pm􏼐 􏼑Ψ g

⌣
pm−1, g

⌣
pm􏼐 􏼑

≤ α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑λn Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α∗ g

⌣
pj, g

⌣
pm􏼐 􏼑⎛⎝ ⎞⎠α∗ g

⌣
pi, g

⌣
pi+1􏼐 􏼑

λi Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑 + 􏽙
m−1

k�n+1
α∗ g

⌣
pk, g

⌣
pm􏼐 􏼑λm− 1 Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑􏼐 􏼑Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑

≤ α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑λn Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑

+ 􏽘
m−2

i�n+1
􏽙

i

j�n+1
α∗ g

⌣
pj, g

⌣
pm􏼐 􏼑⎛⎝ ⎞⎠α∗ g

⌣
pi, g

⌣
pi+1􏼐 􏼑λ Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑􏼐 􏼑Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑

+ 􏽙
m−1

k�n+1
α∗ g

⌣
pk, g

⌣
pm􏼐 􏼑α∗ g

⌣
pm−1, g

⌣
pm􏼐 􏼑

λm− 1 Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑 � α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑λn Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑

+ 􏽘
m−1

i�n+1
􏽙

i

j�n+1
α∗ g

⌣
pj, g

⌣
pm􏼐 􏼑⎛⎝ ⎞⎠α∗ g

⌣
pi, g

⌣
pi+1􏼐 􏼑λi Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑􏼐 􏼑Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑

≤ α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑λn Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑

+ 􏽘
m−1

i�n+1
􏽙

i

j�0
α∗ g

⌣
pj, g

⌣
pm􏼐 􏼑⎛⎝ ⎞⎠α∗ g

⌣
pi, g

⌣
pi+1􏼐 􏼑

λi Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑.

(118)

Assume that

Sl � 􏽘
l

i�0
􏽑

i

j�0
α∗ g

⌣
pj,g

⌣
pm􏼐 􏼑⎛⎝ ⎞⎠α∗ g

⌣
pi,g

⌣
pi+1􏼐 􏼑λi Ψ g

⌣
p0,g

⌣
p1􏼐 􏼑􏼐 􏼑.

(119)

+en, we obtain

Ψ g
⌣

pn, g
⌣

pm􏼐 􏼑≤Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑 λn Ψ g
⌣

p0, g
⌣

p1􏼐 􏼑􏼐 􏼑α∗ g
⌣

pn, g
⌣

pn+1􏼐 􏼑􏽨

+ Sm−1 − Sn( 􏼁􏼃.

(120)
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Using the ratio test, we have

ai � 􏽙

i

j�0
α∗ g

⌣
pj, g

⌣
pm􏼐 􏼑α∗ g

⌣
pi, g

⌣
pi+1􏼐 􏼑λi Ψ g

⌣
p0, g

⌣
p1􏼐 􏼑􏼐 􏼑,

where
ai+1

ai

<
1
k

.

(121)

Taking limit as n, m⟶∞, inequality (120) becomes

lim
n,m⟶∞
Ψ g

⌣
pn, g

⌣
pm􏼐 􏼑 � 0. (122)

+is implies that g
⌣

pn􏽮 􏽯 is a Cauchy sequence in the
complete controlled metric type space (X,Ψ); hence, it is
convergent and suppose that it converges to some p∗ in J0⊆J
(as set J is closed), which assures that the sequence pn􏼈 􏼉⊆J0
since pn⟶ p∗. As (g

⌣
, �T) is a pair of continuous mappings,

one writes

D g
⌣

p
∗
, �Tp
∗

􏼐 􏼑 � Ψ(J, K). (123)

+erefore, p∗ is a coincidence best proximity point of the
pair (g

⌣
, �T).

For uniqueness, suppose that there are two distinct
coincidence best proximity points of (g

⌣
, �T) such that

p∗ ≠ q∗. +us, s � Ψ(p∗, q∗)> 0. Since Ψ(g
⌣

p∗, �Tp∗) �

Ψ(g
⌣

q∗, �Tq∗) � Ψ(J, K), using the P-property, we conclude
that s � H(�Tp∗, �Tq∗). Since the pair (g

⌣
, �T) is a λ − μ-

proximal Geraghty contraction, we obtain s≤ λ(s)s. +us,
λ(s)≥ 1. Since λ(s)≥ 1, we conclude that λ(s) � 1 and
therefore s � 0, which is contradiction. □

Example 2. Let X � 0, 1, 2, 3, 4, 5{ } be endowed with the
function Ψ given as Ψ(p, q) � Ψ(q, p) and Ψ(p, p) � 0,
where

Ψ 0 1 2 3 4 5
0 0 1/2 1/3 1/10 1/5 1/6
1 1/2 0 1/4 2/3 1/10 3/4
2 1/3 1/4 0 6/7 7/8 1/10
3 1/10 2/3 6/7 0 1/2 1/3
4 1/5 1/10 7/8 1/2 0 1/4
5 1/6 3/4 1/10 1/3 1/4 0

Take α: X × X⟶ [1,∞) to be symmetric and defined
as α(p, q) � 16p + 18q. It is easy to see that (X,Ψ) is
controlled type metric space. Suppose J � 0, 1, 2{ } and
K � 3, 4, 5{ }. After a simple calculation, Ψ(J, K) � (1/10),
the P-property is satisfied, J0 � J, and K0 � K. Consider

�Tp �
3, if p � 2,

3, 4{ }, if p � 0, 1{ },
􏼨

g
⌣

p �

0, if p � 0,

1, if p � 2,

2, if p � 1.

⎧⎪⎪⎨

⎪⎪⎩

(124)

Clearly, �T(J0)⊆K0 and J0⊆g
⌣

(J0). Now, we have to show
that the pair (g

⌣
, �T) is a λ − μ-proximal Geraghty contraction:

μ(p, q)H(�Tp, �Tq)≤ λ(M(u, v, p, q))M(u, v, p, q), (125)

for all u, v, p, q ∈ J and for the function μ: J × J⟶ [0, +∞)

is defined by

μ(p, q) � Ψ(p, q) + 1. (126)

Hence,

D(g
⌣0, �T2) � D(1, 3) � Ψ(J, K),

D(g
⌣2, �T1) � D(1, 3, 4{ }) � Ψ(J, K).

(127)

After simple calculations,H(�Tp, �Tq) � H(3, 3, 4{ }) � 0,
μ(p, q) � Ψ(3, 3, 4{ }) + 1 � 1, and

M(0, 2, 2, 1) � max Ψ(g
⌣2, g

⌣1),
D(g

⌣2, �T2) − α∗(g
⌣1, �T2)(1/10)

α∗(g
⌣2, g

⌣1)
􏼨

D
∗
(g

⌣0, �T2),
D(g

⌣0, �T1) − α∗(g
⌣2, �T1)(1/10)

α∗(g
⌣0, g

⌣2)
􏼩

� max Ψ(1, 2),
D(1, 3) − α∗(2, 3)(1/10)

α∗(1, 2)
􏼨

D
∗
(0, 3),

D(0, 3, 4{ }) − α∗(1, 3, 4{ })(1/10)

α∗(0, 1)
􏼩

� max
1
4
,
−238
1560

, 0,
−69
180

􏼚 􏼛 �
1
4
.

(128)
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Now, we have to show that the pair (g
⌣

, �T) is a λ − μ-
proximal Geraghty contraction:

(1)(0)≤ λ(M(u, v, p, q))
1
4

􏼒 􏼓

≤ λ(M(u, v, p, q))
1
4

􏼒 􏼓,

(129)

and for every λ: [0,∞)⟶ [0, 1], the pair (g
⌣

, �T) is a λ − μ-
proximal Geraghty contraction. Hence, 0 is the unique
coincidence point of the pair of mappings (g

⌣
, �T).

Corollary 4. Let �T: J⟶B(K) be a continuous mapping,
where J is a closed subset and the pair (J, K) satisfies the
P-property with �T(J0)⊆K0. If �T is a (λ − μ)�T-proximal
Geraghty contraction, where �T is μ-proximal admissible, then

there exist elements p0, p1 ∈ J0 such that
D(p1,

�Tp0) � Ψ(J, K) and μ(p0, p1)≥ 1. If pn􏼈 􏼉 is a se-
quence in J such that μ(pn, pn+1)≥ 1 and suppose that

sup
m≥1

lim
i⟶∞

α∗ pi, pi+1( 􏼁α∗ pi, pm( 􏼁<
1
k

, where k ∈ (0, 1),

(130)

then �T has a unique best proximity point p∗ ∈ J.

Proof. If we take g
⌣

� IJ (an identity mapping over J), the
remaining proof is same as +eorem 6. □

Definition 23. Let �T: J⟶ K, g⌣: J⟶ J, and μ: J × J⟶
[0, +∞) be mappings. A pair of mappings (g

⌣
, �T) is said to be

a λ − μ-modified proximal Geraghty contraction if

μ(p, q)≥ 1

Ψ(g
⌣

u, �Tp) � Ψ(J, K)

Ψ(g
⌣

v, �Tq) � Ψ(J, K)

⎫⎪⎪⎬

⎪⎪⎭
, implies μ(p, q)Ψ(�Tp, �Tq)≤ λ(M(u, v, p, q))M(u, v, p, q), (131)

where

M(u, v, p, q) � max Ψ(g
⌣

p, g
⌣

q),
Ψ(g

⌣
p, �Tp) − α(g

⌣
q, �Tp)Ψ(J, K)

α(g
⌣

p, g
⌣

q)
,􏼨

Ψ∗(g
⌣

u, �Tp),
Ψ(g

⌣
u, �Tq) − α(g

⌣
v, �Tq)Ψ(J, K)

α(g
⌣

u, g
⌣

v)
􏼩,

(132)

for all u, v, p, q ∈ J, where λ ∈ F. Definition 24. Let �T: J⟶ K and μ: J × J⟶ [0, +∞) be
mappings. A mapping �T is said to be a (λ − μ)�T-modified
proximal Geraghty contraction if

μ(p, q)≥ 1

Ψ(u, �Tp) � Ψ(J, K)

Ψ(v, �Tq) � Ψ(J, K)

⎫⎪⎪⎬

⎪⎪⎭
, implies μ(p, q)Ψ(�Tp, �Tq)≤ λ(M(u, v, p, q))M(u, v, p, q), (133)

where

M(u, v, p, q) � max Ψ(p, q),
Ψ(p, �Tp) − α(q, �Tp)Ψ(J, K)

α(p, q)
,􏼨

Ψ∗(u, �Tp),
Ψ(u, �Tq) − α(v, �Tq)Ψ(J, K)

α(u, v)
􏼩,

(134)
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for all u, v, p, q ∈ J, where λ ∈ F.
Note that, if we take g

⌣
� IJ (an identity mapping over J),

then every λ − μ-modified proximal Geraghty contraction
will reduce to a (λ − μ)�T-modified proximal Geraghty
contraction.

Theorem 7. Let �T : J⟶ K and g
⌣

: J⟶ J be continuous
mappings, where J is closed subset and the pair (J, K) satisfies
the P-property with �T(J0)⊆K0 and J0⊆g

⌣
(J0). If the pair of

mappings (g
⌣

, �T) is a λ − μ-modified proximal Geraghty
contraction, where �T is a μ-proximal admissible, then there
exist elements p0, p1 ∈ J0 such that Ψ(g

⌣
p1,

�Tp0) � Ψ(J, K)

and μ(p0, p1)≥ 1. If pn􏼈 􏼉 is a sequence in J such that
μ(pn, pn+1)≥ 1 and suppose that

sup
m≥1

lim
i⟶∞

α pi, pi+1( 􏼁α pi, pm( 􏼁<
1
k

, where k ∈ (0, 1),

(135)

then the pair (g
⌣

, �T) has a unique coincidence best proximity
point p∗ ∈ J.

Proof. It is a simple consequence of +eorem 6. □

Corollary 5. Let �T: J⟶ K be a continuous mapping,
where J is closed subset and the pair (J, K) satisfies the
P-property with �T(J0)⊆K0. If �T is a (λ − μ)�T-modified
proximal Geraghty contraction, where �T is a μ-proximal
admissible, then there exist elements p0, p1 ∈ J0 such that
Ψ(g

⌣
p1,

�Tp0) � Ψ(J, K) and μ(p0, p1)≥ 1. If pn􏼈 􏼉 is a se-
quence in J such that μ(pn, pn+1)≥ 1 and suppose that

sup
m≥1

lim
i⟶∞

α pi, pi+1( 􏼁α pi, pm( 􏼁<
1
k

, where k ∈ (0, 1),

(136)

then the pair (g
⌣

, �T) has a unique best proximity point p∗ ∈ J.

Proof. If we take g
⌣

� IJ, the remaining proof is same as
+eorem 7. □

4. Conclusion

In our paper, we ensured the existence of some best
proximity point results via the multivalued concept in
controlled metric spaces. To our knowledge, we are the first
who worked on best proximity points for the class of
multivalued mappings in this setting. We open the door for
new perspectives when dealing with new generalized mul-
tivalued (proximal) contractions.
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In this paper, we are concerned with the multiple-sets split common fixed-point problems whenever the involved mappings are
demicontractive. We first study several properties of demicontractive mappings and particularly their connection with directed
mappings. By making use of these properties, we propose some new iterative methods for solving multiple-sets split common
fixed-point problems, as well as multiple-sets spit feasibility problems. Under mild conditions, we establish their weak con-
vergence of the proposed methods.

1. Introduction

$e split common fixed-point problem (SCFP) requires
finding an element in a fixed-point set such that its image
under a linear transformation belongs to another fixed-point
set. Formally, it consists in finding x ∈ H1 such that

x ∈ F(U), Ax ∈ F(T), (1)

where A: H1⟶ H2 is a bounded linear mapping from a
Hilbert space H1 into another Hilbert space H2, and F(U) and
F(T) are respectively the fixed-point sets of nonlinear map-
pings U: H1⟶ H1 and T: H2⟶ H2. Specially, if U and T

are both metric projections, then problem (1) is reduced to the
well-known split feasibility problem (SFP) [1]. Actually, the
SFP can be formulated as finding x ∈ H1 such that

x ∈ C, Ax ∈ Q, (2)

where C⊆H1 and Q⊆H2 are nonempty closed convex sets,
and mapping A is as above. $ese two problems recently
have been extensively investigated since they play an im-
portant role in various areas including signal processing and
image reconstruction [2–6].

We assume throughout the paper that problem (1) is
consistent, which means that its solution set is nonempty.
Censor and Segal [7] studied problem (1) when U and T are

directed mappings. In this situation, they proposed the
following method:

xn+1 � U xn − τnA
∗
(I − T)Axn􏼂 􏼃, (3)

where A∗ is the conjugate of A, I stands for the identity
mapping, and τn is a properly chosen stepsize. It is shown that
if τn is chosen in (0, 2/‖A‖2), then (7) converges weakly to a
solution of (1). Subsequently, this result was extended to more
general cases (see, e.g., [8–17]). Since the choice of the stepsize
is related to ‖A‖, thus to implement (7), one has to compute (or
at least estimate) the norm ‖A‖, which is generally not easy in
practice. Away avoiding this is to adopt variable stepsize which
ultimately has no relation with ‖A‖ [9, 10, 18]. In this con-
nection, Wang and Cui [10] proposed the following stepsize:

τn �

(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
2, (I − T)Axn

����
����≠ 0;

0, (I − T)Axn

����
���� � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

On the other hand, Wang [19] proposed a new method:

xn+1 � xn − τn (I − U)xn + A
∗
(I − T)Axn􏼂 􏼃, (5)

where τn􏼈 􏼉 ⊂ (0,∞) is chosen such that
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τn �
(I − U)xn

����
����
2

+ (I − T)Axn

����
����
2

(I − U)xn + A
∗
(I − T)Axn

����
����
2. (6)

It is clear that the selection of stepsizes (8) and (6) does
not rely on the norm ‖A‖, which in turn improves the
performance of the original algorithm. Assume that U and T

are both directed such that I − T and I − U are demiclosed at
0. It is shown that the sequence xn􏼈 􏼉 generated by (7) and (8)
or (5) and (6) converges weakly to a solution of problem (1).

Now, let us consider the multiple-sets split common
fixed-point problem (MSCFP) that is more general than the
SCFP. Formally, it consists in finding x ∈ H1 such that

x ∈ ∩
t

i�1
F Ui( 􏼁, Ax ∈ ∩

s

j�1
F Tj􏼐 􏼑, (7)

where t and s are two positive integers, A: H1⟶ H2 is a
bounded linear mapping from a Hilbert space H1 into
another Hilbert space H2, and F(Ui) and F(Tj) are re-
spectively the fixed-point sets of nonlinear mappings
Ui: H1⟶ H1, i � 1, 2, . . . , t and Tj: H2⟶ H2,

j � 1, 2, . . . , s. Specially, if these nonlinear mappings are
all metric projections, problem (7) is reduced to the well-
known MSFP [20]. Actually, it can be formulated as the
problem of finding x ∈ H1 such that

x ∈ ∩
t

i�1
Ci, Ax ∈ ∩

s

j�1
Qj, (8)

where t and s are two positive integers, A: H1⟶ H2 is as
above, and Ci􏼈 􏼉

t

i�1 ⊂ H1 and Qj􏽮 􏽯
s

j�1 ⊂ H2 are two classes of
nonempty convex closed subsets.

Inspired by the works mentioned above, we are aimed to
introduce and analyze iterative methods for solving the
MSCFP inHilbert spaces.We first study several properties of
demicontractive mappings and especially find its connection
with the directed mapping. By making use of these prop-
erties, we propose a new iterative algorithm for solving the
MSCFP, as well as MSFP. Under mild conditions, we obtain
the weak convergence of the proposed algorithm. Our results
extend the related works from the case of two-sets to the case
of multiple-sets.

2. Preliminary

$roughout the paper, assume that H, H1, H2 are real
Hilbert spaces, and F(T) denotes its fixed-point set of a
mappingT.$e following formula plays an important role in
the subsequent analysis.

Lemma 1 (see [21]). Let s, t ∈ R and x, y ∈ H. It then follows
that

‖tx + sy‖
2

� t(t + s)‖x‖
2

+ s(t + s)‖y‖
2

− ts‖x − y‖
2
. (9)

We next recall the definition of several important classes
of nonlinear mappings.

Definition 1 (see [21]). Let T be a mapping from H into H.

(i) T is nonexpansive if

‖Tx − Ty‖≤ ‖x − y‖, ∀x, y ∈ H. (10)

(ii) T is firmly nonexpansive if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2

− ‖(I − T)x − (I − T)y‖
2
, ∀x, y ∈ H.

(11)

(iii) T is k-strictly pseudocontractive (k< 1) if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2

+ k‖(I − T)x − (I − T)y‖
2
, ∀x, y ∈ H.

(12)

Definition 2 (see [21]). Let T: H⟶ H be a mapping with
F(T)≠∅.

(i) T is quasinonexpansive if

‖Tx − y‖≤ ‖x − y‖, ∀(x, y) ∈ H × F(T). (13)

(ii) T is directed if

‖Tx − y‖
2 ≤ ‖x − y‖

2
− ‖(I − T)x‖

2
, ∀(x, y) ∈ H × F(T). (14)

(iii) T is k-demicontractive (k< 1) if

‖Tx − y‖
2 ≤ ‖x − y‖

2
+ k‖((I − T))x‖

2
,

∀(x, y) ∈ H × F(T).
(15)

It is clear that a directed mapping is − 1-demicontractive,
while a quasinonexpansive mapping is 0-demicontractive. It
is also clear that a firmly nonexpansive mapping is
− 1-strictly pseudocontractive, while a nonexpansive map-
ping is 0-strictly pseudocontractive.

It is well known that a mapping T is firmly nonexpansive
if and only if 2T − I is nonexpansive (cf. [21]). Analogously,
we can easily get the following lemma, which presents a
characteristic of directed mappings by using quasino-
nexpansive mappings.

Lemma 2 A mapping T is directed if and only if 2T − I is
quasinonexpansive.

We now study properties of demicontractive mappings.

Lemma 3 (see [22]). Let T: H⟶ H be k-demicontractive
(k< 1) with F(T)≠∅. ,en, the following hold.
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(i) 〈Tx − z, (I − T)x〉≥ 0, ∀z ∈ F(T), x ∈ H;
(ii) 〈x − z, (I − T)x〉≥ ‖(I − T)x‖2, ∀z ∈ F(T),

x ∈ H.

Lemma 4. For each i � 1, 2, . . . , t, assume that Ti: H⟶ H

is ki-demicontractive with ki < 1. Let T � 1/2􏽐
t
i�1ωi

((1 + ki)I + (1 − ki)Ti), where 0<ωi < 1, 􏽐
t
i�1ωi � 1. If

∩ t
i�1F(Ti) is nonempty, then

F(T) � ∩
t

i�1
F Ti( 􏼁. (16)

Proof. We first show ∩ t
i�1F(Ti)⊆F(T). Pick x ∈ ∩ t

i�1F(Ti).
It then follows that

Tx �
1
2

􏽘

t

i�1
ωi 1 + ki( 􏼁x + 1 − ki( 􏼁Tix( 􏼁

�
1
2

􏽘

t

i�1
ωi 1 + ki( 􏼁x + 1 − ki( 􏼁x( 􏼁

�
1
2

􏽘

t

i�1
ωi2x � x.

(17)

Since x is chosen arbitrarily, we have ∩ t
i�1F(Ti)⊆F(T).

It suffices to show that F(T)⊆∩ t
i�1F(Ti). Fix

z ∈ ∩ t
i�1F(Ti) and choose any x ∈ F(T). Since Tx � x and

Ti is ki-demicontractive, we have

0 � 4〈Tx − x, x − z〉

� 2􏽘
t

i�1
ωi 1 − ki( 􏼁〈Tix − x, x − z〉

≥ 􏽘
t

i�1
ωi 1 − ki( 􏼁

2
Tix − x

����
����
2
.

(18)

$us, 􏽐
t
i�1ωi(1 − ki)

2‖x − Tix‖2 � 0. Since ωi(1 − ki)> 0, we
have ‖x − Tix‖ � 0 for all i � 1, 2 . . . t. Moreover, since x is
chosen arbitrarily, we get F(T)⊆ ∩ t

i�1F(Ti). Hence, the
proof is complete. □

Lemma 5. For each i � 1, 2 . . . t, assume that Ti: H⟶ H is
ki-demicontractive with ki < 1. Let T � 1/2􏽐

t
i�1ωi((1 + ki)

I + (1 − ki)Ti), where 0<ωi < 1, 􏽐
t
i�1ωi � 1. If ∩ t

i�1F(Ti) is
nonempty, then T is directed. Moreover, if for each
i � 1, 2 . . . t, I − Ti is demiclosed at 0, then I − T is also
demiclosed at 0.

Proof. By Lemma 4, we have F(T) � ∩ t
i�1F(Ti)≠∅. By

Lemma 2, it suffices to show that 2T − I � 􏽐
t
i�1ωi(kiI + (1 −

ki)Ti) is quasinonexpansive. To this end, fix any
(x, z) ∈ H × F(T). By Lemma 1 and the property of dem-
icontractions that

kix + 1 − ki( 􏼁Tix( 􏼁 − z
����

����
2

� ki(x − z) + 1 − ki( 􏼁 Tix − z( 􏼁
����

����
2

� ki‖x − z‖
2

+ 1 − ki( 􏼁 Tix − z
����

����
2

− ki 1 − ki( 􏼁 I − Ti( 􏼁x
����

����
2

≤ ki‖x − z‖
2

+ 1 − ki( 􏼁 x − zi

����
����
2

+ ki I − Ti( 􏼁x
����

����
2

􏼒 􏼓 − ki 1 − ki( 􏼁 I − Ti( 􏼁x
����

����
2

� ‖x − z‖
2
,

(19)

hence ‖(kix + (1 − ki)Tix) − z‖≤ ‖x − z‖ for all i � 1, 2 . . . t.
It then follows that

‖(2T − I)x − z‖ � 􏽘
t

i�1
ωi kix + 1 − ki( 􏼁Tix( 􏼁 − z

���������

���������

≤ 􏽘

t

i�1
ωi kix + 1 − ki( 􏼁Tix( 􏼁 − z

����
����

≤ 􏽘
t

i�1
ωi‖x − z‖

� ‖x − z‖.

(20)

$us, 2T − I is quasinonexpansive, which implies T is
directed.

Let us now prove the second assertion. By Lemma 4, we
have F(T) � ∩ t

i�1F(Ti)≠∅. Let xn􏼈 􏼉 ⊂ H be such that
xn⇀x and ‖xn − Txn‖⟶ 0 as n⟶∞. Fix z ∈ F(T).
Since Ti is ki-demicontractive, we have

4〈Txn − xn, xn − z〉 � 2􏽘
t

i�1
ωi 1 − ki( 􏼁〈Tixn − xn, xn − z〉

≥ 􏽘
t

i�1
ωi 1 − ki( 􏼁

2
Tixn − xn

����
����
2
.

(21)

Since ωi(1 − ki)> 0, we have limn‖xn − Tixn‖ � 0, which,
by our hypothesis, implies limn‖x − Tix‖ � 0 for all
i � 1, 2 . . . t, that is, x ∈ ∩ t

i�1F(Ti). By Lemma 4, the proof is
complete. □

Finally, we end this section by recalling two weak
convergence theorems of iterative methods for approxi-
mating a solution of the two-sets SCFP (1).

Theorem 1 (see [10], $eorem 3.1). (Assume that U and T

are both directed such that I − U and I − T are both demi-
closed at 0. ,en, the sequence xn􏼈 􏼉, generated by (7) and (8),
converges weakly to a solution of problem (1).
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Theorem 2 (see [19], $eorem 3.4). Assume that U and T

are both directed such that I − U and I − T are both demi-
closed at 0. ,en, the sequence xn􏼈 􏼉, generated by (5) and (6),
converges weakly to a solution of problem (1).

3. The Case for Demicontractive Mappings

In this section, we are concerned with the multiple-sets split
common feasibility problem and we assume that (7) is
consistent, which means that its solution set is nonempty.
First, motivated by (7) and (8), we propose the first algo-
rithm for solving problem (7).

Algorithm 1. Let x0 be arbitrary and choose αi􏼈 􏼉
t
i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

update the next iteration via

yn � xn − τn 􏽘

s

j�1
βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

xn+1 �
1
2

􏽘

t

i�1
αi 1 + ki( 􏼁yn + 1 − ki( 􏼁Uiyn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where τn � 0 if ‖􏽐
s
j�1βj(1 − lj)(I − Tj)Axn‖ � 0; otherwise,

τn �
􏽐

s
j�1βj 1 − lj􏼐 􏼑 I − Tj􏼐 􏼑Axn

�����

�����
2

􏽐
s
j�1βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

�����

�����
2. (23)

Theorem 3. Assume that Ui and Tj are respectively ki and
lj-demicontractive such that I − Ui and I − Tj are demiclosed
at 0 for i � 1, 2, . . . , t and j � 1, 2, . . . , s. ,en, the sequence
xn􏼈 􏼉, generated by Algorithm 1, converges weakly to a solution
of (7).

Proof. Let U � 1/2􏽐
t
i�1αi((1 + ki)I + (1 − ki)Ui) and

T � 1/2􏽐
s
j�1βj((1 + lj)I + (1 − lj)Tj). $us, we can rewrite

Algorithm 1 as

xn+1 � U xn − τnA
∗
(I − T)Axn( 􏼁, (24)

where τn � 0 if ‖(I − T)Axn‖ � 0; otherwise,

τn �
(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
2. (25)

By Lemma 5, U and T are both directed such as I − T and
I − U are demiclosed at 0. It then follows from $eorem 1
that xn􏼈 􏼉 weakly converges to a point x that satisfies
x ∈ F(U) and Ax ∈ F(T). Moreover, by Lemma 4, we
conclude that x ∈ ∩ iF(Ui) and Ax ∈ ∩ jF(Tj), that is, x is a
solution of problem (7). □

Motivated by (5) and (6), we propose the second al-
gorithm for solving problem (7).

Algorithm 2. Let x0 be arbitrary and choose αi􏼈 􏼉
t
i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

if

􏽘

t

i�1
αi 1 − ki( 􏼁 I − Ui( 􏼁xn + 􏽘

s

j�1
βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

����������

����������
� 0,

(26)

then stop; otherwise, update the next iteration via

xn+1 � xn − τn 􏽘

t

i�1
1 − ki( 􏼁 I − Ui( 􏼁xn

⎡⎣

+ 􏽘
s

j�1
βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

⎤⎥⎥⎦,

(27)

where

τn �
􏽐

t
i�1αi I − Ui( 􏼁 1 − ki( 􏼁xn

����
����
2

+ 􏽐
s
j�1βj 1 − lj􏼐 􏼑A

∗
I − Tj􏼐 􏼑Axn

�����

�����
2

2 􏽐
t
i�1 1 − ki( 􏼁 I − Ui( 􏼁xn + 􏽐

s
j�1βj 1 − lj􏼐 􏼑Axn

�����

�����
2 . (28)

Theorem 4. Assume that Ui and Tj are respectively ki and
lj-demicontractive such that I − Ui and I − Tj are demiclosed
at 0 for i � 1, 2, . . . , t and j � 1, 2, . . . , s. ,en, the sequence
xn􏼈 􏼉, generated by Algorithm 2, converges weakly to a solution
of (7).

Proof. Let U � 1/2􏽐
t
i�1αi((1 + ki)I + (1 − ki)Ui) and

T � 1/2􏽐
s
j�1βj((1 + lj)I + (1 − lj)Tj). $us, we can rewrite

Algorithm 2 as xn+1 � xn − τn[(I − U)xn + A∗(I − T)Axn],
where

τn �
(I − U)xn

����
����
2

+ (I − T)Axn

����
����
2

(I − U)xn + A
∗
(I − T)Axn

����
����
2. (29)

By Lemma 5, U and T are both directed such as I − T and
I − U are demiclosed at 0. It then follows from $eorem 2
that xn􏼈 􏼉 weakly converges to a point x that satisfies
x ∈ F(U) and Ax ∈ F(T). Moreover, by Lemma 4, we
conclude that x ∈ ∩ iF(Ui) and Ax ∈ ∩ jF(Tj), that is, x is a
solution of problem (7). □

4. Multiple-Sets Split Feasibility Problem

In this section, we apply the previous result to approximate a
solution of the multiple-sets split feasibility problem
(MSFP). Also, we assume that problem (8) is consistent,
which means that its solution set is nonempty. By applying
Algorithm 1, we obtain the first algorithm for solving (8).
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Algorithm 3. Let x0 be arbitrary and choose αi􏼈 􏼉
t

i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

update the next iteration via

xn+1 � 􏽘
t

i�1
αiPCi

xn − τnA
∗

􏽘

s

j�1
βj I − PQj

􏼒 􏼓Axn
⎡⎢⎢⎣ ⎤⎥⎥⎦, (30)

where τn � 0 if ‖􏽐
s
j�1βj(1 − lj)(I − Tj)Axn‖ � 0; otherwise,

τn �
􏽐

s
j�1βj I − PQj

􏼒 􏼓Axn

������

������

2

􏽐
s
j�1βjA

∗
I − PQj

􏼒 􏼓Axn

������

������

2. (31)

Theorem 5. ,e sequence xn􏼈 􏼉, generated by Algorithm 3,
converges weakly to a solution of (2).

Proof. It suffices to notice that both PCi
and PQj

are
− 1-demicontractive, which implies ki � lj � − 1 for all
i � 1, . . . , t, j � 1, . . . , s. Applying $eorem 3 yields the
desired assertion. □

Next, we propose the second algorithm for solving (8) by
applying Algorithm 2.

Algorithm 4. Let x0 be arbitrary and choose αi􏼈 􏼉
t
i�1 ⊂ (0, 1)

with 􏽐
t
i�1αi � 1, βj􏽮 􏽯

s

j�1 ⊂ (0, 1) with 􏽐
s
j�1βj � 1. Given xn,

if

􏽘

t

i�1
αi I − PCi

􏼐 􏼑xn + 􏽘
s

j�1
βjA
∗

I − PQj
􏼒 􏼓Axn

����������

����������
� 0, (32)

then stop; otherwise, update the next iteration via

xn+1 � xn − τn 􏽘

t

i�1
αi I − PCi

􏼐 􏼑xn + 􏽘
s

j�1
βjA
∗

I − PQj
􏼒 􏼓Axn

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(33)

where

τn �
􏽐

t
i�1αi I − PCi

􏼐 􏼑xn

�����

�����
2

+ 􏽐
s
j�1βj I − PQj

􏼒 􏼓Axn

������

������

2

􏽐
t
i�1αi I − PCi

􏼐 􏼑xn + 􏽐
s
j�1βjA

∗
I − PQj

􏼒 􏼓Axn

������

������

2.

(34)

Theorem 6. ,e sequence xn􏼈 􏼉, generated by Algorithm 4,
converges weakly to a solution of (8).

Proof. It suffices to notice that both PCi
and PQj

are
− 1-demicontractive, which implies ki � lj � − 1 for all
i � 1, . . . , t, j � 1, . . . , s. Applying $eorem 4 yields the
desired assertion. □

5. Conclusion

In this paper, we consider theMSCFP whenever the involved
mappings are demicontractive. We obtained several

properties of demicontractive mappings and particularly
their connection with directed mappings. $ese properties
enable us to propose some new iterative methods for solving
MSCFP, as well as MSFP. Under mild conditions, we es-
tablish their weak convergence of the proposed methods.
Our results extend the existing works from the case of two-
sets to the case of multiple-sets.
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In our present research study, we present the idea of b dislocated-multiplicative metric space (abbrev. bd-multiplicative metric
space) that is generalization of b-multiplicative metric space and dislocated-multiplicative metric space. Furthermore, we prove
some of the fixed point theorems in bd-multiplicative metric spaces. Also, we get common fixed point findings for fuzzy mappings
in these spaces. Our findings are improved and more generalized form of several findings (see, e.g., [5, 6]).

1. Introduction

In 2008, the idea of multiplicative calculus was defined by
Bashirov et al. [1] and then the conception of multiplicative
metric spaces (multiplicative distance) was introduced by
Çevikel and Özava̧sar [2]. Czerwik [3] presented concepts of
b-metric space that is the popularization of metric space.
Dosenovic et al. in section Future Work in [4] presented the
idea of b-multiplicative metric spaces. After that, Ali et al. in
[5] studied fixed point theorems for single-valued and
multivalued mappings on b-multiplicative metric spaces.

Furthermore, several authors obtained some fixed point
findings for mappings satisfying different contractive con-
ditions (see, e.g., [6–8]). *e idea of fuzzy mappings was
initially studied by Weiss [9] and Butnariu [10]. *en, the
concept of fuzzy mappings was studied by Heilpern [11].
Many of the fixed point theorems for fuzzy contraction
mappings in the metric linear space were proved (e.g.,
[12–15]), which are the fuzzy extension for the Banach
contraction principle. *e concept of b-multiplicative metric
spaces, as one of the useful generalizations of multiplicative
metric spaces, was first used by Dosenovic et al. in [4],and Ali
et al. in [5] study fixed point theorems for single-valued and
multivalued mappings on b-multiplicative metric spaces.

Our findings in b-multiplicative metric space, d-multi-
plicative metric space, andmultiplicative metric space can be
obtained as corollaries of our findings.

In this part, we list some of the concepts which we will
use in our major findings.

*e definition of b-multiplicative metric space is given as
follows.

Definition 1 (see [4, 5]). Suppose that X is a nonempty set
and s≥ 1 is a given real number. A function
d: X × X⟶ [1,∞) is considered as a b-multiplicative
metric if it satisfies the following conditions: ∀η, ξ, z ∈ X,

(i) d(η, ξ)≥ 1
(ii) d(η, ξ) � 1 iff η � ξ
(iii) d(η, ξ) � d(ξ, η)

(iv) d(η, ξ)≤d(η, z)s · d(z, ξ)s

Example 1 (see [5]). Let X � [0,∞). Define a function
d: X × X⟶ [1,∞), d(η, ξ) � a(η− ξ)2 , where a> 1 is any
fixed real number. *en, (X, d) is a b-multiplicative metric
with s � 2.
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In [11, 16], an element in any fuzzy set has a degree of
belonging, a membership function may be used in order to
introduce the value of degree of belonging for any element to
a set, and the value of degree of belonging takes real values
on the whole closed interval [0, 1]. *e membership func-
tion is

μA: X⟶ [0, 1]. (1)

Suppose (X, d) is a metric linear space. In X, a fuzzy set
is a function A: X⟶ [0, 1]. *us, it is an element of IX,
where I � [0, 1]. If A is a fuzzy set and η ∈ X, then the
function value A(η) is considered as the grade of mem-
bership of η in A.

IX denotes to the collection of all fuzzy sets in X. *e
α-level set of A is defined by

Aα � η: A(η)≥ α􏼈 􏼉 with α ∈ (0, 1] and A0 � η: A(η)> 0􏼈 􏼉,

(2)

whenever {} is the closure of set (nonfuzzy) {}.

Definition 2 (see [17]). A fuzzy set A in X is an approximate
quantity if its α-level set is a nonempty compact subset
(nonfuzzy) of X for each α ∈ [0, 1].

*e set of all an approximate quantities denoted by
W∗(X) is a subcollection of F(X).

Ozavsar and Cevikel [2] prove that every multiplicative
contraction in a complete multiplicative metric space has a
unique fixed point.

Definition 3 (see [2]). Assume that (X, d) is a multiplicative
metric space. A mapping g: X⟶ X is called multiplicative
contraction if

∃λ ∈ [0, 1): d gη1, gη2( 􏼁≤d η1, η2( 􏼁
λ ∀η1, η2 ∈ X. (3)

Theorem 1 (see [2]). Assume that (X, d) is a multiplicative
metric space. A mapping g: X⟶ X is called multiplicative
contraction. 0en, g has a unique fixed point.

Theorem 2 (see [4]). Suppose that (X, d) is a complete
multiplicative metric space and a continuous function
g: X⟶ X, λ ∈ [0, 1) such that

d(gη, gξ)≤ max d(η, gη), d(ξ, gξ)􏼈 􏼉􏼈 􏼉
λ
. (4)

*en, g has a unique fixed point.
In 2015, Kang et al. [18] introduced the concept of

compatible mappings as follows.

Definition 4. Let (X, d) be a multiplicative metric space.*e
mappings f, F: X⟶ X; then, (f, F) is called compatible if
and only if ft � Ft for some t in X implying fFt � Fft.

Many authors studied many fixed point theorems for
compatible mappings in multiplicative metric space and

employed it to prove a common fixed point theorem (see
[4, 18]).

In this paper, we introduce the new notion of
bd-multiplicative metric space. We prove fixed point the-
orems for single mappings and a common fixed point for
fuzzy mappings in bd-multiplicative metric space. As il-
lustrative application, we state some of our theorems on
Cartesian product in these spaces.

2. Fixed Point Theorems in bd-Multiplicative
Metric Spaces

In this part, we present the conception of bd-multiplicative
metric space. Also, we introduce some of the fixed point
theories and show our main findings with the help of some
examples in this space.

Definition 5. Suppose that X≠ ϕ and s≥ 1 is a given real
number. A function d: X × X⟶ R+ is called bd-multi-
plicative metric space if it satisfies the following conditions:
∀ η, ξ, z ∈ X,

(i) d(η, ξ)≥ 1
(ii) d(η, ξ) � 1 implies η � ξ
(iii) d(η, ξ) � d(ξ, η)

(iv) d(η, ξ)≤ [d(η, z) · d(z, ξ)]s

Example 2. Let X � R+ ∪ 0{ }. Define d: X × X⟶ [1,∞)

as

d(η, ξ) � a
(η+ξ)2

, ∀η, ξ ∈ X, a≥ 1. (5)

*en, (X, d) is bd-multiplicative metric space with s � 2.

Example 3. Let X � [1,∞). Define d: X × X⟶ [1,∞) as

d(η, ξ) � a
((η− 1)+(ξ− 1))2

, ∀η, ξ ∈ X, a≥ 1. (6)

*en, (X, d) is bd-multiplicative metric space with s � 2.

Definition 6. Let (X, d) be an bd-multiplicative metric
space. We say that ηn􏼈 􏼉 converges to η if and only if

d ηn, η( 􏼁⟶ bd1, as n⟶∞. (7)

Definition 7. Let (X, d) be an bd-multiplicative metric
space. We say that ηn􏼈 􏼉 is bd-multiplicative Cauchy if and
only if

d ηn, ηm( 􏼁⟶ bd1, as n, m⟶∞. (8)

Definition 8. An bd-multiplicative metric space (X, d) is
complete if every multiplicative Cauchy sequence in X is
convergent.

Now, we state the following lemma without proof.
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Lemma 1. Suppose that (X, d) is bd-multiplicative metric
space. 0en, any subsequence of convergent sequence in X is
convergent.

*e following theorem is the generalization of *eorem
3.2 in [2].

Theorem 3. Suppose that (X, d) is a complete bd-multi-
plicative metric space and a continuous function g: D⟶ X;
D⊆X satisfies

d(gη, gξ)≤ d(η, ξ)
k
, (9)

where η, ξ ∈ D and k ∈ [0, 1/s). 0en, g has a unique fixed
point.

Proof. Let η0 be an arbitrary point in X; then by hypothesis,
there exists η1 such that η1 � gη0. In a similar way, one can
obtain a sequence ηn􏼈 􏼉⊆X such that

ηn � gηn− 1 � g
nη0,

d ηn, ηn+m( 􏼁≤ d ηn, ηn+1( 􏼁
sn

· d ηn+1, ηn+2( 􏼁
sn+1

. . . d

· ηn+m− 1, ηn+m( 􏼁
sn+m− 1

� d g
nη0, g

nη1( 􏼁
sn

· d g
n+1η0, g

n+1η1􏼐 􏼑
sn+1

. . . d

· g
n+m− 1η0, g

n+m− 1η1􏼐 􏼑
sn+m− 1

≤ d η0, η1( 􏼁
(ks)n

· d η0, η1( 􏼁
(ks)n+1

. . . d

· η0, η1( 􏼁
(ks)n+m− 1

≤ d η0, η1( 􏼁
(ks)n/1− ks

.

(10)

*en,

d ηn, ηn+m( 􏼁 ≤ d η0, η1( 􏼁
(ks)n/1− ks

. (11)

As n⟶∞ in (11) and k< 1/s⇒ks< 1, then ηn􏼈 􏼉 is a
multiplicative Cauchy sequence.

Since (X, d) is complete, then ηn􏼈 􏼉 is convergent such
that limn⟶∞ηn � η∗. However,

η∗ � limn⟶∞ηn+1

� limn⟶∞gηn

� glimn⟶∞ηn

� gη∗.

(12)

*erefore, η∗ is a fixed point of g. Suppose that gη∗ � η∗,
gη � η, and η≠ η.

d η∗, η( 􏼁 � d gη∗, gη( 􏼁≤ d η∗, η( 􏼁
k ≤ d η∗, η( 􏼁. (13)

*is is a contradiction with assumption; then, η∗ � η.
*en, g has a unique fixed point. □

Example 4. Suppose that X � [1,∞), (X, d) is bd-multi-
plicative metric space and d(η, ξ) � a((η− 1)+(ξ− 1))2 , where a �

2 with s � 2. Define g: X⟶ X such that gη � (η + 1)/2:

d(gη, gξ) � 2((η− 1)/2+(ξ− 1)/2)2

� 21/4((η− 1)+(ξ− 1))2

� d(η, ξ)
1/4

.

(14)

*en, (1) holds such that k � 1/4. *erefore, g has a
unique fixed point 1 ∈ X.

Corollary 1. Suppose that (X, d) is a complete multiplicative
metric space and a continuous function g: X⟶ X satisfies

d(gη, gξ)≤d(η, ξ)
k
, (15)

where η, ξ ∈ D and k ∈ [0, 1). 0en, g has a unique fixed
point.

Corollary 2. Suppose that (X, d) is a complete b-multipli-
cative metric space and a continuous function g: X⟶ X

satisfies

d(gη, gξ)≤d(η, ξ)
k
, (16)

where η, ξ ∈ X and k ∈ [0, 1/s). 0en, g has a unique fixed
point.

*e following theorem is the generalization of *eorem
2.32 in [4].

Theorem 4. Suppose that (X, d) is a complete bd-multi-
plicative metric space and a continuous function g: D⟶ X,
k ∈ [0, 1/s), such that

d(gη, gξ)≤ max d(η, ξ), d(η, gη), d(ξ, gξ)􏼈 􏼉􏼈 􏼉
k
. (17)

*en, g has a unique fixed point.

Proof. Let η0 be an arbitrary point in X; then by hypothesis,
there exists η1 such that η1 � gη0.

In a similar way, one can obtain η2 ∈ X such that
η2 � gη1.

d η1, η2( 􏼁 � d gη0, gη1( 􏼁

≤max d η0, η1( 􏼁, d η0, gη0( 􏼁, d η1, gη1( 􏼁􏼈 􏼉
k

� max d η0, η1( 􏼁, d η0, η1( 􏼁, d η1, η2( 􏼁􏼈 􏼉
k

� max d η0, η1( 􏼁, d η1, η2( 􏼁􏼈 􏼉
k

� d η0, η1( 􏼁
k
.

(18)

Otherwise, we have a contradiction, that is,
d(η1, η2)≤d(η1, η2)

k.

d η2, η3( 􏼁 � d gη1, gη2( 􏼁

≤max d η1, η2( 􏼁, d η1, gη1( 􏼁, d η2, gη2( 􏼁􏼈 􏼉
k

� max d η1, η2( 􏼁, d η1, η2( 􏼁, d η2, η3( 􏼁􏼈 􏼉
k

� max d η1, η2( 􏼁, d η2, η3( 􏼁􏼈 􏼉
k

� d η0, η1( 􏼁
k2

.

(19)

Journal of Mathematics 3



Continuing in this way, we produce a sequence ηn􏼈 􏼉 in X

such that ηn􏼈 􏼉 � g(ηn− 1) and

d ηn, ηn+1( 􏼁 � d gηn− 1, g ηn( 􏼁( 􏼁

≤max d ηn− 1, ηn( 􏼁, d ηn− 1, gηn− 1( 􏼁, d ηn, gηn( 􏼁􏼈 􏼉
k

� max d ηn− 1, ηn( 􏼁, d ηn− 1, ηn( 􏼁, d ηn, ηn+1( 􏼁􏼈 􏼉
k

� max d ηn− 1, ηn( 􏼁, d ηn, ηn+1( 􏼁􏼈 􏼉
k

� d η0, η1( 􏼁
kn− 1

􏼚 􏼛
k

� d η0, η1( 􏼁
kn

,

(20)

for each n ∈ N. It follows by induction that
d(ηn, ηn+1)≤ d(η0, η1)

kn

. However,

d ηn, ηn+m( 􏼁≤d ηn, ηn+1( 􏼁
sn

· d ηn+1, ηn+2( 􏼁
sn+1

. . . d ηn+m− 1, ηn+m( 􏼁
sn+m− 1

� d g
nη0, g

nη1( 􏼁
sn

· d g
n+1η0, g

n+1η1􏼐 􏼑
sn+1

. . . d g
n+m− 1η0, g

n+m− 1η1􏼐 􏼑
sn+m− 1

≤d η0, η1( 􏼁
(ks)n

· d η0, η1( 􏼁
(ks)n+1

. . . d η0, η1( 􏼁
(ks)n+m− 1

≤d η0, η1( 􏼁
(ks)n 1+(ks)+(ks)2+...[ ]

≤d η0, η1( 􏼁
(ks)n/1− ks

.

(21)

As k ∈ (0, 1/s), m, n⟶∞, ks< 1, and (X, d) is com-
plete, then ηn􏼈 􏼉 is a multiplicative Cauchy sequence in X and
there exists η∗ ∈ X such that d(ηn, η∗)⟶ bd1.

From Lemma 1, η∗ � limn⟶∞ηn+1 � limn⟶∞gηn �

glimn⟶∞ηn � gη∗.
*en, η∗ is fixed point of g, and gη∗ � η∗. Suppose that g

has another fixed point η such that gη � η and η≠ η.

d η∗, η( 􏼁 � d gη∗, gη( 􏼁

≤max d η∗, η( 􏼁, d η∗, gη∗( 􏼁, d(η, gη)􏼈 􏼉
k

� max d η∗, η( 􏼁, d η∗, η∗( 􏼁, d(η, η)􏼈 􏼉
k

≤max d η∗, η( 􏼁, d η∗, ηn( 􏼁
s

· d ηn, η∗( 􏼁
s
, d η, ηn( 􏼁

s
􏼈

· d ηn, η( 􏼁
s
􏼉

k

� max d η∗, η( 􏼁, 1􏼈 􏼉
k

� d η∗, η( 􏼁
k

≤ d η∗, η( 􏼁.

(22)

*is is a contradiction with assumption; then, η∗ � η.
*en, g has a unique fixed point. □

Corollary 3. Suppose that (X, d) is a complete multiplicative
metric space and a continuous function g: X⟶ X satisfies

d(gη, gξ)≤ max d(η, ξ), d(η, gη), d(ξ, gξ)􏼈 􏼉􏼈 􏼉
k
, (23)

where η, ξ ∈ X and k ∈ [0, 1). 0en, g has a unique fixed
point.

Corollary 4. Suppose that (X, d) is a complete b-multipli-
cative metric space and a continuous function g: X⟶ X

satisfies

d(gη, gξ)≤ max d(η, ξ), d(η, gη), d(ξ, gξ)􏼈 􏼉􏼈 􏼉
k
, (24)

where η, ξ ∈ X and k ∈ [0, 1/s). 0en, g has a unique fixed
point.

3. Common Fixed Point Theorems for Fuzzy
Mappings in bd-Multiplicative Metric Spaces

Definition 9. Suppose that X is an arbitrary set and Y is
bd-multiplicative-metric space. A mapping F is stated
according to be a fuzzy mapping iff F is a function from the
set X into W∗(Y), i.e., F(η) ∈W∗(Y), for each η ∈ X.

Definition 10. Suppose that (X, d) is a bd-multiplicative
metric space. *e functions g: Y⊆X⟶ X and
G: Y⟶W∗(Y). A hybrid pair (g, G) is called D-com-
patible iff gt􏼈 􏼉 ⊂ Gt for some t ∈ Y implies gGt ⊂ Ggt.

Definition 11. Suppose that (X, d) is a bd-multiplicative
metric space. Two maps G and g are said to be occasionally
coincidentally idempotent if g2η � gη for some C(g, G),
where C(g, G) refers to the set of all coincidence points of
two mappings g and G, i.e.,

C(g, G) � η: gη � Gη􏼈 􏼉. (25)

Now, we state the following lemma without proof.

Lemma 2. Suppose that (X, d) is a bd-multiplicative metric
space and M⊆W∗(X). 0en,

M � η ∈ X: d(η, M) � 1􏼈 􏼉. (26)

Corollary 5. Suppose that (X, d) is a bd-multiplicative
metric space and M⊆W∗(X) and d(η, M) � 1 if and only if
η ∈M � M.

Lemma 3. Suppose that (X, d) is a bd-multiplicative metric
space, G: X⟶W∗(X) is a fuzzy map, and η0 ∈ X. 0en,
there exists η1 ∈ X such that η1􏼈 􏼉⊆G(η0).

Theorem 5. Suppose that (X, d) is a complete bd-multi-
plicative metric space and two continuous mappings
g, f: X⟶ X satisfy

d(fη, fξ)≤d(η, ξ)
k and d(gη, gξ)≤ d(η, ξ)

k
, (27)
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where η, ξ ∈ X and k ∈ [0, 1/s) and two fuzzy mappings
G, F: X⟶W∗(X), such that

(i) GX{ }α ⊂ f(X), FX{ }α ⊂ g(X)

(ii) 0e pairs (G, g) and (F, f) are D-compatible and
occasionally idempotent mappings

0en, there exists η∗ ∈ X such that η∗ � fη∗ � gη∗ and
η∗ ∈ Fη∗􏼈 􏼉α ∩ Gη∗􏼈 􏼉α.

Proof. Suppose η0 is an arbitrary point in X. *en, there is
ξ1􏼈 􏼉 � gη1􏼈 􏼉 ⊂ Fη0􏼈 􏼉α, fromLemma 3.2; then, there exists
ξ2􏼈 􏼉 � fη2􏼈 􏼉 ⊂ Gη1􏼈 􏼉α, where

ξ2n+1􏼈 􏼉 � gη2n+1􏼈 􏼉 ⊂ Fη2n􏼈 􏼉α, (28)

ξ2n+2􏼈 􏼉 � fη2n+2􏼈 􏼉 ⊂ Gη2n+1􏼈 􏼉α. (29)

From (11) in *eorem 3,

d ξn, ξm( 􏼁≤d ξ0, ξ1( 􏼁
(ks)n/1− ks

. (30)

As n⟶∞, k< 1/s⇒ks< 1 that implies ξn􏼈 􏼉 is a
multiplicative Cauchy sequence.

Since (X, d) is complete, then ηn􏼈 􏼉 is convergent such
that

limn⟶∞d ξn, ξm( 􏼁 � 1. (31)

Next, we prove that η∗ ∈ Fz{ }α.

d fz, f Fz{ }α( 􏼁 � d f
2
z, f Fz{ }α􏼐 􏼑

� d fη∗, f Fz{ }α( 􏼁

≤d η∗, Fz{ }α( 􏼁
k

≤d η∗, fz( 􏼁
ks

· d fz, Fz{ }α( 􏼁
ks

� d η∗, fz( 􏼁
ks

· d η∗, Fz{ }α( 􏼁
ks

� d η∗, η∗( 􏼁
ks

· d η∗, Fz{ }α( 􏼁
ks

.

⇓

d η∗, Fz{ }α( 􏼁
k− ks ≤d η∗, η∗( 􏼁

ks

≤d η∗, ξ2n+2( 􏼁
ks2

· d ξ2n+2, η
∗

( 􏼁
ks2

� d ξ2n+2, η
∗

( 􏼁
ks2

· d ξ2n+2, η
∗

( 􏼁
ks2

.

(32)

From Lemma 1, ξ2n+2 is a convergent sequence, i.e.,
d(ξ2n+2, η∗)⟶ 1 as n⟶∞,i.e.,

d η∗, Fz{ }α( 􏼁
k− ks ≤ 1.

d η∗, Fz{ }α( 􏼁≤ 1.
(33)

*en, we have d(η∗, Fz{ }α) � 1 and Corollary 5 illus-
trates that η∗ ∈ Fz{ }α � Fz{ }α.

Since η∗ � fz ∈ Fz{ }α ⊂ g(X), there exists w ∈ X

suchthat η∗ � gw.
Similar to the previous steps, we can prove that

η∗ � gw ∈ Gw{ }α.
As two pairs (G, g) and (F, f) are D-compatible,

η∗􏼈 􏼉 � fz􏼈 􏼉 ⊂ Fz{ }α and η∗􏼈 􏼉

� gw􏼈 􏼉 ⊂ Gw{ }α.
(34)

Moreover,

fη∗􏼈 􏼉 � ffz􏼈 􏼉 ⊂ fFz􏼈 􏼉α ⊂ Ffz􏼈 􏼉α � Fη∗􏼈 􏼉α. (35)

gη∗􏼈 􏼉 � ggw􏼈 􏼉 ⊂ gGw􏼈 􏼉α ⊂ Ggw􏼈 􏼉α

� Gη∗􏼈 􏼉α.
(36)

Now, we show that η∗ � fη∗ and η∗ � gη∗. Since ξn􏼈 􏼉

and ηn􏼈 􏼉 are convergent sequences, from Lemma 1,

η∗ � lim
n⟶∞

ξ2n+2

� lim
n⟶∞

fη2n+2

� f lim
n⟶∞

η2n+2

� fη∗.

(37)

η∗ � lim
n⟶∞

ξ2n+1

� lim
n⟶∞

gη2n+1

� g lim
n⟶∞

η2n+1

� gη∗.

(38)

*en, η∗ � fη∗ � gη∗ and η∗ ∈ Fη∗􏼈 􏼉α ∩ Gη∗􏼈 􏼉α. □

Example 5. Suppose that X � [0, 1], (X, d) is a bd-multi-
plicative metric space defined by d(η, ξ) � a(η+ξ)2 , and a> 1.
Define maps g, f: X⟶ X as gη � η2,
fη � η3 ∀ η, and ξ ∈ X. Also, define two fuzzy mappings
G, F: X⟶W∗(X) as

(Fη)(ξ) �

0 if 0 ≤ ξ < 1/5

1/3 if 1/5 ≤ ξ ≤ η3

2/3 if η3 < ξ < 4/5

1 if 4/5 ≤ ξ ≤ 1

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(39)

and

(Gη)(ξ) �

0 if 0 ≤ ξ < 1/4

1/6 if 1/4 ≤ ξ ≤ η2

1/9 if η2 < ξ < 6/5

1 if 6/5 ≤ ξ ≤ 1

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

Now, for α � 1/3, f Fη􏼈 􏼉1/3 � [(1/125), η9] ⊂ [(1/5), η3]
� Ffη􏼈 􏼉1/3 and for α � 1/6, g Gη􏼈 􏼉1/6 � [(1/16), η4]
⊂ [(1/4), η4] � Ggη􏼈 􏼉1/6; i.e., (g, G) and (f, F) are

D-compatible. Finally, f1 � ff1 ∈ [(1/5), 1] � Ff1 and
gg1 � g1 ∈ [1/4, 1] � Gg1; i.e., (f, F) and (g, G) are oc-
casionally coincidentally idempotent. *en, 1 � f1 � g1 ∈
[1/5, 1]∩ [1/4, 1] � F1{ }1/3 ∩ G1{ }1/6 is a common fixed
point.
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Example 6. Suppose that X � [2/5, 3/2], (X, d) is a
bd-multiplicative metric space defined by d(η, ξ) �

2((η− (2/5))+(ξ− (2/5)))2 . Define maps g, f: X⟶ X as
gη � 1/2(η + 2/5), fη � (η + 2)/6∀ η, and ξ ∈ X. Also, de-
fine two fuzzy mappings G, F: X⟶W∗(X) as

(Fη)(ξ) �

0 if 0 ≤ ξ < 1/5

1/3 if 1/5 ≤ ξ < (η + 2)/6,

2/3 if (η + 2)/6 ≤ ξ ≤ 1

⎧⎪⎪⎨

⎪⎪⎩
(41)

and

(Gη)(ξ) �

0 if 0≤ ξ <
1
4

1
6

if
1
4
≤ ξ <

1
2

η +
2
5

􏼒 􏼓

1
4

if
1
2

η +
2
5

􏼒 􏼓≤ ξ ≤ 1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

Now, for α � 2/3,

f Fη􏼈 􏼉2/3 � [(η + 14)/36, 1/2] ⊂ [(η + 14)/36, 1] � Ffη􏼈 􏼉2/3,

(43)

and for α � 1/4,

g Gη􏼈 􏼉1/4 � [(1/4η + 1/10), 7/20] ⊂ [(1/4η + 1/10), 1]

� Ggη􏼈 􏼉1/4.

(44)

Hence, (g, G) and (f, F) are D-compatible. Finally,

f2/5 � ff2/5 ∈ [4/10, 1]

� Ff2/5
(45)

and

gg2/5 � g2/5 ∈ [2/10, 1]

� Gg2/5.
(46)

*erefore, (f, F) and (g, G) are occasionally coinci-
dentally idempotent. Furthermore,

d(fη, fξ) � 2(((η+2/6)− (2/5))+((ξ+2/6)−(2/5)))2

� 2
1
36

((η − (2/5)) +(ξ − (2/5)))
2

� d(η, ξ)
1/36

.

(47)

*en, 2/5 � f2/5 � g2/5 ∈ [4/10, 1]∩ [2/10, 1]

� F2/5{ }2/3 ∩ G2/5{ }1/4 is a common fixed point.

We concluded the following corollary when we set f � g

in *eorem 5.

Corollary 6. Let Y ⊂ X, and suppose continuous mapping
g: Y⟶ X satisfies d(gη, gξ)≤d(η, ξ)k, where η, ξ ∈ Y,
k ∈ [0, 1/s) and fuzzy mapping G: Y⟶W∗(X) such that

(i) GY{ }α ⊂ g(Y)

(ii) 0e pair (G, g) is D-compatible and occasionally
idempotent mappings

0en, there exists η∗ ∈ Y such that η∗ � gη∗ ∈ Gη∗􏼈 􏼉α.

Theorem 6. Let Y ⊂ X and suppose two continuous map-
pings g, f: Y⟶ X, satisfy

d(fη, fξ)≤d(η, ξ)
kand d(gη, gξ)≤ d(η, ξ)

k
, (48)

where η, ξ ∈ Y, k ∈ [0, 1/s), and Fn􏼈 􏼉α: Y⟶W∗(X)

such that ∀ η ∈ Y,

(i) FlY􏼈 􏼉α ⊂ f(Y) and FkY􏼈 􏼉α ⊂ g(Y)

(ii) 0e pairs (Fl, f) and (Fk, g) are D-compatible and
occasionally idempotent mappings

0en, there exists η∗ ∈ Y such that η∗ � fη∗ � gη∗ and
η∗ ∈ ∩∞n�0 Fnη∗􏼈 􏼉α.

Proof. *e proof of this theorem is completed, when putting
Fl � G and Fk � F in *eorem 5. □

Remark 1. If Fl � G and Fk � F, then *eorem 6 implies
*eorem 5.

Theorem 7. Suppose that (X, d) is a complete bd-multi-
plicative metric space and two continuous mappings
g, f: X⟶ X satisfy

d(fη, fξ)≤ max d(η, ξ), d(η, fη), d(ξ, fξ)􏼈 􏼉􏼈 􏼉
k
,

d(gη, gξ)≤ max d(η, ξ), d(η, gη), d(ξ, gξ)􏼈 􏼉􏼈 􏼉
k
,

(49)

where η, ξ ∈ X, k ∈ [0, 1/s), and two fuzzy mappings
F, G: X⟶W∗(X), such that

(i) GX{ }α ⊂ f(X), FX{ }α ⊂ g(X)

(ii) 0e pairs (F, f) and (G, g) are D-compatible and
occasionally idempotent mappings

0en, there exists η∗ ∈ X: η∗ � fη∗ � gη∗ and
η∗ ∈ Fη∗􏼈 􏼉α ∩ Gη∗􏼈 􏼉α.

Proof. Let η0 be an arbitrary point in X; then, there exists
ξ1 � gη1 ∈ Fη0􏼈 􏼉α and from Lemma 3, there exists ξ2􏼈 􏼉 �

fη2􏼈 􏼉 ⊂ Gη1􏼈 􏼉α such that

ξ2n+1􏼈 􏼉 � gη2n+1􏼈 􏼉 ⊂ Fη2n􏼈 􏼉α,

ξ2n+2􏼈 􏼉 � fη2n+2􏼈 􏼉 ⊂ Gη2n+1􏼈 􏼉α.
(50)

Since ξ1 � gη1 ∈ Fη0􏼈 􏼉, there exists ξ2 � fη2 ⊂ Gη1􏼈 􏼉α,
and from *eorem 4,

d ξn, ξm( 􏼁≤ d ξ0, ξ1( 􏼁
(ks)n/1− ks

. (51)
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As n⟶∞, k< 1/s⇒ks< 1 that implies ξn􏼈 􏼉 is a
multiplicative Cauchy sequence. Since (X, d) is complete,
then ηn􏼈 􏼉 is convergent such that

limn⟶∞d ξn, ξm( 􏼁 � 1. (52)

As ξ2n+2􏼈 􏼉 is a Cauchy sequence in f(X) and f(X) is
joint orbitally complete, then there exists η∗ ∈ X such that

limn⟶∞ξ2n+2 � η∗ , η∗ � fz ∀z ∈ X. (53)

We prove that η∗ ∈ Fz{ }α and

d η∗, Fz{ }α( 􏼁 � d fz, Fz{ }α( 􏼁≤ d fz, η∗( 􏼁
s

· d η∗, Fz{ }α( 􏼁
s

� d(ffz, fz)
s

· d η∗, Fz{ }α( 􏼁
s

� d f
2
z, f

2
z􏼐 􏼑

s
· d η∗, Fz{ }α( 􏼁

s

≤ max d(fz, fz), d fz, f
2
z􏼐 􏼑, d fz, f

2
z􏼐 􏼑􏽮 􏽯􏽮 􏽯

ks

· d η∗, Fz{ }α( 􏼁
s

� max d(fz, fz), d(fz, fz) · d(fz, fz)􏼈 􏼉􏼈 􏼉
ks

· d η∗, Fz{ }α( 􏼁
s

� max d η∗, η∗( 􏼁, d η∗, η∗( 􏼁, d η∗, η∗( 􏼁􏼈 􏼉􏼈 􏼉
ks

· d η∗, Fz{ }α( 􏼁
s

� d η∗, η∗( 􏼁
ks

· d η∗, Fz{ }α( 􏼁
s
.

d η∗, Fz{ }α( 􏼁
1− s ≤ d η∗, η∗( 􏼁

ks

≤ d η∗, ξ2n+2( 􏼁
s

· d ξ2n+2, η
∗

( 􏼁
s

( 􏼁
ks

.

(54)

As n⟶∞, then d(η∗, ξ2n+2)⟶ bd1. However, ξ2n+2
is a convergent sequence; i.e.,

d η∗, Fz{ }α( 􏼁
1− s ≤ 1,

d η∗, Fz{ }α( 􏼁≤ 1.
(55)

*en, we have d(η∗, Fz{ }α) � 1 and Corollary 5 illus-
trates that η∗ ∈ Fz{ }α � Fz{ }α.

Since η∗􏼈 􏼉 � fz􏼈 􏼉 ⊂ Fz{ }α ⊂ g(X), there exists w ∈ X

such that η∗ � gw.
Similar to the previous steps, we can prove that

η∗ � gw ∈ Gw{ }α.
As two pairs (G, g) and (F, f) are D-compatible,

η∗􏼈 􏼉 � fz􏼈 􏼉 ⊂ Fz and η∗􏼈 􏼉

� gw􏼈 􏼉 ⊂ Gw{ }α,
(56)

and therefore

fη∗􏼈 􏼉 � ffz􏼈 􏼉 ⊂ fFz􏼈 􏼉α ⊂ Ffz􏼈 􏼉α

� Fη∗􏼈 􏼉α,
(57)

gη∗􏼈 􏼉 � ggw􏼈 􏼉 ⊂ gGw􏼈 􏼉α ⊂ Ggw􏼈 􏼉α

� Gη∗􏼈 􏼉α.
(58)

Now, we show that η∗ � fη∗ and η∗ � gη∗. Since ξn􏼈 􏼉

and ηn􏼈 􏼉 are convergent sequences, then

η∗ � lim
n⟶∞

ξ2n+2

� lim
n⟶∞

fη2n+2

� f lim
n⟶∞

η2n+2

� fη∗,

(59)

η∗ � lim
n⟶∞

ξ2n+1

� lim
n⟶∞

gη2n+1

� g lim
n⟶∞

η2n+1

� gη∗.

(60)

*en, f, g, F, andG have a common fixed point. □

Theorem 8. Suppose that (X, d) is a complete bd-multi-
plicative metric space, Y ⊂ X, and two continuous mappings
g, f: Y⟶ X satisfy

d(fη, fξ)≤ max d(η, ξ), d(η, fη), d(ξ, fξ)􏼈 􏼉􏼈 􏼉
k
,

d(gη, gξ)≤ max d(η, ξ), d(η, gη), d(ξ, gξ)􏼈 􏼉􏼈 􏼉
k
,

(61)

where η, ξ ∈ Y, k ∈ [0, 1/s), and Fn􏼈 􏼉: Y⟶W∗(X), such
that

(i) FlY􏼈 􏼉α ⊂ f(Y), FkY􏼈 􏼉α ⊂ g(Y), k � 2n + 1,
l � 2n + 2, and n ∈ N

(ii) 0e pairs (Fk, f) and (Fl, g) are D-compatible and
occasionally idempotent mappings

0en, there exist η∗ ∈ Y such that η∗ � fη∗ � gη∗ and
η∗ ∈ ∩∞n�0 Fnη∗􏼈 􏼉α.

4. Applications

In this section, we give some applications on our main
results. We state some of our theorems on Cartesian product
without proof.

Theorem 9. Suppose that (X, d) is a complete bd-multi-
plicative metric space. 0e map g: D2 � D × D⟶ D2,
D⊆X satisfies

d(g(a, c), g(b, d))≤ d((a, c), (b, d))
k
, (62)

where (a, c), (b, d) ∈ D2 and k ∈ [0, 1/s). 0en, g has a
unique fixed point.

*e next example illustrates the previous theory.

Example 7. Suppose that X � [1,∞) and
D � (1, η): η ∈ X􏼈 􏼉. Define d: D2⟶ [1,∞) as

d((a, c), (b, d)) � a
((c/b)− 1+(d/a)− 1)2

, (63)

∀ (a, c), (b, d) ∈ D, a≥ 1. *en, (X, d) is a complete
bd-multiplicative metric space with s � 2.
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Let g: D⟶ D be a function defined by
g((1, η)) � (1, (η + 1)/2). *en, condition (3) holds.
However,

d(g(1, η), g(1, ξ)) � d(1, (1 + η)/2), (1, (1 + ξ)/2)

� a
((η− 1)/2+ξ− 1/2)2

� a
1/4(η− 1+ξ− 1)2

� d((1, η), (1, ξ))
1/4

,

(64)

with k � 1/4. It is obvious that (1, 1) ∈ D2 is a unique fixed
point of a map g.

Theorem 10. Suppose that (X, d) is a complete bd-multipli-
cative metric space and g: D2⟶ D2, k ∈ [0, 1/s), such that

d(g(a, c), g(b, d))≤ max d((a, c), (b, d)), d((a, c), g(a, c)),􏼈􏼈

· d (b, d), g(b, d))( 􏼉􏼉
k
.

(65)

*en, g has a unique fixed point.

Theorem 12. Suppose that (X, d) is a complete bd-multi-
plicative metric space and two continuous mappings
g, f: D2⟶ D2 satisfy

d(f(a, c), f(b, d))≤d((a, c), (b, d))
k
,

d(g(a, c), g(b, d))≤d((a, c), (b, d))
k
,

(66)

where (a, c), (b, d) ∈ D2, k ∈ [0, 1/s), and two fuzzy map-
pings G, F: D2⟶W∗(X), such that

(i) GD2􏼈 􏼉α ⊂ f(D2) and FD2􏼈 􏼉α ⊂ g(D2)

(ii) 0e pairs (F, f) and (G, g) are D-compatible and
occasionally idempotent mappings

0en f, g, F, and G have a common fixed point.

Theorem 13. Suppose that (X, d) is a complete bd-multi-
plicative metric space, D ⊂ X, and two mappings
g, f: D2⟶ D2 satisfy

d(f(a, c), f(b, d))≤d((a, c), (b, d))
k
,

d(g(a, c), g(b, d))≤d((a, c), (b, d))
k
,

(67)

where (a, c), (b, d) ∈ D2, k ∈ [0, 1/s), and Fn􏼈 􏼉: D2⟶W∗

(X) such that

(i) FlD
2􏼈 􏼉α ⊂ f(D2), FkD2􏼈 􏼉α ⊂ g(D2), k � 2n + 1,

l � 2n + 2, and n ∈ N
(ii) 0e pairs (Fk, f) and (Fl, g) are D-compatible and

occasionally idempotent mappings

0en, there exists η∗ ∈ D × D such that η∗ � fη∗ � gη∗ and
η∗ ∈ ∩∞n�0 Fnη∗􏼈 􏼉α.

Theorem 14. Suppose that (X, d) is a complete bd-multi-
plicative metric space and two mappings g, f: D2⟶ D2,
D ⊂ X, satisfy

d(f(a, c), f(b, d))≤ max d((a, c), (b, d)), d((a, c), f(a, c)), d((b, d), f(b, d))􏼈 􏼉􏼈 􏼉
k
,

d(g(a, c), g(b, d))≤ max d((a, c), (b, d)), d((a, c), g(a, c)), d((b, d), g(b, d))􏼈 􏼉􏼈 􏼉
k
,

(68)

where (a, c), (b, d) ∈ D2, k ∈ [0, 1/s), Fn􏼈 􏼉α: D2⟶
W∗(X), such that

(i) FlD
2􏼈 􏼉α ⊂ f(D2), FkD2􏼈 􏼉α ⊂ g(D2), k � 2n + 1,

l � 2n + 2, and n ∈ N
(ii) 0e pairs (Fk, f) and (Fl, g) are D-compatible and

occasionally idempotent mappings

0en, there exists η∗ ∈ D2 such that η∗ � fη∗ � gη∗ and
η∗ ∈ ∩∞n�0 Fnη∗􏼈 􏼉α.

5. Conclusion

In this paper, we introduced the concept of bd-multi-
plicative metric spaces. We studied some of the fixed point
theorems in these spaces. Also, we obtain common fixed
point theorems for fuzzy mappings in complete
bd-multiplicative metric spaces. Finally, we get some of
applications on our main findings. We hope that our
presented idea herein will be a source of motivation for
other researchers to extend and improve these findings for
their applications.
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In this paper, we firstly propose the notion of double controlled partial metric type spaces, which is a generalization of controlled
metric type spaces, partial metric spaces, and double controlled metric type spaces. Secondly, our aim is to study the existence of
fixed points for Kannan type contractions in the context of double controlled partial metric type spaces. +e proposed results
enrich, theorize, and sharpen a multitude of pioneer results in the context of metric fixed point theory. Additionally, we provide
numerical examples to illustrate the essence of our obtained theoretical results.

1. Introduction and Preliminaries

+e study of fixed points of given mappings satisfying
certain contractive conditions in various abstract spaces has
been at the middle of vigorous research activity. Banach
contraction mapping principle has attracted the eye of the
many authors to generalize, extend, and improve the metric
fixed point theory. For this purpose, the authors considered
the extension of metric fixed point theory to different ab-
stract spaces such as symmetric spaces, quasimetric spaces,
fuzzy metric spaces, partial metric spaces, probabilistic
metric spaces, and spaces with graph.

+e notion of b-metric spaces was first presented by
Bakhtin [1] and Czerwik [2]. Many writers have since ob-
tained a number of fixed point solutions in b-metric spaces
for single and multivalued operators. We reference Kamran
et al. [3] (see also [4, 5]), who presented extended b-metric
spaces by manipulating the triangle inequality rather than
utilizing control functions, as one of the generalizations
concerning b-metric spaces. Following that, in 2018,
Abdeljawad et al. [6, 7] established the concepts of controlled
metric type spaces and double controlled metric type spaces,

respectively. Souayah and Mrad [8] proposed a more broad
idea of controlled partial metric type spaces in 2019. It is
useful to establish the extensions of the contraction principle
from metric spaces to b-metric spaces, and therefore the
controlled metric type of spaces is useful to prove the ex-
istence and uniqueness of theorems for many forms of
integral and differential equations. Some interesting appli-
cations can be found in the recent papers [4, 9–15]. It is
always interesting to find novel applications dealing with
engineering science and technology using fixed point
technique.

On the other hand, the notion of partial metric space was
given by Matthews [16, 17] in 1992, which is the general-
ization of the usual metric space in which d (x, x) is not zero.
After that, many researchers worked on the partial metric
type spaces to discover the existence of fixed point and their
uniqueness. In 2019, Gu and Shatanawi [18] expounded
some coupled fixed point theorems in the context of partial
metric spaces for hybrid pairs of mappings satisfying a
symmetric type contraction. In 2020, Nguyen and Tram [19]
demonstrated various fixed point results involving involu-
tion mappings. Recently, in 2021, Javaid et al. [20]
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propounded fixed point results in the setting orthogonal
partial metric spaces with application. Researchers can refer
to [14, 21–23] for further information on fixed points in
partial type metric spaces.

Taking into consideration the facts mentioned above, in
this article, we introduce the concept of double controlled
partial metric type space, which is an extension of the
controlled metric type spaces, double controlled metric type
spaces, and controlled partial metric type spaces. We also
look into the existence and uniqueness of fixed point results,
which are Kannan contractions’ extensions.

Let us begin by reviewing the definition of double
controlled metric space as follows.

Definition 1 (see [6]). Let X be a nonempty set and consider
the functions α, µ: X × X⟶ [1,∞).

Let d: X × X⟶ [0,∞) satisfy

(1) d(x1, x2) � 0 if and only if x1 � x2,
(2) d(x1, x2) � d(x2, x1),
(3) d(x1, x2)≤ α(x1, x3)d(x1, x3) + µ(x3, x2)d(x3, x2),

for all x1, x2, x3 ∈ X, then (X, d) is called a double
controlled metric type space.

2. DoubleControlledPartialMetricTypeSpaces

+e following is the formal definition of the double con-
trolled partial metric type space which generalizes the no-
tation of controlled metric type spaces, double controlled
metric type spaces, and partial metric spaces.

Definition 2. Let X be a nonempty set consider α, µ: X ×

X⟶ [1,∞) be a function.
Let d: X × X⟶ [0,∞) satisfy

(1) d(x1, x2) � 0 if and only if x1 � x2,
(2) d(x1, x2) � d(x2, x1),
(3) d(x1, x1)≤ d(x1, x2),
(4) d(x1, x2)≤ α(x1, x3)d(x1, x3) + µ(x3, x2)d(x3, x2),

for all x1, x2, x3 ∈X, then (X, d) is called a double
controlled partial metric type space.

Note that double controlled partial metric type space is
more extensive than the double controlled metric type space.

Example 1. A double controlled partial metric type space is
not necessarily a double controlled metric type space.

Let X � 0, 1, 2, 3, 4{ } and take d: X × X⟶ [0,∞).
Consider α, µ: X × X⟶ [1,∞), where

α(x, y) � d(x, y) + 5,

µ(x, y) � d(x, y) + 7.
(1)

Let the metric d be defined by the following (Table 1).
It is easy to verify that (p1) and (p2) are true.
We prove condition (3) with different cases, that is,

d(x1, x1)≤ d(x1, x2), for all x1, x2 ∈ X and x1 ≠ x2.

Case (i): let d(x1, x1) � d(0, 0) � (1/27), d(0, 0)

≤d(x1, x2), satisfied for all x1, x2 ∈ X and x1 ≠ x2.
Case (ii): let d(x1, x1) � d(1, 1) � (1/28), d(1, 1)

≤d(x1, x2), satisfied for all x1, x2 ∈ X and x1 ≠ x2

Case (iii): let d(x1, x1) � d(2, 2) � (1/29), d(2, 2)

≤d(x1, x2), satisfied for all l x1, x2 ∈ X and x1 ≠ x2.
Case (iv): let d(x1, x1) � d(3, 3) � (1/28), d(3, 3)

≤d(x1, x2), satisfied for all x1, x2 ∈ X and x1 ≠ x2.
Case (v): let d(x1, x1) � d(4, 4) � (1/27), d(4, 4)

≤d(x1, x2), satisfied for all x1, x2 ∈ X and x1 ≠ x2.

Now, we will prove the property (p4).

Case (i): to satisfy d(0, 0), we have

d(0, 0)≤ α(0, 0)d(0, 0) + μ(0, 0)d(0, 0)

0.0370≤ 0.4513,

d(0, 0) ≤ α(0, 1)d(0, 1) + μ(1, 0)d(1, 0)

0.0370≤ 3.1250,

d(0, 0)≤ α(0, 2)d(0, 2) + μ(2, 0)d(2, 0)

0.0370≤ 2.48,

d(0, 0)≤ α(0, 3)d(0, 3) + μ(3, 0)d(3, 0)

0.0370≤ 2.0555,

d(0, 0)≤ α(0, 4)d(0, 4) + μ(4, 0)d(4, 0)

0.0370≤ 1.7551.

(2)

Case (ii): now, we have to satisfy d(0, 1) � d(1, 0):

d(0, 1) ≤ α(0, 0)d(0, 0) + μ(0, 1)d(0, 1)

0.25≤ 1.9990,

d(0, 1)≤ α(0, 1)d(0, 1) + μ(1, 1)d(1, 1)

0.25≤ 1.5637,

d(0, 1)≤ α(0, 2)d(0, 2) + μ(2, 1)d(2, 1)

0.25≤ 3.1216,

d(0, 1)≤ α(0, 3)d(0, 3) + μ(3, 1)d(3, 1)

0.25≤ 2.4660,

d(0, 1)≤ α(0, 4)d(0, 4) + μ(4, 1)d(4, 1)

0.25≤ 2.0404.

(3)

Case (iii): to prove d(0, 2) � d(2, 0), we have

Table 1: Metric d defined in Example 1.

d 0 1 2 3 4
0 1/27 1/4 1/5 1/6 1/7
1 1/4 1/28 2/7 2/9 2/11
2 1/5 2/7 1/29 3/11 3/13
3 1/6 2/9 3/11 1/28 4/13
4 1/7 2/11 3/13 4/13 1/27
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d(0, 2)≤ α(0, 0)d(0, 0) + μ(0, 2)d(0, 2)

0.2≤ 1.6265,

d(0, 2)≤ α(0, 1)d(0, 1) + μ(1, 2)d(1, 2)

0.2≤ 3.3941,

d(0, 2)≤ α(0, 2)d(0, 2) + μ(2, 2)d(2, 2)

0.2≤ 1.2825,

d(0, 2)≤ α(0, 3)d(0, 3) + μ(3, 2)d(3, 2)

0.2≤ 2.8445,

d(0, 2)≤ α(0, 4)d(0, 4) + μ(4, 2)d(4, 2)

0.2≤ 2.4033.

(4)

Case (iv): in order to show d(0, 3) � d(3, 0), we pro-
ceed as follows:

d(0, 3)≤ α(0, 0)d(0, 0) + μ(0, 3)d(0, 3)

0.1666≤ 1.3810,

d(0, 3)≤ α(0, 1)d(0, 1) + μ(1, 3)d(1, 3)

0.1666≤ 2.9174,

d(0, 3)≤ α(0, 2)d(0, 2) + μ(2, 3)d(2, 3)

0.1666≤ 3.0234,

d(0, 3)≤ α(0, 3)d(0, 3) + μ(3, 3)d(3, 3)

0.1666≤ 1.1123,

d(0, 3)≤ α(0, 4)d(0, 4) + μ(4, 3)d(4, 3)

0.1666≤ 2.9832.

(5)

Case (v): now, we have to satisfy d(0, 4) � d(4, 0):

d(0, 4)≤ α(0, 0)d(0, 0) + μ(0, 4)d(0, 4)

0.1428≤ 1.2069,

d(0, 4)≤ α(0, 1)d(0, 1) + μ(1, 4)d(1, 4)

0.1428≤ 2.6182,

d(0, 4)≤ α(0, 2)d(0, 2) + μ(2, 4)d(2, 4)

0.1428≤ 2.7086,

d(0, 4)≤ α(0, 3)d(0, 3) + μ(3, 4)d(3, 4)

0.1428≤ 3.1096,

d(0, 4)≤ α(0, 4)d(0, 4) + μ(4, 4)d(4, 4)

0.1428≤ 0.9953.

(6)

Case (vi): for the case d(1, 1), we have

d(1, 1)≤ α(1, 0)d(1, 0) + μ(0, 1)d(0, 1)

0.03571≤ 3.125,

d(1, 1)≤ α(1, 1)d(1, 1) + μ(1, 1)d(1, 1)

0.03571≤ 0.4311,

d(1, 1)≤ α(1, 2)d(1, 2) + μ(2, 1)d(2, 1)

0.03571≤ 3.5918,

d(1, 1)≤ α(1, 3)d(1, 3) + μ(3, 1)d(3, 1)

0.03571≤ 2.7654,

d(1, 1)≤ α(1, 4)d(1, 4) + μ(1, 4)d(4, 1)

0.03571≤ 2.2479. (7)

Case (vii): to satisfy d(1, 2) � d(2, 1), we have

d(1, 2)≤ α(1, 0)d(1, 0) + μ(0, 2)d(0, 2)

0.2857≤ 2.7525,

d(1, 2)≤ α(1, 1)d(1, 1) + μ(1, 2)d(1, 2)

0.2857≤ 2.2614,

d(1, 2)≤ α(1, 2)d(1, 2) + μ(2, 2)d(2, 2)

0.2857≤ 1.7527,

d(1, 2)≤ α(1, 3)d(1, 3) + μ(3, 2)d(3, 2)

0.2857≤ 3.1439,

d(1, 2)≤ α(1, 4)d(1, 4) + μ(4, 2)d(4, 2)

0.2857≤ 2.6107.

(8)

Case (viii): now, we have to satisfy d(1, 3) � d(3, 1):

d(1, 3)≤ α(1, 0)d(1, 0) + μ(0, 3)d(0, 3)

0.2222≤ 2.5069,

d(1, 3)≤ α(1, 1)d(1, 1) + μ(1, 3)d(1, 3)

0.2222≤ 1.7847,

d(1, 3)≤ α(1, 2)d(1, 2) + μ(2, 3)d(2, 3)

0.2222≤ 3.4936,

d(1, 3)≤ α(1, 3)d(1, 3) + μ(3, 3)d(3, 3)

0.2222≤ 1.4117,

d(1, 3)≤ α(1, 4)d(1, 4) + μ(4, 3)d(4, 3)

0.2222≤ 3.19066.

(9)

Case (ix): for the case d(1, 4) � d(4, 1), consider the
following:

d(1, 4)≤ α(1, 0)d(1, 0) + μ(0, 4)d(0, 4)

0.1818≤ 2.3329,

d(1, 4)≤ α(1, 1)d(1, 1) + μ(1, 4)d(1, 4)

0.1818≤ 1.4856,

d(1, 4)≤ α(1, 2)d(1, 2) + μ(2, 4)d(2, 4)

0.1818≤ 3.1788,

d(1, 4)≤ α(1, 3)d(1, 3) + μ(3, 4)d(3, 4)

0.1818≤ 3.4090,

d(1, 4)≤ α(1, 4)d(1, 4) + μ(4, 4)d(4, 4)

0.1818≤ 1.2027.

(10)
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Case (x): for the case d(2, 2), we have

d(2, 2)≤ α(2, 0)d(2, 0) + μ(0, 2)d(0, 2)

0.0344≤ 2.48,

d(2, 2)≤ α(2, 1)d(2, 1) + μ(1, 2)d(1, 2)

0.0344≤ 3.5918,

d(2, 2)≤ α(2, 2)d(2, 2) + μ(2, 2)d(2, 2)

0.0344≤ 0.4161,

d(2, 2)≤ α(2, 3)d(2, 3) + μ(2, 3)d(2, 3)

0.0344≤ 3.4214,

d(2, 2)≤ α(2, 4)d(2, 4) + μ(4, 2)d(4, 2)

0.0344≤ 2.8757.

(11)

Case (xi): to satisfy d(2, 3) � d(3, 2), we proceed as
follows:

d(2, 3)≤ α(2, 0)d(2, 0) + μ(0, 3)d(0, 3)

0.2727≤ 2.2344,

d(2, 3)≤ α(2, 1)d(2, 1) + μ(1, 3)d(1, 3)

0.2727≤ 3.1151,

d(2, 3)≤ α(2, 2)d(2, 2) + μ(2, 3)d(2, 3)

0.2727≤ 2.1570,

d(2, 3)≤ α(2, 3)d(2, 3) + μ(3, 3)d(3, 3)

0.2727≤ 1.6892,

d(2, 3)≤ α(2, 4)d(2, 4) + μ(4, 3)d(4, 3)

0.2727≤ 3.4556.

(12)

Case (xii): next, we have to satisfy d(2, 4) � d(4, 2):

d(2, 4)≤ α(2, 0)d(2, 0) + μ(0, 4)d(0, 4)

0.2307≤ 2.0604,

d(2, 4)≤ α(2, 1)d(2, 1) + μ(1, 4)d(1, 4)

0.2307≤ 2.8159,

d(2, 4)≤ α(2, 2)d(2, 2) + μ(2, 4)d(2, 4)

0.2307≤ 1.8422,

d(2, 4)≤ α(2, 3)d(2, 3) + μ(3, 4)d(3, 4)

0.2307≤ 3.6865,

d(2, 4)≤ α(2, 4)d(2, 4) + μ(4, 4)d(4, 4)

0.2307≤ 1.4677.

(13)

Case(xiii): now, for the case d(3, 3), we consider

d(3, 3)≤ α(3, 0)d(3, 0) + μ(0, 3)d(0, 3)

0.03571≤ 2.0555,

d(3, 3)≤ α(3, 1)d(3, 1) + μ(1, 3)d(1, 3)

0.03571≤ 2.7654,

d(3, 3)≤ α(3, 2)d(3, 2) + μ(2, 3)d(2, 3)

0.03571≤ 3.4214,

d(3, 3)≤ α(3, 3)d(3, 3) + μ(3, 3)d(3, 3)

0.03571≤ 0.4311,

d(3, 3)≤ α(3, 4)d(3, 4) + μ(4, 3)d(4, 3)

0.03571≤ 3.8816. (14)

Case (xiv): now, we have to satisfy d(3, 4) � d(4, 3):

d(3, 4)≤ α(3, 0)d(3, 0) + μ(0, 4)d(0, 4)

0.3076≤ 1.8855,

d(3, 4)≤ α(3, 1)d(3, 1) + μ(1, 4)d(1, 4)

0.3076≤ 2.4662,

d(3, 4)≤ α(3, 2)d(3, 2) + μ(2, 4)d(2, 4)

0.3076≤ 3.1066,

d(3, 4)≤ α(3, 3)d(3, 3) + μ(3, 4)d(3, 4)

0.3076≤ 2.4283,

d(3, 4)≤ α(3, 4)d(3, 4) + μ(4, 4)d(4, 4)

0.3076≤ 1.8937.

(15)

Case (xv): lastly, for the case d(4, 4), we have

d(4, 4)≤ α(4, 0)d(4, 0) + μ(0, 4)d(0, 4)

0.0370≤ 1.7551,

d(4, 4)≤ α(4, 1)d(4, 1) + μ(1, 4)d(1, 4)

0.0370≤ 2.2479,

d(4, 4)≤ α(4, 2)d(4, 2) + μ(2, 4)d(2, 4)

0.0370≤ 2.8757,

d(4, 4)≤ α(4, 3)d(4, 3) + μ(3, 4)d(3, 4)

0.0370≤ 3.8816,

d(4, 4)≤ α(4, 4)d(4, 4) + μ(4, 4)d(4, 4)

0.0370≤ 0.4471.

(16)

+erefore, (X, d) is a double controlled partial metric
type space but is not a double controlled metric type space
since d(x, x) is not equal to zero all the time.

We define Cauchy and convergent sequence in double
controlled partial metric type spaces as follows.

Definition 3. Let (X, d) be a double controlled partial metric
type space; the sequence xn􏼈 􏼉n≥ 0 converges to some x in X, if
limn,m⟶∞d(xn, x) � d(x, x); in this case, we write
limn⟶∞xn � x.

Definition 4. +e sequence xn􏼈 􏼉 in a double controlled
partial metric type space (X, d) is said to be Cauchy se-
quence, if limn,m⟶∞d(xn, xm) exists and is finite.
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Definition 5. A double controlled partial metric type space
(X, d) is said to be complete if every Cauchy sequence x in X

converges to a point x ∈ X, that is,
d(x, x) � limn,m⟶∞d(xn, xm).

Definition 6. Let (X, d) be a double controlled partial metric
type space. Let x ∈ X and ε> 0.

(i) +e open ball Bp(x, ε) is

Bp(x, ε) � y ∈ X, d(x, y)< d(x, x) + ε􏼈 􏼉. (17)

(ii) +e mapping T: X⟶ X is said to be continuous at
x ∈ X if for all ε> 0, there exists δ > 0 such that

T Bp(x, δ)􏼐 􏼑⊆Bp(Tx, ε). (18)

+erefore, if T is continuous at x in the double controlled
partial metric type space (X, d), then xn⟶ x implies that
Txn⟶ Tx as n⟶∞

3. Some Novel Results

+is section is devoted to discuss some fixed point results in
double controlled partial metric type space (X, d). +e main
result of this article is given by the following theorem.

Theorem 1. Let (X, d) be a complete double controlled
partial metric type space by the functions
α, μ: X × X⟶ [1,∞). Suppose that f: X⟶ X satisfies

d(fx, fy)≤ β[d(x, fx) +(y, fy)], (19)

for all x, y ∈ X, where β ∈ (0, (1/2)). For x0 ∈ X, take
xn � fnx0, assuming that

sup
m≥1

lim
i⟶∞

α xi+1, xi+2( 􏼁

α xi, xi+1( 􏼁
μ xi, xm( 􏼁<

1
k

, where k ∈ (0, 1).

(20)

Furthermore, assume that for every x ∈ X,
limn⟶∞ α(x, xn), limn⟶∞α(xn, x), limn⟶∞μ(x, xn), and
limn⟶∞μ(xn, x) exist and are finite. +en, the sequence
xn􏼈 􏼉 converges to some u ∈ X; moreover, if α and μ satisfy
the following assumptions,

lim
n⟶∞

α u, xn+1( 􏼁

1 − βμ xn+1, fu( 􏼁
≤ 0, (21)

then f has a unique fixed point.

Proof. Consider xn � fnx0, let x1 ∈ X be arbitrary, and let
x2 � fx1 and let x3 � fx2 be chosen.

By using (19), we get

d x2, x3( 􏼁 � d fx1, fx2( 􏼁≤ β d x1, fx1( 􏼁 + d x2, fx2( 􏼁􏼂 􏼃

� β d x1, x2( 􏼁 + d x2, x3( 􏼁􏼂 􏼃.

(22)

+en,

d x2, x3( 􏼁≤
β

1 − β
d x1, x2( 􏼁, where

β
1 − β

� η ∈ [0, 1).

(23)

By repeating the same procedure in inequality (23), we
obtain

d xn, xn+1( 􏼁≤ ηn− 1
d x1, x2( 􏼁. (24)

Now, we have to show that xn􏼈 􏼉 is Cauchy sequence.
Since (X, d) is a double controlled partial metric type space,
for all natural numbers n, m ∈ N with n<m, we acquire

d xn, xm( 􏼁≤ α xn, xn+1( 􏼁d xn, xn+1( 􏼁 + μ xn+1, xm( 􏼁d xn+1, xm( 􏼁

≤ α xn, xn+1( 􏼁d xn, xn+1( 􏼁 + α xn+1, xn+2( 􏼁μ xn+1, xm( 􏼁d xn+1, xn+2( 􏼁

+ μ xn+1, xm( 􏼁μ xn+2, xm( 􏼁d xn+2, xm( 􏼁

≤ α xn, xn+1( 􏼁d xn, xn+1( 􏼁 + α xn+1, xn+2( 􏼁μ xn+1, xm( 􏼁d xn+1, xn+2( 􏼁

+ α xn+2, xn+3( 􏼁μ xn+1, xm( 􏼁μ xn+2, xm( 􏼁d xn+2, xn+3( 􏼁

+ μ xn+1, xm( 􏼁μ xn+2, xm( 􏼁μ xn+3, xm( 􏼁d xn+3, xm( 􏼁

≤ α xn, xn+1( 􏼁d xn, xn+1( 􏼁 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
μ xj, xm􏼐 􏼑⎛⎝ ⎞⎠α xi, xi+1( 􏼁d xi, xi+1( 􏼁

+ 􏽙
m−1

k�n+1
μ xk, xm( 􏼁d xm−1, xm( 􏼁
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≤ α xn, xn+1( 􏼁ηn
d x0, x1( 􏼁 + 􏽘

m−2

i�n+1
􏽙

i

j�n+1
μ xj, xm􏼐 􏼑⎛⎝ ⎞⎠α xi, xi+1( 􏼁ηi

d x0, x1( 􏼁

+ 􏽙
m−1

k�n+1
μ xk, xm( 􏼁ηm− 1

d x0, x1( 􏼁

+ 􏽙
m−1

k�n+1
μ xk, xm( 􏼁α xm−1, xm( 􏼁ηm− 1

d x0, x1( 􏼁

� α xn, xn+1( 􏼁ηn
d x0, x1( 􏼁 + 􏽘

m−1

i�n+1
􏽙

i

j�n+1
μ xj, xm􏼐 􏼑⎛⎝ ⎞⎠α xi, xi+1( 􏼁ηi

d x0, x1( 􏼁

≤ α xn, xn+1( 􏼁ηn
d x0, x1( 􏼁 + 􏽘

m−1

i�n+1
􏽙

i

j�n+1
μ xj, xm􏼐 􏼑⎛⎝ ⎞⎠α xi, xi+1( 􏼁ηi

d x0, x1( 􏼁

≤ α xn, xn+1( 􏼁ηn
d x0, x1( 􏼁 + 􏽘

m−1

i�n+1
􏽙

i

j�n+1
μ xj, xm􏼐 􏼑⎛⎝ ⎞⎠α xi, xi+1( 􏼁ηi

d x0, x1( 􏼁. (25)

Assume that

Sp � 􏽘
m−1

i�n+1
􏽙

i

j�0
μ xj, xm􏼐 􏼑⎛⎝ ⎞⎠α xi, xi+1( 􏼁ηi

d x0, x1( 􏼁. (26)

+en, we obtain

d xn, xm( 􏼁≤d x0, x1( 􏼁 ηnα xn, xn+1( 􏼁 + Sm−1 − Sn( 􏼁􏼂 􏼃. (27)

Using ratio test, we have

ai � 􏽙
i

j�0
μ xj, xm􏼐 􏼑⎛⎝ ⎞⎠α xi, xi+1( 􏼁ηi

d x0, x1( 􏼁, where
ai+1

ai

<
1
η

.

(28)

Taking limn,m⟶∞, (27) becomes

lim
n,m⟶∞

d xn, xm( 􏼁 � 0. (29)

+is implies that xn􏼈 􏼉 is a Cauchy sequence in a complete
double controlled metric type space (X, d), so xn􏼈 􏼉 con-
verges to some u ∈ X. Now, we have to prove that u is a fixed
point of T, so we need to verify that

d(u, fu) � d(u, u) � d(fu, fu). (30)

From the (p3), we have

d(u, u)≤ d(u, fu),

d(fu, fu)≤d(u, fu).
(31)

Hence, for proving fu � u, it is sufficient to prove that
d(u, u)≥ d(u, fu) and d(fu, fu)≥ d(u, fu). +e triangular
inequality yields that

d(u, fu)≤ α u, xn+1( 􏼁d u, xn+1( 􏼁 + μ xn+1, fu( 􏼁d xn+1, fu( 􏼁

≤ α u, xn+1( 􏼁d u, xn+1( 􏼁 + μ xn+1, fu( 􏼁d fxn, fu( 􏼁

≤ α u, xn+1( 􏼁d u, xn+1( 􏼁 + βμ xn+1, fu( 􏼁d xn, fxn( 􏼁

+ βμ xn+1, fu( 􏼁d(u, fu).

(32)

Taking limit as n⟶∞, we obtain

d(u, fu)≤ lim
n⟶∞

α u, xn+1( 􏼁

1 − βμ xn+1, fu( 􏼁d(u, fu)
d(u, u).

(33)

Utilizing condition (21), we get

d(u, fu)≤d(u, u). (34)

On the other hand,

d(u, fu)≤ α(u, fu)d(u, fu) + μ(fu, fu)d(fu, fu)

≤ α(u, fu)d(u, fu)

+ μ(fu, fu)β[d(u, fu) + d(u, fu)]

≤ α(u, fu)d(u, fu) + βμ(fu, fu)d(u, fu)

+ βμ(fu, fu)d(u, fu)

≤
α(u, fu)

1 − βμ(fu, fu)
d(fu, fu).

(35)

Hence, we get

d(u, fu)≤d(u, u). (36)

From (31)–(36), we obtain

u � fu. (37)

Uniqueness: assume that there are two fixed points u and
v of T, then

d(u, v) � d(fu, fv)≤ β[d(u, fu) + d(v, fv)]

� β[d(u, u) + d(v, v)].
(38)

Furthermore, we have
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d(u, u) � d(fu, fu)≤ 2βd(u, fu) � 2βd(u, u), (39)

where β> 1, then d(u, u) � 0, similarly

d(v, v) � d(fv, fv)≤ 2βd(v, fv) � 2βd(v, v). (40)

+en, d(v, v) � 0. Since d(u, u) � d(v, v) � 0, then
d(u, v) � 0. +erefore, d(u, u) � d(v, v) � d(u, v), which
gives u � v and T has a unique fixed point. □

Definition 7. Let (X, d) be complete double controlled
partial type metric space; a mapping T: X⟶ X is se-
quentially convergent. For every sequence xn􏼈 􏼉, if fxn􏼈 􏼉 is
convergent, then xn􏼈 􏼉 also converges. Also, f is said to be
subsequentially convergent. For every sequence xn􏼈 􏼉, if
fxn􏼈 􏼉 is convergent, then xn􏼈 􏼉 has a convergent
subsequence.

Theorem 2. Let (X, d) be a complete double controlled
partial metric type space and f, g: X⟶ X be mapping such
that f is continuous, one-to-one, and subsequentially
convergent

d(fgx, fgy)≤ β[d(fx, fgx) +(fy, fgy)]. (41)

For all x, y ∈ X, where β ∈ (0, (1/2)). For x0 ∈ X, take
xn � gnx0, assuming that

sup
m≥1

lim
i⟶∞

α fxi+1, fxi+2( 􏼁

α fxi, fxi+1( 􏼁
μ fxi, fxm( 􏼁<

1
k

, where k ∈ (0, 1).

(42)

Furthermore, assume that for every x ∈ X,
limn⟶∞ α(x, xn), limn⟶∞α(xn, x), limn⟶∞μ(x, xn), and
limn⟶∞μ(xn, x) exist and are finite. +en, g has a unique
fixed point.

Proof. Let x0 be an arbitrary point in X and consider the
sequence xn􏼈 􏼉 defined in the hypothesis of the theorem.
From (41), we obtain

d fxn, fxn+1( 􏼁 � d fgxn−1, fxn( 􏼁

≤ β d fxn−1, fgxn−1( 􏼁 + d fxn, fgxn( 􏼁􏼂 􏼃

� β d fxn−1, fgxn−1( 􏼁 + d fxn, fxn+1( 􏼁􏼂 􏼃

�
β

1 − β
d fxn−1, fgxn−1( 􏼁.

(43)

By induction, we get

d fxn, fxn+1( 􏼁≤
β

1 − β
􏼠 􏼡

n

d fgxn−1, fxn( 􏼁 � ηn
d fgx0, fx1( 􏼁,

(44)

where

β
1 − β

� η ∈ [0, 1). (45)

Now, we have to show that fxn􏼈 􏼉 is a Cauchy sequence.
Since (X, d) is double controlled partial metric type space
for all natural numbers n, m ∈ N with n<m, we get

d fxn, fxm( 􏼁≤ α fxn, fxn+1( 􏼁d fxn, fxn+1( 􏼁 + μ fxn+1, fxm( 􏼁d fxn+1, fxm( 􏼁

≤ α fxn, fxn+1( 􏼁d fxn, fxn+1( 􏼁 + α fxn+1, fxn+2( 􏼁μ fxn+1, fxm( 􏼁d fxn+1, fxn+2( 􏼁

+ μ fxn+1, fxm( 􏼁μ fxn+2, fxm( 􏼁d fxn+2, fxm( 􏼁

≤ α fxn, fxn+1( 􏼁d fxn, fxn+1( 􏼁 + α fxn+1, fxn+2( 􏼁μ fxn+1, fxm( 􏼁d fxn+1, fxn+2( 􏼁

+ α fxn+2, fxn+3( 􏼁μ fxn+1, fxm( 􏼁μ fxn+2, fxm( 􏼁d fxn+2, fxn+3( 􏼁

+ μ fxn+1, fxm( 􏼁μ fxn+2, fxm( 􏼁μ fxn+3, fxm( 􏼁d fxn+3, fxm( 􏼁

≤ α fxn, fxn+1( 􏼁d fxn, fxn+1( 􏼁 + 􏽘
m−2

i�n+1
􏽙

i

j�n+1
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁d fxi, fxi+1( 􏼁

+ 􏽙
m−1

k�n+1
μ fxk, fxm( 􏼁d fxm−1, fxm( 􏼁

≤ α fxn, fxn+1( 􏼁ηn
d fx0, fx1( 􏼁 + 􏽘

m−2

i�n+1
􏽙

i

j�n+1
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁ηi

d fx0, fx1( 􏼁

+ 􏽙
m−1

k�n+1
μ fxk, fxm( 􏼁ηm− 1

d fx0, fx1( 􏼁
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≤ α fxn, fxn+1( 􏼁ηn
d fx0, fx1( 􏼁 + 􏽘

m−2

i�n+1
􏽙

i

j�n+1
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁ηi

d fx0, fx1( 􏼁

+ 􏽙
m−1

k�n+1
μ fxk, fxm( 􏼁α fxm−1, fxm( 􏼁ηm− 1

d fx0, fx1( 􏼁

� α fxn, fxn+1( 􏼁ηn
d fx0, fx1( 􏼁 + 􏽘

m−1

i�n+1
􏽙

i

j�n+1
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁ηi

d fx0, fx1( 􏼁

≤ α fxn, fxn+1( 􏼁ηn
d fx0, fx1( 􏼁 + 􏽘

m−1

i�n+1
􏽙

i

j�n+1
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁ηi

d fx0, fx1( 􏼁

≤ α fxn, fxn+1( 􏼁ηn
d fx0, fx1( 􏼁 + 􏽘

m−1

i�n+1
􏽙

i

j�n+1
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁ηi

d fx0, fx1( 􏼁. (46)

Assume that

Sp � 􏽘
m−1

i�n+1
􏽙

i

j�0
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁ηi

d fx0, fx1( 􏼁.

(47)

+en, we obtain

d fxn, fxm( 􏼁≤ d fx0, fx1( 􏼁 ηnα fxn, fxn+1( 􏼁 + Sm−1 − Sn( 􏼁􏼂 􏼃.

(48)

Using ratio test, we have

ai � 􏽙
i

j�0
μ fxj, fxm􏼐 􏼑⎛⎝ ⎞⎠α fxi, fxi+1( 􏼁ηi

d

fx0, fx1( 􏼁, where
ai+1

ai

<
1
η

.

(49)

Taking limn,m⟶∞ inequality, (48) reduces to

lim
n,m⟶∞

d fxn, fxm( 􏼁 � 0. (50)

+is amounts to say that fxn􏼈 􏼉 is a Cauchy sequence in a
complete double controlled partial metric type space (X, d),
hence there exists v ∈ X such that

lim
n⟶∞

fxn � v. (51)

Since f is convergent, the sequence xn􏼈 􏼉 has a con-
vergent subsequence denoted by xnk

􏽮 􏽯
∞
k�1 such that

lim
k⟶∞

xnk
� u. (52)

Using the continuity of f, we obtain

lim
k⟶∞

fxnk
� fu. (53)

From (51) and (53), we conclude that fu � v. Making
use of triangular inequality, we get

d(fgu, fu)≤ α fgu, fg
nk x0( 􏼁d fgu, fg

nk x0( 􏼁 + μ fg
nk x0, fu( 􏼁d fg

nk x0, fu( 􏼁

≤ α fgu, fg
nk x0( 􏼁β d(fu, fgu) + d fg

nk− 1
x0, fg

nk x0􏼐 􏼑􏽨 􏽩

+ μ fg
nk x0, fu( 􏼁d fg

nk x0, fu( 􏼁

≤ βα fgu, fg
nk x0( 􏼁d(fu, fgu) + βα fgu, fg

nk x0( 􏼁 d fg
nk− 1

x0, fg
nk x0􏼐 􏼑

+ μ fg
nk x0, fu( 􏼁d fg

nk x0, fu( 􏼁

≤
βα fgu, fxnk

􏼐 􏼑

1 − βα fgu, fxnk
􏼐 􏼑

d fxnk−1, fxnk
􏼐 􏼑 +

βμ fu, fxnk
􏼐 􏼑

1 − βα fgu, fxnk
􏼐 􏼑

d fxnk
, fu􏼐 􏼑

≤
βα fgu, fxnk

􏼐 􏼑

1 − βα fgu, fxnk
􏼐 􏼑

β
1 − β

􏼠 􏼡

nk− 1

d fx0, fx1( 􏼁 +
βμ fu, fxnk

􏼐 􏼑

1 − βα fgu, fxnk
􏼐 􏼑

d fxnk
, fu􏼐 􏼑.

(54)
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Proceeding the limk⟶∞, we obtain

d(fgu, fu)≤ constant × d(fu, fu), (55)

which proves that d(fu, fu) � 0. From the triangular in-
equality, we have

d(fu, fu)≤ α(fu, u)d(fu, u) + μ(u, fu)d(u, fu). (56)

Suppose that α(fu, u)≤ μ(u, fu), then

d(fu, fu)≤ 2α(fu, u)d(fu, u). (57)

On the other hand,

d(u, fu)≤ α(u, u)d(u, u) + μ(u, fu)d(u, fu)

≤
α(u, u)

1 − μ(u, fu)
d(u, u).

(58)

Note that if μ: X × X⟶ [1,∞), then 1 − μ(u, fu)≤ 0
and we get d(u, fu) � 0. +us, from (57), we obtain

d(fu, fu) � 0. (59)

From (55) and (57), we deduce that d(fgu, fu) � 0. To
check the property (p1), i.e.,

d(fgu, fu) � d(fu, fu) � d(fgu, fgu) � 0. (60)

It is easy to see that

d(fgu, fgu)≤ β[d(fu, fgu) + d(fu, fgu)]

� 2βd(fu, fgu) � 0.
(61)

+us, fgu � fu, since f is one-to-one, gu � u. +ere-
fore, u is a fixed point of g.

Uniqueness: let u, v be two fixed points of g, then gu � u

and gv � v. From the condition (p3), we have

d(fv, fv)≤ d(fu, fv), (62)

d(fu, fu)≤ d(fu, fv). (63)

On the other hand, using the triangular inequality, we
get

d(fu, fv) � d(u, v)

≤ a(u, u)d(u, u) + μ(u, v)d(u, v)

≤
a(u, u)

1 − μ(u, v)
d(u, u).

(64)

Since μ: X × X⟶ [1,∞), then 1 − μ(u, v)≤ 0 and we
get d(fu, fv) � 0. +erefore, from (62) and (63), we obtain
that

d(fu, fv) � d(fu, fu) � d(fv, fv) � 0. (65)

Utilizing the property (p1) of the double controlled
partial metric type space, we obtain fu � fv. Hence, f is
one-to-one so that u � v. Finally, by replacing nk􏼈 􏼉 with n{ },
we conclude that xn􏼈 􏼉 converges to u as n⟶∞. +us, the
sequence xn􏼈 􏼉 converges to the unique fixed point g. □

Corollary 1 (Banach contraction). Let (X, d) be a complete
double controlled partial metric type space by the functions
α, μ: X × X⟶ [1,∞). Suppose that f: X⟶ X satisfies

d(fx, fy)≤ βd(x, y), (66)

for all x, y ∈ X, where β ∈ (0, (1/2)). For x0 ∈ X, take
xn � fnx0, assuming that

sup
m≥1

lim
i⟶∞

α xi+1, xi+2( 􏼁

α xi, xi+1( 􏼁
μ xi, xm( 􏼁<

1
k

, where k ∈ (0, 1).

(67)

Furthermore, assume that for every x ∈ X, limn⟶∞
α(x, xn), limn⟶∞α(xn, x), limn⟶∞μ(x, xn), and
limn⟶∞μ(xn, x) exist and are finite. +en, the sequence
xn􏼈 􏼉 converges to some u ∈ X; moreover, if α and μ satisfy
the following assumptions,

lim
n⟶∞

α u, xn+1( 􏼁

1 − βμ xn+1, fu( 􏼁
≤ 0, (68)

then f has a unique fixed point.

Remark 1. Results presented in this manuscript generalize,
enrich, and theorize the prominent results due to Kannan
[24] and Bojor [25] in the framework of double controlled
partial metric type spaces.

Example 2. Let X � 0, 1, 2{ }; consider the function d given
as follows: (Table 2)

Given α, µ: X × X⟶ [1,∞) is defined as

α(x, y) � d(x, y) + 5,

μ(x, y) � d(x, y) + 7.
(69)

It is easy to verify that given d equipped with X is double
controlled partial metric type space but not double con-
trolled metric type space because d(x, x)≠ 0 for all x ∈ X.
Now, we define a mapping f: X⟶ X by the following:

f(x) �
1, whenx � 1, 2{ },

2, whenx � 0.
􏼨 (70)

Choose f0 � 2 and f2 � 1, then by using (19), we
acquire

d(f0, f2)≤ β[d(0, f0) + d(2, f2)]

d(2, 1)≤ β[d(0, 2) + d(2, 1)]

1
5
≤ β

2
7

+
1
5

􏼒 􏼓

1
5
≤ β

17
35

􏼒 􏼓.

(71)

Since β ∈ (0, (1/2)), we choose β � (8/17); taking x0 � 0
and k � (1/8), it is clear that condition (20) is satisfied as
follows:
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sup
m≥1

lim
i⟶∞

α xi+1, xi+2( 􏼁

α xi, xi+1( 􏼁
μ xi, xm( 􏼁 �

1768
245
< 8 �

1
k

. (72)

Since inequality (20) is satisfied for every x ∈ X, addi-
tionally, for each x ∈ X, we have

lim
n⟶∞

α x, xn( 􏼁 � max(0, x)<∞,

lim
n⟶∞

α xn, x( 􏼁 � max(x, 0)<∞,

lim
n⟶∞

μ x, xn( 􏼁 � max(0, x)<∞,

lim
n⟶∞

μ xn, x( 􏼁 � max(x, 0)<∞.

(73)

+erefore, all the hypotheses of +eorem 1 are con-
tended and 1 is the unique fixed point of f.

4. Conclusions

We launched a new concept of double controlled partial
metric type spaces which expands the ideas of certain
variants of metric spaces, viz., controlled metric type spaces,
double controlled metric type spaces, and partial metric
spaces. +e introduced results sum up and broaden some
previous writing, and some illustrative examples are in-
vestigated to show the potency of our work.
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Due to the importance of Yosida approximation operator, we generalized the variational inequality problem and its equivalent
problems by using Yosida approximation operator. -e aim of this work is to introduce and study a Yosida complementarity
problem, a Yosida variational inequality problem, and a Yosida proximal operator equation involving XOR-operation. We prove
an existence result together with convergence analysis for Yosida proximal operator equation involving XOR-operation. For this
purpose, we establish an algorithm based on fixed point formulation. Our approach is based on a proximal operator technique
involving a subdifferential operator. As an application of our main result, we provide a numerical example using the MATLAB
program R2018a. Comparing different iterations, a computational table is assembled and some graphs are plotted to show the
convergence of iterative sequences for different initial values.

1. Introduction

Stampacchia [1] and Ficchera [2] originated the study of
variational inequalities, separately. Variational inequalities
are mathematical models for many problems occurring in
physics, engineering sciences, transportation planning, fi-
nancial problems, and inmany industrial strategies, etc. (see,
for example, [3–11]). In 1968, Cottle and Dantzig [12]
proposed linear complementarity problem which appear
continually in computational mechanics. It is interesting to
note that finding the solution of linear complementarity
problem is associated with minimizing some quadratic
function. However, in 1964, Cottle [13] in his Ph. D thesis
introduced nonlinear complementarity problem which is
closely related to Hartman and Stampacchia variational
inequality problem. -e proximal operator technique is

useful to establish equivalence between variational in-
equalities and proximal operator equations. -e proximal
operator equation approach is used to solve variational
inequalities and related optimization problems.

XOR is a logical operation and represents the inequality
function, that is, the output is true if the inputs are not alike;
otherwise, the output is false. An easy way to remember XOR
is “must have one or the other but not both.” It is important
to note that XOR does not leak information about the
original plain text. -e inner XOR is the encryption and the
outer XOR is the decryption, that is, the exact XOR function
can be used for both encryption and decryption. Consider a
string of binary digits 10101 and XOR the string 10111 with it
to get 00010. -at is, the original string is encoded and the
second string becomes key; if we XOR our key with our
encoded string, we get our original string back. XOR allows
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to easily encrypt and decrypt a string; the other logical
operations do not.

-e possible strategy of solving stochastic notion of
multivalued differential equation in finite dimensional space
is based on Yosida approximation approach. -e existence
of multivalued stochastic differential equation in finite di-
mensional space with a time-independent, deterministic
maximal monotone operator through Yosida approximation
approach was first discussed by Petterson [14]. Yosida ap-
proximation operators are used to solve wave equations, heat
equations, etc. For more details and recent past develop-
ments about complementarity problems, variational in-
equalities, proximal operator equations, Yosida
approximation operator, and related topics, we refer to
[15–28] and references therein.

Motivated by all the above discussed concepts, in this
paper, we consider and study a Yosida complementarity
problem, a Yosida variational inequality problem, and a
Yosida proximal operator equation involving XOR-opera-
tion. Some equivalence results are proved. To obtain the
solution of Yosida proximal operator equation involving
XOR-operation, we define an algorithm based on fixed point
formulation. Convergence criteria are also discussed. In
support of our main result, an example is provided using
MATLAB program R2018a. A comparison of different it-
erations is assembled in the form of a computational table,
and the convergence of the iterative sequences is shown by
some graphs for different initial values.

2. Preliminaries and Basic Results

We suppose that H is a real ordered positive Hilbert Space
with its norm ‖ · ‖ and inner product 〈·, ·〉,C⊆H is a closed
convex pointed cone, d is the metric induced by the norm
‖ · ‖, 􏽥CB(H) is the family of nonempty, closed, and bounded
subsets of H, and D(·, ·) is the Hausdorff metric on 􏽥CB(H).

-e following definitions, concepts, and results are re-
quired for the presentation of this paper.

Definition 1. A convex cone is a subset of a vector space over
an ordered field that is closed under linear combinations
with positive coefficients.

Definition 2. Two elements x and y of a set X are said to be
comparable with respect to a binary operation ≤ , if at least
one of x≤y or y≤x is true. Comparable elements x and y

are denoted by x∝y.

Definition 3. A partial order is any binary relation which is
reflexive, antisymmetric, and transitive.

Definition 4. Suppose lub x, y􏼈 􏼉 and glb x, y􏼈 􏼉 for the set
x, y􏼈 􏼉 exist; then, XOR and XNOR operations denoted by ⊕
and ⊙ are defined as follows:

(i) x⊕y � (x − y)∨ (y − x)

(ii) x⊙y � (x − y)∧ (y − x), where x∨y � lub x, y􏼈 􏼉,
x∧y � glb x, y􏼈 􏼉, lub means the least upper bound,
and glb means the greatest lower bound

Proposition 1 (see [29]). Let ⊕ be an XOR-operation and ⊙
be an XNOR operation. 5en, the following axioms are true:

(i) x⊙x � 0, x⊙y � y⊙ x � − (x⊕y) � − (y⊕x)

(ii) x⊕x � 0, x⊕y � y⊕ x, 0≤ x⊕y

(iii) x⊕ 0 � x

(iv) 0≤ x⊕y, if x∝y

(v) If x∝y, then x⊕y � 0 if and only if x � y

(vi) ‖0⊕ 0‖ � ‖0‖

(vii) ‖x⊕y‖≤ ‖x − y‖

(viii) If x∝y, then ‖x⊕y‖ � ‖x − y‖

Definition 5. Let N: H × H × H⟶ H be a single-valued
mapping and A: C⟶ 􏽥CB(H) be a multivalued mapping.
-en

(i) N is said to be Lipschitz continuous in the first
argument if there exists a constant λN1

> 0 such that

N u1, ·, ·( 􏼁 − N u2, ·, ·( 􏼁
����

����≤ λN1
u1 − u2

����
����, ∀x1, x2 ∈ C, u1 ∈ A x1( 􏼁 and u2 ∈ A x2( 􏼁, (1)

(ii) N is said to be Lipschitz continuous in the second
argument if there exists a constant λN2

> 0 such that

N ·, u1, ·( 􏼁 − N ·, u2, ·( 􏼁
����

����≤ λN2
u1 − u2

����
����, ∀x1, x2 ∈ C, u1 ∈ A x1( 􏼁 and u2 ∈ A x2( 􏼁. (2)

Similarly, we can define the Lipschitz continuity of N in
the third argument.
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Definition 6. A multivalued mapping A: C⟶ 􏽥CB(H) is
said to be D-Lipschitz continuous if for any x, y ∈ C, there
exists a constant λDA

> 0 such that

D(A(x), A(y))≤ λDA
‖x − y‖. (3)

Definition 7 (see [30]). Let ψ: H⟶ R∪ +∞{ } be a proper
convex functional. A vector w ∈ H is called subgradient of ψ
at x ∈ do mψ, if

〈w, y − x〉≤ψ(y) − ψ(x), ∀y ∈ H. (4)

-e set of all subgradients of ψ at x is denoted by zψ(x).
-e mapping zψ : H⟶ 2H defined by

zψ(x) � w ∈ H: 〈w, y − x〉≤ψ(y) − ψ(x),∀y ∈ H􏼈 􏼉

(5)

is called subdifferential of ψ.

Definition 8. Let P: C⟶ C be a mapping and
ψ: C⟶ R∪ +∞{ } be a proper convex functional. -e
proximal operator J

zψ
ρ : C⟶ C is defined by

J
zψ
ρ (x) � [P + ρzψ]

− 1
(x), ∀x ∈ C, (6)

where ρ> 0 is a constant.

Definition 9. -e Yosida approximation operator of ψ is
defined by

Y
zψ
ρ (x) �

1
ρ

I − J
zψ
ρ􏽨 􏽩(x), ∀x ∈ C, (7)

where ρ> 0 is a constant.

Furthermore, we prove some propositions related to
proximal operator and Yosida approximation operator.

Proposition 2. Let P: C⟶ C and ψ: C⟶ R∪ +∞{ } be
linear mappings, then the proximal operator J

zψ
ρ is linear.

5at is

αJ
zψ
ρ (x) � J

zψ
ρ (αx), (8)

provided

J
zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ (x)􏼐 􏼑 � J

zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ􏼐 􏼑􏼒 􏼓(x) � x,

∀x ∈ C and α> 0.

(9)

Proof. Using the definition of J
zψ
ρ , linearity of P and ψ, and

-eorem 1.48 and -eorem 1.49 of [31], we have

αJ
zψ
ρ (x) � J

zψ
ρ J

zψ
ρ􏼐 􏼑

− 1
αJ

zψ
ρ (x)􏼐 􏼑

� J
zψ
ρ [P + ρzψ] αJ

zψ
ρ (x)􏼐 􏼑

� J
zψ
ρ P αJ

zψ
ρ (x)􏼐 􏼑 + ρzψ αJ

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ P αJ

zψ
ρ (x)􏼐 􏼑 + ρzψ αJ

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ P αJ

zψ
ρ (x)􏼐 􏼑 + ρz αψ J

zψ
ρ (x)􏼐 􏼑􏼐 􏼑􏽨 􏽩

� J
zψ
ρ αP J

zψ
ρ (x)􏼐 􏼑 + ρα zψ J

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ α[P + ρzψ] J

zψ
ρ (x)􏼐 􏼑􏽨 􏽩

� J
zψ
ρ α J

zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ (x)􏼔 􏼕

� J
zψ
ρ α J

zψ
ρ􏼐 􏼑

− 1
J

zψ
ρ􏼐 􏼑􏼒 􏼓(x)􏼔 􏼕

� J
zψ
ρ [αx].

(10)

□

Proposition 3. 5e Yosida approximation operator
Y

zψ
ρ : C⟶ C is linear, that is,

Y
zψ
ρ (αx) � αY

zψ
ρ (x), ∀x ∈ C. (11)

Proof. Using the definition of Y
zψ
ρ and Proposition 2, we

have

Y
zψ
ρ (αx) �

1
ρ

I − J
zψ
ρ􏽨 􏽩(αx)

�
1
ρ

αx − J
zψ
ρ (αx)􏽨 􏽩

�
1
ρ

αx − αJ
zψ
ρ (x)􏽨 􏽩

�
α
ρ

I − J
zψ
ρ􏽨 􏽩(x)

� αY
zψ
ρ (x), ∀x ∈ C.

(12)

□

Proposition 4. 5e proximal operator J
zψ
ρ : C⟶ C is

Lipschitz continuous, provided P: C⟶ C is strongly
monotone with respect to J

zψ
ρ with constant μ> 0, ψ is strongly

convex with modulus λ> 0, and J
zψ
ρ is strongly monotone with

constant σ > 0, where σ � 2λ.

Proof. Let x, y ∈ C, then

J
zψ
ρ (x) � [P + ρzψ]

− 1
(x), (13)

J
zψ
ρ (y) � [P + ρzψ]

− 1
(y). (14)
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-us,
1
ρ

x − P J
zψ
ρ (x)􏼐 􏼑􏽨 􏽩 ∈ zψ J

zψ
ρ (x)􏼐 􏼑, (15)

1
ρ

y − P J
zψ
ρ (y)􏼐 􏼑􏽨 􏽩 ∈ zψ J

zψ
ρ (y)􏼐 􏼑. (16)

As ψ is strongly convex with modulus λ> 0, then the
proximal operator J

zψ
ρ is strongly monotone with constant

σ > 0, where σ � 2λ (see [31]). -erefore,

σ J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����
2
≤ 〈

1
ρ

x − P J
zψ
ρ (x)􏼐 􏼑􏼐 􏼑 −

1
ρ

y − P J
zψ
ρ (y)􏼐 􏼑􏼐 􏼑, x − y〉

�
1
ρ
〈x − y − P J

zψ
ρ (x)􏼐 􏼑 − P J

zψ
ρ (y)􏼐 􏼑􏼐 􏼑, x − y〉

�
1
ρ

〈x − y, x − y〉 − 〈P J
zψ
ρ (x)􏼐 􏼑 − P J

zψ
ρ (y)􏼐 􏼑, x − y〉􏽨 􏽩.

(17)

Since P is strongly monotone with respect to J
zψ
ρ with

constant μ> 0, we have

σ J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����
2
≤
1
ρ

‖x − y‖
2

− μ J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����
2

􏼔 􏼕,

(18)

which implies that

J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����≤ θ‖x − y‖, where θ �
1

������σρ + μ√ .

(19)

-at is, J
zψ
ρ is Lipschitz continuous. □

Proposition 5. 5e Yosida approximation operator is
strongly monotone if all the conditions of Proposition 4 hold.

Proof. Using the Lipschitz continuity of proximal operator
J

zψ
ρ , we have

〈Yzψ
ρ (x) − Y

zψ
ρ (y), x − y〉 �〈

1
ρ

I − J
zψ
ρ􏽨 􏽩(x) −

1
ρ

I − J
zψ
ρ􏽨 􏽩(y), x − y〉

�
1
ρ

〈x − y, x − y〉 − 〈Jzψ
ρ (x) − J

zψ
ρ (y), x − y〉􏽨 􏽩

≥
1
ρ

‖x − y‖
2

− J
zψ
ρ (x) − J

zψ
ρ (y)

�����

�����‖x − y‖􏼔 􏼕

≥
1
ρ

‖x − y‖
2

− θ‖x − y‖
2

􏽨 􏽩

�
1 − θ
ρ

􏼠 􏼡‖x − y‖
2

� δy‖x − y‖
2
, where δy �

1 − θ
ρ

􏼠 􏼡.

(20)

□

3. Description of the Problems and
Equivalence Lemmas

Let H be a real ordered positive Hilbert space andC ⊆H be
a closed convex pointed cone. Let A, B, C: C⟶ 􏽥CB(H) be

the multivalued mappings and N: H × H × H⟶ H be a
single-valued mapping. Suppose ψ: C⟶ R∪ +∞{ } is a
proper, convex functional and Y

zψ
ρ : C⟶ C is the Yosida

approximation operator. We consider the following Yosida
complementarity problem involving XOR-operation.
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Find x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) such that

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑 � 0,

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ 0, ∀y ∈ C.

(21)

From problem (21), one can easily obtain the comple-
mentarity problems studied by Huang et al. [32], Yin and Xu
[33], Flores-Bazán and López [34], Isac [35, 36] and Far-
ajzadeh and Harandi [37], etc.

In connection with Yosida complementarity problem
involving XOR-operation (21), we mention the following
Yosida variational inequality problem involving XOR-
operation.

Find x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) such that

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 0, ∀y ∈ C.

(22)

In acquaintance with Yosida variational inequality
problem involving XOR-operation (22), we mention the
following Yosida proximal operator equation involving
XOR-operation.

Find x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) such that

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � 0, (23)

where ρ> 0 is a constant, R
zψ
ρ � [I − P(J

zψ
ρ )], J

zψ
ρ is the

proximal operator, P: C⟶ C is a mapping, and
z � P(Y

zψ
ρ (x)) + ρN(u, v, w).

-e equivalence between problem (21) and problem (22)
and the equivalence between problem (22) and problem (23)
are given as follows.

Lemma 1. Let A, B, C: C⟶ 􏽥CB(H) be the multivalued
mappings and N: H × H × H⟶ H be a single-valued
mapping. Suppose ψ: C⟶ R∪ +∞{ } is a linear, proper
functional. Let Y

zψ
ρ : C⟶ C be the Yosida approximation

operator. If 〈N(u, v, w), Y
zψ
ρ 〉∝ψ(Y

zψ
ρ (x)), for all

x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x), then the Yosida com-
plementarity problem involving XOR-operation (21) and the
Yosida variational inequality problem involving XOR-oper-
ation (22) are equivalent.

Proof. Let the Yosida complementarity problem involving
XOR-operation (21) holds. We have

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑 � 0,

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ 0, ∀x, y ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x).

(24)

Since 〈N(u, v, w), Y
zψ
ρ (x)〉∝ψ(Y

zψ
ρ (x)), using (v) of

Proposition 1, we have

〈N(u, v, w), Y
zψ
ρ (x)〉 � ψ Y

zψ
ρ (x)􏼐 􏼑. (25)

Also, 〈N(u, v, w), Y
zψ
ρ (y)〉⊕ψ(Y

zψ
ρ (y))≥ 0, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ ψ Y

zψ
ρ􏼐 􏼐y)􏼐 􏼑⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ψ Y

zψ
ρ (y)􏼐 􏼑.

(26)

By (ii) and (iii) of Proposition 1, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 ≥ψ Y

zψ
ρ (y)􏼐 􏼑. (27)

Using the properties of inner product, we can write

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 �〈N(u, v, w), Y

zψ
ρ (y)〉

− 〈N(u, v, w), Y
zψ
ρ (x)〉.

(28)

Applying (25) and (27), (28) becomes

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ≥ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑,

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0,

(29)

which is the Yosida variational inequality problem involving
XOR-operation (22).

On the other hand, let the Yosida variational inequality
problem (22) holds. -at is, x ∈ C, u ∈ A(x), v ∈
B(x), w ∈ C(x) such that

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 0, ∀y ∈ C.

(30)
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AsC is a closed convex pointed cone, y � 2x ∈ C as well
as y � (1/2)x ∈ C. Putting y � 2x and y � (1/2)x and using
linearity of ψ and Proposition 3, we have

〈N(u, v, w), Y
zψ
ρ (2x) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (2x)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0

〈N(u, v, w), 2Y
zψ
ρ (x) − Y

zψ
ρ (x)〉 ⊕ ψ 2Y

zψ
ρ (x)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ 2ψ Y

zψ
ρ (x)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑≥ 0,

〈N(u, v, w), Y
zψ
ρ

1
2

x􏼒 􏼓 − Y
zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ

1
2

x􏼒 􏼓􏼒 􏼓 − ψ Y
zψ
ρ (x)􏼐 􏼑􏼒 􏼓≥ 0

〈N(u, v, w),
− 1
2

Y
zψ
ρ (x)〉 ⊕

− 1
2
ψ Y

zψ
ρ (x)􏼐 􏼑􏼒 􏼓≥ 0

〈N(u, v, w),
− 1
2

Y
zψ
ρ (x)〉 ≥

− 1
2

ψ Y
zψ
ρ (x)􏼐 􏼑􏼐 􏼑

〈N(u, v, w), Y
zψ
ρ (x)〉 ≤ψ Y

zψ
ρ (x)􏼐 􏼑.

(31)

-us, we have

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑≤ 0. (32)

Adding (31) and (32), we have

〈N(u, v, w), Y
zψ
ρ (x)〉 ⊕ψ Y

zψ
ρ (x)􏼐 􏼑 � 0. (33)

Since

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑≥ 0,

(34)

we have

〈N(u, v, w), Y
zψ
ρ (y)〉 − 〈N(u, v, w), Y

zψ
ρ (x)〉

≥ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑.

(35)

Using (25), from the above inequality, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 − ψ Y

zψ
ρ (x)􏼐 􏼑≥ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑,

(36)

it follows that

〈N(u, v, w), Y
zψ
ρ (y)〉 ≥ψ Y

zψ
ρ (y)􏼐 􏼑. (37)

Using (ii) of Proposition 1, we have

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑

≥ψ Y
zψ
ρ (y)􏼐 􏼑⊕ψ Y

zψ
ρ (y)􏼐 􏼑,

(38)

〈N(u, v, w), Y
zψ
ρ (y)〉 ⊕ψ Y

zψ
ρ (y)􏼐 􏼑≥ 0. (39)

Combination of (33) and (39) is the required Yosida
complementarity problem involving XOR-operation
(21). □

-e following Lemma guarantees the equivalence be-
tween the Yosida variational inequality problem involving
XOR-operation (22) and a fixed point equation.

Lemma 2. Let P: C⟶ C be a mapping, then the Yosida
variational inequality problem involving XOR-operation (22)
has a solution x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x), if and
only if it satisfies the equation:

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩, (40)

where ρ> 0 is a constant.

Proof. Let x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) satisfy
equation (40), that is,

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩. (41)

Using the definition of the proximal operator J
zψ
ρ and

from the above equation, we have
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Y
zψ
ρ (x) � [P + ρzψ]

− 1
P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩

P Y
zψ
ρ (x)􏼐 􏼑 + ρzψ Y

zψ
ρ (x)􏼐 􏼑 � P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w) (that is, )

N(u, v, w) ∈ zψ Y
zψ
ρ (x)􏼐 􏼑. (which gives us)

(42)

Applying the definition of subdifferential operator, the
above inclusion holds if and only if

ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑≥ 〈N(u, v, w),ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉.

(43)

Using (ii) of Proposition 1, we have

〈N(u, v, w),ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 〈N(u, v, w),ψ Y
zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉⊕ 〈N(u, v, w),ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑〉.

(44)

It follows that

〈N(u, v, w), Y
zψ
ρ (y) − Y

zψ
ρ (x)〉 ⊕ ψ Y

zψ
ρ (y)􏼐 􏼑 − ψ Y

zψ
ρ (x)􏼐 􏼑􏼐 􏼑

≥ 0, ∀y ∈ C,

(45)

which is the required Yosida variational inequality problem
involving XOR-operation (22). □

-e Lemma mentioned below ensures the equivalence
between the Yosida variational inequality problem involving
XOR-operation (22) and the Yosida proximal operator
equation involving XOR-operation (23).

Lemma 3. Suppose N(u, v, w)∝R
zψ
ρ (z) and P: C⟶ C is

a one-one mapping. 5en x ∈ C, u ∈ A(x), v ∈ B(x),

w ∈ C(x) is the solution of the Yosida variational inequality
problem involving XOR-operation (22) if and only if
x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) satisfy the Yosida
proximal operator equation involving XOR-operation (23),
where R

zψ
ρ � [I − P(J

zψ
ρ )], in which J

zψ
ρ is the proximal op-

erator and P(J
zψ
ρ (z)) � P(J

zψ
ρ )(z).

Proof. Let x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) be the so-
lution of the Yosida variational inequality problem involving
XOR-operation (22). -en by Lemma 2, it satisfies the
equation:

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩. (46)

Let z � P(Y
zψ
ρ (x)) + ρN(u, v, w), then

Y
zψ
ρ (x) � J

zψ
ρ (z),

As z � P J
zψ
ρ (z)􏼐 􏼑 + ρN(u, v, w)

z − P J
zψ
ρ (z)􏼐 􏼑 � ρN(u, v, w)

I − P J
zψ
ρ􏼐 􏼑􏼐 􏼑(z) � ρN(u, v, w)

R
zψ
ρ (z) � ρN(u, v, w)

ρ− 1
R

zψ
ρ (z) � N(u, v, w), whereP J

zψ
ρ (z)􏼐 􏼑 � P J

zψ
ρ􏼐 􏼑(z).

(47)

Using (ii) of Proposition 1, we have

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � N(u, v, w)⊕N(u, v, w) � 0.

(48)

-us, we have

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � 0, (49)

which is the required Yosida proximal operator equation
involving XOR-operation (23).

Conversely, let x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x)

be the solution of Yosida proximal operator equation in-
volving XOR-operation (23).

-at is, we have

N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z) � 0. (50)

Using (v) of Proposition 1, definition of R
zψ
ρ and

comparability of N(u, v, w) with R
zψ
ρ (z), we obtain

ρN(u, v, w) � R
zψ
ρ (z) � I − P J

zψ
ρ􏼐 􏼑􏽨 􏽩(z)

� z − P J
zψ
ρ􏼐 􏼑(z)

� P Y
zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w) − P J

zψ
ρ P Y

zψ
ρ􏼐 􏼐x)􏼑 + ρN(u, v, w􏼐 􏼑􏼐 􏼑􏼐 􏼑.

(51)
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From above, we have

P Y
zψ
ρ (x)􏼐 􏼑 � P J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏼐 􏼑􏼐 􏼑. (52)

Since P is a one-one mapping, we obtain

Y
zψ
ρ (x) � J

zψ
ρ P Y

zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)􏽨 􏽩. (53)

Applying Lemma 2, we conclude that
x ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x) is the solution of
Yosida variational inequality problem involving XOR-op-
eration (22). □

4. Algorithm and Existence Results

Invoking Lemmas 2 and 3, we suggest the following algo-
rithm for solving Yosida proximal operator equation in-
volving XOR-operation (23).

Algorithm 1. For any x0, z0 ∈ C, u0 ∈ A(x0), v0 ∈ B(x0),

w0 ∈ C(x0), we let

z1 � P Y
zψ
ρ x0( 􏼁􏼐 􏼑 + ρN u0, v0, w0( 􏼁. (54)

Take any x1 ∈ C such that

Y
zψ
ρ x1( 􏼁 � J

zψ
ρ z1( 􏼁. (55)

Since u0 ∈ A(x0), v0 ∈ B(x0), w0 ∈ C(x0), by Nadler’s
theorem [38], there exist u1 ∈ A(x1), v0 ∈ B(x1),
w0 ∈ C(x1), using (viii) of Proposition 1 and comparability
of u0, u1; v0, v1 andw0, w1, we have

u0 ⊕ u1
����

���� � u0 − u1
����

����≤ (1 + 1)D A Y
zψ
ρ x0( 􏼁􏼐 􏼑, A Y

zψ
ρ x1( 􏼁􏼐 􏼑􏼐 􏼑,

v0 ⊕ v1
����

���� � v0 − v1
����

����≤ (1 + 1)D B Y
zψ
ρ x0( 􏼁􏼐 􏼑, B Y

zψ
ρ x1( 􏼁􏼐 􏼑􏼐 􏼑,

w0 ⊕w1
����

���� � w0 − w1
����

����≤ (1 + 1)D C Y
zψ
ρ x0( 􏼁􏼐 􏼑, C Y

zψ
ρ x1( 􏼁􏼐 􏼑􏼐 􏼑,

(56)

where D(·, ·) is the Hausdorff metric on 􏽥CB(H).
Let z2 � P(Y

zψ
ρ (x1)) + ρN(u1, v1, w1) and take any

x2 ∈ C such that

Y
zψ
ρ x2( 􏼁 � J

zψ
ρ z2( 􏼁. (57)

Continuing the above procedure, we compute the se-
quences xn􏼈 􏼉, un􏼈 􏼉, vn􏼈 􏼉 and zn􏼈 􏼉 by the schemes given
below:

Y
zψ
ρ xn( 􏼁 � J

zψ
ρ zn( 􏼁,

un ∈ A xn( 􏼁, un+1 ∈ A xn+1( 􏼁 such that un∝ un+1,

un ⊕ un+1
����

���� � un − un+1
����

����≤ 1 +
1

n + 1
􏼒 􏼓D A Y

zψ
ρ xn( 􏼁􏼐 􏼑, A Y

zψ
ρ xn+1( 􏼁􏼐 􏼑􏼐 􏼑,

vn ∈ B xn( 􏼁, vn+1 ∈ B xn+1( 􏼁 such that vn∝ vn+1,

vn ⊕ vn+1
����

���� � vn − vn+1
����

����≤ 1 +
1

n + 1
􏼒 􏼓D B Y

zψ
ρ xn( 􏼁􏼐 􏼑, B Y

zψ
ρ xn+1( 􏼁􏼐 􏼑􏼐 􏼑,

wn ∈ C xn( 􏼁, wn+1 ∈ C xn+1( 􏼁 such thatwn∝wn+1,

wn ⊕wn+1
����

���� � wn − wn+1
����

����≤ 1 +
1

n + 1
􏼒 􏼓D C Y

zψ
ρ xn( 􏼁􏼐 􏼑, C Y

zψ
ρ xn+1( 􏼁􏼐 􏼑􏼐 􏼑,

zn+1 � P Y
zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un, vn, wn( 􏼁,

(58)

where ρ> 0 is a constant and n � 0, 1, 2, 3, · · ·.

Theorem 1. Let H be a real ordered positive Hilbert Space
and C⊆H be a closed convex pointed cone. Let
A, B, C: C⟶ 􏽥CB(H) be the D-Lipschitz continuous
mappings with constants λDA

, λDB
, and λDC

, respectively. Let
N: H × H × H⟶ H be a single-valued mapping such that
N is Lipschitz continuous in first, second, and third argu-
ments with constants λN1

, λN2
, and λN3

, respectively. Let
Y

zψ
ρ : C⟶ C be the Yosida approximation operator such

that Y
zψ
ρ is strongly monotone with constant δy and

J
zψ
ρ : C⟶ C be the proximal operator such that J

zψ
ρ is

Lipschitz continuous with constant θ. Suppose P: C⟶ C be
a Lipschitz continuous mapping with constant λP, strongly

monotone with respect to J
zψ
ρ with constant μ and

ψ: H⟶ R∪ +∞{ } be a strongly convex, subdifferentiable,
proper functional satisfying Y

zψ
ρ (x) ∈ do m(zψ). Suppose

that zn+1∝ zn, for n � 0, 1, 2, · · · and if the following condition
is satisfied:

θ< 2δy, ξ(θ) <
1 − λPθ

ρθ
, where ξ(θ)

� λN1
λDA

+ λN2
λDB

+ λN3
λDC

and θ �
1

������σρ + μ√ ,

(59)

then there exists x, z ∈ C, u ∈ A(x), v ∈ B(x), w ∈ C(x)

satisfying the Yosida proximal operator equation involving
XOR-operation (23) and the sequences xn􏼈 􏼉, zn􏼈 􏼉, un􏼈 􏼉, vn􏼈 􏼉
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and wn􏼈 􏼉 generated by Algorithm 1 converge strongly to
x, z, u, v, and w, respectively.

Proof. Using (x) of Algorithm 1 and (ii) of Proposition 1,
we have

0≤ zn+1 ⊕ zn

� P Y
zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un, vn, wn( 􏼁􏽨 􏽩⊕ P Y

zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un− 1, vn− 1, wn− 1( 􏼁􏽨 􏽩

� P Y
zψ
ρ xn( 􏼁􏼐 􏼑⊕P Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏽨 􏽩 + ρ N un, vn, wn( 􏼁⊕N un− 1, vn− 1, wn− 1( 􏼁􏼂 􏼃.

(60)

It follows from (60) that

zn+1 ⊕ zn

����
����≤ P Y

zψ
ρ xn( 􏼁􏼐 􏼑⊕P Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑

�����

�����

+ ρ N un, vn, wn( 􏼁⊕N un− 1, vn− 1, wn− 1( 􏼁
����

����.

(61)

Since zn+1∝ zn and using (vii) and (viii) of Proposition
1, from (61), we obtain

zn+1 − zn

����
����≤ P Y

zψ
ρ xn( 􏼁􏼐 􏼑 − P Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑

�����

�����

+ ρ N un, vn, wn( 􏼁 − N un− 1, vn− 1, wn− 1( 􏼁
����

����.

(62)

Since N is Lipschitz continuous in all the three argu-
ments with constants λN1

, λN2
, and λN3

, respectively, and
A, B, C are D-Lipschitz continuous mappings with constants
λDA

, λDB
, λDC

, respectively, and using (vii), (viii), (ix) of
Algorithm 1, we have

N un, vn, wn( 􏼁 − N un− 1, vn− 1, wn− 1( 􏼁
����

���� � N un, vn, wn( 􏼁 − N un− 1, vn, wn( 􏼁 + N un− 1, vn, wn( 􏼁
����

− N un− 1, vn− 1, wn( 􏼁 + N un− 1, vn− 1, wn( 􏼁 − N un− 1, vn− 1, wn− 1( 􏼁
����

≤ λN1
un − un− 1

����
���� + λN2

vn − vn− 1
����

����λN3
wn − wn− 1

����
����

≤ λN1
1 +

1
n

􏼒 􏼓D A Y
zψ
ρ xn( 􏼁􏼐 􏼑, A Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏼐 􏼑􏼔 􏼕

+ λN2
1 +

1
n

􏼒 􏼓D B Y
zψ
ρ xn( 􏼁􏼐 􏼑, B Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏼐 􏼑􏼔 􏼕

+ λN3
1 +

1
n

􏼒 􏼓D C Y
zψ
ρ xn( 􏼁􏼐 􏼑, C Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑􏼐 􏼑􏼔 􏼕

≤ λN1
1 +

1
n

􏼒 􏼓λDA
Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����􏼔 􏼕

+ λN2
1 +

1
n

􏼒 􏼓λDB
Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����􏼔 􏼕

+ λN3
1 +

1
n

􏼒 􏼓λDC
Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����􏼔 􏼕

� λN1
λDA

+ λN2
λDB

+ λN3
λDC

􏼐 􏼑 1 +
1
n

􏼒 􏼓 Y
zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����.

(63)

Using strong monotonicity of the Yosida approximation
operator Y

zψ
ρ with constant δY and Lipschitz continuity of

the proximal operator J
zψ
ρ with constant θ, we have

xn − xn− 1
����

����
2

� J
zψ
ρ zn( 􏼁 − J

zψ
ρ zn− 1( 􏼁 − Y

zψ
ρ xn( 􏼁 − xn − Y

zψ
ρ xn− 1( 􏼁 − xn− 1􏼐 􏼑􏽨 􏽩

�����

�����
2

≤ J
zψ
ρ zn( 􏼁 − J

zψ
ρ zn− 1( 􏼁

�����

�����
2

− 2〈Yzψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁, xn − xn− 1〉 + xn − xn− 1

����
����
2

≤ θ2 zn − zn− 1
����

����
2

− 2δy xn − xn− 1
����

����
2

+ xn − xn− 1
����

����
2
.

(64)
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It follows that

2δy xn − xn− 1
����

����
2 ≤ θ2 zn − zn− 1

����
����
2
,

xn − xn− 1
����

����≤
θ2
���
2δy

􏽱 zn − zn− 1
����

����,

xn − xn− 1
����

����≤ ξ(y) zn − zn− 1
����

����,

(65)

where ξ(y) � θ2/
���
2δy

􏽱
.

Combining (62) and (63), using Lipschitz continuity of
P, J

zψ
ρ and (vi) of Algorithm 1, we have

zn+1 − zn

����
����≤ λP Y

zψ
ρ xn( 􏼁􏼐 􏼑 − Y

zψ
ρ xn− 1( 􏼁􏼐 􏼑

�����

�����

+ ρ λN1
λDA

+ λN2
λDB

+ λN3
λDC

􏼐 􏼑 1 +
1
n

􏼒 􏼓 Y
zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����,

(66)

zn+1 − zn

����
����≤ λP + ρξn(θ)􏼂 􏼃 Y

zψ
ρ xn( 􏼁 − Y

zψ
ρ xn− 1( 􏼁

�����

�����

≤ λP + ρξn(θ)􏼂 􏼃 J
zψ
ρ zn( 􏼁 − J

zψ
ρ zn− 1( 􏼁

�����

�����

� λP + ρξn(θ)􏼂 􏼃θ zn − zn− 1
����

����

� λPθ + ρξn(θ)θ􏼂 􏼃 zn − zn− 1
����

����

� Sn(θ) zn − zn− 1
����

����,

(67)

where Sn(θ) � λPθ + ρξn(θ)θ, θ � (1/ ������σρ + μ√
) and

ξn(θ) � (λN1
λDA

+ λN2
λDB

+ λN3
λDC

)(1 + (1/n)).
Letting S(θ) � λPθ + ρξ(θ)θ, where ξ(θ) � (λN1

λDA
+

λN2
λDB

+ λN3
λDC

), it follows that Sn(θ)⟶ S(θ) as
n⟶∞. From (59), we have ξ(y)< 1 and S(θ) < 1. Con-
sequently, we conclude from (65) and (67) that xn􏼈 􏼉 and zn􏼈 􏼉

both are Cauchy sequences. Since H is complete and C⊆H

is a closed convex subset of H and thus C is also complete,
we may assume that xn⟶ x ∈ C and zn⟶ z ∈ C. From
(vii), (viii), and (ix) of Algorithm 1, it follows that un􏼈 􏼉, vn􏼈 􏼉,
and wn􏼈 􏼉 are also Cauchy sequences such that
un⟶ u, vn⟶ v and wn⟶ w, as n⟶∞.

It can be shown easily by using the techniques of [28]
that u ∈ A(x), v ∈ B(x), and w ∈ C(x). By Lemma 3, we
conclude that x, z ∈ C, u ∈ A(x), v ∈ B(x), and w ∈ C(x) is
the solution of Yosida proximal operator equation involving
XOR-operation (23). □

We provide the following numerical example using
MATLAB program R2018a along with a computational table
and a convergence graphs for different initial values in
support of Algorithm 1 and -eorem 1.

Example 1. Suppose C � H � [0,∞). Let P: C⟶ C and
ψ: C⟶ R∪ +∞{ } be the mappings such that for x ∈ C,

P(x) �
x

2
,

ψ(x) � x
2
,

Then zψ(x) � 2x{ }, the sub differential of ψ.

(68)

Since ψ′′(x) � 2> 0. Hence, ψ is strongly convex with
modulus λ � 2.

For ρ � 1, the proximal operator J
zψ
ρ is given by

J
zψ
ρ � [P + ρzψ]

− 1
(x) �

2x

5
,where [P + ρzψ](x) �

5x

2
.

(69)

It is simple to see that P is Lipschitz continuous with
constant λp � (11/10), strongly monotone with respect to
J

zψ
ρ with constant μ � 1/3, and J

zψ
ρ is Lipschitz continuous

with constant θ �
�
2

√
/3.

In view of proximal operator calculated above, the
Yosida approximation operator is given by

Y
zψ
ρ (x) �

1
ρ

I − J
zψ
ρ􏽨 􏽩(x) �

3x

5
. (70)

Also,

〈Yzψ
ρ (x) − Y

zψ
ρ (y), x − y〉 �〈

3x

5
−
3y

5
, x − y〉

�〈
3
5

(x − y), x − y〉

�
3
5

〈x − y, x − y〉 �
3
5
‖x − y‖

2

≥
2
5
‖x − y‖

2
.

(71)

Hence, Y
zψ
ρ is strongly monotone with constant

δy � (2/5).
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Let us consider the mappings N: H × H × H⟶ H and
A, B, C: C⟶ 􏽥CB(H) such that

A(x) �
x

7
􏼚 􏼛,

B(x) �
x

5
􏼚 􏼛,

C(x) �
x

6
􏼚 􏼛,

N(u, v, w) �
u

2
+

v

2
+

w

2
,

(72)

where x ∈ C, u ∈ A(x), v ∈ B(x), andw ∈ C(x).

Clearly, D(A(x), A(y)) � max supx∈A(x)d(x, F(y)), supy∈F(y)d(F(x), y)􏽮 􏽯

≤max
x

7
−

y

7

������

������,
y

7
−

x

7

������

������􏼚 􏼛

�
1
7
max ‖x − y‖, ‖y − x‖􏼈 􏼉

≤
1
5

‖x − y‖,

(73)

that is, D(A(x), A(y))≤ (1/5)‖x − y‖.
-us, A is D-Lipschitz continuous with constant

λDA
� (1/5). Similarly, we can obtain that B and C are D-

Lipschitz continuous with constants λDB
� (1/3) and

λDC
� (1/3), respectively.
N is Lipschitz continuous in all the three arguments with

constants λN1
� λN2

� λN3
� 1.

Then, N(u, v, w) �
x

14
+

x

10
+

x

12

�
107x

420
,

Since z � P Y
zψ
ρ (x)􏼐 􏼑 + ρN(u, v, w)

�
Y

zψ
ρ (x)

2
+ N(u, v, w)

�
1
2

·
3x

5
+ N(u, v, w),

z �
3x

10
+ N(u, v, w),

J
zψ
ρ (z) �

6x

50
+
2N(u, v, w)

5
.

(74)

Hence,

R
zψ
ρ (z) � I − J

zψ
ρ􏽨 􏽩(z) �

3
5

3x

10
+ N(u, v, w)􏼔 􏼕. (75)

Below we show that condition (59) is satisfied.

For λP � 11/10, ρ � 1, δy � 2/5, μ � 1/3, λ � 2, σ � 2λ �

4, θ �
�
2

√
/3, λN1

� λN2
� λN3

� 1, λDA
� 1/5, λDB

� 1/3, λDC
�

1/3, ξ(θ) � λN1
λDA

+ λN2
λDB

+ λN3
λDC

� 0.86 and (1 − λP

θ)/ρθ � 1.021. Hence, θ< 2δy and ξ(θ) < (1 − λPθ)/ρθ. -at
is, condition (59) is satisfied.

For, x � 0, the Yosida proximal operator equation in-
volving XOR-operator (23) is fulfilled.

That is, N(u, v, w)⊕ ρ− 1
R

zψ
ρ (z)

� N(u, v, w)⊕
3
5

3x

10
+ N(u, v, w)􏼔 􏼕 � 0.

(76)

Furthermore, we obtain the sequences xn􏼈 􏼉 and zn􏼈 􏼉

generated by iterative Algorithm 1 as

zn+1 � P Y
zψ
ρ xn( 􏼁􏼐 􏼑 + ρN un, vn, wn( 􏼁

�
Y

zψ
ρ xn( 􏼁

2
+
107xn

420

�
1
2

·
3xn

5
+
107xn

420

�
3xn

10
+
107xn

420
,

also, Y
zψ

ρ xn( 􏼁 � J
zψ
ρ zn( 􏼁

3xn

5
�
2zn

5

xn �
2zn

5
.

(77)
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Figure 1: Case I: for the initial value z0 � − 5.
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Figure 2: Case II: for the initial value z0 � 2.5.
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Figure 3: Case III: for the initial value z0 � 5.
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From (77) and (78), we have

zn+1 �
3
10

+
107
420

􏼒 􏼓
2zn

5
,

zn+1 �
233
1050

zn.

(78)

Clearly, the sequence zn􏼈 􏼉 converges to 0, and conse-
quently, the sequence xn􏼈 􏼉 also converges to 0.

It is shown in Figures 1–3 that, for initial values
z0 � − 5, 2.5, and 5, the sequence zn􏼈 􏼉 converges to 0. A
consolidated graph using Figures 1–3 is provided in Figure 4.
In Table 1, comparing different initial values of zn􏼈 􏼉 and for
different iterations, it is obtained that the sequence zn􏼈 􏼉

converges to 0.

5. Conclusion

In this work, we introduce and study three new problems,
that is, a Yosida complementarity problem, a Yosida

variational inequality problem, and a Yosida proximal
operator equation involving XOR-operation. It is shown
that Yosida complementarity problem involving XOR-
operation is equivalent to a Yosida variational inequality
problem involving XOR-operation and Yosida variational
inequality problem involving XOR-operation is equivalent
to a Yosida proximal operator equation involving XOR-
operation. An algorithm is established to obtain the so-
lution of Yosida proximal operator equation involving
XOR-operation. Finally, an existence and convergence
result is proved. A numerical example is given in support of
our main result.

It is still an open and interesting problem that how to
establish equivalence between Yosida complementarity
problem involving XOR-operation and Yosida proximal
operator equation problem involving XOR-operation.

Data Availability

No data were used to support this study.
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Figure 4: By combining all the above graphs, we get the following conjoining graph of convergence.

Table 1: -e values of zn with initial values z0 � − 5, z0 � 2.5, and z0 � 5.

No. of iterations For z0 � − 5 For z0 � 2.5 For z0 � 5
zn zn zn

n� 1 − 5 2.5 5
n� 2 − 1.10952380952381 0.554761904761905 1.10952380952381
n� 3 − 0.246208616780045 0.123104308390023 0.246208616780045
n� 4 − 0.0546348644854767 0.0273174322427384 0.0546348644854767
n� 5 − 0.0121237365953486 0.00606186829767432 0.0121237365953486
n� 10 − 6.52333379900596e − 06 3.26166689950298e − 06 6.52333379900596e − 06
n� 15 − 3.50996440070956e − 09 1.75498220035478e − 09 3.50996440070956e − 09
n� 20 − 1.88858189291582e − 12 9.44290946457911e − 13 1.88858189291582e − 12
n� 25 − 1.01617599469911e − 15 5.08087997349556e − 16 1.01617599469911e − 15
n� 27 − 5.00382572119910e − 17 2.50191286059955e − 17 5.00382572119910e − 17
n� 29 − 2.46397001884969e − 18 1.23198500942484e − 18 2.46397001884969e − 18
n� 30 − 5.46766680373311e − 19 2.73383340186656e − 19 5.46766680373311e − 19
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Disclosure

A variant form of Yosida variational inequality and Yosida
proximal operator equation involving XOR-operation was
considered in “Some Problems Concerning Generalized
Variational Inequalities”, Ph. D -esis, (2009), AMU Ali-
garh [39]. In this variant form, neither the concept of Yosida
approximation operator nor the concept of XOR-operation
was used. Moreover, no complementarity problem was
considered in the abovementioned thesis.
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We introduce a new concept of Hadamard well-posedness of a generalized mixed variational inequality in a Banach space. )e
relations between the Levitin–Polyak well-posedness and Hadamard well-posedness for a generalized mixed variational inequality
are studied. )e characterizations of Hadamard well-posedness for a generalized mixed variational inequality are established.

1. Introduction

In [1], Tykhonov first introduced the well-posedness of a
minimization problem, which means that it has a unique
minimizer and every minimizing sequence converges to the
unique minimizer. )ere are two concepts of well-posedness
which are Tykhonov well-posedness [1] and Hadamard well-
posedness [2].

Recently, variational inequality (VI) has been extensively
studied due to the facts that it has many potential appli-
cations and that it is closely related to a differentiable
minimization problem. Well-posedness for a variational
inequality has been then extensively investigated. See, e.g.,
[3–11] and the references therein.

In 2013, Li and Xia [12] introduced the concept of
Hadamard well-posedness of a general mixed variational
inequality in Banach spaces. Under some suitable condi-
tions, relations between Levitin–Polyak well-posedness and
Hadamard well-posedness of a general mixed variational
inequality were presented. )ey also established some

characterizations of Hadamard well-posedness for a general
mixed variational inequality. Very recently, some scholars
still focused on the study of the well-posedness of various
classes of variational inequalities, see e.g., generalized var-
iational-hemivariational inequalities with perturbations in
[13], completely generalized mixed variational inequalities
in [14], noncompact generalized mixed variational in-
equalities in [15], generalized variational inequality with
generalized mixed variational inequality constraint in [16],
systems of generalized mixed quasivariational inclusion
problems in [17], systems of time-dependent hemivaria-
tional inequalities in [18], and generalized hemivariational
inequalities in [19].

Motivated and inspired by the research work going on
this field, we introduce a new concept of Hadamard well-
posedness for a generalized mixed variational inequality in a
Banach space. Under some suitable conditions, the relations
between the Levitin–Polyak well-posedness and Hadamard
well-posedness for a generalized mixed variational in-
equality are studied. We also establish some
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characterizations of Hadamard well-posedness for a gen-
eralized mixed variational inequality. Finally, we prove that
under suitable conditions, the Hadamard well-posedness of
a generalized mixed variational inequality is equivalent to
the existence and uniqueness of its solutions. Our results
improve, extend, and develop the earlier and recent ones
announced by some others, e.g., Ceng and Yao [7] and Li
and Xia [12, 20].

2. Preliminaries

Let X be a real reflexive Banach space with its dual X∗ and K

be a nonempty, closed subset of X. We use the same no-
tations in [12]. For more details about these notations and
relevant definitions, please consult relevant reference; see,
e.g., [12] (following [21]). Let X′ be the collection of all affine
functions defined on X. It is obvious that X∗ ⊂ X′. Let U be
the collection of all nonempty set-valued mappings
F: X⟶ 2X∗ , and τ(X) be the collection of all mappings
P: X⟶ 2X′ such that for any x ∈ X, there exist F ∈ U and
λ ∈ R such that

〈P(x), x − y〉 � 〈F(x), x − y〉 + λ, ∀y ∈ K. (1)

For any P1, P2 ∈ τ(X), it follows that there exist Fi ∈ U

and λi ∈ R, i � 1, 2 such that

〈P1(x), x − y〉 �〈F1(x), x − y〉 + λ1, ∀y ∈ K,

〈P2(x), x − y〉 �〈F2(x), x − y〉 + λ2, ∀y ∈ K.
(2)

We define

d P1, P2( 􏼁 �
λ1 − λ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, F1 � F2,

1 + λ1 − λ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, F1 ≠F2.

⎧⎨

⎩ (3)

It can be routinely checked that (τ(X), d) is a metric
space. In particular, if U is the collection of all single-valued
mappings F: X⟶ X∗ and τ(X) is the collection of all
single-valued mappings P: X⟶ X′ such that for any
x ∈ X, there exist F ∈ U and λ ∈ R such that

〈P(x), x − y〉 � 〈F(x), x − y〉 + λ, ∀y ∈ K, (4)

then the above metric space (τ(X), d) reduces to the metric
space (τ(X), d) defined in [[12], p. 1619]. In this case, it is
clear that the metric space (τ(X), d) is a special case of
metric space (Γ, d) defined in [[21], p. 377].

Let C(X) be the collection of all nonempty closed subsets
of X endowed with the usual Hausdorff metric H(·, ·), that
is, for every A1, A2 ∈ C(X),

H A1, A2( 􏼁 � max e A1, A2( 􏼁, e A2, A1( 􏼁􏼈 􏼉, (5)

where e(A1, A2) � supa∈A1
d′(a, A2) with d′(a, A2)

� infb∈A2
‖a − b‖. Let An􏼈 􏼉 be a sequence of nonempty closed

subsets of X. We say that An converges to A in the Hausdorff
metric iff H(An, A)⟶ 0 as n⟶∞.

Let B(X) be the family of all real-valued functions on X;
we define

d1 ϕ1, ϕ2( 􏼁 � sup
x∈X

ϕ1(x) − ϕ2(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (6)

where ϕ1, ϕ2 ∈ B(X); it can be routinely checked that
(B(X), d1) is a metric space.

Let M be the collection of all (P, ϕ, K) such that

(i) P ∈ τ(X);
(ii) ϕ ∈ B(X);
(iii) K ∈ C(X).

)en, for any (P1, ϕ1, K1), (P2,ϕ2, K2) ∈M, we define

ρ P1,ϕ1, K1( 􏼁, P2, ϕ2, K2( 􏼁( 􏼁 � d P1, P2( 􏼁 + d1 ϕ1, ϕ2( 􏼁 + H K1, K2( 􏼁.

(7)

Clearly, (M, ρ) is a metric space.
Let F: X⟶ 2X∗ be a set-valued mapping, and

ϕ: X⟶ R∪ +∞{ } be a proper, convex, and lower semi-
continuous functional. Consider the following generalized
mixed variational inequality associated with (F, ϕ, K):

GMVI(F, ϕ, K): find x ∈ K such that for some u ∈ F(x),

〈u, x − y〉 + ϕ(x) − ϕ(y)≤ 0, ∀y ∈ K.

(8)

We denote by S(F, ϕ, K) the solution set of
GMVI(F, ϕ, K). In what follows, we first introduce new
concept of Hadamard well-posedness for GMVI(F, ϕ, K). It
is worth mentioning that some similar ideas have also been
presented in [22, 23] very recently.

Definition 1. A generalized mixed variational inequality
GMVI(F, ϕ, K) is called Hadamard well-posed if it has a
unique solution x∗ ∈ K, and if for every sequence of triples
(Pn, ϕn, Kn)􏼈 􏼉 ⊂M converging to (F, ϕ, K) and every se-
quence xn􏼈 􏼉 such that xn ∈ S(Pn, ϕn, Kn) for each n ∈ N, it
follows that xn⟶ x∗, where K∪ xn􏼈 􏼉⊆Kn for all n ∈ N.

Definition 2 (see [20]). A sequence xn􏼈 􏼉 ⊂ X is called a LP
approximating sequence for GMVI(F, ϕ, K), if there exist
wn ∈ X with wn⟶ 0 and 0< ϵn⟶ 0 such that
xn + wn ∈ K for all n ∈ N, and there exists un ∈ F(xn) such
that

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn, ∀y ∈ K, n ∈ N. (9)

Definition 3 (see [20]). We say that GMVI(F, ϕ, K) is LP
well-posed if GMVI(F, ϕ, K) has a unique solution and every
LP approximating sequence for GMVI(F, ϕ, K) converges
strongly to the unique solution.

)e product space C(X) × B(X) is equipped by a
product metric, that is, H(A1, A2) + d1(f1, f2), where
A1, A2 ∈ C(X) and f1, f2 ∈ B(X). Let further BC0(X) be
the family of all real-valued continuous functions on X; it is
easy to check that (BC0(X), d1) is a metric space and we
write Q � C(X) × BC0(X). Now, we can easily get the
following lemma.

Lemma 1 (see [12]). Let the pair (A, f) ∈ Q, then the
function (A, f)⟼inf(A, f) is upper semicontinuous.
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We consider the following gap function for
GMVI(F, ϕ, K):

g(x) � sup
y∈K

inf
u∈F(x)

〈u, x − y〉 + ϕ(x) − ϕ(y)􏼈 􏼉, ∀x ∈ X.

(10)

Lemma 2. 9e following statements hold:

(i) g(x)≥ 0, ∀x ∈ K;
(ii) x ∈ K solves GMVI(F, ϕ, K)⟺g(x) � 0.

Proof. For each x ∈ K, we have

g(x) � sup
y∈K

inf
u∈F(x)

〈u, x − y〉 + ϕ(x) − ϕ(y)􏼈 􏼉

≥ inf
u∈F(x)

〈u, x − x〉 + ϕ(x) − ϕ(x)􏼈 􏼉

� 0.

(11)

Observe that

x solvesGMVI(F, ϕ, K)

⟺ ∃u ∈ F(x) s.t. 〈u, x − y〉 + ϕ(x) − ϕ(y)≤ 0, ∀y ∈ K

⟺ sup
y∈K

〈u, x − y〉 + ϕ(x) − ϕ(y)􏼈 􏼉≤ 0

⟺ 0≤g(x)≤ sup
y∈K

〈u, x − y〉 + ϕ(x) − ϕ(y)􏼈 􏼉≤ 0

⟺ g(x) � 0.

(12)
)is completes the proof.
We also consider the following optimization problem:

(OP): inf
x∈K

g(x), (13)

with g(x) defined by (10). Its optimal solution set will be
denoted by argmin(K, g) and the optimal value will be
denoted by inf(K, g), respectively.

)e following Definitions 4–6 can be found in [12].
However, Definition 7 is conventional. □

Definition 4. A sequence xn􏼈 􏼉 ⊂ X is called an LP mini-
mizing sequence for (OP) if there exists un ∈ F(xn) such that

gn xn( 􏼁⟶ inf(K, g),

d′ xn, K( 􏼁⟶ 0,
(14)

where gn(xn) � supy∈K∪ xn{ } 〈un, x􏼈 n − y〉 + ϕ(xn) − ϕ
(y)}, ∀n ∈ N.

Definition 5. We say that (OP) is LP well-posed if and only if
(OP) has a unique solution and every LP minimizing se-
quence for (OP) converges strongly to the unique solution.

Definition 6. A nonempty-valued function f: X ⟶ R
∪ +∞{ } is said to be uniformly continuous, if for any ϵ> 0,

there exists δ > 0 such that for all x, y ∈ X with ‖x − y‖< δ,
one has |f(x) − f(y)|< ε.

Definition 7. A nonempty set-valued mapping
F: X⟶ 2X∗ is said to be monotone, if for all
x, y ∈ X, u ∈ F(x) and v ∈ F(y),

〈u − v, x − y〉≥ 0. (15)

Definition 8 (see [7]). LetH(·, ·) be the Hausdorff metric on
the collection CB(X) of all nonempty, closed, and bounded
subsets of X, which is defined by H(A, B) � max e{

(A, B), e(B, A)} for A and B in CB(X). A nonempty set-
valued mapping F: X⟶ 2X∗ is said to be

(i) H -hemicontinuous, if for any x, y ∈ X, the function
t⟼H(F(x + t(y − x)), F(x)) from [0, 1] into
R+ � [0, +∞) is continuous at 0+;

(ii) H-uniformly continuous, if for any ϵ> 0, there exists
δ > 0 such that for all x, y ∈ X with ‖x − y‖< δ, one
has H(F(x), F(y))< ϵ.

)e following proposition is a special case of Lemma 2.2
in [7].

Proposition 1 (see [20]). Let K be a nonempty, closed, and
convex subset of X, F: X⟶ 2X∗ be a nonempty compact-
valued mapping which is H-hemicontinuous and monotone,
and ϕ: X⟶ R∪ +∞{ } be a proper and convex functional.
9en, for a given x ∈ K, the following statements are
equivalent:

(i) there exists u ∈ F(x) such that 〈u, x − y〉 + ϕ (x)

− ϕ (y)≤ 0, ∀y ∈ K;
(ii) 〈v, x − y〉 + ϕ(x) − ϕ(y)≤ 0, ∀y ∈ K, v ∈ F(y).

We can also prove the following lemma easily.

Lemma 3. Let K be a nonempty, closed subset of
X, F: X⟶ 2X∗ be a nonempty set-valued mapping, and
ϕ: X⟶ R∪ +∞{ } be a functional on X. 9en, the following
statements are equivalent:

(i) GMVI(F, ϕ, K) is LP well-posed;
(ii) (OP) is LP well-posed with g(x) defined by (10).

Proof. We first claim that (i) ⇒ (ii). Indeed, suppose that
GMVI(F, ϕ, K) is LP well-posed and x∗ ∈ K is the unique
solution of GMVI(F, ϕ, K). By Lemma 2, x∗ ∈ K is the
unique solution of (OP). )en, we get inf(K, g) � 0. Let
xn􏼈 􏼉 ⊂ X be a LP minimizing sequence for (OP).)en, there
exists un ∈ F(xn) such that

gn xn( 􏼁⟶ inf(K, g) � 0,

d′ xn, K( 􏼁⟶ 0,
(16)

where gn(xn) � supy∈K∪ xn{ } 〈un, xn − y〉 +􏼈 ϕ(xn) − ϕ(y)},

∀n ∈ N. So, we deduce that
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sup
y∈K
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉≤ sup

y∈K∪ xn{ }
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉 � gn xn( 􏼁,

(17)

which immediately yields

limsup
n⟶∞

sup
y∈K
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉≤ 0. (18)

)us, there exist 0< ϵn⟶ 0 and un ∈ F(xn) such that

sup
y∈K
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉≤ ϵn; (19)

that is,

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn, ∀y ∈ K. (20)

Furthermore, from d′(xn, K)⟶ 0 it follows that there
exists xn ∈ K such that ‖xn − xn‖⟶ 0. Putting
wn � xn − xn, we get xn + wn � xn ∈ K with wn⟶ 0.
)erefore, xn􏼈 􏼉 is a LP approximating sequence for
GMVI(F, ϕ, K), and hence xn⟶ x∗ as n⟶∞. )is
means that (OP) is LP well-posed.

We show that (ii)⇒ (i). Indeed, suppose that (OP) is LP
well-posed and x∗ ∈ K is the unique solution of (OP). By
Lemma 2, x∗ ∈ K is the unique solution of GMVI(F, ϕ, K).
)en, we get inf(K, g) � 0. Let xn􏼈 􏼉 ⊂ X be a LP approxi-
mating sequence for GMVI(F, ϕ, K). )en, there exist wn ∈ X

with wn⟶ 0 and 0< ϵn⟶ 0 such that xn + wn ∈ K for all
n ∈ N, and there exists un ∈ F(xn) such that

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn, ∀y ∈ K, n ∈ N, (21)

that is,

sup
y∈K
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉≤ ϵn, ∀n ∈ N. (22)

Putting xn � xn + wn for all n ∈ N, we get xn ∈ K for all
n ∈ N. )en, it is easy to see that d′(xn, K) ≤ ‖xn − xn‖ �

‖wn‖⟶ 0. Observe that for all n ∈ N,

0≤gn xn( 􏼁

� sup
y∈K∪ xn{ }

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉

� max sup
y∈K
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉, 0

⎧⎨

⎩

⎫⎬

⎭

≤ ϵn⟶ 0.

(23)

Consequently, xn􏼈 􏼉 is a LP minimizing sequence for
(OP), and hence xn⟶ x∗ as n⟶∞. )is means that
GMVI(F, ϕ, K) is LP well-posed. □

3. Well-Posedness

In this section, we investigate the relations between Levi-
tin–Polyak well-posedness and Hadamard well-posedness of
a generalized mixed variational inequality.

Theorem 1. Let K be a nonempty, closed subset of X and
F: X⟶ 2X∗ be a nonempty set-valued mapping. Let

ϕ: X⟶ R∪ +∞{ } be a functional. 9en, GMVI(F, ϕ, K) is
LP well-posed whenever GMVI(F, ϕ, K) is Hadamard well-
posed.

Proof. Suppose that GMVI(F,ϕ, K) is Hadamard well-
posed and x∗ ∈ K is the unique solution of GMVI(F, ϕ, K).
Let xn􏼈 􏼉 ⊂ X be an LP approximating sequence for
GMVI(F, ϕ, K). )en, there exist wn ∈ X with wn⟶ 0 and
0< ϵn⟶ 0 such that xn + wn ∈ K for all n ∈ N, and there
exists un ∈ F(xn) such that

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn, ∀y ∈ K, (24)

that is,

sup
y∈K
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉≤ ϵn, ∀n ∈ N. (25)

So, it follows from xn + wn ∈ K that there exists xn ∈ K

such that xn + wn � xn for all n ∈ N. )us, we get
d′(xn, K)≤ ‖xn − xn‖ � ‖wn‖⟶ 0. For each n ∈ N, x ∈ X,
we construct a sequence (Fn, ϕn, Kn)􏼈 􏼉 as follows:

〈Fn(x), x − y〉 � 〈F(x), x − y〉 − ϵn, ∀y ∈ K, (26)

ϕn(x) � ϕ(x) − ϵn, (27)

and Kn � K∪ xn􏼈 􏼉.
It is obvious that xn ∈ Kn, Fn ∈ τ(X), ϕn ∈ B(X), and

Kn ∈ C(X). It follows from (24)–(27) that

〈Fn xn( 􏼁, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)

�〈Fn xn( 􏼁, xn − y〉 − ϵn + ϕ xn( 􏼁 − ϵn − ϕn(y) − ϵn􏼂 􏼃

�〈Fn xn( 􏼁, xn − y〉 + ϕ xn( 􏼁 − ϕn(y) − ϵn, ∀y ∈ K.

(28)

Since Kn � K∪ xn􏼈 􏼉, it follows from (24) that

0≤Gn xn( 􏼁

� sup
y∈Kn

inf 〈Fn xn( 􏼁, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)􏼈 􏼉

� sup
y∈Kn

inf 〈Fn xn( 􏼁, xn − y〉 + ϕ xn( 􏼁 − ϕn(y) − ϵn􏼈 􏼉

� sup
y∈Kn

inf
u∈F xn( )
〈u, xn − y〉 + ϕ xn( 􏼁 − ϕn(y) − ϵn􏼈 􏼉

≤ sup
y∈Kn

〈u, xn − y〉 + ϕ xn( 􏼁 − ϕn(y) − ϵn􏼈 􏼉≤ 0.

(29)

)at is, Gn(xn) � 0 for all n ∈ N. So, it follows from
Lemma 2 that xn ∈ S(Fn, ϕn, Kn) for all n ∈ N. From (3) and
(26), we have d(Fn, F) � |ϵn|⟶ 0. Again from (6) and (27),
we have d1(ϕn, ϕ)⟶ 0. We also obtain that H(Kn, K)

� d′(xn, K)⟶ 0. )us, we have ρ((Fn, ϕn, Kn), (F, ϕ, K))

⟶ 0. Since GMVI(F,ϕ, K) is Hadamard well-posed, we
know that xn􏼈 􏼉 converges strongly to the unique solution x∗
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of GMVI(F, ϕ, K). )us, GMVI(F,ϕ, K) is LP well-posed.
)e proof is complete.

Next, we have the following result which can be regarded
as the reverse of )eorem 1 under the uniform continuity of
the function ϕ. □

Theorem 2. Let K be a nonempty, closed subset of X and
F: X⟶ 2X∗ be a nonempty set-valued mapping. Let
ϕ: X⟶ R∪ +∞{ } be uniformly continuous on X. 9en,
GMVI(F, ϕ, K) is Hadamard well-posed whenever
GMVI(F, ϕ, K) is LP well-posed.

Proof. Suppose that GMVI(F,ϕ, K) is LP well-posed and
x∗ ∈ K is the unique solution of GMVI(F, ϕ, K). Let

g(x) � sup
y∈K

inf 〈F(x), x − y〉 + ϕ(x) − ϕ(y)􏼈 􏼉, ∀x ∈ X.

(30)

Since GMVI(F,ϕ, K) has the unique solution x∗ ∈ K, by
Lemma 2, we know that (OP) has the unique solution
x∗ ∈ K. )at is, inf(K, g) � 0 and argmin(K, g) � x∗{ }. Let
(Fn, ϕn, Kn)􏼈 􏼉 ∈ τ(X) × B(X) × C(X), (Fn, ϕn, Kn) con-
verges to (F, ϕ, K) and xn ∈ S(Fn, ϕn, Kn), where
K∪ xn􏼈 􏼉⊆Kn. So, it follows from xn ∈ S(Fn,ϕn, Kn) that
there exists 􏽥un ∈ Fn(xn) such that

〈􏽥un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ 0, ∀y ∈ Kn, (31)

which immediately yields

〈􏽥un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ 0, ∀y ∈ K. (32)

For any x ∈ X, let

Gn(x) � sup
y∈Kn

inf 〈Fn(x), x − y〉 + ϕn(x) − ϕn(y)􏼈 􏼉, ∀x ∈ X.

(33)

From Lemma 1, it is easy to see that

(i) Gn(x)≥ 0, ∀x ∈ Kn;
(ii) for any x ∈ Kn, Gn(x) � 0⟺x ∈ S(Fn, ϕn, Kn).

It follows from (ii) and xn ∈ S(Fn,ϕn, Kn) that
Gn(xn) � inf(Kn,G) � 0. On the other hand, note that
ρ((Fn,ϕn, Kn), (F, ϕ, K))⟶ 0. )en, we deduce that
d(Fn, F)⟶ 0, d1(ϕn, ϕ)⟶ 0 andH(Kn, K)⟶ 0. Since
d(Fn, F)⟶ 0, it follows from (3) that there exists
0< ϵn⟶ 0 such that for any x ∈ X,

〈Fn(x), x − y〉 � 〈F(x), x − y〉 − ϵn, ∀y ∈ K. (34)

In particular, we have

〈Fn xn( 􏼁, xn − y〉 �〈F xn( 􏼁, xn − y〉 − ϵn, ∀y ∈ K.

(35)

From 􏽥un ∈ Fn(xn) it follows that there exists un ∈ F(xn)

such that

〈􏽥un, xn − y〉 �〈un, xn − y〉 − ϵn, ∀y ∈ K. (36)

)is together with (32) leads to

〈un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ ϵn, ∀y ∈ K, (37)

which can be rewritten as follows:

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn + ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁, ∀y ∈ K. (38)

Next, we claim that

lim
n⟶∞

ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0, uniformly fory ∈ X. (39)

As a matter of fact, for any δ > 0, since
d1(ϕn, ϕ) � supx∈X|ϕn(x) − ϕ(x)|⟶ 0, there exists an in-
teger N≥ 1 such that for all n≥N,

sup
x∈X

ϕn(x) − ϕ(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ. (40)

It follows that for any x ∈ X,

ϕ(x) − δ ≤ϕn(x)≤ϕ(x) + δ, n≥N. (41)

So, for any x, y ∈ X, we have

ϕn(x) − ϕn(y)≤ ϕ(x) + δ − (ϕ(y) − δ)

� ϕ(x) − ϕ(y) + 2δ, n≥N.
(42)

Meantime, we also have

ϕ(x) − ϕ(y) − 2δ � ϕ(x) − δ − (ϕ(y) + δ)

≤ ϕn(x) − ϕn(y), n≥N.
(43)

)en, for any x, y ∈ X,

ϕn(x) − ϕn(y) − (ϕ(x) − ϕ(y))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2δ, n≥N. (44)

In particular, for any y ∈ X, we get

ϕn xn( 􏼁 − ϕn(y) − ϕ xn( 􏼁 − ϕ(y)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2δ, n≥N. (45)

)is means that (39) holds.
Finally, from (38) and (39) and 0< ϵn⟶ 0, we have
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0≤gn xn( 􏼁 � sup
y∈K∪ xn{ }

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉

≤max sup
y∈K
ϵn + ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁􏼈 􏼉, 0

⎧⎨

⎩

⎫⎬

⎭

≤ ϵn + sup
y∈K

ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⟶ 0.

(46)

Since Kn⟶ K in the Hausdorff metric and xn ∈ Kn, we
have d′(xn, K)⟶ 0. )us, xn􏼈 􏼉 is an LP minimizing se-
quence for (OP). Since GMVI(F,ϕ, K) is LP well-posed,
according to Lemma 3, we know that (OP) is LP well-posed.
)erefore, xn⟶ x∗ as n⟶∞. So, it follows that
GMVI(F, ϕ, K) is Hadamard well-posed. )e proof is
complete. □

Remark 1. )eorems 1 and 2 improve, extend, and develop
)eorems 3.1 and 3.2 in [12] to a great extent because the

generalized mixed variational inequality considered in
)eorems 1 and 2 is more general than the general mixed
variational inequality considered in [[12], )eorems 3.1 and
3.2].

4. Metric Characterization and Conditions for
Hadamard Well-Posedness

In this section, we derive the metric characterization of
Hadamard well-posedness for a generalized mixed varia-
tional inequality and prove that under suitable conditions,
the Hadamard well-posedness of a generalized mixed var-
iational inequality is equivalent to the existence and
uniqueness of its solutions.

To characterize the Hadamard well-posedness for a
generalized mixed variational inequality GMVI(F, ϕ, K), we
define

Ω(ϵ) � x ∈ X: d′(x, K)≤ ϵ, and there exists u ∈ F(x) such that∀y ∈ K, 〈u, x − y〉 + ϕ(x) − ϕ(y)≤ ϵ􏼈 􏼉, ∀ϵ≥ 0. (47)

Theorem 3. Let (F, ϕ, K) ∈ τ(X) × B(X) × C(X), K be
convex, F: X⟶ 2X∗ be a nonempty compact-valued
mapping which is H-hemicontinuous and monotone, and
ϕ: X⟶ R∪ +∞{ } be proper, convex, and uniformly con-
tinuous on X. 9en, GMVI(F, ϕ, K) is Hadamard well-posed
if and only if

Ω(ϵ)≠∅, ∀ϵ> 0 and diam(Ω(ϵ))⟶ 0 as ϵ⟶ 0.

(48)

Proof. Assume that GMVI(F, ϕ, K) is Hadamard well-
posed. )en, GMVI(F, ϕ, K) has a unique solution which
lies in Ω(ϵ) for all ϵ> 0. Put x0 ∈ S(F, ϕ, K). Obviously,
x0 ∈ Ω(ϵ) for all ϵ> 0. If diam(Ω(ϵ))↛0 as ϵ⟶ 0, then for
some δ > 0, 0< ϵn⟶ 0 such that for n sufficiently large,

diam Ω ϵn( 􏼁( 􏼁> δ > 0. (49)

)us, we can find points xn ∈ Ω(ϵn) such that

xn − x0
����

����>
δ
2
. (50)

Since xn ∈ Ω(ϵn), we have

d′ xn, K( 􏼁≤ ϵn, (51)

and there exists un ∈ F(xn) such that

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn, ∀y ∈ K. (52)

Now, we construct a sequence (Fn, ϕn, Kn)􏼈 􏼉 as follows:

〈Fn(x), x − y〉 �〈Fn(x), x − y〉 − ϵn, ∀y ∈ K,

ϕn(x) � ϕ(x) − ϵn,

Kn � K 􏽛 xn􏼈 􏼉.

(53)

It is obvious that xn ∈ Kn, Fnτ(X), ϕn ∈ B(X), and
Kn ∈ C(X). By the similar argument to that in the proof of
)eorem 1, we have xn ∈ S(Fn, ϕn, Kn). Observe that
d(Fn, F) � |ϵn|⟶ 0, d1(ϕn, ϕ)⟶ 0, and H(Kn, K) �

d′(xn, K)⟶ 0. )us, we have ρ((Fn, ϕn, Kn),

(F, ϕ, K))⟶ 0. Since GMVI(F, ϕ, K) is Hadamard well-
posed, one has xn⟶ x0, a contradiction to (50).

Conversely, suppose that condition (48) holds. Let
(Fn, ϕn, Kn)⟶ (F, ϕ, K), and xn ∈ S(Fn,ϕn, Kn), where
K∪ xn􏼈 􏼉⊆Kn, n � 1, 2, . . .. So, it follows from
xn ∈ S(Fn, ϕn, Kn) that there exists 􏽥un ∈ Fn(xn) such that

〈􏽥un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ 0, ∀y ∈ Kn, (54)

which immediately yields

〈􏽥un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ 0, ∀y ∈ K. (55)

Furthermore, note that ρ((Fn,ϕn, Kn), (F, ϕ, K))⟶ 0.
)en, we deduce that d(Fn, F)⟶ 0, d1(ϕn, ϕ)⟶ 0 and
H(Kn, K)⟶ 0. Since d(Fn, F)⟶ 0, it follows from (3)
that there exists 0< ϵn′ ⟶ 0 such that for any x ∈ X,

〈Fn(x), x − y〉 � 〈F(x), x − y〉 − ϵn′ , ∀y ∈ K. (56)

In particular, we have

〈Fn xn( 􏼁, xn − y〉 �〈F xn( 􏼁, xn − y〉 − ϵn′ , ∀y ∈ K.

(57)

6 Journal of Mathematics



From 􏽥un ∈ Fn(xn), it follows that there exists un ∈ F(xn)

such that

〈􏽥un, xn − y〉 �〈un, xn − y〉 − ϵn′, ∀y ∈ K. (58)

)is together with (55) leads to

〈un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ ϵn′, ∀y ∈ K, (59)

which can be rewritten as follows:

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn′ + ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁, ∀y ∈ K. (60)

Repeating the same argument as that of (39) in the proof
of )eorem 2, we get

lim
n⟶∞

ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0, uniformly fory ∈ X. (61)

Taking into account that Kn⟶ K in the Hausdorff
metric and xn ∈ Kn, we have d′(xn, K)⟶ 0. )us, there
exists 0< ϵ∗n⟶ 0 such that d′(xn, K)≤ ϵ∗n and

sup
y∈X

ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ϵ∗n , ∀n ∈ N.

(62)

Set ϵn � ϵn′ + ϵ∗n . )en, it follows from (60) that

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn, ∀y ∈ K. (63)

)is means that xn ∈ Ω(ϵn) for all n ∈ N. From (48), we
know that xn􏼈 􏼉 is a Cauchy sequence and so it converges
strongly a point x ∈ K. Since F is monotone and ϕ is lower
semicontinuous, it follows from (63) that for any
y ∈ K, v ∈ F(y),

〈v, x − y〉 + ϕ(x) − ϕ(y)

· lim inf
n⟶∞
〈v, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉

≤ lim inf
n⟶∞
〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)􏼈 􏼉

≤ lim inf
n⟶∞
ϵn � 0.

(64)

So, from Proposition 1, it is easy to see that x solves
GMVI(F, ϕ, K).

To complete the proof, we need only to prove that
GMVI(F, ϕ, K) has a unique solution. Assume by contra-
diction that GMVI(F, ϕ, K) has two distinct solutions x1 and
x2 in K. )en, it is easy to see that x1, x2 ∈ Ω(ϵ) for all ϵ> 0
and

0< x1 − x2
����

����≤ diam(Ω(ϵ))⟶ 0, (65)

a contradiction to (48). )e proof is complete.
Next, we prove that the Hadamard well-posedness of a

generalized mixed variational inequality is equivalent to the
existence and uniqueness of its solutions under suitable
conditions. □

Theorem 4. Let (F, ϕ, K) ∈ τ(X) × B(X) × C(X), K be
convex, F: X⟶ 2X∗ be a nonempty compact-valued
mapping which is H -hemicontinuous and monotone, and
ϕ: X⟶ R∪ +∞{ } be proper, convex, and uniformly con-
tinuous on X. 9en, GMVI(F, ϕ, K) is Hadamard well-posed
if and only if it has a unique solution.

Proof. )e necessity is obvious. For the sufficiency, suppose
that GMVI(F,ϕ, K) has a unique solution x∗. If
GMVI(F, ϕ, K) is not Hadamard well-posed, then there
exists (Fn,ϕn, Kn)􏼈 􏼉 ⊂M converging to (F, ϕ, K) with
xn ∈ S(Fn, ϕn, Kn) such that xn􏼈 􏼉 do not converge to x∗,
where K∪ xn􏼈 􏼉⊆Kn, n � 1, 2, . . .. So, it follows from
xn ∈ S(Fn, ϕn, Kn) that there exists 􏽥un ∈ Fn(xn) such that

〈􏽥un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ 0, ∀y ∈ Kn, (66)

which immediately yields

〈􏽥un, xn − y〉 + ϕn xn( 􏼁 − ϕn(y)≤ 0, ∀y ∈ K. (67)

Furthermore, note that ρ((Fn,ϕn, Kn), (F, ϕ, K))⟶ 0.
)en, we deduce that d(Fn, F)⟶ 0, d1(ϕn, ϕ)⟶ 0 and
H(Kn, K)⟶ 0. Since d(Fn, F)⟶ 0, it follows from (3)
that there exists 0< ϵn′ ⟶ 0 such that for any x ∈ X,

〈Fn(x), x − y〉 � 〈F(x), x − y〉 − ϵn′, ∀y ∈ K. (68)

In particular, we have

〈Fn xn( 􏼁, xn − y〉 �〈F xn( 􏼁, xn − y〉 − ϵn′, ∀y ∈ K.

(69)

From 􏽥un ∈ Fn(xn), it follows that there exists un ∈ F(xn)

such that

〈􏽥un, xn − y〉 �〈un, xn − y〉 − ϵn′, ∀y ∈ K. (70)

)is together with (67) leads to

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn′ + ϕ xn( 􏼁 − ϕn xn( 􏼁 − ϕ(y) − ϕn(y)( 􏼁, ∀y ∈ K. (71)
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Repeating the same argument as that of (63) in the proof
of )eorem 3, we obtain that there exists 0< ϵn⟶ 0 such
that d′(xn, K)≤ ϵn and

〈un, xn − y〉 + ϕ xn( 􏼁 − ϕ(y)≤ ϵn, ∀y ∈ K. (72)

From d′(xn, K)≤ ϵn < ϵn + (1/n), it follows that there
exists xn ∈ K such that ‖xn − xn‖< ϵn + (1/n)⟶ 0. Putting
wn � xn − xn, we get xn � wn + xn with wn⟶ 0.

We claim that xn􏼈 􏼉 is bounded. As a matter of fact, if xn􏼈 􏼉

is unbounded, then xn􏼈 􏼉 is an unbounded sequence in K.
Without loss of generality, we may assume that
‖xn‖⟶ +∞. Let

tn �
1

xn − x
∗����
����
, zn � x

∗
+ tn xn − x

∗
( 􏼁. (73)

Without loss of generality, we may assume that
tn ∈ (0, 1] and zn⇀z(≠x∗). )en, we have for each
y ∈ K, v ∈ F(y),

〈v, z − y〉 �〈v, z − zn〉 +〈v, zn − x
∗〉 +〈v, x

∗
− y〉

�〈v, z − zn〉 + tn〈v, xn − x
∗〉 +〈v, x

∗
− y〉

�〈v, z − zn〉 + tn〈v, xn + wn − x
∗〉 +〈v, x

∗
− y〉

�〈v, z − zn〉 + tn〈v, xn − y〉 + 1 − tn( 􏼁〈v, x
∗

− y〉

+ tn〈v, wn〉.
(74)

Since x∗ is the unique solution of GMVI(F, ϕ, K), there
exists u∗ ∈ F(x∗) such that
〈u∗, x

∗
− y〉 + ϕ x

∗
( 􏼁 − ϕ(y)≤ 0, ∀y ∈ K. (75)

Since F is monotone, we have
〈v, x
∗

− y〉 ≤ 〈u∗, x
∗

− y〉,

〈v, xn − y〉 ≤ 〈un, xn − y〉.
(76)

It follows from (72)–(76) and the convexity of ϕ that for
all v ∈ F(y),

〈v, z − y〉

≤ 〈v, z − zn〉 + tnϕ(y) − tnϕ xn( 􏼁 + tnϵn + 1 − tn( 􏼁 ϕ(y) − ϕ x
∗

( 􏼁( 􏼁 + tn〈v, wn〉

�〈v, z − zn〉 + ϕ(y) − tnϕ xn( 􏼁 + 1 − tn( 􏼁ϕ x
∗

( 􏼁􏼂 􏼃 + tnϵn + tn〈v, wn〉

�〈v, z − zn〉 + ϕ(y) − tnϕ xn( 􏼁 + 1 − tn( 􏼁ϕ x
∗

( 􏼁 + tnϕ xn( 􏼁 − tnϕ xn( 􏼁􏼂 􏼃 + tnϵn + tn〈v, wn〉

≤ 〈v, z − zn〉 + ϕ(y) − ϕ zn( 􏼁 − tn ϕ xn( 􏼁 − ϕ xn( 􏼁􏼂 􏼃 + tnϵn + tn〈v, wn〉, ∀y ∈ K.

(77)

Since ϕ is uniformly continuous, we have

〈v, z − y〉

≤ liminf
n⟶∞

〈v, z − y〉 + ϕ(y) − ϕ zn( 􏼁 − tn ϕ xn( 􏼁 − ϕ xn( 􏼁􏼂 􏼃􏼈

+ tnϵn + tn〈v, wn〉}

≤ϕ(y) − ϕ(z), ∀y ∈ K.

(78)

)is together with Proposition 1 implies that z solves
GMVI(F, ϕ, K), a contradiction. )us, xn􏼈 􏼉 is bounded.

Next, we claim that xn⟶ x∗ as n⟶∞. Let xnk
􏽮 􏽯 be

any subsequence of xn􏼈 􏼉 such that xnk
⟶ x as k⟶∞.

Clearly, x ∈ K. It follows from (72) that

〈unk
, xnk

− y〉 + ϕ xnk
􏼐 􏼑 − ϕ(y)≤ ϵnk

, ∀y ∈ K. (79)

Since F is monotone and ϕ is uniformly continuous, we
have

〈v, x − y〉 + ϕ(x) − ϕ(y)

� liminf
k⟶∞
〈v, xnk

− y〉 + ϕ xnk
􏼐 􏼑 − ϕ(y)􏽮 􏽯

≤ liminf
k⟶∞
〈unk

, xnk
− y〉 + ϕ xnk

􏼐 􏼑 − ϕ(y)􏽮 􏽯

≤ liminf
k⟶∞
ϵnk

� 0, ∀y ∈ K, v ∈ F(y).

(80)

)is together with Proposition 1 implies that x solves
GMVI(F, ϕ, K). Since GMVI(F,ϕ, K) has a unique solution
x∗, we have x � x∗. )us, xn⟶ x∗, which reaches a
contradiction. So, GMVI(F, ϕ, K) is Hadamard well-posed.
)e proof is complete. □

5. Concluding Remarks

)eorems 3 and 4 improve, extend, and develop )eorems
4.1 and 4.2 in [12] to a great extent because the generalized
mixed variational inequality considered in)eorems 3 and 4
is more general than the general mixed variational inequality
considered in ([12], )eorems 4.1 and 4.2). In addition,
)eorems 3 and 4 also improve, extend, and develop )e-
orems 3.1 and 6.1 in [7] and)eorems 3.1 and 6.1 in [20] to a
great extent because Levitin–Polyak well-posedness of a
generalized mixed variational inequality is replaced by
Hadamard well-posedness of a generalizedmixed variational
inequality.
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In this study, we introduce a property (P) and the generalized interpolative contractions of types I, II, III, and IV. We investigate
certain conditions for the existence of fixed points of generalized interpolative contractions. We derive several new results from
the main theorems. As an application, we resolve the Urysohn integral equation.

1. Introduction

Fixed-point theory is an outstanding example of a central
principle with multiple implementations. In diverse areas,
such as differential equations and artificial intelligence, it has
always been a significant theoretical method. Furthermore,
the development of accurate and efficient techniques for
computing fixed points has significantly increased the con-
cept’s utility for applications, making fixed-point methods a
major tool in the arsenal of the applied mathematician. (e
key element in the metric fixed-point theory is the Banach
contraction principle (BCP). It states that every contraction, in
the complete metric space, admits a unique fixed point. (is
principle has been generalized by many ways (see [1]). Re-
cently, Gordji et al. [2] presented a new generalization of the
BCP by defining the notion of orthogonal sets and hence
orthogonal metric spaces. (ey presented an example sup-
porting the fact that their main theorem is a real general-
ization of the BCP. Baghani et al. [3] extended the work of [2]
to F-contractions. Chandok et al. [4] extended the results
given in [3] to multivalued F-contractions.

On the contrary, Karapinar [5] introduced interpolative
contractions and presented a method to obtain fixed points
of such contractions. Karapinar et al. [6–9], in subsequent
papers, investigated Rus–Reich–Ćirić-type interpolative
contractions, Hardy–Rogers-type interpolative contractions,

Rus–Reich–Ćirić-type ω-interpolative contractions, and
Boyd–Wong- and Matkowski-type interpolative contrac-
tions to ensure the existence of fixed points in variant
(generalized) metric spaces. Gautam et al. [10] presented
some fixed-point results for Chatterjea and cyclic Chatterjea
interpolative contractions in complete quasi-partial b-metric
spaces. Debnath et al. [11] proved some fixed-point theo-
rems for Rus–Reich–Ćirić- and Hardy–Rogers-type inter-
polative contractions in b-metric spaces.

Boyd–Wong [12] generalized the well-known Banach
contraction principle (BCP) [13] by introducing a control
function Ψ: [0,∞)⟶ [0,∞), verifying the below condi-
tions for each J> 0:

(1) Ψ(J)<J
(2) limℓ⟶J+Ψ(ℓ)<J

(e related result of Boyd–Wong [12] is as follows.

Theorem 1. Let S: X⟶ X be a self-mapping on a complete
metric space (X, d) so that

d(Sℓ, SJ)≤Ψ(d(ℓ,J)), for all ℓ,J ∈ X, (1)

where Ψ: [0,∞)⟶ [0,∞) verifies (1)-(2). =en, S has a
unique fixed point in X (say, ρ) and the sequence (Snℓ) is
convergent to ρ, for each ℓ ∈ X.
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It is noted that (eorem 1 is an improvement of main
results of Rakotch [14] and Browder [15]. (e Boyd–Wong
idea has been generalized byMatkowski [16], Samet et al. [17],
Karapinar et al. [18], Pasicki [19], and Proinov [20], re-
spectively. Recently, Nazam et al. [21] introduced several
conditions on the newly introduced functions
Ψ,ϕ: (0,∞)⟶ R to generalize and improve the results in
[12, 16–20].

(e Banach contraction principle (BCP) and its gen-
eralization (GBCP) have been extensively applied to show
the existence of solutions to various mathematical models.
For instant, in [22–27], authors have applied GBCP to show
the existence of solution to a matrix equation:

X � D + 􏽘
m

i�1
W
∗
i XWi + 􏽘

m

i�1
G
∗
i XGi

⎛⎝ ⎞⎠, (2)

where D ∈ P(m) (set of m × m positive definite matrices) and
Wi andGi are arbitrary m × m matrices for each i and are
entries of block matrices given by

W �

W1

W2

W3

⋮
Wm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G �

G1

G2

G3

⋮
Gm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

Consider the system of fractional differential equations:

C
D

β
f(]) � K1(], f(])),

C
D

β
g(]) � K2(], g(])),

(4)

under boundary conditions,

f(0) � 0,

If(1) � f′(0),

g(0) � 0,

Ig(1) � g′(0),

(5)

where CD
β denotes CFD of order β defined by

C
D

β
f(]) �

1
Γ(n − β)

􏽚
]

0
(] − η)

n− β− 1
f

n
(η)dη,

C
D

β
g(]) �

1
Γ(n − β)

􏽚
]

0
(] − η)

n− β− 1
g

n
(η)dη.

(6)

(e existence of solutions of the above system has been
shown in [21] by using GBCP. In [28], authors have employed
the GBCP for the existence of solutions to a system of integral
equations:

u(t) � f(t) + 􏽚
t

a
K(t, x, S(u)(t))dx,

w(t) � f(t) + 􏽚
t

a
J(t, x, T(w)(t))dx,

(7)

for all u, w ∈ C([a, b]), x, t ∈ [a, b], and a> 0, where
f: M⟶ R is a continuous function, K, J: [a, b] × [a, b] ×

M⟶ R are lower semicontinuous operators, and
S, T:C([a, b])⟶ C([a, b]).

In this paper, motivated by the interpolation notion of
contractions and the applications of GBCP, we investigate
different conditions on the functions Ψ,Φ to show the
existence of fixed points of generalized interpolative con-
tractions (a new GBCP) of type I, II, III, and IV and hence,
we apply GBCP of type I to resolve the Urysohn integral
equation.

2. Preliminaries

Before stating our main results, we need to define some basic
notions for better understanding of readers.

Definition 1 (see [2]). Let ⊥ be a binary relation defined on a
nonempty set A (i.e., ⊥ ⊂ A × A) verifying the property
(O). (en, (A,⊥) is called an orthogonal set (in short,
O-set):

(O): there is a ∈ A such that either a⊥J orJ⊥a, ∀J ∈ A.

(8)

Example 1. LetA be the set of integers. Consider a⊥θ if and
only if a ≡ 1(mod θ). (en, (A,⊥) is an O-set. Indeed, 1⊥θ
for each θ.

Definition 2 (see [2]). A sequence Zn: n is a positive integer􏼈 􏼉

is said to be an O-sequence if either Zn⊥Zn+1 or Zn+1⊥Zn, for
all n.

Definition 3 (see [2]). (e O-set (A,⊥) endowed with a
metric d is called an O-metric space (in short, OMS) denoted
by (A,⊥, d).

Definition 4 (see [2]). (e O-sequence Zn􏼈 􏼉 ⊂ A is said to be
O-Cauchy if limn,m⟶∞d(Zn, Zm) � 0. If each O-Cauchy
sequence converges in A, then A is called O-complete.

Remark 1. Each complete metric space is O-complete, but
the converse is not true in general (see [2], for details).

Lemma 1. Let (X,⊥, d) be an OMS and ın􏼈 􏼉 ⊂ X be an
O-sequence, verifying limn⟶∞d(ın, ın+1) � 0. If the sequence
ın􏼈 􏼉 is not Cauchy, then there are ınk􏽮 􏽯, ımk

􏽮 􏽯, and ξ > 0 such
that

lim
k⟶∞

d lnk+1, lmk+1􏼐 􏼑 � ξ+, (9)

lim
k⟶∞

d lnk
, lmk

􏼐 􏼑 � d lnk+1, lmk
􏼐 􏼑 � d lnk

, lmk+1􏼐 􏼑 � ξ. (10)
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(e proof of this lemma has the same arguments that are
given in [20]. We omit details.

Definition 5. Let T:A⟶ A be a self-mapping. An element
υ ∈ A is said to be a fixed point of T if υ � Tυ.

Definition 6 (see [3]). Let (A,⊥, d) be an OMS and⊥ ⊂ A ×

A be a binary relation. A is called ⊥-regular if, for each
sequence ın􏼈 􏼉 ⊂ A so that ın⊥ın+1 for each n≥ 0 and ın⟶ ı
as n⟶∞, we have either ın⊥ı, or ı⊥ın, for all n≥ 0.

Definition 7 (see [2]). A mapping T:A⟶ A is said to be
asymptotically regular at a point υ of X if

lim
ı⟶∞

d T
ıυ, T

ı+1υ􏼐 􏼑 � 0. (11)

If T is asymptotically regular at each point inA, then it is
named as an asymptotically regular mapping.

3. (Ψ,Φ)⊥-Interpolative Contractions and
Related Fixed-Point Results

In this section, we initiate the notion of (Ψ,Φ)⊥-interpo-
lative contractions. We consider various conditions on
control functionsΨ,Φ to ensure the existence of fixed points
of (Ψ,Φ)⊥-interpolative contractions. In the following, we
develop the strategy towards main results.

Let Λ � (a, υ) ∈ A × A: a⊥υ{ }.

Definition 8. A mapping f:A × A⟶ [1,∞) is said to be
strictly ⊥-admissible if f(a, θ)> 1, for all a, θ ∈ A, with a⊥θ
and f(a, θ) � 1 otherwise.

Example 2. Let A � [0, 1), and we define the relation
⊥ ⊂ A × A by

a⊥θ if aθ ∈ a, θ{ } ⊂ A. (12)

(en, A is O-set. Define f:A × A⟶ [1,∞) by

f(a, θ) �

a +
2

1 + θ
, if a⊥θ,

1, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

(en, f is ⊥-admissible.

Definition 9. Let T:A⟶ A and ⊥ ⊂ A × A be a binary
relation. Such T is called ⊥-preserving if, for each q ∈ A and
p � T(q) such that q⊥p or p⊥q, there is ω � T(p) such that
p⊥ω or ω⊥p.

Example 3. Let A � [0, 1), and we define the relation
⊥ ⊂ A × A by

a⊥θ if aθ ∈ a, θ{ } ⊂ A. (14)

(en, A is an O-set. We define S:A⟶ A by

S(a) �

a + 1
7

, if a ∈ Q∩A,

0, if a ∈ Qc ∩A.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

(en, S is ⊥-preserving. Indeed, for a � 0, there is θ �

S(0) � 1/7 such that either a⊥θ or θ⊥a, and then, there is
ℓ � S(θ) such that either ℓ⊥θ or θ⊥ℓ.

Let (A, d) be a metric space. For a mapping S:A⟶ A

and positive real numbers a, b, c, we define the mappings
�F1,

�F2,
�F3,

�F4:A × A⟶ [0,∞) by

�F1(ℓ,J) � d(ℓ,J)[d(ℓ, Sℓ)]1/(a− b)(a− c)
[d(J, SJ)]

1/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
1/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]1/(c− a)(c− b)
,

�F2(ℓ,J) � d(ℓ,J)[d(ℓ, Sℓ)]a/(a− b)(a− c)
[d(J, SJ)]

a/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
b/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]c/(c− a)(c− b)
,

�F3(ℓ,J) � max

d(ℓ,J), [d(ℓ, Sℓ)]a2/(a− b)(a− c)
[d(J, SJ)]

a2/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
b2/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

�F4(ℓ,J) � d(ℓ,J)
a3/(a− b)(a− c)

d(J, SJ)
a3/(a− b)(a− c)

[d(ℓ, Sℓ) + d(J, SJ)]
b3/(b− a)(b− c)

[d(ℓ, SJ) + d(J, Sℓ)]c3/(c− a)(c− b)
.

(16)

It is important to note that, despite a, b, c> 0, some
exponents are negative; for example, if a> b, a> c, and b> c,
then 1/(b − a)(b − c)< 0. If any one of a, b, c goes to∞, then

�F1(ℓ,J) � d(ℓ,J). Moreover, we have the following in-
teresting facts about the exponents that can be proved by
using basic algebraic tools:
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1
(a − b)(a − c)

+
1

(b − a)(b − c)
+

1
(c − a)(c − b)

� 0,

a

(a − b)(a − c)
+

b

(b − a)(b − c)
+

c

(c − a)(c − b)
� 0,

a
2

(a − b)(a − c)
+

b
2

(b − a)(b − c)
+

c
2

(c − a)(c − b)
� 1,

a
3

(a − b)(a − c)
+

b
3

(b − a)(b − c)
+

c
3

(c − a)(c − b)
� a + b + c.

(17)

(e following observations are essential for the proofs of
main theorems.

Observation 1. (e following inequality holds for all a, b≥ 2
and r≥ 1:

(a + b)
r ≤ (ab)

r
. (18)

Proof. We note that the equality holds for a � b � 2. We can
assume that a≥ b; then, a � ηb, η≥ 1. Let b � t so that a � ηt,
t≥ 2. Define the function f: [2,∞)⟶ (− ∞,∞) by

f(t) � ηt
2

􏼐 􏼑
r

− (ηt + t)
r
, ∀t ∈ [2,∞). (19)

(is implies that

f
′
(t) �

d
dt

(f(t)) �
rt

r− 1

(η + 1)
r 2t

r η
η + 1

􏼠 􏼡

r

− 1􏼢 􏼣. (20)

Since 2tr(η/η + 1)r > 1 (otherwise t< 1), we have f′(t)

> 0. (is implies that f(t)≥ 0; hence, (ηt2)r − (ηt + t)r ≥ 0,
that is, (a + b)r ≤ (ab)r. □

Observation 2. Let K≥ 2. For any nonempty setA, we define
the mapping d:A × A⟶ [0,∞) by

d(u, v) �
K, if u≠ v,

0, if u � v.
􏼨 (21)

(en, the pair (A, d) is a metric space.

Definition 10. Let (A, d) be a metric space. A mapping
T:A⟶ A is said to have property P if, for any real number
r, it satisfies the following inequality:

d(ℓ, T(ℓ)) + d T(ℓ), T
2
(ℓ)􏼐 􏼑􏼐 􏼑

r

≤ d(ℓ, T(ℓ))d T(ℓ), T
2
(ℓ)􏼐 􏼑􏼐 􏼑

r
, ∀ℓ ∈ A.

(22)

Example 4. Let A � [1,∞) and consider the metric d de-
fined by d(u, v) � |u − v| for all u, v ∈ A. (e mapping
T:A⟶ A defined by T(ℓ) � Kℓ, for all ℓ ∈ A and
K≥ (5/2), satisfies the property P. Indeed,

d(ℓ, T(ℓ)) + d T(ℓ), T
2
(ℓ)􏼐 􏼑􏼐 􏼑

r

� [(K − 1)|ℓ| +(K − 1)|Kℓ|]r

≤ [(K − 1)(K + 1)|ℓ|]r ≤ (K − 1)
2
K|ℓ|2􏽨 􏽩

r

� d(ℓ, T(ℓ))d T(ℓ), T
2
(ℓ)􏼐 􏼑􏼐 􏼑

r
.

(23)

Example 5. Every identity mapping satisfies the property P.
(e constant mapping does not satisfy the property P. (e
mapping T:A⟶ A is defined by T(ℓ) � 0 for all ℓ ∈ A
which satisfies the property P only for ℓ � 0.

Example 6. Let A � (− ∞,∞). (e mapping T:A⟶ A

defined by T(ℓ) � 2 − 3ℓ for all ℓ ∈ A satisfies the property
P. In fact, the mapping T:A⟶ A defined by
T(ℓ) � a − bℓ, for all ℓ ∈ A, for b> a, satisfies the property P.

Example 7. Let A � [2.5,∞). (e mapping T:A⟶ A

defined by T(ℓ) � 2 − 3ℓ for all ℓ ∈ A satisfies the property P.

Example 8. Let A � [1,∞). (e mapping T:A⟶ A de-
fined by T(ℓ) � 1/ℓ2 for all ℓ ∈ A satisfies the property P.

Remark 2. (e proof of (eorem 2 depends largely on the
use of either “Observations 1 and 2” or “Property P.”

We proceed with the property P.

Definition 11. Let (A,⊥, d) be an OMS. A mapping
S:A⟶ A is said to be a (Ψ,Φ)⊥-interpolative fractional
contraction of types I, II, III, and IV, for i � 1, 2, 3, 4, re-
spectively, if there exist a strictly ⊥-admissible mapping f

and a, b, c ∈ (0,∞], for i � 1, and a, b, c ∈ (0,∞), for
i � 2, 3, 4, such that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤Φ �Fi(ℓ,J)( 􏼁, (24)

for all ℓ,J ∈ Λ and d(Sℓ, SJ)> 0.
If either a �∞ or b �∞ or c �∞ in (Ψ,Φ)⊥-inter-

polative fractional contraction of type I, we receive the re-
cently announced (ψ, ϕ)-contraction by Proinov [20] which
provided ℓ,J ∉ Λ.

We also note that, forΦ(ℓ) � Ψ(ℓ) − τ andΨ(ℓ) � ln(ℓ),
for all ℓ ∈ (0,∞), τ > 0, contraction (24) (i � 1) can be
written as follows:

τ + ln(f(ℓ,J)d(Sℓ, SJ))≤ ln(d(ℓ,J)) +
1

(a − b)(a − c)
ln(d(ℓ, Sℓ))

+
1

(a − b)(a − c)
ln(d(J, SJ)) +

1
(a − b)(a − c)

ln[d(ℓ, Sℓ) + d(J, SJ)]

+
1

(a − b)(a − c)
ln[d(ℓ, SJ) + d(J, Sℓ)],

(25)
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and then, we have

τ + Ψ(f(ℓ,J)d(Sℓ, SJ))≤Ψ(d(ℓ,J)) +
1

(a − b)(a − c)
Ψ(d(ℓ, Sℓ))

+
1

(a − b)(a − c)
Ψ(d(J, SJ)) +

1
(a − b)(a − c)

Ψ[d(ℓ, Sℓ) + d(J, SJ)]

+
1

(a − b)(a − c)
Ψ[d(ℓ, SJ) + d(J, Sℓ)].

(26)

(is represents a general version of the contraction
introduced by Wardowski [29], and if either a �∞ or b �

∞ or c �∞ and ℓ,J ∉ Λ, then type I represents an
F-contraction [29].

Remark 3. It is very important to note that the set of self-
mappings satisfying property P and contraction (24) is not
empty. For example, the mappings S(ℓ) � 2 − 3ℓ, for all
ℓ ∈ (∞,∞), and S(ℓ) � 2ℓ − 1, for all ℓ ∈ [2.5,∞), satisfy
both the property P and contraction (24) with
Φ(ℓ) � Ψ(ℓ) − τ and Ψ(ℓ) � ln(ℓ), for all ℓ ∈ (0,∞), where
τ > 0.

In the next result, we give a set of conditions that
guarantee the existence of a fixed point of a self-mapping S.

Theorem 2. Let (A,⊥, d) be an ⊥-regular O-complete
metric space (in short, OCMS). Let S:A⟶ A be an
⊥-preserving mapping verifying (24) for i � 1 and property P.
Suppose the relation ⊥ is transitive and the functions
Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z1⊥Z0
or Z0⊥Z1

(ii) Ψ,Φ are nondecreasing and Φ(J)<Ψ(J), for all
J> 0

(iii) lim supJ⟶δ+Φ(J)<Ψ(δ+), for all δ > 0
(iv) lim supa⟶0Φ(a)≤ liminfa⟶ξ+Ψ(a)

=en, S admits a fixed point in A.

Proof. Step 1: simplification of �F1(Zn− 1, Zn):

�F1 Zn− 1, Zn( 􏼁 � d Zn− 1, Zn( 􏼁d Zn− 1, SZn− 1( 􏼁
1/(a− b)(a− c)

d Zn, SZn( 􏼁
1/(a− b)(a− c)

d Zn− 1, SZn− 1( 􏼁 + d Zn, SZn( 􏼁􏼂 􏼃
1/(b− a)(b− c)

d Zn− 1, SZn( 􏼁 + d Zn, SZn− 1( 􏼁􏼂 􏼃
1/(c− a)(c− b)

≤d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
1/(a− b)(a− c)

d Zn, Zn+1( 􏼁
1/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
1/(b− a)(b− c)

d Zn− 1, Zn+1( 􏼁 + d Zn, Zn( 􏼁􏼂 􏼃
1/(c− a)(c− b)

≤d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
1/(a− b)(a− c)

d Zn, Zn+1( 􏼁
1/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
1/(b− a)(b− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
1/(c− a)(c− b)

� d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
1/(a− b)(a− c)

d Zn, Zn+1( 􏼁
1/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
1/(b− a)(b− c)+1/(c− a)(c− b)

≤d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
1/(a− b)(a− c)

d Zn, Zn+1( 􏼁
1/(a− b)(a− c)

d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
1/(b− a)(b− c)+1/(c− a)(c− b) by propertyP

� d Zn− 1, Zn( 􏼁
1+1/(a− b)(a− c)+1/(b− a)(b− c)+1/(c− a)(c− b)

d Zn, Zn+1( 􏼁
1/(a− b)(a− c)+1/(b− a)(b− c)+1/(c− a)(c− b)

� d Zn− 1, Zn( 􏼁,

(27)
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Step 2: by (i), for an arbitrary Z0 ∈ A, there is Z1 � S(Z0)

such that Z0⊥Z1 or Z1⊥Z0. It is assumed that S is an
⊥-preserving mapping, so there is Z2 � S(Z1) such that
Z1⊥Z2 or Z2⊥Z1, and then, there is Z3 � S(Z2) such that
Z2⊥Z3 or Z3⊥Z2. In general, there is Zn+1 � S(Zn) such that
Zn⊥Zn+1 or Zn+1⊥Zn for all. Hence, f(Zn, Zn+1)> 1, for all
n≥ 0. Note that if Zn � S(Zn), then Zn is a fixed point of S, for
all n≥ 0. We assume that Zn ≠ S(Zn), for all n≥ 0. (us,
d(SZn− 1, SZn)> 0, for each n≠ 1 (otherwise, Zn � SZn, for
some n). Let hn � d(Zn, Zn+1), for all n≥ 0. By the first part of
(ii) and (24) ( i� 1), we have

Ψ hn( 􏼁<Ψ f Zn− 1, Zn( 􏼁d S Zn− 1( 􏼁, S Zn( 􏼁( 􏼁( 􏼁≤Φ �F1 Zn− 1, Zn( 􏼁( 􏼁

≤Φ hn− 1( 􏼁.

(28)

In view of second part of (ii), we write

Ψ hn( 􏼁≤Φ hn− 1( 􏼁<Ψ hn− 1( 􏼁. (29)

Since Ψ is nondecreasing, one gets hn < hn− 1, for each
n≥ 1. (is shows that the sequence hn􏼈 􏼉 is decreasing, so

there is L≥ 0 such that limn⟶∞hn � L+. If L> 0, by (29), one
obtains

Ψ(L+) � lim
n⟶∞
Ψ hn( 􏼁≤ lim

n⟶∞
supΦ hn− 1( 􏼁≤ lim

a⟶L+
supΦ(a).

(30)

(is contradicts (iii), so L � 0, i.e., S is an asymptotically
regular mapping.

Step 3: we claim that Zn􏼈 􏼉 is a Cauchy sequence. If not,
then, by Lemma 1, there are Znk

􏽮 􏽯 and Zmk
􏽮 􏽯 of Zn􏼈 􏼉 and ξ > 0

such that (9) and (10) hold. By (9), we infer that
d(Znk+1, Zmk+1)> ξ. Since Zn⊥Zn+1, for all n≥ 0, by transitivity
of⊥, we have Znk

⊥Zmk
and hence, f(Znk

, Zmk
)> 1 for all k≥ 1.

Letting ℓ � Znk
and J � Zmk

in (24) (i � 1), we have, for each
k≥ 1,

Ψ d Znk+1, Zmk+1􏼐 􏼑􏼐 􏼑≤Ψ f Znk
, Zmk

􏼐 􏼑d SZnk
, SZmk

􏼐 􏼑􏼐 􏼑

≤Φ �F1 Znk
, Zmk

􏼐 􏼑􏼐 􏼑.
(31)

We note that

�F1 Znk
, Zmk

􏼐 􏼑 � d Znk
, Zmk

􏼐 􏼑d Znk
, SZnk

􏼐 􏼑
1/(a− b)(a− c)

d Zmk
, SZmk

􏼐 􏼑
1/(a− b)(a− c)

d Znk
, SZnk

􏼐 􏼑 + d Zmk
, SZmk

􏼐 􏼑􏽨 􏽩
1/(b− a)(b− c)

d Znk
, SZmk

􏼐 􏼑 + d Zmk
, SZnk

􏼐 􏼑􏽨 􏽩
1/(c− a)(c− b)

≤ d Znk
, Zmk

􏼐 􏼑d Znk
, Znk+1􏼐 􏼑

1/(a− b)(a− c)
d Zmk

, Zmk+1􏼐 􏼑
1/(a− b)(a− c)

d Znk
, Znk+1􏼐 􏼑 + d Zmk

, Zmk+1􏼐 􏼑􏽨 􏽩
1/(b− a)(b− c)

d Znk
, Zmk+1􏼐 􏼑 + d Zmk

, Znk+1􏼐 􏼑􏽨 􏽩
1/(c− a)(c− b)

� Bk.

(32)

If Zk � d(Znk+1, Zmk+1), we have

Ψ Zk( 􏼁≤Φ Bk( 􏼁, for all k≥ 1. (33)

By (9), we have limk⟶∞Zk � ξ+, and (33) implies

liminf
a⟶ξ+
Ψ(a)≤ liminf

k⟶∞
Ψ Zk( 􏼁≤ limsup

k⟶∞
Φ Bk( 􏼁≤ limsup

a⟶0
Φ(a).

(34)

It is a contradiction to (iv), so Zn􏼈 􏼉 is a Cauchy sequence
in the OCMS (A,⊥, d); hence, there is a∗ ∈ A so that
Zn⟶ a∗ as n⟶∞, and the ⊥-regularity of (A,⊥, d)

yields that Zn⊥a∗ or a∗⊥Zn. (us, f(Zn, a∗)> 1. We claim
that d(a∗, S(a∗)) � 0. Assume that d(Zn+1, S(a∗))> 0 for
infinitely many values of n. By (24) (i � 1),

Ψ d Zn+1, S a
∗

( 􏼁( 􏼁( 􏼁≤Ψ f Zn, a
∗

( 􏼁d S Zn( 􏼁, S a
∗

( 􏼁( 􏼁( 􏼁

≤Φ �F1 Zn, a
∗

( 􏼁( 􏼁.
(35)

By the first part of (ii), we get d(Zn+1, S(a∗))< �F1(Zn,

a∗). Applying limit n⟶∞, we obtain d(a∗, S(a∗))≤ 0.
(is implies that d(a∗, S(a∗)) � 0; hence, a∗ � S(a∗). □

Next result gives an idea on conditions ensuring the
existence of fixed points of S verifying (24) (i � 1).

Theorem 3. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24)
(i � 1) and property P. Assume the relation⊥ is transitive and
the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞) are such that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1
or Z1⊥Z0

(ii) Φ(J)<Ψ(J), for all J> 0
(iii) infa>ξ>0Ψ(a)> − ∞
(iv) If Ψ(Zn)􏼈 􏼉 and Φ(Zn)􏼈 􏼉 are converging to the same

limit and Ψ(Zn)􏼈 􏼉 is strictly decreasing, then
limn⟶∞Zn � 0

(v) limsupa⟶0Φ(a)< liminfa⟶ξ+Ψ(a), for all ξ > 0
(vi) limsupa⟶0Φ(a)< liminfa⟶ξΨ(a), for all ξ > 0

=en, S possesses a fixed point in A.

Proof. Note that we need (i)-(iv) to show that S is an as-
ymptotically regular. Condition (v) is needed to establish
that Zn􏼈 􏼉 is Cauchy and (vi) is useful to ensure that the
mapping S has a fixed point.

By (i), for an arbitrary Z0 ∈ A, there is Z1 � S(Z0) so that
Z0⊥Z1 or Z1⊥Z0. Since S is ⊥-preserving, there is Z2 � S(Z1)

so that Z1⊥Z2 or Z2⊥Z1, and then, Z3 � S(Z2) so that Z2⊥Z3
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or Z3⊥Z2. In general, there is Zn+1 � S(Zn) in order that
Zn⊥Zn+1 or Zn+1⊥Zn, for all n≥ 0. Hence, f(Zn, Zn+1)> 1.
Note that if Zn � S(Zn), then Zn is a fixed point of S. Suppose
that Zn ≠ S(Zn), for all n≥ 0. (us, d(SZn− 1, SZn)> 0 (oth-
erwise Zn � SZn). Since f(Zn, Zn+1)> 1, by (ii) and (24)
(i � 1), we write

Ψ d Zn, Zn+1( 􏼁( 􏼁≤Ψ f Zn− 1, Zn( 􏼁d S Zn− 1( 􏼁, S Zn( 􏼁( 􏼁( 􏼁

≤Φ �F1 Zn− 1, Zn( 􏼁( 􏼁

≤Ψ d Zn− 1, Zn( 􏼁( 􏼁.

(36)

Inequality (36) shows that Ψ(d(Zn− 1, Zn))􏼈 􏼉 is strictly
decreasing. If it is not bounded below, in view of (iii), we get

inf
d(Zn− 1 ,Zn)> ξ

Ψ(d(Zn− 1, Zn))> − ∞. (is implies that

lim inf
d Zn− 1 ,Zn( )⟶ ξ+

Ψ d Zn− 1, Zn( 􏼁( 􏼁> − ∞. (37)

(us, limn⟶∞d(Zn− 1, Zn) � 0; otherwise, we have

lim inf
d Zn− 1 ,Zn( )⟶ ξ+

Ψ d Zn− 1, Zn( 􏼁( 􏼁 � − ∞, (38)

(i.e., a contradiction to (iii)). If it is bounded below, then
Ψ(d(Zn− 1, Zn))􏼈 􏼉 is a convergent sequence, and by (36),
Φ(d(Zn− 1, Zn))􏼈 􏼉 also converges and both have the same
limit. (us, by (iv), one gets limn⟶∞d(Zn− 1, Zn) � 0. Hence,
S is asymptotically regular.

Now, we claim that Zn􏼈 􏼉 is a Cauchy sequence. If Zn􏼈 􏼉 is
not a Cauchy sequence, so, by Lemma 1, there exist Znk

􏽮 􏽯 and
Zmk

􏽮 􏽯 and ξ > 0 such that (9) and (10) hold. By (9), we infer
that d(Znk+1, Zmk+1)> ξ. Since Zn⊥Zn+1, for all n≥ 0, so, by
transitivity of ⊥, we have Znk

⊥Zmk
, and hence, f(Znk

, Zmk
)> 1

for all k≥ 1. Letting x � Znk
and y � Zmk

in (24), one writes,
for all k≥ 1,

Ψ d Znk+1, Zmk+1􏼐 􏼑􏼐 􏼑≤Ψ f Znk
, Zmk

􏼐 􏼑d SZnk
, SZmk

􏼐 􏼑􏼐 􏼑

≤Φ �F1 Znk
, Zmk

􏼐 􏼑􏼐 􏼑􏼐 􏼑.
(39)

We note that

�F1 Znk
, Zmk

􏼐 􏼑 � d Znk
, Zmk

􏼐 􏼑d Znk
, SZnk

􏼐 􏼑
1/(a− b)(a− c)

d Zmk
, SZmk

􏼐 􏼑
1/(a− b)(a− c)

d Znk
, SZnk

􏼐 􏼑 + d Zmk
, SZmk

􏼐 􏼑􏽨 􏽩
1/(b− a)(b− c)

d Znk
, SZmk

􏼐 􏼑 + d Zmk
, SZnk

􏼐 􏼑􏽨 􏽩
1/(c− a)(c− b)

≤ d Znk
, Zmk

􏼐 􏼑d Znk
, Znk+1􏼐 􏼑

1/(a− b)(a− c)
d Zmk

, Zmk+1􏼐 􏼑
1/(a− b)(a− c)

d Znk
, Znk+1􏼐 􏼑 + d Zmk

, Zmk+1􏼐 􏼑􏽨 􏽩
1/(b− a)(b− c)

d Znk
, Zmk+1􏼐 􏼑 + d Zmk

, Znk+1􏼐 􏼑􏽨 􏽩
1/(c− a)(c− b)

� Bk.

(40)

If Zk � d(Znk+1, Zmk+1), we have

Ψ Zk( 􏼁≤Φ Bk( 􏼁, for all k≥ 1. (41)

By (9), we have limk⟶∞Zk � ξ+ and (41) implies

lim inf
a⟶ξ+
Ψ(a)≤ liminf

k⟶∞
Ψ Zk( 􏼁≤ limsup

k⟶∞
Φ Bk( 􏼁≤ limsup

a⟶0
Φ(a).

(42)

It contradicts (v), so Zn􏼈 􏼉 is a Cauchy sequence in the
OCMSA. Hence, there is a∗ ∈ A in order that Zn⟶ a∗ as
n⟶∞.

To show that Sa∗ � a∗, we have two cases:

Case 1: if d(Zn+1, Sa∗) � 0, for some n≥ 0, then, since

d a
∗
, Sa
∗

( 􏼁≤ d a
∗
, Zn+1( 􏼁 + d Zn+1, Sa

∗
( 􏼁 � d a

∗
, Zn+1( 􏼁,

(43)

taking limit n⟶∞ on both sides, we have
d(a∗, Sa∗)≤ 0. (is implies d(a∗, S(a∗)) � 0; thus,
a∗ � S(a∗).

Case 2: if, for all n≥ 0, d(Zn+1, Sa∗)> 0, then by
⊥-regularity of A, we find Zn⊥a∗ or a∗⊥Zn, so
f(Zn, a∗)> 1. By (24) (i � 1), one writes

Ψ d Zn+1, Sa
∗

( 􏼁( 􏼁≤Ψ f Zn, a
∗

( 􏼁d SZn, Sa
∗

( 􏼁( 􏼁

≤Φ �F1 Zn, a
∗

( 􏼁( 􏼁 for all n≥ 0.
(44)

By taking Hn � d(Zn+1, Sa∗) and bn � �F1(Zn, a∗), one
writes

Ψ Hn( 􏼁≤Φ bn( 􏼁 for all n≥ 0. (45)

Take ξ � d(a∗, Sa∗). Note that Hn⟶ ξ and bn⟶ 0 as
n⟶∞. Applying limits on (45), we have

lim inf
a⟶ξ
Ψ(a)≤ lim inf

n⟶∞
Ψ Hn( 􏼁≤ lim sup

n⟶∞
Φ bn( 􏼁

≤ lim inf
a⟶0
Φ(a).

(46)

(is contradicts (vi) if ξ > 0.(us, we have d(a∗, Sa∗) � 0,
i.e., a∗ � Sa∗, that is, a∗ is a fixed point of S. □
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Remark 4. Observe that

�F2 Zn− 1, Zn( 􏼁 � d Zn− 1, Zn( 􏼁d Zn− 1, SZn− 1( 􏼁
a/(a− b)(a− c)

d Zn, SZn( 􏼁
a/(a− b)(a− c)

d Zn− 1, SZn− 1( 􏼁 + d Zn, SZn( 􏼁􏼂 􏼃
b/(b− a)(b− c)

d Zn− 1, SZn( 􏼁 + d Zn, SZn− 1( 􏼁􏼂 􏼃
c/(c− a)(c− b)

≤d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
a/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
b/(b− a)(b− c)

d Zn− 1, Zn+1( 􏼁 + d Zn, Zn( 􏼁􏼂 􏼃
c/(c− a)(c− b)

≤d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
a/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
b/(b− a)(b− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
c/(c− a)(c− b)

� d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
a/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
b/(b− a)(b− c)+c/(c− a)(c− b)

≤d Zn− 1, Zn( 􏼁d Zn− 1, Zn( 􏼁
a/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a/(a− b)(a− c)

d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
b/(b− a)(b− c)+c/(c− a)(c− b) by property P

� d Zn− 1, Zn( 􏼁
1+a/(a− b)(a− c)+b/(b− a)(b− c)+c/(c− a)(c− b)

d Zn, Zn+1( 􏼁
a/(a− b)(a− c)+b/(b− a)(b− c)+c/(c− a)(c− b)

� d Zn− 1, Zn( 􏼁,

�F3 Zn− 1, Zn( 􏼁 � max

d Zn− 1, Zn( 􏼁, d Zn− 1, SZn− 1( 􏼁
a2/(a− b)(a− c)

d Zn, SZn( 􏼁
a2/(a− b)(a− c)

d Zn− 1, SZn− 1( 􏼁 + d Zn, SZn( 􏼁􏼂 􏼃
b2/(b− a)(b− c)

d Zn− 1, SZn( 􏼁 + d Zn, SZn− 1( 􏼁􏼂 􏼃
c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

� max

d Zn− 1, Zn( 􏼁, d Zn− 1, Zn( 􏼁
a2/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a2/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
b2/(b− a)(b− c)

d Zn− 1, Zn+1( 􏼁 + d Zn, Zn( 􏼁􏼂 􏼃
c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤max

d Zn− 1, Zn( 􏼁, d Zn− 1, Zn( 􏼁
a2/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a2/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
b2/(b− a)(b− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
c2/(c− a)(c− b)

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤max

d Zn− 1, Zn( 􏼁, d Zn− 1, Zn( 􏼁
a2/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a2/(a− b)(a− c)

d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
b2/(b− a)(b− c)

d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
c2/(c− a)(c− b) by property P

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

� max

d Zn− 1, Zn( 􏼁,

d Zn− 1, Zn( 􏼁
a2/(a− b)(a− c)+b2/(b− a)(b− c)+c2/(c− a)(c− b)

d Zn, Zn+1( 􏼁
a2/(a− b)(a− c)+b2/(b− a)(b− c)+c2/(c− a)(c− b)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� max d Zn− 1, Zn( 􏼁, d Zn, Zn+1( 􏼁􏼈 􏼉,
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�F4 Zn− 1, Zn( 􏼁 � d Zn− 1, Zn( 􏼁
a3/(a− b)(a− c)

d Zn, SZn( 􏼁
a3/(a− b)(a− c)

d Zn− 1, SZn− 1( 􏼁 + d Zn, SZn( 􏼁􏼂 􏼃
b3/(b− a)(b− c)

d Zn− 1, SZn( 􏼁 + d Zn, SZn− 1( 􏼁􏼂 􏼃
c3/(c− a)(c− b)

� d Zn− 1, Zn( 􏼁
a3/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a3/(a− b)(a− c)

d Zn− 1, Zn( 􏼁 + d Zn, Zn+1( 􏼁􏼂 􏼃
b3/(b− a)(b− c)

d Zn− 1, Zn+1( 􏼁 + d Zn, Zn( 􏼁􏼂 􏼃
c3/(c− a)(c− b)

≤ d Zn− 1, Zn( 􏼁
a3/(a− b)(a− c)

d Zn, Zn+1( 􏼁
a3/(a− b)(a− c)

d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
b3/(b− a)(b− c)

d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
c3/(c− a)(c− b)

� d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
a3/(a− b)(a− c)+b3/(b− a)(b− c)+c3/(c− a)(c− b)

� d Zn− 1, Zn( 􏼁d Zn, Zn+1( 􏼁􏼂 􏼃
(a+b+c)

≤max d Zn− 1, Zn( 􏼁, d Zn, Zn+1( 􏼁􏼈 􏼉. (47)

(e next two results address the (Ψ,Φ)⊥-interpolative
fractional contractions of types II and III.

Theorem 4. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24) for
i � 2, 3 and property P. Suppose the relation ⊥ is transitive,
and the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z1⊥Z0
or Z0⊥Z1

(ii) Ψ,Φ are nondecreasing and Φ(J)<Ψ(J), for all
J> 0

(iii) lim supJ⟶δ+Φ(J)<Ψ(δ+), for all δ > 0
(iv) limsupa⟶0Φ(a)≤ liminfa⟶ξ+Ψ(a)

=en, S has a fixed point in A.

Proof. Keeping in view the simplifications for �F2(Zn− 1, Zn)

and �F3(Zn− 1, Zn) given in Remark 4 with the fact that
d(Zn− 1, Zn)> d(Zn, Zn+1) and following the proof of(eorem
2, we assert that S admits a fixed point in A. If
d(Zn− 1, Zn)< d(Zn, Zn+1), then we have a contradiction to the
definition of function Ψ. □

Theorem 5. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24)
(i � 2, 3) and property P. Assume the relation ⊥ is transitive,
and the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1
or Z1⊥Z0

(ii) Φ(J)<Ψ(J), for all J> 0
(iii) infa>ξ>0Ψ(a)> − ∞
(iv) If Ψ(Zn)􏼈 􏼉 and Φ(Zn)􏼈 􏼉 are converging to the same

limit and Ψ(Zn)􏼈 􏼉 is strictly decreasing, then
limn⟶∞Zn � 0

(v) limsupa⟶0Φ(a)< liminfa⟶ξ+Ψ(a), for all ξ > 0
(vi) limsupa⟶0Φ(a)< liminfa⟶ξΨ(a), for all ξ > 0

=en, S possesses a fixed point in A.

Proof. Keeping in view the simplifications for �F2(Zn− 1, Zn)

and �F3(Zn− 1, Zn) given in Remark 4 with the fact that

d(Zn− 1, Zn)>d(Zn, Zn+1) and following the proof of(eorem
2, we assert that S admits a fixed point in A. If
d(Zn− 1, Zn)<d(Zn, Zn+1), then we have a contradiction to the
definition of function Ψ. □

(e next two results address the (Ψ,Φ)⊥-interpolative
fractional contraction of type IV.

Theorem 6. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24) for
i � 4 with a + b + c< 0.5 and property P. Suppose the relation
⊥ is transitive and the functions Ψ,Φ: (0,∞)⟶ (− ∞,∞)

are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z1⊥Z0
or Z0⊥Z1

(ii) Ψ,Φ are nondecreasing and Φ(J)<Ψ(J), for all
J> 0

(iii) lim supJ⟶δ+Φ(J)<Ψ(δ+), for all δ > 0
(iv) limsupa⟶0Φ(a)≤ liminfa⟶ξ+Ψ(a)

=en, S has a fixed point in A.

Proof. Keeping in view the simplifications for �F4(Zn− 1, Zn)

given in Remark 4 and following the proof of (eorem 4, we
assert that S admits a fixed point in A. □

Theorem 7. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping verifying (24)
(i � 4) with a + b + c< 0.5 and property P. Assume the re-
lation ⊥ is transitive and the functions
Ψ,Φ: (0,∞)⟶ (− ∞,∞) are so that

(i) For each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1
or Z1⊥Z0

(ii) Φ(J)<Ψ(J), for all J> 0
(iii) infa>ξ>0Ψ(a)> − ∞
(iv) If Ψ(Zn)􏼈 􏼉 and Φ(Zn)􏼈 􏼉 are converging to the same

limit and Ψ(Zn)􏼈 􏼉 is strictly decreasing, then
limn⟶∞Zn � 0

(v) limsupa⟶0Φ(a)< liminfa⟶ξ+Ψ(a), for all ξ > 0
(vi) limsupa⟶0Φ(a)< liminfa⟶ξΨ(a), for all ξ > 0

=en, S possesses a fixed point in A.
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Proof. Keeping in view the simplifications for �F4(Zn− 1, Zn)

given in Remark 4 and following the proof of (eorem 5, we
assert that S admits a fixed point in A. □

4. The Generality of the Main Results

Let us defineΨ(J) � J, for allJ> 0, in any one of(eorems
2 and 3, we receive a general version of the interpolative
Boyd–Wong fixed-point theorem proved in [9], and defining
Φ(J) � Ψ(J) − τ in (eorem 2, we receive the following
result (interpolative fractional version of Wardowski fixed-
point theorem with only monotonicity condition on Ψ).

Corollary 1. Let (A, d) be a complete metric space. Let
S: A⟶ A be a mapping so that

Ψ(d(Sℓ, SJ))≤Ψ �Fi(ℓ,J)( 􏼁 − τ ∀ℓ,J ∈ A,

i � 1, 2, 3, 4 provided d(Sℓ, SJ)> 0,
(48)

where Ψ: (0,∞)⟶ R is nondecreasing and τ > 0. =en,
there is a fixed point of S in A.

If we define Φ(J) � Ψ(J) − τ(J) in (eorem 2, we get
an interpolative fractional version of fixed-point theorem
presented in [4].

Corollary 2. Let (A, d) be a complete metric space. Let
S: A⟶ A be a mapping so that

τ(d(ℓ,J)) + Ψ(d(Sℓ, SJ))≤Ψ �Fi(ℓ,J)( 􏼁 ∀ℓ,J ∈ A,

i � 1, 2, 3, 4 provided d(Sℓ, SJ)> 0,

(49)

where Ψ: (0,∞)⟶ R is nondecreasing and
liminfa⟶t+τ(a)> 0,∀t≥ 0. =en, S has a fixed point in A.

We receive the following interpolative fractional version
of Moradi theorem [30] if we take Φ(J) � h(Ψ(J)) in
(eorem 2.

Corollary 3. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping so that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤ h Ψ �Fi(ℓ,J)( 􏼁( 􏼁 ∀ℓ,J ∈ Λ,

i � 1, 2, 3, 4 provided d(Sℓ, SJ)> 0,

(50)
where

(i) h: I⟶ [0,∞) is an upper semicontinuous function
with h(J)<J, for all J ∈ I ⊂ R

(ii) Ψ: (0,∞)⟶ I is nondecreasing

Assume that, for each Z0 ∈ A, there is Z1 � S(Z0) such
that Z0⊥Z1 or Z1⊥Z0. (en, S has a unique fixed point in A.

Defining h(J) � Jδ and δ ∈ (0, 1) in Corollary 3, we
have the next result.

Corollary 4. Let (A,⊥, d) be an ⊥-regular and OCMS. Let
S: A⟶ A be an ⊥-preserving mapping so that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤ Ψ �Fi(ℓ,J)( 􏼁( 􏼁
r ∀ℓ,J ∈ Λ,

i � 1, 2, 3, 4 providedd(Sℓ, SJ)> 0,

(51)

where Ψ: (0,∞)⟶ (0, 1) is nondecreasing. Assume that,
for each Z0 ∈ A, there is Z1 � S(Z0) such that Z0⊥Z1 or
Z1⊥Z0. =en, S has a fixed point in A.

Observe that Corollary 4 is an improvement of Jle-
li–Samet fixed-point theorem [31] and the results of Li and
Jiang [32] and Ahmad et al. [33].

An improvement of Skof fixed-point theorem [34] may
be stated by putting Φ(J) � λΨ(J) in (eorem 2, for i � 1,
with either a �∞ or b �∞ or c �∞.

Corollary 5. Let (A,⊥, d) be an ⊥-regular OCMS. Let
S: A⟶ A be an ⊥-preserving mapping so that

Ψ(f(ℓ,J)d(Sℓ, SJ))≤ λΨ �F1(ℓ,J)( 􏼁 ∀ℓ,

J ∈ Λ, provided d(Sℓ, SJ)> 0,
(52)

whereΨ: (0,∞)⟶ (0,∞) is nondecreasing and λ ∈ (0, 1).
Assume that, for each Z0 ∈ A, there is Z1 � S(Z0) so that
Z0⊥Z1 or Z1⊥Z0. =en, S has a unique fixed point in A.

5. The Existence of the Solution to Urysohn
Integral Equation (UIE)

In this section, we will apply (eorem 2 for the existence of
the unique solution to UIE:

ℓ(Z) � f(Z) + 􏽚
IR

K1(Z, s, ℓ(s))ds. (53)

(is integral equation encapsulates both Volterra inte-
gral equation (VIE) and Fredholm integral equation (FIE),
depending on the region of integration (IR). If IR � (a, x),
where a is fixed, then UIE is VIE, and for IR � (a, b), where
a, b are fixed, UIE is FIE. In the literature, one can find many
approaches to find a unique solution to UIE (see [35–39] and
references therein). We are interested to use a fixed-point
technique for this purpose. (e fixed-point technique is
simple and elegant to show the existence of a unique solution
to further mathematical models.

Let IR be a set of finite measure and
L2

IR � ℓ|􏽒IR|ℓ(s)|2ds<∞􏽮 􏽯.
Define the norm ‖.‖: L2

IR⟶ [0,∞) by

‖ℓ‖2 �

����������

􏽚
IR

|ℓ(s)|
2ds

􏽲

, for all ℓ,J ∈L2
IR. (54)

An equivalent norm can be defined as follows:

‖ℓ‖2,] �

��������������������������

sup e
− ]􏽚

IR
α(s)ds

􏽚
IR

|ℓ(s)|
2ds

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

􏽶
􏽴

, for all ℓ ∈L2
IR, ]> 1.

(55)

(en, (L2
IR, ‖.‖2,]) is a Banach space. Let

A � ℓ ∈L2
IR: ℓ(s)> 0 for almost every s􏼈 􏼉. (e metric d]
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associated to norm ‖.‖2,] is given by d](ℓ,J) � ‖ℓ − J‖2,],
for all ℓ,J ∈ A. Define an orthogonal relation ⊥ on A by

a⊥υ if and only if a(s)υ(s)≥ υ(s), for all a, υ ∈ A. (56)

(en, (A,⊥, d) is an OCMS (see(eorem 4.1 in [3]). Let
L: A × A⟶ (1,∞) be defined by

L(δ, t) � e
‖δ+t‖L2 for all δ, t ∈ Awith δ⊥t. (57)

(en, L is a strictly ⊥-admissible mapping. Put
M � inf L(δ, t), ∀δ, t ∈ Awith δ⊥t{ }. Let

(A1) (e kernel K1: IR × IR × R⟶ R satisfies Car-
athéodory conditions and

K1(Z, s, ℓ(s))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤w(Z, s) + e(Z, s)|ℓ(s)|; w,

e ∈L2
(IR × IR), e(Z, s)> 0.

(58)

(A2) (e function f: IR⟶ [1,∞) is continuous and
bounded on IR.
(A3) (ere exists a positive constant C such that

sup
Z∈IR

􏽚
IR

K1(Z, s)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds≤C. (59)

(A4) For any ℓ0 ∈L
2
IR, there is ℓ1 � R(ℓ0) such that

ℓ1⊥ℓ0 or ℓ0⊥ℓ1.
(A5) (ere exists a nonnegative and measurable
function q: IR × IR⟶ R such that

α(Z) ≔ 􏽚
IR

q
2
(Z, s)ds≤

1
]M

2 (60)

and integrable over IR with

K1(Z, s, ℓ(s)) − K1(Z, s,J(s))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ q(Z, s)|ℓ(s) − J(s)|,

(61)

for all Z, s ∈ IR and ℓ,J ∈ A with ℓ⊥J.

Theorem 8. Suppose that the mappings f and K1 mentioned
above satisfy conditions (A1)–(A5); then, the UIE (53) has a
unique solution.

Proof. Define the mapping R: A⟶ A, in accordance with
the abovementioned notations, by

(Rℓ)(Z) � f(Z) + 􏽚
IR

K1(Z, s, ℓ(s))ds. (62)

(e operator R is ⊥-preserving: let ℓ, J ∈ A with ℓ⊥J;
then, ℓ(s)J(s) ≥ J(s). Since, for almost every Z ∈ IR,

(Rℓ)(Z) � f(Z) + 􏽚
IR

K1(Z, s, ℓ(s))ds≥ 1, (63)

this implies that (Rℓ)(Z)(RJ)(Z) ≥ (RJ)(Z). (us,
(Rℓ)⊥(RJ).

Self-operator: conditions (A1) and (A3) imply that R is
continuous and compact mapping fromA toA (see Lemma
3 in [35]).

By (A4), for any ℓ0 ∈ A, there is ℓ1 � R(ℓ0) such that
ℓ1⊥ℓ0 or ℓ0⊥ℓ1, and using the fact that R is ⊥-preserving, we
have ℓn � Rn(ℓ0) with ℓn⊥ℓn+1 or ℓn+1⊥ℓn, for all n≥ 0. We
will check the contractive condition (24) of(eorem 2 in the
next lines. By (A5) and Holder inequality, we have

|(Rℓ)(Z) − (RJ)(Z)|
2

� 􏽚
IR

K1(Z, s, ℓ(s))ds − 􏽚
IR

K1(Z, s,J(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤ 􏽚
IR

K1(Z, s, ℓ(s)) − K1(Z, s,J(s))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ds􏼒 􏼓
2

≤ 􏽚
IR

q(Z, s)|ℓ(s) − J(s)|ds􏼒 􏼓
2

≤􏽚
IR

q
2
(Z, s)ds · 􏽚

IR
|ℓ(s) − J(s)|

2ds

� α(Z)􏽚
IR

|ℓ(s) − J(s)|
2ds.

(64)

(is implies, by integrating with respect to Z,

􏽚
IR

|(Rℓ)(Z) − (RJ)(Z)|
2
dZ ≤􏽚

IR
α(Z)􏽚

IR
|ℓ(s) − J(s)|

2ds􏼒 􏼓dZ

� 􏽚
IR

α(Z)e
]􏽚

IR
α(s)ds

· e
− ]􏽚

IR
α(s)ds

􏽚
IR

|ℓ(s) − J(s)|
2ds⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dZ

≤ ‖ℓ − J‖
2
2,]􏽚

IR
α(Z)e

]􏽚
IR

α(s)ds

dZ

≤
1

]M
2‖ℓ − J‖

2
2,]e

]􏽚
IR

α(s)ds

.

(65)
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(us, we have

M
2
e

− ]􏽚
IR

α(s)ds

􏽚
IR

|(Rℓ)(Z) − (RJ)(Z)|
2
dZ≤

1
]
‖ℓ − J‖

2
2,].

(66)

(is implies that

M
2
‖(Rℓ) − (RJ)‖

2
2,] ≤

1
]
‖ℓ − J‖

2
2,]. (67)

(at is,

L(ℓ,J)d]((Rℓ), (RJ))≤
�
1
]

􏽲

d](ℓ,J). (68)

Taking ln on both sides and defining Ψ(t) � ln(t) with
Φ(t) � Ψ(t) − τ, τ > 0, we have

Ψ L(ℓ,J)d]((Rℓ), (RJ))( 􏼁≤Φ �F1(ℓ,J)( 􏼁,

τ � − ln
�
1
]

􏽲

􏼠 􏼡, a �∞.

(69)

(e defined Ψ and Φ satisfy remaining conditions of
(eorem 2. Hence, by (eorem 2, the operator R has a
unique fixed point. (is means that the UIE (53) has a
unique solution. □

6. Conclusion

(e (Ψ,Φ)⊥ interpolative contractions are broad enough to
include well-known contractions. (e presented theorems
provide a general criterion for the existence of a unique fixed
point of (Ψ,Φ)⊥ interpolative contraction mappings. Fixed-
point methodology is used to investigate the presence of a
solution to a UIE.
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Extreme learning machine (ELM), as a new simple feedforward neural network learning algorithm, has been extensively used in
practical applications because of its good generalization performance and fast learning speed. However, the standard ELM
requires more hidden nodes in the application due to the random assignment of hidden layer parameters, which in turn has
disadvantages such as poorly hidden layer sparsity, low adjustment ability, and complex network structure. In this paper, we
propose a hybrid ELM algorithm based on the bat and cuckoo search algorithm to optimize the input weight and threshold of the
ELM algorithm. We test the numerical experimental performance of function approximation and classification problems under a
few benchmark datasets; simulation results show that the proposed algorithm can obtain significantly better prediction accuracy
compared to similar algorithms.

1. Introduction

In recent years, artificial intelligence algorithms have drawn
extensive attention from scientific research. As an important
part of artificial intelligence, machine learning has been
widely used in data mining [1], speech recognition [2],
feature selection [3, 4], learning incentivization strategy [5],
natural language processing [6], and the nonlinear function
approximation and benchmark problem [7]. As a branch of
machine learning, neural networks have been successfully
applied in many tasks of learning from data. However, most
of the traditional neural networks use the gradient learning
algorithm for network training, which makes the network
make problems such as low training efficiency, slow speed,
and easy to fall into local optimal.

Extreme Learning Machine (ELM) is a new method of
training artificial neural networks and includes supervised
training methods, which is a kind of neural network
structure put forward by Huang et al. using single hidden
layer feedforward networks (SLFN) [8–10]. Huang et al. [11]

argue that the existing neural networks have some defects in
learning speed; the main reason for the low rate of learning is
that all the parameters on the network are determined re-
peatedly by a training method. In the ELM learning algo-
rithm, the weight feedback and threshold are generated
randomly. +en, the output of the hidden layer matrix is
used to calculate the final output weight. Computing the
final weights was obtained using Moore–Penrose (MP)
generalized inverse. Compared with other neural networks
based on the gradient learning algorithm, the ELM learning
algorithm has great advantages in learning speed, and it is
capable of producing good generalization performance and
greatly reduces the computational complexity of complex
application problems [12, 13]. Meanwhile, these good per-
formances have been widely promoted in various practical
application fields such as biomedicine [14–16], fault diag-
nosis [17, 18], and indoor positioning systems [19, 20].
However, since the input parameters are generated ran-
domly and the ELM requires a large number of hidden
neurons, the amplitude of the output weight will be large
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when the output matrix of the hidden layer is ill, which will
cause the trained model to fall into the local minimum and
show the phenomenon of overfitting [21]. In [22, 23], an
ELM based on different regularization was proposed to
effectively overcome the overfitting phenomenon. +e ac-
curacy and effectiveness of the ELM algorithm largely rest
with the internal parameters of the model. So as to choose
the suitable model parameters, many researchers use a bi-
onic optimization algorithm to optimize the input weights
and thresholds.

In the literature [24], the improved ELM algorithm was
proposed, which used a differential evolution algorithm to
choose the input weights and then used MP generalized
inverse analysis to determine the output weights. +is
improvement enables it to obtain better generalization
performance in a compact network. In the literature [25],
the coral reefs optimization (CRO − ELM) has been used
for carrying out evolution in ELM weights to enhance the
performance of these machines. A new evolutionary al-
gorithm, particle swarm optimization (PSO − ELM), is
introduced to optimize the input weight and hidden bias of
ELM [26, 27] so that the network has better generalization
performance in the benchmark classification experiment
and is more suitable for some prediction problems. A real-
coded genetic algorithm (RCGA − ELM) was proposed
[28] to select the number of hidden neurons and the input
weights, such that the generalization performance of the
classifier is a maximum. But it needed to adjust many
parameters in genetic operators artificially. +e cuckoo
search algorithm (CS − ELM)was proposed [29–33], which
was used to pretrain the ELM ensuring optimal solutions
and to further improve the accuracy and stability of
CS − ELM. References [34, 35] proposed ICS model, which
combines the improved cuckoo search algorithm with
ELM. Both CS − ELM and ICS − ELM select the input
weights and biases before calculating the output weights,
and they ensure the full column rank of the hidden layer
output matrix.

Bat algorithm (BA) [36, 37] and cuckoo search algorithm
(CS) [38, 39] are two new heuristic swarm intelligence
optimization algorithms. Bat algorithm has the advantages
of a simple model, fast convergence rate, strong global
optimization, and so on and has been widely used in en-
gineering optimization, model identification, and other
problems. +e cuckoo search algorithm has the character-
istics of simple and efficient, few parameters, easy to im-
plement, and excellent random search path and has been
successfully applied to medical image optimization [40],
multiobjective optimization [41], image processing [42], and
other practical problems. Literature [43] shows that bat
algorithm and cuckoo search algorithm have great advan-
tages over genetic algorithm and particle swarm optimiza-
tion in the newmetaheuristic environment. In this paper, we
combine the BACS hybrid algorithm with traditional ELM
and propose an optimization algorithm of ELM based on
BACS.+e basic thought of the BACS − ELM algorithm is to
use the BACS algorithm to train the input weight and
threshold value randomly generated by ELM to find the
optimal parameter and then determine the output weights

by using MP generalized inverse so as to improve the
convergence speed and stability of the network model. +e
main contributions are as follows:

(1) Based on the idea of a group intelligence optimi-
zation algorithm, this paper introduces how to train
ELM by BACS hybrid algorithm. By using this
method, the input weights and thresholds of the
ELM network can be reasonably optimized to solve
the randomness problem of hidden layer parameters
so that the network parameters can reach the
optimum.

(2) By improving the traditional ELM network by BACS
hybrid algorithm, the local and global optimization
problems are effectively balanced, and the general-
ization performance of the network is improved.

(3) Nonlinear function fitting and classification prob-
lems present that the BACS − ELM algorithm can
acquire better approximation effect and generaliza-
tion performance than other algorithms.

+e rest of the paper is arranged as follows: Section 2
introduces the traditional ELM network model and algo-
rithm. Section 3 introduces the principles and imple-
mentation steps of the bat algorithm and cuckoo search
algorithm. +e hybrid algorithm of Extreme Learning
Machine based on the bat cuckoo algorithm is described in
Section 4. Some numerical experiments are discussed in
Section 5. Section 6 offers some conclusions for this paper.

2. The Preliminary of ELM

In this section, we begin with the introduction of standard
ELM, the network model of ELM is shown in Figure 1, and
its network model can be divided into three layers, which are
the input layer, hidden layer, and output layer. All of these
works provide fundamental theoretical support for the new
method proposed next. (xj, oj) ∈ Rn × Rm represents P ar-
bitrary various samples, where xj � (xj1, xj2, . . . , xjn)T ∈ Rn

and oj � (oj1, oj2, . . . , ojm)T ∈ Rm; the traditional SLFNwith
L hidden nodes can be mathematically modeled as

hL xj􏼐 􏼑 � 􏽘
L

i�1
βiG wi, bi, xj􏼐 􏼑 � tj, j � 1, 2, . . . , P, (1)

where G(wi, bi, xj) is an activation function, which can take
various kinds forms, such as the sigmoid function:

G(w, b, x) �
1

1 + exp − wTxT
+ b􏼐 􏼑􏼐 􏼑

(2)

or Gaussian function:

G(w, b, x) � exp −b‖w − x‖
2

􏼐 􏼑. (3)

+e above SLFN can approximate these P samples in the
training process of gradual iteration. When the learning
error is reduced to zero, 􏽐

P
j�1 ‖tj − oj‖ � 0, the learning

capacity of the ELM is optimal, and then there exist (wi, bi)

and βi such that
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􏽘

L

i�1
βiG wi, bi, xj􏼐 􏼑 � oj, (4)

where wi � (wi1, wi2, . . . , win)T ∈ Rn is the input weight,
which links the i-th hidden node as presented in Figure 1,
bi ∈ R is the threshold of the i-th hidden node and is
generated randomly, βi � (βi1, βi2, . . . , βim)T ∈ Rm is the
output weight of the i-th hidden node, and tj represents the
actual output of input xj in the network.

+e above P equations can be rewritten as the following
matrix form:

Hβ � O, (5)

where

H w1, . . . ,wL, b1, . . . , bL, x1, . . . , xP( 􏼁

�

G w1, b1, x1( 􏼁 · · · G wL, bL, x1( 􏼁

⋮ ⋱ ⋮

G w1, b1, xP( 􏼁 · · · G wL, bL, xP( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P×L

,

β �

βT
1

⋮

βT
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×m

,

O �

oT
1

⋮

oT
P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P×m

,

(6)

where H is called the output matrix of the hidden layer and β
represents the final output matrix. +e basic principle of
ELM is to obtain the output weight β through formula
Hβ � O.

In practical training, the number of nodes L in the
hidden layer is usually less than the number of training
samples P. +erefore, on the premise that the activation
function is differentiable, input weights and thresholds
randomly selected before training should remain unchanged
during training. In this way, the output weight of the

network can be obtained by solving the least squares of the
following linear system:

min
β

‖Hβ − O‖, (7)

and the explicit solution is
􏽢β � H†O, (8)

where H† represents the MP generalized inverse of H [44].
+erefore, ELM can be described as follows (Algorithm 1).

3. Algorithm Description

3.1. Bat Algorithm. Bat algorithm (BA) is a swarm intelli-
gence optimization algorithm that simulates the predation
behavior of bats. Because of its simple model, fast conver-
gence speed, and strong global optimization, it has been
widely used in data mining, wireless sensors, and power
systems. However, there are also some problems in practical
applications, such as easy premature convergence and low
optimization accuracy.

+e bat algorithm determines the optimal bat in the
current search space by adjusting the frequency, wavelength,
and loudness and then obtains the optimal solution to the
optimization problem. For this algorithm, in order to
simulate this predation behavior, the following assumptions
are proposed in the process:

(1) All bat individuals can use echolocation to perceive
the distance and distinguish the difference between
the target and the obstacle in a special way

(2) +e bat flies randomly at position xi at speed vi, finds
the target with frequency fmin, variable wavelength
λ, and loudness A0, and automatically adjusts the
wavelength (or frequency) and pulse emission rate
r ∈ [0, 1] through the distance from the target and so
on

(3) Assume that the loudness changes from the maxi-
mum value A0 to the minimum value Amin

Assuming that, in the search space with dimension d, the
number of iterations is t, the update formulas for the fre-
quency, velocity, and position of the bat individual i in the
t-th generation are as follows:

fi � fmin + fmax − fmin( 􏼁β, (9)

v
t
i � v

t−1
i + x

t−1
i − x

∗
􏼐 􏼑fi, (10)

x
t
i � x

t−1
i + v

t
i , (11)

where fi represents the frequency of the i-th bat and its
adjustment range is [fmin, fmax], β is a random number that
obeys a uniform distribution in [0, 1], and x∗ represents the
current optimal solution.

For the current local search domain, a random number
rand1 is generated. If rand1 > randi, the current new solution
is generated by the random disturbance of the optimal
solution. +e update formula is as follows:

XP

1

i

L

n

j

m

(wi,bi) 1 1
β

βi
βi1
βij

βim

Input OutputHidden layer

Figure 1: +e structure of the ELM model.
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xnew � xold + εAt
, (12)

where ε is a random number in [−1, 1] and At represents the
average loudness of the bat population.

When the bat is constantly approaching the target, its
loudness A will drop to a fixed value, and at this time, r will
continue to increase. Randomly generate a number rand2; if
rand2 <Ai and the new fitness value f(xnew)>f(xold), the
new solution generated by (12) is accepted; that is
xt+1

i � xnew. +e update formula for the loudness Ai and
pulse rate ri of the first bat is as follows:

A
t+1
i � αA

t
i , (13)

r
t+1
i � r

0
i [1 − exp(−σt)], (14)

where α represents the loudness attenuation coefficient and
0< α< 1. σ represents the pulse frequency enhancement
coefficient and σ > 0.

3.2. Cuckoo Search Algorithm. +e cuckoo search algorithm
(CS) is simplification and simulation of the cuckoo nest
finding and spawning behavior. +e special habit of cuckoos
is parasitic brooding; that is, other host birds hatch and
brood on their behalf. In order to make this phenomenon
difficult to detect, the bird will first find a bird with similar
characteristics to its own egg as the host during the breeding
period. After being recognized by the host bird, the egg is
removed or the host rebuilds the nest. In order to simulate its
reproductive behavior, the following assumptions are pro-
posed in the process:

(1) Each cuckoo lays only one egg at a time and ran-
domly selects the nest to hatch

(2) +e best bird’s nest is retained to the next generation
(3) +e number of available bird nests n remains un-

changed; there is a probability (pa) that the host bird
finds foreign eggs, pa ∈ [0, 1]

For the cuckoo search algorithm, randomly initialize n

bird nest positions in the d-dimensional search space and
leave the best position to the next generation. +e new
position is generated by Levy flight. +en the cuckoo’s nest
search path and position update formula are as follows:

x
t+1
i � x

t
i + α⊕ Levy(λ), (15)

where xt
i represents the position of the i-th bird nest in the

t-th generation, α represents the step-length control factor

and α> 0, ⊕ is the point-to-point multiplication, Levy(λ) is
the random search path, and Levy ∼ u � t− λ(1< λ≤ 3).

After the position is updated, compare the random
numbers r and pa, and 0≤ r≤ 1; if r>pa, then use the
random walk method to change the position so as to retain a
set of better values and obtain the current optimal bird nest
position and optimal solution through iteration. +e update
formula is as follows:

x
t+1
i � x

t
i + τ x

t
m − x

t
k􏼐 􏼑, (16)

where τ represents the uniformly distributed scaling factor
within [0, 1] and both xt

m and xt
k represent the random

solution in the t-th generation.

3.3. Bat Cuckoo Hybrid Algorithm. Although the bat algo-
rithm has low convergence accuracy, its global search ability
is strong; in order to improve the quality of the cuckoo
population, the bat algorithm is integrated into the cuckoo
algorithm for optimization, and a bat cuckoo hybrid algo-
rithm (BACS) is proposed. For this algorithm, the nest
position obtained by the cuckoo algorithm is not directly
used as the initial position, but the bat algorithm is used to
continue to optimize the optimal value after the position is
updated, which greatly accelerates the global search ability of
the algorithm. +erefore, the integration of the two algo-
rithms effectively balances the problem of local and global
optimization. Based on this, the specific steps of the bat
cuckoo hybrid algorithm are shown in Table 1.

4. Hybrid Algorithm of Extreme Learning
Machine Based on Bat Cuckoo Algorithm

Extreme Learning Machine (ELM) selects hidden layer
parameters randomly and does not need to update itera-
tively during training, and the output weight can be de-
termined by the least square solution, which greatly
accelerates the learning process. Although ELM overcomes
the shortcomings of the traditional gradient descent al-
gorithm, the number of hidden nodes still needs to be set in
advance, which may lead to many redundant nodes.
+erefore, ELM requires more random hidden nodes in
some applications than traditional neural network algo-
rithms. However, this will lead to a decrease in the sparsity
and regulation ability of the hidden layer, the complexity of
the network structure, and the extension of the training
time and finally affect the generalization ability and ro-
bustness of the network.

Input: given a training set (xj, oj) ∈ Rn × Rm, activation function is G(wi, bi, xj), and the hidden nodes number is L.
Output β.
Step 1: setting learning parameters for hidden nodes wi and bi, 1≤ i≤ L.
Step 2: calculate the output matrix H based on (5).
Step 3: calculate the output weight β � H†O.

ALGORITHM 1: ELM algorithm.
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BACS algorithm has the characteristics of strong search
accuracy, fast convergence speed, and not easy to fall into
local best and effectively balances local and global search.
Using this optimization ability, the hidden layer parameters
of ELM are selected appropriately to solve the problem that
the hidden layer parameters need to be optimized due to
randomness. +erefore, this paper considers the use of the
BACS algorithm to optimize ELM so as to propose a hybrid
algorithm of Extreme Learning Machine based on the bat
cuckoo algorithm (BACS − ELM). We first use the BACS
algorithm to train the input weights and thresholds ran-
domly generated by ELM. +e population is taken as the
initially hidden layer parameter of ELM, and the fitness
function of the BACS algorithm is used to conduct iterative
optimization. +e position of the individual of the pop-
ulation is constantly adjusted to find the optimal hidden
layer parameter until the maximum number of iterations or
search accuracy is reached. At the end of the iteration, the
optimal individual position is obtained, and the optimized
results are used as the input weights and thresholds of ELM
to train the network so as to improve the convergence speed
and stability of the network model. To prevent the problem
of output saturation caused by excessive input value, we use
the following formula to normalize the data:

y �
x − xmin

xmax − xmin
, (17)

where x is the original data and xmax and xmin represent the
maximum and minimum values of the original data,
respectively.

Next, the input weights and thresholds of ELM were
represented by the cuckoo individuals using real coding
rules. On the basis of Section 2, the number of neurons in the
input layer and hidden layer is fixed as n and L , respectively.
+erefore, the calculation formula of the coding length of the
cuckoo individual is

D � (n + 1)∗L. (18)

Individual position of cuckoo can be expressed as

X � x1, x2, x3, . . . , xL×n+L( 􏼁. (19)

+e input weights wi and thresholds bi of ELM are mapped
to the individual position of the cuckoo, the population is
randomly initialized, and the obtained random individuals are
assigned to the input weights and thresholds of ELMone by one
and placed in the ELM network. Here, the assignments of input
weights and thresholds are, respectively, expressed as follows:

wi � x1, x2, x3, . . . , xL×n( 􏼁,

bi � xL×n+1, xL×n+2, . . . , xL×n+L( 􏼁.
(20)

In the training sample process of ELM, in order to
evaluate the prediction performance more objectively, we
used the root mean square error as the evaluation index of
model prediction, so the fitness function was designed as

RMSE �

����

1
P

􏽘

P

j�1

􏽶
􏽴

tj − oj􏼐 􏼑
2

, (21)

where P is the total number of samples, T � (t1, t2, . . . , tP)

represents the actual output value of samples, and
O � (o1, o2, . . . , oP) represents the expected output value of
samples. Table 2 shows the specific implementation steps of
the BACS − ELM algorithm.

5. Experimental Results

In order to verify the performance of the proposed algo-
rithm, a function fitting and several classification problems
are tested in this section, and the validity of BACS − ELM is
tested by comparing it with the ELM, BA − ELM, and CS −

ELM algorithms.

5.1. Function Fitting. In order to declare the performance of
the proposed algorithm more intuitively and effectively, we
take into account adopting ELM, BA − ELM, CS − ELM, and
BACS − ELM to approximate the Sinc function and then
compare the function approximation capabilities. +e ex-
pression for the Sinc function is defined as follows:

fx �

sin x

x
, x≠ 0,

1, x � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(22)

+e training set and test set of 5000 samples were se-
lected, respectively, and the input variables xi obey the
uniform distribution in the interval [−10, 10]. In order to
increase the authenticity and improve the generalization
performance of the algorithm, random noise was added to
the training samples, whereas the testing data remained
noise-free. For different optimization methods, the initial
parameter settings are presented in Table 3, and the max-
imum iteration number is set I � 100. +e activation
function is the RBF function, and the fitness function is

Table 1: Steps of the bat cuckoo hybrid algorithm.

Step 1: initialize the basic parameters and set the loop termination criteria
Step 2: initialize the location of the bird nest, calculate the fitness value of each bird nest, and obtain the optimal position and optimal value
Step 3: record the optimal position of the previous generation, update according to formula (15) to obtain a new set of positions, calculate
the fitness value, and compare it with the value of the previous generation to determine the current better position
Step 4: compare the random number r with pa; if r>pa, update the position randomly; otherwise, it will not change
Step 5: use the new position as the initial point of the bat algorithm and use equations (9)–(14) to update the position of the bird nest
Step 6: record the position of step 5 and calculate the fitness value to determine the current optimal position and optimal value
Step 7: if the termination conditions are met, continue to the next step; otherwise, go to step 3
Step 8: output the global optimal position, and the algorithm ends
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RMSE. In order to compare the results of each algorithm
more objectively, each experiment was run 20 times and
then took the mean value.

+e selection of the number of hidden nodes will have a
direct influence on the performance of the model. +erefore,
the experiment on BACS − ELM was carried out by
adjusting the number of hidden nodes, and the test results
obtained are shown in Table 4. +e results show that the
function has the best fitting effect when the number of
hidden nodes is 12, and the mean square error of training
and testing tends to be stable with the increase of nodes. To
ensure the performance of the algorithm and reduce the
complexity of the model, the architecture of the optimized
ELM network can be determined as 1-12-1.

+en, based on the selection of the above parameter
values, simulation experiments were carried out on the ELM,
BA − ELM, CS − ELM, and BACS − ELM algorithms. It can
be seen from Figure 2 that the approximation effect of the
BACS − ELM algorithm is better than that of other algo-
rithms. Moreover, the performance comparison of each
algorithm is shown in Table 5. According to the displayed
results, the test RMSE value of the BACS − ELM algorithm is
the smallest, which means that the algorithm has higher
accuracy and better stability. As can be seen from the
training time in the table, due to the randomness of hidden
layer parameters of ELM, it has a very fast learning speed,
but the fitting effect is not ideal.

+e results also show that the three optimization
methods are all effective. But there is little difference in
training and testing time between the BA − ELM, CS − ELM,
and BACS − ELM algorithms and the advantages of learning
efficiency are not embodied. Nevertheless, the ELM model

based on the BACS algorithm greatly improves the con-
vergence accuracy of function fitting, so the computational
efficiency is also within the acceptable range.

5.2. ClassificationProblems. In this section, in order to more
accurately appraise the effectiveness of the BASC − ELM
algorithm, the performance of the algorithm will be com-
pared on multiple classification problems. +e relevant in-
formation of the dataset is given in Table 6. +e initial
parameter setting of each group was consistent with the
above. +e maximum iterations number I � 100 and the
activation function was the Sigmoid function. Each group of
experiments was run 20 times to take the average value.

Figure 3 shows the comparison of the classification
accuracy of the algorithm in different datasets with the
change of the number of nodes. Figure 3(a) is based on the
variation trend of breast cancer; it can be seen from the
figure that ELM needs the most nodes to achieve relatively
high accuracy, while other algorithms all achieve the highest
accuracy when the node is 20, and further speaking, BASC −

ELM is slightly better. Figure 3(b) is based on the changing
trend of heart failure. It can be seen from the figure that the
four algorithms all show a similar curve trend when the
number of hidden nodes increases and they all have the best
accuracy when the node is 20, but at this time, BASC − ELM
has the highest value of 84.23%. Figure 3(c) is based on the
variation trend of Iris. BASC − ELM has the best accuracy
when the node is 10, which is 5 fewer nodes than other
algorithms when they get the maximum value. Figure 3(d) is
based on the changing trend of the vertebral column. It can
be seen from the graph that BASC − ELM only needs the

Table 2: Steps of the BACS − ELM learning algorithm.

Step 1: initialize the basic parameters and set the loop termination criteria
Step 2: initialize the cuckoo individual, code the input weights and thresholds of ELM into the individual, and each individual represents an
ELM network structure
Step 3: normalize the training data and random initial individual position and calculate the fitness value in line with equation (21)
Step 4: record the optimal position, obtain a group of new positions according to equation (15), calculate the fitness value, and determine
the current optimal position
Step 5: compare the random numbers r with Pa; if r>Pa, update the position randomly; otherwise, it will not change
Step 6: take the new position as the starting point of BA, and randomly generate rand1; if rand1 > ri, update the current optimal position;
otherwise, go to step 7
Step 7: randomly generate rand1; if rand1 <Ai&&f(xnew)>f(xold), replace xnew with the current position xt+1

i or do not update xnew
Step 8: calculate the fitness value of each individual, and determine the current optimal position and optimal value
Step 9: if the termination condition is met, proceed to the next step; otherwise, go to step 4
Step 10: the individual cuckoo is decoded into the input weights and thresholds of ELM; obtain the optimal ELM network structure
according to these parameters

Table 3: +e population parameter setting of three optimization methods.

Optimization algorithm Parameter setting

BA − ELM Bat population size N � 20, loudness A0 � 1, and pulse emissivity r � 0.5
Loudness attenuation coefficient α � 0.9 and pulse frequency interval [fmin, f(max)] � [0, 2]

CS − ELM Initial nest size N � 20, discovery probability Pa � 0.25, and step size control factor α � 0.5
Scaling factor c � 0.5

BACS − ELM
Bat population size N � 20, loudness A0 � 1, and pulse emissivity r � 0.5

Loudness attenuation coefficient α � 0.9 and pulse frequency interval [fmin, f(max)] � [0, 2]

Discovery probability Pa � 0.25, step size control factor α � 0.5, and scaling factor c � 0.5
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minimum number of nodes to obtain the best results, and
the accuracy value fluctuates little, which indicates that the
algorithm can achieve better stability.

Next, in order to better explain the accuracy of the
BACS − ELM algorithm in classification experiments,

Figure 4 presents the fitness curves of the BA − ELM,
CS − ELM, and BACS − ELM algorithms under four clas-
sification problems, respectively. To maintain the consis-
tency of the experimental environment, the number of
hidden nodes for each problem was set as 20, 20, 15, and 30,

Table 4: +e influence of hidden node number on BACS − ELM algorithm.

Number of hidden nodes 2 4 6 8 10 12 14 16
Training RMSE 0.1370 0.1183 0.1109 0.1094 0.1082 0.1081 0.1087 0.1081
Testing RMSE 0.0902 0.0516 0.0279 0.0098 0.0095 0.0084 0.0087 0.0085
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Figure 2: Comparison of the fitting effects of the four algorithms: (a) ELM, (b) BA − ELM, (c) CS − ELM, and (d) BACS − ELM.

Table 5: +e performance comparison of four algorithms on Sinc function.

Algorithms Training time (s) Testing time (s) Training RMSE Testing RMSE
ELM 0.0056 0.0018 0.1351 0.0453
BA − ELM 40.6553 0.0019 0.1095 0.0119
CS − ELM 35.9939 0.0022 0.1107 0.0148
BASC − ELM 42.7807 0.0026 0.1081 0.0084
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respectively, while other parameters were unchanged. As can
be seen from Figures 4(a)–4(d), for different datasets,
compared with the BA − ELM and CS − ELM algorithms,
the BACS − ELM algorithm can obtain the best fitness
function value in the case of the least number of iterations.
+is is because when the BACS algorithm optimizes the
input weights and thresholds of ELM, it has a strong local

optimization ability at the initial stage of search and makes
full use of the global optimization ability of the BA algo-
rithm. +e combination of the two greatly improves the
convergence accuracy.

Based on the above analysis, the performance results of
the four algorithms on the number of hidden nodes, training
time, training, and test accuracy are also given in the

Table 6: +e detailed description of the classification dataset.

Dataset Training samples Testing samples Attribute Classes
Breast cancer 80 36 9 2
Heart failure 209 90 12 2
Iris 105 45 4 3
Vertebral column 208 102 6 3
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Figure 3:+e graph of the classification accuracy over different datasets with the change of the number of nodes: (a) breast cancer; (b) heart
failure; (c) iris; (d) vertebral column.
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experiment. It can be clearly seen from Table 7 that the
BACS − ELM algorithm can achieve the best test accuracy
under the minimum number of hidden nodes in all the four
datasets, which indicates that the algorithm can effectively
optimize the parameters of the hidden layer of the ELM
model by using BACS algorithm and then obtain a more
appropriate and simplified network structure. At the same
time, the best generalization performance and classification
ability are obtained. In terms of computing time or effi-
ciency, hidden layer parameters of ELM do not need to be

iteratively tuned, so the learning speed is very fast, but the
success rate of its classification is very low. In Table 7, we did
not list the test time data because the values of the four
algorithms for different datasets in the experimental results
are very low, and the size is similar; that is to say, the impact
of the data on the overall experiment results cannot be
regarded as an evaluation item. Compared with the other
two optimization methods, although the BACS − ELM al-
gorithm is slightly worse in learning efficiency, it shows great
advantages in classification accuracy.
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Figure 4: Comparison of fitness function curves on different datasets: (a) breast cancer; (b) heart failure; (c) iris; (d) vertebral column.
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6. Conclusions

In this paper, we propose a hybrid Extreme Learning Ma-
chine algorithm based on the bat and cuckoo search algo-
rithm to optimize the input weight and threshold of the
traditional ELM algorithm, thus improving the disadvan-
tages of traditional ELM, such as poor sparsity of hidden
layer, low adjustment ability, and complex network struc-
ture. Meanwhile, the BACS algorithm has the characteristics
of strong searching accuracy, fast convergence speed, and
not easy to fall into the local optimal, which effectively
balances the local and global optimization problems.
+erefore, the proposed BACS-ELM algorithm can effec-
tively solve the optimization problem due to the randomness
of hidden layer parameters and improve the generalization
performance of the network.

Experimental results show that the BACS-ELM algo-
rithm is superior to other algorithms in function fitting and
classification. In the future, we consider extending the
BACS-ELM algorithm to practical application problems and
solving a wider class of even tougher optimization problems.
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In this paper, we investigate the monotone variational inequality in Hilbert spaces. Based on Censor’s subgradient extragradient
method, we propose two modified subgradient extragradient algorithms with self-adaptive and inertial techniques for finding the
solution of the monotone variational inequality in real Hilbert spaces. Strong convergence analysis of the proposed algorithms
have been obtained under some mild conditions.

1. Introduction

Let H be a real Hilbert space and S ∈ Hbe a nonempty closed
convex subset. Let f: H⟶ H be an operator. In this work,
we investigate the following variational inequality problem
(VIPs):

find a pointu
‡ ∈ S, s.t.〈f u

‡
􏼐 􏼑, x − u

‡〉 ≥ 0, ∀x ∈ S. (1)

Denote by Sol(S, f) the solution set of (1)./e VIPs is an
important tool to study various problems in the domain of
mechanics, optimization, transportation, fixed point, eco-
nomics equilibrium, contract problems in elasticity, and
other branches of mathematics, see [1–17]. /erefore, VIPs
have received much attention by many scholars, see [18–30].
/ere are a variety of methods to solve the VIPs, such as
regularization method and projection method [31–39]. In
this work, we focus on projection method.

As we all know that the gradient projection algorithm is
the simplest and oldest method ([40, 41]), the method is
defined as follows:

u
k+1

� PS u
k

− cf u
k

􏼐 􏼑􏼐 􏼑, (2)

where PS: H⟶ S is the metric projection and c is some
positive number.

In order to obtain a convergent result, this algorithm
requires that the operator f is strongly monotone. In order
to avoid the strong monotonicity hypothesis, Korpelevich
[42] proposed the extragradient algorithm which is stated as
follows:

x
k

� PS u
k

− cf u
k

􏼐 􏼑􏼐 􏼑,

u
k+1

� PS u
k

− cf x
k

􏼐 􏼑􏼐 􏼑,

⎧⎪⎨

⎪⎩
(3)

where c ∈ (0, (1/L)) and operator f is monotone and
Lipschitz continuous in H.

Note that the algorithm (3) calculates two projections on
S in each iteration. If the set S is more complicated, there will
be a lot of calculations. In order to overcome this difficulty,
Censor et al. [43] constructed a half space with sub-
differentiation and proposed subgradient extragradient
method which is defined by
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x
k

� PS u
k

− cf u
k

􏼐 􏼑􏼐 􏼑,

T
k

� z ∈ H|〈uk
− cf u

k
􏼐 􏼑 − x

k
, z − x

k〉 ≤ 0􏽮 􏽯,

u
k+1

� PTk u
k

− cf x
k

􏼐 􏼑􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

Recently, Dong et al. [44] improved the algorithm (4)
with self-adaptive stepsize which generates a sequence uk􏼈 􏼉

by the following form:

x
k

� PS u
k

− c
k
f u

k
􏼐 􏼑􏼐 􏼑,

c
k

f u
k

􏼐 􏼑 − f x
k

􏼐 􏼑
�����

�����≤ σ u
k

− x
k

�����

�����, ∀σ ∈ (0, 1),

T
k

� z ∈ H〈uk
− c

k
f u

k
􏼐 􏼑 − x

k
, z − x

k〉≤ 0􏽮 􏽯,

u
k+1

� PTk u
k

− τζk
c

k
f x

k
􏼐 􏼑􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where ζk
� (〈uk − xk, κ(uk, xk)〉/‖κ(uk, xk)‖2) and κ(uk,

xk) � (uk − xk) − ck(f(uk) − f(xk)).
Weak convergence of Algorithm (5) has been obtained.

Motivated and inspired by the above work, in this paper, we
continue to investigate iterative algorithms for solving the
monotone variational inequality in Hilbert spaces. We
construct two modified subgradient extragradient algo-
rithms for finding the solution of the monotone variational
inequality. Our algorithms combine self-adaptive technique
and inertial method. Under some mild conditions, we prove
that the proposed algorithms converge strongly to a solution
of the monotone variational inequality.

/e organizational structure of this paper is as follows. In
Section 2, we present some definitions and preliminary
results, which will be used in further analysis of the proposed
algorithms. In Section 3, we proposed two modified sub-
gradient extragradient algorithms and prove strong con-
vergence theorems.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert
space H. Use “⇀” and “⟶ ” to denote weak and strong
convergence, respectively. Let xk􏼈 􏼉 be a sequence in H. We
use ωw(xk) to denote the set of all weak cluster points of
xk􏼈 􏼉, i.e.,

ωw x
k

􏼐 􏼑 � x
†
: ∃ x

ki􏽮 􏽯 ⊂ x
k

􏽮 􏽯 such thatx
ki⇀x

† as i⟶∞􏽮 􏽯.

(6)

For ∀u, v ∈ H, and λ ∈ R, the following results hold

‖u + v‖
2 ≤ ‖u‖

2
+ 2〈v, u + v〉, (7)

‖λu +(1 − λ)v‖
2

� λ‖u‖
2

+(1 − λ)‖v‖
2

− λ(1 − λ)‖u − v‖
2
.

(8)

Definition 1. Let f: H⟶ H be an operator. Recall that the
operator f is said to be

(i) Monotone if

〈f(u) − f(v), u − v〉≥ 0, ∀u, v ∈ H. (9)

(ii) Strongly monotone if there exists c> 0 s.t.

〈f(u) − f(v), u − v〉≥ c‖u − v‖
2
, ∀u, v ∈ H. (10)

(iii) L-Lipschitz continuous if there exists L> 0 s.t.

‖f(u) − f(v)‖≤L‖u − v‖, ∀u, v ∈ H. (11)

If L< 1, f is said to be L-contractive.
Let C be a nonempty closed convex subset of a real

Hilbert space H. For any x ∈ H, there exists a unique point
PC(x) ∈ C such that

x − PC(x)
����

����≤ ‖y − x‖, ∀y ∈ C. (12)

It is well known that PC satisfies [45]

〈x − PC(x), y − PC(x)〉 ≤ 0, (13)

x − PC(x)
����

����
2

+ y − PC(x)
����

����
2 ≤ ‖x − y‖

2
, (14)

for all x ∈ H and y ∈ C.

Lemma 1 (see [46]). Let bk􏼈 􏼉 be a real number sequence.
Suppose that there exists a subsequence bkm􏼈 􏼉 of bk􏼈 􏼉 such that
bkm < bkm+1 for all m ∈ N. Define the sequence c(k)􏼈 􏼉 as
follows:

c(k) � max n ∈ N|k0 ≤ n≤ k, b
n ≤ b

n+1
􏽮 􏽯, (15)

for each k≥ k0. "en, the following inequality holds:

0≤ b
k ≤ b

c(k)+1
, (16)

for each k≥ k0. Further, for all k≥ k0, the sequence c(k)􏼈 􏼉 is
nondecreasing and

lim
k⟶∞

c(k) � +∞. (17)

Lemma 2 (see [33]). Suppose that the sequence δk
􏽮 􏽯 of real

numbers is nonnegative and there exists k0 ∈ N such that

δk+1 ≤ 1 − c
k

􏼐 􏼑δk
+ c

k
l
k
, (18)

for each k≥ k0, where the sequences ck􏼈 􏼉 and lk􏼈 􏼉 satisfy the
following conditions:

c
k

􏽮 􏽯 ⊂ (0, 1),

lim
k⟶∞

c
k

� 0,

􏽘

∞

k�1
c

k
�∞,

limsup
k⟶∞

l
k ≤ 0.

(19)

"en, limk⟶∞δ
k � 0.
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3. Main Result

In this section, we present our main results.
Let S be a nonempty closed convex subset of a real

Hilbert space H. Suppose that the following three conditions
are satisfied:

(C1): the set Sol(S, f) is not empty;
(C2): the operate f is monotone;
(C3): the operate f is L-Lipschitz continuous.

Let σ, ρ ∈ (0, 1), τ ∈ (0, 2), and c0 > 0 be four constants.
Let θk

􏽮 􏽯, εk􏼈 􏼉 ⊂ (0, 1) , and λk
􏽮 􏽯 ⊂ [a, b] ⊂ (0, 1) be three

sequences, satisfying

􏽘

∞

n�1
θk

� +∞,

lim
k⟶∞

θk
� 0,

εk
� o θk

􏼐 􏼑.

(20)

Next, we introduce an iterative algorithm for solving (1).

Lemma 3. If xk � vk or κ(vk, xk) � 0 in Algorithm 1, then
xk ∈ Sol(S, f).

Proof. Since f is L-Lipschitz continuous, we obtain

κ v
k
, x

k
􏼐 􏼑

�����

����� � v
k

− x
k

− c
k

f v
k

􏼐 􏼑 − f x
k

􏼐 􏼑􏼐 􏼑
�����

�����

≥ v
k

− x
k

�����

����� − c
k

f v
k

􏼐 􏼑 − f x
k

􏼐 􏼑
�����

�����

≥ v
k

− x
k

�����

����� − c
k
L v

k
− x

k
�����

����� � 1 − c
k
L􏼐 􏼑 v

k
− x

k
�����

�����,

κ v
k
, x

k
􏼐 􏼑

�����

����� � v
k

− x
k

− c
k

f v
k

􏼐 􏼑 − f x
k

􏼐 􏼑􏼐 􏼑
�����

�����

≤ v
k

− x
k

�����

����� + c
k

f v
k

􏼐 􏼑 − f x
k

􏼐 􏼑
�����

�����

≤ v
k

− x
k

�����

����� + c
k
L v

k
− x

k
�����

����� � 1 + c
k
L􏼐 􏼑 v

k
− x

k
�����

�����.

(21)

It follows that

1 − c
k
L􏼐 􏼑 v

k
− x

k
�����

�����≤ κ v
k
, x

k
􏼐 􏼑

�����

�����≤ 1 + c
k
L􏼐 􏼑 v

k
− x

k
�����

�����.

(22)

Consequently, vk � xk⇔κ(vk, xk) � 0. Furthermore, if
vk � xk or κ(vk, xk) � 0, we have

x
k

� PS x
k

− c
k
f x

k
􏼐 􏼑􏼐 􏼑. (23)

Combining (13) and (23), we get

〈xk
− c

k
f x

k
􏼐 􏼑 − x

k
, x

k
− z〉 ≥ 0, ∀z ∈ S, (24)

which implies that

〈f x
k

􏼐 􏼑, z − x
k〉≥ 0, ∀z ∈ S. (25)

/is completes the proof. □

Lemma 4. "e sequence ck􏼈 􏼉
∞
k�0 generated by Algorithm 1 is

monotonically decreasing, and ck ≤min c0, (σ/L)􏼈 􏼉 for each
k≥ 0.

Proof. Obviously, by the definition of ck+1􏼈 􏼉, we have ck􏼈 􏼉 is
a monotonically decreasing sequence. /en, ck ≥ c0,∀n> 0.
Since f is Lipschitz continuous, we have

f u
k

􏼐 􏼑 − f x
k

􏼐 􏼑
�����

�����≤L u
k

− x
k

�����

�����. (26)

In the case of f(uk)≠f(xk), we have

σ u
k

− x
k

�����

�����

f u
k

􏼐 􏼑 − f x
k

􏼐 􏼑
�����

�����
≥
σ
L

. (27)

Obviously, the lower bound of ck􏼈 􏼉 is min c0, (σ/L)􏼈 􏼉.
/is completes the proof. □

Lemma 5. Let ζk
􏽮 􏽯 be the sequence generated by Algorithm 1.

"en, we have

ζk ≥
1 − σ
1 + σ2

. (28)

Proof. Combining Lemma 4 and Cauchy–Schwartz in-
equality, we have

〈vk
− x

k
, κ v

k
, x

k
􏼐 􏼑〉 �〈vk

− x
k
, v

k
− x

k
− c

k
f v

k
􏼐 􏼑 − f x

k
􏼐 􏼑􏼐 􏼑〉

� v
k

− x
k

�����

�����
2

− c
k〈vk

− x
k
, f v

k
􏼐 􏼑 − f x

k
􏼐 􏼑〉

≥ v
k

− x
k

�����

�����
2

− c
k

v
k

− x
k

�����

����� f v
k

􏼐 􏼑 − f x
k

􏼐 􏼑
�����

�����

≥ v
k

− x
k

�����

�����
2

− c
k
L v

k
− x

k
�����

�����
2

� 1 − c
k
L􏼐 􏼑 v

k
− x

k
�����

�����
2

≥ (1 − σ) v
k

− x
k

�����

�����
2
.

(29)

Since f is monotone and Lipschitz continuous, then we
obtain

κ v
k
, x

k
􏼐 􏼑

�����

�����
2

� v
k

− x
k

− c
k

f v
k

􏼐 􏼑 − f x
k

􏼐 􏼑􏼐 􏼑
�����

�����
2

� v
k

− x
k

�����

�����
2

+ c
k

􏼐 􏼑
2

f v
k

􏼐 􏼑 − f x
k

􏼐 􏼑
�����

�����
2

− 2c
k〈vk

− x
k
, f v

k
􏼐 􏼑 − f x

k
􏼐 􏼑〉

≤ v
k

− x
k

�����

�����
2

+ c
k

􏼐 􏼑
2
L
2

v
k

− x
k

�����

�����
2

� 1 + c
k

􏼐 􏼑
2
L
2

􏼒 􏼓 v
k

− x
k

�����

�����
2

≤ 1 + σ2􏼐 􏼑 v
k

− x
k

�����

�����
2
.

(30)

From (29) and (30), we have

ζk
�
〈vk

− x
k
, κ v

k
, x

k
􏼐 􏼑〉

κ v
k
, x

k
􏼐 􏼑

�����

�����
2 ≥

1 − σ
1 + σ2

. (31)
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/is completes the proof. □

Lemma 6. Let u‡ ∈ Sol(S, f). "en,

t
k

− u
‡

�����

�����
2
≤ v

k
− u

‡
�����

�����
2

− v
k

− t
k

􏼐 􏼑 − τζkκ v
k
, x

k
􏼐 􏼑

�����

�����
2

− τ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2
.

(32)

Proof. From (13) and Algorithm 1, we have

t
k

− u
‡

�����

�����
2
≤ PTk v

k
− τζk

c
k
f x

k
􏼐 􏼑􏼐 􏼑 − PTk u

‡
�����

�����
2

≤ 〈tk
− u

‡
, v

k
− τζk

c
k
f x

k
􏼐 􏼑 − u

‡〉

�
1
2

t
k

− u
‡

�����

�����
2

+
1
2

v
k

− τζk
c

k
f x

k
􏼐 􏼑 − u

‡
�����

�����
2

−
1
2

t
k

− v
k

+ τζk
c

k
f x

k
􏼐 􏼑

�����

�����
2

�
1
2

t
k

− u
‡

�����

�����
2

+
1
2

v
k

− u
‡

�����

�����
2

+
1
2
τ2 ζk

􏼐 􏼑
2

c
k

􏼐 􏼑
2

f x
k

􏼐 􏼑
�����

�����
2

− 〈vk
− u

‡
, τζk

c
k
f x

k
􏼐 􏼑〉 −

1
2

t
k

− v
k

�����

�����
2

−
1
2
τ2 ζk

􏼐 􏼑
2

c
k

􏼐 􏼑
2

f x
k

􏼐 􏼑
�����

�����
2

− 〈tk
− v

k
, τζk

c
k
f x

k
􏼐 􏼑〉

�
1
2

t
k

− u
‡

�����

�����
2

+
1
2

v
k

− u
‡

�����

�����
2

−
1
2

t
k

− v
k

�����

�����
2

− 〈tk
− u

‡
, τζk

c
k
f x

k
􏼐 􏼑〉.

(33)

It follows that

2 t
k

− u
‡

�����

�����
2
≤ t

k
− u

‡
�����

�����
2

+ v
k

− u
‡

�����

�����
2

− t
k

− v
k

�����

�����
2

− 2τζk
c

k〈tk
− u

‡
, f x

k
􏼐 􏼑〉,

(34)

or equivalently

t
k

− u
‡

�����

�����
2
≤ v

k
− u

‡
�����

�����
2

− t
k

− v
k

�����

�����
2

− 2τζk
c

k〈tk
− u

‡
, f x

k
􏼐 􏼑〉.

(35)

We deduce from xk ∈ C and u‡ ∈ Sol(S, f) that
〈f(u‡), xk − u‡〉≥ 0. It follows from the monotonicity of
operator f that 〈f(xk) − f(u‡), xk − u‡〉≥ 0. /en, 〈f(xk),

xk − u‡〉≥ 0. It equates that 〈f(xk), tk − u‡〉≥ 〈f(xk),

tk − xk〉. /us,

− 2τζk
c

k〈f x
k

􏼐 􏼑, t
k

− u
‡〉 ≤ − 2τζk

c
k〈f x

k
􏼐 􏼑, t

k
− x

k〉. (36)

On the other hand, combining tk ∈ Tk and Algorithm 1,
we obtain

〈κ v
k
, x

k
􏼐 􏼑, t

k
− x

k〉≤ c
k〈f x

k
􏼐 􏼑, t

k
− x

k〉. (37)

/is implies that

− 2τζk
c

k〈f x
k

􏼐 􏼑, t
k

− u
‡〉≤ − 2τζk〈κ v

k
, x

k
􏼐 􏼑, t

k
− x

k〉.

(38)

Hence, we obtain

− 2τζk
c

k〈f x
k

􏼐 􏼑, t
k

− u
‡〉≤ − 2τζk〈κ v

k
, x

k
􏼐 􏼑, t

k
− x

k〉

≤ − 2τζk〈κ v
k
, x

k
􏼐 􏼑, v

k
− x

k〉

+ 2τζk〈κ v
k
, x

k
􏼐 􏼑, v

k
− t

k〉.

(39)

Now, we calculate − 2τζk
〈κ(vk, xk), vk − xk〉 and

2τζk
〈κ(vk, xk), vk − tk〉 separately. From the definition of

ζk
􏽮 􏽯, we get

− 2τζk〈κ v
k
, x

k
􏼐 􏼑, v

k
− x

k〉 � − 2τ ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2
. (40)

Meanwhile,

2τζk〈κ v
k
, x

k
􏼐 􏼑, v

k
− t

k〉 � v
k

− t
k

�����

�����
2

+ τ2 ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2

− v
k

− t
k

− τζkκ v
k
, x

k
􏼐 􏼑

�����

�����
2
.

(41)

/is implies that

− 2τζk
c

k〈f x
k

􏼐 􏼑, t
k

− u
‡〉 ≤ − 2τ ζk

􏼐 􏼑
2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2

+ v
k

− t
k

�����

�����
2

+ τ2 ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2

− v
k

− t
k

− τζkκ v
k
, x

k
􏼐 􏼑

�����

�����
2

� v
k

− t
k

�����

�����
2

− v
k

− t
k

− τζkκ v
k
, x

k
􏼐 􏼑

�����

�����
2

− τ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2
.

(42)

So, we get

t
k

− u
‡

�����

�����
2
≤ v

k
− u

‡
�����

�����
2

− v
k

− t
k

􏼐 􏼑 − τζkκ v
k
, x

k
􏼐 􏼑

�����

�����
2

− τ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2
.

(43)

/is completes the proof. □

Theorem 1. "e sequence uk􏼈 􏼉 generated by Algorithm 1
converges strongly to u‡ ∈ Sol(S, f).

Proof. We divide the proof into four claims.

Claim 1. We prove the boundedness of the sequences
uk􏼈 􏼉 and tk􏼈 􏼉. Indeed, from Algorithm 1 and Lemma 6,
we get

u
k+1

− u
‡

�����

����� � 1 − θk
− λk

􏼐 􏼑v
k

+ λk
t
k

− u
‡

�����

�����

� 1 − θk
− λk

􏼐 􏼑 v
k

− u
‡

􏼐 􏼑 + λk
t
k

− u
‡

􏼐 􏼑 − θk
u
‡

�����

�����

≤ 1 − θk
− λk

􏼐 􏼑 v
k

− u
‡

􏼐 􏼑 + λk
t
k

− u
‡

􏼐 􏼑
�����

����� + θk
u
‡����
����

≤ 1 − θk
− λk

􏼐 􏼑 v
k

− u
‡

�����

����� + λk
t
k

− u
‡

�����

����� + θk
u
‡����
����
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≤ 1 − θk
􏼐 􏼑 v

k
− u

‡
�����

����� − λk
v

k
− u

‡
�����

����� + λk
v

k
− u

‡
�����

����� + θk
u
‡����
����

� 1 − θk
􏼐 􏼑 v

k
− u

‡
�����

����� + θk
u
‡����
����.

(44)
Combining Algorithm 1 and (44), we obtain

u
k+1

− u
‡

�����

����� � 1 − θk
􏼐 􏼑 v

k
− u

‡
�����

����� + θk
u
‡����
����

� 1 − θk
􏼐 􏼑 u

k
+ ρk

u
k

− u
k− 1

􏼐 􏼑 − u
‡

�����

����� + θk
u
‡����
����

≤ 1 − θk
􏼐 􏼑 u

k
− u

‡
�����

����� + ρk 1 − θk
􏼐 􏼑

u
k

− u
k− 1

�����

����� + θk
u
‡����
����

� 1 − θk
􏼐 􏼑 u

k
− u

‡
�����

����� + θk ςk
+ u

‡����
����􏼐 􏼑,

(45)

where

ςk
� 1 − θk

􏼐 􏼑
ρk

θk
u

k
− u

k− 1
�����

�����. (46)

Taking into account εk � o(θk) and the definition of ρk,
we get

lim
k⟶∞

ςk
� 0. (47)

/en, the sequence ςk􏼈 􏼉 is bounded. Let M �

supk≥1(ςk + ‖u‡‖). We obtain from (45) that

u
k+1

− u
‡

�����

�����≤ 1 − θk
􏼐 􏼑 u

k
− u

‡
�����

����� + θk
M

≤max u
k

− u
‡

�����

�����, M􏼚 􏼛.
(48)

For ∀k≥ k0, we have

u
k+1

− u
‡

�����

�����≤max u
k

− u
‡

�����

�����, M􏼚 􏼛. (49)

It follows that the sequence uk􏼈 􏼉 is bounded. /erefore,
the sequence tk􏼈 􏼉 is bounded.
Claim 2. We prove that the following holds:

u
k+1

− u
‡

�����

�����
2
≤ 1 − θk

􏼐 􏼑
2

v
k

− u
‡

�����

�����
2

− 2λkθk

〈vk
− t

k
, u

k+1
− u

‡〉 + 2θk〈u‡
, u

k+1
− u

‡〉.
(50)

Set zk � (1 − λk)vk + λktk. /en, vk − zk � λk(vk − tk).
/erefore,

u
k+1

� 1 − θk
− λk

􏼐 􏼑v
k

+ λk
t
k

� z
k

− θk
v

k

� 1 − θk
􏼐 􏼑z

k
− θk

v
k

− z
k

􏼐 􏼑

� 1 − θk
􏼐 􏼑z

k
− θkλk

v
k

− t
k

􏼐 􏼑.

(51)

From Lemma 6, we have

t
k

− u
‡

�����

�����≤ v
k

− u
‡

�����

�����, (52)

which implies that

z
k

− u
‡

�����

�����
2
≤ 1 − λk

􏼐 􏼑 v
k

− u
‡

�����

�����
2

+ λk
t
k

− u
‡

�����

�����
2
≤ v

k
− u

‡
�����

�����
2
.

(53)

By (7), (51), and (53), we get

u
k+1

− u
‡

�����

�����
2

� 1 − θk
􏼐 􏼑z

k
− θkλk

v
k

− t
k

􏼐 􏼑 − u
‡

�����

�����
2

� 1 − θk
􏼐 􏼑 z

k
− u

‡
􏼐 􏼑 − θkλk

v
k

− t
k

􏼐 􏼑 − θk
u
‡

�����

�����
2

≤ 1 − θk
􏼐 􏼑

2
z

k
− u

‡
�����

�����
2

− 2θkλk〈vk
− t

k
, u

k+1
− u

‡〉 − 2θk〈u‡
, u

k+1
− u

‡〉

≤ 1 − θk
􏼐 􏼑

2
v

k
− u

‡
�����

�����
2

− 2θkλk〈vk
− t

k
, u

k+1
− u

‡〉 − 2θk〈u‡
, u

k+1
− u

‡〉

� 1 − θk
􏼐 􏼑

2
v

k
− u

‡
�����

�����
2

− 2θkλk〈vk
− t

k
, u

k+1
− u

‡〉 + 2θk〈 − u
‡
, u

k+1
− u

‡〉.

(54)

Initialization. Choose u0, u1 ∈ H arbitrarily.
Step 1. Choose ρk s.t. 0≤ ρk ≤ ρk, where ρk �

min ρ, (εk/‖u
k

− u
k− 1

‖)􏽮 􏽯, if u
k ≠ u

k− 1

ρ, otherwise
􏼨

Calculate vk � uk + ρk(uk − uk− 1)

Step 2. Calculate xk � PS(vk − ckf(vk)),

where, ck+1 �
min c

k
, (σ‖u

k
− x

k
‖/‖f(u

k
) − f(x

k
)‖)􏽮 􏽯, if f(u

k
)≠f(x

k
)

c
k
, otherwise

⎧⎨

⎩

Step 3. Construct the half space Tk as follows Tk � z ∈ H|〈vk − ckf(vk) − xk, z − xk〉≤ 0􏼈 􏼉

Calculate tk � PTk (vk − τζk
ckf(xk))

where ζk
� (〈vk − xk, κ(vk, xk)〉/‖κ(vk, xk)‖2)

and κ(vk, xk) � vk − xk − ck(f(vk) − f(xk))

Step 4. Compute uk+1 � (1 − θk − λk)vk + λktk

If xk � vk, then stop and xk ∈ Sol(S, f). Otherwise, set k: � k + 1 and return to step 1.

ALGORITHM 1: Strong convergence algorithm with contractive technique.
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Claim 3. By (8) and Algorithm 1, we obtain

v
k

− u
‡

�����

�����
2

� u
k

+ ρk
u

k
− u

k− 1
􏼐 􏼑 − u

‡
�����

�����
2

� 1 + ρk
􏼐 􏼑 u

k
− u

‡
􏼐 􏼑 − ρk

u
k− 1

− u
‡

􏼐 􏼑
�����

�����
2

� 1 + ρk
􏼐 􏼑 u

k
− u

‡
�����

�����
2

− ρk
u

k− 1
− u

‡
�����

�����
2

+ ρk 1 + ρk
􏼐 􏼑 u

k
− u

k− 1
�����

�����
2

≤ 1 + ρk
􏼐 􏼑 u

k
− u

‡
�����

�����
2

− ρk
u

k− 1
− u

‡
�����

�����
2

+ 2ρk
u

k
− u

k− 1
�����

�����
2

� u
k

− u
‡

�����

�����
2

+ ρk
u

k
− u

‡
�����

�����
2

− u
k− 1

− u
‡

�����

�����
2

􏼒 􏼓 + 2ρk
u

k
− u

k− 1
�����

�����
2
.

(55)

Using Lemma (8) and (52), we get

u
k+1

− u
‡

�����

�����
2

� 1 − θk
− λk

􏼐 􏼑 v
k

− u
‡

􏼐 􏼑 + λk
t
k

− u
‡

􏼐 􏼑 + θk
− u

‡
􏼐 􏼑

�����

�����
2

≤ 1 − θk
− λk

􏼐 􏼑 v
k

− u
‡

�����

�����
2

+ λk
t
k

− u
‡

�����

�����
2

+ θk
u
‡����
����
2

≤ 1 − θk
− λk

􏼐 􏼑 v
k

− u
‡

�����

�����
2

+ θk
u
‡����
����
2

+ λk
v

k
− u

‡
�����

�����
2

− v
k

− t
k

− τζkκ v
k
, x

k
􏼐 􏼑

�����

�����
2

􏼒 􏼓

− τ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2
􏼓

≤ 1 − θk
􏼐 􏼑 v

k
− u

‡
�����

�����
2

+ θk
u
‡����
����
2

− λk
v

k
− t

k
− τζkκ v

k
, x

k
􏼐 􏼑

�����

�����
2

− λkτ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2
􏼓.

(56)

From (55) and (56), we get

u
k+1

− u
‡

�����

�����
2
≤ 1 − θk

􏼐 􏼑 u
k

+ ρk
u

k
− u

k− 1
􏼐 􏼑 − u

‡
�����

�����
2

+ θk
u
‡����
����
2

− λk
v

k
− t

k
− τζkκ v

k
, x

k
􏼐 􏼑

�����

�����
2

− λkτ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2

≤ 1 − θk
􏼐 􏼑 u

k
− u

‡
�����

�����
2

+ ρk 1 − θk
􏼐 􏼑 u

k
− u

‡
�����

�����
2

− u
k− 1

− u
‡

�����

�����
2

􏼒 􏼓

+ 2ρk 1 − θk
􏼐 􏼑 u

k
− u

k− 1
�����

�����
2

+ θk
u
‡����
����
2

− λk
v

k
− t

k
− τζkκ v

k
, x

k
􏼐 􏼑

�����

�����
2

− λkτ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2

≤ u
k

− u
‡

�����

�����
2

+ ρk 1 − θk
􏼐 􏼑 u

k
− u

‡
�����

�����
2

− u
k− 1

− u
‡

�����

�����
2

􏼒 􏼓

+ 2ρk 1 − θk
􏼐 􏼑 u

k
− u

k− 1
�����

�����
2

+ θk
u
‡����
����
2

− λk
v

k
− t

k
− τζkκ v

k
, x

k
􏼐 􏼑

�����

�����
2

− λkτ(2 − τ) ζk
􏼐 􏼑

2
κ v

k
, x

k
􏼐 􏼑

�����

�����
2
.

(57)

Claim 4. Next, we will consider two different cases to
prove the strong convergence of the sequence
‖uk − u‡‖2􏽮 􏽯.

Case 1. /ere exists an N ∈ N s.t.
‖uk+1 − u‡‖2 ≤ ‖uk − u‡‖2, ∀k≥N. Obviously, the limit
of the sequence ‖uk − u‡‖2􏽮 􏽯 exists which implies that
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limk⟶∞‖uk+1 − uk‖ � 0. In (57), taking the limit as
k⟶∞, we deduce

lim
k⟶∞

κ v
k
, x

k
􏼐 􏼑

�����

����� � 0, (58)

lim
k⟶∞

v
k

− t
k

− τζkκ v
k
, x

k
􏼐 􏼑

�����

�����
2

� 0. (59)

On the other hand, we have

v
k

− t
k

�����

�����≤ v
k

− t
k

− τζkκ v
k
, x

k
􏼐 􏼑

�����

����� + τζk κ v
k
, x

k
􏼐 􏼑

�����

�����.

(60)

So, we have limk⟶∞‖vk − tk‖ � 0.
Combining Lemma 3 and (58), we obtain

lim
k⟶∞

v
k

− x
k

�����

����� � 0. (61)

Now, we show that ww(uk) ⊂ Sol(S, f). Choose
p‡ ∈ ww(uk). It implies that there exists a subsequence
unk{ } of uk􏼈 􏼉 which converges weakly to p‡. /erefore,

vnk⇀p‡. Due to limk⟶∞‖vk − xk‖ � 0, we obtain
xnk⇀p‡ ∈ S. By Algorithm 1, we have

〈xk
− v

k
+ c

k
f v

k
􏼐 􏼑, u − x

k〉 ≥ 0, ∀u ∈ C. (62)

Since f is monotone, we have

0≤ 〈xk
− v

k
, u − x

k〉 + c
k〈f v

k
􏼐 􏼑, u − x

k〉

�〈xk
− v

k
, u − x

k〉 + c
k〈f v

k
􏼐 􏼑, u − v

k〉

+ c
k〈f v

k
􏼐 􏼑, v

k
− x

k〉

≤ 〈xk
− v

k
, u − x

k〉 + c
k〈f(u), u − v

k〉

+ c
k〈f v

k
􏼐 􏼑, v

k
− x

k〉.

(63)

Taking the limit in (63) as k⟶∞, we get

〈f(u), u − p
‡〉 ≥ 0, ∀u ∈ C, (64)

which implies that ww(uk) ∈ Sol(S, f).
Set bk � ‖uk − u‡‖2 for all k≥ 0. By (65) for q � u‡, we
obtain

b
k+1 ≤ 1 − θk

􏼐 􏼑 v
k

− q
�����

�����
2

+ θk
− 2λk

v
k

− t
k

�����

����� u
k+1

− q
�����

�����􏼔

+2〈 − q, u
k+1

− q〉􏽩.

(65)

We deduce from Algorithm 1 that

v
k

− q
�����

�����
2
≤ u

k
− q

�����

����� + ρk
u

k
− u

k− 1
�����

�����􏼒 􏼓
2

� u
k

− q
�����

�����
2

+ ρk
􏼐 􏼑

2
u

k
− u

k− 1
�����

�����
2

+ 2ρk
u

k
− q

�����

����� u
k

− u
k− 1

�����

�����

≤ u
k

− q
�����

�����
2

+ ρk
u

k
− u

k− 1
�����

�����
2

+ 2ρk
u

k
− q

�����

����� u
k

− u
k− 1

�����

�����

≤ b
k

+ 3Kρk
u

k
− u

k− 1
�����

�����, (66)

where

K � sup
k≥1

u
k

− u
k− 1

�����

�����, u
k

− q
�����

�����􏼚 􏼛. (67)

By virtue of (65) and (66), we have

b
k+1 ≤ 1 − θk

􏼐 􏼑b
k

+ δk
, (68)

where

δk
� θk 3K 1 − θk

􏼐 􏼑
ρk

θk
u

k
− u

k− 1
�����

����� − 2λk
v

k
− t

k
�����

�����􏼢

u
k+1

− q
�����

����� + 2〈 − q, u
k+1

− q〉􏼕.

(69)

So, we get

limsup
k≥1
〈 − q, u

k+1
− q〉 � sup

u‡∈ww

u
k

􏼐 􏼑〈 − q, u
‡

− q〉 ≤ 0.

(70)

From (70), we deduce that q ∈ PSol(S,f)(0). Combin-
ing the property of projection, limk⟶∞‖vk − tk‖2 � 0
and limk⟶∞(ρk/θk)‖uk − uk− 1‖ � 0, we have
limsupk≥1δ

k ≤ 0. By Lemma 2, we obtain
bk � ‖uk − u‡‖2⟶ 0(k⟶∞). /erefore, the se-
quence uk􏼈 􏼉 converges strongly to u‡.
Case 2. /ere exists a subsequence bki􏼈 􏼉 ⊂ bk􏼈 􏼉

k≥􏽥k0
s.t.

b
􏽥ki ≤ b

􏽥ki+1 for ∀i≥ 0. From Lemma 2, we can deduce

b
c(k) ≤ b

c(k)+1
,

b
k ≤ b

c(k)+1
,

(71)

for each k≥ 􏽥k0, where c(k) � max n ∈ N|􏽥k0 ≤ n≤􏽮

k, bn ≤ bn+1}. Further, the sequence c(k)􏼈 􏼉
k≥􏽥k0

is

nondecreasing (i.e., limk⟶∞c(k) �∞). Let bk �

‖uk − u‡‖2. By (71) and Claim 3 for q � u‡, we obtain

λc(k)
v

c(k)
− t

c(k)
− cζc(k)

d v
c(k)

, x
c(k)

􏼐 􏼑
�����

�����
2

􏼔

+τ(2 − τ) ζc(k)
􏼐 􏼑

2
d v

c(k)
, x

c(k)
􏼐 􏼑

�����

�����
2
􏼕

≤ ρc(k) 1 − θc(k)
􏼐 􏼑 b

c(k)
− b

c(n)− 1
􏼐 􏼑

+ 2ρc(k) 1 − θc(k)
􏼐 􏼑 u

c(k)
− u

c(n)− 1
�����

�����
2

+ θc(k)
‖q‖

2
.

(72)

We deduce from the definition of bk that
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b
c(k)

− b
c(k)− 1

� u
c(k)

− q
�����

�����
2

− u
c(k)− 1

− q
�����

�����
2

� u
c(k)

− q
�����

����� − u
c(k)− 1

− q
�����

�����􏼒 􏼓

u
c(k)

− q
�����

����� + u
c(k)− 1

− q
�����

�����􏼒 􏼓

≤ u
c(k)

− u
c(k)− 1

�����

����� u
c(k)

− q
�����

����� + u
c(k)− 1

− q
�����

�����􏼒 􏼓.

(73)

Combining (72) and (73), we have

λc(k)
v

c(k)
− t

c(k)
− cζc(k)

d v
c(k)

, u
c(k)

􏼐 􏼑
�����

�����
2

􏼔

+τ(2 − τ) ζc(k)
􏼐 􏼑

2
d v

c(k)
, u

c(k)
􏼐 􏼑

�����

�����
2
􏼕

≤ ρc(k) 1 − θc(k)
􏼐 􏼑 u

c(k)
− u

c(k)− 1
�����

����� u
c(k)

− q
�����

����� − u
c(k)− 1

− q
�����

�����􏼒 􏼓􏼔 􏼕

+ 2ρc(k) 1 − θc(k)
􏼐 􏼑 u

c(k)
− u

c(k)− 1
�����

�����
2

+ θc(k)
‖q‖

2
.

(74)

Similarly, we have ρc(k)(1 − θc(k))‖uc(k)− uc(k)− 1‖⟶ 0.
It follows that

ww u
c(k)

􏼐 􏼑 ⊂ Sol(S, f),

lim
k⟶∞

t
c(k)

− u
c(k)

�����

�����
2

� lim
k⟶∞

t
c(k)

− v
c(k)

�����

�����
2

� 0,
(75)

and

b
c(k)+1 ≤ 1 − θc(k)

􏼐 􏼑b
c(k)

+ θc(k)

3K 1 − θc(k)
􏼐 􏼑

ρc(k)

θc(k)
u

c(k)
− u

c(k)− 1
�����

�����􏼢

− 2λc(k)
v

c(k)
− t

c(k)
�����

����� u
c(k)+1

− q
�����

����� + 2〈 − q, u
c(k)+1

− q〉.

(76)

Since bc(k) ≤ bc(k)+1 and θc(k) > 0, from (76), we have

b
c(k) ≤ 3K 1 − θc(k)

􏼐 􏼑
ρc(k)

θc(k)
u

c(k)
− u

c(k)− 1
�����

�����

− 2λc(k)
v

c(k)
− t

c(k)
�����

����� u
c(k)+1

− q
�����

����� + 2〈 − q, u
c(k)+1

− q〉.

(77)

Since q ∈ PSol(S,f)(0) and ww(uc(k)) ⊂ Sol(S, f), we have
limsupk⟶∞〈− q, uc(k)+1 − q〉 � supk⟶∞〈− q, u‡ − q〉≤ 0.
By (75), (77), and (ρc(k)/θc(k))‖uc(k) − uc(k)− 1‖⟶ 0, we get

limsup
k⟶∞

b
c(k) ≤ 2 sup

q∈ww

u
c(k)

􏼐 􏼑〈 − q, u
‡

− q〉≤ 0. (78)

It follows from (76) that

limsup
k⟶∞

b
c(k)+1 ≤ 0

or lim
k⟶∞

b
c(k)+1

� 0.
(79)

Hence, limk⟶∞bk � 0. /erefore, the sequence uk􏼈 􏼉

converges strongly to u‡. /is completes the proof.
Suppose that g: H⟶ H is a ρ-contractive operator.

Next, we propose an iterative algorithm with viscosity
item. □

Theorem 2. "e sequence uk􏼈 􏼉 generated by Algorithm 1
converges strongly to u‡ � PSol(S,f)g(u‡).

Proof. We divide the proof into 4 claims.

Claim 1. We prove the boundedness of the sequences
g(vk)􏼈 􏼉, xk􏼈 􏼉 and tk􏼈 􏼉. From Algorithm 1, we get

v
k

− u
‡

�����

����� � u
k

− ρk
u

k
− u

k− 1
􏼐 􏼑 − u

‡
�����

�����

≤ u
k

− u
‡

�����

����� + ρk
u

k
− u

k− 1
�����

�����

� u
k

− u
‡

�����

����� + θkρ
k

θk
u

k
− u

k− 1
�����

�����.

(80)

From Algorithm 1, we obtain (ρk/θk)‖uk−

uk− 1‖⟶ 0, (k⟶∞). /en, ∃M1 > 0 s.t.

ρk

θk
u

k
− u

k− 1
�����

�����≤M1, ∀k> 0. (81)

By Algorithm 1 and (81), we have

u
k+1

− u
‡

�����

����� � θk
g v

k
􏼐 􏼑 + 1 − θk

􏼐 􏼑t
k

− u
‡

�����

�����

� θk
g v

k
􏼐 􏼑 − u

‡
􏼐 􏼑 + 1 − θk

􏼐 􏼑 t
k

− u
‡

􏼐 􏼑
�����

�����

≤ θk
g v

k
􏼐 􏼑 − u

‡
�����

����� + 1 − θk
􏼐 􏼑 t

k
− u

‡
�����

�����

≤ θk
g v

k
􏼐 􏼑 − g u

‡
􏼐 􏼑

�����

����� + θk
g u

‡
􏼐 􏼑 − u

‡
�����

����� + 1 − θk
􏼐 􏼑 t

k
− u

‡
�����

�����

≤ θkρ v
k

− u
‡

�����

����� + θk
g u

‡
􏼐 􏼑 − u

‡
�����

����� + 1 − θk
􏼐 􏼑 v

k
− u

‡
�����

�����
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≤ 1 − (1 − ρ)θk
􏼐 􏼑 v

k
− u

‡
�����

����� + θk
g u

‡
􏼐 􏼑 − u

‡
�����

�����

≤ 1 − (1 − ρ)θk
􏼐 􏼑 u

k
+ ρk

u
k

− u
k− 1

􏼐 􏼑 − u
‡

�����

����� + θk
g u

‡
􏼐 􏼑 − u

‡
�����

�����

≤ 1 − (1 − ρ)θk
􏼐 􏼑 u

k
− u

‡
�����

����� + 1 − (1 − ρ)θk
􏼐 􏼑ρk

u
k

− u
k− 1

�����

����� + θk
g u

‡
􏼐 􏼑 − u

‡
�����

�����

≤ 1 − (1 − ρ)θk
􏼐 􏼑 u

k
− u

‡
�����

����� + 1 − (1 − ρ)θk
􏼐 􏼑θkρ

k

θk
u

k
− u

k− 1
�����

����� + θk
g u

‡
􏼐 􏼑 − u

‡
�����

�����. (82)

From (81) and (82), we have

u
k+1

− u
‡

�����

�����≤ 1 − (1 − ρ)θk
􏼐 􏼑 u

k
− u

‡
�����

����� + 1 − (1 − ρ)θk
􏼐 􏼑θkρ

k

θk
u

k
− u

k− 1
�����

����� + θk
g u

‡
􏼐 􏼑 − u

‡
�����

�����

≤ 1 − (1 − ρ)θk
􏼐 􏼑 u

k
− u

‡
�����

����� + 1 − (1 − ρ)θk
􏼐 􏼑θk

M1 + θk
g u

‡
􏼐 􏼑 − u

‡
�����

�����≤ 1 − (1 − ρ)θk
􏼐 􏼑 u

k
− u

‡
�����

�����

+(1 − ρ)θk
1 − (1 − ρ)θk

􏼐 􏼑M1 + g u
‡

􏼐 􏼑 − u
‡

�����

�����

1 − ρ

≤ 1 − (1 − ρ)θk
􏼐 􏼑 u

k
− u

‡
�����

����� +(1 − ρ)θk
M1 + g u

‡
􏼐 􏼑 − u

‡
�����

�����

1 − ρ

≤max u
k

− u
‡

�����

�����,
M1 + g u

‡
􏼐 􏼑 − u

‡
�����

�����

1 − ρ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
≤ · · · ≤max u

k
− u

‡
�����

�����,
M1 + g u

‡
􏼐 􏼑 − u

‡
�����

�����

1 − ρ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(83)

It is obvious that the sequence uk􏼈 􏼉 is bounded. Fur-
thermore, the sequences g(vk)􏼈 􏼉, xk􏼈 􏼉 and tk􏼈 􏼉 are
bounded.

Claim 2. From (7) and Algorithm 1, we have

u
k+1

− u
‡

�����

�����
2

� θk
g v

k
􏼐 􏼑 + 1 − θk

􏼐 􏼑t
k

− u
‡

�����

�����
2

� θk
g v

k
􏼐 􏼑 − g u

‡
􏼐 􏼑􏼐 􏼑 + 1 − θk

􏼐 􏼑 t
k

− u
‡

􏼐 􏼑 + θk
g u

‡
􏼐 􏼑 − u

‡
􏼐 􏼑

�����

�����
2

≤ θk
g v

k
􏼐 􏼑 − g u

‡
􏼐 􏼑􏼐 􏼑 + 1 − θk

􏼐 􏼑 t
k

− u
‡

􏼐 􏼑
�����

�����
2

Initialization. Choose u0, u1 ∈ H arbitrarily.
Step 1. Choose ρk s.t. 0≤ ρk ≤ ρk, where ρk �

min ρ, (εk/‖u
k

− u
k− 1

‖)􏽮 􏽯 if u
k ≠ u

k− 1

ρ otherwise
􏼨

Calculate vk � uk + ρk(uk − uk− 1)

Step 2. Calculate xk � PS(vk − ckf(vk)),

where ck+1 �
min c

k
, (σ‖u

k
− x

k
‖/‖fu

k
− fx

k
‖)􏽮 􏽯 iff u

k ≠fx
k

c
k otherwise

⎧⎨

⎩

Step 3. Construct the half space Tk as follows Tk � z ∈ H|〈vk − ckfvk − xk, z − xk〉≤ 0􏼈 􏼉.

Calculate tk � PTk (vk − τζk
ckf(xk)),

where ζk
� (〈vk − xk, κ(vk, xk)〉/‖κ(vk, xk)‖2)

and κ(vk, xk) � (vk, xk) − ck(f(vk) − f(xk)).

Step 4. Compute uk+1 � θkg(vk) + (1 − θk)tk.

If xk � vk, then stop and xk ∈ Sol(S, f). Otherwise, set k: � k + 1 and return to step 1.

ALGORITHM 2: Strong convergence algorithm with viscosity term.
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Claim 3. By (8) and (55), we obtain

u
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(85)

From (85) and (55), we obtain
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(86)

/is implies that
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Claim 4. According to Claim 3, we can see that there are
two possible cases.

Case 1. /ere exists an N ∈ N, s.t. ‖uk+1 − u‡‖2

≤ ‖uk − u‡‖2 for ∀k>N. It follows that limk⟶∞‖uk −

u‡‖ exists. From (86) and limk⟶∞θ
k � 0, we have
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Note that
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So,

lim
k⟶∞

v
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Similarly, we can obtain

ww u
k

􏼐 􏼑 ⊂ Sol(S, f). (91)

Set bk � ‖uk − q‖2 for all k≥ 0. By (84) for q � u‡, we
get
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It follows from (66) and (92) that

b
k+1 ≤ 1 − (1 − ρ)θk

􏼐 􏼑b
k

+ δk
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where
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(95)

Hence, we deduce q ∈ PSol(S,f)(0). Combining the
property of projection, limk⟶∞‖vk − tk‖2 � 0 and
limk⟶∞(ρk/θk)‖uk − uk− 1‖ � 0, we have limsupk≥1
δk ≤ 0. By Lemma 2, we obtain bk � ‖uk − u‡‖2

⟶ 0(k⟶∞). /erefore, the sequence uk􏼈 􏼉

converges strongly to u‡.
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From (73) and (97), we get
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Using Claim 1 and (98), we have
limk⟶∞(1 − θc(k))ρc(k)‖uc(k) − uc(k)− 1‖ � 0. /erefore,
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Since bc(k) ≤ bc(k)+1 and bc(k) ≥ 0, we receive
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Note that q ∈ PSol(S,f)(0) and ww(uc(k)) ⊂ Sol(S, f). By
the property of projection, we have

limsup
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Since (1 − θc(k))ρc(k)‖uc(k) − uc(n)− 1‖⟶ 0, we deduce
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So, limsupk⟶∞bc(k)+1 ≤ 0 or limk⟶∞bc(k)+1 � 0. Hence,
limk⟶∞bk � 0 which implies that the sequence uk􏼈 􏼉 con-
verges strongly to u‡. /is completes the proof. □
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Existing research on credit risk contagion of supply chain finance pays more attention to the influence of network internal
structure on the process of risk contagion. 'e spread of COVID-19 has had a huge impact on the supply chain, with a large
number of enterprises experiencing difficulties in operation, resulting in increased credit risks in supply chain finance. Under the
impact of the epidemic, this paper explores the transmission speed and steady state of credit risk when the supply chain finance
network is affected by external impact so that we can have a more complete understanding of the ability of supply chain finance to
resist risks. 'e simulation results show that external shocks of different degrees will increase the number of initial infected
enterprises and lead to the increase in credit risk contagion speed but have no significant impact on network steady state; the speed
of credit risk contagion is positively correlated with network complexity but not significantly affected by network size; core
enterprises infected will increase the rate of credit risk contagion. 'e intensity of policy intervention has obvious curative effect
on the risk caused by external shock. When the supply chain financial network is affected by external shocks, the intensity, time,
and pertinence of policy response can effectively prevent the credit risk contagion.

1. Introduction

Since the outbreak in 2020, COVID-19 has spread to 191
countries and regions, with more than 200 million con-
firmed cases and 4.4 million deaths. As a result of the ep-
idemic, the unemployment rate has gradually increased,
enterprises have suspended production, and economic in-
dicators have declined significantly. Optimization methods,
in particular, fixed-point methods, are efficient and powerful
for solving various real problems in traffic and trans-
portation, medical imaging, modern management, financial
engineering (see, e.g., [1–5]). For the supply chain, the
continuous decline of market demand and production
stagnation of upstream and downstream enterprises will lead
to serious operational difficulties for enterprises within the
supply chain. Repeated outbreaks caused bymutations in the
virus have cast a shadow over the recovery of global supply
chain. Against the backdrop of the pandemic, supply chain
finance is also facing severe impact.

Supply chain finance integrates logistics, capital flow,
and information flow and forms a corresponding network
structure. With the continuous advancement of financial
globalization, network complexity is strengthened [6], while
making the network more efficient, it also makes it more
vulnerable to default and bankruptcy [7]. 'e credit default
of one participant will cause losses of other members and
eventually lead to credit risk contagion throughout the
supply chain network [8–11]. 'e spread of COVID-19 has
significantly increased the network credit risk of supply
chain finance. 'e supply chain finance plays a role in
resisting the external impact and effectively offsetting losses
caused by the COVID-19 outbreak; therefore, it is important
to study the influence of external impact on supply chain
financial credit risk infection and corresponding policies.

'e rest of this paper is organized as follows. Section 2 is
literature review, which mainly summarizes the existing
research on credit risk of supply chain finance. Section 3 is
the construction of complex network of supply chain
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finance, including model selection and model construction.
Section 4 is the simulation results and discussion, the design
of the relevant simulation experiments, and the results of in-
depth analysis. Section 5 is the conclusion.

2. Literature Review

Supply chain finance is different from traditional financing
methods. By integrating the financing process of all participants
and optimizing the capital flow in the supply chain, supply
chain finance improves the overall capital management level of
the supply chain [12–14].'e existing research on credit risk of
supply chain finance mainly focuses on risk identification and
evaluation [8], and the researchmethod ismainly based around
the construction of the risk evaluation index system. Mou et al.
[9] believed that core enterprises are crucial to the evaluation of
credit risks in the supply chain, and the FAHP method is used
to quantitatively measure and evaluate the credit risks of core
enterprises. Zhu et al. [15] believed that SMEs are in a vul-
nerable position in the supply chain, but their credit risk status
is of great significance to supply chain finance.With the help of
RS-multiboosting machine learning model, they built a pre-
diction model of credit risk for SMEs in supply chain finance,
which has a good effect. Wang et al. [16] believed that the
development of smart city and smart finance makes the fi-
nancial risks of SMEs more complex and uses the improved
PROMETHEE method to build a more accurate credit risk
evaluation model of SMEs. However, enterprises in the supply
chain do not operate in isolation, and the credit risk within the
supply chain is bound to infect the whole supply chain, causing
serious impact on the network.

On the topic of credit risk contagion, existing research
mainly focuses on the influence of internal structure of
supply chain on the process of credit risk contagion. Zhao
et al. [17] established a scale-free complex network model of
supply chain finance and found that network structure had a
significant impact on credit risk contagion. Xie et al. [18]
made a game analysis of the two-tier supply chain with
financing constraints by constructing two-tier financing
channels in the supply chain and found that financing
structure has a significant impact on credit risk contagion,
while the contagion effect under dual-channel financing
mechanism is weak. With the help of the SIRS infectious
disease model, Wang et al. [11] deeply discussed the in-
fluence of multiple factors on supply chain risk contagion,
including enterprise risk preference, operational robustness
and flexibility, completeness of market information, espe-
cially network topology. However, in addition to internal
factors, external shocks also have an impact on the process of
credit risk contagion. 'erefore, this paper mainly studies
the impact of external shocks (COVID-19) on the credit risk
contagion process of supply chain finance.

3. Construction of Supply Chain
Finance Network

3.1. Selection of Network Model and Infection Model.
From the perspective of the development history of complex
network, complex network can be divided into regular

network, random graph, small world network, and scale-free
network. A regular network is one in which any two nodes
are directly connected by an edge; random graph refers to
the network formed by connecting nodes randomly
according to probability. Both small world network and
random network conform to Poisson distribution, which
results that the degree of a large number of nodes in the
network is concentrated near k, and there are no points with
a relatively high degree. 'is kind of network is also called
uniform network. In the structure of supply chain finance
network, newly joined SMEs tend to be connected with core
enterprises with high degree, which makes core enterprises
have a very high degree, while SMEs have a relatively low
degree.'is characteristic of supply chain finance network is
exactly in line with the characteristics of scale-free network.
'erefore, BA scale-free network is selected as the basis to
construct supply chain finance network.

'e premise of virus transmission is a network envi-
ronment conducive to transmission, and only mutual
contact and relationship can complete the transmission
process, which is consistent with the transmission of credit
risk. 'erefore, the epidemic model has been widely used to
study the transmission of credit risk. 'e SIS virus infection
model is a classical model of transmission dynamics in
complex networks and has been applied in a large number of
studies on credit risk [17, 19]. 'e SIS virus infection model
has the advantage that it has no limitation on the network
scale and no special requirements on the network trans-
mission direction and can accurately reflect the dynamic
process of credit risk infection in the network.'erefore, the
SIS virus infection model is very suitable for this paper as the
basic model of credit risk infection.

3.2. Construction of Complex Network of Supply Chain
Finance. Based on the discussion of model selection in the
previous section and the special requirements of the network
model in related studies [17, 19], this paper proposes the
following hypotheses for the supply chain finance network:

(i) Hypothesis 1. Supply chain finance network is an
undirected network. Generally, risk contagion is
transmitted from upstream to downstream, but for
supply chain finance network, it is mainly man-
ifested as upstream and downstream cross infection,
and there is no clear direction.'erefore, this article
sets the network as an undirected network.

(ii) Hypothesis 2. Nodes in the network are only infected
by neighboring nodes. In the supply chain finance
network, the connection between two nodes is the
channel of risk contagion, and nodes without direct
contact have little influence on each other, which is
not considered in this paper.

(iii) Hypothesis 3. Credit risk in supply chain finance
network transmits with a certain probability. Even if
it is connected to the infected node, it does not
necessarily mean that it will be affected accordingly.
'e probability of infection is related to the strength
of the connection between the two nodes. In this
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paper, to simplify the infection model, this proba-
bility is set as a constant.

(iv) Hypothesis 4. 'e structure and scale of supply chain
finance network will not change in the process of
credit risk contagion. In the real world, the network is
always in a dynamic process, some nodes will join,
and also some nodes will disconnect. In this paper,
the network model is simplified, and the changes of
network structure and scale in the process of in-
fection are not considered.

Assume that the probability of credit risk infection in the
network is λ, 0< λ< 1; at time t, the density of infected
individuals on the network is ρ(t). As t approaches infinity,
the network reaches a steady state ρ. Considering that the
scale-free network is a nonuniform network, the infected
density of the node with the degree of k at the time of t is
ρk(t). Each node has a certain recovery capability, and the
recovery coefficient is set as c. 'rough the comprehensive
analysis of the above contents and the characteristics of the
SIS model, we can get the following equation at time t:

zρk(t)

zt
� − cρk(t) + λk 1 − ρk(t)􏼂 􏼃Θ(ρ(t)). (1)

'e first term on the right is the annihilation term, and the
density of infected nodes decreases with the speed c.'e second
item is the generation term, and it is proportional to the
probability of infection λ, density of susceptible nodes
[1 − ρk(t)], the degree of node k, and Θ(ρ(t)). Θ(ρ(t))

represents the probability that any given edge is connected to an
infected node, namely, Θ(ρ(t)) � (1/〈k〉)􏽐kkP(k)ρk(t). We
assume the infected density of the node with degree k at steady
state ρk.

Using the steady-state condition (zρk(t)/zt) � 0, we
have the following:

ρk �
λkΘ(ρ)

c + λkΘ(ρ)
. (2)

According to equation (2), we find that at steady state, the
density of infected nodes with degree k is positively correlated
to the infection probability λ and the degree of the node k but is
negatively correlated to the enterprise’s resilience c.

With equation (2) and Θ(ρ(t)), we have the following:

Θ �
1

〈k〉
􏽘
k

kP(k)
λkΘ

c + λkΘ
. (3)

If the equation has a nontrivial solution Θ≠ 0, the fol-
lowing conditions must be met:

d
dΘ

1
〈k〉

􏽘
k

kP(k)
λkΘ

c + λkΘ
⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Θ�0
≥ 1. (4)

Namely,

􏽘
k

λk
2
P(k)

c〈k〉
�
λ〈k2〉
〈k〉
≥ 1. (5)

'e critical value λc of BA scale-free network is as
follows:

λc �
c〈k〉

〈k2〉
. (6)

In BA scale-free network,

〈k〉 � 􏽚
∞

m
kP(k)dk � 2m,

〈k2〉 � 􏽘
k

k
2
P(k),

P(k) � 2m
2
k

− 3
.

(7)

Assume that the maximum degree in the supply chain
finance network is kl; as the network goes to infinity, kl tends
to mN2, so 〈k2〉 ≈ 2m2 ln(kl/m). 'e critical value λc can be
represented as

λc �
c〈k〉

〈k2〉
�

c

2m lnN
. (8)

According to equation (8), we find that the critical value
λc is negatively correlated with the network structure m and
the network size N but is positively correlated to the en-
terprise’s resilience c.

4. Simulation Results and Discussion under
Epidemic Impact

4.1. Simulation Algorithm Design

(1) BA scale-free network is constructed. According to
the existing research [17, 18, 20], this paper sets the
basic parameters of the network as N � 1000 and
m � 5.

(2) According to the scope of the epidemic, the initial
infected nodes were randomly selected from the
network.

(3) 'e number of newly infected nodes are determined.
Assume that the status of the node i is S(i); when the
node is infected, S(i) � 1; if not infected, S(i) � 0;
External impact on node i can be expressed as

β(i) � 1 − (1 − λ)
αi , (9)

where αi � 􏽐
N
j�1 aijSj, i≠ j indicates the number of infected

nodes in adjacent nodes of the node i, aij indicates the
connection status between node i and node j, aij � 1 in-
dicates that the two nodes are directly connected; otherwise,
they are not adjacent nodes; β(i) denotes the probability that
node i is infected by at least one neighboring infected node,
which can be used to represent its external impact.

'e risk threshold Ci of node i can be expressed as

Ci � δ + ci( 􏼁
ki

2m
. (10)

'e current assets owned by enterprises have a certain
resistance to credit risk, so the resistance of enterprises is
expressed as δ, which is set to 0.25. To represent the dif-
ferences of enterprises, we introduce random number ci
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(0< ci < 1). If Ci < β(i), node i is infected. Otherwise, node i

is not infected.

4.2. Analysis of Simulation Results under Epidemic Impact

4.2.1. Determine the Risk of Contagion λ. First, we need to
determine the probability of risk contagion λ matching the
credit risk contagion network, which is related to λc in
equation (8); when λ> λc, credit risk becomes contagious;
otherwise, credit risk will not be contagious. According to
equation (8), we set the initial network state to N � 1000,
m � 5, and c � 0.2 and simulated the influence of network
parameters c, m, and N on λ. 'e simulation results are
shown in Figure 1.

According to the above simulation results, we found that
with the increase in self-healing rate c, λc increased con-
tinuously. With different c, λc is between 0.2 and 0.3. For
network complexity m, when m � 1, the density of infected
nodes in the steady state is 0, indicating that there is no risk
infection within the network. With the increase in network
complexity, λc gradually decreases, while λc has a maximum
value of about 0.3. 'ere is a negative correlation between
the network size and λc; when N � 200, λc is about 0.21, and
when N � 1000, λc is about 0.25. 'erefore, in order to
ensure that the simulation results are not affected by risk
contagion probability, λ is set as 0.3 in the subsequent
simulation experiments of this paper.

4.2.2. Analysis of Simulation Results of Enterprise Self-
Healing Mode under Epidemic Impact. We first consider
that in the case of no policy intervention, the enterprise has a
certain self-healing rate c.'at is, the enterprise has a certain
probability to recover to a healthy state. Compared with the
credit default of an internal enterprise, the outbreak of
COVID-19 will have a more serious impact, mainly reflected
in the following: a large number of enterprises are faced with
shutdown and production, demand decline, labor shortage,
and other problems, which leads to a sudden increase in the
number of initially infected enterprises. Under the epidemic,
the probability of default of core enterprises increases. As
core enterprises are connected with a large number of en-
terprises, default will inevitably have a serious impact on the
entire network. 'erefore, in the adjustment of the initial
network state, we increased the initial number of infected
nodes m0 to represent the impact caused by the epidemic
impact. 'e initial number of infected nodes indicates the
degree to which different industries are affected by the
epidemic. Finally, the influence of the number of core en-
terprises infected on credit risk contagion is discussed. First,
we consider the impact of the initial number of infected
nodes on the supply chain finance network, and the sim-
ulation results are shown in Figure 2.

According to the simulation results, we find that the
initial number of infected nodes m0 is basically positively
correlated with the contagion speed of credit risk. However,
for the steady state, the difference between Figures 2(a) and
2(b) is not obvious because the risk contagion threshold of
SMEs Ci is relatively low. Without policy intervention and

increase in the initial number of infected nodes, most nodes
will be infected. Now, we will discuss the impact of core
enterprises infection on credit risk contagion. 'e simula-
tion results are shown in Figure 3.

According to the simulation results, it is found that when
the initial number of infected nodes is small (m0 � 10) and
c � 0, there is a difference between the credit risk contagion
rate and the infection rate of core enterprises. With the
increase in external shock intensity (initial infection num-
ber), the difference of credit risk contagion speed gradually
decreases. 'e main reason for this phenomenon is that the
default of core enterprises will affect a large number of small-
and medium-sized enterprises, which makes the contagion
speed increase rapidly.'e increase in initial infection nodes
will also increase the transmission speed of credit risks, thus
narrowing the gap between c � 0 and other cases.

Considering the impact of network nature on credit risk
contagion, we will next discuss the resistance of network
structure to epidemic impact. 'ere are differences between
different types of supply chains, which are related to the
attributes of each enterprise and the connections between
enterprises. Under the impact of the epidemic, it is worth
exploring whether different self-healing rates, network
complexity, and network size will affect the transmission of
credit risk. Here, set the basic network parameters to λ � 0.3,
c � 0, N � 1000, and m � 5. First, we discuss the self-healing
ability of enterprises and its impact on credit risk contagion.
'e simulation results are shown in Figure 4.

According to the simulation results, we find that the
enterprise self-healing rate c has a significant impact on
steady state and credit risk contagion speed. When m0 � 5
and c greater than 0.4, the steady state is 0, and there is no
credit risk contagion. With the continuous decrease in c, the
contagion rate of credit risk gradually increases. When
c � 0.3, the network basically reaches a steady state at 36
steps. When c � 0.1, it takes only 20 steps to basically reach
steady state. When m0 � 5 and c � 0.3, the steady state is
basically maintained at 80%. When c � 0.1, the final steady
state increases to 90%.'is conclusion is basically consistent
in the face of different degrees of initial shock: even when the
initial number of infected nodes reaches 200, the final
steady-state difference between c � 0.1 and c � 0.5 remains
at 10%. It shows that the enterprise self-healing rate has a
regulating effect on the final steady state of the network. In
order to ensure that the enterprise self-healing rate would
not affect the authenticity of other simulation results, the
basic value of the enterprise self-healing rate was set as 0.2.

'e impact of network complexity on credit risk con-
tagion under different external shocks is shown in Figure 5.
According to the simulation results, we find that network
complexity has a significant impact on the rate of credit risk
contagion. When m0 � 5, there is no credit risk contagion in
the network where m is less than 2. With the increase in m,
the contagion rate of credit risk keeps increasing. When
m � 6, the network has basically reached steady state in 6
steps. With the increase in external impact, the law is ba-
sically consistent: even if m0 � 200, the number of infected
nodes at the initial stage of m � 1 increases rapidly; however,
after 4 steps, the number of infected nodes began to decline
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Figure 1: 'e influence of network parameters on risk contagion probability λ. (a) c ranges from 0.05 to 0.25; step length is 0.05. (b) m

ranges from 1 to 9; step length is 2. (c) N ranges from 200 to 1000; step length is 200.
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and finally stopped infection. When m � 2, the contagion
rate of credit risk is also low, but it still reaches steady state
after 50 steps. 'is experimental result shows that network
complexity is positively correlated with the transmission
speed of credit risk. Although network complexity improves
the efficiency of supply chain finance to some extent, when
confronted with external shocks, more connections between
enterprises become the channel of credit risk transmission,
thus accelerating the transmission of credit risk.

Next, we discuss the impact of network size on credit risk
contagion, and the simulation results are shown in Figure 6.
We find that network size has no significant influence on the
final steady state: at different scales, network size does not
have a significant influence on the steady state, and this
conclusion is still valid under the circumstance of increasing

external shocks. When the initial shock is small, the network
size has a certain impact on the transmission speed of credit
risk. When the scale is large, the transmission speed of credit
risk is relatively slow. However, with the increasing external
shock, the curve highly overlaps, and the impact of network
size can be almost ignored.

4.2.3. Analysis of Simulation Results of Policy Intervention
Mode under Epidemic Impact. In order to better study the
influence of policy intervention on credit risk contagion, the
enterprise recovery time td is introduced into the network to
represent the time step required for an enterprise to recover
from an infected state to a healthy state under policy in-
tervention. 'e smaller td is, the stronger the policy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

m0=2
m0=4
m0=6

m0=8
m0=10

(a)

m0=50
m0=100
m0=150

m0=200
m0=250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(b)

Figure 2: Effect of initial number of infected nodes m0 on ρk. (a) m0 ranges from 2 to 10; step length is 2. (b) m0 ranges from 50 to 250; step
length is 50.
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Figure 3: Effect of infected core enterprises c on ρk. (a) m0 � 10; c ranges from 0 to 4; step length is 1. (b) m0 � 50; c ranges from 0 to 4; step
length is 1. (c) m0 � 100; c ranges from 0 to 4; step length is 1.
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Figure 4: 'e impact of enterprise self-healing rate c on ρk. (a) m0 � 5; c ranges from 0.1 to 0.5; step length is 0.1. (b) m0 � 100; c ranges
from 0.1 to 0.5; step length is 0.1. (c) m0 � 200; c ranges from 0.1 to 0.5; step length is 0.1.
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Figure 5: Impact of network complexity m on ρk. (a) m0 � 5; m ranges from 1 to 5; step length is 1. (b) m0 � 100; m ranges from 1 to 5; step
length is 1. (c) m0 � 200; m ranges from 1 to 6; step length is 1.
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Figure 6: Impact of network size N on ρk. (a) m0 � 5; n ranges from 100 to 1000; step length is 200. (b) m0 � 100; n ranges from 100 to 1000;
step length is 200. (c) m0 � 200; n ranges from 100 to 1000; step length is 200.
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intervention is; otherwise, the weaker it is. We defined td ≤ 2
as a strong intervention, td � 3 as a moderate intervention,
and td ≥ 4 as a weak intervention. First of all, we consider the
suppression effect of policy intensity on epidemic impact
when there is no initial infection of core enterprises (c � 0),
and the simulation results are shown in Figure 7.

According to the simulation results, we find that in the
face of different degrees of external shocks, policy inter-
vention has a significant restraining effect on the rate of
credit risk contagion: when the external shocks are small
(m0 � 5), td ≤ 2 can effectively suppress the credit risk
contagion. Even if the policy intervention is weak (td ≥ 3),
the contagion rate of credit risk is still low in the initial stage.
When the initial impact is enhanced, the inhibitory effect of
strong intervention on the epidemic impact is still relatively

obvious, but the inhibitory effect of td ≥ 3 on the trans-
mission rate of credit risk is weakened. When m0 � 100, td �

3 could not completely inhibit the transmission of credit
risk. 'ere are two possible explanations for the above
conclusions: first, the impact of the epidemic on different
industries is different and the intervention intensity is dif-
ferent; second, different levels of intervention are required at
different stages of the epidemic. 'erefore, the intensity of
policy intervention in different industries should be dif-
ferent, and the effect of intervention in the early stage of the
outbreak is better, and the cost of intervention is lower. Next,
we consider the case of c � 1, and the simulation results are
shown in Figure 8.

'e infection of core enterprises has a great impact on
the network. In the case of m0 � 5, td < 3 can also restrain the
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Figure 7: Impact of policy intervention td on ρk (c � 0). (a) m0 � 5; td ranges from 1 to 5; step length is 1. (b) m0 � 100; td ranges from 1 to 5;
step length is 1.
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credit risk contagion. However, with the strengthening of
external shocks (m0 � 100), td � 3 is unable to restrain the
credit risk contagion, and the credit risk contagion speed
increases greatly when td ≥ 4. Due to the importance of the
health status of core enterprises to the network risk trans-
mission, attention should be paid in the process of the
outbreak.

5. Conclusion

'is paper conducts a simulation experiment on the credit
risk contagion of supply chain finance network under the
COVID-19 pandemic. First, considering the mode of self-

healing without policy intervention, we find that the increase
in the initial number of infected nodes will significantly
increase the contagion rate of credit risk, but the impact on
the steady state is relatively limited. 'e self-healing rate of
enterprises can significantly reduce the speed of credit risk
contagion and the density of infected nodes in the steady
state. As the complexity of network increases the channels of
credit risk transmission, the speed of risk transmission in-
creases. However, the network size has no significant in-
fluence on the infection rate and the steady state. However,
when the external shock is large enough, the steady state of
the network is above 80%, which indicates that in the ab-
sence of policy intervention, the self-healing ability of
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Figure 8: Impact of policy intervention td on ρk(c � 1). (a) m0 � 5; td ranges from 1 to 5; step length is 1. (b) m0 � 100; td ranges from 1 to 5;
step length is 1.
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enterprises alone cannot resist the impact of external shock
on the network, resulting in the failure of the supply chain
finance network to play its due function.

Second, under the external shock, policy intervention is
essential to ensure the normal operation of the supply chain
and reduces the possibility of credit risk contagion. In the
case of small external impact, even moderate intensity in-
tervention can achieve the effect of infection suppression.
However, as external shocks grow, so too should the scale of
intervention. 'is shows that the impact of the epidemic on
different industries is different, and policy intervention
measures should also be targeted. In the early stage of the
epidemic, timely and targeted government intervention will
achieve obvious results.

Finally, due to the importance of its position, the speed
of the credit risk contagion will be significantly increased
once credit default occurs in core enterprises of the supply
chain. 'erefore, whilst focusing on key industries and
preventing the supply chain network from being severely
impacted, the health of core enterprises should be focused
on.

'is paper has some limitations and could be improved
in the follow-up research. First of all, this paper ignores the
particularity of different supply chain financial networks and
selects the same contagion probability. Subsequent studies
can further explore the characteristics of specific networks.
In addition, this paper assumes that the scale of the network
remains unchanged and does not consider the entry and exit
mechanism of nodes. In order to be closer to the reality,
corresponding discussions can be made in subsequent
studies.
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