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Partial differential equations are used to describe a wide vari-
ety of physical phenomena such as fluid dynamics, plasma
physics, solid mechanics, and quantum field theory that
arise in physics. Many of these equations are nonlinear and,
in general, these equations are often very difficult to solve
explicitly. Many systematic methods are usually employed
to study the nonlinear equations: these include the gener-
alized symmetry method, the Painlevé analysis, the inverse
scattering method, the Bäcklund transformationmethod, the
conservation lawmethod, theCole-Hopf transformation, and
the Hirota bilinear method.

Constructing exact solutions, in particular travelling
wave solutions, of nonlinear equations plays an important
role in soliton theory. Several important direct methods
have been developed for obtaining travelling wave solutions
to nonlinear partial differential equations such as the inverse
scattering method, the tanh-function method, the extended
tanh-function method, the G󸀠/G method, the simplest
method, and the modified simplest method.

The authors of this special issue had been invited to
submit original research articles as well as review articles
in the following topics: methods for obtaining solutions
of partial differential equations; conservation laws; general
methods for obtaining solutions of ordinary differential
equations; travelling wave solutions; novel applications in
physics.

However, we received 22 papers in these research fields.
After a rigorous reviewing process, six articles were finally

accepted for publication.These articles contain somenew and
innovative techniques and ideas that may stimulate further
researches in several branches of theory and applications of
the transformation groups.

In “The Rational Solutions and Quasi-Periodic Wave
Solutions aswell as Interactions of𝑁-Soliton Solutions for 3 +
1 Dimensional Jimbo-Miwa Equation,” H. Yang et al. analyze
the rational solutions, quasi-periodicwave solutions obtained
by the Hirota method and the theta function for the 3 + 1
dimensional Jimbo-Miwa equation. The knowledge of these
solutions allows them to explain the interaction of the 𝑁-
soliton solutions, that is, to show when the soliton solution
can be changed into the resonant solution andwhen therewill
appear the pursue collision; that is, the soliton with the faster
speed will catch up with the soliton with the slower speed
(after the collision, the two solitons will continue to spread
as the previous speed and the direction).

In “AnEfficientNumericalMethod for the Solution of the
Schrödinger Equation,” L. Zhang and T. E. Simos show the
original development of a new five-stage symmetric two-step
fourteenth-algebraic-order method with vanished phase-lag
and its first, second, and third derivatives. More specifically,
they firstly introduce the development of the new method
and the determination of the local truncation error and suc-
cessively the local truncation error analysis and the stability.
Finally, the interval of periodicity analysis and the efficiency
of the new method are considered by applying it to couple of
Schrödinger equations.
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In the paper titled “Asymptotic Expansion of the Solutions
to Time-Space Fractional Kuramoto-Sivashinsky Equations,”
the attention of authors is devoted to finding the asymp-
totic expansion of solutions to fractional partial differential
equations with initial conditions. The residual power series
method is proposed for time-space fractional partial differ-
ential equations, where the fractional integral and derivative
are described in the sense of Riemann-Liouville integral
and Caputo derivative. They apply the method to the linear
and nonlinear time-space fractional Kuramoto-Sivashinsky
equation with initial value and obtain asymptotic expansion
of the solutions, which confirm the accuracy and efficiency of
the method.

In “New Periodic Solutions for a Class of Zakharov Equa-
tions,” C. Sun and S. Ji consider a class of nonlinear Zakharov
equations. Inspired byAngluo’s idea, by applying the Jacobian
elliptic function method, they obtain new periodic solutions
for Klein-Gordon Zakharov equations, Zakharov equations,
and Zakharov-Rubenchik equations.

In the paper titled “Stability of the Cauchy Additive
Functional Equation on Tangle Space and Applications,” S.
H. Kim introduces real tangles (a generalization of rational
tangles) and its operations to enumerating tangles by using
the calculus of continued fraction.Moreover, he studies about
the analytical structure of tangles, knots, and links by using
new operations between real tangles which need not have
the topological structure. As for applications of the analytical
structure, he proves the generalized Hyers-Ulam stability of
the Cauchy additive functional equation 𝑓(𝑥 ⊕ 𝑦) = 𝑓(𝑥) ⊕
𝑓(𝑦) in tangle space which is a set of real tangles with analytic
structure and describes the DNA recombination as the action
of some enzymes on tangle space.

In their paper titled “The Stochastic Resonance Behaviors
of a Generalized Harmonic Oscillator Subject to Multi-
plicative and Periodically Modulated Noises,” S. Zhong et
al. study the stochastic resonance (SR) characteristics of a
generalized Langevin linear system driven by a multiplicative
noise and a periodically modulated noise. They take in
consideration a generalized Langevin equation (GLE) driven
by an internal noise with long-memory and long-range
dependence, such as fractional Gaussian noise and Mittag-
Leffler noise. Such a model is appropriate to characterizing
the chemical and biological solutions as well as to some
nanotechnological devices. An exact analytic expression
of the output amplitude is obtained. Based on it, some
characteristic features of stochastic resonance phenomenon
are revealed. On the other hand, by the use of the exact
expression, they obtain the phase diagram for the resonant
behaviors of the output amplitude versus noise intensity
under different values of system parameters. These results
could give the theoretical basis for practical use and control
of the SR phenomenon of this mathematical model in future
works.
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The stochastic resonance (SR) characteristics of a generalized Langevin linear system driven by a multiplicative noise and a
periodically modulated noise are studied (the two noises are correlated). In this paper, we consider a generalized Langevin equation
(GLE) driven by an internal noise with long-memory and long-range dependence, such as fractional Gaussian noise (fGn) and
Mittag-Leffler noise (M-Ln). Such a model is appropriate to characterize the chemical and biological solutions as well as to some
nanotechnological devices. An exact analytic expression of the output amplitude is obtained. Based on it, some characteristic
features of stochastic resonance phenomenon are revealed. On the other hand, by the use of the exact expression, we obtain the
phase diagram for the resonant behaviors of the output amplitude versus noise intensity under different values of systemparameters.
These useful results presented in this paper can give the theoretical basis for practical use and control of the SR phenomenon of
this mathematical model in future works.

1. Introduction

The phenomenon of stochastic resonance (SR) characterized
the cooperative effect between weak signal and noise in
a nonlinear systems, which was originally perceived for
explaining the periodicity of ice ages in early 1980s [1, 2]. In
the past three decades, the SR phenomenon attracted great
attentions and has been documented in a large number of
literatures in biology, physics, chemistry and engineering [3–
6], such as SR in magnetic systems [7] and tunnel diode [8]
and in cancer growth models [9, 10].

Nowadays, there have been considerable developments in
SR, and the original understanding of SR is extended. Firstly,
in the initial stage of investigation of SR, the nonlinearity
system, noise and periodic signal were thought of as three
essential ingredients for the presence of SR. However, in 1996,
Berdichevsky and Gitterman [11] found that SR phenomenon
can occur in the linear system with multiplicative colored
noise [12, 13]. It is because the multiplicative noise breaks
the symmetry of the potential of the linear system and this

gives rise to the SR phenomenon, which has been explained
byValenti et al. in literatures [14, 15]. Valenti et al. investigated
the SR phenomenon in population dynamics, where themul-
tiplicative noise source is Gaussian or Lévy type. Moreover,
the appearance of SR in a trapping overdamped monostable
system was also investigated in literature [16] recently. Sec-
ondly, the conventional definition about SR phenomenon
is the signal-to-noise ratio (SNR) versus the noise intensity
exhibits a peak [17, 18], whereas the generalized SR [19]
implies the nonmonotonic behaviors of a certain function of
the output signal (such as the first and second moments, the
autocorrelation function) on the system parameters. Thirdly,
another interesting extension of SR lies in the fact that output
amplitude 𝐴 attains a maximum value by increasing the
driving frequency Ω. Such phenomenon indicates the bona
fide SR which was introduced by Gammaitoni et al. appears
at some value ofΩ [20, 21].

The SR phenomenon driven by Gaussian noise has been
investigated both theoretically and experimentally. However,
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the Gaussian noise is just an ideal model for actual fluctua-
tions and not always appropriate to describe the real noisy
environment. For instance, in the nonequilibrium situation,
the stochastic processes describing the interactions of a test
particle with the environment exhibit a heavy tailed non-
Gaussian distribution. Nowadays, Dybiec et al. investigated
the resonant behaviors of a stochastic dynamics system
with Lévy stable noise and an isotropic 𝛼-stable noise with
heavy tails and jumps in literatures [22, 23]. Dubkov et al.
investigated the Lévy flight superdiffusion as a self-similar
Lévy process and derive the fractional Fokker-Planck equa-
tion (FFPE) for probability distribution from the Langevin
equation with Lévy stable noise [24–26].

Recently, more and more scholars began to pay atten-
tion to another important class of non-Gaussian noise, the
bounded noise. It should be emphasized is that the bounded
noise is a more realistic and versatile mathematical model of
stochastic fluctuations in applications, and it is widely applied
in the domains of statistical physics, biology, and engineering
in the last 20 years. Furthermore, the well-known telegraph
noise, such as dichotomous noise (DN) and trichotomous
noise that are widely used in the studied of SR phenomena,
is a special case of bounded noise. The deepening and
development of theoretical studies on bounded noise led to
the fact that lots of scholars investigated the effect of bounded
noise on the stochastic resonant behaviors in the special
model in physics, biology, and engineering [27].

Since Richardson’s work in literature [28], a large number
of observations related to anomalous diffusion [29–33] have
been reported in several scientific fields, for example, brain
studies [34, 35], social systems [36], biological cells [37, 38],
animal foraging behavior [39], nanoscience [40, 41], and
geophysical systems [42]. One of the main aspects of these
situations is the correlation functions of the above anomalous
diffusion phenomena, which may be related to the non-
Markovian characteristic of the stochastic process [43]. The
typical characteristic of anomalous diffusion lies in themean-
square displacement (MSD) which satisfies ⟨𝑥(𝑡)2⟩ ∼ 𝑡𝛼,
where the diffusion exponents 0 < 𝛼 < 1 and 𝛼 > 1 indicate
subdiffusion and superdiffusion, respectively. When 𝛼 = 1,
the normal diffusion is recovered [44].

It is well-known that the normal diffusion can bemodeled
by a Langevin equation, where a Brownian particle subjected
to a viscous drag from the surrounding medium is charac-
terized by a friction force, and it also subjected to a stochastic
force that arises from the surrounding environment.The fric-
tion constant determines how quickly the system exchanges
energy with the surrounding environment. For a realistic
description of the surrounding environment, it is difficult to
choose a universal value of the friction constant. Indeed, in
order to depict the real situation more effectively, a different
value of the friction constant should be adopted. Hence, a
generalization of the Langevin equation is needed, leading to
the so-called generalized Langevin equation (GLE) [45]. The
GLE is an equation ofmotion for a non-Markovian stochastic
process where the particle has a memory effect to its velocity.

Nowadays, the GLE driven by a fractional Gaussian noise
(fGn) [46]with a power-law friction kernel is extensively used

for modeling anomalous diffusion processes. For instance, in
the study on dynamics of single-molecule when the electron
transfer (ET) was used to probe the conformational fluctu-
ations of single-molecule enzyme, the distance between the
ET donor and acceptor can be modeled well through a GLE
driven by an fGn [47–54]. Besides, Viñales and Despósito
have introduced a novel noise whose correlation function is
proportional to a Mittag-Leffler function, which is called the
Mittag-Leffler noise (M-Ln) [55–57]. The correlation func-
tion behaves as a power-law for large times but is nonsingular
at the origin due to the inclusion of a characteristic time.

Theoverwhelmingmajority of previous studies of SRhave
related to the case where the external noise and the weak
periodic force are introduced additively. However, Dykman
et al. [58] studied the case where the signal is multiplied to
noise; namely, the noise is modulated by a signal. They found
thatwhen an asymmetric bistable system is driven by a signal-
modulated noise, stochastic resonance appeared, in contrast
to the additive noise, new characteristics emerge, and their
results were in agreement with experiments. Furthermore,
Cao and Wu [59] studied the SR characteristics of a linear
system driven by a signal-modulated noise and an additive
noise. It seems that a periodically modulated noise is not
uncommon and arises, for example, at the output of any
amplifier (optics or radio astronomy) whose amplification
factor varies periodically with time.

Due to the synergy of generalized friction kernel of a GLE
and the periodically modulated noise, the stochastic resonant
behaviors of a GLE can be influenced. In contrast to the
case that has been investigated before, new dynamic char-
acteristics emerge. Motivated by the above discussions, we
would like to explore the stochastic resonance phenomenon
in a generalized harmonic oscillator with multiplicative and
periodically modulated noises. Moreover, we consider the
GLE is driven by a fractional Gaussian noise and a Mittag-
Leffler noise, respectively, in this paper. We focus on the
various nonmonotonic behaviors of the output amplitude 𝐴
with the systemparameters and the parameters of the internal
driven noise.

The physical motivations of this paper are as follows: (1)
in view of the importance of stochastic generalized harmonic
oscillator (linear oscillator) with memory in physics, chem-
istry, and biology and due to the periodicallymodulated noise
arising at the output of the amplifier of the optics device
and radio astronomy device, to establish a physical model in
which the SR can contain the effects of the two factors, the
linearity of the system and the periodical modulation of the
noise. (2) The second one is to give a theoretical foundation
for the study of SR characteristic features of a generalized
harmonic oscillator subject to multiplicative, periodically
modulated noises and external periodic force. Our study
shows that such a model leads to stochastic resonance
phenomenon. Meanwhile, an exact analytic expression of the
output amplitude is obtained. Based on it, some characteristic
features of SR are revealed.

The paper is organized as follows. Section 2 gives the
introductions of the generalized Langevin equation, the frac-
tional Gaussian noise, and the Mittag-Leffler noise. Section 3
gives analytical expression of the output amplitude of the



Advances in Mathematical Physics 3

system’s steady response. Section 4 presents the simulation
results, and gives the discussions. Section 5 gives conclusion.

2. System Model

2.1. The Generalized Langevin Equation. The generalized
Langevin equation (GLE) is an equation of motion for the
non-Markovian stochastic process where the particle has a
memory effect to its velocity. Anomalous diffusion in physical
and biological systems can be formulated in the framework of
aGLE that reads asNewton’s law for a particle of the unitmass
(𝑚 = 1) [11, 47, 60–66]:

𝑥̈ (𝑡) + 𝛾∫𝑡
0
𝐾 (𝑡 − 𝑢) 𝑥̇ (𝑢) 𝑑𝑢 + 𝑑𝑈 (𝑥)𝑑𝑥 = 𝜂 (𝑡) , (1)

where 𝑥(𝑡) is the displacement of the Brownian particle at
time 𝑡, 𝛾 > 0 is the friction constant, 𝐾(𝑡) represents the
memory kernel of the frictional force, and 𝑑𝑈(𝑥)/𝑑𝑥 is the
external force under the potential 𝑈(𝑥). The random force𝜂(𝑡) is zero-centered and stationary Gaussian that obeys the
generalized second fluctuation-dissipation theorem [67]:

⟨𝜂 (𝑡) 𝜂 (𝑠)⟩ = 𝐶 (|𝑡 − 𝑠|) = 𝑘𝐵𝑇 ⋅ 𝐾 (|𝑡 − 𝑠|) , (2)

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute
temperature of the environment.

2.2.TheFractional GaussianNoise. FractionalGaussian noise
(fGn) and fractional Brownian motion (fBm) were originally
introduced by Mandelbrot and Van Ness [46] for modeling
stochastic fractal processes. The fGn 𝜀𝐻(𝑡) = {𝜀𝐻(𝑡), 𝑡 > 0}
with a constant Hurst parameter 1/2 < 𝐻 < 1 can be
used to more accurately characterize the long-range depen-
dent process [the autocorrelation function 𝑟(𝑘) satisfies∑∞𝑘=−∞ 𝑟(𝑘) = ∞] than traditional short-range dependent
stochastic process [the autocorrelation function 𝑟(𝑘) satisfies∑∞𝑘=−∞ 𝑟(𝑘) < ∞]. The short-range dependent stochastic
process is, for example, Markov, Poisson or autoregressive
moving average (ARMA) process.

Now consider the one-side normalized fBm which is a
Gaussian process 𝐵𝐻(𝑡) = {𝐵𝐻(𝑡), 𝑡 > 0}, which shows the
properties below [68]:

(1) 𝐵𝐻 (0) = 0;
(2) ⟨𝐵𝐻 (𝑡)⟩ = 0, 𝑡 > 0;
(3) ⟨𝐵𝐻 (𝑡) 𝐵𝐻 (𝑠)⟩ = 12 (|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻) ,𝑡, 𝑠 > 0.

(3)

The fGn 𝜀𝐻(𝑡) = {𝜀𝐻(𝑡), 𝑡 > 0}, given by [47–49]

𝜀𝐻 (𝑡) = √2𝑘𝐵𝑇𝑑𝐵𝐻 (𝑡)𝑑𝑡 , 𝑡 > 0, (4)

is a stationary Gaussian process with ⟨𝜀𝐻(𝑡)⟩ = 0. Therefore,
according to (3) and (4) and the L’Hospital’s rule, the
autocorrelation function 𝐶(𝑡) of fGn can be derived as

𝐶 (𝑡) = ⟨𝜀𝐻 (0) 𝜀𝐻 (𝑡)⟩ = 2𝑘𝐵𝑇
⋅ { lim
𝑠→0+

⟨[𝐵𝐻 (0 + 𝑠) − 𝐵𝐻 (0)]𝑠 [𝐵𝐻 (𝑡 + 𝑠) − 𝐵𝐻 (𝑡)]𝑠 ⟩}
= 2𝑘𝐵𝑇 ⋅ { lim

𝑠→0+

|𝑡 + 𝑠|2𝐻 + |𝑡 − 𝑠|2𝐻 − 2 |𝑡|2𝐻2𝑠2 } = 2𝑘𝐵𝑇
⋅ { lim
𝑠→0+

2𝐻 |𝑡 + 𝑠|2𝐻−1 − 2𝐻 |𝑡 − 𝑠|2𝐻−14𝑠 } = 2𝑘𝐵𝑇
⋅ { lim
𝑠→0+

2𝐻 (2𝐻 − 1) |𝑡 + 𝑠|2𝐻−2 + 2𝐻 (2𝐻 − 1) |𝑡 − 𝑠|2𝐻−24 }
= 2𝑘𝐵𝑇
⋅ 2𝐻 (2𝐻 − 1) |𝑡 + 0|2𝐻−2 + 2𝐻 (2𝐻 − 1) |𝑡 − 0|2𝐻−24
= 2𝑘𝐵𝑇 ⋅ 𝐻 (2𝐻 − 1) 𝑡2𝐻−2, 𝑡 > 0.

(5)

2.3. The Mittag-Leffler Noise. It is well-known that the phys-
ical origin of anomalous diffusion is related to the long-time
tail correlations.Thus, in order tomodel anomalous diffusion
process, a lot of different power-law correlation functions are
employed in (1) and (2).

Viñales and Despósito have introduced a novel noise
whose correlation function is proportional to aMittag-Leffler
function, which is called Mittag-Leffler noise [55–57]. The
correlation function of Mittag-Leffler noise behaves as a
power-law for large times but is nonsingular at the origin
due to the inclusion of a characteristic time. The correlation
function of Mittag-Leffler noise is given by

𝐶 (𝑡) = 𝑘𝐵𝑇 1𝜏𝛼𝐸𝛼 [−(|𝑡|𝜏 )
𝛼] , (6)

where 𝜏 is called characteristicmemory time and thememory
exponent 𝛼 can be taken as 0 < 𝛼 < 2. The 𝐸𝛼(⋅) denotes the
Mittag-Leffler function that is defined through the series

𝐸𝛼 (𝑦) = ∞∑
𝑗=0

𝑦𝑗Γ (𝛼𝑗 + 1) , (7)

which behaves as a stretched exponential for short times and
as inverse power-law in the long-time regime when 𝛼 ̸= 1.
Meanwhile, when 𝛼 = 1, the correlation function equation
(4) reduces to the exponential form

𝐶 (𝑡) = 𝐶1𝜏 exp(−|𝑡|𝜏 ) , (8)

which describes a standard Ornstein-Uhlenbeck process.
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2.4. The System Model. In this paper, we consider a periodi-
cally driven linear system with multiplicative noise and peri-
odically modulated additive noise described by the following
generalized Langevin equation:

𝑥̈ (𝑡) + 𝛾∫𝑡
0
𝐾 (𝑡 − 𝑢) 𝑥̇ (𝑢) 𝑑𝑢 + [𝜔20 + 𝜉1 (𝑡)] 𝑥

= 𝐴1 sin (Ω𝑡) + 𝐴2 sin (Ω𝑡) 𝜉2 (𝑡) + 𝜂 (𝑡) ,
(9)

where 𝜔0 is the intrinsic frequency of the harmonic oscillator𝑈(𝑥) = 𝜔20𝑥2/2. The fluctuations of 𝜔20 in (9) are modeled as
a Markovian dichotomous noise 𝜉1(𝑡) [69], which consists of
jumps between two values −𝑎 and 𝑎, 𝑎 > 0, with stationary
probabilities 𝑃𝑠(−𝑎) = 𝑃𝑠(𝑎) = 1/2. The statistical properties
of 𝜉1(𝑡) are ⟨𝜉1 (𝑡)⟩ = 0,

⟨𝜉1 (𝑡) 𝜉1 (𝑠)⟩ = 𝑎2 exp (−V |𝑡 − 𝑠|) , (10)

where 𝑎2 is the noise intensity and V is the correlation rate,
with 𝜏0 = 1/V being the correlation time.𝜉2(𝑡) is a zero mean signal-modulated noise, with cou-
pling strength𝐷 with noise 𝜉1(𝑡) [70, 71]; that is,⟨𝜉1 (𝑡) 𝜉2 (𝑠)⟩ = 𝐷𝛿 (𝑡 − 𝑠) . (11)

In (9), 𝐴1 and Ω are the amplitude and frequency of the
external periodic force𝐴1 sin(Ω𝑡). Meanwhile,𝐴2 andΩ are
the amplitude and frequency of the periodically modulated
additive noise 𝐴2 sin(Ω𝑡)𝜉2(𝑡), respectively.

In this paper, we assume that the external noise 𝜉1(𝑡), 𝜉2(𝑡)
and the internal noise 𝜂(𝑡) satisfy ⟨𝜂(𝑡)𝜉1(𝑠)⟩ = ⟨𝜂(𝑡)𝜉2(𝑠)⟩ =0with different origins. In the next section, we will obtain the
exact expression of the first moment of the output signal.

3. First Moment

3.1. The Analytical Expression of the Output Amplitude of a
GLE. First of all, we should transfer the stochastic equation
(9) to the deterministic equation for the average value ⟨𝑥⟩.
For this purpose, we use the well-known Shapiro-Loginov
[72] procedure which yields, for exponentially correlated
noise (10),

⟨𝜉1 𝑑𝑛𝑥𝑑𝑡𝑛 ⟩ = ( 𝑑𝑑𝑡 + V)𝑛 ⟨𝜉1𝑥⟩ . (12)

Equation (9) depicted the motion of 𝑥(𝑡) is bounded by a
noisy harmonic force field, by averaging realization of the
trajectory of the stochastic equation (9), and, applying the
characteristics of the noises 𝜉1(𝑡), 𝜉2(𝑡), and 𝜂(𝑡), we obtain
the equation of the particle’s average displacement ⟨𝑥⟩:
𝑑2 ⟨𝑥⟩𝑑𝑡2 + 𝛾∫𝑡

0
𝐾 (𝑡 − 𝑢) 𝑑 ⟨𝑥 (𝑢)⟩𝑑𝑢 𝑑𝑢 + 𝜔20 ⟨𝑥⟩ + ⟨𝜉1𝑥⟩

= 𝐴1 sin (Ω𝑡) .
(13)

It can be found that (13) shows the synthetic affections of
the particle’s average displacement ⟨𝑥⟩ and the multiplicative

noise coupling term ⟨𝜉1𝑥⟩. In order to deal with the new
multiplicative noise coupling term ⟨𝜉1𝑥⟩, we multiply both
sides of (9) with 𝜉1(𝑡) and then average to construct a closed
equations of ⟨𝑥⟩ and ⟨𝜉1𝑥⟩:

⟨𝜉1 (𝑡) 𝑑2𝑥𝑑𝑡2 ⟩ + 𝛾∫𝑡
0
𝐾 (𝑡 − 𝑢)⟨𝜉1 (𝑡) 𝑑𝑥𝑑𝑢⟩𝑑𝑢

+ 𝜔20 ⟨𝜉1𝑥⟩ + 𝑎2 ⟨𝑥⟩ = 𝐴2𝐷 sin (Ω𝑡) .
(14)

Using the Shapiro-Loginov formula (12) and the charac-
teristics of the generalized integration, (14) turns to be

[𝑑2 ⟨𝜉1𝑥⟩𝑑𝑡2 + 2V𝑑 ⟨𝜉1𝑥⟩𝑑𝑡 + V2 ⟨𝜉1𝑥⟩] + 𝜔20 ⟨𝜉1𝑥⟩
+ 𝑎2 ⟨𝑥⟩ + 𝛾𝑒−V𝑡 ∫𝑡

0
𝐾 (𝑡 − 𝑢)

⋅ [𝑑 ⟨𝜉1 (𝑢) 𝑥 (𝑢)⟩𝑑𝑢 + V ⟨𝜉1 (𝑢) 𝑥 (𝑢)⟩] 𝑒V𝑢𝑑𝑢
= 𝐴2𝐷 sin (Ω𝑡) .

(15)

To summarize, for the linear generalized Langevin equa-
tion (9) to be investigated in this paper, it is a stochastic
differential equation driven by an internal noise 𝜂(𝑡). When
we want to obtain the particle’s average displacement ⟨𝑥⟩
from (9), we average (9) and obtain the traditional classical
differential equation (13) for ⟨𝑥⟩ and the new multiplicative
noise coupling term ⟨𝜉1𝑥⟩. In order to deal with the new
coupling term ⟨𝜉1𝑥⟩, we do some mathematical calculations
and have another ordinary differential equation (15). Finally,
we obtain two linear closed equations (13) and (15) for 𝑥1 =⟨𝑥⟩ and 𝑥2 = ⟨𝜉1𝑥⟩.

In order to solve the closed equations (13) and (15), we
use the Laplace transform technique 𝑋𝑖 = LT[𝑥𝑖(𝑡)] ≜∫+∞
0

𝑥𝑖(𝑡)𝑒−𝑠𝑡𝑑𝑡, 𝑖 = 1, 2 [73], under the long time limit 𝑡 →∞ condition, we obtain the following equations,

[𝑠2 + 𝛾𝐾̃ (𝑠) 𝑠 + 𝜔20]𝑋1 (𝑠) + 𝑋2 (𝑠)
= LT [𝐴1 sin (Ω𝑡)]

𝑎2𝑋1 (𝑠) + [(𝑠 + V)2 + 𝜔20 + 𝛾 (𝑠 + V) 𝐾̃ (𝑠 + V)]𝑋2 (𝑠)
= LT [𝐴2𝐷 sin (Ω𝑡)] .

(16)

𝐾̃(𝑠) = LT[𝐾(𝑡)]means performing Laplace transform.
The solutions of (16) can be represented as

𝑋(𝑎𝑠)1 (𝑠) = 𝐻̃11 (𝑠) ⋅ LT [𝐴1 sin (Ω𝑡)] + 𝐻̃21 (𝑠)
⋅ LT [𝐴2𝐷 sin (Ω𝑡)] ,

𝑋(𝑎𝑠)2 (𝑠) = 𝐻̃12 (𝑠) ⋅ LT [𝐴1 sin (Ω𝑡)] + 𝐻̃22 (𝑠)
⋅ LT [𝐴2𝐷 sin (Ω𝑡)] ,

(17)
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where 𝐻̃𝑘𝑖(𝑠) = LT[𝐻𝑘𝑖(𝑡)], 𝑘, 𝑖 = 1, 2, and 𝐻̃𝑘𝑖(𝑠) can be
obtained from (16). Particularly, we have

𝐻̃11 (𝑠) = 1𝐻̃ (𝑠) [𝜔20 + (𝑠 + V)2 + 𝛾 (𝑠 + V) 𝐾̃ (𝑠 + V)] ,
𝐻̃21 (𝑠) = −1𝐻̃ (𝑠) ,

(18)

with 𝐻̃(𝑠) = [𝜔20 + 𝑠2 +𝛾𝑠 ⋅ 𝐾̃(𝑠)][𝜔20 + (𝑠+ V)2 +𝛾(𝑠+ V) ⋅ 𝐾̃(𝑠 +
V)] − 𝑎2.

Applying the inverse Laplace transform technique, by the
theory of “signals and systems,” the product of the Laplace
domain functions corresponding to the convolution of the
time domain functions, we can obtain the solutions 𝑥(𝑎𝑠)1 (𝑡) =⟨𝑥(𝑡)⟩𝑎𝑠 ≜ lim𝑡→∞⟨𝑥(𝑡)⟩ and 𝑥(𝑎𝑠)2 (𝑡) = ⟨𝜉1(𝑡)𝑥(𝑡)⟩𝑎𝑠 ≜
lim𝑡→∞⟨𝜉1(𝑡)𝑥(𝑡)⟩ through (17):

𝑥(𝑎𝑠)1 (𝑡) = 𝐻11 (𝑡) ∗ [𝐴1 sin (Ω𝑡)] + 𝐻21 (𝑡)
∗ [𝐴2𝐷 sin (Ω𝑡)] ,

𝑥(𝑎𝑠)2 (𝑡) = 𝐻12 (𝑡) ∗ [𝐴1 sin (Ω𝑡)] + 𝐻22 (𝑡)
∗ [𝐴2𝐷 sin (Ω𝑡)] ,

(19)

where ∗ is the convolution operator.
Equations (13) and (15) with 𝑥1 = ⟨𝑥⟩ and 𝑥2 = ⟨𝜉1𝑥⟩ can

be regarded as a linear system, and the forces 𝐴1 sin(Ω𝑡) and𝐴2𝐷 sin(Ω𝑡) can be regarded as the input periodic signals.
By the theory of “signals and systems,” when we put periodic
signals 𝐴1 sin(Ω𝑡) and 𝐴2𝐷 sin(Ω𝑡) into a linear system
with system functions 𝐻11(𝑡) and 𝐻21(𝑡), the output signals
are still periodic signals; meanwhile, the frequency of the
output signals are the same as the frequency of the input
signals. We denote the output signals as 𝐴11 sin(Ω𝑡 + 𝜑11)
and 𝐴21 sin(Ω𝑡 + 𝜑21), respectively, which can be shown in
Figure 1.

Moreover, the amplitudes 𝐴11 and 𝐴21 of the output
signals are proportion to the amplitudes 𝐴1 and 𝐴2𝐷 of the
input signals, and the proportion constants are the amplitudes
of the frequency response functions 𝐻11(𝑒𝑗Ω) and 𝐻21(𝑒𝑗Ω);
that is, 𝐴11 = 𝐴1|𝐻11(𝑒𝑗Ω)| and 𝐴21 = 𝐴2𝐷|𝐻21(𝑒𝑗Ω)|.

Thus, from (19), we obtain the following expression of
particle’s average displacement 𝑥(𝑎𝑠)1 (𝑡):
𝑥(𝑎𝑠)1 (𝑡) = 𝐻11 (𝑡) ∗ [𝐴1 sin (Ω𝑡)] + 𝐻21 (𝑡) ∗ [𝐴2𝐷

⋅ sin (Ω𝑡)] = 𝐴11 sin (Ω𝑡 + 𝜑11) + 𝐴21 sin (Ω𝑡
+ 𝜑21) = √𝐴211 + 𝐴221 + 2𝐴11𝐴21 cos (𝜑11𝜑21)
⋅ sin[[[

Ω𝑡

+ arcsin (𝐴11 sin𝜑11 + 𝐴21 sin𝜑21)√𝐴211 + 𝐴221 + 2𝐴11𝐴21 cos (𝜑11𝜑21)
]]]
,

(20)

A1 sin (Ωt)

A2Dsin (Ωt)

H11(t)

H21(t)

A11 sin (Ωt + 𝜑11)

A21 sin (Ωt + 𝜑21)

Figure 1: The relationships of the input periodic signals and the
output signals by the theory of “signals and systems.”

where𝐴11, 𝐴21 and 𝜑11, 𝜑21 are the amplitude and phase shift
of the long-time behaviors of the output signals, respectively.

In addition, we can obtain the expressions of frequency
response functions 𝐻11(𝑒𝑗Ω) and 𝐻21(𝑒𝑗Ω) through (18).
Through the derivation, we can suppose that the expressions
of𝐻11(𝑒𝑗Ω) and𝐻21(𝑒𝑗Ω) can be simplified as follows:

𝐻11 (𝑒𝑗Ω) ≜ 𝐴1 + 𝐵1 ⋅ 𝑗𝐶1 + 𝐷1 ⋅ 𝑗 ,
𝐻21 (𝑒𝑗Ω) ≜ 𝐴2 + 𝐵2 ⋅ 𝑗𝐶2 + 𝐷2 ⋅ 𝑗 ,

(21)

where 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖, 𝑖 = 1, 2, are real numbers.
Then, the amplitudes of frequency response functions𝐻11(𝑒𝑗Ω) and𝐻21(𝑒𝑗Ω) are
󵄨󵄨󵄨󵄨󵄨𝐻11 (𝑒𝑗Ω)󵄨󵄨󵄨󵄨󵄨 = √𝐻11 (𝑒𝑗Ω)𝐻∗11 (𝑒𝑗Ω) = √𝐴21 + 𝐵21𝐶21 + 𝐷21 ,
󵄨󵄨󵄨󵄨󵄨𝐻21 (𝑒𝑗Ω)󵄨󵄨󵄨󵄨󵄨 = √𝐻21 (𝑒𝑗Ω)𝐻∗21 (𝑒𝑗Ω) = √𝐴22 + 𝐵22𝐶22 + 𝐷22 ,

(22)

where 𝐻∗𝑖1(𝑒𝑗Ω), 𝑖 = 1, 2, is the conjugation of 𝐻𝑖1(𝑒𝑗Ω), 𝑖 =1, 2.
Meanwhile, the amplitudes of the output signals are

𝐴11 = 𝐴1 󵄨󵄨󵄨󵄨󵄨𝐻11 (𝑒𝑗Ω)󵄨󵄨󵄨󵄨󵄨 = 𝐴1√𝐴21 + 𝐵21𝐶21 + 𝐷21 ,
𝐴22 = 𝐴2𝐷 󵄨󵄨󵄨󵄨󵄨𝐻21 (𝑒𝑗Ω)󵄨󵄨󵄨󵄨󵄨 = 𝐴2𝐷√𝐴22 + 𝐵22𝐶22 + 𝐷22 .

(23)

In this paper, with the expression of the particle’s average
displacement 𝑥(𝑎𝑠)1 (𝑡) in (20), we mainly discuss the resonant
behaviors of the output amplitude 𝐴 which is defined as

𝐴 ≜ √𝐴211 + 𝐴221 + 2𝐴11𝐴21 cos (𝜑11𝜑21). (24)

It should be emphasized that the following inequality
must hold for the sake of the stability of solutions [69]:

0 < 𝑎2 ≤ 𝑎2cr = 𝜔20 [𝜔20 + V2 + 𝛾V ⋅ 𝐾̃ (V)] . (25)

In this paper, we assume the stability condition (25) is
satisfied.
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3.2. The Output Amplitude of a GLE with Fractional Gaus-
sian Noise. When the internal noise 𝜂(𝑡) in the generalized
Langevin equation (9) is fractional Gaussian noise with
correlation function (5), from the fluctuation-dissipation
theorem (2), we derive the power-law memory kernel 𝐾(𝑡)
presented by Hurst exponent𝐻, 0 < 𝐻 < 1:

𝐾 (𝑡) = 𝐶 (𝑡)𝑘𝐵𝑇 = 2𝐻 (2𝐻 − 1) 𝑡2𝐻−2. (26)

Performing the Laplace transform, we obtain the related𝐾̃(𝑠) = LT[𝐾(𝑡)]:
𝐾̃ (𝑠) = Γ (2𝐻 + 1) ⋅ 𝑠1−2𝐻, 0 < 𝐻 < 1. (27)

From (18), (20), (24), and (27), we get the output amplitude𝐴
expressed by (24) with

𝐴11 = 𝐴1√𝑓12 + 𝑓22𝑓32 + 𝑓42 ,
𝜑11 = arctan(𝑓2𝑓3 − 𝑓1𝑓4𝑓1𝑓3 + 𝑓2𝑓4) ,
𝐴21 = 𝐴2𝐷√ 1𝑓32 + 𝑓42 ,

(28)

𝜑21 = arctan(−𝑓4𝑓3) , (29)

where

𝑓1 = 𝜔20 + 𝑏2 cos (2𝜃) + 𝛾𝑏2−2𝐻⋅ Γ (2𝐻 + 1) cos [(2 − 2𝐻) 𝜃] ,
𝑓2 = 𝑏2 sin (2𝜃) + 𝛾𝑏2−2𝐻⋅ Γ (2𝐻 + 1) sin [(2 − 2𝐻) 𝜃] ,
𝑓3 = 𝑀0 +𝑀1 cos (2𝜃) + 𝑀2 cos [(2 − 2𝐻) 𝜃]

+𝑀3 cos [(2 − 2𝐻) 𝜋2 + 2𝜃]
+𝑀4 cos [(𝜋2 + 𝜃) (2 − 2𝐻)]
+𝑀5 cos [(2 − 2𝐻) 𝜋2 ] ,

𝑓4 = 𝑀1 sin (2𝜃) + 𝑀2 sin [(2 − 2𝐻) 𝜃]
+𝑀3 sin [(2 − 2𝐻) 𝜋2 + 2𝜃]
+𝑀4 sin [(𝜋2 + 𝜃) (2 − 2𝐻)]
+𝑀5 sin [(2 − 2𝐻) 𝜋2 ] ,

𝑏 = √V2 + Ω2,
𝜃 = arctan(Ω

V
) ,

𝑀0 = 𝜔40 − 𝑎2 − Ω2𝜔20 ,
𝑀1 = (𝜔20 − Ω2) 𝑏2,
𝑀2 = 𝛾 (𝜔20 − Ω2) 𝑏2−2𝐻Γ (2𝐻 + 1) ,
𝑀3 = 𝛾Ω2−2𝐻𝑏2Γ (2𝐻 + 1) ,
𝑀4 = 𝛾2Ω2−2𝐻𝑏2−2𝐻Γ2 (2𝐻 + 1) ,
𝑀5 = 𝛾𝜔20Ω2−2𝐻Γ (2𝐻 + 1) .

(30)

3.3.The Output Amplitude of a GLE withMittag-Leffler Noise.
When the internal noise 𝜂(𝑡) in the generalized Langevin
equation (9) is Mittag-Leffler noise with correlation function
(6), from the fluctuation-dissipation theorem (2), we derive
theMittag-Lefflermemory kernel𝐾(𝑡) presented bymemory
time 𝜏 and memory exponent 𝛼:

𝐾 (𝑡) = 𝐶 (𝑡)𝑘𝐵𝑇 = 1𝜏𝛼𝐸𝛼 [−(|𝑡|𝜏 )
𝛼] . (31)

Performing the Laplace transform, we obtain the related𝐾̃(𝑠) = LT[𝐾(𝑡)]:
𝐾̃ (𝑠) = 𝑠𝛼−11 + (𝜏𝑠)𝛼 , 0 < 𝛼 < 2, 𝜏 > 0. (32)

From (18), (20), (24), and (32), we obtain the output ampli-
tude 𝐴 expressed by (24), with

𝐴11 = 𝐴1√𝑔12 + 𝑔22𝑔32 + 𝑔42 ,
𝜑11 = arctan(𝑔2𝑔3 − 𝑔1𝑔4𝑔1𝑔3 + 𝑔2𝑔4) ,
𝐴21 = 𝐴2𝐷√ ℎ12 + ℎ22𝑔32 + 𝑔42 ,
𝜑21 = arctan(ℎ2𝑔3 − ℎ1𝑔4ℎ1𝑔3 + ℎ2𝑔4) ,

(33)

where

𝑔1 = 𝜔20 +𝑀7 cos (𝛼𝜃) +𝑀2 cos (2𝜃)+ 𝑀2𝑀5 cos [(2 + 𝛼) 𝜃]
+ 𝑀4𝜔20 cos(𝜋2 𝛼)
+𝑀4𝑀7 cos [(𝜋2 + 𝜃) 𝛼]
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+𝑀2𝑀4 cos(2𝜃 + 𝜋2 𝛼)
+𝑀2𝑀4𝑀5 cos [(2 + 𝛼) 𝜃 + 𝜋2 𝛼] ,

𝑔2 = 𝑀7 sin (𝛼𝜃) + 𝑀2 sin (2𝜃)
+ 𝑀2𝑀5 sin [(2 + 𝛼) 𝜃] + 𝑀4𝜔20 sin(𝜋2 𝛼)
+𝑀4𝑀7 sin [(𝜋2 + 𝜃) 𝛼]
+𝑀2𝑀4 sin(2𝜃 + 𝜋2 𝛼)
+𝑀2𝑀4𝑀5 sin [(2 + 𝛼) 𝜃 + 𝜋2 𝛼] ,

ℎ1 = −1 −𝑀4 cos(𝜋2 𝛼) −𝑀5 cos (𝛼𝜃)
−𝑀4𝑀5 cos [(𝜋2 + 𝜃) 𝛼] ,

ℎ2 = −𝑀4 sin(𝜋2 𝛼) −𝑀5 sin (𝛼𝜃)
−𝑀4𝑀5 sin [(𝜋2 + 𝜃) 𝛼] ,

𝑔3 = 𝑀8 +𝑀0𝑀2 cos (2𝜃) + 𝑀9 cos (𝛼𝜃)+𝑀0𝑀2𝑀5 cos [(2 + 𝛼) 𝜃]
+ 𝑀10 cos(𝜋2 𝛼) +𝑀11 cos(2𝜃 + 𝜋2 𝛼)
+𝑀12 cos [(𝜋2 + 𝜃) 𝛼]
+𝑀13 cos [(2 + 𝛼) 𝜃 + 𝜋2 𝛼] ,

𝑔4 = 𝑀0𝑀2 sin (2𝜃) + 𝑀9 sin (𝛼𝜃)+𝑀0𝑀2𝑀5 sin [(2 + 𝛼) 𝜃]
+ 𝑀10 sin(𝜋2 𝛼) +𝑀11 sin(2𝜃 + 𝜋2 𝛼)
+𝑀12 sin [(𝜋2 + 𝜃) 𝛼]
+𝑀13 sin [(2 + 𝛼) 𝜃 + 𝜋2 𝛼] ,

𝑏 = √V2 + Ω2,
𝜃 = arctan(Ω

V
) ,

𝑀0 = 𝜔20 − Ω2,
𝑀1 = 𝛾Ω𝛼,
𝑀2 = 𝑏2,

𝑀3 = 𝛾𝑏𝛼,
𝑀4 = (𝜏Ω)𝛼 ,
𝑀5 = (𝜏𝑏)𝛼 ,𝑀6 = 𝑀0𝑀4 +𝑀1,
𝑀7 = 𝑀5𝜔20 +𝑀3,
𝑀8 = 𝜔20𝑀0 − 𝑎2,
𝑀9 = 𝑀0𝑀7 −𝑀5𝑎2,
𝑀10 = 𝑀4𝑀8 +𝑀1𝜔20 ,𝑀11 = 𝑀2𝑀6,
𝑀12 = 𝑀5 (𝑀4𝑀8 + 𝜔20𝑀1) +𝑀3𝑀6,
𝑀13 = 𝑀2𝑀5𝑀6.

(34)

4. Stochastic Resonance Behaviors of
a GLE with Multiplicative and Periodically
Modulated Noises

In this section, we will perform the numerical simulations
on the above analytical expression in (24), with the internal
noise 𝜂(𝑡) modeled as fractional Gaussian noise and Mittag-
Leffler noise in Sections 4.1 and 4.2, respectively. It can be
seen, from the analytical expression in (24), the behaviors
of 𝐴 are fully determined by the combination of the system
parameters 𝛾, 𝜔20 , 𝑎2, V, 𝐴1, 𝐴2, 𝐷, and Ω and the parameters
of 𝜂(𝑡). Based on it, some characteristic features of stochastic
resonance behaviors are revealed.

4.1. The Stochastic Resonance Behaviors of GLE with a Frac-
tional Gaussian Noise. From (25) and (27), we obtain the
stability condition ofGLEwith fractional Gaussian noise 𝜂(𝑡):

0 < 𝑎2 ≤ 𝑎2cr,fGn
= 𝜔20 [𝜔20 + V2 + 𝛾 ⋅ Γ (2𝐻 + 1) ⋅ V2−2𝐻] , (35)

with 0 < 𝐻 < 1.
It can be seen from the stability condition (35) that the

critical noise intensity 𝑎2cr,fGn is determined by 𝜔20 , V, 𝛾, and𝐻. Besides, from (24), the behaviors of output amplitude 𝐴
are fully determined by the combination of the parameters𝛾, 𝜔20 , 𝑎2, V, 𝐴1, 𝐴2, 𝐷,Ω, and𝐻. Thus, in Figure 2, we depict
the phase diagram in the 𝐷 − Ω plane for the emergence of
the stochastic resonance behaviors of 𝐴 versus 𝑎2 at 𝜔20 = 1,𝐴1 = 1,𝐻 = 0.55, 𝐴2 = 1, 𝛾 = 0.3, and V = 0.01.

In the unshaded region [see the domain (0) of level
= 0 which corresponds to Figure 2], the output amplitude𝐴(𝑎2) varies monotonically as the noise intensity 𝑎2 varies,
which means the SR phenomenon is impossible. Meanwhile,
in the shaded regions, it corresponds to the traditional SR
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Figure 2: The phase diagram for the stochastic resonance behaviors of the output amplitude 𝐴(𝑎2) at 𝜔20 = 1, 𝐴1 = 1, 𝐻 = 0.55, 𝐴2 = 1,𝛾 = 0.3, and V = 0.01, and the values of Level in Figure 2, reflect the number of SR peaks for different combination of𝐷 andΩ.
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Figure 3: The output amplitude 𝐴 versus the noise intensity 𝑎2 with various (𝐷,Ω) be chose through Figure 2, with parameters 𝜔20 = 1,𝐴1 = 1, 𝐴2 = 1, V = 0.01,𝐻 = 0.55, and 𝛾 = 0.3 and (a)𝐷 = 0.3 and Ω = 0.95; (b)𝐷 = 0.9 and Ω = 0.2; (c)𝐷 = 1.3 and Ω = 0.6.
phenomenon taking place, and two phases can be discerned
in the resonant domain:

(1) The light shaded region (i) corresponds to the single-
peak SR phenomenon [see the domain of level = 1
which corresponds to Figure 2].

(2) The dark shaded region (ii) corresponds to the
double-peaks SR phenomenon [see the domain of
level = 2 which corresponds to Figure 2].

From Figure 2, we can find that when the driving
frequency Ω is large enough [Ω > 0.95] or small enough
[Ω < 0.01], it is impossible to induce the SR phenomenon.

In Figure 3, we plot the curves given by (24) and (28)
in which the dependence of the output amplitude 𝐴 on the
noise intensity 𝑎2 for different values of the systemparameters(𝐷, Ω) can be chosen from Figure 2, to verify the correctness
of the results shown in Figure 2. As shown in Figure 3(a),
when 𝐷 = 0.3 and Ω = 0.95, which belongs to the unshaded
domain in Figure 2, the output amplitude 𝐴(𝑎2) monotonic
behavior decreased with the increasing of 𝑎2, which means
the SR phenomenon does not take place. In Figure 3(b), when𝐷 = 0.9 and Ω = 0.2, which corresponds to the light
grey domain in Figure 2, the curve shows that the output
amplitude 𝐴(𝑎2) attains a maximum value at some values of𝑎2; that is, the single-peak SR phenomenon takes place by
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Figure 4:The phase diagram for the stochastic resonance behaviors of the output amplitude𝐴(𝑎2) at𝜔20 = 1,𝐴1 = 1, 𝛼 = 0.6, 𝜏 = 0.2,𝐴2 = 1,𝛾 = 0.3, and V = 0.05, and the values of level in Figure 3 reflect the number of SR peaks for different combination of 𝐷 andΩ.

increasing 𝑎2. Furthermore, one can see from Figure 3(c) that
the double-peaks SR phenomenon happens, for the reason
that the parameter combination of 𝐷 = 1.3 and Ω = 0.6
belongs to the dark grey domain in Figure 2. It should be
emphasized that the double-peaks SR phenomenon happens
because of the presence of two types of noise, external and
internal noise sources. The double-peaks SR phenomenon
can take place in biological systems, such as neuronal systems
[74], in which the internal noise is due to signals coming from
all other neurons, and external noise is the environmental
noise due to its interaction with the neuronal system.

The main contribution of this section is as follows: with
the help of phase diagram for the SR phenomenon, we can
effectively control the SR phenomenon of this generalized
harmonic system in a certain range and further broaden the
application scope of the SR phenomenon in physics, biology,
and engineering, such as the detection of weak stimuli by
spiking neurons in the presence of certain level of noisy
background neural activity [75].

4.2.The Stochastic Resonance Behaviors of GLE with aMittag-
Leffler Noise. From (25) and (32), we obtain the stability
condition of GLE with a Mittag-Leffler noise 𝜂(𝑡):

0 < 𝑎2 ≤ 𝑎2cr,MLn = 𝜔20 [𝜔20 + V2 + 𝛾V𝛼1 + (𝜏V)𝛼 ] , (36)

with 0 < 𝛼 < 2, 𝜏 > 0.
It is found from the stability condition (36) that the

critical noise intensity 𝑎2cr,MLn is determined by 𝜔20 , V, 𝛾, 𝜏, and𝛼. In Figure 4, the phase diagram in the 𝐷 − Ω plane for the
emergence of SR phenomenon of 𝐴(𝑎2) at 𝜔20 = 1, 𝐴1 = 1,𝛼 = 0.6, 𝜏 = 0.2, 𝐴2 = 1, 𝛾 = 0.3, and V = 0.05 is shown.
The same as Figure 2, when parameters (𝐷,Ω) belong to
the unshaded regions (0), the SR phenomenon is impossible;
when (𝐷,Ω) belong to the light grey regions (i), the single-
peak SR phenomenon happens; when (𝐷,Ω) belong to the

dark grey regions (ii), the double-peaks SR phenomenon
takes place. Moreover, the sufficiently large driving frequencyΩ [Ω > 0.98] or small enough Ω [Ω < 0.01] cannot induce
the system to produce SR phenomenon.

In Figure 5, we also show the curves given by (24) and (33)
in which the dependence of the output amplitude 𝐴 on the
noise intensity 𝑎2 for different values of the systemparameters(𝐷,Ω) can be chosen from Figure 4, to verify the correctness
of the results shown in Figure 4.

As shown in Figure 5(a), when 𝐷 = 0.1 and Ω = 0.05,
which belongs to the unshaded domain in Figure 4, the
output amplitude 𝐴(𝑎2) monotonic increase occurs with the
increasing of 𝑎2, which means the SR phenomenon does not
take place. In Figure 5(b), when 𝐷 = 1.1 and Ω = 0.25,
which corresponds to the light grey domain in Figure 4,
the curve shows that the output amplitude 𝐴(𝑎2) attains a
maximum value at some values of 𝑎2; that is, the single-peak
SR phenomenon takes place by increasing 𝑎2. Furthermore,
one can see from Figure 5(c) that the double-peaks SR
phenomenon happens, for the reason that the parameter
combination of 𝐷 = 0.4 and Ω = 0.7 belongs to the dark
grey domain in Figure 4.

5. Conclusions

To summarize, in this paper we explore the SR phenomenon
in a generalized Langevin equation with multiplicative,
periodically modulated noises, and external periodic force.
Moreover, the system internal noise is modeled as a frac-
tional Gaussian noise and aMittag-Leffler noise, respectively.
Without loss of generality, the fluctuations of system intrinsic
frequency aremodeled as amultiplicative dichotomous noise.
By the use of the stochastic averagingmethod and the Laplace
transform technique, we obtain the exact expression of the
output amplitude 𝐴 given by (24).
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Figure 5:The output amplitude𝐴 versus the noise intensity 𝑎2 with various (𝐷,Ω) chosen through Figure 4, with parameters𝜔20 = 1,𝐴1 = 1,𝛼 = 0.6, 𝜏 = 0.2, 𝐴2 = 1, 𝛾 = 0.3, and V = 0.05 and (a)𝐷 = 0.1 andΩ = 0.05; (b)𝐷 = 1.1 andΩ = 0.25; (c)𝐷 = 0.4 and Ω = 0.7.

We focus on the various nonmonotonic behaviors
of the output amplitude 𝐴 with the system parameters𝛾, 𝜔20 , 𝑎2, V, 𝐴1, 𝐴2, 𝐷, and Ω and the parameters of the
internal driven noise.With the exact expression of the output
amplitude 𝐴, we find the conventional SR takes place with
the increases of the noise intensity 𝑎2 for fractional Gaussian
noise and Mittag-Leffler noise, respectively. Moreover, we
give the phase diagram in𝐷−Ω plane for the emergence of SR
phenomenon of 𝐴(𝑎2) and find the single-peak and double-
peaks SR phenomena.

We believe all the results in this paper not only supply
the theoretical investigations of the generalized harmonic
oscillator subject to multiplicative, periodically modulated
noises and external periodic force but also can suggest some
experimental anomalous diffusion results in physical and
biological applications in the future [76].
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Lévy flight search patterns of wandering albatrosses, bumble-
bees and deer,” Nature, vol. 449, no. 7165, pp. 1044–1048, 2007.

[40] N. Yang, G. Zhang, and B. Li, “Violation of Fourier’s law and
anomalous heat diffusion in silicon nanowires,” Nano Today,
vol. 5, no. 2, pp. 85–90, 2010.

[41] S. Ozturk, Y. A. Hassan, and V. M. Ugaz, “Interfacial complexa-
tion explains anomalous diffusion in nanofluids,” Nano Letters,
vol. 10, no. 2, pp. 665–671, 2010.

[42] V. R. Voller and C. Paola, “Can anomalous diffusion describe
depositional fluvial profiles?” Journal of Geophysical Research:
Earth Surface, vol. 115, no. F2, 2010.

[43] A. A. Tateishi, E. K. Lenzi, L. R. da Silva, H. V. Ribeiro, S. Picoli,
and R. S. Mendes, “Different diffusive regimes, generalized
Langevin and diffusion equations,” Physical Review E, vol. 85,
no. 1, Article ID 011147, 6 pages, 2012.

[44] J. Klafter and I. M. Sokolov, “Anomalous diffusion spreads its
wings,” Physics World, vol. 18, no. 8, pp. 29–32, 2005.

[45] H. Ness, L. Stella, C. D. Lorenz, and L. Kantorovich, “Applica-
tions of the generalized Langevin equation: towards a realistic
description of the baths,” Physical Review B, vol. 91, no. 1, Article
ID 014301, pp. 1–15, 2015.

[46] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian
motions, fractional noises and applications,” SIAM Review, vol.
10, pp. 422–437, 1968.

[47] S. C. Kou and X. S. Xie, “Generalized Langevin equation with
fractional Gaussian noise: subdiffusion within a single protein



12 Advances in Mathematical Physics

molecule,” Physical Review Letters, vol. 93, no. 18, Article ID
180603, 4 pages, 2004.

[48] W. Min, B. P. English, G. Luo, B. J. Cherayil, S. C. Kou, and
X. S. Xie, “Fluctuating enzymes: lessons from single-molecule
studies,” Accounts of Chemical Research, vol. 38, no. 12, pp. 923–
931, 2005.

[49] W. Min, G. Luo, B. J. Cherayil, S. C. Kou, and X. S. Xie,
“Observation of a power-law memory Kernel for fluctuations
within a single protein molecule,” Physical Review Letters, vol.
94, no. 19, Article ID 198302, 2005.

[50] W.Min andX. S. Xie, “Kramersmodel with a power-law friction
kernel: dispersed kinetics and dynamic disorder of biochemical
reactions,” Physical Review E, vol. 73, no. 1, Article ID 010902,
pp. 1–4, 2006.

[51] H. Yang, G. Luo, P. Karnchanaphanurach et al., “Protein
conformational dynamics probed by single-molecule electron
transfer,” Science, vol. 302, no. 5643, pp. 262–266, 2003.

[52] S. Zhong, K. Wei, S. Gao, and H. Ma, “Stochastic resonance
in a linear fractional Langevin equation,” Journal of Statistical
Physics, vol. 150, no. 5, pp. 867–880, 2013.

[53] S. Zhong, K. Wei, S. Gao, and H. Ma, “Trichotomous noise
induced resonance behavior for a fractional oscillator with
random mass,” Journal of Statistical Physics, vol. 159, no. 1, pp.
195–209, 2015.

[54] S. Zhong, H. Ma, H. Peng, and L. Zhang, “Stochastic resonance
in a harmonic oscillator with fractional-order external and
intrinsic dampings,” Nonlinear Dynamics, vol. 82, no. 1-2, pp.
535–545, 2015.
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The exact rational solutions, quasi-periodic wave solutions, and𝑁-soliton solutions of 3 + 1 dimensional Jimbo-Miwa equation are
acquired, respectively, by using theHirotamethod, whereafter the rational solutions are also called algebraic solitarywaves solutions
and used to describe the squall lines phenomenon and explained possible formation mechanism of the rainstorm formation which
occur in the atmosphere, so the study on the rational solutions of soliton equations has potential application value in the atmosphere
field; the soliton fission and fusion are described based on the resonant solution which is a special form of the𝑁-soliton solutions.
At last, the interactions of the solitons are shown with the aid of𝑁-soliton solutions.

1. Introduction

Some natural phenomena in the physics and in the biol-
ogy can be depicted by multitudinous nonlinear partial
differential equations. Therefore, the solutions of the partial
differential equations become the focus points with which
we are concerned [1]. There are various ways to get the
solutions, such as the Darboux transformation, Bäcklund
transformation [2, 3], Inverse scattering transformation,
Homogeneous balance method, and Traveling wave solution
[4–6]. However, the methods mentioned above cannot be
expressing the periodicity of the partial differential equations.

Unlike the above method, the Hirota method [7, 8] plays
a crucial role during obtaining the𝑁-soliton solutions by the
perturbation and the quasi-periodic wave solutions based on
the Riemann theta functions [9]. Hence, it is important to
rewrite the partial differential equation into the bilinear forms
with the help of the variate transformation. In 2008, Lambert
and Springael [10] proposed an explicit way to construct the
bilinear forms for the constant coefficient equation.

It is well known that the Hirota method has been widely
applied to the 1 + 1 dimensional equations and the 2 +
1 dimensional equations [11–23], but the method is rarely
used to the 3 + 1 dimensional equation. As for the 3 +
1 dimensional equation, the quasi-periodic wave solutions
happening during the arbitrary two spatial variables 𝑥, 𝑦, 𝑧
at one time 𝑡 or between one spatial variable and the time
variable under the other two spatial variables are constants.
On the other hand, the rational solutions have attracted
more and more attention recently [24–27] because of their
graceful structure and potential application value in applied
disciplines. The author also applied this kind of rational
solutions (also called algebraic solitary wave solutions) to
discuss the algebraic Rossby solitary waves and explain the
blocking phenomenon which happen in the real atmosphere
and ocean [28, 29].

In this paper, we first introduce the well-known 3 +
1 dimensional Jimbo-Miwa equation which has significant
efforts in science; it was investigated by Jimbo and Miwa in
[30] and its one-soliton solutions were studied by Wazwaz
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[31, 32] according to the Tanh-Coth method, and its trav-
eling wave solutions were discussed by Ma and Lee [33]
by using rational function transformations. The method
provides more systematical and convenient handling of the
solution process of nonlinear equations. Lately, we present
a brief introduction about the approach and the properties
of the Bell-polynomial. Then, the bilinear form of Jimbo-
Miwa equation is gained by applying the Bell-polynomial;
its rational solutions, quasi-periodic wave solutions, and 𝑁-
soliton solutions are obtained based on the Hirota method
and Riemann theta function. Finally, the resonant solution
and the interactions of the 𝑁-soliton solutions are given
under the Hirota method.

2. The Bell-Polynomial

In order to get the 𝑁-soliton solutions of the nonlinear
evolutions equations (NLEES), we must get the bilinear form
of the NLEES; Lambert et al. connected the Bell-polynomial
with the Hirota 𝐷 operator and give rise to an explicit way
to construct the bilinear form to the NLEES. Firstly, we are
briefly devoted to the notations of the Bell-polynomial.

The definition of the multidimensional Bell-polynomial
is as follows:

𝑌𝑛1𝑥1𝑛2𝑥2 ⋅⋅⋅𝑛𝑟𝑥𝑟 (𝑔)
≡ 𝑌𝑛1 ,𝑛2,...,𝑛𝑟 (𝑔𝑙1𝑥1 ,...,𝑙𝑟𝑥𝑟 (1 ≤ 𝑙𝑖 ≤ 𝑛𝑖, 0 ≤ 𝑖 ≤ 𝑟))
= 𝑒−𝑔𝜕𝑛1𝑥1𝜕𝑛2𝑥2 ⋅ ⋅ ⋅ 𝜕𝑛𝑟𝑥𝑟𝑒𝑔,

(1)

where 𝑔 is a 𝐶∞ multivariables’ function.
As for a special function 𝑔 with the variables 𝑥, 𝑧, we give

rise to the following several initial value under the definition
of the multivariables Bell-polynomial:

𝑌𝑥,𝑦 (𝑔) = 𝑔𝑥,𝑧 + 𝑔𝑥𝑔𝑧,
𝑌𝑥,2𝑧 (𝑔) = 𝑔𝑥,2𝑧 + 𝑔𝑥𝑔2𝑧 + 2𝑔𝑥,𝑧𝑔𝑧 + 𝑔𝑥𝑔2𝑧 ⋅ ⋅ ⋅ .

(2)

Then we provide the redefinition of the binary Bell-pol-
ynomial as

𝜏𝑛1𝑥1,...,𝑛𝑟𝑥𝑟 (𝜐, 𝜔)
≡ 𝑌𝑛1,...,𝑛𝑟 (𝑔)󵄨󵄨󵄨󵄨󵄨𝑔𝑙1𝑥1,...,𝑙𝑟𝑥𝑟={ 𝜐𝑙1𝑥1,...,𝑙𝑟𝑥𝑟 ∑𝑟𝑖=1 𝑙𝑖 is odd,𝜔𝑙1𝑥1,...,𝑙𝑟𝑥𝑟 ∑𝑟𝑖=1 𝑙𝑖 is even,

(3)

where 𝜐 and 𝜔 both are the 𝐶∞ functions with the variables𝑥1, 𝑥2, . . . , 𝑥𝑟. We set out some initial expressions depending
on (3) as

𝜏𝑥 (𝜐) = 𝜐𝑥,
𝜏2𝑥 (𝜐, 𝜔) = 𝜐2𝑥 + 𝜔𝑥𝑥,

𝜏𝑥,𝑦 = 𝜔𝑥,𝑦 + 𝜐𝑥𝜐𝑦,
𝜏3𝑥 (𝜐, 𝜔) = 𝜐3𝑥 + 3𝜐𝑥𝜔2𝑥 + 𝜐3𝑥,
𝜏2𝑥,𝑦 (𝜐, 𝜔) = 𝜐2𝑥,𝑦 + 2𝜐𝑥𝜔𝑥,𝑦 + 𝜐2𝑥𝜐𝑦 + 𝜐𝑦𝜔2𝑥 ⋅ ⋅ ⋅ .

(4)

The link between the binary Bell-polynomial (3) and the
Hirota 𝐷-operator can be presented through a transforma-
tional identity.

𝜏𝑛1𝑥1 ,...,𝑛𝑟𝑥𝑟 (𝜐 = ln 𝐹𝐺, 𝜔 = ln𝐹𝐺)
= (𝐹 ⋅ 𝐺)−1𝐷𝑛1𝑥1 ⋅ ⋅ ⋅ 𝐷𝑛𝑟𝑥𝑟𝐹 ⋅ 𝐺,

(5)

where the Hirota operator is defined by

𝐷𝑛1𝑥1 ⋅ ⋅ ⋅ 𝐷𝑛𝑟𝑥𝑟𝐹 ⋅ 𝐺
= (𝜕𝑥1 − 𝜕𝑥󸀠1)𝑛1 ⋅ ⋅ ⋅ (𝜕𝑥𝑟 − 𝑥󸀠𝑟) 𝐹 (𝑥1, . . . , 𝑥𝑟)
× 𝐺 (𝑥󸀠1, . . . , 𝑥󸀠𝑟)󵄨󵄨󵄨󵄨󵄨𝑥󸀠1=𝑥1 ,...,𝑥󸀠𝑟=𝑥𝑟 .

(6)

In particular, when 𝐹 = 𝐺, (5) can be read as

𝐹−2𝐷𝑛1𝑥1 ⋅ ⋅ ⋅ 𝐷𝑛𝑟𝑥𝑟𝐹2 = 𝜏𝑛1𝑥1,...,𝑛𝑟𝑥𝑟 (𝜐 = 0, 𝜔 = 2 ln𝐹)

=
{{{{{{{{{

0, 𝑟∑
𝑖=1
𝑛𝑖 is odd,

𝑃𝑛1𝑥1,...,𝑛𝑟𝑥𝑟 (𝑞) ,
𝑟∑
𝑖=1
𝑛𝑖 is even.

(7)

In (7), the Bell-polynomial is equal to the𝑃-polynomial when∑𝑟𝑖=1 𝑛𝑖 is even, and then we give the first lower order 𝑃-
polynomial:

𝑃2𝑥 (𝑞) = 𝑞2𝑥,
𝑃4𝑥 (𝑞) = 𝑞4𝑥 + 3𝑞22𝑥,

𝑃2𝑥,2𝑦 (𝑞) = 𝑞2𝑥,2𝑦 + 𝑞2𝑥𝑞2𝑦 + 2𝑞2𝑥,𝑦,
𝑃𝑥,𝑦 (𝑞) = 𝑞𝑥,𝑦,
𝑃3𝑥,𝑦 (𝑞) = 𝑞3𝑥,𝑦 + 3𝑞𝑥,𝑦𝑞2𝑥 ⋅ ⋅ ⋅ .

(8)

As for the NLEES, we can rewrite them as bilinear from with
the aid of the𝑃-polynomial and show the𝑁-soliton solutions
and the quasi-periodic wave solutions.

3. The Bilinear Form of the 3 + 1 Dimensional
Jimbo-Miwa Equation

The 3 + 1 dimensional Jimbo-Miwa equation is

𝑢𝑥𝑥𝑥𝑦 + 3 (𝑢𝑢𝑦)𝑥 + 3𝑢𝑥𝑥𝜕−1𝑥 𝑢𝑦 + 3𝑢𝑥𝑢𝑦 + 2𝑢𝑦𝑡 − 3𝑢𝑥𝑧
= 0. (9)

Letting 𝑢 = 𝑞𝑥𝑥 and substituting it into (9) and integrating
twice with respect to 𝑥 yield

𝑞𝑥𝑥𝑥𝑦 + 3𝑞𝑥𝑥𝑞𝑥𝑦 + 2𝑞𝑦𝑡 − 3𝑞𝑥𝑧 − 𝜆 = 0, (10)
where 𝜆 is an arbitrary integral constant. So, in terms of the𝑃-polynomial, (10) can be written as

𝑃3𝑥,𝑦 (𝑞) + 2𝑃𝑦,𝑡 (𝑞) − 3𝑃𝑥,𝑧 (𝑞) − 𝜆 = 0. (11)
Giving a change of dependent variables

𝑞 = 2 ln𝐹 ⇐⇒ 𝑢 = 𝑞𝑥𝑥 = 2 (ln𝐹)𝑥𝑥 , (12)
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then we can acquire the bilinear form of (9) as

𝐽 (𝐷𝑥, 𝐷𝑦, 𝐷𝑧, 𝐷𝑡) ≡ (𝐷3𝑥𝐷𝑦 + 2𝐷𝑦𝐷𝑡 − 3𝐷𝑥𝐷𝑧) 𝐹
⋅ 𝐹 − 𝜆𝐹2 = 0, (13)

where the definition of the generalized bilinear𝐷 operator is

𝐷𝑚𝑝,𝑥𝐷𝑛𝑝,𝑡𝐹 ⋅ 𝐹 = ( 𝜕𝜕𝑥 + 𝛼𝑝
𝜕
𝜕𝑥󸀠)
𝑚 ( 𝜕𝜕𝑡 + 𝛼𝑝

𝜕
𝜕𝑡󸀠)
𝑛

⋅ 𝐹 (𝑥, 𝑡) 𝐹 (𝑥󸀠, 𝑡󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑡󸀠=𝑡 =
𝑚∑
𝑖=0
𝑛∑
𝑗=0
(𝑚𝑖 )(

𝑛
𝑗)

⋅ 𝛼𝑖𝑝𝛼𝑗𝑝 𝜕
𝑚−𝑖
𝜕𝑥𝑚−𝑖

𝜕𝑖
𝜕𝑥󸀠𝑖

𝜕𝑛−𝑗
𝜕𝑡𝑛−𝑗

𝜕𝑗
𝜕𝑡󸀠𝑗𝐹 (𝑥, 𝑡)

⋅ 𝐹 (𝑥󸀠, 𝑡󸀠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑡󸀠=𝑡
= 𝑚∑
𝑖=0
𝑛∑
𝑗=0
(𝑚𝑖 )(

𝑛
𝑗)𝛼
𝑖𝑝𝛼𝑗𝑝 𝜕
𝑚+𝑛−𝑖−𝑗𝐹 (𝑥, 𝑡)
𝜕𝑥𝑚−𝑖𝜕𝑡𝑛−𝑗

𝜕𝑖+𝑗𝐹 (𝑥, 𝑡)
𝜕𝑥𝑖𝜕𝑡𝑗 ,
𝑚, 𝑛 ≥ 0,

(14)

where 𝛼𝑠𝑝 is calculated as follows:

𝛼𝑠𝑝 = (−1)𝑟𝑝(𝑠) ,
𝑠 = 𝑟𝑝 (𝑠) mod 𝑝,

𝐷2,𝑡𝐷2,𝑦𝐹 ⋅ 𝐹 = 2𝐹𝑦,𝑡𝐹 − 2𝐹𝑡𝐹𝑦,
𝐷2,𝑥𝐷2,𝑧𝐹 ⋅ 𝐹 = 2𝐹𝑥,𝑧𝐹 − 2𝐹𝑥𝐹𝑧,
𝐷32,𝑥𝐷2,𝑦𝐹 ⋅ 𝐹 = 2𝐹3𝑥,𝑦𝐹 − 2𝐹3𝑥𝐹𝑦 − 6𝐹2𝑥,𝑦𝐹𝑥

+ 6𝐹𝑥,𝑦𝐹2𝑥.

(15)

Consequently, let 𝜆 = 0; then the linear combination of (13)
constructs the 3 + 1 dimensional Jimbo-Miwa equation as

(𝐷3𝑥𝐷𝑦 + 2𝐷𝑦𝐷𝑡 − 3𝐷𝑥𝐷𝑧) 𝐹 ⋅ 𝐹
= 2𝐹3𝑥,𝑦𝐹 − 2𝐹3𝑥𝐹𝑦 − 6𝐹2𝑥,𝑦𝐹𝑥 + 6𝐹𝑥,𝑦𝐹2𝑥
+ 4𝐹𝑦,𝑡𝐹 − 4𝐹𝑡𝐹𝑦 − 6𝐹𝑥,𝑧𝐹 + 6𝐹𝑥𝐹𝑧.

(16)

4. The Rational Solutions of the 3 + 1
Dimensional Jimbo-Miwa Equation

In this section, we use the symbolic computation with Maple
and obtain polynomial solutions whose degree of 𝑥 is less
than 3 and degrees of 𝑦, 𝑧, and 𝑡 are less than 2 to the 3 +
1 dimensional Jimbo-Miwa equation:

𝐹 = 3∑
𝑖=0
2∑
𝑠=0
2∑
𝑙=0

2∑
𝑗=0
𝑐𝑖𝑠𝑙𝑗𝑥𝑖𝑦𝑠𝑧𝑙𝑡𝑗, (17)

where 𝑐𝑖𝑗’s are constants, and we acquire 36 classes of polyno-
mial solutions to (16). Among the 36 classes of solutions, we

enumerate 13 classes of solutions and see Appendix A, where
the involved constants 𝑐𝑖𝑠𝑙𝑗’s are arbitrary provided that the
solutions are meaningful. We can confirm that there are 13
distinct classes of rational solutions generated from (12) to the
3 + 1 dimensional Jimbo-Miwa equation (9) by considering
the transformation of the coefficient 𝑐𝑖𝑠𝑙𝑗; for the detailed
expression of rational solutions, see Appendix B.

These above-mentioned solutions are very tedious and
difficult to apply in other subjects; here we obtain some
reduced form solutions. 𝑢1 can be reduced to

𝑈1 = − (147𝑡4𝑥4 + 168𝑡3𝑥4 + 84𝑡3𝑥3 + 90𝑡2𝑥4
− 42𝑡4𝑥 + 48𝑡2𝑥3 + 9𝑡4 + 24𝑡𝑥4 − 48𝑡3𝑥 + 18𝑡2𝑥2
+ 12𝑡𝑥3 + 3𝑥4 − 60𝑡2𝑥 + 6𝑡3 − 24𝑡𝑥 + 4𝑡2 − 2𝑡
− 6𝑥 + 1) (7𝑡2𝑥3 + 4𝑡𝑥3 + 3𝑡2𝑥 + 3𝑡𝑥2 + 𝑥3 + 𝑡2
+ 2𝑡𝑥 + 𝑡 + 𝑥 + 1)−2 ,

(18)

when 𝑐𝑖,𝑠,𝑙,𝑗 = 1 + 𝑖𝑠𝑙𝑗. The picture of the solution (18) is
presented in Figure 1.

In the same way, we obtain reduced form solution of 𝑢5 as
follows:

𝑈5 = (−0.3888𝑥4 − 0.5184𝑥3𝑦 − 0.2592𝑥2𝑦2
− 0.2160𝑥𝑦2 + 0.435456𝑥 + 0.577152𝑦
+ 1.0368𝑥𝑦 + 0.0828𝑦2 − 0.5184) (0.36𝑥3
+ 0.36𝑥2𝑦 + 0.30𝑥𝑦 + 0.2016 − 0.72𝑥 + 0.24𝑦)−2 ,

(19)

when 𝑐𝑖,𝑠,𝑙,𝑗 = (1 + 𝑖 + 𝑠 + 𝑙 + 𝑗)/100 and 𝑡 = 0.01. The picture
of the solution (19) is presented in Figure 2.

For the solution 𝑢11, we have
𝑈11 = − (6𝑡 + 5)2

(6𝑥𝑡 + 5𝑥 + 4)2 , (20)

when 𝑐𝑖,𝑠,𝑙,𝑗 = 1 + 𝑖 + 𝑠 + 𝑙 + 𝑗. The picture of the solution (20)
is presented in Figure 3.

For the solution 𝑢12, we get
𝑈12 = − 1

(𝑥 + 𝑦)2 , (21)

when 𝑐𝑖,𝑠,𝑙,𝑗 = 1 + 𝑖𝑠 + 𝑙𝑗. The picture of the solution (21) is
presented in Figure 4.

Remark 1. In fact, these above-mentioned rational solutions
are greatly different from those common soliton solutions as
the form “sech2.” The latter describes that, from the balance
between nonlinearity and dispersion, it is possible to have
steady waves of a permanent form, which are called classical
solitary waves, while, as we know, these solutions which are
derived in the paper can be used to describe algebraic solitary
waves [28, 29]. During propagation, this kind of solitary
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Figure 1: Pictures of (18): 3D plot (a) and density plot (b).
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Figure 2: Pictures of (19): 3D plot (a) and density plot (b).

waves will have fission and form an interesting phenomenon:
solitary waves in a line that the big amplitude solitary wave
is at the front and the small amplitude solitary wave is in
subsequent, which is deserved in the real atmosphere in
the process of thunderstorm and called squall lines. So the
rational solutions of soliton equations are used to explain
possible formation mechanism of the rainstorm formation.
So the study on the rational solutions of soliton equations has
potential application value in the atmosphere field.

5. The Quasi-Periodic Wave Solutions of the
3 + 1 Dimensional Jimbo-Miwa Equation

In this section, we want to get the quasi-periodic wave
solution of the 3 + 1 dimensional Jimbo-Miwa equation

by applying the Hirota method. Long time ago, the theta
functions have been systematically used to constructmultiple
quasi-periodic solutions [9, 34]. Hence, we let the Riemann
function of (9) be

𝐹 = 𝑛=∞∑
𝑛=−∞

𝑒2𝜋𝑖𝑛𝜉+𝜋𝑖𝑛2𝜏, (22)

where 𝑛 ∈ 𝑍, 𝜏 ∈ 𝐶, Im 𝜏 > 0, and 𝜉 = 𝑘𝑥 + 𝑙𝑦 + 𝑎𝑧 +𝑤𝑡; in addition, the parameters 𝑘, 𝑙, 𝑎, 𝑤 are constant to be
determined. Inserting (22) into (13), we have

𝐽𝐹 ⋅ 𝐹 = 𝐽 (𝐷𝑥, 𝐷𝑦, 𝐷𝑧, 𝐷𝑡)
𝑛=∞∑
𝑛=−∞

𝑒2𝜋𝑖𝑛𝜉+𝜋𝑖𝑛2𝜏

⋅ 𝑚=∞∑
𝑚=−∞

𝑒2𝜋𝑖𝑚𝜉+𝜋𝑖𝑚2𝜏
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Figure 3: Pictures of (20): 3D plot (a) and density plot (b).

= 𝑛=∞∑
𝑛=−∞

𝑚=∞∑
𝑚=−∞

𝐽 (𝐷𝑥, 𝐷𝑦, 𝐷𝑧, 𝐷𝑡) 𝑒2𝜋𝑖𝑛𝜉+𝜋𝑖𝑛2𝜏

⋅ 𝑒2𝜋𝑖𝑚𝜉+𝜋𝑖𝑚2𝜏

= 𝑛=∞∑
𝑛=−∞

𝑚=∞∑
𝑚=−∞

𝐽 [2𝜋𝑖 (𝑛 − 𝑚) (𝑘, 𝑙, 𝑎, 𝑤)]
⋅ 𝑒2𝜋𝑖(𝑛+𝑚)𝜉+𝜋𝑖(𝑛2+𝑚2)𝜏

= 𝑞=∞∑
𝑞=−∞

{ 𝑛=∞∑
𝑛=−∞

𝐽 [2𝜋𝑖 (2𝑛 − 𝑞) (𝑘, 𝑙, 𝑎, 𝑤)]

⋅ 𝑒𝜋𝑖(𝑛2+(𝑞−𝑛)2)𝜏} 𝑒2𝜋𝑖𝑞𝜉 = 𝑞=∞∑
𝑞=−∞

𝐽 (𝑞) 𝑒2𝜋𝑖𝑞𝜉.
(23)

Under the calculation of (23), we can denote that

𝐽 (𝑞) = 𝑛=∞∑
𝑛=−∞

𝐽 [2𝜋𝑖 (2𝑛 − 𝑞) (𝑘, 𝑙, 𝑎, 𝑤)] 𝑒𝜋𝑖(𝑛2+(𝑞−𝑛)2)𝜏

= ℎ=∞∑
ℎ=−∞

𝐽 (2𝜋𝑖𝐵𝑘, 2𝜋𝑖𝐵𝑙, 2𝜋𝑖𝐵𝑎, 2𝜋𝑖𝐵𝑤)

⋅ 𝑒𝜋𝑖(𝑛2+(𝑞−ℎ−2)2)𝜏 ⋅ 𝑒2𝜋𝑖(𝑞−1)𝜏,

(24)

where 𝐵 = 2ℎ − 𝑞 + 2, 𝑞 = 𝑚 + 𝑛, and ℎ = 𝑛 − 1.
From the characters of (24), we can get the following

recursion formula:

𝐽 (𝑞) = {{{
𝐽 (0) 𝑒𝜋𝑖𝑛𝑞𝜏, 𝑞 = 2𝑛,
𝐽 (1) 𝑒𝜋𝑖(2𝑛2+2𝑛)𝜏, 𝑞 = 2𝑛 + 1. (25)

If we set 𝐽(0) = 0 and 𝐽(1) = 0, it can satisfy (13); that is,

𝐽 (0) = 𝑛=∞∑
𝑛=−∞

(256𝜋4𝑛4𝑘3𝑙 − 32𝜋2𝑛2𝑙𝑤 + 48𝜋2𝑛2𝑎𝑘

− 𝜆) 𝑒2𝜋𝑖𝑛2𝜏 = 0,
𝐽 (1) = 𝑛=∞∑

𝑛=−∞
(16 (2𝑛 − 1)4 𝜋4𝑘3𝑙 − 8𝜋2 (2𝑛 − 1)2 𝑙𝑤

+ 12𝜋2 (2𝑛 − 1)2 𝑎𝑘 − 𝜆) 𝑒𝜋𝑖(2𝑛2−2𝑛+1)𝜏 = 0.

(26)

With the purpose of computational convenience, we can set

𝑞11 = −
𝑛=∞∑
𝑛=−∞

32𝜋2𝑛2𝑙𝑒2𝜋𝑖𝑛2𝜏,

𝑞12 =
𝑛=∞∑
𝑛=−∞

(16 (2𝑛 − 1)4 𝜋4𝑘3𝑙 + 12𝜋2 (2𝑛 − 1)2 𝑎𝑘)

⋅ 𝑒𝜋𝑖(2𝑛2−2𝑛+1)𝜏,
𝑞21 =

𝑛=∞∑
𝑛=−∞

𝑒𝜋𝑖(2𝑛2−2𝑛+1)𝜏,

𝑞22 = −
𝑛=∞∑
𝑛=−∞

8𝜋2 (2𝑛 − 1)2 𝑙𝑒𝜋𝑖(2𝑛2−2𝑛+1)𝜏,

𝑞31 =
𝑛=∞∑
𝑛=−∞

𝑒2𝜋𝑖𝑛2𝜏,

𝑞13 =
𝑛=∞∑
𝑛=−∞

(256𝜋4𝑛4𝑘3𝑙 + 48𝜋2𝑛2𝑎𝑘) 𝑒2𝜋𝑖𝑛2𝜏.

(27)
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Figure 4: Pictures of (21): 3D plot (a) and density plot (b).

Then (26) can be written as

𝑞11𝑤 + 𝑞13 − 𝜆𝑞31 = 0,
𝑞22𝑤 + 𝑞12 − 𝜆𝑞21 = 0. (28)

The parameters 𝑤, 𝜆 can be given by (28) as

𝑤 = 𝑞12𝑞31 − 𝑞21𝑞13𝑞21𝑞11 − 𝑞31𝑞22 ,
𝜆 = 𝑞12𝑞11 − 𝑞22𝑞13𝑞21𝑞11 − 𝑞31𝑞22 .

(29)

Therefore, we can obtain the quasi-periodic wave solution of
(9) as

𝑢 = 2 (ln𝐹)𝑥𝑥 , (30)

where 𝐹 satisfies (22); meanwhile, 𝑤 and 𝜆 accord with (28).
The picture of the quasi-periodic wave solutions of (9) can be
shown in Figure 5.

6. The𝑁-Soliton Solutions of the 3 + 1
Dimensional Jimbo-Miwa Equation

In [35], a multiple Exp-function method was proposed to
obtain the multiwave solutions and multisoliton solutions.
Here we can give rise to the 𝑁-soliton solutions of (9)
by applying the Hirota direct method and perturbation
approach. With the variable transformation 𝑢 = 2(ln𝐹)𝑥𝑥,
(9) has been changed into the bilinear form.We let 𝜆 = 0 and

𝐹 = 1 + 𝜀𝑓1 + 𝜀2𝑓2 + 𝜀3𝑓3 + ⋅ ⋅ ⋅ . (31)

Substitute (31) into (13) and compare the power of 𝜀; basing
the traditional Hirota method, we can present the𝑁-soliton
solution as follows:

𝐹 = ∑
𝜇𝑖 ,𝜇𝑗=0,1

exp
{{{
𝑁∑
𝑖>𝑗
𝐴 𝑖𝑗𝜇𝑖𝜇𝑗 +

𝑁∑
𝑗=1
𝜇𝑗𝜂𝑗}}}

, (32)

where

𝜂𝑗 = 𝑘𝑗𝑥 + 𝑙𝑗𝑦 + 𝑎𝑗𝑧 + 𝑤𝑗𝑡,

𝑒𝐴𝑖𝑗 = 2 (𝑙𝑗 − 𝑙𝑖) (𝑤𝑖 − 𝑤𝑗) + 3 (𝑎𝑖 − 𝑎𝑗) (𝑘𝑖 − 𝑘𝑗) + (𝑘𝑖 − 𝑘𝑗)
3 (𝑙𝑗 − 𝑙𝑖)

2 (𝑙𝑗 + 𝑙𝑖) (𝑤𝑖 + 𝑤𝑗) − 3 (𝑎𝑖 + 𝑎𝑗) (𝑘𝑖 + 𝑘𝑗) + (𝑘𝑖 + 𝑘𝑗)3 (𝑙𝑗 + 𝑙𝑖)
, (33)

and then we list the one-soliton solution and the two-soliton
solution.

(1) One-Soliton Solution

𝐹 = 1 + 𝑓1,
𝑓1 = 𝑒𝜂,

𝜂 = 𝑘𝑥 + 𝑙𝑦 + 𝑎𝑧 + 𝑤𝑡,
(34)

where the coefficients 𝑘, 𝑙, 𝑎, 𝑤 satisfy 2𝑙𝑤+𝑘3𝑙−3𝑎𝑘 = 0, and
then the one-soliton solution is

𝑢 = 2 (ln𝐹)𝑥𝑥 = 𝑘
2
2 sech2

𝜉
2 . (35)
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Figure 5: One quasi-periodic wave solution to (9) with the parameters 𝑘 = 0.1, 𝑙 = 0.1, 𝑎 = 0, and 𝜏 = 𝑖. Perspective view of the wave (a);
overhead view of the wave (b), with contour plot shown. (The red lines are crests and the blue lines are troughs.)

(2) Two-Soliton Solution

𝐹 = 1 + 𝑓1 + 𝑓2,
𝑓1 = 𝑒𝜂1 + 𝑒𝜂2 ,

𝑓2 = 𝑒𝜂1+𝜂2+𝐴12 ,
(36)

where

𝜂1 = 𝑘1𝑥 + 𝑙1𝑦 + 𝑎1𝑧 + 𝑤1𝑡,
𝜂2 = 𝑘2𝑥 + 𝑙2𝑦 + 𝑎2𝑧 + 𝑤2𝑡,
𝑒𝐴12 = 2 (𝑙2 − 𝑙1) (𝑤1 − 𝑤2) + 3 (𝑎1 − 𝑎2) (𝑘1 − 𝑘2) + (𝑘1 − 𝑘2)

3 (𝑙2 − 𝑙1)
2 (𝑙2 + 𝑙1) (𝑤1 + 𝑤2) − 3 (𝑎1 + 𝑎2) (𝑘1 + 𝑘2) + (𝑘1 + 𝑘2)3 (𝑙2 + 𝑙1) .

(37)

Similarly, the coefficients 𝑘𝑖, 𝑙𝑖, 𝑎𝑖, 𝑤𝑖 (𝑖 = 1, 2) satisfy 2𝑙𝑖𝑤𝑖 +𝑘3𝑖 𝑙𝑖 − 3𝑎𝑖𝑘𝑖 = 0, and then the two-soliton solution is

𝑢 = 2 (ln𝐹)𝑥𝑥 = 2 [ln (1 + 𝑓1 + 𝑓2)]𝑥𝑥 . (38)

As for the two-soliton solution,when the coefficient 𝑒𝐴𝑖𝑗 =0, the soliton solution can be changed into the resonant
solution whose propagation will be shown in Figure 6.

From Figure 6, we can see that, in Figure 6(a), there
happened resonance collision to the two-soliton solution and
appeared the third soliton; in Figure 6(b) occurs the soliton
fusionwhose amplitude has been changed after the resonance
collision.

When the coefficient 𝑒𝐴𝑖𝑗 ̸= 0, there will happen the
soliton pursue collision due to the different soliton speed, as
we all know that the wave with the faster speed will catch up
with the slower speed wave, then collision of the two-soliton
can be happening, and the picture of the pursue collision will
be shown in Figure 7.

7. Conclusion

In this paper, we first introduce a 3 + 1 dimensional Jimbo-
Miwa equation and get its bilinear form, rational solutions,
quasi-periodic wave solutions, and𝑁-soliton solutions based
on the Hirota method and the theta function. Afterwards,
we analyze the rational solutions and quasi-periodic wave
solutions and draw the propagation picture. Finally, we
explain the interaction of the 𝑁-soliton solutions and get a
conclusion that when the coefficient 𝑒𝐴𝑖𝑗 = 0, the soliton
solution can be turned into the resonant solution, after the
resonance collision, and there will appear the soliton fusion
phenomenon; when the coefficient 𝑒𝐴𝑖𝑗 ̸= 0, there will
appear the pursue collision; that is, the soliton with the faster
speed will catch up with the soliton with the slower speed,
after the collision, and the two-soliton solution will continue
spreading in the previous speed and the direction. Although
we acquire the solutions of the 3 + 1 dimensional Jimbo-
Miwa equation, the integrability [36] of this equation is not
discussed; the problem is worthy of exploring.
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Figure 6: The resonant solution to (9) with the parameters 𝑘1 = 0.6, 𝑘2 = 0.8, 𝑙1 = 𝑙2 = 1, and 𝑎1 = 𝑎2 = 0.
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Appendix

A. The Expression of 𝐹
𝐹1 = 𝑡2𝑥3𝑦𝑧𝑐3,1,1,2 + 𝑡𝑥3𝑦𝑧𝑐3,1,1,1 + 𝑡2𝑥𝑦𝑧𝑐1,1,1,2 + 𝑡𝑥2𝑦𝑧𝑐2,1,1,1
+ 𝑥3𝑦𝑧𝑐3,1,1,0 + 𝑡𝑥𝑦𝑧𝑐1,1,1,1 + 𝑡𝑦𝑧𝑐0,1,1,1 + 𝑥𝑦𝑧𝑐1,1,1,0
+ 𝑦𝑧𝑐0,1,1,0 + 𝑡2𝑦𝑧𝑐0,1,1,2,

𝐹2 = 𝑐1,0,1,0𝑐2,1,1,1𝑧𝑡𝑐3,1,1,0
+ (𝑐1,1,1,0𝑐2,1,1,1

2 + 𝑐1,1,1,12𝑐3,1,1,0 + 6𝑐2,1,1,1𝑐3,1,1,02) 𝑦𝑧𝑡
𝑐2,1,1,1𝑐3,1,1,0

+ 𝑡𝑥2𝑦𝑧𝑐2,1,1,1 + 𝑐0,2,1,1𝑦2𝑧𝑡 − 𝑐1,0,1,0𝑐1,1,1,1𝑧𝑐2,1,1,1 + 𝑐1,0,1,0𝑥𝑧
+ 𝑥𝑦𝑧𝑐1,1,1,0
− 𝑐1,1,1,1 (𝑐1,1,1,0𝑐2,1,1,1

2 + 𝑐1,1,1,12𝑐3,1,1,0 + 9𝑐2,1,1,1𝑐3,1,1,02) 𝑦𝑧
𝑐2,1,1,13

+ 𝑥3𝑦𝑧𝑐3,1,1,0 − 𝑐0,2,1,1𝑐1,1,1,1𝑐3,1,1,0𝑦
2𝑧

𝑐2,1,1,12 + 𝑐0,2,1,1𝑐3,1,1,0𝑥𝑦2𝑧𝑐2,1,1,1
+ 𝑡𝑥𝑦𝑧𝑐1,1,1,1,

𝐹3 = 𝑡2𝑦𝑧𝑐0,1,1,2
− (𝑐0,1,1,2

2𝑐2,1,1,1 − 𝑐0,1,1,2𝑐1,1,1,1𝑐1,1,1,2 − 3𝑐1,1,1,2𝑐2,1,1,12) 𝑦𝑧𝑡
𝑐1,1,1,22

+ 𝑡𝑥2𝑦𝑧𝑐2,1,1,1 + 𝑐0,1,1,2𝑐1,2,1,1𝑦
2𝑧𝑡

𝑐1,1,1,2 + 𝑐1,2,1,1𝑥𝑦2𝑧𝑡

+ 2𝑐0,1,1,2𝑐1,2,1,1𝑦𝑧2𝑡3𝑐2,1,1,1 + 𝑡𝑥𝑦𝑧𝑐1,1,1,1 + 2𝑐1,1,1,2𝑐1,2,1,1𝑥𝑦𝑧
2𝑡

3𝑐2,1,1,1
+ 𝑡2𝑥𝑦𝑧𝑐1,1,1,2,

𝐹4 = 𝑡2𝑦𝑧𝑐0,1,1,2 + 𝑐1,1,1,2𝑐1,2,1,1𝑦
2𝑧𝑡2

𝑐2,1,1,1
− 𝑐1,0,1,1 (𝑐0,1,1,2𝑐2,1,1,1 − 𝑐1,1,1,1𝑐1,1,1,2) 𝑧𝑡𝑐1,1,1,2𝑐2,1,1,1
− (𝑐0,1,1,2

2𝑐2,1,1,1 − 𝑐0,1,1,2𝑐1,1,1,1𝑐1,1,1,2 + 3𝑐1,1,1,2𝑐2,1,1,12) 𝑦𝑧𝑡
𝑐1,1,1,22

+ 𝑡𝑥𝑦𝑧𝑐1,1,1,1 − 𝑐1,2,1,1 (𝑐0,1,1,2𝑐2,1,1,1 − 𝑐1,1,1,1𝑐1,1,1,2) 𝑦
2𝑧𝑡

𝑐1,1,1,2𝑐2,1,1,1
+ 𝑐1,2,1,1𝑥𝑦2𝑧𝑡 + 𝑐1,0,1,1𝑐1,1,1,2𝑧𝑡

2
𝑐2,1,1,1 + 𝑡2𝑥𝑦𝑧𝑐1,1,1,2 + 𝑐1,0,1,1𝑥𝑧𝑡

+ 𝑡𝑥2𝑦𝑧𝑐2,1,1,1,

𝐹5 = −3𝑐0,1,1,1𝑐3,0,1,1𝑥𝑧𝑡𝑐2,1,1,1 + 𝑐3,0,1,1𝑥3𝑧𝑡 + 𝑡𝑦𝑧𝑐0,1,1,1
+ 𝑡𝑥𝑦𝑧𝑐1,1,1,1 + 𝑡𝑥2𝑦𝑧𝑐2,1,1,1 + 6𝑐3,0,1,1𝑧𝑡2 + 𝑐0,0,1,1𝑧𝑡,

𝐹6 = 𝑐0,0,1,1𝑧𝑡 + 𝑡𝑦𝑧𝑐0,1,1,1 + 𝑡𝑥2𝑦𝑧𝑐2,1,1,1 + 𝑐0,2,1,1𝑦2𝑧𝑡
+ 𝑐2,1,1,12𝑥𝑦2𝑧𝑡3𝑐3,0,1,1 + 𝑐3,0,1,1𝑥3𝑧𝑡 − 2𝑐2,1,1,1𝑧2𝑡 − 3𝑐3,0,1,1𝑧𝑡2,

𝐹7 = 6𝑐3,1,1,1𝑦𝑧𝑡2 + 13
𝑐1,0,1,1𝑐2,1,1,1𝑧𝑡𝑐3,1,1,1 + 𝑐1,0,1,1𝑥𝑧𝑡 + 𝑡𝑦𝑧𝑐0,1,1,1

+ 𝑡𝑥𝑦𝑧𝑐1,1,1,1 + 𝑡𝑥2𝑦𝑧𝑐2,1,1,1 + 𝑡𝑥3𝑦𝑧𝑐3,1,1,1 + 𝑐0,2,1,1𝑦2𝑧𝑡
+ 3𝑐0,2,1,1𝑐3,1,1,1𝑥𝑦2𝑧𝑡𝑐2,1,1,1 ,

𝐹8 = 6𝑐3,1,1,1𝑦𝑧𝑡2 + 𝑡𝑥𝑦𝑧𝑐1,1,1,1 + 𝑡𝑥2𝑦𝑧𝑐2,1,1,1 + 𝑡𝑥3𝑦𝑧𝑐3,1,1,1
+ 𝑐1,2,1,1𝑐2,1,1,1𝑦2𝑧𝑡3𝑐3,1,1,1 + 𝑐1,2,1,1𝑥𝑦2𝑧𝑡 + 𝑡𝑦𝑧𝑐0,1,1,1,

𝐹9 = 𝑡𝑥3𝑦𝑧𝑐3,1,1,1 + 𝑡𝑥2𝑦𝑧𝑐2,1,1,1 − 3𝑐3,1,1,1𝑦𝑧𝑡2 + 𝑡𝑥𝑦𝑧𝑐1,1,1,1
+ 𝑐0,2,1,1𝑦2𝑧𝑡 + 𝑡𝑦𝑧𝑐0,1,1,1 + 𝑐0,0,1,1𝑧𝑡,

𝐹10 = 6𝑐3,1,1,1𝑦𝑧𝑡2 + 13
(3𝑐0,1,1,1𝑐3,0,1,1 + 𝑐1,0,1,1𝑐2,1,1,1) 𝑧𝑡𝑐3,1,1,1

+ 𝑐1,0,1,1𝑥𝑧𝑡 + 𝑐3,0,1,1𝑥3𝑧𝑡 + 𝑡𝑥𝑦𝑧𝑐1,1,1,1 + 𝑡𝑥2𝑦𝑧𝑐2,1,1,1
+ 𝑡𝑥3𝑦𝑧𝑐3,1,1,1 + 6𝑐3,0,1,1𝑧𝑡2 + 𝑡𝑦𝑧𝑐0,1,1,1,

𝐹11 = 𝑡2𝑥𝑦𝑧𝑐1,1,1,2 + 𝑐1,0,0,2𝑥𝑡2 + 𝑐1,1,0,2𝑥𝑦𝑡2 + 𝑐1,2,0,2𝑥𝑦2𝑡2

+ 𝑐1,0,1,2𝑥𝑧𝑡2 + 𝑐0,0,2,1𝑐1,0,0,2𝑡𝑐1,0,2,2 + 𝑐1,0,2,2𝑥𝑧2𝑡2

+ 𝑐1,0,2,1𝑐1,1,2,2𝑥𝑦𝑧2𝑡𝑐1,0,2,2 + 𝑐1,0,2,1𝑐1,2,2,2𝑥𝑦2𝑧2𝑡𝑐1,0,2,2
+ 𝑐1,0,2,1𝑐1,1,1,2𝑥𝑦𝑧𝑡𝑐1,0,2,2 + 𝑐1,0,2,1𝑐1,2,1,2𝑥𝑦2𝑧𝑡𝑐1,0,2,2
+ 𝑐0,0,2,1𝑐1,1,2,2𝑦𝑧2𝑡𝑐1,0,2,2 + 𝑐1,1,2,2𝑥𝑦𝑧2𝑡2 + 𝑐1,2,2,2𝑥𝑦2𝑧2𝑡2

+ 𝑐0,0,2,1𝑐1,2,2,2𝑦2𝑧2𝑡𝑐1,0,2,2 + 𝑐0,0,2,1𝑐1,2,1,2𝑦2𝑧𝑡𝑐1,0,2,2 + 𝑐1,0,2,1𝑐1,1,0,2𝑥𝑦𝑡𝑐1,0,2,2
+ 𝑐1,0,2,1𝑐1,2,0,2𝑥𝑦2𝑡𝑐1,0,2,2 + 𝑐0,0,2,1𝑐1,1,1,2𝑦𝑧𝑡𝑐1,0,2,2 + 𝑐0,0,2,1𝑐1,2,0,2𝑦2𝑡𝑐1,0,2,2
+ 𝑐0,0,2,1𝑐1,1,0,2𝑦𝑡𝑐1,0,2,2 + 𝑐0,0,2,1𝑐1,0,1,2𝑧𝑡𝑐1,0,2,2 + 𝑐1,0,0,2𝑐1,0,2,1𝑥𝑡𝑐1,0,2,2
+ 𝑐1,0,1,2𝑐1,0,2,1𝑥𝑧𝑡𝑐1,0,2,2 + 𝑐1,0,2,1𝑥𝑧2𝑡 + 𝑐0,0,2,1𝑧2𝑡 + 𝑐1,2,1,2𝑥𝑦2𝑧𝑡2,
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𝐹12 = 𝑐1,0,2,1𝑐1,1,2,2𝑥𝑦𝑧
2𝑡

𝑐1,0,2,2 + 𝑐1,0,2,2𝑥𝑧2𝑡2 + 𝑐0,1,2,2𝑦𝑧2𝑡2

+ 𝑐1,1,2,2𝑥𝑦𝑧2𝑡2 + 𝑐1,0,2,1𝑥𝑧2𝑡 + 𝑐1,1,0,2𝑥𝑦𝑡2 + 𝑐1,0,1,2𝑥𝑧𝑡2

+ 𝑐0,1,2,2𝑐1,1,2,2𝑐1,0,2,1𝑦2𝑧2𝑡𝑐1,0,2,22 + 𝑐0,1,2,2𝑐1,0,1,2𝑐1,0,2,1𝑦𝑧𝑡𝑐1,0,2,22

+ 𝑐0,1,2,2𝑐1,0,2,1𝑐1,1,1,2𝑦2𝑧𝑡𝑐1,0,2,22 + 𝑐1,0,2,1𝑐1,1,1,2𝑥𝑦𝑧𝑡𝑐1,0,2,2
+ 𝑐1,0,2,1𝑐1,1,0,2𝑥𝑦𝑡𝑐1,0,2,2 + 𝑐1,0,1,2𝑐1,0,2,1𝑥𝑧𝑡𝑐1,0,2,2 + 𝑐0,1,2,2𝑐1,1,2,2𝑦2𝑧2𝑡2𝑐1,0,2,2
+ 𝑐0,1,2,2𝑐1,0,2,1𝑐1,1,0,2𝑦2𝑡𝑐1,0,2,22 + 𝑐0,1,2,2𝑐1,0,0,2𝑐1,0,2,1𝑦𝑡𝑐1,0,2,22

+ 𝑐0,1,2,2𝑐1,0,0,2𝑦𝑡2𝑐1,0,2,2 + 𝑐0,1,2,2𝑐1,1,0,2𝑦2𝑡2𝑐1,0,2,2 + 𝑐1,0,0,2𝑐1,0,2,1𝑥𝑡𝑐1,0,2,2
+ 𝑐0,1,2,2𝑐1,0,1,2𝑦𝑧𝑡2𝑐1,0,2,2 + 𝑐0,1,2,2𝑐1,0,2,1𝑦𝑧2𝑡𝑐1,0,2,2
+ 𝑐0,1,2,2𝑐1,1,1,2𝑦2𝑧𝑡2𝑐1,0,2,2 + 𝑡2𝑥𝑦𝑧𝑐1,1,1,2 + 𝑐1,0,0,2𝑥𝑡2,

𝐹13 = 𝑐1,0,1,1𝑥𝑧𝑡 + 𝑐1,0,0,0𝑥 + 𝑐1,0,2,1𝑥𝑧2𝑡 + 𝑐1,0,0,2𝑥𝑡2

+ 𝑐1,0,1,2𝑥𝑧𝑡2 + 𝑐1,0,2,2𝑥𝑧2𝑡2 + 𝑐0,2,2,2𝑐1,0,0,2𝑦
2𝑡2

𝑐1,0,2,2
+ 𝑐0,2,2,2𝑐1,0,0,1𝑦2𝑡𝑐1,0,2,2 + 𝑐1,0,0,0𝑐1,1,2,2𝑥𝑦𝑐1,0,2,2 + 𝑐1,0,0,0𝑐1,2,2,2𝑥𝑦2𝑐1,0,2,2
+ 𝑐0,2,2,2𝑐1,0,1,0𝑦2𝑧𝑐1,0,2,2 + 𝑐1,2,2,2𝑥𝑦2𝑧2𝑡2 + 𝑐1,0,1,0𝑐1,2,2,2𝑥𝑦

2𝑧
𝑐1,0,2,2

+ 𝑐0,1,2,2𝑐1,0,1,0𝑦𝑧𝑐1,0,2,2 + 𝑐0,1,2,2𝑐1,0,1,1𝑦𝑧𝑡𝑐1,0,2,2 + 𝑐1,0,1,0𝑐1,1,2,2𝑥𝑦𝑧𝑐1,0,2,2
+ 𝑐0,1,2,2𝑦𝑧2𝑡2 + 𝑐1,0,0,1𝑐1,1,2,2𝑥𝑦𝑡𝑐1,0,2,2 + 𝑐0,2,2,2𝑦2𝑧2𝑡2 + 𝑐1,0,0,1𝑥𝑡

+ 𝑐0,1,2,2𝑐1,0,0,0𝑦𝑐1,0,2,2 + 𝑐0,2,2,2𝑐1,0,0,0𝑦2𝑐1,0,2,2 + 𝑐1,0,1,0𝑥𝑧

+ 𝑐0,1,2,2𝑐1,0,0,2𝑦𝑡2𝑐1,0,2,2 + 𝑐0,1,2,2𝑐1,0,1,2𝑦𝑧𝑡2𝑐1,0,2,2 + 𝑐0,1,2,2𝑐1,0,2,1𝑦𝑧2𝑡𝑐1,0,2,2
+ 𝑐0,1,2,2𝑐1,0,0,1𝑦𝑡𝑐1,0,2,2 + 𝑐1,1,2,2𝑥𝑦𝑧2𝑡2 + 𝑐1,0,1,2𝑐1,2,2,2𝑥𝑦

2𝑧𝑡2
𝑐1,0,2,2

+ 𝑐1,0,1,1𝑐1,1,2,2𝑥𝑦𝑧𝑡𝑐1,0,2,2 + 𝑐1,0,1,1𝑐1,2,2,2𝑥𝑦2𝑧𝑡𝑐1,0,2,2
+ 𝑐1,0,2,1𝑐1,1,2,2𝑥𝑦𝑧2𝑡𝑐1,0,2,2 + 𝑐1,0,2,1𝑐1,2,2,2𝑥𝑦2𝑧2𝑡𝑐1,0,2,2

+ 𝑐1,0,0,1𝑐1,2,2,2𝑥𝑦2𝑡𝑐1,0,2,2 + 𝑐0,2,2,2𝑐1,0,2,1𝑦2𝑧2𝑡𝑐1,0,2,2
+ 𝑐1,0,1,2𝑐1,1,2,2𝑥𝑦𝑧𝑡2𝑐1,0,2,2 + 𝑐1,0,0,2𝑐1,1,2,2𝑥𝑦𝑡2𝑐1,0,2,2
+ 𝑐1,0,0,2𝑐1,2,2,2𝑥𝑦2𝑡2𝑐1,0,2,2 + 𝑐0,2,2,2𝑐1,0,1,2𝑦2𝑧𝑡2𝑐1,0,2,2
+ 𝑐0,2,2,2𝑐1,0,1,1𝑦2𝑧𝑡𝑐1,0,2,2 .

(A.1)

B. The Rational Solutions of (3 + 1)-
Dimensional Jimbo-Miwa Equation

𝑢1 = − (3𝑡4𝑥4𝑐3,1,1,22 + 6𝑡3𝑥4𝑐3,1,1,1𝑐3,1,1,2
+ 4𝑡3𝑥3𝑐2,1,1,1𝑐3,1,1,2 + 6𝑡2𝑥4𝑐3,1,1,0𝑐3,1,1,2
+ 3𝑥4𝑐3,1,1,02 − 6𝑡4𝑥𝑐0,1,1,2𝑐3,1,1,2
+ 4𝑡2𝑥3𝑐2,1,1,1𝑐3,1,1,1 + 6𝑡𝑥4𝑐3,1,1,0𝑐3,1,1,1 + 𝑡4𝑐1,1,1,22
− 6𝑡3𝑥𝑐0,1,1,1𝑐3,1,1,2 − 6𝑡3𝑥𝑐0,1,1,2𝑐3,1,1,1
+ 2𝑡3𝑥𝑐1,1,1,2𝑐2,1,1,1 + 2𝑡2𝑥2𝑐2,1,1,12
+ 4𝑡𝑥3𝑐2,1,1,1𝑐3,1,1,0 + 3𝑡2𝑥4𝑐3,1,1,12
− 2𝑡3𝑐0,1,1,2𝑐2,1,1,1 + 2𝑡3𝑐1,1,1,1𝑐1,1,1,2
− 6𝑡2𝑥𝑐0,1,1,0𝑐3,1,1,2 − 6𝑡2𝑥𝑐0,1,1,1𝑐3,1,1,1 + 𝑡2𝑐1,1,1,12
+ 2𝑡2𝑥𝑐1,1,1,1𝑐2,1,1,1 − 2𝑡2𝑐0,1,1,1𝑐2,1,1,1
+ 2𝑡2𝑐1,1,1,0𝑐1,1,1,2 − 6𝑡2𝑥𝑐0,1,1,2𝑐3,1,1,0 + 𝑐1,1,1,02
− 6𝑡𝑥𝑐0,1,1,0𝑐3,1,1,1 − 6𝑡𝑥𝑐0,1,1,1𝑐3,1,1,0
+ 2𝑡𝑥𝑐1,1,1,0𝑐2,1,1,1 + 2𝑡𝑐1,1,1,0𝑐1,1,1,1 − 6𝑥𝑐0,1,1,0𝑐3,1,1,0
− 2𝑡𝑐0,1,1,0𝑐2,1,1,1) (𝑡2𝑥3𝑐3,1,1,2 + 𝑡𝑥3𝑐3,1,1,1
+ 𝑡2𝑥𝑐1,1,1,2 + 𝑡𝑥2𝑐2,1,1,1 + 𝑥3𝑐3,1,1,0 + 𝑡2𝑐0,1,1,2
+ 𝑡𝑥𝑐1,1,1,1 + 𝑡𝑐0,1,1,1 + 𝑥𝑐1,1,1,0 + 𝑐0,1,1,0)−2 ,

𝑢2 = −𝑐3,1,1,0𝑐2,1,1,13 (2𝑡2𝑥2𝑦2𝑐2,1,1,15𝑐3,1,1,0
+ 4𝑡𝑥3𝑦2𝑐2,1,1,14𝑐3,1,1,02
+ 2𝑡2𝑥𝑦2𝑐1,1,1,1𝑐2,1,1,14𝑐3,1,1,0 + 3𝑥4𝑦2𝑐2,1,1,13𝑐3,1,1,03
− 2𝑡2𝑦3𝑐0,2,1,1𝑐2,1,1,14𝑐3,1,1,0
− 4𝑡𝑥𝑦3𝑐0,2,1,1𝑐2,1,1,13𝑐3,1,1,02 − 2𝑡2𝑦2𝑐1,1,1,0𝑐2,1,1,15
− 𝑡2𝑦2𝑐1,1,1,12𝑐2,1,1,13𝑐3,1,1,0 − 12𝑡2𝑦2𝑐2,1,1,14𝑐3,1,1,02
− 4𝑡𝑥𝑦2𝑐1,1,1,0𝑐2,1,1,14𝑐3,1,1,0
− 6𝑡𝑥𝑦2𝑐1,1,1,12𝑐2,1,1,12𝑐3,1,1,02
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− 36𝑡𝑥𝑦2𝑐2,1,1,13𝑐3,1,1,03
+ 4𝑡𝑦3𝑐0,2,1,1𝑐1,1,1,1𝑐2,1,1,12𝑐3,1,1,02
+ 6𝑥𝑦3𝑐0,2,1,1𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,03
+ 𝑦4𝑐0,2,1,12𝑐2,1,1,1𝑐3,1,1,03 − 2𝑡2𝑦𝑐1,0,1,0𝑐2,1,1,15
− 4𝑡𝑥𝑦𝑐1,0,1,0𝑐2,1,1,14𝑐3,1,1,0
+ 4𝑡𝑦2𝑐1,1,1,0𝑐1,1,1,1𝑐2,1,1,13𝑐3,1,1,0
+ 2𝑡𝑦2𝑐1,1,1,13𝑐2,1,1,1𝑐3,1,1,02
+ 18𝑡𝑦2𝑐1,1,1,1𝑐2,1,1,12𝑐3,1,1,03
+ 6𝑥𝑦2𝑐1,1,1,0𝑐1,1,1,1𝑐2,1,1,12𝑐3,1,1,02
+ 6𝑥𝑦2𝑐1,1,1,13𝑐3,1,1,03 + 54𝑥𝑦2𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,04
+ 2𝑦3𝑐0,2,1,1𝑐1,1,1,0𝑐2,1,1,12𝑐3,1,1,02
+ 4𝑡𝑦𝑐1,0,1,0𝑐1,1,1,1𝑐2,1,1,13𝑐3,1,1,0
+ 6𝑥𝑦𝑐1,0,1,0𝑐1,1,1,1𝑐2,1,1,12𝑐3,1,1,02
+ 𝑐1,0,1,02𝑐2,1,1,13𝑐3,1,1,0
+ 2𝑦2𝑐0,2,1,1𝑐1,0,1,0𝑐2,1,1,12𝑐3,1,1,02
+ 𝑦2𝑐1,1,1,02𝑐2,1,1,13𝑐3,1,1,0
+ 2𝑦𝑐1,0,1,0𝑐1,1,1,0𝑐2,1,1,13𝑐3,1,1,0) (𝑡𝑥2𝑦𝑐2,1,1,14𝑐3,1,1,0
+ 𝑥3𝑦𝑐2,1,1,13𝑐3,1,1,02 + 𝑡𝑥𝑦𝑐1,1,1,1𝑐2,1,1,13𝑐3,1,1,0
+ 𝑡𝑦2𝑐0,2,1,1𝑐2,1,1,13𝑐3,1,1,0 + 𝑥𝑦2𝑐0,2,1,1𝑐2,1,1,12𝑐3,1,1,02
+ 𝑡𝑦𝑐1,1,1,0𝑐2,1,1,14 + 𝑡𝑦𝑐1,1,1,12𝑐2,1,1,12𝑐3,1,1,0
+ 6𝑡𝑦𝑐2,1,1,13𝑐3,1,1,02 + 𝑥𝑦𝑐1,1,1,0𝑐2,1,1,13𝑐3,1,1,0
− 𝑦2𝑐0,2,1,1𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,02 + 𝑡𝑐1,0,1,0𝑐2,1,1,14
− 𝑦𝑐1,1,1,13𝑐3,1,1,02 − 𝑦𝑐1,1,1,0𝑐1,1,1,1𝑐2,1,1,12𝑐3,1,1,0
− 9𝑦𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,03 − 𝑐1,0,1,0𝑐1,1,1,1𝑐2,1,1,12𝑐3,1,1,0
+ 𝑥𝑐1,0,1,0𝑐2,1,1,13𝑐3,1,1,0)−2 ,

𝑢3 = −𝑐1,1,1,22 (9𝑡2𝑐1,1,1,24𝑐2,1,1,12
+ 12𝑡𝑧𝑐1,1,1,24𝑐1,2,1,1𝑐2,1,1,1 + 18𝑡𝑥𝑐1,1,1,23𝑐2,1,1,13
+ 18𝑡𝑦𝑐1,1,1,23𝑐1,2,1,1𝑐2,1,1,12
+ 18𝑥𝑦𝑐1,1,1,22𝑐1,2,1,1𝑐2,1,1,13
+ 12𝑥𝑧𝑐1,1,1,23𝑐1,2,1,1𝑐2,1,1,12 + 18𝑥2𝑐1,1,1,22𝑐2,1,1,14
+ 9𝑦2𝑐1,1,1,22𝑐1,2,1,12𝑐2,1,1,12

+ 12𝑦𝑧𝑐1,1,1,23𝑐1,2,1,12𝑐2,1,1,1 + 4𝑧2𝑐1,1,1,24𝑐1,2,1,12
− 18𝑡𝑐0,1,1,2𝑐1,1,1,22𝑐2,1,1,13 + 18𝑡𝑐1,1,1,1𝑐1,1,1,23𝑐2,1,1,12
− 54𝑐1,1,1,2𝑐2,1,1,15 + 18𝑥𝑐1,1,1,1𝑐1,1,1,22𝑐2,1,1,13
− 18𝑦𝑐0,1,1,2𝑐1,1,1,2𝑐1,2,1,1𝑐2,1,1,13
+ 18𝑦𝑐1,1,1,1𝑐1,1,1,22𝑐1,2,1,1𝑐2,1,1,12
− 12𝑧𝑐0,1,1,2𝑐1,1,1,22𝑐1,2,1,1𝑐2,1,1,12
+ 12𝑧𝑐1,1,1,1𝑐1,1,1,23𝑐1,2,1,1𝑐2,1,1,1
+ 9𝑐1,1,1,12𝑐1,1,1,22𝑐2,1,1,12
− 18𝑐0,1,1,2𝑐1,1,1,1𝑐1,1,1,2𝑐2,1,1,13 + 18𝑐0,1,1,22𝑐2,1,1,14)
⋅ (3𝑡𝑥𝑐1,1,1,23𝑐2,1,1,1 + 2𝑥𝑧𝑐1,1,1,23𝑐1,2,1,1
+ 3𝑥2𝑐1,1,1,22𝑐2,1,1,12 + 3𝑥𝑦𝑐1,1,1,22𝑐1,2,1,1𝑐2,1,1,1
+ 3𝑡𝑐0,1,1,2𝑐1,1,1,22𝑐2,1,1,1 − 3𝑐0,1,1,22𝑐2,1,1,12
+ 3𝑥𝑐1,1,1,1𝑐1,1,1,22𝑐2,1,1,1
+ 3𝑦𝑐0,1,1,2𝑐1,1,1,2𝑐1,2,1,1𝑐2,1,1,1
+ 3𝑐0,1,1,2𝑐1,1,1,1𝑐1,1,1,2𝑐2,1,1,1 + 2𝑧𝑐0,1,1,2𝑐1,1,1,22𝑐1,2,1,1
+ 9𝑐1,1,1,2𝑐2,1,1,13)−2 ,

𝑢4 = −𝑐2,1,1,12𝑐1,1,1,22 (2𝑡𝑥𝑦2𝑐1,1,1,23𝑐2,1,1,1
+ 2𝑥2𝑦2𝑐1,1,1,22𝑐2,1,1,12 + 2𝑥𝑦3𝑐1,1,1,22𝑐1,2,1,1𝑐2,1,1,1
+ 𝑦4𝑐1,1,1,22𝑐1,2,1,12 − 2𝑡𝑦2𝑐0,1,1,2𝑐1,1,1,22𝑐2,1,1,1
+ 2𝑡𝑦2𝑐1,1,1,1𝑐1,1,1,23 + 2𝑦2𝑐0,1,1,22𝑐2,1,1,12
+ 2𝑥𝑦2𝑐1,1,1,1𝑐1,1,1,22𝑐2,1,1,1
+ 2𝑦3𝑐0,1,1,2𝑐1,1,1,2𝑐1,2,1,1𝑐2,1,1,1
+ 2𝑥𝑦𝑐1,0,1,1𝑐1,1,1,22𝑐2,1,1,1 + 𝑡2𝑦2𝑐1,1,1,24
− 2𝑦2𝑐0,1,1,2𝑐1,1,1,1𝑐1,1,1,2𝑐2,1,1,1
+ 2𝑦2𝑐1,0,1,1𝑐1,1,1,22𝑐1,2,1,1 + 𝑦2𝑐1,1,1,12𝑐1,1,1,22
+ 6𝑦2𝑐1,1,1,2𝑐2,1,1,13 + 2𝑦𝑐0,1,1,2𝑐1,0,1,1𝑐1,1,1,2𝑐2,1,1,1
+ 𝑐1,0,1,12𝑐1,1,1,22) (𝑡𝑥𝑦𝑐1,1,1,23𝑐2,1,1,1
+ 𝑡𝑦2𝑐1,1,1,23𝑐1,2,1,1 + 𝑥2𝑦𝑐1,1,1,22𝑐2,1,1,12
+ 𝑥𝑦2𝑐1,1,1,22𝑐1,2,1,1𝑐2,1,1,1 + 𝑡𝑦𝑐0,1,1,2𝑐1,1,1,22𝑐2,1,1,1
+ 𝑥𝑦𝑐1,1,1,1𝑐1,1,1,22𝑐2,1,1,1
− 𝑦2𝑐0,1,1,2𝑐1,1,1,2𝑐1,2,1,1𝑐2,1,1,1 + 𝑡𝑐1,0,1,1𝑐1,1,1,23
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− 𝑦𝑐0,1,1,22𝑐2,1,1,12 + 𝑦2𝑐1,1,1,1𝑐1,1,1,22𝑐1,2,1,1
+ 𝑥𝑐1,0,1,1𝑐1,1,1,22𝑐2,1,1,1 − 3𝑦𝑐1,1,1,2𝑐2,1,1,13
+ 𝑐1,0,1,1𝑐1,1,1,1𝑐1,1,1,22 − 𝑐0,1,1,2𝑐1,0,1,1𝑐1,1,1,2𝑐2,1,1,1
+ 𝑦𝑐0,1,1,2𝑐1,1,1,1𝑐1,1,1,2𝑐2,1,1,1)−2 ,

𝑢5 = (−3𝑥4𝑐2,1,1,12𝑐3,0,1,12 − 4𝑥3𝑦𝑐2,1,1,13𝑐3,0,1,1
− 2𝑥𝑦2𝑐1,1,1,1𝑐2,1,1,13 + 36𝑡𝑥𝑐2,1,1,12𝑐3,0,1,12
− 2𝑥2𝑦2𝑐2,1,1,14 + 12𝑡𝑦𝑐2,1,1,13𝑐3,0,1,1
+ 12𝑥𝑦𝑐0,1,1,1𝑐2,1,1,12𝑐3,0,1,1 + 2𝑦2𝑐0,1,1,1𝑐2,1,1,13
− 𝑦2𝑐1,1,1,12𝑐2,1,1,12 + 6𝑥𝑐0,0,1,1𝑐2,1,1,12𝑐3,0,1,1
+ 2𝑦𝑐0,0,1,1𝑐2,1,1,13 + 6𝑡𝑐2,1,1,1𝑐3,0,1,1
− 9𝑐0,1,1,12𝑐3,0,1,12) (𝑥3𝑐2,1,1,1𝑐3,0,1,1 + 𝑥2𝑦𝑐2,1,1,12
+ 6𝑦𝑐0,1,1,1𝑐1,1,1,1𝑐2,1,1,1𝑐3,0,1,1 − 3𝑥𝑐0,1,1,1𝑐3,0,1,1
+ 𝑦𝑐0,1,1,1𝑐2,1,1,1 + 𝑐0,0,1,1𝑐2,1,1,1 + 𝑥𝑦𝑐1,1,1,1𝑐2,1,1,1)−2 ,

𝑢6 = − (27𝑥4𝑐3,0,1,14 + 36𝑥3𝑦𝑐2,1,1,1𝑐3,0,1,13
+ 18𝑥2𝑦2𝑐2,1,1,12𝑐3,0,1,12 − 18𝑦3𝑐0,2,1,1𝑐2,1,1,1𝑐3,0,1,12
+ 6𝑥𝑦3𝑐2,1,1,13𝑐3,0,1,1 + 𝑦4𝑐2,1,1,14
− 54𝑥𝑦2𝑐0,2,1,1𝑐3,0,1,13 + 162𝑡𝑥𝑐3,0,1,14
+ 54𝑡𝑦𝑐2,1,1,1𝑐3,0,1,13 − 54𝑥𝑦𝑐0,1,1,1𝑐3,0,1,13
+ 108𝑥𝑧𝑐2,1,1,1𝑐3,0,1,13 − 18𝑦2𝑐0,1,1,1𝑐2,1,1,1𝑐3,0,1,12
+ 36𝑦𝑧𝑐2,1,1,12𝑐3,0,1,12 − 54𝑥𝑐0,0,1,1𝑐3,0,1,13
− 18𝑦𝑐0,0,1,1𝑐2,1,1,1𝑐3,0,1,12) (−3𝑥3𝑐3,0,1,12
− 𝑥𝑦2𝑐2,1,1,12 + 6𝑧𝑐2,1,1,1𝑐3,0,1,1 − 3𝑦2𝑐0,2,1,1𝑐3,0,1,1
+ 9𝑡𝑐3,0,1,12 − 3𝑦𝑐0,1,1,1𝑐3,0,1,1 − 3𝑐0,0,1,1𝑐3,0,1,1
− 3𝑥2𝑦𝑐2,1,1,1𝑐3,0,1,1)−2 ,

𝑢7 = 3𝑐3,1,1,1 (−9𝑥4𝑦2𝑐2,1,1,12𝑐3,1,1,13
− 12𝑥3𝑦2𝑐2,1,1,13𝑐3,1,1,12
+ 18𝑥𝑦2𝑐0,1,1,1𝑐2,1,1,12𝑐3,1,1,12
+ 108𝑡𝑥𝑦2𝑐2,1,1,12𝑐3,1,1,13 − 6𝑥2𝑦2𝑐2,1,1,14𝑐3,1,1,1
− 27𝑦4𝑐0,2,1,12𝑐3,1,1,13 + 36𝑡𝑦2𝑐2,1,1,13𝑐3,1,1,12
− 6𝑥𝑦2𝑐1,1,1,1𝑐2,1,1,13𝑐3,1,1,1
− 18𝑦3𝑐0,2,1,1𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,12

+ 6𝑦3𝑐0,2,1,1𝑐2,1,1,13𝑐3,1,1,1 + 6𝑦2𝑐0,1,1,1𝑐2,1,1,13𝑐3,1,1,1
− 18𝑦2𝑐0,2,1,1𝑐1,0,1,1𝑐2,1,1,1𝑐3,1,1,12
− 3𝑦2𝑐1,1,1,12𝑐2,1,1,12𝑐3,1,1,1
− 6𝑦𝑐1,0,1,1𝑐1,1,1,1𝑐2,1,1,12𝑐3,1,1,1 + 2𝑦𝑐1,0,1,1𝑐2,1,1,14
− 3𝑐1,0,1,12𝑐2,1,1,12𝑐3,1,1,1) (𝑐1,0,1,1𝑐2,1,1,12
+ 3𝑥𝑐1,0,1,1𝑐2,1,1,1𝑐3,1,1,1 + 9𝑥𝑦2𝑐0,2,1,1𝑐3,1,1,12
+ 18𝑡𝑦𝑐2,1,1,1𝑐3,1,1,12 + 3𝑥𝑦𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,1
+ 3𝑥2𝑦𝑐2,1,1,12𝑐3,1,1,1 + 3𝑦2𝑐0,2,1,1𝑐2,1,1,1𝑐3,1,1,1
+ 3𝑦𝑐0,1,1,1𝑐2,1,1,1𝑐3,1,1,1 + 3𝑥3𝑦𝑐2,1,1,1𝑐3,1,1,12)−2 ,

𝑢8 = 3𝑐3,1,1,1 (−12𝑥3𝑐2,1,1,1𝑐3,1,1,12 − 6𝑥2𝑐2,1,1,12𝑐3,1,1,1
− 3𝑦2𝑐1,2,1,12𝑐3,1,1,1 − 6𝑥𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,1
+ 108𝑡𝑥𝑐3,1,1,13 − 9𝑥4𝑐3,1,1,13 + 36𝑡𝑐2,1,1,1𝑐3,1,1,12
+ 18𝑥𝑐0,1,1,1𝑐3,1,1,12 − 6𝑦𝑐1,1,1,1𝑐1,2,1,1𝑐3,1,1,1
+ 2𝑦𝑐1,2,1,1𝑐2,1,1,12 + 6𝑐0,1,1,1𝑐2,1,1,1𝑐3,1,1,1
− 3𝑐1,1,1,12𝑐3,1,1,1) (3𝑥3𝑐3,1,1,12 + 3𝑥2𝑐2,1,1,1𝑐3,1,1,1
+ 3𝑥𝑦𝑐1,2,1,1𝑐3,1,1,1 + 18𝑡𝑐3,1,1,12 + 3𝑥𝑐1,1,1,1𝑐3,1,1,1
+ 𝑦𝑐1,2,1,1𝑐2,1,1,1 + 3𝑐0,1,1,1𝑐3,1,1,1)−2 ,

𝑢9 = −𝑦 (3𝑥4𝑦𝑐3,1,1,12 + 4𝑥3𝑦𝑐2,1,1,1𝑐3,1,1,1
+ 18𝑡𝑥𝑦𝑐3,1,1,12 − 6𝑥𝑦2𝑐0,2,1,1𝑐3,1,1,1
+ 6𝑡𝑦𝑐2,1,1,1𝑐3,1,1,1 + 2𝑥2𝑦𝑐2,1,1,12 − 6𝑥𝑦𝑐0,1,1,1𝑐3,1,1,1
+ 2𝑥𝑦𝑐1,1,1,1𝑐2,1,1,1 − 2𝑦2𝑐0,2,1,1𝑐2,1,1,1
− 6𝑥𝑐0,0,1,1𝑐3,1,1,1 − 2𝑦𝑐0,1,1,1𝑐2,1,1,1 + 𝑦𝑐1,1,1,12
− 2𝑐0,0,1,1𝑐2,1,1,1) (−𝑥3𝑦𝑐3,1,1,1 − 𝑥2𝑦𝑐2,1,1,1
+ 3𝑡𝑦𝑐3,1,1,1 − 𝑥𝑦𝑐1,1,1,1 − 𝑦2𝑐0,2,1,1 − 𝑦𝑐0,1,1,1
− 𝑐0,0,1,1)−2 ,

𝑢10 = 3𝑐3,1,1,1 (−9𝑥4𝑦2𝑐3,1,1,13 − 18𝑥4𝑦𝑐3,0,1,1𝑐3,1,1,12
− 12𝑥3𝑦2𝑐2,1,1,1𝑐3,1,1,12 + 108𝑡𝑥𝑦2𝑐3,1,1,13
− 9𝑥4𝑐3,0,1,12𝑐3,1,1,1 − 6𝑥2𝑦2𝑐2,1,1,12𝑐3,1,1,1
+ 216𝑡𝑥𝑦𝑐3,0,1,1𝑐3,1,1,12 + 6𝑦2𝑐0,1,1,1𝑐2,1,1,1𝑐3,1,1,1
+ 36𝑡𝑦2𝑐2,1,1,1𝑐3,1,1,12 + 18𝑥𝑦2𝑐0,1,1,1𝑐3,1,1,12
− 6𝑥𝑦2𝑐1,1,1,1𝑐2,1,1,1𝑐3,1,1,1 − 3𝑐1,0,1,12𝑐3,1,1,1
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+ 36𝑡𝑦𝑐2,1,1,1𝑐3,0,1,1𝑐3,1,1,1 + 36𝑥𝑦𝑐0,1,1,1𝑐3,0,1,1𝑐3,1,1,1
− 12𝑥3𝑦𝑐2,1,1,1𝑐3,0,1,1𝑐3,1,1,1 − 3𝑦2𝑐1,1,1,12𝑐3,1,1,1
+ 18𝑥𝑐0,1,1,1𝑐3,0,1,12 + 6𝑥𝑐1,0,1,1𝑐2,1,1,1𝑐3,0,1,1
+ 6𝑦𝑐0,1,1,1𝑐2,1,1,1𝑐3,0,1,1 − 6𝑦𝑐1,0,1,1𝑐1,1,1,1𝑐3,1,1,1
+ 2𝑦𝑐1,0,1,1𝑐2,1,1,12 + 108𝑡𝑥c3,0,1,12𝑐3,1,1,1)
⋅ (3𝑥3𝑦𝑐3,1,1,12 + 3𝑥2𝑦𝑐2,1,1,1𝑐3,1,1,1 + 18𝑡𝑦𝑐3,1,1,12
+ 3𝑥𝑦𝑐1,1,1,1𝑐3,1,1,1 + 18𝑡𝑐3,0,1,1𝑐3,1,1,1
+ 3𝑥𝑐1,0,1,1𝑐3,1,1,1 + 3𝑦𝑐0,1,1,1𝑐3,1,1,1 + 3𝑐0,1,1,1𝑐3,0,1,1
+ 3𝑥3𝑐3,0,1,1𝑐3,1,1,1 + 𝑐1,0,1,1𝑐2,1,1,1)−2 ,

𝑢11 = − (𝑡𝑐1,0,2,2 + 𝑐1,0,2,1)2 (𝑡𝑥𝑐1,0,2,2 + 𝑥𝑐1,0,2,1
+ 𝑐0,0,2,1)−2 ,

𝑢12 = −𝑐1,0,2,22 (𝑥𝑐1,0,2,2 + 𝑦𝑐0,1,2,2)−2 ,
𝑢13 = − (𝑦2𝑐1,2,2,2 + 𝑦𝑐1,1,2,2 + 𝑐1,0,2,2)2 (𝑥𝑦2𝑐1,2,2,2
+ 𝑥𝑦𝑐1,1,2,2 + 𝑦2𝑐0,2,2,2 + 𝑥𝑐1,0,2,2 + 𝑦𝑐0,1,2,2)−2 .
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This paper is devoted to finding the asymptotic expansion of solutions to fractional partial differential equations with initial
conditions. A new method, the residual power series method, is proposed for time-space fractional partial differential equations,
where the fractional integral and derivative are described in the sense of Riemann-Liouville integral and Caputo derivative. We
apply the method to the linear and nonlinear time-space fractional Kuramoto-Sivashinsky equation with initial value and obtain
asymptotic expansion of the solutions, which demonstrates the accuracy and efficiency of the method.

1. Introduction

The Kuramoto-Sivashinsky (KS) equation in one space
dimension,

𝐷𝑡𝑢 (𝑥, 𝑡) + 𝐷4𝑥𝑢 (𝑥, 𝑡) + 𝐷2𝑥𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡)𝐷𝑥𝑢 (𝑥, 𝑡)
= 0, (1)

has attracted a great deal of interest as a model for complex
spatiotemporal dynamics in spatially extended systems and
as a paradigm for finite-dimensional dynamics in a partial
differential equation. 𝐷2𝑥𝑢 term in (1) is responsible for
an instability at large scales; dissipative term 𝐷4𝑥𝑢 provides
damping at small scales; and the nonlinear term 𝑢𝐷𝑥𝑢
stabilizes by transferring energy between large and small
scales. The KS equation dates back to the mid-1970s and
was first introduced by Kuramoto [1] in the study of phase
turbulence in the Belousov-Zhabotinsky reaction-diffusion
systems. An extension of this equation to two or more spatial
dimensionswas given by Sivashinsky [2, 3] inmodelling small
thermal diffusive instabilities in laminar flame fronts and
in small perturbations from a reference Poiseuille flow of a

flame layer on an inclined plane. In one space dimension it
is also used as model for the problem of Bénard convection
in an elongated box, and it may be used to describe long
waves on the interface between two viscous fluids and
unstable drift wave in plasmas. As a dynamical system, KS
equation is known for its chaotic solutions and complicated
behavior due to the terms that appear. Because of this fact,
KS equation was studied extensively as a paradigm of finite
dynamics in a partial differential equation. Its multimodal,
oscillatory, and chaotic solutions have been investigated [4–
8]; its nonintegrability was established via Painlevé analysis
[9] and due to its bifurcation behavior a connection to low
finite-dimensional dynamical systems is established [10, 11].
TheKS equation is nonintegrable; therefore the exact solution
of this equation is not obtainable and only numerical schemes
have been proposed [12, 13].

Partial differential equations (PDEs) which arise in real-
world physical problems are often too complicated to be
solved exactly and even if an exact solution is obtainable, the
required calculations may be too complicated to be practical
or difficult to interpret the outcome. Very recently, some
practical approximate analytical solutions are proposed to
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solve KS equation, such as Chebyshev spectral collocation
scheme [14], lattice Boltzmann technique [15], local discon-
tinuous Galerkin method [16], tanh function method [17],
variational iteration method [18], perturbation methods [19],
classical and nonclassical symmetries method for the KS
equation dispersive effects [20], Riccati expansion method
[21], and Lie symmetry method [22], and see also [23–27].
In the last few decades, fractional-order models are found to
be more adequate than integer-order models for some real-
world problems. Fractional derivatives provide an excellent
tool for the description of memory and hereditary properties
of variousmaterials and processes.This is themain advantage
of fractional differential equations in comparison with clas-
sical integer-order models. Fractional differential equations
arise in many engineering and scientific disciplines as the
mathematical modelling of systems and processes in the
fields of physics, chemistry, aerodynamics, electrodynamics
of complex medium, polymer rheology, and so forth involves
derivatives of fractional order. In particular, for the construc-
tion of the approximate solutions of the fractional PDEs,
various methods are proposed: finite difference method [28],
the finite element method [29], the differential transforma-
tion method [30], the fractional subequation method [31],
the fractional complex transform method [32], the modi-
fied simple equation method [33], the variational iteration
method [34], the Lagrange characteristic method [35], the
iteration method [36], and so on. For the time-fractional KS
equation, in [37] the authors constructed the analytical exact
solutions via fractional complex transform, and they obtained
new types of exact analytical solutions. In [38], Rezazadeh
and Ziabary found travelling wave solutions by the general
time-space KS equation by a subequation method.

In this work, we apply residual power series (RPS)
method to construct the asymptotic expansion of the solution
to the more general linear KS equation

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝛽𝐷4𝜏𝑥 𝑢 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢 (𝑥, 𝑡) + 𝛿𝐷𝜂𝑥𝑢 (𝑥, 𝑡)
= 0 (2)

and the nonlinear KS equation

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝛽𝐷4𝜏𝑥 𝑢 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢 (𝑥, 𝑡)
+ 𝛿𝑢 (𝑥, 𝑡) 𝐷𝜂𝑥𝑢 (𝑥, 𝑡) = 0 (3)

with initial value

𝑢 (𝑥, 0) = 𝑎0 (𝑥) ∈ 𝐶∞ (R) , (4)

where 0 < 𝛼, 𝜂 ≤ 1, 3/4 < 𝜏 ≤ 1, 1/2 < 𝜎 ≤ 1, 𝛽, 𝛾,
and 𝛿 are any arbitrary constants, and (𝑥, 𝑡) ∈ R × R.The
general response expression contains different parameters
describing the order of the fractional derivative that can
be varied to obtain various responses. The fractional power
series solutions can be obtained by the RPS method. Particu-
larly, if we take special parameters 𝛼 = 1, 𝜏 = 1, 𝜎 = 1, 𝜂 = 1,𝛽 = 1, 𝛾 = 1, and 𝛿 = 1 (here the equation is integer-order)
and special initial condition 𝑎0(𝑥) = 𝑥, the exact solution of
linear KS equation is

𝑢 (𝑥, 𝑡) = 𝑥 − 𝑡, (5)

and the exact solution of nonlinear KS equation also can be
obtained:

𝑢 (𝑥, 𝑡) = 𝑥1 + 𝑡 . (6)

Here the solution of nonlinear KS equation we obtained is
different from Porshokouhi and Ghanbari’s work in [39] for
the integer-order KS equation. They take the travel wave
initial condition

𝑎0 (𝑥) = 𝑐 + 519√1119 (11 tanh3 (𝑘 (𝑥 − 𝑥0))
− 9 tanh (𝑘 (𝑥 − 𝑥0)))

(7)

and get the exact traveling wave solution

𝑢 (𝑥, 𝑡) = 𝑐 + 519√1119 (11 tanh3 (𝑘 (𝑥 − 𝑐𝑡 − 𝑥0))
− 9 tanh (𝑘 (𝑥 − 𝑐𝑡 − 𝑥0)))

(8)

of (2) with the same special parameters 𝛼 = 1, 𝜏 = 1/4,𝜎 = 1, 𝜂 = 1, 𝛽 = 1, 𝛾 = 1, and 𝛿 = 1. Their
skills mainly depend on the variational iteration method and
obtain the different numerical examples with different para-
meters. To the best of information of the authors, no previous
research work has been done using proposed technique for
solving time-space fractional KS equation. Our method can
be applied to the time-space linear and nonlinear fractional
KS equations. The main advantage of the RPS method is that
it can be applied directly for all types of differential equa-
tion, because it depends on the recursive differentiation of
time-fractional derivative and uses given initial conditions
to calculate coefficients of the multiple fractional power
series solutionwithminimal calculations. Another important
advantage is that this method does not require linearization,
perturbation, or discretization of the variables; it is not
affected by computational round-off errors and does not
require large computer memory and extensive time.

The rest of this paper is organised as follows. In Section 2,
some necessary concepts on the theory of fractional calculus
are presented. The main steps of the PRS method are pro-
posed in Section 3. Section 4 is the application of RPSmethod
to construct analytical solution of linear and nonlinear time-
space fractional KS equation with initial value. The paper is
concluded with some general remarks in Section 5.

2. Some Concepts on the Theory of
Fractional Calculus

There are several definitions of the fractional integral and
fractional derivative, which are not necessarily equivalent
to each other (see [40–42]). Riemann-Liouville integral and
Caputo derivative are the two most used forms which have
been introduced in [43–45]. In this section, we give some
notions we need in this paper.

Definition 1 (see [40, 41, 43]). A real function 𝑓(𝑡), 𝑡 > 0, is
said to be in the space 𝐶𝜇, 𝜇 ∈ R, if there exists a real number
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𝑝 > 𝜇 such that 𝑓(𝑡) = 𝑡𝑝𝑓1(𝑡), where 𝑓1(𝑡) ∈ 𝐶[0, +∞), and
it is said to be in the space 𝐶𝑛𝜇 if 𝑓(𝑛)(𝑡) ∈ 𝐶𝜇, 𝑛 ∈ N.
Definition 2 (see [40, 41, 43]). The Riemann-Liouville frac-
tional integral operator of order 𝛼 ⩾ 0 of a function 𝑓 ∈ 𝐶𝜇,𝜇 ⩾ −1, is defined as

𝑡0
𝐼𝛼
𝑡
𝑓 (𝑡)

fl
{{{

1Γ (𝛼) ∫
𝑡

𝑡0

(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) 𝑑𝜏, 𝛼 > 0, 𝑡 > 𝜏 > 𝑡0,
𝑓 (𝑡) , 𝛼 = 0,

(9)

where the symbol 𝑡0𝐼𝛼𝑡 represents the 𝛼th Riemann-Liouville
fractional integral of 𝑓 of 𝑡 between the limits 𝑡0 and 𝑡.
Property 1 (see [40, 41, 43]). Here the properties of the
operator 𝑡0𝐼𝛼𝑡 are given: for 𝑓 ∈ 𝐶𝜇, 𝜇 ⩾ −1, 𝛼, 𝛽, 𝐶 ∈ R,
and 𝛾 ⩾ −1,
(Pro1) 𝑡0𝐼𝛼𝑡 𝑡0𝐼𝛽𝑡 𝑓 (𝑡) = 𝑡0𝐼𝛼+𝛽𝑡 𝑓 (𝑡) = 𝑡0𝐼𝛽𝑡 𝑡0𝐼𝛼𝑡 𝑓 (𝑡) ,
(Pro2.) 𝑡0𝐼𝛼𝑡 𝐶 = 𝐶Γ (𝛼 + 1) (𝑡 − 𝑡0)𝛼 ,
(Pro3.) 𝑡0𝐼𝛼𝑡 𝑡𝛾 = Γ (𝛾 + 1)Γ (𝛾 + 𝛼 + 1) 𝑡𝛾+𝛼󵄨󵄨󵄨󵄨𝑡𝑡0 .

(10)

Definition 3 (see [40, 41, 43]). The Caputo fractional deriva-
tive of order 𝛼 > 0 of 𝑓 ∈ 𝐶𝑛−1, 𝑛 ∈ N, is defined as

𝑡0
𝐷𝛼
𝑡
𝑓 (𝑡) fl {{{{{

𝑡0
𝐼𝑛−𝛼
𝑡
𝑓(𝑛) (𝑡) , 𝑛 − 1 < 𝛼 < 𝑛, 𝑡 > 𝑡0,𝑑𝑛𝑓 (𝑡)𝑑𝑡𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡0 , 𝛼 = 𝑛, (11)

where the symbol 𝑡0𝐷𝛼𝑡 𝑓(𝑡) represents the 𝛼th Caputo frac-
tional derivative of 𝑓 with respect to 𝑡 at 𝑡0.
Property 2 (see [40, 41, 43]). Here the properties of the
operator 𝑡0𝐷𝛼𝑡 are given: for 𝛾 > −1, 𝑡 > 𝑠 ⩾ 0, and 𝐶 ∈ R,

(Pro1.) 𝑡0𝐷𝛼𝑡 𝑡0𝐷𝛽𝑡 𝑓 (𝑡) = 𝑡0𝐷𝛼+𝛽𝑡 𝑓 (𝑡)
= 𝑡0𝐷𝛽𝑡 𝑡0𝐷𝛼𝑡 𝑓 (𝑡) ,

(Pro2.) 𝑡0𝐷𝛼𝑡 𝐶 = 0,
(Pro3.) 𝑡0𝐷𝛼𝑡 𝑡𝛾 = Γ (𝛾 + 1)Γ (𝛾 − 𝛼 + 1) 𝑡𝛾−𝛼󵄨󵄨󵄨󵄨𝑡=𝑡0 .

(12)

Remark 4 (see [41, 46]). The Caputo time-fractional deriva-
tive operator of order 𝛼 of function 𝑢(𝑥, 𝑡)with respect to 𝑡 at𝑡0 is defined as

𝑡0
𝐷𝛼
𝑡
𝑢 (𝑥, 𝑡)

fl
{{{{{{{
𝑡0
𝐼𝑛−𝛼
𝑡

𝜕𝑛𝑢 (𝑥, 𝑡)𝜕𝑡𝑛 , 𝑛 − 1 < 𝛼 < 𝑛, 𝑡 > 𝑡0,𝑑𝑛𝑓 (𝑡)𝑑𝑡𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡0 , 𝛼 = 𝑛 ∈ N,

(13)

where 𝑥 ∈ R and 𝑡 > 0.

Remark 5 (see [41, 46]). The Caputo space-fractional deriva-
tive operator of order 𝛽 of function 𝑢(𝑥, 𝑡) with respect to 𝑥
at 𝑥0 is defined as

𝑥0
𝐷𝛽
𝑥
𝑢 (𝑥, 𝑡)

fl
{{{{{{{
𝑥0
𝐼𝑚−𝛽
𝑥

𝜕𝑚𝑢 (𝑥, 𝑡)𝜕𝑡𝑚 , 𝑚 − 1 < 𝛼 < 𝑚, 𝑥 > 𝑥0,𝜕𝑚𝑢 (𝑥, 𝑡)𝜕𝑥𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0 , 𝛼 = 𝑚 ∈ N,

(14)

where 𝑥 ∈ R and 𝑡 > 0.
Definition 6 (see [41, 46]). A power series representation of
the form
∞∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛼 fl 𝑐0 + 𝑐1 (𝑡 − 𝑡0)𝛼 + 𝑐2 (𝑡 − 𝑡0)2𝛼
+ ⋅ ⋅ ⋅ ,

(15)

where𝑚 − 1 < 𝛼 ≤ 𝑚 and 𝑡 ⩾ 𝑡0, is called a fractional power
series (FPS) about 𝑡0, where 𝑡 is a variable and 𝑐𝑛 are constants
called the coefficients of the series.

Theorem 7. Suppose that 𝑓 has a FPS representation at 𝑡0 of
the form

𝑓 (𝑡) = ∞∑
𝑛=0

𝑐𝑛 (𝑡 − 𝑡0)𝑛𝛼 ,
0 ⩽ 𝑚 − 1 < 𝛼 ⩽ 𝑚, 𝑡0 ⩽ 𝑡 < 𝑡0 + 𝑅,

(16)

and𝑅 is the radius of convergence of the FPS. If𝑓(𝑡) ∈ 𝐶[𝑡0, 𝑡0+𝑅) and 𝑡0𝐷𝑛𝛼𝑡 𝑓(𝑡) ∈ 𝐶(𝑡0, 𝑡0 + 𝑅) for 𝑛 = 0, 1, 2, . . ., then the
coefficients 𝑐𝑛 will take the form of

𝑐𝑛 = 𝑡0𝐷
𝑛𝛼

𝑡
𝑓 (𝑡)

Γ (𝑛𝛼 + 1) , (17)

where 𝑡0𝐷𝑛𝛼𝑡 = 𝑡0𝐷𝛼𝑡 ⋅ 𝑡0𝐷𝛼𝑡 ⋅ . . . ⋅ 𝑡0𝐷𝛼𝑡 (𝑛-times).

This result is similar to [46, Theorem 2.2] and [47,
Theorem 3.4]. It is convenient to give the details for the
following applications; thus we write the process of the proof
in the form of function with one variable.

Proof. First of all, notice that if we put 𝑡 = 𝑡0 into (16), it yields
𝑐0 = 𝑓 (𝑡0) = 𝑡0𝐷

0𝛼

𝑡
𝑓 (𝑡)

Γ (0𝛼 + 1) . (18)

Applying the operator 𝑡0𝐷𝛼𝑡 one time on (16) leads to

𝑐1 = 𝑡0𝐷
𝛼

𝑡
𝑓 (𝑡)

Γ (𝛼 + 1) . (19)

Again, by applying the operator 𝑡0𝐷𝛼𝑡 two times on (16), one
can obtain

𝑐2 = 𝑡0𝐷
2𝛼

𝑡
𝑓 (𝑡)

Γ (2𝛼 + 1) . (20)



4 Advances in Mathematical Physics

By now, the pattern is clearly found, if we continue applying
recursively the operator 𝑡0𝐷𝛼𝑡 𝑛-times on (16); then it is easy
to discover the following form for 𝑐𝑛:

𝑐𝑛 = 𝑡0𝐷
𝑛𝛼

𝑡
𝑓 (𝑡)

Γ (𝑛𝛼 + 1) , 𝑛 = 0, 1, 2, . . . ; (21)

that is, it has the same formas (17), which completes the proof.

Following the similar result as [46, Theorem 2.3] or [48,
Remark 8], we can obtain the following corollary.

Corollary 8. If 𝑓(𝑡) = 𝑢(𝑥, 𝑡), then we have

𝑢 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑐𝑛 (𝑥) (𝑡 − 𝑡0)𝑛𝛼 ,
0 ⩽ 𝑚 − 1 < 𝛼 ⩽ 𝑚, 𝑥 ∈ R, 𝑡0 ⩽ 𝑡 < 𝑡0 + 𝑅,

(22)

and 𝑅 is the radius of convergence of the FPS; if 𝐷𝑛𝛼𝑡 ∈ 𝐶(R ×(𝑡0, 𝑡0 + 𝑅)), 𝑛 = 0, 1, 2, . . ., then the coefficients are given by𝑐𝑛(𝑥) = 𝑡0𝐷𝑛𝛼𝑡 𝑢(𝑥, 𝑡)/Γ(𝑛𝛼 + 1).
3. Algorithm of RPS Method

Let us consider the higher-order time-space fractional differ-
ential equation with initial values as follows:

𝐷𝑚𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝐺 (𝑥, 𝑡) = 0,
𝑢 (𝑥, 0) = 𝑎0 (𝑥) , 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡)󵄨󵄨󵄨󵄨𝑡=0
= 𝑎1 (𝑥) , . . . , 𝐷(𝑚−1)𝛼𝑡 𝑢 (𝑥, 𝑡)|𝑡=0 = 𝑎𝑚−1 (𝑥) ,

(23)

where 𝑥 ∈ R, 𝑡 ∈ R, and
𝐺 (𝑥, 𝑡) = 𝐹 (𝑢,𝐷𝛼𝑡 𝑢,𝐷2𝛼𝑡 𝑢, . . . , 𝐷(𝑚−1)𝛼𝑡 𝑢,𝐷𝛽1𝑥 𝑢,𝐷𝛽2𝑥 𝑢,
. . . , 𝐷𝛽𝑙𝑥 𝑢) . (24)

𝑢(𝑥, ⋅) and𝐺(𝑥, ⋅) are analytical function about 𝑡, (𝑚−1)/𝑚 <𝛼 ⩽ 1, 𝑚 ∈ N, 𝑝 − 1 < 𝛽𝑝 ⩽ 𝑝, and 𝑝 = 1, 2, . . . , 𝑙; 𝑎𝑞(𝑥) ∈𝐶∞(R), 𝑞 = 0, 1, 2, . . . , 𝑚 − 1.
Assume that 𝑢(𝑥, 𝑡) is analytical about 𝑡; the solution of

the system can be written in the form of

𝑢 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑢𝑛 (𝑥, 𝑡) , (25)

where 𝑢𝑛(𝑥, 𝑡) are terms of approximations and are given as

𝑢𝑛 (𝑥, 𝑡) = 𝐶𝑛 (𝑥) 𝑡𝑛𝛼,
𝑥 ∈ R, |𝑡| < 𝑅, 𝑛 = 0, 1, 2, . . . , (26)

where 𝑅 is the radius of convergence of above series. Obvi-
ously, when 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, using the terms 𝐷𝑖𝛼𝑡 𝑢(𝑥, 𝑡)
which satisfy the initial condition, we can get

𝑎𝑖 (𝑥) = 𝐷𝑖𝛼𝑡 𝑢 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 = 𝐶𝑖 (𝑥) Γ (𝑖𝛼 + 1) 󳨐⇒
𝑢𝑖 (𝑥, 𝑡) = 𝐶𝑖 (𝑥) 𝑡𝑖𝛼 = 𝐷

𝑖𝛼
𝑡 𝑢 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼

= 𝑎𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼, 𝑖 = 0, 1, . . . , 𝑚 − 1.
(27)

So we have the initial guess approximation of 𝑢(𝑥, 𝑡) in the
following form:

𝑢initial (𝑥, 𝑡) fl 𝑢0 (𝑥, 𝑡) + 𝑢1 (𝑥, 𝑡) + ⋅ ⋅ ⋅ + 𝑢𝑚−1 (𝑥, 𝑡)
= 𝑎0 (𝑥) + 𝑎1 (𝑥)Γ (𝛼 + 1) 𝑡𝛼 + ⋅ ⋅ ⋅
+ 𝑎𝑚−1 (𝑥)Γ ((𝑚 − 1) 𝛼 + 1) 𝑡(𝑚−1)𝛼.

(28)

On the other aspect as well, if we choose 𝑢initial(𝑥, 𝑡) as initial
guess approximation 𝑢𝑖(𝑥, 𝑡) for 𝑖 = 𝑚,𝑚 + 1,𝑚 + 2, . . ., the
approximate solutions of 𝑢(𝑥, 𝑡) of (23) by the 𝑘th truncated
series are

𝑢𝑘 (𝑥, 𝑡) fl 𝑢initial (𝑥, 𝑡) + 𝑘∑
𝑖=𝑚

𝐶𝑖 (𝑥) 𝑡𝑖𝛼,
𝑘 = 𝑚,𝑚 + 1,𝑚 + 2, . . . .

(29)

Before applying RPS method for solving (23), we first give
some notations:

Res (𝑥, 𝑡) fl 𝐷𝑚𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝐺 (𝑥, 𝑡) . (30)

Substituting the 𝑘th truncated series 𝑢𝑘(𝑥, 𝑡) into (23), we can
obtain the following definition for 𝑘th residual function:

Res𝑘 (𝑥, 𝑡) fl 𝐷𝑚𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) + 𝐺𝑘 (𝑥, 𝑡) , (31)

where

𝐺𝑘 (𝑥, 𝑡) = 𝐹 (𝑢𝑘, 𝐷𝛼𝑡 𝑢𝑘, 𝐷2𝛼𝑡 𝑢𝑘, . . . , 𝐷(𝑚−1)𝛼𝑡 𝑢𝑘, 𝐷𝛽1𝑥 𝑢𝑘,
𝐷𝛽2𝑥 𝑢𝑘, . . . , 𝐷𝛽1𝑛𝑥 𝑢𝑘, 𝐷𝛽𝑙𝑥1𝑢𝑘) .

(32)

Then, we have following facts:

(1) lim
𝑘→∞

𝑢𝑘 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) ;
(2) Res (𝑥, 𝑡) = 0;
(3) Res∞ (𝑥, 𝑡) = lim

𝑘→+∞
Res𝑘 (𝑥, 𝑡) = Res (𝑥, 𝑡) = 0,

𝑥 ∈ R, |𝑡| < 𝑅.
(33)
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These show that the residual function Res∞(𝑥, 𝑡) is infinitely
many times differentiable at 𝑡 = 0. On the other hand, we can
show that

0 = 𝐷(𝑘−𝑚)𝛼𝑡 Res∞ (𝑥, 𝑡)󵄨󵄨󵄨󵄨𝑡=0
= 𝐶𝑘 (𝑥) Γ (𝑘𝛼 + 1) + 𝐷(𝑘−𝑚)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 󳨐⇒

𝐶𝑘 (𝑥) = − 𝐷
(𝑘−𝑚)𝛼
𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0Γ (𝑘𝛼 + 1) ,

𝑘 = 𝑚,𝑚 + 1,𝑚 + 2, . . . .

(34)

Since −𝐷(𝑘−𝑚)𝛼𝑡 𝐺𝑘(𝑥, 𝑡)|𝑡=0 is not dependent on 𝑡, denoting it
by 𝑓𝑘(𝑥), by Theorem 7, (34) can be written as

𝐶𝑘 (𝑥) = 𝑓𝑘 (𝑥)Γ (𝑘𝛼 + 1) ,
𝑓𝑘 (𝑥) = −𝐷(𝑘−𝑚)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 ,

𝑘 = 𝑚,𝑚 + 1,𝑚 + 2, . . . .
(35)

In fact, the relation of (35) is a fundamental rule in the RPS
method and its applications. So the fractional power series
solution of (23) is

𝑢 (𝑥, 𝑡) = 𝑢initial (𝑥, 𝑡) + ∞∑
𝑖=𝑚

𝐶𝑖 (𝑥) 𝑡𝑖𝛼

= 𝑚−1∑
𝑖=0

𝑎𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼 +
∞∑
𝑖=𝑚

𝑓𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼,
(36)

where 𝑎𝑖(𝑥) (𝑖 = 0, 1, 2, . . . , 𝑚 − 1) are given by the initial
conditions and 𝑓𝑖(𝑥) (𝑖 = 𝑚,𝑚 + 1,𝑚 + 2, . . .) have been
constructed by RPS method in the form in (35).

4. Application of RPS Method to Time-Space
Fractional KS Equation

In this section, we apply the RPS method to the linear
and nonlinear time-space fractional KS equation with the
initial conditions.The fractional power series solutions can be
obtained by the recursive equation (35) with time-fractional
derivative, while it will use the given initial conditions. And
the fractional power series solutions we consider in the fol-
lowing examples are all in the convergence radius of the
series.

4.1. Linear Time-Space Fractional KS Equation. Consider the
linear time-space fractional KS equation

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝛽𝐷4𝜏𝑥 𝑢 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢 (𝑥, 𝑡) + 𝛿𝐷𝜂𝑥𝑢 (𝑥, 𝑡)
= 0. (37)

In (37), if 𝑢(𝑥, 𝑡) is analytical about 𝑡, then 𝑢(𝑥, 𝑡) can be
written as the fractional power series:

𝑢 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑓𝑛 (𝑥)Γ (𝑛𝛼 + 1) 𝑡𝑛𝛼. (38)

If we can take the initial value,

𝑢 (𝑥, 0) = 𝑎0 (𝑥) ∈ 𝐶∞ (R) . (39)

According to the initial condition, it is obvious that 𝑓0(𝑥) =𝑎0(𝑥). Before getting the coefficients 𝑓𝑛(𝑥) (𝑛 = 1, 2, . . .), we
first present some notations as in Section 3:

𝐺 (𝑥, 𝑡) = 𝛽𝐷4𝜏𝑥 𝑢 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢 (𝑥, 𝑡)
+ 𝛿𝐷𝜂𝑥𝑢 (𝑥, 𝑡) ;

Res (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝐺 (𝑥, 𝑡) ;
𝑢𝑘 (𝑥, 𝑡) = 𝑘∑

𝑗=0

𝑓𝑗 (𝑥)Γ (𝑗𝛼 + 1) 𝑡𝑗𝛼

= 𝑎0 (𝑥) + 𝑘∑
𝑗=1

𝑓𝑗 (𝑥)Γ (𝑗𝛼 + 1) 𝑡𝑗𝛼;
𝐺𝑘 (𝑥, 𝑡) = 𝛽𝐷4𝜏𝑥 𝑢𝑘 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢𝑘 (𝑥, 𝑡)

+ 𝛿𝐷𝜂𝑥𝑢𝑘 (𝑥, 𝑡) ;
Res𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) + 𝐺𝑘 (𝑥, 𝑡) .

(40)

It follows from the facts in (33) that the residual function
Res∞(𝑥, 𝑡) is infinitely many times differentiable at 𝑡 = 0. On
the other hand, it follows from Definition 3 and (40) that

0 = 𝐷(𝑘−1)𝛼𝑡 Res∞ (𝑥, 𝑡)󵄨󵄨󵄨󵄨𝑡=0 = 𝐷(𝑘−1)𝛼𝑡 Res𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝐷(𝑘−1)𝛼𝑡 (𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) + 𝐺𝑘 (𝑥, 𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝐷𝑘𝛼𝑡 𝑢𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝐷(𝑘−1)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑓𝑘 (𝑥) + 𝐷(𝑘−1)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 ,

(41)

which gives

𝑓𝑘 (𝑥) = −𝐷(𝑘−1)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 , (𝑘 = 1, 2, 3, . . .) . (42)

Equation (42) gives the iterative formula for the coefficients𝑓𝑛(𝑥) (𝑛 = 1, 2, . . .), so we can obtain

𝑓0 (𝑥) = 𝑎0 (𝑥) ,
𝑓1 (𝑥) = − (𝛽𝐷4𝜏𝑥 𝑎0 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎0 (𝑥) + 𝛿𝐷𝜂𝑥𝑎0 (𝑥))

≜ 𝑎1 (𝑥) ,
𝑓2 (𝑥) = − (𝛽𝐷4𝜏𝑥 𝑎1 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎1 (𝑥) + 𝛿𝐷𝜂𝑥𝑎1 (𝑥))

≜ 𝑎2 (𝑥) ;
𝑓3 (𝑥) = − (𝛽𝐷4𝜏𝑥 𝑎2 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎2 (𝑥) + 𝛿𝐷𝜂𝑥𝑎2 (𝑥))

≜ 𝑎3 (𝑥) .

(43)



6 Advances in Mathematical Physics

For general 𝑘 ∈ Z, we have
𝑓𝑘 (𝑥)
= − (𝛽𝐷4𝜏𝑥 𝑎𝑘−1 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎𝑘−1 (𝑥) + 𝛿𝐷𝜂𝑥𝑎𝑘−1 (𝑥))
≜ 𝑎𝑘 (𝑥) .

(44)

So the 𝑘th approximate solution of (37) with initial value (39)
is

𝑢𝑘 (𝑥, 𝑡) = 𝑘∑
𝑖=0

𝑓𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼 =
𝑘∑
𝑖=0

𝑎𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼,
𝑘 = 1, 2, 3, . . . ,

(45)

where 𝑎𝑖(𝑥) (𝑖 = 0, 1, 2, . . . , 𝑘) are given by (39) and (44).
Specifically, if taking 𝛼 = 1, 𝜏 = 1, 𝜎 = 1, 𝜂 = 1, 𝛽 = 1,𝛾 = 1, and 𝛿 = 1 (the equation becomes integer order) and

special initial value 𝑎0(𝑥) = 𝑥, we can obtain

𝑎1 (𝑥) = −1,
𝑎𝑘 (𝑥) = 0, 𝑘 = 2, 3, . . . . (46)

So, we can obtain the 𝑘th approximate power series solution
of integer-order equation (37):

𝑢𝑘 (𝑥, 𝑡) = 𝑘∑
𝑖=0

𝑎𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼 = 𝑥 − 𝑡. (47)

Thus, the exact solution is

𝑢 (𝑥, 𝑡) = lim
𝑘→∞

𝑢𝑘 (𝑥, 𝑡) = 𝑥 − 𝑡, (48)

when 𝛼 = 1, 𝜏 = 1, 𝜎 = 1, 𝜂 = 1, 𝛽 = 1, 𝛾 = 1, 𝛿 = 1, and𝑎0(𝑥) = 𝑥.
4.2. Nonlinear Time-Space Fractional KS Equation. Let us
rewrite the nonlinear time-space fractional KS equation:

𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝛽𝐷4𝜏𝑥 𝑢 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢 (𝑥, 𝑡)
+ 𝛿𝑢 (𝑥, 𝑡) 𝐷𝜂𝑥𝑢 (𝑥, 𝑡) = 0. (49)

If 𝑢(𝑥, 𝑡) is analytical about 𝑡 of (49), then 𝑢(𝑥, 𝑡) can be
written as the fractional power series:

𝑢 (𝑥, 𝑡) = ∞∑
𝑛=0

𝑓𝑛 (𝑥)Γ (𝑛𝛼 + 1) 𝑡𝑛𝛼. (50)

Here, the initial value satisfies

𝑢 (𝑥, 0) = 𝑎0 (𝑥) ∈ 𝐶∞ (R) . (51)

According to the initial condition, it is obvious that 𝑓0(𝑥) =𝑎0(𝑥).

Before getting the coefficients𝑓𝑛(𝑥) (𝑛 = 1, 2, . . .), we also
present some symbols:

𝐺 (𝑥, 𝑡) = 𝛽𝐷4𝜏𝑥 𝑢 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢 (𝑥, 𝑡)
+ 𝛿𝑢 (𝑥, 𝑡)𝐷𝜂𝑥𝑢 (𝑥, 𝑡) ;

Res (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝐺 (𝑥, 𝑡) ;
𝑢𝑘 (𝑥, 𝑡) = 𝑘∑

𝑗=0

𝑓𝑗 (𝑥)Γ (𝑗𝛼 + 1) 𝑡𝑗𝛼

= 𝑎0 (𝑥) + 𝑘∑
𝑗=1

𝑓𝑗 (𝑥)Γ (𝑗𝛼 + 1) 𝑡𝑗𝛼;
𝐺𝑘 (𝑥, 𝑡) = 𝛽𝐷4𝜏𝑥 𝑢𝑘 (𝑥, 𝑡) + 𝛾𝐷2𝜎𝑥 𝑢𝑘 (𝑥, 𝑡)

+ 𝛿𝑢𝑘 (𝑥, 𝑡) 𝐷𝜂𝑥𝑢𝑘 (𝑥, 𝑡) ;
Res𝑘 (𝑥, 𝑡) = 𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) + 𝐺𝑘 (𝑥, 𝑡) .

(52)

It also follows from the facts in (33) that the residual function
Res∞(𝑥, 𝑡) is infinitely many times differentiable at 𝑡 = 0.

On the other hand, it follows from Definition 3 and the
notations above that

0 = 𝐷(𝑘−1)𝛼𝑡 Res∞ (𝑥, 𝑡)󵄨󵄨󵄨󵄨𝑡=0 = 𝐷(𝑘−1)𝛼𝑡 Res𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝐷(𝑘−1)𝛼𝑡 (𝐷𝛼𝑡 𝑢𝑘 (𝑥, 𝑡) + 𝐺𝑘 (𝑥, 𝑡))󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝐷𝑘𝛼𝑡 𝑢𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 + 𝐷(𝑘−1)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝑓𝑘 (𝑥) + 𝐷(𝑘−1)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 ,

(53)

which gives

𝑓𝑘 (𝑥) = − 𝐷(𝑘−1)𝛼𝑡 𝐺𝑘 (𝑥, 𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 , (𝑘 = 1, 2, 3, . . .) . (54)

Equation (54) gives the iterative formula for the coefficients𝑓𝑛(𝑥) (𝑛 = 1, 2, . . .), so we can obtain

𝑓0 (𝑥) = 𝑎0 (𝑥) ,
𝑓1 (𝑥) = − (𝛽𝐷4𝜏𝑥 𝑎0 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎0 (𝑥)
+ 𝛿𝑎0 (𝑥)𝐷𝜂𝑥𝑎0 (𝑥)) ≜ 𝑎1 (𝑥) ,

𝑓2 (𝑥) = − (𝛽𝐷4𝜏𝑥 𝑎1 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎1 (𝑥)
+ 𝛿𝑎0 (𝑥)𝐷𝜂𝑥𝑎1 (𝑥) + 𝛿𝑎1 (𝑥)𝐷𝜂𝑥𝑎0 (𝑥)) ≜ 𝑎2 (𝑥) ;

𝑓3 (𝑥) = −(𝛽𝐷4𝜏𝑥 𝑎2 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎2 (𝑥)
+ 𝛿𝑎0 (𝑥)𝐷𝜂𝑥𝑎2 (𝑥) + 𝛿 Γ (2𝛼 + 1)(Γ (𝛼 + 1))2 𝑎1 (𝑥)𝐷𝜂𝑥𝑎1 (𝑥)
+ 𝛿𝑎2 (𝑥)𝐷𝜂𝑥𝑎0 (𝑥)) ≜ 𝑎3 (𝑥) .

(55)
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For general 𝑘 ∈ Z, we have
𝑓𝑘 (𝑥) = −(𝛽𝐷4𝜏𝑥 𝑎𝑘−1 (𝑥) + 𝛾𝐷2𝜎𝑥 𝑎𝑘−1 (𝑥)

+ 𝛿𝑘−1∑
𝑗=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑗𝛼 + 1) Γ ((𝑘 − 1 − 𝑗) 𝛼 + 1)𝑎𝑗 (𝑥)

⋅ 𝐷𝜂𝑥𝑎𝑘−1−𝑗 (𝑥)) ≜ 𝑎𝑘 (𝑥) .

(56)

So the 𝑘th approximate solution of (51) with initial value (51)
is

𝑢𝑘 (𝑥, 𝑡) = 𝑘∑
𝑖=0

𝑓𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼 =
𝑘∑
𝑖=0

𝑎𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼,
𝑘 = 1, 2, 3, . . . ,

(57)

where 𝑎𝑖(𝑥) (𝑖 = 0, 1, 2, . . . , 𝑘) are given by (51) and (56).
In particular, if taking 𝛼 = 1, 𝜏 = 1, 𝜎 = 1, 𝜂 = 1, 𝛽 = 1,𝛾 = 1, 𝛿 = 1, and 𝑎0(𝑥) = 𝑥, we can obtain

𝑎1 (𝑥) = −𝑥,
𝑎2 (𝑥) = 2!𝑥,
𝑎3 (𝑥) = −3!𝑥,

...
𝑎𝑘−1 (𝑥) = (−1)𝑘−1 (𝑘 − 1)!𝑥,
𝑎𝑘 (𝑥) = 𝐷4𝑥𝑎𝑘−1 (𝑥) + 𝐷2𝑥𝑎𝑘−1 (𝑥)
+ 𝑘−1∑
𝑗=0

Γ ((𝑘 − 1) 𝛼 + 1)Γ (𝑗𝛼 + 1) Γ ((𝑘 − 1 − 𝑗) 𝛼 + 1)𝑎𝑗 (𝑥)

⋅ 𝐷𝑥𝑎𝑘−1−𝑗 (𝑥) = 𝑘−1∑
𝑗=0

Γ ((𝑘 − 1) + 1)Γ (𝑗 + 1) Γ ((𝑘 − 1 − 𝑗) + 1)
⋅ (−1)𝑗 𝑗!𝑥 (−1)𝑘−1−𝑗 (𝑘 − 1 − 𝑗)!
= 𝑘−1∑
𝑗=0

(𝑘 − 1)!𝑗! (𝑘 − 1 − 𝑗)! (−1)𝑘−1 𝑗!𝑥 (𝑘 − 1 − 𝑗)!
= (−1)𝑘 (𝑘 − 1)! ⋅ 𝑘𝑥 = (−1)𝑘 𝑘!𝑥, 𝑘 = 1, 2, 3, . . . .

(58)

So the 𝑘th approximate FPS solution of (49) with initial value
(51) is

𝑢𝑘 (𝑥, 𝑡) = 𝑘∑
𝑖=0

𝑎𝑖 (𝑥)Γ (𝑖𝛼 + 1) 𝑡𝑖𝛼 =
𝑘∑
𝑖=0

(−1)𝑖 𝑖!𝑥𝑖! 𝑡𝑖

= 𝑥 𝑘∑
𝑖=0

(−𝑡)𝑖 = 𝑥1 − (−𝑡)𝑘1 + 𝑡 .
(59)

When 𝑡 ∈ (−1, 1), it shows
𝑢 (𝑥, 𝑡) = lim

𝑘→∞
𝑢𝑘 (𝑥, 𝑡) = lim

𝑘→∞
𝑥1 − (−𝑡)𝑘1 + 𝑡 = 𝑥1 + 𝑡 , (60)

which is the exact solution for (49) with special parameters𝛼 = 1, 𝜏 = 1, 𝜎 = 1, 𝜂 = 1, 𝛽 = 1, 𝛾 = 1, and 𝛿 = 1 and special
initial value 𝑎0(𝑥) = 𝑥.
5. Concluding Remarks

In this paper, we have used a new method: the residual
power series method for the general fractional differential
equations. The asymptotic expansion of the solutions can be
obtained successfully with respect to initial conditions which
are infinitely differentiable by the RPS method. We apply
RPS method to linear and nonlinear Kuramoto-Sivashinsky
equation with infinitely differential initial conditions and
obtain the asymptotic expansion of the solutions. Particularly,
if taking special parameters and special initial value, the
analytical solutions are obtained. These applications show
that thismethod is efficient and does not require linearization
or perturbation; it is not affected by computational round-
off errors and does not require large computer memory and
extensive time.
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The development of a new five-stage symmetric two-step fourteenth-algebraic order method with vanished phase-lag and its first,
second, and third derivatives is presented in this paper for the first time in the literature. More specifically we will study (1) the
development of the new method, (2) the determination of the local truncation error (LTE) of the new method, (3) the local
truncation error analysis which will be based on test equation which is the radial time independent Schrödinger equation, (4)
the stability and the interval of periodicity analysis of the new developed method which will be based on a scalar test equation with
frequency different than the frequency of the scalar test equation used for the phase-lag analysis, and (5) the efficiency of the new
obtained method based on its application to the coupled Schrödinger equations.

1. Introduction

The approximate solution of the close-coupling differential
equations of the Schrödinger type is studied in this paper.The
above-mentioned problem has the following form:

[ 𝑑2𝑑𝑥2 + 𝑘2𝑖 − 𝑙𝑖 (𝑙𝑖 + 1)
𝑥2 − 𝑉𝑖𝑖]𝑦𝑖𝑗 = 𝑁∑

𝑚=1

𝑉𝑖𝑚𝑦𝑚𝑗, (1)

where 1 ≤ 𝑖 ≤ 𝑁 and𝑚 ̸= 𝑖 and the boundary conditions are
as follows:

𝑦𝑖𝑗 = 0 at 𝑥 = 0 (2)

𝑦𝑖𝑗 ∼ 𝑘𝑖𝑥𝑗𝑙𝑖 (𝑘𝑖𝑥) 𝛿𝑖𝑗 + ( 𝑘𝑖𝑘𝑗)
1/2𝐾𝑖𝑗𝑘𝑖𝑥𝑛𝑙𝑖 (𝑘𝑖𝑥) , (3)

where 𝑗𝑙(𝑥) and 𝑛𝑙(𝑥) are the spherical Bessel and Neumann
functions. We will examine the case in which all channels are
open (see [1]).

Defining a matrix𝐾󸀠 and diagonal matrices𝑀,𝑁 by (see
[1])

𝐾󸀠𝑖𝑗 = ( 𝑘𝑖𝑘𝑗)
1/2𝐾𝑖𝑗,

𝑀𝑖𝑗 = 𝑘𝑖𝑥𝑗𝑙𝑖 (𝑘𝑖𝑥) 𝛿𝑖𝑗,
𝑁𝑖𝑗 = 𝑘𝑖𝑥𝑛𝑙𝑖 (𝑘𝑖𝑥) 𝛿𝑖𝑗

(4)

we obtain a new form of the asymptotic condition (3):

y ∼ M + NK󸀠. (5)

In several scientific areas (e.g., quantum chemistry,
theoretical physics, material science, atomic physics, and
molecular physics) there exists a real problem which is
the rotational excitation of a diatomic molecule by neutral
particle impact. The mathematical model of this problem
can be expressed with close-coupling differential equations
arising from the Schrödinger equation. Denoting, as in [1],
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the entrance channel by the quantum numbers (𝑗, 𝑙), the exit
channels by (𝑗󸀠, 𝑙󸀠), and the total angular momentum by 𝐽 =𝑗 + 𝑙 = 𝑗󸀠 + 𝑙󸀠, we find that

[ 𝑑2𝑑𝑥2 + 𝑘2𝑗󸀠𝑗 − 𝑙󸀠 (𝑙󸀠 + 1)
𝑥2 ]𝑦𝐽𝑗𝑙

𝑗󸀠𝑙󸀠
(𝑥)

= 2𝜇ℏ2∑
𝑗󸀠󸀠

∑
𝑙󸀠󸀠

⟨𝑗󸀠𝑙󸀠; 𝐽 |𝑉| 𝑗󸀠󸀠𝑙󸀠󸀠; 𝐽⟩ 𝑦𝐽𝑗𝑙
𝑗󸀠󸀠𝑙󸀠󸀠

(𝑥) ,
(6)

where

𝑘𝑗󸀠𝑗 = 2𝜇ℏ2 [𝐸 + ℏ22𝐼 {𝑗 (𝑗 + 1) − 𝑗󸀠 (𝑗󸀠 + 1)}] . (7)

𝐸 is the kinetic energy of the incident particle in the center-
of-mass system, 𝐼 is the moment of inertia of the rotator, and𝜇 is the reduced mass of the system.

The above-described problem will be solved numerically
via finite difference method of the form of special multistep
method.

The multistep finite difference method has the general
form

𝑚∑
𝑖=−𝑚

𝑐𝑖𝑦𝑛+𝑖 = ℎ2 𝑚∑
𝑖=−𝑚

𝑏𝑖𝑓 (𝑥𝑛+𝑖, 𝑦𝑛+𝑖) , (8)

where {𝑥𝑖}𝑚𝑖=−𝑚 are distinct points within the integration area
and ℎ given by ℎ = |𝑥𝑖+1 − 𝑥𝑖|, 𝑖 = 1 − 𝑚(1)𝑚 − 1 is the step
size or step length of the integration.

Remark 1. A method (8) is called symmetric multistep
method or symmetric 2𝑚-step method if 𝑐−𝑖 = 𝑐𝑖 and 𝑏−𝑖 =𝑏𝑖, 𝑖 = 0(1)𝑚.

If we apply the symmetric 2𝑚-stepmethod (𝑖 = −𝑚(1)𝑚),
to the scalar test equation

𝑦󸀠󸀠 = −𝜙2𝑦, (9)

we obtain the difference equation

𝐴𝑚 (V) 𝑦𝑛+𝑚 + ⋅ ⋅ ⋅ + 𝐴1 (V) 𝑦𝑛+1 + 𝐴0 (V) 𝑦𝑛
+ 𝐴1 (V) 𝑦𝑛−1 + ⋅ ⋅ ⋅ + 𝐴𝑚 (V) 𝑦𝑛−𝑚 = 0 (10)

and the associated characteristic equation

𝐴𝑚 (V) 𝜆𝑚 + ⋅ ⋅ ⋅ + 𝐴1 (V) 𝜆 + 𝐴0 (V) + 𝐴1 (V) 𝜆−1 + ⋅ ⋅ ⋅
+ 𝐴𝑚 (V) 𝜆−𝑚 = 0, (11)

where V = 𝜙ℎ, ℎ is the step length, and 𝐴𝑗(V) 𝑗 = 0(1)𝑘 are
polynomials of V.

We give some definitions.

Definition 2 (see [2]). For a symmetric 2𝑚-step method with
characteristic equation given by (11) one will say that it has an

interval of periodicity (0, V20) if, for all V ∈ (0, V20), the roots𝜆𝑖, 𝑖 = 1(1)2𝑚, of (11) satisfy

𝜆1 = 𝑒𝑖𝜃(V),
𝜆2 = 𝑒−𝑖𝜃(V),
󵄨󵄨󵄨󵄨𝜆𝑖󵄨󵄨󵄨󵄨 ≤ 1, 𝑖 = 3 (1) 2𝑚,

(12)

where 𝜃(V) is a real function of V.

Definition 3 (see [2]). One calls P-stable method a multistep
method if its interval of periodicity is equal to (0,∞).
Definition 4. One calls singularly P-stablemethod amultistep
method if its interval of periodicity is equal to (0,∞) − 𝑆
(where 𝑆 is a set of distinct points).
Definition 5 (see [3, 4]). For a symmetric 2𝑚-step method
with the characteristic equation given by (11), one defines as
the phase-lag the leading term in the expansion of

𝑡 = V − 𝜃 (V) . (13)

Then, if the quantity 𝑡 = 𝑂(V𝑞+1) as V → ∞, the order of the
phase-lag is 𝑞.
Definition 6 (see [5]). One calls symmetric 2𝑚-step method
phase-fitted if its phase-lag is equal to zero.

Theorem 7 (see [3]). The symmetric 2𝑚-step method with
characteristic equation given by (11) has phase-lag order 𝑞 and
phase-lag constant 𝑐 given by

− 𝑐V𝑞+2 + 𝑂 (V𝑞+4)
= 2𝐴𝑚 (V) cos (𝑚V) + ⋅ ⋅ ⋅ + 2𝐴𝑗 (V) cos (𝑗V) + ⋅ ⋅ ⋅ + 𝐴0 (V)2𝑚2𝐴𝑚 (V) + ⋅ ⋅ ⋅ + 2𝑗2𝐴𝑗 (V) + ⋅ ⋅ ⋅ + 2𝐴1 (V) . (14)

2. The New Five-Stage Fourteenth-Algebraic
Order P-Stable Two-Step Method with
Vanished Phase-Lag and Its First, Second,
and Third Derivatives

We consider the following family of five-stage symmetric
two-step methods:

𝑦̂𝑛 = 𝑦𝑛 − 𝑎0ℎ2 (𝑓𝑛+1 − 2𝑓𝑛 + 𝑓𝑛−1) ,
𝑦̌𝑛 = 𝑦𝑛 − 𝑎1ℎ2 (𝑓𝑛+1 − 2𝑓̂𝑛 + 𝑓𝑛−1) − 2𝑎2ℎ2𝑓̂𝑛,
𝑦̂𝑛+1/2 = 12 (𝑦𝑛 + 𝑦𝑛+1) − ℎ2 [𝑎3𝑓̌𝑛 + (18 − 𝑎3)𝑓𝑛+1] ,
𝑦̂𝑛−1/2 = 12 (𝑦𝑛 + 𝑦𝑛−1) − ℎ2 [𝑎3𝑓̌𝑛 + (18 − 𝑎3)𝑓𝑛−1] ,
𝑦𝑛+1 + 𝑎4𝑦𝑛 + 𝑦𝑛−1
= ℎ2 [𝑏1 (𝑓𝑛+1 + 𝑓𝑛−1) + 𝑏0𝑓𝑛 + 𝑏2 (𝑓̂𝑛+1/2 + 𝑓̂𝑛−1/2)] ,

(15)
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where 𝑎0 = 45469/862066800, 𝑎1 = −2793/26878564, 𝑎2 =−86919/13439282, 𝑎3 = 6719641/52720800, 𝑓𝑛+𝑖 = 𝑦󸀠󸀠(𝑥𝑛+𝑖,𝑦𝑛+𝑖), 𝑖 = −1(1/2)1, 𝑓̂𝑛 = 𝑦󸀠󸀠(𝑥𝑛, 𝑦̂𝑛), 𝑓̌𝑛 = 𝑦󸀠󸀠(𝑥𝑛, 𝑦̆𝑛), and𝑎4, 𝑏𝑗, 𝑗 = 0(1)2, are free parameters.
Application of the above-mentioned method (15) to the

scalar test equation (9) leads to the difference equation (10)
and the characteristic equation (11) with𝑚 = 1 and

𝐴1 (V) = 1 + V2 (𝑏1 + 12𝑏2) − V4𝑏2 (𝑎3 − 18)
+ 2V6𝑏2𝑎1𝑎3 + 4V8𝑏2𝑎0𝑎3 (𝑎2 − 𝑎1) ,

𝐴0 (V) = 𝑎4 + V2 (𝑏0 + 𝑏2) + 2V4𝑏2𝑎3
+ 4V6𝑏2𝑎3 (𝑎2 − 𝑎1)
− 8V8𝑏2𝑎0𝑎3 (𝑎2 − 𝑎1) .

(16)

If we request the new method (15) to have vanished
phase-lag and its first, second, and third derivatives, then the
following system of equations is obtained:

Phase-Lag (PL) = 𝑇0𝑇denom = 0,
First Derivative of the Phase-Lag = 𝑇1𝑇2denom = 0,

Second Derivative of the Phase-Lag = 𝑇2𝑇3denom = 0,

Third Derivative of the Phase-Lag = 𝑇3𝑇4denom = 0,

(17)

where 𝑇𝑗, 𝑗 = 0(1)3, are given in Appendix A.
Now solving the system of (17) we determine the other

coefficients of the new obtained three-stage two-stepmethod:

𝑏0 = 1136407 𝑇4𝑇denom1 ,
𝑏1 = 1136407 𝑇5𝑇denom1 ,
𝑏2 = 145469 𝑇6𝑇denom1 ,
𝑎4 = 𝑇7𝑇denom2 ,

(18)

where the formulae 𝑇𝑗, 𝑗 = 4(1)7, 𝑇denom1, and 𝑇denom2 are
given in Appendix B.

Additionally to the above formulae for the coefficients𝑎4, 𝑏𝑗, 𝑗 = 0(1)2, we give also the following Taylor
series expansions of these coefficients, for the case of heavy

cancelations for some values of |V| in the formulae given by
(18):𝑏0

= 7320563882 + 268231049V10262060331977892448
− 473946402833V12224533292438658249446400
− 841146961608850447V1426876635104907392458734080000
− 34711252155550520483V1623840650403457053406595478323200
− 450175574700292070703419V187016973932030008047188109768345600000
+ ⋅ ⋅ ⋅ ,

𝑏1
= 51911383292 + 268231049V101572361991867354688

− 61738277963993V121347199754631949496678400
− 559868876269811659V14161259810629444354752404480000
− 602760578937670659833V163576097560518558010989321748480000
− 526438577422138492034251V1884203687184360096566257317220147200000
+ ⋅ ⋅ ⋅ ,

𝑏2
= −1997095823 − 268231049V10393090497966838672

+ 15790029293123V12336799938657987374169600
+ 181541151070183V1440314952657361088688101120
+ 21664254981643052111V1689402439012963950274733043712000
+ 8364955394669318397937V18842036871843600965662573172201472000
+ ⋅ ⋅ ⋅ ,

𝑎4
= −2 + 134317V1615752663892725760

+ 1170023347V184217775757277322240000 + ⋅ ⋅ ⋅ .

(19)

The behavior of the coefficients is given in Figure 1.
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Figure 1: Behavior of the coefficients of the new obtained method given by (18) for several values of V = 𝜙ℎ.

The local truncation error of the new developed five-stage
two-step method (15) with the coefficients given by (18)-(19),
which is indicated as NM2S5S3DV, is given by

LTENM2S5S3DV = 134317551343236245401600ℎ16 (𝑦(16)𝑛
+ 56𝜙10𝑦(6)𝑛 + 140𝜙12𝑦(4)𝑛 + 120𝜙14𝑦(2)𝑛 + 35𝜙16𝑦𝑛)
+ 𝑂 (ℎ18) .

(20)

3. Analysis of the Method

3.1. Error Analysis. The test equation used for the local trun-
cation error (LTE) analysis is given by

𝑦󸀠󸀠 (𝑥) = (𝑉 (𝑥) − 𝑉𝑐 + 𝐺) 𝑦 (𝑥) , (21)

where 𝑉(𝑥) is a potential function, 𝑉𝑐 is a constant value
approximation of the potential for the specific 𝑥, and 𝐺 =𝑉𝑐−𝐸 and 𝐸 is the energy.This is the radial time independent
Schrödinger equation.

We will study the following methods.

3.1.1. Classical Method (i.e., Method (15) with
Constant Coefficients)

LTECL = 134317551343236245401600ℎ16𝑦(16)𝑛 + 𝑂 (ℎ18) . (22)
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3.1.2. The Five-Stage Two-Step Method with Vanished
Phase-Lag and Its First, Second, and
Third Derivatives Developed in Section 3

LTENM2S5S3DV = 134317551343236245401600ℎ16 (𝑦(16)𝑛
+ 56𝜙10𝑦(6)𝑛 + 140𝜙12𝑦(4)𝑛 + 120𝜙14𝑦(2)𝑛 + 35𝜙16𝑦𝑛)
+ 𝑂 (ℎ18) .

(23)

If we substitute the higher order derivatives requested in
the LTE formulae, which are obtained using the test problem
(21), into the LTE expressions, we produce new formulae of
LTE which have the general form

LTE = ℎ𝑝 𝑚∑
𝑖=0

𝑎𝑖𝐺𝑖, (24)

where 𝑎𝑖 are constant numbers (classical methods) or formu-
lae of 𝜙 (fitted methods) and 𝑝 is the algebraic order of the
specific method.

Two cases of the parameter 𝐺 are studied:

(i) TheEnergy and the Potential Are Closed to Each Other.
Consequently, 𝐺 = 𝑉𝑐 − 𝐸 ≈ 0 ⇒ 𝐺𝑖 = 0, 𝑖 = 1, 2, . . ..
Therefore, the local truncation error for the classical
method (constant coefficients) and the local trunca-
tion error for the five-stage two-step method with
eliminated phase-lag and its first, second, and third
derivatives developed in Section 3 are the same since
the formulae of the LTE are free from 𝐺 (i.e., LTE =ℎ𝑝𝑎0 in (24)) and the free from𝐺 terms (i.e., the terms
of the formulae which do not have the quantity 𝐺) in
the local truncation errors in this case are the same
and are given in Appendix C. From the above it is easy
to see that, for these values of 𝐺, the methods are of
comparable accuracy.

(ii) The Energy and the Potential Have Big Difference.
Consequently, 𝐺 ≫ 0 or 𝐺 ≪ 0 and |𝐺| is a large
number. For this case the most accurate method is
the method with the minimum power of 𝐺 in the
formulae of LTE (i.e., the method with the highest
accuracy is the method with minimum 𝑖 in (24)).

We give now the asymptotic expansions of the local
truncation errors.

3.1.3. Classical Method

LTECL = 134317551343236245401600ℎ16 (𝑦 (𝑥) 𝐺8 + ⋅ ⋅ ⋅)
+ 𝑂 (ℎ18) .

(25)

3.1.4. The Four-Stage Two-Step P-StableMethod with Vanished
Phase-Lag and Its First, Second, and Third Derivatives
Developed in Section 3

LTENM2S5S3DV = 1343179845414932953600
⋅ ℎ16 [(20𝑔 (𝑥) 𝑦 (𝑥) 𝑑2𝑑𝑥2𝑔 (𝑥)
+ 15 ( 𝑑𝑑𝑥𝑔 (𝑥))

2 𝑦 (𝑥)
+ 10( 𝑑3𝑑𝑥3𝑔 (𝑥)) 𝑑𝑑𝑥𝑦 (𝑥)
+ 31( 𝑑4𝑑𝑥4𝑔 (𝑥))𝑦 (𝑥))𝐺5 + ⋅ ⋅ ⋅] + 𝑂 (ℎ18) .

(26)

The above leads us to the following theorem.

Theorem 8. (i) Classical method (i.e., method (15) with
constant coefficients): for this method the error increases as the
eighth power of 𝐺.

(ii) Fourteenth-algebraic order five-stage two-step method
with vanished phase-lag and its first, second, and third deriva-
tives developed in Section 3: for this method the error increases
as the fifth power of 𝐺.

Therefore, for large values of |𝐺| = |𝑉𝑐 − 𝐸|, the
new developed fourteenth-algebraic order five-stage two-step
method with vanished phase-lag and its first, second, and third
derivatives developed in Section 3 is the most accurate method
for the numerical solution of the radial Schrödinger equation.

3.2. Stability and Interval of Periodicity Analysis. Let us define
the scalar test equation for the stability and interval of
periodicity analysis:

𝑦󸀠󸀠 = −𝜔2𝑦. (27)

Remark 9. Comparing the test equations (9) and (27), we
have that the frequency 𝜙 is not equal to the frequency𝜔; that
is, 𝜔 ̸= 𝜙.

The difference equation which is produced after applica-
tion of the new method (15) with the coefficients given by
(18)-(19) to the scalar test equation (27) is given by

𝐴1 (𝑠, V) (𝑦𝑛+1 + 𝑦𝑛−1) + 𝐴0 (𝑠, V) 𝑦𝑛 = 0, (28)

where

𝐴1 (𝑠, V) = 1 + 18 (8𝑏1 + 4𝑏2) 𝑠2 + 18𝑏2 (−8𝑎3 + 1) 𝑠4
+ 4𝑎3𝑏2 (V2𝑎0𝑎2 + 12𝑎1) 𝑠6
− 4𝑎0𝑎1𝑎3𝑏2𝑠8,

𝐴0 (𝑠, V) = 𝑎4 + (𝑏0 + 𝑏2) 𝑠2 + 4𝑎3𝑏2 (V2𝑎2 + 12) 𝑠4
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Figure 2: 𝑠-V plane of the new obtained five-stage symmetric two-
step fourteenth-algebraic ordermethodwith vanished phase-lag and
its first, second, and third derivatives.

− 8𝑎3𝑏2 (V2𝑎0𝑎2 + 12𝑎1) 𝑠6
+ 8𝑎0𝑎1𝑎3𝑏2𝑠8,

(29)

𝑠 = 𝜔ℎ, and V = 𝜙ℎ.
Taking into account the coefficients 𝑎𝑖, 𝑖 = 0, 1, and𝑏𝑖, 𝑖 = 0(1)2, and their substitution into formulae (29), the

new stability polynomials are produced:

𝐴1 (𝑠, V) = 𝑇8𝑇denom3 ,
𝐴0 (𝑠, V) = 𝑇9𝑇denom3 ,

(30)

where the formulae 𝑇𝑘, 𝑘 = 8, 9, and 𝑇denom3 are given in
Appendix D.𝑠-V plane of the new produced method is shown in
Figure 2.

Remark 10. Observing 𝑠-V region we can define two areas:

(i) The shadowed area which defines the area where the
method is stable.

(ii) The white area which defines the area where the
method is unstable.

For problems of the form of the coupled equations arising
from the Schrödinger equation and related problems (in
quantum chemistry, material science, theoretical physics,
atomic physics, astronomy, astrophysics, physical chemistry,
and chemical physics), the area of the region which plays
critical role in the stability of the numerical methods is the
surroundings of the first diagonal of the 𝑠-V plane, where 𝑠 =
V. Studying this case, we found that the interval of periodicity
is equal to (0, 24).

The above development leads to the following theorem.

Theorem 11. The five-stage symmetric two-step method devel-
oped in Section 3

(i) is of fourteenth algebraic order,

(ii) has vanished the phase-lag and its first, second, and
third derivatives,

(iii) has an interval of periodicity equal to (0, 24) (when 𝑠 =
V).

4. Numerical Results

We will apply the new produced method to the approximate
solution for coupled differential equations of the Schrödinger
type.

4.1. Error Estimation. For the numerical solution of the pre-
viously referred problem we will use variable step methods.
An algorithm is called variable step when it is based on
the change of the step size of the integration using a local
truncation error estimation (LTEE) procedure. In the past
decades several methods of constant or variable steps have
been developed for the approximation of coupled differential
equations of the Schrödinger type and related problems (see,
e.g., [1–55]).

In our numerical tests we use local estimation procedure
which is based on an embedded pair and on the fact that we
have better approximation for the problems with oscillatory
and/or periodical solutions having maximal algebraic order
of the methods.

The local truncation error in 𝑦𝐿𝑛+1 is estimated by

LTE = 󵄨󵄨󵄨󵄨󵄨𝑦𝐻𝑛+1 − 𝑦𝐿𝑛+1󵄨󵄨󵄨󵄨󵄨 , (31)

where 𝑦𝐿𝑛+1 gives the lower algebraic order solution which is
obtained using the twelfth-algebraic ordermethod developed
in [54] and 𝑦𝐻𝑛+1 gives the higher order solution which is
obtained using the five-stage symmetric two-step method of
fourteenth algebraic order with vanished phase-lag and its
first, second, and third derivatives developed in Section 3.

In our numerical tests the changes of the step sizes are
reduced on duplication of step sizes. We use the following
procedure:

(i) If LTE < acc then the step size is duplicated; that is,ℎ𝑛+1 = 2ℎ𝑛.
(ii) If acc ≤ LTE ≤ 100 acc then the step size remains

stable; that is, ℎ𝑛+1 = ℎ𝑛.
(iii) If 100 acc < LTE then the step size is halved and the

step is repeated; that is, ℎ𝑛+1 = (1/2)ℎ𝑛.
In the above, ℎ𝑛 is the step length used for the 𝑛th step of
the integration and acc is the requested accuracy of the local
truncation error (LTE).

Remark 12. The local extrapolation technique is also used;
that is, while for a local truncation error estimation less than
acc we use the lower algebraic order solution 𝑦𝐿𝑛+1 it is the
higher algebraic order solution 𝑦𝐻𝑛+1 which is accepted at each
point as integration.

4.2. Coupled Differential Equations. We will present the
numerical solution of the coupled Schnrödinger equations
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(1) using the boundary conditions (2) and (3). Mathematical
models of this form are observed in many real problems
in quantum chemistry, material science, theoretical physics,
atomic physics, physical chemistry and chemical physics, and
so forth. The methodology fully described in [1] will be used
for the approximate solution for this problem.

Equation (1) contains the potential 𝑉 which can be
presented as (see for details [1])

𝑉(𝑥, k̂𝑗󸀠𝑗k̂𝑗𝑗) = 𝑉0 (𝑥) 𝑃0 (k̂𝑗󸀠𝑗k̂𝑗𝑗)
+ 𝑉2 (𝑥) 𝑃2 (k̂𝑗󸀠𝑗k̂𝑗𝑗) . (32)

Based on (32), the coupling matrix element is given by

⟨𝑗󸀠𝑙󸀠; 𝐽 |𝑉| 𝑗󸀠󸀠𝑙󸀠󸀠; 𝐽⟩ = 𝛿𝑗󸀠𝑗󸀠󸀠𝛿𝑙󸀠𝑙󸀠󸀠𝑉0 (𝑥)
+ 𝑓2 (𝑗󸀠𝑙󸀠, 𝑗󸀠󸀠𝑙󸀠󸀠; 𝐽) 𝑉2 (𝑥) , (33)

where 𝑓2 coefficients are obtained from formulas given by
Bernstein et al. [56] and k̂𝑗󸀠𝑗 is a unit vector parallel to the
wave vector k𝑗󸀠𝑗 and 𝑃𝑖, 𝑖 = 0, 2, are Legendre polynomials
(see for details [57]). The above leads to the new form of
boundary conditions:

𝑦𝐽𝑗𝑙
𝑗󸀠𝑙󸀠

(𝑥) = 0 at 𝑥 = 0 (34)

𝑦𝐽𝑗𝑙
𝑗󸀠𝑙󸀠

(𝑥) ∼ 𝛿𝑗𝑗󸀠𝛿𝑙𝑙󸀠 exp [−𝑖 (𝑘𝑗𝑗𝑥 − 12 𝑙𝜋)] ,
−( 𝑘𝑖𝑘𝑗)

1/2 𝑆𝐽 (𝑗𝑙; 𝑗󸀠𝑙󸀠) exp [𝑖 (𝑘𝑗󸀠𝑗𝑥 − 12 𝑙󸀠𝜋)] ,
(35)

where

S = (I + iK) (I − iK)−1 . (36)

We will use the variable step method described in Sec-
tion 4.1 in order to compute the cross sections for rotational
excitation of molecular hydrogen by impact of various heavy
particles.

We use the following parameters in our example:

2𝜇ℏ2 = 1000.0,
𝜇𝐼 = 2.351,
𝐸 = 1.1,

𝑉0 (𝑥) = 1𝑥12 − 2 1𝑥6 ,
𝑉2 (𝑥) = 0.2283𝑉0 (𝑥) .

(37)

For our test we take 𝐽 = 6 and we will consider excitation
of the rotator from 𝑗 = 0 state to levels up to 𝑗󸀠 = 2, 4, and 6
which is equivalent to sets of four, nine, and sixteen coupled
differential equations, respectively. Using the methodology
fully described by Bernstein [57] and Allison [1], we consider

Table 1: Coupled differential equations. Real time of computation
(in seconds) (RTC) andmaximumabsolute error (MErr) to calculate|𝑆|2 for the variable step methods, Method I–Method X. acc = 10−6.
We note that ℎmax is themaximum step size.𝑁 indicates the number
of equations of the set of coupled differential equations.

Method 𝑁 ℎmax RTC MErr

Method I
4 0.014 3.25 1.2 × 10−3
9 0.014 23.51 5.7 × 10−2
16 0.014 99.15 6.8 × 10−1

Method II
4 0.056 1.55 8.9 × 10−4
9 0.056 8.43 7.4 × 10−3
16 0.056 43.32 8.6 × 10−2

Method III
4 0.007 45.15 9.0 × 100
9
16

Method IV
4 0.112 0.39 1.1 × 10−5
9 0.112 3.48 2.8 × 10−4
16 0.112 19.31 1.3 × 10−3

Method V
4 0.448 0.14 3.4 × 10−7
9 0.448 1.37 5.8 × 10−7
16 0.448 9.58 8.2 × 10−7

Method VI
4 0.448 0.09 2.9 × 10−7
9 0.448 1.10 4.5 × 10−7
16 0.448 8.57 7.4 × 10−7

Method VII
4 0.448 0.06 1.3 × 10−7
9 0.448 1.04 1.7 × 10−7
16 0.448 7.58 2.9 × 10−7

Method VIII
4 0.448 0.04 8.8 × 10−8
9 0.448 1.02 9.2 × 10−8
16 0.448 7.48 8.9 × 10−8

Method IX
4 0.448 0.04 9.7 × 10−8
9 0.448 1.01 1.2 × 10−7
16 0.448 7.15 2.3 × 10−7

Method X
4 0.896 0.02 7.0 × 10−8
9 0.896 0.45 5.7 × 10−8
16 0.896 6.11 6.5 × 10−8

the potential infinite for𝑥 < 𝑥0.Thewave functions then tend
to zero and then the boundary conditions (34) are given by

𝑦𝐽𝑗𝑙
𝑗󸀠𝑙󸀠

(𝑥0) = 0. (38)

For comparison purposes the following variable step
methods are used:

(i) Method I. The iterative Numerov method of Allison
[1].

(ii) Method II. The variable step method of Raptis and
Cash [47].

(iii) Method III. The embedded Runge-Kutta Dormand
and Prince method 5(4) [49].

(iv) Method IV. The embedded Runge-Kutta method
ERK4(2) developed in Simos [41].
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(v) Method V. The embedded symmetric two-step
method developed in [50].

(vi) Method VI. The embedded symmetric two-step
method developed in [52].

(vii) Method VII. The embedded symmetric two-step
method developed in [52].

(viii) Method VIII. The embedded symmetric two-step
method developed in [53].

(ix) Method IX. The embedded symmetric two-step
method developed in [54].

(x) Method X. The developed embedded symmetric two-
step method developed in this paper.

The results are presented in Table 1. More specifically, we
present (1) the requested real time of computation by the
variable step methods mentioned above in order to calculate
the square of the modulus of S matrix for sets of 4, 9, and 6
coupled differential equations and (2) the maximum error in
the computation of the square of the modulus of Smatrix.

5. Conclusions

In this paper we introduce, for the first time in the literature,
a new five-stage symmetric two-step fourteenth-algebraic
order family of methods and we produced a method of the

family with vanished phase-lag and its first, second, and third
derivatives. In this paper,

(1) we introduced the new family of methods,
(2) we developed the newmethod of the new family with

vanished phase-lag and its first, second, and third
derivatives,

(3) we analyzed the local truncation error,
(4) we analyzed the interval of periodicity and the stabil-

ity of the new developed method,
(5) finally, we analyzed the efficiency of the new obtained

method on the numerical solution for coupled
Schrödinger equations.

From the analysis presented above, we conclude that
the new developed method is much more efficient than
the known ones for the numerical solution for the coupled
Schrödinger equations.

All computations were carried out on IBM PC-AT com-
patible 80486 using double precision arithmetic with 16
significant digits’ accuracy (IEEE standard).

Appendix

A. Formulae of 𝑇𝑗, 𝑗 = 0(1)3, and 𝑇denom

𝑇0 = (45469V8𝑏2 + 7038360𝑏2V6 + 652886640𝑏2V4 − 265712832000
+ (−265712832000𝑏1 − 132856416000𝑏2) V2) cos (V) − 45469V8𝑏2
+431033400𝑏2V6 − 33866990640𝑏2V4 + (−132856416000𝑏0 − 132856416000𝑏2) V2

−132856416000𝑎4,
𝑇1 = −2067429961(−26571283200045469 + V8𝑏2 + 7038360𝑏2V645469 + 652886640𝑏2V445469

+ (−265712832000𝑏145469 − 132856416000𝑏245469 ) V2)2 sin (V) − 39837369710880

⋅ (V12𝑏22 − 4393400V10𝑏2228973 − 26360400V8𝑏228973 (𝑏0 + 2𝑏1 + 153226717033𝑏24994087615 )

−17669903328000𝑏2V6188196191 (𝑏0 + 45469𝑎43519180 − 16290𝑏1133 − 8012𝑏2133 + 454691759590)

−819540618336000𝑏2V4188196191 (𝑏0 + 8379𝑎4259082 + 13439282𝑏1129541 + 6849182𝑏2129541 − 513135129541)
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−1639081236672000V2𝑏2188196191 (𝑎4 + 13439282129541 )

+ (166768965158400000𝑎4188196191 − 333537930316800000188196191 ) 𝑏2

+333537930316800000𝑎4𝑏1188196191 − 333537930316800000𝑏0188196191 ) V,
𝑇2 = −94003972896709 (−26571283200045469 + V8𝑏2 + 7038360𝑏2V645469 + 652886640𝑏2V445469
+ (−265712832000𝑏145469 − 132856416000𝑏245469 ) V2)3 cos (V) + 5434096090152008160V20𝑏23

−1653746424225668236800V18𝑏23 − 11536196067878150592000𝑏22

⋅ (𝑏0 + 2𝑏1 + 227930737228𝑏24994087615 ) V16 − 2295953942267723189760000𝑏22

⋅ (𝑏0 + 45469𝑎45278770 − 16290𝑏1133 − 7009130426558198𝑏2125536380378255 + 454692639385) V14

−194734009025384053800960000𝑏22 (𝑏0 + 6730730601𝑎4290822990464 + 379717697333𝑏118176436904
+127130652893979671𝑏215971271578806720 − 356864310411145411495232) V12

−48153927914830003875840000000𝑏2 (541122054664𝑏2224970438075
+(72734780969𝑏099881752300 + 12770448547𝑎41198581027600 + 2191635189987𝑏149940876150 + 63965810599599290513800)
⋅ 𝑏2 + 𝑏1 (𝑏0 + 2𝑏1) ) V10 − 2981589039377359573155840000000𝑏2

⋅ (−1773970067669𝑏2273624597200 + (90405467881𝑏0147249194400 + 58393539227𝑎46184466164800

−8073535624019𝑏173624597200 +141363876421114527151200) 𝑏2 − 16290𝑏12133 + (𝑏0 − 45469𝑎414076720 + 5910977038360) 𝑏1

+ 45469𝑏01005480) V8 − 46095957244299145061007360000000𝑏2 (3424591𝑏22129541

+(12𝑏0 − 12668968199𝑎4682950515280 + 13568823𝑏1129541 − 2869992664019341475257640 ) 𝑏2 + 13439282𝑏12129541
+ (𝑏0 − 11172𝑎4129541 − 2907765129541 ) 𝑏1 + 69825𝑏0259082 + 45469𝑎423317380 + 4546911658690) V6
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−553151486931589740732088320000000𝑏2 ((−38𝑎4 + 7237805518164 ) 𝑏2 + (−34𝑎4 + 6719641259082 ) 𝑏1

+𝑏0 + 13965𝑎41036328 − 855225518164) V4 + ((−14070153905048863102795776000000000𝑎4
+28140307810097726205591552000000000) 𝑏22 + ((−56280615620195452411183104000000000𝑎4
+56280615620195452411183104000000000) 𝑏1 + 28140307810097726205591552000000000𝑏0
−276575743465794870366044160000000𝑎4 − 28693459297029315946323640320000000) 𝑏2
+56280615620195452411183104000000000𝑏1 (−𝑎4𝑏1 + 𝑏0)) V2

+ (9380102603365908735197184000000000𝑎4 − 18760205206731817470394368000000000) 𝑏2
+18760205206731817470394368000000000𝑎4𝑏1 − 18760205206731817470394368000000000𝑏0,

𝑇3 = 4274266643640461521(−26571283200045469 + V8𝑏2 + 7038360𝑏2V645469 + 652886640𝑏2V445469

+(−265712832000𝑏145469 − 132856416000𝑏245469 ) V2)4 sin (V) − 988331660492486636108160

⋅ (V26𝑏24 − 703331165780V24𝑏241317373337 − 17573600𝑏23V224139 (𝑏0 + 2𝑏1 + 52341891953𝑏2998817523 )

−229708743264000V20𝑏23188196191 (𝑏0 + 45469𝑎46099912 − 16290𝑏1133 − 20280808515977707𝑏2362660654426070 + 454693049956)

−1218751529857909344000V18𝑏238557092608579 (𝑏0 + 8254669605𝑎4385284849578 − 663166829662𝑏1192642424789
−2052773129691092548765𝑏2192414629552462777647 −394861571517192642424789)

−11673827561088000000𝑏22V16188196191 (25981841558644066102303𝑏22997636444251855529000
+(14436736503248𝑏020643288160585 + 672095448881𝑎483900671932000 + 61372103581289784𝑏11135380848832175 − 619438310185941950335966000) 𝑏2

+𝑏1 (𝑏0 + 2𝑏1) ) − 84512160980083888128000000𝑏22V148557092608579 (−200253323882994581𝑏2215064365645390600
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+ (17737276339168999𝑏030128731290781200 + 4562567732722819𝑎4632703357106405200 − 56067458474270819𝑏1792861349757400 + 170062002887713063316351678553202600) 𝑏2
− 105220𝑏121197 + (𝑏0 + 45469𝑎412669048 + 59109715836310) 𝑏1 + 45469𝑏03016440)
− 244441255786320657705467904000000𝑏22V12389082443819478551 (−18787681229658547𝑏227985635789403360
+ (8969884197456053𝑏015971271578806720 + 3422548232166571𝑎4383310517891361280 − 136160476648092927𝑏17985635789403360 − 280627602486327149191655258945680640) 𝑏2
− 222153379571𝑏129088218452 + (𝑏0 + 380984751𝑎472705747616 − 15440194784736352873808 ) 𝑏1
+1650933921𝑏036352873808 + 2067429961𝑎48724689713920 + 20674299614362344856960) − 443126540219477925888000000000𝑏2V108557092608579
⋅ (4028587739494373897𝑏23438820490554820000 + (434912403523211147𝑏0877640981109640000 + 2926099586132929𝑎41755281962219280000
+ 15313712383120673847𝑏1438820490554820000 − 144221396158735377877640981109640000) 𝑏22 + (15500862502𝑏12454007965
+ (72734780969𝑏049940876150 − 7528278019𝑎41997635046000 − 539180954813499408761500) 𝑏1
+ 98566938253𝑏01997635046000 + 49343𝑎487868000 − 1003872196700) 𝑏2 + 𝑏12 (𝑏0 + 2𝑏1) )
− 623776823123832930890612736000000000V8𝑏2389082443819478551 (−665172562469𝑏2373624597200
+ (53593169281𝑏0147249194400 − 2554367727834151𝑎41811388909895488000 − 547986492173𝑏18180510800 + 267706836641709133143004387623328000) 𝑏22

+ (−5855940613619𝑏1236812298600 + (90405467881𝑏073624597200 + 2390206957𝑎4309223308240 + 1205462023201386529135300 ) 𝑏1
+ 28440383893𝑏0220873791600 + 12770448547𝑎47421359397760 − 1098284384033710679698880) 𝑏2 + (−16290𝑏12133 + (𝑏0 + 45469𝑎41407672 + 45469185220) 𝑏1 + 45469𝑏0502740 ) 𝑏1)
− 1421741999377084654844751052800000000𝑏2V6389082443819478551 ((23281985157𝑎4167808706810 − 268397223503383904353405 ) 𝑏22

+((96906582357𝑎483904353405 − 1455338241287683904353405 ) 𝑏1 + 𝑏0 + 58393539227𝑎41761991421505 + 439542930952251713060215) 𝑏2

+(29449838880𝑎416780870681 − 360705169440016780870681 ) 𝑏12 + (− 3995270092𝑎4352398284301 + 51938511196352398284301) 𝑏1 + 9988175230𝑏0117466094767)

+231449118350975844469748269056000000000𝑏2V4389082443819478551 ((−14𝑎4 + 12) 𝑏22

+((−𝑎4 + 1) 𝑏1 + 12𝑏0 + 12668968199𝑎42731802061120 + 4306381525791365901030560) 𝑏2

−𝑎4𝑏12 + (𝑏0 + 2793𝑎4129541 + 513135259082) 𝑏1 − 19551𝑏0518164 − 45469𝑎4186539040 − 4546993269520)
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+((2943610198401984531229664870400000000000𝑎4389082443819478551 − 5887220396803969062459329740800000000000389082443819478551 ) 𝑏23

+((17661661190411907187377989222400000000000𝑎4389082443819478551 − 23548881587215876249837318963200000000000389082443819478551 ) 𝑏1

+661502702451465533356077219840000000009489815702914111 − 5887220396803969062459329740800000000000𝑏0389082443819478551
+ 173586838763231883352311201792000000000𝑎4389082443819478551 ) 𝑏22

+((35323322380823814374755978444800000000000𝑎4389082443819478551 − 23548881587215876249837318963200000000000389082443819478551 ) 𝑏12

+(6002944955979456984694203875328000000000389082443819478551 − 23548881587215876249837318963200000000000𝑏0389082443819478551
+ 347173677526463766704622403584000000000𝑎4389082443819478551 ) 𝑏1 + 382004678522076633240905318400000000000389082443819478551
−3118884115619164654453063680000000000𝑎4389082443819478551 − 289311397938719805587185336320000000000𝑏0389082443819478551 ) 𝑏2

− 23548881587215876249837318963200000000000𝑏12 (−𝑎4𝑏1 + 𝑏0)389082443819478551 ) V2

+(11774440793607938124918659481600000000000389082443819478551 − 5887220396803969062459329740800000000000𝑎4389082443819478551 ) 𝑏22

+((23548881587215876249837318963200000000000389082443819478551 − 23548881587215876249837318963200000000000𝑎4389082443819478551 ) 𝑏1

−6002944955979456984694203875328000000000389082443819478551 + 11774440793607938124918659481600000000000𝑏0389082443819478551
− 57862279587743961117437067264000000000𝑎4389082443819478551 ) 𝑏2 + 23548881587215876249837318963200000000000𝑏1 (−𝑎4𝑏1 + 𝑏0)389082443819478551 ) V,

𝑇denom = 45469V8𝑏2 + 7038360𝑏2V6 + 652886640𝑏2V4 − 265712832000 + (−265712832000𝑏1 − 132856416000𝑏2) V2.
(A.1)

B. Formulae for the Coefficients of the
Produced Method 𝑇𝑗, 𝑗 = 4(1)7, 𝑇denom1,
and 𝑇denom2

𝑇4 = (15277584V6 + 844603200V4
+ 15669279360V2) (cos (V))3 + ((−2182512V7
− 153643056V5 − 4378489920V3

+ 15669279360V) sin (V) + 363752V8
− 2593839192V6 + 148398964560V4
+ 672116719680V2 + 797138496000) (cos (V))2
+ ((−4365024V7 + 20674325616V5
− 490147842240V3 − 812807775360V) sin (V)
− 30555168V6 − 1689206400V4
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− 31338558720V2) cos (V) + (13095072V7
+ 1013523840V5 + 31338558720V3) sin (V)
+ 727504V8 − 5149484424V6 + 206280915120V4
+ 937829551680V2 − 797138496000,

𝑇5 = (−181876V8 − 17295684V6 − 1200197880V4
+ 128939096160V2 + 398569248000) (cos (V))2
+ ((−2182512V7 − 176559432V5 − 5645394720V3
− 7834639680V) sin (V) − 7638792V6
+ 25862004000V4 − 406403887680V2) cos (V)
+ (−1091256V7 + 5180039592V5
− 161329966560V3 + 406403887680V) sin (V)
− 363752V8 − 38410764V6 − 2294820360V4
+ 277464791520V2 − 398569248000,

𝑇6 = (−88570944000V2 − 265712832000) (cos (V))2
− 177141888000V2 + 265712832000,

𝑇denom1 = V3 (V(V6 + 1191127V445469 + 6478080V245469
− 457020648045469 ) (cos (V))2 + ((16V6

+ 50850600V445469 + 1487650080V245469 − 261154656045469 )
⋅ sin (V) + 8V5 + 1724133600V345469
− 135467962560V45469 ) cos (V) + (8V6

− 1718677320V445469 + 29638785120V245469
+ 13546796256045469 ) sin (V) + 2V7 + 12521841V545469

+ 674562000V345469 + 7181753040V45469 ) ,
𝑇7 = (−727504V5 + 56306880V3 + 5223093120V)

⋅ (cos (V))3 + ((727504V6 + 67219440V4
+ 2247792960V2 + 5223093120) sin (V) − 90938V7
+ 581713426V5 − 48439997760V3
+ 474137868960V) (cos (V))2 + ((1455008V6
− 6907446960V4 + 211658354880V2
− 270935925120) sin (V) + 1455008V5
− 112613760V3 − 10446186240V) cos (V)
+ (−4365024V6 − 337841280V4
− 10446186240V2) sin (V) − 181876V7
+ 1141692670V5 − 22742250720V3
− 203201943840V,

𝑇denom2 = (45469V7 + 1191127V5 + 6478080V3
− 4570206480V) (cos (V))2 + ((727504V6
+ 50850600V4 + 1487650080V2 − 2611546560)
⋅ sin (V) + 363752V5 + 1724133600V3
− 135467962560V) cos (V) + (363752V6
− 1718677320V4 + 29638785120V2
+ 135467962560) sin (V) + 90938V7 + 12521841V5
+ 674562000V3 + 7181753040V.

(B.1)

C. Formulae of the Asymptotic
Form of the Local Truncation Errors
LTECL = LTENM2S5S3DV = 𝑎0

Formulae of the asymptotic form of the local truncation
errors are as follows:
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LTECL

= LTENM2S5S3DV = 𝑎0

= 134317 (𝑔 (𝑥))2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)
3390294398400 + 14371919𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥))2 (𝑑/𝑑𝑥) 𝑔 (𝑥)

153834608327400

+222563269 (𝑔 (𝑥))
2 𝑦 (𝑥) ((𝑑7/𝑑𝑥7) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)
22972634843558400 + 3238785821 (𝑔 (𝑥))2 𝑦 (𝑥) ((𝑑6/𝑑𝑥6) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)

137835809061350400

+42041221 (𝑔 (𝑥))
4 𝑦 (𝑥) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))2

13127219910604800 + 134317 ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑8/𝑑𝑥8) 𝑔 (𝑥)
36063790963200

+166687397𝑔 (𝑥) 𝑦 (𝑥) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)1378358090613504 + 757413563 (𝑔 (𝑥))2 𝑦 (𝑥) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
5301377271590400

+5917066801𝑔 (𝑥) 𝑦 (𝑥) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)34458952265337600 + 5506997 (𝑔 (𝑥))3 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)
615338433309600

+447409927 (𝑔 (𝑥))
2 𝑦 (𝑥) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)
11486317421779200 + 11954213 (𝑔 (𝑥))2 𝑦 (𝑥) (𝑑10/𝑑𝑥10) 𝑔 (𝑥)

45945269687116800

+6312899𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑11/𝑑𝑥11) 𝑔 (𝑥)68917904530675200 + 134317 (𝑔 (𝑥))6 𝑦 (𝑥) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
2187869985100800

+7118801 (𝑔 (𝑥))
3 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)

492270746647680 + 189252653 ((𝑑/𝑑𝑥) 𝑔 (𝑥))2 𝑦 (𝑥) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥))2
2812975695129600

+2552023 (𝑔 (𝑥))5 𝑦 (𝑥) ((𝑑/𝑑𝑥) 𝑔 (𝑥))29845414932953600 + 5506997 (𝑔 (𝑥))2 𝑦 (𝑥) ((𝑑/𝑑𝑥) 𝑔 (𝑥))4
984541493295360

+68367353 ((𝑑/𝑑𝑥) 𝑔 (𝑥))
2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑7/𝑑𝑥7) 𝑔 (𝑥)

6265264048243200 + 6312899 ((𝑑/𝑑𝑥) 𝑔 (𝑥))2 𝑦 (𝑥) (𝑑8/𝑑𝑥8) 𝑔 (𝑥)
1790075442355200

+134317 (𝑔 (𝑥))3 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥))370324392378240 + 99260263 ((𝑑/𝑑𝑥) 𝑔 (𝑥))4 𝑦 (𝑥) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
4922707466476800

+4969729 (𝑔 (𝑥))
4 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑5/𝑑𝑥5) 𝑔 (𝑥)

6563609955302400 + 134317 (𝑔 (𝑥))5 𝑦 (𝑥) (𝑑4/𝑑𝑥4) 𝑔 (𝑥)
307669216654800

+3089291 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥)) 𝑦 (𝑥) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥))
2

108191372889600 + 2011665709𝑔 (𝑥) 𝑦 (𝑥) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥))3
34458952265337600

+2283389𝑔 (𝑥) 𝑦 (𝑥) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥)) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥))
2

18031895481600 + 686494187𝑔 (𝑥) 𝑦 (𝑥) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))2 ((𝑑/𝑑𝑥) 𝑔 (𝑥))2
6265264048243200

+8999239 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))
2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑5/𝑑𝑥5) 𝑔 (𝑥)

168297691161600 + 134317 (𝑔 (𝑥))4 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
70324392378240

+13834651 (𝑔 (𝑥))
4 𝑦 (𝑥) ((𝑑/𝑑𝑥) 𝑔 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)
2812975695129600 + 75620471 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥)) 𝑦 (𝑥) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) (𝑑5/𝑑𝑥5) 𝑔 (𝑥)

1514679220454400

+59502431 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)703243923782400 + 6312899 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) 𝑦 (𝑥) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) (𝑑4/𝑑𝑥4) 𝑔 (𝑥)
162734131123200

+429411449 ((𝑑/𝑑𝑥) 𝑔 (𝑥))
2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
2461353733238400 + 1112010443 ((𝑑/𝑑𝑥) 𝑔 (𝑥))2 𝑦 (𝑥) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)

9845414932953600

+134317 (𝑔 (𝑥))6 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)9845414932953600 + 29952691𝑔 (𝑥) 𝑦 (𝑥) ((𝑑6/𝑑𝑥6) 𝑔 (𝑥)) (𝑑4/𝑑𝑥4) 𝑔 (𝑥)
1566316012060800
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+134317 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑10/𝑑𝑥10) 𝑔 (𝑥)255725063193600 + 134317 ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) 𝑦 (𝑥) (𝑑9/𝑑𝑥9) 𝑔 (𝑥)
233027572377600 + 134317 (𝑔 (𝑥))8 𝑦 (𝑥)

551343236245401600

+134317 ((𝑑/𝑑𝑥) 𝑔 (𝑥))5 (𝑑/𝑑𝑥) 𝑦 (𝑥)44751886058880 + 134317 ((𝑑14/𝑑𝑥14) 𝑔 (𝑥)) 𝑦 (𝑥)
551343236245401600 + 134317 ((𝑑13/𝑑𝑥13) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑦 (𝑥)

39381659731814400

+134317 ((𝑑3/𝑑𝑥3) 𝑔 (𝑥))
3 (𝑑/𝑑𝑥) 𝑦 (𝑥)

4507973870400 + 134317 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))4 𝑦 (𝑥)
8975876861952 + 134317 ((𝑑6/𝑑𝑥6) 𝑔 (𝑥))2 𝑦 (𝑥)

183597481267200

+155673403𝑔 (𝑥) 𝑦 (𝑥) ((𝑑6/𝑑𝑥6) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥))
2

5301377271590400 + 671585 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))2 𝑦 (𝑥) (𝑑6/𝑑𝑥6) 𝑔 (𝑥)
40391445878784 + 134317 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) 𝑦 (𝑥) (𝑑11/𝑑𝑥11) 𝑔 (𝑥)

1458579990067200

+671585 ((𝑑/𝑑𝑥) 𝑔 (𝑥))
3 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑4/𝑑𝑥4) 𝑔 (𝑥)

17900754423552 + 20013233 ((𝑑/𝑑𝑥) 𝑔 (𝑥))3 𝑦 (𝑥) (𝑑5/𝑑𝑥5) 𝑔 (𝑥)
895037721177600 + 3089291𝑔 (𝑥) 𝑦 (𝑥) (𝑑12/𝑑𝑥12) 𝑔 (𝑥)

137835809061350400

+123437323 (𝑔 (𝑥))
3 𝑦 (𝑥) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥))2

8614738066334400 + 1581851309 (𝑔 (𝑥))2 𝑦 (𝑥) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥))2
68917904530675200 + 134317 (𝑔 (𝑥))5 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)

703243923782400

+134317 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥)) 𝑦 (𝑥) (𝑑10/𝑑𝑥10) 𝑔 (𝑥)504893073484800 + 2552023 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑9/𝑑𝑥9) 𝑔 (𝑥)
1514679220454400

+134317 ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑6/𝑑𝑥6) 𝑔 (𝑥)17212263868800 + 136869023𝑔 (𝑥) 𝑦 (𝑥) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥))2
12530528096486400

+134317 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥))
2

2712235518720 + 59502431 (𝑔 (𝑥))3 𝑦 (𝑥) (𝑑8/𝑑𝑥8) 𝑔 (𝑥)
68917904530675200 + 2283389 (𝑔 (𝑥))3 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑7/𝑑𝑥7) 𝑔 (𝑥)

2153684516583600
+2552023 ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) 𝑦 (𝑥) (𝑑7/𝑑𝑥7) 𝑔 (𝑥)1927773553305600 + 53861117𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)

351621961891200

+279782311 (𝑔 (𝑥))
4 𝑦 (𝑥) (𝑑6/𝑑𝑥6) 𝑔 (𝑥)

275671618122700800 + 134317 ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) 𝑦 (𝑥) (𝑑8/𝑑𝑥8) 𝑔 (𝑥)
137698110950400

+4163827 (𝑔 (𝑥))
2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑9/𝑑𝑥9) 𝑔 (𝑥)

7657544947852800 + 165344227𝑔 (𝑥) 𝑦 (𝑥) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))2 (𝑑4/𝑑𝑥4) 𝑔 (𝑥)
1566316012060800

+426187841 (𝑔 (𝑥))
3 𝑦 (𝑥) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)
34458952265337600 + 134317 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))3

1823224987584

+4160200441 (𝑔 (𝑥))
2 𝑦 (𝑥) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))3

137835809061350400 + 134317 ((𝑑3/𝑑𝑥3) 𝑔 (𝑥))2 𝑦 (𝑥) (𝑑4/𝑑𝑥4) 𝑔 (𝑥)
4161206649600

+134317 ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) (𝑑7/𝑑𝑥7) 𝑔 (𝑥)21906517651200 + 159702913 (𝑔 (𝑥))2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥))2
4922707466476800

+1578090433 (𝑔 (𝑥))
2 𝑦 (𝑥) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥))2
34458952265337600 + 13566017 (𝑔 (𝑥))2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑6/𝑑𝑥6) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)

1093934992550400

+89589439 (𝑔 (𝑥))
2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)

3281804977651200 + 432635057𝑔 (𝑥) 𝑦 (𝑥) ((𝑑8/𝑑𝑥8) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
68917904530675200

+876955693𝑔 (𝑥) 𝑦 (𝑥) ((𝑑7/𝑑𝑥7) 𝑔 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)68917904530675200 + 84754027 (𝑔 (𝑥))3 𝑦 (𝑥) ((𝑑/𝑑𝑥) 𝑔 (𝑥))2 (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
4922707466476800

+6312899𝑔 (𝑥) 𝑦 (𝑥) ((𝑑9/𝑑𝑥9) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)2871579355444800 + 589248679𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))2 (𝑑3/𝑑𝑥3) 𝑔 (𝑥)
4922707466476800

+60308333𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑8/𝑑𝑥8) 𝑔 (𝑥)) (𝑑/𝑑𝑥) 𝑔 (𝑥)11486317421779200 + 248352133𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑7/𝑑𝑥7) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
17229476132668800

+66218281𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑6/𝑑𝑥6) 𝑔 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)2461353733238400 + 50906143𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥))3
1230676866619200
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+37743077 (𝑔 (𝑥))
2 ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))2 (𝑑/𝑑𝑥) 𝑔 (𝑥)

895037721177600 + 22430939𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑔 (𝑥))2
546967496275200

+41235319 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) 𝑦 (𝑥) ((𝑑2/𝑑𝑥2) 𝑔 (𝑥))
2 (𝑑3/𝑑𝑥3) 𝑔 (𝑥)

262544398212096 + 170716907 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑6/𝑑𝑥6) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
3281804977651200

+30758593 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) 𝑦 (𝑥) ((𝑑7/𝑑𝑥7) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)1837810787484672 + 64337843 ((𝑑/𝑑𝑥) 𝑔 (𝑥)) 𝑦 (𝑥) ((𝑑6/𝑑𝑥6) 𝑔 (𝑥)) (𝑑3/𝑑𝑥3) 𝑔 (𝑥)
2187869985100800

+28340887 ((𝑑2/𝑑𝑥2) 𝑔 (𝑥)) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑3/𝑑𝑥3) 𝑔 (𝑥)) (𝑑4/𝑑𝑥4) 𝑔 (𝑥)189334902556800

+80455883 (𝑔 (𝑥))
3 𝑦 (𝑥) ((𝑑4/𝑑𝑥4) 𝑔 (𝑥)) (𝑑2/𝑑𝑥2) 𝑔 (𝑥)
3445895226533760 + 1477487𝑔 (𝑥) ((𝑑/𝑑𝑥) 𝑦 (𝑥)) ((𝑑5/𝑑𝑥5) 𝑔 (𝑥)) (𝑑4/𝑑𝑥4) 𝑔 (𝑥)

40683532780800 .
(C.1)

D. Formulae for the Stability Polynomials𝑇𝑘, 𝑘 = 8, 9, and 𝑇denom3

𝑇8 = 159532850484000V2𝑠2
+ 26588808414000𝑠4V2
+ 285508033854𝑠6V2
− 30236885𝑠8V2 + 1881961910𝑠6V4
− 7406900100𝑠2V8
− 766584691740𝑠2V6
− 47158235397000𝑠2V4
+ 17776560240 sin (V) V9
+ 17776560240 cos (V) V8
− 83991760628400 sin (V) V7
+ 84258409032000 cos (V) V6
+ 1448447428814400 sin (V) V5
− 6620319330307200 cos (V) V4
+ 6620319330307200 sin (V) V3
+ 33124136824800V6
+ 239299275726000V4
+ 641047557915V8
− 17776560240 sin (V) 𝑠2V7
− 124435921680 cos (V) 𝑠2V6

+ 84382844953680 sin (V) 𝑠2V5
+ 421292045160000 cos (V) 𝑠2V4
− 2628065155262400 sin (V) 𝑠2V3
− 6620319330307200 cos (V) 𝑠2V2
+ 6620319330307200 sin (V) 𝑠2V
− 15953285048400𝑠4
− 171982326600𝑠6
+ 5555175075V10
+ 18142131𝑠8
+ 1111035015V10 cos (2V)
− 18142131𝑠8 cos (2V)
+ 29105188245V8 cos (2V)
+ 171982326600𝑠6 cos (2V)
+ 158291884800V6 cos (2V)
+ 15953285048400𝑠4 cos (2V)
− 111672995338800V4 cos (2V)
+ 17776560240V9 sin (2V)
+ 1242534411000V7 sin (2V)
+ 36350729704800V5 sin (2V)
− 63813140193600V3 sin (2V)
− 17776560240𝑠2V7 sin (2V)
− 1438076573640𝑠2V5 sin (2V)
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− 45981739994400𝑠2V3 sin (2V)
− 63813140193600𝑠2V sin (2V)
− 6047377𝑠8V2 cos (2V)
+ 376392382𝑠6V4 cos (2V)
− 1481380020𝑠2V8 cos (2V)
+ 58456619346𝑠6V2 cos (2V)
− 140873346180𝑠2V6 cos (2V)
+ 5317761682800𝑠4V2 cos (2V)
− 9775611732600𝑠2V4 cos (2V)
− 31906570096800V2𝑠2 cos (2V) ,

𝑇9 = 9930478995460800V2𝑠2
− 2779874954539200𝑠4V2
− 571016067708𝑠6V2
+ 60473770𝑠8V2
− 3763923820𝑠6V4
+ 14813800200𝑠2V8
− 105011921485800𝑠2V6
+ 4569025673646000𝑠2V4
− 204430442760 sin (V) V9
+ 44441400600 cos (V) V8
− 15689049845400 sin (V) V7
− 3439646532000 cos (V) V6
− 483042711060000 sin (V) V5
− 319065700968000 cos (V) V4
+ 63813140193600 sin (V) V3
− 2295045137952000V6
+ 1655079832576800V4
+ 70008688347210V8
+ 204430442760 sin (V) 𝑠2V7
− 311089804200 cos (V) 𝑠2V6
+ 15884592008040 sin (V) 𝑠2V5

− 17198232660000 cos (V) 𝑠2V4
+ 492673721349600 sin (V) 𝑠2V3
− 319065700968000 cos (V) 𝑠2V2
+ 63813140193600 sin (V) 𝑠2V
+ 1655079832576800𝑠4
+ 343964653200𝑠6
− 11110350150V10
− 36284262𝑠8
− 2222070030V10 cos (2V)
+ 36284262𝑠8 cos (2V)
+ 14214167564310V8 cos (2V)
− 343964653200𝑠6 cos (2V)
− 1183631345265600V6 cos (2V)
− 1655079832576800𝑠4 cos (2V)
+ 11585558828037600V4 cos (2V)
+ 35553120480V9 sin (2V)
− 168783466467600V7 sin (2V)
+ 5171871901492800V5 sin (2V)
− 6620319330307200V3 sin (2V)
− 35553120480𝑠2V7 sin (2V)
+ 168392382142320𝑠2V5 sin (2V)
− 3992254175044800𝑠2V3 sin (2V)
− 6620319330307200𝑠2V sin (2V)
+ 12094754𝑠8V2 cos (2V)
− 752784764𝑠6V4 cos (2V)
+ 2962760040𝑠2V8 cos (2V)
− 116913238692𝑠6V2 cos (2V)
− 21126820218840𝑠2V6 cos (2V)
− 530284710614400𝑠4V2 cos (2V)
+ 1208709566341200𝑠2V4 cos (2V)
+ 3310159665153600V2𝑠2 cos (2V)
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+ 35680944852000𝑠4V4
+ 3439646532000𝑠2V4 cos (3V)
+ 63813140193600V2𝑠2 cos (3V)
+ 63813140193600V3 sin (3V)
+ 821253508200V7 sin (3V)
+ 27462410488800V5 sin (3V)
+ 8888280120V9 sin (3V)
+ 63813140193600V4 cos (3V)
− 8888280120V8 cos (3V)
+ 687929306400V6 cos (3V)
− 8888280120𝑠2V7 sin (3V)
+ 62217960840𝑠2V6 cos (3V)
+ 7136188970400𝑠4V4 cos (2V)
− 625711345560𝑠2V5 sin (3V)
− 17831400199200𝑠2V3 sin (3V)
+ 63813140193600𝑠2V sin (3V) ,

𝑇denom3
= 1111035015V10 cos (2V)
+ 17776560240 sin (V) V9
+ 17776560240V9 sin (2V)
+ 5555175075V10
+ 17776560240 cos (V) V8
+ 29105188245V8 cos (2V)
− 83991760628400 sin (V) V7
+ 1242534411000V7 sin (2V)
+ 641047557915V8
+ 84258409032000 cos (V) V6
+ 158291884800V6 cos (2V)
+ 1448447428814400 sin (V) V5
+ 36350729704800V5 sin (2V)
+ 33124136824800V6

− 6620319330307200 cos (V) V4
− 111672995338800V4 cos (2V)
+ 6620319330307200 sin (V) V3
− 63813140193600V3 sin (2V)
+ 239299275726000V4.

(D.1)
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We introduce real tangle and its operations, as a generalization of rational tangle and its operations, to enumerating tangles by
using the calculus of continued fraction and moreover we study the analytical structure of tangles, knots, and links by using new
operations between real tangles which need not have the topological structure. As applications of the analytical structure, we prove
the generalized Hyers-Ulam stability of the Cauchy additive functional equation 𝑓(𝑥 ⊕ 𝑦) = 𝑓(𝑥) ⊕ 𝑓(𝑦) in tangle space which is a
set of real tangles with analytic structure and describe the DNA recombination as the action of some enzymes on tangle space.

1. Introduction

In 1970, Conway introduced rational tangles and algebraic
tangles for enumerating knots and links by using Conway
notation. The rational tangles are defined as the family
of tangles that can be transformed into the trivial tangle
by sequence of twisting of the endpoints. Given a tangle,
two operations, called the numerator and denominator, by
connecting the endpoints of the tangle produce knots or 2-
component links. To enumerating and classifying knots, the
theory of general tangles has been introduced in [1].

Moreover the rational tangles are classified by their
fractions by means of the fact that two rational tangles are
isotopic if and only if they have the same fraction [1]. This
implies the known result that the rational tangles correspond
to the rational numbers one to one. It is clear that every
rational number can be written as continued fractions with
all numerators equal to 1 and that every real number 𝑟
corresponds to a unique continued fraction, which is finite
if 𝑟 is rational and infinite if 𝑟 is irrational. Thus the con-
tinued fractions give the relationship between the analytical
structure and topological structure under a certain restricted
operator. See [2], for example. There are some operations
that can be performed on tangles as the sum, multiplication,
rotation, mirror image, and inverted image.

Topologically, the sum and multiplication on tangles are
defined as connecting two endpoints of one tangle to two
endpoints of another. However they are not commutative and
do not preserve the class of rational tangles. Furthermore the
sum and multiplication of two rational tangles are a rational
tangle if and only if one of two is an integer tangle [3].Thus the
set of rational tangles is not a group because it was discovered
that not all rational tangles form a closed set under the sum
and multiplication. Considering a braid of rational tangles, a
series of strands that are always descending, the set of braids
is a group under braid multiplication.

In 1940, Ulam introduced the stability problem of func-
tional equations during talk before a Mathematical Collo-
quium at the University of Wisconsin [4]:

Given a group 𝐺1, a metric group (𝐺2, 𝑑) and a positive
number 𝜖, does there exist a number 𝛿 > 0 such that
if a function 𝑓 : 𝐺1 → 𝐺2 satisfies the inequality𝑑(𝑓(𝑥𝑦), 𝑓(𝑥)𝑓(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺1, there exists a
homomorphism 𝑇 : 𝐺1 → 𝐺2 such that 𝑑(𝑓(𝑥), 𝑇(𝑥)) < 𝜖
for all 𝑥 ∈ 𝐺1?

Analytically, the stability problem of functional equations
originated from a question of Ulam concerning the stability
of group homomorphisms. The functional equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (1)
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Figure 1: Rational, trivial, prime, locally knotted tangles.

is called the Cauchy additive functional equation. In particu-
lar, every solution of the Cauchy additive functional equation
is said to be an additive mapping. In [5], Hyers gave the first
affirmative partial answer to the question of Ulam for Banach
spaces. In [6], Hyers’ theorem was generalized by Aoki for
additive mappings and by Rassias for linear mappings by
considering an unbounded Cauchy difference in [7]. In [8],
a generalization of the Rassias theorem was obtained by
Găvruţa by replacing the unbounded Cauchy difference by
a general control function in Rassias’ approach. There are
many interesting stability problems of several functional
equations that have been extensively investigated by a number
of authors. See [9–14].

In recent years, new applications of tangles to the field of
molecular biology have been developed. In particular, knot
theory gives a nice way to model DNA recombination. The
relationship between topology and DNA began in the 1950s
with the discovery of the helical Crick-Watson structure of
duplex DNA. The mathematical model is the tangle model
for site-specific recombination, which was first introduced by
Sumners [15]. This model uses knot theory to study enzyme
mechanisms. Therefore rational tangles are of fundamental
importance for the classification of knots and the study of
DNA recombination. In this paper, we introduce new tangles
called real tangles to apply the stability problem and DNA
recombination on tangles.

In Section 2, we introduce real tangles and operations
between tangles which can be performed to make up tangle
space and having analytical structure. Moreover we show
that the operations together with two real tangles will always
generate a real tangle. In Section 3, we prove the Hyers-Ulam
stability of the Cauchy additive functional equation in tangle
space and study the DNA recombination on real tangles, as
applications of knots or links.

2. Continued Fractions and Tangle Space

A rational tangle is a proper embedding of two unoriented
arcs (strings) 𝑡1 and 𝑡2 in 3-ball 𝐵3 so that the endpoints of
the arcs go to a specific set of 4 points on the equator of 𝐵3,
usually labeled NW,NE, SW, SE. This is equivalent to saying
that rational tangles are defined as the family of tangles that
can be transformed into the trivial tangle by a sequence of
twisting of the endpoints. Note that there are tangles that
cannot be obtained in this fashion: they are the prime tangles
and locally knotted tangles. For example, see Figure 1.

Geometrically, we have the following operations between
rational tangles: the integer (the horizontal) tangles, denoted

by 𝑅(𝑛), consist in 𝑛 horizontal twists, 𝑛 ∈ 𝑍, the mirror
image of 𝑅(𝑛), denoted by −𝑅(𝑛) or 𝑅(−𝑛), is obtained
from 𝑅(𝑛) by switching all the crossing, and the rotation
of 𝑅(𝑛), denoted by 𝑅𝑅(𝑛), is obtained by rotation 𝑅(𝑛)
counterclockwise by 90∘. Moreover the inverse (the vertical)
tangle of 𝑅(𝑛), denoted by 𝑅(1/𝑛), is defined by −𝑅𝑅(𝑛) or𝑅𝑅(−𝑛) as the composition of the rotation andmirror of𝑅(𝑛).
For example, 𝑅(1/3) = −𝑅𝑅(3), and 𝑅(1/−3) = −𝑅𝑅(−3). For
the trivial tangle 𝑅(0) we define 𝑅(∞) = 𝑅𝑅(0) or 𝑅(1/0).

Generally, every rational tangle can be represented by
the continued fractions𝐶(𝑎1, 𝑎2, . . . , 𝑎𝑛) as following Conway
notation:

𝐶 (𝑎1, 𝑎2, . . . , 𝑎𝑛) = 𝑎1
+ 1
𝑎2 + ⋅ ⋅ ⋅ + (1/ (𝑎(𝑛−1) + (1/𝑎𝑛)))

(2)

for 𝑎1 ∈ 𝑍, 𝑎2, . . . , 𝑎𝑛 ∈ 𝑍 − {0}, and 𝑛 even or odd and we
denote it by 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛). See Figure 2.

By Conway [1], rational tangles are classified by fractions
by fact of the following: two rational tangles are isotopic
if and only if they have the same fraction. For example,𝐶(2, −2, 3) and 𝐶(1, 2, 2) represent the same tangles up
to isotopy because they have a fraction 7/5. Therefore
the rational tangles 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛) with the exception of{𝑅(0), 𝑅(±1), 𝑅(∞)} are said to be in canonical form if |𝑎𝑛| >1, 𝑎𝑖 ̸= 0 for 2 ≤ 𝑖 ≤ 𝑛. Note that all nonzero entries
have the same sign and every rational tangle has a unique
canonical form. The canonical form of the example above is𝑅(1, 2, 2) and the following corollary, which is a direct result
of Conway’s theorem [1], will give us a means of classifying
rational tangles by way of fractions.

Corollary 1. There is a one-to-one correspondence between
canonical rational tangles and rational numbers 𝛽/𝛼 ∈ 𝑄 ∪{∞}, where𝛼 ∈ 𝑁∪{0},𝛽 ∈ 𝑍, gcd(𝛼, 𝛽) = 1,𝑅(∞) = 𝑅(1/0).

Now we define infinite tangles by infinite continued
fractions of irrational numbers that the chain of fractions
never ends as the following:

𝐶 (𝑎1, 𝑎2, 𝑎3, . . .) = 𝑎1
+ 1
𝑎2 + (1/ (𝑎3 + (1/ (𝑎4 + ⋅ ⋅ ⋅ )))) ,

(3)
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Figure 2: Rational tangles 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛) for 𝑛 odd or even.

where 𝑎1 is allowed to be 0, but all subsequent terms 𝑎𝑖 must
be positive; that is, 𝑎1, 𝑎2, . . . ∈ 𝑍, 𝑎𝑖 > 0 for 𝑖 ≥ 2. Note that
let 𝐶𝑖 = 𝐶(𝑎1, 𝑎2, . . . , 𝑎𝑖) for 𝑖 ≥ 1 and then the limit

𝐶 (𝑎1, 𝑎2, 𝑎3, . . .) = lim
𝑖→∞
𝐶𝑖 (4)

is a unique irrational number and that let 𝑅𝑖 =𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑖) for 𝑖 ≥ 1 be canonical rational tangles
and then the infinite tangles, denoted by 𝑅(𝑎1, 𝑎2, 𝑎3, . . .), are
defined by the limit of canonical rational tangles 𝑅𝑖 as

𝑅 (𝑎1, 𝑎2, 𝑎3, . . .) = lim
𝑖→∞
𝑅𝑖. (5)

Example 2. Let 𝐶1 = 𝐶(1), 𝐶2 = (1, 1), . . . , 𝐶𝑖 = 𝐶(1, 1,1, . . . , 1), and then the limit has an irrational number

lim
𝑖→∞
𝐶𝑖 = 𝐶 (1, 1, 1, . . .) = 1 + √22 . (6)

Corollary 3. There is a one-to-one correspondence between
infinite tangles and irrational numbers.

Note that 𝛼 ∈ 𝑅−𝑄 is quadratic irrational if and only if it
is of the form

𝛼 = 𝑎 + √𝑏𝑐 , (7)

where 𝑎, 𝑏, 𝑐 ∈ 𝑍, 𝑏 > 0, 𝑐 ̸= 0, and 𝑏 is not the square
of a rational number. Thus an irrational number is called
quadratic irrational if it is a solution of a quadratic equation𝐴𝑥2 +𝐵𝑥+𝐷 = 0, where𝐴, 𝐵,𝐷 ∈ 𝑍 and𝐴 ̸= 0. Moreover 𝛼
is eventually periodic of the form

𝐶 (𝑎1, 𝑎2, . . . , 𝑎𝑁, 𝑎𝑁+1, . . . , 𝑎𝑁+𝑝) , (8)

where the bar indicates the periodic part with 𝑝 terms. Thus
an infinite tangle is said to be periodic if it has eventually
periodic of the form

𝑅 (𝑎1, 𝑎2, . . . , 𝑎𝑁, 𝑎𝑁+1, . . . , 𝑎𝑁+𝑝) . (9)

See Figure 5 for𝑁 = 1 and 𝑝 = 2.

Figure 3: Canonical rational tangle 𝑅(2, 1, 1, 3, 4).

Corollary 4. There is a one-to-one correspondence between
infinite periodic tangles and quadratic irrational numbers.

Finally, tangles are said to be real if it is rational tangles or
infinite tangles, and so the real tangles are finite if it is rational
tangles and infinite if it is infinite tangles. Thus continued
fractions of finite real tangles are rational and continued
fractions of infinite real tangles are irrational. Moreover
infinite real tangle is periodic if it is infinite periodic tangles,
and so continued fractions of infinite periodic real tangles
are quadratic irrational numbers. Let 𝑟 be a real number that
corresponds to finite or infinite continued fractions.Then, by
corollaries, the fact that 𝑅(𝑟) has a unique real tangle can be
proved. The following is examples of the corollaries above.

Example 5. (1) Let 77/30 ∈ 𝑄 be a rational number. Then𝑅(77/30) = 𝑅(2, 1, 1, 3, 4) is a canonical rational tangle of77/30. See Figure 3.(2) Let 𝑒 = 2.718281 ⋅ ⋅ ⋅ ∈ 𝑅 − 𝑄 be an irrational number
used as the base of the natural logarithm function. Then
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· · ·⋱

...

Figure 4: Infinite tangle 𝑅(2, 1, 2, 1, 1, 4, . . .).

⋱

Figure 5: Infinite periodic tangle 𝑅(3, 2, 1).

𝑅(𝑒) = 𝑅(2, 1, 2, 1, 1, 4, 1, 1, . . .) is an infinite tangle of 𝑒. See
Figure 4.(3)Considering a quadratic irrational number (5+√3)/2,𝑅((5 + √3)/2) = 𝑅(3, 2, 1, 2, 1, . . .) = 𝑅(3, 2, 1) is an infinite
periodic tangle of quadratic irrational number (5+√3)/2. See
Figure 5. In Figure 5, the boxesmean periodic parts as𝑅(2, 1).

Now we introduce the operations on real tangles with
analytical structure, which need not have the topological
structure. However, on rational tangles, our operations are
applicable to geometrical results obtained from topological
structure. Our operations need to discuss the generalized
Hyers-Ulam stability of the Cauchy additive functional equa-
tion𝑓(𝑥+𝑦) = 𝑓(𝑥)+𝑓(𝑦) andDNA recombinations in next
section.

Let functions 𝑝 : 𝑅 × 𝑅 → 𝑅, defined by 𝑝(𝑟1, 𝑟2) = 𝑟1 +𝑟2, and 𝑚 : 𝑅 × 𝑅 → 𝑅, defined by 𝑚(𝑟1, 𝑟2) = 𝑟1 × 𝑟2
be two binary operators on 𝑅, and 𝜙 a map from the set of
real tangles 𝑇 to the set of real number 𝑅 in which tangles𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛) or 𝑅(𝑎1, 𝑎2, 𝑎3, . . .) are corresponding to the

rational numbers or irrational numbers, respectively, one to
one.Then for 𝜙 : 𝑇 → 𝑅 and each tangles 𝑡1, 𝑡2 ∈ 𝑇, we define
a map 𝜙∗ : 𝑇 × 𝑇 → 𝑅 × 𝑅 by 𝜙∗(𝑡1, 𝑡2) = (𝜙(𝑡1), 𝜙(𝑡2)) and
two binary operators ⊕ and ⊗ on a nonempty set 𝑇 by

⊕ : 𝑇 × 𝑇 󳨀→ 𝑇,
⊗ : 𝑇 × 𝑇 󳨀→ 𝑇, (10)

where

⊕ (𝑡1, 𝑡2) = 𝜙−1𝑝𝜙∗ (𝑡1, 𝑡2) ,
⊗ (𝑡1, 𝑡2) = 𝜙−1𝑚𝜙∗ (𝑡1, 𝑡2) .

(11)

For convenience, we write 𝑡1 ⊕ 𝑡2 and 𝑡1 ⊗ 𝑡2 by ⊕(𝑡1, 𝑡2)
and ⊗(𝑡1, 𝑡2), respectively.
Lemma 6. Let 𝜙 : 𝑇 → 𝑅 be a map from the set of real tangles
to the set of real numbers at which real tangles 𝑅(𝑎1, 𝑎2, . . . , 𝑎𝑛)
or 𝑅(𝑎1, 𝑎2, . . .) are corresponding to the real number 𝑟, where 𝑟
has continued fraction 𝐶(𝑎1, 𝑎2, . . . , 𝑎𝑛) or 𝐶(𝑎1, 𝑎2, . . .).Then𝜙 satisfies the following properties: for all 𝑡, 𝑡1, 𝑡2 ∈ 𝑇,

(1) 𝜙 (−𝑡) = −𝜙 (𝑡)
(2) 𝜙 (−𝑡𝑅) = 1

𝜙 (𝑡)
(3) 𝑡 ⊕ (−𝑡) = 𝑅 (0)
(4) 𝑡 ⊗ (−𝑡𝑅) = 𝑅 (1)
(5) 𝜙 (𝑡1 ⊕ 𝑡2) = 𝜙 (𝑡1) + 𝜙 (𝑡2)
(6) 𝜙 (𝑡1 ⊗ 𝑡2) = 𝜙 (𝑡1) × 𝜙 (𝑡2) .

(12)

Proof. Let 𝑡 be a real tangle in 𝑇 and 𝜙(𝑡) = 𝑟 ∈ 𝑅, continued
fraction corresponding to 𝑡.(1) Since −𝑡 is obtained from 𝑡 by switching all the
crossing, 𝜙(−𝑡) = −𝑟 and so 𝜙(−𝑡) = −𝜙(𝑡).(2) Since 𝑡𝑅 is obtained by rotation 𝑡 counterclockwise by
90∘, 𝜙(𝑡𝑅) = −1/𝑟 and so 𝜙(−𝑡𝑅) = 1/𝑟 by (1).Thus 𝜙(−𝑡𝑅) =1/𝜙(𝑡).(3) 𝑡 ⊕ (−𝑡) = 𝜙−1𝑝𝜙∗(𝑡, −𝑡) = 𝜙−1𝑝(𝜙(𝑡), 𝜙(−𝑡)) =𝜙−1(𝜙(𝑡) + 𝜙(−𝑡)) = 𝜙−1(0) = 𝑅(0) by (1).(4) 𝑡 ⊗ (−𝑡𝑅) = 𝜙−1𝑚𝜙∗(𝑡, −𝑡𝑅) = 𝜙−1𝑚(𝜙(𝑡), 𝜙(−𝑡𝑅)) =𝜙−1(𝜙(𝑡) × 𝜙(−𝑡𝑅)) = 𝜙−1(1) = 𝑅(1) by (2).(5) 𝜙(𝑡1 ⊕ 𝑡2) = 𝜙(𝜙−1𝑝𝜙∗(𝑡1, 𝑡2)) = 𝑝(𝜙(𝑡1), 𝜙(𝑡2)) =𝜙(𝑡1) + 𝜙(𝑡2).(6) 𝜙(𝑡1 ⊗ 𝑡2) = 𝜙(𝜙−1𝑚𝜙∗(𝑡1, 𝑡2)) = 𝑚(𝜙(𝑡1), 𝜙(𝑡2)) =𝜙(𝑡1) × 𝜙(𝑡2).

In the following, we show that operators ⊕ and ⊗ together
with two real tangles will always generate a real tangle.

Theorem 7. Let 𝑇 be the set of real tangles and ⊕ the binary
operation on 𝑇. Then (𝑇, ⊕) is a group.
Proof. To show associative of ⊕, let 𝑡1, 𝑡2, 𝑡3 ∈ 𝑇.
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Then

(𝑡1 ⊕ 𝑡2) ⊕ 𝑡3 = 𝜙−1𝑝𝜙∗ (𝜙−1𝑝𝜙∗ (𝑡1, 𝑡2) , 𝑡3)
= 𝜙−1𝑝𝜙∗ (𝜙−1 (𝜙 (𝑡1) + 𝜙 (𝑡2)) , 𝑡3)
= 𝜙−1 ((𝜙 (𝑡1) + 𝜙 (𝑡2)) + 𝜙 (𝑡3))
= 𝜙−1 (𝜙 (𝑡1) + (𝜙 (𝑡2) + 𝜙 (𝑡3)))
= 𝜙−1𝑝𝜙∗ (𝑡1, 𝜙−1 (𝜙 (𝑡2) + 𝜙 (𝑡3)))
= 𝜙−1𝑝𝜙∗ (𝑡1, 𝜙−1𝑝𝜙∗ (𝑡2, 𝑡3))
= 𝑡1 ⊕ (𝑡2 ⊕ 𝑡3) .

(13)

For the remainder, the identity element is the trivial tangle𝑅(0) ∈ 𝑇 and the inverse of 𝑡 ∈ 𝑇 is −𝑡. See Lemma 6. Thus
the set 𝑇 forms a group with respect to ⊕.

In particular, for 𝑡1, 𝑡2 ∈ 𝑇, we write 𝑡1 ⊖ 𝑡2 for 𝑡1 ⊕ (−𝑡2).
Theorem 8. Let 𝑇 be the set of real tangles and ⊗ the binary
operation on 𝑇. Then (𝑇, ⊗) is a group.
Proof. To show associative of ⊗, let 𝑡1, 𝑡2, 𝑡3 ∈ 𝑇. Then

(𝑡1 ⊗ 𝑡2) ⊗ 𝑡3 = 𝜙−1𝑚𝜙∗ (𝜙−1𝑚𝜙∗ (𝑡1, 𝑡2) , 𝑡3)
= 𝜙−1𝑚𝜙∗ (𝜙−1 (𝜙 (𝑡1) × 𝜙 (𝑡2)) , 𝑡3)
= 𝜙−1 ((𝜙 (𝑡1) × 𝜙 (𝑡2)) × 𝜙 (𝑡3))
= 𝜙−1 (𝜙 (𝑡1) × (𝜙 (𝑡2) × 𝜙 (𝑡3)))
= 𝜙−1𝑚𝜙∗ (𝑡1, 𝜙−1 (𝜙 (𝑡2) × 𝜙 (𝑡3)))
= 𝜙−1𝑚𝜙∗ (𝑡1, 𝜙−1𝑚𝜙∗ (𝑡2, 𝑡3))
= 𝑡1 ⊗ (𝑡2 ⊗ 𝑡3) .

(14)

For the remainder, the identity element is the integer tangle𝑅(1) ∈ 𝑇 and the inverse of 𝑡 ∈ 𝑇 is −𝑡𝑅 and denoted as𝑡−1, where 𝑡𝑅 means rotation counterclockwise by 90∘. See
Lemma 6.Thus the set𝑇 forms a group with respect to ⊗.
Corollary 9. (𝑇, ⊕) and (𝑇, ⊗) are abelian groups.

For the symbolization, we write 𝑛𝑡 for 𝑡 ⊕ 𝑡 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑡(𝑛
summands) and write 𝑡𝑛 for 𝑡 ⊗ 𝑡 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑡(𝑛 products). Note
that, by distributive law between two operations, we have

(𝑡1 ⊕ 𝑡2) ⊗ (𝑡3 ⊕ 𝑡4) ⇐⇒
(𝑡1 ⊗ 𝑡3) ⊕ (𝑡1 ⊗ 𝑡4) ⊕ (𝑡2 ⊗ 𝑡3) ⊕ (𝑡2 ⊗ 𝑡4) . (15)

For 𝑡1, 𝑡2, 𝑡 ∈ 𝑇 and 𝑟 ∈ 𝑅, let ⊕ : 𝑇 × 𝑇 → 𝑇
and ⋅ : 𝑅 × 𝑇 → 𝑇 be addition and scalar multiplication
operators, respectively, defined by ⊕(𝑡1, 𝑡2) = 𝑡1 ⊕ 𝑡2 and⋅(𝑟, 𝑡) = 𝜙−1𝑚(𝑟, 𝜙(𝑡)) ∈ 𝑇, denoted by 𝑟 ⋅ 𝑡, where (⋅, ⋅) :𝑅 × 𝑇 → 𝑅 × 𝑅 is a map. Then the set 𝑇 of the real tangles
with addition and scalar multiplication operators satisfy the
following result.

Theorem 10. (𝑇, ⊕, ⋅) is a vector space.
Proof. ByTheorem 7, (𝑇, ⊕) is a group.Moreover, we have the
following properties:

(1) 𝑟 ⋅ (𝑡1 ⊕ 𝑡2) = 𝜙−1𝑚(𝑟, 𝜙 (𝑡1 ⊕ 𝑡2))
= 𝜙−1𝑚(𝑟, 𝜙𝜙−1𝑝𝜙∗ (𝑡1, 𝑡2))
= 𝜙−1𝑚(𝑟, 𝜙 (𝑡1) + 𝜙 (𝑡2))
= 𝜙−1 (𝑟 × (𝜙 (𝑡1) + 𝜙 (𝑡2)))
= 𝜙−1 (𝑟 × 𝜙 (𝑡1) + 𝑟 × 𝜙 (𝑡2))
= 𝜙−1𝑝 (𝜙𝜙−1𝑚(𝑟, 𝜙 (𝑡1)) , 𝜙𝜙−1𝑚(𝑟, 𝜙 (𝑡2)))
= 𝜙−1𝑝 (𝜙 (𝑟 ⋅ 𝑡1) , 𝜙 (𝑟 ⋅ 𝑡2))
= 𝜙−1𝑝𝜙∗ (𝑟 ⋅ 𝑡1, 𝑟 ⋅ 𝑡2)
= (𝑟 ⋅ 𝑡1) ⊕ (𝑟 ⋅ 𝑡2) .

(16)

Similarly,

(2) (𝑟1 + 𝑟2) ⋅ 𝑡 = (𝑟1 ⋅ 𝑡) ⊕ (𝑟2 ⋅ 𝑡) ,
(3) 𝑟1 ⋅ (𝑟2 ⋅ 𝑡) = (𝑟1𝑟2) ⋅ 𝑡,
(4) 1 ⋅ 𝑡 = 𝑡

(17)

hold. Thus (𝑇, ⊕, ⋅) is a vector space over 𝑅.
In particular, we write 𝑟(𝑡1 ⊕ 𝑡2) for 𝑟 ⋅ (𝑡1 ⊕ 𝑡2); that is, the

operator ⋅ is often omitted.

Remark 11. Wehave the following relations, which are proved
from the above facts

(1) − (𝑡1 ⊕ 𝑡2) = −𝑡1 ⊕ (−𝑡2) ,
(2) − (𝑡1 ⊖ 𝑡2) = (−𝑡1 ⊕ 𝑡2) ,
(3) 𝑡1 ⊖ 𝑡2 = −𝑡2 ⊕ 𝑡1.

(18)

If we define a function 𝐷 : 𝑇 × 𝑇 → 𝑅+ as 𝐷(𝑡1, 𝑡2) =|𝜙(𝑡1) −𝜙(𝑡2)| for each 𝑡1, 𝑡1 ∈ 𝑇, then (𝑇,𝐷) is a metric space
from the following theorem.

Theorem 12. (𝑇,𝐷) is a metric space.

Proof. Let 𝑡1, 𝑡2, 𝑡3 ∈ 𝑇. Then

(1) 𝐷 (𝑡1, 𝑡2) = 0 ⇐⇒
󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨 = 0 ⇐⇒
𝜙 (𝑡1) = 𝜙 (𝑡2) ⇐⇒
𝑡1 = 𝑡2,

(2) 𝐷 (𝑡1, 𝑡2) = 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝜙 (𝑡2) − 𝜙 (𝑡1)󵄨󵄨󵄨󵄨
= 𝐷 (𝑡2, 𝑡1) ,
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Figure 6: Addition and multiplication of tangles.

(3) 𝐷 (𝑡1, 𝑡2) = 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡3) + 𝜙 (𝑡3) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜙 (𝑡1) − 𝜙 (𝑡3)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜙 (𝑡3) − 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
≤ 𝐷 (𝑡1, 𝑡3) + 𝐷 (𝑡3, 𝑡2) .

(19)

Thus (𝑇,𝐷) is a metric space.

Define the norm of 𝑡 by ‖𝑡‖ = 𝐷(𝑅(0), 𝑡). Then we have
that ‖𝑡‖ = |𝜙(𝑡)| and 𝐷(𝑡1, 𝑡2) = |𝜙(𝑡1) − 𝜙(𝑡2)| = |𝜙(𝑡1) +𝜙(−𝑡2)| = |𝜙(𝑡1 ⊕ (−𝑡2))| = ‖𝑡1 ⊕ (−𝑡2)‖ = ‖𝑡1 ⊖ 𝑡2‖.
Remark 13. We have the following relations:

(1) 󵄩󵄩󵄩󵄩𝑡1 ⊗ 𝑡2󵄩󵄩󵄩󵄩 = 𝐷 (𝑅 (0) , 𝑡1 ⊗ 𝑡2) = 󵄨󵄨󵄨󵄨0 − 𝜙 (𝑡1 ⊗ 𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1) × 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1)󵄨󵄨󵄨󵄨 × 󵄨󵄨󵄨󵄨𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄩󵄩󵄩󵄩𝑡1󵄩󵄩󵄩󵄩 × 󵄩󵄩󵄩󵄩𝑡2󵄩󵄩󵄩󵄩 ,

(2) 󵄩󵄩󵄩󵄩𝑡1 ⊕ 𝑡2󵄩󵄩󵄩󵄩 = 𝐷 (𝑅 (0) , 𝑡1 ⊕ 𝑡2) = 󵄨󵄨󵄨󵄨0 − 𝜙 (𝑡1 ⊕ 𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨𝜙 (𝑡1) + 𝜙 (𝑡2)󵄨󵄨󵄨󵄨
≤ 󵄨󵄨󵄨󵄨𝜙 (𝑡1)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜙 (𝑡2)󵄨󵄨󵄨󵄨
= 󵄩󵄩󵄩󵄩𝑡1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑡2󵄩󵄩󵄩󵄩 .

(20)

Define an inequality ≺ (resp. ≼) of 𝑡1, 𝑡2 on 𝑇 as 𝑡1 ≺𝑡2 (resp. 𝑡1 ≼ 𝑡2) ⇔ 𝜙(𝑡1) < 𝜙(𝑡2) (resp. 𝜙(𝑡1) ≤ 𝜙(𝑡2)).
Remark 14. (1) For each 𝜖 > 0, ‖𝑡‖ < 𝜖means that −𝑡𝜖 ≺ 𝑡 ≺𝑡𝜖 for some 𝜙(𝑡𝜖) = 𝜖.

(2) For each 𝜖 > 0, we have that
󵄩󵄩󵄩󵄩𝑡1 ⊖ 𝑡2󵄩󵄩󵄩󵄩 < 𝜖 ⇐⇒

−𝑡𝜖 ≺ 𝑡1 ⊖ 𝑡2 ≺ 𝑡𝜖 ⇐⇒
−𝑡𝜖 ⊕ 𝑡2 ≺ 𝑡1 ≺ 𝑡𝜖 ⊕ 𝑡2 ⇐⇒
𝑡2 ⊖ 𝑡𝜖 ≺ 𝑡1 ≺ 𝑡2 ⊕ 𝑡𝜖,

(21)

for some 𝜙(𝑡𝜖) = 𝜖.
In order to determine a group (generally, a vector space)

from the set of rational tangles (generally, real tangles),
two binary operators ⊕ and ⊗ are necessary. For other
operators, restricted on rational tangles, addition (denote
by #) and multiplication (denote by ∗) of horizontal and
vertical rational tangles are considered in [1]. In detail, the
multiplication of two rational tangles is defined as connecting
the top two ends of one tangle to the bottom two endpoints
of another, and the addition of two rational tangles is defined
as connecting the two leftmost endpoints of one tangle with
the two rightmost points of the other as shown in Figure 6.

However the addition of two rational tangles is not
necessarily rational, but it can be algebraic tangle [1]. For
example, it can be easily seen that the sum of 𝑅(1/2) and𝑅(1/2) is not a rational tangle. As the results, in [3], the
multiplication (resp., addition) of two rational tangles will be
rational tangle if one of two is a vertical (resp., horizontal)
tangle. Note that, as a special case of rational tangles, the set
of braids is a group under the multiplication. Therefore two
operators ⊕ and ⊗ on rational tangles are a generalization
of operators # and ∗ introduced in [1]. For two operators ⊕
and ⊗ on real tangles, we do not know yet whether it has a
topological or geometrical structure.

In Section 3, we will study some applications for two
operators ⊕ and ⊗ on real tangles. In this paper, the set (𝑇,𝐷)
of the real tangles with a metric𝐷 is called the tangle space.



Advances in Mathematical Physics 7

3. Some Applications on Tangle Space

3.1. Tangle Space and Stability. Let 𝑇 be the tangle space and𝑓 : 𝑇 → 𝑇 a mapping. Then we prove the generalized Hyers-
Ulam stability of the Cauchy additive functional equation as
follows.

Theorem 15. Let 𝑓 : 𝑇 → 𝑇 be a mapping such that

󵄩󵄩󵄩󵄩𝑓 (𝑥 ⊕ 𝑦) ⊖ (𝑓 (𝑥) ⊕ 𝑓 (𝑦))󵄩󵄩󵄩󵄩 < 𝜖 (22)

for all 𝑥, 𝑦 ∈ 𝑇 and for some 𝜖 > 0. Then there exists a unique
additive mapping 𝑄 : 𝑇 → 𝑇 such that ‖𝑓(𝑥) ⊖ 𝑄(𝑥)‖ < 𝜖 for
all 𝑥 ∈ 𝑇.
Proof. Suppose that 𝑓 : 𝑇 → 𝑇 is a mapping such that

󵄩󵄩󵄩󵄩𝑓 (𝑥 ⊕ 𝑦) ⊖ (𝑓 (𝑥) ⊕ 𝑓 (𝑦))󵄩󵄩󵄩󵄩 < 𝜖 (23)

for all 𝑥, 𝑦 ∈ 𝑇 and for some 𝜖 > 0. Then we have

󵄩󵄩󵄩󵄩𝑓 (𝑥 ⊕ 𝑦) ⊖ (𝑓 (𝑥) ⊕ 𝑓 (𝑦))󵄩󵄩󵄩󵄩 < 𝜖 󳨐⇒
𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊖ 𝑎𝜖 ≺ 𝑓 (𝑥 ⊕ 𝑦) ≺ 𝑓 (𝑥) ⊕ 𝑓 (𝑦) ⊕ 𝑎𝜖, (I)

for some 𝜙(𝑎𝜖) = 𝜖.(1) Putting 𝑥 = 𝑦 in (I),

2𝑓 (𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (2𝑥) ≺ 2𝑓 (𝑥) ⊕ 𝑎𝜖 󳨐⇒ (II)
𝑓 (𝑥) ⊖ 𝑎𝜖2 ≺

𝑓 (2𝑥)
2 ≺ 𝑓 (𝑥) ⊕ 𝑎𝜖2 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (2𝑥)
2 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

𝜖
2 .

(III)

(2) Putting 𝑥 = 2𝑥 in (II),

2𝑓 (2𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (4𝑥) ≺ 2𝑓 (2𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑓 (2𝑥)
2 ⊖ 𝑎𝜖4 ≺

𝑓 (4𝑥)
4 ≺ 𝑓 (2𝑥)2 ⊕ 𝑎𝜖4 󳨐⇒

𝑓 (𝑥) ⊖ 𝑎𝜖2 ⊖
𝑎𝜖4 ≺

𝑓 (4𝑥)
4

≺ 𝑓 (𝑥) ⊕ 𝑎𝜖2 ⊕
𝑎𝜖4 (∵ by (III)) 󳨐⇒

𝑓 (𝑥) ⊖ 34𝑎𝜖 ≺
𝑓 (4𝑥)
4 ≺ 𝑓 (𝑥) ⊕ 34𝑎𝜖 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (4𝑥)
4 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

3
4𝜖.

(IV)

(3) Putting 𝑥 = 4𝑥 in (II),
2𝑓 (4𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (8𝑥) ≺ 2𝑓 (4𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑓 (4𝑥)
4 ⊖ 𝑎𝜖8 ≺

𝑓 (8𝑥)
8 ≺ 𝑓 (4𝑥)4 ⊕ 𝑎𝜖8 󳨐⇒

𝑓 (𝑥) ⊖ 𝑎𝜖2 ⊖
𝑎𝜖4 ⊖

𝑎𝜖8 ≺
𝑓 (8𝑥)
8

≺ 𝑓 (𝑥) ⊕ 𝑎𝜖2 ⊕
𝑎𝜖4

⊕ 𝑎𝜖8 (∵ by (IV)) 󳨐⇒
𝑓 (𝑥) ⊖ 78𝑎𝜖 ≺

𝑓 (8𝑥)
8 ≺ 𝑓 (𝑥) ⊕ 78𝑎𝜖 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (8𝑥)
8 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

7
8𝜖.

(24)

Putting recursively 𝑥 = (2𝑛−1)𝑥 in (II), we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (2𝑛𝑥)
2𝑛 ⊖ 𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

2𝑛 − 1
2𝑛 𝜖 < 𝜖, (V)

where 𝑛 ≥ 1.
Define 𝑄 : 𝑇 → 𝑇 by

𝑄 (𝑥) = lim
𝑛→∞

𝑓 (2𝑛𝑥)
2𝑛 (25)

for all 𝑥 ∈ 𝑇; that is, lim𝑛→∞‖𝑓(2𝑛𝑥)/2𝑛 ⊖ 𝑄(𝑥)‖ = 0.
Now putting 𝑥 = 2𝑛𝑥 and 𝑦 = 2𝑛𝑦 in ‖𝑓(𝑥 ⊕ 𝑦) ⊖ 𝑓(𝑥) ⊖𝑓(𝑦)‖ < 𝜖, we have
󵄩󵄩󵄩󵄩𝑓 (2𝑛𝑥 ⊕ 2𝑛𝑦) ⊖ 𝑓 (2𝑛𝑥) ⊖ 𝑓 (2𝑛𝑦)󵄩󵄩󵄩󵄩 < 𝜖 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (2𝑛 (𝑥 ⊕ 𝑦))

2𝑛 ⊖ 𝑓 (2𝑛𝑥)2𝑛 ⊖ 𝑓 (2𝑛𝑦)2𝑛
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

𝜖
2𝑛 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 lim𝑛→∞
𝑓 (2𝑛 (𝑥 ⊕ 𝑦))

2𝑛 ⊖ lim
𝑛→∞

𝑓 (2𝑛𝑥)
2𝑛 ⊖ lim

𝑛→∞

𝑓 (2𝑛𝑦)
2𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< lim
𝑛→∞

𝜖
2𝑛 = 0.

(26)

Thus ‖𝑄(𝑥 ⊕ 𝑦) ⊖ 𝑄(𝑥) ⊖ 𝑄(𝑦)‖ = 0; that is, 𝑄(𝑥 ⊕ 𝑦) =𝑄(𝑥) ⊕ 𝑄(𝑦). Moreover, from (V),
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 lim𝑛→∞

𝑓 (2𝑛𝑥)
2𝑛 ⊖ lim

𝑛→∞
𝑓 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < lim

𝑛→∞
(2𝑛 − 12𝑛 ) 𝜖 = 𝜖. (27)

Thus we have ‖𝑄(𝑥) ⊖𝑓(𝑥)‖ < 𝜖.Therefore this means that𝑄
is an additive mapping such that ‖𝑄(𝑥) ⊖ 𝑓(𝑥)‖ < 𝜖.

To prove the uniqueness of the additive mapping 𝑄,
assume that there is another additive mapping 𝑄󸀠 : 𝑇 → 𝑇
such that

𝑄󸀠 (𝑥 ⊕ 𝑦) = 𝑄󸀠 (𝑥) ⊕ 𝑄󸀠 (𝑦) ,
󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥) ⊖ 𝑄󸀠 (𝑥)󵄩󵄩󵄩󵄩󵄩 < 𝜖.

(28)
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From the fact 𝑄󸀠(2𝑛𝑥) = 2𝑛𝑄󸀠(𝑥), we have 𝑄󸀠(𝑥) =𝑄󸀠(2𝑛𝑥)/2𝑛. Since ‖𝑓(𝑥) ⊖ 𝑄󸀠(𝑥)‖ < 𝜖, we have that
𝑄󸀠 (𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (𝑥) ≺ 𝑄󸀠 (𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑄󸀠 (2𝑛𝑥) ⊖ 𝑎𝜖 ≺ 𝑓 (2𝑛𝑥) ≺ 𝑄󸀠 (2𝑛𝑥) ⊕ 𝑎𝜖 󳨐⇒
𝑄󸀠 (2𝑛𝑥)
2𝑛 ⊖ 𝑎𝜖2𝑛 ≺

𝑓 (2𝑛𝑥)
2𝑛 ≺ 𝑄󸀠 (2𝑛𝑥)2𝑛 ⊕ 𝑎𝜖2𝑛 󳨐⇒

𝑄󸀠 (𝑥) ⊖ 𝑎𝜖2𝑛 ≺
𝑓 (2𝑛𝑥)
2𝑛 ≺ 𝑄󸀠 (𝑥) ⊕ 𝑎𝜖2𝑛 󳨐⇒󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (2𝑛𝑥)
2𝑛 ⊖ 𝑄󸀠 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 <

𝜖
2𝑛 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 lim𝑛→∞
𝑓 (2𝑛𝑥)
2𝑛 ⊖ lim

𝑛→∞
𝑄󸀠 (𝑥)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < lim

𝑛→∞

𝜖
2𝑛 = 0,

(29)

where 𝜖 > 0 and 𝜙(𝑎𝜖) = 𝜖. Thus we have ‖𝑄(𝑥) ⊖ 𝑄󸀠(𝑥)‖ = 0;
that is, 𝑄(𝑥) = 𝑄󸀠(𝑥). This completes the proof.

For example, let 𝑓 : 𝑇 → 𝑇 be a mapping defined by𝑓(𝑥) = 𝑟1 ⋅ 𝑥 ⊕ 𝑟2, where 𝑟1, 𝑟2 ∈ 𝑅, 𝑥 ∈ 𝑇. In fact, 𝑟2 means𝑟2 ⋅𝑅(1).Then𝑓 is not additive mapping. However amapping𝑓 : 𝑇 → 𝑇 defined by𝑓(𝑥) = 𝑟⋅𝑥, 𝑟 ∈ 𝑅 and𝑥 ∈ 𝑇 is additive.
In tangle space 𝑇, let 𝑥 = 𝑅(1, 1, 2), 𝑓(𝑥) = 𝑥 ⊕ 3, and 𝑛 = 4;
then 𝑓(16𝑥) = 𝑅(29, 1, 2) and 𝑓(16𝑥)/16 = 𝑅(1, 1, 5, 1, 6),
where 16𝑥 = 𝑅(26, 1, 2). See Figure 7.

Generally, for each 𝑛, the real tangles are as the following:
𝑓 (2𝑛𝑥)
2𝑛 = 𝑅(14 + ∑𝑛𝑘=1 52𝑘−12𝑛3 ) (30)

and so the additive mapping 𝑄(𝑥) is real tangle as the
following:

𝑄 (𝑥) = lim
𝑛→∞

𝑅(14 + ∑𝑛𝑘=1 52𝑘−12𝑛3 ) . (31)

3.2. Tangle Space and Rational Knot or Link. Suppose that𝑇󸀠 ⊂ 𝑇 is the set of rational tangles. Given 𝑡 ∈ 𝑇󸀠, the
numerator closure 𝑁(𝑡) is formed by connecting the NW
and NE endpoints and the SW and SE endpoints, and the
denominator closure 𝐷(𝑡) is formed by connecting the NW
and SW endpoints and connecting the NE and SE endpoints.
We note that two operations𝑁(𝑡) and𝐷(𝑡) by connecting the
endpoints of 𝑡 produce knots or 2-component links, called
rational knot or link if 𝑡 is a rational tangle, and that every
2-bridge knot is a rational knot because it can be obtained as
the numerator or denominator closure of a rational tangle.
See Figure 8.

Let 𝑇󸀠 ⊂ 𝑇 be the set of rational tangles and 𝐾 the
set of rational knots or links. Then for given 𝑡 ∈ 𝑇󸀠, it
allows defining a function 𝑁 : 𝑇󸀠 → 𝐾 in order that 𝑁(𝑡)
is the numerator closure. The following theorem discusses
equivalence of rational knots or links obtained by taking the
numerator closure of rational tangles. We call this theorem
the tangle classification theorem

Theorem 16 (see [16]). Let 𝑅(𝑝/𝑞) and 𝑅(𝑝󸀠/𝑞󸀠) be the ratio-
nal tangles with reduced fractions 𝑝/𝑞 and 𝑝󸀠/𝑞󸀠, respectively.
Then𝑁(𝑅(𝑝/𝑞)) and𝑁(𝑅(𝑝󸀠/𝑞󸀠)) are topologically equivalent
if and only if 𝑝 = 𝑝󸀠and 𝑞± ≡ 𝑞󸀠mod𝑝.

For example, 𝑁(𝑅(0, 3, 2)) = 𝑁(𝑅(2/7)) = 𝑁(𝑅(2/1)) =𝑁(𝑅(2)) because 7 ≡ 1 mod 2.
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Figure 8: The numerator closure and denominator closure of tangle.

Corollary 17. If two rational tangles are isotopic, then their
each numerator’s closures are topological equivalent.

Proof. Let 𝑅(𝑝/𝑞) and 𝑅(𝑝󸀠/𝑞󸀠) be the rational tangles with
reduced fractions 𝑝/𝑞 and 𝑝󸀠/𝑞󸀠, respectively. Then 𝑝 = 𝑝󸀠
and 𝑞 = 𝑞󸀠 because 𝑅(𝑝/𝑞) and 𝑅(𝑝󸀠/𝑞󸀠) are isotopic.

Thus, by Theorem 16, 𝑁(𝑅(𝑝/𝑞)) and 𝑁(𝑅(𝑝󸀠/𝑞󸀠)) are
topological equivalent.

However there is a counterexample for the converse of
Corollary 17 as follows.

Example 18. Let 𝑅(1, 2, 2) and 𝑅(2, 3) be two rational tangles
with fractions 7/5 and 7/3, respectively. By Theorem 16,𝑁(𝑅(7/5)) and𝑁(𝑅(7/3)) are topological equivalent, but two
tangles 𝑅(7/5) and 𝑅(7/3) are not isotopic.

Define the numerator closure of the sum of two rational
tangles as the following:

𝑁(𝑅(𝑦1𝑥1) ⊕ 𝑅(
𝑦2𝑥2)) = 𝑁(𝑅(

𝑥2𝑦1 + 𝑥1𝑦2𝑥1𝑥2 )) , (32)

where gcd(𝑥1, 𝑦1) = gcd(𝑥2, 𝑦2) = 1. Note that the rational
knot or link

𝑁(𝑅(𝑥2𝑦1 + 𝑥1𝑦2𝑥1𝑥2 )) (33)

is denoted by 𝑏(𝑥2𝑦1+𝑥1𝑦2, 𝑥1𝑥2), called the 2-bridge knot or
link, and that 𝑏(𝑥2𝑦1 + 𝑥1𝑦2, 𝑥1𝑥2) is to be the 2-bridge knot
if 𝑥2𝑦1 + 𝑥1𝑦2 is odd number and the 2-bridge link if not.

A tangle equation is an equation of the form𝑁(𝐴 ⊕ 𝐵) =𝐾, where 𝐴, 𝐵 ∈ 𝑇󸀠 and 𝐾 ∈ 𝐾. Solving equations of this
type will be useful in the tangle model and gaining a better
understanding of certain enzyme mechanisms [15].

Example 19. Considering rational tangles 𝑅(2) and 𝑅(23/17),
then𝑅(2)⊕𝑅(23/17) is the rational tangle𝑅(3, 2, 1, 5) because
of 𝑅(23/17) = 𝑅(1, 2, 1, 5). Thus a tangle equation 𝑁(𝑅(2) ⊕𝑅(23/17)) = 𝑁(𝑅(3, 2, 1, 5)) is representing the 2-bridge
knot 𝑏(57, 17) from the computation of the numerator closure
above.

If one of the tangles in the equation is unknown and the
other tangle and the knot 𝐾 are known, then there is one
tangle as the solution of equation, but it is not unique. In fact,
let 𝐴 be known rational tangle and 𝐾 rational knot or link.
Then there are two different rational tangles as the solution
of the equation 𝑁(𝑋 ⊕ 𝐴) = 𝐾 which is the topological
equivalent under numerator operation inTheorem 16.

Example 20. Let 𝐴 = 𝑅(1/3), 2-bridge knot 𝐾 = 𝑏(5, 2)
known, and 𝑋 = 𝑅(𝑥) unknown. Then 𝑋 = 𝑅(13/6) is a
solution of the equation𝑁(𝑋 ⊕ 𝐴) = 𝐾. However 𝑏(5, 2) and𝑏(5, 3) are topological equivalent fromTheorem 16.Thus𝑋 =𝑅(4/3) is the other solution of the equation𝑁(𝑋 ⊕ 𝐴) = 𝐾 if𝐾 = 𝑏(5, 3).

FromTheorem 16 and Corollary 17, we obtain the follow-
ing corollary by the method as in Example 20.

Corollary 21. Let𝐴 and𝐾 be known rational tangle in𝑇󸀠 and
rational knot or link in 𝐾, respectively. Then there exist two
solutions𝑋 ∈ 𝑇󸀠 of the equation𝑁(𝑋 ⊕ 𝐴) = 𝐾.
3.3. Tangle Space and DNA. Suppose that tangles 𝑆, 𝑇,
and 𝑅 below are rational. As discussed in the introduction
of Section 1, DNA must be topologically manipulated by
enzymes in order for vital life processes to occur. The
actions of some enzymes can be described as site-specific
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Figure 9: Example of a site-specific recombination.

recombination. Site-specific recombination is a process by
which a piece of DNA is moved to another position on the
molecule or to import a foreign piece of a DNA molecule
into it. Recombination is used for gene rearrangement, gene
regulation, copy number control, and gene therapy. This
process is mediated by an enzyme called a recombinase. A
small segment of the genetic sequence of the DNA that is
recognized by the recombinase is called a recombination site
or a specific site. See Figure 9. Note that the tangle in Figure 9
is where the enzyme acts.

The DNA molecule and the enzyme itself are called
the synaptic complexes. Before recombination the DNA
molecule is called the substract, that is, it is unchanged by
the enzyme. After recombination the DNAmolecule is called
the product. In Figure 9, (a) is the substract and (b) is the
product.This is the result which replaces a tangle (or enzyme)
with a new tangle, called the recombination tangle. Thus the
following tangle equations hold:

𝑁(𝑆 ⊕ 𝑇) = the substract,
𝑁 (𝑆 ⊕ 𝑅) = the product, (34)

where the product is a result that the enzyme replaces a
tangle 𝑇 with a tangle 𝑅. Generally it will repeat the tangle
replacement a number of times. If it is possible to observe
the substract and the product; then the ideal situation would
be to determinate tangles 𝑆, 𝑇, and 𝑅 from the tangle
equations. However it is a hard question in general to solve
the tangle equations because there are only two equations
but three unknowns. As above, the tangle model has been
used to mathematically show the enzyme mechanism of
recombination. See [17] for similar examples.

Example 22. Let the knot types of the substrate and the
product yielding equations in the recombination variables 𝑆,𝑇, and 𝑅 be as follows:

𝑁(𝑆 ⊕ 𝑇) = the unknot 𝑏 (1, 1) ,
𝑁 (𝑆 ⊕ 𝑅) = the trefoil knot 𝑏 (3, 1) . (35)

Then solutions of the equations are either (𝑆, 𝑇, 𝑅) =(𝑅(−1/2), 𝑅(0), 𝑅(2)) or (𝑆, 𝑇, 𝑅) = (𝑅(1/2), 𝑅(0), 𝑅(−2)).

In our study of tangle space with operator ⊕, it is still
unknown how to construct a link or knot associated with a
given real tangle and analyze DNAmolecules by real tangles.

Competing Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. H. Conway, “An enumeration of knots and links and some of
their algebraic properties,” in Proceedings of the Conference on
Computational Problems in Abstract Algebra, J. Leech, Ed., pp.
329–358, Pergamon Press, Oxford, UK, 1970.

[2] A. Ya. Khinchin, Continued Fractions, Dover, 1997, (republica-
tion of the 1964 edition of Chicago Univ. Press).

[3] L. H. Kauffman and S. Lambropoulou, “On the classification of
rational tangles,” Advances in Applied Mathematics, vol. 33, no.
2, pp. 199–237, 2004.

[4] S.M.Ulam,Problems inModernMathematics,Wiley, NewYork,
NY, USA, 1960.

[5] D. H. Hyers, “On the stability of the linear functional equation,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 27, pp. 222–224, 1941.

[6] T. Aoki, “On the stability of the linear transformation in Banach
spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp.
64–66, 1950.

[7] T. M. Rassias, “On the stability of the linear mapping in Banach
spaces,” Proceedings of the American Mathematical Society, vol.
72, no. 2, pp. 297–300, 1978.
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Through applying the Jacobian elliptic function method, we obtain the periodic solution for a series of nonlinear Zakharov
equations, which contain Klein-Gordon Zakharov equations, Zakharov equations, and Zakharov-Rubenchik equations.

1. Introduction

For most of nonlinear evolution equations, we have many
methods to obtain their exactly solutions, such as hyperbolic
function expansion method [1], the transformation method
[2], the trial function method [3], the automated method [4],
and the extended tanh-function method [5]. But these meth-
ods can only obtain solitary wave solution and cannot be used
to deduce periodic solutions. The Jacobian function method
provides a way to find periodic solutions for some nonlinear
evolution equations. In particular, in the research of plasma
physics theory, quantum mechanics, fluid mechanics, and
optical fiber communication, we frequently meet kinds of
Zakharov equations.

Hence, in this paper, inspired by Angulo Pava’s work [6],
we are concerned to obtain exact periodic solutions of a series
of Zakharov equations,

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 + 𝑛𝑢 = 0,𝑛𝑡𝑡 − 𝑛𝑥𝑥 = (|𝑢|2)𝑥𝑥 ,𝑢𝑡𝑡 − 𝑢𝑥𝑥 − |V|𝑥𝑥 = 0,𝑖V𝑡 + 𝛼V𝑥𝑥 − 𝑢V = 0,
(1)

and Zakharov-Rubenchik equations,

𝑖𝐵𝑡 + 𝜔𝐵𝑥𝑥 − 𝑘 (𝑢 − 12𝜆𝜌 + 𝑞 |𝐵|2 𝐵) = 0,𝜃𝜌𝑡 + (𝑢 − 𝜆𝜌)𝑥 = −𝑘 |𝐵|2𝑥 ,𝜃𝑢𝑡 + (𝛽𝜌 − 𝜆𝑢)𝑥 = 12𝑘𝜆 |𝐵|2𝑥 .
(2)

2. The Periodic Solution for Klein-Gordon
Zakharov Equations

The Klein-Gordon Zakharov equations are used to show
the interaction between langmuir wave and ion wave in the
plasma, which has the following form:

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑢 + 𝑛𝑢 = 0,
𝑛𝑡𝑡 − 𝑛𝑥𝑥 = (|𝑢|2)𝑥𝑥 , (3)

where 𝑢(𝑥, 𝑡) denotes the biggest moment scale component
produced by electron in electric field. 𝑛(𝑥, 𝑡) denotes the
speed of deviations between the ions at any position and that
at equilibrium position.

Now, we suppose that it possesses solitary wave solutions
of the following form:

𝑢 (𝑥, 𝑡) = 𝑒𝑖𝜃𝜑 (𝜉) ,
𝑛 (𝑥, 𝑡) = 𝑛 (𝜉) ,

𝜉 = 𝑥 − 𝑐𝑡,
(4)

where 𝑐 is a traveling wave speed and 𝑐2 < 1 is a constant.
By substituting (4) into (3), we can obtain

𝑐2𝜑󸀠󸀠 − 𝜑󸀠󸀠 + 𝜑 + 𝜑𝑛 = 0, (5)

(𝑐2 − 1) 𝑛󸀠󸀠 = (𝜑2)󸀠󸀠 . (6)
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By (6), we have

(𝑐2 − 1) 𝑛 − 𝜑2 = 𝑐1𝜉 + 𝑚, (7)

where 𝑐1,𝑚 are integration constants.
In what follows, we are concerned with the periodic

solution of (3); thus we need to require 𝑐1 = 0.
Therefore, (7) implies

𝑛 = 𝜑2 + 𝑚𝑐2 − 1 . (8)

Moreover, through (8) and (5), we have that

(𝑐2 − 1) 𝜑󸀠󸀠 + 𝜑 + 𝜑3 + 𝜑𝑚𝑐2 − 1 = 0. (9)

Multiplying (9) by 𝜑󸀠 and integrating once, we obtain

𝑐2 − 12 (𝜑󸀠)2 + 𝜑22 + 𝜑4 + 2𝑚𝜑2𝑐2 − 1 14 = ℎ, (10)

where ℎ is a nonzero integration constant. Furthermore, ℎ,𝑚,
and 𝑐 satisfy the following condition:

(1 − 𝑐2 − 𝑚)2 − 4ℎ (1 − 𝑐2) ≥ 0,
(1 − 𝑐2 − 𝑚) − √(1 − 𝑐2 − 𝑚)2 − 4 (1 − 𝑐2) ℎ ≥ 0,
0 < ℎ < (1 − 𝑐2 − 𝑚)24 (1 − 𝑐2) ,

(11)

so that

(𝜑󸀠)2 = 12 1(𝑐2 − 1)2 (𝜂21 − 𝜑2) (𝜑2 − 𝜂22) , (12)

where −𝜂1, 𝜂1, −𝜂2, and 𝜂2 are the zeros of the polynomial𝐹(𝜆) = −((𝑐2−1+𝑚)/(𝑐2−1)2)𝜆2−(1/2)(𝜆4/(𝑐2−1)2)+2ℎ/(𝑐2−1). Without losing generality, we assume that 𝜂1 > 𝜂2 > 0.
Therefore, we can deduce that 𝜂1 ≤ 𝜑 ≤ 𝜂2; 𝜂1 and 𝜂2 satisfy

𝜂21 + 𝜂22 = 2 (1 − 𝑐2) − 2𝑚,
𝜂21𝜂22 = 4ℎ (1 − 𝑐2) . (13)

Let 𝜙 = 𝜑/𝜂1, 𝑘2 = (𝜂21−𝜂22)/𝜂21 . Hence, (12) can be written
as

(𝜙󸀠)2 = 12 1(𝑐2 − 1)2 𝜂21 (1 − 𝜙2) (𝜙2 − 1 + 𝑘2) . (14)

Moreover, we define a new variable𝜓, which satisfies𝜓󸀠 ≥0,𝜓(0) = 0, by the relation𝜙2 = 1−𝑘2sin2𝜓; through a tedious
computation, we obtain that

(𝜓󸀠)2 = 12 1(𝑐2 − 1)2 𝜂21 (1 − 𝑘2sin2𝜓) . (15)

Then we obtain

∫𝜓(𝜉)
0

𝑑𝜏√1 − 𝑘2sin2𝜏 = √22 11 − 𝑐2 𝜂1𝜉. (16)

According to the definition of the Jacobian elliptic func-
tion 𝑦 = sn(𝑢; 𝑘), we can obtain that sin𝜓 = sn(𝜂1√𝛽𝜉, 𝑘).
Here, 𝛽 = √2/2(1 − 𝑐2). So

𝜙 (𝜉) = √1 − 𝑘2sn2 (𝜂1√22 11 − 𝑐2 𝜉, 𝑘)
= dn(𝜂1√22 11 − 𝑐2 𝜉, 𝑘) .

(17)

By returning to initial variable, we obtain that

𝜑 (𝜉) = 𝜂1dn(𝜂1√22 11 − 𝑐2 𝜉, 𝑘) (18)

is a dnoidal solution of (10).
Furthermore, dn has fundamental period 2𝐾(𝑘); that is,

dn(𝑢 + 2𝑘; 𝑘) = dn(𝑢; 𝑘), and 𝐾(𝑘) is the complete elliptic
integral of first kind. So the dnoidal wave solution 𝜑 has
fundamental period, 𝑇, given by

𝑇 = 2√2𝐾 (𝑘) (1 − 𝑐2)𝜂1 . (19)

So, by applying the method of the Jacobian elliptic
function and inspired by Angulo Pava’s ideas, we obtain that
(3) has the periodic traveling solution of the following form:

𝑢 (𝑥, 𝑡) = 𝑒𝑖𝜃𝜑 (𝜉) = 𝑒𝑖𝜃𝜂1dn(𝜂1√22 11 − 𝑐2 𝜉, 𝑘) ,
𝑛 (𝑥, 𝑡)

= (𝜂1dn (𝜂1 (√2/2) (1/ (1 − 𝑐2)) 𝜉, 𝑘))2 + 𝑚𝑐2 − 1 .
(20)

Moreover, 𝑇 and 𝑘2 can be also rewritten as the following
form:

𝑇 (𝜂2) = 2√2𝐾 (𝑘 (𝜂2)) (1 − 𝑐2)
√2 (1 − 𝑐2) − 2𝑚 − 𝜂22 ,

𝑘2 = 2 (1 − 𝑐2) − 2𝑚 − 2𝜂222 (1 − 𝑐2) − 2𝑚 − 𝜂22 .
(21)

Furthermore, if 𝜂2 → 0 then 𝑘(𝜂2) → 1. Hence𝐾(𝑘(𝜂2)) → +∞, so that 𝑇(𝜂2) → +∞. If 𝜂2 → √1 − 𝑐2 − 𝑚,
then 𝑘(𝜂2) → 0. Hence 𝐾(𝑘(𝜂2)) → 𝜋/2, so that 𝑇(𝜂2) →√2𝜋(1 − 𝑐2)/√1 − 𝑐2 − 𝑚.

Next we will show that, for an arbitrary but

fixed 𝐿, √1 − (𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚)/4𝜋 < |𝑐0| <√1 + (𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚)/4𝜋. We can obtain that there
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is a unique 𝜂2,0 = 𝜂2,0(𝑐0) ∈ (0, √1 − 𝑐20 − 𝑚) such that𝑇(𝜂2) = 𝑇(𝜂2(𝑐)) = 𝐿 is a fundamental period for the dnoidal
wave solution (18).

Theorem 1. Let 𝐿 > 0 be arbitrary but fixed.
Consider √1 − (𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚)/4𝜋 < |𝑐0| <√1 + (𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚)/4𝜋 and unique 𝜂2,0 = 𝜂2,0(𝑐0) ∈(0, √1 − 𝑐20 − 𝑚), such that 𝑇(𝜂2) = 𝐿. Then, there exist
an interval 𝑈(𝑐0), an interval 𝐼(𝜂2,0), and a unique smooth
function 𝐹 : 𝑈(𝑐0) → 𝐼(𝜂2,0) such that 𝐹(𝑐) = 𝜂2 and

𝐿 = 2√2𝐾 (𝑘 (𝜂2)) (1 − 𝑐2)
√2 (1 − 𝑐2) − 2𝑚 − 𝜂22 , (22)

where 𝑐 ∈ 𝑈(𝑐0), 𝜂2 ∈ 𝑈(𝜂2,0).
Proof. Based on the ideas establish in Angulo Pava’s work [6],
we will give a brief proof. Now, we consider the open set

Ω = {{{(𝜂2, 𝑐) : 𝜂2 ∈ (0,√1 − 𝑐
2
0 − 𝑚) , 𝑐

∈ (−√1 + 𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚4𝜋 ,
√1 + 𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚4𝜋 ) ∪(−∞,

− √1 − 𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚4𝜋 )

∪(√1 − 𝐿2 + 𝐿√𝐿2 − 8𝜋𝑚4𝜋 , +∞)}}} ∈ 𝑅2.

(23)

We define Φ : Ω → 𝑅 by

Φ(𝜂2, 𝑐) = 2√2𝐾 (𝑘 (𝜂2)) (1 − 𝑐2)
√2 (1 − 𝑐2) − 2𝑚 − 𝜂22 . (24)

Here, 𝑘2 = (2(1 − 𝑐2) − 2𝑚 − 2𝜂22)/(2(1 − 𝑐2) − 2𝑚 − 𝜂22).
Hypothesise Φ(𝜂2,0, 𝑐0) = 𝐿. In what follows, we will prove
that 𝜕Φ/𝜕𝜂2 < 0.

From (24), we can obtain that

𝜕Φ𝜕𝜂2 =
2√2𝜂2𝐾(𝑘 (𝜂2)) (1 − 𝑐2)(2 (1 − 𝑐2) − 2𝑚 − 𝜂22)3/2
+ 2√2 (1 − 𝑐2)
√2 (1 − 𝑐2) − 2𝑚 − 𝜂22

𝑑𝐾𝑑𝑘 𝜕𝑘𝜕𝜂2 .
(25)

From 𝑘2, we can deduce 𝑘(𝜂2, 𝑐) is a strictly decreasing
function of 𝜂2.

According to Jacobian elliptic function theory [7], we
have

𝑑𝐾𝑑𝑘 = 𝐸 − (1 − 𝑘2)𝐾𝑘 (1 − 𝑘2) , (26)

𝑑𝐸𝑑𝑘 = 𝐸 − 𝐾𝑘 . (27)

Here, 𝐸 is the complete elliptic integral of second kind.
Next, we adopt the reduction to absurdity to prove𝜕Φ/𝜕𝜂2 < 0. Now, we assume that 𝜕Φ/𝜕𝜂2 ≥ 0. So, we have

the following inequality:

𝑘 (2 (1 − 𝑐2 − 𝑚) − 𝜂22)𝐾 (𝑘 (𝜂2))
≥ 2 (1 − 𝑐2 − 𝑚) 𝑑𝐾𝑑𝑘 .

(28)

Indeed, substituting (26) into (25) and using the method
of enlarging and reducing, we obtain that

(1 − 𝑘2) [4 (1 − 𝑐2 − 𝑚) − 2𝜂22]𝐾 (𝑘)
≥ 2 (1 − 𝑐2 − 𝑚)𝐸 (𝑘) . (29)

From 𝑘2, we can easily deduce that

1 − 𝑘2 = 𝜂222 (1 − 𝑐2) − 2𝑚 − 𝜂22 ,
2 − 𝑘2 = 2 (1 − 𝑐2) − 2𝑚2 (1 − 𝑐2) − 2𝑚 − 𝜂22 .

(30)

Hence,

2 (1 − 𝑘2)𝐾 (𝑘) ≥ (2 − 𝑘2) 𝐸 (𝑘) . (31)

Let 𝛾2(𝜂2, 𝑐) = 1 − 𝑘2, 𝛾󸀠 = −𝑘(𝜕𝑘/𝜕𝜂2)(1/𝛾) > 0. So, 𝛾
is an increasing function of 𝜂2 ∈ (0, √1 − 𝑐 2 − 𝑚). Moreover,𝛾(0) = 1, 𝛾(√1 − 𝑐2 − 𝑚) = 1.

Define

𝑓 (𝛾) = (1 + 𝛾2) 𝐸 (√1 − 𝛾2) − 2𝛾2𝐾(√1 − 𝛾2) . (32)

Due to 𝜕Φ/𝜕𝜂2 ≥ 0, 𝑓(𝛾) ≤ 0.
However, by (27) and a simple computation,

𝑓󸀠 (𝛾) = 3𝛾 (𝐸(√1 − 𝛾2) − 𝐾(√1 − 𝛾2)) < 0, (33)

so 𝑓(𝛾) is a decreasing function. Furthermore, 𝑓(1) = 0, so
for 𝛾 ∈ (0, 1), 𝑓(𝛾) > 0.

It is in conflict with our assumption. So we obtain our
affirmation that 𝜕Φ/𝜕𝜂2 < 0. Hence, by the implicit function
theorem, there exists a unique smooth function 𝐹, defined
in a neighborhood, 𝑈(𝑐0) of 𝑐0, so that Φ(𝜂2(𝑐), 𝑐) = 𝐿 for𝑐 ∈ 𝑈(𝑐0). Hence, we obtain (22).
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3. The Periodic Solution for
Zakharov Equations

Now, we consider the following Zakharov equations:

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − (|V|)2𝑥𝑥 = 0,𝑖V𝑡 − 𝛼V𝑥𝑥 − 𝑢V = 0, (34)

which describe the high frequency moment of plasma,
where 𝑢(𝑥, 𝑡) denotes the ion number density variation,
V(𝑥, 𝑡) denotes the electric field intensity of slowly varying
amplitude, and 𝛼 ∈ 𝑅.

We seek the solitary solutions of (34) in the form

𝑢 = 𝑢 (𝜉) ,
V = 𝜑 (𝜉) 𝑒𝑖𝜉,
𝜉 = 𝑥 − 𝑐𝑡,

(35)

where 𝑢 and 𝜑 are real functions, 𝑐 is a traveling speed, and𝑐2 ̸= 1.
Substituting (35) into (34), we can obtain that

(𝑐2 − 1) 𝑢󸀠󸀠 − (𝜑2)󸀠󸀠 = 0, (36)

−𝛼𝜑󸀠󸀠 − (𝑐 + 2𝛼) 𝑖𝜑󸀠 + (𝑐 + 𝛼) 𝜑 − 𝑢𝜑 = 0. (37)

By (36), we can deduce

(𝑐2 − 1) 𝑢 − 𝜑2 = 𝑐2𝜉 + 𝑟. (38)

Here, 𝑐2, 𝑟 are integration constants.
Next, we consider periodic solutions of (34). So, we need

to require 𝑐2 = 0. Therefore, by (38)

𝑢 = 𝜑2 + 𝑟𝑐2 − 1 . (39)

Furthermore, by (37), we can obtain that

𝑐 = −2𝛼. (40)

So, by (39) and (40), (37) can be rewritten:

𝜑󸀠󸀠 + 𝜑(1 + 2𝑟𝑐 − 𝑐3 ) + 2𝜑3𝑐 − 𝑐3 = 0. (41)

Multiplying (41) by 𝜑󸀠 and integrating once, we obtain12 (𝜑󸀠)2 + 12𝜑2 (1 + 2𝑟𝑐 − 𝑐3 ) + 12𝜑4 = ℎ, (42)

where ℎ is a nonzero integration constant.
Hence,

(𝜑󸀠)2 = (𝑎2 + 𝜑2) (𝑏2 − 𝜑2) . (43)

Here, −𝑎𝑖, 𝑎𝑖, −𝑏, and 𝑏 are polynomial roots of 𝐹(𝑡) = −𝑡4 −𝑡2(𝑎2 − 𝑏2) + 2ℎ, 𝑏 > 0, and
𝑎2 − 𝑏2 = 1 + 2𝑟𝑐 − 𝑐3 ,
𝑎2𝑏2 = 2ℎ. (44)

Let 𝜒 = 𝜑/𝑏 (suppose 𝜒(0) = 0) and 𝑘2 = 𝑏2/(𝑎2 + 𝑏2).
Hence, (43) becomes

(𝜒󸀠)2 = 𝑏2 (1 − 𝜒2)(𝑎2𝑏2 + 𝜒2) . (45)

Now, we define 𝜒2 = 1 − sin2𝜓, so we get that
(𝜓󸀠)2 = (𝑎2 + 𝑏2) (1 − 𝑘2sin2𝜓) . (46)

Let 𝜏 = √𝑎2 + 𝑏2. According to the definition of the
Jacobian elliptic function sn, we can obtain sin𝜓(𝜉) =
sn(𝜏𝜉, 𝑘). So that, 𝜒2 = 1 − sn2(𝜏𝜉, 𝑘).

So, we obtain the solution of (41):𝜑 (𝜉) = 𝑏 cn (𝜏𝜉, 𝑘) . (47)

According to Jacobian elliptic functions theory, cn has
period 4𝐾(𝑘), and we can obtain that the cnoidal wave
solution has period 𝑇, which is given by

𝑇 = 4𝐾 (𝑘)𝜏 . (48)

So, we can obtain the periodic solutions of (34):

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) = (𝑏 cn (𝜏𝜉, 𝑘))2 + 𝑟𝑐2 − 1 ,
V (𝑥, 𝑡) = V (𝜉) = 𝑏𝑒𝑖𝜉cn (𝜏𝜉, 𝑘) . (49)

Furthermore, it follows that for 𝑘2 = 𝑏2/(𝑎2+𝑏2), we have𝑘2 ∈ (0, 1/2).
If 𝜏 → 0, then 𝑘 → 0, and 𝐾(𝑘) → 𝜋/2, 𝑇(𝜏) → +∞.

Furthermore, if 𝜏 → +∞, 𝑇(𝜏) → 0.
Next, we will prove that for an arbitrary but fixed 𝐿 > 0,

there exists a unique 𝛼 = 𝛼(𝑐) ∈ (0, +∞) such that 𝑇(𝛼(𝑐)) =𝐿 is a fundamental period of the cnoidal wave solution (47).
So, we have the following theorem.

Theorem 2. Let 𝐿 > 0 but fixed. Consider 𝑐0 > 0 and the
unique 𝜏0 = 𝜏0(𝑐0) ∈ (0, +∞) such that 𝑇(𝜏0) = 𝐿. Then, there
exists an internal𝐴(𝑐0) around 𝑐0, an internal 𝐵(𝑏0) around 𝑏0,
and a unique smooth function Υ such that Υ(𝑐0) = 𝛼0 and

𝐿 = 4𝐾 (𝑘)𝜏 , (50)

where 𝑐 ∈ 𝐴(𝑐0), 𝜏 = Υ(𝑐).
Proof. The proof is similar to that of Theorem 1. For details
see Theorem 1 (see also Angulo Pava [6, 8, 9]).

4. The Periodic Solution for
Zakharov-Rubenchik Equations

Now, we consider the Zakharov-Rubenchik equations:

𝑖𝐵𝑡 + 𝜔𝐵𝑥𝑥 − ℓ (𝑢 − 12𝜆𝜌 + 𝑞 |𝐵|2 𝐵) = 0,
𝜃𝜌𝑡 + (𝑢 − 𝜆𝜌)𝑥 = −ℓ |𝐵|2𝑥 ,

𝜃𝑢𝑡 + (𝛽𝜌 − 𝜆𝑢)𝑥 = 12ℓ𝜆 |𝐵|2𝑥 ,
(51)
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which describe the dynamics of small amplitude Alfvén
waves propagating in a plasma. Here, 𝐵(𝑥, 𝑡) denotes the
magnetic field, 𝑢(𝑥, 𝑡) the fluid speed, and 𝜌(𝑥, 𝑡) the density
of mass. Moreover, 𝜔, ℓ, 𝜆, 𝜃, 𝛽, 𝑞 are real constants.

Motivated by Oliveira [10], we look for the solitary waves
of (51), as follows:

𝐵 (𝑥, 𝑡) = 𝑒𝑖𝜉𝐴 (𝜉) ,
𝑢 (𝑥, 𝑡) = 𝑎𝐴2 (𝜉) ,
𝜌 (𝑥, 𝑡) = 𝑏𝐴2 (𝜉) ,

𝜉 = 𝑥 − 𝑐𝑡,
(52)

where 𝑎, 𝑏, and 𝐴 are real functions and 𝑐 denotes traveling
speed.

Putting (52) into (51), from the second and third equa-
tions of (51), we can deduce

𝑎 = 𝑎 (𝑐) = ℓ [(𝜆/2) (𝜆 + 𝑐𝜃) − 𝛽]𝛽 − (𝑐𝜃 + 𝜆)2 ,
𝑏 = 𝑏 (𝑐) = ℓ (−𝑐𝜃 − 𝜆/2)𝛽 − (𝑐𝜃 + 𝜆)2 .

(53)

Moreover, from the first equation of (51), we can obtain
that

(𝑐 − 𝜔)𝐴 + 𝑖 (2𝜔 − 𝑐) 𝐴󸀠 + 𝜔𝐴󸀠󸀠
− ℓ (𝑎 − 12𝜆𝑏 + 𝑞)𝐴3 = 0.

(54)

So, by (54), it implies

𝑐 = 2𝜔, (55)

𝐴󸀠󸀠 + 𝐴 − 2ℓ (𝑎 − (𝜆/2) 𝑏 + 𝑞)𝑐 𝐴3 = 0. (56)

Let 𝑏1 = −ℓ(𝑎 − (𝜆/2)𝑏 + 𝑞)/𝑐 > 0 and multiplying (56) by𝐴󸀠 and integrating once, we obtain

[𝐴󸀠]2 = 𝑏1 (𝐴2 + 𝑎21) (𝑏22 − 𝐴2) , (57)

where −𝑎1𝑖, 𝑎1𝑖, −𝑏2, 𝑏2 are the polynomial roots of 𝐹(𝑟) =−𝑏1𝑟4 − 𝑟2 + ℎ. Moreover,

𝑏22 − 𝑎21 = − 1𝑏1 ,
𝑏22𝑎21 = ℎ𝑏1 .

(58)

Let 𝜒 = 𝐴/𝑏2 (suppose 𝜒(0) = 0) and 𝑘2 = 𝑏22 /(𝑎21 + 𝑏22 ).
Hence, (57) becomes

(𝜒󸀠)2 = 𝑏1𝑏22 (1 − 𝜒2)(𝑎21𝑏22 + 𝜒2) . (59)

Now, we define 𝜒2 = 1 − sin2𝜓, so we get that
(𝜓󸀠)2 = 𝑏1 (𝑎21 + 𝑏22 ) (1 − 𝑘2sin2𝜓) . (60)

Let 𝛼 = √𝑏1(𝑎21 + 𝑏22 ). According to the definition of
the Jacobin elliptic function sn, we can obtain sin𝜓(𝜉) =
sn(𝛼𝜉, 𝑘). So, 𝜒2 = 1 − sn2(𝛼𝜉, 𝑘).

So, we obtain the solution of (56):

𝐴 (𝜉) = 𝑏2cn (𝛼𝜉, 𝑘) . (61)

Since cn has fundamental period 4𝐾(𝑘), we can obtain
that solution (61) has fundamental period, 𝑇, which is

𝑇 = 4𝐾 (𝑘)
√𝑏1 (𝑎21 + 𝑏22 ) . (62)

Hence, (51) have the periodic solutions of the following
form:

𝐵 (𝜉) = 𝑒𝑖𝜉𝑏2cn (𝛼𝜉, 𝑘) ,
𝑢 (𝜉) = 𝑎𝑏22 cn2 (𝛼𝜉, 𝑘) ,
𝜌 (𝜉) = 𝑏𝑏22 cn2 (𝛼𝜉, 𝑘) .

(63)

Moreover, from (58) and the definition of 𝑘2, it follows
that

𝑘2 = 𝑎21 − 1/𝑏12𝑎21 − 1/𝑏1 ,
𝑇 (𝑎1) = 4𝐾 (𝑘)

√2𝑎21𝑏1 − 1 .
(64)

Moreover, if 𝑎1 → 0, 𝑘2 → 1, 𝑇(𝑎1) → +∞. If 𝑎1 → +∞,𝑘2 → 1/2, 𝑇(𝑎1) → 0.
Next, we will show that for an arbitrary but fixed 𝐿 > 0,

there exists 𝑎1 = 𝑎1(𝑐) ∈ (0, +∞) such that 𝑇(𝑎1(𝑐)) = 𝐿
is a fundamental period of the cnoidal wave solution (61).
Motivated by Angulo Pava’s result [6], we have the following
theorem.

Theorem3. For 𝐿 > 0 arbitrary and fixed, consider 𝑐0 > 0 and
the unique 𝑎1 = 𝑎1(𝑐0) ∈ (0, +∞). Then, there exist an interval𝐶(𝑐0) around 𝑐0, an interval 𝐷(𝑎1) around 𝑎1, and a unique
smooth function𝐻 : 𝐶(𝑐0) → 𝐷(𝑎1) such that𝐻(𝑐0) = 𝑎1 and

𝐿 = 4𝐾 (𝑘)
√2𝑎21𝑏1 − 1 , (65)

where 𝑐 ∈ 𝐶(𝑐0), 𝑎1 = 𝐻(𝑐).
Proof. The idea andmethod are similar to those ofTheorem 1.
For details, please see Theorem 1 (see also Angulo Pava [6, 8,
9]).
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5. Conclusion

Inspired by Angulo Pava’s idea, by applying Jacobian elliptic
functionmethod, we have obtained newperiodwave solution
for Klein-Gordon Zakharov equations, Zakharov equations,
and Zakharov-Rubenchik equations. In particular, the solu-
tions of (18), (47), and (58) were not found in the previous
work.Themethod can help to look for periodic solution for a
class of nonlinear equations.
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