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The goal of this special issue of Mathematical Problems in Engineering (MPE) is to present
papers, containing complete reviews on modern dynamics models, available in the current
literature, classify them, and discuss their applications and limitations. It was assumed to
consider papers containing a discussion on appropriate models and control criteria and on
various applications on Engineering and Sciences and suggest directions for further works.
The critical reviews, a description of open problems, and future developments were hailed.
93 papers were presented for this issue, and 21 of them were accepted. There are 9 review
papers and 12 research articles. In particular, there are reviews on the feedback designs
for linear descriptors, modeling of ship dynamics, continuous models for discrete media,
applications of fractional calculus in engineering, nonlinear fault tolerant control, simulation
of a target tracking system with backlash compensation, dynamics of furuta’s pendulum,
and identification approaches for discrete event systems. One review is devoted to advances
in structural control of civil engineering in China. There are 8 articles which are devoted to
investigations in nonlinear dynamics; 8 articles are devoted to the control problems; 4 articles
treat numerical approaches and problems of simulation. The majority of accepted articles
contains modeling, as well as analytical and /or numerical investigations. The contents of the
9 reviews papers are briefly summarized in the following.

(1) “Modeling of ship roll dynamics and its coupling with heave and pitch,” by R. A. Ibrahim
and I. M. Grace. An overview of the roll dynamic stability under random sea
waves has been presented in terms of the sample stability condition and response
statistical moments.
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(2) “Some applications of fractional calculus in engineering,” by J. A. T. Machado, et al. This
article presents several case studies on the implementation of FC-based models and
control systems, with the advantages of using the FC theory in different areas of
science and engineering being demonstrated.

(3) “Improved continuous models for discrete media,” by 1. V. Andrianov et al. This paper
focuses on continuous models derived from a discrete microstructure. Various
continualization procedures that take into account the nonlocal interaction between
variables of the discrete media are analysed.

(4) “Furuta’s pendulum: a conservative nonlinear model for theory and practise,” by J.
A. Acosta. A detailed dynamical model of the available laboratory Furuta’s
pendulum is provided. A survey of all the nonlinear controllers designed with
that quasiconservative model and successfully tested through experiments is also
reported.

(5) “A comparative analysis of recent identification approaches for discrete event systems,” by
A. P. Estrada-Vargas et al. This paper overviews identification approaches of DES
found in the literature and then it provides a comparative analysis of three recent
and innovative contributions.

(6) “A survey of some recent results on nonlinear fault tolerant control,” by M. Benosman.
This paper presents a survey of some of the results obtained last years on nonlinear
Fault tolerant control (NFTC).

(7) “Advances in structural control in civil engineering in china,” by Hongnan Li and
Linsheng Huo. The aim of this paper is to review a state of the art of researches
and applications of structural control in civil engineering in China. It includes the
passive control, active control, hybrid control and semiactive control.

(8) “Time domain simulation of a target tracking system with backlash compensation,” by M.
Gruzman et al. This paper presents the modeling and control of a target tracking
system assembled into a moving body. Special attention is given to the problems
caused by backlash in gear transmission.

9

~

“Robust state-derivative feedback LMI-based designs for linear descriptor systems,” by
F. A. Faria et al. Necessary and sufficient stability conditions based on LMI for
state-derivative feedback of linear descriptor systems are presented. The proposed
methods are LMI-based designs that, when feasible, can be efficiently solved by
convex programming techniques.

The contents on the research articles are somehow more spread and are summarized
in the following.

(10) “Applied model-based analysis and synthesis for the dynamics, guidance, and control
of an autonomous undersea vehicle,” by Kangsoo Kim and Tamaki Ura. In this
article, a model-based analysis and synthesis to the following three research
fields in AUV (Autonomous Undersea Vehicle) design and development have been
presented: dynamic system modelling of an AUV, motion control design and
tracking control application, and an optimal guidance of an AUV in environmental
disturbances.
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(11) “Control of limit cycle oscillations of a two-dimensional aeroelastic system,” by M.

(12

(13

(14

(15

(16

17

(18

~

)

~

)

)

~

~—

Ghommem et al. Linear and nonlinear controls are implemented on a rigid airfoil
undergoing pitch and plunge motions. The method of multiple scales is applied
to the governing system of equations to derive the normal form of the Hopf
bifurcation near the flutter onset. On the other hand, the nonlinear control can be
efficiently implemented to convert subcritical to supercritical Hopf bifurcations and
to significantly reduce LCO amplitudes.

“Investigation of aeroelastic mode distribution for aircraft wing model in subsonic air flow,”
by Marianna A. Shubov et al. The presented paper is concerned with numerical
investigation of two problems arising in the area of theoretical aeroelasticity.
Namely, it has been shown that analytical formulas representing the asymptotical
distribution of aeroelastic modes for a specific aircraft wing model can be used by
practitioners.

“Nonlinear and dynamic aerodynamic models for commercial transport aircraft with
adverse weather effects,” by Ray C. Chang et al. This paper presents a numerical
modeling method based on a fuzzy-logic algorithm which is presented to estimate
the aerodynamic models for a twin-jet transport by using the flight data from the
flight data recorder (FDR).

“Limiting phase trajectories and resonance energy transfer in a system of two coupled
oscillators,” by L. I. Manevitch et al. In this paper, the authors have extended the
concept of the limiting phase trajectories (LPTs) to dissipative oscillatory systems.
Using this concept, they have constructed an approximate solution describing the
maximum energy exchange between coupled oscillators.

“A wavelet interpolation galerkin method for the simulation of MEMS devices under the
effect of squeeze film damping,” by Pu Li and Yuming Fang. This paper presents a
new wavelet interpolation Galerkin method for the numerical simulation of MEMS
devices under the effect of squeeze film damping. Simulation results show that the
results of the wavelet interpolation Galerkin method match the experimental data
better than that of the finite difference method by about 10%.

“Modeling and fuzzy PDC control and its application to an oscillatory TLP structure,” by
Cheng-Wu Chen. An analytical solution is derived to describe the wave-induced
flow field and surge motion of a deformable platform structure controlled with
fuzzy controllers in an oceanic environment. In the controller design procedure,
a parallel distributed compensation (PDC) scheme is utilized to construct a global
fuzzy logic controller by blending all local state feedback controllers.

“Adaptive fuzzy tracking control for a permanent magnet synchronous motor via
backstepping approach,” by Jinpeng Yu et al. Based on adaptive fuzzy control
approach and backstepping technique, an adaptive fuzzy control scheme is
proposed to control a permanent magnet synchronous motor. The proposed
controllers guarantee that the tracking error converges to a small neighborhood of
the origin and all the closed-loop signals are bounded. Simulation results illustrate
an effectiveness of the presented method.

“Design for motor controller in hybrid electric vehicle based on vector frequency conversion
technology,” by Jing Lian et al. This paper carries on the research of motor control
technology of application HEV, designs HEV motor controller based on vector
frequency conversion technology, and completes the controller’s software and
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hardware design. In accordance with the characteristics of the HEV electromagnetic
interference source, propagation path, and CAN bus communication, this paper
proposes the corresponding antijamming measures, which greatly improves the
antijamming ability of the CAN bus system and controller working stability.

(19

~

“Biologically inspired robotic arm control using an artificial neural oscillator,” by
Woosung Yang et al. The authors have presented a control scheme for technically
achieving a biologically inspired self-adapting robotic motion. In contrast to
existing works that were only capable of rhythmic pattern generation for simple
tasks, the presented approach allows the robot arm to precisely trace a trajectory
correctly through entrainment. With this, the proposed method is verified through
more complex behaviors of the real robot arm under unknown environmental
changes.

(20) “Shape sensitivity analysis in flow models using a finite-difference approach,” by 1. Akhtar
et al. The authors consider flows past an elliptic cylinder with varying thickness
ratios. Shape sensitivities (derivatives of flow variables with respect to thickness
ratio) computed by finite-difference approximations are used to compute the POD
sensitivity vectors. Numerical studies test shows the accuracy of the new bases to
represent flow solutions over a range of parameter values.

1

~

“Investigations on actuator dynamics through theoretical and finite element approach,” by
Somashekhar S. Hiremath and M. Singaperumal. This paper gives a new approach
for modeling the fluid-structure interaction of servovalve component-actuator.
The analyzed valve is a precision flow control valve-jet pipe electrohydraulic
servovalve. The positioning of an actuator depends upon the flow rate from control
ports, in turn depends on the spool position. Theoretical investigation is made for
No-Load condition and Load condition for an actuator. These are used in finite
element modeling of an actuator. The fluid-structure-interaction (FSI) is established
between the piston and the fluid cavities at the piston end. The fluid cavities
were modeled with special purpose hydrostatic fluid elements while the piston is
modeled with brick elements.

As a final remark, we want to thank all the authors for their contributions and we hope
that the present special issue can be useful in the development of the research in the area on
nonlinear dynamics and control.

Jose Manoel Balthazar
Paulo Batista Gongalves
Stefano Lenci

Yuri Viadimirovich Mikhlin
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In order to study the dynamic behavior of ships navigating in severe environmental conditions
it is imperative to develop their governing equations of motion taking into account the inherent
nonlinearity of large-amplitude ship motion. The purpose of this paper is to present the coupled
nonlinear equations of motion in heave, roll, and pitch based on physical grounds. The ingredients
of the formulation are comprised of three main components. These are the inertia forces and
moments, restoring forces and moments, and damping forces and moments with an emphasis
to the roll damping moment. In the formulation of the restoring forces and moments, the
influence of large-amplitude ship motions will be considered together with ocean wave loads.
The special cases of coupled roll-pitch and purely roll equations of motion are obtained from the
general formulation. The paper includes an assessment of roll stochastic stability and probabilistic
approaches used to estimate the probability of capsizing and parameter identification.

1. Introduction

Generally, ships can experience three types of displacement motions (heave, sway or drift,
and surge) and three angular motions (yaw, pitch, and roll) as shown in Figure 1. The general
equations of motion have been developed either by using Lagrange’s equation (see, e.g., [1-
4]) or by using Newton’s second law (see, e.g., [5-7]). In order to derive the hydrostatic
and hydrodynamic forces and moments acting on the ship, two approaches have been used
in the literature. The first approach utilizes a mathematical development based on a Taylor
expansion of the force function (see, e.g., [8-12]). The second group employs the integration
of hydrodynamic pressure acting on the ship’s wetted surface to derive the external forces
and moments (see, e.g., [13-18]). Stability against capsizing in heavy seas is one of the
fundamental requirements in ship design. Capsizing is related to the extreme motion of the
ship and waves. Of the six motions of the ship, the roll oscillation is the most critical motion
that can lead to the ship capsizing. For small angles of roll motions, the response of ships
can be described by a linear equation. However, as the amplitude of oscillation increases,
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Surge

Roll /

Figure 1: Ship schematic diagram showing the six degrees of freedom.

nonlinear effects come into play. Nonlinearity can magnify small variations in excitation to
the point where the restoring force contributes to capsizing. The nonlinearity is due to the
nature of restoring moment and damping. The environmental loadings are nonlinear and
beyond the control of the designer. The nonlinearity of the restoring moment depends on the
shape of the righting arm diagram.

Abkowitz [19] presented a significant development of the forces acting on a ship
in surge, sway, and yaw motions. He used Taylor series expansions of the hydrodynamic
forces about a forward cruising speed. The formulation resulted in an unlimited number
of parameters and can model forces to an arbitrary degree of accuracy. Thus, it can
be reduced to linear and extended to nonlinear equations of motion. Later, Abkowitz
[20, 21], Hwang [22], and Kallstrom and Astrom [23] provided different approaches to
estimate the coefficients of these models. Son and Nomoto [24] extended the work of
Abkowitz [19] to include ship roll motion in deriving the forces and moments acting on
the ship. Ross [25] developed the nonlinear equations of motion of a ship maneuvering
through waves using Kirchhoff’s [26] convolution integral formulation of the added mass.
Kirchhoff’s [26] equations are a set of relations used to obtain the equations of motion
from the derivatives of the system kinetic energy. They are special cases of the Euler-
Lagrange equations. The derived equations also give the Coriolis and centripetal forces
[27,28].

Rong [29] considered some problems of weak and strong nonlinear sea loads on
floating marine structures. The weak nonlinear problem considers hydrodynamic loads
on marine structures due to wave-current-body interaction. The strong nonlinear problem
considers slamming loads acting on conventional and high-speed vessels. Theoretical and
numerical methods to analyze wave-current interaction effects on large-volume structure
were developed. The theory is based on matching a local solution to a far-field solution. It is
known that large-amplitude ship motions result in strongly nonlinear, even chaotic behavior
[30]. The current trends toward high-speed and unique hull-form vessels in commercial and
military applications have broadened the need for robust mathematical approaches to study
the dynamics of these innovative ships.

Various models of roll motion containing nonlinear terms in damping and restoring
moments have been studied by many researchers [31-33]. Bass and Haddara [34, 35]
considered various forms for the roll damping moment and introduced two techniques
to identify the parameters of the various models together with a methodology for their
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evaluation. Taylan [36] demonstrated that different nonlinear damping and restoring
moment formulations reported in the literature have resulted in completely different roll
amplitudes, and further yielded different ship stability characteristics. Since ship capsizing is
strongly dependent on the magnitude of roll motions, an accurate estimation of roll damping
is crucial to the prediction of the ship motion responses. Moreover, the designer should
consider the influence of waves on roll damping, especially nonlinear roll damping of large-
amplitude roll motion, and subsequently on ship stability.

Different models for the damping moment introduced in the equation of roll motion
were proposed by Dalzell [37], Cardo et al. [38], and Mathisen and Price [39]. They contain
linear-quadratic or linear-cubic terms in the angular roll velocity. El-Bassiouny [40] studied
the dynamic behavior of ships roll motion by considering different forms of damping
moments consisting of the linear term associated with radiation, viscous damping, and a
cubic term due to frictional resistance and eddies behind bilge keels and hard bilge corners.

This paper presents the derivation of the equations of motion based on physical
grounds. The equations of motion will then be simplified to consider the roll-pitch coupling,
which is very critical in studying the problem of ship capsizing. It begins with a basic
background and terminology commonly used in Marine Engineering. This is followed by
considering the hydrostatics of ships in calm water and the corresponding contribution due to
sea waves. An account of nonlinear damping in ship roll oscillation will be made based on the
main results reported in the literature. The paper includes an overview of ship roll dynamic
stability and its stochastic modes, probability methods used in estimating ship capsizing and
parameter identification.

2. Background and Terminology

One needs to be familiar with naval architecture terminology. This includes key stability
terms that are used in the design and analysis of navigation vessels and their structure
components. A list of the main terms is provided in the appendix. Those terms described in
this section are written in italics. The purpose of this section is to introduce the fundamental
concept of ship roll hydrostatic stability.

A floating ship displaces a volume of water whose weight is equal to the weight of the
ship. The ship will be buoyed up by a force equal to the weight of the displaced water. The
metacenter M shown in Figure 2(a) is the point through which the buoyant forces act at small
angles of list. At these small angles the center of buoyancy tends to follow an arc subtended
by the metacentric radius BM, which is the distance between the metacenter and the center of
buoyancy B. As the vessels’ draft changes so does the metacenter moving up with the center of
buoyancy when the draft increases and vice versa when the draft decreases. For small angle
stability it is assumed that the metacenter does not move.

The center of Buoyancy B is the point through which the buoyant forces act on the
wetted surface of the hull. The position of the center of buoyancy changes depending on the
attitude of the vessel in the water. As the vessel increases or reduces its draft (drawing or
pulling), its center of buoyancy moves up or down, respectively, caused by a change in the
water displaced. As the vessel lists the center of buoyancy moves in a direction governed by
the changing shape of the submerged part of the hull as demonstrated in Figure 2(b). For
small angles, the center of buoyancy moves towards the side of the ship that is becoming more
submerged. This is true for small angle stability and for vessels with sufficient freeboard. When
the water line reaches and moves above the main deck level a relatively smaller volume of
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Figure 2: (a) Possible locations of the metacenter and (b) the righting arm.

the hull is submerged on the lower side for every centimeter movement as the water moves
up the deck. The center buoyancy will now begin to move back towards the centerline.

As a vessel rolls its center of buoyancy moves off the centerline. The center of gravity,
however, remains on the centerline. For small roll angles up to 10°, depending on hull
geometry, the righting arm GZ is

GZ = GMsin ¢. (2.1)

It can be seen that the greater the metacenter height the greater the righting arm and therefore
the greater the force restoring the vessel (righting moment) to the upright position one. When
the metacenter is at or very near the centre of gravity then it is possible for the vessel to have a
permanent list due to the lack of an adequate righting arm. Note that this may occur during
loading operations. A worst case occurs when the metacenter is located substantially below
the center of gravity as shown in Figure 3. This situation will lead to the ship capsizing. As
long as the metacenter is located above the center of gravity, the righting arm has a stabilizing
effect to bring the ship back to its normal position. If, on the other hand, the righting arm is
displaced below the center of gravity, the ship will lose its roll stability and capsize.

Hydrostatic and hydrodynamic characteristics of ships undergo changes because of
the varying underwater volume, centers of buoyancy and gravity and pressure distribution.
Another factor is the effect of forward speed on ship stability and motions, particularly on
rolling motion in synchronous beam waves. Taylan [41] examined the influence of forward
speed by incrementing its value and determining the roll responses at each speed interval.
Various characteristics of the GZ curve for a selected test vessel were found to change
systematically.

The roll stability of a ship is usually measured by the stability diagram shown in
Figure 4. The diagram shows the dependence of the righting arm on the roll angle (list) and is
an important design guide for roll stability.
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Figure 4: Dependence of the righting arm on the roll angle.

The roll oscillation of a ship is associated with a restoring moment to stabilize the ship
about the x-axis given by the expression

M, = WGMsin ¢. (2.2)

where is the weight of water of displaced volume of the ship which is equal to the weight of
the ship. If the ship experiences pitching motion of angle 0 the righting arm will be raised by
an increment GM sin ¢ sin 0. In the case the net roll moment becomes

M, = WGM sin $(1 +sin0) = WGM¢p(1 +6). (2.3)

Note that the static stability is governed by the minimum value that the metacenter height,
G_M, should have and the shape of the static stability curve with respect to the roll angle.
This approach is still being applied in the assessment of stability criterion. The dynamic
stability approach, on the other hand, is based on the equation of rolling motion. This involves
constructing a model for a ship rolling in a realistic sea. The linear restoring parameters can
be easily obtained from ship hydrostatics.
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F, \

Figure 5: Ship schematic diagrams showing hydrostatic forces in a displaced position.

The curve for righting arm, known also as the restoring lever, has been represented
by an odd-order polynomial up to different degrees [42-45]. Different representations of
the restoring moment have been proposed in the literature. For example, Roberts [46, 47],
Falzarano and Zhang [48], Huang et al. [49], and Senjanovic et al. [50] represented M. (¢) by
the polynomial

My (P) = kip + k3d® + ksd® + krgp” + -+, (2.4)

where k; >0, k3 <0, ks > 0, and k7 < 0 for a damaged vessel, but k; = 0 for an intact vessel.
Moshchuk et al. [51] proposed the following representation:

M. ($) = ko sin(’;—f’) + ?(%Zb), (25)

where ¢ is the capsizing angle, and the function y(ir¢/¢,) accounts for the difference
between the exact function M, (¢) and ko sin(r¢/Ps).

3. Heave-Pitch-Roll Equations of Motion

Consider a ship sitting in its static equilibrium position with a submerged volume vy. During
its motion, its instantaneous submerged volume is v;, and the difference in the submerged
volume is 6v = v; — vy. The inertial frame of axes is XY Z with unit vectors I, J, and K along
X-, Y-, and Z-axes, respectively. On the other hand, the body frame that moves with the ship
is xyz with unit vectors i, j, and k along x-, -, and z-axes, respectively. Figure 5 shows the
instantaneous buoyant center located at point B; and the corresponding instantaneous force
is Fi = pguiK = pg(vy + 6v)K. The weight of the ship is W = —pgvoK. In this case the
instantaneous restoring hydrostatic force is

Fy = pg6vK. (3.1)
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The restoring moment is the resultant between the moments of weight and instantaneous
buoyancy

— — —
My = pg [voK x <OG - OBO> + f Ob; x dviK], (3.2)

where dv; is the volume of the infinitesimal prism of height h;, @ = z¢k, zg is the center of
mass location from O, 6§0 = zgok, &i = x4l +yaJ + (hi/2)K, k = sin0I - sin¢J + K, z is
the vertical coordinate of the center of gravity, 6v = fhidAl- = f hd A, and Zpo is the vertical
coordinate of the center of gravity of the submerged volume, and (x4, 1) are the coordinates
of the elemental prism in the instantaneous plane with respect to the inertial frame CXY Z.
Substituting these parameters in (3.2) gives

My = -Ipg|vo(zpo — zg) sin¢ — fyAhdA] -Jpg [UO(EBO —Zg)sinO + fohdA]. (3.3)

The elemental prism height h; = h can be written in terms of the heave displacement z of the
origin O above the water level, the pitch, 0, and roll, ¢, angles as

hi = -z —yaising + x4;sin6. (3.4)
The volume variation 6v is
6v = J- dv

=J(—z—yAsin¢+xAsin6)dA (3.5)

= —z’[ dA - sin¢fyAdA +sin9’[xAdA.

The above summations are dependent on z, ¢, and 6. They represent the following geometric
properties:

j dA=A(z ¢, 9) area of instantaneous plane of floatation,
IyAdA = A(z,¢,0) first static moment of the area about x-axis, (3.6)

fx AdA = Ay(z,¢,0) first static moment of area about y-axis.
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In this case, one may write the volume variation in the form
6v=-2A(z,¢,0) —sinpA.(z,$,0) +sinbA,(z,¢,0). (3.7)

Note the above summations could have been replaced by integrals. The instantaneous
restoring hydrostatic force given by (3.1) takes the form

Fy = -pg[zA(z,$,0) +sinpA,(z,¢,0) —sinfA,(z,¢,0)]|K. (3.8)
In scalar form, the absolute value of the restoring force is
Fr = pg[zA(z,¢,0) +sinpA,(z,$,0) —sinbA,(z,¢,0)]. (3.9)

The summations in (3.3) can also be written in terms of (3.4) as

J‘yAhdA = IyA(—z —yasing + x4 sin0)dA
=-2A(2,¢,0) —sin L (z,¢,0) +sin 1., (z,¢,0),
(3.10)
fohdA = ij(—z —yasing + x4sinf)dA

=-2A,(z,¢,0) —singL,(z,¢,0) +sinbl,,(z ¢,0),

where
Lx(z,9,0) = f vida,  I,,(z¢,0) = IxidA, Ly(2,¢,60) = foyAdA. (3.11)

Introducing (3.10) into (3.3) and writing the result in the absolute and scalar form give

M,y = pg[Axz +vo(ZBo — Zg) Sin§ + Lk sinp — I, sin 0],
(3.12)
Myy = pg[-Ayz — Iy, sind + vo(Zpo — Z¢) sin 0 + I, sin 6].



Mathematical Problems in Engineering 9

Note that the geometrical parameters (3.6) and (3.11) depend on the instantaneous
displacements of the ship (z, ¢, 0). These properties may be expanded in multivariable Taylor
series around the average position, that is,

DAl OA| . 13°A| , &A 12A| , 184] ,
A(z,¢,9)—Ao+g‘ el T2 J *m‘oz +§aT>20¢ *E?O"'
L PA| @A
Ax(2,9,6) = 6¢
0A, | BA,|  10%A,| , A, 134, | o 184,
Ay(2.9,0) = Aylot 57| 2+ =5 9 292 | Z om0 o | P 2w | O
0 0 0 0 0
Ol |  OLee| . 1PLa| o &l 1P| ., 18|
Lex(2/¢.0) = Lo+ 5 50 1,072 522 | F T oz00| 02 agr | P2 a0 | O
oL,y 100y | , 0y FPly| ., 10y
Ly (2,¢.0) = Lyy|y+ = 30 9 i T oz00| 72 o7 9°+3 02 09’
oLy a21xy | &Ly
Ly (2, ,0) = D 3255 4’9
(3.13)

Ao, Ayly, Lixlo, and Iy, |, are the geometric properties evaluated at the average plane of
floatation. Note that the variation of first moment of area about the x-axis is dependent on
an odd order of roll angle. That dependence does not exist in variations of other geometrical
parameters. Paulling and Rosenberg [8] showed that the dependencies of the heave and pitch
coefficients on roll are of even order, while the coefficients in roll due to heave and pitch are
odd.

The restoring hydrodynamic force and moments given by (3.8) and (3.3) take the form

. 0A 0A
Fy =pg{zA0 - Ay,sinf + e 022 * 38 0z(6+sm€) + W
0A,| . . 1A 5, A 2 10%A ¢ .
-39 0951n9+6¥ 0z + 5250 ) (9+sm@)+2 FYE z¢<5+sm¢>
O? Ay ¢ >’A

0 1924,
29< +s1n6) 2 502

stine},
0

+W O¢<951n¢+ ESIHQ) + W
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M,y = pg{UO(EBO -zg)sing + I z(¢+s1n<])) + —‘ (fsing + ¢sin0)

I, 0L,
522 (])+—sm¢ 2 502 0(951n¢+¢51n9)
27
6 z(¢9+951ngb+(])sm(]>)+;aa;;;x P* sin¢},
L o 8A] , o,
My = pg{ vo(Zgo — Zg) sin® — Ay |z + Iy |,sin 6 - - 8 (9+sm9)
ol , 1A, | 5 Ly| , L.
_ 4) Sme—gg + 622 OZ <9+§Sln6>
&Ly ¢ L, 0 Ly ,
" 3204 z¢< +smgb> 5250 29<§+sm9>— 3496 POsin ¢
0 0
L1 &Ly 24 1%Ly |
+5 6¢2 ¢°s 9+§ 502 6 sinf ¢.

(3.14)

In achieving the above equations use has been made of the following equalities verified by
Neves and Rodriguez [11]:

0A| _ 04y 0Ax| _ 0L oL | _ OLy
30 |, oz |/ op |, oz | 30 |, o |/
ol | 24, FPA| A Pl
oz |~ 00 07 |, - 0z0¢ o Coaz2 |
aZ_A _ _asz _ %I, aZ_A‘ _ _asz
067 |~ 9z00|, o7 |, 9200 |, 022
Pla| _ OLy| _ PA| _ 04 PLe|  OLy| 0Ly
9200 || azaqb " 090 |, 3¢ |/ 002 000 |~ op* |
01,y A,
0200 | 082 (3.15)
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3.1. Wave Motion Effects

The influence of incident sea waves of arbitrary direction along the hull is to change the
average submerged shape defined by the instantaneous position of the wave. These waves
exert external forces and moments in heave, roll, and pitch in addition they introduce an
additional restoring forces and moments. For the case of head sea, Neves and Rodriguez
[11, 12] considered the Airy linear theory in representing longitudinal waves (along x-axis)
defined by the expression [14]

n(x,y,t x) = 1o cos(kx + wet), (3.16)

where 7 is the wave amplitude, k = w? /g = 2xr/\ is the wave number, w;, is the wave
frequency, A is the wave length, g is the gravitational acceleration, y is the wave incidence,
and w, = (wy, — kU cos x) is the encounter frequency of the wave by the ship when the ship
advances with speed U.

Note that h; expressed by (3.4) should read

hi = [z = n(xai, Yai, t)] — yaising + x4, sin 6. (3.17)

The contributions of longitudinal waves to the restoring force, F;, and the restoring moments,
M, and M, obtained using Taylor series expansion about the average position up to third-
order terms are given by the expressions [11, 12]

L OFy PFy| ), OF| o, FF | o OF| . O,
"7 ooz |F " ano6| T onoz?| " " onoz06 | " agran| Y T arpoe |,
FF, |
+ —_—
om0 |’
1 0ok 0‘1” 017020 OZ¢+ oo |, nopoe 04’ /
M — aZMV’T z + azMy"l a3Myrl + aaMyrl 20 + a3MyTl 3 + a3My7l
ez | 000 |- ooz | 0naz? | o¢om |, 01200 |
PM,,
— e 3.18
+ 5%on | © (3.18)
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where the derivatives of the above equations are given by the following expressions:

’F,
0noz 0

oy
= 2PgL511 dx,

O°F, dy
3730 ‘ = —Zng’LxEq dx,

——pgf [ <—Z> +y]71dx,

¢2611
OF, | _ OF | _ ¥R | _OF | _
onoz?| =~ 0ndzod| ~ ono8|, onod?| ’
My =2 f d
= X,
o qu ) Y 2 4
- +
611626(1) ng y( ) y|nax,
3.19
a3qu J< ) <ay>2 Zd ( )
= =) + X,
o . P8 . Y\ 32 yin
3° My A
— 1| =2 j 2x <—> +xy|ndx,
onopoe |~ 3 L[ Y\ oz yin
*M,, oy
onoz |, B —Zng‘Lxqux,
&My, 20y
arlae . - 2pgfo a_zrldx/
0°M,, I oy '\’
= 2x (—) +x dx,
o¢2on |, P& . Y\ 52 yin
My, | My, | My | My |
on?oz |, onoz? |, 00%0n |, 0n?00 |

3.2. Ships Roll Damping

The surface waves introduce inertia and drag hydrodynamic forces. The inertia force is the
sum of two components. The first is a buoyancy force acting on the structure in the fluid
due to a pressure gradient generated from the flow acceleration. The buoyancy force is
equal to the mass of the fluid displaced by the structure multiplied by the acceleration of
the flow. The second inertia component is due to the added mass, which is proportional to
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the relative acceleration between the structure and the fluid. This component accounts for
the flow entrained by the structure. The drag force is the sum of the viscous and pressure
drags produced by the relative velocity between the structure and the flow. This type of
hydrodynamic drag is proportional to the square of the relative velocity.

Viscosity plays an important role in ship responses especially at large-amplitude
roll motions in which the wave radiation damping is relatively low. The effect of the bilge
keel on the roll damping was first discussed by Bryan [52]. Hishida [53-55] proposed an
analytical approach to roll damping for ship hulls in simple oscillatory waves. The regressive
curve of the roll damping obtained from the experiments by Kato [56] has been widely
used in the prediction of ship roll motions. Since amplitudes and frequencies are varying
in random waves, the hydrodynamic coefficients are time-dependent and irregular. Several
experimental investigations have been conducted to measure the effect of bilge keels on the
roll damping (see, e.g., [57-66]).

It was indicated by Bishop and Price [67] that existing information on the structural
damping of ships is far from satisfactory. It cannot be calculated and it can only be
measured in the presence of hydrodynamic damping, whose nature and magnitude are
also somewhat obscure. Yet it is very important. Much less is known about antisymmetric
responses to waves, either as regards the means of estimating them or the appropriate
levels of hull damping. Vibration at higher frequencies, due to excitation by machinery
(notably propellers), is limited by structural damping to a much greater extent than it
is by the fluid actions of the sea. Damping measurements at these frequencies therefore
give more accurate estimates of hull damping. The damping moment of ships is related to
multiplicity of factors such as hull shape, loading condition, bilge keel, rolling frequency, and
range of rolling angle. For small roll angles, the damping moment is directly proportional
to the angular roll velocity. But with increasing roll angle, nonlinear damping will become
significant. Due to the occurrence of strong viscous effects, the roll damping moment cannot
be computed by means of potential theory. Himeno [68] provided a detailed description of
the equivalent damping coefficient and expressed it in terms of various contributions due
to hull skin friction damping, hull eddy shedding damping, free surface wave damping,
lift force damping, and bilge keel damping. The viscous damping is due to the following
sources.

(i) Wave-making moment, By .
(ii) Skin-friction damping moment, Br.

(iii) The moment resulting from the bare hull arising from separation and eddies mostly
near the bilge keels, Bg.

(iv) Lift damping moment due to an apparent angle of attack as the ship rolls, Br.

(v) Bilge-keel damping moment, Bpx.
Damping due to bilge keels can be decomposed into the following components.

(i) Bilge keels moment due to normal force, Bpkn.
(ii) Moment due to interaction between hull and bilge keel, Bpxs.

(iii) Modification to wave making due to the presence of bilge keels, Bpxw.
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The damping components Br, By, Bw, and Bpkw are linear, while Bg, Bpkn, and Bpgp are
nonlinear. The linear and nonlinear damping moments can be expressed as follows:

Biin = Br + Br + Bw + Bgxw,
(3.20)
Brontin = Be + Bpxw + Bpxa-

A pseudospectral model for nonlinear ship-surface wave interactions was developed by Lin
et al. [69]. The algorithm is a combination of spectral and boundary element methods. All
possible ship-wave interactions were included in the model. The nonlinear bow waves at
high Froude numbers from the pseudospectral model are much closer to the experimental
results than those from linear ship wave models. One of the main problems in modeling
ship-wave hydrodynamics is solving for the forcing (pressure) at the ship boundary. With
an arbitrary ship, singularities occur in evaluating the velocity potential and the velocities
on the hull. Inaccuracies in the evaluation of the singular terms in the velocity potential
result in discretization errors, numerical errors, and excessive computational costs. Lin and
Kuang [70, 71] presented a new approach to evaluating the pressure on a ship. They used the
digital, self-consistent, ship experimental laboratory (DiSSEL) ship motion model to test its
effectiveness in predicting ship roll motion. It was shown that the implementation of this
roll damping component improves significantly the accuracy of numerical model results.
Salvesen [72] reported some results pertaining numerical methods such as large amplitude
motion program (LAMP) used to evaluate hydrodynamic performance characteristics. These
methods were developed for solving fully three-dimensional ship-motions, ship-wave-
resistance and local-flow problems using linearized free-surface boundary conditions. Lin
et al. [73] examined the capabilities of the 3D nonlinear time-domain Large Amplitude
Motion Program (LAMP) for the evaluation of fishing vessels operating in extreme waves.
They extended their previous work to the modeling of maritime casualties, including a time-
domain simulation of a ship capsizing in stern quartering seas.

The damping characteristics of a variety of ship shapes and offshore structures
undergoing roll oscillation in the presence of ocean waves have been assessed by Chakrabarti
[74]. Chakrabarti [74] relied on empirical formulas derived from a series of model
experiments reported by Ikeda [75] and lkeda et al. [76-78]. These experiments were
performed on two-dimensional shapes. The damping roll moment B(¢) is nonlinear and may
be expressed by the expression [40, 74]

K

B($) = c1p + || + e3¢+ = D |9 (3.21)

k=1

The first term is the usual linear viscous damping, the second is the quadratic damping term
originally developed by Morison et al. [79]. It is in phase with the velocity but it is quadratic
because the flow is separated and the drag is primarily due to pressure rather than the skin
friction. Sarpkaya and Isaacson [80] provided a critical assessment of Morison’s equation,
which describes the forces acting on a pile due to the action of progressive waves. The third
term is cubic damping. The total damping may be replaced by an equivalent viscous term in
the form

B(9) = ceqd, (3.22)



Mathematical Problems in Engineering 15

where c.q is the equivalent damping coefficient. This coefficient can be expressed in terms of
the nonlinear coefficients as

8 3
Ceq = C1 + ECZ (weo) + Zq(wg‘bo)z, (3.23)

where w is the wave frequency and ¢ is the amplitude of the ship roll angle.
Dalzell [37] replaced the nonlinear damping term ¢|¢| by an equivalent smooth
nonlinear polynomial given by

pk , 35@

_ 5,
“1670 a5y

$lopl= > a

P (;’) — (3.24)

where ¢, is the maximum amplitude of roll velocity. The numerical coefficients ay were
estimated by using least-square fitting.

Haddara [81] employed the concept of the random decrement in the damping
identification of linear systems. He extended the concept of the random decrement for a
ship performing rolling motion in random beam waves. Wave excitation was assumed to
be a Gaussian white noise process. The equations were used to identify the parameters of the
nonlinear roll damping moment. Wu et al. [82] conducted an experimental investigation to
measure the nonlinear roll damping of a ship in regular and irregular waves.

3.3. Ship Inertia Forces and Moments

The inertia forces and moments in heave, roll, and pitch motions are mainly due to the ship
mass and mass moment of inertia and the corresponding added mass terms. These are well
documented in Neves and Rodriguez [11] and are given in the form

Fzr = (m+Z:)z + Zy0,

M = (Joe + Kp), (3.25)

My = (Jyy + Kg)0 + M:Z,

where m is the ship mass, Jy, and Jyy are the ship mass moment of inertia about roll and
pitch axes, Z: is the hydrodynamic added mass in heave, Z; is the hydrodynamic added
inertia in heave due to pitch motion, inertia K and Ky are the hydrodynamic added polar
mass moment of inertia about the ship roll and pitch axes, respectively, and M is the added
inertia in pitch due to heave motion. The added inertia parameters may be evaluated using
the potential theory as described by Salvesen et al. [83] and Meyers et al. [84].
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3.4. Governing Equations of Motion

Applying Newton’s second law, the equations governing heave-roll-pitch motion may be
written in a form.
The heave equation of motion is

(m+ZZ-)Z+Z(;9+sz'+pg{zA0—Ay|Osin6+ aa—i 0zz+ aa—g 0z(6+sir19)+ a(;‘;x 0¢sin¢
_ 66% Oesin9+%é§7? 0z3+ ('?zz_aAG O22(9+sir19)
+ %% 02(})(% +sin<;b> + g;gg 0¢<Gsin¢+ %sin@)
+(2;T? 026(2 +sin6> - % 8;;42y 092 sin@}

oy oy AN -
+ ZPgZLa—Zn(t)dx - ZPgGLXa—Zn(t)dx - pgqsz [2y<§> + y] n(t)dx = Z(t).
(3.26)

The roll moment equation of motion taking into account the beam sea hydrodynamic wave
excitation moment, @(t), is

.. K . . — — —_ . . aIxx
<]xx + Kq;)(i) + ;Ck(ﬂ(l)lk Yy pg{vo(zBo —Zg)sing + I|pzsing + =

0z(d) +sing)

ol xx
a0 |,

Lix

2
+ (Osing + ¢sinH) + aaT’; zz<¢+%sin¢>
0

N 1 tood
2 062

0(Osin¢g + ¢sin0)
0

1

" 5200

z(¢p0 +Osin¢g + psin )
0

O? Ly

0¢? 0

L1
2

$*sin (])}
9 ay\’ oy '\’
+ ZPg¢Lyza—Zrz(t)dx - 2P82¢L [2y<a—z> + y] n(t)dx + pg¢L [2y<a—z> + y] m’ (£)dx

o\ 2
+ 2pg¢GfL [2xy<a—z> + xy] n(t)dx = O(t).
(3.27)
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The pitch moment equation of motion taking into account the beam sea hydrodynamic wave

excitation moment, O(t), is

(]yy+K9)9+MZZ+C99+pg{UO(EBO—Ec)sinG—Ay|oz+ Iy|,sin6 - aﬁ z2
0
+¥ 0z(9+sm(9) sin ¢ +—= 89 Qsme
—%% 3 5;iy2y zz<6+%sin9>
Szgquﬁ z¢<¢+sm¢> ?)22189 29<9+sm9)
2;166 ¢651n¢+§a;;y2y 0¢Zsin6+%a;éy2y

6% sin 6}
0

_ % 29y 3 f 5_?/)2 _
ZpgzILx 32 n(t)dx + 2pg6ILx az71(1f)dx +pgP . 2xy< 32 ) TV n(t)dx = O(t),
(3.28)

where C: and Cy are linear damping coefficients associated with heave and pitch motions,
respectively. Z(t), @(t), and O(t) are the external excitations due to sea waves. One can
extract from the above three equations the coupled roll-pitch equations of motion or the
purely roll equation of motion. Nayfeh et al. [85] described two different mechanisms that
cause roll instabilities in ships. An approximate solution based on the method of multiple
scales was presented together with different simulations using the Large Amplitude Motions
Program (LAMP) code to determine linear parameters of the heave, pitch, and roll response.
A methodology for nonlinear system identification that combines the method of multiple
scales and higher-order statistics was also proposed.

3.4.1. Coupled Roll-Pitch Equations of Motion

Considering the coupled roll-pitch equations of motion, (3.27) and (3.28) take the form

K
<]xx +K¢>$+ch(ﬁ|(j}|k_l +pg{vo(EBo—EG)sinqb+ %| (Bsing + ¢sin6)
k=1 0

1 O Ly
"2 062

9(651n¢ +¢sinf) + =

1 0Ly
2 8¢ |,

¢ sin¢}
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9 oy\’
* 2pg¢f yza—Zn(t)dx + pgq‘bf [2y<a—z> * y] i (t)dox
L L

o\ 2
+ 2pg¢9fL |:2xy<a—‘1:) + xy] n(t)dx = O(t),

< . 0l ol
(Jyy + Kg)0 + Cy0 +pg{vo(EBo - Zg)sin® + I, |,sin 6 - ad)y ‘ Ppsin¢ + a_Z)y Osin O
0 0
Ly 10%L, 1 0°I,,

———| ¢Osin¢ + = $*sin0 + = 6°sin @

0poo |, 2 0¢* |, 2 06% |,

0 oy '\’
+ ZngJ‘ xza—Zq(t)dx + pg¢3f [2xy<a—z> + xy]q(t)dx = 0O(t).
L L
(3.29)

Note that the nonlinear coupling terms may result in nonlinear internal resonances among
pitch and roll motions (see, e.g., [2, 3]).

3.4.2. Roll Equation of Motion

The prediction of ship stability during the early stages of design is very important from the
point of a vessel’s safety. Of the six motions of a ship, the critical motion leading to capsize
is the rolling motion. Thus for studying roll stability in beam seas one should consider the
nonlinear roll equation

S _ _ 1 %I,
(Jee + Kg) b+ Dcxdldl ™ + pg|vo(Zso ~ Z6) + 5 =
pt 2 0¢

¢2] sin ¢

i ’ (3.30)
9 R

+ 2pg¢fLyza—Zn(t)dx + P8P f . [Zy <a—‘Z) + y] 72 (H)dx = D(t).

In formulating the roll equation in beam seas one should realize that the hydrodynamic roll
moments on the ship are dependent on the relative motion of ship and wave, rather than
upon the absolute roll motion. In a beam sea the relative roll is defined as (¢ — a), where a is
the local wave slope in a long-crested regular beam sea. In this case, the nonlinear equation
of roll motion may be written in the form [86]

Jexh = =6Jx (¢ — &) — H(¢p — &) —E(¢p—a) + B, (3.31)

where 6 ] is the roll added inertia and B is the bias moment created by several sources such
as a steady beam wind, a shift of cargo, water, or ice on deck. Setting ¢, = ¢ — a, (3.31) takes
the form (see, e.g., [87])

Jxx + 6Jxx)Pr + H, + Ed, = B — Joxit. (3.32)
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Wright and Marshfield [86] solved (3.32) for small nonlinear restoring moment and small
linear and cubic damping near the resonance frequency using three different approximate
techniques: perturbation method, averaging method, and harmonic balance. Lin and
Salvesen [88] presented an assessment of the Large Amplitude Motion Program (LAMP) for
evaluating ship performance in extreme seas. The study included a time domain simulation
of a ship capsizing in beam seas. It was shown that capsizing can happen due to dynamic
effects even for ships that satisfy the minimum righting arm requirement. Surendran and
Reddy [89, 90] evaluated the performance of a ship in beam seas using strip theory. The
critical condition in the rolling motion of a ship is when it is subjected to synchronous
beam waves (i.e., the encounter frequency coincides with the wave frequency). They
considered various representations of damping and restoring terms to identify the effect
of wave amplitude, wave frequency, and metacentric height (was represented by a quintic
polynomial).

Contento et al. [91] reported some results of experimental tests on nonlinear rolling in
a regular beam sea of a Ro-Ro ship model by varying both the wave steepness and the wave
frequency. They adopted a parameter estimation technique based on the least squares fitting
of the stationary numerical solution of the nonlinear rolling motion differential equation. It
was possible to extract information on the damping model and on the linear and nonlinear
damping coefficients. These exhibit a quite strong dependence on frequency that reduces
the efficiency of constant coefficients rolling equation to simulate large amplitude nonlinear
rolling. The results indicate that a good quality prediction model of nonlinear rolling cannot
be based on constant coefficients time-domain simulations. The analysis indicates also a
marked dependence of the effective wave slope coefficient on wave amplitude. The effect
of the excitation modeling on the fitting capability of the nonlinear roll motion equation
to experimental data was studied by Francescutto et al. [92]. Several frequency dependent
and constant effective wave slope coefficients were derived for five different scale models
corresponding to different ship typologies by a parameter identification technique. Later,
Francescutto and Contento [93] studied the steady rolling response in a regular beam sea
of a1 : 50 scale model of a destroyer in the bare hull condition. In view of the softening
characteristics of the restoring moment, bifurcations with jump in amplitude and phase at
two different wave frequencies were observed experimentally. Exact numerical solutions
were used to obtain reliable values of the coefficients of the mathematical model to be used
for the roll motion simulation.

Mahfouz [94] presented a robust method for the identification of linear and nonlinear
damping and restoring parameters in the equation describing the rolling motion of a ship
using only its measured response at sea. The parameters were identified using a combination
of the random decrement technique, auto- and cross-correlation functions, a linear regression
algorithm, and a neural-network technique. The proposed method would be particularly
useful in identifying the nonlinear damping and restoring parameters for a ship rolling under
the action of unknown excitations effected by a realistic sea.

3.5. Memory Effect

Note that the previous formulation did not account for the hydrodynamic memory effect.
The hydrodynamic load due to the ship motion is a function of its frequency of oscillation.
When the ship oscillates, waves will be generated on the free surface. As time increases, these
waves will propagate outward from the body, but they continue to affect the fluid pressure
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and hence the body force for all subsequent times [14]. In the time domain, this force or
moment can be represented by a convolution integral of the impulse response function as
outlined by Cummins [95], that is,

t
Fij = —tXiI'(OO)Y/]' - f Kij(t — T)‘/]'(T)dT, 1,] = 1, 2, 3, (333)

where i, j = 1,2,3 indicate surge, sway, and yaw, respectively. V;() is the ship velocity along
the axis j, a;; is the ship added mass, and Kj;j(t — 7) is the retardation function and can be
expressed in terms of the velocity potential function ¢ as

Kij(t-1) = PJ‘J‘SW& do, (3.34)

where s; is the ith component of the normal vector of the surface element do. Chung and
Bernitsas [96] evaluated these forces in details.

A component of this force initiated at a certain moment continues to attribute its
influence on the system for a period of time. This is referred to as the hydrodynamic memory
effect [96]. It was indicated that calculating this effect in the time domain is very time
consuming. Tick [97] represented the convolution integral by a set of recursive differential
equations with constant coefficients. These coefficients are determined by curve fitting the
added mass and damping in the frequency domain. This method was used for estimating
the memory effect on ship maneuvering by McCreight [98], a single-point mooring tanker by
Jiang et al. [99] and Sharma et al. [100], and other motions by Schmiechen [101, 102].

4. Ship Roll Dynamic Stability

Traditional ship stability analysis compares the vessel righting arm curve to a standard or
to a steady wind heeling moment (see, e.g., [103, 104]). Modern analysis methods of ship
stability are based on analyzing the vessel’s roll motion response either by simulation or
using modern methods of dynamical systems. One method of analyzing nonlinear dynamical
systems used by numerous researchers is the analysis of the so-called safe basin [105]. This
method consists of numerically integrating a grid of initial conditions in order to determine
which initial conditions will lead to bounded motions (safe basin) and which will yield
unbounded motions (i.e., capsizing). There are two cases that are generally analyzed and
these are the unbiased and biased cases. The unbiased case involves the symmetric ship
while the biased case is for an asymmetric ship. The asymmetry may be due to a steady
wind moment, cargo shifting, or an asymmetric ice accretion.

The upper bound of the wave excitation amplitude, beyond which the ship becomes
dynamically unstable, is governed by both the damping factor and the excitation frequency.
This is reflected by the reduction of the safe basin area with the excitation amplitude. The
stability fraction known in the literature as the normalized safe basin area or Safe Basin
Integrity Factor [106-109]. It is usually obtained by estimating the ratio of the area of the
stable region in the phase plane (area of the safe basin) to the total area encompassed by
the homoclinic orbit, which is defined to be the safe basin in the absence of excitation. The
stability fraction is strongly dependent on the excitation amplitude. For excitation amplitudes
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less than a critical value, governed by the excitation frequency, there is no erosion at all for
the safe basin. Above this critical value of the excitation amplitude, the area of the safe basin
shrinks and the stability fraction drops. As the excitation frequency changes so does the
critical excitation amplitude.

Froude [110] observed that ships have undesirable roll characteristics when the
frequency of a small free oscillation in pitch is twice the frequency of a small free oscillation
in roll. It was Paulling and Rosenberg [8] who formulated the analytical modeling of the
coupled roll-pitch motion. This coupled motion is described by a set of nonlinear equations.
If the nonlinear effect of roll is neglected, the pitch equation of motion is reduced to a linear
differential equation, which is free from roll motion terms. When pitch equation is solved, its
response appears as a coefficient to the restoring moment in the roll equation of motion in the
well-known Mathieu equation. Nayfeh et al. [1] analyzed the nonlinear coupling of the pitch
and roll modes in regular seas when their frequencies are in the ratio of two to one. When the
frequency of encounter (excitation frequency) is near the pitch frequency, the pitch mode is
excited if the encountered wave amplitude (excitation amplitude) is small. As the excitation
amplitude increases, the amplitude of the pitch mode increases until it reaches a critical small
value. As the excitation amplitude increases further, the pitch amplitude reaches a saturated
value, and all of the extra energy is transferred to the roll mode.

4.1. Stochastic Roll Stability

Sea waves are not sinusoidal and may cause severe or dangerous ship motions. The
probabilistic theory of ship dynamics was documented by Price and Bishop [111] and Lloyd
[112]. If the nonlinear effect of roll is neglected, the pitch equation of motion is reduced to a
linear differential equation, which is free from roll motion terms. When the pitch equation is
solved, its response appears as a coefficient to the restoring moment of the roll motion, and
the roll equation of motion is reduced to the Mathieu equation

P +2lwad + W2 [1+eO(t)]p = eM(t), (4.1)

where ¢ is the roll angle, O(t) represents the pitch angle which is assumed to be a random
stationary process, M(t) represents the wave random excitation, ¢ is a linear damping factor,
wy, is the natural frequency of the ship roll oscillation, and ¢ is a small parameter.

The analysis of the ship roll stability in an irregular sea was addressed by some
investigators (see, e.g., [113-115]). The stochastic stability and response of the ship roll
motion in random seas have been predicted analytically using the stochastic averaging
method [46, 47, 49, 116]. Roberts [47] analyzed (4.1) for the stochastic stability and statistical
response moments using the stochastic averaging method. The sample stability condition of
the roll angle amplitude was obtained in the form

_ 2
> £ wnse(zwn), (42)
8
where Sg(2w,) is the power spectral density of the random pitch process O(t) at frequency
2wy. Condition (4.2) reveals that the onset of instability is not affected by the forcing
excitation M (t). If this excitation is removed, the probability density function of the response
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degenerates into a delta function. The stability conditions of the first moment of the response
amplitude is

;> 13—652(4),159(2(41”). (4.3)

The stability condition of the second moment is

’> igzwnse(zfun). (4.4)

These stability conditions apply only for the case of random sea waves in the absence of ice
effects. Haddara [117] obtained the autocorrelation function of the roll motion in irregular
seas.

4.2. Probabilistic Roll Dynamics

In addition to the modes of stochastic stability outlined in the previous subsection, it
is important to examine the ship probabilistic description in random seas. It is of great
importance to estimate the probability of capsizing. Equally important is to identify ship’s
parameters in roll motion. Different probability approaches have been found very effective
in studying these issues. For example, the path integral technique was applied to the roll
nonlinear motion of a ship in irregular waves by Kwon et al. [118]. The exciting moment
due to irregular waves was modeled as a nonwhite noise. Both damping and nonlinear
restoring functions were included with the equivalent white-noise intensity. Lin and Yim
[119] developed a stochastic analysis to examine the properties of chaotic roll motion and
capsize of ships subjected to a periodic excitation with a random noise disturbance. They
used a generalized Melnikov method to provide an upper bound on the domain of the
potential chaotic roll motion. The associated Fokker-Planck equation governing the evolution
of the probability density function of the roll motion was numerically solved by the path
integral solution procedure to obtain joint probability density functions in state space. A
chaotic response was found to take place near the homoclinic and heteroclinic orbits. The
heteroclinic model emulates symmetric vessel capsize and the homoclinic model represents
a vessel with an initial bias caused by water on deck. It was found that the presence of noise
enlarges the boundary of the chaotic domains and bridges coexisting attracting basins in the
local regimes. The probability of capsize was considered as an extreme excursion problem
with the time-averaged probability density function as an invariant measure. In the presence
of noise, the numerical results revealed that all roll motion trajectories that visit the regime
near the heteroclinic orbit will eventually lead to capsize.

Another version of the path integration approach based on the Gauss-Legendre
quadrature integration rule was proposed by Gu [120]. It was applied for estimating the
probability density of the nonlinear roll motion of ships in stochastic beam seas. The ship roll
motion was described by a nonlinear random differential equation that includes a nonlinear
damping moment and restoring moment. The results include the time evolution of the ship
response probability density as well as the tail region, which is very important for the system
reliability analysis. Gu [121] derived an approximate stationary probability density function
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and stationary mean out-crossing rate of the response of nonlinear roll-motion subjected to
additive stochastic white noise excitations.

Yim et al. [122, 123] developed an analytical approach for the identification of ship
parameters and calibration of their prediction capability using experimental results. They
examined a three-degree-of-freedom fully coupled roll-heave-sway model, which features
realistic and practical high-degree polynomial approximations of rigid body motion relations,
hydrostatic and hydrodynamic forces and moments. System parameters of the model were
identified using physical model test results from several regular wave cases. The predictive
capability of the model is then calibrated using results from a random wave test case.
Yim et al. [123] presented a computationally quasi-two-degree-of-freedom stochastic model
describing the coupled roll-heave motions and a stability analysis of barges in random seas.
Stochastic differential equations governing the evolution of probability densities of roll-heave
and roll responses were derived using the Fokker-Planck formulation. Numerical results of
roll responses using direct simulation in the time domain and the path integral solution
technique in the probability domain were compared to determine the effects of neglecting
the influence of heave on roll motion.

The case of small ships with water on deck subjected to random beam waves described
by a periodic force and white noise perturbation was considered by Liu and Yougang [124]
using the path integral solution. The random Melnikov mean square criterion was used to
determine the parameter domain for the ship’s stochastic chaotic motion. The evolution of
the probability density function of the roll response was calculated by solving the stochastic
differential equations using the path integral method. It was found that in the probability
density function of the system has two peaks for which the response of the system was found
to jump from one peak to another for large amplitudes of periodic excitation. Mamontov
and Naess [125] developed a combined analytical-numerical approach referred to as the
successive-transition method, which is essentially a version of the path-integration solution
and is based on an analytical approximation for the transition probability density. The
method was applied to a one-dimensional nonlinear Ito’s equation describing the velocity
of a ship maneuvering along a straight line under the action of the stochastic drag due to
wind or sea waves. It was also used for the problem of ship roll motion up to its possible
capsizing. It was indicated that the advantage of the proposed successive transition is that it
provides an account for the damping matrix in the approximation.

Haddara and Zhang [126] developed an expression for the joint conditional
probability density function for the ship roll angle and roll velocity in beam seas. The
joint probability density function was expressed as a double series in the nondimensional
roll angle and roll velocity. Jiang et al. [127] examined ships capsizing in random beam
seas using the Melnikov function and the concept of phase-flux rates. Damping and wave
excitation moments were treated as perturbations since they are relatively small compared
with inertial effects and hydrostatic righting moments. Safe and unsafe areas were defined
in the phase plane of the unperturbed system model to distinguish the qualitatively different
ship motions of capsize and noncapsize. They derived expressions for the phase space flux
rate. The correlation of phase space flux and capsize was investigated through extensive
simulations. It was shown that these analytical tools provide reliable predictive information
regarding the likelihood of a vessel capsize in a given sea state. Gu [128] and Tang et al.
[129] employed the Melnikov function and phase space flux to examine the nonlinear roll
motion of a fishing ship in random beam seas. They showed that the phase space flux is
monotonically increasing as the significant wave height increases, while the safe basin is
decreasing rapidly.
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Figure 6: (a) Definition of incident wave directions. (b) Key parts of a ship structure.

Liu et al. [130] considered some methods for constructing safe basins and predicting
the survival probability of ships in random beam waves. The nonlinear random roll
differential equation was numerically solved in the time domain by considering the
instantaneous state of ships and the narrowband wave energy spectrum. The safe basins were
constructed for safe navigation, and the survival probability of ships was also estimated. In
another work, Liu et al. [131] considered the random differential equation of roll motion
in beam seas and the random Melnikov mean-square criterion was used to determine the
threshold intensity for the onset of chaos. It was found that ships undergo stochastic chaotic
motion when the real intensity of the white noise exceeds the threshold intensity. The stable
probability density function of the roll response was found to possess two peaks and the
random jump happened in the response of the system for high intensity of the white noise
excitation.
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Reliability of ship operations under Gaussian or nonGaussian random sea waves deals
with the probability that the ship will not capsize. One may estimate the ship reliability in
terms of the probabilistic characteristics of the time at which the roll motion first exits from
the safe domain. When capsizing is defined by the first exit of response from a safe domain of
operation, the reliability is referred to as a first-passage problem. For ships whose response
is described by a Markov process, the mean value of the exit time is usually governed by a
partial differential equation known as the Pontryagin-Vitt (PV) equation [132].

The first-passage problem of nonlinear roll oscillations in random seas has been
considered by Roberts [46, 47], Cai and Lin [133], Cai et al. [134], and Moshchuk et al.
[51, 135]. Roberts [46, 47] developed an approximate theory based on a combination of
averaging techniques and the theory of Markov processes. His analysis resulted in a simple
expression for the distribution of the ship roll angle. Cai et al. [134] adopted the same
modeling and introduced a parametric excitation term. They used the modified version of
quasiconservative averaging. Moshchuk et al. [51] determined the mean exit time of the
perturbed ship motion by solving Pontryagin’s partial differential equation using the method
of asymptotic expansion. It was found that the mean exit time is extremely large for any
excitation intensity less than a critical value above which it experiences exponential decay.

5. Closing Remarks

The nonlinear dynamic modeling of ship motions in roll, pitch, and heave has been
formulated based on physical ground. The formulation has been adopted from the work
of Neves and Rodriguez [11, 12]. One can use the coupled nonlinear equations motion to
examine only the ship motion in roll oscillations under regular and random sea waves.
Other issues related to this modeling deal with the effect of roll damping and hydrodynamic
memory effect arising from the ship motion. An overview of the roll dynamic stability under
random sea waves has been presented in terms of the sample stability condition and response
statistical moments. Equally important are the probability of capsizing and the identification
of parameters in roll motion. Different probability approaches have been found very effective
in studying these issues such as the path integral technique and the generalized Melnikov
method, which provides an upper bound on the domain of the potential chaotic roll motion.
This paper has not addressed the interaction of roll dynamics with floating ice and the reader
can consult the review article by Ibrahim et al. [136].

Appendix

Figure 6 clarifies some of the terminology defined in this Appendix.

Aft: toward the stern of the boat.

Beam: the width of a vessel also a structural component. Both Uses come from the Anglo-
Saxon word beam, meaning, “tree”.

Beam Sea: sea coming on the side of the ship.

Bilge: the lower point of inner hull of a ship.

Bow: the forward part of a boat. The word may come from the Old Icelandic bogr, meaning
“shoulder.”

Broach: the action of turning a vessel broadside to the waves.

Broadside: presenting the side of the ship.
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Buoyancy: the upward push of water pressure, equal to the weight of the volume of water the
ship displaces (W).

Capsize: to turn over.

Center of Buoyancy (B): the geometric center of the submerged hull, acting vertically upward.
Center of Flotation (F): the geometric center of the waterline plane, about which the ship trims
fore and aft.

Center of Gravity (G): the center of all mass of the ship, acting vertically downward.
Displacement Volume (v): the volume of the underwater hull at any given waterline.
Displacement (W): the weight of water of the displaced volume of the ship, which equals the
weight of the ship and cargo.

Draft: the depth of water a boat draws.

Fathom: six feet.

Following Sea: sea coming on the stern.

Forecastle: pronounced “fo’c’s’l” and usually now spelled that way. Now the foredeck of a
vessel, the term originally referred to a raised and fortified platform at the ship’s bow. Used
by archers in combat at sea as early as the 13th century.

Freeboard: that part of a ships sides above water, from the Anglo-Saxon framebord, meaning
“the frame’s side.”

Head: (1) the uppermost or forward-most part of a ship (or of some specific part of a ship,
such as the masthead, beakhead, stemhead, or whatever. (2) The bathroom. In the age of
sail, the crew was quartered forward in the forecastle, and their latrine was located on the
beakhead, over hanging the water (for obvious reasons).

Heading: the direction in which a vessel’s bow points at any given time.

Headway: the forward motion of a boat. Opposite of sternway.

Heel: constant roll angle—such as caused by a side wind or turning of the vessel.

Hull: the main body of a vessel.

Keel: the centerline of a boat running fore and aft; the backbone of a vessel.

Knot: a measure of speed equal to one nautical mile (6076 feet) per hour.

Lee: the side sheltered from the wind.

Leeward: the direction away from the wind. Opposite of windward.

Leeway: the sideways movement of the boat caused by either wind or current.

List, Heel, and Roll: it is both a noun and a verb referring to ships upping to one side or the
other due to poor trim, shifting cargo, or sinking. The word comes from the Anglo-Saxon
lystan, meaning “to lean.” Angular transverse inclinations. List describes a static inclination
such as list due to side damage. Heel describes a temporary inclination generally involving
motion, such as wind or turning, while roll indicates periodic inclination from side to side
such as wave action.

Metacenter (M): when the ship is inclined at small angles, the metacenter is the intersection
of the buoyant force with the ship centerline. If the metacenter is above the center of gravity
then the ship is stable.

Midship: approximately in the location equally distant from the bow and stern.

Nautical Mile: one minute of latitude; approximately 6076 feet: about 1/8 longer than the
statute mile of 5280 feet.

Naval Architecture: ship design: especially hull design, overall layout with attention to
stability, sea keeping, and strength.

Port: the left side of a boat looking forward.

Quarter: the sides of a boat aft of amidships.

Quarter Sea: sea coming on a boat’s quarter.
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Reserve Buoyancy: the watertight volume between the waterline and the uppermost
continuous watertight deck.

Righting Arm (also Restoring Lever): it is the horizontal distance between the vertical line
passing through the buoyant center and the vertical line passing through the ship center
of gravity.

Starboard: the right side of a boat when looking forward.

Stern: the rear of any vessel. The word came from the Norse Stjorn (pronounced “Styorn”),
meaning “steering.” It is the after part of the boat.

Thwartships: it means across the ship.

Trim: longitudinal tilt. Stern draft, bow draft.

Wake: moving waves, track, or path that a boat leaves behind it, when moving across the
waters.

Waterline: a line painted on a hull which shows the point to which a boat sinks when it is
properly trimmed.

Way: movement of a vessel through the water such as headway, sternway, or leeway.
Windward: toward the direction from which the wind is coming.

Yaw: to swing or steer off course, as when running with a quartering sea.
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Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Never-
theless, the application of FC just emerged in the last two decades, due to the progress in the area
of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems
theory some work has been carried out but the proposed models and algorithms are still in a pre-
liminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of
system dynamics and control. In this perspective, this paper investigates the use of FC in the fields
of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis.

1. Introduction

The generalization of the concept of derivative D*[ f(x)] to noninteger values of a goes back
to the beginning of the theory of differential calculus. In fact, Leibniz, in his correspondence
with Bernoulli, L'Hopital and Wallis (1695), had several notes about the calculation of
D'2[f(x)]. Nevertheless, the development of the theory of Fractional Calculus (FC) is due
to the contributions of many mathematicians such as Euler, Liouville, Riemann, and Letnikov
[1-3].

The FC deals with derivatives and integrals to an arbitrary order (real or, even,
complex order). The mathematical definition of a derivative/integral of fractional order has
been the subject of several different approaches [1-3]. For example, the Laplace definition of
a fractional derivative of a signal x(t) is

k=0

D% (t) = L™ {S“X(s) - nzl skD“‘k‘lx(t)|t_0}, (1.1)
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where n -1 < a <n, a > 0. The Griinwald-Letnikov definition is given by (a € R):
D%x(t) = lim L i (-1)k ; x(t - kh)
" h—0| h® P k !
ay Ia+1)
k) Tk+DI(a-k+1)’

where T is the Gamma function and h is the time increment. However, (1.2) shows that
fractional-order operators are “global” operators having a memory of all past events, making
them adequate for modeling memory effects in most materials and systems.

The Riemann-Liouville definition of the fractional-order derivative is (a > 0):

(1.2)

1 ar f f(r)

oD f(t) = T —a) di

Wd’l’, n-l<acx< n, (13)
a(l—T

where I'(x) is the Gamma function of x.

Based on the proposed definitions it is possible to calculate the fractional-order
integrals/derivatives of several functions (Table 1). Nevertheless, the problem of devising
and implementing fractional-order algorithms is not trivial and will be the matter of the
following sections.

In recent years FC has been a fruitful field of research in science and engineering
[1-6]. In fact, many scientific areas are currently paying attention to the FC concepts and
we can refer its adoption in viscoelasticity and damping, diffusion and wave propagation,
electromagnetism, chaos and fractals, heat transfer, biology, electronics, signal processing,
robotics, system identification, traffic systems, genetic algorithms, percolation, modeling and
identification, telecommunications, chemistry, irreversibility, physics, control systems as well
as economy, and finance [7-18].

Bearing these ideas in mind, Sections 2-6 present several applications of FC in science
and engineering. In Section 2, it is presented the application of FC concepts to the tuning
of PID controllers and, in Section 3, the application of a fractional-order PD controller in
the control of the leg joints of a hexapod robot. Then in Section 4, it is presented the
fractional dynamics in the trajectory control of redundant manipulators. Next, in Section 5, it
is introduced the fractional characteristics of heat diffusion along a media and, in Section 6 it
is shown the application of FC to circuit synthesis using evolutionary algorithms. Finally, the
main conclusions are presented in Section 7.

2. Tuning of PID Controllers Using Fractional Calculus Concepts

The PID controllers are the most commonly used control algorithms in industry. Among the
various existent schemes for tuning PID controllers, the Ziegler-Nichols (Z-N) method is the
most popular and is still extensively used for the determination of the PID parameters. It
is well known that the compensated systems, with controllers tuned by this method, have
generally a step response with a high percent overshoot. Moreover, the Z-N heuristics are
only suitable for plants with monotonic step response.
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Table 1: Fractional-order integrals of several functions.

p(x), xeR (Ifp)(x), x€eR, aeC
T
(x - a)? g (=@ Re() >0
el A%e'* Re(A) >0
{ sin(Ax) { sin(Ax — arr/2),
A A>0, Re(a) > 1
cos(Ax) cos(Ax —arr/2),
“ sin(yx) eMx sin(yx —a¢), ¢ =arctan(y/\)
e _°c
cos(yx) (A2 + Yz)u/z cos(yx —a¢), y>0, Re(A) >1

In this section, we study a methodology for tuning PID controllers such that the
response of the compensated system has an almost constant overshoot defined by a
prescribed value. The proposed method is based on the minimization of the integral of
square error (ISE) between the step responses of a unit feedback control system, whose
open-loop transfer function L(s) is given by a fractional-order integrator and that of the PID
compensated system [7].

Figure 1 illustrates the fractional-order control system that will be used as reference
model for the tuning of PID controllers. The open-loop transfer function L(s) is defined as
(¢ € RY):

L(s) = (%) (2.1)

where w, is the gain crossover frequency, that is, |L(jw.)| = 1. The parameter a is the slope of
the magnitude curve, on a log-log scale, and may assume integer as well as noninteger values.
In this study we consider 1 < a < 2, such that the output response may have a fractional
oscillation (similar to an underdamped second-order system). This transfer function is also
known as the Bode’s ideal loop transfer function since Bode studies on the design of feedback
amplifiers in the 1940s [19].

The Bode diagrams of amplitude and phase of L(s) are illustrated in Figure 2. The
amplitude curve is a straight line of constant slope —20a dB/dec, and the phase curve is a
horizontal line positioned at —asr /2 rad. The Nyquist curve is simply the straight line through
the origin, arg L(jw) = —aur/2rad.

This choice of L(s) gives a closed-loop system with the desirable property of being
insensitive to gain changes. If the gain changes, the crossover frequency w. will change, but
the phase margin of the system remains PM = or(1 —a/2) rad, independent of the value of the
gain. This can be seen from the curves of amplitude and phase of Figure 2.

The closed-loop transfer function of fractional-order control system of Figure 1is given

by

L(s) 1
S 1+L(s)  (s/we)*+17

l<a<?2. (2.2)
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Figure 1: Fractional-order control system with open-loop transfer function L(s).
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Figure 2: Bode diagrams of amplitude and phase of L(jw) for 1 < a < 2.

The unit step response of G(s) is given by the expression:

_ 1! Y G DR - s G20k .
yd(t)_L1{EG(S)}_L1{S(Sa—4-(4)g)}_1_nzz()m_l_Ea[_(WCt) ] (23)

For the tuning of PID controllers, we address the fractional-order transfer function
(2.2) as the reference system [8]. With the order a and the crossover frequency w, we can
establish the overshoot and the speed of the output response, respectively. For that purpose
we consider the closed-loop system shown in Figure 3, where G.(s) and G,(s) are the PID
controller and the plant transfer functions, respectively.

The transfer function of the PID controller is

Ge(s) = u(:) - 1<<1 + Tis + Tds>, (2.4)

where E(s) is the error signal and U (s) is the controller’s output. The parameters K, T;, and
T, are the proportional gain, the integral time constant, and the derivative time constant of
the controller, respectively.
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PID controller Plant

R Y
(s) + E(s) Gu(s) U(s) Go(5) (s)

Figure 3: Closed-loop control system with PID controller G.(s).

The design of the PID controller will consist on the determination of the optimum PID
set gains (K, T;, T;) that minimize ], the integral of the square error (ISE), defined as

J= f [y() - ya()]t, (2.5)
0

where y(t) is the step response of the closed-loop system with the PID controller (Figure 3)
and y,4(t) is the desired step response of the fractional-order transfer function (2.2) given by
(2.3).

To illustrate the effectiveness of proposed methodology we consider the third-order
plant transfer function:

G()—i (2.6)
P _(s+1)3 '

with nominal gain K, = 1.

Figure 4 shows the step responses and the Bode diagrams of phase of the closed-loop
system with the PID for the transfer function G,(s) for gain variations around the nominal
gain (K, = 1) corresponding to K, = {0.6,0.8,1.0,1.2,1.4}, that is, for a variation up to +40%
of its nominal value. The system was tuned for a = 3/2 (PM = 45°), w, = 0.8 rad/s. We verify
that we get the same desired iso-damping property corresponding to the prescribed (a, w,)
values.

In fact, we observe that the step responses have an almost constant overshoot
independent of the variation of the plant gain around the gain crossover frequency we.
Therefore, the proposed methodology is capable of producing closed-loop systems robust to
gain variations and step responses exhibiting an iso-damping property. The proposed method
was tested on several systems revealing good results. It was also compared with other tuning
methods showing comparable or superior results [8].

3. Fractional PD” Control of a Hexapod Robot

Walking machines allow locomotion in terrain inaccessible to other type of vehicles, since
they do not need a continuous support surface, but at the cost of higher requirements for leg
coordination and control. For these robots, joint level control is usually implemented through
a PID-like scheme with position feedback. Recently, the application of the theory of FC to
robotics revealed promising aspects for future developments [9]. With these facts in mind,
this section compares different Fractional PD” robot controller tuning, applied to the joint
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Figure 4: Bode phase diagrams and step responses for the closed-loop system with a PID controller for
Gy (s). The PID parameters are K = 1.9158, T; = 1.1407, and T,; = 0.9040.

control of a walking system (Figure 5) with n = 6 legs, equally distributed along both sides of
the robot body, having each three rotational joints (i.e., j = {1,2,3} = {hip, knee, ankle}) [10].

During this study leg joint j = 3 can be either mechanical actuated or motor actuated
(Figure 5). For the mechanical actuated case, we suppose that there is a rotational pre-
tensioned spring-dashpot system connecting leg links L;; and L;3. This mechanical impedance
maintains the angle between the two links while imposing a joint torque [10].

Figure 5 presents the dynamic model for the hexapod body and foot-ground
interaction. It is considered robot body compliance because walking animals have a spine
that allows supporting the locomotion with improved stability. The robot body is divided
in 7 identical segments (each with mass M,n™') and a linear spring-damper system (with
parameters defined so that the body behaviour is similar to the one expected to occur on an
animal) is adopted to implement the intrabody compliance [10]. The contact of the ith robot
feet with the ground is modelled through a nonlinear system [11], being the values for the
parameters based on the studies of soil mechanics [11].

The general control architecture of the hexapod robot is presented in Figure 6 [12].
In this study we evaluate the effect of different PD”, a € R, controller implementations for
Ge1(s), while G, is a proportional controller with gain Kp; = 0.9 (j = 1,2,3). For the PD*
algorithm, implemented through a discrete-time 4th-order Padé approximation (a;j, b;j € R,
j=1,2,3), we have

i=u —i
2iz0 ij 27

Gaj(z) = Kpj + Kaj — -,
R Sy =

(3.1)

where Kp; and Ka; are the proportional and derivative gains, respectively, and a; is the
fractional order, for joint j. Therefore, the classical PD! algorithm occurs when the fractional
order a; = 1.0.
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Figure 5: Model of the robot body and foot-ground interaction.

It is analysed the system performance of the different PD” tuning, during a periodic
wave gait at a constant forward velocity Vr, for two cases: two leg joints are motor actuated
and the ankle joint is mechanical actuated and the three leg joints are fully motor actuated
[10].

The analysis is based on the formulation of two indices measuring the mean absolute
density of energy per traveled distance (E,,) and the hip trajectory errors (ex,y) during
walking, according to

~ 1L T 9 p i
Euv—EZZIolrij(t) ij ()| dt [Jm ,

i1 j=1
ExyH = ; Eé(Aitz + Ain2> [m]r

Aixy = xina(k) — xin (k), Aiyr = Yina(k) — yin (k).

To tune the different controller implementations we adopt a systematic method,
testing and evaluating several possible combinations of parameters, for all controller
implementations. Therefore, we adopt the G.i(s) parameters that establish a compromise
in what concerns the simultaneous minimisation of E,, and &x,y. Moreover, it is assumed
high-performance joint actuators, with a maximum actuator torque of Tjjmax = 400 Nm, and
the desired angle between the foot and the ground (assumed horizontal) is established as
Oi3na = —15°. We tune the PD” joint controllers for different values of the fractional order a;
while making a; = ay = as.

We start by considering that leg joints 1 and 2 are motor actuated and joint 3 is
mechanical actuated. For this case we tune the PD" joint controllers for different values of
the fractional order a;, with step Aa; = 0.1, namely, a; = {-0.9,-038,...,+0.9}. Afterwards,
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Figure 7: Locus of Eg, versus £,y for the different values of a in the G (s) tuning, when establishing a
compromise between the minimisation of E,, and &xyr, with Gz = 0.9, joints 1 and 2 motor actuated and
joint 3 mechanical actuated.

we consider that joint 3 is also motor actuated, and we repeat the controller tuning procedure
Versus a;.

For the first situation under study, we verify that the value of a; = 0.6 (Figure 7), being
the gains of the PD” controller K1 = 2500, Ka1 = 800, Kp2 = 300, Ko = 100 and the parame-
ters of the mechanical spring-dashpot system for the ankle actuation K3 = 1, B3 = 2, presents
the best compromise situation between the simultaneous minimisation of £,z and Ey.

Regarding the case when all joints are motor actuated, Figure 8 presents the best
controller tuning for different values of a;. The experiments reveal the superior performance
of the PD* controller for a; = 0.5, with K1 = 15000, Ky1 = 7200, Kj» = 1000, K42 = 800, and
Kp3 =150, K3 = 240.

Fora; = {0.1,0.2,0.3,0.4} the results are very poor and for a; = {-0.9,...,-0.1}U{+0.9},
the hexapod locomotion is unstable. Furthermore, we conclude that the best case corresponds
to all leg joints being motor actuated.

In conclusion, the experiments reveal the superior performance of the FO controller
for a; = 0.5 and a robot with all motor actuated joints, as can be concluded analysing the
curves for the joint actuation torques 71, (Figure 9) and for the hip trajectory tracking errors
A1xp and Ay, (Figure 10).
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Figure 9: Plots of 71, versus t, with joints 1 and 2 motor actuated and joint 3 mechanical actuated and all
joints motor actuated, for a; = 0.5.
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Since the objective of the walking robots is to walk in natural terrains, in the sequel it
is examined how the different controller tunings behave under different ground properties,
considering that all joints are motor actuated. For this case, and considering the previously
tuning controller parameters, the values of {Kyr, Bxr, Kyr, Byr} are varied simultaneously
through a multiplying factor Ky that is varied in the range [0.1,4.0]. This variation for
the ground model parameters allows the simulation of the ground behaviour for growing
stiffness, from peat to gravel [11].

The performance measure E,, versus the multiplying factor of the ground parameters
Kot is presented on Figure 11. Analysing the system performance from the viewpoint
of the index E,,, it is possible to conclude that the best PD* implementation occurs for
the fractional order a; = 0.5. Moreover, it is clear that the performances of the different
controller implementations are almost constant on all range of the ground parameters, with
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the exception of the fractional order a; = 0.4. For this case, E,, presents a significant variation
with Ky Therefore, we conclude that the controller responses are quite similar, meaning
that these algorithms are robust to variations of the ground characteristics [12].

4. Fractional Dynamics in the Trajectory Control of
Redundant Manipulators

A redundant manipulator is a robotic arm possessing more degrees of freedom (dof)
than those required to establish an arbitrary position and orientation of the end effector.
Redundant manipulators offer several potential advantages over non-redundant arms. In
a workspace with obstacles, the extra degrees of freedom can be used to move around
or between obstacles and thereby to manipulate in situations that otherwise would be
inaccessible [20-23].

When a manipulator is redundant, it is anticipated that the inverse kinematics admits
an infinite number of solutions. This implies that, for a given location of the manipulator’s
gripper, it is possible to induce a self-motion of the structure without changing the location of
the end effecter. Therefore, the arm can be reconfigured to find better postures for an assigned
set of task requirements.

Several kinematic techniques for redundant manipulators control the gripper through
the rates at which the joints are driven, using the pseudoinverse of the Jacobian [22, 24].
Nevertheless, these algorithms lead to a kind of chaotic motion with unpredictable arm
configurations.

Having these ideas in mind, Section 4.1 introduces the fundamental issues for the
kinematics of redundant manipulators. Based on these concepts, Section 4.2 presents the
trajectory control of a three dof robot. The results reveal a chaotic behavior that is further
analyzed in Section 4.3.

4.1. Kinematics of Redundant Manipulators

A kinematically redundant manipulator has more dof than those required to define an
arbitrary position and orientation of the gripper. In Figure 12 is depicted a planar manipulator
with k € R rotational (R) joints that is redundant for k > 2. When a manipulator is
redundant it is anticipated that the inverse kinematics admits an infinite number of solutions.
This implies that, for a given location of the manipulator’s gripper, it is possible to induce
a self-motion of the structure without changing the location of the gripper. Therefore,
redundant manipulators can be reconfigured to find better postures for an assigned set of
task requirements but, on the other hand, have a more complex structure requiring adequate
control algorithms.

We consider a manipulator with n degrees of freedom whose joint variables are
denoted by q = [g1,92, - -- ,qn]T. We assume that a class of tasks, we are interested in can
be described by m variables, x =[x, x,. ..,xm]T(m < n) and that the relation between q
and x is given by

X= f(CI)/ (41)

where f is a function representing the direct kinematics.
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Figure 12: A planar redundant planar manipulator with k rotational joints.

Differentiating (4.1) with respect to time yields
x=J(q)q, (4.2)

where x € R™, q € ", and J(q) = 0f(q)/0q € ™ * ™. Hence, it is possible to calculate a
path q(t) in terms of a prescribed trajectory x(t) in the operational space. We assume that the
following condition is satisfied:

maxrank{J(q)} = m. (4.3)

Failing to satisfy this condition usually means that the selection of manipulation
variables is redundant and the number of these variables m can be reduced. When condition
(4.3) is verified, we say that the degree of redundancy of the manipulator is n—m. If, for some
q we have

rank{J(q)} <m (4.4)

then the manipulator is in a singular state. This state is not desirable because, in this region
of the trajectory, the manipulating ability is very limited.

Many approaches for solving redundancy [25, 26] are based on the inversion of (4.2).
A solution in terms of the joint velocities is sought as

q=J(qx (4.5)

where J* is one of the generalized inverses of the J [26-28]. It can be easily shown that a more
general solution to (4.2) is given by

q=J"(@x+[I-J()J (@]9, (4.6)

where I is the n x n identity matrix and ¢qp € R" is a n x 1 arbitrary joint velocity vector
and J* is the pseudoinverse of the J. The solution (4.6) is composed of two terms. The
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Figure 13: Block diagram of the closed-loop inverse kinematics algorithm with the pseudoinverse.

first term is relative to minimum norm joint velocities. The second term, the homogeneous
solution, attempts to satisfy the additional constraints specified by ¢o. Moreover, the matrix
I -J*(q)J(q) allows the projection of qo in the null space of J. A direct consequence is
that it is possible to generate internal motions that reconfigure the manipulator structure
without changing the gripper position and orientation [27-30]. Another aspect revealed by
the solution of (4.6) is that repetitive trajectories in the operational space do not lead to
periodic trajectories in the joint space. This is an obstacle for the solution of many tasks
because the resultant robot configurations have similarities with those of a chaotic system.

4.2. Robot Trajectory Control

The direct kinematics and the Jacobian of a 3-link planar manipulator with rotational joints
(3R robot) has a simple recursive nature according with the expressions:

[xl] ~ [11C1 +LCp + 13C123]
X2 11S1 + 1hS12 + 135153 |
- [—1151 - =S - —135123]

LG+ +13C1p3 -+ 13Ci3

(4.7)

where [; is the length of link i, g;_x = gi + - - + gk, Si..k = Sin(gi.x), and C;_x = Cos(gi. k).

During all the experiments it is considered At = 103seconds, Ltor = l1 + b + 13 = 3,
and 11 = 12 = 13.

In the closed-loop pseudoinverse’s method the joint positions can be computed
through the time integration of the velocities according with the block diagram of the inverse
kinematics algorithm depicted in Figure 13, where x.¢ represents the vector of reference
coordinates of the robot gripper in the operational space.

Based on (4.7) we analyze the kinematic performances of the 3R-robot when repeating
a circular motion in the operational space with frequency wy = 7.0rad s}, centre at distance
r=[x%+ x%]l/2 and radius p.

Figure 14 shows the joint positions for the inverse kinematic algorithm (4.5) for r =
{0.6,2.0} and p = {0.3,0.5}. We observe that the following hold.

(i) For r = 0.6 occur unpredictable motions with severe variations that lead to high
joint transients [13]. Moreover, we verify a low-frequency signal modulation that
depends on the circle being executed.

(ii) For r = 2.0 the motion is periodic with frequency identical to wy = 7.0rad s7*.



14 Mathematical Problems in Engineering

-30 p=03 0. p=03
o[ T T s AWWVAWWWAMMMAMMMAL,
-50 : Py 1 —
90 95 100 105 110 115 120 90 95 100 105 110 115 120
0 t 0r t
=2 B -05 PNV P
4 ' — -1 .
90 95 100 105 110 115 120 90 95 100 105 110 115 120
0 t 1- t
90 95 100 105 110 115 120 290 95 100 105 110 115 120
t t
(a) (b)
50 p=05 2 p=05
0 o5 10 105 10 115 120 90 95 100 105 110 115 120
0 f 0r t
[T T TN e o WAV WAA
_1090 95 100 105 110 115 1éO _190 95 100 105 110 115 120
-5 t 1 t
71590 95 100 105 110 115 120 _290 9.5 160 1(.]5 liO 1i5 1.20
t t
r=0.6 r=2

Figure 14: The 3R-robot joint positions versus time using the pseudoinverse method for r = {0.6,2.0} and
p =1{03,0.5}.

4.3. Analysis of the Robot Trajectories

In the previous subsection we verified that the pseudoinverse-based algorithm leads to
unpredictable arm configurations. In order to gain further insight into the pseudoinverse
nature several distinct experiments are devised in the sequel during a time window of 300
cycles. Therefore, in a first set of experiments we calculate the Fourier transform of the 3R-
robot joints velocities for a circular repetitive motion with frequency wy = 7.0rad s™!, radius
p=1{0.1,0.3,0.5,0.7}, and radial distances r €]0, Ltor — p[.

Figure 15 shows |F{42(t)}| versus the frequency ratio wy/w and the distance r where
F{} represents the Fourier operator. Is verified an interesting phenomenon induced by the
gripper repetitive motion wy because a large part of the energy is distributed along several
subharmonics. These fractional-order harmonics (fol) depend on r and p making a complex
pattern with similarities with those revealed by chaotic systems. Furthermore, we observe
the existence of several distinct regions depending on r.

For example, selecting in Figure 15 several distinct cases, namely for r = {0.08,
0.30,0.53,1.10,1.30,2.00}, we have the different signal Fourier spectra clearly visible in
Figure 16.
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Figure 15: |[F{g,(t)}| of the 3R-robot during 300 cycles versus r and w/wy, for p = {0.1,0.3,0.5,0.7}, wy =
7.0rads™.

In the authors’ best knowledge the foh are aspects of fractional dynamics [14, 15, 31],
but a final and assertive conclusion about a physical interpretation is a matter still to be
explored.

For joints velocities 1 and 3 the results are similar to the verified ones for joint
velocity 2.

5. Heat Diffusion

The heat diffusion is governed by a linear one-dimensional partial differential equation (PDE)
of the form:

ou o*u

E = @, (51)

where k is the diffusivity, t is the time, u is the temperature, and x is the space coordinate.
However, (5.1) involves the solution of a PDE of parabolic type for which the standard theory
guarantees the existence of a unique solution [16].

For the case of a planar perfectly isolated surface we usually apply a constant
temperature Uy at x = 0 and analyzes the heat diffusion along the horizontal coordinate x.
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Figure 16: |F{§,(f)}| of the 3R-robot during 300 cycles versus the frequency ratio w/wy, for r =
{0.08,0.30,0.53,1.10,1.30,2.00}, p = 0.7, wo = 7.0rad s™".

Under these conditions, the heat diffusion phenomenon is described by a noninteger-order
model:

U(x,s) = %G(s) G(s) = e *V5/k, (5.2)

where x is the space coordinate, U is the boundary condition, and G(s) is the system transfer
function.

In our study, the simulation of the heat diffusion is performed by adopting the
Crank-Nicholson implicit numerical integration based on the discrete approximation to
differentiation as [16, 17]

—rulj+1,i+1] + Q+nulj+Li —ru[j+1,i-1] =rulj,i+1] + @ - r)ulj,i] +u[ji-1],
(5.3)

where r = At(sz)_l, {Ax, At}, and {i, j} are the increments and the integration indices for
space and time, respectively.
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Figure 17: Closed-loop system with PID controller G,(s).

5.1. Control Strategies

The generalized PID controller G.(s) has a transfer function of the form
Ge(s) = K |1+ LT (5.4)
cl§) = Tis"’ 4as" |, .

where a and f are the orders of the fractional integrator and differentiator, respectively. The
constants K, T;, and T are correspondingly the proportional gain, the integral time constant,
and the derivative time constant.

Clearly, taking (a, ) = {(1,1),(1,0),(0,1),(0,0)} we get the classical {PID,PI, PD,P}
controllers, respectively.

The PI°Df controller is more flexible and gives the possibility of adjusting more
carefully the closed-loop system characteristics.

In the following two subsections, we analyze the system of Figure 17 by adopting the
classical integer-order PID and a fractional PID?, respectively.

5.2, PID Tuning Using the Ziegler-Nichols Rule

In this subsection, we analyze the closed-loop system with a conventional PID controller
given by the transfer function (5.4) with & = p = 1. Usually, the PID parameters (K, T;, T)
are tuned by using the so-called Ziegler-Nichols open loop (ZNOL) method [17]. The ZNOL
heuristics are based on the approximate first-order plus dead-time model:

_ K
G(s) = — f 1e’ST. (5.5)

For the heat system, the resulting parameters are {K,, 7, T} = {0.52,162,28} leading to
the PID constants {K, T;, T;} = {18.07,34.0,8.5}.

A step input is applied at x = 0.0m and the closed-loop response c(t) is analyzed
for x = 3.0m, without actuator saturation (Figure 18). We verify that the system with a
PID controller, tuned through the ZNOL heuristics, does not produce satisfactory results
giving a significant overshoot ov and a large settling time t;, namely, {t,t,,t;, 00(%)} =
{44.8,27.5,12.0,68.56}, where t, represents the peak time and ¢, the rise time. We consider
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Figure 18: Step responses of the closed-loop system for the PID controller and x = 3.0m.

two indices that measure the response error, namely, the integral square error (ISE) and the
integral time square error (ITSE) criteria defined as

ISE = J':o [r(t) — c(t)]?dt,
(5.6)

[oe]

ITSE = f t[r(t) - c(t)]*dt.
0

We can use other performance criteria such as the integral absolute error (IAE) or the
integral time absolute error (ITAE); however, in the present case, the ISE and the ITSE criteria
have produced the best results and are adopted in the study.

In this case, the ZNOL PID tuning leads to the values (ISE, ITSE) = (27.53,613.97). The
poor results indicate again that the method of tuning may not be the most adequate for the
control of the heat system.

In fact, the inherent fractional dynamics of the system lead us to consider other
configurations. In this perspective, we propose the use of fractional controllers tuned by the
minimization of the indices ISE and ITSE.

5.3. PIDF Tuning Using Optimization Indices

In this subsection, we analyze the closed-loop system under the action of the PID? controller
given by the transfer function (5.4) with « = 1 and 0 < < 1. The fractional derivative term
T4sP in (5.4) is implemented through a fourth-order Padé discrete rational transfer function.
It used a sampling period of T = 0.1 second.

The PID? controller is tuned by the minimization of an integral performance index.
For that purpose, we adopt the ISE and ITSE criteria.

A step reference input R(s) = 1/s is applied at x = 0.0m and the output c(t) is
analyzed for x = 3.0m, without actuator saturation. The heat system is simulated for 3000
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Figure 19: The PID? parameters (K, T;, T;) versus f for the ISE and ITSE optimization criteria. The dot
represents the PID-ZNOL.

seconds. Figure 19 illustrates the variation of the fractional PID parameters (K, T;, Ty) as
function of the order’s derivative f, for the ISE and the ITSE criteria. The dots represent the
values corresponding to the classical PID (ZNOL-tuning) addressed in the previous section.

The curves reveal that for f < 0.4 the parameters (K, T;, Ty) are slightly different, for
the two ISE and ITSE criteria, while for § > 0.4 they lead to almost similar values. This fact
indicates a large influence of a weak-order derivative on system’s dynamics.

To further illustrate the performance of the fractional-order controllers a saturation
nonlinearity is included in the closed-loop system of Figure 17 and inserted in series with the
output of the controller G.(s). The saturation element is defined as

{m, Im| <,
n(m) = (5.7)

6sign (m), |m|>6.

The controller performance is evaluated for 6 = {20,...,100} and 6 = oo which
corresponds to a system without saturation. We use the same fractional-PID parameters
obtained without considering the saturation nonlinearity.

Figures 20 and 21 show the step responses of the closed-loop system and the
corresponding controller output, for the PID’ tuned in the ISE and ITSE perspectives for
6 = 10 and 6 = oo, respectively. The controller parameters {K,T;, T4, f} correspond to the
minimization of those indices leading to the values ISE: {K, T;, T4, p} = {3,23,90.6,0.875} and
ITSE: {K,T;, T4, p} = {1.8,17.6,103.6,0.85}.

The step responses reveal a large diminishing of the overshoot and the rise time when
compared with the integer PID, showing a good transient response and a zero steady-state
error. The PID? leads to better results than the classical PID controller tuned through the
ZNOL rule. These results demonstrate the effectiveness of the fractional algorithms when
used for the control of fractional-order systems. The step response and the controller output
are also improved when the saturation level 6 is diminished.

Figure 22 depicts the ISE and ITSE indices for 0 < f < 1, when 6 = {20,...,100} and
6 = oo. We verify the existence of a minimum for = 0.875 and f = 0.85 for the ISE and ITSE
cases, respectively. Furthermore, the higher the 6 the lower the value of the index.
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Figure 20: Step responses of the closed-loop system and the controller output for the ISE and the ITSE
indices, with a PID? controller, § = 10 and x = 3.0m.
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Figure 21: Step responses of the closed-loop system and the controller output for the ISE and the ITSE
indices, with a PID? controller, 6 = oo and x = 3.0m.

Figures 23 and 24 show the variation of the settling time t,, the peak time t,, the rise
time t,, and the percent overshoot ov(%), for the closed-loop response tuned through the
minimization of the ISE and the ITSE indices, respectively.

In the ISE case t, t,, and t, diminish rapidly for 0 < g < 0.875, while for g > 0.875
the parameters increase smoothly. For the ITSE, we verify the same behavior for f = 0.85. On
the other hand, ov(%) increases smoothly for 0 < g < 0.7, while for > 0.7 it decreases very
quickly, both for the ISE and the ITSE indices.
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In conclusion, for 0.85 < p < 0.875 we get the best controller tuning, superior to the
performance revealed by the classical integer-order scheme.

6. Circuit Synthesis Using Evolutionary Algorithms

In recent decades evolutionary computation (EC) techniques have been applied to the design
of electronic circuits and systems, leading to a novel area of research called Evolutionary
Electronics (EE) or Evolvable Hardware (EH). EE considers the concept for automatic
design of electronic systems. Instead of using human conceived models, abstractions, and
techniques, EE employs search algorithms to develop implementations not achievable with
the traditional design schemes, such as the Karnaugh or the Quine-McCluskey Boolean
methods.

Several papers proposed designing combinational logic circuits using evolutionary
algorithms and, in particular, genetic algorithms (GAs) [32, 33] and hybrid schemes such
as the memetic algorithms (MAs) [34].

Particle swarm optimization (PSO) constitutes an alternative evolutionary computa-
tion technique, and this paper studies its application to combinational logic circuit synthesis.
Bearing these ideas in mind, the organization of this section is as follows. Section 6.1 presents
a brief overview of the PSO. Section 6.2 describes the PSO-based circuit design, while
Section 6.3 exhibits the simulation results.

6.1. Particle Swarm Optimization

In literature about PSO the term ‘swarm intelligence” appears rather often and, therefore, we
begin by explaining why this is so.
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Figure 23: Parameters t;, t,, t;, 0v(%) for the step responses of the closed-loop system for the ISE indice,
with a PID? controller, when 6 = {20,...,100} and 6 = o0, x = 3.0m.

Noncomputer scientists (ornithologists, biologists, and psychologists) did early
research, which led into the theory of particle swarms. In these areas, the term “swarm
intelligence” is well known and characterizes the case when a large number of individuals
are able of accomplish complex tasks. Motivated by these facts, some basic simulations of
swarms were abstracted into the mathematical field. The usage of swarms for solving simple
tasks in nature became an intriguing idea in algorithmic and function optimization.
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Figure 24: Parameters ¢, t,, t, ov(%) for the step responses of the closed-loop system for the ITSE indice,
with a PID? controller, when & = {20,...,100} and 6 = o0, x = 3.0m.

Eberhart and Kennedy were the first to introduce the PSO algorithm [35], which
is an optimization method inspired in the collective intelligence of swarms of biological
populations, and was discovered through simplified social model simulation of bird flocking,
fishing schooling, and swarm theory.

In the PSO, instead of using genetic operators, as in the case of GAs, each particle
(individual) adjusts its flying according with its own and its companions experiences. Each
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particle is treated as a point in a D-dimensional space and is manipulated as described in
what follows in the original PSO algorithm:

Vig = vig + cirand () (pia — Xia) + c2Rand () (Pga — Xia), (6.1a)

Xid = Xid + Uid, (6.1b)

where ¢; and ¢, are positive constants, rand() and Rand() are two random functions in
the range [0,1], X; = (xi1,Xi2,...,xip) represents the ith particle, P; = (pi1,pi2,...,pin) is
the best previous position (the position giving the best fitness value) of the particle, the
symbol g represents the index of the best particle among all particles in the population, and
Vi = (vi1, v, . .., vip) is the rate of the position change (velocity) for particle i.

However, (6.1a) and (6.1b) represent the flying trajectory of a population of particles.
Also, (6.1a) describes how the velocity is dynamically updated and (6.1b) the position update
of the “flying” particles. Moreover, (6.1b) is divided in three parts, namely the momentum,
the cognitive and the social parts. In the first part the velocity cannot be changed abruptly:
it is adjusted based on the current velocity. The second part represents the learning from its
own flying experience. The third part consists on the learning group flying experience [36].

The first new parameter added into the original PSO algorithm is the inertia weigh.
The dynamic equation of PSO with inertia weigh is modified to be

Vig = woig + cirand () (pia — xia) + c2Rand () (pga — Xia), (6.2a)

Xid = Xid + Vid, (6.2b)

where w constitutes the inertia weigh that introduces a balance between the global and the
local search abilities. A large inertia weigh facilitates a global search while a small inertia
weigh facilitates a local search.

Another parameter, called constriction coefficient k, is introduced with the hope that it
can insure a PSO to converge. A simplified method of incorporating it appears in (6.3), where
k is function of ¢; and ¢, as it is presented as follows:

vig = k[vig + crrand () (pia — Xia) + c2Rand () (pga — Xia) ], 63)
Xid = Xid + Uid, .

k =2<2-¢-\/@)_1, (6.4)

where ¢ =c1 + ¢, § > 4.

There are two different PSO topologies, namely, the global version and the local
version. In the global version of PSO, each particle flies through the search space with a
velocity that is dynamically adjusted according to the particle’s personal best performance
achieved so far and the best performance achieved so far by all particles. On the other hand,
in the local version of PSO, each particle’s velocity is adjusted according to its personal best
and the best performance achieved so far within its neighborhood. The neighborhood of each
particle is generally defined as topologically nearest particles to the particle at each side.
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Figure 25: Evolutionary computation algorithm.
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1. Initialize the population
2. Calculate the fitness of each individual in the
population
3. Reproduce selected individuals to form a new
population
4. Perform evolutionary operations such as
crossover and mutation on the population
5. Apply a local search algorithm
5. Loop to step 2 until some condition is met

Figure 26: Memetic algorithm.

PSO is an evolutionary algorithm simple in concept, easy to implement and
computationally efficient. Figures 25, 26, and 27 present a generic EC algorithm, a hybrid
algorithm, more precisely a MA and the original procedure for implementing the PSO
algorithm, respectively.

The different versions of the PSO algorithms are the real-value PSO, which is the
original version of PSO and is well suited for solving real-value problems; the binary version
of PSO, which is designed to solve binary problems; and the discrete version of PSO, which
is good for solving the event-based problems. To extend the real-value version of PSO to
binary/discrete space, the most critical part is to understand the meaning of concepts such as
trajectory and velocity in the binary/discrete space.

Kennedy and Eberhart [35] use velocity as a probability to determine whether x;4
(a bit) will be in one state or another (zero or one). The particle swarm formula of (6.1a)
remains unchanged, except that now p;; and x;; are integers in [0.0,1.0] and a logistic
transformation S(viz) is used to accomplish this modification. The resulting change in
position is defined by the following rule:

if [rand() < S(vig)] then x;; = 1; else x4 =0, (6.5)

where the function S(v) is a sigmoid limiting transformation and rand() is a random number
selected from a uniform distribution in the range [0.0,1.0].
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Figure 27: Particle swarm optimization process.
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Figure 28: A 3 x 3 matrix representing a circuit with input X and output Y.

6.2. PSO Based Circuit Design

We adopt a PSO algorithm to design combinational logic circuits. A truth table specifies the
circuits and the goal is to implement a functional circuit with the least possible complexity.
Four sets of logic gates have been defined, as shown in Table 2, being Gset 2 the simplest one
(i.e., a RISC-like set) and Gset 6 the most complex gate set (i.e., a CISC-like set). Logic gate
named WIRE means a logical no-operation.

In the PSO scheme the circuits are encoded as a rectangular matrix A (row x column
=r x ¢) of logic cells as represented in Figure 28.

Three genes represent each cell: <inputl><input2><gate type>, where inputl and input2
are one of the circuit inputs, if they are in the first column, or one of the previous outputs,
if they are in other columns. The gate type is one of the elements adopted in the gate set.
The chromosome is formed with as many triplets as the matrix size demands (e.g., triplets =
3xrxc). For example, the chromosome that represents a 3 x 3 matrix is depicted in Figure 29.

The initial population of circuits (particles) has a random generation. The initial
velocity of each particle is initialized with zero. The following velocities are calculated
applying (6.2a) and the new positions result from using (6.2b). This way, each potential
solution, called particle, flies through the problem space. For each gene is calculated the
corresponding velocity. Therefore, the new positions are as many as the number of genes in
the chromosome. If the new values of the input genes result out of range, then a re-insertion
function is used. If the calculated gate gene is not allowed a new valid one is generated at
random. These particles then have memory and each keeps information of its previous best
position (pbest) and its corresponding fitness. The swarm has the pbest of all the particles and
the particle with the greatest fitness is called the global best (gbest).

The basic concept of the PSO technique lies in accelerating each particle towards its
pbest and gbest locations with a random weighted acceleration. However, in our case we also
use a kind of mutation operator that introduces a new cell in 10% of the population. This
mutation operator changes the characteristics of a given cell in the matrix. Therefore, the
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Figure 29: Chromosome for the 3 x 3 matrix of Figure 28.

mutation modifies the gate type and the two inputs, meaning that a completely new cell can
appear in the chromosome.

To run the PSO we have also to define the number P of individuals to create the initial
population of particles. This population is always the same size across the generations, until
reaching the solution.

The calculation of the fitness function Fs in (6.6) has two parts, fi and f,, where
f1 measures the functionality and f, measures the simplicity. In a first phase, we compare
the output Y produced by the PSO-generated circuit with the required values Yz, according
with the truth table, on a bit-per-bit basis. By other words, f; is incremented by one for each
correct bit of the output until f; reaches the maximum value fio that occurs when we have
a functional circuit. Once the circuit is functional, in a second phase, the algorithm tries to
generate circuits with the least number of gates. This means that the resulting circuit must
have as much genes <gate type> = <wire> as possible. Therefore, the index f,, that measures
the simplicity (the number of null operations), is increased by one (zero) for each wire (gate)
of the generated circuit, yielding

f10=2" x no,
fi=fi+1lif {bitiof Y} ={bitiof Yr}, i=1,..., fio,
f2 = fo+1if gate type = wire, (6.6)
f1, Fs < fio,
fi+f, Fs> fuo,

Fs =

where ni and no represent the number of inputs and outputs of the circuit.

The concept of dynamic fitness function F, results from an analogy between control
systems and the GA case, where we master the population through the fitness function. The
simplest control system is the proportional algorithm; nevertheless, there can be other control
algorithms, such as the proportional and the differential scheme.

In this line of thought, (6.6) is a static fitness function Fs and corresponds to using a
simple proportional algorithm. Therefore, to implement a proportional-derivative evolution
the fitness function needs a scheme of the type [18]

Fi=F, + KD'[F,], (6.7)

where 0 < p < 1is the differential fractional-order and K € 9 is the “gain” of the dynamical
term.
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Figure 30: S(N) versus Av(IN) with P = 3000 and F; for the GA, the MA, and the PSO algorithms.

6.3. Experiments and Results

A reliable execution and analysis of an EC algorithm usually requires a large number
of simulations to provide a reasonable assurance that the stochastic effects are properly
considered. Therefore, in this study are developed n = 20 simulations for each case under

analysis.
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Figure 31: Av(PT) versus Av(IN) with P = 3000 and F; for the GA, the MA, and the PSO algorithms.

The experiments consist on running the three algorithms {GA, MA,PSO} to generate
a typical combinational logic circuit, namely, a 2-to-1 multiplexer (M2-1), a 1-bit full adder
(FA1), a 4-bit parity checker (PC4) and a 2-bit multiplier (MUL2), using the fitness scheme
described in (6.6) and (6.7). The circuits are generated with the gate sets presented in Table 2
and P = 3000, w =0.5,¢; = 1.5,and ¢, = 2.

Figure 30 depicts the standard deviation of the number of generations to achieve the
solution S(N) versus the average number of generations to achieve the solution Av(N)
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Table 2: Gate sets.

Gate set Logic gates

Gset 2 {AND, XOR, WIRE}

Gset 3 {AND, OR, XOR, WIRE}

Gset 4 {AND, OR, XOR, NOT, WIRE}

Gset 6 {AND, OR, XOR, NOT, NAND, NOR, WIRE}

Table 3: The parameters (a,b) and (c, d).

Algorithm a b c d

GA 0.0365 1.602 0.1526 1.1734
MA 0.0728 1.2602 0.2089 1.3587
PSO 0.2677 1.1528 0.0141 1.1233

for the algorithms {GA, MA,PSOY}, the circuits {M2-1, FA1, PC4, MUL2}, and the gate sets
{2,3,4,6}. In these figure, we can see that the MUL?2 circuit is the most complex one, while
the PC4 and the M2-1 are the simplest circuits. It is also possible to conclude that Gset 6 is the
less efficient gate set for all algorithms and circuits.

Figure 30 reveals that the plots follow a power law:

S(N) = a[Av(N)]” a,beR. (6.8)

Table 3 presents the numerical values of the parameters (a, b) for the three algorithms.

In terms of S(N) versus Av(N), the MA algorithm presents the best results for
all circuits and gate sets. In what concerns the other two algorithms, the PSO is superior
(inferior) to the GA for complex (simple) circuits.

Figure 31 depicts the average processing time to obtain the solution Av(PT) versus
the average number of generations to achieve the solution Av(IN) for the algorithms
{GA,MA,PSOY}, the circuits {M2-1, FA1, PC4, MUL2} and the gate sets {2,3,4,6}. When
analysing these charts it is clear that the PSO algorithm demonstrates to be around ten times
faster than the MA and the GA algorithms.

These plots follow also a power law:

Av(PT) = c[Av(N)]? ¢, d e R (6.9)

Table 3 shows parameters (c,d) and we can see that the PSO algorithm has the best
values.

Figures 32 and 33 depict the standard deviation of the number of generations to
achieve the solution S(IN) and the average processing time to obtain the solution Av(PT),
respectively, versus the average number of generations to achieve the solution Av(IN) for the
PSO algorithm using F, the circuits {M2-1, FA1, PC4, MUL2}, and the gate sets {2,3,4,6}. We
conclude that F,; leads to better results in particular for the MUL?2 circuit and for the Av(PT).

Figures 34 and 35 present a comparison between F; and Fj.

In terms of S(N) versus Av(N) it is possible to say that the MA algorithm presents
the best results. Nevertheless, when analysing Figure 31, that shows Av(PT) versus Av(N)
for reaching the solutions, we verify that the PSO algorithm is very efficient, in particular, for
the more complex circuits.
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The PSO-based algorithm for the design of combinational circuits follows the same
profile as the other two evolutionary techniques presented in this paper.

Adopting the study of the S(IN) versus Av(IN) for the three evolutionary algorithms,
the MA algorithm presents better results over the GA and the PSO algorithms. However, in
what concerns the processing time to achieve the solutions, the PSO outcomes clearly the GA
and the MA algorithms. Moreover, applying the F, the results obtained are improved further
in all gate sets and in particular for the more complex circuits.
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7. Conclusions

Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus.
Nevertheless, the application of FC just emerged in the last two decades, due to the progress
in the area of chaos that revealed subtle relationships with the FC concepts.

Recently FC has been a fruitful field of research in science and engineering and
many scientific areas are currently paying wider attention to the FC concepts. In the field
of dynamical systems theory, some work has been carried out but the proposed models and
algorithms are still in a preliminary stage of establishment. This article presented several case
studies on the implementation of FC-based models and control systems, being demonstrated
the advantages of using the FC theory in different areas of science and engineering. In fact,
this paper studied a variety of different physical systems, namely

(i) tuning of PID controllers using fractional calculus concepts;

(ii) fractional PD” control of a hexapod robot;

)
)
(iii) fractional dynamics in the trajectory control of redundant manipulators;
(iv) heat diffusion;

)

(v) circuit synthesis using evolutionary algorithms.

It has been recognized the advantageous use of this mathematical tool in the modeling
and control of these dynamical systems, and the results demonstrate the importance of
Fractional Calculus and motivate for the development of new applications.
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The paper focuses on continuous models derived from a discrete microstructure. Various
continualization procedures that take into account the nonlocal interaction between variables of
the discrete media are analysed.

1. Introduction

In the recent years new classes of ultra-dispersive and nanocrystalline materials [1-3],
which require a different modern approach than that of a classical continuous media, have
been proposed. For example, the nanocrystalline material is represented by a regular or
quasiregular lattice with small size bodies (domains, granules, fullerenes, nanotubes, or
clusters nanoparticles) possessing internal degrees of freedom occupying the lattice sites
[4]. The situation mentioned is also a characteristic for various problems of nanomechanics
[5, 6], because the transition of a material to the nanostructural state is accompanied by
dimensional effects in its mechanical properties. Models established on a classical continuous
media cannot govern high frequency vibrations, material behavior in the vicinity of cracks
and on the fronts of destruction waves, and during phase transitions [7]. It is not possible
to reach and overcome bifurcation points, that is, thresholds of lattice stability under
catastrophic deformations [8]. Wave dispersion in granular materials [9-11] represents an
important example of microstructure effects too. Microstructural effects are essential for
correct description of softening phenomena [12] in damage mechanics [13-16] and in the
theory of plasticity [17, 18]. As it is mentioned in [19], “From the behaviour of calcium waves
in living cells to the discontinuous propagation of action potentials in the heart or chains
of neurons and from chains of chemical reactors or arrays of Josephson junctions to optical
waveguides, dislocations and the DNA double strand, the relevant models of physical reality
are inherently discrete.”
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The effects mentioned may be analyzed within the frame of discrete models, using
molecular dynamics [20], quasicontinuum analysis [21, 22], or other numerical approaches.
However, a sought result is difficult to obtain using high tech computers in an economical
way. For example, modern practical problems are still intractable for molecular dynamics-
based analysis, even if the highest computing facility is at disposal.

Situation can be described by Dirac’s words [23]: “The physical laws necessary
for the mathematical theory of a large part of physics and whole of chemistry are thus
completely known, and the difficulty is only that the exact application of these laws leads
to equations much too complicated to be solvable. Therefore, it becomes desirable that
approximate practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems without too much
computations.”

Hence, refinement of the existing theory of continuous media for the purpose of more
realistic predictions seems to be the only viable alternative. In connection with this, one of
the most challenging problems in multiscale analysis is that of finding continuous models
for discrete, atomistic models. In statistical physics, these questions were already addressed
100 years ago, but many problems remain open even today. Most prominent is the question
how to obtain irreversible thermodynamics as a macroscopic limit from microscopic models
that are reversible. In this paper we consider another part of this field that is far from
thermodynamic fluctuation. We are interested in reversible, macroscopic limits of atomic
models. Debye approach is the simplest model of this type [24], but it does not take into
account spatial dispersion.

Therefore, continuous modeling of micro- and nanoeffects plays a crucial role in
mechanics. It seems that the simplest approach to realize this idea relies on a modification
of the classical modeling keeping both hypothesis of continuity and main characteristic
properties of a discrete structure. Here four strategies exist.

Phenomenological approach: additional terms are added to the energy functional or
to the constitutive relation. The structure and character of these terms are postulated [25-31].
Phenomenological approach is very useful and accurate enough in the applied sciences when
it is necessary to solve problems of practical significance [32-34]. But progress of natural
sciences makes us look for ways of substantiated derivation of constitutive relations from
“first principles.” In this connection one can recall the 6th Hilbert’s problem (mathematical
treatment of the axioms of physics) [35]: “Boltzmann’s work on the principles of mechanics
suggests the problem of developing mathematically the limiting processes, there merely
indicated, which lead from the atomistic view to the laws of motion of continua. Conversely,
one might try to derive the laws of the rigid bodies” motion by a limiting process from a
system of axioms depending upon the idea of continuously varying conditions of a material
filling all space continuously, these conditions being defined by parameters. The question on
the equivalence of different systems of axioms is always of great theoretical interest.”

Statistical approach: starting from an inhomogeneous classical continuum, average
values of the state variables are computed to produce enhanced field equations [36].
Unfortunately, great mathematical problems can not give possibility of wide usage of this
approach.

Homogenization approach is based on I'- and G-limit technique [37-43] and gave
many important pure mathematical results, but not new insights for physics.

Continualization procedures are based on various approximations of local (discrete)
operator by the nonlocal one. For this aim Taylor series [44, 45], one- and two-point
Padé approximants [46-62], composite equations [63, 64], and other approaches are used.



Mathematical Problems in Engineering 3

*
0 1 2 n-1 n n+1

Figure 1: A chain of elastically coupled masses.

Independently of the strategy employed, the constitutive relation of the homogenized
material becomes nonlocal. Mathematically this implies integral relations between stresses
and strains, in which the stress in a point is not only related to the strain in the same point
but also instantly to strains in the neighbouring points. We will analyse these approaches
further.

The paper is organized as follows. Section 2 is devoted to some general remarks
concerning a chain of elastically linear coupled masses. In Sections 3 and 4 the classical
continuous approximation and so-called “splash effect” for 1D case are described. Section 5 is
devoted to anticontinuum limit. Improved continuous approximations are studied is Sections
6 and 7 for natural and forced oscillations. Waves in 1D discrete and continuous media are
compared in Section 8. 2D problems are analysed in Section 9. Nonlinear phenomenons are
studied in Section 10. In Section 11 we analyse some possible generalization of described
approaches. Section 12 is devoted to Navier-Stokes equations. Section 13 presents brief
concluding remarks. In appendixes to the paper we describe one- and two-point Padé
approximations, continuum limit of Toda lattice, and correspondence between functions of
discrete arguments and approximating analytical functions.

2. A Chain of Elastically Coupled Masses

In this section we follow paper [65]. We study a chain of n + 1 material points with the same
masses m, located in equilibrium states in the points of the axis x with coordinates jh (j =
0,1,...,n,n+1) and suspended by elastic couplings of stiffness c (Figure 1).

Owing to the Hooke’s law the elastic force acting on the jth mass is as follows:

oj(t) = c[yjn(t) —y;®)] — cly;(t) - yja (V)] = c[yj-1(t) - 2y () + yja ()],
i=12,...n,

2.1)

where v;(t) is the displacement of the jth material point from its static equilibrium position.
Applying the 2nd Newton’s law one gets the following system of ODEs governing
chain dynamics:

myiu(t) = c[yj-1 () = 2y;(t) +yja )], j=1,2,...,n (2.2)
System (2.2) can be cast into the following form:

mo,-tt(t) = C(O']'+1 - 20']' + O']',l), ] =1,...,n. (23)
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Let the chain ends be fixed
Yo(£) = Y (t) = 0. (2.4)
In general, the initial conditions have the following form:
i =9 yu(t) =g fort=0. (2.5)

As it has been shown in [65], for any solution of the BVP (2.2), (2.4), (2.5) the total
energy is constant. Besides, the solutions mentioned so far are nonasymptotic and stable due
to the Lyapunov stability definition.

A solution to the BVP (2.2), (2.4), (2.5) can be expressed by elementary functions
applying the discrete variant of the method of variables separation. For this purpose normal
vibrations are constructed of the form

yit)y=C;T(t), j=1,...,n, (2.6)
where constants C; are defined via solution of the following eigenvalue problem:
-AC;j=Cj;1-2Cj+Cjq, j=1,...,n, Co=Cyy1 =0. (2.7)
Function T (t) satisfies the following equation:
mTy + cAT = 0. (2.8)

Eigenvalues of the problem (2.7) follow [65]

kar

=4sin?——
Ak = dsin 2n+ 1)

k=1,2,...,n (2.9)

A solution to (2.8) has the form T = Aexp(iwt). Hence, (2.8) and (2.9) yield the
following Lagrange formula for frequencies wy of discrete system:

c ko
=21/—sin 50— =1,2,...,n 2.1
wr =2 m51n2(n+1), k=1,2,...,n (2.10)

Since all values Ay are distinct, then all eigenvalues are different. Therefore, each of the
eigenvalues is associated with one eigenvector Cy(C (k), Cék), eer, Cflk)) of the form

2kar nkar )

...,si =1,2,...,n. 1
w1 T k=12....m @1D)

kmx (. kaxr .
Cy = cosec sin ,sin
n+1 n+1
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Eigenvectors are mutually orthogonal; whereas

Cil?> = hl cosec——, k =1,2,...,n. (2.12)
| n

Each of the eigenfrequencies (2.10) is associated with a normal vibration
Y7 () = CV[Ax cos(wit) + Besin(wit)], k=1,2,...,m. (2.13)

A general solution of the BVP (2.3)—(2.5) is obtained as a result of superposition of
normal vibrations

yi(t) = ZC](.k) [Ak cos(wt) + Brsin(wit)], j=1,...,n. (2.14)
k=1

Let us study now the problem of chain masses movement under action of a unit
constant force on the point number zero. Motion of such system is governed by (2.3) with
the following boundary and initial conditions:

Uo(t) =1, ons1(t) =0,
(2.15)
O']'(t) = O',‘t(i') =0 fort=0.

In what follows the initial BVP with nonhomogeneous boundary conditions (2.3),
(2.15) will be reduced to that of homogeneous boundary condition for (2.3) with
nonhomogeneous initial conditions, and then the method of superposition of normal
vibrations can be applied. The formulas of normal forms obtained so far can be applied in
a similar way with exchange of y;(t) for o;(t). In effect, the following exact solution to the
BVP (2.3), (2.15) is obtained [65]:

1 & xkj ak
= i t 1- nl, j=12...n 2.1
% n+1gsmn+1cg2(n+1)[ cos@ib)l, j=12....m (2.16)

3. Classical Continuous Approximations

For large values of n usually continuous approximation of discrete problem is applied. In our
case, described by (2.3), (2.15), it takes the form of

moy(x, t) = Chzo'xx(x/ t), (31)
o(0,t) =1, o(l,t) =0, (3.2)
o(x,0) = o01(x,0) =0, (3.3)

where [ = (n+1)h.
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BVP (3.1)-(3.3) can be used, for example, for modeling of stresses in van couplings of
the rolling stocks [66].

Having in hand a solution to continuous BVP (3.1)—(3.3), one obtains a solution of a
discrete problem due to the following formulas:

oj(ty=o(jh,t), j=0,1,...,n, n+1. (3.4)

Formally, the approximation described so far can be obtained in the following way. Let
us denote the difference operator occurring in (2.3) as D, that is,

mojy(t) = cDo(t). (3.5)

Applying the translation operator exp(hd/0x), one gets [67]

B 0 ) _ ..of ith O
D-exp(ha—x> +exp<—ha—x> -2 =—4sin ( 76_3() (3.6)

Let us explain (3.6) in more details. The McLaurin formula for infinitely many times
differentiable function F(x) has the following form:

2
F(x+1):[1+%+%%+~-]F(x):exp<%>l-"(x). (3.7)

Observe that exp(h0/0x) belongs to the so-called pseudodifferential operators. Using
relations (3.5)—(3.7), we cast (2.3) into pseudo-differential equation of the following form:

o%c . of ih O
mw + 4¢ sin (———x>0 =0. (3.8)

On the other hand, splitting the pseudo-differential operator into the McLaurin series
is as follows:

. 2( ih 6) 1« k% 0% h? 8 h? 0> kWt ot h®  0°
sin(-———)=-2) ——=-———(1l+ =+ -———+——+- ]
2 0x 24 (2k)! 0x2k 4 0x? 120x2 360 0x* 10080 0x°
(3.9)

Keeping in right hand of (3.9) only the first term, one obtains a continuous approxi-
mation (3.1). Note that an application of the McLaurin series implies that displacements of
the neighborhood masses differ slightly from each other. From a physical point of view, it
means that we study vibrations of the chain with a few masses located on the spatial period
(Figure 2); that is, the long wave approximation takes place. Note that the vertical axis in
Figure 2 represents the displacement in the x direction, since the problem is 1D.
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Figure 2: Solution form o = o(x,t) in a fixed time instant t = const (points—discrete system, curve—
continuous system).

Table 1: Splashes.

n 8 16 32 64 128 256 n — o
P, 1.7561 2.0645 2.3468 2.6271 2.9078 3.1887 P, — o

Continuous system (3.1) possesses the following discrete infinite spectrum:

[c k
Ay =TT p— k=1,2,.... (3.10)

Relations (3.10) relatively good approximate low frequencies of discrete system (2.10),
whereas the nth frequency ayx of a continuous system differs from the corresponding nth
frequency wy of a discrete system of order of 50%. Accuracy of continuous approximations
can be improved, what will be discussed further.

4. Splashes

One can obtain an exact solution to the BVP (3.1)-(3.3), using the d’Alembert method
matched with operational calculus [65]:
a |c
in( —A/—t )| - 4.1
sm<2n p ) x), (4.1)
where H (---) is the Heaviside function.

From (4.1) one obtains the following estimation:

o(x,t) = H<nh arcsin

lo(x,t)] < 1. (4.2)

It was believed that estimation (4.2) with a help of relation (3.4) can be applied
also to a discrete system [68]. However, analytical as well as numerical investigations
[66, 69-73] indicated a need to distinguish between global and local characteristics of a
discrete system. In other words during investigation of lower frequency part a transition
into continuous model is allowed. However, in the case of forced oscillations solutions to
a discrete system may not be continuously transited into solution of a wave equation for
h — 0 [67]. Numerical investigations show that for given masses in a discrete chain quantity
the P; = |oj(t)| may exceed the values of 1 in certain time instants (reported in [69, Table 5.1]).
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Observe that splash amplitude does not depend on the parameter m/c. In addition,
the amplitude of the chain vibrations increases with an increase of n; whereas its total energy
does not depend on n. However, this is not a paradox. Namely, amplitude of vibrations has
an order of sum of quantities oj(t); whereas its potential energy order is represented by a
sum of squares of the quantities mentioned [65].

On the other hand, a vibration amplitude of a mass with a fixed number is bounded for
n — oo, but amplitude of vibrations of a mass with a certain number increasing with increase
of n tends to infinity for n — oo following Inn [65]. “In the language of mechanics what we
just said means that when analyzing the so-called “local properties” of a one-dimensional
continuous medium, one cannot treat the medium as the limiting case of a linear chain of
point masses, obtained when the number of points increases without limit” [66].

It should be emphasized that a rigorous proof of the mentioned properties has been
obtained for a case, when n + 1 is a simple digit or it is a power of 2. However, this assumption
is not necessary, as it is mentioned in [65].

Earlier the same effect of continualization was predicted by Ulam, who wrote [74,
pages 89, 90]: “The simplest problems involving an actual infinity of particles in distributions
of matter appear already in classical mechanics.” A discussion on these will permit us to
introduce more general schemes which may possibly be useful in future physical theories.

Strictly speaking, one has to consider a true infinity in the distribution of matter
in all problems of the physics of continua. In the classical treatment, as usually given in
textbooks of hydrodynamics and field theory, this is, however, not really essential, and in
most theories serves merely as a convenient limiting model of finite systems enabling one to
use the algorithms of the calculus. The usual introduction of the continuum leaves much to
be discussed and examined critically. The derivation of the equations of motion for fluids,
for example, runs somewhat as follows. One images a very large number N of particles,
say with equal masses constituting a net approximating the continuum, which is to be
studied. The forces between these particles are assumed to be given, and one writes Lagrange
equations for the motion of N particles. The finite system of ordinary differential equations
becomes in the limit N = oo one or several partial differential equations. The Newtonian
laws of conservation of energy and momentum are seemingly correctly formulated for the
limiting case of the continuum. There appears at once, however, at least possible objection
to the unrestricted validity of this formulation. For the very fact that the limiting equations
imply tacitly the continuity and differentiability of the functions describing the motion of the
continuum seems to impose various constraints on the possible motions of the approximating
finite systems. Indeed, at any stage of the limiting process, it is quite conceivable for two
neighbouring particles to be moving in opposite directions with a relative velocity which
does not need to tend to zero as N becomes infinite; whereas the continuity imposed on the
solution of the limiting continuum excludes such a situation. There are, therefore, constraints
on the class of possible motions which are not explicitly recognized. This means that a
viscosity or other type of constraints must be introduced initially, singling out “smooth”
motions from the totality of all possible ones. In some cases, therefore, the usual differential
equations of hydrodynamics may constitute a misleading description of the physical
process.

Splash effect was observed numerically in 2D linear and 1D nonlinear case (A. M.
Filimonov, private communication). By the way, due to this effect many papers “justifying”
usual continualization can be treated as naive. For example, in [75] the continuous limit
was derived based on the hypothesis that the microscopic displacements are equal to the
macroscopic ones. In [75] authors supposed that the displacements of the particles which are
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Figure 3: Saw-tooth vibrations of a mass chain.

connected by elastic springs are small in the following sense: |y; — y;| < ce. This inequality
can be justified only for lower part of spectrum for natural oscillations.

5. Anticontinuum Limit

A classical continuous approximation allows for relatively good description of a low part of
the vibration spectrum of a finite chain of masses. In what follows we study now another
limiting case, so-called anticontinuum limit, that is, completely uncoupled limit for lattice
(Figure 3).

In this case one has oy = (—1)k§2, and equation for € reads

mQy +4cQ = 0. (5.1)

This is so-called anticontinuum limit.

In the case of vibrations close to the saw-tooth one, the short-wave approximation
is applied “envelope continualization” [76-79] (Figure 4). Namely, first we use staggered
transformation

o = (-1)*Q, (5.2)

and then (2.3) and (2.15) are reduced to the following BVP:

katt + C(4Qk + Qk—l - ZQk + Qk+1) = 0, (53)
Q=1  Qu=0, (5.4)
Qr=Qu=0 fort=0,k=1,2,...,n. (5.5)

Then, the following relations are applied:

e s ( Vo (E B T
Qk—l ZQk+Qk+1— 4Sll’1< 2 aX)Q— <h Ox2 +12 Ox4 +360 0x® " QI

(5.6)
k=0,1,2,...,n, n+1.
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Figure 4: Envelope continualization.

Using (5.6), (5.3), and considering h? as a small parameter one gets (we take zeroth
and first-order approximations only)

mQy + 4cQ + ch*Q., = 0. (5.7)

Appropriate boundary and initial conditions for (5.7) follow

Q=1 forx=0, Q=0 forx=1,
(5.8)
Q=0Q;=0 for t =0.

Observe that practically the whole frequency interval of discrete model is well
approximated for two limiting cases, that is, for the case of the chain and for the case of
the envelope.

6. Improved Continuous Approximations

In what follows we are going to construct improved continuous approximations. Modeling
of such systems (nonlocal theories of elasticity) requires integral or gradient formulation. The
integral formulation may be reduced to a gradient form by truncating the series expansion
of the nonlocality kernel in the reciprocal space [80]. In what follows we apply the gradient
formulation approach.

If, in the series (3.9), we keep three first terms, the following model is obtained:

o L[ * W K
mopg =ch <@+ﬁ@+ﬁﬁ>"- (61)

However, a nontrivial problem regarding boundary conditions for (6.1) appears [81,
82]. The conditions mentioned can be defined only assuming the chain dynamics behavior
fork =-1,-2,-3; k = N +2,N + 3, N + 4. In other words, a boundary point is replaced by
a boundary domain [44, 45]. In particular, in the case of periodic spatial extension “simple
support” one gets

O =0xx = Oxxxx =0 forx=0,l. (6.2)
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Assuming ok (t) =0for k =-1,-2,-3; k = N +2,N + 3, N +4, instead of the boundary
conditions (6.2) we have “clamping”

O=0y=0xxx=0 forx=0,1L (6.3)

Comparison of nth frequency of a continuous system (6.1), (6.2) with that of a discrete
system exhibits essential accuracy improvement (applying coefficient 2.1 instead of 2 in
an exact solution yields an error of ~5%). Observe that an estimation of the accuracy of
continuous approximation on the basis of comparison of discrete and continuous systems
frequencies rather simple but yielding reliable results.

In a general case, keeping in series (3.9) N terms, one gets equations of the so-called
intermediate continuous models [70]

0 & h* %o
— =2 . 4
"o T A2k ! ok 64

Boundary conditions for (6.4) have the following form:
%o
W:O forx=0,,k=0,1,..., N-1 (6.5)
or
azk—lo.

O'ZO, WZO fOI'XZO,l,kZl,...,N—l. (66)

The corresponding BVPs are correct (and also stable during numerical solution) for
odd N. In this case (6.4) is of hyperbolic type [70]. Application of intermediate continuous
models allows catching the mentioned splashes effect.

For N =2k, k =0,1,... intermediate continuous models (6.4) are unstable.

One also can mention the momentous elasticity theories [14, 25-27, 83-87]. For
example, taking into account dependence of energy of deformation from the higher gradients
of displacements leads to the concept of momentous stresses [88]. Le Roux was the first
who showed the importance of the higher gradients of displacements [28]. In momentous
theories of elasticity the method of macrocells is also widely used [89-91]. The dynamics of
the continuous media is described by the equations of displacement of the centre of mass of
a macro cell and by the equations of moments of various orders. The spectrum of this media
tends to the complete spectrum of a linear chain with increasing number of moments. Critical
reexamination of this approach can be found in [3].

The construction of intermediate continuous models is mainly based on the
development of a difference operator into Taylor series. However, very often application of
Padé approximants (PAs) is more effective for approximation [52, 92] (for description of PA
see Appendix A). Collins [53] proposed to construct continuous models using PA. Then this
approximation was widely used by Rosenau [55-60]. More exactly, Collins and Rosenau did
not use PA straightforward; this was done later [61, 62, 93]. Sometimes these continuous
models are called quasicontinuum approximations.
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If only two terms are left in the series (3.9), then the PA can be cast into the following
form:

LR &/ 02

o ot - 1= ((2/12)(8/0x2))" (67)

For justification of this procedure Fourier or Laplace transforms can be used.
The corresponding quasicontinuum model reads

2 a2
m<1 - %%)0& — ch?0yy = 0. (6.8)

The boundary conditions for (6.8) have the form

c=0 forx=0,L (6.9)

The error regarding estimation of n-th frequency in comparison to that of a discrete
chain is of ~16.5%. However, (6.8) is of lower order in comparison to (6.1).

Equation (6.8) is usually called Love equation [94] (but as Love mentioned [95] this
equation was obtained earlier by Rayleigh [96, 97]). Term oy, can be treated as the lateral
inertia. Equation (6.8) has hyperbolic type.

Kaplunov et al. [98] refer to these type theories as theories with modified inertia.

Passage to (6.8) can be treating as regularization procedure. The model governed by
(6.8) is unconditionally stable and propagating waves cannot transfer energy quicker than the
velocity c. However, the model governed by (6.8) predicts that short waves transfer elastic
energy with almost zero speed [99].

It is worth noting that (5.7) also can be regularized using PA as follows [100-102]:

h? 9%
m<l— Z@>Qtt+CQ=O. (610)

Finally, having in hand both long and short waves asymptotics, one may also apply
two-point PA (description of two-point PA see Appendix A). In what follows we construct
two-point PA using the first term of the series (3.9) as a one of limiting cases. We suppose

5 1 h2k a2k h2 62 h2 a2 h4 a4
sin (‘3a—x> =‘§k_1mm=7@< T 12022 T B600xt
(6.11)
_—(H2/4)(8%/0x?)
T 1-a2(2/0x2)
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The improved continuous approximation is governed by the following equation:
o2
m( 1-a’h?>— oy — ch*0yy = 0. (6.12)
ox?

Now we require the n-th frequency of a continuous and discrete system to coincide

[c . nir
wy =2 ESIHZ(n+1)' (6.13)

For large value of n one may approximately assume that

a, =2\/c/m (6.14)

with the boundary conditions (6.9).
Oscillations frequencies defined by the BVP (6.12), (6.9) are

a = | = K L k=1,2,.... (6.15)
A/ (n+1)% + a2k

Now, using (6.14) one gets a*> = 0.25 — 2.

The highest error in estimation of the eigenfrequencies appears for k = [0.5(n+1)] and
consists of 3%.

Observe that equations similar to the (6.14) are already known. Eringen [103-106]
using a correspondence between the dispersion curves of the continuous approximation and
Born-von Kdrman model [82, 107] obtained a* = 0.1521. This value is very close to that
proposed in [108, 109] on the basis of a certain physical interpretation, where also model
(6.14) is referred to as the “dynamically consistent model.”

Interesting, that Mindlin and Herrmann used very similar to two-point PA idea for
construction their well-known equation for longitudinal waves in rod [110, 111].

Dispersion relation (6.15) does not satisfy condition

ddk _
5 =0 (6.16)

at the end of first Brillouin zone [112]. That is why in [105, 113] so-called bi-Helmholtz type
equation was proposed. In [113] this equation is

o o
m(1- “2h2ﬁ + a§h4T Oy — ch?0yx = 0, (6.17)

where a; =1/
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Boundary conditions associated with this equation are
O=0xk =0 forx=0,I (6.18)
or

o0=0,y=0 forx=0,L (6.19)

7. Forced Oscillations

In order to study forced vibrations we begin with a classical continuous approximation. A
solution to (3.1) is sought in the following form:

c=1- % +u(x, b), (7.1)

and the function u(x, t) is defined by the following BVP:

oz ax2’
u(0,t) =u(l,t) =0, (7.2)

u(x,0) =-1+ x

K u(x,0) =0.

Solution to the BVP (7.2) is obtained via Fourier method

2&1 . [k
c=1-2_ ;Z— sm<ﬂ> cos(agt), (7.3)

where ay defined by (3.10).
For the approximation the motion of the chain, one must keep in an infinite sum only
n first harmonics

x 2&1 . /krx
o=1- 7 ;;E sm(T) cos(at). (7.4)

Observe that solutions (2.16) and (7.4) differ regarding frequencies ay and wy
(relations (2.8) and (3.10), resp.). In addition, the coefficients in series (2.16) and (7.4)
differ from each other, that is, projections onto normal vibrations of discrete and continuous
systems, (1/(n+1))ctg(ork/2(n+1)) and 2/rk, respectively, are strongly different for k > 1.
This is because during projection into normal vibrations for the discrete system one must use
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summation due k from 0 to 1, whereas for the continuous system—integration due x from 0
to 1. The problem occurring so far can be overcome using the Euler-McLaurin formulas [114]

jad (1)1+1 dif(n+1) dif(0)
S [ s ;10 ] 35 [ e 2/ ] 75)

where B; are the Bernoulli numbers, having the following values: By = 1,B1 = -1/2,B, =
1/6,B3=0,....
In addition, the following formulas hold [115]:

1 k+1
By =—— 1ZCn+1Bn ks (7.6)
o kri _n+l
7.7
Zs e @.7)
n+l ; ; ;
j . karj 1 jor
1-— = t . 7.
kz_o< n+1>smn+1 n+182m+1) 78)
The corresponding integrals read
n+1 :
f sin? X gy 2 AL (7.9)
0 n+1 2
n+1 :
f (1—f> sin 9% dx = i (7.10)
0 l n+1 ]

Observe that the values of sum (7.7) and integral (7.9) coincide. Using the Euler-
McLaurin formula one obtains

ntl . . el . .
B WP < _ X\ i X 1. (i) — I
Z(l n+1)sm —f <1 l>s1nn+1dx+2[51n0+s1n(]yr)] CTSY) cos0 +

e n+1 0

I PR
j 12(n+1)2]

(7.11)

Owing to (7.11), one can construct a simple expression relatively good approximating
sum (7.8) for arbitrary j values from j = 1 to j = n. For this purpose we change second term of
the right-hand side of (7.11) in the following way:

n+1 . kori %)
Z(l— J )sin T2 o (7.12)
par n+1 n+1l oj (n+1)>
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Figure 5: Infinite chain of masses.

8. Wave Processes in Discrete and Continuous 1D Media

Let us study wave propagation in the infinite 1D medium (Figure 5). Assuming that when
time instant ¢ = 0, a force P acts on a mass with number 0 in direction of the axis x. Governing
equations can be written in the following way [116]:

dy; .
m—g = e =2y + ), j#0,
8.1)
dzyo
m—a = c(y1-2yo+y-1) +P.

We reduce (8.1) to the dimensionless form

rY; 2Y: +Y,

_ = . — -+ .

672 j+1 j j-1s
oy (8.2)
aTZO =Y, -2Yy+Y,+P.

Here 7 = t\/c/m;Y; = y;/h; P, = P/(ch).

Due to the linearity of the problem one can suppose P; = 1.

Let us apply Fourier transform to (8.2) [116]. Namely, multiplying left-and right-hand
sides of (8.2) by exp(igj),j = 0,£1,£2, ... and adding them one obtains

au . ,/q
5 +dsin (§)u =1, (8.3)

where U = 372_ Y exp(iqj).
Observe that the term 4sin?(q/2) can be developed in the vicinity of either g =
0 (classical continuous approximation)

1 2 —_— = 2 DY
4sin ( > =q + (8.4)
orq=ua (envelope continualization)

4sin2<g) 4. (8.5)
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Solving (8.3) and applying inverse Fourier transform one obtains wave velocity
propagation in discrete media:

) cos(2js)ds. (8.6)

ay;(r) Ai(j, ) B lJ‘”/Zsin(erins
dr a o

0 sins

The obtained solution is exact one and will be further used for the error estimation of
improved continuous models.

Applying the classical continuous approximation instead of system (8.2), the
following wave equation with the Dirac delta-function in right hand-side is obtained:

or2  0z2

5(2). (8.7)

Here z = x/h.
The following relation between discrete and continuous systems holds:

Yi(t) = Y(j,T), j=0+142,.... (8.8)

Now, applying the Fourier transform in x and the Laplace transform in 7, one obtains

% = 0.5H(T - |z|). (8.9)

So, a wave propagation in a discrete media strongly differs from this phenomenon in
the classical continuous media. In what follows we give solutions on a basis of the theories of
elasticity described so far. The intermediate continuous model is as follows:

2 2 4 6 3
a_Y_<a 19 10 >Y:sm(yrz). (8.10)

or? @+E@+%$ Tz

Let us explain the occurrence of term sin(srz)/(orz) in the right hand of (8.10) instead
of Dirac delta-function (for detail description see Appendix C).

Applying both Fourier transform in z and Laplace transform in 7, the following
equation governing wave velocity propagation is obtained:

cos(2sz)ds. (8.11)

oY(z7)  As(zr) 1 fn/zsin<ZTsV1—(1/3)sz+(2/45)s4>

or s 7)o sv/1-(1/3)s2 + (2/45)s*

The quasicontinuum model is as follows:

1 02 \o*Y &%) 1 0% \sin(rz)
(“ﬁ@)ﬁ‘@‘(“ﬁ@) e (812)
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The associated wave velocity propagation follows:

cos(2sz)ds. (8.13)

OY(z) _ Aslzm) 1 fﬁ/z\/1+(1/3)s2 sin(27s//1+ (1/3)%)

oT a 7)o s

Model (6.14) for our case has the following form:

o> \ o’y %Y 0% \ sin(rz)
—_ 2_ - = — 2_
(1 4 6zz> or2  0z2 <1 a a22> rz (8.14)

In this case the associated wave velocity propagation reads

cos(2sz)dz. (8.15)

3Y(z,7)  AslzT) lJ.ar/z 1+ 4a2s? sin<2Ts/v1+4a252>

ot a x)o s

Since analytical comparison of the obtained wave velocity propagation is difficult, we
apply numerical procedures.

As it has been already mentioned, exact solution of the joined discrete problem
governed by relation A;(j,7) will serve us as the standard solution used for estimation of
other solutions. Results of computations are shown on Figures 6(a)-6(c) and Figures 7(a)—
7(c). One can conclude that above described improved continuous models give possibility
qualitatively taking into account effect of media discreteness: (i) occurrence of oscillations,
being gradually damped at x = const; (ii) infinite velocity of perturbations propagation
(owing to assumption of instantaneous masses interaction during their draw near); (iii)
occurrence of the quasi-front domain, where the stresses increase relatively fast, but without
jump, as on the wave front set; velocities and deformations exponentially decay while the
quasi-front 7 — |z| increases finally becoming negligibly small.

Equation (8.10) has sixth order in spatial variable, (8.12) and (8.14) have second order
in spatial variable, so, they are simpler for practice applications. Equations (8.12), and (8.14)
give for case of wave motion qualitatively the similar results.

9. 2D Lattice

In order to analyse the 2D case we use 9-cell square lattice (Figure 8) [87, 117]. The central
particle is supposed to interact with eight neighbours in the lattice. The mass centres of
four of them are on horizontal and vertical lines, while the mass centres of the other four
neighbouring particles lie along diagonals. Interactions between the neighbouring particles
are modelled by elastic springs of three types. Horizontal and vertical springs with rigidity c¢;
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Figure 6

define interaction forces of extension/compression of the material. The diagonal longitudinal
springs have rigidity cp, and shear axial spring - ¢;. Governing equations of motion are [87]

mum,n =C1 (um,n—l - Zum,n + um,n+1) + CZ(um—l,n - 2um,n + um+1,n) + O-SCO
X (um—l,n—l + Um+1n-1 T Um-1,n+1 T Um+1n+1 T Om-1,n-1 — Om+1,n-1 — Om-1,n+1
FOm+1,n+1 — 4um,n)/
(9.1)
MOpyn = C1 (vm,n—l - 2vm,n + vm,n+1) +C2 (Um—l,n - va,n + vm+1,n) + O'SCO

X (Um—l,n—l + Om+1n-1 Y Om-1n+1 + Om+1n+1 + Um-1n-1 — Um+1,n-1 — Um-1,n+1

il — Y0mn)-

Here u;j,v;; is the displacement vector for a particle situated at point (x;,y;), x; =
ih, ]/] = ]I’l

The standard continualization procedure for (9.1) involves introducing a continuous
displacement field u(x,y),v(x,y) such that u(x,, yn) = Umuw V(Xm,Yn) = Umn and
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Figure 8: 2D lattice.

expanding Us1,ns1, Umzina1 into Taylor series around 4, ,, Um,n. Second-order continuous
theory in respect to the small parameter /1 is [87]

o*u 0*u o*u 0*v

mw = Clhzﬁ + C2h2a—y2 + 2C0h2 axay,
0%v 0%v 0%v o*u 62
00U _ 42070 2070 2

m e ah e +coh o +2coh oxdy’
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Naturally, one can construct equations of higher order, but, as it is shown in [87],
generally it is not possible to create asymptotic theories that do not possess extraneous
solutions in the nonscalar context.

Using staggered transformations

e = (-D*u, v = (Do, (9.3)

one obtains in anticontinuum limit.

- 1ax2 2ay2 7

oz T\ lox2 oy )

As in 1D case (see (5.1)) equations (9.4) do not contain parameter h2. For this type of
2D lattice equations in anticontinuum limit are decoupled.

The existence of the continuous approximations (9.2) and (9.4) gives a possibility to
construct the composite equations, which is uniformly suitable in the whole interval of the
frequencies and the oscillation forms of the 2D lattice of masses. Let us emphasize, that the
composite equations, due to Van Dyke [118], can be obtained as a result of synthesis of the
limiting cases. The principal idea of the method of the composite equations can be formulated
in the following way [118, page 195].

(9.4)

(i) Identify the terms in the differential equations, the neglection of which in the
straightforward approximation is responsible for the nonuniformity.

(ii) Approximate those terms insofar as possible while retaining their essential
character in the region of nonuniformity.

In our case the composite equations will be constructed in order to overlap
(approximately) with (9.2) for long wave solution and with (9.4) for short wave solution.
As a result of the described procedure one gets

2 2 2
m<1 - azhza— - a2h26—> Ou

ox? oy? | o2
o*u 0*u o*u 1 0% | %o
_ 207U 207U 4.2 2 o
=ch Frel ch oy (c1 +c)h’y 570y +2coh [1 + 16+ o) at2] ox0y’
9.5
22 B o 8\ o
m\ 1= e a5 ) ae
0%v 0%v v 1 02 | d%u
_ 42070 2070 4.2 2 o
=ch Fre ch o (c1 + )y ERr +2coh [1 + 1 o) aﬂ] oxdy”

Here a* = 0.25 - &% y* = (4 — & + 8x%a?) / (472).
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For 1D case from (9.5) one obtains (6.14) for u and the same equation for v. For small
variability in spatial and time variables equations (9.5) can be approximated by (9.2), for
large variability in spatial and time variables equations (9.5) can be approximated by (9.4).

10. Nonlinear Case

Fundamental methods of analysis of linear lattices are those based on either discrete
or continuous Fourier transformations [44, 45, 119] and the integral Fourier operators
method proposed by Maslov [67]. In a nonlinear case the similar methods, in general, are
not applicable. However, there exists class of piece-wise acting forces-springs extensions
relations, opening the doors for analytical tools application [120].

Besides, one may achieve even a solution to a nonlinear problem using the following
observation [61, 62, 119, 121]. Let nonlinear springs in 1D problem have potential energy
U(y), where y is a difference between the neighborhood masses regarding their equilibrium
positions. In this case the stretching force is —0U () /0y. The chain dynamics is governed by
the following infinite system of ODEs:

azT”n _ 6U(rn+1) _zau(rn) + au(rn—l)

ot? 0Tt ory, Orp_1

, (10.1)

where 1, = Y11 — Yn-
Assume that solution to the ODEs is a traveling wave, r, = R(z), z = n—vt. Then (10.1)
is cast into the following form:

*R'(z) = U'(R(z - 1)) = 2U'(R(2)) + U'(R(z + 1)), (10.2)

where (---) =d(---)/dr.
Introducing notation ®(z) = U'(R(z)) and applying the Fourier transformation to
(10.2) one gets

R(q) = f R(z) exp(-igz)dz, D(q) = I D(z) exp(-igz)dz. (10.3)
In the conjugated space one obtains

v’R(q) = f(9)@(q), (10.4)

where f(g) = 4(sin*(q/2)/ %)
Term f(g) can be approximated by PA or two-point PA in the following way:

1 1
f(q) = Toqz > (@) =7—5= (10.5)

1+ a2q?’

where a? = 0.25 - 2.
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In result one obtains equation of continuous approximation

(1o L4 R(z) = U'(R(z)) (10.6)
12 dz2 B ’
or
d2
v? (1 - a2—>R(z) = U'(R(z)). (10.7)
dz?

We show also a simultaneous application of PA matched with a perturbation
procedure using an example of the Toda lattice [122]

a2y,
md—tyz = alexp(b(Yn-1~Yn)) —exp(b(Yn ~ yns1))]- (10.8)

In continuum limit one obtains (for details see Appendix B)

oy1 0 1 02 oy
a—t1+a—x<1+ﬂ@>y1—yla—x—o. (109)

where: t; = \/(ab/m)t;y1 = (b/2)y.
One can obtain from (10.9) the Korteweg-de Vries (KdV) equation [122]. Here, we
illustrate how one may get regularized long-wave equation [123-125]. Using PA one obtains

1
1 & 1 &
1+ﬂ@~ (1_ﬂﬁ> . (10.10)
Then, (10.9) yields (up to the highest terms)
1 o2 ay1 6y1 ay1 _

On the other hand, there are nonlinear lattices with a special type nonlinearities
allowing to achieve exact solutions as soliton and soliton-like solutions (Toda, Ablowitz and
Ladik, Langmuir, Calogero, and so forth, [119, 126-130]) in the case of infinite lattices or in the
case of occurrence of physically unrealistic boundary conditions. In many cases nonintegrable
systems like a discrete variant of sine-Gordon equation possess soliton-like solution.

Lattice discreteness allows the existence of new types of localized structures that
would not exist in the continuum limit. Nonlinearity transfers energy to higher wavenumbers
but it can be suppressed and balanced by the bound of the spectrum of discrete systems. Such
balance can generate highly localized structures, that is, the discrete breathers [100-102, 131].
Improved continuous models give possibility to construct such type of localized solutions
[100-102].
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On the other hand, it is more appropriate changing a system of Fermi-Pasta-Ulam not
by KdV equation, but by Toda lattice. In the latter case one gets an asymptotic regarding
nonlinear parameter instead of applying direct substitution of a discrete system by a
continuous one. Occurrence of exact solutions of a discrete system allows applying the
following approach; fast changeable solution part is constructed using a discrete model,
whereas a continuous approximation is applied for slow components. The latter observation
is very well exhibited by Maslov and Omel’yanov [130], who analysed Toda lattice with
variable coefficients

dZ
— = —aifexp bi (v — yir) = 1] + @ [exp b (vier = 1) = 1], (10.12)

k=0,+£1,42,....

LS

They construct soliton solutions in the following way: rapidly changing part of soliton
is constructed using Toda lattice with constant coefficients, and for slowly part of solution
continuous approximation is used. Then these solutions are matched.

11. Some Generalization

Let us show that PA for constructing of improved continuous models can be used iteratively.
For three terms in expansion (3.9) one has PA

(82/8x%) (1 + (h2/20)0/0x?)

11.1
T (2730 (@ /0x%) (1
and continuous model
K2 92 5 h? 92
m<l—%@>oﬁ—ch <1+E@>O‘xx_0 (112)
or
%o ) m 0* h* &
mw—ch <1+ﬁﬁ+ﬁﬁ>axx—0- (113)
Now we use PA as follows:
22 2 1+ (m/30c)(8%/012))’
mo* WP (1+ (m/30c)(0%/0t%)) (11.4)

T 30cor T 200x2 | (1+ (m/300)(02/08) — (H2/20) (% 0x2))

and obtain new improved continuous model

7h? 3* \ 0°c m? h? 8% |o*c ,0%0
m<“mw>w*5[*&&]w”’w“ (11.5)
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Now let us consider the continuous models of the chain with two different particles in
primitive cell, that is, the chain with alternating masses

myji(t) - [y (5) = 295 () + ya (D] = (m = M)yaju(8);  j=1,2,3,.... (11.6)

Continuous approximation for (11.6) is (rod with localized masses)

myy(x,t) - chzyxx (x,t) = (m—-M)h i 6(x —2hk)yx(x,t). (11.7)

k=—o0

Improved continuous approximation for (11.6) can be written as follows:

B o )
m<1 - E@>ytt(x/ t) — ch yxx(x, t)

(11.8)
h? 8> \ & sinar(x - 2hk)
= (m- M)h<1 - E@)k;ﬁ e —2mk) D
or
62
m(l - a2@>ytt(x, t) — ch?yxx(x, 1)
(11.9)

0> \ & sinar(x —2hk)
= (m — M)h<1 — a2@>k_z Wytt(x, t)

Homogenization and other asymptotic approaches can be use for this continuous
system [132, Section 3]).

12. Modified Navier-Stokes Equations

The Navier-Stokes equations have a long and glorious history but remain extremely
challenging, for example, the issue of existence of physically reasonable solutions of these
equations in 3D case was chosen as one of the seven millennium “million dollar” prize
problems of the Clay Mathematical Institute [133]. Many famous mathematicians (Smale
et al. [134], Yudovich [135]) also wrote about this problem as one of the most important
problems of the 21st century. The 3D problem remains open until today [136], although in
the 1950s Ladyzhenskaya obtained the key result of global unique solvability of the initial
boundary value problem for the 2D Navier-Stokes Equations Ladyzhenskaya believed that in
the 3D case the Navier-Stokes Equations, even with very smooth initial data, do not provide
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uniqueness of their solutions on an arbitrary time interval. She introduced the modified
Navier-Stokes equations [133, 137-139] (see also [140]):

U — i [(vo + vmi)uxk] + Uglly, = —gradp + f(x,1),
Ox (12.1)
divu=0, k=1,2,3
or
u + rot[(vo + v1r0t2u>rot u] + Ukly, = —gradp + f(x,t),
(12.2)

divu=0, k=1,2,3.

Equations (12.1), (12.2) differ from the classical ones only in large-velocity gradients
and coincide with them for »; = 0. For (12.1) and (12.2) Ladyzhenskaya proved global unique
solvability under reasonably wide assumptions.

As it is mentioned in [59], “From the kinetic point of view these equations represent
the long-wavelength limit. However, it often happens that the dynamics predicted by the
hydrodynamics equations involves relatively short-wavelength scales. This, formally at least,
contradicts the conditions under which the macroscopic system was derived.” Note that the
modified Navier-Stokes equations (12.1), (12.2) allow for taking into account higher order
harmonics influence via artificially separated terms.

More investigations in direction of improvement of the Navier-Stokes equations are
carried out in references [133, 137-139].

It should be emphasized a role of mathematical approaches in proving various
physical theories [141]. Although nowadays a physical experiment plays a crucial role
in verification of many novel theories, but it is difficult sometimes to realize a sure and
proper experimental verification and validation of the developed theories. In those cases
it seems that the proper support of mathematical rigorous approaches may serve as a
tool of “experimental” validation of the introduced theories. In other words the rigorous
mathematical approaches validating the physical theories can be treated as experimental ones
for the so called “theoretical mathematics.”

Therefore, the modified Navier-Stokes equations are more suitable for fluid dynamics
description for large Re from a point of view of theoretical mathematics. For small Re they are
more close to the Navier-Stokes equations. In the latter case one gets a unique global solutions
to the initial-boundary value problems as well as the solvability of the stationary boundary
value problems for arbitrary Re numbers.

Note that the modified Navier-Stokes equations (12.1), (12.2) allow for taking into
account higher order harmonics influence via artificially introduced terms. It is clear that it
will be very challenging in getting the modified Navier-Stokes equations starting in modeling
from a molecular structure, as it has been demonstrated so far using simple examples
of discrete lattice. Here we can mention paper by Rosenau, who applied regularization
procedure to the Chapman-Enskog expansion [59]. This approach, however, requires further
investigations.



Mathematical Problems in Engineering 27

13. Conclusion

Classical molecular dynamics simulations have become prominent as a tool for elucidating
complex physical phenomena, such as solid fracture and plasticity. However, the length
and time scales probed using molecular dynamics are still fairly limited. To overcome
this problem it is possible to use molecular dynamics only in localized regions in which
the atomic-scale dynamics is important, and a continuous simulation method (e.g., FEM)
everywhere else [142]. Then the problem of coupling molecular dynamics and continuum
mechanics simulations appears. In this case, one can apply a concept of bridging domain
[142-144]. We think that in the latter case an application for describing bridging domain of
improved continuous models can result in efficient computational time saving.

Let us compare an impact of the methods illustrated and discussed so far on the
improved continuous models. Continuous models based on the PA and two-point PA can be
applied in the case of 1D problems (in spite of some artificially constructed examples [51]).
Intermediate continuous models and BVP obtained on the basis of the composite equations
can be used for problems of any dimensions.

It will be very interesting to use for study investigation of 2D lattices 2D PA [145].

Let us finally discuss problems closely connected with brittle fracture of elastic solids
[120, 146-150]. Observe that a continuous model, which does not include material structure,
is not suitable since any material crack occurs on the material structure level. This is a reason
why some of the essential properties of damages of the classical continuous model theory are
not exhibited. For instance, in a discrete medium the propagated waves transport part of the
energy from the elastic body into the crack edges. This is why application of nonlocal theories
during explosion process modeling (e.g., for the composite materials) looks very promising.
As it is mentioned in [151], “The continuous development of advanced materials ensures
that a “one size fits all” approach will no longer serve the engineering community in terms
of predicting and preventing fatigue failures and reducing their associated costs.”

Appendices
A. Padé Approximants

Let us consider Padé approximants, which allow us to perform, to some extent, the most
natural continuation of the power series. Let us formulate the definition [152]. Let

F(e) = Zcisi,
= (A1)
mo_ i
an(f,') = Zlm=0—algir
iz bie

where the coefficients a;, b; are determined from the following condition: the first (m + n)
components of the expansion of the rational function F,,, (¢) in a McLaurin series coincide
with the first (m + n +1) components of the series F(¢). Then F,,, is called the [m/n] PA. The
set of F,,,, functions for different m and n forms the Padé table.
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Now we give the notion of two-point Padé approximants [152]. Let

[ee]
Zaisl when € — 0,
i=0

Zbig‘i when ¢ — oo.
The TPPA is represented by the rational function
ko ke
F(e) = S—F—— (A3)
© k=0 bre

wherek +1 (k=0,1,...,n + m + 1) coefficients of a McLaurin expansion, if ¢ — 0, and m + n
+ 1 — k coefficients of a Laurent series, if ¢ — oo, coincide with the corresponding coefficients
of the series (A.2).

B. Continuum Limit of Toda Lattice

Here we describe construct of the continuum limit of the Toda lattice

2y,
m—z = alexp (Va1 = ya)) = P (b(yn = yan))]. (B1)

We follow [122]. Equation (B.1) can be rewritten as pseudodifferential one:

2

Oy 10\]?
meg - 4a [smh(2 Y >] exp(-by) =0. (B.2)
Equation (B.1) can be approximately factorized

m 0 [m 10 b 0
[ E&—Zmnh(za) Zyax][ —+251nh<§a—x>—§ya—x:|y—0‘ (B.3)

For wave spreading in right direction one obtains

[V

Formally expanding function sinh((1/2)(0/0x)) in a Maclaurin series up to the terms
of the third-order one obtains from (B.4)

moy 9oy 10 b dy
Vapar Tox "o 2%0x (B-5)
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Using variables transform t; = /(ab/m)t; y; = (b/2)y one obtains

oy Oy1 1y Oyr _

ot Tox T2 Yax U (B.6)

C. Correspondence between Functions of Discrete Arguments and
Approximating Analytical Functions

Let us suppose system
moju(t) = ¢(0j41 — 20j + 0j-1) + 5(t) - Si4 (#, j=0,1,...,.n-1,n (C.1)

sj(t) is the external force acting on jth point.

Further we follow [44].

In continuum limit we must construct a function s(x,t) representimg a continuous
approximation of the function of discrete argument s;(t). Observe that it is defined with an
accuracy to any arbitrary function, which equals zero in nodal points x = j, j = 0,1,2,...n.
For this reason, from a set of interpolating functions one may choose the smoothest function
owing to filtration of fast oscillating terms. As it is shown in [44], the interpolating function
is determined uniquely, if one requires its Fourier image s(q)

5(q) = Jm s(x)e dx; s(x) = %J‘w 5(q)e "™ dx (C.2)

to differ from zero only on the segment —sr/h <'s(q) < or/h. From this condition one obtains

< sin(or(x — kh)/h)

s(x, t) = ésk(t) AR (C.3)
For function
sin(orx/h) (C4)
rx '
one has the following relation (from [115, formula 2.5.3.12])
f sin(rx/h) , 4 (C.5)
X

For h — oo function (C.4) turns into Dirac’s delta function. So for momentous theories
of elasticity one must replace Dirac’s delta function to the function (C.4).



30 Mathematical Problems in Engineering

Acknowledgments

The authors thank Professors H. Askes, A. M. Filimonov, W. T. van Horssen, L.I. Manevitch
for their comments and suggestions related to the obtained results, as well as Dr. G. A.
Starushenko for help in numerical calculations. This work was supported by the German
Research Foundation (Deutsche Forschungsgemeinschaft), Grant no. WE 736/25-1 (for L.V.
Andrianov). The authors are grateful to the anonymous reviewers for valuable comments
and suggestions, which helped to improve the paper.

References

[1] A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric
Compounds: Transition Metal Carbides, Nitrides and Oxides, Springer, Berlin, Germany, 2001.

[2] 1. S. Pavlov and A. I. Potapov, “Structural models in mechanics of nanocrystalline media,” Doklady
Physics, vol. 53, no. 7, pp. 408-412, 2008.

[3] A. I. Potapov, “Waves of deformation in the media with inner structure,” in Proceedings of the
International Workshop on Nonlinear Waves, A. V. Gaponov-Grekhov and V. I. Nekorkin, Eds., pp.
125-140, Institute of Applied Physics RAS, Nizhnyi Novgorod, Russia, 2004.

[4] A.IL Potapov,I.S.Pavlov, and S. A. Lisina, “Acoustic identification of nanocrystalline media,” Journal
of Sound and Vibration, vol. 322, no. 3, pp. 564-580, 2009.

[5] E. H. Dowell and D. Tang, “Multiscale, multiphenomena modeling and simulation at the nanoscale:
on constructing reduced-order models for nonlinear dynamical systems with many degrees-of-
freedom,” Journal of Applied Mechanics, vol. 70, pp. 328-338, 2003.

[6] G. Friesecke and R. D. James, “A scheme for the passage from atomic to continuum theory for thin
films, nanotubes and nanorods,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 6-7, pp.
1519-1540, 2000.

[7] S. Pagano and R. Paroni, “A simple model for phase transitions: from the discrete to the continuum
problem,” Quarterly of Applied Mathematics, vol. 61, no. 1, pp. 89-109, 2003.

[8] E. Aero, A. Fradkov, B. Andrievsky, and S. Vakulenko, “Dynamics and control of oscillations in a
complex crystalline lattice,” Physics Letters A, vol. 353, no. 1, pp. 24-29, 2006.

[9] E. Grekova and P. Zhilin, “Basic equations of Kelvin’s medium and analogy with ferromagnets,”
Journal of Elasticity, vol. 64, no. 1, pp. 29-70, 2001.

[10] E. Pasternak and H.-B. Miihlhaus, “Generalized homogenization procedure for granular material,”
Journal of Engineering Mathematics, vol. 52, pp. 199229, 2005.

[11] 1. S. Pavlov, A. I. Potapov, and G. A. Maugin, “A 2D granular medium with rotating particles,”
International Journal of Solids and Structures, vol. 43, no. 20, pp. 6194-6207, 2006.

[12] R. H. J. Peerlings, M. G. D. Geers, R. de Borst, and W. A. M. Brekelmans, “A critical comparison
of nonlocal and gradient-enhanced softening continua,” International Journal of Solids and Structures,
vol. 38, no. 44-45, pp. 7723-7746, 2001.

[13] H. Askes and L. J. Sluys, “Explicit and implicit gradient series in damage mechanics,” European
Journal of Mechanics A, vol. 21, no. 3, pp. 379-390, 2002.

[14] C. S. Chang, H. Askes, and L. J. Sluys, “Higher-order strain/higher-order stress gradient models
derived from a discrete microstructure, with application to fracture,” Engineering Fracture Mechanics,
vol. 69, no. 17, pp. 1907-1924, 2002.

[15] G. del Piero and L. Truskinovsky, “A one-dimensional model for localized and distributed failure,”
Journal de Physique, vol. 8, no. 8, pp. 95-102, 1998.

[16] A. Yavari, M. Ortiz, and K. Bhattacharya, “A theory of anharmonic lattice statics for analysis of
defective crystals,” Journal of Elasticity, vol. 86, no. 1, pp. 41-83, 2007.

[17] N. A. Fleck and J. W. Hutchinson, “A phenomenological theory for strain gradient effects in
plasticity,” Journal of the Mechanics and Physics of Solids, vol. 41, no. 12, pp. 1825-1857, 1993.

[18] R. C. Rogers and L. Truskinovsky, “Discretization and hysteresis,” Physica B, vol. 233, no. 4, pp.
370-375, 1997.

[19] P. G. Kevrekidis and I. G. Kevrekidis, “Heterogeneous versus discrete mapping problem,” Physical
Review E, vol. 64, no. 5, Article ID 056624, 8 pages, 2001.

[20] A. M. Kosevich, Deformation and Destruction of Microstructured Solids, Fizmatlit, Moscow, Russia,
2007.



Mathematical Problems in Engineering 31

[21] W. E and B. Engquist, “The heterogeneous multiscale methods,” Communications in Mathematical
Sciences, vol. 1, no. 1, pp. 87-132, 2003.

[22] E.B. Tadmor, M. Ortiz, and R. Phillips, “Quasicontinuum analysis of defects in solids,” Philosophical
Magazine A, vol. 73, no. 6, pp. 1529-1563, 1996.

[23] P. A. M. Dirac, “Quantum mechanics of many-electron systems,” Proceedings of the Royal Society of
London A, vol. 123, no. 729, pp. 714-733, 1929.

[24] P. Debye, “Zur Theorie der spezifischen Warmen,” Annals of Physics, vol. 39, pp. 789-839, 1912.

[25] E. C. Aifantis, “Gradient deformation models at nano, micro, and macro scales,” Journal of
Engineering Materials and Technology, vol. 121, no. 2, pp. 189-202, 1999.

[26] E. Cosserat and F. Cosserat, Théorie des Corps Déformables, Libraire Scientifique A. Hermann et Fils,
Paris, France, 1909.

[27] E. Hellinger, “Die allgemeinen Ansitze der Mechanik der Kontinua,” in Enzyklopadie der
Mathematischen Wissenschaften, F. Klein and G. Miiller, Eds., vol. 4, pp. 602-694, Teubner, Leipzig,
Germany, 1914.

[28] M.]. Le Roux, “Ftude géométrique de la torsion et de la flexion dans la déformation infinitésimale
d’un milieu continu,” Annales Scientifiques de I"Ecole Normale Supérieure, vol. 28, pp. 523-579, 1911.

[29] G. A. Maugin, “From Piola’s manifold to Cosserats’ structure,” in Geometry, Continua and
Microstructure, G. A. Maugin, Ed., pp. 113-120, Hermann, Paris, France, 1999.

[30] R. D. Mindlin, “Micro-structure in linear elasticity,” Archive for Rational Mechanics and Analysis, vol.
16, pp. 51-78, 1964.

[31] N. Triantafyllidis and S. Bardenhagen, “On higher order gradient continuum theories in 1-D
nonlinear elasticity. Derivation from and comparison to the corresponding discrete models,” Journal
of Elasticity, vol. 33, no. 3, pp. 259-293, 1993.

[32] A.S.]. Suiker, A. V. Metrikine, and R. De Borst, “Comparison of wave propagation characteristics
of the Cosserat continuum model and corresponding discrete lattice models,” International Journal of
Solids and Structures, vol. 38, no. 9, pp. 1563-1583, 2001.

[33] A.S.]. Suiker, A. V. Metrikine, and R. Borst, “Dynamical behavior of a layer of discrete particles—
part 1: analysis of body waves and eigenmodes,” Journal of Sound and Vibration, vol. 240, no. 1, pp.
1-18, 2001.

[34] A.S.J. Suiker, A. V. Metrikine, and R. Borst, “Dynamical behavior of a layer of discrete particles—
part 2: response to a uniform moving, harmonically vibrating loading,” Journal of Sound and Vibration,
vol. 240, no. 1, pp. 19-39, 2001.

[35] D. Hilbert, Gesammelte Abhandlungen III, Springer, Berlin, Germany, 1935.

[36] M.]. Beran, Statistical Continuum Theories, Wiley-Interscience, New York, NY, USA, 1968.

[37] X. Blang, C. Le Bris, and P-L. Lions, “From molecular models to continuum mechanics,” Archive for
Rational Mechanics and Analysis, vol. 164, no. 4, pp. 341-381, 2002.

[38] X. Blanc, C. Le Bris, and P.-L. Lions, “Atomistic to continuum limits for computational materials
science,” Mathematical Modelling and Numerical Analysis, vol. 41, no. 2, pp. 391-426, 2007.

[39] A. Braides, “Non-local variational limits of discrete systems,” Communications in Contemporary
Mathematics, vol. 2, no. 2, pp. 285-297, 2000.

[40] M. Charlotte and L. Truskinovsky, “Linear elastic chain with a hyper-pre-stress,” Journal of the
Mechanics and Physics of Solids, vol. 50, no. 2, pp. 217-251, 2002.

[41] G. Friesecke and F. Theil, “Validity and failure of the Cauchy-Born hypothesis in a two-dimensional
mass-spring lattice,” Journal of Nonlinear Science, vol. 12, no. 5, pp. 445-478, 2002.

[42] R. Paroni, “From discrete to continuum: a Young measure approach,” Zeitschrift fiir Angewandte
Mathematik und Physik, vol. 54, no. 2, pp. 328-348, 2003.

[43] B. Schmidt, “A derivation of continuum nonlinear plate theory from atomistic models,” Multiscale
Modeling & Simulation, vol. 5, no. 2, pp. 664-694, 2006.

[44] 1. A. Kunin, Elastic Media with Microstructure. I. One-Dimensional Models, vol. 26 of Springer Series in
Solid-State Sciences, Springer, Berlin, Germany, 1982.

[45] I. A. Kunin, Elastic Media with Microstructure. 1. Three-Dimensional Models, vol. 44 of Springer Series in
Solid-State Sciences, Springer, Berlin, Germany, 1983.

[46] I. V. Andrianov, “Continuous approximation of higher-frequency oscillation of a chain,” Doklady
Akademii Nauk Ukrainskoj SSR, Seriya A, vol. 2, pp. 13-15, 1991 (Russian).

[47] 1. V. Andrianov, “Padé approximants and continuum models for a one-dimensional lattice of
masses,” Matematicheskoe Modelirovanie, vol. 18, no. 1, pp. 43-58, 2006 (Russian).



32 Mathematical Problems in Engineering

[48] 1. V. Andrianov and ]J. Awrejcewicz, “Continuous models for chain of inertially linked masses,”
European Journal of Mechanics A, vol. 24, no. 3, pp. 532-536, 2005.

[49] I V. Andrianov and J. Awrejcewicz, “Continuous models for 1D discrete media valid for higher-
frequency domain,” Physics Letters A, vol. 345, no. 1-3, pp. 55-62, 2005.

[50] I V. Andrianov and J. Awrejcewicz, “Love and Rayleigh correction terms and Padé approximants,”
Mathematical Problems in Engineering, vol. 2007, Article ID 94035, 8 pages, 2007.

[51] I. V. Andrianov and J. Awrejcewicz, “Continuous models for 2D discrete media valid for higher-
frequency domain,” Computers and Structures, vol. 86, no. 1-2, pp. 140-144, 2008.

[52] 1. V. Andrianov and J. Awrejcewicz, “New trends in asymptotic approaches: summation and
interpolation methods,” Applied Mechanics Reviews, vol. 54, no. 1, pp. 69-92, 2001.

[53] M. A. Collins, “A quasicontinuum approximation for solitons in an atomic chain,” Chemical Physics
Letters, vol. 77, no. 2, pp. 342-347, 1981.

[54] I E Obraztsov, I. V. Andrianov, and B. V. Nerubailo, “Continuum approximation for high-frequency
oscillations of a chain and composite equations,” Soviet Physics Doklady, vol. 36, no. 7, p. 522, 1991.

[55] Ph. Rosenau, “Dynamics of nonlinear mass-spring chains near the continuum limit,” Physics Letters
A, vol. 118, no. 5, pp. 222-227, 1986.

[56] Ph. Rosenau, “Dynamics of dense lattices,” Physical Review B, vol. 36, no. 11, pp. 5868-5876, 1987.

[57] Ph. Rosenau, “Dynamics of dense discrete systems,” Progress of Theoretical Physics, vol. 89, no. 5, pp.
1028-1042, 1988.

[58] Ph. Rosenau, “Hamiltonian dynamics of dense chains and lattices: or how to correct the continuum,”
Physics Letters A, vol. 311, no. 1, pp. 39-52, 2003.

[59] Ph. Rosenau, “Extending hydrodynamics via the regularization of the Chapman-Enskog expan-
sion,” Physical Review A, vol. 40, no. 12, pp. 7193-7196, 1989.

[60] M. B. Rubin, Ph. Rosenau, and O. Gottlieb, “Continuum model of dispersion caused by an inherent
materil characteristics length,” Journal of Applied Physics, vol. 77, no. 5, pp. 4054-4063, 1995.

[61] J. A. D. Wattis, “Approximations to solitary waves on lattices. II. Quasi-continuum methods for fast
and slow waves,” Journal of Physics A, vol. 26, no. 5, pp. 1193-1209, 1993.

[62] J. A. D. Wattis, “Quasi-continuum approximations to lattice equations arising from the discrete
nonlinear telegraph equation,” Journal of Physics A, vol. 33, no. 33, pp. 5925-5944, 2000.

[63] 1. V. Andrianov, “The special feature of limiting transition from a discrete elastic media to a
continuous one,” Journal of Applied Mathematics and Mechanics, vol. 66, no. 2, pp. 261-265, 2002.

[64] I. V. Andrianov and J. Awrejcewicz, “On the average continuous representation of an elastic discrete
medium,” Journal of Sound and Vibration, vol. 264, no. 5, pp. 1187-1194, 2003.

[65] A.D. Myshkis, “Mixed functional-differential equations,” Journal of Mathematical Sciences, vol. 129,
no. 5, pp. 4111-4226, 2005.

[66] P. E Kurchanov, A. D. Myshkis, and A. M. Filimonov, “Vibrations of rolling stock and a theorem of
Kronecker,” Journal of Applied Mathematics and Mechanics, vol. 55, no. 6, pp. 870-876, 1991.

[67] V. P. Maslov, Operational Methods, Mir, Moscow, Russia, 1976.

[68] N. E. Joukowsky, “The work of continuous and non-continuous traction devices in pulling a train
from its position and at the beginning of its motion,” in Complete Collected Works, 8: Theory of Elasticity.
Railways. Automobiles, N. E. Joukowsky and A. P. Kotel'nikov, Eds., pp. 221-255, ONTI, Moscow,
Russia, 1937.

[69] A. M. Filimonov, “Some unexpected results on the classical problem of vibrations of the string with
N beads. The case of multiple frequencies,” Comptes Rendus de I’Académie des Sciences. Série I, vol.
315, no. 8, pp. 957-961, 1992.

[70] A.M. Filimonov, “Continuous approximations of difference operators,” Journal of Difference Equations
and Applications, vol. 2, no. 4, pp. 411-422, 1996.

[71] A. M. Filimonov and A. D. Myshkis, “Asymptotic estimate of solution of one mixed difference-
differential equation of oscillations theory,” Journal of Difference Equations and Applications, vol. 4, no.
1, pp. 13-16, 1998.

[72] A. Filimonov, X. Mao, and S. Maslov, “Splash effect and ergodic properties of solution of the classic
difference-differential equation,” Journal of Difference Equations and Applications, vol. 6, no. 3, pp. 319—
328, 2000.

[73] A. M. Filimonov, P. E. Kurchanov, and A. D. Myshkis, “Some unexpected results in the classical
problem of vibrations of the string with n beads when n is large,” Comptes Rendus de I’ Académie des
Sciences. Série I, vol. 313, no. 13, pp. 961-965, 1991.



Mathematical Problems in Engineering 33

[74] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied
Mathematics, no. 8, Interscience, New York, N, USA, 1960.

[75] M. Berezhnyy and L. Berlyand, “Continuum limit for three-dimensional mass-spring networks and
discrete Korn’s inequality,” Journal of the Mechanics and Physics of Solids, vol. 54, no. 3, pp. 635-669,
2006.

[76] A. M. Kosevich, The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices, Wiley-VCH, Berlin,
Germany, 2005.

[77] Yu. A. Kosevich, “Nonlinear envelope-function equation and strongly localized vibrational modes
in anharmonic lattices,” Physical Review B, vol. 47, no. 6, pp. 3138-3152, 1993.

[78] A.S.Kovalev and A. M. Kosevich, “Self-localization of vibrations in a one-dimensional anharmonic
chain,” Soviet Physics [ETP, vol. 40, pp. 891-896, 1975.

[79] A. E Vakakis, L. I. Manevitch, Yu. V. Mikhlin, V. N. Pilipchuk, and A. A. Zevin, Normal Modes and
Localization in Nonlinear Systems, Wiley Series in Nonlinear Science, John Wiley & Sons, New York,
NY, USA, 1996.

[80] R.C.Picu, “On the functional form of non-local elasticity kernels,” Journal of the Mechanics and Physics
of Solids, vol. 50, no. 9, pp. 1923-1939, 2002.

[81] H. Askes and A. V. Metrikine, “Higher-order continua derived from discrete media: continualisation
aspects and boundary conditions,” International Journal of Solids and Structures, vol. 42, no. 1, pp. 187-
202, 2005.

[82] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, UK; Oxford
University Press, New York, NY, USA, 1988.

[83] A. Askar, Lattice Dynamical Foundations of Continuum Theories: Elasticity, Piezoelectricity, Viscoelasticity,
Plasticity, vol. 2 of Series in Theoretical and Applied Mechanics, World Scientific, Philadelphia, Pa, USA,
1985.

[84] H. Askes and M. A. Gutiérrez, “Implicit gradient elasticity,” International Journal for Numerical
Methods in Engineering, vol. 67, no. 3, pp. 400-416, 2006.

[85] H. Askes, A. V. Metrikine, A. V. Pichugin, and T. Bennett, “Four simplified gradient elasticity models
for the simulation of dispersive wave propagation,” Philosophical Magazine, vol. 88, no. 28-29, pp.
3415-3443, 2008.

[86] G. A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford Mathematical Monographs, Oxford
University Press, Oxford, UK, 1999.

[87] A.V.Pichugin, H. Askes, and A. Tyas, “Asymptotic equivalence of homogenisation procedures and
fine-tuning of continuum theories,” Journal of Sound and Vibration, vol. 313, no. 3-5, pp. 858-874, 2008.

[88] V.I. Erofeyev, Wave Processes in Solids with Microstrucutre, World Scientific, Singapore, 2003.

[89] S. V. Dmitriev, A. A. Vasiliev, N. Yoshikawa, T. Shigenari, and Y. Ishibashi, “Multi-cell continuum
approximation for discrete medium with microscopic rotations,” Physica Status Solidi B, vol. 242, no.
3, pp- 528-537, 2005.

[90] E. A.Il'iushina, “On a model of continuous medium, taking into account the microstructure,” Journal
of Applied Mathematics and Mechanics, vol. 33, no. 5, pp. 917-923, 1969.

[91] E. A.Il'iushina, “A version of the couple stress theory of elasticity for a one-dimensional continuous
medium with inhomogeneous periodic structure,” Journal of Applied Mathematics and Mechanics, vol.
36, no. 6, pp. 1019-1026, 1972.

[92] I. V. Andrianov, J. Awrejcewicz, and R. G. Barantsev, “Asymptotic approaches in mechanics: new
parameters and procedures,” Applied Mechanics Reviews, vol. 56, no. 1, pp. 87-110, 2003.

[93] N. Tzirakis and P. G. Kevrekidis, “On the collapse arresting effects of discreteness,” Mathematics and
Computers in Simulation, vol. 69, no. 5-6, pp. 553-566, 2005.

[94] E. I Grigolyuk and L. I. Selezov, Nonclassical Theories of Vibrations of Beams, Plates and Shells, VINITI,
Moscow, Russia, 1973.

[95] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press,
Cambridge, UK, 4th edition, 1927.

[96] ]. W. S. Rayleigh, The Theory of Sound. Vol. 1, Macmillan, London, UK, 1877.

[97] J. W. S. Rayleigh, The Theory of Sound. Vol. 2, Macmillan, London, UK, 1888.

[98] J. D. Kaplunov, L. Yu. Kossovich, and E. V. Nolde, Dynamics of Thin Walled Elastic Bodies, Academic
Press, San Diego, Calif, USA, 1998.

[99] A. V. Metrikine, “On causality of the gradient elasticity models,” Journal of Sound and Vibration, vol.
297, no. 3-5, pp. 727-742, 2006.



34 Mathematical Problems in Engineering

[100] B.-F. Feng, Y. Doi, and T. Kawahara, “Quasi-continuum approximation for discrete breathers in
Fermi-Pasta-Ulam atomic chains,” Journal of the Physical Society of Japan, vol. 73, no. 8, pp. 2100-2111,
2004.

[101] B.-F. Feng, Y. Doi, and T. Kawahara, “A regularized model equation for discrete breathers in
anharmonic lattices with symmetric nearest-neighbor potentials,” Physica D, vol. 214, no. 1, pp. 33—
41, 2006.

[102] B.-F.Fengand T. Kawahara, “Discrete breathers in two-dimensional nonlinear lattices,” Wave Motion,
vol. 45, no. 1-2, pp. 68-82, 2007.

[103] A. C. Eringen, “On differential equations of nonlocal elasticity and solutions of screw dislocation
and surface waves,” Journal of Applied Physics, vol. 54, no. 9, pp. 4703-4710, 1983.

[104] A. C. Eringen, “Theory of nonlocal elasticity and some applications,” Res Mechanica, vol. 21, no. 4,
pp- 313-342, 1987.

[105] A. C. Eringen, “Vistas of nonlocal continuum physics,” International Journal of Engineering Science,
vol. 30, no. 10, pp. 1551-1565, 1992.

[106] A.C.Eringen, Microcontinuum Field Theories. I. Foundations and Solids, Springer, New York, NY, USA,
1999.

[107] M. Born and Th. von Karman, “On fluctuations in spatial grids,” Physikalische Zeitschrift, vol. 13, pp.
297-309, 1912.

[108] H. Askes and A. V. Metrikine, “One-dimensional dynamically consistent gradient elasticity models
derived from a discrete microstructure—part 2: static and dynamic response,” European Journal of
Mechanics A, vol. 21, no. 4, pp. 573-588, 2002.

[109] A. V. Metrikine and H. Askes, “One-dimensional dynamically consistent gradient elasticity models
derived from a discrete microstructure—part 1: generic formulation,” European Journal of Mechanics
A, vol. 21, no. 4, pp. 555-572, 2002.

[110] R. D. Mindlin and G. Herrmann, “A one-dimensional theory of compressional waves in an elastic
rod,” in Proceedings of the 1st U.S. National Congress of Applied Mechanics, pp. 187-191, ASME, New
York, NY, USA, 1952.

[111] R. D. Mindlin and G. Herrmann, “Corrections,” in Proceedings of the 2nd U.S. National Congress of
Applied Mechanics, p. 233, ASME, New York, NY, USA, 1954.

[112] L.Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, Dover, Mineola,
NY, USA, 2nd edition, 2003.

[113] M. Lazar, G. A. Maugin, and E. C. Aifantis, “On a theory of nonlocal elasticity of bi-Helmholtz type
and some applications,” International Journal of Solids and Structures, vol. 43, no. 6, pp. 1404-1421,
2006.

[114] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Dover, New York, NY, USA, 1965.

[115] A.P.Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 1. Elementary Functions,
Gordon and Breach, New York, NY, USA, 1986.

[116] L.I. Slepyan, Nonstationary Elastic Waves, Sudostroyenie, Leningrad, Russia, 1972.

[117] A. V. Metrikine and H. Askes, “An isotropic dynamically consistent gradient elasticity model
derived from a 2D lattice,” Philosophical Magazine, vol. 86, no. 21-22, pp. 3259-3286, 2006.

[118] M. Van Dyke, Perturbation Methods, The Parabolic Press, Stanford, Calif, USA, 1975.

[119] A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structure, vol. 8 of Oxford Texts in
Applied and Engineering Mathematics, Oxford University Press, Oxford, UK, 2nd edition, 2003.

[120] L.I. Slepyan and L. V. Troyankina, “Fracture wave in a chain structure,” Journal of Applied Mechanics
and Technical Physics, vol. 25, no. 6, pp. 921-927, 1984.

[121] D. B. Duncan, ]J. C. Eilbeck, H. Feddersen, and J. A. D. Wattis, “Solitons on lattices,” Physica D, vol.
68, pp. 1-11, 1993.

[122] M. Toda, Theory of Nonlinear Lattices, vol. 20 of Springer Series in Solid-State Sciences, Springer, Berlin,
Germany, 2nd edition, 1989.

[123] M. ]. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, vol. 4 of SIAM Studies in
Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1981.

[124] T.B. Benjamin, J. L. Bona, and J. J. Mahony, “Model equations for long waves in nonlinear dispersive
systems,” Philosophical Transactions of the Royal Society A, vol. 272, no. 1220, pp. 47-78, 1972.

[125] D. H. Peregrine, “Calculations of the development of an undular bore,” Journal of Fluid Mechanics,
vol. 25, no. 2, pp. 321-330, 1966.



Mathematical Problems in Engineering 35

[126] P. Deift and K. T.-R. McLaughlin, A Continuum Limit of the Toda Lattice, AMS, Providence, RI, USA,
1998.

[127] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations,
Academic Press, London, UK, 1984.

[128] J. Giannoulis and A. Mielke, “The nonlinear Schrodinger equation as a macroscopic limit for an
oscillator chain with cubic nonlinearities,” Nonlinearity, vol. 17, no. 2, pp. 551-565, 2004.

[129] M. Kac and P. van Moerbeke, “On an explicitly soluble system of nonlinear differential equations
related to certain Toda lattices,” Advances in Mathematics, vol. 16, pp. 160-169, 1975.

[130] V.P.Maslov and G. A. Omel’yanov, Geometric Asymptotics for Nonlinear PDE. I, vol. 202 of Translations
of Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 2001.

[131] G. M. Chechin and G. S. Dzhelauhova, “Discrete breathers and nonlinear normal modes in
monoatomic chains,” Journal of Sound and Vibration, vol. 322, no. 3, pp. 490-512, 2009.

[132] L. I. Manevitch, I. V. Andrianov, and V. G. Oshmyan, Mechanics of Periodically Heterogeneous
Structures, Foundations of Engineering Mechanics, Springer, Berlin, Germany, 2002.

[133] O. A. Ladyzhenskaya, “The sixth millennium problem: Navier-Stokes equations, existence and
smoothness,” Russian Mathematical Surveys, vol. 58, no. 2, pp. 251-286, 2003.

[134] S. Smale, “Mathematical problems for the next century,” in Mathematics: Frontiers and Perspective, V.
Arnold, M. Atiyah, P. Lax, and B. Mazur, Eds., AMS, Providence, RI, USA, 2000.

[135] V.I. Yudovich, “Problems and promisings of contemporary hydrodynamics,” Uspehi Mekhaniki, vol.
1, pp. 61-101, 2002 (Russian).

[136] V.P. Maslov, “Coherent structures, resonances and asymptotic nonuniqueness for the Navier-Stokes
equations for large Reynolds numbers,” Russian Mathematical Surveys, vol. 41, no. 6, pp. 19-35, 1986.

[137] O. A. Ladyzhenskaya, “Some nonlinear problems of the continuum mechanics,” in Proceedings of the
International Congress of Mathematicians, pp. 561-573, Nauka, Moscow, Russia, 1968.

[138] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach,
New York, NY, USA, 2nd edition, 1969.

[139] O. A. Ladyzhenskaya, “Modification of the Navier-Stokes equations for large velocity gradients,” in
Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory II, pp. 57-69,
Consultants Bureau, New York, NY, USA, 1970.

[140] K. K. Golovkin, “New model equations of motion of a viscous fluid and their unique solvability,”
Proceedings of the Steklov Institute of Mathematics, vol. 102, pp. 29-50, 1967.

[141] A.]Jaffe and F. Quinn, ““Theoretical mathematics”: toward a cultural synthesis of mathematics and
theoretical physics,” Bulletin of the American Mathematical Society, vol. 29, no. 1, pp. 1-13, 1993.

[142] G.]. Wagner and W. K. Liu, “Coupling of atomistic and continuum simulations using a bridging
scale decomposition,” Journal of Computational Physics, vol. 190, no. 1, pp. 249-274, 2003.

[143] M. Xu and T. Belytschko, “Conservation properties of the bridging domain method for coupled
molecular/continuum dynamics,” International Journal for Numerical Methods in Engineering, vol. 76,
no. 3, pp. 278-294, 2008.

[144] S. Zhang, R. Khare, Q. Lu, and T. Belytschko, “A bridging domain and strain computation method
for coupled atomistic-continuum modelling of solids,” International Journal for Numerical Methods in
Engineering, vol. 70, no. 8, pp. 913-933, 2007.

[145] V. V. Vavilov, M. K. Tchobanou, and P. M. Tchobanou, “Design of multidimensional recursive systems
through Padé type rational approximation,” Nonlinear Analysis: Modelling and Control, vol. 7, no. 1,
pp. 105-125, 2002.

[146] L.I. Slepyan, “Dynamics of a crack in a lattice,” Soviet Physics Doklady, vol. 26, pp. 538-540, 1981.

[147] L.I. Slepyan, “Crack propagation in high-frequency lattice vibration,” Soviet Physics Doklady, vol. 26,
pp- 900-902, 1981.

[148] L. I Slepyan, “The relation between the solutions of mixed dynamic problems for a continuous
elastic medium and a lattice,” Soviet Physics Doklady, vol. 27, pp. 771-772, 1982.

[149] L.I.Slepyan, “Dynamics of brittle fracture in media with a structure,” Mechanics of Solids, vol. 19, no.
6, pp. 114-122, 1984.

[150] L.I. Slepyan and L. V. Troyankina, “Impact waves in a nonlinear chain,” in Plasticity and Fracture of
Solids, R. V. Gol'dstein, Ed., pp. 175-186, Nauka, Moscow, Russia, 1988.

[151] J.J. Kruzik, “Predicting fatigue failures,” Science, vol. 325, pp. 156157, 2009.

[152] G. A. Baker Jr. and P. Graves-Morris, Padé Approximants, vol. 59 of Encyclopedia of Mathematics and Its
Applications, Cambridge University Press, Cambridge, UK, 2nd edition, 1996.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 742894, 29 pages
doi:10.1155/2010/742894

Review Article

Furuta’s Pendulum: A Conservative Nonlinear
Model for Theory and Practise

J. A. Acosta

Departamento de Ingenieria de Sistemas y Automidtica, Escuela Técnica Superior de Ingenieros,
Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

Correspondence should be addressed to J. A. Acosta, jaar@esi.us.es
Received 30 July 2009; Accepted 6 November 2009
Academic Editor: José Balthazar

Copyright © 2010 J. A. Acosta. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Furuta’s pendulum has been an excellent benchmark for the automatic control community in the
last years, providing, among others, a better understanding of model-based Nonlinear Control
Techniques. Since most of these techniques are based on invariants and/or integrals of motion
then, the dynamic model plays an important role. This paper describes, in detail, the successful
dynamical model developed for the available laboratory pendulum. The success relies on a basic
dynamical model derived from Classical Mechanics which has been augmented to compensate
the non-conservative torques. Thus, the quasi-conservative “practical” model developed allows to
design all the controllers as if the system was strictly conservative. A survey of all the nonlinear
controllers designed and experimentally tested on the available laboratory pendulum is also
reported.

1. Introduction

The control of underactuated mechanical systems has attracted the interest of the control
engineering community for many years. Underactuated mechanical systems are control
systems with fewer control inputs than degrees of freedom. This lack of inputs is, precisely,
the main difficulty to control them. Moreover, the control of underactuated mechanical
systems is currently an active field of research due to their broad applications in Robotics,
Aerospace, and Marine Vehicles. Some examples of underactuated mechanical systems
include flexible-link robots, mobile robots, walking robots, robots on mobile platforms, cars,
locomotive systems, snake-type and swimming robots, acrobatic robots, aircraft, spacecraft,
helicopters, satellites, surface vessels, and underwater vehicles.

One of the most well-known underactuated mechanical systems is the pendulum
which is an excellent benchmark for many control problems, attracting the attention of many
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Figure 1: Available Furuta’s pendulum.

researchers during years. The available version of the pendulum is the rotary pendulum
shown in Figure 1, and this survey is focused on that laboratory pendulum where many
control strategies have been designed and successfully tested. The rotary pendulum is one
of the most complex two-degrees-of-freedom pendulum since its configuration provides
centrifugal torques, which are quadratic in velocities, giving rise to many interesting and
difficult control problems.

The rotary pendulum is also known as Furuta’s pendulum. Furuta was the inventor,
and has been studied by many authors such as Furuta himself [1] (see also [2-4] among
others). It is a non-linear underactuated mechanical system that is unstable at the desired
upright position. In fact, it shows, mainly, two different and very interesting control
problems. The first one is to swing the pendulum up from the rest (down) to the upright
(up) position, which is commonly solved with energy control strategies. Once the pendulum
is close to the desired upright position, at low speed, a stabilization or balancing strategy
“catches” it there. Other control problems are also quite interesting as the stabilisation of
autonomous oscillations and control through bifurcation analysis. All of them are briefly
commented in the survey focusing on all the designed and experimentally tested in the
available laboratory pendulum.

The paper is organized as follows. In Section 2 the non-linear model for the available
pendulum is derived in detail, including a dynamical-friction model. In Section 3, a survey
of the non-linear strategies designed and tested on the available pendulum is given. A
literature review showing the relations with other approaches are also briefly commented.
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Finally, a conclusion section and two appendices, one describing the whole experimental
control system and another with the MATLAB codes used for the non-trivial identification
of parameters of the dynamical-friction model.

Notation and Definitions

Throughout the paper it is assumed that all functions and vector functions are sufficiently
smooth. Moreover, concerning functions, vector functions, and matrices which are functions
of some variables, we will write explicitly this dependence the first time they are defined.
The norm of a vector x € R” will be denoted by ||x|| and the square of the Euclidean norm by
||x||§ = x"x. Acronyms used: w.r.t. means “with respect to”; i.e. means “that is.”

Consider a dynamical system affine in control as x(t) = f(x(t)) + g(x(t))u, where
x € R" is the state space vector, u € R™ is the control input vector and where we assume that
the origin is at x = 0 with f(0) = 0 and g(0) #0. Thus,

(i) the open-loop system means the unforced system, that is, with u = 0;

(ii) a (smooth) static state-feedback means a control input of the form u = ¢(x),
also called controller, control law and stabiliser when a stabilisation problem is
considered;

(iii) the closed-loop system means the system with a specified static state-feedback, i.e.
X = f(x) + g(x)p(x);

(iv) linearisation means a non-linear static state-feedback that linearises fully or partially
the dynamics;

(v) the Jacobian linearisation means the first approximation of the system dynamics
through the Jacobian at the origin.

2. The Conservative Mechanical Model

The schematic of Furuta’s pendulum is described in Figure 2, where the two degrees of
freedom are shown: the angular positions of the arm (¢) and the pendulum (8). The arm
shaft (corresponding to the angle ¢ referred to the x-axis) is subject to a torque, while no
torque is applied directly to the pendulum shaft (angle 6 of pendulum referred to the z-axis).
Thus, it is an underactuated mechanical system because it has only one control input and two
degrees of freedom. Rigorously, the configuration space is a 2-torus, that is, (6,¢) € S' x S!
and the corresponding tangent space is (6, ¢, 0, ¢) € S' x S! x R2,
We define the physical parameters of the system as

m: mass of the pendulum,

2I: total length of the pendulum,

r: length of the arm (radius),

g: acceleration of gravity,

2: moment of inertia of the pendulum w.r.t. the pivot,

2.: moment of inertia of the arm and the motor,

K: constant torque,

u: control input,

T: control torque (7 := Ku).
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Figure 2: Reference frame of coordinates.

In what follows, energy methods of Classical Mechanics are used to derive the dynamical
equations of motion. So, defining the reference frame of coordinates as in Figure 2 and
assuming a linear distribution of the mass of the pendulum then, the coordinates of a
differential mass element, namely p-mass element (see Figure 2), of the pendulum referred
to that reference frame read

Xp =1 COsp — psin@sing,
Yp = rsing + psin6 cos @, (2.1)
zp, = pcos.
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Since it is a simple mechanical system the total energy is composed by the sum of the kinetic
and the potential energies. Thus, on the one hand the instantaneous kinetic energy of the
system is composed by the kinetic energies of the pendulum and the arm (including the
motor) and becomes

<(0,0,9) = 5 f eR(p)im + 3 0ug?, (2.2)

where v, is the module of the velocity of the p-mass element of the pendulum, which is
obtained differentiating (2.1) w.r.t. the time and adding the squares. Thus, it becomes

02 (p) = 17¢7 + p*¢Psin®6 + 2rpOe cos 0 + p0°. (2.3)

Since by assumption dm = m/2l dp then, the kinetic energy from (2.2) and (2.3) becomes

01" 2 mrl cos 0 0
. (2.4)
[¢] [mrl cos® D +mr?+ Qsinzé)] [(p]

On the other hand, the potential energy of the system w.r.t. the given reference frame is only
the one of the pendulum and, integrating for the p-mass element, becomes

T(6,0,9) =

N =

0(0) =mgl (cosO-1), (2.5)

which is zero at the upright position of the pendulum. Now, with the energy of the whole
system completely defined we use both standard and well-known energetic approaches,
Euler-Lagrange and Hamilton, to derive the dynamical equations.

2.1. Euler-Lagrange Equations

Let define the vectors q := (6,¢)" € 8" x S' and 4 := (8,¢)" € R? and, just for compactness,
another different set of physical parameters as

mrl Do+ mr? K , mgl
= == = — = —. 2.
o ﬂ Q , Y mgl, (,(JO ( 6)
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Thus, to derive the Euler-Lagrange equations we calculate the Lagrangian of the system as

the difference between the kinetic and potential energies of the whole system from equations
(2.4) and (2.5), respectively. Then, the Lagrangian can be written as

1
£(q,9) = 54" M(q9)9-0(q), (27)

where we have introduced the inertia matrix M(q) that from (2.4) and with the new set of
parameters (2.6) becomes

1 acos qq
M(q) =2 5| (2.8)
acosqr f+sin“q
The well-known Euler-Lagrange equations [5] for this system take the form
d(ozy 02
dt 6q1 6q1 i
(2.9)
d(ory oz,
dt aqz an o
which can be rewritten as
. N, 0U 0
M(q)q+C(q,q)q+a—q(q) =1, | (2.10)

where C(g, g) is the matrix of Coriolis and gyroscopic torques. Thus, the matrices defined in
(2.10) are given by

) 0 —{p sin g1 cos qi
C(M)=9[ - - L ]
—agising; + gpsingi cos g1 41 singq cos qi
i (2.11)
v —wy singq
~ = Q 7
5q (D [ 0 ]
and so (2.10) reads
G1+acosqiga — % sin2g143 — wi sing; =0, (2.12)
acos 04 + <[5 + sin2q1>ijz - asingi4? +sin2q1G14» = ywiu. (2.13)

Notice that, if the matrix C(q, g) is derived through Christoffel symbols [5, 6] (which is the
case), then the matrix M(q) —2C(q, g) is skew-symmetric.
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Since, the inertia matrix M(q) is positive definite and so invertible, then these

equations can be rewritten as an affine-in-control system, just isolating the accelerations from
(2.10) as

=M@ (o @) +m0) | an

Denoting the determinant of the inertia matrix as A(g), then (2.14) becomes

Agy = (—azq% + ([5 + sin2q1>q§ +2a cos q1q1q2> sin g cos qi
(2.15)

+ pw? sin g1 + wisin’q; — ayw] cos q1u,

. 1/, . :
Agp = a(q% - coquuﬁ) singy - 5 <2q1q2 + awé) sin2g; + wiyu, (2.16)

with A(q1) = 2( + sin2q1 — a*cos’qy). Notice that (2.15)-(2.16) is a fourth-order non-linear
system strongly coupled and the coordinate ¢, is cyclic. Remind that, a coordinate is said
to be cyclic when it does not appear in the Lagrangian [7], and therefore the corresponding
momentum is a constant of motion for the unforced system (u = 0). The latter means that
the system is completely integrable. Roughly speaking, a completely integrable system is a
system with the same number of integrals of motion and degrees of freedom.

2.1.1. Partial Linearisation

A common practise in control design, in order to reduce the complexity of the equations of
motion, is to introduce a (non-linear) change in the control input to linearise the actuated
equation (2.13), or (2.16), in the acceleration of the g,-coordinate. Thus, from (2.16) and
defining

— . 1/, . .
wéyu = Au- a<q% - coszq1q§> sing + 5 <2q1q2 + awé) sin2qj, (2.17)
system (2.12)-(2.13) becomes

I 2 . _
41 — = sin2q1g; — asing; = —bcos qi1,
2 2 (2.18)

q2=ur

where a := w(z), b := a, and u is the new control input. Notice that (g,4,u) ~ (g,4,u) is a
globally defined change of coordinates and control. The system in (g, 4, #)-coordinates can be
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seen as an Euler-Lagrange system where, through the Routh transformation [7], the energy
is an integral of motion of the unforced system (u = 0) and reads

1 1
&(g,9) = 5 ||q||§ + 7 os 2q143 + a(cos g1 - 1). (2.19)

Notice that the effective potential has been added because g; is the another integral of motion.
Therefore (2.18) it is a new conservative system, completely integrable [5].

2.2, Hamilton Equations

Formally the Hamilton equations can be derived through the Legendre transformation [5]
defining the conjugate momenta as p := 0£/04. Thus, the Hamilton function becomes

H(q,p) =4"p-L(q,p) (2.20)

Notice that for a Lagrangian given by (2.7) then p = M(q)q with £(g, p) being the Lagrange
function in the Hamiltonian set of coordinates (g, p) € S! x 81 x RZ. Nevertheless, since the
system is autonomous then the Hamiltonian function coincides with the internal energy of
the system, and so it can be easily computed as

1 ]
#(q,p) = 5p"M(q) P+ V(q). (2.21)

The Hamilton equations [5] are

o
q - ap 4
(2.22)
_ ok |0
aq T !
and for Furuta’s pendulum become
. 1 .
q1=%x [(ﬁ + sm2q1>p1 — ap; cos ql], (2.23)
1
g = X [p2 — ap1 cos q1], (2.24)
1 . .
p1 = mg[(ﬁ + s1n2q1>p% + p% - 2ap1p; cos ql] . [(1 + cx2> sin 2q1]
. (2.25)
+ ng singq — A [p% sin2g; + 2apip, sin ql],
po = Qyw(z)u, (2.26)

with A(q1) = 2( + sin’q; — a’cos?qy).
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Table 1: Physical parameter values of the laboratory pendulum.

Parameter Value Unit
Mass of the pendulum 0.0679 Kg
Length of the pendulum 0.14 m
Length of the arm 0.235 m
Mass of the arm 0.2869 Kg
Inertia of the motor 0.0012 Kg m?
Constant torque 7.4 Nm/v

2.3. Non-Conservative Friction Torques

In the previous sections a conservative mechanical model was derived using Classical
Mechanics. In this section, we add the non-conservative torques due to friction in the real
system. To this end, we focus the analysis in our available laboratory Furuta’s pendulum,
which was shown in Figure 1. The physical values of the parameters of this pendulum are
shown in Table 1 (see [8] for details).

The friction phenomena in this pendulum come up in the joints. The pendulum joint
is composed by a small ball bearing in which friction can be well modelled by a damping
constant. Otherwise, in the arm joint a DC-motor and a slip ring are directly coupled (see
Appendix A), and therefore the friction is not a damping-like torque, moreover it is strongly
non-linear. In what follows of this section we derive the friction models designed in both
joints.

Pendulum Joint

The non-conservative torques due to a natural damping is introduced through Rayleigh’s
dissipation function, namely ®(g). So, calling ¢, to the damping constant then, the non-
conservative torque, namely 74, becomes

ao(q1) d /1

=7 = (Z6,62) =Cuar. 227
= = (3 <o 227

This constant is easily estimated measuring the damping of a free-motion experiment
yielding ¢, = 0.0000226. The small value is due to the small ball bearing and so it could
be neglected.

Arm Joint

A carefully experimental study reveals that the friction torque in the motor shaft is not only a
natural damping [8]. In fact, static and dynamic friction torques have to be taken into account
in order to have a good estimation of the friction torque in this joint. To this end, a dynamic
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friction model, called LuGre ( from Lund Institute and Grenoble Laboratory) model [9-11],
is used. The dynamical equations of this model are

dz 0o

ik 2(0) z|v|, (2.28)
§(0) = Tc + (15 - T)e /%, (2.29)
T, = 0p0Z + 01% + 00, (2.30)

where the parameters are defined as

T,: estimated friction torque,

7.: Coulomb friction torque,

T, static friction torque,

0p,1: internal model parameters,
07: dynamic friction constant,
vg: Stribeck’s velocity,

z: internal state of the model,

v: velocity (42 = ¢).

Next, we give all the necessary steps to identify the parameters of the model (2.28)—-(2.30). The
physical meaning of these parameters is thoroughly described in [9]. Other kind of dynamical
models for friction compensation can be also considered as in [12, 13]. Nevertheless, as we
will show further, this model gave us a precise estimation. This good estimation allows to
compensate the friction in this joint and, therefore, it gives us the chance of designing control
strategies as if it was a conservative system. To this end, in [9] some identification methods
are suggested but, with the base given in [9] and our experience we have designed our own
identification methodology. Thus, the identification of these parameters can be made in four
steps corresponding to four different experiments, respectively. Obviously, to identify all the
parameters the pendulum is decoupled from the system, i.e. it only remains the arm plus
motor. We briefly comment the four experiments designed.

Step 1 (identification of 7, and 0,). We use here a standard least-square algorithm to identify
7. and o0,. We consider the first-order system given by

Qu% =T — 1.sgn(v) — 020. (2.31)

A side-effect parameter 2, can also be estimated with this experiment. Notice that, (2.31)
becomes linear in the parameters. Thus, we introduce in the input 7 a square signal (open-
loop) and then we measure the angular position of the arm, as shown in Figure 3 (top-left).
The results after applying a least-square algorithm to (2.31) are shown in Table 2. Notice,
from Table 2, the asymmetry which means that the identification is different for positive
and negatives velocities. The MATLAB code for the positive case of v := ¢, is given in
Appendix B.1.
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Figure 3: Experiments for Steps 1-4.

Step 2 (identification of 7). The static friction is identified forcing a limit cycle in the system.
To this end, we feedback the angle of the motor with a slight proportional integral (PI) action,
of the form u = kie+k> ff)e(r)dr, with k; » gains and where e is the error between the measured
state and the desired reference. The values are directly identified from Figure 3 (top-right)
and the results are in Table 2. Notice again the asymmetric behaviour of the system. The
MATLAB code is given in Appendix B.2.

Step 3 (identification of vs). To identify Stribeck’s velocity we first need to know the
parameters 2,, 7., and 75, which are known after steps above. The experiment consists in
forcing a very low speed in the motor shaft (open-loop). Thus, the fictitious state z can be
approximated, from (2.28), by

(2.32)
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Table 2: Parameters of the LuGre model identified.

Experiment Parameter (+) (-)
Ja 0.0003 0.0004
Step 1 7./K 0.2238 0.2308
o 0.0022 0.0020
Step 2 75/ K 0.3960 0.3789
Step 3 Vs 0.9297 0.9725
Step 4 00 30
o1 0.2389
and then, from (2.30) the torque can be approximated by
T, = (TC + (Ts — Tc)e*(”/”s)2> sgn(v), (2.33)
which additionally allows to linearise the equation
dov
Qam =T Ty, (234)
as
v (t) = 2 Iny (), (2.35)
where y is given by
Ts — T,
L (2.36)

V= e = D.(dv/dt)) sgn(v) - 7o’

The approximation is only valid if 7, > 7. and y > 1. A sinusoidal input torque (open-
loop) allows us to estimate the value of y and so v,. The experiment is shown on Figure 3
(bottom-left) and the results are shown in Table 2 yielding, again, an asymmetric behaviour.

The MATLAB code for positive values of v := ¢, is given in Appendix B.3.

Step 4 (identification of oy and 07). The parameter oy is estimated forcing a ramp in the input
(open-loop) such that the angle cross by zero. The maximal and minimal values of the ramp
should be around +0.8 7, and the slope small enough. The value of 0y can be estimated with

0o = AT/ Ag. The experiment is shown in Figure 3 (bottom-right).

To estimate oy we assume small displacements and |z| < g(v). Thus, Z = v = 4o from

(2.28), and then we use a linear second-order model given by

Qaqz + (0'1 + 0'2)(72 + Oy (QQ + qz(O)) =T.

(2.37)
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Figure 4: Friction compensation loop.

Therefore, since it is a second-order linear system the value of o is easily estimated imposing
01 =20V 000a = 02, (2.38)

where ¢ is the damping constant of the linear model and 0, and 2, are known from Step 1.
The MATLAB code is given in Appendix B.4.

2.4. The Complete Model

Once the friction torques have been estimated we add them to the model in the Lagrangian
framework, being dual for the Hamiltonian case. Thus, the Euler-Lagrange equations with
the non-conservative torques included become

d /oL oL
a <_aq1 ) ~ 5o =0 (239)
d /oL oL
a <_aq2> st (2.40)

where again we normalise dividing by 2 with ¢, := ¢,/ 2. Then, the differences from (2.10)
are, on one hand, the matrix C(g, 4) which turns into

(2.41)

_ c —gp sin g1 cos g1
C(q.9) = Q[ ’ ]

—aqy sing; + gp singq cosq; 41 singp cos qi

and on the other hand the torque is reduced in 7, = Ku,, where 7, is estimated by equations
(2.28)-(2.30) with v := 4.

After adding the non-conservative friction torques the model is a better approximation
of reality. Nevertheless, to easy the computations of the non-linear control laws, we use the
friction models to compensate the friction instead of modelling it. In fact, this is the success
of our model in practise. However, remind that the system has two degrees of freedoms and
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just one actuation torque, which means that we can compensate the friction torques only in
the actuated coordinate g,. This can be easily seen in (2.39)-(2.40). Thus, in (2.40) the friction
torque 7, can be compensated adding it to the input torque (positive feedback). Otherwise,
in the unactuated equation (2.39) we cannot compensate anything at all, since we do not
have an independent input. Recall that our objective was to approximate in practise as well
as possible to the conservative model given by the equations (2.9), or equivalently (2.22). In
Figure 4 we show how the added torque compensates the friction. In the pendulum joint,
as commented above, we cannot compensate 7, in (2.39). Nevertheless, by construction the
friction torque can be neglected, i.e. 7; = 0, because we use a small enough ball bearing for
the joint (recall that ¢, = 2.26 x 107°).

Finally, after compensating the non-conservative torque then, the completed model is a
good approximation to the conservative model given by (2.9). The reader will realise this good
approximation in the next section, where most of all the non-linear controllers were designed
with (2.9), or equivalently (2.22). Moreover, in most of the controllers conservative quantities
were used for the design stage.

3. A Survey of Non-Linear Control Strategies

In this section we survey all of non-linear strategies designed and experimentally tested in
the available laboratory pendulum shown in Figure 1. We recall that the paper is focused on
the design and experimental results on our available Furuta’s pendulum. Thus, other results
will be referenced and briefly discussed because they were not experimentally tested on our
pendulum.

3.1. Swing-Up Strategies

As commented in the introduction by swing-up we mean the non-linear control problem to
swing the pendulum up from the rest to the upright position, the so-called inverted position.
The control strategy proposed in [14-16] was based on the Speed-Gradient method, in fact
just the finite form of the Speed-Pseudogradient Algorithm proposed in [17, 18] was used.
Briefly, we comment the basic idea. Consider the time-invariant, affine-in-control system
x = f(x) + g(x)u (in our system either (2.15)-(2.16) or (2.23)-(2.26)) with output y = h(x),
where x(t) € R", y(t) € R, and the input u(t) € R™. Consider also the control objective
y(t) — 0 whent — oo; this control objective can be written as an objective function
Q(x) = (1/2)||h(x)|]*. For this objective function the Speed-Pseudogradient Algorithm in
finite form reads

.
U & —(ag(;)g(x)> h(x), (3.1)

which can be derived calculating Q(x) along trajectories of the system and noting that h(x)
are independent invariants for the unforced system (u = 0). Stability properties of algorithm
(3.1) are described in [17]. In essence, the objective Q(x) plays the role of a Lyapunov
function with a closed trajectory as a limit set and then, roughly speaking, if Q(x) < 0
the goal will be achieved. Some examples of the application can be seen in [17, 19, 20]. In
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Figure 5: “Solid” experiment. “Dashed” simulation.

the case of study, selecting the objective function as the square of the total system energy
Q=0 =1/ 2()’1J£)2 then, the trajectories of the mechanical system will tend towards the
surface (limit set) {(q1,p1,p2) € S! x R? | # = 0}, as in [18]. This aim does not guarantee
that the pendulum will pass through the origin. The objective function was modified adding
a new objective function Q; so that the trajectories tend towards the closed trajectory (limit
set) {Q1 = 0} N {Q, = 0}. The Hamiltonian structure of the system helped us to find the
Q> function needed. In fact, since the system is symmetric w.r.t. the angle ¢, the conjugate
momentum p» is a constant of motion for the unforced system, which is straightforward from
(2.26). Recall that g, is a cyclic coordinate, which is closely related with Noether’s theorem
[5]. Thus, it is reasonable to choose the objective function as Q := 1/ 2(}/148)2 +1/ 2(y2p2)2,
where y1, are positive control gains and p, is the conjugate momentum of the coordinate
g2. The output vector reads v = h(x) = (y1k,)2p2) . The objective closed trajectory
{Q1 = 0} N {Q, = 0} is the homoclinic orbit for Furuta’s pendulum [21]. Thus, the objective
function for Fradkov’s Speed-Gradient method includes not only the energy but also the
arm momentum, which are both conserved quantities for the unforced system. To show
the fidelity of the model proposed we show Figure5 from [15, 16], where we compare



16 Mathematical Problems in Engineering

the experiment (solid line) with the simulation (dashed line) with the controller
proposed. Another proof of the fidelity of the conservative model was shown in [14]
where we developed the strategy through Routh’s function [7], which embedded both
conservative quantities given before. A video of the experiment can be displayed from
http:/ /www.esi2.us.es/~jaar/investiga_e htm.

Remark 3.1. We underscore that the success of the proposed strategy relies on the fact that
the experimental model is quasi-conservative. In fact, the control strategy is based on both
conservative quantities, energy and momentum. Without that conservative property the control
strategy would fail.

Literature Review

The control problem of swinging the pendulum up was firstly solved by Astrom and Furuta
with a reduced system model [1, 4]. The control strategy was based on neglecting the
reaction torques from the pendulum to the arm. This allows greatly simplify to a second-
order model in (g1, §1)-coordinates, and with the help of Fradkov’s Speed-Gradient method
the desired energy injection was easily computed [22]. However, we remind that it was
based on a simplifying assumption. Moreover, the arm speed must be low for the success
of any stabiliser at the switching time, but notice that this speed is not considered in the
dimension 2 control law, i.e. designed with the second-order model. Fortunately, for standard
pendula with the usual initial conditions (the lower position with no velocity) the dimension
2 control law behaves well. Nevertheless, if the reaction torques from the pendulum to the
arm cannot be neglected, for example, either due to the mass of the pendulum or to the low
friction on the arm, Astrom and Furuta’s law fails. Some conditions of this failed attempt
case were shown in [23], where conditions to induce the approximation to fail, were tested.
Moreover, our proposed control law keeps the nice properties of Astrom-Furuta’s one when
compared with other swing-up control laws based on a fourth-order model, i.e. our swing-
up control law is able to accomplish the goal with arbitrary small control signal magnitude
(unlike [24, 25]) and, the control signal converges to zero as the homoclinic orbit is reached
(unlike [26]).

3.2. Non-Linear Stabilisers

In the previous section we show the non-linear strategies to swing the pendulum up to
the upright position. Those strategies stabilise the homoclinic orbit, which passes through
the origin of the state space. Unfortunately, the origin is a saddle fixed point in closed
loop and then, to solve the whole problem, that is, swing-up and stabilisation, a balancing
strategy (stabiliser) has to be designed to “catch” the pendulum at the upright position.
Fortunately, the swing-up strategy was designed such that the pendulum passes through the
origin with (g1 (t), g1(t),42(t)) — 0, and u(t) — 0. The latter allows to design the balancing
stabiliser separately and then, to propose a switching strategy between both, i.e. the swing-
up controller and the stabiliser. Again, the conservative model of the pendulum allowed to
design non-linear stabilisers using invariants and/or conserved quantities. In this section we
describe all the non-linear stabilisers designed using the conservative model and, moreover,
successfully tested through experiments.
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3.2.1. Energy Shaping

A conservative system allows, in a natural fashion, to be controlled by energy-shaping methods.
In fact, a non-linear stabiliser was designed through the energy-shaping methodology called
Interconnection and Damping Passivity-Based Control. This methodology was introduced in
[27] to regulate the position of underactuated mechanical systems of the form (2.22) with total
energy given by (2.21). The main idea is to force the closed-loop structure of the system to a
desired one. This procedure is commonly called “matching.” In fact, for mechanical systems
the proposed closed-loop structure takes the Port-Controlled Hamiltonian form [6] given by

0H 4

g 0 M'Mil| 37
L "]

op

where in our case of study (g,p) € S! x 8! x R?, M,(q) is the desired inertia matrix, Us(q)
is the desired potential function and so, the total energy function of the closed loop reads
Hy = (1/ 2)pTM;l (q@)p + Ua(g). Subindex “d” denotes “desired” which means in closed-
loop. Finally J,(q,p) € R*? is a skew-symmetric matrix free for the designer. The design
concludes after a damping injection stage. Stability properties require a positive definite M,
in a neighborhood of the desired equilibrium g*, with g* = arg min U,4(g), and then (g*,0) is a
stable equilibrium point of the closed-loop system (3.2), with Lyapunov function .

Since the system is underactuated the “matching” procedure provides on one hand,
a set of algebraic constraints (in the actuated part) and, on the other hand, a set of Partial
Differential Equations (PDEs) on M, and U, (in the unactuated part). The PDEs arise for
M, are called kinetic energy PDEs and the ones for U, are called potential energy PDEs.
Clearly, the success of this methodology relies on the possibility of solving those PDEs, which
is usually a daunting task. In fact, for the case of the Furuta’s pendulum a new mathematical
machinery was needed to solve them. First, the reparametrization of the free skew-symmetric
matrix J, given in [28] allows to transform the kinetic energy PDE in a set of first-order
ordinary differential equations depending only on the g;-coordinate. Second, the change of
coordinates proposed in [29, 30] allows to simplify, drastically, the non-homogeneous term of
the kinetic energy PDEs. The complete solution was reported in [31] and the experimental
test will be commented further in comparison with others strategies.

Remark 3.2. Again the success of the proposed strategy relies on the fact that the model for the
design is conservative. The extension of this methodology considering natural damping was
givenin [32, 33]. Unfortunately, in Furuta’s pendulum case and considering natural damping
torques no solutions were found so far.

Literature Review

Other different theoretical solutions have been reported using energy-shaping approaches. In
[2] the Controlled Lagrangians methodology was used for stabilisation, through just a kinetic
energy shaping (see also [34]). In [35] a way to transform the PDEs was proposed providing
another solution for Furuta’s pendulum. Closely related it is the non-linear controller based
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on a Lyapunov control approach given in [36]. All of these different solutions have not been
experimentally tested, so far.

3.2.2. Forwarding

Cascade non-linear control techniques have attracted the interest of many researchers (see
[37-39] and references therein), mainly because they provide great simplifications and/or
reductions in the non-linear control design stage. Forwarding is a passivity approach applied
to cascade non-linear systems with feedforward paths. In [38] the system is treated as a
feedforward connection of two cascade subsystems through a non-linear vector function.
Assuming that each subsystem has an associated Lyapunov function, separately, the main
difficulty is the need to construct an additive cross term to get a Lyapunov function for the
whole cascade. The cross term is constructed through the solution of a PDE. The solution
of the PDE provides an invariant manifold decomposition. The manifold allows together
with a change of coordinates to construct a compound scaled Lyapunov function solving the
stabilisation problem in closed form [37]. So, to solve another PDE is needed. Finally, noting
that the system is in Jurdjevi¢-Quinn form [40], then a damping stabiliser solves the whole
control problem. We apply this technique to the conservative model (2.18) and the design and
experiments were reported in [41, 42]. It is worth noting that the main result of [41] was not
the non-linear stabiliser designed through Forwarding. The main result was that the Lyapunov
function associated to the Forwarding design was used together with the one of the swing-
up controller, to design a Lyapunov-like switching strategy to solve the whole problem,
i.e. the almost global stabilisation of the inverted position, both in theory and practise. The
usual switching strategy to solve this global control problem is, to compound the swing-up
controller with a Linear Quadratic Regulator (LQR) to stabilise the origin [8, 43], i.e. a state-
feedback u := Kx with state x € R” and a constant gain matrix K. In our available pendulum
we realised that the Lyapunov function associated to the LQR cannot be used to design the
switching strategy because the estimate of the Domain of Attraction (DoA) is too small. By
too small we means that the level of the noise from the measurements is higher than the size
of the largest admissible level set of the estimate of the DoA, and then the switching controller
fails to commute.

Remark 3.3. The Forwarding needs the solution of a PDE. The solution of the PDE is an
invariant which provides and invariant manifold decomposition for the closed-loop system.
Thus, that conservative property was crucial again.

Literature Review

In [3] another solution was given using the non-linear cascade technique called Backstepping
[44]. The approximated solution given relies on a nontrivial change of coordinates and it has
not been experimentally tested so far.

3.2.3. Input-Output Feedback Linearisation

This technique was a step ahead after the development of the well-known State Feedback
Linearisation, which linearises the state of the system from the control input through a
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non-trivial change of coordinates and control. This change of coordinates comes up from
the solution of a set of PDEs. The extension to this approach was made through the
Input-Output Feedback Linearisation which linearises the input-output response of the system
[45, 46]. In the cases in which it is not possible to linearise the whole system by a static
state-feedback, a partial feedback linearisation can still be possible. This partial feedback
linearisation transforms the system dynamics into two parts: the external dynamics, which
become linear; the internal non-linear dynamics (locally characterised by the zero dynamics
[45]). As proposed in [45] a possibility to control non-linear systems is to find an output,
called “fictitious” such that the system linearised through that output is minimum phase [45].
Thus, in [47, 48] we proposed a nontrivial and constructive “fictitious” output through which
it is possible to achieve the asymptotic stability with (locally) exponential convergence of
the origin, for a class of underactuated mechanical systems with underactuation degree one.
The generalisation to underactuation degree larger than one is given in [49]. The approach
was based on classical Input-Output Feedback Linearisation and Lyapunov redesign [50],
yielding excellent results in theory and experiments. In particular, for Furuta’s pendulum
the proposed output, namely y, reads

Y=g+ kicosqigi + kysingy, (3.3)

where kj, are positive control gains. The model used for the design was (2.18). In fact, the
proposed output makes the system to be exponential minimum-phase [46], i.e. the equilibrium
of the zero dynamics is hyperbolic. As it is well-known this property provides the system with
robustness (to unmodelled dynamics, disturbances) [50]. The experiments in the available
Furuta’s pendulum equipment were reported in [51].

Remark 3.4. We would like to underscore that the exponential minimum phase property is not
achieved by most of non-linear control design techniques. For example in energy-shaping
and Forwarding techniques the closed-loop system is weakly minimum phase w.r.t. its output,
inherent fact of those methodologies by their passivity properties (see [52] for further details).

Remark 3.5. As in the previous cases, a crucial conservative quantity allows to design the
stabiliser. In this case the energy of the zero dynamics was the conserved quantity.

Literature Review

Close to Input-Output Feedback Linearisation is the Flatness approach. In the case of a system
with a single control input then, it is said to be differentially flat if and only if it is fully
linearisable via static state-feedback (see e.g. [53, 54]). A Flatness controller for a linearised
model of Furuta’s pendulum was given in [55] but it was based on a linear model, through
the Jacobian, since the non-linear model is not differentially flat w.r.t. any output.

3.2.4. Singular Perturbations

A deep and fair review of the use of this technique to control systems with different time
scales is given in [50] and references therein. A singularly perturbed system is a system in
which its own structure makes different coordinates evolve in different time scales. In the
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Figure 6: Experimental region of attraction.

beginning, it was a technique to analyse the stability of equilibria, because the time-scale
separation is a property of the own structure of the system. Nevertheless, if the system has not
this time-scale separation itself, we can be able to propose a stabiliser to force that separation-
like property and then, to analyse the stability of the equilibrium. This is the case proposed in
[56, 57] for Furuta’s pendulum. In fact, we even make relaxations to the Input-Output Feedback
Linearisation control law described above, and then we use the Singular Perturbation theory to
analyse the stability. The theoretical and experimental result was reported in [56, 57], where
a fair comparison with another techniques was also reported. Moreover, we designed an
experiment to measure the largest attraction basin. In fact, to the best of our knowledge,
this is the largest region of attraction experimental tested so far, to stabilise this kind of
pendulum. We reproduce, and comment briefly, here Figure 6 from [57], where the results
of the experiments were collected.

In the experiment we forced to the system to start from an initial condition as
(6(0),6(0),¢(0),¢(0)) = (6%,0,0,0). The idea was to find out the largest 6* for which
the origin (the upright position of the pendulum) was stabilised with a given controller.
The controller design shows that the maximum theoretical value of 6* for the controller
based on singular perturbations is defined through a condition in the controller gains, and
therefore can be tuned (see [57]). In [2, 31] the maximum theoretical 8* depends on physical
parameters of the own pendulum, and therefore the formulas are not tunable, giving rise in
our pendulum to a maximum approximately the half of the value of the one given by the
singularly perturbed approach. The best experimental results for each controller are collected
in Figure 6 and give rise to 0* = 1.45 rad with the singular-perturbed approach; 6* = 0.82
rad with the energy-shaping approach; 6* = 0.75 rad with a Linear Quadratic Regulator.
Unfortunately, the system saturates and it was not possible to enlarge even more this practical
region of attraction (see [57]). Some videos of the experiments can be displayed from
http:/ /www.esi2.us.es/~jaar/investiga_e htm.

3.3. Global Stabiliser: A Challenge

In the previous sections we have shown the non-linear strategies to swing-up and
stabilisation of the pendulum at the upright position. To solve the whole problem,
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i.e. swing-up and stabilization, a switching strategy was designed to “catch” the pendulum
at the upright position properly. As commented before, fortunately, the swing-up strategy
was designed such that the pendulum passes through the origin of the state space. This is
the practical engineering solution to the whole problem. But one might wonder, if it would
be possible to solve the whole problem with only one control strategy. We cannot close this
section without describing this mathematical and still open problem that has attracted the
attention of many researchers. Thus, suppose that we are interested in solving the whole
problem, designing only one smooth state-feedback controller. By smooth we means only
with one control strategy without any switch between strategies. Of course, from a practical
engineering point of view the problem is actually solved as it has been shown in the previous
sections, but from a mathematical point of view it is a challenge problem. On one hand there
is an obstacle inherent to the own configuration space of the system, remind that g € S! x S,
which means that we cannot globally stabilise an isolated equilibrium in the whole state
space. All we can do is to stabilise the upper equilibrium from almost everywhere in the
state space, except possibly a set of zero Lebesgue measure. On the other hand, since the
upper equilibrium of the unforced system is unstable then we have to design a static state-
feedback that makes that equilibrium asymptotically stable and all the remaining equilibria
unstable.

The latter idea, for an underactuated mechanical system, was proposed in [58] in a
pendulum-on-a-cart system where almost global stability of the equilibrium was proved. For
Furuta’s pendulum case, we have found a promising controller that makes the work but
it was not possible to prove the almost global stability of the equilibrium, so far. As it was
reported in [8] the static state-feedback reads u := kj sin(2q1) + kp cos(g1)g1 + kaga, with k;,
i=1,...,3, control gains, and where we underscore the unsigned definite damping-like term.
To prove almost global stability of the equilibrium, if so, is still a mathematical open problem.
However we tested the proposed controller through experiments. In Figure 7 we show a
successful experiment, where in the top figure we show the time histories of the position
and the velocity of the pendulum and, in the bottom figure the time histories of the control
input. Notice that there is no any switch. A video of the experiment can be displayed from
http:/ /www.esi2.us.es/~jaar/investiga_e.htm.

3.4. Autonomous Oscillations

Another field of interest for the control community is the generation of “artificial” and
autonomous oscillations, i.e. by means of an appropriate control law. To accomplish this
in [59] we proposed a methodology based on matching the open-loop system with a
generalised hamiltonian system, which is able to exhibit robust oscillations. Thus, the closed-
loop system displays robust oscillations associated with a limit cycle. The methodology
mimics the energy-shaping approach but here, the objective is to reach a limit cycle
(invariant limit set), which provides a stable oscillating behaviour, instead of a fixed-
point attractor. The desired limit cycle is born through a supercritical Hopf bifurcation on
an approximated second-order dynamical model and, therefore, for certain values of a
control parameter the closed-loop system has a fixed-point attractor, changing to a limit
cycle through other values of that control parameter. Successful experiments were reported
in [59] and we reproduce in Figure 8 a sequence of snapshots of the experiment for a
period of the oscillations of 0.5 second. A video of the experiment can be displayed from
http:/ /www.esi2.us.es/~jaar/investiga_e. htm.
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Figure 7: Experimental result with the challenging non-linear stabiliser.

Figure 8: Sequence of snapshots showing one period of the oscillations.

Literature Review

Another approach to generate autonomous oscillations on Furuta’s pendulum has been
reported in [13, 60] based on virtual holonomic constraints. In our approach we design a
closed-loop structure which associated Lyapunov function has a closed trajectory as its limit
set (the limit cycle). In [13, 60] a closed trajectory is generated in closed loop and then only
local exponential convergence can be guaranteed.
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3.5. Bifurcations

This section is devoted to comment briefly some works regarding with bifurcations which
have been also analysed and experimentally tested in our laboratory pendulum. The works
commented here are mainly focused in the analysis of some non-linear behaviour of the
controlled pendulum, rather than in control design. In fact, the controller used to analyse the
behaviour is the linear one, i.e. a linear state-feedback stabiliser designed through the Jacobian.
In [61, 62] a bifurcation map was constructed for Furuta’s pendulum with a saturated linear
controller, where the bifurcation parameters were the controller gains. Detailed analysis,
simulations, and experiments in our available pendulum were reported in [63]. Finally,
in [64] global bifurcation analysis was made for Furuta’s pendulum. Nevertheless, we
underscore that the dynamic friction model presented here was not used. Only a static model
to compensate Coulomb’s friction was used instead.

Literature Review

In [21] a complete bifurcation map for the Furuta’s pendulum is given. Nevertheless,
the bifurcation map is for the unforced pendulum and only through simulations with
continuation methods.

4. Conclusion

A detailed dynamical model of the available laboratory Furuta’s pendulum is provided. The
completed model is based on Classical Mechanics augmented with a dynamical model that
allows to compensate all those non-conservatives torques, arising to a quasi-conservative model
in practise. A survey of all the non-linear controllers designed with that quasi-conservative
model and successfully tested through experiments is also reported.

Appendices
A. Experimental Control System

The schematic representation of the full control system is depicted in Figure 9. The laboratory
electromechanical system is composed by three subsystems: measurement, power, and
control supervision. A brief description of them is given in this appendix.

Measurement Subsystem

Recall that the system has two degrees of freedom corresponding to the angles of rotation
of the pendulum and the motor shaft, the angular coordinates 6 and ¢, respectively. These
angles are measured by sensors position (encoders) of incremental nonhigh resolution (2000
and 1024 pulses per revolution, resp.). Velocities for each angle, 6 and ¢, are obtained from
suitable filters to the respective angular positions. There is the possibility to obtain the
velocity ¢ via a tachometer coupled to the motor shaft. The transmission of the signal position
of the pendulum is through brushes using a slip-ring system.
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Figure 9: Schematic of the experimental control system.

To avoid problems of aliasing, mainly caused by noise, an analog filter (antialiasing) is
used. The cutoff frequency is at 200 Hz, to filter the signal for the speed sensor (variable ¢)
before being sampled.

Power Subsystem

This subsystem provided the necessary power to drive the motor. The DC-motor provides
a maximum torque of 15N m at 2000 r.p.m., with a regulated source of 50 VA. The motor is
controlled by current through a PWM servo-amplifier at 22 KHz (see Figure 9).

Control and Supervision Subsystem

This subsystem closed the loop. It is composed by a PC and a data card Dspace DS1102,
based on a Digital Signal Processors (DSP) TMS320C31. Among others, We have interfaz
AD/DA, digital inputs/ouputs, counters, incremental encoders interface, digital filters,
and communication interface. The real-time software is provided by Dspace running on
Matlab/Simulink. The minimal sample time allowed is 1 msec.

B. MATLAB

For the sake of completeness, in this appendix we collect the detailed MATLAB code for
identification of the dynamic friction model (LuGre).
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B.1. Code for Step 1

function theta = steplp(x, u, sample)

% 1lst experiment of LuGre model

% theta = steplp(position, control, sample)

% Out: theta = [J sigma2 Fct]

v_min=1; n=length (sample); k=0; % Initialization
t = sample’; % Time

u=u,; x = x'; % Control, Position
T = mean(diff (t)); % Sample time

v = diff(x)/T; v(n) = v(n-1); % Velocity

v_dot = diff(v)/T; v_dot (n)=v_dot (n-1); % Acceleration

% Filter

tau = 0.01; % Time constant
[num_d, den_d] = c2dm(l, [tau, 1], T, ’"tustin’);

u_f = filter (num_d, den_d, u);

v_f=filter (num_d, den_d, v);
v_dot_f = filter (num_d,den_d, v_dot);
% Data selection
for i=1:n;
if v_£f(i) > v_min

k=k+1;
vi(k) = v_f(i);
v_dot (k) = v_dot_£f (i);
u(k) = u_f(i);
end;

end; clear u_f v_f v_dot_f

[o)

% Least square (Moore-Penrose)

phi_p = [v_dot (1l:k),v(l:k),sign(v(1l:k))];
theta_p = pinv(phi_p)*u(l:k);
theta = theta_p’; % Out

B.2. Code for Step 2

function Fs = step2(u)

2nd experiment of LuGre model

Fs = step2 (control)

Out: Fs = [Fs+,Fs—]

Fs = [max(u) min(u)]; % Out

o0 o o°
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B.3. Code for Step 3

function vs_p = step3p(Fc_p, Fs_p, J, X, u, sample)
% 3rd experiment of LuGre model
% vs+ = step3p(Fc+, Fs+, position, control, sample)
% Out: vs_p
n = length (sample); k=0; g=0; % Initialization
u=u’; x=x' % Control, Position
t = sample’ % Time
T = mean(diff(t)); % Sample time
v=diff(x)/T; v(n)=v(n-1); % Velocity
v_dot=diff(v)/T; v dot(n) =v_dot (n-1) ; % Acceleration
% Data selection
for i=l:n;
if u(i)>0
k=k+1;
v(k)=v(i);
v_dot (k)=v_dot (1) ;
u(k)=u(i);
end;
end;
% gamma>=1
for i=1l:k
gamma (1) = ((Fs_p-Fc_p) / (u (i) -J*v_dot (i)) *sign (v (i))-Fc_p);
if gamma (i)>1
g=q+l;
gamma (q) =gamma (i) ;
v(g)=v(i) " 2;
end;
end;
% Least square (Moore—-Penrose)
phi_p = [log(gamma(l:q))"];
theta_p = pinv(phi_p)*v(l:9);
vs_p = sqgrt (theta_p); % Out
B.4. Code for Step 4
function sigma = step4d(x, u)
% 4th experiment of LuGre model
% sigma = stepd (position, control)
% Out: sigma
global Inertia sigma?2
delta = input ('Microscopic damping:’); % Initialization
sigmal0 = (u(2)-u(l))/(x(2)-x(1));
sigmal = 2*delta*sqgrt (sigmalO*Inertia)-sigma?2;

sigma = [sigma0 sigmall; % Out
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Analogous to the identification of continuous dynamical systems, identification of discrete-event
systems (DESs) consists of determining the mathematical model that describes the behaviour of a
given ill-known or eventually unknown system from the observation of the evolution of its inputs
and outputs. First, the paper overviews identification approaches of DES found in the literature,
and then it provides a comparative analysis of three recent and innovative contributions.

1. Introduction

Analogous to the identification of continuous dynamical systems, identification of discrete-
event systems (DESs) consists of determining the mathematical model that describes the
behaviour of a given DES from the observation of the evolution of inputs and outputs and
possibly from other knowledge about the system behaviour.

The automated building of discrete-event models from external observation of
system behaviour interests applications such as reverse engineering for (partially) unknown
systems, fault diagnosis, or system verification. The first results that constitute the theoretical
basis of DES identification approaches were called grammars inference [1]; the aim was
the building of a finite automaton from positive samples of accepted words. Later several
techniques that synthesise context-free grammars or Petri nets (PNs) have been proposed.

During the current decade, the interest on the DES identification problem grew
yielding methods oriented to industrial systems for discovering or rediscovering the
functioning of legacy control/management systems. Based on diverse approaches, these
methods obtain mathematical models expressed as finite automata (FA) or PN, from inputs
and/or outputs sequences observed in a passive way during the operation of the system
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Figure 1: Passive identification of a DES during its operation.

within its environment (see Figure 1). The obtained models are close approximations to the
actual system behaviour.

The paper presents a comparative study of identification approaches of DES. It focuses
on three different approaches described in recent publications: (i) a progressive identification
approach proposed by Meda-Camparia [2] in which several algorithms have been proposed
allowing the online identification of concurrent DES, (ii) an offline input-output approach,
proposed by Klein [3, 4] in which, through an efficient technique oriented to fault diagnosis,
it is obtained a nondeterministic FA representing exactly the observed behaviour, (iii) and an
offline approach based on an integer linear programming (ILP) technique initially proposed
by Giua and Seatzu [5] and extended by several works like those of Cabasino et al. in [6] and
Dotoli et al. in [7] which leads to free-labelled PN models representing observed sequences.

The remainder of this paper is organised as follows. In Section 2 the earlier works on
the matter are overviewed. In Section 3, a summarised description of the abovementioned
approaches to DES identification is presented. Then, in Section 4 the comparative analysis is
developed. Finally concluding remarks and future trends are given.

2. Overview of Identification Techniques
2.1. Original Approaches from Computer Sciences

The first identification methods appeared in the field of theoretical computer sciences as a
problem of obtaining a language representation from sets of accepted words; such methods
are considered as learning techniques.

Gold’s method for identification in the limit [1] processes positive samples: an infinite
sequence of examples such that the sequences contain all and only all of the strings in the
language to learn.

The Probably Approximately Correct (PAC) learning technique in [8] learns from
random examples and studies the effect of noise on learning from queries.

The query learning model proposed in [9] considers a learning protocol based on a
“minimally adequate teacher”; this teacher can answer two types of queries: membership
query and equivalence query.
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Several works adopted state machines as representation model, allowing description
of the observed behaviour.

In [10] a method to model a language as Moore or Mealy machine is presented.
The system under investigation is placed within a test bed and connected to a so-called
experimenter, which generates the input signals and records the output signals of the system.
The identification can be started considering a very few number of states. If, at some point of
the experiment, it is impossible to find a correct machine with the assumed number of states,
then the identification is started again considering a machine with one more state.

The method proposed in [11] obtains models representing Mealy machines. The
presented method does not require any a priori knowledge of the system, and only a single
observed sequence is available. The algorithm lists all reduced machines which may produce
the input-output sequence given. The construction principle is the merging of equivalent
states.

In [12] a method to identify nondeterministic Moore machines based on a set of
input-output sequences is presented. All of the sequences start in the same initial state. The
identification principle is the reduction of an initial machine represented as a tree.

In [13] it is presented a method manipulating simultaneously a sample of sequences
to produce a convergent series of Mealy machines such that the behaviour of every new
machine includes the behaviour of the previous one. The automaton is built step by step. At
each step, the already available machine is examined and completed by adding transitions
and possibly new states.

Later, in [14] an algorithm to identify a unique Moore machine generating the
behaviour observed during m sequences starting at the same initial state is proposed. The
learning procedure operates in three steps: induction, contradiction, and discrimination. A
state can never be deleted, and only transitions between states can be modified. This method
is improved in [15]; it proposes two algorithms to identify multiple systems as well as
systems that may not be initialized between two records.

The identification problem for context-free grammars (CFGs) needs, beside given
examples, some additional structural information for the inference algorithm [16].

The study in [17] has investigated a subclass of CFGs called simple deterministic
grammars and gave a polynomial time algorithm for exactly identifying it using equivalence
and membership queries in terms of general CFGs.

In [18] it has been shown that the inference problem for even linear grammars can
be solved by reducing it to one for deterministic finite automata (DFA); a polynomial time
algorithm for the reduction of the DFA has been presented.

Other works use as description formalism Petri net models. In [19] an algorithm
for synthesising Petri net models is presented. The proposed algorithm has two phases. In
the first phase, the language of the target system is identified in the form of DFA. In the
second phase, the algorithm guesses from the DFA the structure of a Petri net that accepts the
obtained language.

2.2, DES Identification Approaches

In recent years, model identification methods are oriented towards the description of
(partially) unknown DES. The observed sequences of DES’ outputs and/or inputs are
processed for obtaining a model that describes its behaviour.
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In [20] an identification method based on the least square estimator has been
presented; later, several extensions to this work [2, 21-25] provided solutions to the updating
of a model from the continuous recording of output sequences.

Another recent method [3, 4], which has been extended to distributed identification
[26, 27], allows to build a non deterministic FA from a set of input-output sequences
measured from the DES initial condition of functioning. The method was proposed
for obtaining exact models adapted for fault detection in a model-based diagnosis
approach [28].

In [5] an approach to build a free-labelled PN from a finite set of transitions strings is
presented. The approach is based on the solution of (ILP) an Integer Linear Programming
Problem. The obtained PN generates exactly the given strings thanks to the creation of
examples and counter examples during the procedure. Several identification techniques have
been derived from this seminal work [6, 7, 29-34] for dealing with diverse aspects of DES
identification.

The first methods mentioned above deal with the modelling of a given language using
different representations, whilst the recent methods addressed the problem of automated
modelling of DES from observed behaviour based on model identification techniques. These
works are represented in Figure 2 according to a classification, discussed in Section 4.

3. Recent Approaches of DES Identification
3.1. Choice of the Considered Approaches

In this section we overview three different approaches adopted in recent publications
addressing the specific problem of DES identification; they have been selected because of
the soundness of their results. The first approach deals with unknown partially measurable
DES exhibiting cyclic behaviour; overviewed results were reported in [2, 21-25]. The second
approach is offline; it is oriented to obtain models devoted to model-based fault diagnosis;
literature of this approach can be found in [3, 4, 26-28]. The third approach was initially
defined as offline and later extended to be online executed; it deals with DES that does not
necessarily have binary outputs; the review is presented from some of the representative
works among those in [5-7, 29-34].

3.2. Progressive Identification
Problem

The problem addressed in this work is to build a model for a DES as it evolves from the
observation of its output signals [2]. This work can be considered as a basis for verification
of systems, hardware or software, or it can be extended to address problems of reverse
engineering.

Approach

The identification procedure computes an Interpreted Petri Net (IPN) model describing the
behaviour of the unknown DES. Some assumptions are considered on the type of systems
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Figure 3: t-component associated with m; = tt,.

to be identified: they can be described by a live, safe, cyclic, without self-loops, and event-
detectable IPN Q whose transitions are not fired simultaneously.

Methodology

A sequence of models is built in such a way that the current model acquires more details than
the previous one approaching to the actual model of the system.

The algorithm receives a sequence of output signals obtained from observations
during the system operation. These output signals must be binary vectors representing the
current state of every one of the sensors measuring the output behaviour of the system.

The procedure returns an IPN whose measurable places represent the sensors of the
system and nonmeasurable places represent internal states. Every reachable marking of the
Petri net represents the current state of the system at each moment.

The strategy of the identification is based on the reconstruction of the cyclic
components of the system model, by processing cyclic sequences of transitions (called m-
words) computed from the observed output symbols.



6 Mathematical Problems in Engineering

ltl ty ts ty
O—|—0——@—[—®
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Figure 5: t-semiflow inferred Wy = mymymzmymsmemy.

The model identification procedure performs mainly two tasks: the computation of the
measurable part of the system and the inference of the nonmeasurable part of the system.

Algorithm
Progressive identification is conducted as follows

(1) Read the vectors of output symbols generated by the system.

(2) Detect an output word (m-word) when the first and last output symbols are the
same.

(3) For every two consecutive output symbols, compute a transition representing the
output change.

(4) Compute an m-word adding each computed transition in the step above.

(5) Compute non measurable (dark) places

(a) to constrain the firing order of the transitions to the order in which they were
computed,
(b) to compute the t-component associated with the m-word.

(6) Update the IPN model allowing firing of all computed m-words and inferring -
semiflows by

(a) computing new measurable places and transitions,

(b) removing or adding dependencies (possibly merging places) updating the
t-semiflows.

Example 3.1. In order to illustrate the method, we take from [24] the following example of a
system with 7 output signals. For sake of brevity, only main steps are shown.

Step 1. First output symbols are

o1 = [0000000]%, 0, = [1000000]7, 03 = [0000000]" =01, ©04=---. (3.1)

Step 2. The first cyclic observed sequence is 010,01.
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Figure 7: Final model obtained by the progressive identification.

Step 3. t; will represent the transition from o; to 0,, and #, will represent the transition from
0p to 01.

Step 4. The m-word resulting is m; = tit5.
Step 5. The t-component associated with the m-word t;t, is shown in Figure 3.
Step 6. The first t-semiflow inferred is Wy = my;.

Then the next output word is treated with Steps 1-4; the m-word m, = t3t, is obtained.
Its respective t-component associated is added to infer a new t-semiflow Wy = mym; in
Step 6, as shown in Figure 4.

After computing the m-words ms = tet;, my = tsts, ms = totyy, me = t11t12, and my =
ti3t14, it is inferred in Step 6 the t-semiflow Wy = mymomsmymsmegmy; shown in Figure 5.

The detection of the m-word m; = tit, is the first one of Wi = mymoymasmamsmems.
Then, it is supposed that W; has been completely observed and a new t-semiflow W, = my
is inferred. Observed m-words m, = t3t; and m34 = tstetyts in Step 4 are added to the t-
semiflow W5, and the model is updated in Step 6 to allow the firing of all of them, as shown in
Figure 6.

The last m-word my = ti3t14 is observed. It is made a merging of places to allow the
firing of the m-words observed in the order they appeared. A new t-semiflow W3 = msmy is
inferred and t-semiflows Wy = mymomsmamy; and W, = mymyms.4my are updated. The final
model is shown in Figure 7.
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Complexity

The proposed algorithms to update the non measurable places have linear complexity on the
number of the transitions computed and the m-words detected. Then, the complete algorithm
to update a model that includes all of the updating procedures of non measurable places is
executed also in polynomial time.

Limitations

In some cases, the obtained model may represent an exceeding behaviour with respect to the
observed one from the system. Furthermore, in this approach only outputs of the DES are
observed. Consequently, the state evolution of the systems that does not provoke an output
evolution cannot be identified. Additionally, the behaviour represented by structures such as
self-loops, shared resources in mutual exclusion, and implicit nonmeasurable places cannot
be identified using this methodology

3.3. Parametric Automata Construction
Problem

In this work a method for building finite automaton from a set of inputs and outputs
sequences measured during the system evolution is presented [3, 4]. The method was
proposed for obtaining models adapted for fault detection in a model-based approach [28].

Approach

The identification approach proposes to compute a nondeterministic finite automaton with
outputs (NDAAO) describing the behaviour of the unknown DES. The definition of the
NDAAO will be presented below. The system to be identified is a compound system
(controller + plant) running in a closed loop considered as an event generator.

Methodology

The algorithm receives a set of observed sequences obtained from the system to be identified.
Each observed sequence is an ordered series of input/output (I/O) binary vectors exchanged
between controller and plant during operation. As a consequence, observed sequences do not
necessarily have the same length; however, the first and last I/O vectors of all sequences are
identical (cyclic functioning).

The procedure yields a Nondeterministic Autonomous Automaton with Output
(NDAAO). Each state of the NDAAO gives as output a binary vector representing every
one of the observed I/O signals of the system.

The first step of the construction of the NDAAO is to fix a parameter k that represents
the maximal length of the words (or sequences of I/O vectors) that will be generated by the
constructed NDAAO. Basically, the principle of the algorithm is to create states that represent
observed words of length k, which are connected through transitions in the order the words
have been observed.
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Algorithm. A nondeterministic autonomous automaton with output, denoted as NDAAO, is
a five-tuple NDAAO = (X, Q,7, A, x9), where X is a finite set of states, Q is an output alphabet,
r : X — 2% is a nondeterministic transition relation, 1 : X — Qis an output function, and
xp € X is the initial state. The algorithm operates in six steps as follows.

(1) For each observed sequence of 1/O vectors o;, construct k-length sequences of
vectors u;(t), where k is the a priori fixed parameter.

(2) Construct the NDAAO.

(3) Rename the output function.

(4) Reduct the last state.

(5) Merge the equivalent states.

)

(6) Close the automaton.

Example 3.2. Let us consider the example of an elementary plant with a controller having two
inputs and one output [3]. The observed sequences of I/O vectors are

TRAYAYAYAYAYAY

01 = 0 ; 1 ; 1 ’ 1 7 0 ’ 0 7

\\o/ \o/ \1/ \1/ \1/ \o//
TAYAYAYAYAYRY
/

(3.2)

Il
]

7 ]- 7 ]- 7 ]- 7 ]. ’ 0

\\o/ \1/ \o/ \1/ \1/ \o/

For the sake of readability every I/O vector is coded using a symbol, namely, A, B,
C, D, and E representing the observed alphabet. Then the observed sequences are: o1 =
(A,B,C,D,E,A)and 0, = (A,C,B,C,D, A).

o2

Step 1. After choosing a parameter k value (k = 2 in the example), construction of vector
sequences of length k is given as

o7 = ((A,A), (A,B), (B,C),(C,D), (D,E), (E,A), (A, A)), 63
03 = ((A,A),(A,Q),(CB),(B,C),(C,D),(D,A), (A A)). '

Step 2. Construction of the NDAAO. The identification principle is to associate each different
word to a single state. This step is illustrated in Figure 8.

Step 3. Renaming of the Output Function. Each state of the NDAAO corresponds to a unique
and stable value of the input and output signals. This value is described by the last letter of
each k-length sequence.

Step 4. Reduction of the Last State. The last k states of each branch ending in x are labelled
with the same letter. These states can be reduced through a procedure that has to be iterated
k — 1 times. First, merge the prestates of xs; second, redefine this new state as the final state
xy and delete the former x; from the set of states. Steps 3 and 4 are illustrated in Figure 9.
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i

Figure 8: Association of words with states of the NDAAO.

—

Figure 9: Reduction of the last state.

Step 5. Merging of Equivalent States. Two states are equivalent if and only if

(1) they are associated with the same output,

(2) they have the same set of posterior states.

It has been proved that the merging of equivalent states does not affect the languages
accepted by the NDAAO.

Step 6. Closure of the Automaton. Assuming that each observed sequence corresponds to a
single production cycle, the states xo and x; of the NDAAO identified are identical. Thus, the
NDAAO can be closed resulting in a strongly connected NDAAO. Execution of Steps 5 and 6
can be observed in Figure 10.

Complexity

The time required to build different models is very low and the application of the
identification method is efficient. However, the reduction of the NDAAO requires more time
than the identification of the model but is not damming.

If new information is available, the time required for the identification of the NDAAO
is reduced. However, this gain is not very important since the reduction must be performed
again.

Limitations

For a given value of the identification parameter k, the identified NDAAO is (k +1)-complete
[35], this means that the NDAAO identified for a given value of the parameter k represents
exactly the set of observed words of length lower or equal to k + 1.
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Figure 10: Final model for Example 3.2.

Concurrency cannot be explicitly represented in the obtained automaton, but recent
extensions of this work [26] allow performing distributed automation based on an
optimal partitioning of I/O that aims at minimizing concurrency between the subsystems.
Nevertheless, this technique is dedicated to fault detection and isolation [27].

3.4. Integer Linear Programming Approach

Problem. Several extensions to the original technique presented in [5] have been proposed.
We present here only one of the most recent works based on Integer Linear Programming [7].
The problem to be solved is the DES identification by computing a Petri Net model using the
observation of events and the available output vectors.

Approach

The identification approach proposes to compute an IPN model such that the observed
sequence of events belongs to the language accepted by the IPN. The method considers
several hypotheses as follows

(A1) All of the DES events can be detected, distinguished, and not silent.

(A2) The DES can be (partially) observed.

(A3) The DES can be modelled by an IPN system with A-free labelling function.
(A4) The set of measurable places has a priori a given cardinality 4.
)

(A5) There is an upper bound on the number of places of the IPN.

Methodology

The algorithm receives sequences of events with their corresponding output vectors and the
a priori upper bound of the number of nonmeasurable places.

The algorithm returns an IPN with places representing the sensors of the system and
labelled transitions representing the observed events. It is also possible that the algorithm
returns a 0 (zero) when there is no possible solution of the problem with the given
input.

The strategy of the algorithm is to generate an Integer Linear Programming (ILP)
problem adding one linear algebraic constraint for every one of the restrictions on the IPN.
For selecting among several solutions, it is minimized a performance index. Such an index
generally involves arcs weights and number of tokens in the initial marking of the Petri net.
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Algorithm. First, we present some definitions taken from [7].

The PN set is given as D = {PN = (P, T, Pre, Post) : Pre € N, Post € N"*"},

LE(PN, M) is the A-free language of the Petri net PN in E*, given the initial marking
Mo.

Let us consider a DES with event set E and language £ verifying assumptions (Al),
(A2), and (A3). Let us observe an event sequence w € £ and the corresponding output
vectors y € NA. The identification problem consists in determining a place set P and its
cardinality m, a transition set T and its cardinality 7, as well as a A-free labelling function A
and a PN system {PN, My} satisfying assumptions (A4) and (A5) such that PN € D, M, € N
and w € £LE(PN,M,).

A net system is a solution of the identification problem if and only if it satisfies the
following set of linear algebraic constraints:

rPre, Post € N7,

M; € N withi=0,...,h,

Post” me1 + Pre’ me1 > Tnxll

E(w, Y, A, T, m) = 4 (3.4)

POSt Tnxl + Pre Tnxl 2 mell

Vtglf €o with AM(o) =w, Pre Fﬂ“i <M,

i

| Vt; €0 with \(0) =w, (Post- Pre)Fﬂ”lff =M, -~ M.

The first two constraints are derived from the definitions of markings and Pre and Post
incidence matrices. Third and fourth linear algebraic constraints avoid isolated transitions
and places, respectively. Constraints five and six are related with enabling and firing of
transitions.

Some constraints can be added if additional structural properties are given. For
example, if there is no place without successor transitions, then, it can be added Pre - Tnxl >
mel and if there are no source transitions, it can be added Pre! - mel > T,,xl.

Since there is not always only one PN satisfying the constraint set, it is used a
performance index as follows.

¢(Pre, Post, My) = d' Preb+ & Postd + &' M. (3.5)

Now, the basis of the algorithm that solves the identification problem stated above
is presented. The complete algorithm and a more accurate explanation of the solution are
included in [7].

(1) Initiate the algorithm variables.

(2) Wait until a new vector and its corresponding output vector are observed.

(3) Associate a transition to the event as follows.

(3.1) If the event occurs for the first time, a new transition is created

(3.2) If the event occurred previously consider the following.
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(3.2.1) If a transition related to the event has the same observed output change,
then take such a transition and associate it to the event
(3.2.2) Otherwise, a new transition is created.

(4) Solve the ILP problem

min ¢(Pre, Post, My), s.t. &(w,Y, Ay, T, m'). (3.6)

Starting with m’ equal to the number of measurable places and incrementing its value,
until a solution is found or until 1’ is equal to the upper bound of the number of places.

Example 3.3. The following example is taken from [7]. Let us consider a DES with y € N°
and 7 = g = 5. Assume that the initial output is 1o = [00102]" and the observed sequence
is w = ey en, la,a, = €1,62, 6,1 With the corresponding outputs y; = [40101]T, Yo =
[31001]7, Y3 = [01011]" and Ya = [00102]". At each event occurrence, the identification
algorithm is applied, adding constraints to obtain a PN without neither transitions nor places
without successors. However, no solution is provided until the occurrence of the last event.
The ILP solved is

Minimise
1
[1 111 1](Pre+Post) 1 +[1 111 1My, (3.7)
1
subject to
(1) Pre, Post € N4,
(2) M; e N° withi=0,...,h,
(3) Post! Ts; + Pre’ Ts,. > T4,
(4) Post T4 + Pre T4 > Tse,
0 4
0 0
Pre Fﬁ’f’ < Ml-_lPre<t%> <11}, Pre(t%) <11},
0 0
2 1

(3.8)

Pre (t%) < , Pre (t;) <

—_ 0O O - W
__ O RO

(5) for all t;: € owith A(0) = w
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Figure 11: Solution for identification problem of Example 3.3.

(6) for all tg: € o with (o) = w, (Post - Pre)?;_ =M;- M,

4 0] 31 [4]
0 0 1 0
(Post — Pre) (t%) =11]-11}1, (Post — Pre) (t%) =10] - |1},
0 0 0 0
1] 2] 1] 1]

(3.9)

|
1

l
)

N © = O O
|
_ = O = O

l
al

0 3
1 1
(Post — Pre) <t§> = 10| -10], (Post — Pre) (t;) <
1 0
1 1

The IPN obtained is illustrated in Figure 11.

Complexity

In small-size examples, an optimal solution is obtained in a short time implementing and
solving the ILP problem on a computer equipped with a standard solver of optimization
problems.

In order to apply the identification algorithm online, the dynamics of the DES has to
be slow with respect to the time required to solve the ILP problem at each occurrence.

Limitations

It is necessary to fix a-priori the upper bound on the number of places. The statement of ILP
problem from a set of observed sequences is exponential. ILP is nondeterministic polynomial,
and a solution is not always found.
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4. Comparative Analysis of DES Identification Approaches

In this section a comparative analysis of the approaches mentioned above is provided. First,
a set of criteria are introduced; then the analysis of every one of the methods regarding the
given features is presented. Finally, the analysis is summarized in a comparative table.

4.1. Methods Characteristics

Several features have been considered in [4]; some others are added to have a more
complete scope during comparative analysis. Considered characteristics are structured into
4 categories: those characterizing the DES to be identified, those describing the identification
process, those qualifying the identified model, and those considering general algorithm
features.

DES Characteristics

(i) Type of inputs/outputs. In the general case, inputs and outputs of DES to be identified
are discrete (they can take a finite number of values). If all inputs and outputs can
only take two values (on/off), the DES is called logic.

(ii) Iterative behaviour. A DES is called cyclic if it iteratively reaches the initial state
during its operation. If it iterates over the same behaviour revisiting a state that
is not the initial one, then it is called repetitive.

Identification Process Characteristics

(i) Operation Mode. If the input sequences cannot be modified, identification is passive.
Otherwise, the identification is active; it is allowed to force input sequences to the
actual system to explore behaviours that may not be included in the observed
functioning of the system. Since all identification methods considered here are
passive, this criterion is not taken into account for comparison aspects.

(ii) A Priori Information. If there is no available knowledge about the DES other than its
inputs and outputs evolution, then the identification is absolute (commonly called
black-box). Otherwise, the identification is relative.

(iii) Model Updating. When the model construction is incremental, the method progres-
sively updates the model from observed information; otherwise, the identification
procedure is global: it must be executed on the whole of the observed sequences
every time new sequences are collected.

Identified Model Characteristics

(i) Concurrency. This feature considers whether the obtained model can represent
explicitly concurrent behaviour observed from the system.

(ii) Accuracy. This term is related with completeness of the identified model. If this
model represents exactly the observed behaviour, then it is complete.
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Algorithm Characteristics

(i) Considered Data. The identification algorithm constructs an identified model starting
from experimental data that can be inputs and/or outputs of the observed system.

(ii) Strategy. If the identification algorithm returns all possible models representing the
observed behaviour, the algorithm is called enumerative. If only one of the possible
models is given, it is constructive.

(iii) Execution. If the construction of the model can be performed during the system
operation by computing a new model from new measurements of the system inputs
and/or outputs, the execution is made online. Otherwise, the execution is offline; the
algorithm is not able to run at the same time than the system.

(iv) Complexity. This term refers to the computational complexity of the identification
algorithm. Polynomial time procedures are better than exponential ones for coping
with large systems exhibiting a large amount of input-output sequences.

4.2. Analysis of Methods

According to the abovementioned features, the identification techniques are analysed.

Progressive Identification

This approach only considers logical systems which are not assumed to be cyclic. Systems to
identify are not assumed to be reinitialized: a single output sequence measured from an
arbitrary instant is processed as input to the identification algorithms. However, for long
sequence observation if the system exhibits iterative behaviour, this can be captured into the
model.

The identification process is passive; inputs given to the system cannot be forced. It is
considered that there is no information a-priori about the system; only the output sequences
are taken into account; this means that the identification is absolute.

Since the observed behaviour of the system is progressively integrated to a model, the
identification is incremental: every time a change on the outputs is observed, the model is
updated computing observable part of the system and inferring internal states.

The system identification approach introduced obtains as model an interpreted Petri
net. As a consequence of using Petri nets, the concurrency can be explicitly represented in the
model.

All of the observed sequences are represented in the model, but this approach is
not complete because the model could represent exceeding behaviour, that is, nonobserved
sequences.

Only one solution is given; the solution strategy is constructive.

The algorithm provides procedures to be online executed, since it is supposed to
construct a model while the system is working.

The algorithms are executed in polynomial time.

Parametric Automata Construction

This method works on cyclic logical systems. The identification procedure receives a set of
recorded sequences whose first and last vectors are always the same.
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The identification approach is passive: inputs given to the system cannot be
manipulated. The DES to identify is considered a black-box: absolute identification is made.

When new cyclic sequences are provided, they are processed and the model can
be updated. It is not necessary to process the whole set of sequences; thus the method is
incremental.

Due to the limitations of the NDAAO, the concurrency cannot be explicitly expressed
within the model structure.

Obtained model represents all and only all the observed sequences of a given length;
thus the algorithm is complete.

Algorithm receives a set of I/O vector sequences and an identification parameter. It
returns a unique solution. Thus, it is constructive.

I/0 sequences are recorded offline. The algorithm works in polynomial time.

Integer Linear Programming Approach

Considered systems on this approach are not necessarily cyclic. Its outputs can be discrete(i.e.,
they can have a finite number of values).

The identification method is passive. Since it is required to fix an upper bound for the
number of places of the PN, this method is not considered as black-box identification; then, it
is relative (also-called gray-box identification).

Every time new information is observed, a new ILP is stated and solved; that is, the
identification procedure is global.

Structure of the obtained model has the form of a PN, which can include concurrency.

All observed behaviour is represented on the language of the obtained IPN, but, since
counterexamples are not considered in the statement of the ILP problem [5], nonobserved
behaviour could be included in the obtained model: the methodology is not complete.

The identification algorithm constructs a model able to reproduce a single event-output
sequence obtained from the system to identify.

The identification algorithm is enumerative if we do not consider a performance index.
Otherwise, it is constructive, but there could be no solution for a given problem.

In order to apply the identification algorithm online, the dynamics of the DES has to
be slow with respect to the time required to solve the ILP problem at each occurrence. If this
condition is not fulfilled, then the algorithm must run offline.

The application is limited to small-length sequences because the ILP statement grows
exponentially; besides, it is known that solution of ILP is computationally expensive.

4.3. Discussion

Main features of the analysed methods are summarized in Table 1. It can be observed that the
progressive identification approach is well adapted for online identification, since it works
incrementally in polynomial time. Nevertheless, since it is not a solid methodology, there
could be more output sequences than the observed ones; that could be a problem dealing
with some type of applications, such as fault diagnosis.

The parametric identification method is not conceived for online execution, but the
current model can be incrementally updated when new behaviour is recorded. Although the
synthesised model does not represent explicitly the concurrency, the observed input/output
sequences of length k + 1 are exactly represented.
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Table 1: Main characteristics of identification approaches.

Comp. criteria Identif. approach

. Parametric Integer
Progressive .
automata programming
approach
approach approach
DES to be identified
characteristics
Type of inputs/outputs Logical Logical Discrete
Iterative behaviour Repetitive Cyclic None
Identification process
characteristics
A-priori information Absolute Absolute Relative
Model updating Incremental Incremental Global
Identified model
characteristics
Concurrency Explicit Implicit Explicit
Accuracy Noncomplete Complete Noncomplete
Algorithm characteristics
Considered data Outputs Inputs and Events and
outputs outputs
Strategy Constructive Constructive Enumerative
Execution Online Offline Offline/online
Complexity Polynomial Polynomial Exponential

Despite the inefficiency inherent to integer linear programming, which limits the
identification method to process small-size sequences, the ILP procedure yields concurrent
models allowing nonbinary markings, when a solution is found.

A more detailed comparison of the methods cannot be made because they do
not consider the same hypothesis, and the provided sequences representing the observed
behaviour have different formats. Furthermore, the synthesised model is not expressed using
the same formalism.

However, from this study we can point out several key features that an identification
method should have for dealing with large and complex DESs.

First and foremost, the method must take into account both inputs and outputs of the
system, and yield a model expressing explicitly concurrent behaviours; thus PN seems to be
a more appropriate modelling formalism.

An efficient (polynomial time) technique based on a progressive strategy makes
irrelevant the way the input/output sequences are collected; the sequences may be processed
as they are obtained allowing updating the model, if necessary, during the system operation.

Regarding the accuracy of the obtained model, one may think that exceeding
behaviour must be avoided. Nevertheless, it is not possible to assure that all of the behaviours
have been exhibited by the system during the sequence observations; thus, it could be
interesting to infer nonobserved behaviour from the collected sequences. The challenge
is discerning among possible exceeding representations by determining plausible model
structures; partial knowledge on system components and operations could be useful for this
task (independent operations, mutual exclusions, etc.).
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5. Summary and Perspectives

An overview of identification techniques for Discrete-Event Systems as well as of the
theoretical results on which they are based has been given. Three of the most innovative
contributions to this open problem have been outlined. Based on the analysis of their main
characteristics, this analysis has been done regardless of any hypothesis on the technology
of the systems to be identified (manufacturing, communication, management systems, etc.).
These three approaches are very recent and must not be considered as completely finalised.
Nevertheless, the study of published results allows perceiving their enormous potential.
Currently the interest for DES identification is considerably increasing, and probably, as it
is the case since a long time in the field of continuous systems, identification techniques will
offer powerful alternatives to classical modelling techniques “by knowledge” for complex
DES.

The proposed comparative study allows exhibiting the advantages and drawbacks
of the reviewed methods. In some words, we can summarize that, even if it allows
identifying systems with logical and discrete (i.e., taking a finite number of values) inputs
and outputs, the ILP approach cannot be applied today to identify real complex DES, because
of the computational complexity of the algorithm. The main advantage of the parametric
method is to generate a complete identified model, but the obtained model cannot represent
explicitly the concurrency. The progressive identification method is well adapted to deal with
concurrent systems yielding an updated model as the systems evolve; however, the model
represents more behaviour than that observed.

New approaches that combine the advantages of these pioneer ones have now to be
explored. In [36] we describe the first results obtained in a recent project that aims providing
an efficient method for building incrementally, as the DES evolves, a complete Petri net model
capturing concurrency.
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Fault tolerant control (FTC) is the branch of control theory, dealing with the control of systems
that become faulty during their operating life. Following the systems classification, as linear and
nonlinear models, FTC can be classified in two different groups, linear FTC (LFTC) dealing with
linear models, and the one of interest to us in this paper, nonlinear FTC (NFTC), which deals with
nonlinear models. We present in this paper a survey of some of the results obtained in these last
years on NFTC.

1. Introduction

Due to the complexity of modern engineering systems, it is increasingly important to ensure
their reliability. This has motivated researchers to concentrate on FIC, which is primarily
meant to ensure safety, that is, the stability of a system after the occurrence of a fault in the
system. There are two approaches to synthesize controllers that are tolerant to system faults.
One approach, known as passive FTC, aims at designing a controller which is a priori robust to
some given expected faults. Another approach, known as active FTC, relies on the availability
of a fault detection and diagnosis (FDD) block that gives, in real-time, information about the
nature and the intensity of the fault. This information is then used by a control reconfiguration
block to adjust online the control effort in such a way to maintain stability and to optimize
the performance of the faulty system.

Passive FTC has the drawback to be reliable only for the class of faults expected and
taken into account in the design of the passive FTC. Furthermore, the performances of the
closed-loop are not optimized for each fault scenario. However, it has the advantage to avoid
the time delay due to online diagnosis of the faults and reconfiguration of the controller,
required in active FTC [1, 2], which is very important in practical situations where the time
windows during which the system stays stabilizable is very short, for example, the unstable
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double inverted pendulum example [3]. In practical applications passive FTCs complement
active FTC schemes. Indeed, passive FTCs are necessary during the fault detection and
estimation phases [4], where passive FTCs are used to ensure the stability of the faulty
system, before switching to active FTCs, that recover some performance after the fault is
detected and estimated. Another scenario where passive FTC is used as a complement of
active FIC is in the switching-based active FTC, where the active FIC switches between
different passive FTC, each controller being designed off-line to cope with a finite number
of expected faults and stored in a controller bank; see for example, [5]. Several passive FTC
methods have been proposed, mainly based on robust theory, for example, multiobjective
linear optimization and LMIs techniques [6], QFT method [7, 8], H., [3, 9], absolute stability
theory [10], nonlinear regulation theory [11, 12], Lyapunov reconstruction [13, 14], and
passivity-based FTC [15]. As for active FTC, many methods have been proposed for active
LFTC, for example, [16-21], as well as for NFTC, for example, [14, 22-35]. As said before, this
paper aim is to present some of the recent results on NFTC thus we will not further present
LFTC here, and we refer the reader to other survey papers for linear systems; see for example,
[36-38].

In [11, 12] the nonlinear regulation theory was used to solve the NFTC problem for
particular practical examples, that is, robot manipulators in [12] and induction motors in
[11]. The faults treated were modelled as additive actuator faults. In [13, 39] Lyapunov
reconstruction techniques were used to solve the problem of loss of actuator effectiveness
for nonlinear models affine in the control. The main drawback of this scheme is that it is
based on the apriori knowledge of a stabilizing feedback for the nominal safe model and the
knowledge of the associated Lyapunov function in closed form. Furthermore, the problem
of inputs saturation has not been solved in this work. In [15] the authors studied the case
of nonlinear systems with multiplicative actuator faults, and considered the case of systems
with inputs saturation. In active NFTC field we also quote [24], where the authors studied
the NFTC problem for a particular class of continuous nonlinear models, that is, linear in the
control, and proposed a new adaptive fault estimation module, complemented with a control
reconfiguration block. In [14], the authors study a specific problem of active FTC, namely,
the problem of graceful performance degradation. This problem aims to define online new
performances for the faulty system, these performances having to be feasible by the faulty
system within its states/actuators limits. Indeed, after the occurrence of a fault the faulty
system is expected to be unable to perform the tasks required and planned initially for the
safe system. Therefore, new tasks, less demanding, have to be generated online for the faulty
system. The idea used there is based on two main stages. The first stage concerns online
trajectory planning or reshaping, using online optimization scheme that generates online
the closest trajectory to the nominal one, but without violating the new constraints of the
faulty system. The second stage concerns the control reallocation problem, using nonlinear
model predictive control (NMPC). This scheme deals with nonminimum phase nonlinear
models affine in the control. We also refer to [28, 29] where uncertain nonlinear models with
constrained inputs, were considered.

An important part of FTC is the one specializing in actuator faults. Indeed, FTCs
dealing with actuator faults are relevant for practical application and have already been
the subject of many publications [13, 15, 18, 19, 25, 33, 39—-49]. The nonlinear case has been
studied in [25], where active FTC with respect to additive actuator faults was studied for
nonlinear systems affine in the control. Constrained actuators were considered, and state-
feedback as well as output-feedback FDDs/FTCs were proposed. In [4, 50], an active NFTC
has been proposed for the class of SISO nonlinear systems, with incipient faults. The structure
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of the FTC was based on three controllers: a nominal controller for the safe system, that
guarantees the system trajectories boundedness until the fault is detected. Then, the NFTC
was reconfigured to the second controller that recovers some control performances before
the fault is isolated. After the isolation of the fault, a third controller was used based on the
faulty model, to improve the control performances. The reconfiguration of the controllers
was based on adaptive backstepping approaches. In [14, 33, 48] the authors used model
predictive controllers (linear case in [48], and nonlinear case [14, 33]) to reconfigure the
controller online after the isolation and estimation of the fault. Finally, we quote [51], where
a class of delayed nonlinear systems, modelled with linear terms added to Lipschitz-like
nonlinearities with delay terms have been studied. The authors proposed an adaptive LMI-
based active NFTC to ensure the stability of the faulty model as well as some optimal
performances.

We do not pretend here to present in details all the work quoted above, instead, we
will concentrate on some of these results and point out pros and cons of each scheme. We also
underline, that we will not report the proofs of the results here, the reader will be refereed to
the corresponding paper for the detailed proofs.

This paper is structured as follows. In Section 2, we introduce some notations, and
recall some definitions that will be used throughout the paper. Section 3, concerns passive
NFTC, followed by active NFTC in Section 4. Finally, we conclude the paper in Section 5, by
pointing out some open problems in NFTC.

2. Preliminaries

Throughout the paper we will use the L, norm denoted by | - |, that is, for x € R" we define
|x| = vxTx. The notation L rh denotes the standard Lie derivative of a scalar function h(:)
along a vector function f(-). We also denote by tanh(-) the hyperbolic tangent function and
by h¥ the Ith-order-derivative of the scalar function h. Let us introduce now some definitions
from [52], that will be frequently used in the sequel.

Definition 2.1 (see [52, page 45]). The solution x(t, xg) of the system x = f(x), x € R", f
locally Lipschitz, is stable conditionally to Z, if xg € Z, and for each € > 0 there exists 6(¢) > 0
such that

Xo—x9| <6, Xp€Z=|x(tXg)—x(t,x0)] <€, Vt>0. (2.1)

If, furthermore, there exist r(xp) > 0, s.t. |x(t, Xo) — x(¢t, x0)] = 0, forall |Xg — x| <
r(x9) and Xy € Z, the solution is asymptotically stable conditionally to Z. If r(xp) — oo,
the stability is global.

Definition 2.2 (see [52, page 48]). Consider the system H : x = f(x,u), y = h(x,u), x € R",
u,y € R™, with zero inputs, that is, x = f(x,0), y = h(x,0), and let Z C R" be its largest
positively invariant set contained in {x € R" | y = h(x,0) = 0}. We say that H is globally
zero-state detectable (GZSD) if x = 0 is globally asymptotically stable conditionally to Z. If
Z = {0}, the system H is zero-state observable (ZSO).
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Definition 2.3 (see [52, page 27]). We say that H is dissipative in X C R"” containing x = 0, if
there exists a function S(x), S(0) = 0 such that for all x € X

T
S 20, SEx(T)) - S(x(0)) < fow(ua),y(t))dt, (22)

forallu €e U ¢ R™ and all T > 0 such that x(t) € X, for all t € [0, T], where the function
w : R" xR™ — R, called the supply rate, is locally integrable for every u € U, that is,

i;|w(u(t),y(t))|dt < oo, Vty < t1. S is called the storage function. If the storage function is
differentiable, the previous conditions write as

S(x(t)) < w(u(t),y(t)). (2.3)

The system H is said to be passive if it is dissipative with the supply rate w(u,y) = u’y.

Remark 2.4. The definitions of (ZSD) and (ZSO) are simply an extension to the nonlinear case
of the classical notions of detectability and observability for linear systems; see for example,
[53].

We will also need the following definition to study the case of time-varying faults in
Section 3.

Definition 2.5 (see [54]). A functionx : [0,00) — R"is called a limiting solution of the system
x = f(t,x), and f a smooth vector function, with respect to an unbounded sequence t, in
[0, 00), if there exist a compact k C R" and a sequence {x;, : [t,,c0) — «} of solutions of the
system such that the associated sequence {x, :— x,(t +t,)} converges uniformly to X on
every compact subset of [0, ).

Definition 2.6 (see [55, page 144]). A continuous function a : [0, a) — [0, o) is said to
belong to class X if it is strictly increasing and a(0) = 0. A continuous function g : [0, a) x
[0, o0) — [0, oo) is said to belong to class X £ if for each fixed s the mapping f(r, s) belongs
to class X with respect to r and for each fixed r the mapping f(r, s) is decreasing with respect
tosand p(r,s) — Oass — oo.

Definition 2.7. A system is said of nonminimum phase, if it has internal dynamics, and their
associated zero dynamics are unstable in the Lyapunov sense.

Also, throughout this paper it is said that a statement P(¢) holds a.e. if the Lebesgue
measure of the set {t € [0,00) | P(t) is false} is zero [54]. We also mean by semiglobal
stability of the equilibrium point x° for the autonomous system x = f(x), x € R" with f
a smooth function, that for each compact set K C R" containing x%, there exist a locally
Lipschitz state feedback, such that x is asymptotically stable, with a basin of attraction
containing K (see [56, Definition 3, page 1445]).
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3. Passive NFTC

Let us start first with some passive NFTC algorithms. As we said before, these types of FTCs
are not expected to “do all the job alone”, since in practice they have to be associated with
some active FTCs to obtain an efficient controller tolerant to faults.

3.1. Lyapunov-Reconstruction-Based Passive NFTC

We first consider nonlinear systems of the form
%= f(x) + g(x)u, (3.1)

where x € R" and u € R™ represent, respectively, the state and the input vectors. The vector
fields f, columns of g are supposed to satisfy the classical smoothness assumptions, with
£(0) = 0. We also assume the system (3.1), locally reachable (in the sense of [57, Definition 5,
page 400]). Adding to the previous classical assumptions, we need also the following to hold.

Assumption 3.1. We assume the existence of a nominal closed-loop control uyem (¢, x), such that the
solutions of the closed-loop system

X = f(x)+ g(x)unom (£, x) (3.2)

satisfy |x(t)| < B(|x(to)|, t —to), Yxy, € D, Yt > to, where D = {x e R" | |x| < 1o}, 19 >0and fisa
class XL function.

Assumption 3.2. We assume here two types of actuator faults.

(i) Firstly, one considers faults that enter the system in an additive way; that is, the faulty
model writes as

x=f(x)+g(x)(u+F(tx)), (3.3)

where F represents the actuator fault and s.t. |F(t,x)| < b(t,x), where b : [0,00) x D — Risa
nonnegative continuous function.

(ii) Secondly, one considers loss of actuator effectiveness, represented by a multiplicative matrix
aas

X = f(x)+ g(x)au, (3.4)

where a € R™™ is a diagonal continuous time variant matrix, with the diagonal elements a;;(t), i =
1,...,mst.0<e < ocl-i(t) <1



6 Mathematical Problems in Engineering
The authors in [39] proved the following propositions.

Proposition 3.3. The control law
oV \"
u(t, x) = tpom (t, x) — sgn <$g> (b(t,x)+€), €>0, (3.5)

where Wy (t, x) is s.t. Assumption 3.1 is satisfied, V is the associated Lyapunov function, b(t, x) is
defined in Assumption 3.2, and sgn(v) denotes the vector sign function, s.t. sgn(v) (i) = sgn(v(i));
ensures that the equilibrium point x = 0 is locally UAS in D for the closed-loop system (3.3) and
(3.5).

Proposition 3.4. The control law

0 T nom
u(t/x) = unom(t/x) - Sgn<<a_‘;g) > <|unom| + |u€1 |,61>/ ,61 > 1/ (36)

where Uy (t, x) s.t. Assumption 3.1 is satisfied, V' is the associated Lyapunov function, and sgn(-)
denotes the sign function; ensures that the equilibrium point x = 0 is locally UAS in D for the closed-
loop system (3.4) and (3.6).

These two controllers ensure robust stabilization with respect to additive as well as
multiplicative actuators’ faults; however, they are discontinuous; that is, due to the sign
function, therefore the authors in [39] proposed the following two “continuous” versions
of the previous propositions.

Proposition 3.5. The control law
oV \"
u(t, x) = upom(t, x) — sat ($g> (b(t,x)+€), €>0 (3.7)

ensures that the solutions of the closed-loop system (3.3) and (3.7) satisfy

Vx(ty) s.t. |x(to)| < ay' (a1 (ro)),

|x(t)| Sﬂ(|X(t0)|,t—t0), Vto <t< t0+T, (38)
aT >0, s.t.
lx(H)] < ;" (a1 (%)), Vt>to+T,



Mathematical Problems in Engineering
where, for a vector v,
2O ) <E
sat(v) = €
sgn((i), if [o(i)| > &,
X= “51 (2mébmax) < a£1 (a1(r0)),

b(t,x) < bmax, Vi Vx €D,

and oy, @, and as are class X functions in D and f is class X L.

Proposition 3.6. The control law

ov T nom
u(tl x) = unom(trx) - Sﬂt<<a—xg> > <|un0m| + %ﬂl)/ ﬂl > 1

ensures that the solutions of the closed-loop system (3.4) and (3.10) satisfy

Vx(to), s.t. |x(to)| < a5’ (ar(ro)),

lx(t)] < B(|x(to)|,t —to), Vto<t<tg+T,
aT >0, s.t.
Ix(t)] < a5 (a1 (X)), V>t + T,

where, for a vector v,

v(i)

= if lo(@i)| <€

sgn(v(i)), if [v(i)] > €,

sat(v) =

X = 3" (2mEupom-max) < &, (a1 (r0)),

| Unom | < Upom-max,  VE,

and oy, &, and agz are class X functions in D and f is class X L.

(3.9)

(3.10)

(3.11)

(3.12)

The two continuous controllers (3.7) and (3.10) and do not guarantee the local UAS
anymore. However, they guarantee that the closed-loop trajectories are bounded by a class
K function, and that this bound can be made as small as desired by choosing a small € in
the definition of the function sat. The passive NFTC recalled above is in closed form and
thus easy to implement. However, they have two main drawbacks. Firstly, they are based on
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the availability of the closed-from expression of the Lyapunov function associated with the
nominal stabilizing law, and secondly, they do not consider input saturations in the control
design. Therefore, trying to overcome these limitations, other controllers have been proposed
and are recalled hereinafter.

3.2, Passivity-Based NFTC

In [15], the passivity theory has been used to develop some new NFTC dealing with actuator
multiplicative faults. These results are reported hereinafter.

Theorem 3.7. Consider the closed-loop system that consists of the faulty system (3.4), with constant
unknown matrix a, and the dynamic state feedback:

u=-LW(x)" k¢ u(0)=0,

(3.13)
E=e(~(LWx) -ke), ¢(0)=0,

where W is a C' radially unbounded, positive semidefinite function, s.t. LiW < 0, and k > 0. Consider
the fictitious system

x = f(x)+g(x)¢,
E=ei(-(Law)" +9), (3.14)
y=h() =¢.

If the system (3.14) is (G)ZSD with the input © and the output y, then the closed-loop system (3.4)
with (3.13) admits the origin (x,¢) = (0,0) as (globally) asymptotically stable ((G)AS) equilibrium
point.

In Theorem 3.7, one of the necessary conditions is the existence of W > 0, s.t. the
uncontrolled part of (3.3) satisfies LW < 0. To avoid this condition that may not be satisfied
for some practical systems, the authors proposed the following Theorem.

Theorem 3.8. Consider the closed-loop system that consists of the faulty system (3.4), with constant
unknown matrix a, and the dynamic state feedback:

i = (ke PK) - PLWT + S (F +50) ),
p=diag(Bur, ..., um), 0< ? <pi<l, (3.15)
1

= k(- PK()) ~ PLWT 4 Pon (f+g8), 20)=0, u(0) =0,
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where k > 0 and the C' function K(x) s.t. a C* radially unbounded, positive semidefinite function W
satisfying

%—v;/(f(x) + g(x)ﬁK(x)) < 0, Vx € Rn, Vﬂ = diag(ﬁll,.. .,ﬂmm>, 0< 51 < ﬂii < 1.
(3.16)

Consider the fictitious system

X = f(x) +8(x)g,
. K ~
é= ﬁ%—x(f +g¢&) - BLWT + 7, (3.17)
Y =¢-PK(x).
If (3.17) is (G)ZSD with the input o and the output y, for forall pst. Py, i=1,...,m 0 < €& <
Pii < 1. Then, the closed-loop system (3.4) with (3.15) admits the origin (x,¢) = (0,0) as (G)AS
equilibrium point.

The previous theorems may guaranty global AS. However, the conditions required may
be difficult to satisfy for some systems. Thus, the authors in [15] introduced the following
control law that ensures, under less demanding conditions, semiglobal stability instead of
global stability.

Theorem 3.9. Consider the closed-loop system that consists of the faulty system (3.4), with constant
matrix a, and the dynamic state feedback:
u=_k(§_unom(x))/ k>0,

. (3.18)
& =—ke1 (& — unom(x)), ¢(0)=0, u(0)=0,

where the nominal controller ey, (x) achieves semiglobal asymptotic and local exponential stability of
x = 0 for the safe system (3.1). Then, the closed-loop (3.4) with (3.18) admits the origin (x,¢) = (0,0)
as semiglobal AS equilibrium point.

In [15], the practical problem of input saturation has been studied, and the following
result on general nonlinear models, nonnecessarily affine on u, has been proposed.

Theorem 3.10. Consider the closed-loop system that consists of the faulty system:
x = f(x)+g(x, au)au (3.19)

for a € [e1,1], and the static state feedback:
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u(x) = -Mx)G(x,0)",

oW (x)
Ox

G(x,0) = €18(x,0),

) 2u
A(x) = (1 . Y1<|x|2 +4ﬁ2|G(x,0)|2>> <1 + |G(X,0)|2> -

(3.20)

’[Zs ?1(5) .
o 1+, (1)

1 2s
?1(s)=; (i) —1)dt +s,

~ Low (x) 0g(x, Teru)
Y1(8) = MaX; (4 y\xf2+uf<s) {1 + .[0 o 30 dry,

where W is a C? radially unbounded, positive semidefinite function, s.t. LW < 0. Consider the
fictitious system:

X = f(x)+ g(x, eru)eru,

_OW(x)
T 0x

(3.21)

e18(x, er1u).

If (3.21) is (G)ZSD, then the closed-loop system (3.19) with (3.20) admits the origin as (G)AS
equilibrium point. Furthermore |lu(x)| < u, for all x.

For the particular case of affine nonlinear systems, that is, g(x, u) = g(x), we have the
following proposition, which is a direct consequence of Theorem 3.10.

Proposition 3.11. Consider the closed-loop system that consists of the faulty system (3.4), with
constant unknown matrix a, and the static state feedback:

u(x) = -A(x)G(x)",

AW (x)
= Tax 18 (3.22)
2u
1+|G(x)*

G(x)

A(x) =
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where W is a C? radially unbounded, positive semidefinite function, s.t. LW < 0. Consider the
fictitious system:

X = f(x) + g(x)eru,

(3.23)
= 81/(\3/;36) €18(x).

If (3.23) is (G)ZSD, then the closed-loop system (3.4) with (3.22) admits the origin as (G)AS
equilibrium point. Furthermore |lu(x)| < u, Vx.

The time-varying versions, that is, for time-varying faults, of the previous results have
also been proven in [15] and are recalled hereinafter.

Theorem 3.12. Consider the closed-loop system that consists of the faulty system (3.4) with the
dynamic state feedback:
i=-LW(x) -k¢ k>0, u(0)=0

. 3.24
E=at) (- (LW () -KE), &0)=0, o2

where a(t) isa leunction, st.0<e <a(t) <1, Vt,and W isa C?, positive semidefinite function,
such that

(1) LW <0;
(2) the system x = f(x) is AS conditionally to the set M = {x | W(x) = 0};

(3) forall (x, g) limiting solutions for the system

X = f(x) +g(x)g,
E=a(t)(-(LaW)" - kE), (3.25)
y=hx3§) =4

with respect to unbounded sequence {t,} in [0, o), then if h(?,g) = 0, a.e., then either
(x,¢)(to) = (0,0) for some ty > 0 or (0,0) is a w-limit point of (x,¢), that is,

Then the closed-loop system (3.4) with (3.24) admits the origin (x,¢) = (0,0) as UAS
equilibrium point.

Theorem 3.13. Consider the closed-loop system that consists of the faulty system:

X = f(x)+ g(x, a()u)a(t)u, (3.26)
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for a € [e1,1], Vt, with the static state feedback:

u(x) = =M(x)G(x,0)",

oW (x)
G(x,0) = — —8(x,0),
2u
Ax) = >0,
(1+ 11 (1P + 421G (x,0)P) ) (1 +IG(x, 0)P )
o 1+7,(1) 7
_ 1 2s -
Y1(s) = B (i(t) —1)dt +s,
1
~ OW (x) 0g(x, Te1u)
Y1(s) —max‘(x/u)lx|z+|uz§s}{l+ Tox 5 dry,

where W is a C2, positive semidefinite function, such that
(1) LW <0;
(2) the system x = f(x) is AS conditionally to the set M = {x | W(x) = 0};

(3) for all x limiting solutions for the system

T
= £0) + glx, ) (A0 G (350 )

(3.28)
y =h(x) = A(x)* E;—I;\C/(X)g(x,o)‘,

with respect to unbounded sequence {t,} in [0, 00), then if h(x) = 0, a.e., then either
X(to) = 0 for some to > 0 or 0 is a w-limit point of X.

Then the closed-loop system (3.26) with (3.27) admits the origin x = 0 as UAS equilibrium
point. Furthermore |u(x)| <u, VYx.

Proposition 3.14. Consider the closed-loop system that consists of the faulty system (3.4) with the
static state feedback:

u(x) = -A(x)G(x)",

ow

s, (3.29)
_ 2w
1+[Gx)P

G(x) =

Mx) =
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where W is a C2, positive semidefinite function, such that
(1) LiWw <0;
(2) the system x = f(x) is AS conditionally to the set M = {x | W(x) = 0};
(3) for all x limiting solutions for the system
T
x=f(x)+g(x) (—A(x)a(t)%(x)g(x)) ,
(3.30)

y:m@=Auﬁ5%¥QKW)

4

with respect to unbounded sequence {t,} in [0,00), then if h(x) = 0, a.e., then either
x(to) = 0 for some to > 0 or 0 is a w-limit point of x.

Then the closed-loop system (3.4) with (3.29) admits the origin x = 0 as UAS equilibrium
point. Furthermore |u(x)| <u, Vx.

These passive NFTC schemes are valid for a large class of nonlinear systems, not
necessarily affine in the control, and take into account input saturations; however, the
conditions to satisfy might be difficult to check when dealing with models having a large
number of states.

4. Active NFTC

As we have explained in the introduction, passive FTCs cannot cope with the fault alone,
they have to be associated with active FTCs. Indeed, passive FTCs first ensure, at least the
stability of the faulty system, during the time period when the FDD is estimating the fault,
then active FTC takes over the passive FTC and, using the estimated faulty model they try to
optimize the performances of the faulty system. We present in this section some active NFTC
schemes.

4.1. Optimization-Based Active NFTC

In [14], the authors studied the problem of graceful performance degradation for affine nonlinear
systems. The method is an optimization-based scheme, that gives a constructive way to re-
shape online the output reference for the postfault system, and explicitly take into account
the actuators and states saturations. The online output reference reshaping is associated with
an online, MPC-based, controller reconfiguration, that forces the postfault system to track the
new output reference.

The model considered are affine in the control:

x = f(x) + g(x)u,

(4.1)
y = h(x),
where x € R", u € R™, and y € R™ represent respectively the state, the input and the
controlled output vectors. The vector fields f, columns of g, and function h are supposed
to satisfy the following classical assumptions.
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Assumption 4.1. f : R" — R" and the columns of g : R* — R™" are smooth vector fields on a
compact set X of R" and h(x) is a smooth function on X with f(0) = 0,h(0) = 0.

Assumption 4.2. System (3.1) has a well-defined (vector) relative degree {r1,..., 1y} at each point
x € X (see e.g., [58]).

Assumption 4.3. The system is fully or over-actuated, in the sense that the number of actuators is at
least equal to the number of controlled outputs, that is, n, > m.

Assumption 4.4. We assume that assumptions 4.1-4.3 above, are preserved after the occurrence of a
fault in the system.

Assumption 4.5. We assume additionally that the desired nominal trajectory is feasible by the
nominal (safe) system, within its input/state limits.

The control objective is then, that to find a controller u s.t. the nominal as well as the
faulty systems’ output vector y tracks asymptotically a desired smooth feasible trajectory
y4(t), while satisfying the actuators and states constraints:

A T _ .
ueﬁz{uz(ul,uz,...,unﬂ) |u; <u; <uf, z:1,2,...,na}, “2)
A T _ . .
xeX-= {x=(x1,x2,...,xn) | x; <x; <x, 1=1,2,...,n},

where u~ = (uj, ug,...,u;u)T, ut = (uf,uj,. ..,u,’;a)T and x~ = (x{,x;,...,x,;)T, xt =
(x1,x5,...,x;, )T are vectors of lower/upper actuators and states limits, respectively. To do
so the authors formulate the problem as the following optimization problem:

tor tor

minJ = min | (Ynom (£) = ¥a())" Q1 (Ynom (£) — ya(t))dt +J u(t)’ Quu(t)dt, (4.3)

(atar) (atar)) ¢ e

under the constraints

X = fr(x)+gr(x)u,
yd(t/ a, tZF) = h(x)/
u <u<ut,
x~ <x<x",
T T
y® (tiF) £ (y{k) (tlp),---,yirlf) (tlF)> = yﬁgn(th) £ <y§12n1 (tlF),---,yr(llé)mm (tlF)> ,
T T
]/(k) (tZF) é <y§k) (t2F)/ ey ]/1(1’1{) (tZF)> = yr(llz))m(thom) é <yr(1]§))m1 (thOm)/ ey ]/1(1’;)111,,, (thom)> 7
k=0,...,s,

t2F 2 t2nom/
(4.4)
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where ya(t) = (S5 an((E=tip)/(bar —tir ), ..., S aim((E=tip) / (bar —tap ) s €
N*, Q1 € R™" Q, € R"" are positive definite weight matrices, a =
(@)1, AQ)1, -+ ) Alyms - -, Asym) . € R™HD is the vector of the polynomials coefficients,
tor is the final motion time for the optimal trajectory vector y4(t), and tnem is the final
motion time for the nominal trajectory vector ynom (f) £ (Ynom; (£), - - -, Ynom,, (t))T, and where
fr, gr hold for the modified vector field f and matrix g after the occurrence of the fault.
The existence of solutions and the computation scheme was then studied for different cases,
that is, without internal dynamics, with internal dynamics for minimum phase and with
internal dynamics for nonminimum phase systems. The authors did not consider in this
paper explicitly FDD synthesis for nonlinear systems. Instead they assumed the availability
of an FDD module and they studied both cases: first where FDD provides a precise postfault
model and, second the realistic case, where FDD gives a delayed imprecise postfault model.
This optimization-based scheme, can deal with the general class of nonlinear models affine
in the control, with state and input constraints, and include a stable inversion part to deal
with nonminimum phase systems, however, the necessary online computation can be time
consuming for large models.

4.2. Learning-Based Active NFTC

We report here the results presented in [59], where the author used a learning scheme to
modify the feedback control so as to stabilize the system in the presence of a fault.
The author considers systems of the form

%= f(x)+G(x) [u+n(x,t)+ p(t - T)é(x)] (4.5)

where, x € R”, and u € R™ are the state and control vectors, respectively, and G =
[$1, $2,--., gn] is an n x m matrix function, f, g : R* — R" i = 1,...,m are known
smooth vector fields representing the nominal system dynamics, g(t — T) is a step function
representing an abrupt fault occurring at an unknown time T, 7(x,t) represents the time-
varying model uncertainties, and ¢(x) is the vector of state-dependent faults. The author
assumes the existence of a nominal controller un(x) that guarantees uniform stabilization
of the nominal system:

x = f(x) + G(x)u. (4.6)

The scheme assumes also the availability of the closed form Lyapunov function Vi associated
with the nominal stable feedback system:

x = f(x) + G(x)un(x). (4.7)
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The author proposes then the NFTC:

u=un(x)+ qb(x, é,é),
¢<x, 0, é) = —Q(x)70 - Bw(x),
0 =IQ(x)p(x),

0= yw(x) p(x), (4.8)

VN T

p(x) = <6_xG(x)> ,

w(x)ztanh(@), e>0, i=1,...,m,

where Q(x) is a g x m and represents the basis function for the neural network approximation
of the fault f by f (x,0) = Q(x)"6, 6 € RI. Then, under the assumption of matching
conditions, that is, 77, ¢ are in the range space of G, the author proves that the feedback
controller (4.8) stabilize the faulty system (4.5). However, this control law, is based on the
knowledge of the full state vector, and might lead to chattering effect if the parameter € is
chosen too small.

4.3. Adaptive Backstepping-Based Active NFTC

The scheme presented here is based on the results of [4, 50]. The systems studied are of the
form

Xi = xi + Gi(xi) +mi(x,u,t) + Bi(t - To)éi(xi), i=1,...,n-1,
Jn = Po(0)u + P (x) + 110 (x, 1, t) + B (t — To)én(x), (4.9)

y=xi

where x € R" is the state vector, x; = (x1,..., xi)T, u € R, y € R are the input and the output,
respectively. The function ¢y is a nonzero smooth function, and ¢;, 7;, fi, i = 1,...,n are
smooth functions. The control goal is to force the output y to track a desired trajectory v, (t),
where yﬁl), I =0,...,n are known, piecewise continuous and bounded. As in Section 4.2,
i, &, i=1,...,nrepresent the model uncertainties and the expected faults, respectively, and
pi, i = 1,...,n, represent the time profile of the faults. Then, based on assumption of the
availability of a FDD module that detects and estimates the fault, the authors propose the
following three-stage controller:

uo(x,ya,t), t<Tg,
u=up(x,yat), Ta<t<T, (4.10)

uI (x/ ]/d/ t)/ T 2 TiSOl/
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where T, and Tis are the time of the fault detection and fault isolation, respectively. Based
on the adaptive-backstepping approach, the authors propose the following expression for the
three controllers.

(i) First for t < T,

(n)

Gty
uo(t) = (4.11)
T o)
with
ap=0,
a = —C1z1 — 221 — P1,
a Cc1zi— z ¢i — czi(aail>2+§aally(]”)
i = —C1Zi — Zi-1 — 2 - —
1 T TGN o Soyd "’ (4.12)
1 ‘Xt 1 .
Z (x]+1+<])]) i=2,...,n,
-1
Zi =X — Qi1 —yﬁl Doi=1,...,n
(ii) Second for T <t < Tis)
(n)
an+y
up(t) = (4.13)
P oo
with

(XOZO,

o =-c1z1—¢1 -0 (,01 +p1 (]/, 01, ¢, yr)

aﬂll 1 AT —
o = —Zi-1 — CiZi — Qi 9 i xl) + Xk+1 + P + 0 k(xk) ]
$i - 0; ¢i Z oxx ( a+e k¥ ) (4.14)
i[ aa~ 1 (k) aa 1 ] Zl < >T
+ —y, — Tk Z11,
k=1 5y§k R Ok k=1 30
+pl‘<§i15i/qj/y1(~l 1))/ i=2,...,n
and the parameter adaptive laws are
Ok(t) = Tim, 1<k<n,
(4.15)

i =T, I:Zn:zkwk —0((/?—qfo>], ¢°>0,T,>0,0>0,
k=1
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with

_ (i-1) . _
zi=xi—ai-y, S, i=1...,n,

™ =11 [(p1 <x121 - o(él - 9?))], c>0,T1>0,

Sats (4.16)
Tki = Th(i-1) — TkZia—;kq?k(?k), I'k>0,1<k<i-1,i=2,...,n,

Ti = I [(Pi(fk)zi - O'(éi - 9?)], I;>0,i=2,...,n.

where ¢;, i = 1,...,n are the basis functions of the linear approximation for the unknown
fault function, that is, & (x;, 6;) = (é,‘)T(pi (xi), and p;, i = 1,...,n are given bounding control
functions.

(iii) Third for t > Tise

(n)

ay + Yy
ur(t) = —=>2—,
ey
Oty =7}, 1<k<n, (4.17)

. n
¢ =Ty|Xzwi —o(g-¢°)|, ¢°>0,T,>0,0>0,
k=1

associated with the same update laws (4.16), except that the basis functions and the bounding
control functions are different from the previous case, that is, for up, since in this case they are
specific to the isolated fault. Then, the authors proved that under the assumption of bounded
uncertainties 7;(x,u,t) and bounded fault approximation-error, that is, ¢;(x;) — ;(E, é,-)
bounded Vi, that all the signals and parameter estimates are uniformly bounded, that is,
z(t), 7] (t), ¢(t), and x(t) are bounded Vt. However, this approach is based on the special
structure of the faulty model (4.9), and assumes the availability of the measurements of state
vector for the feedback control. Eventually, the FDD and FTC presented here are based on the
assumption of the fault being part of an apriori known set of expected fault’s models.

4.4. Switched Control-Based Active NFTC

We report here the schemes introduced in [25, 26], where the authors consider both problems
of FDD and FTC for a class of nonlinear systems, with input constraints. The model studied
are of the form

X = f(x) + Gy (%) (e (¥) + Uk n))
y(x) =h(x), wu(t) €Uy, uke(y) +rwe € Uk, (4.18)
k) eK={1,...N}, N<ow, Uc={ueR":[uf<u™), u"™>0 Vk,

where x € R" is the vector of state variables, y € R™ is the vector of measurable variables,
and uy (y) € R™ denotes the control vector under the kth configuration. The additive actuator
faults are modelled by k. The vector function f and the matrices Gi(x), Vk are assumed
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to be sufficiently smooth on their domains of definition. For each value of k € K the
system is controlled via a different set of manipulated inputs, which defines a given control
configuration. The nonlinear model (4.18) is associated with the following assumption.

Assumption 4.6. Consider the system (4.18) in configuration k under state-feedback. Then for every
input ujk, j =1,...,m, there exists a unique state x;x, i = 1,...,n, such that with x; as output,
the relative degree of x; x with respect to ujx and only with respect to u;y is equal to 1.

This assumption means that each actuator is the only one influencing at least some
state. This implies that the effect of a specific actuator on the system evolution is completely
distinguishable, which allows fault isolation in that specific actuator. This sufficient fault
detection/isolation condition, can be relaxed if the input enters the model in an “upper-
triangular” or “lower-triangular” form (refer to [25, Remark 3]). The authors introduced
a nonlinear FDD in the following theorem.

Theorem 4.7. Consider the model (4.18) in configuration k which satisfies Assumption 4.6, under
the control law:

uk = —wi (%, uf™) (Lg, Vi (x))T,

w0 G0 D

wie (o, uf™) = |bl (x) |2 <1 + \/1 + (”?ax|b£(x)|2>2> (4.19)
0, bi(x) =0,

ak(x) = L Vi(x) + pcVi(x),  px >0,
bi(x) = Lg, Vi (x).

assuming that the set @y (up™) = {x,s.t. L Vi(x) + prVi(x) < ul®™|(Lg, Vi ()|}, contains the
origin and a neighborhood of the origin.

Let the fault detection and isolation filter for the jth manipulated input in the kth
configuration be described by

ii,k = fi(xl,...,o?i,k,...,xn) + g]-,k[i](xl,...,fi,k,. ..,xn) X uj,k(xl,.. .,fi,k,...,xn)
- (4.20)
€ik = Xik — Xi,

where gj«[i] denotes the ith element of the vector gjk, Xix(0) = x;(0) and the subscripts i, k
refer to the ith state under the kth control configuration. Let T{ . be the earliest time for which
iijx #0, then the fault detection and isolation filter of (4.20) ensures that lithij,; ei(t)#0.
Also, ek (t) #0 only if 71 (s) #0, 0 < s < t.

Then, the NFTC has been introduced in the following theorem.
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Theorem 4.8. Consider the closed-loop system (4.18), (4.19), and let x(0) € Q, for some ky € K,
with Qy being defined as: Qi (up™) = {x € R" : Vi (x) < '™} C Dk, ™ > 0is a level set of V.
Let Tk, be the earliest time such that e;x, # 0 for some i corresponding to a manipulated input u;y, in
(4.20). Then, the following switching rule:

k(t) =

{ko, 0<t< T]',ko, (4 21)

q # kO/ t 2 Tj,ko/ x(T],ko) E Qq/ uj,ko ¢ uq/

guarantees asymptotic stability of the origin of the closed-loop system (4.18) and (4.19).

This active NFTC are applicable for the general class of nonlinear models affine in
the control, and are based on a state-feedback (the authors proposed in the same papers an
extension to the case of output feedback). However, they require Assumption 4.6 to hold to
be able to detect and isolate the actuator fault. Another point is that this scheme does not
consider multiplicative actuator faults.

4.5. Predictive Control-Based Active NFTC

The authors in [28, 29] study the problem of NFTC for nonlinear models affine in the control,
with input constraints and uncertainties. The nature of faults treated is actuator faults, under
the assumption of controllability of the faulty system. Let us recall below the main result of
these work.

The models considered are of the form

X = f(x) + Ge(x)uk + Wi (x)0k(t), ux € Uy, Ok € O,

(4.22)
ke{l,...,N}, N<oo,

where x € R" denotes the vector of state variables, u € U, C R™, U, = {u € R™, s.t. |u| <

up®™}, and u™ > 0 Vk denotes the vector of constrained inputs. The vector Ok (t) =

;- QZ]T € O C R denotes the vector of time-varying uncertainties but bounded variables
taking values in a nonempty compact convex subset of R7. The vector f(x) (s.t. f(0) = 0), the
matrices G (x) = [gi(x) -+ g"(x)], gL €R", i=1---m,and W(x) = [w](x) -+ w](x)], w €
R", i =1---g, are assumed to be sufficiently smooth on their domain of definition. For each
value of the index k the process is controlled via a different manipulated input, which defines
a given control configuration. Switching between the available N control configuration is
controlled by a higher-level supervisor, which ensures that only one control configuration
is active at any given time, and allows only finite number of switches over any finite
time interval of time. The main idea of this work is that the authors assume that after the
occurrence of a fault, the system will be associated with one of the N configuration and
then they build off-line a bank of N nonlinear model-predictive stabilizing controllers, and
based on the value of the state vector at the time of fault occurrence, they switch among these
controllers to ensure the stability of the faulty system. To make the presentation of the NFTC
clear, we follow the same structure of the paper [28] and present first a Lyapunov-based
switched controller, then we present the associated nonlinear model predictive controller
(NMPC) and finally we present the NFTC based on this algorithm.
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The Lyapunov-based controller associated with the system (4.22) is given by the
bounded state feedback:

o m(®) +\ae@)? + @ ())?
U =-
Pr(x)? (1 + \/1 + (urz?axﬂk(X)f)

(Lew)'s (4.23)

where, V is a robust control Lyapunov function (RCLF) (as defined in [60, page 49]), ax(x) =
L Vie+ (prclll |+ O | Lws Viel) (Ul [1/ (U1l + k), et e (x) = L Viet-prel Ixl [+ O | L Viell, B (x) =
ILG, Vkll, Le Vi = [Lgt Vi -+ - LgnViel, Lw, Vi = [Lyt Vi - - Lyya Vie], 6b >0, s.t. ||6k(1)]| <67, Vt,
and px >0, yx > 1, ¢ >0.

The following convergence result has been reported in [28] and proven in [61]: let
Hk(Gi, up™) = {x € R" : ayx(x) < up®™pPr(x)} and assume that Q = {x € R" : Vi(x) <
) C Hk(eb,uﬁ‘ax), for some ;'™ > 0. Then, given any positive real number, d, s.t.: D} =
{x e R" : ||x|| < dj} C Q and Vx € Q, Fei* > 0, s.t. if ¢/ (yx — 1) < €} the solutions of the
closed-loop system (4.22) and (4.23) satisfy x(t) € Qk, Vt and limsup, , _[|x()|| < d.

We also need to recall a convergence result from [28], that characterizes the behavior
of the solutions of (4.22) and (4.23), when the continuous controller (4.23) is implemented in
discrete time. The result is as follows: consider the system (4.22) for a fixed k with 6, =0, Vt,
associated with the controller (4.23). Let ux(t) = ui(jAk), jARk <t < (j+1)Ag, j=0,...,00.
Then, Vdx > 0,3A7 >0, 6, >0, €; > 0s.t.if Ax € (0,A7] and x(0) € € then x(t) € Q Vt
and limsup, , _[|x(t)]| < dk. Also, if Vi(x(0)) < 6, then Vi < 6, V7 € [0,Af) and if &) <
Vi (x(0)) < ¢, then Vi (x(7)) < —e; V[0, Ag).

Next we report the Lyapunov-based predictive control associated with the Lyapunov-
based controller (4.23). The following result has been reported in [28] and proven in [62]:

Consider the system (4.22), for a fixed value of k, with 6x(t) = 0, Vt, associated with
the following NMPC controller:

min{J(x,t, ux), ux € Sk},

t+T

Tt = [ (I 01, + lalfy, )ds, Q> 0, Re >0,

t

) (4.24)
s.t. X = fr(x) + Gi(x)uy,

Vi(x(1)) < =€ if Vi(x(t)) > 6,, T[t,t+ Ak),
Vi(x(1)) <6 if Vi(x(t)) <6, T€|[tt+Ak),

where e, 6, are as defined above, Sy is the family of piecewise continuous functions with
period Ax mapping [f,t+T] into U, T > 0 is the horizon of the optimization, and Vi is RCLF
that yields a stability region Q, under continuous implementation of the controller (4.23),
with a fixed px > 0. Then, Vdy > 0,3 A} >0, and 6;( > 0, s.t., if x(0) € Qr and A € (0, AZ],
then x(t) € Qk, Vt and limsup,_, _[[x(t)|| < dk.

Finally, we can report the predictive control-based NFTC as follows: Consider the
system (4.22), for which the bounded controllers (4.23) and Lyapunov-based MPCs (4.24)
have been designed and the stability regions Q;, j = 1,...,N, under the Lyapunov-based
MPCs have been explicitly characterized. Let dmax = maxj=1,.,ndj, d; as defined above, and
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let Qy = U;zjl\[Q] Define J;(t) = J'?Tj (llx(s, x, DI, + |lu}lI%, )ds, where t +T; > t is the earliest
time at which the state of the closed-loop system under bounded controller enters the level
set defined by V;(x) = 6}. Then, let k(0) = i for some index i € {1,..., N} and x(0) € Q;. Let

Tlf be the earliest time at which a fault occurs. Furthermore, let f = {j : s.t. j#i, x(Tif ) € Qj},
and let [ be such that J; = minjef J;. Then, the following switching rule

i, o0<t<T/,
k(t) f (4.25)
I, t>T

guarantees that x(t) € Qy, Vt > 0and limsup,_, ||x(t)|| < dmax-

To avoid further overload this paper with long equations, we have reported here only
the NFTC in the case without uncertainties, that is, 8x(t) = 0, Vk, Vt. The interested reader
may refer to the references [28, 29] for the uncertain case.

This active NFTC, based on the computation off-line of a bank of robust nonlinear
controllers, is valid for general nonlinear models affine in the control, however, it is based
on the availability of a robust control Lyapunov function in closed-from, which is usually
not easily accessible [60]. We can also point out, that in these work [28, 29], the authors
assumed the availability of a FDD bloc, and did not consider the problems of fault isolation
and estimation delays as well as FDD uncertainties.

5. Conclusion

In the last decades there have been a myriad of results on FTC. Many of those work
concentrated initially on linear FTC, and more and more researches started focussing on
the nonlinear FTC problems, the later being more challenging than the linear FTC because
of the difficulties intrinsic to nonlinear systems. However, many encouraging results have
been obtained. We wanted to summarize in this paper the results obtained recently on NFTC.
We recalled in the introduction most of the FTC work on nonlinear models. We reported
the detailed controllers of some of these results. Unfortunately, it was not possible to report
in details all the available results. Our choice was mainly motivated by the degree of the
“model-nonlinearities”, and we reported the work that, in our opinion, treated some general
degree of nonlinearities. Although many interesting results have been obtained so far, we
believe that work treating fogether both problems of nonlinear FDD and nonlinear FTC in an
effective applicable methods, are still missing. Real-life applications of those NFTC theories are
also a missing part of the recent work. To conclude, the case of infinite dimension nonlinear
models, that is, nonlinear partial derivative equations-based models, has yet to be studied,
some recent results in this directions are presented in [63-66].
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In the recent years, much attention has been paid to the research and development of structural
control techniques with particular emphasis on alleviation of wind and seismic responses of
buildings and bridges in China. Structural control in civil engineering has been developed from the
concept into a workable technology and applied into practical engineering structures. The aim of
this paper is to review a state of the art of researches and applications of structural control in civil
engineering in China. It includes the passive control, active control, hybrid controland semiactive
control. Finally, the possible future directions of structural control in civil engineering in China are
presented.

1. Introduction

Civil engineering structures located in environments where earthquakes or large wind forces
are common will be subjected to serious vibrations during their lifetime. These vibrations
can range from harmless to severe with the later resulting in serious structural damage and
potential structural failure. The traditional method of antiseismic technique is to increase
the stiffness of structures by enlarging the section of columns, beams, shear walls, or other
elements, which will enhance the seismic load because of the added mass to structures. As
a result, although the cost of structures with traditional antiseismic technique is increased a
lot, the safety level of structures is less improved. Another disadvantage of the traditional
antiseismic technique is that it focuses on the protection of the structure but neglects the
facilities inside the structure. Hence, it cannot be used in some structures whose facilities
inside them are very important, such as hospitals, city lifeline engineering, nuclear plants,
museum buildings, and the buildings with precise instruments.
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Even though engineers cannot design a building which is damage-proof during
earthquakes and strong winds, the structural control is promising in reducing the vibration
of structures. Different from the traditional antiseismic method, the structural control
technique suppresses the structural vibration by installing some devices, mechanisms,
substructures in the structure to change or adjust the dynamic performance of the structure.
The structural control system is commonly classified by its device type resulting in four
general control types: passive, active, hybrid, and semi-active control. An active control
system is the one in which an external source power control actuators apply forces to the
structure in a prescribed manner including active tendon system (ATS) and active mass
damper (AMD). A passive control system does not require an external power source, such
as base isolation method, energy dissipation devices, tuned mass damper (TMD), and
tuned liquid damper (TLD). The hybrid control implies the combined use of active and
passive control systems. Semiactive control systems are a class of active systems in which
only small magnitude of external energy is needed to change the parameters of control
system, such as active variable stiffness (AVS) system and active variable damper (AVD)
system.

In the recent years, serious efforts have been undertaken in structural control and
fruitful achievements have been made in China. Structural control has been developed
from theoretical analysis and experimental research into engineering applications. A set of
techniques including base isolation, energy dissipation, tuned mass dampers, tuned liquid
dampers, active and semi-active control methods have been used in newlybuilt structures or
existing buildings, bridges, facilities, and other structures in China. In this paper, the state of
art of vibration control techniques, including theoretical and experimental studies, practices
in civil engineering are reviewed. The possible future directions of structural control in civil
engineering is discussed.

2. Passive Control
2.1. Base Isolation

The base isolation system was developed as one of remarkable technologies to reduce
the seismic load of building and equipment. There are five kinds of materials that have
been used for isolators in China, including sand layer, graphite lime mortar layer, slide
friction layer, roller and rubber bearing. The rubber bearing is the one used mostly in
China. Relatively easy to be manufactured, isolation bearings are made by vulcanization
bonding of sheets of the rubber to thin steel reinforcing plates. The bearings are very stiff
in the vertical direction, while quite flexible in the horizontal direction. Under the excitation
of horizontal earthquakes, the fundamental vibration period of an isolated structure can
be shifted from a short-period range to a long-period range. Thus, the horizontal seismic
response of the isolated structure is significantly less than the unisolated structure. The
significant advantages of structures with rubber bearing isolators are summarized as follows

[1].

(1) The isolated structures are safer in strong earthquake. The isolators are very
effective to reduce the seismic response of structures and can prevent the structures
from damage or collapse. Compared to the traditional antiseismic structures, the
responses of isolated structures can be reduced to 1/2~1/8 of the one of traditional
structures, according to the testing results and the records in real earthquake.
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Figure 1: Different locations of Isolation Layer in Structure. (a) Basement isolation; (b) Story isolation with
isolators on the top of the first story; (c) Story isolation with isolators on certain story of supper structures;
(d) Top isolation; (e) Skywalk linking isolation.

(2) The building cost of isolation structures can be saved 3% ~ 15% of the cost of the
general buildings according to the final statistics results of 30 buildings with rubber
bearings completed in southern, western, and northern China.

(3) The seismic isolation rubber bearing system has wide ranges of application, both
in newly designed structures and existing structures, important buildings and civil
buildings especially for house buildings, for protecting the building structures, and
for protecting the facilities inside the building.

(4) The safely working life of rubber bearings is over 70-100 years according to the
permanent testing and investigation, which is larger than the working life of
structure itself.

In order to solve some problems for more wide application of isolation systems, a
great number of tests for rubber bearings and shaking table tests for building models were
carried out by Zhou and Xian [2]. The test of mechanical characteristics for isolators includes
the compression tests, compression with shear cycle loading tests. The test of durability
for isolators includes low cycle fatigue tests, creep tests, and ozone aging tests. The test of
structural system includes shaking table tests for large-scale structural model.

There are five kinds of locations of layer with rubber bearings in China [3]. Isolation
layer is located on the base of building, which is the most common method. The isolation
layer can be located on the certain story of the basement, which is used in many structures
as shown in Figure 1(a). The isolation can also be located on the top of the first story
(Figure 1(b)) or certain story of superstructure (Figure 1(c)). The isolation layer located
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on the top of the building (Figure 1(d)) is always used to add 1-2 stories on the top of
existed building for seismic retrofit. Isolation layer located at the joints between skywalk and
buildings (Figure 1(e)) is used to separate the different mode shapes of buildings connected
by skywalk.

In the case of a seismic isolated building with a large height-to-width ratio (HWR),
the overturning moment at the level of seismic isolated layer may exceed the overturning
resistance supplied by the gravity, which will result in the disconnection of bearings from the
superstructure and produce an internal damages of rubber layers, even lead to a destroy of
the entire building. The limits of the HWR for isolated building with the laminated rubber
bearings under different conditions subjected to earthquake excitations were investigated
by Li and Wu [4]. According to the numerical results, it has been found that the effects of
site soil conditions on the HWR limit values are very important, in which the softer the site
is, the smaller the HWR limit value is under different seismic intensities. The predominant
period of isolated building also plays a considerable role in the HWR limit value namely, the
isolated building with a longer period may have a relatively large HWR value. The stiffness
of superstructure has little effects on the HWR limit value.

Most structures are simplified as planar models in base isolation design. However, a
lot of structures are eccentric due to plan irregularity, mass eccentricity, elevation irregularity,
and so forth The earthquake is essentially multidimensional and so is the structural response
excited by earthquake, which will result in the torsionally coupled vibration that cannot
be neglected. Based on many numerical analyses on different soil sites during the action
of earthquakes, simplified formulate of torsional seismic actions for base-isolated eccentric
structures is presented [5]. It is shown that the proposed formulations have good accuracy
compared with others. It provides a convenient and simplified method for the structural
design of base-isolated eccentric buildings with rubber pads.

Design principles of base isolation and energy dissipation systems are also included
in Chinese Code for Seismic Design of Buildings published by the agency of Ministry of
Construction in 2001. The design codes for base isolated highway bridges and base isolated
railway bridges were also published by the agencies of Ministry of Transportation and
Ministry of Railway. Currently, there are three different sets of technical codes on seismic
isolation in China [3].

(1) Technical Specification for Seismic Isolation with Laminated Rubber Bearing Isolators
(CECS 126: 2001). This is the national code for design and construction of buildings
and bridges with seismic isolation in China.

(2) Standard of Laminated Rubber Isolators (JB 118-2000). This is the national standard of
isolators for laminated rubber bearing in China.

(3) Seismic Isolation and Energy Dissipation for Building Design (Chapter 12 in the code for
seismic design of buildings, GB 50011-2001). This is a part of national code in China
for seismic design of buildings.

Some main introductions for all these three codes (standards) on seismic isolation in
China are described as below [3].

(1) Provide the design methods of seismic isolation for buildings, bridges, special
structures, and industry facilities.

(2) Provide the design methods of seismic isolation for new structures and the retrofit
of existed structures.
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(3) Allow to follow three design levels depending on the importance of structures
and requirements of owners in the areas with different economic situation in
China. Level 1, for general structures, using isolation will save building cost about
3% ~ 15%. Level 2, for important structures, using isolation will increase building
cost 3% ~ 5%. Level 3, for especially important structures, using isolation will
increase building cost 5% ~ 7%. But the isolation buildings designed by any level
will increase the seismic safety about 2 ~ 8 times compared with the traditional
antiseismic buildings.

(4) Provide two methods of structural analysis for seismic isolation of structures,
equivalent shear method, and time-history analysis. The equivalent shear method
is achieved by static analysis and only applicable for structures with height less
than 40 m or 10 stories, regular configuration, and predominant shear deformations.
Whereas, the time-history analysis can be used for all kinds of structures.

(5) Allow reducing the seismic shear force for designing superstructure, which can
save the building cost of general civil buildings, especially in some poor economic
areas.

(6) Control the maximum horizontal shear displacement Dy.x of isolation layer. The
value of D will not be larger than 0.55 times of diameter of bearing and
300% shear strain deformation of bearings. Dmax should be the total displacement
including both translation and torsion of structural system.

The first multistory house building with rubber bearing in China was completed in
1993, as shown in Figure 2 [3]. It is an 8-story building supported by 23 rubber bearings with
different diameters from 60 cm to 80 cm. The structure has undergone two strong earthquakes
in 1994 and 1996 and is still employed now without any damage. The isolated buildings with
the largest area in the world are named Isolation House Buildings on Subway Hub (IHBSH)
as shown in Figure 3, which is located nearly the center of Beijing [3]. There is a very large
platform composed by an RC frame with two sorties, which is used to put all equipment and
facilities for railway hub in it and cover the noise from railway hub trains. The size of platform
is 1500 m wide and 2000 m long. There are 50 house buildings built on the top floor of the
platform. The floor area of all isolation house buildings is approximately 480000 m? which is
the largest area using seismic isolation in the world. The rubber bearing layer is located on
the top floor of the platform, as shown in Figure 4. The great benefits are achieved by using
story isolation for this building complex including: increasing the safety of structures to 4
times of traditional design schemes, saving 25% of the construction cost, raising the number
of stories from 6 to 9, and solving the environmental problems of railway vibration and noise
in the city center.

The application of seismic isolators in China has proved that the isolation system is
more safe, economic, and reasonable than the traditional structural system. More than 500
full-scale implementations of base isolated buildings and bridges have been accomplished to
alleviate the earthquake and traffic induced response so far [6].

2.2, Energy Dissipation

An energy dissipation system is formed by adding some energy dissipaters into the structure.
The energy dissipaters provide the structure with large amounts of damping which will
dissipate most vibration energy from vibration sources and ensure the safety of structures in
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Figure 2: The first multistory house building with rubber bearing in China.

Figure 3: Front elevation of IHBSH.

earthquake or the comfort level in wind. Many kinds of dampers, including friction dampers,
viscoelastic dampers, viscous fluid dampers, lead dampers and metallic dampers have been
developed in China.

Friction provides an excellent mechanism of energy dissipation and has been used
for many years in automotive brakes to dissipate kinetic energy of motion. This kind of
dampers are made of ordinary materials with simple mechanical configurations; hence they
are applicable for multi-story and high-rise buildings. The behaviors of two different energy
dissipation dampers based on friction as shown in Figure 5 were studied by Zhou and Liu
[7]. The results showed that the friction energy dissipation dampers can dissipate a great
deal of earthquake input energy and the hysteretic behavior is stable. To satisfy the energy
dissipation requirements for earthquake in different seismic intensities of China, double-
phase friction dampers were proposed by Zhang and Yang [8]. The experimental results
showed that the proposed double phase friction damper can reduce the structural vibrations
both in small and strong earthquake. Wu and Ou [9] presented a kind of pseudofriction
damper to reduce the effects of additional stiffness in Pall friction dampers. Based on the
geometry nonlinearity of four-link mechanism of Pall-typed friction damper, the influence
of frame displacement, brace stiffness, damper slip force of a novel pseudoviscous frictional
damper as shown in Figure 6, is analyzed by Wu et al. [10]. The results showed that the
novel frictional damper has great hysteretic characteristics with remarkably smaller tension
force of brace than that of pall-typed friction damper, which is beneficial for frame columns
to improve its ductility. A damper with innovative composite friction material has been
developed by Xian et al. [11]. A full-scale test of this innovative friction damper and the
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Figure 5: Two types of friction dampers.

shaking table test for structural model with the damper were implemented, which showed
that the seismic responses of structures with dampers can be reduced 30% ~ 40%. The friction
dampers have been applied in engineering structures in China. For example, 134 passive
friction dampers with 100kN to 200 kN sliding force capacity have been implemented in
Shenyang Government Office Buildings in 1997 to retrofit this building, as shown in Figure 7.
The pseudodynamic tests of a 1/3 scale model of the building with and without friction
dampers were carried out to examine the seismic capacity of the retrofitted buildings [12].

Lead dampers have ideal elastic-plastic property with rectangular hysteresis curve.
The yielding limit of lead dampers cannot be adjusted after designed. Hence, in a strong
earthquake, the energy dissipation capacity of dampers will be low because of large
deformation. Whereas, in a mild earthquake, the dampers cannot yield to dissipate energy.
Innovative bend-shear and shear-type lead dampers which can attenuate the vibration of
buildings both in mild and strong earthquakes were developed by Zhou et al. [13].

Viscoelastic dampers have the merits of dissipating energy at all deformation levels.
Therefore viscoelastic dampers can be applied in both wind and seismic protection. Some
commercial products of viscoelastic dampers in China are shown in Figure 8. The mechanical
model, design technique, and optimum method for viscoelastic dampers have been
developed in China [14, 15]. Viscoelastic dampers were also applied to engineering structures
for suppressing the structural vibration caused by wind or earthquake in China, such
as Sugian Communication Building (Figure 9) and Chaoshan Xinhe Building (Figure 10)
[16,17].

Fluids can also be used to dissipate energy; hence many kinds of viscous fluid dampers
have been proposed. Commercial viscous fluid dampers with different capacities were



8 Mathematical Problems in Engineering

@) S [E)7 e

\
\
1
-
(\
\
\
\
N
|
1
1
/
~
-
|
J o
||/’c\
uq;

_j_

@ @) [o o]

(a) Assembly diagram (b) Core plate (c) Sectional view

Figure 6: Pseudoviscous frictional damper with convex frictional surface.
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Figure 7: Shenyang Government Office Building retrofitted by friction dampers.

also available in China (Figure 11). Viscous dampers have been used in some engineering
structures in China, including Beijing Yingtai Center, Yizhenyuan building of Huaiyin City,
Beijing Exhibition Building, an office building of Suqian City, Construction Building of Sugian
City, an office building of Xi'an City, and Beijing Restaurant. The centre tower building of
Beijing Yintai Center is a 60-story steel structure with 248 m in height and susceptible to wind,
so 73 sets of viscous fluid dampers were installed in it (Figure 12) [18].

Metallic dampers dissipate energy input to a structure from an earthquake through
inelastic deformation of metals. Based on the experimental study and theoretical analysis
of the fatigue properties of X-shape steel plate energy dissipaters, the nonlinear method of
steel plate of the energy dissipater was established and the strain-fatigue parameters are
determined, which provide an important base for the design of mild steel energy dissipaters
[19]. In most cases, Metallic dampers dissipate energy through the nonlinear property of steel
plate after yielding out of plane. Dual-functional mild steel dampers are presented by G. Li
and H. Li [20], as shown in Figures 13 and 14, which is to strengthen the initial stiffness
by extending the steel plate in its own plane and to increase the energy-dissipating ability
by changing the geometric shape of the steel plate. Results from theoretical analysis and
quasistatic experiments showed that these types of mild metallic dampers not only provide
certain stiffness in normal use, but also are of good ability of the seismic energy dissipation.
Dual-functional mild metallic dampers have been installed in No. 3 Experiment Building of
Dalian University of Technology (DUT) in China to increase the stiffness of the first floor and
suppress the earthquake induced vibration [21], as shown in Figure 15.

For some old designed buildings based on the dated building design codes in which
the seismic protection was seldom taken into account; both the land developers and engineers
have to determine whether to demolish them and then set up new ones or reuse the original
buildings through making some innovations to meet the current need. Due to economy, many
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Figure 9: Viscoelastic dampers in Sugian Communication Building.

old existing buildings have been increased with new stories on the top of them in China.
A new type of energy-dissipated structural system for the existing building with the story-
increased frame was presented [22], in which the sliding-friction layer between the lowest
increased floor of outer frame structure and roof of original building was applied, and energy-
dissipated dampers were used for the connections between the columns of outer frame and
each floor of original building, as shown in Figure 16. The experimental results showed that
friction and energy-dissipated devices are very effective in reducing the seismic response and
dissipating the input energy of model structure. A four-story office building, built up in 1950s
without the seismic design along Beiling Street in Shenyang City of China because there was
no any seismic codes at that time in China, was designed and analyzed with an increased
four-story outer frame structure on its top by using the passive control method presented.
The existing building is composed of brick masonry structure; its design is not in compliance
with the current Seismic Code of China. The seismic protection intensity on this building site
is VII degree, and the site soil belongs to the type II in Chinese Code. The practical building
story-increased structure after construction is shown in Figure 17. The results showed that
the good seismic-reduction effectiveness on displacements and accelerations can be achieved
by installing the friction and energy-dissipated devices in the story-increased structures.
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Figure 10: Viscoelastic dampers in Chaoshan Xinhe Building.
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Figure 11: Some commercial viscous dampers and hysteresis curve.

Figure 12: Viscous fluid dampers installed in Beijing Yintai Center.
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Figure 14: Double X type mild steel damper and its hysteresis curve.

2.3. Tuned Mass Damper

The concept of the tuned mass damper (TMD) consists of a secondary mass with properly
tuned spring and damping elements, providing a frequency-dependent hysteresis that
increases damping in the primary structure. The frequency of TMD should be tuned to
the same as the one of the controlled structures to get the best control results. During
an earthquake, TMD will move against the direction of main structural vibration and an
inertia force will be acted on the structure to reduce the response of the structure. One
TMD can attenuate only the first mode response of a structure with its frequency tuned to
the fundamental frequency of the structure. However, the first several modes of a highrise
structure are primary and the anticipated response reduction cannot be achieved if only the
first mode is controlled. Li and Wang [23] presented the method of using multiple TMDs
to control multiple modes of structures and got obvious results of vibration reduction. In
China, the TMD system may be formed by adding one or more stories supported by rubber
bearings on the roof of main building structure, as shown in Figure 18 [3]. TMD control
system was applied in Zhengzhou International Conference and Exhibition Center, as shown
in Figure 19. Tuned Mass dampers were also used to suppress the human induced vibration
of pedestrian bridges [24-26]. Six sets of TMD system were installed in the box beam of a
52 m-span pedestrian bridge in Shenyang City of China, as shown in Figure 20.
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Figure 15: Double function mild metallic dampers in the No. 3 Experiment Building of DUT.
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Figure 16: Test model of story-increased system.

2.4. Tuned Liquid Damper

Similar in concept a TMD, the tuned liquid damper (TLD) and tuned liquid column damper
(TLCD) impart indirect damping to the system and thus improve structural performance. A
TLD absorbs structural energy by means of viscous actions of the fluid and wave breaking. In
a TLCD, energy is dissipated by the passage of liquid through an orifice with inherent head
loss characteristics.

TLDs are mostly used to reduce the wind induced vibration of structures in
engineering. Zhang et al. [27] carried out shaking table test and verified the vibration
control result with TLD subjected to earthquake. The research shows that TLD is applicable
for long period structure. However, it is not enough to consider only the first mode of
structural response. Li et al. [28] presented the multimodal vibration control of structures
using multiple TLDs and carried out experimental verification. The experimental results
showed that reduction effectiveness of the seismic responses for controlling two modes is
better than controlling only a single mode.

The frequency of TLCD is related to the length of liquid in the TLCD tube. The length
of TLCD maybe too large to exceed the available space of the building for structures with
low frequencies. Yan and Li [29] presented the adjustable frequency tuned liquid column
damper by adding springs to the TLCD system, which can modify the frequency of TLCD
and expended its application ranges (Figure 21).
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Figure 17: The photo of story-increased building.
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Figure 21: Adjustable frequency TLCD.

To suppress the torsionally coupled responses of structures, Huo and Li [30] analyzed
the control performance of circular tuned liquid damper (CTLCD). Subsequently, TLCD and
CTLCD were used to control the torsionally coupled vibration of structures subjected to
multidimensional earthquake excitations (Figure 22). The optimal parameters of the liquid
dampers are designed for the structures excited by bi-directional seismic based on Genetic
Algorithms [31].

Recently, TLD control scheme was proposed to reduce wind-induced vibration of
Dalian International Trade Center in China, as shown in Figure 23, which is of 81 stories
(including one story basement) with the size of 339 m high and 77.7 m long in the east-west
direction and 44 m wide in south-north direction. Since the basic wind pressure in the Dalian
region is 0.75 KN/ m? and the mansion is slender, that is, the ratio of height over width is 6.7, it
is relatively more flexible to large wind-vibration action in the horizontal direction. According
to numerical results, the designed TLDs in the building can efficiently reduce the structural
vibration, and the effects of vibration reduction are going to be better as the increase of liquid
mass in tanks, in which the reduction rates may be as high as 19% for structural acceleration
response that influences the human comfort.

3. Active Control

Active control systems are used to control the response of structures to internal or external
excitation, such as machinery or traffic noise, wind or earthquakes, where the safety
or comfort level of the occupants is of concern. Active control may employ hydraulic,
pneumatic, electromagnetic, or motor driven ball-screw actuation. The desirable performance
of structural systems can be achieved through active control, whereby actuators excite the
structure based on the structural response information measured by sensors. Control of
structures involves a number of disciplines, including structural dynamics, control theory,
and material engineering. The practice of active structural control is still in doubt, therefore,
resulting in the slow shift to application from experimental and theoretical study stage.
Active mass damper (AMD) is one of the most common control device employed
in full-scale civil engineering. AMD system is designed and installed in the Nanjing
Communication Tower in Nanjing, China (Figure 24). The physical size of the damper
was constrained to a ring-shaped floor area with inner and outer radius of 3m and 6.1 m,
respectively. In addition, the damper was elevated off the floor by steel supports with Teflon
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Figure 23: TLD control scheme for Dalian International Trade Center of China.

bearings to allow free access to the floor area. The final design of the active mass damper is
shown in Figure 24 [32]. The AMD control methods for eccentric building structures using
artificial network, genetic algorithm, and fuzzy logic were presented by Li and Jin [33] and
Jin and Zhou [34].

4. Hybrid Control and Semiactive Control

A hybrid control may use active control to supplement and improve the performance of
a passive control scheme. Alternatively, passive control may be added to an active control
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Figure 24: Nanjing Communication Tower with AMD.

scheme to decrease its energy requirements. Hybrid control schemes can sometimes alleviate
some of the limitations that exist for either a passive or an active control acting alone, thus
leading to an improved solution. One of the hybrid systems is combination of TMD or
TLD and active control devices. TMD or TLD is used to control mild responses of structure
and active control devices are used to alleviate the large amplitude responses of structures.
Hence, the energy required to drive hybrid system is reduced a lot, and the applicability and
reliability of the system are increased. According to the characteristics of earthquake response
of high-rise buildings with spacious first story, a kind of hybrid control system with hydraulic
damper system (HDS) and AMD is proposed. The experimental results of shaking table and
simulation analysis indicate that the hybrid control system HDS-AMD has great potentialities
for vibration control of civil engineering structures [35]. Guangzhou TV and Sightseeing
Tower is a tower currently under construction in Guangzhou City in China, which is total
610m high including the 450 m-high main tower and a 160 m-high antenna. The tower is a
very flexible structure with the first period about 10.03 and susceptible to wind, hence hybrid
TMD control system is proposed for the vibration reduction, in which two water tanks are
used as mass block, as shown in Figure 25 [36].
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Figure 25: Hybrid TMD control system for Guangzhou TV Tower.

One of the most attractive features of semi-active control systems is that the external
energy required for them to operate is usually orders of magnitude smaller than for active
systems. The semi-active control system is much more reliable and simpler than general
active control system, and more effective to reduce the structural response than other passive
control system. Examples of semi-active control device include variable orifice fluid dampers,
variable stiffness devices, semi-active tuned liquid dampers, and controllable friction devices.
The behavior of active variable stiffness system is experimentally studied by Li and Liu [37].
Both of the structural analysis and a small-scaled model shaking table test indicated that
the variable stiffness system not only changed frequencies of controlled structures but also
increased damping ratio. A hydraulic actuator with a controllable orifice was developed by
Sun [38]. Li et al. [39] experimentally investigated the electromechanical behavior, which is
dependent on exciting frequency and applied voltage. To improve the control performance
of passive TLCD, Li et al. proposed the semi-active TLCD control strategy based on Artificial
Neural Network (ANN) and fuzzy logic [40, 41].

5. Structural Vibration Control with Smart Materials

Smart materials refer to materials that are “responsive.” Often the response is the conversion
of one form of energy into another in useful quantities. Commonly used smart materials in
vibration control include Magneto-rheological (MR) fluids, piezoelectric ceramics, and shape
memory alloy. Magnetorheological (MR) dampers are one of the most promising devices
for structural control of civil engineering structures. MR dampers have the capability to
provide large controllable damping forces and to dynamically change their properties to
accommodate varying loading conditions and usage patterns. X.-L. Li and H.-N. Li [42]
proposed a new MR mechanical model which is called double-sigmoid. The outstanding
feature of the proposed model is a fact that magnitude of control current and a wide range of
excitation conditions are under consideration. The identification of parameters is relatively
easy and the physical concept of the model is obvious through this method. The proposed
double-sigmoid MR mechanical model is as follows:

1 — oK) .
fd=fym+cb'x/ (5.1)
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Figure 26: Force-displacement and force-velocity curves of different models.

Figure 27: Eccentric vibration control experiment with MR damper.

where f; is the force provided by MR dampers, f,, is the yielding force of MR dampers, k is a
constant, x is the velocity of MR dampers, C;, is the damping coefficient of MR dampers, %3,
is traversing velocity of force-velocity curve. To verify the accuracy of proposed MR damper
model, force-displacement and force-velocity curves for three different models are computed.
Comparison of theoretical and experimental results is shown in Figure 26. It can be seen
that the phenomena of the hysteresis nonlinear properties in higher velocity region and the
saturation characteristic in lower velocity region of MR dampers can be described accurately
using proposed model.

MR damper was proposed to reduce the torsional response of eccentric buildings. The
shaking table experiment of a 2-story frame-shear wall structure model with an asymmetric
stiffness distribution was carried out, as shown in Figure 27 [43]. The experimental results
showed that the coupled translation and torsion response were significantly mitigated.

256 MR dampers with 2.26 kN capacity at the cables of the Dongting Lake Cable-stayed
Bridge of China to suppress the wind-rain induced dramatic vibration, as shown in Figure 28
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Figure 29: Binzhou Yellow River Highway Bridge with MR dampers.

[44]. 40MR dampers with 8 kN capacity at the cables of Shandong Binzhou Yellow River
Highway Bridge, as shown in Figure 29 [45].

The variable friction that dampers with a PZT actuator has been proposed by Ou [45]
and other researchers. Although the specific configuration of the damper is different, the
mechanism to adjust sliding force is similar, that is, the nominal pressure force can be adjusted
through applying voltage to the PZT layer due to its reverse piezoelectric property. A new
design for piezoelectric friction damper was presented by Li et al. [46]. This piezoelectric
friction damper was developed by combining the existing slot bolted connector design and
the piezoceramic actuator. The schematic of this design is shown in Figure 30. It is composed
of tube piezoceramic stack actuators, load cells, preload bolts, an upper plate, a sliding plate,
and a lower plate. Three plates are slot-bolted together so that sliding takes place among
the sliding plate, upper plate, and lower plate. This type of semiactive piezoelectric can
be connected to the beams or floors using chevron braces through the connecting plates.
A preload is applied to the piezoceramic actuators to avoid slack and constraining the
deformation of actuators.

Shape memory alloys (SMAs) are multifunctional materials as they have self-sensing,
self-actuating and energy dissipation properties. Many researchers focus on developing
SMA-based isolators with self-centering performance. Two kinds of self-sensing, SMA
dampers are developed by Li et al. [47]. The self-sensing SMA dampers have following
characteristics: (5.1) the SMA wires are always elongated during vibration no matter
which direction of the controlled structure move in; (2) the SMA dampers can self-sense
deformation, and thus resulting in a potential way to quantificational assess the safety and
damage of the controlled structures post-earthquake hazards; (3) one of SMA dampers can
dissipate much more energy because the configuration of the SMA damper with amplifying
function deform the SMA wires in the damper larger than the corresponding drift of the
controlled structure. Ren et al. presented mechanical model of X type SMA damper and
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Figure 30: Schematic of a new piezoelectric friction damper.
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Figure 31: Energy dissipation and recentering SMA dampers.

a one-dimensional strain-rate dependent constitutive model for SMA [48, 49]. A new type
of SMA damper was proposed utilizing the energy dissipating and recentering features
of superelastic SMA, as shown in Figure 31 [50]. The research results showed that the
innovative SMA damper has both the energy dissipating and recentering features with the
hysteretic loop under cyclic loading-unloading. The hysteretic behaviors of the damper can
be modified to best fit the needs for passive structural control applications by adjusting the
pretension of the Nitinol wires. An innovative multidirectional shape memory alloy damper
was developed by Ren et al., as shown in Figure 32 [51], which can dissipate energy on the
any direction of horizontal plane and recenter on vertical and torsional direction.

6. Conclusions

The researches on structural vibration control have made great achievements, and some
control devices have been applied to full-scale engineering structures in the recent years in
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Figure 32: Multidimensional SMA damper.

China. However, most researches focus on linear vibration of structures. Studies on control
theories for nonlinear systems are still very limited so far and should be paid more attention
in the future. Performance-based method for all kinds of control systems should be developed
to satisfy the engineering requirements. More smart materials and new technologies should
be used to control the structural vibration subjected to dynamic load.
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This paper presents a model of a target tracking system assembled in a moving body. The system
is modeled in time domain as a nonlinear system, which includes dry friction, backlash in gear
transmission, control input tensions saturation, and armature current saturation. Time delays
usually present in digital controllers are also included, and independent control channels are used
for each motor. Their inputs are the targets angular errors with respect to the system axial axis and
the outputs are control tensions for the motors. Since backlash in gear transmission may reduce
the systems accuracy, its effects should be compensated. For that, backlash compensation blocks
are added in the controllers. Each section of this paper contains a literature survey of recent works
dealing with the issues discussed in this article.

1. Introduction

In many military and civilian applications we can find equipments assembled into moving
bodies, which must follow a target. They need to be isolated from the rotational motion of the
body where they are mounted, called body 0 in this work (see Figure 1). This can be achieved
with a system composed by a Cardan suspension (introducing therefore bodies 1 and 2), two
motors connected to each axis, and two rate gyros mounted in body 2 to measure the angular
absolute velocities in two directions perpendicular to the axial axis, defined in body 2. In
literature, this Cardan suspension assembly is often called double gimbaled system. With
the information provided by the rate gyros, a controller commands the motors in order to
compensate any perturbation that is transmitted to body 2. At the same time, the equipment



2 Mathematical Problems in Engineering

Pan axis |

O Gear reduction @ Encoder/tachometer
O Motor 1 @ Rate gyros
@ Motor 2

Figure 1: Target tracking system assembled in a moving body (0).

must also follow a target. Therefore some sensor (as radars, infrared-sensor, or vision sensors)
can be mounted in body 2 to provide information about targets angular errors with respect
to the axial axis. In this work this sensor will be called TAES (target angular errors sensor).
To point precisely to the target the controller must command the motors in order to keep the
angular errors equal to zero. Apparently, a contradictory task is sought at the same time: the
controller needs to stabilize the equipment with respect to inertial frame; however it must
also move the equipment to follow a target. This contradiction is only apparent, since both
actions can be combined efficiently in a two-loop controller. With information received from
TAES, the outer loop calculates the desired absolute angular velocities for body 2, in order to
point to the target. The inner loop pursues to keep body 2 absolute angular velocities in the
desired values, by comparing the information from the outer loop and the rate gyros. This
approach has been discussed in [1-4], although backlash in gear transmission has not been
considered in the numerical models.

In the present work, the controller described in Gruzman et al. [3] will be employed,
where the outer loop consists of a Fuzzy Logic Controller [5] and the inner loop is
a PI (proportional and integral) controller with antiwindup [6]. Since the mentioned
control approach is developed for systems without backlash in gear transmission, an extra
controller will be added to compensate problems caused by backlash. This controller provides
compensation values for the control tensions whenever the suspension axes pass through a
backlash gap in gear reduction.

In this work, actuators are permanent magnet DC motors controlled by armature
voltage. Sensor errors and noise are not considered, and the motion of body 0 is prescribed.
Control signals (voltages) saturation and armature current limiters are included in the model.
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Many authors, as Masten [2], Downs et al. [7], and Lee and Yoo [8], model gimbaled
target tracking systems in frequency domain. Such approach is convenient for control design
purposes but may often result in excessive simplification of the dynamic equations that are
usually highly nonlinear. In this work the differential equations are not linearized and are
integrated with respect to time. Besides, adequate dry friction torque models, gear backlash
models, armature current saturation, and controllers with inner and outer loops, having
different time delays, can be included with no further difficulties. The main contributions
of this work are, therefore, the presentation of the following:

(i) a sophisticated time domain target tracking system model,

(ii) a backlash compensation block that is added to the controllers previously
developed for systems without backlash in Gruzman et al. [3] in order to reduce
delays, oscillations, and inaccuracy caused by backlash.

2. Equations of Motion of the Device

The equations of motion of the device can be obtained by Lagrange formulation [9]. It is not
the aim of this work to study the dynamics of body 0; therefore it is assumed that its motion
is prescribed. The position vector of its center of mass (point a in Figure 1) with respect to
the inertial frame origin will be called od,. The position vectors of bodies 1 and 2 centers of
mass, with respect to the center of the Cardan suspension (point b), are, respectively, ,d. and
pdg. The orientation coordinates of body 0 can be given by the angles of successive rotations
called pitch (8), yaw (¢), and roll (y), presented in Figure 2.

It can be seen in Figure 1 that center-of-mass fixed reference frames are used. They are
chosen in such a way that zp and z; remain parallel to the pan axis, x; and x; to the tilt axis,
and vy, to the axial axis. The device has four generalized coordinates:

Writinng the Lagrange equations for the device, one has

dgoLy oL _,  dgoLy oL _,
dt \ 0a oa 7Y dt \ da,, oa,,

d (oL oL _ d( oL oL
i @ —ﬁ—éﬂr ar a"#m _%—éﬂm'

(i) a: rotation angle of body 1 (outer gimbal) relative to body 0 measured around the
pan axis;

(2.1)

(ii) ap: rotation angle of motor 1 rotor relative to body 0 measured around the pan axis;

(iii) p: rotation angle of body 2 (comprising the inner gimbal and the TAES) relative to
body 1 measured around the tilt axis;

(iv) PBm: rotation angle of motor 2 rotor relative to body 1 measured around the tilt axis.

The system’s Lagrangian is given by the sum of bodies 1, 2 and rotor 1 and rotor
2 Lagrangians, each containing the potential and kinetic energy of the bodies, which
are assumed to be rigid in this work. The right-hand side terms of (2.1) correspond to
nonconservative generalized torques. They include the viscous and dry friction torques
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Figure 2: Orientation coordinates of body 0 with respect to inertial frame (G).

(Tys and Tgy), the electromotive torques due to the motors (T,,), and the transmission torques
(Ts) between rotor 1 and body 1 and between rotor 2 and body 2:

‘;zl = lofat Tdf,a + Ts,a/
gam =lovfa, t Tdf,am + Ts,zxm + Tm,amr (22)
op = Torp + Tapp + Tsp,

gﬂm = Lof + Tdf,ﬂm + Ts“gm + Tm,ﬂm-

2.1. Torques due to Viscous Friction

The viscous friction torques at body 1, body 2, rotor 1, and rotor 2 axes are, respectively, given
by
va,a =—Cq-" d/
Togp=—cp P,
(2.3)

va,am = —Cqg,, - [Imr

Tofp = —Cpy * Prms

where cg, ¢g, Ca,,, and cp,,are the resultant viscous friction coefficients at body 1, body 2, rotor
1, and rotor 2 axes, respectively.

2.2, Torques due to the Motors

The electromotive torque in a rotor of a permanent magnet DC motor is given by (2.4), written
with rotors 1 generalized coordinate subscript:

Tm,am = km,am : iamr (2.4)

where k4, is the motor torque constant and i,, the armature current, whose value is
obtained by [10]

dia Ug,, — Ra . ia - kb am * Om
m — m m m “m , 2.5
dt I, 25)
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where R, I, and k;, are, respectively, the armature resistance, armature inductance, and back-
emf constant. The tension provided to the motor (u) is the control variable and its calculations
will be discussed in Section 4.

By a similar way, (2.4) and (2.5) can be written for rotor 2 as

Tm/ﬂm = kmxﬂm : lﬂm’ (26)

diﬂm _ uﬁm - Rﬁm . iﬁm - kb,pm : ﬂm (2 7)
dt lﬂm ’ ’

Armature current limiters are usually employed to avoid damages to the motors and
circuits. They keep the current between a maximum value (imax) and a minimum value (imin)-
If the system has limiters, then the first derivative of the currents with respect to time, given
by (2.5) and (2.7), is set to zero whenever

) . Ug,, — kba,, - .
(lam 2 lmax,am)/ <% 2 lmax,am>/
Xm
. . Ug,, — Kb, - @ .
or, (lam < lmin,am)/ <% < lmin,:xm)/
Am
. 2.8
. ug, —kvp,  Pm _ . @8)
(1ﬂm > lmax,ﬂm)/ T > Imax,By, |-

. . up, = kop,  Pm .
or, (lpm < lmin,ﬁm)/ <ﬂTpm < lmin,ﬁm> .

m

2.3. Torques between Rotor 1 and Body 1 and between Rotor 2 and Body 2

The torque between the rotor and the body driven by that rotor (body 1 or body 2) is
affected by backlash present at the transmission. When the body is transversing the backlash
gap, this torque will be equal to zero. The approach adopted in Nordin and Gutman [11]
and Lagerberg and Egardt [12] will be used to model flexibility and backlash in each set
comprising the rotor, gear reduction, and the body. Only two elements with nonzero inertia
are considered in each set. The first has the inertia of the rotor and the second, that will be
called load, has the inertia of the driven body. The inertias of the gears are usually disregarded
but can be included in rotors inertia. For that, it is necessary to calculate the equivalent inertia
of each gear in the rotor. There is also a shaft without inertia between the gear reduction and
the load. This shaft has coefficients of structural rigidity ks and structural damping cs. A
backlash with amplitude of 27 exists between this shaft and the load. The parameters kg, c,
and 27 correspond to resultant values for the entire set. Baek et al. [13] show how to obtain
the resultant backlash and coefficient of structural rigidity of a system comprising an actuator,
gear reduction, and a load. The following equations will be presented for the set rotor 1-body
1 (therefore the variable a, that corresponds to body 1 generalized coordinate, is used after
the “,” in the subscripts).
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Figure 3: Backlash model (between rotor 1 and body 1).

The gear reduction ratio is given by

X

Ny = . 2.
O1n (2.9)
The torque at the shaft without inertia is
Te,a = ks,u (ed,a - Gb,tx) + Cs,a (Qd,a - éb,u)/ (210)

where 0y, =60, —aand 0, =014, —a = a,, /N, — a.
The backlash angle is 0, and its first derivative is given by the following ordinary
differential equation (ODE):

e . k x
max <O, Oaa + S (Bax — Qb,a)> when Op 0 = 174,

s,
ks,rx

s

Ope = 3 O + — (O — Op,a) when |0y < a, (2.11)

A kS e
min<0, Opa+ —0Oan - Qb,,,,)> when 64 = 7,

s,a

A new state variable is introduced in this model (6;). In order to obtain 0;, (2.11) must
be integrated. The torques transmitted to the rotor 1 and the load (body 1) are, respectively,
given by

T Ten
S,y — T NT

N’ 2.12)

Ts,a =lea-
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For the set rotor 2-body 2, the equations are
Tep = ksra(ed,ﬂ - 9b,ﬂ) +Csp (éd,ﬂ - Qb,ﬁ), (2.13)

where O3 = 025 —aand 045 = 015 - = B/ Np - .
The backlash angle is 8, and its first derivative is given by the following ordinary
differential equation (ODE):

( . ksp
max| 0, Qd,ﬂ + C_(Gd'ﬂ - eb,ﬂ) when Gb,ﬂ = -1,
s.p

. .k
Opp = § Oap+ C—Z(Gd,ﬂ ) when |6,,4] < 13, (2.14)

) . ksp
min( 0,04 + P (Qd,p - Qb,ﬂ) when 0,5 = 71,
\ s

T,
Tsp, = _FZ (2.15)
Top = Top. (2.16)

2.4. Torques due to Dry Friction

Dry friction torques may be found in the system; therefore they should be included in
the model. There are many numerical models for dry friction available in literature [14-
20], but they depend of empiric parameters that are not easy to be estimated. Therefore,
the procedure presented by Piedbceuf et al. [21] will be used to calculate the resultant
dry friction torques at body 1, body 2, rotor 1, and rotor 2 axes. With this approach the
only parameters that need to be known are the dynamic dry friction torque (T4in) and the
maximum value of the static dry friction torque (Tjimit) at each axis, which can be obtained
with simple experiments, as shown in [21]. Before each integration step, it is verified if
stiction due to dry friction is happening in any generalized coordinate, as will be explained
next.

The dynamic equations of the system (obtained from the Lagrange equations) in a
matrix form is given by (2.17), where the components of inertia matrix (J11, Ji2,...) and fi,
f2, f3, and f4 are nonlinear functions of the generalized coordinates:

Jip 2 iz s [ @ Tofa Tafa Ts 0 0 f1
Jo1 22 J23 Joa am _ Tof . Taf . Tsa,, . T . f2 ‘ (2.17)
T3 32 133 sl | P Tosp Tasp Tsp 0 f3

Jsn Jap Jas Jaal Lpm Tofp, Tas ., Tsp, Tnp,, fa
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Calling a vector F = Ty¢+Ts+ Ty +f, where F = [F; F, F3 F4]T, (2.17) can be rewritten

Jia e s s Tifa F
L1 J2p Jos Joa Taf a,, 2

as

T

(2.18)

s

J31 T2 J33 J3a
Ji1 Ja2 Jaz Jaa

Tasp 3

™

Tagp,, 4

In the following, we will concentrate our analysis in the generalized coordinate a. The
extension to the other generalized coordinates is straightforward.

If & is not zero, it means that body 1 is in slip regime, and the generalized dry friction
torque at this body will be

Tdf,tx = —Tdin,« - sign(a). (2.19)

If it is equal to zero and the modulus of the sum of all torques (Ttgst«), including
torques due to inertia but excluding dry friction torque, is lower than Tjimit, it means that
body 1 is at the stick regime. Thus, the dry friction torque should be calculated according to
(2.20):

Tafa = ~Tresta  When = Tiimita < TtesTa < Tiimita- (2.20)

It should be stressed that it is not convenient to consider & = 0 as a transition condition
between stick and slip, since during the numerical resolution of the equations of motion
the true zero may not be achieved. Besides, it can be observed in experiments that sliding
abruptly stops under a minimum angular velocity (Umin). Therefore it will be considered that
the body is in stick regime whenever the modulus of & is lower than vpn , and the modulus
of Trest « is lower than Tjimit«. Next, a numerical damping term must be included to the static
dry friction torque to eliminate the residual angular relative velocity of the body, as it will be
seen in the following example.

Consider that at a certain instant during the numerical resolution of the equations
system (2.18), the modulus of & is smaller than vjim .. It is assumed that the first derivatives of
the other generalized coordinates are larger than the respective minimum angular velocities
of transition between slip and stick. Then, it must be checked if the modulus of Trgsra,
obtained from the system of equations below;, is higher or lower than Tjimit 4:

1 Jiz Ji3 Jia] [TrEsT. F
0 J22 Jo3 Jou dm ~Tdina,, - Sign(&m) F, ' (221)

-~

0 Ja2 J33 J34 p ~Tainp - sign(p)
0 Ja2 Ja3 Jaa i ~Tdin,, - sign(Bm)

3

g

4
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If |Trest,a| > Thimit« then body 1 is in slip regime and &, i&,,, , and ﬁm are obtained with (2.22).
Otherwise (2.23) should be used:

K2 [Ji1 Ji2 Ji3 Ji4] [ ~T4ina -sign(a@) 1 [Fi]

(m Jo1 Jo2 o3 Joa —Tdina,, - sign(dm) F,

1= ] + , (2.22)
p J31 J32 J33 J3a —Tin,p - sign(p) F3
B ] | Juq Jao Jaz Jasl | ~Taing, - sign(Bm)]  LFal
I -1, o o

i Jin i i3 Jia —TrEST,0 — Prumerica - & Fi

tm Jo1 J22 23 Joa ~T4in,a,, - sign(dy,) F>

| = s . @)
p J31 32 J33 Jaa —Tin g - sign () F3
[ B ] | Jaq Jao Jaz Jaal | —Taing, -sign(Bm) 1 | Fal

As previously discussed, a numerical damping term should be added to dry friction
static torque because body 1 is in stick regime. An expression proposed in [21] for the
numerical damping coefficient is

Ha

lim,a

: Tlimit,m (224)

bnumeric,rx =

where p, is a constant value chosen such that Ji1/bnumeric« 1S reasonably larger than the

minimum integration step size of the ordinary differential equations (ODEs) integrator. In
the example presented, stiction occurred only in a, but the method can also be used for
stiction in the other generalized coordinates, simultaneously or not. When (2.21) is used
for the verification of stiction in a generalized coordinate i (in a system with n generalized
coordinates), the following rule should be applied:

j#i=];i=0, Tgi =0,
if forj=1,...,n (2.25)
]'Zl':>]]',i =1,

3. Resolution of the Equations Considering Control Signal Time Delay
The resultant system has four first-order ODEs, given by (2.5), (2.7), (2.11), and (2.14), and

four second-order ODEs, given by (2.17). To obtain only first-order equations the following
coordinate transformation can be applied:q1 = a, g2 = am, g3 = B, Ga = Pm, G5 = &, G6 = A,
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g7 = B, and gs = B, and (2.17) becomes

41 = gs,

42 = qe,

43 = q7,

qs = gs,
451 [ha B2 B Bl /[ Tora] [Tapa] [ Tea 0 fi
de _ Jo1 Jop Jo3 Joa va,am] .\ |:Tdf,am] .\ |:Ts,am .\ T, .\ f2
q7 J3a Js2 a3 Jaa Tosp Tasp Tsp 0 f3
gs Jax Ja2 Jap Jas Tofp,, Taf p,, Tsp,, T, fa

(3.1)

The components of the vector Ty¢ are given by (2.3). The components of the vector Tgys
are calculated, before each integration step, according to the method presented in Section 2.4.
The components of the vector Ty, are given by (2.4) and (2.6), which depend on the armature
current of motor 1 and motor 2. Those currents are obtained by the first-order ODE system,
given by (2.5) and (2.7), which should be solved simultaneously with (3.1). Equations (2.3),
(2.5), and (2.7) can be rewritten with the new coordinates introduced in this section:

Tofa = —Ca " G5, Torp=—cp- q7, Tofa,, = —Cay - G6, Tofp, =—Cp, - qs,  (3.2)

dilxm _ uam B Ram i iam B kb/am : q6 diﬂm _ uﬁm B Rﬂm i lﬂm B kb/ﬂm : q8

dt Ly, ’ dt Is,, (33)

The components of the vector Ts are given by (2.12), (2.15), and (2.16), computed after
calculating (2.10) and (2.13). To calculate (2.10) and (2.13) two first-order ODEs, given by
(2.11) and (2.14), must be solved simultaneously with (3.1)—(3.3). With the initial conditions

1 (O)/ q2 (0)1 %(0)/ 44(0)/ L]5(0)/ %(0)/ q7(0)/ qs (0)/ ium (O)/ lﬂm (0)/ eb,a (O)r Gb,ﬂ (O) (34)

and the prescribed motion of the body 0, a numerical algorithm for calculation of the
approximate solution of first-order differential equations system can be used [22]. The
voltages provided to the motors (u) are the control variables and should not be updated on
the right side of (3.3) at each integration step; otherwise the time delay At that corresponds to
the delay that occurs in a real system due to data acquisition by the sensors, data processing,
and calculation of the control tensions would be ignored. Thus, the control voltages should
be updated during the numerical integration of the differential equations by the following
way:

(i) with data provided by the sensors, at an instant ¢, the control voltages are

calculated;

(ii) the ODEs are integrated from f to (¢t + At), using constant voltages (zero order hold)
calculated at (f — At), (remark the delay of At);
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Figure 4: Angular errors of azimuth and elevation.

(iii) at instant (t + At), with data provided by the sensors, new control voltages are
calculated;

(iv) the integration process continues from (¢ + At) to (t + 2At), using constant voltages
calculated at t (again a delay of At);

(v) then, the process is repeated until the final simulation instant is reached.

4. Control Signals

The controllers need to provide the adequate voltages to the motors to keep the axial axis
pointed to the target. This means that the angular errors of azimuth (é,,) and elevation (é.)
with respect to the axial axis should be kept as near as zero as possible.

It will be assumed that the TAES provides the targets centroid coordinates in the
image plane, as shown in Figure 4. These coordinates with respect to the image plane center
are proportional to é,, and é.. The time to calculate the targets centroid coordinates is
usually larger than the control signal update period At. As the controller must also provide
compensation to body 0 angular motion, it is necessary to adopt a control strategy where the
voltages provided to the motors can be updated faster than the information from the TAES. A
method that is commonly employed and discussed in [1-4] consists in the use of independent
controllers, with an external loop, also called tracking loop, and an internal, or stabilization
loop, for each motor. One of the controllers has the objective to keep body 2 absolute angular
speed in x; direction at some desired value, while the other seeks to do the same for body 2 in
z direction. With information about the angular errors, the desired values are calculated at
the external loops. In the inner loop, working at higher sampling rate, the voltage provided
to the motor in order to keep the absolute angular speed in x; direction (or z) at the desired
value is calculated and updated at every time interval At. The input for this loop is an error
signal equal to the desired absolute angular speed minus the value measured by one of the
rate gyros mounted in body 2. In this work the approach presented by Gruzman et al. [3]
will be used, where the internal loops have PI (proportional and integral) controllers with
antiwindup [6, 10] and the outer loops incremental Fuzzy Logic Controllers (FLCs). The FLC
output is an increment for the desired angular absolute speed for body 2 in x, direction (or
z). The inputs for the FLC are the angular errors provided by the TAES, their derivatives with
respect to time, and a variable called LoSu. This variable corresponds to the saturation level
of the control signal and is used to avoid increments for the desired absolute angular speed
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if the control signal is near its superior saturation limit (or decrements if it is near the inferior
saturation limit). One controller provides the voltage to the tilt motor (motor 2) to maintain
body 2 absolute angular velocity in x, direction at the desired value. The other controller
provides the voltage to the pan motor (motor 1) to keep the desired angular absolute speed
in z direction. It is important to remember that the pan motor axis is parallel to z; and not
Zy; therefore the error comprising body 2 absolute angular speed in z, direction minus the
absolute angular velocity in this direction, measured by the rate gyro, should be divided
by cos B. The relative angle  can be measured by an encoder mounted at the tilt axis (see
Figure 1). If the systems working space is limited to —90° < < +90°, there is no risk to have a
division by zero. In Figure 4 the pan motor general control structure is presented. For the tilt
motor the structure is similar, but there is no division by cos f at the stabilization loop. The
outer loop time delay is At'. The inner loop time delay is At and At' > At.

4.1. Inner Loop (Stabilization Loop)

In the inner loops PI controllers are used. The inputs are the errors comprising the desired
absolute angular speeds minus the absolute angular speeds measured with the rate gyros. If
digital controllers are used, the control signals provided to the pan and tilt motors are given,
respectively, by the following equations:

Uy, = kp,am - ey, t kl,am . Z €, * At, ug, = kp/pm -ep, + kl,ﬂm . Z ep, - At, (4.1)

where kp and k; are the gains of the proportional and integral terms, respectively. The errors
are given by

_ Wz,desired — Wz,

e
“ cos

’ €p,, = Wx,ydesired — Wi,/ (42)

m

where wgesired aNd Wy2desired are body 2 desired absolute angular speeds in z; and x;
directions. They are updated by the outer loop at every time interval At'. The two rate gyros
assembled in body 2 provide new measurements of w,> and w2 in a faster rate. Therefore the
voltages can be updated at every time interval At.

If the absolute angular speed takes a long time to reach the desired value, the sum
in (4.1) may become excessively large and will keep increasing even if the control signal is
saturated. The control signal will then remain saturated even when the error changes sign and
it may take a long time before the integrator and the controller output come inside saturation
range. This problem is called integrator windup and can be avoided if an antiwindup action is
included at control. A common antiwindup strategy is the back-calculation [6] that is efficient
but has a gain that needs to be adjusted. Therefore, in this work a simpler method will be used
where the sum in (4.1) is interrupted if the control signal is at the maximum saturation limit
and the error is positive, or, if the control signal is at the minimum saturation limit and the
error is negative. In [3] the controllers do not use any model of the target tracking system;
therefore the PI gains are obtained by Ziegler-Nichols frequency response method [6, 10].
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Figure 5: Pan motor general control structure.

4.2. Outer Loop (Tracking Loop)

In the outer loop, the TAES provides information about the targets elevation and azimuth
angular errors, as shown in Figure 5, to a Fuzzy Logic Controller [5] whose output is an
increment to the desired absolute angular speed, used as reference in the inner loop. In this
work FLCs were chosen for the external loops because they are more flexible than traditional
controllers, like PID, due to the possibility of implementing nonlinear mappings between
inputs and outputs. It is not the objective of this work to study how the angular errors of
azimuth and elevation are obtained. For the model used in this work the only necessary
information is the time duration At' of the whole process that occurs in the tracking loop.
This time delay, from the instant when the TAES notices the target up to moment when the
desired absolute angular speed is provided to the inner loop, may be relatively large when
compared with At.

The inputs for the FLC used at the pan motor control are the angular azimuth error
(eaz), the derivative of this error with respect to time, and the control voltage saturation
level (LoSu,,, ). The LoSu,, is used to avoid increments for the desired absolute angular
speeds if the control signal is near its superior saturation limit (or decrements if it is near
the inferior limit). The pan motors FLC output is an increment for body 2 desired absolute
angular speed in z, direction (w:2desired increment)- 1his increment is added to the previous
value of the referred angular speed (stored in memory), resulting in the value that will
be provided to the internal loop (w:2desired). The inputs for the tilt motor FLC are the
elevation angular error (), the derivative of this error with respect to time, and the control
voltage saturation level (LoSug,). The output is an increment for body 2 desired absolute
angular speed in x; direction (tWxy2desired increment)- The angular errors derivatives in a certain
instant # can be approximated according to (4.3). The control signal saturation levels are
given by (4.4), where ugar is the value ofthe maximum voltage that can be provided to
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Both FLCs use the input and output membership functions shown in Figure 6 and the
rule-base of Table 1, presented in [3]. The algorithm used for inference is max-min method
and for defuzzification is the center of area method [5].

The membership functions and rule-base presented were adjusted through simula-
tions of systems with outer loop time delay (At') varying between 10 milliseconds and 20
milliseconds. For At' out of that range a new adjustment may be necessary.

4.3. Backlash Compensation Block
4.3.1. Overview

The controller described in previous sections is projected for systems without backlash.
Its performance will be significantly worse if large backlash angles are present in gear
transmission, since backlash causes delays, oscillations, and inaccuracy. To avoid backlash,
some designers, as Arambel et al. [23] and Borrello [24], prefer to use direct drives, but this
solution is not always possible, since a stronger actuator, that may be too large or heavy
for the system, will be required. Other design techniques can be employed to avoid the
harmful effects of backlash in systems with gear transmission, as the drive/antidrive concept,
discussed by Haider et al. [25] or the auxiliary brakes presented by Gruzman and Weber
[26]. Despite the effectiveness of those techniques, they increase the complexity and weight
of the target tracking system, since extra components will have to be assembled in the Cardan
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Table 1: Rule-base for the FLC with three inputs (e, é, and LoSu) and one output (twadesired increment)-

e
NL NM NS Z PS PM PL
NL Z 4 4 Z 4 PS PM
NM Z 4 4 Z 4 PS PM
NS Z 4 4 Z PS PM PM
LoSu =N Z Z Z V4 Z PM PM PL
PS Z Z Z PS PM PL PL
PM Z Z Z PS PL PL PL
PL Z Z Z PM PL PL PL
NL NL NL NL NM 4 PS PM
NM NL NL NL NS 4 PS PM
NS NL NL NM NS PS PM PM
e LoSu=27 Z NL NM NM Z PM PM PL
PS NM NM NS PS PM PL PL
PM NM NS 4 PS PL PL PL
PL NM NS Z PM PL PL PL
NL NL NL NL NM Z Z Z
NM NL NL NL NS Z Z Z
NS NL NL NM NS Z Z Z
LoSu =P Z NL NM NM Z Z Z Z
PS NM NM NS Z Z 4 Z
PM NM NS 4 Z 4 4 Z
PL NM NS 4 Z 4 4 4

suspension. The approach presented in [25] requires two motors for each axis while the
approach presented in [26] requires braking systems for each axis. Some authors as Rzasa [27]
mention the use of dry friction in the drive train to eliminate limit cycles, but this technique
reduces the efficiency of the actuator, since extra power will be required to compensate this
additional torques. Therefore, in this work, the effects of backlash will be compensated by the
controllers. For that, a backlash compensation block is added in the stabilization loop of each
motors controller. This block should actuate whenever body 1 (or 2) transverses a backlash
gap in gear transmission. To reduce the effects of backlash, a possible strategy consists to
transverse the backlash region quickly in order to restore the controllability. In literature this
approach is often called as “strong action in backlash gap” and it is more concerned with
the lost motion at the load. However, problems related with dynamic stability can occur,
because reengagement may happen with large relative velocity (undesired collisions will
occur). To avoid this problem some authors prefer to implement the called the “weak action
in backlash gap.” It avoids problems with dynamic stability, but tracking performance may
be poor, since the backlash region is transversed with reduced speed. In Nordin and Gutman
[28] an extensive literature survey of both methods is presented. Some authors as Menon and
Krishnamurthy [29] and Moscrop [30] uses a combination of the “weak” and “strong” actions
while transversing the backlash gap, because it exploits the advantages of both (smooth
reengagement is ensured at the same time that the controller tries to transverse quickly the
backlash region). In the present work a combination of both actions will be considered, but
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Figure 7: Backlash compensation controller in the stabilization loop.

the compensation signal will be provided to the output of the main controller (in this work
corresponds to the PI controller of the stabilization loop) instead of its input, as is done in [29-
34]. The reason for providing the compensation signal to the output of the main controller
will be discussed further in this section.

The backlash compensation block is added in the stabilization loop, according to
Figure 7, to provide an extra tension (positive or negative) for the motor.

Two tension saturation blocks should be used: the first before the backlash
compensation block and the second after it. If there is no tension saturation block before the
backlash compensation controller, the compensation tension may be in some cases ignored,
as in the following example.

Example 4.1. A target tracking system is supplied by a battery that provides tensions between
-24V and 24 V; therefore the tension saturation block should not allow control tensions out
of this range. If the output of the PI controller is a 30V tension, the output of the backlash
compensation controller is a =4V tension, and there is no tension saturation block after the
output of the PI controller, then the tension saturation block, that is after the sum of the PI and
backlash compensation block outputs, will have an input of 26 V and an output of 24V, since
26V is beyond its saturation level. As it can be noticed, the backlash compensation controller
had no influence at the output of the stabilization loop. With two tension saturation block, as
shown in Figure 7, this tension would be reduced to 20 V, because the first block would reduce
the PI controller output to 24 V. Therefore, in this case the backlash compensation controller
influenced the output of the stabilization loop.

The idea behind the backlash compensation approach used in this work can be
explained with the schematic draw of Figure 8, where A is the driving mechanism, B the
driven mechanism, x4 the driving mechanism position, xg the driven mechanism position,
v, the driving mechanism speed, vg the driven mechanism speed, and I the total backlash
size. Initially consider that B is being driven to the left (vg < 0) as in Figure 8(a). To keep
this motion, a negative tension (u) is being provided to driving mechanism, which is in
contact with the left teeth of B. If in a certain instant it is desired an increase in v, a positive
tension will be provided to A, since it will have to act in the right teeth of B, as shown in
Figure 8(b). For that, A must pass through the backlash gap. As the backlash region should
be quickly transposed, an additional positive tension (t#compensation) i provided to the driving
mechanism by the backlash compensation controller, as shown in Figure 8(c). Just before
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Figure 8: Schematic of a drive system with backlash and the compensation approach.

A touches the right teeth of B, the compensation tension becomes negative, in order to reduce
the speed of A and smooth the collision between A and the right teeth of B. As soon as the
contact is reestablished, the compensation tension becomes zero, as in the beginning of the
motion.

In order to have the desired relative motion between A and B when transposing the
backlash gap, the value of the compensation tension should be adequately calculated and
depends of u. If u is negative, A must contact the left teeth of B; otherwise it must contact the
right teeth of B. The relative position between A and B (xe]) is given by (4.5) and the relative
velocity between A and B (vre1) by (4.6):

Xrel = XB — XA, (4.5)

Urel = Up — UA- (46)

The theory presented for the linear system of Figure 8 can be applied to the target
tracking system of this work, but the correspondent generalized coordinates of the target
tracking system must be used, according to Table 2.

Since in most of the practical applications many parameters of the system may be
unknown, the backlash compensation block developed in this work consists of a controller
that does not require a model of the system. Besides, it differs from other backlash
compensation techniques that do not use a model of the system, because they provide
compensation to the inputs instead of the output of the main controller, as demonstrated
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Table 2: Correspondent generalized coordinates.

Variable Rotor 1 —body 1 set Rotor 2 —body 2 set
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Figure 9: Schematic of traditional backlash compensation and the new approach.

in Figure 9. In this work it corresponds to the PI controller of the stabilization loop, whi