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In this paper, the problem of direction-of-arrival (DOA) estimation for strictly noncircular sources under the condition of unknown
mutual coupling is concerned, and then a robust real-valued weighted subspace ftting (WSF) algorithm is proposed via block sparse
recovery. Inspired by noncircularity, the real-valued coupled extended array output with double array aperture is frst structured via
exploiting the real-valued conversion.Ten, an efcient real-valued block extended sparse recovery model is constructed by performing
the parameterized decoupling operation to avoid the unknown mutual coupling and noncircular phase efects. Tereafter, the WSF
framework is investigated to recover the real-valued block sparsematrix, where the spectrumof real-valuedNCMUSIC-like is utilized to
design aweightedmatrix for strengthening the solutions sparsity. Eventually, DOA estimation is achieved based on the support set of the
reconstructed block sparse matrix. Owing to the combination of noncircularity, parametrized decoupling thought, and reweighted
strategy, the proposed method not only efectively achieves high-precision estimation, but also efciently reduces the computational
complexity. Plenty of simulation results demonstrate the efectiveness and efciency of the proposed method.

1. Introduction

Tanks to the growing maturity of array signal processing
technology, parameter estimation gradually occupies an
important position in the felds of vehicle positioning, radar,
medical diagnosis, and so on [1]. As one of the bases for
parameter estimation, direction-of-arrival (DOA) estima-
tion has been a hot topic for decades accompanied by a series
of work [2–4]. Afterwards, benefting from the increasing
development of multiple-input multiple-output (MIMO)
technique, MIMO radar architectures have been developed
to provide high degrees of freedom (DOF) and resolution for
DOA estimation [5]. Unfortunately, the distance between
sensors decreases as the number of antennas increases for a
fxed array aperture. It means that it is quite possible for
closely-spaced sensors to sufer from the unknown mutual
coupling efect. Tereby, it is worthwhile to study DOA
estimation with strong robustness. In this way, this paper

mainly investigates the robust DOA estimation of strictly
noncircular sources with unknown mutual coupling.

Generally speaking, many DOA estimation attempts can
be roughly divided into subspace-based methods [6–9] and
sparse signal recovery (SSR) methods [10–13]. Multiple
signal classifcation (MUSIC) method [6] uses the decoupled
noise subspace to frst achieve super-resolution direction
fnding, diferent from estimation of signal parameters via
rotational invariance techniques (ESPRIT) algorithm [7]
based on the decoupled signal subspace. It should be pointed
out that these approaches have difculty in achieving sat-
isfactory performance under low signal-to-noise ratio
(SNR), insufcient snapshots, or correlated sources.
Tereafter, sparse recovery technique ofers a feasible per-
spective to overcome these drawbacks, which can be cate-
gorized into norm optimization estimators [10, 11] and
sparse Bayesian learning (SBL) approaches [12, 13]. Fur-
thermore, it has been demonstrated that SSR algorithms are
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better than subspace-based methods in challenging cir-
cumstances, such as unsatisfactory SNR or inadequate
snapshots [14].

It can be found that the above methods study circular
signals by default. However, in recent years, DOA esti-
mation of noncircular sources has received extensive at-
tention in parameter estimation [15]. Tis is largely due to
its wide distribution and natural superiorities. To the best
of our knowledge, noncircular sources are commonly seen
in practical communication systems [16], such as ampli-
tude modulation (AM) and binary phase shift keying
(BPSK). More importantly, noncircular sources can
achieve higher accuracy and detect more targets than the
default circular sources [17]. Subsequently, numerous al-
gorithms [18–24] have been presented for noncircular
sources that show the advantage in accuracy. On the one
hand, there are lots of attempts achieved by subspace
technology [18–20]. As shown in [18], noncircular MUSIC
(NC MUSIC) algorithm is derived via combining non-
circularity with MUSIC principle. Whereas, large-scale
spectral peak search results in relatively high computa-
tional complexity. After that, noncircular root MUSIC (NC
Root-MUSIC) approach [19] and noncircular conjugate
ESPRIT (NC C-ESPRIT) algorithm [20] are introduced for
tackling the above problem. On the other hand, DOA
estimation for noncircular sources is implemented from
the perspective of sparse reconstruction [21–24]. In
[21, 22], the joint sparsity-aware schemes for array and
monostatic MIMO radar system are put forward, respec-
tively. With the in-depth research on sparsity, not only
block sparsity but also rank sparsity are simultaneously
utilized to model a nuclear norm penalty framework for
enhancing the solutions sparsity [23]. Although this
method has superiorities in estimation accuracy and res-
olution, it is computationally expensive. Tereby, a unitary
nuclear norm minimization strategy [24] is further pre-
sented to reduce the computational complexity.

It is noted that the array manifolds of the above methods
are normally assumed to be ideal. Nevertheless, such hy-
pothesis may not be applicable to practice due to the ex-
istence of array manifold perturbations, like mutual
coupling [25, 26]. It is generally believed that there may be
unknown mutual coupling between closely-spaced antennas
afected by the interaction of space electromagnetic felds
[26]. Tis perturbation leads to undesired array manifold,
thereby degrading or even invalidating the estimation
performance of these approaches. Afterwards, a large
number of calibration ideas are designed to deal with the
problem of unknown mutual coupling [27–38].

For one thing, a series of calibrations [27–34] for cir-
cular sources have been attempted to estimate DOAs. In
[27], the unknown mutual coupling is modeled as a
complex band symmetric Toeplitz structure, and then
additional auxiliary sensors are added to compensate.
Similarly, the selection matrix is further designed by setting
the antennas at both ends of the original array to be
auxiliary sensors [28]. Unfortunately, these approaches can
only maintain normal direction fnding at the expense of
array aperture. For preserving the array aperture as much

as possible, the parameterized decoupling idea [29] is in-
troduced to decouple the angle parameter and mutual
coupling coefcients. Although this method uses whole
data, its application scope is still limited because it belongs
to subspace-based methods. Diferent from these eforts
using subspace technology, relevant works [30–34] on
sparse recovery have also been carried out. As introduced
in [30], a revised l1-SVD (singular value decomposition)
algorithm is structured by designing a specifc selection
matrix in array. Analogously, the selection matrix is further
implanted into the MIMO framework [31]. Actually, both
the auxiliary sensors and the selection matrix can be
regarded as two embodiments of array compensation. But
they all sacrifce the array aperture. Aiming at this drawback,
an efective block sparse recovery (BSR) approach [32] is
presented by replacing array compensation with parame-
terized decoupling. Moreover, a reweighted BSR algorithm
[33] and a weighted subspace ftting (WSF) method [34] are
further reported for acquiring higher accuracy.

For another, some studies [35–40] on noncircular
sources have been done to estimate DOAs. In [35], a se-
lection matrix is frst constructed to remove the negative
infuence so as to directly apply ESPRITprinciple. Similar to
[27, 28], it is achieved at the expense of array aperture.
Subsequently, an efcient real-valued rank reduction method
[36] using MUSIC principle is derived to efectively avoid the
unknown mutual coupling efect and protect the precious
array aperture. However, these methods are still subject to the
limitations of subspace technology, unlike robust SSR algo-
rithms. In view of this shortcoming, the joint reweighted
sparsity-inducing scheme based on SVD principle [37] and
WSF principle [38] are put forward, respectively. Whereas,
their computational complexity is relatively higher than that
of subspace-based methods in [35, 36].

In this work, an efcient real-valued WSF algorithm with
block sparse recovery is presented for DOA estimation of
strictly noncircular sources under unknown mutual coupling.
First, a real-valued block extended sparse recovery model is
formed to avoid the unknownmutual coupling and noncircular
phase efects. Subsequently, the regularization framework be-
tween sparsity penalty and subspace ftting error is investigated.
Finally, a real-valued reweighted block sparse recovery ap-
proach is explored to achieve WSF for DOA estimation. Te
proposed method efectively maintains high accuracy and ef-
fciently reduces the computational load.Te simulation results
confrm the correctness of the above deduce.

Te main contributions of the proposed method are
summarized as follows:

(a) Perform a real-valued conversion to reduce the
computational burden, and then construct a real-
valued coupled extended data by exploiting
noncircularity.

(b) Eliminate the unknown mutual coupling and non-
circular phase interferences through parameterized
decoupling operation without array aperture loss.

(c) Structure a real-valued noncircular MUSIC-like (NC
MUSIC-like) weighted matrix to enhance the solu-
tions sparsity.
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(d) Develop a robust real-valued WSF framework to
estimate DOAs by block sparse recovery.

It is noted that some important notations adopted in this
article are defned in Table 1.

2. Data Model for DOA Estimation

2.1. Problem Formulation. Suppose that K far-feld uncor-
related narrowband NC sources sd,k􏽮 􏽯

K

k�1 incident on a
uniform linear array (ULA) equipped with M omnidirec-
tional antennas. Te distinct DOAs can be denoted as
θ � [θ1, θ2, . . . , θK]. Ten, the array output in the ideal
environment can be structured as

x(t) � Asd(t) + n(t), (1)

where x(t) � [x1(t), x2(t), . . . , xM(t)]T ∈ CM×1 is the re-
ceived data. n(t) � [n1(t), n2(t), . . . , nM(t)]T ∈ CM×1 stands
for the complex additive Gaussian white noise vector with
zero mean. Meanwhile, sd(t) � [sd,1(t), sd,2(t), . . . ,

sd,K(t)]T ∈ CK×1 means the noncircular signal vector. A �

[a(θ1), a(θ2), . . . , a(θK)] ∈ CM×K indicates the ideal array
manifold matrix. As the k th column of matrix A, a(θk) is
known as array manifold corresponding to k th target and
satisfes a(θk) � [1, ρ(θk), . . . , ρM− 1(θk)]T ∈ CM×1, where
ρ(θk) � ej](θk) with ](θk) � −2π d/λn sin(θk). d represents

the distance between adjacent antennas and λn denotes the signal
wavelength. Obviously, the data model in (1) is not afected by
any array manifold perturbations, such as mutual coupling [37]
and gain-phase error [9]. Unfortunately, as the number of
antennas increases, the distance between sensors decreases.
Hence, due to the fact that space electromagnetic feld interacts
with each other, closely-spaced antennas are vulnerable to
unknown mutual coupling, as illustrated in Figure 1.

It has been demonstrated that the mutual coupling
coefcients between antennas are inversely proportional to
their spacing. Tat is to say, the larger the sensors spacing,
the weaker the mutual coupling efect, and the smaller the
corresponding coefcients. Moreover, when the antennas
are far enough away from each other, it is reasonable to
ignore the impact of unknown mutual coupling. Ten, a
structure of complex banded symmetric Toeplitz in [27] is
utilized to model the mutual coupling matrix (MCM), i.e.,

G � Toeplitz 1, g1, . . . , gH−1, 01×(M−H)􏽨 􏽩􏼐 􏼑 �

1 g1 . . . gH−1

g1 1 g1 . . . gH−1 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱

gH−1 · · · g1 1 g1 · · · gH−1

⋱ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱

gH−1 · · · g1 1 g1 · · · gH−1

0 ⋱ ⋮ ⋱ ⋱ ⋱ ⋮

gH−1 · · · g1 1 g1

gH−1 · · · g1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where gc􏼈 􏼉
H−1
c�1 refer to the unknown nonzero mutual cou-

pling coefcients, whose c th element gc � λce
jφc is made up

of amplitude coefcient λc and phase coefcient φc,

respectively. It can be clearly seen that there are H nonzero
mutual coupling coefcients, which satisfy
0< |gH−1|< |gH−2|< , . . . , < |g2|< |g1|< |g0| � 1. Ten, the

Table 1: Some important notations.

Notations Defnitions
(·)T , (·)∗ and (·)H Transpose, conjugate, and conjugate-transpose operations
(·)† and | · | Pseudo-inverse and absolute value operations
Re[·] and Im[·] Real and imaginary part operations
0M×K M × K dimensional zero matrix
IM M × M dimensional identity matrix
diag ·{ } and blkdiag ·{ } Diagonalization and block diagonalization operations
E ·{ } Mathematical expectation operation
tr ·{ } and det ·{ } Trace and determinant operations
‖ · ‖0 , ‖ · ‖1, and ‖ · ‖2 l0-norm, l1-norm, and l2-norm
‖ · ‖F Frobenius norm

Sourceθk

gH-1 gH-1g1 g1

… … … …

Figure 1: Mutual coupling model of ULA.
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ideal array manifold is afected by the unknown mutual
coupling in antennas, which should be revised as

a
∧
θk( 􏼁 � Ga θk( 􏼁. (3)

Tereby, the practical array output under the condition
of unknown mutual coupling can be written as

y(t) � GAsd(t) + n(t), (4)

where y(t) � [y1(t), y2(t), . . . , yM(t)]T ∈ CM×1 represents
the actual received data disturbed by unknown mutual
coupling, unlike x(t) in (1).

According to the above introduction, sd(t) denotes the
noncircular source, which means that its noncircular rate ξ
ranges from 0 to 1, including the upper limit [38]. When
referring to the maximum noncircular rate ξ � 1, the ra-
diation signal can be defned as the strictly noncircular
source, like AM modulation signal. In this paper, strictly
noncircular sources are considered. It has revealed in [22]
that the complex strictly NC source sd(t) in (4) can be
further expressed as

sd(t) � Φs(t), (5)

where Φ � diag(ejϕ1 , ejϕ2 , . . . , ejϕK ) ∈ CK×K stands for the
rotation phase shift matrix corresponding to
ϕ � [ϕ1,ϕ2, . . . ,ϕK], which can be arbitrary for each source.
s(t) � [s1(t), s2(t), . . . , sK(t)]T ∈ RK×1 is the real-valued
signal vector corresponding to the complex-valued vector
sd(t). In this way, taking (5) back to (4), the actual array
output can be represented as

y(t) � GAsd(t) + n(t) � GAΦs(t) + n(t). (6)

2.2. Real-ValuedConversion forNoncircular Sources. In view
of the noncircularity advantages, many researches on
noncircular sources directly construct the extended signal
model achieved by the received data and its conjugate form.
However, the data belongs to the complex domain, which
inevitably leads to the high computational burden. Diferent
from the above classical processing in the complex domain, a
real-valued conversion is frst applied to the received data for
structuring an extended data model in the real domain [36].

Tanks to the real-valued transformation, the computation
load is greatly reduced to accelerate the direction fnding
speed. Ten, following the idea in [36], the real and
imaginary parts of the actual array output can be extracted as

yR(t) � Re[y(t)]

�
y(t) + y∗(t)􏼂 􏼃

2

�
GAΦ + G∗A∗Φ∗( 􏼁

2
􏼢 􏼣s(t) + Re[n(t)]

� ARs(t) + nR(t),

(7)

yI(t) � Im[y(t)]

�
y(t) − y∗(t)􏼂 􏼃

2j

�
GAΦ − G∗A∗Φ∗( 􏼁

2j
􏼢 􏼣s(t) + Im[n(t)]

� AIs(t) + nI(t),

(8)

where nR(t) ∈ RM×1 and nI(t) ∈ RM×1 express the real and
imaginary components achieved by the complex noise
vector n(t) ∈ CM×1. AR � [aR(θ1, ϕ1,G), aR(θ2,ϕ2,G), . . . ,

aR(θK, ϕK,G)] ∈ RM×K and AI � [aI(θ1, ϕ1, G), aI(θ2, ϕ2,
G), . . . ,aI(θK, ϕK, G)] ∈ RM×K are the virtual coupled ar-
ray manifold matrices of yR(t) and yI(t), respectively.
Moreover, as one of the columns in AR and AI, aR(θ, ϕ,G)

and aI(θ, ϕ,G) simultaneously contain the unknown
mutual coupling coefcients and noncircular phase. Tey
can be represented as

aR(θ, ϕ,G) �
Ga(θ)e

jϕ
+ G∗A∗(θ)e

− jϕ
􏼐 􏼑

2
,

aI(θ, ϕ,G) �
Ga(θ)e

jϕ
− G∗A∗(θ)e

− jϕ
􏼐 􏼑

2j
.

(9)

Combining (7) and (8), a real-valued coupled extended
signal model can be designed as

(1) Input: Te actual received signal y(t) in (6);
(2) Extract the real and imaginary parts of y(t) based on (7) and (8) to formulate the real-valued coupled extended array output yRI(t)

in (10);
(3) Calculate the sampling covariance matrix R of yRI(t) by (13);
(4) Perform eigenvalue decomposition on R to acquire the signal subspace Es and the noise subspace En in (14);
(5) Construct the optimal weighted matrix Wopt according to (14);
(6) Form the over-complete dictionary ARI in (26) by sparsely representing T(θk) of 􏽢ARI in (21) to develop a sparse representation

model in (27);
(7) Structure the real-valued NC MUSIC-like weighted matrix D adopting (33) to enhance the solutions sparsity;
(8) Design the reweighted regularized framework based on WSF principle in (35);
(9) Output: Te reconstructed real-valued sparse vector rl2 ;
(10) Perform a 1-D spectrum search to fnd the K maximum values for DOA estimation.

ALGORITHM 1: Real-valued weighted subspace ftting algorithm with block sparse recovery.
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yRI(t) �
yR(t)

yI(t)
􏼢 􏼣 ​

� ​
AR

AI

􏼢 􏼣s(t) +
nR(t)

nI(t)
􏼢 􏼣

� ARIs(t) + nRI(t),

(10)

where ARI � [aRI(θ1, ϕ1,G), aRI(θ2, ϕ2,G), . . . ,aRI

(θK, ϕK,G)] ∈ R2M×K is the real-valued coupled extended
steering matrix. Each column in ARI denotes the coupled
extended array manifold and takes the following structure:

aRI(θ, ϕ,G) �
aR(θ, ϕ,G)

aI(θ, ϕ,G)
􏼢 􏼣. (11)

Ten, the covariance matrix of yRI(t) can be written as

R
∧

� E yRI(t)yH
RI(t)􏽮 􏽯 � ARIRsA

H
RI + σ2I2M, (12)

where σ2 expresses the corresponding noise power. Rs �

E s(t)sH(t)􏼈 􏼉 indicates the signal covariance matrix, whose
rank K′ rests with the source correlation.Tis paper assumes
K′ � K because of the uncorrelated sources presupposition.
In fact, R

∧
can only be obtained when the number of

snapshots approaches infnity. However, it is clearly un-
available and eventually replaced by its maximum likelihood
estimation R in reality. R can be computed by fnite
snapshots T, which takes the following form:

R �
1
T

􏽘

T

t�1
yRI(t)yH

RI(t), (13)

where R refers to the sampling covariance matrix. Ten,
applying eigenvalue decomposition to R, yields

R � 􏽘
2M

m�1
λmδmδ

H
m � EsΩsE

H
s + EnΩnE

H
n , (14)

where λm􏼈 􏼉
2M

m�1 mean the eigenvalues and satisfy
λ1 ≥ λ2 ≥ , . . . , ≥ λK > λK+1 �, . . . , � λ2M. δm􏼈 􏼉

2M

m�1 are the
eigenvectors corresponding to the eigenvalues λm􏼈 􏼉

2M

m�1.
What is more, K larger eigenvalues and their corresponding
eigenvectors are utilized to formulate the diagonal matrixΩs

and the signal subspace Es, respectively, i.e.,
Ωs � diag λ1, λ2, . . . , λK􏼈 􏼉 ∈ RK×K and Es � [δ1, δ2, . . . ,

δK] ∈ R2M×K. In like manner, the diagonal matrix
Ωn � diag λK+1, λK+2, . . . , λ2M􏼈 􏼉 ∈ R(2M− K)×(2M− K) and the
noise subspace En � [δK+1, δK+2, . . . , δ2M] ∈ R2M×(2M− K)

are composed of 2M − K smaller eigenvalues and the cor-
responding eigenvectors [38].

As introduced in [39], the steering matrix spans the same
range subspace as the signal subspace. Similarly, the signal
subspace Es lies in the range space of the real-valued coupled
extended steering matrix ARI, which indicates that Es and ARI

satisfy

Es � ARIU. (15)

where U denotes a column full rank matrix with K × K

dimension. Unfortunately, it is hard for (15) to estimate U
due to the coexistence of unknown parameters, such as
mutual coupling coefcients and noncircular phase.
Tereby, a robust estimator should be designed to overcome
these disturbances.

2.3. ParameterizedDecouplingOperation. It is noted that the
real-valued coupled extended array manifold in (11) is af-
fected by unknown mutual coupling and noncircular phase,
resulting in the failure of many existing ideal direction
fnding algorithms. Inspired by [36], the parameterized
decoupling thought in the real domain is exploited to deal
with the above problem.

Trough parameterizing the virtual coupled array
manifolds aR(θ, ϕ,G) and aI(θ, ϕ,G), yields

aR(θ, ϕ,G) �
Ga(θ)e

jϕ
+ G∗a∗(θ)e

− jϕ
􏼐 􏼑

2

� Ψ
⌢

(θ, ϕ,G)T
⌢

(θ)Σ
⌢

(θ, ϕ,G) − Ψ
⌣

(θ, ϕ,G)T
⌣

(θ)Σ
⌣

(θ, ϕ,G),

(16)

aI(θ, ϕ,G) �
Ga(θ)e

jϕ
− G∗a∗(θ)e

− jϕ
􏼐 􏼑

2j

� Ψ
⌣

(θ, ϕ,G)T
⌢

(θ)Σ
⌣

(θ, ϕ,G) + Ψ
⌢

(θ, ϕ,G)T
⌣

(θ)Σ
⌢

(θ, ϕ,G),

(17)

where
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T
⌢

(θ) �

1

cos (](θ))

⋱ 0

cos ((H − 1)](θ))

⋮

0 cos ((M − H)](θ))

⋱

cos ((M − 1)](θ))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T
⌣

(θ) �

0

sin (](θ))

⋱ 0

sin ((H − 1)](θ))

⋮

0 sin ((M − H)](θ))

⋱

sin ((M − 1)](θ))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ψ
⌢

(θ, ϕ,G) � 􏽘
H−1

c�1−H

λ|c| cos φ|c| + ϕ + c · ](θ)􏼐 􏼑,

Ψ
⌣

(θ, ϕ,G) � 􏽘
H−1

c�1−H

λ|c| sin φ|c| + ϕ + c · ](θ)􏼐 􏼑,

Σ
⌢

(θ, ϕ,G) � τ⌢1(θ), . . . , τ⌢H− 1(θ), 1, σ⌢1(θ), . . . , σ⌢H− 1(θ)􏽨 􏽩
T
,

Σ
⌣

(θ, ϕ,G) � τ⌣1(θ), . . . , τ⌣H− 1(θ), 1, σ⌣1(θ), . . . , σ⌣H− 1(θ)􏽨 􏽩
T
,

τ⌢h(θ) �
Ψ
⌢

(θ, ϕ,G) − 􏽐
H−1
c�h λc cos φc + ϕ − c · ](θ)( 􏼁

Ψ
⌢

(θ, ϕ,G)
,

τ⌣h(θ) �
Ψ
⌣

(θ, ϕ,G) − 􏽐
H−1
c�h λc sin φc + ϕ − c · ](θ)( 􏼁

Ψ
⌣

(θ, ϕ,G)
,

σ⌢h(θ) �
Ψ
⌢

(θ, ϕ,G) − 􏽐
H−1
c�H−h λc cos φc + ϕ + c · ](θ)( 􏼁

Ψ
⌢

(θ, ϕ,G)
,

σ⌣h(θ) �
Ψ
⌣

(θ, ϕ,G) − 􏽐
H−1
c�H−h λc sin φc + ϕ + c · ](θ)( 􏼁

Ψ
⌣

(θ, ϕ,G)
,

(18)
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where h � 1, 2, . . . , H − 1 . T
⌢

(θ) ∈ RM×(2H− 1) and
T
⌣

(θ) ∈ RM×(2H− 1) are the real-valued block matrices and
only depend on angle information. For briefness, F � 2H −

1 is defned in what follows.
It is worth emphasizing that Ψ

⌢
(θ, ϕ,G) and Ψ

⌣
(θ, ϕ,G)

stand for two constants. Tey rely on three parameters,
i.e., angle parameter, mutual coupling coefcients,

and noncircular phase. Additionally, Ψ
⌢

(θ, ϕ,G)≠ 0
and Ψ

⌣
(θ, ϕ,G)≠ 0 occur with extremely high probabil-

ity except for a few very special circumstances.
Tereby, this article defaults Ψ

⌢
(θ, ϕ,G)≠ 0 and

Ψ
⌣

(θ, ϕ,G)≠ 0.
Ten, bringing (16) and (17) back to (11),

aRI(θ, ϕ,G) ∈ R2M×1 can be decoupled as

aRI(θ, φ,G) �
aR(θ,φ,G)

aI(θ, φ,G)
􏼢 􏼣

�
Ψ
⌢

(θ, φ,G)T
⌢

(θ)Σ
⌢

(θ, φ,G) − Ψ
⌣

(θ, φ,G)T
⌣

(θ)Σ
⌣

(θ,φ,G)

Ψ
⌣

(θ, φ,G)T
⌢

(θ)Σ
⌣

(θ, φ,G) + Ψ
⌢

(θ, φ,G)T
⌣

(θ)Σ
⌢

(θ,φ,G)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�
T
⌢

(θ) −T
⌣

(θ)

T
⌣

(θ) T
⌢

(θ)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

􏽼√√√√√√􏽻􏽺√√√√√√􏽽
T(θ)

Ψ
⌢

(θ, φ,G)Σ
⌢

(θ, φ,G)

Ψ
⌣

(θ, φ,G)Σ
⌣

(θ, φ,G)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
Λ(θ,φ,G)

, (19)
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Figure 2: Te spatial spectra for all methods.
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whereT(θ) ∈ R2M×2F andΛ(θ, ϕ,G) ∈ R2F×1 are blockmatrix
and block vector, respectively. It can be discovered that the real-
valued coupled extended array manifold aRI(θ, ϕ,G) ∈ R2M×1

is decoupled into two parts: T(θ) and Λ(θ, ϕ,G). T(θ) only
rests with angle parameter.Terefore, it can be seemed as a new
decoupled extended steering vector, similar to aRI(θ, ϕ,G)

∈ R2M×1 in (11). WhileΛ(θ, ϕ,G) subjects to the interferences
of unknown mutual coupling and noncircular phase.

According to (19), the coupled signal model in (10) can
be further decoupled as

yRI(t) �
yR(t)

yI(t)
􏼢 􏼣 �

AR

AI

􏼢 􏼣s(t) +
nR(t)

nI(t)
􏼢 􏼣

� ARIs(t) + nRI(t) � A
∧

RIΔs(t) + nRI(t)

� A
∧

RIsRI(t) + nRI(t),

(20)

where

􏽢ARI � T θ1( 􏼁,T θ2( 􏼁, . . . ,T θK( 􏼁􏽨 􏽩 ∈ R2M×2FK
,

Δ � blkdiag Λ θ1,φ1,G( 􏼁,Λ θ2,φ2,G( 􏼁, . . . ,Λ θK,φK,G( 􏼁􏼈 􏼉,
(21)

where A
∧

RI denotes the real-valued block extended array
manifold matrix formed by T(θk)(k � 1, 2, . . . , K). It sepa-
rates angle parameter from disturbance factors, such as mutual
coupling coefcients and noncircular phase, making it only
depend on DOAs information. Te block diagonal matrix
Δ ∈ R2FK×K is combined with the real signal vector s(t) to
construct a novel block signal vector sRI(t). i.e.,
sRI(t) � Δs(t) ∈ R2FK×1. It can be found that the (2Fk −

2F + 1) th to (2Fk) th rows in sRI(t) correspond to k th
element in s(t). Besides, both the new extended array
manifold matrix A

∧
RI and the corresponding signal vector

sRI(t) in (20) have block structures for each target, unlike
the original coupled extended steering matrix ARI and the
signal vector s(t) in (10).

3. Real-Valued Weighted Subspace Fitting with
Block Sparse Recovery

3.1. Te Subspace Fitting Framework with Optimal Weighted
Matrix. It has been analyzed that the real-valued coupled
extended array manifold matrix ARI still spans the same
range subspace as the signal subspace Es. Trough com-
bining the basic theory of linear algebra and the fact thatΔ in
(21) is a column full rank matrix, it can be deduced that the
signal subspace Es is a subset of the range space of the real-
valued block extended array manifold matrix A

∧
RI, which

satisfes

Es � ARIU � A
∧

RIΔU � A
∧

RIU
∧

, (22)
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where U
∧

� ΔU ∈ R2FK×K is a block diagonal matrix with
column full rank and consists of K subblocks

U
∧

k(k � 1, 2, . . . , K). As the k th subblock,U
∧

k is composed of

the (2Fk − 2F + 1) th to (2Fk) th rows in U
∧
corresponding

to k th row inU. Whereas, (22) will be invalid when there are
disturbances such as noise in the array output.

As revealed in [39], numerous prevalent works on DOA
estimation can be viewed as the subspace ftting problem in a
general sense. Ten, a subspace ftting framework is given as
follows:

[θ
∧
,U] � argmin

θ,􏽥U

EsW
1/2

− A
∧

RI(θ) 􏽥U
�������

�������

2

F

, (23)

where A
∧

RI is parameterized by θ. W ∈ RK×K represents a
positive defnite weighted matrix depending on the dis-
tinct calculation ways and afecting the asymptotic charac-
teristics of ftting error. According to [39], it has been revealed
that there exists an optimal weighted matrix that asymptoti-
cally minimizes the ftting error variance in the target direc-
tions and satisfes Wopt � (Ωs − σ

∧2
IK)2Ω−1

s . σ
∧2

denotes any
consistent estimate of noise variance, which can be achieved by
averaging 2M − K smaller eigenvalues of R. Highlighting that
when W � Wopt, (23) describes the optimal subspace ftting
issue, defned as weighted subspace ftting (WSF) problem
[40].

It is emphasized that A
∧

RI and 􏽥U can be separated in the
process of subspace ftting [38]. Meanwhile, the parameter
we care about is A

∧
RI, not 􏽥U. Terefore, the least square

solution of 􏽥U can be solved by fxing A
∧

RI. i.e.,

U � A
∧ †

RI(θ)EsW
1/2

. (24)

Ten bringing (24) back to (23), yields

θ
∧

� argmin
θ

tr P⊥
A
∧

RI(θ)
EsWoptE

H
s􏼚 􏼛

� argmin
θ
Υ(θ),

(25)

where P⊥
A
∧

RI(θ)
� I2M − P

A
∧

RI(θ)
� I2M − A

∧
RI(θ)A

∧ †

RI(θ).

In order to deeply study the subspace ftting issue
structured by (25) from the perspective of sparse recon-
struction, the spatial domain is evenly discretized to form an
over-complete dictionary ARI. ARI takes the following form:

ARI � T θ1􏼐 􏼑,T θ2􏼐 􏼑, . . . ,T θN􏼐 􏼑􏽨 􏽩 ∈ R2M×2FN
, (26)
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Figure 6: RMSE of the proposed method versus SNR for diferent
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where θ � θ1, θ2, . . . , θN􏽮 􏽯 represents a sampling grid point
set and N indicates the number of grid points. It is noted that
compared with M and K, N is sufciently large in this paper,
so that the grid-of issue is not considered here. Trough
combining (22) withWopt, EsW1/2

opt � A
∧

RIU
∧
W1/2

opt � A
∧

RI
􏽥U can

be structured. However, it should be pointed out that such
relationship is mathematically strict only under the con-
dition of infnite snapshots. Ten, based on the over-
complete dictionary in (26), EsW1/2

opt can be sparsely rep-
resented as

EsW
1/2
opt � ARIU, (27)

where U � [UT
θ1

,UT
θ2

, . . . ,UT
θN

]T denotes a block sparse
matrix, whose n th subblock Uθn

is made up of the (2Fn −

2F + 1) th to (2Fn) th rows ofU. Furthermore, the subblocks
corresponding to the desired DOAs in U are equal to those
in 􏽥U, while the rest are zero. i.e.,

Uθn
�

􏽥Uθk
, θn ∈ θ1, θ2, . . . , θK􏼈 􏼉

0, θn ∉ θ1, θ2, . . . , θK􏼈 􏼉

⎧⎨

⎩ , (28)

where n � 1, 2, . . . , N and k � 1, 2, . . . , K.
According to (28), it is known that there are only K

nonzero subblocks in U due to the existence of K targets.
Terefore, the DOA estimation issue can be transformed into a
block sparse recovery problem, in which DOAs can be esti-
mated by determining the positions of nonzero subblocks inU.

It can be discovered that block sparse matrixU is critical for
direction fnding, which can be reconstructed via minimizing
l0-norm. Ten, a l0-norm optimization scheme is formed as

min rl2
�����

�����0
s.t. EsW

1/2
opt � ARIU, (29)

where a column vector rl2 � [r
l2
1 , r

l2
2 , . . . , r

l2
N]T is introduced

to describe sparsity. r
l2
n is the n th element in rl2 and cor-

responds to the n th subblock of U, which can be computed
by the l2-norm of the (2Fn − 2F + 1) th to (2Fn) th rows in
U. Tat is to say, r

l2
n �

��������������������

􏽐
2Fn
a�2Fn−2F+1 􏽐

K
b�1 (Ua,b)2

􏽱

, in which
Ua,b represents the element located at the a th row and b th
column of U. Evidently, the sparsity of vector rl2 is the same
as that of the block sparse matrix U.

In general, l0-norm penalty can accurately describe the
solutions sparsity in the process of sparse recovery.Whereas,
l0-norm penalty is a nondeterministic polynomial (NP)-
hard and nonconvex combinatorial optimization problem,
so it is mathematically intractable. In this way, l0-norm
convex relaxes to l1-norm to solve the above problem.
Moreover, considering the ftting error caused by fnite
snapshots, the l1-norm penalty framework is ultimately
restructured as

min rl2
�����

�����1
s.t. EsW

1/2
opt − ARIU

�����

�����F
≤ ε, (30)

where the regularization parameter ε means the upper limit
of the subspace ftting error, that is utilized to guarantee
robust DOA estimation. Inspired by (25), it is known that
the subspace ftting error is equal to

����
Υ(θ)

􏽰
. It has been

derived that function (2T/σ
∧2

)Υ(θ) asymptotically follows

chi-square distribution with 2K′(2M − K) degrees of
freedom when θ refers to the true DOAs [40]. Tereby,����
Υ(θ)

􏽰
≤ ε with a high confdence interval 1 − ρ is calculated

to determine parameter ε, in which ρ � 0.001 is chosen in
this paper.

3.2. Reweighted Block Sparse Recovery for DOA Estimation.
Trough the sparse recovery framework achieved by
l1-norm constrained optimization in (30), DOA estimation
can indeed be obtained. However, l1-norm penalty is only
the convex approximation of l0-norm minimization,
resulting in limited recovery accuracy. Specifcally speaking,
the penalty imposed on larger coefcients is heavier than
that imposed on smaller coefcients in the l1-norm penalty
framework, unlike the democratic l0-norm constraint. Ten,
a weighted matrix is introduced to enhance the solutions
sparsity, where the weights can be determined by con-
structing the penalty factors. Terefore, l1-norm can ap-
proximate l0-norm as much as possible.

Following the principle of MUSIC-like approach in
[36, 38], the orthogonality between the real-valued block ex-
tended arraymanifold and the noise subspace can be utilized to
formulate a novel real-valued NC MUSIC-like spectrum
function. Te spectrum function can be expressed as

ZMUSIC(θ) �
1

det TH
(θ)EnE

H
n T(θ)􏼒 􏼓

.
(31)

Inspired by the discretized sampling gird points
θ � θ1, θ2, . . . , θN􏽮 􏽯, the orthogonality between the over-
complete dictionary and its noise subspace can be exploited
to structure the weights. First, the over-complete dictionary
in (26) can be categorized into two groups:
ARI � [ARI1,ARI2]. It is supposed thatARI1 is composed ofK

block steering matrices corresponding to the interested
DOAs, while ARI2 is formed by residual N − K subblocks.
Ten based on (31), the initial weights can be represented as

d
∧

n � det TH θn􏼐 􏼑EnE
H
n T θn􏼐 􏼑􏼚 􏼛n � 1, 2, . . . , N, (32)

where the weight d
∧

n indicates the determinant value
corresponding to θn. Ten, a weighted matrix can be
structured as

D � diag d{ }, (33)

whereD ∈ RN×N denotes a weighted matrix that depends on
the vector d. Furthermore, d relates to the initial weights
d
∧

n(n � 1, 2, . . . , N) and takes the following form:

d � d1,d2􏼂 􏼃

� d1, d2, . . . , dN􏽨 􏽩

�

d
∧

1, d
∧

2, . . . , d
∧

N􏼢 􏼣

max d
∧

1, d
∧

2, . . . , d
∧

N􏼢 􏼣

.

(34)
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It can be concluded that if the number of snapshots is
sufciently large, the weights in d1 corresponding to the
interested DOAs are more likely to be zero, which are
smaller than those in d2. Trough exploiting the weighted
matrix, larger coefcients are preserved by smaller
weights, while smaller coefcients close to zero are
punished by larger weights. Terefore, no matter how
large or small the coefcients are, they can be punished
more democratically, behaving like the fair l0-norm
penalty. Eventually, by embedding the weighted matrixD,
the reweighted scheme based on l1-norm optimization can
be constructed as

min Drl2
�����

�����1
,

s.t. EsW
1/2
opt − ARIU

�����

�����F
≤ ε.

(35)

Tanks to second order cone (SOC) programming
packages, like CVX, the optimization problem given in (35)
can be successfully addressed. In this way, DOAs can be
efectively estimated by detecting the positions of nonzero
values in the reconstructed sparse vector rl2 .

Up to now, an efcient real-valued weighted subspace
ftting algorithm with block sparse recovery has been pro-
posed for DOA estimation of strictly noncircular sources
with unknown mutual coupling, which can be summarized
as algorithm 1.

4. Simulation and Analysis

In this section, plenty of simulations are implemented and
the corresponding results are exhibited to demonstrate the
superior performance of the proposed method.

4.1. Simulation Scene. To demonstrate the superiority of the
proposed method, the reweighted BSR method in [33]
(defned as ReBSR method) and the joint reweighted
sparsity-inducing method based on WSF principle in [38]
(defned as WSF method) are chosen as the comparison
methods. Meanwhile inspired by the Cramer–Rao bound
(CRB) for noncircular signals of MIMO radar in [22], the
array CRB is redrived for noncircular sources under un-
known mutual coupling in this paper. In addition, the root
mean square error (RMSE) is used to evaluate the estimation
performance of all algorithms, which can be achieved by

RMSE �

������������������

1
JK

􏽘

J

j�1
􏽘

K

k�1
θj,k − θk􏼐 􏼑

2

􏽶
􏽴

, (36)

where θk stands for the real DOAs of k th target and θj,k is
estimated by θk in the j th Monte Carlo experiment. K refers
to the number of radiating sources. Te number of Monte
Carlo experiments is set as J � 100.

In what follows, it is assumed that M � 8 antennas form
a ULA, each of them is separated by half-wavelength
spacing. Tere are K � 2 narrowband uncorrelated strictly
noncircular sources incident on the ULA from diferent
directions in the far feld, whose DOAs are denoted as θ1 �

−10° and θ2 � 2°, respectively. Additionally, the mutual
coupling matrix consists of H � 3 nonzero coefcients in-
cluding g1 � 0.6864 − j0.0919 and g2 � 0.2079 − j0.0603.
Te entire spatial domain from −90° to 90° is uniformly
sampled at the grid interval of 0.1°.

4.2. Simulation Results. Figure 2 gives the spatial spectra for
all diferent methods, in which SNR is set to −5 dB and the
number of snapshots is fxed at 100. According to Figure 2, it
can be observed that all methods form spectral peaks at the
true DOAs positions. Tat is to say, these algorithms can
realize direction fnding of noncircular sources in the case of
unknown mutual coupling. Furthermore, ReBSR method
has the least shape peaks, the highest side-lobe, and the
farthest from the real DOAs, while the proposed approach
has the sharpest peaks, the lowest side-lobe, and the closest
to the desirable DOAs. In this way, the proposed method
outperforms other approaches in terms of resolution and
accuracy.

Figures 3 and 4 indicate RMSE versus SNR and PSD
versus SNR for distinct algorithms, respectively. In Fig-
ure 3, the number of snapshots is chosen as T � 100. On
the one hand, as displayed in Figure 3, the RMSE of these
methods gradually decreases as SNR increases. Terefore,
these methods can achieve improved performance by
enhancing the signal environment. Moreover, the main
diference between the proposed method and WSF al-
gorithm is whether to perform real-valued conversion, so
its impact on the estimation accuracy may not be obvious.
In other words, it is reasonable to assume that their
performance is similar. At the same time, the RMSE of
ReBSR algorithm is larger than that of other noncircular
methods, which is mainly due to its inability to take
advantage of noncircularity, unlike the other two non-
circular algorithms. On the other hand, as given in Fig-
ure 4, PSD refers to the successful detection rate for all
Monte Carlo running experiments. And when the error
absolute value between the true DOA θk and the estimated
DOA θk is less than 0.3°, the target detection is considered
successful. From Figure 4, within the selected SNR range,
the PSD of the proposed method and WSF approach are
much higher than that of ReBSR algorithm. Additionally,
they can be the frst to achieve 100% PSD compared to
ReBSR method. In conclusion, the proposed method has
advantage over ReBSR algorithm and similar performance
to WSF approach.

Figure 5 depicts RMSE versus snapshots for distinct
methods, when SNR is fxed at SNR � 0 dB. As shown in
Figure 5, the overall simulation trend is similar to that of
Figure 3. As the number of snapshots increases, the RMSE of
all distinct approaches decreases. Furthermore, in terms of
estimation accuracy, the proposed method is similar to WSF
algorithm, better than ReBSR approach and closer to CRB.

Figure 6 shows RMSE of the proposed method versus
SNR for diferent number of antennas, in which T � 100.
From Figure 6, the RMSE is the largest when M � 7, while
the RMSE is the smallest when M � 9, which means that if
SNR is fxed, the RMSE of the proposed method decreases
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with the increase of the number of sensors. However, it is
worth highlighting that the more sensors, the higher the
estimation accuracy, the heavier the computational load, and
even the stronger the antennas interaction. In other words, it
is better to make a trade-of between efectiveness and
efciency.

Figure 7 reveals the average simulation time required for
the two noncircular methods versus gird interval, where
SNR and snapshots are set to SNR � 0 dB and T � 100,
respectively. In Figure 7, whether the proposed method or
WSF algorithm, the larger the grid interval, the shorter the
simulation time and the lower the computational burden.
Tis is mainly because the number of sampling grid points
decreases as the grid interval increases. In addition, it is
evident that the proposed method requires much less time
than WSF algorithm, which means that the proposed
method is superior to WSF algorithm in simulation time,
although they all belong to noncircular algorithms.Temain
reason is that the proposed method converts complex do-
main date into real domain data to speed up direction
fnding for meeting the real-time requirement as much as
possible, diferent from WSF approach in the complex
domain. In this way, it takes less time to efciently achieve
high-precision DOA estimation, which is more suitable for
practical applications.

5. Conclusion

In this paper, the scenario of strictly noncircular sources in the
presence of unknownmutual coupling is concerned, and then a
real-valued reweighted block sparse recovery framework
achieved by WSF principle is structured for DOA estimation.
In the proposed method, a real-valued coupled extended array
output is frst constructed by connecting the real and imaginary
parts of the received data.Ten, the real-valued block extended
sparse recovery model is formed by exploiting the parame-
terized decoupling thought to avoid the infuences of unknown
mutual coupling and noncircular phase. Afterwards, a robust
WSF approach is explored to recover the real-valued block
sparse matrix for DOA estimation, where a real-valued NC
MUSIC-like weighted matrix is further embedded to reinforce
the solutions sparsity. Additionally, the upper bound of sub-
space ftting error is reported as well. Tanks to noncircularity,
parameterized decoupling operation, and reweighted measure,
the proposedmethod can not only provide desirable estimation
accuracy, but also bear low computational burden. Extensive
experiment results validate the efectiveness and efciency of
the proposed method for strictly noncircular sources with
unknown mutual coupling.
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�e paper investigates DOA estimation of coherent Signals with the limited aperture sparse array. Mutual coupling between the
sensors of the array cannot be ignored in practical radar with a limited aperture of array sensors, which will result in a degradation
in the performance of Direction of Arrival (DOA) estimation. �is paper proposes a Mutual-coupling-optimized array (MCOA)
with a limited aperture in this scenario to reduce the mutual coupling e�ect. Firstly, we prove the sparse uniform linear array
(SULA) has the smallest mutual coupling leakage when the array aperture and the number of sensors is determined. Secondly, we
modify the spacing of the array sensors in SULA to make sure that the spacing between all array sensors and the reference sensor
are coprime aiming to estimate DOA without spatial aliasing. �irdly, we give an expression for the array element spacing
arrangement with reducedmutual coupling leakage. Finally, the coherent signals are well resolved by the Sparse Bayesian Learning
(SBL) algorithm. Numerous simulations are conducted to validate the advantages of the proposed array compared to several
sparse arrays for estimating coherent signals in the presence of mutual coupling.

1. Introduction

�e problem of Direction of Arrival (DOA) estimation has
attracted a lot of attention in the �elds of radar, sonar,
navigation, and astronomy [1–7], where the antenna arrays
are utilized for collecting the spatial sampling of incident
signals. Scholars propose many DOA estimation algorithms
based on the uniform linear array (ULA), such as multiple
signal classi�cation (MUSIC) [5], estimation of signal pa-
rameters via rotational invariance techniques (ESPRIT) [6],
propagator method (PM) [8], and parallel factor (PAR-
AFAC) technique [9].

However, the above-given algorithm is predicated on the
assumption that the incident signals are uncorrelated. �e
received signals are typically coherent and the rank of the
covariance matrix is insu¤cient due to the impact of the
transmission environment in actual applications. �e

aforementioned DOA estimation algorithm will be invalid at
this time [10]. To tackle this problem, some decoherence
algorithms are proposed to deal with coherent signals. �e
most representative method is the spatial smoothing (SS)
method [11], which regards ULA as many subarrays with the
same array ¥ow type and then averages the covariance
matrix of each subarray to obtain the full rank covariance
matrix. Later, people proposed the Forward/backward
spatial smoothing techniques [12], improved spatial
smoothing techniques [13] on this basis of SS and make a
series of improvement on these algorithms [14]. In [15], the
authors were devoted to establishing more accurate con-
ditions by studying the positive de�niteness of smoothed
target covariance matrix. �ere are also algorithms that
reconstruct the covariance matrix of the received signal,
such as SVD algorithms and the Toeplitz decoherence
method [16]. �ese methods estimate coherent signals at the
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expense of array aperture, which reduces DOA estimation
performance. )e compressed sensing (CS) algorithms
[17–19] can estimate DOA by exploiting the sparsity of the
target in the spatial domain without taking into account the
coherence of the signals. In [20], an iterative adaptive ap-
proach (IAA) is given for the beamforming design based on
the sparsity. In [21], the Orthogonal Matching Pursuit
(OMP) is used to recover the spare signal with high
probability, but the accuracy of OMP is lower than that of
MUSIC. In [22], both the Sparse Bayesian Learning (SBL)
and the relevance vector machine (RVM) are proposed. )e
weakness of CS algorithms is that they are more complex
than the previously described DOA estimating techniques.
)e traditional DOA estimation algorithms are generally
considered based on ULA, but sparse linear arrays are
seldom utilized.

Recently, sparse arrays such as Nested arrays (NA) [23]
and coprime arrays (CA) [24] have attracted wide attention
because such sparse arrays can achieve O(M2) degrees of
freedoms (DOFs) with only M antenna sensors. )ough the
DOA estimation performance of NA is better than that of
CA, the mutual coupling leakage of NA is much greater than
that of CA due to the influence of the dense ULA subarray,
which reduces performance in the presence of mutual
coupling. Despite the array positions of CA and NA can be
expressed in closed-form, their continuous degrees of
freedom are not the greatest. In comparison to CA and NA,
the minimum redundant array (MRA) [25] has the most
continuous degrees of freedom, allowing it to use more
virtual arrays. However, MRA lacks a closed-form expres-
sion for the locations of its sensors, and its array design
requires a significant amount of complicated calculations.

)e aperture of the array is usually limited in most
applications, and the number of array elements is fixed.
Because the spacing between the array elements is relatively
close, the mutual coupling effect cannot be ignored. ULA
and traditional sparse arrays will fail to estimate the DOA of
coherent signals and the research of DOA estimation in this
situation is relatively few. )ough there are some methods
[26–28] proposed to mitigate the mutual coupling effects by
utilizing a complex mutual coupling model, these methods
estimate mutual coupling coefficients at the cost of increased
complexity and decreased degree of freedom (DOFs).
)erefore, it is a good choice to consider how to reduce the
mutual coupling effect when designing the array. Under the
restrictions of a set array aperture and a number of array
sensors, this paper determines the array design approach
with the least mutual coupling leakage, and we further
propose a Mutual-coupling-Optimized Array (MCOA)
based on the theory of estimating DOA without spatial
aliasing [29, 30]. To estimate the DOA of coherent signals,
we use the sparse Bayesian learning-based (SBL) compressed
sensing algorithm. In particular, we summarize our main
contributions as follows:

(1) We propose a mutual-coupling-optimized array
under the restriction of a fixed number of sensors
and fixed array aperture. )en, we prove that the
mutual coupling leakage of the suggested array is

smaller than that of conventional sparse arrays
and that it can estimate DOA without spatial
aliasing.

(2) We employ the SBL algorithm to estimate coherent
DOA for the proposed array and compare the SBL
algorithm with other algorithms to demonstrate
that the estimation performance of the SBL algo-
rithm is better than other algorithms including
OMP and IAA.

)e remainder of this paper is given as follows: we
provide the mathematical model of the sparse array and the
definition of mutual coupling matrix in Section 2. In Section
3, we present how to design the mutual coupling optimized
array with a limited aperture. Section 4 introduces the
specific steps of the sparse Bayesian learning algorithm.
Section 5 analyses the CRB of the array in this context.
Section 6 verifies the theoretical performance of the pro-
posed array through simulation analysis while Section 7
concludes this paper.

Notations: scalars, vectors, matrices, and sets are
denoted by lowercase letters a, lowercase letters in boldface
a, uppercase letters in boldface A, and letters in blackboard
boldface A, respectively. AT, A∗, and AH are the transpose,
complex conjugate, and complex conjugate transpose of A.
Tr[·] denotes the trace operator for a matrix. ‖ · ‖F represents
the Frobenius norm and diag(·) represents the matrix
formed by the diagonal elements of thematrix. [A]i,j denotes
the (i, j) entry of A. gcd(n1, n2, · · · , nM) denotes the greatest
common divisor of the elements.

2. Mathematical Model

Consider a sparse array consisting of M sensors as shown in
Figure 1, and the position of the ith sensor is denoted by zid

with d � λ/2, zi represents the distance of the i- th sensor
relative to the reference sensor and λ stands for the wave-
length. Suppose that there are K far-field narrowband co-
herent signals from different directions θ � [θ1, θ2, · · · , θK]�������

b2 − 4ac
√

with powers p � [σ21, σ
2
2, · · · , σ2K] impinge on this

sparse array. )e received signal of the array can be
expressed as follows [2]:

X0 � AS + N, (1)

where A � [a(θ1), a(θ2), · · · , a(θK)] represents the direction
matrix and a(θi) � [1, ej2πz2d sin θi/λ, · · · , ej2πzMd sin θi/λ]T de-
notes the direction vector of the ith signal. λ is the wave-
length of the signal. S � [α1, α2, · · · , αK]s0 ∈ CM×J means the
narrowband coherent signals with J snapshots, where s0 is
the generate signals and αi stands for the complex constant.
N ∈ CM×J represents the additive white Gaussian noise
vector with noise variance σ2.

)ere is coupling between the array elements. )e re-
ceived signal model is expressed as follows [28]:

X � CAS + N, (2)

where C is the mutual coupling matrix. )e mutual coupling
matrix can be modelled as a B-banded symmetric Toeplitz
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matrix according to the assumption in the following
equation [28]:

[C]p,q �

0, zp − zq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>B

c
zp−zq

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

zp − zq

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤B,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where 1> |c1|> · · · > cB > 0, c1 � c0e
jπ/3, cs � c1e

− j(s− 1)/8/s,
s ∈ (0, B]. c0 is the mutual coupling constant and B denotes
the maximum spacing of sensor pairs with mutual coupling.
In addition, the mutual coupling is evaluated by the coupling
leakage, i.e.,

c �
‖C − diag(C)‖F

‖C‖F

. (4)

3. Mutual-Coupling-Optimized Array with
Limited Aperture

In this section, we first show that the mutual coupling
leakage of the sparse and uniform linear array is the
smallest under the condition of finite aperture and
number of elements. )en, we discussed how to change
the position of the array elements, so that the mutual
coupling leakage is still small, and there is no spatial
aliasing in DOA estimation.

3.1. A Minimum Mutual Coupling Leakage Array.
Considering the M- element array with an array aperture of
N, we propose an array which has no spatial aliasing in DOA
estimation and has the smaller mutual coupling leakage than
most sparse arrays.

Lemma 1. For an M element array with an array aperture of
N, the mutual coupling leakage is minimized if and only if the
array elements are equally spaced.

zi+1d − zid � zid − zi−1d �
N

(M − 1)
, i � 2, 3, · · · , M − 1.

(5)

Proof. According to equation (3), the mutual coupling
matrix can be expressed as follows:

C �

c0 cz2−z1
· · · czM−z1

cz2−z1
c0 · · · czM−z2

⋮ ⋮ ⋱ ⋮

czM−z1
czM−z2

· · · c0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

)en, the expression of the coupling leakage can be
calculated as follows:

c �
‖C − diag(C)‖F

‖C‖F

�

�����������������

2􏽐
M−1
i�1 􏽐

M
j�i+1 czj− zi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏽲

������������������������

M
2
c0| | + 2􏽐

M−1
i�1 􏽐

M
j�i+1 czj−zi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏽲 , (7)

where

􏽘

M−1

i�1
􏽘

M

j�i+1
czj− zi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽘

M−1

i�1
􏽘

M

j�i+1

1

zjd − zid􏼐 􏼑
2 � c1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
S, (8)

where S � 􏽐
M−1
i�1 􏽐

M
j�i+1 (zjd − zid)− 2. )e value of zi, i �

1, 2, · · · , M corresponding to the minimum value of S is the
position of each array sensor when the mutual coupling
leakage is minimum.

Denote the M − 1 array spacings as x1, x2, · · · , xM−1
respectively. )en,

S � 􏽘
M−1

i�1
􏽘

M

j�i+1
zjd − zid􏼐 􏼑

− 2
� 􏽘

M−1

i�1
zi+1d − zid( 􏼁

− 2

+ 􏽘
M−2

i�1
zi+2d − zid( 􏼁

− 2
+ · · · + 􏽘

1

i�1
zMd − zid( 􏼁

− 2

� 􏽘
M−1

i�1
x

−2
i + 􏽘

M−2

i�1
xi + xi+1( 􏼁

− 2
+ · · ·

+ 􏽘
1

i�1
xi + xi+1 + · · · + xi+(M− 2)􏼐 􏼑

− 2
.

(9)

Calculate the minimum value of S by Lagrange multi-
plier method.

g x1, · · · , xM−1, μ( 􏼁 � S + μ x1 + x2 + · · · + xM−1 − N( 􏼁.

(10)

Take the partial derivative of each variable in the
function and set the result equal to zero.

s

0

θ

z2d z3d zM-1d zMd

Figure 1: Array model.
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zg x1, · · · , xM−1, μ( 􏼁

zx1
� 0

⋮

zg x1, · · · , xM−1, μ( 􏼁

zxM−1
� 0

zg x1, · · · , xM−1, μ( 􏼁

zμ
� 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

)ere is an extreme point in (10) when x1 � x2 � · · · �

xM−1 � N/(M − 1) and the cost function S has a minimum
value at this time.)erefore, the value of zi, i � 1, 2, · · · , M

corresponding to the minimum value of S is the position of
each array element in the array when the mutual coupling
leakage is minimum. From the above-given discussion, it can
be seen that the M elements array with an aperture of the
array N reach the minimum mutual coupling leakage when
(5) holds. )e array designed in (5) is a sparse uniform line
array (SULA) when N> (M − 1)λ.

However, SULA will cause spatial aliasing during DOA
estimation [29] because the spacing of the adjacent sensors

are larger than half-wavelength. Next, we discuss how to
fine-tune the position of SULA’s array elements to solve the
angular ambiguity problem and maintain the advantage of
low mutual coupling leakage. □

3.2. B Mutual-Coupling-Optimized Array (MCOA).
Suppose that the first sensor is located at the origin without
loss of generality, then the position of the array can be
expressed as follows:

Z � 0, z2, · · · , zM􏼈 􏼉d. (12)

In order to facilitate the subsequent discussion, zi needs
to be adjusted to integer by choosing an appropriate d.

Theorem 1 (see [29]). İe array manifold a(θ) � [1,

ej2πz2 sinθ/λ, · · · , ej2πzM sinθ/λ]T is invertible if and only if the sensor
locations zi (assumed integers) are coprime.

gcd z2, z3, · · · , zM( 􏼁 � 1. (13)

According to Theorem 1, we design the array structure as
follows:

d � x1, x2, . . . , xM−1􏼂 􏼃

�

a − 1, a, . . . , a􏽼√√√􏽻􏽺√√√􏽽
[(M−2)/2]

, a + 1, a, . . . , a⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, N � a(M − 1),

a, . . . , a + 1, . . . , a + 1􏽼√√√√√√􏽻􏽺√√√√√√􏽽
b

, . . . , a⎡⎢⎣ ⎤⎥⎦, N � a(M − 1) + b, b<M − 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where d1×(M−1) represent the spacing of adjacent sensors in
array and a, b are integers.

In fact, the different arrangement order of elements in d
will also cause the structural change of Z, which leads to
different mutual coupling leakage. Due to the large number
of repetitions of elements in d, there will be many repeated
combinations of corresponding Z. Obviously, when the

larger distance between adjacent sensors in the center of the
array, the mutual coupling between the middle sensors and
the sensors on both sides can be effectively reduced so that
the mutual coupling leakage of the whole array degrades
significantly. )is is the reason why we make d as (14). )e
relationship between Z and d is zi+1 − zi � di, then the
expression of the array position Z can be written as follows:

Z �
0, a − 1, 2a − 1, · · · , N{ }d, N � a(M − 1),

0, a, · · · , ka + 1, · · · , N{ }d, N � a(M − 1) + b , b<N + 1.
􏼨 (15)

We will prove that the position in (15) satisfies )eorem
1 in the following part.

Proof. When N � a(M − 1), then

gcd(2a − 1, a − 1) � gcd(a − 1, 2a − 1moda − 1)

� 1

� 1,

(16)

where amodb represents the remainder of dividing a by b.
When N � a(M − 1) + b , b<N + 1, then.

gcd(a, ka + 1) � gcd(a, ka + 1moda)

� gcd(a, 1) � 1.
(17)

In summary gcd(z2, z3, · · · , zM) � 1, that is, the designed
array structure satisfies )eorem 1. Suppose that an antenna
array with array aperture N � 8λ and the number of sensors
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M � 8 needs to be designed. According to (15), since N is not
divisible by M − 1, we can calculate that N � 2(M − 1) + 2
with a � 2, b � 2 and write the expression of d and Z.

d � [2, 2, 3, 3, 2, 2, 2],

Z � 0, 2, 4, 7, 10, 12, 14, 16{ }d.
(18)

Figure 2 shows the example of the above MCOA. )e
array structure is very similar to that of the SULA. )ere are
five spacing between the sensors are 2 d and the remaining
two are 3 d. We place the 3 d in the middle of the array to
make the mutual coupling between the middle sensors and
sensor on both sides decreasing, which effectively reduces
the coupling leakage of the whole array. )e array locations
also satisfy )eorem 1.

gcd(2, 4, 7, 10, 12, 14, 16) � 1. (19)
□

4. Sparse Bayesian-Based Compressed
Sensing Method

In the sparse signal representation framework [23, 24], the
direction matrix A in (2) should be replaced by a transfer
matrix Ag, thus the signal model in (2) can be rewritten as
follows:

X � CAgSg + N, (20)

where Sg � [s1, · · · , sJ] ∈ CG×J represent the complex signal
amplitudes containing G DOAs and J snapshots. )e
transfer matrix Ag � [a1, · · · , aG] ∈ CM×G consists of all
hypothetical DOAs. )e likelihood function of the received
signal X can be represented as follows:

p X|Sg; σ2􏼐 􏼑 �
exp −1/σ2 X − CAgSg

�����

�����
2

F
􏼒 􏼓

πσ2􏼐 􏼑
NL

. (21)

)e SBL algorithm treats s as a zero mean complex
Gaussian random vector with unknown diagonal covariance
Γ � diag(c1, · · · , cM) � diag(c). )e prior model is given by
the following equation:

p Sg􏼐 􏼑 � 􏽙

J

j�1
p sj􏼐 􏼑 � 􏽙

J

j�1
AC(0, Γ). (22)

For Gaussian prior and likelihood, the evidence p(X) is
Gaussian and represented as follows:

p(X) � 􏽚 p Sg􏼐 􏼑p X|Sg􏼐 􏼑dSg � 􏽙

J

j�1
AC xj; 0,Σx􏼐 􏼑, (23)

where Σx � σ2I + CAgΓAH
g C

H and I stands for the identity
matrix of order M × M. )e SBL algorithm is to estimate the
diagonal entries of Γ by maximizing the evidence

􏽢c1, · · · , 􏽢cM( 􏼁 � argmax
γ

− 􏽘

J

j�1
xH

j Σ
−1
y xj − L log Σx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (24)

the derivative of (24) is

z − 􏽐
J
j�1 x

H
j 􏽐

−1
y xj − L log Σx

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

zcm

� tr XH
􏽘

−1

x
ama

H
m 􏽘

−1

x
X􏼠 􏼡 − LaH

mΣ
−1
x am

� XH
􏽘

−1

x
am

���������

���������

2

2
− LaH

m 􏽘

−1

x
am

�
cold

m

cnew
m

􏼠 􏼡

2

XH
􏽘

−1

x
am

���������

���������

2

2
− LaH

m 􏽘

−1

x
am.

(25)

)e factor (cold
m /cnewm )2 is introduced to obtain an iter-

ative equation in cm. Equate the derivatives to zero and we
can get the fixed-point update rule [1, 2, 4].

c
new
m � c

old
m

1
L

XH
􏽐

−1
x am

����
����
2
2

aH
m 􏽐

−1
x am

� c
old
m

Tr Sx 􏽐
−1
x ama

H
mΣ

−1
x􏽨 􏽩

aH
m 􏽐

−1
x am

.

(26)

where Sx � 1/JXXH is the sample covariance matrix.
)e main steps of the SBL algorithm are summarized as

follows:

Step 1: Set the parameters as ε � 10− 3 and get the input
data X,Ag, σ2, kmax;
Step 2: Initialization the parameters cold

m � 1,∀m;
Step 3: Calculate Σx � σ2I + CAΓoldAHCH;
Step 4: Update cnew

m by using equation (27);
Step 5: Set cold � cnew, Γold � diag(cold), k � k + 1;
Step 6: If ‖cnew − cold‖1/‖cold‖1 > ε and k< kmax, go back
to step 3;
Step 7: )e K largest peaks in c are the required DOA
values.

5. Performance Analysis

5.1. Comparison of Mutual Coupling Leakage between Dif-
ferent Arrays with the SameAperture. We select some sparse
arrays for comparison. In order tomake the array aperture of
all arrays consistent, we compress the element spacing of CA
and ECA. )e result is shown in Table 1, it can be seen that
the mutual coupling leakage of the proposed array is the
smallest except SULA, and its mutual coupling leakage is
very close to SULA.

5.2. Crarmer–Rao Bound (CRB). According to the knowl-
edge of the literature [32], the Crarmer–Rao Bound (CRB)
matrix can be represented as follows:

2d 2d 2d 2d 2d3d 3d

Figure 2: MCOA array with an array aperture of 8 wavelengths and
a sensor count of 8.
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2J

Re DH
􏽙

⊥

A
D􏽢P

T⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭

−1

, (27)

where Re[·] stands for the operation of taking the real part,A
represents the manifold matrix of the array,
Π⊥A � I − A(AHA)− 1AH is the orthogonal projection of A,
and I stands for the identity matrix of order M × M,
􏽢P � 1/J 􏽐

J
t�1 s(t)sH(t), σ2n denotes the average power of

signal source, D can be written as follows:

D �
za θ1( 􏼁

zθ1
,
za θ2( 􏼁

zθ2
, · · · ,

za θK( 􏼁

zθK

􏼢 􏼣, (28)

where a(θK) denotes steering vector.

5.3. Computational Complexity. In this section, we provide
the complexity of the SBL method compared with OMP and
MUSIC. Assuming that the number of array elements is M,
there are G grid points and J snapshots, the maximum
number of iterations is kmax, then the computational com-
plexity of main operations are as follows: (a) calculate the
covariance matrix: O(M2J); (b) update the Σx in Step 3:
O(2M2G + G2M + M3); (C) update cnew

m in Step 4:
O[G(2M3 + 3M2 + M)]. )e computational complexity of
SBL is O[M2J + kmax(2GM3 + 5GM2 + G2M + GM + M3)].

6. Simulation Results

In this part, we provide numerical simulations of the per-
formance of the proposed MCOA as well as a comparison
with the other sparse arrays and the CRB.)e array aperture
is limited to 8 wavelengths and the number of array sensors
is 8. Two coherent signals with equal power impinge on the
array with directions θ1 � 10∘, θ2 � 40∘, and the correlation
coefficient is set to [α1, α2] � [1, ejπ/4]. Define the RootMean
Square Error (RMSE) of the DOA estimates as follows:

RMSE �

�������������������

1
K

1
Q

􏽘

K

k�1
􏽘

Q

q�1

􏽢θq,k − θk􏼐 􏼑
2

􏽶
􏽴

, (29)

where Q and K are the number of Monte Carlo trials and the
total number of coherent signals, respectively. 􏽢θq,k means the
qth estimate of the real angle θk . Unless other stated, we
assume that the mutual coupling constant is c0 � 0.12 and

the maximum spacing of sensor pairs is B � 100. For each
Figure, 1000 Monte Carlo simulations were run to estimate
the Root Mean Square Error (RMSE).

First, we compare the CRB of different arrays in Figure 3.
)e result shows that the CRB of the coprime array is very
close to the CRB of the proposed array, but the CRB of the
proposed array is the smallest among all arrays, which in-
dicates that its performance is optimal.

Figure 4 depicts the spatial spectrum of the SBL method
with the proposed array. )e signal-to-noise ratio (SNR) is
10 dB and the snapshot is J � 200. )ere are many spectral
peaks in the estimation result, but the peak of the incident
signal is the highest, which is 40 dB higher than other
spectral peaks. It shows that the estimation result of this
method is accurate enough to be used for the coherent signal
estimation when there is mutual coupling between array
sensors.

)e proposed array is also compared with other arrays
with different SNRs in Figure 5. )e SNR varies from −5 dB
to 20 dB and the number of snapshots is J � 200. All five
kinds of arrays can accurately estimate the incident angle of
the relevant signals. Due to the influence of mutual coupling,
the angle estimation of the CA and ULA decreases greatly,
and their RMSE value is larger than the proposed array.
Because the influence of mutual coupling leakage is less than
that of other arrays, the proposed array can better estimate
the DOA of coherent signals.

Figure 6 shows the performance of different arrays with
snapshots changing, the coherent signal is consistent with
the previous simulation and the SNR is 5 dB. )e snapshot
varies from 10 to 600. When the snapshot is less than 100, all
five arrays cannot work well and the performance is not good
enough. However, the RMSE of all the arrays reduces with
the snapshot increasing. When the snapshot is larger than
100, the curve of RMSE of the CA and ULA is almost a
straight line, because the impact of the mutual coupling
leakage at this time is greater than the performance

Table 1: Comparison of mutual coupling leakage of different
arrays.

Array
aperture d Z

Mutual
coupling
leakage

Proposed 8 λ 0.5 λ 0,2,4,7,10,12,14,16 0.0826
CA 8 λ 0.5 λ 0 4 5 8 10 12 15 16 0.1076

ECA 8 λ 0.4444
λ 0 2 4 5 6 8 13 18 0.1140

NA 8 λ 0.4211 λ 0 1 2 3 7 11 15 19 0.1194
SULA 8 λ 1.1429 λ 0 1 2 3 4 5 6 7 0.0806
ULA 3.5 λ 0.5 λ 0 1 2 3 4 5 6 7 0.1819

10-1

10-2

-5 0 5 10 15 20
SNR (dB)

RM
SE

 (°
)

CA
ULA
ECA

NA
Proposed

Figure 3: CRB comparison of different arrays.
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improvement brought about by the increase of snapshots.
On the other hand, the performance of the proposed array
and NA is better than the other three arrays, and the pro-
posed array has the best performance because the mutual
coupling leakage of the proposed array is the smallest among
these arrays.

Finally, we compared the SBL algorithm with two other
compressed sensing algorithms including the IAA [20] and
the OMP [21]. In Figure 7, the SNR changes from −5 dB to
20 dB and the snapshot is 200. )e other simulation con-
ditions were the same as before. At low SNR, the SBL has the
same performance as IAA and OMP, but when the SNR
increases, the performance of OMP hardly improves, and the
performance of IAA is better than OMP.)e curve of SBL is
smoother than the other two algorithms, which means that

in this case, its performance is more stable than other
algorithms.

7. Conclusions

In this paper, the mutual coupling optimization array with a
given number of sensors under the condition of the finite
aperture is studied. Compared with the sparse arrays in-
cluding CA, NA, and ECA, the mutual coupling leakage of
the proposed array is smaller. When there is mutual cou-
pling between array sensors, we apply the SBL to DOA
estimation of coherent signals and compare its performance
with other compressed sensing methods including IAA and
OMP. Finally, various simulations are carried out to prove

101

100
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10-2

-5 0 5 10 15 20
SNR (dB)

RM
SE

 (°
)
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NA
Proposed
CRB

Figure 5: )e DOA estimation performance with different SNRs.
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Figure 6: )e DOA estimation performance with different
snapshots.
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Figure 7: Comparison of RMSE of different algorithms with SNR.
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the superior performance of the proposed array for esti-
mating coherent signals in the condition of mutual coupling.
In fact, this paper mainly focuses on the coherent signal
estimation problem of the sparse array in the 1D-DOA case.
By using the previous related research, this result can be
extended to an L-shaped array to realize DOA estimation of
coherent signal in the 2D-DOA case. Reference [31].
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Direct position determination (DPD) of noncircular (NC) sources for multiple nested arrays (NA) is researched in this study. For
noncircular sources, the dimension reduction method is used to decrease the computing complexity and remove the noncircular
phase. Furthermore, nested array and noncircular sources extend spatial degree of freedom. Due to inferior stability and noise
susceptibility of original algorithm, we propose SNR weighted subspace data fusion (W-SDF) algorithm. Each observation station
places a nested array, spatial smoothing technology, and sum and di�erence co-array are used to deal with the nested array.
Simulation results show that under nested array and noncircular sources, the proposed W-SDF algorithm has decreased the
complexity of the algorithm and improved the location accuracy, degree of freedom, and resolution.

1. Introduction

In modern wireless location system, the focus of research is
fast and accurate signal location [1]. �e traditional posi-
tioning technology system is mostly a two-step estimation
mode such as the correlation measurement, time di�erence
of arrival (TDOA), frequency di�erence of arrival (FDOA),
and energy gain.�erefore, location information is extracted
from the signal data radiated by the target [2]. �en, the
position parameters of the target are obtained from the
above observations. �e two-step positioning method has
the characteristics of decentralization and does not need to
transmit all signal data to the same central station for
processing [3]. �erefore, it has low requirements for
communication transmission bandwidth and calculation,
which is convenient for engineering implementation [4].
From the positioning principle, the two-step positioning
method is di�cult to obtain the asymptotically optimal
estimation accuracy, because it has experienced many
processing links [5]. In addition, the two-step positioning is
easy to lose the correlation of multiple stations, and the lost

information is di�cult to make up in the second-step po-
sitioning link [6]. In order to avoid the above problems, the
direct position determination method is proposed. �e core
idea is to directly obtain the position information of the
target from the original sampling signal without estimating
the intermediate observation value. �is principle avoids the
problem of data association [7–10]. �erefore, direct posi-
tioning method has higher estimation accuracy and reso-
lution [11–14].

Nowadays, there have been few reports about sparse
array for direct determination position. In 2010, professor
P. Pal proposed the nested array structure [15]. �e nested
array can greatly increase the degree of freedom of the array
than the uniform linear array (ULA) [16–21]. In 2011,
professor P. Pal proposed the coprime array structure, which
is basically the same as the nested array structure. �e
obtained array degree of freedom is less than the nested
array, but more sparse than the nested array [22]. J. Galy
used the noncircular features of sources to increase the
performance of DOA estimation. J. Galy proposed the
MUSIC algorithm for noncircular sources, which pioneered
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the application of noncircular sources in spatial spectrum
estimation [23]. Yin applied the noncircular features of
sources to direct positioning field with a moving array. 'e
noncircular signal improves spatial degree of freedom and
increases the positioning accuracy [24]. Zhang et al. applied
the noncircular characteristics of sources to direct posi-
tioning with a moving coprime array [25]. At present,
noncircular signal is rarely applied in direct positioning with
multiple nested arrays [26–29]. 'erefore, it is very im-
portant to study the noncircular sources for direct posi-
tioning with multiple nested arrays.

In this study, we use the noncircular sources charac-
teristic to expand the spatial degree of freedom. 'e di-
mension method is used to decrease the computing
complexity. In this study, the nested array is introduced into
direct positioning. 'erefore, array aperture is extended and
the spatial smoothing method is adopted. Because the tra-
ditional SDF method is easily affected by noise and has
inferior stability, the weighted SDF method is proposed [8].
'erefore, we can obtain high positioning accuracy.

'e main contributions are as follows:

(1) We apply noncircular sources and the dimensionality
reduction method to the direct location with non-
circular sources to reduce the computational com-
plexity and remove the phase of noncircular sources.

(2) We place a nested array on each observation station
and use spatial smoothing technology and sum and
difference co-array to deal with the nested array to
expand the array aperture.

(3) We assign a weight to each station to improve the
positioning accuracy because the SDF algorithm is
vulnerable to noise and poor stability. 'erefore,
SNR weighted SDF loss function is set up.

'e composition is as below. In Section 2, we expound
on a direct position determination model, a common two-
level nested array, and some notions about noncircular
sources. In the next section, we depict spatial smoothing
technology and SNR weighted SDF algorithm. In Section 4,
we analyze the performance about theW-SDF algorithm and
expound on its advantages from degree of freedom, com-
puting complexity, and positioning accuracy. In Section 5,
we emulate the weighted SDF algorithm and compare the
performance of proposed algorithm with that of other al-
gorithms. 'e last section summarizes this study.

Notations. (•)H, (•)T, and (•)∗ mean conjugate transpose,
transpose, and conjugate. 'e symbol ⊗ and vec(•) mean
the Kronecker product and matrix vectorization. In means
an n × n unit matrix and E(•) means the mathematical
expectation.

2. Preliminaries

In this section, we expound on a common two-level nested
array and some notions about noncircular sources. 'en, we
describe multiple nested arrays combination direct posi-
tioning model.

2.1. Two-Level NestedArrayModel. In Figure 1, the ordinary
two-level nested array has H � 6 array elements, the dense
uniform linear array (ULA) has M � 3 array elements, and
the sparse array has N � 3 array elements. Uniform linear
array element interval is d1 � d, and sparse linear array
element interval is d2 � 4d, where d � λ/2, and λ expresses
as signal wavelength. Figure 2 shows the positive sum co-
array (a), the negative sum co-array (b), and difference co-
array (c). Successive fictitious elements are placing from
− 11d to 11d.

2.2. Direct Position Determination Model. Direct position
determination scenario is shown in Figure 3. Q independent
narrow-band noncircular sources are in far-field X-Y plane.
Multiple sources are pq � [xq, yq]T(q � 1, 2, . . . Q). L nested
arrays with H � M + N array elements are placing at L

stations ul � [xul, yul]
T(l � 1, 2, . . . , L).

'e output signal of the lth(l � 1, 2, . . . , L) array at the
kth(k � 1, 2, 3 . . . K) sampling snapshot time can be indi-
cated as follows [9]:

rl(k) � 􏽘

Q

q�1
al pq􏼐 􏼑fl,q(k) + nl(k), (1)

where fl,q(k) means the source waveform, nl(k) means the
noise vector for the lth station, and al(pq) means the ori-
entation vector. 'is is all depending on the arrival direction
orientation of the signal θl(pq) [9]:

θl pq􏼐 􏼑 � arctan
xul(1) − pq(1)

yul(2) − pq(2)
,

al pq􏼐 􏼑 � 1, e
− j2πdsinθl pq( 􏼁

, . . . , e
− j2π(H− 1)dsinθl pq( 􏼁

􏼔 􏼕
T

.

(2)

Equation (1) can be indicated as follows [9]:

rl(k) � Al(p)f l(k) + nl(k), (3)

where

Al(p) � al p1( 􏼁, al p2( 􏼁, . . . , al pQ􏼐 􏼑􏽨 􏽩,

f l(k) � fl,1(k), fl,2(k), . . . , fl,Q(k)􏽨 􏽩
T
,

p � pT1 , pT2 , . . . , pTQ􏽨 􏽩
T
,

nl(k) � nl,1(k),nl,2(k), . . . ,nl,H(k)􏽨 􏽩
T
.

(4)

2.3. Noncircular Sources Model. 'e sources studied in this
study are noncircular sources. Reference [29] shows that any
digital modulated signal f(t) in the complex plane ex-
pression is obtained as follows:

f(t) � σe
− jφ

�����
1 + k

2

􏽲

f1(t) + j

�����
1 − k

2

􏽲

fQ(t)􏼠 􏼡, (5)

where φ is rotation phase, k(0≤ k≤ 1) controls signal am-
plitude, signal power E |f(t)2|􏽮 􏽯 � σ2, f1(t) and fQ(t) are
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unit codirectional component and unit orthogonal com-
ponent, satisfying E |f1(t)|2􏽮 􏽯 � 1, E |fQ(t)|2􏽮 􏽯 � 1, and
E f1(t)fQ(t)􏽮 􏽯 � 0. When k � 0, the sources are called
circular sources; when k≠ 0, the sources are called non-
circular sources.

In order to measure the degree of noncircular for
sources, literature [26–28] give the definition of noncircular
sources:

E f l(k)fHl (k)􏽨 􏽩 � ρe
jφ

E f l(k)fT
l (k)􏽨 􏽩, (6)

where φ denotes the noncircular phase, and ρ denotes the
noncircular rate of the value in 0–1. In particular, when
ρ � 1, the signal was called strictly noncircular sources.

According to reference [27], noncircular sources can be
indicated as follows:

f(t) � Φf0(t), (7)

where

Φ �

e
− jφ1 0 . . . 0

0 e
− jφ2 . . . .

. . . .

0 . 0 e
− jφQ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where f0(t) means the real part of the signal.
According to equation (7), equation (4) can be indicated

as follows:

rl(k) � Al(p)Φf0l (k) + nl(k), (9)

where

f0l (k) � f
(0)
l,1 (k), f

(0)
l,2 (k), . . . , f

(0)
l,Q (k)􏽨 􏽩

T
. (10)

3. The Proposed W-SDF Algorithm

In this section, we elaborate steps of weighted SDF algo-
rithm, the process of spatial smoothing technology, and SNR
weighting process.

3.1. Covariance Vectorization Signal. On the basis of the
features of noncircular sources, we make use of dimension
reduction method to decrease computational complexity
and remove noncircular phase. We combine the SDF al-
gorithm for direct position determination to obtain spectral
peak search function.

We use features of noncircular sources to expand the
received signal vector as follows [9]:

zl(k) �
r1(k)

r∗1(k)
􏼢 􏼣 �

Al(p)f l(k)

A∗l (p)f∗l (k)
􏼢 􏼣 +

nl(k)

n∗l (k)
􏼢 􏼣. (11)

It can be obtained from equation (7):

f∗l (k) � Φ∗f(0)
l (k) � Φ∗Φ− 1f l(k) � Φ∗( 􏼁

2f l(k). (12)

'en, equation (11) can be indicated as follows:

inner ULA outer ULA

0 d 2d 3d 7d 11d

Figure 1: Two-level nested array.

-14d-18d-22d

-11d 11d

-11d

11d 14d 18d 22d

(a)

(b)

Difference 
co-array

Sum co-array

Virtual Sensors
Holes

(c)
Sum co-array

Figure 2: Difference co-array and sum co-array.

Targets
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Y

H
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θl (Pq)
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U2 U3

U1 x

y
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Figure 3: Multiple arrays combination positioning scene.
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zl(k) �
Al(p)

A∗l (p)Φ∗Φ∗
􏼢 􏼣f l(k) +

nl(k)

n∗l (k)
􏼢 􏼣

� Cl(p)f l(k) +
nl(k)

n∗l (k)
􏼢 􏼣,

(13)

where

% Cl(p) �
Al(p)

Al(p)Φ∗Φ∗
􏼢 􏼣 � cl p1( 􏼁, cl p2( 􏼁, . . . cl pQ􏼐 􏼑􏽨 􏽩,

(14)

where

cl pq􏼐 􏼑 �
al(p)

al(p)e
j2φq

􏼢 􏼣. (15)

'e covariance matrix is as follows:

Rl �
1
K

􏽘

K

k�1
Zl(k)ZH

l (k)

� 􏽘

q

i�1
σ2l,qcl pq􏼐 􏼑cH

l pq􏼐 􏼑 + σ2nI,

(16)

where σ2l,q means the power of the qth radiate source and σ2n
means noise power. For making use of features of nested
array, we make the covariance matrix vector as follows [28]:

zl � vec Rl( 􏼁

� vec 􏽘
D

i

σ2l,qcl pq􏼐 􏼑cH
l pq􏼐 􏼑 + σ2n􏽥I

� Hl(p)μ + σ2n􏽥I,

(17)

where μ is the signal power vector and

Hl(p) � c∗l p1( 􏼁⊗ cl p1( 􏼁, c
∗
l p2( 􏼁⊗ cl p2( 􏼁, . . . , c∗l pQ􏼐 􏼑􏽨

⊗ cl pQ􏼐 􏼑􏽩,

􏽥I � vec IH( 􏼁,

(18)

where

c∗l pq􏼐 􏼑⊗ cl pq􏼐 􏼑􏽨 􏽩 �
al pq􏼐 􏼑

a∗l pq􏼐 􏼑ej2φq

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

∗

⊗
al pq􏼐 􏼑

a∗l pq􏼐 􏼑e
j2φq

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�

a∗l pq􏼐 􏼑⊗ al pq􏼐 􏼑

a∗l pq􏼐 􏼑⊗ a∗l pq􏼐 􏼑e
j2φq

al pq􏼐 􏼑⊗ al pq􏼐 􏼑e
− j2φq

al pq􏼐 􏼑⊗ a∗l pq􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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�

p1

p2

p3

p4
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,

(19)

where p1 � a∗l (pq)⊗ al(pq), p2 � a∗l (pq)⊗ a∗l (pq)ej2φq,
p3 � al(pq)⊗ al(pq)e− j2φq , and p4 � al(pq)⊗ a∗l (pq). In

Figure 4, the successive array elements of difference co-array
are in range of [− (M1 − 1)d, (M1 − 1)d], where
M1 � MN + N, M � 4, N � 4. DIFF I and DIFF II represent
difference co-array.'e successive array elements of sum co-
array are in range of [− (M2 − 1)d, 0] and [0, (M2 − 1)d],
where M2 � MN + M + N. SUM I and SUM II represent
sum co-array.

After the elements are sorted and duplicated according
to the phase, the two vectors can be regarded as a direction
vector of continuous difference co-array DCA:

cd pq􏼐 􏼑 � e
− j2πUddsinθl pq( 􏼁/λ

, (20)

where Ud � 〈− R1, R1〉, R1 � MN + N − 1.
'e equivalent received signal of DCA can be obtained as

follows:

bd � Hdγ + σ2nu, (21)

where Hd � cd(p1) cd(p2) . . . cd(pQ)􏼂 􏼃 is direction ma-
trix of DCA. γ is equivalent incident signal vector. u is vector
with only themiddleR1 + 1 elements of 1 and other elements
of u are 0.

'e elements are sorted and removed according to
phase. After repetition, the direction vectors can be indicated
as follows, respectively:

c−
s pq􏼐 􏼑 � e

− j2πU−
s dsinθl pq( 􏼁/λ

e
j2φq,

c+
s pq􏼐 􏼑 � e

− j2πUddsinθl pq( 􏼁/λ
e

− j2φq,

(22)

where U−
s � 〈− R3, R2〉, R2 � 0, and R3 � MN + M + N − 1.

'e equivalent received sources of SCA I and the
equivalent received sources of SCA II can be obtained as
follows:

b−
s � H−

s γ,

b+
s � H+

s γ,
(23)

where H−
s � c−

s (p1) c−
s (p2) . . . c−

s (pQ)􏼂 􏼃 is directional
matrix of SCA I and H+

s � c+
s (p1) c+

s (p2) . . . c+
s (pQ)􏽨 􏽩 is

directional matrix of SCA II.

3.2. Spatial Smoothing Technology. Different from the tra-
ditional spatial smoothing of the full array, this section
carries out the strategy of backward spatial smoothing for
the continuous difference co-array DCA and the negative
and positive semiaxis continuous sum co-array SCA I and
SCA II respectively.

In Figure 4, for successive difference co-array DCA, we
divide DCA into R1 + 1 equivalent subarrays, which has R1 +

1 elements each. 'e corresponding received signal can be
indicated as follows [9]:

bdi � 􏽥HdΨ
i− 1γ + σ2n􏽥ui, (24)

where bdi means ith(i � 1, 2, . . . , R1 + 1) subarray, 􏽥ui means
the vector that the ith element value is 1, and the other
element values are all 0 [9]. 􏽥Hd � [􏽥cd(p1),
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􏽥cd(p2), . . . , 􏽥cd(pq)] means the orientation matrix of SS-
DCA, and its qth orientation vector can be indicated as
follows [9]:

􏽥cd pq􏼐 􏼑 � 1, e
− jπ sinθl pq( 􏼁

, e
− j2π sinθl pq( 􏼁

, . . . , e
− jR1π sinθl pq( 􏼁

􏼔 􏼕
T

,

(25)

Ψ � diag e
jπ sinθl p1( ), e

jπ sinθl p2( ), . . . , e
jπ sinθl pQ( )􏼚 􏼛.

(26)

'e received sources of R1 + 1 subarrays are connected
together, and equation (26) shows received sources matrix
after spatial smoothing Bd ∈ C(R1+1)×(R1+1):

Bd � bd1, bd2, . . . , bd R1+1( )􏼔 􏼕

� 􏽥Hd γ,Ψγ, . . . ,ΨR1γ􏽨 􏽩 + σ2nIR1+1

� 􏽥Hd
􏽥S + σ2nIR1+1,

(27)

where 􏽥S � [γ,Ψγ, . . . ,ΨR1γ], and Bd means the received
sources of the first smooth subarray SS-DCA. Element lo-
cation range of SS-DCA is 〈0, R1〉.

For successive sum co-array, they are divided into R1 + 1
subarray. 'e number of elements of each subarray is
R3 − R2 − R1 + 1. After divided, the ith(i � 1, 2, . . . , R1 + 1)

received sources of the SCA I and received sources of SCA II
are as follows [9]:

b−
si � 􏽦H−

s Ψ
i− 1γ,

b+
si � 􏽦H+

s Ψ
i− 1γ,

(28)

where 􏽦H−
s � [ 􏽥c−

s (p1), 􏽥c−
s (p2), . . . , 􏽥c−

s (pq)], the array elements
location range of SS-SCA I is 〈− (R3 − R1), 0〉, and the
corresponding qth orientation vector can be indicated as
follows:

􏽥c−
s pq􏼐 􏼑 � e

j R3− R1( )π sin θl pq( 􏼁
e

j2φq , . . . , e
jπ sin θl pq( 􏼁

e
j2φq , e

j2φq􏼔 􏼕
T

,

(29)

where 􏽦H+
s � [ 􏽥c+

s (p1), 􏽥c+
s (p2), . . . , 􏽥c+

s (pq)], the array elements
location range of SS-SCA II is 〈R1, R3〉, and the corre-
sponding qth orientation vector can be indicated as follows:

􏽥c+
s pq􏼐 􏼑 � e

− jR1π sin θl pq( 􏼁
e

− j2φq , e
− j R1+1( )π sin θl pq( 􏼁

e
− j2φq , . . . , e

− jR3π sin θl pq( 􏼁
e

− j2φq􏼔 􏼕
T

. (30)

'e received sources matrix of SS-SCA I and the received
sources matrix of SS-SCA II are indicated as follows:

B−
s � b−

s1, b
−
s2, . . . , b−

s R1+1( )􏼔 􏼕 � 􏽦H−
s
􏽥S,

B+
s � b+

s1, b
+
s2, . . . , b+

s R1+1( )􏼔 􏼕 � 􏽦H+
s
􏽥S.

(31)

'e received signal consists ofB−
s ,Bd,B+

s , as shown in the
following equation:

􏽥B �

B−
s

Bd

B+
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

􏽥H−

s

􏽥Hd

􏽥H+

s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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􏽥S +

O R3− R1+1( )× R1+1( )

σ2nIR1+1

O R3− R1+1( )× R1+1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 􏽥H􏽥S + U,

(32)

where 􏽥H � 􏽥c(p1) 􏽥c(p2) . . . 􏽥c(pq)􏽨 􏽩 is direction matrix of
SDCA, and SDCA denotes fictitious array after spatial
smoothing and corresponding qth orientation vector can be
indicated as follows:

􏽥c(p) �

􏽥c−
s

􏽥cd

􏽥c+
s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (33)

As shown in Figure 5, a longer fictitious array is set up.
'ere are 28 array elements after spatial smoothing, where
M � 4, N � 4.

DIFFI

SUM I

SUMII

DIFFII

-23d

DCA 

19d-19d

-28d-33d-38d

23d 28d 33d 38d

-19d 19d

SCA I SCA II

0

0

0

0

Virtual Sensors
Holes

Figure 4: Array graph of sum and difference co-array.
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Firstly, the estimated value of the covariance matrix of
the smoothed SDCA received signal is calculated as
follows:

RY �
1

R1 + 1
􏽥Y􏽦YH

. (34)

'e noise subspace En
l can be obtained by eigenvalue

decomposition RY. (En
l )H􏽥c(pq) � 0, so cost function of

noncircular sources is as follows:

fNC− S DF(p,φ) � argmax
1

􏽐
L
l�1 􏽥c(p,φ)

HEn
l En

l( 􏼁
H

􏽥c(p,φ)
.

(35)

'is study makes use of dimension reduction method to
decrease the computational complexity and eliminate the
noncircular phase. 'e qth direction is shown in the fol-
lowing equation:

􏽥c pq,φq􏼐 􏼑 �

e
j R3− R1( )π sin θl pq( 􏼁

e
j2φq

.

.

e
jπ sin θl pq( 􏼁

e
j2φq

− − − − − − − − − −

1

e
− jπ sin θl pq( 􏼁

.

.

e
− jR1π sin θl pq( 􏼁

− − − − − − − − − −

e
− jR1π sin θl pq( 􏼁

e
− j2φq

.

.

.

e
− jR3π sin θl pq( 􏼁

e
− j2φq
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�

ej R3− R1( )π sin θl pq( 􏼁

. . .

e
jπ sin θl pq( 􏼁

1

1

e
− jπ sin θl pq( 􏼁

. . .

e
− jR1π sin θl pq( 􏼁

e
− jR1π sin θl pq( 􏼁

e
− j R1+1( )π sin θl pq( 􏼁

. . .

e
− jR3π sin θl pq( 􏼁
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ej2φq

1

e
− j2φq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Θ pq􏼐 􏼑ϕ φq􏼐 􏼑.

(36)

Finally, we can obtain separation matrix
ϕ(φq) � ej2φq 1 e− j2φq􏽨 􏽩

T
. We set up e � 0 1 0􏼂 􏼃

T to
decrease searching dimension. So, it can eliminate noncir-
cular phase. Θ(pq) is another separation matrix.

'erefore, we can set up the cost function of RD-SDF
algorithm as follows:

fRD− SDF(p) � argmax􏽘
L

l�1
eH ΘH

(p)En
l En

l( 􏼁
HΘ(p)􏼐 􏼑

− 1
e. (37)

Because SDF only makes use of noise subspace, it is
sensitive to external factors, such as few snapshots or low
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Figure 5: Nested array framework graph after spatial smoothing.
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signal-to-noise ratio. 'erefore, we assign a weight to each
observation station to improve positioning accuracy and set
up the following cost function:

fW− S DF(p) � argmax􏽘
L

l�1
wle

H ΘH
(p)En

l E
n
l( 􏼁

HΘ(p)􏼐 􏼑
− 1

e,

(38)

where wl means the weight of the lth station.

3.3. 8e Proposed SNRWeighted SDF. In view of the energy
allocation principle on account of the water injection theory,
the routes with good quality are distributed more power and
the routes with poor quality are distributed less power.
According to this principle, we can acquire the maximum
route capacity. Due to inferior stability and noise suscep-
tibility of ordinary algorithm, we propose SNR weighted
method. For the sake of cutting down the total error, we
devise a weight that increases as the error decreases.

Assuming that the noise is irrelevant and the sources and
noise are mutually independent. 'erefore, the covariance
matrix can be reconstructed, and covariance matrix can be
indicated as follows:

􏽢Rl �
1
K

􏽘

K

k�1
􏽘

Q

q�1
g2l,qWqbl(p)bH

l (p) + σ2nIV×V
⎛⎝ ⎞⎠, (39)

where IV×V is unit matrix ofV × V, whereV � MN + N.'e
power of different emitter sources in the same array or

different arrays in the same emitter source is decided by the
sources power Wq and unknown parameters gl,q.

Received sources covariance matrix are separated into
two sections [8]:

􏽢Rl � Rs + Rn � Al(p)diag Wl,1, . . . , Wl,Q􏽨 􏽩􏼐 􏼑AH
l (p)

+ σ2nIV×V.
(40)

'erefore, the eigenvalue can be indicated as follows [8]:

λl,i �
σ2yi

+ σ2n, 1≤ i≤Q,

σ2n, Q + 1≤ i≤V,

⎧⎪⎨

⎪⎩
(41)

where σ2yi
, 1≤ i≤Q are Q eigenvalues of Rs, and we use them

represent the power of the received sources. According to
equation (41), the estimated noise power can be obtained for
the lth observation station as follows:

􏽢σ2nl �
1

V − Q
􏽘

V

i�Q+1
λl,i. (42)

According to (42), we can get the power of the lth station
as below

􏽢Wl � 􏽘

Q

i�1
λl,i − 􏽢σ2nl􏼐 􏼑. (43)

'e received signal with large signal-to-noise ratio will
engender smaller position error. So, we should distribute larger
weight to the location. 'e cost function is set up as follows:

fSW− SDF(p) � argmax􏽘
L

l�1

􏽣Wl

􏽢σ2nl

eH ΘH
(p)aH

j (p)En
l En

l( 􏼁
H

(p)ajΘ(p)
− 1e􏼐 􏼑. (44)

'rough searching the Q minimum values of equation
(44), we can get the estimated location.

3.4.8e Steps of theW-SDFAlgorithm. We make a list of the
following 5 steps about W-SDF algorithm. Figure 6 shows
the flowchart of the algorithm.

Step 1. Establish a direct positioning scene model.

Step 2. For the nested array, we use the spatial
smoothing method and the sum difference array
method to get a larger array aperture.

Step 3. Calculate the covariance matrix and get the
noise subspace.

Step 4. Generate the weighting coefficient wl and use
the dimension reduction method to set up the loss
function fSW− SDF(p).

Step 5. Obtain the value of spectral peak through
spectral peak search, which is the corresponding co-
ordinate (􏽢xq, 􏽢yq).

4. Performance Analysis

In this section, the available DOF and the complexities of the
W-SDF, SDF, Capon, and W-Capon algorithms are ana-
lyzed. Finally, we elaborate the advantages of W-SDF
algorithm.

4.1. Achievable DOFs. We define that M means the number
of dense uniform subarray, N means the number of sparse
subarray, and H means the whole number of array elements.
After spatial smoothing, the DOF of W-SDF algorithm is
MN + 2M + N. DOF of proposed algorithm for circular
sources with uniform linear subarray is H, DOF of proposed
algorithm for noncircular sources with uniform linear sub-
array is 2H, and DOF for circular sources with nested array is
MN + N. It is obviously that the DOF has increased a lot.

4.2. Complexity Analysis. We define that H means numbers
of array element, Q means numbers of source, L means
numbers of observation station, and K means numbers of
snapshots. 'e X orientation is separated into Lx equivalent
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portions, and Y orientation is separated into Ly equivalent
portions [10]. Noncircular phase is separated into Lφ
equivalent portions. 'e computer configuration is Intel(R)
Core i7-10700F, and CPU frequency is 2.90GHz.

'e computing complexity for DPD mainly includes
four portions: the complexity of covariance matrix is
O(4H2LK), the computing complexity of covariance after
spatial smoothing is O[F2VL], where F � MN + M + 2N,
V � MN + N. 'e eigenvalue decomposition of the co-
variance matrix is O[F3L], and the computing complexity of
spatial spectral peak searching value after SNR weighting is
O[LLxLy(3F2 + 9F + F2(F − Q) + 39]. Table 1 lists the
computing complexity of the W-SDF, SDF, Capon, and
W-Capon algorithms and running time of these algorithms.

'e W-SDF algorithm of computational complexity
without dimension reduction is O[4M2LK + F2VL+

F3L + LLxLyLφ(F2 + F + F2(F − Q))].
'eW-SDF algorithm of computational complexity with

dimension reduction is O[4M2LK + F2VL + F3L+

LLxLy(3F2+ 9F + F2(F − Q) + 39)].
It is obviously that the computational complexity is

lessened after dimension reduction.
It can be seen from Figure 7 that W-SDF has the same

computational complexity as the SDF algorithm andW-Capon
has the same complexity as the Capon algorithm. W-SDF has
lower computational complexity compared withW-Capon and
Capon algorithm.

4.3. Advantages. We expound on the advantages about the
proposed method from degree of freedom, computing
complexity, and positioning accuracy.

(1) 'e proposed method makes use of noncircular
sources and nested array features to expand aperture.
'e degree of freedom has been greatly improved.

(2) We make use of dimension reduction method to
decrease computational complexity of algorithms for
noncircular sources. 'e computing complexity is
obviously lessened.

(3) We integrate the weighting method into SDF and
obtain high accuracy. We make use of noncircular
sources and nested arrays and get higher positioning
accuracy.

5. Simulation Results

In this section, we emulate the proposed method and get the
pattern of spatial spectrum and scatter diagram. We emulate
the RMSE results of the proposed method under different
parameters.

5.1. Estimated Results Concerning Proposed Method.
Multiple nested arrays are located at multiple targets
P1 � [300m, 300m], P2 � [500m, 500m], and P3 �

[800m, 800m]. 'e noncircular phase is (π/6, π/4, π/3). 'e
observation stations are U1 � [− 2000m, − 100m], U2 � [−

1000m, − 100m], U3 � [0m, − 100m], U4 � [1000m, − 100m],
and U5 � [2000m, − 100m]. Figure 8 shows pattern of spatial
spectrum and Figure 9 shows scatter diagram of three
targets. 'e real location and estimated location are shown
in Figure 8.'e proposedW-SDF algorithm can locate three
source targets accurately.

'e location estimation performance is analyzed through
computing Monte Carlo (MC) simulation times. 'e root
mean squares error (RMSE) can be indicated as follows [9]:

RMSE �
1
Q

􏽘

Q

q�1

��������������������������������

1
MC

􏽘

MC

mc�1
􏽢xq,mc − xq􏼐 􏼑

2
+ 􏽢yq,mc − yq􏼐 􏼑

2
􏼔 􏼕

􏽶
􏽴

,

(45)

where MC means the number of Monte Carlo experiment
times, Q means the number of targets, (xq, yq) means the
true location of the qth target source, and (􏽢xq,mc, 􏽢yq,mc)

means the estimated position for the qth target in the mcth

experiment. We set Monte Carlo simulation times as 500.

5.2. Performance of W-SDF and SDF Algorithms under Dif-
ferent Sources and Arrays. Multiple targets are
P1 � [300m, 300m], P2 � [500m, 500m], and
P3 � [800m, 800m]. 'e number of snapshots is 300. 'e
number of nested array element is (M, N) � (3, 3). Figure 10
shows the performance of SDF algorithm and W-SDF al-
gorithm under noncircular sources with different arrays.
Figure 10 also shows that the performance of SDF algorithm
and W-SDF algorithm for different sources under uniform
linear array. 'e performance of weighted SDF algorithm is
superior to SDF algorithm. 'e performance of SDF and
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covariance 

matrix

Get the noise 
subspace

Set up the loss 
function 
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Use the 
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Figure 6: Algorithm flowchart.
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W-SDF algorithms for noncircular sources is superior to that
of circular sources. 'e performance of SDF and W-SDF
algorithms for nested array is superior to that of uniform
linear array.

5.3. Performance of Different Algorithms for Noncircular
Sources. 'e number of snapshots is 300. Multiple targets
are P1 � [300m, 300m], P2 � [500m, 500m], and
P3 � [800m, 800m]. 'e number of nested array element is

(M, N) � (3, 3). Figure 11 shows the performance of
W-SDF, SDF, W-Capon, Capon, and W-PM and PM al-
gorithms under nested arrays and noncircular sources.
Under noncircular sources and nested array, the perfor-
mance of the W-SDF algorithm is superior to W-Capon and

Table 1: Computing complexity and working time.

Different algorithms Computing complexity Working time (s)
SDF O[4M2LK + F2VL + F3L + LLxLy(3F2 + 9F + F2(F − Q) + 39)] 145.378111
W-SDF O[4M2LK + F2VL + F3L + LLxLy(3F2 + 9F + F2(F − Q) + 39)] 146.294961
Capon O[4M2LK + F2VL + LLxLy(3F2 + 9F + F3 + 39)] 1360.93077
W-Capon O[4M2LK + F2VL + LLxLy(3F2 + 9F + F3 + 39)] 1369.73693
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W-PM algorithms. 'e performance of W-SDF algorithm is
superior to SDF, Capon, and PM algorithm.

5.4. Performance of W-SDF and SDF Algorithms with Incre-
ment of Array Element Numbers. Multiple targets are
P1 � [300m, 300m], P2 � [500m, 500m], and
P3 � [800m, 800m]. 'e number of snapshots is 300. Fig-
ure 12 shows the performance of W-SDF and SDF under
nested array (M, N) � (5, 5), (6, 6), (10, 10). With the

number of array elements increment, the performance of SDF
andW-SDF for nested array and noncircular sources is better.

5.5.PerformanceofW-SDFandSDFAlgorithmswithDifferent
Snapshot Numbers. Figure 13 shows the performance of
SDF and W-SDF algorithms under different number of
snapshots. Multiple targets are P1 � [300m, 300m],
P2 � [500m, 500m], and P3 � [800m, 800m]. 'e SNR is set
as 15 dB. 'e nested array element number is
(M, N) � (3, 3). With the increment of snapshot number, it
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is clearly to see that the performance for nested arrays and
noncircular sources is better.

5.6. Resolution about Source Spacing with Different Arrays.
Figure 14 shows resolution about the distance between two
sources. SNR is set as 5 dB. Positions are set as
p1 � [300m, 300m] and p2 � [Δdm, 300m], where Δd
changes from 10m to 180m. It can be seen that the reso-
lution of weighted SDF algorithm is better than that of SDF
algorithm with noncircular sources, and the resolution of
algorithm under nested array is better than that under
uniform array.

6. Conclusion

'is article studies SNR weighted SDF algorithm on account
of noncircular sources and nested arrays for direct position
determination. For noncircular sources, the dimension re-
duction method is used to decrease the computing com-
plexity and remove the noncircular phase. For SDF
algorithm vulnerable to noise and inferior stability, we use
SNR weighted SDF algorithm to improve location accuracy.
For the aperture limited, we introduce nested arrays to
expand array aperture. We use spatial smoothing technology
and use sum and difference co-array to deal with the nested
array. Simulation results show that the proposed method
decreases the complexity of the algorithm and improves the
location accuracy, degree of freedom, and resolution. In the
future, we can study an optimal station position. 'ree-level
nested arrays and other sparse arrays for the direct posi-
tioning are also needed researched in the future.
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In this paper, we investigate the direction of arrival (DOA) estimation problem with unfolded coprime linear array (UCLA) and
propose a low computational complexity signal-subspace �tting (SF) algorithm. SF algorithm is able to achieve excellent DOA
estimation performance while it requires global angular search (GAS). Especially in the several source signals situation, expensive
complexity cost causes. To decrease computational complexity, we propose an initialized based SF (ISF) algorithm, which involves
the several one dimensional (1D) partial angular search (PAS) instead of themultidimensional GAS. Consequently, the complexity
is signi�cantly decreased. Due to the full utilization of the array aperture, the proposed method in UCLA can attain better
performance than general CLA (GCLA). In addition, as the SF is attractive in practical application, the proposed ISF algorithm
lowers the computational cost, while achieving almost approximate estimation performance as traditional SF and noise subspace
�tting (NF). Moreover, numerical simulations are provided and verify the e�ectiveness and the superiority of the proposed
algorithm for the UCLA.

1. Introduction

Direction of arrival (DOA) estimation is one of the fun-
damental issues for the array signal processing scenery and
has been applied in engineering �elds, including sonar,
radar, navigation, and wireless communications [1–6]. In
the past decades, many subspace based algorithms have
been proposed [7–10], like multiple signals classi�cation
(MUSIC) based algorithms [7–10], and estimation of signal
parameters via rotational invariance techniques (ESPRIT)
[11–13].  ese are subspace based algorithms.  e prop-
agator method (PM) [14, 15] can reduce the computational
complexity by employing a linear partition operation in-
stead of eigenvalue decomposition (EVD).  ese algo-
rithms were initially designed for uniform array [16–19].
Nevertheless, for the conventional uniform arrays, the
interelement spacing is required to be no larger than half-
wavelength. As a result, the phase ambiguity problem can
be avoided [20].

Over these years, coprime array [21] attracts much at-
tention. It can e�ectively increase the degrees of freedom
(DOFs) [22, 23], relieve the mutual coupling (MC) e�ects
[16, 24], and improve the angle estimation performance.
Because of these advantages, the coprime array is widely
used in wireless communication systems and radar location
[25, 26]. Speci�cally, a general coprime linear array (GCLA)
incorporates two sparse uniform linear subarrays with M
and N sensors, whereM and N are coprime integers. And,
the interelement spacing of these two subarrays are (Nλ/2)
and (Mλ/2), respectively. And, λmeans the wavelength. is
design concept breaks the conventional half-wavelength and
can achieve the higher angle resolution compared with the
classic uniform array in the same conditions.

In these years, various algorithms have been proposed
for DOA estimation with GCLA. Zhou proposed a total
spectral search (TSS) algorithm in [27]. By combining the
DOA estimates of two subarrays to attain the �nal DOA
estimates.  is algorithm results in signi�cantly
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computational complexity because of the global angular
search (GAS). A partial spectral searching algorithm [28],
which investigates the linear relationship to obtain all es-
timates, was proposed. Moreover, it transforms the GAS into
partial sector one. +ese algorithms treat the array sepa-
rately, so they only employ the auto-information of two
subarrays. An efficient method which can resolve the am-
biguity in DOA estimation was proposed in [29]. +e
method offers good generalization and robustness in re-
solving the ambiguity problem. It achieves full degrees of
freedom (DOF) with reduced complexity. An ambiguity-free
algorithm via utilizing the total matrix information, such as
auto-covariance information and mutual covariance infor-
mation, was proposed in [30]. However, it involves high
computational complexity. Along with pursuing the high
resolution and DOA estimation performance, the compu-
tational complexity is also a challenging but promising task
[31, 32].

It is known that subspace fitting techniques [33, 34] are
popular in array signal processing [35, 36]. Compared with
maximum likelihood [37], signal subspace fitting (SF) and
noise subspace fitting (NF) [33] algorithms obtain the
similar angle estimation performance [37], while these al-
gorithms involve high computational complexity due to the
GAS, especially in themultiple signals situation. A successive
scheme of SF has proposed in [38], which incorporates the
coprime linear array and SF to decrease the complexity. To
further expand the array aperture, we link the SF into un-
folded coprime linear array (UCLA), which enlarges the
array aperture and we transform the multidimensional
searching into several one dimensional (1D) searching.
Moreover, we replace the GAS by partial angular search
(PAS). Specifically, by PM, we can attain the initial DOAs of
two subarrays. And, we recover all estimates and obtain the
unique initial DOA estimates according to coprime prop-
erty. +en, we employ the initial estimates to reconstruct the
steering matrix and transform the multidimensional search
into several 1D one. Consequently, computational com-
plexity cost can be significantly decreased. Meanwhile, via
the initial estimates, we replace the GAS by PAS. +e
proposed ISF can acquire better DOA estimation perfor-
mance with UCLA than that with GCLA due to the larger
array aperture. And, it acquires similar DOA estimation
performance compared with SF and NF, while ISF has the
lowest complexity. Moreover, Cramer–Rao Bound (CRB) is
presented as a theoretical lower bound [39]. Finally, the
effectiveness and superiority of the proposed ISF algorithm
for the UCLA is demonstrated by the numerical simulations.

Specifically, we summarize the main contributions of
this paper as follows:

(1) We integrate the UCLA with the subspace fitting
method which can obtain a larger array aperture
compared with GCLA. Simulations verify that the
proposed algorithm with UCLA can realize more
excellent estimation performance than GCLA.

(2) We propose an initialization based algorithm for
DOA estimation, which can effectively decrease the
complexity of the classic SF algorithm. By utilizing

PM to initialize and obtain coarse estimation, and
operating fine searching among a small sector, so we
can achieve lower complexity.

(3) We demonstrate that the proposed algorithm can
achieve the approximately the same DOA estimation
performance as the classical SF and NF algorithms.
And, the proposed algorithm outperforms the classic
PM algorithm in DOA estimation performance.

+e remaining parts of this paper are organized as
follows: in Section 2, we elaborate the UCLA geometry and
signal model. Subsequently, the proposed algorithm is in-
troduced in Section 3. Complexity analysis and advantages
are given in Section 4. Numerical simulations are provided
in Sections 5 and 6 conclude this paper.

Notations: we utilize lower-case (upper-case) bold
characters as vectors (matrices). And, we use (·)T and (·)H to
represent the transpose and the conjugate transpose, re-
spectively. ⊙ and ⊗ represent the Khatri–Rao product and
Kronecker product, respectively. diag(·) denotes a diagonal
matrix which employs the elements of the matrix to be its
diagonal elements. E(·) represents statistical expectation.
min(·) is getting the minimum element. Dm(·) is a diagonal
matrix that them-th row of the matrix is employed. angle(·)

and arctan(·) denote phase operator and the arctangent
function, respectively.

2. Signal Model

In this paper, we employ an unfolded coprime linear array
(UCLA) configuration which is able to further enlarge the
array aperture and promote DOA estimation performance.

An UCLA configuration incorporates two uniform
linear subarrays. One subarray has M sensors with
d1 � (Nλ/2), where λ represents the wavelength. +e other
subarray is with N sensors and the interelement spacing is
denoted as d2 � (Mλ/2). So the total number of the sensors
is denoted as TUCLA � M + N − 1. Figure 1 is an example of
UCLA configuration where M � 3 and N � 4.

Assume that there are K uncorrelated far-field narrow-
band signals sk(t) impinging on the UCLA from distinct
angles where t ∈ [1, L] and L represents the number of
snapshots. +e angles are denoted as Θ � [θ1, θ2, . . . , θK],
where θk ∈ [0, π/2], (k � 1, 2, . . . , K). Here, we assume the
number of sources K is known. +e received signal of the
array can be denoted as follows:

x(t) � As(t) + n(t) �
x1(t)

x2(t)
􏼢 􏼣

�
A1

A2
􏼢 􏼣s(t) +

n1(t)

n2(t)
􏼢 􏼣,

(1)

where A � [AT
1 , AT

2 ]T � [a(θ1), a(θ2), . . . , a(θK)] is the di-
rection matrix and the steering vector is defined by
a(θk) � [a1(θk)T, a2(θk)T]T, n(t) � [n1(t)T, n2(t)T]T is the
additive white Gaussian noise with zero mean and variance
σ2n. And, the noise signal is independent of the signal re-
sources. And s(t) � [s1(t), s2(t), . . . , sK(t)]T denotes the
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signal vector, where t � 1, 2, . . . , L, L means the number of
snapshots. A1 � [a1(θ1), a1(θ2), . . . , a1(θK)] represents the
directional matrix and the corresponding steering vector
is denoted as a1(θk) � [ej(M− 1)Nπsinθk , ej(M− 2)Nπsinθk ,

. . . , 1]T(k � 1, 2, . . . , K). And, the directional matrix of
subarray 2 is denoted as A2 � [a2(θ1), a2(θ2), . . . , a2(θK)]

and the corresponding steering vector is represented as
a2(θk) � [e− jMπsinθk , . . . , e− j(N− 1)Mπsinθk ]T.

Practically, the covariance matrix is approximately
computed with L snapshots [7].

􏽢R �
1
L

􏼒 􏼓 􏽘

L

t�1
x(t)xH

(t). (2)

+en, perform eigenvalue decomposition [7].

􏽢R � 􏽢Us
􏽢Ds

􏽢U
H

s + 􏽢Un
􏽢Dn

􏽢U
H

n , (3)

where 􏽢Ds and 􏽢Dn are the diagonal matrices composed of the
largest K eigenvalues of 􏽢R and the diagonal matrix con-
taining the remaining eigenvalues, respectively. And, 􏽢Us

denotes the signal subspace which consists of the eigen-
vectors corresponding to the largest K eigenvalues. 􏽢Un is the
noise subspace including the rest eigenvectors.

In the noise-free case, we can get the following equation:

space Us􏼈 􏼉 � space A{ }. (4)

It exists a full rank matrix Γ ∈ C(K×K) [7] to make (5)
hold.

􏽢Us � AΓ. (5)

3. Proposed Method for DOA Estimation

3.1. Initialization Processing. In this subsection, we first
utilize subarray 1 to introduce the proposed algorithm. And
we can operate the subarray 2 by the similar method.

By partitioning the directional matrix A1, we can get A11
and A12, which contain the first K rows and (M − K) rows,
respectively.

For the subarray 1, we first partition the steering matrix
A1 as follows:

A1 �
A11

A12
􏼢 􏼣, (6)

where A11 ∈ CK×K represents the matrix contains the first K

rows of A1 and A12 ∈ C(M− K)×K stands for the matrix with
the remaining (M − K) rows of A1, respectively.

Assume that A11 is a full rank matrix, then we can obtain
A12 by the following equation:

A12 � P1cA11, (7)

where P1c is the propagator method of the subarray 1. And
P1c ∈ C(M− K)×K [14].

+en, we define the following equation:

P1 �
I1K

P1c

􏼢 􏼣, (8)

where I1K is a unit matrix of I1K ∈ CK×K.
So we have the following equation:

P1A11 �
I1KA11

P1cA11
􏼢 􏼣 �

A11

A12
􏼢 􏼣 � A1. (9)

+en, we partition the matrix of P1 and can get P1a and
P1b

P1 �
P1a

Γξ
⎡⎣ ⎤⎦ �

Ξζ
P1b

􏼢 􏼣, (10)

Where P1a and P1b denote the first (M − 1) rows and last
(M − 1) rows of P1, respectively. And, Ξξ and Ξζ , respec-
tively, represent the last row and the first row of P1.

+en, we partition A1 by the following equation:

A1 �
A1a

Σξ
􏼢 􏼣 �

Σζ

A1b

􏼢 􏼣, (11)

where A1a and A1b denote the first (M − 1) rows and last
(M − 1) rows of A1, respectively. Σξ represents the last row
and Σζ is the first row of A1.

+en, we can get the following equation:

P1A11 �
P1a

Γξ
􏼢 􏼣A11 �

Ξζ
P1b

􏼢 􏼣A11,

A1 �
A11

A12
􏼢 􏼣 �

A1a

Σξ
􏼢 􏼣 �

Σζ

A1b

􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

According to (10), we have the following equation:

Subarray1
Subarray2

Nd

MdM-1
………

………
N-10

0

θ

-1

1 2

Figure 1: Structure of unfolded coprime linear array.
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P1aA11 � A1a

P1bA11 � A1b

􏼨 (13)

So it has the following equation:

P1a

P1b

􏼢 􏼣A11 �
A1a

A1b

􏼢 􏼣 �
A1a

A1aΦ1r

􏼢 􏼣. (14)

+en, we have the following equation:

P+
1aP1b � A11Φ1rA

− 1
11 , (15)

where P+
1a � (PH

1aP1a)− 1PH
1a gives the pseudoinverse of P1a

and Φ1r is a diagonal matrix which is denoted as follows:
Φ1r � diag(ejπNsinθ1 , ejπNsinθ2 , . . . , ejπNsinθK ) ∈ CK×K.

We define the following equation:

Ψ1r � P+
1aP1b. (16)

Because A11 is a full rank matrix, so Ψ1r is the similar
transformation of Φ1r.

As Φ1r is a diagonal matrix of eigenvalues, Ψ1r and Φ1r

possess the same eigenvalues. As a result, operate eigen-
values decomposition of Ψ1r, then we can obtain the di-
agonal elements δ1,k. And, we can get the initial DOA
estimates sin θ

→
1,k(k � 1, 2, . . . , K) of subarray 1, which is

denoted as follows:

sin θ
→

1,k � angle
δ1,k􏼐 􏼑

(Nπ)
, (17)

where angle(·) means angle function.
By the similar conduction, we process the subarray 2.
Separate the directional matrix A2 into two parts and we

can get A21 and A22, which contain the first K rows and
(N − K) rows, respectively.

+e steering matrix of A2 is separated as follows:

A2 �
A21

A22
􏼢 􏼣, (18)

where A21 ∈ CK×K represents the matrix contains the first K

rows of A2 and A22 ∈ C(N− K)×K represents the matrix with
the remaining (N − K) rows of A2, respectively.

Assume thatA21 is a full rank matrix, then we can obtain
A22 by the following equation:

A22 � P2cA21, (19)

where P2c is the propagator method of the subarray 1. And
P2c ∈ C(N− K)×K.

+en, we define the following equation:

P2 �
I2K

P2c

􏼢 􏼣, (20)

where I2K is a unit matrix of I2K ∈ CK×K.
Similar to equation 15 we have the following equation:

P2A21 �
I2KA21

P2cA21
􏼢 􏼣 �

A21

A22
􏼢 􏼣 � A2. (21)

+en, we partition thematrix of P2 and can get P2a and P2b

P2 �
P2a

Γ2ξ
􏼢 􏼣 �

Ξ2ζ
P2b

􏼢 􏼣, (22)

where P2a and P2b denote the first (N − 1) rows and last
(N − 1) rows of P2, respectively. And, Ξ2ξ and Ξ2ζ , re-
spectively, represent the last row and the first row of P2.

+en, we partition A2 by the following equation:

A2 �
A2a

Σ2ξ
􏼢 􏼣 �

Σ2ζ

A2b

􏼢 􏼣, (23)

where A2a and A2b denote the first (N − 1) rows and last
(N − 1) rows of A2, respectively. Σ2ξ represents the last row
and Σ2ζ is the first row of A2.

+en, we can get the following equation:

P2A21 �
P2a

Γξ
􏼢 􏼣A11 �

Ξζ
P2b

􏼢 􏼣A21,

A2 �
A21

A22
􏼢 􏼣 �

A2a

Σξ
􏼢 􏼣 �

Σζ

A2b

􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

According to (22), we have the following equation:

P1aA11 � A1a

P1bA11 � A1b

􏼨 (25)

+en, we can get the following equation:

P2a

P2b

􏼢 􏼣A21 �
A2a

A2b

􏼢 􏼣 �
A2a

A2aΦ2r

􏼢 􏼣. (26)

+en, we have the following equation:

P+
2aP2b � A21Φ2rA

− 1
21 , (27)

where P+
2a � (PH

2aP2a)− 1PH
2a gives the pseudo-inverse of P2a

and Φ2r is a diagonal matrix which is denoted as follows:
Φ2r � diag(ejπMsinθ1 , ejπMsinθ2 , . . . , ejπMsinθK ) ∈ CK×K.

We define the following equation:

Ψ2r � P+
2aP2b. (28)

Because A21 is a full rank matrix, so Ψ2r is the similar
transformation of Φ2r.

As Φ2r is a diagonal matrix of eigenvalues, Ψ2r and Φ2r

possess the same eigenvalues. As a result, operate ei-
genvalues decomposition of Ψ2r, then we can obtain the
diagonal elements δ2,k. And, we can get the initial DOA
estimates sin􏽢θ2,k of subarray 2, which is denoted as
follows:

sin􏽢θ2,k � angle δ2,k􏼐 􏼑/(Mπ), (29)

where k � 1, 2, . . . , K and angle(·) is the angle function.

3.2. Ambiguity Elimination Based on Coprime Property.
In this part, according to the obtained angles, we first recover
all the estimates. +en, we eliminate the ambiguity problem
based on the coprime property.
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It is known that there exists 2kπ(k ∈ Z) between the real
and ambiguous angles for the sinusoid function [28].

2πdi sin 􏽢θi

λ − 2πdi

􏼠 􏼡
sin􏽢θi,am

λ � 2Qiπ
􏼠 􏼡, (30)

where Qi ∈ Z, d1 � N d, d2 � M d, θi,am means the am-
biguous angle of the subarray i. It has the following equation:

sin θ
→

1,k

λ − sin 􏽢θ1,am

⎛⎝ ⎞⎠ �
2Q1

N
􏼒 􏼓,

sin θ
→

2,k

λ − sin 􏽢θ2,am

⎛⎝ ⎞⎠ �
2Q2

M
􏼒 􏼓.

(31)

According to the variation range of θ, it is indicated that
Q1 ∈ [− (N − 1), N − 1)] and Q2 ∈ [− (M − 1), (M − 1)],
where M and N are integers [27].

+en, we have the following equation:

2Q1

N
�
2Q2

M
. (32)

It is known that the interelement spacing of a uniform
linear array is no larger than half wave length to avoid the
phase ambiguity. As a result, no phase ambiguity problem
results in. But the coprime array, due to the element
spacing larger than half wavelength, arises phase
ambiguity.

To illustrate the phase ambiguity problem, we provide
the simulation about the coprime array. Figure 2 depicts the
DOA estimation with the three different element spacing,
where there is one signal θ � 25° arrives at the array. And it
can be noticed that there are ambiguous angles when d �

3λ/2 and d � 5λ/2.
Due to the coprime property of M and N, there only

exists Q1 � Q2 � 0 which makes the equation (32) satisfied.
Via equations (33) and (34), all the DOA estimates are

obtained.

􏽢θM,k � arcsin
sin θ

→
1,k − 2Q1􏼒 􏼓

N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (33)

􏽢θN,k � arcsin
sin θ

→
2,k − 2Q2􏼒 􏼓

M

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (34)

where k � (1, 2, . . . , K), 􏽢θM � [􏽢θM,1,
􏽢θM,2, . . . , 􏽢θM,k] and

􏽢θN � [􏽢θN,1,
􏽢θN,2, . . . , 􏽢θN,k].

Practically, considering that noise exists, to attain the
overlapped angle estimation is always difficult. Conse-
quently, we replace searching the overlap by finding the
nearest angles from 􏽢θ

ξ
M and 􏽢θ

ζ
N , which contain all the es-

timates of two subarrays, respectively.

min
􏽢θ
ξ

M,􏽢θ
ζ

N

􏽢θ
ξ
M − 􏽢θ

ζ
N

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌(ξ � 1, 2, . . . , N, ζ � 1, 2, . . . , M). (35)

By equation (36), we can get the initial DOA estimates.

􏽢θ
ini

k �
􏽢θ
ξ
M + 􏽢θ

ζ
N

2
(k � 1, 2, . . . , K). (36)

3.3. InitializationBasedAlgorithm. Via equation (37), we get
the covariance matrix [7].

R � ARsA
H

+ σ2nI(M+N)×(M+N), (37)

where Rs is the covariance matrix of the signals and
σ2nI(M+N)×(M+N) denotes the power of noise.

From equations (3) and (37), it has the following
equation:

ARsA
H

+ σ2nI(M+N)×(M+N) � UsDsU
H
s + σ2nUnU

H
n . (38)

Due to the orthogonality of the signal and noise sub-
space, it exists I � UsUH

s + UnUH
n . So equation (38) can be

rewritten as follows:

ARsA
H

+ σ2nI(M+N)×(M+N)

� UsDsU
H
s + σ2n I(M+N)×(M+N) − UsU

H
s􏼐 􏼑.

(39)

+en, we can get the following equation:

ARsA
H

+ σ2nUsU
H
s � UsDsU

H
s . (40)

As Us � AΓ and UH
s Us � I(M+N)×(M+N), we have the

following equation:

Γ � RsA
HUs Ds − σ2nI(M+N)×(M+N)􏼐 􏼑

− 1
. (41)

However, the noise exists. To solve this problem,
establish a fitting relationship to compute the matrix Γ.

θ, 􏽢Γ � min 􏽢Us − 􏽢A􏽢Γ
����

����
2
F, (42)

which can make the equation (5) hold.
By utilizing the least square (LS) criterion, we can get the

following equation:

􏽢Γ � 􏽢AH 􏽢A􏼒 􏼓
− 1

􏽢AH 􏽢Us � 􏽢A+ 􏽢Us. (43)

Incorporate (36) and (37), then we have the following
equation:

θ � min 􏽢Us − 􏽢A􏽢A
+ 􏽢Us

�����

�����
2

F

� min tr I − 􏽢A 􏽢A
H 􏽢A􏼒 􏼓

− 1
􏽢A

H
􏼨 􏼩 􏽢Us

􏽢U
H

s􏼨 􏼩

� max tr 􏽢A 􏽢A
H 􏽢A􏼒 􏼓

− 1
􏽢A

H 􏽢Us
􏽢U

H

s􏼨 􏼩.

(44)

When there are numerical signals, the problem of
equation (44) is becoming a multidimensional SF problem.
Consequently, it will have a higher computational cost. In
view of this, we utilize the initialization based method to
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reconstruct the steering matrix and search within a small
sector. In this way, complexity gets significantly decreased.

According to the obtained initial DOA estimates
􏽢θ
in

� [􏽢θ
in

1 , 􏽢θ
in

2 , . . . , 􏽢θ
in

K], the new manifold matrix 􏽢A
(1) is

obtained.

􏽢A
(1)

� a(θ), a 􏽢θ
in

2􏼒 􏼓, . . . , a 􏽢θ
in

K􏼒 􏼓􏼔 􏼕. (45)

+en, the angle θ1 can be computed by the following
equation:

􏽢θ1 � argmin
θ∈ 􏽢θ

in

1 − Δθ,􏽢θ
in

1 +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(1) 􏽢A

(1) 􏽢Us

������

������

2

F
.

(46)

It can be noted the searching region is θ ∈ [􏽢θ
in

1 − Δθ, 􏽢θ
in

1 +

Δθ] , where Δθ is a tiny value. In this way, we can get the
more accurate DOA estimate of θ1.

From equation (46), we can obtained 􏽢θ1. +en, we keep
[􏽢θ1, 􏽢θ

in

3 , . . . , 􏽢θ
in

K] unchanged and elaborate a new directional
matrix 􏽢A

(2).

􏽢A
(2)

� a 􏽢θ1􏼐 􏼑, a(θ), a 􏽢θ
in

3􏼒 􏼓, . . . , a 􏽢θ
in

K􏼒 􏼓􏼔 􏼕. (47)

Here, θ is the angle that we will estimate in the following
step.

By equation (48), we can obtain the estimate of θ2 by PAS
within θ ∈ [􏽢θ

in

2 − Δθ, 􏽢θ
in

2 + Δθ].

􏽢θ2 � argmin
θ∈ 􏽢θ

in

2 − Δθ,􏽢θ
in

2 +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(2) 􏽢A

(2)
+ 􏽢Us

������

������

2

F
.

(48)

Similarly, keep [􏽢θ1, 􏽢θ2, 􏽢θ
in

4 , . . . , 􏽢θ
in

K] unchanged. And we
employ 􏽢θ2 to establish 􏽢A

(3),

􏽢A
(3)

� a 􏽢θ1􏼐 􏼑, a 􏽢θ2􏼐 􏼑, a(θ), a 􏽢θ
in

4􏼒 􏼓, . . . , a 􏽢θ
in

K􏼒 􏼓􏼔 􏼕. (49)

It is noted that 􏽢θ1 and 􏽢θ2 is estimated via equations (46)
and (48), and θ is the goal that we are to estimate in the next
step.

Via equation (50), we can get the more accurate DOA
estimate of θ3 within a small searching region
θ ∈ [􏽢θ

in

3 − Δθ, 􏽢θ
in

3 + Δθ].

􏽢θ3 � argmin
θ∈ 􏽢θ

in

3 − Δθ,􏽢θ
in

3 +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(3) 􏽢A

(3) 􏽢Us

������

������

2

F
.

(50)

By the similar method, we reconstruct the new direc-
tional matrix 􏽢A

(K) via using [􏽢θ1,􏽢θ2, . . . , 􏽢θK− 1].

􏽢A
(K)

� a 􏽢θ1􏼐 􏼑, a 􏽢θ2􏼐 􏼑, . . . , a 􏽢θK− 1􏼐 􏼑, a(θ)􏽨 􏽩. (51)

+en. we can attain the estimate of θK by the following
equation:

􏽢θK � argmin
θ∈ 􏽢θ

ini

K − Δθ,􏽢θ
ini

K +Δθ􏽨 􏽩

􏽢Us − 􏽢A
(K) 􏽢A

(K)
+ 􏽢Us

������

������

2

F
.

(52)

Here, the angle searches within a small region
θ ∈ [􏽢θ

ini
K − Δθ, 􏽢θ

ini
K + Δθ].

Due to transforming the multi-dimensional GAS of SF
into initialization based 1D PAS, the computational com-
plexity is significantly reduced.
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Figure 2: DOA estimation with the varying element spacing.
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3.4. Detailed Steps. +e detailed steps of the proposed
method are (Algorithm 1) as follows:

4. Discussions

4.1. Complexity. In this part, we give the computational
complexity comparison results of the proposed ISF algorithm,
SF [2], NF [2], and TSS [27]. For ISF, it has
the complexity of (M2 + N2)L + M3 + N3 + 2[(M − 1)2+

(N − 1)2]K + (M − 1)3 + (N − 1)3 + [(M − 1) + (N − 1)]K2]+

Π1[4K(M2 + N2) + (M3 + N3)] where Π1 � K · 2Δ/ds means
the search times and ds � 0.001 is the search step, Δ denotes a
tiny search value. Moreover, we provide the computational
complexity comparison of the different algorithms in Table 1,
including SF, NF, and TSS. +e comparison of the compu-
tational complexity versus number of snapshots and sensors
are illustrated in Figures 3 and 4, where M � 3,N � 4,K �

3,ds � 0.001 and N � [4,5,7,8], respectively. As the proposed
method transforms theGAS into PAS and searches over a small
sector, it shows clearly that its complexity is much lower than
SF, NF, and TSS. Figure 5 depicts the complexity comparison
versus the search step. It is seen that ISF can significantly relieve
the computational complexity burden.

4.2. Cramer-Rao Bound. Here, we derive the CRB [37] of the
UCLA.

Elaborate the manifold matrix of the UCLA as follows:

At �
A1

A2p

􏼢 􏼣, (53)

where A2p denotes the rows from the second one to the last
one of the A2.

CRB �
σ2n
2L

Re DH I − At AH
t At􏼐 􏼑

− 1
AH

t􏼔 􏼕D⊕Rs􏼔 􏼕􏼚 􏼛
− 1

, (54)

where Rs � (1/L)􏽐
L
t�1 s(t)sH(t),D� [(zat,1/zθ1),(zat,2/zθ2),

. . . ,(zat,K/zθK)], ⊕means the Hadamard operation. And at,k

is the Kth column of At.

4.3.Advantages. We give the advantages of the proposed ISF
algorithm in the following:

(1) We incorporate the signal subspace fitting method
into UCLA, which can achieve the more superior
performance than GCLA due to the larger array
aperture. It is seen in Figure 5.

(2) When there are multiple signals, the proposed ISF
transforms the conventional multi-dimensional
search into several 1D search, which can remarkably
decrease the computational complexity. It is seen in
Figure 2.

(3) By employing the obtained initial DOA estimates,
the GAS is transformed into PAS. In this way, the

Step 1: compute the covariance matrix 􏽢R according to equation (2)
Step 2: operate the EVD of 􏽢R and get the signal subspace by equation (3)
Step 3: via propagator method, obtain the initial angle estimation and recover all the DOA estimates by equations (33) and (34)
Step 4: ambiguity problem is solved via the coprime property and initial estimates 􏽢θ

in

k , k � 1, 2, . . . , K are achieved
Step 5: compute fine DOA estimates according to equation (52)

ALGORITHM 1: +e details of the proposed ISF algorithm.
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NF
TSS
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Figure 3: Complexity versus the number of snapshots.

Table 1: Comparison of the computational complexity.

Algorithms Computational complexity

ISF O
(M

2
+ N

2
)L + M

3
+ N

3
+ 2[(M − 1)

2
+ (N − 1)

2
]K + (M − 1)

3
+

(N − 1)
3

+ [(M − 1) + (N − 1)]K
2

+ G1[4K(M
2

+ N
2
) + (M

3
+ N

3
)]

􏼠 􏼡

SF O((M2 + N2)L + M3 + N3 + G2[4K(M2 + N2) + (M3 + N3)])

NF O(M2 + N2)L + M3 + N3 + G2[M(M − K)K + N(N − K)K])

TSS O((M2 + N2)L + M3 + N3 + G3[M(M − K) + N(N − K)])
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complexity has an effective reduction, which can be
seen in Section 4.

(4) +e proposed ISF is able to attain similar DOA
estimation performance as traditional SF and NF
algorithms and outperform ESPRIT and PM, which
is seen in Section 5.

5. Simulations

In the simulation section, the root mean square error
(RMSE) is used as the performance comparison metric,
which is defined as follows:

RMSE �

���

􏽘

􏽱 Q

p�1
􏽘

K

k�1

􏽢θk,p − θk􏼐 􏼑
2

PK
, (55)

where P is the number of Monte Carlo simulations,
􏽢θk,p stands for the estimate of the p-th trial for the
k-th theoretical angle θk. And, in this paper, we set
P � 1000.

5.1. Scattering Figure of the Proposed ISF with UCLA. +e
scattering figure of the proposed ISF algorithm with
UCLA for three distant sources θ � [10∘, 30∘, 50∘] is pre-
sented in Figure 6, where M � 3, N � 4, L � 200,
SNR � 5 dB. And, we define the search step and the tiny
searching restrain as ds � 0.001 and Δ � 0.5. It is shown
clearly that the proposed ISF algorithm detects the source
signals successfully.

5.2. Comparison of Different Arrays with the Same Algorithm.
+e RMSE comparison versus SNR and snapshots with
different configurations, including UCLA and GCLA, for
two sources (θ1, θ2) � [25∘, 45∘] is given in Figures 7 and 8

by the same algorithm. It is defined that L � 200 and
SNR� 5 dB, respectively. From these two figures, we can
notice that the UCLA is able to obtain the lower CRB and
better DOA estimation performance than the GCLA.
Moreover, the proposed ISF algorithm can attain the better
DOA estimation performance with the UCLA than that with
the GCLA because of the extension of the array aperture.
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5.3. Comparison of Different Algorithms with the UCLA.
In this subsection, the RMSE comparison of the proposed
ISF algorithm, SF [33], NF [33], TSS [27], S-SF [38], ESPRIT
[11], and PM [14] versus SNR and the number of snapshots
is given in Figures 9 and 10, where M � 3, N � 4 and
(θ1, θ2) � [25∘, 45∘] It is defined that L � 200 and
SNR� 5 dB, respectively. From these two figures, we can
notice that ISF can achieve nearly similar estimation per-
formance as SF, NF, and TSS but with the lower complexity
due to the initialization operation to decrease the complexity
which is verified in Figure 2. What’s more, ISF performs the
better DOA estimation than ESPRIT and PM.

5.4. RMSEwith Different Snapshots and SNR. Figures 11 and
12 compare the estimation performance with a different
number of snapshots and SNR, respectively. It shows clearly
that the performance of angle estimation becomes better
with the number of snapshots and SNR increasing.
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5.5. Estimation Probability Comparison of Different
Algorithms. Figures 13 and 14 depict the estimation
probability versus the number of SNR and snapshots of the
proposed ISF algorithm, SF [33], NF [33], TSS [27], S-SF
[37], ESPRIT [11], and PM [14]. Suppose two closely located
targets impinging on the arrays, where
SNR � 5dB, K � 2, (θ1, θ2) � (20°, 21°). +e two sources
can be resolved if |θ − 􏽢θ|< |θ1 − θ2|/2 where θ � (θ1, θ2), 􏽢θ �

(􏽢θ1, 􏽢θ2) [40]. We can clearly see that the proposed ISF al-
gorithm performs the almost the same estimation proba-
bility than SF, NF, and TSS. It can be also inferred that ISF
outperforms the ESPRIT and PM algorithms.

6. Conclusions

In this paper, we propose an ISF algorithm for DOA esti-
mation with UCLA and verify that UCLA behaves the better
DOA estimation performance than GCLA due to the larger
array aperture. In the multiple signals scenery, the classic SF
needs severe computational complexity cost due to the
multidimensional GAS. To solve this problem, we transform
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the multi-dimensional search into several 1D one. In ad-
dition, GAS is changed to be PAS. Specifically, the propa-
gator method is employed to obtain the initial DOA
estimation. By initialization, we can transform the multi-
dimensional GAS into several 1D partial one. As a result, the
complexity is significantly reduced. CRB is presented and
the simulations verify the effectiveness of the proposed
algorithm.
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With the rapid development of electronic warfare technology, the airborne electronic counter measures (ECM) system can
generate mainlobe jamming using range gate pull-o� (RGPO) strategy, which brings serious performance degradation of target
tracking for the tracking and guidance radar. In this study, a two-dimensional transceiver beamforming approach is proposed to
suppress the mainlobe jamming with frequency diverse array using multiple-input multiple-output (FDA-MIMO) radar. �e
mainlobe jamming signal di�ers from the real target echo in the joint transmit and receive domain due to the range dependence of
FDA beampattern. �e amplitude of RGPO signal is greater than the amplitude of real target echo. �us, the transceiver
beampattern can be designed to null out the jamming while maintaining the real target. �e jamming suppression performance is
studied in consideration of practical range constraint of RGPO. Simulation results are provided to verify the e�ectiveness of the
proposed approach.

1. Introduction

Tracking and guidance radar plays an important role in
national defense applications [1–4]. It provides su�cient
antijamming ability against the jammers with the low side
lobe antenna technique and large time-bandwidth products.
However, with the development of electronic interference
technique in the advanced weapons, tracking and guidance
radar encounters extremely hostile environment in the
mainlobe [5–7]. For example, the electronic counter mea-
sures (ECM) system has been developed to generate strong
jamming in the mainlobe [8–10], which becomes a great
challenge for the traditional phased array radar systems.

�emainlobe jamming is not easy to implement and also
di�cult to suppress. Especially, the multidimensional
modulation deceptive jamming signal from the mainlobe
seriously a�ects the performance of the radar system
[11–14]. Deceptive jamming intercepts the radiation signal
of radar by airborne electronic support measures (ESM) and
modulates the range and speed in multiple dimensions, and
then a deceptive jamming pattern similar to the real radar

detection waveform is generated, that is, the false target is
generated by the way of “intercept-modulation-forward,”
which can make the radar systemmistakenly regard the false
target as the real target. �erefore, deceptive jamming has
serious consequences such as increased false alarm, missing
of real target, and extremely heavy computational burden
[15–17].

RGPO is an e�ective technique for deceptive jamming of
radar range information. Because it has the advantages of
low interference power and strong ¢exibility, it has become a
hot research topic in recent years [18, 19]. Greco et al. [20]
studied the working mechanism of RGPO and analyzed the
in¢uence of delay quantization based on digital radio fre-
quency memory (DRFM) on jamming signals. Öztürk et al.
[21] adopted the RGPO of bidirectional false target, which
can e�ectively resist the pulse leading edge or trailing edge
tracking technology adopted by radar. Xie et al. [22] pro-
posed a range gate RGPO method based on bidirectional
false targets, which is veri¦ed by evaluating radar mea-
surements. In the study by Rui-xing and Jian-yun [23], a
jamming power compensation technique was proposed to

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 1265658, 11 pages
https://doi.org/10.1155/2022/1265658

mailto:wanpengfei@stu.xidian.edu.cn
https://orcid.org/0000-0003-0085-4834
https://orcid.org/0000-0002-1865-6214
https://orcid.org/0000-0001-9779-6014
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1265658


improve the success rate of range gate RGPO, and the output
peak value of pulse compression was used to evaluate the
RGPO effect. Xue and Yang [24] optimized the realization
mode of range gate RGPO and put forward a method to
improve the effect of range gate RGPO by frequency shift
technology.

In order to counter the RGPO, this study presents a
method of countering the range gate RGPO based on fre-
quency diverse array (FDA)-multiple-input multiple-output
(MIMO) radar [25]. It is a new radar system that combines
frequency diversity array and MIMO radar [26–29]. Because
of the multiantenna transmission single frequency step
system, it forms a three-dimensional range-angle-time-de-
pendent pattern in the far field, and the research shows that
the range-angle dependence of FDA’s transmission pattern
is different from that of traditional radar [30]. However, in
order to make full use of this characteristic, it is necessary to
effectively separate the transmitter signal, and MIMO radar
technology is an effective means to obtain the freedom of
transmission [31]. Zhang and Xie [32] extracted the phase
difference of adjacent array elements by analyzing the in-
fluence of each link in radar signal processing and realized
the suppression of false targets. In [33], the antijamming
ability was improved by joint optimization of transmission
polarization and transmission frequency step interval.
Reference [34] adopted a method based on eigenvector to
improve jamming suppression ability.

*is study, according to the analysis of the principle of
RGPO, takes advantage of the characteristic that the am-
plitude of RGPO signal is larger than the amplitude of the
real target echo, a method is proposed for the FDA-MIMO
radar to eliminate RGPO corresponding to the large ei-
genvalue, which improves the antijamming ability of the
radar system and keeps the stable tracking.

*e structure of this article is as follows: Section 2 intro-
duces the signal model and the fundamentals of FDA-MIMO
radar followed by the introduction of the algorithm to eliminate
the jamming signal with range constraint in Section 3. Sub-
sequently, simulation and analysis are given in Section 4. Finally,
Section 5 draws a conclusion and summarizes this study.

Notation: ⊗ and ⊙ denote Kronecker product and
Hadamard product, respectively. *e letter j≜

���
−1

√
represents

the imaginary unit. *e transpose and conjugate transpose of a
matrix or vector are denoted by (·)T and (·)H. Boldfaced
lowercase letters such as x represent a vector, boldfaced up-
percase letters such as R denote a matrix, and italic letters such
as a represent a scalar. For the vector x, we use [x]n to denote
the nth element of vector x. For matrix R, we use [R]m,n to
denote the element of R in the mth row and the nth column.
Finally, [a, b] indicates a closed interval in real number space.

2. Fundamentals of FDA-MIMO Radar

It is considered that the FDA-MMO radar system is an
isometric linear array composed of M transmitting antenna
elements and N receiving antenna elements [35]. Under the
condition of ignoring the antenna element pattern and array
error, the transmitting and receiving antenna elements are
omni-directional radiation, which are identical and uniform.

*e transmission signal form of the mth transmitting unit
can be written as [36]

sm(t) � rect
t

Tp

􏼠 􏼡φm(t)exp j2πfmt􏼈 􏼉, (1)

where t is the elapsed time of pulse propagation since the

start of the pulse, rect(t/Tp) �
1, 0≤ t≤TP

0, else
􏼨 is the pulse

modulation function, φm(t) is the baseband modulation
signal corresponding to the mth transmitting unit [37], and
fm is the transmitting frequency corresponding to the mth
transmitting unit:

fm � f0 +(m − 1)Δf , m � 1, 2, ..., M , (2)

where f0 is the frequency of the reference array element (the
first array element) and Δf is the frequency offset between
array elements.

Assuming that there is a target at a certain position (R, θ)

in space, the echo from the mth transmitting antenna unit
received by the nth receiving antenna unit can be written as

xs,m,n t − τm,n􏼐 􏼑 � βs0rect
t − τm,n

Tp

􏼠 􏼡φm t − τm,n􏼐 􏼑

· exp j2πf0 t − τm,n􏼐 􏼑􏽮 􏽯,

(3)

where βs0 represents the complex coefficient of the target
echo including the full link of radar transmitting and re-
ceiving, τm,n � τ0 − d(m − 1)cos(θ)/c − d(n − 1)cos(θ)/c
represents the echo delay difference corresponding to the
mth transmitting unit and the nth receiving unit, and d is the
interelement spacing. Because the working frequency of each
transmitting element of FDA-MIMO radar is different,
when equation (3) expresses the approximate model under
the assumption of far-field narrowband, the phase term
introduced by frequency stepping cannot be ignored. When
equation (1) is brought into equation (3), we can get

xs,m,n t − τ0( 􏼁 ≈ βs0rect
t − τ0

Tp

􏼠 􏼡exp jϕm t − τ0( 􏼁􏼈 􏼉

· exp j2πΔf(m − 1) t − τm,n􏼐 􏼑􏽮 􏽯

· exp j2πf0 t − τm,n􏼐 􏼑􏽮 􏽯,

(4)

where τ0 � 2R/c is the reference delay of the target echo.*e
target echo received by the nth receiving antenna unit can be
approximately written as

xs,n t − τ0( 􏼁 ≈ 􏽘
M

m�1
βs0rect

t − τ0
Tp

􏼠 􏼡exp jϕm t − τ0( 􏼁􏼈 􏼉

· exp j2πΔf(m − 1) t − τm,n􏼐 􏼑􏽮 􏽯

· exp j2πf0 t − τm,n􏼐 􏼑􏽮 􏽯.

(5)

*e target echo is amplified and matched filtered, and
the range unit where the target is located can express the
signal as a concise form:
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s � βsa(R, θ)⊗ b(θ), (6)

where βs represents the complex coefficient of the target
echo after pulse compression; a(R, θ) and b(θ) are the

transmit and receive steering vectors of the target, respec-
tively, and ⊗ is the Krnoecker product:

a(R, θ) � ar(R)⊙ aθ(θ) �

· 1, exp −j4πΔf
R

c
􏼒 􏼓, ..., exp −j4πΔf

(M − 1)R

c
􏼠 􏼡􏼢 􏼣

T

⊙

· 1. exp j2π
d sin θ

λ
􏼠 􏼡, ..., exp j2π

(M − 1)d sin θ
λ

􏼠 􏼡􏼢 􏼣 �

· 1, exp −j4π
ΔfR

c
+ j2π

d

λ
cos(θ)􏼨 􏼩, · · · , exp −j4π

ΔfR

c
(M − 1) + j2π

d

λ
(M − 1)cos(θ)􏼨 􏼩􏼢 􏼣

T

,

(7)

b(θ) � 1, exp j2π
d

λ
cos(θ)􏼨 􏼩, · · · , exp j2π

d

λ
(N − 1)cos(θ)􏼨 􏼩􏼢 􏼣

T

, (8)

where ⊙ denotes the Hadamard product, ar(R) and aθ(θ)

mean the launch range and launch angle steering vectors,
respectively [38], and T is the transpose operator. As can be
seen from equation (7), compared with the traditional radar,
the range guidance vector of FDA-MIMO radar contains the
range information R of the target signal, and its range
guidance vector is correlated with angle and range in two
dimensions. Because of the two-dimensional correlation
between angle and range, FDA-MIMO radar has the ability
to distinguish targets with different ranges in the trans-
mitting space, that is, it can distinguish different targets on
the close range gate with the same angle, which provides

great practical value for radar to counter the jamming from
mainlobe.

Assuming that airborne ESM on space far-field target
intercepts radar tracking signal and releases self-defense
RGPO, the intercepted radar signal is stored and transmitted
with the delay to form a false target jamming signal in the
fast time dimension.*e jamming signal is stronger than the
target echo, and the signal form corresponding to the mth
transmitting unit and the nth receiving unit can be expressed
as the signal form of the mth transmitting unit and the nth
receiving unit:

xj,m,n t − τj􏼐 􏼑 ≈ βj,prect
t − τj

Tp

􏼠 􏼡exp jϕm t − τj􏼐 􏼑􏽮 􏽯exp j2πΔf(m − 1) t − τj,m,n􏼐 􏼑􏽮 􏽯exp j2πf0 t − τj,m,n􏼐 􏼑􏽮 􏽯, (9)

where τj � Ri/c is the reference delay of the RGPO jamming
signal generated by the jammer and
τj,m,n � τj − d(m − 1)cos(θ)/c − d(n − 1)cos(θ)/c repre-
sents the echo delay difference between themth transmitting
unit and the nth receiving unit.

As can be seen from equation (9), the pull-off jamming
signal of the range map is completely consistent with the
target echo. *e time delay between the target echo and
jamming is different. After the above analysis of RGPO, the
jamming delay signal τj and the real target echo delay time

τ0 are located in the same range gate. According to the
traditional radar processing method, the radar range
tracking center will be greatly affected. It is necessary to
combine the radar prior knowledge and jamming charac-
teristics to design antijamming. *e specific analysis is in-
troduced in the next section. For the convenience of
description, the output signal form after matched filtering is
given after considering the target signal, jamming, and noise
comprehensively

x(t) � s(t) + j(t) + n(t) � βs(t)a(R, θ)⊗ b(θ) + βj(t)a Rj, θ􏼐 􏼑⊗ b(θ) + n(t). (10)
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Among them, βs(t) � βsδ(t − τ0) is the time delay
corresponding to the range gate where the target located is τ0
and βj(t) � βjδ(t − τj) is the time delay of the jammer
generating RGPO is τj.

3. Principle andMethodofAnti-RGPO forFDA-
MIMO Radar

In Section 2, the real target echo and jamming signal in
FDA-MIMO radar system are studied. *e echo of the
target releasing self-defense jamming is completely con-
sistent with the jamming signal in angle dimension, but its
range dimension is slightly deviated. Whether the range
dimension deviation can be effectively used to suppress the
jamming is the key to resist this kind of mainlobe jamming.
Based on the analysis of jamming mechanism and math-
ematical model, combined with radar signal and infor-
mation processing flow, this section expounds the
application of FDA-MIMIO radar against RGPO in range
dimension and gives the antijamming conditions and
methods.

3.1. Mechanism of RGPO. RGPO is a kind of self-defense
jamming. Usually, the airborne ESM system intercepts the
radar radiation signal after finding that it is tracked and
locked by the tracking and guidance radar and forwards
the jamming signal with a certain delay through fast
storage, so that the range tracking gate center of the enemy
radar deviates from the real target and locks on the re-
leased false target, thus tracking the lost technical method.
In the actual radar system, after tracking the target, the
angle, range, and speed of the target can be predicted with
high data rate, and the target position at the next moment
can be interception in a certain range, which is called wave
gate. If the jamming signal deviates greatly from the real
target and exceeds the wave gate range, it may be elim-
inated as outliers or cannot form an effective jamming
track in the data processing stage, and the jamming effect
would not be achieved.

RGPO can be divided into front-gate-pull-off jamming
and back-gate-pull-off jamming according to different
delay time functions [39]. For the jamming in front of the
wavefront, the forwarding delay of the jamming signal
gradually decreases for the radar tracking system, which
results in an “illusion” that the false target is gradually
approaching the radar system relative to the real target.
For the back-gate-pull-off jamming, the delay of jamming
signal forwarding increases gradually, resulting in a
“phenomenon” that the range the false target is gradually
apart from the real target in radar system. As for that
front-gate-pull-off jamming, one or more pulse repetition
stages need to be delayed. If the radar adopts frequency
agility technology, the jamming effect would not be
achieved. For back-gate-pull-off jamming, the time delay
of the jamming signal needs to be within the same range
gate as the target echo. If the radar adopts leading edge

tracking technology, it can also effectively resist deceptive
jamming. However, for the radar system, the time delay of
the real echo received is inaccurate, and it is impossible to
accurately determine the jamming style it is, so a new
antijamming technology is needed to deal with the pull-off
jamming with different ranges. *is study focuses on
countering the back-gate-pull-off jamming, and the
proposed algorithm is also suitable for the front-gate-pull-
off jamming.

For RGPO, it is generally divided into three stages: in-
terception stage, pull-off stage, and stop stage:

Interception stage: after intercepting the tracking sig-
nal, the airborne ESM system stores and quickly for-
wards a jamming signal. Usually, the time delay of the
jamming signal needs to basically coincide with the
target echo in time dimension. As represents the am-
plitude of the target echo and Aj represents the am-
plitude of the jamming signal Aj/As ≈ 1.3 ∼ 1.5
Pull-off stage: in order to make the range gate center of
radar deviate from the real echo of the target and avoid
two echo peaks at the same time, ESM system needs to
gradually increase the delay time of forwarding every
time it intercepts a radar tracking signal, so that the
range gate center gradually leaves the target position
until the range gate deviates from the target echo by a
predetermined range.
Stopping stage: when the ESM system judges that the
radar has deviated from the real target by enough range
from the center of the wave gate, it stops radiating
jamming signals, which leads to the radar losing the
target or increasing the tracking error, so it is necessary
to search and find the target again.

If the above three steps are repeated, the radar can get rid
of the tracking of the target or increase the tracking error of
the radar.

3.2. Mathematical Model of RGPO. RGPO is mainly aimed
at the radar working in tracking mode. Because the
tracking filter has started to work, the radar has a priori
information about the position and speed of the target,
and through this priori information, the three-dimen-
sional information of the target in the next working cycle
can be predicted. In order to get rid of radar tracking, the
target releases RGPO. Assuming that the pull-off range of
RGPO to the center of echo is ΔR at the i pulse repetition
interval (PRI) of radar, the time delay of radar receiving
jamming signal is

τj � τs,i + Δτj,i. (11)

In the equation, τj is the delay time of the jamming signal
[40], τs,i is the delay time of the real target echo, Δτj,i � ΔR/c
is the time corresponding to the pull-off jamming range of
the i frame, and τj,i > τj,i−1. *e pull-off range gradually
increases, as shown in Figure 1.
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Figure 1: Schematic diagram of RGPO.

×10-4
2 4 6 8 100

Time (s)

×10-4
2 4 6 8 100

Time (s)

-1

0

1

A
m

pl
itu

de

-1

0

1

A
m

pl
itu

de

Target echo

Range pull-off signal

Figure 2: Schematic diagram of time domain waveform of RGPO signal.
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*e time delay information Δτj,i of false target caused by
range gate RGPO jamming can be expressed as

Δτj,i �

0

2v(i − m)

c
or

a(i − m)
2

c
,

Pull − off stop,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0≤ i<mInterception stage,

m≤ i<n Pull − off stage,

n≤ i<TStopping stage.

(12)

Among them, a represents the pull-off acceleration in
the process of uniform acceleration pull-off and v is the pull-
off speed in the process of uniform acceleration pull-off.
Figure 2 is a schematic diagram of time domain waveform of
RGPO signal.

3.3. Jamming Suppression Method. It can be concluded that
the RGPO has the following characteristics:

Feature 1: in order to deviate the center of radar gate,
the amplitude of RGPO signal must be greater than the
amplitude of real target echo
Feature 2: because the jamming signal and the target
echo are basically consistent in time dimension during
the interception stage, the jamming suppression pro-
cessing cannot be carried out in time domain during
the interception stage
Feature 3: during the pull-off stage, because the jam-
ming signal gradually deviates from the target echo, the
delay time of the jamming signal is different from that
of the target real echo in time dimension

Assuming that the jamming parameter is (Rj, θj) and the
transmitting space frequency and receiving space corre-
sponding to the jamming signal are, respectively,

fTj � −
2ΔfRj

c
+

d

λ
cos θj􏼐 􏼑, (13)

fRj �
d

λ
cos θj􏼐 􏼑. (14)

Assume that the parameter of the target is (Rs, θs), where
θs � θj, Rs � Rj − ΔR, and ΔR are the pull-off range.

*en, the transmitting spatial frequency and receiving
spatial frequency corresponding to the target scattering
signal are

fTs � −
2ΔfRs

c
+

d

λ
cos θs( 􏼁, (15)

fRs �
d

λ
cos θs( 􏼁. (16)

It can be seen from the above equation that for RGPO,
the receiving spatial frequency is completely consistent with
the backscattered signal of the target, but the transmitting
spatial frequency is different. In order to ensure the dif-
ference of transmitting spatial frequencies, the jamming
suppression algorithm proposed in this study is mainly
completed during the pull-off stage.

Because the release time of RGPO is that the radar has
been working in the target tracking state, the relevant prior
information of the target has been obtained, including the
distance and angle of the target. It is assumed that the
predicted position of the radar for the target is (Ry, θy), and
the target and jamming position are extended and con-
strained, so that the jamming and target signals fall into the
constrained range. *e specific method is to set the range
tracking accuracy of the radar to be σR. Centered on the
target position predicted by the radar, and search inside
Rl � ± 3σR, namely:

Rs ∈ Ry − Rl, Ry + Rl􏽨 􏽩 � Rh

Rj ∈ Ry − Rl, Ry + Rl􏽨 􏽩 � Rh

⎧⎪⎨

⎪⎩
, (17)

where Rl is the range constraint value and Rh is the range in
the constructed target steering vector.

According to the working principle of RGPO, as-
suming that the jammer releases a pull-off signal that is
greater than the target echo amplitude, the covariance
matrix RX of the constrained azimuth echo can be
expressed by eigenvector:

RX � 􏽘
2

k�1
λkuku

H
k + 􏽘

N2

k�3
λkuku

H
k . (18)

*e first term of equality coordinates uk is the ei-
genvector corresponding to the signal subspace and λk is
the eigenvalue corresponding to the signal subspace.
Under the ideal condition of not considering false alarm,
because the echo and jamming signal are independent,
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Figure 3: Distribution of real target and false target in trans-
mitting-receiving two-dimensional spatial frequency domain after
range pull-off.
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two large eigenvalues can be obtained after the eigen-
decomposition of the received covariance matrix. Because
the signal strength of pull-off jamming is stronger than
that of target echo. *e eigenvalues are arranged in se-
quence from large to small, the jamming signal corre-
sponding to the largest eigenvalue is eliminated, and the
rest is the range corresponding to the target signal, and
then the transmission angular frequency compensation is
carried out according to the range of the target signal. *e
transmission spatial frequencies of the compensated
target signal and the pull-off jamming signal are as
follows:

f
⌢

Ts �
d

λ
cos θs( 􏼁, (19)

􏽥fTj,p � −
2ΔfΔR

c
+

d

λ
cos θj􏼐 􏼑. (20)

After compensation, the pull-off jamming signal can be
clearly distinguished from the target signal, as shown in
Figure 3.

As shown in the figure, the real target is distributed
diagonally in the transmit-receive spatial frequency, and the
pull-off jamming needs to deviate from the center of the gate,

Sliding
window

constraint

Matrix
decomposition

jamming
elimination

FDA-MIMO
received signal

Adaptive
filtering

range
compensation

intra-
covariance

matrix
Target
range 

Target
track 

Range prediction

Figure 4: Flowchart of FDA-MIMO radar anti-RGPO.

Table 1: Radar simulation parameters.

Parameter Parameter value Parameter Parameter value
Operating frequency 10GHz Pulse repetition frequency 10 kHz
Sampling frequency 5MHz Number of receiving array elements 10
Number of transmitting array elements 10 Receiving array element spacing 0.015m
Launching element spacing 0.015m Range tracking error 40m
Target state noise 20m Target motion model Constant velocity model
SNR 10 dB Tracking filter Standard Kalman
Target range 10 km Target angle 0°
RGPO JNR 15 dB Target speed 100m/s
Pull-off time 30 s Range pull-off speed 10m/s
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Figure 5: Power spectrum characteristics of real target and pull-off jamming. (a) Power spectrum pull-off by range. (b) Power spectrum
after antijamming.
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which is obviously different from the real target in the
transmit spatial frequency.

Based on the analysis of real target and RGPO signal
characteristics, combined with the characteristics of FDA-
MIMO radar, two-dimensional beamforming technology is
used to suppress pull-off jamming signal. Its beamformer
weights can be expressed as

wMF � a 􏽢fT􏼐 􏼑⊗ b 􏽢fR􏼐 􏼑. (21)

After the target range compensation, the weights of the
two-dimensional filter are independent of the range pa-
rameters, but only related to the angle parameters of radar
detection. However, the weights of two-dimensional filters
are affected by the following two factors:

(1) *e accuracy of radar prediction of target range,
which would cause the loss of matching output

(2) *e accuracy of radar angle estimation, which di-
rectly affects the accuracy of weights

*e adaptive beamformer based on the minimum
lossless response criterion can overcome the above influence
factors, which can be expressed as

min
wAMF

E w
H
AMF􏽥x

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼚 􏼛

s.t.w
H
AMF a 􏽢fT􏼐 􏼑⊗ b 􏽢fR􏼐 􏼑􏽨 􏽩 � 1.

(22)

where 􏽥x is the compensated data. After adaptive beam-
forming, the influence of range gate pull-off jamming can be
effectively suppressed.

In this study, the flow of the specific method proposed is
shown in Figure 4:

Step 1: use the radar’s predicted value of the target
range dimension to constrain the target steering vector
according to equation (16), and set the constraint range
to within ±3σR the radar tracking accuracy, so that the
real target and the jamming signal are both within the
constrained steering vector range;
Step 2: perform eigendecomposition on the covariance
matrix RX, including the target echo and the jamming
signal, and use the characteristic that the jamming
signal is stronger than the target echo to eliminate the
jamming signal range corresponding to the large ei-
genvalue to obtain the true range of the target;
Step 3: after obtaining the true range of the real target,
compensate the launch angle frequency, distinguish the
jamming signal and the target echo in the launch-re-
ceive spatial frequency, use the MVDR criterion to
form an adaptive filter, complete the range
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compensation in the launch dimension, and complete
the target track.

4. Simulation Verification

In this section, the effectiveness of the proposed approach is
verified by simulation examples. Without losing generality,
assume that the radar receives the jamming signal radiated
by the enemy when it has stably tracked the target, and the
jammer intercepts the radar tracking signal and tows it to
release the RGPO.*e relevant parameters of simulation are
given in Table 1.

4.1. Power Spectrum Analysis before and after Antijamming.
Figure 5 shows the simulation comparison results of echo
before and after processing the antijamming approach
proposed in the transmission-reception frequency domain.
It can be seen from the simulation results that because the
echo in FDA-MIMO system contains the range dimension
information of the echo in the transmitting frequency do-
main, the radar cannot accurately distinguish the real target
echo because the amplitude of the jamming signal is greater
than that of the echo after receiving the RGPO signal, and
the range between the jamming signal and the target echo is
close during the pull-off stage. After constrained and large
signal is proposed, the transmission frequency domain can

be compensated, and the true echo of the target can be
accurately detected. It should be noted that due to the target
motion and radar detection error, the position of the
compensated target may change slightly. Figure 6 shows the
signal strength distribution after pulse compression in range
dimension before and after antijamming. In this simulation,
with receiving the jamming signal, the maximum amplitude
of the output is about 28 dB and the range cell is 350 where
the jamming is, after processing antijamming, the maximum
amplitude of the output is about 25 dB and the range cell is
333 where the real target is.

4.2. Tracking Performance Analysis. *e tracking perfor-
mance before and after antijamming is analyzed. In order to
accurately show the experimental results, it is assumed that
the flying height of the target remains unchanged in the
northeast coordinate system, and the tracking performance
is mainly analyzed on X axis and Y axis. Figure 7 shows the
change of the whole range segment of the range-dimensional
tracking gate center before and after the radar is jammed by
range pull-off. It can be seen from the example that after
receiving the RGPO, the range tracking gate center of the
radar would gradually deviate from the real target position,
resulting in increased tracking error or even out of tolerance,
and the target would be lost after the jamming signal dis-
appears. Figure 8 shows the average tracking error of X axis
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and Y axis in the radar tracking process. It can be seen that
the tracking error increases dramatically after receiving the
RGPO. After filtering, the two-dimensional range error is
about ±300m, which is far greater than the radar tracking
accuracy. After antijamming, the two-dimensional range
error changes ±40m, and the radar can keep stable tracking
of the target.

5. Conclusion

Tracking and guidance radar is usually affected by the
mainlobe jamming. In this study, focused on the principle
and application of FDA-MIMO radar against range gate
pull-off jamming, an effective way to solve the problem that
the center of range gate deviates from the real target greatly
due to pull-off jamming is provided on the basis of analyzing
the principle and working process of RGPO. Based on two-
dimensional transceiver beamforming and range eliminat-
ing, the jamming signal can be suppressed.*e experimental
results verify the effectiveness and feasibility of the proposed
method from two important links of detection and tracking
radar.
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Consider the moving target detection performance degradation of airborne multiple-input multiple-output (MIMO) radar in the
presence of inaccurate target prior information.­is paper proposes a joint design method of transmit waveform and receive �lter
bank of airborneMIMO radar based on feasible point pursuit successive convex approximation (FPP-SCA). Firstly, a set of receive
�lter banks is designed in the region where the target may appear on the angle-Doppler plane, and the worst-case output signal-to-
clutter-plus-noise ratio (SCNR) is maximized as the optimization criterion. Secondly, considering the energy constraint and
similarity on the transmit waveform, the maximin joint design problem is formulated to improve the robustness of the MIMO
space-time adaptive processing (STAP) radar against the uncertainty of target parameters. Finally, an FPP-SCA algorithm is
employed to solve the maximin nonconvex joint design problem. Simulation results demonstrate the e�ectiveness of the proposed
method in terms of better output SCNR, lower computational load, and more robustness against the errors of target parameters.

1. Introduction

As the information hub of the modern battle�eld envi-
ronment, early warning aircraft can e�ectively improve the
combat e�ectiveness of the battle�eld. As the core of early
warning aircraft, airborne radar can expand the detection
range of radar to ground, ocean, and air targets [1]. However,
the airborne radar su�ers from intense ground/sea clutter
due to its down-looking mode. ­e clutter is strongly
coupled in the space-time domains, which leads to the weak
target signal completely submerged by the clutter and makes
it more di�cult for airborne radar to detect the moving
target [2]. Collecting the received data of the space-time
domain, space-time adaptive processing (STAP) can e�ec-
tively suppress side-lobe clutter and main-lobe clutter and
improve the detection performance of moving targets under
clutter background [3]. Nevertheless, the airborne radar is
faced with threats such as low observable targets, low-alti-
tude target, and advanced integrated electronic jamming in

the contemporary battle�eld environment. It is necessary to
develop new system airborne radar and corresponding new
theory and technology of signal processing [4].

Multiple-input multiple-output (MIMO) radar can
¡exibly transmit di�erent waveforms through di�erent
antennas [5]. Utilizing the property of waveform diversity,
MIMO radar can design di�erent transmit waveform, which
makes it superior to traditional-phased array radar in target
detection, parameter estimation, recognition, and classi�-
cation [6–10]. In addition, making full use the information
of the target and environment, the cognitive radar extends
the adaptive technology from the receiver to the transmitter
[11]. ­us, the cognitive radar forms a fully adaptive radar
processing system with a dynamic closed-loop receiver,
transmitter, and environment. According to the prior in-
formation of the dynamic environment database and the
environment information obtained by the radar in real time,
cognitive radar can infer and decide the optimal waveform
or the waveform parameters suitable for the current radar
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working scene. By adaptively adjusting and optimizing the
resource allocation of the radar system and the transmit
waveform, cognitive radar can obtain the optimal target
detection performance in the complex and changeable en-
vironment. Inspired by the cognitive idea and MIMO radar,
and based on the actual prior environment information, it is
possible for the airborne MIMO radar to jointly design the
transmit waveform and receive filter to realize the best
matching between the system and the environment and
improve the target detection performance in the complex
environment.

In the past decades, joint design of transmit waveform
and receive filter for airborne collocated MIMO radar system
has received considerable attention. ,ese research studies
can be divided into two categories. ,e first category deals
with the joint design of transmit-receive exploiting the ac-
curate prior information [12–19]. In [12], maximizing the
output signal-to-interference-plus-noise ratio (SINR) under
the practical waveform constraints (i.e., the energy constraint,
constant-envelope constraint, and similarity constraint), the
joint design problem is formulated in an earlier time and five
iterative algorithms based on generalized Rayleigh quotient,
relaxation and waveform extracting, and fractional pro-
gramming are proposed. In 2016, Setlur and Rangaswamy of
the US Air Force Research Laboratory studied the waveform
design problem in STAP, which assumed that the clutter
response was related to the transmit waveform [13]. Since the
objective function of the weight vector andwaveform vector is
joint nonconvex, while the objective function of a single
weight vector and waveform is convex, the constrained se-
lection minimization technology is proposed to iteratively
optimize another vector while keeping one vector unchanged.
O’Rourke Sean et al. [14] studied the joint design problem of
transmit signal and receive beamformer under the signal-
dependent STAP, and proposed a relaxed biquadratic opti-
mization method to find a feasible solution. In addition, they
extended the energy constraint on waveform to constant-
modulus and similarity constraint [15]. In [16], the minor-
ization-maximization (MM) technique is employed to solve
the resultant quartic waveform optimization problem.
Compared with the semidefinite programming (SDP)
method, the joint design algorithm based on MM technique
exhibits faster convergence speed and better SINR perfor-
mance. In [17, 18], the Riemannian geometry optimization
method is first applied to the joint design of MIMO-STAP
radar, and the Riemannian gradient descent algorithm and
the Riemannian trust region algorithms are proposed to solve
the joint design problem.

However, the performance of MIMO-STAP radar is
severely degraded when the prior information is inaccurate.
,en, the second category addresses the robust joint design
of transmit-receive in the presence of prior information
uncertainties. In [20], considering the presence of target
space-time steering vector mismatch, the worst-case output
SINR over the set of the target space-time steering vector is
maximized as a figure of merit for the robust joint design.
However, the waveform covariance matrix obtained by the
relaxation constraint of the target steering vector and the
diagonal loading technique is still suboptimal. To solve this

problem, Tang Bo et al. [21] used a more general uncertainty
set to describe the steering vector error, and then accurately
derived the worst target steering vector that minimizes the
output SINR.,is method abandoned the heuristic diagonal
loading method to find the globally optimal waveform co-
variance matrix which is robust to the target steering vector
error. In [22], considering the uncertainty of target Doppler
frequency and angle, the joint design of MIMO-STAP radar
with peak-to-average power ratio (PAPR) and transmit
power constraints is studied. However, this method has high
computational complexity, and only three independent
interference is considered in the simulation scene. In [23],
based on the known target Doppler frequency and spatial
angle statistical distribution, the averaged output signal-to-
clutter-plus-noise ratio (SCNR) is deduced as the optimi-
zation criterion, and four robust joint design methods-based
SDP relaxation and fractional programming with power
method-like are proposed. In [24], the maximin joint design
of transmit waveform and receive filter bank under the
energy constraint, flexible modulus constraint, and simi-
larity constraint are considered. In [25], with the prior
knowledge of target and clutter statistics, the averaged SINR
is formulated as a figure of merit to maximize. ,en, an
iterative algorithm based on Dinkelbach transformation and
alternating direction penalty method (ADPM) is proposed
to solve the robust joint design problem.

In this paper, focusing on the joint design problem of
transmit waveform and receive filter bank of airborne MIMO
radar when the target angle and Doppler parameters are
inaccurate, a set of filters that are matched with the target
possible region is designed. ,e worst-case output SCNR is
maximized as a figure of merit under the constant-modulus
constraint and similarity constraint on the transmit wave-
form. ,en, the joint design problem is formulated by
maximizing the worst-case SCNR, and a sequential optimi-
zation algorithm based on feasible point pursuit successive
convex approximation (FPP-SCA) is developed to solve the
resultant problem. Simulation results are provided to dem-
onstrate the performance of the proposed algorithm. ,e
main contributions of the paper are summarized as follows:
(1) By employing a set of receive filter tuned over the possible
spatial angle and Doppler frequency of target, the objective
function of joint design is obtained by maximizing the worst-
case output SCNR. (2) A sequential optimization algorithm
based on FPP-SCA is derived to solve the robust joint design
problem. Specifically, an auxiliary variable is introduced to
transform the maximin problem into a minimization prob-
lem. ,en, the nonconvex constant-modulus constraint is
solved by utilizing the SCA method. ,us, the waveform
optimization problem can be addressed by using the CVX
tool box. (3) Several simulation results indicate that the
proposed joint design algorithm performs better than the
algorithm based on SDP and randomization method in terms
of better output SCNR and lower computational time. In
addition, the performance of the proposed joint design
method is against the target parameters errors.

,e remainder of this paper is organized as follows: In
Section 2, the signal model of MIMO-STAP radar is pro-
vided. ,e problem formulation and the robust joint design
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problem are discussed in Section 3. ,e sequential opti-
mization algorithm based on FPP-SCA is presented in
Section 4. Simulation results are provided in Section 5 to
demonstrate the performance of the proposed algorithm.
Finally, conclusions are drawn in Section 6.

2. Signal Model

We consider an airborne collocated MIMO radar system
with NT transmit antennas and NR receive antennas, as
shown in Figure 1. ,e transmit antenna and receive an-
tenna are uniform linear array (ULA) with interelement
spacing being dT and dR, respectively.,e radar transmitsM

pulses during a coherent processing interval (CPI) with the
pulse repetition frequency (PRF) fr. ,e radar platform is
flying along the X-axis at velocity Vp. Assuming that
sn ∈ CL×1 represents the sampled waveform emitted by the
nth transmit antenna, then the transmit waveform matrix of
the radar system can be expressed as S � [s1,
s2, . . . , sNT

]T ∈ CNT×L, where L represents the number
samples of a pulse and each pulse emits the same waveform.

2.1. Target. Assuming that the spatial angle of the moving
target relative to the platform is ϕt and the normalized
Doppler frequency is ft, then the target echo of the mth
pulse received by the airborneMIMO radar can be expressed
as

yt,m � αte
j2π(m− 1)ft IL ⊗ b ϕt( 􏼁aT ϕt( 􏼁􏼐 􏼑􏼐 􏼑s, (1)

where αt represents the target complex amplitude, IL is the
L × L identity matrix, ⊗ is the Kronecker product, (·)T

stands for the transpose operation, s � vec(S), a(ϕt) and
b(ϕt) represent the transmit spatial steering vector and
receive steering vector of target, respectively, and they have
the form of

a ϕt( 􏼁 � 1, e
j2πdT cos ϕt( )/λ( ), . . . , e

j2π NT− 1( )dT cos ϕt( )/λ( )􏼔 􏼕
T

,

(2)

b ϕt( 􏼁 � 1, e
j2πdR cos ϕt( )/λ( ), . . . , e

j2π NR− 1( )dR cos ϕt( )/λ( )􏼔 􏼕
T

,

(3)

where λ denotes the wavelength of the system.
Let yt � [yT

t,1, . . . , yT
t,M]T ∈ CLMNR×1, then the received

target echo of a CPI can be expressed as

yt � αtV ft,ϕt( 􏼁s, (4)

where V(ft, ϕt) � (u(ft)⊗ IL ⊗ (b(ϕt)aT(ϕt))), and
u(ft) � [1, ej2πft , . . . , ej2π(M− 1)ft ]T represents the time
steering vector of target.

2.2. Clutter. ,e clutter of airborne MIMO radar system is
the signal-dependent clutter echo, which is distributed in the
whole azimuth domain and range domain. Clutter echo
received by a single range bin consists of all clutter patches of

the range bin.,en, the clutter echo received by the airborne
MIMO radar can be expressed as

yc � 􏽘
P

p�− P

􏽘

Nc

k�1
αc,p,kV fc,p,k, ϕc,p,k􏼐 􏼑s, (5)

Where P denotes the number of range bin around the range
under test, αc,p,k, fc,p,k, and ϕc,p,k represent the complex
amplitude, normalized Doppler frequency, and spatial angle
of the kth clutter patch in the pth range bin, respectively,
fc,p,k � 2Vp cos(ϕc,p,k)/(λfr), Nc is the clutter patch
number in a range bin. V(fc,p,k, ϕc,p,k) �

(u(fc,p,k)⊗ JT
P ⊗ (b(ϕc,p,k)aT(ϕc,p,k))), let Vc,p,k denote

V(fc,p,k, ϕc,p,k) for convenience, where Jp � JT
− p ∈ C

L×L de-
notes the shift matrix, which is calculated by

Jp(i, j) �
1, i − j + p � 0,

0, i − j + p≠ 0.
􏼨 (6)

Total received echo: therefore, the echo received by the
airborne radar containing the target (which may exist),
signal-dependent clutter, and noise can be expressed as

y � yt + yc + yn, (7)

where yn denotes the complex Gaussian white noise whose
mean value is zero and covariance matrix is σ2nILMNR

, where
σ2n is noise power.

3. Problem Formulation

Considering that the accurate normalized Doppler fre-
quency and spatial angle of the target are unknown, it is
assumed that the approximate region of the target in the
angle-Doppler plane can be known through spatial angle
estimation and Doppler frequency estimation, as shown in
cyan area in Figure 2. ,e normalized Doppler frequency
and spatial angle range of the target can be expressed as Ψ �

[ftmin, ftmax](ft ∈ Ψ) and Ω � [ϕtmin,ϕtmax](ϕt ∈ Ω), re-
spectively, and are then discretized into I and J grid points,

X

Y

Z

O

target

dR

dT

Vp

θt
φt

ϕt

: transmit antenna
: receive antenna

Figure 1: Configuration of airborne MIMO radar.
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respectively. ,en, we can obtain the discretized normalized
Doppler frequency-spatial angle pair, that is,
(f

n1
t , ϕn2

t ), n1 ∈ I � 1, . . . , I{ }, n2 ∈ J � 1, . . . , J{ }. Next, a
set of LMNR × 1 filterswn1 ,n2

∈W � wn1 ,n2
|n1 ∈ I, n2 ∈ J􏽮 􏽯

is used to process the received signal, and each received filter
is tuned to a specific normalized Doppler frequency-spatial
angle pair of targets (f

n1
t , θn2

t ). ,erefore, the output SCNR
corresponding to the (n1, n2) th filter branch can be
expressed as

SCNRn1,n2
s,wn1 ,n2

􏼐 􏼑 �
σ2t w

H
n1 ,n2

V f
n1
t , ϕn2

t( 􏼁s
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

wH
n1 ,n2

Rcn(s)wn1 ,n2

, (8)

where σ2t � E |αt|
2􏽮 􏽯, E(·) denotes the statistical expectation,

(·)H denotes the conjugate transpose operation, Rcn(s) is the
clutter plus noise covariance matrix, which can be expressed
as

Rcn(s) � 􏽘
P

p�− P

􏽘

Nc

k�1
σ2c,p,kVc,p,kss

HVH
c,p,k + σ2nILMNR

. (9)

Assumed that the prior information of clutter (including
σ2c,p,k, fc,p,k and ϕc,p,k) is known, which can be obtained from
the terrain database. ,erefore, maximizing the worst-case
output SCNR over all possible normalized Doppler fre-
quencies and spatial angles of the target, we can obtain the
optimization of the joint design to deal with the uncertainty
of the target parameters. Concretely, the joint design of
transmit waveform and receive filter bank for airborne
MIMO radar in the presence of target uncertainty can be
formulated as

SCNR s,wn1 ,n2
􏼐 􏼑≜ min

n1∈I,n2∈J
SCNRn1 ,n2

s,wn1 ,n2
􏼐 􏼑. (10)

In practical radar system, constant-modulus constraint
is applied to the transmit waveform to prevent overloading
of the amplifier, i.e., |s(n)| � 1/

����
NTL

􏽰
, n � 1, . . . , NTL. At

the same time, in order to obtain the good characteristics for
the transmit waveform, for example, good ambiguity
function, it is necessary to impose similarity constraints on
the transmit waveform, namely, ‖s − s0‖∞≤ δ, where, ‖ · ‖∞
represents the infinite norm of a matrix, δ is used to control
the similarity between the optimized waveform and the
reference waveform s0 (‖s0‖

2 � 1), and ‖ · ‖ represents the
Euclidean norm of a matrix.

Considering the constant-modulus constraint and
similarity constraint of the transmit waveform, the joint
design problem of transmit waveform and receive filter bank
of airborne MIMO radar based on maximizing the worst-
case output SCNR can be expressed as

max
s,wn1 ,n2∈W

SCNRn1 ,n2
s,wn1,n2

􏼐 􏼑,

s.t.
|s(n)| �

1
����
NTL

􏽰 , n � 1, . . . , NTL,

s − s0
����

����∞≤ δ,

(11)

,e problem (11) is NP hard owing to the nonconvex
objective function and the nonconvex waveform constraints.
In the next section, we proposed a sequential algorithm to
address the problem (11).

4. Joint Design Method Based on FFP-SCA

In this section, a sequential algorithm based on FPP-SCA is
proposed to solve the maximin problem (11), which can
obtain monotonically increasing worst-case output SCNR
during the iterative procedure. Specifically, the transmit
waveform s is first fixed, and the receive filter banks
wn1 ,n2
∈W are optimized by maximizing SCNR(s,wn1 ,n2

).
,en, the receive filter banks wn1 ,n2

∈W are fixed and the
transmit waveform s is optimized.

4.1.ReceiveFilterBankOptimization. At the ith iteration, the
optimization of the receive filter bank wn1 ,n2

∈W can be
expressed as

max
wn1 ,n2∈W

wH
n1 ,n2

V f
n1
t , ϕn2

t( 􏼁s(i− 1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

wH
n1 ,n2

Rcn s(i− 1)
􏼐 􏼑wn1 ,n2

. (12)

,e optimization problem (12) has IJ independent
objective functions corresponding to wn1,n2

. ,erefore, the
problem (12) can be transformed into optimization of each
wn1 ,n2

, and the closed solution of wn1 ,n2
can be obtained by

w(i)
n1 ,n2

�
R− 1
cn s(i− 1)

􏼐 􏼑V f
n1
t , θn2

t( 􏼁s(i− 1)

s(i− 1)
􏼐 􏼑

H
VH

f
n1
t , θn2

t( 􏼁R− 1
cn s(i− 1)

􏼐 􏼑V f
n1
t , θn2

t( 􏼁s(i− 1)
.

(13)
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Figure 2: Possible region of target in angle-doppler plane.
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4.2. Transmit Waveform Optimization Based on FPP-SCA.
With a fixed receive filter bank wn1 ,n2

, the optimization of the
transmit waveform s can be expressed as

max
s

min
n1∈I,n2∈J

w(i)
n1 ,n2

􏼐 􏼑
H
V f

n1
t , ϕn2

t( 􏼁s
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

2

w(i)
n1 ,n2

􏼐 􏼑
H
Rcn s(i− 1)

􏼐 􏼑w(i)
n1 ,n2

,

s.t.
|s(n)| �

1
����
NTL

􏽰 , n � 1, · · · , NTL,

s − s0
����

����∞≤ δ.

(14)

Substituting (13) into the objective function of problem
(14), and after some mathematical deduction, the problem
(14) can be transformed into

max
s

min
n1∈I,n2∈J

sHVH
f

n1
t , ϕn2

t( 􏼁R− 1
cn s(i− 1)

􏼐 􏼑V f
n1
t , θn2

t( 􏼁s,

s.t.
|s(n)| � 1/

����
NTL

􏽰
, n � 1, · · · , NTL,

s − s0
����

����∞≤ δ.

(15)

Problem (15) is a nonconvex maximin problem, and it is
difficult to find the optimal waveform in the polynomial
time. A computationally efficient algorithm is derived to
solve this problem. By introducing an auxiliary variable t, the
maximin problem (15) can be transformed as

min
s,t

− t,

s.t.

(1), sHQn1 ,n2 s(i− 1)
􏼐 􏼑s≥ t, n1 ∈ I, n2 ∈ J,

(2), |s(n)| �
1

����
NTL

􏽰 , n � 1, · · · , NTL,

(3), s − s0
����

����∞≤ δ.

(16)

where

Qn1 ,n2 s(i− 1)
􏼐 􏼑 � VH

f
n1
t ,ϕn2

t( 􏼁R− 1
cn s(i− 1)

􏼐 􏼑V f
n1
t , θn2

t( 􏼁. (17)

,e objective function of problem (16) is convex, but the
constraints are nonconvex. ,en, the SCA technique is
employed to deal with the nonconvex waveform constrains.

For the first constraint (1) in problem (16), since
Qn1 ,n2(s(i− 1)) is a semidefinite matrix, for any feasible

solution sf ∈ CNTL×1 of problem (14), the following in-
equality holds:

s − sf􏼐 􏼑
H
Qn1 ,n2 s(i− 1)

􏼐 􏼑 s − sf􏼐 􏼑≥ 0. (18)

Expanding the left side of (18), we can obtain

sHQn1 ,n2 s(i− 1)
􏼐 􏼑s≥ 2Re sHQn1 ,n2 s(i− 1)

􏼐 􏼑sf􏼐 􏼑 − sH
f Q

n1 ,n2 s(i− 1)
􏼐 􏼑sf.

(19)

Substituting inequality (19) into the first constraint of
problem (16), we have

sH
f Q

n1 ,n2 s(i− 1)
􏼐 􏼑sf − 2Re sHQn1 ,n2 s(i− 1)

􏼐 􏼑sf􏼐 􏼑

+ t≤ 0, n1 ∈ I, n2 ∈ J.
(20)

For the second constraint (2) in problem (16), it can be
expressed as the intersection of |s(n)|2 − 1/NTL≤ 0 and
1/NTL − |s(n)|2 ≤ 0. ,e former is convex while the latter is
nonconvex. ,en, the first order condition of convex
function is used to approximate the lower bound of |s(n)|2

|s(n)|
2 ≥ sf(n)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ Re
z|s(n)|2

zs(n)
|sf(n)􏼠 􏼡

∗

s(n) − sf(n)􏼐 􏼑􏼨 􏼩

� sf(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ Re 2s∗f(n) s(n) − sf(n)􏼐 􏼑􏽮 􏽯.

(21)

,us, the constraint 1/NTL − |s(n)|2 ≤ 0 can be ap-
proximately expressed as
1

NTL
− |s(n)|

2 ≤
1

NTL
− sf(n)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

− Re 2s∗f(n)s(n) − 2 sf(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

􏼚 􏼛≤ 0.

(22)

After some mathematical transformation, the second
constraint (2) can be formulated as

1
NTL

− 2Re s∗f(n)s(n)􏽮 􏽯 + sf(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤ 0. (23)

Expanding the third constraint (3) in problem (16), it can
be expressed as NTL independent quadratic constraints, that
is,

s(n) − s0(n)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ δ2, n � 1, . . . , NTL. (24)

,erefore, by replacing the nonconvex constraints of
problem (16) with convex approximate representations (20),
(23), and (24), the convex approximate representation of
problem (16) can be obtained
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min
s,t

− t,

s.t.

sH
f Q

n1 ,n2 s(i− 1)
􏼐 􏼑sf − 2Re sHQn1 ,n2 s(i− 1)

􏼐 􏼑sf􏼐 􏼑 + t≤ 0, n1 ∈ I, n2 ∈ J,

|s(n)|
2

−
1

NTL
≤ 0, ∀n,

1
NTL

− 2Re s∗f(n)s(n)􏽮 􏽯 + sf(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤ 0, ∀n,

s(n) − s0(n)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ δ2, ∀n.

(25)

However, since there is only one intersection of |s(n)|2 −

1/NTL≤ 0 and 1/NTL − 2Re s∗f(n)s(n)􏽮 􏽯 + |sf(n)|2 ≤ 0,
problem (25) has only a single feasible solution. Inspired by
the iterative optimization algorithm and FPP algorithm

[26–28], a nonnegative auxiliary variable was introduced to
the third constraint of problem (25) and ‖u‖1 is added to the
objective function at the same time. At the ith iteration,
problem (25) could be transformed into

min
s,t,u

− t + ρ‖u‖1 + κ s − s(i− 1)
�����

�����
2

s.t.

s(i− 1)
􏼐 􏼑

H
Qn1 ,n2 s(i− 1)

􏼐 􏼑s(i− 1)
− 2Re sHQn1 ,n2 s(i− 1)

􏼐 􏼑s(i− 1)
􏼐 􏼑 + t≤ 0, n1 ∈ I, n2 ∈ J,

|s(n)|
2

−
1

NTL
≤ 0, ∀n,

1
NTL

− 2Re s(i− 1)
(n)􏼐 􏼑
∗
s(n)􏽮 􏽯 + s(i− 1)

(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

− u(n)≤ 0, ∀n,

s(n) − s0(n)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 ≤ δ2, ∀n,

u(n)≥ 0, ∀n,

t≥ t
(i− 1)

,

(26)

where ρ and κ represent the positive penalty parameters.
Supposing (s(i), t(i)) is the solution of the problem (26) at the
ith iteration, and then the solution of the original problem
(15) (or problem (16)) can be obtained by solving the op-
timization problem iteratively. It is worth noting that the
norm ‖s − s(i− 1)‖2 is added to the objective function to
ensure that a unique specific solution can be obtained when
the problem (26) converges.,e constraint t≥ t(i− 1) is added
to ensure that the algorithm obtains increasing solutions
during the iteration. ,e question (26) belongs to the
quadratically constrained quadratic programming (QCQP)
problem, and it can be solved by transforming into second-
order cone programming (SOCP). ,e interior point
method (convex optimization tool kit [29]) is applied to
obtain the optimal solution, whose computational com-
plexity is O((NTL)3). ,e whole solution of transmit
waveform is completed within the framework of the FPP-

SCA algorithm, so it is called the transmit waveform opti-
mization algorithm based on FPP-SCA.

4.3. Joint Design Method for Airborne MIMO Radar Based on
FPP-SCA. ,e proposed joint design method based on FPP-
SCA to solve problem (11) is summarized in Algorithm 1.
,e main computational complexity of the proposed
method is dependent on the number of iterations and the
computational complexity per iteration. In each iteration,
the optimization of wn1,n2

∈W for fixed s involves
O((LMNR)3) complexity. ,e optimization of s for a given
wn1 ,n2
∈W has a complexity of O((NTL)3). ,e robust joint

design method based on SDP and randomization (SDP-R)
[30] can also address the problem (11), whose optimal
waveform is obtained by interior point method involving
O((NTL)4.5) complexity. It is seen that the computational
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complexity of the proposed joint design method is lower
than that based on SDP-R.

Remark 1. ,e objective function SCNR(s(i),w(i)
n1,n2

) ob-
tained by the joint design method based on FPP-SCA
monotonically increases and converges to a specific value.

It is seen from (26) that the optimized value satisfies
t(i) ≥ t(i− 1). ,us, we have

SCNR s(i− 1)
,w(i− 1)

n1 ,n2
􏼐 􏼑 � min

n1∈I,n2∈J
s(i− 1)

􏼐 􏼑
H
VH

f
n1
t , ϕn2

t( 􏼁Φ− 1
cn s(i− 1)

􏼐 􏼑V f
n1
t , θn2

t( 􏼁s(i− 1)

≤ min
n1∈I,n2∈J

s(i)
􏼐 􏼑

H
VH

f
n1
t ,ϕn2

t( 􏼁Φ− 1
cn s(i− 1)

􏼐 􏼑V f
n1
t , θn2

t( 􏼁s(i)

� SCNR s(i)
,w(i− 1)

n1 ,n2
􏼐 􏼑.

(27)

5. Simulation Results

In this section, simulation results are implemented to val-
idate the effectiveness of the proposed FPP-SCA based joint
design method. ,e simulation scenario is set as follows:
consider an airborne collocated MIMO radar with the
transmit antenna and receive antenna being ULA, the
number of transmit array is NT � 4, the number of receive
array is NR � 4, the interelement spacing of the transmit
antenna and receive antenna is dT � dR � λ/2, the pulse
number within the coherent processing interval is M � 4,
the PRF is fr � 2000, and the sampling number of single
pulse is L � 8. ,e platform altitude is 8000m and the flight
speed is Vp � 140 m/s. We consider the clutter of five range
bin (P � 2) is received, the number of clutter patches of a
single range bin is Nc � 181, and the clutter power is
σ2c,p,k � R0/Rp, p � − P, · · · , P, k � 1, · · · , Nc, where R0 and
Rp, respectively, represent the distance from the range under
test and the pth range bin to the platform.,e noise power is
0 dB. ,e real position of the target on the space-time two-
dimensional plane is (0.2, -0.2), the target uncertainty set is
Ψ � [0.1, 0.3] and Ω � [− 0.3, − 0.1], and the uniform sam-
pling step is 0.02. ,en, the number of sampling points of
normalized Doppler frequency and normalized spatial fre-
quency are 11, thus forming 121 groups of normalized
Doppler frequency-spatial frequency pairs, and 121 groups
of receive filters are required to process the received signals.
,e SNR is 20 dB. ,e orthogonal linear frequency modu-
lation waveform is used as the reference waveform, i.e,

S0 nt, l( 􏼁 �
exp j2πnt(l − 1)/L􏼈 􏼉exp jπ(l − 1)

2/L􏽮 􏽯
����
NTL

􏽰 , (28)

where nt � 1, · · · , NT, l � 1, · · · , L, and s0 � vec(S0). ,e
parameters of FPP-SCA are set as follows: ρ � 1, η � 10− 4,
and κ � 10− 5. ,e comparison algorithm is the robust joint
design method based on SDP-R [30]. ,e iteration termi-
nation condition of SDP-R is 10− 4 and the number of
random trials of SDP-R is 1000. ,e simulation experiment
platform is notebook (I7–9750U CPU and 32GB RAM)
Matlab 2016b.

Figure 3 shows the worst-case output SCNR versus the
number of iterations. ,e similarity parameters are c � 0.4,

c � 1, and c � 2, respectively, where c � δ
����
NTL

􏽰
. As can be

seen from Figure 3, the worst-case output SCNR obtained by
both FPP-SCA and SDP-R gradually increases with the
increase of iterations. In addition, it is seen that all the worst-
SCNR curves obtained by the proposed FPP-SCA remain
unchanged when the number of iterations is greater than 5.
,is shows that the proposed algorithm is convergent. When
the similarity parameter increases, the worst-case output
SCNR of FPP-SCA and SDP-R also increases. It is worth
noting that, when c � 0.4, 1, and 2, the c � 0.4 worst output
SCNR obtained by the proposed FPP-SCA is significantly
better than that obtained by SDP-R. For example, FPP-SCA
is about 5.27 dB higher than SDP-R when c � 2.

Table 1 provides the iteration number and runtime
comparison of FPP-SCA and SDP-R, where c � 0.4 ,1, and 2.
As can be seen from Table 1, the total runtime of SDP-R is
apparently larger than FPP-SCA for all c. In addition, when
c � 0.4, 1, and 2, the running time change of FPP-SCA and
SDP-R in a single iteration is relatively small. In particular,
the running time of FPP-SCA and SDP-R in a single iter-
ation is the largest when c � 0.4 while the smallest when
c � 1. For fixed c, the running time of a single iteration of
FPP-SCA is significantly smaller than SDP-R. In fact, SDP-R
method involves the solution of two SDP problems, and we
can obtain from [30] that the computational complexity is
O((LMNR)4.5) and O((LNT)4.5), respectively. ,us, the
total computational complexity of the SDP-R method is
O(􏽥I((LMNR)4.5 + t(LNT)4.5)), where 􏽥I denotes the number
of iterations. Contrarily, the total computational complexity
of FPP-SCA is O(􏽥I((LMNR)3 + t(LNT)3)), which is much
smaller than that of SDP-R. In addition, the more con-
straints exist, the longer the running time of the SDP-R
algorithm. For example, 121 groups of receive filters are set
in this paper, and the number of constraints including re-
ceive filters is 121. ,us, the computational load is much
heavy, which leads to a much longer running time required
for a single iteration.

Figure 4 depicts the worst-case output SCNR versus the
target uncertainty value, where the target normalized
Doppler frequency error and the target spatial frequency
error both increase from 0 to 0.2. In addition, the FPP-SCA-
ROB represents “robust design,” where the worst-case
output SCNR is obtained by the proposed FPP-SCA iterative
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algorithm (where the number of receive filters is set as 121),
while FPP-SCA-NROB denotes the “nonrobust design,”
where the output SCNR is obtained by the presumed target
position (where the number of receive filters is set as 1). We
can see that the output SCNR curves obtained by FPP-SCA-
ROB and FPP-SCA-NROB all utilize the FPP-SCA iterative
algorithm, where the difference between them lies in the
number of receive filter bank. ,e more the number of
receive filters, the stronger the robustness of the algorithm.
,e FPP-SCA-NROB is not robust against the target un-
certainty value since the number of filter banks is set as 1. As
can be seen from Figure 4, the worst-case output SCNR of
FPP-SCA-NROB is a little better than FPP-SCA-ROB when
the target uncertainty value is small. ,e reason is that more
degree of freedom of the system is utilized to deal with the
target uncertainty. It is seen that the worst-case output

SCNR of FPP-SCA-ROB is higher than that of FPP-SCA-
NROB when the target uncertainty value is larger than 0.08.
Furthermore, the larger the value of target uncertainty value
is, the more worst-case output SCNR of FPP-SCA-NROB
decreases, while FPP-SCA-ROB decreases slowly. ,e
simulation results demonstrate that the proposed FPP-SCA-
ROB is robust to the target uncertainty parameters.

Figure 5 shows the worst-case output SCNR versus the
target position, where the target normalized Doppler fre-
quency ranges from 0 to 0.4, the target normalized spatial
frequency ranges from − 0.4 to 0, and the real position of the
target is (0.2, − 0.2). As can be seen from Figure 5, when the
target is near the actual target location, the worst-case output
SCNR of FPP-SCA-NROB is superior to that of FPP-SCA-
ROB. However, when the target is far from the real location,
the worst-case output SCNR of FPP-SCA-NROB is

Input: V(f
n1
t , ϕn2

t ), n1 ∈ I, n2 ∈ J, Rcn(s) , w(0)
n1 ,n2
∈W , s(0) , η

Output: ,e optimal solution to problem (11) (s∗,w∗n1 ,n2
∈W).

Iteration:
Step 1: i � 1.
Step 2: Calculate Rcn(s(i− 1)) with (9) and s(i− 1), compute w(i)

n1 ,n2
∈W with (13).

Step 3: Obtain the optimal waveform s(i) by solving problem (26) with FPP-SCA algorithm.
Step 4: If |SCNR(s(i), tw(i)

n1 ,n2
) − SCNR(s(i− 1), tw(i− 1)

n1 ,n2
)|≤ η, stop the iteration, otherwise, go step 2.

Step 5: Output s∗ � s(i) and w∗n1 ,n2
� w(i)

n1 ,n2
.

ALGORITHM 1: Joint design method based on FPP-SCA to solve (11).
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Figure 3: Worst-case output SCNR versus the iteration number.

Table 1: Iteration number and runtime comparison of different algorithm.

Algorithm Total runtime (s) Iteration number Average runtime (s)
SDP-R (c � 0.4) 494.82 3 164.94
SDP-R (c � 1) 430.83 3 143.61
SDP-R (c � 2) 438.81 3 146.27
FPP-SCA (c � 0.4) 27.72 14 1.98
FPP-SCA (c � 1) 31.96 17 1.88
FPP-SCA (c � 2) 28.65 15 1.91
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significantly reduced, while the worst-case output SCNR of
FPP-SCA-ROB remains relatively high value. ,is is con-
sistent with the conclusion obtained in Figure 4. In addition,
it can be observed from Figure 5 that when the target po-
sition tends to (0, 0), the worst-case output SCNR of both
FPP-SCA-NROB and FPP-SCA-ROB decreases dramati-
cally. ,e reason is that the point (0, 0) is the location of
clutter, and the worst-case output SCNR forms a deep notch
near the clutter ridge.

6. Conclusion

In order to improve the target detection performance of air-
borne MIMO radar when the target parameters have errors, a
joint design method for transmit-receive of airborne MIMO
radar based on FPP-SCA iteration is proposed in this paper. By
designing a set of receive filters in the region where the target
might appear, we can solve the SCNR degradation caused by

the uncertain target parameters. Considering the constant-
modulus constraint and similarity constraint of the transmit
waveform, an FPP-SCA algorithm was designed to obtain the
optimal waveform. Simulation results show that: (1) compared
with the traditional joint design method based on SDP and
randomization, the proposed method avoids the use of ran-
domization to find the optimal waveform. In addition, we
observe that for different similarity parameters c, apparent
worst-case output SCNR improvement is obtained by the
proposed method with relatively small computational load. (2)
,e achieved worst-case SCNR becomes worse when the
inaccuracy on the target parameters increases. Nevertheless,
adopting more receive filters can provide a better robustness
against these uncertainties than only one receive filter.

However, it should be mentioned that the number of
receive filters is large in this work. In fact, the larger the
number of receive filters, the greater the computational
burden of the algorithm. ,e interval model, ball model,
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ellipsoidal model, and norm model are good choice to
describe the target uncertain parameters [31]. Besides, the
spectral constraint on the transmit waveform is considered
to ensure the spectrum coexistence with other communi-
cation systems [32–34]. ,us, all these directions are pur-
sued in the future research.
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­is paper proposes a method to address the problem of the joint direction of departure (DOD) and direction of arrival (DOA)
estimation with augmented coprime array (CPA) bistatic multiple input multiple output (MIMO) radar using interpolating
sensors. At �rst, we deduce the regular pattern of hole positions in the virtual array and interpolate a small number of sensors to
augmented CPA to form a partially contiguous virtual array. ­en, we use the diversity smoothing algorithm to reconstruct the
Toeplitz matrix to obtain a spatial smoothing matrix. Finally, we combine the RD-MUSIC algorithm with the spatial smoothing
matrix to estimate the spatial spectrum and achieve automatic matching of DODs and DOAs for the targets. Simulation results
clearly illustrate the superiority of the method.

1. Introduction

Direction of arrival (DOA) estimation and Kalman �lter
algorithm for target tracking [1] are signi�cant areas of
research in array signal processing. It can estimate the
angular position of di�erent signals in a certain airspace and
plays a key role in radar, sonar, and other target detection
�elds. Since the last century, DOA estimation has gone
through three stages, which are beamforming [2], subspace
�tting [3–6], and compressed sensing [7], and made a great
contribution to the development of the DOA estimation
algorithm. Bistatic multiple input multiple output (MIMO)
radar has the advantages of waveform diversity [8] and
spatial separation; it estimates target angle including DOA
and direction of departure (DOD), so the joint estimation of
DOD andDOA [9, 10] has also become the focus of research.
Although the uniform linear array (ULA) can also solve the
related problems of DOA estimation, it still has certain
limitations. For example, the number of physical array
sensors usually cannot be less than the number of signal
sources; otherwise, the estimation accuracy will be badly
a�ected, and thus the degree of freedom (DOF) is limited by
physical array elements and other factors [11]. In order to

solve these problems, a sparse array is introduced by
scholars.­e di�erence between the sparse array [12, 13] and
the traditional uniform array mainly includes that the sparse
array is formed by setting di�erent interelement spacings in
the array to form a sparse array structure, and part of the
sparse array has a larger element spacing, so it forms longer
virtual array to increase DOF. Coprime array (CPA) [14, 15]
has been widely studied by scholars because of its larger
element spacing. ­us, the CPA has a low mutual coupling
e�ect and high accuracy of target angle estimation. More-
over, the CPA can construct a longer virtual array through
its own di�erential coarray [16] and use its equivalent vector
to estimate DOA. However, although the virtual array
formed by CPA has a long virtual array aperture [17], there
are array holes that make the virtual array discontinuous,
which limits the expansion of DOF. Scholars have conducted
a series of studies to settle the question.

A method was advanced to �ll the virtual array hole by
moving the sparse array in [18], and it used the di�erential
coarray of the original array and the di�erential coarray of
the moved array to form a composite array without holes to
estimate DOA e�ectively. But this method has a small es-
timated error that originated from array movement distance
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and signal source movement distance, and its theoretical
feasibility is insufficient. Interpolated virtual array element
was considered in [19] and solved the problem of virtual
array discontinuity caused by virtual array holes, but the
method will be affected when there are continuous virtual
holes, and its DOF will reduce. Some scholars utilize the
virtual array element interpolation theory [19] to the joint
estimation of DOD and DOA of bistatic radar targets; this
method reduces redundancy of the virtual array and im-
proved DOF and estimated target resolution, but this
method required more calculations. Combined with the
traditional ESPRIT algorithm [20], Li et al. proposed a joint
estimation of target DOD and DOA with bistatic CPA
MIMO radar based on virtual aperture expansion in [21].
,is method achieved better estimation performance than
the traditional method, but it did not use discrete virtual
array elements. Recently, a method which interpolated array
elements in CPA was proposed to solve the virtual array hole
problem in [22], but augmented CPA which the method
used cannot nicely reflected the advantage of the interpo-
lated array elements to expand the virtual array aperture. We
propose a joint DOD and DOA estimation of bistatic MIMO
radar for coprime array based on array elements interpo-
lation. ,e method uses augmented CPAs as the transmit
array and receive array and interpolates a small number of
sensors to the particular holes in the virtual array to expand
the aperture. ,en, the method uses the selection matrix to
reconstruct the Toeplitz matrix based on diversity
smoothing to estimate the DODs and DOAs of the sources.

,e remaining sections are as follows: in Section 2, we
reduce the math model of the bistatic CPAMIMO radar. We
deduce the law of hole position and propose a diversity
smoothing algorithm for reconstructing the Toeplitz matrix
to estimate the DODs and DOAs of the targets in Section 3.
We perform the same simulation experiments with the
proposed method and other methods, which clearly illus-
trates the superiority of the method in Section 4. Finally, we
present conclusions for this paper in Section 5.

Notations: we use italicized boldface characters to rep-
resent vectors and matrices in this paper. Superscripts (.)T

and (.)H represent transpose and conjugate-transpose, re-
spectively, diag [·] denotes diagonal matrix, and ⊗ and ∘
denote the Kronecker product and the Hadamard product,
respectively.

2. Mathematical Model

,e conventional bistatic CPA MIMO radar model is pre-
sented in Figure 1. Transmit array and receive array in the
model are augmented CPA which consists of two uniform
linear arrays (ULA).OneULAhas 2M1 − 1 sensors in transmit
array, and red circles represent sensors of subarray 1; another
ULA of transmit array has N1 sensors, and the black circle
represents sensors of subarray 2. Similarly, receive array
contains two ULAs, which, respectively, have 2M2 −1 sensors
andN2 sensors,whereM1 andN1 are twocoprime integers and
M2 andN2 are two coprime integers.,enumber of sensors of
arrays are, respectively, M� 2M1 +N1 − 1 and N� 2M2 +
N2 −1.,eunit interelement spacing of the array is d, which is

thehalfwavelength (λ/2).,esensorpositions are givenby the
following equation:

St � −mN1d|0≤m≤ 2M1 − 1􏼈 􏼉∪ 2nM1d|0≤ n≤N1 − 1􏼈 􏼉,

Sr � −mN2d|0≤m≤ 2M2 − 1􏼈 􏼉∪ 2nM2d|0≤ n≤N2 − 1􏼈 􏼉.

(1)

Suppose there areK uncorrelated signals in the space, the
DOD and DOA of signals are given by φ � [φ1,φ2, . . . ,φK]

and θ � [θ1, θ2, . . . , θK]. pt � [pt1, pt2, . . . , ptM] represents
the position of the sensors in the transmit array, and pr �

[pr1, pr2, . . . , prN] denotes the position of the sensors in the
receive array. Set the reflection coefficient of signals as
s(t) � [s1(t), s2(t), . . . , sK(t)]T, t � 1, 2, . . . , L, and L rep-
resents the number of snapshots. ,e received signal after
matched filtering is given by the following equation:

x(t) � at φ1( 􏼁⊗ ar θ1( 􏼁, . . . , at φK( 􏼁⊗ ar θK( 􏼁􏼂 􏼃s(t) + n(t)

� At ∘Ar( 􏼁s(t) + n(t)

� As(t) + n(t),

(2)

where n(t) represents a matrix composed of Gaussian white
noise and it follows the Gaussian distribution n(t) ∼ (0, σ2).
At and Ar are also given by the following equation:

Ar � ar θ1( 􏼁, ar θ2( 􏼁, . . . , ar θk( 􏼁, . . . , ar θK( 􏼁􏼂 􏼃,

At � at φ1( 􏼁, at φ2( 􏼁, . . . , at φk( 􏼁, . . . , at φK( 􏼁􏼂 􏼃,
(3)

where at(φk) and ar(θk), respectively, denote manifold
matrices, and they are given by the following equation:

at φk( 􏼁 � e
− j(2π/λ)pt1 sin φk , . . . , e

− j(2π/λ)ptM sin φk􏽨 􏽩
T
,

ar θk( 􏼁 � e
− j(2π/λ)pr1 sin θk , . . . , e

− j(2π/λ)prN sin θk􏽨 􏽩
T
.

(4)

,erefore, the covariance matrix of the received signal R
is given by the following equation:

d

(2M1-1) sensors

k-th target

φk

θk

N1 sensors

N2 sensors (2M2-1)sensors

Receive array

Transmit array

Figure 1: Conventional bistatic CPA MIMO radar model.
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R � E x(t)xH
(t)􏽨 􏽩 � ARsA

H
+ σ2nIMN, (5)

where IMN represents an MN×MN dimensional identity
matrix and Rs denotes the covariance matrix of the received
target.

Rs � E s(t)sH
(t)􏽨 􏽩 � diag σ21, σ

2
2, . . . , σ2k, . . . , σ2K􏽨 􏽩, (6)

where σ2k represents the power of the kth target signal.

3. Joint Diversity Smoothing DOD and DOA
Estimation Algorithm Based on
Interpolated Sensors

3.1. Expansion of Virtual Array by Interpolating Sensors to
CPA Holes. In this section, we will interpolate sensors to
CPA holes to expand a longer virtual array aperture and then
we can obtain a new equivalent vector to execute transmit-
receive diversity smoothing. Assume transmit array and
receive array are identical augmented CPA, and taking
transmit array as an example, sensors distribution is illus-
trated in Figure 2.

,e virtual array is formed by the sum-difference array
of CPA, and the position of virtual sensors Sc is given by the
following equation:

Sc � Sc|Sc � Sct + Scr − 􏽥Sct + 􏽥Scr􏼐 􏼑, Sct,
􏽥Sct ∈ St, Scr,

􏽥Scr ∈ Sr􏽮 􏽯

� Sc|Sc � Sct − 􏽥Sct􏼐 􏼑 + Scr − 􏽥Scr􏼐 􏼑, Sct,
􏽥Sct ∈ St, Scr,

􏽥Scr ∈ Sr􏽮 􏽯.

(7)

According to (8), the virtual sensors are only generated
by the difference coarray of transmit array and the difference
coarray of receive array when DOD and DOA are estimated,
respectively. ,erefore, (Sct − 􏽥Sct) corresponds to parameter
φk and (Scr − 􏽥Scr) corresponds to parameter θk.

,e position of the virtual sensors that are formed by the
difference coarray of transmit array is given by the following
equation:

Std � Std|Std � ± M1nd + N1md( 􏼁, 0≤m≤ 2M1􏼈

− 1, 0≤ n≤N1 − 1},
(8)

where the value range of Std is [−(3M1N1 −M1 −N1),
3M1N1 −M1 −N1].

Similarly, the position of the virtual sensors that are
formed by the difference coarray of receive array is given by
the following equation:

Srd � Srd|Srd � ± M2nd + N2md( 􏼁, 0≤m≤ 2M2􏼈

− 1, 0≤ n≤N2 − 1},
(9)

where the value range of Srd is [−(3M2N2 −M2 −N2),
3M2N2 −M2 −N2].

For transmit array, M1 and M2 can determine the dis-
tribution of the virtual sensors and the length of the virtual
array aperture, and the distribution of virtual sensors that
are formed by augmented CPA is shown in Figure 3.

InFigure3,blackfilledcircles representvirtual sensors and
dotted circles represent virtual holes. Although augmented

CPA can form more virtual sensors than traditional CPA,
some virtual holes are located next to the center point.
,erefore, other continuous virtual sensors cannot form a
virtual array with a larger aperture.

With the purpose of settling the question, we present a
method that utilizes a small number of sensors to interpolate
a part of virtual holes. ,e originally discontinuous virtual
array will become continuous to achieve more DOF.

We can know a special kind of holes next to the center
point in Figure 3 and call them central virtual holes. Central
virtual holes are continuous virtual holes which locate next
to the center point. When M1 � 2 and M2 � 3, there are two
central virtual holes in the virtual array; when M1 � 3 and
M2 � 4, there are four central virtual holes in the virtual
array; and when M1 � 3 and M2 � 5, there are four central
virtual holes in the virtual array.

Assume we use sensors to interpolate the virtual central
holes where next to the center point completely. ,en, a new
distribution of virtual sensors emerges in Figure 4.

From Figure 4, black filled circles represent virtual
sensors, dotted circles represent virtual holes, red filled
circles represent sensors, and red circles represent new
formed virtual sensors. We found that we only need to
interpolate the virtual holes located next to the center point
to make the virtual array continuous. For example, when
M1 � 3 and M2 � 4, we use two sensors to interpolate the
virtual central holes which are located in {1d,2d}. ,en, the
array can form additional new virtual sensors which are
located in {−1d,−2d,±5d}. Most of the original virtual holes
are interpolated. Comparing Figure 3 with Figure 4, it can be
found that the interpolated virtual array is a continuous
virtual array that all the central virtual holes are replaced
with sensors or new virtual sensors, and the DOF is 47.
,erefore, we deduce the number of central virtual holes and
DOF for different augmented CPAs from continuous ex-
periments and find that the number of virtual holes to be
interpolated is only related to M1. ,e derived regular
pattern and formulas are shown in Table 1.

In general, we interpolate (M1 − 1) sensors into the
virtual holes which located next to the center point, the
original virtual array becomes continuous, virtual array
apertures become larger to (4M1N1 − 1), and DOF also
becomes larger to (4M1N1 − 1).

3.2. Reconstructing Toeplitz Matrix Algorithm Based on Di-
versity Smoothing. In recent years, scholars have proposed
some spatial smoothing algorithms for bistatic radars in
[23–25]. ,is paper chooses an algorithm that reconstructs
the Toeplitz matrix based on diversity smoothing.

N1d

M1d-(2M1-1)
…

…

N1-1

0

0 1 2

-1-2

Figure 2: Sensors distribution of augmented CPA.
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After the sensors shave been interpolated, there are 􏽥M

continuous virtual sensors in the virtual array of transmit
and 􏽥N continuous virtual sensors in the virtual array of
receive, and p􏽥t � [pt1, pt2, . . . , p

t 􏽥M] denotes the sensors’
position in the virtual transmit array and
p􏽥r � [pr1, pr2, . . . , p

r􏽥N] denotes the sensors’ position in the
virtual receive array. ,erefore, the steering matrices of
transmit and receive virtual array are given by the following
equation:

􏽥A􏽥t � 􏽥a􏽥t φ1( 􏼁, 􏽥a􏽥t φ2( 􏼁, . . . , 􏽥a􏽥t φk( 􏼁􏽨 􏽩,

􏽥A􏽥r � 􏽥a􏽥r θ1( 􏼁, 􏽥a􏽥r θ2( 􏼁, . . . , 􏽥a􏽥r θk( 􏼁􏽨 􏽩,
(10)

where 􏽥a􏽥t
(φk) and 􏽥a􏽥r(θk), respectively, denote manifold

matrices, and they are given by the following equation:

􏽥a􏽥t φk( 􏼁 � e
− j(2π/λ)pt1 sin φk , . . . , e

− j(2π/λ)p
t􏽥M

sin φk
􏼔 􏼕

T

,

􏽥a􏽥r θk( 􏼁 � e
− j(2π/λ)pr1 sin θk , . . . , e

− j(2π/λ)p
r􏽥N

sin θk
􏼔 􏼕

T

.

(11)

A new covariance matrix 􏽥R of the received signal can be
formed by processing continuous virtual sensors. However,
the ideal 􏽥R is hard to get in practice, so 􏽢R is usually estimated
by using L available snapshots and it is given by the following
equation:

Virtual sensor
Virtual holes

1 2-10-2 5-5-24 24

M1=2, N1=3

M1=3, N1=4

M1=3, N1=5

-30-37 0 3730

-26 26

-10-12 12

Figure 3: Distribution of virtual sensors and virtual holes.

M1=2, N1=3

M1=3, N1=4

M1=3, N1=5
1-10-2 5-5-24 24

-30-37 0 3730

-26 26

Virtual sensor
Virtual holes

Antenna sensor
New virtual sensor

1-10-12 12

2

Figure 4: ,e new distribution of virtual array after interpolating sensors.

Table 1: Number of elements for augmented CPA.

M1 N1 M Hs Hf 􏽥M DOF

N1 �M1 + 1

2 3 6 2 1 23 23
3 4 9 4 2 47 47
4 5 12 6 3 79 79

. . . . . . . . . . . . . . . . . . . . .

N1�M1 + 2

3 5 10 4 3 59 59
5 7 16 8 4 139 139
7 9 22 12 6 251 251

. . . . . . . . . . . . . . . . . . . . .

N1 �M1 + 3

4 7 14 6 3 111 111
5 8 17 8 4 159 159
7 10 23 12 6 279 279

. . . . . . . . . . . . . . . . . . . . .

N1 �M1+ L M1 N1 2M1 +N1 − 1 2(M1 − 1) M1 − 1 4M1N1 − 1 4M1N1 − 1
M denotes the number of array sensors,Hs denotes the number of central virtual holes located next to the center point,Hf denotes the number of interpolated
sensors, 􏽥M denotes the number of continuous virtual sensors, and DOF denotes the DOF after interpolating the holes.
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􏽢R �
1
L

􏽘

L

i�1
􏽢x(t)􏽢x

H
(t), (12)

where 􏽢x(t) is the new received signal of the virtual array.
,e new covariance matrix is now vectorized to obtain a

new equivalent vector as follows:

􏽥r � 􏽥Ap + σ2n􏽥i � 􏽥At ∘ 􏽥Ar􏼐 􏼑p + σ2n􏽥i, (13)

where p � [σ21, σ22, . . . , σ2K] and􏽥i is a ( 􏽥M 􏽥N × 1) vector whose
elements are all zeros except for the ( 􏽥M 􏽥N + 1)/2th row.

In fact, we regard vector 􏽥r as the received signal of a
single snapshot in bistatic MIMO radar. According to the
principles of spatial smoothing algorithms, the number of
smoothing times should be no less than the number of
overlapping subarrays to form a full rank covariance matrix.
Since the number of virtual sensors is always an odd number,
the best smoothing results are achieved when the number of
smoothing times is equal to the number of overlapping
subarrays. ,erefore, we divide the virtual array of transmit
into Ms overlapping subarrays to carry out Ms smoothing
and divide the virtual array of receive into Ns overlapping
subarrays to carry out Ns smoothing. ,us, 􏽥M � 2Ms − 1
and 􏽥N � 2Ns − 1.

Next, suppose there are two selection matrices St
m and Sr

n

corresponding to the virtual array of transmit and the virtual
array of receive, which are given by the following equations:

St
m � OMs× Ms−m( )IMs×Ms

OMs×(m−1)􏼔 􏼕, (14)

Sr
n � ONs× Ns−n( )INs×Ns

ONs×(n−1)􏼔 􏼕, (15)

where m � 1, . . . , Ms and n � 1, . . . , Ns. OMs×(Ms−m) denote
the Ms × (Ms − m) zero matrix, IMs×Ms

denote Ms × Ms

identity matrix, andOMs×(m−1) denote the Ms × (m − 1) zero
matrix. Sr

n is similar.
Utilize selection matrices St

m and Sr
n to form the

transmission smoothing and receiving smoothing on the
equivalent vector 􏽥r. ,en, we can change the values ofm and
n to achieve the smoothing of overlapping subarrays in the
virtual array, m and n represent smoothing times. So sub-
vector 􏽥r(m, n) is given by the following equation:

􏽥r(m, n) � St
m ⊗ S

r
n􏼐 􏼑􏽥r

� St
m

􏽥At􏼐 􏼑 ∘ Sr
n

􏽥Ar􏼐 􏼑p + σ2n􏽥i(m,n)

� At ∘Ar( 􏼁Ψm−1
t Ψn−1

r p + σ2n􏽥i(m,n),

(16)

where At � St
1

􏽥At, Ψt � diag[e− jπ sin φ1 , . . . , e− jπ sin φk ],
Ar � Sr

1
􏽥Ar, Ψr � diag[e− jπ sin θ1 , . . . , e− jπ sin θk ], and 􏽥i(m,n) is

the corresponding noise vector. ,e reconstructed Toeplitz
matrix is given by the following equation:

RT � 􏽥r(1,1), 􏽥r(1,2), . . . , 􏽥r 1,Ns( ), 􏽥r(2,1), . . . , 􏽥r Ms,Ns( )􏼔 􏼕

� At ∘Ar( 􏼁Rs At ∘Ar( 􏼁
H

+ σ2nIMsNs

� AsRsA
H
s + σ2nIMsNs

,

(17)

where As represents the new steering matrix.
,erefore, the covariance matrix of each sub-array is

given by the following equation:

R(m,n) � 􏽥r(m,n)􏽥r
H
(m,n)

� AsΨ
m−1
t Ψn−1

r ppHΨ1−m
t Ψ1−n

r AH
s + σ4n􏽥i(m,n)

􏽥i
H

(m,n)

+ σ2nAsΨ
m−1
t Ψn−1

r p􏽥i
H

(m,n) + σ2n􏽥i(m,n)p
HΨm−1

t Ψn−1
r AH

s .

(18)

,e values ofm and n are changed to achieve the effect of
spatial smoothing in the virtual array and the spatial
smoothing algorithm is used to solve the single snapshot
problem caused by the vectorized covariance matrix. ,e
spatial smoothing matrix is given by the following equation:

R �
1

MsNs

􏽘

Ms

m�1
􏽘

Ns

n�1
R(m,n)

�
1

MsNs

AsRsA
H
s AsRsA

H
s + σ4nIMsNs

+ 2σ2nAsRsA
H
s􏼐 􏼑.

(19)

,rough comparison, we find that R and Toeplitz matrix
RT have the same form, so the spatial smoothing matrix R is
also given by the following equation:

R �
1

MsNs

R2
T. (20)

When performing spatial spectrum estimation, we
choose the RD-MUSIC algorithm instead of the ESPRIT
algorithm. Although we use the ESPRITalgorithm for spatial
spectrum estimation to effectively reduce the complexity of
the algorithm, the estimated DODs and DOAs of multiple
targets need to be matched manually, whereas the RD-
MUSIC algorithm can automatically match the DODs and
DOAs of targets.

,e RD-MUSIC algorithm is combined with R to esti-
mate the spatial spectrum, and the spatial spectrum function
is given by the following equation:

fmusic �
1

􏽢at(φ)⊗ 􏽢ar(θ)􏼂 􏼃
HEnE

H
n 􏽢at(φ)⊗ 􏽢ar(θ)􏼂 􏼃

, (21)

where En denotes signal subspace of the covariance matrix.
􏽢at(θ) ⊗ 􏽢ar(θ) is also given by the following equation [25]:

􏽢at(φ)⊗ 􏽢ar(θ) � 􏽢at(φ)⊗ IN􏼂 􏼃􏽢ar(θ). (22)

,erefore, the spatial spectrum function is also given by
the following equation:

fmusic �
1

􏽢ar(θ)
H

􏽢at(φ)⊗ IN􏼂 􏼃
HEnE

H
n 􏽢at(φ)⊗ IN􏼂 􏼃􏽢ar(θ)

�
1

􏽢ar(θ)
HV(φ)􏽢ar(θ)

,

(23)

where V(φ) � [􏽢at(φ)⊗ IN]HEnEH
n [􏽢at(φ)⊗ IN]. ,e DOA of

the kth signal is given by the following equation:
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􏽢θk � argmin
1

eT
1V

− 1 φk( 􏼁e1
� argmax eT

1V
− 1 φk( 􏼁e1􏼐 􏼑, (24)

where e1 � [1, 0, . . . , 0]T.
Similarly, ,e DOD of the kth signal is given by the

following equation:

􏽢φk � argmin
1

eT
1V

− 1 θk( 􏼁e1
� argmax eT

1V
− 1 θk( 􏼁e1􏼐 􏼑. (25)

,e steps of the proposed Algorithm 1 are as follows.

4. Simulation Results

We assume the distance of array sensors M1 �M2 � 2,
N1 �N2 � 3, the number of transmit and receive array
sensorsM�N� 6, and the original positions of transmit and
receive sensors are [−9d, −6d, −3d, 0d, 2d, 4d]. ,e number
of central virtual holes to be interpolated is Hf � 1, and the
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Figure 5: Results of detecting 15 targets by different methods: (a) CPA with DSIAS algorithm, (b) CPA with IVAE algorithm in [19], (c)
CPA with CDS algorithm in [21], and (d) ULA with RD-MUSIC algorithm in [26].

Input: receive signal: x(t)�As(t)+n(t), t� 1,2, . . ., L;
Output: DODs and DOAs: 􏽢φk, 􏽢θk􏽮 􏽯, k � 1, 2, . . . , K;
Step:

(1) estimate covariance matrix 􏽢R based on continuous virtual array as in (12);
(2) build the selection matrix of the transmit array St

m as in (14) and the selection matrix of receive array Sr
n as in (15);

(3) rebuild a new Toeplitz matrix RT as in (17);
(4) form a spatial smoothing matrix R as in (18);
(5) utilize the RD-MUSIC algorithm, to estimate DODs and DOAs 􏽢φk, 􏽢θk􏽮 􏽯;

ALGORITHM 1: Array elements interpolation algorithm.
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positions of transmit and receive sensors after interpolating
the holes are [−9d, −6d, −3d, 0d, 1d, 2d, 4d]. ,ere are
continuous virtual sensors in transmit array and receive
array, overlapping subarrays of transmit and receive array,
and smooth times are Ms�Ns� 12. ,e signals in the
simulation are incoherent.

Compare the performance in target estimation of four
methods which include diversity smoothing algorithm based
on interpolating sensors (DSIAS) in this article, interpola-
tion virtual array element algorithm (IVAE) in [19], con-
ventional CPA diversity smoothing algorithm (CDS) in [21],
and conventional ULA RD-MUSIC algorithm in [26]. It
includes three specific simulation experiments, namely,
target number detection and angular resolution. In the
simulation of root mean square error (RMSE), we not only
compared the above-given methods, we also added a unitary
dual-resolution ESPRIT (U-ESPRIT) method [27] to the
comparative simulation.

4.1. Number of Detectable Targets. In this part, the signal-to-
noise ratio (SNR) is set as 10 dB and the number of snapshots
is set as 200. ,ere are 15 signal targets distributed over the
range [−70°, 70°], where located at φ � [−70°， −60°, −50°,
−40°, −30°, −20°, −10°, 0°, 10°, 20°, 30°, 40°, 50°, 60°,70°] and

θ � [−70°, −60°, −50°, −40°, −30°, −20°, −10°, 0°, 10°, 20°, 30°,
40°, 50°, 60°,70°]. Figure 5 shows the results of DOD and
DOA joint estimation of targets. ,e four pictures in Fig-
ure 5 represent the algorithms in this article, [18, 20], and
[25], respectively. As shown in Figure 5, it shows the contour
map of the spatial spectrum peak, red circles represent the
true direction of 15 targets and the spectral peak contour
represents the estimated direction of 15 targets. ,e spectral
peak contour completely overlaps in the red circle in
Figure 5(a), so the DSIAS algorithm can accurately estimate
15 targets. Other methods’ spectral peak contours do not
overlap completely in the red circle. ,e DSIAS algorithm is
better than other methods for a number of detectable targets.

4.2. Angular Resolution. In this part, with the purpose of
comparing the performance of the four algorithms in an-
gular resolution, assume that the SNR is 10 dB and the
number of snapshots is 200. Figure 6 shows situations of the
angular resolution comparison of different algorithms. ,e
position of two adjacent targets are (φ1, θ1) � (11∘, 11∘) and
(φ2, θ2) � (13∘, 13∘), and the red line denotes the real target’s
direction. From the simulation results, we can also see that
the MIMO radar which uses the DSIAS algorithm can es-
timate the targets well under the condition of two targets
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Figure 6: Results of the angular resolution of different methods: (a) CPA with DSIAS algorithm, (b) CPA with IVAE algorithm in [19], (c)
CPA with CDS algorithm in [21], and (d) ULA with RD-MUSIC algorithm in [26].
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close to each other, and the other three algorithms cannot
accurately distinguish two similar targets.

4.3. Root Mean Square Error (RMSE). We compare the
RMSEs of different algorithms. RMSE is a common standard
that reflects the accuracy of angle estimation, and the average
RMSE is defined by the following equation:

RMSE �

���������

1
2 × QK

􏽘

Q

i�1

􏽶
􏽴

􏽘

K

k�1
􏽢φi

k − φk􏼐 􏼑
2

+ 􏽢θ
i

k − θk􏼒 􏼓
2

􏼢 􏼣 , (26)

where Q denotes Monte Carlo simulation times, K denotes
the number of targets, and (􏽢φi

k, 􏽢θ
i

k) denotes the joint esti-
mated DOD and DOA of the kth target for the ith Monte
Carlo simulation, i� 1,2, . . ., Q. Estimation number of
targets will affect the estimation accuracy. In order to reflect
the comprehensiveness of the simulation results, we carried
out simulation experiments for two targets and four targets,
respectively, and the results of the simulation experiments
are shown in Figures 7 and 8.

Figure 7 shows the relationship of RMSEwith SNRand the
number of snapshots under the condition of detecting two
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Figure 7: RMSE versus SNR and number of snapshots for different methods (two targets): (a) RMSE versus SNR for different methods and
(b) RMSE versus a number of snapshots for different methods.
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Figure 8: RMSE versus SNR and number of snapshots for different methods (four targets): (a) RMSE versus SNR for different methods and
(b) RMSE versus a number of snapshots for different methods.
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targets, and the targets locate at (φ1, θ1) � (10∘, 15∘),
(φ2, θ2) � (20∘, 25∘). Figure 7(a) depicts the variation of the
RMSEcurvewith SNR,where the number of snapshots is set as
200. ,e DSIAS algorithm has a higher estimation accuracy
than other methods at low SNR but has similar performance
with the other two methods [19, 21] at high SNR. Figure 7(b)
depicts the variation of the RMSE curve with a number of
snapshots,where theSNR is set as 10.,eDSIASalgorithmhas
high estimation accuracy at a different number of snapshots.

As shown in Figure 7, the accuracy of all four algorithms
is high when estimating two target angles, and the estimation
accuracy of the DSIAS algorithm proposed in this paper is
only slightly higher than the others. Figure 8 presents the
relationship of RMSE with SNR and the number of snap-
shots under the condition of detecting four targets, and the
targets locate at (φ1, θ1) � (10∘, 15∘), (φ2, θ2) � (20∘, 25∘),
(φ3, θ3) � (30∘, 35∘), and (φ4, θ4) � (40∘, 45∘). Figure 8(a)
depicts the variation of the RMSE curve with SNR, where
the number of snapshots is set as 200. In contrast to the
previous experiments, the DSIAS algorithm clearly performs
better than other methods in estimation accuracy.
Figure 8(b) depicts the variation of the RMSE curve with a
number of snapshots, where the SNR is 10. It can be found
that the DSIAS algorithm estimates more targets with
greater accuracy by comparing two experiments which
detects a different number of targets.

5. Conclusions

We propose a joint estimation of the DOD and DOA
method that interpolate a small number of sensors to a
specific location in an augmented CPA virtual array. ,e
method can expand the aperture of the virtual array and
maintains the maximum DOF of augmented CPA despite
the virtual holes which cannot be exploited in the virtual
array. Meanwhile, we reconstructed the Toeplitz matrix
based on diversity smoothing to obtain a spatial smoothing
matrix. Finally, we combined the RD-MUSIC algorithm
with the spatial smoothing matrix to estimate the spatial
spectrum and accurately estimate the DOD and DOA of the
targets. Simulation results illustrate the proposed method
has better performance than other methods.
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