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The present article is aimed at introducing and investigating a new class of q-hybrid special polynomials, namely, q-Fubini-Appell
polynomials. The generating functions, series representations, and certain other significant relations and identities of this class are
established. Some members of q-Fubini-Appell polynomial family are investigated, and some properties of these members are
obtained. Further, the class of 3-variable q-Fubini-Appell polynomials is also introduced, and some formulae related to this class
are obtained. In addition, the determinant representations for these classes are established.

1. Introduction

The q-calculus subject has gained prominence and numerous
popularity during the last three decades or so (see [1–4]). The
contemporaneous interest in this subject is due to the fact
that q-series has popped in such diverse fields as quantum
groups, statistical mechanics, and transcendental number
theory. The notations and definitions related to q-calculus
used in this article are taken from [2] (see also [5, 6]).

The q-analogues of a number ℓ ∈ℂ and the factorial
function are, respectively, specified by

ℓ½ �q =
1 − qℓ

1 − q
,  q ∈ℂ \ 1f gð Þ, ð1Þ

and

κ½ �q! =
Yκ
l=1

l½ �q = 1½ �q 2½ �q 3½ �q ⋯ κ½ �q, 0½ �q! = 1, κ ∈ℕ, q ∈ℂ \ 0, 1f g:

ð2Þ

The q-binomial coefficient
κ

l

" #
q

is specified by

κ

l

" #
q

=
κ½ �q!

l½ �q! κ − l½ �q!
, l = 0, 1, 2,⋯, κ ; κ ∈ℕ0: ð3Þ

The q-analogue of ðu ⊕ vÞκ is specified as

u ⊕ vð Þκq = 〠
κ

l=0

κ

l

" #
q

q

κ−l

2

 !

ulvκ−l:
ð4Þ

The q-derivative of a function f at a point τ ∈ℂ \ f0g is
given as

Dqf τð Þ = f τð Þ − f qτð Þ
τ − qτ

, 0 < ∣q∣ < 1: ð5Þ
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The functions

eq τð Þ = 〠
∞

κ=0

τκ

κ½ �q!
, 0 < ∣q∣ < 1, ∣τ∣ < 1 − qj j−1, ð6Þ

Eq τð Þ = 〠
∞

κ=0
q

κ

2

 !
τκ

κ½ �q!
, 0 < qj j < 1, τ ∈ℂ, ð7Þ

are called q-exponential functions and satisfy the following
identities:

Dqeq τð Þ = eq τð Þ, DqEq τð Þ = Eq qτð Þ,
eq τð ÞEq −τð Þ = Eq τð Þeq −τð Þ = 1:

ð8Þ

The Fubini polynomials (FP) FκðwÞ [7] (also known as
geometric polynomials) are defined as

1
1 −w eτ − 1ð Þ = 〠

∞

κ=0
Fκ wð Þ τ

κ

κ!
, ð9Þ

together with the geometric series

1
1 −w

Fm
w

1 −w

� �
= 〠

∞

l=0
lmwl, ∣w∣ < 1: ð10Þ

Recently, Duran et al. [8] introduced the q-analogue of
the FP FκðwÞ, denoted by Fκ,qðwÞ and defined by means
of the generating function

1
1 −w eq τð Þ − 1

� � = 〠
∞

κ=0
Fκ,q wð Þ τκ

κ½ �q!
: ð11Þ

For w = 1, the q-Fubini polynomials (q-FP) Fκ,qðwÞ
reduce to the q-Fubini numbers Fκ,qð1Þ≔Fκ,q, that is

1
2 − eq τð Þ = 〠

∞

κ=0
Fκ,q

τκ

κ½ �q!
: ð12Þ

Further, we recall the 3-variable q-Fubini polynomials
(3Vq-FP) Fκ,qðu, v,wÞ [8] which are given as

1
1 −w eq τð Þ − 1

� � eq uτð ÞEq vτð Þ = 〠
∞

κ=0
Fκ,q u, v,wð Þ τκ

κ½ �q!
:

ð13Þ

Substantial properties of Fubini numbers and polyno-
mials and their q-analogue have been studied and investi-
gated by many researchers (see [7–9] and the references
cited therein). Further, these numbers and polynomials have
enormous applications in analytic number theory, physics,
and the other related areas.

The class of the q-special polynomials such as q-Fubini
polynomials, q-Appell polynomials, and certain members

belonging to the family of q-Appell polynomials such as q
-Bernoulli polynomials and q-Euler polynomials is an
expanding field in mathematics [3, 7, 8, 10, 11].

The class of q-Appell polynomial sequences
fAκ,qðwÞg∞κ=0 was established and investigated by Al-Salam
[1]. These polynomials are defined by means of the generat-
ing function

Aq τð Þeq wτð Þ = 〠
∞

κ=0
Aκ,q wð Þ τκ

κ½ �q!
, ð14Þ

where

Aq τð Þ = 〠
∞

κ=0
Aκ,q

τκ

κ½ �q!
, Aq τð Þ ≠ 0 ;A0,q = 1, ð15Þ

is an analytic function at τ = 0 and Aκ,q ≔Aκ,qð0Þ denotes
the q-Appell numbers.

Certain significant members belonging to q-Appell poly-
nomials class are obtained based on suitable selection for the
function AqðτÞ as

(1) If AqðτÞ = τ/ðeqðτÞ − 1Þ, the q-AP Aκ,qðwÞ reduce to
the q-Bernoulli polynomials (q-BP)Bκ,qðwÞ (see [12,
13]), that is

Aκ,q wð Þ≔Bκ,q wð Þ, ð16Þ

where Bκ,qðwÞ are defined by

τ

eq τð Þ − 1 eq wτð Þ = 〠
∞

κ=0
Bκ,q wð Þ τκ

κ½ �q!
, ð17Þ

and Bκ,q given by

Bκ,q ≔Bκ,q 0ð Þ, ð18Þ

denotes the q-Bernoulli numbers.

(2) If AqðτÞ = 2/ðeqðτÞ + 1Þ, the q-AP Aκ,qðwÞ reduce to
the q-Euler polynomials (q-EP) Eκ,qðwÞ (see [13,
14]), that is

Aκ,q wð Þ≔Eκ,q wð Þ, ð19Þ

where Eκ,qðwÞ are defined by

2
eq τð Þ + 1 eq wτð Þ = 〠

∞

κ=0
Eκ,q wð Þ τκ

κ½ �q!
, ð20Þ

and Eκ,q given by
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Eκ,q ≔Eκ,q 0ð Þ, ð21Þ

denotes the q-Euler numbers.
Also, we recall the family of the numbers denoted by

S2,qðκ, lÞ and defined by

eq τð Þ − 1
� �l

l½ �q!
= 〠

∞

κ=l
S2,q κ, lð Þ τκ

κ½ �q!
: ð22Þ

In recent years, many authors have shown their interest
to introduce and study new families of q-special polynomials,
especially the hybrid type (see [15–17] and the references
therein).

The work in this article is summarized as follows: in Sec-
tion 2, the replacement technique is used to introduce the
class of q-Fubini-Appell polynomials by combining the poly-
nomials, q-Fubini polynomials and q-Appell polynomials. In
Section 3, the 3-variable q-Fubini-Appell polynomials are
introduced which are considered as a generalization of the
q-Fubini-Appell polynomials. The generating relations,
series representations, and some other useful properties
related to these polynomials are established. In Section 4,
the determinant representations of these two classes are
defined. Further, certain members belonging to these polyno-
mial families are considered, and the corresponding results
are also derived.

2. q-Fubini-Appell Polynomials

The q-Fubini-Appell polynomials are established by means
of the generating function and series representation. To
achieve this, we prove the following results:

Theorem 1. The q -Fubini-Appell polynomials (q-FAP) F

Aκ,qðwÞ are defined by means of the following generating
function:

Aq τð Þ
1 −w eq τð Þ − 1

� � =〠
∞

κ=0F
Aκ,q wð Þ τκ

κ½ �q!
: ð23Þ

Proof. Utilizing equation (14), based on expanding the func-
tion eqðwτÞ, then replacing the powers of w, i.e., w0,w,w2,
⋯,wκ by the corresponding polynomials F0,qðwÞ,F1,qðwÞ,
⋯,Fκ,qðwÞ and thereafter summing up the terms in the
left-hand side of the resulting equation, we obtain that

Aq τð Þ〠
∞

κ=0
Fκ,q wð Þ τκ

κ½ �q!
= 〠

∞

κ=0
Aκ,q F1,q wð Þ� � τκ

κ½ �q!
: ð24Þ

Now, denoting the resultant q-FAP in the right hand side
of the above equation by FAκ,qðwÞ and utilizing equation
(11) yield the assertion in equation (23).

Remark 2. Taking w = 1, the q-FAP FAκ,qðwÞ reduce to q
-Fubini-Appell numbers (q-FAN) FAκ,q. Therefore, in view

of equation (23), we have

Aq τð Þ
2 − eq τð Þ = 〠

∞

κ=0
FAκ,q

τκ

κ½ �q!
: ð25Þ

Corollary 3. Taking AqðτÞ = τ/ðeqðτÞ − 1Þ in equation (23),
we get the following generating function of the q -Fubini-Ber-
noulli polynomials (q-FBP) FBκ,qðwÞ:

τ

eq τð Þ − 1
� �

1 −w eq τð Þ − 1
� �� � = 〠

∞

κ=0
FBκ,q wð Þ τκ

κ½ �q!
: ð26Þ

Corollary 4. Taking AqðτÞ = 2/ðeqðτÞ + 1Þ in equation (23),
we get the following generating function of the q -Fubini-Euler
polynomials (q-FEP) FEκ,qðwÞ

2

eq τð Þ + 1
� �

1 −w eq τð Þ − 1
� �� � = 〠

∞

κ=0
FEκ,q wð Þ τκ

κ½ �q!
: ð27Þ

Theorem 5. The following series representation for the q -FAP
FAκ,qðwÞ holds true:

FAκ,q wð Þ = 〠
κ

l=0

κ

l

" #
q

A l,qFκ−l,q wð Þ: ð28Þ

Proof. In view of equations (11) and (15) and equation (23),
we have

〠
∞

κ=0
FAκ,q wð Þ τκ

κ½ �q!
=

Aq τð Þ
1 −w eq τð Þ − 1

� �

= 〠
∞

κ=0
Aκ,q

τκ

κ½ �q!

 !
〠
∞

κ=0
Fκ,q wð Þ τκ

κ½ �q!

 !

= 〠
∞

κ=0
〠
κ

l=0

κ

l

" #

q

A l,qFκ−l,q wð Þ
0
@

1
A τκ

κ½ �q!
,

ð29Þ

which on comparing the coefficients of τκ/½κ�q! yield asser-
tion in equation (28).

Theorem 6. For n ∈ℕ0, the following series representation for
the q-FAP FAκ,qðwÞ holds true:

FAκ,q wð Þ = 〠
κ

l=0
〠
l

σ=0

κ

l

" #
q

σ½ �q!wσAκ−l,qS2,q l, σð Þ: ð30Þ
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Proof. In view of equations (15), (22), and (23), we can write

〠
∞

κ=0
FAκ,q wð Þ τκ

κ½ �q!
=

Aq τð Þ
1 −w eq τð Þ − 1

� �

= 〠
∞

κ=0
Aκ,q

τκ

κ½ �q!
〠
∞

σ=0
wσ eq τð Þ − 1
� �σ

= 〠
∞

κ=0
Aκ,q

τκ

κ½ �q!
〠
∞

σ=0
wσ σ½ �q!〠

∞

l=σ
S2,q l, σð Þ τl

l½ �q!

= 〠
∞

κ=0
Aκ,q

τκ

κ½ �q!
〠
∞

l=0
〠
l

σ=0
wσ σ½ �q!S2,q l, σð Þ

 !
τl

l½ �q!

= 〠
∞

κ=0
〠
κ

l=0

κ

l

" #

q

Aκ−l,q 〠
l

σ=0
wσ σ½ �q!S2,q l, σð Þ

0
@

1
A τκ

κ½ �q!
,

ð31Þ

which on comparing the coefficients of τκ/½κ�q! yield asser-
tion in equation (30).

Corollary 7. Taking AqðτÞ = τ/ðeqðτÞ − 1Þ in equations (28)
and (30), we get the following series representations of the q
-FBP FBκ,qðwÞ

FBκ,q wð Þ = 〠
κ

l=0

κ

l

" #
q

Bl,qFκ−l,q wð Þ,

FBκ,q wð Þ = 〠
κ

l=0
〠
l

σ=0

κ

l

" #
q

σ½ �q!wσBκ−l,qS2,q l, σð Þ, n ∈ℕ0:

ð32Þ

Corollary 8. Taking AqðτÞ = 2/ðeqðτÞ + 1Þ in equations (28)
and (30), we get the following series representations of the q
-FEP FEκ,qðwÞ:

FEκ,q wð Þ = 〠
κ

l=0

κ

l

" #
q

El,qFκ−l,q wð Þ,

FEκ,q wð Þ = 〠
κ

l=0
〠
l

σ=0

κ

l

" #
q

σ½ �q!wσEκ−l,qS2,q l, σð Þ, n ∈ℕ0:

ð33Þ

Theorem 9. The following formula for the q-FAP FAκ,qðwÞ
holds true:

d
dwF

Aκ,q wð Þ = 〠
κ

l=0

κ

l

" #
q

FAκ−l,q wð ÞF l,q 1, 0,wð Þ−FA l,q wð ÞFκ−l,q wð Þ� �
:

ð34Þ

Proof. Utilizing equation (23), we have

d
dw

〠
∞

κ=0
FAκ,q wð Þ τκ

κ½ �q!

 !
= d
dw

Aq τð Þ
1 −w eq τð Þ − 1

� � Aq τð Þ
1 −w eq τð Þ − 1

� �
 !

=
Aq τð Þ eq τð Þ − 1

� �
1 −w eq τð Þ − 1

� �� �2
=

Aq τð Þeq τð Þ
1 −w eq τð Þ − 1

� �� �2 −
Aq τð Þ

1 −w eq τð Þ − 1
� �� �2

= 〠
∞

κ=0
〠
κ

l=0

κ

l

" #

qF

Aκ−l,q wð ÞF l,q 1, 0,wð Þ τκ

κ½ �q!

− 〠
∞

κ=0
〠
κ

l=0

κ

l

" #

qF

A l,q wð ÞFκ−l,q wð Þ τh

h½ �q!
,

ð35Þ

which on equating the coefficients of the like powers of τ
yields the assertion in equation (34).

Corollary 10. TakingAqðτÞ = τ/ðeqðτÞ − 1Þ in equations (34),
we get the formula satisfied by the q-FBP FBκ,qðwÞ as

d
dwF

Bκ,q wð Þ = 〠
κ

l=0

κ

l

" #
q

FBκ−l,q wð ÞF l,q 1, 0,wð Þ−FBl,q wð ÞFκ−l,q wð Þ� �
:

ð36Þ

Corollary 11. Taking AqðτÞ = 2/eqðτÞ + 1 in equations (34),
we get the formula satisfied by the q-FEP FEκ,qðwÞ as

d
dwF

Eκ,q wð Þ = 〠
κ

l=0

κ

l

" #
q

FEκ−l,q wð ÞF l,q 1, 0,wð Þ−FEl,q wð ÞFκ−l,q wð Þ� �
:

ð37Þ

3. 3-Variable q-Fubini-Appell Polynomials

In this section, the class of 3-variable q-Fubini-Appell poly-
nomials is established, which is a generalization of the class
introduced in the previous section. The generating function,
series representations, and other formulae for these polyno-
mials are obtained.

Theorem 12. The 3-variable q -Fubini-Appell polynomials
(3Vq-FAP) FAκ,qðu, v,wÞ are defined by means of the follow-
ing generating function:

Aq τð Þ
1 −w eq τð Þ − 1

� � eq uτð ÞEq vτð Þ = 〠
∞

κ=0
FAκ,q u, v,wð Þ τκ

κ½ �q!
: ð38Þ

Proof. Utilizing equations (13) and (14) and following the
same method as in the proof of Theorem 1, we can get the
assertion in equation (38).

Remark 13. Setting w = 0 in equation (38) gives the generat-
ing function of the 2-variable q-Appell polynomials (2Vq-
AP) Aκ,qðu, vÞ [18], that is
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Aq τð Þeq uτð ÞEq vτð Þ = 〠
∞

κ=0
Aκ,q u, vð Þ τκ

κ½ �q!
: ð39Þ

Corollary 14. Taking AqðτÞ = τ/ðeqðτÞ − 1Þ in equation (38),
we get the generating function of the 3-variable q-Fubini-Ber-
noulli polynomials (3Vq-FBP) FBκ,qðu, v,wÞ as

τ

eq τð Þ − 1
� �

1 −w eq τð Þ − 1
� �� � eq uτð ÞEq vτð Þ = 〠

∞

κ=0
FBκ,q u, v,wð Þ τκ

κ½ �q!
:

ð40Þ

Corollary 15. Taking AqðτÞ = 2/ðeqðτÞ + 1Þ in equation (38),
we get the generating function of the 3-variable q-Fubini-Euler
polynomials (3Vq-FEP) FEκ,qðu, v,wÞ as

2

eq τð Þ + 1
� �

1 −w eq τð Þ − 1
� �� � eq uτð ÞEq vτð Þ =〠

∞

κ=0F
Eκ,q u, v,wð Þ τκ

κ½ �q!
: ð41Þ

Theorem 16. The 3Vq-FAP FAκ,qðu, v,wÞ are defined by the
series

FAκ,q u, v,wð Þ = 〠
κ

l=0

κ

l

" #
q

A l,qFκ−l,q u, v,wð Þ: ð42Þ

Proof. In view of equations (13), (15), and (38), we have

〠
∞

κ=0
FAκ,q u, v,wð Þ τκ

κ½ �q!
=

Aq τð Þ
1 −w eq τð Þ − 1

� � eq uτð ÞEq vτð Þ

= 〠
∞

κ=0
Aκ,q

τκ

κ½ �q!

 !
〠
∞

κ=0
Fκ,q u, v,wð Þ τκ

κ½ �q!

 !

= 〠
∞

κ=0
〠
κ

l=0

κ

l

" #

q

A l,qFκ−l,q u, v,wð Þ
0
@

1
A τκ

κ½ �q!
,

ð43Þ

which on comparing the coefficients of τκ/½κ�q! yield asser-
tion in equation (42).

Corollary 17. Taking AqðτÞ = τ/ðeqðτÞ − 1Þ in equation (42),
we get the series representation of the 33Vq-FBP FBκ,qðu, v,
wÞ as

FBκ,q u, v,wð Þ = 〠
κ

l=0

κ

l

" #
q

Bl,qFκ−l,q u, v,wð Þ: ð44Þ

Corollary 18. Taking AqðτÞ = 2/ðeqðτÞ + 1Þ in equation (42),
we get the series representation of the 33Vq-FEP FEκ,qðu, v,
wÞ as

FEκ,q u, v,wð Þ = 〠
κ

l=0

κ

l

" #
q

El,qFκ−l,q u, v,wð Þ: ð45Þ

Suitably using equations (4), (6), (7), (11), and (23) in gen-
erating relation (38) and thenmaking use of the Cauchy prod-
uct rule in the resultant relations and thereafter comparing the

identical powers of τ in both sides of the resultant expressions,
we get the formulae given in the following theorem.

Theorem 19. The 3Vq-FAP FAκ,qðu, v,wÞ satisfy the follow-
ing formulae

FAκ,q u, v,wð Þ = 〠
κ

l=0

κ

l

" #
qF

Aκ−1,q wð Þ u ⊕ vð Þlq,

FAκ,q u, v,wð Þ = 〠
κ

l=0

κ

l

" #
q

q

κ−l

2

 !

FA1,q u, 0,wð Þvκ−l,

FAκ,q u, v,wð Þ = 〠
κ

l=0

κ

l

" #
q

F1,q wð ÞFAκ−1,q u, v, 0ð Þ,

FAκ,q u, v,wð Þ = 〠
κ

l=0

κ

l

" #
qF

A1,q 0, v,wð Þuκ−l:

ð46Þ

Applying the q-derivatives w.r.t. u and v to generating
relation (38), we get the results given in the following theorem.

Theorem 20. The following identities for the 3Vq-FAP F

Aκ,qðu, v,wÞ hold true:

Dq,uFAκ,q u, v,wð Þ = κ½ �qFAκ−1,q u, v,wð Þ,

Dξ
q,uFAκ,q u, v,wð Þ =

κ½ �q!
κ − ξ½ �q!F

Aκ−ξ,q u, v,wð Þ,

Dq,vFAκ,q u, v,wð Þ = κ½ �qFAκ−1,q u, qv,wð Þ,

Dξ
q,vFAκ,q u, v,wð Þ =

κ½ �q!
κ − ξ½ �q!

q
ξ 2

FAκ−ξ,q u, qξv,w
� �

:

ð47Þ

Theorem 21. The following relation for the 3Vq-FAP FAκ,q
ðu, v,wÞ holds true:

〠
κ

l=0

κ

l

" #
qF

Aκ−l,q u, v,wð Þ = 1
w

w + 1ð ÞFAκ,q u, v,wð Þ −Aκ,q u, vð Þ� �
:

ð48Þ

Proof. Consider the identity

w
eq uτð ÞEq vτð Þ

1 −w eq τð Þ − 1
� � eq τð Þ = 1 +wð Þ eq uτð ÞEq vτð Þ

1 −w eq τð Þ − 1
� � − eq uτð ÞEq vτð Þ:

ð49Þ

Now, multiplying both sides of the above identity by
Aκ,qðτÞ and using equations (6), (38), and (39), we get
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w〠
∞

κ=0
〠
κ

l=0

κ

l

" #

qF

Aκ−l,q u, v,wð Þ
0
@

1
A τκ

κ½ �q!

= 〠
∞

κ=0
1 +wð ÞFAκ,q u, v,wð Þ −Aκ,q u, vð Þ� � τκ

κ½ �q!
,

ð50Þ

which on equating the coefficients of the like powers of τ
yields the assertion in equation (48).

Now, let us recall the generating function of the 2-
variable q-generalized tangent polynomials (2Vq-GTP)
Cκ,α,qðu, vÞ [19] given as

2
eq ατð Þ + 1 eq uτð ÞEq vτð Þ = 〠

∞

κ=0
Cκ,α,q u, vð Þ τκ

κ½ �q!
, ατj j < π, α ∈ℝ+, ð51Þ

and Cκ,α,q ≔Cκ,α,qð0, 0Þ denotes the q-generalized tangent
numbers (q-GTN).

Theorem 22. The following relationships between the 3Vq-
FAP FAκ,qðu, v,wÞ and 2Vq-GTP Cκ,α,qðu, vÞ holds true:

FAκ,q u, v,wð Þ = 1
2
〠
κ

l=0

κ

l

" #

q

� 〠
l

σ=0

l

σ

" #

q

ασCκ−l,α,q u, vð ÞF l−σ,q wð Þ+FAκ−l,q u, v,wð ÞC l,α,q

0
@

1
A:

ð52Þ

Proof. Utilizing equations (23), (38), and (51), we have

〠
∞

κ=0
FAκ,q u, v,wð Þ τκ

κ½ �q!
=

Aq τð Þ
1 −w eq τð Þ − 1

� � eq uτð ÞEq vτð Þ

=
Aq τð Þ

1 −w eq τð Þ − 1
� � 2

eq ατð Þ + 1

 !
eq ατð Þ + 1

2

� �
eq uτð ÞEq vτð Þ

= 1
2 〠

∞

κ=0
〠
κ

σ=0

κ

σ

" #

q

ασFκ−σ,q wð Þ
0
@

1
A τκ

κ½ �q!

0
@

1
A

2
4

� 〠
∞

κ=0
Cκ,α,q u, vð Þ τκ

κ½ �q!

 !
+ 〠

∞

ê=0
FAκ,q u, v,wð Þ τκ

κ½ �q!

 !

� 〠
∞

κ=0
Cκ,α,q

τκ

κ½ �q!

 !#

= 1
2〠

∞

κ=0
〠
κ

l=0

κ

l

" #

q

〠
l

σ=0

κ

σ

" #

q

ασF l−σ,q wð ÞCκ−l,α,q u, vð Þ
2
4 +〠

κ

l=0

�
κ

l

" #

qF

Aκ−1,q u, v,wð ÞC l,α,q�
τκ

κ½ �q!
,

ð53Þ

which on comparing the coefficients of τκ/½κ�q! yield asser-
tion in equation (52).

Since for α = 1, the 2-variable q-generalized tangent poly-
nomials (2Vq-GTP) Cκ,α,qðu, vÞ reduce to 2-variable q-Euler
polynomials Eκ,qðu, vÞ [20]. Therefore, setting α = 1 in equa-
tion (52) gives the following result.

Corollary 23. The following relationships between the 3Vq-
FAP FAκ,qðu, v,wÞ and 2Vq-EP Eκ,qðu, vÞ holds true:

FAκ,q u, v,wð Þ = 1
2
〠
κ

l=0

κ

l

" #
q

〠
l

σ=0
lσqEκ−l,α,q u, vð ÞF l−σ,q wð Þ+FAκ−l,q u, v,wð ÞE l,α,q

 !
:

ð54Þ

Let us recall the generating function of the 2-variable q
-Euler-Bernoulli polynomials (2Vq-EBP) EBκ,qðu, vÞ [16]
given by

2τ
eq τð Þ + 1
� �

eq τð Þ − 1
� � eq uτð ÞEq vτð Þ = 〠

∞

κ=0
EBκ,q u, vð Þ tκ

κ½ �q!
:

ð55Þ

Theorem 24. The following relationships between the 3Vq-
FAP FAκ,qðu, v,wÞ and 2Vq-EBP EBκ,qðu, vÞ holds true:

FAκ−1,q u, v,wð Þ = 1
2 k½ �q

〠
κ

l=0

κ

l

" #

q

〠
κ

σ=0
〠
l

h=0

κ − l

σ

" #

q

0
@

�
l

h

" #

qF

Aκ−σ−l,q wð ÞEBl−h,q u, vð Þ−FAκ−l,q u, v,wð ÞEBl,qÞ:

ð56Þ

Proof. Utilizing equations (6), (38), and (55), we have

〠
∞

κ=0
FAκ,q u, v,wð Þ τκ

κ½ �q!
=

Aq τð Þ
1 −w eq τð Þ − 1

� � eq uτð ÞEq vτð Þ

=
Aq τð Þ

1 −w eq τð Þ − 1
� � 2t

eq τð Þ + 1
� �

eq τð Þ − 1
� �

 !

� eq τð Þ + 1
� �

eq τð Þ − 1
� �
2t

 !
eq uτð ÞEq vτð Þ

= 1
2t

Aq τð Þ
1 −w eq τð Þ − 1

� � eq τð Þ
 !

2teq uτð ÞEq vτð Þ
eq τð Þ + 1
� �

eq τð Þ − 1
� � eq τð Þ

 !"

−
Aq τð Þeq uτð ÞEq vτð Þ
1 −w eq τð Þ − 1

� �
 !

2t
eq τð Þ + 1
� �

eq τð Þ − 1
� �

 !#

= 1
2t 〠

∞

κ=0
〠
κ

σ=0

κ

σ

" #

qF

Aκ−σ,q wð Þ τκ

κ½ �q!

0
@

1
A

2
4

� 〠
∞

l=0
〠
l

h=0

l

h

" #

q

εBl−h,q u, vð Þ τl

l½ �q!

0
@

1
A

−〠
∞

κ=0
〠
κ

l=0

κ

l

" #

qF

Aκ−l,q u, v,wð ÞEBl,q
τκ

κ½ �q!

3
5

= 1
2t〠

∞

κ=0
〠
κ

l=0
〠
κ

σ=0
〠
l

h=0

κ

l

" #

q

κ − l

σ

" #

q

2
4

�
l

h

" #

qF

Aκ−l,q wð ÞEBl−h,q u, vð Þ−〠
κ

l=0

�
κ

l

" #

qF

Aκ−l,q u, v,wð ÞEBl,q

3
5 τκ

κ½ �q!
,

ð57Þ
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which on comparing the coefficients of τκ/½κ�q! yield asser-
tion in equation (56).

Theorem 25. The following relationships between the 3Vq-
FAP FAκ,qðu, v,wÞ and 2Vq-AP Aκ,qðu, vÞ holds true:

〠
κ

l=0

κ

l

" #

qF

Aκ−l,q u, v, w
1 −w

� �
= 1
w FAκ,q u, v, w

1 −w

� ��

− 1 −wð ÞAκ,q u, vð Þ�:
ð58Þ

Proof. Replacing w by w/ð1 −wÞ in generating relation (38),
we have

〠
∞

κ=0
FAκ,q u, v, w

1 −w

� � τκ

κ½ �q!
=

Aq τð Þ
1 − w/ 1 −wð Þð Þ eq τð Þ − 1

� � eq uτð ÞEq vτð Þ:

ð59Þ

Rewriting the above equation then using equations (38)
and (39), we obtain

〠
∞

κ=0
FAκ,q u, v, w

1 −w

� � τκ

κ½ �q!
−w〠

∞

κ=0
〠
κ

l=0

κ

l

" #

qF

Aκ−l,q u, v, w
1 −w

� � τκ

κ½ �q!

= 1 −wð Þ〠
∞

κ=0
Aκ,q u, vð Þ τκ

κ½ �q!
:

ð60Þ

which on comparing the coefficients of τκ/½κ�q! yield asser-
tion in equation (58).

4. Determinant Representations

One of the significant representations of the q-special poly-
nomials is the determinant representation due to its impor-
tance for the computational and applied purposes. In 2015,
Keleshteri and Mahmudov [18] established the determinant
representation of the q-Appell polynomials. In the section,
the determinant representations of the q-FAP FAκ,qðwÞ
and the 3Vq-FAP FAκ,qðu, v,wÞ are introduced.

Definition 26. The determinant representation for the q-FAP
FAκ,qðwÞ of degree κ is given as

FA0,q wð Þ = 1
B0,q

, ð61Þ

FAκ,q wð Þ

1 F1,q F2,q wð Þ ⋯ Fκ−1,q wð Þ Fκ,q wð Þ
B0,q B1,q B2,q ⋯ Bκ−1,q Bκ,q

0 B0,q
2
1

" #
q

B1,q ⋯
κ − 1
1

" #
q

Bκ−2,q
κ

1

" #
q

Bκ−1,q

0 0 B0,q ⋯
κ − 1
2

" #
q

Bκ−3,q
κ

2

" #
q

Bκ−2,q

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

0 0 0 ⋯ B0,q
κ

κ − 1

" #
q

B1,q

2
666666666666666666666664

3
777777777777777777777775

,

ð62Þ

Bκ,q = −
1

FA0,q
〠
κ

ν=1

κ

ν

" #
F

Aν,qBκ−ν,q

 !
, B0,q ≠ 0, κ = 1, 2, 3,⋯:

ð63Þ

Setting B0,q = 1 and Bδ,q = ð1/½δ + 1�qÞðδ = 1, 2,⋯, κÞ in
equations (61) and (62) gives the determinant representation
of the q-FBP FBκ,qðwÞ as:

Definition 27. The determinant representation for the q -FBP
FBκ,qðwÞ of degree κ is given as

FB0,q wð Þ = 1,

FBκ,q wð Þ = −1ð Þκ

�

1 F1,q wð Þ F2,q wð Þ ⋯ Fκ−1,q wð Þ Fκ,q wð Þ

1 1
2½ �q

1
3½ �q

⋯
1
κ½ �q

1
κ + 1½ �q

0 1
2

1

" #

q

1
2½ �q

⋯
κ − 1

1

" #

q

1
κ − 1½ �q

κ

1

" #

q

1
κ½ �q

0 0 1 ⋯
κ − 1

2

" #

q

1
κ − 2½ �q

κ

2

" #

q

1
κ − 1½ �q

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

0 0 0 ⋯ 1
κ

κ − 1

" #

q

1
2½ �q

�����������������������������������

�����������������������������������

, κ = 1, 2⋯:

ð64Þ

SettingB0,q = 1 andBδ,q = ð1/2Þðδ = 1, 2,⋯, κÞ in equa-
tions (61) and (62) gives the determinant representation of
the q-FEP FEκ,qðwÞ as:

Definition 28. The determinant representation for the q -FEP
FEκ,qðwÞ of degree κ is given as
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Fε0,q wð Þ = 1,

Fεκ,q wð Þ = −1ð Þκ

�

1 F1,q wð Þ F2,q wð Þ ⋯ Fκ−1,q wð Þ Fκ,q wð Þ

1 1
2

1
2 ⋯

1
2

1
2

0 1
2

1

" #

q

1
2 ⋯

κ − 1

1

" #

q

1
2

κ

1

" #

q

1
2

0 0 1 ⋯
κ − 1

2

" #

q

1
2

κ

2

" #

q

1
2

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

0 0 0 ⋯ 1
κ

κ − 1

" #

q

1
2

����������������������������������

����������������������������������

, κ = 1, 2, 3,⋯:

ð65Þ

Similarly, the determinant representation of the 3Vq-
FAP FAκ,qðu, v,wÞ, 3Vq-FBP FBκ,qðu, v,wÞ, and 3Vq-FEP

FEκ,qðu, v,wÞ are established as:

Definition 29. The determinant representation for the 3Vq-
FAP FAκ,qðu, v,wÞ of degree κ is given as

FA0,q u, v,wð Þ = 1
B0,q

,

FAκ,q u, v,wð Þ = −1ð Þκ
B0,q
� �κ+1

�

1 F1,q u, v,wð Þ F2,q u, v,wð Þ ⋯ Fκ−1,q u, v,wð Þ Fκ,q u, v,wð Þ
B0,q B1,q B2,q ⋯ Bκ−1,q Bκ,q

0 B0,q
2

1

" #

q

B1,q ⋯
κ − 1

1

" #

q

Bκ−2,q
κ

1

" #

q

Bκ−1,q

0 0 B0,q ⋯
κ − 1

2

" #

q

Bκ−3,q
κ

2

" #

q

Bκ−2,q

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

0 0 0 ⋯ B0,q
κ

κ − 1

" #
B1,q

���������������������������������

���������������������������������

, 

Bκ,q = −
1

FA0,q
〠
κ

ν=1

κ

ν

" #

qF

Aν,qBκ−ν,q

0
@

1
A,B0,q ≠ 0, κ = 1, 2, 3,⋯:

ð66Þ

Definition 30. The determinant representation for the 3Vq-
FBP FBκ,qðu, v,wÞ of degree κ is given as

FB0,q u, v,wð Þ = 1,

FB0,q u, v,wð Þ = −1ð Þκ

�

1 F1,q u, v,wð Þ F2,q u, v,wð Þ ⋯ Fκ−1,q u, v,wð Þ Fκ,q u, v,wð Þ

1 ⋯
1
κ½ �q

1
κ + 1½ �q

0 1
2

1

" #

q

1
2½ �q

⋯
κ − 1

1

" #

q

1
κ − 1½ �q

κ

1

" #

q

1
κ½ �q

0 0 1 ⋯
κ − 1

2

" #

q

1
κ − 2½ �q

κ

2

" #

q

1
κ − 2½ �q

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

0 0 0 ⋯ 1
κ

κ − 1

" #

q

1
2½ �q

�����������������������������������

�����������������������������������

, 

κ = 1, 2⋯:

ð67Þ

Definition 31. The determinant representation for the 3Vq-
FEP FEκ,qðu, v,wÞ of degree κ is given as

FE0,q u, v,wð Þ = 1,

Fεκ,q u, v,wð Þ = −1ð Þκ

�

1 F1,q u, v,wð Þ F2,q u, v,wð Þ ⋯ Fκ−1,q u, v,wð Þ Fκ,q u, v,wð Þ

1 1
2

1
2 ⋯

1
2

1
2

0 1
2

1

" #

q

1
2 ⋯

κ − 1

1

" #

q

1
2

κ

1

" #

q

1
2

0 0 1 ⋯
κ − 1

2

" #

q

1
2

κ

2

" #

q

1
2

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

⋅ ⋅ ⋅ ⋯ ⋅ ⋅

0 0 0 ⋯ 1
κ

κ − 1

" #

q

1
2

����������������������������������

����������������������������������

, 

κ = 1, 2, 3⋯:

ð68Þ

5. Conclusions
Recently, the Fubini polynomials and their q-analogue have
been studied and investigated by many researchers. Moti-
vated by various recent studies related to these type of poly-
nomials (see for example [8, 21, 22]), in this article, we
introduced two important families of q-hybrid special poly-
nomials, namely, the q-Fubini-Appell polynomials and 3-
variable q-Fubini-Appell polynomials. Certain properties
related to these families are derived.

Further investigations along the results obtained in this
article, which are associated with many recent generaliza-
tions and extensions of the q-Appell polynomial family, espe-
cially, the parametric types, may be worthy of consideration
in future investigations.
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In this paper, we define the poly-Bernoulli polynomials of the second kind by using the polyexponential function and find some
interesting identities of those polynomials. In addition, we define unipoly-Bernoulli polynomials of the second kind and study
some properties of those polynomials.

1. Introduction

In the book Ars Conjectandi, Bernoulli introduced the Ber-
noulli number terms of the sum of powers of consecutive
integers (see [1, 2]). In [3], Luo and Srivastava defined the
Apostol-Bernoulli polynomials and obtained an explicit
series representation for their polynomials involving the
Gaussian hypergeometric function as well as an explicit series
representation involving the Hurwitz function. Frappier
defined a generalized Bernoulli polynomials by using the Bes-
sel function of the first kind and found a generalization of a
well-known Fourier series representation of Bernoulli poly-
nomials in [4]. In [5], Natalini and Bernardini defined a
new class of generalized Bernoulli polynomials and showed
that if a differential equation with these polynomials is of
order n, then all the considered families of polynomials can
be viewed as solutions of differential operators of infinite
order. In [6], Kaneko defined the poly-Bernoulli polynomials
and found an explicit formula and a duality theorem for
those numbers. Khan et al. defined Laguerre-based
Hermite-Bernoulli polynomials and derived summation for-
mulas and related bilateral series associated with the newly
introduced generating function in [7]. In [8], Jang and Kim
defined type 2 degenerate Bernoulli polynomials and showed
that these polynomials could be represented linear combina-
tions of the Stirling numbers of the first and the second kinds,
Bernoulli polynomials, and those numbers. Moreover, in [9],
the degenerate type 2 poly-Bernoulli numbers and polyno-

mials as degenerate versions of such numbers and polyno-
mials were defined, and several explicit expressions and
some identities for those numbers and polynomials were
derived.

As is well known, Bernoulli polynomials of order r are
defined by the generating function to be

t
et − 1

� �r

ext = 〠
∞

n=0
B rð Þ
n xð Þ t

n

n!
ð1Þ

(see [1, 5, 9, 10]).
In particular, if r = 1, BnðxÞ = Bð1Þ

n ðxÞ are the ordinary
Bernoulli polynomials. When x = 0, BðrÞ

n = BðrÞ
n ð0Þ are called

the Bernoulli numbers of order r. In [1], the relationship
between the Bernoulli numbers and zeta functions was stud-
ied, and in [2, 8, 10–12], generalized Bernoulli numbers were
defined, and the properties of those numbers and polyno-
mials were investigated.

The Bernoulli polynomials of the second kind (or the Cau-
chy polynomials) are defined by the generating function to be

〠
∞

n=0
bn xð Þ t

n

n!
= t
log 1 + tð Þ 1 + tð Þx ð2Þ

(see [13–15]).
When x = 0, bn = bnð0Þ are called the Bernoulli numbers

of the second kind.
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For a nonnegative integer n, the Stirling numbers of the
first kind are defined by

xð Þn = 〠
n

l=0
S1 n, lð Þxi ð3Þ

(see [16–18]), where ðxÞ0 = x, ðxÞn = xðx − 1Þ⋯ ðx − n + 1Þ
ðn ≥ 0Þ. By the direct computation of (3), we derive the
following:

1
n!

log 1 + tð Þð Þn = 〠
∞

k=n
S1 k, nð Þ t

k

k!
ð4Þ

(see [16–19]).
For a given nonnegative integer n, the Stirling numbers of

the second kind are defined by

xn = 〠
n

l=0
S2 n, lð Þ xð Þl ð5Þ

(see [16–18]).
By (5), we obtain

et − 1
� �n = n!〠

∞

l=n
S2 l, nð Þ t

l

l!
ð6Þ

(see [16–19]).
In [17, 19], the authors defined the generalized Stirling

numbers of the first and second kinds and generalized bino-
mial coefficients and showed that degenerated special poly-
nomials are represented by linear combinations of those
numbers.

The polyexponential function was first studied by Hardy
(see [11, 20]), and Kim and Kim defined polyexponential
function as an inverse to the polylogarithm function LikðxÞ
=∑∞

n=1 ðxn/n!Þ (see [6, 11, 20, 21]), to be

ek xð Þ = 〠
∞

n=1

xn

nk n − 1ð Þ! k ∈ℤð Þ ð7Þ

(see [21]).
By (7), we know that e1ðxÞ = ex.
Recently, some authors applied the polyexponential

functions and the polylogarithm functions to degenerate
Bernoulli polynomials, type 2 poly-Apostol-Bernoulli poly-
nomials, type 2 degenerate poly-Euler polynomials, and
poly-Genocchi polynomials and found many interesting
identities about those polynomials (see [11, 12, 20–26]).

In this paper, we define poly-Bernoulli polynomials of the
second kind with the polyexponential function and derive
some interesting identities between the Stirling numbers of
the first kind or the second kind, Bernoulli numbers, Ber-
noulli numbers of the second kind, and those polynomials.
In addition, we define unipoly-Bernoulli polynomials of the
second kind and derive some interesting identities of those
polynomials.

2. The Poly-Bernoulli Polynomials of the
Second Kind

By the definition of the Bernoulli polynomials of the second
kind and (7), we define the poly-Bernoulli polynomials of
the second kind by the generating function to be

〠
∞

n=0
b kð Þ
n xð Þ t

n

n!
= ek log 1 + tð Þð Þ

log 1 + tð Þ 1 + tð Þx: ð8Þ

In particular, if x = 0, bðkÞn = bðkÞn ð0Þ are called the poly-
Bernoulli numbers of the second kind. By (8), we know that
for each nonnegative integer n,

b 1ð Þ
n xð Þ = bn xð Þ ð9Þ

are the Bernoulli polynomials of the second kind.
Note that

〠
∞

n=0
b kð Þ
n xð Þ t

n

n!
= ek log 1 + tð Þð Þ

log 1 + tð Þ 1 + tð Þx

= 〠
∞

l=0
b kð Þ
l

tn

n!

 !
〠
∞

m=0

x

m

 !
tm

 !

= 〠
∞

n=0
〠
n

m=0

x

m

 !
n

m

 !
m!b kð Þ

n−m

 !
tn

n!

= 〠
∞

n=0
〠
n

l=0

x

n − l

 !
n

l

 !
n − lð Þ!b kð Þ

l

 !
tn

n!
:

ð10Þ

Hence, by (10), we obtain the following theorem.

Theorem 1. For each n ∈ℕ ∪ f0g, we have

b kð Þ
n xð Þ = 〠

n

l=0

n

l

 !
b kð Þ
l xð Þn−l , ð11Þ

where ðxÞk = xðx − 1Þ⋯ ðx − k + 1Þ is the k-falling factorial.

By replacing t by et − 1 in (8), we get

ek tð Þ
t

ext = 1
t
〠
∞

n=1

tn

n − 1ð Þ!nk
 !

〠
∞

n=0
xn

tn

n!

 !

= 〠
∞

n=0

tn

n! n + 1ð Þk
 !

〠
∞

n=0
xn

tn

n!

 !

= 〠
∞

n=0
〠
n

m=0

n

m

 !
xn−m

m + 1ð Þk
 !

tn

n!
,

ð12Þ
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and by (6), we have

〠
∞

n=0
b kð Þ
n

1
n!

et − 1
� �n = 〠

∞

n=0
b kð Þ
n xð Þ〠

∞

l=n
S2 l, nð Þ t

l

l!

= 〠
∞

n=0
〠
n

m=0
S2 n,mð Þb kð Þ

n−m xð Þ
 !

tn

n!
:

ð13Þ

Therefore, by (12) and (13), we obtain the following
theorem.

Theorem 2. For each nonnegative integer n, we have

〠
n

m=0
S2 n,mð Þb kð Þ

n−m xð Þ = 〠
n

m=0

n

m

 !
xn−m

m + 1ð Þk
: ð14Þ

In particular, we have

〠
n

m=0
S2 n,mð Þb kð Þ

n−m = 1
n + 1ð Þk

: ð15Þ

From (4) and (8), we derive

〠
∞

n=0
b kð Þ
n

tn

n!
= ek log 1 + tð Þð Þ

log 1 + tð Þ = 1
log 1 + tð Þ〠

∞

n=1

log 1 + tð Þð Þn
n − 1ð Þ!nk

= 1
log 1 + tð Þ〠

∞

n=0

log 1 + tð Þð Þn+1
n! n + 1ð Þk

= 1
log 1 + tð Þ〠

∞

n=0

1
n + 1ð Þk−1

〠
∞

l=n+1
S1 l, n + 1ð Þ t

l

l!

= t
log 1 + tð Þ〠

∞

n=0

1
n + 1ð Þk−1

〠
∞

l=n

S1 l + 1, n + 1ð Þ
l + 1

tl

l!

= 〠
∞

n=0
bn

tn

n!

 !
〠
∞

m=0
〠
m

l=0

1
l + 1ð Þk−1

S1 m + 1, l + 1ð Þ
m + 1

tm

m!

 !

= 〠
∞

n=0
〠
n

m=0
〠
m

l=0

n

m

 !
bn−m
l + 1ð Þk−1

S1 m + 1, l + 1ð Þ
m + 1

 !
tn

n!
:

ð16Þ

Thus, by (16), we obtain the following theorem.

Theorem 3. For each k ∈ℤ and each nonnegative integer n,
we have

b kð Þ
n = 〠

n

m=0
〠
m

l=0

n

m

 !
S1 m + 1, l + 1ð Þ
l + 1ð Þk−1 m + 1ð Þ

bn−m: ð17Þ

By (9) and Theorem 3, we get the following corollary.

Corollary 4. For each n ∈ℕ ∪ f0g, we have

bn = 〠
n

m=0
〠
m

l=0

n

m

 !
S1 m + 1, l + 1ð Þ

m + 1
bn−m: ð18Þ

In Corollary 4, we have

〠
n

m=0
〠
m

l=0

n

m

 !
S1 m + 1, l + 1ð Þ

m + 1ð Þ bn−m = bn + 〠
n

m=1
〠
m

l=0

n

m

 !
S1 m + 1, l + 1ð Þ

m + 1ð Þ bn−m:

ð19Þ

Therefore, we obtain the following corollary.

Corollary 5. For each positive integer n, we have

〠
n

m=1
〠
m

l=0

n

m

 !
S1 m + 1, l + 1ð Þ

m + 1ð Þ bn−m = 0 n ∈ℕð Þ: ð20Þ

In [21], the authors showed that

d
dx

ek xð Þ = 1
x
ek−1 xð Þ k ≥ 2ð Þ: ð21Þ

From (21), we have

ek xð Þ =
ðx
0

1
t

ðt
0

1
t
⋯
ðt
0

1
t|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

k−2ð Þ−times

et − 1
� �

dtdt⋯ dt ð22Þ

(see [9, 11, 12, 19–21, 23, 25]).
By (22), we can derive the following equations:

〠
∞

n=0
b kð Þ
n

xn

n!
= 1
log 1 + xð Þ ek log 1 + tð Þð Þ

= 1
log 1 + xð Þ

ðx
0

1
1 + tð Þ log 1 + tð Þ ek−1 log 1 + tð Þð Þdt

= 1
log 1 + xð Þ

ðx
0

1
1 + tð Þ log 1 + tð Þðt

0

1
1 + tð Þ log 1 + tð Þ ⋯

ðt
0

t
1 + tð Þ log 1 + tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k−2ð Þ−times

dtdt⋯ dt k ≥ 2ð Þ:

ð23Þ

It is well known that

t
1 + tð Þ log 1 + tð Þ = 〠

∞

n=0
B nð Þ
n

tn

n!
ð24Þ

(see [9, 12, 23, 25]).
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In particular, if we put k = 2 in (23), then by (23) and
(24), we have

〠
∞

n=0
b 2ð Þ
n

xn

n!
= 1
log 1 + xð Þ e2 log 1 + tð Þð Þ

= 1
log 1 + xð Þ

ðx
0

1
1 + tð Þ log 1 + tð Þ dt

= 1
log 1 + xð Þ〠

∞

l=0

B lð Þ
l

l!

ðx
0
tldt = x

log 1 + xð Þ〠
∞

l=0

B lð Þ
l

l + 1
xl

l!

= 〠
∞

m=0
bm

xm

m!

 !
〠
∞

l=0

B lð Þ
l

l + 1
xl

l!

 !

= 〠
∞

n=0
〠
n

l=0

n

l

 !
B lð Þ
l

l + 1 bn−l

 !
xn

n!
:

ð25Þ

Therefore, by (25), we obtain the following theorem.

Theorem 6. For a nonnegative integer n, we have

b 2ð Þ
n = 〠

n

l=0

n

l

 !
B lð Þ
l

l + 1
bn−l: ð26Þ

3. The Unipoly-Bernoulli Polynomials of the
Second Kind

Let p be an arithmetic function which is a real or complex
valued function defined onℕ. In [21], Kim and Kim defined
the unipoly function attached to polynomial pðxÞ by

uk x ∣ pð Þ = 〠
∞

n=1

p nð Þxn
nk

k ∈ℤð Þ: ð27Þ

In particular, if pðxÞ = 1, then

uk x ∣ 1ð Þ = 〠
∞

n=1

xn

nk
= Lik xð Þ ð28Þ

is an ordinary polylogarithm function.
Note that by (27), we get

d
dx

uk x ∣ pð Þ = 1
x
uk−1 x ∣ pð Þ, ð29Þ

for k ≥ 2. In addition, it is well known that

uk x ∣ pð Þ =
ðx
0

1
t

ðt
0

1
t
⋯
ðt
0

1
t|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

k−2ð Þ−times

u1 t ∣ pð Þdtdt⋯ dt ð30Þ

(see [9, 11, 12, 19, 21, 23, 25]).

In the viewpoint of (8), we define the unipoly-Bernoulli
polynomials of the second kind as

uk log 1 + tð Þjpð Þ
log 1 + tð Þ 1 + tð Þx = 〠

∞

n=0
b kð Þ
n,p xð Þ t

n

n!
: ð31Þ

From (31), we derive the following equation:

〠
∞

n=0
b kð Þ
n,p xð Þ t

n

n!
= uk log 1 + tð Þjpð Þ

log 1 + tð Þ 1 + tð Þx

= 〠
∞

n=0
b kð Þ
n,p

tn

n!

 !
〠
∞

n=0
xð Þn

tn

n!

 !

= 〠
∞

n=0
〠
n

l=0

n

l

 !
xð Þlb

kð Þ
n−l,p

 !
tn

n!
,

ð32Þ

and thus, by (32), we obtain the following theorem.

Theorem 7. For each nonnegative integer n, we have

b kð Þ
n,p xð Þ = 〠

n

l=0

n

l

 !
b kð Þ
n−l,p xð Þl: ð33Þ

If we put pðnÞ = 1/ΓðnÞ, then by (31), we get

〠
∞

n=0
b kð Þ
n,p xð Þ t

n

n!
= 1
log 1 + tð Þ uk log 1 + tð Þ 1

Γ

����
� �

1 + tð Þx

= 1
log 1 + tð Þ 〠

∞

m=1

log 1 + tð Þð Þm
mk m − 1ð Þ! 1 + tð Þx

= ek log 1 + tð Þð Þ
log 1 + tð Þ 1 + tð Þx = 〠

∞

n=0
b kð Þ
n xð Þ t

n

n!
:

ð34Þ

Therefore, by (34), we obtain the following theorem.

Theorem 8. For a nonnegative integer n, if pðnÞ = 1/ΓðnÞ,
then we have

b kð Þ
n,p xð Þ = b kð Þ

n xð Þ: ð35Þ

In the definition of unipoly-Bernoulli polynomials of the
second kind, if x = 0, then we get
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〠
∞

n=0
b kð Þ
n,p

tn

n!
= 1
log 1 + tð Þ〠

∞

n=1

p nð Þ
nk

log 1 + tð Þð Þn

= 1
log 1 + tð Þ〠

∞

n=0

p n + 1ð Þ
n + 1ð Þk

n + 1ð Þ! 〠
∞

l=n+1
S1 l, n + 1ð Þ t

l

l!

= t
log 1 + tð Þ
� �

〠
∞

n=0

p n + 1ð Þ
n + 1ð Þk

n + 1ð Þ!〠
∞

l=0
S1

 

� n + 1 + l, n + 1ð Þ tn

n + 1 + lð Þ!
�

= 〠
∞

n=0
bn

tn

n!

 !
〠
∞

n=0
〠
n

m=0

p m + 1ð Þ m + 1ð Þ!
m + 1ð Þk

S1

 

� n + 1,m + 1ð Þ tn

n + 1ð Þ!
�

= 〠
∞

n=0
〠
n

m=0
〠
m

l=0

n

m

 !
p l + 1ð Þ l + 1ð Þ!

l + 1ð Þk
S1 m + 1, l + 1ð Þ

m + 1 bn−m

 !
tn

n!
:

ð36Þ

Hence, by (34), we obtain the following theorem.

Theorem 9. For each nonnegative integer n and each integer k
, we have

b kð Þ
n,p = 〠

n

m=0
〠
m

l=0

n

m

 !
p l + 1ð Þ l + 1ð Þ!

l + 1ð Þk
S1 m + 1, l + 1ð Þ

m + 1
bn−m:

ð37Þ

In particular, we have

b kð Þ
n,1/Γ = 〠

n

m=0
〠
m

l=0

n

m

 !
S1 m + 1, n + 1ð Þ
l + 1ð Þk−1 m + 1ð Þ

bn−m: ð38Þ

By replacing t by et − 1 in (31), we have

uk t ∣ pð Þ
t

ext = 1
t

〠
∞

n=1

p nð Þtn
nk

 !
ext

= 〠
∞

n=0

p n + 1ð Þtn
n + 1ð Þk

 !
〠
∞

n=0

xn

n!
tn

 !

= 〠
∞

n=0
〠
n

l=0

p l + 1ð Þ
l + 1ð Þk

n!
n − lð Þ! x

n−l

 !
tn

n!
,

ð39Þ

and by (6), we get

〠
∞

n=0
b kð Þ
n,p xð Þ 1

n!
et − 1
� �n = 〠

∞

n=0
b kð Þ
n,p xð Þ〠

∞

l=n
S2 l, nð Þ t

l

l!

= 〠
∞

n=0
〠
n

m=0
S2 n,mð Þb kð Þ

m,p xð Þ
 !

tn

n!
:

ð40Þ

By (39) and (40), we obtain the following theorem.

Theorem 10. For each nonnegative integer n and each arith-
metic function pðnÞ, we have

〠
n

m=0
S2 n,mð Þb kð Þ

m,p xð Þ = 〠
n

l=0

p l + 1ð Þ
l + 1ð Þk

nð Þlxn−l: ð41Þ

In particular, we have

〠
n

m=0
S2 n,mð Þb kð Þ

m,p =
p n + 1ð Þ
n + 1ð Þk

n!: ð42Þ

4. Conclusion

The polyexponential function was first studied by Hardy. In
[21], Kim and Kim modified that function which was again
called the polyexponential functions as an inverse to the
polylogarithm function. In addition, they defied the unipoly
function, attached a arithmetic function p, and found some
interesting identities related to Bernoulli numbers, poly-
Bernoulli polynomials, and the Stirling numbers of the first
kind and second kind. The polyexponential function have
been used to define some special polynomials by some
researcher and found many interesting identities of those
polynomials (see [11, 12, 20–26]).

In this paper, we defined the poly-Bernoulli polynomials
of the second kind by using the polyexponential function and
found some interesting identities.

In addition, we also define the unipoly-Bernoulli polyno-
mials of the second kind and found some identities which
were related to poly-Bernoulli polynomials of the second
kind, Bernoulli polynomials, and the Stirling numbers of
the first and second kind.
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A three-parameter logarithmic function is derived using the notion of q-analogue and ansatz technique. The derived three-
parameter logarithm is shown to be a generalization of the two-parameter logarithmic function of Schwämmle and Tsallis as the
latter is the limiting function of the former as the added parameter goes to 1. The inverse of the three-parameter logarithm and
other important properties are also proved. A three-parameter entropic function is then defined and is shown to be analytic and
hence Lesche-stable, concave, and convex in some ranges of the parameters.

1. Introduction

The concept of entropy provides deep insight into the direc-
tion of spontaneous change for many everyday phenomena.
For example, a block of ice placed on a hot stove surely melts,
while the stove grows cooler. Such a process is called irrevers-
ible because no slight change will cause the melted water to
turn back into ice while the stove grows hotter [1]. The con-
cept of entropy was first introduced by German physicist
Rudolf Clausius as a precise way of expressing the second
law of thermodynamics.

The Boltzmann equation for entropy is

S = kB ln ω, ð1Þ

where kB is the Boltzmann constant [2] and ω is the number
of different ways or microstates in which the energy of the
molecules in a system can be arranged on energy levels [3].
The Boltzmann entropy plays a crucial role in the foundation
of statistical mechanics and other branches of science [4].

The Boltzmann-Gibbs-Shannon entropy [5, 6] is given by

SBGS ≡ −k〠
ω

i=1
pi ln pi = k〠

ω

i=1
pi ln

1
pi
, ð2Þ

where

〠
ω

i=1
pi = 1: ð3Þ

SBGS is a generalization of the Boltzmann entropy because
if pi = 1/ω, for all i,

SBGS = k ln ω: ð4Þ

Systems presenting long-range interactions and/or long-
duration memory have been shown not well described by
the Boltzmann-Gibbs statistics. Some examples may be
found in gravitational systems, Levy flights, fractals, turbu-
lence physics, and economics. In an attempt to deal with such
systems, Tsallis [7] postulated a nonextensive entropy which
generalizes Boltzmann-Gibbs entropy through an entropic
index q [8]. Another generalization was also suggested by
Renyi [9]. Abe [10] proposed how to generate entropy
functionals.

Tsallis q-entropy [7] is given by

Sq ≡ k
1 −∑ω

i=1f gp
q
i

q − 1 = k〠
ω

i=1
pi lnq

1
pi
, ð5Þ
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where q ∈ℝ,∑ω
i=1pi = 1 and

lnqx ≡
x1−q − 1
1 − q

, ln1x = ln xð Þ, ð6Þ

which is referred to as q-logarithm. If pi = 1/ω, for all i, then

Sq = k lnqω: ð7Þ

The inverse of the q-logarithm is the q-exponential

exq ≡ 1 + 1 − qð Þx½ �1/1−q+ , ex1 = exð Þ, ð8Þ

where ½⋯�+ is zero if its argument is nonpositive.
A q-sum and q-product and their calculus studied in [11]

were, respectively, defined as follows (these were also men-
tioned in [5]):

x ⊕ qy ≡ x + y + 1 − qð Þxy, x ⊕ 1y = x + yð Þ,

x ⊗ qy ≡ x1−q + y1−q − 1
� � 1

1−q, x ⊗ 1y = xyð Þ:
ð9Þ

The q-logarithm satisfies the following properties:

lnq xyð Þ = lnqx ⊕ q lnqy,

lnq x ⊗ qy
� �

= lnqx + lnqy:
ð10Þ

Then, a two-parameter logarithm was defined and pre-
sented along with a two-parameter entropy in [5]. It was
defined as follows:

lnq,q′x =
1

1 − q′
exp 1 − q′

1 − q
x1−q − 1
� � !

− 1
" #

: ð11Þ

The above doubly deformed logarithm satisfies

lnq,q′ x ⊗ qy
� �

= lnq,q′x ⊕ q′ lnq,q′y: ð12Þ

Properties of the two-parameter logarithm and those of
the two-parameter entropy were proved in [5]. Probability
distribution in the canonical ensemble of the two-
parameter entropy was obtained in [12] while applications
were discussed in [13].

In Section 2 of the present paper, a three-parameter log-
arithm lnq,q′ ,rx, where q, q′, r ∈ℝ, is derived using q-ana-
logues and ansatz technique. In Section 3, the inverse of the
three-parameter logarithm is derived and some properties
are proved. A three-parameter entropy and its properties
are presented in Section 4, and conclusion is given in Section
5.

2. Three-Parameter Logarithm

As x = eln x, a q-analogue of x will be defined by

x½ �q = elnqx, ð13Þ

where lnqx is defined in (6). Similarly, the q′-analogue of ½x�q
is defined by

x½ �q,q′ = elnq,q′x, ð14Þ

where lnq,q′x is as defined in (11), which can be written as

lnq,q′x =
x½ �1−qq

′ − 1
1 − q′

=
elnqx
� �1−q′

− 1
1 − q′

: ð15Þ

The three-parameter logarithm is then defined as

lnq,q′,rx =
x½ �1−rq,q′ − 1
1 − r

=
elnq,q′x
� �1−r

− 1
1 − r

, ð16Þ

from which

lnq,q′,rx ≡
1

1 − r
e 1/1−q′ e 1−q ′ð Þ lnqx−1

� �� �1−r
− 1

� 	
: ð17Þ

To obtain similar property as that in (12), define x ⊗ q,q′y
as the q′-analogue of x ⊗ qy: That is,

x ⊗ q,q′y ≡ x ⊗ qy

 �

q
′ = x½ �1−q

q′ + y½ �1−q
q′ − 1

� � 1
1−q
: ð18Þ

Lemma 1. The following relations hold

lnq,q′ x ⊗ q′y
� �

= lnq,q′x + lnq,q′y, ð19Þ

lnq,q′,r x ⊗ q′y
� �

= lnq,q′,rx ⊕ r lnq,q′,ry: ð20Þ

Proof. From (16) and (18),

lnq,q′ x ⊗ q′y
� �

=
x ⊗ q′y
h i1−q

q
′ − 1

1 − q′
=

x½ �1−qq
′ + y½ �1−qq

′ − 1
� �1/1−q′� 	1−q′

− 1

1 − q′

=
x½ �1−qq

′ + y½ �1−qq
′ − 1 − 1

1 − q′
=

x½ �1−qq
′ − 1

1 − q′
+

y½ �1−qq
′ − 1

1 − q′
= lnq,q′x + lnq,q′y:

ð21Þ
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In similar manner and using (14),

lnq,q′ ,r x ⊗ q′y
� �

=
x ⊗ q′y
h i1−r

q,q′
− 1

1 − r
=

elnq,q ′ x⊗q ′ yð Þn o1−r
− 1

1 − r

=
elnq,q ′ x+lnq,q ′ y
� �1−r

− 1
1 − r

=
elnq,q ′ x
� �1−r

elnq,q ′ y
� �1−r

− 1
1 − r

=

elnq,q ′ x
� �1−r

− 1
� 	

+ elnq,q ′ y
� �1−r

− 1
� 	

+ elnq,q ′ x
� �1−r

− 1
� 	

elnq,q ′ y
� �1−r

− 1
� 	

1 − r
:

ð22Þ

Thus,

lnq,q′ ,r x ⊗ q′y
� �

=
elnq,q ′ x
� �1−r

− 1
1 − r

+
elnq,q ′ y
� �1−r

− 1
1 − r

+ 1 − rð Þ

� 1
1 − r

elnq,q ′ x
� �1−r

− 1
� 
 1

1 − r
elnq,q ′ y
� �1−r

− 1
� 


= lnq,q′ ,rx + lnq,q′ ,ry + 1 − rð Þ lnq,q′ ,rx
h i

lnq,q′ ,ry
h i

= lnq,q′ ,rx ⊕ r lnq,q′ ,ry,
ð23Þ

which is the desired relation analogous to (12). ?

One can also derive (17) using ansatz. To do this, let x = y
in (20). Then,

lnq,q′ ,r x ⊗ q′x
� �

= lnq,q′ ,rx ⊕ r lnq,q′ ,rx: ð24Þ

Lemma 2. If lnq,q′ ,rx =Gðlnq,q′xÞ =GðzÞ, then

G 2zð Þ = 2G zð Þ + 1 − rð Þ G zð Þ½ �2: ð25Þ

Moreover, when z = lnq,q′x, the ansatz

G zð Þ = 1
1 − r

bz − 1ð Þ, ð26Þ

satisfies equation (25).

Proof. Note that from (21)

lnq,q′ ,r x ⊗ q′x
� �

= G lnq,q′ x ⊗ q′x
� �� �

= G lnq,q′x + lnq,q′x
� �

= G 2 lnq,q′x
� �

=G 2zð Þ:

ð27Þ

Thus, from (23) and (20),

G 2 lnq,q′x
� �

= lnq,q′ ,rx ⊕ r lnq,q′ ,rx = lnq,q′ ,rx + lnq,q′ ,rx

+ 1 − rð Þ lnq,q′ ,rx
� �2

= 2G lnq,q′x
� �

+ 1 − rð Þ

� G lnq,q′x
� �h i2

G 2zð Þ = 2G zð Þ + 1 − rð Þ G zð Þ½ �2:
ð28Þ

Then, the ansatz in (26) will give

2G zð Þ + 1 − rð Þ G zð Þ½ �2

= 2 · 1
1 − r

bz − 1ð Þ + 1 − rð Þ 1
1 − r

bz − 1ð Þ
� 
2

= 2
1 − r

bz − 1ð Þ + bz − 1ð Þ2
1 − r

= 2bz − 2 + b2z − 2bz + 1
1 − r

= 2bz − 2 + b2z − 2bz + 1
1 − r

= b2z − 1
1 − r

=G 2zð Þ,
ð29Þ

which means that (26) solves equation (25). ?

Lemma 2. implies that

G zð Þ =G lnq,q′x
� �

= lnq,q′ ,rx =
1

1 − r
blnq,q ′ x − 1
� �

: ð30Þ

Using the property that d/dxlnq,q′,rxjx=1 = 1,which is a

natural property of a logarithmic function, it is determined
that b = e1−r: Consequently,

lnq,q′ ,rx =
1

1 − r
e 1−rð Þ lnq,q ′ x − 1
� �

: ð31Þ

Explicitly,

lnq,q′ ,rx =
1

1 − r
e1−r/1−q

′ exp 1−q′ð Þ/ 1−qð Þ½ � x1−q−1ð Þð Þ − 1
� �

,

ð32Þ

which is the same as that in (17). The preceding equation can
be written as

lnq,q′ ,rx = lnrelnq,q ′ x: ð33Þ

It can be easily verified that

lim
r→1

lnq,q′ ,rx = lnq,q′x: ð34Þ

Graphs of lnq,q′ ,rx for q = q′ = r are shown in Figure 1
while graphs of lnq,q′ ,rx with one fixed parameter are shown
in Figure 2.

3Journal of Function Spaces



3. Properties

In this section, the inverse of the three-parameter logarithmic
function will be derived. It is also verified that the derivative
of this logarithm at x = 1 is 1 and that the value of the func-
tion at x = 1 is zero. Moreover, it is shown that the following
equality holds

lnq,q′ ,r
1
x
= − ln2−q,2−q′ ,2−rx: ð35Þ

It follows from (16) that the three-parameter logarithmic
function is an increasing function of x. Thus, a unique
inverse function exists.

Theorem 3. The inverse of the three-logarithmic function is
given by

ey
q,q′ ,r = expq ln eln eyr

q′

n o
: ð36Þ

Proof. To find the inverse function, let y = lnq,q′ ,rðxÞ and solve
for x. That is,

y = 1
1 − r

exp 1 − r

1 − q′
exp 1 − q′

1 − q
x1−q − 1
� � !

− 1
 !

− 1
( )

,

ð37Þ

q = q' = r = 0.3
q = q' = r = 1.7
q = q' = r = 1

q = q' = r = 1.1
q = q' = r = 1.3

–2

–1

0

1

2

0 1 2 3

x

In
q

,q
' ,r

 (x
)

(a)

x

–10

–5

0

5

10

In
q

,q
' ,r

 (x
)

q = q' = r = 0.3
q = q' = r = 0.7
q = q' = r = 1

q = q' = r = 1.1
q = q' = r = 1.3

0.01 0.10 10 1001

(b)

Figure 1: Illustration of the three-parameter logarithm in equation (32), setting q = q′ = r in (a) linear scales and (b) semilogarithmic scales.
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Figure 2: Continued.
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from which

x = 1 + 1 − q

1 − q′
ln 1 + 1 − q′

1 − r
ln 1 + 1 − rð Þyf g

" #( )1/1−q

:

ð38Þ

Thus, the inverse function is given by

ey
q,q′ ,r = expq,q′ ,ry =

(
1 + 1 − q

1 − q′
ln
"
1

+ 1 − q′
1 − r

ln 1 + 1 − rð Þyf g
#)1/1−q

= 1 + 1 − q

1 − q′
ln 1 + 1 − q′

� �
ln 1 + 1 − rð Þyf g1/1−r

h i� 	1/1−q

= 1 + 1 − q

1 − q′
ln 1 + 1 − q′

� �
ln eyr

h i� 	1/1−q

= 1 + 1 − qð Þ ln 1 + 1 − q′
� �

ln eyr
h i1/1−q′� 	1/1−q

= 1 + 1 − qð Þ ln eln eyr
q′

n o1/1−q
= e

ln e
ln e

y
r

q′
q = expq ln eln eyr

q

n o
,

ð39Þ

where the q-exponential exq is defined in (8).

Theorem 4. The three-parameter logarithm satisfies the fol-
lowing properties:

(1) ðd/dxÞlnq,q′ ,rxjx=1 = 1,

(2) lnq,q′ ,r1 = 0,

(3) The slope of lnq,q′ ,rx is positive for all x > 0

(4) lnq,q′ ,rð1/xÞ = −ln2−q,2−q′,2−rx:

Proof. To find the derivative, use (17) to obtain

d
dx

lnq,q′ ,rx = x−q exp 1 − r

1 − q′
e 1−q′ð Þ lnq1 − 1
� �

− 1
� 	

= 0: ð40Þ

From (40), the slope of lnq,q′,rx is positive for all x > 0.
This is also observed in Figures 1 and 2.

To prove part (4) of the theorem, let q⟶ 2 − q, q′
⟶ 2 − q′, and r⟶ 2 − r. From [5],

lnq,q′
1
x
= − ln2−q,2−q′x, ð41Þ

then

lnq,q′ 1/xð Þ =
e
ln q,q ′f g 1/xð Þ� �1−r

− 1
1 − r

=
e−ln2−q,2−q ′ x
� �1−r

− 1
1 − r

=
eln2−q,2−q ′ x
� �r−1

− 1
− r − 1ð Þ =

− eln2−q,2−q ′ x
� �1− 2−rð Þ

− 1
� 	

1 − 2 − rð Þ
= − ln2−q,2−q′ ,2−rx:?

ð42Þ

q' = 0.4, r = 0.6
q' = 0.7, r = 0.9
q' = 1.1, r = 1.3

q' = 1.4, r = 1.7
q' = 1.6, r = 1.9

0.01 0.10 1 10 100

–5

0

5

In
0.

3,
q' 
,r

 (x
)

x

(c)

Figure 2: (a) Illustration of the three-parameter logarithm for fixed value of r. (b) Illustration of the three-parameter logarithm for fixed value
of q′. (c) Illustration of the three-parameter logarithm for fixed value of q.
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4. Three-Parameter Entropy

A three-parameter generalization of the Boltzmann-Gibbs-
Shannon entropy is constructed here, and its properties are
proved. Based on the three-parameter logarithm the entropic
function is defined as follows:

Sq,q′,r ≡ k〠
ω

i=1
pi lnq,q′,r

1
pi
: ð43Þ

If pi = 1/ω, ∀i,

Sq,q′ ,r = k lnq,q′ ,rω, ð44Þ

where ω is the number of states.

4.1. Lesche-Stability (or Experimental Robustness). The func-
tional form of lnq,q′,rx given in the previous section is analytic
in x as lnq,q′ ,rx is analytic in x. Consequently, Sq,q′,r is Lesche-
stable.

4.2. Expansibility. An entropic function S satisfies this condi-
tion if a zero probability ðpi = 0Þ state does not contribute to
the entropy. That is, Sðp1, p2,⋯,pw, 0Þ = Sðp1, p2,⋯,pwÞ for
any distribution fpig. Observe that in the limit pi = 0, lnq,q′ ,r
1/pi is finite if one of q, q′, r is greater than 1. Consequently,

Sq,q′ ,r p1, p2,⋯,pw, 0ð Þ = Sq,q′ ,r p1, p2,⋯,pwð Þ ð45Þ

provided that one of q, q′,r is greater than 1.

4.3. Concavity. Concavity of the entropic function Sq,q′,r is
assured if

d2

dp2i
pi lnq,q′ ,r

1
pi

� �
< 0: ð46Þ

Theorem 5. The three-parameter entropic function Sq,q′ ,r is

concave provided q + q′ + r > 2.

Proof. By manual calculation (which is a bit tedious),

d2

dp2i
pi lnq,q′,r

1
pi

� �
= exp 1 − r

1 − q′
e 1−q′ð Þ lnq1/pi − 1
� �� 	

� e 1−q′ð Þ lnq1/pi ×
n
−qpq−2i + 1 − q′

� �
p2q−3i

+ 1 − rð Þp2q−3i e 1−q′ð Þ lnq1/pi
o
:

ð47Þ

In the limit pi ⟶ 1, the second derivative given in (47) is
less than zero if q + q′ + r > 2. Thus, concavity of Sq,q′ ,r is

guaranteed if q + q′ + r > 2 . In the limit pi ⟶ 0, concavity
is guaranteed if r > 1. If r < 1, concavity holds if q > 1.

4.4. Convexity. A twice-differentiable function of a single var-
iable is convex if and only if its second derivative is nonneg-

ative on its entire domain. The analysis on the convexity of
Sq,q′,r is analogous to that of its concavity. In the limit pi
⟶ 1, convexity is guaranteed if q + q′ + r ≤ 2. In the lim-
it pi ⟶ 0, convexity is assured if q, r < 1. Thus, we have the
following theorem.

Theorem 6. The three-parameter entropic function Sq,q′,r is
convex provided q + q′ + r ≤ 2.

Concavity of Sq,q′ ,r is illustrated in Figure 3(a) while con-
vexity is illustrated in Figure 3(b).

4.5. Composability. An entropic function S is said to be com-
posable if for events A and B,

S A + Bð Þ =Φ S Að Þ, S Bð Þ, indicesð Þ, ð48Þ

where Φ is some single-valued function [5]. The Boltzmann-
Gibbs-Shannon entropy satisfies

SBGS A + Bð Þ = SBGS Að Þ + SBGS Bð Þ: ð49Þ

Hence, it is composable and additive. The one-parameter
entropy Sq,for q ≠ 1 is also composable as it satisfies

SA+Bq

k
=
SAq
k

⊕ q

SBq
k

=
Sq Að Þ
k

+
Sq Bð Þ
k

+ 1 − qð Þ Sq Að Þ
k

Sq Bð Þ
k

:

ð50Þ

The two-parameter entropy Sq,q′ [5] satisfies, in the
microcanonical ensemble (i.e., equal probabilities), that

Y SA+B
� �

= Y SA
� �

+ Y SB
� �

+ 1 − q′
1 − q

Y SA
� �

Y SB
� �

, ð51Þ

where

Y Sð Þ ≡ 1 + 1 − q

1 − q′
ln 1 + 1 − q′

� � S
k

� 

: ð52Þ

However, this does not hold true for arbitrary distribu-
tions fpig, which means Sq,q′ is not composable in general.
For the 3-parameter entropy Sq,q′ ,r , a similar property as that
of (51) is obtained as shown in the following theorem.

Theorem 7. The three-parameter entropy Sq,q′ ,r satisfies

U SA+B
� �

=U SA
� �

+U SB
� �

+ 1 − q′
1 − q

U SA
� �

U SB
� �

, ð53Þ

where

U Sð Þ = ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ S
k

� 
" #
· ð54Þ
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Figure 3: Illustration of the three-parameter entropic function: (a) concavity and (b) convexity.
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Proof. Note that

lnq,q′ WAWBð Þ = 1
1 − q′

e 1−q′ð Þ lnq WAWBð Þ − 1
h i

=
SA+B
q,q′
k

,

ð55Þ

from which

SA
q,q′ ,r
k

= lnq,q′ ,rWA =
1

1 − r
e 1−rð Þ lnq,q′ WA − 1
h i

= 1
1 − r

e
1−rð ÞSA

q,q ′
/k − 1

� 

:

ð56Þ

Similarly,

SB
q,q′ ,r
k

= lnq,q′rWB =
1

1 − r
e
1−rð ÞSB

q,q ′
/k − 1

h i
,

SA+B
q,q′,r
k

= ln q,q′ ,rf gWAWB =
1

1 − r
e
1−rð ÞSA+B

q,q ′
/k − 1

� 


= 1
1 − r

e
1−rð ÞSA+b

q,q ′
/k −

1
1 − r

:

ð57Þ

From (57),

ln 1 − rð Þ
SA+B
q,q′ ,r
k

+ 1
" #

= 1 − rð Þ
SA+B
q,q′
k

: ð58Þ

Using the following result in [5],

Equation (58) becomes

Now, with

U Sð Þ = ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ S
k

� 
" #
, ð61Þ

we have

1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA+B
q,q′ ,r
k

" #

= e 1−q′ð Þ/ 1−qð Þ½ �U SAð Þ·U SBð Þ

× 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA
q,q′,r
k

" #" #

× 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SB
q,q′,r
k

" #" #
:

ð62Þ

Consequently,

ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA+B
q,q′,r
k

" #" #

= 1 − q′
1 − q

U SA
� �

·U SB
� �

+ ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SA
q,q′,r
k

" #" #

+ ln 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SB
q,q′,r
k

" #" #
,

ð63Þ

which can be written as

U SA+B
� �

=U SA
� �

+U SB
� �

+ 1 − q′
1 − q

U SA
� �

U SB
� �

: ð64Þ

SA+B
q,q′
k

= 1
1 − q′

e
1−q′/1−q ln 1+ 1−q′ð ÞSA

q,q ′
/k

h i
·ln 1+ 1−q′ð ÞSB

q,q ′
/k

h i
1+ 1−q′ð ÞSA

q,q ′
/k

h i
1+ 1−q′ð ÞSB

q,q ′
/k

h i
− 1

8<
:

9=
;: ð59Þ

ln 1 + 1 − rð Þ
SA+B
q,q′ ,r
k

" #
= 1 − r

1 − q′

(
e

1−q′ð Þ/ 1−qð Þ½ � ln 1+ 1−q′ð Þ/ 1−rð Þ½ � ln 1+ 1−rð ÞSA
q,q ′ ,r

/k
h ih i

·ln 1+ 1−q′ð Þ/ 1−rð Þ½ � ln 1+ 1−rð ÞSB
q,q ′ ,r

/k
h ih i

× 1 + 1 − q′
1 − r

ln 1 + 1 − rð Þ
SAq,q,′ ,r
k

" #" #
× 1 + 1 − q′

1 − r
ln 1 + 1 − rð Þ

SBq,q,′ ,r
k

" #" #
− 1
)
:

ð60Þ
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In view of the noncomposability of the 2-parameter
entropy, Sq,q′ ,r is also noncomposable.

5. Conclusion

It is shown that the two-parameter logarithm of Schwämmle
and Tsallis [5] can be generalized to three-parameter loga-
rithm using q-analogues. Consequently, a three-parameter
entropic function is defined, and its properties are proved.
It will be interesting to study the applicability of the three-
parameter entropy to adiabatic ensembles [13] and other
ensembles [14] and how these applications relate to general-
ized Lambert W function.
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We use the properties of superquadratic functions to produce various improvements and popularizations on time scales of the
Hardy form inequalities and their converses. Also, we include various examples and interpretations of the disparities in the
literature that exist. In particular, our findings can be seen as refinements of some recent results closely linked to the time-scale
inequalities of the classical Hardy, Pólya-Knopp, and Hardy-Hilbert. Some continuous inequalities are derived from the main
results as special cases. The essential results will be proved by making use of some algebraic inequalities such as the Minkowski
inequality, the refined Jensen inequality, and the Bernoulli inequality on time scales.

1. Introduction

In [1], Hardy claimed this fundamental inequality and
proved it:

ð∞
0

1
θ

ðθ
0
g ηð Þdη

� �q

dθ ≤
q

q − 1

� �qð∞
0
gq θð Þdθ, ð1Þ

where 1 < q <∞, g ≥ 0, and ðq/ðq − 1ÞÞq are sharp. They have
emerged in the literature since the discovery of (1) numerous
papers concerned with new arguments, generalizations, and
extensions. One of the most common generalizations for
(1) is the disparity of Pólya-Knopp’s inequality (see [2]),
which is

ð∞
0

exp 1
θ

ðθ
0
ln g ηð Þdη

� �
dθ ≤ e

ð∞
0
g θð Þdθ: ð2Þ

In [3], Kaijser et al. signalized that both (1) and (2) are
special states of the Hardy-Knopp’s inequality:

ð∞
0
Θ

1
θ

ðθ
0
g ηð Þdη

� �
dθ
θ

≤
ð∞
0
Θ g θð Þð Þdθ dθ

θ
, ð3Þ

where Θ ∈ Cðð0,∞Þ,ℝÞ is a convex function.
In [4], Cizmeija et al. proved that if ζ : ð0, αÞ⟶ℝ ≥ 0,

Θ is a convex on ðβ, γÞ where −∞≤ β ≤ γ ≤∞, g : ð0, αÞ
⟶ℝ with gðθÞ ∈ ðβ, γÞ, ∀θ ∈ ð0, αÞ as an integrable func-
tion and υ is defined by

υ ηð Þ≔ η
ðα
η

ζ θð Þ
θ2

dθ, for η ∈ 0, αð Þ, ð4Þ
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then the integral inequality

ð∞
0
ζ θð ÞΘ 1

θ

ðθ
0
g ηð Þdη

� �
dθ
θ

≤
ð∞
0
υ θð ÞΘ g θð Þð Þ dθ

θ
, ð5Þ

is valid.
In [5], Kaijser et al. applied the inequality of Jensen for

convex functions and the theorem of Fubini to establish an
invitingly popularization (1). Particularly, it was proved that
if ζ : ð0, αÞ⟶ℝ ≥ 0 and l : ð0, αÞ × ð0, αÞ⟶ℝ ≥ 0, 0 < α
≤∞ such that

L θð Þ≔
ðθ
0
l θ, ηð Þdη > 0, θ ∈ 0, αð Þ, ð6Þ

and Θ ∈ CðI,ℝÞ, I ⊆ℝ is a convex function, g : ð0, αÞ⟶ℝ
such that gðθÞ ∈ I, ∀θ ∈ ð0, αÞ be integrable function, and υ is
defined by

υ ηð Þ≔ η
ðα
η

ξ θð Þ l θ, ηð Þ
L θð Þ

dθ
θ

<∞, η ∈ 0, αð Þ, ð7Þ

then the integral inequality

ð∞
0
ξ θð ÞΘ Alg θð Þð Þ dθ

θ
≤
ð∞
0
υ θð ÞΘ g θð Þð Þ dθ

θ
, ð8Þ

is valid, where Alg is defined by

Alg θð Þ≔ 1
L θð Þ

ðθ
0
l θ, ηð Þg ηð Þdη, θ ∈ 0, αð Þ: ð9Þ

As a popularization of (8), Krulic et al. [6] have demon-
strated that if ðΩ1,∑1, μ1Þ and ðΩ2,∑2, μ2Þ are two measure
spaces with positive σ finite measures ζ : Ω1 ⟶ℝ ≥ 0 and
l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that

L θð Þ≔
ð
Ω2

l θ, ηð Þdμ2 ηð Þ > 0, θ ∈Ω1, ð10Þ

and Θ is a convex function on an interval I ⊆ℝ, g : Ω2 ⟶
ℝ ≥ > 0 with gðΩ2Þ ⊆ I be measurable function and υ is
defined by

υ ηð Þ≔
ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

� �q/p
dμ1 θð Þ

 !q/p

<∞, η ∈Ω2,

ð11Þ

then the integral inequality

ð
Ω1

ξ θð ÞΘq/p Alg θð Þð Þdμ1 θð Þ
 !1/q

≤
ð
Ω2

υ ηð ÞΘ g ηð Þð Þdμ2 ηð Þ
 !1/q

,
ð12Þ

is valid, where 0 < p ≤ q <∞ and Alg : Ω1 ⟶ℝ are
defined by

Alg θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð Þdμ2 ηð Þ, θ ∈Ω1: ð13Þ

Observe that inequality (12) is a generalization of
Hardy inequality (1). Namely, let Ω1 =Ω2 =ℝ+ = ð0,∞Þ,
dμ1ðθÞ = dθ, dμ2ðηÞ = dη and uðθÞ = 1/θ, and if 1 < p = q
<∞ and Θ : ½0,∞Þ⟶ℝ are defined by ΘðθÞ = θp, then
(1) is followed directly from (12), which can be rewritten
with gðηp/ðp−1ÞÞη1/ðp−1Þ instead of gðηÞ and

l θ, ηð Þ≔ 1
θ
χ0<η≤θ<∞ θ, ηð Þ: ð14Þ

In the same setting, except with gðηÞη1/p instead of g
ðηÞ and with

l θ, ηð Þ≔ θ

η

� �1/q
θ + ηð Þ−1, ð15Þ

relation (12) becomes the Hardy-Hilbert integral inequality
(see [7]).

ð∞
0

ð∞
0

g ηð Þ
θ + η

dη
� �p

dθ ≤
π

sin π/pð Þ
� �pð∞

0
gp θð Þdθ: ð16Þ

In [8], Abramovich et al. considered a superquadratic
function Θ instead of a convex function Θ and obtained
the following refinement of inequality (12) in the particu-
lar case p = q, as

ð
Ω1

ζ θð ÞΘ Alg θð Þð Þdμ1 θð Þ

+
ð
Ω1

ð
Ω2

ζ θð Þ l θ, ηð Þ
L θð Þ Θ g ηð Þ − Alg θð Þj jð Þdμ1 θð Þdμ2 ηð Þ

≤
ð
Ω2

υ ηð ÞΘ g ηð Þð Þdμ2 ηð Þ:

ð17Þ

In [9], Aleksandra et al. proved that, if λ ≤ 1, ðΩ1, Σ1,
μ1Þ and ðΩ2, Σ2, μ2Þ are two measure spaces with positive
σ-finite measures, ζ : Ω1 ⟶ℝ ≥ 0, l : Ω1 ×Ω2 ⟶ℝ ≥ 0
such that L : Ω1 ⟶ℝ is defined as in (10), Θ ∈ CðI,ℝÞ,
I ⊆ℝ is a convex function, g : Ω2 ⟶ℝ ≥ 0 such that
gðΩ2Þ ⊆ I be measurable function and is defined by

υ ηð Þ≔
ð
Ω1

ζ θð Þ l θ, ηð Þ
L θð Þ

� �λ

dμ1 θð Þ
 !1/λ

<∞, η ∈Ω2,

ð18Þ
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then the integral inequality

ð
Ω1

ζ θð ÞΘλ Alg θð Þð Þdμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ζ θð Þ l θ, ηð Þ
L θð Þ

�Θλ−1 g ηð Þ − Alg θð Þj jð Þdμ1 θð Þdμ2 ηð Þ

≤
ð
Ω2

υ ηð ÞΘ g ηð Þð Þdμ2 ηð Þ
 !λ

,

ð19Þ

is valid, where Alg : Ω1 ⟶ℝ is defined by (13).
In the past few years, several researchers have suggested

the study of dynamic time-scale inequalities. In [10], the
authors showed a number of Hardy-type inequalities with a
general kernel on time scale. Namely, they have determined
that if ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale mea-
sure spaces, l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔη <∞, θ ∈Ω1, ð20Þ

and ζ : Ω1 ⟶ℝ+ ≥ 0 such that

υ ηð Þ≔
ð
Ω1

l θ, ηð Þζ θð Þ
L θð Þ Δθ <∞, η ∈Ω2, ð21Þ

then the integral inequality

ð
Ω1

ζ θð ÞΘ 1
L θð Þ

ð
Λ

l θ, ηð Þg ηð ÞΔη
� �

Δθ ≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔη,

ð22Þ

is available for all Δμ2-integrable g : Ω2 ⟶ℝ such that
gðΩ2Þ ⊂ I and Θ ∈ CðI,ℝÞ, I ⊂ℝ are a convex function.

Moreover, Donchev et al. [11] improved the inequality
(22) by replacing the function gðηÞ by an m-tuple of func-
tions gðηÞ = ðg1ðηÞ, g2ðηÞ,⋯, gmðηÞÞ such that g1ðηÞ, g2ðηÞ
,⋯, gmðηÞ are Δμ2-integrable on Ω2 in the following way.
If ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale measure
spaces, U ⊂ℝm a convex set and l : Ω1 ×Ω2 ⟶ℝ+ such
that

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔη <∞, θ ∈Ω1, ð23Þ

and ζ : Ω1 ⟶ℝ such that

υ ηð Þ≔
ð
Ω1

l θ, ηð Þζ θð Þ
L θð Þ Δθ <∞, η ∈Ω2, ð24Þ

then for every a convex function Θ, the integral inequality

ð
Ω1

ζ θð ÞΘ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð ÞΔη
 !

Δθ ≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔη,

ð25Þ

is available for all Δμ2-integrable functions g : Ω2 ⟶ℝm

such that gðΩ2Þ ⊂U ⊂ℝm:
In [12], the authors have specified the time scale version

of (17). That is, they proved it if ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2,
μ2Þ are two time-scale measure spaces with positive σ-finite
measures, ζ : Ω1 ⟶ R ≥ 0 and l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such
that lðθ, :Þ is a Δμ2-integrable function for θ ∈Ω2, and L
: Ω1 ⟶ℝ is defined as

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔμ2 ηð Þ > 0, θ ∈Ω1, ð26Þ

υ ηð Þ≔
ð
Ω1

ζ θð Þ l θ, ηð Þ
L θð Þ Δμ1 θð Þ <∞, η ∈Ω2: ð27Þ

If Θ : ½α,∞Þ⟶ℝ ≥ 0, ðα ≥ 0Þ and a superquadratic
function, then

ð
Ω1

ζ θð ÞΘ Alg θð Þð ÞΔμ1 θð Þ +
ð
Ω1

ð
Ω2

ζ θð Þ l θ, ηð Þ
L θð Þ Θ

� g ηð Þ − Alg θð Þj jð ÞΔμ1 θð ÞΔμ2 ηð Þ
≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ,
ð28Þ

is available for all Δμ2-integrable function g : Ω2 ⟶ℝ ≥ 0,
and Alg is defined by

Algð Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð29Þ

In [13], Saker et al. obtained the following refined Jen-
sen’s inequality for superquadratic

Θ

Ð
Ω2
l θ, ηð Þg ηð ÞΔμ2 ηð ÞÐ
Ω2
l θ, ηð ÞΔμ2 ηð Þ

 !

≤
ð
Ω2

l θ, ηð ÞÐ
Ω2
l θ, ηð ÞΔμ2 ηð Þ Θ g ηð Þð Þ½

−Θ g ηð Þ − Alg θð Þj jð Þ�Δμ2 ηð Þ,

ð30Þ

and in the same paper, he employed the above result to derive
the following inequality of Hardy type:

ð
Ω1

ζ θð ÞΘλ Alg θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ζ θð Þ

� l θ, ηð Þ
L θð Þ Θλ−1 Alg θð Þð ÞΘ g ηð Þ − Alg θð Þj jð ÞΔμ1 ηð Þ

≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

,

ð31Þ
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where

υ ηð Þ≔
ð
Ω1

ζ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δμ1 θð Þ
 !1/λ

<∞, μ ∈Ω2,

ð32Þ

λ ≥ 1, ζ : Ω1 ⟶ℝ ≥ 0, and l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such
that lðθ, :Þ is a Δμ2-integrable function for θ ∈Ω2 and L
: Ω1 ⟶ℝ is defined by (26), Θ : ½0,∞Þ⟶ℝ ≥ 0 is a
superquadratic function, and Alg is defined by (29).

Another development of Hardy-type inequality (28) has
been made by Bibi [14] and Fabelurin [15] as follows. If
ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale measure
spaces, ζ : Ω1 ⟶ℝ ≥ 0 and l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that
lðθ, :Þ are a Δμ2-integrable function for θ ∈Ω2, L : Ω1 ⟶ℝ
is defined by (26) and Θ ∈ CðKm,ℝÞ is a superquadratic
function, then

ð
Ω1

ξ θð ÞΘ Algð Þ θð Þð ÞΔμ1 θð Þ +
ð
Ω1

ð
Ω2

ξ θð Þ

� l θ, ηð Þ
L θð Þ Θ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ

≤
ð
Ω2

υ ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ,

ð33Þ

is available for all Δμ2-integrable functions g : Ω2 ⟶ℝm

such that gðΩ2Þ ⊂ Km, where Alg : Ω1 ⟶ℝ is defined by

Algð Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð34Þ

For developing of dynamic inequalities on time scale cal-
culus, we refer the reader to the articles [16–26].

Motivated by the above results, our major aim in this
paper is to deduce few nouveau general Hardy-type inequal-
ities for multivariate superquadratic functions that involve
more general kernels on arbitrary time scales.

The paper is governed as follows: We remember some
basic notions, definitions, and results of multivariate super-
quadratic functions on time scales in Preliminaries. In
Inequalities with General Kernel, we obtain the extensions
to the general kernel of Hardy-type inequality. In Inequalities
with Specific Time Scales, we extend the latest results from
Inequalities with General Kernel to several specific time
scales. In Inequalities with Specific Time Scales, we discuss
several particular cases of Hardy-type inequality by choosing
such special kernels. In Inequalities with Specific Kernels, we
derive enhanced forms of certain well-knownHardy-Hilbert-
type inequalities.

2. Preliminaries

In this section, we will present some fundamental concepts
and effects to integrals of time scales and for multivariate
superquadratic functions which will be useful to deduce our

major results. Let ℝm be the Euclidean space, θ≔ ðθ1, θ2,
⋯, θmÞ ∈ℝm, η≔ ðη1, η2,⋯, ηmÞ ∈ℝm, and gðtÞ≔ ðg1ðtÞ,
g2ðtÞ,⋯, gmðtÞÞ be the function defined on θ ⊂ℝm.
Throughout this supplement, we utilize the following
notations:

θ:η≔ θ1η1, θ2η2,⋯, θmηmð Þ,
θj j≔ θ1j j, θ2j j,⋯, θmj jð Þ and

θ, ηh i≔ 〠
m

i=1
θiηi:

ð35Þ

Also, θ ≤ ηðθ < ηÞ means that θi ≤ ηiðθi < ηiÞ, ∀1 ≤ i ≤m,
and 0≔ ð0, 0,⋯, 0Þ is the null vector. The subsets Km and
K+

m in ℝm are defined by

Km ≔ 0,∞½ Þm ≔ θ ∈ℝm : 0 ≤ θf g,
K+

m ≔ 0,∞½ Þm ≔ θ ∈ℝm : 0 < θf g:
ð36Þ

Now, we arraign the definition and few essential proper-
ties of superquadratic functions that premised in [27].

Definition 1. A function Θ : Km ⟶ℝ is named a superqua-
dratic function if ∀θ ∈ Km, ∃cðθÞ ∈ℝm such that

Θ ηð Þ −Θ θð Þ −Θ η − θj jð Þ ≥ c θð Þ, η − θh i, ∀η ∈ Km: ð37Þ

If −Θ is a superquadratic, then Θ is a subquadratic, and
the reverse inequality of (37) is available.

In the following, we recall a couple of beneficial examples
of a superquadratic function.

Example 1. By [2], Example 1, the power function
Θ : ½0,∞Þ⟶ℝ, defined by ΘðθÞ≔ θp, is called a super-
quadratic if p ≥ 2 and a subquadratic if 1 < p ≤ 2 (it is also
readily seen that if 0 < p ≤ 1 then θp is a subquadratic
function). Since the sum of superquadratic functions is
also superquadratic, then

Θ θð Þ≔ 〠
m

i=1
θpi , ð38Þ

is a superquadratic on Km for each p ≥ 2.

Example 2 ([2], Examples 4, 5, and 6,). By utilizing the same
argument as in Example 1, the functions Θ1,Θ2,Θ3 : Km
⟶ℝ defined as
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Θ1 θð Þ≔ 〠
m

i=1
θi cosh θi − sinh θið Þ,

Θ2 θð Þ≔ ln 1 + 〠
m

i=1
θi

 !
− 〠

m

i=1
θi,

Θ3 θð Þ≔
〠
m

i=1,i≠j
θ2i ln θi, if θi > 0, θ j = 0,

0, if θ = 0,

8><
>:

ð39Þ

are superquadratic.

The following lemma shows that nonnegative superqua-
dratic functions are indeed convex functions.

Lemma 2. Suppose that Θ is a superquadratic with cðθÞ
≔ ðc1ðθÞ, c2ðθÞ,⋯, cnðθÞÞ as in Definition 1. Then

(i) Θð0Þ ≤ 0 and cið0Þ ≤ 0∀1 ≤ i ≤m

(ii) If Θð0Þ≔ 0 and ∇Θð0Þ≔ 0, then ciðθÞ≔ ∂igðθÞ,
whenever ∂igðθÞ exists for some index 1 ≤ i ≤m at θ
∈ Km

(iii) If Θ ≥ 0, then Θ is convex and Θð0Þ≔ 0 and ∇Θð0Þ
≔ 0.

In the following, we recall the inequality of Minkowski
and the inequality of Jensen for superquadratic functions
on time scales which are utilized in the proof of the essential
results. The following definitions and theorems are referred
from [28, 29]. Let T i, 1 ≤ i ≤m be time scales, and

Λm ≔ T 1 × T 2 ×⋯ × Tm

≔ t = t1, t2,⋯, tmð Þ: ti ∈ T i, 1 ≤ i ≤mf g, ð40Þ

is called an m-dimensional time scale. Consider E to be Δ
-measurable subplot of Λm and g : E⟶ℝ a Δ-measurable
function; then, the corresponding Δ-integral named
Lebesgue Δ-integral is denoted by

ð
E
g t1, t2,⋯, tmð ÞΔ1t1 ⋯ Δmtm,ð

E
g tð ÞΔt,

ð
E
gdμΔor

ð
E
g tð ÞdμΔ tð Þ,

ð41Þ

where μΔ is a σ-additive Lebesgue Δ-measure on Λm. Also, if
gðtÞ≔ ðg1ðtÞ, g2ðtÞ,⋯, gmðtÞÞ is an m-tuple of functions
such that g1, g2,⋯, gm are Lebesgue Δ-integrable on E, thenÐ
EgdμΔ denotes the m-tuple:

ð
E
g1dμΔ,⋯,

ð
E
gmdμΔ

� �
, ð42Þ

i.e., Δ-integral acts on each component of g.

Lemma 3. Assume ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two
time-scale measure spaces, and suppose that u ≥ 0, υ ≥ 0 and
g ≥ 0 on Ω1,Ω2 and Ω1 ×Ω2, respectively. If q ≥ 1, then

ð
Ω1

ð
Ω2

g θ, ηð Þυ ηð Þdμ2 ηð Þ
 !q

u θð Þdμ1 θð Þ
 !1/q

≤
ð
Ω2

ð
Ω1

gq θ, ηð Þu θð Þdμ1 θð Þ
 !

υ ηð Þdμ2 ηð Þ,
ð43Þ

is available provided all integrals in (43) exist. If 0 < q < 1
and

ð
Ω1

ð
Ω2

gυdμ2

 !q

udμ1 > 0, 
ð
Ω2

gυdμ2 > 0, ð44Þ

is available, then (43) is reversed. For q < 0, in addition
with (44), if

ð
Ω1

gqudμ1 > 0, ð45Þ

is available, then the sign of (43) is reversed.

Theorem 4 ([14], Theorem 3.1). Assume ðΩ1, Σ1, μ1Þ and
ðΩ2, Σ2, μ2Þ are two finite-dimensional time-scale measure
spaces. Let Θ ∈ CðKm,ℝÞ ≥ 0 be continuous and superqua-
dratic, l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that lðθ, :Þ is Δμ2-integra-
ble for θ ∈Ω2. Then, the inequality

Θ

Ð
Ω2
l θ, ηð Þg ηð ÞΔμ2 ηð ÞÐ
Ω2
l θ, ηð ÞΔμ2 ηð Þ

 !
≤

Ð
Ω2
l θ, ηð Þ Θ g ηð Þð Þ −Θ g ηð Þ − 1/

Ð
Ω2
l θ, ηð ÞΔμ2 ηð ÞÐΩ2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ
��� ���� �� �

Δμ2 ηð ÞÐ
Ω2
l θ, ηð ÞΔμ2 ηð Þ , ð46Þ
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holds for all functions g such that gðEÞ ⊂ Km. IfΘ is a subqua-
dratic, then (46) is reversed.

3. Inequalities with General Kernel

In this section, we get the Hardy inequality for several
variables via multivariate superquadratic functions. Before
presenting the results, we labeled the following hypothesis.

(A1) ðΩ1, Σ1, μ1Þ and ðΩ2, Σ2, μ2Þ are two time-scale
measure spaces with positive σ-finite measures

(A2) l : Ω1 ×Ω2 ⟶ℝ ≥ 0 such that

L θð Þ≔
ð
Ω2

l θ, ηð ÞΔμ2 ηð Þ <∞, θ ∈Ω1: ð47Þ

(A3) ξ : Ω1 ⟶ℝ is Δμ1-integrable, and the function ω
is defined by

ω ηð Þ≔
ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δμ1 θð Þ
 !1/λ

<∞, η ∈Ω2,

ð48Þ

where λ ≥ 1.

Theorem 5. Assume (A1)–(A3) are satisfied. If Θ ∈ CðKm,
ℝÞ ≥ 0 and is superquadratic, then

ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

�Θλ−1 Akgð Þ θð Þð ÞΘ g ηð Þ − A1g θð Þj jð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

,

ð49Þ

is available for g : Ω2 ⟶ℝm that is a nonnegative Δμ2
-integrable function such that gðΩ2Þ ⊂ Km and Alg : Ω1
⟶ℝ defined by

Algð Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð50Þ

If Θ is subquadratic and 0 < λ < 1, then (49) is reversed.

Proof. We begin with an explicit identity

Θ Algð Þ θð Þð Þ≔Θ
1

L θð Þ
ð
Ω2

l θ, ηð Þg ηð ÞΔμ2 ηð Þ
 !

: ð51Þ

By applying the refined Jensen inequality (46) on (51), we
find

Θ Algð Þ θð Þð Þ + 1
L θð Þ

ð
Ω2

l θ, ηð ÞΘ g ηð Þ − Alg θð Þj jð ÞΔμ2 ηð Þ

≤
1

L θð Þ
ð
Ω2

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ:

ð52Þ

Then, since λ ≥ 1 and Θ ≥ 0, we get

Θ Algð Þ θð Þð Þ + 1
L θð Þ

ð
Ω2

l θ, ηð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ
 !λ

≤
1

L θð Þ
ð
Ω2

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

:

ð53Þ

Furthermost, by utilizing the famous inequality of
Bernoulli, it ensues that the L. H. S. of (53) became

Θ Algð Þ θð Þð Þ + 1
L θð Þ

ð
Ω2

l θ, ηð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ
 !λ

≤Θλ Algð Þ θð Þð Þ + λ
Θλ−1 Algð Þ θð Þð Þ

L θð Þ
ð
Ω2

l θ, ηð ÞΘ

� g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ,
ð54Þ

that is, we get

Θλ Algð Þ θð Þð Þ + λ
Θλ−1 Algð Þ θð Þð Þ

L θð Þ
ð
Ω2

l θ, ηð ÞΘ

� g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ

≤
1

L θð Þ
ð
Ω2

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

:

ð55Þ

Multiplying (55) by ξðθÞ and integrating it over Ω1 with
respect to Δμ1ðθÞ, we have
ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ξ θð Þ

� 1
L θð Þ

ð
Ω1

l θ, ηð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ2 ηð Þ
 !

Δμ1 θð Þ

≤
ð
Ω1

ξ θð Þ 1
L θð Þ

ð
Ω1

l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

Δμ1 θð Þ:

ð56Þ

Applying the inequality of Minkowski on the R. H. S. of
(56), we get
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ð
Ω1

ξ θð ÞΘ 1
L θð Þ

ð
Ω2
l θ, ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ

� �λ

Δμ1 θð Þ

≤
ð
Ω2

Θ g ηð Þð Þ
ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δμ1 θð Þ
 !1/λ

Δμ2 ηð Þ
0
@

1
A

λ

:

ð57Þ

Finally, substituting (57) into (56) and utilizing the defi-
nition (48) of the weight function ω, we get

ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ Θλ−1

� Algð Þ θð Þð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !λ

,

ð58Þ

which is (49). If Θ is subquadratic and 0 < λ < 1, the corre-
sponding results can be obtained similarly.

Remark 6. If λ = 1 andm = 1 in Theorem 5, then (49) reduces
to (28) premised in Introduction.

Remark 7. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ and m = 1, Theorem 5 coincides with Theorem 2.1.1
in [30].

Remark 8. As a special case of Theorem 5 when T =ℝ and
m = 1, we have the inequality (19).

Corollary 9. Given that ξ and ðAlgÞðθÞ are as in Theorem 5
and ω ≥ 0, then, since Θ ≥ 0 and superquadratic, the second
term on the L. H. S. of (49) is nonnegative and the integral
inequality

ð
Ω1

ξ θð ÞΘλ Algð Þ θð Þð ÞΔμ1 θð Þ ≤
ð
Ω2
ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ

� �λ

,

ð59Þ

is valid.

Remark 10. By taking λ = 1 in Corollary 9, inequality (59)
reduces to (25).

Remark 11. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ = Δη and m = 1, Corollary 9 coincides with Corollary
2.1.2 in [30].

Remark 12. Rewrite (49) with λ = qp−1 ≥ 1 such that 0 < p ≤
q <∞ or −∞ < p ≤ q < 0; then
ð
Ω1

ξ θð ÞΘq/p Algð Þ θð Þð ÞΔμ1 θð Þ + q
p

ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ Θq/p−1

� Algð Þ θð Þð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !q/p

:

ð60Þ

Remark 13. Form = 1, inequality (60) coincides with inequal-
ity (3.13) in ([28], Remark 3.5).

Remark 14. In Remark 12, since Θ ≥ 0, then the second term
on the L. H. S. of (60) is nonnegative. Hence, (60) reduces to

ð
Ω1

ξ θð ÞΘq/p Algð Þ θð Þð ÞΔμ1 θð Þ

≤
ð
Ω2

ω ηð ÞΘ g ηð Þð ÞΔμ2 ηð Þ
 !q/p

,
ð61Þ

which is a refinement of the Hardy-type inequality in ([27],
Remark 2.1.4) and [6].

In the following, we labeled some specific superquadratic
functions starting with power functions.

Theorem 15. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

ξ θð Þ 〠
m

i=1
Algið Þp θð Þ

 !r

Δμ1 θð Þ + λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

� 〠
m

i=1
Akgið Þp θð Þ

 !λ−1

〠
m

i=1
gi ηð Þ − Algið Þ θð Þp�� �� !

� Δμ1 θð ÞΔμ2 ηð Þ ≤
ð
Ω2

ω ηð Þ 〠
m

i=1
gi ηð Þð Þp

 !
Δμ2 ηð Þ

 !λ

,

ð62Þ

is valid, where p ≥ 2 and

Algið Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þgi ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð63Þ

If 0 < λ < 1 and 1 < p ≤ 2, then (62) is reversed.

Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
θpi , ð64Þ

in (49).

7Journal of Function Spaces



Remark 16. For m = 1, Theorem 15 reduces to Corollary 3.1
in [13]. In particular, for p = 1 and λ = 1, Theorem 15 reduces
to Remark 3.11 in [13].

Remark 17. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ = Δη and m = 1. Theorem 15 coincides with Corollary
2.1.5 in [30].

Theorem 18. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

ξ θð Þ 〠
m

i=1
exp Aigið Þ θð Þ − Aigið Þ θð Þ − 1ð Þ

 !λ

Δμ1 θð Þ + I

≤
ð
Ω2

ω ηð Þ 〠
m

i=1
gi ηð Þ − log gi ηð Þ − 1ð Þ

 !
Δμ2 ηð Þ

 !λ

,

ð65Þ

is valid, where

I ≔ λ
ð
Ω1

ð
Ω2

ξ θð Þ l θ, ηð Þ
L θð Þ

 
〠
m

i=1
exp log gi ηð Þjð

− Algið Þ θð Þj − log gi ηð Þ − Algið Þ θð Þj j − 1Þ
!

× 〠
m

i=1
exp Algið Þ θð Þ − Algið Þ θð Þ − 1ð Þ

 !λ−1

Δμ1 θð ÞΔμ2 ηð Þ,

ð66Þ

and

Algið Þ θð Þ≔ 1
L θð Þ

ð
Ω2

l θ, ηð Þ log gi ηð ÞΔμ2 ηð Þ, θ ∈Ω1: ð67Þ

If 0 < λ < 1, then (65) is reversed.

Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
exp θið Þ − θi − 1ð Þ, ð68Þ

in (49) and with log gðηÞ instead of gðηÞ.

Remark 19. By taking m = 1 in Theorem 18, inequality (65)
reduces to inequality 3.16 in [28], Corollary 3.2.

Remark 20. For m = 1 and λ = 1, the relation (65) that is
regarded as a generalization and a refinement of the
Pólya-Knopp’s inequality which coincided with Remark
3.12 in [13].

Theorem 21. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

〠
m

i=1
Aigið Þ θð Þ cosh Aigið Þ θð Þ − sinh Aigið Þ θð Þ½ �λ

� ξ θð ÞΔμ1 θð Þ + λ
ð
Ω1

ð
Ω2
ξ θð Þ l θ, ηð Þ

L θð Þ

� 〠
m

i=1
Aigið Þ θð Þ cosh Aigið Þ θð Þ − sinh Aigið Þ θð Þ½ �

 !λ−1

× 〠
m

i=1
gi ηð Þ − Aigið Þ θð Þj j cosh gi ηð Þ − Aigið Þ θð Þj jð Þ½

− sinh gi ηð Þ − Aigið Þ θð Þj jð Þ�Δμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð Þ〠
m

i=1
gi ηð Þ − cosh gi ηð Þð Þ − sinh gi ηð Þð Þ½ �Δμ2 ηð Þð Þ

 !λ

,

ð69Þ

is valid, where Algi is defined as in (63). If 0 < λ < 1, then (69)
is reversed.

Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
θi cosh θi − sinh θið Þ, ð70Þ

in (49).

Remark 22. For λ = 1, Theorem 21 reduces to Theorem 2.5 in
[14]. In particular, form = 1 and λ = 1, Theorem 21 coincides
with Corollary 2.6 in [14].

Theorem 23. Assume (A1)–(A3) are satisfied.
Ifgi : Ω2 ⟶ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such
that giðΩ2Þ ⊂ ½0,∞Þ, then the inequality.

ð
Ω1

ξ θð Þ ln 1 + 〠
m

i=1
Aigið Þ θð Þ

 !
− 〠

m

i=1
Aigið Þ θð Þ

 !λ

Δμ1 θð Þ

+ λ
ð
Ω1

ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

 
ln 1 + 〠

m

i=1
Aigið Þ θð Þ

 !

− 〠
m

i=1
Aigið Þ θð Þ

!λ−1

× ln 1 + 〠
m

i=1
gi ηð ÞAigi θð Þj j

 ! 

− 〠
m

i=1
gi ηð ÞAigi θð Þj j

!λ

Δμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð Þ ln 1 + 〠
m

i=1
gi ηð Þ

 !
− 〠

m

i=1
gi ηð Þ

 !
Δμ2 ηð Þ

 !λ

,

ð71Þ

is valid, where Algi is defined as in (63). If 0 < λ < 1, then (71)
is reversed.

8 Journal of Function Spaces



Proof. We get the result from Theorem 5 by putting

Θ θð Þ≔ 〠
m

i=1
θ2i ln θi, ð72Þ

in (49) with the assumption 0 ln 0 = 0.

Remark 24. For λ = 1, Theorem 23 reduces to Theorem 2.7 in
[14]. In particular, form = 1 and λ = 1, Theorem 23 coincides
with Corollary 2.8 in [14].

Theorem 25. Assume (A1)–(A3) are satisfied. If gi : Ω2 ⟶
ℝð1 ≤ i ≤mÞ are Δμ2-integrable functions such that giðΩ2Þ
⊂ ½0,∞Þ, then the inequality

ð
Ω1

ξ θð Þ ln 1 + 〠
m

i=1
Aigið Þ θð Þ

 !
− 〠

m

i=1
Aigið Þ θð Þ

 !λ

Δμ1 θð Þ

+ λ
ð
Ω1

ð
Ω1

ξ θð Þ l θ, ηð Þ
L θð Þ

 
ln 1 + 〠

m

i=1
Aigið Þ θð Þ

 !

− 〠
m

i=1
Aigið Þ θð Þ

!λ−1

×
 
ln 1 + 〠

m

i=1
gi ηð ÞAigi θð Þj j

 !

− 〠
m

i=1
gi ηð ÞAigi θð Þj j

!λ

Δμ1 θð ÞΔμ2 ηð Þ

≤
ð
Ω2

ω ηð Þ ln 1 + 〠
m

i=1
gi ηð Þ

 !
− 〠

m

i=1
gi ηð Þ

 !
Δμ2 ηð Þ

 !λ

,

ð73Þ

is valid, where Algi is defined as in (63). If 0 < λ < 1, then (73)
is reversed.

Proof. We get the result from Theorem 5 by taking

Θ θð Þ≔ ln 1 + 〠
m

i=1
θi

 !
− 〠

m

i=1
θi, ð74Þ

in (49).

Remark 26. For λ = 1, Theorem 25 reduces to Theorem 2.9 in
[14]. In particular, form = 1 and λ = 1, Theorem 25 coincides
with Corollary 2.10 in [14].

Now, to wrap up this section, we consider yet another
implementation of Theorem 5 rigged with finite measure
spaces.

Corollary 27. Let the supposition of Theorem 5 be satisfied
and denote

Ð
Ω1
Δμ1ðθÞ = jΩ1j and

Ð
Ω2
Δμ2ðθÞ = jΩ2j such that

jΩ1j, jΩ2j <∞: setting lðθ, ηÞ and ξðθÞ = 1. Then, LðθÞ = Ð
Ω2

Δμ2ðθÞ = jΩ2j and

ω ηð Þ≔
ð
Ω1

1
Ω2j j

� �λ

Δμ1 θð Þ
 !1/λ

= 1

Ω2j jλ
ð
Ω1

Δμ1 θð Þ
 !1/λ

= Ω1j j1/λ
Ω2j j :

ð75Þ

Hence, the following inequality

ð
Ω1

Θ
1
Ω2j j

ð
Ω2

g ηð ÞΔμ2 ηð Þ
 !λ

Δμ1 θð Þ

+ λ

Ω2j j
ð
Ω1

ð
Ω2

Θ
1
Ω2j j

ð
Ω2

g ηð ÞΔμ2 ηð Þ
 !λ−1

×Θ g ηð Þ − 1
Ω2j j

ð
Ω2

g ηð ÞΔμ2 ηð Þ
�����

�����
 !

Δμ1 θð ÞΔμ2 ηð Þ

≤
Ω1j j
Ω2j j

ð
Ω2

Θ g ηð Þð ÞΔμ2 ηð Þ
 !λ

,

ð76Þ

is valid. If Θ is subquadratic and 0 < λ < 1, then (76) is
reversed.

Remark 28. By taking m = 1 in Corollary 27, inequality (76)
reduces to inequality 3.19 in [28], Corollary 3.2.

Remark 29. For the Lebesgue scale measures Δμ1ðθÞ = Δθ, Δ
μ2ðηÞ = Δη and m = 1, Corollary 27 coincides with Corollary
2.1.6 in [30].

Remark 30. For T =ℝ,m = 1, and λ = 1, Corollary 27 reduces
to Corollary 3.3 in [8].

4. Inequalities with Specific Time Scales

In this section, by selecting few different time scales, we get
some consequential inequalities. More precisely, assume 0
≤ α < β ≤∞ are points in T and S1 ≔ fðθ, ηÞ ∈ T : 0 ≤ α < η
≤ θ < βg. Applying Theorem 5 to Ω2 =Ω2 = ½α, βÞT , Δμ1ðθÞ
= Δθ, and Δμ2ðηÞ = Δη, we get the following conclusion.

Theorem 31. Assume 0 ≤ α < β ≤∞ and l : ½α, βÞT × ½α, βÞT
⟶ℝ ≥ 0 such as LðθÞ≔ Ð θ

α
kðθ, ηÞΔη <∞, θ ∈ ½α, βÞT

Suppose that ξðθÞ: ½α, βÞT ⟶ℝ and

ω ηð Þ≔
ðβ
η

ξ θð Þ l θ, ηð Þ
L θð Þ

� �λ

Δθ

 !1/λ

<∞, η ∈ α, β½ ÞT , ð77Þ
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where λ ≥ 1. If Θ ∈ CðKm,ℝÞ ≥ 0 and is superquadratic, then

ðβ
α

ξ θð ÞΘλ Algð Þ θð Þð ÞΔθ + λ
ðβ
α

ðθ
α

ξ θð Þ l θ, ηð Þ
L θð Þ Θλ−1

� Algð Þ θð Þð ÞΘ g ηð Þ − Algð Þ θð Þj jð ÞΔθΔη

≤
ðβ
α

ω ηð ÞΘ g ηð Þð ÞΔη
� �λ

,

ð78Þ

is available for all nonnegative integrable functions g
: ½α, βÞT ⟶ℝm and for Alg : ½α, βÞT ⟶ℝ defined as

Algð Þ θð Þ≔ 1
L θð Þ

ðθ
α

l θ, ηð Þg ηð ÞΔη, θ ∈ α, β½ ÞT : ð79Þ

If 0 < λ < 1 and Θ are subquadratic, then (78) is reversed.

Remark 32. By taking m = 1 and replacing ξðθÞ, ωðηÞ, and
lðθ, ηÞ, respectively, ξðθÞ/ðθ − αÞ, ωðηÞ/ðη − αÞ, and lχS1

ðθ, ηÞ
where χS1

denotes the characteristic function over S1 in The-
orem 31, inequality (78) reduces to inequality 4.1 in [28],
Theorem 4.1.

On the other hand, for 0 ≤ α < β ≤∞, consider the set

S2 ≔ θ, ηð Þ ∈ T : β < θ ≤ η <∞f g: ð80Þ

Then, putting Ω1 =Ω2 = ½β,∞ÞT where T is a time scale,
Δμ1ðθÞ = Δθ and Δμ2ðηÞ = Δη. We obtain a dual form of
Theorem 31 as follows.

Theorem 33. Suppose that 0 ≤ β <∞~ξðθÞ : ½β,∞ÞT ⟶ℝ
≥ 0 and ~l : ½β,∞ÞT × ½β,∞ÞT × ½β,∞ÞT ⟶ℝ ≥ 0 such that

~L θð Þ≔
ð∞
θ

~l θ, ηð ÞΔη <∞, θ ∈ β,∞½ ÞT ,

~ω ηð Þ≔
ðη
β

~ξ θð Þ
~l θ, ηð Þ
L θð Þ

 !λ

Δθ

0
@

1
A

1/λ

<∞, η ∈ β,∞½ ÞT ,

ð81Þ

where λ ≥ 1. If Θ ∈ CðKmℝÞ ≥ 0 and superquadratic, then

ð∞
β

~ξ θð ÞΘλ Algð Þ θð Þð ÞΔθ + λ
ð∞
β

ð∞
θ

~ξ θð Þ
~l θ, ηð Þ
L θð Þ Θλ−1

� ~Alg
� �

θð Þ
� �

Θ g ηð Þ − Algð Þ θð Þj jð ÞΔθΔη

≤
ð∞
β

~ω ηð ÞΘ g ηð Þð ÞΔη
 !

,

ð82Þ

is available for all nonnegative Δη -integrable functions
g : ½β,∞ÞT ⟶ℝm and for the operator ~Alg : ½β,∞ÞT ⟶
ℝ defined by

~Alg
� �

θð Þ≔ 1
~L θð Þ

ð∞
θ

~l θ, ηð Þg ηð ÞΔη, θ ∈ β,∞½ ÞT : ð83Þ

If Θ is subquadratic and 0 < λ < 1, then (82) is reversed.

Remark 34. By taking m = 1 and replacing ~ξðθÞ, ~ωðηÞ, and
~lðθ, ηÞ, respectively, by ~ξðθÞ/ðθ − αÞ, ~ωðηÞ/ðη − αÞ, and
~lχS2

ðθ, ηÞ where χS2 denotes the characteristic function over

S2 in Theorem 33; inequality (82) reduces to inequality 4.7
in [28], Theorem 4.2.

5. Inequalities with Specific Kernels

In this section, we find some consequential inequalities of the
Hardy type by selecting specific kernels and weight functions.

Corollary 35. Suppose that the assumptions of Theorem 31
are satisfied only with

l θ, ηð Þ≔ 0, if α ≤ η ≤ σ θð Þ ≤ β: ð84Þ

Define

L θð Þ≔
ðσ θð Þ

α

l θ, ηð ÞΔη > 0, θ ∈ α, β½ ÞT : ð85Þ

If Θ ∈ CðKm,ℝÞ ≥ 0 and is superquadratic, then (78) is
available for all nonnegative Δη-integrable functions g
: ½α, βÞT ⟶ℝm defined as

Algð Þ θð Þ≔ 1
L θð Þ

ðσ
α

l θ, ηð Þg ηð ÞΔη, θ ∈ α, β½ ÞT : ð86Þ

If Θ is subquadratic and 0 < λ < 1, then (78) is reversed.

Corollary 36. Assume that the assumptions of Theorem 31 is
satisfied only with

l θ, ηð Þ≔ 0, if α ≤ σ θð Þ ≤ η ≤ β: ð87Þ

Define

L θð Þ≔
ðβ
σ θð Þ

l θ, ηð ÞΔη > 0, θ ∈ α, β½ ÞT : ð88Þ

If Θ ∈ CðKm,ℝÞ ≥ 0 and is superquadratic, then (78) is
available for all nonnegative integrable functions g : ½α, βÞT
⟶ℝm

Algð Þ θð Þ≔ 1
L θð Þ

ðβ
σ θð Þ

l θ, ηð Þg ηð ÞΔη, θ ∈ α, β½ ÞT : ð89Þ

If Θ is subquadratic and 0 < λ < 1, then (78) is reversed.
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Corollary 37. Assume that the assumptions of Theorem 31 is
satisfied only with l : ½α, βÞT × ½α, βÞT ⟶ℝ defined as

l θ, ηð Þ≔
1, if 0 ≤ α ≤ η < σ θð Þ ≤ β,
0, otherwise,

(
ð90Þ

and ξðθÞ: ½α, βÞT ⟶ℝ; then LðθÞ≔ Ð σðθÞ
α

lðθ, ηÞΔη = σðθÞ
− α, θ ∈ ½α, βÞT , and AlgðθÞ in this case is the classical Hardy
and denoted by

Hgð Þ θð Þ≔ 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη, θ ∈ α, β½ ÞT : ð91Þ

If we let

ω ηð Þ≔
ðβ
η

ξ θð Þ 1
σ θð Þ − α

� �λ

Δθ

 !
<∞, η ∈ α, β½ ÞT ,

ð92Þ

where λ ≥ 1, then (78) became

ðβ
α

ξ θð ÞΘλ 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη
� �

Δθ

+ λ
ðβ
α

ðβ
η

Θλ−1 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη
� �

Θ

� g ηð Þ − 1
σ θð Þ − α

ðσ θð Þ

α

g ηð ÞΔη
����

����
� �

ξ θð Þ
σ θð Þ − α

ΔθΔη

≤
ðβ
α

ω ηð ÞΘ g ηð Þð ÞΔη
� �

:

ð93Þ

If Θ is subquadratic and 0 < λ < 1, then (93) is reversed.

Remark 38. For m = 1 and replacing ξðθÞ, ωðηÞ by ξðθÞ/ðθ
− αÞ and ωðηÞ/ðη − αÞ in (93), Corollary 37 coincides with
Example 4.1 in [13].

Remark 39. By taking T =ℝ, α = 0, and replacing ξðθÞ, ωðηÞ
by ξðθÞ/θ andωðηÞ/η in (93), we have

ðβ
0
ξ θð ÞΘλ θ−1

ðθ
0
g ηð Þdη

� �
dθ
θ

+ λ
ðβ
0

ðβ
η

Θλ−1 1
θ

ðθ
0
g ηð Þdη

� �
Θ

� g ηð Þ − 1
θ

ðθ
0
g ηð Þdη

����
����

� �
ξ θð Þ
θ2

dθdη

≤
ðβ
0
ω ηð ÞΘ g ηð Þð Þ dη

η

� �λ

,

ð94Þ

where

ω ηð Þ≔ η
ðβ
η

ξ θð Þ 1
θ

� �λ dθ
θ

 !1/λ

, η ∈ 0, β½ Þ: ð95Þ

If Θ is subquadratic and 0 < λ < 1, then (94) is reversed,
which is a refinement of 4.6 in [28], Remark 4.2.

Corollary 40. In Corollary 37, if α = 0 and ξðθÞ = 1/θ, then
(93) reduces to

ðβ
0
Θλ 1

σ θð Þ
ðθ
0
g ηð Þdη

� �
dθ
θ

+ λ
ðβ
0

ðβ
η

Θλ−1 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

� �
Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� �
1

θσ θð ÞΔθΔη

≤
ðβ
0
ω ηð ÞΘ g ηð Þð ÞΔη

� �λ

,

ð96Þ

where

ω ηð Þ≔
ðβ
η

1
σ θð Þ
� �λ Δθ

θ

 !1/λ

<∞, η ∈ α, β½ ÞT : ð97Þ

Furthermore, if β =∞, then (96) becomes

ð∞
0
Θλ 1

σ θð Þ
ðσ θð Þ

0
g ηð ÞΔη

� �
Δθ

θ

+ λ
ð∞
0

ð∞
η

Θλ−1 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

� �
Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� �
1

θσ θð ÞΔθΔη

≤
ð∞
0
ω ηð ÞΘ g ηð Þð ÞΔη

� �λ

,

ð98Þ

where

ω ηð Þ≔
ð∞
η

1
σ θð Þ
� �λ Δθ

θ

 !1/λ

<∞, η ∈ α,∞½ ÞT : ð99Þ

Remark 41. For λ = 1, inequality (96) reduces to
ðβ
0
Θ

1
σ θð Þ

ðθ
0
g ηð ÞΔη

� �
Δθ

θ
+
ðβ
0

ðβ
η

Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� � 1
θσ θð ÞΔθΔη

≤
ðβ
0
ω ηð ÞΘ g ηð Þð ÞΔη,

ð100Þ
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where

ω ηð Þ≔
ðβ
η

Δθ

θσ θð Þ
� �

= 1
η
−
1
β

� �
, η ∈ α, β½ ÞT , ð101Þ

while inequality (98) reduces to

ð∞
0
Θ

1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

� �
Δθ

θ
+
ð∞
0

ð∞
η

Θ

� g ηð Þ − 1
σ θð Þ

ðσ θð Þ

0
g ηð ÞΔη

����
����

� � 1
θσ θð ÞΔθΔη

≤
ð∞
0
Θ g ηð Þð ÞΔη

η
:

ð102Þ

Example 3. Considering Theorem 33 with l : ½β,∞ÞT ×
½β,∞ÞT ⟶ℝ defined by

l θ, ηð Þ≔
1/ησ ηð Þif η ≥ θ

0, otherwise,

(
ð103Þ

and ξðθÞ: ½β,∞ÞT ⟶ℝ ≥ 0, then

L θð Þ≔
ð∞
θ

l θ, ηð ÞΔη =
ð∞
θ

1
ησ ηð Þ = −

ð∞
θ

1
η

� �Δ

Δη

= 1
θ
, θ ∈ β,∞½ ÞT :

ð104Þ

The operator AlgðθÞ is defined as

Algð Þ θð Þ≔ θ
ð∞
θ

1
ησ ηð Þg ηð ÞΔη, θ ∈ β,∞½ ÞT , ð105Þ

and if we let

ω ηð Þ≔
ðβ
η

θ−1
θ

ησ ηð Þ
� �λ

Δθ

 !1/λ

<∞, η ∈ β,∞½ ÞT , ð106Þ

where λ ≥ 1, then (82) became

ð∞
0
Θλ θ

ð∞
θ

1
ησ ηð Þg ηð ÞΔη

� �
Δθ

θ

+ λ
ð∞
β

ð∞
θ

Θλ−1 θ
ð∞
θ

1
ησ ηð Þg ηð ÞΔη

� �
Θ

� g ηð Þ − θ
ð∞
0

1
ησ ηð Þg ηð ÞΔη

����
����

� � 1
ησ ηð ÞΔθΔη

≤
ð∞
β

ω ηð ÞΘ g ηð Þð ÞΔη
 !λ

:

ð107Þ

If Θ is subquadratic and 0 < λ < 1, then (107) is reversed.

Remark 42. For λ = 1, inequality (107) reduces to
ð∞
β

Θ θ
ð∞
β

1
ησ ηð Þg ηð ÞΔη

 !
Δθ

θ
+ λ
ð∞
β

ð∞
θ

Θ

� g ηð Þ − θ
ð∞
0

1
ησ ηð Þg ηð ÞΔη

����
����

� � 1
ησ ηð ÞΔθΔη

≤
ð∞
β

ω ηð ÞΘ g ηð Þð ÞΔη,

ð108Þ

where

ω ηð Þ≔ 1
ησ ηð Þ

ðβ
η

Δθ = 1
ησ ηð Þ β − ηð Þ: ð109Þ

6. Some Particular Cases

In this section, we obtain a popularization and a refinement
of the classical inequality of the Hardy-Hilbert type (16) for
numerous variables on time scales. It is clarified in the result
below.

Theorem 43. Assume that the assumptions of Theorem 31 are
satisfied only with Ω1 =Ω2 = ½0,∞ÞT , p > 1, λ > 0 and replace
Δμ1ðθÞ and Δμ2ðηÞ by the Lebesgue scale measure Δθ and Δη.

Furthermore, define

L1 θð Þ≔
ð∞
0

θ/ηð Þ−1/p
θ + η

Δη and L2 ηð Þ

≔
ð∞
0

θ/η1− 1/pð Þ

θ + η

 !λ

Δθ

0
@

1
A

1/λ

:

ð110Þ

If λ ≥ 1 and p ≥ 2, then

ð∞
0

L1 θð Þð Þλ 1−pð Þ
ð∞
0

g ηð Þ
θ + η

Δη

� �λp

Δθ

+ λ
ð∞
0

ð∞
0
η−1/pL1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þ
θ + η

Δη

� �p λ−1ð Þ

× g ηð Þη1/p − 1
L1 θð Þ

ð∞
0

g ηð Þ
θ + η

Δη

����
����
p θ

1
p−1

θ + η
ΔθΔη

≤
ð∞
0
L2 ηð Þg ηð ÞΔη

� �λ

,

ð111Þ

is available for all nonnegative integrable Δη-integrable func-
tions g : ½α, βÞT ⟶ℝm. If 0 < λ < 1, then (111) is reversed.

Proof. Utilizing ξðθÞ≔ ðL1ðθÞ/θÞλ and

l θ, ηð Þ≔
η
θ

� �−1/p
θ + η

, if θ ≠ 0, η ≠ 0, θ + η ≠ 0

0, otherwise,

8><
>: ð112Þ
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in Theorem 15, we obtain

L θð Þ≔
ð∞
0

η
θ

� �−1/p
θ + η

Δη = L1 θð Þ,

ω ηð Þ≔
ð∞
0
ξ θð Þ l θ, ηð Þ

L θð Þ
� �λ

Δθ

 !
≔

ð∞
0

L1 θð Þ
θ

� �λ l θ, ηð Þ
L θð Þ

� �λ

Δθ

 !1

λ

≔
ð∞
0

l θ, ηð Þ
θ

� �λ

Δθ

 !1

λ

≔ η−1
ð∞
0

η
θ

� �1−1/p
θ + η

 !λ

Δθ

0
@

1
A

1

λ

≔
1
η

ð∞
0

η
θ

� �1−1/p
θ + η

 !λ

Δθ

0
@

1
A

1

λ

L2 ηð Þ
η

,

ð113Þ

and the operator ðAlgÞðθÞ in this case is defined as

Algð Þ θð Þ≔ 1
L1 θð Þ

ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη: ð114Þ

Utilizing ðAlgÞðθÞ in (62), we obtain

ð∞
0

L1 θð Þ
θ

� �λ 1
L1 θð Þ

ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη
 !λp

Δθ

+ λ
ð∞
0

ð∞
0

L1 θð Þ
θ

� �λ η
θ

� �−1/p
θ + ηð ÞL1 θð Þ

 !
1

L1 θð Þ
ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη
 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ

ð∞
0

η
θ

� �−1/p
θ + η

g ηð ÞΔη
�����

�����
p

ΔθΔη

≤
ð∞
0

K2 ηð Þ
η

gp ηð ÞΔη
� �λ

:

ð115Þ

Hence,

ð∞
0

L1 θð Þð Þλ 1−pð Þ
ð∞
0

g ηð Þη−1/p
θ + η

Δη

� �λp

Δθ

+ λ
ð∞
0

ð∞
0
L1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þη−1
p

θ + η
Δη

 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ

1
θ

� �ð∞
0

g ηð Þη−p−1
θ + η

Δη

�����
�����
p

η−p
−1

θ + η

 !
θ−1
� �1−p−1

ΔθΔη

≤
ð∞
0

K2 ηð Þ
η

gp ηð ÞΔη
� �λ

:

ð116Þ

Finally, replacing gðηÞ by gðηÞη1/p in (116), we get (111).
The cases 0 < λ < 1 and 1 < p ≤ 2 are proved in the same way.

Remark 44. For m = 1, Theorem 43 reduces to Theorem 5.1
in [13]. In particular, for λ = 1, Theorem 43 is a refinement
of Theorem 5.5 in [10].

Remark 45. By taking T =ℝ, λ = 1, and p ≥ 2, in Theorem 43
and utilizing the known fact that

ð∞
0

η
θ

� �−1/p
θ + η

dη =
ð∞
0

η
θ

� �1−1/p
θ + η

dθ = π

sin π
p

� � , ð117Þ

then (111) becomes

ð∞
0

ð∞
0

g ηð Þ
θ + η

dη
� �p

dθ + π

sin πp−1ð Þ
� �p−1ð∞

0

ð∞
0
η−p

−1

� g ηð Þηp−1 − sin πp−1
� �
π

θp
−1
ð∞
0

g ηð Þ
θ + η

dη
����

����
p
θp−1−1

θ + η
dθdη

≤
π

sin πp−1ð Þ
� �pð∞

0
gp ηð Þdη,

ð118Þ

which is a refinement of (16). For m = 1, (118) has been
established in [3], Corollary 3.2.

In the following theorem, we introduce a generalized
form of (111) on time scales.

Theorem 46. Suppose that λ > 0, p > 1 and s, δ ∈ℝ. Further-
more, assume

ð∞
0

θδ η/θð Þ s−2/pð Þ+1

θ + ηð Þs
 !λ

Δθ

2
4

3
5
1/λ

and L1 θð Þ

≔
ð∞
0

ηθ−1
� �s−2/p

θ + ηð Þs Δη,

ð119Þ

where λ ≥ 1 and p ≥ 2; then

ð∞
0

L1 θð Þð Þλ 1−pð Þθλ δ−s+1ð Þ
ð∞
0

g ηð Þ
θ + ηð Þs Δη

� �pλ

+ λ
ð∞
0

ð∞
0
η2−sp L1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þ
θ + ηð Þs Δη

� �p λ−1ð Þ

× g ηð Þη2−sp −
1

L1 θð Þ θ
2−s
p

ð∞
0

g ηð Þ
θ + ηð Þs Δη

����
����
p

� θ
pλ+ s−2ð Þ 1+pλ−pð Þ/p

θ + ηð Þs ΔθΔη ≤
ð∞
0
L2 ηð Þgp ηð ÞΔη

� �λ

,

ð120Þ

is available for all nonnegative integrable functions
g : ½α, βÞT ⟶ℝm. If 0 < λ < 1 and 1 < p ≤ 2, then (120) is
reversed.

Proof. Rewrite (62) in Theorem 15 with Ω1 =Ω2 = ½0,∞ÞT ,
Δμ1ðθÞ = Δθ, and Δμ2ðηÞ = Δη. Let us define ξðθÞ≔
ðL1ðθÞθδ−1Þ

λ
and
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l θ, ηð Þ≔
η
θ

� �s−2/p
θ + ηð Þs , if θ ≠ 0, η ≠ 0, θ + η ≠ 0

0, otherwise:

8><
>: ð121Þ

We have

L θð Þ≔
ð∞
0

η
θ

� �s−2/p
θ + ηð Þs Δη = L1 θð Þ,

ω ηð Þ≔
ð∞
0
ξ θð Þ l θ, ηð Þ

L θð Þ Δθ

� �λ−1
≔

ð∞
0

L1 θð Þθδ
θ

l θ, ηð Þ
L1 θð Þ Δθ

 !λ−1

≔
ð∞
0

L1 θð Þθδ
θ

l θ, ηð Þ
L1 θð Þ Δθ

 !λ−1

≔
1
η

ð∞
0

θδ η
θ

� �s−2
P

θ θ + ηð Þs g ηð ÞΔθ
 !λ−1

≔
1
η

ð∞
0

θδ
η
θ

� �s−2
P +1

θ + ηð Þs
 !λ

Δθ

0
@

1
A

λ−1

≔
L2 ηð Þ
η

,

ð122Þ

and the operator ðAlgÞðθÞ in this case is defined as

Algð Þ θð Þ≔ 1
L1 θð Þ

ð∞
θ

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔη: ð123Þ

Now, substituting L, ω and ðAlgÞðθÞ in (62), we get

ð∞
0

L1 θð Þθδ−1
� �λ 1

L1 θð Þs
ð∞
0

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔθ

 !pλ

Δθ

+ λ
ð∞
0

ð∞
0

L1 θð Þθδ−1
� �λ η

θ

� �s−2/p
θ + ηð ÞsL1 θð Þ

 !
1

L1 θð Þ
ð∞
0

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔθ

 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ

ð∞
0

η
θ

� �s−2/p
θ + ηð Þs g ηð ÞΔη

�����
�����
p

ΔθΔη

≤
ð∞
0

L2 ηð Þ
η

gp ηð ÞΔη
� �λ

:

ð124Þ

Hence,

ð∞
0

L1 θð Þð Þλ 1−pð Þθδλ
1
θ

� �λ s−1ð Þ ð∞
0

g ηð Þs−2/p
θ + ηð Þs Δη

 !pλ

+ λ
ð∞
0

ð∞
0
L1

λ−1ð Þ 1−pð Þ θð Þ
ð∞
0

g ηð Þs−2/p
θ + ηð Þs Δη

 !p λ−1ð Þ

× g ηð Þ − 1
L1 θð Þ θ

s−2
p

ð∞
0

ηð Þs−2/pg ηð Þ
θ + ηð Þs Δη

�����
�����
p

ηð Þs−2p

θ + ηð Þs
 !

� 1
θ

� �
θpλ+ s−2ð Þ 1+pλ−pð Þ/p

θ + ηð Þs ΔθΔη ≤
ð∞
0
L2 ηð Þgp ηð ÞΔη

� �λ

:

ð125Þ

Finally, considering (125) with gðηÞηð2−s/pÞ instead of
gðηÞ, we obtain (120). The cases 0 < λ < 1 and 1 < p ≤ 2 are
proved in the same way.

Remark 47. For m = 1, Theorem 46 coincides with Theorem
5.2 in [13].

Remark 48. Clearly, for p > 1, δ = 0, and s = 1, Theorem 46
reduces to Theorem 43.

7. Conclusion and Future Work

The study of dynamic inequalities on time scales has a lot of
scope. This research article is devoted to some general
Hardy-type dynamic inequalities and their converses on time
scales. Inequalities are considered in rather general forms
and contain several special integral inequalities. In particular,
our findings can be seen as refinements of some recent results
closely linked to the time-scale inequalities of the classical
Hardy, Pólya-Knopp, and Hardy-Hilbert. We use some alge-
braic inequalities such as the Minkowski inequality, the
refined Jensen inequality and the Bernoulli inequality on
time scales to prove the essential results in this paper. The
performance of the superquadratic method for functions is
reliable and effective to obtain new dynamic inequalities on
time scales. This method has more advantages: it is direct
and concise. Thus, the proposed method can be extended to
some forms for Hardy’s and related dynamic inequalities in
mathematical and physical sciences. Our computed out-
comes can be very useful as a starting point to get some con-
tinuous inequalities, especially from the obtained dynamic
inequalities. In the future, we will get some discrete inequal-
ities from the main results. Also, we will suppose that gðtÞ
≔ ðg1ðtÞ,⋯, gðtÞÞ is an m-tuple of functions and t = ðt1, t2
,⋯, tnÞ is n-tuple of variables to get the general forms of
Hardy’s and related inequalities on time scales. Similarly, in
the future, we can present such inequalities by using
Riemann-Liouville-type fractional integrals and fractional
derivatives on time scales. It will also be very interesting to
present such inequalities on quantum calculus.
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In the present paper, we will introduce λ-Gamma operators based on q-integers. First, the auxiliary results about the moments are
presented, and the central moments of these operators are also estimated. Then, we discuss some local approximation properties of
these operators by means of modulus of continuity and Peetre K-functional. And the rate of convergence and weighted
approximation for these operators are researched. Furthermore, we investigate the Voronovskaja type theorems including the
quantitative q-Voronovskaja type theorem and q-Grüss-Voronovskaja theorem.

1. Introduction

Gamma operators are very important positive linear opera-
tors and have been widely used in probability theory and
computational mathematics. For f ∈ Cðℝ+Þ, n = 1, 2, 3,⋯
where ℝ+ = ð0,∞Þ and Cðℝ+Þ be the space of all continuous
functions f on the interval ℝ+, the Gamma operators were
introduced in [1] by

Gn f ; xð Þ = 1
n!

ð∞
0
e−t tn f

nx
t

� �
dt, x ∈ℝ+: ð1Þ

We can learn some properties of Gamma operators and
their modified operators in [2–7]. In [8], Qi et al. defined
new Gamma operators as follows:

Gn,λ f ; xð Þ = 1
n!

ð∞
0
e−t tn

n
t

� �λ
f

nx
t

� �
dt, x ∈ℝ+: ð2Þ

where f ∈ Cðℝ+Þ, λ ∈ℕ = f0, 1, 2,⋯g. Obviously, if f ðλÞ ∈ C
ðℝ+Þ, then ðGnð f ; xÞÞðλÞ =Gn,λð f ðλÞ ; xÞ. Meantime, Gn,λð1 ;
xÞ = ðnλðn − λÞ!/n!Þ ≠ 1 (while λ ≠ 0). In order to preserve
the constant, we defined λ-Gamma operators as follows:

Definition 1. For f ∈ Cðℝ+Þ, λ ∈ℕ, n = λ, λ + 1,⋯, the λ
-Gamma operators are defined by

Gn,λ f ; xð Þ = 1
n − λð Þ!

ð∞
0
e−t tn−λ f

nx
t

� �
dt, x ∈ℝ+: ð3Þ

Let us recall some useful concepts and notations from
q-calculus, which can be founded in [9–11]. For nonnega-
tive integer i, the q-integer ½i�q and q-factorial ½i�q! are
defined by

i½ �q = 1 + q+⋯+qi−1 =
1 − qi

1 − q
, q ≠ 1,

i, q = 1,

8><
>:

i½ �q! =
1½ �q 2½ �q ⋯ i½ �q, i ≥ 1,
1, i = 0:

( ð4Þ

Further, q-power basis can be defined by
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x + yð Þiq =
x + yð Þ x + qyð Þ⋯ x + qi−1y

� �
, i = 1, 2,⋯,

1, i = 0,

(

x − yð Þiq =
x − yð Þ x − qyð Þ⋯ x − qi−1y

� �
, i = 1, 2,⋯,

1, i = 0:

(

ð5Þ

The q-derivative Dqf of a function f can be defined by

Dqf
� �

xð Þ = f xð Þ − f qxð Þ
1 − qð Þx , if x ≠ 0, ð6Þ

and ðDqf Þð0Þ = f ′ð0Þ provided f ′ð0Þ exists. High-order q
-derivatives can be defined by D0

q f = f , Di
q =DqðDi−1

q f Þ, i
= 1, 2,⋯. The formula for the q-derivative of a product
is Dqð f ðxÞgðxÞÞ =Dqð f ðxÞÞgðxÞ +DqðgðxÞÞf ðqxÞ. We eas-
ily know that if a function f is continuous on an interval
which does not include 0, then f is continuous q
-differentiable.

The q-improper integral of function f can be defined by

ð∞/1−q

0
f tð Þdqt = 〠

∞

i=−∞
f

qi

1 − q

� �
qi, q ∈ 0, 1ð Þ: ð7Þ

The q-analogue of the classical exponential function ex is

Eq xð Þ = 〠
∞

i=0
q i i−1ð Þð Þ/2ð Þ xi

i½ �q!
= 1 + 1 − qð Þxð Þ∞q , q ∈ 0, 1ð Þ:

ð8Þ

The q-Gamma function is defined by

Γq sð Þ =
ð ∞/1−qð Þ

0
x s−1ð ÞEq −qxð Þdqx, s ∈ℝ+, ð9Þ

and satisfies the functional relation: Γqðs + 1Þ = ½s�qΓqðsÞ, Γq

ð1Þ = 1. Moreover, for any nonnegative integer i > 0, the rela-
tion holds: Γqði + 1Þ = ½i�q!.

Now, we construct the q-analogue of λ-Gamma opera-
tors using q-Gamma function as follows.

Definition 2. For f : ℝ+ →ℝ, q ∈ ð0, 1Þ, λ ∈ℕ, n = λ, λ + 1,
⋯, the q-analogue of λ-Gamma operators (3) are defined as

G
q
n,λ f ; xð Þ = 1

n−λ½ �q!
ð∞/1−q

0
f

n½ �qx
t

 !
Eq −qtð Þtn−λdqt, x ∈ℝ+:

ð10Þ

The paper is organized as follows: In Section 1, we intro-
duce the history of Gamma operators, recall some basic nota-
tions about the q-calculus, and construct λ-Gamma
operators based on q-integers with q-Gamma function. In

Section 2, we obtain the auxiliary results about the moment
computation formula. The second- and fourth-order central
moments computation formula and other quantitative prop-
erties are also presented. In Section 3, we discuss local
approximation about the operators by means of modulus of
continuity and PeetreK-functional. In Section 4 and Section
5, the rate of convergence and weighted approximation for
these operators are researched. In the last section, we firstly
prove quantitative q-Voronovskaja type theorems in terms
of weighted modulus of continuity, and then the q-Grüss-
Voronovskaja theorem in the quantitative mean is also pre-
sented (for the quantitative q-Voronovskaja type theorem0
and the q-Grüss-Voronovskaja theorem for the other opera-
tors, see also [12, 13]).

2. Auxiliary Results

In this section, we will give some lemmas and corollaries,
which are necessary to obtain the approximation properties
of the operators Gq

n,λð f ; xÞ.

Lemma 3. For q ∈ ð0, 1Þ, λ ∈ℕ, i ∈ℕ, n = λ + i, λ + i + 1,⋯,
the following formula holds:

G
q
n,λ ti ; x
� �

=
n½ �iq n − λ − i½ �q!

n − λ½ �q!
xi: ð11Þ

Proof. According to the properties of q-Gamma function, we
have

G
q
n,λ ti ; x
� �

= 1
n−λ½ �q!

ð∞/1−q

0

n½ �qx
t

 !i

Eq −qtð Þtn−λdqt

=
n½ �iqxi
n−λ½ �q!

ð∞/1−q

0
tn−λ−iEq −qtð Þdqt

=
n½ �iqxiΓq n − λ − i + 1ð Þ

n − λ½ �q!

=
n½ �iq n − λ − i½ �q!

n − λ½ �q!
xi:

ð12Þ

Lemma 3 is proved.

Corollary 4. By the lemma given above and some elementary
calculations, we can get the results

A xð Þ = G
q
n,λ t − x ; xð Þ =

qn−λ λ½ �q
n − λ½ �q

x for n ≥ λ + 1,

B xð Þ = G
q
n,λ t − xð Þ2 ; x� �

=
qn−λ−1 λ + 1½ �q
n − λ − 1½ �q

−
qn−λ λ½ �q
n − λ½ �q

+
q2n−2λ−1 λ½ �q λ + 1½ �q
n − λ − 1½ �q n − λ½ �q

 !
x2 for n

≥ λ + 2:

ð13Þ
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Lemma 5. Let q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1 and qnn → a ∈ ½0, 1�. Then, for each x ∈ℝ+, AnðxÞ
≔ G

qn
n,λðt − x ; xÞ, BnðxÞ≔ G

qn
n,λððt − xÞ2 ; xÞ,we can obtain

lim
n→∞

n½ �qnAn xð Þ = λax,  lim
n→∞

n½ �qnBn xð Þ = ax2, ð14Þ

G
qn
n,λ t − xð Þ3 ; x� �

=O
1

n½ �2qn

 !
, ð15Þ

G
qn
n,λ t − xð Þ4 ; x� �

=O
1

n½ �2qn

 !
, ð16Þ

G
qn
n,λ t − xð Þ6 ; x� �

=O
1

n½ �3qn

 !
: ð17Þ

Proof. By Lemma 3, we can easily get (14). Without loss of
generality, we only prove equation (15). Equation (16) and
equation (17) can be proved in some way. Set Gq

n,λðti ; xÞ = C

ðiÞxi, i = 1, 2, 3, and G
qn
n,λððt − xÞ3 ; xÞ = Cð4Þx3. Using ð½n�qnÞ

/ð½n − λ − i�qnÞ = 1 + ððqn−λ−in ½λ + i�qnÞ/ð½n − λ − i�qnÞÞ, i = 0, 1
, 2,⋯, n − λ, we can easily get

C 1ð Þ = 1 +
qn−λn λ½ �qn
n − λ½ �qn

,

C 2ð Þ = 1 +
qn−λn λ½ �qn
n − λ½ �qn

+
qn−λ−1n λ + 1½ �qn
n − λ − 1½ �qn

+
q2n−2λ−1n λ½ �qn λ + 1½ �qn
n − λ − 1½ �qn n − λ½ �qn

,

C 3ð Þ = 1 +
qn−λn λ½ �qn
n − λ½ �qn

+
qn−λ−1n λ + 1½ �qn
n − λ − 1½ �qn

+
qn−λ−2n λ + 2½ �qn
n − λ − 2½ �qn

+
q2n−2λ−3n λ + 2½ �qn λ + 1½ �qn
n − λ − 2½ �qn n − λ − 1½ �qn

+
q2n−2λ−2n λ + 2½ �qn λ½ �qn
n − λ − 2½ �qn n − λ½ �qn

+
q2n−2λ−1n λ½ �qn λ + 1½ �qn
n − λ − 1½ �qn n − λ½ �qn

+ o
1
n½ �2qn

 !
:

ð18Þ

Combining

C 4ð Þ = C 3ð Þ − 3C 2ð Þ + 3C 1ð Þ − 1

=
qn−λn λ½ �qn
n − λ½ �qn

−
2qn−λ−1n λ + 1½ �qn
n − λ − 1½ �qn

+
qn−λ−2n λ + 2½ �qn
n − λ − 2½ �qn

+
q2n−2λ−3n λ + 2½ �qn λ + 1½ �qn
n − λ − 2½ �qn n − λ − 1½ �qn

+
q2n−2λ−2n λ + 2½ �qn λ½ �qn
n − λ − 2½ �qn n − λ½ �qn

−
2q2n−2λ−1n λ½ �qn λ + 1½ �qn
n − λ − 1½ �qn n − λ½ �qn

+ o
1
n½ �2qn

 !
≔

qn−λn λ½ �qn
n − λ½ �qn

−
2qn−λ−1n λ + 1½ �qn
n − λ − 1½ �qn

+
qn−λ−2n λ + 2½ �qn
n − λ − 2½ �qn

+ I = qn−λ−2nQ2
i=0 n − λ − i½ �qn

� λ + 2½ �qn n − λ½ �qn n − λ − 1½ �qn
�
+ q2n λ½ �qn n − λ − 2½ �qn n − λ − 1½ �qn
− 2qn λ + 1½ �qn n − λ − 2½ �qn n − λ½ �qn

�
+ I

= qn−λ−2nQ2
i=0 n − λ − i½ �qn

n − λ½ �qn λ + 2½ �qn n − λ − 1½ �qn
��

− qn λ + 1½ �qn n − λ − 2½ �qnÞ − qn n − λ − 2½ �qn
� λ + 1½ �qn n − λ½ �qn − qn λ½ �qn n − λ − 1½ �qn
� �

Þ + I

= qn−λ−2nQ2
i=0 n − λ − i½ �qn

n − λ½ �qn n½ �qn − qn n − λ − 2½ �qn n½ �qn
� �

+ I

=
qn−λ−2n n½ �qn 1 + qn−λ−1n

� �
Q2

i=0 n − λ − i½ �qn
+ I,

lim
n→∞

n½ �2qn I = 3λ + 2ð Þa2, ð19Þ

we have lim
n→∞

½n�2qnG
qn
n,λððt − xÞ3 ; xÞ = 3ðλ + 1Þa2x3 + ax3. This

means that equation (15) is obtained. Thus, the proof of
Lemma 5 is accomplished.

Lemma 6. Let q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1 and qnn → a ∈ ½0, 1�. Then, for each x ∈ℝ+, the follow-
ing relations

G
qn
n,λ t − xð Þ2qn
��� ��� ; x� �

≤O
1
n½ �qn

 !
, ð20Þ

G
qn
n,λ t − xð Þ2qn
��� ��� t − xð Þ4 ; x
� �

≤O
1

n½ �3qn

 !
, ð21Þ

hold.

Proof. By the definition of q-power basis, we have ðt − xÞ2qn =
ðt − xÞðt − qnxÞ = ðt − xÞ2 + ð1 − qnnÞxðt − xÞ = ðt − xÞ2 + x ðð1
− qnnÞ/ð½n�qnÞÞ ðt − xÞ. Thus, we can write jðt − xÞ2qn j ≤ ðt − xÞ2
+ xðð1 − qnnÞ/ð½n�qnÞÞ ∣ t − x ∣ . Using the monotonicity of the

operators Gqn
n,λ and the Cauchy-Schwarz inequality, we can get
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G
qn
n,λ t − xð Þ2qn
��� ��� ; x� �

≤G
qn
n,λ t − xð Þ2 ; x� �

+ x
1 − qnn
n½ �qn

G
qn
n,λ ∣t − x∣;xð Þ ≤G

qn
n,λ t − xð Þ2 ; x� �

+ x
1 − qnn
n½ �qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

qn
n,λ t − xð Þ2 ; x� �q

≤O
1
n½ �qn

 !

+O
1
n½ �3/2qn

 !
=O

1
n½ �qn

 !
:

ð22Þ

The inequality (21) can be get in the same way. Using the
monotonicity of the operators G

qn
n,λ, (16)and (17), Cauchy-

Schwarz inequality, respectively, we can obtain

G
qn
n,λ t − xð Þ2qn
��� ��� t − xð Þ4 ; x
� �

≤G
qn
n,λ t − xð Þ6 ; x� �

+ x
n½ �qn

G
qn
n,λ t − xj j5 ; x� �

≤ G
qn
n,λ t − xð Þ6 ; x� �

+ x
n½ �qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

qn
n,λ t − xð Þ4 ; x� �

G
qn
n,λ t − xð Þ6 ; x� �q

≤O
1
n½ �3qn

 !

+O
1
n½ �7/2qn

 !
=O

1
n½ �3qn

 !
:

ð23Þ

Thus, we complete the proof.

3. Local Approximation

Let CBðℝ+Þ be the space of all real-valued continuous
bounded functions f on ℝ+, endowed with the norm
∥f ∥ = sup

x∈ℝ+
∣ f ðxÞ ∣ . Moreover, the Peetre’s K-functional is

defined by

K2 f ; δð Þ = inf
h∈C2

B ℝ+ð Þ
∥f − h∥+δ∥h′′∥
n o

, ð24Þ

where C2
Bðℝ+Þ≔ fh ∈ CBðℝ+Þ: h′, h′′ ∈ CBðℝ+Þg. By ([14],

p. 177, Theorem 2.4), there exists an absolute constant C >
0 such that

K2 f ; δð Þ ≤ Cω2 f ;
ffiffiffi
δ

p� �
, ð25Þ

where δ > 0 and the second-order modulus of smoothness is
defined by

ω2 f ;
ffiffiffi
δ

p� �
= sup

0<t≤δ
sup
x∈ℝ+

f x + 2tð Þ − 2f x + tð Þ + f xð Þj j, f ∈ CB ℝ+ð Þ:

ð26Þ

The usual modulus of smoothness is defined by

ω f ; δð Þ = sup
0<t≤δ

sup
x∈ℝ+

f x + tð Þ − f xð Þj j, f ∈ CB ℝ+ð Þ: ð27Þ

Theorem 7. Let f ∈ CBðℝ+Þ, q ∈ ð0, 1Þ, λ = 1, 2,⋯. Then for
all x ∈ℝ+ and n ≥ λ + 1, there exists an absolute C1 = 4C such
that

G
q
n,λ f ; xð Þ − f xð Þ�� �� ≤ C1ω2 f ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 xð Þ + B xð Þ

q� �
+ ω f ;∣A xð Þ ∣ð Þ:

ð28Þ

Proof. Using Definition 2, we easily obtain ∣Gq
n,λð f ; xÞ ∣ ≤∥f ∥

for all f ∈ CBðℝ+Þ. Next, we define new operators by

P
q
n,λ f ; xð Þ =G

q
n,λ f ; xð Þ + f xð Þ − f A xð Þ + xð Þ, x ∈ℝ+:

ð29Þ

We can get P q
n,λðt − x ; xÞ =G

q
n,λðt − x ; xÞ − AðxÞ = 0 and

∣P q
n,λð f ; xÞ ∣ ≤3∥f ∥ for all f ∈ CBðℝ+Þ. For x, t ∈ℝ+ and h ∈

C2
Bðℝ+Þ, using Taylor’s expansion, we can write

h tð Þ = h xð Þ + h′ xð Þ t − xð Þ +
ðt
x
h′′ uð Þ t − uð Þdu: ð30Þ

Hence,

P
q
n,λ h ; xð Þ − h xð Þ�� �� = h′ xð ÞP q

n,λ t − x ; xð Þ��
+P

q
n,λ

ðt
x
h′′ uð Þ t − uð Þdu ; x

� �
j

≤ P
q
n,λ

ðt
x
h′′ uð Þ t − uð Þdu ; x

� �����
����

≤ G
q
n,λ

ðt
x
h′′ uð Þ t − uð Þdu ; x

� �����
−
ðA xð Þ+x

x
h′′ uð Þ A xð Þ + x − uð Þdu

���� ≤ G
q
n,λ

�
ðt
x
∣ h′′ uð Þ ∣ t − uð Þdu ; x

� �

+
ðA xð Þ+x

x
∣ h′′ uð Þ ∣ A xð Þ + x − uð Þdu

����
����

≤ B xð Þ + A2 xð Þ� �
∥h′′∥:

ð31Þ
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Further, for all h ∈ C2
Bðℝ+Þ, we can write

G
q
n,λ f ; xð Þ − f xð Þ�� �� = P

q
n,λ f ; xð Þ + f A xð Þ + xð Þ − 2f xð Þ�� ��

≤ P
q
n,λ f − h ; xð Þ − f − hð Þ xð Þ�� ��

+ P
q
n,λ h ; xð Þ − h xð Þ�� �� + ∣f A xð Þ + xð Þ

− f xð Þ∣ ≤ 4∥f − h∥+ A2 xð Þ + B xð Þ� �
∥h′′∥

+ω f ;∣A xð Þ ∣ð Þ:
ð32Þ

Taking infimum over all h and using (25), we can get the
desired conclusion.

Corollary 8. Let f ∈ CBðℝ+Þ, q ∈ ð0, 1Þ. Then for all x ∈ℝ+

and n ≥ 1, there exists an absolute C1 = 4C such that

G
q
n,0 f ; xð Þ − f xð Þ�� �� ≤ C1ω2 f ;

ffiffiffiffiffiffiffiffiffi
B xð Þ

p� �
: ð33Þ

Corollary 9. Let f ∈ CBðℝ+Þ, q = ðqnÞ be a sequence satisfying
qn ∈ ð0, 1Þ, qn ⟶ 1 and qnn ⟶ a ∈ ½0, 1� as n⟶∞, the
limit

lim
n→∞

G
qn
n,λ f ; xð Þ = f xð Þ ð34Þ

holds for all x ∈ℝ+.

4. Rate of Convergence

As is known, if f is not uniformly continuous on ℝ+, we can-
not get ωð f ; δÞ→ 0 as δ→ 0. To research the rate of conver-
gence of the operators Gqn

n,λ on ℝ+, we recall the weighted
modulus of continuity Ωð f ; δÞ(see [15] or [16]). First, we
shall consider the following three classes of functions:

B2 ℝ+ð Þ≔ f : ℝ+ →ℝ ; f xð Þj j ≤ Cf 1 + x2
� �
 �

, ð35Þ

where Cf is a positive constant which depends only on f ,

C2 ℝ+ð Þ≔ f ∈ B2 ℝ+ð Þ: f is continuousf g,

C0
2 ℝ+ð Þ≔ f ∈ B2 ℝ+ð Þ: lim

x→∞

f xð Þ
1 + x2

 is finite
� 


: ð36Þ

The space C0
2ðℝ+Þ is a linear normed space endowed with

the norm ∥f ∥2 = sup
x∈ℝ+

ððj f ðxÞjÞ/ð1 + x2ÞÞ. For any f ∈ C2ðℝ+Þ,
Ωð f ; δÞ is defined by

Ω f ; δð Þ = sup
0≤t<δ,x∈ℝ+

∣f x + tð Þ − f xð Þ ∣
1 + t2ð Þ 1 + x2ð Þ , ð37Þ

if f ∈ C0
2ðℝ+Þ, then Ωð f ; δÞ has the following properties:

(i) lim
δ→0+

Ωð f ; δÞ = 0

(ii) Ωð f ; ρδÞ ≤ 2ð1 + ρÞð1 + δ2ÞΩð f ; δÞ, ρ ∈ℝ+

In [17–19], the following inequality was introduced and
used

∣f tð Þ − f xð Þ∣ ≤ 1 + t − xð Þ2� �
1 + x2
� �

Ω f ;∣t − x ∣ð Þ

≤2 1 + ∣t − x ∣
δ

� �
1 + δ2
� �

1 + t − xð Þ2� �
1 + x2
� �

Ω f ; δð Þ

≤
4 1 + δ2
� �2 1 + x2

� �
Ω f ; δð Þ, ∣t − x∣ < δ,

4 1 + δ2
� �2 1 + x2

� � t − xð Þ4
δ4

Ω f ; δð Þ, ∣t − x∣ ≥ δ:

8><
>:

ð38Þ

Meanwhile, we introduce the modulus of continuity of
f ∈ Cð0, a�ða > 0Þ by ωað f ; δÞ = sup

∣t−x∣≤δ
sup

x,t∈ð0,a�
∣ f ðtÞ − f ðxÞ ∣ .

The following is a theorem of the rate of convergence for
the operators Gq

n,λ:

Theorem 9. Let f ∈ C2ðℝ+Þ, λ ∈ℕ, n = λ + 1, λ + 2,⋯, a ∈
ℝ+, we have

∥Gq
n,λ f ; xð Þ − f ∥C 0,að � ≤ 4Cf 1 + a2

� �
B að Þ + 2ωa+1 f ,

ffiffiffiffiffiffiffiffiffi
B að Þ

p� �
:

ð39Þ

Proof. For any x ∈ ð0, a�, t ∈ ða + 1,∞Þ, we can easily obtain
1 ≤ ðt − aÞ2 ≤ ðt − xÞ2, therefore

∣f tð Þ − f xð Þ∣ ≤Cf 2 + x2 + t2
� �

≤Cf 2 + 3x2 + 2 t − xð Þ2� �
≤4Cf 1 + a2

� �
t − xð Þ2:

ð40Þ

If t ∈ ð0, a + 1Þ, for any δ ∈ℝ+, we can obtain

∣f tð Þ − f xð Þ∣ ≤ ωa+1 f ;∣t − x ∣ð Þ ≤ 1 + ∣t − x ∣
δ

� �
ωa+1 f ; δð Þ:

ð41Þ

Combining (39) with (40), we can get

∣f tð Þ − f xð Þ∣ ≤ 4Cf 1 + a2
� �

t − xð Þ2 + 1 + ∣t − x ∣
δ

� �
ωa+1 f ; δð Þ:

ð42Þ

By Cauchy-Schwarz’s inequality and Corollary 4, for all
x ∈ ð0, a�, we have
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By choosing δ =
ffiffiffiffiffiffiffiffiffi
BðaÞp

and taking supremum over all x
∈ ð0, a�, we can get the desired results.

Theorem 10. q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ, qn
→ 1, and qnn → a as n→∞ and f ∈ C0

2ðℝ+Þ; then, there exists
a positive integer N ∈ℕ+ such that for all n >N and υ > 0, the
inequality

sup
x∈ℝ+

G
qn
n,λ f ; xð Þ − f xð Þ�� ��

1 + x2ð Þυ ≤ 64Ω f ; 1ffiffiffiffiffiffiffiffiffi
n½ �qn

q
0
B@

1
CA, ð44Þ

holds.

Proof. Using (14) and (16), there exists a positive integer N
∈ℕ+ such that for all n >N ,

G
qn
n,λ t − xð Þ2 ; x� �

≤
9

4 n½ �qn
,

G
qn
n,λ t − xð Þ4 ; x� �

≤ 1:
ð45Þ

By Cauchy-Schwarz’s inequality, we can get

G
qn
n,λ ∣t − x∣;xð Þ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

qn
n,λ t − xð Þ2 ; x� �q

≤
3

2
ffiffiffiffiffiffiffiffiffi
n½ �qn

q , ð46Þ

G
qn
n,λ t − xj j3 ; x� �

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

qn
n,λ t − xð Þ2 ; x� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G
qn
n,λ t − xð Þ4 ; x� �q

≤
3

2
ffiffiffiffiffiffiffiffiffi
n½ �qn

q :

ð47Þ

Since G
qn
n,λ is linear and positive, using (38), (46), and

(47), for any δ ∈ ð0, 1Þ, we can obtain

G
qn
n,λ f ; xð Þ − f xð Þ�� �� ≤ 16 1 + x2

� �
Ω f ; δð Þ

� 1 + G
qn
n,λ ∣t − x∣+ t − xj j3 ; x� �

δ

 !

≤ 16 1 + x2
� �

1 + 3
δ
ffiffiffiffiffiffiffiffiffi
n½ �qn

q
0
B@

1
CAΩ f ; δð Þ:

ð48Þ

Taking δ = 1/
ffiffiffiffiffiffiffiffiffi
½n�qn

q
, we complete the proof.

5. Weighted Approximation

In this section, we will discuss the weighted approximation
theorems for the operators Gqn

n,λ.

Theorem 11. Let q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1, and qnn → a ∈ ½0, 1� as n→∞ and f ∈ C0

2ðℝ+Þ, we
have

lim
n→∞

∥Gqn
n,λ f ; xð Þ − f ∥2 = 0: ð49Þ

Proof. Using Korovkin’s theorem (see [20]), it is sufficient to
verify the following three conditions:

lim
n→∞

∥Gpn ,qn
n tk
� �

− xk∥2 = 0, k = 0, 1, 2: ð50Þ

Since Gpn ,qn
n ð1 ; xÞ = 1, (51) holds for k = 1. By Lemma 3

and lim
n→∞

ð½n�qn /½n − λ�qnÞ = lim
n→∞

ð½n�qn /½n − λ − 1�qnÞ = 1, we

can easily obtain

∣Gq
n,λ f ; xð Þ − f xð Þ∣ ≤Gq

n,λ ∣f tð Þ − f xð Þ∣;xð Þ

≤4Cf 1 + a2
� �

G
q
n,λ t − xð Þ2 ; x� �

+G
q
n,λ 1 + ∣t − x ∣

δ

� �
; x

� �
ωa+1 f , δð Þ

≤4Cf 1 + a2
� �

G
q
n,λ t − xð Þ2 ; x� �

+ ωa+1 f , δð Þ 1 + 1
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

q
n,λ t − xð Þ2 ; x� �q� �

≤4Cf 1 + a2
� �

B xð Þ + ωa+1 f , δð Þ 1 + 1
δ

ffiffiffiffiffiffiffiffiffi
B xð Þ

p� �

≤4Cf 1 + a2
� �

B að Þ + ωa+1 f , δð Þ 1 + 1
δ

ffiffiffiffiffiffiffiffiffi
B að Þ

p� �
:

ð43Þ
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∥Gqn
n,λ t ; xð Þ − x∥2 = sup

x∈ℝ+

1
1 + x2

G
qn
n,λ t ; xð Þ − x

�� ��
= sup

x∈ℝ+

x
1 + x2

n½ �qn
n − λ½ �qn

− 1
�����

�����
≤

n½ �qn
n − λ½ �qn

− 1
�����

�����→ 0, n→∞:

∥Gqn
n,λ t2 ; x
� �

− x2∥2 = sup
x∈ℝ+

1
1 + x2

G
qn
n,λ t2 ; x
� �

− x2
�� ��

= sup
x∈ℝ+

x2

1 + x2
n½ �2qn

n − λ½ �qn n − λ − 1½ �qn
− 1

�����
�����

≤
n½ �2qn

n − λ½ �qn n − λ − 1½ �qn
− 1

�����
�����→ 0, n→∞:

ð51Þ

We can draw the final conclusion through all the esti-
mates above.

Theorem 12. Let q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1 and qnn → 1 as n→∞ and f ∈ C0

2ðℝ+Þ. For any f ∈
C0
2ðℝ+Þ and υ > 0, we have

lim
n→∞

sup
x∈ℝ+

∣Gpn ,qn
n f ; xð Þ − f xð Þ ∣

1 + x2ð Þ1+υ
= 0: ð52Þ

Proof. Let x0 ∈ℝ+ be arbitrary but fixed. Then,

sup
x∈ℝ+

∣Gqn
n,λ f ; xð Þ − f xð Þ ∣

1 + x2ð Þ1+υ
≤ sup

x∈ 0,x0ð Þ

∣Gqn
n,λ f ; xð Þ − f xð Þ ∣

1 + x2ð Þ1+υ

+ sup
x∈ x0,∞½ Þ

∣Gqn
n,λ f ; xð Þ − f xð Þ ∣

1 + x2ð Þ1+υ
≤ ∥Gqn

n,λ f ; xð Þ − f ∥C 0,x0ð �

+∥f ∥2 sup
x∈ x0,∞½ Þ

∣Gqn
n,λ 1 + t2
� �

; x
� �

∣
1 + x2ð Þ1+υ

+ sup
x∈ x0,∞½ Þ

∣f xð Þ ∣
1 + x2ð Þ1+υ

:

ð53Þ

Since ∣f ðxÞ ∣ ≤∥f ∥2ð1 + x2Þ, we have sup
x∈½x0,∞Þ

ðð∣f ðxÞ ∣ Þ/

ð1 + x2Þ1+υÞ ≤ ðð∥f ∥2Þ/ð1 + x20ÞυÞ. Let ε > 0 be arbitrary, we
can choose x0 to be so large that

∥f ∥2
1 + x20
� �υ < ε: ð54Þ

In view of Corollary 9, while x ∈ ½x0,∞Þ, we obtain

∥f ∥2 limn→∞

∣Gqn
n,λ 1 + t2
� �

; x
� �

∣
1 + x2ð Þ1+υ

= ∥f ∥2
1 + x2
� �
1 + x2ð Þ1+υ

= ∥f ∥2
1 + x2ð Þυ

≤
∥f ∥2

1 + x20
� �υ < ε:

ð55Þ

Using Theorem 9, we can see that the first term of the
inequality (53) implies that

∥Gqn
n,λ f ; xð Þ − f ∥C 0,x0ð � < ε, as n→∞: ð56Þ

Combining (53)–(56), we get the desired result.

6. Voronovskaja Type Theorems

As is known, Voronovskaja type theorems of many positive
operators are widely researched and discussed (see [21–
28]). In this section, we will discuss the quantitative q-Vor-
onovskaja theorem and q-Grüss-Voronovskaja theorem.

6.1. Quantitative q-Voronovskaja Theorem. In this subsec-
tion, we will obtain the Quantitative q-Voronovskaja theo-
rem and Voronovskaja type asymptotic formula for the
operators Gqn

n,λ.

Theorem 13. Let q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1 and qnn → a ∈ ½0, 1� as n→∞ and f ∈ C0

2ðℝ+Þ satisfy
D2

qn
f ∈ C0

2ðℝ+Þ. Then, the inequality

n½ �qn G
qn
n,λ f ; xð Þ − f xð Þ −Dqn

f xð ÞAn xð Þ
� ����

−
n½ �qnBn xð Þ + 1 − qnnð ÞAn xð Þx

2½ �qn !
D2
qn
f xð Þ

�����
≤O 1ð ÞΩ D2

qn
f ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA,

ð57Þ

holds for any x ∈ℝ+.

Proof. Using the q-Taylor expansion formula (58), we have

f tð Þ = f xð Þ +Dqn
f xð Þ t − xð Þ +

D2
qn
f ξð Þ

2½ �qn !
t − xð Þ2qn

= f xð Þ +Dqn
f xð Þ t − xð Þ +

D2
qn
f xð Þ

2½ �qn !
t − xð Þ2qn + R2 t, x ; qnð Þ,

ð58Þ

where ξ is a number between t and x and

R2 t, x ; qnð Þ =
D2

qn
f ξð Þ −D2

qn
f xð Þ

2½ �qn !
t − xð Þ2qn : ð59Þ
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Applying the operators G
qn
n,λ to both sides of (58) and

using ðt − xÞ2qn = ðt − xÞ2 + ðð1 − qnnÞ/ð½n�qnÞÞðt − xÞx, we have

G
qn
n,λ f ; xð Þ − f xð Þ −Dqn

f xð ÞAn xð Þ −
D2

qn
f xð Þ

2½ �qn !
G

qn
n,λ t − xð Þ2qn ; x
� ������

�����
= G

qn
n,λ f ; xð Þ − f xð Þ −Dqn

f xð ÞAn xð Þ
���
−
Bn xð Þ + 1 − qnnð ÞAn xð Þð Þ/ n½ �qn

� �� �
x

2½ �qn !
D2
qn
f xð Þ

������
≤ G

qn
n,λ ∣R2 t, x ; qnð Þ∣;xð Þ:

ð60Þ

Multiplying the above inequality by ½n�qn , we have

n½ �qn G
qn
n,λ f ; xð Þ − f xð Þ −Dqn

f xð ÞAn xð Þ
� ����

−
n½ �qnBn xð Þ + 1 − qnnð ÞAn xð Þx

2½ �qn !
D2
qn
f xð Þ

�����
≤ n½ �qnG

qn
n,λ ∣R2 t, x ; qnð Þ∣;xð Þ:

ð61Þ

Furthermore,

D2
qn
f ξð Þ −D2

qn
f xð Þ

2½ �qn !

�����
����� ≤ 1

2½ �qn !
Ω D2

qn
f ;∣ξ − x ∣ 1 + ξ − xð Þ2

� �
1 + x2
� �� �

≤
1
2½ �qn !

Ω D2
qn
f ;∣t − x ∣ 1 + t − xð Þ2� �

1 + x2
� �� �

≤
2
2½ �qn !

1 + ∣t − x ∣
δ

� �
1 + t − xð Þ2� �

� 1 + δ2
� �

1 + x2
� �

Ω D2
qn
f ; δ

� �

≤ 16 1 + x2
� �

1 + t − xð Þ4
δ4

 !
Ω D2

qn
f ; δ

� �
,

ð62Þ

for all δ ∈ ð0, 1Þ. Hence,

∣R2 t, x ; qnð Þ∣ ≤ 16 1 + x2
� �

∣ t − xð Þ2qn ∣+
∣ t − xð Þ2qn ∣ t − xð Þ4

δ4

 !
Ω D2

qn
f ; δ

� �
:

ð63Þ

Using (20), (21), for any x ∈ℝ+, we can write

G
qn
n,λ ∣R2 t, x ; qnð Þ∣;xð Þ ≤ 16 1 + x2

� �
G

qn
n,λ ∣ t − xð Þ2qn ∣;x
� ��

+
G

qn
n,λ ∣ t − xð Þ2qn ∣ t − xð Þ4 ; x
� �

δ4

1
AΩ D2

qn
f ; δ

� �

≤ O
1
n½ �qn

 !
+ 1
δ4

O
1
n½ �3qn

 ! !
Ω D2

qn
f ; δ

� �
:

ð64Þ

If we choose δ = 1/
ffiffiffiffiffiffiffiffiffi
½n�qn

q
, we can easily get

n½ �qnG
qn
n,λ R2 t, x ; qnð Þj j ; xð Þ ≤O 1ð ÞΩ D2

qn
f ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA, ð65Þ

which completes the proof of Theorem 13.

Corollary 14. Let ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1 and qnn → a ∈ ½0, 1� as n→∞ and f ∈ C0

2ðℝ+Þ satisfy
f ′′ ∈ C0

2ðℝ+Þ. Then, we can obtain

lim
n→∞

n½ �qn G
qn
n,λ f ; xð Þ − f xð Þ� �

= λaxf ′ xð Þ + 1
2
ax2f ′′ xð Þ:

ð66Þ

6.2. q-Grüss-Voronovskaja Theorem. In this subsection, we
will obtain the q-Grüss-Voronovskaja theorem and its quan-
titative version for the operators Gqn

n,λ.

Theorem 15. Let q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1 and qnn → a ∈ ½0, 1� as n→∞ and f , g ∈ C0

2ðℝ+Þ
satisfy D2

qn
f ,D2

qn
g,D2

qn
ð f gÞ ∈ C0

2ðℝ+Þ. Then, the following
inequality

n½ �qn G
qn
n,λ f g ; xð Þ −G

qn
n,λ f ; xð ÞGqn

n,λ g ; xð Þ��
−
Dqn

f qnxð Þð Þ Dqn
g xð Þð Þ +Dqn

g qnxð Þð Þ
� �

2½ �qn !
G

qn
n,λ

� t − xð Þ2qn ; x
� ���� ≤O 1ð ÞΩ D2

qn
f gð Þ ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA

+O 1ð Þ ∥f ∥2 +O
1
n½ �qn

 !
∥Dqn

f ∥2+∥D2
qn
f ∥2

� � !
Ω

� D2
qn
g ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA +O 1ð Þ ∥g∥2 +O

1
n½ �qn

 ! 

� ∥Dqn
g∥2+∥D2

qn
g∥2

� ��
Ω D2

qn
f ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA

+O
1
n½ �qn

 !
∥Dqn

f ∥2+∥D2
qn
f ∥2

� �
∥Dqn

g∥2+∥D2
qn
g∥2

� �

+O
1
n½ �qn

 !
Ω D2

qn
f ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CAΩ D2

qn
g ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA,

ð67Þ

holds for any x ∈ℝ+.

Proof. Using the equalities

Dqn
f xð Þg xð Þð Þ =Dqn

f xð Þð Þg xð Þ + f qnxð ÞDqn
g xð Þð Þ,

D2
qn

f xð Þg xð Þð Þ =D2
qn

f xð Þð Þg xð Þ +Dqn
f qnxð Þð ÞDqn

g xð Þð Þ
+ f qnxð ÞD2

qn
g xð Þð Þ +Dqn

f qnxð Þð ÞDqn
g qnxð Þð Þ,

ð68Þ
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by simple computations, for x ∈ℝ+ and n = λ + 1,⋯, we can
obtain

G
qn
n,λ f g ; xð Þ − G

qn
n,λ f ; xð ÞGqn

n,λ g ; xð Þ = G
qn
n,λ f g ; xð Þ

− f xð Þg xð Þ − G
qn
n,λ t − x ; xð ÞDqn

f xð Þg xð Þð Þ

−
G

qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
D2
qn

f xð Þg xð Þð Þ

− g xð Þ G
qn
n,λ f ; xð Þ − f xð Þ − G

qn
n,λ t − x ; xð ÞDqn

f xð Þð Þ
�

−
G

qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
D2
qn

f xð Þð Þ
1
A

− G
qn
n,λ f ; xð Þ G

qn
n,λ g ; xð Þ − g xð Þ − G

qn
n,λ t − x ; xð ÞDqn

g xð Þð Þ
�

−
G

qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
D2
qn

g xð Þð Þ
1
A

+
Dqn

f qnxð Þð Þ Dqn
g xð Þð Þ +Dqn

g qnxð Þð Þ
� �

2½ �qn !
G

qn
n,λ t − xð Þ2qn ; x
� �

−D2
qn

g xð Þð Þ G
qn
n,λ f ; xð Þ − f xð Þ� �Gqn

n,λ t − xð Þ2qn ; x
� �

2½ �qn !

+D2
qn

g xð Þð ÞDqn
f xð Þð Þ

G
qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
qn − 1ð Þx

− G
qn
n,λ t − x ; xð Þ G

qn
n,λ f ; xð Þ − f qnxð Þ� �

Dqn
g xð Þð Þ:

ð69Þ

Hence, we can write

G
qn
n,λ f g ; xð Þ − G

qn
n,λ f ; xð ÞGqn

n,λ g ; xð Þ

−
Dqn

f qnxð Þð Þ Dqn
g xð Þð Þ +Dqn

g qnxð Þð Þ
� �

2½ �qn !
G

qn
n,λ t − xð Þ2qn ; x
� �

= G
qn
n,λ f g ; xð Þ − f xð Þg xð Þ

− G
qn
n,λ t − x ; xð ÞDqn

f xð Þg xð Þð Þ

−
G

qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
D2
qn

f xð Þg xð Þð Þ

− g xð Þ G
qn
n,λ f ; xð Þ − f xð Þ − G

qn
n,λ t − x ; xð ÞDqn

f xð Þð Þ
�

−
G

qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
D2
qn

f xð Þð Þ
1
A

− f xð Þ G
qn
n,λ g ; xð Þ − g xð Þ − G

qn
n,λ t − x ; xð ÞDqn

g xð Þð Þ
�

−
G

qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
D2
qn

g xð Þð Þ
1
A + f xð Þð

− G
qn
n,λ f ; xð Þ� G

qn
n,λ g ; xð Þ − g xð Þ� �

+ G
qn
n,λ t − x ; xð Þ qn − 1ð ÞxDqn

f xð Þð ÞDqn
g xð Þð Þ

+
G

qn
n,λ t − xð Þ2qn ; x
� �

2½ �qn !
qn − 1ð ÞxDqn

f xð ÞD2
qn
g xð Þ≔ I1

+ I2 + I3 + I4 + I5 + I6:

ð70Þ

By Theorem 13, for any fixed x ∈ℝ+, we can easily have
the following estimates

n½ �qn ∣I1∣ ≤O 1ð ÞΩ D2
qn

f gð Þ ; 1ffiffiffiffiffiffiffiffiffi
n½ �qn

q
0
B@

1
CA, ð71Þ

n½ �qn ∣I2∣ ≤ ∣g xð Þ∣O 1ð ÞΩ D2
qn

fð Þ ; 1ffiffiffiffiffiffiffiffiffi
n½ �qn

q
0
B@

1
CA

≤ ∥g∥2O 1ð ÞΩ D2
qn

fð Þ ; 1ffiffiffiffiffiffiffiffiffi
n½ �qn

q
0
B@

1
CA,

ð72Þ

n½ �qn ∣I3∣ ≤ ∣f xð Þ∣O 1ð ÞΩ D2
qn

gð Þ ; 1ffiffiffiffiffiffiffiffiffi
n½ �qn

q
0
B@

1
CA

≤ ∥f ∥2O 1ð ÞΩ D2
qn

gð Þ ; 1ffiffiffiffiffiffiffiffiffi
n½ �qn

q
0
B@

1
CA:

ð73Þ

Using (14), (20), and ∣qn − 1 ∣ = ðjqnn − 1j/½n�qnÞ ≤Oð1/
½n�qnÞ, we have

n½ �qn ∣I5∣ ≤O
1
n½ �qn

 !
∥Dqn

f ∥2∥Dqn
g∥2,

  n½ �qn ∣I6∣ ≤O
1
n½ �qn

 !
∥Dqn

f ∥2∥D
2
qn
g∥2: ð74Þ

Using (14), (20), and Theorem 13, we can get

G
qn
n,λ f ; xð Þ − f xð Þ�� �� ≤O

1
n½ �qn

 !
∥Dqn

f ∥2+∥D2
qn
f ∥2

� �

+O
1
n½ �qn

 !
Ω D2

qn
fð Þ ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA,

ð75Þ

hence, we can know

n½ �qn ∣I4∣ ≤O
1
n½ �qn

 !
∥Dqn

f ∥2+∥D2
qn
f ∥2

� �
∥Dqn

g∥2+∥D2
qn
g∥2

� �� �

+O 1
n½ �qn

 !
Ω D2

qn
fð Þ ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA ∥Dqn

g∥2+∥D2
qn
g∥2

� �

+O 1
n½ �qn

 !
Ω D2

qn
gð Þ ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA ∥Dqn

f ∥2+∥D2
qn
f ∥2

� �

+O 1
n½ �qn

 !
Ω D2

qn
fð Þ ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CAΩ D2

qn
gð Þ ; 1ffiffiffiffiffiffiffiffiffi

n½ �qn
q

0
B@

1
CA:

ð76Þ

Combining (71)–(76), we complete the proof of
Theorem 15.
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Corollary 16. Let q = ðqnÞ be a sequence satisfying qn ∈ ð0, 1Þ,
qn → 1 and qnn → a ∈ ½0, 1� as n→∞ and f , g ∈ C0

2ðℝ+Þ
satisfy f ′′, g′′, ð f gÞ′′ ∈ C0

2ðℝ+Þ. Then, the following limit
equality

lim
n→∞

n½ �qn G
qn
n,λ f g ; xð Þ − G

qn
n,λ f ; xð ÞGqn

n,λ g ; xð Þ� �
= af ′ xð Þg′ xð Þx2,

ð77Þ

holds for any x ∈ℝ+.
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The main object of the present paper is to apply the concepts of ðp, qÞ-derivative by establishing a new subclass of analytic functions
connected with symmetric circular domain. Further, we investigate necessary and sufficient conditions for functions belonging to
this class. Convex combination, weighted mean, arithmetic mean, growth theorem, and convolution property are also determined.

1. Introduction and Definitions

Quantum calculus or q-calculus is a generalization of classi-
cal calculus without the notation of limits. The theory of q
-calculus is established by Jackson, for details see [1, 2].
Due to its numerous applications in various branches of
applied sciences and mathematics, for example, physics,
operator theory, numerical analysis, and differential
equations, attracted researchers to this field. A detailed study
on applications of q-calculus in operator theory may be
found in [3]. The geometric interpretation of q-calculus has
been recognized through studies on quantum groups. Starli-
keness and convexity are two major properties of analytic
functions. Ismail et al. [4] investigated the generalized
starlike function S∗, and certain subclasses close-to-convex
functions of q-Mittag-Leffler functions were studied by Sri-
vastava and Bansal [5], also the reader is referred to [6–12]
for more details.

The foundation of quantum calculus is on one parameter,
while the postquantum calculus or simply ðp, qÞ-calculus is
the generalization of q-calculus based on two parameters.
By setting p = 1 in ðp, qÞ-calculus, the q-calculus is obtained.

The ðp, qÞ-integer was considered by Chakrabarti and Jagan-
nathan [13], also see the work [14–18]. The idea of q-starlike
is extended to ðp, qÞ-stalikeness by Raza et al. [19]. Before we
define our new class in this field, we give some basics for a
better understanding of the work to follow.

Let A represent the family of function f that are analytic
in the open unit disc D = fz ∈ℂ : jzj < 1g having the series
expansion

f zð Þ = z + 〠
∞

n=2
anz

n, z ∈Dð Þ: ð1Þ

A function f ðzÞ of the form (1) is subordinate to function
gðzÞ = z +∑∞

n=2 bnz
n, symbolically represented f ðzÞ ≺ gðzÞ, if

there occur a Schwarz function wðzÞ with limitation that w
ð0Þ = 0, and jwðzÞj ≤ 1, then f ðzÞ = gðwðzÞÞ: While the con-
volution of these functions can be defined by

f zð Þ ∗ g zð Þ = z + 〠
∞

n=2
anbnz

n, z ∈Dð Þ: ð2Þ
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For 0 < q < 1, the q-derivative of a function f is defined by

∂q f zð Þ = f zð Þ − f qzð Þ
z 1 − qð Þ , z ≠ 0, q ≠ 1ð Þ, ð3Þ

where

n½ �q =
1 − qn

1 − q
= 1 + 〠

n−1

l=1
ql,  0, q½ � = 0, ð4Þ

see [13] for details.
Also for 0 < p < q < 1, the ðp, qÞ-derivative of a function f

is defined in [2] as

∂p,q f zð Þ = f pzð Þ − f qzð Þ
z p − qð Þ , z ≠ 0, p ≠ qð Þ: ð5Þ

It can easily be seen that for n ∈ℕ≔ f1, 2, 3,⋯g and z
∈D,∂p,qð∑∞

n=1 anz
nÞ =∑∞

n=1 ½n�p,qanzn−1,
where

n½ �p,q =
pn − qn

p − q
: ð6Þ

We note that ∂1,q f ðzÞ = ∂q f ðzÞ (for more on this topic
one should read [20–22]).

Sakaguchi [23], in year 1956, established the class of star-
like functions with respect to symmetrical points denoted by
S∗

s of holomorphic univalent functions in D if the below
condition is satisfies

Re 2zf ′ zð Þ
f zð Þ − f −zð Þ > 0, z ∈Að Þ: ð7Þ

Motivated by the work of [19, 23, 24], we now define
S∗

p,qðl,m,C ,DÞ given below.

Definition 1. Let −D ≤C <D ≤ 1,0 < p < q ≤ 1 and −1 ≤m
< l ≤ 1, then the function f ∈A is in the class S∗

p,qðl,m,C ,
DÞ if it satisfies

l −mð Þz∂p,q f zð Þ
f lzð Þ − f mzð Þ ≺

1 +Cz
1 +Dz

, z ∈Dð Þ, ð8Þ

where the symbol “≺” indicates the well-known
subordination.

We note that S∗
1,qðl,m,C ,DÞ = S∗

q ðl,m,C ,DÞ, where

S∗
q l,m,C ,Dð Þ = f ∈A :

l −mð Þz∂q f zð Þ
f lzð Þ − f mzð Þ ≺

1 +Cz
1 +Dz

, z ∈Dð Þ
� �

,

ð9Þ

and

lim
q→1−

S∗
q 1,−1,C ,Dð Þ = S∗ C ,Dð Þ

= f ∈A :
2zf ′ zð Þ

f zð Þ − f −zð Þ ≺
1 +Cz
1 +Dz

, z ∈Dð Þ
( )

:
ð10Þ

Equivalently, a function f ∈A is in the S∗
p,qðl,m,C ,DÞ if

and only if

l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ − 1
D l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ� �

−C

�����
����� < 1, z ∈Dð Þ:

ð11Þ

In our main results, in the next section, we evaluate the
criteria for functions belonging to this newly defined class.
After that, the convex combination property for this class will
be discussed. Then utilizing these results, the weighted mean
and arithmetic mean properties will be investigated. Further,
convolution type results will be discussed in the form of two
theorems. At the end of this article, a conclusion and future
work will be presented.

2. Main Results

Theorem 2. Let f ∈A be of the form (1). Then the function
f ∈ S∗

p,qðl,m,C ,DÞ, if and only if the following inequality
holds

〠
∞

n=2
n½ �p,q 1 +Dð Þ − C + 1ð Þ l

n −mn

l −m

� �
anj j < D −Cð Þ: ð12Þ

Proof. Let us suppose that the first inequality (12) holds. Then
to show that f ∈ S∗

p,qðl,m,C ,DÞ, we only need to prove the
inequality (11). For this consider

l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ − 1
D l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ� �

− C

�����
�����

=
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnz
n

D − Cð Þz −∑∞
n=2 D n½ �p,q − C ln −mn/l −mð Þαnzn
h i

������
������

≤
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnj j
D − Cð Þ − ∑∞

n=2 D n½ �p,q − C ln −mn/l −mð Þ
h i

αnj j
< 1,

ð13Þ

where we used and this completes the direct part. Conversely,
let f ∈S∗

p,qðl,m,C ,DÞ be of from (1). Then from (11), we have
for z ∈D,

2 Journal of Function Spaces



l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ − 1
D l −mð Þz∂p,q f zð Þ/f lzð Þ − f mzð Þ� �

− C

�����
�����

=
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnz
nj j

D − Cð Þz −∑∞
n=2 D n½ �p,q − C ln −mn/l −mð Þ
h i

αnznj j

������
������ < 1

ð14Þ

Since jRezj < jzj < 1, we have

Re
∑∞

n=2 n½ �p,q − ln −mn/l −m
h i

αnz
nj j

D − Cð Þz −∑∞
n=2 D n½ �p,q − C ln −mn/l −mð Þ
h i

αnznj j

8<
:

9=
; < 1

ð15Þ

Now we choose values of z on the real axis such that
ðl −mÞz∂p,q f ðzÞ/f ðlzÞ − f ðmzÞ is real. Upon clearing the
denominator in (15) and letting z⟶ 1− through real
values, we obtain the required inequality (12).

Theorem 3. Let f i ∈ S
∗
p,qðl,m,C ,DÞ and having power series

representations

f i zð Þ = z + 〠
∞

k=1
ak,iz

k, for i = 1, 2, 3,⋯, t: ð16Þ

Then Φ ∈ S∗
p,qðl,m,C ,DÞ, where

Φ zð Þ = 〠
t

i=1
ωi f i zð Þwith〠

t

i=1
ωi = 1: ð17Þ

Proof. By Theorem 2, one can write

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; an,i
�� �� < 1:

ð18Þ

Therefore

Φ zð Þ = 〠
t

i=1
ωi z+〠

∞

n=2
an,iz

n

 !

= z+〠
t

i=1
〠
∞

n=2
ωian,iz

n

= z+〠
∞

n=2
〠
t

i=1
ωian,i

 !
zn ;

ð19Þ

however,

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ 〠
t

i=1
ωian,i

�����
�����

 !

= 〠
t

i=1
ωi 〠

∞

n=2
;

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ , an,i
�� ��

2
4

3
5 ≤ 1,

ð20Þ

then Φ ∈ S∗
p,qðl,m,C ,DÞ: Hence, the proof is completed.

Theorem 4. If f1, f2 ∈ S∗
p,qðl,m,C ,DÞ, then their weighted

mean ψk is also in S∗
p,qðl,m,C ,DÞ, where ψk is defined by

ψk zð Þ = 1 − kð Þf1 zð Þ + 1 + kð Þf2 zð Þ
2

� �
: ð21Þ

Proof. From (21), one can easily write

ψk zð Þ = z+〠
∞

n=2

1 − kð Þan + 1 + kð Þbn
2

� �
zn: ð22Þ

To prove that ψk ∈ S
∗
p,qðl,m,C ,DÞ, it is enough to show

that

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;

:
1 − kð Þan + 1 + kð Þbn

2

� �
< 1:

ð23Þ

For this, consider

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;

:
1 − kð Þan + 1 + kð Þbn

2

� �

= 1 − jð Þ
2 :〠

∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; anj j

+ 1 + jð Þ
2 :〠

∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; bnj j

< 1 − kð Þ
2 + 1 + kð Þ

2 = 1,

ð24Þ

where we have used inequality (12). Which completes the
proof.
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Theorem 5. Let f i∈S
∗
p,qðl,m,C ,DÞ, with i = 1, 2,⋯, j. Then,

their arithmetic mean φ of f i

φ zð Þ = 1
j
〠
j

i=1
f i zð Þ, ð25Þ

is also in the class S∗
p,qðl,m,C ,DÞ.

Proof. From (25), we can write

φ zð Þ = 1
j
〠
j

i=1
z+〠

∞

n=2
an,iz

n

 !
= z+〠

∞

n=2

1
j
〠
j

i=1
an,i

 !
zn: ð26Þ

Since f i ∈ S
∗
p,qðl,m,C ,DÞ for every i = 1, 2,⋯, j, using

(12), we have

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;:

1
j
〠
j

i=1
an,i

�����
�����

= 1
j
〠
j

i=1
〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
;: an,i
�� ��

0
@

1
A

≤
1
j
〠
j

i=1
1ð Þ = 1,

ð27Þ

which complete the proof.

Theorem 6. Let f ∈ S∗
p,qðl,m,C ,DÞ: Then for jzj = r,0 < r < 1,

r − δp,q l,m,C ,Dð Þr2 < f zð Þj j < r + δp,q l,m,C ,Dð Þr2, ð28Þ

where

δp,q l,m,C ,Dð Þ = C −Dð Þ
2½ �p,q 1 −Dð Þ + C + 1ð Þ l +mð Þ : ð29Þ

r − γp,q l,m,C ,Dð Þr2 < ∂p,q f zð Þ�� �� < r + γp,q l,m,C ,Dð Þr2,
ð30Þ

where

γp,q l,m,C ,Dð Þ = C −Dð Þ
1 −Dð Þ + C + 1ð Þ l +mð Þ : ð31Þ

Proof. To prove (28), consider

f zð Þj j ≤ r + 〠
∞

n=2
anj j rj jn, ð32Þ

as 0 < r < 1 so rn < r2 hence

f zð Þj j < r + r2 〠
∞

n=2
anj j ≤ r + C −Dð Þ

2½ �p,q 1 −Dð Þ + C + 1ð Þ l +mð Þ r
2:

ð33Þ

Similarly,

f zð Þj j ≥ r − 〠
∞

n=2
anj j rj jn > r − r2 〠

∞

n=2
anj j

≥ r −
C −Dð Þ

2½ �p,q 1 −Dð Þ + C + 1ð Þ l +mð Þ r
2:

ð34Þ

Hence complete the proof of (28). Similarly, we can
prove (30).

Theorem 7. Let f i ∈ S
∗
p,qðl,m,C ,DÞ, such that

f i zð Þ = z + 〠
∞

n=2
an,iz

n, i = 1, 2, ð35Þ

with condition jan,2j ≤ 1, then f1 ∗ f2 ∈ S
∗
p,qðl,m,C ,DÞ:

Proof. Since form (35), we have

f i zð Þ = z + 〠
∞

n=2
an,iz

n, i = 1, 2: ð36Þ

Then convolution is defined as

f1 ∗ f2ð Þ zð Þ = z + 〠
∞

n=2
an,1an,2z

n: ð37Þ

Since f2 ∈ S
∗
p,qðl,m,C ,DÞ, with limitation that jan,2j ≤ 1:

Therefore

〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; an,1
�� �� an,2�� ��

≤ 〠
∞

n=2

n½ �p,q 1 +Dð Þ − C + 1ð Þ ln −mn/l −mð Þ
h i

D −Cð Þ

8<
:

9=
; an,1
�� �� < 1:

ð38Þ

Hence f1 ∗ f2 ∈ S
∗
p,qðl,m,C ,DÞ:

Theorem 8. Let f ðzÞ ∈ S∗
p,qðl,m,C ,DÞ. Then

1
z

f zð Þ ∗ 1 +Deiθ
� �

z

1 − pzð Þ 1 − qzð Þ −
1 +Ceiθ
� �

z

1 − lzð Þ 1 −mzð Þ

 !" #
≠ 0:

ð39Þ

4 Journal of Function Spaces



Proof. Let f ðzÞ ∈ S∗
p,qðl,m,C ,DÞ: Then by definition of sub-

ordination, there exists a Schwarz function wðzÞ, such that
wð0Þ = 0 and jwðzÞj < 1,

l −mð Þz∂p,q f zð Þ
f lzð Þ − f mzð Þ = 1 +Cw zð Þ

1 +Dw zð Þ , ð40Þ

equivalently,

l −mð Þz∂p,q f zð Þ
f lzð Þ − f mzð Þ ≠

1 +Ceiθ

1 +Deiθ
, ð41Þ

z∂p,q f zð Þ 1 +Deiθ
� �

−
f lzð Þ − f mzð Þ

l −m
1 +Ceiθ
� �

≠ 0,

ð42Þ
using the relations

z∂p,q f zð Þ = f zð Þ ∗ z
1 − pzð Þ 1 − qzð Þ ,

f lzð Þ − f mzð Þ
l −m

= f zð Þ ∗ z
1 − lzð Þ 1 −mzð Þ

	 

,

ð43Þ

now (42), becomes

1
z

f zð Þ ∗ 1 +Deiθ
� �

z

1 − pzð Þ 1 − qzð Þ −
1 +Ceiθ
� �

z

1 − lzð Þ 1 −mzð Þ

 !" #
≠ 0,

ð44Þ

which completes the proof.

3. Conclusions

Utilizing the concepts of postquantum calculus, we defined a
new subclass of analytic functions associated with symmetric
circular domain. For this class, we investigated some useful
results such as necessary and sufficient problem, convex
combination, weight mean, arithmetic mean, distortion
bounds, and convolution property. There are some problems
open for researchers such as radii problems, extreme point
theorem, analytic criteria, and integral mean of inequality.
Moreover, this concept is new and can be extended to mero-
morphic functions and harmonic functions.
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The objective of this paper is to establish q-analogue of some well-known inequalities in analysis, namely, Poincaré-type
inequalities, Sobolev-type inequalities, and Lyapunov-type inequalities. Our obtained results may serve as a useful source of
inspiration for future works in quantum calculus.

1. Introduction and Preliminaries

Mathematical inequalities play a crucial role in the develop-
ment of various branches of mathematics as well as other dis-
ciplines of science. In particular, integral inequalities
involving the function and its gradient provide important
tools in the proof of regularity of solutions to differential
and partial differential equations, stability, boundedness,
and approximations. One of these categories of inequalities
is the Poincaré-type inequality. Namely, if Ω is a bounded
(or bounded at least in one direction) domain of ℝN , then,
there exists a constant C = CðΩÞ > 0 such that for all u ∈H1

0
ðΩÞ,

ð
Ω

u xð Þj j2 dx ≤ C
ð
Ω

‍ ∇u xð Þj j2dx: ð1Þ

For a smooth bounded domain Ω, the best constant
C satisfying the above inequality is equal to λðΩÞ−1 ,
where λðΩÞ is the first eigenvalue of −Δ in H1

0ðΩÞ, and
Δ is the Laplacian operator (see, e.g., [1–5]). Due to
the importance of Poincaré inequality in the qualitative
analysis of partial differential equations and also in
numerical analysis, numerous contributions dealing with
generalizations and extensions of this inequality
appeared in the literature (see, e.g., [6–17] and the refer-
ences therein). Another important inequality involving
the function and its gradient is the Sobolev inequality

(see [18, 19]). Namely, if u is a smooth function of com-
pact support in ℝ2 , then

ð
ℝ2

u4 xð Þ dx ≤ κ

2

ð
ℝ2

u2 xð Þ dx
� � ð

ℝ2
∇u xð Þj j2 dx

� �
, ð2Þ

where κ > 0 is a dimensionless constant and ∇u denotes
the gradient of u. For further results related to Sobolev-
type inequalities and their applications, see, for example,
[20–26].

Lyapunov’s inequality is one of the important results in
analysis. It was shown that this inequality is very useful in
the study of spectral properties of differential equations,
namely, stability of solutions, eigenvalues, and disconjugacy
criteria. More precisely, consider the second order differen-
tial equation

−ϑ′′ tð Þ = f tð Þϑ tð Þ, m1 < t <m2, ð3Þ

under the Dirichlet boundary conditions

ϑ mið Þ = 0, i = 1, 2, ð4Þ

where f ∈ Cð½m1,m2�Þ. Obviously, the trivial function ϑ
≡ 0 is a solution to (3)–(4). Lyapunov’s inequality pro-
vides a necessary criterion for the existence of a nontriv-
ial solution. Namely, if ϑ ∈ C1ð½m1,m2�Þ is a nontrivial
solution to (3)–(4), then (see Lyapunov [27] and Borg
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[28])

ðm2

m1

‍ f tð Þj j dt > 4
m1 −m2

: ð5Þ

Since the appearance of the above result, numerous
contributions related to Lyapunov-type inequalities have
been published (see, e.g., [18, 29–32] and the references
therein).

On the other hand, because of its usefulness in several
areas of physics (thermostatistics, conformal quantum
mechanics, nuclear and high energy physics, black holes,
etc.), the theory of quantum calculus received a considerable
attention by many researchers from various disciplines (see,
e.g., [33–35]).

In this paper, motivated by the abovementioned contri-
butions, our goal is to derive q-analogs of some Poincaré-
type inequalities, Sobolev-type inequalities, and Lyapunov-
type inequalities. Notice that only the one dimensional case
is considered in this work.

We recall below some notions and properties related to q
-calculus (see, e.g., [36–51] and the references therein).

We first fix q ∈ ð0, 1Þ. Let ℕ be the set of positive natural
numbers, i.e., ℕ = f1, 2, 3,⋯g, and ℕ0 =ℕ ∪ f0g.

Definition 1. The q -derivative of a function ϑ ∈ C1ð½0, T�Þ (
T > 0) is defined by

Dqϑ tð Þ =
ϑ tð Þ − ϑ qtð Þ
1 − qð Þt if 0 < t ≤ T ,

ϑ′ 0ð Þ if t = 0:

8><
>: ð6Þ

Remark 2. Using L’Hospital’s rule, one obtains

lim
t→0+

Dqϑ tð Þ = ϑ′ 0ð Þ, ð7Þ

which shows that Dqϑ ∈ Cð½0, T�Þ for all ϑ ∈ C1ð½0, T�Þ.

Remark 3. It can be easily seen that

lim
q→1−

Dqϑ tð Þ = ϑ′ tð Þ, 0 ≤ t ≤ T: ð8Þ

Lemma 4 (see [45]). Let ϑ, ρ ∈ C1ð½0, T�Þ. Then

Dq ϑρð Þ tð Þ = ϑ qtð ÞDqρ tð Þ + ρ tð ÞDqϑ tð Þ: ð9Þ

Definition 5. The q-integral of a function ϑ ∈ Cð½0, T�Þ is
defined by

ðt
0
ϑ ξð Þdqξ = 1 − qð Þt 〠

∞

σ=0
qσϑ qσtð Þ, 0 ≤ t ≤ T , ð10Þ

and

ðt
s
‍ϑ ξð Þdqξ =

ðt
0
‍ϑ ξð Þdqξ −

ðs
0
‍ϑ ξð Þdqξ, 0 < s ≤ t ≤ T:

ð11Þ

Remark 6. Obviously, if ϑ ∈ Cð½0, T�Þ, then

ðt
0
ϑ ξð Þdqξ<∞,

ðt
s
‍ϑ ξð Þdqξ<∞, 0 < s ≤ t ≤ T: ð12Þ

Lemma 7 (see [39]). Let ϑ, ρ ∈ Cð½0, T�Þ, 0 ≤ t ≤ T , p > 1 and
p′ = p/p − 1. Then

(i) jÐ t0 ϑðξÞdqξj ≤ Ð t0‍jϑðξÞjdqξ
(ii) For all σ ∈ℕ0, ϑðqσtÞ ≤ ρðqσtÞÐ t0 ϑðξÞ dqξ ≤ Ð t0 ρðξÞ

dqξ

(iii)
Ð T
0 jϑðξÞjjρðξÞjdqξ ≤ ðÐ T0 jϑðξÞjp dqξÞ1/p

ðÐ T0 jρðξÞjp′ dqξÞ1/p′.
Lemma 8 (see [45]). Let ϑ ∈ C1ð½0, T�Þ. Then

(i)
Ð t
s DqϑðξÞdqξ = ϑðtÞ − ϑðsÞ,0 ≤ s ≤ t ≤ T

(ii) Dq

Ð t
0 ϑðξÞdqξ = ϑðtÞ,0 < t ≤ T

Remark 9. Notice that in general, for 0 < s < t ≤ T ,

ðt
s
ϑ ξð Þdqξ

����
����≤
ðt
s
ϑ ξð Þj jdqξ: ð13Þ

Namely, following [40], consider the function ϑ : ½0, 1�
→ℝ defined by

ϑ ξð Þ =

1
1 − q

4q−nξ − 1 − 3qð Þ if qn+1 ≤ ξ ≤
qn 1 + qð Þ

2 , n ∈ℕ0,

4
1 − q

−ξq−n + 1ð Þ − 1 if q
n 1 + qð Þ

2 ≤ ξ ≤ qn, n ∈ℕ0,

0 if ξ = 0:

8>>>>>><
>>>>>>:

ð14Þ

Then, one has

ϑ qnð Þ = −1 and ϑ
qn 1 + qð Þ

2

� �
= 1, for all n ∈ℕ0:

ð15Þ
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Therefore, an elementary calculation shows that

ð1
1+q/2

ϑ ξð Þdqξ = −
3 + q
2  and 

ð1
1+q/2

ϑ ξð Þj jdqξ =
1 − q
2 :

ð16Þ

Hence, one has

ð1
1+q/2

ϑ ξð Þ dqξ
�����

����� >
ð1
1+q/2

ϑ ξð Þj jdqξ: ð17Þ

We have the following integration by parts rule.

Lemma 10 (see [45]). Let ϑi ∈ C1ð½0, T�Þ, i = 1, 2 . Then
ðT
0
ϑ1 ξð Þ Dqϑ2

� �
ξð Þ dqξ = ϑ1 ξð Þϑ2 ξð Þ½ �Tξ=0 −

ðT
0
ϑ2 qξð Þ Dqϑ1

� �
ξð Þ dqξ:

ð18Þ

Let us introduce the set

Λq = qn : n ∈ℕf g ∪ 0f g: ð19Þ

Let T ∈Λq, T > 0, i.e.,

T = qk, for some k ∈ℕ, ð20Þ

and Iq = ½0, T� ∩Λq, i.e.,

Iq = qi+k : i ∈ℕ0
n o

∪ 0f g: ð21Þ

Let s, t ∈ Iq be such that 0 < s < t, i.e., t = qi+k for some i

∈ℕ0 and s = qi+k+j for some j ∈ℕ. In this case, for ϑ ∈ Cð½0
, T�Þ, by Definition 5, one has

ðt
s
ϑ ξð Þ dqξ =

ðt
0
ϑ ξð Þ dqξ −

ðs
0
ϑ ξð Þ dqξ = 1 − qð Þt 〠

∞

σ=0
qσϑ qσtð Þ

− 1 − qð Þs〠
∞

σ=0
qσϑ qσsð Þ = 1 − qð Þ 〠

∞

σ=0
tqσϑ qσtð Þ

 

− 〠
∞

σ=0
sqσϑ qσsð Þ

!
= 1 − qð Þ 〠

∞

σ=0
qσ+i+kϑ qσ+i+k

� � 

− 〠
∞

σ=0
qσ+i+k+jϑ qσ+i+k+j

� �!
= 1 − qð Þ

〠
∞

n=i+k
qnϑ qnð Þ − 〠

∞

n=i+k+j
qnϑ qnð Þ

 !

= 1 − qð Þ 〠
i+k+j−1

n=i+k
qnϑ qnð Þ,

ð22Þ

which is a finite sum. Hence, one deduces the following
property.

Lemma 11. Let ϑ, ρ ∈ Cð½0, T�Þ, where T ∈Λq, T > 0 . Let s, t
∈ Iq be such that 0 < s < t. Then

ðt
s
ϑ ξð Þ dqξ

����
���� ≤
ðt
s
∣ϑ ξð Þ∣ dqξ: ð23Þ

2. Poincaré and Sobolev Type Inequalities

Let q ∈ ð0, 1Þ be fixed.

Theorem 12. Let p > 1 and T ∈Λq, T > 0. Let ϑ ∈ C1ð½0, T�Þ
be such that

ϑ 0ð Þ = ϑ Tð Þ = 0: ð24Þ

Then

ðT
0
ϑ ξð Þj jpdqξ ≤

T
2

� �pðT
0

Dqϑ ξð Þ�� ��pdqξ: ð25Þ

Proof. Let t = qσT , where σ ∈ℕ. Notice that since T ∈Λq,
then t ∈ Iq. By property (i) of Lemma 8, one has

ϑ tð Þ − ϑ 0ð Þ =
ðt
0
Dqϑ ξð Þdqξ: ð26Þ

Since ϑð0Þ = 0, it holds that

ϑ tð Þ =
ðt
0
Dqϑ ξð Þdqξ: ð27Þ

Next, by property (i) of Lemma 7, one obtains

ϑ tð Þj j ≤
ðt
0
Dqϑ ξð Þ�� ��dqξ: ð28Þ

Again, using property (i) of Lemma 8, and the fact that
ϑðTÞ = 0, one obtains

−ϑ tð Þ =
ðT
t
Dqϑ ξð Þdqξ: ð29Þ

Hence, by Lemma 11, one deduces that

ϑ tð Þj j ≤
ðT
t

Dqϑ ξð Þ�� ��dqξ: ð30Þ

Combining (28) with (30), it holds that

ϑ tð Þj j ≤ 1
2

ðT
0

Dqϑ ξð Þ�� ��dqξ: ð31Þ

On the other hand, by Hölder’s inequality (see property
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(iii) of Lemma 7), one has

ðT
0

Dqϑ ξð Þ�� ��dqξ ≤
ðT
0

Dqϑ ξð Þ�� ��pdqξ
� �1/p ðT

0
1dqξ

� �p−1/p
:

ð32Þ

Notice that

ðT
0
1dqξ = 1 − qð ÞT 〠

∞

n=0
qn = T: ð33Þ

Therefore,

ðT
0

Dqϑ ξð Þ�� ��dqξ ≤ Tp−1/p
ðT
0

Dqϑ ξð Þ�� ��pdqξ
� �1/p

: ð34Þ

Combining (31) with (34), one deduces that

ϑ tð Þj j ≤ Tp−1/p

2

ðT
0

Dqϑ ξð Þ�� ��pdqξ
� �1/p

, ð35Þ

which yields

ϑ tð Þj jp ≤ Tp−1

2p
ðT
0

Dqϑ ξð Þ�� ��pdqξ, ð36Þ

i.e.,

ϑ qσTð Þj jp ≤ Tp−1

2p
ðT
0

Dqϑ ξð Þ�� ��p dqξ, σ ∈ℕ: ð37Þ

Notice that since ϑðTÞ = 0, the above inequality is also
true for σ = 0. Hence, by property (ii) of Lemma 7, one
deduces that

ðT
0
ϑ ξð Þj jp dqξ ≤

Tp−1

2p
ðT
0

Dqϑ ξð Þ�� ��p dqξ
ðT
0
1 dqξ: ð38Þ

Finally, (25) follows from (33) and (38).

Remark 13. Inequality (25) is the one dimensional q-analog
of the Poincaré-type inequality derived by Pachpatte [11].

Theorem 14. Let p1, p2 > 1 and T ∈Λq, T > 0 . Let ϑ1, ϑ2 ∈
C1ð½0, T�Þ be such that

ϑi 0ð Þ = ϑi Tð Þ = 0, i = 1, 2: ð39Þ

Then

ðT
0
ϑ1 ξð Þj jp1 ϑ2 ξð Þj jp2 dqξ ≤

1
2

T
2

� �p1+p2

ðT
0

Dqϑ1 ξð Þ�� ��2p1 + Dqϑ2 ξð Þ�� ��2p2� �
dqξ:

ð40Þ

Proof. From (37) and (70), one has

ϑ1 qσTð Þ ∣ p1 ≤ Tp1−1

2p1
ðT
0

����
����Dqϑ1 ξð Þ

����
p1

dqξ, σ ∈ℕ0, ð41Þ

ϑ2 qσTð Þj jp2 ≤ Tp2−1

2p2
ðT
0

Dqϑ2 ξð Þ�� ��p2dqξ, σ ∈ℕ0: ð42Þ

Multiplying (41) by (42), one obtains

ϑ1 qσTð Þj jp1 ϑ2 qσTð Þj jp2 ≤ Tp1+p2−2

2p1+p2
ðT
0

Dqϑ1 ξð Þ�� ��p1 dqξ
� �

�
ðT
0

Dqϑ2 ξð Þ�� ��p2 dqξ
� �

:

Next, using the inequality 2AB ≤ A2 + B2, A, B ∈ℝ, one
deduces that

ϑ1 qσTð Þj jp1 ϑ2 qσTð Þj jp2

≤
Tp1+p2−2

2p1+p2+1
ðT
0

Dqϑ1 ξð Þ�� ��p1 dqξ
� �2

+
ðT
0

Dqϑ2 ξð Þ�� ��p2 dqξ
� �2" #

:

ð44Þ

On the other hand, by Hölder’s inequality (see property
(iii) of Lemma 7), for i = 1, 2, one has

ðT
0

Dqϑi ξð Þ�� ��pi dqξ
� �2

≤ T
ðT
0

Dqϑi ξð Þ�� ��2pi dqξ: ð45Þ

Hence, combining (44) with (45), it holds that

ϑ1 qσTð Þj jp1 ϑ2 qσTð Þj jp2 ≤ Tp1+p2−1

2p1+p2+1
ðT
0

� Dqϑ1 ξð Þ�� ��2p1 + Dqϑ2 ξð Þ�� ��2p2� �
dqξ: ð46Þ

Since the above inequality holds for all σ ∈ℕ0, by prop-
erty (ii) of Lemma 7, one deduces that

ðT
0
ϑ1 ξð Þj jp1 ϑ2 ξð Þj jp2 dqξ ≤

Tp1+p2−1

2p1+p2+1
ðT
0

� Dqϑ1 ξð Þ�� ��2p1+∣Dqϑ2 ξð Þ ∣
� �

dqξ
ðT
0
1 dqξ: ð47Þ

Finally, (40) follows from (33) and (47).

Remark 15. Inequality (40) is the one dimensional q-analog
of the Poincaré-type inequality derived by Pachpatte [10].

Theorem 16. Let p > 1, m > ðp/2ðp − 1ÞÞ, N ∈ℕ and T ∈Λq,

T > 0 . Let ϑi ∈ C1ð½0, T�Þ, i = 1, 2,⋯,N be such that

ϑi 0ð Þ = ϑi Tð Þ = 0: ð48Þ
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Then

ðT
0

〠
N

i=1
ϑi ξð Þj j2

 !p/p−1

dqξ

" #2m p−1ð Þ/p

� ≤ 1
N

N
4

� �2m

T 6m−1ð Þp−2m/p 〠
N

i=1

ðT
0

Dqϑi ξð Þ�� ��4m dqξ: ð49Þ

Proof. Let t = qσT , where σ ∈ℕ. From (31), one has

∣ϑi tð Þ∣ ≤
1
2

ðT
0
∣Dqϑi ξð Þ∣ dqξ, i = 1, 2,⋯,N: ð50Þ

On the other hand, by Hölder’s inequality (see property
(iii) of Lemma 7) and (33), one has

ðT
0
∣Dqϑi ξð Þ ∣ dqξ

� �2
≤ T
ðT
0

Dqϑi ξð Þ�� ��2 dqξ: ð51Þ

Hence, by (50), one deduces that

ϑi tð Þj j2≤T4
ðT
0

Dqϑi ξð Þ�� ��2 dqξ, i = 1, 2,⋯,N , ð52Þ

which yields

〠
N

i=1
ϑi tð Þj j2

 !p/p−1

≤
T
4

� �p/p−1
〠
N

i=1

ðT
0

Dqϑi ξð Þ�� ��2 dqξ
 !p/p−1

:

ð53Þ

Next, using the discrete version of Hölder’s inequality,
one obtains

〠
N

i=1
ϑi tð Þj j2

 !p/p−1

≤
T
4

� �p/p−1
〠
N

i=1
1

 !1/p−1

〠
N

i=1

ðT
0

Dqϑi ξð Þ�� ��2 dqξ
� �p/p−1

=N1/p−1 T
4

� �p/p−1
〠
N

i=1

ðT
0

Dqϑi ξð Þ�� ��2 dqξ
� �p/p−1

:

ð54Þ

On the other hand, by Hölder’s inequality (see property
(iii) of Lemma 7) and (33), one has

ðT
0

Dqϑi ξð Þ�� ��2 dqξ
≤
ðT
0
1 dqξ

� �1/p ðT
0

Dqϑi ξð Þ�� ��2p/p−1 dqξ
� �p−1/p

= T1/p
ðT
0

Dqϑi ξð Þ�� ��2p/p−1 dqξ
� �p−1/p

:

ð55Þ

Therefore, by (54), one deduces that

〠
N

i=1
ϑi tð Þj j2

 !p/p−1

≤N1/p−1 T
4

� �p/p−1
T1/p−1 〠

N

i=1

ðT
0

Dqϑi tð Þ
�� ��2p/p−1 dqξ:

ð56Þ

Since the above inequality is true for all σ ∈ℕ0 (recall
that t = qσT), by property (ii) of Lemma 7, and using (33),
one deduces that

ðT
0

〠
N

i=1
ϑi ξð Þj j2

 !p/p−1

dqξ ≤N1/p−1 T2

4

� �p/p−1
〠
N

i=1

ðT
0

Dqϑi tð Þ
�� ��2p/p−1 dqξ,

ð57Þ

which yields

ðT
0

〠
N

i=1
ϑi ξð Þj j2

 !p/p−1

dqξ

" #2m p−1ð Þ/p

� ≤N2m/p T2

4

� �2m
〠
N

i=1

ðT
0
Dqϑi tð Þ
�� ��2p/p−1 dqξ

 !2m p−1ð Þ/p
:

ð58Þ

Next, using Hölder’s inequality with exponents 2mðp −
1Þ/2mðp − 1Þ − p and 2mðp − 1Þ/p (notice that 2mðp − 1Þ/p
> 1 by assumption), one obtains

ðT
0

Dqϑi tð Þ
�� ��2p/p−1 dqξ

≤
ðT
0
1 dqξ

� �2m p−1ð Þ−p/2m p−1ð Þ ðT
0

Dqϑi tð Þ
�� ��4m dqξ

� �p/2m p−1ð Þ

= T2m p−1ð Þ−p/2m p−1ð Þ
ðT
0

Dqϑi tð Þ
�� ��4m dqξ

� �p/2m p−1ð Þ
,

ð59Þ

which yields

〠
N

i=1

ðT
0

Dqϑi tð Þ
�� ��2p/p−1 dqξ ≤ T2m p−1ð Þ−p/2m p−1ð Þ

〠
N

i=1

ðT
0

Dqϑi tð Þ
�� ��4m dqξ

� �p/2m p−1ð Þ
:

ð60Þ

Furthermore, the discrete Hölder’s inequality shows that

〠
N

i=1

ðT
0

Dqϑi tð Þ
�� ��4m dqξ

� �p/2m p−1ð Þ
≤N2m p−1ð Þ−p/2m p−1ð Þ

� 〠
N

i=1

ðT
0

Dqϑi tð Þ
�� ��4m dqξ

 !p/2m p−1ð Þ
:

ð61Þ
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Hence, by (60), one deduces that

〠
N

i=1

ðT
0

Dqϑi tð Þ
�� ��2p/p−1 dqξ ≤ T2m p−1ð Þ−p/2m p−1ð ÞN2m p−1ð Þ−p/2m p−1ð Þ

� 〠
N

i=1

ðT
0

Dqϑi tð Þ
�� ��4m dqξ

 !p/2m p−1ð Þ
:

ð62Þ

Finally, combining (58) with (62), (49) follows.

Remark 17. Inequality (49) is the one dimensional q-analog
of the Poincaré-type inequality derived by Pachpatte [12].

Theorem 18. Let T ∈Λq, T > 0. Let ϑ ∈ C1ð½0, T�Þ be such that

ϑ 0ð Þ = ϑ Tð Þ = 0: ð63Þ

Then

ðT
0
ϑ2 ξð Þ dqξ ≤

T
2

ðT
0

ϑ qξð Þj j + ϑ ξð Þj jð Þ2 dqξ
� �1/2 ðT

0
Dqϑ ξð Þ�� ��2 dqξ

� �1/2
:

ð64Þ

Proof. Let t = qσT , where σ ∈ℕ. By Lemma 4, property (i) of
Lemma 8, and using the boundary conditions, one has

ϑ2 tð Þ =
ðt
0
ϑ qξð Þ + ϑ ξð Þð ÞDqϑ ξð Þ dqξ ð65Þ

and

−ϑ2 tð Þ =
ðT
t

ϑ qξð Þ + ϑ ξð Þð ÞDqϑ ξð Þ dqξ: ð66Þ

Combining (65) with (66), it holds that

ϑ2 tð Þ ≤ 1
2

ðT
0

ϑ qξð Þj j + ϑ ξð Þj jð Þ Dqϑ ξð Þ�� ��dqξ: ð67Þ

Using Hölder’s inequality, one obtains

ϑ2 tð Þ ≤ 1
2

ðT
0

ϑ qξð Þj j + ϑ ξð Þj jð Þ2dqξ
� �1/2 ðT

0
Dqϑ ξð Þ�� ��2dqξ

� �1/2
:

ð68Þ

Since the above inequality holds for all σ ∈ℕ0, using
property (ii) of Lemma 7, integrating over ð0, TÞ, and using
(33), (64) follows.

Remark 19. Inequality (64) is the one dimensional q-analog
of the Sobolev-type inequality derived by Pachpatte [11].

3. Lyapunov-Type Inequalities

We fix q ∈ ð0, 1Þ and T ∈Λq, T > 0. Consider the second
order q-difference equation

−Dq Dqϑ
� �

t/qð Þ + a tð ÞDqϑ tð Þ = f tð Þφ ϑ tð Þð Þ, 0 < t < T ,
ð69Þ

under the boundary conditions

ϑ 0ð Þ = ϑ Tð Þ = 0, ð70Þ

where a, f ∈ Cð½0, T�Þ and φ : ℝ→ℝ. We suppose that there
exists a constant Lφ > 0 such that

φ xð Þj j ≤ Lφ xj j, x ∈ℝ: ð71Þ

Obviously, from (71), one has φð0Þ = 0. Hence, ϑ ≡ 0 is a
trivial solution to (69) and (70). The following theorem pro-
vides a necessary condition for the existence of a nontrivial
solution to (69) and (70) satisfying ϑðtÞ ≠ 0, 0 < t < T .

Theorem 20. Suppose that ϑ ∈ C1ð½0, T�Þ is a solution to (69)
and (70) satisfying

ϑ tð Þ ≠ 0, 0 < t < T: ð72Þ

Then

1 ≤ Lφ

ðT
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

4

r
f ξð Þj jdqξ +

ðT
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

4

r
a ξð Þj j2dqξ

 !1/2

:

ð73Þ

Proof. Let s = qσT , where σ ∈ℕ. Since ϑð0Þ = 0, using prop-
erty (i) of Lemma 8, one has

ϑ sð Þ =
ðs
0
Dqϑ ξð Þdqξ: ð74Þ

By Hölder’s inequality (see property (iii) of Lemma 7)
and (33), one obtains

ϑ sð Þj j ≤ ffiffi
s

p ðs
0
Dqϑ ξð Þ�� ��2dqξ

� �1/2
, ð75Þ

which yields

ϑ sð Þj j2 ≤ s
ðs
0
Dqϑ ξð Þ�� ��2dqξ: ð76Þ

Similarly, since ϑðTÞ = 0, one has

−ϑ sð Þ =
ðT
s
Dqϑ ξð Þdqξ, ð77Þ
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which implies that (see Lemma 11)

ϑ sð Þj j ≤
ðT
s

Dqϑ ξð Þ�� ��dqξ: ð78Þ

Since s, T ∈ Iq, then
Ð T
s jDqϑðξÞjdqξ is a finite sum (see

(22)). Hence, we can apply Hölder’s inequality to get

ϑ sð Þj j2 ≤ T − sð Þ
ðT
s

Dqϑ ξð Þ�� ��2dqξ: ð79Þ

Multiplying (76) by (79), one obtains

ϑ sð Þj j4 ≤ s T − sð Þ
ðs
0
Dqϑ ξð Þ�� ��2dqξ

� � ðT
s

Dqϑ ξð Þ�� ��2dqξ
� �

,

ð80Þ

i.e.,

ϑ sð Þj j2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s T − sð Þ

p ðs
0
Dqϑ ξð Þ�� ��2dqξ

� �1/2 ðT
s

Dqϑ ξð Þ�� ��2dqξ
� �1/2

:

ð81Þ

Using the inequality 2AB ≤ A2 + B2, A, B ∈ℝ, it holds
that

ϑ sð Þj j2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s T − sð Þp
2

ðs
0
Dqϑ ξð Þ�� ��2dqξ +

ðT
s

Dqϑ ξð Þ�� ��2dqξ

 �

,

ð82Þ

i.e., (recall that s = qσT and ϑðTÞ = 0)

ϑ qσTð Þj j2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qσT T − qσTð Þp

2

ðT
0

Dqϑ ξð Þ�� ��2dqξ, σ ∈ℕ0:

ð83Þ

Consider now the function

w tð Þ =Dqϑ t/qð Þ, 0 < t < T: ð84Þ

By (69), one has

−Dqw tð Þ + a tð ÞDqϑ tð Þ tð Þ = f tð Þφ ϑ tð Þð Þ, 0 < t < T:

ð85Þ

Multiplying (85) by ϑðtÞ and integrating over ð0, TÞ, one
obtains

−
ðT
0
ϑ ξð ÞDqw ξð Þdqξ +

ðT
0
a ξð Þϑ ξð ÞDqϑ ξð Þdqξ =

ðT
0
f ξð Þφ ϑ ξð Þð Þϑ ξð Þdqξ:

ð86Þ

On the other hand, using the integration by parts rule

(see Lemma 10) and the boundary conditions (70), one has

−
ðT
0
ϑ ξð ÞDqw ξð Þdqξ =

ðT
0
w qξð ÞDqϑ ξð Þdqξ: ð87Þ

Hence, by (86) and the definition of w, one deduces that

ðT
0

Dqϑ ξð Þ�� ��2dqξ =
ðT
0
f ξð Þφ ϑ ξð Þð Þϑ ξð Þdqξ −

ðT
0
‍a ξð Þϑ ξð ÞDqϑ ξð Þdqξ:

ð88Þ

Next, using (71), one obtains

ðT
0

Dqϑ ξð Þ�� ��2dqξ ≤ Lφ

ðT
0

f ξð Þj jϑ2 ξð Þdqξ +
ðT
0
a ξð Þj j ϑ ξð Þj j Dqϑ ξð Þ�� ��dqξ:

ð89Þ

Furthermore, by (83) and property (ii) of Lemma 7, one
deduces that

ðT
0

Dqϑ ξð Þ�� ��2dqξ ≤ Lφ
2

ðT
0

Dqϑ ξð Þ�� ��2dqξ
� �

�
ðT
0

f ξð Þj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

q
dqξ

� �

+ 1ffiffiffi
2

p
ðT
0
a ξð Þj j ξ T − ξð Þ½ �1/4 Dqϑ ξð Þ�� ��dqξ

� �

�
ðT
0

Dqϑ ξð Þ�� ��2dqξ
� �1/2

:

ð90Þ

Therefore, by Hölder’s inequality, it holds that

ðT
0

Dqϑ ξð Þ�� ��2dqξ ≤ Lφ
2

ðT
0

Dqϑ ξð Þ�� ��2dqξ
� �

�
ðT
0

f ξð Þj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

q
dqξ

� �

+ 1ffiffiffi
2

p
ðT
0
a ξð Þj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

q
dqξ

� �1/2

�
ðT
0

Dqϑ ξð Þ�� ��2dqξ
� �

:

ð91Þ

Next, we claim that

ðT
0

Dqϑ ξð Þ�� ��2dqξ ≠ 0: ð92Þ

Indeed, suppose that
Ð T
0 jDqϑðξÞj2dqξ = 0. By Definition

5, one obtains

1 − qð ÞT 〠
∞

τ=0
qτ Dqϑ qτTð Þ�� �� Dqϑ qτTð Þ�� ��2 = 0, ð93Þ
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which yields

Dqϑ qτTð Þ = 0, τ ∈ℕ0: ð94Þ

In particular, for τ = 1, one has

Dqϑ Tð Þ = 0, ð95Þ

i.e.,

ϑ Tð Þ − ϑ qTð Þ = 0: ð96Þ

Since ϑðTÞ = 0, one deduces that ϑðqTÞ = 0, which con-
tradicts (72). This proves (92). Now, dividing (91) by

Ð T
0

jDqϑðξÞj2 dqξ > 0, it holds that

1 ≤
Lφ
2

ðT
0
∣f ξð Þ∣

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

q
dqξ +

1ffiffiffi
2

p
ðT
0
a ξð Þj j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

q
dqξ

� �1/2
,

ð97Þ

which yields (73).
Using the inequality

ξ T − ξð Þ ≤ T2

4 , 0 < ξ < T , ð98Þ

one deduces from Theorem 20 the following result.

Corollary 21. Suppose that ϑ ∈ C1ð½0, T�Þ is a solution to (69)
and (70) satisfying (72). Then

1 ≤
LφT

4

ðT
0
∣f ξð Þ∣ dqξ +

ffiffiffiffi
T

p

2

ðT
0
a ξð Þj j2 dqξ

� �1/2
: ð99Þ

Consider now the second order q-difference equation

−Dq Dqϑ
� �

t/qð Þ = f tð Þφ ϑ tð Þð Þ, 0 < t < T , ð100Þ

under the boundary conditions (70), where f ∈ Cð½0, T�Þ
and φ : ℝ→ℝ satisfies (71). Notice that (100) is a special
case of (69) with a ≡ 0. Hence, by Theorem 20 and Corollary
21, one deduces the following results.

Corollary 3.2. Suppose that ϑ ∈ C1ð½0, T�Þ is a solution to
(100) and (70) satisfying (72). Then

ðT
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ T − ξð Þ

q
∣f ξð Þ∣ dqξ ≥

2
Lφ

: ð101Þ

Corollary 22. Suppose that ϑ ∈ C1ð½0, T�Þ is a solution to (100)
and (70) satisfying (72). Then

ðT
0
∣f ξð Þ∣ dqξ ≥

4
LφT

: ð102Þ

Remark 23. Inequality (102) with φðxÞ = x (Lφ = 1) is the q

-analogue of Lyapunov inequality (5) with m1 = 0 and m2 =
T .

4. Conclusion

Integral inequalities involving the function and its gradient
are very useful in the study of existence, uniqueness, and
qualitative properties of solutions to ordinary and partial dif-
ferential equations. Motivated by the importance of q-cal-
culus in applications, integral inequalities involving the
function and its q-derivative are obtained. Namely, we
derived the q-analogue of some Poincaré-type inequalities
and Sobolev-type inequalities. We also established the q
-analogue of some Lyapunov-type inequalities. We hope that
our results will serve as a useful inspiration for future works
in the context of q-calculus.
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In this paper, we establish existence and uniqueness results for a boundary value problem consisting by a nonlinear fractional
q-difference equation subject to a new type of boundary condition, combining the fractional Hadamard and quantum
integrals. Our analysis is based on Banach’s fixed point theorem, a fixed point theorem for nonlinear contractions,
Krasnosel’ski i’s fixed point theorem, and Leray-Schauder nonlinear alternative. Examples are given to illustrate our results.

1. Introduction

The aim of this paper is to investigate the existence and
uniqueness of solutions for a nonlinear fractional q-differ-
ence equation subject to fractional Hadamard and quantum
integral condition of the form:

Dα
qx tð Þ = f t, x tð Þð Þ, 1 < α ≤ 2, t ∈ 0, Tð Þ,

x 0ð Þ = 0, 〠
n

i=1
γiI

μi
pi x ξið Þ = 〠

m

j=1
βj J

σ j x η j

� �
,

0
BB@ ð1Þ

where Dα
q is the fractional q-derivative of order α, with a

quantum number q ∈ ð0, 1Þ, f : ½0, T� ×ℝ⟶ℝ is a nonlin-
ear continuous function, Iμipi denotes the fractional quantum
integral of order μi > 0, with quantum number 0 < pi < 1,

Jσ j is the Hadamard fractional integral of order σ j > 0, γi
and βj are given constants, and ξi, η j ∈ ð0, TÞ are fixed points,
for i = 1,⋯, n and j = 1,⋯,m.

The subject of fractional differential equations has
recently evolved into an interesting subject for many
researchers due to its multiple applications in economics,
engineering, physics, chemistry, signal analysis, etc. Various
types of fractional derivative and integral operator were
studied: Riemann-Liouville, conformable fractional integral
operators, Caputo, Hadamard, Erdelyi-Kober, Grünwald-
Letnikov, Marchaud, and Riesz are just a few to name.
The Hadamard-type fractional derivative differs from the
preceding ones in the sense that the kernel of the integral
and derivative contain logarithmic function of arbitrary
exponent. Details and properties of Hadamard fractional
derivatives and integrals can be found in Kilbas et al.
[1]. Recently, there were some results on Hadamard-type
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fractional differential equations, see [2–11] and references
cited therein.

Nonlinear fractional q-difference equations appear in
the mathematical modeling of many phenomena in engi-
neering and science and have attracted much attention by
many researchers, see for example [12–21] and references
therein.

In the present paper, the novelty lies in the fact that we
combine in boundary conditions both Hadamard and quan-
tum integrals. To the best of our knowledge, this type of
boundary condition appears for the first time in the litera-
ture. It is important to notice that we are combining in our
work, fractional calculus, and quantum calculus. The key tool
for this combination is the Property 2.25 of [1].

Some special cases of the second condition of (1) can be
seen by reducing m = n = 1 as

γ1
Γp1

μ1ð Þ
ðξ1
0+

ξ1 − p1sð Þ μ1−1ð Þ
p1

x sð Þ dp1 s

= β1
Γ σ1ð Þ

ðη1
0+

log η1
s

� �σ1−1 x sð Þ
s

ds,
ð2Þ

which is mixed quantum and Hadamard calculus. If p1 = 1,
then we have

γ1
Γ μ1ð Þ

ðξ1
0+

ξ1 − sð Þμ1−1x sð Þds

= β1
Γ σ1ð Þ

ðη1
0+

log η1
s

� �σ1−1 x sð Þ
s

ds,
ð3Þ

which is also mixed Riemann-Liouville and Hadamard frac-
tional integral condition. If μ1 = σ1 = 1, we have integral con-
dition of the form:

γ1

ðξ1
0+
x sð Þds = β1

ðη1
0+

x sð Þ
s

ds, ð4Þ

which is a variety used in physical boundary value problems.
We establish existence and uniqueness results by using

standard fixed point theorems. We prove two existence and
uniqueness results with the help of the Banach contraction
mapping principle and a fixed point theorem on nonlinear
contractions due to Boyd and Wong. Moreover, we prove
two existence results, one via Leray-Schauder nonlinear alter-
native and another one via Krasnosel’ski i’s fixed point
theorem.

The paper is organized as follows: in Section 2, we recall
some preliminary facts that we need in the sequel. In Section
3, we prove our main results. Some examples to illustrate our
results are presented in Section 4.

2. Preliminaries

To present the preliminary, we suggest the basic quantum
calculus in the book of Kac and Cheung [22], fractional
quantum calculus in [23–25], and the Hadamard fractional

calculus in [1]. Let a fixed constant q ∈ ð0, 1Þ be a quantum
number. The q-number is defined by

a½ �q =
1 − qa

1 − q
, a ∈ℝ: ð5Þ

For example, ½3�q = 1 + q + q2. The q-power function for
any a, b ∈ℝ, a ≠ 0, is defined as

a − bð Þ γð Þ
q = aγ

Y∞
i=0

1 − b/að Þqi
1 − b/að Þqγ+i : ð6Þ

If γ = k ∈ℕ0 = f0, 1, 2,⋯g, then ða − bÞðkÞq =Qk−1
i=0 ða − b

qiÞ and ða − bÞð0Þq ≔ 1. For example, ða − bÞð3Þq = ða − bÞða − q
bÞða − q2bÞ. The notation of q-power function is appeared
in kernels of fractional q-calculus as Definitions 1 and 2.
Now, the q-gamma function ΓqðtÞ is defined by

Γq tð Þ =
1 − qð Þ t−1ð Þ

q

1 − qð Þt−1 , for t ∈ℝ \ 0, −1, −2,⋯f g: ð7Þ

Now, we observe that Γqðt + 1Þ = ½t�qΓqðtÞ. Next, we dis-
cuss about the q-derivative of a function f : ½0,∞Þ⟶ℝ
which is defined by

Dqf tð Þ = f tð Þ − f qtð Þ
1 − qð Þt , t ≠ 0, andDq f 0ð Þ = lim

t→0
Dqf tð Þ:

ð8Þ

If f ′ðtÞ exists, then limq→1Dqf ðtÞ = f ′ðtÞ. The q-integral
formula can be presented as

Iq f
� �

tð Þ =
ðt
0
f sð Þdqs = t 1 − qð Þ〠

∞

n=0
qn f tqnð Þ, t ∈ 0,∞½ Þ: ð9Þ

The higher order of q-derivative and q-integral operators
is

Dk
qh

� �
tð Þ =Dq Dk−1

q f
� �

tð Þ and Ikqh
� �

tð Þ
= Iq Ik−1q f
� �

tð Þ, k ∈ℕ,
ð10Þ

with ðD0
q f ÞðtÞ = f ðtÞ and ðI0q f ÞðtÞ = f ðtÞ. Next, the funda-

mental theorem of calculus for operators Dq and Iq can be
stated as formulas

DqIq f
� �

tð Þ = f tð Þ, ð11Þ

and if f is continuous at the point t = 0, then

IqDqf
� �

tð Þ = f tð Þ − f 0ð Þ: ð12Þ
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Let us give the definitions of fractional quantum calculus
of the Riemann-Liouville type fractional derivative and also
integral operators.

Definition 1 [24]. Let a constant α ≥ 0 and f be the function
on ½0,∞Þ. The Riemann-Liouville fractional q -integral of f
order α is defined by

Iαq f
� �

tð Þ = 1
Γq αð Þ

ðt
0+

t − qsð Þ α−1ð Þ
q f sð Þ dqs,

 α > 0, t ∈ 0,∞ð Þ,
ð13Þ

and ðI0q f ÞðtÞ = f ðtÞ.

Definition 2 [24]. The Riemann-Liouville fractional q -deriv-
ative of order α ≥ 0 of a function f : ½0,∞Þ⟶ℝ is given by

Dα
q f

� �
tð Þ = Dn

qI
n−α
q f

� �
tð Þ = 1

Γq n − αð ÞD
n
q

ðt
0+

� t − qsð Þ n−α−1ð Þ
q f sð Þ dqs, α > 0,

ð14Þ

and ðD0
q f ÞðtÞ = f ðtÞ, where n is the smallest integer greater

than or equal to α.

Now, for t, s > 0, the q-beta function is presented by

Bq t, sð Þ =
ð1
0+
u t−1ð Þ 1 − quð Þ s−1ð Þ

q dqu, ð15Þ

which is related to the q-gamma function by

Bq t, sð Þ = Γq tð ÞΓq sð Þ
Γq t + sð Þ : ð16Þ

The fundamental formulas for fractional quantum calcu-
lus are in the following lemma.

Lemma 3 [24, 26]. Let α, β ≥ 0, n be a positive integer and f be
a function defined in ½0,∞Þ. Then, the following formulas
hold

Iβq I
α
q f

� �
tð Þ = Iα+βq f

� �
tð Þ,

Dα
qI

α
q f

� �
tð Þ = f tð Þ,

IβqD
n
q f

� �
tð Þ = Dn

qI
β
q f

� �
tð Þ − 〠

n−1

k=0

tβ−n+k

Γq β + k − n + 1ð Þ Dk
qf

� �
0ð Þ:

ð17Þ

The fractional q-integration of the two deferent quantum
numbers is given by lemma.

Lemma 4 [27]. Let constants α, β > 0 and 0 < p, q < 1 be
quantum numbers. Then, for η ∈ℝ+, we have

IαpI
β
q 1ð Þ ηð Þ = Γp β + 1ð Þ

Γp α + β + 1ð ÞΓq β + 1ð Þ η
α+β: ð18Þ

The Hadamard fractional calculus is the subject of frac-
tional derivative and integral which have logarithm kernels
inside the singular integral formulas as in the definitions.

Definition 5 [1]. The Hadamard derivative of fractional order
α for a function f : ½0,∞Þ⟶ℝ is defined as

HDα f tð Þ = 1
Γ n − αð Þ t

d
dt

� �nðt
0+

� log t
s

� �n−α−1 f sð Þ
s

ds, n = α½ � + 1,
ð19Þ

where the notation ½α� denotes the integer part of the real
number α, log ð·Þ = logeð·Þ, and Γ is the usual Gamma
function.

Definition 6 [1]. The Hadamard fractional integral of order α
for a function f : ½0,∞Þ⟶ℝ is defined by

Jα f tð Þ = 1
Γ αð Þ

ðt
0+

log t
s

� �α−1 f sð Þ
s

ds, α > 0, ð20Þ

provided the integral in right hand side exists.

The key tool for combining the two type of fractional cal-
culus in our work is the following lemma.

Lemma 7 ([1], Property 2.25). Let α > 0 and β > 0: The fol-
lowing formulas hold

Jαtβ = β−αtβ andHDαtβ = βαtβ: ð21Þ

To accomplish our main purpose, we will use the fixed
point theory for considering an operator equation x =Qx.
For finding the operator Q, let us see the following lemma.

Lemma 8. Suppose that the points ξi, ηj ∈ ½0, T� and the
constant

Ω = 〠
n

i=1
γi
Γpi

αð Þξα+μi−1i

Γpi
α + μið Þ − 〠

m

j=1
βj α − 1ð Þ−σ jηα−1j ≠ 0, ð22Þ

where α, μi, pi, γi, σj, βj, i = 1,⋯, n, and j = 1,⋯,m are
defined in problem (1). Then, the linear fractional q-dif-
ference equation

Dα
qx tð Þ = h tð Þ, 0 < t < T , ð23Þ
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where h : ½0, T�⟶ℝ, and subject to mixed fractional inte-
grals of Hadamard and quantum boundary conditions

x 0ð Þ = 0, 〠
n

i=1
γiI

μi
pi x ξið Þ = 〠

m

j=1
βj J

σ j x ηj

� �
ð24Þ

is equivalent to the linear integral equation

x tð Þ = 1
Ω

〠
m

j=1
tα−1βj J

σ j Iαqh ηj

� �
− 〠

n

i=1
tα−1γiI

μi
pi I

α
qh ξið Þ

" #

+ Iαqh tð Þ:
ð25Þ

Proof. Since α ∈ ð1, 2�, then (23) can be written as

D2
qI

2−α
q x tð Þ = h tð Þ, 0 < t < T: ð26Þ

Applying the fractional q-integral of order α and using
Lemma 3, we obtain

IαqD
2
qI

2−α
q x tð Þ =D2

qI
α
qI

2−α
q x tð Þ − k1t

α−1 − k2t
α−2

= x tð Þ − k1t
α−1 − k2t

α−2 = Iαqh tð Þ,
ð27Þ

which yields

x tð Þ = k1t
α−1 + k2t

α−2 + Iαqh tð Þ, ð28Þ

where k1, k2 ∈ℝ. The first boundary condition of (24)
implies that k2 = 0: Then, (28) is reduced to

x tð Þ = k1t
α−1 + Iαqh tð Þ: ð29Þ

Now, we apply the fractional quantum integral of
Riemann-Liouville of order μi with quantum number pi
to (29) as

Iμipi x tð Þ = k1
Γpi

αð Þtα+μi−1
Γpi

α + μið Þ + Iμipi I
α
qh tð Þ: ð30Þ

Using Lemma 7 for taking the Hadamard fractional
integral of order σj to (29), we get

Jσ j x tð Þ = k1 α − 1ð Þ−σ j tα−1 + Jσ j Iαqh tð Þ: ð31Þ

From the second boundary condition of (24) and
above two equations, it follows that

k1 〠
n

i=1
γi
Γpi

αð Þξα+μi−1i

Γpi
α + μið Þ + 〠

n

i=1
γiI

μi
pi I

α
qh ξið Þ

= k1 〠
m

j=1
βj α − 1ð Þ−σ jηj

α−1 + 〠
m

j=1
βj J

σ j Iαqh ηj

� �
,

ð32Þ

and consequently

k1 =
1
Ω

〠
m

j=1
βj J

σ j Iαqh η j

� �
− 〠

n

i=1
γiI

μi
pi I

α
qh ξið Þ

" #
, ð33Þ

where the nonzero constant Ω is defined by (22).
Substituting the constant k1 in (29), then, we obtain
(25), which is the solution of BVP (23) and (24). The con-
verse can be obtained by a direct computation. The proof
is completed.

3. Main Results

At first, we denote byC = Cð½0, T�,ℝÞ the Banach space of all
continuous functions from ½0, T� to ℝ endowed with the sup
norm as kxk = sup fjxðtÞj, t ∈ ½0, T�g. In view of Lemma 8
and replacing the function h by f ðt, xðtÞÞ, we define the oper-
ator Q : C ⟶C by

Qx tð Þ = tα−1

Ω
〠
m

j=1
βj J

σ j Iαq f x ηj

� �
− 〠

n

i=1
γiI

μi
pi I

α
q f x ξið Þ

" #

+ Iαq f x tð Þ,
ð34Þ

where Iαq f xðvÞ is denoted by

Iαq f x vð Þ = 1
Γq αð Þ

ðv
0+

v − qsð Þ α−1ð Þ
q f s, x sð Þð Þ dqs

≔ g vð Þ, v ∈ t, ξi, η j
n o

,
ð35Þ

while Jσ j Iαq f xðηjÞ and Iμipi I
α
q f xðξiÞ are the Hadamard and

quantum fractional integrals of a function g as

Jσ j Iαq f x η j

� �
= 1
Γ σj

� � ðη j
0+

log
η j
s

� �σ j−1 g sð Þ
s

ds,

Iμipi I
α
q f x ξið Þ = 1

Γpi
μið Þ
ðξi
0+

ξi − pisð Þ μi−1ð Þ
pi

g sð Þ dpi s,
ð36Þ

respectively. Now, we are going to prove the main results
which are the existence criteria of solution for nonlocal
mixed fractional integrals boundary value problem (1). The
first, an existence and uniqueness result for (1), is given by
using Banach’s fixed point theorem.

Theorem 9. Let f : ½0, T� ×ℝ⟶ℝ be a nonlinear continu-
ous function satisfying the assumption.

ðH1Þ There exists a positive constant L such that ∣f ðt, xÞ
− f ðt, yÞ ∣ ≤Ljx − yj, for each t ∈ ½0, T� and x, y ∈ℝ.

If

LΦ < 1, ð37Þ
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where Φ is given by

Φ = Tα

Γq α + 1ð Þ

"
1

T Ωj j〠
m

j=1
βj

��� ���α−σ jηαj

+ 1
T Ωj j〠

n

i=1
γij j Γpi

α + 1ð Þ
Γpi

α + μi + 1ð Þ ξ
α+μi
i + 1

#
,

ð38Þ

then the boundary value problem (1) has a unique solution
on ½0, T�.

Proof. The result allows from the operator equation x =Qx,
where the operator Q is defined by (34). The Banach fixed
point theorem is used to show that Q has a fixed point which
is the unique solution of problem (1). Since the function f is
continuous, then, we can set sup fj f ðt, 0Þj, t ∈ ½0, T�g =M
<∞. After that, we define the radius r satisfying

r ≥
ΦM

1 −ΦL
ð39Þ

of a ball Br = fx ∈ C : kxk ≤ rg: For any x ∈ Br , we see that

Qx tð Þj j ≤ sup
t∈ 0,T½ �

tα−1

Ωj j 〠
m

j=1
βj

��� ���Jσ j Iαq f xj j η j

� �

+ tα−1

Ωj j 〠
n

i=1
γij jIμipi Iαq f xj j ξið Þ + Iαq f xj j tð Þ

#

≤
Tα−1

Ωj j 〠
m

j=1
βj

��� ���Jσ j Iαq f x − f0j j + f0j jð Þ η j

� �

+ Iαq f x − f0j j + f0j jð Þ Tð Þ + Tα−1

∣Ω ∣

�〠
n

i=1
γij jIμipi Iαq f x − f0j j + f0j jð Þ ξið Þ

≤ Lr +Mð Þ
"
Tα−1

Ωj j 〠
m

j=1
βj

��� ���Jσ j Iαq 1ð Þ η j

� �

+ Tα−1

Ωj j 〠
n

i=1
γij jIμipi Iαq 1ð Þ ξið Þ + Iαq 1ð Þ Tð Þ

#
,

ð40Þ

in which we used the following fact:

f x − f0j j + f0j j = f v, x vð Þð Þ − f v, 0ð Þj j + f v, 0ð Þj j
≤ L xj j +M ≤ Lr +M,

ð41Þ

where v ∈ fT , ξi, ηjg. By applying Lemmas 4 and 2.3, we have

Iμipi I
α
q 1ð Þ ξið Þ = Γpi

α + 1ð Þ
Γpi

α + μi + 1ð ÞΓq α + 1ð Þ ξ
α+μi
i ,

Jσ j Iαq 1ð Þ η j

� �
= 1
Γq α + 1ð Þ Jσ j tαð Þ ηj

� �
= 1
Γq α + 1ð Þ α

−σ jηαj :

ð42Þ

Then, we obtain

Qx tð Þj j ≤ Lr +Mð ÞTα

Γq α + 1ð Þ

"
1

T ∣Ω ∣
〠
m

j=1
∣ βj ∣ α

−σ jηαj

+ 1
T ∣Ω ∣

〠
n

i=1
∣ γi ∣

Γpi
α + 1ð Þ

Γpi
α + μi + 1ð Þ ξ

α+μi
i + 1

#

= Lr +Mð ÞΦ ≤ r:

ð43Þ

From this, we conclude that ∥Qx∥≤r which yields
QBr ⊂ Br:

Next, we will prove that the operator Q is a contraction.
Let x, y ∈C , and for each t ∈ ½0, T�, then, we have

Qx tð Þ −Qy tð Þj j ≤ Tα−1

∣Ω ∣
〠
m

j=1
∣βj∣J

σ j Iαq ∣f x − f y∣ ηj

� �
+ Tα−1

∣Ω ∣

�〠
n

i=1
∣γi∣I

μi
pi I

α
q ∣f x − f y∣ ξið Þ + Iαq ∣f x − f y∣ tð Þ

≤

 
Tα−1

∣Ω ∣
〠
m

j=1
∣ βj ∣ J

σ j Iαq 1ð Þ ηj

� �
+ Tα−1

∣Ω ∣

�〠
n

i=1
∣ γi ∣ I

μi
pi I

α
q 1ð Þ ξið Þ + Iαq 1ð Þ Tð Þ

!

� L∥x − y∥ = LΦ∥x − y∥:
ð44Þ

Hence, we get the result that ∥Qx −Qy∥≤LΦ∥x − y∥: As
LΦ < 1, from (37), the operator Q is a contraction. Applying
the well known Banach fixed point theorem, it follows that Q
has a fixed point which is the unique solution of the bound-
ary value problem (1). This completes the proof.

Next, the nonlinear contraction theorem will be used to
prove a second existence and uniqueness result.

Definition 10. Let E be a Banach space and letA : E⟶ E be
a mapping. The operator A is said to be a nonlinear con-
traction if there exists a continuous nondecreasing func-
tion Ψ : ℝ+ ⟶ℝ+ such that Ψð0Þ = 0 and ΨðtÞ < t for
all t > 0 with the property:

Ax −Ayk k ≤Ψ x − yk kð Þ,∀x, y ∈ E: ð45Þ

Lemma 11 (see [28]). Let E be a Banach space and let
A : E⟶ E be a nonlinear contraction. Then, A has a
unique fixed point in E:

Theorem 12. Suppose that a continuous function f : ½0, T�
×ℝ⟶ℝ satisfies the condition:
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ðH2Þj f ðt, xÞ − f ðt, yÞj ≤ hðtÞðjx − yj/H∗ + jx − yjÞ, t ∈ ½0,
T�, x, y ∈ℝ, where the function h : ½0, T�⟶ℝ+ is continu-
ous, and a positive constant H∗ is defined by

H∗ = Tα−1

Ωj j 〠
m

j=1
βj

��� ���Jσ j Iαqh ηj

� �

+ Tα−1

Ωj j 〠
n

i=1
γij jIμipi Iαqh ξið Þ + Iαqh Tð Þ:

ð46Þ

Then, the mixed fractional Hadamard and quantum
integrals nonlocal problem (1) has a unique solution on
½0, T�.

Proof. Let us consider the operator Q : C ⟶C defined in
(34) and define a continuous nondecreasing function Ψ : ℝ+

⟶ℝ+ by

Ψ λð Þ = H∗λ

H∗ + λ
, ∀λ ≥ 0: ð47Þ

Then, we see that the function Ψ satisfies Ψð0Þ = 0 and
ΨðλÞ < λ for all λ > 0.

Next, for any x, y ∈C and for each t ∈ ½0, T�, we obtain

Qx tð Þ −Qy tð Þj j

≤
tα−1

Ωj j 〠
m

j=1
βj

��� ���Jσ j Iαq f x − f y
��� ��� ηj

� �

+ tα−1

Ωj j 〠
n

i=1
γij jIμipi Iαq f x − f y

��� ��� ξið Þ + Iαq f x − f y
��� ��� tð Þ

≤
Tα−1

Ωj j 〠
m

j=1
βj

��� ���Jσ j Iαq h
x − yj j

H∗ + x − yj j
� �

η j

� �

+ Tα−1

Ωj j 〠
n

i=1
γij jIμipi Iαq h

x − yj j
H∗ + x − yj j

� �
ξið Þ

+ Iαq h
x − yj j

H∗ + x − yj j
� �

Tð Þ ≤ Ψ x − yk kð Þ
H∗

�
"
Tα−1

Ωj j 〠
m

j=1
βj

��� ���Jσ j Iαqh ηj

� �
+ Tα−1

∣Ω ∣
〠
n

i=1

� γij jIμipi Iαqh ξið Þ + Iαqh Tð Þ
#
=Ψ x − yk kð Þ,

ð48Þ

which implies that kQx −Qyk ≤Ψðkx − ykÞ and also satisfies
Definition 10. Therefore, Q is a nonlinear contraction. Thus,
by applying Lemma 11, the operator Q has a unique fixed
point which is the unique solution of the boundary value
problem (1). The proof is finished.

Next, the first existence result will be obtained by apply-
ing the following theorem.

Theorem 13 (Nonlinear alternative for single valued maps)
[29]. Let E be a Banach space, C a closed, convex subset of E,
U be an open subset of C, and 0 ∈U : Suppose that A : �U
⟶ C is a continuous, compact (that is, Að�UÞ is a relatively
compact subset of C) map. Then, either

(i) A has a fixed point in �U , or
(ii) There is a x ∈ ∂U (the boundary of U in C) and λ ∈

ð0, 1Þ with x = λAðxÞ:

Theorem 14. Suppose that f : ½0, T� ×ℝ⟶ℝ is a non-
linear continuous function which satisfies the following
conditions:

ðH3Þ there exists a continuous nondecreasing function
ψ : ½0,∞Þ⟶ ð0,∞Þ and also a function p ∈ Cð½0, T�,ℝ+Þ
such that

f t, xð Þj j ≤ p tð Þψ xj jð Þfor each t, xð Þ ∈ 0, T½ � ×ℝ ð49Þ

ðH4Þ there exists a positive constant N such that

N
ψ Nð Þ pk kΦ > 1, ð50Þ

where Φ defined by (38). Then, the problem (1) has at least
one solution on ½0, T�:

Proof. For a positive number ρ, we let Bρ = fx ∈C : kxk ≤
ρg be a bounded ball in C . Now, we will prove that the
set QBρ is uniformly bounded. For t ∈ ½0, T�, we can com-
pute that

Qx tð Þj j ≤ Tα−1

Ωj j

"
〠
m

j=1
βj

��� ���Jσ j Iαq f xj j ηj

� �

+ 〠
n

i=1
γij jIμipi Iαq ∣ f x ∣ ξið Þ

#
+ Iαq ∣f x∣ Tð Þ

≤ pk kψ xk kð Þ Tα

Γq α + 1ð Þ

"
1

T Ωj j〠
m

j=1
βj

��� ���α−σ jηj

+ 1
T Ωj j〠

n

i=1
γij j Γpi

α + 1ð Þ
Γpi

α + μi + 1ð Þ ξ
α+μi
i + 1

#

≤ pk kψ ρð ÞΦ,

ð51Þ

which can be deduced that

Qxk k ≤ pk kψ ρð ÞΦ: ð52Þ

Then, the set QBρ is uniformly bounded. Next, we
will show that the set QBρ is equicontinuous set of C :
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For any two points τ1, τ2 ∈ ½0, T� with τ1 < τ2 and x ∈ Bρ,
we have

Qx τ2ð Þ −Qx τ1ð Þj j

≤
τα−12 − τα−11
�� ��

∣Ω ∣

"
〠
m

j=1
βj

��� ���Jσ j Iαq f xj j ηj

� �

+ 〠
n

i=1
γij jIμipi Iαq f xj j ξið Þ

#
+ 1

Γq αð Þ
ðτ1
0

h
t2 − qsð Þ α−1ð Þ

q

�����
− t1 − sð Þ α−1ð Þ

q

i
f s, x sð Þð Þ dqs +

1
Γq αð Þ

�
ðτ2
τ1

t2 − qsð Þ α−1ð Þ
q f s, x sð Þð Þ dqs

�����
≤

pk kψ ρð Þ τα−12 − τα−11
�� ��
∣Ω ∣

〠
m

j=1
∣βj∣

α−σ jηαj
Γq α + 1ð Þ

+ pk kψ ρð Þ τα−12 − τα−11
�� ��
∣Ω ∣

〠
n

i=1
∣γi∣

� Γpi
α + 1ð Þ

Γpi
α + μi + 1ð ÞΓq α + 1ð Þ ξ

α+μi
i

� + pk kψ ρð Þ
Γq α + 1ð Þ 2 τ2 − τ1ð Þ αð Þ + τ

αð Þ
2 − τ

αð Þ
1

��� ���h i
:

ð53Þ

As τ2 − τ1 ⟶ 0, the right hand side of the above
inequality converses to zero, independently of x ∈ Bρ.
Then, the set QBρ is equicontinuous. Thus, we conclude
that the set QBρ is relatively compact. Therefore, by the

Arzel a′-Ascoli theorem, the operator Q : C ⟶C is
completely continuous.

Finally, we show that the operator Q cannot be fulfilled
the condition ðiiÞ in Theorem 13. Then, we have to claim that
there exists an open set U ⊂ Bρ with x ≠ λQx for λ ∈ ð0, 1Þ
and x ∈ ∂U : Then, for each t ∈ ½0, T�, we apply the computa-
tion in the first step, that is

x tð Þj j ≤ pk kψ xk kð ÞΦ ð54Þ

which yields inequality

xk k
pk kψ xk kð ÞΦ ≤ 1: ð55Þ

The condition ðH4Þ implies that there exists a constant N
such that kxk ≠N: Now, we define the set

U = x ∈ Bρ : xk k <N
	 


: ð56Þ

From the previous results, we obtain that the operator
Q ~ �U ⟶C is continuous and completely continuous.
Then, there is no x ∈ ∂U such that x = λQx for some λ
∈ ð0, 1Þ: By applying the nonlinear alternative of the
Leray-Schauder type, we get that the operator Q has a
fixed point x ∈ �U which is a solution of the nonlinear
fractional q-difference equation with fractional Hadamard
and quantum integral nonlocal conditions. This finishes the
proof.

The next existence result is based on Krasnosel’ski i’s
fixed point theorem which can be used to relax the condition
in Theorem 9.

Theorem 15 (Krasnosel’ski i’s fixed point theorem) [30]. Let
C be a closed, bounded, convex, and nonempty subset of a
Banach space E: Let A ,B be the operators such that (a) Ax
+By ∈ C whenever x, y ∈ C; (b) A is compact and continu-
ous; (c) B is a contraction mapping. Then, there exists z ∈ C
such that z =Az +Bz:

Theorem 16. Assume that a continuous function f : ½0, T� ×
ℝ⟶ℝ is satisfied condition ðH1Þ in Theorem 9 and is
bounded as the following condition:

(i) ðH5Þj f ðt, xÞj ≤ κðtÞ, ∀ðt, xÞ ∈ ½0, T� ×ℝ, and κ ∈ C
ð½0, T�,ℝ+Þ:

If inequality

LTα

Γq α + 1ð Þ < 1 ð57Þ

holds, then the nonlocal problem (1) has at least one solution
on ½0, T�:

Proof. Now, we define sup f∣κðtÞ∣ : t ∈ ½0, T�g = kκk and
choose a positive constant �r such that

�r ≥ κk kΦ, ð58Þ

where Φ is defined by (38), to be a radius of the ball
B�r = fx ∈C : kxk ≤�rg. Furthermore, we set the operators
Q1 and Q2 on B�r as A and B in Theorem 15, respec-
tively, by

Q1x tð Þ = tα−1

Ω

"
〠
m

j=1
βj J

σ j Iαq f x ηj

� �

− 〠
n

i=1
γiI

μi
pi I

α
q f x ξið Þ

#
, t ∈ 0, T½ �,

Q2x tð Þ = Iαq f x tð Þt ∈ 0, T½ �:

ð59Þ
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The combination of two operators shows Q1 +Q2 =Q.
We have

Q1x +Q2yk k ≤ κk k
"
Tα−1

Ωj j 〠
m

j=1
βj

��� ��� α−σ jηαj
Γq α + 1ð Þ

+ Tα−1

Ωj j 〠
n

i=1
γij j Γpi

α + 1ð Þ
Γpi

α + μi + 1ð ÞΓq α + 1ð Þ ξ
α+μi
i

+ Tα

Γq α + 1ð Þ

#
= κk kΦ ≤�r:

ð60Þ

Therefore, we have Q1x +Q2y ∈ B�r , and thus condition
ðaÞ of Theorem 15 is satisfied. Since the function f is ful-
filled by condition ðH1Þ in Theorem 9, then the operator
Q2 is a contraction mapping with inequality (57).

Finally, we will show that the operator Q1 should satisfy
condition ðbÞ in Theorem 15. Using the continuity of f , we
can show that the operator Q1 is continuous. The uniformly
boundedness of the set Q1B�r can be shown by

Q1xk k ≤ κk kTα−1

∣Ω ∣ Γq α + 1ð Þ 〠
m

j=1
βj

��� ���α−σ jηαj + 〠
n

i=1
γij j Γpi

α + 1ð Þ
Γpi

α + μi + 1ð Þ ξ
α+μi
i

" #
:

ð61Þ

To prove Q1B�r is equicontinuous set, we let two points
t1, t2 ∈ ½0, T�, t2 < t1. For any x ∈ B�r , we have

Q1x t1ð Þ −Q1x t2ð Þj j

≤ κk k tα−11 − tα−12
�� ��

∣Ω ∣
〠
m

j=1
βj

��� ��� α−σ jηαj
Γq α + 1ð Þ

+ κk k tα−11 − tα−12
�� ��

Ωj j 〠
n

i=1
γij j Γpi

α + 1ð Þ
Γpi

α + μi + 1ð ÞΓq α + 1ð Þ ξ
α+μi
i ,

ð62Þ

which converses to zero independently of x as jt1 − t2j⟶ 0.
So, Q1B�r is an equicontinuous set. Therefore, Q1B�r is a rela-
tive compact and by the Arzelá-Ascoli theorem, Q1 is com-
pact on B�r . Thus, the assumptions ðaÞ, ðbÞ, and ðcÞ of
Krasnosel’ski i’s fixed point theorem are satisfied. Then, the
nonlinear fractional q-difference equation with fractional
Hadamard and quantum integral nonlocal conditions (1)
has at least one solution on ½0, T�: The proof is completed.

Remark 17. The interchanging of operators Q1 and Q2 gives
another result by replacing inequality (57) by the following
condition:

LTα−1

Ωj jΓq α + 1ð Þ 〠
m

j=1
βj

��� ���α−σ jηαj + 〠
n

i=1
γij j Γpi

α + 1ð Þ
Γpi

α + μi + 1ð Þ ξ
α+μi
i

" #
< 1:

ð63Þ

4. Examples

Example 18. Consider the nonlinear fractional q -difference
equation with fractional Hadamard and quantum integral
nonlocal conditions of the form:

D3/2
1/2x tð Þ = f t, x tð Þð Þ, t ∈ 0, 2ð Þ,

x 0ð Þ = 0, 38 I
1/2
1/6x

1
4

� �
+ 2
5 I

3/2
1/3x

1
2

� �
+ 1
9 I

5/2
1/2x

3
2

� �

= 1
3 J

1/3x
1
5

� �
+ 4
9 J

2/3x
3
5

� �
+ 7
12 J

4/3x
7
5

� �
+ 8
15 J

5/3x
9
5

� �
:

0
BBBBBB@

ð64Þ

Here, α = 3/2, q = 1/2, T = 2, γ1 = 3/8, γ2 = 2/5, γ3 = 1/9, μ1
= 1/2, μ2 = 3/2, μ3 = 5/2, p1 = 1/6, p2 = 1/3, p3 = 1/2, ξ1 = 1/
4, ξ2 = 1/2, ξ3 = 3/2, n = 3, β1 = 1/3, β2 = 4/9, β3 = 7/12, β4
= 8/15, σ1 = 1/3, σ2 = 2/3, σ3 = 4/3, σ4 = 5/3, η1 = 1/5, η2 = 3
/5, η3 = 7/5, η4 = 9/5,m = 4. Then, we can compute constants
as jΩj ≈ 2:51852 and Φ ≈ 3:27524.

ðiÞ Let the nonlinear function f be defined by

f t, xð Þ = e−cos
2t

t + 2ð Þ3
x2 + 2 ∣ x ∣
1+∣x ∣

� �
+ t2

4 + 1: ð65Þ

Then, by direct computation, we get j f ðt, xÞ − f ðt, yÞj ≤
ð1/4Þjx − yj, which satisfies condition ðH1Þ in Theorem 9
with L = 1/4. Therefore, we have

LΦ ≈ 0:81881 < 1: ð66Þ

By the conclusion of Theorem 9, the boundary value
problem (64) with (65) has a unique solution on ½0, 2�.

ðiiÞ Consider now the function f by

f t, xð Þ = 1
t + 2ð Þ3

x18

x16 + 1 + 1
� �

: ð67Þ

Then, we can see that

∣f t, xð Þ∣ = 1
t + 2ð Þ3

x18

x16 + 1 + 1
� �����

���� ≤ 1
t + 2ð Þ3 x2 + 1

� �
: ð68Þ

Setting pðtÞ = 1/ðt + 2Þ3 and ψðxÞ = x2 + 1, we have kpk
= 1/8, and there exists a constant N ∈ ð0:52019,1:92238Þ sat-
isfying inequality in ðH4Þ. Hence, all assumptions in Theo-
rem 14 are completed. Thus, the problem (64) with (67)
has at least one solution on ½0, 2�.

ðiiiÞ If the function f is

f t, xð Þ = sin2t
m

xj j
xj j + 1

� �
+ 1
4 , m ∈ℝ+, ð69Þ

then, we have j f ðt, xÞ − f ðt, yÞj ≤ ð1/mÞjx − yj with L = 1/m.
If m ≤Φ ≈ 3:27524, then Theorem 9 cannot be used to apply
for the problem (64) with (69). For example, if m = 2, then
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LΦ ≈ 1:63762 > 1. But the inequality in Remark 17 is satisfied
as

1
2 · Tα−1

Ωj jΓq α + 1ð Þ 〠
m

j=1
βj

��� ���α−σ jηαj + 〠
n

i=1
γij j Γpi

α + 1ð Þ
Γpi

α + μi + 1ð Þ ξ
α+μi
i

" #

= 0:44979 < 1:
ð70Þ

Hence, by applying Theorem 16 and Remark 17, the
problem (64) with (69) has at least one solution on ½0, 2�.

5. Conclusion

We investigated the existence and uniqueness of solutions for
a nonlocal boundary value problem involving a q-difference
equation, supplemented with a new type of boundary condi-
tion, including both Hadamard fractional and quantum inte-
grals. In our first two results, we establish the existence and
uniqueness of solutions by using Banach’s fixed point theo-
rem and a fixed point theorem for nonlinear contractions
due to Boyd and Wong. Then, we used the Leray-Schauder
nonlinear alternative and Krasnosel’ski i’s fixed point theo-
rem to derive two existence results. Examples are also pre-
sented to illustrate our results. It is worthwhile to point out
that the results presented in this paper are new and signifi-
cantly contribute to the existing literature on the topic.
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A picture fuzzy n-normed linear space (NPF), a mixture of a picture fuzzy set and an n-normed linear space, is a proficient concept
to cope with uncertain and unpredictable real-life problems. The purpose of this manuscript is to present some novel contractive
conditions based on NPF. By using these contractive conditions, we explore some fixed point theorems in a picture fuzzy n-Banach
space (BPF). The discussed modified results are more general than those in the existing literature which are based on an
intuitionistic fuzzy n-Banach space (BIF) and a fuzzy n-Banach space. To express the reliability and effectiveness of the main
results, we present several examples to support our main theorems.

1. Introduction

In various real-life problems, for a suitable mapping, the
existence of a solution and existence of a fixed point
(FP) are equivalent. Thus, the existence of a FP is a profi-
cient technique to cope with awkward and difficult prob-
lems in real-life issues. Various scholars have utilized
such results in the environment of many fields [1, 2].
The extensive useful techniques capable with both alge-
braic and topological properties are those of a normed lin-
ear space (NLS), but the continuous maps are more
proficient in the sense of NLS. Moreover, in a metric
space, every contractive map is uniformly continuous.
One of the fundamental applications of Banach’s contrac-
tion principle is the “Picard’s theorem,” which is the basic
theorem for the existence and uniqueness of solution to
the ordinary differential equations. Various scholars have
utilized this application in the environment of a partial
differential equation [3], in the Gauss-Seidel method for
evaluating systems of linear equations [4], in the proof
of the inverse function theorem [5], etc.

The theory of a fuzzy set (FS) was investigated by Zadeh
[6], characterized by only positive grades restricted to ½0, 1�.
FS has achieved more success due to its ability to cope
with complications and troubles. However, in some prac-
tice cases, the concept of FS cannot cope with complica-
tions and uncertainty because of lack of knowledge of
the problem. Therefore, Atanassov [7] investigated the
intuitionistic FS (IFS) containing both positive and nega-
tive grades, whose sum is bounded to ½0, 1�. IFS is
regarded as a more improved way to cope with complex
and awkward information. Further, Cường [8] investigated
the picture FS (PFS) including positive, abstinence, and
negative grades, whose sum is bounded to ½0, 1�. PFS is
regarded as a more improved way to deal with even more
complex information. For more related works, we may
refer to References [9–16].

Keeping the advantages of the PFS, the objective of this
manuscript is summarized in the following ways:

(1) To present some novel contractive conditions, we
used NPF as a basis
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(2) By using these contractive conditions, some fixed
point theorems are explored for a picture fuzzy
n-Banach space (BPF). These results are more
modified and more general than the existing
results which are based on an intuitionistic fuzzy
n-Banach space (BIF) and a fuzzy n-Banach space

(3) To express the reliability and effectiveness of the
explored approaches, we explain examples in support
of the main results

The rest of this manuscript is summarized in the fol-
lowing ways: In Section 2, we review some basic notions
like NIF and their related properties used in the presented
work. In Section 3, we describe the notion of NPF and
their fundamental properties. In Section 4, we present
some novel contractive conditions based on NPF. By using
these contractive conditions, we instigate some fixed point
theorems for a picture fuzzy n-Banach space (BPF). Finally,
the conclusion of this manuscript is discussed in Section 5.

2. Preliminaries

The purpose of this section is to review some existing
notions, like N IF and their related properties. Throughout
this section, the symbols R+

Rn, RRn, NNn, ӾUNI, Μm, Νn, ∗ct,
and °ctc represent the positive real numbers, real numbers,
natural numbers, universal set, supporting grade, supporting
against, continuous t-norm, and continuous t-conorm,
respectively.

Definition 1. [9]. A N IF is stated by ðӾUNI,Μm,Αa,Νn,
∗ct, °ctcÞ, where Μm,Αa,Νn is defined on ðӿ1, ӿ2,⋯, ӿk, pÞ
∈ Ӿ k

UNI × ð0,∞Þ, where the following conditions hold:

(i) Μmðӿ1, ӿ2,⋯, ӿk, pÞ +Αaðӿ1, ӿ2,⋯, ӿk, pÞ +Νnðӿ1,
ӿ2,⋯, ӿk, pÞ ≤ 1

(ii) Μmðӿ1, ӿ2,⋯, ӿk, pÞ > 0
(iii) Μmðӿ1, ӿ2,⋯, ӿk, pÞ = 1 iff ӿ1, ӿ2,⋯, ӿk are linearly

dependent

(iv) Μmðӿ1, ӿ2,⋯, ӿk, pÞ is invariant under any permu-
tation of ӿ1, ӿ2,⋯, ӿk

(v) Μmðӿ1, ӿ2,⋯, αӿk, pÞ =Μmðӿ1, ӿ2,⋯, ӿk, p/∣α ∣ Þ if
α ≠ 0 ∈ℝRn

(vi) Μmðӿ1, ӿ2,⋯, ӿk + ӿk′ , p + qÞ ≥min ðΜmðӿ1, ӿ2,⋯,
ӿk, pÞ,Μmðӿ1, ӿ2,⋯, ӿk′ , qÞÞ

(vii) Μmðӿ1, ӿ2,⋯, ӿk + ӿk,:Þ is a nondecreasing
function of ℝ:þ

Rn and logp→∞Μmðӿ1, ӿ2,⋯, ӿk +
ӿk, pÞ = 1

(viii) Νnðӿ1, ӿ2,⋯, ӿk, pÞ < 1
(ix) Νnðӿ1, ӿ2,⋯, ӿk, pÞ = 0 iff ӿ1, ӿ2,⋯, ӿk are linearly

dependent

(x) Νnðӿ1, ӿ2,⋯, ӿk, pÞ is invariant under any permu-
tation of ӿ1, ӿ2,⋯, ӿk

(xi) Νnðӿ1, ӿ2,⋯, αӿk, pÞ =Νnðӿ1, ӿ2,⋯, ӿk, p/∣α ∣ Þ if
α ≠ 0 ∈ℝRn

(xii) Νnðӿ1, ӿ2,⋯, ӿk + ӿk′ , p + qÞ ≥max ðΝnðӿ1, ӿ2,⋯,
ӿk, pÞ,Νnðӿ1, ӿ2,⋯, ӿk′ , qÞÞ

(xiii) Νnðӿ1, ӿ2,⋯, ӿk + ӿk,:Þ is a nonincreasing function
of ℝ+

Rn and logp→∞Νnðӿ1, ӿ2,⋯, ӿk + ӿk, pÞ = 0

(xiv) Further, Mnðӿ1, ӿ2,⋯, ӿk, pÞ > 0 and Νnðӿ1, ӿ2,⋯,
ӿk, pÞ < 1 imply ӿ = 0, ∀p > 0

(xv) For p ≠ 0,Mnðӿ1, ӿ2,⋯, ӿk,:Þ andΝnðӿ1, ӿ2,⋯, ӿk,:Þ
are continuous functions of ℝ+

Rn and are strictly
increasing and strictly decreasing, respectively, on
the subset fp : 0 <Μmðӿ1, ӿ2,⋯, ӿk, pÞ,Νnðӿ1, ӿ2,
⋯, ӿk, pÞ < 1g of ℝ+

Rn

Moreover, we explain some important theories based on
convergent and Cauchy convergent sequences.

Definition 2. [9]. Consider NIFðӾUNI,Μm,Νn, ∗ct, °ctcÞ;
then, the sequence ӿ = fӿfg in ӾUNI is convergent to ℊ ∈
ӾUNI based on the intuitionistic fuzzy n-norm ðΜm,ΝnÞk if
for every ϵ, p > 0 and ӳ1, ӳ2,⋯, ӳk−1 ∈ ӾUNI, there exists ὧ0
∈ℕNn such that

Mn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ℊ, pð Þ > 1 − ϵ,
Nn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ℊ, pð Þ < ϵ,

ð1Þ

for all ὧ ≥ ὧ0 and it is represented by ðΜm,ΝnÞk − limӿὧ = ℊ.

Definition 3. [9]. Let N IFðӾUNI,Μm,Νn, ∗ct, °ctcÞ; then, the
sequence ӿ = fӿfg in ӾUNI is Cauchy convergent based on

the intuitionistic fuzzy n-norm ðΜm,ΝnÞk if for every ϵ,
p > 0 and ӳ1, ӳ2,⋯, ӳk−1 ∈ ӾUNI, there exists ὧ0 ∈ℕNn such
that

Mn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ӿὛ , pð Þ > 1 − ϵ,
Nn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ӿὛ , pð Þ < ϵ,

ð2Þ

for all ὧ, Ὓ ≥ ὧ0 and it is represented by ðΜm,ΝnÞk −
limӿὧ = ӿὛ .

3. Picture Fuzzy n-Normed Linear Space

The purpose of this section is to explore some new
approaches like NPF and their related properties, which are
extensively efficient for the proof of our main work in the
next section. Throughout this section, the symbols ӾUNI,
Μm, Αa, Νn, ∗ct, and °ctc represented the universal set, sup-
porting grade, abstinence grade, supporting against, continu-
ous t-norm, and continuous t-conorm, respectively.
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Definition 4. A NPF is stated as ðӾUNI,Μm,Αa,Νn, ∗ct, °ctcÞ,
where Μm,Αa,Νn is defined on ðӿ1, ӿ2,⋯, ӿk, pÞ ∈ Ӿ k

UNI ×
ð0,∞Þ, where the following conditions hold:

(i) Μmðӿ1, ӿ2,⋯, ӿk, pÞ +Αaðӿ1, ӿ2,⋯, ӿk, pÞ +Νnðӿ1
, ӿ2,⋯, ӿk, pÞ ≤ 1

(ii) Μmðӿ1, ӿ2,⋯, ӿk, pÞ > 0
(iii) Μmðӿ1, ӿ2,⋯, ӿk, pÞ = 1 iff ӿ1, ӿ2,⋯, ӿk are line-

arly dependent

(iv) Μmðӿ1, ӿ2,⋯, ӿk, pÞ is invariant under any per-
mutation of ӿ1, ӿ2,⋯, ӿk

(v) Μmðӿ1, ӿ2,⋯, αӿk, pÞ =Μmðӿ1, ӿ2,⋯, ӿk, p/∣α ∣ Þ
if α ≠ 0 ∈ℝRn

(vi) Μmðӿ1, ӿ2,⋯, ӿk + ӿk′ , p + qÞ ≥min ðΜmðӿ1, ӿ2,
⋯, ӿk, pÞ,Μmðӿ1, ӿ2,⋯, ӿk′ , qÞÞ

(vii) Μmðӿ1, ӿ2,⋯, ӿk + ӿk,:Þ is a nondecreasing func-
tion of ℝ+

Rn and logp→∞Μmðӿ1, ӿ2,⋯, ӿk + ӿk,
pÞ = 1

(viii) Αaðӿ1, ӿ2,⋯, ӿk, pÞ < 1
(ix) Αaðӿ1, ӿ2,⋯, ӿk, pÞ = 0 iff ӿ1, ӿ2,⋯, ӿk are linearly

dependent

(x) Αaðӿ1, ӿ2,⋯, ӿk, pÞ is invariant under any permu-
tation of ӿ1, ӿ2,⋯, ӿk

(xi) Αaðӿ1, ӿ2,⋯, αӿk, pÞ =Αaðӿ1, ӿ2,⋯, ӿk, p/∣α ∣ Þ if
α ≠ 0 ∈ℝRn

(xii) Αaðӿ1, ӿ2,⋯, ӿk + ӿk′ , p + qÞ ≥max ðΑaðӿ1, ӿ2,⋯,
ӿk, pÞ,Αaðӿ1, ӿ2,⋯, ӿk′ , qÞÞ

(xiii) Αaðӿ1, ӿ2,⋯, ӿk + ӿk,:Þ is a nonincreasing function
of ℝ+

Rn and logp→∞Αaðӿ1, ӿ2,⋯, ӿk + ӿk, pÞ = 0

(xiv) Νnðӿ1, ӿ2,⋯, ӿk, pÞ < 1
(xv) Νnðӿ1, ӿ2,⋯, ӿk, pÞ = 0 iff ӿ1, ӿ2,⋯, ӿk are linearly

dependent

(xvi) Νnðӿ1, ӿ2,⋯, ӿk, pÞ is invariant under any permu-
tation of ӿ1, ӿ2,⋯, ӿk

(xvii) Νnðӿ1, ӿ2,⋯, αӿk, pÞ =Νnðӿ1, ӿ2,⋯, ӿk, p/∣α ∣ Þ if
α ≠ 0 ∈ℝRn

(xviii) Νnðӿ1, ӿ2,⋯, ӿk + ӿk′ , p + qÞ ≥max ðΝnðӿ1, ӿ2,⋯,
ӿk, pÞ,Νnðӿ1, ӿ2,⋯, ӿk′ , qÞÞ

(xix) ðӿ1, ӿ2,⋯, ӿk + ӿk,:Þ is a nonincreasing function of
ℝ+

Rn and logp→∞Νnðӿ1, ӿ2,⋯, ӿk + ӿk, pÞ = 0

(xx) Further, Mnðӿ1, ӿ2,⋯, ӿk, pÞ > 0, Anðӿ1, ӿ2,⋯, ӿk,
pÞ < 1 and Νnðӿ1, ӿ2,⋯, ӿk, pÞ < 1; then, ӿ = 0,
∀p > 0

(xxi) For p ≠ 0, Mnðӿ1, ӿ2,⋯, ӿk,:Þ, Anðӿ1, ӿ2,⋯, ӿk,:Þ,
and Νnðӿ1, ӿ2,⋯, ӿk,:Þ are continuous functions

of ℝ+
Rn and also strictly increasing and strictly

decreasing, respectively, on the subset fp : 0 <
Μmðӿ1, ӿ2,⋯, ӿk, pÞ,Αaðӿ1, ӿ2,⋯, ӿk, pÞ,Νnðӿ1,
ӿ2,⋯, ӿk, pÞ < 1g of ℝ+

Rn

Moreover, we explain some important theories based on
convergent and Cauchy convergent sequences.

Definition 5. For a NPFðӾUNI,Μm,Αa,Νn, ∗ct, °ctcÞ, the
sequence ӿ = fӿfg in ӾUNI is convergent to ℊ ∈ ӾUNI based

on the picture fuzzy n-norm ðΜm,Αa,ΝnÞk if for every
ϵ, p > 0 and ӳ1, ӳ2,⋯, ӳk−1 ∈ ӾUNI, there exists ὧ0 ∈ℕNn
such that

Mn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ℊ, pð Þ > 1 − ϵ,
An ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ℊ, pð Þ < ϵ,
Nn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ℊ, pð Þ < ϵ,

ð3Þ

for all ὧ ≥ ὧ0 and it is represented by ðΜm,Αa,ΝnÞk −
limӿὧ = ℊ.

Definition 6. For a NPFðӾUNI,Μm,Αa,Νn, ∗ct, °ctcÞ, the
sequence ӿ = fӿfg in ӾUNI is Cauchy convergent based on

the picture fuzzy n-norm ðΜm,Αa,ΝnÞk if for every ϵ, p >
0 and ӳ1, ӳ2,⋯, ӳk−1 ∈ ӾUNI, there exists ὧ0 ∈ℕNn such that

Mn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ӿὛ , pð Þ > 1 − ϵ,
An ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ӿὛ , pð Þ < ϵ,
Nn ӳ1, ӳ2,⋯, ӳk−1, ӿὧ − ӿὛ , pð Þ < ϵ,

ð4Þ

for all ὧ, Ὓ ≥ ὧ0 and it is represented by ðΜm,Αa,ΝnÞk −
limӿὧ = ӿὛ .

Remark 7. The following assumptions are important for our
main results.

(1) Suppose Sm−1 is the set of functions Ψm−1 : ½0,+∞Þ
⟶ ½0,+∞Þ such that

(i) Ψm−1 is continuous and nondecreasing

(ii) Ψm−1ðpÞ = 0⇔ p = 0

(2) Suppose Sa−2, Sn−3 is the set of functions Ψa−2,
Ψn−3 : ½0,+∞Þ⟶ ½0,+∞Þ such that

(i) Ψa−2,Ψn−3 is continuous and nonincreasing

(ii) Ψa−2ðpÞ,Ψn−3ðpÞ = 0⇔ p = 0

(3) Suppose ₸m−1 is the set of functions Θ1 : ½0,+∞Þ
⟶ ½0,+∞Þ such that

(i) Θ1 is continuous and strictly increasing

(ii) Θ1ðpÞ = 0⇔ p = 0
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(4) Suppose ₸ a−2, ₸ n−3 is the set of functions with Θ2,
Θ3 : ½0,+∞Þ⟶ ½0,+∞Þ such that

(i) Θ2,Θ3 is continuous and strictly decreasing

(ii) Θ2ðpÞ,Θ3ðpÞ = 0⇔ p = 0

4. Contractive Mappings Based on the Picture
Fuzzy n-Banach Space

Based on the definitions introduced in Section 3, we
describe some contractive mappings using the BPF named
as picture fuzzy n-normed contractive mapping (NCM)
and verify it with the help of numerical examples.

Definition 8. For a NPFðӾUNI,Μm,Αa,Νn, ∗ct, °ctcÞ, the
mapping T : ӾUNI ⟶ ӾUNI is called NCM, if

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≤Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, pð Þ
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, pð Þ
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, pð Þ

9>>=
>>;
,

ð5Þ

for all ӿ1, ӿ2,⋯, ӿk−1 ∈ ӾUNI, ӿ, ӳ ∈ ӾUNI, p > 0.

Further, based on equation (5) and using Remark 7, we
explore the following results, which are very helpful for
future work.

Theorem 9. For a NPFðӾUNI ,Μm,Αa,Νn, ∗ct , °ctcÞ, we
define NCM , T : ӾUNI ⟶ ӾUNI such that

where Ψm−1 ∈ Sm−1, Ψa−2 ∈ Sa−2, and Ψn−3 ∈ Sn−3, for all ӿ1,
ӿ2,⋯, ӿk−1 ∈ ӾUNI , ӿ, ӳ ∈ Ӿ UNI , p > 0 with α ∈ ð0, 1�. Then, T
possesses a unique fixed point in ӾUNI .

Proof. Let ӿ0 ∈ ӾUNI with ӿk+1 = T ðӿkÞ∀k ∈ℕNn. By using
Remark 7 and inequality (6), we get

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ
≤Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψm−1 pð Þð Þ,

An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ
≥ An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψa−2 pð Þð Þ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ
≥Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψn−3 pð Þð Þ: ð7Þ

Further, we write the above equations as

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≤Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, p −Ψm−1 pð Þð Þ
≤Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ,

An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≥ An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, p −Ψa−2 pð Þð Þ
≥ An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≥Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, p −Ψn−3 pð Þð Þ
≤Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ:

ð8Þ

It is clear from the above analysis that fMnðӿ1, ӿ2,
⋯, ӿk−1, ӿk+1 − ӿk, pÞg is a bounded nondecreasing sequence
while fAnðӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pÞg and fNnðӿ1, ӿ2,⋯,
ӿk−1, ӿk+1 − ӿk, pÞg are bounded nonincreasing sequences.
Then, the limit of these equations exists. Hence,

Mn ӿ2, ӿ3,⋯, ӿk−1, ӿ1 − ӿ0, p +Ψm−1 pð Þð Þ
≤Mn ӿ2, ӿ3,⋯, ӿk, ӿ2 − ӿ1, p +Ψm−1 pð Þ −Ψm−1 p +Ψm−1 pð Þð Þð Þ
≤Mn ӿ2, ӿ3,⋯, ӿk, ӿ2 − ӿ1, pð Þ,

An ӿ2, ӿ3,⋯, ӿk−1, ӿ1 − ӿ0, p +Ψa−1 pð Þð Þ
≥ An ӿ2, ӿ3,⋯, ӿk, ӿ2 − ӿ1, pð Þ,

Nn ӿ2, ӿ3,⋯, ӿk−1, ӿ1 − ӿ0, p +Ψn−1 pð Þð Þ
≥Nn ӿ2, ӿ3,⋯, ӿk, ӿ2 − ӿ1, pð Þ: ð9Þ

By using the induction on k, we have

Mn ӿ2, ӿ3,⋯, ӿk−1, ӿ1 − ӿ0, p +Ψm−1 pð Þð Þ
≤Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ,

An ӿ2, ӿ3,⋯, ӿk−1, ӿ1 − ӿ0, p +Ψa−1 pð Þð Þ
≥ An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ,

Nn ӿ2, ӿ3,⋯, ӿk−1, ӿ1 − ӿ0, p +Ψn−1 pð Þð Þ
≥Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ: ð10Þ

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ α⟹Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψm−1 pð Þð Þ ≥ α

An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α⟹ An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψa−2 pð Þð Þ < 1 − α

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α⟹Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψn−3 pð Þð Þ < 1 − α

9>>=
>>;
, ð6Þ
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As k⟶∞, we have

lim
k→∞

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 1,

lim
k→∞

An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 0,

lim
k→∞

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 0:

ð11Þ

Supposing p, ϵ > 0, we have

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,
p
2

� �
≥ 1 − ϵ,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Ψm−1
p
2

� �� �
≥ 1 − ϵ:

ð12Þ

Similarly, from abstinence and falsity grades, we have

An ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Ψa−2
p
2

� �� �
< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Ψn−3
p
2

� �� �
< ϵ:

ð13Þ

By using the above analysis, we write, if Mnðӿ1, ӿ2,⋯,
ӿk−1, ӿ − ӿK , ðp/2ÞÞ ≥ 1 − ϵ and Anðӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿK , p/
2Þ,Nnðӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿK , p/2Þ < ϵ, then

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿK ,
p
2

� �

≥min Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӿKð Þ, p2 −Ψm−1
p
2

� �� �� �
,

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿK ,Ψm−1
p
2

� �� �

≥min Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿK ,
p
2

� �� �
,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Ψm−1
p
2

� �� �
≥ 1 − ϵ: ð14Þ

Similarly, solving the grades of abstinence and
falsity, we have

An ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Ψa−2
p
2

� �� �
< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Ψn−3
p
2

� �� �
< ϵ:

ð15Þ

Therefore,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK ,
p
2

� �
≥ 1 − ϵ: ð16Þ

Similarly, dealing with the grades of abstinence and
falsity, we have

An ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK ,
p
2

� �
< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK ,
p
2

� �
< ϵ:

ð17Þ

Then, for all k ≥ℕNn,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿὛ , pð Þ
≥min Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK , pð Þ,Mnf
� ӿ1, ӿ2,⋯, ӿk−1, ӿὛ − ӿK , pð Þg ≥ 1 − ϵ,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿὛ − ӿK , pð Þ ≥ 1 − ϵ: ð18Þ

Also, we find

An ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿὛ , pð Þ < ϵ,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿὛ , pð Þ < ϵ:

ð19Þ

Since ϵ is arbitrary and the sequence fӿfg is Cauchy,
hence they are convergent. Therefore, limfӿfg = ӿ.

Suppose p, ϵ > 0; then, there exists k0 ∈ℕNn such that

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿ, p2
� �

≥ 1 − ϵ,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿk,Ψm−1
p
2

� �� �
≥ 1 − ϵ:

ð20Þ

Moreover, doing the same process to abstinence and fal-
sity grades, we obtain

An ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿ,Ψa−2
p
2

� �� �
< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿ,Ψn−3
p
2

� �� �
< ϵ,

ð21Þ

for all k ≥ k0. Hence,

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ
≥min Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿk+1, p −Ψm−1 pð Þð Þð Þ,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿ,Ψm−1 pð Þð Þ
≥min Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿk, pð Þð Þ,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿ,Ψm−1 pð Þð Þ ≥ 1 − ϵ,

An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ < ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ < ϵ, ð22Þ

for all k ≥ k0. Therefore,

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ = 1,
An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ = 0,
Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ = 0,

ð23Þ

for all p > 0. Hence, T ðӿÞ = ӿ; that is, T has a fixed point in
ӾUNI. Next, we prove its uniqueness. For this, we suppose ӳ
is another fixed point of T in ӾUNI; then,
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Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , p + kΨm−1 pð Þð Þ
≥min Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, pð Þð Þ
=Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ,

An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , p + kΨa−2 pð Þð Þ
=Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , p + kΨn−3 pð Þð Þ
=Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ, ð24Þ

for all k ∈ℕNn and k⟶∞; then,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 1,
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 0,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 0,

ð25Þ

for all p > 0. Hence, ӿ = ӳ . Thus, T has a unique fixed point in
ӾUNI.

Example 10. For a Banach space ðӾUNI, k:kÞ, we define a
mapping T : ӾUNI ⟶ ӾUNI such that for all ӿ, ӳ ∈ ӾUNI,

T ӿð Þ − T ӳð Þk k ≤ ӿ − ӳk k −Ψm−1 ӿ − ӳk k,
T ӿð Þ − T ӳð Þk k ≥ ӿ − ӳk k −Ψa−2 ӿ − ӳk k,
T ӿð Þ − T ӳð Þk k ≥ ӿ − ӳk k −Ψn−3 ӿ − ӳk k:

ð26Þ

We know that Ψm−1 ∈ Sm−1, Ψa−2 ∈ Sa−2, and Ψn−3 ∈ Sn−3.
We consider that Ψm−1ðβpÞ ≤ βΨm−1ðpÞ, Ψa−2ðβpÞ ≥ β
Ψa−2ðpÞ, and Ψn−3ðβpÞ ≥ βΨn−3ðpÞ, where p > 0 and β ∈ ½0,
1�. Now, we describe the picture fuzzy n-norm Mn, An, and
Nn:

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk, pð Þ

=

p
ӿ1, ӿ2,⋯, ӿk−1, ӿkk k , 0 < p ≤ ӿ1, ӿ2,⋯, ӿk−1, ӿkk k,

1, ӿ1, ӿ2,⋯, ӿk−1, ӿkk k < p,

0, p ≤ 0,

8>>>><
>>>>:

An ӿ1, ӿ2,⋯, ӿk−1, ӿk, pð Þ

=

1 − p
ӿ1, ӿ2,⋯, ӿk−1, ӿkk k , 0 < p ≤ ӿ1, ӿ2,⋯, ӿk−1, ӿkk k,

0, ӿ1, ӿ2,⋯, ӿk−1, ӿkk k < p,

1, p ≤ 0,

8>>>><
>>>>:

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk, pð Þ

=

1 − p
ӿ1, ӿ2,⋯, ӿk−1, ӿkk k , 0 < p ≤ ӿ1, ӿ2,⋯, ӿk−1, ӿkk k,

0, ӿ1, ӿ2,⋯, ӿk−1, ӿkk k < p,

1, p ≤ 0:

8>>>><
>>>>:

ð27Þ

We consider that

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ α,
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α:

ð28Þ

The first three parts are discussed for the truth grade. We
have the following cases:

Case 1. Suppose 0 < p ≤ kӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pk; then,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = p
ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pk k ≥ α,

p ≥ α ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pk k:
ð29Þ

Further, we write

α ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þk k
≤ α ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳk k − αΨm−1 ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳk k
≤ α ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳk k −Ψm−1 α ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳk kð Þ
≤ p −Ψm−1 pð Þ:

ð30Þ

Therefore, we get

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψm−1 pð Þð Þ
= p −Ψm−1 pð Þ

ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þk k ≥ α:
ð31Þ

Case 2. Suppose kӿ1, ӿ2,⋯, ӿk−1, ӿkk < p; then,

ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þk k ≤ ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳk k
−Ψm−1 ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳk k

≤ p −Ψm−1 pð Þ:
ð32Þ

Therefore, we get

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψm−1 pð Þð Þ = 1 ≥ α: ð33Þ

Case 3. Suppose p ≤ 0 andMnðӿ1, ӿ2,⋯, ӿk−1, ӿk, pÞ = 0; then,

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ, p −Ψm−1 pð Þð Þ = 1 ≥ α: ð34Þ

Similarly, we can prove these conditions for abstinence
and falsity grades. Hence, the solution is completed. Further,
we instigate more results based on BPF to show the profi-
ciency of the discussed results.
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Theorem 11. For a BPFðӾUNI ,Μm,Αa,Νn, ∗ct , °ctcÞ, the
grade of truth, abstinence, and falsity satisfies the conditions
of Definition 4. Now, we define the decreasing mapping Γ1

and increasing mappings Γ2 and Γ3, such that Γ1 : ð0,+∞Þ
⟶ ½0, 1Þ and Γ2 : ð0,+∞Þ⟶ ½0, 1Þ, Γ3 : ð0,+∞Þ⟶ ½0,
1Þ with T : ӾUNI ⟶ ӾUNI , such that

where Θ1 ∈ ₸m−1, Θ2 ∈ ₸ a−2, and Θ3 ∈ ₸ n−3, for all ӿ1, ӿ2,⋯,
ӿk−1 ∈ Ӿ UNI , ӿ, ӳ ∈ ӾUNI , p > 0 with α ∈ ð0, 1�. Then, T has a
unique fixed point inӾUNI .

Proof. Let ӿ0 ∈ ӾUNI with ӿk+1 = T ðӿkÞ∀k ∈ℕNn. By using
Remark 7 and inequality (35), we get

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≤Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þð
− T ӳð Þ,Θ−1

1 Γ1 Pð ÞΘ1 Pð Þð Þ�,
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þð

− T ӳð Þ,Θ−1
2 Γ2 Pð ÞΘ2 Pð Þð Þ�,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þð
− T ӳð Þ,Θ−1

3 Γ3 Pð ÞΘ3 Pð Þð Þ�:
ð36Þ

Further, we write the above equations as

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≤Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1

1 Γ1 Pð ÞΘ1 Pð Þð Þ� �
≤Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ,

An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≥ An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1

2 Γ2 Pð ÞΘ2 Pð Þð Þ� �
≥ An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≥Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1

3 Γ3 Pð ÞΘ3 Pð Þð Þ� �
≤Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ:

ð37Þ

It is clear from the above analysis that fMnðӿ1, ӿ2,⋯,
ӿk−1, ӿk+1 − ӿk, pÞg is a bounded nondecreasing sequence
and fAnðӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pÞg and fNnðӿ1, ӿ2,⋯,
ӿk−1, ӿk+1 − ӿk, pÞg are the bounded nonincreasing sequences.
Then, the limit of these equations exists. We suppose that

lim
k→∞

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ < β1 < 1,

lim
k→∞

An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ > β2 > 1,

lim
k→∞

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ > β3 > 1:

ð38Þ

Therefore, we have

Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qð Þ ≥Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ,
An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qð Þ ≤An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ,
Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qð Þ ≤Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ,
0 < p ≤ ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1 ≤ ӿ2, ӿ3,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

,

0 < p ≤ ӿ2, ӿ3,⋯, ӿk−1, ӿk+1 − ӿkk kβ2 ≤ ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ2
,

0 < p ≤ ӿ2, ӿ3,⋯, ӿk−1, ӿk+1 − ӿkk kβ3 ≤ ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ3 :
ð39Þ

Then, the limit of these equations also exists. We have

lim
k→∞

ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1
= b1,

lim
k→∞

ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ2
= b2,

lim
k→∞

ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ3 = b3:

ð40Þ

If Mnðӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qÞ ≥ β1, Anðӿ2, ӿ3,⋯, ӿk,
ӿk+2 − ӿk+1, qÞ < β2, and Nnðӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qÞ < β3,
then

Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1
1 Γ1 Pð ÞΘ1 Pð Þð Þ� �

≥Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ ≥ β1,

An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1
2 Γ2 Pð ÞΘ2 Pð Þð Þ� �

≤ An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ < β2,

Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1
3 Γ3 Pð ÞΘ3 Pð Þð Þ� �

≤Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ < β3:
ð41Þ

Therefore,

ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1
≤Θ−1

1 Γ1 Pð ÞΘ1 Pð Þð Þ,

Θ1 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1
≤ Γ1 Pð ÞΘ1 Pð Þð Þ

≤ Γ1 ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

� �
Θ1 Pð Þ

� �

≤ Γ1 b1ð ÞΘ1 Pð Þð Þ:
ð42Þ

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ α⟹Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ,Θ−1
1 Γ1 Pð ÞΘ1 Pð Þð Þ� �

≥ α

An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α⟹ An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ,Θ−1
2 Γ2 Pð ÞΘ2 Pð Þð Þ� �

< 1 − α

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α⟹Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ,Θ−1
3 Γ3 Pð ÞΘ3 Pð Þð Þ� �

< 1 − α

9>>=
>>;

, ð35Þ
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Similarly, we can find that

Θ2 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ2
≥Θ−1

2 Γ2 Pð ÞΘ2 Pð Þð Þ
≥ Γ2 b2ð ÞΘ2 Pð Þð Þ,

Θ3 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ3
≥Θ−1

3 Γ3 Pð ÞΘ3 Pð Þð Þ
≥ Γ3 b3ð ÞΘ3 Pð Þð Þ:

ð43Þ

And it is clear that p⟶ kӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkkβ1
,

kӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkkβ2
, kӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkkβ3

;

then,

Θ1 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1

≤ Γ1 b1ð ÞΘ1 ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1
� �� �

:
ð44Þ

Again,

Θ2 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ2

≥ Γ2 b2ð ÞΘ2 ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ2

� �� �
,

Θ3 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ3

≥ Γ3 b3ð ÞΘ3 ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ3
� �� �

:
ð45Þ

Thus, we get

Θ1 b1ð Þ ≤ Γ1 b1ð ÞΘ1 b1ð Þ⟹ Γ1 b1ð Þ ≥ 1,
Θ2 b2ð Þ ≥ Γ2 b2ð ÞΘ2 b2ð Þ⟹ Γ2 b2ð Þ ≤ 1,
Θ3 b3ð Þ ≥ Γ3 b3ð ÞΘ3 b3ð Þ⟹ Γ3 b3ð Þ ≤ 1,

ð46Þ

which is a contradiction; hence,

lim
k→∞

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 1,

lim
k→∞

An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 0,

lim
k→∞

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 0:

ð47Þ

Suppose p, ϵ > 0. We have

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,
p
2 −Θ−1

1 Γ1
P
2

� �
Θ1

P
2

� �� �� �
≥ 1 − ϵ:

ð48Þ

Similarly, for abstinence and falsity grades, we have

An ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,
p
2 −Θ−1

2 Γ2
P
2

� �
Θ2

P
2

� �� �� �
< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,
p
2 −Θ−1

3 Γ3
P
2

� �
Θ3

P
2

� �� �� �
< ϵ:

ð49Þ

By using the above analysis, we get, if Mnðӿ1, ӿ2,⋯,
ӿk−1, ӿ − ӿK , p/2Þ ≥ 1 − ϵ and Anðӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿK , p/2Þ,
Nnðӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿK , p/2Þ < ϵ, then

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿK ,
p
2

� �

≥min Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӿKð Þ, p2
��

−Θ−1
1 Γ1

P
2

� �
Θ1

P
2

� �� ��
Þ,

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿK ,Θ−1
1 Γ1

P
2

� �
Θ1

P
2

� �� �� �

≥min Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿK ,
p
2

� �� �
,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Θ−1
1 Γ1

P
2

� �
Θ1

P
2

� �� �� �
≥ 1 − ϵ:

ð50Þ

Similarly, resolving the grades of abstinence and falsity,
we have

An ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Θ−1
2 Γ2

P
2

� �
Θ2

P
2

� �� �� �
< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿK+1 − ӿK ,Θ−1
3 Γ3

P
2

� �
Θ3

P
2

� �� �� �
< ϵ:

ð51Þ

Therefore,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK ,
p
2

� �
≥ 1 − ϵ: ð52Þ

Also, we note

An ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK ,
p
2

� �
< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK ,
p
2

� �
< ϵ:

ð53Þ

Then, for all k ≥ℕNn,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿὛ , pð Þ
≥min Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿK , pð Þ,Mnf
� ӿ1, ӿ2,⋯, ӿk−1, ӿὛ − ӿK , pð Þg ≥ 1 − ϵ,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿὛ − ӿK , pð Þ ≥ 1 − ϵ: ð54Þ

Further, we find

An ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿὛ , pð Þ < ϵ,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿὛ , pð Þ < ϵ:

ð55Þ

Since ϵ is arbitrary and the sequence fӿfg is Cauchy,
hence they are convergent. Therefore, limfӿfg = ӿ.
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Suppose p, ϵ > 0; then, there exists k0 ∈ℕNn such that

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿk, p −Θ−1
1 Γ1 pð ÞΘ1 pð Þð Þ� �

≥ 1 − ϵ:

ð56Þ

Similarly, observing for abstinence and falsity grades, we
have

An ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿ, p −Θ−1
2 Γ2 pð ÞΘ2 pð Þð Þ� �

< ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk − ӿ, p −Θ−1
3 Γ3 pð ÞΘ3 pð Þð Þ� �

< ϵ,
ð57Þ

for all k ≥ k0. Hence,

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ
≥min Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿk+1, p −Θ−1

1 Γ1 pð ÞΘ1 pð Þð Þ� �� �
,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿ,Θ−1
1 Γ1 pð ÞΘ1 pð Þð Þ� �

≥min Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӿk, pð Þð Þ,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿ,Θ−1
1 Γ1 pð ÞΘ1 pð Þð Þ� �

≥ 1 − ϵ,

An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ < ϵ,

Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ < ϵ, ð58Þ

for all k ≥ k0. Therefore,

Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ = 1,
An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ = 0,
Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − ӿ, pð Þ = 0,

ð59Þ

for all p > 0. Hence, T ðӿÞ = ӿ; that is, T has a fixed point in
ӾUNI. Next, we prove the uniqueness of the fixed point. For
this, we suppose ӳ is another fixed point T in ӾUNI; then,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥min Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þðð
− T ӳð Þ,Θ−1

1 Γ1 pð ÞΘ1 pð Þð Þ�Þ
=Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ,

An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ =Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ =Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ:

ð60Þ

Hence, p =Θ−1
1 ðΓ1ðpÞΘ1ðpÞÞ⟹Θ1ðpÞ = Γ1ðpÞΘ1ðpÞ,

p =Θ−1
2 Γ2 pð ÞΘ2 pð Þð Þ⟹Θ2 pð Þ = Γ2 pð ÞΘ2 pð Þ,

p =Θ−1
3 Γ3 pð ÞΘ3 pð Þð Þ⟹Θ3 pð Þ = Γ3 pð ÞΘ3 pð Þ:

ð61Þ

Therefore, Γ1ðpÞ = 1, Γ2ðpÞ = 1, and Γ3ðpÞ = 1. It is a con-
tradiction; thus, for all k ∈ℕNn and k⟶∞, we obtain

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 1,
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 0,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 0,

ð62Þ

for all p > 0. Hence, ӿ = ӳ . Hence, T has a unique fixed point
in ӾUNI.

Example 12. For a Banach space ðӾUNI, k:kÞ, we define the
decreasing mapping Γ1 and increasing mappings Γ2 and Γ3,
such that Γ1 : ð0,+∞Þ⟶ ½0, 1Þ and Γ2 : ð0,+∞Þ⟶ ½0, 1Þ,
Γ3 : ð0,+∞Þ⟶ ½0, 1Þ, and T : ӾUNI ⟶ ӾUNI are such that
for all ӿ, ӳ ∈ ӾUNI,

Θ1 T ӿð Þ − T ӳð Þk k ≤ Γ1 ӿ − ӳk k −Θ1 ӿ − ӳk k,
Θ2 T ӿð Þ − T ӳð Þk k ≥ Γ2 ӿ − ӳk k −Θ2 ӿ − ӳk k,
Θ3 T ӿð Þ − T ӳð Þk k ≥ Γ3 ӿ − ӳk k −Θ3 ӿ − ӳk k,

ð63Þ

where Θ1 ∈ ₸m−1, Θ2 ∈ ₸ a−2, and Θ3 ∈ ₸ n−3. Suppose that Γ1
Θ1 is nondecreasing and Γ2Θ2, Γ3Θ3 are nonincreasing func-
tions with

β1 Θ−1
1 Γ1 pð ÞΘ1 pð Þð Þ� �

≤Θ−1
1 Γ1 β1pð ÞΘ1 β1pð Þð Þ,

β2 Θ−1
2 Γ2 pð ÞΘ2 pð Þð Þ� �

≥Θ−1
2 Γ2 β2pð ÞΘ2 β2pð Þð Þ,

β3 Θ−1
3 Γ3 pð ÞΘ3 pð Þð Þ� �

≥Θ−1
3 Γ3 β3pð ÞΘ3 β3pð Þð Þ,

ð64Þ

for all p ∈ ½0,+∞Þ, β1, β2, β3 ∈ ½0, 1�. Further, define picture
fuzzy n-normMn, An,Nn as in Example 10. Consider that

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ α,
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α:

ð65Þ

By using the three cases of Example 10 and using Theorem
11, we explore that the function T has a unique fixed point in
XUNI. Hence, the solution is completed. Further, we have uti-
lized more results based on BPF to show the proficiency of the
proven approaches.

Theorem 13. Let BPFðӾUNI ,Μm,Αa,Νn, ∗ct , °ctcÞ. Let the
grade of truth, abstinence, and falsity satisfy the conditions
of Definition 4. Now, we define the mapping T : ӾUNI ⟶
Ӿ UNI , such that

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ α⟹Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þð
− T ӳð Þ,Θ−1

1 Θ1 Pð Þ −Θ1′ Pð Þ
� ��

≥ α

9Journal of Function Spaces



An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α⟹An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þð
− T ӳð Þ,Θ−1

2 Θ2 Pð Þ −Θ2′ Pð Þ
� ��

< 1 − α

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α⟹Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þð
− T ӳð Þ,Θ−1

3 Θ3 Pð Þ −Θ3′ Pð Þ
� ��

< 1 − αg,
ð66Þ

where ðΘ1ðPÞ,Θ1′ðPÞÞ ∈ ₸m−1, ðΘ2ðPÞ,Θ2′ðPÞÞ ∈ ₸ a−2, and
ðΘ3ðPÞ −Θ3′ðPÞÞ ∈ ₸ n−3, for all ӿ1, ӿ2,⋯, ӿk−1 ∈ ӾUNI , ӿ, ӳ ∈
ӾUNI , p > 0 with α ∈ ð0, 1� and ðΘ1ðPÞ ≥Θ1′ðPÞÞ, ðΘ2ðPÞ ≥
Θ2′ðPÞÞ, ðΘ3ðPÞ ≥Θ3′ðPÞÞ. Then, T has a unique fixed point
in ӾUNI .

Proof. Let ӿ0 ∈ ӾUNI with ӿk+1 = T ðӿkÞ∀k ∈ℕNn. By using
Remark 7 and equation (66), we get

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ
≤Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ,Θ−1

1 Θ1 Pð Þ −Θ1′ Pð Þ
� �� �

,

An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ
≥ An ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ,Θ−1

2 Θ2 Pð Þ −Θ2′ Pð Þ
� �� �

,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ
≥Nn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ,Θ−1

3 Θ3 Pð Þ −Θ3′ Pð Þ
� �� �

:

ð67Þ

Further, from the above equations, we obtain

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≤Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1

1 Θ1 Pð Þ −Θ1′ Pð Þ
� �� �

≤Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ,
An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ

≥ An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1
2 Θ2 Pð Þ −Θ2′ Pð Þ
� �� �

≥ An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ
≥Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1

3 Θ3 Pð Þ −Θ3′ Pð Þ
� �� �

≤Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, pð Þ:
ð68Þ

It is clear from the above analysis that fMnðӿ1, ӿ2,
⋯, ӿk−1, ӿk+1 − ӿk, pÞg is a bounded nondecreasing sequence
and the sequences fAnðӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pÞg and
fNnðӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pÞg are bounded and non-
increasing. Then, the limit of these equations exists.
We suppose that

lim
k→∞

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ < β1 < 1,

lim
k→∞

An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ > β2 > 1,

lim
k→∞

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ > β3 > 1:

ð69Þ

Therefore, we have

Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qð Þ ≥Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ,
An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qð Þ ≤An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ,
Nn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qð Þ ≤Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ,
0 < p ≤ ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1 ≤ ӿ2, ӿ3,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

,

0 < p ≤ ӿ2, ӿ3,⋯, ӿk−1, ӿk+1 − ӿkk kβ2 ≤ ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ2
,

0 < p ≤ ӿ2, ӿ3,⋯, ӿk−1, ӿk+1 − ӿkk kβ3 ≤ ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ3 :
ð70Þ

Then, the limit of these equations also exists. We
have

lim
k→∞

ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1
= b1,

lim
k→∞

ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ2
= b2,

lim
k→∞

ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ3 = b3:

ð71Þ

If Mnðӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qÞ ≥ β1, Anðӿ2, ӿ3,⋯, ӿk,
ӿk+2 − ӿk+1, qÞ < β2, and Nnðӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1, qÞ < β3,
then

Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1
1 Θ1 Pð Þ −Θ1′ Pð Þ
� �� �

≥Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ ≥ β1,

An ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1
2 Θ2 Pð Þ −Θ2′ Pð Þ
� �� �

≤ An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ < β2,

Mn ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1,Θ−1
3 Θ3 Pð Þ −Θ3′ Pð Þ
� �� �

≤Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, qð Þ < β3:
ð72Þ

Therefore,

ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1
≤Θ−1

1 Θ1 Pð Þ −Θ1′ Pð Þ
� �

,

Θ1 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1
≤ Θ1 Pð Þ −Θ1′ Pð Þ
� �

:

ð73Þ

Similarly, we can find

Θ2 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ2
≥ Θ2 Pð Þ −Θ2′ Pð Þ
� �

,

Θ3 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ3
≥ Θ3 Pð Þ −Θ3′ Pð Þ
� �

:

ð74Þ
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Clearly, p⟶ kӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkkβ1
, kӿ1, ӿ2, ⋯ ,

ӿk−1, ӿk+1 − ӿkkβ2
, kӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkkβ3 ; hence,

Θ1 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ1
≤ Θ1 ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

� ��

−Θ1′ ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

� ��
:

ð75Þ

Also, we write

Θ2 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ2
≥ Θ2 ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

� ��

−Θ2′ ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

� ��
,

Θ3 ӿ2, ӿ3,⋯, ӿk, ӿk+2 − ӿk+1k kβ3
≥ Θ3 ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

� ��

−Θ3′ ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿkk kβ1

� ��
:

ð76Þ

Thus, we get

0 ≤Θ1 pð Þ ≤Θ1 b1ð Þ ≤Θ1 b1ð Þ −Θ1′ b1ð Þ ≤Θ1 b1ð Þ: ð77Þ

Similarly,

Θ2 pð Þ ≥Θ2 b2ð Þ ≥Θ2 b2ð Þ −Θ2′ b2ð Þ ≥Θ2 b2ð Þ,
Θ3 pð Þ ≥Θ3 b3ð Þ ≥Θ3 b3ð Þ −Θ3′ b3ð Þ ≥Θ3 b3ð Þ:

ð78Þ

It is a contradiction; hence,

lim
k→∞

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 1,

lim
k→∞

An ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 0,

lim
k→∞

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿk+1 − ӿk, pð Þ = 0:

ð79Þ

The rest of the proof to express for all p > 0 the equa-
tion T ðӿÞ = ӿ can be obtained using the similar technique
of Theorem 9 and Theorem 11; that is, T has a fixed point
in ӾUNI. Next, we prove the uniqueness of the fixed point.
For this, we suppose ӳ is another fixed point T in ӾUNI;
then,

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ
≥min Mn ӿ1, ӿ2,⋯, ӿk−1, T ӿð Þ − T ӳð Þ,Θ−1

1 Θ1 Pð Þ −Θ1′ Pð Þ
� �� �� �

=Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ,

An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ =Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ,

Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ =Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ:
ð80Þ

Hence, p =Θ−1
1 ðΘ1ðPÞ −Θ1′ðPÞÞ⟹Θ1ðpÞ =Θ1ðPÞ −

Θ1′ðPÞ,

p =Θ−1
2 Θ2 Pð Þ −Θ2′ Pð Þ
� �

⟹Θ2 pð Þ =Θ2 Pð Þ −Θ2′ Pð Þ,

p =Θ−1
3 Θ3 Pð Þ −Θ3′ Pð Þ
� �

⟹Θ3 pð Þ =Θ3 Pð Þ −Θ3′ Pð Þ:
ð81Þ

Therefore, Θ1′ðpÞ = 1, Θ2′ðpÞ = 1, and Θ3′ðpÞ = 1. It is a
contradiction; thus, as k⟶∞, we get

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 1,
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 0,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ = 0,

ð82Þ

for all p > 0. Hence, ӿ = ӳ . Thus, T has a unique fixed
point in ӾUNI.

Example 14. For a Banach space ðӾUNI, k:kÞ, we define the
mapping T : ӾUNI ⟶ ӾUNI such that for all ӿ, ӳ ∈ ӾUNI,

Θ1 T ӿð Þ − T ӳð Þk k ≤Θ1 ӿ − ӳk k −Θ1′ ӿ − ӳk k,
Θ2 T ӿð Þ − T ӳð Þk k ≥Θ2 ӿ − ӳk k −Θ2′ ӿ − ӳk k,
Θ3 T ӿð Þ − T ӳð Þk k ≥Θ3 ӿ − ӳk k −Θ3′ ӿ − ӳk k,

ð83Þ

where Θ1,Θ1′ ∈ ₸m−1, Θ2,Θ2′ ∈ ₸ a−2, and Θ3,Θ3′ ∈ ₸ n−3. Sup-
pose Θ1 −Θ1′ is nondecreasing and Θ2 −Θ2′ ,Θ3 −Θ3′ are
nonincreasing functions with

β1 Θ−1
1 Θ1 −Θ1′
� �� �

≤Θ−1
1 Θ1 β1pð Þ −Θ1′ β1pð Þ
� �

,

β2 Θ−1
2 Γ2 pð ÞΘ2 pð Þð Þ� �

≥Θ−1
2 Θ2 β2pð Þ −Θ2′ β2pð Þ
� �

,

β3 Θ−1
3 Γ3 pð ÞΘ3 pð Þð Þ� �

≥Θ−1
3 Θ3 β3pð Þ −Θ3′ β3pð Þ
� �

,

ð84Þ

for all p ∈ ½0,+∞Þ and β1, β2, β3 ∈ ½0, 1�. Further, define pic-
ture fuzzy n-norm Mn, An,Nn as in Example 10. Consider
that

Mn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ ≥ α,
An ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α,
Nn ӿ1, ӿ2,⋯, ӿk−1, ӿ − ӳ , pð Þ < 1 − α:

ð85Þ

We explore that the function T has a unique fixed point
in XUNI. Hence, the solution is completed.

5. Conclusion

A picture fuzzy set is more proficient and more capable than
an intuitionistic fuzzy set and fuzzy to cope with uncertain
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and unpredictable information in realistic issues. Keeping the
advantages of the picture fuzzy set and a n-norm linear space,
the manuscript made the following advancements in the
existing literature:

(1) The novel picture fuzzy n-norm linear space and its
basic properties are explored

(2) Some novel contractive conditions based on NPF are
presented. By using these contractive conditions, we
have explored some fixed point theorems for a pic-
ture fuzzy n-Banach space (BPF). It was observed that
these results are more modified and more general
than the existing ones in the literature, which are
based on intuitionistic fuzzy n-Banach spaces (BIF)
and fuzzy n-Banach spaces

(3) The reliability and effectiveness of the obtained main
theorems are expressed, and several examples are
presented afterwards
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In this paper, the authors introduced certain subclasses β-uniformly q-starlike and β-uniformly q-convex functions of order α
involving the q-derivative operator defined in the open unit disc. Coefficient bounds were also investigated.

1. Introduction

The q-analysis is a generalization of the ordinary analysis.
The application of the q-calculus was first introduced by
Jackson [1–3]. In geometric function theory, the q-hyper-
geometric functions were first used by Srivastava [4]. The q
-calculus provides valuable tools that have been used to
define several subclasses of the normalized analytic function
in the open unit disk U. Ismail et al. [5] were the first to study
a certain class S∗ of starlike functions by using the q-deriv-
ative operator. Recently, new subclasses of analytic functions
associated with q-derivative operators are introduced and
discussed, see for example [4, 6–18]. Motivated by the impor-
tance of q-analysis, in this paper, we introduce the classes of β
-uniformly q-starlike and β-uniformly q-convex functions
defined by the q-derivative operator in the open unit disc,
as a generalization of β-uniformly starlike and β-uniformly
convex functions.

First, we recall some basic notations and definitions from
q-calculus, which are used in this paper. The q-derivative of
the function f is defined as follows [1–3]:

Dqf zð Þ = f zð Þ − f qzð Þ
1 − qð Þz ,  z ≠ 0, 0 < q < 1ð Þ: ð1Þ

From equation (1), it is clear that if f and g are the two
functions, then

Dq f zð Þ + g zð Þð Þ =Dqf zð Þ +Dqg zð Þ, ð2Þ

Dq cf zð Þð Þ = cDqf zð Þ, ð3Þ

where c is a constant. We note that Dqf ðzÞ⟶ f ′ðzÞ as q

⟶ 1−, where f ′ is the ordinary derivative of the function
f .

In particular, using equation (1), the q-derivative of the
function hðzÞ = zn is as follows:

Dqh zð Þ = n½ �qzn−1, ð4Þ
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where ½n�q denotes the q-number and is given as follows:

n½ �q=
1 − qn

1 − q
,  0 < q < 1ð Þ: ð5Þ

Since we note that ½n�q ⟶ n as q⟶ 1−, therefore, in
view of equation (4), DqhðzÞ⟶ h′ðzÞ as q⟶ 1−, where
h′ðzÞ denotes the ordinary derivative of the function hðzÞ
with respect to z.

In this paper, we consider the classes A and T of the
functions, analytic in the open unit disc U = fz ∈ℂ : jzj < 1g,
of the following forms, respectively:

f zð Þ = z + 〠
∞

n=2
anz

n, ð6Þ

f zð Þ = z − 〠
∞

n=2
anz

n,  an ≥ 0ð Þ: ð7Þ

Also, using equations (2), (3), (4), and (6), we get the
following q-derivatives of the function f :

Dqf zð Þ = 1 + 〠
∞

n=2
n½ �qanzn−1,  0 < q < 1ð Þ, ð8Þ

Dq zDqf zð Þ� �
= 1 + 〠

∞

n=2
n½ �2qanzn−1,  0 < q < 1ð Þ, ð9Þ

where ½n�q is given by equation (5).
The classes of starlike functions of order αð0 ≤ α < 1Þ and

convex functions of order αð0 ≤ α < 1Þ, denoted by S∗ðαÞ
and KðαÞ, respectively, are defined as follows [19]:

S∗ αð Þ = f ∈A : R
zf ′ zð Þ
f zð Þ

 !
> α

( )
, ð10Þ

K αð Þ = f ∈A : R 1 +
zf ″ zð Þ
f ′ zð Þ

 !
> α

( )
: ð11Þ

It is clear that S∗ðαÞ and KðαÞ are the subclasses of the
class A .

The classes of β-uniformly starlike functions of order
α and β-uniformly convex functions of order α, denoted
by SDðα, βÞ and KDðα, βÞ, respectively, are defined as
follows [20]:

SD α, βð Þ = f ∈A : R
zf ′ zð Þ
f zð Þ − α

 !
> β

zf ′ zð Þ
f zð Þ − 1

�����
�����

( )
,

ð12Þ

KD α, βð Þ = f ∈A : R
zf ″ zð Þ
f ′ zð Þ

− α

 !
> β

zf ″ zð Þ
f ′ zð Þ

− 1

�����
�����

( )
,

ð13Þ

where z ∈U, 0 ≤ α < 1, and β ≥ 0:
The class of q-starlike functions of order μ, denoted by

S∗
q ðμÞ, is defined as follows [13]:

S∗
q μð Þ = f ∈A : R

zDqf zð Þ
f zð Þ

� �
> μ,  z ∈U ; 0 ≤ μ < 1ð Þ

� �
:

ð14Þ

Also, the class of q-convex functions of order μ, denoted
by CqðμÞ, is defined as [13]:

Cq μð Þ = f ∈A : R
Dq zDqf zð Þ� �

Dqf zð Þ

 !
> μ,  z ∈U ; 0 ≤ μ < 1ð Þ

( )
:

ð15Þ

The analytic function g is said to be subordinate to the
analytic function f in U [21], represented as follows:

g zð Þ ≺ f zð Þ org ≺ f , ð16Þ

if there exists a Schwarz function w, which is analytic in
U with

w 0ð Þ = 0,

w zð Þj j < 1,
ð17Þ

such that

g zð Þ = f w zð Þð Þ,  z ∈Uð Þ: ð18Þ

In the next section, we introduce the classes of
β-uniformly q-starlike and β-uniformly q-convex functions
of order α, denoted by Sqðα, βÞ and UCV qðα, βÞ, respec-
tively. Also, we obtain the coefficient bounds of the functions
belonging to these classes.

2. Coefficient Bounds

Since the q-derivative is a generalized form of the ordinary
derivative, therefore, in view of definitions of SDðα, βÞ and
KDðα, βÞ, we define the classes of β-uniformly q-starlike
and β-uniformly q-convex functions of order α, denoted by
Sqðα, βÞ and UCV qðα, βÞ, respectively, by replacing the
ordinary derivative with the q-derivative in equations (12)
and (13).

We provide the respective definitions of the classes
Sqðα, βÞ and UCV qðα, βÞ.
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Definition 1. The function f ∈A is said to be β-uniformly q
-starlike of order α, if it satisfies the following inequality:

R
zDq f zð Þð Þ

f zð Þ − α

� �
> β

zDq f zð Þð Þ
f zð Þ

����
���� − 1, ð19Þ

where 0 < q < 1, β ≥ 0, 0 ≤ α < 1, and z ∈U.

Definition 2. The function f ∈A is said to be β-uniformly
q-convex of order α, if it satisfies the following inequality:

R
Dq zDqf zð Þ
	 

Dqf zð Þ − α

0
@

1
A > β

Dq zDqf zð Þ
	 

Dqf zð Þ − 1

������

������, ð20Þ

where 0 < q < 1, β ≥ 0, 0 ≤ α < 1, and z ∈U.

Further, we define the classes T Sqðα, βÞ and UCT qðα,
βÞ containing functions with negative coefficients and satis-
fying inequalities (19) and (20), respectively, as follows:

T Sq α, βð Þ = Sq α, βð Þ ∩ T,

UCT q α, βð Þ =UCV q α, βð Þ ∩ T:
ð21Þ

Remark 3. We note that

(i) limq→1−Sqðα, βÞ = SDðα, βÞ and limq→1−UCV qðα,
βÞ =KDðα, βÞ

(ii) Sqðα, βÞ = S∗
qDðαÞ and UCV qðα, 0Þ =CqðαÞ (see

[8]).

(iii) limq→1−Sqðα, 0Þ = S∗ðαÞ and limq→1−UCV qðα, 0Þ
=KðαÞ

Now, the relation between the subclasses S∗
q ðμÞ and Sq

ðα, βÞis given by the following result.

Theorem 4. Let f ∈ Sqðα, βÞ, then f ∈ S∗
q ððα + βÞ/ð1 + βÞÞ,

where β ≥ 0, 0 ≤ α < 1, and 0 < q < 1.

Proof. If f ∈ Sqðα, βÞ, then in view of Definition 1 and using
the fact that −R < ðzÞ ≤ jzj, we get

R
zDq f zð Þð Þ

f zð Þ − α

� �
> β

zDq f zð Þð Þ
f zð Þ − 1

����
���� ≥ βR

zDq f zð Þð Þ
f zð Þ − 1

� �
,

ð22Þ

which implies that

R
zDq f zð Þð Þ

f zð Þ
� �

− α > βR
zDq f zð Þð Þ

f zð Þ
� �

+ β, ð23Þ

then

R
zDq f zð Þð Þ

f zð Þ
� �

>
α + β

1 + β
: ð24Þ

Since β ≥ 0 and 0 ≤ α < 1, then 0 ≤ ðα + βÞ/ð1 + βÞ < 1.
Hence, in view of equation (14), we obtain f ∈ S∗

q ððα + βÞ/
ð1 + βÞÞ.

Also, the relation between the subclasses CqðαÞ and
UCV qðα, βÞis given by the following result.

Theorem 5. Let f ∈UCV qðα, βÞ, then f ∈Cqððα + βÞ/ð1 +
βÞÞ, where β ≥ 0, 0 ≤ α < 1, and 0 < q < 1.

Proof. If f ∈UCV qðα, βÞ, then in view of Definition 2 and
using the fact that −R < ðzÞ ≤ jzj, we get

R
Dq zDq zð Þ� �
Dqf zð Þ − α

 !
> β

Dq zDqf zð Þ� �
Dqf zð Þ − 1

�����
�����

≥ −βR
Dq zDqf zð Þ� �

Dqf zð Þ − 1
 !

,

ð25Þ

which implies that

R
Dq zDq zð Þ� �
Dqf zð Þ

 !
− α > −βR

Dq zDqf zð Þ� �
Dqf zð Þ

 !
+ β, ð26Þ

then

R
Dq zDqf zð Þ� �

Dqf zð Þ

 !
>
α + β

1 + β
, ð27Þ

since β ≥ 0 and 0 ≤ α < 1, then 0 ≤ ðα + βÞ/ð1 + βÞ < 1. Hence,
in view of equation (15), we obtain f ∈Cqððα + βÞ/ð1 + βÞÞ.

Next, the coefficient bound of the class Sqðα, βÞ is given
by the following result.

Theorem 6. A function f ∈A belongs to the class Sqðα, βÞ if

〠
∞

n=2
n½ �q 1 + βð Þ − α + βð Þ

	 

anj j ≤ 1 − α, ð28Þ

where 0 < q < 1, β ≥ 0, 0 ≤ α < 1, and ½n�q denotes the q
-number.

Proof. Now, using the fact that −RðzÞ ≤ jzj, we have

β
zDq f zð Þð Þ

f zð Þ − 1
����

���� −R
zDq f zð Þð Þ

f zð Þ − 1
� �

≤ 1 + βð Þ zDq f zð Þð Þ
f zð Þ − 1

����
����:

ð29Þ
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Using equations (6) and (8) in the right hand side of
inequality (29), we get

1 + βð Þ zDq f zð Þð Þ
f zð Þ − 1

����
���� = 1 + βð Þ

∑∞
n=2 n½ �q − 1
	 


anz
n−1

1 +∑∞
n=2anz

n−1

������

������:

ð30Þ

Since jzj < 1, therefore, from the above inequality, we get

1 + βð Þ zDq f zð Þð Þ
f zð Þ − 1

����
���� <

1 + βð Þ∑∞
n=2 n½ �q − 1 anj j
	 


1 −∑∞
n=2 anj j : ð31Þ

Combining inequalities (29) and (31), we get

β
zDq f zð Þð Þ

f zð Þ − 1
����

���� −R
zDq f zð Þð Þ

f zð Þ − 1
� �

<
1 + βð Þ∑∞

n=2 n½ �q − 1
	 


anj j
1 − ∑∞

n=2 anj j :

ð32Þ

If ð/Þðð1 + βÞ∑∞
n=2ð½n�q − 1ÞjanjÞ/ð1 −∑∞

n=2janjÞ < 1 − α,
which is equivalent to inequality (28), then from inequality
(32) we get

β
zDq f zð Þð Þ

f zð Þ − 1
����

���� −R
zDq f zð Þð Þ

f zð Þ − 1
� �

≤ 1 − a, ð33Þ

which is equivalent to inequality (19). Thus, in view of
Definition 1, the function f ∈ Sqðα, βÞ.

Also, we obtain the coefficient bound for f ∈T Sqðα, βÞ
in the following result.

Theorem 7. The function f ∈T belongs to the class T Sq

ðα, βÞ, if and only if

〠
∞

n=2
n½ �q 1 + βð Þ − α + βð Þ

	 

an ≤ 1 − α, ð34Þ

where 0 < q < 1, β ≥ 0, 0 ≤ α < 1, and ½n�q denotes the q
-number.

Proof. Since T is a subclass of class A , therefore in view of
Theorem 6, the sufficient condition of our result holds.
Now, we need to prove only the necessary condition. Let f
∈T Sqðα, βÞ and taking z real, then from inequality (19),
we have

zDq f zð Þð Þ
f zð Þ − α > β

zDq f zð Þð Þ
f zð Þ − 1

����
����: ð35Þ

Now, using equations (7) and (8) in inequality (35), we
get

1 −∑∞
n=2 n½ �qanzn−1

1 − ∑∞
n=2anz

n−1 − α >
∑∞

n=2β n½ �qanzn−1
	 


1 −∑∞
n=2anz

n−1 , ð36Þ

then, letting z→ 1 along the real axis, inequality (36), gives
the condition (34).

The coefficient bound of the class UCVqðα, βÞ is given by
the following result.

Theorem 8. A function f ∈A belongs to the class
UCV qðα, βÞ if

〠
∞

n=2
n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 


anj j ≤ 1 − α, ð37Þ

where 0 < q < 1, β ≥ 0, 0 ≤ α < 1, and ½n�q denotes the
q-number.

Proof. Now, using the fact that −R < ðzÞ ≤ jzj, we have

β
Dq zDqf zð Þ� �

Dqf zð Þ − 1

�����
����� −R

Dq zDqf zð Þ� �
Dqf zð Þ − 1

 !

≤ 1 + βð Þ Dq zDqf zð Þ� �
Dqf zð Þ − 1

�����
�����:

ð38Þ

Using equations (8) and (9) in the right hand side of
inequality (38), we get

1 + βð Þ Dq zDqf zð Þ� �
Dqf zð Þ − 1

�����
����� = 1 + βð Þ

1 +∑∞
n=2 n½ �2qanzn−1

1 +∑∞
n=2 n½ �qanzn−1

− 1

�����
�����:

ð39Þ

Since jzj < 1, therefore, from the above inequality, we get

1 + βð Þ Dq zDqf zð Þ� �
Dqf zð Þ − 1

�����
����� <

1 + βð Þ∑∞
n=2 n½ �2q − n½ �q
	 


anj j
1 −∑∞

n=2 n½ �q anj j :

ð40Þ

Combining inequalities (38) and (40), we get

β
Dq Dqf zð Þ� �
Dqf zð Þ − 1

�����
����� −R

Dq zDqf zð Þ� �
Dqf zð Þ − 1

 !

<
1 + βð Þ∑∞

n=2 n½ �2q − n½ �q
	 


anj j
1 −∑∞

n=2 n½ �q anj j :

ð41Þ

If ðð1 + βÞ∑∞
n=2ð½n�2q − ½n�qÞjanjÞ/ð1 − ∑∞

n=2½n�qjanjÞ < 1 −
α, which is equivalent to inequality (37), then from inequality
(41), we get
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β
Dq zDqf zð Þ� �

Dqf zð Þ − 1

�����
����� −R

Dq Dqf z
� �� �
Dqf zð Þ − 1

 !
≤ 1 − α, ð42Þ

which is equivalent to inequality (20). Thus, in view of
Definition 2, the function f ∈UCV qðα, βÞ.

The coefficient bound for f ∈UCT qðα, βÞ is given by the
following result.

Theorem 9. The function f ∈T belongs to the class
UCT qðα, βÞ if and only if

〠
∞

n=2
n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 


an ≤ 1 − α, ð43Þ

where 0 < q < 1, β ≥ 0, 0 ≤ α < 1, and ½n�q denotes the
q-number.

Proof. Since T is a subclass of class A , therefore, in view of
Theorem 8, the sufficient condition holds. Now, we need to
prove only the necessary condition. Let f belong to the class
UCT qðα, βÞ and taking z real, then from inequality (20), we
have

Dq zDqf zð Þ� �
Dqf zð Þ − α > β

Dq zDqf zð Þ� �
Dqf zð Þ − 1

�����
�����: ð44Þ

Now, using equations (8) and (9) in inequality (44),
we get

1 −∑∞
n=2 n½ �2qanzn−1

1 −∑∞
n=2 n½ �qanzn−1

− α >
∑∞

n=2β n½ �2q − n½ �qanzn−1
	 


1 −∑∞
n=2 n½ �qanzn−1

, ð45Þ

then letting z→ 1 along real axis, inequality (45) gives
condition (43).

We note that, q→ 1− in Theorems 6 and 8, we get the
coefficient bounds for the functions belonging to the classes
SDðα, βÞ and KDðα, βÞ in [20], respectively.

In the next section, we obtain the extreme points for
the functions belonging to the classes T Sqðα, βÞ and
UCT qðα, βÞ.

3. Extreme Points

The extreme points of f ∈T Sqðα, βÞ are given by the follow-
ing result.

Theorem 10. Let f f nðzÞgn∈ℕ be sequences of functions such
that

f1 zð Þ = z,

f n zð Þ = z −
1 − a

n½ �q 1 + βð Þ − a + βð Þ z
n,

  n ≥ 2, 0 < q < 1, β ≥ 0, 0 ≤ α < 1ð Þ,
ð46Þ

where ½n�q denotes the q-number. Then f belongs to T Sqðα,
βÞ if and only if f can be expressed as the form

f zð Þ = 〠
∞

n=1
λn f n zð Þ, ð47Þ

where λn ≥ 0ðn ≥ 1Þ and ∑∞
n=1λn = 1.

Proof. Let f ∈T Sqðα, βÞ, then in view of Theorem 7,
inequality (34) holds. Since an ≥ 0ðn ≥ 1Þ and 0 ≤ α < 1,
therefore from inequality (34), we have

n½ �q 1 + βð Þ − α + βð Þ
	 


an ≤ 1 − α, n ≥ 2: ð48Þ

Thus, if we take

λn
n½ �q 1 + βð Þ − α + βð Þ

1 − α
an, n ≥ 2, ð49Þ

since λ1 ≥ 0, then, λn ≥ 0ðn ≥ 1Þ.
Substitutinganfrom equation (49) withanfrom equation

(7), we get:

f zð Þ = z − 〠
∞

n=2

1 − α

n½ �q 1 + βð Þ − α + βð Þ λnz
n: ð50Þ

Since ∑∞
n=1λn = 1, therefore, we have

f zð Þ = λ1z + 〠
∞

n=2
λnz − 〠

∞

n=2

1 − α

n½ �q 1 + βð Þ − α + βð Þ λnz
n

= λ1z + 〠
∞

n=2
λn z −

1 − α

n½ �q 1 + βð Þ − α + βð Þ z
n

 !
,

ð51Þ

since f1ðzÞ = z and f nðzÞ is given by equation (46). Therefore,
from equation (51), we get the assertion (47). Conversely, let
f be expressible in the form (47), which on using equation
(46), gives

f zð Þ = z − 〠
∞

n=2

1 − α

n½ �q 1 + βð Þ − α + βð Þ λnz
n, ð52Þ
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which can be expressed as follows:

f zð Þ = z − 〠
∞

n=2
ηnz

n, ð53Þ

where

ηn =
1 − α

n½ �q 1 + βð Þ − α + βð Þ λn, n ≥ 2: ð54Þ

Now, to prove that the function f , given by equation (53),
belongs to the class T Sqðα, βÞ, we need to show that the
coefficients ηnðn ≥ 2Þ satisfy the inequality (34).

Since λ1 ≥ 0 and ∑∞
n=1λn = 1, therefore from equation

(54), we have

〠
∞

n=2

n½ �q 1 + βð Þ − α + βð Þ
1 − α

ηn

= 〠
∞

n=2

n½ �q 1 + βð Þ − α + βð Þ
1 − α

1 − α

n½ �q 1 + βð Þ − α + βð Þ λn

= 〠
∞

n=2
λn = 1 − λ1 ≤ 1:

ð55Þ

Thus, we get

〠
∞

n=2
n½ �q 1 + βð Þ − α + βð Þηn ≤ 1 − α

	 

: ð56Þ

Therefore, in view of Theorem 7 and the above inequal-
ity, we proved that the function f , given by equation (53),
belongs to the class T Sqðα, βÞ.

Also, the extreme points of f ∈UCT qðα, βÞ are given by
the following result.

Theorem 11. Let f f nðzÞgn∈ℕ be a sequence of functions such
that

f1 zð Þ = z,

f n = z −
1 − α

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 
 zn, ð57Þ

where n ≥ 2, 0 < q < 1 , β ≥ 0 , and 0 ≤ α < 1. Then, f belongs to
UCT qðα, βÞ if and only if f can be expressed in the form
given by equation (47) in terms of functions f nðn ≥ 2Þ, given
by equation (57), and λn ≥ 0ðn ≥ 1Þ, ∑∞

n=1λn = 1.

Proof. Let f ∈UCT qðα, βÞ, then from inequality (43), we
have

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 
	 


an ≤ 1 − α  n ≥ 2ð Þ: ð58Þ

If we set

λn =
n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 


1 − α
an  n ≥ 2ð Þ, ð59Þ

since λ1 = 1, then λn ≥ 0 ðn ≥ 1Þ. Then, substituting an from
equation (59) with an equation (7), we get

f zð Þ = z − 〠
∞

n=2

1 − α

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 
 λnzn: ð60Þ

Since ∑∞
n=1λn = 1, therefore, we have

f zð Þ = λ1z + 〠
∞

n=2

1 − α

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 
 zn

0
@

1
A, ð61Þ

since f1ðzÞ = z and f nðzÞ is given by equation (57). Therefore,
from equation (61), we get assertion (47).

Conversely, let f be expressible in the form (47), which
on using equation (60), gives

f zð Þ = z − 〠
∞

n=2

1 − α

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 
 λnzn, ð62Þ

which can be expressed as

f zð Þ = z − 〠
∞

n=2
ηnz

n, ð63Þ

where

ηn =
1 − α

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 
 λn, n ≥ 2: ð64Þ

Now, to prove that function f is given by equation (63)
and belongs to the class UCT qðα, βÞ, we need to show that
the coefficient ηnðn ≥ 2Þ satisfies inequality (43). Since λ1 ≥
0 and ∑∞

n=1λn = 1,, therefore from equation (64), we have

〠
∞

n=2

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 


1 − α
ηn = 〠

∞

n=2
λn = 1 − λ1 ≤ 1:

ð65Þ

Thus, we get

〠
∞

n=2
n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 


ηn < 1 − α: ð66Þ

Therefore, in view of Theorem 9 and the above inequal-
ity, we proved that function f , given by equation (63),
belongs to the class ∈UCT qðα, βÞ.
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4. Partial Sums

The sequence of partial sums of the function f ðzÞ ∈A , is
defined as [22].

f k zð Þ = z + 〠
k

n=2
anz

n  k ∈ℕ ; z ∈Uð Þ: ð67Þ

Now, we find the bounds of the real part of the ratio of the
complex valued function f ∈A to its partial sums f k ðk ∈ℕÞ,
for the function to be in the class Sqðα, βÞ in the following
result.

Theorem 12. Let f ðzÞ ∈A in the form (6) and suppose that

〠
∞

n=2
cn anj j ≤ 1, ð68Þ

where

cn
n½ �q 1 + βð Þ + α + βð Þ

1 − α
  n ≥ 2 ; 0 < q < 1, β ≥ 0, 0 ≤ α < 1ð Þ,

ð69Þ

then f ðzÞ ∈ Sqðα, βÞ. Further, the following inequalities hold:

Re
f zð Þ
f k zð Þ

� �
≥ 1 −

1
ck+1

, ð70Þ

Re
f k zð Þ
f zð Þ

� �
≥

ck+1
1 + ck+1

, ð71Þ

where

cn ≥
1, if n = 2, 3,⋯, k,

ck+1, if n = k + 1, k + 2,⋯,

(
ð72Þ

Proof. Since f½n�qgn≥2 is increasing and β ≥ 0, α < 1, there-
fore, in view of equation (69), fcngn≥2 is an increasing
sequence. Then, cn+1 ≥ cn, ∀n and

cn ≥ c2
2½ �q 1 + βð Þ − α + βð Þ

1 + α
≥

1½ �q 1 + βð Þ − α + βð Þ
1 − α

: ð73Þ

Since ½1�q = 1, therefore, we have

cn ≥ 1, ∀n: ð74Þ

Thus, for the particular value k of n, condition (72) holds.
In view of the first inequality of condition (72), we have

〠
k

n=2
anj j + ck+1 〠

∞

n=k+1

anj j ≤ 〠
∞

n=2
cn anj j, ð75Þ

which in view of inequality (68), gives

〠
k

n=2
anj j + ck+1 〠

∞

n=k+1
anj j ≤ 1, ð76Þ

or, equivalently

ck+1 〠
∞

n=k+1
anj j ≤ 1 − 〠

k

n=2
anj j: ð77Þ

Now, for some fixed positive integer k, we define

h1 zð Þ≔ 1 + ck+1 f zð Þ − f k zð Þð Þ
f k zð Þ : ð78Þ

Now, using equations (6) and (67), equation (78) gives

h1 zð Þ = 1 +
ck+1 ∑∞

n=k+1anz
n−1� �

1 +∑k
n=2anz

n−1
: ð79Þ

From equation (79), we have

h1 zð Þ − 1
h1 zð Þ + 1

����
���� = ck+1∑

∞
n=k+1anz

n−1

2 + 2∑k
n=2anz

n−1 + ck+1∑
∞
n=k+1anz

n−1

�����
�����

≤
ck+1∑

∞
n=k+1 anj j

2 − 2∑k
n=2 anj j − ck+1∑

∞
n=k+1 anj j

:

ð80Þ

In view of inequality (77), the above inequality gives
jðh1ðzÞ − 1Þ/ðh1ðzÞ + 1Þj ≤ 1, which implies

Re h1 zð Þð Þ ≥ 0: ð81Þ

Since each cn ∈ℝ, therefore, using equation (79) in
inequality (81), we get assertion (70).

Again, since fcngn≥2 is an increasing function and cn ≥ 1,
∀n ≥ 2, therefore, we have

〠
∞

n=2
anj j ≤ 〠

∞

n=2
cn anj j, ð82Þ

which in view of inequality (68), gives

〠
∞

n=2
anj j ≤ 1: ð83Þ

Now, we define the function h2ðzÞ as follows:

h2 zð Þ = 1 + ck+1ð Þ f k zð Þ
f zð Þ

� �
− ck+1: ð84Þ

Using equations (6) and (67) in equation (84), we get

h2 zð Þ = 1 −
ck+1 + 1ð Þ∑∞

n=k+1anz
n−1

1 +∑∞
n=2anz

n−1 : ð85Þ
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From equation (85), we have

h2 zð Þ − 1
h2 zð Þ + 1

����
���� = − ck+1 + 1ð Þ∑∞

n=k+1anz
n−1

2 + 2∑∞
n=2anz

n−1 − ck+1 + 1ð Þ∑∞
n=k+1anz

n−1

����
����

=
− ck+1 + 1ð Þ∑∞

n=k+1anz
n−1

2 + 2∑k
n=2anz

n−1 + 1 − ck+1ð Þ∑∞
n=k+1anz

n−1

�����
�����

≤
ck+1 + 1ð Þ∑∞

n=k+1 anj j
2 − 2∑k

n=2 anj j − 1 − ck+1ð Þ∑∞
n=k+1 anj j

≤
ck+1 + 1ð Þ∑∞

n=k+1 anj j
2 − 2∑∞

n=2 anj j + ck+1 + 1ð Þ∑∞
n=k+1 anj j ,

ð86Þ

using inequality (83) in inequality (86), we get jðh2ðzÞ − 1Þ/
ðh2ðzÞ + 1Þj ≤ 1, which implies

Re h2 zð Þð Þ ≥ 0: ð87Þ

Therefore, using equation (84) in inequality (87), we get
assertion (71).

Now, we find the bounds of the real part of the ratio of the
complex valued function f ∈A to its partial sums f kðk ∈ℕÞ,
for the function to be in the class UCV qðα, βÞ in the follow-
ing result.

Theorem 13. Let f ðzÞ ∈A be in the form given by equation
(6) and

〠
∞

n=2
sn anj j ≤ 1, ð88Þ

where

sn
n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 


1 − α
  n ≥ 2 ; β ≥ 0, 0 ≤ α < 1, 0 < q < 1ð Þ:

ð89Þ

Then, f ðzÞ ∈UCV qðα, βÞ. Further, the following
inequalities hold:

Re
f zð Þ
f k zð Þ

� �
> 1 −

1
sk+1

, ð90Þ

Re
f k zð Þ
f zð Þ

� �
>

sk+1
1 + sk+1

, ð91Þ

where

sn ≥
1, if n = 2, 3,⋯k,

sk+1, if n = k + 1, k + 2,⋯:

(
ð92Þ

Proof. Using Theorem 6 and following the same steps
involved in the proof of Theorem 12, we get assertion (90)
and (91).

In the next section, we discuss the integral means
inequality for the functions belonging to the classes T Sq

ðα, βÞ and UCT qðα, βÞ.

5. Integral Means Inequality

Silverman [23] has been using the subordination principle to
show that the integral

Ð 2π
0 j f ðre1θÞjσdθ ðσ > 0, 0 < r < 1Þ attains

its maximum value in class T , when f2ðzÞ = z − ðz2/2Þ. Then,
he applied that principle to solve the integral means inequalityÐ 2π
0 j f ðreiθÞjσdθ ≤ Ð 2π0 j f2ðreiθÞj

σ
dθ. Also, he found the integral

means inequality for the classes S∗ðαÞ and KðαÞ with nega-
tive coefficients.

First, we need to mention the following lemma [24].

Lemma 14. If f and g are two analytic functions in U in the
form T and f ≺ g, then

ð2π
0

f reiθ
	 
���

���σdθ ≤
ð2π
0

g reiθ
	 
���

���σdθ, ð93Þ

where σ > 0 , 0 < r < 1, and z = reiθ.

Now, we establish the integral means inequality for the
functions belonging to the class T Sqðα, βÞ.

Theorem 15. Let f be of the form given by equation (7) that
belongs to the class T Sqðα, βÞ and f2ðzÞ be defined as follows:

f2 zð Þ = 1
1 − α

2½ �q 1 + βð Þ − α + βð Þ z, ð94Þ

then, for z = reiθð0 < r < 1Þ, we have
ð2π
0

f zð Þj jσdθ ≤
ð2π
0

f2 zð Þj jσdθ  σ > 0ð Þ: ð95Þ

Proof. We define the function w1ðzÞ as follows:

w1 zð Þ = 〠
∞

n=2

2½ �q 1 + βð Þ − α + βð Þ
1 − α

anz
n−1: ð96Þ

From the above equation, we have

w1 0ð Þ = 0: ð97Þ

Again, from equation (96), we have

w1 zð Þj j = 〠
∞

n=2

2½ �q 1 + βð Þ − α + βð Þ
1 − α

anz
n−1

≤ 〠
∞

n=2

2½ �q 1 + βð Þ − α + βð Þ
1 − α

an zj jn−1,
ð98Þ

since z = reiθð0 < r < 1Þ implies jzj = jrj < 1, and using
inequality (37), therefore, from the above inequality, we have
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w1j j ≤ 〠
∞

n=2

n½ �q 1 + βð Þ − α + βð Þ
1 − α

an ≤ 1: ð99Þ

From equation (96), we have

1 − 〠
∞

n=2
anz

n−1 = 1 −
1 − α

2½ �q 1 + βð Þ − α + βð Þw1 zð Þ: ð100Þ

Since w1 is analytic in U, therefore in view of equations
(18), (96), (97), and (100); inequality (99); and the subordi-
nation principle, we have

1 − 〠
∞

n=2
anz

n−1 ≺ 1 −
1 − α

2½ �q 1 + βð Þ − α + βð Þ z: ð101Þ

Since, the function on the both sides of the above relation
are analytic in U, therefore, in view of Lemma 14 and equa-
tion (94), we get assertion (95).

Next, we establish the integral means inequality for
the functions belonging to the class UCT qðα, βÞ with the
positive coefficients.

Theorem 16. Let f belong to the class UCT qðα, βÞ and f3ðzÞ
is defined by

f3 zð Þ = 1 −
1 − α

2½ �q 2½ �q 1 + βð Þ − α + βð Þ
	 
 z, ð102Þ

then, for z = reiθð0 < r < 1Þ, we have
ð2π
0

f zð Þj jσdθ ≤
ð2π
0

f3 zð Þj jσdθ  σ > 0ð Þ: ð103Þ

Proof. We define the function w2ðzÞ as follows:

w2 zð Þ = 〠
∞

n=2

2½ �q 2½ �q 1 + βð Þ − α + βð Þ
	 


1 − α
anz

n−1: ð104Þ

From the above equation, we have

w2 0ð Þ = 0: ð105Þ

Again, from equation (104), we have

w2 zð Þj j = 〠
∞

n=2

2½ �q 2½ �q 1 + βð Þ − α + βð Þ
	 


1 − α
anz

n−1

������

������

≤ 〠
∞

n=2

2½ �q 2½ �q 1 + βð Þ − α + βð Þ
	 


1 − α
an zj jn−1,

ð106Þ

since z = reiθ, then jzj = jrj < 1 and using inequality (103),
therefore, from the above inequality, we have

w2 zð Þj j ≤ 〠
∞

n=2

n½ �q n½ �q 1 + βð Þ − α + βð Þ
	 


1 − α
an < 1: ð107Þ

From equation (104), we have

1 − 〠
∞

n=2
anz

n−1 = 1 −
1 − α

2½ �q 2½ �q 1 + βð Þ − α + βð Þ
	 
w2 zð Þ:

ð108Þ

Since w2 is analytic in U, therefore, in view of equations
(18), (104), (105), (108); inequality (107); and the subordina-
tion principle, we have

1 − 〠
∞

n=2
anz

n−1 ≺ −
1 − α

2½ �q 2½ �q 1 + βð Þ − α + βð Þ
	 
 z: ð109Þ

Since, the function on the both sides of the above relation
are analytic in U, therefore, in view of Lemma 14 and equa-
tion (102), we get assertion (103).
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In this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative
function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2
-analogues of the Ostrowski-type integral inequalities on coordinates. Different features and properties of excitement for
quantum calculus have been examined through a systematic way. We are discussing about the suggestions and different results
of the quantum inequalities of the Ostrowski-type by inferring a new identity for q1q2-differentiable function. However, the
problem has been proven to utilize the obtained identity, we give q1q2-analogues of the Ostrowski-type integrals inequalities
which are connected with the n-polynomial preinvex functions on coordinates. Our results are the generalizations of the results
in earlier papers.

1. Introduction

Calculus is an imperative study of the derivatives and inte-
grals. The classical derivative was convoluted with the
strength regulation kind kernel, and eventually, this gave
upward thrust to new calculus referred to as the quantum cal-
culus. In mathematics, quantum calculus (named q-calculus)
is the study of calculus without limits. The interest in this
subject has exploded, and the q-calculus has in the last twenty
years served as a bridge between mathematics and physics.
The q -calculus has numerous applications in various fields
of mathematics, for example, dynamical systems, number
theory, combinatorics, special functions, fractals, and also
for scientific problems in some applied areas such as com-
puter science, quantum mechanics, and quantum physics.

Jackson [1] defined the q-analogue of derivative and integral
operator as well as provided some of their applications. It is
imperative to mention that quantum integral inequalities
are more practical and informative than their classical coun-
terparts. It has been mainly due to the fact that quantum inte-
gral inequalities can describe the hereditary properties of the
processes and phenomena under investigation. Historically,
the subject of quantum calculus can be traced back to Euler
and Jacobi, but in recent decades, it has experienced a rapid
development. As a result, new generalizations of the classical
concepts of quantum calculus have been initiated and
reviewed in many literature. Tariboon and Ntouyas [2, 3]
proposed the quantum calculus concepts on finite intervals
and obtained several q-analogues of classical mathematical
objects, which inspired many other researchers to study the
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subject in depth, and as a consequence, numerous novel
results concerning quantum analogues of classical mathe-
matical results have been launched. Noor et al. [4] obtained
new q-analogues of inequality utilizing the first-order q-dif-
ferentiable convex function.

Inequality plays an irreplaceable role in the development
of mathematics. Very recently, many new inequalities such as
the Hermite-Hadamard-type inequality [5–9], Petrović-type
inequality [10], Pólya-Szegö and Ćebyšev-type inequalities
[11], Ostrowski-type inequality [12], reverse Minkowski
inequality [13], Jensen-type inequality [14–16], Bessel func-
tion inequality [17], trigonometric and hyperbolic functions
inequalities [18], fractional integral inequality [19–22], com-
plete and generalized elliptic integrals inequalities [23–28],
generalized convex function inequality [29–31], and mean
values inequality [32–34] have been discovered by many
researchers. While the concept of classical convexity has been
brought into a streamline by mathematical inequalities [35–
50]. In fact, convex function and its connection with mathe-
matical inequalities have wide applications in the estimation
of some parameters in scientific observations and calcula-
tions [51–65]. In recent years, the classical concept of con-
vexity has been extended and generalized in different
directions, one of the important generalization of convexity
is the invexity, which was studied by Hanson [66]; this work
has greatly expanded the role of invexity in optimization. In
[67, 68], the authors introduced a class of functions, which
is called preinvexity as a generalization of convex functions.

Now, we recall the classical and well-known Hermite-
Hadamard inequality [69], which can be stated as

Φ
ξ1 + ξ2

2

� �
≤

1
ξ2 − ξ1

ðξ2
ξ1

Φ γð Þdγ ≤ Φ ξ1ð Þ + ϕ ξ2ð Þ
2 , ð1Þ

for all ξ1, ξ2 ∈ I if Φ : I ⟶ℝ is a convex function.
Ostrowski [70] established an integral inequality for con-

tinuous and differentiable function as follows.

Theorem 1 (See [70]). Let Φ : ½ξ1, ξ2�⟶ℝ be continuous
and differentiable on ðξ1, ξ2Þ such that jΦ′ðγÞj ≤M for all γ
∈ ðξ1, ξ2Þ. Then, one has

Φ ϱð Þ − 1
ξ2 − ξ1

ðξ2
ξ1

Φ γð Þdγ
�����

����� ≤ 1
4
+ ϱ − ξ1 + ξ2/2ð Þ2

ξ2 − ξ1ð Þ2
" #

ξ2 − ξ1ð ÞM,

ð2Þ

for all ϱ ∈ ½ξ1, ξ2� with the best possible constant 1/4.
The inequality (2) can be described in an identical kind as

Φ ϱð Þ − 1
ξ2 − ξ1

ðξ2
ξ1

Φ γð Þdγ
�����

����� ≤ M
ξ2 − ξ1

ϱ − ξ1ð Þ2 + ϱð Þ2
2

" #
:

ð3Þ

Latif et al. [71] generalized the Ostrowski inequality (2) to
the coordinated convex function by establishing an identity
as follows.

Theorem 2 (See [71]). Let ξ1 < ξ2, ξ3 < ξ4 and Φ : ½ξ1, ξ2�
× ½ξ3, ξ4�⟶ℝ be continuous and differentiable on ðξ1, ξ2Þ
× ðξ3, ξ4Þ such that ∂2Φ/∂z∂w ∈ Lð½ξ1, ξ2� × ½ξ3, ξ4�Þ.

Then the identity

Φ ϱ, ρð Þ + 1
ξ2 − ξ1ð Þ ξ4 − ξ3ð Þ

ðξ2
ξ1

ðξ4
ξ3

Φ u, vð Þdudv − y

= ϱ − ξ1ð Þ2 ρ − ξ3ð Þ2
ξ2 − ξ1ð Þ ξ4 − ξ3ð Þ

ð1
0

ð1
0
zw

∂2

∂z∂w
Φ

� zϱ + 1 − zð Þξ1,wρ + 1 −wð Þξ3ð Þdzdw

−
ϱ − ξ1ð Þ2 ξ4 − ρð Þ2
ξ2 − ξ1ð Þ ξ4 − ξ3ð Þ

ð1
0

ð1
0
zw

∂2

∂z∂w
Φ

� zϱ + 1 − zð Þξ1,wρ + 1 −wð Þξ4ð Þdzdw

−
ξ2 − ϱð Þ2 ρ − ξ3ð Þ2
ξ2 − ξ1ð Þ ξ4 − ξ3ð Þ

ð1
0

ð1
0
zw

∂2

∂z∂w
Φ

� zϱ + 1 − zð Þξ2,wρ + 1 −wð Þξ3ð Þdzdw

+ ξ2 − ϱð Þ2 ξ4 − ρð Þ2
ξ2 − ξ1ð Þ ξ4 − ξ3ð Þ

ð1
0

ð1
0
zw

∂2

∂z∂w
Φ

� zϱ + 1 − zð Þξ2,wρ + 1 −wð Þξ4ð Þdzdw,

ð4Þ

holds for all ðϱ, ρÞ ∈ ½ξ1, ξ2� × ½ξ3, ξ4�, where

y = 1
ξ4 − ξ3

ðξ4
ξ3

Φ ϱ, vð Þdv + 1
ξ2 − ξ1

ðξ2
ξ1

Φ u, ρð Þdu: ð5Þ

Noor et al. [4] presented the Ostrowski-type inequality for
quantum calculus.

Theorem 3 (See [4]). Let q ∈ ð0, 1Þ, ξ1 < ξ2 and Φ½ξ1, ξ2�
⟶ℝ be continuous such that ξ1

D
q
Φ is integrable on ðξ1,

ξ2Þ. Then

Φ ϱð Þ − 1
ξ2 − ξ1

ðξ2
ξ1

Φ uð Þξ1dqu =
q ϱ − ξ1ð Þ2
ξ2 − ξ1

ð1
0
zξ1DqΦ

� 1 − zð Þξ1 + zϱð Þ0dqz +
q ξ2 − ϱð Þ2
ξ2 − ξ1

ð1
0
zξ1DqΦ

� 1 − zð Þξ2 + zϱð Þ0dqz:

ð6Þ

The following quantum integral version of the Hermite-
Hadamard-type inequality for the coordinated convex func-
tion was proved by Alp and Sarıkaya [72].

Theorem 4 (See [72]). Let q1, q2 ∈ ð0, 1Þ, ξ1 < ξ2, ξ3 < ξ4 and
Φ : N = ½ξ1, ξ2� × ½ξ3, ξ4�⟶ℝ be a coordinated convex
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function on N . Then one has

Φ
q1ξ1 + ξ2
1 + q1

, q2ξ3 + ξ4
1 + q2

� �

≤
1
2

1
ξ2 − ξ1

ðξ2
ξ1

Φ z, q2ξ3 + ξ4
1 + q2

� �
ξ1dq1z

"

+ 1
ξ3 − ξ4

ðξ4
ξ3

Φ
q1ξ1 + ξ2
1 + q1

,w
� �

ξ3
d
q2
w

#

≤
1

ξ1 − ξ2ð Þ ξ3 − ξ4ð Þ
ðξ2
ξ1

ðξ4
ξ3

Φ z,wð Þξ1dq1zξ3dq2w

≤
1
4

1
1 + q1ð Þ ξ2 − ξ1ð Þ q2

ðξ2
ξ1

Φ z, ξ3ð Þξ1dq1z +
ðξ2
ξ1

Φ z, ξ4ð Þξ1dq1z
 !"

+ 1
1 + q2ð Þ ξ3 − ξ4ð Þ q1

ðξ3
ξ3

Φ ξ1,wð Þξ3dq2w +
ðξ4
ξ3

Φ ξ2,wð Þξ3dq2w
 !#

≤
q1q2Φ ξ1, ξ3ð Þ + q2Φ ξ2, ξ3ð Þ + q1Φ ξ1, ξ4ð Þ +Φ ξ2, ξ4ð Þ

1 + q1ð Þ 1 + q2ð Þ :

ð7Þ

Kalsoom et al. [73] found the quantum integral inequality
for two parameters function on the finite rectangle.

Next, we present the definitions of q1q2-derivative and
integral, and their two known results.

Definition 5. Let q1, q2 ∈ ð0, 1Þ, ξ1 < ξ2, ξ3 < ξ4 and Φ : ½ξ1, ξ2
� × ½ξ3, ξ4�⟶ℝ be a continuous function. Then, the
partially q1-derivative, q2-derivative, and q1q2-derivative at
ðz,wÞ ∈ ½ξ1, ξ2� × ½ξ3, ξ4� for the function Φ are defined by

ξ1
∂q1Φ z,wð Þ
ξ1
∂q1z

= Φ z,wð Þ −Φ q1z + 1 − q1ð Þξ1,wð Þ
1 − q1ð Þ z − ξ1ð Þ z ≠ ξ1ð Þ,

ξ3
∂q2Φ z,wð Þ
ξ3
∂q2w

= Φ z,wð Þ −Φ z, q2w + 1 − q2ð Þξ3ð Þ
1 − q2ð Þ w − ξ3ð Þ w ≠ ξ3ð Þ,

ξ1,ξ3∂
2
q1,q2Φ z,wð Þ

ξ1
∂q1zξ3∂q2w

= 1
1 − q1ð Þ 1 − q2ð Þ z − ξ1ð Þ w − ξ3ð Þ
× Φ q1z + 1 − q1ð Þξ1, q2w + 1 − q2ð Þξ3ð Þ½
−Φ q1z + 1 − q1ð Þξ1,wð Þ
−Φ z, q2w + 1 − q2ð Þξ3ð Þ +Φ z,wð Þ�

  z ≠ ξ1,w ≠ ξ3ð Þ,
ð8Þ

respectively. The function Φ is said to be partially q1-, q2-,
and q1q2-differentiable on ½ξ1, ξ2� × ½ξ3, ξ4� if ξ1

∂q1Φðz,wÞ/ξ1
∂q1z, ξ3∂q2Φðz,wÞ/ξ3∂q2w, and ξ1,ξ3∂

2
q1,q2Φðz,wÞ/ξ1∂q1zξ3∂q2w

exist for all ðz,wÞ ∈ ½ξ1, ξ2� × ½ξ3, ξ4�.

Definition 6. Let q1, q2 ∈ ð0, 1Þ, ξ1 < ξ2, ξ3 < ξ4 and Φ : ½ξ1, ξ2
� × ½ξ3, ξ4�⟶ℝ be a continuous function. Then the q1q2

-integral of the function Φ on ½ξ1, ξ2� × ½ξ3, ξ4� is defined by

ðt
ξ3

ðs
ξ1

Φ z,wð Þξ1dq1zξ3dq2w = 1 − q1ð Þ 1 − q2ð Þ s − ξ1ð Þ t − ξ3ð Þ

× 〠
∞

m=0
〠
∞

n=0
qn1q

m
2 Φ qn1s + 1 − qn1ð Þξ1, qm2 t + 1 − qm2ð Þξ3ð Þ

× 〠
∞

m=0
〠
∞

n=0
qn1q

m
2 Φ qn1s + 1 − qn1ð Þξ1, qm2 t + 1 − qm2ð Þξ3ð Þ,

ð9Þ

for ðs, tÞ ∈ ½ξ1, ξ2� × ½ξ3, ξ4�.

Theorem 7. Let ξ1 < ξ2, ξ3 < ξ4 and Φ : ½ξ1, ξ2� × ½ξ3, ξ4�⟶
ℝ be a continuous function. Then, we have the identities

ξ1,ξ3
∂2q1,q2

ξ1
∂q1 sξ3∂q2 t

ðt
ξ4

ðs
ξ1

Φ z,wð Þξ1dq1zξ3dq2w =Φ s, tð Þ,

ðt
ξ3

ðs
ξ1

ξ1 ,ξ3∂
2
q1,q2

Φ z,wð Þ
ξ1
∂q1zξ3∂q2w

ξ1dq1zξ3dq2w =Φ s, tð Þ,

ðt
t1

ðs
s1

ξ1,ξ3
∂2q1,q2Φ z,wð Þ

ξ1
∂q1zξ3∂q2w

ξ1dq1zξ3dq2w =Φ s, tð Þ −Φ s, t1ð Þ

−Φ s1, tð Þ +Φ s1, t1ð Þ,
ð10Þ

for ðs1, t1Þ ∈ ðξ1, sÞ × ðξ4, tÞ.

Theorem 8. Let a ∈ℝ, ξ1 < ξ2, <ξ3 < ξ4 and Φ1,Φ2 : ½ξ1, ξ2�
× ½ξ3, ξ4�⟶R be continuous functions. Then, the identities

ðt
ξ3

ðs
ξ1

Φ1 z,wð Þ +Φ2 z,wð Þ½ �ξ1dq1zξ4dq2w

=
ðt
ξ3

ðs
ξ1

Φ1 z,wð Þξ1dq1zξ3dq2w +
ðt
ξ3

ðs
ξ1

Φ2 z,wð Þξ1dq1zξ3dq2w,ðt
ξ3

ðs
ξ1

aΦ z,wð Þξ1dq1zξ3dq2w = a
ðt
ξ3

ðs
ξ1

Φ z,wð Þξ1dq1zξ3dq2w,

ð11Þ

holds for ðs, tÞ ∈ ½ξ1, ξ2� × ½ξ3, ξ4�.

Very recently, Toplu et al. [74] improved the Hermite-
Hadamard inequality (1) by investigating the n-polynomial
convexity. The main purpose of the article is to introduce
the notion of n-polynomial preinvex function, provide a
new generalized quantum integral identity, establish new
quantum analogues of Ostrowski-type inequalities for the n
-polynomial preinvex function on coordinates, and general-
ize and unify the previous known results.
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2. Discussions and Main Results

In the beginning of this section, we introduce the definition
of n-polynomial prevexity.

Definition 9 (See [75]). Let ηð⋅ , ⋅ Þ: ℝn ×ℝn ⟶ℝn be a con-
tinuous bi-function. Then, Ωη ⊂ℝn is said to be invex if

ξ1 + γη ξ2, ξ1ð Þ ∈Ωη, ð12Þ

for all ξ1, ξ2 ∈Ωη and γ ∈ ½0, 1�.

Definition 10 (See [67]). The function Φ : Ωη ⊂ℝn ⟶ℝ is
said to be preinvex if

Φ ξ1 + γη ξ2, ξ1ð Þð Þ ≤ 1 − γð ÞΦ ξ1ð Þ + γΦ ξ2ð Þ, ð13Þ

for all ξ1, ξ2 ∈Ωη and γ ∈ ½0, 1�.

Definition 11. Let n ∈ℕ. Then, the nonnegative function
Φ : Ωη ⊂ℝn ⟶ℝ is said to be n-polynomial preinvex if

Φ ξ1 + γη ξ2, ξ1ð Þð Þ ≤ 1
n
〠
n

p=1
1 − 1 − γð Þp� �

Φ ξ1ð Þ

+ 1
n
〠
n

p=1
1 − 1 − γpð Þ½ �Φ ξ2ð Þ,

ð14Þ

for all ξ1, ξ2 ∈Ωη and γ ∈ ½0, 1�.
Note that if n = 1, then the definition of n-polynomial pre-

invex function reduce to the definition of preinvex function.
If we take n = 2, then we have 2-polynomial preinvex

function inequality

Φ ξ1 + γη ξ2, ξ1ð Þð Þ ≤ 3γ − γ2

2 Φ ξ1ð Þ + 1 − γ − γ2

2 Φ ξ2ð Þ:
ð15Þ

Proposition 12. Let ξ2 > 0 and Φα : ½ξ1, ξ1 + ηðξ2, ξ1Þ�⟶ℝ
be an arbitrary family of n -polynomial preinvex functions and
ΦðξÞ = supαΦαðξÞ. If Jη = fu ∈ ½ξ1, ξ1 + ηðξ2, ξ1Þ�: ΦðuÞ < 1g
is nonempty, then Jη is an interval and Φ is an n-polynomial
preinvex function on Jη.

Proof. Let γ ∈ ½0, 1� and ξ1, ξ1 + ηðξ2, ξ1Þ ∈ Jη. Then, we have

Φ ξ1 + γη ξ2, ξ1ð Þð Þ = sup
α
Φα ξ1 + γη ξ2, ξ1ð Þð Þ

≤ sup
α

1
n
〠
n

p=1
1 − 1 − γð Þp� �

Φα ξ1ð Þ + 1
n
〠
n

p=1
1 − γ½ �pΦα ξ2ð Þ

" #

≤
1
n
〠
n

p=1
1 − 1 − γð Þp� �

sup
α

Φα ξ1ð Þ + 1
n
〠
n

p=1
1 − γð Þp sup

α
Φα ξ2ð Þ

≤
1
n
〠
n

p=1
1 − 1 − γð Þp� �

Φ ξ1ð Þ + 1
n
〠
n

p=1
1 − γð ÞpΦ ξ2ð Þ <∞:

ð16Þ

This completes the proof.

In order to establish new quantum analogues of the
Ostrowski-type inequalities on coordinates for the n-poly-
nomial preinvex function, we need a key lemma, which we
present in this section.

Lemma 13. Let q1, q2 ∈ ð0, 1Þ, ξ1 < ξ2, ξ3 < ξ4,N = ½ξ1, ξ2� ×
½ξ3, ξ4�,N ∘, be the interior of N , and Φ : N ⟶ℝ be
mixed partial q1q2-differentiable on N ° such that jðξ1 ,ξ3∂2q1 ,q2
/ξ1∂q1zξ3∂q2wÞΦj is continuous and integrable on ½ξ1, ξ1 + η1
ðξ2, ξ1Þ� × ½ξ3, ξ3 + η2ðξ4, ξ3Þ� ⊂N ° for η1ðξ2, ξ1Þ, η2ðξ4, ξ3Þ
> 0. Then, we have the identity

Ωq1q2
ξ1, ξ2, ξ3, ξ4ð Þ Φð Þ = −

q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

×
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

−
q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ξ4, ρð Þ½ �2

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

×
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ0dq1z0dq2w

−
q1q2 η1 ξ2, ϱð Þ½ �2 η2 ρ, ξ3ð Þ½ �2

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

×
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

−
q1q2 η1 ξ2, ϱð Þ½ �2 η2 ξ4, ρð Þ½ �2

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

×
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ0dq1z0dq2w,

ð17Þ
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where

Proof. Considering

−
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

−
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ0dq1z0dq2w

−
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

−
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ0dq1z0dq2w,

ð19Þ

it follows from the definitions of partial q1q2-derivative and
q1q2-integral that

ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

= 1
1 − q1ð Þ 1 − q2ð Þη1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ ×

ð1
0

ð1
0
Φ ξ1 + zq1η1 ϱ, ξ1ð Þ, ξ3ð

�

+wq2η2 ρ, ξ2ð ÞÞ0dq1z0dq2w −
ð1
0

ð1
0
Φ ξ1 + zq1η1 ϱ, ξ1ð Þ, ξ3ð

+wη2 ρ, ξ3ð ÞÞ0dq1z0dq2w −
ð1
0

ð1
0
Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wq2η2 ρ, ξ3ð Þð Þ0dq1z0dq2w

+
ð1
0

ð1
0
Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

�
= 1
η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ

× 〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn+11 η1 ϱ, ξ1ð Þ, ξ3 + qm+1

2 η2 ρ, ξ3ð Þ
 "

− 〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn+11 η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þ	 
!

− 〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm+1

2 η2 ρ, ξ3ð Þ	 


+ 〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn+11 η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þ	 
�

= 1
q1q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠

∞

n=1
〠
∞

m=1
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ

−
1

q1η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠
∞

n=1
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ

−
1

q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠
∞

n=0
〠
∞

m=1
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ

+ 1
η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠

∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ: ð20Þ

Note that

1
q1q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠

∞

n=1
〠
∞

m=1
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ

= −
Φ ϱ, ρð Þ

q1q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ −
1

q1q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠
∞

n=0
qnΦ ξ1 + qn1η1 ϱ, ξ1ð Þ, ρð Þ

−
1

q1q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ 〠
∞

m=0
qm2 ϱ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ − 1

q1q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ

× 〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ,

ð21Þ
−

1
q1η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠

∞

n=1
〠
∞

m=1
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ

= 1
q1η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ 〠

∞

m=0
qm2 Φ ϱ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ − 1

q1η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ

× 〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ,

ð22Þ

Ωq1q2
ξ1, ξ2, ξ3, ξ4ð Þ Φð Þ =Φ ϱ, ρð Þ

+ 1
η2 ξ4, ξ3ð Þ

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v +
ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ ϱ, vð Þ0dq2v
" #

+ 1
η1 ξ2, ξ1ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1v
" #

−Q,

Q = 1
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ u, vð Þ0dq1u0dq2v

+ 1
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ u, vð Þ0dq1u0dq2v

+ 1
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ðξ2+η1 ϱ,ξ2ð Þ

ξ2

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ u, vð Þ0dq1u0dq2v

+ 1
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ðξ2+η1 ϱ,ξ2ð Þ

ξ2

ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ u, vð Þ0dq1u0dq2v:

ð18Þ
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−
1

q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠
∞

n=0
〠
∞

m=1
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ

= 1
q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ〠

∞

n=0
qn1Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ρð Þ − 1

q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ

× 〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3 + qm2 η2 ρ, ξ3ð Þð Þ:

ð23Þ
From (20)–(23) we get

ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

= −
Φ ϱ, ρð Þ

q2q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ −
1 − q2ð Þη2 ρ, ξ3ð Þ

q1q2η1 ϱ, ξ1ð Þ η2 ρ, ξ3ð Þ½ �2
〠
∞

m=0
qm2 ϱ, ξ3ð

+ qm2 η2 ρ, ξ3ð ÞÞ − 1 − q1ð Þη1 ϱ, ξ1ð Þ
q1q2 η1 ϱ, ξ1ð Þ½ �2η2 ρ, ξ3ð Þ

〠
∞

n=0
qn2Φ ξ1 + qm1 η1 ϱ, ξ1ð Þ, ρð Þ

+ 1 − q1ð Þ 1 − q2ð Þη1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ
q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2

〠
∞

n=0
〠
∞

m=0
qn1q

m
2 Φ ξ1 + qn1η1 ϱ, ξ1ð Þ, ξ3ð

+ qm2 η2 ρ, ξ3ð ÞÞ,
ð24Þ

ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

= −
Φ ϱ, ρð Þ

q1q2η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ −
Φ ϱ, ρð Þ

q1q2η1 ϱ, ξ1ð Þ η2 ρ, ξ3ð Þ½ �2
ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v

−
1

q1q2 η1 ϱ, ξ1ð Þ½ �2η2 ρ, ξ3ð Þ

ðξ3+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1v

+ 1
q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2

ðξ2+η1 ϱ,ξ2ð Þ

ξ1

ðξ3+η2 ϱ,ξ3ð Þ

ξ3

Φ u, vð Þ0dq1u0dq2v:

ð25Þ

Multiplying both sides of equality (25) by

q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ , ð26Þ

leads to

Similarly, we have

q1q2 η1 ϱ, ξ1ð Þ½ �2 η1 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

∂2q1,q2
ξ1∂q1zξ3∂q2w

×Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

= −
η1 ϱ, ξ1ð Þη2 ρ, ξ3ð Þ
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð ÞΦ ϱ, ρð Þ − η1 ϱ, ξ1ð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v

−
η2 ρ, ξ3ð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
1

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ u, vð Þ0dq1u0dq2v:

ð27Þ

q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ξ4, ρð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

∂2q1,q2
ξ1∂q1

zξ3∂q2w
×Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 + zη2 ρ, ξ4ð Þð Þ0dq1z0dq2w

= −
η1 ϱ, ξ1ð Þη2 ξ4, ρð Þ
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð ÞΦ ϱ, ρð Þ − η1 ϱ, ξ1ð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ ϱ, vð Þ0dq2v

+ η2 ξ4, ρð Þ
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
1

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ1+η1 ϱ,ξ1ð Þ

ξ1

ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ u, vð Þ0dq1u0dq2v,

� q1q2 η1 ξ2, ϱð Þ½ �2 η2 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

∂2q1,q2
ξ1∂q1

zξ3∂q2w
×Φ ξ2 + zη1 ϱ, ξ2ð Þ +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

= −
η1 ξ2, ϱð Þη2 ρ, ξ3ð Þ
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð ÞΦ ϱ, ρð Þ − η1 ξ2, ϱð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v

−
η2 ρ, ξ3ð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ2+η1 ρ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u +
1

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ u, vð Þ0dq1u0dq2v,

ð28Þ
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Therefore, Lemma 13 follows from (19), (27), (28), (29),
and (30).

Theorem 14. Let q1, q2 ∈ ð0, 1Þ, ξ1 < ξ2, ξ3 < ξ4,Φ : N ⊆
ℝ2 ⟶ℝ be mixed partial q1q2 differentiable on N° (the
interior of N ) such that its mixed partial q1q2-deriva-
tives is continuous and integrable on ½ξ1, ξ1 + η1ðξ2, ξ1Þ�
× ½ξ3, ξ3 + η2ðξ4, ξ3Þ� ⊂N ∘ for η1ðξ2, ξ1Þ, η2ðξ4, ξ3Þ > 0. If j
ðξ1, ξ3∂2q1 ,q2 /ξ1∂q1zξ3∂q2wÞΦj is an n-polynomial preinvex
function on the coordinates on ½ξ1, ξ1 + η1ðξ2, ξ1Þ� × ½ξ3, ξ3
+ η2ðξ4, ξ3Þ� and jðξ1, ξ3∂2q1 ,q2 /ξ1∂q1zξ3∂q2wÞΦðϱ, ρÞj ≤M
for ϱ, ρ ∈N , then we have

Φ ϱ, ρð Þ + 1
η2 ξ4, ξ1ð Þ

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v +
ðξ3+η2 ρ,ξ3ð Þ

ξ4

Φ ϱ, vð Þ0dq2v
" #�����

+ 1
η1 ξ2, ξ1ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
ðξ2 ,η1 ϱ,ξ3ð Þ

ξ2

Φ u, ρð Þ0dq1u
" #

−Q

�����
≤ q1q2M Aq1

+Bq1

� �
Aq2

+Bq2

� � η1 ϱ, ξ1ð Þ½ �2 + η1 ξ2, ϱð Þ½ �2
η1 ξ2, ξ1ð Þ

" #

× η2 ρ, ξ3ð Þ½ �2 + η2 ξ4, ρð Þ½ �2
η2 ξ4, ξ3ð Þ

" #
,

ð31Þ

where Q is defined in Lemma 13.

Proof. It follows from (19) and the properties of the n
-polynomial preinvexity function of the function jð∂2q1,q2 /
ξ1∂q1zξ3∂q2wÞΦj on coordinates that

q1q2 η1 ξ2, ϱð Þ½ �2 η2 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

∂2q1,q2
ξ1∂q1

zξ3∂q2w
×Φ ξ2 + zη1 ϱ, ξ2ð Þ +wη2 ρ, ξ3ð Þð Þ0dq1z0dq2w

= −
η1 ξ2, ϱð Þη2 ρ, ξ3ð Þ
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð ÞΦ ϱ, ρð Þ − η1 ξ2, ϱð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v

−
η2 ρ, ξ3ð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ2+η1 ρ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u +
1

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ u, vð Þ0dq1u0dq2v,

ð29Þ

q1q2 η1 ξ2, ϱð Þ½ �2 ξ4, ρð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

∂2q1,q2
ξ1∂q1

zξ3∂q2w
×Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ0dq1z0dq2w

= −
η1 ξ2, ϱð Þη2 ξ4, ρð Þ
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð ÞΦ ϱ, ρð Þ − η1 ξ2, ϱð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ ϱ, vð Þ0dq2v

−
η2 ξ4, ρð Þ

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u +
1

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ u, vð Þ0dq1u0dq2v:

ð30Þ

Φ ϱ, ρð Þ + 1
η2 ξ4ξ3ð Þ

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, ρð Þ0dq2v +
ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ ϱ, ρð Þ0dq2v
" #

+ 1
η1 ξ2ξ1ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u
" #

−Q

�����
�����

≤
q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2

η1 ξ2ξ1ð Þη2 ξ4ξ3ð Þ
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����0dq1z0dq2w

�����
+ q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ξ4, ρð Þ½ �2

η1 ξ2ξ1ð Þη2 ξ4ξ3ð Þ
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����0dq1z0dq2w
+ q1q2 η1 ξ2, ϱð Þ½ �2 η2 ρ, ξ3ð Þ½ �2

η1 ξ2ξ1ð Þη2 ξ4ξ3ð Þ
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����0dq1z0dq2w
+ q1q2 η1 ξ2, ϱð Þ½ �2 η2 ξ4, ρð Þ½ �2

η1 ξ2ξ1ð Þη2 ξ4ξ3ð Þ
ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����0dq1z0dq2w:

ð32Þ
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Considering the first integral

ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����0dq1z0dq2w
≤
ð1
0
w
ð1
0
z

1
n
〠
n

p=1
1 − 1 − zð Þp� � ξ1,ξ3∂

2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ϱ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
"(

+ 1
n
〠
n

p=1
1 − zp½ � ξ1,ξ3∂

2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
#
0dq1z

)
:0dq2w,

ð33Þ

in view of the Definition 6 for k = 1, 2, we get

Aqk =
1
n
〠
n

p=1

ð1
0
z 1 − 1 − zð Þp� �

0dqkz =
1

1 + qk
−

1 − qkð Þ
n

〠
n

p=1
〠
∞

e=0
q2ek 1 − qekð Þp,

Bqk =
1
n
〠
n

p=1

ð1
0
z 1 − zp½ �0dqkz =

1
1 + qk

−
1
n
〠
n

p=1

1 − qk
1 − qp+2k

:

ð34Þ

From (33) and computing the q1-integral, we get

ð1
0

ð1
0
zw

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����0dq1z0dq2w

≤
ð1
0
w

Aq1

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ϱ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
+Bq1

ξ1,ξ3∂
2
q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����

2
6666664

3
77777750dq2w:

ð35Þ

Computing the q2-integral and utilizing the fact jðξ1,ξ3
∂2q1,q2 /ξ1∂q1z∂q2wÞΦðϱ, ρÞj ≤M for ϱ, ρ ∈N , inequality (35)
leads to the conclusion that

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1z∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����0dq1z0dq2w
≤M Aq1

+Bq1

� �
Aq2

+Bq2

� �
:

ð36Þ

Analogously, we also have

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����0dq1z0dq2w
≤M Aq1

+Bq1

� �
Aq2

+Bq2

� �
,

ð37Þ

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����0dq1z0dq2w
≤M Aq1

+Bq1

� �
Aq2

+Bq2

� �
,

ð38Þ
ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����0dq1z0dq2w
≤M Aq1

+Bq1

� �
Aq2

+Bq2

� �
:

ð39Þ
Making use of the inequalities (36), (37), (38), and (39)

and the fact that

η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2 + η1 ϱ, ξ1ð Þ½ �2 η2 ξ4, ρð Þ½ �2
+ η1 ξ2, ϱð Þ½ �2 η2 ρ, ξ3ð Þ½ �2 + η1 ξ2, ϱð Þ½ �2 η2 ξ4, ρð Þ½ �2

= η1 ϱ, ξ1ð Þ½ �2 + η1 ξ2, ϱð Þ½ �2
h i

η2 ρ, ξ3ð Þ½ �2 + η2 ξ4, ρð Þ½ �2
h i

,

ð40Þ

we get the desired inequality (31).

Theorem 15. Let γ1, γ2 > 1 with ð1/γ2Þ + ð1/γ1Þ = 1, q1, q2
∈ ð0, 1Þ, and Φ : N ⊆ℝ2 ⟶ℝ be mixed partial q1q2
-differentiable on N° such that its mixed partial q1q2
-derivative is continuous and integrable on ½ξ1, ξ1 + η1ðξ2,
ξ1Þ� × ½ξ3, ξ3 + η2ðξ4, ξ3Þ� ⊂N ∘ for η1 ðξ2, ξ1Þ, η2 ðξ4, ξ3Þ > 0.
If jðξ1,ξ3∂2q1 ,q2 /ξ1∂q1zξ3∂q2wÞΦj

γ2 is an n-polynomial preinvex
function on the coordinates on ½ξ1, ξ1 + η1 ðξ2, ξ1Þ� × ½ξ3, ξ3
+ η2 ðξ4, ξ3Þ� and jðξ1,ξ3∂2q1 ,q2 /ξ1∂q1zξ3∂q2wÞΦðϱ, ρÞj ≤M for
ϱ, ρ, ∈N , then we have

Φ ϱ, ρð Þ + 1
η2 ξ4, ξ3ð Þ

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, ρð Þ0dq2v +
ðξ3+η2 ρ,ξ3ð Þ

ξ4

Φ ϱ, ρð Þ0dq2v
" #

1
η1 ξ2, ξ1ð Þ

�����
�
ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u
#
−Q

����� ≤
q1q2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cq1

+Dq1

� �
Cq2

+Dq2

� �
γ2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1 + 1½ �q1 γ1 + 1½ �q2γ1

q
2
664
� η1 ϱ, ξ1ð Þ½ �2 + η1 ξ2, ϱð Þ½ �2

η1 ξ2, ξ1ð Þ

" #
× η2 ρ, ξ3ð Þ½ �2 + η2 ξ4, ρð Þ½ �2

η2 ξ4, ξ3ð Þ

" #
, ð41Þ
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where Q is defined in Lemma 13.

Proof. It follows from (19), the Hölder inequality and the
property of n-polynomial preinvexity of the function
j∂2q1,q2Φ/ξ1∂q1zξ3∂q2wj

γ2 on coordinates that

Φ ϱ, ρð Þ + 1
η2 ξ4, ξ3ð Þ

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v
"�����

+
ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ ϱ, vð Þ0dq2v
#

+ 1
η1 ξ2, ξ1ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u
"

+
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u� −Q

�����
≤
ð1
0

ð1
0
zγ1wγ1 0dq1z0dq2w

� �1/γ1

× q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

"

�
ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

 !1/γ2

+ q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ξ3, ρð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

�
ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

 !1/γ2

+ q1q2 η1 ξ2, ϱð Þ½ �2 η2 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

�
ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

 !1/γ2

+ q1q2 η1 ξ2, ϱð Þ½ �2 η2 ξ4, ρð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

�
ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

 ! 1
γ2
#
,

ð42Þ

for all ϱ, ρ ∈N .
From the n-polynomial preinvexity of the function

jðξ1,ξ3∂2q1,q2 /ξ1∂q1zξ3∂q2wÞΦj
γ2 , we get

ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

≤
ð1
0

ð1
0

1
n
〠
n

p=1
1 − 1 − zð Þp� � ξ1,ξ3

∂2q1,q2
ξ1
∂q1zξ3∂q2w

Φ ϱ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

"(

+ 1
n
〠
n

p=1
1 − zp½ � ξ1,ξ3

∂2q1,q2
ξ1
∂q1zξ3∂q2w

Φ ξ1, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2
#
0dq1z

)
0dq2w:

ð43Þ

Computing the q1-integral on the right-hand side of (43),

we have

ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

≤
ð1
0

1
n
〠
n

p=1
1 − 1 − zð Þp� � ξ1,ξ3

∂2q1,q2
ξ1
∂q1zξ3∂q2w

Φ ϱ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

"

+ 1
n
〠
n

p=1
1 − zp½ � ξ1,ξ3

∂2q1,q2
ξ1
∂q1zξ3∂q2w

Φ ξ1, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

�0dq1z:

ð44Þ

In view of the Definition 6 for k = 1, 2, we obtain

Cqk
= 1
n
〠
n

p=1

ð1
0
1 − 1 − zð Þp� �

0dqkz = 1 − 1 − qkð Þ
n

〠
n

p=1
〠
∞

e=0
qek 1 − qekð Þp,

Dqk
= 1
n
〠
n

p=1

ð1
0
1 − zp½ �0dqkz = 1 − 1

n
〠
n

p=1

1 − qk
1 − qp+2k

:

ð45Þ

Therefore, we get

ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

≤
ð1
0
Cq1

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ϱ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

"

+Dq1

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

�0dq2w:

ð46Þ

Similarly, computing the q2-integral and utilizing the fact
jðξ1,ξ3∂2q1,q2 /ξ1∂q1z∂q2wÞΦðϱ, ρÞj ≤M for ϱ, ρ ∈N on the right-
hand side of (46), one has

ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

≤Mγ2 Cq1
+Dq1

� �
Cq2

+Dq2

� �
:

ð47Þ

Analogously, we also can get

ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ2

0dq1z0dq2w,

≤Mγ2 Cq1
+Dq1

� �
Cq2

+Dq2

� �
,

ð48Þ
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ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

≤Mγ2 Cq1
+Dq1

� �
Cq2

+Dq2

� �
,

ð49Þ
ð1
0

ð1
0

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ2

0dq1z0dq2w

≤Mγ2 Cq1
+Dq1

� �
Cq2

+Dq2

� �
:

ð50Þ
Therefore, the desired inequality (41) follows from (47),

(48), (49), and (50) and the fact that

ð1
0

ð1
0
zγ1wγ1 0dq1z0dq2w = 1

γ1 + 1½ �q1 γ1 + 1½ �q2
, ð51Þ

where ½γ1 + 1�q1 and ½γ1 + 1�q2 are the q1- and q2-analogues of
γ1 + 1 and γ2 + 1, respectively.

Theorem 16. Let q1, q2 ∈ ð0, 1Þ, γ > 1 andΦ : N ⊆ℝ2 ⟶ℝ
bemixed partial q1q2-differentiable overN

∘ such that its partial
q1q2 -derivative is continuous and integrable on ½ξ1, ξ1 + η1ðξ2,

ξ1Þ� × ½ξ3, ξ3 + η2ðξ4, ξ3Þ� ⊂N ∘ for η1ðξ2, ξ1Þ, η2ðξ4, ξ3Þ > 0. If
jðξ1,ξ3∂2q1 ,q2 /ξ1∂q1zξ3∂q2wÞΦj is an n-polynomial preinvex func-

tion on the coordinates on ½ξ1, ξ1 + η1ðξ2, ξ1Þ� × ½ξ3, ξ3 + η2ðξ4,
ξ3Þ� and j ðξ1,ξ3∂

2
q1 ,q2 /ξ1∂q1zξ3∂q2wÞΦðϱ, ρÞ j ≤M for ϱ, ρ ∈N ,

thenwehave the inequality

Φ ϱ, ρð Þ + 1
η2 ξ4, ξ3ð Þ

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, vð Þ0dq2v +
ðξ3+η2 ρ,ξ3ð Þ

ξ4

Φ ϱ, vð Þ0dq2v
" #�����

+ 1
η1 ξ2, ξ1ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u
" #

−Q

�����

≤
q1q2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aq1

+Bq1

� �
Aq2

+Bq2

� �
γ

r
1 + q1ð Þ 1 + q2ð Þ½ �1−1/γ

× η1 ϱ, ξ1ð Þ½ �2 + η1 ξ2, ϱð Þ½ �2
η1 ξ2, ξ1ð Þ

" #
η2 ρ, ξ3ð Þ½ �2 + η2 ξ4, ρð Þ½ �2

η2 ξ4, ξ3ð Þ

" #
,

ð52Þ

whereQ is defined inLemma13.

Proof. It follows from (19), the power mean inequality and
the property of n-polynomial preinvexity of the function
jξ1,ξ3∂2q1,q2Φ/ξ1∂q1zξ3∂q2wj on coordinates that

for all ϱ, ρ ∈N .

Φ ϱ, ρð Þ + 1
η2 ξ4, ξ3ð Þ

ðξ3+η2 ρ,ξ3ð Þ

ξ3

Φ ϱ, ρð Þ0dq2v +
ðξ4+η2 ρ,ξ4ð Þ

ξ4

Φ ϱ, vð Þ0dq2v
#"�����

+ 1
η1 ξ2, ξ1ð Þ

ðξ1+η1 ϱ,ξ1ð Þ

ξ1

Φ u, ρð Þ0dq1u +
ðξ2+η1 ϱ,ξ2ð Þ

ξ2

Φ u, ρð Þ0dq1u
" #

−Qj

≤
ð1
0

ð1
0
zw0dq1z0dq2w

� �1− 1/γð Þ
× q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ρ, ξ3ð Þ½ �2

η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

"

�
ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ

0dq1z0dq2w

 !1/γ35

+ q1q2 η1 ϱ, ξ1ð Þ½ �2 η2 ξ4, ρð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ

0dq1z0dq2w

 !1/γ2
4

3
5

+ q1q2 η1 ξ2, ϱð Þ½ �2 η2 ρ, ξ3ð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ

0dq1z0dq2w

 !1/γ2
4

3
5

+ q1q2 η1 ξ2, ϱð Þ½ �2 η2 ξ4, ρð Þ½ �2
η1 ξ2, ξ1ð Þη2 ξ4, ξ3ð Þ

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ

0dq1z0dq2w

 !1/γ2
4

3
5,

ð53Þ
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By similar argument as in Theorem 14, we can prove that

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ

0dq1z0dq2w

≤Mγ Aq1
+Bq1

� �
Aq2

+Bq2

� �
,

ð54Þ

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ1 + zη1 ϱ, ξ1ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ

0dq1z0dq2w

≤Mγ Aq1
+Bq1

� �
Aq2

+Bq2

� �
,

ð55Þ

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ3 +wη2 ρ, ξ3ð Þð Þ
�����

�����
γ

0dq1z0dq2w

≤Mγ Aq1
+Bq1

� �
Aq2

+Bq2

� �
,

ð56Þ

ð1
0

ð1
0
zw

ξ1,ξ3
∂2q1,q2

ξ1
∂q1zξ3∂q2w

Φ ξ2 + zη1 ϱ, ξ2ð Þ, ξ4 +wη2 ρ, ξ4ð Þð Þ
�����

�����
γ

0dq1z0dq2w

≤Mγ Aq1
+Bq1

� �
Aq2

+Bq2

� �
:

ð57Þ

Now by making use of the inequalities (54), (55), (56),
and (57) and the fact that

ð1
0

ð1
0
zw0dq1z0dq2w = 1

1 + q1ð Þ 1 + q2ð Þ , ð58Þ

we get the desired inequality (52).

3. Conclusion

In the article, we have introduced a new class of preinvex
functions which is named n-polynomial preinvex functions
and discovered a new quantum integral identity involving
second-order mixed partial differentiable function. By using
the obtained quantum integral identity as an auxiliary result,
we have established several q1q2-Ostrowski-type inequalities
for the class of n-polynomial preinvex functions on coordi-
nates, which have improved and unified many previously
known results. Our given ideas and approaches may lead to
a lot of follow-up research for the interested readers.
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The present article deals with the new estimates in q-calculus and fractional q-calculus on a time scale T t0
= f0g ∪ ft : t = t0q

n, n
is a nonnegative integerg, where t0 ∈ℝ and 0 < q < 1: The role of fractional time scale q-calculus can be found as one of the
prominent techniques to generate some variants for a class of positive functions n ðn ∈ℕÞ:Finally, our work will provide
foundation and motivation for further investigation on time-fractional q-calculus systems that have an intriguing application in
quantum theory and special relativity theory.

1. Introduction

Fractional differential equations were executed to demon-
strate tremendous innovations for different issues in the
physical sciences [1–15]. Since most frameworks involve rec-
ollections, the scientists are agreeing with the nonlocality of
the fractional operators make it progressively functional in
demonstrating the classical derivatives. Recently, nonlocal
fractional derivatives without the singular kernel have been
exhibited and contemplated [16, 17]. However, there are no
solid numerical defenses of the new sorts of fractional deriv-
atives; their applications were demonstrated by numerous
analysts [18, 19]. Furthermore, presently we have the utiliza-
tion of fractional calculus in fields like science, material sci-
ence, and building and among different zones. It is a stunner
of the fractional calculus that we have such a large number of
valuable meanings of differential and integral operators, for

instance, Saigo, conformable, Riemann-Liouville, Katugam-
pola, Hadamard, Erdélyi-Kober, Liouville, local, and Weyl
types. These operators are having their significance and
applications in picture handling, science, hydrodynamics,
and viscoelastic. For a detailed depiction of the origination
of fractional calculus, advancement, and applications, we
refer the interested readers to the notable books and research
articles [20–22].

Hilger [23] began the theories of time scales in his doc-
toral dissertation and combined discrete and continuous
analysis [24, 25]. At that time, this theory has received a lot
of attention. In the book written by Bohner and Peterson
[26] on the issues of time scale, a brief summary is given
and several time calculations are performed. Over the past
decade, many analysts working in special applications have
proved a reasonable number of dynamic inequalities on a
time scale [27, 28]. Several researchers have created various
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results relating to fractional calculus on time scales to obtain
the corresponding dynamic variants [29].

In the eighteenth century (1707–1783), Euler initiated
calculus with no limits refer to as quantum calculus. Jackson
began a deliberate investigation of q-calculus and presented
the q-definite integrals. Additionally, he was the first to cre-
ate q-calculus in an efficient manner. Few selected branches
of pure and applied mathematics, such as combinatorics,
Gauss hypergeometric functions, orthogonal polynomials,
dynamic, and quantum theory, have been enhanced by the
exploration work of different researchers.

Motivated, by what we mentioned above, we extend the
idea of fractional q-calculus type operators with a time scale
to arbitrary positive order, provide several bounds for a fam-
ily of n ∈ℕ, and finally prove several variants for time-
fractional q-calculus theory. These new results have utilities
in the monotonicity for this nabla continuous fractional
operator with singular and nonsingular kernel and compare
them to the discrete classical ones. The time-fractional
q-calculus under consideration in this paper have kernels
different from classical nabla fractional differences with ker-
nels depending on the rising factorial powers, and we
believe that they bring new kernels with new memories,
which may be of different interest for applications. The idea
is quite new and seems to have opened new doors of inves-
tigation towards various scientific fields of research includ-
ing engineering, fluid dynamics, meteorology, analysis, and
aerodynamics.

Inequalities have wild applications in pure and applied
mathematics [30–33]. Very recently, many new inequalities
such as Hermite-Hadamard type inequality [34–38], Petrović
type inequality [39], Pólya-Szegö type inequality [40],
Ostrowski type inequality [41], reverse Minkowski inequal-
ity [42], Jensen type inequality [43, 44], Bessel function
inequality [45], trigonometric and hyperbolic functions
inequalities [46], fractional integral inequality [47–51], com-
plete and generalized elliptic integrals inequalities [52–57],
generalized convex function inequality [58–60], and mean
values inequality [61–63] have been discovered by many
researchers.

Variants regarding fractional integral operators are the
use of noteworthy significant strategies amongst researchers
and accumulate fertile functional applications in various
areas of science [64, 65]. We state some of them, that is, the
variants of Minkowski, Hardy, Opial, Hermite-Hadamard,
Grüss, Lyenger, Ostrowski, C ebyšev, and Pólya-Szegö, and
others. Such applications of fractional integral operators
compelled us to show the generalization by using a family
of n positive functions involving time-fractional q-calculus
integrals operators.

Owing to the above phenomena, the key aim of this
research is to demonstrate the notations and primary defini-
tions of our noteworthy time-fractional q-calculus operator.
Also, we present the results concerning for a class of family
of nðn ∈ℕÞ continuous positive decreasing functions on
½ς1, ς2� by employing a time-fractional q-calculus operator.
Finally, it is emphasized that combining these two approaches,
q-fractional calculus and time scale analysis, could be the
most efficient way of incorporating inequalities into both

times and q-components for quantum theory and special rel-
ativity theory.

2. Preliminaries

Let us recall some necessary definitions and preliminary
results that are used for further discussion. For more details,
we may refer to [33].

Definition 1 (See [33]). The particular time scale T t0
is

defined by

T t0
= t : t = t0q

n, n is a nonnegative integerf g ∪ 0f g, 0 < q < 1:
ð1Þ

If there is no confusion concerning t0, we will denote T t0
by T .

Definition 2. The q-factorial function is defined in the follow-
ing way

ζ − φð Þ
ðnÞ
= ζ − φð Þ ζ − qφð Þ ζ − qφð Þ⋯ ζ − qnφð Þ, n ∈ℕ,

ζ − φð Þ
ðnÞ
= ζn

Y∞
κ=0

1 − φ/ζð Þqκ
1 − φ/ζð Þqn+κ , n ∉ℕ:

ð2Þ

Definition 3. The q-derivative of the q-factorial function with
respect to ζ is defined by

∇q ζ − φð Þ
ðnÞ
= 1 − qn

1 − q
ζ − φð Þ

n−1ð Þ
, ð3Þ

and the q-derivative of the q-factorial function with respect to
s is defined by

∇q ζ − φð Þ
ðnÞ
= −

1 − qn

1 − q
ζ − qφð Þ

n−1ð Þ
: ð4Þ

Definition 4. The q-exponential function is defined as

eq ζð Þ =
Y∞
κ=0

1 − qκζð Þ, eq 0ð Þ = 1: ð5Þ

Definition 5. The q-Gamma function is defined by

Γq βð Þ = 1
1 − q

ð1
0

ζ

1 − q

� �β−1
eq qζð Þ∇ζ, β ∈ℝ+: ð6Þ

Remark 6. We observe that

Γq β + 1ð Þ = β½ �qΓq βð Þ, β ∈ℝ+, ð7Þ

and ½β�q = 1 − qβ/1 − q:
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Definition 7. The fractional q-integral is defined as

∇−β
q Ψ ζð Þ = 1

Γq βð Þ
ðζ
ς1

ζ − qφð Þβ−1Ψ φð Þ∇φ: ð8Þ

Remark 8. Let ΨðζÞ = 1. Then Definition 7 gives

∇−β
q 1ð Þ = 1

Γq βð Þ
q − 1
qβ − 1 ζ

β

= 1
Γq β + 1ð Þ ζ

β

: ð9Þ

3. Main Results

Now we demonstrate the left fractional q integral operator on
an arbitrary time scale T to derive the generalization of some
classical inequalities.

Theorem 9. Let α > 0, η ≥ δ > 0, β ∈ℂ with RðβÞ > 0, and Ψ
be a continuous positive decreasing function defined on T t0

.
Then, one has

∇−β
ς+1 ,q

Ψη ζð Þ½ �
∇−β
ς+1 ,q

Ψδ ζð Þ� � ≥ ∇−β
ς+1 ,q

ζ − ς1ð ÞαΨη ζð Þ� �
∇−β
ς+1 ,q

ζ − ς1ð ÞαΨδ ζð Þ� � : ð10Þ

Proof. Using the hypothesis given in Theorem 9, we have

ω − ς1ð Þα − φ − ς1ð Þαð Þ Ψη−δ φð Þ −Ψη−δ ωð Þ
� �

≥ 0, ð11Þ

where α > 0, η ≥ δ > 0, and φ, ω ∈ ½ς1, ζ�.

It follows from (11) that

ω − ς1ð ÞαΨη−δ φð Þ − φ − ς1ð ÞαΨη−δ ωð Þ − ω − ς1ð ÞαΨη−δ ωð Þ
+ φ − ς1ð ÞαΨη−δ φð Þ ≥ 0:

ð12Þ

Multiplying (12) by 1/ΓqðβÞðζ − qφÞβ−1/ΨδðφÞ,φ ∈ ðς1, ζÞ,
we have

1
Γq βð Þ ζ − qφð Þ

β−1
ω − ς1ð ÞαΨη−δ φð Þ − φ − ς1ð ÞαΨη−δ ωð Þ

h
− ω − ς1ð ÞαΨη−δ ωð Þ + φ − ς1ð ÞαΨη−δ φð Þ

i
Ψδ φð Þ

= ω − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ φð Þ

− φ − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ ωð Þ

− ω − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ ωð Þ

+ φ − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ φð Þ ≥ 0:

ð13Þ
Integrating on both sides of (13) for φ over ðς1, ζÞ, we

have

ω − ς1ð Þα
ðζ
ς1

1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ φð Þ∇φ − φ − ς1ð Þα

�
ðζ
ς1

1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ ωð Þ∇φ − ω − ς1ð Þα

�
ðζ
ς1

1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ ωð Þ∇φ + φ − ς1ð Þα

�
ðζ
ς1

1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð ÞΨη−δ φð Þ∇φ ≥ 0,

ð14Þ

that is

ω − ς1ð Þα ∇−β
ς+1 ,q

Ψη ζð Þ½ �
� �

+Ψη−δ ωð Þ ∇−β
ς+1 ,q

ζ − ς1ð ÞαΨδ ζð Þ
h i� �

− ω − ς1ð Þα Ψη−δ ωð Þ ∇−β
ς+1 ,q

Ψδ ζð Þ
h i� �

− ζ − ς1ð ÞαΨη ζð Þ� �� 	
≥ 0:

ð15Þ

Multiplying (15) by 1/ΓqðβÞðζ − qωÞβ−1/ΨδðωÞ, ω ∈ ðς1,
ζÞ, and integrating for ω over ðς1, ζÞ shows

∇−β
ς+1 ,q

Ψη ζð Þ½ �
� �

∇−β
ς+1 ,q

ζ − ς1ð ÞαΨδ ζð Þ
h i� �

− ∇−β
ς+1 ,q

ζ − ς1ð ÞαΨη ζð Þ� �� �
Ψδ ζð Þ
h i� �

≥ 0:
ð16Þ

Dividing the above inequality by ð∇−β
ς+1 ,q

½ðζ − ς1ÞαΨδðζÞ�Þ
ð∇−β

ς+1 ,q
½ΨδðζÞ�Þ, we get the desired inequality (10).

Theorem 10. Let α > 0 , and η ≥ δ > 0, β, λ ∈ ℂ with RðβÞ
> 0 and RðλÞ > 0, and Ψ be a continuous positive decreasing
function defined on T t0

. Then the time-fractional q-integral
satisfies the inequality

∇−β
ς+1 ,q

Ψη ζð Þ½ �
� �

∇−λ
ς+1 ,q ζ − ς1ð ÞαΨδ ζð Þ� �� �

+ ∇−λ
ς+1 ,q Ψ

η ζð Þ½ �
� �

∇−β
ς+1 ,q

ζ − ς1ð ÞαΨδ ζð Þ� �� �
∇−λ
ς+1 ,q Ψδ ζð Þ� �� �

∇−β
ς+1 ,q

ζ − ς1ð ÞαΨη ζð Þ� �� �
+ ∇−β

ς+1 ,q
Ψδ ζð Þ� �� �

∇−λ
ς+1 ,q ζ − ς1ð ÞαΨη ζð Þ� �� � ≥ 1:

ð17Þ

Proof. Multiplying both sides of (15) by 1/ΓqðλÞðζ − qωÞλ−1/
ΨδðωÞ, ω ∈ ðς1, ζÞ and integrating for ω over ðς1, ζÞ shows

∇−β
ς+1 ,q

Ψη ζð Þ½ �
� �

∇−λ
ς+1 ,q ζ − ς1ð ÞαΨδ ζð Þ
h i� �

+ ∇−λ
ς+1 ,q Ψ

η ζð Þ½ �
�

� ∇−β
ς+1 ,q

ζ − ς1ð ÞαΨδ ζð Þ
h i� �

− ∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

� ∇−β
ς+1 ,q

ζ − ς1ð ÞαΨη ζð Þ� �� �
− ∇−β

ς+1 ,q
Ψδ ζð Þ
h i� �

� ∇−λ
ς+1 ,q ζ − ς1ð ÞαΨη ζð Þ� �� �

≥ 0:

ð18Þ
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Dividing (18) by

∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

∇−β
ς+1 ,q

ζ − ς1ð ÞαΨη ζð Þ� �� �
− ∇−β

ς+1 ,q
Ψδ ζð Þ
h i� �

∇−λ
ς+1 ,q ζ − ς1ð ÞαΨη ζð Þ� �� �

,
ð19Þ

we get the desired inequality (17).

Theorem 11. Let α > 0, η ≥ δ > 0, β ∈ℂwithRðβÞ > 0,Ψ be a
continuous positive decreasing function defined on T t0

, and ℏ
be a continuous positive increasing function on T t0

. Then the
time-fractional q -integral satisfies the inequality

∇−β
ς+1 ,q

Ψη ζð Þ½ �
� �

∇−β
ς+1 ,q

Ψδ ζð Þℏα ζð Þ� �� �
∇−β
ς+1 ,q

Ψδ ζð Þ� �� �
∇−β
ς+1 ,q

Ψη ζð Þℏα ζð Þ½ �
� � ≥ 1: ð20Þ

Proof. Using the hypothesis given in Theorem 11, we have

ℏα ωð Þ − ℏα φð Þð Þ Ψη−δ φð Þ −Ψη−δ ωð Þ
� �

≥ 0, ð21Þ

where α > 0, η ≥ δ > 0, and φ, ω ∈ ½ς1, ζ�: From (21), we have

ℏα ωð ÞΨη−δ φð Þ − ℏα φð ÞΨη−δ ωð Þ
+ ℏα ωð ÞΨη−δ ωð Þ − ℏα φð ÞΨη−δ φð Þ ≥ 0:

ð22Þ

Taking product of (22) by 1/ΓqðβÞðζ − qφÞβ−1/ΨδðφÞ, φ
∈ ðς1, ζÞ, we get

1
Γq βð Þ ζ − qφð Þ

β−1
Ψδ φð Þ ℏα ωð ÞΨη−δ φð Þ − ℏα φð ÞΨη−δ ωð Þ

h
+ ℏα ωð ÞΨη−δ ωð Þ − ℏα φð ÞΨη−δ φð Þ

i
= ℏα ωð Þ 1

Γq βð Þ ζ − qφð Þ
β−1
Ψη φð Þ − ℏα φð Þ 1

Γq βð Þ
� ζ − qφð Þ

β−1
Ψη−δ ωð ÞΨδ φð Þ + ℏα ωð Þ 1

Γq βð Þ ζ − qφð Þ
β−1
Ψη−δ

� ωð ÞΨδ φð Þ − ℏα φð Þ 1
Γq βð Þ ζ − qφð Þ

β−1
Ψη φð Þ ≥ 0:

ð23Þ

Integrating (23) for φ over ðς1, ζÞ, we obtain

ℏα ωð Þ
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1
Ψη φð Þ∇φ −

ℏα φð Þ
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1
Ψη−δ

� ωð ÞΨδ φð Þ∇φ + ℏα ωð Þ
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1
Ψη−δ ωð ÞΨδ φð Þ∇φ

−
ℏα φð Þ
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1
Ψη φð Þ∇φ ≥ 0:

ð24Þ

It follows that

ℏα ωð Þ ∇−β
ς+1 ,q

Ψη ζð Þ½ �
� �

+Ψη−δ ωð Þ ∇−β
ς+1 ,q

ℏα ζð ÞΨδ ζð Þ
h i� �

− ℏα ωð ÞΨη−δ ωð Þ ∇−β
ς+1 ,q

Ψδ ζð Þ
h i� �

− ∇−β
ς+1 ,q

ℏα ζð ÞΨδ ζð Þ
h i� �

≥ 0:

ð25Þ

Again, taking the product (15) by 1/ΓqðβÞðζ − qωÞβ−1/
ΨδðωÞ, ω ∈ ðς1, ζÞ, and integrating for ω over ðς1, ζÞ gives

∇−β
ς+1 ,q

Ψη ζð Þ½ �
� �

∇−β
ς+1 ,q

Ψδ ζð Þℏα ζð Þ
h i� �

− ∇−β
ς+1 ,q

Ψδ ζð Þ
h i� �

∇−β
ς+1 ,q

Ψη ζð Þℏα ζð Þ½ �
� �

≥ 0,
ð26Þ

which completes the proof of the desired inequality (20).

Theorem 12. Let α > 0, η ≥ δ > 0, RðλÞ,RðβÞ > 0 with R

ðλÞ,RðβÞ > 0,Ψ be a continuous positive decreasing function
defined on T t0

and ℏ be a continuous positive increasing func-
tion on T t0

. Then, one has

∇−β
ς+1 ,q

Ψη ζð Þ½ �∇−λ
ς+1 ,q ℏα ζð ÞΨδ ζð Þ� �� �

+ ∇−λ
ς+1 ,q Ψ

η ζð Þ½ �∇−β
ς+1 ,q

ℏθ ζð ÞΨδ ζð Þ
h i� �

∇−β
ς+1 ,q

ℏα ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ� �� �

+ ∇−λ
ς+1 ,q ℏ

α ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ� �� � ≥ 1:

ð27Þ

Proof. Multiplying both sides of (25) by 1/ΓqðβÞðζ − qωÞβ−1/
ΨδðωÞ, ω ∈ ðς1, ζÞ, and integrating for ω over ðς1, ζÞ leads to
the conclusion that

∇−β
ς+1 ,q

Ψη ζð Þ½ �∇−λ
ς+1 ,q ℏα ζð ÞΨδ ζð Þ
h i� �

+ ∇−λ
ς+1 ,q Ψ

η ζð Þ½ �∇−β
ς+1 ,q

ℏθ ζð ÞΨδ ζð Þ
h i� �

− ∇−β
ς+1 ,q

ℏα ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

− ∇−λ
ς+1 ,q ℏ

α ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

≥ 0:

ð28Þ

It follows that

∇−β
ς+1 ,q

Ψη ζð Þ½ �∇−λ
ς+1 ,q ℏα ζð ÞΨδ ζð Þ
h i� �

+ ∇−λ
ς+1 ,q Ψ

η ζð Þ½ �∇−β
ς+1 ,q

ℏθ ζð ÞΨδ ζð Þ
h i� �

≥ ∇−β
ς+1 ,q

ℏα ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

+ ∇−λ
ς+1 ,q ℏ

α ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

:

ð29Þ

Dividing above inequality by

∇−β
ς+1 ,q

ℏα ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

+ ∇−λ
ς+1 ,q ℏ

α ζð ÞΨη ζð Þ½ �∇−λ
ς+1 ,q Ψδ ζð Þ
h i� �

,

ð30Þ

we get the desired inequality (27).
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Now, we demonstrate the fractional q-integral to derive
some inequalities for a class of n-decreasing positive
functions.

Theorem 13. Let α > 0, η ≥ δκ > 0 for any fixed κ ∈ f1, 2, 3,
⋯,ng, β ∈ℂ with RðβÞ > 0, and fΨj, j = 1, 2, 3,⋯,ng be a
sequence of continuous positive decreasing functions defined
on T t0

. Then, the time-fractional q -integral satisfies the
inequality

∇−β
ς+1 ,q

Qn
j≠κ Ψ

δj
j Ψ

η
κ ζð Þ

h i
∇−β
ς+1 ,q

Qn
j=1 Ψ

δj
j ζð Þ

h i ≥
∇−β
ς+1 ,q

ζ − ς1ð ÞαQn
j≠κ Ψ

δj
j Ψ

η
κ ζð Þ

h i
∇−β
ς+1 ,q

ζ − ς1ð ÞαQn
j=1 Ψ

δj
j ζð Þ

h i :

ð31Þ

Proof. Since fΨj, j = 1, 2, 3,⋯,ng is a sequence of continuous
positive decreasing functions on ½ς1, ζ�, we have

ω − ς1ð Þα − φ − ς1ð Þαð Þ Ψη−δκ
κ φð Þ −Ψη−δκ

κ ωð Þ
� �

≥ 0, ð32Þ

for any fixed κ ∈ f1, 2, 3,⋯,ng, α > 0, η ≥ δκ > 0 and φ, ω ∈
½ς1, ζ�.

It follows from (32) that

ω − ς1ð ÞαΨη−δκ
κ φð Þ + φ − ς1ð ÞαΨη−δκ

κ ωð Þ
≥ ω − ς1ð ÞαΨη−δκ

κ ωð Þ + φ − ς1ð ÞαΨη−δκ
κ φð Þ:

ð33Þ

Taking the product of (22) by 1/ΓqðβÞðζ − qφÞβ−1/Qn
j=1

Ψ
δ j

j ðφÞ, φ ∈ ðς1, ζÞ, and integrating for φ over ðς1, ζÞ, we have

1
Γq βð Þ ζ − qφð Þ

β−1
ω − ς1ð ÞαΨη−δκ

κ φð Þ + φ − ς1ð ÞαΨη−δκ
κ ωð Þ

h

− ω − ς1ð ÞαΨη−δκ
κ ωð Þ − φ − ς1ð ÞαΨη−δκ

κ φð Þ
iYn

j=1
Ψ

δ j

j φð Þ

= ω − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ φð Þ

+ φ − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ ωð Þ

− ω − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ ωð Þ

− φ − ς1ð Þα 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ φð Þ ≥ 0:

ð34Þ

Integrating (34) for φ over ðς1, ζÞ, we get

ω − ς1ð Þα 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ φð Þ∇φ

+ φ − ς1ð Þα 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ ωð Þ∇φ

− ω − ς1ð Þα 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ ωð Þ∇φ

− φ − ς1ð Þα 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ φð Þ∇φ ≥ 0:

ð35Þ

It follows from (35) that

ω − ς1ð Þα∇−β
ς+1 ,q

Yn
j≠κ

Ψδ j
j Ψ

η
κ ζð Þ

" #
+Ψη−δκ

κ ωð Þ∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j=1

Ψδ j
j ζð Þ

" #

≥ ω − ς1ð ÞαΨη−δκ
κ ωð Þ∇−β

ς+1 ,q
Yn
j=1

Ψδj
j ζð Þ

" #

+ ∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
:

ð36Þ

Again, taking the product of (36) by 1/ΓqðβÞ
ðζ − qωÞβ−1/Qn

j=1 Ψ
δ j

j ðωÞ, ω ∈ ðς1, ζÞ, and integrating for ω

over ðς1, ζÞ, we obtain

∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j=1

Ψδj
j ζð Þ

" #

≥ ∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
,

ð37Þ

which gives the desired inequality (31).

Theorem 14. Let α > 0, η ≥ δκ > 0 for any fixed κ ∈ f1, 2, 3,
⋯,ng, β, λ ∈ℂ with RðβÞ > 0,RðλÞ > 0, and fΨj, j = 1, 2, 3,
⋯,ng be a sequence of continuous positive decreasing func-
tions defined on T t0

. Then, we have the inequality

∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q ζ − ς1ð Þα

Yn
j=1

Ψδj
j ζð Þ

" # 

+ ∇−λ
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j=1

Ψδj
j ζð Þ

" #!
/

∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" # 

+ ∇−λ
ς+1 ,q ζ − ς1ð Þα

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #!
≥ 1:

ð38Þ
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Proof. Taking product on both sides of (36) by 1/ΓqðλÞ
ðζ − qθÞλ−1/Qn

j=1 Ψ
δ j

j ðωÞ, ω ∈ ðς1, ζÞ, and integrating for ω

over ðς1, ζÞ, we get

∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q ζ − ς1ð Þα

Yn
j=1

Ψδj
j ζð Þ

" #

+ ∇−λ
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j=1

Ψδj
j ζð Þ

" #

≥ ∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #

+ ∇−λ
ς+1 ,q ζ − ς1ð Þα

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
:

ð39Þ

Dividing the above inequality by

∇−β
ς+1 ,q

ζ − ς1ð Þα
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #

+ ∇−λ
ς+1 ,q ζ − ς1ð Þα

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
,

ð40Þ

gives the desired inequality (38).

Theorem 15. Let α > 0, η ≥ δκ > 0 for any fixed κ ∈ f1, 2, 3,
⋯,ng, β ∈ℂ with RðβÞ > 0, and ℏ and Ψjðj = 1, 2, 3,⋯,nÞ be
the continuous positive decreasing functions defined on T t0

.
Then, the time-fractional q -integral satisfies the inequality

∇−β
ς+1 ,q

Qn
j≠κ Ψ

δj
j Ψ

η
κ ζð Þ

h i
∇−β
ς+1 ,q

ℏα ζð ÞQn
j=1 Ψ

δj
j ζð Þ

h i
∇−β
ς+1 ,q

ℏα ζð ÞQn
j≠κ Ψ

δj
j Ψ

η
κ ζð Þ

h i
∇−β
ς+1 ,q

Qn
j=1 Ψ

δj
j ζð Þ

h i ≥ 1: ð41Þ

Proof. It follows from the given hypothesis that

ℏα ωð Þ − ℏα φð Þð Þ Ψη−δκ
κ φð Þ −Ψη−δκ

κ ωð Þ
� �

≥ 0, ð42Þ

for any fixed κ ∈ f1, 2, 3,⋯,ng, α > 0, η ≥ δκ > 0, and φ, ω
∈ ½ς1, ζ�:

Inequality (42) leads to

ℏα ωð ÞΨη−δκ
κ φð Þ + ℏα φð ÞΨη−δκ

κ ωð Þ − ℏα ωð ÞΨη−δκ
κ ωð Þ

− ℏα φð ÞΨη−δκ
κ φð Þ ≥ 0:

ð43Þ

Taking the product on both sides of (43) by 1/ΓqðβÞ
ðζ − qφÞβ−1/Qn

j=1 Ψ
δ j

j ðφÞ, φ ∈ ðς1, ζÞ, and integrating for φ

over ðς1, ζÞ, we obtain

ℏα ωð Þ 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ φð Þ

+ ℏα φð Þ 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ ωð Þ

− ℏα ωð Þ 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ ωð Þ

− ℏα φð Þ 1
Γq βð Þ ζ − qφð Þ

β−1 Yn
j=1

Ψ
δ j

j φð ÞΨη−δκ
κ φð Þ ≥ 0:

ð44Þ

Integrating (44) for φ over ðς1, ζÞ, we have

ℏα ωð Þ 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ φð Þ∇φ

+ ℏα φð Þ 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ ωð Þ∇φ

− ℏα ωð Þ 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ ωð Þ∇φ

− ℏα φð Þ 1
Γq βð Þ

ðζ
ς1

ζ − qφð Þ
β−1 Yn

j=1
Ψ

δ j

j φð ÞΨη−δκ
κ φð Þ∇φ ≥ 0:

ð45Þ

From (43), we clearly see that

ℏα ωð Þ∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
+Ψη−δκ

κ ζð Þ∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j=1

Ψδj
j ζð Þ

" #

− ℏα ωð ÞΨη−δκ
κ ωð Þ∇−β

ς+1 ,q
Yn
j=1

Ψδj
j ζð Þ

" #
− ∇−β

ς+1 ,q
ℏα ζð Þ

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
≥ 0:

ð46Þ

Again, taking the product on both sides of (46) by 1/
ΓqðβÞðζ − qθÞQn

j=1 Ψ
δ j

j ðωÞ, ω ∈ ðς1, ζÞ, and integrating for ω

over ðς1, ζÞ, we have

∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j=1

Ψδj
j ζð Þ

" #

− ∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
≥ 0,

ð47Þ

which completes the proof of the desired inequality (41).

Theorem 16. Let α > 0, η ≥ δκ > 0 for any fixed κ ∈ f1, 2, 3,
⋯,ng, β, λ ∈ℂ, with RðβÞ > 0,RðλÞ > 0, fΨj, j = 1, 2, 3,⋯,
ng be a sequence of continuous positive decreasing functions
defined on T t0

and ℏ be a continuous positive increasing func-
tions defined on T t0

. Then
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∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q ℏα ζð Þ

Yn
j=1

Ψδj
j ζð Þ

" # 

+ ∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j=1

Ψδj
j ζð Þ

" #
∇−λ
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #!
/

∇−λ
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" # 

+ ∇−λ
ς+1 ,q ℏα ζð Þ

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #!
≥ 1:

ð48Þ

Proof. Multiplying both sides of (46) by 1/ΓqðλÞðζ − qωÞλ−1/Qn
j=1 Ψ

δ j

j ðωÞ, ω ∈ ðς1, ζÞ, and integrating for ω over ðς1, ζÞ,
we have

∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q ℏα ζð Þ

Yn
j=1

Ψδj
j ζð Þ

" #

+ ∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j=1

Ψδj
j ζð Þ

" #
∇−λ
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #

− ∇−λ
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #

− ∇−λ
ς+1 ,q ℏα ζð Þ

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
≥ 0:

ð49Þ

It follows that

∇−β
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−λ
ς+1 ,q ℏα ζð Þ

Yn
j=1

Ψδj
j ζð Þ

" #

+ ∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j=1

Ψδj
j ζð Þ

" #
∇−λ
ς+1 ,q

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #

≥ ∇−λ
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #

+ ∇−λ
ς+1 ,q ℏα ζð Þ

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
:

ð50Þ

Dividing both sides of the above inequality by

∇−λ
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
∇−β
ς+1 ,q

ℏα ζð Þ
Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #

+ ∇−λ
ς+1 ,q ℏα ζð Þ

Yn
j≠κ

Ψδj
j Ψ

η
κ ζð Þ

" #
∇−β
ς+1 ,q

Yn
j=1

Ψδj
j ζð Þ

" #
,

ð51Þ

gives desired inequality (48).

4. Conclusion

In this note, we have derived certain variants by using the
time-fractional q-calculus operator related to a class of n
positive continuous, and decreasing functions on the interval
½ς1, ς2� are elaborated. In [66], Liu et al. investigated thought-
provoking integral inequalities for continuous functions on
½ς1, ς2�. Recently, Dahmani [67] has presented the more gen-
eralizations of the work of [66] by utilizing the Riemann-
Liouville fractional integral operators. If we take into
account T =ℝ and q = 1, then our findings are the special
cases of the results proposed by Dahmani [67]. The estab-
lished relationship highlighted the importance of selecting
appropriate combinations and validated q-fractional time
scale approaches for special relativity theory and quantum
mechanics. From the existence and uniqueness viewpoint,
it is found that the q-fractional order controls potentially
provide the tools to better represent measured that cannot
be fit to the classical model.
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The main object of the present paper is to construct new ðp, qÞ-analogy definitions of various families of ðp, qÞ-Humbert functions
using the generating function method as a starting point. This study shows a class of several results of ðp, qÞ-Humbert functions
with the help of the generating functions such as explicit representations and recurrence relations, especially differential
recurrence relations, and prove some of their significant properties of these functions.

1. Introduction

In the last quarter of 20th century, q-calculus appeared as a
connection between mathematics and physics. We have also
a generalization of q-calculus with one more parameter, we
can say it is a two-parameter quantum calculus. Generally,
it is called ðp, qÞ-calculus. The theory of ðp, qÞ-calculus or
post quantum calculus has recently been applied in many
areas of mathematics, physics and engineering, such as biol-
ogy, mechanics, economics, electrochemistry, probability
theory, approximation theory, statistics, number theory,
quantum theory, theory of relativity, and statistical mechan-
ics, etc. For more details on this topic ðp, qÞ-calculus, see, for
example, [1–6]. Burban and Klimyk [3], Duran et al. [7–10],
Jagannathan [11], Jagannathan and Srinivasa [12], Sahai and
Yadav [13] have earlier investigated some properties of the
two parameter quantum calculus. Sadjang [14–16] intro-
duced the two (ðp, qÞ-analogues of the Laplace transform,
two ðp, qÞ-Taylor formulas for polynomials, ðp, qÞ-Appell
polynomials and developed some their properties. Mursaleen
et al. [17, 18] investigated the ðp, qÞ-analogues of Bernstein
operators and approximation properties of ðp, qÞ-Bernstein
operators that are a generalization of q-Bernstein operators.
Khan and Lobiya [19] have nicely discussed a lot of applica-
tions in different approximation theory areas, such as per
Weirstarass approximation theorems, basic hypergeometric

functions, orthogonal polynomials and can be used in differ-
ential equations as well as computer-aided geometric designs.
Recently, Pasricha and Varma presented and introduced the
Humbert function Jm,nðxÞ in [20, 21]. In [22], Srivastava and
Shehata have earlier studied the q-Humbert functions. The
motivation of these generalizations q-Humbert functions is
to provide appropriate application areas of mathematical,
physical and engineering such as numerical analysis, approx-
imation theory and computer-aided geometric design (see
the recent papers [1, 6, 19, 23] and the references therein).

The main purpose of this paper is to obtain explicit for-
mulas for the various families of ðp, qÞ-Humbert functions
for 0 < jqj < jpj ≤ 1 for p, q inℂ. We mainly use the ðp, qÞ-cal-
culus in the theory of special functions. This work is orga-
nized as follows. More precisely, we define the numerous
(known or new) ðp, qÞ-Humbert functions and discuss some
significant properties such as explicit representations, recur-
rence relations and some new generating functions in Section
2. In Section 3, especially recurrence relations and some
interesting differential recurrence relations for the ðp, qÞ-
Humbert functions are discussed. In Section 4, the conclu-
sion and perspectives are given to illustrate the main results.

1.1. Basic Definitions and Miscellaneous Results. To conve-
nience of the reader, we provide a summary of the mathemat-
ical notations and some basic definitions of ðp, qÞ-calculus
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where 0 < jqj < jpj ≤ 1 for p, q ∈ℂ, operations and notations
we need to be used in this work. We use the following
standard notations: ℕ = 1, 2, 3,⋯, ℕ0 =ℕ ∪ f0g = f0, 1, 2,
3,⋯g. The symbolsℕ andℂ denote the sets of natural num-
bers and complex numbers, respectively.

The q-number ½α�q and q-factorial ½n�q! are defined as
follows: (see [22])

α½ �q =
1 − qα

1 − q
, 0 < qj j < 1 ; q ∈ℂ − 1f g ; α ∈ℂ ð1Þ

n½ �q! =
Yn
k=1

k½ �q = 1½ �q 2½ �q ⋯ n½ �q =
Yn
k=1

1 − qk

1 − q
, q ≠ 1 ; n ∈ℕ,

ð2Þ
q! = 1, 0 < qj j < 1 ; q ∈ℂ − 1f g: ð3Þ

In [22], the q-Humbert functions is defined by

J 1ð Þ
m,n x ∣ qð Þ = 〠

∞

k=0

−1ð Þk
k½ �p,q! m + k½ �p,q! n + k½ �p,q!

x
3
� �m+n+3k

: ð4Þ

The ðp, qÞ-number (bibasic number or twin-basic
number) is denoted by ½α�p,q and is defined by the follow-
ing notation [15]

α½ �p,q =
pα − qα

p − q
, 0 < ∣q∣ < ∣p∣ ≤ 1 ; p, q, α ∈ℂ: ð5Þ

For p, q, α ∈ℂ and 0 < jqj < jpj ≤ 1 for p, q, α ∈ℂ, the
ðp, qÞ-number and ðp, qÞ-factorial are given as follows:
(see [11, 12, 15])

n½ �p,q =
pn − qn

p − q
, n ∈ℕ ;

0, n = 0

8<
:

n½ �p,q! =
Yn
k=1

k½ �p,q! = n½ �p,q n − 1½ �p,q ⋯ 2½ �p,q 1½ �p,q, n

≥ 1 and 0½ �p,q! = 0:

ð6Þ

The ðp, qÞ-number ½n�p,q is a natural generalization of
the q-number in (3) such that

lim
p→1

n½ �p,q = n½ �q: ð7Þ

The ðp, qÞ-number satisfies the following addition
properties

n½ �p,q = p−k n + k½ �p,q − qnp−k k½ �p,q
= q−k n + k½ �p,q − pnq−k k½ �p,q, n, k ∈ℕ:

ð8Þ

The ðp, qÞ-factorial is denoted by ½n�p,q! and is defined
by (see [6, 11, 12])

n½ �p,q! =
Yn
k=1

k½ �p,q =
p, qð Þ ; p, qð Þð Þn

p − qð Þn , n ≥ 1 ;

1, n = 0,

8><
>: ð9Þ

where

a, bð Þ ; p, qð Þð Þn =

Yn−1
r=0

apr − bqrð Þ, n > 0 ;

1, n = 0 ;
1Q−n

r=0 ap−r − bq−rð Þ , n < 0:

8>>>>>><
>>>>>>:

ð10Þ

As in the q-case, there are many definitions of the ðp, qÞ-
exponential function. The following two ðp, qÞ-analogues
of exponential function will be frequently used throughout
this paper:

The ðp, qÞ-exponential function is defined by (see [12, 16])

ep,q xð Þ = 〠
∞

k=0

p

k

2

 !
xk

k½ �p,q!
:

ð11Þ

The ðp, qÞ-complementary exponential function is defined
by

Ep,q xð Þ = 〠
∞

k=0

q

k

2

 !
xk

k½ �p,q!
:

ð12Þ

It is easy to see that (see [15, 16])

ep,q xð ÞEp,q −xð Þ = 1,
e1
p,1q xð Þ = Ep,q xð Þ, E1

p,1q xð Þ = ep,q xð Þ: ð13Þ

Let f be a function defined on a subset of real or complex
plane. The ðp, qÞ-derivative operator of the function f is
defined as follows (see [15, 24, 25])

Dp,q f xð Þ = f pxð Þ − f qxð Þ
p − qð Þx , x ≠ 0, ð14Þ

and ðDp,q f Þð0Þ = f ′ð0Þ, provided that f is differentiable at
0, which satisfies the following relations (see [14, 16])

Dp,qep,q μxð Þ = aep,q μpxð Þ, ð15Þ

Dp,qEp,q μxð Þ = aEp,q μqxð Þ, μ ∈ℂ: ð16Þ

2 Journal of Function Spaces



The ðp, qÞ-derivative operator satisfy the following
product rules as follows: (see [11, 12, 14, 15])

Dp,q f1 xð Þf2 xð Þ½ � = f2 pxð ÞDp,q f1 xð Þf g + f1 qxð ÞDp,q f2 xð Þf g
ð17Þ

Dp,q f1 xð Þf2 xð Þf3 xð Þ½ � = f3 pxð Þf2 pxð ÞDp,q f1 xð Þf g
+ f3 pxð Þf1 qxð ÞDp,q f2 xð Þf g
+ f1 qxð Þf2 qxð ÞDp,q f3 xð Þf g:

ð18Þ

Our purpose is to generalize the class of Bessel functions,
by using the same approach exposed above and is to define
our main problem on the generalized ðp, qÞ-Humbert func-
tions. In particular, we will present some particular cases of
functions which are belonging to the family of ðp, qÞ-Hum-
bert functions which are introduced as the third ðp, qÞ-Hum-
bert functions.

2. Definitions of New ðp, qÞ-Analogue of the ðp,
qÞ-Humbert Functions and Some
Basic Properties

Here we apply the notion of ðp, qÞ-analogue of the generating
function to obtain explicit formulas for generalized ðp, qÞ-
Humbert functions and give some interesting significant
properties for these functions.

Definition 1. Let us define the product of symmetric ðp, qÞ-
exponential functions as the generating function of the
ðp, qÞ-Humbert functions of the first kind as follows:

F1 x ; u, t ∣ p, qð Þ = ep,q
xu
3

� �
ep,q

xt
3

� �
ep,q −

x
3ut

� �

= 〠
∞

m,n=−∞
J 1ð Þ
m,n x ∣ p, qð Þumtn:

ð19Þ

Remark 2. Note that in eq. (19), if we put p = 1, then ðp, qÞ-
Humbert functions reduces to the q-Humbert functions
defined in [22].

Remark 3. When q⟶ p = 1, the ðp, qÞ-Humbert functions
reduce to the classical Humbert functions defined in [20, 21].

From (19) and using (11), we have

F1 x ; u, t ∣ p, qð Þ = ep,q
xu
3

� �
ep,q

xt
3

� �
ep,q −

x
3ut

� �

= 〠
∞

r=0

pr r−1ð Þ/2

r½ �p,q!
xu
3

� �r
〠
∞

i=0

pi i−1ð Þ/2

i½ �p,q!

� xt
3

� �i

〠
∞

k=0

pk k−1ð Þ/2

k½ �p,q!
−

x
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkp

r

2

 !
+

i

2

 !
+

k

2

 !

k½ �p,q! i½ �p,q! r½ �p,q!

� x
3
� �k+i+r

ur−kti−k:

ð20Þ

Replace r by m + k and i by n + k to get

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkp

m+k

2

 !
+

n+k

2

 !
+

k

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
J 1ð Þ
m,n x ∣ p, qð Þumtn:

ð21Þ

Explicitly, we get the explicit expression of ðp, qÞ-Hum-
bert functions Jð1Þm,nðx ∣ p, qÞ as the following power series

J 1ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
+

k

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

:

ð22Þ

By (9), the series expansions of the ðp, qÞ-Humbert func-
tions Jð1Þm,nðx ∣ p, qÞ are given as

J 1ð Þ
m,n x ∣ p, qð Þ = 1

p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn
× 〠

∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
+

k

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
,

ð23Þ
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or

equivalently, we have

Lemma 4. Let n and m are integers, then the function
Jð1Þm,nðx ∣ p, qÞ satisfies the following relations

J 1ð Þ
−m,n x ∣ p, qð Þ = −1ð ÞmJ 1ð Þ

m,n+m x ∣ p, qð Þ ð26Þ

J 1ð Þ
m,−n x ∣ p, qð Þ = −1ð ÞnJ 1ð Þ

m+n,m x ∣ p, qð Þ: ð27Þ

Proof. From the definition of ðp, qÞ-Humbert functions
Jð1Þm,nðx ∣ p, qÞ, we have

J 1ð Þ
−m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkp

−m+k

2

 !
+

n+k

2

 !
+

k

2

 !

k½ �p,q! −m + k½ �p,q! n + k½ �p,q!
x
3
� �−m+n+3k

= 〠
∞

k=m

−1ð Þkp

−m+k

2

 !
+

n+k

2

 !
+

k

2

 !

k½ �p,q! −m + k½ �p,q! n + k½ �p,q!
x
3
� �−m+n+3k

:

ð28Þ

Replacing s = k −m, we obtain

J 1ð Þ
−m,n x ∣ p, qð Þ = 〠

∞

s=0

−1ð Þs+mp

s

2

 !
+

n+m+s

2

 !
+

m+s

2

 !

s½ �p,q! s +m½ �p,q! n +m + s½ �p,q!

� x
3
� �2m+n+3s

= −1ð ÞmJ 1ð Þ
m,n+m x ∣ p, qð Þ:

ð29Þ

The equation (27) can be proved in a like manner.

Lemma 5. The function Jð1Þm,nðx ∣ p, qÞ satisfies the following
properties

J 1ð Þ
−m,−n x ∣ p, qð Þ = −1ð ÞmJ 1ð Þ

m,m−n x ∣ p, qð Þ
= −1ð ÞnJ 1ð Þ

n−m,n x ∣ p, qð Þ,
ð30Þ

where n and m are integers.

Proof. From the definition of ðp, qÞ-Humbert functions Jð1Þm,n
ðx ∣ p, qÞ, we have

J 1ð Þ
−m,−n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkp

−m+k

2

 !
+

−n+k

2

 !
+

k

2

 !

k½ �p,q! −m + k½ �p,q! −n + k½ �p,q!
x
3
� �−m−n+3k

= 〠
∞

k=max n,mf g

−1ð Þkp

−m+k

2

 !
+

−n+k

2

 !
+

k

2

 !

k½ �p,q! −m + k½ �p,q! −n + k½ �p,q!
x
3
� �−m−n+3k

:

ð31Þ

Upon setting s = k −m in the Eq. (31), we get

J 1ð Þ
−m,−n x ∣ p, qð Þ = 〠

∞

s=0

−1ð Þs+mp

s

2

 !
+

m−n+s

2

 !
+

m+s

2

 !

s½ �p,q! m + s½ �p,q! m − n + s½ �p,q!
x
3
� �2m−n+3s

= −1ð ÞmJ 1ð Þ
m,m−n x ∣ p, qð Þ:

ð32Þ

J 1ð Þ
m,n x ∣ p, qð Þ = 1

Γp,q m + 1ð ÞΓp,q n + 1ð Þ
x

3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
+

k

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k
,

ð24Þ

J 1ð Þ
m,n x ∣ p, qð Þ = pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞
× 〠

∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
+

k

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð25Þ
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Upon setting s = k − n in the Eq. (31), we get

J 1ð Þ
−m,−n x ∣ p, qð Þ = 〠

∞

s=0

−1ð Þs+np

n−m+s

2

 !
+

n+s

2

 !
+

s

2

 !

s½ �p,q! n −m + s½ �p,q! n + s½ �p,q!
x
3
� �2n−m+3s

= −1ð ÞnJ 1ð Þ
n−m,n x ∣ p, qð Þ: ð33Þ

Now, we define that the generating function of ðp, qÞ-
Humbert functions of the second kind.

Definition 6. The generating function F2ðx ; u, t ∣ p, qÞ of
ðp, qÞ-Humbert functions of the second kind is defined by

F2 x ; u, t ∣ p, qð Þ = Ep,q
xu
3

� �
Ep,q

xt
3

� �
Ep,q −

qx
3ut

� �

= 〠
∞

m,n=−∞
q

n

2

 !
+

m

2

 !
J 2ð Þ
m,n x ∣ p, qð Þumtn:

ð34Þ

From the generating function of the ðp, qÞ-Humbert
functions Jð2Þm,nðx ∣ p, qÞ, we have

F2 x ; u, t ∣ p, qð Þ = Ep,q
xu
3

� �
Ep,q

xt
3

� �
Ep,q −

qx
3ut

� �

= 〠
∞

r=0

qr r−1ð Þ/2

r½ �p,q!
xu
3

� �r
〠
∞

i=0

qi i−1ð Þ/2

i½ �p,q!

� xt
3

� �i

〠
∞

k=0

qk k−1ð Þ/2

k½ �p,q!
−
qx
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkqr r−1ð Þ+i i−1ð Þ+k k+1ð Þ/2

k½ �p,q! i½ �p,q! r½ �p,q!

� x
3
� �k+i+r

ur−kti−k:

ð35Þ

Now, substituting r by m + k and i by n + k in the last
equation, we obtain the following equality

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkq m+kð Þ m+k−1ð Þ+ n+kð Þ n+k−1ð Þ+k k+1ð Þ/2

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
qm m−1ð Þ+n n−1ð Þ/2 J 2ð Þ

m,n x ∣ p, qð Þumtn:

ð36Þ

Explicitly, we get the explicit expression of ðp, qÞ-Hum-
bert functions Jð2Þm,nðx ∣ p, qÞ as the following power series

J 2ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkq1/2k 3k−1+2 m+nð Þð Þ

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

ð37Þ

equivalently, we have

J 2ð Þ
m,n x ∣ p, qð Þ = 1

p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn

× 〠
∞

k=0

−1ð Þkq1/2k 3k−1+2 m+nð Þð Þ

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k

= 1
Γp,q m + 1ð ÞΓp,q n + 1ð Þ

x
3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkq1/2k 3k−1+2 m+nð Þð Þ

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k

=
pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞

× 〠
∞

k=0

−1ð Þkq1/2 k 3k−1+2 m+nð Þð Þ

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð38Þ
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Lemma 7. The connection between generating functions of the
ðp, qÞ -Humbert functions Jð1Þm,nðx ∣ p, qÞ and Jð2Þm,nðx ∣ p, qÞ is
given by

J 1ð Þ
m,n q1/3x ∣

1
p
, 1
q

� �
= q

1/3 n+mð Þ+
n

2

 !
+

m

2

 !
J 2ð Þ
m,n x ∣ p, qð Þ:

ð39Þ
Proof. If we set that

x = q1/3x, t = q−1/3t, u = q−1/3u ð40Þ

in (19) and using e1/p,1/qðxÞ = Ep,qðxÞ, we get

F1 q1/3x ; q−1/3u, q−1/3t ∣ 1
p
, 1
q

� �
= Ep,q

xu
3

� �
Ep,q

xt
3

� �
Ep,q −

qx
3ut

� �

= 〠
∞

m,n=−∞
J 1ð Þ
m,n q1/3x ∣

1
p
, 1
q

� �
q−1/3 m+nð Þumtn

ð41Þ
and (34), we obtain (39).

Definition 8. The generating function F3ðx ; u, t ∣ p, qÞ of the
ðp, qÞ -Humbert functions of the third kind Jð3Þm,nðx ∣ p, qÞ is
given by

F3 x ; u, t ∣ p, qð Þ = ep,q
xu
3

� �
ep,q

xt
3

� �
Ep,q −

qx
3ut

� �

= 〠
∞

m,n=−∞
J 3ð Þ
m,n x ∣ p, qð Þumtn:

ð42Þ

Using (42), (11) and (12), we have

F3 x ; u, t ∣ p, qð Þ

= 〠
∞

r=0

pr r−1ð Þ/2

r½ �p,q!
xu
3

� �r
〠
∞

i=0

pi i−1ð Þ/2

i½ �p,q!
xt
3

� �i

〠
∞

k=0

qk k−1ð Þ/2

k½ �p,q!
−
qx
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkp

r

2

 !
+

i

2

 !
q

k

2

 !
qk

k½ �p,q! i½ �p,q! r½ �p,q!
x
3
� �k+i+r

ur−kti−k:

ð43Þ
Substituting r by m + k and i by n + k in the last equa-

tion, we obtain the following equality

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkp

m+k

2

 !
+

n+k

2

 !
q

k+1

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
J 3ð Þ
m,n x ∣ p, qð Þumtn:

ð44Þ
Explicitly, we get the explicit expression of ðp, qÞ-Hum-

bert functions Jð3Þm,nðx ∣ p, qÞ of the third kind as the follow-
ing power series

J 3ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
q

k+1
2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

,

ð45Þ
or, equivalently, we get

J 3ð Þ
m,n x ∣ p, qð Þ = 1

p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn

× 〠
∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
q

k+1
2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k

= 1
Γp,q m + 1ð ÞΓp,q n + 1ð Þ

x
3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
q

k+1
2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k

=
pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞

× 〠
∞

k=0

−1ð Þkp

m+k
2

 !
+

n+k
2

 !
q

k+1
2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð46Þ
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Definition 9. A fourth generating function F4ðx ; u, t ∣ p, qÞ of
the ðp, qÞ -Humbert functions Jð4Þm,nðx ∣ p, qÞ of the fourth kind
is defined by

F4 x ; u, t ∣ p, qð Þ = Ep,q
qxu
3

� �
Ep,q

qxt
3

� �
ep,q −

x
3ut

� �

= 〠
∞

m,n=−∞
J 4ð Þ
m,n x ∣ p, qð Þumtn:

ð47Þ

Using (47), (11) and (12), we have

F4 x ; u, t ∣ p, qð Þ = 〠
∞

r=0

qr r−1ð Þ/2

r½ �p,q!
qxu
3

� �r
〠
∞

i=0

qi i−1ð Þ/2

i½ �p,q!
qxt
3

� �i

� 〠
∞

k=0

pk k−1ð Þ/2

k½ �p,q!
−

x
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkq

r

2

 !
+

i

2

 !
p

k

2

 !
qr+i

k½ �p,q! i½ �p,q! r½ �p,q!

� x
3
� �k+i+r

ur−kti−k:

ð48Þ

Replace r by m + k and i by n + k to get

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkq

m+k+1

2

 !
+

n+k+1

2

 !
p

k

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
J 4ð Þ
m,n x ∣ p, qð Þumtn:

ð49Þ

Explicitly, we obtain the explicit expressions of ðp, qÞ
-Humbert functions Jð4Þm,nðx ∣ p, qÞ as

J 4ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkp

k

2

 !
q

m+k+1

2

 !
+

n+k+1

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

= 1
p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn

× 〠
∞

k=0

−1ð Þkp

k

2

 !
q

m+k+1

2

 !
+

n+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k

= 1
Γp,q m + 1ð ÞΓp,q n + 1ð Þ

x
3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkp

k

2

 !
q

m+k+1

2

 !
+

n+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k

=
pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞

× 〠
∞

k=0

−1ð Þkp

k

2

 !
q

m+k+1

2

 !
+

n+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð50Þ
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Definition 10. The generating function F5ðx ; u, t ∣ p, qÞ of the
ðp, qÞ -Humbert functions Jð5Þm,nðx ∣ p, qÞ of the fifth kind is
defined as

F5 x ; u, t ∣ p, qð Þ = ep,q
xu
3

� �
Ep,q

qxt
3

� �
Ep,q −

qx
3ut

� �

= 〠
∞

m,n=−∞
q
1
2n n−1ð Þ J 5ð Þ

m,n x ∣ p, qð Þumtn:

ð51Þ

Using (11) (12) and (51), we have

F5 x ; u, t ∣ p, qð Þ

= 〠
∞

r=0

pr r−1ð Þ/2

r½ �p,q!
xu
3

� �r
〠
∞

i=0

qi i−1ð Þ/2

i½ �p,q!

� qxt
3

� �i

〠
∞

k=0

qk k−1ð Þ/2

k½ �p,q!
−
qx
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkp

r

2

 !
q

i

2

 !
+

k

2

 !
qi+k

k½ �p,q! i½ �p,q! r½ �p,q!
x
3
� �k+i+r

ur−kti−k:

ð52Þ

Upon setting r =m + k and i − n + k in the above equa-
tion, we get

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkp

m+k

2

 !
q

n+k+1

2

 !
+

k+1

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
q

n

2

 !
J 5ð Þ
m,n x ∣ p, qð Þumtn:

ð53Þ

Explicitly, we obtain the explicit representations of ðp, qÞ
-Humbert functions Jð5Þm,nðx ∣ p, qÞ of the fifth kind as the fol-
lowing power series

J 5ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkp

m+k

2

 !
q

n+k+1

2

 !
+

k+1

2

 !
−

n

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

= 1
p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn

× 〠
∞

k=0

−1ð Þkp

m+k

2

 !
q

n+k+1

2

 !
+

k+1

2

 !
−

n

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k

= 1
Γp,q m + 1ð ÞΓp,q n + 1ð Þ

x
3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkp

m+k

2

 !
q

n+k+1

2

 !
+

k+1

2

 !
−

n

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k

=
pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞

× 〠
∞

k=0

−1ð Þkp

m+k

2

 !
q

n+k+1

2

 !
+

k+1

2

 !
−

n

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð54Þ
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Definition 11. The generating function F6ðx ; u, t ∣ p, qÞ of the
ðp, qÞ -Humbert functions Jð6Þm,nðx ∣ p, qÞ of the sixth kind is
defined by

F6 x ; u, t ∣ p, qð Þ = Ep,q
qxu
3

� �
ep,q

xt
3

� �
Ep,q −

qx
3ut

� �

= 〠
∞

m,n=−∞
q
1
2m m−1ð Þ J 6ð Þ

m,n x ∣ p, qð Þumtn:

ð55Þ

From (55), (11) and (12), we have

F6 x ; u, t ∣ p, qð Þ = 〠
∞

r=0

qr r−1ð Þ/2

r½ �p,q!
qxu
3

� �r
〠
∞

i=0

pi i−1ð Þ/2

i½ �p,q!

� xt
3

� �i

〠
∞

k=0

qk k−1ð Þ/2

k½ �p,q!
−
qx
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkp

i

2

 !
q

r

2

 !
+

k

2

 !
qr+k

k½ �p,q! i½ �p,q! r½ �p,q!
x
3
� �k+i+r

ur−kti−k:

ð56Þ

Substituting r bym + k and i by n + k in the last equation,
we get the following equality

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkp

n+k

2

 !
q

m+k+1

2

 !
+

k+1

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
q

m

2

 !
J 6ð Þ
m,n x ∣ p, qð Þumtn:

ð57Þ

Explicitly, we obtain the explicit representations of ðp, qÞ-
Humbert functions Jð6Þm,nðx ∣ p, qÞ of the sixth kind as the
following power series

J 6ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkp

n+k

2

 !
q

m+k+1

2

 !
+

k+1

2

 !
−

m

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

= 1
p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn

× 〠
∞

k=0

−1ð Þkp

n+k

2

 !
q

m+k+1

2

 !
+

k+1

2

 !
−

m

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k

= 1
Γp,q m + 1ð ÞΓp,q n + 1ð Þ

x
3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkp

n+k

2

 !
q

m+k+1

2

 !
+

k+1

2

 !
−

m

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k

=
pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞

× 〠
∞

k=0

−1ð Þkp

n+k

2

 !
q

m+k+1

2

 !
+

k+1

2

 !
−

m

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð58Þ
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Definition 12. The generating function F7ðx ; u, t ∣ p, qÞ of the
ðp, qÞ -Humbert functions Jð7Þm,nðx ∣ p, qÞ of the seventh kind is
defined by

F7 x ; u, t ∣ p, qð Þ = ep,q
xu
3

� �
Ep,q

qxt
3

� �
ep,q −

x
3ut

� �

= 〠
∞

m,n=−∞
J 7ð Þ
m,n x ∣ p, qð Þumtn:

ð59Þ

From (11), (12) and ((59), we have

F7 x ; u, t ∣ p, qð Þ = 〠
∞

r=0

pr r−1ð Þ/2

r½ �p,q!
xu
3

� �r
〠
∞

i=0

qi i−1ð Þ/2

i½ �p,q!

� qxt
3

� �i

〠
∞

k=0

pk k−1ð Þ/2

k½ �p,q!
−

x
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkq

i

2

 !
p

r

2

 !
+

k

2

 !
qi

k½ �p,q! i½ �p,q! r½ �p,q!
x
3
� �k+i+r

ur−kti−k:

ð60Þ

Replacing r bym + k and i by n + k in the above equation,
we obtain the following equality

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkq

n+k+1

2

 !
p

m+k

2

 !
+

k

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
J 7ð Þ
m,n x ∣ p, qð Þumtn:

ð61Þ

Explicitly, we get the explicit expressions of ðp, qÞ-Hum-
bert functions Jð7Þm,nðx ∣ p, qÞ of the seventh kind as the follow-
ing power series

J 7ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkq

n+k+1
2

 !
p

m+k
2

 !
+

k

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

J 7ð Þ
m,n x ∣ p, qð Þ = 1

p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn

× 〠
∞

k=0

−1ð Þkp

m+k

2

 !
+

k

2

 !
q

n+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k

= 1
Γp,q m + 1ð ÞΓp,q n + 1ð Þ

x
3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkp

m+k

2

 !
+

k

2

 !
q

n+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k

=
pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞

× 〠
∞

k=0

−1ð Þkp

m+k

2

 !
+

k

2

 !
q

n+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð62Þ
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Definition 13. The generating function F8ðx ; u, t ∣ p, qÞ of the
ðp, qÞ -Humbert functions Jð8Þm,nðx ∣ p, qÞ of the eighth kind is
defined by

F8 x ; u, t ∣ p, qð Þ = Ep,q
qxu
3

� �
ep,q

xt
3

� �
ep,q −

x
3ut

� �

= 〠
∞

m,n=−∞
J 8ð Þ
m,n x ∣ p, qð Þumtn:

ð63Þ

From (11), (12) and (63), we have

F8 x ; u, t ∣ p, qð Þ = 〠
∞

r=0

qr r−1ð Þ/2

r½ �p,q!
qxu
3

� �r
〠
∞

i=0

pi i−1ð Þ/2

i½ �p,q!

� xt
3

� �i

〠
∞

k=0

pk k−1ð Þ/2

k½ �p,q!
−

x
3ut

� �k

= 〠
∞

i,r,k=0

−1ð Þkq

r

2

 !
p

i

2

 !
+

k

2

 !
qr

k½ �p,q! i½ �p,q! r½ �p,q!
x
3
� �k+i+r

ur−kti−k:

ð64Þ

Substituting r by m + k and i by n + k in the above equa-
tion, we get the following equality

〠
∞

m,n=−∞
〠
∞

k=0

−1ð Þkq

m+k+1

2

 !
p

n+k

2

 !
+

k

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

umtn

= 〠
∞

m,n=−∞
J 8ð Þ
m,n x ∣ p, qð Þumtn:

ð65Þ

Explicitly, we obtain the explicit expressions of ðp, qÞ-
Humbert functions Jð6Þm,nðx ∣ p, qÞ of the eighth kind as the
following power series

J 8ð Þ
m,n x ∣ p, qð Þ = 〠

∞

k=0

−1ð Þkq

m+k+1
2

 !
p

n+k
2

 !
+

k

2

 !

k½ �p,q! m + k½ �p,q! n + k½ �p,q!
x
3
� �m+n+3k

:

J 8ð Þ
m,n x ∣ p, qð Þ = 1

p, qð Þ ; p, qð Þð Þn p, qð Þ ; p, qð Þð Þn

× 〠
∞

k=0

−1ð Þkp

n+k

2

 !
+

k

2

 !
q

m+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k

= 1
Γp,q m + 1ð ÞΓp,q n + 1ð Þ

x
3 p − qð Þ
� �m+n

× 〠
∞

k=0

−1ð Þkp

n+k

2

 !
+

k

2

 !
q

m+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �3k

=
pm+1, qm+1� �

; p, qð Þ� �
∞ pn+1, qn+1
� �

; p, qð Þ� �
∞

p, qð Þ ; p, qð Þð Þ∞ p, qð Þ ; p, qð Þð Þ∞

× 〠
∞

k=0

−1ð Þkp

n+k

2

 !
+

k

2

 !
q

m+k+1

2

 !

p, qð Þ ; p, qð Þð Þk pm+1, qm+1ð Þ ; p, qð Þð Þk pn+1, qn+1ð Þ ; p, qð Þð Þk
p − qð Þx
3

� �m+n+3k
:

ð66Þ
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Furthermore, we show the relations between generating
functions for the ðp, qÞ-Humbert functions.

Theorem 14. The connections between generating functions
of the ðp, qÞ -Humbert functions of all kinds are given by

F4 x ; u, t ∣ p, qð Þ = F3 qx ; u, t ∣ 1
p
, 1
q

� �
,

F7 x ; u, t ∣ p, qð Þ = F6 qx ; u, t ∣ 1
p
, 1
q

� � ð67Þ

and

F8 x ; u, t ∣ p, qð Þ = F5 qx ; u, t ∣ 1
p
, 1
q

� �
: ð68Þ

Further examples can be discussed, but are omitted for the
sake of conciseness.

Theorem 15. (Multiplication theorem) The links between the
generating functions for the ðp, qÞ -Humbert functions of all
kinds

F1 x ; u, t ∣ p, qð Þ = F3 x ; u, t ∣ p, qð Þep,q
qx
3ut

� �
ep,q −

x
3ut

� �
,

F3 x ; u, t ∣ p, qð Þ = F1 x ; u, t ∣ p, qð ÞEp,q −
qx
3ut

� �
Ep,q

x
3ut

� �
,

F3 x ; u, t ∣ p, qð Þ = F6 x ; u, t ∣ p, qð Þep,q
xu
3

� �
ep,q −

qxu
3

� �
,

F6 x ; u, t ∣ p, qð Þ = F3 x ; u, t ∣ p, qð ÞEp,q −
xu
3

� �
Ep,q

qxu
3

� �
,

F5 x ; u, t ∣ p, qð Þ = F7 x ; u, t ∣ p, qð ÞEp,q −
qx
3ut

� �
Ep,q

x
3ut

� �
,

F7 x ; u, t ∣ p, qð Þ = F5 x ; u, t ∣ p, qð Þep,q
qx
3ut

� �
ep,q −

x
3ut

� �
,

F6 x ; u, t ∣ p, qð Þ = F8 x ; u, t ∣ p, qð ÞEp,q −
qx
3ut

� �
Ep,q

x
3ut

� �
,

F8 x ; u, t ∣ p, qð Þ = F6 x ; u, t ∣ p, qð Þep,q
qx
3ut

� �
ep,q −

x
3ut

� �
,

F7 x ; u, t ∣ p, qð Þ = F1 x ; u, t ∣ p, qð ÞEp,q
−xt
3

� �
Ep,q

qxt
3

� �
,

F1 x ; u, t ∣ p, qð Þ = F7 x ; u, t ∣ p, qð Þep,q
xt
3

� �
ep,q −

qxt
3

� �

F1 x ; u, t ∣ p, qð Þ = F8 x ; u, t ∣ p, qð Þep,q −
qxu
3

� �
Ep,q

xu
3

� �
,

ð69Þ

F8 x ; u, t ∣ p, qð Þ = F1 x ; u, t ∣ p, qð ÞEp,q
qxu
3

� �
ep,q −

xu
3

� �
:

ð70Þ

3. The Recurrence Relations

In this section, we show the significant interesting recurrence
relations for the ðp, qÞ-Humbert functions of the first kind so
far introduced can be established with respect to x on their
generating functions in different ways.

Theorem 16. The ðp, qÞ -Humbert functions Jð1Þm,nðx ∣ p, qÞ sat-
isfy the recurrence relations

J 1ð Þ
m−1,n px ∣ p, qð Þ + pn−2m−1/3q2m−n+1/3 J 1ð Þ

m,n−1 p2/3q1/3x ∣ p, q
� �

− p−m+n+2/3qm+n+2/3 J 1ð Þ
m+1,n+1 p1/3q2/3x ∣ p, q

� �
= 3Dp,q J 1ð Þ

m,n x ∣ p, qð Þ
n o

,

ð71Þ

pm−2n−1/3q2n−m+1/3 J 1ð Þ
m−1,n p2/3q1/3x ∣ p, q

� �
+ J 1ð Þ

m,n−1 px ∣ p, qð Þ
− p−m+n+2/3qm+n+2/3 J 1ð Þ

m+1,n+1 p1/3q2/3x ∣ p, q
� �

= 3Dp,q J 1ð Þ
m,n x ∣ p, qð Þ

n o
,

ð72Þ

J 1ð Þ
m−1,n px ∣ p, qð Þ + p2n−m−2/3qm−2n+2/3 J 1ð Þ

m,n−1 p1/3q2/3x ∣ p, q
� �

− pn−2m−1/3q2m−n+1/3 J 1ð Þ
m+1,n+1 p2/3q1/3x ∣ p, q

� �
= 3Dp,q J 1ð Þ

m,n x ∣ p, qð Þ
n o

,

ð73Þ

p2n−m−2/3qn−2m+1/3 J 1ð Þ
m−1,n p1/3q2/3x ∣ p, q

� �
+ J 1ð Þ

m,n−1 px ∣ p, qð Þ
− pm−2n−1/3q2n−m+1/3 J 1ð Þ

m+1,n+1 p2/3q1/3x ∣ p, q
� �

= 3Dp,q J 1ð Þ
m,n x ∣ p, qð Þ

n o
,

ð74Þ

pm+n−1/3q1−m−n/3 J 1ð Þ
m−1,n p2/3q1/3x ∣ p, q

� �
+ p2n−m−2/3qm−2n+2/3 J 1ð Þ

m,n−1

� p1/3q2/3x ∣ p, q
� �

− J 1ð Þ
m+1,n+1 px ∣ p, qð Þ

= 3Dp,q J 1ð Þ
m,n x ∣ p, qð Þ

n o
ð75Þ

p2m−n−2/3qn−2m+2/3 J 1ð Þ
m−1,n p1/3q2/3x ∣ p, q

� �
+ pm+n−1/3q1−m−n/3 J 1ð Þ

m,n−1

� p2/3q1/3x ∣ p, q
� �

− J 1ð Þ
m+1,n+1 px ∣ p, qð Þ

= 3Dp,q J 1ð Þ
m,n x ∣ p, qð Þ

n o
:

ð76Þ
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Proof. By applying the ðp, qÞ-derivative operator on both
sides of Eq. (19), using (15) and (18), we get

1
3

�
uep,q

pxu
3

� �
ep,q

pxt
3

� �
ep,q −

px
3ut

� �

+ tep,q
qxu
3

� �
ep,q

pxt
3

� �
ep,q −

px
3ut

� �

−
1
ut

ep,q
qxu
3

� �
ep,q

qxt
3

� �
ep,q −

px
3ut

� �	

= 〠
∞

m,n=−∞
Dp,q J

1ð Þ
m,n x ∣ p, qð Þumtn:

ð77Þ

Taking x = p2/3q1/3x, u = p−2/3q2/3u and t = p1/3q−1/3t in
Eq. (19), then we get the result

p1/3q−1/3tep,q
qxu
3

� �
ep,q

pxt
3

� �
ep,q −

px
3ut

� �

= 〠
∞

m,n=−∞
pn−2m/3q2m−n/3 J 1ð Þ

m,n−1 p2/3q1/3x ∣ p, q
� �

umtn:

ð78Þ

Using the generating function (19), and taking x = p1/3

q2/3x, u = p−1/3q1/3u and t = p−1/3q1/3t, we have

1
p−2/3q2/3ut

ep,q
qxu
3

� �
ep,q

qxt
3

� �
ep,q −

px
3ut

� �

= 〠
∞

m,n=−∞
p− m+n/3ð Þqm+n/3 J 1ð Þ

m+1,n+1 p1/3q2/3x ∣ p, q
� �

umtn:

ð79Þ

Using Eqs. (77), (78) and (79), we give the following rela-
tion

1
3 〠

∞

m,n=−∞
J 1ð Þ
m,n px ∣ p, qð Þum+1tn

"

+ 〠
∞

m,n=−∞
p2m−n−1/3q2m−n+1/3 J 1ð Þ

m,n−1 p2/3q1/3x ∣ p, q
� �

umtn

− 〠
∞

m,n=−∞
p2−m−n/3qm+n+2/3 J 1ð Þ

m+1,n+1 p1/3q2/3x ∣ p, q
� �

umtn
#

= 〠
∞

m,n=−∞
Dp,qJ

1ð Þ
m,n x ∣ p, qð Þumtn:

ð80Þ

Thus, we obtain the recurrence relation (71). Similarly,
the other equations of this theorem can be proved.

Theorem 17. The ðp, qÞ -Humbert functions Jð1Þm,nðx ∣ p, qÞ
have the following recurrence relations

J 1ð Þ
m−1,n px ∣ p, qð Þ + pn−2m−1/3q2m−n+1/3 J 1ð Þ

m,n−1 p2/3q1/3x ∣ p, q
� �

= pm−2n−1/3q2n−m+1/3 J 1ð Þ
m−1,n p2/3q1/3x ∣ p, q

� �
+ J 1ð Þ

m,n−1 px ∣ p, qð Þ,
ð81Þ

J 1ð Þ
m−1,n px ∣ p, qð Þ + p2n−m−2/3qm−2n+2/3 J 1ð Þ

m,n−1 p1/3q2/3x ∣ p, q
� �

− pn−2m−1/3q2m−n+1/3 J 1ð Þ
m+1,n+1 p2/3q1/3x ∣ p, q

� �
= p2m−n−2/3qn−2m+2/3 J 1ð Þ

m−1,n p1/3q2/3x ∣ p, q
� �

+ J 1ð Þ
m,n−1 px ∣ p, qð Þ

− pm−2n−1/3q2n−m+1/3 J 1ð Þ
m+1,n+1 p2/3q1/3x ∣ p, q

� �
,

ð82Þ

pm+n−1/3q1−m−n/3 J 1ð Þ
m−1,n p2/3q1/3x ∣ p, q

� �
+ p2n−m−2/3qm−2n+2/3 J 1ð Þ

m,n−1 p1/3q2/3x ∣ p, q
� �

= p2m−n−2/3qn−2m+2/3 J 1ð Þ
m−1,n p1/3q2/3x ∣ p, q

� �
+ pm+n−1/3q1−m−n/3 J 1ð Þ

m,n−1 p2/3q1/3x ∣ p, q
� �

,

ð83Þ

pn−2m−1/3q2m−n+1/3 J 1ð Þ
m,n−1 p2/3q1/3x ∣ p, q

� �
− p− m+n+2/3ð Þqm+n+2/3 J 1ð Þ

m+1,n+1 p1/3q2/3x ∣ p, q
� �

= p2n−m−2/3qm−2n+2/3 J 1ð Þ
m,n−1 p1/3q2/3x ∣ p, q

� �
− pn−2m−1/3q2m−n+1/3 J 1ð Þ

m+1,n+1 p2/3q1/3x ∣ p, q
� �

ð84Þ

pm−2n−1/3q2n−m+1/3 J 1ð Þ
m−1,n p2/3q1/3x ∣ p, q

� �
− p− m+n+2/3ð Þqm+n+2/3 J 1ð Þ

m+1,n+1 p1/3q2/3x ∣ p, q
� �

= p2m−n−2/3qn−2m+2/3 J 1ð Þ
m−1,n p1/3q2/3x ∣ p, q

� �
− pm−2n−1/3q2n−m+1/3 J 1ð Þ

m+1,n+1 p2/3q1/3x ∣ p, q
� �

:

ð85Þ

Proof. By using (71) and (72), we obtain (81). In similar way,
the Eqs. (82), (83), (84) and (85) can be proven.

Theorem 18. The ðp, qÞ -Humbert functions Jð1Þm,nðx ∣ p, qÞ sat-
isfy the following recurrence relations

3
n½ �p,q
x

J 1ð Þ
m,n x ∣ p, qð Þ = pm+n−1/3 J 1ð Þ

m,n−1 p− 1/3ð Þx ∣ p, q
� �

+ pm+n−1/3qnJ 1ð Þ
m+1,n+1 p− 1/3ð Þx ∣ p, q

� �
,

ð86Þ

3
m½ �p,q
x

J 1ð Þ
m,n x ∣ p, qð Þ = pm+n−1/3 J 1ð Þ

m−1,n p− 1/3ð Þx ∣ p, q
� �

+ pm+n−1/3qmJ 1ð Þ
m+1,n+1 p− 1/3ð Þx ∣ p, q

� �
,

ð87Þ
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3
n½ �p,q
x

J 1ð Þ
m,n x ∣ p, qð Þ = qm+n−1/3 J 1ð Þ

m,n−1 q− 1/3ð Þx ∣ p, q
� �

+ qm+n−1/3pnJ 1ð Þ
m+1,n+1 q− 1/3ð Þx ∣ p, q

� �
ð88Þ

3
m½ �p,q
x

J 1ð Þ
m,n x ∣ p, qð Þ = qm+n−1/3 J 1ð Þ

m−1,n q− 1/3ð Þx ∣ p, q
� �

+ qm+n−1/3pmJ 1ð Þ
m+1,n+1 q− 1/3ð Þx ∣ p, q

� �
:

ð89Þ

Proof. Multiplying both sides of Eq. (22) by ½n�p,q and noting
that

n½ �p,q = p−k n + k½ �p,q − p−kqn k½ �p,q, ð90Þ

and, we get

n½ �p,q J 1ð Þ
m,n x ∣ p, qð Þ

= 〠
∞

k=0

−1ð Þk n½ �p,q
k½ �p,q! m + k½ �p,q! n + k½ �p,q!

x
3
� �m+n+3k

= 〠
∞

k=0

−1ð Þk p−k n + k½ �p,q − p−kqn k½ �p,q
� �
k½ �p,q! m + k½ �p,q! n + k½ �p,q!

x
3
� �m+n+3k

= 〠
∞

k=0

−1ð Þkp−k n + k½ �p,q
k½ �p,q! m + k½ �p,q! n + k½ �p,q!

x
3
� �m+n+3k

− 〠
∞

k=0

−1ð Þkp−kqn k½ �p,q
k½ �p,q! m + k½ �p,q! n + k½ �p,q!

x
3
� �m+n+3k

= 〠
∞

k=0

−1ð Þkp−k
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

x
3
� �m+n+3k

− 〠
∞

k=0

−1ð Þkp−kqn
k − 1½ �p,q! m + k½ �p,q! n + k½ �p,q!

x
3
� �m+n+3k

= pm+n−1/3 x
3〠

∞

k=0

−1ð Þk
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

� p−1/3x
3

� �m+n−1+3k
+ pm+n−1/3qn

x
3〠

∞

k=0

� −1ð Þk
k½ �p,q! m + k + 1½ �p,q! n + k + 1½ �p,q!

p−1/3x
3

� �m+n+3k+2
:

ð91Þ

Using (22) and (91), we obtain (86). Similarly, we can
prove (87), (88) and (89).

Theorem 19. The ðp, qÞ -Humbert functions Jð1Þm,nðx ∣ p, qÞ
have the following recurrence relations

q− m+n−1/3ð Þ J 1ð Þ
m,n−1 q1/3x ∣ p, q

� �
= p− m+n−1/3ð Þ J 1ð Þ

m,n−1 p1/3x ∣ p, q
� �

+ p − qð Þ x
3
J 1ð Þ
m+1,n x ∣ p, qð Þ,

ð92Þ

q− m+n−1/3ð Þ J 1ð Þ
m−1,n q1/3x ∣ p, q

� �
= p− m+n−1/3ð Þ J 1ð Þ

m−1,n p1/3x ∣ p, q
� �

+ p − qð Þ x
3
J 1ð Þ
m,n+1 x ∣ p, qð Þ,

ð93Þ

q− m+n−2/3ð Þ J 1ð Þ
m−1,n−1 q1/3x ∣ p, q

� �
= p− m+n−2/3ð Þ J 1ð Þ

m−1,n−1 p1/3x ∣ p, q
� �

+ p − qð Þ x
3
J 1ð Þ
m,n x ∣ p, qð Þ,

ð94Þ

p− m+n−1/3ð Þ J 1ð Þ
m,n−1 p1/3x ∣ p, q

� �
= q− m+n−1/3ð Þ J 1ð Þ

m,n−1 q1/3x ∣ p, q
� �

− p − qð Þ x
3
J 1ð Þ
m+1,n x ∣ p, qð Þ,

ð95Þ

p− m+n−1/3ð Þ J 1ð Þ
m−1,n p1/3x ∣ p, q

� �
= q− m+n−1/3ð Þ J 1ð Þ

m−1,n q1/3x ∣ p, q
� �

− p − qð Þ x
3
J 1ð Þ
m,n+1 x ∣ p, qð Þ

ð96Þ

p− m+n−2/3ð Þ J 1ð Þ
m−1,n−1 p1/3x ∣ p, q

� �
= q− m+n−2/3ð Þ J 1ð Þ

m−1,n−1 q1/3x ∣ p, q
� �

− p − qð Þ x
3
J 1ð Þ
m,n x ∣ p, qð Þ:

ð97Þ

Proof. By (22), we consider

q− m+n−1/3ð Þ J 1ð Þ
m,n−1 q1/3x ∣ p, q

� �
= q− m+n−1/3ð Þ 〠

∞

k=0

−1ð Þk
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

� xq1/3

3

� �m+n−1+3k

=〠
∞

k=0

−1ð Þk
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

x
3
� �m+n−1+3k

qk:

ð98Þ

Using the following identity

qk = pk − p − qð Þ k½ �p,q, ð99Þ
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we get

〠
∞

k=0

−1ð Þk
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

x
3
� �m+n−1+3k

qk

= 〠
∞

k=0

−1ð Þk
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

x
3
� �m+n−1+3k

� pk − p − qð Þ k½ �p,q
� �

= 〠
∞

k=0

−1ð Þkpk
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

x
3
� �m+n−1+3k

− p − qð Þ〠
∞

k=0

−1ð Þk k½ �p,q
k½ �p,q! m + k½ �p,q! n + k − 1½ �p,q!

x
3
� �m+n−1+3k

= p− m+n−1/3ð Þ J 1ð Þ
m,n−1 p1/3x ∣ p, q

� �
+ p − qð Þ x3 J

1ð Þ
m+1,n x ∣ p, qð Þ:

ð100Þ

Thus, the Eq. (92) is proved. In the same way, equations
(93), (94), (95), (96) and (97) can be proved.

Similar recurrence relations can be achieved by using the
generating function; in fact, by differentiating with respect to
u and v, separately, we have:

Theorem 20. The ðp, qÞ -Humbert functions satisfy the follow-
ing properties:

x
3

h
pm−2n−2/3 J 1ð Þ

m,n p2/3x ∣ p, q
� �

+ p− m+n+1/3ð Þq2m−n−1/3 J 1ð Þ
m+2,n+1 q1/3x ∣ p, q

� �i
= m + 1½ �p,q J

1ð Þ
m+1,n x ∣ p, qð Þ,

ð101Þ

x
3

h
pm−2n−2/3 J 1ð Þ

m+2,n+1 p2/3x ∣ p, q
� �

+ p2m−n−1/3q− m+n+1/3ð Þ J 1ð Þ
m,n p1/3q1/3x ∣ p, q
� �i

= m + 1½ �p,q J
1ð Þ
m+1,n x ∣ p, qð Þ,

ð102Þ

x
3

h
pn−2m−2/3 J 1ð Þ

m,n p2/3x ∣ p, q
� �

+ p− n+m+1/3ð Þq2n−m−1/3 J 1ð Þ
m+1,n+2 p1/3q1/3x ∣ p, q

� �i
= n + 1½ �p,qJ

1ð Þ
m,n+1 x ∣ p, qð Þ

ð103Þ

x
3

h
pn−2m−2/3 J 1ð Þ

m+1,n+2 p2/3x ∣ p, q
� �

+ p2n−m−1/3q− m+n+1/3ð Þ J 1ð Þ
m,n p1/3q1/3x ∣ p, q
� �i

= n + 1½ �p,q J
1ð Þ
m,n+1 x ∣ p, qð Þ:

ð104Þ

Proof.Differentiating with respect to u in (19), using (15) and
(17), we get

x
3

�
ep,q

pxu
3

� �
ep,q

xt
3

� �
ep,q −

px
3ut

� �

+ 1
u2t

ep,q
qxu
3

� �
ep,q

xt
3

� �
ep,q −

px
3ut

� �	

= 〠
∞

m,n=−∞
m½ �p,q J 1ð Þ

m,n x ∣ p, qð Þum−1tn:

ð105Þ

Taking x = p2/3x, u = p1/3u and t = p−2/3t, we have

p2/3x
3 ep,q

pxu
3

� �
ep,q

xt
3

� �
ep,q −

px
3ut

� �

= 〠
∞

m,n=−∞
pm−2n/3 J 1ð Þ

m,n p2/3x ∣ p, q
� �

umtn:

ð106Þ

Setting x = p1/3q1/3x, u = p−1/3q2/3u and t = p−1/3q−1/3t,
we get

p4/3x
3q2/3u2t ep,q

qxu
3

� �
ep,q

xt
3

� �
ep,q −

px
3ut

� �

= 〠
∞

m,n=−∞
p− m+n/3ð Þq2m−n/3 J 1ð Þ

m+2,n+1 p1/3q1/3x ∣ p, q
� �

umtn:

ð107Þ

Using (105) and by means of the results (106) and
(107), we arrive at the following equality:

x
3

"
〠
∞

m,n=−∞
pm−2n−2/3 J 1ð Þ

m,n p2/3x ∣ p, q
� �

umtn

+ 〠
∞

m,n=−∞
p− m+n+1/3ð Þq2m−n−1/3 J 1ð Þ

m+2,n+1 q1/3x ∣ p, q
� �

umtn
#

� 〠
∞

m,n=−∞
m + 1½ �p,q J

1ð Þ
m+1,n x ∣ p, qð Þumtn:

ð108Þ

Thus, we obtain the result (101). Proceeding on paral-
lel lines as mentioned above, the relations (102), (103) and
(104) are immediate consequences of the definitions (19),
(15) and (17).

4. Conclusion and Perspectives

The ðp, qÞ-Humbert functions or the twin-basic Humbert
functions have various applications in the field of mathemat-
ical physics and engineering sciences and so on. There are
some results that have been noticed in this study. We have
seen some particular cases of ðp, qÞ-Humbert functions of
the first kind that can be introduced belonging to the family
of ðp, qÞ-Humbert functions. The ðp, qÞ-Humbert functions
of the first kind allow us to describe many aspects of compu-
tational analysis. It is also interesting to explore how these
classes of ðp, qÞ-Humbert functions of the first kind can be
described in terms of ðp, qÞ-Humbert functions of the
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different types. Many properties of these new transforms
have been proved and should be a starting point of many
other works. For this, the researchers recommended to study
these other seven families of ðp, qÞ-Humbert functions from
these extensions as a parallel study of this work. Further work
will be carried out in the next future in other fields of interest.

Data Availability

No data were used to support this paper.

Conflicts of Interest

The author of this paper declare that they have no conflicts of
interest.

Funding

The author received no specific funding for this work.

Acknowledgments

The author thanks the anonymous referees for the careful
revision of the manuscript. Their comments and suggestions
have substantially improved the quality of the paper.

References

[1] M. Acikgoz, S. Araci, and U. Duran, “Some ðp, qÞ-analogues of
Apostol type numbers and polynomials,” Acta et Commenta-
tiones Universitatis Tartuensis de Mathematica, vol. 23, no. 1,
pp. 37–50, 2019.

[2] S. Araci, U. Duran, M. Acikgoz, and H. M. Srivastava, “A cer-
tain ðp, qÞ–derivative operator and associated divided differ-
ences,” Journal of Inequalities and Applications, vol. 2016,
no. 1, 2016.

[3] I. M. Burban and A. U. Klimyk, “P,Q-differentiation, ðP,QÞ
-integration, and ðP,QÞ-hypergeometric functions related to
quantum groups,” Integral Transforms and Special Functions,
vol. 2, no. 1, pp. 15–36, 1994.

[4] V. Kac and P. Cheung, Quantum calculus, Springer, 2001.
[5] C. Kızılateş, N. Tuğlu, and B. Çekim, “On the ðp, qÞ–Cheby-

shev Polynomials and Related Polynomials,” Mathematics,
vol. 7, no. 2, p. 136, 2019.

[6] V. Singh, M. A. Khan, and A. H. Khan, “The characterization
properties and basic hypergeometric functions of ðp, qÞ-ana-
logue,” Palestine Journal of Mathematics, vol. 9, pp. 220–230,
2020.

[7] U. Duran, M. Acikgoz, and S. Araci, “Unified ðp, qÞ-analog of
Apostol type polynomials of order α,” Univerzitet u Nišu,
vol. 32, no. 1, pp. 1–9, 2019.

[8] U. Duran, M. Acikgoz, A. Esi, and S. Araci, “A note on the
ðp, qÞ-Hermite polynomials,” Applied Mathematics & Infor-
mation Sciences, vol. 12, no. 1, pp. 227–231, 2018.

[9] U. Duran, M. Acikgoz, and S. Araci, “On ðp, qÞ-Bernoulli,
ðp, qÞ-Euler and ðp, qÞ-Genocchi polynomials,” Journal of
Computational and Theoretical Nanoscience, vol. 13, no. 11,
pp. 7833–7846, 2016.

[10] U. Duran, M. Acikgoz, and S. Araci, “On some polynomials
derived from ðp, qÞ-Calculus,” Journal of Computational and
Theoretical Nanoscience, vol. 13, no. 11, pp. 7903–7908, 2016.

[11] J. Jagannathan, “ðP,QÞ-Special functions, Special Functions
and Differential Equations,” in Proceedings of a Workshop held
at The Institute of Mathematical Sciences, pp. 13–24, Matras,
India, January, 1997.

[12] R. Jagannathan and K. Srinivasa Rao, “Two-parameter quan-
tum algebras, twin- basic numbers, and associated generalized
hypergeometric series,” 2006, https://arxiv.org/abs/0602613.

[13] V. Sahai and S. Yadav, “Representations of two parameter
quantum algebras and p, q-special functions,” Journal of Math-
ematical Analysis and Applications, vol. 335, no. 1, pp. 268–
279, 2007.

[14] P. N. Sadjang, “On two ðp, qÞ-analogues of the Laplace trans-
form,” Journal of Difference Equations and Applications,
vol. 23, no. 9, pp. 1–23, 2017.

[15] P. N. Sadjang, “On the Fundamental Theorem of ðp, qÞ-Cal-
culus and Some ðp, qÞ-Taylor Formulas,” Results in Mathe-
matics, vol. 73, no. 1, p. 39, 2018.

[16] P. N. Sadjang, “On ðp, qÞ-Appell polynomials,” Analysis Math-
ematica, vol. 45, no. 3, pp. 583–598, 2019.

[17] M. Mursaleen, K. J. Ansari, and A. Khan, “On ðp, qÞ-analogue
of Bernstein operators,” Applied Mathematics and Computa-
tion, vol. 266, pp. 874–882, 2015, Erratum: 276 (2016), pp.
70-71.

[18] M. Mursaleen, F. Khan, and A. Khan, “Approximation by
ðp, qÞ-Lorentz polynomials on a compact disk,” Complex
Analysis and Operator Theory, vol. 10, no. 8, pp. 1725–1740,
2016.

[19] K. Khan and D. K. Lobiyal, “Bèzier curves based on Lupaş
ðp, qÞ-analogue of Bernstein functions in CAGD,” Journal of
Computational and Applied Mathematics, vol. 317, pp. 458–
477, 2017.

[20] B. R. Pasricha, “Some integrals involving Humbert function,”
Proceedings of the Indian Academy of Sciences - Section A,
vol. 18, no. 1, pp. 11–19, 1943.

[21] R. S. Varma, “On Humbert functions,” The Annals of Mathe-
matics, vol. 42, no. 2, pp. 429–436, 1941.

[22] H. M. Srivastava and A. Shehata, “A family of new q-Exten-
sions of the Humbert functions,” European Journal of Mathe-
matical Sciences, vol. 4, no. 1, pp. 13–26, 2018.

[23] H. M. Srivastava, G. Yasmin, A. Muhyi, and S. Araci, “Certain
results for the twice-iterated 2D q-Appell polynomials,” Sym-
metry, vol. 11, no. 10, p. 1307, 2019.

[24] G. Brodimas, A. Jannussis, and R. Mignani, Two-parameter
quantum groups, vol. 820, Universita di Roma Preprint, 1991.

[25] R. Chakrabarti and R. Jagannathan, “A ðp, qÞ-oscillator reali-
zation of two-parameter quantum algebras,” Journal of Physics
A Mathematical and General, vol. 24, no. 13, pp. L711–L718,
1991.

16 Journal of Function Spaces

https://arxiv.org/abs/0602613


Research Article
On Transformation Involving Basic Analogue of Multivariable
H-Function

Dinesh Kumar ,1 Frédéric Ayant,2,3 and Jessada Tariboon 4

1Department of Applied Sciences, College of Agriculture, Sumerpur-Pali, Agriculture University of Jodhpur, Jodhpur 342007,
Raj, India
2College Jean L’herminier, Allée des Nymph eas, 83500 La Seyne-sur-Mer, France
3411 Avenue Joseph Raynaud Le parc Fleuri, Bat. B, Six-Fours-les-Plages, 83140 Var, France
4Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science,
King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Correspondence should be addressed to Jessada Tariboon; jessada.t@sci.kmutnb.ac.th

Received 22 March 2020; Accepted 27 April 2020; Published 28 May 2020

Academic Editor: Serkan Araci

Copyright © 2020 Dinesh Kumar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this article, fractional order q-integrals and q-derivatives involving a basic analogue of multivariable H-function have been
obtained. We give an application concerning the basic analogue of multivariable H-function and q-extension of the Leibniz rule
for the fractional q-derivative for a product of two basic functions. We also give the corollary concerning basic analogue of
multivariable Meijer’s G-function as a particular case of the main result.

1. Introduction and Preliminaries

The q-calculus is not of recent appearance, it was introduced
in the twenties of last century. In 1910, Jackson [1] intro-
duced and developed q-calculus systematically. The frac-
tional q-calculus is the expansion of ordinary fractional
calculus in the q-theory. Recently, there was a significant
work done by many authors in the area of q-calculus due to
lots of applications in mathematics, statistics, and physics.

Since special functions play significant roles inmathemat-
ical physics, it is persuaded to think that some deformation of
the ordinary special functions based on the q-calculus can also
play comparable roles in this area of research. Further, many
authors have derived images of various q-special functions
under fractional q-calculus operators; see, for example,
[2–7], and may more. The q-fractional integrals and deriva-
tives was firstly studied by Al-Salam [8] (see also, [9]). Many
researchers have used these operators to evaluate fractional
q-calculus formulas for various special function, general
class of q-polynomials, basic analogue of Fox’s H-function,

fractional q-calculus formulas for various special function,
and etc. One may refer to the recent work [2–7, 10–14] on
fractional q-calculus. Throughout this article, let ℤ,ℂ,ℝ,ℝ+,
and N be the sets of integers, complex numbers, real num-
bers, positive real numbers, and positive integers, respec-
tively, and let. ℕ0 ≔ℕ ∪ f0g.

The objective of this article is to establish fractional
q-integral and q-derivative of Riemann-Liouville type
involving a basic analogue of multivariable H-function.
We also give an application of q-Leibniz formula.

In the q-calculus theory, for a real parameter q ∈ℝ+ \ f1g,
we have a q-real number ½a�q

and q-shifted factorial (q-analogue of the Pochhammer
symbol) as given by

a½ �q
1 − qa

1 − q
, a ; qð Þn =

Yn−1
i=1

1 − aqi
� �

a ∈ℝ, n ∈ℕ ∪ ∞f gð Þ:

ð1Þ
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The q-Factorial function is defined by

a ; qð Þn =
Y 1, if n = 0

n = 1
k = 0

1 − aqk
� �

, if n ∈ℕ:

8><
>: ð2Þ

Its extension is

a ; qð Þn =
a ; qð Þ∞
aqn ; qð Þ∞ n ∈ℤð Þ, ð3Þ

which can be elaborated to n = α ∈ℂ, given by

a ; qð Þα =
a ; qð Þ∞
aqn ; qð Þ∞ α ∈ℂ ; qj j < 1ð Þ, ð4Þ

where the principal value of qα is taken.
In terms of the q-gamma function, (2) can be written as

a ; qð Þn =
Γq a + nð Þ 1 − qð Þn

Γq að Þ a ∈ℝ \ 0,−1,−2,f gð Þ, ð5Þ

where the q-gamma function [15] is given by

Γq að Þ = q ; qð Þ∞ 1 − qð Þ1−a
qa ; qð Þ∞

= q ; qð Þa−1
1 − qð Þa−1 qj j < 1 ; a ∈ℝ \ 0,−1,−2,f gð Þ,

ð6Þ

obviously,

Γq a + 1ð Þ = a½ �qΓq að Þq! qj j < 1ð Þ: ð7Þ

The q-analogue of the familiar Riemann-Liouville
fractional integral operator of a function f ðxÞis defined by
(see Al-Salam [8])

Iμq f xð Þf g = 1
Γq μð Þ

ð x

0
x − tqð Þμ−1 f tð Þdqt R μð Þ > 0, qj j < 1ð Þ,

ð8Þ

also q-analogue of the power function is defined as

x − yð Þυ = xυ
y
x
; q

� �
υ
= xυ

Y∞
n=0

1 − y/xð Þqn
1 − y/xð Þqn+υ

� �
, x ≠ 0: ð9Þ

The basic integral is given by (see Gasper and Rahman
[15])

ð x

0
f tð Þdqt = x 1 − qð Þ〠

∞

k=0
qkf xqk

� �
: ð10Þ

The equation (8) in conjunction with (10) yield the
following series representation of the Riemann-Liouville
fractional integral operator

Iμq f xð Þ = xμ 1 − qð Þ
Γq μð Þ 〠

∞

k=0
qk 1 − qk+1
h i

μ−1
f xqk
� �

: ð11Þ

In particular, for f ðxÞ = xλ−1, we have [4]

Iμq xλ−1
� �

=
Γq λð Þ

Γq λ + μð Þ xλ + μ − 1 R λ + μð Þ > 0ð Þ: ð12Þ

2. Basic Analogue of Multivariable H-Function

In this section, we introduce the basic analogue of multivar-
iable H-function [16, 17], given by the following manner:

H z1, zr ; qð Þ =H0,n:m1,n1;⋯;mr ,nr
p,q′:p1q1;⋯;pr ,qr

z1

⋅
⋅

⋅

zr

; q
aj ; α

rð Þ
j ⋯,α rð Þ

j

� �
1,p

: cj′, γ′
� �

1,p1
,⋯, c rð Þ

j , γ rð Þ
j

� �
1,pr

bj ; βj
′,⋯,β rð Þ

j

� �
1,q′

: dj′, δ′
� �

1,q1
,⋯, d rð Þ

j , δ rð Þ
j

� �
1,q1

��������

0
BBBBBBBBB@

1
CCCCCCCCCA

= 1
2πωð Þr

ð
L1
⋯

ð
Lr

πrϕ s1,⋯,sr ; qð Þ
Yr
i=1

θi si ; qð Þxs11 ⋯ xsrr dqs1 ⋯ dqsr ,

ð13Þ
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where ω =
ffiffiffiffiffiffi
−1

p
, and

here, i = 1,⋯, r and

G qað Þ =
Y∞
n=0

1 − qa+nð Þ
" #−1

= 1
qa ; qð Þ∞

: ð15Þ

The integers n, p, q,mi, ni, pi, qi are constrained by the
inequalities 0 ≤ n ≤ p, 0 ≤ q′, 1 ≤mi ≤ qi and 0 ≤ ni ≤ pi, i = 1,
⋯, r. The poles of integrand are assumed to be simple. The

quantitiesajðj = 1,⋯,pÞ ; cðiÞj ðj = 1,⋯,piÞ ; bjðj = 1,⋯,q′Þ ; dðiÞj
ðj = 1,⋯,qi, i = 1,⋯,rÞ are complexnumbers and the following

quantities αðiÞj ðj = 1,⋯,pÞ ; γðiÞj ðj = 1,⋯,piÞ ; βðiÞ
j ðj = 1,⋯,q′Þ ;

δðiÞj ðj = 1,⋯,qi, i = 1,⋯,rÞ are positive real numbers.

The contour Li in the complex si-plane is of the Mellin-
Barnes type which runs from −ω∞ to ω∞with indentations,

if necessary to make certain that all the poles of GðqdðiÞj +δðiÞj siÞ
ðj = 1,⋯,miÞ are separated from those of, Gðq1−cðiÞj +γðiÞj siÞ
ði = 1,⋯,niÞGðq1−aj+∑

r
i=1α

ðiÞ
j siÞðj = 1,⋯,nÞ. For large values of

jsij, the integrals converge if Rðs log ðziÞ − log sin πsiÞ < 0
ði = 1,⋯,rÞ.

If the quantities αðiÞj ðj = 1,⋯,pÞ ; γðiÞj ðj = 1,⋯,piÞ ; βðiÞ
j

ðj = 1,⋯,q′Þ ; δðiÞj ðj = 1,⋯,qiÞ = 1 for i = 1,⋯, r, then the
basic analogue of multivariable H-function reduces in basic
analogue of multivariable Meijer’s G-function defined by
Khadia and Goyal [18], we obtain

where

υ s1,⋯,sr ; qð Þ =
Qn

j=1G q1−α j+∑r
i=1si

� �
Qp

j=n+1G qaj−∑
r
i=1si

� �Qq′
j=1G q1−bj+∑

r
i=1si

� � ,

υ s1 ; qð Þ =
Qmi

j=1G qd
ið Þ
j −si


 �Qni
j=1G q1−c

ið Þ
j +si


 �
Qqi

j=mi+1G q1−d
ið Þ
j +si


 �Qpi
j=ni+1G q1−c

ið Þ
j −si


 �
G q1−sið Þ sin πsi

,

ð17Þ

where i = 1,⋯, r; the integers n, p, q,mi, ni, pi, qi are con-
strained by the inequalities 0 ≤ n ≤ p, 0 ≤ q′, 1 ≤mi ≤ qi and
0 ≤ ni ≤ pi, i = 1,⋯, r. The poles of integrand are assumed

to be simple. The quantities αðiÞj ðj = 1,⋯,pÞ ; cðiÞj ðj = 1,⋯,piÞ ;
bjðj = 1,⋯,q′Þ ; dðiÞj ðj = 1,⋯,qi ; i = 1,⋯,rÞ are complex
numbers.

The contour Li in the complex si-plane is of the
Mellin-Barnes type which runs from −ω∞ to ω∞
with indentations, if necessary to ensure that all the

poles of GðqdðiÞj +δðiÞj siÞðj = 1,⋯,miÞ are separated from

ϕ s1,⋯,sr ; qð Þ =
Qn

j=1G q1−α j+∑r
i=1α

ið Þ
j si


 �
Qp

j=n+1G qaj−∑
r
iα

ið Þ
j si


 �Qq′
j=1G q1−bj+∑

r
i=1β

ið Þ
j si


 � ,

θi s1 ; qð Þ =
Qmi

j=1G qd
ið Þ
j −δ ið Þ

j si


 �Qni
j=1G q1−c

ið Þ
j +γ ið Þ

j si


 �
Qqi

j=mi+1G q1−d
ið Þ
j +δ ið Þ

j si


 �Qpi
j=ni+1G qc

ið Þ
j +γ ið Þ

j si


 �
G q1−sið Þ sin πsi

,

ð14Þ

G z1,⋯,zr ; qð Þ = G0,n:m1,n1;⋯;mr ,nr
p,q′:p1q1;⋯;pr ,qr

z1

⋅
⋅

⋅

zr

; q
aj
� �

p
: cj′
� �

p1
,⋯, c rð Þ

j

� �
pr

bj
� �

q′ : dj′
� �

q1
,⋯, d rð Þ

j

� �
q1

��������

0
BBBBBBBBB@

1
CCCCCCCCCA

= 1
2πωð Þr

ð
L1
⋯

ð
Lr

πrυ s1,⋯,sr ; qð Þ
Yr
i=1

υi si ; qð Þzs11 ⋯ zsrr dqs1 ⋯ dqsr ,

ð16Þ
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those of Gðq1−cðiÞj +siÞði = 1,⋯,niÞGðq1−aj+∑
r
i=1siÞðj = 1,⋯,nÞ. For

large values of jsij, the integrals converge if Rðs log ðziÞ −
log sin πsiÞ < 0ði = 1,⋯,rÞ.

3. Main Results

In this section, we establish two fractional q-integral formulas
about the basic analogue of multivariable H-function.

Let

U =m1, n1 ;⋯ ;mr , nr ; V = p1, q1 ;⋯ ; pr , qr ;

A = aj ; αj′,⋯,α rð Þ
j

� �
1,p

; B = cj′, γ′
� �

1,p1
,⋯, c rð Þ

j , γ rð Þ
j

� �
1,pr

;

C = bj ; βj′,⋯,β rð Þ
j

� �
1,q′

;D = dj′, δ′
� �

1,q1
,⋯, d rð Þ

j , δ rð Þ
j

� �
1,qr

:

ð18Þ

Theorem 1. LetRðμÞ > 0, jqj < 1, the Riemann-Liouville frac-
tional q-integral of a product of two basic functions exists, and
we have

Iμq xλ−1H0,n:U
p,q′:V

z1x
P1

⋅
⋅

⋅

z1x
Pr

; q
A : B

C : D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

= 1 − qð Þμxλ+μ−1H0,n+1:U
p+1,q′+1:V

z1x
P1

⋅
⋅

⋅

z1x
Pr

; q
1 − λ ; p1,⋯,prð ÞA : B

C 1 − λ − μ ; p1,⋯,prð Þ: D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð19Þ

where pi ∈ℕ,Rðs log ðziÞ − log sin πsiÞ < 0 for i = 1,⋯, r.

Proof. To prove the result (19), we consider the left hand side
of equation (19) (say I) and take the definitions (8) and (13)
into account, we have

I = 1
Γq αð Þ

ð x

0
x − yqð Þα−1

yλ−1

2πwð Þr
ð
L1

⋯
ð
Lr

πrϕ s1,⋯,sr ; qð Þ

�
Yr
i=1

θi si ; qð Þ × zsr1 ⋯ zsrr y
ρ1s1+⋯ρr sr dqs1 ⋯ dqsrdqy:

ð20Þ

Interchanging the order of integrations which is permis-
sible under the given conditions, we obtain

I = 1
Γq αð Þ 2πwð Þr

ð
L1

⋯
ð
Lr

πrϕ s1,⋯,sr ; qð Þ
Yr
i=1

θi si ; qð Þzsr1 ⋯ zsrr

×
ð x

0
x − yqð Þα−1 yρ1s1+⋯ρr sr+λ−1

n o
dqydqs1 ⋯ dqsr:

ð21Þ

The above equation writes

I = 1
2πwð Þr

ð
L1

⋯
ð
Lr

πrϕ s, t ; qð Þθ1 s ; qð Þ⋯ θr s ; qð Þzs11 ⋯ zρrr

× Iμq xρ1s1+⋯+ρr sr+λ−1
n o

dqs1 ⋯ dqsr:

ð22Þ

Now using the result (12), then the equation (22)
reduces as

I = 1
2πwð Þr

ð
L1

⋯
ð
Lr

πrϕ s, t ; qð Þθ1 s ; qð Þ⋯ θr s ; qð Þzs11 ⋯ zρrr

×
Γq ρ1s1+⋯ρrsr + λð Þ

Γq ρ1s1+⋯ρrsr + λ + μð Þ x
ρ1s1+⋯ρr sr+λ+μ−1:

ð23Þ

Next, interpreting the q-Mellin-Barnes multiple integrals
contour in terms of the basic analogue of multivariable
H-function, then we get the desired result (19).

If we replace μ by −μ in Theorem 1, and use the fractional
q- derivative operator defined as

I−μq f xð Þf g =Dμ
x,q f xð Þ = 1

Γq −μð Þ
ðx
0
x − tqð Þ−μ−1 f tð Þdqt R μð Þ < 0ð Þ,

ð24Þ

and power function formula

Dμ
x,q xλ−1
n o

=
Γq λð Þ

Γq λ − μð Þ x
λ−μ−1 λ ≠ −1,−2,⋯ð Þ, ð25Þ

then we have the following result:
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Theorem 2. Let RðμÞ > 0, jqj < 1 the Riemann Liouville frac-
tional q-derivative of a product of two basic functions exists,
and given by

Dμ
x,q xλ−1H0,n:U

p,q′:V

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
A : B

C : D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

= 1 − qð Þ−μxλ−μ−1H0,n+1:U
p+1,q′+1:V

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
1 − λ ; ρ1,⋯,ρrð ÞA : B

C 1 − λ + μ ; ρ1,⋯,ρrð Þ: D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð26Þ

where ρi ∈ℕ,Rðs log ðziÞ − log sin πsiÞ < 0 for i = 1,⋯, r.

Proof. The proof of result asserted by Theorem 2 runs parallel
to that of Theorem 1.

The details are, therefore, being omitted.

4. Leibniz’s Application

In this section, we give an application concerning the basic
analogue of multivariable H-function and q-extension of
the Leibniz rule for the fractional q-derivative for a product
of two basic functions.

We have the q-extension of the Leibniz rule for the frac-
tional q-derivatives for a product of two basic functions in
terms of a series involving the fractional q-derivatives of the
function, in the following manner [9]:

Lemma 3.

Dα
x,q W xð ÞY xð Þf g

= 〠
∞

n=0

−1ð Þnqn n+1ð Þ/2 q−μ ; q½ �n
q ; qð Þn

Dμ−n
x,q W xqnð Þf gDn

x,q Y xð Þf g,

ð27Þ

where WðxÞ and YðxÞ are two regular functions.

Theorem 4. Let RðμÞ < 0,, then the Riemann-Liouville frac-
tional q-derivative of a product of two basic function exists
and given by

H0,n+1:U
p+1,q′+1:V

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
1 − λ ; ρ1,⋯,ρrð Þ, A : B

C, 1 − λ + μ ; ρ1,⋯,ρrð Þ: D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA

= 〠
∞

n=0

−1ð Þnqnλ+ n n−1ð Þ/2ð Þ q−μ ; q½ �n
q ; qð Þn qλ ; q

� �
n−μ

H0,n+1:U
p+1,q′+1:V

·

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
0 ; ρ1,⋯,ρrð ÞA : B

C n ; ρ1,⋯,ρrð Þ: D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð28Þ

where pi ∈ℕ,Rðs log ðziÞ − log sin πsiÞ < 0 for i = 1,⋯, r.

Proof. For applying q-Leibniz rule, we let

W xð Þ = xλ−1 andY xð ÞH0,n:U
p,q′:V

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
A : B

C : D

�����

0
BBBBBBB@

1
CCCCCCCA
:

ð29Þ

By using the lemma 3, we have

Dμ
x,q xλ−1H0,n:U

p,q′:V

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
A : B

C : D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

= 〠
∞

n=0

−1ð Þnqn n−1ð Þ/2 q−μ ; q½ �n
q ; qð Þn

Dμ−n
x,q xqnð Þλ−1

n o
Dn
x,q

· H z1x
ρ1 ,⋯,zrxρr ; qð Þf g:

ð30Þ

Next, by setting λ = 1 and using the Theorem 2, we
arrive at
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Dn
x,q H z1x

ρ1 ,⋯,zrxρr ; qð Þf g

= 1 − qð Þ−μx−μ ×H0,n+1:U
p+1,q′+1:V

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
0 ; ρ1,⋯,ρrð ÞA : B

C n ; ρ1,⋯,ρrð Þ: D

�����

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð31Þ

where ρi ∈ℕ,Rðs log ðziÞ − log sin πsiÞ < 0ði = 1,⋯,rÞ.

Now, by using (25) and (31) we obtain the desired result
(28) after several algebraic manipulations.

5. Particular Case

In this section, the basic analogue of multivariable H-func-
tion reduces in basic analogue of multivariable Meijer’s G
-function [18].

Let

U =m1, n1 ;⋯ ;mr , nr ; V = p1, q1 ;⋯ ; pr , qr ;

A1 = aj
� �

1,p ; B1 = cj
� �

1,p1
,⋯, c rð Þ

j

� �
1,pr

; C1 bj
� �

1,q′ ;

D1 = dj

� �
1q1

,⋯, d rð Þ
j

� �
1,qr

:

ð32Þ

Corollary 5.

Dμ
x,q tλ−1G0,n+1:U

p+1,q′+1:V

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
A1 : B1

C1 : D1

�����

0
BBBBBBBBB@

1
CCCCCCCCCA

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

= 〠
∞

n=0

−1ð Þnqnλ+ n n−1ð Þ/2ð Þ q−μ ; q½ �n
q ; qð Þn qλ ; q

� �
n−μ

G0,n+1:U
p+1,q′+1:V

·

z1x
ρ1

⋅
⋅

⋅

zrx
ρr

; q
0 ; ρ1,⋯,ρrð ÞA1 : B1

C1, n ; ρ1,⋯,ρrð Þ: D1

�����

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð33Þ

where pi ∈ℕ,Rðs log ðziÞ − log sin πsiÞ < 0 for i = 1,⋯, r.

Remark 6. If the basic analogue of multivariable H-function
reduces in basic analogue of Srivastava-Daout function [19],
then we obtain the results given by Purohit et al. [20].

Remark 7. If the basic analogue of multivariable H-function
reduces in basic analogue of H-function of two variables
defined by Saxena et al. [21], we obtain the result due to
Yadav et al. [7]. Further, if the basic analogue of multivariable
H-function reduces in basic analogue of H-function of one
variable defined by Saxena et al. [22], then we can easily
obtain the similar result.

6. Conclusion

In the present article, we have proposed the fractional order q
-integrals and q-derivatives involving a basic analogue of
multivariable H-function. The significance of our derived
results lies in their diverse generality. By specializing the var-
ious parameters as well as variables in the basic analogue of
multivariable H-function, we can obtain a large number of
results involving a remarkably wide range of useful basic
functions (or product of such basic functions) of one and sev-
eral variables. Hence, the derived formulas in this article are
most general in character and may reaffirm to be useful in
several interesting cases appearing in literature.
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