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High energy physics is an exciting field of experimental
and theoretical research. While the important stimulus
comes from the experiment, analytical methods are gaining
importance. For example, new analytical approaches, such
as Lie groups, path integrals, integrable and superintegrable
systems, renormalization methods, factorization methods,
Green functions, special functions, homotopy method, inte-
gral transforms, and approximate methods based on pertur-
bative or variational treatments to solve differential equations
of high energy physics, are becoming more useful. Moreover,
there is a significant input of new formulations of quantum
mechanics and field theory used in particle physics such as
new kinds of interactions, wave equations in curved spaces,
fractional order wave equations, noncommutative quantum
mechanics, or quantum deformed algebras which may lead
to better understanding of high energy physics.

In this special issue we propose a selection of papers,
devoted to mathematical problems of high energy and par-
ticle physics, where analytical approaches and ideas are used
as the main tool to study particle physics.

Several authors studied applications of special functions.
�e useful review paper by M. Hortaçsu concentrates on
properties of the Heun equation and Heun functions which
find applications in General Relativity and astrophysics.

�ere were several papers in which the Schrödindger
equation and the Dirac equation were solved in various
potentials. For example, S. Dong et al. found exact solutions
of the Schrödinger equation in Razavy Cosine Type equa-
tion. I. A. Assi et al. obtained solutions for D-dimensional

Schrödinger equation in Pöschl-Teller type potential. Y. You
et al. solved the Schrödinger equation inDouble Ring-Shaped
Coulomb Potential and computed several space probability
distributions of the solutions.

N.Mohajery et al. solved the six-dimensional hyperradial
Schrödinger equation describing baryons consisting of two
heavy quarks and one light quark to compute the mass
spectra. �is result may be particularly useful since masses
of majority of such baryons are unknown.

�ere are also several interesting papers exploring less
standard problems.M.-A. Dariescu and C. Dariescu solve the
Klein-Gordon and the Dirac equations in the Melvin space-
time in terms of Heun functions. �ese solutions describe
particles moving in the neighbourhood of magnetars. M.
Singh studies in two papers the neutrinomass matrix. R. Jora
constructs the effective Standard Model potential based on
the requirement that the tree level and quantum level trace
anomalies must be satisfied. M. Znojil studies in his paper
the important problem of quasi-Hermitian formulation of
Quantum Mechanics. He demonstrates that for weakly non-
local interaction potentials non-Hermitian and Hermitian
formulations describe the sane dynamics.

We do hope that the readers will find the present special
issue interesting and useful.
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We calculate the double charmonium production cross-section within the framework of 4 × 4 Bethe-Salpeter Equation in the
electron-positron annihilation, at center of mass energy √𝑠 = 10.6GeV, that proceeds through the exchange of a single virtual
photon. In this calculation, we make use of the full Dirac structure of 4D BS wave functions of these charmonia, with the
incorporation of all the Dirac covariants (both leading and subleading). The calculated cross-sections for the double charmonium
productions for final states, (𝐽/Ψ, 𝜂𝑐), (Ψ󸀠, 𝜂𝑐), (𝐽/Ψ, 𝜂󸀠𝑐), and (Ψ󸀠, 𝜂󸀠𝑐), are close to experimental data and in broad agreement with
results of other theoretical models.

1. Introduction

One of the challenging problems in heavy-quark physics is
the process of double charmonium production in electron-
positron annihilation at B-factories [1–4]. Many studies of
double quarkonium production process [5–9] have been
preformed in order to understand this process and thereby
the internal structures of quarkonia and interactions of the
quark and antiquark inside the quarkonium. In recent years,
the quarkonium production has been studied in various
process at B-factories whose measurements were were made
by Babar and Belle collaborations [1–4]. Among them, the
study of charmonium production in 𝑒+𝑒− annihilation is
particularly interesting in testing the quarkoniumproduction
mechanisms at center of mass energies √𝑠 = 10.6𝐺𝑒𝑉.
The investigation of double charmonium production is very
important since these charmonium can be easily produced
in experiments and hence their theoretical prediction can
verify the discrepancy between different theoretical models
and experimental data. As regards the dynamical framework,
to investigate the double charmoniumproduction concerned,
many approaches have been proposed to deal with the cross-
section of double charmonium production [5–9] and the

pseudoscalar and vector charmoniumproduction process has
been recently studied in a Bethe-Salpeter formalism [10, 11].
However, in these studies the complete Dirac structure of P
(pseudoscalar) and V (vector) quarkonia was not taken into
account, and calculations were performed by taking only the
leading Dirac structures, 𝛾5, and 𝑖𝛾.𝜀 in the BSwave functions
of pseudoscalar and vector charmonia respectively.

In these calculations, we make use of the Bethe-Salpeter
Equation (BSE) approach [12–16], which is a conventional
approach in dealing with relativistic bound state problems.
Due to its firm base in quantum field theory and being a
dynamical equation based approach, it provides a realistic
description for analyzing hadrons as composite objects and
can be applied to study not only the low energy hadronic
processes but also the high energy production processes
involving quarkonia as well.

In our recent works [17–20], we employed BSE under
Covariant InstantaneousAnsatz, which is a Lorentz-invariant
generalization of Instantaneous Approximation, to inves-
tigate the mass spectra and the transition amplitudes for
various processes involving charmonium and bottomonium.
The BSE framework using phenomenological potentials can
give consistent theoretical predictions as more and more data
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are being accumulated. In our studies on 4 × 4 BSE, in all
processes except in [19], the quark–antiquark loop involved
a single hadron-quark vertex, which was simple to handle.
However for the transitions such as 𝑉 󳨀→ 𝑃 + 𝛾 (where𝑉 vector and 𝑃 pseudoscalar quarkonium), which we have
studied in [19] and for the process of double charmonium
production, 𝑒+𝑒− 󳨀→ 𝑉 + 𝑃, we will study in present work
the process requires calculation involving two hadron-quark
vertices, due to which the calculation becomes more and
more difficult to handle. However in the present work, we
demonstrate an explicitmathematical procedure for handling
this problem using the formulation of 4 × 4 Bethe-Salpeter
Equation under Covariant Instantaneous Ansatz. We will use
this framework for the calculation of cross-section for the
production of double charmonia, (𝐽/𝜓, 𝜂𝑐), (𝐽/𝜓, 𝜂󸀠𝑐), (𝜓󸀠, 𝜂𝑐),
and (𝜓󸀠, 𝜂󸀠𝑐) in electron-positron annihilation that proceeds
through a single virtual photon at center of mass energies,√𝑠 = 10.6 GeV., where such problems do not enter our
previous papers on 4 × 4 BSE [17–22].

This paper is organized as follows. In Section 2, we
introduce the detailed formulation of the transition ampli-
tudes for the process of double charmonium production and
the numerical results of cross-sections. Finally, we give the
discussions and conclusions in Section 3.

2. Formulation of Double Charmonium
Production Amplitude

We start from the lowest-order Feynman diagrams for the
process, 𝑒+𝑒− 󳨀→ 𝑉 + 𝑃, as given in Figure 1. There
are four Feynman diagrams for the production of double
charmonium, one of which is shown in Figure 1, while the
other three can be obtained by reversing the arrows of the
quark lines.

The relativistic amplitude 𝑀1𝑓𝑖 for double charmonium
production, corresponding to Figure 1, is given by the one-
loop momentum integral as

𝑀1𝑓𝑖 = 27𝜋2𝛼𝑒𝑚𝛼𝑠32𝑠 [] (𝑝2) 𝛾𝜇𝑢 (𝑝1)] ∫ 𝑑4𝑞𝑎
(2𝜋)4 ∫

𝑑4𝑞𝑏
(2𝜋)4

⋅ 𝑇𝑟 [Ψ (𝑃𝑎, 𝑞𝑎) 𝛾𝛽𝑆𝐹 (𝑞1) 𝛾𝜇Ψ(𝑃𝑏, 𝑞𝑏) 𝛾𝛽] 1
𝑘2

(1)

where 𝑠 is theMendelstam variable defined as 𝑠 = −(𝑝1+𝑝2)2,𝛼𝑒𝑚 = 𝑒2/4𝜋 is called the electromagnetic coupling constant,
𝛼𝑠 = 𝑔2𝑠 /4𝜋 is the strong coupling strength, and Ψ(𝑃𝑎, 𝑞𝑎)
and Ψ(𝑃𝑏, 𝑞𝑏) are the conjugations of the BS wave function of
vector and pseudoscalar charmonium, respectively. From the
figure, we can relate the momenta of the quark and antiquark,
respectively, as

𝑞󸀠1 = 1
2𝑃𝑎 + 𝑞𝑎

𝑞3 = 1
2𝑃𝑎 − 𝑞𝑎

𝑞4 = 1
2𝑃𝑏 + 𝑞𝑏

𝑞2 = 1
2𝑃𝑏 − 𝑞𝑏

(2)

and the momenta for the propagators of gluon and quark are
given, respectively, by

𝑘 = 1
2 (𝑃𝑎 + 𝑃𝑏) − 𝑞𝑎 + 𝑞𝑏

𝑞1 = 𝑃𝑎 + 1
2𝑃𝑏 + 𝑞𝑏

(3)

As the quark and gluonpropagators depend upon the internal
hadron momenta 𝑞𝑎 and 𝑞𝑏, the calculation of amplitude is
going to involve integrations over these internal momenta
and will be quite complex. Hence following [17–19], we
simplify the calculation, by reducing the 4-dimensional
expression of BS amplitude, 𝑀1𝑓𝑖 into 3-dimensional expres-
sion of BS amplitude, 𝑀1𝑓𝑖, and employing the heavy-quark
approximation on the propagators, themomenta 𝑘 and 𝑞1 can
be written as 𝑘 ≈ (1/2)(𝑃𝑎 +𝑃𝑏) and 𝑞1 ≈ 𝑃𝑎 + (1/2)𝑃𝑏, which
leads to 𝑘2 ≈ 𝑠/4 and 𝑞21 ≈ 𝑠/2 + 𝑚2𝑐 [10, 11]. Then, with
the above approximation and applying the definition of 3D
BS wave function in [17–20]𝜓(𝑞𝑎) = (𝑖/2𝜋) ∫𝑀𝑎𝑑𝜎Ψ(𝑃𝑎, 𝑞𝑎)
and 𝜓(𝑞𝑏) = (𝑖/2𝜋) ∫𝑀𝑏𝑑𝜎𝑏Ψ(𝑃𝑏, 𝑞𝑏), the double charmo-
nium production BS amplitude, 𝑀1𝑓𝑖, can be written in the
instantaneous Bethe-Salpeter amplitude form as

𝑀1𝑓𝑖 = −210𝜋2𝛼𝑒𝑚𝛼𝑠32𝑠3 [] (𝑝2) 𝛾𝜇𝑢 (𝑝1)]

⋅ ∫ 𝑑3𝑞𝑎
(2𝜋)3 ∫

𝑑3𝑞𝑏
(2𝜋)3

⋅ 𝑇𝑟 [𝜓 (𝑞𝑎) 𝛾𝛽 (−𝑖�𝑃𝑎 − 𝑖
2�𝑃𝑏 + 𝑚𝑐) 𝛾𝜇𝜓 (𝑞𝑏) 𝛾𝛽]

(4)

where𝜓(𝑞𝑎) and𝜓(𝑞𝑏) are the relativistic BS wave function of
pseudoscalar and vector charmonium, respectively. We now
give details of calculation of double charmonium production
for the process, 𝑒+𝑒− 󳨀→ 𝑉 + 𝑃 in the next section.

(i) For the production process, 𝑒+ + 𝑒− 󳨀→ 𝑉 + 𝑃
The relativistic BS wave function of pseudoscalar and
vector charmonium is taken from our recent papers
[17–19], respectively, as

𝜓𝑃 (𝑞𝑏) = 𝑁𝑃 [𝑀𝑏 +�𝑃𝑏 + ��̂𝑞𝑏�𝑃𝑏𝑚𝑐 ] 𝛾5𝜙𝑃 (𝑞𝑏) (5)

for 𝑃𝑏 and 𝑀𝑏 are the momentum and mass of the
pseudoscalar charmonium, respectively, and𝑁𝑃 is the
BS normalization of the pseudoscalar charmonium,
which is given in a simple form as

𝑁𝑃 = [16𝑀𝑏𝑚𝑐 ∫ 𝑑3𝑞𝑏
(2𝜋)3

𝑞2𝑏𝜔𝑏 𝜙
2
𝑃 (𝑞𝑏)]

−1/2

(6)
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Figure 1: Leading-order Feynman diagrams for the production of double charmonium in 𝑒+𝑒−-annihilation.

and

𝜓𝑉 (𝑞𝑎)
= 𝑁𝑉 [𝑀𝑎�𝜀 + 𝑞𝑎.𝜀𝑀𝑎𝑚𝑐 + �𝜀�𝑃𝑎 +

�𝑃𝑎𝑞𝑎.𝜀𝑚𝑐 − �𝑃𝑎�𝜀��̂𝑞𝑎𝑚𝑐 ]
⋅ 𝜙𝑉 (𝑞𝑎)

(7)

where 𝜀 is the polarization vector of the vector
quarkonia, 𝑃𝑎 and 𝑀𝑎 are the momentum and mass
of the vector quarkonia, respectively, and𝑁𝑉 is the BS
normalization of the vector quarkonia, which is given
in a simple form as

𝑁𝑉 = [16𝑚𝑐𝑀𝑎 ∫ 𝑑3𝑞𝑎
(2𝜋)3

𝑞2𝑎𝜔3𝑎 𝜙
2
𝑉 (𝑞𝑎)]

−1/2

(8)

where𝜙𝑃(𝑞𝑏) and 𝜙𝑉(𝑞𝑎) are the radial wave functions
of 𝑃 and 𝑉, which are solutions of the 3D BSE for
pseudoscalar and vector quarkonia, respectively (see
[18]). The adjoint BS wave functions for pseudoscalar
and vector charmonia are obtained from 𝜓𝑃,𝑉(𝑞𝑏,𝑎) =𝛾0(𝜓𝑃,𝑉(𝑞𝑏,𝑎))+𝛾0. With the substitution of adjoint BS
wave functions of 𝑃 and 𝑉 charmoni into the 3D
amplitude (4),𝑀1𝑓𝑖 becomes

𝑀1𝑓𝑖 = −210𝜋2𝛼𝑒𝑚𝛼𝑠32𝑠3 [] (𝑝2) 𝛾𝜇𝑢 (𝑝1)]

⋅ ∫ 𝑑3𝑞𝑎
(2𝜋)3𝑁𝑉𝜙𝑉 (𝑞𝑎)∫

𝑑3𝑞𝑏
(2𝜋)3𝑁𝑃𝜙𝑃 (𝑞𝑏) [𝑇𝑅]

(9)

where

[𝑇𝑅] = 𝑇𝑟[(−𝑀𝑎�𝜀 + 𝑞𝑎.𝜀𝑀𝑎𝑚𝑐 − �𝜀�𝑃𝑎 −
�𝑃𝑎𝑞𝑎.𝜀𝑚𝑐

+ ��̂𝑞𝑎�𝜀�𝑃𝑎𝑚𝑐 )𝛾𝛽 (−𝑖�𝑃𝑎 − 𝑖
2�𝑃𝑏 + 𝑚𝑐) 𝛾𝜇 (𝑀𝑏 +�𝑃𝑏

+ ��̂𝑞𝑏�𝑃𝑏𝑚𝑐 )𝛾5𝛾𝛽] .
(10)

Applying the trace theorem and evaluating trace over
the gamma matrices, one can obtain the expression:

[𝑇𝑅] = −8𝑀𝑎𝜖]𝛿𝜇𝜆𝜀]𝑃𝑎𝜆𝑃𝑏𝛿
+ 8𝑖
𝑚𝑐 [(𝑞𝑎.𝜀) 𝜖𝜆𝛿𝜎𝜇𝑃𝑎𝜆𝑃𝑏𝛽𝑞𝑏𝜎

+ 𝜖𝜌]𝜆𝜙 (𝑃𝑏𝜙𝑞𝑏𝜇 − 𝑃𝑏𝜇𝑞𝑏𝜙)]
⋅ 8 (𝑞𝑎.𝜀)𝑀𝑎𝑚2𝑐 [𝜖𝜇𝜎𝛽𝛿𝑃𝑎𝛽𝑃𝑏𝛿𝑞𝑏𝜎 + 𝜖𝜆𝛽𝜇𝜎𝑃𝑎𝜆𝑃𝑏𝛽𝑞𝑏𝜎]

+ 16𝑀2𝑏𝑚𝑐 𝜖]𝛿𝜎𝜇𝜀]𝑃𝑏𝛿𝑞𝑏𝜎 − 8 (𝑞𝑎.𝜀)𝑚𝑐 𝜖𝜆𝛿𝜎𝜇𝑃𝑎𝜆𝑃𝑏𝛿𝑞𝑏𝜎
+ 8𝑖𝑀𝑏𝜖𝜌]𝜆𝜇𝜀]𝑃𝑎𝜆𝑞𝑎𝜌

(11)

After somemathematical steps, we can get the follow-
ing expression:

[𝑇𝑅] = −16𝑚𝑐𝜖𝜇]𝜌𝜎𝜀𝜇𝑃𝜌𝑎𝑃𝜎𝑏 (12)

Thus we can express the amplitude𝑀1𝑓𝑖 for the vector
and pseudoscalar charmonium production as

𝑀1𝑓𝑖 = 214𝜋2𝛼𝑒𝑚𝛼𝑠𝑚𝑐32𝑠3 [] (𝑝2) 𝛾𝜇𝑢 (𝑝1)]

⋅ 𝜖𝜇]𝜌𝜎𝜀𝜇𝑃𝜌𝑎 𝑃𝜎𝑏 ∫ 𝑑3𝑞𝑎
(2𝜋)3𝑁𝑉𝜙𝑉 (𝑞𝑎)
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⋅ ∫ 𝑑3𝑞𝑏
(2𝜋)3𝑁𝑃𝜙𝑃 (𝑞𝑏)

(13)

The full amplitude for the process 𝑒++𝑒− 󳨀→ 𝑉+𝑃 can
be obtained by summing over the amplitudes of all the
possibilities in Figure 1. Then, the unpolarized total
cross-section is obtained by summing over various𝑉 + 𝑃, spin-states, and averaging over those of the
initial state 𝑒+𝑒−, which is given as

𝜎 = 1
32𝜋

√𝑠 − 16𝑚2𝑐
𝑠3/2 ∫ 1

4∑𝑠𝑝𝑖𝑛
󵄨󵄨󵄨󵄨𝑀𝑡𝑜𝑡𝑎𝑙󵄨󵄨󵄨󵄨2 𝑑 cos 𝜃 (14)

The total amplitude, |𝑀𝑡𝑜𝑡𝑎𝑙|2, is given as

1
4∑𝑠𝑝𝑖𝑛

󵄨󵄨󵄨󵄨𝑀𝑡𝑜𝑡𝑎𝑙󵄨󵄨󵄨󵄨2

= 230𝜋4𝛼2𝑒𝑚𝛼2𝑠𝑚2𝑐34𝑠5 [∫ 𝑑3𝑞𝑎
(2𝜋)3𝑁𝑉𝜙𝑉 (𝑞𝑎)]

2

⋅ [∫ 𝑑3𝑞𝑏
(2𝜋)3𝑁𝑃𝜙𝑃 (𝑞𝑏)]

2

(15)

After integration over the phase space, the total cross-
section for vector and pseudoscalar charmonium
production is

𝜎𝑒+𝑒−󳨀→𝑉𝑃 = 227𝜋3𝛼2𝑒𝑚𝛼2𝑠𝑚2𝑐34𝑠4 (1 − 16𝑚2𝑐𝑠 )
3/2

⋅ [∫ 𝑑3𝑞𝑎
(2𝜋)3𝑁𝑉𝜙𝑉 (𝑞𝑎)]

2

⋅ [∫ 𝑑3𝑞𝑏
(2𝜋)3𝑁𝑃𝜙𝑃 (𝑞𝑏)]

2

(16)

The algebraic expressions of the wave functions of
pseudoscalar and vector charmonium, 𝜙𝑃(𝑉)(𝑞𝑏(𝑎)),
for ground (1S) and first excited (2S) states, respec-
tively, that are obtained as analytic solutions of
the corresponding mass spectral equations of these
quarkonia in an approximate harmonic oscillator
basis are [18]

𝜙𝑃(𝑉) (1𝑆, 𝑞) = 1
𝜋3/4𝛽3/2
𝑃(𝑉)

𝑒−𝑞2/2𝛽2𝑃(𝑉)

𝜙𝑃(𝑉) (2𝑆, 𝑞) = √3/2
3𝜋3/4𝛽7/2

𝑃(𝑉)

(3𝛽2𝑃(𝑉) − 2𝑞2) 𝑒−𝑞2/2𝛽2𝑃(𝑉) ,
(17)

where the inverse range parameter 𝛽𝑃
for pseudoscalar charmonium is 𝛽𝑃 =
(4(𝑚𝑐𝜔2𝑞𝑞/√1 + 2𝐴0(𝑁 + 3/2)))1/4, while

𝛽𝑉 for vector charmonium is 𝛽𝑉 =
(2(𝑚𝑐𝜔2𝑞𝑞/√1 + 2𝐴0(𝑁 + 3/2)))1/4, and these
two constants depend on the input parameters and
contain the dynamical information, and they differ
from each other due to spin-spin interactions. It can
be checked that our cross-sectional formula is in
(16) scales as 𝛼2𝑒𝑚𝛼2𝑠𝑚6/𝑠4, with 𝑚 being the mass of𝑐-quark, where in (16), the wave functions, 𝜙(𝑃,𝑉),
involve the inverse range parameters, 𝛽𝑃,𝑉 ∼ 𝑚1/2.

Numerical Results. We had calculated recently the mass
spectrum and various decays of ground and excited states
of pseudoscalar and vector quarkonia in [18–20]. The same
input parameters are employed in this calculation as in our
recent works, given in Table 1.

Using these input parameters listed in Table 1, we calcu-
late the cross-sections of pseudoscalar and vector charmo-
nium production in our framework listed in Table 2.

We wish to mention here that the 𝑏𝑏𝑏𝑏 as well as 𝑏𝑏𝑐𝑐
production has not been observed so far, but cross-sections
have been predicted for 𝑒−𝑒+ 󳨀→ Υ + 𝜂𝑏 at center of mass
energy, √𝑠 = 25 − 30 GeV. We thus wished to check our
calculations for double bottomonium (Υ, 𝜂𝑏) production in
electron-positron annihilation for sake of completeness. The
same can be studied with our framework used in this work
with little modifications. Taking the mass of the 𝑏−quark that
is fixed from our recent work on spectroscopy of 𝑏𝑏 states as𝑚𝑏 = 5.07GeV [18] and other input parameters the same, the
cross-section for production of ground states of 𝜂𝑏 and Υ for
energy range (√𝑠 = 28 − 30)GeV is given in Table 3.

3. Discussions and Conclusion

Our main aim in this paper was to study the cross-section
for double charmonium production in electron-positron
collisions at center of mass energies, √𝑠 = 10.6𝐺𝑒𝑉., having
successfully studied the mass spectrum and a range of low
energy processes using an analytic treatment of 4 × 4 Bethe-
Salpeter Equation (BSE) [18–22]. This is due to the fact any
quark model model should successfully describe a range
of processes—not only the mass spectra and low energy
hadronic decay constants/decay widths, but also the high
energy production processes involving these hadrons and all
within a common dynamical framework and with a single
set of input parameters that are calibrated to the mass spec-
trum.

Further, the exclusive production of double heavy char-
monia in 𝑒+𝑒− annihilation has been a challenge to under-
stand in heavy-quark physics and has received considerable
attention in recent years, due to the fact that there is a
significant discrepancy in the data of Babar [2] and Belle
[1] and the calculations performed in NRQCD [5, 6] of
this process at √𝑠 = 10.6𝐺𝑒𝑉., where using leading
order (LO) QCD diagrams alone leads to cross-sections
that are an order of magnitude smaller than data [1, 2,
4]. These discrepancies were then resolved by taking into
account the Next-to-Leading-Order (NLO)QCD corrections
combined with relativistic corrections [23, 24]), though the
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Table 1: Input parameters for this study.

𝐶0 𝜔0(𝐺𝑒𝑉) Λ(𝐺𝑒𝑉) 𝐴0 𝑚𝑐(𝐺𝑒𝑉)
0.210 0.150 0.200 0.010 1.490

Table 2: The total cross-sections of pseudoscalar and vector charmonium production for ground and first excited states with experimental
data and other theoretical models (in units of fb).

Production Process 𝜎 (Our result) 𝜎 [1] 𝜎 [2] 𝜎 [8] 𝜎 [9] 𝜎 [10] 𝜎 [11]
𝑒+𝑒− 󳨀→ 𝐽/𝜓𝜂𝑐 20.770 25.6±2.8 17.6±2.8 26.7 22.2±4.2 22.3 21.75
𝑒+𝑒− 󳨀→ 𝜓󸀠𝜂𝑐 11.643 16.3±4.6 16.3 15.3±2.9
𝑒+𝑒− 󳨀→ 𝐽/𝜓𝜂󸀠𝑐 11.177 16.5±3.0 16.4±3.7 26.6 16.4±3.1
𝑒+𝑒− 󳨀→ 𝜓󸀠𝜂󸀠𝑐 6.266 16.0±5.1 14.5 9.6±1.8
Table 3: The total cross-sections of pseudoscalar and vector bottomonium production for their ground states with predictions of other
theoretical models (in units of fb).

Production Process 𝜎(Our result) 𝜎[1] 𝜎[2] 𝜎[10] for (√𝑠 = 25 − 30)GeV
𝜎[𝑒+𝑒− 󳨀→ Υ𝜂𝑏] 0.155-0.058 0.16-0.06

NLO contributions were larger than the LO contributions
[10].

This process has also been studied in Relativistic Quark
Model [7, 9], Light Cone formalism [8], and Bethe-Salpeter
Equation [10, 11]. Relativistic corrections to cross-section in
Light Cone formalism (in [8]) were considered to eliminate
the discrepancy between theory and experiment. Further
in an attempt to explain a part of this discrepancy, [25]
even suggested that processes proceeding through two virtual
photons may be important. In Relativistic Quark Model [7],
which incorporated relativistic treatment of internal motion
of quarks and bound states, improvements in the results were
obtained.

Wewish tomention that, in our framework of 4×4Bethe-
Salpeter Equation (BSE) using the Covariant Instantaneous
Ansatz, where we treat the internal motion of quarks and
the bound states in a relativistically covariant manner, we
obtained results on cross-sections (in Table 2) for produc-
tion of opposite parity 𝑐𝑐 states such as, (𝐽/Ψ, 𝜂𝑐); (Ψ󸀠, 𝜂𝑐);
(𝐽/Ψ, 𝜂󸀠𝑐); (Ψ󸀠, 𝜂󸀠𝑐), which are close to central values of data
[1, 2, 4] using leading-order (LO) QCD diagrams alone. This
validates the fact that relativistic quark models such as BSE
are strong candidates for treating not only the low energy
processes but also the high energy production processes
involving double heavy quarkonia, due to their consistent
relativistic treatment of internal motion of quarks in the
hadrons, where our BS wave functions that take into account
all the Dirac structures in pseudoscalar and vector mesons
in a mathematically consistent manner play a vital role in
the dynamics of the process. We also give our predictions on
cross-section for double 𝑏𝑏 production at energies 28- 30GeV.
in Table 3 for future experiments at colliders.

Themain objective of this study was to test the validation
of our approach, which provides a much deeper insight than
the purely numerical calculations in 4 × 4 BSE that are very
common in the literature. We wish to mention that we have
not encountered any work in 4 × 4 representation of BSE

that treats this problem analytically. On the contrary, all
the other 4 × 4 BSE approaches adopt a purely numerical
approach of solving the BSE. We are also not aware of any
other BSE framework, involving 4×4 BS amplitude, and with
all the Dirac structures incorporated in the 4D hadronic BS
wave functions (in fact many works used only the leading
Dirac structures; for instance, see [10, 11]) for calculations of
this production process. We treat this problem analytically
by making use of the algebraic forms of wave functions,𝜙(𝑃,𝑉) derived analytically from mass spectral equations [18],
for calculation of cross-section of this double charmonium
production process.

This calculation involving production of double charmo-
nia in electron-positron annihilation can be easily extended
to studies on other processes (involving the exchange of a
single virtual photon) observed at B-factories such as 𝑒− 𝑒+− >Ψ(2𝑆)𝛾, 𝑒−𝑒+− > 𝐽/Ψ𝜒𝑐0, and 𝑒−𝑒+− > Ψ(2𝑆)𝜒𝑐0. We further
wish to extend this study to processes involving two virtual
photons, such as the production of double charmonia in final
states with 𝐶 = +1 such as 𝑒−𝑒+ 󳨀→ 𝐽/Ψ𝐽/Ψ), recently
observed at BABAR.

These processes that we intend to study next are quite
involved, and the dynamical equation based approaches
such as BSE are a promising approach. And since these
processes involve quark-triangle diagrams, we make use of
the techniques we used for handling such diagrams recently
done in [19, 26, 27]. Such analytic approaches not only lead
to better insight into the mass spectra and low energy decay
processes involving charmonia but also their high energy
production processes such as the one studied here.

Note Added in Proofs. We have just now come to know about
the recent experimental observation by CMS collaboration
[28] of two excited B+c (2S), and B

∗+
c (2S) states in pp collisions

at √𝑠 = 13 TeV. at Large Hadron Collider (LHC). The
theoretical study of this process will be a challenge to
hadronic physics.
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We introduce the third five-parametric ordinary hypergeometric energy-independent quantum-mechanical potential, after the
Eckart and Pöschl-Teller potentials, which is proportional to an arbitrary variable parameter and has a shape that is independent
of that parameter. Depending on an involved parameter, the potential presents either a short-range singular well (which behaves as
inverse square root at the origin and vanishes exponentially at infinity) or a smooth asymmetric step-barrier (with variable height
and steepness). The general solution of the Schrödinger equation for this potential, which is a member of a general Heun family
of potentials, is written through fundamental solutions each of which presents an irreducible linear combination of two Gauss
ordinary hypergeometric functions.

1. Introduction

The solutions of the Schrödinger equation in terms of special
mathematical functions for energy-independent potentials
which are proportional to an arbitrary variable parameter and
have a shape independent of that parameter are very rare [1–
10] (see the discussion in [11]). It is a common convention
to refer to such potentials as exactly solvable in order to
distinguish them from the conditionally integrable ones for
which a condition is imposed on the potential parameters
such that the shape of the potential is not independent of the
potential strength (e.g., a parameter is fixed to a constant or
different term-strengths are not varied independently).While
there is a relatively large set of potentials of the latter type (see,
e.g., [12–20] for some examples discussed in the past and [21–
25] for some recent examples), the list of the known exactly
integrable potentials is rather limited even for the potentials
of themost flexible hypergeometric class.The list of the exactly
solvable hypergeometric potentials currently involves only
ten items [1–10]. Six of these potentials are solved in terms
of the confluent hypergeometric functions [1–6]. These are
the classical Coulomb [1], harmonic oscillator [2], andMorse

[3] potentials and the three recently derived potentials, which
are the inverse square root [4], the Lambert-W step [5],
and Lambert-W singular [6] potentials. The remaining four
exactly integrable potentials which are solved in terms of the
Gauss ordinary hypergeometric functions are the classical
Eckart [7] and Pöschl-Teller [8] potentials and the two new
potentials that we have introduced recently [9, 10].

An observation worth mentioning here is that all five
classical hypergeometric potentials, both confluent and ordi-
nary, involve five arbitrary variable parameters, while all new
potentials are four-parametric. In this communication we
show that the two four-parametric ordinary hypergeometric
potentials [9, 10] are in fact particular cases of a more general
five-parametric potential which is solved in terms of the
hypergeometric functions. This generalization thus suggests
the third five-parametric ordinary hypergeometric quantum-
mechanical potential after the ones by Eckart [7] and Pöschl-
Teller [8].

The potential we introduce belongs to one of the eleven
independent eight-parametric general Heun families [25]
(see also [26]). From the mathematical point of view, a
peculiarity of the potential is that this is the only known

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 2769597, 8 pages
https://doi.org/10.1155/2018/2769597

http://orcid.org/0000-0001-8986-6852
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2769597


2 Advances in High Energy Physics

case when the location of a singularity of the equation to
which the Schrödinger equation is reduced is not fixed to a
particular point but stands for a variable potential-parameter.
Precisely, in our case the third finite singularity of the Heun
equation, located at a point 𝑧 = 𝑎 of the complex 𝑧-plane
(that is, the singularity which is additional if compared with
the ordinary hypergeometric equation), is not fixed but is
variable; it stands for the fifth free parameter of the potential.

The potential is in general defined parametrically as a
pair of functions 𝑉(𝑧), 𝑥(𝑧). However, in several cases the
coordinate transformation 𝑥(𝑧) is inverted thus producing
explicitly written potentials given as 𝑉 = 𝑉(𝑧(𝑥)) through
an elementary function 𝑧 = 𝑧(𝑥). All these cases are achieved
by fixing the parameter 𝑎 to a particular value; hence, all these
particular potentials are four-parametric.Thementioned two
recently presented four-parametric ordinary hypergeometric
potentials [9, 10] are just such cases.

The potential we present is either a singular well (which
behaves as the inverse square root in the vicinity of the
origin and exponentially vanishes at infinity) or a smooth
asymmetric step-barrier (with variable height, steepness,
and asymmetry). The general solution of the Schrödinger
equation for this potential is written through fundamen-
tal solutions each of which presents an irreducible linear
combination of two ordinary hypergeometric functions 2𝐹1.
The singular version of the potential describes a short-range
interaction and for this reason supports only a finite number
of bound states. We derive the exact equation for energy
spectrum and estimate the number of bound states.

2. The Potential

The potential is given parametrically as

𝑉(𝑧) = 𝑉0 + 𝑉1𝑧 , (1)

𝑥 (𝑧) = 𝑥0 + 𝜎 (𝑎 ln (𝑧 − 𝑎) − ln (𝑧 − 1)) , (2)

where 𝑎 ̸= 0, 1 and 𝑥0, 𝜎, 𝑉0, 𝑉1 are arbitrary (real or complex)
constants. Rewriting the coordinate transformation as

(𝑧 − 𝑎)𝑎𝑧 − 1 = 𝑒(𝑥−𝑥0)/𝜎, (3)

it is seen that for real rational 𝑎 the transformation is rewritten
as a polynomial equation for 𝑧; hence, in several cases it can
be inverted.

Since 𝑎 ̸= 0, 1, the possible simplest case is when the
polynomial equation is quadratic. This is achieved for 𝑎 =−1, 1/2, 2. It is checked, however, that these three cases lead
to four-parametric subpotentials which are equivalent in the
sense that each is derived from another by specifications of
the involved parameters. For 𝑎 = −1 the potential reads [9]

𝑉 (𝑥) = 𝑉0 + 𝑉1√1 + 𝑒(𝑥−𝑥0)/𝜎 , (4)

where we have changed 𝜎 󳨀→ −𝜎.
The next are the cubic polynomial reductions which are

achieved in six cases: 𝑎 = −2, −1/2, 1/3, 2/3, 3/2, 3. It is
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Figure 1: Potential (1), (2) for 𝑎 = −2 and (𝜎, 𝑥0, 𝑉0, 𝑉1) =(2, 0, 5, −5).The inset presents the coordinate transformation 𝑧(𝑥) ∈(0, 1) for 𝑥 ∈ (0,∞).

again checked, however, that these choices produce only one
independent potential. This is the four-parametric potential
presented in [10]:

𝑉 = 𝑉0 + 𝑉1𝑧 ,
𝑧 = −1 + 1

(𝑒𝑥/(2𝜎) + √1 + 𝑒𝑥/𝜎)2/3
+ (𝑒𝑥/(2𝜎) + √1 + 𝑒𝑥/𝜎)2/3 ,

(5)

where one should replace 𝑥 by 𝑥 − 𝑥0. Similar potentials in
terms of elementary functions through quartic and quintic
reductions of (3) are rather cumbersome; we omit those.

For arbitrary real 𝑎 ̸= 0, 1, assuming 𝑧 ∈ (0, 1) and
shifting

𝑥0 󳨀→ 𝑥0 − 𝜎𝑎 ln (−𝑎) + 𝑖𝜋𝜎, (6)

the potential (1), (2) presents a singular well. In the vicinity of
the origin it behaves as 𝑥−1/2,

𝑉|𝑥󳨀→0 ∼ √ (𝑎 − 1) 𝜎2𝑎 𝑉1√𝑥, (7)

and exponentially approaches a constant, 𝑉0 + 𝑉1, at infinity,
𝑉|𝑥󳨀→+∞ ∼ (𝑎 − 1𝑎 )𝑎 𝑉1𝑒−𝑥/𝜎. (8)

The potential and the two asymptotes are shown in Figure 1.
A potential of a different type is constructed if one allows

the parameterization variable 𝑧 to vary within the interval 𝑧 ∈(1,∞) for 𝑎 < 1 or within the interval 𝑧 ∈ (1, 𝑎) for 𝑎 > 1.
This time, shifting (compare with (6))

𝑥0 󳨀→ 𝑥0 − 𝜎𝑎 ln (1 − 𝑎) , (9)

we derive an asymmetric step-barrier the height of which
depends on 𝑉0 and 𝑉1, while the asymmetry and steepness



Advances in High Energy Physics 3

−2 0 2 4
x

2
4
6
8
10

z

-1/2
-2

-1

−10 −5 5 10
x

0.2

0.4

0.6

0.8

1.0

−8 −6 −4 −2 0 2 4
x

1.05
1.10
1.15
1.20
1.25

z

-2
-1 -1/2

−15 −10 −5 5 10 15
x

0.2

0.4

0.6

0.8

1.0
V(x) V(x)

Figure 2: Potential (1), (2) for 𝑎 = −2 and (𝑥0, 𝑉0, 𝑉1) = (0, 1, −1) (left figure) and for 𝑎 = 1.25 and (𝑥0, 𝑉0, 𝑉1) = (0, 5, −5) (right figure);𝜎 = −2, −1, −1/2. The fixed points are marked by filled circles. The insets present the coordinate transformation 𝑧(𝑥) for 𝜎 = −1.

are controlled by the parameters 𝑎 and 𝜎. The shape of the
potential is shown in Figure 2 for 𝑎 = −2 and 𝑎 = 1.25.
We note that in the limit 𝜎 󳨀→ 0 the potential turns into
the abrupt-step potential and that the subfamily of barriers
generated by variation of 𝜎 at constant 𝑉0 and 𝑉1 has a 𝜎-
independent fixed point located at𝑥 = 𝑥0 (marked in Figure 2
by filled circles).

3. Reduction to the General Heun Equation

The solution of the one-dimensional Schrödinger equation
for potential (1), (2),

𝑑2𝜓𝑑𝑥2 + 2𝑚ℏ2 (𝐸 − 𝑉 (𝑥)) 𝜓 = 0, (10)

is constructed via reduction to the general Heun equation
[27–29]

𝑑2𝑢𝑑𝑧2 + ( 𝛾𝑧 − 𝑎1 +
𝛿𝑧 − 𝑎2 +

𝜀𝑧 − 𝑎3)
𝑑𝑢𝑑𝑧

+ 𝛼𝛽𝑧 − 𝑞(𝑧 − 𝑎1) (𝑧 − 𝑎2) (𝑧 − 𝑎3)𝑢 = 0.
(11)

The details of the technique are presented in [11, 25]. It
has been shown that the energy-independent general-Heun
potentials, which are proportional to an arbitrary variable
parameter and have shapes which are independent of that
parameter, are constructed by the coordinate transformation𝑧 = 𝑧(𝑥) of the Manning form [30] given as

𝑑𝑧𝑑𝑥 = (𝑧 − 𝑎1)𝑚1 (𝑧 − 𝑎2)𝑚2 (𝑧 − 𝑎3)𝑚3𝜎 , (12)

where𝑚1,2,3 are integers or half-integers and 𝜎 is an arbitrary
scaling constant. As it is seen, the coordinate transformation
is solely defined by the singularities 𝑎1,2,3 of the general Heun
equation. The canonical form of the Heun equation assumes
two of the three finite singularities at 0 and 1, and the third
one at a point 𝑎, so that 𝑎1,2,3 = (0, 1, 𝑎) [27–29]. However, it
may be convenient for practical purposes to apply a different

specification of the singularities, so for a moment we keep the
parameters 𝑎1,2,3 unspecified.

The coordinate transformation is followed by the change
of the dependent variable

𝜓 = (𝑧 − 𝑎1)𝛼1 (𝑧 − 𝑎2)𝛼2 (𝑧 − 𝑎3)𝛼3 𝑢 (𝑧) (13)

and application of the ansatz

𝑉 (𝑧) = V0 + V1𝑧 + V2𝑧2 + V3𝑧3 + V4𝑧4(𝑧 − 𝑎1)2 (𝑧 − 𝑎2)2 (𝑧 − 𝑎3)2 (𝑑𝑧𝑑𝑥)
2 ,

V0,1,2,3,4 = const.
(14)

The form of this ansatz and the permissible sets of the param-
eters 𝑚1,2,3 are revealed through the analysis of the behavior
of the solution in the vicinity of the finite singularities of
the general Heun equation [11]. This is a crucial point which
warrants that all the parameters involved in the resulting
potentials can be varied independently.

It has been shown that there exist in total thirty-five
permissible choices for the coordinate transformation each
being defined by a triad (𝑚1, 𝑚2, 𝑚3) satisfying the inequali-
ties −1 ≤ 𝑚1,2,3 ≤ 1 and 1 ≤ 𝑚1 +𝑚2 +𝑚3 ≤ 3 [25]. However,
because of the symmetry of the general Heun equation with
respect to the transpositions of its singularities, only eleven
of the resultant potentials are independent [25].The potential
(1), (2) belongs to the fifth independent family with 𝑚1,2,3 =(1, 1, −1) for which from (14) we have

𝑉 (𝑧) = 𝑉4 + 𝑉3𝑧 + 𝑉2𝑧2 + 𝑉1𝑧3 + 𝑉0𝑧4(𝑧 − 𝑎3)4 (15)

with arbitrary 𝑉0,1,2,3,4 = const, and, from (12),

𝑥 − 𝑥0𝜎 = 𝑎1 − 𝑎3𝑎1 − 𝑎2 ln (𝑧 − 𝑎1) + 𝑎3 − 𝑎2𝑎1 − 𝑎2 ln (𝑧 − 𝑎2) . (16)
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It is now convenient to have a potential which does not
explicitly involve the singularities. Hence, we put 𝑎3 = 0 and
apply the specification 𝑎1,2,3 = (𝑎, 1, 0) to derive the potential

𝑉(𝑧) = 𝑉0 + 𝑉1𝑧 + 𝑉2𝑧2 + 𝑉3𝑧3 + 𝑉4𝑧4 (17)

with
(𝑥 − 𝑥0)𝜎/ (𝑎 − 1) = 𝑎 ln (𝑧 − 𝑎) − ln (𝑧 − 1) . (18)

The solution of the Schrödinger equation (10) for this
potential is written in terms of the general Heun function𝐻𝐺
as

𝜓 = (𝑧 − 𝑎)𝛼1 𝑧𝛼2 (𝑧 − 1)𝛼3
⋅ 𝐻𝐺 (𝑎1, 𝑎2, 𝑎3; 𝑞; 𝛼, 𝛽, 𝛾, 𝛿, 𝜀; 𝑧) , (19)

where the involved parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, and 𝑞 are given
through the parameters 𝑉0,1,2,3,4 of potential (17) and the
exponents 𝛼1,2,3 of the prefactor by the equations [25]

(𝛾, 𝛿, 𝜀) = (1 + 2𝛼1, 1 + 2𝛼2, −1 + 2𝛼3) , (20)

1 + 𝛼 + 𝛽 = 𝛾 + 𝛿 + 𝜀,
𝛼𝛽 = (𝛼1 + 𝛼2 + 𝛼3)2 + 2𝑚𝜎2 (𝐸 − 𝑉0)ℏ2 , (21)

𝑞 = 2𝑚𝜎2ℏ2 (𝑉1 − (1 + 𝑎) (𝐸 − 𝑉0))
+ (−𝛼22 + (−1 + 𝛼1 + 𝛼3) (𝛼1 + 𝛼3))
+ 𝑎 (−𝛼21 + (−1 + 𝛼2 + 𝛼3) (𝛼2 + 𝛼3)) ;

(22)

the exponents 𝛼1,2,3 of the prefactor are defined by the
equations

𝛼21 = 2𝑚𝜎2𝑎2 (𝑎 − 1)2 ℏ2 (𝑉4 + 𝑎𝑉3 + 𝑎2𝑉2 + 𝑎3𝑉1
+ 𝑎4 (𝑉0 − 𝐸)) ,

(23)

𝛼22 = − 2𝑚𝜎2(𝑎 − 1)2 ℏ2 (𝐸 − 𝑉0 − 𝑉1 − 𝑉2 − 𝑉3 − 𝑉4) , (24)

𝛼3 (𝛼3 − 2) = 2𝑚𝜎2𝑉4𝑎2ℏ2 . (25)

4. The Solution of the Schrödinger Equation in
Terms of the Gauss Functions

Having determined the parameters of the Heun equation,
the next step is to examine the cases when the general Heun
function𝐻𝐺 is written in terms of the Gauss hypergeometric
functions 2𝐹1. An observation here is that the direct one-
termHeun-to-hypergeometric reductions discussed bymany
authors (see, e.g., [27, 28, 31–34]) are achieved by such
restrictions and imposed on the involved parameters (three
or more conditions), which are either not satisfied by the

Heun potentials or produce very restrictive potentials. It is
checked that the less restrictive reductions reproduce the
classical Eckart and Pöschl-Teller potentials, while the other
reductions result in conditionally integrable potentials.

More advanced are the finite-sum solutions achieved by
termination of the series expansions of the general Heun
function in terms of the hypergeometric functions [35–39].
For such reductions, only two restrictions are imposed on the
involved parameters and, notably, these restrictions are such
that in many cases they are satisfied. The solutions for the
above-mentioned four-parametric subpotentials [9, 10] have
been constructed right in this way. Other examples achieved
by termination of the hypergeometric series expansions of
the functions of the Heun class include the recently reported
inverse square root [4], Lambert-W step [5], and Lambert-W
singular [6] potentials.

The series expansions of the general Heun function
in terms of the Gauss ordinary hypergeometric functions
are governed by three-term recurrence relations for the
coefficients of the successive terms of the expansion. A useful
particular expansion in terms of the functions of the form
2𝐹1(𝛼, 𝛽; 𝛾0 − 𝑛; 𝑧) which leads to simpler coefficients of the
recurrence relation is presented in [25, 39]. If the expansion
functions are assumed irreducible to simpler functions, the
termination of this series occurs if 𝜀 = −𝑁, 𝑛 = 0, 1, 2, . . .,
and a (𝑁+1)th degree polynomial equation for the accessory
parameter 𝑞 is satisfied. For 𝜀 = 0 the latter equation is𝑞 = 𝑎𝛼𝛽, which corresponds to the trivial direct reduction
of the general Heun equation to the Gauss hypergeometric
equation. This case reproduces the classical Eckart and
Pöschl-Teller potentials [25]. For the first nontrivial case 𝜀 =−1 the termination condition for singularities 𝑎1,2,3 = (𝑎, 1, 0)
takes a particularly simple form:

𝑞2 + 𝑞 (𝛾 − 1 + 𝑎 (𝛿 − 1)) + 𝑎𝛼𝛽 = 0. (26)

The solution of the Heun equation for a root of this equation
is written as [39]

𝑢 = 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑎 − 𝑧𝑎 − 1) + 𝛾 − 1𝑞 + 𝑎 (𝛿 − 1)
⋅ 2𝐹1 (𝛼, 𝛽; 𝛾 − 1; 𝑎 − 𝑧𝑎 − 1) ,

(27)

This solution has a representation through Clausen’s general-
ized hypergeometric function 3𝐹2 [40, 41].

Consider if the termination condition (26) for 𝜀 = −1 is
satisfied for the parameters given by (20)-(25). From (20) we
find that for 𝜀 = −1 holds 𝛼3 = 0. It then follows from (25)
that 𝑉4 = 0. With this, (26) is reduced to

𝑉2 + 𝑉3 (1 + 𝑎𝑎 − 2𝑚𝜎2𝑎2ℏ2 𝑉3) = 0. (28)

This equation generally defines a conditionally integrable
potential in that the potential parameters 𝑉2 and 𝑉3 are not
varied independently. Alternatively, if the potential parame-
ters are assumed independent, the equation is satisfied only
if 𝑉2 = 𝑉3 = 0. Thus, we put 𝑉2,3,4 = 0 and potential
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(17) is reduced to that given by (1). Furthermore, since 𝜎 is
arbitrary, in order for (18) to exactly reproduce the coordinate
transformation (2), we replace 𝜎/(1 − 𝑎) 󳨀→ 𝜎.

With this, the solution of the Schrödinger equation (10)
for potential (1) is written as

𝜓 = (𝑧 − 𝑎)𝛼1 (𝑧 − 1)𝛼2 ( 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑎 − 𝑧𝑎 − 1)
+ 2𝛼1𝑎𝛼2 − 𝛼1 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾 − 1; 𝑎 − 𝑧𝑎 − 1))

(29)

with (𝛼, 𝛽, 𝛾) = (𝛼1 + 𝛼2 + 𝛼0, 𝛼1 + 𝛼2 − 𝛼0, 1 + 2𝛼1) , (30)

𝛼0,1,2 = (±√2𝑚𝜎2 (𝑎 − 1)2ℏ2 (𝑉0 − 𝐸),

± √2𝑚𝜎2𝑎2ℏ2 (𝑉0 − 𝐸 + 𝑉1𝑎 ),
± √2𝑚𝜎2ℏ2 (𝑉0 − 𝐸 + 𝑉1)) .

(31)

This solution applies for any real or complex set of the
involved parameters. Furthermore, we note that any combi-
nation for the signs of 𝛼1,2 is applicable. Hence, by choosing
different combinations, one can construct different indepen-
dent fundamental solutions. Thus, this solution supports the
general solution of the Schrödinger equation.

A final remark is that using the contiguous functions
relations for the hypergeometric functions one can replace
the second hypergeometric function in (29) by a linear
combination of the first hypergeometric function and its
derivative. In this way we arrive at the following representa-
tion of the general solution of the Schrödinger equation:

𝜓 = (𝑧 − 𝑎)𝛼1 (𝑧 − 1)𝛼2 (𝐹 + 𝑧 − 𝑎𝛼1 + 𝑎𝛼2
𝑑𝐹𝑑𝑧 ) , (32)

where 𝐹 = 𝑐1 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑎 − 𝑧𝑎 − 1) + 𝑐2
⋅ 2𝐹1 (𝛼, 𝛽; 1 + 𝛼 + 𝛽 − 𝛾; 𝑧 − 1𝑎 − 1) .

(33)

5. Bound States

Consider the bound states supported by the singular version
of potential (1), (2), achieved by shifting 𝑥0 󳨀→ 𝑥0 −𝜎𝑎 ln(−𝑎) + 𝑖𝜋𝜎 in (2). Since the potential vanishes at
infinity exponentially, it is understood that this is a short-
range potential. The integral of the function 𝑥𝑉(𝑥) over the
semiaxis 𝑥 ∈ (0, +∞) is finite, hence, according to the general
criterion [42–46], the potential supports only a finite number
of bound states. These states are derived by demanding the
wave function to vanish both at infinity and in the origin (see
the discussion in [47]). We recall that for this potential the
coordinate transformation maps the interval 𝑥 ∈ (0, +∞)
onto the interval 𝑧 ∈ (0, 1). Thus, we demand 𝜓(𝑧 = 0) =𝜓(𝑧 = 1) = 0.
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Figure 3: Graphical representation of the spectrum equation (35)
for𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2.

The condition𝑉(+∞) = 0 assumes𝑉0 +𝑉1 = 0; hence, 𝛼2
is real for negative energy. Choosing, for definiteness, the plus
signs in (31), we have 𝛼2 > 0. Then, examining the equation𝜓(𝑧 = 1) = 0, we find that

𝜓󵄨󵄨󵄨󵄨𝑧󳨀→1 ∼ 𝑐1𝐴1 (1 − 𝑧)−𝛼2 + 𝑐2𝐴2 (1 − 𝑧)𝛼2 (34)

with some constants 𝐴1,2. Since for positive 𝛼2 the first term
diverges, we conclude 𝑐1 = 0. The condition 𝜓(𝑧 = 0) = 0
then gives the following exact equation for the spectrum:

𝑆 (𝐸) ≡ 1 + 𝛼1 + 𝑎𝛼22 (1 − 𝑎) 𝛼2
⋅ 2𝐹1 (𝛼 + 1, 𝛽 + 1; 1 + 2𝛼2; 1/ (1 − 𝑎))

2𝐹1 (𝛼, 𝛽; 2𝛼2; 1/ (1 − 𝑎)) = 0. (35)

The graphical representation of this equation is shown in
Figure 3. The function 𝑆(𝐸) has a finite number of zeros. For
the parameters 𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2 applied in the
figure there are just three bound states.

According to the general theory, the number of bound
states is equal to the number of zeros (not counting 𝑥 = 0) of
the zero-energy solution, which vanishes at the origin [42–
46]. We note that for 𝐸 = 0 the lower parameter of the
second hypergeometric function in (33) vanishes: 1 + 𝛼 +𝛽 − 𝛾 = 0. Hence, a different second independent solution
should be applied. This solution is constructed by using the
first hypergeometric functionwith𝛼1 everywhere replaced by−𝛼1.The result is rather cumbersome. It is more conveniently
written in terms of the Clausen functions as

𝜓𝐸=0 = 𝑐1 (𝑧 − 𝑎)𝛼1 3𝐹2 (−√𝑎 − 1𝑎 𝛼1 + 𝛼1, √ 𝑎 − 1𝑎 𝛼1
+ 𝛼1, 1 + 𝛼1; 𝛼1, 1 + 2𝛼1; 𝑎 − 𝑧𝑎 − 1) + 𝑐2 (𝑧 − 𝑎)−𝛼1
⋅ 3𝐹2 (−√𝑎 − 1𝑎 𝛼1 − 𝛼1, √ 𝑎 − 1𝑎 𝛼1 − 𝛼1, 1 − 𝛼1𝑎 ;
− 𝛼1𝑎 , 1; 𝑧 − 1𝑎 − 1) ,

(36)
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Figure 4: The zero-energy solution for 𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2.
The dashed line shows the logarithmic asymptote at infinity:𝜓0|𝑥󳨀→∞ ∼ 𝐴 + 𝐵 ln(1 − 𝑧).

where 𝛼1 = √2𝑎(𝑎 − 1)𝑚𝜎2𝑉0/ℏ2 and the relation between 𝑐1
and 𝑐2 is readily derived from the condition 𝜓𝐸=0(0) = 0. This
solution is shown in Figure 4. It is seen that for parameters𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2 used in Figure 3 the number of
zeros (excluded the origin) is indeed 3.

For practical purposes, it is useful to have an estimate for
the number of bound states. The absolute upper limit for this
number is given by the integral [42, 43]

𝐼𝐵 = ∫∞
0

𝑟 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑉(𝑥 󳨀→ 𝑟ℏ√2𝑚)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑟 = (1 − 𝑎)
⋅ (𝐿𝑖2 ( 11 − 𝑎) + 2𝑎 coth−1 (1 − 2𝑎)2) 2𝑚𝜎2𝑉0ℏ2 .

(37)

where 𝐿𝑖2 is Jonquière’s polylogarithm function of order 2
[48, 49]. Though of general importance, however, in many
cases this is a rather overestimating limit. Indeed, for the
parameters applied in Figure 3 it gives 𝑛 ≤ 𝐼𝐵 ≈ 24.

More stringent are the estimates by Calogero [44] and
Chadan [45] which are specialized for everywhere monoton-
ically nondecreasing attractive central potentials. Calogero’s
estimate reads 𝑛 ≤ 𝐼𝐶 with [44]

𝐼𝐶 = 2/𝜋ℏ/√2𝑚 ∫∞
0

√−𝑉 (𝑥)𝑑𝑥
= (1 + (√1 − 𝑎 − √−𝑎)2)√2𝑚𝜎2𝑉0ℏ2 ,

(38)

We note that 𝐼𝐶 ≈ √2𝐼𝐵. The result by Chadan further tunes
the upper limit for the number of bound states to the half of
that by Calogero; that is 𝑛 ≤ 𝐼𝐶/2 [45]. For the parameters
applied in Figure 3 this gives 𝑛 ≤ 3.48, which is, indeed, an
accurate estimate. The dependence of the function 𝑛𝑐 = 𝐼𝐶/2
on the parameter 𝑎 for 𝑎 ∈ (−∞, 0) ∪ (1, +∞) is shown in
Figure 5. It is seen that more bound states are available for𝑎 close to zero. The maximum number achieved in the limit𝑎 󳨀→ 0 is √2𝑚𝜎2𝑉0/ℏ2; hence, for sufficiently small 𝑉0 or 𝜎
such that 2𝑚𝜎2𝑉0 < ℏ2, bound states are not possible at all.
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Figure 5: The dependence of Chadan’s estimate 𝑛𝑐 = 𝐼𝐶/2 for the
number of bound states on the parameter 𝑎 (𝑚, ℏ,𝑉0, 𝜎 = 1, 1, 5, 2).

6. Discussion

Thus, we have presented the third five-parametric quantum-
mechanical potential for which the solution of the
Schrödinger equation is written in terms of the Gauss
ordinary hypergeometric functions. The potential involves
five (generally complex) parameters which are varied
independently. Depending on the particular specifications
of these parameters, the potential suggests two different
appearances. In one version we have a smooth step-barrier
with variable height, steepness, and asymmetry, while in the
other version this is a singular potential-well which behaves
as the inverse square root in the vicinity of the origin and
exponentially vanishes at infinity.

The potential is in general given parametrically; how-
ever, in several cases the involved coordinate transformation
allows inversion thus leading to particular potentials which
are explicitly written in terms of elementary functions. These
reductions are achieved by particular specifications of a
parameter standing for the third finite singularity of the
general Heun equation. The resultant subpotentials all are
four-parametric (see, e.g., [9, 10]). These particular cases are
defined by coordinate transformations which are roots of
polynomial equations. It turns out that different polynomial
equations of the same degree produce the same potential
(with altered parameters). The reason for this is well under-
stood in the case of quadratic equations. In that case the
third singularity of the general Heun equation, to which the
Schrödinger equation is reduced, is specified as 𝑎 = −1, 1/2
or 2. We then note that the form-preserving transformations
of the independent variable map the four singularities of the
Heun equation, 𝑧 = 0, 1, 𝑎,∞, onto the points 𝑧 = 0, 1, 𝑎1,∞
with 𝑎1 adopting one of the six possible values 𝑎, 1/𝑎, 1 −𝑎, 1/(1−𝑎), 𝑎/(1−𝑎), (𝑎−1)/𝑎 [27–29]. It is seen that the triad(−1, 1/2, 2) is a specific set which remains invariant at form-
preserving transformations of the independent variable.

The potential belongs to the general Heun family𝑚1,2,3 =(1, 1, −1). This family allows several conditionally integrable
reductions too [25]. A peculiarity of the exactly integrable
potential that we have presented here is that the location of
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a finite singularity of the general Heun equation is not fixed
to a particular point of the complex 𝑧-plane but serves as a
variable potential-parameter. In the step-barrier version of
the potential, this parameter stands for the asymmetry of the
potential.

The solution of the Schrödinger equation for the poten-
tial we have presented is constructed via termination of a
series expansion of the general Heun equation in terms of
the Gauss ordinary hypergeometric functions. The general
solution of the problem is composed of fundamental solu-
tions each of which is an irreducible combination of two
hypergeometric functions. Several other potentials allowing
solutions of this type have been reported recently [4–6, 9,
10, 23–25]. Further cases involve the solutions for super-
symmetric partner potentials much discussed in the past
[15, 50, 51] and for several nonanalytic potentials discussed
recently [52–54]. One should distinguish these solutions
from the case of reducible hypergeometric functions [55–59]
when the solutions eventually reduce to quasi-polynomials,
e.g., discussed in the context of quasi-exactly solvability
[57–59]. We note that, owing to the contiguous functions
relations [60], the two-term structure of the solution is a
general property of all finite-sum hypergeometric reductions
of the general Heun functions achieved via termination of
series solutions. It is checked that in our case the linear
combination of the involved Gauss functions is expressed
through a single generalized hypergeometric function 3𝐹2
[40, 41].

We have presented the explicit solution of the problem
and discussed the bound states supported by the singular
version of the potential. We have derived the exact equation
for the energy spectrum and estimated the number of bound
states. The exact number of bound states is given by the
number of zeros of the zero-energy solution which we have
also presented.
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We solve the quantum system with the symmetric Razavy cosine type potential and find that its exact solutions are given by the
confluent Heun function. The eigenvalues are calculated numerically. The properties of the wave functions, which depend on the
potential parameter 𝑎, are illustrated for a given potential parameter 𝜉. It is shown that the wave functions are shrunk to the origin
when the potential parameter 𝑎 increases. We note that the energy levels 𝜖

𝑖
(𝑖 ∈ [1, 3]) decrease with the increasing potential

parameter 𝑎 but the energy levels 𝜖
𝑖
(𝑖 ∈ [4, 7]) first increase and then decrease with the increasing 𝑎.

1. Introduction

As we know, the exact solutions of quantum systems have
been playing an important role since the foundation of
quantum mechanics. The hydrogen atom and harmonic
oscillator have been taken as typical and seminal examples
to explain the classic quantum phenomena in almost all
quantum mechanics textbooks [1, 2]. Generally speaking,
some popular methods are used to solve these quantum
soluble systems. First, we call the functional analysis method,
with which one solves the second-order differential equation
and obtains their solutions [3] expressed by somewell-known
special functions. Second, it is called the algebraic method
and can be realized by analyzing theHamiltonian of quantum
system. This method is relevant for the SUSYQM [4] and
essentially connected to the factorization method [5]. Third,
we call the exact quantization rule method [6] and further
developed as the proper quantization rule method [7]. The
latter approach shows more beauty and symmetry than the
former one. It should be recognized that almost all soluble
potentials mentioned above belong to single well potentials
except for the double well potentials [8–10].

More than thirty years ago, Razavy proposed a cosine type
potential [11, 12]

𝑉(𝑚, 𝑥)
= ℏ2

2𝜇 {1
8𝜉2 [1 − cos (2𝑚𝑥)] − (𝑎 + 1) 𝜉 cos (𝑚𝑥)} , (1)

with 𝑉(𝑚, −𝑥) = 𝑉(𝑚, 𝑥) and 𝑉(−𝑚, 𝑥) = 𝑉(−𝑚,𝑥). Here
the parameters 𝑎, 𝑚 are positive integers and 𝜉 is a positive
real number. (The potential taken here is slightly different
from original expression [11, 12], in which a proportional
coefficient was included. In addition, the factor (𝑎 + 1)𝜉
is extracted from the originally proposed Razavy potential
[11, 12] to incorporate the energy level 𝐸. Such a treatment
does not affect the property of the quantum system.) In
Figure 1, we plot it as a function of the variable 𝑥with various
𝑎, in which we take 𝜉 = 3 and 𝑚 = 1 for simplicity. We
find that the minimum value of the potential 𝑉min(𝑚, 𝑥) =
−(𝑎 + 1)𝜉, which is independent of the parameter 𝑚. Razavy
presented the so-called exact solutions by using the series
method [11, 12]. After studying it carefully, it is found that
the solutions cannot be given exactly due to the complicated
three-term recurrence relation. The method used by him
is nothing but the Bethe ansatz method as summarized
in [13]. In this case the solutions cannot be expressed as
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Figure 1: A plot of potential as function of the variables 𝑥 and 𝑎.

one of the special functions due to the complicated three-
term recurrence relations. One must take some constraints
on the coefficients in the recurrence relations as shown
in [11, 12] to obtain quasi-exact solutions. Recently it is
found that the solutions of the hyperbolic type potentials
[14–21] are given explicitly by the confluent Heun function
[22]. Just recently, we have carried out the Razavy cosine
hyperbolic type 𝑉(𝑥) = (ℏ2𝛽2/2𝜇)[(1/8)𝜉2 cosh(4𝛽𝑥) − (𝑚 +
1)𝜉 cosh(2𝛽𝑥) − (1/8)𝜉2], which was studied by Razavy in
[11, 12] and found that its solutions can be written as the
confluent Heun function [23]. The purpose of this work is
to study the solutions of the Razavy cosine type potential
(1) [11, 12] and to see whether its solutions can be written as
the confluent Heun function or not. The answer is yes, but
the energy spectra must be calculated numerically since the
energy level term is involved inside the parameter 𝜂 of the
confluent Heun function 𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧). Even though the
Heun functions have been studied well since 1889, its main
topics are focused on the mathematical area. The reason why
Razavy did not find its solutions related to this function is that
only recent connectionswith the physical problemshave been
discovered, in particular for those hyperbolic type potentials
[14–21].

This paper is organized as follows. In Section 2, we show
how to obtain the solutions of the Schrödinger equation
with the Razavy cosine type potential. This is realized by
transforming the Schrödinger equation into a confluent
Heun differential equation through taking some variable
transformations. In Section 3, some fundamental properties
of the solutions are studied and illustrated graphically. The
energy levels for different parameter values 𝑎 are calculated
numerically. We summarize our results and conclusions in
Section 4.

2. Exact Solutions

Let us consider the one-dimensional Schrödinger equation,

− ℏ2
2𝜇

𝑑2
𝑑𝑥2𝜓 (𝑥) + 𝑉 (𝑥) 𝜓 (𝑥) = 𝐸𝜓 (𝑥) . (2)

Substituting potential (1) into (2), we have

𝑑2
𝑑𝑥2𝜓 (𝑥) + {𝜀

− [1
8𝜉2 (1 − cos (2𝑚𝑥)) − (𝑎 + 1) 𝜉 cos (𝑚𝑥)]}

⋅ 𝜓 (𝑥) = 0,
𝜖 = 2𝜇𝐸

ℏ2 − (𝑎 + 1) 𝜉.

(3)

Take the wave functions of the form

𝜓 (𝑥) = exp [𝜉 cos (𝑚𝑥)
2𝑚 ]𝜙 (𝑥) . (4)

Substituting this into (3) yields

𝜙󸀠󸀠 (𝑥) − 𝜉 sin (𝑚𝑥) 𝜙󸀠 (𝑥)
+ 1

2 [𝜉 (2𝑎 − 𝑚 + 2) cos (𝑚𝑥) + 2𝜖] 𝜙 (𝑥) = 0. (5)

Choose a new variable 𝑧 = cos2(𝑚𝑥/2). The above
equation becomes

(𝑧 − 1) 𝑧𝜙󸀠󸀠 (𝑧) + 1
2 (4𝜉 (𝑧 − 1) 𝑧

𝑚 + 2𝑧 − 1)𝜙󸀠 (𝑧)

− 𝜙 (𝑧) [𝜉 (2𝑧 − 1) (2𝑎 − 𝑚 + 2) + 2𝜖]
2𝑚2 = 0,

(6)

which can be rearranged as

𝜙󸀠󸀠 (𝑧) + [2𝜉
𝑚 + 1

2 ( 1
𝑧 − 1 + 1

𝑧)] 𝜙󸀠 (𝑧)

− 𝜉 (2𝑧 − 1) (2𝑎 − 𝑚 + 2) + 2𝜖
2𝑚2 (𝑧 − 1) 𝑧 𝜙 (𝑧) = 0.

(7)

Compared this with the confluent Heun differential equation
in the simplest uniform form [22]

𝑑2𝐻(𝑧)
𝑑𝑧2 + (𝛼 + 1 + 𝛽

𝑧 + 1 + 𝛾
𝑧 − 1) 𝑑𝐻 (𝑧)

𝑑𝑧
+ (𝜇

𝑧 + ]
𝑧 − 1)𝐻 (𝑧) = 0,

(8)

we find the solution to (7) is given by the acceptable confluent
Heun function 𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) with the following parame-
ters:

𝛼 = 2𝜉
𝑚 ,

𝛽 = −1
2 ,

𝛾 = −1
2 ,

𝜇± = 𝜉 (−2𝑎 + 𝑚 − 2) ± 2𝜖
2𝑚2 ,

] = 𝜇−

(9)
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Table 1: Spectra of the Schrödinger equation with potential (1).

𝑎 𝜖
1

𝜖
2

𝜖
3

𝜖
4

𝜖
5

𝜖
6

𝜖
7𝑎 = 0 -1.25000 1.79206 3.88549 5.52599 7.571 10.2587 13.4768

𝑎 = 1 -3.85555 0.105572 3.35555 5.88783 8.10716 10.6369 13.7448
𝑎 = 2 -6.5289 -1.86011 2.22966 5.68013 8.54924 11.2207 14.2107
𝑎 = 3 -9.2426 -3.97095 0.793349 5.00238 8.62128 11.7636 14.8280
𝑎 = 4 -11.9842 -6.17622 -0.831098 4.01497 8.31808 12.0716 15.4571
𝑎 = 5 -14.7467 -8.44991 -2.58550 2.81773 7.72170 12.0880 15.9545
𝑎 = 6 -17.5255 -10.7764 -4.43719 1.46786 6.90679 11.8388 16.2407
𝑎 = 7 -20.3178 -13.1452 -6.36553 0.00034 5.92502 11.3718 16.3004
𝑎 = 8 -23.1212 -15.5492 -8.35647 -1.56169 4.81114 10.7299 16.1532
𝑎 = 9 -25.9342 -17.9829 -10.3999 -3.20197 3.58925 9.94554 15.8289
𝑎 = 10 -28.7554 -20.4422 -12.4881 -4.90854 2.27678 9.04264 15.3551

fromwhich we are able to calculate the parameters 𝛿 and 𝜂 as

𝛿 = 𝜇+ + 𝜇− − 1
2𝛼 (𝛽 + 𝛾 + 2) = −2 (𝑎 + 1) 𝜉

𝑚2 ,

𝜂 = 1
2𝛼 (𝛽 + 1) − 𝜇+ − 1

2 (𝛽 + 𝛾 + 𝛽𝛾)

= 8 (𝑎 + 1) 𝜉 + 3𝑚2 − 8𝜖
8𝑚2 ,

(10)

which implies the parameter 𝜂 involved in the confluentHeun
function is related to energy levels. The wave function given
by this Heun function seems to be analytical, but the key issue
is how to first get the energy levels. Otherwise, the solution
becomes unsolvable. Generally, the confluent Heun function
can be expressed as a series expansion

𝐻𝐶 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) =
∞

∑
𝑛=0

V𝑛 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝜉) 𝑧𝑛,

|𝑧| < 1.
(11)

The coefficients V𝑛 are given by a three-term recurrence
relation

𝐴𝑛V𝑛 − 𝐵𝑛V𝑛−1 − 𝐶𝑛V𝑛−2 = 0,
V−1 = 0,
V0 = 1,

(12)

with

𝐴𝑛 = 1 + 𝛽
𝑛 = 1 − 1

2𝑛 ,

𝐵𝑛 = 1 + 1
𝑛 (𝛽 + 𝛾 − 𝛼 − 1)

+ 1
𝑛2 {𝜂 − 1

2 (𝛽 + 𝛾 − 𝛼) − 𝛼𝛽
2 + 𝛽𝛾

2 } ,

= 2 (𝑎𝜉 + 𝜉 − 𝜖) + 2𝑚2 (𝑛 − 1)2 + 𝑚 (3 − 4𝑛) 𝜉
2𝑚2𝑛2

𝐶𝑛 = 𝛼
𝑛2 (

𝛿
𝛼 + 𝛽 + 𝛾

2 + 𝑛 − 1)

= 𝜉 (−2𝑎 + 𝑚 (2𝑛 − 3) − 2)
𝑚2𝑛2

(13)

To make the confluent Heun function reduce to polyno-
mials, two termination conditions have to be satisfied [22]

𝜇
+ + 𝜇− + 𝑁𝛼 = 0,

Δ𝑁+1 (𝜇+) = 0. (14)

The second condition is a tridiagonal determinant and can be
constructed by the matrix elements

𝑎𝑖𝑖 = 𝜇+ − 𝑠𝑖 + (𝑖 − 1) 𝛼,
𝑎𝑖𝑖+1 = 𝑖 (𝑖 + 𝛽) ,
𝑎𝑖+1𝑖 = (𝑁 − 𝑖 + 1) 𝛼,

𝑠𝑖 = (𝑖 − 1) (𝑖 + 𝛽 + 𝛾) ,
𝑖 = 1, 2, . . . , 𝑁,𝑁 + 1.

(15)

The explicit expression of this determinant can refer to [16–
19] for some detail.

For present case, there is a problem for the first condition.
That is, 𝜇

+ + 𝜇− + 𝛼 = 0 when 𝑁 = 1. From this we have
𝑚 = 2(1 + 𝑎)/(1 + 4𝜉). This is contrary to the assumption 𝑚
is positive integer. Therefore, how to obtain the eigenvalues
becomes a challenging task. Due to 𝑧 ∈ [0, 1] we would like
to solve this problem via series expansion method as shown
in [15]. Unfortunately, the calculation results are not ideal. We
have to solve it in another way as shown in [14].

3. Fundamental Properties

Now, let us study some basic properties of the solutions as
shown in Figures 2 and 3. We find that the wave functions
are shrunk to the origin when the potential parameter 𝑎
increases. This makes the amplitude of the wave function be
increased.We list the energy levels 𝜖

𝑖 (𝑖 ∈ [1, 7]) inTable 1 and
illustrate them in Figure 3. We notice that the energy levels 𝜖𝑖
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Figure 2: The characteristics of wave functions as a function of the position 𝑥. We take 𝜉 = 3.
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and 𝜉 = 3.

(𝑖 ∈ [1, 3]) decrease with the increasing potential parameter
𝑎 but 𝜖𝑖 (𝑖 ∈ [4, 7]) first increase and then decrease with the
increasing potential parameter 𝑎.

4. Conclusions

In this work we have studied the quantum system with
the Razavy cosine type potential and found that its exact
solutions are given by confluent Heun function 𝜓(𝑧) =
exp[(2𝑧 − 1)𝜉/2]𝐻

𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) by transforming the orig-
inal differential equation into a confluent type Heun differ-
ential equation. The fact that the energy levels are involved
inside the parameter 𝜂 makes us calculate the eigenvalues
numerically. The properties of the wave functions depending
on the potential parameter 𝑎 have been illustrated graphically
for a given potential parameter 𝜉. We have also noticed that
the energy levels 𝜖

𝑖 (𝑖 ∈ [1, 3]) decrease with the increasing
potential parameter 𝑎 but 𝜖𝑖 (𝑖 ∈ [4, 7]) first increase and then
decrease with the increasing 𝑎.
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In this work, we study the quantum system with the symmetric Razavy potential and show how to find its exact solutions. We find
that the solutions are given by the confluent Heun functions. The eigenvalues have to be calculated numerically. The properties of
the wave functions depending on 𝑚 are illustrated graphically for a given potential parameter 𝜉. We find that the even and odd
wave functions with definite parity are changed to odd and even wave functions when the potential parameter 𝑚 increases. This
arises from the fact that the parity, which is a defined symmetry for very small𝑚, is completely violated for large𝑚. We also notice
that the energy levels 𝜖𝑖 decrease with the increasing potential parameter𝑚.

1. Introduction

It is well-known that the exact solutions of quantum systems
play an important role since the early foundation of the quan-
tummechanics. Generally speaking, two typical examples are
studied for the hydrogen atom and harmonic oscillator in
classical quantum mechanics textbooks [1, 2]. Up till now,
there are a few main methods to solve the quantum soluble
systems. The first is called the functional analysis method.
That is to say, one solves the second-order differential equa-
tion and obtains their solutions [3], which are expressed by
some well-known special functions. The second is called the
algebraic method, which is realized by studying the Hamil-
tonian of quantum system. This method is also related to
supersymmetric quantum mechanics (SUSYQM) [4], further
closely with the factorization method [5]. The third is called
the exact quantization rule method [6], from which we pro-
posed proper quantization rule [7], which showsmore beauty
and symmetry than exact quantization rule. It should be
recognized that almost all soluble potentialsmentioned above
belong to single well potentials. The double-well potentials
have not been studied well due to their complications [8–17],

in which many authors have been searching the solutions of
the double-well potentials for a long history. This is because
the double-well potentials could be used in the quantum
theory of molecules to describe the motion of the particle
in the presence of two centers of force, the heterostructures,
Bose-Einstein condensates, superconducting circuits, etc.

Almost forty years ago, Razavy proposed a bistable
potential [18]:

𝑉 (𝑥) = ℏ2𝛽2
2𝜇 [18𝜉

2 cosh (4𝛽𝑥) − (𝑚 + 1) 𝜉 cosh (2𝛽𝑥)

− 1
8𝜉
2] ,

(1)

which depends on three potential parameters 𝛽, 𝜉, and a
positive integer𝑚. In Figure 1 we plot it as the function of the
variables 𝑥with various𝑚, in which we take 𝛽 = 1 and 𝜉 = 3.
Choose atomic units ℏ = 𝜇 = 1 and also take V(𝑥) = 2𝑉(𝑥).
Using series expansion around the origin, we have

V (𝑥) = (−𝑚𝜉 − 𝜉) + 𝑥2 (−2𝑚𝜉 + 𝜉2 − 2𝜉)
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Advances in High Energy Physics
Volume 2018, Article ID 9105825, 7 pages
https://doi.org/10.1155/2018/9105825

http://orcid.org/0000-0001-7371-1848
http://orcid.org/0000-0002-0769-635X
https://doi.org/10.1155/2018/9105825


2 Advances in High Energy Physics

−20

−15

−10

−5

0

5

10

15

2
６
(Ｒ
)/
ℏ
2

0 1 1−1−2

x

m = 0
m = 1

m = 2
m = 3

Figure 1: (Color online) A plot of potential as function of the
variables 𝑥 and𝑚.

+ 2
3𝑥
4 (−𝑚𝜉 + 2𝜉2 − 𝜉)

+ 4
45𝑥
6 (−𝑚𝜉 + 8𝜉2 − 𝜉) + 𝑂 (𝑥7) ,

(2)

which shows that V(𝑥) is symmetric to variable 𝑥. We find
that the minimum value of the potential Vmin(𝑥) = −(𝑚 +
1)2 − 𝜉2/4 at two minimum values 𝑥 = ±(1/2)cosh−1[2(𝑚 +
1)/𝜉]. For a given value 𝜉 = 3, we find that the potential has
a flat bottom for 𝑛 = 0, but for 𝑛 > 1 it takes the form of a
double-well. Razavy presented the so-called exact solutions
by using the “polynomial method” [18]. After studying it
carefully, we find that the solutions cannot be given exactly
due to the complicated three-term recurrence relation. The
method presented there [18] is more like the Bethe Ansatz
method as summarized in our recent book [19]. That is, the
solutions cannot be expressed as one of special functions
because of three-term recurrence relations. In order to obtain
some so-called exact solutions, the author has to take some
constraints on the coefficients in the recurrence relations as
shown in [18]. Inspired by recent study of the hyperbolic
type potential well [20–28], in which we have found that
their solutions can be exactly expressed by the confluent
Heun functions [23], in this work we attempt to study the
solutions of the Razavy potential. We shall find that the
solutions can be written as the confluent Heun functions but
their energy levels have to be calculated numerically since
the energy term is involved within the parameter 𝜂 of the
confluent Heun functions𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧). This constraints
us to use the traditional Bethe Ansatz method to get the
energy levels. Even though the Heun functions have been
studied well, its main topics are focused in the mathematical
area. Only recent connections with the physical problems
have been discovered; in particular the quantum systems for
those hyperbolic type potential have been studied [20–28].
The terminology “semiexact” solutions used in [21] arise from

the fact that the wave functions can be obtained analytically,
but the eigenvalues cannot be written out explicitly.

This paper is organized as follows. In Section 2, we present
the solutions of the Schrödinger equation with the Razavy
potential. It should be recognized that the Razavy potential
is single or double-well depends on the potential parameter
𝑚. In Section 3 some fundamental properties of the solutions
are studied. The energy levels for different 𝑚 are calculated
numerically. Some concluding remarks are given in Section 4.

2. Semiexact Solutions

Let us consider the one-dimensional Schrödinger equation:

− ℏ22𝜇
𝑑2
𝑑𝑥2𝜓 (𝑥) + 𝑉 (𝑥) 𝜓 (𝑥) = 𝐸𝜓 (𝑥) . (3)

Substituting potential (1) into (3), we have

𝑑2
𝑑𝑥2𝜓 (𝑥) + {𝜀

− [18𝜉
2 cosh (4𝑥) − (𝑚 + 1) 𝜉 cosh (2𝑥) − 1

8𝜉
2]}

⋅ 𝜓 (𝑥) = 0,
𝜖 = 2𝐸.

(4)

Take the wave functions of the form

𝜓 (𝑥) = 𝑒𝜉cosh2(𝑥)/2𝑦 (𝑥) . (5)

Substituting this into (4) allows us to obtain

𝑦󸀠󸀠 (𝑥) + 𝜉 sinh (2𝑥) 𝑦󸀠 (𝑥)
+ [(𝑚 + 2) 𝜉 cosh (2𝑥) + 𝜖] 𝑦 (𝑥) = 0. (6)

Take a new variable 𝑧 = cosh2(𝑥). The above equation
becomes

4 (𝑧 − 1) 𝑧𝑦󸀠󸀠 (𝑧) + [4𝑧 (𝜉 (𝑧 − 1) + 1) − 2] 𝑦󸀠 (𝑧)
+ ((𝑚 + 2) 𝜉 (2𝑧 − 1) + 𝜖) 𝑦 (𝑧) = 0 (7)

which can be rearranged as

𝑦󸀠󸀠 (𝑧) + [𝜉 + 1
2 (

1
𝑧 +

1
𝑧 − 1)]𝑦

󸀠 (𝑧)

+ (𝑚 + 2) 𝜉 (2𝑧 − 1) + 𝜖
4 (𝑧 − 1) 𝑧 𝑦 (𝑧) = 0.

(8)

When comparing this with the confluent Heun differential
equation in the simplest uniform form [13]

𝑑2𝐻(𝑧)
𝑑𝑧2 + (𝛼 + 1 + 𝛽

𝑧 + 1 + 𝛾
𝑧 − 1)

𝑑𝐻 (𝑧)
𝑑𝑧

+ (𝜇𝑧 + ]
𝑧 − 1)𝐻 (𝑧) = 0,

(9)
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we find the solution to (8) is given by the acceptable confluent
Heun function𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) with

𝛼 = 𝜉,
𝛽 = −12 ,

𝛾 = −12 ,

𝜇 = 𝜉 (𝑚 + 2) − 𝜀
4 ,

] = 𝜉 (𝑚 + 2) + 𝜀
4 ,

(10)

from which we are able to calculate the parameters 𝛿 and 𝜂
involved in𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) as

𝛿 = 𝜇 + ] − 1
2𝛼 (𝛽 + 𝛾 + 2) =

1
2 (𝑚 + 1) 𝜉,

𝜂 = 1
2𝛼 (𝛽 + 1) − 𝜇 −

1
2 (𝛽 + 𝛾 + 𝛽𝛾)

= 1
8 [−2 (𝑚 + 1) 𝜉 + 2𝜖 + 3] .

(11)

It is found that the parameter 𝜂 related to energy levels is
involved in the confluent Heun function. The wave function
given by this function seems to be analytical, but the key issue
is how to first get the energy levels. Otherwise, the solution
becomes unsolvable. Generally, the confluent Heun function
can be expressed as a series of expansions:

𝐻𝐶 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧) =
∞

∑
𝑛=0

V𝑛 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝜉) 𝑧𝑛,

|𝑧| < 1.
(12)

The coefficients V𝑛 are given by a three-term recurrence
relation:

𝐴𝑛V𝑛 − 𝐵𝑛V𝑛−1 − 𝐶𝑛V𝑛−2 = 0,
V−1 = 0,
V0 = 1,

(13)

with

𝐴𝑛 = 1 + 𝛽
𝑛 ,

𝐵𝑛 = 1 + 1
𝑛 (𝛽 + 𝛾 − 𝛼 − 1)

+ 1
𝑛2 {𝜂 −

1
2 (𝛽 + 𝛾 − 𝛼) −

𝛼𝛽
2 + 𝛽𝛾

2 } ,

𝐶𝑛 = 𝛼
𝑛2 (

𝛿
𝛼 + 𝛽 + 𝛾

2 + 𝑛 − 1) .

(14)

To make the confluent Heun functions reduce to polyno-
mials, two termination conditions have to be satisfied [13, 14]:

𝜇 + ] + 𝑁𝛼 = 0,
Δ𝑁+1 (𝜇) = 0,

(15)

where

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇 − 𝑝1 (1 + 𝛽) 0 . . . 0 0 0
𝑁𝛼 𝜇 − 𝑝2 + 𝛼 2 (2 + 𝛽) . . . 0 0 0
0 (𝑁 − 1) 𝛼 𝜇 − 𝑝3 + 2𝛼 . . . 0 0 0
... ... ... d

... ... ...
0 0 0 . . . 𝜇 − 𝑝𝑁−1 + (𝑁 − 2) 𝛼 (𝑁 − 1) (𝑁 − 1 + 𝛽) 0
0 0 0 . . . 2𝛼 𝜇 − 𝑝𝑁 + (𝑁 − 1) 𝛼 𝑁 (𝑁 + 𝛽)
0 0 0 . . . 0 𝛼 𝜇 − 𝑝𝑁+1 + 𝑁𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0 (16)

with

𝑝𝑁 = (𝑁 − 1) (𝑁 + 𝛽 + 𝛾) . (17)

For present problem, it is not difficult to see that the first
condition is violated. That is, 𝜇 + ] + 𝛼 = 0 when 𝑁 = 1.
From this we have 𝑚 = −4. This is contrary to the fact that
𝑚 is a positive integer. Therefore, we cannot use this method
to obtain the eigenvalues. On the other hand, we know that
𝑧 ∈ [1,∞).Thus, the series expansion method is invalid.This
is unlike previous study [22, 24], inwhich the quasiexact wave

functions and eigenvalues can be obtained by studying those
two constraints. The present case is similar to our previous
study [20, 21], in which some constraint is violated. We have
to choose other approach to study the eigenvalues as used in
[20, 21].

3. Fundamental Properties

In this section we are going to study some basic properties
of the wave functions as shown in Figures 2–4. We first
consider the positive integer 𝑚. Since the energy spectrum
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Figure 2: (Color online)The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take 𝑚 = 0, 1 and 𝜉 = 3.
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Figure 3: (Color online) The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take𝑚 = 6, 8 and 𝜉 = 3.
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Figure 4: (Color online) The same as the above case but𝑚 = 10, 12.



Advances in High Energy Physics 5

x

m=-6m=-11.0

0.5

−0.5

−1.0

0.0

1.0

0.5

−0.5

−1.0

0.0
(x

)

=3

1.0 1.50.5−0.5−1.0−1.5 0.01.0 1.50.5−0.5−1.0−1.5 0.0

1
2
3

Figure 5: (Color online) The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take𝑚 = −1, −6 and 𝜉 = 3.
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Figure 6: (Color online) The same as the above case but𝑚 = −10, −90.

cannot be given explicitly we have to solve the second-
order differential equation (4) numerically. We denote the
energy levels as 𝜖𝑖 (𝑖 ∈ [1, 6]) in Table 1. We find that the
energy levels 𝜖𝑖 decrease with the increasing 𝑚. Originally,
we wanted to calculate the energy levels numerically by using
powerful MAPLE, which includes some special functions
such as the confluent Heun function that cannot be found in
MATHEMATICA. As we know, the wave function is given
by 𝜓(𝑧) = exp(𝑧𝜉/2)𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧). Generally speaking,
the wave function requires 𝜓(𝑧) 󳨀→ 0 when 𝑧 󳨀→ ∞;
i.e., 𝑥 󳨀→ ∞. Unfortunately, the present study is unlike
our previous study [20, 21], in which 𝑧 󳨀→ 1 when 𝑥 goes
to infinity. The energy spectra can be calculated by series
expansions through taking 𝑧 󳨀→ 1. On the other hand, the
wave functions have a definite parity; e.g., for 𝑚 = 0 some
wave functions are symmetric. It is found that such properties
are violated when the potential parameter 𝑚 becomes larger
as shown in Figure 4. That is, the wave functions for 𝑚 = 12
are nonsymmetric. In addition, on the contrary to the case
discussed by Razavy [18], inwhich he supposed the𝑚 is taken

as positive integers, we are going to showwhat happens to the
negative𝑚 case.We display the graphics in Figures 5 and 6 for
this case. We find that the wave functions are shrunk towards
the origin. This makes the amplitude of the wave function
increase.

4. Conclusions

In this work we have studied the quantum system with the
Razavy potential, which is symmetric with respect to the
variable 𝑥 and showed how its exact solutions are found
by transforming the original differential equation into a
confluent type Heun differential equation. It is found that the
solutions can be expressed by the confluent Heun functions
𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂), inwhich the energy levels are involved inside
the parameter 𝜂. This makes us calculate the eigenvalues
numerically. The properties of the wave functions depend-
ing on 𝑚 are illustrated graphically for a given potential
parameter 𝜉. We have found that the even and odd wave
functions with definite parity are changed to odd and even
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Table 1: Energy levels of the Schrödinger equation with potential (1).

] 𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6
𝑚 = −6 21.6608 35.7557 51.3448 68.3341 86.6500 106.233
𝑚 = −5 18.1891 31.3844 46.1503 62.3746 79.9715 98.8740
𝑚 = −4 14.6806 26.9167 40.8214 56.2549 73.1150 91.3249
𝑚 = −3 11.1259 22.3314 35.3346 49.9525 66.0599 83.5680
𝑚 = −2 7.51110 17.5996 29.6610 43.4412 58.7838 75.5860
𝑚 = −1 3.81463 12.6800 23.7644 36.6914 51.2639 67.3635
𝑚 = 0 0.00007 7.51170 17.6027 29.6729 43.4799 58.8919
𝑚 = 1 -3.99968 2.00200 11.1343 22.3606 35.4208 50.1750
𝑚 = 2 -8.32288 -3.99300 4.34771 14.7494 27.0959 41.2385
𝑚 = 3 -13.2815 -10.6927 -2.64788 6.87526 18.5501 32.1389
𝑚 = 4 -19.5196 -9.46859 -1.17161 9.87916 22.9677 38.0537
𝑚 = 5 -27.7547 -15.7094 -9.29612 1.24110 13.8439 28.5940
𝑚 = 6 -38.0314 -21.6913 -17.5131 -7.12621 4.89289 19.3065
𝑚 = 7 -49.9928 -28.2027 -25.9897 -14.8827 -3.78434 10.2625
𝑚 = 8 -63.3335 -35.8866 -21.7455 -12.1464 1.51447 17.5661
𝑚 = 9 -77.8339 -44.5255 -27.8571 -20.2355 -6.89162 8.76577
𝑚 = 10 -93.3024 -54.9017 -33.6970 -28.1690 -14.8944 0.229704
𝑚 = 11 -109.592 -65.743 -39.7373 -36.1005 -22.4007 -8.04337
𝑚 = 12 -126.580 -77.2416 -46.3335 -29.3139 -16.0647 1.06475

wave functions when the potential parameter 𝑚 increases.
This arises from the fact that the parity, which is a defined
symmetry for very small𝑚, is completely violated for large𝑚.
We have also noticed that the energy levels 𝜖𝑖 decrease with
the increasing potential parameter 𝑚.
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S. Dong, “Exact solutions to solitonic profile mass Schrödinger
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Since the doubly heavy baryons masses are experimentally unknown (except Ξ+𝑐𝑐 and Ξ++𝑐𝑐 ), we present the ground state masses
and the positive and negative parity excited state masses of doubly heavy Ξ baryons. For this purpose, we have solved the six-
dimensional hyperradial Schrödinger equation analytically for three particles under the hypercentral potential by using the ansatz
approach. In this paper, the hypercentral potential is regarded as a combination of the color Coulomb plus linear confining term and
the six-dimensional harmonic oscillator potential. We also added the first-order correction and the spin-dependent part contains
three types of interaction terms (the spin-spin term, spin-orbit term, and tensor term) to the hypercentral potential. Our obtained
masses for the radial excited states and orbital excited states of Ξ𝑐𝑐𝑑, Ξ𝑐𝑐𝑢, Ξ𝑏𝑏𝑑, Ξ𝑏𝑏𝑢, Ξ𝑏𝑐𝑑, and Ξ𝑏𝑐𝑢 systems are compared with
other theoretical reports, which could be a beneficial tool for the interpretation of experimentally unknown doubly heavy baryons
spectrum.

1. Introduction

The doubly heavy baryons have two heavy quarks (c and b)
with a light quark (d or u or s). The doubly heavy Ξ baryons
family have up or down quarks but Ω family has a light
strange quark and their masses spectra have been predicted
in the quark model [1]. The SELEX collaboration announced
only the experimental mass for the ground state ofΞ+𝑐𝑐 baryon
and LHCb has determined the ground state of Ξ++𝑐𝑐 baryon
mass while no triply heavy baryons have been observed
yet [2]. Recently experiments and theoretical outcomes have
been used in studying the heavy baryons. A lot of new
experimental results have been reported by various experi-
mental facilities like CLEO, Belle, BaBar, LHCb, and so forth
[3, 4] on ground states and many new excited states of heavy
flavor baryons. Bottom baryons are investigated at LHC and
Lattice QCD whereas charm baryons are announced at the
B-factories [5, 6]. On the other hand, the theoretical works
are providing new results for doubly heavy baryons like
the Hamiltonian model [7], relativistic quark model [8], the
chiral unitary model [9], QCD sum rule [10, 11], and many
more. Single- and double- heavy baryons in the constituent

quark model were studied by Yoshida et al. They used a
model in which there were two exceptions, a color Coulomb
term depending on quark masses and an antisymmetric L.S
force. They studied the low-lying negative parity states and
structureswithin the framework of a constituent quarkmodel
[7]. In [12], the authors calculated the masses of baryons with
the quadratic mass relations for ground and orbitally excited
states. Wei et al. estimated the masses of singly, doubly, and
triply bottom baryons in [13]. Then they studied the linear
mass relations and quadratic mass relations.

The light flavor dependence of the singly and doubly
charmed states is investigated by Rubio et al. They focused
on searching the masses of charmed baryons with positive
and negative parity [5]. In [14], the authors used lattice QCD
for baryons containing one, two, or three heavy quarks.
They applied nonrelativistic QCD for the bottom quarks
and relativistic heavy-quark action for the charm quarks.
Padmanath et al. determined the ground and excited state
spectra of doubly charmed baryons from lattice QCD with
dynamical quark fields [15]. The mass of the heavy baryons
with two heavy b or c quarks for spin 1/2 in the framework of
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QCD sum rules is estimated by Aliev et al. They use the most
general form of the interpolating current in its symmetric
and antisymmetric forms with respect to the exchange of
heavy quarks, to calculate the two point correlation functions
describing the baryons under consideration [16].The authors
calculated the masses and residues of the spin 3/2 doubly
heavy baryons within the QCD sum rules method. In [17],
Eakins et al. ignored all spin-dependent interactions and
assume a flavor independent potential, working in the limit
where the two heavy quarks are massive enough that their
motion can be treated as essentially nonrelativistic, and QCD
interactions can be well described by an adiabatic potential
[18]. The three-quark problem was solved by Valcarce et al.
by means of the Faddeev method in momentum space [19].

The masses of the ground and excited states of the
doubly heavy baryons were calculated by Ebert et al. baryons
on the basis of the quark-diquark approximation in the
framework of the relativistic quark model [20]. In [21], the
authors, in the model with the quark-diquark factorization of
wave functions, estimated the spectroscopic characteristics of
baryons containing two heavy quarks. Albertus et al. used five
different quark-quark potentials that include a confining term
plus Coulomb and hyperfine terms coming from one–gluon
exchange. They solved the three-body problem by means
of a variational ansatz made possible by heavy-quark spin
symmetry constraints [22].

In this study, we have used the hypercentral constituent
quarkmodel (hCQM)with Coulombic-like term plus a linear
confining term and the harmonic oscillator potential [23].We
also added the first-order correction and the spin-dependent
part to the potential and calculation has been performed by
solving six-dimensional hyperradial Schrödinger equations
by using the ansatz method. We have obtained the mass
spectra of radial excited states up to 5S and orbital excited
states for 1P-5P, 1D-4D, and 1F-2F states.

This paper is organized as follows: we briefly present
the hypercentral constituent quark model and introduce the
interaction potentials between three quarks in doubly heavy
baryons in Section 2. In Section 3, we present the exact
analytical solution of the hyperradial Schrödinger equation
for our proposed potential. In Section 4, our masses spectra
results for ground, radial, and orbital excited states of baryon
family with six members are given and compared with other
predictions. We present the conclusions in Section 5.

2. Theoretical Framework: The HCQM
Model and Hypercentral Potential

The hypercentral model has been applied to solve bound
states and scattering problems in many various fields of
physics. In this model, we consider baryons as three-body
systems of constituent quarks. In the center ofmass frame, the
internal quark motion is described by the Jacobi coordinates
(𝜌 and 𝜆) [37] and the respective reducedmasses are given by

𝑚𝜌 = 2𝑚1𝑚2𝑚1 + 𝑚2 ,

𝑚𝜆 = 2𝑚3 (𝑚21 + 𝑚22 + 𝑚1𝑚2)(𝑚1 + 𝑚2) (𝑚1 + 𝑚2 + 𝑚3)
(1)

Here 𝑚1, 𝑚2, and 𝑚3 are the current quark masses. In order
to describe three-quark dynamics, we define hyperradius 𝑥 =
√𝜌2 + 𝜆2 and hyperangle 𝜉 = arctan(𝜌/𝜆) [38]. In present
work, the confining three-body potential is regarded as
a combination of three hypercentral interacting poten-
tials. First, the six-dimensional hyper-Coulomb potential𝑉ℎ𝑦𝑐(𝑥) = 𝜏/𝑥, which is attractive for small separations
[39–41], while at large separations a hyper-linear term,𝑉𝑐𝑜𝑛 = 𝛽𝑥, gives rise to quark confinement [42], where𝛽 corresponds to the string tension of the confinement
[43]. Third, the six-dimension harmonic oscillator potential𝑉ℎ.𝑜. = 𝑝𝑥2, which has a two-body character and turns
out to be exactly hypercentral [44], where 𝑝 is constant.
The solution of the hypercentral Schrödinger equation with
Coulombic-like term plus a linear confining term potential
cannot be obtained analytically [45]; therefore, Giannini et
al. used the dynamic symmetry O(7) of the hyper-Coulomb
problem to obtain the hyper-Coulomb Hamiltonian and
eigenfunctions analytically and they regarded the linear term
as a perturbation. Combination of the color Coulomb plus
linear confining term and the six-dimensional harmonic
oscillator potential has interesting properties since it can be
solved analytically, with a good correspondence to physical
results. The first-order correction 𝑉(1)(𝑥) can be written as
[44–47]

𝑉1 (𝑥) = −𝐶𝐹𝐶𝐴 𝛼𝑆24𝑥2 (2)

The parameters𝐶𝐹 = 2/3 and𝐶𝐴 = 3 are the Casimir charges
of the fundamental and adjoint representation. The hyper-
Coulomb strength 𝜏 = −(2/3)𝛼𝑆, 2/3 is the color factor for
the baryon. 𝛼𝑠 is the strong running coupling constant, which
is written as
𝛼𝑆
= 𝛼𝑆 (𝜇0)1 + ((33 − 2𝑛𝑓) /12𝜋) 𝛼𝑆 (𝜇0) ln ((𝑚1 + 𝑚2 + 𝑚3) /𝜇0)

(3)

The spin-dependent part 𝑉𝑆𝐷(𝑥) is given as

𝑉𝑆𝐷 (𝑥) = 𝑉𝑆𝑆 (𝑥) (󳨀→𝑆 𝜌.󳨀→𝑆 𝜆) + 𝑉𝛾𝑆 (𝑥) (󳨀→𝛾 .󳨀→𝑆 )

+ 𝑉𝑇 (𝑥) [[
𝑆2 − 3 (

󳨀→𝑆 .󳨀→𝑥) (󳨀→𝑆 .󳨀→𝑥)
𝑥2 ]

]
(4)

The spin-dependent potential, 𝑉𝑆𝐷(𝑥), contains three
types of the interaction terms [48], such as the spin-spin
term 𝑉𝑆𝑆(𝑥), the spin-orbit term 𝑉𝛾𝑆(𝑥), and tensor term𝑉𝑇(𝑥) described as [35]. Here 𝑆 = 𝑆𝜌 + 𝑆𝜆, where 𝑆𝜌 and𝑆𝜆 are the spin vectors associated with the 𝜌 and 𝜆 variables,
respectively. The coefficient of these spin-dependent terms
of the above equation can be written in terms of the vector,𝑉𝑉(𝑥) = 𝜏/𝑥, and scalar, 𝑉𝑆(𝑥) = 𝛽𝑥 + 𝑝𝑥2 parts of the static
potential as [38]

𝑉𝛾𝑠 = 12𝑚𝜌𝑚𝜆𝑥 (3
𝑑𝑉𝑉𝑑𝑥 − 𝑑𝑉𝑆𝑑𝑥 ) (5)
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Table 1: The quark mass (in GeV) and the fitted values of the parameters used in our calculations.

𝑚𝑏 𝑚𝑐 𝑚𝑑 𝑚𝑢 𝛼𝑆 𝐶𝐹 𝐶𝐴 𝛽 𝜔
4.750 1.348 0.35 0.34 0.340 23 3 0.02 0.11 fm−1

Table 2: The outcomes ground state masses of Ξ are listed with other theoretical predictions (in GeV). Standard devotion of the result is
0.350.

Baryon Ξ𝑐𝑐𝑑 / Ξ𝑐𝑐𝑢 Ξ𝑏𝑏𝑑 / Ξ𝑏𝑏𝑢 Ξ𝑏𝑐𝑑 / Ξ𝑏𝑐𝑢
𝐽𝑃 12

+ 32
+ 12

+ 32
+ 12

+ 32
+

Our Calc 3.522 / 3.515 3.696 / 3.689 9.716 / 9.711 9.894 / 9.889 6.628 / 6.622 6.688 / 6.682
Ref.[1] 3.520 / 3.511 3.695 / 3.687 10.317 / 10.312 10.340 / 10.335 6.920 / 6.914 6.986 / 6.980
Ref.[24] 3.519
Ref.[7] 3.685 3.754 10.314
Ref.[12, 13] 3.520 3.695 10.199 10.316
Ref.[5] 3.610 3.694
Ref.[14] 3.610 3.692 10.143 10.178 6.943 6.985
Ref.[25] 3.561 3.642
Ref.[17] 3.720 9.960 6.720
Ref.[18] 3.687 3.752 10.322 10.352 7.014 7.064
Ref.[26] 3.676 3.753 10.340 10.367 7.011 7.074
Ref.[27] 3.547 3.719 10.185 10.216 6.904 6.936
Ref.[19] 3.579 3.656 10.189 10.218
Ref.[20] 3.620 3.727 10.202 10.237 6.933 6.980
Ref.[21] 3.478 3.610 10.093 10.133 6.820 6.900
Ref.[28] 3.627 3.690 10.162 10.184 6.914
Ref.[29] 3.519 3.620 9.800 9.980 6.650 6.690
Ref.[22] 3.612 3.706 10.197 10.136 6.919 6.986
Ref.[30] 3.510 3.548 10.130 10.144 6.792 6.827
Ref.[31] 3.570 3.610 10.170 10.220

𝑉𝑇 (𝑥) = 16𝑚𝜌𝑚𝜆 (
3𝑑2𝑉𝑉𝑑2𝑥 − 1𝑥 𝑑𝑉𝑉𝑑𝑥 ) (6)

𝑉𝑆𝑆 (𝑥) = 13𝑚𝜌𝑚𝜆∇2𝑉𝑉 (7)

In our model, the hypercentral interaction potential is
assumed as follows [48]:

𝑉 (𝑥) = 𝑉(0) (𝑥) + ( 1𝑚𝜌 +
1𝑚𝜆)𝑉(1) (𝑥) + 𝑉𝑆𝐷 (𝑥) (8)

where 𝑉(0)(𝑥) is given by

𝑉(0) (𝑥) = 𝑉ℎ𝑦𝑐 (𝑥) + 𝑉𝑐𝑜𝑛 (𝑥) + 𝑉ℎ.𝑜. (𝑥)
= 𝜏𝑥 + 𝛽𝑥 + 𝑝𝑥2

(9)

The baryons masses are determined by the sum of the model
quark masses plus kinetic energy, potential energy, and the
spin-dependent interaction as𝑀𝐵 = ∑𝑚𝑖 + ⟨𝐻⟩ [49]. First,
we have solved the hyperradial Schrödinger equation exactly
and find eigenvalue under the proposed potential by using the
ansatz approach.

3. The Exact Analytical Solution of the
Hyperradial Schrödinger Equation under
the Hypercentral Potential

The Hamiltonian of three bodies’ baryonic system in the
hypercentral constituent quark model is expressed as [50]

𝐻 = 𝑃2𝜌2𝑚 + 𝑃2𝜆2𝑚 + 𝑉 (x) (10)

and the hyperradial wave function 𝜓]𝛾(𝑥) is determined
by the hypercentral Schrödinger equation. The hyperradial
Schrödinger equation corresponding to the above Hamilto-
nian can be written as [51]

( 𝑑2𝑑𝑥2 + 5𝑥 𝑑𝑑𝑥 − 𝛾 (𝛾 + 4)𝑥2 )𝜓]𝛾 (𝑥)
= −2𝑚 [𝐸 − 𝑉 (𝑥)] 𝜓]𝛾 (𝑥)

(11)

where 𝛾 is the grand angular quantum number and given by𝛾 = 2𝑛 + 𝑙𝜌 + 𝑙𝜆, 𝑛 = 0, 1, . . . ; 𝑙𝜌 and 𝑙𝜆 are the angular

momenta associatedwith the 󳨀→𝜌 and
󳨀→𝜆 variable and ] denotes

the number of nodes of the space three-quark wave function
[36]. In (11), 𝑚 is the reduced mass which is defined as 𝑚 =
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Table 3: The masses of radial excited states for doubly heavy Ξ baryons (in GeV). Standard devotions of the result are 0.435 and 0.434.

Baryon State 𝐽𝑃 Our Calc Our Calc [1] [1] [7] [26] [27] [19] [20] [18]

Ξ𝑐𝑐𝑑
andΞ𝑐𝑐𝑢

2S 12
+

3.905 3.901 3.925 3.920 4.079 4.029 4.183 3.976 3.910 4.030
3S 4.185 4.118 4.233 4.159 4.206 4.640 4.154
4S 4.430 4.429 4.502 4.501
5S 4.653 4.653 4.748 4.748
2S 32

+

3.962 3.958 3.988 3.983 4.114 4.042 4.282 4.025 4.027 4.078
3S 4.213 4.211 4.264 4.261 4.131 4.719
4S 4.446 4.445 4.520 4.519
5S 4.663 4.663 4.759 4.759

Ξ𝑏𝑏𝑑
andΞ𝑏𝑏𝑢

2S 12
+

9.984 9.981 10.612 10.609 10.571 10.576 10.751 10.482 10.441 10.551
3S 10.211 10.211 10.862 10.862 10.612 11.170 10.630
4S 10.417 10.418 11.088 11.090 10.812
5S 10.606 10.610 11.297 11.301
2S 32

+

9.990 9.988 10.619 10.617 10.592 10.578 10.770 10.501 10.482 10.574
3S 10.205 10.233 10.855 10.866 10.593 11.184 10.673
4S 10.418 10.420 11.090 11.092 10.856
5S 10.607 10.611 11.298 11.302

Ξ𝑏𝑐𝑑
andΞ𝑏𝑐𝑢

2S 12
+

6.922 6.919 7.244 7.240 7.478 7.321
3S 7.163 7.161 7.509 7.507 7.904
4S 7.379 7.377 7.746 7.744
5S 7.576 7.581 7.963 7.964
2S 32

+

6.943 6.939 7.267 7.263 7.495 7.353
3S 7.174 7.171 7.521 7.518 7.917
4S 7.384 7.384 7.752 7.752
5S 7.580 7.581 7.968 7.969

2𝑚𝜌𝑚𝜆/(𝑚𝜌 + 𝑚𝜆) [32]. By regarding 𝜓]𝛾(𝑥) = 𝑥−5/2𝜑]𝛾
[20, 35], (11) reduces to the following form:

𝜑󸀠󸀠]𝛾 (𝑥) + [𝜀 − 𝑟1𝑥2 − 𝑟2𝑥 − 𝑟3𝑥 − 𝑟4𝑥2 − 𝑟5𝑥3 + 𝑟6𝑥5 + 𝑟7
− (2𝛾 + 3) (2𝛾 + 5)4𝑥2 ]𝜑]𝛾 (𝑥) = 0

(12)

The hyperradial wave function 𝜑]𝛾(𝑥) is a solution of the
reduced Schrödinger equation for each of the three identical
particles with the mass m and interacting potential (8),
where

𝜀 = 2𝑚𝐸,
𝑟1 = 2𝑚𝑝,
𝑟2 = 2𝑚𝛽,
𝑟3 = 2𝑚𝜏,
𝑟4 = 2𝑚( 1𝑚𝜌 +

1𝑚𝜆)(−𝐶𝑓𝐶𝐴
𝛼2𝑠4 ) ,

𝑟5 = 2𝑚[ 2𝜏3𝑚𝜌𝑚𝜆 (𝑆𝜌 ⋅ 𝑆𝜆) −
3𝜏2𝑚𝜌𝑚𝜆 (󳨀→𝛾 ⋅ 󳨀→𝑠 )

+ 7𝜏6𝑚𝜌𝑚𝜆 𝑠2] ,
𝑟6 = 2𝑚 21𝜏6𝑚𝜌𝑚𝜆 (󳨀→𝑠 ⋅ 󳨀→𝑥) (󳨀→𝑠 ⋅ 󳨀→𝑥) ,

𝑟7 = 2𝑚((𝛽 + 2𝑝)2𝑚𝜌𝑚𝜆 (󳨀→𝛾 ⋅ 󳨀→𝑠 )) .
(13)

We suppose the 𝜑]𝛾 = ℎ(𝑥)𝑒𝑔(𝑥) form for the wave func-
tion. Now we make use of the ansatz for ℎ(𝑥) and 𝑔(𝑥)
[33, 34]:

ℎ (𝑥) = Π (𝑥 − 𝑎]𝑖 ) ] = 1, 2, . . . ,
ℎ (𝑥) = 1 ] = 0
𝑔 (𝑥) = 𝑎 ln𝑥 + 𝑞𝑥2 + 𝑐𝑥 + 𝑑𝑥

(14)



Advances in High Energy Physics 5

Table 4: The masses of orbital excited states for Ξ𝑐𝑐 baryon (in GeV). Standard devotions of the result are 0.072 and 0.068.
(a)

State Our calΞ+𝑐𝑐
Our CalΞ++𝑐𝑐

[1]Ξ+𝑐𝑐
[1]Ξ++𝑐𝑐 [7] [26] [19] [20] [12] [21] [18] [5]

(12 𝑃1/2) 3.851 3.847 3.865 3.861 3.947 3.910 3.880 3.838 4.073 3.892
(12 𝑃3/2) 3.834 3.830 3.847 3.842 3.949 3.921 3.959 3.786 3.834 4.079 3.989
(14 𝑃1/2) 3.860 3.856 3.875 3.871(14 𝑃3/2) 3.842 3.838 3.856 3.851(14 𝑃5/2) 3.873 3.872 3.890 3.888 4.163 4.092 4.155 3.949 4.047 4.089
(22 𝑃1/2) 4.120 4.101 4.161 4.140 4.135 4.074 4.018 4.085
(22 𝑃3/2) 4.104 4.101 4.144 4.140 4.137 4.078 4.197
(24 𝑃1/2) 4.127 4.125 4.169 4.167(24 𝑃3/2) 4.111 4.109 4.152 4.149(24 𝑃5/2) 4.140 4.138 4.183 4.181 4.488
(32 𝑃1/2) 4.361 4.345 4.426 4.409 4.149
(32 𝑃3/2) 4.347 4.345 4.411 4.409 4.159
(34 𝑃1/2) 4.367 4.366 4.433 4.432(34 𝑃3/2) 4.354 4.352 4.419 4.417(34 𝑃5/2) 4.336 4.333 4.399 4.396 4.534
(42 𝑃1/2) 4.583 4.583 4.671 4.671(42 𝑃3/2) 4.571 4.571 4.658 4.657(44 𝑃1/2) 4.590 4.590 4.678 4.678(44 𝑃3/2) 4.577 4.577 4.664 4.664(44 𝑃5/2) 4.561 4.561 4.646 4.646(52 𝑃1/2) 4.792 4.793 4.901 4.902(52 𝑃3/2) 4.781 4.781 4.889 4.889(54 𝑃1/2) 4.799 4.800 4.908 4.909(54 𝑃3/2) 4.705 4.788 4.895 4.896(54 𝑃5/2) 4.771 4.772 4.878 4.879(14 𝐷1/2) 4.043 4.038 4.077 4.071(12 𝐷3/2) 4.018 4.013 4.049 4.044(14 𝐷3/2) 4.026 4.022 4.058 4.053(12 𝐷5/2) 3.995 3.991 4.024 4.019 4.043 4.115 4.047 4.391 4.034 4.050 4.388
(14 𝐷5/2) 4.003 4.000 4.033 4.029 4.027 4.052 4.187 4.089 4.393
(14 𝐷7/2) 3.975 3.972 4.002 3.998 4.097
(24 𝐷1/2) 4.287 4.284 4.345 4.342(22 𝐷3/2) 4.265 4.262 4.321 4.318(24 𝐷3/2) 4.272 4.270 4.329 4.326(22 𝐷5/2) 4.245 4.243 4.299 4.297 4.164 4.091
(24 𝐷5/2) 4.252 4.251 4.307 4.305(24 𝐷7/2) 4.228 4.226 4.280 4.278 4.394

(b)

State Our CalΞ+𝑐𝑐
Our CalΞ++𝑐𝑐

[1]Ξ+𝑐𝑐
[1]Ξ++𝑐𝑐 [7] [32] [33] [34] [35] [33] [36] [5]

(34 𝐷1/2) 4.511 4.511 4.592 4.592 4.511 4.511 4.592 4.592 4.511 4.511 4.592 4.592
(32 𝐷3/2) 4.492 4.491 4.571 4.570 4.492 4.491 4.571 4.570 4.492 4.491 4.571 4.570
(34 𝐷3/2) 4.499 4.499 4.578 4.578(32 𝐷5/2) 4.475 4.474 4.552 4.551 4.348
(34 𝐷5/2) 4.481 4.481 4.559 4.558(34 𝐷7/2) 4.460 4.459 4.535 4.534(44 𝐷1/2) 4.723 4.724 4.825 4.826(42 𝐷3/2) 4.706 4.706 4.806 4.806(44 𝐷3/2) 4.711 4.712 4.812 4.813
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(b) Continued.

State Our CalΞ+𝑐𝑐
Our CalΞ++𝑐𝑐

[1]Ξ+𝑐𝑐
[1]Ξ++𝑐𝑐 [7] [32] [33] [34] [35] [33] [36] [5]

(42 𝐷5/2) 4.690 4.690 4.788 4.788(44 𝐷5/2) 4.696 4.696 4.795 4.795(44 𝐷7/2) 4.675 4.675 4.772 4.772(14 𝐹3/2) 4.198 4.193 4.247 4.242(12 𝐹5/2) 4.169 4.164 4.215 4.210(14 𝐹5/2) 4.142 4.172 4.186 4.219(14 𝐹7/2) 4.150 4.147 4.194 4.191(12 𝐹7/2) 4.178 4.139 4.225 4.182 4.267
(14 𝐹9/2) 4.118 4.115 4.159 4.156 4.413
(24 𝐹3/2) 4.422 4.425 4.494 4.497(22 𝐹5/2) 4.399 4.399 4.468 4.468(24 𝐹5/2) 4.405 4.406 4.475 4.476(24 𝐹7/2) 4.378 4.382 4.445 4.450(22 𝐹7/2) 4.384 4.376 4.452 4.443(24 𝐹9/2) 4.359 4.355 4.424 4.420

where 𝑎, 𝑞, 𝑐, and 𝑑 are positive. From (14), we obtain

𝜑󸀠󸀠 (𝑥)
= [𝑔󸀠󸀠 (𝑥) + 𝑔󸀠2 (𝑥) + (ℎ󸀠󸀠 (𝑥) + 2ℎ󸀠 (𝑥) 𝑔󸀠 (𝑥)ℎ (𝑥) )]
⋅ 𝜑 (𝑥)

(15)

Comparing (12) and (15), it can be found that

[𝑟1𝑥2 + 𝑟2𝑥 + 𝑟3𝑥 + 𝑟4𝑥2 + 𝑟5𝑥3 − 𝑟6𝑥5 − 𝑟7
+ (2𝛾 + 3) (2𝛾 + 5)4𝑥2 − 𝜀] = [𝑔󸀠󸀠 (𝑥) + 𝑔󸀠2 (𝑥)
+ ℎ󸀠󸀠 (𝑥) + 2ℎ󸀠 (𝑥) 𝑔󸀠 (𝑥)ℎ (𝑥) ]

(16)

By substituting (14) into (16), we obtained the following
equation:

− 𝜀 + 𝑟1𝑥2 + 𝑟2𝑥 + 𝑟3𝑥 + 𝑟4𝑥2 + 𝑟5𝑥3 − 𝑟6𝑥5 − 𝑟7
+ (2𝛾 + 3) (2𝛾 + 5)4𝑥2

= 4𝑞2𝑥2 + 4𝑐𝑞𝑥 + (2𝑎𝑐 − 4𝑑𝑞)𝑥 + (𝑎2 − 𝑎 − 2𝑐𝑑)𝑥2
+ 2𝑑 (1 − 𝑎)𝑥3 + 𝑑2𝑥4 + (𝑐2 + 2𝑞 + 4𝑎𝑐)

(17)

By equating the corresponding powers of 𝑥 on both sides of
(17), we can obtain

𝑎 = 2𝜏𝛽 √𝑚𝑝2 ,
𝑐 = 𝑚𝛽2 √ 2𝑚𝑝,
𝑞 = √𝑚𝑝2 ,
𝜀 = −[𝑚𝛽22𝑝 + 2√𝑚𝑝2 + 4𝑚𝑝𝜏𝛽
+ 2𝑚((𝛽 + 2𝑝)2𝑚𝜌𝑚𝜆 (󳨀→𝛾 ⋅ 󳨀→𝑠 ))]

(18)

Since 𝑝 = 𝑚𝜔2/2, we have 𝑎 = 2𝑚𝜔/2𝛽, 𝑐 = 𝛽/𝜔, 𝑞 = 𝑚𝜔/2.
The energy eigenvalues for themode ] = 0 and grand angular
momentum 𝛾 from (13) and (18) are given as follows:

𝐸 = −[ 𝛽22𝑚𝜔 + 𝜔2 + 𝑚𝜔
2𝜏𝛽

+ ((𝛽 + 𝑚𝜔2)2𝑚𝜌𝑚𝜆 (󳨀→𝛾 ⋅ 󳨀→𝑠 ))]
(19)

At last for the best doubly heavy baryons masses (Ξ𝑐𝑐𝑑, Ξ𝑐𝑐𝑢,Ξ𝑏𝑏𝑑, Ξ𝑏𝑏𝑢, Ξ𝑏𝑐𝑑, Ξ𝑏𝑐𝑢) predictions, the values of 𝑚𝑢, 𝑚𝑑, 𝑚𝑐,𝑚𝑏,𝛼𝑆,𝜔, and𝛽 (which are listed in Table 1) are selected using
genetic algorithm.The cost function of a genetic algorithm is
theminimumdifference between our calculated baryonmass
and the reported baryons mass of other works.
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Table 5: The masses of orbital excited states for Ξ𝑏𝑏 baryon (in GeV).

State Our calΞ−𝑏𝑏
Our CalΞ0𝑏𝑏

[1]Ξ−𝑏𝑏
[1]Ξ0𝑏𝑏 [7] [26] [19] [20] [12] [18] Others

(12 𝑃1/2) 9.895 9.892 10.514 10.511 10.476 10.493 10.406 10.368 10.691
(12 𝑃3/2) 9.890 9.887 10.509 10.506 10.476 10.495 10.408 10.474 10.692 10.390 [31]
(14 𝑃1/2) 9.897 9.895 10.517 10.514(14 𝑃3/2) 9.893 9.890 10.512 10.509 10.430 [17]
(14 𝑃5/2) 9.901 9.898 10.521 10.518 10.759 10.588 10.695
(22 𝑃1/2) 10.127 10.127 10.77 10.77 10.703 10.710 10612 10.563
(22 𝑃3/2) 10.124 10.120 10.766 10.762 10.704 10.713 10.607
(24 𝑃1/2) 10.129 10.129 10.772 10.772(24 𝑃3/2) 10.126 10.125 10.768 10.767(24 𝑃5/2) 10.121 10.133 10.763 10.776 10.973 10.713
(32 𝑃1/2) 10.337 10.338 11.001 11.002 10.740 10.744
(32 𝑃3/2) 10.334 10.335 10.997 10.998 10.742 10.788
(34 𝑃1/2) 10.339 10.340 11.003 11.004(34 𝑃3/2) 10.336 10.337 10.999 11.000(34 𝑃5/2) 10.331 10.343 10.994 11.007 11.004
(42 𝑃1/2) 10.531 10.534 11.214 11.217 10.900
(42 𝑃3/2) 10.527 10.530 11.21 11.213(44 𝑃1/2) 10.533 10.536 11.216 11.219(44 𝑃3/2) 10.529 10.532 11.212 11.215(44 𝑃5/2) 10.526 10.538 11.208 11.222(52 𝑃1/2) 10.712 10.716 11.413 11.418(52 𝑃3/2) 10.709 10.714 11.41 11.415(54 𝑃1/2) 10.714 10.718 11.415 11.420(54 𝑃3/2) 10.711 10.716 11.412 11.417(54 𝑃5/2) 10.706 10.721 11.407 11.423(14 𝐷1/2) 10.043 10.041 10.677 10.675(12 𝐷3/2) 10.037 10.035 10.670 10.668(14 𝐷3/2) 10.038 10.037 10.672 10.670 11.011
(12 𝐷5/2) 10.030 10.028 10.663 10.661 10.592 10.676 10.742 11.002
(14 𝐷5/2) 10.033 10.031 10.666 10.664(14 𝐷7/2) 10.026 10.024 10.658 10.656 10.608 10.853 11.011
(24 𝐷1/2) 10.257 10.257 10.913 10.913(22 𝐷3/2) 10.252 10.252 10.907 10.907(24 𝐷3/2) 10.254 10.254 10.909 10.909(22 𝐷5/2) 10.247 10.247 10.901 10.901 10.712
(24 𝐷5/2) 10.248 10.248 10.903 10.903 10.613
(24 𝐷7/2) 10.242 10.242 10.896 10.896 11.057
(34 𝐷1/2) 10.455 10.457 11.13 11.133 4.592 4.592
(32 𝐷3/2) 10.450 10.452 11.125 11.127 4.571 4.570
(34 𝐷3/2) 10.451 10.454 11.126 11.129(32 𝐷5/2) 10.446 10.447 11.120 11.122(34 𝐷5/2) 10.447 10.449 11.122 11.124 10.809
(34 𝐷7/2) 10.442 10.444 11.116 11.118(44 𝐷1/2) 10.639 10.643 11.333 11.337(42 𝐷3/2) 10.635 10.638 11.328 11.332(44 𝐷3/2) 10.636 10.640 11.330 11.334(42 𝐷5/2) 10.631 10.635 11.324 11.328
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Table 5: Continued.

State Our calΞ−𝑏𝑏
Our CalΞ0𝑏𝑏

[1]Ξ−𝑏𝑏
[1]Ξ0𝑏𝑏 [7] [26] [19] [20] [12] [18] Others

(44 𝐷5/2) 10.632 10.636 11.325 11.33(44 𝐷7/2) 10.627 10.631 11.320 11.324(14 𝐹3/2) 10.173 10.172 10.82 10.819(12 𝐹5/2) 10.166 10.165 10.812 10.811(14 𝐹5/2) 10.158 10.167 10.804 10.813(14 𝐹7/2) 10.167 10.160 10.814 10.806(12 𝐹7/2) 10.160 10.157 10.806 10.803 11.004
(14 𝐹9/2) 10.152 10.152 10.797 10.797 11.112
(24 𝐹3/2) 10.357 10.376 11.022 11.043(22 𝐹5/2) 10.368 10.369 11.035 11.036(24 𝐹5/2) 10.369 10.371 11.036 11.038(24 𝐹7/2) 10.362 10.365 11.028 11.031(22 𝐹7/2) 10.364 10.363 11.030 11.029(24 𝐹9/2) 10.357 10.357 11.022 11.023

4. Results and Discussions: Mass Spectrum

The ground and excited states of doubly heavy Ξ baryons are
unclear to us experimentally (except Ξ+𝑐𝑐 and Ξ++𝑐𝑐 ). Hence, we
have obtained the ground and excited statemasses ofΞ+𝑐𝑐,Ξ++𝑐𝑐 ,Ξ−𝑏𝑏,Ξ0𝑏𝑏,Ξ0𝑏𝑐, andΞ+𝑏𝑐 (see Tables 2, 3, 4, 5, and 6, respectively).
These mass spectra are estimated by using the hypercentral
potential equation (8) in the hypercentral constituent quark
model. We begin with the ground state 1S; the masses are
computed for both parities 𝐽𝑃 = (1/2)+and 𝐽𝑃 = (3/2)+. Our
predicted ground state masses of doubly heavy Ξ baryons are
compared with other predictions in Table 2.

We can observe that, in the case ofΞ𝑐𝑐 baryon, for 2S states𝐽𝑃 = (1/2)+ and 𝐽𝑃 = (3/2)+, our predictions are close to [34]
and [1], respectively. Our outcomes for 3S state 𝐽𝑃 = (1/2)+
of Ξ𝑐𝑐 baryon show 21MeV (with [7]) and 𝐽𝑃 = (3/2)+ shows
51MeV (with [1]) difference. Analyzing the 2S and 3S states
masses forΞ𝑏𝑏 andΞ𝑏𝑐 baryons (with both parities) shows that
our masses have a difference in the range of ≈0.5 GeV with
[1, 7, 20, 32–34, 36].

To calculate the orbital excited state masses (1P–5P,
1D– 4D, 1F–2F), we have considered all possible isospin
splitting and all combinations of total spin 𝑆 and total angular
momentum 𝐽. Our outcomes and the comparison of masses
with other approaches are also tabulated in Tables 4, 5, and 6.

Our obtained orbital excited masses for Ξ𝑐𝑐, 1P state 𝐽𝑃 =(1/2)− show a difference of 14MeV (with [1]), 29MeV (with
[33]), 13MeV (with [34]), and 41MeV (with [5]), while 1P
state 𝐽𝑃 = (3/2)− shows 14MeV (with [1]), 48MeV (with
[35]), and 0MeV (with [33] ). Our 2P state 𝐽𝑃 = (1/2)− shows
a difference of 15MeV (with [7]), 35MeV (with [34]), and
41MeV (with [1]), while 2P state 𝐽𝑃 = (3/2)− shows 26MeV
(with [32]), 33MeV (with [7]), and 40MeV (with [1]). Results
for 3P states 𝐽𝑃 = (1/2)− and 𝐽𝑃 = (3/2)− show a difference in
the range of≈ 60MeVwith [1].We can easily observe that our
calculated masses for 4P-5P, 1D-3D, and 1F-2F are matched
with [1]. Our outcome for 3D state 𝐽𝑃 = (3/2)+ is quite

equal to the predictions of [7, 32, 33, 35]. For the ground and
excited states of doubly heavy baryons (Ξ+𝑐𝑐), the minimum
and maximum percentage of relative error values are 0% and
3.53% between our calculations and the masses reported by
Shah et al. [1].

For Ξ𝑏𝑏 and Ξ𝑏𝑐 baryons, the mass difference from our
calculations and other references is large.

Comparing our findings with the masses reported by
Shah et al. [1], the minimum and maximum percentage of
relative error values are 1.2% (0.8%) and 10.317% (6.92%) for
the ground and excited states of doubly heavy baryons Ξ𝑏𝑏
and Ξ𝑏𝑐, respectively.
5. Conclusion

In this study, we have computed the mass spectra of ground
and excited states for doubly heavy Ξ baryons by using a
hypercentral constituent quark model. For this goal, we have
analytically solved the hyperradial Schrödinger equation for
three identical interacting particles under the effective hyper-
central potential by using the ansatz method. Our proposed
potential is regarded as a combination of the Coulombic-like
term plus a linear confining term and the harmonic oscillator
potential. We also added the first-order correction and the
spin-dependent part to the potential. In our calculations, the𝑢 and 𝑑 quarks have 10MeV difference mass, so there is a
very small mass difference between Ξ𝑐𝑐𝑑 and Ξ𝑐𝑐𝑢, Ξ𝑏𝑏𝑑 andΞ𝑏𝑏𝑢, Ξ𝑏𝑐𝑑 and Ξ𝑏𝑐𝑢. Ourmodel has succeeded to assign the 𝐽𝑃
values to the exited states of doubly heavy baryons (Ξ𝑐𝑐𝑑,Ξ𝑐𝑐𝑢,Ξ𝑏𝑏𝑑, Ξ𝑏𝑏𝑢, Ξ𝑏𝑐𝑑, and Ξ𝑏𝑐𝑢). Comparison of the results with
other predictions revealed that they are in agreement and our
proposedmodel can be useful to investigate the doubly heavy
baryons states masses. For example, for the ground, radial,
and orbital excited states masses of doubly heavy Ξ baryons
the minimum and the maximum percentage of relative error
values are 0% and 6% between our calculations and the
masses reported by Shah et al. [1].
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Table 6: The masses of orbital excited states for Ξ𝑏𝑐 baryon (in GeV).

State Our cal Our Cal [1] [1]
[18]Ξ0𝑏𝑐 Ξ+𝑏𝑐 Ξ0𝑏𝑐 Ξ+𝑏𝑐(12 𝑃1/2) 6.846 6.842 7.16 7.156 7.390(12 𝑃3/2) 6.836 6.831 7.149 7.144 7.394(14 𝑃1/2) 6.851 6.847 7.166 7.161 7.399(14 𝑃3/2) 6.841 6.837 7.155 7.15(14 𝑃5/2) 6.859 6.856 7.175 7.171(22 𝑃1/2) 7.087 7.084 7.425 7.422(22 𝑃3/2) 7.078 7.075 7.415 7.412(24 𝑃1/2) 7.091 7.088 7.43 7.426(24 𝑃3/2) 7.082 7.079 7.42 7.417(24 𝑃5/2) 7.071 7.095 7.408 7.434(32 𝑃1/2) 7.304 7.302 7.664 7.662(32 𝑃3/2) 7.296 7.295 7.655 7.654(34 𝑃1/2) 7.308 7.306 7.668 7.666(34 𝑃3/2) 7.299 7.299 7.659 7.658(34 𝑃5/2) 7.289 7.312 7.648 7.673(42 𝑃1/2) 7.504 7.623 7.884 8.015(42 𝑃3/2) 7.497 7.498 7.876 7.877(44 𝑃1/2) 7.508 7.508 7.888 7.888(44 𝑃3/2) 7.500 7.500 7.88 7.88(44 𝑃5/2) 7.491 7.514 7.87 7.895(52 𝑃1/2) 7.692 7.693 8.091 8.092(52 𝑃3/2) 7.686 7.687 8.084 8.085(54 𝑃1/2) 7.695 7.697 8.094 8.096(54 𝑃3/2) 7.689 7.689 8.087 8.088(54 𝑃5/2) 7.680 7.681 8.078 8.079(14 𝐷1/2) 7.006 7.004 7.336 7.334(12 𝐷3/2) 6.992 6.989 7.321 7.318(14 𝐷3/2) 6.997 6.980 7.326 7.308 7.324(12 𝐷5/2) 6.980 6.977 7.308 7.304(14 𝐷5/2) 6.985 6.969 7.313 7.295 7.309(14 𝐷7/2) 6.969 6.953 7.296 7.278 7.292(24 𝐷1/2) 7.087 7.227 7.425 7.579 7.579(22 𝐷3/2) 7.216 7.214 7.567 7.565(24 𝐷3/2) 7.219 7.219 7.571 7.57(22 𝐷5/2) 7.205 7.203 7.555 7.553 7.538(24 𝐷5/2) 7.209 7.208 7.559 7.558(24 𝐷7/2) 7.196 7.195 7.545 7.544(34 𝐷1/2) 7.431 7.431 7.804 7.804(32 𝐷3/2) 7.420 7.420 7.792 7.792(34 𝐷3/2) 7.411 7.424 7.782 7.796(32 𝐷5/2) 7.415 7.410 7.786 7.781(34 𝐷5/2) 7.402 7.414 7.772 7.785(34 𝐷7/2) 7.402 7.402 7.772 7.772(44 𝐷1/2) 7.429 7.504 7.801 7.884 7.797(42 𝐷3/2) 7.611 7.613 8.002 8.004(44 𝐷3/2) 7.615 7.617 8.006 8.008(42 𝐷5/2) 7.603 7.604 7.993 7.994(44 𝐷5/2) 7.606 7.608 7.996 7.998(44 𝐷7/2) 7.596 7.597 7.985 7.986(14 𝐹3/2) 7.143 7.141 7.487 7.485(12 𝐹5/2) 7.127 7.125 7.469 7.467
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Table 6: Continued.

State Our cal Our Cal [1] [1]
[18]Ξ0𝑏𝑐 Ξ+𝑏𝑐 Ξ0𝑏𝑐 Ξ+𝑏𝑐(14 𝐹5/2) 7.131 7.129 7.474 7.472(14 𝐹7/2) 7.117 7.114 7.458 7.455(12 𝐹7/2) 7.112 7.109 7.453 7.45(14 𝐹9/2) 7.099 7.097 7.439 7.436(24 𝐹3/2) 7.350 7.350 7.715 7.715(22 𝐹5/2) 7.337 7.336 7.7 7.699(24 𝐹5/2) 7.340 7.339 7.704 7.703(24 𝐹7/2) 7.328 7.327 7.69 7.689(22 𝐹7/2) 7.324 7.323 7.686 7.685(24 𝐹9/2) 7.313 7.311 7.674 7.672
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Most of the theoretical physics known today is described by using a small number of differential equations. For linear systems,
different forms of the hypergeometric or the confluent hypergeometric equations often suffice to describe the system studied.These
equations have power series solutions with simple relations between consecutive coefficients and/or can be represented in terms
of simple integral transforms. If the problem is nonlinear, one often uses one form of the Painlevé equations. There are important
examples, however, where one has to use higher order equations. Heun equation is one of these examples, which recently is often
encountered in problems in general relativity and astrophysics. Its special and confluent forms take names as Mathieu, Lamé, and
Coulomb spheroidal equations. For these equations whenever a power series solution is written, instead of a two-way recursion
relation between the coefficients in the series, we find one between three or four different ones. An integral transform solution using
simpler functions also is not obtainable. The use of this equation in physics and mathematical literature exploded in the later years,
more than doubling the number of papers with these solutions in the last decade, compared to time period since this equation was
introduced in 1889 up to 2008. We use SCI data to conclude this statement, which is not precise, but in the correct ballpark. Here
this equation will be introduced and examples for its use, especially in general relativity literature, will be given.

1. Introduction

Most of the theoretical physics known today is described by
using a small number of differential equations. If we study
only linear systems, different forms of the hypergeometric
or the confluent hypergeometric equations often suffice to
describe the system studied. These equations have power
series solutions with simple relations between consecutive
coefficients and/or can be represented in terms of simple
integral transforms. If the problem is described in terms of
nonlinear differential equations, then one often uses one form
of the Painlevé equations.

There are important examples, however, where one has to
use higher order equations. Such an equation was proposed
by Karl Heun in 1889 [1]. This equation and its confluent
forms become indispensable in general relativity if one
studies exact solutions of wave equations in the background
of certain metrics. A well-known example is the Kerr metric
[2]. Although it is possible to solve the wave equations in
the background of some metrics in terms of hypergeometric
functions or its confluent forms, this is not possible for the

much studied Kerr metric. If we also study even the trivially
extended forms of somemetrics by adding a flat dimension to
the existing metric, we may have to solve the Heun equation
to obtain the exact solution.

Here we will introduce the Heun equation and its con-
fluent forms and mention some of the properties of the
Heun equation. Then we will give some examples in physics,
mainly in gravitational physics, where one can find many
recent papers. This part is meant to be a survey of the work
done in the field of General Relativity and Quantum Gravity
concentrating on the last decades. In another section we will
give an example where the Heun equation emerges from a
trivial extension of a wave equation in the background of the
Eguchi-Hanson instanton metric [3]. We will end with some
concluding remarks.

2. Heun Equation

Let us review some well-known facts about second-order
differential equations. Differential equations are classified
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according to their singularity structure [4, 5]. If a differential
equation has no singularities over the full complex plane, it
can only be a constant. Singularities are classified as regular
singular and irregular singular points. If the coefficient of the
first derivative has at most single poles and the coefficient of
the term without a derivative has at most double poles when
the coefficient of the second derivative is unity, this second-
order differential equation has regular singularities, which
gives us one regular solution while expanding around this
singular point. In general the second solution has a pole or
a branch point singularity. If the poles of these coefficients
are higher, we have irregular singularities and the general
solution has an essential singularity [6].

As stated in Morse and Feshbach [4] an example of a
second-order differential equation with one regular singular
point is

𝑑2𝑤𝑑𝑧2 = 0. (1)

This equation has one solution which is constant.The second
solution blows up at infinity. The differential equation

𝑑2𝑤𝑑𝑧2 + 𝑘2𝑤 = 0 (2)

has one irregular singularity at infinity which gives an
essential singularity at this point. The equation

𝑧𝑑2𝑤𝑑𝑧2 + (1 + 𝑎) 𝑑𝑤𝑑𝑧 = 0 (3)

has two regular singular points, at zero and at infinity.
In physics an often used equation is the hypergeometric

equation

𝑧 (1 − 𝑧) 𝑑2𝑤𝑑𝑧2 + [𝑐 − (1 + 𝑎 + 𝑏) 𝑧] 𝑑𝑤𝑑𝑧 − 𝑎𝑏𝑤 = 0. (4)

This equation has three regular singular points, at zero, one,
and infinity. Jacobi, Legendre, Gegenbauer, and Tchebycheff
equations are special forms of this equation.When the singu-
lar points at z=1 and z which equal infinity are “coalesced” at
infinity, we get the confluent hypergeometric equation

𝑧𝑑2𝑤𝑑𝑧2 + (𝑐 − 𝑧) 𝑑𝑤𝑑𝑧 − 𝑎𝑤 = 0 (5)

with an essential singularity at infinity and a regular singu-
larity at zero. Bessel, Laguerre, and Hermite equations can be
reduced to this form.

An important property of all these equations is that they
allow infinite series solutions about one of their regular
singular points where a recursion relation can be found
between two consecutive coefficients. This fact allows one
to have an idea about the general properties of the solution,
as the asymptotic behaviour at distant points, the radius of
convergence of the series, etc.

A new equation was introduced in 1889 by Karl M. W.
L. Heun [1]. This is an equation with four regular singular
points at zero and one and an arbitrary point f between zero

and one and infinity. This equation is discussed in the book
edited by Ronveaux [7]. Most of the general information we
give below is taken from this book. As discussed there, any
equationwith four regular singular points can be transformed
to the equation given below:

𝑑2𝑤𝑑𝑧2 + [ 𝑐𝑧 + 𝑑𝑧 − 1 + 𝑒𝑧 − 𝑓] 𝑑𝑤𝑑𝑧
− 𝑎𝑏𝑧 − 𝑞
𝑧 (𝑧 − 1) (𝑧 − 𝑓)𝑤 = 0.

(6)

There is a relation between the constants given as 𝑎 + 𝑏 + 1 =𝑐 + 𝑑 + 𝑒. This relation is not related to the regularity of the
singularity at infinity. It just gives the exponents of the term
multiplying the series solution around infinity in terms of 𝑢 =1/𝑧 as 𝑎, 𝑏.

If we try to obtain a solution in terms of a power
series, one cannot get a recursion relation between two
consecutive coefficients. We have a relation at least between
three coefficients.

It is known that [8] any second-order differential equation
with n regular singular points has a family of 2𝑛−1𝑛! local
solutions, which splits into 2n sets of

2𝑛−2 (𝑛 − 1)! (7)

equivalent expressions, each set defining one of the two
Frobenius solutions in the neighborhood of a singular point.
Then! factor comes frompermuting the n singular points and
the 2𝑛−1 factor from negating exponent differences. Maier [8]
gave the list of 192 local solutions for the Heun equation.

The set of transformations that can be applied to the
Fuchian equation with n singular points to generate alter-
native expressions for this equation has order 2𝑛−1𝑛! and
acts on the parameter space of the equation. This group
of transformations is isomorphic to the Coxeter group 𝐷𝑛.
These transformations generate 2𝑛−2(𝑛−1)! solutions. For the
Heun case n=4, and this group is isomorphic to𝐷4, a group of
order 192. These transformations will be the combination of
Mobius transformations and transformations which multiply
the desired solution by powers.

It turns out that theMobius group PGL(2,C), which takes
x to (𝐴𝑥 + 𝐵)/(𝐶𝑥 + 𝐷), for nonvanishing AD-BC, can be
used where 𝑥 takes values from the different singular points.
For Heun equation with four regular singular points, this
transformation takes each singular point to five other points,
which have zeroes at the same value. These points are given
below:

𝑥, 𝑥/(𝑥 − 1), 𝑥/𝑓, 𝑥/(𝑥 − 𝑓), (1 − 𝑓)𝑥/(𝑥 − 𝑓), (𝑓 −1)𝑥/𝑓(𝑥 − 1),
1 − 𝑥, (𝑥 − 1)/𝑥, (𝑥 − 1)/(𝑥 −𝑓), (𝑥 − 1)/(𝑓 − 1), 𝑑(𝑥 −1)/(𝑥 − 𝑓), 𝑓(𝑥 − 1)/(𝑓 − 1)𝑥,
1/𝑥, 1/(1 − 𝑥), 𝑓/𝑥, 𝑓/(𝑓 − 𝑥), (𝑓 − 1)/(𝑥 − 1), (1 −𝑓)/(𝑥 − 𝑓),
(𝑥−𝑓)/𝑥, (𝑓−𝑥)/𝑎, (𝑥−𝑓)/(𝑥−1), (𝑓−𝑥)/(𝑓−1), (𝑥−𝑓)/𝑓(𝑥 − 1), (𝑓 − 𝑥)/(𝑓 − 1)𝑥.



Advances in High Energy Physics 3

Any one of these transformations maps three of the four
points, 0,1,𝑓, and infinity, into 0,1, and infinity but generally
changes the value of 𝑓, which takes one of the six possible
values: 𝑓1 = 𝑓, 𝑓2 = 1 − 𝑓, 𝑓3 = 1/𝑓, 𝑓4 = 1/(1 − 𝑓), 𝑓5 =𝑓/(𝑓−1), and 𝑓6 = (𝑓−1)/𝑓. Each value is taken four times.

Just recall the Heun equation:

𝑑2𝑤𝑑𝑥2 + [ 𝑐𝑥 + 𝑑𝑥 − 1 + 𝑒𝑥 − 𝑓] 𝑑𝑤𝑑𝑥
− 𝑎𝑏𝑥 − 𝑞
𝑥 (𝑥 − 1) (𝑥 − 𝑓)𝑤 = 0,

(8)

written in terms of the real variable 𝑥. One writes the solution
to the Heun equation in the form

𝑦 (𝑥) = 𝑥𝑟 (𝑥 − 1)𝑠 (1 − 𝑥𝑓)
𝑡 𝑢 (𝑥) . (9)

This changes the form of the differential equation. For (i) 𝑟 =0 or 1 − 𝑐, (ii)𝑠 = 0 or 1 − 𝑑, and (iii) 𝑡 = 0 or 1 − 𝑒, however,
the resulting equation has the Heun form. The values given
above are the exponents at the singularities [9, 10].

Of course, the parameters of the equations change. For
each such combination, say for 𝑟 = 0, there are four possible
values s and t can take, namely, both equal to zero; 𝑠 = 1 − 𝑑,
and 𝑡 = 0; 𝑠 = 0, and 𝑡 = 1 − 𝑑; 𝑠 = 1 − 𝑑, and 𝑡 = 1 − 𝑒.Thus
we get three more solutions for each solution. Another factor
of six comes from the six different possible values 𝑓 can take.
In total for expansions around a single regular singular point,
we have twenty-four equivalent solutions, obtained by simply
transforming the original equation.

The presence of two different indices for expansion
around each singular point doubles the number of equivalent
solutions, resulting in 48 solutions for expansions around
each singular point. Four singular points multiply this num-
ber by four giving the total of 192 local solutions.

It turns out that, for infinite set of values of the parameter
q, there are solutions which are analytic at 0 and at 1. These
are called Heun functions, whereas those which are analytic
only at one point are called local Heun functions [11].

For integer values of one of 𝑎, 𝑐 − 𝑎, 𝑑 − 𝑎, 𝑒 − 𝑎 and
for special finite values of 𝑞, solutions analytic at three
singularities exist, the so-called Heun polynomials. A special
case is for 𝑎 = −𝑛, 𝑛 = 0, 1, 2 and 𝑞𝑛,𝑚, 𝑚 = 0, 1, ...., 𝑛,
where 𝑞𝑛,𝑚 are eigenvalues of a tridiagonal matrix, we get the
solution as a polynomial of degree n, which is analytic at three
singular points, 0,1, and 𝑓 [12].

“No example has been given of a solution of Heun’s
equation expressed in the form of a definite integral or
contour integral involving only functions which are, in some
sense, simpler” [13]. This statement does not exclude the
possibility of having an infinite series of integrals with
“simpler” integrands.

One can obtain different confluent forms of this equation.
When we “coalesce” two regular singular points, we get the

confluent Heun equation: the standard form of the confluent
form equation is given as [14]

𝑑2𝑤𝑑𝑧2 + (𝛼 + 𝛾 + 1𝑧 − 1 + 𝛽 + 1𝑧 ) 𝑑𝑤𝑑𝑧 + ( ]𝑧 − 1 + 𝜇𝑧)𝑤
= 0

(10)

with solution

𝐻𝑒𝑢𝑛𝐶 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧) .
𝛿 = 𝜇 + ] − 𝛼(𝛽 + 𝛾 + 22 ) ,

𝜂 = 𝛼 (𝛽 + 1)
2 − 𝜇 − (𝛽 + 𝛾 + 𝛽𝛾2 ) .

(11)

Another version of this equation can be written as

𝑑𝑑𝑧 ((𝑧2 − 1) 𝑑𝑤𝑑𝑧 )
+ [−𝑝2 (𝑧2 − 1) + 2𝑝𝛽𝑧 − 𝜆 − 𝑚2 + 𝑠2 + 2𝑚𝑠𝑧(𝑧2 − 1) ]𝑤
= 0.

(12)

Special forms of this equation are obtained in problems with
two Coulombic centers,

𝑑𝑑𝑧 ((𝑧2 − 1) 𝑑𝑤𝑑𝑧 )
+ [−𝑝2 (𝑧2 − 1) + 2𝑝𝛽𝑧 − 𝜆 − 𝑚2(𝑧2 − 1)]𝑤

= 0,
(13)

whose special form, when 𝑏 = 0, is the spheroidal equation
𝑑𝑑𝑧 ((𝑧2 − 1) 𝑑𝑤𝑑𝑧 )

+ [−𝑝2 (𝑧2 − 1) − 𝜆 − 𝑚2(𝑧2 − 1)]𝑤 = 0.
(14)

Another form is the algebraic form of the Mathieu equation
is

𝑑𝑑𝑧 ((𝑧2 − 1) 𝑑𝑤𝑑𝑧 )
+ [−𝑝2 (𝑧2 − 1) − 𝜆 − 14 (𝑧2 − 1)]𝑤 = 0.

(15)

If we coalesce two regular singular points pairwise, we obtain
the double confluent form

𝐷2𝑤 + (𝛼1𝑧 + 𝛼−1𝑧 )𝐷𝑤 + [(𝐵1 + 𝛼12 ) 𝑧
+ (𝐵0 + 𝛼1𝛼−12 ) + (𝐵−1 − 𝛼−12 ) 1𝑧 )]𝑤 = 0.

(16)
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Here 𝐷 = 𝑧(𝑑/𝑑𝑧). We can reduce the new equation
to the Mathieu equation, an equation with two irregular
singularities at zero and at infinity if we reduce this equation
to the form

𝐷2𝑦 + (𝐵𝑧2 + 𝐵0 + 𝐵𝑧−2) 𝑦 = 0. (17)

Another form is the biconfluent form, where three regular
singularities are coalesced. The result is an equation with
a regular singularity at zero and an irregular singularity at
infinity of higher order:

𝑧2 𝑑2𝑤𝑑𝑧2 + 𝑧𝑑𝑤𝑑𝑧 𝑤
+ (𝐴0 + 𝐴1𝑧 + 𝐴2𝑧2 + 𝐴3𝑧3 − 𝑧4)𝑤 = 0.

(18)

The anharmonic equation in three dimensions can be
reduced to this equation:

𝑑2𝑤𝑑𝑧2 + (𝐸 − ]𝑟2 − 𝜇𝑟2 − 𝜆𝑟4 − 𝜂𝑟6)𝑤 = 0. (19)

In the triconfluent case, all regular singular points are
“coalesced” at infinity which gives the equation below:

𝑑2𝑤𝑑𝑧2 + (𝐴0 + 𝐴1𝑧 + 𝐴2𝑧2 − 94𝑧4)𝑤 = 0. (20)

These different forms are used in different problems in
physics.

3. Some Examples of the Heun Equation in
Physical Applications

In SCI we found about one hundred thirty papers whenHeun
functions were searched in the summer of 2010. Now, at the
end of April 2018, the number exceeded 330. The number of
published articles in SCI more than doubled in the last eight
years.More than three fourths of these papers were published
in the last ten years. The rest of the papers were published
between 1990 and 2005, except a single paper in 1986 [15].
These numbersmay differ depending on the institutionwhere
one uses the SCI, since different universities in Turkey start
their search from different dates. We think we are still in the
correct ball park.This shows that although theHeun equation
was found in 1889, it was largely neglected in the physics
literature until recently. Earlier papers on this topic aremostly
articles inmathematics journals. If one looks for books on this
topic, published before the year 2000, one finds out the list of
books is not very long.There is a book edited by A. Ronveaux,
which is a collection of papers presented in the “Centennial
Workshop on Heun’s Equations: Theory and Application.
Sept. 3–8 1989, Schloss Ringberg.” It was published by the
Oxford University Press in 1995 by the titleHeun’s Differential
Equations [7]. There are two books on functions which are
special cases of the Heun Equation:Mathieusche Funktionen
und Sphaeroidfunktionen mit anwendungen auf physikalische
und technische Probleme by Joseph Meixner and Friedrich
Wilhelm Schaefke, published by Springer Verlag in 1954 [16]

and a Dover reprint of a book first published in 1946,Theory
and Applications of Mathieu Functions by N. W. McLachlan
in 1963 [17]. Classical mathematical physics books, such as
Morse and Feshbach [4], Whittaker and Watson [18], or the
Batemann Manuscript [19], have sections or chapters on the
special forms of the Heun equation like Mathieu, Lamé, or
spheroidal functions. Some papers on different mathematical
properties of these functions can be found in [8, 20–25].

A reason why more physicists are interested in the Heun
equation recently may be, perhaps, a demonstration of the
fact that we do not have simple problems in theoretical
physics anymore. Mathematical physicists have to tackle
more difficult problems, either with more difficult metrics or
in higher dimensions. Both of these extensions may neces-
sitate the use of the Heun functions among the solutions.
We can give the Eguchi-Hanson case as an example. The
wave equation for the scalar particle in the background
of the Eguchi-Hanson metric [3] in four dimensions has
hypergeometric functions as solutions [26], whereas the
Nutku helicoid [27, 28] metric, the next higher one, gives us
Mathieu functions [29], amember of theHeun function set, if
themethod of separation of variables is used to get a solution.
We also find that the scalar particle, in the background of the
Eguchi-Hanson metric, trivially extended to five dimensions
gives Heun type solutions. [30].

Note that the problem does not need to be very compli-
cated to work with these equations. We encounter Mathieu
functions if we consider two-dimensional problems with
elliptical shapes [31]. Let us use 𝑥 = (1/2)𝑎 cosh 𝜇 cos 𝜃 and𝑦 = (1/2)𝑎 sinh𝜇 sin 𝜃, where 𝑎 is the distance from the
origin to the focal point. Then the Helmholtz equation can
be written as

𝜕𝜇𝜇𝜓 + 𝜕𝜃𝜃𝜓 + 14𝑎2𝑘2 [cosh2𝜇 − cos2𝜃] 𝜓 = 0 (21)

which separates into two equations

𝑑2𝐻𝑑𝜃2 + (𝑏 − ℎ2cos2𝜃)𝐻 = 0, (22)

−𝑑2𝑀𝑑𝜇2 + (𝑏 − ℎ2cosh2𝜇)𝑀 = 0. (23)

The solutions to these two equations can be represented as
Mathieu and modified Mathieu functions.

If we combine different inverse powers of r, starting from
first up to the fourth, or if we combine the quadratic poten-
tials with inverse even powers of two, four and six, we see
that the solution of the Schrodinger equation involves Heun
functions [23]. Solution to symmetric double Morse poten-
tials also needs these functions, like𝑉(𝑥) = 𝐵2/4 𝑠𝑖𝑛ℎ 2𝑥−(𝑠+1/2)𝐵 𝑐𝑜𝑠ℎ 𝑥, where 𝑠 = (0, 1/2, 1, . . .) [23]. Similar problems
are treated in [32–34]

In atomic physics further problems such as separated
double wells, Stark effect, and hydrogen molecule ion use
these functions. Physics problems which end up with these
equations are given in the book by S. Y. Slavyanov and S. Lay
[35]. Here we see that even the Stark effect, hydrogen atom
in the presence of an external electric field, gives rise to this
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equation. As described in page 166 of Slavyanov’s book, cited
above (original reference is Epstein [36], also treated by S.
Yu Slavyanov [37]), when all the relevant constants, namely,
Planck constant over 2𝜋, electron mass, and electron charge,
are set to unity, the Schrodinger equation for the hydrogen
atom in a constant electric field of magnitude 𝐹 in the 𝑧
direction is given by

(Δ + 2 [𝐸 − (𝐹𝑧 − 1𝑟)])Ψ = 0. (24)

HereΔ is the Laplacian operator.Using parabolic coordinates,
where the Cartesian ones are given in terms of the new
coordinates by 𝑥 = √𝜉𝜂 cos𝜙, 𝑦 = √𝜉𝜂 sin𝜙, and 𝑧 =(𝜉 − 𝜂)/2 and writing the wave function in the product form

Ψ = 1
√𝜉𝜂𝑉 (𝜉)𝑈 (𝜂) 𝑒𝑥𝑝 (𝑖𝑚𝜙) , (25)

we get two separated equations:

𝑑2𝑉𝑑𝜉2 + (𝐸2 + 𝛽1𝜉 − 𝐹4 𝜉 + 1 − 𝑚24𝜉2 )𝑉 (𝜉) = 0, (26)

𝑑2𝑈𝑑𝜂2 + (𝐸2 + 𝛽2𝜂 + 𝐹4 𝜂 + 1 − 𝑚24𝜂2 )𝑈 (𝜂) = 0. (27)

Here 𝛽1 and 𝛽2 are separation constants that must add to
one.We note that these equations are of the biconfluent Heun
form.

The hydrogen molecule also is treated in [38]. When the
hydrogen-molecule ion is studied in the Born-Oppenheimer
approximation, where the ratio of the electron mass to the
protonmass is very small, one gets two singly confluent Heun
equations if the prolate spheroidal coordinates 𝜉 = (𝑟1+𝑟2)/2𝑐
and 𝜂 = (𝑟1 + 𝑟2)/2𝑐 are used. Here 𝑐 is the distance between
the two centers. Assuming

𝜓 == √𝜉𝜂𝑉 (𝜉)𝑈 (𝜂) 𝑒𝑥𝑝 (𝑖𝑚𝜙) , (28)

we get two confluent Heun equations:

𝑑𝑑𝜉 ((1 − 𝜉2) 𝑑𝑉𝑑𝜉 ) + (𝜆2𝜉2 − 𝜅𝜉 − 𝑚21 − 𝜉2 + 𝜇)𝑉
= 0,

(29)

𝑑𝑑𝜂 ((1 − 𝜂2) 𝑑𝑈𝑑𝜂 ) + (𝜆2𝜂2 − 𝑚21 − 𝜂2 + 𝜇)𝑈 = 0. (30)

Some additional physics papers with Heun type solutions
include the following:

Three relatively recent papers which treat atoms in mag-
netic fields are as follows.

Exact low-lying states of two interacting equally charged
particles in amagnetic field are studied byTruong andBazzali
[39].

The energy spectrum of a charged particle on a sphere
under a magnetic field and Coulomb force are studied by
Ralko and Truong [40].

B. S. Kandemir presented an analytical analysis of the
two-dimensional Schrodinger equation for two interacting
electrons subjected to a homogeneous magnetic field and
confined by a two-dimensional external parabolic potential.
Here a biconfluent Heun (BHE) equation is used [41].

Arda and Sever in one instance with Aydoğdu studied
Schrodinger equation with different potentials and in two
cases found Heun and confluent Heun solutions [42, 43].

In two papers Hammann et al. [44, 45] solved the one-
dimensional Schrodinger equation for position-dependent
masses and obtainedHeun solutions.The importance of these
papers is the derivation and use of relations between Heun
functions which are functions of 𝑧 and 1 − 𝑧, which can be
used for obtaining the reflection and transition amplitudes
for scattering problems for waves described in terms of Heun
functions.

Recently Ishkhanyan showed that the solution of the
Schrodinger equation for 𝑉0/√𝑥 can be given as a derivative
of a triconfluent Heun function [46]. In another paper,
solution for the same potential is given [47] as a linear
combination of two confluent hypergeometric functions. For
another potential which is an inverse square root near the
origin and vanishes exponentially at infinity, solution is given
in terms of linear combination of Gauss hypergeometric
functions [48]. These potentials belong to the Heun class.

Downing showed that the solution to the one-
dimensional Schrodinger equation with a hyperbolic
double well potential is obtained by a transformation of the
confluent Heun equation [49].

Hartmann and Portnoi calculated the bound modes of
two-dimensional massless Dirac fermions confined within a
hyperbolic secant potential [50]

Portnoi et al. continued studying the two-dimensional
Dirac particles in two papers, first confined in nonuniform
magnetic fields and second in Poschl-Teller waveguide [51,
52] in terms of confluent Heun functions.

In a relatively recent work P. Dorey [53] showed that
equations in finite lattice systems also reduce to Heun
equations.

Dislocation movement in crystalline materials and quan-
tum diffusion of kinks along dislocations are some solid state
applications of this equation.The book by S. Y. Slavyanov and
S. Lay [35] is a general reference on problems solved before
2000.

We also cite a recent mathematical application by A. M.
Ishkhanyan et al. where “total fifteen potentials for which
the stationary Klein-Gordon equation is solvable in terms
of the confluent Heun functions are presented.. Only nine
of the potentials are independent due to the transposition
symmetry of regular singular points of the equation. Four of
these equations can be reduced to the hypergeometric form.
The remaining five independent Heun potentials are four-
parametric and have solutions only in terms of irreducible
confluent Heun functions [54]. Prof Ishkhanyan expands the
Heun solution in terms of hypergeometric functions and
shows that the sum has only finite number of terms in his
cases. Prof. Ishkhanyan wrote additional papers after this
one using the same method for other potentials. We will not
comment on them, however, since from this point on, we
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will confine ourselves only to papers on general relativity and
cosmology.

Among the papers in general relativity, we also will not
be able to comment on all the works of some experts like
Prof Fiziev on this field, who wrote scores of papers on Heun
equations. We will give only the earlier papers and leave the
reader to investigate the later ones in the ArXiv.

In general relativity, in a relatively early work, Teukolsky
studied the perturbations of the Kerr metric [55]. If we take

Ψ = exp (−𝑖𝜔𝑡) exp (𝑖𝑚𝜙) 𝑆 (𝜃) 𝑅 (𝑟) , (31)

for the scalar particle we get two equations.

𝑑𝑑𝑟 (Δ𝑑𝑅𝑑𝜃 )
+ ([(𝑟2 + 𝑎2)2 𝜔2 − 4𝑎𝑀𝑟𝜔𝑚 + 𝑎2𝑚2] Δ−1 − 𝐴
− 𝑎2𝜔2)𝑅 = 0,

(32)

1𝑠𝑖𝑛 𝜃 ( 𝑑𝑑𝜃 𝑠𝑖𝑛 𝜃𝑑𝑆𝑑𝜃) + (𝑎2𝜔2cos2𝜃 − 𝑚2
𝑠𝑖𝑛2𝜃 + 𝐴)𝑆

= 0.
(33)

Here 𝐴 is the separation constant, Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2.
Teukolsky just stated these equations [55]. Later these

equations were found to be two coupled singly confluent
Heun equations [56].

Quasi-normal modes of rotational gravitational singular-
ities were also studied by solving these equations by E.W.
Leaver [57].

In recent applications in general relativity, Heun type
equations become indispensable when one studies phenom-
ena in higher dimensions, or in different geometries. We
must note that even the simplest black hole metric, the
Schwarzschild, has solutions in the Heun form [58, 59].

Some other references for general relativity applications
are:

D. Batic, H. Schmid, M. Winklmeier where the Dirac
equation in theKerr-Newmanmetric and static perturbations
of the non-extremal Reisner-Nordstrom solution are studied
[60]. D. Batic and H. Schmid also studied the Dirac equation
for the Kerr-Newman metric and looked for its propagator
[61]. They found that the equation satisfied is a form of
a general Heun equation described in Reference [60]. In
later work Batic, with collaborators continued studying Heun
equations and their generalizations [62]. In his most recent
paper Batic, with collaborators studied Semi commuting and
commuting operators for the Heun family [63].

Prof. P.P. Fiziev studied problems whose solutions are
Heun equations extensively.

In a paper published in gr-qc/0603003, he studied
the exact solutions of the Regge-Wheeler equation in the
Schwarschild black hole interior [58].

He presented a novel derivation of the Teukolsky-
Starobinsky identities, based on properties of the confluent
Heun functions [64]. These functions define analytically all

exact solutions to the Teukolsky master equation, as well as
to the Regge-Wheeler and Zerilli ones.

In a talk given at 29th Spanish Relativity Meeting (ERE
2006), he depicted inmore detail the exact solutions of Regge-
Wheeler equation,which described the axial perturbations
of Schwarzschild metric in linear approximation, in the
Schwarzschild black hole interior and on Kruskal-Szekeres
manifold in terms of the confluent Heun functions [65].

All classes of exact solutions to the Teukolsky master
equation were described in terms of confluent Heun func-
tions in Reference [66, 67].

In reference [68] he reveals important properties of
the confluent Heun’s functions by deriving a set of novel
relations for confluent Heun’s functions and their derivatives
of arbitrary order. Specific new sub classes of confluentHeun’s
functions are introduced and studied. A new alternative
derivation of confluent Heun’s polynomials is presented.

In another paper [69] he, with a collaborator, noted
that weak gravitational, electromagnetic, neutrino and scalar
fields, considered as perturbations on Kerr background
satisfied Teukolsky Master Equation. The two non-trivial
equations were obtained after separating the variables, one
equation only with the polar angle and another using only
the radial variable. These were solved by transforming each
one into the form of a confluent Heun equation.

Fiziev is an expert in this topic. Two further articles by
him and his collaborator are Solving systems of transcendental
equations involving the Heun functions, [70] and Application
of the confluent Heun functions for finding the quasinormal
modes of non rotating black holes [71].

We also cite one of the last papers of Fiziev on the
mathematical properties of this subject which can have
applications in physics. In [72], the author “introduces and
studies a novel type of solutions to the general Heun equa-
tion.” His approach is based “on the symmetric form of the
Heun differential equation yielded by development of the
Papperitz-Klein symmetric form of the Fuchsian equations
with an arbitrary number of regular singular points greater
than 4. The symmetry group of these equations turns to be
a proper extension of the Mobius group.” He also introduces
and studies “new series solutions and derives solutions for the
four singular point case which treats simultaneously and on
an equal footing all singular points.”

Among other papers on this subject one may cite the
following papers.

R. Manvelyan, H. J. W. Muller Kirsten, J. Q. Liang, and Y.
Zhang calculated the absorption rate of a scalar by a D3 brane
in ten dimensions in terms of modified Mathieu functions
and obtained the S-matrix in [73].

T.Oota and Y.Yasui studied the scalar Laplacian on a wide
class of five-dimensional toric Sasaki-Einstein manifolds,
ending in two Heun’s differential equations in [74].

S.Musiri andG. Siopsis found out that the wave equation,
obtained in calculating the asymptotic form of the quasi-
normal frequencies for large AdS black holes in five dimen-
sions, reduces to a Heun equation, in [75].

A. Al-Badawi and I. Sakalli studied the Dirac equation
in the rotating Bertotti-Robinson space-time [76] ending up
with a Heun type equation.



Advances in High Energy Physics 7

I first encountered this type of equation when we tried
to solve the scalar wave in the background of the Nutku
helicoid instanton [29]. In this case, for a scalar particle in
this backgroundmetric, one gets theMathieu equationwhich
is a special case of the Heun equation. In the same paper,
the solutions in four dimensions involve the product of two
exponentials and two Heun functions. These solutions can
be summed to give Green’s function for this problem in a
closed form.We could not succeed in obtaining a closed form
solution for the Green function when the similar problem is
studied in five dimensions [77, 78].

The helicoid instanton is a double-centered solution. As
remarked above, for the simpler instanton solution of Eguchi-
Hanson [3] hypergeometric solutions are sufficient [26]. Here
one must remark that another paper using the Eguchi-
Hanson metric ends up with the confluent Heun equation
[79].These two papers show that sometimes judicious choice
of the coordinate system and separation ansatz matters.

Sucu and Ünal also obtained closed solutions for the
spinor particle written in the background of the Nutku
helicoid instanton [26], whereas using the separation of
variables method gives us an infinite series of product of two
Mathieu functions [77]

One can show that the solutions of Sucu and Ünal can be
expanded in terms ofMathieu functions if one attempts to use
the separation of variables method, as described by L.Chaos-
Cador and E. Ley-Koo [80].

Tolga Birkandan and I also found an extension of the
Heun equation with five singular points [30] and calculated
the solution of a scalar field in the background of the Eguchi-
Hanson equation trivially extended to five dimensions [30].
Then the solution for the radial component turned out to be
given in terms of the confluent Heun equation.

Mirjam Cvetič and Finn Larsen studied grey body factors
and event horizons for rotating black holes with two rotation
parameters and five charges in five dimensions. When the
Klein-Gordon equation for a scalar particle in this back-
ground is written, one gets a confluent Heun equation. In
the asymptotic region this equation turns into the hyperge-
ometric form [81]. When they studied the similar problem
for the rotating black hole with four 𝑈(1) charges, they again
obtained a confluentHeun equation for the radial component
of the Klein-Gordon equation, which they reduce to the
hypergeometric form by making approximations [82]. These
two papers are partly repeated in [83]. The same equations
were obtained which were reduced to approximate forms
which gave solutions in the hypergeometric form.

M. Cvetič encounters this function in several of her
publications and reduces them to the hypergeometric form
by giving physical arguments to drop certain terms in the
equation.The hypergeometric solution points to the presence
of conformal symmetry in the reduced model [84, 85]. The
method is going to the extreme and near-extreme (Kerr/CFT
correspondence) limits, going to the boundary and in some
cases using a “subtracted metric” using a warp factor which
preserves all the near-horizon properties of the black hole
such as the entropy and the thermodynamic potentials, and
if necessary dropping certain terms which are negligible in
these limits [86–88].

“In general, conformal symmetry does not exist in the
non-extremal cases. The solutions often turn out to be of the
Heun form. In the extremal case two horizons overlap. In the
near extremal case they are very close to each other. In these
two cases and in the near horizon limit, we find conformal
symmetry, resulting in solutions which are hypergeometric
functions, or one of its confluent forms. If we want conformal
symmetry without going to the extremal or the near horizon
limit, we have to change the ‘warp factor’. When the warp
factor is changed, the rest of the metric preserves its initial
form. The thermodynamic potentials and entropy do not
change. You have to drop some terms resulting in solutions
in the hypergeometric form. This is equivalent to putting the
black hole into a conic box. If you go to the asymptotic
or to the scaling limit, this is seen clearly. In these limits
the Einstein equations are not satisfied unless the energy-
momentum tensor, on the right side of the Einstein equations
are also changed, to account for putting the system into the conic
box.” [89]

Cvetič also studied black holes in supergravity with
Birkandan. Heun solutions also exist for the Wu Black Hole
which is the most general solution of maximally supersym-
metric gauged supergravity in D=5 [90]. Here they did not
study the limiting cases. For the massless Klein-Gordon
equation in the background of the most general black hole in
four dimensions and N=2 gauge supersymmetry with 𝑈(1)2
gauge symmetry (Chow-Compere solution [91]), the angular
equation gives Heun type solutions. The radial equation has
five regular singularities, which reduce to hypergeometric
functions in the near-horizon extremal limit [92].

We should alsomention two papers byH. R. Christiansen
andM. S. Cunha with Heun type solutions.These are Conflu-
ent Heun Functions in Gauge Theories on Thick Braneworlds
[93] and Kalb-Ramond Excitations in a Thick-Brane Scnario
with Dilaton [94]. In the first paper, the propagation modes
of gauge fields in an infinite Randall-Sundrum scenario are
investigated. Here a sine-Gordon soliton represents the thick
four-dimensional braneworldwhile an exponentially coupled
scalar field acts for the dilaton. For the gauge field motion a
differential equation is found which can be transformed into
a confluent Heun equation. In the second paper a similar
scenario is used. Here a bulk Kalb-Ramond field is coupled
to a dilaton, in a warped space-time in the presence of a
brane field in five dimensions. Full spectrum and eigenstates
are studied. In the general case, the solutions to the field
equations are given in terms of the confluent Heun function,
which reduces to the confluent hypergeometric function for
special values of the parameters.

Other relevant references I could find are listed as [95–
102].

Themore recent papers on this subject includeTheQuan-
tumTreatment of the 5D-Warped Friedman-Robertson-Walker
Universe in Schrodinger Picture [103]. Here the time-evolving
Schrodinger version of the Wheeler-De Witt equation, writ-
ten for the five-dimensional warped k=0-FRW Universe, is
studied. For small values of the cosmological scale factor,𝑎, the wave function of the Universe is expressed in terms
of the Heun Double Confluent functions, whereas for large
values of this parameter the solution becomes the Hermite
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associated functions. Two papers by the same authors using
Heun type functions are Fermions in Magnestar’s Crust in
terms of Heun Double Confluent Functions [104] and The
Approximative Analytic Study of Fermions in Magnetar’s
Crust; Ultra-Relativistic Plane Waves, Heun and Mathieu
Solutions and Beyond [105].

In Fermi Surfaces and Analytic Green’s Functions from
Conformal Gravity [106], T2-symmetric charged AdS black
holes are constructed in conformal gravity. The most general
solution up to an overall conformal factor contains three non-
trivial parameters: the mass, electric charge, and a quantity
that can be identified as the massive spin-2 hair. The Dirac
equation for the charged massless spinor in this background
can be solved in terms of the general Heun function for
generic frequency 𝜔 and wave number 𝑘. This allows us to
obtain the analytic Green function 𝐺(𝜔, 𝑘) for both extremal
and nonextremal black holes. For some special choice of
black hole parameters, the Green function reduces to simpler
hypergeometric or confluent hypergeometric functions.

Two of the authors of the paper quoted above had
calculated Green’s functions in terms of the Heun function
in an earlier paper, Exact Green’s Functions from Conformal
Gravity [107].

Another paper is Quantized Black Hole and Heun Func-
tion by D. Momeni, K. Yerzhanov, and R. Myrzakulov [108]
where a black hole is quantized using the Bohr method. The
solution turns to be of the Heun type.

In On an Approach to Constructing Static Ball Models in
General Relativity by A. M. Baranov, some solutions of the
Einstein equation were described by Heun functions [109].

In an paper on analytic solutions of wave equations in reg-
ular coordinate systems on Schwarzschild background Den-
nis Philipp and Volker Perlick claim that they find “the wave
equation for the propagation of (massless) scalar, electromag-
netic and gravitational waves on fixed Schwarzschild back-
ground spacetime, which is described by the general time-
dependent Regge-Wheeler equation, can be transformed to
usual Schwarzschild, Eddington-Finkelstein, Painleve Gull-
strand and Kruskal-Szekeres coordinates. In the first three
cases, but not in the last one, it is possible to separate a har-
monic time-dependence. Then the resulting radial equations
belong to the class of confluent Heun equations” [59].

Among additional papers we can also cite the article of
Bezerra et al., Exact Solutions of the Klein-Gordon Equation
in the Kerr-Newman Background and Hawking Radiation,
where both the radial and angular solutions are given in
terms of confluent Heun functions [110]. In the particular
case corresponding to an extreme Kerr-Newman black hole,
the solution is given by the double confluent Heun functions
[111]. Biconfluent Heun functions were obtained for the
exact solution of the Schrodinger equation for a particle
(galaxy)moving in aNewtonian universewith a cosmological
constant [112].

Other papers on general relativity written in 2015 also
include New Results for Electromagnetic Quasinormal and
Quasibound Modes of Kerr Black Holes, by D. Staicova and P.
Fiziev [113], where the authors solve Teukolsky equationswith
confluent Heun solutions numerically. In Heun Functions
Describing Fermions Evolving in Parallel and Magnetic Fields,

by C. Dariescu and M. A. Dariescu [114], the solutions are in
terms of double confluent Heun functions. The same authors
also published Quantum Analysis of k=-1 Robert-Walker
Universe, where they solved the Wheeler-DeWitt equation
[115]. The solutions turned out to be Heun functions. M. C.
E. Cedeno and J. C. N. Araujo show that, for Master equation
solutions in the linear regime of characteristic formulation
of general relativity, the solution is in terms of confluent
Heun’s functions for radiative case in the Schwarzschild’s
background [116]. In Massless Dirac Particles in the Vacuum
C-Metric, D. Bini et al. show that the Dirac equation, written
in the background of the C-metric, can be reduced to a
radial and an angular equation, both of which can be solved
in terms of general Heun functions [117]. Vieira et al. [118]
show that for Charged Massive Scalar Fields are Considered
in the Gravitational and Electromagnetic Field Produced by
a Dyonic Black Hole with a Cosmic String along its Axis of
Symmetry “exact solutions of both angular and radial parts of
the covariant Klein-Gordon equation in this background can
be obtained, and are given in terms of the confluent Heun
functions.” In [119], Kofron separates test fields equations
on the nonrotating C-metric background. He finds that
the resulting equations are of the Heun or confluent Heun
form for the general case. These equations, however, can
be reduced to hypergeometric functions in the static, axial
symmetric, and the extremal case where the inner and outer
horizons coalesce. In another paper [120], the same author
studies the similar phenomena on the background of the
rotating C-metric. For the general case, the radial equation
has five regular singularities. In the extremal, static, and axial
symmetric cases, one obtains a polynomial solution.

Some other papers published in 2016 in the field of
general relativity where solutions to field equations are in the
background of different metrics are as follows.

Valtancoli [121] found Heun solutions for the radial
part of the Klein-Gordon equation when the scalar field is
conformally coupled to a charged BTZ black hole.

Vieira and Bezerra [122] study “resonant frequencies,
Hawking radiation and scattering of scalar waves. . .” and find
confluent Heun solutions. They also study [123] the class of
solutions of theWheeler-DeWitt equation in the Friedmann-
Robertson-Walker universe. In still another paper [124],
these authors find confluent Heun solutions for the massless
Klein-Gordon equation in the background metric of the
three-dimensional rotating and four-dimensional canonical
acoustic black holes.

Sakalli [125] finds analytical solutions in rotating linear
dilaton black holes.

Kraniotis [126] studies the Klein-Gordon equation in the
backgroundmetric of theKerr-Newman (anti-)de Sitter black
hole. He first reduces the radial and angular equations to the
Heun form andwrites the solution in terms of local Heun and
confluent Heun functions. In my opinion this paper should
be also praised for the introduction of the “false singular
point” concept, which reduces the solution to hypergeometric
functions for certain values of the physical parameters in the
equation.

Since we updated this paper in February 2017, we find
close to thirty new publications if one searches for the word
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HeunFunctions in the indexWeb ofKnowledge inApril 2018.
Many of these papers are on the mathematical aspects of the
equation and solving Schrodinger equations for different new
potentials in terms of Heun or linear combinations of Heun
functions.There are also solutions in terms ofHeun functions
for equations used in different branches of physics. Here we
will attempt to review only the papers for applications in
physics related to general relativity.

In [127], Arda et al. solve the energy relations obtained
with the help of the quantization rule for the Klein-Gordon
equation with a linear plus an inverse-linear potential in
terms of biconfluentHeun equations. Vieira wrote two papers
[128, 129] where he first studied Resonant Frequencies of a
Hydrodynamic Vortex. The radial equation has solutions in
terms of double confluent Heun functions. In the second
paper, analytic solutions for sound perturbations in the pres-
ence of a rotating acoustic black hole which is an analogue
of the conical Kerr metric were studied. In the massless case,
the radial equation hasHeun type solutions. Vieira also wrote
another paper with coauthors [130], where massive scalar
fields are considered in the gravitational field produced by
a Schwarzschild black hole with a global monopole in f(R)
gravity. The exact solution of the radial part of the Klein-
Gordon equation in this background is given in terms of the
general Heun functions. The properties of the general Heun
functions are applied to study the Hawking radiation and the
resonant frequencies of scalar particles.

Ciprian Dariescu wrote two papers with collaborators
[131, 132]. In the first paper, using a perturbative method,
Klein-Gordon equation for a charged massive field in the
background of a magnetar is solved both in the interior
solution and outside the star. Equations can be separated
with general and confluent Heun function solutions. With
special conditions on parameters, polynomial solutions can
be found and first-order transition amplitudes are computed
[131]. In the second paper, for the spatially open Friedmann-
Robertson-Walker (FRW) Universe with stiff matter and
radiation as noninteractingmatter sources, the scale function
coming from the integration of the Friedmann equation
is expressed in terms of elliptic integrals. For a negative
cosmological constant, the allowed ranges for the models
parameters are identified. Within the quantum analysis, the
Wheeler–DeWitt (WDW) equation turns into a modified
Morse equation whose solutions are Mathieu and Heun
functions. [132].

Sobhani et al. [133] wrote a paper where the thermody-
namic properties of the anharmonic oscillator cosmic string
framework are studied. The Schrodinger equation is written
in the cosmic string framework and anharmonic oscillations
are investigated. The wave function and energy spectrum are
derived using confluent Heun functions.

Birkandan was also active in this period. He wrote four
papers. In the first paper, with Bouaziz, he showed that
the deformed Schrodinger equation for a singular inverse
square potential in coordinate space with a minimal length is
solved in terms of Heun functions [134]. In his second paper
with a collaborator, confluent Heun solutions to the radial
equations of two Halilsoy-Badawi metrics are found. For the
first metric, the radial part of the massless Dirac equation

and, for the second case, the radial part of the massless
Klein-Gordon equation are studied [135], both with Heun
type solutions. In the third paper, he and his collaborator
showed that Heun-type exact solutions emerged for both
the radial and the angular equations for the case of a scalar
particle coupled to the zero-mass limit of both the Kerr and
Kerr-(anti-)de-Sitter space-times. Since any type D metric
has Heun-type solutions, it is interesting that this property is
retained when the black hole has a zero-mass limit.This work
further refuted the claims that mass of the black hole, going
to zero limit of the Kerr metric, was both locally and globally
the same as theMinkowski metric [136]. We comment on the
fourth paper in the Conclusion.

A comprehensive bibliography can be found at the bibli-
ography section of http://tcpa.uni-sofia.bg/heun/home.html,
compiled by Professors Plamen Fiziev and Denitsa Staicova.

Just to give an example of how theHeun function emerges
in a simple problem, in the next section, our work in [30] for
the scalar particle in the background metric of the extended
Eguchi-Hanson solution will be sketched.

4. Scalar Field in the Background of the
Extended Eguchi-Hanson Solution

To go to five dimensions, we can add a time component to the
Eguchi-Hanson [3] metric so that we have

𝑑𝑠2 = −𝑑𝑡2 + 11 − 𝑎4/𝑟4 𝑑𝑟2 + 𝑟2 (𝜎2𝑥 + 𝜎2𝑦)
+ 𝑟2 (1 − 𝑎4𝑟4 )𝜎2𝑧

(34)

where

𝜎𝑥 = 12 (− cos 𝜉𝑑𝜃 − sin 𝜃 sin 𝜉𝑑𝜙) (35)

𝜎𝑦 = 12 (sin 𝜉𝑑𝜃 − sin 𝜃 cos 𝜉𝑑𝜙) (36)

𝜎𝑧 = 12 (−𝑑𝜉 − cos 𝜃𝑑𝜙) . (37)

This is a vacuum solution. If we take

Φ = 𝑒𝑖𝑘𝑡𝑒𝑖𝑛𝜙𝑒𝑖(𝑚+1/2)𝜉𝜑 (𝑟, 𝜃) , (38)

we find the scalar equation as

𝜑 (𝑟, 𝜃) = (𝑟4 − 𝑎4𝑟2 𝜕𝑟𝑟 + 3𝑟4 + 𝑎4𝑟3 𝜕𝑟 + 𝑘2𝑟2 + 4𝑎4𝑚2𝑎4 − 𝑟4
+ 4𝜕𝜃𝜃 + 4 cot 𝜃𝜕𝜃 + 8𝑚𝑛 cos 𝜃 − 4 (𝑚2 + 𝑛2)

sin2𝜃 )
⋅ 𝜑 (𝑟, 𝜃) .

(39)

http://tcpa.uni-sofia.bg/heun/home.html
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If we take 𝜑(𝑟, 𝜃) = 𝑓(𝑟)𝑔(𝜃), the solution of the radial part is
expressed in terms of confluent Heun (𝐻𝐶) functions.

𝑓 (𝑟) = (−𝑎4 + 𝑟4)(1/2)𝑚𝐻𝐶(0,𝑚,𝑚, 12𝑘2𝑎2, 12𝑚2
− 14𝜆 − 14𝑘2𝑎2, 𝑎

2 + 𝑟22𝑎2 ) + (𝑎2 + 𝑟2)−(1/2)𝑚 (𝑟2

− 𝑎2)1/2𝑚𝐻𝐶(0, −𝑚,𝑚, 12𝑘2𝑎2, 12𝑚2 − 14𝜆
− 14𝑘2𝑎2, 𝑎

2 + 𝑟22𝑎2 ) .

(40)

If the variable transformation 𝑟 = 𝑎√cosh 𝑥 is made, one
solution can be expressed as

𝑓 (𝑥) = (sinh (𝑥))𝑚𝐻𝐶 (0,𝑚,𝑚, 12𝑘2𝑎2, 12𝑚2 − 14𝜆
− 14𝑘2𝑎2, 12cosh2 (𝑥2)) .

(41)

We tried to express the equation for the radial part in terms of𝑢 = (𝑎2+𝑟2)/2𝑎2 to see the singularity structure more clearly.
Then the radial differential operator reads

4 𝑑2𝑑𝑢2 + 4 ( 1𝑢 − 1 + 1𝑢) 𝑑𝑑𝑢 + 𝑘2𝑎2 ( 1𝑢 − 1 + 1𝑢)

+ 𝑚2
𝑢2 (1 − 𝑢)2 .

(42)

This operator has two regular singularities at zero andone and
an irregular singularity at infinity, the singularity structure
of the confluent Heun equation. This is different from the
hypergeometric equation, which has regular singularities at
zero, one and infinity.

The solution of the angular equation which is regular
at 𝜃 = 𝜋 for 𝑚 greater than 𝑛 is given below in terms of
hypergeometric functions.

𝑔 (𝜃) = sin (𝜃)𝑚 cot(𝜃2)
𝑛 × 2𝐹1 (([𝑚 + 12√𝜆 + 1 + 12 ,𝑚 − 12√𝜆 + 1 + 12] , ) [1 + 𝑛 + 𝑚] , (1/2) cos

2 (𝜃)2 ) . (43)

5. Conclusion

In this paper, first the Heun function is introduced; then
some of its uses in physics, especially in the field of general
relativity and gravitation, are demonstrated. We have to note
that most of the physicists that bluntly state their solution is
in terms of Heun functions are mainly from the third world.
We see physicists from Bulgaria, Romania, Brazil, Armenia,
and even Turkey in this group. There are mathematicians
from the western world, though, who are experts in this field.
Batic, a mathematician, although he now works in UAE may
be considered from the western world. Ronveaux from Bel-
gium and many other mathematicians are from the western
world.

They are not really many exceptions to this observation.
Cvetič and Larsen demonstrate what the physicists from the
western world do.They try to express their solutions in terms
of hypergeometric functions, by going to the asymptotics, to
the extremal, or to the near-extremal limit, or putting the
solution into a conic box, by changing the energymomentum
term if necessary, but keeping the thermodynamic potentials
the same. A long endeavor was necessary to label Teukolsky
Master Equations as belonging to the Heun class [56]. Only
recently was the equation given by ’t Hooft [137] shown to
belong to the Heun class if it were not modified [138]. When
modified the solution is the manageable hypergeometric
function. We agree that this impression may be wrong, but
it is just an observation.

The first version of this paper was submitted to the 13th
Regional Conference on Mathematical Physics, which was

held in Antalya, Turkey, on 27–31 October 2010 and printed
in [139].
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particles in a Pöschl-Teller waveguide,” Scientific Reports, vol. 7,
no. 1, article 11599, 2017.

[53] P. Dorey, J. Suzuki, and R. Tateo, “Finite lattice Bethe ansatz
systems and the Heun equation,” Journal of Physics A: Mathe-
matical and General, vol. 37, no. 6, pp. 2047–2061, 2004.

[54] A. S. Tarloyan, T. A. Ishkhanyan, and A. M. Ishkhanyan,
“Four five-parametric and five four-parametric independent
confluent Heun potentials for the stationary Klein-Gordon
equation,” Annalen der Physik, vol. 528, no. 3-4, pp. 264–271,
2016.

[55] S. A. Teukolsky, “Rotating Black Holes: Separable Wave Equa-
tions for Gravitational and Electromagnetic Perturbations,”
Physical Review Letters, vol. 29, no. 16, pp. 1114–1118, 1972.

[56] D. Batic and H. Schmid, “Heun equation, Teukolsky equation,
and type-D metrics,” Journal of Mathematical Physics, vol. 48,
no. 4, article 042502, 2007.

[57] E. W. Leaver, “An analytic representation for the quasinormal
modes of Kerr black holes,” Proceedings of the Royal Society A
Mathematical, Physical and Engineering Sciences, vol. 402, no.
1823, pp. 285–298, 1985.

[58] P. P. Fiziev, “Exact solutions of Regge-Wheeler equation and
quasi-normal modes of compact objects,” Classical and Quan-
tum Gravity, vol. 23, no. 7, pp. 2447–2468, 2006.

[59] D. Philipp and V. Perlick, “On analytic solutions of wave
equations in regular coordinate systems on Schwarzschild
background,” General Relativity and Quantum Cosmology (gr-
qc), 2015.

[60] D. Batic, H. Schmid, and M. Winklmeier, “The generalized
Heun equation in QFT in curved spacetimes,” Journal of Physics
A: Mathematical and General, vol. 39, no. 40, pp. 12559–12564,
2006.

[61] D. Batic and H. Schmid, “The Dirac propagator in the Kerr-
Newman metric,” Progress of Theoretical and Experimental
Physics, vol. 116, no. 3, pp. 517–544, 2006.

[62] D. Batic and M. Sandoval, “The hypergeneralized Heun equa-
tion in QFT in curved space-times,” General Relativity and
Quantum Cosmology (gr-qc), 2008.

[63] D. Batic, D. Mills, and M. Nowakowski, “Semicommuting and
commuting operators for the Heun family,” Theoretical and
Mathematical Physics, vol. 195, no. 1, pp. 6–26, 2018.

[64] P. P. Fiziev, “Teukolsky-Starobinsky identities: a novel deriva-
tion and generalizations,” Physical Review D: Particles, Fields,
Gravitation and Cosmology, vol. 80, no. 12, article 124001, 2009.

[65] P. P. Fiziev, “Exact solutions of Regge-Wheeler equation,” Jour-
nal of Physics: Conference Series, vol. 66, no. 1, article 012016,
2007.

[66] P. P. Fiziev, “Classes of exact solutions to the Teukolsky master
equation,” Classical and Quantum Gravity, vol. 27, no. 13, article
135001, 2010.

[67] D. R. Staicova and P. P. Fiziev, “The spectrumof electromagnetic
jets from Kerr black holes and naked singularities in the
Teukolsky perturbation theory,” Astrophysics and Space Science,
vol. 332, no. 2, pp. 385–401, 2011.

[68] P. P. Fiziev, “Novel relations and new properties of confluent
Heun’s functions and their derivatives of arbitrary order,”
Journal of Physics A: Mathematical and General, vol. 43, no. 3,
article 035203, 2010.

[69] R. S. Borissov and P. P. Fiziev, “Exact Solutions of Teukolsky
Master Equation with Continuous Spectrum,” Bulgarian Jour-
nal of Physics, vol. 37, pp. 65–89, 2010.

[70] P. Fiziev andD. Staicova, “Towards New Paradigms: Proceeding
of the Spanish Relativity Meeting 2011,” I. B. Jimenez, J. S. R.
Cembranos, A. Dobado et al., Eds., vol. 1458 of AIP Conference
Proceedings, pp. 395–398, 2011.

[71] P. Fiziev and D. Staicova, “Application of the confluent Heun
functions for finding the quasinormal modes of nonrotating
black holes,” Physical ReviewD: Particles, Fields, Gravitation and
Cosmology, vol. 84, article 127502, 2011.

[72] P. Fiziev, “Novel representation of the general fuchsian and heun
equations and their solutions,” International frontier science
letters, vol. 7, pp. 11–24, 2016.

[73] R.Manvelyan,H. J.W.Muller-Kirsten, J. Q. Liang, andY. Zhang,
“Absorption Cross Section of Scalar Field in Supergravity
Background,” Nuclear Physics B, vol. 579, pp. 177–208, 2000.

[74] T. Oota and Y. Yasui, “Toric Sasaki-Einstein manifolds and
Heun equations,” Nuclear Physics. B. Theoretical, Phenomeno-
logical, and Experimental High Energy Physics. Quantum Field
Theory and Statistical Systems, vol. 742, no. 1-3, pp. 275–294,
2006.

[75] S. Musiri and G. Siopsis, “Asymptotic form of quasi-normal
modes of large AdS black holes,” Physics Letters B, vol. 576, no.
3-4, pp. 309–313, 2003.

[76] A. Al-Badawi and I. Sakalli, “Solution of the Dirac equation
in the rotating Bertotti-Robinson spacetime,” Journal of Mathe-
matical Physics, vol. 49, article 052501, 2008.
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The importance of the energy spectrum of bound states and their restrictions in quantum mechanics due to the different methods
have been used for calculating and determining the limit of them. Comparison of Schrödinger-like equation obtained by Dirac
equation with the nonrelativistic solvable models is the most efficient method. By this technique, the exact relativistic solutions of
Dirac equation for Hartmann and Ring-Shaped Oscillator Potentials are accessible, when the scalar potential is equal to the vector
potential. Using solvable nonrelativistic quantum mechanics systems as a basic model and considering the physical conditions
provide the changes in the restrictions of relativistic parameters based on the nonrelativistic definitions of parameters.

1. Introduction

Since the advent of quantum mechanics, several methods
have been developed in order to find the exact energy
spectrum of bound states in stationary quantum systems.
The knowledge of these spectrums is necessary for several
applications in many fields of physics and theoretical chem-
istry [1–4]. Such encouraging results have arisen some studies
on the potential within the frame work of common wave
equations of both nonrelativistic and relativistic wave equa-
tions, that is, including Schrödinger, Duffin-Kemmer-Petiau
(DKP), Klein-Gordon, or Dirac equations [5–10]. There are
somenoncentral separable potentials in spherical coordinates
which are of considerable interest and are practical in the
branches of science such as chemistry and nuclear physics.
Hartmann potential introduced by Hartmann is one of the
noncentral potentials, which can be realized by adding a
potential proportional to Coulomb potential [11–16]. This
potential was suggested to describe the energy spectrum of
Ring-Shaped Potential obtained by replacing the Coulomb
part of Hartmann potential with a Harmonic Oscillator term
and that is called a Ring-Shaped Oscillator Potential, which
is investigated to find discrete spectrum and integrals of
motions [17–22]. The relativistic linear interaction, which is

called the relativistic oscillator due to the similarity with the
nonrelativistic harmonic oscillator, has been subject of many
successful theoretical studies. Such a space has interesting
property and algebra; for example, there are some articles in
which a free particle has been studied in different situations;
Dirac oscillator system that is initiated by a relativistic
fermion is subjected to linear vector potential [23–25]. In this
article, for solving Dirac equation with Hartmann and Ring-
Shaped Oscillator Potentials in three dimensions, equality
of scalar and vector potentials can constitute a couple of
differential equations for the spinor components [26, 27].
One of them is the second-order differential equation for
the upper spinor and the lower spinor can be gotten from
the first-order differential equation based on the upper
spinor. Since Hartmann and Ring-Shaped Oscillator Poten-
tials contained two radial and angular parts, the second-
order differential equation is considered in the spherical polar
coordinates. With separation of the second-order differential
equation, there are two Schrödinger-like equations in 𝑟 and𝜃 coordinates. Moreover, the normalized solution of the
polar angular part is considered as an exponential function
based on 𝜑 coordinate and separating constant, because there
is not any part of 𝜑 coordinate in the potential function.
There exists one-dimensional solvable Schrödinger equation
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in the nonrelativistic quantummechanics for the determined
potential which can be expanded to the Schrödinger-like
equation and is derived from Dirac equation [28, 29]. In
the radial part of differential equation, the relativistic energy
spectrum can be gotten by comparison with the nonrela-
tivistic solvable Schrödinger equation. In this comparison,
the relativistic energy spectrum is obtained based on the
nonrelativistic energy spectrum and the wave function of
the nonrelativistic space will be considered for calculation of
the relations between nonrelativistic and relativistic param-
eters. The mentioned method can be used on the angular
part of differential equation. The relations of parameters
between the two models are confirmed to the changes in the
restriction of parameters. The new restriction of parameters
and separating constants ensure the physical conditions. The
paper is organized as follows: assuming 𝑉(󳨀→𝑟 ) = 𝑆(󳨀→𝑟 ), the
couple of differential equations can be obtained for the spinor
components and the second-order differential equation can
be separated to the three coordinates in Section 2. The radial
part of Dirac equation and the relativistic energy spectrum
that is associated with the radial part have been investigated
in Section 3. The angular part of Dirac equation for the
potential that is related to 𝜃 coordinate according to different
function of 𝜃 and the relativistic parameters have been paid
attention in Section 4. Finally, in Section 5, the brief of
method has been presented.

2. The General Form of Hartmann
and Ring-Shaped Oscillator Potentials
in Dirac Equation

The generalized Hartmann and Ring-Shaped Oscillator
Potentials are defined as follows [27]:

𝑉 (𝑟, 𝜃) = 𝑉 (𝑟) + 𝑓 (𝜃)2𝑟2 . (1)

The radial part of potential can be considered as Coulomb
and harmonic oscillator potentials [17, 18]:

𝑉 (𝑟) = −12 (𝑉0𝜆𝑟 ) ,
𝑉 (𝑟) = 𝐾𝑟2,

(2)

where 𝑉0, 𝜆, and 𝐾 are free parameters with respect to the
relevant potentials. Different types of functions are assumed
for the angular part of potential so that the exact solvable
models can be provided from Dirac equation. In (1), 𝜃 and𝑟 are polar angular and radial in spherical coordinates of
hydrogen atom.

Time-independent Dirac equation for arbitrary scalar
and vector potentials is given by differential equation:

[𝑐󳨀→𝛼.󳨀→𝑃 + 𝛽 (𝑀𝑐2 + 󳨀→𝑆 (󳨀→𝑟 ))]𝜓 (󳨀→𝑟 )
= [𝜀 − 𝑉 (󳨀→𝑟 )]𝜓 (󳨀→𝑟 ) . (3)

The following parameters are defined in (3):
󳨀→𝑃 = −𝑖ℏ󳨀→∇,
𝛼 ≡ (0 󳨀→𝜎󳨀→𝜎 0) ,

𝛽 ≡ (𝐼 0
0 −𝐼) ,

(4)

where 󳨀→𝜎 and 𝐼 are vector Pauli spin matrix and the identity
matrix, respectively. Use the Pauli-Dirac representation as

𝜓 (󳨀→𝑟 ) = (𝜑 (󳨀→𝑟 )𝜒 (󳨀→𝑟 )) , (5)

where 𝜑(𝑟) and 𝜓(𝑟) are spinor components. The following
set of coupled equations for the spinor components can be
gotten:

𝑐󳨀→𝜎.󳨀→𝑃𝜒 (󳨀→𝑟 ) = [𝜀 − 𝑉 (󳨀→𝑟 ) −𝑀𝑐2 − 𝑆 (󳨀→𝑟 )] 𝜑 (󳨀→𝑟 ) , (6)

𝑐󳨀→𝜎.󳨀→𝑃𝜑 (󳨀→𝑟 ) = [𝜀 − 𝑉 (󳨀→𝑟 ) +𝑀𝑐2 + 𝑆 (󳨀→𝑟 )] 𝜒 (󳨀→𝑟 ) . (7)

Assume that 𝑆(󳨀→𝑟 ) = 𝑉(󳨀→𝑟 ) and 𝑆(󳨀→𝑟 ) = −𝑉(󳨀→𝑟 ) due
to combining (6) and (7) and provide the situations for
obtaining the second-order differential equations according
to one of the components so that another component can
be gotten by using the first differential equation based on
the determined component. Since in the case where 𝑆(󳨀→𝑟 ) =−𝑉(󳨀→𝑟 ) the treatment of (6) and (7) is quite equivalent to the
case where 𝑆(󳨀→𝑟 ) = 𝑉(󳨀→𝑟 ), the case where 𝑆(󳨀→𝑟 ) = 𝑉(󳨀→𝑟 ) is
considered and then the results of that case will be expanded
to the second case [26, 27].

The state 𝑆(󳨀→𝑟 ) = 𝑉(󳨀→𝑟 ) allows making two differential
equations for each component:

𝜒 (󳨀→𝑟 ) = [ 𝑐󳨀→𝜎.󳨀→𝑃𝜀 +𝑀𝑐2]𝜑 (󳨀→𝑟 ) , (8)

[𝑐2󳨀→𝑃2 + 2 (𝜀 +𝑀𝑐2)𝑉 (󳨀→𝑟 )] 𝜑 (󳨀→𝑟 )
= [𝜀2 −𝑀2𝑐4] 𝜑 (󳨀→𝑟 ) .

(9)

Schrödinger-like equation is obtained for the component𝜑(󳨀→𝑟 ) by considering the definitions of 󳨀→𝑃 and 𝑉(󳨀→𝑟 ) in (9):

[−ℏ2𝑐2󳨀→∇2 − (𝜀 +𝑀𝑐2) (𝑉0𝜆𝑟 − 𝑓 (𝜃)𝑟2 )]𝜑 (󳨀→𝑟 )
= [𝜀2 −𝑀2𝑐4] 𝜑 (󳨀→𝑟 ) .

(10)

Assuming a solution as

𝜑 (󳨀→𝑟 ) = 1𝑟𝑢 (𝑟)Θ (𝜃)Φ (𝜑) , (11)
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(10) can be separated to three differential equations in the
three dimensions 𝜑, 𝑟, and 𝜃:

1Φ 𝑑2Φ𝑑𝜑2 = −𝑚2, (12)

− 𝑑2𝑢 (𝑟)𝑑𝑟2 + [ 𝜌𝑟2 + 2
(𝜀 +𝑀𝑐2)

ℏ2𝑐2 𝑉 (𝑟)] 𝑢 (𝑟)

= (𝜀2 −𝑀2𝑐4)
ℏ2𝑐2 𝑢 (𝑟) ,

(13)

1
sin 𝜃 𝑑𝑑𝜃 (sin 𝜃𝑑Θ (𝜃)𝑑𝜃 )
− [ 𝑚2

sin2 𝜃 + (𝜀 +𝑀2𝑐4) 𝑓 (𝜃) − 𝑠]Θ (𝜃) = 0,
(14)

where𝑚 and 𝜌/𝑟2 are separation factors.
Thenormalized solution of (12)which satisfies the bound-

ary conditions becomes

Φ(𝜑) = − 1√2𝜋𝑒𝑖𝑚𝜑, 𝑚 = 0, ±1, ±2, . . . . (15)

3. The Radial Part Solutions of Dirac Equation

In this section, radial part of wave function (13) will be
analyzed by corresponding to Generalized Laguerre differ-
ential equation. Coulomb and harmonic oscillator potentials
are two potentials that are considered in (13), respectively.
For these potentials, (13) can be converted to Generalized
Laguerre differential equation with exact solution of Gener-
alized Laguerre polynomials. In the first case, substituting the
radial part of potential as Coulomb potential in (13) [26, 27],

𝑑2𝑢 (𝑟)𝑑𝑟2
+ [(𝜀2 −𝑀2𝑐4)ℏ2𝑐2 − 𝜌𝑟2 + (𝜀 +𝑀𝑐2ℏ2𝑐2 ) 𝑉0𝜆𝑟 ] 𝑢 (𝑟)

= 0,
(16)

and considering units system (ℏ = 2𝑚 = 1), (16) can
be compared to the following nonrelativistic solvable model
[28, 29]:

𝑑2𝑢𝑛,𝑙 (𝑟)𝑑𝑟2 + (𝐸 − 𝑉 (𝑟)) 𝑢𝑛,𝑙 (𝑟) = 0. (17)

Indeed, comparing radial Schrödinger-like equation to non-
relativistic Schrödinger equation according to Coulomb
potential with exact solution based on Generalized Laguerre
polynomials, the results of nonrelativistic equation can be
expanded to relativistic models. Nonrelativistic model for
Coulomb potential has the following form:

𝑑2𝑢 (𝑟)𝑑𝑟2 + [− 𝑒44 (𝑛 + 𝑙 + 1) − 𝑙 (𝑙 + 1)𝑟2 + 𝑒2𝑟 ] 𝑢 (𝑟) = 0. (18)

Therefore, relativistic parameters can be connected to nonrel-
ativistic parameters as follows:

𝜌 = 𝑙 (𝑙 + 1) , (19)

(𝜀 +𝑀𝑐2𝑐2 )𝑉0𝜆 = 𝑒2, (20)

𝜀2 −𝑀2𝑐4𝑐2 = − 𝑒44 (𝑛 + 𝑙 + 1)2 . (21)

Since 𝑒2𝑐2/4(𝑛 + 𝑙 + 1)2 > 0, relation of parameters (20)
causes the condition |𝜀| < 𝑀2𝑐2. Relativistic energy can
be calculated based on defined parameters in nonrelativistic
solvable model by Combining above relations of parameters.
Assuming that 𝜏 = 𝑉0𝜆/2𝑐(𝑛 + 𝑙 + 1), relativistic energy can
be obtained as follows [26, 27]:

𝜀 = 𝑀𝑐2 1 − 𝜏21 + 𝜏2 . (22)

In nonrelativistic model, the exact solution is considered for
(17) as [28, 29]

𝑢𝑛,𝑙 (𝑟) = 𝑓 (𝑟) 𝐹 (𝑔 (𝑟)) , (23)

where F(g(r)) is a special function based on the internal func-
tion 𝑔(𝑟). Generalized Laguerre polynomials are orthogonal
polynomials that are satisfied in (18).Therefore, that function
can be expanded to Schrödinger-like equation (16) of radial
part. Since 𝛼 > −1 in Generalized Laguerre polynomials𝐿𝛼𝑛(𝑔(𝑟)) and 𝛼 = 2𝑙 + 1 in nonrelativistic model, condition
of 𝑙 > −1 is satisfied in Generalized Laguerre polynomials.
Therefore, according to relation of 𝛼 = 2𝑙 + 1 in relativistic
model, 𝜌 < 0 and 𝜌 > 0 are considered for −1 < 𝑙 < 0
and 𝑙 > 0, respectively. In the last angular part section, it
will be shown that relativistic energy is calculated based on
nonrelativistic energy and term of 𝜌 + 1/4. Since the sign of
nonrelativistic energy term is cleared, determining term of𝜌+1/4 is very important because of the condition |𝜀| < 𝑀2𝑐2.
The term of 𝜌 + 1/4 should be signed for defined different 𝑙
parameter. According to parametric relation of 𝜌 = 𝑙(𝑙 + 1),𝜌 + 1/4 will be positive for each 𝑙 that is defined in the
problem. It means that the sign of term 𝜌 = 𝑙(𝑙 + 1) separated
the limit of 𝑙 parameter. The 𝜌 relativistic parameter will be
restricted by 𝜌 ≥ 0 for 𝑙 > 0 and −1/4 ≤ 𝜌 ≤ 0 for−1 < 𝑙 < 0. Since there is term of 𝑛 + 𝑙 + 1 in energy
spectrum and for 𝑛 = 𝑙 + 1 singularity happens in the
wave function, in Generalized Laguerre polynomials related
to differential equation (16), parameter 𝑛 is transformed to 𝑛−𝑙−1.Thus energy spectrumwill be restricted and the problem
of singularity will disappear. If the following nonnormalized
wave function is associated with differential equation (18) for
internal function 𝑔(𝑟) = ((𝑒2/(𝑛 + 𝑙 + 1))𝑟) [28, 29]:

𝑢𝑛,𝑙 (𝑟) ∝ 𝑔(𝑙+1) exp(−𝑔2 ) 𝐿2𝑙+1𝑛 (𝑔 (𝑟)) , (24)

the radial wave function is considered to differential equation
(16) as follows:

𝑢(1)𝑛,𝑙 (𝑟) ∝ (2𝑘𝑟)𝑙+1 exp (−𝑘𝑟) 𝐿2𝑙+1𝑛−𝑙−1 (2𝑘𝑟) , (25)
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Figure 1: 𝑢(1)
𝑛,𝑙
(𝑟) versus 𝑟 with 𝑙 = −0.5.

where 𝑘 = 𝑒2/2(𝑛+ 𝑙+1) and 0 < 𝑟 < +∞. The wave function
that is satisfied in Schrödinger-like equation must be physi-
cally acceptable. Physical wave functions are satisfied in the
usual square-integrability condition as ∫𝑥2

𝑥
1

|Ψ𝑛(𝑥)|2𝑑𝑥 < ∞
for energy bound state to ensure Hermiticity of Hamiltonian
in Hilbert space spanned by its eigenfunctions. Since this
integral must be finite, the wave functions have a constant
value or zero at the endpoints of definition internal of 󳨀→𝑉
potential. Therefore, solutions of Schrödinger-like equation
should be checked at the endpoints of [𝑥1, 𝑥2] interval,
therefore providing square-integrability condition and inves-
tigating physical situations in the wave functions. It is seen
that wave function (25) is a square-integrability function at
the endpoints of [0, +∞] interval, so that 𝑢𝑛,𝑙(𝑟) 󳨀→ 0 when𝑟 󳨀→ 0 and 𝑟 󳨀→ +∞ for the range 𝑙 > 0 and−1 < 𝑙 < 0.Thus
it will be physically acceptable wave function in restriction of𝑙 parameter. 𝑢(1)

𝑛,𝑙
(𝑟)wave function in restriction of 𝑙parameter

for 𝑙 = −0.5 and 𝑙 = 1 based on 𝑟 is displaced in Figures 1 and
2.

In the second case, the following differential equation is
obtained from (13) for harmonic oscillator as radial part of
potential:

𝑑2𝑢 (𝑟)𝑑𝑟2
+ [(𝜀2 −𝑀2𝑐4)ℏ2𝑐2 − 𝜌𝑟2 − (𝜀 +𝑀𝑐2ℏ2𝑐2 )(2𝑘𝑟2)] 𝑢 (𝑟)
= 0,

(26)

where 𝑘 > 0. Nonrelativistic solvable model based on (17)
which can be compared to (26) has the following form (ℏ =2𝑚 = 1) [28, 29]:
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Figure 2: 𝑢(1)
𝑛,𝑙
(𝑟) versus 𝑟 with 𝑙 = 1.

𝑑2𝑢 (𝑟)𝑑𝑟2
+ [2𝑛𝜔 + (𝑙 + 32)𝜔 − 𝑙 (𝑙 + 1)𝑟2 − 14𝜔2𝑟2] 𝑢 (𝑟)

= 0,
(27)

where 𝜔 > 0. The relations of parameters between (26) and
(27) are as follows:

𝜌 = 𝑙 (𝑙 + 1) , (28)

2𝑘 (𝜀 +𝑀𝑐2)
𝑐2 = 14𝜔2, (29)

𝜀2 −𝑀2𝑐4𝑐2 = 2𝑛𝜔 + (𝑙 + 32)𝜔. (30)

Since 𝐿𝛼𝑛(𝑔(𝑟))Generalized Laguerre polynomials for 𝛼 > −1
are related to (27) as an exact solution and 𝛼 parameter is
defined as 𝛼 = 𝑙 + 1/2, 𝑙 parameter will be restricted by𝑙 > −3/2.The relations of parameters (28) and (30) emphasize
the conditions of 𝜌 + 1/4 ≥ 0 and |𝜀| < 𝑀𝑐2. Relativistic
energy that is related to nonrelativistic energy for harmonic
oscillator can be gotten by combining relations (29) and (30)
as follows:

(𝜀 −𝑀𝑐2)2 (𝜀 +𝑀𝑐2) = 8𝑘𝑐2 (2𝑛 + 𝑙 + 32) , (31)

where (31) is a third-order equation of 𝜀. In nonrelativistic
solvable model, the wave function that is associated with (27)
is [28, 29]

𝑢𝑛,𝑙 (𝑟) ∝ 𝑔(𝑙+1)/2 exp (−𝑔2 ) 𝐿(𝑙+1/2)𝑛 (𝑔 (𝑟)) , (32)

where𝑔(𝑟) = (1/2)𝜔𝑟2. By comparing two nonrelativistic and
relativistic models, the wave function (32) can be expanded
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Figure 3: 𝑢(2)
𝑛,𝑙
(𝑟) versus 𝑟 with 𝑙 = 0 and 𝜔 = 10−3.

to (26). Therefore, radial part of spinor wave function can be
corresponded to (26) as follows:

𝑢(2)𝑛,𝑙 (𝑟)
∝ (12𝜔𝑟2)

(𝑙+1)/2

exp(−14𝜔𝑟2)𝐿(𝑙+1/2)𝑛 (12𝜔𝑟2) ,
(33)

where −∞ < 𝑟 < +∞. In the investigation of square-
integrability condition, it is obvious that wave function (33)
is limited as 𝑢𝑛,𝑙(𝑟) 󳨀→ 0 when 𝑟 󳨀→ −∞ and 𝑟 󳨀→ +∞
in restriction of 𝑙 parameter that has been introduced as 𝑙 >−3/2. 𝑢(2)

𝑛,𝑙
(𝑟) wave function for 𝜔 = 10−3 and in restriction of𝑙 parameter for 𝑙 = 0 and 𝑙 = 1 is indicated in Figures 3 and 4.

4. The Angular Part Solutions
of Dirac Equation

As mentioned before, for Hartmann and Ring-Shaped Oscil-
lator Potentials, angular part of Dirac equation is [26, 27]

1
sin 𝜃 𝑑𝑑𝜃 (sin 𝜃𝑑Θ (𝜃)𝑑𝜃 )

− [ 𝑚2
sin2 𝜃 + (𝜀 +𝑀2𝑐4) 𝑓 (𝜃) − 𝑠]Θ (𝜃) = 0.

(34)

Assuming that Θ(𝜃) = 𝐻(𝜃)/sin1/2 𝜃, first-order differential
term can be vanished from differential equation (34). This
transformation can provide the condition that Schrödinger-
like equation is accessible from (34). Considering the men-
tioned transformation, (34) can be converted to
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Figure 4: 𝑢(2)
𝑛,𝑙
(𝑟) versus 𝑟 with 𝑙 = 1 and 𝜔 = 10−3.

𝑑2𝐻(𝜃)𝑑𝜃2
+ [−(𝑚2 − 1/4)

sin2 𝜃 − (𝜀 +𝑀𝑐2) 𝑓 (𝜃) + 𝜌 + 14]𝐻 (𝜃)
= 0.

(35)

In comparing (35) with the following Schrödinger solvable
equation (ℏ = 2𝑚 = 1) [28, 29],

𝑑2𝐻(𝑥)𝑑𝑥2 + [𝐸 − 𝑉 (𝑥)]𝐻 (𝑥) = 0, (36)

(35) will be solvable according to different types of 𝑓(𝜃).
It means that the solution of (36) for nonrelativistic energy
spectrum and different potentials will be expanded to
Schrödinger-like equation obtained from Dirac equation. In
this comparison, relativistic parameters can be connected
to nonrelativistic parameters. Furthermore, it should be
mentioned that this method is useable for special functions
of 𝑓(𝜃). Therefore, 𝑓(𝜃) functions that can be solved in these
techniques are as follows [26, 27]:

𝑓1 (𝜃) = 𝛾 + 𝛽 cos 𝜃 + 𝛼 cos2 𝜃
sin2 𝜃 , (37)

𝑓2 (𝜃) = 𝛾 + 𝛽 cos2 𝜃 + 𝛼 cos4 𝜃
sin2 𝜃 cos2 𝜃 , (38)

𝑓3 (𝜃) = 𝛾 + 𝛽 cot 𝜃 + 𝛼 cot2 𝜃, (39)

where 𝛼, 𝛽, and 𝛾 are arbitrary constant values. In other
words, above functions are solvable functions that are con-
sidered as Hartmann and Ring-Shaped Oscillator Potentials.
If 𝑓1(𝜃) is substituted in (35) as



6 Advances in High Energy Physics

𝑑2𝐻(𝜃)𝑑𝜃2 + {[(−𝑚2 + 14) − 𝜂 (𝛾 + 𝛼)] csc2 𝜃
− 𝜂𝛽 csc 𝜃 cot 𝜃 + 𝜂𝛼 + 𝜌 + 14}𝐻 (𝜃) = 0,

(40)

where 𝜂 = 𝜀 + 𝑀𝑐2, (40) can be compared to the following
Schrödinger equation (ℏ = 2𝑚 = 1) [28, 29]:

𝑑2𝐻(𝑥)𝑑𝑥2 + [− (𝜆2 + 𝑠2 − 𝑠) csc2 𝑥
+ 𝜆 (2𝑠 − 1) csc 𝑥 cot𝑥 + (𝑠 + 𝑛)2]𝐻 (𝑥) = 0.

(41)

The relations of parameters between nonrelativistic solvable
model and relativistic model will be obtained by comparing
between (40) and (41) as

𝜂𝛼 + 𝜌 + 14 = (𝑠 + 𝑛)2 , (42)

𝜂 (𝛾 + 𝛼) + 𝑚2 − 14 = 𝜆2 + 𝑠2 − 𝑠, (43)

𝜂𝛽 = −𝜆 (2𝑠 − 1) . (44)

The wave function that is related to (40) is written based on
Jacobi polynomials 𝑃(𝜇,])𝑛 (𝑔(𝑥)), where 𝜇 > −1, ] > −1, and𝑛 = 0, 1, 2, . . .. According to parameter definitions of𝜇 = −𝜆+𝑠 − 1/2 and ] = 𝜆+ 𝑠 − 1/2 in Jacobi polynomials, restrictions
of 𝑠 and 𝜆 parameters will be as 𝑠 > −1/2 and −(𝑠 + 1/2) <𝜆 < (𝑠 + 1/2).

The relation between nonrelativistic energy and relativis-
tic energy according to (42) causes𝜌 separation constant to be
calculated as 𝜌 = (𝑠+𝑛)2−𝛼(𝜀+𝑀𝑐2)−1/4, so that condition
of 𝜌 + 1/4 ≥ 0 causes

𝜀 ≤ 1𝛼 (𝑠 + 𝑛)2 −𝑀𝑐2. (45)

Positive values may be provided for relativistic energy, if 𝛼 >0. Nonnormalized wave function that is associated with the
solvable differential equation (41) is [28, 29]

𝐻(𝑥) = (1 − 𝑔)(𝑠−𝜆)/2 (1 + 𝑔)(𝑠+𝜆)/2
⋅ 𝑃(−𝜆+𝑠−1/2,𝜆+𝑠−1/2)𝑛 (𝑔 (𝑥)) , (46)

where 𝑔(𝑥) = cos𝑥. Considering function (46), the wave
function is obtained for differential equation (40) as follows:

𝐻(𝜃) = (1 − cos 𝜃)(𝑠−𝜆)/2 (1 + cos 𝜃)(𝑠+𝜆)/2
⋅ 𝑃(−𝜆+𝑠−1/2,𝜆+𝑠−1/2)𝑛 (cos 𝜃) . (47)

According to Θ(𝜃) = 𝐻(𝜃)/sin1/2 𝜃, angular part of Dirac
equation is gotten as

Θ(1) (𝜃) = 2𝑠−1 (sin 𝜃)𝑠−𝜆−1/2 (cos 𝜃)𝑠+𝜆−1/4
⋅ 𝑃(−𝜆+𝑠−1/2,𝜆+𝑠−1/2)𝑛 (cos 𝜃) , (48)
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Figure 5: Θ(2)(𝜃) versus 𝜃 with 𝑠 = 1 and 𝜆 = −0.5.
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Figure 6: Θ(1)(𝜃) versus 𝜃 with 𝑠 = 1.5 and 𝜆 = −1.
where −𝜋/2 ≤ 𝜃 ≤ +𝜋/2. Wave function (48) will be zero,
if 𝜃 variable is limited to the endpoints of interval; it means
that when 𝜃 󳨀→ ∓𝜋/2, the wave function is restricted asΘ(𝜃) 󳨀→ 0, although establishing of mentioned physical
situations and also avoiding divergence of wave function (48)
at 𝜃 = 0 will cause restriction of 𝜆 and 𝑠 parameters changing
to−(𝑠+1/4) < 𝜆 < (𝑠−1/2) for 𝑠 > 3/8.Θ(1)(𝜃)wave function
based on 𝜃 is depicted in restriction of 𝜆 and 𝑠 parameters for𝜆 = −0.5 and 𝑠 = 1 in Figure 5 and 𝜆 = −1 and 𝑠 = 1.5 in
Figure 6.

The illustrated technique can be expanded to other
functions of 𝜃. For 𝑓2(𝜃) function, angular part of Dirac
equation has the following form:

𝑑2𝐻(𝜃)𝑑𝜃2 + {[(−𝑚2 + 14) − 𝜂 (𝛾 + 𝛽 + 𝛼)] csc2 𝜃
− 𝜂𝛾 sec2 𝜃 + 𝜂𝛼 + 𝜌 + 14}𝐻 (𝜃) = 0. (49)
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Perfect differential solvable equation (ℏ = 2𝑚 = 1) that can
be used for this method is [28, 29]

𝑑2𝐻(𝑥)𝑑𝑥2 + [−𝜆 (𝜆 − 1) csc2 𝑥 − 𝑠 (𝑠 − 1) sec2 𝑥
+ (𝜆 + 𝑠 + 2𝑛)2]𝐻 (𝑥) = 0.

(50)

The following parameter relations are made by comparison
between (49) and (50):

𝜂𝛼 + 𝜌 + 14 = (𝜆 + 𝑠 + 2𝑛)2 , (51)

𝜂 (𝛾 + 𝛽 + 𝛼) + 𝑚2 − 14 = 𝜆 (𝜆 − 1) , (52)

𝜂𝛾 = 𝑠 (𝑠 − 1) . (53)

Since Jacobi polynomials 𝑃(𝜇,])𝑛 are associated with (50) for𝜇 > −1 and ] > −1, 𝜆 and 𝑠 will be restricted by 𝜆 > −1/2
and 𝑠 > −1/2. Relation (51) confirms 𝜌 parameter as 𝜌 = (𝜆 +𝑠 + 2𝑛)2 − 𝜂𝛼 − 1/4 which can connect relativistic energy to
perfect nonrelativistic parameters.The condition of 𝜌+1/4 ≥0 creates the following range of relativistic energy spectrum:

𝜀 ≤ 1𝛼 (𝜆 + 𝑠 + 2𝑛)2 −𝑀𝑐2. (54)

If 𝛼 parameter is considered as 𝛼 > 0, positive values may be
gotten for relativistic energy spectrum.

Nonnormalized wave function that is satisfied in differ-
ential equation (50) for 𝑔(𝑥) = cos(2𝑥) is [28, 29]

𝐻(𝑥) = (1 − 𝑔)𝜆/2 (1 + 𝑔)𝑠/2 𝑃(𝜆−1/2,𝑠−1/2)𝑛 (𝑔 (𝑥)) . (55)

Function (55) can be expanded to differential equation (49)
and considered as the exact solution of differential equation.
The mentioned solution based on Jacobi polynomials is
considered as

𝐻(𝜃) = (1 − cos 2𝜃)𝜆/2 (1 + cos 2𝜃)𝑠/2
⋅ 𝑃(𝜆−1/2,𝑠−1/2)𝑛 (cos 2𝜃) , (56)

so that angular part solution of Dirac equation can be
constituted as

Θ(2) (𝜃)
= 2(𝜆+𝑠)/2 (sin 𝜃)𝜆−1/2 (cos 𝜃)𝑠 𝑃(𝜆−1/2,𝑠−1/2)𝑛 (cos 2𝜃) , (57)

where −𝜋/4 ≤ 𝜃 ≤ +𝜋/4. Wave function (57) will be always
constant value at the endpoints of defined interval for 𝜃
variable, but divergence of thewave function at 𝜃 = 0 converts
the restriction of 𝜆 parameter to 𝜆 > 1/2. Therefore, wave
function (57) will be physical solution, if 𝑠 and 𝜆 parameters
are considered as 𝑠 > −1/2 and 𝜆 > 1/2. In restriction 𝜆 = 0.6
and 𝑠 = −0.2 and also 𝜆 = 0.55 and 𝑠 = 1; Θ(2)(𝜃) wave
function is performed in Figures 7 and 8, respectively.

Another function of 𝑓3(𝜃) can be also analyzed by this
method because there is a nonrelativistic solvable model that
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Figure 7: Θ(2)(𝜃) versus 𝜃 with 𝑠 = −0.2 and 𝜆 = 0.6.
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Figure 8: Θ(2)(𝜃) versus 𝜃 with 𝑠 = 1 and 𝜆 = 0.55.
can correspond to this function as angular part solution of
Dirac equation. Angular part of Dirac equation with 𝑓3(𝜃)
according to (35) is

𝑑2𝐻(𝜃)𝑑𝜃2 + {[(−𝑚2 + 14) − 𝜂𝛼] csc2 𝜃 − 𝜂𝛽 cot 𝜃
− 𝜂 (𝛾 − 𝛼) + 𝜌 + 14}𝐻 (𝜃) = 0.

(58)

For corresponding to nonrelativistic solvable model, the
following Schrödinger equation (ℏ = 2𝑚 = 1) is considered
[28, 29]:

𝑑2𝐻(𝑥)𝑑𝑥2 + [−𝑠 (𝑠 + 1) csc2 𝑥 + 2𝜆 cot 𝜃 + (𝑠 − 𝑛)2

− 𝜆2(𝑠 − 𝑛)2]𝐻 (𝑥) = 0.
(59)
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The relativistic parameters in (58) connected to the nonrela-
tivistic parameters in (59) are as follows:

𝜂 (𝛾 − 𝛼) − (𝜌 + 14) = 𝜆2(𝑠 − 𝑛)2 − (𝑠 − 𝑛)2 , (60)

𝜂𝛼 + 𝑚2 − 14 = 𝑠 (𝑠 + 1) , (61)

𝜂𝛽 = −2𝜆. (62)

In the assumed solvable model, the limits of 𝑠 and 𝜆 parame-
ters are considered as 𝑠 > 𝑛 − 1 and −𝑖(𝑠 − 𝑛)(𝑠 − 𝑛 + 1) < 𝜆 <𝑖(𝑠−𝑛)(𝑠−𝑛+1). By using relation (60) 𝜌 separation constant
can be obtained as 𝜌 = 𝜂(𝛾 − 𝛼) + (𝑠 − 𝑛)2 − 𝜆2/(𝑠 − 𝑛)2 − 1/4.
The range of relativistic energy will be of the following form,
if the condition 𝜌 + 1/4 ≥ 0 is considered:

𝜀 ≤ ( 1𝛼 − 𝛾)[(𝑠 − 𝑛)2 − 𝜆2(𝑠 − 𝑛)2] −𝑀𝑐2. (63)

If 𝛼 > 𝛾 is considered, it will be possible to calculate
positive value for relativistic energy spectrum. The following
nonnormalized wave function that is associated with Jacobi
polynomials in the solvable model (59), for 𝑔(𝑥) = −𝑖 cot𝑥,
is [28, 29]

𝐻(𝑥) = (𝑔2 − 1)(𝑠−𝑛)/2
⋅ exp( 𝜆𝑠 − 𝑛𝑥)𝑃(𝑠−𝑛+𝑖(𝜆/(𝑠−𝑛)),𝑠−𝑛−𝑖(𝜆/(𝑠−𝑛)))𝑛 (𝑔 (𝑥)) . (64)

The above nonnormalized function based on Jacobi polyno-
mials can be applied for differential equation (58) as follows:

𝐻(𝜃) = (−1)(𝑠−𝑛)/2 (csc 𝜃)𝑠−𝑛 exp( 𝜆𝑠 − 𝑛𝜃)
⋅ 𝑃(𝑠−𝑛+𝑖(𝜆/(𝑠−𝑛)),𝑠−𝑛−𝑖(𝜆/(𝑠−𝑛)))𝑛 (−𝑖 cot 𝜃) .

(65)

Finally, angular part solution of Dirac equation which was
called Θ(𝜃) is gotten as

Θ(3) (𝜃) = (−1)(𝑠−𝑛)/2 (csc 𝜃)𝑠−𝑛+1/2 exp( 𝜆𝑠 − 𝑛𝜃)
⋅ 𝑃(𝑠−𝑛+𝑖(𝜆/(𝑠−𝑛)),𝑠−𝑛−𝑖(𝜆/(𝑠−𝑛)))𝑛 (−𝑖 cot 𝜃) ,

(66)

where 0 ≤ 𝜃 ≤ 𝜋. Restriction of 𝑠parameterwill be 𝑠 < 𝑛−1/2,
if the boundary situations are considered for wave function
(66) in the endpoints of interval as 𝜃 󳨀→ 0 and 𝜃 󳨀→ 𝜋
with no divergence at 𝜃 = 𝜋/2. Therefore, wave function
(66) is physically acceptable by providing the range of 𝑠 and𝜆 parameters as 𝑛 − 1 < 𝑠 < 𝑛 − 1/2 and −𝑖(𝑠 − 𝑛)(𝑠 − 𝑛 + 1) <𝜆 < 𝑖(𝑠 − 𝑛)(𝑠 − 𝑛 + 1). Θ(3)(𝜃) wave function in restriction𝜆 = 0.1𝑖 and 𝑠 = 9.5 and also 𝜆 = 1𝑖 and 𝑠 = 9.5 is displayed
in Figures 9 and 10.

5. Conclusion

The energy spectrum of bound states and spinor wave
function of Dirac equation for Hartmann and Ring-Shaped
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Figure 9: Θ(3)(𝜃) versus 𝜃 with 𝑠 = 9.5 and 𝜆 = 0.1𝑖.
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Figure 10: Θ(3)(𝜃) versus 𝜃 with 𝑠 = 9.5 and 𝜆 = 1𝑖.

Oscillator Potentials have been calculated by comparing the
mentioned relativistic models with nonrelativistic systems.
In radial and angular parts of Dirac equation, relativistic
parameters and their restrictions have been investigated by
considering the solutions of nonrelativistic models related to
the problem and restrictions of nonrelativistic parameters.
By this method, spinor wave functions are associated with
orthogonal polynomials such as Generalized Laguerre poly-
nomials and Jacobi polynomials in radial and angular parts
of Dirac equation, respectively.
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An analytic solution of theN-dimensional radial Schrödinger equation with the combination of vector and scalar potentials via the
Laplace transformation method (LTM) is derived. The current potential is extended to encompass the spin hyperfine, spin-orbit,
and tensor interactions. The energy eigenvalues and the corresponding eigenfunctions have been obtained in the N-dimensional
space. The present results are employed to study the different properties of the heavy-light mesons (HLM). The masses of the
scalar, vector, pseudoscalar, and pseudovector for B, Bs, D, and Ds mesons have been calculated in the three-dimensional space.
The effect of the dimensional number space is discussed on the masses of the HLM. We observed that the meson mass increases
with increasing dimensional space. The decay constants of the pseudoscalar and vector mesons have been computed. In addition,
the leptonic decay widths and branching ratio for the B+, D+, and 𝐵+𝑠 mesons have been studied. Therefore, the used method with
the current potential gives good results which are in good agreement with experimental data and are improved in comparison with
recent theoretical studies.

1. Introduction

One of the most important tasks in nonrelativistic quantum
mechanics is to get the solution of the Schrödinger equation.
The solution of the Schrödinger equation with spherically
symmetric potentials plays a significant role in many fields
of physics such as hadronic spectroscopy for understanding
the quantum chromodynamics theory. Numerous works
have been introduced to get the solution of Schrödinger
equation using different methods like the operator algebraic
method [1], path integral method [2], the conventional series
solution method [3, 4], Fourier transform [5, 6], shifted
(1/𝑁) expansion [7, 8], point canonical transformation [9],
quasi-linearization method [10], supersymmetric quantum
mechanics (SUSQM) [11], Hill determinant method (HDM)
[12], and other numerical methods [13–15].

Recently, the study of the different topics has received
a great attention from theoretical physicists in the higher
dimensional space. In addition, the study is more gen-
eral and one can obtain the required results in the lower

dimensions directly, such as the hydrogen atom [16–18],
harmonic oscillator [19, 20], random walks [21], Casimir
effects [22], and the quantization of angular momentum
[23–27]. The𝑁-dimensional Schrödinger equation has been
studied with different forms of spherically symmetric poten-
tials [28–33]. The 𝑁-dimensional Schrödinger equation has
been investigated with the Cornell potential and extended
Cornell potential [34–38] using different methods such as
the Nikiforov-Uvarov (NU) method [32, 36, 39, 40], power
series technique (PST) [41], the asymptotic iteration method
(AIM) [34], Pekeris type approximation (PTA) [41, 42], and
the analytical exact iteration method (AEIM) [43, 44].

The LTM is one of the useful methods that contributed
to finding the exact solution of Schrödinger equation in one-
dimensional space forMorse potential [45, 46], the harmonic
oscillator [47], and three-dimensional space with pseudo-
harmonic and Mie-type potentials [48] and with noncentral
potential [49]. The N-dimensional Schrödinger equation has
been solved via the LTM in many studies for Coulomb
potential [28], harmonic oscillator [50], Morse potential
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[51], pseudoharmonic potential [52], Mie-type potential [53],
anharmonic oscillator [54], and generalizedCornell potential
[38].

The study of different properties of HLM is very vital
for understanding the structure of hadrons and dynamics
of heavy quarks. Thus, many theoretical and experimental
efforts have been done for understanding distinct charac-
teristics of HLM. In [4, 34, 55], the authors calculated the
mass spectra of quarkonium systems as charmonium and
bottomonium mesons with the quark-antiquark interaction
potential using various methods in many works. Al-Jamel
and Widyan [56] studied the spin-averaged mass spectra
of heavy quarkonia with Coulomb plus quadratic potential
using (NU) method. Abou-Salem [57] has computed the
masses and leptonic decay widths of 𝑐𝑐, 𝑏𝑏, 𝑐𝑠, 𝑏𝑠, 𝑏𝑢, and𝑐𝑏 numerically using Jacobi method. The strong decays,
spectroscopy, and radiative transition of heavy-light hadrons
have been computed using the quark model predictions [58].
The decay constant of HLM has been calculated using the
field correlation method [59]. Moreover, the spectroscopy of
HLM has been investigated in the framework of the QCD
relativistic quark model [60]. The spectroscopy and Regge
trajectories ofHLMhave been obtained using quasi-potential
approach [61]. The decay constants of heavy-light vector
mesons [62] and heavy-light pseudoscalar mesons [63] have
been calculated with QCD sum rules. A comparative study
has been introduced for the mass spectrum and decay prop-
erties for the D meson with the quark-antiquark potential
using hydrogeometric and Gaussian wave function [64]. In
framework of Dirac formalism the mass spectra of D𝑠 [65]
and D [66] mesons have been obtained using Martin-light
potential in which the hadronic and leptonic decays ofD and
D𝑠 mesons have been evaluated [67]; besides the rare decays
of 𝐵0 and 𝐵0𝑠 mesons into dimuon (𝜇+𝜇−) [68] and the decay
constants of B and B𝑠 have been calculated [69]. The mass
spectra and decay constants for ground state of pseudoscalar
and vector mesons have been obtained using the variational
analysis in the light quark model [70]. The spectroscopy
of bottomonium and B meson has been studied using the
free-form smearing in [71]. The variational method has been
employed to compute the masses and decay constants of
HLM in [72]. In addition, the decay properties of D and
D𝑠 mesons have been investigated using the quark-antiquark
potential in [73]. The B and 𝐵s mesons spectra and their
decays have been studied with a Coulomb plus exponential
type potential in [74]. The leptonic and semileptonic decays
of B meson into 𝜏 have been studied [75]. The degeneracy
of HLM with the same orbital angular momentum has been
broken with the spin-orbit interactions [76]. The relativistic
quarkmodel has been investigated to study the properties ofB
and𝐵s mesons [77] and the excited charm and charm-strange
mesons [78].The perturbationmethod has been employed to
determine the mass spectrum and decay properties of HLM
with the mixture of harmonic and Yukawa-type potentials
[79]. In [80], the authors have investigated the leptonic
decays of seven types of heavy vector and pseudoscalar
mesons. The spectra and wave functions of HLM have been
calculated within a relativistic quark model by using the

Foldy-Wouthuysen transformation [81].The isospin breaking
of heavy meson decay constants had been compared with
latticeQCD fromQCDsumrules [82].Thedecay constants of
pseudoscalar and vector B and D mesons have been studied
in the light-cone quark model with the variational method
[83]. In [84], the authors have calculated the strong decays of
newly observed 𝐷J (3000) and 𝐷sJ (3040) with two 2P (1+)
quantum number assignments. The leptonic (𝐷 󳨀→ 𝑒+]𝑒)
and semileptonic (𝐷 󳨀→ 𝐾(∗)ℓ+]ℓ, 𝐷 󳨀→ 𝜋ℓ+]ℓ)decays have
been analyzed using the covariant quark model with infrared
confinement within the standard model framework [85].The
weak decays of B, 𝐵𝑠, and 𝐵𝑐 into𝐷-wave heavy-light mesons
have been studied usingBethe-Salpeter equation [86]. In [87],
the decay constant and distribution amplitude for the heavy-
light pseudoscalar mesons have been evaluated using the
light-front holographic wavefunction. By using the Gaussian
wave function with quark-antiquark potential model, the
Regge trajectories, spectroscopy, and decay properties have
been studied for𝐵 and𝐵𝑠mesons [88],D andD𝑠mesons [89],
and also the radiative transitions and the mixing parameters
of the 𝐷-meson have been obtained [90]. The dimensional
space dependence of the masses of heavy-light mesons has
been investigated using the string inspired potential model
[91].

The goal of this work is to get the analytic solution of
the N-dimensional Schrödinger equation for the mixture of
vector and scalar potentials including the spin-spin, spin-
orbit, and tensor interactions using LTM in order to obtain
the energy eigenvalues in the N-dimensional space and the
corresponding eigenfunctions. So far no attempt has been
made to solve theN-dimensional Schrödinger equation using
the LTM when the spin hyperfine, spin-orbit, and tensor
interactions are included. To show the importance of present
results, the present results are employed to calculate the mass
spectra of the HLM in three-dimensional space and in the
higher dimensional space. In addition, the decay constants,
leptonic decay widths, and branching fractions of the HLM
are calculated.

The paper is systemized as follows: the contributions of
previous works are displayed in Section 1. In Section 2, a brief
summary of Laplace transformation method is introduced.
In Section 3, an analytic solution of the N-dimensional
Schrödinger equation is derived. In Section 4, the obtained
results are discussed. In Section 5, summary and conclusion
are presented.

2. Overview of Laplace
Transformation Method

TheLaplace transform 𝜙(𝑧) orL of a function𝑓(𝑡) is defined
by [92]

𝜙 (𝑧) = L {𝑓 (𝑡)} = ∫∞

0
𝑒−𝑧𝑡𝑓 (𝑡) 𝑑𝑡. (1)

If there is some constant 𝜎 ∈ 𝑅 such that |𝑒−𝜎𝑡𝑓(𝑡)| ≤ 𝑀 for
sufficiently large 𝑡, the integral in (1) exists for Re 𝑧 > 𝜎 for𝑧 > 0. The Laplace transform may fail to exist because of a
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sufficiently strong singularity in the function 𝑓(𝑡) as 𝑡 󳨀→ 0.
In particular

L [ 𝑡𝛼Γ (𝛼 + 1)] = 1𝑧𝛼+1 , 𝛼 > −1, (2)

where Γ is the gamma function. The Laplace transform has
the derivative properties

L {𝑓(𝑛) (𝑡)} = 𝑧𝑛L {𝑓 (𝑡)} − 𝑛−1∑
𝑘=0

𝑧𝑛−1−𝑘𝑓(𝑘) (0) , (3)

L {𝑡𝑛𝑓 (𝑡)} = (−1)𝑛 𝜙(𝑛) (𝑧) , (4)

where the superscript (𝑛) stands for the 𝑛-th derivative with
respect to 𝑡 for 𝑓(𝑛)(𝑡) and with respect to 𝑧 for 𝜙(𝑛)(𝑧). If 𝑧0 is
the singular point, the Laplace transform behaves near 𝑧 󳨀→𝑧0 as

𝜙 (𝑧) = 1
(𝑧 − 𝑧0)𝜐 , (5)

and then for 𝑡 󳨀→ ∞
𝑓 (𝑡) = 1Γ (𝜐) 𝑡𝜐−1𝑒𝑧0𝑡. (6)

On the other hand, if near origin 𝑓(𝑡) behaves like 𝑡𝛼 with𝛼 > −1, then 𝜙(𝑧) behaves near 𝑧 󳨀→ ∞ as

𝜙 (𝑧) = Γ (𝛼 + 1)𝑧𝛼+1 . (7)

3. Analytic Solution of the𝑁-Dimensional
Radial Schrödinger Equation

The N-dimensional radial Schrödinger equation that de-
scribes the interaction between quark-antiquark systems
takes the form [41]

[ 𝑑2𝑑𝑟2 + (𝑁 − 1)𝑟 𝑑𝑑𝑟 − ℓ (ℓ + 𝑁 − 2)𝑟2
+ 2𝜇 (𝐸 − 𝑉𝑞𝑞 (𝑟))]Ψ (𝑟) = 0,

(8)

where ℓ,𝑁 represent the angular quantum number and the
dimensional number greater than one, respectively, and 𝜇 =𝑚𝑞𝑚𝑞/(𝑚𝑞 + 𝑚𝑞) is the reduced mass of the quark-antiquark
system.

In the nonrelativistic quark model, the quark-antiquark
potential 𝑉𝑞𝑞(𝑟) consists of the spin independent potential𝑉(𝑟) and the spin dependent potential 𝑉𝑆𝐷(𝑟), respectively:

𝑉𝑞𝑞 (𝑟) = 𝑉 (𝑟) + 𝑉𝑆𝐷 (𝑟) . (9)

The spin independent potential is taken as a combination of
vector and scalar parts [93]:

𝑉 (𝑟) = 𝑉𝑉 (𝑟) + 𝑉𝑆 (𝑟) , (10)

𝑉𝑉 (𝑟) = 𝜂 (𝑎𝑟2 + 𝑏𝑟) − 𝑐𝑟 , (11)

𝑉𝑆 (𝑟) = (1 − 𝜂) (𝑎𝑟2 + 𝑏𝑟) , (12)

where 𝑉𝑉(𝑟) and 𝑉𝑆(𝑟) are the vector and scalar parts,
respectively, and 𝜂 stands for the mixing coefficient. �, b,
and c are arbitrary parameters where a, b, and c > 0 which
are fitted with experimental data. The harmonic and linear
terms represent the confining part at long distance and the
Coulomb term stands for the quark-antiquark interactions
through one gluon exchange at short distances which gives
better description of quark-antiquark interaction.

The spin dependent potential is extended to three types
of interaction terms as [94]

𝑉𝑆𝐷 (𝑟) = 𝑉𝐿𝑆 (𝑟) (L . S) + S12𝑉𝑇 (𝑟) + 𝑉𝑆𝑆 (𝑟) (S1 . S2) , (13)

while the spin-orbit 𝑉𝐿𝑆(𝑟) and tensor 𝑉𝑇(𝑟) terms give the
fine structure of the states, the spin-spin 𝑉𝑆𝑆(𝑟) interaction
term describes the hyperfine splitting of the state, and L is an
angular quantumoperator, and S is a spin operator (for detail,
see [94]).

𝑉𝐿𝑆 (𝑟) = 12𝑚𝑞𝑚𝑞𝑟 (3
𝑑𝑉𝑉𝑑𝑟 − 𝑑𝑉𝑆𝑑𝑟 ) , (14)

𝑉𝑇 (𝑟) = 112𝑚𝑞𝑚𝑞

(1𝑟 𝑑𝑉𝑉𝑑𝑟 − 𝑑2𝑉𝑉𝑑𝑟2 ) , (15)

𝑉𝑆𝑆 (𝑟) = 23𝑚𝑞𝑚𝑞

∇2𝑉𝑉, (16)

where ∇2 is radial Laplace operator.

S1 . S2 = 12 [𝑆 (𝑆 + 1) − 32] , (17)

⟨L . S⟩ = 12 [𝐽 (𝐽 + 1) − 𝐿 (𝐿 + 1) − 𝑆 (𝑆 + 1)] , (18)

S12 = 2 [S2 − 3 (S . r̂) (S . r̂)] . (19)

The diagonal elements of the S12 are defined.

⟨S12⟩ = 4(2𝐿 + 3) (2𝐿 − 1) [⟨𝑆2⟩ ⟨𝐿2⟩ − 3 ⟨L . S⟩2

− 32 ⟨L . S⟩] .
(20)

Substituting (11)-(16) into (9) then the nonrelativistic quark-
antiquark potential 𝑉𝑞𝑞(𝑟) takes the form

𝑉𝑞𝑞 (𝑟) = 𝑎𝑟2 + 𝑏𝑟 + 𝛿 + 𝑔𝑟 + ℎ𝑟3 , (21)

where

𝛿 = 2𝑎𝑚𝑞𝑚𝑞

[2𝜂 (S1 . S2) + (2𝜂 − 12) (L . S)] , (22)

𝑔 = 𝑏𝑚𝑞𝑚𝑞

{𝜂 [43 (S1 . S2) + 112S12]
+ (2𝜂 − 12) (L . S)} − 𝑐,

(23)

ℎ = 3𝑐2𝑚𝑞𝑚𝑞

[16S12 + (L . S)] . (24)
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Substituting (21) into (8), then

[ 𝑑2𝑑𝑟2 + (𝑁 − 1)𝑟 𝑑𝑑𝑟 − ℓ (ℓ + 𝑁 − 2)𝑟2 + 𝜀 − 𝐴𝑟2 − 𝐵𝑟
− 2𝜇𝛿 − 𝐺𝑟 − 𝐻𝑟3 ]Ψ (𝑟) = 0,

(25)

where

𝜀 = 2𝜇𝐸,
𝐴 = 2𝜇𝑎,
𝐵 = 2𝜇𝑏,
𝐺 = 2𝜇𝑔,
𝐻 = 2𝜇ℎ.

(26)

The complete solution of (25) takes the form

Ψ (𝑟) = 𝑟𝑘𝑒−𝛼𝑟2𝑓 (𝑟) , 𝑘 > 0, with 𝛼 = √𝜇𝑎2 , (27)

where the term 𝑟𝑘 confirms that the solution is bounded at𝑟 = 0. The function 𝑓(𝑟) is yet to be determined. From (27)
we get

Ψ󸀠 (𝑟) = 𝑟𝑘𝑒−𝛼𝑟2 [𝑓󸀠 (𝑟) + (𝑘𝑟 − 2𝛼𝑟)𝑓 (𝑟)] . (28)

Ψ󸀠󸀠 (𝑟) = 𝑟𝑘𝑒−𝛼𝑟2 {𝑓󸀠󸀠 (𝑟) + (2𝑘𝑟 − 4𝛼𝑟)𝑓󸀠 (𝑟)
+ [𝑘 (𝑘 − 1)𝑟2 + 4𝛼2𝑟2 − 4𝛼𝑘 − 2𝛼]𝑓 (𝑟)} .

(29)

Substituting (27), (28), and (29) into (25), then,

𝑟𝑓󸀠󸀠 (𝑟) + (𝜔 − 4𝛼𝑟2) 𝑓󸀠 (𝑟)
+ {𝜆𝑟 − 𝐵𝑟2 + 𝜁𝑟 − 𝐺 − 𝐻𝑟2 }𝑓 (𝑟) = 0, (30)

where

𝜔 = 2𝑘 + 𝑁 − 1, (31)

𝜆 = 𝑘 (𝑘 + 𝑁 − 2) − ℓ (ℓ + 𝑁 − 2) , (32)

𝜁 = 𝜀 − 4𝛼𝑘 − 2𝛼𝑁 − 2𝜇𝛿. (33)

In order to apply the Laplace transform of the above differen-
tial equation, the parametric condition is taken as in [52, 54].

𝑘 (𝑘 + 𝑁 − 2) − ℓ (ℓ + 𝑁 − 2) = 0. (34)

Thus, (32) has a solution

𝑘+ = ℓ,
and 𝑘− = − (ℓ + 𝑁 − 2) . (35)

We take the physical solution of (32) (𝑘 = 𝑘+ = ℓ) as in [52,
54].

Substituting (34) into (30) yields

𝑟𝑓󸀠󸀠 (𝑟) + (𝜔 − 4𝛼𝑟2) 𝑓󸀠 (𝑟)
+ {𝜁𝑟 − 𝐵𝑟2 − 𝐺 − 𝐻𝑟2 }𝑓 (𝑟) = 0. (36)

By expanding the term𝐻/𝑟2 around 𝑦 = 0, where 𝑦 = 𝑟 − 𝜐
and 𝜐 is a parameter as in [36, 56], we get

𝐻𝑟2 = 𝐻
(𝑦 + 𝜐)2 =

𝐻𝜐4 (3𝑟2 − 8𝑟𝜐 + 6𝜐2) . (37)

Substituting (37) into (36) yields

𝑟𝑓󸀠󸀠 (𝑟) + (𝜔 − 4𝛼𝑟2) 𝑓󸀠 (𝑟) + {𝑄𝑟 − 𝑃𝑟2 − 𝐶0} 𝑓 (𝑟)
= 0, (38)

where

𝑄 = 𝜁 + 8𝐻𝜐3 ,
𝑃 = 𝐵 + 3𝐻𝜐4 ,

and 𝐶0 = 𝐺 + 6𝐻𝜐2 .
(39)

The Laplace transform is defined as 𝜙(𝑧) = L{𝑓(𝑟)} and
taking boundary condition 𝑓(0) = 0 yields

(𝑧 + 𝜏) 𝑑2𝜙 (𝑧)𝑑𝑧2 + ( 𝑧24𝛼 + 𝜌) 𝑑𝜙 (𝑧)𝑑𝑧
+ (𝛾𝑧 + 𝐶04𝛼) 𝜙 (𝑧) = 0.

(40)

Here

𝜏 = 𝑃4𝛼 ,
𝜌 = 𝑄4𝛼 + 2,
𝛾 = (2 − 𝜔)4𝛼 .

(41)

The singular point of (40) is 𝑧 = −𝜏. By using the condition
of (5), the solution of (40) takes the form

𝜙 (𝑧) = 𝐶
(𝑧 + 𝜏)𝑛+1 , 𝑛 = 0, 1, 2, 3, . . . . (42)

From (42),

𝜙󸀠 (𝑧) = −𝐶 (𝑛 + 1)
(𝑧 + 𝜏)𝑛+2 , (43)

𝜙󸀠󸀠 (𝑧) = 𝐶 (𝑛 + 1) (𝑛 + 2)
(𝑧 + 𝜏)𝑛+3 . (44)

Substituting (42)-(44) into (40), we obtain the following
relations:

𝛾 = 𝑛 + 14𝛼 , (45)

𝛾𝜏 + 𝐶04𝛼 = 0, (46)
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Figure 1: The current potential and other potential models are
plotted as functions of distance r.

(𝑛 + 1) (𝑛 + 2) − 𝜌 (𝑛 + 1) + 𝐶0𝜏4𝛼 = 0. (47)

Using (26), (39), and (41) and the set of (45)-(47), then, the
energy eigenvalue of (8) in the N-dimensional space is given
by the relation

𝐸𝑛ℓ𝑁 = √ 𝑎2𝜇 (2𝑛 + 2ℓ + 𝑁) − 𝑏24𝑎 + 𝛿 − 8ℎ𝜐3
− ℎ𝑎 ( 9ℎ4𝜐8 + 3𝑏2𝜐4) .

(48)

Take the inverse Laplace transform such that 𝑓(𝑟) =
L−1{𝜙(𝑧)}.The function 𝑓(𝑟) takes the following form:

𝑓 (𝑟) = 𝐶Γ (𝑛 + 1)𝑟𝑛𝑒−𝜏𝑟. (49)

Using (11), (13), and (23), the eigenfunctions of (9) take the
following form:

Ψ (𝑟) = 𝐶Γ (𝑛 + 1)𝑟𝑛+ℓ exp(−√𝜇𝑎2 𝑟2 − √ 𝜇2𝑎𝑏𝑟) . (50)

From the condition ∫∞
0
|Ψ(𝑟)|2𝑟𝑁−1𝑑𝑟 = 1, the normalization

constant 𝐶 can be computed. In addition, the wave equationΨ(𝑟) satisfies the boundary condition Ψ(𝑟 = 0) = Ψ(𝑟 =∞) = 0.
4. Discussion of Results

In Figure 1, the current potential has been plotted in com-
parison to other potential models; we see that the present
potential is in a qualitative agreement with other potential
models [72, 74, 79], in which the confining part is clearly
obtained in comparison to Cornell and Coulomb plus expo-
nential potentials. The different states of 𝐵 and 𝐷 mesons

r(fm)
1.0 1.5 2.0 2.50.5
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Figure 2: The current potential of B meson for different states.
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Figure 3: The current potential of𝐷meson for different states.

have been shown in Figures 2 and 3, respectively, in which
the principal number of states plays an important role in
confining part of potential.

In the following subsections, we employ the obtained
results in the previous section to determine the mass spectra
of scalar, vector, pseudoscalar, and pseudovector of 𝐵, 𝐵𝑠, 𝐷,
and 𝐷𝑠 mesons in the 𝑁-dimensional space in comparison
with the experimental data (PDG 2016) [95] and with other
recent studies. In addition, the decay properties such as decay
constants, leptonic decay width, and the branching ratio of
HLM are calculated.

4.1. Mass Spectra of Heavy-Light Mesons. Themasses of HLM
in the N-dimensional space are defined [44]:

𝑀𝐵,𝐷 = 𝑚𝑞 + 𝑚𝑞 + 𝐸𝑛ℓ𝑁. (51)

Substituting (48) into (51), then the mass spectra of HLM in
the N- dimensional space can be found from the relation

𝑀𝐵,𝐷 = 𝑚𝑞 + 𝑚𝑞 + √ 𝑎2𝜇 (2𝑛 + 2ℓ + 𝑁) − 𝑏24𝑎 + 𝛿
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Table 1: Parameters for HLM.

𝑚𝑐 𝑚𝑏 𝑚𝑢,𝑑 𝑚𝑠 𝜂 𝜐
1.45 (GeV) 4.87 (GeV) 0.38 (GeV) 0.48 (GeV) 0.25 1 (GeV−1)

Table 2: Masses for pseudoscalar (2S+1𝐿𝐽 = 1𝑆0 ) mesons in GeV. 𝑎 = 0.00085 GeV3, 𝑏 = 0.01614 GeV2, and 𝑐 = 0.7.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 1.864 1.864 1.895 1.871 1.859 1.884 [89] 1.864 [73] 1.902 1.939
Ds 1.960 1.968 1.962 1.964 1.949 1.965 [89] 1.978 [73] 1.989 2.023
B 5.277 5.280 5.302 5.273 5.262 5.287 [88] 5.272 [74] 5.311 5.346
Bs 5.366 5.366 5.340 5.363 5.337 5.367 [88] 5.385 [74] 5.397 5.428

Table 3: Masses for vector (2𝑆+1𝐿𝐽 = 3𝑆1)mesons in GeV. 𝑎 = 0.026068 GeV3, 𝑏 = 0.218058 GeV2, and 𝑐 = 8 × 10−3.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.010 2.010 2.023 2.008 2.026 2.010 [89] 2.010 [73] 2.218 2.426
Ds 2.100 2.112 2.057 2.107 2.110 2.120 [89] 2.102 [73] 2.244 2.434
B 5.374 5.325 5.356 5.329 5.330 5.323 [88] 5.327 [74] 5.567 5.759
Bs 5.415 5.415 5.384 5.419 5.405 5.413 [88] 5.409 [74] 5.588 5.760

Table 4: Masses for scalar (2𝑆+1𝐿𝐽 = 3𝑃0)mesons in GeV. 𝑎 = 0043 GeV3, 𝑏 = 0.001 GeV2, and 𝑐 = 10−3.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.289 2.318±0.029 2.316 2.364 2.357 2.357[89] 2.539[73] 2.374 2.459
Ds 2.350 2.318 2.372 2.437 2.412 2.438[89] 2.311[73] 2.427 2.505
B 5.700 5.710 5.657 5.776 5.740 5.730[88] 5.745[74] 5.736 5.815
Bs 5.720 - - - 5.719 5.811 5.776 5.812[88] 5.843[74] 5.785 5.856

− 8ℎ𝜐3 − ℎ𝑎 ( 9ℎ4𝜐8 + 3𝑏2𝜐4) .
(52)

In Tables 2–6, we have calculated the masses of the HLM
in the three-dimensional space in comparison with the
experimental data and other recent studies [72–74, 81, 88,
89, 96]. The parameters used in the present calculations are
shown in Table 1. In addition, the masses at N = 4 and N
= 5 are calculated. In Tables 2 and 3, we observe that 𝐷
and 𝐵𝑠 meson masses close to experimental data and other
meson masses are in good agreement with experimental data
and become better in comparison to the results in recent
studies [72–74, 81, 88, 89, 96]. In comparison with [72],
they used the variational method for the Cornell potential to
study the HLM with including the spin-spin and spin-orbit
interactions. They ignored the tensor interactions in their
calculations. The present results are good in comparison to
the results in [72]. In addition, we used the LTM in the present
calculations. Yazarloo and Mehiraban used the variational
method to study D and 𝐷s mesons for the Cornell potential
[73] and used the Nikiforov-Uvarov (NU) method to study
B and 𝐵s mesons for the Coulomb plus exponential type
potential [74].The present results are in good agreement with
the results of [73, 74]. Kher et al. [89] used a Gaussian wave
function to calculate themass spectra ofD and𝐷s in addition
to B and 𝐵s mesons [88] for the Cornell potential. Jing-Bin
[81, 96] obtained the spectra of the HLM in the relativistic

model from the Bethe-Salpeter equation using the Foldy-
Wouthuysen transformation in his works.

We note that the present results for D and 𝐵s meson
masses become better in comparison to the results of [81, 88,
89, 96], where the values of pseudoscalar D and 𝐵s mesons
are close to the experimental data in Table 2. The values of
vector 𝐷 and 𝐵s mesons close to the experimental data and
the values of vectorD𝑠 and 𝐵mesons are good in comparison
to the experimental results in Table 3.

The masses of the scalar mesons are presented in Table 4;
the value of D meson is close to the experimental value. The
values of D𝑠 and B are in agreement with the experimental
values and the value of 𝐵s meson is in good agreement with
the theoretical studies [72–74, 81, 88, 89, 96]. In Table 5, we
observe that all the values of pseudovector mesons are close
to the experimental results except the value of Bmesonwhich
is in good agreement with the experimental value.The values
of vector D𝑠 and B mesons are in good agreement with the
experimental results. In Table 6, the results of the p-wave state
for the HLM are reported.

The present predictions of D,𝐷s, B, and B𝑠 mesons are in
agreement in comparison to the experimental data and the
theoretical studies [73, 74, 81, 88, 89, 96].

In addition, we have investigated the masses of the HLM
in the higher dimensions at N=4 and N=5. In Tables 2–6,
the effect of the dimensional number is investigated on the
masses of the HLM. One can see that the masses increase
with increasing dimensional number. The influence of the
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Table 5: Masses for pseudovector (2S+1𝐿𝐽 = 1𝑃1)mesons in GeV. 𝑎 = 0.01359 GeV3, 𝑏 = 0.08784 GeV2, and 𝑐 = 0.008.
Meson Present Work Exp. [95] [72] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.421 2.421 2.362 2.507 2.434 2.425[89] 2.421[73] 2.571 2.722
Ds 2.460 2.460 2.409 2.558 2.528 2.529[89] 2.429[73] 2.597 2.735
B 5.797 5.726 5.760 5.719 5.736 5.733[88] 5.744[74] 5.936 6.075
Bs 5.828 5.829 5.775 5.819 5.824 5.828[88] 5.841[74] 5.952 6.077

Table 6: Masses for mesons with p-wave state (2S+1𝐿𝐽 = 3𝑃2) in GeV. 𝑎 = 0.0163 GeV3, 𝑏 = 0.113 GeV2, and 𝑐 = 6 × 10−5.
Meson Present work Exp. [95] [81] [96] [88, 89] [73, 74] N=4 N=5
D 2.463 2.463 2.460 2.482 2.461[89] 2.463[74] 2.628 2.792
Ds 2.500 2.537 2.570 2.575 2.569[89] 2.528[74] 2.641 2.800
B 5.817 5.740 5.739 5.754 5.740[88] 5.743[73] 5.969 6.122
Bs 5.840 5.840 5.838 5.843 5.840[88] 5.840[73] 5.976 6.113

Table 7: The decay constants of pseudoscalar B and Dmesons in MeV.

Meson 𝑓𝑝 𝑓𝑝 [72] [83] [87] [97]
D 220 235 228 200 ± 24 214.2+7.6−7.8 210 ± 11
Ds 250 243 273 232 ± 17 253.5+6.6−7.1 259 ± 10
B 147 201 149 184 ± 32 191.7+7.9−6.5 192 ± 13
Bs 174 213 187 215 ± 24 225.4+7.9−5.3 230 ± 13

Table 8: The decay constants of vector B and Dmesons in MeV.

Meson 𝑓V 𝑓V [83] [73, 74] [79]
D 290 210 247 ± 35 307 [73] 353.8
Ds 310 212 287 ± 29 344 [73] 382.1
B 196 182 210 ± 37 242.4 [74] 234.7
Bs 216 191 239 ± 29 178.8 [74] 244.2

dimensional number is not considered on the masses of the
HLM in theworks [72–74, 81, 88, 89, 96]. Roy andChoudhury
[91] have studied the masses of heavy flavor mesons in the
higher dimensional space using string inspired potential.
They found that an increase of the dimensional number
leads to increase the meson masses. Therefore, the present
results of the mass spectra of HLM are in good agreement
in comparison with the results of [91].

4.2. Decay Constants. The study of the decay constants is
one of the very significant characteristics of the HLM, as
it provides a direct source of information on the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements. Many theo-
retical studies have been done for determining the decay
constants with different models as relativistic quark model
[97–99], lattice QCD [100–102], QCD sum rules [62, 97, 103],
and nonrelativistic model [72–74, 79, 97].

The Van Royen-Weisskopf formula [104] can be used to
calculate the decay constants of the pseudoscalar and vector
mesons𝑓𝑝 and 𝑓V, respectively, in the nonrelativistic limit
which is defined as

𝑓2
𝑝/V = 12 |Ψ (0)|2𝑀𝑝/V

. (53)

The Van Royen-Weisskopf formula with the QCD radiative
corrections taken into account can be written as [105]

𝑓2

𝑝/V = 12 |Ψ (0)|2𝑀𝑝/V
𝐶2 (𝛼𝑠) , (54)

where

𝐶 (𝛼𝑠) = 1 − 𝛼𝑠𝜋 (Δ𝑝/V − 𝑚𝑞 − 𝑚𝑞𝑚𝑞 + 𝑚𝑞

ln
𝑚𝑞𝑚𝑞

) (55)

and Δ𝑝 = 2 and Δ V = 8/3, for pseudoscalar and vector
mesons, respectively.

In Tables 7 and 8, we have determined the decay constants
of the pseudoscalar and vectorB andDmesons obtained from
(53) and (54) in comparison with the results of other recent
works. In [87], the authors evaluated the decay constant
for the heavy-light pseudoscalar mesons using the helicity-
improved light-front holographic wavefunction. In [83], the
authors applied the variational method to study the decay
constants of the pseudoscalar and vector B and D mesons in
the light-cone quark model for the relativistic Hamiltonian
with the Gaussian-type function.

In [72], the authors used the variational method to com-
pute the decay constants of HLM from the radial Schrödinger
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Table 9: Leptonic decay width of B+ meson in GeV.

Present Γ [74] [79] [107]
𝐵+ 󳨀→ 𝑒+𝜐𝑒 2.475 ×10−24 8.624 ×10−24 8.094 ×10−24 5.689 ×10−24
𝐵+ 󳨀→ 𝜇+𝜐𝜇 1.086 ×10−19 3.685 ×10−19 3.459 ×10−19 2.439 ×10−19
𝐵+ 󳨀→ 𝜏+𝜐𝜏 2.445 ×10−17 8.196 ×10−17 7.697 ×10−17 5.430 ×10−17

Table 10: Leptonic decay width of D+ meson in GeV.

Present Γ [79] [108] [66]
𝐷+ 󳨀→ 𝑒+𝜐𝑒 0.622 ×10−20 1.488 ×10−20 1.323 ×10−20 5.706 ×10−21
𝐷+ 󳨀→ 𝜇+𝜐𝜇 2.715 ×10−16 6.322 ×10−16 5.641 ×10−16 2.433 ×10−16
𝐷+ 󳨀→ 𝜏+𝜐𝜏 0.668 ×10−15 1.215 ×10−15 1.529 ×10−15 6.157 ×10−16

Table 11: Leptonic decay width of𝐷+
𝑠 meson in GeV.

Present Γ [79] [108] [67]
𝐷+𝑠 󳨀→ 𝑒+𝜐𝑒 1.529 ×10−19 2.962 ×10−19 3.157 ×10−19 1.792 ×10−19
𝐷+𝑠 󳨀→ 𝜇+𝜐𝜇 0.668 ×10−14 1.259 ×10−14 1.347 ×10−14 7.648 ×10−15
𝐷+𝑠 󳨀→ 𝜏+𝜐𝜏 0.586 ×10−13 1.296 ×10−13 1.326 ×10−13 7.508 ×10−14

equation with the Cornell potential. Zhi-Gang Wang [97]
introduced an analysis of the decay constants of HLM with
QCD sum rules. Yazarloo and Mehiraban [79] used the
perturbation method to study the decay constants of 𝐷, 𝐷s,
B, and 𝐵s mesons with the combination of harmonic and
Yukawa-type potentials.

In Table 7, the obtained results are in good agreement
in comparison to the results of [72, 83, 87, 97]. In Table 8,
the present results are compatible with the results of [73,
74, 79, 83]. In addition, the ratio of decay constants for D
mesons is (𝑓𝐷𝑠/𝑓𝐷 = 1.140). This value is in good agreement
with the experimental value 𝑓𝐷𝑠/𝑓𝐷 = 1.258 ± 0.038 [95].
The present result is in agreement with the obtained values(𝑓𝐷𝑠/𝑓𝐷 = 1.195) in [72] and (𝑓𝐷𝑠/𝑓𝐷 = 1.160) in [83]. Also,
we have (𝑓𝐷∗𝑠 /𝑓𝐷∗ = 1.070) which is in agreement with the
calculated values (𝑓𝐷∗𝑠 /𝑓𝐷∗ = 1.183) in [87] and (𝑓𝐷∗𝑠 /𝑓𝐷∗ =1.233) in [97]. The calculated ratio of decay constants for
B mesons (𝑓𝐵𝑠/𝑓𝐵 = 1.184) and (𝑓𝐵∗𝑠 /𝑓𝐵∗ = 1.102) are in
good agreement in comparison with (𝑓𝐵𝑠/𝑓𝐵 = 1.168) and(𝑓𝐵∗𝑠 /𝑓𝐵∗ = 1.138) in [83].

4.3. Leptonic DecayWidths and Branching Ratio. Thecharged
HLM can decay to a charged lepton pair 𝑙+]𝑙 via a virtualW±

boson.The leptonic decaywidths of theHLMcan be obtained
from the relation [106]

Γ (𝐵+, 𝐷𝑞 󳨀→ 𝑙+]𝑙)
= 𝐺2

𝐹𝑀𝐵,𝐷𝑞8𝜋 𝑚2
𝑙 (1 − 𝑚2

𝑙𝑀2
𝐵,𝐷𝑞

)
2

𝑓2
𝐵,𝐷

× {{{
󵄨󵄨󵄨󵄨𝑉𝑢𝑏󵄨󵄨󵄨󵄨2 for 𝐵 meson󵄨󵄨󵄨󵄨󵄨𝑉𝑐𝑞󵄨󵄨󵄨󵄨󵄨2 (𝑞 ∈ 𝑑, 𝑠) , for 𝐷 meson

(56)

where 𝐺𝐹 = 1.664 × 10−5 is the Fermi constant and the
relevant CKM elements are taken from the PDG [95] as|𝑉𝑢𝑏| = 0.004, |𝑉𝑐𝑑| = 0.227, and |𝑉𝑐𝑠| = 0.974. The
leptonic masses 𝑚𝑙 are taken as 𝑚𝑒 = 0.501 × 10−3 GeV,𝑚𝜇 = 0.105 GeV, and 𝑚𝜏 = 1.776 GeV. We obtain the
decay constants of the HLM from Tables 7 and 8 into (56)
to compute leptonic decay widths of the HLM. The obtained
results of the leptonic decay width of B+, D+, and𝐷+

𝑠 mesons
are shown in Tables 9, 10, and 11, respectively. Vinodkumar et
al. [107] calculated the leptonic decay widths of B, B𝑠 mesons
besides, D and D𝑠 mesons [66, 67, 108] for the Martin-like
potential with Dirac formalism. We have determined the
leptonic decay widths of B+ meson in Table 9 in comparison
with the results of the [74, 79, 107], as well as the leptonic
decay widths ofD+ meson in Table 10 in comparison with the
results of [66, 79, 108] and the leptonic decay widths of 𝐷+

𝑠

meson in Table 11 compared with the results of [66, 79, 108].
We note that the present results are in good agreement with
the results of [66, 67, 74, 107, 108].

The branching ratio of the HLM is defined as

𝐵𝑟 (𝐵+, 𝐷𝑞 󳨀→ 𝑙+𝜐𝑙) = Γ (𝐵+, 𝐷𝑞 󳨀→ 𝑙+𝜐𝑙) × 𝜏𝐵+ ,𝐷𝑞 (57)

where the lifetime 𝜏 of B+, D+, and 𝐷+
𝑠 mesons is taken as𝜏𝐵+ = 1.638𝑝𝑠, 𝜏𝐷+ = 1.040𝑝𝑠, and 𝜏𝐷+𝑠 = 0.5𝑝𝑠 [95]. We

have determined the branching ratio for the 𝐵+, 𝐷+, and 𝐷+
𝑠

mesons compared with the experimental data and with the
results of other recent studies [72–74, 88, 89].

In Table 12, we note that the present values of the
branching ratio for the B+ meson are close to experimental
data and are in agreement in comparison with the theoretical
results [72, 74, 79, 88, 107]. In addition, in Tables 13 and 14,
we note that the evaluated results of branching ratio for the
D+ and 𝐷+

𝑠 mesons are close to the experimental data and
become better in comparison with works [72, 73, 79, 89, 108].
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Table 12: Leptonic branching ratio of B+ meson.

Present Br [88] [79] [107] [72] [74] Exp. [95]
𝐵+ 󳨀→ 𝑒+𝜐𝑒 6.162 ×10−12 8.640 ×10−12 2.015 ×10−11 1.419 ×10−11 6.220 ×10−12 2.147 ×10−11 <9.8 ×10−7
𝐵+ 󳨀→ 𝜇+𝜐𝜇 2.705 ×10−7 0.370 ×10−7 8.611 ×10−7 6.085 ×10−7 2.630 ×10−7 9.174 ×10−7 <1.0 ×10−6
𝐵+ 󳨀→ 𝜏+𝜐𝜏 6.088 ×10−5 0.822 ×10−4 1.916 ×10−4 1.354 ×10−4 1.140 ×10−4 2.040 ×10−4 (1.14±0.27) ×10−4

Table 13: Leptonic branching ratio of D+ meson.

Present Br [89] [79] [73] [72] [108] Exp. [95]
𝐷+ 󳨀→ 𝑒+𝜐𝑒 0.984 ×10−8 0.580 ×10−8 2.351 ×10−8 1.77 ×10−8 1.130 ×10−8 2.105 ×10−8 <8.8 ×10−6
𝐷+ 󳨀→ 𝜇+𝜐𝜇 4.293 ×10−4 2.470 ×10−4 9.991 ×10−4 7.54 ×10−4 4.770 ×10−4 8.977 ×10−4 (3.74±0.17) ×10−4
𝐷+ 󳨀→ 𝜏+𝜐𝜏 1.055 ×10−3 0.860 ×10−3 1.920 ×10−3 1.79 ×10−3 2.030 ×10−3 2.933 ×10−3 <1.2×10−3

Table 14: Leptonic branching ratio of𝐷+
𝑠 meson.

Present Br [89] [79] [73] [72] [108] Exp. [95]
𝐷+𝑠 󳨀→ 𝑒+𝜐𝑒 1.163 ×10−7 0.940 ×10−7 2.251 ×10−7 1.82 ×10−7 1.630 ×10−7 1.391 ×10−7 <8.3 ×10−5
𝐷+𝑠 󳨀→ 𝜇+𝜐𝜇 5.078 ×10−3 4.000 ×10−3 9.572 ×10−3 7.74 ×10−3 6.900 ×10−3 5.937 ×10−3 (5.56±0.25) ×10−3
𝐷+𝑠 󳨀→ 𝜏+𝜐𝜏 4.451 ×10−3 3.780 ×10−3 9.864 ×10−2 8.2 ×10−2 6.490 ×10−2 5.844 ×10−3 (5.55±0.24)%

5. Summary and Conclusion

In this work, we have presented an approximate-analytic
solution of the N-dimensional radial Schrödinger equation
for the mixture of vector and scalar potentials via the
LTM. The spin-spin, spin-orbit, and tensor interactions have
been included in the extended Cornell potential model. The
energy eigenvalues and the corresponding eigenfunctions
have been determined in the N-dimensional space. In three-
dimensional space, we have employed the obtained results
to study the different properties of the HLM that are not
considered in many recent studies. The masses of the scalar,
vector, pseudoscalar, and pseudovector for B, B𝑠, D, and D𝑠

mesons have been calculated in the three-dimensional space
and in the higher dimensional space in Tables 2–6. Most of
the present calculations are close to the experimental data and
are improved in comparison with the recent calculations [72–
74, 81, 88, 89, 96]. As well, we have computed the masses of
the HLM in the higher dimensional space at N=4 and N=5.
The dependence of the masses of HLM on the dimensional
number is discussed. We found that the masses increase with
increasing dimensional number. This result is obtained in
[91]. In Tables 7 and 8, the decay constants of the pseudoscalar
and vector mesons have been determined in comparison
with the results of [72–74, 79, 83, 87, 97]. The calculated
ratios of the decay constants of D mesons (𝑓𝐷𝑠/𝑓𝐷 = 1.140)
and (𝑓𝐷∗𝑠 /𝑓𝐷∗ = 1.070) are close to the experimental ratio(𝑓𝐷𝑠/𝑓𝐷 = 1.258 ± 0.038).

The present results of the decay ratio of B mesons are
in good agreement with the results of [72, 83]. The leptonic
decay widths of B+ meson have been studied in comparison
with the results of [74, 79, 107] and the leptonic decay widths
of D+ meson in comparison with the results of [66, 79, 108].
In addition, the leptonic decay widths of 𝐷+

𝑠 meson have
been studied in comparison with the results of [66, 79,
108].

The obtained results of the leptonic decay widths are
compared with the results of [66, 67, 74, 107, 108]. We have
determined the branching ratio for the B+, D+, and 𝐷+

𝑠

mesons that are in good agreement with the experimental
data and with the recent studies [72–74, 88, 89]. Therefore,
the current potential with used method gives very good
predictions for the heavy-light meson properties. We hope to
extend this work to include external force as a future work.
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The data used to support the findings of this study are
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We have studied the equation of state and dissociation temperature of bottomonium state by correcting the full Cornell potential
in isotropic medium by employing the effective fugacity quasi-particle Debye mass. We had also calculated the bottomonium
suppression in an expanding, dissipative strongly interactingQGPmedium produced in relativistic heavy-ion collisions. Finally we
compared our results with experimental data from RHIC 200GeV/nucleon Au-Au collisions, LHC 2.76 TeV/nucleon Pb-Pb, and
LHC 5.02 TeV/nucleon Pb-Pb collisions as a function of number of participants.

1. Introduction

At the Relativistic Heavy-Ion Collider (RHIC) situated at
BrookhavenNational Laboratory (BNL), heavy-ion collisions
have been studied. After the pioneer work done in the direc-
tion of suppression byMatsui and Satz, and some other devel-
opment of the potential models, suppression was observed
by both SPS and RHIC [1]. Due to the Debye screening of
the Quantum Chromo-Dynamic (QCD) potential between
the two heavy quarks, quarkonia suppression was originally
claimed to be an unambiguous signal of the formation of
a quark-gluon plasma (QGP). Quarkonia suppression was
suggested to be a signature of the QGP and we can measure
the suppression (Υ as well as 𝐽/𝜓), both at RHIC and at the
LHC.

In heavy-ion collisions to determine the properties of
the medium formed in A+A collisions and p + p collisions,
the A+A collision deviates from simple superposition of
independent p + p collisions. This deviation is quantified
with the nuclear modification factor (𝑅𝐴𝐴). This factor is the
ratio of the yield in heavy-ion collisions over the yield in p
+ p collisions, scaled by a model of the nuclear geometry of
the collision. The value of 𝑅𝐴𝐴=1 indicates no modification
due to the medium. We can say that the probe of interest
is suppressed in heavy-ion collisions if 𝑅𝐴𝐴 is less than 1.

A quarkonia meson that forms on the outside surface will
not dissociate regardless of the temperature of the medium
because it does not have a chance to interact with it. This is
why we never see a 𝑅𝐴𝐴 that is equal to zero.The suppression
can also be affected by the QGP, the formation time of the
quarkonia meson, and the QGP lifetime as well. For instance,
a high 𝑝𝑇 quarkonia meson could have a formation time long
enough that it actually does not see the QGP at all and thus is
not suppressed.

In the early days most of the interests were focused
on the suppression of charmonium states [1–3] of collider
experiments at SPS and RHIC, but several observations are
yet to be understood; namely, the suppression of 𝜓 (1S) does
not increase from SPS to RHIC, even though the centre-
of-mass energy is increased by fifteen times. The heavy-
ion program at the LHC may resolve those puzzles because
the beam energy and luminosity are increased by ten times
that of the RHIC. Moreover the CMS detector has excellent
capabilities for muon detection and provides measurements
of 𝜓(2S) and the Υ family, which enables the quantitative
analysis of quarkonia. That is why the interest may be shifted
to the bottomonium states at the LHC energy.

A potential model for the phenomenological descriptions
of heavy quarkonium suppression would be quite useful
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inspite of the progress of direct lattice QCD based determi-
nations of the potential. The large mass of heavy quarks and
their small relative velocity make the use of nonrelativistic
quantum mechanics justifiable to describe the quarkonia
in the potential models. This is one of the main goals of
this present study that argues for the modification of the
full Cornell potential as an appropriate potential for heavy
quarkonium at finite temperature. QGP created at RHIC
have a very low viscosity to entropy ratio, i.e., 𝜂/S ≥ 1/4𝜋
[4–9], and in the nonperturbative domain of QCD, with
temperature close to 𝑇𝑐, the quark matter in the QGP phase
is strongly interacting.

In the present paper, we shall employ quasi-particle
model for hot QCD equations of state [10, 11] to extract the
Debye mass [12] which is obtained in terms of quasi-particle
degrees of freedom. We first obtained the medium modified
heavy quark potential in isotropic medium and estimate the
dissociation temperature. Here, we have used the viscous
hydrodynamics to define the dynamics of the system created
in the heavy-ion collisions. We have included only the shear
viscosity and not included the bulk viscosity. We will look the
issue of bulk viscosity in near future.

Our work is organized as follows. In Section 2, we briefly
discuss our recent work on medium modified potential in
isotropic medium. In Sections 2.1 and 2.2 we study the
real and imaginary part of the potential in the isotropic
medium and effective fugacity quasi-particle model (EQPM)
in Section 2.3. In Section 3 we studied binding energy and
dissociation temperature of Υ, Υ󸀠, and 𝜒𝑏 state considering
isotropic medium. Using this effective potential and by incor-
porating quasi-particle Debye mass, we have then developed
the equation of state for strongly interacting matter and
have shown our results on pressure, energy density, and
speed of sound along with the lattice data. In Section 4,
we have employed the aforesaid equation of state to study
the suppression of bottomonium in the presence of viscous
forces and estimate the survival probability in a longitudinally
expanding QGP. Results and discussion will be presented in
Section 5 and finally, we conclude in Section 6.

2. Medium Modified Effective Potential in
Isotropic Medium

We can obtain the medium modification to the vacuum
potential by correcting its both Coulombic and string part
with a dielectric function 𝜖(𝑝) encoding the effect of decon-
finement [25]:

𝑉 (𝑟, 𝑇) = ∫ 𝑑3p
(2𝜋)3/2 (𝑒𝑖p⋅r − 1)

𝑉 (𝑝)
𝜖 (𝑝) . (1)

Here the functions, 𝜖(𝑝) and 𝑉(𝑝), are the Fourier
transform (FT) of the dielectric permittivity and Cornell
potential, respectively. After assuming 𝑟 as distribution (𝑟 󳨀→𝑟 exp(−𝛾𝑟)) we evaluated the Fourier transform of the linear
part 𝜎𝑟 exp(−𝛾𝑟) as

− 𝑖
𝑝√2𝜋 ( 2

(𝛾 − 𝑖𝑝)3 −
2

(𝛾 + 𝑖𝑝)3) . (2)

While putting 𝛾 = 0, we can write the FT of the linear term𝜎𝑟 as
(𝜎𝑟) = − 4𝜎

𝑝4√2𝜋. (3)

Thus the FT of the full Cornell potential becomes

𝑉 (𝑝) = −√( 2𝜋) 𝛼𝑝2 − 4𝜎√2𝜋𝑝4 . (4)

To obtain the real and imaginary parts of the potential,
we put the temporal component of real and imaginary part
in terms of retarded (or advanced) and symmetric parts in
the Fourier space in isotropic medium which finally gives

Re𝐷00
11 (𝜔, 𝑝) = 12 (𝐷00

𝑅 + 𝐷00
𝐴 ) ,

Im𝐷00
11 (𝜔, 𝑝) = 12𝐷00

𝐹 .
(5)

Let us now discuss the real and imaginary part of
the potential modified using the above define Re𝐷00

11(𝜔, 𝑝)
and Im𝐷00

11(𝜔, 𝑝) along with effective fugacity quasi-particle
model (EQPM) in the next subsections.

2.1. Real Part of the Potential in the Isotropic Medium. Now
using the real part of retarded (advanced) propagator in
isotropic medium, we get

Re𝐷00
𝑅,𝐴 (0, 𝑝) = − 1(𝑝2 + 𝑚2

𝐷) , (6)

where the real part of the dielectric permittivity (also given in
[26–28]) becomes

𝜖 (𝑝) = (1 + 𝑚2
𝐷𝑝2 ) . (7)

Now using (6) and real part of dielectric permittivity (7) in
(1), we get

Re𝑉(𝑖s𝑜) (𝑟, 𝑇)
= ∫ 𝑑3p

(2𝜋)3/2 (𝑒𝑖p⋅r − 1)(−√(
2𝜋) 𝛼𝑝2 − 4𝜎√2𝜋𝑝4)

× ( 𝑝2
(𝑝2 + 𝑚2

𝐷))
(8)

Solving the above integral, we find

Re𝑉(𝑖𝑠𝑜) (𝑠̂, 𝑇) = ( 2𝜎𝑚𝐷

− 𝛼𝑚𝐷) 𝑒−𝑠𝑠̂ − 2𝜎̂𝑠 + 2𝜎𝑚𝐷

− 𝛼𝑚𝐷,
(9)

where 𝑠̂ = 𝑟𝑚𝐷. In the limit 𝑠̂ ≪ 1, we have
Re𝑉(𝑖𝑠𝑜) (𝑠̂, 𝑇) ≈ − 2𝜎𝑚𝐷𝑠̂ − 𝛼𝑚𝐷. (10)
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2.2. Imaginary Part of the Potential in the Isotropic Medium.
To obtain the imaginary part of the potential in the QGP
medium, the temporal component of the symmetric prop-
agator in the static limit has been considered, which reads
[29, 30]

Im𝐷00
𝐹(𝑖𝑠𝑜) (0, 𝑘) = −2𝜋𝑇𝑚2

𝐷𝑘 (𝑘2 + 𝑚2
𝐷)2 . (11)

Now the imaginary part of the dielectric function in the QGP
medium is

1𝜖 (𝑘) = 𝜋𝑇𝑚2
𝐷

𝑘2
𝑘 (𝑘2 + 𝑚2

𝐷)2 . (12)

Afterwards, the imaginary part of the medium potential is
easy to obtain owing to the definition of the potential (1) as
done in [31]:

Im𝑉(𝑟, 𝑇) = −∫ 𝑑3k
(2𝜋)3/2 (𝑒𝑖k⋅r − 1)

× (−√ 2𝜋 𝛼𝑘2 − 4𝜎√2𝜋𝑘4)
−𝜋𝑇𝑚2

𝐷 𝑘
(𝑘2 + 𝑚2

𝐷)2
(13)

After performing the integration, we find

Im𝑉(𝑖𝑠𝑜) (𝑠̂, 𝑇) = 𝑇(𝛼𝑠̂23 − 𝜎𝑠̂430𝑚2
𝐷

) log (1̂𝑠 ) , (14)

where (𝑠̂) = 𝑟𝑚𝐷.

2.3. Effective Fugacity Quasi-Particle Model (EQPM). In our
calculation, we use the Debye mass𝑚𝐷 for full QCD:

𝑚2
𝐷 = 𝑔2 (𝑇) 𝑇2 [(𝑁𝑐3 × 6PolyLog [2, 𝑧𝑔]𝜋2 )

+ (𝑁𝑓6 × −12PolyLog [2, −𝑧𝑞]𝜋2 )] .
(15)

Here, 𝑔(𝑇) is the QCD running coupling constant, 𝑁𝑐 =3 (𝑆𝑈(3)) and 𝑁𝑓 is the number of flavors, the function
PolyLog[2, 𝑧] has the form PolyLog[2, 𝑧] = ∑∞

𝑘=1(𝑧𝑘/𝑘2), and𝑧𝑔 is the quasi-gluon effective fugacity and 𝑧𝑞 is quasi-quark
effective fugacity. These distribution functions are isotropic
in nature. These fugacities should not be confused with any
conservations law (number conservation) and have merely
been introduced to encode all the interaction effects at high
temperature QCD. Both 𝑧𝑔 and 𝑧𝑞 have a very complicated
temperature dependence and asymptotically reach to the
ideal value unity [11]. The temperature dependence of 𝑧𝑔 and𝑧𝑞 fits well to the form given below:

𝑧𝑔,𝑞 = 𝑎𝑞,𝑔 exp(−𝑏𝑔,𝑞𝑥2 − 𝑐𝑔,𝑞𝑥4 − 𝑑𝑔,𝑞𝑥6 ) . (16)

Here 𝑥 = 𝑇/𝑇𝑐 and 𝑎, 𝑏, 𝑐, and 𝑑 are fitting parameters,
for both EOS1 and EOS2. Here, EoS1 is the 𝑂(𝑔5) hot QCD
[13–15] and EoS2 is the 𝑂(𝑔6 ln(1/𝑔) hot QCD EoS [16] in
the quasi-particle description [10, 11], respectively. Now, the
expressions for the Debye mass can be rewritten in terms of
effective charges for the quasi-gluons and quarks as

𝑚2
𝐷 = {{{{{{{

𝑄2
𝑔𝑇2𝑁𝑐3 for pure gauge,

𝑇2 (𝑁𝑐3 𝑄2
𝑔) + (𝑁𝑓6 𝑄2

𝑞) for full QCD
(17)

where 𝑄𝑔 and 𝑄𝑞 are the effective charges given by the
equations:

𝑄2
𝑔 = 𝑔2 (𝑇) 6PolyLog [2, 𝑧𝑔]𝜋2

𝑄2
𝑞 = 𝑔2 (𝑇) −12PolyLog [2, −𝑧𝑞]𝜋2 .

(18)

In our present analysis we had used the temperature
dependence of the quasi-particle Debye mass, 𝑚𝑄𝑃

𝐷 , in full
QCD with𝑁𝑓 = 3 to determine charmonium suppression in
an expanding, dissipative strongly interacting QGP medium.
This quasi-particle Debye mass,𝑚𝑄𝑃

𝐷 , has the following form:

𝑚𝑄𝑃
𝐷 = 2𝜋2𝑔 (𝑇) 𝑇 [𝑁𝑐3 PolyLog [2, 𝑧𝑔]
− 𝑁𝑓PolyLog [2, −𝑧𝑞]]1/2 .

(19)

3. Binding Energy and
Dissociation Temperature

To obtain the binding energies with heavy quark potential,
we need to solve the Schrödinger equation numerically. In
the limiting case discussed earlier, the medium modified
potential resembles to the hydrogen atom problem [1]. The
solution of the Schrödinger equation gives the eigenvalues for
the ground states and the first excited states in charmonium
(𝐽/𝜓, 𝜓󸀠, etc.) and bottomonium (Υ, Υ󸀠, etc.) spectra:

Re Eiso
bin

ŝ≫1= (mQ𝜎2
m4

Dn2
+ 𝛼mD) ; n = 1, 2 ⋅ ⋅ ⋅ (20)

where𝑚𝑄 is the mass of the heavy quark.
In our analysis, we have fixed the critical temperature (𝑇𝑐

= 0.197𝐺𝑒𝑉) and have taken the quarkmasses𝑚𝑄 , as𝑚Υ =4.5
GeV,𝑚Υ󸀠 =5.01GeV, and𝑚𝜒𝑏

= 5.18GeV, as calculated in [32],
and the string tension (𝜎) is taken as 0.184𝐺𝑒𝑉2. Let us now
proceed to the computation of the dissociation temperatures
for the above-mentioned quarkonia bound states.

As we know, dissociation of a quarkonia bound state in
a thermal QGP medium will occur whenever the binding
energy, 𝐸𝐵, of the said state will fall below the mean thermal
energy of a quasi-parton. In such situations, the thermal
effect can dissociate the quakonia bound state. To obtain
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Table 1: Dissociation temperature 𝑇𝐷 (for a 3-flavor QGP), using
quasi-particle Debye mass for bottomonium states, for EoS1.

State 𝜏𝐹 𝑇𝐷 𝑐2𝑠 (SIQGP) 𝑐2𝑠 (Id) 𝜖𝑠(SIQGP) 𝜖𝑠(Id)Υ 0.76 1.98 0.335 1/3 24.39 23.89
Υ󸀠 1.90 1.53 0.326 1/3 8.28 8.16
𝜒𝑏 2.60 1.61 0.331 1/3 10.21 10.10

Table 2: Dissociation temperature 𝑇𝐷 (for a 3-flavor QGP), using
quasi-particle Debye mass for bottomonium states, for EoS2.

State 𝜏𝐹 𝑇𝐷 𝑐2𝑠 (SIQGP) 𝑐2𝑠 (Id) 𝜖𝑠(SIQGP) 𝜖𝑠(Id)Υ 0.76 2.04 0.335 1/3 27.05 27.09
Υ󸀠 1.90 1.58 0.328 1/3 9.35 9.44
𝜒𝑏 2.60 1.65 0.331 1/3 11.21 11.34

the lower bound of the dissociation temperatures of the
various quarkonia states, the (relativistic) thermal energy of
the partons will be 3 𝑇. The dissociation is supposed to occur
whenever

Re Eiso
bin

ŝ≫1= EB (TD) = 3TD. (21)

𝑇𝐷’s for the 𝑏𝑏 sates Υ, Υ󸀠, and 𝜒𝑏 with the dissociation
temperature are listed in Tables 1 and 2 for EoS1 and EoS2,
respectively. We observe that (on the basis of temperature
dependence of binding energy) Υ󸀠 dissociates at lower tem-
peratures as compared to Υ and 𝜒𝑏 for both the equations of
state.

4. Formulation

In relativistic nucleus-nucleus collisions, the equation of state
for the quark matter is an important observable and the
properties of the matter are sensitive to it. The expansion of
QGP is quite sensitive to EoS through the speed of sound and
explores the sensitivity of the quarkonium suppression to the
equation of state [33, 34].

For a strongly coupled QGP, Bannur [17] developed an
equation of state by incorporating running coupling constant
and did an appropriate modification to take account of color
and flavor degrees of freedom and obtained a reasonably
good fit to the lattice results. Now we will discuss briefly the
equation of state which is expressed as a function of plasma
parameter Γ [35]:

𝜖QED = (32 + 𝑢𝑒𝑥 (Γ)) 𝑛𝑇. (22)

Plasma parameter Γ is the ratio of average potential energy
to average kinetic energy of particles, is assumed to be weak
(<< 1), and is given by

Γ ≡ ⟨𝑃𝐸⟩⟨𝐾𝐸⟩ = Re [𝑉 (r, 𝑇)]𝑇 . (23)

We have studied the variation of plasma parameter with
temperature and as well with the number of flavors that are

present in the system and shown in Figure 1 for EoS1 and
EoS2, respectively. As the temperature increases, potential
becomes weaker and hence the plasma parameters have
started waning; albeit at very large temperature it increases
slightly due to the contribution coming from the (positive)
finite-range terms in the potential, unlike the decreasing
trend in Bannur model [17] always due to the presence of
Coulomb interaction alone in the deconfined phase.

Let us consider that hadron exists for 𝑇 < 𝑇𝑐 and goes
to QGP for 𝑇 > 𝑇𝑐 for strongly coupled plasma in QCD.
As it was assumed that confinement interactions due to QCD
vacuum have been melted [17] at 𝑇 = 𝑇𝑐 and thus for 𝑇 > 𝑇𝑐,
there are the strongly interacting plasma of quarks and gluons
and no glue balls or hadrons. After inclusion of relativistic
and quantum effects, the equation of state which has been
obtained in the plasma parameter can be written as

𝜀 = (3 + 𝑢𝑒𝑥 (Γ)) 𝑛𝑇. (24)

Now, the scaled-energy density is written as in terms of ideal
contribution

𝑒 (Γ) ≡ 𝜀𝜀𝑆𝐵 = 1 + 13𝑢𝑒𝑥 (Γ) , (25)

where 𝜀𝑆𝐵 is given by

𝜀𝑆𝐵 ≡ (16 + 21𝑛𝑓/2) 𝜋2𝑇4

30 . (26)

Here, 𝑛𝑓 is the number of flavors of quarks and gluons.
Now, we will employ two-loop level QCD running coupling
constant in MS scheme [36]:

𝑔2 (𝑇)
≈ 2𝑏0 ln 𝜇ΛM𝑆

(1 + 𝑏12𝑏20
ln (2 ln (𝜇/ΛM𝑆))

ln (𝜇/ΛM𝑆) )−1 . (27)

Here 𝑏0 = (33 − 2𝑛𝑓)/(48𝜋2) and 𝑏1 = (153 − 19𝑛𝑓)/(384𝜋4).
In MS scheme, ΛM𝑆 and 𝜇 are the renormalization scale and
the scale parameter, respectively. For the EoS to depend on
the renormalization scale, the physical observables should be
scale independent. We invade the problem by trading off the
dependence on renormalization scale (ΛM𝑆) to a dependence
on the critical temperature 𝑇𝑐.

𝜇 exp (𝛾𝐸 + 𝑐) = ΛM𝑆 (𝑇)
ΛM𝑆 (𝑇) exp (𝛾𝐸 + 𝑐) = 4𝜋Λ 𝑇, (28)

where 𝛾𝐸=0.5772156 and 𝑐 = (𝑛𝑐 − 4𝑛𝑓 ln 4)/(22𝑛𝑐 − 𝑛𝑓),
which is a constant depending on colors and flavors.There are
several incertitude, associated with the scale parameter 𝜇 and
renormalization scale ΛM𝑆, which occurs in the expression
used for the running coupling constant 𝛼𝑠. This issue has
been considered well in literature and resolved by the BLM
criterion due to Brodsky, Lepage, and Mackenzie [37]. ΛM𝑆
is allowed to vary between 𝜋𝑇 and 4𝜋𝑇 [38]. For our motive,
we choose ΛM𝑆 close to the central value 2𝜋𝑇𝑐 [39] for 𝑛𝑓=0
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Figure 1: Plots of Γ as a function of 𝑇/𝑇𝑐 for 3-flavor QGP (extreme left figure) for EOS1 [13–15] and for EOS2 [16] (extreme right figure).
In each figure, solid line represents the results obtained from Bannur EoS, and dashed line represents the results from our EoS (using quasi-
particle Debye mass).

and for both 𝑛𝑓=2 and 𝑛𝑓=3 flavors the value is 𝜋𝑇𝑐. If the
factor (𝑏1/2𝑏20 )(ln(2 ln(𝜇/ΛM𝑆))/ ln(𝜇/ΛM𝑆)) is≪ 1, then the
above expression reduces to the expression used in [17, Eq.(10)], after neglecting the higher order terms of the above
factor. However, this possibility does not hold good for the
temperature ranges used in the calculation and causes an
error in coupling which finally makes the difference in the
results between our model and Bannur model [17]. First of
all, we will calculate the energy density 𝜀(𝑇) from (25) and
using the thermodynamic relation

𝜀 = 𝑇 𝑑𝑝𝑑𝑇 − 𝑃, (29)

we calculated the pressure as

𝑃𝑇4
= (𝑃0/𝑇0 + 3𝑎𝑓 ∫𝑇𝑇0 𝑑𝜏𝜏2𝑒 (Γ (𝜏)))𝑇3

, (30)

where 𝑃0 is the pressure at some reference temperature 𝑇0.
Now, the speed of sound 𝑐2𝑠 (= 𝑑𝑃/𝑑𝜀) can be calculated once
we know the pressure 𝑃 and energy density 𝜀.
5. Survival of Bottomonium State

In order to derive the Υ survival probability for an expanding
QGP firstly, we explore the effects of dissipative terms up
to first order in the stress-tensor. In the presence of viscous
forces, the energy-momentum tensor is written as

𝑇𝜇] − 𝜋𝜇] = (𝜖 + 𝑝) 𝑢𝜇𝑢] + 𝑔𝜇]𝑝, (31)

where the stress-energy tensor, 𝜋𝜇], up to first order is given
by

𝜋𝜇] = 𝜂 ⟨∇𝜇𝑢]⟩ , (32)

where 𝜂 is the coefficient of the shear viscosity and ⟨∇𝜇𝑢]⟩ is
the symmetrized velocity gradient.

In Bjorken expansion, the equation of motion is given by

𝜕𝜏𝜖 + 𝜖 + 𝑝𝜏 = 4𝜂3𝜏2 . (33)

The solution of equation of motion (33) is given as

𝜖 (𝜏) 𝜏(1+𝑐2𝑠 ) + 4𝑎
3𝜏̃2 𝜏(1+𝑐

2

𝑠
) = 𝜖 (𝜏𝑖) 𝜏(1+𝑐2𝑠 )𝑖 + 4𝑎

3𝜏̃𝑖2
= const,

(34)

where the constant is

𝑎 = (𝜂𝑠 )𝑇3
𝑖 𝜏𝑖 (35)

and the symbols are

𝜏̃2 = (1 − 𝑐2𝑠 ) 𝜏2 (36)

and

𝜏̃2𝑖 = (1 − 𝑐2𝑠 ) 𝜏2𝑖 . (37)

The first term accounts for the contributions coming from
the zeroth-order expansion (ideal fluid) and the second term
is the first-order viscous corrections. We now have all the
ingredients to write down the survival probability. Chu and
Matsui [40] studied the transverse momentum dependence
(𝑝𝑇) of the survival probability by choosing the speed of
sound 𝑐2𝑠 = 1/3 (ideal EoS) and the extreme value 𝑐2𝑠 =0. Instead of taking arbitrary values of 𝑐2𝑠 , we tabulated the
values of 𝑐2𝑠 inTables 1 and 2 corresponding to the dissociation
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temperatures for bottomonium states for EOS1 and EOS2.
One can define initial energy density 𝜖𝑖 as

𝜖𝑖 = (1 + 𝛽) ⟨𝜖𝑖⟩ ; 𝛽 = 1. (38)

Here,𝛽 represents the proportionality of the deposited energy
to the nuclear thickness where ⟨𝜖𝑖⟩ is the average initial
energy density and will be given by the modified Bjorken
formula [41, 42]:

⟨𝜖𝑖⟩ = 𝜉𝐴𝑇 𝜏𝑖 (
𝑑𝐸𝑇𝑑𝑦ℎ )𝑦ℎ=0

, (39)

where 𝐴𝑇 is the transverse overlap area of the colliding
nuclei and (𝑑𝐸𝑇/𝑑𝑦ℎ)𝑦ℎ=0 is the transverse energy deposited
per unit rapidity. We use the experimental value of the
transverse overlap area 𝐴𝑇 and the pseudo-rapidity distri-
bution 𝑑𝐸𝑇/𝑑𝜂ℎ|𝜂ℎ=0 [43, 44] at various values of number
of participants 𝑁𝑝𝑎𝑟𝑡. These 𝑑𝐸𝑇/𝑑𝜂ℎ|𝜂ℎ=0 numbers are then
multiplied by a Jacobian 1.25 to yield the rapidity distribution𝑑𝐸𝑇/𝑑𝑦ℎ|𝑦ℎ=0 which will be further used to calculate the
average initial energy density from Bjorken formula (39).
After getting the value of average initial energy density we
can obtain the initial energy density from formula (38). The
scaling factor 𝜉 = 5 has been introduced in order to obtain
the desired values of initial energy densities [45, 46] for most
central collision which are consistent with the predictions
of the self-screened parton cascade model [47] and also
with the requirements of hydrodynamic simulation [45, 46]
to fit the pseudo-rapidity distribution of charged particle
multiplicity 𝑑𝑁𝑐ℎ/𝑑𝜂 for various centralities observed in
PHENIX experiments at RHIC energy. Let 𝜙 be the angle
between the transverse momentum and position vector 𝑟Υ.
Now assuming that 𝑏𝑏 is formed inside screening region
at a point whose position vector is 󳨀→𝑟 and moves with
transverse momentum 𝑝𝑇 making an azimuthal angle, then
the condition for escape of 𝑏𝑏without forming bottomonium
states is expressed as

cos 𝜙 ≥ 𝑌; 𝑌 = (𝑟2𝑠 − 𝑟2Υ)𝑚 − 𝜏2𝐹𝑝2𝑇/𝑚2𝑟Υ𝜏𝐹𝑝𝑇 , (40)

where 𝑟Υ is the position vector at which the bottom, anti-
bottom quark pair is formed, 𝜏𝐹 is the proper formation
time required for the formation of bound states of 𝑏𝑏 from
correlated 𝑏𝑏 pair, and𝑚 is the mass of bottomonia (𝑚 = 𝑀Υ,𝑀𝜒𝑏

, 𝑀Υ󸀠 for different resonance states of bottomonium).
Assume the radial probability distribution for the production
of 𝑏𝑏 pair in hard collisions at transverse distance 𝑟 as

𝑓 (𝑟) ∝ (1 − 𝑟2𝑅2
𝑇

)𝛼 𝜃 (𝑅𝑇 − 𝑟) . (41)

Here we take 𝛼 = 0.5 in our calculation as used in [40].Then,
in the color screening scenario, the survival probability for

the bottomonium in QGP medium can be expressed as [40,
48, 49]

𝑆 (𝑝𝑇,𝑁𝑝𝑎𝑟𝑡)
= 2 (𝛼 + 1)𝜋𝑅2

𝑇

∫𝑅𝑇

0
𝑑𝑟𝑟𝜙𝑚𝑎𝑥 (𝑟) {1 − 𝑟2𝑅2

𝑇

}𝛼 , (42)

where the maximum positive angle 𝜙𝑚𝑎𝑥 allowed by (26)
becomes [50]

𝜙𝑚𝑎𝑥 (𝑟) =
{{{{{{{{{{{{{{{

𝜋 if Y ≤ −1
𝜋 − cos−1 |𝑌| if 0 ≥ Y ≥ −1
cos−1 |𝑌| 0 ≤ Y ≤ −1
0 Y ≥ 1

(43)

since the experimentalists always measure the quantity,
namely, 𝑝𝑇 integrated nuclear modification factor.We get the
theoretical 𝑝𝑇 integrated survival probability as follows:

𝑆 (𝑁𝑝𝑎𝑟𝑡) = ∫𝑝𝑇𝑚𝑎𝑥
𝑝𝑇𝑚𝑖𝑛

𝑆 (𝑝𝑇, 𝑁𝑝𝑎𝑟𝑡) 𝑑𝑝𝑇
∫𝑝𝑇𝑚𝑎𝑥
𝑝𝑇𝑚𝑖𝑛

𝑑𝑝𝑇 . (44)

In nucleus-nucleus collisions, it is known that only about
60% of the observed Υ originate directly in hard collisions
while 30% of them come from the decay of 𝜒𝑏 and 10% from
the decay of Υ󸀠. Hence, the 𝑝𝑇-integrated inclusive survival
probability of Υ in the QGP becomes [33, 51]

⟨𝑆incl⟩ = 0.6 ⟨𝑆dir⟩
Υ
+ 0.3 ⟨𝑆dir⟩

𝜒𝑏
+ 0.1 ⟨𝑆dir⟩

Υ󸀠
(45)

6. Results and Discussions

In our results, we had obtained the variation of plasma
parameter with temperature and as well with the number of
flavors that are present in the system and shown in Figure 1 for
EoS1 and EoS2, respectively. After that, in Figure 2, we have
plotted the variation of pressure (𝑃/𝑇4) with temperature
(𝑇/𝑇𝑐) using EoS1 and EoS2 for 3-flavor QGP along with
Bannur EoS [17] and compared it with lattice results [17–
21]. For each flavor, 𝑔𝑐 and Λ 𝑇 are adjusted to get a good
fit to lattice results in Bannur model. Now, energy density𝜀, speed of sound 𝑐2𝑠 , and so forth can be derived since we
had obtained the pressure, 𝑃(𝑇). In Figure 3, we had plotted
the energy density (𝜀/𝑇4) with temperature (𝑇/𝑇𝑐) using EoS1
[13–15] and EoS2 for 3-flavor QGP along with Bannur EoS
[17] and compared it with lattice result [17–21]. In Figure 4,
the speed of sound, 𝑐2𝑠 , is plotted using EoS1 and EoS2 for 3-
flavor QGP along with Bannur EoS [17]. Since lattice results
are not available for 3 flavors, therefore comparison has not
been checked for the above-mentioned flavor. Our flavored
results match excellent with the lattice results.

In this paper, we had calculated the dissociation tem-
peratures for the bottomonium states (Υ, Υ󸀠, 𝜒𝑏, etc.), by
modifying the Cornell potential and incorporating the quasi-
particle Debye mass. On that dissociation temperature, we
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Figure 2: Plots of 𝑃/𝑇4 as a function of 𝑇/𝑇𝑐 for 3-flavor QGP (extreme left figure) for EOS1 [13–15] and for EOS2 [16] (extreme right figure).
In each figure, solid line represents the results obtained from Bannur EoS, dashed line represents the results from our EoS, and diamond
symbols represent lattice results [17–21].
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Figure 3: Plots of 𝜀/𝑇4 as a function of 𝑇/𝑇𝑐 for our EoS (using quasi-particle Debye mass) and lattice results [17–21] for 3-flavor QGP
(extreme left figure) for EoS1 [13–15] and for EOS2 [16] (extreme right figure). The notations are the same as Figure 2.

had calculated the screening energy densities, 𝜖𝑠, and the
speed of sound 𝑐2𝑠 which are also listed in Tables 1 and
2 for both EoS1 and EoS2, respectively. We observe from
Tables 1 and 2 that the value of 𝜖𝑠 is different for different
bottomonium states and varies from one EoS to other. If 𝜖𝑠 ≳𝜖𝑖, initial energy density, then there will be no suppression
at all, i.e., survival probability, 𝑆(𝑝𝑇), is equal to 1. With this
physical understanding, we analyze our results, ⟨𝑆(𝑝𝑇)⟩, as a
function of the number of participants𝑁𝑃𝑎𝑟𝑡 in an expanding
QGP.

Here we are using the values as inputs listed in Tables
1 and 2, to calculate ⟨𝑆(𝑝𝑇)⟩ for both EOS1 and EOS2,
respectively.The experimental data (the nuclear modification
factor 𝑅𝐴𝐴) are shown by the squares with error bars whereas
circles represent sequential suppression. We had compared
our results with the experimental results for the case of 𝜂/𝑠 =0.08 for both EoS1 and EoS2 and found good agreement. We
observe from Figures 5–10 that ⟨𝑆(𝑝𝑇)⟩ for both the directly
and sequentially produced Upsilon (Υ) are quite high with
the higher values of 𝑇𝐷’s which is obtained from EOS2 (in
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Figure 5: The variation of 𝑝𝑇 integrated survival probability versus 𝑁 for Υ at √𝑆𝑁𝑁= 2.76 TeV with preliminary CMS data [22]. The
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using the value of 𝑇𝐷’s and related parameters from Tables 1 and 2 for ideal equation of state. Left panel shows EoS1 and right panel shows
EoS2.

Table 2) compared to EOS1 (in Table 1) for both SIQGP and
ideal equation of states. We find that the survival probability
of sequentially produced Υ is slightly higher compared to
the directly produced Υ and is closer to the experimental
results. We also observed that sequentially producedΥ nicely
matches for the EOS1 compared to the EOS2. The smaller
value of screening energy density 𝜖𝑠 causes an increase in the
screening time and results inmore suppression tomatch with
the experimental results.

7. Conclusions

We studied the equation of state for strongly interacting
quark-gluon plasma in the framework of strongly coupled
plasma with appropriate modifications to take account of
color and flavor degrees of freedom and QCD running
coupling constant. In addition, we incorporate the nonper-
turbative effects in terms of nonzero string tension in the
deconfined phase, unlike the Coulomb interactions alone
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Figure 7: Same as Figure 5 but the variation of 𝑝𝑇 integrated survival probability versus𝑁 for Υ at√𝑆𝑁𝑁= 200 GeV with preliminary STAR
data [24].

in the deconfined phase beyond the critical temperature.
Our results on thermodynamic observables,namely, pressure,
energy density, and speed of sound, nicely fit the results of
lattice equation of state. We had then calculated the disso-
ciation temperatures for the bottomonium states (Υ, Υ󸀠, 𝜒𝑏,
etc.), by incorporating the quasi-particle Debyemass. On that
dissociation temperature, we had calculated the screening
energy densities, 𝜖𝑠, and the speed of sound 𝑐2𝑠 which are
listed in Tables 1 and 2 for both EoS1 and EoS2, respec-
tively. By using the above quantities as an input, we have
then studied the sequential suppression for bottomonium

states at the LHC energy in a longitudinally expanding
partonic system, which underwent through the successive
preequilibrium and equilibriumphases in the presence of dis-
sipative forces. Bottomonium suppression in nucleus-nucleus
collisions compared to 𝑝-𝑝 collisions couples the in-medium
properties of the bottomonia states with the dynamics of
the expanding medium. We have found a good agreement
with the experimental data from RHIC 200GeV/nucleon Au-
Au collisions, LHC 2.76 TeV/nucleon Pb-Pb, and LHC 5.02
TeV/nucleon Pb-Pb collisions [52, 53]. Here our attempt is
to understand Υ suppression systematically in SIQGP in
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Figure 9: Same as Figure 8 but the variation of 𝑝𝑇 integrated survival probability versus𝑁 for Υ at √𝑆𝑁𝑁= 5.02 TeV with preliminary CMS
data [23].

anisotropic medium. It would be of interest to extend the
present study by incorporating the contributions of the bulk
viscosity. These issues will be taken up separately in the near
future.
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We investigate the novel possibilities of hybrid textures comprising a vanishing minor (or element) and two equal elements (or
cofactors) in light neutrino mass matrix 𝑀]. Such type of texture structures leads to sixty phenomenological cases each, out of
which only fifty-six are viable with texture containing a vanishing minor and an equality between the elements in𝑀], while fifty
are found to be viable with texture containing a vanishing element and an equality of cofactors in𝑀] under the current experimental
test at 3𝜎 confidence level. Detailed numerical analysis of all the possible cases has been presented.

1. Introduction

During the last two decades, our knowledge regarding
the neutrino sector has been enriched to a great extent,
thanks to solar, atmospheric, reactor, and accelerator based
experiments which convincingly reveal that neutrinos have
nonzero and nondegenerate masses and can convert from
one flavor to another. While the developments over the past
two decades have brought out a coherent picture of neutrino
mixing, there are still several intriguing issues without which
our understanding of neutrino physics remains incomplete.
For instance, the present available data does not throw
any light on the neutrino mass spectrum, which may be
normal/inverted and may even be degenerate. In addition,
nature of neutrino mass whether Dirac or Majorana particle,
determination of absolute neutrino mass, leptonic CP viola-
tion, andDiracCPphase 𝛿 are still open issues. Also the infor-
mation regarding the lightest neutrino mass has to be sharp-
ened further to pinpoint the specific possibility of neutrino
mass spectrum.

After the precise measurement of reactor mixing angle𝜃13 in T2K, MINOS, Double Chooz, Daya Bay, and RENO
experiments [1–5], five parameters in the neutrino sector have
been well measured by neutrino oscillation experiments. In
general, there are nine parameters in the lightest neutrinos
mass matrix. The remaining four unknown parameters may
be taken as the lightest neutrinomass, the Dirac CP-violating

phase, and two Majorana phases. The Dirac CP-violating
phase is expected to bemeasured in future long baseline neu-
trino experiments, and the lightest mass can be determined
from beta decay and cosmological experiments. If neutrino-
less double-beta decay (0]𝛽𝛽) is detected, a combination of
the twoMajorana phases can also be probed. Clearly, the cur-
rently available data onneutrinomasses andmixing are insuf-
ficient for an unambiguous reconstruction of neutrino mass
matrices.

In the lack of a convincing fermion flavor theory, several
phenomenological ansatz have been proposed in the litera-
ture as some elements of neutrinomassmatrix are considered
to be zero or equal [6–26] or some cofactors of neutrino
mass matrix are considered to be either zero or equal [6, 27–
35]. The main motivation for invoking different mass matrix
ansatz is to relate fermion masses and mixing angles in a
testablemannerwhich reduces the number of free parameters
in the neutrinomassmatrix. In particular,massmatrices with
zero textures (or cofactors) have been extensively studied [10–
26, 29–35] due to their connections to flavor symmetries.
In addition, texture specific mass matrices with one zero
element (orminor) and an equality between two independent
elements (or cofactors) have also been studied in the literature
[7–9, 27, 28]. Out of sixty possibilities, only fifty-four are
found to be compatible with the neutrino oscillation data [9]
for texture structures having one zero element and an equal
matrix elements in the neutrino mass matrix (also known as
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hybrid texture), while for texture with one vanishing minor
and an equal cofactors in the neutrino mass matrix (also
known as inverse hybrid texture) only fifty-two cases are able
to survive the data [27, 28].

In the present paper, we propose the novel possibilities
of hybrid textures where we assume one texture zero and an
equality between the cofactors (referred as typeX) or one zero
minor and an equality between the elements (referred as type
Y) in the Majorana neutrino mass matrix 𝑀]. Such type of
texture structures sets two conditions on the parameter space
and hence reduces the number of free parameters to seven.
Therefore the proposed texture structures are as predictive as
texture two zeros and any other hybrid textures.

In [6], it is demonstrated that an equality between the
elements of 𝑀] can be realized through type-II seesaw
mechanism [36–40] while an equality between cofactors of𝑀] can be generated from type-I seesaw mechanism [41–
44]. The zeros element (or minor) in 𝑀] can be obtained
using 𝑍𝑛 flavor symmetry [29–35, 45]. Therefore the viable
cases of proposed hybrid texture can be realized within the
framework of seesaw mechanism.

In the present work, we have systematically investigated
all the of sixty possible cases belonging to type X and type
Y structures, respectively. We have studied the implication of
these textures forDirac CP-violating phase (𝛿) and twoMajo-
rana phases (𝜌, 𝜎). We, also, calculate the effective Majorana
mass and lowest neutrino mass for all viable hybrid textures
belonging to type X and type Y structures. In addition, we
present the correlation plots between different parameters of
the hybrid textures of neutrinos for 3𝜎 allowed ranges of the
known parameters.

The layout of the paper is planned as follows: in
Section 2, we shall discuss the methodology to obtain the
constraint equations. Section 3 is devoted to numerical anal-
ysis. Section 4 will summarize our result.

2. Methodology

Before proceeding further, we briefly underline the method-
ology relating the elements of the mass matrices to those
of the mixing matrix. In the flavor basis, where the charged
lepton mass matrix is diagonal, the Majorana neutrino mass
matrix can be expressed as

𝑀] = 𝑃𝑙𝑈𝑃]𝑀diag𝑃𝑇
] 𝑈𝑇𝑃𝑇

𝑙 , (1)

where 𝑀diag = diag(𝑚1, 𝑚2, 𝑚3) is the diagonal matrix of
neutrino masses and 𝑈 is the flavor mixing matrix and

𝑃] = (𝑒𝑖𝜌 0 00 𝑒𝑖𝜎 00 0 1) ,
𝑃𝑙 = (𝑒𝑖𝜙𝑒 0 00 𝑒𝑖𝜙𝜇 00 0 𝑒𝑖𝜙𝜏),

(2)

where 𝑃] is diagonal phase matrix containing Majorana
neutrinos 𝜌, 𝜎. 𝑃𝑙 is unobservable phase matrix and depends
on phase convention. Equation (1) can be rewritten as

𝑀] = (𝑀𝑒𝑒 𝑀𝑒𝜇 𝑀𝑒𝜏𝑀𝑒𝜇 𝑀𝜇𝜇 𝑀𝜇𝜏𝑀𝑒𝜏 𝑀𝜇𝜏 𝑀𝜏𝜏

)
= 𝑃𝑙𝑈(𝜆1 0 00 𝜆2 00 0 𝜆3

)𝑈𝑇𝑃𝑇
𝑙 ,

(3)

where 𝜆1 = 𝑚1𝑒2𝑖𝜌, 𝜆2 = 𝑚2𝑒2𝑖𝜎, and 𝜆3 = 𝑚3. For the
present analysis, we consider the following parameterization
of 𝑈 [46]:𝑈
= ( 𝑐12𝑐13 𝑠12𝑐13 𝑠13−𝑐12𝑠23𝑠13 − 𝑠12𝑐23𝑒−𝑖𝛿 −𝑠12𝑠23𝑠13 + 𝑐12𝑐23𝑒−𝑖𝛿 𝑠23𝑐13−𝑐12𝑐23𝑠13 + 𝑠12𝑠23𝑒−𝑖𝛿 −𝑠12𝑐23𝑠13 − 𝑐12𝑠23𝑒−𝑖𝛿 𝑐23𝑐13), (4)

where 𝑐𝑖𝑗 = cos 𝜃𝑖𝑗 and 𝑠𝑖𝑗 = sin 𝜃𝑖𝑗. Here, 𝑈 is a 3 × 3 unitary
matrix consisting of three flavor mixing angles (𝜃12, 𝜃23, 𝜃13)
and one Dirac CP-violating phase 𝛿.

For the illustration of typeX andY structures, we consider
a case 𝐴1, satisfying following conditions:𝐶11 = 𝑀𝜇𝜇𝑀𝜏𝜏 −𝑀𝜇𝜏𝑀𝜇𝜏 = 0, (5)

and 𝑀𝑒𝜇 −𝑀𝑒𝜏 = 0, (6)

for type X, while in case of type Y, it contains𝑀𝑒𝑒 = 0 (7)

and 𝐶12 − 𝐶13 = 0, (8)

or (−1) . (𝑀𝑒𝜏𝑀𝜏𝜏 −𝑀𝜇𝜏𝑀𝑒𝜏) − (𝑀𝑒𝜇𝑀𝜇𝜏 −𝑀𝜇𝜇𝑀𝑒𝜏)= 0, (9)

where 𝐶𝑖𝑗 denotes cofactor corresponding to 𝑖𝑡ℎ row and 𝑗𝑡ℎ
column. Then 𝐴1 can be denoted in a matrix form as

(0 Δ ΔΔ × ×Δ × ×) , (10)

where “Δ” stands for nonzero and equal elements (or cofac-
tors), while “0” stands for vanishing element (or minor) in
neutrino mass matrix. “×” stands for arbitrary elements.
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2.1. One Vanishing Minor with Two Equal Elements of 𝑀].
Using (1), any element𝑀𝑝𝑞 in the neutrino mass matrix can
be expressed in terms of mixing matrix elements as

𝑀𝑝𝑞 = 𝑒𝑖(𝜙𝑝+𝜙𝑞) ∑
𝑖=1,2,3

𝑈𝑝𝑖𝑈𝑞𝑖𝜆𝑖, (11)

where 𝑝, 𝑞 run over e, 𝜇, and 𝜏, and 𝑒𝑖(𝜙𝑝+𝜙𝑞) is phase factor.
The existence of a zero minor in the Majorana neutrino

mass matrix implies𝑀𝑝𝑞𝑀𝑟𝑠 −𝑀𝑡𝑢𝑀V𝑤 = 0 (12)

The above condition yields a complex equation as

∑
𝑖,𝑗=1,2,3

(𝑒𝑖(𝜙𝑝+𝜙𝑞+𝜙𝑟+𝜙𝑠)𝑈𝑝𝑖𝑈𝑞𝑖𝑈𝑟𝑗𝑈𝑠𝑗

− 𝑒𝑖(𝜙𝑡+𝜙𝑢+𝜙V+𝜙𝑤)𝑈𝑡𝑖𝑈𝑢𝑖𝑈V𝑗𝑈𝑤𝑗) 𝜆𝑖𝜆𝑗 = 0, (13)

It is observed that for any cofactor there is an inherent
property as 𝜙𝑝 +𝜙𝑞 +𝜙𝑟 +𝜙𝑠 = 𝜙𝑡 +𝜙𝑢 +𝜙V +𝜙𝑤. Thus we can
extract this total phase factor from the bracket in (13).

Hence (13) can be rewritten as𝑋3𝜆1𝜆2 + 𝑋1𝜆2𝜆3 + 𝑋2𝜆3𝜆1 = 0, (14)

where𝑋𝑘 = (𝑈𝑝𝑖𝑈𝑞𝑖𝑈𝑟𝑗𝑈𝑠𝑗 − 𝑈𝑡𝑖𝑈𝑢𝑖𝑈V𝑗𝑈𝑤𝑗) + (𝑖 ←→ 𝑗) , (15)

with (𝑖, 𝑗, 𝑘) as the cyclic permutation of (1, 2, 3).
On the other hand, the condition of two equal elements

in𝑀] yields following:𝑀𝑎𝑏 −𝑀𝑐𝑑 = 0. (16)

Equation (16) yields a following complex equation:∑
𝑖=1,2,3

(𝑃1𝑈𝑎𝑖𝑈𝑏𝑖 − 𝑃2𝑈𝑐𝑖𝑈𝑑𝑖) 𝜆𝑖 = 0, (17)

where 𝑃1 = 𝑒𝑖(𝜙𝑎+𝜙𝑏) and 𝑃2 = 𝑒𝑖(𝜙𝑐+𝜙𝑑).
Or ∑

𝑖=1,2,3

(𝑃𝑈𝑎𝑖𝑈𝑏𝑖 − 𝑈𝑐𝑖𝑈𝑑𝑖) 𝜆𝑖 = 0 (18)

where 𝑃 ≡ 𝑃1/𝑃2 = 𝑒𝑖(𝑎+𝑏−𝑐−𝑑) and 𝑎, 𝑏, 𝑐, and 𝑑 run over 𝑒, 𝜇,
and 𝜏.

Equation (18) can be rewritten as𝑌1𝜆1 + 𝑌2𝜆2 + 𝑌3𝜆3 = 0 (19)

where𝑌1 = (𝑃𝑈𝑎1𝑈𝑏1−𝑈𝑐1𝑈𝑑1),𝑌2 = (𝑃𝑈𝑎2𝑈𝑏2−𝑈𝑐2𝑈𝑑2), and𝑌3 = (𝑃𝑈𝑎3𝑈𝑏3 − 𝑈𝑐3𝑈𝑑3).
Solving (14) and (19) simultaneously leads to the following

complex mass ratio in terms of (𝜆13)±:
(𝜆13)+ = − (𝑌1𝑋1 − 𝑌2𝑋2 + 𝑌3𝑋3 + √𝐶)2𝑌1𝑋3

, (20)

and

(𝜆13)− = − (𝑌1𝑋1 − 𝑌2𝑋2 + 𝑌3𝑋3 − √𝐶)2𝑌1𝑋3

. (21)

Using (14), (20), and (21), we obtain the relations for complex
mass ratio in terms of (𝜆23)±

(𝜆23)+ = −𝑋2𝑋3

× 𝑌1𝑋1 − 𝑌2𝑋2 + 𝑌3𝑋3 + √𝐶−𝑌1𝑋1 − 𝑌2𝑋2 + 𝑌3𝑋3 + √𝐶, (22)

and

(𝜆23)− = −𝑋2𝑋3

× 𝑌1𝑋1 − 𝑌2𝑋2 + 𝑌3𝑋3 − √𝐶−𝑌1𝑋1 − 𝑌2𝑋2 + 𝑌3𝑋3 − √𝐶, (23)

where𝐶 = (−𝑌1𝑋1+𝑌2𝑋2+𝑌3𝑋3)2−4𝑋2𝑋3𝑌2𝑌3 and (𝜆13)± ≡(𝜆1/𝜆3)± and (𝜆23)± ≡ (𝜆2/𝜆3)±. The magnitudes of the two
neutrino mass ratios in (20), (21), (22), and (23) are given by𝜉± = |(𝜆13)±| and 𝜁± = |(𝜆23)±|, while the Majorana CP-
violating phases 𝜌 and 𝜎 can be given as 𝜌 = (1/2)arg(𝜆13)±,𝜎 = (1/2)arg(𝜆23)±.
2.2. One Vanishing Element with Two Equal Cofactors of𝑀].
If one of the elements of𝑀] is considered zero [e.g.,𝑀𝛼𝛽 = 0],
we obtain the following constraint equation:∑

𝑖=1,2,3

𝑈𝛼𝑖𝑈𝛽𝑖𝜆𝑖 = 0, (24)

or 𝜆1𝐴1 + 𝜆2𝐴2 + 𝜆3𝐴3 = 0, (25)

where 𝐴1 = 𝑈𝛼1𝑈𝛽1, 𝐴2 = 𝑈𝛼2𝑈𝛽2, and 𝐴3 = 𝑈𝛼3𝑈𝛽3.
The condition for two equal cofactors [e.g., 𝐶𝑚𝑛 = 𝐶𝑚󸀠𝑛󸀠]

in neutrino mass matrix implies(−1)𝑚+𝑛 (𝑀𝑎𝑏𝑀𝑐𝑑 −𝑀𝑒𝑓𝑀𝑔ℎ)− (−1)𝑚󸀠+𝑛󸀠 (𝑀𝑎󸀠𝑏󸀠𝑀𝑐󸀠𝑑󸀠 −𝑀𝑒󸀠𝑓󸀠𝑀𝑔󸀠ℎ󸀠) = 0, (26)

or ∑
𝑖,𝑗=1,2,3

{(−1)𝑚+𝑛 (𝑄3𝑈𝑎𝑖𝑈𝑏𝑖𝑈𝑐𝑗𝑈𝑑𝑗 − 𝑄4𝑈𝑒𝑖𝑈𝑓𝑖𝑈𝑔𝑗𝑈ℎ𝑗)
− (−1)𝑚󸀠+𝑛󸀠

⋅ (𝑄5𝑈𝑎󸀠𝑖𝑈𝑏󸀠𝑖𝑈𝑐󸀠𝑗𝑈𝑑󸀠𝑗 − 𝑄6𝑈𝑒󸀠𝑖𝑈𝑓󸀠𝑖𝑈𝑔󸀠𝑗𝑈ℎ󸀠𝑗)} 𝜆𝑖𝜆𝑗= 0,
(27)

where 𝑄3 = 𝑄4 and 𝑄5 = 𝑄6 due to inherent property of any
cofactor. Thus we can write∑

𝑖,𝑗=1,2,3

{(−1)𝑚+𝑛 𝑄3 (𝑈𝑎𝑖𝑈𝑏𝑖𝑈𝑐𝑗𝑈𝑑𝑗 − 𝑈𝑒𝑖𝑈𝑓𝑖𝑈𝑔𝑗𝑈ℎ𝑗)
− (−1)𝑚󸀠+𝑛󸀠

⋅ 𝑄5 (𝑈𝑎󸀠𝑖𝑈𝑏󸀠𝑖𝑈𝑐󸀠𝑗𝑈𝑑󸀠𝑗 − 𝑈𝑒󸀠𝑖𝑈𝑓󸀠𝑖𝑈𝑔󸀠𝑗𝑈ℎ󸀠𝑗)} 𝜆𝑖𝜆𝑗= 0,
(28)
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or ∑
𝑖,𝑗=1,2,3

{(−1)𝑚+𝑛 𝑄(𝑈𝑎𝑖𝑈𝑏𝑖𝑈𝑐𝑗𝑈𝑑𝑗 − 𝑈𝑒𝑖𝑈𝑓𝑖𝑈𝑔𝑗𝑈ℎ𝑗)
− (−1)𝑚󸀠+𝑛󸀠 (𝑈𝑎󸀠𝑖𝑈𝑏󸀠𝑖𝑈𝑐󸀠𝑗𝑈𝑑󸀠𝑗 − 𝑈𝑒󸀠𝑖𝑈𝑓󸀠𝑖𝑈𝑔󸀠𝑗𝑈ℎ󸀠𝑗)}⋅ 𝜆𝑖𝜆𝑗 = 0,

(29)

where 𝑄 ≡ 𝑄3/𝑄5 = 𝑒𝑖(𝜙𝑎+𝜙𝑏+𝜙𝑐+𝜙𝑑−𝜙
𝑎󸀠

−𝜙
𝑏󸀠
−𝜙
𝑐󸀠
−𝜙
𝑑󸀠

).
Equation (29) can be rewritten as𝜆1𝜆2𝐵3 + 𝜆2𝜆3𝐵1 + 𝜆3𝜆1𝐵2 = 0, (30)

where𝐵𝑘= (−1)𝑚+𝑛 𝑄(𝑈𝑎𝑖𝑈𝑏𝑖𝑈𝑐𝑗𝑈𝑑𝑗 − 𝑈𝑒𝑖𝑈𝑓𝑖𝑈𝑔𝑗𝑈ℎ𝑗) ,− (−1)𝑚󸀠+𝑛󸀠 (𝑈𝑎󸀠𝑖𝑈𝑏󸀠𝑖𝑈𝑐󸀠𝑗𝑈𝑑󸀠𝑗 − 𝑈𝑒󸀠𝑖𝑈𝑓󸀠𝑖𝑈𝑔󸀠𝑗𝑈ℎ󸀠𝑗)+ (𝑖 ←→ 𝑗) ,
(31)

with (𝑖, 𝑗, 𝑘) a cyclic permutation of (1, 2, 3).
Solving (25) and (30) simultaneously we obtain the

analytical expressions of (𝜆13)±
(𝜆13)+ = − (𝐵1𝐴1 − 𝐵2𝐴2 + 𝐵3𝐴3 + √𝐷)2𝐵1𝐴3

, (32)

and

(𝜆13)− = − (𝐵1𝐴1 − 𝐵2𝐴2 + 𝐵3𝐴3 − √𝐷)2𝐵1𝐴3

. (33)

Using (30), (32), and (33), we get the relations for complex
mass ratio in terms of (𝜆23)±

(𝜆23)+ = −𝐵2𝐵3

× (𝐵1𝐴1 − 𝐵2𝐴2 + 𝐵3𝐴3 + √𝐷)(−𝐵1𝐴1 − 𝐵2𝐴2 + 𝐵3𝐴3 + √𝐷), (34)

and

(𝜆23)− = −𝐵2𝐵3

× (𝐵1𝐴1 − 𝐵2𝐴2 + 𝐵3𝐴3 − √𝐷)(−𝐵1𝐴1 − 𝐵2𝐴2 + 𝐵3𝐴3 − √𝐷), (35)

where𝐷 = (−𝐵1𝐴1 + 𝐵2𝐴2 + 𝐵3𝐴3)2 − 4𝐴2𝐴3𝐵2𝐵3.
Themagnitudes of the two neutrino mass ratios are given

by 𝜉± = |(𝜆13)±| and 𝜁± = |(𝜆23)±|, while the Majorana CP-
violating phases 𝜌 and 𝜎 can be given as 𝜌 = (1/2)arg(𝜆13)±,𝜎 = (1/2)arg(𝜆23)±.

The solar and atmospheric mass-squared differences
(𝛿𝑚2, Δ𝑚2), where 𝛿𝑚2 corresponds to solar mass-squared
difference and Δ𝑚2 corresponds to atmospheric mass-
squared difference, can be defined as [8]𝛿𝑚2 = (𝑚2

2 − 𝑚2
1) , (36)

Δ𝑚2 = 𝑚2
3 − 12 (𝑚2

1 + 𝑚2
2) . (37)

The sign of Δ𝑚2 is still unknown: Δ𝑚2 > 0 or Δ𝑚2 < 0
implies normal mass spectrum (NS) or inverted mass spec-
trum (IS). The lowest neutrino mass (𝑚0) is 𝑚1 for NS and𝑚3 for IS. The experimentally determined solar and atmo-
spheric neutrino mass-squared differences can be related
to 𝜉 and 𝜁 as

𝑅] ≡ 𝛿𝑚2󵄨󵄨󵄨󵄨Δ𝑚2󵄨󵄨󵄨󵄨 = 2 (𝜁2 − 𝜉2)󵄨󵄨󵄨󵄨2 − (𝜁2 + 𝜉2)󵄨󵄨󵄨󵄨 , (38)

and the three neutrino masses can be determined using
following relations:

𝑚3 = √ 𝛿𝑚2𝜁2 − 𝜉2 ,𝑚2 = 𝑚3𝜁,𝑚1 = 𝑚3𝜉.
(39)

From the analysis, it is found that cases belonging to
type X (or type Y) exhibit the identical phenomenological
implications and are related through permutation symmetry
[36–40, 46]. This corresponds to permutation of the 2-3
rows and 2-3 columns of𝑀].The corresponding permutation
matrix can be given by

𝑃23 = (1 0 00 0 10 1 0) . (40)

With the help of permutation symmetry, one obtains the fol-
lowing relations among the neutrino oscillation parameters:𝜃𝑙

12 = 𝜃𝑚
12,𝜃𝑙

23 = 90∘ − 𝜃𝑚
23,𝜃𝑙

13 = 𝜃𝑚
13,𝛿𝑙 = 𝛿𝑚 − 180∘,

(41)

where 𝑙 and 𝑚 denote the cases related by 2-3 permutation.
The following pairs among sixty possibilities of type X (or
type Y) are related via permutation symmetry:(𝐴1, 𝐴1) ;(𝐴2, 𝐴8) ;(𝐴3, 𝐴7) ;(𝐴4, 𝐴6) ;(𝐴5, 𝐴5) ;(𝐴9, 𝐴10) ;(𝐵1, 𝐶1) ;(𝐵2, 𝐶7) ;(𝐵3, 𝐶6) ;
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(𝐵4, 𝐶5) ;(𝐵5, 𝐶4) ;(𝐵6, 𝐶3)(𝐵7, 𝐶2) ;(𝐵8, 𝐶10) ;(𝐵9, 𝐶9) ;(𝐵10, 𝐶8) ;(𝐷1, 𝐹2) ;(𝐷2, 𝐹1) ;(𝐷3, 𝐹4) ;(𝐷4, 𝐹3) ;(𝐷5, 𝐹5) ;(𝐷6, 𝐹9) ;(𝐷7, 𝐹8) ;(𝐷8, 𝐹7) ;(𝐷9, 𝐹6) ;(𝐷10, 𝐹10) ;(𝐸1, 𝐸2) ;(𝐸3, 𝐸4) ;(𝐸5, 𝐸5) ;(𝐸6, 𝐸9) ;(𝐸7, 𝐸8) ;(𝐸10, 𝐸10) .
(42)

Clearly we are left with only thirty-two independent
cases. It is worthwhile mentioning that 𝐴1, 𝐴5, 𝐸5, and 𝐸10

are invariant under the permutations of 2- and 3-rows and
columns.

3. Numerical Analysis

The experimental constraints on neutrino parameters at 3𝜎
confidence level (CL) are given in Table 1. The effective
Majorana mass relevant for neutrinoless double-beta (0]𝛽𝛽)
decay is given by

|𝑀|𝑒𝑒 = 󵄨󵄨󵄨󵄨󵄨𝑚1𝑐212𝑐213𝑒2𝑖𝜌 + 𝑚2𝑠212𝑐213𝑒2𝑖𝜎 + 𝑚3𝑠213󵄨󵄨󵄨󵄨󵄨 . (43)

This effective mass is just the absolute value of 𝑀𝑒𝑒 compo-
nent of the neutrino mass matrix. The observation of 0]𝛽𝛽

Table 1: Current neutrino oscillation parameters from global fits at
3𝜎 confidence level (CL) [47, 48]. NS(IS) refers to normal (inverted)
neutrino mass spectrum.

Parameter Best Fit 3𝜎𝛿𝑚2 [10−5𝑒𝑉2] 7.50 7.03 - 8.09|Δ𝑚2
31| [10−3𝑒𝑉2] (NS) 2.52 2.407 - 2.643|Δ𝑚2
31| [10−3𝑒𝑉2] (IS) 2.52 2.39 - 2.63𝜃12 33.56∘ 31.3∘ - 35.99∘𝜃23 (NS) 41.6∘ 38.4∘ - 52.8∘𝜃23 (IS) 50.0∘ 38.8∘ - 53.1∘𝜃13 (NS) 8.46∘ 7.99∘ - 8.90∘𝜃13 (IS) 8.49∘ 8.03∘ - 8.93∘𝛿 (NS) 261∘ 0∘ - 360∘𝛿 (IS) 277∘ 145∘ - 391∘

would establish neutrinos to be Majorana particles. Data
fromKamLAND-Zen experiment has presented an improved
search for neutrinoless double-beta (0]𝛽𝛽) decay [49–51] and
it is found that |𝑀|𝑒𝑒 < (0.061−0.165)𝑒𝑉 at 90% (or< 2𝜎) CL.
For recent reviews on 0]𝛽𝛽 decay, see [49–51].

In the present analysis, we consider more conservative
upper bound on |𝑀|𝑒𝑒, i.e., |𝑀|𝑒𝑒 < 0.5𝑒𝑉 at 3𝜎 CL [52].
We span the parameter space of input neutrino oscillation
parameters (𝜃12, 𝜃23, 𝜃13, Δ𝑚2, Δ𝑚2) lying in their 3𝜎 ranges
by randomly generating points of the order of 107. Since the
Dirac CP-violating phase 𝛿 is experimentally unconstrained
at 3𝜎 level, therefore, we vary 𝛿 within its full possible
range [0∘, 360∘]. Using (38) and the experimental inputs
on neutrino mixing angles and mass-squared differences,
the parameter space of 𝛿, 𝜌, 𝜎 and |𝑀|𝑒𝑒, and 𝑚0 can be
subsequently constrained.

In Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 we demon-
strate the correlations for𝐴1,𝐵2,𝐷7, and𝐸1 cases. Since there
are large numbers of viable cases, therefore it is not practically
possible to show all the plots. We have simply taken arbitrary
independent cases from each category for the purpose of
illustration of our results.Thepredictions regarding threeCP-
violating phases (𝜌, 𝜎, 𝛿), effective neutrino mass |𝑀|𝑒𝑒, and
lowest neutrino mass 𝑚𝑜 for all the allowed cases of type X
and type Y textures have been encapsulated in Tables 3, 4,
5, and 6. Before proceeding further, it is worth pointing out
that the phenomenological results for 𝜌, 𝜎, 𝛿, |𝑀|𝑒𝑒, and 𝑚𝑜

have been obtained using the two possible solutions of 𝜆13

and 𝜆23, respectively [ (20), (21), (22), and (23)]. All the sixty
phenomenologically possible cases belonging to type X and
type Y texture structures have been divided into six categories
A, B, C, D, E, and F (Table 2). Among them a large number
of cases are found to overlap in their predictions regarding 𝛿,𝜌, 𝜎|𝑀|𝑒𝑒, and𝑚0 and are related via permutation symmetry
as pointed out earlier.Themain results and the discussion are
summarized as follows.

Category A. In Category A, all the ten cases 𝐴1, 𝐴2, 𝐴3,𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐴9, and 𝐴10 are found to be viable with
the data at 3𝜎 CL for type X structure, and normal mass
spectrum (NS) remainS ruled out for all these cases (Table 3).
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Figure 1: Correlation plots for texture𝐴1 (IS) for type X at 3 𝜎CL.The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 aremeasured in degrees,
while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 2: Correlation plots for texture 𝐴1 (NS) for type Y at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 3: Correlation plots for texture 𝐵2 (NS) for type X at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 4: Correlation plots for texture𝐵2 (IS) for type X at 3 𝜎CL.The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 aremeasured in degrees,
while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 5: Correlation plots for texture 𝐵2 (NS) for type Y at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 6: Correlation plots for texture 𝐵2 (IS) for type Y at 3 𝜎CL.The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 aremeasured in degrees,
while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 7: Correlation plots for texture 𝐷7 (NS) for type X at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 8: Correlation plots for texture𝐷7 (IS) for type X at 3 𝜎CL.The symbols have their usualmeaning. 𝛿, 𝜌, and 𝜎 aremeasured in degrees,
while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 9: Correlation plots for texture 𝐷7 (NS) for type Y at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 10: Correlation plots for texture 𝐷7 (IS) for type Y at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Figure 11: Correlation plots for texture 𝐸1 (NS) for type X at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units..
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Figure 12: Correlation plots for texture 𝐸1 (IS) for type Y at 3 𝜎 CL. The symbols have their usual meaning. 𝛿, 𝜌, and 𝜎 are measured in
degrees, while |𝑀|𝑒𝑒 and𝑚0 are in eV units.
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Table 2: All the sixty phenomenological possible cases belonging to types X and Y, respectively, have been shown. P and Q are unobservable
phases associated with types X and Y, respectively.

Cases X P Y Q𝐴1 𝐶11 = 0, 𝑀12 = 𝑀13 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀11 = 0, 𝐶12 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐴2 𝐶11 = 0, 𝑀12 = 𝑀22, 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀11 = 0, 𝐶12 = 𝐶22 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐴3 𝐶11 = 0, 𝑀13 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀11 = 0, 𝐶13 = 𝐶23 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐴4 𝐶11 = 0, 𝑀22 = 𝑀23 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀11 = 0, 𝐶22 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐴5 𝐶11 = 0, 𝑀22 = 𝑀33 𝑒2𝑖(𝜙𝜇−𝜙𝜏) 𝑀11 = 0, 𝐶22 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝜇)𝐴6 𝐶11 = 0, 𝑀23 = 𝑀33 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀11 = 0, 𝐶23 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐴7 𝐶11 = 0, 𝑀12 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀11 = 0, 𝐶12 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐴8 𝐶11 = 0, 𝑀13 = 𝑀33 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀11 = 0, 𝐶13 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐴9 𝐶11 = 0, 𝑀13 = 𝑀22 𝑒𝑖(𝜙𝑒+𝜙𝜏−2𝜙𝜇) 𝑀11 = 0, 𝐶13 = 𝐶22 𝑒𝑖(−𝜙𝑒−𝜙𝜏+2𝜙𝜇)𝐴10 𝐶11 = 0, 𝑀12 = 𝑀33 𝑒𝑖(𝜙𝑒+𝜙𝜇−2𝜙𝜏) 𝑀11 = 0, 𝐶12 = 𝐶33 𝑒𝑖(−𝜙𝑒−𝜙𝜇+2𝜙𝜏)𝐵1 𝐶12 = 0, 𝑀11 = 𝑀13 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀12 = 0, 𝐶11 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐵2 𝐶12 = 0, 𝑀12 = 𝑀22 𝑒𝑖(𝜙𝑒+𝜙𝜏−2𝜙𝜇) 𝑀12 = 0, 𝐶12 = 𝐶22 𝑒𝑖(2𝜙𝜇−𝜙𝑒−𝜙𝜏)𝐵3 𝐶12 = 0, 𝑀13 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀12 = 0, 𝐶13 = 𝐶23 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐵4 𝐶12 = 0, 𝑀13 = 𝑀33 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀12 = 0, 𝐶13 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐵5 𝐶12 = 0, 𝑀11 = 𝑀22 𝑒2𝑖(𝜙𝑒−𝜙𝜇) 𝑀12 = 0, 𝐶11 = 𝐶22 𝑒2𝑖(𝜙𝜇−𝜙𝑒)𝐵6 𝐶12 = 0, 𝑀11 = 𝑀23 𝑒𝑖(2𝜙𝑒−𝜙𝜇−𝜙𝜏) 𝑀12 = 0, 𝐶11 = 𝐶23 𝑒𝑖(−2𝜙𝑒+𝜙𝜇+𝜙𝜏)𝐵7 𝐶12 = 0, 𝑀11 = 𝑀33 𝑒2𝑖(𝜙𝑒−𝜙𝜏) 𝑀12 = 0, 𝐶11 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝑒)𝐵8 𝐶12 = 0, 𝑀22 = 𝑀23 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀12 = 0, 𝐶22 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐵9 𝐶12 = 0, 𝑀22 = 𝑀33 𝑒2𝑖(𝜙𝜇−𝜙𝜏) 𝑀12 = 0, 𝐶22 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝜇)𝐵10 𝐶12 = 0, 𝑀23 = 𝑀33 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀12 = 0, 𝐶23 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐶1 𝐶13 = 0, 𝑀11 = 𝑀12 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀13 = 0, 𝐶11 = 𝐶12 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐶2 𝐶13 = 0, 𝑀11 = 𝑀22 𝑒2𝑖(𝜙𝑒−𝜙𝜇) 𝑀13 = 0, 𝐶11 = 𝐶22 𝑒2𝑖(𝜙𝜇−𝜙𝑒)𝐶3 𝐶13 = 0, 𝑀11 = 𝑀23 𝑒𝑖(2𝜙𝑒−𝜙𝜇−𝜙𝜏) 𝑀13 = 0, 𝐶11 = 𝐶23 𝑒𝑖(−2𝜙𝑒+𝜙𝜇+𝜙𝜏)𝐶4 𝐶13 = 0, 𝑀11 = 𝑀33 𝑒2𝑖(𝜙𝑒−𝜙𝜏) 𝑀13 = 0, 𝐶11 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝑒)𝐶5 𝐶13 = 0, 𝑀12 = 𝑀22 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀13 = 0, 𝐶12 = 𝐶22 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐶6 𝐶13 = 0, 𝑀12 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀13 = 0, 𝐶12 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐶7 𝐶13 = 0, 𝑀12 = 𝑀33 𝑒𝑖(𝜙𝑒−𝜙𝜇−2𝜙𝜏) 𝑀13 = 0, 𝐶12 = 𝐶33 𝑒𝑖(−𝜙𝑒+𝜙𝜇+2𝜙𝜏)𝐶8 𝐶13 = 0, 𝑀22 = 𝑀23 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀13 = 0, 𝐶22 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐶9 𝐶13 = 0, 𝑀22 = 𝑀33 𝑒2𝑖(𝜙𝜇−𝜙𝜏) 𝑀13 = 0, 𝐶22 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝜇)𝐶10 𝐶13 = 0, 𝑀23 = 𝑀33 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀13 = 0, 𝐶23 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐷1 𝐶22 = 0, 𝑀11 = 𝑀12 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀22 = 0, 𝐶11 = 𝐶12 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐷2 𝐶22 = 0, 𝑀11 = 𝑀13 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀22 = 0, 𝐶11 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐷3 𝐶22 = 0, 𝑀11 = 𝑀23 𝑒𝑖(2𝜙𝑒−𝜙𝜇−𝜙𝜏) 𝑀22 = 0, 𝐶11 = 𝐶23 𝑒𝑖(−2𝜙𝑒+𝜙𝜇+𝜙𝜏)𝐷4 𝐶22 = 0, 𝑀11 = 𝑀33 𝑒2𝑖(𝜙𝑒−𝜙𝜏) 𝑀22 = 0, 𝐶11 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝑒)𝐷5 𝐶22 = 0, 𝑀12 = 𝑀13 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀22 = 0, 𝐶12 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐷6 𝐶22 = 0, 𝑀12 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀22 = 0, 𝐶12 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐷7 𝐶22 = 0, 𝑀12 = 𝑀33 𝑒𝑖(𝜙𝑒+𝜙𝜇−2𝜙𝜏) 𝑀22 = 0, 𝐶12 = 𝐶33 𝑒𝑖(−𝜙𝑒−𝜙𝜇+2𝜙𝜏)𝐷8 𝐶22 = 0, 𝑀13 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀22 = 0, 𝐶13 = 𝐶23 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐷9 𝐶22 = 0, 𝑀13 = 𝑀33 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀22 = 0, 𝐶13 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐷10 𝐶22 = 0, 𝑀23 = 𝑀33 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀22 = 0, 𝐶23 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐸1 𝐶23 = 0, 𝑀11 = 𝑀12 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀23 = 0, 𝐶11 = 𝐶12 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐸2 𝐶23 = 0, 𝑀11 = 𝑀13 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀23 = 0, 𝐶11 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐸3 𝐶23 = 0, 𝑀11 = 𝑀22 𝑒2𝑖(𝜙𝑒−𝜙𝜇) 𝑀23 = 0, 𝐶11 = 𝐶22 𝑒2𝑖(𝜙𝜇−𝜙𝑒)𝐸4 𝐶23 = 0, 𝑀11 = 𝑀33 𝑒2𝑖(𝜙𝑒−𝜙𝜏) 𝑀23 = 0, 𝐶11 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝑒)𝐸5 𝐶23 = 0, 𝑀12 = 𝑀13 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀23 = 0, 𝐶12 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐸6 𝐶23 = 0, 𝑀12 = 𝑀22 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀23 = 0, 𝐶12 = 𝐶22 𝑒𝑖(𝜙𝜇−𝜙𝑒)
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Table 2: Continued.

Cases X P Y Q𝐸7 𝐶23 = 0, 𝑀13 = 𝑀33 𝑒𝑖(𝜙𝑒−𝜙𝜇−2𝜙𝜏) 𝑀23 = 0, 𝐶13 = 𝐶33 𝑒𝑖(−𝜙𝑒+𝜙𝜇+2𝜙𝜏)𝐸8 𝐶23 = 0, 𝑀13 = 𝑀22 𝑒𝑖(𝜙𝑒−𝜙𝜏−2𝜙𝜇) 𝑀23 = 0, 𝐶13 = 𝐶22 𝑒𝑖(−𝜙𝑒+𝜙𝜏+2𝜙𝜇)𝐸9 𝐶23 = 0, 𝑀13 = 𝑀33 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀23 = 0, 𝐶13 = 𝐶33 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐸10 𝐶23 = 0, 𝑀22 = 𝑀33 𝑒2𝑖(𝜙𝜇−𝜙𝜏) 𝑀23 = 0, 𝐶22 = 𝐶33 𝑒2𝑖(𝜙𝜏−𝜙𝜇)𝐹1 𝐶33 = 0, 𝑀11 = 𝑀12 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀33 = 0, 𝐶11 = 𝐶12 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐹2 𝐶33 = 0, 𝑀11 = 𝑀13 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀33 = 0, 𝐶11 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐹3 𝐶33 = 0, 𝑀11 = 𝑀22 𝑒2𝑖(𝜙𝑒−𝜙𝜇) 𝑀33 = 0, 𝐶11 = 𝐶22 𝑒2𝑖(𝜙𝜇−𝜙𝑒)𝐹4 𝐶33 = 0, 𝑀11 = 𝑀23 𝑒𝑖(2𝜙𝑒−𝜙𝜇−𝜙𝜏) 𝑀33 = 0, 𝐶11 = 𝐶23 𝑒𝑖(−2𝜙𝑒+𝜙𝜇+𝜙𝜏)𝐹5 𝐶33 = 0, 𝑀12 = 𝑀13 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀33 = 0, 𝐶12 = 𝐶13 𝑒𝑖(𝜙𝜏−𝜙𝜇)𝐹6 𝐶33 = 0, 𝑀12 = 𝑀22 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀33 = 0, 𝐶12 = 𝐶22 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐹7 𝐶33 = 0, 𝑀12 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜏) 𝑀33 = 0, 𝐶12 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝑒)𝐹8 𝐶33 = 0, 𝑀13 = 𝑀22 𝑒𝑖(𝜙𝑒+𝜙𝜏−2𝜙𝜇) 𝑀33 = 0, 𝐶13 = 𝐶22 𝑒𝑖(−𝜙𝑒−𝜙𝜏+2𝜙𝜇)𝐹9 𝐶33 = 0, 𝑀13 = 𝑀23 𝑒𝑖(𝜙𝑒−𝜙𝜇) 𝑀33 = 0, 𝐶13 = 𝐶23 𝑒𝑖(𝜙𝜇−𝜙𝑒)𝐹10 𝐶33 = 0, 𝑀22 = 𝑀23 𝑒𝑖(𝜙𝜇−𝜙𝜏) 𝑀33 = 0, 𝐶22 = 𝐶23 𝑒𝑖(𝜙𝜏−𝜙𝜇)

On the other hand, only four 𝐴1, 𝐴4, 𝐴5, and 𝐴6 seem to be
viable with current oscillation data for type Y, while inverted
mass spectrum (IS) is ruled out for these cases.

For both types X and Y, no noticeable constraint has been
found on the parameter space of CP-violating phases (𝜌, 𝜎, 𝛿).
For type X, all the viable cases predict the value of |𝑀|𝑒𝑒
in the range of 0.01eV to 0.05eV. This prediction lies well
within the sensitivity limit of neutrinoless double-beta decay
experiments [49–51]. On the other hand, for type Y, |𝑀|𝑒𝑒
is predicted to be zero implying that neutrinoless double-
beta decay is forbidden. Also the lower bound on lowest
neutrino mass (𝑚𝑜) is found to be extremely small (∼ 10−3

or less) for all the viable cases of type X and type Y structure
(Table 3). For the purpose of illustration, we have presented
the correlation plots for𝐴1 indicating the parameter space of𝜌, 𝜎, 𝛿, |𝑀|𝑒𝑒, and lowest neutrino mass (𝑚𝑜) (Figures 1 and
2).

Category B (C). In Category B, all the ten possible cases are
allowed for both type X and type Y structure, respectively,
at 3𝜎 CL (Table 4). Cases 𝐵2,3,4,5,8,9,10 allow both NS and IS
for type X, while cases 𝐵1,2,3,4,5,8,9,10 allow both NS and IS for
type Y. As mentioned earlier, cases of Category B are related
to cases belonging to Category C via permutation symmetry;
therefore we can obtain the results for Category C from B by
using (41).

Type X cases 𝐵1 (IS), 𝐵2 (IS), 𝐵3 (NS, IS), 𝐵4 (IS), 𝐵5 (NS,
IS), 𝐵7 (NS), 𝐵8 (IS), 𝐵9 (NS, IS), 𝐵10 (IS), 𝐶1 (IS), 𝐶2(IS),𝐶4(IS), 𝐶5(NS, IS), 𝐶6(NS, IS), 𝐶7 (NS), 𝐶8 (IS), 𝐶8 (IS), 𝐶9

(NS, IS), and 𝐶10(IS) cover literally the complete range of𝛿. However, for 𝐵2 (NS), 𝐵4 (NS), 𝐵6(NS), 𝐵8(NS), 𝐵10(NS),𝐶3(NS),𝐶5(NS),𝐶7(NS),𝐶8(NS), and𝐶10(NS) the parameter
space of 𝛿 is found to be reduced to an appreciable extent
(Table 4).

On the other hand, type Y cases 𝐵1 (NS), 𝐵2(NS), 𝐵3 (NS,
IS),𝐵4 (NS),𝐵5(NS, IS),𝐵7(IS),𝐵8(NS),𝐵9 (NS, IS),𝐵10 (NS),𝐶1 (NS),𝐶2 (NS),𝐶4 (NS),𝐶5 (NS, IS),𝐶6(NS, IS),𝐶7 (IS),𝐶8

(NS),𝐶8 (NS),𝐶9 (NS, IS), and𝐶10 (NS) cover approximately

the complete range of 𝛿. For 𝐵1(IS), 𝐵2(IS), 𝐵4(IS), 𝐵6(IS),𝐵8(IS), 𝐵10(IS), 𝐶1(IS), 𝐶3(IS), 𝐶5(IS), 𝐶7(IS), 𝐶8(IS), and𝐶10(IS), the parameter space of 𝛿 is found to be constricted
(Table 4).

From the analysis, it is found that textures 𝐵2, 𝐵4, 𝐶5, and𝐶7 belonging to type X predict near maximal Dirac type
CP violation (i.e., 𝛿 ≈ 900 and 2700) for NS. In addition,
the Majorana phases 𝜌 and 𝜎 are found to be very close
to 00 for these cases. On the other hand, in case of type
Y, 𝐵1, 𝐵2, 𝐵4, 𝐵6, 𝐶1, 𝐶4, 𝐶5 and 𝐶7 show almost similar con-
straints on the parameter space for 𝛿 however for opposite
mass spectrum (Table 4). In Figures 3, 4, 5, and 6, we have
complied the correlation plots for case 𝐵2 for both types X
andY comprising the unknown parameters 𝜌, 𝜎, 𝛿, |𝑀|𝑒𝑒, and
lowest neutrino mass (𝑚𝑜). As explicitly shown in Figures
3(a), 3(b), and 6(b), 𝛿 ≈ 900 and 2700, while 𝜌, 𝜎 ≈ 00. The
correlation plots between |𝑀|𝑒𝑒 and 𝑚𝑜 have been encapsu-
lated in Figures 3(c), 4(c), 5(c), and 6(c).Theplots indicate the
strong linear relation correlation between these parameters
and, in addition, the lower bound on both the parameters is
somewhere in the range from 0.001 to 0.01 eV.The prediction
for the allowed space of |𝑀|𝑒𝑒 for all the cases of category B is
given in Table 4.

Category D (F). In Category D, only nine cases are acceptable
with neutrino oscillation data at 3𝜎 CL for both type X and
type Y structures, respectively, while case 𝐷8 is excluded for
both of them (Table 5). Cases 𝐷1, 𝐷2, 𝐷4, 𝐷5, 𝐷6, 𝐷7, and𝐷9 show both NS and IS for type X and type Y, respectively,
while 𝐷3 and 𝐷10 are acceptable for IS (NS) and NS(IS),
respectively, in case of type X (type Y) structure. Similarly, the
results for cases belonging toCategory F can be obtained from
Category D since both are related via permutation symmetry.
It is found that only nine cases are allowed with data in
category F, while 𝐹7 is excluded at 3𝜎 CL.

Cases 𝐷1(NS), 𝐷2 (NS, IS), 𝐷3(IS), 𝐷4(NS), 𝐷5(NS,
IS), 𝐷6(NS), 𝐷7(NS), 𝐷9(NS), 𝐷10(NS), 𝐹1(NS), 𝐹2 (NS,
IS), 𝐹3(IS), 𝐹4(NS), 𝐹5(NS, IS), 𝐹6(NS), 𝐹7(NS), 𝐹9(NS), and
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Table 3:The allowed ranges of Dirac CP-violating phase 𝛿, theMajorana phases 𝜌, 𝜎, effective neutrinomass |𝑀|𝑒𝑒, and lowest neutrinomass𝑚0 for the experimentally allowed cases of Category A at 3𝜎 CL. The predictions corresponding to (𝜆13)− and (𝜆23)− neutrino mass ratios
have been put into brackets.

X Y
Cases NS IS NS IS𝐴1 × 𝜌 = −900 − −720 ⊕ 720 − 900 𝜌 = −900 − 900 ×× = (−900 − −720 ⊕ 720 − 900) = (−900 − 900) ×× 𝜎 = −900 − 900 𝜎 = −900 − 900 ×× = (−900 − 900) = (−900 − 900) ×× 𝛿 = 00 − 93.20 ⊕ 116.60 − 247.70 ⊕ 268.80 − 3600 𝛿 = 00 − 3600 ×× = (00 − 166.270 ⊕ 191.980 − 3600) = (00 − 3600) ×× |𝑀|𝑒𝑒 = 0.0114 − 0.0540 |𝑀|𝑒𝑒 = 0.0 ×× 𝑚0 = 0.000820 − 0.0470 𝑚0 = 0.00155 − 0.0103 ×𝐴2(𝐴8) × 𝜌 = −85.60 − −76.30 ⊕ 76.40 − 85.60 × ×× = (−85.40 − −78.10 ⊕ 78.20 − 85.10) × ×× 𝜎 = −70.10 − −43.10 ⊕ 43.10 − 700 × ×× = (−70.10 − −44.20 ⊕ 43.30 − 760) × ×× 𝛿 = 00 − 3600 × ×× = (00 − 3600) × ×× |𝑀|𝑒𝑒 = 0.0273 − 0.0489 × ×× 𝑚0 = 0.000820 − 0.0484 × ×𝐴3(𝐴7) × 𝜌 = −81.940 − −75.90 ⊕ 75.40 − 81.930 × ×× = (−82.40 − −77.10 ⊕ 76.90 − 820) × ×× 𝜎 = −70.10 − −52.10 ⊕ 50.470 − 66.410 × ×× = (−720 − −54.20 ⊕ 53.30 − 730) × ×× 𝛿 = 00 − 3600 × ×× = (00 − 3600) × ×× |𝑀|𝑒𝑒 = 0.0308 − 0.0451 × ×× 𝑚0 = 0.000969 − 0.00187 × ×𝐴4(𝐴6) × 𝜌 = −89.80 − −71.20 ⊕ 71.10 − 89.90 𝜌 = −900 − 900 ×× = (−900 − −72.10 ⊕ 720 − 900) = (−900 − 900) ×× 𝜎 = −900 − 900 𝜎 = −900 − 900 ×× = (−900 − 900) = (−900 − 900) ×× 𝛿 = 29.780 − 89.640 ⊕ 148.60 − 2080 ⊕ 269.80 − 3290 𝛿 = 00 − 3600 ×× = (00−29.780⊕90.980−151.640⊕208.60−2710⊕329.80−3600) 𝛿 = 00 − 3600 ×× |𝑀|𝑒𝑒 = 0.0108 − 0.0501 |𝑀|𝑒𝑒 = 0.0 ×× 𝑚0 = 0.000904 − 0.00440 𝑚0 = 0.00143 − 0.0103 ×𝐴5(𝐴5) × 𝜌 = −900 − −710 ⊕ 710 − 900 𝜌 = −900 − −42.30 ⊕ 41.50 − 900 ×× = (−900 − −71.20 ⊕ 720 − 900) = (−56.60 − 56.70) ×× 𝜎 = −900 − 900 𝜎 = −62.50 − 62.40 ×× = (−900 − 900) = (−900 − −41.20 ⊕ 41.40 − 900) ×× 𝛿 = 00 − 440 ⊕ 920 − 1620 ⊕ 1980 − 2680 ⊕ 3270 − 3600 𝛿 = 00 − 3600 ×× = (27.360 − 109.30 ⊕ 147.90 − 209.370 ⊕ 250.70 − 3310) = 00 − 3600 ×× |𝑀|𝑒𝑒 = 0.0113 − 0.0500 |𝑀|𝑒𝑒 = 0.0 ×× 𝑚0 = 0.000822 − 0.00440 𝑚0 = 0.00306 − 0.0105 ×𝐴9(𝐴10) × 𝜌 = −84.20 − −74.530 ⊕ 73.520 − 84.20 × ×× = (−84.20 − −750 ⊕ 750 − 85.10) × ×× 𝜎 = −74.830 − −50.30 ⊕ 50.10 − 73.40 × ×× = (−750 − −50.30 ⊕ 50.10 − 750) × ×× 𝛿 = 00 − 3600 × ×× = (00 − 3600) × ×× |𝑀|𝑒𝑒 = 0.0293 − 0.0469 × ×× 𝑚0 = 0.000940 − 0.00190 × ×
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𝐹10(NS) predict literally no constraints on 𝛿 for typeX texture.
These cases give identical predictions for type Y as well,
however for opposite mass ordering. On the other hand,
for cases 𝐷6(IS), 𝐷4(IS), 𝐷7 (IS), 𝐷9 (IS), 𝐹3(IS), 𝐹6 (IS),𝐹8 (IS), and 𝐹9(IS), 𝛿 is notably constrained for type X and
similar observations have been found for these cases in type
Y, however for opposite mass ordering (Table 5).

It is found that textures 𝐷7 (IS), 𝐷9 (IS), 𝐹6 (IS), and 𝐹8

(IS) belonging to typeXpredict nearmaximalDiracCP viola-
tion (i.e., 𝛿 ≈ 900 and 2700). In addition, theMajorana phases𝜌 and 𝜎 are found to be very close to 00 for these cases. The
similar predictions hold for these cases belonging to type Y
structure however for opposite mass spectrum.

The prediction on the allowed range of |𝑀|𝑒𝑒 for all the
cases of category D is provided in Table 5. As an illustration,
in Figures 7, 8, 9, and 10 we have complied the correlation
plots for case 𝐷7 for type X and type Y structures. Figures
7(a), 7(b), 10(a), and 10(b) indicate no constraint on 𝛿, 𝜌, 𝜎 for
NS(IS) corresponding to type X (type Y) structure at 3𝜎 CL.
On the other hand, 𝛿 ≈ 900 and 2700, while 𝜌 and 𝜎 approach
to 00 for IS in case of type X structure (Figure 8). However,
similar predictions for 𝛿, 𝜌, 𝜎 have been observed for type
Y, however for NS (Figure 9). In Figures 7(c), 8(c), 9(c), and
10(c), we have presented the correlation plots between |𝑀|𝑒𝑒
and𝑚0 indicating the linear correlation.

Category E. In Category E, only eight out of ten cases are
allowed with experimental data for both type X and type
Y structures at 3𝜎 CL (Table 6). Cases 𝐸7 and 𝐸8 are ruled
out for both type X and type Y structures. Only 𝐸5 and 𝐸10

favor both NS and IS, while rest of the cases favor either
NS or IS for type X and type Y structure (Table 6). From
Table 6, it is clear that𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5, 𝐸10 cover literally full
range of 𝛿 for type X. Same cases show identical prediction
for type Y, however for opposite mass spectrum. For NS,
cases 𝐸1, 𝐸2, 𝐸5, 𝐸9, 𝐸10 belonging to type X predict the lower
bound on effective mass |𝑀|𝑒𝑒 to be zero, while for IS,
cases 𝐸3, 𝐸4, 𝐸5, 𝐸10 predict larger lower bound (greater than
0.01eV) on |𝑀|𝑒𝑒 (Table 6). However for type Y, all these cases
show larger lower bound on |𝑀|𝑒𝑒 (≥ 0.01eV) for bothNS and
IS.

For the purpose of illustration, we have presented the
correlation plots for 𝐸1 indicating the parameter space of𝜌, 𝜎, 𝛿, |𝑀|𝑒𝑒, and lowest neutrino mass (𝑚𝑜) (Figures 11 and
12). As shown in Figures 11 and 12, 𝜌, 𝜎, 𝛿 remain literally
unconstrained for both type X and type Y structures. In
addition, there is a linear correlation among 𝜌, 𝜎, and 𝛿 at
3𝜎 CL for type X structure (Table 6). Figure 11(c) indicates
the strong linear correlation between |𝑀|𝑒𝑒 and 𝑚𝑜 and, in
addition, the lower bound on |𝑀|𝑒𝑒 is predicted to be zero.

4. Summary and Conclusion

To summarize, we have discussed the novel possibilities of
hybrid textures in the flavor basis wherein the assumption of
either one zero minor and an equality between the elements
or one zero element and an equality between the cofactors
in the Majorana neutrino mass matrix is considered. Out of

sixty phenomenologically possible cases, only 56 are found to
be viable for type X, while only 50 are viable with the present
data for type Y at 3𝜎 CL. Therefore, out of 120 only 106 cases
are found to be viable with the existing data. However only 38
seems to restrict the parametric space of CP-violating phases𝛿, 𝜌, and 𝜎, while 16 out of these predict near maximal Dirac
CP violation, i.e., 𝛿 ≃ 900, 2700. The allowed parameter space
for effective mass term |𝑀|𝑒𝑒 related to neutrinoless double-
beta decay and lowest neutrino mass term for all viable cases
have been carefully studied. The present viable cases may be
derived from the discrete symmetry. However the symmetry
realization for each case in a systematic and self-consistent
way deserves fine-grained research. The viability of these
cases suggests that there are still rich unexplored structures
of the neutrinomassmatrix fromboth the phenomenological
and the theoretical points of view.

To conclude our discussion, we would like to add that
the hybrid textures comprising either one zero element and
an equality between the elements or one zero minor and
an equality between the cofactors lead to 106 viable cases;
therefore there are now total 212 viable cases pertaining to the
hybrid textures of𝑀] in the flavor basis. Since most of these
cases overlap in their predictions regarding the experimen-
tally undetermined parameters, therefore we expect that only
the future long baseline experiments, neutrinoless double-
beta decay experiments, and cosmological observations could
help us select the appropriate structure of mass texture.
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We examine the expansions of the solutions of the general Heun equation in terms of the Gauss hypergeometric functions. We
present several expansions using functions, the forms of which differ from those applied before. In general, the coefficients of the
expansions obey three-term recurrence relations. However, there exist certain choices of the parameters for which the recurrence
relations become two-term. The coefficients of the expansions are then explicitly expressed in terms of the gamma functions.
Discussing the termination of the presented series, we show that the finite-sum solutions of the general Heun equation in terms
of generally irreducible hypergeometric functions have a representation through a single generalized hypergeometric function.
Consequently, the power-series expansion of the Heun function for any such case is governed by a two-term recurrence relation.

1. Introduction

The general Heun equation [1–3], which is the most general
second-order linear ordinary differential equation having
four regular singular points, is currently widely encountered
in physics andmathematics research (see, e.g., [1–14] and ref-
erences therein). However, this equation is much less studied
than its immediate predecessor, the Gauss hypergeometric
equation, which is the most general equation having three
regular singular points. A reason for the slow progress in the
development of the theory is that the solutions of the Heun
equation (as well as its four confluent reductions) in general
are not expressed in terms of definite or contour integrals
involving simpler functions [2, 3]. Furthermore, the con-
vergence regions of power-series expansions near different
singularities are rather restricted and several complications
arise in studying the relevant connection problems [2, 3,
15]. Another general problematic point is that the power-
series solutions of the Heun equation are governed by three-
term recurrence relations between successive coefficients of
expansions [1–3], instead of two-term ones appearing in

the hypergeometric case [16–18]. As a result, in general the
coefficients are not determined explicitly.

In the present paper, we show that there exist some
particular choices of the involved parameters for which the
recurrence relations governing the power-series expansions
become two-term. In these cases the solution of the general
Heun equation can be written either as a linear combination
of a finite number of the Gauss hypergeometric functions or
in terms of a single generalized hypergeometric function.This
is a main result of the present paper.

Another major result we report here is that in the case
of the expansions of the solutions of the Heun equation in
terms of hypergeometric functions there also exist particular
choices of the involved parameters for which the governing
three-term recurrence relations for expansion coefficients
become two-term. In these cases the coefficients are explicitly
written in terms of the gamma functions.

Expansions of the solutions of the Heun equation in
terms of the Gauss hypergeometric functions 2𝐹1, initiated
by Svartholm [19], suggest a notable extension of the series
technique. This is a useful approach applicable to many
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differential equations including those of more general type
whose nature, outside a certain region of the extended
complex plane containing only two regular singular points,
is not necessary to be specified exactly. Expansions involving
functions other than powers have been applied to the general
and confluentHeun equations bymany authors.The ordinary
hypergeometric [19–25], confluent hypergeometric [26–29],
Coulomb wave functions [30, 31], Bessel and Hankel func-
tions [32], incomplete Beta and Gamma functions [33–35],
Hermite functions [36, 37], Goursat and Appell generalized
hypergeometric functions of two variables of the first kind
[38, 39], and other known special functions have been used
as expansion functions. A useful property suggested by these
expansions is the possibility of deriving finite-sum solutions
by means of termination of the series.

As far as the expansions of the general Heun equation in
terms of the hypergeometric functions are concerned, in the
early papers by Svartholm [19], Erdélyi [20, 21], and Schmidt
[22], the intuitive intention was to apply hypergeometric
functions with parameters so chosen as to match the Heun
equation as closely as possible. For this reason they used func-
tions of the form 2𝐹1(𝜆 + 𝑛, 𝜇 − 𝑛; 𝛾; 𝑧), which have matching
behavior in two singular points, 𝑧 = 0 and 1. These functions
have the following Riemann 𝑃-symbol representation:

𝑃( 0 1 ∞0 0 𝜆 + 𝑛 𝑧1 − 𝛾 1 − 𝛿 𝜇 − 𝑛 ) . (1)

Here 𝜆 and 𝜇may adopt several values provided 1 + 𝜆 + 𝜇 =𝛾 + 𝛿 (see [25]). It is clear that the functions have matching
characteristic exponents at 𝑧 = 0 and 𝑧 = 1, and their
behavior does not match that of the Heun function at the
third singular point of the hypergeometric equation 𝑧 = ∞.

However, it has been shown that one can also use
functions that have matching behavior at only one singular
point [38]. Exploring this idea, in the present paperwe discuss
the hypergeometric expansions of the solutions of the Heun
equation in terms of functions of the form 2𝐹1(𝛼, 𝛽; 𝛾0 ±𝑛; 𝑧)
which havematching behavior (i.e., characteristic exponents)
only at the singular point 𝑧 = ∞. These functions are
presented by the Riemann 𝑃-symbol

𝑃( 0 1 ∞0 0 𝛼 𝑧1 − (𝛾0 ± 𝑛) 1 − (𝛿0 ∓ 𝑛) 𝛽 ) , (2)

where 1 + 𝛼 + 𝛽 = 𝛾0 + 𝛿0, and the parameters 𝛾0, 𝛿0 are
chosen so that the Fuchsian condition for the general Heun
equation (3), i.e., 1 + 𝛼 + 𝛽 = 𝛾 + 𝛿 + 𝜀, is fulfilled: 𝛾0 + 𝛿0 =𝛾+𝛿+𝜀. Note that these functions differ also from the Jacobi-
polynomials used by Kalnins andMiller whose functions can
be written in terms of hypergeometric functions of the form
2𝐹1(𝜆 + 𝑛, 𝜇 − 𝑛; ] + 2𝑛; 𝑧) [23].

In the present paper we discuss several expansions in
terms of thementioned hypergeometric functions. In general,
the coefficients of the expansions obey three-term recurrence
relations similar to those known fromprevious developments

[19–25]. However, for certain choices of the involved param-
eters the recurrence relations reduce to two-term ones. In
these exceptional cases the coefficients of the expansions are
explicitly calculated. The result is expressed in terms of the
gamma functions.

Discussing the conditions for deriving finite-sum solu-
tions by means of termination of the presented series, we
show that the termination is possible if a singularity of the
Heun equation is an apparent one. Furthermore, we show that
any finite-sum solution of the general Heun equation derived
in this way has a representation through a single generalized
hypergeometric function 𝑝𝐹𝑞. The general conclusion is then
that in any such case the power-series expansion of the
Heun function is governed by a two-term recurrence relation
(obviously, this is the relation obeyed by the corresponding
power-series for 𝑝𝐹𝑞).
2. Hypergeometric Expansions

Thegeneral Heun equation written in its canonical form is [1]

𝑑2𝑢𝑑𝑧2 + (𝛾𝑧 + 𝛿𝑧 − 1 + 𝜀𝑧 − 𝑎) 𝑑𝑢𝑑𝑧 + 𝛼𝛽𝑧 − 𝑞𝑧 (𝑧 − 1) (𝑧 − 𝑎)𝑢= 0, (3)

where the parameters satisfy the Fuchsian relation 1+𝛼+𝛽 =𝛾+𝛿+𝜀.We introduce an expansion of this equation’s solution
of the form

𝑢 = ∞∑
𝑛=0

𝑐𝑛 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾0 + 𝑛; 𝑧) (4)

with the involved Gauss hypergeometric functions obeying
the equation

𝑑2𝑢𝑛𝑑𝑧2 + (𝛾0 + 𝑛𝑧 + 𝛿 + 𝜀 + 𝛾 − 𝛾0 − 𝑛𝑧 − 1 ) 𝑑𝑢𝑛𝑑𝑧
+ 𝛼𝛽𝑧 (𝑧 − 1)𝑢𝑛 = 0.

(5)

Substitution of (4)-(5) into (3) gives

∑
𝑛

𝑐𝑛 [(𝛾 − 𝛾0 − 𝑛𝑧 − 𝜀 + 𝛾 − 𝛾0 − 𝑛𝑧 − 1 + 𝜀𝑧 − 𝑎) 𝑑𝑢𝑛𝑑𝑧
+ 𝛼𝛽𝑎 − 𝑞𝑧 (𝑧 − 1) (𝑧 − 𝑎)𝑢𝑛] = 0

(6)

or ∑
𝑛

𝑐𝑛 {[(𝑎 − 1) (𝜀 + 𝛾 − 𝛾0 − 𝑛) 𝑧
− 𝑎 (𝛾 − 𝛾0 − 𝑛) (𝑧 − 1)] 𝑑𝑢𝑛𝑑𝑧 + (𝛼𝛽𝑎 − 𝑞)
⋅ 𝑢𝑛} = 0.

(7)
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Now, using the following relations between the involved
hypergeometric functions [16–18]:

𝑧𝑑𝑢𝑛𝑑𝑧 = 𝛾𝑛−1 [𝑢𝑛−1 − 𝑢𝑛] , (8)

(𝑧 − 1) 𝑑𝑢𝑛𝑑𝑧 = −𝛿𝑛+1𝑢𝑛 + (𝛿𝑛+1 − 𝛼𝛽𝛾𝑛 )𝑢𝑛+1, (9)

where 𝛾𝑛 = 𝛾0 + 𝑛 and 𝛿𝑛 = 𝛿 + 𝜀 + 𝛾 − 𝛾𝑛, this equation is
rewritten as

∑
𝑛

𝑐𝑛 [(𝑎 − 1) (𝜀 + 𝛾 − 𝛾𝑛) (𝛾𝑛 − 1) [𝑢𝑛−1 − 𝑢𝑛]
+ 𝑎 (𝛾 − 𝛾𝑛) ((𝛿𝑛 − 1) 𝑢𝑛 − (𝛿𝑛 − 1 − 𝛼𝛽𝛾𝑛 )𝑢𝑛+1)
+ (𝛼𝛽𝑎 − 𝑞) 𝑢𝑛] = 0,

(10)

from which we get a three-term recurrence relation for the
coefficients of the expansion (4)

𝑅𝑛𝑐𝑛 + 𝑄𝑛−1𝑐𝑛−1 + 𝑃𝑛−2𝑐𝑛−2 = 0 (11)

with

𝑅𝑛 = (𝑎 − 1) (𝜀 + 𝛾 − 𝛾𝑛) (𝛾𝑛 − 1) , (12)

𝑄𝑛 = −𝑅𝑛 + 𝑎 (𝛾 − 𝛾𝑛) (𝛼 + 𝛽 − 𝛾𝑛) + (𝛼𝛽𝑎 − 𝑞) , (13)

𝑃𝑛 = 𝑎𝛾𝑛 (𝛾 − 𝛾𝑛) (𝛼 − 𝛾𝑛) (𝛽 − 𝛾𝑛) . (14)

From the initial conditions 𝑐0 = 1 and 𝑐−1 = 𝑐−2 = 0we get (𝜀+𝛾−𝛾0)(𝛾0−1) = 0. Since 𝛾0 = 1 is forbidden (it causes division
by zero at 𝑛 = 1 in 𝑃−1) we obtain that the only possibility is𝛾0 = 𝜀 + 𝛾. Hence, the expansion finally reads

𝑢 = ∞∑
𝑛=0

𝑐𝑛 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾 + 𝜀 + 𝑛; 𝑧) , (15)

and the coefficients of the three-term recurrence relation (11)
are

𝑅𝑛 = (1 − 𝑎) 𝑛 (𝜀 + 𝛾 + 𝑛 − 1) , (16)

𝑄𝑛 = −𝑅𝑛 + 𝑎 (1 + 𝑛 − 𝛿) (𝑛 + 𝜀) + (𝑎𝛼𝛽 − 𝑞) , (17)

𝑃𝑛
= − 𝑎𝑛 + 𝜀 + 𝛾 (𝑛 + 𝜀) (𝑛 + 𝜀 + 𝛾 − 𝛼) (𝑛 + 𝜀 + 𝛾 − 𝛽) . (18)

The expansion applies if 𝛼, 𝛽, and 𝛾 + 𝜀 are not zero or
negative integers. The restrictions on 𝛼 and 𝛽 assure that
the hypergeometric functions are not polynomials of fixed
degree.

The derived expansion terminates if two successive coef-
ficients vanish. If 𝑐𝑁 is the last nonzero coefficient and 𝑐𝑁+1 =

𝑐𝑁+2 = 0 for some𝑁 = 0, 1, 2, . . ., we obtain from (11) that it
should be 𝑃𝑁 = 0 so that the termination is possible if

𝜀 = −𝑁
or 𝜀 + 𝛾 − 𝛼 = −𝑁
or 𝜀 + 𝛾 − 𝛽 = −𝑁. (19)

Note that the equation 𝑐𝑁+1 = 0 results in a polynomial
equation of degree𝑁 + 1 for the accessory parameter 𝑞. This
equation is convenient for rewriting the recurrence relation
(11) in the following matrix form:

[[[[[[[[[

𝑄0 𝑅1 0𝑃0 𝑄1 𝑅2 00 𝑃1 𝑄2 𝑅3
d d d0 𝑃𝑁−1 𝑄𝑁

]]]]]]]]]

[[[[[[[[[[

𝑐0𝑐1𝑐2...𝑐𝑁

]]]]]]]]]]
=
[[[[[[[[[[

000...0

]]]]]]]]]]
. (20)

The vanishing of the determinant of the above matrix gives
the polynomial equation for 𝑞 defining in general𝑁+1 values
for which the termination occurs.

One may consider a mirror expansion

𝑢 = ∞∑
𝑛=0

𝑐𝑛 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾0 − 𝑛; 𝑧) , (21)

which differs from expansion (4) only by the sign of 𝑛 in the
lower parameter of the involved hypergeometric functions.
This change of the sign leads to a three-term recurrence
relation (11) with the coefficients

𝑅𝑛 = 𝑎𝛾0 − 𝑛 (𝛾 − 𝛾0 + 𝑛) (𝛼 − 𝛾0 + 𝑛) (𝛽 − 𝛾0 + 𝑛) , (22)

𝑄𝑛 = −𝑃𝑛 + 𝑎 (𝛾 − 𝛾0 + 𝑛) (𝛼 + 𝛽 − 𝛾0 + 𝑛) + 𝛼𝛽𝑎− 𝑞, (23)

𝑃𝑛 = (𝑎 − 1) (𝜀 + 𝛾 − 𝛾0 + 𝑛) (𝛾0 − 𝑛 − 1) , (24)

where

𝛾0 = 𝛾 or 𝛼 or 𝛽. (25)

This expansion applies if 𝛼 and 𝛽 are not zero or negative
integers and 𝛾 is not an integer.

In order for the series to terminate at some 𝑛 = 𝑁 we put𝑃𝑁 = 0 so that this time we derive

𝜀, 𝜀 + 𝛾 − 𝛼
or 𝜀 + 𝛾 − 𝛽 = −𝑁 (26)

for the expansions with 𝛾0 = 𝛾 or 𝛼 or 𝛽, respectively. Then
the equation 𝑐𝑁+1 = 0 again gives a (𝑁+1)-degree polynomial
equation for those values of the accessory parameter 𝑞 for
which the termination occurs.
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3. Finite-Sum Hypergeometric Solutions

It is readily shown that the finite-sum solutions derived
from the above two types of expansions by the described
termination procedure coincide, as can be expected because
of apparent symmetry. For example, consider the expansion
(15) in the case 𝜀 = −𝑁. The involved hypergeometric
functions have the form 𝑢𝑛 = 2𝐹1(𝛼, 𝛽, 𝛾−𝑁+𝑛; 𝑧). Since 𝑛 =0, 1, . . . , 𝑁, we see that the set of the involved hypergeometric
functions is exactly the same as in the case of the second type
expansion (21) with 𝛾0 = 𝛾 : { 2𝐹1(𝛼, 𝛽, 𝛾; 𝑧), 2𝐹1(𝛼, 𝛽, 𝛾 −1; 𝑧), . . . , 2𝐹1(𝛼, 𝛽, 𝛾 − 𝑁; 𝑧)}. Furthermore, examination of
(20) shows that the equation for the accessory parameter 𝑞
and the expansion coefficients are also the same for the two
expansions.The same happens to other two cases: 𝜀 + 𝛾 − 𝛼 =−𝑁 and 𝜀 + 𝛾 − 𝛽 = −𝑁. Thus, while different in general, the
expansions (15)-(18) and (21)-(25) lead to the same finite-sum
closed-form solutions.

Consider the explicit forms of these solutions examin-
ing, for definiteness, the expansion (15)-(18). An immediate
observation is that because of the symmetry of the Heun
equation with respect to the interchange 𝛼 ←→ 𝛽 the finite-
sum solutions produced by the choices 𝜀 + 𝛾 − 𝛼 = −𝑁 and𝜀+𝛾−𝛽 = −𝑁 are of the same form. Furthermore, by applying
the formula [16]

2𝐹1 (𝛼, 𝛽; 𝛼 + 𝑘; 𝑧)= (1 − 𝑧)𝑘−𝛽 2𝐹1 (𝑘, 𝛼 − 𝛽 + 𝑘; 𝛼 + 𝑘; 𝑧) (27)

to the involved hypergeometric functions 2𝐹1(𝛼, 𝛽; 𝛼 − 𝑁 +𝑛; 𝑧) or 2𝐹1(𝛼, 𝛽; 𝛽 −𝑁 + 𝑛; 𝑧) we see that the sum is a quasi-
polynomial, namely, a product of (1−𝑧)1−𝛿 and a polynomial
in 𝑧. Here are the first two of the solutions:𝜀 + 𝛾 − 𝛼 = 0,𝑞 = 𝑎𝛾 (𝛿 − 1) ,
𝑢 = (1 − 𝑧)1−𝛿 ,

(28)

𝜀 + 𝛾 − 𝛼 = −1,
𝑞2 + [𝛼 − 1 − 𝑎 (𝛿 − 2 + 𝛾 (2𝛿 − 3))] 𝑞 − 𝑎𝛾 (𝛿 − 2)

⋅ (𝛼 − 𝑎 (1 + 𝛾) (𝛿 − 1)) = 0,
(29)

𝑢 = (1 − 𝑧)1−𝛿
⋅ (1 − 𝛼 + 1 − 𝛿𝛼 − 1 𝑧 + 𝑞 − 𝑎 (𝛼𝛽 + 𝜀 − 𝛿𝜀)(1 − 𝑎) (𝛼 − 1) (1 − 𝑧)) . (30)

Note that, since 1 − 𝛿 is a characteristic exponent of the
Heun equation, the transformation 𝑢 = (1−𝑧)1−𝛿𝑤(𝑧) results
in another Heun equation for𝑤(𝑧). Hence, the derived finite-
sum solutions corresponding to the choices 𝜀+𝛾−𝛼 = −𝑁 and𝜀 + 𝛾 − 𝛽 = −𝑁 are generated from the polynomial solutions
of the equation for 𝑤(𝑧).

More interesting is the case 𝜀 = −𝑁, when the finite-sum
solutions involve𝑁+1 hypergeometric functions irreducible,
in general, to simpler functions. The case 𝜀 = 0 produces the

trivial result 𝑞 = 𝑎𝛼𝛽, when theHeun equation is degenerated
into the hypergeometric equation with the solution 𝑢 =
2𝐹1(𝛼, 𝛽; 𝛾; 𝑧).The solution for the first nontrivial case 𝜀 = −1
reads

𝑢 = 2𝐹1 (𝛼, 𝛽; 𝛾 − 1; 𝑧) + 𝑞 − 𝑎𝛼𝛽 + 𝑎 (1 − 𝛿)(1 − 𝑎) (𝛾 − 1)
⋅ 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑧) , (31)

where 𝑞 is a root of the equation
(𝑞 − 𝑎𝛼𝛽 + 𝑎 (1 − 𝛿)) (𝑞 − 𝑎𝛼𝛽 + (𝑎 − 1) (1 − 𝛾))

− 𝑎 (1 − 𝑎) (1 + 𝛼 − 𝛾) (1 + 𝛽 − 𝛾) = 0. (32)

Note that the second term in (31) vanishes if 𝑞 − 𝑎𝛼𝛽 + 𝑎(1 −𝛿) = 0 so that in this degenerate case the solution involves
one, not 2 = 𝑁 + 1, terms. It is seen from (32) that this
situation is necessarily the case if 𝑎 = 1/2, 𝛾 + 𝛿 = 2 and𝛼 or 𝛽 equals 𝛾 − 1. We will see that the solution in this case
is a member of a family of specific solutions for which the
expansion is governed by two-term recurrence relations for
the coefficients.

The solutions (31) and (32) have been noticed on several
occasions [40–44]. It has been shown that, for 𝜀 = −1,
when the characteristic exponents of 𝑧 = 𝑎 are 0, 2 so
that they differ by an integer, (32) provides the condition
for the singularity 𝑧 = 𝑎 to be apparent (or “simple”); that
is, no logarithmic terms are involved in the local Frobenius
series expansion [40–42]. In fact, the Frobenius solution in
this case degenerates to a Taylor series. It has further been
observed that the solution (31) can be expressed in terms of
theClausen generalized hypergeometric function 3𝐹2with an
upper parameter exceeding a lower one by unity [40–42]:

𝑢𝑢 (0) = 3𝐹2 (𝛼, 𝛽, 𝑒 + 1; 𝛾, 𝑒; 𝑧) , (33)

where the parameter 𝑒 is given as

𝑒 = 𝑎𝛼𝛽𝑞 − 𝑎𝛼𝛽 . (34)

Note that using this parameter 𝑒 the solution of (32) is
parameterized as [41]

𝑞 = 𝑎𝛼𝛽1 + 𝑒𝑒 ,
𝑎 = 𝑒 (𝑒 − 𝛾 + 1)(𝑒 − 𝛼) (𝑒 − 𝛽) .

(35)

We will now show that a similar generalized hypergeometric
representation holds also for 𝜀 = −2 and for all 𝜀 ∈ Z, 𝜀 ̸= 1.
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4. The Case 𝜀 ≤ −2, 𝜀 ∈ Z
For 𝜀 = −2 the termination equation 𝑐𝑁+1 = 0 for the
accessory parameter 𝑞 is written as

((𝑞 − 𝑎𝛼𝛽)2 + (𝑞 − 𝑎𝛼𝛽) (4𝑎 − 2 − (3 + 𝛼 + 𝛽) 𝑎 + 𝛾)
+ 2𝑎 (𝑎 − 1) 𝛼𝛽) × (𝑞 − 𝑎𝛼𝛽 − 2 (1 + 𝛼 + 𝛽) 𝑎 − 2
+ 2𝛾) + (𝑞 − 𝑎𝛼𝛽) 2𝑎 (𝑎 − 1) (𝛼𝛽 + 1 + 𝛼 + 𝛽)= 0.

(36)

The solution of the Heun equation for a root of this equation
is given as

𝑢 = 2𝐹1 (𝛼, 𝛽; 𝛾 − 2; 𝑧) + 𝐵1 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾 − 1; 𝑧) + 𝐵2⋅ 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑧) , (37)

with

𝐵1 = 𝑞 − 𝑎𝛼𝛽 + 𝑎 (1 − 𝛿)(1 − 𝑎) (𝛾 − 2) ,
𝐵2 = 𝑎 (1 + 𝛼 − 𝛾) (1 + 𝛽 − 𝛾)(𝑞 − 𝑎𝛼𝛽 + 2 (1 − 𝑎) (𝛾 − 1)) (𝛾 − 1)𝐵1.

(38)

It is now checked that this solution is presented by the
hypergeometric function 4𝐹3 as [42]

𝑢𝑢 (0) = 4𝐹3 (𝛼, 𝛽, 𝑒 + 1, 𝑟 + 1; 𝛾, 𝑒, 𝑟; 𝑧) , (39)

where 𝑢(0) = 1 + 𝐵1 + 𝐵2 and the parameters 𝑒, 𝑟 solve the
equations (compare with (35))

𝑞 = 𝑎𝛼𝛽(1 + 𝑒) (1 + 𝑟)𝑒𝑟 , (40)

𝑎 = 𝑒𝑟 (2𝑒𝑟 + (𝑒 + 𝑟 + 1) (2 − 𝛾))𝛼𝛽 ((1 + 𝑒)2 + (1 + 𝑟)2 − 1) + 𝑒𝑟 (2𝑒𝑟 − 4 − (𝑒 + 𝑟 + 3) (𝛼 + 𝛽 − 1)) . (41)

It is further checked that this system of equations admits a
unique solution 𝑒, 𝑟 (up to the transposition 𝑒 ←→ 𝑟).

The presented result is derived in a simple way by
substituting the ansatz (39) into the general Heun equation
and expanding the result in powers of 𝑧. The equations
resulting in cancelling the first three terms proportional to 𝑧0,𝑧1, and 𝑧2 are that given by (40), (41), and (36), respectively.
It is then shown that these three equations are enough for the
Heun equation to be satisfied identically.

A further remark is that (36) presents the condition for
the singularity 𝑧 = 𝑎 to be apparent for 𝜀 = −2. This
is straightforwardly verified by checking the power-series
solution 𝑢 = ∑∞𝑛=0 𝑐𝑛(𝑧−𝑎)𝑛 with 𝑐0 ̸= 0 for the neighborhood
of the point 𝑧 = 𝑎. In calculating 𝑐3 a division by zero will
occur, unless 𝑞 satisfies (36), in which case the equation for 𝑐3
will be identically satisfied.

It can be checked that generalized hypergeometric rep-
resentations are achieved also for 𝜀 = −3, −4, −5 [42]. The
conjecture is that for any negative integer 𝜀 = −𝑁, 𝑁 =1, 2, 3, . . . there exists a generalized hypergeometric solution
of the Heun equation given by the ansatz𝑢

= 𝑁+2𝐹1+𝑁 (𝛼, 𝛽, 𝑒1 + 1, . . . , 𝑒𝑁 + 1; 𝛾, 𝑒1, . . . , 𝑒𝑁; 𝑧) (42)

provided the singularity at 𝑧 = 𝑎 is an apparent one. For
the latter condition to be the case, the accessory parameter𝑞 should satisfy a (𝑁 + 1)-degree polynomial equation
which forces the above expansions (15)-(18) and (21)-(25) to
terminate at𝑁th term. Note that (42) applies also for𝑁 = 0,
that is, for 𝜀 = 0, for which the Heun function degenerates

to the Gauss hypergeometric function 𝑢 = 2𝐹1(𝛼, 𝛽; 𝛾; 𝑧)
provided 𝑞 = 0.

Finally, we note that by the elementary power change𝑢 = (𝑧 − 𝑎)1−𝜀𝑤 a Heun equation with a positive exponent
parameter 𝜀 > 2 is transformed into the one with a negative
parameter 2 − 𝜀 < 0. Hence, it is understood that a similar
generalized hypergeometric representation of the solution of
theHeun equation can also be constructed for positive integer𝜀 = 𝑁, 𝑁 = 2, 3, . . .. Thus, the only exception is the case𝜀 = 1.

It is a basic knowledge that the generalized hypergeomet-
ric function 𝑝𝐹𝑞 is given by a power-series with coefficients
obeying a two-term recurrence relation. Since any finite-sum
solution of the general Heun equation derived via termina-
tion of a hypergeometric series expansion has a representa-
tion through a single generalized hypergeometric function
𝑝𝐹𝑞, the general conclusion is that in each such case the
power-series expansion of the Heun function is governed
by a two-term recurrence relation (obviously, by the relation
obeyed by the corresponding power-series for 𝑝𝐹𝑞).
5. Hypergeometric Expansions with Two-Term
Recurrence Relations for the Coefficients

In this section we explore if the three-term recurrence rela-
tions governing the above-presented hypergeometric expan-
sions can be reduced to two-term ones. We will see that the
answer is positive. Two-term reductions are achieved for an
infinite set of particular choices of the involved parameters.

First, we mention a straightforward case which actually
turns to be rather simple because in this case the Heun
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equation is transformed into the Gauss hypergeometric
equation by a variable change. This is the case if𝑎 = 1/2,𝛾 + 𝛿 = 2

and 𝑞 = 𝑎𝛼𝛽 + 𝑎 (1 − 𝛿) 𝜀, (43)

when the coefficient 𝑄𝑛 in (11) identically vanishes so that
the recurrence relation between the expansion coefficients
straightforwardly becomes two-term for both expansions
(15)-(18) and (21)-(25). The coefficients of the expansions
are then explicitly calculated. For instance, expansion (15) is
written as

𝑢 = ∞∑
𝑘=0

(𝜀/2)𝑘 ((𝛾 + 𝜀 − 𝛼) /2)𝑘 ((𝛾 + 𝜀 − 𝛽) /2)𝑘𝑘! ((𝛾 + 𝜀) /2)𝑘 ((1 + 𝛾 + 𝜀) /2)𝑘⋅ 2𝐹1 (𝛼, 𝛽; 𝛾 + 𝜀 + 2𝑘; 𝑧) ,
(44)

where (. . . )𝑘 denotes the Pochhammer symbol. The values𝑢(0), 𝑢󸀠(0) and 𝑢(1), and 𝑢󸀠(1) can then be written in terms
of generalized hypergeometric series [17, 18]. For instance,

𝑢 (0) = 3𝐹2 (𝛾 + 𝜀 − 𝛼2 , 𝛾 + 𝜀 − 𝛽2 , 𝜀2 ; 𝛾 + 𝜀2 , 1 + 𝛾 + 𝜀2 ;
1) . (45)

However, as it was alreadymentioned above, the case (43)
is a rather simple one because the transformation

𝑢 (𝑧) = 𝑧1−𝛾 (1 − 𝑧𝑎)1−𝜀 𝑤 (4𝑧 (1 − 𝑧)) (46)

reduces the Heun equation to the Gauss hypergeometric
equation for the new function 𝑤. The solution of the general
Heun equation is then explicitly written as

𝑢 (𝑧) = 𝑧1−𝛾 (1 − 𝑧𝑎)1−𝜀
⋅ 2𝐹1 (1 − 𝛼 + 𝛿2 , 1 − 𝛽 + 𝛿2 ; 𝛿; 4 (1 − 𝑧) 𝑧) . (47)

Now, we will show that there exist nontrivial cases of
two-term reductions of the three-term recurrence (11) with
(16)-(18) or (22)-(24). These reductions are achieved by the
following ansatz guessed by examination of the structure of
solutions (33) and (39):

𝑐𝑛 = (1𝑛 ∏𝑁+2𝑘=1 (𝑎𝑘 − 1 + 𝑛)∏𝑁+1𝑘=1 (𝑏𝑘 − 1 + 𝑛)) 𝑐𝑛−1, (48)

where, having in mind the coefficients 𝑅𝑛, 𝑄𝑛, and 𝑃𝑛 given
by (16)-(18), we put𝑎1, . . . , 𝑎𝑁, 𝑎𝑁+1, 𝑎𝑁+2= 1 + 𝑒1, . . . , 1 + 𝑒𝑁, 𝛾 + 𝜀 − 𝛼, 𝛾 + 𝜀 − 𝛽, (49)

𝑏1, . . . , 𝑏𝑁, 𝑏𝑁+1 = 𝑒1, . . . , 𝑒𝑁, 𝛾 + 𝜀 (50)

with parameters 𝑒1, . . . , 𝑒𝑁 to be defined later. Note that this
ansatz implies that 𝑒1, . . . , 𝑒𝑁 are not zero or negative integers.

The ratio 𝑐𝑛/𝑐𝑛−1 is explicitly written as

𝑐𝑛𝑐𝑛−1 = (𝛾 + 𝜀 − 𝛼 − 1 + 𝑛) (𝛾 + 𝜀 − 𝛼 − 1 + 𝑛)(𝛾 + 𝜀 − 1 + 𝑛) 𝑛 𝑁∏
𝑘=1

⋅ 𝑒𝑘 + 𝑛𝑒𝑘 − 1 + 𝑛 .
(51)

With this, the recurrence relation (11) is rewritten as

𝑅𝑛 (𝛾 + 𝜀 − 𝛼 − 1 + 𝑛) (𝛾 + 𝜀 − 𝛽 − 1 + 𝑛)(𝛾 + 𝜀 − 1 + 𝑛) 𝑛 𝑁∏
𝑘=1

⋅ 𝑒𝑘 + 𝑛𝑒𝑘 − 1 + 𝑛 + 𝑄𝑛−1 + 𝑃𝑛−2
⋅ (𝛾 + 𝜀 − 2 + 𝑛) (𝑛 − 1)(𝛾 + 𝜀 − 𝛼 − 2 + 𝑛) (𝛾 + 𝜀 − 𝛽 − 2 + 𝑛) 𝑁∏

𝑘=1

⋅ 𝑒𝑘 − 2 + 𝑛𝑒𝑘 − 1 + 𝑛 = 0.

(52)

Substituting𝑅𝑛 and𝑃𝑛−2 from (16) and (18) and cancelling the
common denominator, this equation becomes

(1 − 𝑎) (𝛾 + 𝜀 − 𝛼 − 1 + 𝑛) (𝛾 + 𝜀 − 𝛽 − 1 + 𝑛)
⋅ 𝑁∏
𝑘=1

(𝑒𝑘 + 𝑛) + 𝑄𝑛−1 𝑁∏
𝑘=1

(𝑒𝑘 − 1 + 𝑛)
− 𝑎 (𝜀 + 𝑛 − 2) (𝑛 − 1) 𝑁∏

𝑘=1

(𝑒𝑘 − 2 + 𝑛) = 0.
(53)

This is a polynomial equation in 𝑛. Notably, it is of degree𝑁+1, not𝑁+2, because the highest-degree term proportional to𝑛𝑁+2 identically vanishes. Hence, we have an equation of the
form

𝑁+1∑
𝑚=0

𝐴𝑚 (𝑎, 𝑞; 𝛼, 𝛽, 𝛾, 𝛿, 𝜀; 𝑒1, . . . , 𝑒𝑁) 𝑛𝑚 = 0. (54)

Then, equating to zero the coefficients 𝐴𝑚 warrants the
satisfaction of the three-term recurrence relation (11) for all 𝑛.
We thus have𝑁+2 equations𝐴𝑚 = 0,𝑚 = 0, 1, . . . , 𝑁+1, of
which𝑁 equations serve for determination of the parameters𝑒1,2,...,𝑁 and the remaining two impose restrictions on the
parameters of the Heun equation.

One of these restrictions is derived by calculating the
coefficient 𝐴𝑁+1 of the term proportional to 𝑛𝑁+1 which is
readily shown to be 2 + 𝑁 − 𝛿. Hence,

𝛿 = 2 + 𝑁. (55)

The second restriction imposed on the parameters of the
Heun equation is checked to be a polynomial equation of the
degree𝑁 + 1 for the accessory parameter 𝑞.
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With the help of the Fuchsian condition 1+𝛼+𝛽 = 𝛾+𝛿+𝜀,
we have

𝛾 + 𝜀 − 𝛼 − 1 = 𝛽 − 𝛿 = 𝛽 − 2 − 𝑁, (56)

𝛾 + 𝜀 − 𝛽 − 1 = 𝛼 − 𝛿 = 𝛼 − 2 − 𝑁, (57)

𝛾 + 𝜀 − 1 = 𝛼 + 𝛽 − 𝛿 = 𝛼 + 𝛽 − 2 − 𝑁, (58)

so that the two-term recurrence relation (51) can be rewritten
as (𝑐0 = 1)

𝑐𝑛 = ((𝛼 − 2 − 𝑁 + 𝑛) (𝛽 − 2 − 𝑁 + 𝑛)(𝛼 + 𝛽 − 2 − 𝑁 + 𝑛) 𝑛 𝑁∏
𝑘=1

⋅ 𝑒𝑘 + 𝑛𝑒𝑘 − 1 + 𝑛) 𝑐𝑛−1, 𝑛 ≥ 1. (59)

Note that it follows from this relation, since 𝛼, 𝛽, and𝑒1, . . . , 𝑒𝑁 are not zero or negative integers, that 𝑐𝑛may vanish
only if 𝛼 is a positive integer such that 0 < 𝛼 < 2 + 𝑁 or 𝛽 is
a positive integer such that 0 < 𝛽 < 2 + 𝑁.

Resolving the recurrence (51), the coefficients of expan-
sion (15)-(18) are explicitly written in terms of the gamma
functions as

𝑐𝑛 = Γ (𝛾 + 𝜀) Γ (𝑛 + 𝛾 + 𝜀 − 𝛼) Γ (𝑛 + 𝛾 + 𝜀 − 𝛽)𝑛!Γ (𝛾 + 𝜀 − 𝛼) Γ (𝛾 + 𝜀 − 𝛽) Γ (𝑛 + 𝛾 + 𝜀) 𝑁∏
𝑘=1

⋅ 𝑒𝑘 + 𝑛𝑒𝑘 , 𝑛 ≥ 1. (60)

Here are the explicit solutions of the recurrence relation
(11) for𝑁 = 0 and𝑁 = 1.

𝑁 = 0:𝛿 = 2, (61)

𝑞 = 𝑎𝛾 + (𝛼 − 1) (𝛽 − 1) , (62)

𝑐𝑛 = Γ (𝛾 + 𝜀) Γ (𝑛 + 𝛾 + 𝜀 − 𝛼) Γ (𝑛 + 𝛾 + 𝜀 − 𝛽)𝑛!Γ (𝛾 + 𝜀 − 𝛼) Γ (𝛾 + 𝜀 − 𝛽) Γ (𝑛 + 𝛾 + 𝜀) . (63)

𝑁 = 1:𝛿 = 3, (64)

𝑞2 − 𝑞 (4 + 𝑎 − 3𝛼 − 3𝛽 + 2𝛼𝛽 + 3𝑎𝛾) + (𝛼 − 2)
⋅ (𝛼 − 1) (𝛽 − 2) (𝛽 − 1)
+ 𝑎 (4 + 2𝑎 − 4𝛼 − 4𝛽 + 3𝛼𝛽) 𝛾 + 2𝑎2𝛾2 = 0,

(65)

𝑒1 = −𝑞 + 𝑎 (1 + 𝛾) − 1 + (𝛼 − 1) (𝛽 − 1) , (66)

𝑐𝑛 = Γ (𝛾 + 𝜀) Γ (𝑛 + 𝛾 + 𝜀 − 𝛼) Γ (𝑛 + 𝛾 + 𝜀 − 𝛽)𝑛!Γ (𝛾 + 𝜀 − 𝛼) Γ (𝛾 + 𝜀 − 𝛽) Γ (𝑛 + 𝛾 + 𝜀)
⋅ 𝑒1 + 𝑛𝑒1 . (67)

These results are readily checked by direct verification of
the recurrence relation (11) with coefficients (16)-(18). We
conclude by noting that similar explicit solutions can be
straightforwardly derived for the expansion (21)-(25) as well.

6. Discussion

Thus, we have presented an expansion of the solutions of
the Heun equation in terms of hypergeometric functions
having the form 2𝐹1(𝛼, 𝛽; 𝛾0 + 𝑛; 𝑧) with 𝛾0 = 𝜀 + 𝛾 and
expansions in terms of functions 2𝐹1(𝛼, 𝛽; 𝛾0 − 𝑛; 𝑧) with𝛾0 = 𝛾, 𝛼, 𝛽. For any set of parameters of the Heun equation
provided that 𝛾 + 𝜀, 𝛾, 𝛼, 𝛽 are not all simultaneously integers
at least one of these expansions can be applied. Obviously,
the expansions are meaningless if 𝛼𝛽 = 0 since then the
involved hypergeometric functions are mere constants and
for the solution the summation produces the trivial result𝑢 = 0.

The applied technique is readily extended to the four
confluent Heun equations. For instance, the solutions of
the single- and double-confluent Heun equations using the
Kummer confluent hypergeometric functions of the forms
1𝐹1(𝛼0 + 𝑛; 𝛾0 + 𝑛; 𝑠0𝑧), 1𝐹1(𝛼0 + 𝑛; 𝛾0; 𝑠0𝑧), and 1𝐹1(𝛼0; 𝛾0 +𝑛; 𝑠0𝑧) are straightforward. By slight modification, equations
of more general type, e.g., of the type discussed by Schmidt
[22], can also be considered. In all these cases the termination
of the series results in closed-form solutions appreciated in
many applications. A representative example is the determi-
nation of the exact complete return spectrum of a quantum
two-state system excited by a laser pulse of Lorentzian shape
and of a double level-crossing frequency detuning [45]. A
large set of recent applications of the finite-sum expansions
of the biconfluent Heun equation in terms of the Hermite
functions to the Schrödinger equation is listed in [37] and
references therein.

Regarding the closed-form solutions produced by the
presented expansions, this happens in three cases: 𝜀 = −𝑁,𝜀 + 𝛾 − 𝛼 = −𝑁, 𝜀 + 𝛾 − 𝛽 = −𝑁, 𝑁 = 0, 1, 2, 3, . . .. In each
case the generalHeun equation admits finite-sum solutions in
general at𝑁+1 choices of the accessory parameter 𝑞 defined
by a polynomial equation of the order of 𝑁 + 1. The last
two choices for 𝜀 result in quasi-polynomial solutions, while,
in the first case, when 𝜀 is a negative integer, the solutions
involve𝑁+1 hypergeometric functions generally irreducible
to simpler functions. Discussing the termination of this
series, we have shown that this is possible if a singularity
of the Heun equation is an apparent one. We have further
shown that the corresponding finite-sum solution of the
general Heun equation has a representation through a single
generalized hypergeometric function.The general conclusion
suggested by this result is that in any such case the power-
series expansion of theHeun function is governed by the two-
term recurrence relation obeyed by the power-series for the
corresponding generalized hypergeometric function 𝑝𝐹𝑞.

There are many examples of application of finite-sum
solutions of the Heun equation both in physics and math-
ematics [46–56], for instance, the solution of a class of
free boundary problems occurring in groundwater flow in
liquid mechanics and the removal of false singular points
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of Fuchsian ordinary differential equations in applied math-
ematics [43]. Another example is the derivation of the
third independent exactly solvable hypergeometric potential,
after the Eckart and the Pöschl-Teller potentials, which is
proportional to an energy-independent parameter and has a
shape that is independent of this parameter [44]. Some other
recent examples can be found in references listed in [14].

Finally, we have shown that there exist infinitely many
choices of the involved parameters for which the three-
term recurrence relations governing the hypergeometric
expansions of the solutions of the general Heun equation are
reduced to two-term ones. The coefficients of the expansions
are then explicitly expressed in terms of the gamma functions.
We have explicitly presented two such cases.
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We construct two-dimensional integrable and superintegrable systems in terms of the master function formalism and relate them
toMielnik’s andMarquette’s construction in supersymmetric quantum mechanics. For two different cases of the master functions,
we obtain two different two-dimensional superintegrable systems with higher order integrals of motion.

1. Introduction

It is known from classical and quantum mechanics that
a system with N degrees of freedom is called completely
integrable if it allows N functionally independent constants
of the motion [1]. From the mathematical and physical
point of view, these systems play a fundamental role in
description of physical systems due to their many interesting
properties. A system is superintegrable if one could obtain
more than N constants of the motion and if there exist2𝑁 − 1 constants of the motion, the system is maximally
superintegrable or just superintegrable [2–5]. Recently the
study of superintegrable systems has been considered for
different potentials and many researches have been studied
for calculating the spectrum of these systems by different
methods. In [6, 7], the spectrum of these systems has been
calculated by an algebraic method using the realization of
some Lie groups.

For a two-dimensional quantum integrable system with
Hamiltonian 𝐻, there is always one operator like 𝐴1 which
commutes with Hamiltonian of the system, that is, [𝐻,𝐴1] =0. For a quantum superintegrable system, one should define
another operator such as 𝐴2 which commutates with the
Hamiltonian of system, that is, [𝐻,𝐴2] = 0, but [𝐴1, 𝐴2] ̸=0. In other words, for a two-dimensional superintegrable
system, there are two integrals of the motion (𝐴1, 𝐴2) in
addition to the Hamiltonian. The superintegrability with the

second- and third-order integrals was the object of a series of
articles [8–11]. The systems studied have second- and third-
order integrals. Although superintegrability and supersym-
metric quantum mechanics (SUSYQM) are two separated
fields, many quantum systems, such as the harmonic oscil-
lator, the Hydrogen atom, and the Smorodinsky-Winternitz
potential, have both supersymmetry and superintegrable
conditions [12–16].These articles show that superintegrability
is accurately connected with supersymmetry. For example,
in [17], Marquette used the results obtained by Mielnik [18]
and generated new superintegrable systems. Mielnik has
shown that the factorization of second-order operators is not
essentially unique. He has considered the Hamiltonian of the
harmonic oscillator in one dimension as the simplest case:

𝐻 = −12 𝑑
2

𝑑𝑥2 + 12𝑥2, (1)

where it can be factorized by two types of the first-order
operators of creation and annihilation as follows:

𝑎± = 1√2 (∓
𝑑𝑑𝑥 + 𝑥) ,

𝑏± = 1√2 (∓
𝑑𝑑𝑥 + 𝛽 (𝑥)) .

(2)

For two superpartner Hamiltonians𝐻1 and𝐻2 where 𝑎+𝑎− =𝐻 − 1/2 = 𝐻1 and 𝑎−𝑎+ = 𝐻 + 1/2 = 𝐻2, he has demanded
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that 𝐻2 = 𝑏−𝑏+ and obtained the inverted product 𝑏+𝑏− as a
certain new Hamiltonian:

𝐻󸀠 = 𝑏+𝑏− = −12 𝑑
2

𝑑𝑥2 + 𝑥
2

2 − 𝜑󸀠 (𝑥) , (3)

where 𝜑(𝑥) is a function obtained from the general solution
of Riccati equation considering𝛽 = 𝑥+𝜑(𝑥).The creation and
annihilation operators of the third order for𝐻󸀠 are described
by expressions 𝑠+ = 𝑏+𝑎+𝑏−, 𝑠− = 𝑏+𝑎−𝑏−, where 𝑎+ and 𝑎−
are the creation and annihilation operators for𝐻2. Marquette
[17] has taken the Hamiltonian 𝐻2 in the 𝑥-axis and its
superpartner 𝐻󸀠 given by (3) in the 𝑦-axis. Hence, he has
obtained a two-dimensional superintegrable system as 𝐻𝑠 =𝐻𝑥 + 𝐻𝑦, which can be separated in Cartesian coordinates
with creation and annihilation operators 𝑎+(𝑥), 𝑎−(𝑥), 𝑠+(𝑦),
and 𝑠−(𝑦). Also, he has shown that the Hamiltonian 𝐻𝑠
possesses the following integrals of motion:

K = 𝐻𝑥 − 𝐻𝑦,
A1 = 𝑎+ (𝑥) 𝑠− (𝑦) − 𝑎− (𝑥) 𝑠+ (𝑦) ,
A2 = 𝑎− (𝑥) 𝑠+ (𝑦) + 𝑎+ (𝑥) 𝑠− (𝑦) ,

(4)

where these integrals are of order 2, 3, and 4 for shape
invariant potentials [17].

On the other hand, in [19, 20], the authors have shown
that the second-order differential equations and their asso-
ciated differential equations in mathematical physics have
the shape invariant property of supersymmetry quantum
mechanics. They have shown that by using a polynomial of
a degree not exceeding two, called the master function, the
associated differential equations can be factorized into the
product of rising and lowering operators.Themaster function
formalism has been used in relativistic quantum mechanics
for solving the Dirac equation [21, 22].

AsMielnik’s andMarquette’smethod for generating super-
integrable systems can be applied to other systems obtained
in the context of supersymmetric quantummechanics, hence,
in this paper, we show that the supersymmetry method for
obtaining the integrable and superintegrable systems can be
related to master function formalism. In fact, we use the
master function approach for 1-dimensional shape invariant
potentials and generate 2-dimensional integrable systems.
Also for a particular class of shape invariant systems, we
generate 2-dimensional superintegrable systems. This class
contains the harmonic oscillator, the singular harmonic oscil-
lator, and their supersymmetric isospectral deformations.

The paper is presented as follows: in Section 2, we
review how one can generate integrals of motion for two-
dimensional superintegrable system from the creation and
annihilation operators. In Section 3, we consider a particular
quantum system for applying the Mielnik’s and Marquette’s
method and obtain a superintegrable potential separable in
Cartesian coordinates. In Section 4, we briefly review the
master function formalism and then in Section 5, we use this
approach to obtain integrable systems and particular cases
of the superintegrable systems that satisfy the oscillator-like
(Heisenberg) algebra with higher order integrals of motion

in terms of the master function and weight function. In
Section 6, we give two examples to show how this method
works in constructing oscillator-like two-dimensional super-
integrable systems. Paper ends with a brief conclusion in
Section 7.

2. Two-Dimensional Superintegrable System
and Its Integrals of Motion

According to [17, 23, 24], for a two-dimensional Hamiltonian
separable in Cartesian coordinates as

𝐻(𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦) = 𝐻𝑥 (𝑥, 𝑝𝑥) + 𝐻𝑦 (𝑦, 𝑝𝑦) , (5)

where the creation and annihilation operators (polynomial
in momenta) 𝐴+(𝑥), 𝐴−(𝑥), 𝐴+(𝑦), and 𝐴−(𝑦) satisfy the
following equations:

[𝐻𝑥, 𝐴− (𝑥)] = −𝜆𝑥𝐴− (𝑥) ,
[𝐻𝑦, 𝐴− (𝑦)] = −𝜆𝑦𝐴− (𝑦) ,
[𝐻𝑥, 𝐴+ (𝑥)] = 𝜆𝑥𝐴+ (𝑥) ,
[𝐻𝑦, 𝐴+ (𝑦)] = 𝜆𝑦𝐴+ (𝑦) ,

(6)

one can show that the operators 𝑓1 = 𝐴𝑚+(𝑥)𝐴𝑛−(𝑦) and 𝑓2 =𝐴𝑚−(𝑥)𝐴𝑛+(𝑦) commute with the Hamiltonian 𝐻: that is,

[𝐻, 𝑓1] = [𝐻,𝑓2] = 0, (7)

if

𝑚𝜆𝑥 − 𝑛𝜆𝑦 = 0, 𝑚, 𝑛 ∈ 𝑍+. (8)

Also the following sums of 𝑓1 and 𝑓2 commute with the
Hamiltonian

𝐼1 = 𝐴𝑚+ (𝑥) 𝐴𝑛− (𝑦) − 𝐴𝑚− (𝑥) 𝐴𝑛+ (𝑦) ,
𝐼2 = 𝐴𝑚+ (𝑥) 𝐴𝑛− (𝑦) + 𝐴𝑚− (𝑥) 𝐴𝑛+ (𝑦) ; (9)

that is, 𝐼1 and 𝐼2 are the integrals of motion.The order of these
integrals of motion depends on the order of the creation and
annihilation operators. On the other hand, the Hamiltonian𝐻 possesses a second-order integral as 𝐾 = 𝐻𝑥 − 𝐻𝑦, such
that the integral 𝐼2 is the commutator of 𝐼1 and 𝐾. Thus, the
Hamiltonian 𝐻 is a superintegrable system and𝐻, 𝐼1, and 𝐾
are its integrals of motion.

3. Mielnik-Marquette Method and
Superintegrable Model Obtained from
Shifted Oscillator Hamiltonian

In this section, for reviewing the Mielnik-Marquette method,
we consider shifted oscillator Hamiltonian as

𝐻 = − 𝑑2𝑑𝑥2 + 14𝜔2 (𝑥 − 2𝑏𝜔 )
2 − 𝜔2 . (10)
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We introduce the following first-order operators:

𝑎− = 𝑑𝑑𝑥 + 12𝜔𝑥 − 𝑏,
𝑎+ = − 𝑑𝑑𝑥 + 12𝜔𝑥 − 𝑏,

(11)

where the supersymmetric partner Hamiltonians are calcu-
lated as

𝐻1 = 𝑎−𝑎+ = 𝐻 + 𝜔,
𝐻2 = 𝑎+𝑎− = 𝐻. (12)

It is obvious that 𝐻1 and 𝐻2 have the shape invariant prop-
erties. Now, according to (2), we define the new operators 𝑏−
and 𝑏+ such that

𝐻1 = 𝐻 + 𝜔 = 𝑏−𝑏+. (13)

The above equation gives the following Riccati equation:

𝛽2 + 𝛽󸀠 = 14𝜔2𝑥2 − 𝑏𝜔𝑥 + 𝑏2 + 𝜔2 , (14)

where a particular solution is

𝛽 (𝑥) = 𝛽0 (𝑥) = 12𝜔𝑥 − 𝑏. (15)

Now, if we consider

𝛽 (𝑥) = 𝛽0 (𝑥) + 𝜑 (𝑥) , (16)

then we can obtain the following first-order linear inhomo-
geneous equation:

𝑧󸀠 + (−2𝛽0) 𝑧 = 1, (17)

where 𝑧 = 1/𝜑(𝑥). After solving the above equation, we get
𝜑 (𝑥) = 1𝑧 (𝑥)

= 𝑒−(𝜔/2)𝑥2+2𝑏𝑥
√𝜋/2𝜔𝑒2𝑏2/𝜔 erf (√𝜔/2 (𝑥 − 2𝑏/𝜔)) + 𝐶,

(18)

where 𝐶 is the constant of integration. Using the function𝜑(𝑥), we obtain
𝐻󸀠 = 𝑏+𝑏− = 𝐻1 − 𝜑󸀠 (𝑥) , (19)

where its creation and annihilation operators are given by the
following expressions:

𝑠+ = 𝑏+𝑎+𝑏−,
𝑠− = 𝑏+𝑎−𝑏−. (20)

According to Marquette method, we take the 𝑥-axis for
Hamiltonian𝐻1 and the𝑦-axis for its superpartner𝐻󸀠 andwe
have the following two-dimensional superintegrable system:

𝐻𝑠 = 𝐻𝑥 + 𝐻𝑦 = 𝐻1 + 𝐻󸀠
= − 𝑑2𝑑𝑥2 − 𝑑2𝑑𝑦2 + 14𝜔2 (𝑥 − 2𝑏𝜔 )

2

+ 14𝜔2 (𝑦 − 2𝑏𝜔 )
2 − 𝜔 − 𝑑𝜑𝑑𝑦 .

(21)

This Hamiltonian possesses the integral of motion given by
(4), which are of order 2, 3, and 4.

4. The Master Function Formalism

According to [19, 20], the general form of the differential
equation in master function approach is written as

𝐴 (𝑥)Φ󸀠󸀠𝑛 + (𝐴 (𝑥) 𝑤 (𝑥))󸀠𝑤 (𝑥) Φ󸀠𝑛 (𝑥)

− (𝑛((𝐴 (𝑥) 𝑤 (𝑥))󸀠𝑤 (𝑥) )󸀠 + 𝑛 (𝑛 − 1)2 𝐴󸀠󸀠 (𝑥))Φ𝑛 (𝑥)
= 0,

(22)

where 𝐴(𝑥) as master function is at most a second-order
polynomial and 𝑤(𝑥) is the nonnegative weight function in
interval (𝑎, 𝑏). By differentiating (22)𝑚 times and then mul-
tiplying it by (−1)𝑚𝐴𝑚/2(𝑥), we get the following associated
second-order differential equation in terms of the master
function and weight function:

𝐴 (𝑥)Φ󸀠󸀠𝑛,𝑚 + (𝐴 (𝑥) 𝑤 (𝑥))󸀠𝑤 (𝑥) Φ󸀠𝑛,𝑚 (𝑥)

+ [
[
−12 (𝑛2 + 𝑛 − 𝑚2)𝐴󸀠󸀠

+ (𝑚 − 𝑛)(𝐴 (𝑥)𝑤󸀠 (𝑥)𝑤 (𝑥) )󸀠 − 𝑚24
(𝐴󸀠 (𝑥))2
𝐴 (𝑥)

− 𝑚2 𝐴
󸀠 (𝑥) 𝑤󸀠 (𝑥)𝑤 (𝑥) ]

]
Φ𝑛,𝑚 (𝑥) = 0,

(23)

where

Φ𝑛,𝑚 (𝑥) = (−1)𝑚 𝐴𝑚/2 ( 𝑑𝑑𝑥)
𝑚Φ𝑛 (𝑥) . (24)

Changing the variable 𝑑𝑥/𝑑𝑟 = √𝐴(𝑥) and defining the new
function Ψ𝑚𝑛 (𝑟) = 𝐴1/4(𝑥)𝑤1/2(𝑥)Φ𝑛,𝑚(𝑥), one can obtain the
Schrodinger equation as

− 𝑑2𝑑𝑟2Ψ𝑚𝑛 (𝑟) + V𝑚 (𝑥 (𝑟)) Ψ𝑚𝑛 (𝑟) = 𝐸 (𝑛,𝑚)Ψ𝑚𝑛 (𝑟) ,
𝑚 = 0, 1, 2, . . . , 𝑛,

(25)
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where the most general shape invariant potential is

V𝑚 (𝑥 (𝑟)) = −12 (𝐴 (𝑥)𝑤
󸀠 (𝑥)𝑤 (𝑥) )󸀠 − 2𝑚 − 14 𝐴󸀠󸀠 (𝑥)

+ 14𝐴 (𝑥) (𝐴 (𝑥) 𝑤
󸀠 (𝑥)𝑤 (𝑥) )2

+ 𝑚2 𝐴
󸀠 (𝑥) 𝑤󸀠 (𝑥)𝑤 (𝑥) + 4𝑚2 − 116 𝐴󸀠2 (𝑥)𝐴 (𝑥) ,

(26)

and the energy spectrum 𝐸(𝑛,𝑚) is as
𝐸 (𝑛,𝑚) = − (𝑛 − 𝑚 + 1)
⋅ [(𝐴 (𝑥)𝑤󸀠 (𝑥)𝑤 (𝑥) )󸀠 + 12 (𝑛 + 𝑚)𝐴󸀠󸀠 (𝑥)] .

(27)

According to [19, 20] the first-order deferential operators are
written as

𝐴± = ∓ 𝑑𝑑𝑟 +𝑊𝑚 (𝑥 (𝑟)) , (28)

where the superpotential 𝑊𝑚(𝑥(𝑟)) is expressed in terms of
the master function 𝐴(𝑥) and weigh function 𝑤(𝑥) as
𝑊𝑚 (𝑥 (𝑟))
= −𝐴 (𝑥) 𝑤󸀠 (𝑥) /2𝑤 (𝑥) + ((2𝑚 − 1) /4) 𝐴󸀠 (𝑥)√𝐴 (𝑥) . (29)

The Hamiltonian 𝐻1 and 𝐻2 called the superpartner Hamil-
tonians are written as

𝐻1 = 𝐴−𝐴+ = − 𝑑2𝑑𝑟2 +𝑊2𝑚 (𝑟) + 𝑊󸀠𝑚 (𝑟)
= − 𝑑2𝑑𝑟2 + V1 (𝑟) ,

𝐻2 = 𝐴+𝐴− = − 𝑑2𝑑𝑟2 +𝑊2𝑚 (𝑟) − 𝑊󸀠𝑚 (𝑟)
= − 𝑑2𝑑𝑟2 + V2 (𝑟) ,

(30)

where V1(𝑟) and V2(𝑟) are called the partner potentials in
the concept of supersymmetry in nonrelativistic quantum
mechanics. Furthermore, if the partner potentials have the
same shape and differ only in parameters, then potentials
V1(𝑟) and V2(𝑟) are called the shape invariant potentials that
satisfy

V1 (𝑟, 𝑎0) = V2 (𝑟, 𝑎1) + 𝑅 (𝑎1) , (31)

where 𝑅(𝑎1) is independent of any dynamical variable and 𝑎1
is a function of 𝑎0. Potentials which satisfy in this condition
are exactly solvable, although shape invariance is not themost
general integrability or superintegrability condition.

5. Integrable and Superintegrable
Systems Obtained from the Master
Function Formalism

In this section, we try to relate theMielnik-Marquettemethod
to the master function approach. Hence, we define the
following new operators:

𝐵± = ∓ 𝑑𝑑𝑟 + 𝜔 (𝑟) , (32)

where 𝜔(𝑟) as the new superpotential must be related to the
general form of themaster function superpotential𝑊𝑚(𝑥(𝑟)).
Their product yields to Hamiltonians as

𝐵−𝐵+ = − 𝑑2𝑑𝑟2 + 𝜔2 (𝑟) + 𝜔󸀠 (𝑟) ,
𝐵+𝐵− = − 𝑑2𝑑𝑟2 + 𝜔2 (𝑟) − 𝜔󸀠 (𝑟) .

(33)

Now if we demand 𝐴−𝐴+ = 𝐵−𝐵+ then we can obtain the
following Riccati equation in terms of master function:

𝜔2 (𝑟) + 𝜔󸀠 (𝑟) = 𝑊2𝑚 (𝑟) + 𝑊󸀠𝑚 (𝑟) , (34)

where a particular solution is 𝜔(𝑟) = 𝑊𝑚(𝑟). The general
solution can be obtained like

𝜔 (𝑟) = 𝑊𝑚 (𝑟) + 𝜆 (𝑟) , (35)

which yields

𝜆2 (𝑟) + 2𝑊𝑚 (𝑟) 𝜆 (𝑟) + 𝜆󸀠 (𝑟) = 0. (36)

We consider the transformation 𝑓(𝑟) = 1/𝜆(𝑟) and obtain a
first-order linear inhomogeneous differential equation as

𝑓󸀠 (𝑟) − 2𝑊𝑚 (𝑟) 𝑓 (𝑟) = 1, (37)

where the general solution is

𝑓 (𝑟) = exp [2∫𝑊𝑚 (𝑟) 𝑑𝑟]
⋅ (𝐶 + ∫ exp [2∫𝑊𝑚 (𝑟󸀠) 𝑑𝑟󸀠] 𝑑𝑟) ,

(38)

where 𝐶 is constant. Hence,

𝜔 (𝑟) = 𝑊𝑚 (𝑟) + 𝑒−∫ 2𝑊𝑚(𝑟)𝑑𝑟
𝐶 + ∫ 𝑒∫ 2𝑊𝑚(𝑟󸀠)𝑑𝑟󸀠𝑑𝑟 . (39)

Using the function 𝑓(𝑟) given by (38), the superpartner
Hamiltonian is given by

𝐻󸀠 = 𝐻2 − 𝜆󸀠 (𝑟)
= − 𝑑2𝑑𝑟2 +𝑊2𝑚 (𝑟) − 𝑊󸀠𝑚 (𝑟) − 𝜆󸀠 (𝑟) ,

(40)

which is the general form of Hamiltonian in terms of master
function. Now if we catch 𝐻𝑟 = 𝐻2 and 𝐻𝑟󸀠 = 𝐻󸀠
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(the Hamiltonian 𝐻󸀠 is thus given in terms of the variable𝑟󸀠 vertical to 𝑟), then we obtain a new two-dimensional
integrable Hamiltonian as

𝐻𝑠 = 𝐻𝑟 + 𝐻𝑟󸀠
= − 𝑑2𝑑𝑟2 − 𝑑2

𝑑𝑟󸀠2 +𝑊2𝑚 (𝑟) +W2𝑚 (𝑟󸀠) −𝑊󸀠𝑚 (𝑟)
− 𝑊󸀠𝑚 (𝑟󸀠) − 𝜆󸀠 (𝑟󸀠) .

(41)

Therefore, we have obtained the general form of the 2-
dimensional integrable Hamiltonian in terms of master
function which can be separated in radial coordinates. This
separation of variable implies the existence of a second-order
integral as 𝐾 = 𝐻𝑟 − 𝐻𝑟󸀠 . Hence,𝐻𝑠 is an integrable system.
Now, for generating superintegrable systems, we can obtain
the creation and annihilation operators for𝐻󸀠 from𝐻2 as

𝑆+ = 𝐵+𝐴+𝐵−,
𝑆− = 𝐵+𝐴−𝐵−, (42)

where 𝐴± and 𝐵± are given in (28) and (32). It is necessary
to mention that these ladder operators satisfy (6) only for
a particular class of shape invariant systems and in general,
the 2-dimensional system 𝐻𝑠, obtained from a given master
function, is not a superintegrable system. In other words,
we cannot obtain 2-dimensional superintegrable system for
all of the shape invariant cases given in [19, 20]. This
particular class contains the harmonic oscillator, the singular
harmonic oscillator, and their supersymmetric isospectral
deformations.

Hence, if relation (6) exists, according to (9) we can obtain
the integrals of motion for Hamiltonian (41) as

𝐾 = 𝐻𝑟 − 𝐻𝑟󸀠 ,
𝐴1 = 𝐴𝑚+ (𝑟) 𝑆𝑛− (𝑟󸀠) − 𝐴𝑚− (𝑟) 𝑆𝑛+ (𝑟󸀠) ,
𝐴2 = 𝐴𝑚+ (𝑟) 𝑆𝑛− (𝑟󸀠) + 𝐴𝑚− (𝑟) 𝑆𝑛+ (𝑟󸀠) .

(43)

In the next section, we apply this formalism for some
particular cases of shape invariant potentials in terms of
master function.

6. Examples of Two-Dimensional
Superintegrable Systems as a Result of
Master Function Approach

In this section, wewould apply themaster function formalism
of the previous section for two examples and show how
these results allowus to obtain 2-dimensional superintegrable
systems with higher order integrals.

Example 1. Let 𝐴(𝑥) = 1; then according to [19], 𝑤(𝑥) =𝑒−(𝛽/2)𝑥2 that 𝑥 = 𝑟 − 2𝛼/𝛽, 𝛽 > 0 and the interval is(−∞,+∞). Using (29), we obtain the superpotential as

𝑊𝑚 (𝑟) = −𝛽2 (𝑟 − 2𝛼𝛽 ) . (44)

According to (27), the energy spectrum is as

𝐸 = 𝑛 − 𝑚 + 1, (45)

and also the ladder operators given by (28) related to (44)
satisfy a Heisenberg algebras (6). Now, substituting expres-
sion 𝑊𝑚(𝑟) in (38) yields the following relation in terms of
the error function:

𝜆 (𝑟) = 𝑒−𝛽(𝑟2/2)+2𝛼𝑟
𝐶 + √𝜋/2𝛽𝑒2𝛼2/𝛽 erf (√𝛽/2 (𝑟 − 2𝛼/𝛽)) , (46)

and so

𝜔 (𝑟) = 𝑊𝑚 (𝑟) + 𝜆 (𝑟)
= 𝛽2 (𝑟 − 2𝛼𝛽 )

+ 𝑒𝛽(𝑟2/2)+𝛼𝑟
𝐶 + √𝜋/2𝛽𝑒2𝛼2/𝛽 erf (√𝛽/2 (𝑟 − 2𝛼/𝛽)) .

(47)

Substituting this expression in (40) and (41) yields the family
of superpartner 𝐻󸀠 and a two-dimensional superintegrable
Hamiltonian 𝐻𝑠, respectively, as

𝐻󸀠 = 𝐻2 − 𝜆󸀠 (𝑟) ,
𝐻𝑠 = − 𝑑2𝑑𝑟2 − 𝑑2𝑑𝑟󸀠2

+ 𝛽24 {(𝑟 − 2𝛼𝛽 )
2 + (𝑟󸀠 − 2𝛼𝛽 )

2} − 𝛽
− 𝜆󸀠 (𝑟󸀠) ,

(48)

where

𝜆󸀠 (𝑟󸀠)
= (𝛽𝑟󸀠 + 𝛼) 𝑒(𝛽/2)𝑟󸀠2+𝛼𝑟󸀠
𝐶 + √𝜋/2𝛽𝑒2𝛼2/𝛽 erf (√𝛽/2 (𝑟󸀠 − 2𝛼/𝛽))
− (𝑒(𝛽/2)𝑟󸀠2+𝛼𝑟󸀠) (𝑒2𝛼2/𝛽𝑒−(1/2)𝛽(𝑟󸀠−2𝛼/𝛽)2)
[𝐶 + √𝜋/2𝛽𝑒2𝛼2/𝛽 erf (√𝛽/2 (𝑟󸀠 − 2𝛼/𝛽))]2 ,

(49)

𝐻2 = − 𝑑2𝑑𝑟2 + 𝛽
2

4 (𝑟 − 2𝛼𝛽 )
2 − 𝛽2 . (50)

It is seen that 2-dimensional superintegrable Hamiltonian
(48) is the same as (21). We can find the general form of the
operators 𝑆+ and 𝑆− in terms of the master function for this
oscillator-like potential as follows:

𝑆+ = − 𝑑3𝑑𝑟3 −𝑊𝑚 𝑑
2

𝑑𝑟2 + (−2𝜔󸀠 −𝑊󸀠𝑚 + 𝜔2) 𝑑𝑑𝑟
+ (−𝜔󸀠󸀠 −𝑊󸀠𝑚𝜔 −𝑊𝑚𝜔󸀠 + 𝜔𝜔󸀠 +𝑊𝑚𝜔2) ,
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𝑆− = 𝑑3𝑑𝑟3 −𝑊𝑚 𝑑
2

𝑑𝑟2 + (−2𝜔󸀠 −𝑊󸀠𝑚 − 𝜔2) 𝑑𝑑𝑟
+ (𝜔󸀠󸀠 −𝑊󸀠𝑚𝜔 −𝑊𝑚𝜔󸀠 + 𝜔𝜔󸀠 +𝑊𝑚𝜔2) .

(51)

Thus, we have obtained a 2-dimensional superintegrable
system with integrals given by (43) as

𝐾 = 𝐻𝑟 − 𝐻𝑟󸀠 ,
𝐴1 = 𝐴+ (𝑟) 𝑆− (𝑟󸀠) − 𝐴− (𝑟) 𝑆+ (𝑟󸀠) ,
𝐴2 = 𝐴+ (𝑟) 𝑆− (𝑟󸀠) + 𝐴− (𝑟) 𝑆+ (𝑟󸀠) ,

(52)

where

𝐾 = − 𝑑2𝑑𝑟2 +
𝑑2
𝑑𝑟󸀠2 +𝑊2𝑚 (𝑟) − 𝑊2𝑚 (𝑟󸀠) −𝑊󸀠𝑚 (𝑟)

+ 𝑊󸀠𝑚 (𝑟󸀠) + 𝜆󸀠 (𝑟󸀠) ,
𝐴1 = 2𝑊𝑚 (𝑟) 𝑑3𝑑𝑟󸀠3 + 2𝑊𝑚 (𝑟󸀠)

𝑑3
𝑑𝑟𝑑𝑟󸀠2

− 2 (−2𝜔󸀠 (𝑟󸀠) −𝑊󸀠𝑚 (𝑟󸀠)) 𝑑2𝑑𝑟 𝑑𝑟󸀠
− 2 (−𝑊󸀠𝑚 (𝑟󸀠) 𝜔 (𝑟󸀠) −𝑊𝑚 (𝑟󸀠) 𝜔󸀠 (𝑟󸀠)
+ 𝜔 (𝑟󸀠) 𝜔󸀠 (𝑟󸀠) +𝑊𝑚 (𝑟󸀠) 𝜔2 (𝑟󸀠)) 𝑑𝑑𝑟
− 2𝑊𝑚 (𝑟) 𝜔2 (𝑟󸀠) 𝑑𝑑𝑟󸀠 + 2𝑊𝑚 (𝑟) 𝜔󸀠󸀠 (𝑟󸀠) ,

𝐴2 = −2 𝑑4
𝑑𝑟 𝑑𝑟󸀠3 + 2𝜔2 (𝑟󸀠)

𝑑2𝑑𝑟𝑑𝑟󸀠 − 2𝑊𝑚 (𝑟)
⋅ 𝑊𝑚 (𝑟󸀠) 𝑑2

𝑑𝑟󸀠2 − 2𝜔󸀠󸀠 (𝑟󸀠)
𝑑𝑑𝑟 + 2𝑊𝑚 (𝑟)

⋅ (−2𝜔󸀠 (𝑟󸀠) − 𝑊󸀠𝑚 (𝑟󸀠)) 𝑑𝑑𝑟󸀠 + 2𝑊𝑚 (𝑟)
⋅ (−𝑊󸀠𝑚 (𝑟󸀠) 𝜔 (𝑟󸀠) −𝑊𝑚 (𝑟󸀠) 𝜔󸀠 (𝑟󸀠)
+ 𝜔 (𝑟󸀠) 𝜔󸀠 (𝑟󸀠) +𝑊𝑚 (𝑟󸀠) 𝜔2 (𝑟󸀠)) .

(53)

These integrals are of order 2, 3, and 4.

Example 2. According to [19] for 𝐴(𝑥) = 𝑥, we have 𝑤(𝑥) =𝑥𝛼𝑒−𝛽𝑥, 𝑥 = 𝑟2/4, 𝛼 > −1, 𝛽 > 0 and the interval is [0, +∞).
Now, using (29), the superpotential and the energy spectrum
are as

𝑊𝑚 (𝑟) = −1𝑟 (𝛼 + 𝑚 − 12) + 𝛽4 𝑟,
𝐸 = 𝛽 (𝑛 − 𝑚 + 1) .

(54)

This system has also the ladder operators that satisfy the form
of (6); hence, substituting expression𝑊𝑚(𝑟) in (38) yields the
following relation in terms of Whittaker function:

𝑓 (𝑟) = 𝛽−(𝛼+𝑚)(𝛼 + 𝑚) (𝑟2)
−(2𝛼+2𝑚−1) 𝑒(1/4)𝛽𝑟2 (𝐶

+ 𝑒−(1/8)𝛽𝑟2 [ 1(𝛼 + 𝑚 + 1) (𝛽𝑟
2

4 )𝛼/2+𝑚/2

⋅ 𝑀(1/2)𝛼+(1/2)𝑚,(1/2)𝛼+(1/2)𝑚+1/2 (14𝛽𝑟2)
+ (𝛽𝑟24 )𝛼/2+𝑚/2−1

⋅ 𝑀(1/2)𝛼+(1/2)𝑚+1,(1/2)𝛼+(1/2)𝑚+1/2 (14𝛽𝑟2)]) ,

(55)

where the Whittaker function 𝑀𝜇,](𝑧) is the solution of the
following differential equation:

𝑦󸀠󸀠 + (−14 + 𝜇𝑧 + 1/4 − ]2𝑧2 )𝑦 = 0. (56)

It can be also defined in terms of the confluent hypergeomet-
ric function as

𝑀𝜇,] (𝑧)
= 𝑒(−(1/2)𝑧)𝑧(1/2+]) 1𝐹1 (12 + ] − 𝜇, 1 + 2], 𝑧) . (57)

The family of superpartner Hamiltonians 𝐻󸀠 and the two-
dimensional superintegrable Hamiltonian 𝐻𝑠 are thus cal-
culated by (40) and (41), respectively. The creation and
annihilation operators for the Hamiltonian 𝐻2 are as

𝑀+ (𝑟) = 𝐴2+ (𝑟)𝐴− (𝑟) ,
𝑀− (𝑟) = 𝐴+ (𝑟)𝐴2− (𝑟) , (58)

where 𝐴±(𝑟) is given in (28) and from (42), we have the
creation and annihilation operators of the Hamiltonian𝐻󸀠 as

𝑅+ (𝑟󸀠) = 𝐵+ (𝑟󸀠)𝑀+ (𝑟󸀠) 𝐵− (𝑟󸀠) ,
𝑅− (𝑟󸀠) = 𝐵+ (𝑟󸀠)𝑀− (𝑟󸀠) 𝐵− (𝑟󸀠) , (59)

where 𝐵±(𝑟) is given by (32) and (39). We can also find the
integrals of motion of the Hamiltonian 𝐻𝑠 from (43) as

𝐾 = 𝐻𝑟 − 𝐻𝑟󸀠 ,
𝐴1 = 𝑀+ (𝑟) 𝑅− (𝑟󸀠) −𝑀− (𝑟) 𝑅+ (𝑟󸀠) ,
𝐴2 = 𝑀+ (𝑟) 𝑅− (𝑟󸀠) +𝑀− (𝑟) 𝑅+ (𝑟󸀠) ,

(60)

that are of the order 2, 7, and 8.
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7. Conclusion

In this article, we have used the results obtained by Mielnik
in the concept of SUSYQM and related it to master func-
tion formalism for constructing two-dimensional integrable
and superintegrable systems with higher order integrals
of motion. From this procedure, we have generated the
superintegrable systems for two different cases of master
functions 𝐴(𝑥) = 1 and 𝐴(𝑥) = 𝑥 and have shown that
the higher integrals of motion are in order 2, 3, 4 and 2, 7,
8, respectively.
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Employing a pseudo-orthonormal coordinate-free approach, the solutions to the Klein–Gordon and Dirac equations for particles
in Melvin spacetime are derived in terms of Heun’s biconfluent functions.

1. Introduction

The study of relativistic particles in static magnetic fields has
a long history and is still attracting considerable attention,
especially for cases where someone deals with curved man-
ifolds.

Even though on Minkowski spacetime the relativistic
behavior of an electron in various magnetostatic configu-
rations is well understood (see, for example, Johnson and
Lippmann’s paper [1]), a weakness on curved spacetime
regards the explicit gauge covariant formulation.

Recently, when dealing with slowly rotating neutron
stars which have been termed as magnetars [2], it has been
assumed that their huge magnetic induction in the core and
crust, 𝐵 ∼ 1014–1015 (G), is affecting the spacetime geometry.
Away out could be the search for general relativistic solutions
with the magnetic field considered as a perturbation of the
spherically symmetric background [3]. Another way is to
assume that magnetized metrics, as the one belonging to the
Melvin class [4, 5], may be reliable candidates for describing
these highly compact astrophysical objects with a dominant
axial magnetic field [6].

Within a coordinate-dependent formulation, switching
between canonical andpseudo-orthonormal basis, the above-
mentioned authors are integrating the system of four coupled
first-order differential equations, in the first approximation,
neglecting the terms in higher orders of the polar radial
coordinate 𝜌. Their solutions are expressed in terms of

generalized Laguerre polynomials, similarly to the case of the
Dirac equation in cylindrical coordinates on a flat manifold
[7].

In the present work, we are applying a coordinates-free
method to analyze the Klein–Gordon and Dirac equations
describing particles evolving in Melvin’s spacetime. Employ-
ing Cartan’s formalism, we are computing all the essential
geometrical objects for writing down the corresponding
matter fields and Einstein’s equations.

It turns out that the 𝑆𝑂(3, 1) × 𝑈(1)-gauge covariant
Klein–Gordon equation can be exactly solved, its solutions
being given by the Heun biconfluent functions [8–10]. The
samehappenswith the approximate expression of the second-
order differential system derived from the Dirac equation.

The Heun functions, either general or confluent, are
main targets of recent investigations and have been obtained
for massless particles evolving in a Universe described
by the metric function written as a nonlinear mixture of
Schwarzschild, Melvine, and Bertotti-Robinson solutions
[11].

2. The Geometry

Recently, in [12], the procedure of transforming a known
static symmetric solution to Einstein-hydrodynamic equa-
tions into a magnetized metric was presented, by (nonlin-
early) adding themagnetic field. In spherical coordinates, this
has the general form

Hindawi
Advances in High Energy Physics
Volume 2018, Article ID 1953586, 7 pages
https://doi.org/10.1155/2018/1953586

http://orcid.org/0000-0002-0385-3485
https://doi.org/10.1155/2018/1953586


2 Advances in High Energy Physics

0.3

0.2

0.1

0

J

0.2 0.4 0.6 0.8 10

x

Figure 1: The radial current (50) in terms of the variable 𝑥 ≈ √2𝑀𝐵2∗𝜌2/(8𝜔).

𝑑𝑠2 = Λ2𝑔11 (𝑑𝑟)2 + Λ2𝑟2 (𝑑𝜃)2 + 𝑟2sin2 𝜃Λ2 (𝑑𝜑)2
− Λ2𝑔00 (𝑑𝑡)2 ,

(1)

with the metric functions 𝑔11 and 𝑔00 depending only on 𝑟
and

Λ = 1 + 𝐵2∗4 𝑟2sin2 𝜃, (2)

where, for the moment, 𝐵∗ is a parameter related to the
magnetic field intensity.

In the pseudo-orthonormal Cartan frame corresponding
to the metric (1),

𝜔1 = Λ√𝑔11𝑑𝑟,
𝜔2 = Λ𝑟𝑑𝜃,
𝜔3 = 𝑟 sin 𝜃Λ 𝑑𝜑,
𝜔4 = Λ√𝑔00𝑑𝑡,

(3)

for the potential

𝐴2 = 𝐵0𝑟 sin 𝜃2 , (4)

where 𝐵0 is the strength of the magnetic field on the axis, and
the Maxwell tensor components, corresponding to a poloidal
magnetic field with 𝐵�휌 and 𝐵�휃, are given by the relations

𝐹23 = 𝐵0cos 𝜃Λ2 ,
𝐹13 = 𝐵0sin 𝜃Λ2√𝑔11 ,

(5)

pointing out a prolate (in shape) star.

Once we assume 𝑔00 = 𝑔11 = 1, we can switch to
cylindrical coordinates {𝜌, 𝜑, 𝑧, 𝑡}, by

𝜌 = 𝑟 sin 𝜃,
𝑧 = 𝑟 cos 𝜃, (6)

so that themagnetizedmetric (1) turns into the simpleMelvin
expression

𝑑𝑠2 = Λ2 (𝑑𝜌)2 + 𝜌2Λ2 (𝑑𝜑)2 + Λ2 (𝑑𝑧)2 − Λ2 (𝑑𝑡)2 , (7)

with

Λ = 1 + 𝐵2∗𝜌24 . (8)

Within an 𝑆𝑂(3, 1)-gauge covariant formulation, we
introduce the pseudo-orthonormal frame

𝑒1 = 1Λ𝜕�휌,
𝑒2 = Λ𝜌 𝜕�휑,
𝑒3 = 1Λ𝜕�푧,
𝑒4 = 1Λ𝜕�푧,

(9)
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whose corresponding dual base is

𝜔1 = Λ𝑑𝜌,
𝜔2 = 𝜌Λ𝑑𝜑,
𝜔3 = Λ𝑑𝑧,
𝜔4 = Λ𝑑𝑡,

(10)

so that the metric (7) gets the Minkowskian form 𝑑𝑠2 =𝜂�푎�푏𝜔�푎𝜔�푏, with 𝜂�푎�푏 = [1, 1, 1, −1]. The first Cartan equation,

𝑑𝜔�푎 = Γ�푎.[�푏�푐]𝜔�푏 ∧ 𝜔�푐, (11)

with 1 ≤ 𝑏 < 𝑐 ≤ 4 and Γ�푎.[�푏�푐] = Γ�푎.�푏�푐−Γ�푎.�푐�푏, leads to the following
connection one-form:

Γ12 = (Λ�耠Λ2 − 1𝜌Λ)𝜔2,
Γ13 = −Λ�耠Λ2𝜔3,
Γ14 = Λ�耠Λ2𝜔4,

(12)

where Λ�耠 is the derivative of Λ with respect to 𝜌.
Employing the second Cartan equation

R�푎�푏 = 𝑑Γ�푎�푏 + Γ�푎�푐 ∧ Γ�푐.�푏, (13)

one derives the curvature two-forms R�푎�푏 = 𝑅�푎�푏�푐�푑𝜔�푐 ∧ 𝜔�푑,
with 1 ≤ 𝑐 < 𝑑 ≤ 4, leading to the curvature components

𝑅1212 = 2𝐵2∗Λ4 [1 − 𝐵2∗𝜌28 ] ,
𝑅3434 = 𝐵4∗𝜌24Λ4 ,
𝑅1313 = 𝑅2323 = − 𝐵2∗2Λ4 [1 −

𝐵2∗𝜌24 ] = −𝑅1414
= −𝑅2424,

(14)

pointing out the special radius value 𝜌∗ = 2/𝐵∗, for which
only the components 𝑅1212 = 𝐵2∗/Λ4 = 𝑅3434 are surviving
and the Weyl tensor vanishes.

Since the scalar curvature is zero, the Einstein tensor
components are given by the Ricci tensor components, as

𝐺11 = 𝐺22 = −𝐺33 = 𝐺44 = 𝐵2∗Λ4 . (15)

In the pseudo-orthonormal frame whose dual bases
are (10), it turns out that the potential (4), generating the
magnetic induction along 𝑂𝑧, gets the familiar expression

𝐴2 = 𝐵0𝜌2 , (16)

and the essential component of the Maxwell tensor reads

𝐹12 = 𝐴2|1 + Γ212𝐴2 = 𝐵0Λ2 , (17)

where 𝑓|1 = 𝑒1(𝑓).
Using the energy-momentum tensor components

𝑇11 = 𝑇22 = −𝑇33 = 𝑇44 = 12𝐹212 = 12
𝐵20Λ4 , (18)

in the Einstein equations 𝐺�푎�푏 = 𝜅0𝑇�푎�푏, one gets the following
relation between the parameters 𝐵∗ and 𝐵0:

𝐵2∗ = 𝜅0𝐵202 , (19)

with 𝜅0 = 8𝜋𝐺/𝑐4.
3. Exactly Solvable Klein–Gordon Equation

In this section, we are going to construct the wave function
of the charged bosons, considered as test particles evolving in
the crust of a relativistic magnetar. The complex scalar field
of mass 𝜇, minimally coupled to gravity, is described by the𝑆𝑂(3, 1) × 𝑈(1) gauge covariant Klein–Gordon equation

𝜂�푎�푏Φ|�푎�푏 − 𝜂�푎�푏Φ|�푐Γ�푐�푎�푏 = 𝜇2Φ + 2𝑖𝑞𝐴2Φ|2 + 𝑞2𝐴22Φ, (20)

which, in the pseudo-orthonormal frame with the dual bases
(10), reads

1𝜌 𝜕𝜕𝜌 [𝜌𝜕Φ𝜕𝜌 ] + Λ4𝜌2 𝜕
2Φ𝜕𝜑2 + 𝜕2Φ𝜕𝑧2 − 𝜕2Φ𝜕𝑡2

= [𝜇2Λ2 + 𝑖𝑞𝐵0Λ3 𝜕Φ𝜕𝜑 + (𝑞𝐵0𝜌Λ2 )2]Φ.
(21)

The above form suggests the variables separation

Φ = 𝜙 (𝜌) 𝑒�푖�푚�휑𝑒�푖�푝𝑧�푧𝑒−�푖�휔�푡, (22)

which leads to the following differential equation for the
unknown function 𝜙,

1𝜌 𝜕𝜕𝜌 [𝜌𝜕𝜙𝜕𝜌] + [𝜔2 − 𝑝2�푧 − 𝑚2𝜌2 Λ4 − 𝜇2Λ2 + 𝑚𝑞𝐵0Λ3

− (𝑞𝐵0𝜌Λ2 )2]𝜙 = 0,
(23)

with Λ defined in (8).
This can be exactly integrated, its solution being expressed

in terms of the Heun biconfluent function as [9, 10]

𝜙 (𝑦) ∼ exp [−𝑦22 − 𝛽𝑦2 ]𝑦�훼/2HeunB [𝛼, 𝛽, 𝛾, 𝛿, 𝑦] , (24)
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where the variable and the parameters are, respectively, given
by

𝑦 = √𝑏𝐵∗𝜌24 ,
𝑏 = 𝑞𝐵0 − 𝑚𝐵2∗2 ≈ 𝑞𝐵0,

(25)

𝛼 = ±𝑚,
𝛽 ≈ 2√𝑞𝐵0𝐵∗ ,
𝛾 ≈ 𝑚 − 𝜇2𝑞𝐵0 ,

𝛿 ≈ −2 [𝜔2 − 𝑝2�푧 − 𝜇2 + 𝑚𝑞𝐵0]𝐵∗√𝑞𝐵0 .

(26)

Let us point out that the Heun biconfluent equation has
one regular singularity at the origin and one irregular at ∞
and can be obtained, from the Heun general equation, by a
process of successive confluences [10].

Regarding the asymptotic behavior of the function (24),
solution to (23), that has a singularity in 𝜌 → 0, due to the
exponential term, this is vanishing for large 𝑦-values. On the
other hand, for a regular solution at the origin 𝑦 = 0 (where
HeunB(0) = 1), one has to choose the plus sign of 𝛼 in (26).

4. The 𝑆𝑂(3, 1) × 𝑈(1)-Gauge Covariant
Dirac Equation

For relativistic fermions of mass 𝑀, coupled to the external
magnetic field generated by (16), the Dirac equation has the𝑆𝑂(3, 1) × 𝑈(1)-gauge covariant expression

𝛾�푎Ψ;�푎 +𝑀Ψ = 0, (27)

where “;” stands for the covariant derivative

Ψ;�푎 = 𝑒�푎Ψ + 14Γ�푏�푐�푎𝛾�푏𝛾�푐Ψ − 𝑖𝑞𝐴�푎Ψ. (28)

In view of the relations (12), the term expressing the Ricci
spin-connection in (27) reads

14Γ�푏�푐�푎𝛾�푎𝛾�푏𝛾�푐 = 𝑓Λ𝛾1, (29)

where we have introduced the function

𝑓 = 12 [1𝜌 + Λ�耠Λ ] . (30)

With the explicit form of the Dirac equation (27) being

1Λ [𝛾1 (𝜕�휌 + 𝑓) + Λ2𝜌 𝛾2𝜕�휑 + 𝛾3𝜕�푧 + 𝛾4𝜕�푡 +𝑀Λ
− 𝑖𝑞𝛾2Λ𝐴2]Ψ = 0,

(31)

one may use the variables separation

Ψ = 𝑒�푖(�푚�휑+�푝𝑧�푧−�휔�푡)𝜓 (𝜌) , (32)

to derive the differential equation satisfied by the part
depending on 𝜌; i.e.,
𝛾1 [𝜓�耠 + 𝑓𝜓]

+ 𝑖 {𝛾2Λ[𝑚Λ𝜌 − 𝑞𝐵0𝜌2 ] + 𝑝�푧𝛾3 − 𝜔𝛾4 − 𝑖𝑀Λ}𝜓
= 0.

(33)

With the following function substitution

𝜓 = 1
2√𝜌Λ𝜒, (34)

the above equation becomes

𝛾1𝜒�耠 + 𝑖 {𝛾2𝐹 + 𝑝�푧𝛾3 − 𝜔𝛾4 − 𝑖𝑀Λ}𝜒 = 0, (35)

where

𝐹 (𝜌) = Λ[𝑚Λ𝜌 − 𝑞𝐵0𝜌2 ] , (36)

and we are going to use the Dirac representation for the 𝛾�푖
matrices,

𝛾�휇 = −𝑖𝛽𝛼�휇,
𝛾4 = −𝑖𝛽,
𝜇 = 1, 3,

(37)

with

𝛽 = (I 0
0 −I) ,

𝛼�휇 = ( 0 𝜎�휇
𝜎�휇 0 ) ,

(38)

where 𝜎�휇 denotes the usual Pauli matrices.
In the following, we are assuming that the particle is not

moving along the magnetic field direction, i.e., 𝑝�푧 = 0, and
the bispinor 𝜒 is of the form

𝜒 (𝜌) = [𝜁 (𝜌)𝜂 (𝜌)] , (39)

so that (35) decouples in two equations for the (two-
component) spinors 𝜁 and 𝜂; i.e.,

𝜎1𝜁�耠 + 𝑖𝐹𝜎2𝜁 = 𝑖 (𝜔 +𝑀Λ) 𝜂,
𝜎1𝜂�耠 + 𝑖𝐹𝜎2𝜂 = 𝑖 (𝜔 −𝑀Λ) 𝜁. (40)
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Applying the usual procedure, one gets the following
differential equations:

𝜁�耠�耠�퐴 − 𝑀Λ�耠𝜔 +𝑀Λ𝜁�耠�퐴
+ {𝜔2 −𝑀2Λ2 − 𝐹2 ∓ [𝐹�耠 − 𝑀𝐹Λ�耠𝜔 +𝑀Λ]} 𝜁�퐴 = 0,

𝜂�耠�耠�퐴 + 𝑀Λ�耠𝜔 −𝑀Λ𝜂�耠�퐴
+ {𝜔2 −𝑀2Λ − 𝐹2 ∓ [𝐹�耠 + 𝑀𝐹Λ�耠𝜔 −𝑀Λ]}𝜂�퐴 = 0,

(41)

which cannot be analytically solved. However, by imposing
the condition𝐵2∗ ≪ 𝑞𝐵0 and neglecting the powers of 𝜌 larger
than 3, (41) get the simpler forms:

𝜁�耠�耠�퐴 − 𝑀𝐵2∗𝜌2 (𝜔 +𝑀) [1 −
𝑀𝐵2∗𝜌24 (𝜔 +𝑀)] 𝜁�耠�퐴 + {𝜔2 −𝑀2

+ (𝑚 ± 12) 𝑞𝐵0 − 𝑚 (𝑚 ∓ 1)𝜌2 − (𝑞𝐵0𝜌2 )2} 𝜁�퐴 = 0,
𝜂�耠�耠�퐴 + 𝑀𝐵2∗𝜌2 (𝜔 −𝑀) [1 +

𝑀𝐵2∗𝜌24 (𝜔 −𝑀)] 𝜂�耠�퐴 + {𝜔2 −𝑀2

+ (𝑚 ± 12) 𝑞𝐵0 − 𝑚 (𝑚 ∓ 1)𝜌2 − (𝑞𝐵0𝜌2 )2}𝜂�퐴 = 0.

(42)

The corresponding solutions, i.e.,

𝜁1 = {√𝜌, 𝜌�푚} 𝑢1,
𝜁2 = {√𝜌, 𝜌�푚+1} 𝑢2,
𝜂1 = {√𝜌, 𝜌�푚} V1,
𝜂2 = {√𝜌, 𝜌�푚+1} V2,

(43)

are expressed in terms of Heun’s biconfluent functions [8–10]

𝑢1 = HeunB [𝛼1, 𝛽, 𝛾+, 𝛿+1 , 𝑥�푢] ,
𝑢2 = HeunB [𝛼2, 𝛽, 𝛾+, 𝛿+2 , 𝑥�푢] ;
V1 = HeunB [𝛼1, 𝛽, 𝛾−, 𝛿−1 , 𝑥V] ;
V2 = HeunB [𝛼2, 𝛽, 𝛾−, 𝛿−2 , 𝑥V] ,

(44)

of variables

𝑥�푢 = −√2𝑀𝐵2∗𝜌28 (𝜔 +𝑀) ,
𝑥V = √2𝑀𝐵2∗𝜌28 (𝜔 −𝑀)

(45)

and parameters

𝛼1 = 𝑚 − 12 ,
𝛼2 = 𝑚 + 12 ,
𝛽 = √2,
𝛾± = −2 [𝑞𝐵0 (𝜔 ±𝑀)𝑀𝐵2∗ ]2 ,
𝛿±1 = ± 2√2𝑀𝐵2∗ (𝜔 ±𝑀) [𝜔2 −𝑀2 + (𝑚 + 12) 𝑞𝐵0] ,
𝛿±2 = ± 2√2𝑀𝐵2∗ (𝜔 ±𝑀) [𝜔2 −𝑀2 + (𝑚 − 12) 𝑞𝐵0] ,

(46)

and therefore the components of the bispinor 𝜓 in (34) are
given by

𝜓1 = 1
2√Λ {1, 𝜌�푚−1/2} 𝑢1,

𝜓2 = 1
2√Λ {1, 𝜌�푚+1/2} 𝑢2,

𝜓3 = 1
2√Λ {1, 𝜌�푚−1/2} V1,

𝜓4 = 1
2√Λ {1, 𝜌�푚+1/2} V2.

(47)

Using the expressions (47) in (32), one may compute the
radial current density, meaning particles per unit time and
per unit covariant 2-surface

𝑑Σ1 = 𝜔2 ∧ 𝜔3 = 𝜌𝑑𝜑 ∧ 𝑑𝑧, (48)

as

𝑗1 = 𝑖Ψ𝛾1Ψ = Ψ†𝛼1Ψ = 12Λ [𝑢1V2 + 𝑢2V1] (49)

and the corresponding (radial) current,

𝐼 (𝜌) = ∫�퐿𝑧/2
−�퐿𝑧/2

∫2�휋
0

𝑒1�푎𝑗�푎𝑑Σ1 = 𝜋𝐿�푧𝜌Λ2 [𝑢1V2 + 𝑢2V1] , (50)

represented in Figure 1, as a function of

𝑥 ≈ √2𝑀𝐵2∗𝜌28𝜔 . (51)

One may notice that, for 𝑥 ≪ 1, the current is suddenly
increasing from zero to a maximum value, which depends on
the ratio𝑀/𝜔 and on the magnetic field intensity.

The case corresponding to massless fermions is signifi-
cantly less complicated. Thus, the equation

1Λ [𝛾1 (𝜕�휌 + 𝑓) + Λ2𝜌 𝛾2𝜕�휑 + 𝛾3𝜕�푧 + 𝛾4𝜕�푡]Ψ0
− 𝑖𝑞𝛾2𝐴2Ψ0 = 0,

(52)
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with the variables separation (32), leads to the following
differential equation satisfied by the part depending on 𝜌; i.e.,

𝛾1 [𝜓�耠0 + 𝑓𝜓0]
+ 𝑖 {𝛾2Λ[𝑚Λ𝜌 − 𝑞𝐵0𝜌2 ] + 𝑝𝛾3 − 𝜔𝛾4}𝜓0 = 0. (53)

As customary for massless fermions, we are going to use
the Weyl representation for the 𝛾matrices,

𝛾�휇 = −𝑖𝛽𝛼�휇,
𝛾4 = −𝑖𝛽,
𝜇 = 1, 3,

(54)

with

𝛼�휇 = (𝜎�휇 0
0 −𝜎�휇) , (55)

and the bispinor 𝜓0 will be taken as

𝜓0 (𝜌) = [𝜁 (𝜌)𝜂 (𝜌)] . (56)

Once (53) decouples in two equations for 𝜁 and 𝜂, one gets,
for the up spinor’s components, the second-order differential
equations

𝜁�耠�耠�퐴 + 2𝑓𝜁�耠�퐴 + [𝜔2 − 𝑝2�푧 + 𝑓2 − 𝐹2 + 𝜕�휌 (𝑓 ∓ 𝐹)] 𝜁�퐴
= 0, (57)

and similarly for 𝜂�퐴. Within the same approximation 𝐵2∗ ≪𝑞𝐵0 and neglecting the powers of 𝜌 larger than 2, (57) turns
into the simpler forms

𝑑2𝜁�퐴𝑑𝜌2 + [1𝜌 + 𝐵2∗𝜌2 ] 𝑑𝜁�퐴𝑑𝜌 + [𝜔2 − 𝑝2�푧 + 𝑞𝐵0 (𝑚 ± 12)
− (𝑚 ∓ 12)

2 1𝜌2 − (𝑞𝐵0𝜌2 )2] 𝜁�퐴 = 0,
(58)

whose solutions can be expressed either in terms of confluent
hypergeometric functions, as [13]

𝜁1 = 𝑥(1/2)(�푚−1/2)𝑒−�푥/2𝑈[−𝜔2 − 𝑝2�푧2𝑞𝐵0 + 𝐵2∗4𝑞𝐵0 , 𝑚
+ 12 , 𝑥] ;

𝜁2 = 𝑥−(1/2)(�푚+1/2)𝑒−�푥/2𝑈[−𝜔2 − 𝑝2�푧2𝑞𝐵0 + 𝐵2∗4𝑞𝐵0
− (𝑚 − 12) , − (𝑚 − 12) , 𝑥] ,

(59)

or in terms of Whittaker functions [13], as

𝜁1 = 1√𝑥W�휆1 ,�휇1 (𝑥) ,
𝜁2 = 1√𝑥W�휆2 ,�휇2 (𝑥) ,

(60)

with the dimensionless variable

𝑥 = 𝐵2∗𝜌24 √1 + (2𝑞𝐵0𝐵2∗ )2 ≈ 𝑞𝐵0𝜌22 (61)

and parameters

𝜆1 ≈ 𝜔2 − 𝑝2�푧2𝑞𝐵0 − 𝐵2∗4𝑞𝐵0 +
12 (𝑚 + 12) ,

𝜇1 = 12 (𝑚 − 12) ;
𝜆2 ≈ 𝜔2 − 𝑝2�푧2𝑞𝐵0 − 𝐵2∗4𝑞𝐵0 +

12 (𝑚 − 12) ,
𝜇1 = 12 (𝑚 + 12) .

(62)

5. Conclusions

Within the framework of the gauge-invariant geometry,
based on the semi-direct product of the local groups 𝑆𝑂(3, 1)
and𝑈(1), the present paper is focusing on the Klein–Gordon
and Dirac equations describing particles evolving in a back-
ground endowed with Melvin’s metric.

By making use of Cartan’s formalism, we have derived
the corresponding Einstein–Melvin equations leading to the
essential relation between the model’s parameters (19). As a
remark, switching to the canonical bases, the third covariant
induction component is given by the expression

𝐵�푧 = √󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨𝐹12(�푐) = √󵄨󵄨󵄨󵄨𝑔󵄨󵄨󵄨󵄨𝑒1�푎𝑒2�푏𝐹�푎�푏 ≡ 𝐵0. (63)

In case of bosons, the Klein–Gordon equation can be
integrated exactly, its solution being given by the Heun
biconfluent functions of parameters (26).

Equations (41) coming from the Dirac equation (31) have
rather complicated expressions, containing several additional
terms which were neglected in [6]. In the assumption 𝐵2∗ ≪𝑞𝐵0, we have been able to find solutions for (42), expressed in
terms of Heun’s biconfluent functions (44). The correspond-
ing radial particle-current (50), represented in Figure 1, is
starting from zero, at the origin 𝜌 = 0, and exhibits a rather
nontrivial behavior, characterized by a sudden growth to a
maximum value. This one is followed by a local minimum
which might signal, in the approximation we have used,
the presence of a plateau. The seemingly far away unlimited
increasing is a result of the violation of the approximation
holding condition which demands 𝑥 < 1.
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The energy eigenvalues with any 𝑙 ̸= 0 states and mass of heavy quark-antiquark system (quarkonium) are obtained by using
Asymptotic Iteration Method in the view of nonrelativistic quantum chromodynamics, in which the quarks are considered as
spinless for easiness and are bounded by Cornell potential. A semianalytical formula for energy eigenvalues and mass is achieved
via the method in scope of the perturbation theory. The accuracy of this formula is checked by comparing the eigenvalues with the
ones numerically obtained in this study and with exact ones in literature. Furthermore, semianalytical formula is applied to cc, bb,
and cb meson systems for comparing the masses with the experimental data.

1. Introduction

Investigation of an atomic or subatomic system is done by
achieving an energy spectrum of the system. This is carried
out, generally, for the events in which the system is bounded
by a potential function. Besides, the scattering states or reso-
nance states can also be observed in the investigation of the
system.The eigenvalues (or eigenenergies) of Hamiltonian of
this system is obtained for a given potential function. In order
to do this, various mathematical methods are used in quan-
tum mechanics. One of these, named Asymptotic Iteration
Method (AIM), has been commonly used since 2003 [1]. AIM
can be used for analytically aswell as numerically (or approxi-
mately) solvable problems [2–4]. Moreover, it can be used for
obtaining the perturbative energy eigenvalues of the system
without any need of the unperturbative eigenstate [5, 6].

As a subatomic system, a quarkonium that is composed
of a heavy quark-antiquark (qq) pair has attracted attention
of particle physicists since the first half of 1970, and [7–
11] are just a few studies of them. In most of these studies,
for easiness, the system is examined via Schrödinger equa-
tion in nonrelativistic quantum chromodynamics (NRQCD),
assuming that the quarks are spinless [12–15]. Cornell
potential is one of the potential functions that represent

interactions between the quarks in such a qq system. It is
used for obtaining the mass and energy spectrum of the
quarkoniumandobtaining the hadron decaywidths [7–9, 16].
Cornell potential is given as

𝑉 (𝑟) = −𝐴𝑟 + 𝐵2𝑟 (1)

where 𝐴 and 𝐵 are positive constants (𝐵 is in energy
dimension). As is seen in (1), Cornell potential has two parts:
one is the Coulombic term and the other is the linear part.
For obtaining the energy levels and mass of the quarkonium,𝐴 and 𝐵 may be fitted to the first-few states. Therefore, the
full spectrum of the quarkonium can be constructed through
these potential parameters.

In literature, it is possible to find many studies in which
the solutions of Schrödinger equation for Cornell potential
have been obtained. For example, in [17], Hall has found an
approximate energy formula to construct an energy spectrum
of Schrödinger equation for Cornell potential, under some
conditions. Jacobs et al. [13] have compared the eigenvalues
of Schrödinger and spinless Salpeter equations in the cases
of Cornell potential and Wisconsin potential [18]. Vega and
friends have obtained, for l=0 states, the energy spectrum,
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mass, and wavefunctions at the origin for cc, bb, and bc
mesons by using the usual variation method in the scope of
supersymmetric quantum mechanics (SUSYQM) [19, 20], in
[12].Theyhave also compared their results with the exact ones
in literature and with the experimental data.

In this study, we attempted to get the energy eigenvalues
(for any 𝑙 ̸= 0 states) and masses of heavy mesons by using
Asymptotic Iteration Method in the view of NRQCD, in
which the quarks are considered as spinless for easiness and
are bounded by Cornell potential. We achieved a semian-
alytical formula for constructing the energy spectrum and
obtaining the masses of the mesons, using the method in
scope of the perturbation theory.The accuracy of this formula
was cross-checked by comparing the eigenvalues with the
ones numerically obtained in this study and with the exact
ones in literature. Furthermore, semianalytical formula was
applied to cc, bb, and cb heavy mesons for comparing the
masses with the experimental data.

AIM has been firstly applied to Schrödinger equation
for Cornell potential by Hall and Saad in [21]. They have
used Airy function as an asymptotic form of the wave-
function and have got highly-accurate numerical results
in their study. Alternatively, we obtained a semianalytical
mass-energy formula for quarkonium by having differential
equation which gives polynomial solutions for asymptotic
forms of the wavefunction of the system.

This paper is organized as follows: we give a short
summary of AIM in Section 2, while Section 3 includes the
main problem. In Section 4, we give numerical results for
the eigenenergies and obtain semianalytical energy formula
by applying perturbation theory to our problem in the view
of AIM. Furthermore, in Section 4, we compare our energy
spectrum and masses with the exact ones in literature and
with the experimental data. Finally, Section 5 includes some
comments about our results.

2. The Asymptotic Iteration Method (AIM)

According to the organization of the paper, we summed up
AIM in this section, while it is comprehensively introduced
in [1]. The AIM is used to solve second-order homogeneous
linear differential equations in the following form:

𝑦󸀠󸀠 (𝑥) = 𝜆0 (𝑥) 𝑦󸀠 (𝑥) + 𝑠0 (𝑥) 𝑦 (𝑥) (2)

where 𝜆0(𝑥) and 𝑠0(𝑥) have continuous derivatives in the
defined interval of the 𝑥 independent variable. If there is an
asymptotic condition such as

𝑠𝑛𝑠𝑛−1 =
𝜆𝑛𝜆𝑛−1 ≡ 𝛼 (3)

for 𝑛 ∈ Z+, where 𝑛 is large enough, the general solution of
(2) is obtained as

𝑦 (𝑥) = exp(−∫𝑥 𝛼 (𝑡) 𝑑𝑡)
⋅ [𝐶2 + 𝐶1 ∫𝑥 exp(∫𝑡 (𝜆0 (𝜏) + 2𝛼 (𝜏)) 𝑑𝜏) 𝑑𝑡]

(4)

with the functions

𝜆𝑛 = 𝜆󸀠𝑛−1 + 𝑠𝑛−1 + 𝜆0𝜆𝑛−1
𝑠𝑛 = 𝑠󸀠𝑛−1 + 𝑠0𝜆𝑛−1 (5)

As a field of application, AIM can be used to deal
with Schrödinger equation (or energy eigenvalue problem)
in mathematical physics. The eigenvalues can be obtained
through the following quantization condition:

𝛿𝑛 (𝑥, 𝐸) = 𝑠𝑛 (𝑥, 𝐸) 𝜆𝑛−1 (𝑥, 𝐸) − 𝜆𝑛 (𝑥, 𝐸) 𝑠𝑛−1 (𝑥, 𝐸)
= 0 (6)

If the energy eigenvalues (𝐸) can be obtained from (6),
independently from the 𝑥 variable, the problem is exactly
solvable. In this case, the eigenvalue and eigenfunction of𝑛th energy level can be derived in explicit algebraic form via𝑛 iterations. However, there are limited numbers of suitable
potentials for this case.

As for the approximately (or numerically) solvable prob-
lems, 𝛿𝑛 depends on both 𝑥 and𝐸. In this case, an appropriate
value, 𝑥 ≡ 𝑥0, should be determined to solve 𝛿𝑛(𝑥, 𝐸) = 0
with respect to 𝐸 [2, 6]. The energy eigenvalue of an 𝑛th level
is obtained through 𝑞 iterations where 𝑞 ≥ 𝑛.
3. Formulation of the Problem

Consider the following Cornell potential:

𝑉 (𝑟) = −𝐴𝑟 + 𝐵2𝑟 (7)

where 𝐴, 𝐵 are real and positive constants (𝐵 is in energy
dimension) and 𝑟 ∈ (0,∞). If we substitute 𝑉(𝑟) into
Schrödinger equation in three dimensions, we have

{ 𝑑2𝑑𝑟2 + 𝜀 − [−𝛼𝑟 + 𝜌𝑟 + 𝑙 (𝑙 + 1)𝑟2 ]}Ψ (𝑟) = 0 (8)

where 𝜀 = 2𝜇𝐸𝑛, 𝛼 = 2𝜇𝐴, and 𝜌 = 2𝜇𝐵2. 𝐸𝑛 and𝜇 = 𝑚1𝑚2/(𝑚1 + 𝑚2) are energy eigenvalue of 𝑛th level
and reduced mass of the qq system, respectively (𝑚1 and 𝑚2
are quark masses). Besides, we study in natural units (i.e., ℏ,𝑐 = 1) for the system. After changing the variable, in (8), as𝑟 = 𝑢2, then substituting Ψ(𝑢) = 𝑢1/2𝑔(𝑢), we get
𝑔󸀠󸀠 (𝑢) + [4𝜀𝑢2 + 4𝛼 − 4𝜌𝑢4 − 4𝑙 (𝑙 + 1) + 3/4𝑢2 ] 𝑔 (𝑢)
= 0

(9)

If one puts 𝑔(𝑧) = 𝑧𝛾+1𝑒−𝑧3/3𝑓(𝑧) into (9), in accordance
with the domain of the problem, we have

𝑓󸀠󸀠 (𝑧) = 2 [𝑧2 − 𝛾 + 1𝑧 ]𝑓󸀠 (𝑧)
+ [2 (𝛾 + 2) 𝑧 − 𝜎𝑧2 − 𝜔]𝑓 (𝑧)

(10)
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Table 1: Comparisons of the perturbative energy eigenvalues (𝐸𝑝𝑒𝑟𝑡)
(in GeV) with those obtained by direct application of AIM (𝐸𝑛𝑙) for
the potential parameters 𝐴 = 1 and 𝐵 = 1 GeV, and for the reduced
mass 𝜇 = 1/2 GeV.
𝑛 En0 Epert 𝑙 E0l Epert

0 1.39788 1.41015 0 1.39788 1.41015
1 3.47509 3.47509 1 2.82565 2.82690
2 5.03291 5.03224 2 3.85058 3.85089
3 6.37015 6.36948 3 4.72675 4.72687
4 7.57493 - 4 5.51698 -
5 8.68791 - 5 6.24840 -

where 𝜔 = 4𝛼/(4𝜌)1/3, 𝜎 = 4𝜀/(4𝜌)2/3, 𝛾 = 2𝑙 + 1/2, and𝑧 = (4𝜌)1/6𝑢. The final equation is suitable for applying
AIM. After this point, we can apply AIM to the problem in
two different ways: one is direct application (i.e., approximate
solution) to get the numerical results and the other is usage
of the method in scope of perturbation theory to obtain
perturbative energies through a perturbation expansion as
follows:

𝜎 = 𝜎0 + 𝜔𝜎1 + 𝜔2𝜎2 + . . . (11)

where 𝜎0, 𝜎1, 𝜎2,. . . are perturbation expansion coefficients.
These can be obtained independently from the potential
parameters.Thus, we can get a semianalytical formula for the
energy eigenvalues. One can also achieve the mass-energy of
the system by using this formula, as given in Section 4.

3.1. Numerical Results. In this section, we directly apply AIM
to (10) to get the energy eigenvalues for different potential
parameters, andwe compare our results with the perturbative
energies, for which (28) in the next section has been used.

𝑓󸀠󸀠 (𝑧) = 2 [𝑧2 − 𝛾 + 1𝑧 ]𝑓󸀠 (𝑧)
+ [2 (𝛾 + 2) 𝑧 − 𝜎𝑧2 − 𝜔]𝑓 (𝑧)

(12)

From (12), it is easily seen that 𝜆0(𝑧) = 2[𝑧2 − (𝛾 + 1)/𝑧]
and 𝑠0(𝑧) = 2(𝛾 + 2)𝑧 − 𝜎𝑧2 − 𝜔 according to (2). We tabulate
the results of direct application of AIM in Tables 1, 2, and 3.
For simplicity, in the calculations, the reduced mass has been
considered 𝜇 = 1/2 GeV. In Table 1 the potential parameters
have been chosen as 𝐴 = 1 and 𝐵 = 1 GeV while 𝐴 = 1,𝐵 = 0.1 GeV in Table 2, and 𝐴 = 1, 𝐵 = 10 GeV in Table 3.𝐸𝑝𝑒𝑟𝑡, seen in the tables, is for the comparison and has been
obtained by using (28).

As can be seen from Tables 1–3, the perturbative energy
eigenvalues are in very good agreement with the numerically
obtained ones, even for small values of the parameter 𝐵.
Furthermore, they are in accordance with each other for 𝐵 ≥1 GeV, while 𝐴 = 1 (see in Tables 1 and 3). Additionally,
this agreement is much better for higher quantum states. The
perturbative eigenvalues are a little bit different from that
obtained as numerically, for 𝐵 < 1 GeV, 𝐴 = 1, and the
lower quantum states (see in Table 2). However, they are in
agreement for the higher levels.

Table 2: Comparisons of the perturbative energy eigenvalues (𝐸𝑝𝑒𝑟𝑡)
(in GeV) with those obtained by direct application of AIM (𝐸𝑛𝑙)
for the potential parameters, 𝐴 = 1 and 𝐵 = 0.1 GeV, and for the
reduced mass 𝜇 = 1/2 GeV.
𝑛 En0 Epert l E0l Epert

0 -0.221031 -0.164433 0 -0.221031 -0.164433
1 0.0347222 0.033627 1 0.0174006 0.023501
2 0.141913 0.138477 2 0.102472 0.104008
3 0.220287 0.217229 3 0.159831 0.160406
4 0.286111 - 4 0.206238 -
5 0.344602 - 5 0.246681 -

Table 3: Comparisons of the perturbative energy eigenvalues (𝐸𝑝𝑒𝑟𝑡)
(in GeV) with those obtained by direct application of AIM (𝐸𝑛𝑙) for
the potential parameters,𝐴 = 1 and𝐵 = 10GeV, and for the reduced
mass 𝜇 = 1/2 GeV.
n En0 Epert l E0l Epert

0 46.4022 46.4047 0 46.4022 46.4047
1 85.3393 85.3394 1 70.0161 70.0165
2 116.729 116.729 2 89.7154 89.7154
3 144.315 144.315 3 107.334 107.334
4 169.461 - 4 123.562 -
5 192.851 - 5 138.761 -

4. Perturbation Theory

Although the usage of perturbation method in the frame
of AIM is comprehensively introduced in [5], we give a
summary about the methodology in this section, assuming
that the potential of a system is written as

𝑉 (𝑥) = 𝑉0 (𝑥) + 𝜂𝑉𝑝 (𝑥) (13)

where𝑉0(𝑥) is solvable (unperturbedHamiltonian) potential.𝑉𝑝(𝑥) and 𝜂 are potential of the perturbed Hamiltonian
and perturbation expansion parameter, respectively. The
Schrödinger equation then reads

(− 𝑑2𝑑𝑥2 + 𝑉0 (𝑥) + 𝜂𝑉𝑝 (𝑥))Ψ (𝑥) = 𝐸Ψ (𝑥) (14)

where 𝐸𝑛 eigenvalues are written as a series expansion of 𝑗th-
order correction 𝐸(𝑗)𝑛 as follows:

𝐸𝑛 = 𝐸(0)𝑛 + 𝜂𝐸(1)𝑛 + 𝜂2𝐸(2)𝑛 + . . . =
∞∑
𝑗=0

𝜂𝑗𝐸(𝑗)𝑛 (15)

After substituting 𝜓(𝑥) = 𝜓0(𝑥)𝑓(𝑥) in (14), one can
obtain the following equation for 𝑓(𝑥):

𝑓󸀠󸀠 (𝑥) = 𝜆0 (𝑥, 𝜂, 𝐸) 𝑓󸀠 (𝑥) + 𝑠0 (𝑥, 𝜂, 𝐸) 𝑓 (𝑥) (16)

and the termination condition in this case can be written as

𝛿𝑛 (𝑥, 𝜂, 𝐸) = 𝑠𝑛 (𝑥, 𝜂, 𝐸) 𝜆𝑛−1 (𝑥, 𝜂, 𝐸)
− 𝜆𝑛 (𝑥, 𝜂, 𝐸) 𝑠𝑛−1 (𝑥, 𝜂, 𝐸) = 0 (17)
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Once 𝛿𝑛(𝑥, 𝜂, 𝐸) is expanded about 𝜂 = 0, we obtain
𝛿𝑛 (𝑥, 𝜂, 𝐸) = 𝛿𝑛 (𝑥, 0, 𝐸) + 𝜂1!

𝜕𝛿𝑛 (𝑥, 𝜂, 𝐸)𝜕𝜂
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0

+ 𝜂22!
𝜕2𝛿𝑛 (𝑥, 𝜂, 𝐸)𝜕𝜂2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=0 + . . .

= ∞∑
𝑘=0

𝜂𝑘𝛿(𝑘)𝑛 (𝑥, 𝐸) = 0

(18)

where 𝛿(𝑘)𝑛 (𝑥, 𝐸) = (1/𝑘!)(𝜕𝑘𝛿𝑛(𝑥, 𝜂, 𝐸)/𝜕𝜂𝑘)|𝜂=0.
According to perturbation method in the framework of

AIM, solving the equation 𝛿𝑛(𝑥, 0, 𝐸) = 0 with respect to
(unknown) 𝐸 gives 𝐸(0)𝑛 (eigenvalues of unperturbed Hamil-
tonian), equation 𝛿(1)𝑛 (𝑥, 𝐸) = 0 gives 𝐸(1)𝑛 (first-order correc-
tion to 𝐸𝑛), 𝛿(2)𝑛 (𝑥, 𝐸) gives 𝐸(2)𝑛 (second-order correction to𝐸𝑛), and so on. Besides, the perturbative eigenfunctions can
be achieved in the same vein with the eigenvalues. This is an
alluring feature of the AIM usage in the perturbation theory
for obtaining the eigenfunctions 𝑓𝑛(𝑥) given as follows:

𝑓𝑛 (𝑥) = exp(−∫𝑥 𝛼𝑛 (𝑡, 𝜂) 𝑑𝑡) (19)

where 𝛼𝑛(𝑡, 𝜂) ≡ 𝑠𝑛(𝑡, 𝜂)/𝜆𝑛(𝑡, 𝜂). 𝛼𝑛(𝑡, 𝜂) is expanded about𝜂 = 0 in a similarmanner, done for obtaining the eigenvalues.
So,

𝛼𝑛 (𝑡, 𝜂) = ∞∑
𝑘=0

𝜂𝑘𝛼(𝑘)𝑛 (𝑡) (20)

where 𝛼(𝑘)
𝑛(𝑥)
= (1/𝑘!)(𝜕𝑘𝛼𝑛(𝑥,𝜂)/𝜕𝜂𝑘)|𝜂=0. Thus, perturbation

expansion of 𝑓𝑛(𝑥) is written as follows:

𝑓𝑛 (𝑥) = exp[∞∑
𝑘=0

𝜂𝑘 (−∫𝑥 𝛼(𝑘)𝑛 (𝑡) 𝑑𝑡)]

= ∞∏
𝑘=0

𝑓(𝑘)𝑛 (𝑥)
(21)

where 𝑘th-order correction 𝑓(𝑘)𝑛 (𝑥) to 𝑓𝑛(𝑥) is
𝑓(𝑘)𝑛 (𝑥) = 𝜂𝑘 (−∫𝑥 𝛼(𝑘)𝑛 (𝑡) 𝑑𝑡) (22)

4.1. Perturbation Theory for the Cornell Potential. For our
problem, we may apply the perturbation expansion which
has been elucidated in previous section to the following
differential equation:

𝑓󸀠󸀠 (𝑧) = 2 [𝑧2 − 𝛾 + 1𝑧 ]𝑓󸀠 (𝑧)
+ [2 (𝛾 + 2) 𝑧 − 𝜎𝑧2 − 𝜔]𝑓 (𝑧)

(23)

Suppose that 𝜎 is written as follows:

𝜎 (𝑛, 𝑙) = 𝜎0 (𝑛, 𝑙) + 𝜎1 (𝑛, 𝑙) 𝜔 + 𝜎2 (𝑛, 𝑙) 𝜔2 + . . . (24)

where 𝜔 is the perturbation expansion parameter. So, the
energy eigenvalue is yielded as

𝐸𝑝𝑒𝑟𝑡 = ((4𝜌)
2/3

8𝜇 )
2/3

𝜎 (𝑛, 𝑙) (25)

and more clearly

𝐸𝑝𝑒𝑟𝑡 = (4𝜌)
2/3

8𝜇 𝜎0 (𝑛, 𝑙) + (4𝜌)
1/3

2𝜇 𝛼𝜎1 (𝑛, 𝑙)
+ 2𝛼2𝜇 𝜎2 (𝑛, 𝑙) + . . .

(26)

In the above expansion, the general form of the zeroth-
order correction 𝜎0 is obtained via

𝛿(0) (𝑧, 0, 𝜎0) = 0 (27)

The first-order correction, 𝜎1, is obtained by using the
equation 𝛿(1)(𝑧, 0, 𝜎1) = 0 in the same manner with 𝜎0, while𝛿(2)(𝑧, 0, 𝜎2) = 0 is used for 𝜎2. Numerical results of 𝜎0, 𝜎1,
and 𝜎2 coefficients, obtained by AIM, are reported in Table 4
for some energy levels. Besides, for𝜇 = 1/2GeV, comparisons
of the perturbative energy eigenvalues with the ones obtained
by direct application of AIM have been given in Tables 1, 2,
and 3, in previous section. We emphasize, in Table 4, that
corrections to the perturbation expansion do not depend on
the potential parameters.

As a practice, we have applied our perturbation expansion
formula (up to second-order correction) to get the ground-
state energies of quarkonium in Table 5, for various values
of the parameter 𝐴, while 𝐵 = 1 GeV and 𝜇 = 1/2 GeV.
In Table 5, we also report comparisons of the perturbative
energy eigenvalues with the ones of s-wave heavy quarko-
nium from [10, 21].

As is seen from Table 5, the results for which our
perturbation expansion (up to second-order correction) has
been used are in very good agreement with [10, 21] for
small values of 𝐴. However, our analytical results are a little
bit different from the exact ones as 𝐴 gets larger values. It
seems that the perturbation expansion, which includes third-
order correction, may give more accurate results. The more
correction term we add to the perturbative expansion, the
more compatible results we get. Nevertheless, we can say that
(26) can be used as an eigenvalue formula of the Schrödinger
equation in case of Cornell potential, for practical purposes.
So, one can use the following formula:

𝐸𝑝𝑒𝑟𝑡 = (4𝜌)
2/3

8𝜇 𝜎0 (𝑛, 𝑙) + (4𝜌)
1/3

2𝜇 𝛼𝜎1 (𝑛, 𝑙)
+ 2𝛼2𝜇 𝜎2 (𝑛, 𝑙)

(28)

for obtaining the eigenvalues and mass of the quarkonium
for Cornell potential. Besides, it can be fit to mass formula of
experimental values for determining the potential parameters𝐴 and 𝐵. The advantage of (28) is that the coefficients 𝜎0, 𝜎1,
and 𝜎2 are independent of the potential parameters.
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Table 4: Perturbation coefficients of the expansion given as (24) and (26). Notice that corrections to the perturbation expansion do not
depend on the potential parameters.

l n 𝜎0(n,l) 𝜎1(n,l) 𝜎2(n,l)
0

0 3.71151 -0.525933 -0.0232729
1 6.48922 -0.366743 -0.00767365
2 8.76334 -0.297538 -0.00400191
3 10.7732 -0.256486 -0.00251618

1

0 5.33566 -0.322683 -0.00554189
1 7.75358 -0.258925 -0.00282569
2 9.85399 -0.222298 -0.00176295
3 11.7558 -0.197751 -0.00122526

2

0 6.74357 -0.244191 -0.00241586
1 8.93661 -0.208300 -0.00148846
2 10.9037 -0.184664 -0.00102765
3 12.7146 -0.167585 -0.000761053

3

0 8.01784 -0.200753 -0.00134507
1 10.0516 -0.177251 -0.000921458
2 11.9129 -0.160449 -0.000679139
3 13.6471 -0.147666 -0.000525832

Table 5: Comparisons of energy eigenvalues (in GeV) obtained by using the perturbation expansion formula in (26) (𝐸𝑝𝑒𝑟𝑡) with the ones of
s-wave heavy quarkonium from [10, 21]. The potential parameter 𝐵 is taken as 𝐵 = 1GeV, while the reduced mass is 𝜇 = 1/2GeV in this case.
The eigenvalues of [10, 21] are exact results.

A E00 (Ref. [10]) E00 (Ref. [21]) Epert A E00 (Ref. [10]) E00 (Ref. [21]) Epert

0.2 2.16732 2.16732 2.16741 0.1 2.25368 2.25368 2.25369
0.4 1.98850 1.98850 1.98923 0.3 2.07895 2.07895 2.07927
0.6 1.80107 1.80107 1.80367 0.5 1.89590 1.89590 1.89740
0.8 1.60441 1.60441 1.61063 0.7 1.70394 1.70393 1.70808
1 1.39788 1.39788 1.41015 0.9 1.50242 1.50242 1.51132
1.2 1.18084 1.18083 1.20221 1.1 1.29071 1.29071 1.30711
1.4 0.95264 0.95264 0.98683 1.3 1.06817 1.06817 1.09545
1.6 0.71266 0.71266 0.76400 1.5 0.83416 0.83416 0.87635
1.8 0.46027 0.46026 0.53373 1.7 0.58805 0.58805 0.64980

4.2. Energy Eigenvalues andMass Spectrum forHeavyQuarko-
nium. In this section, we tested our formula through cross-
checking with the exact results in literature and with the
experimental data. For comparing our energy eigenvalues
with the exact ones, the parameters of Cornell potential have
been considered𝐴 = 0.52 and𝐵 = 0.43GeV. Besides, we have
chosen the quark masses as 𝑚𝑐 = 1.84 GeV and 𝑚𝑏 = 5.18
GeV, in this case [12].

Also, we tested our formula by comparing our results, for
the masses of heavy mesons, with the experimental data. For
doing this, we have taken the quark masses as𝑚𝑐 = 1.44GeV
and𝑚𝑏 = 4.87GeV and the potential parameters as 𝐴 = 0.64
and 𝐵 = 0.39 GeV. All these values have been obtained by
fitting our formula to the experimental data in [22].

In Table 6, we compared our energy eigenvalues calcu-
lated by using (28) with the ones of [12]. Furthermore, in
Table 7, we gave our results for the masses of the mesons
obtained by the same equation. Table 7 also includes the
experimental data got from [22].

It can be seen from Table 6 that the energy eigenvalues
of the mesons cc, bb, and bc, obtained by (28), are more
compatible with the exact ones, than those of [12]. The
difference between AIM and [12] becomes clearer as the
energy level increases. Similar things can be said for the
masses in Table 7: the results obtained via AIM are closer to
the experimental data than those of [12].

5. Conclusion

We have used AIM to obtain both, the eigenvalues of Schrö-
dinger equation and mass of qq system for Cornell potential,
in three dimensions. AIM has some advantages such as being
used for either exactly or numerically (or approximately)
solvable problems. Furthermore, one can use AIM in the
frame of perturbation theory. Once it is performed to obtain
perturbative solutions, the wavefunction of unperturbed
Hamiltonian is not needed to get the corrections to the
perturbation expansion.
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Table 6: Comparisons of the energy eigenvalues (in GeV) of the mesons cc, bb, and bc calculated by using (28) with the exact ones of [12].
The parameters of Cornell potential are 𝐴 = 0.52 and 𝐵 = 0.43 GeV, while the quark masses are𝑚𝑐 =1.84 GeV and𝑚𝑏 =5.18 GeV.

cc bb bc
En Exact [12] Ref. [12] AIM Exact [12] Ref. [12] AIM Exact [12] Ref. [12] AIM
1s 0.2575 0.2578 0.2660 -0.1704 -0.1702 -0.1216 0.1110 0.1113 0.1269
2s 0.8482 0.8096 0.8481 0.4214 0.3579 0.4203 0.6813 0.6324 0.6803
3s 1.2720 1.1427 1.2715 0.7665 0.5612 0.7635 1.0686 0.9065 1.0668

Table 7: Comparisons of the masses (in GeV), obtained via AIM, of the heavy mesons cc, bb, and cb with the ones of [12], and with the
experimental data from [22]. In this case, we have taken the quark masses as𝑚𝑐 =1.44 GeV and𝑚𝑏 =4.87 GeV, and the potential parameters
as 𝐴 = 0.64 and 𝐵 = 0.39 GeV, for our calculations. All these parameters have been obtained by fitting our formula, given in (28), to the
experimental data.

cc bb cb
Mn Exp. Ref. [12] AIM Exp. Ref. [12] AIM Exp. Ref. [12] AIM
1s 3.097 3.097 3.096 9.460 9.350 9.462 6.275 6.291 6.362
2s 3.686 3.649 3.672 10.023 9.878 10.027 6.842 6.812 6.911
3s 4.039 3.963 4.085 10.355 10.081 10.361 - 7.087 7.284
4s - - 4.433 10.579 - 10.624 - - 7.593
1p 3.511 - 3.521 9.899 - 9.963 - - 6.792
2p 3.927 - 3.951 10.260 - 10.299 - - 7.178
3p - - 4.310 10.512 - 10.564 - - 7.494
1d - - 3.800 10.164 - 10.209 - - 7.051

In the present study, the energy eigenvalues in the case
of Cornell potential have been achieved by direct application
of the method. Besides, we have performed perturbation
theory in the view of AIM for the problem and found a
semianalytical formula for energy eigenvalues. Numerical
results obtained by using this formula, for the reduced mass𝜇 = 1/2 GeV, conform with the exact results of [10, 21],
in a wide spectrum of the potential parameters 𝐴 and 𝐵
(especially for 𝐵 > 𝐴). Furthermore, the results are compat-
ible with the ones obtained directly, in Section 3. It is
also possible to see from the results that the perturbative
eigenvalues fit in with the exact ones for higher quantum
states, even for the large values of 𝐴. For any values of𝐴 and 𝐵, the higher quantum states are more consonant
with the exact ones than the lower states. The perturbation
expansion, which includes third-order correction, may give
more accurate results. The more correction terms we add to
the perturbative expansion, the more compatible results we
may get.

We have also tested our semianalytical formula, by cross-
checking it with the exact results in literature and with the
experimental data. It can be seen, from Table 6, that our
energy eigenvalues calculated by using (28) aremore compat-
ible with the exact ones than those of [12]. Furthermore, the
difference between our results and [12] becomes clearer as the
energy level increases. By using AIM, we have also obtained
mass results which are closer to the experimental data than
[12].

As a consequence, semianalytical formula achieved for
energy eigenvalues and mass of quarkonium can be used
for practical purposes in the case of Cornell potential. If
our formula is fitted to the experimental data, the potential

parameters (andmasses of the quarks, if it is needed) can also
be obtained.
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We solve the𝐷-dimensional Schrödinger equationwith hyperbolic Pöschl-Teller potential plus a generalized ring-shaped potential.
After the separation of variable in the hyperspherical coordinate, we used Nikiforov-Uvarov (NU) method to solve the resulting
radial equation and obtain explicitly the energy level and the corresponding wave function in closed form. The solutions to the
energy eigenvalues and the corresponding wave functions are obtained using the NU method as well.

1. Introduction

The noncentral potentials in recent times have been an active
field of research in physics and quantum chemistry [1–3].
For instance, the occurrence of accidental degeneracy and
hidden symmetry in the noncentral potentials and their
application in quantum chemistry and nuclear physics are
used to describe ring-shaped molecules like benzene and
the interaction between deformed pair of nuclei [4, 5]. It
is known that this accidental degeneracy occurring in the
ring-shaped potential was explained by constructing an SU
(2) algebra [6]. Owing to these applications, many authors
have investigated a number of real physical problems on non-
spherical oscillator [7], ring-shaped oscillator (RSO) [8], and
ring-shaped nonspherical oscillator [9]. Berkdemir [10] had
shown that either Coulomb or harmonic oscillator will give
a better approximation for understanding the spectroscopy
and structure of diatomic molecules in the ground electronic
state. Other applications of the ring-shaped potential can be
found in ring-shaped organic molecules like cyclic polyenes
and benzene [11, 12].

On the other hand, Chen and Dong studied the
Schrödinger equation with a new ring-shaped potential [3].

Cheng and Dai investigated modified Kratzer potential
plus the new ring-shaped potential using Nikiforov-Uvarov
method [13]. Recently, Ikot et al. [14–16] investigated the
Schrödinger equationwithHulthen potential plus a new ring-
shaped potential [3], nonspherical harmonic and Coulomb
potential [15], and pseudo-Coulomb potential in the cos-
mic string space-time [16]. Many authors have used differ-
ent methods to obtain exact solutions of the wave equa-
tion such as the methods of Supersymmetric Quantum
Mechanics (SUSY-QM) [17–19], the Tridiagonal Representa-
tion Approach (TRA) [20–23], and Nikiforov-Uvarov (NU)
method [24–28].

Motivated by the recent studies of the ring-shaped poten-
tial [29–32], we proposed a novel hyperbolical Pöschl-Teller
potential plus generalized ring-shaped potential of the form
(see Figure 1)

𝑉 (𝑟, 𝜃) = 𝐴 tanh2 (𝜆𝑟) + 𝐵
tanh2 (𝜆𝑟)

+ 𝛾 cot2𝜃 + 𝜁 cot 𝜃 csc 𝜃 + 𝜅 csc2𝜃𝑟2 ,
(1)
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Figure 1: The plot of the novel Pöschl-Teller plus ring-shaped
potential as a function of 𝑟 and 𝜃 for 𝐴 = 1, 𝐵 = 2, 𝜆 = 0.1, 𝛾 = 2,𝜍 = 4, and 𝜅 = 3.
where 𝜆 is the screening parameter and 𝐴, 𝐵, 𝛾, 𝜁, and 𝜅 are
real potential parameters. As a special case when 𝜆𝑟 → 0with𝐴 → 𝑚𝜔2/2𝜆2 − (ℏ2𝛼/30𝑚)𝜆2, 𝐵 → (ℏ2𝛼/2𝑚)𝜆2, and 𝐸 →𝐸+ 2𝐵/3; the potential of (1) turns to nonspherical harmonic
oscillator plus generalized ring-shaped potential.

𝑉 (𝑟, 𝜃) = 12𝑚𝜔2𝑟2 + ℏ2𝛼2𝑚𝑟2
+ 𝛾 cot2𝜃 + 𝜁 cot 𝜃 csc 𝜃 + 𝜅 csc2𝜃𝑟2 .

(2)

2. 𝐷-Dimensional Schrödinger Equation in
Hyperspherical Coordinates

The D-dimensional Schrödinger equation is given as follows
[33, 34]:

{∇2𝐷 + 2𝜇ℏ2 [𝐸 − 𝑈]}Ψ𝑙=𝑙𝐷−1
𝑙1,𝑙2,...,𝑙𝐷−2

(󳨀→𝑋) = 0, (3)

where 𝜇 is the effective mass of two interacting particles, ℏ is
Planck’s constant, 𝐸 is the energy eigenvalue, 𝑈 is the poten-
tial energy function, 󳨀→𝑋 = (𝑟, 𝜃1, 𝜃2, . . . , 𝜃𝐷−1)𝑇 is the position
vector in D-dimensions, where {󳨀→𝜃 } = {𝜃1, 𝜃2, . . . , 𝜃𝐷−1} is
the angular position vector written in terms of hyperspherical
coordinates [35, 36], and ∇2𝐷 is the D-dimensional Laplacian
operator given in Appendix B.

The solvable potentials that allow separation of variable
in (3) must be of the form

𝑈(󳨀→𝑥) = 𝑉1 (𝑟) + 𝑉2 (𝜃𝐷−1)𝑟2 . (4)

The separable wave function takes the following form:

Ψ𝑙=𝑙𝐷−1
𝑙1,𝑙2,...,𝑙𝐷−2

(󳨀→𝑋) = 𝑟−(𝐷−1)/2𝑔 (𝑟) 𝑌𝑙=𝑙𝐷−1𝑙1,𝑙2,...,𝑙𝐷−2
(󳨀→𝜃) . (5)

Applying (5) to (3) with the use of (4), we obtain the following
radial and angular wave equations:

[ 𝑑2𝑑𝑟2 − (𝐷 + 2𝑙 − 2)2 − 14𝑟2 + 2𝜇ℏ2 [𝐸 − 𝑉1 (𝑟)]] 𝑔 (𝑟)
= 0, (6)

[ 𝑑2𝑑𝜃2𝑗 + (𝑗 − 1) cos 𝜃𝑗
sin 𝜃𝑗 𝑑𝑑𝜃𝑗 + Λ 𝑗 − Λ 𝑗−1

sin2𝜃𝑗]𝐻(𝜃𝑗)
= 0,

(7)

[ 𝑑2𝑑𝜃2𝐷−1 + (𝐷 − 2) cos 𝜃𝐷−1
sin 𝜃𝐷−1 𝑑𝑑𝜃𝐷−1 + 𝑙 (𝑙 + 𝐷 − 2)

− Λ𝐷−2
sin2𝜃𝐷−1 + 2𝜇ℏ2 𝑉2 (𝜃𝐷−1)]𝐻 (𝜃𝐷−1) = 0,

(8)

where 𝑌𝑙=𝑙𝐷−1
𝑙1,𝑙2,...,𝑙𝐷−2

(󳨀→𝜃 ) = (1/√2𝜋)𝑒±𝑖𝑚𝜃1∏𝐷−1𝑗=2 𝐻(𝜃𝑗), (8) holds
for 𝑗 ∈ [2, 𝐷 − 2], with 𝐷 > 3, and Λ 𝑗 = 𝑙𝑗(𝑙𝑗 + 𝑗 −1). Solutions of (8) will not be affected by the presence of
the proposed potential and thus are common to different
systems and theywere done before using different approaches
[37]. Consequently, we will only solve (6) and (8) using the
Nikiforov-Uvarov method [24, 25].

3. Nikiforov-Uvarov Method

Many problems in physics lead to the following second-order
linear differential equation [24]:

[ 𝑑2𝑑𝑥2 + 𝜏 (𝑥)𝜎 (𝑥) 𝑑𝑑𝑥 + 𝜎̃ (𝑥)𝜎2 (𝑥)] 𝑢 (𝑥) = 0, (9)

where 𝜎(𝑥) and 𝜎̃(𝑥) are polynomials of degree 2 at most and𝜏(𝑥) is at most linear in 𝑥. Equation (9) is sometimes called
of hypergeometric type. Let us consider 𝑢(𝑥) = 𝜙(𝑥)𝑦(𝑥);
this will transform (9) to the following differential equation
for𝑦(𝑥):

[ 𝑑2𝑑𝑥2 + 𝜏 (𝑥)𝜎 (𝑥) 𝑑𝑑𝑥 + 𝜎 (𝑥)𝜎2 (𝑥)] 𝑦 (𝑥) = 0, (10)

where we assumed the following conditions:

𝜙󸀠 (𝑥)𝜙 (𝑥) = 𝜋 (𝑥)𝜎 (𝑥) , (11a)

𝜏 (𝑥) = 𝜏 (𝑥) + 2𝜋 (𝑥) , (11b)

𝜎 (𝑥) = 𝜎̃ (𝑥) + 𝜋2 (𝑥) + 𝜋 (𝑥) [𝜏 (𝑥) − 𝜎󸀠 (𝑥)]
+ 𝜋󸀠 (𝑥) 𝜎 (𝑥) , (11c)

𝜋 (𝑥) = 𝜎󸀠 (𝑥) − 𝜏 (𝑥)2
± √(𝜎󸀠 (𝑥) − 𝜏 (𝑥)2 )2 − 𝜎̃ (𝑥) + 𝑘𝜎 (𝑥),

(11d)
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𝑘 = 𝜂 − 𝜋󸀠 (𝑥) , (11e)

where 𝑘 and 𝜂 are constants chosen such that 𝜋(𝑥) is
polynomial which is at most linear in 𝑥 and 𝜎(𝑥) = 𝜂𝜎(𝑥).
This will transform (10) to the following:

[𝜎 (𝑥) 𝑑2𝑑𝑥2 + 𝜏 (𝑥) 𝑑𝑑𝑥 + 𝜂]𝑦 (𝑥) = 0, (12)

where 𝜎(𝑥) and 𝜏(𝑥) are polynomials of degrees 2 and 1,
respectively. In this case, solutions to (12) are polynomials of
degree 𝑛; 𝑦(𝑥) = 𝑦𝑛(𝑥, 𝜂𝑛), where 𝜂𝑛 is given as follows:

𝜂𝑛 = −𝑛𝜏󸀠 − 12𝑛 (𝑛 − 1) 𝜎󸀠󸀠. (13)

Equation (13) will be used to obtain the energy spectrum
formula of the quantummechanical system.We should point
out here that the polynomial solutions to (12) for 𝜏󸀠 < 0
and 𝜏 = 0 on the boundaries of the finite space (the latter
case is omitted for infinite space) are the classical orthogonal
polynomials. It is well known that each set of polynomials is
associated with a weight function 𝜌(𝑥). For the polynomial
solutions to (12), this function must be bounded on the
domain of the system andmust satisfy (𝜎𝜌)󸀠 = 𝜏𝜌.This weight
function will be used to construct the Rodrigues formula for
these polynomials, which reads

𝑦𝑛 (𝑥) = 𝐵𝑛𝜌 (𝑥) 𝑑𝑛𝑑𝑥𝑛 [𝜎𝑛 (𝑥) 𝜌 (𝑥)] , (14)

where 𝐵𝑛 is just a constant obtained by the normalization
conditions and 𝑛 = 0, 1, 2, . . ..
4. The Solutions of the 𝐷-Dimensional
Radial Equation

We use the NU method to solve (6); in the presence of our
potential,

𝑑2𝑔 (𝑟)𝑑𝑟2
+ 2𝜇ℏ2 [𝐸 − 𝐴 tanh2 (𝜆𝑟) − 𝐵

tanh2 (𝜆𝑟) − 𝛾𝐷ℏ22𝜇 1𝑟2]
⋅ 𝑔 (𝑟) = 0,

(15)

where 𝛾𝐷 = ((𝐷 + 2𝑙 − 2)2 − 1)/4. Equation (15) cannot be
solved analytically due to the centrifugal term 1/𝑟2. Different
authors used different approximation techniques to allow an
approximate analytical solution of (15) and these methods
rely on Taylor expansion of the centrifugal potential in terms
of the other components of the potential of interest [38]. In
this work, we use the following approximation obtained by
Taylor expansion [39]:

1𝜆2𝑟2 ≈ −23 − 13 tanh2 (𝜆𝑟) + 1
tanh2 (𝜆𝑟) . (16)

The advantage of this approximation is that it is valid not only
for 𝜆𝑟 ≪ 1 but also for 0 ≤ 𝜆𝑟 ≤ 2 with high accuracy.
Also, it satisfies the limits on 1/𝑟2 at zero and infinity; that
is, lim
𝑟→0

RHS = 1/𝜆2𝑟2 and lim
𝑟→∞

RHS = 0, where RHS denotes
the right-hand side of (16). Now, Using (16) back in (15), we
get

[ 𝑑2𝑑𝑟2 − 4𝜆2𝐴 tanh2𝜆𝑟 − 4𝜆2𝐵
tanh2𝜆𝑟 + 4𝜆2𝐸]𝑔 (𝑟) = 0, (17)

where 4𝜆2𝐸 = (2𝜇/ℏ2)[𝐸 + 𝛾𝐷ℏ2𝜆2/3𝜇], 4𝜆2𝐴 = (2𝜇/ℏ2)(𝐴 −𝛾𝐷ℏ2𝜆2/6𝜇), and 4𝜆2𝐵 = (2𝜇/ℏ2)[𝐵 + 𝛾𝐷ℏ2𝜆2/2𝜇]. Making
change of variable 𝑠 = tanh2𝜆𝑟 and by writing 𝑔(𝑠) =𝜙(𝑠)𝑦(𝑠), this transforms (17) to (9) with the polynomials
being 𝜎 = 𝑠 − 𝑠2, 𝜏 = −(3𝑠 − 1)/2, and 𝜎̃ = 𝐸𝑠 − 𝐴𝑠2 − 𝐵.
We now use (11d) to calculate 𝜋(𝑠), which reads

𝜋 (𝑠) = 1 − 𝑠4
± √(1 − 𝑠4 )2 + 𝐴𝑠2 − 𝐸𝑠 + 𝐵 + 𝑘 (𝑠 − 𝑠2). (18)

The choice of 𝑘 that makes (18) a polynomial of first degree
must satisfy 𝑐21 = 𝑐2𝑐3, where 𝑐1 = 16𝑘 − 8 − 16𝐸, 𝑐2 = 1 +16𝐴 − 16𝑘, and 𝑐3 = 4(1 + 16𝐵). This gives

𝜋 (𝑠) = 1 − 𝑠4 ± 14√𝑐2 (𝑠 + 𝑐12𝑐2) , (19)

where we will pick the negative part in (19) which makes 𝜏󸀠 <0. The function 𝜏(𝑠) can be easily calculated using (11b):

𝜏 (𝑠) = 1 − 2𝑠 − 12√𝑐2 (𝑠 + 𝑐12𝑐2) . (20)

Using (19) and (20) in (13) and (11e), we get

[ 4𝑘(2𝑛 + 1) − (2𝑛 + 1)]2 = (1 + 16𝐴 − 16𝑘) . (21)

Solutions of (21) for 𝑘 are

4𝑘 = − (2𝑛 + 1)2 ± (2𝑛 + 1)√1 + 16𝐴. (22)

Thenext step is to use the value of 𝑐2 in (21) with the constraint
on 𝑘 mentioned in (18), which is 𝑐21 = 𝑐2𝑐3; we obtain

[8 + 16𝐸 − 16𝑘]2 = 4 (1 + 16𝐵) (1 + 16𝐴 − 16𝑘) . (23)

The conditions for bound states are 𝑘 ≤ 0 and 𝐴, 𝐵 ≥ −1/16.
Using (22) in (23), we write the bound states formula as
follows:

𝐸𝐷𝑛𝑙 = −14 (2𝑛 + 1)2 − 14 (2𝑛 + 1)√1 + 16𝐴 − 12 ± 18
⋅ √(1 + 16𝐵)(1 + 16𝐴 + 4 (2𝑛 + 1)2 + 4 (2𝑛 + 1)√1 + 16𝐴). (24)

In terms of the original parameters𝐴, 𝐵, and 𝐸, the spectrum
formula in 𝐷-dimensions reads
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2𝜇ℏ2 𝐸𝐷𝑛𝑙 = −2𝛾𝐷𝜆23 − 𝜆2 (2𝑛 + 1)2 − 𝜆2 (2𝑛 + 1)√1 + 8𝜇𝜆2ℏ2 (𝐴 − 𝛾𝐷ℏ2𝜆26𝜇 ) − 2𝜆2 ± 𝜆22 √(1 + 8𝜇𝜆2ℏ2 [𝐵 + 𝛾𝐷ℏ2𝜆22𝜇 ])
× √1 + 8𝜇𝜆2ℏ2 (𝐴 − 𝛾𝐷ℏ2𝜆26𝜇 ) + 4 (2𝑛 + 1)2 + 4 (2𝑛 + 1)√1 + 8𝜇𝜆2ℏ2 (𝐴 − 𝛾𝐷ℏ2𝜆26𝜇 ),

(25)

where conditions for bound states become 𝐴 ≥ (𝜆2ℏ2/2𝜇)(𝛾𝐷/3 − 1/4) and 𝐵 ≥ −(𝜆2ℏ2/2𝜇)(𝛾𝐷 + 1/4). We will
only take the (−) sign in (25) as explained below. The s-
wave spectrum formula in three dimensions is the only exact
solution that is obtained by setting 𝛾𝐷 = 0 in (25). However,
for other higher states, the above solution is acceptable with
high accuracy as far as the condition 0 ≤ 𝜆𝑟 ≤ 2 is satisfied.

The transformation 𝑠 = tanh2𝜆𝑥makes the domain of the
function be [0, 1].This suggests a change of variable 𝑧 = 2𝑠−1
to bring the domain to that of Jacobi polynomials which are
well-known classical orthogonal polynomials. By using (18)
in (11a), we obtain 𝜙(𝑧) = 2𝑐4−2𝑐5(1 + 𝑧)𝑐5(1 − 𝑧)𝑐5−𝑐4 , where4𝑐4 = 1 + √𝑐2 and 8𝑐5 = 2 − 𝑐1/√𝑐2. The weight function
can be easily calculated using (20) in (𝜎𝜌)󸀠 = 𝜏𝜌, which gives𝜌(𝑧) = 22𝑐7+𝑐6(1 + 𝑧)−𝑐7(1 − 𝑧)−𝑐6−𝑐7 , where 2𝑐6 = 8 + √𝑐2 and4𝑐7 = 𝑐1/√𝑐2. The solution of (12) in our case is written in the
following Rodrigues formula:

𝑦𝑛 (𝑧) = 𝐶𝑛 (1 + 𝑧)𝑐7
⋅ (1 − 𝑧)𝑐6+𝑐7 𝑑𝑛𝑑𝑧𝑛 [(1 + 𝑧)−𝑐7+𝑛 (1 − 𝑧)𝑛−𝑐6−𝑐7] . (26)

By comparison to Jacobi polynomials, we conclude that𝑦𝑛(𝑧) = 𝑃(−𝑐6−𝑐7 ,−𝑐7)𝑛 (𝑧), where 𝑃(−𝑐6−𝑐7 ,−𝑐7)𝑛 (𝑧) is the Jacobi
polynomial of order 𝑛 in 𝑧. Thus, the bound state solution of
the radial wave equation now reads

𝑔𝑛 (𝑟) = Ω𝑛 (tanh𝜆𝑟)−𝑐6−𝑐7+1/2 (sech 𝜆𝑟)−𝑐7
⋅ 𝑃(−𝑐6−𝑐7 ,−𝑐7)𝑛 [2 tanh (𝜆𝑟)2 − 1] , (27)

where Ω𝑛 is just a normalization constant. We must clarify
here that, for Jacobi polynomials, we have to have (−𝑐6 −𝑐7), −𝑐7 > −1. Thus, the parameters 𝑐1 and 𝑐2 are chosen to
satisfy 𝑐1 < 4√𝑐2 and 2𝑐2 + 𝑐1 < −12√𝑐2. Moreover, since
those parameters depend on the energy as we mentioned
previously, this yields us to reject the (+) sign in (24) and (25).
Consequently, bound states occur for 𝐵 > 35/16 (which does
not violate the old restriction 𝐵 ≥ −1/16) and |𝐸| > |𝑘 − 1/2|.
The latter condition on 𝐸 is already satisfied as we can see in
(25), so we do not have to worry about it.

To calculate the normalization constant Ω𝑛, we first use
the following identity of Jacobi polynomials [40]:

𝑃(𝑎,𝑏)𝑛 (𝑦)
= 12𝑛

𝑛∑
𝑚=0

(𝑛 + 𝑎𝑚 )(𝑛 + 𝑏𝑛 − 𝑚) (1 − 𝑦)𝑚−𝑛 (1 + 𝑦)𝑚 . (28)

Next, we use the normalization constraint ∫∞
0

|𝑔(𝑟)|2𝑑𝑟 =∫+1
−1

|𝑔(𝑦)|2(𝑑𝑦/√2𝜆√1 + 𝑦(1 − 𝑦)) = 1, where 𝑦 =2 tanh2(𝜆𝑟) − 1; this gives
(󵄨󵄨󵄨󵄨Ω𝑛󵄨󵄨󵄨󵄨2 /𝜆2𝑛+1/2) 𝑛∑

𝑚=0

(𝑛 + 𝑎𝑚 )(𝑛 + 𝑏𝑛 − 𝑚)
⋅ ∫+1
−1

(1 − 𝑦)2𝑎+𝑚−𝑛−1 (1 + 𝑦)𝑏+𝑚 𝑃(𝑎,𝑏)𝑛 (𝑦) 𝑑𝑦 = 1.
(29)

To calculate the integral in (29), we will use the following very
useful integral formula [41]:

∫+1
−1

(1 − 𝑦)𝑐 (1 + 𝑦)𝑑 𝑃(𝑎,𝑏)𝑛 (𝑦) 𝑑𝑦
= 2𝑐+𝑑+1Γ (𝑐 + 1) Γ (𝑑 + 1) Γ (𝑛 + 𝑎 + 1)Γ (𝑛 + 1) Γ (𝑐 + 𝑑 + 2) Γ (𝑎 + 1)

× 3𝐹2 (−𝑛, 𝑛 + 𝑎 + 𝑏 + 1, 𝑐 + 1; 𝑎 + 1, 𝑐 + 𝑑 + 2; 1) ,
(30)

where 3𝐹2(𝑎, 𝑏, 𝑐; 𝑑, 𝑒; 𝑓) is the generalized hypergeometric
function [41]. By direct comparison between (29) and (30)we
get Ω𝑛 = 1/√Λ 𝑛, where Λ 𝑛 is given as follows:

Λ 𝑛 = 1𝜆2𝑛+1/2
𝑛∑
𝑚=0

(𝑛 + 𝑎𝑚 )(𝑛 + 𝑏𝑛 − 𝑚)
⋅ 22𝑎+2𝑚−𝑛+𝑏Γ (2𝑎 + 𝑚 − 𝑛) Γ (𝑏 + 𝑚 + 1) Γ (𝑛 + 𝑎 + 1)Γ (𝑛 + 1) Γ (2𝑎 + 2𝑚 − 𝑛 + 𝑏 + 1) Γ (𝑎 + 1)
× 3𝐹2 (−𝑛, 𝑛 + 𝑎 + 𝑏 + 1, 2𝑎 + 𝑚 − 𝑛; 𝑎 + 1, 2𝑎 + 2𝑚
− 𝑛 + 𝑏 + 1; 1) ,

(31)

where 𝑎 = −𝑐6 − 𝑐7 and 𝑏 = −𝑐7.
The only issue that is left for discussion in this section

is that the solutions of the radial wave equation {𝑔𝑛(𝑟)}𝑁𝑛=0,
where 𝑁 denotes the maximum number in which we get
bound states, are not orthogonal! But they are normalized as
we discussed above. We know that Hermitian operators with
distinct eigenvalues must have orthogonal eigenvectors [42].
To solve this problem, one must use the Gram-Schmidt (GS)
method to obtain an orthonormal set {𝜙𝑛(𝑟)}𝑁𝑛=0 by linear
combinations [43]. The latter set will be the solutions of the
radial wave equation. The process is a bit lengthy and we will
not be able to do it here.However, we encourage the interested
reader to do these calculations by referring to the process of
GS.
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5. Solutions of the Angular Equations

It is well known from literature that solutions of (7) are
written in terms of Jacobi polynomials as follows [41]:

𝐻(𝑦) = 𝑁𝑛 (1 − 𝑦)𝛼 (1 + 𝑦)𝛽 𝑃(𝑐,𝑑)𝑛 (𝑦) , (32)

where𝑁𝑛 is just a constant factor, 2𝛽 + 𝑗/2 = 𝑑 + 1, and 2𝛼 +𝑗/2 = 𝑐 + 1. Moreover, the latter parameters are written in
terms of the quantum numbers as 𝑐 = 𝑑 = 𝑐𝑗 = 𝑙𝑗−1+(𝑗−2)/2,
which yields 𝛼 = 𝛽 = 𝑙𝑗−1/2 and 𝑛 = 𝑙𝑗 − 𝑙𝑗−1. The above
solution was obtained using different methods including the
NU technique [24]. Hence, solutions of (7) are written below:

𝐻(𝜃𝑗) = 𝑁𝑛 (sin 𝜃𝑗)𝑙𝑗−1 𝑃(𝑐𝑗 ,𝑐𝑗)𝑛 (cos 𝜃𝑗) . (33)

To solve (8), we introduce coordinate transformation as 𝑦 =
cos 𝜃𝐷−1, which gives

[(1 − 𝑦2) 𝑑2𝑑𝑦2 − (𝐷 − 1) 𝑦 𝑑𝑑𝑦 + 𝑙 (𝑙 + 𝐷 − 2)
− Λ𝐷−21 − 𝑦2 + 𝑈 (𝑦)]𝐻 (𝑦) = 0,

(34)

where 𝑈(𝑦) = (2𝜇/ℏ2)𝑉2(𝑦) = (𝛾󸀠𝑦2 + 𝜁󸀠𝑦 + 𝜅󸀠)/(1 − 𝑦2) for
real parameters {𝛾󸀠, 𝜁󸀠, 𝜅󸀠} are related to {𝛾, 𝜁, 𝜅} by a factor
of 2𝜇/ℏ2. Equation (34) is of hypergeometric type with the
polynomials being 𝜎(𝑦) = 1 − 𝑦2, 𝜏(𝑦) = −(𝐷 − 1)𝑦, and𝜎̃(𝑦) = 𝜂2𝑦2 + 𝜂1𝑦 + 𝜂0, where 𝜂2 = 𝛾󸀠 − 𝑙(𝑙 + 𝐷 − 2), 𝜂1 = 𝜁󸀠,
and 𝜂0 = 𝜅󸀠 + 𝑙(𝑙 + 𝐷 − 2) − Λ𝐷−2. The solutions of (34) are
written as 𝐻(𝑦) = 𝜙(𝑦)𝑌(𝑦), where 𝜙(𝑦) satisfies (11a). Next,
we need to find the function𝜋(𝑦) using (11d); we find that this
function takes the following form:

𝜋 (𝑦) = (𝐷 − 3 − 2𝑢0) 𝑦2 + 𝜂12𝑢0 , (35)

where 𝑢0 = √((𝐷 − 3)/2)2 − 𝜂2 − 𝑘 and the parameter 𝑘
defined in (11e) must satisfy 4𝑘 − 4𝜂0 = 𝜂21/𝑢20. The latter
constraint will be used later to obtain the eigenvalues of (34).
Now, we use (35) in (11b); we get 𝜏(𝑦) = −2(1 + 𝑢0)𝑦 + 𝜂1/𝑢0,
which satisfies 𝑑𝜏(𝑦)/𝑑𝑦 < 0. Using (11a), we can obtain𝜙(𝑦) to be 𝜙(𝑦) = (1 − 𝑦)−(𝑢1+𝑢2)/2(1 + 𝑦)(𝑢2−𝑢1)/2, where2𝑢1 = (𝐷 − 3 − 2𝑢0) and 𝜂1 = 2𝑢0𝑢2. We can also calculate
the weight function by solving (𝜎𝜌)󸀠 = 𝜏𝜌, which gives𝜌(𝑦) = (1 − 𝑦)𝑢0−𝑢2(1 + 𝑦)𝑢0+𝑢2 . The Rodrigues formula of
the polynomials 𝑌(𝑦) reads

𝑌𝑛 (𝑦) = 𝜉𝑛(1 − 𝑦)𝑢0−𝑢2 (1 + 𝑦)𝑢0+𝑢2
⋅ 𝑑𝑛𝑑𝑦𝑛 [(1 − 𝑦)𝑛+𝑢0−𝑢2 (1 + 𝑦)𝑛+𝑢0+𝑢2] , (36)

where 𝜉𝑛 is just a constant. By direct comparison with the
Rodrigues formula of Jacobi polynomials [xx], we conclude
that 𝑌𝑛(𝑦) = 𝑃(𝑢0−𝑢2 ,𝑢0+𝑢2)𝑛 (𝑦). As required by Jacobi polyno-
mials, we must impose that 𝑢0 ± 𝑢2 > −1. Now, we use (35)

and (13) in (11e) to obtain the following quadratic formula for𝑘:
[𝑘 − 𝑛2 − 𝑛 + (𝐷 − 3)2 ]2

= (2𝑛 + 1)2 [(𝐷 − 32 )2 − 𝜂2 − 𝑘] .
(37)

The solutions of (37) are given below:

𝑘 = 12 [2 − 𝐷 − 2𝑛 − 2𝑛2
± (1 + 2𝑛)√(𝐷 − 2)2 − 4𝜂2] . (38)

Moreover, we use 4𝑘 − 4𝜂0 = 𝜂21/(((𝐷 − 3)/2)2 − 𝜂2 − 𝑘) to
obtain another solution for k:

8𝑘 = 9 + 𝐷2 − 6𝐷 + 4𝜂0 − 4𝜂2
± √((𝐷 − 3)2 + 4𝜂0 − 4𝜂2)2 − 16 (𝜂21 + 𝜂0 ((𝐷 − 3)2 − 4𝜂2)). (39)

Direct comparison between (38) and (39) gives

(2𝑛 + 1)2 = −(𝐷 − 1)2 + 4𝜂0 − 4𝜂2 − 22 , (40)

(2𝑛 + 1)2 [(𝐷 − 2)2 − 4𝜂2]
= ((𝐷 − 3)2 + 4𝜂0 − 4𝜂2)216

− (𝜂21 + 𝜂0 ((𝐷 − 3)2 − 4𝜂2)) .
(41)

In the next section, we will consider different examples and
try to obtain the unknown parameters for each case.

6. Results and Discussions

In this section, we will discuss different examples that are
considered as special cases of the potential in (1).

As a first example, we consider the case when 𝛾󸀠 = 𝜁󸀠 = 0
and 𝜅󸀠 ̸= 0, which is equivalent to the following noncentral
hyperbolic potential:

𝑉 (𝑟, 𝜃) = 𝐴 tanh2 (𝜆𝑟) + 𝐵
tanh2 (𝜆𝑟) + 𝜅 csc2𝜃𝑟2 . (42)

In this case, we have 𝑢2 = 0. Thus, solution of (34) reads

𝐻𝑛 (𝜃𝐷−1) = 𝑁𝑛 (sin 𝜃𝐷−1)−𝑢1 𝑃(𝑢0 ,𝑢0)𝑛 (cos 𝜃𝐷−1) , (43)
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where 2𝑢1 = (𝐷 − 3 − 2𝑢0), 𝑢0 =√((𝐷 − 3)/2)2 + 𝑙(𝑙 + 𝐷 − 2) − 𝑘, and 𝑘 is given below:

8𝑘 = 9 + 𝐷2 − 6𝐷 + 4𝜂0 + 4𝑙 (𝑙 + 𝐷 − 2) ± √((𝐷 − 3)2 + 4𝜂0 + 4𝑙 (𝑙 + 𝐷 − 2))2 − 16 (𝜂0 ((𝐷 − 3)2 + 4𝑙 (𝑙 + 𝐷 − 2))) (44)

and the corresponding eigenvalue is obtain from (41) as

(2𝑛 + 1)2 [(𝐷 − 2)2 + 4𝑙 (𝑙 + 𝐷 − 2)]
= ((𝐷 − 3)2 + 4𝜂0 + 4𝑙 (𝑙 + 𝐷 − 2))216

− (𝜂0 ((𝐷 − 3)2 + 4𝑙 (𝑙 + 𝐷 − 2))) .
(45)

(2)The next special case of our potential model is considered
when we choose the ring-shaped parameters 𝛾 = ±𝜍 and 𝜅 ̸=0, which corresponds to the following potential:

𝑉 (𝑟, 𝜃) = 𝐴 tanh2 (𝜆𝑟) + 𝐵
tanh2 (𝜆𝑟)

+ 𝛾 (cot2𝜃 ± cot 𝜃 csc 𝜃) + 𝜅 csc2𝜃𝑟2 .
(46)

Under these conditions, we have

𝜂1 = 𝜍,
𝜂2 = ±𝜍 − 𝑙 (𝑙 + 𝐷 − 2) ,
𝑢1 = (𝐷 − 3 − 2𝑢0)2 ,
𝑢2 = 𝜍2𝑢0 ,
𝑢0 = √(𝐷 − 32 )2 ∓ (𝜍 − 𝑙 (𝑙 + 𝐷 − 2)) − 𝑘.

(47)

The 𝑘 values and the corresponding eigenvalues are obtained
as follows:

8𝑘
= 9 + 𝐷2 − 6𝐷 + 4𝜂0 ∓ 4𝜍 + 4𝑙 (𝑙 + 𝐷 − 2)

± √((𝐷 − 3)2 + 4𝜂0 ∓ 4𝜍 + 4𝑙 (𝑙 + 𝐷 − 2))2 − 16 (𝜍2 + 𝜂0 ((𝐷 − 3)2 ∓ 4𝜍 + 4𝑙 (𝑙 + 𝐷 − 2))),
(2𝑛 + 1)2 [(𝐷 − 2)2 ∓ 4𝜍 + 4𝑙 (𝑙 + 𝐷 − 2)]

= ((𝐷 − 3)2 + 4𝜂0 ∓ 4𝜍 + 4𝑙 (𝑙 + 𝐷 − 2))216 − (𝜍2 + 𝜂0 ((𝐷 − 3)2 ∓ 4𝜍 + 4𝑙 (𝑙 + 𝐷 − 2))) .

(48)

The associated nonnormalized wave function is obtained as

𝐻𝑛 (𝜃𝐷−1) = 𝑁𝑛 (1 − cos 𝜃𝐷−1)−(𝑢1+𝑢2)/2
⋅ (1 + cos 𝜃𝐷−1)(𝑢2−𝑢1)/2
⋅ 𝑃(𝑢0−𝑢2 ,𝑢0+𝑢2)𝑛 (cos 𝜃𝐷−1)

(49)

(3) Another special case of our study is when 𝜍 = 0 and 𝛾,𝜅 ̸= 0, which corresponds to the following potential:

𝑉 (𝑟, 𝜃) = 𝐴 tanh2 (𝜆𝑟) + 𝐵
tanh2 (𝜆𝑟)

+ (𝛾 + 𝜅) cot2𝜃 + 𝜅𝑟2 .
(50)

With these assumptions, we have

𝜂1 = 0,
𝜂1 = 𝜅 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2,
𝜂2 = 𝛾 − 𝑙 (𝑙 + 𝐷 − 2) ,
𝑢1 = 𝐷 − 3 − 2𝑢02 ,
𝑢2 = 0,
𝑢0 = √(𝐷 − 32 )2 − 𝛾 + 𝑙 (𝑙 + 𝐷 − 2) + 𝑘.

(51)
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Under this special case, we obtain the 𝑘 parameter, the
eigenvalues, and the corresponding wave function as follows:

8𝑘 = 9 + 𝐷2 − 6𝐷 + 4 (𝜅 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) − 4 (𝛾 − 𝑙 (𝑙 + 𝐷 − 2))
± √((𝐷 − 3)2 + 4 (𝜅 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) − 4 (𝛾 − 𝑙 (𝑙 + 𝐷 − 2)))2 − 16 (𝜂0 ((𝐷 − 3)2 − 4𝜂2)),

(2𝑛 + 1)2 [(𝐷 − 2)2 − 4 (𝛾 − 𝑙 (𝑙 + 𝐷 − 2))] = ((𝐷 − 3)2 + 4 (𝜅 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) − 4 (𝛾 − 𝑙 (𝑙 + 𝐷 − 2)))216
− ((𝜅 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) ((𝐷 − 3)2 − 4 (𝛾 − 𝑙 (𝑙 + 𝐷 − 2)))) ,

𝐻𝑛 (𝜃𝐷−1) = 𝑁𝑛 (sin 𝜃𝐷−1)−𝑢1 𝑃(𝑢0 ,𝑢0)𝑛 (cos 𝜃𝐷−1) .

(52)

However, one needs to be careful here as, for 𝛾 = −𝜅, there
will be no ring-shaped term and one ends up with hyperbolic
PT potential plus pseudo centrifugal term:

𝑉 (𝑟, 𝜃) = 𝐴 tanh2 (𝜆𝑟) + 𝐵
tanh2 (𝜆𝑟) + 𝜅𝑟2 . (53)

(4) We consider the last special case for 𝛾 = 0 and 𝜅 = ±𝜍,
which corresponds to the potential of the form

𝑉 (𝑟, 𝜃) = 𝐴 tanh2 (𝜆𝑟) + 𝐵
tanh2 (𝜆𝑟)

+ 𝜍 [cot 𝜃 csc 𝜃 ± csc2𝜃]𝑟2 .
(54)

The following parameters are obtained under this case:

𝜂1 = ±𝜍,

𝜂2 = −𝑙 (𝑙 + 𝐷 − 2) ,
𝜂0 = ±𝜍 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2,
𝑢1 = (𝐷 − 3 − 2𝑢02 ) ,
𝑢0 = √(𝐷 − 32 )2 + 𝑙 (𝑙 + 𝐷 − 2) − 𝑘,
𝑢2 = ±𝜍2𝑢0 .

(55)

Using (55), we obtain the 𝑘 parameter, the eigenvalues, and
the corresponding wave function for this special case as
follows:

8𝑘 = 9 + 𝐷2 − 6𝐷 + 4 (±𝜍 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) + 4𝑙 (𝑙 + 𝐷 − 2)
± √((𝐷 − 3)2 + 4 (±𝜍 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) + 4𝑙 (𝑙 + 𝐷 − 2))2 − 16 ((±𝜍)2 + (±𝜍 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) ((𝐷 − 3)2 + 4𝑙 (𝑙 + 𝐷 − 2))),

(2𝑛 + 1)2 [(𝐷 − 2)2 + 4𝑙 (𝑙 + 𝐷 − 2)] = ((𝐷 − 3)2 + 4 (±𝜍 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) + 4𝑙 (𝑙 + 𝐷 − 2))216
− ((±𝜍)2 + (±𝜍 + 𝑙 (𝑙 + 𝐷 − 2) − Λ𝐷−2) ((𝐷 − 3)2 + 4𝑙 (𝑙 + 𝐷 − 2))) ,

𝐻𝑛 (𝜃𝐷−1) = 𝑁𝑛 (1 − cos 𝜃𝐷−1)−(𝑢1+𝑢2)/2 (1 + cos 𝜃𝐷−1)(𝑢2−𝑢1)/2 𝑃(𝑢0−𝑢2 ,𝑢0+𝑢2)𝑛 (cos 𝜃𝐷−1) .

(56)

7. Conclusions

In this paper, we have obtained analytically the solutions
of the D-dimensional Schrödinger potential with hyperbolic

Pöschl-Teller potential plus a generalized ring-shaped term.
We employed NU and trial function methods to solve the
radial and angular parts of the Schrödinger equation, respec-
tively. This result is new and has never been reported in the
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available literature to the best of our knowledge. Finally, this
result can find many applications in atomic and molecular
physics and thermodynamic properties [43].

Appendix

A. Jacobi Polynomials

Jacobi polynomials 𝑃(𝜇,])𝑛 (𝑦) defined on [−1, 1] are solutions
of the following second-order linear differential equation [8]:

{(1 − 𝑦2) 𝑑2𝑑𝑦2 − [(𝜇 + ] + 2) 𝑦 + 𝜇 − ]] 𝑑𝑑𝑦
+ 𝑛 (𝑛 + 𝜇 + ] + 1)}𝑃(𝜇,])𝑛 (𝑦) = 0.

(A.1)

We also mention their orthogonality relation:

∫1
−1

(1 − 𝑦)𝜇 (1 + 𝑦)] 𝑃(𝜇,])𝑛 𝑃(𝜇,])𝑚 𝑑𝑦
= 2𝜇+]+12𝑛 + 𝜇 + ] + 1 Γ (𝑛 + 𝜇 + 1) Γ (𝑛 + ] + 1)Γ (𝑛 + 𝜇 + ] + 1) 𝑛! 𝛿𝑛,𝑚.

(A.2)

B. Hyperspherical Coordinates

The D-dimensional position vector 󳨀→𝑥 = (𝑟, 𝜃1, . . . , 𝜃𝐷−1)
is defined in terms of hyperspherical Cartesian coordinates
below [36]:

𝑥1 = 𝑟 cos 𝜃1 sin 𝜃2 ⋅ ⋅ ⋅ sin 𝜃𝐷−1,
𝑥2 = 𝑟 sin 𝜃1 sin 𝜃2 ⋅ ⋅ ⋅ sin 𝜃𝐷−1,
𝑥𝑗 = 𝑟 cos 𝜃𝑗−1 sin 𝜃𝑗 ⋅ ⋅ ⋅ sin 𝜃𝐷−1,

(B.1)

where 𝑗 = 3, 4, . . . , 𝐷 − 1, 𝑥𝐷 = 𝑟 cos 𝜃𝐷−1, and ∑𝐷𝑗=1 𝑥2𝑗 = 𝑟2.
For 𝐷 = 2, this is the case of polar coordinates (𝑟, 𝜑) with𝑥1 = 𝑥 = 𝑟 cos𝜑 and 𝑥2 = 𝑦 = 𝑟 sin𝜑, whereas 𝐷 = 3
represents the spherical coordinates (𝑟, 𝜑, 𝜃), where 𝑥1 = 𝑥 =𝑟 cos𝜑 sin 𝜃, 𝑥2 = 𝑦 = 𝑟 cos𝜑 sin 𝜃, and 𝑥3 = 𝑧 = 𝑟 cos 𝜃.

The volume element in 𝐷-dimension is defined as 𝑑𝑉 =𝑟𝐷−1𝑑𝑟∏𝐷−1𝑗=1 (sin 𝜃𝑗)𝑗−1𝑑𝜃𝑗, where 𝑟 ∈ [0,∞[, 𝜃1 ∈ [0, 2𝜋],
and 𝜃𝑗 ∈ [0, 𝜋] for 𝑗 ≥ 2. The Laplacian operator in 𝐷
dimensions is defined below:

∇2𝐷 = 𝜕2𝜕𝑟2 + 𝐷 − 1𝑟 𝜕𝜕𝑟 + 1𝑟2
× [ 1

sin𝐷−2𝜃𝐷−1 𝜕𝜕𝜃𝐷−1 (sin𝐷−2𝜃𝐷−1 𝜕𝜕𝜃𝐷−1)
− 𝐿2𝐷−2
sin2𝜃𝐷−1] .

(B.2)

Finally, wemention the normalization conditions of the wave
function in 𝐷-dimensions:

∫∞
0

󵄨󵄨󵄨󵄨𝑔𝑛 (𝑟)󵄨󵄨󵄨󵄨2 𝑑𝑟 = 1,
𝐷−1∏
𝑗=2

∫𝜋
0

󵄨󵄨󵄨󵄨󵄨𝐻 (𝜃𝑗)󵄨󵄨󵄨󵄨󵄨2 (sin 𝜃𝑗)𝑗−1 𝑑𝜃𝑗 = 1. (B.3)
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An effective approach is presented to produce Schrödinger-like equation for the spinor components from Dirac equation.
Considering electrostatic potential as a constant value yields a second-order differential equation that is comparable with the well-
known solvable models in the nonrelativistic quantummechanics for the certain bound state energy spectrum and the well-known
potentials. By this comparison, the gauge field potential and the relativistic energy can be written by the nonrelativistic models and
the spinors will be related to the orthogonal polynomials. It has also shown that the upper spinors wave functions based on the
orthogonal polynomials can be given in terms of the Rodrigues representations. Association with the Rodrigues representations
of orthogonal polynomials has also been investigated in the lower spinor components, since they are related to the upper spinor
components according to first-order differential equation that is attained from Dirac equation.

1. Introduction

In recent years, there has been a developing interest in search
for exactly solvable systems in nonrelativistic and relativistic
quantum mechanics. The expression exactly solvable means
the eigenvalues and the eigenfunctions of the Hamiltonian
operator of the physical system can be derived analytically in
closed form. Solvable models are noteworthy because under-
standing of physics can only be brought with such solutions.
Moreover, exact solutions are valuable tools for testing and
improving numerical methods introduced to solve problems
physically more interesting [1]. Since relativistic extensions
of the exact solvable potentials are very useful to study
the relativistic effects, various methods were employed to
obtain the exact solution of the problem. Point canonical
transformation [2–4], dynamical group [5, 6], factorization
method [7], supersymmetric quantummechanics, and shape
invariance [8–10] are methods amongmany which were used
in the search for exact solutions of wave function. Also, there
are a lot of investigations that show how methods used to
obtain analytical solutions of the Schrödinger equation can
be extended to Dirac case [11–15].

Alhaidari [11–13] applies a unitary transformation to
Dirac equation such that the resulting second-order differ-
ential equation becomes Schrödinger-like equation so that
comparison with the well-known nonrelativistic problems
is transparent. If the electrostatic potential is assumed as a
constant value, the second-order differential equation can
be constituted for upper component by eliminating lower
component, without applying a general local unitary transfor-
mation that eliminates the first-order derivative such as what
Alhaidari has considered.

In this method, by assuming electrostatic potential as a
constant value, the second-order differential equation can be
compared with the well-known solvable Schrödinger equa-
tion in the nonrelativistic quantum models. The wave func-
tions in Schrödinger equation for the well-known potentials
have been obtained on the orthogonal polynomials, such as
Jacobi, generalized Laguerre, and Hermite polynomials and
the energy eigenvalues spectrum can be accessible for each
case. By comparing the second-order differential equation
that has been obtained fromDirac equationwith Schrödinger
equation for the well-known potential such as Scarff-
II, Pöshel-Teller, Mörse, 3D-oscillator, and shift-oscillator
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potentials, the gauge field potential can be written based on
the well-known superpotentials that are related to the men-
tioned potentials. Therefore, the second-order differential is
transformed to the solvable models with the exact solutions;
it means that the relativistic energy eigenvalues can be gotten
based on the nonrelativistic models, and also the spinors will
be related to the orthogonal polynomials according to the
nonrelativistic models. Then, Rodrigues representations and
the differential equation of them are calculated for orthog-
onal polynomials. Moreover, the second-order differential
equation also can be considered as a product of two first-
order differential operators and the spinor wave function
related to the differential equation that is expressed in terms
of Rodrigues representations related to the orthogonal poly-
nomials. Therefore, the solution of second-order differential
equation can be considered with the determined relativistic
energy and associationwithRodrigues representations can be
gotten for each orthogonal polynomial.

This paper is organized as followed: In Section 2, by
using the point canonical transformations, the second-order
differential equation is constituted with the gauge field
potential and the energy spectrum that will be introduced
based on the nonrelativistic models. Then, the association
of Rodrigues representation with orthogonal polynomials is
shown in the Sections 3, 4, and 5 for Jacobi, generalized
Laguerre, and Hermite polynomials, respectively. In each
section, all of the gauge field potentials are considered to
have the ability to constitute the solvable models with the
certain energy eigenvalues, for each orthogonal polynomial.
Therefore, in the each section, Rodrigues representations of
the orthogonal polynomials have been calculated for some
gauge field potentials. In Section 6, the paper endswith a brief
conclusion.

2. The Three-Dimensional Dirac Equation for
a Free Structure

Particle of spin 1/2 reads (𝑖ℏ𝛾𝜇𝜕𝜇 − 𝑚𝑐)Φ = 0, where 𝑚 is
the rest mass of the particle, 𝑐 is the speed of light, and Φ is
a four-component wave function. The four matrices {𝛾𝜇}3𝜇=0
are given the following standard representation [16]:

𝛾0 = (𝐼 00 −𝐼) ,
󳨀→𝛾 = ( 0 󳨀→𝜎−󳨀→𝜎 0) , (1)

where 𝐼 is the 2 × 2 unit matrix and 𝜎 are the usual 2 × 2
Pauli spin matrices. In atomic units (𝑚 = 𝑒 = ℏ = 1), Dirac
equation reads (𝑖𝛾𝜇𝜕𝜇 − 𝛼−1)Φ = 0, where 𝛼 = ℏ/𝑚𝑐 = 1/𝑐
is the Compton wavelength of the particle. In the presence
of the electromagnetic potential, 𝐴𝜇 = (𝐴0, 𝑐󳨀→𝐴), gauge
invariant coupling to the charged spinor is accomplished by
the minimal substitution 𝜕𝜇 → 𝜕𝜇 + 𝑖𝛼𝐴𝜇, which transforms
free Dirac equation into[𝑖𝛾𝜇 (𝜕𝜇 + 𝑖𝛼𝐴𝜇) − 𝛼−1]Φ = 0. (2)

For time independent potential, (2) gives the followingmatrix
representation of Dirac Hamiltonian (in units of 𝑚𝑐2 = 𝛼2)
[14]:

𝐻 = ( 𝛼2𝐴0 + 1 −𝑖𝛼󳨀→𝜎 ⋅ 󳨀→∇ + 𝛼󳨀→𝜎 ⋅ 󳨀→𝐴−𝑖𝛼󳨀→𝜎 ⋅ 󳨀→∇ + 𝛼󳨀→𝜎 ⋅ 󳨀→𝐴 𝛼2𝐴0 − 1 ) . (3)

Taking into consideration gauge invariance, the form of
electromagnetic potential for static charge distribution with
spherical symmetry is

(𝐴0, 󳨀→𝐴) = (𝜐 (𝑟) , 𝑟𝜔 (𝑟)) , (4)

where 𝑟 is radial unit vector; 𝜐(𝑟) and 𝜔(𝑟) are electrostatic
potential and gauge field potential, respectively. By substitut-
ing the two off-diagonal terms 𝛼󳨀→𝜎 ⋅ 󳨀→𝐴 by ±𝑖𝛼󳨀→𝜎 ⋅ 󳨀→𝐴 in (3),
theHamiltonian leads to the following two-component radial
Dirac equation [17]:

( 𝛼2𝜐 (𝑟) + 1 𝛼(𝑘𝑟 + 𝜔 (𝑟) − 𝑑𝑑𝑟)𝛼(𝑘𝑟 + 𝜔 (𝑟) + 𝑑𝑑𝑟) 𝛼2𝜐 (𝑟) − 1 )(𝜑 (𝑟)𝜃 (𝑟))
= 𝜀(𝜑 (𝑟)𝜃 (𝑟)) ,

(5)

where 𝜀 are the relativistic energy eigenvalues and 𝑘 is the
spin-orbit coupling parameter defined as 𝑘 = ±(𝑗+1/2) for 𝑙 =𝑗±1/2. Equation (5) gives two coupled first-order differential
equations for the radial spinor components. By eliminating
lower spinor component and by assuming the electrostatic
potential 𝜐(𝑟) to be a constant value 𝜂, the second-order
differential equation can be gotten for upper spinor wave
function as

− 𝑑2𝜑𝑑𝑟2 + [[(𝜔 (𝑟) + 𝑘𝑟)2 − (𝑑𝜔𝑑𝑟 − 𝑘𝑟2)
− ((𝛼2𝜂 − 𝜀)2 − 1𝛼2 )]]𝜑 (𝑟) = 0. (6)

Equation (5) also gives the lower spinor component in terms
of the upper component as follows:

𝜃 (𝑟) = [𝛼𝜂 − (𝜀 + 1𝛼 )]−1 {[𝜔 (𝑟) + 𝑘𝑟 ] 𝜑 (𝑟) + 𝑑𝜑𝑑𝑟 } . (7)

By comparing (6) with the solvable Schrödinger equation
in the nonrelativistic models, the relation can be considered
between the well-known potential in the nonrelativistic
quantum models and the gauge field potential in the rela-
tivistic system as 𝑉𝑚(𝑟) = (𝜔(𝑟) + 𝑘/𝑟)2 − (𝑑𝜔/𝑑𝑟 − 𝑘/𝑟2).
Also, nonrelativistic energy eigenvalues can be related to the
relativistic energy eigenvalues as 𝐸 = ((𝛼2𝜂 − 𝜀)2 − 1)/𝛼2.
So, the gauge field potential and the relativistic energy due
to solvability of Dirac equation based on the nonrelativistic
quantum mechanics are easily available.
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3. Association of Rodrigues Representation
with Jacobi Polynomials

Let us consider the gauge field potentials where their wave
functions are related to Jacobi polynomials such as Pöschl-
Teller potential 𝜔(1)(𝑟) = −𝐴 coth 𝑟 + 𝐵/ sinh 𝑟 − 𝑘/𝑟 and
Scarf-II potential𝜔(2)(𝑟) = −𝐴 tanh 𝑟−𝐵/ cosh 𝑟−𝑘/𝑟, where𝐴 and 𝐵 are real parameters. For each potential, respectively,
(6) gives the following second-order differential equations for
upper spinor component:

− 𝑑2𝜑(1)𝑛,𝑚 (𝑟)𝑑𝑟2
+ [𝐴2 + (𝐵2 − 𝐴2 + 𝐴)

sinh2𝑟 + (𝐵 − 2𝐴𝐵) cosh 𝑟
sinh2𝑟 ]

⋅ 𝜑(1)𝑛,𝑚 (𝑟) = [[
(𝛼2𝜂 − 𝜀)2 − 1𝛼2 ]]𝜑(1)𝑛,𝑚 (𝑟) ,

(8)

− 𝑑2𝜑(2)𝑛,𝑚 (𝑟)𝑑𝑟2
+ [𝐴2 + (𝐵2 − 𝐴2 + 𝐴)

cosh2𝑟 + (2𝐴𝐵 − 𝐵) sinh 𝑟
cosh2𝑟 ]

⋅ 𝜑(2)𝑛,𝑚 (𝑟) = [[
(𝛼2𝜂 − 𝜀)2 − 1𝛼2 ]]𝜑(2)𝑛,𝑚 (𝑟) ,

(9)

where 𝐴 = (𝜆 + 𝛾 + 2𝑚 − 1)/2 and 𝐵 = (𝛾 − 𝜆)/2 such that𝜆, 𝛾 > −1 in (8) and 𝐴 = 𝑚 + 𝜆 − 1/2 and 𝐵 = 𝛾/2 such
that 𝜆 > −1 and −∞ > 𝛾 > +∞ in (9). There will be the
well-known nonrelativistic energy spectrum as 𝐸(1)𝑛,𝑚 = (𝜆 +𝛾 + 𝑛 + 𝑚)(𝑚 − 𝑛 − 1) and 𝐸(2)𝑛,𝑚 = (2𝜆 + 𝑛 + 𝑚)(𝑛 − 𝑚 + 1)
for Pöschl-Teller potential and Scarf-II potential, respectively.
Asmentioned before, they can be used to calculate relativistic
energy spectrum of Dirac equation as the following forms:

𝜀(1)𝑛 = 𝛼2𝜂
∓ [−𝛼2 (𝜆 + 𝛾 + 𝑛 + 𝑚) (𝑛 − 𝑚 + 1) + 1]1/2 ,

𝜀(2)𝑛 = 𝛼2𝜂 ∓ [−𝛼2 (2𝜆 + 𝑛 + 𝑚) (𝑛 − 𝑚 + 1) + 1]1/2 .
(10)

The bound states wave functions of the nonrelativistic
problem [6] are mapped into the following upper spinor
components wave functions:

𝜑(1)𝑛,𝑚 (𝑥) ∝ (𝑥 − 1)(2𝜆+2𝑚−1)/4 × (𝑥 + 1)(2𝛾+2𝑚−1)/4⋅ 𝑃(𝜆+𝑚−1,𝛾+𝑚−1)𝑛 (𝑥) , (11)

𝜑(2)𝑛,𝑚 (𝑥) ∝ (1 + 𝑥2)−1/2 × exp(𝛾2 tanh−1𝑥)
⋅ 𝑃(𝑖(𝛾/2)+𝑚+𝜆−1/4,−𝑖(𝛾/2)+𝑚+𝜆−1/4)𝑛 (𝑥) , (12)

where 𝑃(𝜇,])𝑛 (𝑥) is Jacobi polynomial with 𝜇, ] > −1, and 𝑥 =
cosh 𝑟, 𝜇 = 𝜆+𝑚−1, and ] = 𝛾+𝑚−1 in (11) and 𝑥 = sinh 𝑟,𝜇+ 𝑖(𝛾/2)+𝑚+𝜆−1/4, and ] = −𝑖(𝛾/2)+𝑚+𝜆−1/4 in (12).
By substituting upper spinor components (11) and (12) into (7)
and using recursion properties of Jacobi polynomials, lower
spinor components are given as

𝜃(1)𝑛,𝑚 (𝑥) ∝ (1𝛼
∓ [ 1𝛼2 − 𝑛2 − 𝑛 (𝜆 + 𝛾 + 2𝑚 − 1)]1/2)−1
× ([𝑛𝑥 − ( 𝜆 − 𝛾2𝑛 + 2𝑚 + 𝜆 + 𝛾 − 2)] (𝑥2 − 1)−1/2
⋅ 𝜑(1)𝑛,𝑚 (𝑥) − [2 (𝑛 + 𝑚 + 𝜆 − 1) (𝑛 + 𝑚 + 𝛾 − 1)2𝑛 + 2𝑚 + 𝜆 + 𝛾 − 2 ]
⋅ (𝑥2 − 1)−1/2 𝜑(1)𝑛−1,𝑚 (𝑥)) ,

𝜃(2)𝑛,𝑚 (𝑥) ∝ (1𝛼
∓ [ 1𝛼2 + (𝑛 − 𝑚 + 1) (𝑚 − 𝑛 + 2𝜆 − 2)]1/2)−1
× ([−(𝑛 + 𝜆 + 34) 𝑥 + 𝛾2 (2𝑛 − 3𝑚 − 𝜆 + 3−𝑛 + 2𝑚 − 2 )]
⋅ (𝑥2 + 1)−1/2 + 𝛾2 (1 − 𝑥)−1 (𝑥2 + 1)1/2 𝜑(2)𝑛,𝑚 (𝑥)
− [𝑖 (−𝑛 + 2𝑚 + 𝜆 − 2)2 + 𝛾2/8−𝑛 + 2𝑚 + 𝜆 − 2 ] (𝑥2 + 1)−1/2
⋅ 𝜑(2)𝑛−1,𝑚 (𝑥)) .

(13)

Raising and lowering operators 𝐵±(𝑚) = ±𝑑/𝑑𝑟 + 𝑊𝑚(𝑥(𝑟)),
where the superpotential 𝑊𝑚(𝑥(𝑟)) satisfies in the Riccati
equation 𝑉𝑚 = 𝑊2𝑚 ± 𝑊󸀠𝑚, can be written as the following
forms according to Pöschl-Teller and Scarf-II potentials,
respectively:

𝐵(1)+ = 𝑑𝑑𝑟 + [−𝐴 coth 𝑟 + 𝐵
sinh 𝑟] ,

𝐵(1)− = − 𝑑𝑑𝑟 + [−𝐴 coth 𝑟 + 𝐵
sinh 𝑟] , (14)

𝐵(2)+ = 𝑑𝑑𝑟 + [−𝐴 tanh 𝑟 − 𝐵
cosh 𝑟] ,

𝐵(2)− = − 𝑑𝑑𝑟 + [−𝐴 tanh 𝑟 + 𝐵
cosh 𝑟] . (15)
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It is obvious that the second-order differential equations can
always be considered in a factorization form as a product of a
pair of linear differential operators (14) and (15). Therefore,𝐵(1),(2)+ (𝑚) 𝐵(1),(2)− (𝑚) 𝜑(1),(2)𝑛,𝑚 (𝑟)= 𝐸(1),(2) (𝑛,𝑚) 𝜑(1),(2)𝑛,𝑚 (𝑟) ,𝐵(1),(2)− (𝑚) 𝐵(1),(2)+ (𝑚) 𝜑(1),(2)𝑛,𝑚−1 (𝑟)= 𝐸(1),(2) (𝑛,𝑚) 𝜑(1),(2)𝑛,𝑚−1 (𝑟) .

(16)

In the above equations, for a given 𝑛, the operator 𝐵+(𝑚)
raises the index 𝑚 while the operator 𝐵−(𝑚) lowers it. We
can also obtain the highest state 𝜑𝑛,𝑛 by solving the first-
order differential equation 𝐵+(𝑛 + 1)𝜑𝑛,𝑛(𝑟) = 0 because the
nonrelativistic energy spectrum 𝐸(𝑛,𝑚) vanishes for 𝑚 =𝑛 + 1 [10], since by introducing a new function as 𝜑𝑛,𝑚(𝑥) =𝐴1/4(𝑥)𝑊1/2(𝑥)𝜓𝑛,𝑚(𝑥) and changing the variable 𝑑𝑥/𝑑𝑟 =√𝐴(𝑥) Schrödinger equation (6) has been obtained from
the general form associated with second-order differential
equation in terms of master function 𝐴(𝑥) and the wave
function𝑊(𝑥) as follows [18–20]:

𝐴 (𝑥) 𝜓̈𝑛,𝑚 (𝑥) + (𝐴 (𝑥)𝑊 (𝑥))󸀠𝑊(𝑥) 𝜓̇𝑛,𝑚 (𝑥)
+ [−12 (𝑛2 + 𝑛 − 𝑚2) 𝐴̈ (𝑥)
+ (𝑚 − 𝑛)(𝐴 (𝑥) 𝑊̇ (𝑥)𝑊 (𝑥) )󸀠 − 𝑚24 𝐴̇ (𝑥)2𝐴 (𝑥)
− 𝑚2 𝐴̇ (𝑥) 𝑊̇ (𝑥)𝑊 (𝑥) ]𝜓𝑛,𝑚 (𝑥) = 0,

(17)

where 𝜓𝑛,𝑚(𝑥) is Rodrigues representation of the orthogonal
polynomials in (17). For a positive integer 𝑛, 𝜓𝑛,𝑚(𝑥) as
Rodrigues representation is given by

𝜓𝑛,𝑚 (𝑥) = (−1)𝑚 𝐴𝑚/2 (𝑥) ( 𝑑𝑑𝑥)𝑚 𝜓𝑛 (𝑥) ,
𝑚 = 0, 1, 2, . . . , 𝑛, (18)

where

𝜓𝑛 (𝑥) = 𝑁𝑊(𝑥) ( 𝑑𝑑𝑥)𝑛 (𝐴𝑛 (𝑥)𝑊 (𝑥)) , (19)

with 𝑁 which is normalization constant. So, for each case of
the gauge field potentials, the Rodrigues representations of
upper and lower spinors and differential equations associated
with them are available. Furthermore, it can be shown that
they are clear examples of connection between Jacobi polyno-
mials and Rodrigues representations in Dirac equation.Thus,
the wave functions𝜓𝑛,𝑚(𝑥) are related to the upper spinors as
the following forms:𝜓(1)𝑛,𝑚 (𝑥) = (𝑥 − 1)−(𝜆/2+1/4) (𝑥 + 1)−(𝛾/2+1/4) 𝜑(1)𝑛,𝑚 (𝑥) , (20)

for𝐴(1)(𝑥) = 𝑥2 −1 and𝑊(1)(𝑥) = (𝑥−1)𝜆(𝑥+1)𝛾 in Pöschl-
Teller potential and𝜓(2)𝑛,𝑚 (𝑥)= (𝑥2 + 1)−(𝜆/2+1/4) exp(−𝛾2 tan−1 (𝑥)) 𝜑(2)𝑛,𝑚 (𝑥) , (21)

when𝐴(2)(𝑥) = 𝑥2+1 and𝑊(2)(𝑥) = (𝑥2+1)𝜆 exp(𝛾 tan−1(𝑥))
in Scarf-II potential. Since the lower spinors can be connected
to the upper spinors according to (13), therefore, Rodrigues
representations of upper spinors also can be associated with
lower spinors. If the wave function Θ𝑛,𝑚(𝑥) is introduced for
lower spinor 𝜃𝑛,𝑚(𝑥), it can be written based on Rodrigues
representations 𝜓𝑛,𝑚(𝑥). The wave function Θ𝑛,𝑚(𝑥) that is
connected to the lower spinors 𝜃𝑛,𝑚(𝑥) can be written as
follows for Pöschl-Teller and Scarf-II potentials, proportion-
ately:

Θ(1)𝑛,𝑚 (𝑥) ∝ (1𝛼
∓ [ 1𝛼2 − 𝑛2 − 𝑛 (𝜆 + 𝛾 + 2𝑚 − 1)]1/2)−1
× ([𝑛𝑥 − ( 𝜆 − 𝛾2𝑛 + 2𝑚 + 𝜆 + 𝛾 − 2)] (𝑥2 − 1)−1/2
⋅ 𝜓(1)𝑛,𝑚 (𝑥) − [2 (𝑛 + 𝑚 + 𝜆 − 1) (𝑛 + 𝑚 + 𝛾 − 1)2𝑛 + 2𝑚 + 𝜆 + 𝛾 − 2 ]
⋅ (𝑥2 − 1)−1/2 𝜓(1)𝑛−1,𝑚 (𝑥)) ,

Θ(2)𝑛,𝑚 (𝑥) ∝ (1𝛼
∓ [ 1𝛼2 + (𝑛 − 𝑚 + 1) (𝑚 − 𝑛 + 2𝜆 − 2)]1/2)−1
× ([−(𝑛 + 𝜆 + 34) 𝑥 + 𝛾2 (2𝑛 − 3𝑚 − 𝜆 + 3−𝑛 + 2𝑚 − 2 )]
⋅ (𝑥2 + 1)−1/2 + 𝛾2 (1 − 𝑥)−1 (𝑥2 + 1)1/2 𝜓(2)𝑛,𝑚 (𝑥)
− [𝑖 (−𝑛 + 2𝑚 + 𝜆 − 2)2 + 𝛾2/8−𝑛 + 2𝑚 + 𝜆 − 2 ] (𝑥2 + 1)−1/2
⋅ 𝜓(2)𝑛−1,𝑚 (𝑥)) .

(22)

The wave functions 𝜓𝑛,𝑚(𝑥) can be also satisfied in the
second-order differential equations for each potential, correl-
atively:(𝑥2 − 1) 𝜓̈(1)𝑛,𝑚 (𝑥) + [12 (1 − 𝛾 − 𝜆) 𝑥3 + 12 (𝛾 − 𝜆) 𝑥2

− 1] 𝜓̇(1)𝑛,𝑚 (𝑥) + [(1 − 𝑚) (𝜆 + 𝛾 + 𝑚) 𝑥2



Advances in High Energy Physics 5

+ (𝑚 − 2) (𝛾 − 𝜆) 𝑥 + (𝜆 + 𝛾 + 𝑛 + 𝑚) (𝑚 − 𝑛 − 1)𝑥2 − 1
+ (𝜆 + 𝛾 + 2𝑚 − 1)22 − 𝑚 + 1]𝜓(1)𝑛,𝑚 (𝑥) = 0,

(23)(𝑥2 + 1) 𝜓̈(2)𝑛,𝑚 (𝑥) + [2 (𝜆 + 1) 𝑥 + 𝛾] 𝜓̇(2)𝑛,𝑚 (𝑥)
+ [(𝑚2 − 𝑛2 − 𝑛) + 2𝜆 (𝑚 − 𝑛)
− (𝑚2 + 2𝑚𝜆) 𝑥2 − 𝛾𝑚𝑥𝑥2 + 1 ]𝜓(2)𝑛,𝑚 (𝑥) = 0.

(24)

Rodrigues representations of the associated polynomials𝜓𝑛,𝑚(𝑥) are given by

𝜓(1)𝑛,𝑚 (𝑥) = (−1)𝑚 (𝑥2 − 1)𝑚/2 ( 𝑑𝑑𝑥)𝑚 𝜓(1)𝑛 (𝑥) ,
𝑚 = 0, 1, 2, . . . , 𝑛,

𝜓(2)𝑛,𝑚 (𝑥) = (−1)𝑚 (𝑥2 + 1)𝑚/2 ( 𝑑𝑑𝑥)𝑚 𝜓(2)𝑛 (𝑥) ,
𝑚 = 0, 1, 2, . . . , 𝑛,

(25)

where 𝜓𝑛(𝑥) satisfies in Jacobi differential equation whose
Rodrigues representations, respectively, are

𝜓(1)𝑛 (𝑥) = 𝑁 (𝑥 − 1)−𝜆 (𝑥 + 1)−𝛾 ( 𝑑𝑑𝑥)𝑛
⋅ ((𝑥 − 1)𝑛+𝜆 (𝑥 + 1)𝑛+𝛾) , (26)

𝜓(2)𝑛 (𝑥) = 𝑁 (𝑥2 + 1)−𝜆 exp (−𝛾 tan−1𝑥)( 𝑑𝑑𝑥)𝑛
⋅ ((𝑥2 + 1)𝑛+𝜆 exp (−𝛾 tan−1𝑥)) , (27)

where 𝑁 is a normalization constant. Since the wave func-
tions Θ𝑛,𝑚(𝑥) connected to the lower spinor 𝜃𝑛,𝑚(𝑥) that
have been calculated based on upper spinors 𝜑𝑛,𝑚(𝑥) and
Rodrigues representations of upper spinors can be general-
ized to the wave function Θ𝑛,𝑚(𝑥) as 𝜓𝑛,𝑚(𝑥) and 𝜓𝑛−1,𝑚(𝑥),
therefore, the above Rodrigues representation can also be
related to the lower spinor components.

4. Association of Rodrigues Representation
with Generalized Laguerre Polynomials

When Mörse potential 𝜔(1)(𝑟) = −(𝛾/2)𝑒−𝑟 − 𝑚 − 𝜆/2 +1/2 − 𝑘/𝑟 and 3-dimensional oscillator potential 𝜔(2)(𝑟) =(𝛾/4)𝑟 − (𝜆 +𝑚− 1/2)(2/𝑟) − 𝑘/𝑟 are considered as the gauge
field potentials, the upper spinor components are associated
with generalized Laguerre polynomials. So, the second-order

differential equations for the upper spinor components are
written according to (6):

− 𝑑2𝜑(1)𝑛,𝑚 (𝑟)𝑑𝑟2 + [𝛾24 𝑒−2𝑟 + 𝛾(𝑚 + 𝜆2 − 1) 𝑒−𝑟]
⋅ 𝜑(1)𝑛,𝑚 (𝑟) = [[

(𝛼2𝜂 − 𝜀)2 − 1𝛼2 ]]𝜑(1)𝑛,𝑚 (𝑟) ,
− 𝑑2𝜑(2)𝑛,𝑚 (𝑟)𝑑𝑟2 + [𝛾216𝑟2

+ (𝜆 + 𝑚 − 12) (𝜆 + 𝑚 − 32) 1𝑟2 𝛾2 (𝜆 + 𝑚)]
⋅ 𝜑(2)𝑛,𝑚 (𝑟) = [[

(𝛼2𝜂 − 𝜀)(2) − 1𝛼2 ]]𝜑(2)𝑛,𝑚 (𝑟) .

(28)

According to the nonrelativistic energy spectrum 𝐸(1)𝑛,𝑚 =−(𝑛−𝑚+1)(𝜆+𝑛+𝑚) and 𝐸(2)𝑛,𝑚 = 𝛾(𝑛−𝑚+1), the relativistic
energy spectrums are obtained as

𝜀(1)𝑛 = 𝛼2𝜂 ∓ [−𝛼2 (𝑛 − 𝑚 + 1) (𝜆 + 𝑛 + 𝑚) + 1]1/2 ,
𝜀(2)𝑛 = 𝛼2𝜂 ∓ [−𝛼2𝛾 (𝑛 − 𝑚 + 1) + 1]1/2 . (29)

Second-order differential equations (28) are due to the
solutions based on the generalized Laguerre polynomials as
upper spinor wave functions

𝜑(1)𝑛,𝑚 (𝑥) ∝ (𝛾𝑥)−(𝑛+𝜆/2+1/2)
× exp (− 𝛾2𝑥) 𝐿(−2𝑛−𝜆−1)𝑛 (𝛾𝑥) , (30)

𝜑(2)𝑛,𝑚 (𝑥) ∝ (𝛾𝑥)(𝜆+𝑚−1/2)/2
× exp (−𝛾𝑥2 ) 𝐿(𝜆+𝑚−1/4)𝑛 (𝛾𝑥) , (31)

where 𝐿𝛼𝑛(𝑥) is generalized Laguerre polynomial with 𝛼 > −1.
In the upper spinor (30), 𝑥 = 𝑒𝑟 and𝛼 = −2𝑛−𝜆−1 and, in the
other upper spinor (31), 𝑥 = 𝑟2/4 and 𝛼 = 𝜆+𝑚−1/4. Lower
spinor components can be attained by (7) for each potential

𝜃(1)𝑛,𝑚 (𝑥) ∝ (1𝛼
∓ [ 1𝛼2 + (𝑛 − 𝑚 + 1) (−𝑚 − 𝑛 − 𝜆)]1/2)−1
× [(−2𝑚 − 𝜆 + 1) − (𝑛 − 𝑚 + 1)𝛾 ] 𝑥𝜑(1)𝑛−1,𝑚 (𝑥) ,
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𝜃(2)𝑛,𝑚 (𝑥) ∝ (1𝛼 ∓ [ 1𝛼2 + 𝛾 (𝑛 − 𝑚 + 1)]1/2)−1
× 𝑥−1/2 [(𝑛 − 𝑚 + 1) 𝜑(2)𝑛,𝑚 (𝛾𝑥)
− (𝑛 + 𝜆 + 34) 𝜑(2)𝑛−1,𝑚 (𝛾𝑥)] .

(32)

As mentioned in pervious section, the raising and low-
ering 𝐵+ and 𝐵− operators based on the superpotentials are
given as

𝐵(1)+ = 𝑑𝑑𝑟 − 𝛾2𝑒−𝑟 − 𝑚 − 𝜆2 + 12 ,𝐵(1)− = − 𝑑𝑑𝑟 − 𝛾2𝑒−𝑟 − 𝑚 − 𝜆2 + 12 ,𝐵(2)+ = 𝑑𝑑𝑟 + 𝛾4𝑟 − (𝜆 + 𝑚 − 12) 2𝑟 ,𝐵(2)− = − 𝑑𝑑𝑟 + 𝛾4𝑟 − (𝜆 + 𝑚 − 12) 2𝑟 .
(33)

The pair of linear differential operators can factorize
Schrödinger equation for each potential. Similar to the
pervious section, in Mörse potential, if 𝐴(1)(𝑥) = 𝑥2 and𝑊(1)(𝑥) = 𝑥𝜆𝑒−𝛾/𝑥, the wave function𝜓(1)𝑛,𝑚(𝑥) is written based
on upper spinor as

𝜓(1)𝑛,𝑚 (𝑥) = (exp (𝛾/2𝑥)𝑥 )𝜑(1)𝑛,𝑚 (𝑥) , (34)

and, in 3-dimensional oscillator potential, when 𝐴(2)(𝑥) = 𝑥
and𝑊(2)(𝑥) = 𝑥𝜆𝑒−𝛾𝑥, the wave function 𝜓(2)𝑛,𝑚(𝑥) is obtained
as 𝜓(2)𝑛,𝑚 (𝑥) = 𝑥−(𝜆/2+1/4) exp(𝛾𝑥2 )𝜑(2)𝑛,𝑚 (𝑥) . (35)

Therefore, they are also related to the generalized Laguerre
polynomials. It is clear that both of them are examples of
associating generalized Laguerre polynomial with Rodrigues
representation in Dirac equation. Also, Rodrigues represen-
tation of lower spinors 𝜃𝑛,𝑚(𝑥) that are called Θ𝑛,𝑚(𝑥) will be
in the following forms based on 𝜓𝑛,𝑚(𝑥) and 𝜓𝑛−1,𝑚(𝑥), for
Mörse and 3-dimensional oscillator potentials:

Θ(1)𝑛,𝑚 (𝑥) ∝ (1𝛼
∓ [ 1𝛼2 + (𝑛 − 𝑚 + 1) (−𝑚 − 𝑛 − 𝜆)]1/2)−1
× 𝑥 [−(𝑚 + 𝑛 + 𝜆)𝛾 ]𝜓(1)𝑛−1,𝑚 (𝑥) ,

Θ(2)𝑛,𝑚 (𝑥) ∝ (1𝛼 ∓ [ 1𝛼2 + 𝛾 (𝑛 − 𝑚 + 1)]1/2)−1
× 𝑥(𝜆+1)/2 [(𝑛 − 𝑚 + 1) 𝜓(2)𝑛,𝑚 (𝑥)
+ (𝑛 + 𝜆 + 34)𝜓(2)𝑛−1,𝑚 (𝑥)] .

(36)

The wave functions 𝜓𝑛,𝑚(𝑥) can be also satisfied in second-
order differential equations for each potential, proportion-
ately:

𝑥2𝜓̈(1)𝑛,𝑚 (𝑥) + (𝜆𝑥 + 𝛾 + 2) 𝜓̇(1)𝑛,𝑚 (𝑥) + (−𝑚𝛾𝑥 + 𝑚2
− 𝑚 − 2𝑛2 − 𝑛 (𝜆 + 1))𝜓(1)𝑛,𝑚 (𝑥) = 0, (37)

𝑥𝜓̈(2)𝑛,𝑚 (𝑥) + (2 (𝜆 + 12) − 𝛾𝑥) 𝜓̇(2)𝑛,𝑚 (𝑥)
+ (𝛾 (𝑛 − 𝑚 + 12) − 𝛾𝜆2
− (𝑚 − 1) (2𝜆 + 1)4 𝑥−1/2)𝜓(2)𝑛,𝑚 (𝑥) = 0.

(38)

Rodrigues representations of associated polynomials𝜓𝑛,𝑚(𝑥) are given as

𝜓(1)𝑛,𝑚 (𝑥) = (−1)𝑚 𝑥𝑚 ( 𝑑𝑑𝑥)𝑚 𝜓(1)𝑛 (𝑥) ,
𝑚 = 0, 1, 2, . . . , 𝑛,

𝜓(2)𝑛,𝑚 (𝑥) = (−1)𝑚 𝑥𝑚/2 ( 𝑑𝑑𝑥)𝑚 𝜓(2)𝑛 (𝑥) ,
𝑚 = 0, 1, 2, . . . , 𝑛,

(39)

where 𝜓𝑛(𝑥) satisfies in Laguerre differential equation whose
Rodrigues representations are, respectively,𝜓(1)𝑛 (𝑥)

= 𝑁𝑥−𝜆 exp(𝛾𝑥)( 𝑑𝑑𝑥)𝑛 (𝑥2𝑛+𝜆 exp(−𝛾𝑥)) , (40)

𝜓(2)𝑛 (𝑥) = 𝑁𝑥−𝜆 exp (𝛾𝑥) ( 𝑑𝑑𝑥)𝑛 (𝑥𝜆+𝑛 exp (−𝛾𝑥)) . (41)

The above Rodrigues representations can be also related
to lower spinor components, because there are the wave
function Θ𝑛,𝑚(𝑥) based on the wave function 𝜓𝑛,𝑚(𝑥) and𝜓𝑛−1,𝑚(𝑥) according to the lower spinor components.

5. Association of Rodrigues Representation
with Hermite Polynomials

The upper spinor component will be considered as Hermite
polynomials, if the gauge field potential 𝜔(𝑟) = (𝛾/2)𝑟 − 𝜆 −𝑘/𝑟 is written based on shift-oscillator potential. This upper
spinor component satisfies in (6) as

− 𝑑2𝜑𝑛,𝑚 (𝑟)𝑑𝑟2 + [(𝛾2𝑟 − 𝜆)2 − 𝛾2] 𝜑𝑛,𝑚 (𝑟)
= [[

(𝛼2𝜂 − 𝜀)2 − 1𝛼2 ]]𝜑𝑛,𝑚 (𝑟) . (42)
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For this potential, the nonrelativistic energy 𝐸𝑛,𝑚 = 𝛾(𝑛−𝑚 + 1) can be used in the following relativistic energy
spectrum:

𝜀𝑛 = 𝛼2𝜂 ∓ [𝛼2𝛾 (𝑛 − 𝑚 + 1) + 1]1/2 . (43)

The upper spinor wave function based on the Hermite
polynomials can be obtained from (42):

𝜑𝑛,𝑚 (𝑥) ∝ exp(−𝛾4𝑥2) × 𝐻𝑛 ((𝛾2)1/2 𝑥) , (44)

where 𝐻𝑛(𝑥) is Hermite polynomial. In the wave function
(44) 𝑥 = 𝑟 − 2𝜆/𝛾 and −∞ < 𝑥 < +∞. According to (7),
the lower spinor wave function is calculated as

𝜃𝑛,𝑚 (𝑥) ∝ (1𝛼 ∓ [ 1𝛼2 + 𝛾 (𝑛 − 𝑚 + 1)]1/2)−1
× ([(2𝛾)1/2 (𝑛 − 𝑚 + 1)] 𝜑𝑛−1,𝑚 (𝑥) . (45)

To factorize Schrödinger equation, there are pairs of linear
differential operator as

𝐵+ = 𝑑𝑑𝑟 + 𝛾2𝑟 − 𝜆,
𝐵− = − 𝑑𝑑𝑟 + 𝛾2𝑟 − 𝜆. (46)

Asmentioned before, thewave function𝜓𝑛,𝑚(𝑥) that is related
to upper spinor is gotten by

𝜓𝑛,𝑚 (𝑥) = exp(𝛾4𝑥2)𝜑𝑛,𝑚 (𝑥) , (47)

for 𝐴(𝑥) = 1 and 𝑊(𝑥) = exp(−(𝛾/2)𝑥2). In this potential,
Hermite polynomial can be associated with Rodrigues repre-
sentation inDirac equation. Also, similar to pervious section,
the wave function Θ𝑛,𝑚(𝑥) that is connected to lower spinor𝜃𝑛.𝑚(𝑥) can be written based on Rodrigues representation:

Θ𝑛,𝑚 (𝑥) ∝ (1𝛼 ∓ [ 1𝛼2 + 𝛾 (𝑛 − 𝑚 + 1)]1/2)−1
× [(2𝛾)1/2 (𝑛 − 𝑚 + 1)] 𝜓𝑛−1,𝑚 (𝑥) . (48)

The second-order differential equation for shift-oscillator
potential will be𝜓̈𝑛,𝑚 (𝑥) + (−𝛾𝑥) 𝜓̇𝑛,𝑚 (𝑥) − 𝛾 (𝑚 − 𝑛) 𝜓𝑛,𝑚 (𝑥) = 0, (49)

where Rodrigues representation of the associated polynomial𝜓𝑛,𝑚(𝑥) is considered by

𝜓𝑛,𝑚 (𝑥) = (−1)𝑚 ( 𝑑𝑑𝑥)𝑚 𝜓𝑛 (𝑥) , 𝑚 = 0, 1, 2, . . . , 𝑛 (50)

and Rodrigues representation of 𝜓𝑛(𝑥), will be in the follow-
ing form:

𝜓𝑛 (𝑥) = 𝑁 exp(𝛾2𝑥2)( 𝑑𝑑𝑥)𝑛 (exp(−𝛾2𝑥2)) . (51)

Since Θ𝑛,𝑚(𝑥) has been used for lower spinor Θ𝑛,𝑚(𝑥) and
it has been associated with 𝜓𝑛−1,𝑚(𝑥) according to (48),
therefore, (49), (50), and (51) can be considered for the lower
spinor component in shift-oscillator potential.

6. Conclusion

A procedure for connecting the methods used in the analysis
of exactly solvable potentials in the nonrelativistic quantum
mechanics with the solution of Dirac equation has presented.
A gauge field potential and the bound states energy spectrum
have been defined for theDirac equationwith a constant elec-
trostatic potential that can be constituted by a Schrödinger-
like equation. Since orthogonal polynomials are considered
as the solution of Schrödinger-like equation that have been
obtained from Dirac equation, Rodrigues representations of
the orthogonal polynomials can be associated with upper and
lower spinor components.
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We study the identified particle ratios produced atmid-rapidity (|𝑦| < 0.5) in heavy-ion collisions, alongwith their correlationswith
the collision energy. We employ our earlier proposed unified statistical thermal freeze-out model (USTFM), which incorporates
the effects of both longitudinal and transverse hydrodynamic flow in the hot hadronic system. A fair agreement seen between
the experimental data and our model results confirms that the particle production in these collisions is of statistical nature. The
variation of the chemical freeze-out temperature and the baryon chemical potential with respect to collision energies is studied.
The chemical freeze-out temperature is found to be almost constant beyond the RHIC energy and is found to be close to the QCD
predicted phase-transition temperature suggesting that the chemical freeze-out occurs soon after the hadronization takes place.
The vanishing value of chemical potential at LHC indicates very high degree of nuclear transparency in the collision.

1. Introduction

Relative hadron yields and their correlations are observable
which can provide information on the nature, composition,
and size of the medium from which they originate in high
energy heavy-ion collisions where a strongly interacting
nuclear matter at high energy density and temperatures is
formed. Within the framework of the statistical model, it
is assumed that a hot and dense fireball is formed over an
extended region for a brief period of time (∼a few fm/c) after
the initial collision which undergoes collective expansion
leading to a decrease in its temperature and finally to the
hadronization. After the hadronization of the hot fireball, the
hadrons keep interacting with each other and the particle
number changing (inelastic) reaction processes continue to
take place till the temperature drops to a certain value
where a given reaction process almost comes to a stop.
Those particle number changing reaction processes (e.g.,
strangeness exchange process) stop earlier for which the
threshold energy is larger. The temperature at which the
particle number changing process for a given hadron almost
stops is called the “chemical freeze-out” temperature of that

hadronic specie. However, the (elastic) rescattering still takes
place and continues to build up the collective (hydrody-
namic) expansion. Consequently, the matter becomes dilute
and the mean free path for the elastic reaction processes of
given hadronic species becomes comparable with the system
size. At this stage the scattering processes stop and the
given hadron decouples from the rest of the system. This
is called the “kinetic or thermal freeze-out” after which the
hadron’s energy/momentum spectrum is frozen in time [1].
As the inelastic cross sections are only a small fraction of the
total cross section at lower (thermal) energies, the inelastic
processes stop well before the elastic ones. Thus chemical
freeze-out precedes kinetic or thermal freeze-out [2].

Statistical thermal models have successfully reproduced
the essential features of particle production in heavy-ion
collisions [3] as well as inmany types of elementary collisions
[4–7] at LHC energies suggesting a statistical nature of
particle production in these collisions. Systematic studies of
particle yields using experimental results at different beam
energies have revealed a clear underlying freeze-out pattern
for particle yields in heavy-ion collisions [8, 9]. The success
of the statistical (thermal) models in describing the ratios of
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hadron yields produced in heavy-ion collisions is remarkable.
The agreement of the particle ratios with simple predictions
of the statistical models is a key argument for the
thermalization of the system formed in heavy-ion collisions.
Measurements of antiparticle to particle ratios in these
collisions give information on the net baryon density or
baryon chemical potential achieved and are thus of interest
in characterizing the environment created in these collisions.
It has also been suggested that the measurement of strange
antibaryon to baryon ratios could help distinguish between
a hadron gas and deconfined plasma of quarks and gluons
[10]. For a boost invariant system at mid-rapidity for the
RHIC and LHC energies, the particle yields 𝑑𝑁/𝑑𝑦 change
only by a few percentages in the rapidity window |𝑦| < 1. The
particles ratios detected at mid-rapidity are the integrated
yield from various parts of the fireball.

In this paper, we attempt to reproduce the particle ratios
and to study their correlations and the energy dependence
in the hadron gas (HG) scenario by using our phenomeno-
logical boost invariant unified statistical thermal freeze-out
model (USTFM) [1, 13–17] which assumes that at freeze-out
all the hadrons in the hadron gas resulting from a high energy
nuclear collision follow an equilibriumdistribution.The local
particle phase space densities have the form of the Fermi-
Dirac or Bose-Einstein statistical distributions.

2. Model Description

The nuclear matter created in high energy heavy-ion colli-
sions is assumed to form an ideal gas that can be described by
Grand Canonical Ensemble. The density of the particle 𝑖 can
then be written as

𝑛𝑖 = 𝑔𝑖2𝜋2 ∫
∞

0

𝑘2𝑑𝑘
exp [(𝐸𝑖 (𝑘) − 𝜇𝑖) /𝑇] ± 1 , (1)

where 𝐸𝑖 = √(𝑘2 + 𝑚2
𝑖
) is the energy, 𝑘 is the momentum of

the particle specie, 𝑔𝑖 = (2𝐽𝑖+1) is the spin degeneracy factor,𝜇𝑖 is the chemical potential of the particle species 𝑖, and 𝑇 is
the temperature. The (+) sign is for fermions and (−) sign is
for bosons. For high temperatures and energies, the Bose-
Einstein or Fermi-Dirac statistics can be replaced with the
Boltzmann statistics by dropping the ±1 term. The chem-
ical freeze-out relates to the equilibrium between different
flavors. If the hadron gas reaches chemical equilibrium, the
particle abundance is described by chemical potentials and
temperatures. The information of the chemical freeze-out
can be extracted from particle ratios in the measurement.
Relative particle production can be studied by particle ratios
of the integrated 𝑑𝑁/𝑑𝑦 yields. If we neglect the decay
contributions and consider only the primordial yield, the
antiparticle to particle ratios are found to be controlled only
by their respective fugacities. That is,

𝑛𝑖𝑛𝑖 = exp
𝜇𝑖 − 𝜇𝑖𝑇 = exp(2𝜇𝑖𝑇 ) . (2)

Ratios of particles with the same mass, but different quark
content, such as 𝑝/𝑝 and 𝐾−/𝐾+, are sensitive to the balance

between matter and antimatter, characterized by the baryon
chemical potential 𝜇𝐵. As strange quarks are created during
the collision and are not transported from the incoming
nuclei, strangeness production is expected to be a good
estimator of the degree of equilibration of the produced
fireball [18]. The 𝑝/𝑝 ratio in accordance with (2) can be
written as follows:

𝑝
𝑝 = exp(−2𝜇𝐵𝑇 ) . (3)

The other particle ratios of thermal yields (i.e., without feed-
down contributions from the heavier resonances) can be
correlated accordingly with the 𝑝/𝑝 ratio as follows:

𝐾−
𝐾+ = exp(2𝜇𝑠𝑇 )(𝑝𝑝)

1/3 , (4)

Λ
Λ = exp(−2𝜇𝑠𝑇 )(𝑝𝑝)

2/3 , (5)

Σ
Σ = exp (−2𝜇𝑠𝑇 )(𝑝𝑝)

2/3 , (6)

Ξ
Ξ = exp(−4𝜇𝑠𝑇 )(𝑝𝑝)

1/3 , (7)

Ω
Ω = exp(−6𝜇𝑠𝑇 ) . (8)

Incidentally, the above given relations of the mid-rapidity
equal mass particle ratios, emitted from a hadronic fireball
maintaining a high degree of thermal and chemical equili-
bration, hold even when the resonance decay contributions
are included [18]. In (8), the 𝑝/𝑝 ratio is absent because of the
complete strange quark content of Omega mesons.

In our model [1, 13–17], it is assumed that the rapidity
axis is populated with hot hadronic regions moving along
the beam axis withmonotonically increasing rapidity 𝑦0.This
essentially emerges from the situation where the colliding
nuclei exhibit transparency effects. Hence the regions away
from the mid-region also consist of the constituent partons
of the colliding nucleons, which suffer less rapidity loss due
to partial nuclear transparency. Due to this, these regions
have an excess of quarks over the antiquarks and hence
maintain larger baryon chemical potentials on either side of
the mid-region in a symmetric manner. For this reason, a
quadratic-type rapidity-dependent chemical potential 𝜇𝐵 has
been considered in our model as follows:

𝜇𝐵 = 𝑎 + 𝑏𝑦20 , (9)

where the model parameter 𝑎 defines the chemical potential
at mid-rapidity and the parameter 𝑏 gives the variation of
the chemical potential along the rapidity axis. We focus
on the mid-rapidity data (𝑑𝑁/𝑑𝑦), for which a bulk of
published hadrons yields is available. We have also employed
the strangeness conservation criteria in a way such that the
total strangeness in the fireball is zero.
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Table 1: The values of chemical potential obtained at different col-
lision energies in our model are compared to the values obtained in
references [11, 12].

√𝑠NN (GeV) 𝜇𝐵 = 𝑎 (MeV)
(our model)

𝜇𝐵 (MeV)
Ref. [11, 12]

9.2 290 ± 3 300 ± 12
62.4 45 ± 5 62.7 ± 6
130 25 ± 3 29 ± 4.6
200 23 ± 2 22 ± 4.4
2760 0.5 ± 0.5 0.75

We have tabulated above the different values of chemical
potentials obtained in our previous papers [1, 13–17] for
different center-of-mass energies, as shown in Table 1, by
using our unified statistical thermal freeze-out model. For
the sake of comparison, we have also mentioned the values
of 𝜇𝐵 obtained at different SPS and RHIC energies by STAR
collaboration [11] and by ALICE at LHC [12].

3. Results and Discussion

In order to reproduce the variation of various particle ratios,
at all possible energies up to the LHC, we need to obtain
the dependence of the chemical potential and the chemical
freeze-out temperature on the collision energies. For this
purpose, we use the following parameterization [19]:

𝜇𝐵 = 𝑐
1 + 𝑑√𝑠NN

. (10)

Using the set of extracted values of 𝜇𝐵 from our model at
five different energies we obtain 𝑐 = 1304MeV and 𝑑 =0.38GeV−1 when 𝜇𝐵 is in the units of MeV. These values
are found to be in a close vicinity with the values of the
parameters 𝑐 = 1308 ± 0.028MeV and 𝑑 = 0.273 ±0.008GeV−1 obtained by Cleymans et al. [20]. Similarly,
in order to obtain the values of freeze-out temperatures at
various energies, we first fit the 𝑝/𝑝 and Λ/Λ ratios at five
different collision energies by using the corresponding values
of the chemical potentials obtained through our model as
mentioned in Table 1. The five different values of freeze-out
temperatures obtained in this way are shown in Table 2. To
obtain the chemical freeze-out temperature at all possible
energies we use the following parameterization:

𝑇 = 𝑇0 [1 − 1
(log√𝑠NN − 𝑒) /𝑓] . (11)

Using the set of chemical freeze-out temperature obtained at
five different collision energies we obtain the values of the
parameters in (11) as 𝑇0 = 172MeV, 𝑒 = 1.10GeV, and 𝑓 =0.14GeV. The result of these parameterizations ((10) and
(11)) is shown in Figure 1. The solid red curves represent the
best fit and the black square shapes represent the values
of chemical potentials and the freeze-out temperatures as
obtained previously in our model.

In Table 2, we have also shown the values of kinetic
freeze-out temperatures 𝑇kin obtained by reproducing the

Table 2:The values of chemical and kinetic freeze-out temperatures
obtained at different collision energies in our model.

√𝑠NN (GeV) 𝑇 (MeV)
(our model)

𝑇kin (MeV)
(our model)

9.2 149 ± 4 150 ± 2
62.4 167 ± 5 170 ± 5
130 165 ± 4 163 ± 2
200 166 ± 3 162 ± 2
2760 169 ± 3 103 ± 1

transverse momentum distributions of protons and kaons at
the five different collision energies in our model [1, 13–17].
It is seen that the values of chemical freeze-out temperature𝑇 and the kinetic freeze-out temperature 𝑇kin are almost the
same at √𝑠NN = 9.2GeV while, at RHIC, the values of
chemical freeze-out temperature 𝑇 are a little higher than
the values of kinetic freeze-out temperature 𝑇kin. At LHC,
this difference is even larger. Thus it seems that the time
duration between the two types of freeze-outs is dependent
on the collision energy. This duration is larger for the larger
collision energies. This may be understood as a result of
the larger particle production (and hence a larger system
size) at higher energies, which results in the development
of the larger collective flow effects at the cost of thermal
temperature. We find in Figure 1 that the extracted temper-
ature values generally increase rapidly whereas the baryon
chemical potential decreasesmonotonicallywith the collision
energy and tends to saturate at RHIC and LHC energies. In
general, these values are found to lie close to the ideal gas
values. Using these values of 𝜇𝐵 and 𝑇, we reproduce the
energy dependence of various antiparticle to particle ratios
by using (3)–(8).

These particle ratios are plotted in Figures 2–4. The
experimental data shown by red colored shapes in Figures 2
and 3 is taken from [19] and the references therein, while,
for Figure 4, the data is taken from [21] and the references
therein. In heavy-ion collisions the increase in the antimatter
to matter ratio with the center-of-mass energy of the system
has been observed earlier by the NA49 and the STAR
collaborations. The increase of 𝑝/𝑝 ratio towards unity with
an increase in the center-of-mass energy from SPS to LHC
is shown in Figure 2(a). Our model results are in good
agreement with the experimental data. The increase in 𝑝/𝑝
ratio with an increase in collision energy reflects the decrease
in net baryon density towards higher collision energies, thus
making the collision system partially transparent at RHIC
and almost completely transparent at LHC. The ratio 𝑘−/𝑘+
plotted in Figure 2(b) shows a significant dependence on
the center-of-mass energy. Our model prediction shows a
close agreement with the experimental data points. Hence the
overall feature of the experimental data in both cases is in
good agreement with our model calculations. The decrease
in 𝑘−/𝑘+ ratio with a decrease in collision energy is due to an
increase in net baryon density which leads to the associated
production of kaons, thus favoring the production of 𝑘+
over 𝑘−. In Figures 3 and 4(a), we have plotted the energy
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Figure 1: The energy dependence of baryon chemical potential (a) and chemical freeze-out temperature (b) in our model.
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Figure 2: Energy dependence of 𝑝/𝑝 (a) and 𝑘−/𝑘+ (b) ratios.

dependence of singly, doubly, and triply strange antibaryon
to baryon ratios. We find a fairly good agreement between
our model results and the experimental data. It is seen that
the ratios increase towards unity with the increase in collision
energies. The ratios appear ordered with the strangeness
quantumnumber, that is, the higher the strangeness quantum
number, the smaller the difference between antibaryon and

baryon content. This is so called “mass-hierarchy” where the
saturation value (i.e., 1) of the ratio is achieved earlier for
the more massive hyperons species [21]. It is interesting to
note that even the yield of rarely produced strange particles
like Ω is also fairly well described by our USTF model. In
Figure 4(b), we have shown the energy dependence of 𝜋−/𝜋+
ratio. This is also reproduced with a fairly good agreement.
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Figure 3: Energy dependence of Λ/Λ (a) and Ξ/Ξ (b) ratios.
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Figure 4: Energy dependence of Ω/Ω (a) and 𝜋−/𝜋+ (b) ratios.

It is seen that the distribution characteristics of 𝜋−/𝜋+ ratio
are different as compared to other particle ratios studied in
this manuscript. This seems to be because of the associated
production of𝜋− over𝜋+ at lower energies.The ratio is greater
than 1 at lower energies and goes to unity at LHC energies
where the pair production mechanism dominates and com-
plete nuclear transparency effects are observed. It is seen that

antibaryon/baryon ratios have more sharp dependence on
collision energy.

Figure 5 shows the correlation of 𝑘−/𝑘+ (representing net
strange chemical potential 𝜇𝑠) with the 𝑝/𝑝 ratio (represent-
ing net baryon chemical potential 𝜇𝐵). This is an attempt to
prove the validity of our model. The black solid curve, which
is a result of (4) (𝑘−/𝑘+ ∼ (𝑝/𝑝)1/3), represents our model
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Table 3: Model predictions for hadron ratios at LHC (𝑇 = 168.65MeV, 𝜇𝐵 = 0.85MeV). Decay contributions are included.

𝐾−/𝐾+ 𝑝/𝑝 Λ/Λ Ξ+/Ξ− Ω/Ω 𝜋−/𝜋+ 𝑝/𝜋+ 𝐾+/𝜋+ 𝐾−/𝜋− Λ/𝜋− Ξ−/𝜋− Ω−/𝜋− 𝜑/𝐾−
0.947 0.936 0.966 0.996 1.121 0.94 0.060 0.184 0.135 0.039 0.061 0.087 0.147
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Figure 5: Correlation of 𝑘−/𝑘+ ratio with 𝑝/𝑝 ratio at mid-rapidity for central collisions.

prediction whereas the colored shapes represent the different
experimental data points as mentioned in the Figure 5.
This correlation could give information on how the kaon
production is related to the net baryon density. At lower
energies, the kaon production is dominated by the associated
productionwhich results inmore 𝑘+ production compared to𝑘−. Also the 𝑝/𝑝 ratio is much less than unity, indicating that
there is a large baryon stopping at the lower energies. As we
go towards higher energies, the pair production mechanism
starts to dominate and the ratios tend to become closer to
unity.

We have further reproduced the energy dependence of
various other particle yields relative to pions as shown in
Figure 6.The experimental data is taken from [19, 21] and the
references therein. Unlike in case of antiparticle to particle
ratios, here we have to include the effects of resonance
decay contributions, as discussed in the first section. Our
model results are seen to be in a fair agreement with the
experimental data points. At lower energies, a peak has
been observed in 𝑘+/𝜋+ ratio at around 8GeV [22–24].
However this is not reproduced very well in our analysis.The𝑘−/𝜋− ratio exhibits no sharp structure and instead a smooth
evolution with the collision energy is seen. Our model results
for the 𝑘−/𝜋− ratio slightly overpredict the experimental data
points at lower energies. However, the main features of the
data showing a steady decrease towards lower energies are
well reproduced. Also we find that all the particle ratios
seem to saturate at RHIC and LHC energies. This saturation
seems to arise due to almost constant chemical freeze-out

temperatures at RHIC and LHC energies. The steep decrease
of the 𝑝/𝜋+ ratio towards higher energies reflects a decrease
in the baryon chemical potential and hence an increase in the
nuclear transparency, though the increase of pion production
also plays a role in this. Beyond √𝑠NN = 100GeV the
flattening of the curves takes place.

We have predicted the various hadron ratios produced in
central Pb-Pb collisions at LHC (√𝑠NN = 2.76TeV) and they
are presented in Table 3. The antiparticle by particle ratios
are close to unity reflecting a very small chemical potential
at LHC. Also the yields relative to pions are very similar to
the values measured at RHIC energy.

In Figure 7, we have plotted the chemical freeze-out
temperature on the vertical axis and the chemical potential
on the horizontal axis obtained at different collision energies.
The value of chemical freeze-out temperature at RHIC and
LHC lies in the vicinity of lattice QCD predicted phase-
transition temperature of ∼170MeV [19], indicating that the
freeze-out occurs almost simultaneously after the phase-
transition. The red squares in Figure 7 represent the values
of chemical potentials obtained at various collision energies
as mentioned in Table 1.

4. Summary and Conclusion

We have used our model (USTFM) to analyze the variations
of the ratios of particles, produced in the high energy nucleus-
nucleus collisions, with center-of-mass energy and their
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Figure 6: Energy dependence of various unlike particle ratios.
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Figure 7: Chemical freeze-out temperature 𝑇 versus mid-rapidity
baryon chemical potential 𝜇𝐵 at different collision energies. The
red squares represent the values of chemical potentials obtained at
various collision energies as mentioned in Table 1.The black squares
are the results from the present analysis.

correlations. We have compared our results with the exper-
imental data. A good agreement between our model results
and experimental data shows that thermal model used in
the analysis gives a satisfactory description of the data.
The dependence of the baryon chemical potential and the
chemical freeze-out temperature on the energy is studied.
For this purpose, a parameterization is used for each case.
It is found that the extracted values of chemical freeze-
out temperatures at RHIC and LHC are almost constant
and are close to the lattice QCD predicted phase-transition
temperature, suggesting that chemical freeze-out happens
in the vicinity of the phase boundary, that is, shortly after
hadronization process is completed. Also the difference
between the chemical freeze-out and the kinetic (thermal)

freeze-out temperatures is found to increasewith the collision
energy.
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In the global framework of quantum theory, the individual quantum systems seem clearly separated into two families with the
respective manifestly Hermitian and hiddenly Hermitian operators of their Hamiltonian. In the light of certain preliminary studies,
these two families seem to have an empty overlap. In this paper, we will show that whenever the interaction potentials are chosen
to be weakly nonlocal, the separation of the two families may disappear. The overlaps alias interfaces between the Hermitian and
non-Hermitian descriptions of a unitarily evolving quantum system in question may become nonempty. This assertion will be
illustrated via a few analytically solvable elementary models.

1. Introduction

In virtually any representation of quantum theory, the states
can be perceived as constructed in a suitable user-friendly
Hilbert space H. By a number of authors [1–4], it has been
recommended to enhance the flexibility of the formalism by
making use of an ad hoc, quantum-system-adapted physical
inner product inH, that is, by an introduction of a nontrivial,
stationarymetric operatorΘ ̸= Θ(𝑡). All of the other, relevant
“physical” operatorsΛ of the observables inH (i.e., say,Λ 1 =𝑄 representing a coordinate or Λ 2 = 𝐻 representing the
energy, etc.) must be then chosen, in Diedonné’s terminology
[5], quasi-Hermitian,

Λ†Θ = ΘΛ. (1)

These observables become Hermitian if and only if we reach
the conventional textbook limit with Θ → 𝐼. Otherwise,
our candidates for the observables remain manifestly non-
Hermitian in our friendly Hilbert space H. The latter space
(with artificial Θ = 𝐼) must be declared, therefore, auxiliary
and unphysical,H→H(unphysical). Only the reincorporation
of the amended metric will reinstall the space as physical,
H→H(redefined).

In certain very promising recent high-energy physics
applications of the formalism, say, in neutrino physics [6,
7], people usually restrict attention to the special form of

Θ = PC, where P is parity while C denotes charge.
In such a setting the stationarity of the theory represents
a serious obstacle for experimentalists, mainly because the
adiabatic changes and tuning of the parameter-dependence
of the observables may lead to multiple counterintuitive no-
go theorems [3, 8, 9]. At the same time, the new degree of
the kinematical freedom represented by the nontrivial metricΘ ̸= 𝐼 may find its efficient use, say, in the manipulations
leading to the experimental realizations of various quantum
phase transitions in the theory [6, 10–16] as well as in the
laboratory [17].

The consistent mathematical formulation of the theories
with innovative Θ ̸= 𝐼 and traditional𝐻 = 𝑇 + 𝑉(𝑥) proved
to be truly challenging [18]. In practice, the main source of
difficulties can be seen in the “smearing” feature of the use
of generic Θ ̸= 𝐼 [19]. Jones noticed that “we have to start
with 𝑥” (i.e., with Θ ̸= 𝐼) “because that is how the potential
is defined” [20]. His analysis was then aimed at the search
for natural interfaces (alias operational connections) between
the hypothetical non-Hermitian dynamics (usingΘ ̸= 𝐼) and
the available experimental setups (at Θ = 𝐼).

In a way based on a detailed study of certain over-
restricted family of models (for purely technical reasons
the interaction potentials were kept local), Jones arrived,
not too surprisingly, at a heavily sceptical conclusion that
the theory cannot be unitary. In his own words “the only
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satisfactory resolution of the dilemma is to treat the non-
Hermitian potential as an effective one, and [to] work in the
standard framework of quantum mechanics, accepting that
this effective potential may well involve the loss of unitarity”
[21].

Jones’ conclusions were partially opposed and weakened
in [19, 22, 23] where the assumption of “starting with 𝑥”
(i.e., of our working with the potentials which are local in𝑥) has been shown unfounded (because the value of the
lowercase 𝑥 is not observable) and misleading (because one
need not give up the unitarity in general). At the same time,
the underlying, deep, and important conceptual problem of
the possible existence of suitable Hermitian–non-Hermitian
interfaces remained open.

An affirmative answer will be given in what follows. In
order to formulate the problem more clearly we will have
to recall, in the next section, a few well-known aspects
of forming a nontrivial feasible contact and of a smooth
transition between several versions of quantum dynamics. In
the subsequent sections, we shall then point out that a formal
key to the realization of the project of construction of the
smooth interfaces lies in the properties of the inner-product
metric operators Θ which have to degenerate smoothly, in
their turn, to the trivial limit Θ = 𝐼. Furthermore, in
Section 5 several technical aspects of such a general interface-
construction recipe will be illustrated by an elementary toy
model-Hamiltonian example admitting a nonnumerical and
nonperturbative analytical treatment. Some of the possible
impacts upon quantum phenomenology will finally be men-
tioned in Section 6.

2. Quantum Dynamics in Schrödinger Picture

During the birth of quantum theory, its oldest (namely,
the Heisenberg’s “matrix”) picture was quickly followed by
Schrödinger’s “wave-function” formulation which proved
less intuitive but more economical [24]. The conventional,
“textbook” alias “Hermitian” Schrödinger picture (HSP, [25])
was later complemented by its “non-Hermitian” Schrödinger
picture (NHSP) alternative (cf. the works by Dyson [1] or by
nuclear physicists [2]). In this direction, the recent wave of
new activities was inspired by Carl Bender with coauthors
[4, 10–12]. The emerging, more or less equivalent innovated
versions of the NHSP description of quantum dynamics were
characterized as “quantum mechanics in pseudo-Hermitian
representation” [3] or as “quantum mechanics in the Dyson’s
three-Hilbert-space formulation” [1, 26], and so forth [18].

The availability of the two alternative representations
of the laws of quantum evolution in Schrödinger picture
inspired Jones to ask the above-cited questions about the
existence of an “overlap of their applicability” in an “interface”
[27]. His interest was predominantly paid to the scattering
[20] and his answers were discouraging [21]. In papers [22,
23, 28] we opposed his scepticism. We argued that the
difficulties with the HSP-NHSP interface may be attributed
to the ultralocal, point-interaction toy model background of
his methodical analysis. We introduced certain weakly non-
local interactions and via their constructive description we
reopened the possibility of practical realization of a smooth

transition between the Hermitian and non-Hermitian theo-
retical treatment of scattering experiments.

Now we intend to return to the challenge of taking
advantage of the specific merits of both of the respective
HSP and NHSP representations inside their interface. We
shall only pay attention to the technically less complicated
quantum systems with bound states. Our old belief in the
existence, phenomenological relevance, and, perhaps, even
fundamental-theory usefulness of a domain of coexistence
of alternative Schrödinger picture descriptions of quantum
dynamics will be given an explicit formulation supported by
constructive arguments and complemented by elementary,
analytically solvable illustrative examples.

2.1. The Concept of Hidden Hermiticity. An optimal formula-
tion of quantum theory is, obviously, application-dependent
[24]. Still, the so-called Schrödinger picture seems excep-
tional. Besides historical reasons this is mainly due to the
broad applicability as well as maximal economy of the
complete description of quantum evolution using the single
Schrödinger equation

i 𝑑𝑑𝑡𝜓 (𝑡) = h𝜓 (𝑡) , 𝜓 (𝑡) ∈H
(textbook). (2)

Whenever the evolution is assumed unitary, the generator h
(called Hamiltonian) must be, due to Stone’s theorem [29],
self-adjoint inH(textbook),

h = h
(Hermitian) = h

†. (3)

Recently it has been emphasized that even in the unitary evo-
lution scenario the latter Hamiltonian-Hermiticity constraint
may be omitted or, better, circumvented. The idea, dating
back to Dyson [1], relies upon a suitable preconditioning
of wave functions. This induces the replacement of the
“Hermitian,” lowercase Schrödinger equations (2) + (3) by
their “non-Hermitian” uppercase alternative

i 𝑑𝑑𝑡Ψ (𝑡) = 𝐻Ψ (𝑡) ,
Ψ (𝑡) ∈H

(unphysical), 𝜓 (𝑡) = ΩΨ (𝑡) .
(4)

The preconditioning operator Ω is assumed to be invertible
but nonunitary, Ω†Ω ̸= 𝐼 [2]. Thus, the standard textbook
version of the Schrödinger picture splits into its separate Her-
mitian and non-Hermitian versions (cf. influential reviews
[3, 4] and/or mathematical commentaries in [18]).

The slightly amended forms of Dyson’s version of the
NHSP formalism proved successful in phenomenological
applications, for example, in nuclear physics [2]. As we
already indicated, the “non-Hermitian” philosophy of (4)
was made widely popular by Bender [4]. Its appeal seems
to result from the observation that the nonunitarity ofΩ makes the respective geometries in the two Hilbert
spaces H(textbook) and H(unphysical) mutually nonequivalent.
As a consequence, the uppercase Hamiltonian 𝐻 acting in
H(unphysical) and entering the upgrade (4) of Schrödinger
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equation becomes manifestly non-self-adjoint alias non-
Hermitian inH(unphysical),

𝐻 = 𝐻(non-Hermitian) = Ω−1hΩ ̸= 𝐻† = Θ𝐻Θ−1,
Θ = Ω†Ω ̸= 𝐼. (5)

Still, it is obvious that both the NHSP version (4) of Schrö-
dinger equation and its HSP predecessor (2) represent the
same quantum dynamics.

2.2. The Choice between the HSP and NHSP Languages.
Several reviews in monograph [18] may be recalled for an
extensive account of multiple highly nontrivial mathematical
details of the NHSP formalism. In applications, quantum
physicists take it for granted, nevertheless, that we have
a choice between the two alternative descriptions of the
standard unitary evolution of wave functions. People are
already persuaded that the basic mathematics of the HSP and
NHSP constructions is correct and that the two respective
Schrödinger equations are, for any practical purposes, equally
reliable.

The accepted abstract HSP-NHSP equivalence still does
not mean that the respective practical ranges of the two
recipes are the same. The preferences really depend very
strongly on the quantum system in question.Thus, the choice
of the HSP language is made whenever the corresponding
self-adjoint Hamiltonian possesses the most common form
of superposition of a kinetic energy termwith a suitable local-
interaction potential,

h(local) = − 𝑑2𝑑𝑞2 + v (𝑞) = h
†
(local). (6)

Similarly, the recent impressive success of the NHSP phe-
nomenological models is almost exclusively related to the use
of the non-Hermitian local-interaction Hamiltonians

𝐻 = − 𝑑2𝑑𝑥2 +𝑊(𝑥) ̸= 𝐻†, (7)

which are only required to possess the strictly real spectra of
energies [3, 4].

2.3. The Concept of the HSP-NHSP Interface. The two local-
interaction operators (6) and (7) should be perceived as just
the two illustrative elements of the two respective general
families F(�퐻) and F(NH) of the eligible, that is, practi-
cally tractable and sufficiently user-friendly HSP and NHSP
Hamiltonians. In away influenced by this exemplification one
has a natural tendency to assume that the latter two families
are distinct and clearly separated, nonoverlapping [4],

F
(�퐻) ∩F

(NH) = 0. (8)

During the early stages of testing and weakening such as a
priori assumption, Jones [27] introduced the concept of an
interface as a potentially nonempty set of Hamiltonians,

F
(interface) = F

(�퐻) ∩F
(NH). (9)

Basically, he had in mind a domain of a technically feasible
and phenomenologically consistent interchangeability of the
two pictures. He also outlined some of the basic features
and possible realizations of such aHermitian/non-Hermitian
interface in [20]. Incidentally, the continued study of the
problem made him more sceptical [21]. In a way based on a
detailed analysis of a schematic though, presumably, generic
toy model local-interaction Hamiltonian

𝐻 = 𝐻(non-Hermitian)
(local)

= − 𝑑2𝑑𝑥2 + 𝑉(Hermitian) (𝑥) + 𝑊(non-Hermitian) (𝑥) , (10)

he came to the conclusion that the merits of families F(�퐻)
andF(NH) are really specific and that, in the case of scattering
at least, their respective domains of applicability really lie
far from each other, that is, F(interface)

(scattering) = 0. Even at the
most favorable parameters and couplings, in his own words,
“the physical picture [of scattering] changes drastically when
going from one picture to the other” [21].

In our first paper [28] on the subject, we pointed out
that Jones’ discouraging “no-interface” conclusions remain
strongly model-dependent. For another, weakly nonlocal
choice of𝐻(non-Hermitian)

(weakly nonlocal), we encountered a much less drastic
effect of the interchange of the mathematically equivalent
Schrödinger equations (2) and (4) upon the predicted phys-
ical outcome of the scattering (see also the related footnote
added in [21]). In our subsequent papers [22, 23] we further
amended the model and demonstrated that in the context
of scattering the overlaps F

(interface)
(scattering) may be nonempty.

We showed that there may exist the sets of parameters
for which the causality as well as the unitarity would be
guaranteed for both of the Hamiltonians in (3) and (5). Thus,
Jones’ ultimate recommendations of giving up the scattering
models inF(NH) and/or of “accepting . . .the loss of unitarity”
while treating any “non-Hermitian scattering potential as an
effective one” [21] may be requalified as oversceptical (cf. also
[3]).

3. Repulsion of Eigenvalues

Thepresentation of our results is to be preceded by a compact
summary of some of the key specific features of spectra
in the separate HSP and NHSP frameworks. This review
may be found complemented, in Appendix A, by a brief
explanation why the NHSP Hamiltonians 𝐻 which are non-
Hermitian (though only in an auxiliary, unphysical Hilbert
space) still do generate the unitary evolution (naturally, via
wave functions in another, nonequivalent, physical Hilbert
space).

Quantum dynamics of the one-dimensional motion
described by an ordinary differential local-interactionHamil-
tonian (6) is a frequent target of conceptual analyses. These
models stay safely inside Hermitian classF(�퐻) but still a brief
summary of some of their properties and simplifications will
facilitate a compact clarification of the purpose of our present
study.
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3.1. Discrete Coordinates. The kinetic plus interaction struc-
ture of models (6) reflects their classical physics origin. It
may also facilitate the study of bound states, say, by the
perturbation-theory techniques [21] and/or by the analytic-
construction methods [30]. Still, for our present purposes
it is rather unfortunate that any transition to the hidden-
Hermiticity language of the alternative model-building fam-
ily F(NH) would be counterproductive. One of the main
obstacles of a hidden-Hermiticity reclassification of model
(6) is technical because the associated Hamiltonians (5) are,
in general, strongly non-local [31]. Another, subtler math-
ematical obstacle may be seen in the unbounded-operator
nature of the kinetic energy 𝑇 = −𝑑2/𝑑𝑥2 (see [2] for a
thorough though still legible explanation).

In [22, 23, 28], we proposed that one of the most efficient
resolutions of at least some of the latter problems might be
sought and found in the discretization of the coordinates.
Thus, one replaces the real line of 𝑞 ∈ (−∞,∞) by a discrete
lattice of grid points 𝑞�푗 such that 𝑞�푗 = 𝑞0 + ℎ𝑗, with 𝑗 =. . . , −1, 0, , 1, . . . and with any suitable constant ℎ > 0. This
leads to the kinetic energy represented by the difference-
operator Laplacean

𝑇 =
[[[[[[[[
[

d d

d 0 −1
−1 0 −1

−1 0 d

d d

]]]]]]]]
]

. (11)

In parallel, one can argue that the sparse-matrix structure
of this component of the Hamiltonian makes it very nat-
ural to replace also the strictly local (i.e., diagonal-matrix)
interaction v(𝑞�푗) by its weakly nonlocal tridiagonal-matrix
generalization [32].

3.2. Elementary Example. Once we restrict our attention to
the analysis of bound states, the above-mentioned doubly
infinite tridiagonal matrices h(weakly-local) may be truncated
yielding an 𝑁 by 𝑁 matrix Hamiltonian. Let us assume
here that the latter matrix varies with a single real coupling
strength 𝜖 and with a single real parameter 𝜆 modifying the
interaction,

h
(�휖,�휆) = 𝑇 + 𝜖v(�휆) = [h(�휖,�휆)]† , 𝜖, 𝜆 ∈ R. (12)

This will enable us to assume that our parameters can vary,
typically, with time (i.e., 𝜖 = 𝜖(𝑡) and/or 𝜆 = 𝜆(𝑡)) and that,
subsequently, also the energy levels𝐸�푛 of our quantum system
form a set which can, slowly or quickly, vary. Thus, at a time
of preparation 𝑡 = 𝑡0 of a Gedankenexperiment the energy
of our system may be selected as equal to one of the real and
time-dependent eigenvalues of our Hamiltonian h. Naturally,
the latter operator represents a quantum observable and
must be self-adjoint in the underlying physical Hilbert space
H(textbook).

The first nontrivial tridiagonal matrix (12) with 𝑁 = 4
may represent, for example, a schematic quantum system
with Hermitian-matrix interaction

v
(�휆) =

[[[[[
[

0 i 0 0
−i 0 i𝜆 0
0 −i𝜆 0 i
0 0 −i 0

]]]]]
]
. (13)

The spectrum of energies may be then easily calculated and
was sampled in Figure 1. The parameter-dependence of the
energies seems to be such that they avoid “collisions.” As long
as we choose 𝜆 = 1, that is, Hamiltonian

h
(�휖,1) =

[[[[[
[

0 −1 + 𝑖𝜖 0 0
−1 − 𝑖𝜖 0 −1 + 𝑖𝜖 0
0 −1 − 𝑖𝜖 0 −1 + 𝑖𝜖
0 0 −1 − 𝑖𝜖 0

]]]]]
]
, (14)

the quadruplet of the energy eigenvalues becomes available
also in the closed form

𝐸±,± = ±12√(6 ± 2√5) (1 + 𝜖2). (15)

This formula explains not only the hyperbolic shapes of the
curves in Figure 1 but also their closest-approach values𝐸±,+ ≈ ±1.618033988 and 𝐸±,− ≈ ±0.6180339880 at 𝜖 = 0.

The details of the generic avoided-crossing phenomenon
are model-dependent but an analogous observation will be
made using any Hermitian-matrix Hamiltonian. The expla-
nation may be found in Kato’s book [33]. In essence, Kato’s
mathematical statement is that once a given matrix is self-
adjoint aliasHermitian, then in the generic case (i.e., without
any additional symmetries) an arbitrary pair of the eigenval-
ues can only merge at the so-called exceptional-point (EP)
value of the parameter. In the Hermitian diagonalizable (i.e.,
physical) cases, these EP values are all necessarily complex
so that whenever the parameter remains real, the distances
between the separate real eigenvalues behave as if controlled
by a mutual “repulsion” (A deeper analysis may be found in
the Kato’s book [33]). From Figure 1 we may then extract
one of the key messages mediated by the model, namely,
the observation that the unitary evolution is “robust.” One
may expect that whenever we need to achieve an unavoided
crossing of the eigenvalues, the more adequate description of
the phenomenon will be provided by the transition to non-
Hermitian Hamiltonians in F(NH) for which the EP values
may be real.

4. Attraction of Eigenvalues

The phenomenon of the existence of a minimal distance
between the energy levels of a Hermitian matrix is generic.
After one tries to move from family F(�퐻) to family F(NH),
the robust nature of such an obstruction is lost. The reason
lies in the above-mentioned change of the geometry of the
Hilbert spaces in question. The resulting new freedom of
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Figure 1: The repulsion of the eigenvalues of the Hermitian matrix
(12) + (13) with 𝜆 = 1 and𝑁 = 4 near 𝜖 = 0.

models in F(NH) may find applications, for example, in
an effective description of nonunitarities in open quantum
systems [34] or, in cosmology, in an elementary explanation
of the possibility of a consistently quantized Big Bang [35, 36].

4.1. Local Interactions. One of the reasons of the recent
turn of attention to the hiddenly Hermitian local-interaction
models (cf. their sample (10) above) is that the mapping𝐻 → h of (5) produces, in general, strongly nonlocal
generalizations of the conventional local Hamiltonians (6).
The same argument works in both directions and it enriched
the scope of the conventional quantum theory [3, 4]. Several
impressive constructive illustrations of such a type of enrich-
ment of the class of the tractable quantum models (treating
the direct use of local-interaction models (7) as an important
extension of the applied quantum theory) may be found, for
example, in [31]. Onemay conclude that the local-interaction
nature and constructive tractability of the alternative models
(10) contained in class F(NH) would render their isospectral
partners (3) nonlocal. Thus, some of the weaker forms of the
nonlocalities as sampled, for example, in [22, 23, 28] may
be expected necessary for the constructive search for the
nonempty interfacesF(�퐻) ∩F(NH).

4.2. Weakly Nonlocal Interactions. For the purposes of the
most elementary though still sufficiently rich illustration of
some technical aspects of the transition fromF(�퐻) toF(NH),
one may perform the straightforward de-Hermitization of
(13). This yields the two-parametric pencil of Hamiltonian
matrices

𝐻(�휂,�휆) = 𝑇 + 𝜂𝑊(�휆)

=
[[[[[
[

0 −1 + 𝜂 0 0
−1 − 𝜂 0 −1 + 𝜂𝜆 0
0 −1 − 𝜂𝜆 0 −1 + 𝜂
0 0 −1 − 𝜂 0

]]]]]
]

̸= [𝐻(�휂,�휆)]† ,

(16)
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Figure 2: The attraction (followed by the loss of reality) in the case
of the eigenvalues of the manifestly non-Hermitian matrix (16) at𝜆 = 6/5.

characterized by a minimal, tridiagonal-matrix nonlocality
of their interaction component. For real 𝜂 and 𝜆 the related
energy spectra only remain real (i.e., observable and phe-
nomenologically meaningful) in certain physical parametric
intervals.

The simplicity of our toymodel (16) enables us to illustrate
the latter statement by recalling the explicit formula for the
eigenvalues,

𝐸(±,±) (𝜖, 𝜆) = ± 1√2
⋅ √3 − (𝜆2 + 2) 𝜖2 ± √[5 − (𝜆2 + 4) 𝜖2] (1 − 𝜆2𝜖2).

(17)

The knowledge of this formula enables us to separate the
interval of the interaction-controlling parameters𝜆 into three
qualitatively different subintervals.

4.2.1. 𝜆 > 1 (Strong Non-Hermiticities). The first, 𝜆 > 1 sam-
ple of the energy spectrum is displayed here in Figure 2. The
picture shows that at the two real exceptional points 𝜂 = 𝜂(EP)
such that |𝜂| = |𝜂(EP)| < 1 the (real-energy) quadruplets
of energies degenerate and, subsequently, acquire imaginary
components. These complexifications proceed pairwise; that
is, our four-level model effectively decays into two almost
independent, weakly coupled two-level systems. The full
descriptive wealth of ourmodel will onlymanifest itself at the
smaller values of 𝜆.
4.2.2. 𝜆 < 1 (Weak Non-Hermiticities). In Figure 3 using a
smaller 𝜆 < 1 a much more interesting scenario is displayed
in which all of the four energy levels are mutually attracted.
Firstly we notice that the complexifications of the eigenvalues
occur at the EP values 𝜂(EP)

(first kind) which are “large”, that is,
|𝜂(EP)
(first kind)| > 1. The domain of the observability of the ener-

gies is larger than interval (−1, 1). Still, the latter interval has
natural boundaries because of the emergence of the other two
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Figure 3: Same as Figure 2, with smaller 𝜆 = 3/5.

EP degeneracies at 𝜂(EP)
(second kind) = ±1. These new singularities

are characterized by the unavoided level crossings without
a complexification. Their occurrence splits the interval of 𝜂
into separate subintervals.The consequences for the quantum
phenomenology are remarkable, for example, for the reasons
which were discussed, recently, in [13–16].

4.2.3. 𝜆 = 1 (The Instant of Degeneracy). The shared bound-
ary between the two dynamical regimes is characterized by
Figure 4. The algebraic representation of the 𝜆 = 1 spectrum
is elementary,

𝐸±,± = ±12√(6 ± 2√5) (1 − 𝜂2). (18)

The formula may be read as an analytic continuation of (15).

5. The Model with Interface

5.1. Hilbert-Space Metric. In comparison with the conven-
tional textbook family F(�퐻), the practical use of the non-
Hermitian phenomenological Hamiltonians in F(NH) is cer-
tainly much more difficult. One of the key complications is
to be seen in the (in general, non-unique) reconstruction of
themetric from the given observables or, in the simplest case,
from Hamiltonian𝐻.

The ambiguity of the reconstructionmay be illustrated by
the insertion of our two-parametric toy model𝑁 = 4Hamil-
tonian 𝑋 = 𝐻(�휂,�휆) of (16) in the quasi-Hermiticity constraint
(A.1) in Appendix A interpreted as an implicit definition ofΘ(�휂,�휆) = Θ(𝐻(�휂,�휆)). After a tedious but straightforward algebra
one obtains the general result

Θ(�휂,�휆)
(�푐,�푑,�푓,�푔)

=

[[[[[[[[[[[[
[

𝐴 (𝑓, 𝑐) (𝑔 − 𝑑) (1 + 𝜂)
1 − 𝜂𝜆 𝑐1 − 𝜂 𝑑

(𝑔 − 𝑑) (1 + 𝜂)
1 − 𝜂𝜆

𝑓
1 − 𝜂𝜆 𝑔 𝑐1 + 𝜂𝑐1 − 𝜂 𝑔 𝑓

1 + 𝜂𝜆
(𝑔 − 𝑑) (1 − 𝜂)

1 + 𝜂𝜆
𝑑 𝑐1 + 𝜂

(𝑔 − 𝑑) (1 − 𝜂)
1 + 𝜂𝜆 𝐹 (𝑓, 𝑐)

]]]]]]]]]]]]
]

, (19)

where

𝐴 (𝑓, 𝑐) = 𝑓 − 𝑓𝜂2 − 𝑐 + 𝑐𝜂2𝜆2(1 − 𝜂)2 (1 − 𝜂𝜆) ,

𝐹 (𝑓, 𝑐) = 𝑓 − 𝑓𝜂2 − 𝑐 + 𝑐𝜂2𝜆2(1 + 𝜂)2 (1 + 𝜂𝜆) .
(20)

Thus, one can summarize that unless we add more require-
ments, the specification of the mere Hamiltonian leads to the
four-parametric family of the inner-productmetric operators
(19). Obviously, this opens the possibility of the choice of the
additional observables which would have to satisfy (A.1) and,
thereby, restrict the freedom in our choice of the parameters𝑐, 𝑑, 𝑓, and 𝑔.

One of the possible formal definitions of an “interface”
between the alternative descriptions (2) and (4) of a quantum
system may be based on the presence of a variable parameter
or parameters (say, of a real 𝜎 ∈ (−∞,∞)) such that h = h(𝜎)
and𝐻 = 𝐻(𝜎). One may then reveal that there exists a point𝜎0 or a non-empty closed vicinity 𝐼0 = (𝜎−, 𝜎+) of this point

such that the formally equivalent Schrödinger equations (2)
and (4) are also more or less equally user-friendly when 𝜎 ∈𝐼0. Naturally, such a concept will make sense when just the
solution of one of the Schrödinger equations remains feasible
and practically useful far from 𝜎0.

Whenever one tries to treat 𝜎 as a function of time,
a number of technical complications immediately emerge
(the most recent account of some of them may be found in
[37]). One has to assume, therefore, that the time-variation
of 𝜎 as well as the 𝜎-variation of the Hamiltonians remains
sufficiently slow, that is, so slow that the corresponding time-
derivatives of 𝜎 and the 𝜎-derivatives of the Hamiltonians
remain negligible. Under these assumptions, the passage
of certain quantum systems through their respective HSP-
NHSP interfaces can be shown possible.

5.2. Illustrative Hamiltonian. One of the most straightfor-
ward implementations of the above idea may be based on
the identification of the above-introduced parameter 𝜎 with
the parameter 𝜖 of (12) (and, say, of Figure 1) along the
negative real half-axis, and with the parameter 𝜂 of (16) (and
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Figure 4: The confluence of exceptional points at 𝜆 = 1.

of Figure 4) along the positive real half-axis. In such an
arrangement the interval of a large and negative 𝜎 ≪ −1
will be the domain in which the use of the non-Hermitian
picture F(NH) (with any nontrivial metric) would prove
absolutely useless. In parallel, any attempt of workingwith the
Hermitian picture F(�퐻) will necessarily fail close to 𝜎 ≈ +1
and further to the right. At the same time, in practically any
interval of the positive 𝜎 = 𝜂 ∈ 𝐼0 = (0, 𝜎+) with 𝜎+ < 1, we
would be able to work, more or less equally easily, with both
of the non-Hermitian and Hermitian versions of the matrix.

Themain advantage of the work in simultaneous pictures,
that is, with the Hamiltonian matrix defined in F(interface),
may be seen in the smoothness of the transitions to both of
the neighboring pictures F(�퐻) and F(NH). This smoothness
is nontrivial because the respective behaviors of the quantum
system in question will be different, in spite of the unified
definition of the dynamics. Thus, once we set

𝐻(unified)

=
[[[[[
[

0 −1 + 𝛾 (𝜏) 0 0
−1 − 𝛾 (𝜏) 0 −1 + 𝛾 (𝜏) 0

0 −1 − 𝛾 (𝜏) 0 −1 + 𝛾 (𝜏)
0 0 −1 − 𝛾 (𝜏) 0

]]]]]
]
, (21)

with

𝛾 (𝜏) = √𝜏2 ⋅ sign 𝜏 = √𝜏 ⋅ |𝜏| = {{{
i𝜏, 𝜏 < 0,
𝜏, 𝜏 ≥ 0, (22)

we will be able to interpolate, smoothly, between the eigen-
value repulsion to the left and the eigenvalue attraction to the
right (see Figure 5).

In addition, one may also appreciate the asymmetry of
the spectrum. In the purely phenomenological setting it
could be interpreted, for example, as a transition from the
conventional and robust dynamical regime to the emergence
of an instability and collapse at positive 𝜏 = 1. Marginally, let
us also note that our choice of notation is indicative because 𝜏
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Figure 5:Monotonic convergence of eigenvalues ofmatrix (21) with
the growth of 𝜏.
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Figure 6: Same as Figure 5 but with a slightly smaller 𝜆 = 3/5.

might have been perceived as a time variable, in an adiabatic
regime at least [37]. Another marginal comment is that at
𝜏 > 𝜏(EP) = 1, that is, at 𝜏 = √1 + 󰜚2 > 1, the eigenvalues
form the two purely imaginary complex-conjugate pairs

± i󰜚2 √(6 ± 2√5) ≈
{{{
±1.618033988 i󰜚
±0.6180339880 i󰜚. (23)

In the light of our preceding analysis it is not too
surprising that for the larger values of 𝜆 > 1 the simultaneous
complexification of the eigenvalues would occur at a slightly
smaller EP singularity 𝜏(EP) < 1 and that the model would
effectively decay into the two two-level subsystems. Such an
observation might be contrasted with the more interesting
spectral pattern obtained at𝜆 = 3/5 anddisplayed in Figure 6.
5.3. The Interface-Compatible Metrics. The physical interpre-
tation of the parameter 𝜎 need not be specified at all. Its
interface values 𝜎0 ∈ 𝐼0 might mark a critical time or
the position of a spatial boundary or a critical value of the
strength of influence of an environment, and so forth.
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In our present illustrative model the specification of the
left boundary point 𝜎− = 0 is unique because of the natural
choice of Θ = 𝐼 along the whole negative half-axis of 𝜎.
In contrast, our choice of the right boundary point 𝜎+ < 1
remains variable because we always have Θ ̸= 𝐼 for all of the
positive physical values of 𝜎.

We have to match the Hermitian choice of Θ = 𝐼 valid
at the negative half-axis of 𝜎 ≤ 0 to the hidden-Hermiticity
choice ofΘ ̸= 𝐼 at the small and positive 𝜎 > 0. Wemay recall
formula (19) and deduce that

lim
�휂→0

Θ(�휂,�휆)
(�푐,�푑,�푓,�푔)

=
[[[[[
[

𝑓 − 𝑐 𝑔 − 𝑑 𝑐 𝑑
𝑔 − 𝑑 𝑓 𝑔 𝑐
𝑐 𝑔 𝑓 𝑔 − 𝑑
𝑑 𝑐 𝑔 − 𝑑 𝑓 − 𝑐

]]]]]
]
. (24)

Even if we admit that the values of the parameters in the
metric may be 𝜂-dependent, 𝑐 = 𝑐(𝜂), 𝑑 = 𝑑(𝜂), 𝑓 = 𝑓(𝜂),
and 𝑔 = 𝑔(𝜂), we must demand that 𝑑(0) = 𝑐(0) = 𝑔(0) = 0
and normalize, say, 𝑓(0) = 1. This yields the metric which
is diagonal at 𝜂 = 0 and which remains diagonal after we
require that the parameters remain constant, 𝜂-independent.
The elements forming the diagonal of such a special Hilbert-
space metric Θ read

{ 1 + 𝜂
(1 − 𝜂) (1 − 𝜂𝜆) ,

11 − 𝜂𝜆 , 11 + 𝜂𝜆 ,
1 − 𝜂

(1 + 𝜂) (1 + 𝜂𝜆)} . (25)

In Figure 7 we may see the coincidence of these elements in
the limit 𝜂 → 0, demonstrating the smooth variation of the
metric Θ in the both-sided vicinity of 𝜂 = 0.

The construction of the kinetic energy part 𝑇 of all of our
toy model matrix Hamiltonians 𝐻 with 𝑁 = 4 was based
on the assumption that there exist coordinates 𝑞 forming a
spatial grid-point lattice. In the present context this means
that once the metric (25) remains diagonal, in an interval of
small 𝜎 = 𝜂 > 0 at least, we may conclude that the strong-
non-locality effects as caused by the metric Θ and observed,
say, in [21, 31] are absent here. In this sense, our present
model shares the weak-nonlocality merits of its predecessors
in [22, 23, 28].

Our diagonal metric remains positive and invertible, at
the sufficiently small 𝜂 at least. Naturally, it also has the EP-
related singularities at 𝜂(EP)

(first kind) = ±1/𝜆. Their occurrence
and 𝜆-dependence are illustrated here in Figure 8. Naturally,
for 𝜆 < 1 there emerge also the singularities at 𝜂(EP)

(second kind) =±1 (see the dedicated references [13–16] for a more thorough
explanation of this terminology).

6. Summary and Conclusions

In the conventional applications to quantum theory, the
description of the unitary evolution of a given system S
need not necessarily be performed in Schrödinger picture
(cf., e.g., the compact review of its eight eligible alternatives
in [24]). Naturally, once people decide to prefer the work
in Schrödinger picture, they usually recall Stone’s theorem
[29] and conclude that the Hamiltonian (i.e., in our present
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Figure 7: The 𝜂-dependence of the eigenvalues of the metric Θ of
(25) at 𝜆 = 6/5.
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Figure 8: The prolongation of Figure 7 beyond 𝜂(EP) = 5/6.

notation, operator h ∈ F(�퐻) acting in the conventional
Hilbert spaceH(textbook)) must necessarily be Hermitian (for
the sake of brevity we spoke here about the HSP realization
of Schrödinger picture).

Along a complementary, different line of thinking which
dates back to Dyson [1] and which recently climaxed with
Bender [4] and Mostafazadeh [3], the community of physi-
cists already accepted the consistency of the alternative,
NHSP realization of the same Schrödinger picture. In the
NHSP version and language the Hamiltonian (i.e., the upper-
case operator 𝐻 ∈ F(NH) with real spectrum) is naturally
self-adjoint in the physical Hilbert space H(redefined) which
is, unfortunately, highly unconventional. The same operator𝐻 only appears manifestly non-Hermitian in the other,
auxiliary, “redundant” Hilbert spaceH(unphysical) which is, by
assumption, “the friendliest” one.

It is unfortunate that the latter, historically developed
terminology is so confusing. This is one of the explanations
why the methodically important question of the possible
HSP/NHSP overlap of applicability has not yet been properly
addressed and clarified in the literature. In our present paper
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we filled the gap by showing that such an overlap (called,
by Jones [21], an “interface”) may exist. We also emphasized
that the construction of the interface should start from
the uppercase (and, typically, one-parametric) family of the
hiddenly Hermitian NHSP Hamiltonians operators 𝐻 =𝐻(𝜎) ∈ F(NH) and that it has to be based on the analysis
of the related family of the Hermitizing metric operatorsΘ =Θ[𝐻(𝜎)].

In such a framework one can conclude that Hamiltonian𝐻 = 𝐻(𝜎) with 𝜎 ∈ (𝜎−, 𝜎+) can be perceived as an element
of an HSP/NHSP overlap F(interface) ̸= 0, provided only that
theHermitizingmetric operator at our disposal (i.e., operatorΘ = Θ[𝐻(𝜎)]) is such that

lim
�휎→�휎

−

Θ [𝐻 (𝜎)] = 𝐼. (26)

In other words, once we have 𝐻(𝜎−) = 𝐻†(𝜎−), we may
now introduce the quantumHamiltonians h(𝜎) (which lie, by
construction, inF(�퐻)) in such a way that they are connected
with𝐻(𝜎) (i.e., defined) by relation (5) at 𝜎 ∈ (𝜎−, 𝜎+) while
their definition may be continued to 𝜎 < 𝜎− arbitrarily (e.g.,
by the most straightforward constant-operator prescription
h(𝜎) = 𝐻(𝜎−)).

The lower boundary 𝜎−0 of the interval of the interface-
compatible parameters carries an immediate physical mean-
ing of a point of transition from theHSP eigenvalue repulsion
regime (guaranteeing the robust reality of the spectrum) to
the NHSP eigenvalue attraction (and, possibly, complexifi-
cation). Via an elementary illustrative example, we demon-
strated that the resulting “mixed” dynamics could enrich
the current phenomenological considerations in quantum
theory. Naturally, this is a task for future research because
our present, methodicallymotivated and analytically solvable
example is only too schematic for such a purpose.

Appendix

A. Unitary Evolution via Non-Hermitian𝐻
A.1. TheThird Hilbert Space. Strictly speaking, the real spec-
tra of eigenvalues of𝐻 ̸= 𝐻† as well as of any other operator𝑋 ̸= 𝑋† of the observable characterizing the quantum system
in question cannot be assigned any immediate physical
meaning because the underlying Hilbert space H(unphysical)

is, by definition, just auxiliary and “incorrect.” The “correct”
meaning of the observables can only be established in the
“correct” Hilbert space H(textbook). Whenever needed, any
experimental prediction may be reconstructed using the
correspondences 𝜓(𝑡) = ΩΨ(𝑡), h = Ω𝐻Ω−1, and x =Ω𝑋Ω−1.

One of the benefits of the NHSP representation is that
in the generic stationary case the full knowledge of Dyson’s
operator Ω is not necessary. What controls the predictions
are just the mean values of the operators of observables.
For them, the translations of the relevant formulae from
H(textbook) to H(unphysical) may be shown to contain only
the so-called Hilbert-space metric, that is, the Dyson-map
product Θ = Ω†Ω (see, e.g., [2] for more details). This

implies that in a close parallel to (5), all of the observables of a
system in question may be represented by the diagonalizable
operators𝑋 ̸= 𝑋† with real spectra which only have to satisfy
the generalized Hermiticity relation

𝑋†Θ = Θ𝑋. (A.1)

AnyHilbert-spacemetricΘwhich is “mathematically accept-
able” (see [3] for details) may be interpreted as redefining the
inner product in H(unphysical). This redefinition of the inner
product may be reread as a redefinition of the Hilbert space
itself,

H
(unphysical) 󳨀→H

(redefined). (A.2)

By construction, the new space becomes unitarily equiv-
alent to H(textbook). This means that we may reinterpret
Hamiltonians 𝐻 (sampled by (10) and non-Hermitian in
auxiliaryH(unphysical)) as self-adjoint in the newHilbert space
H(redefined). Thus, using the notation of [26] we may write𝐻 = 𝐻‡, with the definition of𝐻‡ = Θ−1𝐻†Θ being deduced
from (5).

In opposite direction, our quantum-model-building may
start from a given 𝑁-plet {𝑋�푛} of candidates for the observ-
ables. As long as all of these operators (defined inH(unphysical))
must satisfy the respective hidden Hermiticity condition
(A.1), theremust exist a metric candidateΘ = Θ(𝑋1, . . . , 𝑋�푁)
compatible with all of these hidden-Hermiticity conditions.
Thus, the metric need not exist at all (see an example in [38]).
If it does exist, it may be either ambiguous (see an example in
[31]) or unique (see, e.g., a large number of examples in [4]).

A.2. Physical Inner Products. The non-Hermiticity property
of operators might cause complications in calculations.
Also the assumptions of the user-friendliness of H(unphysical)
and/or of𝐻(𝑡) seem highly nontrivial. On the level of theory
one must keep in mind that the new, friendlier Hilbert space
is, by itself, merely auxiliary and unphysical. In principle, a
return to H(textbook) is needed whenever experiment-related
predictions are asked for. Still, whenever the structures of
such a space and/or of the observables (defined in this
space and sampled by Hamiltonian h) appear prohibitively
complicated, the evaluation of the predictions of the theory
is to be made also directly inH(unphysical). Due care must only
be paid to the insertions of the metric operatorΘ = Ω†Ω ̸= 𝐼
(i.e., to the amendments of the inner products) whenever
applicable [3].

People do not always notice that after the latter amend-
ment of the inner product our auxiliary Hilbert space
H(unphysical) becomes redefined and converted into another,
third Hilbert space H(redefined) which is, by construction,
physical, that is, unitarily equivalent to H(textbook). Thus,
whenever we start from (4), the quantum system in question
becomes simultaneously represented in a triplet of Hilbert
spaces (the pattern is displayed in Figure 9).

Naturally, Stone’s theorem does not get violated due to the
one-to-one, Ω-mediated correspondence between 𝐻 and h.
Due to the property Ω†Ω = Θ ̸= 𝐼 of Dyson’s nonunitary
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Unitary equivalence
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((q, q) is nonlocal)

Figure 9: The three-Hilbert-space representation pattern.

mappings, theHermiticity of the conventionalHamiltonian h
in the physical spaceH(textbook) becomes replaced, in the aux-
iliary and manifestly unphysical Hilbert space H(unphysical),
by the hidden-Hermiticity alias Θ-pseudo-Hermiticity [3]
property 𝐻 = Θ−1𝐻†Θ of the uppercase non-Hermitian
Hamiltonian with real spectrum (cf. (4)). In the related
literature one can also read about the closely related concepts
of quasi-Hermiticity (see [2]), unbroken P𝑇-symmetry [4],
or crypto-Hermiticity [26, 39] of𝐻 and/or, last but not least,
about the quasi-similarity between𝐻 and𝐻† [40].
A.3. The Hermitian-Theory Point of View. Technically, it is
usually easier to work with the elements of the “Hermitian”
family F(�퐻) comprising the traditional quantum systems
and the traditional textbook self-adjoint Hamiltonians h =
h†. Dyson [1] merely proposed that sometimes it may still
make sense to make use of the other, innovative family
F(NH) which works with the “non-Hermitian” Schrödinger
equations (4). Certainly, the latter family is not small. Pars
pro toto it contains Hamiltonians of relativistic quantum
mechanics [41, 42], the well-known P𝑇-symmetric imagi-
nary cubic oscillator [43–46] (which appears, after a more
detailed scrutiny, strongly nonlocal [31, 47]), its power-law
generalizations [10–12, 48] as well as exactly solvable models
[49–52], models with methodical relevance in the context of
supersymmetry [53, 54], realistic and computation-friendly
interacting-boson models of heavy nuclei [2], benchmark
candidates for classification of quantumcatastrophes [55–57],
and so forth.

In the majority of the above-listed models defined in
F(NH) one may still keep in mind that their physical contents
can always be sought in their equivalence to the partner
Hamiltonians (and/or other observables) in F(�퐻). Thus, the
use of the less usual representation in F(NH) is treated as a
mere technical trick.

The main argument against the latter, fairly widespread
point of view may be formulated as an objection against
the overintimate, history-produced relationship between the

way of our thinking in classical physics and the related
production of the “conventional” quantummodels inF(�퐻) by
the techniques of the so-called “quantization.” In principle,
we should have been much more humble, taking rather the
classical world as a result of making its quantum picture
“dequantized” [58].
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The analytical solutions to a double ring-shapedCoulombpotential (RSCP) are presented.The visualizations of the space probability
distribution (SPD) are illustrated for the two- (contour) and three-dimensional (isosurface) cases. The quantum numbers (𝑛, 𝑙, 𝑚)
are mainly relevant for those quasi-quantum numbers (𝑛󸀠, 𝑙󸀠, 𝑚󸀠) via the double RSCP parameter 𝑐. The SPDs are of circular ring
shape in spherical coordinates.The properties for the relative probability values (RPVs) 𝑃 are also discussed. For example, when we
consider the special case (𝑛, 𝑙, 𝑚) = (6, 5, 0), the SPD moves towards two poles of 𝑧-axis when 𝑃 increases. Finally, we discuss the
different cases for the potential parameter 𝑏, which is taken as negative and positive values for 𝑐 > 0. Compared with the particular
case 𝑏 = 0, the SPDs are shrunk for 𝑏 = −0.5, while they are spread out for 𝑏 = 0.5.

1. Introduction

Since the ring-shaped noncentral potentials (RSNCPs) are
used to describe the molecular structure of Benzene as
well as the interaction between the deformed nucleuses,
they have attracted much attention of many authors [1–
14]. Generally, these RSNCPs are chosen as the sum of the
Coulomb or harmonic oscillator and the single ring-shaped
part 1/(𝑟2sin2𝜃) or the double ring-shaped part 1/(𝑟2sin2𝜃) +1/(𝑟2cos2𝜃). In this work, what we are only interested in is the
double RSCP, which may be used to describe the properties
of ring-shaped organic molecule. The corresponding bound
states were investigated by SUSY quantum mechanics and
shape invariance [15]. Recently, other complicated double
RSCPs have also been proposed [16–25]. Many authors have
obtained their solutions in [7, 8, 13, 14, 26]. Among them,
the SPDs have been carried out, but their studies are treated
either for the radial part in spherical shell (𝑟, 𝑟+𝑑𝑟) or for the
angular parts [27, 28]. The discussions mentioned above are
only concerned with one or two of three variables (𝑟, 𝜃, 𝜑).
To show the SPD in all position spaces, we have studied

the SPD of a single RSCP for two- and three-dimensional
visualizations [29]. In this work, our aim is to focus on the
more comprehensive SPD for the particle moving in a double
RSCP.

The plan of this paper is as follows. We present the exact
solutions to the system in Section 2. In Section 3, we apply
the SPD formula to show the visualizations using the similar
technique in [29] getting over the difficulty appearing in the
calculation skill when using MATLAB program. We discuss
their variations on the number of radial nodes, the RPV 𝑃,
and the RSCP parameter 𝑏 (positive and negative) when 𝑐 ̸= 0
in Section 4. We give our concluding remarks in Section 5.

2. Exact Solutions to a Double RSCP

In the spherical coordinates, the double RSCP is given by

𝑉 (𝑟, 𝜃) = −𝑍𝑒2𝑟 + ℏ22𝑀𝑟2 ( 𝑏
sin2𝜃 + 𝑐

cos2𝜃) (1)

as plotted in Figures 1–3.
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Figure 2: Potential function 𝑉(𝑟, 𝜃) versus 𝜃 at 𝑟 = 0.1, 1, 10, 100.

The Schrödinger equation with this potential is written as
(ℏ = 𝑀 = 𝑒 = 1)

[−12∇2 − 𝑍𝑟 + 12𝑟2 ( 𝑏
sin2𝜃 + c

cos2𝜃)]Ψ (󳨀→𝑟 )
= 𝐸Ψ (󳨀→𝑟 ) . (2)

Take wave function as

Ψ(󳨀→𝑟 ) = 1√2𝜋 𝑢 (𝑟)𝑟 𝐻 (𝜃) 𝑒±𝑖𝑚𝜑, 𝑚 = 0, 1, 2, . . . . (3)

Substitute this into (2) and obtain the following differential
equations:

𝑑2𝑢 (𝑟)𝑑𝑟2 + (2𝐸 + 2𝑍𝑟 − 𝜆𝑟2)𝑢 (𝑟) = 0, (4a)

1
sin 𝜃 𝑑𝑑𝜃 (sin 𝜃𝑑𝐻 (𝜃)𝑑𝜃 )

+ (𝜆 − 𝑏 + 𝑚2
sin2𝜃 − 𝑐

cos2𝜃)𝐻 (𝜃) = 0,
(4b)
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where 𝜆 is a separation constant. Define 𝑥 = cos 𝜃; (4b) is
modified as

(1 − 𝑥2) 𝑑2𝐻(𝑥)𝑑𝑥2 − 2𝑥𝑑𝐻 (𝑥)𝑑𝑥
+ (𝑙󸀠 (𝑙󸀠 + 1) − (𝑚󸀠)21 − 𝑥2 − 𝑐𝑥2)𝐻(𝑥) = 0. (5)

Its solutions are given by [30]

𝐻𝑙󸀠𝑚󸀠 (𝑥) = 𝑁𝑙󸀠𝑚󸀠𝑃𝑚󸀠𝑙󸀠 (𝛾1, 𝑥) = 𝑁𝑙󸀠𝑚󸀠 (1 − 𝑥2)𝑚󸀠/2
⋅ 𝑥𝛾1 𝑘∑

]=0

(−1)] Γ (𝑘 + 𝛾1 − ] + 1) Γ (2𝑙󸀠 − 2] + 1)2𝑙󸀠]! (𝑘 − ])!Γ (2𝑘 + 2𝛾1 − 2] + 1) Γ (𝑙󸀠 − ] + 1)𝑥2𝑘−2],
(6)

where

𝑁𝑙󸀠𝑚󸀠 = 2𝛾1√ 𝑘! (2𝑙󸀠 + 1) Γ (2𝑘 + 2𝛾1 + 1) Γ (𝑙󸀠 − 𝑘 + 1)2Γ (𝑙󸀠 − 𝑘 − 𝛾1 + 1) Γ (𝑘 + 𝛾1 + 1) Γ (2𝑙󸀠 − 2𝑘 + 1) ,
𝑚󸀠 = √𝑏 + 𝑚2, 𝑙󸀠 = 𝑛𝜃 + 𝑚󸀠 = 2𝑘 + 𝛾1 + √𝑏 + 𝑚2, 𝜆 = 𝑙󸀠 (𝑙󸀠 + 1) , |𝑚| , 𝑘 = 0, 1, 2, . . . ,

(7)

𝛾1 = {{{{{
0 or 1, 𝑐 = 0
(1 + √1 + 4𝑐)2 , 𝑐 > 0. (8)

We are now in the position to consider (4a). Substituting𝜆 = 𝑙󸀠(𝑙󸀠 + 1) into (4a) and taking 𝜒 = 𝜏𝑟, 𝑠 = 2𝑍, and 𝜏 =𝑍√−1/(2𝐸), from (4a) we have

𝑑2𝑢 (𝜒)𝑑𝜒2 + ( 𝑠𝜒 − 14 − 𝑙󸀠 (𝑙󸀠 + 1)𝜒2 )𝑢 (𝜒) = 0, (9)

whose solutions are given by [18]

𝑢𝑛󸀠𝑙󸀠 (𝑟) = 1Γ (2𝑙󸀠 + 2) [ 𝑍𝑎0
Γ (𝑛󸀠 + 𝑙󸀠 + 1)

𝑛𝑟! (𝑛󸀠)2 ]1/2

⋅ ( 2𝑍𝑟𝑎0𝑛󸀠)
𝑙󸀠+1

⋅ 𝑒−𝑍𝑟/𝑎0𝑛󸀠𝐹(−𝑛𝑟, 2𝑙󸀠 + 2, 2𝑍𝑟𝑎0𝑛󸀠) ,
(10)

where
𝑛󸀠 = 𝑛𝑟 + 𝑙󸀠 + 1
= {{{{{

𝑛𝑟 + 2𝑘 + 𝑚󸀠 + (3 + √1 + 4𝑐)2 , 𝑐 > 0, 𝑛𝑟, 𝑚, 𝑘 = 0, 1, 2, . . .
𝑛𝑟 + 𝑘 + 𝑚󸀠 + 1, 𝑐 = 0, 𝑛𝑟, 𝑚, 𝑘 = 0, 1, 2, . . .

(11)
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Table 1: The isosurface SPDs with a section plane.
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Table 1: Continued.
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Table 1: Continued.
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Table 1: Continued.
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Table 1: Continued.
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and the Bohr radius 𝑎0 = ℏ2/𝑀𝑒2 = 1. The complete wave
function has the form

Ψ𝑛󸀠𝑙󸀠𝑚 (󳨀→𝑟 ) = 1√2𝜋 𝑢𝑛󸀠𝑙󸀠 (𝑟)𝑟 𝐻𝑙󸀠𝑚󸀠 (cos 𝜃) 𝑒±𝑖𝑚𝜑. (12)

3. Two- and Three-Dimensional Visualizations
of SPDs

As we know, the SPDs at the position 󳨀→𝑟 = (𝑟, 𝜃, 𝜑) are
calculated by

𝜌 = 󵄨󵄨󵄨󵄨󵄨Ψ𝑛󸀠𝑙󸀠𝑚󸀠 (󳨀→𝑟 )󵄨󵄨󵄨󵄨󵄨2 = 12𝜋 𝑢2𝑛󸀠𝑙󸀠 (𝑟)𝑟2 𝐻2𝑙󸀠𝑚󸀠 (cos 𝜃) . (13)

To show the SPD, let us transform (13) to popular Cartesian
coordinates via the relations 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 and cos 𝜃 =𝑧/𝑟.Thus, one is able to find the corresponding SPD𝜌(𝑥, 𝑦, 𝑧).

Taking a series of discrete positions, we may study the
values of the respective SPD by numerical calculation. In
order to make the graphic resolution better, one takes 𝑁
discrete positions in the Cartesian space (𝑥, 𝑦, 𝑧) and studies
density block, say den(𝑁,𝑁,𝑁), which is composed of all
values𝑤𝑛󸀠𝑙󸀠𝑚󸀠 for all𝑁×𝑁×𝑁 positions. Here,𝑁 is taken as
151. For states denoted by (𝑛󸀠, 𝑙󸀠, 𝑚󸀠), we display their two- and
three-dimensional visualizations for different states (𝑛 ≤ 6)
using MATLAB program as shown in Tables 1 and 2.

4. Discussions on the SPD

4.1. Variation Caused by the Radial Nodes. We show the SPDs
for various cases 𝑏 = 0.5 and 𝑐 = 0, 0.5, 5 (see Table 1). The
case 𝑐 = 0 corresponds to a single RSCP, which was discussed
in our previous works [29, 30]. We take the unit in axis as the
Bohr radial 𝑎0. It should be pointed out thatwe plot the figures
only for the value of 𝑛𝑟 = 𝑛 − 𝑙 − 1 equal to integer. To display
the inside structure of the graphics, we create a section plane
but need not consider SPDs numerical values in the regions𝑥 < 0, 𝑦 < 0, 𝑧 > 0.

Compared to the cases 𝑐 = 0 and 𝑏 ̸= 0, it is seen
that the graphics are expanded. That is to say, the SPDs
enlarge towards 𝑧-axis and the hole is expanded outside when
the potential parameter 𝑐 increases. We may understand
it through considering (8). As we know, 𝑚󸀠 will increase
relatively for a fixed 𝑚. For 𝑙 ̸= 𝑚, their isosurfaces are of
circular ring shape.

We project the SPDs to a plane 𝑦𝑜𝑧 and find that they
are symmetric to the 𝑦-axis and 𝑧-axis (see Table 2). In this
work, the graphics are plotted only in the first quadrant by
enlarging proportionally the probability |Ψ𝑛󸀠𝑙󸀠𝑚󸀠(󳨀→𝑟 )|2 and
by making the maximum value as 100, in which the interval
is taken as 10. A corresponding balance among the density
distributions exists in the directions of axes 𝑥, 𝑦, and 𝑧
because the sum of density distributions has to be equal to
one when considering the normalization condition. It is clear
that each figure becomes expanded along with 𝑦-axis and 𝑧-
axis.
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Table 2: The contour of the SPDs in the plane yoz.
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Table 2: Continued.
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Table 2: Continued.
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Table 2: Continued.
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Table 2: Continued.

𝑛 𝑙 𝑚 𝑏 = 0.5𝑐 = 0 𝑏 = 0.5𝑐 = 0.5 𝑏 = 0.5𝑐 = 5
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4.2. Variation on RPV 𝑃. To show the isosurface of the SPDs
for various RPVs 𝑃 ∈ (0, 100)%, the quantum numbers(𝑛, 𝑙, 𝑚) = (6, 5, 0) for two different cases 𝑏 = 0.5 and 𝑐 =0.5, 10 are taken as seen in Table 3. It is shown that the particle
for smaller𝑃will be distributed to almost all spaces.However,
the particle for larger 𝑃 will move to the poles in 𝑧-axis.
4.3. Variations on Various Potential Parameters 𝑏 and 𝑐.
Considering given quantum numbers 𝑚 and 𝑛𝜃, we know
from (8) that 𝑚󸀠 will become bigger as 𝑏 increases and the
parameter 𝛾1 also becomes larger with increasing 𝑐. As a
result, this will result in increasing 𝑙󸀠. In Table 4, the SPDs
are plotted for state (𝑛, 𝑙, 𝑚) = (5, 1, 0) in the cases of𝑐 = 0.5 and 𝑏 = 0, 5, 10, 25, 40, 80 and 𝑏 = 0.5 and 𝑐 =0, 5, 10, 25, 40, 80, respectively. Obviously, we see a big differ-
ence between them. When the potential parameter 𝑏
increases, the expansions of the SPDs along with 𝑥-axis and𝑦-axis and the number of radial nodes are changed. However,
when the parameter 𝑐 increases, the expansions of the SPDs
are along with 𝑧-axis.

The comparison is done for positive and negative 𝑏 < 0
and 𝑏 > 0 when 𝑐 = 0.5 (see Table 5). It is shown that the
SPDs for the negative 𝑏 = −0.5 compared with the case 𝑏 = 0
are shrunk into the origin. However, the SPDs for 𝑏 = 0.5 are
enlarged outside. We can understand it very well by studying
the contributions of the potential parameter 𝑏 made on the
Coulomb potential. The choice of the negative or positive 𝑏
determines the attractive Coulomb potential that is bigger or

smaller relatively. Thus, the attractive force that acts on the
particle will be larger or smaller. Finally, this will result in the
SPDs that are shrunk or expanded.

5. Conclusions

The analytical solutions to the double RSCP have been
obtained and then the visualization of the SPDs for this
potential is performed.The contour and isosurface visualiza-
tions have been illustrated for quantum numbers (𝑛󸀠, 𝑙󸀠, 𝑚󸀠)
by taking various values of the parameter 𝑐. It is shown that
the SPDs are of circular ring shape. On the other hand,
the properties of the RPVs 𝑃 of the SPDs have also been
discussed. As an example, we have studied the particular case,
that is, (𝑛, 𝑙, 𝑚) = (6, 5, 0), and found that the SPDs will move
towards the poles of 𝑧-axis when the RPVs 𝑃 increase.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China under Grant no. 11275165, partially
by 20180677-SIP-IPN, and by CONACYT, Mexico, under
Grant no. 288856-CB-2016. Professor Yuan You acknowl-
edges Jiangsu Overseas Research & Training Program for



14 Advances in High Energy Physics

Table 3: The SPDs for various RPVs 𝑃 for (𝑛, 𝑙, 𝑚) = (6, 5, 0) (𝑏 = 0.5, 𝑐 = 0.5, 10).
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Table 3: Continued.
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Table 3: Continued.
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Table 4: The isosurface illustration of the state (5, 1, 0) with various values of 𝑏 and 𝑐.
𝑏(𝑐 = 0.5) Isosurface illustration 𝑐(𝑏 = 0.5) Isosurface illustration
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Table 4: Continued.

𝑏(𝑐 = 0.5) Isosurface illustration 𝑐(𝑏 = 0.5) Isosurface illustration
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Table 5: SPDs for different cases of the value of 𝑏 for (4, 1, 0) when 𝑐 = 0.5.
𝑏 Isosurface illustration Contour illustration
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In the light of latest neutrino oscillation data, we have investigated the one-zero Majorana neutrino mass matrix𝑀] with zero sum
condition of mass eigenvalues in the flavor basis, where charged lepton mass matrix is diagonal. Among the six possible one-zero
cases, it is found that only five can survive the current experimental data, while case with (1, 1) vanishing element of𝑀] is ruled out,
if zero trace condition is imposed at 3𝜎 confidence level (CL). Numerical and some approximate analytical results are presented.

1. Introduction

The Double Chooz, Daya Bay, and RENO Collaborations [1–
3] have finally established the nonzero and relatively large
value of the reactor mixing angle 𝜃13; hence the number of
known available neutrino oscillation parameters approaches
five, namely, two mass-squared differences (𝛿𝑚2, Δ𝑚2) and
three neutrino mixing angles (𝜃12, 𝜃23, 𝜃13). However, any
general 3×3 neutrinomass matrix contains more parameters
than can bemeasured in realistic experiments. In fact, assum-
ing theMajorana-type nature of neutrinos, the neutrinomass
matrix contains nine real free parameters: three neutrino
masses (𝑚1, 𝑚2, 𝑚3), three flavormixing angles (𝜃12, 𝜃23, 𝜃13),
and three CP violating phases (𝛿, 𝜌, 𝜎).

In order to reduce the number of free parameters, several
phenomenological ideas, in particular texture zeros [4–26],
have been widely adopted in the literature. The imposition
of texture zeros in neutrino mass matrix leads to some
important phenomenological relations between flavor mix-
ing angles and fermion mass ratios [24–27]. In the flavor
basis, where charged lepton mass matrix is diagonal, at most
two zeros are allowed in neutrinomassmatrix, which are con-
sistent with neutrino oscillation data [25, 26]. The analysis of
two texture zero neutrinomass matrices limits the number of
experimentally viable cases to seven. The phenomenological
implications of one texture zero neutrino mass matrix have

also been studied in the literature [20–23] and it has been
observed that all the six cases are viable with experimental
data.However, the imposition of single texture zero condition
in neutrino mass matrix makes larger parametric space for
viability with the data available compared with two-zero
texture. In order to impart predictability to one-zero texture,
additional constraints in the form of vanishing determinant
[28] or trace can be incorporated. The phenomenological
implication of determinantless condition on one-zero texture
have been rigorously studied in [20, 28–32]. The implication
of traceless condition was first put forward in [33] wherein
the anomalies of solar and atmospheric neutrino oscillation
experiments as well as the LSND experiment were simultane-
ously explained in the framework of three neutrinos. In [34],
Zee has particularly investigated the case of CP conserving
traceless neutrino mass matrix for explaining the solar and
atmospheric neutrino deficits. Furthermotivation of traceless
mass matrices can be provided by models wherein neutrino
mass matrix can be constructed through a commutator of
two matrices, as what happens in models of radiative mass
generation [35]. In [36], Alhendi et al. have studied the case
of two trackless submatrices of Majorana mass matrix in the
flavor basis and carried out a detailed numerical analysis
at 3𝜎 confidence level. The phenomenological implications
of traceless neutrino mass matrix on neutrino masses, CP
violating phases, and effective neutrino mass term are also
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studied in [37], for both normal and inverted mass ordering
and in case of CP conservation and violation, respectively. In
the present workwe impose the traceless condition on texture
one-zeroMajoranamassmatrix and investigate the outcomes
of such condition on the parametric space of neutrinomasses(𝑚1, 𝑚2, 𝑚3) and CP violating phases (𝛿, 𝜌, 𝜎).

Assuming the Majorana nature of neutrinos, neutrino
mass matrix is complex symmetric. In the flavor basis, if
one of the elements is considered to be zero, the number of
possible cases turns out to be six, which are given below:

𝑇1:(0 × ×× × ×× × ×) ,
𝑇2:(× × ×× 0 ×× × ×) ,
𝑇3:(× × ×× × ×× × 0) ;
𝑇4:(× 0 ×0 × ×× × ×) ,
𝑇5:(× × 0× × ×0 × ×) ,
𝑇6:(× × ×× × 0× 0 ×) ,

(1)

where “×” stands for nonzero element and complex matrix
element.

Among these possible cases, there exists a permutation
symmetry between certain pair of cases, namely, (𝑇2, 𝑇3)
and (𝑇4, 𝑇5), while cases 𝑇1 and 𝑇6 transform onto them-
selves independently. The origin of permutation symmetry
is explained from the fact that these pairs are related by
exchange of 2-3 rows and 2-3 columns of neutrino mass
matrix. The corresponding permutation matrix is given by

𝑃23 = (1 0 00 0 10 1 0) , (2)

which leads to the following relations among the neutrino
oscillation parameters:𝜃𝑋12 = 𝜃𝑌12,𝜃𝑋23 = 90∘ − 𝜃𝑌23,

𝜃𝑋13 = 𝜃𝑌13,𝛿𝑋 = 𝛿𝑌 ± 180∘,
(3)

where 𝑋 and 𝑌 superscripts denote the cases related by 2-3
permutation symmetry.

The rest of the work is planned as follows: In Section 2, we
discuss the methodology used to reconstruct the Majorana
neutrino mass matrix and subsequently obtain some useful
phenomenological relations of neutrino mass ratios and
Majorana phases by incorporating texture one-zero and zero
trace conditions simultaneously. In Section 3, we present
the numerical analysis using some approximate analytical
relations. In Section 4, we summarize our work.

2. Formalism

In the flavor basis, the Majorana neutrino mass matrix 𝑀],
depending on three neutrino masses (𝑚1, 𝑚2, 𝑚3) and the
flavor mixing matrix can be expressed as

𝑀] = 𝑉(𝑚1 0 00 𝑚2 00 0 𝑚3)𝑉𝑇. (4)

The mixing matrix 𝑉 can be written as 𝑉 = 𝑈𝑃, where𝑈 denotes the neutrino mixing matrix consisting of three
flavor mixing angles and one Dirac-like CP violating phase,
whereas the matrix 𝑃 is a diagonal phase matrix; that is, 𝑃
= diag(𝑒𝑖𝜌, 𝑒𝑖𝜎, 1) with 𝜌 and 𝜎 being the two Majorana CP
violating phases. The neutrino mass matrix 𝑀] can then be
rewritten as

𝑀] = (𝑀𝑒𝑒 𝑀𝑒𝜇 𝑀𝑒𝜏𝑀𝑒𝜇 𝑀𝜇𝜇 𝑀𝜇𝜏𝑀𝑒𝜏 𝑀𝜇𝜏 𝑀𝜏𝜏) = 𝑈(𝜆1 0 00 𝜆2 00 0 𝜆3)𝑈𝑇, (5)

where 𝜆1 = 𝑚1𝑒2𝑖𝜌, 𝜆2 = 𝑚2𝑒2𝑖𝜎, and 𝜆3 = 𝑚3.
For the purpose of calculations, we have adopted the

parameterization of the mixing matrix 𝑈 considered by [5];
for example,

𝑈
= ( 𝑐12𝑐13 𝑠12𝑐13 𝑠13−𝑐12𝑠23𝑠13 − 𝑠12𝑐23𝑒−𝑖𝛿 −𝑠12𝑠23𝑠13 + 𝑐12𝑐23𝑒−𝑖𝛿 𝑠23𝑐13−𝑐12𝑐23𝑠13 + 𝑠12𝑠23𝑒−𝑖𝛿 −𝑠12𝑐23𝑠13 − 𝑐12𝑠23𝑒−𝑖𝛿 𝑐23𝑐13), (6)

where 𝑐𝑖𝑗 = cos 𝜃𝑖𝑗, 𝑠𝑖𝑗 = sin 𝜃𝑖𝑗 for 𝑖, 𝑗 = 1, 2, 3, and 𝛿 is the
CP violating phase.

If one of the elements of 𝑀] is considered zero, that is,𝑀𝑙𝑚 = 0, it leads to the following constraint equation:𝑈𝑙1𝑈𝑚1𝜆1 + 𝑈𝑙2𝑈𝑚2𝜆2 + 𝑈𝑙3𝑈𝑚3𝜆3 = 0, (7)

where 𝑙,𝑚 run over 𝑒, 𝜇, and 𝜏.
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Table 1: Current neutrino oscillation parameters from global fits at 1𝜎, 2𝜎, and 3𝜎 confidence level [39]. No (IO) refers to normal (inverted)
neutrino mass ordering.

Parameter Best fit 1𝜎 2𝜎 3𝜎𝛿𝑚2 [10−5eV2] 7.60 7.42–7.79 7.26–7.99 7.11–8.18|Δ𝑚231| [10−3eV2] (NO) 2.48 2.41–2.53 2.35–2.59 2.30–2.65|Δ𝑚231| [10−3eV2] (IO) 2.38 2.32–2.43 2.26–2.48 2.20–2.54𝜃12 34.6∘ 33.6∘–35.6∘ 32.7∘–36.7∘ 31.8∘–37.8∘𝜃23 (NO) 48.9∘ 41.7∘–50.7∘ 40.0∘–52.1∘ 38.8∘–53.3∘𝜃23 (IO) 49.2∘ 46.9∘–50.7∘ 41.3∘–52.0∘ 39.4∘–53.1∘𝜃13 (NO) 8.6∘ 8.4∘–8.9∘ 8.2∘–9.1∘ 7.9∘–9.3∘𝜃13 (IO) 8.7∘ 8.5∘–8.9∘ 8.2∘–9.1∘ 8.0∘–9.4∘𝛿 (NO) 254∘ 182∘–353∘ 0∘–360∘ 0∘–360∘𝛿 (IO) 266∘ 210∘–322∘ 0∘–16∘ ⊕ 155∘–360∘ 0∘–360∘
The traceless condition implies that sum of the mass

eigenvalues in neutrino mass matrix is zero; that is,𝜆1 + 𝜆2 + 𝜆3 = 0. (8)

Using (7) and (8), we obtain𝜆1𝜆3 = 𝑈𝑙2𝑈𝑚2 − 𝑈𝑙3𝑈𝑚3𝑈𝑙1𝑈𝑚1 − 𝑈𝑙2𝑈𝑚2 ,𝜆2𝜆3 = 𝑈𝑙3𝑈𝑚3 − 𝑈𝑙1𝑈𝑚1𝑈𝑙1𝑈𝑚1 − 𝑈𝑙2𝑈𝑚2 .
(9)

The magnitudes of neutrino mass ratios are given by

𝜉 ≡ 𝑚1𝑚3 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑈𝑙2𝑈𝑚2 − 𝑈𝑙3𝑈𝑚3𝑈𝑙1𝑈𝑚1 − 𝑈𝑙2𝑈𝑚2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,𝜁 ≡ 𝑚2𝑚3 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑈𝑙3𝑈𝑚3 − 𝑈𝑙1𝑈𝑚1𝑈𝑙1𝑈𝑚1 − 𝑈𝑙2𝑈𝑚2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(10)

Using (9), we find the following analytical relations for
Majorana phases (𝜌, 𝜎):

𝜌 = 12 arg(𝑈𝑙2𝑈𝑚2 − 𝑈𝑙3𝑈𝑚3𝑈𝑙1𝑈𝑚1 − 𝑈𝑙2𝑈𝑚2) ,
𝜎 = 12 arg(𝑈𝑙3𝑈𝑚3 − 𝑈𝑙1𝑈𝑚1𝑈𝑙1𝑈𝑚1 − 𝑈𝑙2𝑈𝑚2) . (11)

Thus neutrino mass ratios (𝜉, 𝜁) and two Majorana-type CP
violating phases (𝜌, 𝜎) can fully be determined in terms of
three mixing angles (𝜃12, 𝜃23, 𝜃13) and the Dirac-type CP
violating phase (𝛿). The ratio of two neutrino mass-squared
differences in terms of neutrino mass ratios 𝜉 and 𝜁 is given
by

𝑅] = 𝛿𝑚2󵄨󵄨󵄨󵄨Δ𝑚2󵄨󵄨󵄨󵄨 = 2 (𝜁2 − 𝜉2)󵄨󵄨󵄨󵄨2 − (𝜁2 + 𝜉2)󵄨󵄨󵄨󵄨 , (12)

where 𝛿𝑚2 = (𝑚22 − 𝑚21) and Δ𝑚2 = |𝑚23 − (1/2)(𝑚21 + 𝑚22)|
[38] corresponds to solar and atmospheric neutrino squared
differences, respectively. The sign of Δ𝑚2 is still not known

experimentally; that is, Δ𝑚2 > 0 or Δ𝑚2 < 0 corresponds to
the normal or inverted mass ordering of neutrinos.

The expressions for three neutrino masses (𝑚1, 𝑚2, 𝑚3)
can be given as

𝑚3 = √ 𝛿𝑚2(𝜁2 − 𝜉2) ,𝑚2 = 𝑚3𝜁,𝑚1 = 𝑚3𝜉.
(13)

Thus the neutrino mass spectrum can be fully determined.
The expression for Jarlskog rephasing parameter 𝐽CP,

which is a measure of CP violation, is given by𝐽CP = 𝑠12𝑐12𝑠23𝑐23𝑠13𝑐213 sin 𝛿. (14)

3. Numerical Results and Discussion

The experimental constraints on neutrino parameters at 1𝜎,2𝜎, and 3𝜎 confidence level (CL) are given in Table 1.
The effective Majorana mass term relevant for neutrino-

less double beta (0]𝛽𝛽) decay is given by|𝑀|𝑒𝑒 = 󵄨󵄨󵄨󵄨󵄨𝑚1𝑐212𝑐213𝑒2𝑖𝜌 + 𝑚2𝑠212𝑐213𝑒2𝑖𝜎 + 𝑚3𝑠213󵄨󵄨󵄨󵄨󵄨 . (15)

The future observation of 0]𝛽𝛽 decay would imply lepton
number violation and Majorana character of neutrinos. For
recent reviews see [40–43]. There are a large number of
projects such as CUORICINO [44], CUORE [45], GERDA
[46], MAJORANA [47], SuperNEMO [48], EXO [49], and
GENIUS [50] which target achieving a sensitivity up to
0.01 eV for |𝑀|𝑒𝑒. For the present analysis, we assume the
upper limit on |𝑀|𝑒𝑒 to be less than 0.5 eV at 3𝜎 CL [43]. The
data collected from the Planck satellite [51] combined with
other cosmological data put a limit on the sum of neutrino
masses as

Σ = 3∑
𝑖=1

𝑚𝑖 < 0.23 eV at 95% CL. (16)

Here, we take rather more conservative limit on sum of
neutrino masses (Σ) (i.e., Σ < 1 eV) at 3𝜎 CL. We span
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Table 2: The exact expression of neutrino mass ratios 𝜉 and 𝜁 of all the six one-zero textures with vanishing trace is shown. The symbols𝑐2(𝑖𝑗) ≡ cos 2𝜃𝑖𝑗, 𝑠2(𝑖𝑗) ≡ sin 2𝜃𝑖𝑗 are defined.
Cases Analytical expressions for 𝜉 and 𝜁𝑇1 𝜉 = + sec 2𝜃12 (𝑠212 − 𝑡213)𝜁 = − sec 2𝜃12 (𝑐212 − 𝑡213)
𝑇2 𝜉 = (𝑠212𝑠213 − 𝑐213) 𝑠223 + 𝑐12𝑐23 (𝑐12𝑐23𝑒−𝑖𝛿 − 2𝑠12𝑠23𝑠13) 𝑒−𝑖𝛿(𝑠223𝑠213 − 𝑐223𝑒−2𝑖𝛿) 𝑐2(12) + 𝑠2(12)𝑠2(23)𝑠13𝑒−𝑖𝛿𝜁 = (−𝑐212𝑠213 + 𝑐213) 𝑠223 − 𝑠12𝑐23 (𝑠12𝑐23𝑒−𝑖𝛿 + 2𝑐12𝑠23𝑠13) 𝑒−𝑖𝛿(𝑠223𝑠213 − 𝑐223𝑒−2𝑖𝛿) 𝑐2(12) + 𝑠2(12)𝑠2(23)𝑠13𝑒−𝑖𝛿
𝑇3 𝜉 = (𝑠212𝑠213 − 𝑐213) 𝑐223 + 𝑐12𝑠23 (𝑐12𝑠23𝑒−𝑖𝛿 + 2𝑠12𝑐23𝑠13) 𝑒−𝑖𝛿(𝑐223𝑠213 − 𝑠223𝑒−2𝑖𝛿) 𝑐2(12) − 𝑠2(12)𝑠2(23)𝑠13𝑒−𝑖𝛿𝜁 = (−𝑐212𝑠213 + 𝑐213) 𝑐223 − 𝑠12𝑠23 (𝑠12𝑠23𝑒−𝑖𝛿 − 2𝑐12𝑐23𝑠13) 𝑒−𝑖𝛿(𝑐223𝑠213 − 𝑠223𝑒−2𝑖𝛿) 𝑐2(12) − 𝑠2(12)𝑠2(23)𝑠13𝑒−𝑖𝛿
𝑇4 𝜉 = −𝑠12𝑐12𝑐23𝑒−𝑖𝛿 + 𝑠23𝑠13 (1 + 𝑠212)𝑠23𝑠13 (𝑐212 − 𝑠212) + 2𝑠12𝑐12𝑐23𝑒−𝑖𝛿𝜁 = −𝑠12𝑐12𝑐23𝑒−𝑖𝛿 − 𝑠23𝑠13 (1 + 𝑐212)𝑠23𝑠13 (𝑐212 − 𝑠212) + 2𝑠12𝑐12𝑐23𝑒−𝑖𝛿
𝑇5 𝜉 = 𝑠12𝑐12𝑠23𝑒−𝑖𝛿 + 𝑐23𝑠13 (1 + 𝑠212)𝑐23𝑠13 (𝑐212 − 𝑠212) − 2𝑠12𝑐12𝑠23𝑒−𝑖𝛿𝜁 = 𝑠12𝑐12𝑠23𝑒−𝑖𝛿 − 𝑐23𝑠13 (1 + 𝑐212)𝑐23𝑠13 (𝑐212 − 𝑠212) − 2𝑠12𝑐12𝑠23𝑒−𝑖𝛿
𝑇6 𝜉 = 𝑠23𝑐23 (𝑠212𝑠213 − 𝑐213 − 𝑐212𝑒−2𝑖𝛿) − 𝑐12𝑠12𝑠13 (𝑐223 − 𝑠223) 𝑒−𝑖𝛿𝑠23𝑐23 (𝑠213 + 𝑒−2𝑖𝛿) 𝑐2(12)𝑒−𝑖𝛿 + 2𝑠12𝑐12𝑠13𝑐2(23)𝑒−𝑖𝛿𝜁 = 𝑠23𝑐23 (−𝑐212𝑠213 + 𝑐213 + 𝑠212𝑒−2𝑖𝛿) − 𝑐12𝑠12𝑠13 (𝑐223 − 𝑠223) 𝑒−𝑖𝛿𝑠23𝑐23 (𝑠213 + 𝑒−2𝑖𝛿) 𝑐2(12)𝑒−𝑖𝛿 + 2𝑠12𝑐12𝑠13𝑐2(23)𝑒−𝑖𝛿
the parameter space of input neutrino oscillation parameters(𝜃12, 𝜃23, 𝜃13, 𝛿𝑚2, Δ𝑚2) by choosing the randomly generated
points of the order of 106-7. Using Eq. (12), the parameter
space of CP violating phases (𝛿, 𝜌, 𝜎), effective mass term|𝑀|𝑒𝑒, neutrino masses (𝑚1, 𝑚2, 𝑚3) can be subsequently
constrained. In order to interpret the phenomenological
results, some approximate analytical relations (up to certain
leading order term of 𝑠13) have been used in the following
discussion. The exact analytical relations of neutrino mass
ratios (𝜉, 𝜁) have been provided in Table 2.

3.1. Case 𝑇1. Using (6) and (9), in the leading order term of𝜃13, we obtain the following analytical relations:

𝜆1𝜆3 ≈ sec 2𝜃12𝑠212,𝜆2𝜆3 ≈ − sec 2𝜃12𝑐212. (17)

ForNO, using (12), we obtain𝑅] ≈ 𝜁2−𝜉2 ≈ sec 2𝜃12. Using 3𝜎
experimental range of oscillation parameters, we find 2.23 ≤𝑅] ≤ 4.02, which excludes the experimental range of 𝑅] and
for IO we have

𝑅] ≈ sec 2𝜃12
sec22𝜃12𝑐412 − 1 , (18)

which is again inconsistent with current experimental data
as 𝑅] > 0.75. Therefore, Case 𝑇1 is ruled out with the latest
neutrino oscillation data at 3𝜎 CL.

3.2. Case 𝑇2. Using (6) and (9), we obtain the following
analytical relations in the leading order approximation of 𝜃13:𝜆1𝜆3 ≈ − sec 2𝜃12 (𝑐212 − 𝑡223𝑒2𝑖𝛿) ,𝜆2𝜆3 ≈ sec 2𝜃12 (𝑠212 − 𝑡223𝑒2𝑖𝛿) . (19)

From (19), one can obtain the neutrino mass ratios

𝜉 ≈ sec 2𝜃12√𝑐412 + 𝑡423 − 2𝑐212𝑡223 cos 2𝛿,
𝜁 ≈ sec 2𝜃12√𝑠412 + 𝑡423 − 2𝑠212𝑡223 cos 2𝛿 (20)

and the Majorana CP violating phases

𝜌 ≈ 12 tan−1 (− 𝑡223 sin 2𝛿𝑐212 − 𝑡223 cos 2𝛿) + 𝑂 (𝑠13) ,
𝜎 ≈ 12 tan−1 (− 𝑡223 sin 2𝛿𝑠212 − 𝑡223 cos 2𝛿) + 𝑂 (𝑠13) . (21)

The correlation plots for case 𝑇2 have been compiled in
Figures 1(a), 1(b), 1(c), and 1(d) and Figures 2(a), 2(b), 2(c),
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Figure 1: Case 𝑇2 (NO): scattering plots of Majorana phases, Dirac CP violating phase (𝛿), effective neutrino mass |𝑀|𝑒𝑒, and Jarlskog
rephrasing invariant (𝐽CP) have been shown. All the phase angles (𝛿, 𝜌, 𝜎) are measured in degrees and |𝑀|𝑒𝑒 is in eV unit.

and 2(d), respectively. It is found from the analysis that case𝑇2 favors both normal (NO) and inverted mass ordering (IO)
at 3𝜎CL.The parameter space of CP violating phases 𝛿, 𝜌, 𝜎 is
found to be constrained to very small ranges for NO (Figures
1(a) and 1(b)). However, for IO, comparatively significant
allowed parameter space is available for 𝛿, 𝜌, 𝜎 (Figures 2(a)
and 2(b)).

In the leading order approximation of 𝑠13, the effective
mass term in 0]𝛽𝛽 decay turns out to be

|𝑀|𝑒𝑒 ≈ 𝑚3𝑡223 ≈ 2.32 × 10−2 eV, (22)

which lies well within the sensitivity limit of neutrinoless
double beta decay experiments. Figures 1(c) and 2(c) show
the correlation plot between |𝑀|𝑒𝑒 and 𝛿 for NO and IO,
respectively. The Jarlskog rephrasing parameter 𝐽CP is found
to be nonvanishing for NO (Figure 1(d)); however, 𝐽CP = 0
cannot be excluded for IO (Figure 2(d)).

3.3. Case 𝑇3. With the help of (6) and (9), we deduce the
following analytical expressions in the leading order of 𝑠13
term.

𝜆1𝜆3 ≈ sec 2𝜃12 (𝑐212 − 1𝑡223 𝑒2𝑖𝛿) ,
𝜆2𝜆3 ≈ sec 2𝜃12 (𝑠212 − 1𝑡223 𝑒2𝑖𝛿) . (23)

From (23), one can obtain the neutrino mass ratios

𝜉 ≈ sec 2𝜃12√𝑐412 + 1𝑡423 − 2𝑐212 1𝑡223 cos 2𝛿,
𝜁 ≈ sec 2𝜃12√𝑠412 + 1𝑡423 − 2𝑠212 1𝑡223 cos 2𝛿

(24)
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Figure 2: Case 𝑇2 (IO): scattering plots of Majorana phases, Dirac CP violating phase (𝛿), effective neutrino mass |𝑀|𝑒𝑒, and Jarlskog
rephrasing invariant (𝐽CP) have been shown. All the phase angles (𝛿, 𝜌, 𝜎) are measured in degrees and |𝑀|𝑒𝑒 is in eV unit.

and the Majorana CP violating phases

𝜌 ≈ 12 tan−1 (− sin 2𝛿𝑐212𝑡223 − cos 2𝛿) + 𝑂 (𝑠13) ,
𝜎 ≈ 12 tan−1 (− sin 2𝛿𝑠212𝑡223 − 𝑡223 cos 2𝛿) + 𝑂 (𝑠13) . (25)

Cases 𝑇2 and 𝑇3 are related via permutation symmetry;
therefore the phenomenological results for case 𝑇3 can be
obtained from case 𝑇3 by using (3). The correlation plots
for case 𝑇3 have been complied in Figures 3(a), 3(b), 3(c),
and 3(d) (NO) and Figures 4(a), 4(b), 4(c), and 4(d) (IO),
indicating the parameter space of 𝜌, 𝜎, 𝛿, |𝑀|𝑒𝑒, 𝐽CP.
3.4. Case 𝑇4. Using (6) and (9), we deduce the following
analytical expressions in the leading order of 𝑠13 term:𝜆1𝜆3 ≈ 𝜆2𝜆3 ≈ −0.5,

𝜉 ≈ 𝜁 ≈ 0.5. (26)

Since 𝑅] = 0 in the leading order approximation of 𝑠13, we
have to work next to leading order, and we get

𝜆1𝜆3 ≈ −12 (1 − 32 𝑠23𝑠13𝑐12𝑠12𝑐23 𝑒𝑖𝛿) + 𝑂 (𝑠213) ,
𝜆2𝜆3 ≈ −12 (1 + 32 𝑠23𝑠13𝑐12𝑠12𝑐23 𝑒𝑖𝛿) + 𝑂 (𝑠213) . (27)

Using (27), the neutrino mass ratios can be given as

𝜉 ≈ 12√1 + 94 𝑠223𝑠213𝑐212𝑠212𝑐223 − 3𝑠23𝑠13𝑐12𝑠12𝑐23 cos 𝛿,
𝜁 ≈ 12√1 + 94 𝑠223𝑠213𝑐212𝑠212𝑐223 + 3𝑠23𝑠13𝑐12𝑠12𝑐23 cos 𝛿,

(28)
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Figure 3: Case 𝑇3 (NO): scattering plots of Majorana phases, Dirac CP violating phase (𝛿), effective neutrino mass |𝑀|𝑒𝑒, and Jarlskog
rephrasing invariant (𝐽CP) have been shown. All the phase angles (𝛿, 𝜌, 𝜎) are measured in degrees and |𝑀|𝑒𝑒 is in eV unit.

and the Majorana CP violating phases are as

𝜌 ≈ 12 tan−1 ( 3𝑠23𝑠13 sin 𝛿3𝑠23𝑠13 cos 𝛿 − 2𝑐12𝑠12𝑐23) + 𝑂 (𝑠213) ,
𝜎 ≈ 12 tan−1 ( 3𝑠23𝑠13 sin 𝛿3𝑠23𝑠13 cos 𝛿 + 2𝑐12𝑠12𝑐23) + 𝑂 (𝑠213) . (29)

Using the best fit values from latest global fits on neutrino
oscillation data (Table 1), the neutrino mass spectrum can be
given as follows:

𝑚3 = √ 𝛿𝑚2(𝜁2 − 𝜉2) ≈ 4.87 × 10−2 eV,
𝑚2 = 𝑚3𝜁 ≈ 2.85 × 10−2 eV,𝑚1 = 𝑚3𝜉 ≈ 2.71 × 10−2 eV,

(30)

implying that only NO is allowed. Figures 5(a) and 5(b)
show the correlation plot between Majorana phases (𝜌, 𝜎)
and Dirac CP violating phase (𝛿). The parameter space for𝛿 is found to be restricted near 90∘ and 270∘. The prediction
is significant considering the latest hint on 𝛿 near 270∘ in
the recent global fits on neutrino oscillation data (Table 1).
The Majorana phases (𝜌, 𝜎) are found to be constrained near−90∘ and 90∘. In Figure 5(d), it is explicitly shown that 𝐽CP is
nonzero implying that case 𝑇5 is necessarily CP violating.

In the leading order of 𝑠13, the effectivemass term in 0]𝛽𝛽
decay can be approximated as

|𝑀|𝑒𝑒 ≈ 𝑚32 ≈ 2.43 × 10−2 eV, (31)

which is well within the accessible limit of next generation
neutrinoless double decay experiments. The correlation plot
between |𝑀|𝑒𝑒 and 𝛿 has been provided for case 𝑇4 in
Figure 5(c).
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Figure 4: Case 𝑇3 (IO): scattering plots of Majorana phases, Dirac CP violating phase (𝛿), effective neutrino mass |𝑀|𝑒𝑒, and Jarlskog
rephrasing invariant (𝐽CP) have been shown. All the phase angles (𝛿, 𝜌, 𝜎) are measured in degrees and |𝑀|𝑒𝑒 is in eV unit.

3.5. Case 𝑇5. With the help of (6) and (9), we obtain the
following analytical expressions in the leading order of 𝑠13
term:

𝜆1𝜆3 ≈ 𝜆2𝜆3 ≈ 0.5,
𝜉 ≈ 𝜁 ≈ 0.5. (32)

Since 𝑅] = 0 in the leading order approximation of 𝑠13, we
have to work next to leading order, and we obtain

𝜆1𝜆3 ≈ −12 (1 + 32 𝑐23𝑠13𝑐12𝑠12𝑠23 𝑒𝑖𝛿) + 𝑂 (𝑠213) ,
𝜆2𝜆3 ≈ −12 (1 − 32 𝑐23𝑠13𝑐12𝑠12𝑠23 𝑒𝑖𝛿) + 𝑂 (𝑠213) . (33)

From (33), the neutrino mass ratios can be given as follows:

𝜉 ≈ 12√1 + 94 𝑐223𝑠213𝑐212𝑠212𝑠223 − 3𝑐23𝑠13𝑐12𝑠12𝑠23 cos 𝛿,
𝜁 ≈ 12√1 + 94 𝑐223𝑠213𝑐212𝑠212𝑠223 + 3𝑐23𝑠13𝑐12𝑠12𝑠23 cos 𝛿,

(34)

and the Majorana CP violating phases are given as

𝜌 ≈ 12 tan−1 ( 3𝑐23𝑠13 sin 𝛿3𝑐23𝑠13 cos 𝛿 + 2𝑐12𝑠12𝑠23) + 𝑂 (𝑠213) ,
𝜎 ≈ 12 tan−1 ( 3𝑐23𝑠13 sin 𝛿3𝑐23𝑠13 cos 𝛿 − 2𝑐12𝑠12𝑠23) + 𝑂 (𝑠213) . (35)
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Figure 5: Case 𝑇4 (NO): scattering plots of Majorana phases, Dirac CP violating phase (𝛿), effective neutrino mass |𝑀|𝑒𝑒, and Jarlskog
rephrasing invariant (𝐽CP) have been shown. All the phase angles (𝛿, 𝜌, 𝜎) are measured in degrees and |𝑀|𝑒𝑒 is in eV unit.

Using the best fits from latest global neutrino oscillation data,
the neutrino mass spectrum can be given as follows:

𝑚3 = √ 𝛿𝑚2(𝜁2 − 𝜉2) ≈ 4.87 × 10−2 eV,
𝑚2 = 𝑚3𝜁 ≈ 2.85 × 10−2 eV,𝑚1 = 𝑚3𝜉 ≈ 2.71 × 10−2 eV,

(36)

indicating that only NO is allowed. Since 𝑇4 and 𝑇5 are
related due to permutation symmetry, therefore their phe-
nomenological implications are similar. The phenomenolog-
ical results for case 𝑇5 can be derived from case 𝑇4 using (3).
The correlation plots for𝜌,𝜎,𝛿, |𝑀|𝑒𝑒, 𝐽CP have been complied
in Figure 6.

In the leading order of 𝑠13 term, the effective mass term
in 0]𝛽𝛽 decay can be approximated as

|𝑀|𝑒𝑒 ≈ 𝑚32 ≈ 2.43 × 10−2 eV, (37)

which lies within the sensitivity limits of future 0]𝛽𝛽 decay
experiments.

3.6. Case 𝑇6. With the help of (6) and (9), we deduce the
following analytical expressions in the leading order of 𝑠13
term

𝜆1𝜆3 ≈ − sec 2𝜃12 (𝑐212 + 𝑒2𝑖𝛿) 𝑒𝑖𝛿,
𝜆2𝜆3 ≈ sec 2𝜃12 (𝑠212 + 𝑒2𝑖𝛿) 𝑒𝑖𝛿. (38)
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Figure 6: Case 𝑇5 (NO): scattering plots of Majorana phases, Dirac CP violating phase (𝛿), effective neutrino mass |𝑀|𝑒𝑒, and Jarlskog
rephrasing invariant (𝐽CP) have been shown. All the phase angles (𝛿, 𝜌, 𝜎) are measured in degrees and |𝑀|𝑒𝑒 is in eV unit.

Using (38), we obtain the approximate relations for neutrino
mass ratios

𝜉 ≈ sec 2𝜃12√𝑐412 + 2𝑐212 cos 2𝛿 + 1,
𝜁 ≈ sec 2𝜃12√𝑠412 + 2𝑠212 cos 2𝛿 + 1, (39)

and the Majorana CP violating phases

𝜌 ≈ 12 tan−1( sin 𝛿 (cos 2𝛿 + 𝑐212) + sin 2𝛿 cos 𝛿
cos 𝛿 (cos 2𝛿 + 𝑐212) − sin 2𝛿 sin 𝛿)

+ 𝑂 (𝑠213) ,

𝜎 ≈ 12 tan−1( sin 𝛿 (cos 2𝛿 + 𝑠212) + sin 2𝛿 cos 𝛿
cos 𝛿 (cos 2𝛿 + 𝑠212) − sin 2𝛿 sin 𝛿)

+ 𝑂 (𝑠213) .
(40)

The correlation plots for 𝜌, 𝜎, 𝛿, |𝑀|𝑒𝑒, 𝐽CP have been
complied in Figures 7(a), 7(b), 7(c), and 7(d). In Figures 7(a)
and 7(b) the parameter space of 𝛿 is found to be confined to
very small regions. Also theMajorana phases 𝜌 and 𝜎 also get
restricted to −54.7–−44.7∘⊕ 45.3–54.5. However, 𝐽CP = 0 as
evident in Figure 7(d), which implies case 𝑇6 points out the
CP conservation.

From the analysis, out of six cases, only 𝑇1 is found to be
inconsistent with the experimental data for both normal and
inverted mass ordering. For remaining cases the parameter
space of CP violting phases (𝛿, 𝜎, 𝜌), effective mass term|𝑀|𝑒𝑒, and neutrino masses (𝑚1, 𝑚2, 𝑚3) is found to be
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Table 3: The allowed ranges of Dirac-like CP violating phase 𝛿, the Majorana phases 𝜌, 𝜎, and three neutrino masses 𝑚1, 𝑚2, 𝑚3 for the
experimentally viable cases at 3𝜎 CL. Masses are in eV.

Cases Normal mass ordering (NO) Inverted mass ordering (IO)

𝑇1 × × × ×× × × ×× × × ×
𝑇2

𝛿 = 153.7∘–158.4∘⨁204.1∘–206.3∘ 𝑚1 = 0.0680–0.311 𝛿 = 0∘–21.06∘⨁126∘–156∘ 𝑚1 = 0.0425–0.357𝜌 = −64.9∘–−58.5∘⨁ 58.6∘–64.3∘ 𝑚2 = 0.0712–0.314 ⨁ 𝑚2 = 0.0435–0.359𝜎 = −64.5∘–−58.89∘⨁ 57.8∘–64.3∘ 𝑚3 = 0.0842–0.343 204∘–2 33∘ 𝑚3 = 0.00098–0.359⨁340∘–360∘𝜌 = −60∘–60∘𝜎 = −90∘–−48.1∘⨁ 48.2∘–90∘

𝑇3
𝛿 = 12.49∘–25.9∘⨁334.9∘–348.8∘ 𝑚1 = 0.0291–0.690 𝛿 = 23.7∘–50.48∘ 𝑚1 = 0.0422–0.377𝜌 = −71.49∘–−60.3∘⨁ 59.36∘–69.7∘ 𝑚2 = 0.0307–0.690 ⨁ 𝑚2 = 0.0435–0.377𝜎 = −73.34∘–−59.62∘⨁ 57.87∘–72.7∘ 𝑚3 = 0.0480–0.690 159.6∘–201.2∘ 𝑚3 = 0.00095–0.377⨁309.2∘–338.1∘𝜌 = −60∘–60∘𝜎 = −90∘–−48∘⨁ 48∘–90∘

𝑇4 𝛿 = 86.68∘–94.95∘⨁264.8∘–273.3∘ 𝑚1 = 0.0269–0.0406 × ×𝜌 = −82.87∘–−1.29∘⨁ 69.57∘–82.08∘ 𝑚2 = 0.0280–0.0417 × ×𝜎 = −82.87∘–−71.7∘⨁ 70.5∘–82.08∘ 𝑚3 = 0.0516–0.0682 × ×
𝑇5 𝛿 =85.99∘–94.48∘⨁266.45∘–274.49∘ 𝑚1 = 0.0269–0.0406 × ×𝜌 = −82.87∘–−72.22∘⨁

71.88∘–83.01∘ 𝑚2 = 0.0280–0.0417 × ×𝜎= −82.87∘–−72.22∘⨁ 71.88–83.01∘ 𝑚3 = 0.0516–0.0682 × ×

𝑇6
× × 𝛿 = 53.25∘–68.5∘ 𝑚1 = 0.0449–0.0664× × ⨁ 𝑚2 = 0.0456–0.0672× × 110.2∘–125∘ 𝑚3 = 0.0099–0.0400× × ⨁× × 235.7∘–250∘× × ⨁× × 291.3∘–309∘𝜌=−54.73∘–−44.7∘⨁

45.36∘–54.5∘𝜎=−54.73∘–−44.7∘⨁
45.36∘–54.5∘

constrained to an appreciable extent at 3𝜎 CL. The allowed
ranges of all the five viable cases for Dirac CP violating
phase (𝛿), Majorana phases (𝜌, 𝜎), and neutrino masses(𝑚1, 𝑚2, 𝑚3) have been summarized in Table 3.

4. Summary and Conclusion

In the present work, we have systematically analyzed the
texture one-zeroMajorana mass matrix along with zero trace
condition. In our analysis, we find that case𝑇1 with vanishing(1, 1) element of 𝑀] is ruled out with current experimental

data. Therefore, out of six possible cases of one-zero texture
with zero trace, only five, namely, 𝑇2, 𝑇3, 𝑇4, 𝑇5, and 𝑇6, can
survive the current experimental tests at 3𝜎 CL.The ongoing
and future neutrino based experiments including neutrino-
less double beta decay and cosmological experiments would
test the validity of present texture zero analysis.
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Figure 7: Case 𝑇6 (IO): scattering plots of Majorana phases, Dirac CP violating phase (𝛿), effective neutrino mass |𝑀|𝑒𝑒, and Jarlskog
rephrasing invariant (𝐽CP) have been shown. All the phase angles (𝛿, 𝜌, 𝜎) are measured in degrees and |𝑀|𝑒𝑒 is in eV unit.
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We study the exclusive semileptonic rare 𝐵+�푐 → 𝐷+]] decay in the framework of light-cone quark model. The transition form
factors 𝑓+(𝑞2) and 𝑓�푇(𝑞2) are evaluated in the timelike region using the analytic continuation method in 𝑞+ = 0 frame.The analytic
solutions of these form factors are compared with the results obtained from the double pole parametric form. The branching ratio
for 𝐵+�푐 → 𝐷+]] decay is calculated and compared with the other theoretical model predictions. The predicted results in this model
can be tested at the LHCb experiments in near future which will help in testing the unitarity of CKM quark mixing matrix, thus
providing an insight into the phenomenon of CP violation.

1. Introduction

In the past few years, great progress has been made in
understanding the semileptonic decays in the 𝐵 sector as
these are among the cleanest probes of the flavor sector of the
Standard Model (SM) which not only provide valuable infor-
mation to explore the SM but also are powerful means for
probing different new physics (NP) scenarios beyond the SM
(BSM) [1–3]. Due to the Glashow-Iliopoulos-Maiani (GIM)
mechanism [4], flavor changing neutral current (FCNC)
induced semileptonic 𝐵 decays are rare in the SM because
these decays are forbidden at tree level and can proceed
at the lowest order only via electroweak penguin and box
diagrams [5, 6]. Therefore, these decay processes provide
sensitive probes to look into physics BSM [7]. They also play
a significant role in providing a new framework to study the
mixing between different generations of quarks by extracting
the most accurate values of Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements which help us to test the charge-
parity (CP) violation in the SM and to dig out the status of
NP [8, 9].

The theoretical analysis of CP violating effects in rare
semileptonic 𝐵 decays requires knowledge of the transition
form factors that are model dependent quantities and are

scalar functions of the square of momentum transfer [10].
These form factors also interrelate to the decay rates and
branching ratios of all the observed decay modes of 𝐵
mesons and their calculation requires a nonperturbative
treatment. Various theoretical approaches, such as relativistic
constituent quark model [11–15], QCD sum rules [16–20],
lattice QCD calculations [21–23], chiral perturbation theory
[24, 25], and the light-front quark model (LFQM) [26–
34], have been applied to the calculations of hadronic form
factors for rare semileptonic 𝐵 decays. Experimentally, a
significant effort has been made for the advancement of our
knowledge of the flavor structure of the SM through the
studies of inclusive [35] as well as exclusive [36] rare𝐵 decays.
The violation of CP symmetry in 𝐵 meson decays was first
observed in 2001 (other than in neutral 𝐾 meson decays)
by two experiments: the Belle experiment at KEK and the
Babar experiment at SLAC [37]. Both these experiments were
constructed and operated on similar time scales andwere able
to take flavor physics into a new realm of discovery [38]. The
Babar and Belle experiments completed taking data in 2008
and 2010, respectively. Recently, numerous measurements of𝐵 decays have been performed by the LHC experiments at
CERN; in particular, the dedicated 𝐵 physics experiment
LHCbmakes a valuable contribution in the understanding of
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CP violation through the precise determination of the flavor
parameters of the SM [39–41].

In particular, there has been an enormous interest in
studying the decay properties of the 𝐵�푐 meson due to its
outstanding properties [42]. Unlike the symmetric heavy
quark bound states 𝑏𝑏 (bottomonium) and 𝑐𝑐 (charmonium),𝐵�푐 meson is the lowest bound state of two heavy quarks (𝑏
and 𝑐) with different flavors and charge. Due to the explicit
flavor numbers, 𝐵�푐 mesons can decay only through weak
interaction and are stable against strong and electromagnetic
interactions, thereby providing us an opportunity to test the
unitarity of CKM quark mixing matrix. The study of an
exclusive semileptonic rare 𝐵+�푐 → 𝐷+]] decay is prominent
among all the 𝐵�푐 meson decay modes as it plays a significant
role for precision tests of the flavor sector in the SM and its
possible NP extensions. At quark level, the decay 𝐵+�푐 → 𝐷+]]
proceeds via 𝑏 → 𝑑 FCNC transition with the intermediate𝑢, 𝑐, and 𝑡 quarks and most of the contribution comes
from the intermediate 𝑡 quark. Also, due to the neutral and
massless final states (]]), it provides an unique opportunity
to study the 𝑍 penguin effects [10]. As a theoretical input,
hadronic matrix elements of quark currents will be required
to calculate the transition form factors [43] in order to study
the decay rates and branching ratios of the above-mentioned
decay.

The semileptonic rare 𝐵+�푐 → 𝐷+]] decay has been
studied by various theoretical approaches such as constituent
quark model (CQM) [44] and QCD sum rules [45]. In this
work, we choose the framework of light-cone quark model
(LCQM) [46] for the analysis of this decay process. LCQM
deals with thewave function defined on the four-dimensional
space-time plane given by the equation 𝑥+ = 𝑥0 + 𝑥3 and
includes the important relativistic effects that are neglected
in the traditional CQM [47, 48]. The kinematic subgroup
of the light-cone formalism has the maximum number of
interaction-free generators in comparison with the point
form and instant form [49]. The most phenomenal feature
of this formalism is the apparent simplicity of the light-cone
vaccum, because the vaccum state of the free Hamiltonian is
an exact eigen state of the total light-cone Hamiltonian [50].
The light-cone Fock space expansion constructed on this vac-
uum state provides a complete relativisticmany-particle basis
for a hadron [51]. The light-cone wave functions providing a
description about the hadron in terms of their fundamental
quark and gluon degrees of freedom are independent of the
hadronmomentummaking them explicitly Lorentz invariant
[52].

The paper is organized as follows. In Section 2, we discuss
the formalism of light-cone framework and calculate the
transition form factors for 𝐵+�푐 → 𝐷+]] decay process in 𝑞+ =0 frame. In Section 3, we present our numerical results for
the form factors and branching ratios and compare themwith
other theoretical results. Finally, we conclude in Section 4.

2. Light-Cone Framework

In the light-cone framework, we can write the bound state of
a meson𝑀 consisting of a quark 𝑞1 and an antiquark 𝑞 with
total momentum 𝑃 and spin 𝑆 as [53]

󵄨󵄨󵄨󵄨𝑀 (𝑃, 𝑆, 𝑆�푧)⟩ = ∫ 𝑑𝑝+�푞1𝑑2p�푞1⊥16𝜋3
𝑑𝑝+�푞𝑑2p�푞⊥16𝜋3

⋅ 16𝜋3𝛿3 (𝑃̃ − 𝑝�푞1 − 𝑝�푞)
× ∑
�휆𝑞1 ,�휆𝑞

Ψ�푆�푆𝑧 (𝑝�푞1 , 𝑝�푞, 𝜆�푞1 , 𝜆�푞)
⋅ 󵄨󵄨󵄨󵄨󵄨𝑞1 (𝑝�푞1 , 𝜆�푞1) 𝑞 (𝑝�푞, 𝜆�푞)⟩ ,

(1)

where 𝑝�푞1 and 𝑝�푞 denote the on-mass shell light-front
momenta of the constituent quarks. The four-momentum 𝑝
is defined as

𝑝 = (𝑝+, p⊥) ,
p⊥ = (𝑝1, 𝑝2) ,
𝑝− = 𝑚2 + p2⊥𝑝+ ,
󵄨󵄨󵄨󵄨󵄨𝑞1 (𝑝�푞1 , 𝜆�푞1) 𝑞 (𝑝�푞, 𝜆�푞)⟩

= 𝑏† (𝑝�푞1 , 𝜆�푞1) 𝑑† (𝑝�푞, 𝜆�푞) |0⟩ ,
{𝑏 (𝑝�耠, 𝜆�耠) , 𝑏† (𝑝, 𝜆)} = {𝑑 (𝑝�耠, 𝜆�耠) , 𝑑† (𝑝, 𝜆)}

= 2 (2𝜋)3 𝛿3 (𝑝�耠 − 𝑝) 𝛿�휆󸀠�휆.

(2)

The momenta 𝑝�푞1 and 𝑝�푞 in terms of light-cone variables are

𝑝+�푞1 = 𝑥1𝑃+,
𝑝+�푞 = 𝑥2𝑃+,

p�푞1⊥ = 𝑥1P⊥ + k⊥,
p�푞⊥ = 𝑥2P⊥ − k⊥,

(3)

where 𝑥�푖 (𝑖 = 1, 2) represent the light-cone momentum
fractions satisfying𝑥1+𝑥2 = 1 and k⊥ is the relative transverse
momentum of the constituent.

The momentum-space light-cone wave function Ψ�푆�푆𝑧 in
(1) can be expressed as

Ψ�푆�푆𝑧 (𝑝�푞1 , 𝑝�푞, 𝜆�푞1 , 𝜆�푞) = 𝑅�푆�푆𝑧
�휆𝑞1�휆𝑞

(𝑥, k⊥) 𝜙 (𝑥, k⊥) , (4)

where 𝜙(𝑥, k⊥) describes the momentum distribution of the
constituents in the bound state and 𝑅�푆�푆𝑧

�휆𝑞1�휆𝑞
constructs a state

of definite spin (𝑆, 𝑆�푧) out of the light-cone helicity (𝜆�푞1 , 𝜆�푞)
eigenstates. For convenience, we use the covariant form of𝑅�푆�푆𝑧
�휆𝑞1�휆𝑞

for pseudoscalar mesons which is given by

𝑅�푆�푆𝑧
�휆𝑞1�휆𝑞

(𝑥, k⊥)

= √𝑝+�푞1𝑝+�푞
√2√𝑀20 − (𝑚�푞1 − 𝑚�푞)2

𝑢 (𝑝�푞1 , 𝜆�푞1) 𝛾5V (𝑝�푞, 𝜆�푞) , (5)
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where

𝑀20 = 𝑚2�푞1 + 󳨀→𝑘 2⊥𝑥1 + 𝑚2�푞 + 󳨀→𝑘 2⊥𝑥2 . (6)

The meson state can be normalized as

⟨𝑀(𝑃�耠, 𝑆�耠, 𝑆�耠�푧) | 𝑀 (𝑃, 𝑆, 𝑆�푧)⟩
= 2 (2𝜋)3 𝑃+𝛿3 (𝑃̃�耠 − 𝑃̃) 𝛿�푆󸀠�푆𝛿�푆󸀠𝑧�푆𝑧 ,

(7)

so that

∫ 𝑑𝑥𝑑2k⊥2 (2𝜋)3 󵄨󵄨󵄨󵄨𝜙 (𝑥, k⊥)󵄨󵄨󵄨󵄨2 = 1. (8)

We choose the Gaussian-type wave function to describe the
radial wave function 𝜙:

𝜙 (𝑥, k⊥) = √ 1𝜋3/2𝛽3 exp(−k
2

2𝛽2) , (9)

where 𝛽 is a scale parameter and k2 = k2⊥ + 𝑘2�푧 denotes the
internal momentum of meson. The longitudinal component𝑘�푧 is defined as

𝑘�푧 = (𝑥 − 12)𝑀0 +
𝑚2�푞1 − 𝑚2�푞2𝑀0 . (10)

2.1. Form Factors for the Semileptonic 𝐵+�푐 → 𝐷+]] Decay in
LCQM. The form factors 𝑓+(𝑞2) and 𝑓�푇(𝑞2) can be obtained
in 𝑞+ = 0 frame with the “good” component of current, that
is, 𝜇 = +, from the hadronic matrix elements given by [53]

⟨𝐷+ 󵄨󵄨󵄨󵄨󵄨𝑑𝛾�휇𝑏󵄨󵄨󵄨󵄨󵄨 𝐵+�푐 ⟩ = 𝑓+ (𝑞2) 𝑃�휇 + 𝑓− (𝑞2) 𝑞�휇, (11)

⟨𝐷+ 󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝜎�휇]𝑞]𝑏󵄨󵄨󵄨󵄨󵄨 𝐵+�푐 ⟩
= 𝑓�푇 (𝑞2)
(𝑀�퐵+𝑐 +𝑀�퐷+) [𝑞

2𝑃�휇 − (𝑀2�퐵+𝑐 −𝑀2�퐷+) 𝑞�휇] .
(12)

It is more convenient to express the matrix element defined
by (11) in terms of 𝑓+(𝑞2) and 𝑓0(𝑞2) as

⟨𝐷+ 󵄨󵄨󵄨󵄨󵄨𝑑𝛾�휇𝑏󵄨󵄨󵄨󵄨󵄨 𝐵+�푐 ⟩ = 𝐹+ (𝑞2) [𝑃�휇 − 𝑀2�퐵+𝑐 −𝑀2�퐷+𝑞2 𝑞�휇]

+ 𝑓0 (𝑞2) 𝑀
2
�퐵+𝑐
−𝑀2�퐷+𝑞2 𝑞�휇,

(13)

with

𝐹+ (𝑞2) = 𝑓+ (𝑞2) ,
𝑓0 (𝑞2) = 𝑓+ (𝑞2) + 𝑞2𝑀2

�퐵+𝑐
−𝑀2
�퐷+

𝑓− (𝑞2) . (14)

Here 𝑃 = 𝑃�퐵+𝑐 + 𝑃�퐷+ and 𝑞 = 𝑃�퐵+𝑐 − 𝑃�퐷+ and 0 ≤ 𝑞2 ≤ (𝑀�퐵+𝑐 −𝑀�퐷+)2.
Using the parameters of 𝑏 and 𝑑 quarks, the form factors𝑓+(𝑞2) and𝑓�푇(𝑞2) can be, respectively, expressed in the quark

explicit forms as follows [46]:

𝑓+ (𝑞2) = ∫1
0
𝑑𝑥∫𝑑2k⊥√𝜕𝑘�耠�푧𝜕𝑥 √𝜕𝑘�푧𝜕𝑥 𝜙�푑 (𝑥, k�耠⊥) 𝜙�푏 (𝑥, k⊥)

⋅ 𝐴�푏𝐴�푑 + k⊥ ⋅ k�耠⊥
√𝐴2
�푏
+ k2⊥√𝐴2�푑 + k�耠2⊥

,
𝑓�푇 (𝑞2)

= −∫1
0
𝑑𝑥∫𝑑2k⊥√𝜕𝑘�耠�푧𝜕𝑥 √𝜕𝑘�푧𝜕𝑥 𝜙�푑 (𝑥, k�耠⊥) 𝜙�푏 (𝑥, k⊥)

× 𝑥 (𝑀�퐵+𝑐 +𝑀�퐷+) [(𝑚�푑 − 𝑚�푏) ((k⊥ ⋅ q⊥) /q2⊥) + 𝐴�푏]
√𝐴2
�푏
+ k2⊥√𝐴2�푑 + k�耠2⊥

,

(15)

where k�耠⊥ = k⊥ − 𝑥q⊥ represents the final state transverse
momentum, 𝐴�푏 = 𝑥𝑚�푏 + (1 − 𝑥)𝑚�푞, and 𝐴�푑 = 𝑥𝑚�푑 + (1 −𝑥)𝑚�푞. The term 𝜕𝑘�푧/𝜕𝑥 denotes the Jacobian of the variable
transformation {𝑥, k⊥} → k = (𝑘�푧, k⊥).

The LCQM calculations of form factors have been per-
formed in the 𝑞+ = 0 frame [54, 55], where 𝑞2 = 𝑞+𝑞− − q2⊥ =−q2⊥ < 0 (spacelike region). The calculations are analytically
continued to the 𝑞2 > 0 (timelike) region by replacing q⊥ to𝑖q⊥ in the form factors. To obtain the numerical results of the
form factors, we use the change of variables as follows:

k⊥ = ℓ⊥ + 𝑥𝛽2�퐵+𝑐𝛽2
�퐵+𝑐
+ 𝛽2
�퐷+

q⊥,

k�耠⊥ = ℓ⊥ − 𝑥𝛽2�퐷+𝛽2
�퐵+𝑐
+ 𝛽2
�퐷+

q⊥.
(16)

Thedetailed procedure of analytic solutions for theweak form
factors in timelike regionhas been discussed in literature [56].

For the sake of completeness and to compare our analytic
solutions, we use a double pole parametric form of form
factors expressed as follows [44]:

𝑓 (𝑞2) = 𝑓 (0)1 +A𝑠 +B𝑠2 , (17)

where 𝑠 = 𝑞2/𝑀2�퐵+𝑐 , 𝑓(𝑞2) denotes any of the form factors,
and 𝑓(0) denotes the form factors at 𝑞2 = 0. Here A, B
are the parameters to be fitted from (17). While performing
calculations, we first compute the values of 𝑓+(𝑞2) and 𝑓�푇(𝑞2)
from (15) in 0 ≤ 𝑞2 ≤ (𝑀�퐵+𝑐 − 𝑀�퐷+)2, followed by extraction
of the parametersA andB using the values of𝑀�퐵+𝑐 and𝑓(0),
and then finally fit the data in terms of parametric form.

2.2. Decay Rate and Branching Ratio for 𝐵+�푐 → 𝐷+]] Decay.
At the quark level, the rare semileptonic 𝐵+�푐 → 𝐷+]] decay



4 Advances in High Energy Physics

d

c

c

W

b

b

d

W

W

B+
c

D+

u, c, t

u, c, t

u, c, t

Z()



]

]

]

]

Figure 1: Loop diagrams for 𝐵+�푐 → 𝐷+]] decay process.

is described by the 𝑏 → 𝑑 FCNC transition. As mentioned
earlier, these kinds of transitions are forbidden at the tree
level in the SM and occur only through loop diagrams as
shown in the Figure 1. They receive contributions from the
penguin and box diagrams [44]. Theoretical investigation
of these rare transitions usually depends on the effective
Hamiltonian density. The effective interacting Hamiltonian
density responsible for 𝑏 → 𝑑 transition is given by [57]

Heff (𝑏 󳨀→ 𝑑]])
= 𝐺�퐹√2

𝛼𝑉�푡�푏𝑉∗�푡�푑2𝜋 sin2𝜃�푊𝑋(𝑥�푡) 𝑑𝛾�휇 (1 − 𝛾5) 𝑏]𝛾�휇 (1 − 𝛾5) ], (18)

where 𝐺�퐹 is the Fermi constant, 𝛼 is the electromagnetic fine
structure constant, 𝜃�푊 is the Weinberg angle, 𝑉�푖�푗 (𝑖 = 𝑡, 𝑗 =𝑏 and 𝑑) are the CKMmatrix elements, and 𝑥�푡 = 𝑚2�푡 /𝑀2�푊.

The function 𝑋(𝑥�푡) denotes the top quark loop function,
which is given by

𝑋(𝑥�푡) = 𝑥�푡8 (2 + 𝑥�푡𝑥�푡 − 1 +
3𝑥�푡 − 6(𝑥�푡 − 1)2 ln𝑥�푡) . (19)

The differential decay rate for 𝐵+�푐 → 𝐷+]] can be
expressed in terms of the form factors as [46]

𝑑Γ𝑑𝑠 = 𝑀5�퐵+𝑐 𝐺2�퐹28𝜋5sin4𝜃�푊𝛼
2 󵄨󵄨󵄨󵄨𝑉�푡�푏𝑉∗�푡�푑󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑋 (𝑥�푡)󵄨󵄨󵄨󵄨2 𝜙3/2�퐷+ 󵄨󵄨󵄨󵄨𝑓+󵄨󵄨󵄨󵄨2 , (20)

where 𝜙�퐷+ = (1 − 𝑟�퐷+)2 − 2𝑠(1 + 𝑟�퐷+) + 𝑠2 with 𝑠 = 𝑞2/𝑀2�퐵+𝑐
and 𝑟�퐷+ = 𝑀2�퐷+/𝑀2�퐵+𝑐 .

The differential branching ratio (𝑑BR/𝑑𝑠) can be obtained
by dividing the differential decay rate (𝑑Γ/𝑑𝑠) by the total
width (Γtotal) of the 𝐵+�푐 meson and then, by integrating the
differential branching ratio over 𝑠 = 𝑞2/𝑀2�퐵+𝑐 , we can obtain
the branching ratio (BR) for 𝐵+�푐 → 𝐷+]] decay.
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Figure 2: Analytic solutions of𝑓+ (thick solid curve) comparedwith
the parametric results (dashed curve), with definition 𝑠 = 𝑞2/𝑀2�퐵+𝑐 .

3. Numerical Results

Before obtaining the numerical results of the form factors for
the semileptonic 𝐵+�푐 → 𝐷+]] decay, we first specify the
parameters appearing in the wave functions of the hadrons.
We have used the constituent quark masses as [53, 58]

𝑚�푏 = 4.8GeV,
𝑚�푑 = 0.25GeV,
𝑚�푐 = 1.4GeV.

(21)

The parameter 𝛽 that describes the momenta distribution of
constituent quarks can be fixed by the meson decay constants𝑓�퐵+𝑐 and𝑓�퐷+ , respectively.The 𝛽 parameters that we have used
in our work are given as [44]

𝛽�퐵+𝑐 = 0.81GeV,
𝛽�퐷+ = 0.46GeV. (22)

Using the above parameters, we present the analytic solutions
of the form factors 𝑓+ and 𝑓�푇 (thick solid curve) for 0 ≤𝑞2 ≤ (𝑀�퐵+𝑐 −𝑀�퐷+)2 in Figures 2 and 3, respectively. We have
also shown the results obtained from the parametric formula
(dashed curve) given by (17). We would like to mention here
that the point 𝑞2 = 0 represents the maximum recoil point
and the point 𝑞2 = 𝑞2max. = (𝑀�퐵+𝑐 − 𝑀�퐷+)2 represents the
zero recoil point where the produced meson is at rest. As
we can see from Figures 2 and 3, the form factors 𝑓+ and𝑓�푇 increase and decrease exponentially with respect to 𝑞2.
The analytic solutions of form factors given by (15) are well
approximated by the parametric form in the physical decay
region 0 ≤ 𝑞2 ≤ (𝑀�퐵+𝑐 − 𝑀�퐷+)2. For a deeper understanding
of the results, we have listed the numerical results for the form
factors 𝑓+ and 𝑓�푇 at 𝑞2 = 0 and the parameters A and B of
the double pole form in Table 1. For the sake of comparison,
we have also presented the results of other theoreticalmodels.
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Table 1: Form factors for 𝐵+�푐 → 𝐷+]] decay process at 𝑞2 = 0 and the parametersA andB defined by (17) and their comparison with other
theoretical model predictions.

Model 𝑓+(0) A B 𝑓�푇(0) A B

This work 0.140 −3.263 2.846 −0.234 −3.430 3.174
CQM [44] 0.123 −3.35 3.03 −0.186 −3.52 3.38
SR [45] 0.22 −1.10 −2.48 −0.27 −0.72 −3.24
Linear [46] 0.086 −3.50 3.30 −0.120 −3.35 3.06
HO [46] 0.079 −3.20 2.81 −0.108 −3.18 2.77
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Figure 3: Analytic solutions of𝑓�푇 (thick solid curve) comparedwith
the parametric results (dashed curve), with definition 𝑠 = 𝑞2/𝑀2�퐵+𝑐 .

Table 2: Branching ratio for 𝐵+�푐 → 𝐷+]] decay in LCQM and its
comparison with the other models.

Model Branching ratios (in units of 10−8)
This work 3.33
CQM [44] 2.74
QCD sum rules [45] 3.38
Linear [46] 1.31
HO [46] 0.81

It can be seen from the table that the values of form factors𝑓+
and𝑓�푇 at 𝑞2 = 0 in our model agree quite well with the CQM.
The difference in the values with respect to other models
might be due to the different assumptions of the models or
different choices of parameters.

To estimate the numerical value of the branching ratio
for 𝐵+�푐 → 𝐷+]] decay (defined in (20)), the various input
parameters used are [46] 𝛼−1 = 129, |𝑉�푡�푏𝑉∗�푡�푑| = 0.008,𝑀�푊 = 80.43GeV,𝑚�푡 = 171.3GeV, and sin2𝜃�푊 = 0.2233. The
lifetime of 𝐵+�푐 (𝜏�퐵+𝑐 = 0.507 ps) is taken from the Particle Data
Group [59]. Our results for the differential branching ratio as
a function of 𝑠 is shown in Figure 4.

Our prediction for the decay branching ratio of 𝐵+�푐 →𝐷+]] decay is listed in Table 2 and compared with the other
theoretical predictions. As we can see from Table 2, the result
predicted by LCQMapproximately agrees with the prediction
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Figure 4: Differential branching ratios as a function of 𝑠 for 𝐵+�푐 →𝐷+]] decay.

given by QCD sum rules whereas it is slightly larger when
compared with the results of CQM. At present, we do not
have any deep understanding of these values; however they
do indicate that these results may be important even in
a more rigorous model. The measurements can perhaps
be substantiated by measurement of the decay width of 𝐵
mesons. Several experiments at LHCb are contemplating the
possibility of searching for more 𝐵meson decays.

4. Conclusions

We have studied the exclusive semileptonic rare 𝐵+�푐 →𝐷+]] decay within the framework of LCQM. In our analysis,
we have evaluated the transition form factors 𝑓+(𝑞2) and𝑓�푇(𝑞2) in the 𝑞+ = 0 frame and then extended them
from the spacelike region (𝑞2 < 0) to the timelike region
(𝑞2 > 0) through the method of analytical continuation
using the constituent quark masses (𝑚�푏, 𝑚�푑, and 𝑚�푐) and
the parameters describing the momentum distribution of the
constituent quarks (𝛽�퐵+𝑐 and𝛽�퐷+), respectively.The numerical
values of 𝛽�퐵+𝑐 and 𝛽�퐷+ have been fixed from the meson decay
constants 𝑓�퐵+𝑐 and 𝑓�퐷+ , respectively. We have also compared
the analytic solutions of transition form factors with the
results obtained for the form factors using the double pole
parametric form. Using the numerical results of transition
form factors, we have calculated the decay branching ratio
and compared our result with the other theoretical model
predictions. The LCQM result for the decay branching ratio
of 𝐵+�푐 → 𝐷+]] decay comes out to be 3.33 × 10−8 which
approximately agrees with the prediction given by QCD
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sum rules [45]. This result can also be tested at the LHCb
experiments in near future.

To conclude, new experiments aimed at measuring the
decay branching ratios are not only needed for the profound
understanding of 𝐵 decays but also to restrict the model
parameters for getting better knowledge on testing the uni-
tarity of CKM quark mixing matrix.This will provide us with
a useful insight into the phenomenon of CP violation.
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By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely
on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of
this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We
find that this kind of potential may describe well the known phenomenology of the Higgs boson.

1. Introduction

With the discovery of the electroweak Higgs boson by the
Atlas [1] and CMS [2] experiments, the standard model has
entered an era of unprecedented experimental confirmation
with few hints with regard to its possible extensions to
accommodate other particles, interactions, or symmetries.
Even in its early years, the standard model Higgs boson
has been the subject of a flurry of theoretical papers that
dealt with its properties [3–9], the effective one or two loops’
potential [10–12], naturalness of the electroweak scale [13], or
the vacuum stability of the standard model [14–16].

It is relatively straightforward to compute the effective
potential for a theory with spontaneous symmetry breaking
[11, 12]. This potential then may be renormalization group
improved [14, 15], constrained to be scale invariant, and
the associated vacuum expectation value or effective mass
computed.

Historically, the electroweak model with spontaneous
symmetry breaking and the 𝑆𝑈(2)�퐿 × 𝑆𝑈(2)�푅 linear sigma
model for low energy QCD have been strongly related. The
latter also displays spontaneous symmetry breaking associ-
ated with the formation of quark condensates and possessed
also three Goldstone bosons, the pions. However the QCD
linear sigma model was not straightforwardly derived in
some loop order from the more basic QCD as the hadron
detailed structure is as of yet unknown but rather based
on the specific properties and symmetries already observed
in the hadron spectrum. It is worth mentioning that linear

sigma models have long been a basic tool for some effective
description for low energy QCD and were generalized to
the more comprehensive global group 𝑆𝑈(3)�퐿 × 𝑆𝑈(3)�푅
[17–20] and also to include four quark states [21–25] that
can accommodate two scalar and two pseudoscalar nonets.
Moreover without the specific knowledge of the detailed
interaction, one can add phenomenological terms that mock
up the axial [26] and the trace anomalies [27] with significant
role in the hadron properties and good agreement with the
experimental data.

In this work, wewill construct an effective potential based
entirely on the trace anomaly terms at tree and quantum level.
First in Section 2, we will propose a general version where
the parameters are constrained only by the requirement of
mocking up exactly the trace anomaly. Then the model will
contain a number of unknown parameters which should be
determined from the phenomenological data. Further on, in
Section 3 based on the analogy with low energy QCD, we
introduce a particular version of the same potential where
all the parameters are specified. We will study in this context
the minimum equations and the mass of the Higgs boson.
In Section 4 we analyze in the same framework the Higgs
effective couplings to two photons and two gluons, relevant
for the associated decay. Section 5 is dedicated to conclusions.

2. Trace Anomaly Induced Potential

We start by considering the relevant part of the standard
model Lagrangian apart from the kinetic terms for the
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fermions and for the Higgs doublet. Our choice is motivated
by the fact that these terms are scale invariant at the tree level
and for the quantum renormalized Lagrangian there is no
contribution to the trace anomaly since there is no coupling
constant in front of these terms. The gauge fields however
behave differently; we can always transform the gauge field as𝑔𝐴�푎�휇 → 𝐴�푎�휇, where 𝐴�푎�휇 is generic arbitrary gauge field and 𝑔
is its coupling constant.Then the corresponding kinetic term
in the Lagrangian will appear with a factor 1/𝑔2 which will
contribute to the trace anomaly through its beta function.The
relevant part of the Lagrangian is then

L�푠 = − 14𝑔2𝐹�푎�휇]𝐹�푎�휇] − 14𝑔�耠2𝐺�휇]𝐺�휇] + (𝑦𝑞�퐿Φ̃𝑡�푅 + h.c.)
− 𝑚22 Φ†Φ − 𝜆6 (Φ†Φ)2 ,

(1)

whereΦ is the Higgs doublet and

𝐹�푎�휇] = 𝜕�휇𝐴�푎] − 𝜕]𝐴�푎�휇 + 𝑔𝜖�푎�푏�푐𝐴�푏�휇𝐴�푐],
𝐺�휇] = 𝜕�휇𝐵] − 𝜕]𝐵�휇 (2)

and 𝐹�푎�휇] is the 𝑆𝑈(2) field tensor and 𝐺�휇] is the 𝑈(1)�푌
one. Moreover since all fermions except for the top quark
have small masses compared to the electroweak scale, we
considered only the term pertaining to the top quark and its
associated left handed doublet. By definition, all the terms in
(1) are gauge invariant.

The next step is to take into account all trace anomalies
known at both tree and quantum levels. It is known that
the mass terms break scale invariance at tree level. However
the quantum breaking of the scale transformation deserves
a more detailed discussion. The trace anomaly refers to the
renormalized Lagrangian. Then for a general Lagrangian
depending on the fieldsΦ�푖 (fermions or bosons) and coupling
constants 𝜆�푖 the quantum corrections to the trace anomalies
are given by

𝜃�휇�휇 = [∑
�푖

𝜕L𝜕Φ�푖
𝜕Φ�푖𝜕𝜎 +∑

�푖

𝜕L𝜕𝜆�푖
𝜕𝜆�푖𝜕𝜎 ]𝜎, (3)

where 𝑥�耠 = exp[𝜎]𝑥 and 𝜎 is the scale associated with the
scale transformation. One may write

∑
�푖

𝜕L𝜕𝜆�푖
𝜕𝜆�푖𝜕𝜎 𝜎 = 𝜕L𝜕𝜆�푖 𝛽 (𝜆�푖) . (4)

Next we observe that in functional sense as it is the case:

𝜕L𝜕Φ�푖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨�푓 =

𝜕L𝜕Φ�푖 − 𝜕�휇 (
𝜕L𝜕�휇Φ�푖) , (5)

which is zero by the equation of motion (the subscript𝑓 indicates the functional sense). Since the trace anomaly
calculations implicitly assume that the equation ofmotion for
the renormalized field is satisfied, then clearly (𝜕L/𝜕Φ�푖)|�푓 =0.

Consequently only the terms that contain coupling con-
stants contribute to the trace anomaly whereas the contribu-
tion from the dependence of the renormalized fields with the
scale is cancelled by the equation of motion. For a general
gauge theory with fermions and scalars, one can make from
the beginning the change of variable 𝐴�푎�휇𝑔 → 𝐴�푎�휇 such that
the coupling constant is eliminated from all gauge covariant
derivatives. Thus the gauge invariant kinetic terms of the
matter fermions or bosons bring no contribution to the trace
anomaly.

We shall start with the 𝑈(1)�푌 gauge group that we will
analyze in detail and just write down the results for 𝑆𝑈(2)�퐿
and 𝑆𝑈(3)�퐶 that can be easily obtained by applying the same
procedure. All our calculations and definitions are inspired by
the work in [17–20] by analogy with low energy QCD. Thus
for a generic Lagrangian of the type,

L = −12𝜕�휇𝜂𝜕�휇𝜂 − 𝑉 (𝜂) , (6)

the new improved energy momentum tensor is defined as

𝜃�휇] = 𝛿�휇]L + 𝜕�휇𝜂𝜕]𝜂 − 16 (𝜕�휇𝜕] − 𝛿�휇]◻) 𝜂2. (7)

This leads upon applying the equation of motion for the field𝜂 to the following trace of the energy momentum tensor:

𝜃�휇�휇 = 𝜂𝜕𝑉𝜕𝜂 − 4𝑉. (8)

We will apply (8) consistently in all our subsequent calcula-
tions of course adjusted to the specific Lagrangian.

The trace anomaly for 𝑈(1)�푌 reads [28, 29]
𝜃�휇�휇 = 𝛽 (𝑔

�耠)
2𝑔�耠3 𝐺�휇]𝐺�휇]. (9)

We rescale the gauge fields back to their original form 𝐵�휇 →𝐵�휇𝑔�耠 which leads to

𝜃�휇�휇 = 𝛽 (𝑔
�耠)

2𝑔�耠 𝐺�휇]𝐺�휇]. (10)

Then we considerΦ a slowly varying background Higgs field
and introduce the term

𝑉1 = 𝑏1𝐺�휇]𝐺�휇] ln[𝑥1𝐺
�휇]𝐺�휇]Λ4 ]

+ 𝑏2𝐺�휇]𝐺�휇] ln[𝑦1Φ4Λ4 ] ,
(11)

where Λ is some arbitrary scale and 𝑏1, 𝑏2, 𝑥1, and 𝑦1 are
arbitrary dimensionless coefficients. We compute the trace of
the energy momentum tensor for the potential in (11) as

𝜃�휇�휇 = 𝜕𝑉1𝜕 (𝐺�휇]𝐺�휇])4𝐺
�휇]𝐺�휇] + 𝜕𝑉1𝜕Φ Φ − 4𝑉, (12)
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to determine that it is

𝜃�휇�휇 = (4𝑏1 + 4𝑏2) 𝐺�휇]𝐺�휇], (13)

which leads to the constraint 4𝑏1 + 4𝑏2 = 𝛽(𝑔�耠)/2𝑔�耠. Then we
apply the equation of motion

𝜕𝑉1𝜕 (𝐺�휇]) = 2 [𝑏1𝐺�휇] ln[
𝑥1𝐺�휇]𝐺�휇]Λ4 ] + 𝑏1𝐺�휇]

+ 𝑏2𝐺�휇] ln[𝑦1Φ4Λ4 ]] = 0
(14)

and extract the field 𝐺�휇] from the potential 𝑉1:
𝐺�휇]𝐺�휇] = 𝑦1𝑥1Φ4 exp[−1 − (

𝑏2𝑏1) ln[
𝑦1Φ4Λ4 ]] . (15)

We introduce the result in (15) into the expression for the
potential in (11) to obtain

𝑉1 = −𝑏1 𝑦1𝑥1Φ4 exp[−1 − (
𝑏2𝑏1 + 1) ln[

𝑦1Φ4Λ4 ]] . (16)

A similar expression can be determined for 𝑆𝑈(2)�퐿:
𝑉2 = −𝑐1 𝑦2𝑥2Φ4 exp[−1 − (

𝑐2𝑐1 + 1) ln[
𝑦2Φ4Λ4 ]] , (17)

where 4𝑐1+ 4𝑐2 = 𝛽(𝑔)/2𝑔,𝑦2 and𝑥2 are arbitrary dimension-
less coefficients, and𝑔 is theweak coupling constant.Then the
potential induce by 𝑆𝑈(3)�퐶 is just

𝑉3 = −𝑑1 𝑦3𝑥3Φ4 exp[−1 − (
𝑑2𝑑1 + 1) ln[

𝑦3Φ4Λ4 ]] , (18)

with 4𝑑1 + 4𝑑2 = 𝛽(𝑔3)/2𝑔3, 𝑦3 and 𝑥3 arbitrary dimension-
less coefficients, and 𝑔3 the strong coupling constant.

One can associate with the trace anomaly corresponding
to the top Yukawa term in the Lagrangian the potential

𝑉4 = 𝑘1 (Ψ�퐿Φ̃𝑡�푅 + h.c) ln[(𝑥4 (Ψ�퐿Φ̃𝑡�푅 + h.c))
Λ4 ]

+ 𝑘2 (Ψ�퐿Φ̃𝑡�푅 + h.c) ln[𝑦4𝜙4Λ4 ] ,
(19)

where the anomaly requires that 4𝑘1 + 4𝑘2 = 𝛽(𝑦)/√2,
where 𝑦 is the top Yukawa coupling. Here again 𝑘1 and 𝑘2
are arbitrary dimensionless coefficients.

The most interesting and complicated term to evaluate is
however that of the mass of the Higgs bosons in conjunction
with that of the quadrilinear coupling 𝜆. The mass term is
not scale invariant already at tree level and the trace of the

energy momentum tensor will receive corrections also at the
quantum level. A suitable potential is then

𝑉5 = 12 (𝑚2 −
𝛽 (𝑚2)
2 )Φ†Φ

+ 𝑟1 [Φ†Φ]2 ln[[
𝑥5 [Φ†Φ]2Λ4 ]

]
+ 𝑟2 [Φ†Φ]2 ln[𝑦5Φ4Λ4 ] .

(20)

HereΦ is the regularHiggs doublet and 𝑟1 and 𝑟2 are arbitrary
dimensionless coefficients. First term gives the correct mass
anomaly and the second and third terms give the correct 𝜆
anomaly provided that 4𝑟1 + 4𝑟2 = 𝛽(𝜆)/24. The equation of
motion 𝜕𝑉5/𝜕Φ = 0 leads to

2𝑟1 [Φ†Φ] ln[[
𝑥5 [Φ†Φ]2Λ4 ]

]
+ 2𝑟1 [Φ†Φ]

+ 2𝑟2 [Φ†Φ] ln[𝑦5Φ4Λ4 ] + 12 (𝑚2 −
𝛽 (𝑚2)
2 )

= 0.

(21)

Equation (21) is a transcendental equation. To solve it, we first
make the notations:

𝑋 = [Φ†Φ] ,
𝑎 = 4𝑑1,
𝑏 = 2𝑑1 ln [ 𝑥5Λ4 ] + 2𝑑2 ln[𝑦5Φ

4

Λ4 ] + 2𝑑1,

𝑐 = 12 (𝑚2 −
𝛽 (𝑚2)
2 ) .

(22)

Then (21) may be rewritten as

𝑎𝑋 ln [𝑋] + 𝑏𝑋 + 𝑐 = 0. (23)

We denote 𝑌 = exp[𝑏/𝑎]𝑋 to determine

𝑌 = 𝑊[− 𝑐𝑎 exp [𝑏𝑎]] , (24)

where 𝑊(𝑥) is the Lambert function. We can assume 𝑥 =−(𝑐/𝑎) exp[𝑏/𝑎] to be small (making the final choice of the
coefficients as such), in which case𝑊(𝑥) ≈ 𝑥. This leads to
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𝑋 = exp [−𝑏𝑎 − 𝑐𝑎 exp [𝑏𝑎]] . (25)

We introduce (25) into (20) to determine

𝑉5 = 𝑐 exp [−𝑏𝑎] − 𝑎4 exp [−2𝑏𝑎 ] , (26)

or by using (22)

𝑉5 = 12 (𝑚2 −
𝛽 (𝑚2)
2 ) √𝑦5√𝑥5

⋅ exp[−12 − 12 (1 + 𝑟2𝑟1) ln[
𝑦5Φ4Λ4 ]] − 𝑑1 𝑦5𝑥5

⋅ Φ4exp[−1 − (1 + 𝑟2𝑟1) ln[
𝑦5Φ4Λ4 ]] .

(27)

The full potential is then

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 + 𝑉5 + 124𝜆Φ4. (28)

Note that we could safely introduce the 𝜆 term because it is
scale invariant.

3. Trace Anomaly Inspired Particular Potential

The effective potential in (28) is constructed by analogy with
low energy QCD effective models and contains in its most
general form 20 parameters and 5 constraints. In order to
substantiate that nevertheless this is a good phenomenologi-
cal model, we need to stress out three important points: (1)
The effective potential built here is an all orders potential
and even if it contains a proliferation of parameters, these
parameters encapsulate the intrinsic dependence on higher
order loops without making any explicit calculations. Since
computing beta functions and anomalous dimensions is
far more amenable than calculating an effective potential
or other processes at the same loop order, the apparent
complexity leads in essence to an effective simplification. (2)
The potential in (28) is completely independent of the nature
elementary or composite of theHiggs boson and it is a reliable
description also for the case when some strong dynamics are
at play in the electroweak symmetry breaking. Note that the
composite scenario is not completely excluded by the LHC or
other experimental data [30]. (3) The number of parameters
may be greatly reduced bymaking an educated guess of some
of the parameters by analogy with low energy QCD [28]
or even with the standard construction of the Higgs one-
loop effective potential as described in the literature [14, 15].
Thus one can choose from physical arguments related to the

relative renormalization of the wave function of the Higgs
field the following expression for the constrained parameters:

𝑏1 = 14 [
𝛽 (𝑔�耠)
2𝑔�耠 − 𝛾2] ,

𝑐1 = 14 [𝛽 (𝑔)2𝑔 − 𝛾2] ,
𝑑1 = 14 [𝛽 (𝑔3

)
2𝑔3 − 𝛾2] ,

𝑏2 = 𝑐2 = 𝑑2 = 𝛾8 ,
𝑘1 = 14 [𝛽 (𝑦)√2 − 𝛾𝑦√2] ,
𝑘2 = 14 𝛾𝑦√2 ,
𝑟1 = 14 [𝛽 (𝜆)24 − 4𝛾𝜆24 ] ,
𝑟2 = 14 4𝛾𝜆24 .

(29)

Here 𝛽(𝑔�耠), 𝛽(𝑔), 𝛽(𝑔3), 𝛽(𝑦), and 𝛽(𝜆) are the beta functions
for the coupling constants of the 𝑈(1)�푌, 𝑆𝑈(2)�퐿, and 𝑆𝑈(3)�푐
groups, the quadrilinear term in the Higgs potential, and the
top Yukawa coupling, respectively (we use the results in [11]).
Moreover 𝛾 is the anomalous dimension of the Higgs field.

Moreover the parameters 𝑥�푖 and 𝑦�푖 are redundant because
they are already associated with a factor in front of the
respective terms so they may be chosen as

𝑥1 = 𝑦1 = 14 ,
𝑥2 = 𝑦2 = 14 ,
𝑥3 = 𝑦3 = 14 ,
𝑥4 = 𝑦4 = 𝑦√2,
𝑥5 = 𝑦5 = 𝜆24 .

(30)

Here we took into account as arguments of the logarithm the
natural expressions of the scalar polynomials as they appear
in the Lagrangian.

Next we will set Φ constant and apply the standard
approach for constructing effective potentials. We denote
[14, 15]

Φ (𝑡) = 𝜉 (𝑡) Φ, (31)

where 𝑡 is the running parameter 𝜇(𝑡) = 𝑚�푍 exp[𝑡] and
𝜉 (𝑡) = exp [−∫�푡

0
𝛾 (𝑡�耠) 𝑑𝑡�耠] . (32)
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Figure 1: Plot of (𝜕𝑉/𝜕Φ)|Φ=V as function of the parameter 𝜆 in the
effective potential 𝑉.

Note that, for 𝜇(𝑡) = 𝑚�푍, 𝑡�푍 = 0. We consider all the
parameters computed at this scale and apply the minimum
equation:

𝜕𝑉𝜕Φ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨�푡=�푡𝑍 = 0. (33)

In (33), all couplings are known except for 𝜆. We further
require that the minimum is obtained for Φ = V =246.22GeV and solve the minimum equation for the param-
eter 𝜆. Here we make the underlying assumption that if
the potential is phenomenologically viable as an effective
potential, then it should lead to a mass of the Higgs boson
very close to the actual mass (this is actually exact in the
on-shell subtraction scheme where the renormalized mass is
equal to the pole one).

In Figure 1, we plot (𝜕𝑉/𝜕Φ)|Φ=V in terms of the param-
eter 𝜆 to determine 𝜆 = 0.852. We use this value to further
calculate

𝜕2𝑉𝜕Φ2 = 𝑚2ℎ. (34)

Then the resulting mass of 𝑚ℎ = 126.15GeV is very close to
the actual experimental mass of the Higgs boson 𝑚ℎexp =125.09GeV. By varying the top Yukawa coupling (here we
took 𝑦 = 𝑚�푡/√2V with the mass of the top quark 𝑚�푡 =174.135GeV [30]), one can reproduce the exact pole mass of
the Higgs boson.

4. Higgs Effective Couplings to Two Photons
and Two Gluons

An unusual feature of the potential obtained in Section 2
and particularized in Section 3 is that it contains terms of
the type ln[𝐺�휇]𝐺�휇]/Λ4] (exemplified here for 𝑈(1)�푌). These
terms are finally integrated out. The logarithms introduce
singularities if the fields are close to zero but we fixed the
scale of our potential, the electroweak scale, so we expect
values of the fields around that scale. For all range of values,
however one would need to regularize the corresponding
terms.Things can also be regarded differently. Depending on
the nature of their beta functions, the couplings of the gauge
fields may become strong at higher or lower scales. Then it is

possible that at that scale a phase transition occurs and gauge
condensates forms. Neglecting the anomalous dimensions of
the gauge fields, then it makes sense to expand the logarithms
against the scale where the coupling becomes strong which
virtually would be identified with the scale of the condensate.
This approach which we will consider here is very helpful
in determining the Higgs couplings to two photons and two
gluons for the potential in Section 3.

To illustrate this, we first consider the decay of the Higgs
boson to two photons discussed in detail in the literature [31–
33]. For a Higgs coupling with two photons of the type

12𝐹ℎ𝐹�휇]𝐹�휇]ℎ, (35)

where 𝐹�휇] is the electromagnetic tensor, ℎ is the Higgs boson,
and𝐹ℎ is the coupling, the amplitude of the two-photon decay
of the Higgs is [32]

𝐴 (ℎ 󳨀→ 𝛾𝛾)
= 𝐹ℎ (𝑘1�휇𝜖1] − 𝑘1]𝜖1�휇) (𝑘2�휇𝜖2] − 𝑘2]𝜖2�휇) , (36)

where 𝑘1 and 𝑘2 are the momenta of the two photons and 𝜖1
and 𝜖2 are their polarization. In the standard model at one
loop [33]

𝐹ℎ = 𝑒2𝑔
(4𝜋)2𝑚�푊

12𝐹, (37)

where

𝐹 = 𝐹�푊 (𝛽�푊) +∑
�푓

𝑁�푐𝑄2�푓𝐹�푓 (𝛽�푓) . (38)

Here𝑁�푐 is the color factor (𝑁�푐 = 2 for leptons and𝑁�푐 = 3 for
quarks) and

𝛽�푊 = 4𝑚2�푊𝑚2
ℎ

,

𝛽�푓 = 4𝑚
2
�푓𝑚2
ℎ

.
(39)

Furthermore,

𝐹�푊 (𝛽) = 2 + 3𝛽 + 3𝛽 (2 − 𝛽) 𝑓 (𝛽) ,
𝐹�푓 (𝛽) = −2𝛽 [1 + (1 − 𝛽) 𝑓 (𝛽)] , (40)

with

𝑓 (𝛽) = arcsin2 (𝛽−1/2) for 𝛽 ≥ 1,
𝑓 (𝛽) = −14 [ln[1 +

√1 − 𝛽
1 − √1 − 𝛽] − 𝑖𝜋]

2 . (41)

For the values of the parameters at the electroweak scale and
considering only the top quark, the couplings 𝐹 (of Higgs to
two photons) and 𝐹�푡 (of Higgs to two gluons) have the values

𝐹�푡 = −1.376,
𝐹 = 6.5. (42)
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For comparison, wewill determine theHiggs couplings in
our potential before integrating out the gauge fields. We will
explain in detail how this works for the decay to two photons
of the Higgs boson and apply briefly our results to the two-
gluon decay of the Higgs boson because the results are very
similar. The relevant term in the Lagrangian is

L�푠 = −𝑏1𝐺�휇]𝐺�휇] ln[𝐺
�휇]𝐺�휇]4𝑚4�푍 ]

− 𝑏2𝐺�휇]𝐺�휇] ln[ Φ44𝑚4�푍]

− 𝑐1𝐹�푎�휇]𝐹�푎�휇] ln[𝐹
�푎
�휇]𝐹�푎�휇]4𝑚4�푍 ]

− 𝑐2𝐹�푎�휇]𝐹�푎�휇] ln[ Φ44𝑚4�푍] .

(43)

We expand around the Higgs vev:

ln[ Φ44𝑚4�푍] = ln[(V + ℎ)44𝑚4�푍 ] = ln[ V44𝑚4�푍] +
ℎ
V
+ ⋅ ⋅ ⋅ , (44)

where we detained only the relevant terms. We use

𝐺�휇]𝐺�휇] = cos2𝜃�푊𝐹�휇]𝐹�휇] + ⋅ ⋅ ⋅ ,
𝐹�푎�휇]𝐹�푎�휇] = sin2𝜃�푊𝐹�휇]𝐹�휇] + ⋅ ⋅ ⋅ , (45)

where 𝐹�휇] is the electromagnetic tensor.
The logarithms of the gauge fields are then expanded

around the scale where the coupling constant is strong which
is 𝑔�耠2 = 1 for the 𝑈(1)�푌 group (such that 𝑒2�푎 = cos2𝜃�푊𝑔�耠2 =
cos2𝜃�푊, where 𝑒2�푎 is the electric charge at that scale) and 𝑔2 =1 for 𝑆𝑈(2)�퐿 (such that 𝑒2�푏 = sin2𝜃�푊, where 𝑒2�푏 is the electric
charge at the second scale). One can use the beta function for
the electromagnetic coupling,

𝑑𝑒𝑑 ln (𝜇) = 116𝜋2 113 𝑒3, (46)

to integrate it out:

12𝑒2�푍 −
12𝑒21 =

116𝜋2 113 ln [ 𝜇1𝜇�푍] , (47)

where 𝜇�푍 = 𝑚�푍 is the electroweak scale and 𝜇1 is the strong
coupling scale to find

ln[𝜇41�푎𝑚4�푍] =
61116𝜋2 [ 1𝑒2�푧 −

1
cos2𝜃�푊] ,

ln[𝜇41�푏𝑚4�푍] =
61116𝜋2 [ 1𝑒2�푧 −

1
sin2𝜃�푊] ,

(48)

where 𝜇1�푎 is the scale where 𝑔�耠2 ≈ 1 and 𝜇1�푏 is the scale where𝑔2 ≈ 1. Then one can rewrite (43) as

L�푆 = −𝑏1cos2𝜃�푊𝐹�휇]𝐹�휇] ln[𝜇41�푎𝑚4�푧 ]
− 𝑐1sin2𝜃�푊𝐹�휇]𝐹�휇] ln[𝜇41�푏𝑚4�푧 ]
− 𝑏2𝐹�휇]𝐹�휇] ln[ V44𝑚4�푍] − 𝑏2𝐹

�휇]𝐹�휇] ℎV + ⋅ ⋅ ⋅ ,
(49)

where we omitted the irrelevant terms which are assimilated
with interactions. Here we also used the fact that 𝑏2 = 𝑐2.

Consequently, the kinetic terms for the electromagnetic
field receive a factor 𝑠

𝑠 = 4𝑏1cos2𝜃�푊 61116𝜋2 [ 1𝑒2�푍 −
1

cos2𝜃�푊]
+ 4𝑐1sin2𝜃�푊 61116𝜋2 [ 1𝑒2�푍 −

1
sin2𝜃�푊]

+ 4𝑏2 ln[ V44𝑚4�푍] ,
(50)

which leads to an amplitude of Higgs decay to two photons as
follows:

𝐴�푉 (ℎ 󳨀→ 𝛾𝛾)
= −8𝑏2

V𝑠 (𝑘1�휇𝜖1] − 𝑘1]𝜖1�휇) (𝑘2�휇𝜖2] − 𝑘2]𝜖2�휇) . (51)

From (36), (37), and (51), we obtain the correspondence:

−8𝑏2𝑠 󳨀→ 𝐹, (52)

where, for our model,
−8𝑏2𝑠 = 6.821. (53)

The result in (53) is very close to the value for the one loop in
the standard model computed in (42).

The same method can be applied to the two-gluon decay
of the Higgs boson at the scale of reference ΛQCD such that

ln
Λ4QCD𝑚4�푍 = 16𝜋2 (−72 1𝑔23�푍) , (54)

where 𝑔3�푍 is the strong coupling constant at the electroweak
scale 𝑚�푍. The kinetic term for the gluon field will receive a
factor:

𝑠�耠 = 4𝑑1 (−2716𝜋2 1𝑔23�푍) + 4𝑑2 ln[
V44𝑚4�푍] . (55)

The amplitude of Higgs decaying to two gluons is

𝐴 (ℎ 󳨀→ 𝑔𝑔)
= −8𝑑2𝑠�耠V (𝑘1�휇𝜖�푎1] − 𝑘1]𝜖1�휇) (𝑘2�휇𝜖�푎2] − 𝑘2]𝜖2�휇) . (56)
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Here 𝑘1 and 𝑘2 are the momenta of the two gluons and 𝜖�푎1
and 𝜖�푎2 are their polarization. Then from (37) and (56), the
following correspondence is obtained:

−8𝑑2𝑠�耠 󳨀→ 𝑓2, (57)

where for ourmodel −8𝑑2/𝑠�耠 = −1.091 again very close to the
standard model value computed at one loop in (37).

In this section, we computed the decay widths to two
photons and two gluons of the Higgs boson in the context
of an effective model. These decay widths as stated here
depend on four parameters 𝑏2, 𝑑2, 𝑠, and 𝑠�耠 which in their
turn depend on the top Yukawa and the gauge coupling
constants. Again from low energy QCD [26, 27], we learn
that in the context of an effective theory one should not
expect that the parameters that describe the effective widths
should be directly related to those employed in standard tree
level or one-loop calculations or to those employed in other
types of models that describe the same processes. For a
phenomenological model to be viable, it is necessary and
sufficient only that the phenomenological result is aligned to
the experimental data or other consistent theoretical results.

5. Conclusions

In this work, we proposed an effective Higgs model con-
structed not by integrating out at one or two loops the gauge,
fermion, and scalar degrees of freedom but by analogy with
the low energy QCD linear sigma models. Thus this kind
of model may be suitable for both when the Higgs boson is
elementary and also when it is the result of some unknown
strong dynamics. All terms in this potential apart from the𝜆 term are directly derived from the trace anomaly expressed
as the product between the beta function of the coupling con-
stant and the two-dimensional or four-dimensional operators
characterized by it. First we constructed a general potential
that contained a number of 20 parameters along with 5
constraints. In this case, available phenomenological data
might be used to fix the parameters.

Next we consider a particular case of the potential again
inspired by the construction of low energy QCD effective
models [28] and also from the construction of the standard
one-loop effective Higgs models [14, 15]. Moreover we elim-
inated all redundant parameters. We fixed the scale of our
model at 𝜇 = 𝑚�푍 and applied the minimum condition𝜕𝑉/𝜕Φ = 0 for Φ = V to determine the value of the
quadrilinear coupling constant 𝜆. With this value, we further
computed the Higgs mass as 𝜕2𝑉/𝜕Φ2 = 𝑚2ℎ. Our result of𝑚ℎ = 126.15GeV agreed well with the known experimental
value of the Higgs boson𝑚ℎexp = 125.09 ± 0.24GeV.

In the same framework but before integrating out the
gauge degrees of freedom, we determined the effective Higgs
couplings to two photons and two gluons again in good
accordance with what we know from one-loop calculations.
This shows that the particular case of the model we proposed
already describes very well at least a few phenomenological
quantities. The potential derived here can be used to extract
other possible couplings along the same lines.

The presence of a large number of parameters in the most
general version of the model constructed here should not be
regarded as a lack of predictability as compared to standard
calculations at some loop order of the effective potential but
as away of encapsulating our lack of knowledgewith regard to
higher loop corrections to the phenomenological parameters.
Since in general it is easier to compute beta functions and
anomalous dimensions than intricate processes, this kind of
model, especially if one uses physical arguments to further
constrain or determine some of the parameters, may have
important applications.

One potential application of our model would be to study
the vacuum stability of the standard model. This topic was
thoroughly studied in the framework of regular one-loop
or two-loop renormalization improved effective potentials
[11, 12]. Some authors [34, 35] argued that since the actual
mass of the Higgs boson discovered at the LHC situates the
standard model at the border between absolute stability and
metastability, the lack of gauge invariance of usual effective
model may play a negative role in this issue. Of course any
effective potential expressed in terms of the classical field
is nongauge invariant but any physical quantities obtained
from it should be gauge invariant. Not only does the potential
constructed here satisfy in detail the trace anomaly, but
also, in its primitive form before integrating out the gauge,
fermions and scalars degrees of freedom have all the terms
gauge invariant again apart from the classical field. Then one
can extract useful gauge invariant effective couplings of the
Higgs boson with the other fields in the standard model
Lagrangian.

Other possible aspects and applications of our method
will be investigated in further work.
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