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The present article is aimed at introducing and investigating a new class of g-hybrid special polynomials, namely, g-Fubini-Appell
polynomials. The generating functions, series representations, and certain other significant relations and identities of this class are
established. Some members of g-Fubini-Appell polynomial family are investigated, and some properties of these members are
obtained. Further, the class of 3-variable g-Fubini-Appell polynomials is also introduced, and some formulae related to this class
are obtained. In addition, the determinant representations for these classes are established.

1. Introduction

The g-calculus subject has gained prominence and numerous
popularity during the last three decades or so (see [1-4]). The
contemporaneous interest in this subject is due to the fact
that g-series has popped in such diverse fields as quantum
groups, statistical mechanics, and transcendental number
theory. The notations and definitions related to g-calculus
used in this article are taken from [2] (see also [5, 6]).

The g-analogues of a number £ € C and the factorial
function are, respectively, specified by

13

0= 10 @eC\{1, 1)
and
], = ; 0, =[1],21,3], ~ [K], [0],! =1, xeN,qeC\{0,1}.

=1

(2)

K
The g-binomial coefficient l l] is specified by

q

1=0,1,2,---,x; k€ N;. (3)

The g-analogue of (u @ v)" is specified as

=0 | [

k-1
C
q

The g-derivative of a function f at a point 7 € C\ {0} is
given as

0<|ql< 1. (5)
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Eq(r)=2q — 0<lgl<lL7eC,
k=0 [K]q'

are called g-exponential functions and satisfy the following

identities:

D eq(r) = eq(T), DqEq(T) = Eq(qr),

eq(T)Eq(—T) = Eq(T>eq(—T) =1.

The Fubini polynomials (FP) %, (w) [7] (also known as
geometric polynomials) are defined as

(8)

o~ LT ©)

together with the geometric series

1 g (—w )—il’” Lol <1 (10)
l—w" "\1-w/ & '

Recently, Duran et al. [8] introduced the g-analogue of
the FP &, (w), denoted by F, ,(w) and defined by means

of the generating function

1 o T
l—w(eq(r)—l) - ;Jﬁﬁw) [K]q!' (11)

For w=1, the g-Fubini polynomials (q-FP) %, (w)
reduce to the g-Fubini numbers %K_q(l) =%, thatis

q°
1 < T
=Y F, . (12)
2-¢y(7) ,;) [,

Further, we recall the 3-variable g-Fubini polynomials
(3Vq-FP) F, ,(u, v, w) [8] which are given as

1 - 7"
1—w(eq—(‘r)—1)eq(uT)Eq(w) = ’;9@1(% v, w) [K}q! .

(13)

Substantial properties of Fubini numbers and polyno-
mials and their g-analogue have been studied and investi-
gated by many researchers (see [7-9] and the references
cited therein). Further, these numbers and polynomials have
enormous applications in analytic number theory, physics,
and the other related areas.

The class of the g-special polynomials such as g-Fubini
polynomials, g-Appell polynomials, and certain members
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belonging to the family of g-Appell polynomials such as g
-Bernoulli polynomials and g-Euler polynomials is an
expanding field in mathematics [3, 7, 8, 10, 11].

The class of g-Appell polynomial sequences
{&fx,q(w)}zo was established and investigated by Al-Salam
[1]. These polynomials are defined by means of the generat-
ing function

(14)

A 4(7) = i&im%, A (1) #05,=1, (15)

is an analytic function at =0 and o, ;== ,(0) denotes

the g-Appell numbers.

Certain significant members belonging to g-Appell poly-
nomials class are obtained based on suitable selection for the
function &, (7) as

(1) If o () = 7/(ey(7) — 1), the q-AP o, , (w) reduce to
the g-Bernoulli polynomials (q-BP) B, ,(w) (see [12,
13]), that is

‘Q[K,q (w) = %K,q (w)’ (16)
where B, (w) are defined by
T — ™
Weq(w‘r) = ZO B, (w) W (17)

and B, given by
B,g:=Byey(0); (18)

denotes the g-Bernoulli numbers.

(2) If o ,(7) =2/(e,(7) + 1), the -AP &, ,(w) reduce to
the g-Euler polynomials (q-EP) gx’q(UJ) (see [13,
14]), that is

‘Qik,q(w) = C(;"ptc,q(l‘u)’ (19)
where &, (w) are defined by
2 - i € ~ (20)
eq(m 14 = Z By

and &, given by



Journal of Function Spaces

%x,q = gk,q (0)’ (21)

denotes the g-Euler numbers.
Also, we recall the family of the numbers denoted by

&,4(%, 1) and defined by
— ! (%) TK
M =) 8%, - (22)
1, ] [x],!

In recent years, many authors have shown their interest
to introduce and study new families of g-special polynomials,
especially the hybrid type (see [15-17] and the references
therein).

The work in this article is summarized as follows: in Sec-
tion 2, the replacement technique is used to introduce the
class of g-Fubini-Appell polynomials by combining the poly-
nomials, g-Fubini polynomials and g-Appell polynomials. In
Section 3, the 3-variable g-Fubini-Appell polynomials are
introduced which are considered as a generalization of the
q-Fubini-Appell polynomials. The generating relations,
series representations, and some other useful properties
related to these polynomials are established. In Section 4,
the determinant representations of these two classes are
defined. Further, certain members belonging to these polyno-
mial families are considered, and the corresponding results
are also derived.

2. g-Fubini-Appell Polynomials

The g-Fubini-Appell polynomials are established by means
of the generating function and series representation. To
achieve this, we prove the following results:

Theorem 1. The q -Fubini-Appell polynomials (q-FAP) o
d,(w) are defined by means of the following generating
function:

(1)
1-w(ey(r)-1)

Mg
o

dk,q(w)

0F

T (23)
q

K:

Proof. Utilizing equation (14), based on expanding the func-
tion e, (wr), then replacing the powers of w, i.e., w’, w, w?,
-+, w" by the corresponding polynomials #, ,(w), #, ,(w),
w1, Fyo(w) and thereafter summing up the terms in the
left-hand side of the resulting equation, we obtain that

Now, denoting the resultant g-FAP in the right hand side
of the above equation by 5/, (w) and utilizing equation
(11) yield the assertion in equation (23).

Remark 2. Taking w =1, the g-FAP 5o/, (w) reduce to q
-Fubini-Appell numbers (¢-FAN) 5o/, .. Therefore, in view

3
of equation (23), we have
o (T) & "
1 =) g4, . (25)
2-¢,(7) ;o‘f K],

Corollary 3. Taking o/ (1) = /(e (7) — 1) in equation (23),
we get the following generating function of the q -Fubini-Ber-
noulli polynomials (q-FBP) B, ,(w).

T < T*

(e, -D(I-w(e,m-1) 5 7Bq () [,

(26)

Corollary 4. Taking of (1) = 2/(e,(7) + 1) in equation (23),
we get the following generating function of the q -Fubini-Euler
polynomials (q-FEP) &, ,(w)

2 < x

e ) (= w(e@=1)) ~ & 7o

Theorem 5. The following series representation for the q -FAP
9 . o(W) holds true:

gﬂx,q(w) = Z lj] dl,qu—l,q(w)' (28)
q

=0

Proof. In view of equations (11) and (15) and equation (23),
we have

= T
2,74 (1 T e (1) <1)

(29)

which on comparing the coefficients of 7%/[x],! yield asser-
tion in equation (28).

Theorem 6. For n € N, the following series representation for
the q-FAP gdl, ,(w) holds true:

Kk K
%drc,q(w) = Z Z l ] [U]q!waﬂx—l,qcs)lq(l’ G)' (30)
q



Proof. In view of equations (15), (22), and (23), we can write

S A 10
;MW( )[K}q! 1-w(e, (1) - 1)
= ’;dwﬁq';w”(eq(r) - 1)’7
- ;%[K]:,;)w 0], Zofzq Lo IL

I
12
R

ﬁ

il
=]

'Z Zw 'é’zq(la L
g 1=0 \o=0 [0,

1]
D18
S
M=
| —
- =
| I
=
R
é.
M-~
S
=
)
=
2
~— =
= 4
_ 2

=
Il
o
T
o

which on comparing the coefficients of 7*/[«] 5! vield asser-

tion in equation (30).

Corollary 7. Taking o ,(t) =1/(e,(T) — 1) in equations (28)
and (30), we get the following series representations of the q
-FBP 3B, (w)

F/«‘%K,q(w) = Z ] %Zq‘fx—l,q(w)’
=0 q
Kk 1 K
#By (W) = ;} Z;) [ l] [0],'w"B, 1, Sr4(l0), neN,.
=0 0= q
(32)

Corollary 8. Taking o ,(t) =2/(e,(7) + 1) in equations (28)
and (30), we get the following series representations of the q
FEP ;& (w):

n € N,.

k| K
FEe W)=Y Y H 0],/ W & 1S 24(10)s

(33)

Theorem 9. The following formula for the q-FAP gdl, ,(w)
holds true:

|:K:| (?‘Q{K—lq( )qu(l Ow) ‘T'Q{Iq( ) K—lq( ))
q

(34)
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Proof. Utilizing equation (23), we have

Z o~ i oy (7) ,(7)
dw 7% g (W [K] ! dw \1-w(e,(7) - 1) 1 -w(e,(r) - 1)

4 (T)
sz?q(r)(eq(r)—l)
(1-w(e,(m)-1))°
_ A 4(1)ey(T) B A (1)
(1-w(e,(7) - 1))2 ¢! —w(eq(r) - 1))2

which on equating the coefficients of the like powers of T
yields the assertion in equation (34).

Corollary 10. Taking o/ () = 7/(e,(7) - 1) in equations (34),
we get the formula satisfied by the g-FBP 3B, (w) as

K

Kq( Z|: :| x—lq )‘/'Iq(l Ow) "‘%lq( ) K—lq( ))

=0

(36)

Corollary 11. Taking o/ (1) = 2/e,(t) + 1 in equations (34),
we get the formula satisfied by the g-FEP 38, ,(w) as

di = ZZ |: :l K lq w)gl,q(l’o’ w)_ggl,q(w)g:xfl,q(w))'
(37)

3. 3-Variable g-Fubini-Appell Polynomials

In this section, the class of 3-variable g-Fubini-Appell poly-
nomials is established, which is a generalization of the class
introduced in the previous section. The generating function,
series representations, and other formulae for these polyno-
mials are obtained.

Theorem 12. The 3-variable q -Fubini-Appell polynomials
(3Vq-FAP) g, ,(u, v,w) are defined by means of the follow-
ing generating function:

o (T) (o] ©
Pl ) W7 2 gy O

Proof. Utilizing equations (13) and (14) and following the
same method as in the proof of Theorem 1, we can get the
assertion in equation (38).

Remark 13. Setting w = 0 in equation (38) gives the generat-
ing function of the 2-variable g-Appell polynomials (2Vq-
AP) o, ,(u,v) [18], that is
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A ,(T)e (ut)E, (vr

) = Z_(:) ‘Qik,q(u’ V)

Corollary 14. Taking of (1) =7/(e (1) — 1) in equation (38),
we get the generating function of the 3-variable q-Fubini-Ber-
noulli polynomials (3Vq-FBP) 3B, ,(u, v,w) as

T

T S T
e, Z (u, v, w) .

(eam) = 1)1 wle, - 1)

S

Corollary 15. Taking o/ (1) = 2/(e,(7) + 1) in equation (38),
we get the generating function of the 3-variable q-Fubini-Euler
polynomials (3Vq-FEP) 5&,,(u,v,w) as

2 0 TK
e (utr VT) = u,v,w . 41
6@+ D1 - w(e @ - 1)) 1“7l ,;fw( Ut (41)

Theorem 16. The 3Vq-FAP 5o/, ,(u, v, w) are defined by the
series

K

(U, v,w Zl ] A1 g F 1 q(1s v, W). (42)

=0

Proof. In view of equations (13), (15), and (38), we have

which on comparing the coefficients of 7°/[«] ! yield asser-

tion in equation (42).

Corollary 17. Taking o/ (1) =7/(e,(7) — 1) in equation (42),
we get the series representation of the 33Vq-FBP &%, (u, v,
w) as

K
#B, (v, w Z

=0

%lq g (th Vo W). (44)

Corollary 18. Taking o/ (1) = 2/(e,(7) + 1) in equation (42),
we get the series representation of the 33Vq-FEP 38, (u, v,
w) as

K
=3 |

%lq wiq(th Vs W). (45)
1=0

Suitably using equations (4), (6), (7), (11), and (23) in gen-
erating relation (38) and then making use of the Cauchy prod-
uct rule in the resultant relations and thereafter comparing the

identical powers of 7 in both sides of the resultant expressions,
we get the formulae given in the following theorem.

Theorem 19. The 3Vq-FAP g ,(u, v, w) satisfy the follow-
ing formulae

(46)

Applying the g-derivatives w.rt. u and v to generating
relation (38), we get the results given in the following theorem.

Theorem 20. The following identities for the 3Vq-FAP

oA o (1, v, w) hold true:
Dq’”f’id q(u’ Vs w) [ ]qg‘dk—l)q(ua Vs ‘LU),
; (],
Djy g g (16 V> W) = =GR A g (1 v W),
97

Dy, q(1: v w) = [K]

DVF

q7 'Qi;c Iq(u’ qv, w)’

[¥],!

-

3
q 2 ¥ g (u, qEv, w) .

(47)

D’ Ay q(u, v, w) =

PVF

Theorem 21. The following relation for the 3Vq-FAP zd,
(u, v, w) holds true:

((w + 1) gl (1, v, w) = (1 v))

Z|::| Klquv’w)zé

1=0 oF

(48)
Proof. Consider the identity
e (ut)E_(v e (ut)E_ (v
w——qi)Ze)q(ig j)l) eq(‘r) =(1+w) ] _q( (qu(ig j)l) - eq(uT)Eq(VT).
(49)

Now, multiplying both sides of the above identity by
o ,(7) and using equations (6), (38), and (39), we get



which on equating the coeflicients of the like powers of T
yields the assertion in equation (48).

Now, let us recall the generating function of the 2-
variable g-generalized tangent polynomials (2Vq-GTP)

@ 0q(1: V) [19] given as
Wq(u‘r 2 g (U K} P ,Jat| <maeRY, (51)
and G, ., = €,0,(0,0) denotes the g-generalized tangent

numbers (q-GTN).

Theorem 22. The following relationships between the 3Vgq-
FAP gdl,  (u,v,w) and 2Vq-GTP €, ,(u, v) holds true:

1
) ( |: :l “U%K—La,q(u’ V)gl—a,q(w) +9dx—l,q(u’ Vs w)rgl,mq> .
o=0
q

(52)

Proof. Utilizing equations (23), (38), and (51), we have

DO =
Mg

S
i
o
[E——
1
T
o

(53)
which on comparing the coefficients of 7*/[x],! yield asser-
tion in equation (52).

Since for a = 1, the 2-variable g-generalized tangent poly-
nomials (2Vq-GTP) &, ,(u, v) reduce to 2-variable g-Euler
polynomials &, (u, v) [20]. Therefore, setting a =1 in equa-

tion (52) gives the following result.
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Corollary 23. The following relationships between the 3Vg-
FAP gd, ,(u,v,w) and 2Vq-EP &, ,(u,v) holds true:

o=0

K i
o (4, v, W) Z [ } (Z laq%,c,[)a,q(u, v)‘%,m(wﬁgdk,l)q(u, v, w)%l)a,q)
(54)
Let us recall the generating function of the 2-variable g

-Euler-Bernoulli polynomials (2Vq-EBP) B, ,(u,v) [16]
given by

Theorem 24. The following relationships between the 3Vg-
FAP gdl, ,(u,v,w) and 2Vq-EBP 8B, (u,v) holds true:

1 & [x k 1 [x—1
E‘Q{K—l,q(u’ Vs ll)) = TZ |: :| Z Z |: :|
(K] =0 | 1 g\o0m=0 | o |,

} ‘Q[K—n—l,q(w)g$l—h,q(u’ V)‘%Qfx—f,q (v, w)%’$1,q)'
qF

(56)

Proof. Utilizing equations (6), (38), and (55), we have

N T* A,
;;) ?'dx,q(u v, w) [K]q, 1= w(:q((?) — 1) eq(uT)Eq(vr)

) i Mq(f) . 2te (u )Eq(vr)
% [<l—w(eq<r>—1) “’)) (( CENOGE q”))

=

_ z Z |: l:| q;ﬂmﬂ(% v, w)%"%l»q @:|
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which on comparing the coefficients of 7*/[«] 5! vield asser-
tion in equation (56).

Theorem 25. The following relationships between the 3Vgq-
FAP gdl, (u,v,w) and 2Vq-AP o ,(u,v) holds true:

i [ﬂ qu;c_l,q (1«1, Vs %) - é (gﬂw (u, " %>

—(1-w)d, (1, v))
(58)

Proof. Replacing w by w/(1 — w) in generating relation (38),
we have

3 w ™ (1)
;} 7 q (u, 2 m) K], 1-(w/(1 —Z,))(eq(r) ) e, (uT)E (vr).

Rewriting the above equation then using equations (38)
and (39), we obtain

00 TK 0 K K TK
2 el 0 pr v LLf“’”@’ “re) iy
=(1-w) ’;}&Im(u, V) [;—}q! .

(60)

which on comparing the coefficients of 7°/[«] ! yield asser-
tion in equation (58).

4. Determinant Representations

One of the significant representations of the g-special poly-
nomials is the determinant representation due to its impor-
tance for the computational and applied purposes. In 2015,
Keleshteri and Mahmudov [18] established the determinant
representation of the g-Appell polynomials. In the section,
the determinant representations of the q-FAP s/, (w)

and the 3Vq-FAP gd/,  (u, v, w) are introduced.

Definition 26. The determinant representation for the g-FAP
g, ,(w) of degree k is given as

9‘d0,q(w) “3 (61)

7
[ 1 lgl,q 9:2,41 (w) gkfl,q (w> gn,q(w) ]
‘%O,q Lq”l,q ‘932,11 t%;(—l,q ‘%k,q
2 k-1 K
0 ‘%O,q ‘%l,q '%xflq ‘%K—Lq
1 1 1
q q q
-1
W) 0 0 By, [K }‘%Hq [K} Byag |’
2 2
q q
K
0 0 0 B, { ] B,
k-1
L q i
(62)
1 Al
Bry=- D Ay By g | Bog#0,6=1,2,3,.
g'do,q v=1 |V z
(63)

Setting B, =1and B, = (1/[6+1],)(6=1,2,-+,«) in
equations (61) and (62) gives the determinant representation
of the g-FBP B, (w) as:

Definition 27. The determinant representation for the q -FBP
B, 4(w) of degree « is given as

g%o,q(w) =1
#Bg(w) = (-1)*
1 glq(w) gz‘q(w) gxfl,q(w) gk,q(w)
1 1 L L 1
(2, Bl (<], [e+1],

(64)

Setting B, = 1 and Bs, = (1/2)(6=1,2, -+, k) in equa-
tions (61) and (62) gives the determinant representation of
the g-FEP z&, (w) as:

Definition 28. The determinant representation for the g -FEP
58 (W) of degree « is given as



FErq (w) = (_1)

L Fyw) Fruw) Fre19(w) Feq(W)
1 1 1 1
1 - Z - -
2 2 2 2
2 1 Kk—1 1 K 1
0 ! 2 2 2
Ll LI L,

k=111 K1), x=1,2,3,.
0 0 1 3 2
2 1y 21,
K 1
0 0 0 1 5
Kk—1 q

(65)

Similarly, the determinant representation of the 3Vq-
FAP o, (u,v,w), 3VQ-FBP 5B, (u,v,w), and 3Vq-FEP
8 yq(1> v, w) are established as:

Definition 29. The determinant representation for the 3Vq-
FAP o, ,(u, v, w) of degree « is given as

1
gdo)q(u, v, w) = %,

-1 K
&"Q{n,q(u’v’w): ( ),c+1
(‘%O»q)
1 Fg(wv,w) Fpa(uv,w) Freagv,w)  F (v, w)
‘%O,q ‘ggl,q ‘%Z,q ‘99;(71 q ‘%‘K.q
2 k-1 K
0 Bog Biq Breag Bre-rg
1 q 1 q 1 q
k-1 K
0 0 %oq ‘%x—s,q ‘%;cfz,q
2 0 214
3
0 0 0 B, B,
k-1
1 oK
Beg=——— | 2 A\ g B g | Bog #0,66=1,2,3, .
FT09 \v=1 | v 4F
(66)

Definition 30. The determinant representation for the 3Vq-
FBP 5B, (1, v, w) of degree x is given as

g%o,q(u, v,w)=1,
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k=1 1 K 1
0 0 [
1 |: 2 :| [K—Z]q |:2:|q[1<—2]q
K 1
0 0 0 1 —
|:K—]:|q[2]q
k=12

Definition 31. The determinant representation for the 3Vq-
FEP 58, ,(u, v, w) of degree « is given as

F8oq(v,w) =1,

ysx,q(u’ s w) = (71)’{

I Fwvw) F(uvw) Fergvw) F(nv,w)

] 1 1 1 1

2 2 2 2

2 1 k-1 1 K 1

‘ ! 2 2 2
1l Ly 11,

k=11 <l 1)

0 0 1 3 3
2 1y 214

K 1

0 0 0 1 3
K—1 q

Kk=1,2,3---.

5. Conclusions

Recently, the Fubini polynomials and their g-analogue have
been studied and investigated by many researchers. Moti-
vated by various recent studies related to these type of poly-
nomials (see for example [8, 21, 22]), in this article, we
introduced two important families of g-hybrid special poly-
nomials, namely, the g-Fubini-Appell polynomials and 3-
variable g-Fubini-Appell polynomials. Certain properties
related to these families are derived.

Further investigations along the results obtained in this
article, which are associated with many recent generaliza-
tions and extensions of the g-Appell polynomial family, espe-
cially, the parametric types, may be worthy of consideration
in future investigations.
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In this paper, we define the poly-Bernoulli polynomials of the second kind by using the polyexponential function and find some
interesting identities of those polynomials. In addition, we define unipoly-Bernoulli polynomials of the second kind and study

some properties of those polynomials.

1. Introduction

In the book Ars Conjectandi, Bernoulli introduced the Ber-
noulli number terms of the sum of powers of consecutive
integers (see [1, 2]). In [3], Luo and Srivastava defined the
Apostol-Bernoulli polynomials and obtained an explicit
series representation for their polynomials involving the
Gaussian hypergeometric function as well as an explicit series
representation involving the Hurwitz function. Frappier
defined a generalized Bernoulli polynomials by using the Bes-
sel function of the first kind and found a generalization of a
well-known Fourier series representation of Bernoulli poly-
nomials in [4]. In [5], Natalini and Bernardini defined a
new class of generalized Bernoulli polynomials and showed
that if a differential equation with these polynomials is of
order n, then all the considered families of polynomials can
be viewed as solutions of differential operators of infinite
order. In [6], Kaneko defined the poly-Bernoulli polynomials
and found an explicit formula and a duality theorem for
those numbers. Khan et al. defined Laguerre-based
Hermite-Bernoulli polynomials and derived summation for-
mulas and related bilateral series associated with the newly
introduced generating function in [7]. In [8], Jang and Kim
defined type 2 degenerate Bernoulli polynomials and showed
that these polynomials could be represented linear combina-
tions of the Stirling numbers of the first and the second kinds,
Bernoulli polynomials, and those numbers. Moreover, in [9],
the degenerate type 2 poly-Bernoulli numbers and polyno-

mials as degenerate versions of such numbers and polyno-
mials were defined, and several explicit expressions and
some identities for those numbers and polynomials were
derived.

As is well known, Bernoulli polynomials of order r are
defined by the generating function to be

() &= 3 By (1)

(see [1, 5, 9, 10]).

In particular, if r=1, B,(x) = B\ (x) are the ordinary
Bernoulli polynomials. When x =0, B{") = B{") (0) are called
the Bernoulli numbers of order r. In [1], the relationship
between the Bernoulli numbers and zeta functions was stud-
ied, and in [2, 8, 10-12], generalized Bernoulli numbers were
defined, and the properties of those numbers and polyno-
mials were investigated.

The Bernoulli polynomials of the second kind (or the Cau-
chy polynomials) are defined by the generating function to be

meﬁ-—i—awf @)

nl log (1+t¢)

(see [13-15]).
When x=0, b, =b,(0) are called the Bernoulli numbers
of the second kind.
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For a nonnegative integer n, the Stirling numbers of the
first kind are defined by

x), = i S, (n, l)xi (3)
1=0

(see [16-18]), where (x),=x, (x),=x(x—1) - (x—n+1)
(n>0). By the direct computation of (3), we derive the
following:

1 [eo] tk
—i(log (1+10)"= 3" 8,(km) 55 (4)
. k=n

(see [16-19]).
For a given nonnegative integer n, the Stirling numbers of
the second kind are defined by

X" = i S, (n, 1) (x), (5)

(see [16-18]).
By (5), we obtain

1

(e'-1) —n'ZSzln; (6)

I=n

(see [16-19]).

In [17, 19], the authors defined the generalized Stirling
numbers of the first and second kinds and generalized bino-
mial coefficients and showed that degenerated special poly-
nomials are represented by linear combinations of those
numbers.

The polyexponential function was first studied by Hardy
(see [11, 20]), and Kim and Kim defined polyexponential
function as an inverse to the polylogarithm function Li;(x)
=02 (x"In!) (see [6, 11, 20, 21]), to be

n

(1) = Y oy ke 2) ?)

n=1

(see [21)).

By (7), we know that e, (x) = ¢*.

Recently, some authors applied the polyexponential
functions and the polylogarithm functions to degenerate
Bernoulli polynomials, type 2 poly-Apostol-Bernoulli poly-
nomials, type 2 degenerate poly-Euler polynomials, and
poly-Genocchi polynomials and found many interesting
identities about those polynomials (see [11, 12, 20-26]).

In this paper, we define poly-Bernoulli polynomials of the
second kind with the polyexponential function and derive
some interesting identities between the Stirling numbers of
the first kind or the second kind, Bernoulli numbers, Ber-
noulli numbers of the second kind, and those polynomials.
In addition, we define unipoly-Bernoulli polynomials of the
second kind and derive some interesting identities of those
polynomials.
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2. The Poly-Bernoulli Polynomials of the
Second Kind

By the definition of the Bernoulli polynomials of the second
kind and (7), we define the poly-Bernoulli polynomials of
the second kind by the generating function to be

i b k t" ek(log (1 + t)) (1 + t)x. (8)

n' log (1+1)

In particular, if x=0, bi,k> = bflk)(O) are called the poly-

Bernoulli numbers of the second kind. By (8), we know that
for each nonnegative integer #,

b (x) = b, (x) (9)

are the Bernoulli polynomials of the second kind.
Note that

ZO e (x)%: ekl((l)(;g(il:t;)) 1+

Hence, by (10), we obtain the following theorem.

Theorem 1. For each n € N U {0}, we have

where (x), =x(x—1) --- (x — k + 1) is the k-falling factorial.

By replacing t by e’ — 1 in (8), we get

H
1l |
:/—\/—\

iMe
:_- L
D - )
X |
,_,. >—l
- :"
~__— =
e
I 8
= LDV
= *
Sl =
D
N
_
>
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and by (6), we have

e—l

0"
M3

b\ Z S,(Ln)
(i S, (n, m)b®
m=0

Y o
n=0

=
Il
(=]

I
18

=
Il
(=]

Therefore, by (12) and (13), we obtain the following
theorem.

Theorem 2. For each nonnegative integer n, we have

In particular, we have

S, (n, m)b® = ! . (15)
0

m=

From (4) and (8), we derive

= " ey(log (1+1)) 1 < (log (L+1)"
r;)b - klog(1+t) 10g(1+1‘)z::1 (n—1)lnk

. (log 1+t))"+1
_log 1+t n:() n|n+1

1 ad 1
= Si(Lbn+1
10g(1+t),;) (n+ 1)~ 1,_;1 )1
S 1 Si(l+Ln+1)f
; k-lz I+1 I
(X, (XL 1 S (mHLl+1)em
= (Z bn;) Z Z (l+ l)k—l m+1 ﬁ
_i Z i "\ b, Si(m+1I+1)) ¢
=\ 1= \m ) 1+ D) m+1 nl’

(16)

M8

i

Thus, by (16), we obtain the following theorem.

Theorem 3. For each k € Z and each nonnegative integer n,
we have

I+ 1) (m+1)

By (9) and Theorem 3, we get the following corollary.

Corollary 4. For each n € N U {0}, we have

h=3 Y <m)”mm+—jf”b (18)

Therefore, we obtain the following corollary.

Corollary 5. For each positive integer n, we have
i i n Sl(m+1’l+1)b
(m+1) e

In [21], the authors showed that

=0(neN).  (20)

From (21), we have

ek(x):J:%J;% ~~£%(et—1)dtdt---dt (22)

—_———
(k=2)—times

(see [9, 11, 12, 19-21, 23, 25]).
By (22), we can derive the following equations:

b(k)xlzil
" nl log (1+x)
- 1 x 1
_log(1+x)J0 (1+1t)log (1 +1)
1 1

- 10g(1+x)J0 (1+1)log (1+1)

M8

e;(log (1 +1))

n=0

e, (log (1+1))dt

t 1 t t
L (1+1)log (1+1) L (1+1)log (1+¢)

dtdt - dt (k= 2).

(k=2)—times

(23)
It is well known that

l’l

i B~ (24)

(1+t)log (1+t) 4

(see [9, 12, 23, 25]).



In particular, if we put k=2 in (23), then by (23) and
(24), we have

(oe] n 1

= nopl lOg(1+X)62(0g( +t))

B 1 x 1 dt
- log (1 +x) Jo (I+t)log (1+1)

[ [

=

118 /%M\g

h o

gM“ §w

— §|%

- =

— —
Ve -
+‘~°~"Q
=
=| 8

R S—

Therefore, by (25), we obtain the following theorem.
Theorem 6. For a nonnegative integer n, we have

n 0
=Z< )lBﬂnl (26)

=0

3. The Unipoly-Bernoulli Polynomials of the
Second Kind

Let p be an arithmetic function which is a real or complex
valued function defined on IN. In [21], Kim and Kim defined
the unipoly function attached to polynomial p(x) by

K(xlp) = (27)
In particular, if p(x) = 1, then
- X"
u(x 1) =27—sz (28)
is an ordinary polylogarithm function.
Note that by (27), we get
d 1
w(x1p) = i (x1p) (29)
for k > 2. In addition, it is well known that
11 f1
wixlp)=| 3| | jutipaear o)
otlot ol
—_———
(k=2)~times

(see [9, 11, 12, 19, 21, 23, 25]).
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In the viewpoint of (8), we define the unipoly-Bernoulli
polynomials of the second kind as

u,(log (1 +1)|p)

fog (157 (1+1)* Zb( 'i' (31)

From (31), we derive the following equation:

3 o Lo 08 (L OIP) g s
Zb n' log (1+1) (1+1)

( b ,)( (X)n;—n!> (32)
AbAWEEDE:

and thus, by (32), we obtain the following theorem.

Theorem 7. For each nonnegative integer n, we have

ZZ ('Z)bi“l,p(x),- (33)

If we put p(n) = 1/I'(n), then by (31), we get

ZO b;’fg<x)g: log(11+t)uk(log (1+ t)';) (1+8)
y (log (1+1))"
log 1+1t) Z:: :1g 1)! (e
_ elog (1+1)) 3 t"
= klog(1+t) (1+1)* ;b -

(34)
Therefore, by (34), we obtain the following theorem.

Theorem 8. For a nonnegative integer n, if p(n) = 1/T(n),
then we have

bhp(x) = bP (x). (35)

In the definition of unipoly-Bernoulli polynomials of the
second kind, if x = 0, then we get
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= n log(1+t)4 n
1 S p(n+1) S !
= n+1)! Si(Ln+1
log(1+t)y;) (n+1)k( )1:;1 ( )l
( (o)

B t w p(n+1)
- <log(1+t)> <nz_:3 (n+1)F (1)1 S,
~(n+1+l,n+1)(%n+l)')

(B o) (3 5 pme tlme

n=0 m=0 (m+1)

-(n+1,m+1)( e )>
B R I+ D)+ DS (m+1,1+1) t"
- (Z 2 <m> (1+1)* m+1 b”"“)ﬁ'

n=0 \m=0 [=0
(36)

8

Hence, by (34), we obtain the following theorem.

Theorem 9. For each nonnegative integer n and each integer k
, we have

L& I+ DI+ 1) S;(m+1,1+1)
b - "\ p( i -
P Z Z(ﬂ’l (l+1)k m+ 1 n-m

(37)

In particular, we have

0 0 1
Y bup ~1)"= Y b Y S, (0, n)%
n=0 I=n
o0 n tn
_ ZO (mzo S, (n, m)bf,’;},(x)> —

By (39) and (40), we obtain the following theorem.

Theorem 10. For each nonnegative integer n and each arith-
metic function p(n), we have

=3
i

k L + 1
Y Sy(nm)by(x) = Y. 2 (n)x (41)
m=0 1=0 (l+ 1
In particular, we have
< 1
Z S,(n, m)bg,]f},— p(n+1) nl. (42)
m=0 (” + 1)

4. Conclusion

The polyexponential function was first studied by Hardy. In
[21], Kim and Kim modified that function which was again
called the polyexponential functions as an inverse to the
polylogarithm function. In addition, they defied the unipoly
function, attached a arithmetic function p, and found some
interesting identities related to Bernoulli numbers, poly-
Bernoulli polynomials, and the Stirling numbers of the first
kind and second kind. The polyexponential function have
been used to define some special polynomials by some
researcher and found many interesting identities of those
polynomials (see [11, 12, 20-26]).

In this paper, we defined the poly-Bernoulli polynomials
of the second kind by using the polyexponential function and
found some interesting identities.

In addition, we also define the unipoly-Bernoulli polyno-
mials of the second kind and found some identities which
were related to poly-Bernoulli polynomials of the second
kind, Bernoulli polynomials, and the Stirling numbers of
the first and second kind.
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A three-parameter logarithmic function is derived using the notion of g-analogue and ansatz technique. The derived three-
parameter logarithm is shown to be a generalization of the two-parameter logarithmic function of Schwimmle and Tsallis as the
latter is the limiting function of the former as the added parameter goes to 1. The inverse of the three-parameter logarithm and
other important properties are also proved. A three-parameter entropic function is then defined and is shown to be analytic and

hence Lesche-stable, concave, and convex in some ranges of the parameters.

1. Introduction

The concept of entropy provides deep insight into the direc-
tion of spontaneous change for many everyday phenomena.
For example, a block of ice placed on a hot stove surely melts,
while the stove grows cooler. Such a process is called irrevers-
ible because no slight change will cause the melted water to
turn back into ice while the stove grows hotter [1]. The con-
cept of entropy was first introduced by German physicist
Rudolf Clausius as a precise way of expressing the second
law of thermodynamics.
The Boltzmann equation for entropy is

S=kzInw, (1)

where kj is the Boltzmann constant [2] and w is the number
of different ways or microstates in which the energy of the
molecules in a system can be arranged on energy levels [3].
The Boltzmann entropy plays a crucial role in the foundation
of statistical mechanics and other branches of science [4].
The Boltzmann-Gibbs-Shannon entropy [5, 6] is given by

w w 1
SBGSE_kZPi lnPi:kZPi In b (2)

i=1 i=1 1

where
zpi =1 (3)
i1

Spgs 1s a generalization of the Boltzmann entropy because
if p, = l/w, for all i,

Spas =k In w. (4)

Systems presenting long-range interactions and/or long-
duration memory have been shown not well described by
the Boltzmann-Gibbs statistics. Some examples may be
found in gravitational systems, Levy flights, fractals, turbu-
lence physics, and economics. In an attempt to deal with such
systems, Tsallis [7] postulated a nonextensive entropy which
generalizes Boltzmann-Gibbs entropy through an entropic
index q [8]. Another generalization was also suggested by
Renyi [9]. Abe [10] proposed how to generate entropy
functionals.

Tsallis g-entropy [7] is given by
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where g€ R, Y7 ,p;=1and

x171-1

Inx = , (In;x =1n x), (6)

which is referred to as g-logarithm. If p, = 1/w, for all i, then
S, =kIn . (7)
The inverse of the g-logarithm is the g-exponential
ey =1+ (1= g™, (e =¢"), (®)
where [--+], is zero if its argument is nonpositive.

A g-sum and g-product and their calculus studied in [11]
were, respectively, defined as follows (these were also men-
tioned in [5]):

X@y=x+y+(l-q)xp, (x@,y=x+y), )

X®,y= (x4 1)ﬁ, (x® 1y =xy).

The g-logarithm satisfies the following properties:
lnq(xy) = lnquB q lnqy,
(10)
In,(x® ,y) =Inx +1n,y.
Then, a two-parameter logarithm was defined and pre-

sented along with a two-parameter entropy in [5]. It was
defined as follows:

1 l_ql 1-
In, ix= T [exp <l—q (x q—l)) —11. (11)

The above doubly deformed logarithm satisfies

lnq,q' (x®qy) :lnq,q’x®q’ lnq,q’)" (12)

Properties of the two-parameter logarithm and those of
the two-parameter entropy were proved in [5]. Probability
distribution in the canonical ensemble of the two-
parameter entropy was obtained in [12] while applications
were discussed in [13].

In Section 2 of the present paper, a three-parameter log-
arithm lnq) g% where g, q', reR, is derived using g-ana-
logues and ansatz technique. In Section 3, the inverse of the
three-parameter logarithm is derived and some properties
are proved. A three-parameter entropy and its properties
are presented in Section 4, and conclusion is given in Section
5.

2. Three-Parameter Logarithm

In x

As x=¢"*, a g-analogue of x will be defined by

b, = e, (13)
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where In,x is defined in (6). Similarly, the q'-analogue of [x] q
is defined by

el =" (14)

where lnq’q'x is as defined in (11), which can be written as

-1 (elnq")l_q -1
In x=-—1 = l—q/ ) (15)

The three-parameter logarithm is then defined as

g1 (e)

! S
In,"rx = e - , (16)
from which
1 ol (=) mgx V)T
lnq,q',rxz m{e(m 1 {e< " 1}) - 1}. (17)

To obtain similar property as that in (12), define x ® q,q'y
as the g’ -analogue of x ® /- That is,

1

1- 1- T-q
xe,y=[xo ] = (W' + b -1)"  (8)
Lemma 1. The following relations hold

lnq’q/ (x® qry) = lnq,q'x + lnq’q'y, (19)

lnq’q',r (x ® q'y> = lnq)q’,rx D, lnq,q',ry. (20)

Proof. From (16) and (18),

lnq’q'(x®q'y)
ool )
T 1-q'
R A e e O
1-q' 1-q  1-¢q
= lnq,q/x+ lnq)q/y.



Journal of Function Spaces

In similar manner and using (14),

In, . <x®qu)

I-r 1-r
[x ® q/)/} =1 {elnq‘q' (X®q'y)} -1
= q,q =
1-r 1-r
1-r 1-r 1-r
(eln ; /x+1nq)q/y) 1 (elnq)q/x> (elnq,q’y) 1

1-r 1-r

79
{( In ’x)l—r } {( In 1y
e -1+ e

N—
—
4
|
—
——

(22)

Thus,

( lnqq x) 1=r ~1 (eln‘” y) 1=r 1
lnq)q:,r<x®qu)= = + = +(1-1)

. 1 (elnwrx> 1-r 1 1 (elnlM y) 1-r 1
1-r 1-r
= lnq,qr,rx + lnq’qr’ry +(1-71) [lnq,qr,rx} [lnq,qr’ry}
=ln, o x®, In .y,
(23)

which is the desired relation analogous to (12). ?

One can also derive (17) using ansatz. To do this, letx =y
n (20). Then,

In, /. (x@ qrx> =, x&, In ./ x. (24)
Lemma 2. IfIn, + x=G(In, rx) = G(z), then
G(22) = 2G(2) + (1 - 1)[G(2))". (25)

!
Moreover, when z = lnqq x, the ansatz

G(z)= 1o (6~ 1), (26)

satisfies equation (25).
Proof. Note that from (21)
In (x@qrx) G(ln (x@qfx))
=G(ln rx+lnq)qrx) (27)

G(2 ln ) G(22).

3
Thus, from (23) and (20),
G(Z lnq’qrx) =ln, . x® In o« x=In « x+In 0 x
+(1-r1) (lnq,qryrx)2 = 2G<lnq’qfx) +(1-r1)
2 2
: [G(lnq’q/x)} G(22) = 2G(z) + (1 - )[G(2)]-
(28)
Then, the ansatz in (26) will give
2G(2) + (1-1)[G(2)]*
=2 ! b -1)+ (1 ! -1 ’
= E( )+(1-71) E( )
zZ 132 _ 2z 4
_ 2 ¥ -1) (b°-1) =2b 2407 -2 +1
1-r 1-r 1-r
z _ 2z _ ~12 2z _
:2b 2+b%-2b +1:b 1:G(2z),
1-r 1-r
(29)

which means that (26) solves equation (25). ?

Lemma 2. implies that

G(z) = G(lnq)qrx> =In, + x= % (blnq-'f'x - 1). (30)

Using the property that d/dxln, q/’rx|x:1 = Lwhich is a
natural property of a logarithmic function, it is determined

that b =e!™". Consequently,
1 (1-r)In_rx
ln)r)x=—<e 24 —1). (31)
Explicitly,

T
@4 1oy

(32)

which is the same as that in (17). The preceding equation can
be written as

In, / x= In, €', (33)
It can be easily verified that

lim In -

r—1

x=In, x. (34)

Graphs of In__+ x for g=q' =r are shown in Figure 1

aq'r

while graphs of In__+ x with one fixed parameter are shown

a4’
in Figure 2.
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2
1
2
=
- 01
S
=
14
;
-2 . .
0 1
—_—— q:qr:r:()._’i
— qgq=q'=r=17
e q:qr:rzl

X
q=q=r=1
...... qg=q=r=13

Ing.q'r (x)

10 A
0.01 0.10
——-q=q=r=03
—qg=q=r=07
- - q=q =r=1
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X
q:q':rzll
...... q=q=r=13

FiGure 1: Illustration of the three-parameter logarithm in equation (32), setting g = ¢' = r in (a) linear scales and (b) semilogarithmic scales.

3. Properties

In this section, the inverse of the three-parameter logarithmic
function will be derived. It is also verified that the derivative
of this logarithm at x =1 is 1 and that the value of the func-
tion at x = 1 is zero. Moreover, it is shown that the following
equality holds

In . =-In

i X. (35)

2—q,2—q,,2—r

R

It follows from (16) that the three-parameter logarithmic
function is an increasing function of x. Thus, a unique
inverse function exists.

Theorem 3. The inverse of the three-logarithmic function is
given by

ez,q',r = equ{ln e? e{}. (36)

Proof. To find the inverse function, let y =In, .+ (x) and solve
for x. That is,
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Ingq' 0.3 (x)

X
--- 9=04 g=0.6 q=14q=17
— q9=07 g=09 ---q=16qg=19

--gq=11¢g=13

T
0.01 0.10 1 10 100

X
—— q:0.4,r:0.6 q=14,r=17
J— q:0.7’r:0.9 .- gq=16r=19
— qzl.l,r:1.3
(b)

Ficure 2: Continued.
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—-q=11r=13

(c)

FIGURE 2: (a) Illustration of the three-parameter logarithm for fixed value of . (b) Illustration of the three-parameter logarithm for fixed value
of ¢'. (c) Tllustration of the three-parameter logarithm for fixed value of g.

from which 2) lnq)qr)rl =0,

. L 1/1-q (3) The slope of In, .+ x is positive for all x>0

- 4 -4 _
x= {1+ - In [1 T In {1+(1 r)y}” . (4) In,0, (1) =—In,_, 1 %
(38)
Proof. To find the derivative, use (17) to obtain
Thus, the inverse function is given by
d _ 1-r o'V In
1-g P In, .+ x=x""exp {? (e(l 4') Ingl _ 1) - 1} =0. (40)
ezq,rzequ,q/)ry: 1+ - In |1 9
" -9
q' i From (40), the slope of In_ .+ x is positive for all x> 0.
oy A=y} This is also observed in Figures 1 and 2.

1-g / 11— To pr?ve part (4) of the theorem, let g —2—g, q'

={1+ o n [1+ (l—q ) 1n{1+(1—r)y}1“"” —2-4',and r — 2 - r. From [5],
-9
- 1-q ! y v 1
- {1 - In [1 + (1 -q ) In e}} I+ ==y s (41)
(oo )
=¢1+(1-g)In |1+ (1-q )Ine }
then
wo e e g

={1+(1—q)lneq, '} =e; * —equ{lnelq“ '},

(eln{“'} (I/x)) o -1 (e_lnzfq,zfq'x) e -1
(39) lnq)qr(l/x) = =

1-r 1-r
where the g-exponential €} is defined in (8). (elnzfq,zfq’x) -1 ) _{ ( 1n27qy27q,x> 1-(-n) 1}
Theorem 4. The three-parameter logarithm satisfies the fol- - —(r-1) - 1-(2-71)
lowing properties: ==1In, ., ., X7

(1) (d/dx)In =1, (42)

q,q',rx|x:1
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4. Three-Parameter Entropy

A three-parameter generalization of the Boltzmann-Gibbs-
Shannon entropy is constructed here, and its properties are
proved. Based on the three-parameter logarithm the entropic
function is defined as follows:

& 1
Sug s =k D; lnq)qu;. (43)
i=1 i
If p, = 1/w, Vi,
SWI,J =k lnq)qf)rw, (44)

where w is the number of states.

4.1. Lesche-Stability (or Experimental Robustness). The func-
tional form of In, + x given in the previous section is analytic

inxasln,  xisanalytic inx. Consequently, S, .+ _is Lesche-
stable.

4.2. Expansibility. An entropic function S satisfies this condi-
tion if a zero probability (p, = 0) state does not contribute to

the entropy. That is, S(p;, p,> -+spy» 0) = S(py» pyse+5p,,) for

any distribution {p;}. Observe that in the limit p; =0, In_ /.

1/p, is finite if one of g, q', r is greater than 1. Consequently,

Sq,q',r(pl’pZ’”"pw’ 0) = Sq,q/,r(pl’pZ""’Pw) (45)

provided that one of g, q',r is greater than 1.

4.3. Concavity. Concavity of the entropic function S,/ is
assured if

4 1
e pilnq)q,@ <0. (46)

Theorem 5. The three-parameter entropic function S, 1 is

concave provided g +q' +r> 2.

Proof. By manual calculation (which is a bit tedious),

d* 1 1-r /
— (p.In » =)= (17q ) In,lp; _ 4
G Rt )

) e(l_q/) In, 1p; o {_qp?—z n (1 _ qr)plgq—3

e (1=t ),

(47)

In the limit p, — 1, the second derivative given in (47) is

less than zero if q+q' +r>2. Thus, concavity of S g 1S
guaranteed if g +¢q' +r>2 . In the limit p, — 0, concavity

is guaranteed if r > 1. If r < 1, concavity holds if g > 1.

4.4. Convexity. A twice-differentiable function of a single var-
iable is convex if and only if its second derivative is nonneg-

ative on its entire domain. The analysis on the convexity of
S4q» 1s analogous to that of its concavity. In the limit p,

— 1, convexity is guaranteed if g + ¢’ +r<2. In the lim-
it p, — 0, convexity is assured if g, r < 1. Thus, we have the
following theorem.

. . ! .
Theorem 6. The three-parameter entropic function S, r is

convex provided q+q' +r<2.

Concavity of S o is illustrated in Figure 3(a) while con-
vexity is illustrated in Figure 3(b).

4.5. Composability. An entropic function § is said to be com-
posable if for events A and B,
S(A+B)=d(S(A), S(B), indices), (48)

where @ is some single-valued function [5]. The Boltzmann-
Gibbs-Shannon entropy satisfies

Spas(A + B) = Spgs(A) + Spgs(B)- (49)

Hence, it is composable and additive. The one-parameter
entropy S,,for g # 1 is also composable as it satisfies

ﬁ:g Iy izsq(A) +Sq(B) +(1- )Sq(A)Sq(B)
Kk Tk Tk k V= 7k

(50)

The two-parameter entropy S, .+ [5] satisfies, in the
microcanonical ensemble (i.e., equal probabilities), that

!

V() =y (s 4 Y () + L v(s)Y(s), (1)

where

Y(S)=1+ l_q, In |:1+(1—ql)§:|. (52)
1-¢g k
However, this does not hold true for arbitrary distribu-
tions {p,}, which means Sq,q' is not composable in general.
For the 3-parameter entropy S, a similar property as that
of (51) is obtained as shown in the following theorem.

Theorem 7. The three-parameter entropy S 0d' satisfies

!

U =U(sh) +U(sY) + L U(shUu (), (53)

where




Sq. q'.r (p)

Sq.q r(p)

20
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FIGURE 3: Illustration of the three-parameter entropic function: (a) concavity and (b) convexity.
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Proof. Note that Similarly,
SB 1 1 B
\q 5" (1-r)S” |7k
, gA+B 94 =1In,, 'rWB=—[€ 4 —1],
lnq,q’ (WoWp) = ) ! ; [6(1—‘; ) Ing (WaWy) _ 1} = q}‘j , k a4 11—+
_ A+B
1 Sq,g’,r_l W W= 1 (-nSyik _ (57)
(55) ko adp MasE e T
1 (1-r)32;€’/k 1
from which I-r l-r
From (57),
i 1 A+B A+B
99 ,r:1 LW |: (1-r) In, » Wy -1 S +, S +/
ko leds AT TG (56) In [(1-7) qZ”+1 =(1-7) qlf : (58)
1 (1-r)$* 1k
= 1 e w4  —1].

Using the following result in [5],

Nt 1 1-q'/1-q In 1+(1- ’)sA Tk|dn |1+ (1- ')s” Tk| | 1+(1- ’)sA Tk| | 1+(1- ’)s’* Ik

q]f - ; e 114 T )% 1 )% T )% T )™ _ (59)

-9

Equation (58) becomes

"A+B ’ 7 1
In ll f(1-7) Sq,}zr,,] _ 1- r, {e[(lq )/(1-q)] In [H[(kq )/(1=r)] In {H(l—r)s;‘)q,’r/k}]ln {H[(l—q )/(1-n)] In [H(l—r)sf)q,)r/k]]

l-gq
(60)
e 2 Siais VS PPt S P Sua's 1
1—r (1-r) k 1—r (1-r) k '
Now, with Consequently,
A+B
1-¢' S 1-4' Sad'sr

— —r\ = In |1 In |1 1-

U(s) lnl1+1_rln[1+(1 r)kH, (61) nl+ = I +(1-7) 2
l—q'
_ A B
we have 1-¢ U(s)-U(s")
- §h (63)

' gA+B +ln |1+ T 1n 1+ (1-r)- 217

1-¢g prus 1-r k
1+ In{1+(1-7)

1_ k 1 ql SB i

’ A B _ — )24

=e[(17q )/(kq)}U(s )-U(S) +1n l1+ 1=r In ll+(l r) X ]];
A
l — q’ Sq’q/’r (62)

x ll 1z In ll +(1-7) k which can be written as

X l1+ 1__qr In ll+(1—r)%,’rH. U(SA+B) _ U(SA) +U(SB) 4 11—_‘1/U(SA)U(SB). (64)
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In view of the noncomposability of the 2-parameter
entropy, S, .+, is also noncomposable.

5. Conclusion

It is shown that the two-parameter logarithm of Schwidmmle
and Tsallis [5] can be generalized to three-parameter loga-
rithm using g-analogues. Consequently, a three-parameter
entropic function is defined, and its properties are proved.
It will be interesting to study the applicability of the three-
parameter entropy to adiabatic ensembles [13] and other
ensembles [14] and how these applications relate to general-
ized Lambert W function.
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We use the properties of superquadratic functions to produce various improvements and popularizations on time scales of the
Hardy form inequalities and their converses. Also, we include various examples and interpretations of the disparities in the
literature that exist. In particular, our findings can be seen as refinements of some recent results closely linked to the time-scale
inequalities of the classical Hardy, Pélya-Knopp, and Hardy-Hilbert. Some continuous inequalities are derived from the main
results as special cases. The essential results will be proved by making use of some algebraic inequalities such as the Minkowski
inequality, the refined Jensen inequality, and the Bernoulli inequality on time scales.

1. Introduction

In [1], Hardy claimed this fundamental inequality and
proved it:

J:o (é J:g(mdn) o< (%) quogq(e)de, (1)

where 1 < g < 00, g >0,and (q/(q — 1)) are sharp. They have
emerged in the literature since the discovery of (1) numerous
papers concerned with new arguments, generalizations, and
extensions. One of the most common generalizations for
(1) is the disparity of Pdlya-Knopp’s inequality (see [2]),
which is

JOO exp (% r In g(q)dn) d6 < ero g@)de.  (2)

0

In [3], Kaijser et al. signalized that both (1) and (2) are
special states of the Hardy-Knopp’s inequality:

[o (5[ atwan) § < [“ewaonasy.

0 0

where ® € C((0, 00), R) is a convex function.

In [4], Cizmeija et al. proved that if { : (0,a) — R >0,
® is a convex on (f3,y) where —co<f<y<00,g:(0,a)
— R with g(0) € (8,y), V0 € (0, «) as an integrable func-
tion and v is defined by

v(n) = nr ¢©) do, forne (0, ), (4)

2
n


https://orcid.org/0000-0002-2222-7973
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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then the integral inequality

[tero(G[ o) g <[ voowery. ©

0 0

is valid.

In [5], Kaijser et al. applied the inequality of Jensen for
convex functions and the theorem of Fubini to establish an
invitingly popularization (1). Particularly, it was proved that
if {:(0,a) — R>0and !:(0,a)x (0,0) —R=0,0<a
< 00 such that

L(0) = Jezw, n)dn > 0,0 € (0, a), (6)

0

and ® € C(I,R), I € R is a convex function, g : (0,a) — R
such that g(0) € I, V0 € (0, «) be integrable function, and v is
defined by

) =n[ §0) TG <o me@a, )

n

then the integral inequality
o ag [ do
| c@omgeny <[ voroweny. ®
0 0

is valid, where A;g is defined by

0
4,9(0) = ﬁjolw, Namdnoe©a).  (9)

As a popularization of (8), Krulic et al. [6] have demon-
strated that if (Q;, Y, u,) and (€2, Y,, 4,) are two measure
spaces with positive ¢ finite measures { : Q; — R >0 and
I:0; xQ, — R >0 such that

1(6) = jﬂ (0., (n) >0, €0, (10)

and © is a convex function on an interval [ICR, g : Q, —
R> > 0 with g(Q,) €I be measurable function and v is
defined by

l0, qlp q/p
ofr) = (jgf@(i(@’?) dm@) <oo, neq,
(11)
then the integral inequality
1/q
(J 560 (Azg(e))d#1(9)>
. (12)

1/q
(j v(ri)®(9(f7))dwz(n)> :
Q,
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is valid, where 0<p<g<oco and A;g:0Q, — R are
defined by

Azg(9)==ﬁjg 10, m)g(n)duy(n), 0€Q.  (13)

Observe that inequality (12) is a generalization of
Hardy inequality (1). Namely, let O, =Q, =R, =(0, c0),
du,(0) =d6,du,(n) =dn and u(0)=1/0, and if 1<p=gq
<00 and O : [0,00) — R are defined by ®(0) =67, then
(1) is followed directly from (12), which can be rewritten
with g(#/®*=1))y"/(*=1) instead of g() and

1
1(0’ ’7) = éXO<}1§9<oo(0’ 77)‘ (14)

In the same setting, except with g()n"? instead of g
(n) and with

0.1 5) Yorn, (15)

relation (12) becomes the Hardy-Hilbert integral inequality
(see [7]).

[, ([ 550) o< () [, 700 0

In [8], Abramovich et al. considered a superquadratic
function ® instead of a convex function ® and obtained
the following refinement of inequality (12) in the particu-
lar case p=g, as

JQ {(0)O(Ag(6))du, (6)

o], e D 6lg0r) - 419(0) i (O)d )

| vimelgm)du

2

(17)

In [9], Aleksandra et al. proved that, if A<1, (Q,,%,,
y,) and (Q,,,, u,) are two measure spaces with positive
o-finite measures, {:0Q; —R>0,/:0Q,x0Q, —R>0
such that L: Q; — R is defined as in (10), ® € C(I, R),
ICR is a convex function, g:0Q, — R >0 such that
g9(Q,) €I be measurable function and is defined by

1 1/A
o) = (ng«e) (o) dul(9)> <o, neq,

(18)
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then the integral inequality

|, coragopame) 2| | o7

Q,
-0 (|g(n) - Aig(6)|)du, (6)du, (1) (19)
A

< (jﬁ v(n)®(g(f1))dﬂz('1)> >

is valid, where A;g : Q; — R is defined by (13).

In the past few years, several researchers have suggested
the study of dynamic time-scale inequalities. In [10], the
authors showed a number of Hardy-type inequalities with a
general kernel on time scale. Namely, they have determined
that if (2,2, 4,) and (Q,, %,, u,) are two time-scale mea-
sure spaces, | : Q; x Q, — R >0 such that

L(0) = J 1(6,n)An < 00,0 € Q, (20)
QZ
and ¢ : O, — R, >0 such that

v(n) = JQ wA9<oo, nen,, (21)

L(®)

then the integral inequality

J o, 0 (ﬁ JA’(Q’ n)g(fl)An) 46 < JQ v(m)®(g())An,

2

(22)

is available for all Au,-integrable g:Q, — R such that
9(Q,) cIand ® € C(I,R),I ¢ R are a convex function.

Moreover, Donchev et al. [11] improved the inequality
(22) by replacing the function g(s) by an m-tuple of func-
tions g(n) = (g9,(n), 9,(n)> -+ g,,(n)) such that g,(n), g,(n)
s+ g(1) are Au,-integrable on , in the following way.
If (2,2, ) and (Q,,,, 4,) are two time-scale measure
spaces, U C R™ a convex set and /: Q, x Q, — R, such
that

L(0) = J 1(6,n)An <0, 0e, (23)
Q,
and ¢ : O, — R such that

then for every a convex function @, the integral inequality

1
Lf(e)@ (L(G) JQJ“” ﬂ)g(fv)An> NE jﬂsz@(g(mmn,

(25)

is available for all Au,-integrable functions g : Q, — R™
such that g(Q,) c U c R™.

In [12], the authors have specified the time scale version
of (17). That is, they proved it if (Q,, %, y4,;) and (Q,,2,,
W,) are two time-scale measure spaces with positive o-finite
measures, { : Q; — R>0 and /: O, xQ, — R >0 such
that 1(6,.) is a Au,-integrable function for 6 € Q,, and L
: 0 — R is defined as

16)= | 18mau ) >0

Q,

0ey, (26)

vt = | €050 00 <o

neQ,. (27)

If ®:[a,000— R>0,(¢>0) and a superquadratic
function, then

L}lc (0)0(4:9(0)) A, (6) + JQl L)z L(6)
- (|9(n) = A19(6) ) A, (6) Ap () (28)
sJ v(n)O(g(n)) Ay (1),

2

is available for all Ay,-integrable function g: Q, — R >0,
and A;g is defined by

(A,9)(0) = L(le)jg KO ma(mam(n), 00, (29)

In [13], Saker et al. obtained the following refined Jen-
sen’s inequality for superquadratic

o 10,16 g ) A ()
J o, 16, m) Ay (1)
I G/ N (30)
- J 0, J o, 1(6: 1) Ay (1) [9tgtn)

- O(|g(n) — A19(0)])]Auy (1),

and in the same paper, he employed the above result to derive
the following inequality of Hardy type:

jﬂlcw)@%&g(e))aﬂl(e)+Au {(6)

o,

' Z(Le(,e’? "' (4,9(6))0(|g(n) - Aig(0)])Aw, (1) (31)

A
< (j v(ﬂ)@)(g(ﬂ))AMz(n)) ,
o,



(32)

A>1,{:Q,— R>0, and I : O; xQ, — R >0 such
that 1(6,.) is a Ap,-integrable function for 6 € Q, and L
:Q; — R is defined by (26), ®:[0,00) — R>0 is a
superquadratic function, and A,g is defined by (29).

Another development of Hardy-type inequality (28) has
been made by Bibi [14] and Fabelurin [15] as follows. If
(Q, 2, py) and (Q,,2,,u,) are two time-scale measure
spaces, { : Q) — R>0and/: Q; x Q, — R >0 such that
1(0, .) are a Ap,-integrable function for 0 € Q,,L : Q; — R
is defined by (26) and ® € C(K,,,R) is a superquadratic
function, then

jﬁf@@((A,g) (60)) 44, (6) + jﬁj ()

9,

“Ig) 2l ~ (Ag)(O))Auy(n) (33)

< JQ v(n)©(g(n))Apy (1)

is available for all Ay,-integrable functions g : Q, — R™
such that g(Q,) c K,,,, where A;g : Q; — R is defined by

(A4,9)(0) = L(le)jo 1O mamdm(n), 00, (34)

For developing of dynamic inequalities on time scale cal-
culus, we refer the reader to the articles [16-26].

Motivated by the above results, our major aim in this
paper is to deduce few nouveau general Hardy-type inequal-
ities for multivariate superquadratic functions that involve
more general kernels on arbitrary time scales.

The paper is governed as follows: We remember some
basic notions, definitions, and results of multivariate super-
quadratic functions on time scales in Preliminaries. In
Inequalities with General Kernel, we obtain the extensions
to the general kernel of Hardy-type inequality. In Inequalities
with Specific Time Scales, we extend the latest results from
Inequalities with General Kernel to several specific time
scales. In Inequalities with Specific Time Scales, we discuss
several particular cases of Hardy-type inequality by choosing
such special kernels. In Inequalities with Specific Kernels, we
derive enhanced forms of certain well-known Hardy-Hilbert-
type inequalities.

2. Preliminaries

In this section, we will present some fundamental concepts
and effects to integrals of time scales and for multivariate
superquadratic functions which will be useful to deduce our
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major results. Let R™ be the Euclidean space, 6= (6,,6,,
=+0,,) €R™, = (1,15, -+ 1,,) €R™, and g(t) = (g,(t),
g,(t), -+ g,,(t)) be the function defined on 6cR™
Throughout this supplement, we utilize the following
notations:

07] = (611’]1, 62’12’ T emnm)’
6] = (64,165, -+ |0,,,]) and

(O.m)= ) 0.
i-1

Also, 6 < n(6 <) means that 0, <#,(0; <#,), V1 <i<m,
and 0:= (0,0, ---,0) is the null vector. The subsets K,, and
K} in R™ are defined by

K = [O’Oo)mzz{eelRm:OSG},

m

(36)
K =[0,00)" = {0 € R™ : 0< O}

Now, we arraign the definition and few essential proper-
ties of superquadratic functions that premised in [27].

Definition 1. A function ® : K,, — R is named a superqua-
dratic function if VO € K, 3¢c(0) € R™ such that

O(n) - ©(6) - O(|n-6]) = (c(6), - 6), V<K, (37)

If —O is a superquadratic, then @ is a subquadratic, and
the reverse inequality of (37) is available.

In the following, we recall a couple of beneficial examples
of a superquadratic function.

Example 1. By [2], Example 1, the power function
©:[0,00) — R, defined by ©(0) =67, is called a super-
quadratic if p>2 and a subquadratic if 1 <p <2 (it is also
readily seen that if 0<p<1 then 6’ is a subquadratic
function). Since the sum of superquadratic functions is
also superquadratic, then

00)~ Y. (38)

is a superquadratic on K,, for each p>2.

Example 2 ([2], Examples 4, 5, and 6,). By utilizing the same
argument as in Example 1, the functions ®,,0,,0, : K,,
— R defined as
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m

©,(0) = ) (6, cosh 6, —sinh 6,),

0,(0):=1In (1 + i@) - iei,

i=1 (39)
Y 676, if6,>0,6,=0,
©;(0) = | =T+
0, if =0,

are superquadratic.

The following lemma shows that nonnegative superqua-
dratic functions are indeed convex functions.

Lemma 2. Suppose that © is a superquadratic with c(6)
= (c;(0), c,(0), -+, ¢,(0)) as in Definition 1. Then

(i) ©(0)<0and c;(0)<OVI<i<m

(i) If ©®(0):=0 and VO(0):=0, then c;(0):=0,9(0),
whenever 0,9(0) exists for some index 1 <i<m at 0
€K,

(iii) If © > 0, then © is convex and ©(0) := 0 and VO(0)
= (.

In the following, we recall the inequality of Minkowski
and the inequality of Jensen for superquadratic functions
on time scales which are utilized in the proof of the essential
results. The following definitions and theorems are referred
from [28, 29]. Let T;, 1 <i < m be time scales, and

A" =T, xT,x---xT,

, (40)
={t=(t,ty, o ty,) €T, 1<i<m},

is called an m-dimensional time scale. Consider E to be A
-measurable subplot of A™ and g : E— R a A-measurable

function; then, the corresponding A-integral named
Lebesgue A-integral is denoted by
J gt by o by )ALty - Aty
2 (41)

Lg(f)At, LngAorLg(t)dm(t),

J,6.1) ((a(m)) = ©(|gn) ~ 1/, 1O 1) Apsy ), 10 m) g ) Ap ()| ) ) Ay ()

where p1,, is a o-additive Lebesgue A-measure on A™. Also, if
g(t) = (g,(t), g,(t), -+-, g,,(t)) is an m-tuple of functions
such that g,, g,, -+, g,,, are Lebesgue A-integrable on E, then
| z9dp, denotes the m-tuple:

(J 91du, J gmdm)
E E

i.e., A-integral acts on each component of g.

Lemma 3. Assume (Q;,2,,u,) and (Q,, %, u,) are two
time-scale measure spaces, and suppose that u>0,v >0 and
g=0o0nQ,;,Q, and Q, x Q,, respectively. If q > 1, then

q 1iq
(j (j g(an)vm)duz(n)) M(G)du1(9)>
o, \Ja,

(43)
sj (j g%e,n)u(e)dm(e))v(n)dum,
o, \Jq,

is available provided all integrals in (43) exist. If 0<q< 1
and

q
J J gvdu, | udu, >0, J gvdu, >0, (44)
QI QZ QZ

is available, then (43) is reversed. For q<0, in addition
with (44), if

J gludy, > 0, (45)
Q

is available, then the sign of (43) is reversed.

Theorem 4 ([14], Theorem 3.1). Assume (Q;,%;, ;) and
(9Q,,2,, u,) are two finite-dimensional time-scale measure
spaces. Let ® € C(K,,,R) =0 be continuous and superqua-
dratic, | : Q; x Q, —> R >0 such that 1(0, .) is Au,-integra-
ble for 0 € Q,. Then, the inequality

o (10O Mg A
Jo,J0.m) Ay (m) )~

J o, 10, m) Ay (1) - o



holds for all functions g such that g(E) C K,,,. If © is a subqua-
dratic, then (46) is reversed.

3. Inequalities with General Kernel

In this section, we get the Hardy inequality for several
variables via multivariate superquadratic functions. Before
presenting the results, we labeled the following hypothesis.
(A1) (Q,2,p,) and (Q,,2,,4,) are two time-scale
measure spaces with positive o-finite measures
(A2) I: O, xQ, — R >0 such that

L)= | 1enapm <o 0ea. W)

(A3) £ : O, — R is Ay, -integrable, and the function w
is defined by

wln) = <ngf<6> (lﬁb’?)AAm(e))

where A > 1.

Theorem 5. Assume (A1)-(A3) are satisfied. If ©® € C(K,,,,
R) >0 and is superquadratic, then

A 16, 7)
J, €00t na@ane | | &0y

-0 ((49)(6))0(|g () — A,19(0)]) A, (1) (49)

A
< (j w(n)®(g(n))Aﬂz(f1)> >
0,

is available for g:Q,— R™ that is a nonnegative A,
-integrable function such that g(Q,)cK,, and A;g:Q,
— R defined by

(4,9)(6) = ﬁjﬂ 16, ma(mdu(n), 00, (50)

If ® is subquadratic and 0 < A < 1, then (49) is reversed.

Proof. We begin with an explicit identity

O((4,9)(0)) = @(ﬁ jo 1, ﬂ)g(n)AMz(n)> 1)

By applying the refined Jensen inequality (46) on (51), we
find
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O((4,9)(0)) + ﬁ JQ
L(Q)J 10, )© (g (1)) Apty (1)-

Q,

1(0,m©(1g(n) — A1g(0)])Au, (1)

Then, since A > 1 and ® >0, we get

A
<®((A19)(9)) + ﬁjg 1(0,m©(|9(n) - (A9) (9)I)A#z(f1)>

A
L
< <mjgzl(9)W)Q(g(ﬂ))A#z(’?)> :

(53)

Furthermost, by utilizing the famous inequality of
Bernoulli, it ensues that the L. H. S. of (53) became

©) Jo,

< O ((A,9)(0)
<0 ((A9)(0)) +AT5)L221<9, 7o

~(19(n) - (A19)(0)]) A, (1),

A
(@«A,g)(e)) “ o | 1@.n0tan - ag) (9)I>Auz(f7)>

(54)
that is, we get
©''((A19)(9))
0 (419)(6)) + ATGZ)JQZZ“” e
“(lg(n) - (A19)(0)])Au, (1) (55)

A
< (ﬁ jﬂzlw, n)@(g(n))%(n)) -

Multiplying (55) by &(0) and integrating it over Q, with
respect to Au, (6), we have

jﬂ £(0)0) ((A,g)(6)) Ay, (6) + AJ £(0)

o

- (ﬁ nglw, O (g(n) - <Alg><6>|>Ayz<n>> Ay (6)
A
< jﬁ £(6) (ﬁ jo 1, n)@(g(v))%(n)) A, (6).
(56)

Applying the inequality of Minkowski on the R. H. S. of
(56), we get
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JQIE 0)© (IJ 1(6, rz)@(g(n))ﬁ\uz(n)) AAVI (6)

L(6) ) e
A

< (L)z@w(n)) (jgf(e)) gadpm <0>> MAW)) |

(57)

Finally, substituting (57) into (56) and utilizing the defi-
nition (48) of the weight function w, we get

| 00 aaenan©+A] | &0 0.1) gy

Ja, 77 L(O)
~((4,9)(9))©(|g (1) ~ (A19)(0)])Ap, (0)Ap, (1)

A
< (jg w(n)@(g(n»%(m) :
(58)

which is (49). If ® is subquadratic and 0 < A < 1, the corre-
sponding results can be obtained similarly.

Remark 6. If A =1 and m = 1 in Theorem 5, then (49) reduces
to (28) premised in Introduction.

Remark 7. For the Lebesgue scale measures Ay, (0) = A0, A
U, () and m =1, Theorem 5 coincides with Theorem 2.1.1
in [30].

Remark 8. As a special case of Theorem 5 when T =R and
m = 1, we have the inequality (19).

Corollary 9. Given that & and (A,g)(0) are as in Theorem 5
and w > 0, then, since ® >0 and superquadratic, the second
term on the L. H. S. of (49) is nonnegative and the integral
inequality

A
w(n)@)(g(n))ﬂﬂz(fv)) ,

(59)

jQI«e)@A((AIg)(@))Am o=

02

is valid.

Remark 10. By taking A =1 in Corollary 9, inequality (59)
reduces to (25).

Remark 11. For the Lebesgue scale measures Ay, (8) = A6, A
t, () = Ay and m = 1, Corollary 9 coincides with Corollary
2.1.2 in [30].

Remark 12. Rewrite (49) with A=gp™ >1 such that 0 < p <
q < 00 or —00 < p < g < 0; then
1(6,
J, &@0maa@ane 1] | oo
Q 0 L(6)
)

P
~((4,19)(9))0(1g(n) — (A19)(9)])Ap, (0)Ap, (1

qlp
sO;wm@mmme>~

(60)

Remark 13. For m = 1, inequality (60) coincides with inequal-
ity (3.13) in ([28], Remark 3.5).

Remark 14. In Remark 12, since ® > 0, then the second term
on the L. H. S. of (60) is nonnegative. Hence, (60) reduces to

L E(0)O77 ((4,9)(6))Au, (6)
l alp (61)
< (JQ w(n)@(g(n))A#z(n)> ,

which is a refinement of the Hardy-type inequality in ([27],
Remark 2.1.4) and [6].

In the following, we labeled some specific superquadratic
functions starting with power functions.

Theorem 15. Assume (A1)-(A3) are satisfied. If g, : Q, —
R(1<i<m) are Ap,-integrable functions such that g,(Q,)
C [0, 00), then the inequality

|, & (Z (g )Am(emjg [, €0
A-1
( (9 <9>> (Zwl Azgz)(e)P|>

- 0y (0) gy () < <jﬂ w(n) (

E
INGE

I
—~

A
(9:(m) ) AMM)) ,

is valid, where p > 2 and

(A19;)(0) = 10,1)g;(n)Au,(n),0€ Q;. (63)

ol
L(9) )a,
If0<A<1and1<p<2, then (62) is reversed.

Proof. We get the result from Theorem 5 by putting

2.0 (64)

Ms

©(0):=

Il
—

in (49).



Remark 16. For m =1, Theorem 15 reduces to Corollary 3.1
in [13]. In particular, for p = 1 and A = 1, Theorem 15 reduces
to Remark 3.11 in [13].

Remark 17. For the Lebesgue scale measures Ay, (0) = A9, A
Y, () = A and m = 1. Theorem 15 coincides with Corollary
2.1.5 in [30].

Theorem 18. Assume (A1)-(A3) are satisfied. If g, : Q, —

R(I<i<m) are Au,-integrable functions such that g,(Q,)
C [0, 00), then the inequality

i=1

m A
< (JQ (1) <Z(9,~(f7) ~log g;(n) - 1)>Aﬂ2(17)> ,

m A
J £(9) (Z(exp (A:9:)(0) - (A;g,)(0) - 1 )) Apy(0) +1
. (65)

is valid, where

m

I= AJQ J o 129—9’; (Z exp [log g,(n

1 i=1

= (A19)(9)] - |log g;(n) — (A1) (0)] - 1)> (66)

m A1
X (Z(exp (49,)(0) — (A19,)(0) - 1)) Apy(0)Apy (1),
and
1
(A1g;)(0) = L({,)j 1(6,1) log g,() A, (), 6 € Q. (67)

2

If0< A< 1, then (65) is reversed.

Proof. We get the result from Theorem 5 by putting

©(0):= ) (exp (6;) -0; - 1), (68)

'M§

Il
—_

in (49) and with log g(#) instead of g(#).

Remark 19. By taking m =1 in Theorem 18, inequality (65)
reduces to inequality 3.16 in [28], Corollary 3.2.

Remark 20. For m=1 and A =1, the relation (65) that is
regarded as a generalization and a refinement of the
Pélya-Knopp’s inequality which coincided with Remark
3.12 in [13].

Theorem 21. Assume (A1)-(A3) are satisfied. If g, : Q, —
R(1<i<m) are Au,-integrable functions such that g,(Q,)
C [0, 00), then the inequality

Journal of Function Spaces

Ms

[(Aig,)(6) cosh (4,g,)(6) — sinh (A,g,)(6)]*

JQ”

a0+ | &0

a2

XZIg,

—sinh (|g,(n) -

(J o lml [9:(n

is valid, where A, g, is defined as in (63). If 0 < A < 1, then (69)
is reversed.

I
—

A-1
2 [(4:9;)(0) cosh (4;9;)(P) - sinh (Aigi)(9)1>

M T

= (4:9:)(9)] cosh (|g; (1) = (4;9:)(9)])

(Aig9,)(0)])]Au,(0)Au,(n)

A
) = cosh (g,(#)) — sinh (gi(’?))}Aﬂz(”))) J

(69)

Proof. We get the result from Theorem 5 by putting

Ms

©(0) = (9 cosh 6, — sinh 6;), (70)

Il
—

in (49).

Remark 22. For A = 1, Theorem 21 reduces to Theorem 2.5 in
[14]. In particular, for m = 1 and A = 1, Theorem 21 coincides
with Corollary 2.6 in [14].

Theorem 23. Assume (AI)-(A3) are satisfied.

Ifg, : Q, — R(1 <i<m) are Au,-integrable functions such
that g,(Q,) C [0, 00), then the inequality.

m m A
JQ 5(6) (ln <1 + Z(Aigi)(9)> > (4ig, )(9)> A, (0)
(6, n) Yy
MJQ,JQIW) 0 <ln <1+ Zl( 1%)(9))

(71)

is valid, where A, g, is defined as in (63). If 0 < A < 1, then (71)
is reversed.
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Proof. We get the result from Theorem 5 by putting
®(0) =) 6;In6, (72)
i=1

in (49) with the assumption 0 In 0 =0.

Remark 24. For A = 1, Theorem 23 reduces to Theorem 2.7 in
[14]. In particular, for m =1 and A = 1, Theorem 23 coincides
with Corollary 2.8 in [14].

Theorem 25. Assume (A1)-(A3) are satisfied. If g, : Q, —
R(I<i<m) are Au,-integrable functions such that g,(Q,)
C [0, 00), then the inequality

i=1

m m A
| =@ <1n (1 . Z(A,»g,-x@)) : Z(Aig»(e)) Ay (0)

A
- Zlgi(n)Aigi(f)M) A, (0) A,y (1)

" m A
< (JQ w(n) (ln (1 + Zgi(ﬂ)) - th(ﬂ))ﬂm(m) ’

(73)

I
—

is valid, where A, g, is defined as in (63). If 0 < A < 1, then (73)
is reversed.

Proof. We get the result from Theorem 5 by taking

©(6) =In (1 + i@-) - iei, (74)

in (49).

Remark 26. For A = 1, Theorem 25 reduces to Theorem 2.9 in
[14]. In particular, for m = 1 and A = 1, Theorem 25 coincides
with Corollary 2.10 in [14].

Now, to wrap up this section, we consider yet another
implementation of Theorem 5 rigged with finite measure
spaces.

Corollary 27. Let the supposition of Theorem 5 be satisfied
and denote [, Ap,(0) =[Q,| and |, Au,(0) = |Q,| such that

|91, |Q,] < 0o setting 10, 17) and E(6) = 1. Then, L(0) = sz
Apy(0) = 1Q,| and

1 /A
() = <jQ () % <9>)

1/A
1 ‘QI‘I//\
= A 6 = .
<|oﬂjo, il >> 0,

Hence, the following inequality

JQ, ® (@ JQZQ(’I)APQ(W)> AA,JI 6)
+mila].e <é| J.ng(ﬂ)AMz(ﬂ)y_l

X@<

A
<[l (JQ 6(9(’1))4“2(’1)) ;

g(n) - Kﬁ—ﬂjﬂzgw)%(m )Amemmm)

(76)

is valid. If © is subquadratic and 0< A< 1, then (76) is
reversed.

Remark 28. By taking m =1 in Corollary 27, inequality (76)
reduces to inequality 3.19 in [28], Corollary 3.2.

Remark 29. For the Lebesgue scale measures Ay, (0) = A0, A
U, () = A and m = 1, Corollary 27 coincides with Corollary
2.1.6 in [30].

Remark 30. For T=R, m =1,and A = 1, Corollary 27 reduces
to Corollary 3.3 in [8].

4. Inequalities with Specific Time Scales

In this section, by selecting few different time scales, we get
some consequential inequalities. More precisely, assume 0
<a<f<ooarepointsin Tand §;:={(6,7)eT:0<a<y
<0 < B}. Applying Theorem 5 to Q, =Q, = [, 8)1, Au,(0)
= A0, and Ap, (1) = An, we get the following conclusion.

Theorem 31. Assume 0<a<f<ocoandl: [a, ) X[ )1
—> R>0suchas L(0) = fik(@, n)An < 00,0 € [a, B)¢
Suppose that (0): o, f); — R and

([0 (7))

1)
<oo,n€la B (77)
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where A > 1. If ® € C(K,,,, R) > 0 and is superquadratic, then

B B 0
[ o0 agyenaaf | xo e

- ((A449)(0)©(lg(n) - (A19)(0)])A044 (78)
A

< (Jﬁw(fv)@(g(n))An> ,

24

44

is available for all nonnegative integrable functions g
: [, B)y — R™ and for A;g : [a, B); — R defined as

0
(A4,9)(6) = ﬁj 6. mg(n)an, 0€ @ By (79)

o
If 0 < A< I and © are subquadratic, then (78) is reversed.

Remark 32. By taking m =1 and replacing&(6), w(y), and
16, 1), respectively, £(6)/(6 - &), w(n)/(n - «), and [, (6,7)
where x¢ denotes the characteristic function over §; in The-

orem 31, inequality (78) reduces to inequality 4.1 in [28],
Theorem 4.1.

On the other hand, for 0 < « < 3 < 0o, consider the set
S,={(0,n)eT:p<O<y<oo}. (80)

Then, putting Q, = Q, = [, 00); where T is a time scale,
Ap,(0) = A0 and Ap,(n) = An. We obtain a dual form of
Theorem 31 as follows.

Theorem 33. Suppose that 0< < co&(6) : [B, 00)y — R
>0andl: [B,00); X [B,00); X [B,00)y —> R > 0 such that

6 = L 16, 1) < co,

~ 3 1A
o) = (j;%w) (“f{é?) Ae) <cone[foo);,

(81)

6 € [B, 00)y,

where A > 1. If ® € C(K,,R) > 0 and superquadratic, then

J:E(G)@A((A,g) (6))46 + A J :J:Oé(e) Z(L@(’e ’;) oM
((49)®)©(lgtn) - (4ig)(6))) 201 (2)

< (j:cbw)@(g(mmn),

is available for all nonnegative An -integrable functions
g : [B,00)y — R™ and for the operator Ayg : B, 00)y —
R defined by

Journal of Function Spaces

(g (0) = ﬁfi(a Mandn, 0 lfoo)r.  (83)

If © is subquadratic and 0 < A < 1, then (82) is reversed.

Remark 34. By taking m =1 and replacing &(6), @(#), and
1(6,7), respectively, by &(0)/(0-«),a(n)/(n-a), and

lez (6,7) where Xs, denotes the characteristic function over

S, in Theorem 33; inequality (82) reduces to inequality 4.7
in [28], Theorem 4.2.

5. Inequalities with Specific Kernels

In this section, we find some consequential inequalities of the
Hardy type by selecting specific kernels and weight functions.

Corollary 35. Suppose that the assumptions of Theorem 31
are satisfied only with

1(0,n)=0, ifa<y<o(@)<p. (84)
Define
a(6)
L(6) = J 16,7)An>0, 0O¢€apf)y. (85)

If ®e C(K,,,R) >0 and is superquadratic, then (78) is
available for all nonnegative Ayn-integrable functions g
: [, B)y — R defined as

(4,)(6) = ﬁﬁa naman 0elwp)y.  (86)

o

If © is subquadratic and 0 < A < 1, then (78) is reversed.

Corollary 36. Assume that the assumptions of Theorem 31 is
satisfied only with

1(0,n)=0,ifa<o(@)<n<p. (87)
Define
L) = J [emar>0. 0<lep. (88)

If ®e C(K,,,R) >0 and is superquadratic, then (78) is
available for all nonnegative integrable functions g : [a, )1
—S R™

B
(4,9)(6) = ﬁ[ JJ@ngman Oclapy (®)

If © is subquadratic and 0 < A < 1, then (78) is reversed.
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Corollary 37. Assume that the assumptions of Theorem 31 is
satisfied only with 1 : [, B)1 % [, B)y — R defined as

1(6,11)::{1’ if0<a<n<o(0)<p, (90)

0, otherwise,

and E(0): [ f)y — R; then L(6) = [7°1(6,7)an=0(6)
-, 0 ¢€[a, B)y, and A;g(0) in this case is the classical Hardy
and denoted by

1 o (6)
(H9)0)= i | atman ocwp oD

If we let

(92)
where A > 1, then (78) became
B 1 a(6)
J 500 <0(9) - “J 9(’1)A'1) 49
B (B 1 a(6)
+A oMl ( g(n)An) ®
JaJr] 0(9)_“Ja 93)

: <'g(11) - ﬁj:(e)g(n)AﬂD 0(59()91 5 204

< (Jﬁww)@(g(mmn).

o

If © is subquadratic and 0 < A < 1, then (93) is reversed.
Remark 38. For m=1 and replacing £(6), w(n) by £(6)/(0
—a) and w(y)/(n - «) in (93), Corollary 37 coincides with
Example 4.1 in [13].

Remark 39. By taking T =R, a =0, and replacing £(0), w(r)
by £(0)/60 andw(#)/1 in (93), we have

[e0e ([ atn )dn) i
A [ (5 atnan)e
-(]g(n)—] g )“

11

where
s N 1A
w(n)==rl<J £0)(5) g> nepp).  (3)

If ® is subquadratic and 0 < A < 1, then (94) is reversed,
which is a refinement of 4.6 in [28], Remark 4.2.

Corollary 40. In Corollary 37, if a =0 and &(0) = 1/6, then
(93) reduces to

[ G llstven) 5
Bl L Gl e

A

< (jﬁwm)@(g(mm) ,

0

(96)

where

i) = (jﬁ (ﬁ)“;) " concwpy o)

Furthermore, if 5 = 0o, then (96) becomes

[/ (s, swan) G

Al e (G |, atmar)e

- <‘g(f1) - %f@)g(mﬁw‘) do 20
< ([ wtnergem)an) A,

where

0
/1 \*0
w(n) = (L (ﬁ) ?> < 00,1 € [@, CO) . (99)
Remark 41. For A = 1, inequality (96) reduces to
B 1 (9 AQ (BB
© _J A )_ +J J ©
J,e Gl omar) 5]

: ( g(n) - %Ja(e)g(ﬂ)AnD %@AGM

0

(100)
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where

=[5 (e

while inequality (98) reduces to

o), soan) 5[ [
: (‘g(ﬂ) - %E@MMWD %@AGM

< jj@(g(n))%-

(101)

(102)

Example 3. Considering Theorem 33 with [: [f3, 00)y X
[B, 00); — R defined by

no(n) if n=0
10, 1) =

0, otherwise,

(103)

and &(0): [B,00); — R >0, then

The operator A;g(6) is defined as

00

o no(n)

(A,9)(6) = ej g 6e(Boo)y,  (105)

and if we let

£ /8 1 1A
w(n) = (LG (Mn)) AG) <00, €[B,00)y, (106)

where A > 1, then (82) became

o (g
A i)

| <’g(’7) ) GJ :O no(n)” (”)A"D ﬂ%@ﬂeﬂn

(107)

If ® is subquadratic and 0 < A < 1, then (107) is reversed.
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Remark 42. For A = 1, inequality (107) reduces to

J;O <6Jﬁ nal(n)g(”) 17) %9 MJ:J:O@

~ 1 108
(‘ eona Dna(n)AeM 1o
j w(n)@(g(n)An,
where
1 (P 1
o) = s | = g B 009

6. Some Particular Cases

In this section, we obtain a popularization and a refinement
of the classical inequality of the Hardy-Hilbert type (16) for
numerous variables on time scales. It is clarified in the result
below.

Theorem 43. Assume that the assumptions of Theorem 31 are

satisfied only with Q; = Q, = [0, 00)y, p > 1, A > 0 and replace

Au,(0) and Au,(n) by the Lebesgue scale measure AO and A
Furthermore, define

00 9/}7) 1/p
L,(0 ::J ( An and L
1( ) 0 9_’_’1 f 2(’7)

/A (110)
_ 6/7] 1/17
= (L ( 0+ ) AG) .

IfA>1and p>2, then

JOO(LI (6))M0) (Jm g(_”)Aq) Y 26

+1
00 00 0 (A-1)
+AJ J ;1—1/PL1<A—1><1—P>(9) <J —gi”;AnY
0 Jo 0
ypo L ["at) o O g
x|g(mn p_Ll(B)Jo 0+ n e n
A

(111)

is available for all nonnegative integrable Ay-integrable func-
tions g : [, §)y — R™. If 0< A < 1, then (111) is reversed.

Proof. Utilizing £(6) == (L,(6)/6)" and

()"
).f b b
16n)=1{ 0+ if0+0,7#0,0+1n+0

0, otherwise,

(112)
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in Theorem 15, we obtain

<@

[ i) )= C47) () ),
il |

(113)
and the operator (4;9)(0) in this case is defined as
1 0 (g)—l/P
A 0):= 7J - An. 114
490 =15 ), avy WM (114)

Utilizing (A;g9)(0) in (62), we obtain

J:O (Llée)> A (the) J:) (g); I,;P 9(11)417> APA@

1p . (q)—llp p(A-1)
6
<9+,7 >< 19)Jo O+n g(ﬂ)M)
*1
9

~1p

g(n)An AHAW

.o O+n

(115)

Hence,

[0 ([ )

+/\JOO[O°L (A-1)(1-p) (g rog(ﬂ)’f"
0do ! © o 0+n

© gy
0+n

p(A-1)
An)

P ! N
(ng) 7)™ 2041

An

(116)

Finally, replacing g(7) by g(n)n""? in (116), we get (111).
The cases 0 < A <1 and 1 < p <2 are proved in the same way.

Remark 44. For m =1, Theorem 43 reduces to Theorem 5.1
in [13]. In particular, for A = 1, Theorem 43 is a refinement
of Theorem 5.5 in [10].
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Remark 45. By taking T =R, A =1, and p > 2, in Theorem 43
and utilizing the known fact that

oo (M -1/p co (M 1-1/p
J (f’)dq=J b “go- ™ (1)
o 0+7 o 0+7m sin(;)
then (111) becomes
(s () T
=dn| do+ | —F— 4
Jo (Jo 0+n 1 sin (p!) 0 011
. asin (mpT) (% g(n) P gt
’g(ﬂ)n" - GPJ o+n dn 9+qd9d’7
Ui P oo
»
< (e J, o0
(118)

which is a refinement of (16). For m=1, (118) has been
established in [3], Corollary 3.2.

In the following theorem, we introduce a generalized
form of (111) on time scales.

Theorem 46. Suppose that A > 0,p > 1 and s, 6 € R. Further-

more, assume
N 1A
) AG] and L,(0)

Joo 68(71/6) (s=2/p)+1
0 @+n)

. (170_1)5—2/17
<[, T

(119)

where A > 1 and p > 2; then

JOO (L, (6))/1(1?)9/\(673”) (JOO (ng(ﬁ,i)s An "

i R (A-1)(1-p) < g( PO-1)
”J J, p(e)(L <9+n>SA’7>

e 1)
— 7 A
9" >P J @+ny"
6p)\+ S5— 2)(1+p)t -p)Ip

0+n)

=
=

e (ijxn)gP(n)An)A,

(120)

is available for all nonnegative integrable functions
gl )y — R" If0<A<I and 1<p<2, then (120) is
reversed.

Proof. Rewrite (62) in Theorem 15 with Q; = Q, = [0, 00),
Ap (0) =240, and Au,(n)=An. Let us define &(0) =
(L,(0)6°)" and
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(3)572/1?
0L if040,7#0,0+7+#0
10,7) =3 (8+n) 1 1

0, otherwise.

(121)

We have

S A\ M
S((55) ) -t
(122)
and the operator (4;g9)(0) in this case is defined as
e
49)60) = 5 | oreman  (129)

Now, substituting L, w and (A;g)(0) in (62), we get

. co (M52 PA
[0y e Grpan) o

Rl A (")572/1’ 1 (o ('7)5*2/[’ p(A-1)
AL o) (W I o

1 . (q)slep 14
x ’9(’7)— o ‘[O &

< (E’ LZT(")g" (ﬂ)M)A-

g(n)An| A0Ay

(124)

Hence,

[woreree(3)' (7

1 6p/\+(s—2)(l+p/1—p)/p 00 A
(5) WAGAnS J Lz(n)g”(fﬂAﬂ) :

Finally, considering (125) with g(n)n>=?) instead of
g(7n), we obtain (120). The cases 0<A <1 and 1 <p<2 are
proved in the same way.
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Remark 47. For m = 1, Theorem 46 coincides with Theorem
5.2 in [13].

Remark 48. Clearly, for p>1,8=0, and s= 1, Theorem 46
reduces to Theorem 43.

7. Conclusion and Future Work

The study of dynamic inequalities on time scales has a lot of
scope. This research article is devoted to some general
Hardy-type dynamic inequalities and their converses on time
scales. Inequalities are considered in rather general forms
and contain several special integral inequalities. In particular,
our findings can be seen as refinements of some recent results
closely linked to the time-scale inequalities of the classical
Hardy, Pélya-Knopp, and Hardy-Hilbert. We use some alge-
braic inequalities such as the Minkowski inequality, the
refined Jensen inequality and the Bernoulli inequality on
time scales to prove the essential results in this paper. The
performance of the superquadratic method for functions is
reliable and effective to obtain new dynamic inequalities on
time scales. This method has more advantages: it is direct
and concise. Thus, the proposed method can be extended to
some forms for Hardy’s and related dynamic inequalities in
mathematical and physical sciences. Our computed out-
comes can be very useful as a starting point to get some con-
tinuous inequalities, especially from the obtained dynamic
inequalities. In the future, we will get some discrete inequal-
ities from the main results. Also, we will suppose that g(¢)
=(g,(t), -+, g(t)) is an m-tuple of functions and = (¢, t,
,+=+,t,) is n-tuple of variables to get the general forms of
Hardy’s and related inequalities on time scales. Similarly, in
the future, we can present such inequalities by using
Riemann-Liouville-type fractional integrals and fractional
derivatives on time scales. It will also be very interesting to
present such inequalities on quantum calculus.
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In the present paper, we will introduce A-Gamma operators based on g-integers. First, the auxiliary results about the moments are
presented, and the central moments of these operators are also estimated. Then, we discuss some local approximation properties of
these operators by means of modulus of continuity and Peetre J -functional. And the rate of convergence and weighted
approximation for these operators are researched. Furthermore, we investigate the Voronovskaja type theorems including the
quantitative g-Voronovskaja type theorem and g-Griiss-Voronovskaja theorem.

1. Introduction

Gamma operators are very important positive linear opera-
tors and have been widely used in probability theory and
computational mathematics. For f € C(R*), n=1,2,3, -
where R* = (0,00) and C(IR") be the space of all continuous
functions f on the interval R*, the Gamma operators were
introduced in [1] by

We can learn some properties of Gamma operators and
their modified operators in [2-7]. In [8], Qi et al. defined
new Gamma operators as follows:

0O

G,M(f;x):%JO e“t”(ﬁy]‘(n—:c)dt, xeR'.  (2)

t

where f € C(R"), A € N ={0,1,2,---}. Obviously, if f e C
(RY), then (G, (f;x)V = Gn,,\(fu) ;X). Meantime, G, (1;
x)=(n*(n—A)!/n!)#1 (while A #0). In order to preserve
the constant, we defined A-Gamma operators as follows:

Definition 1. For f €e C(R*), AeN, n=A,A+1,---, the A
-Gamma operators are defined by

Z,,(f3x) = — Jme-ft"-lf(if)dt, xeR*. (3)

(n=A1,

Let us recall some useful concepts and notations from
q-calculus, which can be founded in [9-11]. For nonnega-
tive integer i, the g-integer [i], and g-factorial [i] ! are
defined by

-4
-5 1)
[1]q=1+q+~-+q' =0 1-¢q 7
bt @
[l] 1= [l}q[z]q [l]q’ 12 1’
1 1, i=0.

Further, g-power basis can be defined by
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2
L, i=0,
. x—v)(x— v (x—g ), i=1,2,--
(x_”;_{( P)x-qy) - (x=q"y) ’
L i=0.

and (D,f)(0) =f'(0) provided f'(0) exists. High-qrder q
-derivatives can be defined by Dgf: f> Dy=Dy(Di'f), i
=1,2,---. The formula for the g-derivative of a product
is D, (/(x)g(x)) = D, (f(x))g(x) + D, (9(x))f (gx). We eas-
ily know that if a function f is continuous on an interval
which does not include 0, then f is continuous ¢
-differentiable.

The g-improper integral of function f can be defined by

(PTG W (A LT

0

The g-analogue of the classical exponential function e* is

() ¥ _ 1+ (1-aq)x)®
q [l]q' ( +( q)x)q 4

Mz

Il
o

Eq(x)= qe(O,l).

(8)

1

The g-Gamma function is defined by

(co/1-q) )
x5 )Eq(—qx)dqx, seRY, (9)

r,o=|

0
and satisfies the functional relation: I'; (s + 1) = [s] ', (s), T
(1) = 1. Moreover, for any nonnegative integer i > 0, the rela-
tion holds: I' (i + 1) = [i], .

Now, we construct the g-analogue of A-Gamma opera-
tors using g-Gamma function as follows.

Definition 2. For f : R* >R, g€ (0,1), Ae N, n=A21+1,
.-+, the g-analogue of A-Gamma operators (3) are defined as

00/1— nl x
9= o qf<[f )EA—QOﬁ*dg, reR
q

(10)

The paper is organized as follows: In Section 1, we intro-
duce the history of Gamma operators, recall some basic nota-
tions about the g-calculus, and construct A-Gamma
operators based on g-integers with g-Gamma function. In
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Section 2, we obtain the auxiliary results about the moment
computation formula. The second- and fourth-order central
moments computation formula and other quantitative prop-
erties are also presented. In Section 3, we discuss local
approximation about the operators by means of modulus of
continuity and Peetre % -functional. In Section 4 and Section
5, the rate of convergence and weighted approximation for
these operators are researched. In the last section, we firstly
prove quantitative g-Voronovskaja type theorems in terms
of weighted modulus of continuity, and then the g-Griiss-
Voronovskaja theorem in the quantitative mean is also pre-
sented (for the quantitative g-Voronovskaja type theorem0
and the g-Griiss-Voronovskaja theorem for the other opera-
tors, see also [12, 13]).

2. Auxiliary Results

In this section, we will give some lemmas and corollaries,
which are necessary to obtain the approximation properties
of the operators &1, (f; x).

Lemma 3. For g€ (0,1), A€ N,ie N, n=A+i,A+i+1,-,
the following formula holds:

[n],[n—A~i,!

?Z)/‘(ti sx) = ] 1 %, (11)

!
q

Proof. According to the properties of g-Gamma function, we

have
o ([’ i
(T"> E, (—qt)t"*d t

Lemma 3 is proved.

Corollary 4. By the lemma given above and some elementary
calculations, we can get the results

n—-A A
Ax)= ?Z,A(t—x;x) = ?n _[M]qx for
q

n>A+1,

B(x)=%1,((t-x)7;x)

(e, g,
‘( n-A-1], -4,

>A+2.

A+ I,
+[”—/1—1]q[”—/\]q)x2 for n

(13)
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Lemma 5. Let q=(q,) be a sequence satisfying q, € (0, 1),
q,— 1 and g —ac0,1). Then, for each x € R*, A,(x)

= ?Z&(t -x;x), B,(x)= ?f&((t - x)?;x),we can obtain

lim [n] A, (x) = Aax,

n—00 n

lim [n], B,(x)=ax’,  (14)

n—-o00 n

g ((t-x)°;x) =O<L>, (15)

g ((t-x)";5x) =O<L>, (16)

nl;,

Proof. By Lemma 3, we can easily get (14). Without loss of
generality, we only prove equation (15). Equation (16) and
equation (17) can be proved in some way. Set €7, (t';x) =C
(i)x',i=1,2,3,and &I ((t - x)° ;x) = C(4)x>. Using ([],)
(n=A=il, ) =1+ (g A+, )i([n=A-1],)), i=0,1
,2, -+, n— A, we can easily get

4,
C(1)=1+ [n—l]:n’
oA, @A+
c@)=1 [n—A]:n MR
4 A, A+ 1],
[n—)t—l]qn[n—)t]qn’

g 2[)t+2]

LN, e,
+
[n A— Z]qn

[n—}t]qn [n—A- l]qn
. g A2, A+ . g A+ 2], (A,
[n—/\—Z]qn[n—A—l]qn [n—)»—Z]qn[n—A]qn

B WA, (1
AT, A, (W)'

qn q,

(18)

Combining

3
C(4) = C(3) - 3C(2) +3C(1) -
CaMA, g7 A 1}
IRCERCEVESTE
a2, g2 A+
m-A-2,  [n-A-2], [n-A-1],

4+ 2], A,
A2, -4,

ol L)1 AW
M2 ) n=Al,

g, A,
1= A=1], [n=A],
At

-A-1],
n/\Z[/\+2} B q:)lz
A2, T A,

: ([/\+2}qn[n—/\]qn[n—)t—l]qn
@, [n-A=2], [n-A-1],
-24,A+1], [n—/\—z}qn[n—)l]q) +1

_ qf:l —-A-2
e e G CAC NN

_qn[)‘+ 1}:1”[”_/\_2](1") —qn[l’l—/\—Z]q"

.([mu [n—A]q"—qn[A]qn[n—)»—l}qn>)+I
g
TATEr T Gt L S U A
a4, (1)
Coln-A-1,
Jirgo[n]znlz (31 +2)a?, (19)
we have ,}Lngo[n]z gl ((t—x)* ;%) =3(A + 1)a2x® + ax’. This

means that equation (15) is obtained. Thus, the proof of
Lemma 5 is accomplished.

Lemma 6. Let g=(q,) be a sequence satisfying q, € (0,1),
q,— 1 and g — a € [0, 1]. Then, for each x € R", the follow-
ing relations

n

gin (|-

gin (|t -2

hold.

Proof. By the definition of g-power basis, we have (¢ — x)fl =
(t=2)(t=gq,x) = (t=2)" + (1= g)x(t —x) = (t = x)" +x((1
-q,)/([n], ) (t = x). Thus, we can write |( - x);n| < (t-x)?
+x((1-q,)/([n], )) It —x|. Using the monotonicity of the

operators ?Z”‘A and the Cauchy-Schwarz inequality, we can get



2 (’(t - x);ﬂ‘ $x) <G ((t-x);x)

l_ n
w1t - xfix) < G0 (1 %)7 )

[,

_g" 22
+x1[n]q”,/?3’h((t—x)z;x) SO(ﬁ) 22)
n n

0 (L) _ o<;>
7)o\,

The inequality (21) can be get in the same way. Using the
monotonicity of the operators ?Zf/\, (16)and (17), Cauchy-
Schwarz inequality, respectively, we can obtain

gin (| -2 |t -2 sx) <Gl (-2 52)

+ i?f&ﬂt—xﬁ ;x) < ?f&((t—x)(’ ;x)

[,

L \/?Z’j/‘((t -x)* ;%) ?Z?A((t - x)8 ;%) <0 <L3>
[, [,
{24

], [,
(23)

Thus, we complete the proof.

3. Local Approximation

Let Cgz(R*) be the space of all real-valued continuous
bounded functions f on R*, endowed with the norm
Il =sup | f(x)|. Moreover, the Peetre’s #-functional is

xeR*

defined by

TS0,

{IF = hisotn"1}, (29)

where C%(R*):={heCy(R*): h',h" € Cx(R*)}. By ([14],
p- 177, Theorem 2.4), there exists an absolute constant C >
0 such that

(£ 38) < Ca (f55), (25)

where 0 > 0 and the second-order modulus of smoothness is
defined by
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wz(f;\/5> = sup sup|f(x+2t) = 2f(x+ ) + f(x)], f€Cy(RY).

O<t<dxeR*

(26)
The usual modulus of smoothness is defined by

@(f50) = sup sup|f(x+1) = f(x)],

0<t<dxeR*

FeCyR). (27)

Theorem 7. Let f € Cx(R*), q€(0,1), A=1,2,---. Then for
allx e R* and n > A + 1, there exists an absolute C; = 4C such
that

1900 3%) (%) < o, (f: 42(x) +B<x>) F(fIA)]).
(28)

Proof. Using Definition 2, we easily obtain |?Z,/\<f ) | <IfIl
for all f € Cz(RR"). Next, we define new operators by

x eR*.

(29)

Pualf3%) =G0, (f3%) +f(x) — f(A(x) +x),

We can get P (t—x;5x) =1 (t—x;x) - A(x) =0and
|90, (f 5%) | <3|l for all f € Cx(R*). For x,t € R and h €
C3(R*), using Taylor’s expansion, we can write

h(t) =h(x) +h' (x)(t - x) + Jt B (u)(t —u)du.  (30)

Hence,
| P (%) = h(x)| = |h' ()P, (t - x5 x)
e (Jt B () (t - u)du s x> |
e (E{h"(u)(t— w)du ;x)

2 (Jt B () (t - u)du; x>

_ JA@M B () (A(x) +x - u)du

X

([ [ R (u) | (t - u)du; x
I

A(x)+x ,
J | h" (1) | (A(x) +x - u)du

X

<

<

q
<Y

+

< (B(x) + A%(x)) "]
(31)
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Further, for all h € C3(R"), we can write

G (f320) = f(0)] = | 2o (f 50) + f(A(x) +x) = 2f (%)
<[P =hsx) = (f - h)(%)]
+| P (hsx) = h(x)| + [f(A(x) + %)
— F() <4If - hll+ (A%(x) + B(x)) A"
+o(f3lA(x) ).
(32)

Taking infimum over all 4 and using (25), we can get the
desired conclusion.

Corollary 8. Let f € Cyz(R"), g€ (0,1). Then for all x e R*
and n > 1, there exists an absolute C; = 4C such that

[Gholf %)~ ()| < Cuor(f3 VB (33)

Corollary 9. Let f € Cz(R"), g = (q,) be a sequence satisfying
q,€(0,1), g,— 1 and q — a<[0,1] as n— oo, the
limit

lim &%, (f %) = £ (x) (34)

holds for all x € R*.

4. Rate of Convergence

As is known, if f is not uniformly continuous on R*, we can-
not get w(f ; 8) — 0 as § — 0. To research the rate of conver-
gence of the operators ?35 on R*, we recall the weighted
modulus of continuity Q(f;8)(see [15] or [16]). First, we
shall consider the following three classes of functions:

B,(RY) = {f : R* > R;|f(x)| <C;(1+x%)},  (35)

where Cy is a positive constant which depends only on f,
C,(R")={f € B,(R"): f iscontinuous},

CY(R*):= {feBz(IR+): lim Lx)z

x—00 1 +x

is ﬁnite}. (36)

The space C(IR*) is a linear normed space endowed with
the norm ||fl, = sup ((|f(x)|)/(1 + x?)). For any f € C,(R"),

+

x€R
O(f; 6) is defined by

Q(f;8)= sup Flart) )1 , (37)

0<t<d,xeR* (1 + tz)(l + x2)

if f € CS(R"), then Q(f ;8) has the following properties:

6) alinoqp(f;a) =0
(i) Q(f;pd) <2(1+p)(1+8*)Q(f;6), pe R

In [17-19], the following inequality was introduced and
used
IF(t) - f(x)] <(1+ (t-x)?) (1+2)Q(filt - x])

gz(l + 't’sx')(uaﬂ(l 4 (t-x7) (1+2)Q(f 39)

4(1+8%)* (1+20)Q(f36), lt-x| <8,
< 4
{ 4(1+8) (1427 (tgf) Q(f390), lt—xl=6.
(38)

Meanwhile, we introduce the modulus of continuity of

feC(0,a](a>0) by w,(f56) = sup sup |f(t)-f(x)].

[t-x|<8x,te(0,a]
The following is a theorem of the rate of convergence for
the operators & ,:

Theorem 9. Let f €e C,(R*), A€ N, n=A+1L,A+2,-, ac
R*, we have

1982(F 5) = fllcioa < 4Cy (1 +2°)B(@) + 26001 (f, +/B(@) )
(39)

Proof. For any x € (0,a], f € (a+ 1,00), we can easily obtain
1< (t-a)® < (t-x)? therefore

If(t) = f(x)l <Cr(2+x% +1%)
<C;(2+3x +2(t—x)*) (40)

£4Cf(1 + a2) (t—x).

If t € (0,a+ 1), for any § € R, we can obtain

F(6) - F()| S0 (Filt—x1) < (1+ lt_x|>wa+1(fs5)-
(41)
Combining (39) with (40), we can get
1F(1) ~ £ ()] <4C, (1+a2) (£ - )" + (1 + lt_x|>wa+1(f;5)-
(42)

By Cauchy-Schwarz’s inequality and Corollary 4, for all
x € (0, a], we have



1G5 (f5%) = f(x)]

<4Cr(1+2°) @1, ((t-x)°
<ACy(1+ ) (27 33) + a+1(f:5)<
<4C;(1+a%)B(x) + w,,, (> 0) (

<4C;(1+a%)B(a) + w,,, (f,9) (1 +

By choosing 6 = \/B(a) and taking supremum over all x
€ (0, a], we can get the desired results.

Theorem 10. g = (q,) be a sequence satisfying q, € (0, 1), q,,
— Land q" — aasn — oo and f € CO(R"); then, there exists
a positive integer N € IN, such that for alln > N and v > 0, the
inequality

holds.

Proof. Using (14) and (16), there exists a positive integer N
€ N, such that for all n > N,

Fan (£ =x)%5) < 4o (45)
qn
g ((t-x)tx) <1

By Cauchy-Schwarz’s inequality, we can get

?Z"‘A(I - xlx) < \/?Z”A(t—

2 \/7 (46)

iy (=5 5) <\ (=07 52 [ G (620" )

(47)

Since ?Zﬁ is linear and positive, using (38), (46), and
(47), for any § € (0, 1), we can obtain

Journal of Function Spaces

<Ga(f () - f)l; )

x)+ 95, 1+

) e (£.0)
Gaa((t=x) x)) (43)

o)

VB )

ool»—- Oal*—‘

| =

|?Z”“)L(f;x) —f(x)| < 16(1 +x2)Q(f;5)
. (1 + nga(“‘x;ff—xS ;x))

S16 l+x

Taking 6 =1/, /[n], , we complete the proof.

5. Weighted Approximation

In this section, we will discuss the weighted approximation
theorems for the operators &%,.

Theorem 11. Let q = (q,,) be a sequence satisfying q, € (0, 1),
q,— 1, and q" —>a€0,1] as n— oo and f € C)(R*), we
have

lim %, (f5) = fll, = 0. (49)

Proof. Using Korovkin’s theorem (see [20]), it is sufficient to
verify the following three conditions:

lim [| 24 (tk) —x,=0,k=0,1,2. (50)

n—-o00

Since €21 (1;x) =1, (51) holds for k= 1. By Lemma 3
and lim ([n], /[n— 2], )= lim ([n], /[n-A-1], )=1, we

can easily obtain

qn
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||?M(t x) = x|l, = sup —— e {? )—x|
xeR*
X [”]q
=sup —— |[——=+——1
xG]RH 1+x2|[n- M, ‘
n
< [ ]q” -1/ —>0,n— o0o0.
[n—A]qn
| € ( 5x) — xllz—sup x2|?3’”/\(t2;x)—x2‘
x? [n];
=su " -1
v L2 [n=A] [n-A-1]

L,

\A, A1,

(51)

We can draw the final conclusion through all the esti-
mates above.

Theorem 12. Let q = (q,) be a sequence satisfying q,, € (0, 1),
q,— 1 and q" — 1 as n— oo and f € C)(R"). For any f €
CH(R*) and v > 0, we have

n

lim sup 25U ;x)l_f ®)
(I+x2)"™

—
n OOXEIR+

-o. (52)

Proof. Let x, € R* be arbitrary but fixed. Then,

G (f3%) —f(x) | G (f

sup o < su
xeR* (1+x2) x€(0,%)

x)-f(x)
(1+X2)1+U
G (f5%) = f(x) |
woo) (L2
f5%) = fllcox,)
|?Za((1 +1)5x) |
+"f”2xe§?,50) (1722

If () |

)1+v'

+Sp
X€[x(,00

<lgy

+ sup
X€[x,00) (1 + x2

(53)

Since |f(x)|<lfl,(1+x*), we have sup ((|f(x)])/

X€[x(,00)

(142" < ((FIL)/(1 +x2)"). Let £>0 be arbitrary, we
can choose x,, to be so large that

If1,

W <e. (54)

1| - 0,n — 00.

7
In view of Corollary 9, while x € [x,,00), we obtain
. |?Z" 1+82); 1+x
llim Za 0201 (6) Wl
e (1442 (1+x)™ (1422
< ﬂzv <E.
(1+x3)

(55)

Using Theorem 9, we can see that the first term of the
inequality (53) implies that

1€ (f 5 %) = fllgox, <& as n— oo (56)

Combining (53)-(56), we get the desired result.

6. Voronovskaja Type Theorems

As is known, Voronovskaja type theorems of many positive
operators are widely researched and discussed (see [21-
28]). In this section, we will discuss the quantitative g-Vor-
onovskaja theorem and g-Griiss-Voronovskaja theorem.

6.1. Quantitative q-Voronovskaja Theorem. In this subsec-
tion, we will obtain the Quantitative g-Voronovskaja theo-
rem and Voronovskaja type asymptotic formula for the
operators G,

Theorem 13. Let q = (q,) be a sequence satisfying q, € (0, 1),
g,—1and q' —acl0,1] as n— oo and f € C5(R*) satisfy
D f € C5(R"). Then, the inequality

i), (92 52) - (x) - D,
1], Bal) + (1= A, ()

_ s, D?
12, 1 () (57)
<O(1)Q| D} f; L,
Coy/nl,
holds for any x € R*.

Proof. Using the g-Taylor expansion formula (58), we have

D)
g0

D3 f()
2,

f(t)  =f(x)+Dy f(x)(t - x) +

=f(x) + Dy f(x)(t = x) + (t=x); +Ry(t:x54,),
(58)

where £ is a number between t and x and

D; f(§) - D5 f(x) 2

o (t=x), - (59)

n

R2<t’x;qn> =



Applying the operators ?ZTA to both sides of (58) and

using (¢ —x);n =(t-x)+((1- q,)/([n], ))(t = x)x, we have

D

G 5%) = (%) = Dy f(x)A,(x) - mf g (-7, %)
4
i (f5%) = f(x) = Dy f(x)A,(x)
B, (x) + ( (A= ap)A,(x))/([n], ) )x |
L 2, ) D, /()
<G (Ry(t 39,50,

(60)

Multiplying the above inequality by [n], , we have

1), (G0 52) = f(x) = D, f(x)4,(x))
nl, B, (x) + (1-qy)A,(x)x
I, <>+[2<]q!q> ¥ e e

< [n]qn ?ZTAURZ(L x5 q,)x).

(61)

Furthermore,
D? f(f) - D? f(x) 1 , i 2
W < 2, _Q<anf;|f—x| <1+(f—x) )(l+x ))
< gr2(Bi (s ) (10 ))
a,

[2}2 ! (1+ It_(sx|)(l+(t7x)2)
(1+8)(1+2°)0(D} £39)

<16(1+x) <1+ (tsx) ) CARL

(62)

for all § € (0, 1). Hence,

[(t=x)% | (t-x)
IRy (t, x5 q,)| <16(1 +x7) (I(t—x);n|+()’“64()>ﬂ(D;nf;5).

(63)

Using (20), (21), for any x € R*, we can write

G0 (IR (1, x5 4,)|:x) < 16 (1 + %) (?37A(|(t —x);l;x)

R (GG ;x)) o(p; f39)

54
()t

1 1
< (O (@> + (FO
(64)
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If we choose 6 =1/, /[n], , we can easily get

], F0 (1R (1,59,) 52) < O(1)Q (Df,,,f:

which completes the proof of Theorem 13.

Corollary 14. Let (q,) be a sequence satisfying q, € (0, 1),
g,—1and q" —acl0,1] as n— oo and f € C5(R*) satisfy
f" € CY(R*). Then, we can obtain

Jim i, (S0 5) = () = haxt () + S0 (1),
(66)

6.2. q-Griiss-Voronovskaja Theorem. In this subsection, we
will obtain the g-Griiss-Voronovskaja theorem and its quan-
titative version for the operators &,

Theorem 15. Let q = (q,,) be a sequence satisfying q, € (0, 1),
g,—1 and q"—>ac0,1] as n—oo and f,geCHR")
satisfy D f,D; g,D; (fg) € C5(RY). Then, the following

inequality

[y, | Zun(f95) = G (f 3 0) G0 (g5 %)
D, (g (D, (9(x )+ D, (060 )))

J(GADIE ()Q(D; (f); )
+o<1><uf||2+o<ﬁ> (1D, /14102 ))
'(DZ,,g; \/[lan) <||g||2+o( ) (67)

- (1D, gl+ID7, gl1,) ) (Dj fs —)

[],,

<[ T )(MD FI4IDZ £1) (ID,, 914107, 1)

1 1 1
+0|— Q| D f; —— || D2 g; ,
(Mq,,) ( " [n]qn) ( " m)

holds for any x € R*.

Proof. Using the equalities

Dy, (f(x)g(x)) = Dy, (f(x))g(x) +f(q,%)Dy, (9(x));

D (f(x)g(x)) = Dj (f(x))g(x) + Dy, (£(4,%))D,, (9(x))
+f(4,%)D5 (9(x)) + Dy, (£(4,%))Dy, (9(4,x)),
(68)
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by simple computations, forx e R* andn=2A1+1, -+,
obtain

Wwe can

Gi(fg:%) =G (f5x)G(g3%) =G (fg5 %)
~f(x)g(x) = G (t=x3x)D, (f(x)g(x))

qn _x)? ix
- M%(ﬂxw»

D, (£(4,%)) (D, (9(x)) +

[Z]q" !

an(g(qnx)» 7 ((t -x)2 ;x)
by a,

g ((t-x)2 5x
=Dy (9(0)) (T (f3%) = f (%) %
a

?Z” (t—x)2 ;X
+ D7 (g(x))D <f<x))—*([2] - )
qn

— G (t=x;x)(E0(f %)~ f(q,%)) D,

+

(g, —1)x

,(9(x))-

Hence, we can write

G (fg:x) =G (fx)G0(95%)
(f(g:%))( Dy, (9(x)) + D, (9(4,%))
- (qn[z] — >333((t"‘)3n;")
=gl (fg:%) —f(x )9(X)
-Gt =x;x)D, (f(x)g(x))
?Z, (t-x)" 5x
- WD3 (F(x)g(x))

%) (G0 (f 3%) = £(2) = Gin(t = x30D,, (f (%))
_Eh(e-0i ) o ;) qn(f(x))>

-f(x) <?ZTA(9 ;%) = g(x) = Ein(t-x3x)D, (9(x))

(-3 %)
2],

— G (f3%) (Fi(g:x) - g(x))

+ G (t = x5x)(q, — DxD, (f(x))D, (9(x))

g ((t=x)2 5x
' % (4, ~ 1)xD, f(x)D; g(x) =1,

-9(x)
g

D%(ﬂ(?f))) +(f(x)

+ I+ I3+ 1, + 15+ 1.

By Theorem 13, for any fixed x € R*, we can easily have
the following estimates

[n]qullllSO(I)Q(Dén(fg);[lnl), (71)
4

[n], LI <1g(x)l0(1)Q (th (f)s 1)

<lgl,0()2| D; (f)s ! ,
("],

], 11,1 < f(2)|0(1)2| D2 () ——
[,
(73)

<If1,00)2| D2 (g)s —— |.
1,

= (lg5 = 1)/[n],,) < O(1/

Using (14), (20), and |g, - 1|
[n], ), we have

1
], 15l < O([n]) 1D, fI,ID,, gll
qn

1 2
], |l <O (W) ID, fILID gl (74)
Using (14), (20), and Theorem 13, we can get

|0 (f 5%) - f(x)| < O(ﬁ) (1D, £1+1D2 111, )

(75)
1 |
+0 (W) Q (an () qu) ,

hence, we can know

<0 (ﬁ) (12, 1413 11 ) (1D, g1, 107, g1 ) )

[n]q" |7l

+o<[nl>(2 14) ||D gl +IDZ gll2
ol e ! (1D, /1102 11,
[], /[n
1 1
+O(W)Q wq) ( )

(76)

Combining (71)-(76),
Theorem 15.

we complete the proof of
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Corollary 16. Let q = (q,,) be a sequence satisfying q, € (0, 1),
g,—1 and q"—>ac0,1] as n— oo and f,geCHR")
satisfy "', 9", (fg)" € CY(R*). Then, the following limit
equality

lim 1], (%(£95%) ~ T3 ()60 (93%)) =af ()9 ()%
(77)

holds for any x e R*.
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The main object of the present paper is to apply the concepts of (p, q)-derivative by establishing a new subclass of analytic functions
connected with symmetric circular domain. Further, we investigate necessary and sufficient conditions for functions belonging to
this class. Convex combination, weighted mean, arithmetic mean, growth theorem, and convolution property are also determined.

1. Introduction and Definitions

Quantum calculus or g-calculus is a generalization of classi-
cal calculus without the notation of limits. The theory of g
-calculus is established by Jackson, for details see [1, 2].
Due to its numerous applications in various branches of
applied sciences and mathematics, for example, physics,
operator theory, numerical analysis, and differential
equations, attracted researchers to this field. A detailed study
on applications of g-calculus in operator theory may be
found in [3]. The geometric interpretation of g-calculus has
been recognized through studies on quantum groups. Starli-
keness and convexity are two major properties of analytic
functions. Ismail et al. [4] investigated the generalized
starlike function &, and certain subclasses close-to-convex
functions of g-Mittag-Leffler functions were studied by Sri-
vastava and Bansal [5], also the reader is referred to [6-12]
for more details.

The foundation of quantum calculus is on one parameter,
while the postquantum calculus or simply (p, g)-calculus is
the generalization of g-calculus based on two parameters.
By setting p = 1 in (p, g)-calculus, the g-calculus is obtained.

The (p, q)-integer was considered by Chakrabarti and Jagan-
nathan [13], also see the work [14-18]. The idea of g-starlike
is extended to (p, q)-stalikeness by Raza et al. [19]. Before we
define our new class in this field, we give some basics for a
better understanding of the work to follow.

Let of represent the family of function f that are analytic
in the open unit disc D ={z € C: |z| < 1} having the series
expansion

(e8]

flz)=z+ Z a,z", (z€D). (1)

n=2

A function f(z) of the form (1) is subordinate to function
g(z)=z+ )2, b,2", symbolically represented f(z) < g(z), if
there occur a Schwarz function w(z) with limitation that w
(0) =0, and |w(z)| <1, then f(z) = g(w(z)). While the con-
volution of these functions can be defined by

f@)=gle)=z+ Y abahzeD). Q)


https://orcid.org/0000-0002-8889-3768
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4257907

2
For 0 < g < 1, the g-derivative of a function f is defined by
f(2)~f(97)
aqf(z)_ Z(l—q) ’(Z#:O’q:’ﬁl)’ (3)
where
l_qn n—-1
n,=—==1+) 4, [0,q]=0, (4)
1-q =1

see [13] for details.
Also for 0 < p < q < 1, the (p, g)-derivative of a function f
is defined in [2] as

0@ =TT copsg). (9

It can easily be seen that for n€ N:={1,2,3,---} and z
€ 53’ap,q( 221 anzn) = ;1“;1 [n}p,qanznil’
where

-IoL ©

We note that 0, ,f(z) = 9,f(z) (for more on this topic
one should read [20-22]).

Sakaguchi [23], in year 1956, established the class of star-
like functions with respect to symmetrical points denoted by
&7 of holomorphic univalent functions in D if the below
condition is satisfies

2@
R 7@ -f=2) >0,(zeA). (7)

Motivated by the work of [19, 23, 24], we now define
S pq(lm, €, D) given below.

Definition 1. Let —~-D<E<D<1,0<p<gq<land -1<m
<1<1, then the function f € &/ is in the class S;’q(l, m, 6,

D) if it satisfies

1+%z ;
1+9z’(

(I- m)zap)qf(z) .

72~ (m2) €®). ®

« ,»

where the symbol “<” indicates the well-known

subordination.

We note that oS’iq(l, m, €, D)= cS’; (I, m, €, D), where

1+6z
9)

(I- m)zaqf(z)
f(lz) - f(mz)

é’;(l,m,%,@)z{fed:
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and

lim §*(1,-1,%, 2) = §* (€, D)

g-1 1
B C2flz) 1+%2 (10)
_{fed’f(z)—f(—z) < 1+@Z,(ze$)}.

Equivalently, a function f € o is in the S (I, m, €, D) if
and only if

’ (I=m)20,,f (2)1f (l2) = f(mz) =1 | (zeD).

QZ((Z —m)z0,,f (2)/f (lz) —f(mz)) -®

(11)

In our main results, in the next section, we evaluate the
criteria for functions belonging to this newly defined class.
After that, the convex combination property for this class will
be discussed. Then utilizing these results, the weighted mean
and arithmetic mean properties will be investigated. Further,
convolution type results will be discussed in the form of two
theorems. At the end of this article, a conclusion and future
work will be presented.

2. Main Results

Theorem 2. Let f € of be of the form (1). Then the function
fe8,,(Lm €, D), if and only if the following inequality
holds

;{[n]w(z + D) - (F+1) j:f}W <(2-%). (12)

Proof. Let us suppose that the first inequality (12) holds. Then
to show that f € & (I, m, €, D), we only need to prove the

inequality (11). For this consider

(1- m)zap,qf(z)/f(lz) —f(mz) -1
D((l —m)z0,,.f(2)/f (Iz) —f(mz)) -C

2 [[”]p,q -I"-m"/l- m] a,z"

(D-C)z-Y2, {D[n]P’q -C(I"-m"/l- m)ocnz”]

o {[n]p)q -I"-m"/l- m} o

al
<

<1,
(D= C) = 252, [DIn, , = C(I" = /1= m) o,

(13)
where we used and this completes the direct part. Conversely,

letfes, (I,m, @, D) be of from (1). Then from (11), we have
forze®,
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(I- m)zap’qf(z)/f(lz) —f(mz) -1

D((I-m)z0,,f (2)/f (Iz) - f (mz)) - C
B Zﬁoz[[n]w—l"—m"/l—m}|ocnz"| .
(D-0)z-3, D], = C(" = m 1= m)| 27|
(14)

Since |Rez| < |z] < 1, we have

y { ¥, {[n]p’q . m"/l-m} |, 2" } 3y
(D= C)z= %52, [Dln],,, - O = mil = m) |, 2"

(15)

Now we choose values of z on the real axis such that
(I-m)z0, f (2)If(lz) - f(mz) is real. Upon clearing the
denominator in (15) and letting z— 1~ through real
values, we obtain the required inequality (12).

Theorem 3. Let f; € S, (I, m, €, D) and having power series
representations

fiz)=z+ Zak,izk,fori:1,2,3,--~,t (16)
k=1
Then @ € S, (I, m, €, D), where
t t
D(z) = Zwifi(z)wichwi:I. (17)

i=1 i=1

Proof. By Theorem 2, one can write

i{ [[n]mu + D)~ (G +1)(I" - m"] - m)} }|am} L

2 (2-9)
(18)
Therefore
t 00
D(z Zw,<z+2amz>
i=1
=z+ z w;a,;z (19)

however,

t

WAy

i=1

[ L1+ D) = (@ +1)( —m"/l—m)]
5 o (

)
l >an,,»r] <1,

(20)

o0 [ J14D) = (@ + 1) (1" = "/ m)
(2-9)

then @ € 8 (I, m, €, 2). Hence, the proof is completed.

Theorem 4. If f,,f, € S, (L m, €, D), then their weighted
mean v, is also in S, (I, m, €, D), where y, is defined by

o) (LT UG,
Proof. From (21), one can easily write
ij(z)zz_'_ozo‘é{(l_k)an;—(1+k)bn}zn (22)

To prove that y; € S, (I, m, €, D), it is enough to show

that
(23)

(B +1)(I" = m"/l -
(2-9)

$ { (1], (1+2) -

n=2

{(1 —k)an+(1+k)bn} <1

2

For this, consider

) (2-9)

n=2

‘{(1 —k)a, + (1 +k)bn}

o { [[n]M(l + D) — (G +1)(I" = m"/l - m)] }

2
I [[n} (1+D) = (G +1)(I" = m"/] - )}
= Z{ = CEG) 2,
(14)) @ [[n]Pq(1+@) (G +1)(I" = m"/l— )]
5 ;2{ -9 L
1=k, (1+k) _
2 2 ¢

(24)

where we have used inequality (12). Which completes the
proof.
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Theorem 5. Let f €8, (I, m, €, D), with i=1,2, -, j. Then,
their arithmetic mean (p of f;

1 j

=D fil2) (25)

is also in the class S, ,(I, m, €, D).

Proof. From (25), we can write

~.

lg<z+ian,z>_z+z< ia ) (26)

Since f;e S
(12), we have

q(Lbm, €, D) for every i=1,2,-,j, using

™M

(@-9)

LJ [n]m(1+9) (% + 1)(l"—m”/l—m)}
hZ(Z{ (@-%) o

n=2

o { {[n]mu + D) - (€ +1)(I" - m/l - m)] }

(27)

which complete the proof.

Theorem 6. Let f € S, (I, m, €, D). Then for |z| =1,0<r < 1,
=8,,(Lm, B, D)r* <|f(2)| <1 +8,,(l,m E D), (28)

where

(¢-92)
2,,(0-2)+ @+ (I +m)’

8,y(L 11,6, D) = (29)

r— yp’q(l, m, G, 9)1"2 < |Bp)qf(z)f <r+ yp’q(l, m, G, 9)1’2,

(30)
where
(¢-9)

ILm, €, D)= . 31
Voalbm 6 D)= i i (31)

Proof. To prove (28), consider
2 <r+ ) |a,llr]", (32)

n=2
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as 0 <r<1sor"<r?hence

N (¢-9) 2
zZ) <r+r? a,| <r+ r
| ;' | [2}p,q(1—9)+(?§+1)(l+m)
(33)
Similarly,
)| zr= ) |a|lrl">r=1*} |a,|
n=2 n=2 (34)
(%_9) 2

L A-2) v @ rm)

Hence complete the proof of (28). Similarly, we can
prove (30).

Theorem 7. Let f; € §, (I, m, €, D), such that

o0
fim)=z+) a,7"i=12 (35)

n=2
with condition |a,,| < 1, then f, x f, € S} (I, m, €, D).

Proof. Since form (35), we have

[ee]
fiz)=z+ ) a,z"i=12. (36)

n=2

Then convolution is defined as

(fi*fr)(z)=z+ i y10,52". (37)

n=2

Since f, € 8, (I, m, €, ), with limitation that [a, ,| <1.
Therefore

o [ [[1],,(1+2D) = (€+1)(I" = m"/1 - m)
Z{[ : }}Ian,lllan,ﬂ

(2-9)
ny_
m'"/ m)}}|an)1’<l.

(38)

n=2

o0 {[n]P,q(l + D) - (B+1)(I" -
(2-9)

Hence f, = f, € S, (L m, €, D).

Theorem 8. Let f(z) € S, (I, m, €, D). Then

1 (1+2e%)z (1+@e?)z
z lf(z) : ((1 —p2)(1-qz) (1-I2)(1-mz) 0
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Proof. Let f(z) € S} ,(I, m, €, D). Then by definition of sub-
ordination, there exists a Schwarz function w(z), such that
w(0)=0and |w(z)| <1,

(I-m)z0,,f(z) 1+ %w(z)

f(lz)=f(mz)  1+9w(z)’ (40)

equivalently,
(I-m)z0,,f(z)  1+@e? (a1)
f(lz)—f(mz) ~ 1+De®’

. Iz) — ,
20,/ (2)(1+9¢%) - LI (4 o0 4,
(42)
using the relations
z

-2 (1-2)

~f(2) * [m}

now (42), becomes

l[f(z) * (( (L+2e%)z

z 1-pz)(1-q2)

20,,,f(2) =f(2) *
f(lz) ~ f(mz)

I-m

(43)

(1+%e)z ))1 "

(1-Iz)(1-mz
(44)

which completes the proof.

3. Conclusions

Utilizing the concepts of postquantum calculus, we defined a
new subclass of analytic functions associated with symmetric
circular domain. For this class, we investigated some useful
results such as necessary and sufficient problem, convex
combination, weight mean, arithmetic mean, distortion
bounds, and convolution property. There are some problems
open for researchers such as radii problems, extreme point
theorem, analytic criteria, and integral mean of inequality.
Moreover, this concept is new and can be extended to mero-
morphic functions and harmonic functions.
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The objective of this paper is to establish g-analogue of some well-known inequalities in analysis, namely, Poincaré-type
inequalities, Sobolev-type inequalities, and Lyapunov-type inequalities. Our obtained results may serve as a useful source of

inspiration for future works in quantum calculus.

1. Introduction and Preliminaries

Mathematical inequalities play a crucial role in the develop-
ment of various branches of mathematics as well as other dis-
ciplines of science. In particular, integral inequalities
involving the function and its gradient provide important
tools in the proof of regularity of solutions to differential
and partial differential equations, stability, boundedness,
and approximations. One of these categories of inequalities
is the Poincaré-type inequality. Namely, if Q is a bounded
(or bounded at least in one direction) domain of RY, then,
there exists a constant C = C(2) > 0 such that for all u € H}
(),

J |u(x)|? dx < CJ K| Vu(x)|*dx. (1)
Q Q

For a smooth bounded domain Q, the best constant
C satisfying the above inequality is equal to A(Q)™,
where A(Q) is the first eigenvalue of —A in H}(2), and
A is the Laplacian operator (see, e.g., [1-5]). Due to
the importance of Poincaré inequality in the qualitative
analysis of partial differential equations and also in
numerical analysis, numerous contributions dealing with
generalizations and extensions of this inequality
appeared in the literature (see, e.g., [6-17] and the refer-
ences therein). Another important inequality involving
the function and its gradient is the Sobolev inequality

(see [18, 19]). Namely, if u is a smooth function of com-
pact support in R?, then

JRz u' (x) dx < g (LR U’ (x) dx> (JR |Vu(x)|? dx), 2)

where x>0 is a dimensionless constant and Vu denotes
the gradient of u. For further results related to Sobolev-
type inequalities and their applications, see, for example,
[20-26].

Lyapunov’s inequality is one of the important results in
analysis. It was shown that this inequality is very useful in
the study of spectral properties of differential equations,
namely, stability of solutions, eigenvalues, and disconjugacy
criteria. More precisely, consider the second order differen-
tial equation

=9" () = f(£)9(t), my <t <my,, (3)
under the Dirichlet boundary conditions
i=1,2, (4)
where f € C([m,, m,]). Obviously, the trivial function 9
=0 is a solution to (3)-(4). Lyapunov’s inequality pro-
vides a necessary criterion for the existence of a nontriv-

ial solution. Namely, if 9€ C'([m;, m,]) is a nontrivial
solution to (3)-(4), then (see Lyapunov [27] and Borg
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(28])

my
| aryae> (5
my 1

Since the appearance of the above result, numerous
contributions related to Lyapunov-type inequalities have
been published (see, e.g., [18, 29-32] and the references
therein).

On the other hand, because of its usefulness in several
areas of physics (thermostatistics, conformal quantum
mechanics, nuclear and high energy physics, black holes,
etc.), the theory of quantum calculus received a considerable
attention by many researchers from various disciplines (see,
e.g., [33-35]).

In this paper, motivated by the abovementioned contri-
butions, our goal is to derive g-analogs of some Poincaré-
type inequalities, Sobolev-type inequalities, and Lyapunov-
type inequalities. Notice that only the one dimensional case
is considered in this work.

We recall below some notions and properties related to g
-calculus (see, e.g., [36-51] and the references therein).

We first fix g € (0, 1). Let IN be the set of positive natural
numbers, i.e., N={1,2,3,---},and N, =INU {0}.

Definition 1. The g -derivative of a function 9 € C'([0, T]) (
T > 0) is defined by

ifo<t<T,
ift=0.
Remark 2. Using L'Hospital’s rule, one obtains

lim D_9(t) =

lim D,9(1) = 9'(0), )
which shows that D9 € C([0, T]) for all 9 € C' ([0, T]).

Remark 3. It can be easily seen that

Jim D,5(t) =

9'(t), 0<t<T. (8)

Lemma 4 (see [45]). Let 9, p € C!([0, T)). Then
D, (9p) (1) = 9(qt)Dyp(t) + p(£)Dyd(t)- (©)

Definition 5. The g-integral of a function 9 € C([0, T]) is
defined by

[[s@de-a-any ¢oun, osist o)

0 o=0
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t t S
J R9(E)d, & = J R9(E)d, & - J RO(E)d,E O0<s<t<T.
s 0 0
(11)

Remark 6. Obviously, if 9 € C([0, T]), then

Jt 9(5)dq5<00,r®9(€)dq5<oo, 0<s<t<T. (12)

0

Lemma 7 (see [39]). Let 9, p€ C([0, T]), 0<¢t<T, p>1and
p' =plp—1. Then

(D) | [, 9(8)d&] < [[RI9E)|d &
(ii) For all 0 € N, 9(¢°¢) < p(q"t)j; 9(8) d,€ < j:) p(&)
dy§
(iii) [5 19(9)Ilp(§)|d, f< (I3 9@ 48"
(3 lp©) d f)

Lemma 8 (see [45]). Let 9 € C'([0, T]). Then

(i) [;D9(8)d,E=9(t) -
(i) D, [, 9(8)d,E=9(1),0<t<T

s),0<s<t<T

Remark 9. Notice that in general, for 0 <s<t< T,

Jt 9(E)d,E th 19(8)]d,£. (13)

Namely, following [40], consider the function 9 : [0, 1]
— R defined by

L ag7g-1-3g) it << TUED en
1-¢g 2
_ n
o=y 1 (<&g"+1)-1 ifQ(Hq)SESq”,néNw
1-q 2
0 if&=0
(14)

Then, one has

9(q")=-1 and 9<q(12+q)>:1, foralln e N,.

(15)
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Therefore, an elementary calculation shows that

1 1 _
J 9E)d,E=- "2 andJ UGy

1+q/2 1+q/2
(16)
Hence, one has
1 1
J 9(E)d £ >J 19(8)d,£. (17)
1+q/2 1+q/2

We have the following integration by parts rule.

Lemma 10 (see [45]). Let 9; € C'([0, T]), i=1,2. Then

T T
j 9,(8)(D,9,) (8) d, = [9,(8)9,(E)] L, - J 9,(a8)(D,9,) (¥) d, .

0

(18)
Let us introduce the set
A;={q" :neN}uU{0}. (19)
Let Te Ay, T>0,ie,
T = g~, for some k € N, (20)
and I, = [0, T] N Aq, ie.,
qu{q”k : iE]NO}U{O}. (21)

Let s, t e Iq be such that 0<s<t, ie, t= q”k for some i

€ N, and s = ¢"***/ for some j € N. In this case, for 9 € C([0
, T]), by Definition 5, one has

[owae=[ swag-[ s0ag-0-ar o

N

-(1-q)s i q°9(q°s) = (1-9q) <§ tq°9(q°t)

o=0 o=0
_ Z SqJS(qJS)) =(1-q) <Z qa+i+k9(qa+i+k)
0=0 =0
_ \ a+i+k+j9 o+itk+j =(1-
;0 q (4 )) (1-4)
(Z 99"~ ), q”9(Q”)>
n=it+k n=itk+j
i+k+j-1
=(1-q) ) q"9q"),
n=i+k
(22)

which is a finite sum. Hence, one deduces the following
property.

Lemma 11. Let 9, p € C([0, T]), where T€ A;, T > 0. Let s, t
€1, be such that 0 <s <t. Then

Jr o) d £

N

< Jt 19(8)1 d,£. (23)

2. Poincaré and Sobolev Type Inequalities

Let g € (0, 1) be fixed.

Theorem 12. Let p>1 and T € A,, T >0. Let 9 € C'([0, T])
be such that

9(0)=9(T) = 0. (24)

Then

E 19(8)Pd & < (g)f’ J: ID,9(E)d £ (25)

Proof. Let t =q°T, where o € N. Notice that since T € A,
then t € I,. By property (i) of Lemma 8, one has
t

9(0)-8(0) = | D@z (26)

0

Since 9(0) = 0, it holds that

9(1) = f D,9(E)d,E. (27)

0

Next, by property (i) of Lemma 7, one obtains
t
900) = | [2,9(8)|d % (28)
0

Again, using property (i) of Lemma 8, and the fact that
9(T) =0, one obtains

9(1) = J ' D9(E)d ¢ (29)

t

Hence, by Lemma 11, one deduces that
T
9001 = | 1D,9(8)|d % (30)
t
Combining (28) with (30), it holds that
1 T
9001 = 3| 1P,8(0) 14,8 (31)

On the other hand, by Hélder’s inequality (see property



(iii) of Lemma 7), one has
T T 1p , .1 p-1/p
J 1D,9(8)|d,£ < (J ID,9(8) |qus) <J ldq§> .
0 0 0
(32)

Notice that

M8
N]

J:mqs= (1-q)Ty q'= (3)

Il
(=]

n

Therefore,

JZ |D,9(&)|d & <TP"P <JZ |Dq9(£)}pdq£> llp. »

Combining (31) with (34), one deduces that

19(t)| < TP;”P (JZ ID,9() yl’dqg) ! (35)
which yields
19(t) P < T;IE |D,9(8)|"d, &, (36)
ie.
19(g°T)P < EJ DSEPdE oeN.  (37)

Notice that since 9(T) =0, the above inequality is also
true for o =0. Hence, by property (ii) of Lemma 7, one
deduces that

JZS( )P d€< TP_IJ |D,9(& | dfj 1d.g. (38)

Finally, (25) follows from (33) and (38).

Remark 13. Inequality (25) is the one dimensional g-analog
of the Poincaré-type inequality derived by Pachpatte [11].

Theorem 14. Let p;,p,>1 and T€ A, T>0. Let 9,,9, €
C!([0, T]) be such that

9,(0)=9,(T)=0,i=1,2. (39)

Then

! T P1tP:
Jo 9 (§)|P1 |92(§)|p2 dqf < é (E>

J: (}Dq‘gl(g)yzpl + ’Dq92(€)|2p2) dqg'
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Proof. From (37) and (70), one has

Tp1_1 T
2h Jo

-1

Py
dq£’0 € NO) (41)

9(q°T) | hr<

D9 ()

TP
19:(4°T) [ <

Jyps OPdE oeN,  (42)

Multiplying (41) by (42), one obtains
o » " » TP1+P2_2 T »
O (@ D) 9(a" T < —55- (L D9 (8)] 1qu>

([aicrad

Next, using the inequality 2AB < A* + B%, A,B€ R, one
deduces that

19:(@" D) [9:(¢" )

(Jj PAE dq£>2 ' (J: EANGIE qu> 2} .

(44)

TPI*PZ’Z
S—
2P tpytl

On the other hand, by Holder’s inequality (see property
(iii) of Lemma 7), for i = 1, 2, one has

(JOT PAO dq5)2 - TJZ D@ d g (45)

Hence, combining (44) with (45), it holds that

1Py (T
| ( T)|P1|9( T)le ﬂ
9 9 2P tpytl 0

(D& + [D%H(E)[*) d k. (46)

Since the above inequality holds for all o € N, by prop-
erty (ii) of Lemma 7, one deduces that

T TP -1 T
|, 1@ P@r g o |

. (|Dq91(f)’2p1+|Dq92(f) | ) quJZ 1d.¢. (47)

Finally, (40) follows from (33) and (47).

Remark 15. Inequality (40) is the one dimensional q-analog
of the Poincaré-type inequality derived by Pachpatte [10].

Theorem 16. Let p> 1, m> (p/2(p— 1)), Ne Nand T € A,,
T>0.Let9;€C'([0,T]),i=1,2,,N be such that

8,(0)=9,(T) =0. (48)
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Then

/N plp-1 2m(p=1)/p
U (Z |9i<£>|2> dqf]

i=1

1 N o 6m—1)p—2m. Y T
'SN(Z> T(6m-1p /P;JO ID,9,()

Proof. Let t = q° T, where 0 € N. From (31), one has

" dE (49)

9 <>|<1j ID8,(E)| g i=1.2 N (50)

On the other hand, by Hélder’s inequality (see property
(iii) of Lemma 7) and (33), one has

(JZ | D,9;(§) | dqé)z < TJZ |D,9:(%)

Hence, by (50), one deduces that

. (51)

, T (T 2 .
19;()] SZJO |D,9(§)|"d8 i=1,2--N, (52)
which yields
N plp=1 plp=1 (N T Pl
(Z &-(r)z) <(3) (ZJ \Dqs,-(&)\quf) -
i=1 i=1 J0
(53)

Next, using the discrete version of Hélder’s inequality,
one obtains

(54)

On the other hand, by Hoélder’s inequality (see property
(iii) of Lemma 7) and (33), one has

JT 1D,5(8)
< (Jj 1 dqi) N (Jj |Dq9i(f) |2p/p*1 qu) P_I/P (55)
— Tl <Jj ID,9, ()7 dq{)Pl/p.

[y

Therefore, by (54), one deduces that

N plp-1 plp-1
(Z |9i(t)|2> <NV 1<4> TV 12J D907 d &
i=1

(56)

Since the above inequality is true for all o € N, (recall
that t =¢q°T), by property (ii) of Lemma 7, and using (33),
one deduces that

T /N , pip-1 TNPPLN T ot
|, (;wxm) d€<N“‘”(4) Y | P ag

i=1

(57)

which yields

. o1 4 2mp-1)ip
U (Z |9,-<s>|2> dqs]
o (5 (5 o

Next, using Holder’s inequality with exponents 2m(p —
1)2m(p—1) —p and 2m(p —1)/p (notice that 2m(p —1)/p
> 1 by assumption), one obtains

T

Jo ID,9,(t)
T 2m(p-1)-pl2m(p-1) , .7 o \PRTED
([ (e

pl2m(p-1)
=T2m(p—1)—p/2m(p 1) (J |D (t |4md E) i

2m(p-1)lp
’2p/p—1 d E)
q .

(58)

}2p/p—l qu

(59)
which yields
N T
ZJ |Dq91( )|2p/p L £< T2m(p-1)-pl2m(p-1)
i=1 Jo o

N T o pl2m(p-1)
Z (JO ’Dqsi(t” dq{) :

i=1

Furthermore, the discrete Holder’s inequality shows that
2 ([

pl2m(p-1)
4m d 5) < N2m(p-1)-pl2m(p-1)

pr2zm(p-1)
4m
J 1D,9:( (t)] dqf> .

(61)

™M=

1



Hence, by (60), one deduces that

N T
Z JO ‘Dqsi(t)}zﬁ/l’—l dq{ < T2m(p=1)-pl2m(p=1) Nj2m(p=1)=p/2m(p-1)

= N T pl2m(p-1)
4m
(ZJ D9, qu> .

i=1 JO

Finally, combining (58) with (62), (49) follows.

Remark 17. Inequality (49) is the one dimensional g-analog
of the Poincaré-type inequality derived by Pachpatte [12].

Theorem 18. Let T € A, T > 0. Let Y C!([0, T]) be such that
9(0) = 9(T) = 0. (63)

Then

1/2

['v@as< 2 (] tapremenag) (|| poorag)
(64)

Proof. Let t = ¢° T, where 0 € N. By Lemma 4, property (i) of
Lemma 8, and using the boundary conditions, one has

t

(1) = j (9(a) +9E)DSE) dE  (65)

0

and

~92(1) = j (9(¢8) +9(E)DIE) AL (66)

t
Combining (65) with (66), it holds that
2 1"
Fo<3 | (o) ponDs@KE ()
Using Holder’s inequality, one obtains

1/2

2w <t ([ oot merag) ([ Ipsera)
(68

Since the above inequality holds for all o € N, using
property (ii) of Lemma 7, integrating over (0, T'), and using
(33), (64) follows.

Remark 19. Inequality (64) is the one dimensional g-analog
of the Sobolev-type inequality derived by Pachpatte [11].
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3. Lyapunov-Type Inequalities

We fix g€ (0,1) and T€A,, T>0. Consider the second
order g-difference equation

-D,(D,9)(t/q) +a(t)D,9(t) = f(t)p(9(t)), 0<t<T,
(69)

under the boundary conditions
9(0)=9(T) =0, (70)

where g, f € C([0, T]) and ¢ : R — R. We suppose that there
exists a constant L, > 0 such that

lp(x)| <L,|x|, x€R. (71)

Obviously, from (71), one has ¢(0) = 0. Hence, 9=01isa
trivial solution to (69) and (70). The following theorem pro-
vides a necessary condition for the existence of a nontrivial
solution to (69) and (70) satisfying 9(¢) #0,0 <t < T.

Theorem 20. Suppose that 9 € C'([0, T]) is a solution to (69)
and (70) satisfying

(t)+#0, 0<t<T. (72)
Then
. — . — 12
ISL(PJO /E(T4 E)|f(§)‘dq£+ (JG ,/@a(gﬂqug) .
(73)

Proof. Let s =q°T, where o € N. Since 9(0) =0, using prop-
erty (i) of Lemma 8, one has

9(s) = J D9(E)dE. (74)

0

By Holder’s inequality (see property (iii) of Lemma 7)
and (33), one obtains

sl vi([[Ipsrag) . o9
which yields
19(s) < SJO ID,9(8)[d,£. (76)
Similarly, since 9(T) = 0, one has

T
-89 = | D,8(E)dz (77)

N
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which implies that (see Lemma 11)
T
9001 | ID®d g (75)

Since s, T € I, then LT |D,9(§)|d,& is a finite sum (see
(22)). Hence, we can apply Holder’s inequality to get

T 2
19(s)|* < (T —S)J |D,9(8)| d,¢E. (79)

Multiplying (76) by (79), one obtains

B <s(r-9) [ D06 a8 (j D34,
(50)

19(s) < /5(T - 5) (L !Dq9(€)|2dqg> "2 <J5T |Dq9(§)|qu£) “2.
(81)

Using the inequality 2AB< A + B%, A,B€R, it holds
that

G [ e [ o0

(82)

19(s)[* <

i.e., (recall that s=¢°T and 9(T) = 0)

9(gT) < YOI =a7T) JT D) dE oeN,.
0

2
(83)
Consider now the function
w(t)=D,9(t/q), 0<t<T. (84)
By (69), one has
~D,w(t) +a(t)D9(t)(t) = f()p(9(t)), 0<t<T.
(85)

Multiplying (85) by 9(¢) and integrating over (0, T'), one
obtains

T T

a(§)9(&)Dyd(8)dy8 = J F(&)e(5(8))9(8)d ¢

0

—jT LGEMGIES|

0

(86)

On the other hand, using the integration by parts rule

(see Lemma 10) and the boundary conditions (70), one has
T T
—J 9(E)D,w(E)d, £ = J w(@)DIE)E  (87)
0 0
Hence, by (86) and the definition of w, one deduces that
T ) T T
L |D,9(8)["dy§ = L F(©)e(9(8))9(&)d,E - [O Na(§)9(§)D,9(§)d, 8.
(88)
Next, using (71), one obtains
T 2 T ) T
|, I8 <L, [ 1@ @dE+ | 1a@)196) D¢

(89)

Furthermore, by (83) and property (ii) of Lemma 7, one
deduces that

[ steraes ([ oerag)
- (jT O ET =848

‘5 (j |a<£>|[s<T—s)]““|Dq9<s>|dqs)

(]} pserra)

Therefore, by Holder’s inequality, it holds that

1/2

(90)

[REXCIREE %(j D)4,
(]} wor/ar-ag)
‘5 (J RCIRCERETE N
([ wtores)

(91)

Next, we claim that
T 2
J ID,9(E)*d, & #0. (92)
0

Indeed, suppose that fg |Dq8(§)|2dqf = 0. By Definition
5, one obtains

(1=9)T Y, a'|D;9(a"T)|[Dy9(a’T) =0, (93



which yields
D,9(q"'T)=0,7 € N,. (94)
In particular, for T =1, one has
D,(T)=0, (95)
ie,
9(T)-9(qT) =0. (96)

Since 9(T) =0, one deduces that 9(qT) = 0, which con-
tradicts (72). This proves (92). Now, dividing (91) by J"g
ID,9(E)|” d,& >0, it holds that

1< %j reh/Er -8 (|

T

a®PET-8) dqf) ,

0

(97)
which yields (73).
Using the inequality
TZ
HT-§)< . 0<E<T, (98)

one deduces from Theorem 20 the following result.

Corollary 21. Suppose that 9 € C'([0, T) is a solution to (69)
and (70) satisfying (72). Then

LT T \/T T 1/2
1< "TJ )l + —- (J |a(§)|2dqg> - (99)
0 0
Consider now the second order g-difference equation

-D,(D,9)(t1q) = f(t)p(S(t)), 0<t<T,

under the boundary conditions (70), where f € C([0, T])
and ¢ : R — R satisfies (71). Notice that (100) is a special
case of (69) with a = 0. Hence, by Theorem 20 and Corollary
21, one deduces the following results.

(100)

Corollary 3.2. Suppose that 9€ C'([0, T]) is a solution to
(100) and (70) satisfying (72). Then

T 2
J VET-BIf@)ld,g> .
P

0

(101)

Corollary 22. Suppose that 9 € C'([0, T)) is a solution to (100)
and (70) satisfying (72). Then

JT F(E)ld,E> % (102)
0 ¢

Remark 23. Inequality (102) with ¢(x) =x (L, =1) is the q
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-analogue of Lyapunov inequality (5) with m, =0 and m, =
T.

4. Conclusion

Integral inequalities involving the function and its gradient
are very useful in the study of existence, uniqueness, and
qualitative properties of solutions to ordinary and partial dif-
ferential equations. Motivated by the importance of g-cal-
culus in applications, integral inequalities involving the
function and its g-derivative are obtained. Namely, we
derived the g-analogue of some Poincaré-type inequalities
and Sobolev-type inequalities. We also established the g
-analogue of some Lyapunov-type inequalities. We hope that
our results will serve as a useful inspiration for future works
in the context of g-calculus.
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In this paper, we establish existence and uniqueness results for a boundary value problem consisting by a nonlinear fractional
g-difference equation subject to a new type of boundary condition, combining the fractional Hadamard and quantum
integrals. Our analysis is based on Banach’s fixed point theorem, a fixed point theorem for nonlinear contractions,
Krasnosel’ski i’s fixed point theorem, and Leray-Schauder nonlinear alternative. Examples are given to illustrate our results.

1. Introduction

The aim of this paper is to investigate the existence and
uniqueness of solutions for a nonlinear fractional g-differ-
ence equation subject to fractional Hadamard and quantum
integral condition of the form:

Dix(t) = f(t,x(1)), 1 <a<2,t€(0,T),

n 1 1
w0=0. 3 i) - 3 pra(n)
i=1 j=1

where Df is the fractional g-derivative of order «, with a
quantum number g € (0,1), f : [0, T] x R — R is a nonlin-
ear continuous function, Ig: denotes the fractional quantum
integral of order y, >0, with quantum number 0<p, <1,

J% is the Hadamard fractional integral of order o;>0, y,
and ; are given constants, and &, 7, € (0, T) are fixed points,
fori=1,--,nand j=1, -, m.

The subject of fractional differential equations has
recently evolved into an interesting subject for many
researchers due to its multiple applications in economics,
engineering, physics, chemistry, signal analysis, etc. Various
types of fractional derivative and integral operator were
studied: Riemann-Liouville, conformable fractional integral
operators, Caputo, Hadamard, Erdelyi-Kober, Griinwald-
Letnikov, Marchaud, and Riesz are just a few to name.
The Hadamard-type fractional derivative differs from the
preceding ones in the sense that the kernel of the integral
and derivative contain logarithmic function of arbitrary
exponent. Details and properties of Hadamard fractional
derivatives and integrals can be found in Kilbas et al.
[1]. Recently, there were some results on Hadamard-type
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fractional differential equations, see [2-11] and references
cited therein.

Nonlinear fractional g-difference equations appear in
the mathematical modeling of many phenomena in engi-
neering and science and have attracted much attention by
many researchers, see for example [12-21] and references
therein.

In the present paper, the novelty lies in the fact that we
combine in boundary conditions both Hadamard and quan-
tum integrals. To the best of our knowledge, this type of
boundary condition appears for the first time in the litera-
ture. It is important to notice that we are combining in our
work, fractional calculus, and quantum calculus. The key tool
for this combination is the Property 2.25 of [1].

Some special cases of the second condition of (1) can be
seen by reducing m=n=1 as

—_

AT PR Y d
Fpl(m)Jm(El Pilp ) s 2)

_ b J'“ (1og )" %

I'(oy) Jor S

which is mixed quantum and Hadamard calculus. If p, =1,
then we have

&
4l J (&, —5)"1 7 x(s)ds

0+

_ B Jm (log ﬂ)al_I@d&

I'(oy) )or $

which is also mixed Riemann-Liouville and Hadamard frac-
tional integral condition. If 4, = o, = 1, we have integral con-
dition of the form:

] wtots=p " " (@

0*

which is a variety used in physical boundary value problems.

We establish existence and uniqueness results by using
standard fixed point theorems. We prove two existence and
uniqueness results with the help of the Banach contraction
mapping principle and a fixed point theorem on nonlinear
contractions due to Boyd and Wong. Moreover, we prove
two existence results, one via Leray-Schauder nonlinear alter-
native and another one via Krasnosel'ski i’s fixed point
theorem.

The paper is organized as follows: in Section 2, we recall
some preliminary facts that we need in the sequel. In Section
3, we prove our main results. Some examples to illustrate our
results are presented in Section 4.

2. Preliminaries

To present the preliminary, we suggest the basic quantum
calculus in the book of Kac and Cheung [22], fractional
quantum calculus in [23-25], and the Hadamard fractional
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calculus in [1]. Let a fixed constant g € (0,1) be a quantum
number. The g-number is defined by

a

[a], = ll_q ,a€R. (5)

For example, (3] =1+q+ ¢*. The g-power function for
any a,b € R, a #0, is defined as

(a— b)éw =a’ H %. (6)

7=l

If y=keN,={0,1,2,---}, then (a- b)fzk) =TI (a-b
q') and (a - b)go) := 1. For example, (a — b)g” =(a-b)(a-q
b)(a - q*b). The notation of g-power function is appeared

in kernels of fractional g-calculus as Definitions 1 and 2.
Now, the g-gamma function I',(t) is defined by

(1-gq)i"

W, for teR\{0,-1,-2,---}. (7)
-9

ry(t)=

Now, we observe that I' (t + 1) = [t] I, (t). Next, we dis-

cuss about the g-derivative of a function f : [0,00) — R
which is defined by

t#0,and D f (0) = ltilr(}qu(t).
(8)

If f'(t) exists, then lim,_, D f(t) =f'(t). The g-integral

formula can be presented as

(1F) (1) = J;f(S)qu —t(1-q) f 4F(tq"), € 0,00). (9)

The higher order of g-derivative and g-integral operators
is

(D’;h) (t)=D, (D’;-1 f) ()and (Igh) (t)

=1, <I’q"1f)(t),ke N, 1o

with (Df)(¢) =f(t) and (I3f)(t) = f(t). Next, the funda-
mental theorem of calculus for operators D, and I, can be
stated as formulas

(Dglf) (1) = £ (1), (11)
and if f is continuous at the point ¢ =0, then

(1,D,f) (1) = £ (1) ~ £(0). (12)
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Let us give the definitions of fractional quantum calculus
of the Riemann-Liouville type fractional derivative and also
integral operators.

Definition 1 [24]. Let a constant a > 0 and f be the function

on [0, 00). The Riemann-Liouville fractional g -integral of f
order « is defined by

CHICE

| e e

Fq(“) o*

and (Igf)(t) =

Definition 2 [24]. The Riemann-Liouville fractional g -deriv-
ative of order « > 0 of a function f : [0,00) — R is given by

(psf) (0= (D1 ) (1) = ﬁpgj;
(£ a9 () dys

(14)
a>0,

and (Dgf)(t)
than or equal to a.

= f(t), where n is the smallest integer greater

Now, for ¢, s > 0, the g-beta function is presented by

B(6)=| W -quiVde  (5)

O+
which is related to the g-gamma function by

I, (t)T,(s)
I,(t+s) ’

B,(t,5) = (16)

The fundamental formulas for fractional quantum calcu-
lus are in the following lemma.
Lemma 3 [24, 26]. Let a, 3 > 0, n be a positive integer and f be

a function defined in [0,00). Then, the following formulas
hold

(8121) () = (157%) o),
DISf ) (1) = £ (1)

/N

(123 0= (03t -

The fractional g-integration of the two deferent quantum
numbers is given by lemma.

Lemma 4 [27]. Let constants a, 3>0 and 0<p,q<1 be
quantum numbers. Then, for n € R,, we have

Fp([g+ 1) o

T(a+ B+ DL, (B+1)" (18)

I35 (1) () =

The Hadamard fractional calculus is the subject of frac-
tional derivative and integral which have logarithm kernels
inside the singular integral formulas as in the definitions.

Definition 5 [1]. The Hadamard derivative of fractional order
a for a function f : [0,00) — R is defined as

o () |,

. <1og Z) n_a_l@ds, n=la] +1,

"Df(t) =
(19)

where the notation [«] denotes the integer part of the real
number «, log (-) =log,(-), and I' is the usual Gamma
function.

Definition 6 [1]. The Hadamard fractional integral of order «
for a function f : [0,00) — R is defined by

Jof(t) = %J; (log ;) H@ds, a>0,

provided the integral in right hand side exists.

(20)

The key tool for combining the two type of fractional cal-
culus in our work is the following lemma.

Lemma 7 ([1], Property 2.25). Let a > 0 and [3> 0. The fol-
lowing formulas hold

JotP = Bt and" Dt = B*tF. (21)
To accomplish our main purpose, we will use the fixed

point theory for considering an operator equation x = Qx.
For finding the operator @, let us see the following lemma.

Lemma 8. Suppose that the points §, n;€[0,T] and the
constant
n E“*V: m
=3y 1Y e 40 (2)
i=1 (X+[/l j=1
where &, p, pi Yy 0 By i=1,-m, and j=1,---,m are

defined in problem (1). Then, the linear fractional q-dif-
ference equation
Dgx(t) =

h(t),0<t<T, (23)



where h : [0, T| — R, and subject to mixed fractional inte-
grals of Hadamard and quantum boundary conditions

=0, Y vl =Y Bx(n) @
i=1 J=1

is equivalent to the linear integral equation

i=1

1 m n
x(t) = 5 Z;t“‘lﬁj]"jl‘;h@j) > et Yl Toh(€ )]
s

+Igh(t).
(25)
Proof. Since « € (1,2], then (23) can be written as
2712—-a _
DI x(t) =h(t),0<t < T. (26)

Applying the fractional g-integral of order « and using
Lemma 3, we obtain

a2 2—oc 2 ot 72— Ay a-1 a=2
ISDII2x(t) = D212 *x(t) - kyt*! — kst -
=x(t) =kt = kyt* =Igh(t),
which yields
xX(t) =kt + kyt" 2+ I5h(1), (28)

where k;,k, € R. The first boundary condition of (24)
implies that k, =0. Then, (28) is reduced to

x(t) =kt + I3h(1). (29)
Now, we apply the fractional quantum integral of

Riemann-Liouville of order y, with quantum number p,
to (29) as

I, (a)tt
Iix(t) =k, 22— + I I°h(t). (30)
A A I
Using Lemma 7 for taking the Hadamard fractional
integral of order o; to (29), we get
Jix(t) = ky (@ = 1)t + JOIh(t). (31)
From the second boundary condition of (24) and
above two equations, it follows that

( ) E"H’f‘n

IIsh(E
(a+u,) Z Vil

ky Z Vi T
. i=1 (32)
= kl Z ﬁj(“ - 1)70”7;‘“71 + Z ﬁj](rjlgh (’71)’
j=1 =1

Journal of Function Spaces

and consequently

- é L_Zl /J’j]"flgh<;1j) Z VIyI2h(E,) ] (33)

where the nonzero constant Q is defined by (22).
Substituting the constant k; in (29), then, we obtain
(25), which is the solution of BVP (23) and (24). The con-
verse can be obtained by a direct computation. The proof
is completed.

3. Main Results

At first, we denote by & = C([0, T], R) the Banach space of all
continuous functions from [0, T] to R endowed with the sup
norm as ||x|| =sup {|x(¢)|,t € [0, T]}. In view of Lemma 8
and replacing the function & by f (¢, x(¢)), we define the oper-
ator @ : € — € by

- S-S
j=1
+1f (1),

6] oy

where I5f  (v) is denoted by

14

BL0= g ), a9 x) s »
=g(v), ve {t, &, nj},

while J%Igf, (n;) and Ig:l;‘ (&) are the Hadamard and
quantum fractional integrals of a function g as

o1 _ 1 K Mj ot g(S)
Pt () = 7o) J, (l"g ?) o

&
gi —p:s (#=1)
Jw( pis),,

(36)
NI (&)

g(s) dpis,

respectively. Now, we are going to prove the main results
which are the existence criteria of solution for nonlocal
mixed fractional integrals boundary value problem (1). The
first, an existence and uniqueness result for (1), is given by
using Banach’s fixed point theorem.

Theorem 9. Let f : [0, T] x R — R be a nonlinear continu-
ous function satisfying the assumption.

(H,) There exists a positive constant L such that [f (¢, x)

—f(t,y) | <L|x—y|, for each t € [0, T] and x, y € R.
If

Lo<1, (37)
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where @ is given by

T 1 & ~0; .
T T(ax 1) T|Q|;‘/3 ’“ i )
tx+1) 5““‘" )
T|Q|ZI 0c+;/t TR

then the boundary value problem (1) has a unique solution
on [0, T].

Proof. The result allows from the operator equation x = @x,
where the operator @ is defined by (34). The Banach fixed
point theorem is used to show that @ has a fixed point which
is the unique solution of problem (1). Since the function f is
continuous, then, we can set sup {|f(¢,0)],t€[0,T]} =M
< 00. After that, we define the radius r satisfying

oM
>
1-@L

(39)

ofaball B,={x € C: ||x]| <r}. For any x € B,, we see that
1o 1 m

wmm_mwﬁzw

t€[0,T]

|Q| ZI%

alm

- IQI

1ol (n;)

IpTglf (&) + TG I( )]

o1t~ fol + LoD ()

a—1

Hﬂm—m+mmn+%T (40)

ZI%IIH’I“ (Ifx=fol + 1/ (&)

< (Lr+ M) I;I Z‘ﬁ Joi( ( )
‘Q| ZI%IIMI“ &) +1;(1 )(T)]’

in which we used the following fact:

[fe=fol +1fol = Lf (v x(v)) = f (% 0) +

<Llx|+M<Lr+ M,

FO01

where v € {T, &;,n;}. By applying Lemmas 4 and 2.3, we have

SR s B
Igilq(l)(fi)_ Fpi(“+:i+1)rq(“+l) & i

o T( — 1 g% = : o
J ]Iq(l)(”J) = WU t )(’7]‘) = W“ UIE

5
Then, we obtain
(Lr+M)T
@x() < T,(a+1) T|Q|Z|/3|“
(a+1) atp,
T|Q|Z' mf i
=(Lr+M)D<r.
(43)

From this, we conclude that |@x|<r which yields
@B, CB,.

Next, we will prove that the operator @ is a contraction.
Let x, y € G, and for each t € [0, T}, then, we have

sz 1 m a—1

@50~ 87(0] = [ 2 P~ £)(n) + o

Z WiTpTglf = £ 1) + Il = £, (2)

m a—1

T o T
S<|Q| Zl |ﬁj|111q<1)(;7j)+m

J

-y Iv,»IIZfIZ(l)(fi)HZ‘(l)(T))

i=1

“Llx =yl = LP|x - y|.

(44)

Hence, we get the result that |@x — Qy||<L®|x — y|. As
L < 1, from (37), the operator @ is a contraction. Applying
the well known Banach fixed point theorem, it follows that @
has a fixed point which is the unique solution of the bound-
ary value problem (1). This completes the proof.

Next, the nonlinear contraction theorem will be used to
prove a second existence and uniqueness result.

Definition 10. Let E be a Banach space and let & : E— E be
a mapping. The operator & is said to be a nonlinear con-
traction if there exists a continuous nondecreasing func-
tion ¥ : R" — R* such that ¥(0)=0 and ¥(t)<t for
all +>0 with the property:

[ x = || <¥(||x = y),¥x y € E. (45)

Lemma 11 (see [28]). Let E be a Banach space and let
o : E—> E be a nonlinear contraction. Then, of has a
unique fixed point in E.

Theorem 12. Suppose that a continuous function f : [0, T|
x R — R satisfies the condition:



(H)If (&%) = f(& )| < h(t)(Jx = y[/H" + |x = y]), t€]0,
T), x,y € R, where the function h : [0, T] — R* is continu-
ous, and a positive constant H” is defined by

j fg”gh(”f)

|Q| Z|yl|lg‘1"‘h ) +ISh(T).

a—1 m

\QI P

(46)

Then, the mixed fractional Hadamard and quantum
integrals nonlocal problem (1) has a unique solution on
[0, T].

Proof. Let us consider the operator @ : € — % defined in

(34) and define a continuous nondecreasing function ¥ : R*
— R* by

H*A

Then, we see that the function ¥ satisfies ¥ (0) =0 and

P(A) <Aforall A>0.
Next, for any x, y € € and for each ¢ € [0, T], we obtain

|Qx(f) - Qy(1)]
S CIEANAIO)
+%§|y,ﬂ‘*ﬂ
: T|o| el ) (0)
(48)
L G L

+IZ h *|x_y| (T)S (Hx:yH)
H* +|x -y H

T 1 m Ta—l

o £ i1/ m’("f) mé

|yillpIgh(&) + Igh(T)

1. f‘ e

HIRIAID

=¥(|lx-yl)

which implies that ||Qx — Qy|| < ¥(]|x — y||) and also satisfies
Definition 10. Therefore, @ is a nonlinear contraction. Thus,
by applying Lemma 11, the operator @ has a unique fixed
point which is the unique solution of the boundary value
problem (1). The proof is finished.

Next, the first existence result will be obtained by apply-
ing the following theorem.
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Theorem 13 (Nonlinear alternative for single valued maps)
[29]. Let E be a Banach space, C a closed, convex subset of E,
U be an open subset of C, and 0€ U. Suppose that o : U
— C is a continuous, compact (that is, (U) is a relatively
compact subset of C) map. Then, either

(i) o has a fixed point in U, or

(ii) There is a x € OU (the boundary of U in C) and A €
(0, 1) with x = Aol (x).

Theorem 14. Suppose that f:[0,T|x R— R is a non-
linear continuous function which satisfies the following
conditions:

(H;) there exists a continuous nondecreasing function

Y : [0,00) — (0, 00) and also a function p € C([0, T], RY)
such that
£ (3)] < POy (x| for each(t,x) € 0. T] xR (49)

(H,) there exists a positive constant N such that

N

vape " (30)

where @ defined by (38). Then, the problem (1) has at least
one solution on [0, T].

Proof. For a positive number p, we let B, ={x € : ||x|| <

p} be a bounded ball in €. Now, we will prove that the
set @B, is uniformly bounded. For t € [0, T], we can com-

pute that
Qx(1)| |Q| sl ()
+ Zm Il f 1 ( >] +IGIFI(T)
T 1 L (61
< ey () 7oy T—%_Zl\ﬁj\a ,
(@+1) oy,
TR “]
<lplly (p)®,
which can be deduced that
|@x[| < [[pllw (p)®- (52)

Then, the set @B, is uniformly bounded. Next, we
will show that the set @B, is equicontinuous set of €.
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For any two points 7,7, € [0, T] with 7, <7, and x€B,,

we have

|Qx(7;) — Qx(7y)]
<o Sl lrmsi(n)
+ZIV,IZ:IZ|f [63 ] L)r[(tz—qﬂ;“”
q 0

a-1 1
—(t, - s)fl )}f(s,x(s)) dys + W

- j (1 - 49 f(5,5(5)) dys

T

_ lellvp) s 1—r‘i“%i Bl
12| S (at])

, plv(p)|rs -7 3
||9| 1 |2'V’"

. Fp’_(oc+ 1) ff”""
Fpl((x+‘ui+1)l"q((x+l) !
IPllv(p) @ | @
+ W {2(12 )Y+ ‘TZ 18 ]

(53)

As 1,—-1;, — 0, the right hand side of the above
inequality converses to zero, independently of xe€B,.
Then, the set @B, is equicontinuous. Thus, we conclude
that the set @B, is relatively compact. Therefore, by the
Arzel a'-Ascoli theorem, the operator @:% — % is
completely continuous.

Finally, we show that the operator @ cannot be fulfilled
the condition (i) in Theorem 13. Then, we have to claim that
there exists an open set U C B, with x # A@x for A € (0, 1)

and x € 0U. Then, for each ¢ € [0, T], we apply the computa-
tion in the first step, that is

()] < llpllv ()@ (54)
which yields inequality

I
PV %)

The condition (H,) implies that there exists a constant N
such that ||x|| # N. Now, we define the set

U={xeB,: ||x]|<N}. (56)

From the previous results, we obtain that the operator
@~U— @ is continuous and completely continuous.
Then, there is no x € 0U such that x=AQx for some A
€(0,1). By applying the nonlinear alternative of the
Leray-Schauder type, we get that the operator @ has a
fixed point x€ U which is a solution of the nonlinear
fractional g-difference equation with fractional Hadamard
and quantum integral nonlocal conditions. This finishes the
proof.

The next existence result is based on Krasnosel’ski i’s
fixed point theorem which can be used to relax the condition
in Theorem 9.

Theorem 15 (Krasnosel’ski i’s fixed point theorem) [30]. Let
C be a closed, bounded, convex, and nonempty subset of a
Banach space E. Let of, 9B be the operators such that (a) o/x
+ By € C whenever x,y € C; (b) o is compact and continu-
ous; (c) B is a contraction mapping. Then, there exists z € C
such that z= Az + RBz.

Theorem 16. Assume that a continuous function f : [0, T] X
R — R is satisfied condition (H,) in Theorem 9 and is
bounded as the following condition:

(i) (Hs)|f (1, x)[ < x(t), V(£ x)e€
([o, T], R*).

[0, T]xR, and xeC

If inequality

LT

Fy(a+1)

<1 (57)

holds, then the nonlocal problem (1) has at least one solution
on [0, T].

Proof. Now, we define sup {|«(t)| : t€[0, T]} =||x|| and
choose a positive constant 7 such that

P2 ], (58)

where @ is defined by (38), to be a radius of the ball
B.={x €@ : ||x|| <7}. Furthermore, we set the operators
@, and @, on B; as & and 9% in Theorem 15, respec-
tively, by

- Z Yl Iof o ] telo,T], 59)

@ux(t) = I3f ()t € [0, T).



The combination of two operators shows @, + @, = Q.
We have

txlm lX

o= | S8l
T‘x 1 n ((x+l -+
\QI “+P‘1+1)F (a+1)
- = (D T.
+ Fq(oc+l)] k|| <7

(60)

Therefore, we have @Q,x + @,y € B;, and thus condition
(a) of Theorem 15 is satisfied. Since ‘the function f is ful-
filled by condition (H,) in Theorem 9, then the operator
@, is a contraction mapping with inequality (57).

Finally, we will show that the operator @, should satisfy
condition (b) in Theorem 15. Using the continuity of f, we
can show that the operator @, is continuous. The uniformly
boundedness of the set @, B, can be shown by

p (1)

Il T

e N TS L_Zl\f%)“‘% + Zm e L

oc+;4 +1)

(61)

To prove @,B; is equicontinuous set, we let two points

t;,t, € [0, T], t, < t;. For any x € B;, we have
1@ x(t)) = @, x(1,)]
(Xl (Xl o 77
<ol 8
lx W M|Z| )
Vi p(@tp+ D (a+1)7" 7
(62)

which converses to zero independently of x as |, — t,| — 0.
So, @,B; is an equicontinuous set. Therefore, @, B; is a rela-
tive compact and by the Arzela-Ascoli theorem, @, is com-
pact on B;. Thus, the assumptions (a),(b), and (c) of
Krasnosel’ski i’s fixed point theorem are satisfied. Then, the
nonlinear fractional g-difference equation with fractional
Hadamard and quantum integral nonlocal conditions (1)
has at least one solution on [0, T]. The proof is completed.

Remark 17. The interchanging of operators @, and @, gives
another result by replacing inequality (57) by the following
condition:

e (Sl Sl

(oc+1)

a+;
"I <L
o (0t +1)€

(63)

Journal of Function Spaces

4. Examples

Example 18. Consider the nonlinear fractional g -difference
equation with fractional Hadamard and quantum integral
nonlocal conditions of the form:

Dijx(t) = f(t.x(t)), t € (0,2),
3
ate(5) 2 (5) + 51e(3)
_Llas (1 42/3 3 7 o (7 is/s 2
=3/ x<5> 5/ <5)+12] x<s>+15] x<5)

(64)
Here, «=3/2, q=1/2, T=2, y, =3/8, y, =2/5, y; =1/9, u,
=1/2, py =3/2, 3 =5/2, p, = 1/6, p, =1/3, p; =1/2, &, = 1/
4,&,=1/2,&=3/2, n=3, B, =1/3, B, =4/9, 3,=7/12, B,
=8/15,0,=1/3,0,=2/3,0,=4/3,0,=5/3,,=1/5,1,=3
/5,15 =715, 1, = 915, m = 4. Then, we can compute constants
as | Q| = 2.51852 and @ = 3.27524.

(i) Let the nonlinear function f be defined by

et /x2 42| x 12
fltx)= 3< | |)+—+1. (65)

(t+2) L+|x | 4

Then, by direct computation, we get |f(t,x) — f(t, y)| <
(1/4)|x — y|, which satisfies condition (H,) in Theorem 9
with L = 1/4. Therefore, we have

LD ~0.81881 < 1. (66)

By the conclusion of Theorem 9, the boundary value

problem (64) with (65) has a unique solution on [0, 2].
(ii) Consider now the function f by

(le)3 (% + 1). (67)

Then, we can see that

ftx)=

f (&%)l =

+ 1)‘3 (t+12)3 (x*+1). (68)

Setting p(t) =1/(t+2)° and y(x) = x> + 1, we have ||p|
=1/8, and there exists a constant N € (0.52019,1.92238) sat-
isfying inequality in (H,). Hence, all assumptions in Theo-
rem 14 are completed. Thus, the problem (64) with (67)
has at least one solution on [0, 2].

(#ii) If the function f is

sin’t [ x| 1
t,x)= + -,
f(t) m (|x| + 1) 4

then, we have |f(t,x) — f(t,y)| < (1/m)|x — y| with L =1/m.
If m < @ = 3.27524, then Theorem 9 cannot be used to apply
for the problem (64) with (69). For example, if m =2, then

1 xlS
(t+ 2)* \x10+1

meR*,  (69)
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L® = 1.63762 > 1. But the inequality in Remark 17 is satisfied
as

1 T 1 o ‘x+1) o+,
2 QT (a+1) [ ’ﬁ‘“ i ZW’ oc+1«t,+1)£
=0.44979 < 1.
(70)

Hence, by applying Theorem 16 and Remark 17, the
problem (64) with (69) has at least one solution on [0, 2].

5. Conclusion

We investigated the existence and uniqueness of solutions for
a nonlocal boundary value problem involving a g-difference
equation, supplemented with a new type of boundary condi-
tion, including both Hadamard fractional and quantum inte-
grals. In our first two results, we establish the existence and
uniqueness of solutions by using Banach’s fixed point theo-
rem and a fixed point theorem for nonlinear contractions
due to Boyd and Wong. Then, we used the Leray-Schauder
nonlinear alternative and Krasnosel’ski i’s fixed point theo-
rem to derive two existence results. Examples are also pre-
sented to illustrate our results. It is worthwhile to point out
that the results presented in this paper are new and signifi-
cantly contribute to the existing literature on the topic.
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A picture fuzzy n-normed linear space (Npp), a mixture of a picture fuzzy set and an n-normed linear space, is a proficient concept
to cope with uncertain and unpredictable real-life problems. The purpose of this manuscript is to present some novel contractive
conditions based on Npp. By using these contractive conditions, we explore some fixed point theorems in a picture fuzzy n-Banach
space (Bpg). The discussed modified results are more general than those in the existing literature which are based on an
intuitionistic fuzzy n-Banach space (Bjz) and a fuzzy n-Banach space. To express the reliability and effectiveness of the main
results, we present several examples to support our main theorems.

1. Introduction

In various real-life problems, for a suitable mapping, the
existence of a solution and existence of a fixed point
(FP) are equivalent. Thus, the existence of a FP is a profi-
cient technique to cope with awkward and difficult prob-
lems in real-life issues. Various scholars have utilized
such results in the environment of many fields [1, 2].
The extensive useful techniques capable with both alge-
braic and topological properties are those of a normed lin-
ear space (NLS), but the continuous maps are more
proficient in the sense of NLS. Moreover, in a metric
space, every contractive map is uniformly continuous.
One of the fundamental applications of Banach’s contrac-
tion principle is the “Picard’s theorem,” which is the basic
theorem for the existence and uniqueness of solution to
the ordinary differential equations. Various scholars have
utilized this application in the environment of a partial
differential equation [3], in the Gauss-Seidel method for
evaluating systems of linear equations [4], in the proof
of the inverse function theorem [5], etc.

The theory of a fuzzy set (FS) was investigated by Zadeh
[6], characterized by only positive grades restricted to [0, 1].
FS has achieved more success due to its ability to cope
with complications and troubles. However, in some prac-
tice cases, the concept of FS cannot cope with complica-
tions and uncertainty because of lack of knowledge of
the problem. Therefore, Atanassov [7] investigated the
intuitionistic FS (IFS) containing both positive and nega-
tive grades, whose sum is bounded to [0,1]. IFS is
regarded as a more improved way to cope with complex
and awkward information. Further, Cuong [8] investigated
the picture FS (PFS) including positive, abstinence, and
negative grades, whose sum is bounded to [0, 1]. PES is
regarded as a more improved way to deal with even more
complex information. For more related works, we may
refer to References [9-16].

Keeping the advantages of the PFS, the objective of this
manuscript is summarized in the following ways:

(1) To present some novel contractive conditions, we
used Ny as a basis
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(2) By using these contractive conditions, some fixed
point theorems are explored for a picture fuzzy
n-Banach space (Bpp). These results are more
modified and more general than the existing
results which are based on an intuitionistic fuzzy
n-Banach space (Bjz) and a fuzzy n-Banach space

(3) To express the reliability and effectiveness of the
explored approaches, we explain examples in support
of the main results

The rest of this manuscript is summarized in the fol-
lowing ways: In Section 2, we review some basic notions
like Ny and their related properties used in the presented
work. In Section 3, we describe the notion of N and
their fundamental properties. In Section 4, we present
some novel contractive conditions based on Npg. By using
these contractive conditions, we instigate some fixed point
theorems for a picture fuzzy n-Banach space (Bpg). Finally,
the conclusion of this manuscript is discussed in Section 5.

2. Preliminaries

The purpose of this section is to review some existing
notions, like Ny and their related properties. Throughout
this section, the symbols Ry, Rg,» Nxns Xune Mo Ny * o0
and o represent the positive real numbers, real numbers,
natural numbers, universal set, supporting grade, supporting
against, continuous f-norm, and continuous f-conorm,
respectively.

Definition 1. [9]. A Ny is stated by (¥ynp M,» Ap N,
* > 0y )» Where M, , A, N, is defined on (¥,%,, -+, %, p)
€ XXy X (0,00), where the following conditions hold:

(D) M, (%1, %), -+ %, ) + Ay (X1, %5, -, % p) + N, (%,
Xy u X p) <1
(i) M,,(x;, %5, -+, %, p) >0

(iii) M, (%}, %y, -+ %, p) =1 iff %), %, -+, x;, are linearly
dependent

(iv) M, (¥,,%,, -+, %, p) is invariant under any permu-
tation of x,,x,, .-+, ¥;

(V) Mm(xlixp Tt (X%k,p) =Mm(x1,x2, '--,xk,p/lal ) if
a+0eRg,

(vi) M, (%), %y, -+, X + X, p+q) 2min (M, (%, %5, -+,
X P)s M,y (%1, %5, -+, %3 q))

(vii) M,,(%,,%,, -, % +%,.) is a nondecreasing
. +
function of Ry, and log, . M, (¥,%;, % +

¥ p)=1
(vili) N, (3, %,, -

(ix) N, (¥, %,,
dependent

X p) <1

X p) =0 iff x,,x,, .-+, x, are linearly
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(x) N, (%;,%,, %, p) is invariant under any permu-
tation of x;, x,, -+, %;

(xi) N, (¥, %5, -+, 0, p) = N, (¥, %5, -+, X pllac| ) if
a+0eRy,

(xil) N, (¥, %, - X + X, p +q) =max (N, (x;,%,, -,
!
X D), Ny (1%, %, q))

(xiii) N, (%;,%,, -+, %, +¥;,.) is a nonincreasing function
of Ry, and log, N, (¥},%,, =+ % + %, p) =0

(xiv) Further, M, (x,,%,, -, %, p) >0 and N, (¥, %,, -+,
X¥op)<limplyx=0,Vp>0

(xv) Forp+0,M,(%;,%,, -, %) and N, (%1, %5, -+, ¥,.)
are continuous functions of R}, and are strictly
increasing and strictly decreasing, respectively, on
the subset {p : 0 < M,,(x,%,, -+, %, p), N, (%, %5,
xp) <1} of Ry,

Moreover, we explain some important theories based on
convergent and Cauchy convergent sequences.

Definition 2. [9]. Consider Np(Xynp M, Ny * oo 0cic)s
then, the sequence x = {x;} in Xy is convergent to g€

X ynp based on the intuitionistic fuzzy n-norm (M,,, N n)k if
for every €,p>0 and ¥, ¥,, .-+, ¥,_; € Xy there exists @
€ Ny, such that

M, (V1Yo VX5 -9 p) > 1 -6
N,(V 1Y Vi ¥ — 95 P) <6

(1)

for all @ > @, and it is represented by (M, N,)* - limx = 4.

Definition 3. [9]. Let Ni(Xunp Moy N # o 0 )s then, the
sequence x = {x;} in Xy is Cauchy convergent based on

the intuitionistic fuzzy n-norm (M,,, N, )" if for every e,
p>0and ¥, ¥,, -, ¥, € Xy there exists @, € Ny, such
that

Mn();’p);z)"'))}’k_l,xd)—%vy,p)>1—€, (2)

N,(V1: ¥ =5 Vier X — ¥y, P) <€,

for all &Y >, and it is represented by (M,,N,)" -
limx; = %y.

3. Picture Fuzzy n-Normed Linear Space

The purpose of this section is to explore some new
approaches like Ny and their related properties, which are
extensively efficient for the proof of our main work in the
next section. Throughout this section, the symbols Xy,
M,,, A,, N, #, and o, represented the universal set, sup-
porting grade, abstinence grade, supporting against, continu-
ous t-norm, and continuous f-conorm, respectively.
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Definition 4. A Npy, is stated as (X ynp» M, Ap Noo» 0 0 )
where M,,, A,, N, is defined on (x,x,, -+, X, p) € X5, X
(0,00), where the following conditions hold:

(1) M, (%1, %5 -, X p) + Ay (¥, X5, o, X p) + N, (%
3362; "'7xk,p) < ].
(i) M,, (%1, %, -+, %, p) >0

(iii) M, (%, %y, -+ %, p) =1 iff x;,%,, -+, %, are line-
arly dependent

(iv) M,,(x,,%,, -, %, p) is invariant under any per-
mutation of x,, x,, .-+, ¥,

(V) M, (31, %, -+, 0%y, p) = My, (%1, %5, -, %3, pllex ] )
ifa#0eRg,

(vi) M,,(x,, %y, -+ % + X, p+ q) = min (M, (%, %,,
<X D)y My (31, %, 5 %4 q)

(vii) M,,(%,,%,, -+, ¥, + ¥;,.) is a nondecreasing func-
tion of Ry, and log, M, (¥),%, % + %

p)=1
(viil) A, (%, %, -+ %, p) < 1

(ix) A, (%), %,, - %, p) =0 iff %, x,, -+, ¥, are linearly
dependent

(x) A,(¥,,%,, %, p) is invariant under any permu-
tation of ¥, x,, -+, %,

(x0) A (51, %50 @50 p) = Ay (¥, pllc| )i
a+0eRy,

(xii) A, (¥, %y, - % +x,'(,p +g) > max (A,(x), %, -+,
X D) Ag (%1, %5, ""xllc’ q))

(xiii) A,(%,,%,, -+, ¥, + ¥},.) is @ nonincreasing function
+ —
of Ry, and log, A, (¥, %, % +%,p) =0

(xiv) N, (¥, %y, -+ %, p) <1

(XV) Nn(xl’XZ’ "‘,xk,p) =0 iffxl,xz, .
dependent

-, ¥ are linearly

(xvi) N, (¥,,%,, -, ¥, p) is invariant under any permu-
tation of x,, x,, ---, ¥;

(xvil) N, (¥;,%,, -+ a%, p) = N, (%), %5, - %, plla | ) if
a+0eRy,
(xviii) N, (%), %, -+ X + %, p + q) = max (N, (¥, %, -+,
¥ P), N, (%1, %5, "‘)xila q))
(xix) (%,,%,, -+, ¥ +%;,.) is a nonincreasing function of

Ry, and log, (N, (¥}, %, =+ X + %, p) =0

(xx) Further, M, (x;,%,, -+ %, p) > 0, A, (%1, %5, -+, Xy
p)<1land N, (%%, %,p)<1; then, x=0,
Vp>0

(xxi) For p#0, M, (%), %5, - X.)s A, (%], %5, -5 Xp0.)
and N, (¥,,%,, -, %;,.) are continuous functions

of Rf, and also strictly increasing and strictly
decreasing, respectively, on the subset {p:0<
M, (%1, %, =+ % P), Ag (%1, %5, -, %, p), N, (3,
S0 %0 p) < 1} of Ry,

Moreover, we explain some important theories based on
convergent and Cauchy convergent sequences.

Definition 5. For a Npp(Xynp M, Ap Ny * o 0gc)> the
sequence x = {x;} in Xy is convergent to g € Xy;; based

on the picture fuzzy n-norm (Mm,Au,Nn)k if for every
€p>0 and y,,¥,, Vi € Xynp there exists @ € Ny,
such that

M,(V1: Y0 Vi ¥ =9 P) > 1 - 6

A VYo VX =9 P) <6 (3)

N, (1Y Vi1 X =9 P) <6

for all

@>d, and it is represented by (M,,, A, N, )F-
lin’lxu-) =g

Definition 6. For a Npp(¥ynp M, A Ny * 0gc)> the
sequence x = {x;} in Xy is Cauchy convergent based on

the picture fuzzy n-norm (M,,, A, N, )X if for every €, p >
0 and ¥, ¥,, -+, ¥r_1 € Xynp there exists @, € Ny, such that
M, (F 15 Vg o Fio Xq =¥y p) > 1= 6
A (P 1V s Vi1 Xg = ¥y, p) <6 (4)
N, (P15 Vo - Vi1 Xg =%y p) <6

for all @,"Y > d, and it is represented by (M,,, A,, Nn)k -
limx; = xy.

Remark 7. The following assumptions are important for our
main results.

(1) Suppose S,,_, is the set of functions ¥,,_; : [0,+00)
—> [0,+00) such that

(i) ¥,,_, is continuous and nondecreasing
(i) ¥, (p)=0p=0

(2) Suppose S,_,,S,_; is the set of functions ¥,_,,
¥, 5 : [0,4+00) — [0,+00) such that

(i) ¥, ¥,_5 is continuous and nonincreasing
(11) lPu—Z (p)’ an—S (p> =0 eop= 0

(3) Suppose T,,_; is the set of functions ©, : [0,+00)
—> [0,+00) such that

(i) ©, is continuous and strictly increasing

(ii) ®1(P) =0ep=0
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(4) Suppose T,_,, T,_; is the set of functions with ®,, Definition 8. For a Npp(¥np M, Ay N, # 0 0gc), the

0, : [0,4+00) — [0,+00) such that mapping T : X — Xy 18 called Ny, if
(i) ©®,, 0, is continuous and strictly decreasing M, (%1%, - %, X = 35, p) S M, (%1, %, - %, T(x) = T(F), p)
(i) ©,(p),O5(p)=0&p=0 A%, s X X =0 p) 2 Ay (%%, o5 X, T(X) = T(F),p) s

N, (XX, 5 XX = 5 P) 2 N, (31, %5, -+ %, T (%) = T(F), p)
(5)
4. Contractive Mappings Based on the Picture
