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As a typical kind of special robot with high flexibility and maneuverability, the hyperredundant manipulators (HRM) which can
work in the narrow and complex space arose much related research work. Due to the particularity of the environment and the
structural complexity of the manipulators, there are many problems for the HRM in specific applications. This paper
summarizes some representative research works for HRM, including the mechanical design, environment perception, robotic
navigation, and trajectory control. In order to make the design of the HRM systems more suitable for applications, the
technical problems of current research are analyzed to address the key issues for the improvement. Finally, the prospect of
spatial reachability, structural compactness, operation accuracy, and interaction friendliness of hyperredundant manipulators
are presented.

1. Introduction

In the development of robotic technology, several kinds of
robots have been used in many industrial fields to replace
manual operation, reducing the labor intensity of workers
and improving the quality of operation. However, in some
complex and dangerous operating environments, especially
those with narrow space and limited movement, it is difficult
or even impossible for operators and traditional robots to
enter the operating space. In addition, the operation mode
using simple auxiliary tools cannot meet the requirements of
operation scope and quality. Therefore, it is an important
way to solve this kind of practical application problem to study
the robot technology suitable for confined space operation.

Unstructured narrow working space is widely existed in
lots of fields such as aerospace [1–4], nuclear power [5, 6],
equipment manufacturing, and postdisaster rescue.
Figure 1 lists some common usage scenarios of hyperredun-

dant manipulators. In the aviation manufacturing industry,
the gluing, painting, riveting, grinding, maintenance, and
other operations required for the assembly of narrow inner
cavities such as wing box segment and inlet can only be real-
ized manually at present. It is hard for the workers, and the
quality of the product cannot be guaranteed which seriously
compromises the safety of aircraft. In the equipment
manufacturing industry, welding and maintenance of cabin
cubicles, mining hydraulic supports, cathode busbars of elec-
trolytic cells, and so on require workers to work continu-
ously in high temperature, pollution, and narrow space.
The environment is hard for workers, and it is difficult to
ensure the quality of welding seams. In the nuclear power
industry, nuclear power reactor body, fuel rod control pipe-
line, and other key equipment cross each other, creating a
complex environment. There is no efficient maintenance
means due to high temperature, strong radiation, and nar-
row space, which brings serious hidden danger to the safety
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of nuclear power. In the power energy industry, when the
complex and compact closed switchgear and integrated
power distribution control cabinet in the substation need
to be repaired due to an internal fault, usually, a large range
of parts need to be disassembled to locate the fault, which
greatly reduce the maintenance efficiency. In the task of
postdisaster search and rescue, the narrow environment
formed by collapsed buildings and equipment makes it diffi-
cult for search and rescue personnel to directly enter the res-
cue, to obtain information about trapping people and the
surrounding environment, and to implement emergency
treatment. After the above analysis, we need to analyze the
scene characteristics and tasks in complex and narrow space
and develop a robot system that can actively and flexibly
avoid obstacles; thus, there is an actual demand in lots of
fields.

Narrow and closed operation space, complex obstacle
distribution, and insufficient light conditions, a special oper-
ating point that located inside the deep cavity, are the com-
mon characteristics of this kind of operation scene talked
above. To solve the problem of narrow space operations,
there is an urgent need to develop a robot system that can
actively and flexibly avoid obstacles, which not only can pre-
cisely transport operating tools to the operating point, con-
tinuously move along the specified trajectory, but also it
can adapt to the complex unstructured narrow environment.
The robots in such robotic systems generally need to have a
compact overall structure, which enables the robots to avoid
different obstacles in space, thereby realizing flexible opera-
tions in small and confined spaces.

2. Summary of Related Research Work

As a kind of typical special application robot, robots that
can work in narrow space have been widely concerned at
home and abroad. A lot of researches had been carried
out in the field of joint materials, mechanism design, con-
trol method, sensing technology, application system, and
so on by research institutions in the United States, Ger-
many, Britain, Japan, China, Norway, and other countries.
And many fruitful theoretical methods and prototypes
have been formed.

2.1. Manipulator Mechanism Design. Environmental adapt-
ability and traversability in confined space are the key points
of robot system design. However, in different narrow spaces,
the operating conditions and working environments of
robots are different. So robot mechanisms based on different
operating modes have been developed for different operating
scenarios at home and abroad. Figure 2 lists some common
drive forms, structural forms, and propulsion methods of
snake-shaped manipulators. Among them, the common
driving forms and structural forms of the hyperredundant
manipulator will be introduced in this section with specific
research examples, and the propulsion device will be mainly
introduced in the “Robotic Operating System” section.

Due to the limitation of the narrow space, the movement
mechanism of the robot generally uses snake mechanism or
soft machine. The kinematic joints of the robot mainly adopt
rigid joints (with ball joints or hook joints), hollow bellows,
and elastic ridge skeleton. As shown in Figure 2, the main
driving modes of the robot are micromotor direct drive, wire
rope drive, artificial muscle drive, gas drive, and so on. For
example, the pneumatic flexible robot developed by the
Tohoku University in Japan moves inside the pipe of the
pressure vessel of nuclear power plant through the tension
and drive of the pneumatic actuator [7]. Chuo University
in Tokyo has developed an in-tube detection robot based
on artificial muscles, which can achieve peristaltic crawling
by stretching artificial muscles [8]. Carnegie Mellon Univer-
sity developed a snake-like robot composed of multiple
modular electromechanical joints in series to realize opera-
tion control in narrow space [9]. HRM with different driving
methods will have different characteristics and technical dif-
ficulties. In general, manipulator powered by micromotors
provides limited driving force. Driving with gas requires
more consideration of gas tightness and control accuracy
and flexibility. At present, most high-redundancy manipula-
tors prefer to use ropes for indirect control, which reduces
the weight of the manipulator, but brings many control
problems such as model solving and control decoupling.
Chinese Shenyang Institute of Science and Technology, Bei-
jing Institute of Technology, Shanghai Jiaotong University,
National University of Defense Technology, Beijing Univer-
sity of Aeronautics and Astronautics, etc. have also made
fruitful research achievements in this aspect [14–19]. For

(a) (b) (c)

(d) (e) (f)

Figure 1: Typical complex and narrow operation scenario. Picture (a) is the repair of nuclear power pipeline, picture (b) is closed GIS
equipment maintenance, picture (c) is aircraft inlet cleaning, picture (d) is cabin compartment welding, picture (e) is an internal
inspection of closed tank, and picture (f) is a search and rescue after earthquake.
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example, a paper published by the Shenyang Institute of
Automation of the Chinese Academy of Sciences in 2009
developed a three-dimensional snake-like robot model com-
posed of modular universal units, which can achieve
meandering motion, twisting motion, and twisting hill-
climbing motion [15]. Later in 2012, they developed an
amphibious snake-like robot [16]. The robot consists of 9
universal motion units with hermetic design. And the land
and underwater mobility of the amphibious snake-like robot
is verified by gait test. In 2008, the Institute of Robotics of
Shanghai Jiao Tong University developed a climbing
snake-like robot, which consists of many P-R modules
(two joints connected in a pitch-roll manner as an execution
unit) [17]. The different structural forms that HRM takes are
often related to specific tasks. In some detection tasks that do
not need to provide working force, a software mechanism
can be used to achieve higher flexibility [11–13]. In some
industrial scenarios, rigid joints are required to provide suf-
ficient stability and work force [1]. High-redundancy robots
with bionic form tend to pay more attention to the realiza-
tion of shape and bionic motion.

Although snake-like robot and soft robot have better
spatial adaptability and flexibility which can help pass
through narrow pipes and spaces of different shapes, they
can only carry out partial detection tasks and do not have
the ability to perform actual operations due to their generally
light weight and driving depends on adhesion to the tube
wall.

In order to meet the needs of narrow space operation,
scholars have carried out research on snake-like manipulator
with slender structure. There is plenty of similarities between
serpentine high-redundancy robot arm with snake-like
robot and also differences. The former is a multijoint manip-

ulator with fixed foundation for operation, while the latter is
a mobile bionic system developed to imitate the movement
mechanism of snakes. For the operation in narrow space,
the serpentine manipulator can avoid the interference of
spatial obstacles to reach the operation target point and
can provide enough acting force and positioning accuracy
to meet the needs of the operation task.

Scholars have carried out a lot of exploratory research on
typical snake-like manipulator, especially in the field of sur-
gical robot, which has formed good technical achievements.
In 2009, the CardioARM cardiac surgery robot developed by
the Carnegie Mellon University is composed of 50 spherical
joints. The internal and external tube structures realize the
rigid and flexible alternation and relative movement under
the control of ropes [20]. Imperial College London devel-
oped a TEMS colon surgery robot in 2017, which is con-
nected in series with 7 joints in different directions, and
can actively change the posture of the operating tool to
achieve surgical operation in the slender and narrow colon
[21]. IREP, an interventional operation robot developed by
the Columbia University for single-hole entry surgery, is
composed of two flexible arms and a parallel quadrilateral
structure with 21 degrees of freedom. The hybrid mechanical
structure improves the positioning accuracy of the flexible
manipulator and achieves a larger working space [22]. The
single-bore surgical robot developed by the Samsung Insti-
tute of Advanced Technology (SAIT) is mainly composed
of a 6-DOF (degree of freedom) serpentine guiding arm,
equipped with two tools and an auxiliary arm, and can reach
different surgical sites in the abdominal cavity through inci-
sions [23]. The Harbin Institute of Technology developed a
colonoscopy surgical robot composed of a 5-segment con-
tinuum driven by steel wire, which can achieve

Gas drive

Artificial muscle

Motor direct driving

Wire rope drive

(a) Drive mode

Micro mobile robot

Continuous
manipulator

Hyper-redundant manipulator

Multi-legged mobile robot Flexible arm

Snake-like robot 

(b) Structural mode

Rectilinear orbit 

Industrial arm

Mobile robot

(c) Propulsion mode

Figure 2: Typical robot operation mode in narrow space scenario. The three parts (a–c) introduce the driving mode, the structural mode,
and the propulsion mode, respectively. The following is a detailed introduction and source of some images. The first picture in part (a) is a
pneumatic drive structure published by the Tohoku University in Japan in 2017 [7]. The second image in part (a) is an artificial muscle
actuation structure published by the Tokyo Chuo University in 2012 [8]. The third image in part (a) is a micromotor joint drive
structure published by the Carnegie Mellon University in 2014 [9]. The forth image in part (a), the bottom left picture in part (b), and
the second pictures in part (c) are snake-shaped manipulators made by OC-Robotic [1]. The first picture in part (c) is a snake-shaped
manipulator developed by Siasun [10]. The middle right picture in part (b) is a soft robot arm made by silicone in the BioRobotics
Institute, Scuola Superiore Sant Anna, Pisa [11]. The bottom right picture in part (b) is a hyperredundant manipulator for aircraft fuel
tank inspection, which is designed by the China Civil Aviation University [12, 13].
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multidegree-of-freedom rotation and deformation [24].
Figure 3 shows a physical image of some of the hyperredun-
dant manipulators mentioned above.

In the narrow space of industrial applications, different
from the lightweight and dexterity requirements of medical
robots, robots are required to have longer arm span, large
load, high precision, space obstacle avoidance, and other
characteristics, so as to be able to carry out tasks such as
deep cavity detection and operation. At present, the most
influential robot in the engineering of highly redundant
robotic arms is the snake arm robot of OC-Robotics in the
UK. They have carried out research for more than ten years
and developed a variety of snake arm application systems in
nuclear power equipment maintenance, aviation
manufacturing, and other industries. These highly redun-
dant serpentine robotic arms move through rigid joints
driven by steel wire, which are connected in series by hook
hinges [25]. In recent years, Chinese research institutions
have also carried out research work on serpentine manipula-
tor in narrow space applications. According to the require-
ments of aviation assembly, AVIC 625 Institute developed

a robot prototype consisting of 5 sections and 20 sections
by referring to the structural characteristics of OC-
Robotics [10]. Hit Shenzhen University of Technology
developed a superredundant robot with steel wire traction
composed of 10 joints, which has good bending characteris-
tics and flexible space movement ability [26]. Tsinghua Uni-
versity designed a spatial redundancy manipulator
composed of five segments, with six segments in each seg-
ment. The angle of each segment was basically the same
through the connecting rope [27]. Researchers at the Bei-
hang University have designed a snake-arm robot. The robot
consists of three hollow slender segments consisting of a
steel cable-driven spherical hinge. A cage-like structure was
designed to drive the wire rope, and a special motor-driven
control system was proposed to control the robot [28]. Jing
and his team at the Shanghai Jiao Tong University proposed
a serpentine arm based on an octahedral variable geometry
truss [29–34]. The Shanghai Jiaotong University developed
a rope-driven superredundant manipulator with 12 joints
and 24 degrees of freedom, which can achieve a load capac-
ity of 0.5 kg at the end through the drive control of 36

(a)

Actuation pack: motors,
safety & motor controllers

Shaft
(2DoF)

Elbow
(2DoF)
Flexible
section

Wrist
(2DoF)
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(b)

(c)

6-DOF
Guide tube
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Figure 3: Typical flexible operating surgical robot. Picture (a) is a cardiac surgery robot named “CardioARM” developed by the Carnegie
Mellon University [20], picture (b) is a colon surgery robot named “TEMS” developed by the Imperial College London [21], picture (c) is an
interventional operation robot developed by the Columbia University [22], and picture (d) is a single-bore surgical robot developed by the
Samsung Institute of Advanced Technology [23].
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motors [35, 36]. Figure 4 shows a physical image of some of
the hyperredundant manipulators mentioned above.

In the above studies, in order to reduce the size of the
manipulator and improve the deep cavity accessibility, steel
wire is mostly used as the driving mode to meet the opera-
tion requirements of narrow space. For medical surgery,
the robot has a small load capacity and limited operating
range. It is often driven by an elastic skeleton and hollow
threaded tube through a few steel wires, and the controlled
freedom is far less than the inherent freedom of the mechan-
ical arm. However, for industrial scenes such as cleaning and
assembly of narrow space, the required arm span operation
range is large, and the rigid requirements are high. Rigid
joints are needed to meet the operation requirements. How-
ever, for industrial scenes such as cleaning and assembly in
narrow space, the robot needs a large working range and
high rigidity. Therefore, rigid joints are needed to meet the
operating requirements. The high-redundancy manipulator
composed of modular rigid joints or segmented joints with
multijoint linkage needs to adjust the relative position of
joints to adapt to the curvature changes of space. At the
same time, the manipulator is required to have a long
enough arm span to meet the spatial accessibility require-
ments. Therefore, the number of joints and the length of
rigid joints directly affect the spatial obstacle avoidance
capability of the manipulator. The number of independently
controllable joints cannot be infinitely increased, so how to
design a reasonable joint mechanism of the robot arm, so
as to solve the contradiction between spatial obstacle avoid-
ance ability and reachabilities through the limited number of
controllable joints, is an important problem in the design of
robot motion mechanism.

We summarized the characteristics of some typical
hyperredundant manipulator and put the comparison
results in Table 1. As shown in Table 1, we list some points
such as the amount of DOF, the structural type of manipu-
lators and in which field the manipulator is applied. Consid-

ering some manipulator is combined with other mechanical
devices together to form a robotic system, we also give the
total amount of DOF of the robotic system in the form of
“A + B,” which A represent the total DOF of HRM, and B
is the total DOF of other mechanical devices.

2.2. Robotic Operating System. Although the robot arm with
high redundancy can achieve strong obstacle avoidance abil-
ity by changing its configuration and posture, it must be
pushed to the narrow working space by the corresponding
propulsion mechanism to work in the narrow working
space. Therefore, the manipulator and the propulsion mech-
anism together constitute a robot operating system that
works in a narrow space. The mechanical arm with high
redundancy is generally driven by steel wire, and the motor
and other executive parts are installed on the base of the
root, which makes the base have a large size and weight. A
mobile platform is required to push the base and the
mechanical arm outward to achieve corresponding move-
ment. Common push platforms include linear guide rail,
multidegree-of-freedom industrial robot, caterpillar robot,
and so on. OC-Robotics adopts gantry structural beam as
push mechanism, which forms a robot system with snake
mechanical arm to carry out inspection and maintenance
of nuclear facilities [24]. In the aviation manufacturing
scene, industrial robots are used as the push platform of
the manipulator [1]. The snake-like manipulator operating
robot system developed by the Siasun And AVIC 625 Insti-
tute pushes the manipulator through the linear slide push
mechanism. The whole machine size is larger than the
manipulator itself, and it cannot adapt to the compact
requirements of narrow space and peripheral sites [10].
The Hopkins University uses UR5 robot as the payload plat-
form and carries wireline driven surgical robot to constitute
the surgical robot system [37]. The Samsung Institute of
Advanced Technology developed a surgical robot system
composed of a 6-DOF serpentine guide arm and a 5-DOF

(a) (b)

(c) (d)

Figure 4: Typical snake-like robot. Picture (a) is a hyperredundant manipulator designed by OC-Robotics for welding [25], picture (b) is the
hyperredundant manipulator developed by AVIC 625 for the needs of aviation assembly, referring to OC-Robotics [10], picture (c) is a
hyperredundant manipulator composed of 10 joints developed by the Harbin Institute of Technology Shenzhen [26], and picture (d) is a
rope-driven hyperredundant manipulator with 12 joints and 24 degrees of freedom developed by the Shanghai Jiaotong University [35].

5Journal of Sensors



auxiliary arm. The macroarm realized a wide range of pro-
pulsion motion, and the guide arm realized the attitude
adjustment of the surgical arm [23]. Figure 5 shows a phys-
ical image of some of the hyperredundant manipulators
mentioned above.

In the above studies, the robot system mainly uses a gen-
eral or specially designed mobile platform to carry highly
redundant robotic arms. Through the composite movement
of the manipulator and the mobile platform to achieve
movement and operation in the narrow space, this method
is relatively easy to design and implement. The motion con-
trol of the push platform and the manipulator can be real-

ized through kinematic decomposition, so that the robot
system can operate in a narrow space to a certain extent.
However, because of the large movement range required by
the push platform, a large installation site for the mobile
platform is often required in actual use. For example, the size
of the moving slide of the robot reaches 3:8m × 0:8m × 1:5
m, and its weight reaches 1.4 tons, which is difficult to be
satisfied in many working environments (especially postdi-
saster search and rescue, nuclear power pipeline mainte-
nance, etc.). As a result, although the ultraredundant
manipulator itself has good flexibility and can realize the
detection of narrow space, its application in practical scenes

Table 1: Comparison between different HRMs.

Different HRMs Amount of DOF Structural type Applying field

OC-Robotics [1] 20+7 Rigid joints connected by hook hinges Aircraft assembly

Ringhals 1 [21] 20 are under control Several discs connected by elastic objects Nuclear

SAFIRE [25] 18 Rigid joints are connected by a rotation axis Nuclear

CAUC [12] 6 are under control
Using discs as joints and the discs are

connected by fiberglass rods
Aircraft fuel tank detection

CardioARM [20] 105 but only 2 are under control
50 rigid cylindrical links serially

connected by three cables
Medical field

SAIT [23]

Guide tube with 6 DOF,
two tools with 7 DOF,
camera with 3DOF and
slave arm with 5 DOF

Six equal-height saddle-shaped
linkages (or rings) connected by wire ropes

Medical field

SJTU [36] 24 Rigid joints connected by hook hinges Prototype for research

Per joint
12 links

Wire-rope drive

Tool
Trol

Sell contained
introduction axis

(a)

(b)

Tool
actuator pack

Guide tube
actuator pack

Guide tube
& tools

Instrument
mechanism

Incision
guide

Slave arm

(c)

Figure 5: Robot operating system. Picture (a) is the hyperredundant manipulator designed by OC-Robotics [1], and picture (b) is the snake-
shaped manipulator designed by SiaSum [10], a surgical robot system designed by the Samsung Institute of Advanced Technology [23].
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is limited by the large size of the push platform and the
weight of the whole machine. In addition, the push plat-
form and the manipulator are designed separately, so the
manipulator is usually in the extended state when it is
not working, which not only occupies a large space but
also is easy to be damaged. Therefore, the integration
design of high-redundancy manipulator and push platform
is an important issue to improve the practicability of robot
operating system.

2.3. Planning and Control Methods. Compared with conven-
tional manipulators, high-redundancy manipulators have
higher control requirements and greater difficulty because of
the number of moving joints far more than the degree of free-
dom in the working space. Research in this area involves kine-
maticsmodeling, mechanical optimization, obstacle avoidance
planning, positioning control, and other issues.

2.3.1. Kinematic Modeling and Inverse Kinematics Method.
In terms of kinematics modeling, for traditional manipula-
tors, the DH [38] method or the POE [39] method can be
used to establish the forward kinematics model. For a simple
rigid multijoint hyperredundant manipulator, these two
methods can also be used to establish a forward kinematics
model. However, for hyperredundant manipulators with
flexible or a large number of joints, other kinematic model-
ing methods need to be found. In 1994, Chirikjian and Bur-
dick proposed an efficient hyperredundant manipulator
kinematics modeling method that uses “backbone curves”
to fit the macrogeometric features of the robot [40]. In
2012, Godage et al. of the Italian Institute of Technology
established a kinematic model for a multijoint hyperredun-
dant manipulator using the continuous modal function
method [41]. Recently in 2022, Yang et al. established a kine-
matic model of a multisegment underwater manipulator
based on the piecewise constant curvature (PCC) assump-
tion [42]. The rope-driven hyperredundant manipulator
has received extensive attention from researchers in recent
years, and a lot of research results have been produced on
the kinematic modeling of the rope-driven hyperredundant
manipulator. Zhao and Gao of the Harbin Institute of Tech-
nology derived the relationship between the rope length and
joint angle of the rope-pull redundant robot, established a
kinematic model, and analyzed its motion space [43]. Zhang
et al. analyzed the relationship between the length of the
traction wire and the end pose in detail, studied the adjust-
ment process of the PID parameters of the controller on
the basis of the control model, and established a kinematic
statics model to analyze the tension and stiffness [44]. In
2018, Xu et al. [45] analyzed the multilevel mapping rela-
tionship between motors, cables, joints, and end effectors.
They established the corresponding rope-driven kinematics
model using a combination of analytical and numerical
methods and proposed a decoupling method to compensate
for the coupled motion between the ropes.

Generally, the inverse kinematics methods of manipula-
tors can be divided into the following categories: analytical
methods, numerical methods, geometric methods, and intel-
ligent algorithms. However, for the hyperredundant manip-

ulator, the increase of degrees of freedom greatly increases
the computational difficulty of the analytical method, so here
we mainly introduce the last three methods: numerical
method, geometric method, and intelligent algorithm.
Numerical methods generally use the pseudoinverse of the
Jacobian matrix to solve the differential kinematics equa-
tions [46]. However, for a hyperredundant manipulator,
the result of the solution is likely to make the manipulator
reach an odd isomerism, which makes the solution invalid.
Using the damped least squares method [47] or the singular
value decomposition method [48] can alleviate this problem,
but it will lead to a decrease in the accuracy of the solution.
For the geometric method, Chirikjian and Burdick [40] pro-
posed the concept of “ridge line” function, through which
the macroscopic structure of the hyperredundant manipula-
tor is described. Based on this, they proposed the modulo
function method [49], which divided the “ridge line” into
segmented continuous curves and represented by a series
of modal functions, and finally, used a fitting algorithm to
obtain the joint angles. Mu et al. [50] used the piecewise
geometry method to divide all the joint variables of the
hyperredundant manipulator into three parts, shoulder,
elbow, and wrist, and transformed the complex hyperre-
dundancy problem into a low-redundancy problem. With
the development of artificial intelligence algorithms, some
new solutions are provided for the solution of inverse
kinematics of hyperredundant manipulators. In 2014,
Melingui et al. of Polytechnique Paris adopted qualitative
modeling method based on RBF neural network to solve
its linear and uncertain problems and selected specific
inverse kinematics model from redundant manifold
through remote supervised learning framework [51]. In
2021, Neng of Harbing University of Technology proposed
an adaptive search space genetic algorithm [52], which can
efficiently and accurately solve the inverse kinematics of a
hyperredundant manipulator. In 2022, Yang et al. imple-
mented the inverse kinematics solution of an underwater
multijoint manipulator using a deep neural network
(DNN) with six hidden layers [42].

2.3.2. Dynamic Modeling. In terms of dynamic modeling,
Chirikjian [49] proposed a continuum modeling method
based on infinite degrees of freedom in an article published
in 1993, and this method is called the continuous “Cosserat”
method. In 2014, Renda et al. [11] established a dynamic
model of a cable-driven continuous soft robotic arm based
on a rigorous geometrically accurate method, which fully
considered the dynamic interaction and tension coupling
conditions of dense media. Later in 2018, Renda et al. [53]
proposed a dynamic model of multisection soft manipulator
based on discrete Cosserat method. Compared to the previ-
ous model, this model takes into account shear deformation
and torsional deformation. Recently in 2021, Yang et al. pro-
pose a modular-based approach to modeling the dynamics
of a cable-driven continuum robot that considers continu-
ous deformations, including extension or contraction, bend-
ing, and torsion, and is validated by static and dynamic
experiments [54]. Liu et al. proposed a real-time dynamic
model of a cable-driven continuum robot, using the

7Journal of Sensors



covariant formula to describe the motion of the cable-driven
continuum robot and using the virtual power principle to
establish a dynamic model [55].

2.3.3. Positioning Control. In the aspect of positioning con-
trol, the wire traction mode has certain elastic deformation,
and its control accuracy is lower than that of the rigid drive
mode. Therefore, the deformation compensation of the wire
should be considered to improve the control accuracy.
Alambeigi et al. of Samsung Research Institute used model
analysis and off-line measurement system to measure the
clearance in order to reduce the error problem of the snake
arm casing wire and realized the clearance compensation
in the wire control process [37]. The backgap of wire trac-
tion mode is an important factor affecting the control accu-
racy of serpentine arm. Agrawal et al. of Purdue University
specifically studied the system modeling of the actuator of
wire traction for this problem and designed the backgap
compensator of wire length control by using the smooth
backgap inverse model as feedforward [56].

2.3.4. Obstacle Avoidance Planning. In the aspect of obstacle
avoidance planning, it is generally divided into two steps, the
first is to plan the obstacle avoidance path and then control
the robot arm to move according to the planned path.

The first step in obstacle avoidance path planning is to
find a collision-free path where the end of the manipulator
moves from the starting point to the target operating point.
In the field of robotics, a common approach is to rasterize
the space and then use a suitable search algorithm such as
the A ∗ algorithm and its improvements [57, 58] to find a
suitable path. However, as far as the hyperredundant manip-
ulator is concerned, some special path planning algorithms
need to be designed for its high degree of freedom and con-
tinuum characteristics. In 2010, Marcos et al. [59] proposed
a trajectory planning method that combined the closed-loop
pseudoinverse method with a genetic algorithm and pro-
posed an optimization criterion for repeatable control of a
redundant manipulator, avoiding the problem of joint angle
drift. Ananthanarayanan and Ordóñez [60] proposed a mul-
tipass sequential local search technique for hyperredundant
manipulators in 2017. The method solves the dimensionality
problem of the exhaustive search technique through multi-
channel sequential local search and solves the sensitivity
problem of the greedy method to local minima through the
backtracking technique. In 2021, Bulut and Conkur [61]
proposed a simple, effective, and robust geometric method
for real-time path planning of hyperredundant robots in a
limited space full of obstacles.

The second step of obstacle avoidance path planning is
to control the manipulator to move according to the planned
path. The traditional method is to obtain the joint angles of a
group of manipulators through some inverse kinematics
methods according to the target path. The inverse kinemat-
ics solution method of the hyperredundant manipulator has
been introduced in detail in the “Kinematic Modeling and
Inverse Kinematics Method” section.

However, in practical applications, in most cases, the
characteristics of the environment in a narrow space are

unknown, so it is difficult to establish an accurate three-
dimensional space model for robot motion planning. In
most instances, the scene is gradually constructed in the pro-
cess of robot moving. The follow-the-leader mode [62] is
based on the head movement, and the subsequent joints fol-
low the space running track of the head to move, which can
ensure that the mechanical arm can avoid obstacles and
reach the target point during the moving process, and there
is no need to replan the posture of each joint during the
movement. Conkur [63] proposed a hyperredundant manip-
ulator path planning algorithm based on the follow-the-
leader model in 2003. The algorithm decouples the coupling
between the manipulator joints and uses numerical methods
to establish the position of each joint relative to the curve.
Finally, the motion of the highly redundant manipulator
on the curve is realized.

However, in actual motion control, there is a big dif-
ference between the reachable space of other joints of the
manipulator and the reachable space of the end joints,
and there is a tension singularity problem of wire tension
under different joint positions, which may lead to the sit-
uation that there is no solution for some joints, and thus,
the obstacle avoidance function cannot be realized. At the
same time, the task also has certain requirements on the
stiffness and karma of the manipulator. Therefore, it is
necessary to study reasonable obstacle avoidance planning
and control strategy and solve the optimal pose suitable
for the whole robot arm according to the obstacle model.
At the same time, the stiffness of the manipulator is con-
trolled according to the requirements of the task to
achieve fixed-point operation tasks.

2.4. Environment Perception and Navigation Technology.
Before robots operate in a narrow space, they often lack
accurate prior models for the environment space. Therefore,
it is necessary to use a variety of sensors to perceive the envi-
ronment in a narrow space and to control the navigation
process of the robot. The key of environment awareness
technology is to extract effective feature information in the
environment through algorithm and process and analyze it.
Then, an environment reconstruction model that can be
understood by the robot is formed to express the informa-
tion of the robot’s surrounding environment. The feature
information in the environment is mainly spatial informa-
tion, that is, the position and size of points, lines, and planes
that constitute the environment space. In the unknown envi-
ronment, the robot needs to know its precise position and
then continuously correct its position by using the relative
location of the environment features, so as to conduct local-
ization and map construction (SLAM).

Different from the perception and navigation technology
of mobile robots in conventional scenes, robots operating in
narrow spaces are difficult to carry large size and multiple
types of sensors to sense the environment due to the limita-
tions of their own volume and load capacity. In the aspect of
snake robot sensing technology, relevant research work has
been carried out at home and abroad. Tanaka et al. of Tokyo
University of electrical and communication realized the
obstacle avoidance movement of the robot in limited space
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through the small camera and laser ranging module installed
on the head of the snake robot, combined with the infrared
ranging sensor installed on each joint [64]. Tian et al. of Rit-
sumeikan University proposed a SLAM algorithm using sin-
gle line lidar, which is fixed outside the robot head joint and
can generate a two-dimensional environment map for navi-
gation [65]. Chavan et al. used ultrasonic sensor and passive
infrared sensor to create and navigate snake robot map and
realized wireless control through ZigBee [66]. Morse and
Choset of Carnegie Mellon University used rgb-d camera
to build sparse attitude map and three-dimensional color
point cloud map [67], but the quality of the map is closely
related to the path quality, and the operator needs to reduce
the robot speed in a specific gait to improve the image acqui-
sition quality.

Sensors such as lidar and ultrasonic wave can measure
environmental depth information, but they are not suitable
for robot systems in narrow space because of their large vol-
ume and high energy consumption. Chinese and foreign
scholars have carried out relevant research on compact sen-
sor configuration and sensing technology. Ponte et al. of
Carnegie Mellon University designed a triangulation sensor
to adapt to the size and power constraints of snake robot
using laser sensor and camera. When the robot raises its
head, it scans the 3D point cloud of the environment in
combination with the information of color camera [68]. Gir-
erd of ubfc University in France and others carried out job
navigation through a monocular camera fixed on the head
of the tracheal surgery robot and proposed an automatic
end guidance method based on dso-slam [69]. Sareh et al.
of the University of London used optical fiber pressure ele-
ments to form tactile sensors to provide tactile feedback
for flexible manipulators [70]. Figure 6 shows the block dia-
gram of this tactile sensor. Beijing University of information
technology uses cross laser combined with binocular stereo
vision to form an environmental perception system for
visual obstacle avoidance of snake manipulator in narrow
space [71]. At present, the SLAM method of mobile robot
is still used in the research of narrow space sensing technol-
ogy. Some improvements have been made in sensor config-
uration and navigation methods. Therefore, it is necessary
to carry out targeted research according to the characteris-
tics of the scene. Table 2 summarizes and compares the per-
formance of the environment perception and navigation
methods in the above-mentioned papers.

The environment perception in narrow space scene has
the following characteristics. First of all, light is often insuf-
ficient in narrow and closed scenes, so the contrast is low,
and the target features are not obvious. Conventional visual
processing methods are difficult to extract effective feature
information from the collected images, which brings great
difficulties to environment perception and target recogni-
tion. Secondly, due to the narrow cavity channel, conven-
tional sensors are easy to enter their perceptual blind area
and are blocked by obstacles, so the field of vision is severely
limited, resulting in insufficient effective output information
of sensors. Therefore, adaptive light filling and image
enhancement are needed in narrow space. Then, the image
data can be well recognized and resolved for the scene fea-

tures. In recent years, with the development of artificial
intelligence and deep learning, many effective methods have
been generated in image enhancement. In 2017, Ignatov
et al. used the GAN model as the basic framework to pro-
pose a photoenhancement solution that can effectively con-
vert ordinary smartphone cameras into high-quality DSLR
cameras [72]. In 2018, Huang et al. proposed a scale-
scaling global U-Net (Range Scaling Global U-Net, RSGU-
Net) for image enhancement on mobile devices and won
the ECCV-PIRM2018 (Perceptual Image Enhancement on
Smartphones Challenge), the first place in the image
enhancement task in the challenge [73]. Recently in 2020,
Guo et al. proposed a Zero-Reference Deep Curve Estima-
tion (Zero-DCE) method, using a lightweight deep network
DCE-Net to estimate pixel-level and higher-order curves.
This method achieves effect enhancement on low-
brightness images [74]. At the same time, multisensor data
with spatio-temporal continuity is used to deeply fuse the
collected data in the scene and eliminate the wrong data
caused by occlusion and other problems. Finally, the scene
is constructed with offline map information to provide a
basis for robot navigation control.

3. Key Technical Issues Analysis

Flexible manipulator with high redundancy is an effective
technology to solve the problem of working in narrow space
and has clear application requirements in many industries. It
is of great practical significance to develop a highly redun-
dant robot operating system adapted to the actual environ-
ment, to study the environment perception and navigation
and positioning methods in complex scenes, and to propose
a control method to improve the performance and efficiency
of the robot operating in narrow space.

In the existing research work at home and abroad, the
research focus is more on joint materials, mechanism design,
environment perception, robot application system, and
other aspects. Robot is mainly oriented to the detection task
application, but the research on fine perception and precise
positioning control oriented to the job task is less. In order
to improve the kinematic flexibility and operational perfor-
mance of robotic systems, the following key technical prob-
lems need to be solved:

3.1. Design of Mechanism with Both Smoothness Obstacle
Avoidance and Operation Stiffness. The robot system based
on highly redundant manipulator is most suitable for work-
ing in narrow space. Its outstanding feature lies in its good
obstacle avoidance ability, because the number of indepen-
dently controllable joints is a direct factor affecting the
obstacle avoidance ability. In the design of wire driven
manipulator, there is often a contradiction between the
number of joints and the diameter of joints. Due to the lim-
itation of the diameter of the manipulator, the number of
joints can pass through the limited number of wires, and
the number of joints directly affects the arm span and obsta-
cle avoidance ability. In the existing studies, the basic design
of each joint is 1-2 degrees of freedom of rotation. Each rota-
tion angle range is limited due to the effect of wire traction
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efficiency. Therefore, there is a limit to the minimum bend-
ing radius of the manipulator, which makes it difficult to
adapt to obstacles of different sizes. However, in nature, in
addition to the serpentine movement of joint deflection,
snakes also flexibly change the bending shape of their bodies
through internode telescopic movement to better adapt to
the characteristics of the environment.

Therefore, by referring to the movement characteristics
of snakes and other animals in nature, it is a key problem
to realize obstacle avoidance and operation of mechanical
arm to design more flexible multidegree-of-freedom joints
and robot mechanism under the condition of limited num-
ber of joints and traction wire through bionics principle.

3.2. Spatial Environment Perception Technology in Narrow
and Closed Scenes. In the unstructured and unknown narrow
application scenarios, the navigation control of the robot
must be based on accurate environmental perception infor-
mation. However, in the actual operation scenarios, not only
the contrast is low, the target features are not obvious, but
also there are problems such as insufficient lighting and
reflection of the cavity wall, which bring great difficulties
to the environmental perception. At the same time, because
of the narrow cavity channel, the conventional sensor is easy
to enter its perception blind area, the occlusion problem is
serious, the field of vision is severely limited, resulting in
the effective output information of the sensor is insufficient.

Therefore, in a narrow and closed unstructured environ-
ment, how to use a variety of measurement methods to build
an environment perception system, integrate microsensors
under the premise of limited space, and improve the accu-
racy of environment perception through the effective fusion
of heterogeneous perception data are important prerequi-
sites for robot operation. Figure 7 summarizes common
approaches for environment perception and map building
using multiple sensor data.

3.3. Obstacle Avoidance Planning of Drive Space under
Multiple Constraints. The motion planning of the manipula-
tor with high redundancy can adopt the ridge fitting method
or the forward following method. The expected pose of each
joint was planned from the perspective of kinematics, and
then, the elongation of each wire was obtained by inverse
kinematics analysis, to realize the motion control of the flex-
ible arm. However, in the actual system, due to the effect of
load and gravity of each joint, each wire not only needs to
achieve the control of elongation but also needs to make
the tension meet the safety threshold of the wire; only in this
way can the desired operation accuracy be achieved.

Therefore, how to take wire tension limit as an impor-
tant factor in the motion planning of high-redundancy
manipulator, how to construct multiple constraints by com-
bining three-dimensional space obstacles, operating target
pose and interjoint pose relationship constraints, etc., and
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Figure 6: Tactile sensors developed by researchers at the University College London, (a) CAD drawing and (b) prototype of an assembled
single tactile sensor [70].

Table 2: Comparison of different environment sensing and navigation techniques used by serpentine robots.

Reference Sensors Key technology Performance

M. Tanaka [64]
Small camera,

laser ranging sensor,
infrared ranging sensor

Obstacle positions are estimated
using the map data (obtained by Hector
SLAM software) and the data from the

range sensors in each link

Semiautonomous integral collision
avoidance control system manually

controlled by the operator

Morse [67] RGB-D cameras GraphSLAM, data filtering
Use filtered data to generate clearer
and more accurate map images

Ponte [68]
Laser sensors
and cameras

A structured light sensor composed of
B/W teleoperated cameras, line laser sensors,

etc. is designed to construct 3D
environment maps

Adapt to snake robot size and power

S. Sareh [70] Tactile sensor

Using digital optical fiber sensor as the
main device, using ABS polymer as material,
using the relationship between light reflection
distance and intensity to make a tactile sensor

The developed sensor system can be
loosely integrated on a soft arm, effectively

works independently of the arm, and
does not affect the movement of the

arm when flexed or extended
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how to obtain joint space motion trajectory through trajec-
tory interpolation and tension optimization are the prob-
lems that must be solved in the precise operation control
of the manipulator. Figure 8 summarizes some key issues
in obstacle avoidance planning for robotic arms, such as
kinematic models, path planning methods, trajectory follow-
ing methods, and some common constraints.

3.4. The End Precise Positioning Control Problem of Flexible
Drive Mode. Wire traction is the main driving mode of
high-redundancy manipulator. The attitude control of each
joint can be realized by changing the length of each wire.
But the tension state of the wire has a direct influence on
the control accuracy, so the wire tension is usually main-
tained by connecting springs. However, the tension of steel
wire varies greatly under different postures, and the elonga-
tion of spring also changes, which brings large control
errors. At the same time, both the steel wire and the flexible
arm have certain elastic deformation characteristics, which
results in certain elastic shape variables in the whole system
under different tension and different poses, affecting the
control accuracy.

Therefore, we need to find out the factors affecting the
tension and deformation errors of the mechanical arm
movement, establish a dynamic deviation compensation
model under different operating conditions, and eliminate
or reduce the end positioning deviation through trajectory
tracking compensation and synchronous control methods.
These are important problems for precise operation control
of highly redundant manipulators.

4. Prospect

In typical industrial application scenarios, all-round preci-
sion operation in complex and narrow space is the common
feature. It is an inevitable trend for the development of robot
technology to form a practical system to solve the problems
of confined space operation through the integration of new
materials, new configurations, new methods, and new tech-

nologies, closely combining with the requirements of practi-
cal application. The technological development of robots
operating in narrow and confined space is mainly reflected
in the following aspects.

4.1. Spatial Reachability. Working tasks in narrow space
require the robot to be able to cross the narrow and long cavity
channel, bypass the obstacles of different sizes in the cavity,
and reach the operation point located in the deep space. How-
ever, many scenarios (such as GIS overhaul and inlet spraying)
also require the robot to keep a certain safe distance between
the whole body and the cavity wall and obstacles. Under these
requirements, motion flexibility and high spatial accessibility
are outstanding problems in practical applications. Therefore,
hyperredundant robot based on new rigid-soft-soft coupling
mechanism is an important development trend for solving
complex tasks in confined space.

4.2. Structure Compactness. The overall size of the robot
operating system is an important problem affecting its prac-
ticability, especially in postdisaster search and rescue,
nuclear power pipeline maintenance, and other application
scenarios. These scenarios are complex and space-con-
strained, requiring robotic systems to be able to push robotic
arms into deep cavities in a compact structure. Therefore,
the integrated systematic and comprehensive design of vari-
ous parts such as mobile carrier platform, manipulator push
platform, and high-redundancy manipulator is an important
technical direction to meet the application requirements of
confined space.

4.3. Operation Accuracy. At present, robots used in narrow
space are mainly used for detection tasks, but few have oper-
ational capabilities. Compared with the detection task, the
operation task has higher requirements for positioning accu-
racy, trajectory continuity, and real-time motion. Therefore,
it is necessary to carry out research on terminal precise posi-
tioning control technology and job path tracking control
technology of ultraredundant robots for specific application
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scenarios, to provide the precision of the operation process,
which is the technical premise for the realization of confined
space robot operation tasks.

4.4. Friendly Control. The operation process in complex
scenes is difficult to rely on the robot system to complete
fully autonomously and often requires the operator’s tele-
operation to help complete the operation. However, in
some complex scenes, the light is often dim and there
are many uncertain and peculiarly shaped obstacles. Con-
tent in visual images fed back by a single camera is gen-
erally difficult to identify and lack quantitative
predictions. In this case, the control effect brought by
the operator’s remote control operation is difficult to
meet the requirements. Therefore, it is necessary to
enhance the presence of human-computer interaction
process and improve the control efficiency of robot oper-
ation process. There are many technical problems in
scene perception of closed and narrow space. Insufficient
illumination, low contrast, and obscure features all bring
great difficulties to detection and recognition. It is neces-
sary to solve the problem of scene perception and recon-
struction in a confined space by means of multisensor
fusion and to build a human-computer interaction system
with presence for narrow operation scenes. These are
important technical approaches for solving the maneuver-
ability of robots.

As a typical special operation robot, high-redundancy
robot is an important technical approach to solve the
requirements of confined space operation. In-depth study
has a larger scope of operation, high control precision,
strong flexibility, and high-redundancy and mechanical
arm robot operating system and its key technologies, not
only can solve the problem of the confined space of a spe-
cific homework but also can provide manufacturing tech-

nology and man-machine collaboration with a new
solution, thus special task for many industries to provide
important technical support.
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Digital twin (DT), aiming to characterise behaviors of physical entities by leveraging the virtual replica in real time, is an emerging
technology and paradigm at the forefront of the Industry 4.0 revolution. The implementation of DT in predictive maintenance has
facilitated its growth. As a major component of predictive maintenance, condition monitoring (CM) has great potential to
combine with DT. To describe the state-of-the-art of DT-driven CM, this paper delivers a systematic review on the theoretical
and practical development of DT in advancing CM. The evolution of concepts, main research areas, applied domains, and
related key technologies are summarised. The driver of DT for CM is detailed in three aspects: data support, capability
enhancement, and maintenance mode shift. The implementation process of DT-driven CM is introduced from the
classification of DT modelling and the extension of monitoring algorithms. Finally, current challenges and opportunities for
future research are discussed especially concerning the barriers and gaps in data management, high-fidelity modelling, behavior
characterisation, framework standardisation, and uncertainty quantification.

1. Introduction

The fourth industrial revolution “Industry 4.0”demonstrates a
new modernisation and digitisation trend of industrial
machines driven by the advances of Internet of things (IoT),
advanced computing, and artificial intelligence (AI) [1]. The
industrial machines in this new trend are expected to be with
higher efficiency, longer lifetime, and lower operating costs.
Maintenance is crucial in achieving the requirements above.
Therefore, a transformation from preventive maintenance to
predictive maintenance is demanding in the era of Industry
4.0. Predictive maintenance can maximise machine in-service
time by monitoring the condition and predicting the optimal
schedule. Condition monitoring (CM) has played an increas-
ingly significant role in supporting predictive maintenance by
estimating the current and future condition of the monitored
machine. Data-driven CM has achieved remarkable progress
in the past decade with advances in sensors, information and
communication technologies, and data mining. However, the
pure data-driven approaches have faced fundamental chal-

lenges in providing interpretable, reliable, and practical solu-
tions due to the limitation of data availability, black-box
nature of machine learning, and diverse operational conditions.

With the development of smart sensors, digital modelling
technology, and data science, a new concept and paradigm
digital twin (DT) is developed, which mainly consists of phys-
ical space, virtual space, and the bidirectional connection. It
corresponds one-to-one with a potential observation of a par-
ticular physical entity. The virtual mirror is the representation
that implies capturing the real asset’s essential physical mani-
festation in a digital format, such as CAD or engineering
models with the associated metadata. DT can respond rapidly
to stimuli (forces, temperatures, etc.) and describe the operat-
ing context, such as wind or waves, in which the assets exist or
operate within. There has been continuous research towards
building digital twins. DT was originally developed for air
force vehicles by NASA and the US air force to enable the
safety and reliability of equipment [2]. Since then, DT has got-
ten much interest from academics and industry, and many
efforts have beenmade. Though the DT-related research is still
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in the infant stage, a lot of definitions of DT have been pro-
posed [3]. Current DT research mostly focuses on modelling
methods and prototype frameworks depending on the usage
scenario [1].

Due to the promising capabilities of DT, scientific
research and practical applications of DT in CM have
emerged in recent years. DT brings new solutions for CM
in predictive maintenance, while the architecture, workflow,
and related methods of DT-driven CM are not yet well
defined and established. Besides, to the best of our knowl-
edge, there are several papers [4–7] that reviewed the devel-
opment of DT or predictive maintenance, but the advances
of DT-driven CM have not been reported. A summary of
the recent advances in CM facilitated by DT is needed.
Therefore, this paper conducts a systematic review of the
development on DT-driven CM.

This paper is organised as follows: Section 2 illustrates the
background of CM and DT, providing the definitions, applica-
tions, and limitations; Section 3 describes the adoptedmethod-
ology andmaterials for the literature review. Section 4 contains
a descriptive and detailed analysis of the research results and a
discussion of the faced challenges and opportunities. Finally,
the conclusions of this study are provided in Section 5.

2. Background

This section aims to provide a brief overview of the principal
concepts and applications of CM and DT.

2.1. Condition Monitoring. With the evolution from preven-
tive maintenance to condition-based maintenance for
machinery, the origins and concepts of condition monitor-
ing have been defined as Table 1 shows. Conservatively, con-
dition monitoring is a process of observing parameters that
indicate the current status of the system [4]. It plays a signif-
icant role in the maintenance, management, and sustainable
operations of various sectors, such as manufacturing indus-
tries [8], electronics [9], and transportation [10]. The execu-
tion of condition monitoring in these industries enables
maintenance to be scheduled and actions to be taken to pre-
vent consequential damages. It would bring many benefits,
such as reducing machine downtime and costs and prolong-
ing the machine’s life.

The implementation of condition monitoring is spread in
various applications, such as performance assessment [14],
vibrationmodelling [15], thermalmonitoring [16], and oil anal-
ysis [17]. Each implementation would include three basic steps:
data acquisition, data processing, and decision-making process.
Various sensors (e.g., electrical, electronic, and mechanical)
have been installed inmachinery to acquire kinds of data. These
data then are processed to estimate the operating state of a
machine by numerous techniques. Upon processing the data,
the status information would be helpful for decision-making,
such as in determining/predicting (i) health condition, (ii)
remaining useful life, (iii) failure analysis, (iv) downtime reduc-
tion, and (v) performance improvement strategy.

The application of condition monitoring has increased the
reliability of machinery, while there are still some limitations.
Data unavailability or qualitative data makes it difficult to

assess the equipment status. Failures and performance deteri-
oration are not easy to trace and characterise without expertise
and numerous samples.

2.2. Digital Twin. To have an overview of the digital twin con-
cept, Table 2 provides some definitions in academic publica-
tions. The concepts are constantly being redefined, while most
of them include three main elements: physical space, virtual
space, and their connections of data and models. The features
of DT can be drawn from these concepts as individualised,
high-fidelity, real-time, and controllable [18]. By building an
accurate one-to-one mapping and feedback link between real
physical space and digital space, the digital twin can implement
real-time data/information exchange, dynamic modelling, and
update throughout its lifecycle.

The implementation of digital twins is based on several
key technologies: (i) data management, (ii) high-fidelity
modelling, and (iii) model-based simulation [18]. As the basis
of a digital twin, data goes through the steps of collecting, pro-
cessing, mapping, and calculating to drive DT. Both physical
modelling and data-driven methods are used and integrated
to characterise complex behavior of a physical object and
make predictions/reactions rapidly in DT. Simulations enable
a virtual model to predict the behaviors of physical entities in
real-time, provide measures to locate failure parts, predict
remaining life, and quantify uncertainties.

The research and practice of digital twin technology are
inseparable from targeted systems and application scenarios.
Numerous industries have been exploring its applicability,
such as unmanned aerial vehicles [23], gas turbines [24],
wind turbines [25], and manufacturing systems [26]. How-
ever, the connotation of the digital twin concept and techni-
cal framework has not yet formed a unified consensus in the
operation and maintenance phase of these machines. Some
bottleneck technologies, such as merging multidomain phys-
ical modelling and data-driven approaches, accurate map-
ping, and dynamic evolution of digital twins, are being
investigated for breaking through.

3. Research Methodology

3.1. Research Objectives/Questions. Considering the faced
challenges of CM and lots of opportunities arising from
DT, this paper aims to analyse the combination ways
between CM and DT, evaluating diverse views and benefits
from the combination. In this review, we are attempting to
answer the following research questions:

(i) Q1: why is digital twin technology suitable to facili-
tate machine condition monitoring?

(ii) Q2: how does digital twin technology drive machine
condition monitoring?

Overall, the motivation of this paper is to research how
condition monitoring is changing through digital twin tech-
nology, including reasons, measures, and gains. Meanwhile,
critical challenges and future trends will be involved.
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3.2. Research Sources and Methods. A systematic literature
review (SLR) is used to analyse and evaluate the existing status
of research derived from the given questions. This method is
different from the traditional review with advantages of avoid-
ing biased introduction and lack of critical analyses. Referring
to Zonta et al. [7] and Silvestri et al. [27], the implementation
of this method includes five stages: (1) formulation of the
research question, (2) collection of relevant literature in uni-
versal databases through specific keywords, (3) extraction of
eligible papers which meet qualified criteria, (4) design of a
database to assess and sort the extracted papers, and (5)
description of the results and findings.

After determining the research questions, several common
electronic databases are used to search related papers, includ-
ing Google Scholar (http://scholar.google.com), IEEE (http://
ieeexplore.ieee.org), Scopus (http://scopus.com), and Web of
Science (http://webofscience.com). Considering that condi-
tion monitoring has multiple similar designations, search
strings are derived from the research questions as follows:

(i) “Digital twin” AND (“real-time” OR “health” OR
“condition”) AND “monitoring”

(ii) “Digital twin” AND (“performance” OR “state”)
AND (“evaluation” OR “estimation”)

A high volume of papers that match the scope of keywords
were collected. Then, we selected the eligible papers by setting
exclusion criteria listed in Table 3. 2017 was chosen as the start
date of the search filter because DT in academia and industries
was still in infancy before 2017. Digital twin technologies are
applied across many areas, such as healthcare, smart cities,
and machinery, where the meanings of condition monitoring

are different [3]. As shown in criteria 2, the implementation
of both technologies in machines is the research object. Papers
from professional conferences and journals are considered
because of their concision and high quality.

We conducted a preliminary investigation on titles and
abstracts to evaluate relevance. For better classification and
analysis, the selected papers are categorised by article structure
(concept, review, case study, etc.), research methods (data-
driven, physical-based, hybrid, e.g.), research objects (gas tur-
bines, wind turbines, manufacturing systems, etc.), and
research purposes (health monitoring, structure damage
assessment, performance evaluation, etc.). Meanwhile, the full
text of selected articles was reviewed to extract features for
research questions.

4. Results and Findings

Investigating results and findings based on research ques-
tions are presented in this section.

4.1. Descriptive Analysis of Research Results. We have col-
lected 133 papers published from 2017 to 2022 in profes-
sional academic search databases. After removing
duplicates, the final database contains 95 papers suitable
for responding to the research objective. We chose one arti-
cle to read the full text for papers that studied the same type
of machines or used the same methods. Finally, 64 papers
were explored fully, and others were read simply as shown
in Table 4.

The article distribution by search databases and types is
shown in Figure 1. Google Scholar and Web of Science are
the main sources in this review. In the database, journal arti-
cles are obviously more than conference papers. According

Table 1: Definitions of condition monitoring.

Author Definitions of condition monitoring

Álvarez et al. (2013) [11]
“Assessing the current state and estimating the future state of a system by means of measurements and

calculations.”

Chaulya and Prasad (2016) [12]
A process of monitoring different parameters of condition in machinery in order to identify any

significant change, which is indicative of a developing fault.

Correa and Guzman (2020) [13] An evolution of predictive maintenance or proactive maintenance.

Ali and Abdelhadi (2022) [4]
A process of observing a set of parameters and/or variables that indicate the state of the system under

investigation.

Table 2: Definitions of digital twin.

Author Definition of digital twin

Glaessgen et al. (2012) [19]
An integrated multiphysics, multiscale, probabilistic simulation of a vehicle or system that uses the best

available physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin.

Chen (2017) [20]
A computerised model of a physical device or system that represents all functional features and links with the

working elements.

Luo et al. (2019) [21]
A multidomain and ultrahigh fidelity digital model integrating different subjects such as mechanical,

electrical, hydraulic, and control subjects.

Madni et al. (2019) [22]
A virtual instance of a physical system (twin) that is continually updated with the latter’s performance,

maintenance, and health status data throughout the physical system’s life cycle.
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to statistics, the main journals and conferences that pre-
sented more than one occurrence were IEEE Access, Inter-
national Journal of Advanced Manufacturing Technology,
Robotics and Computer-Integrated Manufacturing, Journal
of Manufacturing Systems, ASME Turbo Expo, and IEEE
international conference.

Since 2015, the number of publications has generally
increased yearly, as shown in Figure 2. Most of the literature
is dominated by case studies (74.7%), which were divided
into three categories: (i) theoretical simulation (17.9%): the-
ories were proposed and compared by simulation; (ii) exper-
imentation (31.6%): methods and models were verified by
virtual-real interaction under ideal experimental conditions;
(iii) prototype (25.3%): methodology was proved with real
monitoring data or applied in in-service machines. The ris-
ing trend of papers with experimentation and prototype
means that the study of DT-driven CM is shifting from the-
ories to implementation. Meanwhile, this shifting situation
facilitated discussions about related technologies and chal-
lenges, which caused an increase in the review literature.

To demonstrate the applied area and cases of DT-driven
CM, we present some representative papers listed by date in
Table 5. Each paper’s research area, objects, and related param-
eters were extracted for analysis. Digital twins bring more con-
notations and extensions to condition monitoring, as shown in
the column of specific areas, such as structural load monitoring,

remote online cluster monitoring, and prediction of remaining
useful life (RUL). The experiments and applications have been
spread in numerous domains, including energy (steam turbines
and wind turbines), transportation (vehicle braking systems
and vessels), aeronautics (aircraft and aero-engines), astronau-
tics (satellites), manufacturing (lathes and 3D printers), and
electronic (converters and batteries). In these scenes, mostmon-
itoring variables are inaccessible, unpredictable, or changing
obviously with operating conditions, which are unable or diffi-
cult to monitor and estimate only by traditional sensors and
data processing technologies.

To find all terms directly related to the combination
between condition monitoring and digital twins, we generated
a relation map of keywords, occurrences of which are more
than twice, from the literature database and categorised them
into four groups, as presented in Figure 3 and Table 6. “Digital
twin” is the most frequently occurring word, which builds the
links among developing backgrounds and subjects, emerging
technologies and approaches, as well as innovations in imple-
mentations. Modern technologies (digital twin, cyber-physical
systems, Internet of things, etc.) enable traditional condition
monitoring to be incorporated with various novel methods,
i.e., artificial intelligence, cloud computing, and virtual sensing.

According to keyword analysis, DT-driven CM is pres-
ently used mostly in two fields: manufacturing processes (rep-
resented by smart manufacturing [62]) and operation and

Table 3: Quality evaluation criteria of papers.

Section Description

Criteria 1 Set the published period from 2017 to now.

Criteria 2 Limit research object as machinery or equipment.

Criteria 3 Remove technical reports, dissertations, and theses.

Criteria 4 Remove documents less than 6 pages long.

Table 4: Summary of the systematic literature review search process.

Identified articles Articles post removing duplicates Articles post abstract review Articles post full text review

Total 133 38 31 64
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maintenance processes (represented by predictive maintenance
[63]). Some studies take a modelling-oriented approach, digital
twin, based on technical engineering challenges, with the goal of
characterising precise physical behaviors. Others take an infor-
mation management-oriented approach, such as IoT, empha-
sising semantic relationships and seamless information flow.
Both approaches are derived from artificial intelligence, cloud
computing, and other methods, all of which are in the early
stages of development. The above advances provide possibilities
for the application of condition monitoring in multiple fields,
such as RUL prediction components, rapid failure diagnosis of
complex systems, and structural health monitoring.

4.2. Content Analysis of Digital Twin Driven Condition
Monitoring. This section presented the results and discus-
sions based on the previously elaborated questions.

4.2.1. Q1: Why Is DT Suitable to Facilitate Machine Condition
Monitoring? Currently, there are still obstacles to traditional
condition monitoring, including (i) data inaccessibility due
to harsh environments or insufficient sensing, (ii) lack of inter-
pretability and transparency due to the use of black-box
models, and (iii) weak ability to support prediction and com-
prehensive decision-making. DT-driven CM is a customised,
high-fidelity, real-time, controllable process to assess the cur-
rent status and simulate predictable scenarios. DT provides a
high-fidelity accurate model to characterise and predict the
state of a physical entity in virtual space. The physical entity
and virtual model links can provide real-time information
on machine performance and operating feedback [3]. The
real-time interaction lays the foundation for condition moni-
toring development. Therefore, DT-driven CM can overcome
the limitations of existing approaches and provide additional
benefits, such as the following:

(i) Availability of a multilevel, multidomain database

DT belongs to an integrated database, which stores holistic
and hierarchical data covering the whole life cycle. This data-

base is built with design-manufacturing-operating-mainte-
nance data and records from machine layer to part layer.
The new monitorable variables (stress, strain, etc.) are avail-
able for condition monitoring and make it possible to assess
RUL of new failure modes. Li et al. built a versatile probabilis-
tic model to realise the digital twin vision and predict the air-
craft wing fatigue crack growth [28]. Magargle et al. presented
a digital twin-driven approach to support heat monitoring and
accumulated wear prediction of an automotive braking system
[30]. Xie et al. proposed an attitude monitoring method for
hydraulic supports based on the digital twin theory [36].

Furthermore, a new concept, “virtual sensor,” has been
proposed by Nguyen et al. as a novel analytical solution for a
process variable that can be used in place of a sensor [59].
They used virtual sensors based on DT to construct perfor-
mance prediction models for a feedwater heater. Virtual sen-
sors driven by digital twin have also been applied in vertical
transportation systems [47] and dredgers [53] to monitor
guide alignment and defined residual warning values.

Condition monitoring and diagnostics have become
more practical as the type and volume of available data have
grown. However, multilevel database-related literature was
few proposed because the scale of digital twin research sub-
jects mainly focuses on small structures. Meanwhile, the
above-referred approaches for obtaining novel variables
mostly rely on numerical simulations or equilibrium equa-
tions, which inevitably exist errors and nonconvergence con-
ditions. The output of virtual sensors is affected by the
physical entity, environments, and usage history, which are
rarely considered in existing research.

(ii) Enhanced ability of fault tracing and degradation
prediction:

Condition monitoring based on data-driven methods with
monitoring data as input can trigger early warnings accurately
while identifying the root cause of faults is a challenge for such
approaches due to lacking connections with failure mechanism
and physical structure. Conversely, the virtual mirror of DT is
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an intergradation ofmultiphysics, multiscale, andmultidomain
models, which can characterise the dynamic behavior of the
physical entity. Therefore, components or systems that cause
failures are located directly by the output and inner interactions
of the virtual mirror. Tao et al. proposed a DT-driven PHM
method to identify and estimate gearbox failure, and the DT
model had much better performance in detecting the fault
cause (e.g., tooth wear, fatigue, and breakage) than the signal
diagnostic method [31]. The DT-based method proposed in
this paper covers physical entity, virtual equipment, service,
data, and connection, which is suitable for improving the accu-
racy of prognosis. However, balancing the costs and benefits of
the DT and processing a large amount of DT data would
impact the application. Zaccaria et al. built a framework for
monitoring, diagnostics, and health management of an aircraft
engine fleet based on a digital twin [32]. By this framework, dif-
ferent degrees of coupling failures were identified and isolated
accurately. However, this framework is far too simplistic to suit

the needs of digital twins as it is based solely on an engine per-
formance model and Monte Carlo simulations.

For machines with a long service lifetime, the impacts of
performance degradation and structural deterioration must
be considered when conducting condition monitoring. Dig-
ital twins can characterise these features not only from mon-
itoring data analytics but also from the perspective of part
deviations. Craft et al. built a multilevel digital twin of aero
engines. They characterised the degradation of whole engine
performance and key module characteristics with damaged
images of components, e.g., the erosion of high-pressure
compressor blades [64]. Dawes et al. proposed an automated
morph-mesh-solve workflow to update the geometry model
of high-pressure-turbine blades to predict the performance
of a gas turbine digital twin with consideration of the blade
corrosion [65]. Although these technologies have much
practical value, relevant data and samples are difficult to
obtain and gather for each DT physical entity.

VirVirtuatual sl sensensingingg

StaStatete estestimaimatiotionn

Remaining useful lifeRemaining useful l

Reliabilityy
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Figure 3: Mapping of keywords in related publications.

Table 6: Keyword classification.

Key terms

Backgrounds Industry 4.0, smart manufacturing, and predictive maintenance

Technologies Digital twin, cyber-physical systems, and Internet of things

Methods Artificial intelligence, machine/deep learning, cloud computing, virtual sensing, and simulation

Implementations Condition monitoring, anomaly detection, structural health monitoring, state estimation, and RUL prediction
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(iii) Requirements for maintenance mode revolution

Condition monitoring has already been applied in oper-
ation and maintenance of high-value assets. However, this
measure driven by solely monitoring data can only provide
reference information rather than final decisions for mainte-
nance plans in most cases because the trained model is not
reliable and interpretable enough to locate failure and pre-
dict serviceability. Thus, maintenance intervals are fixed for
most machines, leading to high costs and low utilisation.
Predictive maintenance is a method that produces updated
information allowing the prediction of future behavior to
maximise the part’s service life [13]. It aims to minimise
maintenance costs while ensuring the safety and reliability
of machines. Currently, the application of DT in predictive
maintenance is the most related topic both in academic
research and industry practice [18].

It is necessary to promote the combination between DT
and monitoring methods to achieve predictive maintenance.
Ding et al. proposed a predictive maintenance method for
shearer key parts to predive the RUL and support decision-
making based on high-fidelity modelling and hyperrealistic
behavior simulations, both of which are the key technologies
of digital twin modelling [66]. Moghadam and Nejad pro-
posed an innovative drivetrain RUL monitoring approach
based on digital twin modelling to perform predictive main-
tenance of the turbine main shaft [57]. Both papers only
explore predictive maintenance in a narrow sense, and
future research should include more failure models and deci-
sion considerations. Mi et al. proposed a cooperative aware-
ness and decision-making framework integrated with data,
knowledge, and DT to support fault diagnosis and mainte-
nance planning and an actual engineering case, prediction
maintenance decision-making for bearings in grinding rolls
of the large vertical mill, is analysed to illustrate the accuracy
and applicability of this framework [67]. In general, the
framework is broad and advanced, taking into account all
critical elements such as multilevel data, self-adaptive
models, uncertainties, and operating conditions.

4.3. Q2: How Does Digital Twin Drive Condition Monitoring?
DT is a physical-digital replica with high-fidelity and individua-
lised models, as well as a bidirectional and real-time data trans-
mission process. The advanced modelling methods enable the
digital model to characterise its entity’s operating conditions
and provide additional data on loads, damage, and faults. The
physical-to-digital connection means that the conditional data
of the physical entity is transmitted into the virtual environment
in real-time. Then, the digital model updates itself to match its
counterpart, and conditional data are utilised for fault diagnosis
and prognosis. The foundation of DT-driven CM is advanced

modelling methods. Then, new condition monitoring and fault
diagnosis algorithms have been developed based on DT’s
remarkable features. The progression of modelling and algo-
rithm development is summarised as follows:

(i) DT modelling to characterise machine behaviors

Numerous modelling methods have been developed to
make accurate and bidirectional mapping between the physical
entity and the virtual model. They can be divided into physical-
based, data-driven, and hybrid methods, as shown in Table 7.
Physical-basedmethods are applied to keep virtual models with
high fidelity, including principle-based modelling for mechan-
ical systems, numerical simulation for structure, and equivalent
modelling for electronic devices. Data-driven methods build
the specific link between machine operating conditions and
the variables of interest. Hybrid methods combined with
physical-informed and data-driven methods are commonly
employed to integrate physical or system principle knowledge.
Rapid response scan be generated by reducing the model
degree of freedom using hybrid methods. Models built by
hybrid methods have required features for standard DT, such
as high-fidelity, quick-update, and rapid-response abilities.

According to the literature investigation, most of the cur-
rent prototype studies are aimed at simple systems or struc-
tures. The physical-based modelling is qualified to support
digital twin modelling in this situation. Shangguan et al. pre-
sented a new physical-virtual convergence approach for a satel-
lite system by Modelica-based modelling [45]. Moi et al. built a
digital twin of a small-scale knuckle boom crane by finite ele-
ment modelling and verified the results by strain gauges [43].
Some studies use data-driven approaches to build data links
in digital twins. Li compared the accuracy of digital twin-
driven virtual sensors built by different models, such as long-
short term memory network, extreme gradient boosting, sup-
port vector regression, and deep belief network [55]. Stoumpos
and Theotokatos employ a neural networks data-driven
method into digital twin as virtual sensors of marine dual-
fuel engines [70]. Booyse et al. proposed a new form of DT,
deep digital twin [71]. It is constructed from deep generative
models which learn the distribution of healthy data directly
from operational data at the beginning of an asset’s life-cycle
[71]. However, the parameter mapping performed by the black
box model has yet to meet the requirements of DT-driven CM,
due to a lack of interpretability and physical knowledge.

Recently, hybrid approaches combining physical-based
and data-driven models have been investigated in academics
to reduce the computing and mapping time of a high-order
virtual model. Bonilla et al. used graph convolutional neural
network theory and a hydraulic modelling method to generate
a digital twin of the water system [61]. Magargle et al. built a

Table 7: Classification of modelling methods.

Methods type Methods

Physical-based Principle-based modelling [59]; finite element analysis [60]; computational fluid dynamics [68]; equivalent modelling [48]

Data-driven Machine learning [53]; neural network [61]; deep learning [69]

Hybrid Reduced-order modelling [30]; surrogate modelling [23]
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multilevel model for an automotive braking system with 3-D
finite element analysis, 0-D multidomain circuit simulation,
and reduced-order modelling [30]. Vasilyev et al. propose a
coupling modelling method that can be efficiently utilised to
estimate gas-turbine-engine blades’ residual life with thermal-
solid integrated analysis and ensemble machine learning [72].
Hybrid-method-based DT can swiftly calculate and predict
the outcomes of multilevel or complex machines. However,
the calculating errors derived from quick mapping as well as
the time and resource costs resulting from physical modelling
must be optimised in the application of hybrid methods.

(ii) Development of model-based diagnosis and prediction

Sensors set in machines are commonly limited, and the
available sensor data are often not rich to support the training
of robust data-driven condition monitoring algorithms [52].
With the increase of monitorable variables in DT, many diag-
nosis and prediction methods have been proposed, and the
area of monitoring has been broadened. In these methods,
performance evaluation is mainly carried out in the whole
machine layer; fault detection and health status assessment
are often conducted in the system or subsystem layer; RUL
prediction mainly focuses on the part and component layer.
The details are as follows:

(a) Performance evaluation

The in-service performance of machines, which deter-
mines the profitability of operators, is a critical factor trigger-
ing repair in predictive maintenance, especially for rotating
machinery. In previous studies, the performance degradation
trend is usually evaluated with the historical data by statistic
methods, which can only reflect the average level. As for
now, the individual performance condition can be traced
and assessed by digital twin, which considers the operating
environments and load usages of the specific machine. Unlike
the simple baseline fitting method, Panov and Cruz-Manzo
built a performance digital twin platform of gas turbines to
track performance degradation with the novel gas path com-
ponent capacity index [50]. A distributed control system net-
work was built in Panov’s work, but each module of
individual engines was based on a one-dimensional model,
which is not conducive to obtaining high-precision prediction
results. Johansen and Nejad proposed a fuel consumption
evaluation method in vessels through motion data generated
by the DT [35]. The results show that the lower fidelity model
was more accurate than the higher fidelity model. The higher
dimensionality and fidelity of virtual models indicate that
more data is needed as input and optimisation.

(b) Anomaly detection

The related variables of inaccessible locations and harsh
environments can be monitored based on the digital twin
modelling. Thus, the anomaly can be directly identified and
detected with these parameters. Balta et al. built a DT architec-
ture with appropriatemathematical modelling formalisms and
the deviation of defined variables shows the anomaly of the 3D

printer occurring in additive manufacturing processes [40].
Zaccaria et al. proposed an automated signature-based algo-
rithm for anomaly detection and fault isolation of aero-
engine components based on the gas flow parameters gener-
ated by a digital twin platform [32]. High-value assets with
complex structures would benefit from the anomaly detection
supported by DT, which could monitor related parameters
from hard-to-assess locations.

(c) Health monitoring

Health monitoring is a critical part of predictive mainte-
nance in complex systems. The health status indicates
whether the equipment meets the operating conditions.
The real-time monitoring parameters of a digital twin can
be used to be a health indicator and update the health status
of the machine rapidly. Yu et al. proposed a digital twin-
based method to evaluate the health state of an electro-
optical system with an optical transfer function as the indi-
cator [52]. Peng et al. concluded specific health indicators
in different levels of power converters and applied particle
swarm optimisation to estimate the circuit parameters based
on the incoming data from both the digital twin and the
physical prototype [42]. Compared with the traditional
data-driven method, the DT model estimation results are
more accurate, and it can update and self-learn in real time,
demonstrating that the digital twin methodology has good
performance and broad applicability in health monitoring.

(d) RUL prediction

The amount of papers related to RUL prediction based
on DT dominates the literature database. On the one hand,
the remaining life of key components has a significant
impact on the safety of the whole machine and the mainte-
nance schedule. On the other hand, it can acquire real-
time load of components and calculate the accumulative
damage based on digital twin. Upon getting the load, the
RUL can be obtained by using a damage estimation model
of the specific failure mode, such as accumulated wear of a
braking system [30], fatigue crack length of aircraft wings
[46], thermal mechanic fatigue of turbine blisks [73], and
creep damage of turbine blades [72]. These methods are
based on reduced order modelling to build a quick mapping
model from performance monitoring parameters to thermal
or structural loads of key components. DT provides the
potential for predicting the RUL of these critical parts, of
which life is always affected by loads and temperatures.
However, collection of data such as geometric, material,
and historical failure data has made algorithm development
and validation complex.

4.4. Challenges and Future Directions. Though effects have
been made for improving condition monitoring through digi-
tal twin technologies, some barriers and restrictions still exist.
Simultaneously, the application of digital twins on condition
monitoring in this paper proves that there are many chances
and new directions for further research in this field. Hence, the
challenges and future directions were discussed in this section.
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4.4.1. Current Challenges

(1) Data Collection and Management. Multisource, multi-
modal, multitemporal scale data (e.g., geometry, material,
monitoring data, environments, usage, and maintenance
records) will be involved in building a digital twin, which
can accurately reflect the operating condition. They cover
the whole life cycle of a machine, including designing,
manufacturing, operation, and maintenance phases. Col-
lecting the above data with high quality and completeness is
an essential but difficult challenge. After data collection, man-
aging these data into a complete and standard order, which
supports condition monitoring, is one more critical issue.

The amount of data generated by a cluster of individual
digital twins is far too large to be stored on standard storage
devices. Meanwhile, these data should be easily accessible
online to conduct remote real-time condition monitoring
without delay. Wang et al. proposed the big data-driven con-
trol mechanism and IoT-cloud technologies to build CPS-
Digital-twin for the multi-life-cycle remanufacturing process
[74]. Although cyber-physical systems and the IoTs are fast
evolving, implementing online storage and access will be
costly and time-consuming.

(2) Modelling and Method Development. Digital twin model-
ling for machines needs a good trade-off between fidelity and
efficiency, with the consideration of the requirements for
rapid response and the available computational resources.
Physical-based modelling is a time-consuming computing
process. The data-driven methods are efficient but lack inter-
pretability and transparency. Though the integration of both
methods is a solution for DT-driven CM, the error and
uncertainty that occurred in the model-coupling process is
a derived problem that is being explored in academia.

DT-driven CM is currently in its early stages. How to
develop new methods based on the new variables generated
by the digital twin for monitoring new states still needs in-
depth research and innovation.

(3) Validation of Accuracy of Behavior Characterisation. The
operation condition of a large system is dynamically changing.
Time and operational environments affect the performance
degradation and part damage. Incorporating these changing
characteristics of a physical entity into the updating process
of the virtual model is a challenge. Then, the accuracy of the
updated digital twin remains to be verified after each replace-
ment. However, few digital twins can enable real-time updates
based on input data. Hence, condition monitoring cannot rely
entirely on this kind of digital twins.

4.4.2. Future Directions

(1) Multicomponent, Multilevel Model Development in DT-
Driven CM. Most research objects of DT are single-component
models in the reviewed papers. It may be a part of multicompo-
nent, multilevel machinery in the industry. Single-component
DT is hard to satisfy the needs of performance evaluation and

fault isolation for the complex system. In addition, each system
element might be simulated and modelled by different software
due to adaptability. Coupling all elements into an integrated sys-
tem is one concerning part that needs to be designed and orga-
nised effectively. The integrated system should ensure that
existing submodels can be reused, replaced, or modified without
corrupting the entire system simulation. Therefore, this is
deemed a promising direction for DT-driven CM research.

(2) Framework Standardisation for DT-Driven CM. The con-
cept and connotation of digital twins have been fully devel-
oped in the decade since DT was proposed. However, the
implementation of DT-driven CM comes into many forms.
No standardisation is slowing the progress of in-depth
development and leading readers unable to find appropriate
solutions for machines. An effective way is to propose the
standard DT framework for condition monitoring, including
system architecture, workflow, modelling methods, and eval-
uation indices.

(3) Uncertainty Quantification for DT-Driven CM. Numer-
ous sources of uncertainty cause decision-makers to have
reservations about the accuracy and reliability of monitoring
performance. The three major sources include input data
uncertainty, such as geometry, operating conditions, and the
uncertainty of model forms, which are only an approximation
to a real condition and are limited by computational budgets,
as well as numerical uncertainty induced by iterative error,dis-
cretization error. To effectively manage uncertainties, uncer-
tain quantification should be incorporated into DT-driven
CM, containing uncertainty identification, propagation, anal-
ysis, and optimisation stages.

5. Conclusion

The development of DT creates new opportunities and
difficulties for CM. This review focuses on solving two ques-
tions, why and how DT is utilised to drive CM. We conducted
a systematic literature review on 95 papers collected from
common electronic databases to provide an overview of DT-
driven CM. We analysed the studies regarding the causes,
methods, and applications that corresponded with the notion
of DT-driven CM. Through in-depth analysis, conclusions can
be drawn that the reasons include:

(i) Many new monitorable variables provided by DT
extend the monitoring scope.

(ii) DT’s real-time response and behavior characterisa-
tion enhance the monitoring ability.

(iii) Predictive maintenance based on DT provides novel
monitoring paradigms.

The details of the modelling methods of DT towards CM
(e.g., physical-based, data-driven, and hybrid methods) and
the novel monitoring paradigms (performance evaluation,
anomaly detection, health monitoring, RUL prediction,
etc.) were discussed to provide insights for building DT-
driven CM. This work investigates more the support
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supplied by DT for CM and details less how CM is really
applied based on DT, as influenced by the gathered litera-
ture. In the future, more emphasis should be placed on the
superiority and usability of digital twin-driven condition
monitoring over traditional condition monitoring.

Overall, various frameworks and methodologies for DT-
driven CM have been presented, but only a few have gained
industry consensus. The majority of present research focused
on individual component modelling and one-way physical to
digital communication, which has not yet proven to be a pow-
erful driver of condition monitoring from a technical engi-
neering view. Meanwhile, there is no unifying standard for
DT-driven CM, making the research more dispersed and dif-
ficult to refer to by other scholars, which may cause repeated
research. It is critical that researchers work together to create
a systematic framework for DT and DT-driven CM further.
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Rotating machinery plays an important role in transportation, petrochemical industry, industrial production, national defence
equipment, and other fields. With the development of artificial intelligence, the equipment condition monitoring especially
needs an intelligent fault identification method to solve the problem of high false alarm rate under complex working
conditions. At present, intelligent recognition models mostly increase the complexity of the network to achieve the purpose of
high recognition rate. This method often needs better hardware support and increases the operation time. Therefore, this paper
proposes an adaptive convolutional neural network (ACNN) by combining ensemble learning and simple convolutional neural
network (CNN). ACNN model consists of input layer, subnetwork unit, fusion unit, and output layer. The input of the model
is one-dimensional (1D) vibration signal sample, and the subnetwork unit consists of several simple CNNs, and the fusion unit
weights the output of the subnetwork units through the weight matrix. ACNN recognizes the self-adaptive of weight factors
through the fusion unit. The adaptive performance and robustness of ACNN for sample recognition under variable working
conditions are verified by gear and bearing experiments.

1. Introduction

As a key component of mechanical transmission system,
rotating machineries have been widely used in the trans-
mission system of automobiles [1], ships [2], wind turbine
[3], machine tools, etc. However, in the actual industrial
scene, they are easy to be broken down due to the harsh
service environment and variable speed and load [4, 5].
So, it is vulnerable to catastrophic accidents if health state
of equipment is not considered in a timely manner. There-
fore, the research on intelligent and efficient recognition
model is of great significance to ensure the healthy opera-
tion of equipment [6–8].

At present, the common monitoring technology can be
divided into three groups: index-based trend forecast
methods, spectrum signal-based analysis methods [9], and
data-driven deep learning (DL) methods [10, 11]. The for-
mer two rely heavily on expert experience and require more
labour input. In the past decade years, benefiting from the
rapid development of computer systems and intelligent sens-
ing technologies, deep learning methods have been attached
to too much attention. As an end-to-end fault diagnosis
technology, deep learning aims to build a learning model
and mine the inherent complex mapping between feature
space and fault types by learning massive labeled data, to
predict and judge diagnosis of unknown samples. Existing
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favourable deep learning methods include deep belief net-
work (DBN), Auto-Encoder (AE) [12], and convolutional
neural network (CNN) that present significant advantages
in solving varieties of classification problems. Wang pro-
poses a deep interpolation neural network (DICN) [13],
which improves the fault recognition rate of neural net-
work under time-varying conditions. Eren et al. [14] used
compact 1D-CNN to extract recognition features from the
original fault data, and the classification time is less than
1msec, which is very suitable for the fact monitoring
and diagnosis of mechanical equipment. Zhang et al. [15]
proposed a deep convolutional neural network with wide
first-layer kernels (WDCNN) which used the wide kernels
in the first convolutional layer for extracting features and
suppressing high-frequency noise. Liu et al. [16] proposed
a multiscale kernel-based residual CNN (MK-ResCNN)
which overcomes the problem that the gradient of deep
network disappears, and used multiscale nuclear energy
to extract fault features more accurately. Du et al. [17]
proposed a convolution sparse learning model for decon-
volution of complex modulation of transmission path,
and successfully detecting the transient fault impulses of
gearbox vibration signal. Huang et al. [18] used minimax
concave penalty function to construct an objective func-
tion and constraint the sparsity coefficients. As a result,
the repetitive transient’s information is effectively
extracted. Li et al. [19] proposed a power spectral entropy
based variational mode decomposition method and intro-
duced it into deep neural networks, and achieve a promis-
ing fault recognition rate. Li et al. [20] proposed a named
WaveletKernelNet framework where the first layer of a
standard CNN is replaced with continuous wavelet trans-
form, achieving an interpretable feature map with clear
physical meaning. Sun et al. [21] combined sparse auto-
encoder SAE with DNN and presented a SAE-based CNN
to learn more differentiated features of unlabeled data, and
experimentally verified its effectiveness. Guo et al. [22] estab-
lished a named hierarchical learning rate adaptive deep con-
volution neural network where the two-dimensional (2D)
CNN hierarchical framework with an adaptive learning rate
is adopted to recognize bearing fault categories and sizes.
Cheng et al. [23] proposed a hybrid time-frequency analysis
method, which was successfully used for railway bearing fault
identification, which could effectively recover fault informa-
tion from raw signals contaminated by strong noise and
other interferences.

With the research and development of intelligent recog-
nition methods, the scale of the model is becoming larger
and larger in order to pursue high recognition rate, which
obviously does not correspond to a good direction of fault
diagnosis. The large scale of intelligent recognition model
needs better hardware support and increases the recognition
operation time, which is obviously unfavourable to the
industrial application of intelligent recognition methods.
Therefore, this paper proposes an adaptive convolutional
neural network (ACNN) by combining ensemble learning
and simple convolutional neural network (CNN). ACNN
model consists of input layer, subnetwork unit, fusion unit,
and output layer. The input of the model is one-

dimensional (1D) vibration signal sample, and the subnet-
work unit consists of several simple CNNs, and the fusion
unit weights the output of the subnetwork units by the
weight matrix. The weight matrix can adjust the proportion
of each subnetwork output, increase the influence of identi-
fying the correct subnetwork unit output, and weaken the
influence of identifying the wrong subnetwork output.
ACNN realizes the integrated learning of the model by
adaptively adjusting the simple CNN as the output of the
basic classifier, which can improve the recognition rate of
the model without significantly increasing the network
parameters. The adaptive performance and robustness of
ACNN for sample recognition under variable working con-
ditions are verified by gear and bearing experiments.

The main innovations and contributions of this paper
are summarized as follows.

(1) ACNN is proposed by combining ensemble learning
with simple 1D-CNN, which can accurately identify
rotating machinery faults under unknown working
conditions. It provides a new idea and method for
intelligent fault diagnosis

(2) ACNN replaces the combination strategy in tradi-
tional bagging ensemble learning with optimized
weight parameters. The combination strategy is
optimized by continuously optimizing the weight
parameters

(3) The proposed ACNN is generalizable, and it can also
be applied to other machine learning algorithms.
Besides, it can be also found that the proposed
ACNN not only has a good identification perfor-
mance for multiple load conditions but also shows
a strong ability to unknown information representa-
tion for samples under variational working condi-
tions, including speed, load, and oil

The rest of this paper is organized as follows. Section 2
presents theoretical background. In Section 3, the architec-
ture of ACNN is proposed and the training strategy of
model is introduced. In Section 4, compared with other
network architectures, the fault diagnosis results of the
ACNN are discussed on the gearbox dataset and bearing
dataset, and the validity of the model is verified. Section 5
concludes this paper.

2. Theoretical Background

Themodel proposed in this paper is based on one-dimensional
(1D) CNN theory and reference learning. The 1D-CNN is
essentially a multilayer perceptron, which adopts the method
of local receptive fields and shared weights. On the one hand,
thismethod reduces the number of weights andmakes the net-
work easy to optimize; on the other hand, it reduces the risk of
overfitting. The 1D-CNN is generally composed of input layer,
1D convolution layer, activation function, pooling layer, and
full connection layer, as shown in Figure 1.

The calculation formula of 1D convolution is defined
as follows.
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where l is the length of 1D input x, k is the length of con-
volution kernel w, and s is the convolution stride. N ∗ is
the set of positive integers. ⌊·⌋ and ⌈·⌉ represent rounding
down and up, respectively. yi is the i-th element in the
output of convolution layer. x is the 1D original vibration
signal. w and b are the kernel and bias, respectively. The
convolution formula is abbreviated as:

y =w ⊗ x + b: ð2Þ

where ⊗ denotes convolution operation and w and b are
the kernel and bias, respectively. To reduce network
parameters and retain effective signal characteristics, a
max-pooling function is processed after each small convo-
lution layer as follows.

yli =max yl−1i−1ð Þ×s, y
l−1
i−1ð Þ×s+1,⋯,yl−1i×s

� �
, i ∈ 1, len yl−1

� �
/s

l mh i
and i ∈N∗,

ð3Þ

where yli is the i-th data of the l layer, yl−1 is the output of
the l-1 layer, s is the stride of the pooling, len ð·Þ is the
length of the vector, ⌈·⌉ is the up rounding, and the
padding type is set to same. The rectified linear unit
(ReLU) is used to activation function after each convolu-
tion operation. ReLU is defined as:

ReLU =
0, x ≤ 0

x, x > 0

(
: ð4Þ

The high-dimensional spatial feature map obtained
after the input data that is subjected to the convolution

operation will be inputted to the pooling layer for subsam-
pled processing. The most commonly used pooling operation
is the max-pooling operation. The max-pooling operation
will divide the feature map into several nonoverlapping
regions according to the relevant parameters and step size
of the pooling region, and then extract the maximum value
in each region as the representative value of this region, and
discard other values of this region. The maximum values of
different regions are sequentially combined into a new
feature map as the output of the pooling layer.

3. Adaptive Convolutional Neural Network

3.1. Motivation. The ensemble learning refers to a machine
learning method that integrates multiple basic classifiers
with certain criteria or strategies in order to obtain a strong
learner to achieve the target task. For a complex problem,
multiple experts have given different opinions and solutions.
If you can discuss these different opinions and methods, and
get a comprehensive opinion and solution, it is often more
comprehensive and better than any one of them. Ensemble
learning is based on this idea to complete the learning task.
Its concept can be summarized as follows: For a specific
target task, use sample data to train to obtain a few base
learners with certain training criteria and strategies and then
use appropriate fusion criteria or algorithm, which integrates
multiple basic classifiers to obtain a strong classifier with
excellent performance to complete the target task. Figure 2
shows the general structure of ensemble learning. The tradi-
tional bagging is an algorithm that optimizes the output of
weak learners by combining strategies. The bagging algo-
rithm not only improves its accuracy and stability but also
avoids overfitting by reducing the variance of the results.
The voting average method is a common combination strat-
egy. However, the traditional combination strategy cannot
be updated. We use the network weight parameters to
replace the traditional combination strategy, and continu-
ously adjust the output weight of each weak classifier
through the network parameter update iteration. Combining
the idea of bagging algorithm with CNN, an ACNN frame-
work is proposed.

3.2. ACNN Architecture. The ACNN model is mainly com-
posed of the following four parts: input layer, subnetwork
unit, fusion unit, and output layer. The input layer is used

cc

1-D
convolution

layer

c

Pooling layer
Full

connection
layer

Activation
function

Input

Output

Figure 1: The structure of 1D-CNN.
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to receive the time-domain signal and input it to the subnet-
work unit, which architecture is shown in Figure 3. The
subnetwork unit is composed of 1D-CNN fault identifica-
tion subnetworks. The number of subnetworks is consistent
with the number of working conditions (speeds or loads) of
samples in the training dataset. Each subnetwork has the
same structure and corresponds to different working condi-
tions, respectively. ACNN can accurately extract the fault-
sensitive information of rotating machinery under variable
working conditions and accurately identify the fault type.
The fusion unit stores the weight matrix obtained through
supervised training, which is used to assign different weights
to the output results of the subnetwork, then performs
fusion learning and outputs the final recognition results.

The processing process of the input data by the subnet-
work unit is shown in Figure 3. During fault identification,
a fault sample to be identified is input into the ACNN; the
input layer receives the sample and inputs it into the sub-
network unit. Each subnetwork receives the sample and is
activated, and uses the stored fault type information and
sample feature distribution information to learn and iden-
tify the sample.

Among them, the subnetwork corresponding to the
input sample speed condition will output the original fault
identification results with high accuracy, and other subnet-
works will show inconsistent responses. Therefore, the
construction of subnetwork unit realizes the transformation
of fault identification problem under multiple working
conditions into fault identification problem under single
working condition, that is, for each known working condi-
tion fault sample to be identified, there is a subnetwork iden-
tification module with high identification accuracy
corresponding to its working condition. After the subnet-
work unit completes the processing of the input data and
obtains the original recognition results O1, O2, …, ON , it
inputs the original recognition results O1, O2, …, ON to
the fusion output layer for the next step. When the multi
subnetwork unit completes the processing of input data
and obtains the original identification results O1, O2, …,
ON , we input the result to the fusion output layer for
weighted information fusion learning, as shown fusion unit
in Figure 3. The original identification results O1, O2, …,
ON are output by different CNN fault identification subnet-
works. The identification subnetworks consistent with the
working conditions of the input samples will output high-
accuracy fault identification results, while other identification
subnetworks will output low-accuracy fault identification

results. In other words, after the fusion output layer per-
forming weighted fusion learning on the input original
identification results O1, O2, …, ON , high-accuracy fault
identification results occupy a large proportion in the final
identification results, and the results with low accuracy are
suppressed, so that the accuracy of the final identification
results is guaranteed.

The fusion layer uses the weight matrix W obtained
through supervised training to perform fixed weight fusion
learning on the original recognition results O1, O2, …, ON ;
the weight matrix W and output of N-th subnetwork are
defined as follows:

W =

ω11 ω21 ⋯ ωN1

ω12 ω22 ⋯ ωN1

⋯ ⋯ ωnl ⋯

ω1L ω2L ⋯ ωNL

2
666664

3
777775
, ð5Þ

ON = ON
1 ,O

N
2 ,⋯,ON

L

� �
, ð6Þ

where ωnl indicates the probability value of the input fault
sample at fault type l at speed n. ON is the original recogni-
tion result vector. ON

L represents the probability value of the
input fault sample with fault type L in the condition VN . L is
the number of nodes in the subnet, and equal to the number
of fault types. The original identification results O1, O2, …,
ON of the multi subnetworks are used as intermediate input
of the fusion unit. The original identification results O1, O2,
…, ON are given different weights by the weight matrix W,
and then the output results of the same fault type in different
original identification results are accumulated, as shown in
the following formula: (take fault type 1 as an example).

O1 =O1
1ω11 +O2

1ω21+⋯+ON
1 ωN1: ð7Þ

The final identification result O is as follows:

O = O1,O2,⋯,OL½ �, ð8Þ

where OL represents the probability that the input fault sam-
ple belongs to fault type L. The fault types corresponding to
the maximum probability are output through maximum
function, and that is the final fault identification result.
The maximum function Max ðOÞ sets the largest element
in the final identification result O = ½O1,O2,⋯,OL� to 1
and the remaining other elements to 0. Therefore, the pre-
diction result of the ACNN network model for the input
sample is the fault type corresponding to element 1 in the
final fault identification result. The maximum function is
as follows:

Max Oð Þ = Max O1ð Þ, Max O2ð Þ,⋯, Max OLð Þ,½ � ð9Þ

Basic classifier 1

Basic classifier 2

Basic classifiern

Fusion unit Output

Basic classifier 1

Basic classifier 2

Basic classifier n

Fusion unit Output

Figure 2: Schematic diagram of ensemble learning.
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where

Max Olð Þ =
1Ol =Max Oð Þ
0Ol ≠Max Oð Þ

(
: ð10Þ

The weighted fusion output result can be obtained from
(5) to (8), and its expression is as follows:

O =W O1,O2,⋯,ON� �

=

ω11 ω21 ⋯ ωN1

ω12 ω22 ⋯ ωN1

⋯ ⋯ ωnl ⋯

ω1L ω2L ⋯ ωNL

2
6666664

3
7777775

O11 ω21 ⋯ ON1

O12 ω22 ⋯ ON1

⋯ ⋯ Onl ⋯

O1L O2L ⋯ ONL

2
6666664

3
7777775

= O1,O2,⋯,OL½ �T:
ð11Þ

The weight matrix W of the fusion output layer is
obtained through supervised training. According to the error
between the final recognition result of the fusion output
layer and the real label of the input sample, the classical gra-
dient descent algorithm is used to optimize the network
parameters, and the back propagation algorithm is used to
transfer the error layer by layer in the training process.
The initialization of network parameters adopts the random
mode of normal distribution, and the value of the initial
value of parameters ranges from (-1,1). When the model
parameters reach an optimal value after continuous updat-
ing iteration, the model training is completed. Assuming
that the real label of a fault sample set is T and the final fault
identification result is O, the error between the final identifi-
cation result output by the fusion output layer and the real
label of the input sample can be calculated as follows:

ep = 1
2

〠
P

p=1
OP − TP� �2, ð12Þ

where OP and OT , respectively, represent the final fault iden-
tification result output by the model and the real label of the
fault sample set, and p is the number of training samples. In
the process of weight matrix W training, the weight matrix
W is optimized by minimizing the error ep. Given that the
final recognition result is obtained after the process of max-
imum function, the influence of the maximum function
Max ðOÞ on the back propagation process of training error
should be considered first in the training process of weight
matrix W. According to the classical chain derivation algo-
rithm in the back propagation and the definition of the max-
imum function Max ðOÞ, the partial derivative of Max ðOÞ
with respect to its input variable Ol is calculated as follows:

∂Max Olð Þ
∂Ol

= lim
Δ⟶0

Max Ol + Δð Þ −Max Olð Þ
Δ

, ð13Þ

where Ol is the l-th element in the final recognition result
O = ½O1,O2,⋯,OL�. Δ is an infinitesimal quantity. In line
with the definition of the maximum function:

∂Max Olð Þ
∂Ol

= lim
Δ⟶0

Max Ol + Δð Þ −Max Olð Þ
Δ

= lim
Δ⟶0

Ol + Δ −Ol

Δ
= lim

Δ⟶0

Δ

Δ
= 1:

ð14Þ

The partial derivative of the maximum function for any
input is 1, and the maximum function has no effect on the
error back propagation and chain derivation process. Hence,
there is no need to consider the influence of the maximum
function in the training process of the weight matrix W.
According to the output function of the fusion unit and
the classical chain derivation in the back propagation algo-
rithm, the partial derivative of the final recognition result
O to the weight matrix W is as follows:
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Figure 3: Illustration of the proposed MLDTN architecture.
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∂O
∂W

=On
l : ð15Þ

Considering the case of a single training sample, the
training error, that is, the partial derivative of the error func-
tion ep to the weight matrix W, is as follows:

δW =
∂1/2∑P

p=1 OP − TP� �2
∂W

=
∂O
∂W

O − Tð Þ = 〠
L

l=1
On

l Ol − Tlð Þ,

ð16Þ

where On
l is the output value of the original identification

result that belongs to the l-th node of the n-th identification
model. Ol is the output value of the l -th node in the final
identification result, and Tl is the l-th node value of the real
label of the input sample. Based on classical gradient descent
algorithm, the optimization formula for the weight matrix
W is as follows:

ωnl = ωnl + Δωnl ,

Δωnl = −η〠
L

l=1
On
l Ol − Tlð Þ,

ð17Þ

where η is the learning rate in the training process of weight
matrix W.

3.3. ACNN Training. The fault feature mapping information
under variable conditions is extracted and saved into different
conditions identification subnetworks by the model training
process, and the analysis results of the subnetworks are fused
through the weighted information fusion learning algorithm
to obtain the final fault identification results. The flowchart
of ACNN fault identification method is shown in Figure 4.
The training and testing steps are as follows:

(1) Extracting the time-domain signals of fault vibration
at different conditions in the actual industrial scene,
construct the fault sample set under all conditions

(2) Divide the fault sample set into sample sets under
different conditions, and then train the subnetworks
and weight matrix of ACNN model

(3) Put the fault sample under a certain condition in the
same scene into the trained ACNN network model
to obtain the fault type corresponding to this sample

4. Experimental Verification and Analysis

The performance of ACNN is verified on gear dataset and
bearing dataset. The gear dataset [24] came from Chongqing
University, and the bearing dataset came from Case Western
Reserve University (CWRU) [25].

4.1. Case I: Gear Dataset

(1) Test platform and dataset description

The schematic diagram of the structure of the gear test
bench is shown in Figure 5. It consists of five parts: the drive
motor, the two-stage spur gear reducer, the speed sensor, the
magnetic powder brake, and the control cabinet. The speed
of the drive motor and the load of the magnetic powder
brake are controlled by the control cabinet, which enable
the gearbox to run stably under various speeds and loads.
The transmission ratio of the two-stage spur gear reducer
is 3.59, the gear ratio of the first transmission stage is 23/
39, and the gear ratio of the second transmission stage is
25/53. The motor is a DC motor of YVFF-112M-4, with
rated power of 4 kw, rated voltage of 380V, and maximum
speed of 1200 rpm. The magnetic particle brake model is
CZ10, rated voltage is 380V, rated current is 1.2A, and can
provide controllable stable torque load for the experimental
system within 0 to 500N.

The structural parameters of the gearbox are shown in
Table 1. The fault gear is the intermediate transmission gear
with 25 teeth. The gear faults include tooth surface spalling,
root crack, tooth surface pitting, and tooth fracture, which

Weight matrix

Trained ACNN

Fault type

Fault sample
under unknown

condition
Weight unit training

Fault
identification test

�e rotating machinery
fault sample

SubNet V1-V
N

Subnet training

Figure 4: The training and fault identification of ACNN.

Motor Gear box
Magnetic

powder brake

Speed/torque
sensor

Vibration
sensor

Bearing

Faulty gear

Figure 5: Test platform for acquiring vibration signals.

Table 1: Structure parameters of experimental gearbox.

Number of high-
speed gear teeth

Number of low-
speed gear teeth

Transmission
ratio

Center
distance

23 25 1.696 93mm

39 53 2.12 117mm
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are shown in Figure 6. The vibration sensor is set in the ver-
tical direction of three transmission shafts. The training and
test data are obtained from the vibration signal of the middle
drive shaft position sensor.

The gear fault and vibration acquisition settings are
shown in Table 2.

The vibration was measured at a sampling frequency of
20.48 kHz with an input torque of 200Nm, and the acquisi-
tion time is 15 seconds. In the gear fault simulation experi-
ment, 13 speed conditions are set evenly in the speed range
of 500 to 1100 rpm, and the interval between two adjacent
speeds is 50 rpm. In this experiment, each sample contains
2048 data points. The 1000 samples were gotten by 2048
steps for sliding sampling under each speed and fault type.
In order to verify the performance of the proposed network,
the training sets and the test sets use samples with different
speeds; 4 different training sets are set up. The settings of
the training sets and the test sets are shown in Table 3. Each
training set and testing set contain five gearbox states:
health, tooth surface spalling, tooth root crack, tooth surface
pitting, and broken tooth. The rotation speed of the training
set is different, and the rotation speed of the test set is from
500 to 1100 rpm. The number of subnetworks included in
ACNN is consistent with the number of working conditions.
In this experiment, ACNN contains two subnetworks on
training sets A and B. ACNN contains three subnetworks
on training sets C and D.

(2) Classification comparison and analysis

In order to verify the advantage of ACNN, CNN [14],
residual networks (ResNet) [26], wide first-layer kernels
(WDCNN) [15], and multiscale kernel-based ResCNN
(MK-ResCNN) [16] are used as comparison networks.
The comparison models and ACNN are built based on
Python 3.7 and Pytorch 1.7.1. The main configurations of
the computer are as follows: CPU-i9-9900k, RAM-128GB,
GPU-RTX 2080Ti. The five methods (ACNN, DCNN,
ResNet, WDCNN, and MK-ResCNN) are trained and
tested by the datasets in Table 3; the classification results
are shown in Figure 7.

c
c

Tooth surface spalling Tooth surface pitting Root crack Tooth fracture

c
c

Figure 6: Four gears with different fault conditions.

Table 2: Gear fault experiment conditions and experiment parameter setting.

Fault type Fault size (mm) Input speed (rpm)
Sampling frequency

(Hz)
Sampling time

(s)

Healthy None

700, 750, 800, 850,900, 950, 1000, 1050,
1100

20480 15

Tooth surface
spalling

60× 3× 0.5

Root crack 60× 3
Tooth surface pitting 2mm

Broken tooth
30% tooth width

(18mm)

Table 3: Training sets and test sets of models.

Datasets Train sets Test sets
Number of training/

testing samples

A 600, 900 rpm

500 to
1100 rpm

10000/65000

B
800,

1100 rpm
10000/65000

C
500, 700,
900 rpm

15000/65000

D
550, 750
950 rpm

15000/65000
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There is no cross sample between the training set and the
test set. This verification method is also called fixed dataset
verification. It can better verify the recognition ability of
the recognition model to unknown working condition sam-
ples and improve the robustness. The recognition rates of
CNN, ResNet, WDCNN, MK-ResCNN, and ACNN are
91.53%, 94.22%, 93.8%, 94.65%, and 95.12% on dataset A,
respectively. The recognition accuracy of ACNN model is
higher than that of the other four comparison models. The
sample recognition rate of ACNN model is also higher than
that of other models on datasets B, C, and D. The average
recognition rate of ACNN is 3.69%, 2.67%, 2.33%, and
0.86% higher than that of CNN, ResNet, WDCNN, and
MK-ResCNN, respectively. Although the recognition rate
of MK-ResCNN model is close that of ACNN model, the
network parameter number of MK-ResCNN is more than
three times that of ACNN model, and its training time is
longer. The experimental results show that ACNN has high
recognition rate and strong robustness. The recognition
accuracy of datasets C and D samples is higher than that
of datasets A and B, because the training set of datasets C
and D contains more speed samples, which is also reason-
able. The confusion matrix of the identification result on
dataset D is shown in Figure 8.

It can be found that the recognition accuracy of healthy
samples is the highest by the confusion matrix of the recog-
nition results. There are 75 samples of tooth surface spalling
fault incorrectly classified as tooth surface pitting corrosion.
The number of tooth surface pitting fault samples incor-
rectly identified as tooth surface spalling is 60. This shows
that the fault characteristics of tooth surface spalling and
tooth surface pitting are similar. The number of tooth root
crack fault samples incorrectly identified as tooth surface
spalling and tooth fracture is 21 and 45, respectively. The
parameters and calculation time of the comparison model
on dataset A are shown in Table 4. It can be found that
the parameters of ACNN network are less than those of
the comparison model, and the training and testing time
are the least.

4.2. CWRU Bearing Data

(1) Test platform and data description

The experimental data are collected from the accelerom-
eter of the motor-driven mechanical system (Figure 9) at a
sampling frequency of 12 kHz. There are four kinds of bear-
ing faults, that are normal, inner ring fault, ball fault, and
outer ring fault. The fault dimensions of the three fault kinds
are divided into 0.007 inch, 0.014 inch, and 0.021 inch.
Therefore, there are 10 kinds of bearing states that need to
be classified. The failure frequency of bearing fault types
(inner ring fault, outer ring fault, and ball fault) is different,
so we use this data to verify the performance of ACNN.

In this experiment, to verify the recognition performance
of the model for samples with unknown loads, those datasets
are divided into training/testing dataset according to the
load of the samples. The input sample is the original vibra-
tion signal with the length of 2048, where 400 samples are
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94.22 87.62 96.24 95.56 93.41
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Figure 7: Classification performance by different methods on CU
gear datasets.
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Figure 8: Confusion matrix of ACNN model on gear dataset D.

Table 4: Training sets and test sets of models.

Models
Training time

(s)
Testing time

(s)
Model parameter

quantity

CNN 0.501 0.304 211672

ResNet18 1.015 0.156 661508

WDCNN 0.241 0.162 99270

MK-
ResNet

3.395 1.261 835274

ACNN 0.116 0.128 54076

Motor Transducer Dynamometer Encoder 

Figure 9: Test stand for acquiring vibration signals.
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obtained by 200 steps via sliding sampling on one load and
one fault state, so samples with the size of 400× 10 were
obtained under each load. The samples of any two or three
loads are selected as the training datasets, and the remaining
samples are used as the testing datasets. The information of
training datasets and testing datasets is shown in Table 5. It
can be found that there is no intersection between the train-
ing datasets and the test datasets. The performance of the
ACNN model to identify the health state of the samples
under unknown load is further verified.

(2) Classification comparison and analysis

In order to verify the advantage of ACNN, CNN [14],
residual networks (ResNet) [26], wide first-layer kernels
(WDCNN) [15], and multiscale kernel-based ResCNN
(MK-ResCNN) [16] are used as comparison networks.
The five methods (ACNN, DCNN, ResNet, WDCNN,
and MK-ResCNN) are trained and tested by the datasets
in Table 5; the classification results are shown in
Figure 10. The recognition accuracy of ACNN is 95.49%,
which is 6%, 5.79%, 7.01%, and 13.24% higher than
CNN, ResNet, WDCNN, and MK-ResCNN on bearing
dataset A, respectively. The recognition accuracy of ACNN

is 93.12%, which is 4.49%, 0.01%, 7.11%, and 10.84%
higher than CNN, ResNet, WDCNN, and MK-ResCNN
on bearing dataset B, respectively. The average recognition
rates of ACNN, CNN, ResNet, WDCNN, and MK-
ResCNN models on bearing datasets are 94.06%, 88.33%,
8.79%, 87.50%, and 86.06%, respectively. The average
accuracy of ACNN is more than 4.28% higher than that
of other comparison models, which proves that ACNN
has strong recognition performance and adaptability to
samples under variable load conditions. In order to
explore the identification details of samples by ACNN
model, the confusion matrix of the output results of data-
set A is shown, which is shown in Figure 11.

In the confusion matrix, it can be found that all health
status samples are correctly classified, and the number of
0.014 inch inner ring fault samples incorrectly identified as
ball faults is 124. The number of ball fault samples incor-
rectly identified as outer ring fault is 81. This shows that
there are similarities between inner ring fault characteristics
and ball fault characteristics. The parameters and calculation
time of the comparison model on dataset A are shown in
Table 6. It can be found that the parameters of ACNN net-
work are less than those of the comparison model, and the
training and testing time are the least.

Table 5: Training sets and test sets of models.

Datasets Train datasets Test datasets Number of training/testing samples

A 0, 1 hp 2, 3 hp 8000/8000

B 0, 2 hp 1, 3 hp 8000/8000

C 0, 3 hp 1, 2 hp 8000/8000

D 1, 2 hp 0, 3 hp 8000/8000

E 1, 3 hp 0, 2 hp 8000/8000

F 2, 3 hp 0, 1 hp 8000/8000

G 1,2, 3 hp 0 hp 12000/4000

H 0, 2, 3 hp 1 hp 12000/4000

I 0, 1, 3 hp 2 hp 12000/4000

J 0, 1, 2 hp 3 hp 12000/4000

CNN 89.49 88.63 88.95 83.21 85.69 85.98 85.53 88.61 92.86 94.3 88.33
ResNet 89.7 93.11 83.08 87.64 88.04 87.2 91.35 93.15 97.11 87.47 89.79
WDCNN 88.48 85.41 81.23 83.16 84.39 88.19 83.27 92.18 95.55 93.15 87.50
MK-ResCNN 88.48 88.48 88.48 88.48 88.48 88.48 88.48 88.48 88.48 88.48 88.48
ACNN 95.49 93.12 91.20 93.25 90.97 91.69 92.32 94.87 98.52 99.19 94.06
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Figure 10: Classification performance by different methods on CWRU bearing datasets.
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5. Conclusions

This paper proposes an adaptive convolutional neural net-
work by combining ensemble learning and simple convolu-
tional neural network. ACNN model consists of input
layer, subnetwork unit, fusion unit, and output layer. The
input of the model is one-dimensional (1D) vibration signal
sample, and the subnetwork unit consists of several simple
CNNs, and the fusion unit weights the output of the subnet-
work units by the weight matrix. In gear and bearing exper-
iments, the performance and robustness of ACNN model
are verified by comparing with CNN, ResNet, WDCNN,
and MK-ResCNN models.
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Accidents caused by the failure of high-voltage power battery systems are rising with the increase of pure electric commercial
vehicles. The fault tree analysis method based on traditional reliability is no longer suitable for quantitative evaluation of
polymorphic systems. In this paper, the polymorphic fuzzy fault tree of the high-voltage power battery system for pure electric
commercial vehicles is established and analyzed qualitatively and quantitatively based on a combined theory of the
polymorphic theory, fuzzy mathematical theory, group decision theory, and fault tree analysis theory. The results showed that
the multistate reliability-analysis method of the fuzzy fault tree could describe the various fault states of the high-voltage power
battery system. Through quantitative evaluation of the reliability of system, the low-temperature environment and CAN high
and low reverse connection were the weakest links of the system, and the problem of the occurrence probability of each state
of the unknown polymorphic bottom event in the sub-fault tree of the deteriorated-state mode was solved quickly using group
decision-making to deal with fuzzy probability. It provides theoretical reference for system design and detection process, which
has important practical significance for the improvement of high-voltage power battery system.

1. Introduction

The problems of energy and environmental protection are
becoming more and more serious with the increased number
of automobiles. At present, BYD, Dongfeng LiuQi, BAIC,
and other major vehicle enterprises have focused on pure
electric commercial vehicles with energy conservation,
environmental protection, and large cargo capacity. With
promoted pure electric commercial vehicles, the accidents
on the reliability of the high-voltage power battery system
also increase year by year. According to the statistics of the
GGII (Gao Gong Industrial Research Institute), there were
34 fire accidents caused by battery problems in domestic
electric vehicles from January to May 2021, involving up to
38 vehicles. Each accident is a severe challenge to the reli-
ability of the high-voltage power battery system. The system
produces hundreds of amperes of charge and discharge cur-
rents in the working process, which seriously threatens the
safety of vehicles and drivers.

Reliability analysis methods have been widely used in
engineering fields in continuous development. Huang et al.
[1] proposed the fault tree analysis (FTA) and applied it to
the design of the militia missile launch control system to
predict the failure probability of missile launch in the
1960s. Subsequently, Dhillon et al. [2] of Boeing Company
developed a program of the fault tree analysis method, which
reduces the workload of data processing in the reliability
research at the early stage of aircraft design and promotes
fault-tree analysis algorithms. Rahman et al. [3] of MIT
applied the fault tree analysis method in the risk assessment
of nuclear power plants and listed all the causes of nuclear
power plant failures in 1974. Yang et al. [4] proposed a diag-
nosis method that combined the fault tree analysis with an
expert system to develop a fault diagnosis expert system to
meet the fault diagnosis function of the DC charging pile.
Lanza et al. [5] analyzed the reliability of feedback fault
information to establish the machine-tool fault diagnosis
and prediction system. Besides, the reliability guarantee
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system is built in the designing, manufacturing, and assem-
bly process of NC machine tools. The reliability analysis
method is also applied to the field of fault diagnosis, and
the fault diagnosis method proposed by Xin et al. [6–8]
can effectively solved the problem of mechanical reliability.
The fuzzy fault tree analysis method is proposed to solve
fuzzy probability in practical engineering.

The fuzzy fault tree analysis was first proposed by
Tanaka et al. [9]. Fuzzy probability is used to replace accu-
rate probability to solve the uncertain probability in the fault
tree analysis. Singer [10] used L-R-type fuzzy numbers to
represent the occurrence probability of bottom events and
further developed the fuzzy fault tree analysis method.
Yuhua and Datao [11] combined expert heuristics with the
fuzzy set theory to solve the fuzziness of failure probability
of some bottom events in oil and gas transmission pipelines.
Liu et al. [12] proposed a reliability analysis method based
on the Bayesian network and T-S (Takagi-Sugeno) fault tree.
The nodes in the Bayesian network are represented by the
fuzzy probability, and the fault degree of the system is repre-
sented by fuzzy variables. This technology is applied to the
reliability analysis of the injection system of the chemother-
apy robot. Yin et al. [13] proposed a safety evaluation
method for natural gas storage tanks based on the fuzzy
fault-tree analysis method of similarity aggregation.

The theory of the multistate system (MSS) provides a
new way for the reliability analysis of complex systems.
Satyanarayana and Prabhakar [14] studied the reliability of
networked systems to propose the idea of solving the
reliability of a system by simply computing the sum of the
probabilities of acyclic subgraphs in the 1970s. Iscioglu
[15] proposed a new method to evaluate the MRL (mean
residual lifetime) function of a one-unit, three-state system
using the conditional residual function. Borges et al. [16]
proposed the Monte Carlo parallel reliability analysis
method, which has high efficiency in testing the actual power
system model and can evaluate the reliability of a large-scale
power grid. Mahadevan et al. [17] used the Bayesian net-
work to compare with the traditional reliability analysis
methods of series and parallel systems, with its effectiveness
verified. Considering the impact of component degradation
and different maintenance strategies, Mohammadhasani
[18] used the Markov maintenance model to quantify the
effectiveness of maintenance activities. These models are
coupled with the fault tree method, providing a more practi-
cal and accurate fault tree analysis tool. Research on the
smoothness of commercial vehicles has expanded the appli-
cation of reliability in engineering [19, 20].

Among the numerous causes of the functional failure of
the high-voltage power battery system, the occurrence prob-
ability of power battery system failure caused by insulation
failure is assumed to be between 0.02 and 0.03. Namely,
the accurate occurrence probability is a fuzzy number.
Among the reasons for the degradation of the high-voltage
power battery system, the oxidation and reduction of battery
electrolyte is a dynamic process, that is, a multistate event.
Therefore, after considering the limitation of the traditional
fault tree analysis method on the fuzziness and polymor-
phism of the high-voltage power battery system of pure elec-

tric commercial vehicles, the multistate fuzzy fault tree
analysis method is used to analyze its reliability.

The work took a high-voltage power battery system of
pure electric commercial vehicles as an example and applied
theories such as the multistate theory and fuzzy mathematics
to establish a multistate fuzzy fault tree for the high-voltage
power battery system. Minimum reliability was 0.4607, and
maximum reliability was 0.5370 for the high-voltage power
battery system. Furthermore, low-reliability events directly
affecting the reliability of the system were identified.

The following items have been accomplished: (1) A
complete multistate fuzzy fault tree for high-voltage
power battery systems of pure electric commercial vehi-
cles was established to solve the functional-failure mode,
deteriorated-state mode, and subfault tree models to ana-
lyze the reliability of high-voltage power battery systems.
(2) Qualitative and quantitative analyses were performed
on all bottom events of the subfault tree causing the func-
tional failure mode. The weak links causing the system failure
were identified by the fuzzy-probability importance of each
bottom event. (3) For the problem of unknown probability
of multistate bottom events in each state, group decision-
making was used to deal with fuzzy probabilities, thus solving
the subfault trees in the state deterioration mode.

The remainder of the work is organized as follows.
Section 2 introduces the basic theory of the polymorphic
fuzzy fault tree analysis method. The polymorphic fuzzy
fault tree of the high-voltage power battery system of pure
electric commercial vehicles is established and analyzed in
Section 3. Section 4 solves the fuzzy-probability importance
of each bottom event of the subfault tree in the functional
failure mode. Finally, the conclusions are summarized in
Section 5.

2. Basic Theory of the Polymorphic Fuzzy Fault
Tree Analysis Method

2.1. Fault Tree Analysis. The fault tree analysis (FTA) [21]
can analyze all the possible causes of system failure in the
system design process. A “tree” logic block diagram is drawn
to identify the basic events causing system failure. Qualita-
tive analysis is used to solve the probability of system failure
and the importance of the bottom event.

2.1.1. Qualitative FTA

(1) Cut Set and Minimum Cut Set. The set composed of the
bottom events causing the occurrence of the top event of
the fault tree is called the cut set. The set consisting of
the minimum number of bottom events causing the occur-
rence of the top event of the fault tree is called the mini-
mum cut set.

(2) Method of Solving the Minimum Cut Set. There are two
methods of solving for the minimum cut set, the downward
method (Fussell-Vesely) and the upward method (Seman-
deres) [22]. The downward method starts from the top event
layer by layer down and lists “OR” gate events and top
events into different lines. Besides, “AND” gate events and
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top events are listed in the same line. The non-minimum cut
set is eliminated to obtain the minimum cut set until the
basic events can no longer be decomposed. The upward
method, i.e., proceeding from the bottom to the top, replaces
the corresponding logic gate symbols with set symbols and
expresses the fault tree structure-function in terms of event
symbols and set operators. Finally, the expressions for the
top event are listed to find the minimum cut set.

2.1.2. Quantitative FTA

(1) Calculation of the Occurrence Probability of Top Events.
In the quantitative analysis of the fault tree, the probability
of the top event can be calculated according to the occur-
rence probability of the bottom event and structural
function. The probability of the occurrence of base event
Xiði = 1, 2,⋯,nÞ is assumed to be PðXiÞði = 1, 2,⋯,nÞ. When
the logic gate is “OR” and “AND,” and the occurrence of the
base event is independent of each other, the calculation
method of the probability of the top event is as follows:

(1) When the fault-tree logic gates are logical “OR”
gates, the probability of at least one bottom event
occurring is

P∪ = 1 − 1 − P X1ð Þ½ � × 1 − P X2ð Þ½ � ×⋯ × 1 − P Xnð Þ½ �

= 1 −
Yn
i=1

1 − P Xið Þ½ �

ð1Þ

(2) When the fault-tree logic gates are logical “AND”
gates, the probability of n bottom events occurring
simultaneously is

P∩ = P X1ð Þ × P X2ð Þ ×⋯ × P Xnð Þ =
Yn
i=1

P Xið Þ ð2Þ

(2) Calculation of probability’s Importance of the Bottom
Event. Importance is the magnitude of the contribution of
the minimum cut set or bottom event to the occurrence of
the top event, and the importance of the bottom event to
the top event is positively related to its probability impor-
tance. If the probability’s importance of a bottom event is
close to 1, then the system must fail once that bottom event
occurs.

Probability’s importance is defined as

Ii tð Þ =
∂g Q tð Þð Þ
∂Qi tð Þ

, ð3Þ

where Q is the unreliability of the system.

(3) Calculation of Subsystem Reliability. According to the
traditional reliability theory, the general expression of the
function between reliability and failure probability is

R tð Þ = e−
Ð t

0
λ tð Þdt , ð4Þ

where λ ðtÞ is the failure probability.
When λ ðtÞ is a constant, i.e., λðtÞ = λ. Then, the reliabil-

ity of the system is

R tð Þ = e−λ: ð5Þ

According to the relationship between reliability and
unreliability, the relationship between unreliability and fail-
ure probability is

F tð Þ = 1 − R tð Þ = 1 − e−λ: ð6Þ

2.2. Fuzzy Fault Tree Analysis

2.2.1. L-R Fuzzy Number. The occurrence probability of the
bottom event of the high-voltage power battery system of
pure electric commercial vehicles is fuzzy. A fuzzy number
is used to analyze the fault tree.

Generally, fuzzy numbers are described by reference
functions. Let L and R be the reference functions of fuzzy
numbers, if

μ~A xð Þ =
L

m − x
α

� �
, x ≤m, α > 0,

R
x −m
β

� �
, x ≥m, β > 0:

8>><
>>: ð7Þ

Then, the fuzzy number ~A in Equation (7) is defined
as L-R fuzzy number. It is recorded as ~A = ðm, α, βÞLR,
where m is the mean value of fuzzy number ~A, α and β
are the upper and lower confidence limits of fuzzy number
~A, and μ~AðxÞ is the membership function of ~A. When α

and β are equal to 0, ~A is no longer a fuzzy number but
a regular clear number. Moreover, larger α and β indicate
more ambiguous ~A [22]. α andβ are generally taken as 10
to 20% of fuzzy mean m [23]. The commonly used mem-
bership functions of L-R fuzzy numbers are triangular and
normal.

(1) Triangular. The triangular membership function can be
expressed as

μ~A xð Þ =

0, x <m − α,

1 − m − x
α

, m − α ≤ x ≤m,

1 − x −m
β

, m < x ≤m + β,

0, x >m + β:

8>>>>>>><
>>>>>>>:

ð8Þ

Figure 1 shows the triangular membership function.
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Figure 1: Triangular membership function

The λ-cut set interval of triangular fuzzy number ~A =
½ðm − αÞ,m, ðm + βÞ� is

~Aλ = m − αð Þ + α∙λ, m + βð Þ − β∙λ½ �: ð9Þ

If there are two triangular fuzzy numbers ~A and ~B, there
are four algorithms for expansion according to the classical
extension principle [24] for any λ in interval [0, 1].

(1) Fuzzy-number addition:

~Aλ + ~Bλ = LλA, Rλ
A

h i
+ LλB, Rλ

B

h i
= LλA + LλB, Rλ

A + Rλ
B

h i
:

ð10Þ

(2) Fuzzy-number subtraction:

~Aλ − ~Bλ = LλA, Rλ
A

h i
− LλB, Rλ

B

h i
= LλA − LλB, Rλ

A − Rλ
B

h i
:

ð11Þ

(3) Fuzzy-number multiplication:

~Aλ × ~Bλ = LλA, Rλ
A

h i
× LλB, Rλ

B

h i
= LλA × LλB, Rλ

A × Rλ
B

h i
:

ð12Þ

(4) Fuzzy-number division:

~Aλ/~Bλ = LλA, Rλ
A

h i
/ LλB, Rλ

B

h i
= LλA

LλB
, R

λ
A

Rλ
B

" #
: ð13Þ

(2) Normal. The normal membership function can be
expressed as

μ~B xð Þ =

m − x
α

� �2
, x ∈ m − α

ffiffiffiffiffiffiffiffiffiffi
−lnλ

p
,m

h �
,

R xð Þ = e− x−mð Þ/βð Þ2 , x ∈ m,m + β
ffiffiffiffiffiffiffiffiffiffi
−lnλ

p� i
,

1, x =m,
0, others:

8>>>>>>><
>>>>>>>:

ð14Þ

The interval of the λ-cut set of normal type membership
function ~B can be obtained as

~Bλ = m − α
ffiffiffiffiffiffiffiffiffiffi
−lnλ

p
,m + β

ffiffiffiffiffiffiffiffiffiffi
−lnλ

ph i
: ð15Þ

Figure 2 shows the normal membership function.

2.2.2. Fuzzy Operator of the Fault Tree Analysis. The logic
gate operator is used to calculate the probability of the basic
bottom event, thus obtaining the probability of the top event
of the traditional fault tree [25]. The system’s occurrence
probability of the top event, namely, the failure probability
of the top event, can be accurately obtained by the bottom-
event occurrence probability and structure function. Besides,
system reliability can be obtained. Fuzzy number ~Fi is intro-
duced to represent the occurrence probability of the basic
bottom event in the process of analyzing the fuzzy fault tree,
and the fuzzy logic gate operator is used to replace the tradi-
tional one, which can obtain the fuzzy number of the occur-
rence of the top event [26].

Probability ~Fi of the bottom event represented by a tri-
angular fuzzy number that λ-cut set is

~F1λ = m1 − α1ð Þ + λα1, m1 + β1ð Þ − λβ1½ �,
~F2λ = m2 − α2ð Þ + λα2, m2 + β2ð Þ − λβ2½ �,

⋮,
~Fiλ = mi − αið Þ + λαi, mi + βið Þ − λβi½ �,

⋮,
~Fnλ = mn − αnð Þ + λαn, mn + βnð Þ − λβn½ �:

ð16Þ

According to the characteristics of fault-tree logic
“AND” and “OR” gates, the fuzzy operators of a triangular
fuzzy number “AND” and “OR” gates are as follows.

(1) Logic “AND” gate:

~FS∩ =
Yn
i=1

~Fiλ = ~Fiλ∙~F2λ∙~F3λ∙⋯∙~F n−1ð Þλ∙~Fnλ

=
Yn
i=1

mi − αið Þ + λαi½ �,
Yn
i=1

mi + βið Þ + λβi½ �
" #

:

ð17Þ

(2) Logic “OR” gate:

~FS∪ = 1 −
Yn
i=1

1 − ~Fiλ

� �

= 1 −
Yn
i=1

1 − mi − αið Þ − λαi½ �, 1 −
Yn
i=1

"

� 1 − mi + βið Þ + λβi½ �
#
:

ð18Þ
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Probability ~Fi of the bottom event represented by a
normal fuzzy number that λ-cut sets is

~F1λ = m1 − α1
ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p
,m1 + β1

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

ph i
,

~F2λ = m2 − α2
ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p
,m2 + β2

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

ph i
,

⋮,
~Fiλ = mi − αi

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p
,mi + βi

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

ph i
,

⋮,
~Fnλ = mn − αn

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p
,mn + βn

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

ph i
:

ð19Þ

Similarly, the fuzzy operators of “AND” and “OR” gates
of normal fuzzy numbers are as follows.

(1) Logic “AND” gate:

~FS∩ =
Yn
i=1

~Fiλ = ~Fiλ∙~F2λ∙~F3λ∙⋯∙~F n−1ð Þλ∙~Fnλ

=
Yn
i=1

mi − αi
ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p� �
,
Yn
i=1

mi + βi

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p� �" #
:

ð20Þ

(2) Logic “OR” gate:

~FS∪ = 1 −
Yn
i=1

1 − ~Fiλ

� �

= 1 −
Yn
i=1

1 − mi − αi
ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p� �h i
, 1 −

Yn
i=1

"

� 1 − mi + βi

ffiffiffiffiffiffiffiffiffiffiffi
−ln λ

p� �h i#
:

ð21Þ

2.3. Polymorphic Fuzzy Fault-Tree Analysis

2.3.1. Multistate Fault Gate. When the input event of the
system top event contains one or more multistate events,
this logic gate is called a polymorphic fault gate. Supposing
there are n polymorphic input events Xiði = 1, 2,⋯, nÞ in
the fault gate, i.e., the state of the input event meets SXi

∈

f0,0:5,1g, SXi
∈ fnormal, degradation, failureg. Then the

state of top event U satisfies the following equation:

SU =

0, 〠
n

i=1
SXi

= 0,

0:5, SXi
≤ 0:5 and〠

n

i=1
SXi

≠ 0,

1, others:

8>>>>>>><
>>>>>>>:

ð22Þ

Equation (22) shows that when the states of input poly-
morphic events are all 0, that is, all input polymorphic events
are normal, and the state of output events is also normally 0.
When the state of the input polymorphic event is 0.5 or a
combination of 0 and 0.5, namely, the input polymorphic
event is in a degraded state or a combination of the degraded
state and normal state, and the state of the output event is
also degraded. When at least one of the input polymorphic
events is in state 1, that is, the state of at least one input event
is in a failure state, and the output of the whole system is in a
failure state.

2.3.2. Analysis of the Deteriorated-State Mode. Aiming at
the problem to determine the exact probability of poly-
morphic bottom events in different states in the
deteriorated-state mode, the work used group decision-
making, expert experience, and fuzzy numbers. The prob-
ability of polymorphic bottom events in each state was
obtained by averaging, defuzzifying, and normalizing the
obtained fuzzy probability.

(1) Fuzzy Probability Obtained according to the Language
Variables. Seven linguistic variables are introduced to com-
bine fuzzy probability with linguistic variables [27]. Table 1
shows the relationship between language variables and the
fuzzy probability.

The last column of Table 1 represents the triangular
fuzzy number corresponding to the language variable, and
this method can convert the expert experience into a fuzzy
probability expressed in triangular fuzzy numbers (see
Table 1). Namely, it is a constant under the membership
function, and its value corresponds to the fuzzy probability
and solved the problem of probability unknown.

If q experts are participating in the decision-making that
the language variable of the bottom event Xi given by the
k-th decision-maker in the j ðj = 1, 2, and 3Þ, state is trans-

formed into the fuzzy probability as ~P
k
ij = ðαkij,mk

ij, βk
ijÞ k =

1, 2,⋯, q.

(2) Fuzzy-Probability Averaging. The obtained fuzzy proba-
bility is mathematically averaged. Then, the fuzzy probabil-
ity of bottom event Xi in state j is

~P
’
ij =

~P
1
ij + ~P

2
ij+⋯+~Pq

ij

q
: ð23Þ

xm𝛼 𝛽

𝜇
B

 (x
)

1

0

Figure 2: Normal membership function.
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(3) Defuzzification. After the fuzzy probability is processed
by the mean area method, the accurate probability of each
bottom event Xi in state j is obtained as follows:

Pij′ =
~P
’
ij 1ð Þ + 2~P’

ij 2ð Þ + ~P
’
ij 3ð Þ

4 : ð24Þ

(4) Normalization. The accurate probability of the bottom
event in each state is normalized to ensure that the sum of
the probabilities of the bottom event in each state is 1. After
processing, the accurate probability of each bottom event Xi
in state j is obtained as

Pij =
P’
ij

∑3
j=1P

’
ij

: ð25Þ

3. Fault-Tree Analysis of the High-Voltage
Power Battery System

3.1. Working Principle of the High-Voltage Power Battery
System. The high-voltage power battery pack provides
electricity for pure electric commercial vehicles. Its high-
voltage DC output flows the high-voltage power equipment
such as the steering power motor, brake air pump motor,
and DC/DC motor inverter. The high-voltage current flow-
ing through the motor inverter is converted into a three-
phase alternating current and flows into the high-voltage
drive motor and electric air conditioner motor through the
high-voltage wiring harness. Figure 3 shows the working
principle of the high-voltage power battery system.

3.2. Establishment of the Fault Tree for the High-Voltage
Power Battery System. The fault types of the high-voltage
power battery system of pure electric commercial vehicles
mainly include the battery-module fault and battery-
management-system fault. Battery module faults are mainly
single-cell and battery-pack ones. Single-cell faults are man-
ifested by electrolyte decomposition, active substance shed-
ding, and the internal short circuit of the battery. Battery
pack faults are manifested by single-cell inconsistency, and
charging faults and battery-management-system faults are
manifested by no communication, electromagnetic interfer-
ence, and low drive voltage.

For the high-voltage power battery system, the power
battery system fault was selected as the top event, and two
intermediate events were established—the functional failure
mode and state deterioration mode. The functional-failure
mode was divided into battery module failure and battery
management system failure to analyze the bottom event,
and these two events were regarded as intermediate ones of
a lower level. Then, the battery module fault and battery
management system fault were analyzed until they were
decomposed into events that could not be decomposed, i.e.,
the bottom event of the subfault tree of the functional failure
mode. Meanwhile, the subfault tree of the deteriorated-state
mode was decomposed and analyzed. Besides, the events of
the established polymorphic fuzzy fault tree of the high-
voltage power battery system were coded. The fault of the
power battery system was recorded as T , and Table 2 shows
the event definition and code.

According to Table 2, the polymorphic fault tree of the
high-voltage power battery system of pure electric commer-
cial vehicles is simplified as shown in Figure 4.

3.3. Qualitative Analysis of the Fault Tree. When the mini-
mum cut set of the polymorphic fault tree is calculated, only
the qualitative analysis of the subfault tree of functional fail-
ure mode is carried out due to polymorphic events and poly-
morphic fault gates in the subfault tree of the deteriorated-
state mode. The fault tree established in the work uses the
downward method according to the principle of multiplica-
tion of the “AND” gate and the addition of the “OR” gate.

U1 = E5 + V1 +V2,

V1 =W1 +W2,

V2 =W3 +W4 +W5,

W1 = S1 + S2 + S3,

W2 = S4 + S5,

W3 = E21 + E22 + E23,

W4 = E24 + E25 + E26 + E27 + E28,

W5 = S6 + S7,

S1 = E6 + E7 + E8,

S2 = E9 + E10,

S3 = E11 + E12,

S4 = E13 + E14,

S5 = E15 + K1 + K2,

S6 = E29 + E30,

S7 = E31 + E32,

K1 = E16 + E17,

K2 = E18 + E19 + E20:

ð26Þ

Table 1: Correspondence between language variables and the fuzzy
probability.

Serial
number

Fuzzy
language

Semantic
symbols

Triangular fuzzy
number

1 Very high VH (0.9, 1.0, 1.0)

2 High H (0.7, 0.9, 1.0)

3
Generally

high
GH (0.5, 0.7, 0.9)

4 Medium M (0.3, 0.5, 0.7)

5
Generally

low
GL (0.1, 0.3, 0.5)

6 Low L (0, 0.1, 0.3)

7 Very low VL (0, 0, 0.1)
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Then,

U1 = E5 + E6 + E7 + E8+⋯+E30 + E31 + E32: ð27Þ

Therefore, the minimum cut set of the functional failure
mode’s subfault tree of the power battery system is fE5g,
fE6g, fE7g, fE8g,⋯, fE31g, fE32g, where the minimum cut
set contains 28 basic base events.

3.4. Quantitative Analysis of Fault Tree. Two intermediate
events of the functional failure mode and deteriorated-state
mode are selected for analysis to more accurately reflect
the failure mode of the high-voltage power battery system.
The subfault tree of functional failure mode is solved by
the fuzzy fault tree analysis, and the subfault tree of
deteriorated-state mode is solved by group decision-
making and fuzzy probability.

High voltage
drive motor Brake air pump

motor High voltage
harness

Power steering
motor

Voltage power
battery pack

Air conditioning
motor

DC/DC

Motor inverter

Figure 3: Working principle of the high-voltage power battery system.

Table 2: Event definitions and codes.

Event name Event code Event name Event code

Functional-failure mode U1 Deteriorated-state mode U2

Battery module failure V1 Management system failure V2

Battery unit failure W1 Battery pack failure W2

No CAN communication W3 Inaccurate signal W4

No execution W5 Overtemperature S1

Short circuit S2 Low voltage S3

Monomer inconsistency S4 Charging fault S5

Fan failure S6 Main relay fault S7

Cannot be charged K1 High charge voltage K2

Electrolyte redox E1 Positive material phase change E2

Negative electrode material aging E3 Aging of diaphragms and increased porosity E4

Insulation failure E5 Fan not ON E6

Loose connection E7 Increased internal resistance of the battery E8

Plate damage E9 Short circuit E10

Low SOC E11 Capacity attenuation E12

Inconsistent voltage E13 Inconsistent temperature E14

Charger fault E15 Shedding of active substances E16

Battery deformation E17 Low-temperature environment E18

Late life E19 High SOC E20

No external internal resistance E21 CAN high and low reverse connection E22

Software bug E23 Impact fault E24

Bias fault E25 Electromagnetic interference E26

Sampling circuit fault E27 Connection line failure E28

Line damage E29 Damaged cooling fan E30

No working power supply E31 Low driving voltage E32
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3.4.1. Quantitative Analysis of the Subfault Tree of the
Functional Failure Mode. According to the data and relevant
experience and the probability of subfault tree bottom event
of the functional failure mode (see Table 3).

In Table 3, m represents the mean of the fuzzy number,
which is a dimensionless number, indicating the size of the
fuzzy probability of the occurrence of the bottom event.
The larger the mean of m, the greater the fuzzy probability
of the occurrence of the bottom event, and the smaller of
m, the smaller the fuzzy probability of the bottom event
occurring. According to the reference of [23], the upper
and lower limits of α andβ take 10 to 20% of the fuzzy mean
m, considered the harshness of the actual working environ-
ment of the high-voltage power battery system and the
ambiguity of the probability of causing system failure, and
according to Figure 1, the larger the value of α and β, the
larger the fuzzy probability interval, and the reverse is the
opposite, when α and β take 10% of the mean of m, and
the probability interval is contained in the 20% probability
interval of α and β taking m, so in order to make the prob-
ability interval better represent the fuzzy probability of the
event occur and then selected α and β as 20% of m in com-
bination with the data.

The interval of each bottom event can be obtained using
Table 3, Equation (16), and the triangular membership
function.

Since top event U1 = E5 + E6 + E7 + E8 +⋯+E30 + E31 +
E32, Equation (18) is used to select the triangular member-

ship function. The probability section of top event U1 varies
with λ (see Figure 5 for the scattering curve).

The interval of each bottom event can be obtained
from Table 3, Equation (19), and the normal membership
function.

Similarly, when the normal membership function is
selected, the probability of top event U1 varies with λ (see
Figure 6 for the scattering curve).

By comparing Figures 5 and 6, it can be seen that
whether triangular membership function or normal mem-
bership function is selected, the probability interval of the
top event becomes smaller and smaller with increased λ.
When λ is equal to 1, the interval is an accurate number,
consistent with the theory. However, for the normal mem-
bership function, when λ tends to 0, the fuzzy operator of
the top event tends to infinity. The closer it is to 0, the
greater the fuzzy probability interval of the top event. When
λ ϵ ð0, 1�, the whole probability interval about the change of
λ is nonlinear, and the absolute value of the slope of the
upper and lower bounds of the top-event probability curve
decreases as λ increases. That is, the closer it is to 0, the
greater the changing trend of the curve; the closer it is to
1, the more gentle the change of the curve.

When λ takes the special value of 0.01, Equation (21) is
used to obtain that the probability interval of top-event
occurrence is [0.4230, 0.7644] and the corresponding reli-
ability interval of the top event is [0.4656, 0.6551]. Com-
pared with the triangular fuzzy operator, the interval is too

T

Multi state fault gate

Multi state fault gate

U2U1

E5

E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

E16 E17 E18 E20

E21 E22 E23 E24 E25 E26 E27 E28

E29 E30 E31 E32

E19

K2K1

E1 E2 E3 E4V1

W1 W2 W3 W4 W5

S6S5S4S3S2S1 S7

V2

Figure 4: Multistate fault tree of the high-voltage power battery system.
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fuzzy and has no practical significance. Therefore, consider-
ing the fuzziness of the occurrence probability of the bottom
event and the rationality of operation, the triangular fuzzy
operator is selected to calculate the fuzzy probability interval
of the top event.

Figure 5 shows that the upper and lower limits of the
probability of top-event occurrence are approximately lin-
ear. Hence, the least square linear fitting and the intercept
interval for the occurrence of the top event of the functional
failure mode are used to obtain

~FU1
= 0:0838λ + 0:5415,−0:0694λ + 0:6947½ �: ð28Þ

Therefore, please see as follows:

(1) When λ = 1, the probability of the bottom event of
the functional failure mode is a certain value, and

that of the functional failure U1 of the high-voltage
power battery system of the top event is

~FU1,λ=1 = 0:6253 ð29Þ

When λ = 1, the reliability of functional failure mode U1
of the high-voltage power battery system of the top event can
be obtained from Equation (5).

RU1,λ=1 = 0:5351: ð30Þ

(2) When λ = 0, the probability of the bottom event of
the functional-failure mode is a fuzzy number and
~FU1

is an interval range, i.e., the probability interval

Table 3: Probability of the bottom event of the functional failure
mode.

Event code m α β

E5 0.026 0.0052 0.0052

E6 0.046 0.0092 0.0092

E7 0.016 0.0032 0.0032

E8 0.016 0.0032 0.0032

E9 0.026 0.0052 0.0052

E10 0.018 0.0036 0.0036

E11 0.1 0.02 0.02

E12 0.05 0.01 0.01

E13 0.016 0.0032 0.0032

E14 0.016 0.0032 0.0032

E15 0.01 0.002 0.002

E16 0.01 0.002 0.002

E17 0.06 0.012 0.012

E18 0.12 0.024 0.024

E19 0.016 0.0032 0.0032

E20 0.05 0.01 0.01

E21 0.028 0.0056 0.0056

E22 0.14 0.028 0.028

E23 0.02 0.004 0.004

E24 0.014 0.0028 0.0028

E25 0.025 0.005 0.005

E26 0.016 0.0032 0.0032

E27 0.026 0.0052 0.0052

E28 0.02 0.004 0.004

E29 0.018 0.0036 0.0036

E30 0.016 0.0032 0.0032

E31 0.014 0.0028 0.0028

E32 0.012 0.0024 0.0024

0 0.2 0.4
𝜆

0.6 0.8 1

0.55

0.6

0.65

0.7
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Interval upper limit point

Figure 5: Probability interval distribution of top events changing
with λ under the triangular membership function.

0 0.2 0.4 0.6 0.8 1

Pr
ob

ab
ili

ty

Interval lower limit point
Interval upper limit point

Inf

–Inf

𝜆

Figure 6: Probability interval distribution of top events changing
with λ under the normal membership function.
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of function-failure U1 of the high-voltage power
battery system of the top event is

~FU1,λ=0 = 0:5415, 0:6947½ � ð31Þ

That is, the minimum probability of top event U1 is
0.5415, and the maximum is 0.6947.

When λ = 0, the reliability interval of functional failure
mode U1 of the high-voltage power battery system of the
top event can be obtained from Equation (5).

RU1,λ=0 = 0:4992, 0:5819½ �: ð32Þ

3.4.2. Quantitative Analysis of the Subfault Tree in the
Deteriorated State. According to the definition of a polymor-
phic fault gate, when U1 does not occur and U2 is in a
degraded state, the power battery system is in a degraded
state and is not recognized as failure. At this time, the high-
voltage power battery system of pure electric commercial
vehicles does not need immediate maintenance, consistent
with the actual operation condition. When U1 occurs or
U2 is in a failure state, the high-voltage power battery sys-
tem is in a failure state and needs to be overhauled.

The decision information of the decision-maker is col-
lected by group decision-making because the probability of
each bottom event in each state of the subfault tree of the
deteriorated-state mode cannot be accurately obtained.
According to the conclusion of the relationship between
group size and decision-making, when the number of group
decision-makers is 2-5, consensus can be obtained; more-
over, 5-11 people are the most effective to draw more correct
conclusions.

Consequently, the work collected the probability of
four polymorphic bottom events in each state from five
experts and combined the language variables of expert
opinions with the corresponding triangular fuzzy numbers
(see Table 4).

(1) Averaging of Fuzzy Probability. According to the corre-
sponding relationship between language variables and fuzzy
probability in Table 1 and Equation (23), the mean value of
the fuzzy probability of each polymorphic bottom event in
each state is determined as follows:

~P1−0′ = 0:82,0:96,1:0ð Þ, ~P1−0:5′ = 0:1,0:22,0:38ð Þ, ~P1−1′ = 0, 0, 0:1ð Þ,
~P2−0′ = 0:82,0:96,1:0ð Þ, ~P2−0:5′ = 0:1,0:26,0:46ð Þ, ~P2−1′ = 0, 0, 0:1ð Þ,
~P3−0′ = 0:82,0:96,1:0ð Þ, ~P3−0:5′ = 0:08,0:2,0:38ð Þ, ~P3−1′ = 0, 0, 0:1ð Þ,
~P4−0′ = 0:86,0:98,1:0ð Þ, ~P4−0:5′ = 0:1,0:24,0:42ð Þ, ~P4−1′ = 0, 0, 0:1ð Þ:

ð33Þ

(2) Defuzzification of the Fuzzy Probability. The fuzzy prob-
ability is defuzzified according to Equation (24) to convert

the obtained fuzzy probability into accurate probability,
that is,

P1−0′ = 0:935, P1−0:5′ = 0:230, P1−1′ = 0:025,

P2−0′ = 0:935, P2−0:5′ = 0:270, P2−1′ = 0:025,

P3−0′ = 0:935, P3−0:5′ = 0:215, P3−1′ = 0:025,

P4−0′ = 0:955, P4−0:5′ = 0:250, P4−1′ = 0:025:

ð34Þ

(3) Normalization of exact probability. According to Equa-
tion (25), the accurate probability of polymorphic bottom
events occurring in each state is normalized to obtain

P1−0 = 0:7857, P1−0:5 = 0:1933, P1−1 = 0:0210,

P2−0 = 0:7602, P2−0:5 = 0:2195, P2−1 = 0:0203,

P3−0 = 0:7957, P3−0:5 = 0:1830, P3−1 = 0:0213,

P4−0 = 0:7764, P4−0:5 = 0:2033, P4−1 = 0:0203:

ð35Þ

According to the structural characteristics of a multistate
fault gate, when at least one bottom event state is 1, the sys-
tem’s top-event output is in the failure state. According to
the calculated occurrence probability of each state of the
polymorphic bottom event, the probability of each polymor-
phic bottom event in state 1 is substituted into Equation (1).
The occurrence probability of the sub-fault tree of the top
event in the deteriorated-state mode is

PU2 = 1 − 1 − P1−1ð Þ × 1 − P2−1ð Þ × 1 − P3−1ð Þ × 1 − P4−1ð Þ
= 0:0804:

ð36Þ

According to Equation (5), the subfault tree reliability in
the deteriorated mode can be obtained.

RU2
= 0:9228: ð37Þ

(1) RU1,λ=1 = 0:5351 when λ = 1. The reliability of the
high-voltage power battery system of pure electric
commercial vehicles is

RT = 0:4938 ð38Þ

(2) RU1,λ=0 = ½0:4992, 0:5819� when λ = 0. The reliability
of the high-voltage power battery system of pure
electric commercial vehicles is

RT = 0:4607, 0:5370½ � ð39Þ
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4. Fuzzy Probability Importance of the
Bottom Event

Similar to the probability’s importance of the bottom event
of the traditional fault tree, the fuzzy probability’s impor-
tance of the bottom event also refers to the degree to which
the probability of the top event is affected when the proba-
bility of the bottom event changes. According to the defini-
tion of Equation (3), the fuzzy probability’s importance is

Ih jð Þ = ∂h pð Þ
∂pj

, j = 1, 2, 3,⋯, n, ð40Þ

where hðpÞ = hðp1, p2, p3,⋯,pnÞ is the unreliability function
of the top event; pj the fuzzy probability of the occurrence
of the jth bottom event. Triangular fuzzy numbers were
selected to analyze the probability of bottom events of the
subfault tree of the functional failure mode in the work.
Besides, the logic gates of the subtree of the established func-
tional failure mode are “OR” gates, so we can obtain

h pð Þ = 1 −
Yn
i=1

1 − ~Fiλ

� �
1 −

Yn
i=1

1 − mi − αið Þ − λαi½ �, 1 −
Yn
i=1

"

� 1 − mi + βið Þ + λβi½ �
#
,

ð41Þ

pj = mi − αið Þ + λαi, mi + βið Þ − λβi½ �: ð42Þ
Equations (40), (41), and (42) are used to obtain

Ih jð Þ = ∂h pð Þ
∂pj

=
Yn
i=1,i≠j

1 − mi − αið Þ − λαi½ �, 1 − mi + βið Þ + λβi½ �f g:

ð43Þ

It can be seen from the previous chapters that in the
high-voltage power battery system of pure electric commer-
cial vehicles, although the probability of each fault of the
bottom event is low, the reliability of the whole system is
only 0.4938. Therefore, the probability’s importance of each
bottom event is vital for the prevention and improvement of
top events. The bottom event of the subfault tree of the func-

tional failure mode is taken as the research object. According
to Equation (43), λ = 0 is introduced to obtain the interval of
probability’s importance of each bottom event of the sub-
fault tree in the functional failure mode (see Table 5).
Figure 7 shows the broken line of the interval of probability’s
importance.

According to Table 5, the fuzzy importance ranking of
the bottom event can be obtained as follows.

Ih 22ð Þ > Ih 18ð Þ > Ih 11ð Þ > Ih 17ð Þ >⋯ > Ih 16ð Þ = Ih 15ð Þ:
ð44Þ

In terms of the event definition and code in Table 2, the
maximum importance interval of CAN high and low reverse
connection probability is [0.3683, 0.5178], and the mini-
mum is [0.3102, 0.4635]. The relationship between the
importance of each probability is as follows: CANhigh and
low reverse connection > low‐temperature environment >
low SOC > battery deformation >⋯>shedding of active
substances = charger fault.

In the light of the previous section, the higher the
probability’s importance of the bottom event, the greater
the impact on the high-voltage power battery system of
pure electric commercial vehicles. Figure 7 shows that

Table 4: Expert opinion and fuzzy probability of the bottom event in each state.

Bottom event E1 E2 E3 E4
State 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Expert 1 VH GL VL H L VL VH GL VL H VL VL

Expert 2 VH GL VL VH GL VL VH L VL VH L VL

Expert 3 H VL VL VH GL VL H VL VL VH GL VL

Expert 4 H VL VL H L VL H L VL VH M VL

Expert 5 VH M VL VH M VL VH M VL VH GL VL

Table 5: Interval of probability’s importance of the bottom event.

Code Probability interval Code Probability interval

E5 [0.3163, 0.4695] E6 [0.3243, 0.4773]

E7 [0.3124, 0.4657] E8 [0.3124, 0.4657]

E9 [0.3163, 0.4695] E10 [0.3132, 0.4665]

E11 [0.3482, 0.4998] E12 [0.3260, 0.4789]

E13 [0.3124, 0.4657] E14 [0.3124, 0.4657]

E15 [0.3102, 0.4635] E16 [0.3102, 0.4635]

E17 [0.3302, 0.4830] E18 [0.3580, 0.5086]

E19 [0.3124, 0.4657] E20 [0.3260, 0.4789]

E21 [0.3171, 0.4703] E22 [0.3683, 0.5178]

E23 [0.3140, 0.4673] E24 [0.3117, 0.4650]

E25 [0.3159, 0.4692] E26 [0.3124, 0.4657]

E27 [0.3163, 0.4695] E28 [0.3140, 0.4673]

E29 [0.3132, 0.4665] E30 [0.3124, 0.4657]

E31 [0.3116, 0.4650] E32 [0.3109, 0.4642]
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the probability’s importance of the bottom event coded as
E11, E17, E18, and E22 is higher than that of other bottom
events. The corresponding bottom events are low SOC,
battery deformation, low-temperature environment, CAN
high, and low reverse connection. Compared with the four
bottom events, the fluctuation of the probability’s impor-
tance interval of the other bottom events is relatively
small, and the changing trend of the broken line chart
of the corresponding probability’s importance interval is
relatively flat. Therefore, these four bottom events with
probability’s high importance are the weak links of the
high-voltage power battery system. We should focus on
the optimization and timing detection of these four bot-
tom events.

During designing, testing, and optimizing the high-
voltage power battery system of pure electric commercial
vehicles, the bottom event with a high probability of impor-
tance is selected according to the probability’s importance
interval curve of the high-voltage battery system, which
can improve the tests of the whole system to a certain extent
and reduce the occurrence of serious failures.

5. Conclusions

Taking a pure electric commercial vehicle as an example, the
work analyzed the reliability of the high-voltage power
battery system. The basic theory of polymorphic fuzzy
fault-tree analysis, the working principle of the high-
voltage power battery system and fault type, and the poly-
morphic fuzzy fault tree of the high-voltage power battery
system were introduced to divide the fault tree into two
sub-fault trees (functional failure and deteriorated-state
modes) for qualitative and quantitative analysis.

The triangular membership function was selected as the
fuzzy operator for the bottom event of the subfault tree in
the functional failure mode by comparing the influences
between the triangular membership function and the normal
membership function on the probability interval of the top
event. It could solve the subfault tree in a functional failure
mode with better effect and obtain its reliability. For the
subfault tree in the deteriorated-state mode, the expert expe-

rience and triangular fuzzy numbers were combined by the
group decision theory, with the fuzzy probability averaged,
defuzzified, and normalized. Accurate probability was
obtained to solve the subfault tree in the deteriorated-state
mode and the reliability of the high-voltage power battery
system.

Finally, the fuzzy probability’s importance analysis of
bottom events of the functional failure mode showed that
the key weak links of the system were low SOC, Battery
deformation, low-temperature environment, CAN high,
and low reverse connection. In system design and fault
detection, checking according to the importance of probabil-
ity can improve system’s fault detection. The calculation
results showed that although the state deterioration mode
did not play a decisive role in system failure, it is still a
potential safety hazard to system failure from the reliability
of the whole high-voltage power battery system as well as
an indispensable detection link in the process of fault
detection.

Data Availability

The dataset and codes of the work for the simulation are
available from the corresponding author if requested.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

The work was funded by the Innovation-Driven Develop-
ment Special Fund Project of Guangxi (Grant No. Guike
AA22068060), Liuzhou Science Research and Planning
Development Project (Grant Nos. 2020GAAA0403 and
2021AAA0104), and Liudong Science and Technology Pro-
ject (Grant No. 20210117).

References

[1] H. Huang, X. Tong, and M. J. Zuo, “Posbist fault tree analysis
of coherent systems,” Reliability Engineering & System Safety,
vol. 84, no. 2, pp. 141–148, 2004.

[2] B. S. Dhillon,Design reliability: fundamentals and applications,
CRC press, 1999.

[3] F. A. Rahman, A. Varuttamaseni, M. Kintner-Meyer, and J. C.
Lee, “Application of fault tree analysis for customer reliability
assessment of a distribution power system,” Reliability Engi-
neering & System Safety, vol. 111, pp. 76–85, 2013.

[4] S. Yang, H. Li, Y. Yue, J. Hao,W. Luo, andM. Zhao, “Summary
on reliability analysis of distributed power access on distribu-
tion network,” AIP Conference Proceedings. AIP Publishing
LLC, vol. 1955, no. 1, article 040016, 2018.

[5] G. Lanza, P. Werner, D. Appel, and B. Behmann, “Increased
trustability of reliability prognoses for machine tools,” in
Glocalized Solutions for Sustainability in Manufacturing, J.
Hesselbach and C. Herrmann, Eds., pp. 225–228, Springer,
Berlin, Heidelberg, 2011.

5 7 9 11 13 15 17 19 21 23 25 27 29 31
Bottom event code E

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ili

ty
 im

po
rt

an
ce

Maximum probability importance
Minimum probability importance

Figure 7: Broken lines of importance interval of bottom event’s
probability of the high-voltage battery system.

12 Journal of Sensors



[6] X. Li, H. Shao, S. Lu, J. Xiang, and B. Cai, “Highly-efficient fault
diagnosis of rotating machinery under time-varying speeds
using LSISMM and small infrared thermal images,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2022.

[7] H. Cao, H. Shao, X. Zhong, Q. Deng, X. Yang, and J. Xuan,
“Unsupervised domain-share CNN for machine fault transfer
diagnosis from steady speeds to time-varying speeds,” Journal
of Manufacturing Systems, vol. 62, pp. 186–198, 2022.

[8] L. Xin, S. Haidong, J. Hongkai, and X. Jiawei, “Modified Gauss-
ian convolutional deep belief network and infrared thermal
imaging for intelligent fault diagnosis of rotor-bearing system
under time-varying speeds,” Structural Health Monitoring,
vol. 21, no. 2, pp. 339–353, 2022.

[9] H. Tanaka, L. T. Fan, F. S. Lai, and K. Toguchi, “Fault-tree
analysis by fuzzy probability,” IEEE Transactions on Reliabil-
ity, vol. 32, no. 5, pp. 453–457, 1983.

[10] D. Singer, “A fuzzy set approach to fault tree and reliability
analysis,” Fuzzy Sets Systems, vol. 34, no. 2, pp. 145–155,
1990.

[11] D. Yuhua and Y. Datao, “Estimation of failure probability of
oil and gas transmission pipelines by fuzzy fault tree analysis,”
Journal of Loss Prevention in the Process Industries, vol. 18,
no. 2, pp. 83–88, 2005.

[12] Y. Liu, Z. Zhang, and M. Zhong, “Reliability analysis on the
injection system by mapping TS fault trees into Bayesian net-
works,” in 3rd International Conference on Mechatronics,
Robotics, and Automation, pp. 1134–1139, Shanghai, China,
2015.

[13] H. Yin, C. Liu, W. Wei, K. Song, D. Liu, and Y. Dan, “Safety
assessment of natural gas storage tank using similarity aggre-
gation method based fuzzy fault tree analysis (SAM-FFTA)
approach,” Journal of Loss Prevention in the Process Industries,
vol. 66, article 104159, 2020.

[14] A. Satyanarayana and A. Prabhakar, “New topological formula
and rapid algorithm for reliability analysis of complex net-
works,” IEEE Transactions on Reliability, vol. R-27, no. 2,
pp. 82–100, 1978.

[15] F. Iscioglu, “A new approach in the mean residual lifetime
evaluation of a multi-state system,” Proceedings of the Institu-
tion of Mechanical Engineers, Part O: Journal of Risk and Reli-
ability, vol. 235, no. 4, pp. 700–710, 2021.

[16] C. L. Borges, D. M. Falcao, J. C. Mello, and A. C. Melo, “Com-
posite reliability evaluation by sequential Monte Carlo simula-
tion on parallel and distributed processing environments,”
IEEE Transactions on Power Systems, vol. 16, no. 2, pp. 203–
209, 2001.

[17] S. Mahadevan, R. Zhang, and N. Smith, “Bayesian networks
for system reliability reassessment,” Structural Safety, vol. 23,
no. 3, pp. 231–251, 2001.

[18] F. Mohammadhasani and A. Pirouzmand, “Multi-state
unavailability analysis of safety system redundant components
with aging effect under surveillance testing,” Progress in
Nuclear Energy, vol. 126, no. 1, article 103415, 2020.

[19] K. Chen, S. He, E. Xu, R. Tang, and Y. Wang, “Research on
ride comfort analysis and hierarchical optimization of heavy
vehicles with coupled nonlinear dynamics of suspension,”
Measurement, vol. 165, article 108142, 2020.

[20] S. He, T. Tang, M. Ye, E. Xu, J. Deng, and R. Tang, “A domain
association hierarchical decomposition optimization method
for cab vibration control of commercial vehicles,” Measure-
ment, vol. 138, pp. 497–513, 2019.

[21] P. O'Connor and A. Kleyner, Practical reliability engineering,
John Wiley & Sons, 2012.

[22] J. P. Sawyer, “Fault tree analysis of mechanical systems,”
Microelectron and Reliability, vol. 54, no. 4, pp. 653–667, 1994.

[23] J. Zhang, “Reliability analysis of high voltage electric system of
pure electric passenger car based on polymorphic fuzzy fault
tree,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 4,
pp. 3747–3754, 2020.

[24] H. O. Wang and K. Tanaka, Fuzzy control systems design and
analysis: a linear matrix inequality approach, John Wiley &
Sons, 2004.

[25] H.-Z. Huang, Z.-J. Liu, Y. Yanfeng Li, and L. H. Liu, “A war-
ranty cost model with intermittent and heterogeneous usage,”
Maintenance and Reliability, vol. 4, pp. 9–15, 2008.

[26] R. Kenarangui, “Event-tree analysis by fuzzy probability,”
IEEE Transactions on Reliability, vol. 40, no. 1, pp. 120–124,
1991.

[27] C. D. Wickens, W. S. Helton, J. G. Hollands, and S. Banbury,
Engineering Psychology and Human Performance, Routledge
Publishers, 5th edition, 2021.

13Journal of Sensors



Research Article
Robot Path Planning Based on an Improved Salp
Swarm Algorithm

Xianbao Cheng,1 Liucun Zhu ,2 Huihui Lu,1 Jinzhan Wei,2 and Ning Wu 2

1School of Electronics and Information Engineering, Beibu Gulf University, No. 12, Binhai Avenue, Qinzhou, Guangxi, China
2Advanced Science and Technology Research Institute, Beibu Gulf University, No. 12, Binhai Avenue, Qinzhou, Guangxi, China

Correspondence should be addressed to Liucun Zhu; lczhu@bbgu.edu.cn and Ning Wu; n.wu@bbgu.edu.cn

Received 2 April 2022; Accepted 6 June 2022; Published 25 June 2022

Academic Editor: Haidong Shao

Copyright © 2022 Xianbao Cheng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This paper demonstrates an improved version of the Salp Swarm Algorithm (SSA) to solve the problems of slow convergence and
local minima of the original version. In the population initialization of this scheme, ten chaotic searches with dynamic inertia
coefficients are introduced to increase the diversity so that the probability of being trapped in local minima is reduced. Genetic
algorithms are then applied to improve the global search ability and convergence speed. The experiments with 12 test
functions show that the improved version achieves better accuracy and convergence speed over the original SSA. In the test
with robot path planning problem, the proposed algorithm shows improved performance in the average number of iterations,
path length, and average number of turns by 69.2%, 19.1%, and 43%, respectively, compared with the original SSA.

1. Introduction

Traditional mathematical methods are effective to solve linear
and differentiable optimization problems, but for more com-
plicatedproblems likenondifferentiable functions,more intel-
ligent algorithms are needed. Intelligent algorithms solve
optimization problems by imitating natural phenomena, for
example, Particle Swarm Optimization (PSO) [1] simulates
bird foraging behavior, Gray Wolf Algorithm (GWA) [2]
focuses on wolf predation behavior, and artificial bee colony
algorithm (ABC) [3] simulates bee foraging behavior.

The Salp Swarm Algorithm (SSA) [4] is a relatively new
swarm intelligence algorithm to simulate the foraging behav-
ior of the sea swarm slap. As a new heuristic optimization
algorithm, the SSA has the advantages of less parameter
requirements and effectiveness for both continuous and dis-
crete problems.

Salp is one kind of Salpidae with a transparent barrel-
shaped body similar to jellyfishes with a length of about
1~10 cm. Salps do not behave active locomotion, and the
movement is performed by pumping water through the
body as propulsion to go forward. The individual salp does

not forage very well, and they live in groups to get more
feeding. When salps prey in groups, multiple of them are
lined up to form a chain structure (salp chain). The first salp
in the chain is called the leader, and the rest is called the fol-
lower. The leader guides the whole chain, and the followers
are mobile following each other [4]. The leader leads the fol-
lowers to move towards the food source for global search,
while the followers go accordingly for a local search. In the
SSA, the position update of each follower will only be
affected by the position of the previous follower, and the
leader’s position update is only affected by the food source
position. The hierarchical system of the SSA makes the fol-
lowers cooperate closely with each other to increase the opti-
mization efficiency and reduce the chance of being trapped
in a local optimum. The SSA has been widely used in many
industrial applications such as variable speed wind turbine
[5], industrial design [6], extreme learning machine [7], fea-
ture selection [8], neural network [9], image segmentation
[10], and biomedicine [11–13].

Path planning is a key topic for the mobility of the robot
to navigate the robot automatically from one position to
another [14, 15]. Robots often face uncertain and complex
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operating environment, and in the meantime time, an effi-
cient path connecting one position to another in this envi-
ronment is required to be found quickly and accurately
[16, 17]. Depending on the operation task of the robot, the
optimal path of an environment is generally evaluated based
on the shortest distance or time, the minimum energy con-
sumption, or the highest safety rate. The path planning algo-
rithm with superior performance can plan the most efficient
path in the uncertain and complex environment, to increase
the working efficiency of the robot and reduce the wear and
tear of robot. Since one of the key technologies of mobile
robot is to look for the optimal path solution for a task, path
planning algorithm has become a research hotspot in recent
years [18].

Traditional algorithms to solve the path planning prob-
lem in known environments include artificial potential field
method [19–21], A∗ algorithm [22–24], Dijkstra algorithm
[25–27], and rapidly-exploring random tree (RRT)
[28–30]. However, the exploration performance of these algo-
rithms is generally poor, and it is difficult for them to find the
optimal path in an unknown environment. For this reason, a
swarm intelligence algorithm was introduced to make use of
the exploration and optimization performance to find the
optimal path, such as the Particle Swarm Optimization
(PSO) [31], the ant colony (AC) [32], the whale algorithm
for UAV path planning [33], and the water wave algorithm
for the path planning of underwater vehicles [34]. However,
the performance of the SSA for robot path planning has rarely
been reported in the literature.

This paper focuses on demonstrating an improved version
of the SSA and its application to path planning. The problems
with the original SSA such as the locomotion and slow conver-
gence will be overcome. The initialization of the population of
the SSA will be improved, and a set of dynamic inertia weight
coefficients are defined to maintain the diversity of population.
Genetic algorithm (GA) is then used to assist with the globaliza-
tion of search. In the experiment, the improved SSA method
will be tested on the 12 most popular test functions and com-
pared with five other evolution methods. The optimization of
robot path planning problem will also be tested with the pro-
posed method, and the comparison with other methods will
be shown. This paper is organized in six sections. The second
section reviews the related works for SSA and path planning.
The third section demonstrates the theory of the proposed algo-
rithm, and the fourth section tests the performance of the
improved SSA. The fifth section gives examples of the
application of the improved SSA to path planning, and a con-
clusion is made in Section 6.

2. Related Works

2.1. The Original Salp Swarm Algorithm (SSA). Similar to
other swarm intelligence algorithms, the SSA initializes the
population in an n-dimensional search space, and the fitness
function is regarded as the food source. The salp chain is
always trying to approach the food source and finally reach
the valuable food source in the search area, which is hope-
fully the global optimum. The procedure of the SSA can be
given as follows:

(1) Initialize the population according to the upper and
lower limits of each of the n dimensions, and it can
be written as

xim = lb mð Þ + rand N ,Dð Þ ∗ ub mð Þ − lb mð Þð Þ, ð1Þ

where Xi
m represents the ith salp of m-dimensional space, i

= 1, 2,⋯,Nm = 1, 2,⋯,D, N is the total number of salps
in the chain, and D is the dimension of the objective func-
tion. rand ðN ,DÞ represents a random number matrix of N
rows and D columns with elements evenly distributed
between 0 and 1. lbðmÞ represents the lower limit, and ubð
mÞ represents the upper limit. The initialization according
to Equation (1) will generate an xND matrix such that

X =

x11 x12 ⋯ x1D

x21 x22 ⋯ x2D

⋮ ⋮ ⋯ ⋮

xN1 xN2 ⋯ xND

2
666664

3
777775 ð2Þ

(2) The fitness value of each individual is calculated
based on the fitness function

(3) Determine the initial location of the selected food
source according to the salp with the best fitness
value

(4) Identify the leader and followers: the first scalp in the
chain is the leader, and the rest are followers

(5) Update the position of the leader according to Equa-
tion (3) such that

x1i =
Fi + c1 ubi − lbið Þc2 + lbið Þ, c3 ≥ 0:5,

Fi − c1 ubi − lbið Þc2 + lbið Þ, c3 ≥ 0:5,

(
ð3Þ

where x1i is the ith component of the leader and Fi repre-
sents ith element of the food source. c2 and c3 are random
numbers generated in the interval of [0, 1], which represent
the length and direction of the movement, respectively. c1 is
a coefficient for adjusting the exploration and exploitation of

the salp chain and can be written as c1 = 2e−ð4t/TmaxÞ2 , where t
is the current iteration and Tmax is the maximum number of
iteration

(6) Update the position of the followers:

Since the salp chain moves in the direction of the food
source during foraging, the update of followers depends on
the initial speed, iteration, and acceleration like the Newton’s
law of motion [4], such that

xij tð Þ =
1
2

xij t − 1ð Þ + xi−1j t − 1ð Þ
h i

, ð4Þ
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where xijðtÞ is the value of the jth component of the ith salp
in the chain at iteration t

(7) If an updated component moves over the boundary,
set the position of the boundary, and then, the food
source location is updated according to the optimal
salp

(8) If the result meets the accuracy requirements or if
the number of iterations is reached, output the cur-

rent position; otherwise, turn to step 4 for further
evolution

2.2. Robot Path Planning. The optimal path designed for a
robot is usually calculated considering the constraints like
time, distance, and energy consumption. The current most
commonly used path planning optimization method is based
on artificial intelligence algorithms. Deep learning has also
been introduced to path planning, but the adaptability to
environmental changes is relatively poor [35].

Table 2: Test results for the 12 functions listed in Table 1.

Test function Value types SSA WOA PSO ABC CSSA Proposed SSA

f1

Minimum 7.27e-29 9.27e-34 8.23e-24 2.39e-17 4.26e-34 7.23e-38

Average 9.45e-29 4.26e-34 7.92e-23 8.93e-17 1.28e-34 1.58e-38

Standard variance 4.66e-29 2.78e-34 1.25e-23 2.45e-17 7.21e-34 7.23e-38

f2

Minimum 4.98e-38 5.44e-38 7.21e-12 3.63e-2 1.77e-99 2.63e-148

Average 8.64e-38 9.48e-38 6.74e-12 5.67e-2 7.62e-99 9.33e-148

Standard variance 7.58e-38 6.55e-38 7.25e-12 4.23e-2 5.38e-99 8.47e-148

f3

Minimum 4.29e-23 5.11e-68 9.27e-21 3.47e-10 9.26-70 2.46e-115

Average 3.24e-23 1.27e-68 1.31e-21 6.26e-10 1.86e-70 8.77e-115

Standard variance 9.26e-23 6.67e-68 7.25e-21 3.77e-10 4.61e-70 6.55e-115

f4

Minimum 4.21e-25 5.58e-168 4.25e-149 1.70e-13 1.41e-140 9.25e-169

Average 9.93e-25 6.45e-168 4.33e-149 8.67e-18 8.92e-140 2.80e-169

Standard variance 8.45e-25 7.22e-168 9.75e-149 5.49e-18 7.20e-140 5.39e-169

f5

Minimum 6.72e-26 9.76e-68 2.43e-25 5.12e-12 5.80e-70 9.24e-112

Average 7.28e-26 2.73e-67 1.73e-24 7.48e-11 2.62e-69 1.50e-111

Standard variance 9.30e-26 7.77e-67 5.76e-25 2.66e-12 6.67e-70 6.90e-111

f6

Minimum 4.37e-07 1.57e-08 4.96e-08 3.24e-07 1.46e-08 8.24e-11

Average 7.61e-06 8.26e-08 6.44e-07 5.67e-06 8.43e-08 2.10e-10

Standard variance 2.78e-08 3.21e-08 8.33e-07 3.22e-06 3.49e-08 3.94e-10

f7

Minimum 7.22e-04 4.37e-09 8.66e-07 4.33e-03 8.25e-13 2.43e-18

Average 5.46e-03 8.26e-08 1.45e-06 5.55e-02 2.82e-12 9.44e-13

Standard variance 6.28e-04 3.15e-08 7.34e-06 3.36e-02 7.88e-14 7.10e-19

f8

Minimum 4.52e-02 2.76e-03 6.99e-02 5.44e-01 1.22e-05 3.77e-05

Average 6.25e-02 9.74e-03 3.22e-02 6.12e-01 2.64e-05 8.94e-04

Standard variance 1.13e-04 3.44e-04 4.54e-02 5.33e-01 6.74e-05 6.60e-05

f9

Minimum 9.95e-02 9.33e+01 7.26e-15 5.66e-12 6.53e+01 2.73e-15

Average 7.24e-01 9.66e+01 5.31e-14 7.81e-11 8.98e+01 1.54e-14

Standard variance 6.58e-02 5.43e-02 5.76e-14 6.54e-11 7.11e-02 9.12e-15

f10

Minimum 1.56e-11 3.28e-07 2.46e-13 2.69e-11 8.93e-13 1.19e-15

Average 4.21e-11 8.26e-06 7.11e-13 4.33e-10 1.22e-08 8.74e-14

Standard variance 8.72e-11 4.33e-06 2.36e-13 5.36e-10 5.69e-11 4.63e-12

f11

Minimum 5.46e-07 5.74e-05 1.93e-11 5.43e-07 4.44e-02 9.56e-34

Average 8.23e-07 8.73e-05 5.86e-10 6.72e-07 2.44e-01 1.72e-30

Standard variance 9.42e-07 7.74e-05 7.42e-10 5.64e-06 6.93e-03 6.72e-32

f12

Minimum 2.96e-04 3.66e-02 4.08e-08 6.45e-08 5.35e+01 3.54e-10

Average 3.37e-04 2.98e-01 2.76e-07 9.45e-07 8.70e+01 8.25e-10

Standard variance 4.29e-04 2.16e-02 5.45e-08 7.73e-08 4.24e-01 4.77e-11
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To find the optimal path in the obstacle environment for
a robot, the model of the mobile environment is required to
register. There are currently two types of methods for envi-
ronment modeling, one is the road sign method and the
other is the grid method. The road sign method is to line
up the feasible path map by connecting the labeled points
and the boundaries of obstacles, while the grid method
abstracts the mobile environment of the robot into a grid
space and marks all grids that belong to the path. Grid

method is more convenient to use and easier to implement,
and therefore, it is more popular than the road sign method
[36]. In this paper, an optimized grid modeling method is
calculated for robot path planning.

In the grid modeling of three-dimensional (3D) mobile
environment, a two-dimensional (2D) is marked with
grids of equal size to represent the 3D space, and each
grid is labeled with 0 or 1 representing without or with
an obstacle [37].
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Figure 1: Comparison of the convergence curves of average fitness value for f1.
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Figure 2: Comparison of the convergence curves of average fitness value for f2.
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The grid modeling is usually used to simulate a limited
area, and a coordinate system xOy is established with the
lower left corner as the origin and the horizontal and vertical
orientations are x axis and y axis, respectively. The step
length (l) of the robot represents the length of a single grid
in the x or y axis; therefore, the number of grids in each x
axis and y axis are nx = xmax/l and ny = ymax/l, respectively.
It is defined that each of the grids in the area is marked with
a label starting from the upper left corner in the way of from

left to right and from top to bottom, such that A = f1, 2,⋯,
Ng. Then, the relationship between the coordinates and
the label number can be given as:

xi = i − 1ð Þ mod nxð Þ + 1,

yi = ny − ceil
i
nx

	 

+ 1,

ð5Þ
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Figure 3: Comparison of the convergence curves of average fitness value for f3.
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Figure 4: Comparison of the convergence curves of average fitness value for f4.
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where i represents the ith label number, mod is the remainder
operation, ceil means rounding operation, nx , ny represent the
number of grids per row and column, respectively, and xi,yi
denote the ordinate of the grid center of the ith grid. In this
optimization task, it is expected to find the shortest Euclidean
distance between the current position ðx1, y1Þ and the target
position ðx2, y2Þ, which is regarded as the fitness vale, such

that hðxÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 + ðy1 − y2Þ2

q
[38].

3. The Improved SSA

In SSA, the leader is designed to make global exploration
while the follower makes a full local search, and in this
way, the chance of falling in a local optimum is greatly
reduced. Since the SSA requires fewer parameters than other
evolution optimization methods and therefore it is easier to
implement, however, like most swarm intelligence
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Figure 5: Comparison of the convergence curves of average fitness value for f5.
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Figure 6: Comparison of the convergence curves of average fitness value for f6.
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algorithms, it is difficult for the SSA to converge at the later
stage of optimization.

In the optimization using SSA, the initialization of the
population is given within a certain range such that xim = lb
ðmÞ + rand ðN ,DÞ ∗ ðubðmÞ − lbðmÞÞ. Therefore, if the ini-
tial positions of the population are too concentrated, there

will be a lack of diversity, resulting in the convergence to a
local minimum. While if the initial positions are too scat-
tered, the convergence process will be greatly slowed down.
Besides, in the salp chain, the position of the individual is
updated from one to the next along the chain; in some spe-
cial cases, the value cannot be passed on, or in some cases,
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Figure 7: Comparison of the convergence curves of average fitness value for f7.
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Figure 8: Comparison of the convergence curves of average fitness value for f8.
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some of the salp individuals may pass on inaccurate position
values, and then, the optimization will fall into a local trap.
To overcome these problems, a modified version of the
SSA is required.

Since the convergence of the SSA is strongly influenced
by the initial population at a later stage of iteration, and
the random distribution of the initial population cannot
guarantee the diversity, the tent chaotic sequence can be

used to increase the randomness, diversity, and aperiodicity
of the initial population [39], such that

zk+1 =
2zk 0 ≤ zk < 0:5,

2 1 − zkð Þ 0:5 ≤ zk ≤ 1,

(
k = 0, 1, 2⋯: ð6Þ

In Equation (6), the initial value of zk can be randomly

0 100 200 300 400 500 600 700 800 900 1000
Iterations

10−15

10−10

10−5

100

105

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

WOA
CSSA
SSA

ABC
PSO
BASSA

Figure 9: Comparison of the convergence curves of average fitness value for f9.

0 100 200 300 400 500 600 700 800 900 1000
Iterations

10−15

10−10

10−5

100

105

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

WOA
CSSA
SSA

ABC
PSO
BASSA

Figure 10: Comparison of the convergence curves of average fitness value for f10.
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generated within the value range, and it can be converted
into the SSA variables such as

xim = lb mð Þ + rand N ,Dð Þ ∗ ub mð Þ − lb mð Þð Þ ∗ zk k = 0, 1, 2⋯:

ð7Þ

In this way, the procedure for initializing using tent cha-
otic mapping can be given as,

Step 1. According to the number of variables in the tar-
get function n, the initial value of zk in Equation (6) is
assigned with z0

Step 2. Generate chaotic sequence variables fzi,k i = 1, 2,
⋯ng according to Equation (7)
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Figure 11: Comparison of the convergence curves of average fitness value for f11.
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Figure 12: Comparison of the convergence curves of average fitness value for f12.
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Step 3. Use Equation (7) to map the chaotic variable zik to
the population solution space to complete the initialization

According to the update rule for the followers, if the jth
salp passes on incorrect information to the next, the move-
ment of all subsequent individual will be affected, especially
when it finds a local minimum, it will not be likely to move
out of this hole, and the whole chain will stay there forever.
To solve this problem, an inertia weight strategy is intro-
duced in the position update of the SSA [40], such that

ωt = ωmax − ωminð Þ Tmax − t
Tmax

	 

+ ωmin × Zk+1, ð8Þ

where ωmax and ωmin are the initial and final values of the
weights, Tmax is the maximum number of iterations, t is

the current number of iterations, and Zk+1 is the chaotic
mapping coefficient [39]. However, the mobile performance
of this linearly decreasing inertia adjustment strategy is not
satisfactory in the global search. Since the weighting factor
is decreasing, in the initial stage of search, the algorithm
tends to search globally. However, this duration is too short,
the global search performance cannot be fully exploited
before the weight factor becomes too small, and the whole
chain may have already been trapped in a local optimum.
In addition, when the values of ωmax, ωmin, and t are fixed,
the amplitude of ω is also fixed, resulting in a deterioration
in the performance of solving complex and nonlinear opti-
mization problems. Therefore, it is required that a large
weight is maintained to enhance the global search at the ini-
tial stage of optimization, while at the later stage, a small
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Figure 13: The simulation of path planning with the ABC method.
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Figure 14: The simulation of path planning with the PSO method.
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weight helps to focus on the local search. Inspired by deep
learning methods, this nonlinear mapping process can be
modeled with a Sigmoid function such that

ω = ωmax − ωmax − ωminð Þ 1
1 + e− Tmax−tð Þ/Tmax

	 
3
: ð9Þ

It can be seen that the output of Sigmoid function has a
large initial value, which can ensure the global search capa-
bility of the algorithm, and the output value will be reduced
gradually to the balance between the global and local search
strategy.

To increase the possibility of achieving a global opti-
mum, GA can be introduced in the later stage of the optimi-
zation by assigning a big mutation probability such as 0.1 in
this paper.

In this way, the optimization process with the improved
SSA can be divided into three stages, the first stage is when
t < ðTmax/2Þ, the improved SSA without the GA is used; at
the second stage, when ðTmax/2Þ < t ≤ ð2/3ÞTmax, if the
global output value does not change for 10 consecutive
times, the GA operation is used. When t > ð2/3ÞTmax, many
experiments show that it is very likely to fall into a local opti-
mum at this stage; therefore, a GA process is needed to help
with the global search.

4. Experiments and Analysis

To test the effectiveness and performance of the improved
algorithm, this paper compares the performance of the pro-
posed algorithm with the original SSA [4], the Chaotic Salp
Swarm Algorithm (CSSA) [41], and other intelligent algo-
rithms such as the WOA [39], PSO, and ABC.
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Figure 15: The simulation of path planning with the SSA method.
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Figure 16: The simulation of path planning with the WOA method.
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In the experiment, there are 12 functions to be tested,
among which f1 ~ f7 are unimodal functions for conver-
gence speed testing, and f8 ~ f12 are multimodal functions
for global search testing. The test functions are listed in
Table 1.

The tests are carried out on the platform of Matlab 2018a
on a PC with 16G RAM. To confirm the result, each testing
is independently run for 50 times to take the average. The
dimension of the test function is set to 50, and the number
of iterations is 2000. The parameter settings of other algo-
rithms are consistent with the corresponding references.
The test results are shown in Table 2.

From the experimental data, it can be seen that in the
unimodal function (f1 ~ f7), the proposed algorithm
achieves the best optimal value as well as the average value.
This test shows that the proposed algorithm has better opti-

mization stability and the optimal values achieved are at
least several orders of magnitude better than that of other
algorithms. For f2 function, the optimal value of the pro-
posed algorithm is nearly 110 orders of magnitude smaller
that of the original SSA. In the test with f 2 function, the
optimal value of the proposed algorithm is about 144 orders
of magnitude less than that of the original SSA and 20 orders
of magnitude less than that of the second best PSO algo-
rithm. In the test with functions of f1, f3, f5, f6, and f7, the
improved SSA has also achieved the minimum values among
several algorithms. It shows that the optimization accuracy
of the improved SSA has obvious advantage than other algo-
rithms for unimodal functions.

Among the five multimodal functions (f8 ~ f12) tested,
the results of the proposed method are significantly better
than other algorithms, except for the average value of f8 in
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Figure 17: The simulation of path planning with the CSSA method.
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Figure 18: The simulation of path planning with the BASSA method.
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which case the CSSA algorithm has achieved the best but
very close to the proposed method. In the test with function
f9, it was found that the WOA and the CSSA have been
trapped in local minima under the same number of itera-
tions as the proposed algorithm. In the test with functions
f10 ~ f12, the improved algorithm has achieved all the mini-
mum values, which shows better exploration ability in mul-
timodal function to avoid local optima.

Figures 1–12 show the convergence curves of average fit-
ness value for f1 ~ f12, respectively, and it can be seen that
the proposed method has the advantages of convergence rate
and optimization accuracy over all other algorithms. In the
test with the functions of f2, f3, f5, f7, and f11, the proposed
method can jump out of the local optimal solution at an ear-
lier stage than others. Among the 12 functions tested, only
the result for the function f10 is not optimal for the proposed
method, but it is very close to the optimal result. It is clear
from these experimental results that the proposed algorithm
has better performance in optimization accuracy and con-
vergence speed compared to the original SSA, as well as
the CSSA, WOA, PSO, and ABC. The global search perfor-
mance of the proposed method benefits from the increased
diversity of the population and the mobility at the later con-
vergence stage with the GA.

5. The Application in Robot Path Planning

This paper applies the proposed algorithm to the optimiza-
tion of path planning for robots, and for better evaluation,
the above methods are also tested and compared. In this
experiment, a 20 ∗ 20-grid map is used to simulate the robot
mobile environment, and the parameter settings of each
algorithm are listed as follows:

(1) ABC: the number of artificial bees is M = 50, and the
maximumnumber of attempts limit = 15

(2) PSO: the number of particles, M = 50, the constant
of inertia ωmax=0.8,ωmin=0.3, c1=0.5, and c2=0.5

(3) SSA: the number of salps is M = 50, and the individ-
ual dimension is d = 28

(4) WOA: the position dimension: 20, population size:
50, spiral coefficient b = 1, and selection probability
P = 0:5

(5) CSSA: the settings are consistent with those in the
literature [42]

(6) The proposed algorithm: the same as the SSA

For all methods, the total iteration number is 300.
In the test, a 20 ∗ 20-grid map is randomly generated,

and the simulated routes of all methods for robot path plan-
ning are shown in Figures 13–18, and the related results are
listed in Table 3.

From the simulation results, it can be seen that the
improved SSA achieves the shortest path length and is
23.6% shorter than ABC algorithm with the longest path
length and 9.83% shorter than the CSSA. The average num-
ber of iterations achieved by the proposed method is less
than half of that of the CSSA. This is due to the high optimi-
zation accuracy and better convergence rate of the proposed
method. The average number of turnings for the proposed
method is 43% less than the original SSA and 33.8% less
than the CSSA. This shows that the proposed algorithm
travels more straight in the current simulation environment,
effectively avoiding unnecessary turns. From the comparison
data, it can be seen that the improved SSA is a more efficient
way to solve the robot path planning problem.

6. Conclusion

This paper proposed an improved SSA to solve the problems
of locomotion and slow convergence of the original SSA. A
tent chaotic mapping procedure is introduced to the initial-
ization of the population, which effectively increases the
diversity. During the optimization, dynamic inertia weight
coefficients are used to maintain the diversity of population
and the balance between the global and local search. At a
later stage of optimization, GA is implemented to strengthen
the global search ability of the algorithm. The proposed
method is tested on the 12 most popular test functions and
compared with five other evolution methods. The results
show that the improved algorithm has better performance
in convergence speed and optimization accuracy. Finally,
the proposed algorithm is applied to the optimization of
robot path planning and compared with the above methods.
The experimental data shows that the proposed method
finds the optimal path faster than other intelligent algo-
rithms in the same environment with a better route and less
iterations.
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The entropy generation theory is introduced to investigate the effects of different NPSH and tip clearance size on the cavitation
flow dynamics and mechanical energy dissipation intuitively and quantitatively within an axial flow pump through numerical
simulations. The results indicate that main mechanical energy dissipation of the pump gathers in part impeller and diffuser,
and most are turbulent dissipation. Meanwhile, the impeller is the largest place of mechanical energy dissipation of the pump
under cavitation conditions, accounting for more than 50%. NPSH has significant effects on the cavitation pattern, which
reflects on the field that the areas of attached sheet cavitation and tip leakage vortex cavitation around blades increase
obviously with NPSH reducing under the tip clearance of 0.1% span. With NPSH decreasing, high regions of turbulent
dissipation in the impeller mainly expands along blades and move downstream, with span S0.98 near the shroud having larger
turbulent dissipation. Besides, high regions of turbulent dissipation are mainly distributed at the rear part of the cavity for
every corresponding span of the impeller, which indicates that the turbulent dissipation has a strong relation with the
cavitation pattern. In the impeller, the unstable flows cause cavity shedding at the rear of the cavity and wake flows near the
blade trail induce higher turbulent kinetic energy, finally resulting in higher turbulent dissipation there. Under the same
NPSH, areas of tip leakage vortex cavitation and areas of tip clearance cavitation around the tip both expand with the tip
clearance increasing from 0.1% span to 0.8% span. And high areas of turbulent dissipation also are distributed at the rear of
the cavity and moving downstream along the blade suction side, especially at span S0.98. Therefore, the tip clearance width
mainly affects the cavitation development and turbulent dissipation distribution near the impeller’s shroud under same NPSH.

1. Introduction

It is well known that axial-flow pumps are widely used in
hydraulic engineering projects like agricultural irrigation,
water supply, and drainage. The cavitation in hydraulic
machinery is an important phenomenon of complex phase
change, which often occurs where local pressure is lower
than liquid vaporization pressure. Due to the existence of
radial clearance between blades and the shroud for the
impeller, tip leakage flows would occur inevitably and cause
the tip leakage vortex cavitation cloud under the cavitation
conditions, which finally makes the cavitation process more
complicated. When the cavitation is severe, it can influence

the flow structure and energy loss characteristic, then finally
result in vibration, noise, and the deterioration of hydraulic
machinery performance [1–4].

Currently, the two common methods to study the cavita-
tion dynamics in hydraulic machinery are through experi-
ments and numerical simulations. As for the study on the
cavitation inside axial-flow pumps, several scholars investi-
gate the cavitation combined the experiment with the
numerical simulation. Saito [5] investigated the flow pattern
under cavitation conditions within an axial-flow impeller
and found that the change of pump performance has a close
relation with cavitation growth around blades. Due to the
cavitation, the flow pattern at the impeller outlet changed
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remarkably. Zhang and Chen [6] investigated the inner flows
in a slanted axial pump with different cavitation conditions
by numerical simulations. The research introduced bound-
ary vorticity flux to diagnose the cavitation flow and found
the decrease of cavitation performance had a relation with
unstable cavitation flows on the suction sides of blades. Hos-
ono et al. [7] studied the internal flow and the influence of
the cavitation within an axial pump by measurements
through the high-speed camera and numerical simulations.
Shi et al. [8] studied effects of different blade tip geometries
on the cavitation and leakage vortex for an axial pump.
Zhang et al. [9, 10] investigated the internal flow by CFD
method to investigate the tip flow cavitation patterns of a
pump. They found the phenomenon that tip leakage vortex-
(TLV-) induced periodically collapse of perpendicular vorti-
ces is universal for axial flow pumps. Tan et al. [11] applied
high-speed imaging to investigate some forms of cavitation
patterns like sheet cavitation and tip clearance cavitation
under varying discharge for a pump. Feng et al. [12] investi-
gated impacts of inlet guide vane on the cavitation dynamics
and pump performance with varying discharge. They found
a variable called the total vapor fraction to predict critical net
positive suction head. Also, many scholars [13–22] carried
out the research on the tip leakage vortex, pressure pulsa-
tion, and cavitation mechanism fields in hydraulic machin-
ery and obtained a certain number of achievements, while
for studies on energy loss characteristics in hydraulic
machinery, an increasing number of scholars use the
entropy production method to investigate the loss character-
istic accompany with the numerical simulation. Comparing
with traditional energy evaluation method, entropy genera-
tion analysis method can intuitively and quantitatively
determine the position of mechanical energy dissipation in
hydraulic machinery; thus, this method is currently applied
by some researchers. Gong et al. [23] investigated energy
dissipation of a hydroturbine by entropy generation analysis,
and they found the runner and guide vane were mainly loca-
tions of energy loss. Li et al. [24, 25] investigated hysteresis
characteristics using entropy generation analysis of a
pump-turbine model by simulations. Through analysis, they
found that the hump characteristic was induced by the
energy dissipation of the runner. Hou et al. [26] introduced
the entropy production theory to investigate energy dissipa-
tion in pumps. Pei et al. [27] conducted the research of
energy dissipation applying entropy generation analysis in
a pump with varying distance between the guide vane and
impeller. Chang et al. [28] applied the entropy generation
method to investigate effects of the blade thickness distribu-
tion on losses in novel self-priming pump and obtained opti-
mal blade. Li et al. [29] introduced entropy generation
theory to investigate about the cavitation and loss character-
istic in a centrifugal pump. From their simulation results,
they found the decrease of pump head is related to the
change of overall entropy production rate of part impeller.
Wang et al. [30] applied entropy production diagnostic
model (EPDM) to study energy dissipation under cavitation
conditions in a pump, and they proved that the EPDM can
predict the inception and development of the cavitation.
Some studies [31–34] investigated the inner flow and energy

dissipation based on entropy generation theory in hydraulic
machinery and get some results. These above studies about
energy loss characteristics in hydraulic machinery prove
the entropy generation method is effective to assess mechan-
ical energy dissipation due to its intuitive and quantitative
advantages.

The above studies are about cavitation dynamics or
about loss characteristics of hydraulic machines using
entropy generation method, while there is still few studies
on the relations between the cavitation dynamics and
entropy production for axial-flow pumps, especially with
different NPSH and tip clearance. The main focus of this
research is to investigate cavitation dynamics and entropy
generation analysis of an axial-flow pump with different
NPSH and tip clearance width and found the relations
between the cavitation and entropy production. Therefore,
four NPSH with the same tip clearance of 0.1% span are
selected to investigate effects of NPSH on cavitation flows
and energy dissipation, while four tip clearance widths with
the same cavitation condition are selected to investigate
impacts of the tip clearance on cavitation patterns and
energy dissipation. That is how this research organized.
Then, we summarize some conclusions about cavitation
dynamics and mechanical energy dissipation for an axial-
flow pump. This research can finally provide some theoreti-
cal guidance to the cavitation and energy dissipation in
hydraulic machinery and give reference for designing highly
reliable pumps.

2. Experimental Apparatus and Parameters

As shown in Figure 1, the closed experimental loop is
installed at the Laboratory of Pump Station in Wuhan Uni-
versity, Wuhan, China [14]. The experimental apparatus
mainly consists of three parts: the axial-flow pump facility,
the cavitation generating facility, and the data acquisition
system. The test pump loop includes water tanks, a flowme-
ter, valves, an axial flow pump, and other related equipment
displayed in Figure 2. Specific parameters for the experimen-
tal model are given in Table 1. The cavitation generating
facility mainly contains a vacuum pump, a pressure tank,
and a regulating valve. During the experiment, the inlet pres-
sure of test pump is maintained by a vacuum pump through
adjusting the regulating valve to different required degrees of
vacuum. The data acquisition system consists of pressure
sensors, the electromagnetic flowmeter, and speed torque
meter. The electromagnetic valve controls the mass flow
rate. And the KROHNE electromagnetic flowmeter mea-
sures the mass flow (accuracy 0.3%). While a frequency con-
verter controls the pump rotation speed and torque. And the
WDH300Z speed torque meter measures these parameters
(accuracy 0.2%). The WDHYL101 pressure sensors measure
the inlet and outlet pressure of test pump (accuracy 0.2%).
To avoid accidental errors, repeated measurements are per-
formed for every working condition. Comparing the results
of 3, 5, and 10 times, it was found that the average values
of five measurements were enough for this test. During the
measurements, the uncertainties of mass flow rate, head,
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input power, and efficiency were less than 0.84%, 0.58%,
0.75%, and 1.01%, respectively.

3. Physical Modelling and
Numerical Methodology

3.1. Governing Equations, Turbulence Model, and Cavitation
Model. For the cavitation flow under isothermal conditions,
a homogeneous mixture model has been applied in a wide
range of numerical calculations. The homogeneous mixing
model assumes the velocity and pressure between the liquid
phase and gas phase are continuous. Governing equations
for cavitation flows accompany with the homogeneous mix-
ture model include continuity and momentum equations,
which can be expressed as:

∂ρm
∂t

+ ∂ ρmuið Þ
∂xi

= 0, ð1Þ

∂ ρmuið Þ
∂t

+
∂ ρmuiuj

� �
∂xj

= −
∂p
∂xi

+ ∂
∂xj

μ0+μmð Þ½ � ∂ui
∂xj

+
∂uj

∂xi

 !
,

ð2Þ

where p is the pressure; u is the velocity; ρm denotes mixture
phase density and can be defined by Equation (3); μ0 repre-
sents mixture laminar viscosity, which can be calculated by
Equation (4); and μm denotes mixture turbulent viscosity

and can be acquired by adopting turbulence model. Because
the SST k-ω turbulence model can effectively predict flow
separation and vortexes with adverse pressure gradients in
hydraulic machinery, the governing equations are solved
by SST k-ω turbulence model in current study.

ρm = αvρv + 1 − αvð Þρ1, ð3Þ

μ0 = αvμv + 1 − αvð Þμ1, ð4Þ

αv + α1 = 1, ð5Þ

where αv is volume fraction of vapor; subscripts m, l, and v
represent mixing, liquid, and vapor phases, respectively.
The vapor transport equation can solve the volume fraction
of water vapor, the equation is:

Figure 1: Experimental pump station installed in the Wuhan University.

Water tank
Centrifugal pump

Valve

Flowmeter

Water tank
Data acquisition system

Axial-flow impeller

Figure 2: Schematic of test pump.

Table 1: Specific parameters of test pump.

Parameters Value

Impeller diameter D (mm) 300

Number of diffuser blades 5

Number of impeller blades 3

Design rotational speed n (r/min) 1450

Design head Hd (m) 3.3

Design flow rate Qd (kg/s) 330

Tip clearance (mm) 0.15
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∂ ρvαvð Þ
∂t

+
∂ ρvαvuj

� �
∂xj

= _m+ + _m−, ð6Þ

where _m+ is the evaporation source term; _m− is condensa-
tion source term. This study adopts Zwart-Gerber-Belamri
cavitation model to express mass exchange of interphase;
thus, _m+ and _m− can be defined as:

_m+ = Fva
3αc 1 − αvð Þρv

Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pv − pj j
3ρ1

s
, ð7Þ

_m− = Fco
3αvρv
Rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 pv − pj j
3ρ1

s
, ð8Þ

where Fva and Fco represent the empirical coefficient of
evaporation and condensation, respectively; pv denotes satu-
rated vapor pressure; Rb stands for the bubble radius; and αc
represents nucleation site volume fraction. The recom-
mended values for parameters are Fva = 50, Fco = 0:01, Rb =
1 × 10−6 m, and αc = 5 × 10−4.

3.2. Entropy Generation Calculation Equations. In current
research, the entropy generation analysis is used to assess
mechanical energy dissipation within an axial flow pump.
According to the second law of thermodynamics, entropy
generation refers to irreversible energy losses in the energy
conversion process. Regarding the internal fluid of a pump
as an incompressible and adiabatic process, entropy genera-
tion created by heat transfer could be ignored. Therefore,
mechanical energy dissipation within the flow passage of a
pump mainly is viscous and turbulent dissipation. And local
entropy generation rate caused by dissipation for cavitation
flows is written as �Φ/T , which can be defined directly as:

�Φ

T
= _S�D″ + _SD′″ , ð9Þ

where _S�D″ and _SD′″ represent the entropy generation rate
caused by time-averaged movements and velocity fluctua-
tions, respectively. Thus, _S�D″ and _SD′″ represent viscous and
turbulent dissipation, respectively. The two terms can be
expressed by:

_S�D″ = 2μ
T
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where �u,�v, �w and u′, v′,w′ represent the mean and fluctuat-
ing velocity quantities along x, y, z direction, respectively.
μef denotes effective viscosity and can be defined as:

μef = μ + ut , ð12Þ

where μ and μt represent molecular and turbulent viscosity,
respectively. Through the postprocessing of CFD POST, the
term _S�D″ can be calculated directly by Equation (10). But we
cannot obtain the term _SD′″ directly, and the reason is that
fluctuating velocities are not available during simulations.
Refer to studies of Kock et al. [35, 36], when using SST k
-ω turbulence model, _SD′″ can be expressed by:

_SD′″ = α
ρωk
T

, ð13Þ

where α = 0:09,ω is characteristic frequency, and k is turbu-
lence kinetic energy. Besides, the overall entropy generation
rate of a region is calculated by the volume integration of
specific entropy generation rate:

_S�D =
ð
V

_S�D″ dV , ð14Þ

_SD′ =
ð
V

_SD′″ dV , ð15Þ

_SD = _S�D + _SD′ , ð16Þ

where _S�D and _SD′ represent the overall entropy generation
rates caused by time-averaged movements and velocity fluc-
tuations, respectively. _SD denotes the entropy generation rate
of the domain, as the sum of _S�D and _SD′ . Then, parameters
about entropy generation can be calculated for cavitation
flows in the pump. With the help of entropy generation
method, we can have the quantitative analysis of mechanical
energy dissipation.

3.3. Calculation Domain and Meshing Technique. The calcu-
lation domain is the whole flow passage, which consists of
the impeller, diffuser, and other parts, as seen from
Figure 3. The lengths of the inlet and outlet pipe are set as
10 times of pipe diameter. Only part impeller is the rotating
component while others are stationary. The sliding inter-
faces are set at split planes of part impeller, as shown in
the following figure.
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In order to have better convergence, structured hexahe-
dral meshing scheme is applied for all components in the
calculation domain. Most meshes are created by software
ANSYS ICEM except the mesh of part Impeller. Considering
the highly distorted shape of impeller’s blades and small
radial clearance between blades and the shroud, the mesh
of part impeller is created by the software ANSYS TURBO-
GRID, especially for the O-Grid around blades. In order to
simulate the tip region accurately, the tip clearance with a
size of 1.2mm is placed 80-layer mesh grids at the tip. For
other tip clearances, the simulation model uses a uniform
tip gap with a size of 1.2mm. To generalize the results and
discussions, we should convert the tip clearance size to a
fraction of span. Then, 0.15, 0.45, 0.9, and 1.2mm can be
changed to 0.1%, 0.3%, 0.6%, and 0.8% span through divid-

ing by the impeller diameter in the following. The obtained
mesh of main parts for the pump is displayed in Figure 4.

For the whole calculation domain, four sets of mesh are
created, and the verification of grid independence is con-
ducted under specific flow rate and cavitation condition

Impeller Diffuser

Lo
ut

 = 
10

D

Out
let

 pi
pe

60° bendExit coneGuide cone

Lin = 10D

Inlet pipeD

Sliding interfaces

Figure 3: 3D view of calculation domain.

Blade tip region

Impeller

Diffuser

Figure 4: Mesh of main parts for the pump.

Table 2: Grid independence verification.

Mesh nodes Q (kg/s) NPSH (m) Convergence criterion Numerical simulation head (m)
Relative error between

simulations and experiments

3004495 302.917 9.280 10-5 3.885 5.937%

4047425 302.917 9.280 10-5 3.981 3.668%

5136088 302.917 9.280 10-5 4.008 3.024%

6036526 302.917 9.280 10-5 4.014 2.864%

Table 3: Comparison between simulations and tests.

NPSH (m)
Simulation
head (m)

Experimental
head (m)

Relative error between
simulations and tests

11.531 3.915 4.027 2.786%

9.280 4.008 4.133 3.024%

7.456 3.996 4.058 1.537%
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according to the experiment as displayed in Table 2. The
NPSH is an important physical parameter that describes
the pump cavitation condition, which can be calculated by:

NPSH = ps
ρg

+ v2s
2g −

pv
ρg

, ð17Þ

where ps denotes the absolute pressure, vs represents the
average velocity at the pump inlet, and pv represents the
vapour pressure. SST k–ω turbulence model is taken into
consideration for the grid independence study. Through grid

independence verification displayed in Table 2, we consider
that the number of 5,136,088 nodes is sufficient to simulate
cavitation flows in this pump.

3.4. Numerical Setup. In this research, 3D transient calcula-
tions of the internal flow for different cavitation conditions
within an axial-flow pump were conducted applying soft-
ware ANSYS CFX accompany with the RANS equation. In
the calculation, SST k-ω turbulence model and ZGB cavita-
tion model were used. The finite volume method was
adopted to discretize govern equations. The second-order
upwind scheme was applied for space discretization. For
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advection terms, the high-resolution scheme with second
order backward Euler algorithm was applied. The inlet
boundary condition was set as the total pressure inlet; the
outlet boundary condition was set as the mass flow rate out-
let according to the test data. The wall boundary was
assumed for no-slip wall. The calculated media were liquid
and vapor at 25°C, and the volume fraction of liquid and
vapor was set as 1 and 0 at the pump inlet. The transient
rotor stator was employed for the rotor stator interaction.
For simulations, steady calculations of noncavitation were
first performed, and then, we applied these noncavitation

flow results as the initial value to calculate unsteady simula-
tions under cavitation conditions. The convergence criterion
was set as 10−5. For unsteady calculations, the time step was
set to 0.0003448276 s, which is equivalent to 1/120 of the
design rotational period. During every time step, the maxi-
mum number of iterations was assumed as 20 that can gen-
erally help the result reach stable periodicity. The total
calculation time for unsteady calculations was set to 20
rotating cycles. For analysis, we select the last four periods
as our time sample. All results that we used for analysing
are based on this average result of the time sample.
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3.5. Validation of Numerical Simulations. Table 3 shows the
comparison of the pump head between experiments and
numerical simulations. As displayed in Table 3, the simula-
tion data under three different NPSH are in good agreement
with the test data. And the relative error between them is
below 5%. Thus, we believe that the model, grid, and calcu-
lation method adopted in this research are reasonable and

reliable. And we consider the results of simulations can be
used for the following analysis.

4. Results and Discussion

4.1. Analysis of Pump Performance and Entropy Generation
with Varying NPSH. During the experiment, it is difficult
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Figure 9: Overall turbulent entropy generation rate _SD′ of different components for varying tip clearance under NPSH = 9:816m.
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to keep the flow rate unchanged when we change the pressure
of pump inlet by the vacuum pump; thus, the above simula-
tion results according to the experimental data just adopted
for verifying the reliability of simulations. For the following
analysis, we use the same conditions except for the analysis
variable. To investigate the pump performance and entropy
generation with varying NPSH, we select four cavitation
points that are similar to the experiment cavitation conditions
A (NPSH = 11:492m), B (NPSH = 9:816m), C (NPSH =
7:562m), and D (NPSH = 5:830m) under the same flow rate
(Q = 302:917 kg/s) and the tip clearance of 0.1% span for
detailed analysis. The calculated pump performance is shown
in Figure 5. The nondimensional parameters are calculated by:

head coefficient : ψ = gH

Ω/2πð Þ2D2 , ð18Þ

pump coefficient : η = gQH
3600MΩ

: ð19Þ

As seen from Figure 5, the pump head and efficiency both
reduce with the NPSH reducing, which indicates that there
will be more energy loss when the cavitation becomes more
severe. To better understand the energy dissipation distribu-
tion under different NPSH in the axial-flow pump, we calcu-
late the overall entropy generation rate caused by time-
averaged movements and velocity fluctuations of different
components for analysis, as displayed in Figures 6 and 7. From
Figure 6, the entropy generation rates caused by time-averaged
movements _S�D of different components are very small and
change not evidently with varying NPSH. From Figure 7, it
is obviously seen that the overall entropy generation rate _SD′
for different components grows from part guide cone, inlet
pipe, outlet pipe, 60° bend, exit cone, diffuser, to part impeller.
With the NPSH decreasing, the overall entropy generation
rate _SD′ of part impeller and diffuser increase obviously while
the values for other components remain stable and small. And
the overall turbulent entropy generation rate for 60° bend and
exit cone increase slowly with the NPSH reducing. Comparing
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the values in Figures 6 and 7, we found that most of the irre-
versible energy loss are turbulent dissipation; thus, we would
focus on the analysis of turbulent dissipation behind. As seen
from Figure 7, we found that part impeller and diffuser are
main places where the irreversible energy loss occurs, and
energy dissipation of part impeller is more than double of
the energy dissipation of part diffuser. In a pump, the dissipa-
tion of part impeller accounts more than 50% and become big-
ger with the cavitation being worse. Therefore, the NPSH has
significant effects on the turbulent dissipation for part
impeller.

4.2. Analysis of Pump Performance and Entropy Generation
with Varying Tip. When pumps operate, tip clearance
between the blade and the impeller’s shroud is inevitable.
To study impacts of tip clearance width on the pump perfor-
mance and entropy generation, we select four tip clearance
width with the same cavitation (NPSH = 9:816m) for the
following analysis. Figure 8 displays pump performance with
four tip clearances under the same cavitation condition, and
we can observe that pump head and pump efficiency both

reduce as the tip increasing from 0.1% span to 0.8% span.
Meanwhile, the difference between the maximum and mini-
mum head is less than 6%, and the difference between the
maximum and minimum pump efficiency is about 1%. This
indicates that as the tip grows from 0.1% span to 0.8% span
under same cavitation condition (NPSH = 9:816m), the
pump performance decreases slightly.

Through the above analysis in Section 4.1, we know most
of energy dissipation is turbulent dissipation, thus here
mainly analyze the turbulent entropy generation within this
pump. Figure 9 displays overall turbulent entropy generation
rate _SD′ of different components with varying tip under the
same cavitation condition (NPSH = 9:816m). From Figure 9,
it is obviously observed that _SD′ for different components
grows from part guide cone, inlet pipe, outlet pipe, 60° bend,
exit cone, diffuser, to part impeller. As the tip increases, the
overall turbulent entropy generation rates of part impeller first
decreases a little then increase slowly, and the changing of the
value is not big. While overall entropy generation rate of part
diffuser reduces very slowly when the tip increases. And the
turbulent entropy generation rate of other components
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remains small and fluctuates in a very small range as the tip
increases. From Figure 9, we found that part impeller and dif-
fuser are still main location that irreversible energy loss hap-
pens, and the turbulent dissipation of part impeller is more
than double of the dissipation of part diffuser. Therefore, the
impeller is still the largest place that irreversible energy loss
occurs with varying tip. And the tip clearance has a little
impact on turbulent dissipation of part impeller.

4.3. Cavitation Patterns and Entropy Generation
Distributions with Varying NPSH. When axial-flow pumps
operate under cavitation conditions, lower pressure gener-
ally is located at leading edges of blades’ suction sides near
part impeller’s shroud; thus, the cavitation generally occurs
around blade suction surfaces of the impeller. Meanwhile,
the impeller has the largest energy dissipation for this
axial-flow pump, and most are turbulent dissipation based
on the above analysis. Therefore, we here mainly study the
cavitation patterns and detailed turbulent entropy genera-
tion rate distributions for part impeller. To study the
impacts of NPSH on cavitation patterns and entropy gener-
ation distributions, we fix the flow rate to 302.917 kg/s and
the tip clearance to 0.1% span. Figure 10 shows the cavita-
tion pattern, with iso-surface of vapor volume fraction

(αv = 0:1) with varying NPSH for the impeller. Displayed
in Figure 10, the cavitation mainly consists of the attached
sheet cavitation, tip leakage vortex cavitation, and tip clear-
ance cavitation. Among them, attached cavitation on blades’
suction sides and tip leakage vortex cavitation are caused
due to pressure difference between pressure and suction
sides of blades, and tip clearance cavitation is caused by tip
corner vortex on the tip. These types of cavitation also have
been validated applying the PIV experiment and simulations
[18]. For severe cavitation conditions, different types of cav-
itation can merge into a large-scale cavitation cloud and
block the flow passage in part impeller, then finally decreas-
ing the pump performance. As seen from Figure 10, the red
regions of attached sheet cavitation and tip leakage vortex
cavitation both increase greatly as NPSH decreases from
11.492m to 5.83m. While the red areas of tip clearance cav-
itation attached on the blade tip surface has no significant
changes, this may be due to the smallest tip clearance of
0.1% span. With the NPSH reducing displayed in
Figure 10, the attached sheet cavitation extends from first
covering less than half of the blade’s suction surface in
Figure 10(a) to almost covering the entire blade suction tip
side in Figure 10(d). Meanwhile, attached sheet cavitation
region develops thicker and induces the blockage for the
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impeller’s channel with the NPSH reducing. From the
Figure 10, the tip leakage vortex cavitation connects with
attached cavitation, the location at which leakage vortex cav-
itation leaves from the blade near the shroud moves down-
stream. Thus, the NPSH has significant effects on the
cavitation patterns of the impeller.

To study the relations between the cavitation develop-
ment and energy dissipation in part impeller with varying
NPSH, we here draw the contours of vapor volume fraction
at different spans of part impeller as shown in Figure 11 and

its corresponding contours of turbulent entropy generation
distributions at different spans as shown in Figure 12 to con-
duct the analysis. The span from hub to shroud is set as 0~1,
and S0.98 is close to the shroud. Figure 11 displays vapor
volume fraction at varying span (S0.2, S0.5, S0.8, and
S0.98) of part impeller under varying NPSH. As seen from
Figure 11(a), the areas of cavity mainly emerge near
blades’ suction sides, with S0.8 and S0.98 having large cav-
ity areas. When the NPSH reduces to 9.816m as shown in
Figure 11(b), the cavity areas extend larger along the blade
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suction side than that shown in Figure 11(a) for each corre-
sponding span especially for span S0.8 and S0.98. When the
NPSH further drops from 9.816m to 5.83m that changing
from Figure 11(b) to Figure 11(d), the cavity areas increase
obviously for every corresponding span, which is similar with
the variation trend in Figure 10. Thus, the cavity areas of the
impeller extend larger along the blade’s suction side with
NPSH decreasing.

Figure 12 displays distributions of turbulent entropy
generation rate _SD′″ in part impeller at varying span (S0.2,
S0.5, S0.8, and S0.98) under varying NPSH. Detailed turbu-
lent entropy generation rate distributions can help us deter-
mine the locations and magnitude of energy dissipation
intuitively and quantitatively. As seen from Figure 12(a),
the high regions of _SD′″ most happen near suction surfaces
of blades, with S0.98 having largest turbulent dissipation.
Through comparing Figure 11 with Figure 12, we observe
that the cavitation development has a strong relation with
turbulent entropy generation distributions of part impeller.
The relation reflects on the field that the high regions of tur-
bulent entropy generation are generally concentrated on the
rear part of the cavity for every corresponding span of the
impeller. When the NPSH decreases to 9.816m displayed
in Figure 12(b), the distributions of turbulent generation rate
are similar with the phenomena displayed in Figure 12(a),
but the high areas of _SD′″ at span S0.98 extend larger than
that displayed in Figure 12(a). As the NPSH further
decreases to 7.562m displayed in Figure 12(c), the large
regions of _SD′″ expand larger along the blade’s suction side
for each corresponding span especially for S0.98 than that
displayed in Figure 12(b). As the NPSH drops to 5.83m dis-
played in Figure 12(d), the high areas of _SD′″ extend farther
along the blade suction side for S0.98 and other correspond-
ing span. The distribution of large turbulent dissipation at

S0.98 shown in Figure 12(d) becomes more disorder and
moves more downstream of the impeller than that displayed
in Figure 12(c). From the analysis above, we can conclude
that the turbulent entropy generation rate of part impeller
is mainly located at rear part of the cavity and expand along
suction surfaces of blades, with S0.98 having higher turbu-
lent dissipation under these cavitation conditions. And the
high areas of turbulent dissipation in part impeller expand
larger and move downstream along the blade suction side
especially for S0.98 with NPSH reducing. For the cavitation
development, the cavity areas increase along the blade suc-
tion side especially for the span S0.8 and S0.98 with the
NPSH decreasing. As for the relation between the cavitation
patterns and turbulent dissipation, the cavity areas and high
areas of turbulent dissipation both increase especially for the
spans near the shroud with the decrease of the NPSH.
Besides, the regions of high turbulent dissipation are mainly
occurred at the rear part of cavity and trail of the blade for
every corresponding span of the impeller, which indicates
that the energy dissipation is concentrated on the rear part
of the cavity and the tail of the blade. To study the reason
why the high turbulent dissipation gathers in these places,
we draw their corresponding contours of turbulence kinetic
energy at varying span (S0.2, S0.5, S0.8, and S0.98) of part
impeller displayed in Figure 13 to analyze. Through the
comparison between the turbulence kinetic energy distribu-
tions in Figure 13 and distributions of turbulent entropy
generation in Figure 12, we can observe that the regions of
large turbulence kinetic energy also have high turbulent
entropy generation rate. To deeply investigate the reason
for large turbulence kinetic energy near the shroud, here,
draw velocity vector on S0.98 under different NPSH with a
tip clearance of 0.1% span shown in Figure 14 to analyze.
In Figure 14, there is a backflow area at the rear part of the
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Figure 15: Cavitation patterns with varying tip clearance under NPSH = 9:816m. Iso-surface of vapor volume fraction (αv = 0:1) ((a) h
= 0:1% span; (b) h = 0:3% span; (c) h = 0:6% span; (d) h = 0:8% span).
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cavity and a wake area at the tail of blade, and the backflow
area moves downstream and expands along blades’ suction
sides with the NPSH declining. When the thickness of the
backflow area gets close to the thickness of the rear of the
cavity, the cavity trail would no longer attach to the blade
suction side. When large scale of tail part of the cavity shed
from blades, the unsteadiness of the flow increases and high
turbulence kinetic energy are generated there. Thus, the
unstable flows caused by the rear of the cavity shedding
and wake flows are generated at the rear part of the cavity
and tail part of the blade, then gathering high turbulence
kinetic energy of these areas and finally resulting in large
turbulent dissipation there. Therefore, the turbulent dissipa-
tion has a close relationship with the cavitation pattern for
part impeller. And NPSH has significant impacts on the cav-
itation development and turbulent dissipation especially the
span near part impeller’s shroud.

4.4. Cavitation Patterns and Entropy Generation
Distributions with Varying Tip Clearance. To study impacts
of tip clearance on cavitation patterns and entropy genera-
tion distributions for the impeller, we fix the NPSH to
9.816m and flow rate to 302.917 kg/s. Similar to the above

analysis, the cavitation patterns by iso-surface of vapor vol-
ume fraction (αv = 0:1) with varying tip clearance for the
impeller are shown in Figure 15. Also from Figure 15, the
cavitation mainly includes the attached sheet cavitation, tip
leakage vortex cavitation, and tip clearance cavitation. With
the tip increasing from 0.1% span to 0.3% span from
Figure 15(a) to Figure 15(b), the red areas of tip leakage vor-
tex cavitation and tip clearance cavitation attached on the
blade tip increase obviously under the same NPSH = 9:816
m, while the areas of attached sheet cavitation on blade suc-
tion surface change less obviously with the tip increasing
from 0.1% span to 0.3% span. Meanwhile, the tip leakage
vortex cavitation connects with attached cavitation, the loca-
tion at which leakage vortex cavitation leaves from blade
suction side near the shroud moving downstream as the
tip growing from 0.1% span to 0.3% span. With the tip
increasing further from 0.3% span to 0.6% span, regions of
tip leakage vortex cavitation change from a cavity with holes
in Figure 15(b) to a solid and larger cavity that thickens
nearer the impeller’s inlet in Figure 15(c). Meanwhile, the
location at which tip leakage vortex cavitation detaches from
the blade suction surface near the shroud changes not evi-
dently with tip clearance growing from 0.3% span to 0.6%
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Figure 16: The vapor volume fraction at different spans in part impeller for varying tip clearance under NPSH = 9:816m ((a) h = 0:1% span;
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span. And areas of tip clearance cavitation that attached on
blade tip surface have not evident changes with the growth
of the tip from 0.3% span to 0.6% span. As the tip gets to
0.8% span, regions of tip leakage vortex cavitation expand
larger, moving more toward the impeller inlet as shown in
Figure 15(d) than that as shown in Figure 15(c). Also, the
location at which tip leakage vortex cavitation detaches from
blades and areas of tip clearance cavitation have not evident
changes as the tip growing from 0.6% span to 0.8% span. All
in all, we can conclude that the tip gap alters the pattern of
tip leakage vortex cavitation and clearance cavitation under
this same NPSH. This indicates that tip clearance mainly
effects on cavitation patterns near the shroud for the impel-
ler under the same NPSH = 9:816m.

Like the analysis above, we here draw the contours of
vapor volume fraction and turbulent entropy generation at
different spans in part impeller as shown in Figures 16 and
17 to investigate impacts of tip width on the cavitation
development and energy dissipation for the impeller.
Figure 16 shows the vapor volume fraction at different spans

(S0.2, S0.5, S0.8, and S0.98) of the impeller with varying tip
clearance under the same NPSH = 9:816m. Figure 16(a) is
the same with Figure 11(b), and the areas of cavity mainly
occur near the blades’ suction surfaces especially for the span
S0.8 and S0.98. When the tip increases to 0.3% span dis-
played in Figure 16(b), regions of the cavity at span S0.98
extend larger along the blade suction side than that dis-
played in Figure 16(a). As the tip further increases from
0.3% span to 0.8% span that changes from Figure 16(b) to
Figure 16(d), the cavity areas mainly change at span S0.98,
and the cavity moves more towards the impeller inlet, which
is consistent with variation phenomenon in Figure 15. Thus,
the increase of tip clearance mainly changes the cavity areas
at S0.98 of part impeller. Figure 17 displays the distributions
of turbulent entropy generation rate _SD′″ in part impeller at
different spans (S0.2, S0.5, S0.8, and S0.98) with varying tip
under NPSH = 9:816m. Figure 17(a) is the same with
Figure 12(b), and high regions of _SD′″ are located near the
suction surfaces of blades, with S0.98 having larger turbulent
dissipation. Through comparing Figure 16 with Figure 17,
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we also found that high regions of turbulent entropy gener-
ation rate are generally located at the rear part of cavity for
every corresponding span of part impeller. As the tip
increases from 0.1% span to 0.3% span with same NPSH,
high areas of turbulent entropy generation rate at span
S0.98 move farther downstream along the blade suction side
that seen changing from Figure 17(a) to Figure 17(b). When
the tip clearance further increases to 0.6% span displayed in
Figure 17(c), the large regions of _SD′″ at span S0.98 extend
and move towards the impeller inlet comparing with
Figure 17(b). As the tip clearance grows to 0.8% span dis-
played in Figure 17(d), the areas of high _SD′″ have small
changes towards the impeller inlet comparing the high
regions of _SD′″ displayed in Figure 17(c). Also, the unstable
flows caused by cavity shedding at the rear of the cavity
and wake flows at the trail of the blade induce large turbu-
lent dissipation at S0.98 in part impeller. In our current
research for the cavitation flows, we conclude that the tip
clearance mainly influences the cavitation development
and turbulent dissipation distribution around part impeller’s
shroud under the same NPSH. Meanwhile, the turbulent dis-
sipation has a strong relation with the cavitation pattern for
different tip within part impeller, which reflects on the field
that high turbulent dissipation is generally located at the rear
part of cavity for every corresponding span.

5. Conclusions

In the current research, the impacts of different NPSH and
tip clearance width on cavitation patterns and energy dissi-
pation in an axial pump are investigated applying numerical
simulations with entropy generation method. Through cal-
culating overall entropy generation rate of different parts
and analyzing the cavitation patterns and entropy genera-
tion distributions for the impeller under varying conditions,
we can summarize the following conclusions.

(1) The calculated results indicate that pump perfor-
mance declines greatly as NPSH reducing with same
tip size of 0.1% span, which shows that there are
more energy losses when the cavitation becomes
more severe. With the tip growing from 0.1% span
to 0.8% span under the same cavitation condition
(NPSH = 9:816m), the pump performance decreases
slightly. Meanwhile, part impeller and diffuser are
mainly places of entropy generation for different
NPSH and tip width; part impeller is the component
with more than 50% of the dissipation for the entire
pump. And most are turbulent dissipation.

(2) As the NPSH decreases from 11.492m to 5.83m
under the tip clearance of 0.1% span, the regions of
attached sheet cavitation and tip leakage vortex cav-
itation near blades both increase greatly as displayed
in Figure 10, while the areas of tip clearance cavita-
tion attached on the blade tip surface have no signif-
icant changes. The cavity areas of the impeller
extend larger along blade suction side especially for
the span S0.8 and S0.98 with the decrease of the

NPSH. With the NPSH decreasing, the high regions
of dissipation in part impeller expand along the
blades and move downstream, with S0.98 having
larger turbulent dissipation under the same tip clear-
ance of 0.1% span. Besides, the areas of large turbu-
lent dissipation are mainly located at the rear part
of cavity for every corresponding span of the impel-
ler, which indicates that the turbulent dissipation has
a relationship with cavitation pattern of part impel-
ler. The unstable flows caused by cavity shedding at
the rear of the cavity and wake flows near the blade
trail induce high turbulent dissipation of part impel-
ler. Therefore, the change of NPSH has significant
impacts on the cavitation development and turbu-
lent dissipation especially for the span near the
impeller’s shroud.

(3) With the tip growing from 0.1% span to 0.8% span
under the same NPSH displayed in Figure 15, the
areas of tip leakage vortex cavitation and tip clear-
ance cavitation near the shroud expand along blade
suction surface. This indicates that tip clearance
mainly effects on cavitation patterns near the shroud
for the impeller under the same NPSH. With the tip
clearance growing, high regions of turbulent dissipa-
tion are mainly distributed along the blade suction
sides and move downstream, with the span S0.98
having larger turbulent dissipation. Also, the regions
of high turbulent dissipation are mainly occurred at
the rear part of cavity for every corresponding span
in part impeller. Thus, the tip clearance width
mainly influences the cavitation development and
turbulent dissipation distributions around part
impeller’s shroud under the same NPSH.

Nomenclature

Q: Mass flow rate (kg/s)
D: Impeller diameter (mm)
H: Head (m)
n: Rotational speed (r/min)
Hd : Design head (m)
Qd : Design flow rate (kg/s)
M: Torque (N ∗m)
Ω: Rotor angular velocity (rad/s)
p: Pressure (Pa)
g: Gravity acceleration (m/s2)
pv: Vapor pressure (Pa)
h: Tip clearance width (mm)
ρ: Density (kg/m3)
αv : Volume fraction of vapor
φ : Flow coefficient
ψ: Head coefficient
η : Pump efficiency (%)
ω: Characteristic frequency
μ: Molecular viscosity
μt : Turbulent viscosity
k: Turbulence kinetic energy (m2/s2)
NPSH: net positive suction head (m)
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Subscripts l, m, v: Liquid, mixture, vapor
u, v,w: Velocity component along x, y, z direc-

tion (m/s)
ðÞ: Mean component
ðÞ’: Fluctuating component
LE: Leading edge
TE: Trailing edge
PS: Pressure side
SS: Suction side
_S
”
D:

Entropy generation rate caused by time-
averaged movements (Wm-3K-1)

_S”D′ : Entropy generation rate caused by
velocity fluctuations (Wm-3K-1)

_S�D: Overall entropy generation rate caused
by time-averaged movements of a region
(W/K)

_SD ′: Overall entropy rate caused by velocity
fluctuations of a region (W/K)

_SD: Overall entropy generation rate of a
region (W/K).
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To solve the brake caliper disc brake piston sealing ring in the high temperature, pressure, and changeful, complex working
environments, such as vibration failure cause brake short service life, low reliability, in the original brake piston O seal ring
and cross section, the research, based on the standard of sealing ring, such as special-shaped seal structure is put forward in
order to improve the reliability of the caliper disc brake piston sealing performance. Based on the basic concept of time-
varying reliability and the theoretical basis of stress-strength interference model, the time-varying reliability model of the plum
blossom seal ring of the brake piston under shear stress failure and leakage failure modes was established. The reliability of the
plum blossom seal ring under single failure mode and multiple failure modes is obtained. The results show that under the
same conditions, the reliability of the plum blossom seal ring is greater than that of the O seal ring, and its sealing
performance is better than that of the O seal ring.

1. Introduction

With the progress of vehicle technology and the improve-
ment of vehicle speed, higher requirements are put forward
for the quality of vehicle braking system. The caliper disc
brake is widely used in automobile braking systems because
of its excellent characteristics such as stable braking, good
heat dissipation, high safety, and convenient installation
and maintenance [1, 2]. The sensitivity and reliability of
the caliper disc brakes have a great relationship with the
rationality of the sealing structure of the brake piston. The
function of the sealing structure is to ensure that the brake
fluid cannot leak through the sealing ring during the braking
process and provide sufficient reset force for the brake piston
at the end of the braking process. At present, the brake pis-
ton seal structure adopts the form of O-shaped or rectangu-
lar section seal ring. Although the traditional standard O-
shaped or rectangular section seal form is widely used
because of its simple structure, low cost, compact design
structure, and easy installation, the brake piston seal is under
time-dependent and complex working conditions such as

high temperature, variable pressure and vibration, leakage,
wear, insufficient elasticity, and other phenomena are easy
to occur, to reduce the braking efficiency and even brake fail-
ure, affecting the driving safety. On the premise of ensuring
the braking efficiency of caliper disc brake, research and
explore new structural forms which can meet the special-
shaped seal of high-efficiency brake piston, to improve the
reliability of the sealing performance of caliper disc brake
piston.

Based on the caliper disc brake piston special-shaped
seal structure plum flower ring as the research object, the
brake piston stress of the plum flower ring is seen as a ran-
dom process, to have the maximum stress as equivalent
stress, equivalent stress analysis how the probability distri-
bution of changes over by stress; according to the stress-
strength interference theory model, the whole working time
was divided into n periods to calculate the reliability, and the
time-varying failure reliability model of the quincunx seal
ring of the brake piston was established. At the same time,
the failure of the brake piston seal ring was divided into
shear stress failure and leakage failure by using the total
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probability formula and stress-strength interference model,
and the time-varying failure reliability of the brake piston
ququin-shaped seal ring and O-shaped seal ring under single
failure mode and multiple failure modes was analyzed and
calculated.

2. Time-Dependent Reliability Calculation of
Brake Piston Seal of Caliper Disc Brake

Reliability design is regarded as a leap of safety design con-
cept. In the process of reliability analysis, load, strength,
and other design parameters are treated as random variables,
so it can describe load properties and material properties
objectively and scientifically. At the same time, the goal of
reliability design is to ensure that the strength is greater than
the load, and the safety degree of the design can be expressed
quantitatively. As shown in Figure 1, when the brake piston
works under random load, the contact force of the seal ring
changes with the passage of time. If reliability and failure
rate are taken as its performance indicators, the reliability
model of the seal ring can be expressed as a function of reli-
ability over time [3]. Real-time variable reliability analysis is
to analyze the probability distribution of the performance
function of the brake piston seal ring when the input is ran-
dom variable.

2.1. The Calculation Method of Time-Dependent Reliability.
Structural reliability can be expressed as the ability of a
system to accomplish the specified task under a certain
times and conditions or the probability that the product
can work normally at the specified time in the normal ser-
vice environment. Generally, the limit state function for
the reliability of time-invariant structures is a random var-
iable model.

Z = g Xð Þ = g X1, X2,⋯, Xnð Þ, ð1Þ

When analyzing the reliability, variables X1, X2, ⋯ , Xn
are generally used to replace the factors affecting the struc-
ture. It can be seen from the above formula that the tradi-
tional study of reliability does not take into account the
change of pressure over time and the influence of other
factors. During the working period, the brake piston of
clamp disc brake will be affected by time-varying factors
such as abrasion of sealing structure materials and variable
pressure, and its sealing performance will be reduced,
resulting in the decrease of contact stress with the increase
of working time. The ability of the piston seal ring to
complete the sealing function under the given conditions
will be reduced, that is, the working reliability of the pis-
ton seal structure will be reduced [4, 5].

In order to accurately calculate the brake piston seal reli-
ability, based on the definition of reliability, considering the
time factor, the two scholars of domestic Li Yi and Yan Yun
through research suggests that for most of the system model
structure, its load effect and structural resistance are changes
over time, and changes in the reliability of the stochastic
process is a dynamic process. At the same time, the two
scholars obtained the relationship expression of the time-

varying reliability function of the system structure:

Z tð Þ = g R tð Þ, S tð Þ½ � = R tð Þ − S tð Þ: ð2Þ

In Equation (2), SðtÞ is the loading effect, namely, the
random application process of the medium pressure load,
RðtÞ is the random process of the system structure resistance,
that is, the contact stress of the sealing ring, and ZðtÞ is the
function of the sealing ring in a certain limit state. The ran-
dom process is a linear or nonlinear function. Then, the reli-
ability probability of the piston sealing ring in the period T
can be expressed as:

P Tð Þ = P Z tð Þ > 0, t ∈ 0, T½ �f g = P R tð Þ − S tð Þ > 0, t ∈ 0, T½ �f g:
ð3Þ

The contact stress of the brake piston quin-shaped seal
ring is greater than the pressure of the brake fluid at every
moment ti during the working period. In this case, the brake
piston seal ring can be in a reliable normal working state.
According to the complementary theorem of probability,
the failure probability of the piston seal ring within the ser-
vice period T can be expressed as:

Pf = 1 − Ps Tð Þ = P R tið Þ < S tið Þ, ti ∈ 0, T½ �f g: ð4Þ

Formula (4) shows that in the working process of the
brake piston quin-shaped seal ring, as long as there is a
moment when the contact stress of ti sealing structure is less
than the medium pressure, the sealing failure phenomenon
will occur. The reliability probability and failure probability
expressed by Equation (3) and Equation (4) are both related
to the factor of time T , which is called time-dependent reli-
ability analysis.

2.2. Stress-Strength Interference Model. The stress-strength
interference model is the basic model for calculating the reli-
ability of components. In the process of calculating the reli-
ability, the basic idea of interference analysis with random
variables can be expressed as follows: as shown in Figure 2,
the probability density function curves of stress and strength
are drawn in the same coordinate system. Generally, an
interference phenomenon happens when the two curves
intersect. It will appear failure where the stress is larger than
the strength [6]. The stress and strength in the definition are
both generalized, and the stress can be the external factors
leading to the failure of the sealing ring or sealing system,
such as the pressure, friction, and wear of the brake fluid.
Strength is the resistance of the sealing ring or sealing system
corresponding to various stresses, such as static strength,
fatigue static strength, and contact stress. When the proba-
bility density function of strength S is f SðSÞ and the proba-
bility density function of stress s is f sðsÞ, the probability
density function of the reliability R can be expressed as
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follows:

R = P S > sð Þ =
ð+∞
−∞

f s sð Þ
ð+∞
s

f s Sð ÞdSds =
ð+∞
−∞

f s Sð Þ
ðδ
−∞

f s sð ÞdsdS:

ð5Þ

Then, the failure probability F is expressed as follows:

F = 1 − R =
ð+∞
−∞

f s sð Þ
ð+∞
s

f s Sð ÞdSds =
ð+∞
−∞

f s Sð Þ
ð−∞
S

f s sð ÞdsdS:

ð6Þ

When the stress distribution overlaps with the strength
distribution due to some external or internal reason, the
stress strength interference phenomenon occurs. The shaded
part in Figure 2 is the “stress-strength interference area”.
The larger the area of the stress strength interference area,
that is, the larger the shadow part in the figure, the greater
the probability that the stress is greater than the strength,
and the greater the failure possibility of the structure.

When the brake piston seal ring is subjected to a single
load in the working process, the probability density function
of strength S is expressed as f SðSÞ, and the probability den-
sity function of load L is expressed as f LðLÞ. As the stress-
strength interference theory shows, the reliability of the seal
ring can be expressed as follows:

R =
ð+∞
−∞

f L Lð Þ
ð+∞
s Lð Þ

f S Sð ÞdSdL: ð7Þ

Equation (7) is suitable for calculating the reliability of
seal rings under a single load or under a single failure mode.
In practice, seal rings are often affected by different failure
modes which are independent of each other. When there
are multiple failure modes in the working process of the seal-
ing ring, every failure mode will cause the sealing ring to fail.

As is shown in Figure 3, the reliability calculation of the
brake piston seal ring can be equivalent to the reliability of
the series system constituting its failure mode [7, 8].

When the working load of the sealing ring is a definite
value L, there is an independent relationship among the fail-
ure modes. The reliability of the sealing ring can be equiva-
lent to the reliability of the series system under independent
failure. The reliability RL can be expressed as follows:

RL = P S1 > s1 ∩ S2 > s2>⋯Snð Þ
= P S1 > s1 Lð Þ

� �
P S2 > s2 Lð Þ
� �

⋯ P Sn > sn Lð Þ
� �

:
ð8Þ

In formula (8), when the load is determined value L, if
the applied load obeys the random variable of the density
function f LðLÞ, the relationship expression of the reliability
R of the sealing ring can be obtained according to the stress
strength interference theory and the calculation formula of
full probability, as shown in

R =
ð+∞
−∞

P S1 > s1 ∩ S2 > s2>⋯Sn > snð Þf L Lð ÞdL

=
ð+∞
−∞

f L Lð Þ
ð+∞
s1 Lð Þ

f S1 S1ð ÞdS1
ð+∞
s2 Lð Þ

f S2 S2ð ÞdS2⋯

�
ð+∞
sn Lð Þ

f Sn Snð ÞdSndL

=
ð+∞
sn Lð Þ

f L Lð Þ
Yn
i=1

ð+∞
si Lð Þ

f Si Sið ÞdSi
( )

dL,

ð9Þ

where Si is the strength in failure mode i, i = 1, 2,⋯n, SiðLÞ
is the stress generated by load L in failure mode i, and n is
the number of failure modes. If the value of n is 1, it becomes
the reliability of components under a single failure mode,
which is a general stress-strength interference theoretical
model.

3. Force Model of Brake Piston of Caliper
Disc Brake

The friction force produced by the contact surface between
the brake piston seal ring and the brake piston can make
the seal ring produce a certain contact stress, which is
used to resist the pressure of the brake fluid acting on
its surface. When the contact stress is greater than the
pressure of brake fluid, Von·Mises stress will make the seal
ring leak in the direction of pressure. As a result, it will

Model : g = f (x,y (t))

y (t) y1(y)

y2(t)
g(t)

t

t

x

Figure 1: Input and output of time-varying reliability.

0

f(s)

f(s)
h(s)

h(s)

s,S

Figure 2: Stress-strength interference (SSI) model.
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destroy the original contact state and reduce the sealing
performance.

Assuming that the seal structure of the brake piston is a
rectangular sealing ring, the deformation diagram of the
rectangular sealing ring in the working process is shown in
Figure 4. When the brake fluid pressure is p0, the sealing ring
and the piston will only have a relatively sliding contact
without force deformation, and what remains unchanged is
the width of the contact, that is, the pressure of the deformed
rectangular sealing ring on the piston is distributed in a rect-
angular shape, which can be expressed by a rectangular abce.
At the same time, to keep the rectangular seal ring well
sealed in the contact width, in the pressure direction of the
brake fluid, the pressure drops from p0 to p0′ = 0, so that
the pressure distribution generated by the oil pressure can
be represented by a triangle εmin. The sealing condition of
the rectangular seal is that the contact stress is greater than
the brake fluid pressure. The contact pressure can be
expressed by the area A1 of rectangular abce, and the
medium pressure can be expressed by the area A2 of triangle
εmin. Then, the condition of sealing structure is that the area
A1 of rectangular.

abce is larger than the area A2 of triangle εmin. The aver-
age stress produced by sealing ring to piston is p0/2 [9].

The hold force F of the sealing ring to the piston is:

F = π ⋅ d ⋅ b0 ⋅
p0
2 , ð10Þ

where d is the inner diameter of the piston sleeve of brake

caliper in mm, b0 is the diameter of the sealing ring in
mm, and p0 is the braking pressure of hydraulic oil in MPa.

Assuming that the friction coefficient between the seal
ring and the piston sleeve of the brake caliper is expressed
as μ, the friction resistance F0 required to ensure good seal-
ing performance can be expressed as follows:

F0 = μN = μπ ⋅ d ⋅ b0 ⋅
p0
2 : ð11Þ

The friction provided by the seal ring is expressed as Fε.
The radial deformation ε of the seal ring is the main cause of
friction Fε.

ε = h0 − hð Þ
h0

× 100%, ð12Þ

Fε = μ ⋅ σ ⋅ S = μ ⋅ σ ⋅ π ⋅ d ⋅ b0, ð13Þ
where μ is the friction coefficient of rubber material, h is the
thickness of the compressed seal ring in mm, h0 is the thick-
ness of the seal ring without pressure in mm, S is the contact
area between the seal ring and the piston sleeve of brake pli-
ers in mm2, and σ is the compressive stress in MPa. The
number of σ is determined by the function of the deforma-
tion of the seal ring and the parameters of the rubber mate-
rial. The material parameters will change with the change of
temperature because the rubber is a hyperelastic body.
Therefore, the relationship between stress and strain is not
linear throughout the working period.

In order to ensure good sealing performance, the sealing
rings need to be satisfied: σxy. From Equation (11) and Equa-
tion (13), we can come to the conclusion that σmin = p0/2.

2
3 E 1 + 2μ ⋅

b0
2h0

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 − εmin
p + εmin − 1

� �
= p0

2 : ð14Þ

In Equation (14), εmin is the minimum deformation of
the sealing ring in the sealing process.

When the brake pressure disappears, the brake piston
returns to the original position which is the starting position
of the brake under the reset force of the seal ring. The reset
force and the internal pressure are equal.

Ffw = F0 = π ⋅ μ ⋅ π ⋅ d ⋅ b0 ⋅
p0
2 : ð15Þ

The relationship between the maximum contact stress of
the sealing ring and the hydraulic pressure is approximately
linear, which conforms to the self-tight sealing mechanism
[10].

Pz = P0 + kp, ð16Þ

where Pz is the maximum contact stress on the sealing ring,
P0 is the maximum contact pressure on the sealing ring dur-
ing installation, the P on behalf of the pressure of brake fluid,
and k is the fluid pressure transfer coefficient and can be

Failure mode 1 Failure mode 2 Failure mode n

Figure 3: Reliability block diagram of series system.
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Figure 4: Pressure stress of the piston by the deformation of the
seal ring.
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taken as 1 for O-ring. As for other types of sealing ring, it
depends on the type of sealing ring [11–13].

4. Time-Dependent Reliability Analysis of
Special-Shaped Seal Ring of Brake Piston

As a key component of caliper disc brakes, the brake piston
sealing ring will not only reduce the braking performance
but also greatly reduce the safety of driving. Therefore, the
reliability of the sealing ring can affect the efficient braking
performance of the vehicle. In this paper, time-dependent
reliability analysis of special-shaped seal ring of the brake
piston takes plum-shaped seal ring as an example (as shown
in Figure 5). There are four sealing contact planes designed
at the contact between the quincunx seal ring and the groove
of the brake piston and the brake caliper piston, to achieve
good self-sealing function; at the same time, grooves are
designed on the four seal contact planes to store lubricating
oil, so as to improve the lubrication capacity of the special-
shaped seal ring and reduce the wear in the reciprocating
process and effectively reduce the leakage. Because the cross
section of the special-shaped seal ring is similar to plum
blossom, it is called plum blossom seal ring.

The failure modes of the seal ring can be divided into
shear failure and leakage failure. The maximum shear stress
of the plum ring is σxy, and the shear resistant strength is τ0.
Plum blossom seal ring will fail due to shear failure when the
maximum shear stress of the sealing ring is greater than its
shear resistant strength. The shear failure function of plum
blossom seal ring is assumed to be as follows:

g xð Þ = τb½ � − σxy, ð17Þ

where σxy is the maximum shear stress of the plum-shaped
seal ring which can be calculated in the finite element soft-
ware ANSYS Workbench, [τ0] is the allowable shear
strength of rubber, p is the pressure of brake fluid, and
ðσxÞmax is expressed by the maximum contact stress of
plum-blossom seal ring. Therefore, the leakage failure func-
tion can be described in

g xð Þ = σxð Þmax − p: ð18Þ

4.1. Determination of Maximum Shear Stress Distribution.
The maximum shear stress of the plum-shaped seal ring
of the brake piston is related to the parameters of com-
pression, medium pressure, and friction coefficient.
Because each parameter has the characteristics of random-
ness, the stress σxy also belongs to random variables and
has certain distribution characteristics. The uncertainty of
the load means that the load applied to the brake piston
is a random quantity subject to a certain distribution.
The load value for calculating the reliability is not fixed.
Its load value fluctuates around the average load, and the
fluctuation range is expressed by the coefficient of varia-
tion [14, 15].

Friction coefficient, medium pressure, and compression
are selected as the main factors affecting the two failure

modes of quincunx seal ring. Set the above three factors as
random variables and assume that the three random vari-
ables obey a normal distribution. The mean value and vari-
ation coefficient of each random variable are shown in
Table 1.

In order to ensure that the quincunx seal ring meets
the strength requirements during operation, the maximum
stress is generally taken as its maximum value during
operation. In the process of time-dependent reliability
analysis of plum-blossom seal failure, the whole working
time is divided into n time periods to calculate the reliabil-
ity. Therefore, the maximum shear force is selected from
the simulated data of each time period to represent the
shear force of that period. From the knowledge of proba-
bility and mathematical statistics, we can know that [16]
a random variable X obeys a normal distribution, and
the n samples X1, X2 ⋯ Xn of X, the maximum values
taken from these samples form the sequence Xm =max ð
X1, X2,⋯,XnÞ, the distribution function of Xm is repre-
sented by FmðxÞ, and the density function is represented
by f mðxÞ, then its expression is:

Fm xð Þ = F xð Þ½ �n, ð19Þ

f m xð Þ = n F xð Þ½ �n−1 f xð Þ, ð20Þ

where FðxÞ represents the distribution function of a single
sample and f ðxÞ represents the density function of a single
sample. At a certain time, the probability distribution FðxÞ
of shear stress X obeys the normal distribution with a
mean value of μ and standard deviation of σ. When the
sample size increases infinitely, the limit distribution of
statistics is similar to that of sampling. Therefore, the
maximum order statistics Xn of random variables ðX1, X2
,⋯,XnÞ obey the extreme value I distribution. The distri-
bution function is:

Fm xð Þ = exp −exp −an x − unð Þ½ �f g: ð21Þ

Figure 5: Plum blossom seal ring.
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The mean and variance are expressed as:

E Xnð Þ = 0:5772
aw

+ uw,

Var Xnð Þ = π2

6a2n
,

ð22Þ

where

un = σ
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln n

p
− σ

ln ln nð Þ + ln 4π
2

ffiffiffi
2

p
ln n

+ μ,

an =
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln n

p

σ
:

ð23Þ

The distribution function of the equivalent shear stress
of the maximum shear stress XðnÞ in each period is
obtained by Equation (21). Taking the plum-blossom seal
ring as an example, the test shows that at the significant
level ðα = 0:05Þ, the maximum shear stress obeys the nor-
mal distribution (μσ = 2:8069 × 106, σσ = 2:5095 × 105), the
cumulative distribution function of the equivalent shear
stress in n time periods is expressed as follows:

Fm mð Þ =
ðx
−∞

1
0:2509

ffiffiffiffiffiffi
2π

p e−1/2 X−2:8069/0:2509ð Þ2dX
� �n

: ð24Þ

By deriving the cumulative distribution function Equa-
tion (24), the expression of the probability density func-
tion f mðxÞ of the equivalent shear stress can be obtained.

f m mð Þ = n
ðx
−∞

1
0:2509

ffiffiffiffiffiffi
2π

p e−1/2 X−2:8069/0:2509ð Þ2dX
� �n−1

⋅
1

0:2509
ffiffiffiffiffiffi
2π

p e−1/2 X−2:8069/0:2509ð Þ2 :

ð25Þ

4.2. Determination of Maximum Shear Resistance Stress
Distribution. According to the actual situation of the shear
stress on the plum-shaped seal ring, the time-dependent
effect of the stress should be taken into account when cal-
culating the time-dependent reliability of the failure of the
plum-shaped seal ring. Therefore, on the basis of the shear
stress and shear strength of the plum-shaped seal ring, the
influence of the random process of stress is considered,

and the function can be expressed as follows:

g X, tð Þ = δ tð Þ − s Y ′, t
� �

, ð26Þ

where δðtÞ is a random variable of shear strength of rub-
ber sealing ring, sðY ′, tÞ is a random process of shear
stress, and Y ′ is a related random variable. The time-
dependent reliability index corresponding to the function
can be expressed as follows:

β tð Þ =
μg tð Þ
σg tð Þ

= E g X, tð Þ½ �
Var g X, tð Þ½ � , ð27Þ

where μgðtÞ is the mean of the function and σgðtÞ is the
standard deviation of the function. The expression of
time-dependent reliability corresponding to the function
can be expressed as

R = φ β tð Þð Þ = P δ tð Þ > s Y ′, t
� �n o

, ð28Þ

where t ∈ ½0, T� and R represents the working reliability of
the sealing ring. To ensure the sealing performance of the
sealing ring, the shear stress of the sealing ring must be
less than its shear strength within each time t in the work-
ing process.

Generally speaking, the sampling data of shear strength
of sealing rings can be obtained mainly through experi-
ments, and then, the correlation distribution and digitally
characteristics can be obtained by statistical calculation.
Assuming that the shear strength of plum-shaped rubber
seal obeys the normal distribution ðμr = 4:46, σr = 0:29Þ,
the shear strength of O-shaped rubber seal obeys the normal
distribution ðμr = 4:6, σr = 0:32Þ [17, 18]. The same method
can be used to calculate the failure time-depending reliability
of plum-shaped seal ring and O-shaped seal ring under leak-
age and the failure time-depended reliability of standard seal
structure.

4.3. Time-Dependent Reliability Distribution of Seal Ring
under Single Failure Mode. The action time history of ran-
dom loads is not considered in the calculation of static reli-
ability model. The calculation of static reliability model
directly uses the stress strength interference theory to solve
the problem, which can express the reliability of the corre-
sponding load within the action time. Based on the actual
working condition of plum-shaped seal ring of brake piston
of forceps disc brake, and taking the action time of the shear
force as the measurement index of the working life, this
paper establishes the time-varying reliability model of the
failure of the plum blossom seal ring.

Assuming that the probability density function of the
maximum shear resistant stress δH of the plum blossom seal
ring is expressed by f δH ðδHÞ, the cumulative distribution
function of contact stress sH is expressed by FsH

ðsHÞ, and
the probability density function is expressed by f sH ðsHÞ.
When calculating the reliability of the plum-blossom seal

Table 1: The mean values and variation coefficients of the random
variables.

Program Compression
Medium
pressure

Coefficient of
friction

Mean values 0.55mm 5MPa 0.15

Variation
coefficients

0.1 0.1 0.1
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ring, according to the stress-strength interference theory, the
reliability of the seal ring in a period of time can be
expressed as follows:

R =
ð+∞
−∞

f δH δð Þ
ðδH
−∞

f sH sHð ÞdsH =
ð+∞
−∞

f δH δHð ÞFsH
δHð ÞdδH :

ð29Þ

In n time periods, as Equation (19) and Equation (20)
show, when the shear strength of plum blossom seal rings
does not change or deteriorate, the cumulative distribution
function FmðsÞ and probability density function f mðsÞ of
the equivalent shear stress can be expressed as follows:

Fm sHð Þ = FsH
sHð Þ	 
n, ð30Þ

f m sHð Þ = n FsH
sHð Þ	 
n−1 f sH sHð Þ: ð31Þ

By substituting Equation (30) and Equation (31) into
Equation (29), the time-dependent reliability of plum-
blossom seal rings in n time periods can be calculated as fol-
lows:

R nð Þ =
ð+∞
−∞

f δH δð Þ
ðδH
−∞

n FsH
sHð Þ	 
n−1 f sH sHð ÞdsHdδH

=
ð+∞
−∞

f δH δHð Þ FsH
δHð Þ	 
ndδH

=
ð+∞
−∞

n f sH sHð Þ
h in−1

f sH 1 − FδH
sHð Þ	 


dsH :

ð32Þ

When the plum blossom seal ring passes through
working n period, the relationship between its failure rate
and reliability is shown in Equation (33) [18]. Therefore,
the expression of the failure rate of plum blossom seal ring

is:

h nð Þ = R nð Þ − R n − 1ð Þ
R nð Þ =

Ð +∞
0 f δH δHð Þ 1−FsH

δHð Þ	 
ndδHÐ +∞
0 f δH δHð Þ FsH

δHð Þ	 
ndδH
=
Ð +∞
0 n − n + 1ð ÞFsH

sHð Þ	 

f sH sHð Þ

h in−1
f sH sHð Þ 1−FδH

SHð Þ	 

dsH

Ð +∞
0 n f sH sHð Þ

h in−1
f sH sHð Þ 1 − FδH

sHð Þ	 

dsH

:

ð33Þ

According to the relationship between the reliability of
the plum blossom seal ring of the brake piston under the
shear stress failure mode and the stress action time and
the shear stress and antishear stress distribution and
parameters introduced earlier, the reliability of plum blos-
som seal ring and O seal ring in shear stress failure mode
can be obtained, as shown in Figure 6. As can be seen
from the figure, under the same conditions, the reliability
of the shaped seal ring is greater than that of the tradi-
tional O seal ring.

4.4. Time-Dependent Reliability Distribution of Seal Ring
under Multiple Failure Mode. Based on the two failure
modes of leakage failure and shear failure of quincunx seal
ring, the time-varying failure reliability model of seal ring
is established in this paper. It can be seen from Equation
(9) that under the assumption that each failure mode is
not related to each other, the reliability of the sealing ring
can be obtained according to the logical relationship of the
series system.

R =
Ym
i=1

Ri =
Ym
i=1

ð+∞
−∞

f +∞si δið Þdδidsi: ð34Þ

The above formula is based on the assumption that the
failure modes are independent of each other, but in practice,
most of the failure modes have a certain failure correlation.
In this case, Equation (34) needs to be revised, and the reli-
ability results [19–21] can be revised according to the exper-
imental data or practical experience. However, the reliability
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Figure 6: Reliability of the shear stress of the brake piston ring.
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obtained by this method is not very accurate, and there is a
big error between the calculated reliability and the practical
reliability.

In the actual work of the seal ring, due to the influence of
various uncertain factors, few failure modes are completely
independent of each other. Therefore, it is of great engineer-
ing significance to establish a multimode reliability model
considering common cause failure. It has been said that in
the working process of the sealing ring, due to the influence
of external environmental factors and their own factors, two
failure forms of shear failure and leakage failure will occur.
According to the stress strength interference theory and con-
sidering various failure modes of the sealing ring, a time-
dependent failure reliability model is established.

When the shear force on the seal ring is equivalent to
force in n time periods, the failure between the two failure
modes is independent. The reliability of the seal ring under
multiple failure modes can be expressed by Equation (8)
and Equation (9):

R nð Þ =
ð+∞
−∞

∐
m

i=1
1 − Fi Lið Þ

� �
n FL Lð Þ½ �n−1 f L Lð ÞdL: ð35Þ

According to the load distribution function obtained
above, the time-dependent failure reliability of seal rings
under various failure modes can be obtained by substituting
Equation (35) as shown in Figure 7. It can be seen from the
figure that the reliability of the sealing ring decreases with
the increase of time, and the reliability under the multieffect
failure mode is smaller than that under the failure mode,
respectively.

5. Conclusions

(1) Based on time-varying reliability of the basic con-
cepts and theoretical basis of stress-strength interfer-
ence model, based on the service life of brake piston

plum blossom seal ring measures, established the
brake piston reciprocating motion situation many
times the load equivalent model of sealing ring, and
the brake piston seal in the shear failure and leakage
failure of reliability model under two kinds of failure
modes

(2) Based on the force model of the brake piston of the
caliper disc brake, the calipering force and friction
resistance of the seal ring before and after the brak-
ing power disappeared are analyzed

(3) For sealing ring shear failure and leakage failure of
the existence of the two failure modes, respectively,
set up special seal structure of the plum blossom seal
ring under single load and failure mode of the stress-
strength interference model, calculate the reliability
under two kinds of failure modes; under the same
conditions, the reliability of the plum blossom seal
ring is greater than the reliability of the O ring
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In recent years, the deep learning-based fault diagnosis methods for rotating mechanical equipment have attracted great concern.
However, because the data feature distributions present differences in applications with varying working conditions, the deep
learning models cannot provide satisfactory performance of fault prediction in such scenarios. To address this problem, this
paper proposes a domain adversarial-based rolling bearing fault transfer diagnosis model EMBRNDNMD. First of all, an
EEMD-based time-frequency feature graph (EEMD-TFFG) construction method is proposed, and the time-frequency
information of nonlinear nonstationary vibration signal is extracted; secondly, a multi-branch ResNet (MBRN) structure is
designed, which is used to extract deep features representing the bearing state from EEMD-TFFG; finally, to solve the model
domain adaptation transfer problem under varying working conditions, the adversarial network module and MK-MMD
distribution difference evaluation method are introduced to optimize MBRN, so as to reduce the probability distribution
difference between the deep features of source domain and target domain, and to improve the accuracy of EMBRNDNMD in
state diagnosis of target domain. The results of experiments carried out on two bearing fault test platforms prove that
EMBRNDNMD can maintain an average accuracy above 97% in fault transfer diagnosis tasks, and this method also has high
stability and strong ability of scene adaptation.

1. Introduction

The rotating mechanical equipment has broad applications
in various fields, such as related industries, military, and
for civil use. As an important component of rotating
mechanical equipment, the rolling bearing directly affects
the operating efficiency and working conditions of mechan-
ical equipment. However, due to long-term exposure to
harsh working conditions of high load, the parts of rolling
bearing tend to suffer from damages. Minor damage may
reduce the operating efficiency of mechanical equipment,
while serious damage might lead to shutdown of equipment,

which may even cause casualties. Therefore, study on the
state detection and fault diagnosis of rolling bearing has
important theoretical significance and engineering value
for improving productivity and ensuring production safety.

In researches on fault diagnosis based on signal process-
ing, good results have has been achieved by combining tradi-
tional feature extraction and machine learning classification
[1–4]. Especially the signal processing method represented
by ensemble empirical mode decomposition (EEMD), the
bearing fault mechanism information can be obtained by
analyzing the intrinsic mode functions (IMFs) of vibration
signal. Han et al. [5] put forward a method for rolling
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bearing fault diagnosis based on EEMD permutation
entropy and fuzzy clustering. Wang et al. [6] proposed an
improved EEMD algorithm, in which the sifting and
ensemble number are self-adaptive. Yang et al. [7] and Hu
et al. [8] proposed a fault detection and diagnosis method
based on EEMD and support vector machine (SVM).
Besides, Shao et al. [9] put forward a method called deep
wavelet auto-encoder with extreme learning machine
(ELM) for intelligent fault diagnosis of rolling bearing. Li
et al. [10] proposed a density-based clustering method with
principal component analysis (PCA) to improve the
performance of variable load diagnosis in fault diagnosis.
In the above researches, appropriate signal processing
methods need to be selected to extract effective features
according to the characteristics of data, such as EEMD,
wavelet transform (WT), and PCA. However, these methods
are too empirical, as a result of which, the selection of fea-
tures will directly affect the diagnosis results. In order to
reduce the influence of human experiences, a better method
is to enable the model to automatically extract features [11,
12].

In recent years, with the rapid development of deep
learning in computer vision, many scholars have applied deep
learning methods to the field of fault diagnosis. Compared
with machine learning, deep learning can adaptively extract
deep features from signals, which has solved the difficulty to
extract fault features [13]. Zhou and Yao et al. [14, 15] devel-
oped a convolutional neural network (CNN) based fault
diagnosis method for rolling rearing by using the waveform
of vibration as the 2-D image input of CNN. Fan et al. [16]
advanced a method about the convolutional neural network
and transfer learning based fault diagnosis method, aiming
at the vibration image samples of rolling bearing affected by
strong noise.

However, with the increase of network layers, the
traditional deep learning methods suffer from the problems
of gradient disappearance and gradient explosion, and as a
result the weight of the model cannot be updated effectively
[17, 18]. In order to solve this problem, HE et al. [19] proposed
a deep residual network (ResNet) in 2015, which uses
shortcuts to directly transmit the data of the front layer to
the back layer of the network and completes the feature fusion
through addition. Wei et al. [20] presented a novel framework
that combines a residual network as a backbone and an
extreme learning machine as a classifier to diagnose the faults
of rotating machinery. Wang and Wen et al. [21, 22]
constructed a multi-scale deep intra-class adaptation network,
which uses the modified ResNet-50 to extract low-level fea-
tures, and the experimental results show that the model
outperforms both other deep learning models and the
conventional methods. How to effectively extract features in
the bearing intelligent diagnosis model is a problem worthy
of study. This article proposes a method based on the EEMD
and improved multi-branch ResNet to extract deep features
of bearing faults from the time domain and frequency domain.
However, the success of deep learning methods in fault
diagnosis largely depends to sufficient and labelled training
samples, but it is difficult to meet these requirements in
practical works.

Transfer learningmethod can effectively solve the problem
of data scarcity, because it is able to apply the knowledge
learned in the source domain into the target domain, which
can help improve the prediction accuracy of unlabelled data
[23–26]. In the field of fault diagnosis, the transfer learning
methods can be divided into model-based methods, such as
maximum mean discrepancy (MMD), and domain
distribution-based methods, such as domain adversarial train-
ing of neural networks (DANN) [27–29]. Li and Yang et al.
[30, 31] presented a feature representation enhancement
method based on MMD and domain confrontation training.
Che et al. [32] put forward a domain-based adaptive method,
which can calculate the multi-core maximummean difference
(MK-MMD) of the selected hidden layer and add it to the loss
function, so as to improve the generalization ability of the deep
neural network. Tang et al. [33] integrated the MK-MMD loss
into the traditional fine-tuning convolutional neural network
(CNN) transfer learning framework and proposed a new
semi-supervised transfer learning (STL) method. Mao and
Cai et al. [34, 35] advanced a novel adversarial DA method
called the adversarial residual transformation network
(ARTN), which directly transforms the source features into
the target feature space to improve the generalization capabil-
ity. Li et al. [36] came up with a novel weighted adversarial
transfer network (WATN) for fault diagnosis in certain
domains and achieved satisfactory performance. Both MMD
and DANN have achieved good performances in fault diagno-
sis, but in some situations of variable working conditions, a
single transfer method often performs poorly. Therefore, this
paper proposes a multiple transfer fault diagnosis method
combining MMD and DANN to address degradation of
model diagnosis performance in scenarios with transfer of
working conditions.

The deep learning technique has the advantage of
adaptively extracting deep features of data, which can be used
to build an end-to-end diagnosis mechanism. A lot of
researches have been carried out on intelligent diagnosis
models for rotating mechanical equipment based on deep
learning. However, various problems are also encountered in
current studies, such as vibration signals susceptible to
interference of noises, insufficient samples of equipment
faults, and the difference in distributions between target data
and source data caused by change of equipment working con-
ditions. Solving these problems should be the focus of deep
learning-based fault diagnosis model in future studies.

In our paper, the EEMD method is adopted to preprocess
the rolling bearing vibration signal, and we propose obtaining
the time-frequency information of vibration signal by building
EEMD-TFFG. To address the problem of degraded model
diagnosis ability under transfer of working conditions, DANN
and MK-MMD are introduced to optimize the multi-branch
ResNet (MBRN), so as to reduce the differences in probability
distributions of deep features between source domain and
target domain and to improve the state diagnosis accuracy of
target domain. The main contributions of this paper are as
follows:

(1) We propose an EEMD-based vibration signal con-
struction method—EEMD-TFFG, so as to achieve
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time-frequency analysis and feature extraction of
vibration signals

(2) A multi-branch feature extraction network MBRN
based on ResNet is designed, which can extract deep
features reflecting the fault state from EEMD-TFFG

(3) DANN and MK-MMD are introduced to optimize
MBRN, reduce the probability distribution difference
of data deep features between source domain and
target domain, and improve the diagnosis ability of
EMBRNDNMD under transfer of working
conditions. The experimental analysis results show
that EMBRNDNMD can achieve a high diagnosis
accuracy for target domain states under various
transfer modes, which has a strong ability to adapt
to varying working conditions

Section 2 introduces the principles of various methods,
including EEMD, ResNet, DANN, and MK-MMD; Section
3 presents the design idea and the structure of
EMBRNDNMDmodel; in Section 4, experiments are carried
out on the two datasets of CWRU and MFS-RDS by using
EMBRNDNMD, and related analysis is conducted; Section
5 draws conclusions of our work. Furthermore, we present
some acronyms in Table 1.

2. Preliminaries

2.1. Ensemble Empirical Mode Decomposition (EEMD). Hil-
bert-Huang transform (HHT) is one of the time-frequency
analysis methods with broadest applications. First, HHT carries
out empirical mode decomposition (EMD) of signal to obtain a
series of intrinsic mode functions (IMFs) of different scales;
then, instant frequency information with physical significance
is obtained through Hilbert transform of various IMF
components. However, EMD still has some problems, such as
end effect and mode confusion [37], which may reduce the
accuracy of fault classification. To address the mode confusion
problem of EMD, Zhaohua et al. [38] proposed the ensemble
empirical mode decomposition (EEMD) method based on
EMD. EEMD adds white Gaussian noise on the basis of
original signal, which makes the signal smooth, effectively
inhibits mode confusion, and improves the precision of signal
decomposition. The decomposition process of EEMD is as
shown in Figure 1.

The specific decomposition procedure of EEMD consists
of following steps:

(1) For the given original signal xðtÞ, initialize variable i
=1, and set the mean times of EEMD set as M

(2) For the original signal, add a group of white noises
niðtÞ, and obtain signal xiðtÞ.

xi tð Þ = x tð Þ + ni tð Þ, ð1Þ

where xiðtÞ is the i-th decomposed signal of additive white
noise, and niðtÞ is the i-th additive white noise (i=1, 2, 3,
…, M).

(3) Carry out EMD of xiðtÞ, and obtain various IMF
components and residual components as

xi tð Þ = 〠
J

j=1
cij tð Þ + rij tð Þ, ð2Þ

where cijðtÞ is the j-th IMF component obtained in the i-th
decomposition, and rijðtÞ is the residual component of the
i-th decomposition.

(4) Obtain the sum and average value of corresponding
IMF components got in M decompositions to offset
the noise, and obtain the final IMF components

cj tð Þ =
1
M

〠
M

i=1
cij tð Þ, ð3Þ

where cjðtÞ (j=1,2,3, …, J) is the final j-th IMF component
obtained from EEMD.

(5) Through EEMD, signal xðtÞ is finally decomposed
to:

x tð Þ =〠
j

cj tð Þ + r tð Þ, ð4Þ

where rðtÞ is the final residual component obtained after
EEMD of signal.

2.2. Residual Network (ResNet). Convolutional neural
network (CNN) is a network structure commonly used in
deep learning, which has achieved broad applications in
the field of fault diagnosis. CNN mainly consists of the input
layer, output layer, and hidden layer, while the hidden layer
can also be further divided into the convolutional layer,
down-sampling layer, and fully connected layer. In the
traditional CNN, the expression ability will be enhanced
with the increase of depth, and more complicated features
can be extracted. However, if the network layers are too
deep, it may also cause gradient attenuation, gradient
explosion, and other problems, leading to declined accuracy
of prediction.

To solve the problem of model degradation caused by
convolutional network being too deep, in 2015, Kaiming
He et al. [19] from Microsoft Research proposed the residual
network (ResNet). Utilizing shortcut, ResNet directly
transfers data from previous layers to following layers of
network and uses addition to achieve feature fusion, as
shown in Figure 2.

Addition connects input x and FðxÞ obtained after
stacking weight layers cross layer, and obtains output HðxÞ
= FðxÞ + x. Here, FðxÞ =HðxÞ − x, which is the residual.
Because the residual network has integrated such skip struc-
ture, even if the network depth is increased, the learning
network is only added with the load of identity function
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computation, and the data utilization efficiency will not be
reduced. As a result, more data information can be
transferred to deeper network, so as to prevent model degra-
dation caused by convolutional network being too deep.

2.3. Domain-Adversarial Neural Network (DANN). The
conventional machine learning methods not only require
massive labelled data for training but also need similar
probability distributions between the source domain and
target domain. If the source domain and target domain pres-
ent significant difference in data distribution, the generaliza-
tion performance of model will degrade in the target
domain. The domain adaptive transfer learning mechanism
is an effective approach to solve this problem.

In recent years, with the application of generative
adversarial network (GAN) in image processing, the ideal
of generative adversarial has been broadly used in adaptive
transfer learning applications in various fields. A classic
example is the domain-adversarial neural network (DANN)
proposed by Ganin Y [29] in 2016. DANN utilizes the fea-
ture extractor and domain discriminator for adversarial
training, and the Nash equilibrium can be finally reached,
making the domain classifier unable to determine which
domain the data comes from. In this way, data from the
source domain and target domain with different
distributions can be mapped to the same feature space, and
the classifier trained in the source domain can be used to
directly classify data from target domain. The structure of
DANN is as shown in Figure 3 [29].

Specifically speaking, DANN consists of the three parts
of feature extractor, label predictor, and domain classifier.
The feature extractor is used to (1) confuse data from the
source domain and target domain to trick the domain
classifier; (2) extract features required by subsequent net-
work from the mixed data. The feature extractor and label
predictor form a feed-forward neural network to achieve

Table 1: A list of acronyms used in this paper.

Acronym Full form Acronym Full form

EMBRNDNMD
Domain adversarial-based rolling bearing fault transfer diagnosis

model
TL Transfer learning

EMD Empirical mode decomposition CNN Convolutional neural networks

EEMD Ensemble empirical mode decomposition ResNet Residual network

EEMD-TFFG Time-frequency feature graph MMD Maximum mean discrepancy

MBRN Multi-branch ResNet
MK-
MMD

Multi-core maximum mean difference

RNB ResNet module GAN Generative adversarial network

IMF Intrinsic mode function DANN Domain-adversarial neural network

IMFs Intrinsic mode functions GRL Gradient reversal layer

HHT Hilbert-Huang transform t-SNE
t-Distributed stochastic neighbor

embedding

HES Hilbert envelope Spectrum TCA Transfer component analysis

SVM Support vector machine JDA Joint distribution adaptation

PCA Principal component analysis CWRU Case Western Reserve University

ELM Extreme learning machine MFS-RDS
Mechanical fault diagnosis experiment

platform

Input signal x(t)

Average number of
initialization sets M, i=1

EEMD decomposition results: 

Start

End

EMD decomposition: 

Yes

No

xi(t)= x(t)+ni(t)

xi(t)= cij(t)+rij(t)
j=1

J

i<M?

i=i+1

ci(t)=
M
1 cij(t)

t=1

M

xi(t)= cj(t)+r(t)
j

J

Figure 1: Decomposition flow chart of EEMD.
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adversarial training between different fields. DANN adds a
domain classifier after the feature extractor, which is
connected by a gradient reversal layer (GRL). With the addi-
tion of GRL, the gradient direction will be automatically
flipped during back propagation in the training process of
model, and identical transformation can be achieved during
forward propagation.

Assuming X represents the input space, Y = f0,⋯, L − 1g
represents L labels, S is the labelled source sample and T is the
unlabelled target sample. There are two different distributions
of source domain DS and target domain DT , then the sample
functions of source domain and target domain can be
expressed as:

S = xi, yið Þf gni=1 ~ DSð Þn ; T = xið Þf gNi=n+1 ~ DX
T

� �n′ , ð5Þ

where N = n + n′, which represents the total number of
samples.

According to the source domain sample ðxi, yiÞ, the
classification loss of label predictor can be represented by
the negative logarithmic probability of correct label:

Ly Gy Gf xið Þ� �
, yi

� �
= log 1

Gy Gf xð Þ� �
yi

, ð6Þ

where Gf represents feature extraction network of X; Gyð
Gf ðxÞÞ represents the conditional probability of network
mapping X to Y .

Similarly, the loss function of domain classifier can be
represented as:

Ld Gd Gf xið Þ� �
, di

� �
= di log

1
Gd Gf xið Þ� � + 1 − dið Þ log 1

1 − Gd Gf xið Þ� � ,

ð7Þ

where di is a binary variable representing the domain class.
If di = 0, it means Xi ~DX

S ; if di = 1, Xi ~DX
T . Gd represents

the domain classifier.
The total loss LDANN of model consists of the two parts of

source label prediction loss Ly and domain classifier loss Ld :

LDANN θf , θy, θd
� �

= 1
nS

〠
xi∈DS

Ly Gy Gf xið Þ� �
, yi

� �
−
λ

n
〠

xi∈ DS∪DTð Þ
Ld Gd Gf xið Þ� �

, di
� �

:

ð8Þ

During the training process, the feature extractor learns
parameter θf by maximizing the loss function Ld of domain
classifier, and the domain classifier adjusts its parameter θd
by minimizing the loss function Ld .

2.4. Multi-Kernel MaximumMean Discrepancy (MK-MMD).
Maximum mean discrepancy (MMD) was proposed for
double-sample test, which is used to determine the distribu-
tion difference between two types of data, and it is a
common loss function in transfer learning. In MMD, the
most critical step is to choose kernel parameters, and unsuit-
able kernel parameters will not only affect the final
performance of mapping but also cause deviation in distance
measurement. To prevent selecting unsuitable kernel of
MMD, the MK-MMD method proposed by Gretton [39] is
employed in our paper. In MK-MMD, it is assumed that
the optimal kernel is obtained via linear combination of
multiple kernels, which can prevent choosing unsuitable
kernel parameters when only one kernel is used. Assuming
the source domain dataset Xs = fxsigi=1,⋯n satisfies P distri-
bution and the target domain dataset Xt = fxtjgj=1,⋯n

satisfies

Q distribution, the Euclidean distance between Xs and Xt in
MK-MMD is defined as:

d2k P,Qð Þ ≜ ΕP ϕ Xsð Þ½ � − ΕQ ϕ Xt� �� ��� ��2
H k

, ð9Þ

where E represents the mathematical expectation; ϕ stands
for the mapping of reproducing Hilbert space; H k refers to
the reproducing kernel Hilbert space with feature kernel k.

The feature kernel often chooses the convex optimiza-
tion combination of m kernels fkug associated with features
to provide effective mapping. The feature kernel is defined as
follows:

K ≜ k = 〠
m

u=1
∂uku : 〠

m

u=1
∂u = 1, ∂u ≥ 0, ∀u

( )

, ð10Þ

where ∂u is the weighted parameter of different kernels, and
the characteristic of multi-kernel k is guaranteed via con-
straint of ∂u.

3. Proposed Method and System Framework

By combining EEMD and MK-MMD, this paper proposes a
deep residual adversarial transfer bearing fault analysis
method EMBRNDNMD. In our paper, first, EEMD is
utilized to adaptively decompose the vibration signal into
empirical mode components IMFs of different scales, and
IMFs and corresponding Hilbert envelope spectrum (HES)
form the EEMD time-frequency feature graph (EEMD-TFFG)
of time-frequency features. Then, the multi-branch ResNet
structure is used to extract deep features of EEMD-TFFG,
the domain adversarial mechanism is introduced to ensure
consistent low-dimensional expressions of the deep features
of data between source domain and target domain, and in
the meantime, MK-MMD is utilized to constrain the
distribution difference between them in high-dimensional

Weight layer

Weight layer

Relu

Relu

X identity

F (x)+x

F (x)

Figure 2: Residual module of ResNet.
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space. Finally, the back propagation of ResNet is optimized
according to the fault state classification loss of source domain
data, the discriminant loss between source domain and target
domain, and the distribution difference loss of MK-MMD, so
as to improve the state classification ability and domain
adaptation ability of deep features, and to solve the transfer
problem of state diagnosis model under different working
conditions.

3.1. Construction of EEMD Time-Frequency Graph. After
EEMD of vibration signal, a group of linear stable empirical
mode components IMFs are obtained, and IMFs are auto-
matically distributed from high frequency to low frequency.
Considering that not every IMF can effectively represent the
time-frequency characteristic or the information of original
signal, Equation (11) is utilized to calculate the correlation
coefficient between each IMF component and the original
signal xðtÞ, so as to eliminate illusive components in IMF
component.

ρ ci tð Þ,x tð Þð Þ =
E ci tð Þ ⋅ x tð Þð½ � − E ci tð Þ½ � ⋅ E x tð ÞÞ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ci tð Þð Þp

⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D s tð Þð Þp , ð11Þ

where ciðtÞ represents the i-th IMF component, E½⋅�repre-
sents the expected value of signal, and Dð⋅Þ represents the
mean square value of signal.

The bigger the correlation coefficient is, the more closely
related is the IMF component to the original signal, and the
richer time-frequency information it contains. Then, the
Hilbert envelope spectrum (HES) used to select the IMF
component is calculated. Here, the selected IMF
components and its envelope spectrum are rearranged into
a matrix in the order that IMF is the first and HES is the last,
so as to improve the correlation of the features and obtain a
group of time-frequency feature graphs, which are denoted
as EEMD-TFFG, and this step aims to facilitate subsequent
extraction of their deep features using 2D convolution
kernel.

The construction process of EEMD-TFFG includes the
following steps:

(1) After EEMD of the vibration signal, a group of
empirical mode components IMFs are obtained

(2) The correlation coefficient between each IMF
component and the original signal is calculated,
and the IMF components with correlation
coefficients higher than the threshold value are
selected for subsequent analysis

(3) Corresponding HES of IMF components selected in
Step (2) is calculated

(4) The selected IMF components and HES sequences
are rearranged into a matrix, and saved as a gray-
scale image

3.2. Design of Network Model Structure

3.2.1. Design of Deep Feature Extraction Network. Figure 4
shows the EEMD-TFFG of a group of vibration signals
under different bearing states, and each vibration signal
sample includes 1024 sampling points. We can see that
EEMD-TFFG has the following two characteristics:

(1) Each gray-scale image has the size of 32∗32, which is
small

(2) For the same signal, the features between the gray-
scale images of different IMF components are
relatively independent

𝜕Ly
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Figure 3: Schematic diagram of DANN model structure.
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Figure 4: EEMD-TFFG of bearing vibration signals.
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Based on these two characteristics of EEMD-TFFG, we
designed a multi-branch parallel ResNet structure as shown
in Figure 5, which is denoted as MBRN. In Figure 5, we
assume that 3 IMF components of vibration signal after
EEMD and corresponding HES are selected. The parameters
of each convolution layer of MBRN are shown in Table 2, in
which the normalization and relu layers are not represented.

According to characteristic (1) of EEMD-TFFG, if the net-
work layers are too deep, it will affect the extraction of features
of small-size image, so a single ResNet module (RNB) is set
with 1 convolutional layer and 3 basic residual modules, and
there are 7 convolutional layers in total, and this setting can
restrict the network depth. In RNB, various convolutional fea-

ture extraction layers have all used a 3∗3 convolution kernel, a
small receptive field is utilized for network stacking, and the
step size is set as 1. Besides, because the main redundant infor-
mation has been filtered through the EEMD time-frequency
figures, it will not cause information redundancy even if there
is no pooling layer. So we cancel the pooling layer of the model
to reduce the computational load.

According to characteristic (2) of EEMD-TFFG, a multi-
branch parallel network structure MBRN is built. RNB,
which has the same structure and independent parameters,
is used to extract the gray-scale image features for different
IMF and HES, and the deep features from the final output
layers of various RNBs are combined and used as the output
feature F of MBRN.

3.2.2. Loss Calculation and Back Propagation Network. The
structural design of EMBRNDNMD model is as shown in
Figure 6. In addition to the deep feature extraction network
GMBRN , the model also includes the state classification net-
work Gy and domain discriminant network Gd . Here, Gy is
a two-layer fully connected linear network, and Gd is a
three-layer fully connected linear network. Three loss
functions are used to optimize the network model via back
propagation, and they are the bearing state classification loss
Ly , the discriminant loss Ld between source domain and
target domain, and the MK-MMD distribution difference
loss LMK−MMD between deep features of source domain and
target domain, respectively. The deep feature set of source
domain is denoted as Fs = f f sigi=1,::n, the sample label of
source domain data is denoted as Ys, and the deep feature
set of target domain is denoted as Ft = f f tjgj=1,::n.

The bearing state classification loss Ly is used to optimize
GMBRN and Gy . Ly is defined as:

Ly = 〠
n

i=1
log 1

Gy f sið Þysi
: ð12Þ

Ld involves two back propagation stages, which are for
optimizations of GMBRN and Gd , respectively. The two stages
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Figure 5: Multi-branch parallel ResNet structure.

Table 2: Specific parameters of RNB.

Type Layer
Kernel/stride/

channels
Input size

Output
size

Input / (32,32,1) (32,32,1)

Conv1

Conv2d (3,3)/1/16 (32,32,1) (32,32,16)

InstanceNorm2d / (32,32,16) (32,32,16)

ReLU / (32,32,16) (32,32,16)

Block1

Conv2d (3,3)/1/16 (32,32,16) (32,32,16)

InstanceNorm2d / (32,32,16) (32,32,16)

ReLU / (32,32,16) (32,32,16)

Conv2d (3,3)/1/16 (32,32,16) (32,32,16)

InstanceNorm2d / (32,32,16) (32,32,16)

Block2

Conv2d (3,3)/1/32 (32,32,16) (32,32,32)

InstanceNorm2d / (32,32,32) (32,32,32)

ReLU / (32,32,32) (32,32,32)

Conv2d (3,3)/2/32 (32,32,32) (16,16,32)

InstanceNorm2d / (16,16,32) (16,16,32)

Block3

Conv2d (3,3)/1/32 (16,16,32) (16,16,32)

InstanceNorm2d / (16,16,32) (16,16,32)

ReLU / (16,16,32) (16,16,32)

Conv2d (3,3)/2/32 (16,16,32) (8,8,32)

InstanceNorm2d / (8,8,32) (8,8,32)

Pooling AvgPool / (8,8,32) (1,1,32)
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of back propagation are connected by the gradient reverse
layer (GRL), and the reverse mechanism of GRL is utilized
to form an adversarial relation between GMBRN and Gd . Back
propagation optimization aims to reach Nash equilibrium
between GMBRN and Gd . The equation of Ld is:

Ld = 〠
n

i=1
log 1

Gd f sið Þ + 〠
n

i=1
log 1

1 − Gd f ti
� � : ð13Þ

LMK−MMD represents the MK-MMD distribution differ-
ence loss, which is used to optimize GMBRN . LMK−MMD is
defined as:

LMK−MMD = E ϕ Fsð Þ½ � − E ϕ Ftð Þ½ �k k2Hk
, ð14Þ

where E represents the mathematical expectation; ϕ stands
for the mapping of reproducing Hilbert space; and Hk refers
to the kernel k used by reproducing the kernel Hilbert space.

The total loss of GMBRN can be expressed as:

LMBRN = Ly − λ1Ld + λ2LMK−MMD: ð15Þ

3.3. Procedure of Diagnosis Model. The procedure of transfer
diagnosis using the EMBRNDNMD model is as follows:

(1) Collect rolling bearing vibration signals under
different working conditions, assign data into the
source domain or target domain, the source domain
consists of labelled data, and the target domain is
composed of unlabeled data

(2) Use the EEMD method to calculate the IMF and
HES of vibration signal samples from the source
domain and target domain, and build corresponding
EEMD-TFFG

(3) Input the EEMD-TFFG of source domain and target
domain into MBRN, and extract deep features Fs
and Ft of EEMD-TFFG

(4) Calculate the state classification loss Ly of source
domain data, and optimize Gy via back propagation

(5) Calculate the MK-MMD distribution difference
between the deep features of source domain and
target domain, and obtain LMK−MMD

(6) Calculate the domain classifier loss Ld , and optimize
Gd via back propagation

𝜕Ly
𝜕𝜃y

EEMD

Feature
Fs, Ft

Feature extractor GMBRN
Fault classifier Gd

Class
label y

Domain classifier Gd

Domain
label d

RNB1

RNB2

RNB6

MK-MMD

EEMD

MBRN

GRL

Source

Label

Target

𝜕L
MK-MMD

𝜕𝜃y

𝜕Ld𝜆
𝜕𝜃d

Source domain forward propagation 
Target domain forward propagation 
Ly back propagation

LMK-MMD back propagation
Lc back propagation

Figure 6: Bearing fault transfer diagnosis model EMBRNDNMD.

Figure 7: CWRU bearing fault diagnosis and experiment platform.
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(7) Calculate the total loss LMBRN , and optimize GMBRN
via back propagation

(8) Iterate steps (3)-(7) until LMBRN is smaller than the
set value or iterations have reached the target
requirement, and obtain GMBRN and Gy after training

(9) The trained GMBRN is utilized to calculate the deep
feature Ft of sample EEMD-TFFG from the source
domain, and input Ft into the trained Gy to obtain
the label of test samples

4. Experimental Verification

4.1. Experimental Analysis on the CWRU Bearing Dataset

4.1.1. Introduction of the CWRU Bearing Dataset. In our
experiment, the CWRU bearing fault simulation and
experiment platform developed by Case Western Reserve Uni-
versity was used, and the rolling bearing vibration signals under
various states were collected to verify the performances of
algorithm and model proposed in this paper. The experiment
platform is presented in Figure 7, which mainly consists of
the parts of motor, rolling bearing, axis of rotation, torque
sensor/decoder, acceleration sensor, and signal acquisition
instrument.

In the experiment, the Reliance Electric motor of 2 HP
was used. Electrical discharge machining was used to create
different types of faults for motor bearings, the locations
included inner race, outer race, and rolling ball, and the

Table 3: Experiment datasets of bearing.

Power Normal Inner race Outer race Rolling ball
Damage (mm) — — 0.007 0.014 0.021 0.028 0.007 0.014 0.021 0.007 0.014 0.021 0.028

Label — 0 1 2 3 4 5 6 7 8 9 10 11

Dataset A 0HP 50 50 50 50 50 50 50 50 50 50 50 50

Dataset B 1HP 50 50 50 50 50 50 50 50 50 50 50 50

Dataset C 2HP 50 50 50 50 50 50 50 50 50 50 50 50

Dataset D 3HP 50 50 50 50 50 50 50 50 50 50 50 50
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Figure 8: Vibration signal and its time-frequency components.
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damage diameters were 0.007 inch, 0.014 inch, 0.021 inch,
and 0.028 inch, respectively. As shown in Table 3, there
are 12 types of faults and 50 samples in each type.

In this paper, the vibration signals at motor drive end
with sampling frequency of 12 kHz are chosen for analysis.
In the experiment, four different motor powers of 0HP,
1HP, 2HP, and 3HP were set as 4 different working condi-
tions, and 12 transfer modes were obtained (A->B, A->C,
A->D, B->A, B->C, B->D, C->A, C->B, C->D, D->A, D-
>B, D->C). Among them, A->B means that we set the data-
set A as source domain and dataset B as target domain.

4.1.2. EEMD Analysis. First of all, we obtain the IMF
components of vibration signal sample by EEMD; then, we
perform Hilbert transform and spectral analysis of IMF
components, and calculate the envelope spectra of IMF com-
ponents. With fault at the inner race of bearing as example,
the waveform of original vibration signal and the IMF
components after EEMD are as shown in Figure 8.

The correlation calculation method described in Section
3.1 is used to select the IMF components. Under normal
conditions and fault conditions such as inner race fault
(IR), outer race fault (OR), and ball fault (BF), the
correlation coefficients between the IMF components of
bearing vibration signal at various order and the original sig-
nal are shown in Figure 9. According to Figure 9, with the
increase of order, the correlation coefficient between the
IMF component and the original signal gradually declines.
The IMF components and the original signal only maintain
a high correlation at the first four orders, so the IMF
components of first four orders after EEMD and corre-
sponding HES are chosen for subsequent extraction of deep
features in this paper.

4.1.3. Validation of IMFs Selection. To verify that the first 4-
order IMFs selected by the correlation calculation of bearing
vibration signals can effectively characterize the bearing fault
features, the first 3-, 5-, and 6-order IMFs (ET3, ET5, and
ET6, respectively) are selected as comparative groups, and
their performances are compared with the first 4-order IMFs
(ET4) used in this paper in the input signal experiment.
Finally, it is tested on the CWRU dataset, and the results
are shown in Table 4.

It can be seen from the table that the diagnostic accuracy
when using ET4 as input signal is basically higher than that
of other groups, because ET3 lacks IMF4 component’s fault
features, resulting in incomplete expression of fault features.
On the other hand, ET5 and ET6 add higher-order IMF on
the basis of ET4, resulting in high redundancy in the signal,
which interferes with the final results. The experimental
results verify the validity of the conclusion reached in EEMD
Analysis, which indicates that using the first 4-order IMF
component as the input signal can effectively improve the
accuracy of bearing fault diagnosis.

4.1.4. Analysis of Diagnosis Results. In this section, we test
the transfer diagnosis performance of EMBRNDNMD
model under four different working conditions of 0HP,
1HP, 2HP, and 3HP. To verify the theoretic analysis in Sec-

tion 3 and to evaluate the performance of EMBRNDNMD
model, we designed some models for comparative analysis,
and the specific designs include:

(1) EMBRN model: Compared to the EMBRNDNMD
model, this model also uses MBRN to extract deep
features of EEMD-TFFG and inputs deep features
into the state classification network, but it does not
involve the MK-MMD loss or the domain adversar-
ial network

(2) EMBRNDN model: On the basis of the EMBRN
model, it integrates a domain adversarial network
to optimize MBRN

(3) EMBRNMD network: On the basis of the EMBRN
model, it combines the MK-MMD loss to optimize
MBRN via back propagation

Table 4: Test results of different IMFs input signals.

Working
condition

IMF1-
IMF3

IMF1-
IMF5

IMF1-
IMF6

IMF1-
IMF4

A->B 94.17% 96.67% 97.83% 97.83%

A->C 93.50% 95.33% 96.50% 97.33%

A->D 94.00% 96.83% 97.33% 96.50%

B->A 92.83% 94.83% 95.83% 96.67%

B->C 95.83% 98.33% 99.33% 100%

B->D 94.67% 97.83% 97.50% 97.17%

C->A 92.33% 94.33% 94.83% 96.50%

C->B 92.83% 98.83% 97.33% 97.33%

C->D 94.83% 97.17% 98.67% 99.50%

D->A 93.17% 95.83% 96.33% 97.17%

D->B 94.50% 96.17% 98.00% 97.33%

D->C 95.17% 96.67% 98.83% 99.83%

Average 93.99% 96.18% 97.36% 98.17%
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Figure 9: Correlation coefficient between the IMF and the original
vibration signal.
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Table 5 lists the state identification accuracies of every
diagnosis model, and Figure 10 shows the radar comparison
maps of the identification accuracies of these models.
According to Table 5 and Figure 10, we can draw the
following conclusions:

(1) The diagnosis accuracy of EMBRN is significantly
lower than that of the other three models, which
indicates that the deep features of data present
distribution differences under different working con-
ditions, and the domain adversarial network and
MK-MMD domain adaptation method can well
solve this problem

(2) EMBRNDNMD has higher diagnosis accuracy than
EMBRNDN and EMBRNMD, which is consistent
with the theoretic analysis in Section 3.2. The reason
is that the EMBRNDNMD model has not only
considered the consistency of deep feature distribu-
tion in high-dimensional kernel space (MK-MMD
loss) but also increased the distribution similarity
in low-dimensional space (domain classification
loss).

(3) EMBRNDN and EMBRNMD have poor
performances under partial transfer modes, but
EMBRNDNMD can maintain a high accuracy under
all transfer modes, and it also has better stability
than the other models for comparison, which proves
the effectiveness and reliability of EMBRNDNMD
model

Figure 11 shows how the diagnosis accuracies of various
models change with iterations on various transfer modes.
According to Figure 11, in all transfer modes, every model

can converge after 2000 iterations and become stable after
1000 iterations. Compared to the other three models,
EMBRNDNMD has the fastest convergence speed, and its
accuracy curve is the most stable. The analysis results show
that under various transfer modes, EMBRNDNMD can not
only provide high diagnosis accuracies but also has higher
stability.

Figure 12 shows the t-SNE diagrams of deep features
under the transfer mode of A->B by using different models,
and the high-dimensional features are mapped to the two-
dimensional space. According to Figure 12, compared to
EMBRN, by integrating the domain transfer method, the
deep features of models EMBRNMD and EMBRNDN have
a bigger between-class distance and a smaller within-class
distance, and the confusion problem among features under
various states is significantly alleviated. By combining the
MK-MMD loss and DANN, the separability of deep features
of the EMBRNDNMD model is further improved, and the
between-class confusion is also further reduced. The t-SNE
analysis proves that compared to the other three models,
the deep features extracted using EMBRNDNMD have bet-
ter cross-domain invariance, and it also has stronger
adaptation ability to working condition transfer.

4.1.5. The Influence of Hyperparameters on the Model. Four
kinds of optimizers—Ada Delta, RMS Prop, SGD, and Ada-
m—are selected for the test. The learning rates range from
0.001 to 0.2, and the results are listed in Table 6. It can be
seen that when the learning rates are less than 0.1, the accu-
racy remains at a higher level. However, when the learning
rates are higher than 0.1, it will make the network difficult
to converge and obtain satisfactory training results. The
Adam optimizer has the highest accuracy when the learning
rate is 0.001, reaching 99.79%, so we ultimately choose the
Adam optimizer to optimize the network parameters.

4.1.6. Comparison with Other Diagnosis Methods. To verify
the effectiveness of the EMBRNDNMD model proposed in
this paper under transfer of working conditions, we choose
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Figure 10: Accuracy distributions of various models.

Table 5: Fault classification results using various network models.

Working
condition

EMBRN EMBRNDN EMBRNMD EMBRNDNMD

A->B 87.33% 94.83% 94.33% 97.83%

A->C 78.50% 92.17% 93.50% 97.33%

A->D 73.17% 95.17% 94.33% 97.50%

B->A 85.33% 94.33% 94.50% 96.67%

B->C 94.83% 98.33% 100% 100%

B->D 82.17% 97.50% 95.17% 98.17%

C->A 79.33% 93.50% 93.83% 96.50%

C->B 90.50% 97.33% 97.17% 98.33%

C->D 94.33% 98.17% 98.33% 99.50%

D->A 75.32% 92.17% 94.83% 97.17%

D->B 81.50% 95.83% 97.17% 98.33%

D->C 93.17% 97.33% 98.83% 99.83%

Average 84.50% 95.67% 95.83% 98.17%
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Figure 11: Continued.
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some classic diagnosis models based on machine learning
and deep learning to test on the CWRU dataset, including
SVM, CNN, TCA, and JDA, and their diagnosis accuracies
under 12 transfer modes are obtained. The results are listed
in Table 7. According to comparison and analysis results, we
can find:

(1) Under varying working conditions, EMBRNDNMD
can provide higher diagnosis accuracies than the
methods of SVM, CNN, TCA, and JDA

(2) JDA has the closest diagnosis accuracies to
EMBRNDNMD, and its accuracies are even higher
than 90% under some transfer modes. However, it
also has poor performance under some other
transfer modes, and its overall performances are
not as stable as EMBRNDNMD

(3) Compared with the conventional models,
EMBRNDNMD is more advantageous in solving
the problem of working condition transfer, which
also proves the effectiveness of the design of
EMBRNDNMD model

4.2. Tests on the MFS-RDS Experiment Platform and
Related Analysis

4.2.1. Introduction of MFS-RDS Experiment Platform. To
verify the generalization ability of the proposed
EMBRNDNMD model, the mechanical fault diagnosis
experiment platform (MFS-RDS) was used to further
evaluate the model performance. The MFS-RDS platform
mainly consists of a three-phase motor, AC variable fre-
quency drive (VFD) and tachometer. The sound and
vibration data recorder WebDAQ-504 (MCC, US) was used
for data collection. The vibration acceleration sensor was
installed above the bearing seat. The experiment platform
is as shown in Figure 13. In the experiments, bearings under
the four states of normal condition, damage of 0.1mm inner
ball, damage of 0.1mm outer ball, and damage of 0.1mm
rolling ball were used.

In the experiment, the vibration signals with sampling
frequency of 8 kHz under the three speeds of 900 r/min,
1200 r/min, and 1800 r/min were collected, corresponding
to the three working conditions of E, F, and G. With the
vibration signal of 1024 continuous sampling points as a
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Figure 11: Comparison of model accuracy-iterations.

Table 6: Hyperparameters experimental results.

Learning rates Ada delta RMS prop SGD Adam

0.001 99.25% 98.29% 99.46% 99.79%

0.05 99.17% 98.12% 99.21% 99.42%

0.01 98.67% 97.95% 99.16% 99.29%

0.1 94.21% 92.86% 95.37% 96.25%

0.2 93.63% 90.28% 93.71% 93.33%
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sample, 120 vibration signal samples were collected under
each bearing state, as listed in Table 8. Three working
conditions correspond to 6 transfer modes (E->F, E->G, F-
>E, F->G, G->E, G->F).

4.2.2. Experimental Results and Analysis. On the MFS-RDS
bearing dataset, the diagnosis results of different methods
under various transfer modes are presented in Table 9 and
Figure 14. According to analysis of the experimental results,
we can come up to the following conclusions:

(1) Under various transfer modes, the average diagnosis
accuracy of EMBRN model reaches 85.39%; after
introducing the domain adversarial module, the
average accuracy of EMBRNDN is 93.51%; after
introducing the MK-MMD loss, the average
accuracy of EMBRNMD is 96.01%. This further
proves that the domain adaptation mechanism can
effectively improve the fault diagnosis accuracy
under varying working conditions of bearing

(2) EMBRNDNMD maintains a high accuracy under all
transfer modes and also shows great stability. Its
average accuracy reaches 98.54%, which proves that
the distribution consistency between deep features
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Figure 12: t-SNE diagrams of all models under the transfer learning task A->B.

Table 7: Comparison of different models in diagnosis accuracy.

Working
condition

SVM CNN TCA JDA EMBRNDNMD

A->B 67.25% 78.33% 80.38% 91.75% 97.83%

A->C 67.42% 79.33% 75.67% 84.58% 97.33%

A->D 67.37% 78.17% 76.25% 85.31% 97.50%

B->A 75.13% 80.53% 91.75% 93.28% 96.67%

B->C 62.38% 78.87% 74.63% 91.27% 100%

B->D 67.56% 80.05% 82.18% 93.83% 98.17%

C->A 65.37% 71.08% 84.37% 91.08% 96.50%

C->B 61.22% 69.50% 84.53% 87.58% 98.33%

C->D 67.51% 79.33% 82.75% 91.32% 99.50%

D->A 62.34% 78.00% 80.52% 92.64% 97.17%

D->B 64% 78.83% 86.78% 91.16% 98.33%

D->C 67.36% 74.17% 86.43% 90.93% 99.83%

Average 66.24% 77.14% 82.34% 90.39% 98.17%
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from source domain and target domain can be effec-
tively improved by combining the MK-MMD loss
and domain adversarial module

To further prove the above conclusions, we use the
confusion matrix of the test dataset sample labels and
prediction labels of various models to analyze the diagnosis
precision, and use the t-SNE diagrams to carry out visual
analysis of the deep features extracted by every model.
Figure 15 shows the confusion matrices and t-SNE diagrams
of every model under transfer mode G->E. According to the
confusion matrices, we can see that EMBRNDNMD
designed in this paper has the best performance. With the
introduction of MK-MMD loss and domain adversarial
module, the types and number of false classifications by both
EMBRNDN and EMBRNMD show remarkable decline.
Moreover, by combing the MK-MMD loss and domain
adversarial mechanism, the number of false classifications
by EMBRNDNMD is further reduced. In the meantime,
the t-SNE diagrams show that compared to other models,
the deep features extracted by EMBRNDNMD present bet-

ter class separability, which proves that EMBRNDNMD
has better adaptability to various scenes.

4.2.3. Comparison with Other Diagnosis Methods. To verify
the generalization ability of the EMBRNDNMD model, the
same comparative experiment as in Section 4.1.6 is set and
carried out on the MFS-RDS dataset. The experimental
results are shown in Table 10.

From the table, it can be seen that the experimental
results of EMBRNDNMD on MFS-RDS datasets are
basically consistent with the results in Section 4.1. The
diagnostic accuracies of EMBRNDNMD under varying
working conditions are higher than the other groups, and
the accuracies are all above 97%. This shows that the
EMBRNDNMD model still performs well in cross-platform
device diagnostics. It also has excellent stability when
running on the MFS-RDS datasets, which can effectively
improve the fault diagnosis accuracy under varying working
conditions of bearing.

Figure 13: Mechanical fault diagnosis and rotor dynamic
simulation and experiment platform.

Table 8: Introduction of MFS-RDS bearing dataset.

Speed (r/
min)

Normal
Inner
race

Outer
race

Rolling
ball

Damage
(mm)

— — 0.1 0.1 0.1

Label — 0 1 2 3

Dataset E 900 120 120 120 120

Dataset F 1200 120 120 120 120

Dataset G 1800 120 120 120 120

Table 9: Results of various network models on the MFS-RDS
bearing dataset.

EMBRN EMBRNDN EMBRNMD EMBRNDNMD

E->F 86.04% 94.38% 97.71% 99.79%

E->G 85.63% 92.92% 96.04% 98.96%

F->E 83.96% 92.08% 94.37% 98.33%

F->G 85.21% 93.95% 97.79% 97.51%

G->E 86.46% 94.79% 96.86% 98.12%

G->F 85.02% 92.92% 92.63% 98.54%

Average 85.39% 93.51% 96.01% 98.54%
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Figure 14: Transfer results statistics on the MFS-RDS bearing
dataset.

Table 10: Comparison of different models in diagnosis accuracy.

Working
condition

SVM CNN TCA JDA EMBRNDNMD

E->F 72.92% 81.67% 88.33% 94.17% 99.79%

E->G 69.17% 84.17% 86.67% 92.71% 98.96%

F->E 68.33% 80.62% 81.04% 91.04% 98.33%

F->G 66.46% 79.79% 79.79% 87.29% 97.51%

G->E 69.38% 74.79% 83.33% 93.33% 98.12%

G->F 69.58% 80.83% 86.67% 92.29% 98.54%

Average 69.31% 80.31% 84.31% 91.81% 98.54%
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Figure 15: Compare the confusion matrices and t-SNE diagrams of different models.
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5. Conclusions

This paper proposes a transfer diagnosis method
EMBRNDNMD for rolling bearing faults. In this method,
the EEMD method is used to extract the time-frequency
information of the vibration signal, and the time-frequency
feature graph EEMD-TFFG is constructed; then, the feature
extraction network MBRN is designed according to the
characteristics of EEMD-TFFG to extract deep features of
EEMD-TFFG fault status; finally, the MBRN is optimized
by combining DANN and MK-MMD, which improve the
diagnosis ability of EMBRNDNMD under transfer of work-
ing conditions. According to theoretical derivation and
experimental verification, we can draw the following
conclusions:

(1) Using the EEMD method to perform time-frequency
analysis of vibration signals, a construction method
of EEMD-TFFG is proposed, which can provide
time-frequency feature information reflecting the
state of rolling bearings for subsequent deep learning
networks

(2) MBRN is designed according to the characteristics of
EEMD-TFFG. The multi-branch network structure
and residual stacking mechanism can solve various
problems of EEMD-TFFG, such as small size, scat-
tered features, and independent time-frequency fea-
tures of different scale information

(3) A joint domain transfer mechanism is designed
based on DANN and MK-MMD, which can
effectively improve the consistency of data deep fea-
tures between the source domain and target domain,
and reduce the distribution differences of deep fea-
tures in high-dimensional kernel space between the
source domain and target domain. It can effectively
improve the diagnosis ability of EMBRNDNMD
under transfer of working conditions. The results of
experiments carried out on two bearing fault test
platforms show that the EMBRNDNMD model can
achieve high diagnostic accuracy in various working
condition transfer modes
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In the leading/trailing edge’s adaptive machining of the near-net-shaped blade, a small portion of the theoretical part, called the
reconstruction area, is retained for securing aerodynamic performance by manual work. The next work is to recognize the
reconstruction area of the reconstructed leading/trailing edge’s image. To accelerate this process, an anchor-free neural
network model based on Transformer was proposed, named Leading/trailing Edge Transformer (LETR). LETR extracts image
features from an aspect of mixed frequency and channel domain. We also integrated LETR with the newest meta-Acon
activation function. We tested our model on the self-made dataset LDEG2021 on a single GPU and got an mAP of 91.9%,
which surpassed our baseline model, Deformable DETR, by 1.1%. Furthermore, we modified LETR’s convolution layer and
named the new model after Ghost Leading/trailing Edge Transformer (GLETR) as a lightweight model for real-time detection.
It is proved that GLETR has fewer weight parameters and converges faster than LETR with an acceptable decrease in mAP
(0.1%) by test results. The proposed models provide the basis for subsequent parameter extraction work in the reconstruction area.

1. Introduction

The near-net-shaped blades are applied to the blades of the
aero-engine as it fits the modern aero-engine performance
better. The blank material and typical structure of the
near-net-shaped blade are shown in Figures 1(a) and 1(b),
respectively. A section curve of the blade is presented in
Figure 2. The geometric parameters of the near-net-shaped
blade’s suction/pressure surface have met the designing
requirement after being forged, which means that it needs
no further machining, while the leading/trailing edge cannot
be forged precisely due to the sharply changing curvature.
On the other hand, although blank material is forged within
the design tolerances, complex deformation still occurs [1].
That means we cannot plan the tool path according to the
designed model. Hence, we need to reconstruct the theoret-

ical leading/trailing edge. In this case, adaptive machining
[2] is imported to the machining process of near-net-
shaped blades. Adaptive machining technology aims to
modify manufacturing data on the basis of changed condi-
tions. In our previous manual work, we retained a part of
the theoretical leading/trailing edge and bridged it with
blank material considering the design intent and aerody-
namic performance. The reconstructed blade’s section
curves are shown in Figure 3. This process, however, is
time-consuming and depends on the human experience.
Deep learning has a cutting-edge advantage in improving
efficiency and avoiding human error, based on which we
proposed a model reconstruction framework in [3].

Unlike traditional reconstruction methods based on geo-
metric prediction, we reconstructed models based on the
accomplished reconstruction stored in images. Our method
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can be described in the following steps. In the first stage, we
use Generative Adversarial Networks (GAN) [4] to classify
optimal reconstructed leading/trailing edge’s images based
on our previous manual works [3]. However, the recon-
structed curves in images cannot be adopted in computer-
aided design (CAD) software for model reconstruction
directly. So, we need to detect the retained part and bridged
curves of these reconstructed curves on the next step.
Thirdly, we will extract parameter information from them.
As long as these parameters are obtained, we can utilize
CAD software to adjust the theoretical leading/trailing edge
and reconstruct it automatically to realize the adaptive
machining of the near-net-shaped blade. This paper’s main
focus is to detect the retained part of the theoretical lead-
ing/trailing edge, and we use the item “reconstruction area”
to represent it.

A small object usually contains a small quantity of
semantic information due to its small size. As shown in
Figure 3, in comparison with the general object detection
task, there is no complex feature in the leading/trailing
edge’s image. Moreover, the leading/trailing edge’s image
contains less semantic information, and the background is
relatively simple. For this reason, the leading/trailing edge’s
reconstruction area detection is defined as a small object

detection task in this paper, and the reconstruction area is
approximated by the area of the bounding box.

The performance of object detection has improved sig-
nificantly with the help of convolutional neural networks
(CNNs) [5], which detect objects by extracting features
from considerable data. Generally speaking, object detec-
tion algorithms employing CNNs are divided into two-
stage methods and one-stage methods according to their
processing stages. A typical method of two-stage is the
Regions with CNN features (R-CNN) series [6–8], which
imports the selective search algorithm to predict the region
of interest. Unlike two-stage methods, one-stage methods
predict bounding boxes and classes in a single neural net-
work. Symptomatic one-stage methods include You Only
Look Once (YOLO) series [9–12] and Single-Shot Multibox
Detector (SSD) [13].

The methods mentioned above have three points to be
further ameliorated. First, the anchor box size needs to be
manually designed for different detection tasks, which takes
a great amount of time. Furthermore, the sizes of ground-
truth bounding boxes of small objects are relatively small,
which may lead to the class imbalance problem [14]. More-
over, the nonmaximum suppression (NMS) algorithm is not
sensitive to small objects which contain less semantic

Convex surface

Concave surface

(a) The blank to be formed

Leading edgeTrailing edge

(b) The near-net-shaped blade

Figure 1: The typical structure of near-net-shaped blade.

Leading edge Trailing edge

Concave surface

Convex surface Medium arc line

Figure 2: A section line of the near-net-shaped blade.
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information. The number of the network’s predictions is
much larger than that of the actual objects’ number, and
NMS is employed here to remove superfluous predicted
bounding boxes. The NMS algorithm sets a threshold value
and deletes all bounding boxes higher than the threshold
value and keeps the bounding box with the highest score.
The postprocess of NMS during the small object detection
is often obstructed by background, and small targets are eas-
ily covered by objects of medium and large sizes.

Considering the variable shape of the leading/trailing
edge, we decided to take an anchor-free model as our lead-
ing/trailing edge detector, which abandons anchors and the
postprocessing of the NMS algorithm. In recent years,
Transformer has shown its superiority in the object detec-
tion field due to its capacity for spatial relation modeling
of targets. The model that works best now with Transformer
is Deformable DETR (Deformable Detection Transformer)
[15]. Nevertheless, Deformable DETR has its issues. Firstly,
Deformable DETR extracts features from input images based
on the spatial attention mechanism. That means some valu-
able information is abandoned during this process. Its accu-
racy, therefore, remains a huge space to be promoted. Then,

despite that Deformable DETR has achieved prominent
results, it still needs to be further compressed to meet the
requirement of real-time detection. Focusing on these two
abovementioned problems, the main works of this study
are summarized below:

(1) We proposed an anchor-free model named Leading/
trailing Edge Detection Transformer (LETR). LETR
extracts features of reconstruction areas from the
frequency-channel mixed domain. Besides, LETR
activates nonlinear units dynamically in view of the
simplex background of our dataset

(2) To balance model weight and performance, we
introduced a lightweight model by modifying LETR
for real-time detection. Technically, the specific con-
volutional layers of LETR are replaced by lightweight
modules. The model is called Ghost Leading/trailing
Edge Detection Transformer (GLETR).

(3) We tested LETR and GLETR on the self-made data-
set LDEG2021. It is proved that LETR has state-of-
the-art performance on detecting reconstruction

Reconstruction area

Blank matetrial

Theoretical leading edge

Reconstructed leading edge

(a) Leading edge’s reconstruction area

Reconstruction area

Blank matetrial

Theoretical trailing edge

Reconstructed trailing edge

(b) Trailing edge’s reconstruction area

Figure 3: The reconstruction area of a blade.
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areas. Moreover, GELTR has significantly fewer
parameters and converges faster than LETR in the
training process

The rest of this paper is structured as follows. Section 2
illustrates the recent works on the reconstruction of edge
shape in adaptive machining and object detection. Section 3
reviews the attention mechanism in computer vision. Our
proposed models are presented in Section 4. Section 5 reports
the experimental results on the self-made dataset. Section 6
gives the conclusions and future works. The code will be avail-
able at https://github.com/andrewsilver1997/LETR.

2. Related Works

Our research is the combination of adaptive machining and
computer vision algorithms. In this section, we will discuss
the related works from the aspects of edge shape reconstruc-
tion, small object detection, self-attention mechanism, acti-
vation function, and efficient networks.

2.1. Reconstruction of Edge Shape. The prevalent model
reconstruction methods can be concluded in three aspects:
by fitting curves of measured data, predicting the deforma-
tion of the blade’s surface, and predicting design intent. Our
reconstruction work is mainly based on design intent and
deformation of blank material. A model similar to the orig-
inal counterpart is constructed according to the existing
data in the reconstruction of the edge shape procedure.
Some representative research is illustrated as follows. Yun
et al. [16] imported parameterization design to Free-Form
Deformation (FFD) and realized the model reconstruction
based on measure data. Zhao et al. [17] improved the accu-
racy of reconstruction by inserting knots. Feng et al. [2] pre-
dicted the desired spline curves considering the deformation
and thickness of the blank material while preserving the
design intent. Yu et al. [18] established the relationship
between measured points and the velocity field of the
blade’s section. Further, they calculated the curves in the
area without measuring data. Zhang et al. [19] considered
the constraints of the chord length, angle of attack, and
radius during the reconstruction process. Wu et al. [20]
proposed a novel reconstruction algorithm by removing
bad measure points and optimizing the iterative closest
point (ICP) algorithm. Nevertheless, the current research
on the modeling of large curvature inexact forming regions
mainly focuses on simple geometric element fitting but does
not fully consider the relationship between the design inten-
tion of the blade, the similarity relationship between the
actual blade surface and theoretical surface, and the com-
plex deformation of blank materials. Our previous manual
works addressed the aforementioned issue to a certain
extent [3]. For this article, we further proposed an algo-
rithm based on deep learning to accelerate this process
and reduce errors caused by human experiences.

2.2. Small Object Detection. It is usually a small part of the
theoretical model and has less semantic information in an
image. Hence, the detection of the reconstruction area can

be seen as a small object detection task. Some models based
on the two-stage method were proposed to detect small
objects. Based on Faster R-CNN [7], Singh and Davis [21]
proposed Scale Normalization for Image Pyramids (SNIP)
for small object detection. Furtherly, they modified SNIP
and proposed SNIPER [22] for efficient and fast detection.
Zhang et al. [23] utilized a multiscale feature fusion layer
(MFL), and a certain extent of improvement was obtained.
On the other hand, a typical one-stage detector is RetinaNet
[14], which uses focal loss and feature pyramid maps [24] to
detect small objects. Based on YOLO v2, the work of Liu
et al. [25] can detect arbitrary-oriented targets of small sizes.

Some researchers proposed anchor-free methods. The
representative works include CornerNet [26], ExtremeNet
[27], and CenterNets [28, 29]. These models detect objects
by implementing keypoint estimation. Some novel works
aiming to solve the problems of the traditional NMS algo-
rithms were published. Dong et al. [30] integrated transfer
learning with faster RCNN for annotation and improved
accuracy. Cai and Vasconcelos [31] proposed cascade
RCNN. Cascade RCNN connects a sequence of detectors
and adapts threshold in NMS processing to avoid the mis-
match between predicted bounding boxes and ground-
truth objects. Our models discard anchor boxes and NMS
postprocessing. Experiments verified that our models domi-
nate in existed models without the help of the anchor box
and NMS algorithm.

2.3. The Self-Attention Mechanism in Computer Vision. In
recent years, the progress of natural language processing
[32] (NLP) has led researchers to investigate its application
in computer vision. Vaswani et al. [33] introduced Trans-
former in NLP for the first time. The Transformer achieves
impressive results on sequence prediction. Carion et al. [34]
modified the Transformer and named their model as Detec-
tion Transformer (DETR). The DETR model abandons
anchor boxes and NMS’s implementation. However, DETR
has a low speed of convergence and does not perform well
on small object detection tasks. Sun et al. [35] argued the
cross-attention module of DETR is not necessary and pro-
posed two models named Transformer-based Set Prediction
with FCOS [36] (TSP-FCOS) and Transformer-based Set
Prediction with R-CNN (TSP-RCNN), respectively. Zhu
et al. [15] imported deformable convolution [37] to DETR
and proposed Deformable DETR. Deformable DETR deals
with input feature maps from the spatial domain. In this
study, we tried to extract features from a different aspect,
that is, the mixed domain of frequency and channel.

2.4. Activation Functions. Some researchers attempted to
modify the activation function in networks and gained
improvements to a certain extent. The most-used activation
function is Rectified Linear Unit (ReLU) [38] which acti-
vates the neurons linearly when the input is bigger than
zero. Its variant, Leaky ReLU [39], activates the neurons
when the input is nonzero. The ReLU-based activation func-
tions are too simple to be implemented on complicated
visual tasks as some features may be missed. Sigmoid-
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weighted Linear Unit (SiLU) [40] combines ReLU and sig-
moid function together. Compared with ReLU, it is smooth
and nonmonotonic. [41] applied automatic search to a vari-
ety of activation functions and found a better function
named Swish. But it also brings huge computation resource
consumption. [42] imported spatial context to the activation
function and gained state-of-the-art performance on dense
visual tasks. A recent work is called Dynamic Rectified Lin-
ear Unit (DY-ReLU) [43] adapts the parameters dynami-
cally by a hyperfunction. When implemented on deep
neuron networks, however, the abovementioned activation
functions’ effects become weaker. Unlike previous activation
functions, Activate or Not functions (Acon) [44] learn
whether to activate the specific neurons and convert models
into dynamic networks, which brings better performance as
networks go deeper.

2.5. Efficient Networks. For deploying object detection
models on mobile devices, some operations for light-
weighting are inevitable to save computational cost and
memory. There are two types of strategies for efficient
networks. One is to compress the model by pruning redun-
dant connections [45] and channels [46], quantization [47],
and knowledge distillation [48]. Such model compression
methods usually require well-designed architecture and pre-
trained models. The other strategy is to design a lightweight
model directly [49]. Some typical lightweight models are
proposed by researchers. Xception [50] introduced depth-
wise separable convolution modules and realized better per-
formance with fewer model parameters. MobileNet series
[51–53], for example, are based on depth-wise and point-
wise separable convolutions as well as automated machine
learning (AutoML) technologies [54]. Other famous light-
weighted models are ShuffleNet [55, 56] series, which
exchange their inner channel information to reduce compu-
tational cost. The redundancy of feature maps has not been
solved well. GhostNet [49], on the contrary, utilizes these
redundant feature maps and has more excellent perfor-
mance compared with previous lightweight models. We
integrated our LETR with GhostNet and presented GLETR.
More details of GLETR are seen in Section 4.

3. Revisiting Deformable Attention

3.1. Self-Attention Mechanism. DETR is a successful object
detection model using the self-attention mechanism, achiev-
ing outstanding performance on the COCO dataset [57]. In
this part, we briefly reviewed the inner mechanism of DETR.

3.1.1. Multihead Attention. In the natural language process-
ing field, the self-attention mechanism was adopted in the
Transformer model. By computing the values of Query,
Key and Value of input images, the Transformer modulates
the compatibility of every pixel. In the multihead attention
mechanism, the outputs of several attention heads are aggre-
gated linearly with learnable weight parameters. Given the
Value’s input feature zq and the Query and Key’s input fea-

ture x ∈HW × C, where H, W, and C are the heights,
widths, and channels of input images, the formulation of
multihead attention is shown as:

MultiHeadAttn zq, x
� �

= 〠
M

m=1
Wm 〠

k∈Ωk

Amqk ·Wm′ xk

" #
: ð1Þ

In Equation (1), q ∈Ωq and k ∈Ωk are elements of Query
and Key set, m is the number of attention heads, Amqk ∝
exp fzTq UT

mV
T
mxk/

ffiffiffiffiffi
Cv

p g is attention weight, where Um and
Vm are the transformation matrices of Query, Key, respec-
tively, and Cv = C/M. Wm and Wm′ are transformation
matrices of Value. Please note that Um, Vm, Wm, and Wm′
’s parameters are all learnable.

3.1.2. Position Embedding. DETR adopts position embed-
ding to our extracted features. This is owing to that the
Transformer demands information about the relative or
absolute position of pixels in feature maps. In DETR, sine
and cosine functions are used to represent the positions of
different pixels. The position embedding equations are writ-
ten as:

PE pos, 2ið Þ = sin
pos

100002i/dmodel

� �
,

PE pos, 2i + 1ð Þ = cos
pos

100002i/dmodel

� �
,

ð2Þ

where pos denotes the position and i is the dimension index;
dmodel represents the channel dimension of the input
features.

3.1.3. Match Loss. Unlike previous object detection models
using NMS, DETR outputs fixed N predictions and N is
much larger than the number of objects in an image. DETR
needs to allocate predictions to objects in images, and match
loss is introduced to evaluate this process. Assuming that yi
is the set of ground-truth bounding boxes, yσðiÞ is a set of
predicted bounding boxes with index σðiÞ, the optimal per-
mutation σ is written as:

σ = arg min
σ∈PN

〠
N

i

Lmatch yi, yσ ið Þ
� �

, ð3Þ

where σ stands for a permutation of predicted objects.
Finally, the match loss Lmatch is defined as:

Lmatch = 〠
N

i=1
−log Pσ ið Þ + Lbox bi, b̂i

� �h i
: ð4Þ

Albeit the fact that DETR has achieved state-of-the-art
performance, it costs massive computational resources,
and its convergence speed is relatively low. Furthermore,
the performance of DETR on small target datasets is
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disappointing. Besides, the test results of DETR present no
outstanding performance on our detection task. Hence, it
is proved that DETR is not suitable for our detection task.

3.2. Deformable Attention. DETR did not perform well on
small target detection tasks, owing to its inner mechanism.
Zhu et al. [15] combined DETR with deformable convolu-
tion and named their model Deformable DETR, by which
self-attention is generated to image deformable attention in
the image domain. The feature of the deformable attention
is computed by:

DeformAttn zq, pq, x
� �

= 〠
M

m=1
Wm 〠

K

k=1
Amqk ·Wm′ x pq + Δpmqk

� �" #
:

ð5Þ

k indicates the sampled keys, and K means the number
of sampled keys. pq denotes the reference point, and Δpmqk

is sampling offset.
In small object detection tasks, the sizes of objects vary

from small size to large size. To adapt the multiscale size
of input features, the deformable attention generates to
multiscale deformable attention and can be calculated by:

MSDeformAttn zq, p̂q, x
l
			L
l=1

� �
= 〠

M

m=1
Wm 〠

L

l=1
〠
K

k=1
Amlpk ·Wm′ xl ϕq

� �
+ Δpmlqk

� �" #
,

ð6Þ

where p̂q is the coordinates of sampled points being normal-
ized, l indexes the level of input feature maps. Amlqk and Δ

pmlqk represent the attention weight and offset of sampling

for the lth input feature map, respectively. ϕlðpqÞ function

rescales pq according to the lth input feature map.
Deformable DETR speeds up its convergence and

makes progress on small targets datasets. For our lead-
ing/trailing edge’s reconstruction area detection task, how-
ever, Deformable DETR’s performance can be further
improved compared with previous detectors using anchor
box and NMS.

4. LETR and GLETR

4.1. Overview of LETR. As shown in Figure 4, our model
adopted state-of-the-art methods implemented in small
object detection. A frequency-channel mixed backbone (we
named it after FcaAconNet) extracts features using a pyra-
mid neck. And then the pyramid-shaped feature maps are
sent to the Deformable Transformer head for encoding
and decoding. A feed-forward network is configured to out-
put the predicted classes and locations. We adapted the con-
figurations of the deformable encoder, deformable decoder,
and prediction network in [15].

4.2. Feature Extraction. Technically, the backbone is respon-
sible for extracting feature maps over input images. Previous

2.Backbone 3.Neck

Deformable
encoder

Deformable
decoder

4.Head 5.Prediction network 6.Output1.Input

Figure 4: Overview of LETR.

Scale

DCT0 DCT1 DCT2 DCTn–1

FC

Freq0 Freq1 Freq2 Freqn–1

Figure 5: The feature extraction process of the multispectral channel attention module.
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neural network models output a single-scale feature map.
However, the reconstruction areas in our dataset vary in dif-
ferent sizes. Hence, we adopted the pyramid architecture in
Deformable DETR for multiscale object detection. Further-
more, inspired by FcaNet [58], we imported the multispec-
tral channel attention module of FcaNet to the feature
extraction process of the model’s backbone. The details of
the utilized module are demonstrated in Figure 5.

Assuming that the dimension of the input feature is
C ×H ×W, the multispectral channel attention module
transforms input features into frequency domain with the

help of 2-dimensional discrete cosine transformation (2D
DCT). 2D DCT is formulated by Equation (7):

2DDCT x2d
� �

= 〠
H−1

i=0
〠
W−1

j=0
x2di,j cos

πh
H

i +
1
2

� �� �
cos

πw
W

j +
1
2

� �� �
,

ð7Þ

where x2d is the input image, and h ∈ ½0, 1,⋯,H − 1�,
w ∈ ½0, 1,⋯,W − 1�.

Input

Conv

Output

(a) The convolution operation

Input Intrinsic feature maps

Conv

Linear operation

Output

(b) The processing of ghost module

Conv

Conv

BatchNorm+ReLU

BatchNorm+ReLU

(c) The inner connection of the ghost module

Figure 6: The ghost module in Ghost-FcaAconNet.
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In FcaAconNet, the feature extraction procedure is illus-
trated as follows. First, input features X are split into n parts
according to the channel. This process can be denoted as:

X = X0, X1,⋯,Xn−1
 �
: ð8Þ

Next, the ith frequency feature of a given input Xi is com-
puted by the following formulation. 2DDCT is represented
for 2D DCT operation.

Freqi = 2DDCT Xi� �
: ð9Þ

Thus, by concatenating all Freqi, we have the final fre-
quency feature Freq of the input feature:

Freq = cat Freq0, Freq1,⋯,Freqn−1

 �� �

: ð10Þ

And finally, the attention of the mixed frequency-
channel domain is computed by the following formulation:

MSAttn = sigmoid fc Freqð Þð Þ, ð11Þ

where sigmoid is sigmoid function and f cð·Þ is a fully con-
nected layer. By rescaling X with MSAttn, the output of

Reconstruction area
Bridging curve

Bridging curve

(a) Leading edge

Reconstruction area

Bridging curve

Bridging curve
Concave surface 

Convex surface 

(b) Trailing edge

Figure 7: Selected samples in LDEG2021.
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multispectral channel attention module, denoted as ~X, is
computed as:

~X = Fscale X, MSAttnð Þ =MSAttn × X: ð12Þ

The mixed frequency and channel weights are applied to
the input feature maps after the multispectral channel atten-
tion module. In this method, adequate frequency and chan-
nel information is utilized by our backbone, and the
accuracy is enhanced gradually in deep neural networks.

4.3. Activation Function. In the neural network’s architec-
ture, the activation function plays a key role in importing

nonlinearity to improve the model’s classification capability.
Considering the big difference between the foreground and
background of our task, we employed Acon functions
because of their excellent ability to control the extent of

(a) (b)

(c) (d)

(e) (f)

Figure 8: Examples of LDEG2021 dataset.

Table 1: Confusion matrix.

Ground-truth
Prediction

Positive Negative

Positive TP FN

Negative FP TN
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nonlinear activation. In other words, by learning whether to
activate and to what extent the input is activated, the model
filters some disturbing information. More concretely, Acon
functions are divided into three types: Acon-A, Acon-B,
and Acon-C. Acon-A and Acon-B can be seen as special
cases of Acon-C. According to Ma et al. [44], meta-Acon,
the variant of Acon-C, showed the best performance in the
test. Therefore, we adopted it as our activation function.
Here, we gave the definition of Acon-C and meta-Acon.

Firstly, we use a function sβ to approximate the general
maximum function max ðx1, x2,⋯,xnÞ:

sβ x1, x2,⋯,xnð Þ = ∑n
i=1xie

βxi

∑n
i=1e

βxi
, ð13Þ

where β is the switching factor. Next, we consider the situa-
tion where sβðx1, x2,⋯,xnÞ is in neural networks. In this case,
sβðx1, x2,⋯,xnÞ degenerizes to the following format:

sβ ηa xð Þ, ηb xð Þð Þ = ηa xð Þ − ηb xð Þð Þ · σ βηa xð Þ − ηb xð Þ½ � + ηb xð Þ:
ð14Þ

σ is the sigmoid function, ηaðxÞ and ηbðxÞ represent lin-
ear functions. Considering a more general situation where
ηaðxÞ = p1x and ηbðxÞ = p2x, Acon-C is written as:

Acon − C xð Þ = sβ p1x, p2xð Þ = p1 − p2ð Þx · σ β p1 − p2ð Þx½ � + p2x:

ð15Þ

And furtherly, we see β as a learnable network GðxÞ and
Acon − CðxÞ can be generated to meta −AconðxÞ, which is
computed as:

meta −Acon xð Þ = p1 − p2ð Þx · σ G xð Þ p1 − p2ð Þ½ � + p2x: ð16Þ

We replaced the first two ReLU functions with meta-
Acon in each bottleneck of the original FcaNet to avoid
overfitting and proposed FcaAconNet. Relative experiments
are seen in Section 4.

As Figure 6(a) shows, convolution operation generates a
great amount of output feature maps which contains a cer-
tain extent of redundancy. Han et al. proved that some sim-
ilar feature maps exist in this redundancy and argued that
these superfluous feature maps are the ghost of intrinsic
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Figure 9: Comparison of PRCs.

10 Journal of Sensors



feature maps. Thus, they generated intrinsic feature maps by
a primary convolution and obtains ghost features through a
linear operation, by which the complexity of the model is
reduced. The whole procedure is described as follows.

4.4. Ghost Module. If we use X to represent the input feature
map, the output Y after general convolution is defined by:

Y = X ∗ f + b, ð17Þ

where ∗ and b denote the convolution operation and bias,
respectively, and f is the convolution operator. In ghost
module’s first stage, however, f is replaced by a new operator
f ′ and bias is canceled for lower model complexity. Thus,
the output Y ′ of the ghost module’s first stage is denoted as:

Y ′ = X ∗ f ′: ð18Þ

In the second stage, the ghost module implements a
series of linear operations to output Y ′ to match the dimen-

sion of the channel of the original output Y . The linear oper-
ations in the ghost module are written as:

yi,j = ϕi,j yi′
� �

, ð19Þ

where yi′ is the ith intrinsic feature map, Φi,j represents the i
th

linear operation, and yi,j is the generated ghost feature map.
The details of the ghost module are depicted in

Figure 6(b). Some intrinsic feature maps are output by the
previous convolution layer in the first stage. Next, by linear
operation, we mentioned above, a large number of ghost fea-
ture maps are produced. Finally, the intrinsic feature maps
and their corresponding “ghost” are concatenated according
to the channel dimension. In practice, the inner connection
of the ghost module is shown in Figure 6(c). The linear oper-
ation is carried out by a convolution layer. Technically, we
replaced all convolution layers with ghost modules in FcaA-
conNet’s bottleneck, and we called the FcaAconNet back-
bone with ghost module Ghost-FcaAconNet.
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Figure 10: Convergence curves of three models on LDEG2021.

Table 2: Comparison of LETR and GLETR with Deformable DETR on the LDEG2021 test set.

Detector Backbone mAP Model weight Training hours

Deformable DETR ResNet-50 90.6% 491.2MB 3.5

ResNet-101 90.8% 718.9MB 3.5

LETR FcaAconNet 91.9% 545.6MB 8.5

GLETR Ghost-FcaAconNet 91.8% 424.4MB 3.5
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5. Experiments

5.1. Dataset. We made LDEG2021 to detect the reconstruc-
tion area of the leading and trailing edge. The whole images
of LDEG2021 are the multiple sizes of section curves of dif-
ferent reconstruction areas of the leading and trailing edges
of the different blades’ different heights. These images are
acquired from the screenshots of Unigraphics NX 7.5 (UG)
software. LDEG2021 has 397 images annotated with two
classes: leading edge and trailing edge. Two selected samples
and their corresponding captions in LDEG2021 are shown
in Figure 7. We used different colors to distinguish different
curves. The magenta curves in Figures 7(a) and 7(b) are the
bridge curves of reconstructed leading/trailing edges. And
the crimson curves indicate the reconstruction areas of lead-
ing edges. On the other hand, the plum curves are the recon-
struction areas of trailing edges. The section lines of convex
and concave faces are presented in purple and yellow.

The reconstruction areas vary in different sizes. So, we
applied scaling and rotation to the models of reconstruc-
tion areas. In this way, some screenshots of reconstruction
areas are no longer in actual sizes. We need to notice that
this process is to train the ability to detect shape-varied

reconstruction areas. In Figure 8, we also gave other exam-
ples of the LDEG2021 dataset. Figures 8(a)–8(c) present
the images of reconstructed leading edges. Figures 8(d)–
8(f) are the images of reconstructed trailing edges. In this
article, we aim to train a high-performance model which
can detect a certain number of reconstruction areas at
the same time. That explains why there are more than
one leading/trailing edge in an image. It is also worth not-
ing that some overlapping phenomena occurred in
Figures 8(b) and 8(e). This is due to the fact that these
images are obtained from different perspectives in UG.
The LDEG2021 dataset will be open-sourced on https://
github.com/andrewsilver1997/LDEG2021.

5.2. Data Augmentation. Generally, a neural network model
gets better performance when the dataset’s scale gets larger.
The number of images in LDED2021, nevertheless, is lim-
ited. The data augmentation methods we applied include
random flipping, random cropping, and resizing. The train-
ing procedure was carried out on a CPU of Intel Xeon E5-
2678 V3 and a single GPU of Nvidia RTX 2080Ti. We used
MMDetection object detection toolbox [59] with Pytorch
1.5.1, cuDNN 7.6.1, and CUDA 10.1 for implementation.
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The batch size and learning rate were set to 2 and 2 × 10−4 at
first, respectively. The learning rate was decreased to
2 × 10−5 after 40 training epochs. Moreover, we chose
adamW as our optimizer.

5.3. Results and Discussions

5.3.1. Evaluation Metrics. True positive (TP), false positive
(FP), false negative (FN), and true negative (TN) are usually
needed in the evaluation of a model’s performance. Table 1
shows their definition by giving a confusion matrix.

We utilized the precision-recall curve (PRC) and mAP
(mean average precision) to evaluate the proposed approach’s
performance. Firstly, we give the definition of precision and
recall:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
:

ð20Þ

Generally speaking, a good object detection model is sup-
posed to raise its precision and keep the recall at a relatively
high level.

AP (average precision) represents the performance that
the model detects a specific class of all objects. AP is
defined in

AP =
ð1
0
p rð Þsdr, ð21Þ

where p and r are short for precision and recall. mAP
(mean average precision) is defined as the average of all
classes’ AP. It is calculated by

mAP =
∑N

i=1APi

N
, ð22Þ

where APi is the AP value of the ith class and N indicates
the total number of all classes. mAP measures the overall
performance of the model. In other words, the higher
the mAP is, the higher accuracy our models have. The
other metrics we implemented are model weight and
training hour, which measure the number of weight
parameters and convergence speed.

5.3.2. Results on LDEG2021 Dataset. Figures 9(a) and 9(b)
show the PRC curves of Deformable DETRs with ResNet50
and ResNet101 backbone, LETR, and GLETR. The perfor-
mances of the Deformable DETRs with ResNet50 and
ResNet101 were nearly the same when detecting the recon-
struction areas of the leading edge. Maintaining the same
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Figure 12: Convergence curves of the models with different components.

Table 3: Ablation studies for FcaNet, meta-Acon, and ghost
module.

ResNet FcaNet
Meta-
Acon

Ghost
module

mAP
Model
weight

Training
hour

✓ 90.6% 491.2MB 3.5

✓ 91.2% 543MB 3.5

✓ ✓ 91.9% 545.6MB 8.5

✓ ✓ ✓ 91.8% 424.4MB 3.5
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recall, the precision values of LETR and GLETR were higher
than Deformable DETRs. The enhancement of the perfor-
mance when detecting the trailing edge’ reconstruction area
was unobvious as shown in Figure 9(b). It is worth noting
that the shapes of trailing edge’s reconstruction areas have
no such big differences as leading edge’s reconstruction areas
do. Besides, the retained theoretical parts of the trailing
edge’s reconstruction areas are relatively larger than that of
the leading edge’s reconstruction areas. That explains why
the improvement in Figure 9(b) is not obvious. But even
though the improvement in Figure 9(b) is not distinct, LETR

and GLETR still show their comparable performance. We
will give a more detailed illustration in the following discus-
sions of detection results. The convergence curves of the
three models are presented in Figure 10. Deformable DETR
with ResNet50 backbone took 50 epochs to converge and the
mAP was 90.6%. The Deformable DETR with ResNet101
backbone did not show significant differences compared
with the Deformable DETR with ResNet50. On the other
hand, LETR, achieved a higher mAP even though its training
time was longer. GLETR had the fastest convergence speed
(less than 40 epochs) and the mAP was 91.8%.

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 13: Selected examples from the detection results on trailing edges.

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 14: Another examples from the detection results on trailing edges.
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Table 2 illustrates the results of the test. Compared
with Deformable DETR, LETR achieves better performance
with a 1.1% improvement of mAP. On the other hand,
GLETR decreased model weight by 121.2MB with a slight
decrease of mAP (0.1%). It is worth noting that the results
were obtained on a single GPU. We believe the improve-
ment in the performance of our models will be more pro-
nounced on multiple GPUs with higher computational
accuracy and speed.

Figures 11(a) and 11(b) show the effects of different
components on PRC curves. The symbol “+” indicates the

number of design components the model has. As
Figure 11(a) illustrates, the performances of models when
detecting the leading edge’s reconstruction areas were
enhanced by introducing the FcaNet and MetaAcon. The
imported components’ effects on detecting the reconstruc-
tion area of the trailing edge were unremarkable. Figure 12
is the convergence curves of the models with different com-
ponents. The training epochs of the Deformable DETR
whose backbone was replaced by FcaNet were the same as
Deformable DETR with ResNet with an increase of mAP.
After importing the MetaAcon function, the training epochs

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 15: Comparison of detection results of the top area.

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 16: Comparison of detection results of the middle area.
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went to 92. The ghost modules lowered the training epochs
significantly to less than 40 and the decrease in mAP was
tolerable.

Table 3 presents ablations for three design components
of LETR. If we use ResNet as the backbone, LETR degener-
ates to Deformable DETR, and the mAP is 90.6%. Using
FcaNet instead of ResNet improves mAP by 0.6%. Next,
replacing ReLU with the meta-Acon activation function
can effectively improve mAP by 0.7%. By importing the
ghost module, the weight of LETR dropped to 424.4MB,
and the mAP of GLETR is 91.8%, which was lower than that
of LETR. This decrease is acceptable. More importantly, the
training hour is lowered by the ghost module from 8.5 hours
to 3.5 hours. Therefore, it is proved that GLETR performs as
good as LETR on the LDEG2021 dataset with fewer param-
eters and a faster speed of convergence, even though there
was a tiny decrease in mAP.

We need to point out that the edge shapes of recon-
structed leading/trailing edges are different. Moreover, the
reconstructed leading edges’ shapes vary from the bottom
to the top of the blade. In the rest part of this section, we will
discuss the performance of LETR and GLETR when detect-
ing the reconstruction areas of leading/trailing edges and the
reconstruction areas of leading edges from different heights
of the blade.

The detection results on different reconstructed trailing
edges are demonstrated in Figures 13 and 14. In Figure 13,
the baseline model, Deformable DETR, detected all targets
while some detected objects were misclassified. On the con-
trary, LETR detected all reconstruction areas of trailing edges
without any misclassification as shown in Figure 13(c). How-

ever, GLETR missed two targets even though the detected tar-
gets were correctly recognized.

We also showed an example in Figure 14 where Deform-
able DETR failed to detect all reconstruction areas of trailing
edges and recognized the wrong targets. By comparing
Figures 14(a) and 14(b), we knew that only one target was
detected successfully. It was unexpected that Deformable
DETR classified some interferences in the background as
reconstruction areas of trailing edges. Figures 14(c) and
14(d) give the detection results of LETR and GLETR on
reconstructed trailing edges.

To test LETR and GLETR’s performance in detecting the
reconstruction areas of leading edges of the near-net-shaped
blades, we picked raw images from the bottom, middle, and
top areas of the blade in LDEG2021 and tested three models
on them. The detection results on the top area’s images of
the blade are shown in Figure 14. The reconstructed curves
of the blade’s top area usually contain limited reconstruction
areas. That is, the targets are relatively smaller. Figure 15(a)
is the raw image of this area’s reconstructed curves. As
Figures 15(b)–15(d) show, Deformable DETR did not per-
form well while LETR and GLETR recognized these small
reconstruction areas with high probability. LETR and
GLETR detected all four targets with no mistakes.

As for the middle area of the blade, the reconstructed
curves of this area retained more reconstruction areas, as
shown in Figure 16(a). The detection results of the middle
area of the blade are given in Figures 16(b)–16(d). All three
models performed well with no reconstruction area missed.

The detection results of the bottom area of the blade are
seen in Figure 17. Figure 17(a) indicates that the cross

(a) Raw image (b) Detection results of Deformable DETR

(c) Detection results of LETR (d) Detection results of GLETR

Figure 17: Comparison of detection results of the bottom area.
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sections to be further machined in this area are quite dense,
which means that the reconstruction areas may be obscured
by each other. The test results in Figures 17(b) and 17(c)
illustrate that Deformable DETR missed two targets whilst
LETR missed only one target. However, GLETR did not
behave well, which disregarded five small reconstruction
areas in this area.

From Figures 13–17, it also can be summarized that the
classification probability of LETR is higher than that of
Deformable DETR in most cases. On the anther hand, the
classification probability of GLETR is lower than that of
LETR and Deformable DETR as a result of importing ghost
modules.

The experiment results on the reconstruction areas of
leading and trailing edges demonstrate that LETR and
GLETR have superior performance. Nonetheless, GLETR’s
performance in detecting dense and small targets still needs
to be improved, which is one of the focuses of our future
works.

To test the performance of LETR and GLETR on general
small objects detection tasks, we also conducted experiments
on two remote sensing datasets: RSOD [60] and NWPU
VHR-10 [61]. However, the results on these two remote
sensing datasets were not ideal. Due to the imbalanced num-
bers of different classes’ images, we encountered the long-tail
effect. We plan to address this problem by applying more
data augmentation methods, not just random flipping, crop-
ping, and resizing.

We also want to mention that this paper still has some
subsequent works to be accomplished. The reconstruction
areas’ sizes in images are quite different from their actual
sizes. Hence, the correspondence between the actual sizes
and the sizes in an image is of great essence. In this article,
we did not give such correspondence. So, it is worth explor-
ing how to transfer the detected positions of reconstruction
areas in images into real-world models.

6. Conclusions

Aiming to detect the reconstruction area of the near-net-
shaped blade, this paper proposed two end-to-end and
anchor-free models based on Deformable DETR. Experi-
ment results show that the proposed models have higher
accuracy and less weight, respectively. They also offer strong
support to our following works. The main contributions of
this article are concluded as follows:

(1) We optimized the architecture of Deformable DETR
from the aspect of feature extraction and activation
function. The new model was named after LETR.
LETR extracts features from a frequency-channel
mixed domain and activates nonlinear units dynam-
ically. The test results on the self-made dataset
LDEG2021 surpassed the baseline model by mAP
of 1.3% on a single GPU

(2) On the other hand, we imported the ghost module to
LETR and presented a lightweight model, GLETR.
Compared with LETR, GLETR achieved a faster con-

vergence speed and less model weight with a tiny
decrease in accuracy on LDEG2021. It is proved that
GLETR has the potential to be applied to real-time
detection

(3) We are capable of obtaining the position and area of
the reconstruction area with high efficiency and no
errors caused by human experience by applying
LETR and GLETR to our task. With the position
and area, we can know the geometric parameters of
the reconstructed curves by exploring parameter
extraction algorithms

LETR and GLETR are two successful attempts combin-
ing object detection and adaptive machining. However, there
are some issues remained in this paper and can be investi-
gated in the future:

(1) GLETR has its disadvantages when detecting the tar-
gets in the bottom area of the blade. That is due to
the fact that the objects cover each other and some
features are ignored by the ghost module. One
potential solution to this problem is to feed the net-
work with images of larger sizes during the training
process, by which the position and semantic infor-
mation is enhanced

(2) The test results of LETR and GLETR on remote
sensing datasets were unsatisfactory due to the
long-tail effect. Here, we suggest adopting more data
augmentation algorithms to keep the number of
objects’ classes balanced. A promising way is to
stitch the images, especially for the objects which
have fewer images

(3) We need to extract the geometric parameters in
images in the future. In detail, the next step is to find
the relationship between the coordinates of the
reconstruction area’s each pixel and its correspond-
ing geometric parameters, like curvature and chord
length
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The traditional target-dependent camera calibration method has been widely used in close-distance and small field of view scenes.
However, in view of the field coordinate measurement in the large-scale monitoring area under the complex field environment,
the standard target can hardly meet the requirements of covering most of the camera’s field of view. In view of the above
problem, a stereo camera calibration method is studied, using the unmanned aerial vehicles (UAV) as feature points, combined
with the high-precision position information measured by the real-time kinematic (RTK) positioning system it carries. The
measured UAV coordinates are unified in World Geodetic System 1984 (WGS-84). Therefore, through several preset points,
the measurement reference coordinate system which is the new world coordinate system we need can be established in any
monitoring area, which greatly improves the flexibility of measurement. The experimental results show that the measurement
accuracy of the proposed method can reach 0.5% in the monitoring area with a diameter of 100m. The calibration method has
a wide range of application and does not need the traditional standard target, and the measurement reference coordinate
system can be established according to the actual needs. It is suitable for field spatial coordinate measurement in long-distance
and complex terrain environment.

1. Introduction

Binocular stereo vision simulates human eye vision to realize
the mapping from two-dimensional (2D) images to three-
dimensional (3D) space and realizes the use of 3D informa-
tion. At present, this method has been widely used in auton-
omous driving, robot navigation, virtual reality, and
industrial production [1–6]. The process of solving this
mapping relationship is called camera calibration, which
involves some parameters, including both intrinsic and
extrinsic parameters. Intrinsic parameters consist of princi-
pal points, focal lengths, and lens distortion. Extrinsic
parameters include a rotation matrix and a translation vec-
tor between the two cameras.

Various effective calibration methods have been pro-
posed, including traditional calibration methods, self-
calibration methods, and camera calibration based on active

vision. In the traditional calibration method, the intrinsic
and extrinsic parameters of the camera are obtained by
mathematical transformation of 3D coordinates and 2D
image coordinates by presetting some targets. Faig [7] pro-
posed an imaging model based on the optimization algo-
rithm, which has a complex solution process and high
initial value requirements. Abdel-Aziz and Karara [8] pro-
posed the direct linear transformation (DLT) method, which
ignored the effects of distortion and obtained unknown
parameters of the equation by solving the linear equations.
Tsai [9] proposed a two-step method based on radial con-
straint by combining optimization algorithm and direct lin-
ear transformation method on the basis of only considering
radial distortion. Zhang [10] is best known for his flexible
calibration method, in which he provided a good method
for estimating the initial parameters of the camera by using
the constraints of the homography between planes. The
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premise of the application of the above methods is to man-
ufacture specific targets, such as checkerboard or circular
targets, which is difficult to achieve in the field with a large
field of view due to the size limitation. In response to the
above problems, Faugeras et al. [11] and Maybank and Fau-
geras [12, 13] proposed a camera self-calibration method,
which calibrated the camera by taking multiple images with
distinct features and relative motion. However, this method
had great limitations in sky, desert, sea, and other environ-
ments, and its robustness was poor and data reliability was
insufficient. Similarly, Ma and Zhang [14–17] proposed a
calibration method based on active vision, which required
the camera to make specific movement and was not suitable
for the occasion when the camera was fixed in the field with
a large field of view. Besides, many scholars have proposed
camera calibration methods in large field of view environ-
ment. For example, Kong et al. [18] proposed a method of
camera calibration based on the Global Positioning System
(GPS), which directly took the GPS instrument as the feature
points, which limited the flexibility of the method in practi-
cal use. Xiao et al. [19] proposed a binocular 3D measure-
ment system that uses a cross target with ring coded
points. Shang et al. [20] proposed a large field of view cali-
bration method in which the optical center and control
point of the camera are close to the coplanar, which has
many limitations. Sun et al. [21] proposed a baseline-based
camera calibration method in which the calibration target
must be randomly placed in the field of view several times.
Wang et al. [22–24] proposed a stereo calibration method
for out-of-focus cameras when acquiring images for long-
and short-distance photogrammetry, which has high robust-
ness and high accuracy. None of these methods enable pre-
cise and fast camera calibration at large field of view.

In this paper, a calibration method using the UAV with
RTK as a high-precision mobile calibration target is pro-
posed. This method does not need to manufacture large-
scale calibration target, which reduces the requirement of
calibration conditions, and is suitable for large scene field
environment. In addition, by using the WGS-84 earth coor-
dinate system as the intermediary, the measurement refer-
ence coordinate system can be flexibly converted to any
desired position through several preset coordinate points,
even if the position cannot be observed by the binocular
cameras simultaneously, which is very suitable for some
complex field scenes where the view is partially obscured
by trees or hills. Experimental results show that the pro-
posed method performs well in the monitoring area with a
diameter of 50-100m at the distance of 500-1000m from
the cameras.

The subsequent compositions of this article are as fol-
lows: Section 2 introduces the basic principles, Section 3
introduces the calibration process and experimental results,
and Section 4 summarizes this article.

2. Calibration Theory

2.1. Camera Imaging Model. This paper focuses on where the
camera is 500m-1000m away from the center of the moni-
toring area; therefore, the telephoto lens is used. Considering

that the telephoto lens of the camera has very little distor-
tion, the ideal pinhole imaging mode [25] is chosen to
describe the mapping relationship between the object space
and the image space, as is shown in Figure 1.

According to the pinhole imaging model, the coordi-
nates from the world coordinate system, camera coordinate
system, camera physical coordinate system and image pixel
coordinate system have undergone three parts of rigid body
transformation, projection transformation, and rigid body
transformation, respectively. One point in the camera coor-
dinate system is expressed as ðXc, Yc, ZcÞ and in the world
coordinate system is expressed as ðXw, Yw, ZwÞ, which are
named ðx, yÞ and ðu, vÞ, respectively, in the camera physical
and image pixel coordinate systems. According to the rela-
tionship between each coordinate system, the linear trans-
formation relationship between the world coordinate
system ðXw, Yw, ZwÞ and the pixel coordinate system ðu, vÞ
is established by the following equation.
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where R and T are the rotation matrix and translation vector
between the world coordinate system and the camera coor-
dinate system. f is the focal length of the lens. dx and dy
are the physical size of the pixel. u0 and v0 are the camera
principal points. Camera calibration requires the solution
of these parameters.

2.2. Coordinate System Conversion. As can be seen from Sec-
tion 2.1, obtaining the correspondence between the pixel
coordinates and the world coordinates of the feature point
is the key to estimating the camera parameters. With the
help of the UAV working in RTK mode, we can obtain the
UAV’s current GPS navigation coordinates PGðB, L,HÞ,
which can be converted into earth rectangular coordinates
PEðXE, YE , ZEÞ [18]:

XE = N +Hð Þ cos B cos L,
YE = N +Hð Þ cos B sin L,
ZE = N 1 − E2� �

+H
� �

sin B,

8>><
>>: ð2Þ

where N is the radius of curvature of the ellipsoid and E
is the first eccentricity of the ellipsoid. Let a, b be the long
and short semiaxes of the Earth, respectively, and χ be the
ellipsoidal flattening rate of the Earth. Without losing gener-
ality [26],

a = 6378137,

χ = 1
298:257223563 ,

b = a × 1 − χð Þ:

8>>><
>>>: ð3Þ
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Also, we know

E =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p

a
,

N = affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2 sin2B

p :

8>>><
>>>: ð4Þ

By combining equations (2)–(4), the representation of
PG in the WGS-84 earth rectangular coordinate system, PE,
can be obtained. However, the coordinates obtained by the
above steps are based on the Earth’s center of mass, which
has two disadvantages: first, the scale of the obtained coordi-
nates is too large to estimate the camera parameters; second,
the origin and direction of the current coordinate axes have
been fixed, which is not conducive to further measurement.
Therefore, we need to set the origin and direction of the
world coordinate system according to our own needs and
complete the camera calibration in this coordinate system
which is also called the preset coordinate system. Since coor-
dinates of all measuring points are in the WGS-84 earth rect-
angular coordinate system, this transformation is not
difficult. According to different application scenarios, the
preset coordinate systems can be established by the follow-
ing two ways.

(1) Establishment of the preset coordinate system for a
rectangular region of interest

As is shown in Figure 2, the latitude and longitude of A,
B, C, and D four points are measured at the four corners of a
rectangle and converted to the earth rectangular coordinate
system by the above steps. Take the coordinates of the inter-
section of lines AC and BD as the origin of the preset coor-
dinate system Ow, and the vector between Ow and the
midpoint of CD is the direction vector X of the X-axis. Then,

the direction vector of the Z-axis can be expressed as OwD
��!

×OwC
��!

, and the direction vector of the Y-axis can be repre-
sented as Z ×X.

(2) Establishment of the preset coordinate system for a
region of interest with a center point

Measure the latitude and longitude of a point as the ori-
gin Ow of the preset coordinates and convert the coordinate
to the earth rectangular coordinate system under WGS-84.

Without loss of generality, in the wild, due north is usually
used as the Y-direction vector, due east is the X-direction
vector, and the Z direction is perpendicular to them.

The preset coordinate system can be established by the
above rules, as is shown in Figure 3. And the transformation
vector between the preset coordinate system and the earth
rectangular coordinate system is obtained as TE =Ow.

Normalize the three orthogonal direction vectors:

I = X
Xj j ,

Y
Yj j ,

Z
Zj j

� �
, ð5Þ

where j j represents the modular arithmetic. Then, we can
obtain the rotation matrix RE between the preset coordinate
system and the earth rectangular coordinate system:

RE = I−1: ð6Þ

Thus, all space coordinates PEUAV of UAV in the earth
rectangular coordinate system can be converted to the preset
coordinate system (new world coordinate system):

P = RE · PEUAV − TEð Þ: ð7Þ

2.3. Single-Camera Calibration. The basic condition of
parameter estimation is to find the matching relationship
between image coordinates and 3D coordinates. In this
paper, the centroid of the UAV is designated as the feature
points in the left and right cameras, as shown in Figure 4.

First, the initial values of intrinsic parameters are given
based on the theoretical values:

f x =
f
dx

,

f y =
f
dy

,

u0 =
umax
2 ,

v0 =
vmax
2 ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

where f is the theoretical focal length and f x and f y are the
focal lengths (in pixels). dx and dy represent the physical
size of pixels in the x and y directions, respectively, and

(R, T)

Zc

u y
x

O

Yc

Oc

Xc

Figure 1: Camera pinhole imaging mode.
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umax and vmax represent the resolution of the image in the x
and y directions, respectively. Subsequently, initial solutions
for other parameters (such as extrinsic parameters) can be
obtained by DLT [8]. Finally, the constrained adjustment
method is used to minimize the reprojection errors:

arg min 〠
N

n=1
mn − m̂ f x, f y, u0, v0,R, T,Mn

h i��� ���2, ð9Þ

where mn represents the image coordinate of the n-th point,
Mn denotes its corresponding spatial coordinate, m̂ is the
projection of point Mn in image n according to equation
(1), and R and T represent the rotation matrix and transla-
tion vector, respectively. It is worth noting that the principal
points u0 and v0 are set to constant values and do not partic-
ipate in the iterative process because their values are an
order of magnitude smaller than the other parameters. Oth-
erwise, although small reprojection errors can be obtained,
these values have no physical significance and cause instabil-
ity of other parameters. It has been experimentally proven in
Reference [27] that the fixation of the principal points has
little effect on the final reconstruction accuracy.

2.4. Binocular Calibration. According to Section 2.2, we can
convert the GPS navigation coordinates of UAV to the
required preset coordinate system. Suppose P is the coordi-
nates of a point in the preset coordinate system and PL
and PR are its corresponding coordinates in the left and right
camera coordinate system, as is shown in Figure 5, their rela-

tionship can be described as

PL = RLP + TL,
PR = RRP + TR,

(
ð10Þ

where ½RL, TL� and ½RR, TR� describe the extrinsic parame-
ters of the left and right cameras, respectively. Obviously, it
is easy to obtain the extrinsic parameters between the left
and right cameras as

Rw = RRR−1
L ,

Tw = TR − RRR−1
L TL:

ð11Þ

In this way, the binocular camera can be calibrated. The
advantage of establishing the preset world coordinate system
is that we can quickly convert the coordinates PL (generally
in the left camera coordinate system) reconstructed by the
binocular camera to the preset coordinate system:

P = RL
−1 PL − TLð Þ: ð12Þ

3. Experiments and Analysis

To verify the effectiveness of the proposed method, we set up
a series of experiments. Five groups of camera-lens pairs
were calibrated independently. Details of the camera-lens
pairs are shown in Table 1.

In each group, identical camera-lens pairs were used to
form a stereo camera, with the two cameras placed vertically,
while monitoring an area 500-1000 meters away. The area
covered by the cameras varies in diameter from 50m to
100m, depending on the focal lengths.

In the experiment, the UAV (DJI M300) with RTK (DJI
RTK-2) was used as the high-precision mobile calibration
target. The RTK master station was arranged on the ground,
and the fuselage was equipped with the RTK slave station. In
the range of 10 km, the measuring accuracy of the slave sta-
tion can reach the order of centimeters [28], which is a sat-
isfactory accuracy compared with the camera monitoring
diameter of tens of meters.

Control the UAV navigate over the monitoring area, and
confirm that the UAV is in the field of view of the cameras.
At 8m, 16m, 24m, 32m, and 40m above the plane X‐O‐Y
in the preset coordinate system, 10 points were suspended
to record the GPS navigation coordinates and corresponding
image coordinates of the UAV. Figure 6 illustrates the UAV
images taken by two cameras. Convert the GPS coordinates
to the preset coordinate system, and the position distribu-
tion of the UAV is shown in Figure 7.

3.1. Influence of the Feature Point Number on Calibration
Results. As we know, the camera parameters can be correctly
estimated only if there are at least six sets of 2D and 3D
coordinates corresponding to each other. Adding a feature
point means that the UAV needs to fly one more time,
which will undoubtedly increase our workload. Therefore,
it is meaningful to explore the appropriate number of feature
points to reduce the work. Five independent experiments

Figure 2: Establishment of the preset coordinate system for a
rectangular region of interest.

Figure 3: Establishment of the preset coordinate system for a
region of interest with a center point.
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were carried out for the five camera-lens pairs described in
Table 1.

In each experiment, 6, 10, and 40 UAV images (one
image corresponds to a feature point position) were used

to calibrate the stereo cameras. Then, the calibration results
were used to reconstruct the space positions of another 10
UAVs. It is worth noting that the navigation coordinates
measured by the GPS on the fuselage were used as the real

Figure 4: UAV in a single camera.

Table 1: Details of the camera-lens pairs.

Group Camera resolution Camera model Lens model Pixel size (μm) Focal length (mm)

1 1920 × 1080 Phantom V341 Nikon 70-200mm 10 100

2 1024 × 1024 Photron Nova s12 Nikon 70-200mm 20 130

3 1280 × 800 Phantom VEO 310 Nikon 200-500mm 20 350

4 1280 × 800 Phantom VEO 310 Nikon 200-500mm 20 350

5 1920 × 1080 Phantom VEO 440 Nikon 70-200mm 10 170

P

XCL

YCL

OCL

oL xL

yL
xR

oR

yR
ZCL

ZCR

YCR

OCR

XCR

Figure 5: Binocular vision model [27].

Figure 6: UAV in camera images.
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space position of the UAV positions. Table 2 reveals the
influence of different numbers of feature points on calibra-
tion results, in which the mean Euclidean distances of the
reconstructed space positions and ideal ones of UAV are
used to evaluate the accuracy of the results.

As is shown in Figure 8, the results of five experiments
show that when the number of feature points is less than
12, the reconstruction errors decrease rapidly with the
increase in the number of feature points. However, when
the number of feature points is greater than 12, the impact
of the number of feature points on the accuracy becomes
smaller and the reconstruction accuracy only improves

slightly. Therefore, 15~30 points are a good choice to bal-
ance efficiency and accuracy in practical applications.

3.2. Reconstruction Accuracy. The actual measurement accu-
racy is an important criterion to evaluate the calibration
accuracy. Two markers were placed in the monitoring area
of the cameras, and the actual distance between them can
be measured by RTK. The same steps were used to calibrate
the two cameras, and the coordinates of the two markers
were reconstructed according to the calibration results, and
then, the distance between them was calculated. Experi-
ments were carried out on the five groups of camera-lens
configurations, and the reconstruction errors are shown in
Table 3.

It can be seen that the reconstruction results are stable in
accuracy, the maximum absolute error is less than 0.12m,
and the relative error is less than 0.5%. This is satisfactory
when the monitoring diameter ranges from 50m to 100m.
The results show that the proposed method is accurate and
flexible in calibrating cameras with large field of view in
the wild.

4. Conclusion

In this paper, a camera calibration method for long-distance
photogrammetry using unmanned aerial vehicles is studied.
Instead of traditional targets, the GPS carried by UAV is
used to obtain the spatial coordinate information, so as to
complete camera calibration. This method overcomes the
problem that standard target cannot cover most of the cam-
era’s field of view and enhances the environmental adapt-
ability. In addition, by using the WGS-84 coordinate
system as the intermediary, the preset coordinate system
can be established in any area of interest, improving the
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Figure 7: Position distribution of UAV in the preset coordinate
system.

Table 2: Errors between reconstructed positions and ideal
positions (unit: m).

Point number Group 1 Group 2 Group 3 Group 4 Group 5

6 12.69 0.39 8.36 8.68 3.2

10 1.44 0.31 3.32 0.35 0.21

12 0.16 0.32 0.11 0.36 0.19

15 0.13 0.30 0.09 0.28 0.21

20 0.12 0.28 0.09 0.22 0.16

25 0.12 0.28 0.09 0.17 0.17

30 0.11 0.26 0.08 0.15 0.15

35 0.11 0.25 0.08 0.14 0.16

40 0.10 0.22 0.08 0.13 0.15

Table 3: Distance errors of the two marks (unit: m).

Group
number

Measured
length

Reconstruction
length

Absolute
errors

Relative
errors

1 24.25 24.36 0.11 0.45%

2 32.83 32.77 0.06 0.18%

3 46.60 46.48 0.12 0.26%

4 46.60 46.50 0.10 0.21%

5 30.00 29.95 0.05 0.17%
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Figure 8: Relationship between errors and the number of feature
points.
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flexibility of measurement. Experimental results show that
the absolute measurement error of the proposed method is
less than 0.5% in the monitoring area with a diameter of
50-100m and at the distance of 500-1000m from the
cameras.
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Since the low cost and high flexibility, wireless automatic meter reading network (WAMRN) is widely used by utility companies to
realize automatic collection and transmission of remote energy consumption information. Considering that WAMRN is
composed of several wireless communication nodes, the lifetime of the network will be affected by factors such as the
changeable deployment environment and the limited energy of nodes. Thus, a novel niche quantum ant colony-based
WAMRN clustering optimization method is proposed in this paper to address the problem of how to make full use of the
limited energy to extend network lifetime and improve data transmission efficiency. In the proposed approach, a clustering
model of WAMRN is defined; moreover, an improved Niche Quantum Ant Colony Optimization (NQACO) is proposed to
optimize the model therefore to obtain an optimal clustering scheme, which can help WAMRN reduce unnecessary energy loss
to achieve the purpose of extending the lifetime of the entire network. To verify the performance of the proposed method,
NQACO is compared with some popular clustering methods, i.e., GA and SA, under different scenarios. The results show that
under the premise of ensuring network communication, NQACO is superior to the other two methods in reducing the total
energy consumption and prolonging the network lifetime.

1. Introduction

In the age of production automation, the realization of
automatic meter reading (AMR) for water, electricity,
and gas supplies has become an urgent problem for energy
companies, for a reason that accurate and timely replica-
tion of water and electricity data will directly affect busi-
ness decisions and economic benefits [1, 2]. By
leveraging electronic, communication, computer, and net-
work technologies to identify, read, process, and transmit
meter data automatically, it enables the problems of single
function, low accuracy, and undesirable real-time perfor-
mance of traditional meter reading to be solved. Especially,
the adoption of automatic meter reading technology not

only improves the economic efficiency of enterprises but
also enhances the degree of informatization [3]. Hence,
there appears an inevitable trend of the application of
automatic meter reading technology for water, electricity,
and gas data reading.

At present, the technology of automatic meter reading
consists of wired automatic meter reading and wireless
automatic meter reading according to the mode of data
transmission. Specifically, the former mainly makes use
of power line networks, telephone line networks, RS-485
bus networks, etc. One disadvantage of the existing wired
meter reading method lies in that it cannot be applied in
a large scale and reliable way in the home meter reading
system. It is because of its high cost, complex wiring,

Hindawi
Journal of Sensors
Volume 2022, Article ID 1245705, 13 pages
https://doi.org/10.1155/2022/1245705

https://orcid.org/0000-0002-4674-6620
https://orcid.org/0000-0003-4245-1611
https://orcid.org/0000-0002-0759-2948
https://orcid.org/0000-0003-2406-3981
https://orcid.org/0000-0003-4985-2071
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1245705


difficulty in commissioning and maintenance, susceptibility
to the power grid, poor security, and poor scalability [4].
With the appearance of wireless automatic meter reading,
it makes up for the deficiency of the wired automatic
meter reading. The technologies used for wireless meter
reading include GSM/GPRS, Bluetooth technology, and
short-range wireless radio frequency transmission technol-
ogy. Compared with traditional meter reading methods as
well as wired methods, wireless meter reading can save
labor costs, reduce wiring costs, and simplify the manage-
ment to find problems and take corresponding measures
promptly. To this end, WAMR has become a leading
research direction of AMR.

In WAMRN, each energy meter node is powered by a
battery with limited energy. In this way, to prolong the
network lifetime as much as possible with energy limita-
tion, researchers have conducted a lot of research on ways
which can effectively enhance the energy utilization. Find-
ing that the design of network topology and the selection
of routing have a significant impact on the energy dissipa-
tion of nodes [5–7], researchers improve the energy utili-
zation in WAMRN by designing a reasonable clustering
model and using efficient optimization algorithm [8, 9].
Therefore, the focus of this paper is on the optimization
of network clustering to effectively extend the lifetime of
WAMRN.

In this paper, the most desirable nodes in the
WAMRN are selected as cluster head nodes for clustering,
such that the whole network is divided into several con-
nected regions. In addition, the noncluster head nodes in
each region are named member nodes, and the cluster
head nodes manage the surrounding member nodes. In
[10], the authors have shown that the optimal cluster head
selection problem is an NP-hard problem. Therefore, we
propose a Niche Quantum Ant Colony Optimization
(NQACO) which combines the optimization mechanism
of quantum evolutionary algorithms with the ant colony
optimization. By using this approach, it can significantly
enhance the search traversal and convergence speed when
the problem size is large, while NQACO uses the niche
technique to ensure the species diversity of the whole large
ant colony. The existence of stable individual differences in
the colony aids NQACO in overcoming the premature
problem exhibited by other algorithms and allows for
more desirable local search capabilities. In a nutshell, the
proposed clustering approach can efficiently search for
optimal routing clusters from the solution space, thus
effectively decreasing the energy loss in WAMRN and thus
extending the network lifecycle.

The structure of this thesis is just as below. In Section 2,
the research work related to the clustering of sensor networks
is introduced. Section 3 describes the entire network structure
of WAMRN. Meanwhile, the corresponding mathematical
model is designed and established. Section 4 proposes a new
optimization algorithm to optimize the problem of clustering
of WAMRN in Section 3. Section 5 shows the optimization
performance of NQACO on the cluster routing model by
comparing it with GA and SA. Finally, the whole work of this
paper is summarized in Section 6.

2. Related Work

At present, there exist many kinds of AMR communication
technologies. For instance, paper [11] applying radio fre-
quency technology to AMR systems, which can help energy
companies effectively reduce data collection costs and
quickly collect key information to provide insights for
decision-makers. Paper [12] realizes a wireless power moni-
toring system based on ZigBee technology monitoring
power quality and remotely control power services. In addi-
tion, paper [13] uses the single-chip microcomputer STM32
to manage energy data and uses ZigBee for communicating
between the electric energy meter and the data center. After-
wards, paper [14] designed a GPRS-based remote automatic
meter reading wireless communication system hardware,
which supports UDP communication protocol and can carry
out remote data transmission through message transmission
and network communication.

A lot of research results show that WSN is considered to
be the key technology for building a new generation of smart
grid AMR systems in the future [15–18]. However, since the
energy supply of sensor nodes in WSN is battery-powered,
the energy of the nodes has a certain limitation, and the
energy of wireless sensor network nodes cannot be replen-
ished at work. Therefore, considering extending the lifetime
of the entire network as much as possible, it is an important
design principle to improve the energy utilization rate and
reduce the energy loss of the wireless sensor node in the con-
struction of WSN. In paper [19], the researchers use the
water meter as a node to form a wireless sensor network.
That research focuses on making the energy consumption
as small as possible by avoiding packets whose lengths
exceed the length limit. The paper [20] points out that sen-
sor nodes in WSN send their data to the central cluster head,
which forwards the data to the desired receiver. Moreover,
clustering can realize bandwidth reuse, thereby increasing
system capacity.

To make up for the sustainability of QoS and bridge the
gap between suboptimal solutions, the paper [21] proposed a
quality-of-service routing algorithm based on genetic algo-
rithm. That work solves the imbalance characteristic sche-
matic diagram of QoS optimization in the ad hoc network
and the previous convergence problem. However, the
genetic algorithm used in this study has a specific depen-
dence on selecting the initial population. In addition, the
algorithm is prone to premature problems when solving
large-scale computing problems.

In paper [22], the author proposed a lightweight
dynamic TRUST model and bee mating algorithm for clus-
tering. More specifically, to prevent malicious nodes from
becoming cluster head nodes, they proposed a gradually rea-
sonable priority scheme in the trust measurement. Neverthe-
less, since the amount of crossover operation information is
small and the similarity of the bee colony is high in the pro-
cess of optimizing the problem with the bee mating algo-
rithm, it is prone to fall into the local optimum and
seriously affect the performance of the algorithm.

Paper [23] proposes a modified clustering method based
on LEACH (Low Energy Adaptive Clustering Hierarchy),
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which uses the Particle Swarm Optimization (PSO) algo-
rithm to optimize the network clustering and determines
cluster heads by considering factors such as energy, commu-
nication overhead, and load balance. Although the particle
swarm algorithm used in the research has the characteristics
of simple structure and fast search speed compared with
other algorithms, it has some inescapable disadvantages such
as low accuracy, easy divergence, and easy falling into local
optimum. These shortcomings are in the process of cluster-
ing optimization, making the clustering undesirable.

In other perspectives, paper [24] proposes a clustering
routing algorithm on the basis of chaotic binary ant colony
optimization (CBACO) for wireless sensor networks. The
algorithm calculates the energy consumption of the cluster
head based on the remaining energy, the number of neigh-
bors, and the distance to the base station (BS). In that paper,
the routing process is divided into two steps, where the first
step is to process the data transmission from the cluster head
to the cluster head and the second one is to apply the biolog-
ically inspired optimization technology ant colony algorithm
(ACO) to optimize the path finding process from the cluster
head to the BS. Although the information interaction of ant
colony algorithm is realized by pheromone, the convergence
to the optimal solution is the process of information positive
feedback. Positive feedback is designed to enhance the qual-
ity of the solution and achieve better performance. However,
this algorithm will have the problem of evolutionary
stagnation.

3. System Model

3.1. WAMRN Network Model. The structure of the WAMRN
network model is shown in Figure 1. After the terminal col-
lection node obtains the meter data, it transmits the data to
the remote BS through the wireless communication node in
WAMRN. To save energy, each wireless communication
device can select an optimal path according to the actual sit-
uation and then transmit the data to the cluster head node
through the optimal path for data integration. Without con-
sidering other factors, all wireless communication nodes
have the same initial energy. Since each wireless communi-
cation device has the same data communication capability,
the energy loss in the process of data transmission, fusion,
and transmission is also the same. In WAMRN, the energy
of the BS is not limited, and the BS is always in a normal
working state. However, the wireless communication equip-
ment in the network is restricted by its energy. If the energy
is exhausted, the node will no longer work.

In common cases, the installation location of data collec-
tion and transmission wireless equipment depends on the
actual situation. Therefore, the distribution of various meters
is irregular. This situation can be understood as that each
sensor device in WAMRN is randomly distributed.

3.2. Energy Loss Model of Wireless Communication Nodes.
The wireless meter reading device in WAMRN belongs to
one kind of the wireless communication device, so the
energy consumption of the WAMRN can be calculated by
using the energy consumption model of the wireless com-

munication device. In fact, there is a lot of research work
on the energy consumption of wireless terminals. Papers
[25–27] put forward the theoretical explanation of content
radio transmission and microcontroller processing. And in
paper [28], the author proposes a first-order radio model,
which models that the energy consumption of wireless ter-
minals can widely describe the energy consumption in wire-
less terminals; it is used to calculate the energy consumption
in many related research works. Therefore, this energy
model is adopted in our research work.

The energy consumption of wireless communication
nodes in WAMRN mainly includes three parts: sensing
energy consumption, data communication energy consump-
tion, and microprocessor energy consumption. Many cur-
rent research results show that the energy consumption of
wireless communication nodes in data communication
accounts for more than 50% of the total energy consumption
of WAMRN. Besides, the sensing energy consumption and
microprocessor energy consumption are comparative fixed,
so it is hard to reduce them through optimization. There-
fore, this paper primarily analyzes the energy loss of each
wireless communication node in WAMRN and studies a
reasonable clustering method for achieving low energy con-
sumption in the network.

As shown in Figure 2, if the sensor node transmits k bit
packets to adjacent nodes with a distance of d meters, the
energy consumption generated by the transmitting node is
Etxðk, dÞ, which mainly contains ETX−elecðkÞ and ETX−ampðk
, dÞ, where ETX−elecðkÞ represents the energy loss generated
when the signal transmitting circuit unit transmits data
information. And ETX−ampðk, dÞ denotes the energy con-
sumption generated when the signal power amplifier circuit
unit amplifies the transmission power. Equations (1), (2),
and (3) are the calculation of the above three types of energy
consumption, respectively.

ETx k, dð Þ = ETx−elec kð Þ + ETx−amp k, dð Þ, ð1Þ

ETx−elec kð Þ = k ⋅ Eelec, ð2Þ

ETx−amp k, dð Þ =
k ⋅ εf s ⋅ d

2, d < d0

k ⋅ εmp ⋅ d
4, d ≥ d0

8<
: : ð3Þ

In formula (3), the ETx−ampðk, dÞ adopts two different
calculation methods according to the value of the communi-
cation distance d between nodes. If d < d0, it can be assumed
that the signal is in the ideal state of no attenuation, no
blocking, and no multipath mode during the propagation
process, so that the parameter used for signal power ampli-
fication is εf s, and then, the calculation method of a is

ETx−ampðk, dÞ = k ⋅ εf s ⋅ d
2. If d > d0, the signal attenuation

caused by the increase in communication distance needs to
be considered. At this time, the signal power amplification
parameter is εmp, and ETx−ampðk, dÞ = k ⋅ εmp ⋅ d

4. The d0 is

3Journal of Sensors



the distance threshold calculated as follows:

d0 =
ffiffiffiffiffiffiffiffi
εf s
εemp

s
: ð4Þ

When receiving k bit packets, the energy consumption of
nodes is calculated by as follows:

ERx−ele = k ⋅ Eele = ERx−ele kð Þ: ð5Þ

Additionally, to decrease the amount of communication
data and decrease the sending of redundant data, the cluster
head will perform data fusion on the data from each member
node, and there will be a small amount of energy consump-
tion in this process. In this article, EFs is used to represent
the energy consumption during data fusion, assuming that
the fusion of 1 bit data requires energy consumption EDf ;
then, the energy consumption of k-bit data fusion can be

defined by as follows:

EFs = k ⋅ EDf : ð6Þ

4. NQACO for Clustering
Optimization in WAMRN

The proposed NQACO, based on quantum evolution and
niche technology, is an improvement and upgrade of the tra-
ditional ant colony algorithm. It introduces the concept and
theory of quantum computing, uses qubit coding to store
information, and completes the update of quantum coding
through quantum rotation gate. Meanwhile, the quantum
evolution ensures that the performance of the algorithm will
not be affected, and it can even significantly improve the
convergence speed of the algorithm. Besides, to find an opti-
mal solution in the whole solution space, NQACO use the
niche mechanism to divide the ant colony into several
niches. Due to the relative isolation between multiple niches,

Member node

Cluster head node

Data transmission link

Base station

Figure 1: WAMRN network model diagram.

K-byte packet
Transmitter

element Power amplifier

Receiver
components

K-byte packet

d 
m

et
er

s

ETx–ele (k, d)

ERx–ele (k, d)

ETx–amp (k, d)

ERx (k, d)

ETx (k, d)

Figure 2: Energy loss model of wireless communication.
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there is less gene exchange between different species, so there
are some differences in species genes between these niches,
which provides the species diversity of the whole ant colony.
On the level of swarm intelligence optimization algorithm,
stable individual differences facilitate NQACO to overcome
the premature problem shown by other algorithms and can
enhance the ability of local search.

The detailed procedures of using NQACO to solve the
clustering optimization problem in WAMRN are as follows.

Step 1. Initialize NQACO with various parameters, including
population size, the maximum number of iterations, phero-
mone trajectory strength, visibility parameters, pheromone
volatility factor, number of wireless communication nodes
in the network, and crowding factor.

Step 2. Quantum coding for ant colony according to Equa-
tion (7) and Equation (8) and initialization by chaotic map-
ping according to Equation (10) and Equation (11).

Step 3. Measure the qubit state according to Equation (9).

Step 4. Calculate the fitness value of each ant individual
according to Equation (12)–Equation (16), and record the
ant individual with the largest fitness value.

Step 5. Update pheromones according to pheromone
strength and visibility using Equation (17) and Equation
(18), and then, move the ants according to the transition
probability calculated by formula Equation (19).

Step 6. Recalculate the fitness value of each individual ant,
and record the individual with most significant fitness value.

Step 7. Use the optimal solution to update the direction of
the quantum revolving gate, and then, update the quantum
encoding ant through the quantum revolving gate by Equa-
tion (20).

Step 8. Randomly select ant individuals from the current
population as crowded individuals. Then, calculate the cor-
relation between other individuals in the ant colony accord-
ing to Equation (21) and the excluded individual. Suppose
the correlation between the excluded individual and another
ant individual is greater than the average correlation
between all individuals. Based on the exclusion mechanism,
the individual with the lower fitness value of the two ants
will be replaced by the individual with the higher fitness
value.

Step 9. Judge whether the termination condition is reached,
and output the optimal individual if it is reached, and use
the binary code corresponding to this individual as the opti-
mal clustering scheme for WAMRN. Otherwise, the algo-
rithm will continue from Step 3 to the next iteration.

Figure 3 is the flow chart of NQACO.

4.1. Quantum Coding and State Measurement. In NQACO,
the algorithm introduces quantum coding and state mea-
surement to solve the WAMRN clustering problem. Typi-
cally, information is stored in the form of binary bits, and
the state of the binary bits can only be 0 or 1. But in quan-
tum computing, information is stored in the form of qubits,
which are a one-dimensional complex vector space. How-
ever, in quantum computing, information units are stored
in qubits. A linear combination of two superposition com-
ponents j0i and j1i can be used to represent any state of a
qubit. In this paper, jψi is used to represent the state of
the qubit, and its calculation method is as follows:

ψj i = α 0j i + β 1j i, ð7Þ

where α and β represent the probability magnitudes of the
two superposition vectors j0i and j1i, respectively, while
jαj2 and jβj2 denote the probability of the quantum bits
being at 0 and 1, respectively, and jαj2 + jβj2 = 1.

In NQACO, the information carried by the ants in the
ant colony is represented by a group of qubits. In the cluster-
ing optimization problem, the code composed of this group
of qubits is actually a clustering scheme. Assume that there
are n wireless communication nodes in the WAMRN, where
c wireless communication nodes are selected as cluster heads
and the remaining n − c wireless communication nodes are
member nodes. Thus, the length of the encoding carried by
a single ant in the encoding process is n. The following
mathematical expression (8) can represent the encoding of
the information carried by an individual ant.

pi =
αt1 αt2 ⋯ αtn

βt
1 βt

2 ⋯ βt
n

 !
: ð8Þ

Each column in pi is the probability of the appearance of
two superimposed vectors constituting the state of the corre-
sponding qubit. However, this coding method cannot obtain
the clustering scheme directly, so converting quantum cod-
ing to binary coding is necessary. Thus, this paper uses the
method of measuring the qubit’s state to realize the conver-
sion process. In the measurement process, the n wireless
communication nodes in the network are numbered from
1 to n; then, the state of the corresponding quantum bit
count can be used to determine whether the wireless com-
munication node is a cluster head or not. In this paper, the
state of the ith qubit is calculated by Equation (9). If the state
measurement value of the ith qubit in a code is 0, the wireless
communication node numbered i is a member node. Other-
wise, the wireless communication node numbered i is a clus-
ter head.

zi =
0 random 0, 1½ � > αij j2

1 random 0, 1½ � ≤ αij j2

(
: ð9Þ

4.2. Initialization of Ant Population. Individuals of NQACO
carry a feasible clustering scheme. Before the first generation
of population evolution, the population with size popSize
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needs to be initialized. In this article, NQACO uses a tent
map to generate the initial information code carried by each
ant in the ant colony. Compared with the commonly used
logistic mapping, the chaotic sequence generated by the tent
mapping in the interval [0,1] is more evenly distributed and
faster iteration speed. The calculation method of the tent
mapping function is as follows:

xi+1 =
2x 0 ≤ xi ≤ 1/2
2 1 − xið Þ 1/2 ≤ xi ≤ 1

(
: ð10Þ

In the formula, x is a random number with a value range
of [0,1]. The formula can also be expressed in the following
form.

xi+1 = 2xið Þ mod 1ð Þ: ð11Þ

In the process of population initialization, a random
number x0 with a value range of [0,1] is given first. On this
basis, tent mapping is used to generate n chaotic variables.
Let the individual ants encode αn = sin ð2πxnÞ and βn = cos
ð2πxnÞ in pi, so that the probability amplitude of each qubit

Start

Initialize algorithm parameters

Quantum encoding of individual ants
according to Eq. (7) -Eq. (8)

According to the principle of tent chaotic map, the initial population
is generated by Eq. (10) -Eq. (11) chaotic map.

The quantum bits of individual ants were
measured according to Eq. (9) 

Calculate the fitness value of each ant individual according to
Eq. (12) -Eq. (16) , and record the ant individual with the

largest fitness value

Update pheromone according to Eq. (17) -Eq. (18)

Ants move according to the transition probability
calculated by Eq. (19)

Recalculate the fitness value of each individual ant, and
record the individual with the highest fitness value

Update of quantum-encoded ants by quantum
revolving gate according to Eq. (20)

Determine a crowding factor CF

Is the niche
crowding process

over?

Calculation of correlation between other individuals and
excluded individuals in population based on Eq.( 21 )

Select x ant individuals from the population as
crowding individuals

Is the correlation greater than
the average correlation?

Replacing ant individuals with smaller fitness values
with ant individuals with larger fitness values

Output optimal solutions

End

No

Yes
No

Yes

Is the maximum number of
evolutionary generations

reached?

No

Yes

Crowding niche

Figure 3: Algorithm flowchart of NQACO.

Table 1: Rotation angle strategy.

zl zoldbest fitness zlð Þ > fitness zoldbest
� �

Δθl
S αlβlð Þ

αlβl > 0 αlβl < 0 βl = 0 αl = 0
1 0 F 0:001π -1 +1 0 ±1
0 0 F 0 0 0 0 0

1 0 T 0:025π +1 -1 ±1 0

0 0 T 0 0 0 0 0

1 1 F 0:005π +1 -1 ±1 0

0 1 F 0:05π +1 -1 ±1 0

1 1 T 0:025π +1 -1 ±1 0

0 1 T 0:005π -1 +1 0 ±1
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in the information encoding carried by the initial ant will be
evenly distributed in the solution space. By repeating the
above operation popSize times, an initial population P = f
p1, p2, p3,⋯,ppopSizeg with a population size of popSize can
be obtained.

4.3. Construction of the Fitness Function. In this paper, the
overall goal of optimizing the entire WAMRN is to mini-
mize the entire network’s energy dissipation during data
transmission to extend the network’s life as much as possi-
ble. Therefore, in the optimization process, the wireless com-
munication nodes with higher residual energy, smaller
communication distance within the cluster, and closer to
the BS are more suitable to be selected as cluster heads.

In the process of heuristic optimization algorithm to find
the optimal cluster head selection scheme, the fitness func-
tion plays a very important role, because the fitness function
can be used to measure the efficiency of the algorithm when
searching for the optimal cluster head selection scheme.
Suppose the expected number of cluster heads in WAMR
is c, nj represents the quantity of member nodes in jth net-

work cluster, DðCHj, BSÞ and DðMEMi, CHjÞ, respectively,
represent the distance from jth cluster head to the BS and
the distance from ithmember node to jth cluster head node.
Thus, the fitness function in NQACO is defined as follows:

fitness = f CH + f MEM , ð12Þ

where f CH =∑c
j=1 f

j
CH , f CH is the energy consumption of the

jth cluster head in the process of one information transmis-
sion, and it can be calculated with the help of the following:

f jCH = ETx k, dtoBSð Þ + njERx−ele kð Þ + njEFs kð Þ, ð13Þ

dtoBS =
1
c

〠
c

i=1
D CHi, BSð Þ

 !
: ð14Þ

In formula (12), f MEM =∑c
j=1 f

j
MEM , it represents the

energy consumption of member nodes. The calculation pro-
cess of f jMEM is as follows:

f jMEM = njETx k, dtoCHð Þ, ð15Þ

dtoCH = 1
nj
〠
nj

i=1
D MEMi, CHj

� �
: ð16Þ

4.4. Mobile Strategy and Positivity Update. To solve the clus-
tering problem of WAMRN, before adjusting the position of
individual ants in NQACO, the pheromone on the path
needs to be updated. The corresponding update formulas
are as follows:

τi,0 t + 1ð Þ = ρ ⋅ τi,0 tð Þ + Δτ, ð17Þ

τi,1 t + 1ð Þ = ρ ⋅ τi,1 tð Þ + Δτ, ð18Þ
where ρ is the pheromone volatilization coefficient, and its
value range is ½0, 1�, where Δτ = 1/fitnessðxbestÞ , fitnessð
xbestÞ represents the network energy consumption corre-
sponding to the optimal clustering scheme for each
generation.

After the pheromone update is completed, it is necessary
to adjust the movement of the ant by calculating the transi-
tion probability Pij of the ant. The calculation method of
transition probability Pij is as follows:

pij tð Þ =
τλij tð Þημij tð Þ

τλi0 tð Þημi0 tð Þ + τλi1 tð Þημi1 tð Þ , ð19Þ

where τij and ηij, respectively, represent the pheromone
track intensity and visibility parameters. Variable t repre-
sents the iteration times of the algorithm, i represents the
quantity of steps the ant has taken, and j ∈ f0, 1g represents
the two positions that an individual ant may choose during
the ith step.

Table 2: Network environment parameters.

Parameter Value

k 1000 bits

Eelec 50 nJ/bit

εamp 100 pJ/bit/m2

εf s 0.0013 pJ/(bit×m4)

EDf 5 nJ/bit

Table 3: Initial parameters of NQACO.

Parameter Value

Number of individuals 80

Pheromone track intensity 2

Visibility parameter 2

Pheromone volatilization coefficient 0.9

Table 4: Initial parameters of GA.

Parameter Value

Number of individuals 80

Crossover probability 0.7

Mutation probability 0.05

Computing era 0.9

Table 5: Initial parameters of SA.

Parameter Value

Starting temperature 300

Cooling factor 0.95

Maximum number of iterations 100
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Figure 4: Continued.
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4.5. Variation of Quantum Bits. The quantum bits act as a
guide for the individuals in NQACO to move in a globally
optimal direction. After each individual in the ant colony
change its positions, all the qubit on an ant is required to
be updated base on the optimization scheme in the previous
iteration. The update process is indicated as follows:

αnewl

βnew
l

" #
=

cos θ −sin θ

sin θ cos θ

" #
αl

βl

" #
, ð20Þ

where αnewl and βnew
l are the probability amplitudes of

qubit’s corresponding state after the update. αl and βl are
the probability amplitudes before the update. The size and
direction of the rotation angle θl = SðαlβlÞΔθl are obtained
from Table 1.

In Table 1, zoldbest represents the optimal cluster routing
scheme generated by the previous generation, and T and F
represent true and false in Boolean algebra, respectively.

4.6. Niche Based on Exclusion Mechanism. This paper mainly
uses niche technology based on the crowding mechanism to
classify the individuals in the ant colony for obtaining a
desirable scheme of clustering. The basic idea stems from
the fact that in a limited living environment, in order to sur-
vive, various creatures must compete with each other for
various limited living resources. Specifically, it is first neces-
sary to determine a crowding factor CF and then randomly
select 1/CF ant individuals from the ant colony as crowding
individuals and then calculate the correlation between other
unselected ant individuals and the crowding individuals.
Since the code carried by an individual ant is a quantum
code, it can be regarded as a matrix. Therefore, the correla-
tion between two individuals in an ant population can be

obtained by calculating the correlation between the encoding
matrices representing the two individuals. The calculation
method of interindividual correlation is shown as follows:

R A, Bð Þ = C A, Bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V A½ � × V B½ �p , ð21Þ

where A is the crowding individuals, B is other individuals,
C ðA, BÞ is the covariance of A and B, and VðAÞ and VðBÞ
are the variances of A and B, respectively.

Assuming that the correlation between two individuals is
higher than the average value of the correlation between
individuals in the colony, based on the exclusion mecha-
nism, the individual with the lower fitness value of the two
ants will be replaced by the individual with the higher fitness
value.

4.7. Termination Condition. If NQACO runs to the set max-
imum number of iterations, the clustering scheme carried by
the individual with the best fitness value will be output. Oth-
erwise, the iterative optimization is continued.

5. Simulation

To verify the optimization effectiveness of NQACO for the
clustered routing problem in WAMRN, this paper compares
NQACO with GA; SA under different conditions and
through MATLAB simulations, total energy consumption
generated during data transmission in the network is used
as the evaluation metric. The WAMRN scenario simulated
in this paper is static, and the concrete environmental
parameters are shown in Table 2.

In the following simulation, the maximum number of
iterations MAXGEN of the four algorithms for comparison
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Figure 4: Variation of energy consumption with different number of wireless communication nodes: (a) 100 nodes; (b) 200 nodes; (c) 300
nodes; (d) 400 nodes.
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is set to 100 rounds. Noting that different algorithms have
different initial parameters, to ensure that these four algo-
rithms can be in their respective optimal optimization states,
the specific initial parameter settings of each algorithm are
shown in Tables 3–5.

In the simulation experiment of Figure 4, each algorith-
mic optimization process was repeated 50 times. The corre-
sponding value in the line chart was the average value of 50
simulations.

Figure 4 shows the optimization effect of these four algo-
rithms on the total energy consumed of WAMRN when the
network contains 100, 200, 300, and 400 wireless communi-
cation nodes, and the proportion of cluster heads in each
final clustering scheme is 10%. From the trend of the curves
in Figures 4(a)–4(d), although the total energy consumption

of the three algorithms varies significantly during the first 60
iterations, the network optimized by NQACO is always
lower than the GA and SA in terms of total energy consump-
tion. In addition, the advantage of NQACO over the other
two algorithms becomes more and more evident as the num-
ber of iterations increases.

Figure 5 shows the comparison between NQACO and
the other two algorithms regarding the optimization of the
network energy consumption for four cases of 5%, 10%,
15%, and 20% of the quantity of cluster heads in WAMRN
with various wireless sensor sizes. In the simulations, each
algorithm was run 100 times, and all calculation results were
averaged over 50 Monte Carlo runs. From figure (a), it is
clear that the total network energy consumption of the
WAMRN optimized by NQACO is always less than that of
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Figure 5: Variation of total network energy consumption with different cluster head ratios: (a) 5% cluster heads; (b) 10% cluster heads; (c)
15% cluster heads; (d) 20% cluster heads.

10 Journal of Sensors



SA and GA for different sizes of wireless sensor numbers.
Meanwhile, when the number of wireless communication
nodes in WAMRN increases, the overall network energy
consumption also increases. The same conclusion can be
easily drawn from figures (b), (c), and (d).

Figures 6 and 7 illustrate the relationship between sur-
viving nodes’ quantity and round. During the experiment,
the WAMRN contains 100 wireless communication nodes,

and the initial energy of each wireless communication node
is set to 0.5 J, and then, we record the number of surviving
nodes in each round of data transmission and the remaining
energy of each node. When a node runs out of energy, we
remove it from the network so that the node cannot send
or receive messages. Network lifetime is a key indicator of
how well balanced the network’s energy consumption is.
The longer the network lifecycle, the more balanced the
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network energy consumption, and the better the perfor-
mance of the routing protocol is proven. Otherwise, the net-
work energy consumption is unbalanced. From Figures 6
and 7, it can be seen that the WAMRN after SA and GA
optimization starts to have wireless communication nodes
die at rounds 484 and 929, respectively; however, NQACO
effectively delays the death of the first node of the network
until round 978. Moreover, after round 2388, it can be seen
that after NQACO optimization, the number of surviving
wireless communication nodes in WAMRN is always more
than the other two algorithms. When all 100 nodes die due
to energy exhaustion, the network after NQACO optimiza-
tion has more data transmission rounds than GA and SA
with more than 6.3% and 6.7%, respectively.

Through the comparative analysis of the above simula-
tion experiments, it can be seen that NQACO introduces
the chaos operator, which makes use of the randomness
and convenience of chaotic variables so that the individuals
in the ant colony can be evenly distributed in the solution
space, which significantly enhances the algorithm’s optimal-
ity finding ability and prevents NQACO from falling into
local optimum prematurely like GA and SA. Meanwhile,
the ants in NQACO adopt quantum bit-based coding, which
introduces the quantum state vector into the coding of the
ant colony algorithm to avoid the phenomenon of prema-
ture convergence. Overall, the NQACO proposed in this
paper always has better performance in reducing the net-
work’s total energy consumption than GA and SA for the
different number of wireless communication nodes.

6. Conclusions

In this paper, a clustering model is proposed to reduce
energy consumption and prolong the network lifetime in
WAMRN by selecting optimal cluster heads for efficient
use of energy. The optimization problem of this model has
been shown to be NP-hard, so we propose a new NQACO
algorithm to optimize it. Through simulation experiments,
the effectiveness and efficiency of the NQACO algorithm
in optimizing and reducing the total network energy con-
sumption are verified. The simulation results indicate that
our proposed NQACO scheme has lower communication
energy consumption than the traditional GA and SA
schemes and has more advantages in extending the lifetime
of WAMRN.
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Owning to the advantage of keeping the operating environment safe, high reliability, and low production cost, predictive
maintenance has been widely used in industry and academia. Predictive maintenance based on degeneration state mainly
studies the degeneration prediction. However, on account of the error of the sensor and human, condition monitoring data
may not directly reflect the true degeneration. The degeneration model with dynamic explanatory covariates which is named as
proportional hazard model is proposed to deal with the semi-observed monitoring condition. And the degeneration prediction
mainly adopts a single prediction model, which leads to low prediction accuracy. A combination forecasting model can
effectively solve the above problem. Compared to the traditional prediction method, the neural network model can use the
“black box” characteristic to indirectly construct the degeneration model without complex mathematical derivation. Therefore,
we propose a combination BP-RBF-GRNN neural network model which is applied to improve the degeneration prediction
with dynamic covariate. Based on the above two aspects, a predictive maintenance optimization framework based on the
proportional hazard model and BP-RBF-GRNN neural network model is proposed to improve maintenance efficiency and
reduce maintenance costs. The simulation results of thrust ball bearing show that the proposed method can effectively improve
the degeneration prediction accuracy and reduce the maintenance cost rate to a certain extent.

1. Introduction

It can improve the reliability of equipment, greatly reduce
the maintenance cost, and improve production quality, pre-
dictive maintenance (PdM) has been widely used in industry
and academia [1, 2]. Engineers and researchers use
condition-based monitoring data, mathematical models,
and simulation to predict the degeneration process of equip-
ment [3]. Common mathematical models or methods
include artificial neural network, Bayesian network, decision
tree, linear regression, principal component analysis, and
random forest [4]. The data-driven method mines monitor-

ing data to predict potential failure, which can reduce main-
tenance costs and improve reliability [5]. Machine learning
(ML) has currently become an effective tool for PdM appli-
cations [4]. It is normally difficult to describe the physical
degeneration process accurately by modeling. The neural
network model can establish the mapping relationship
between input and output without complex mathematical
derivation. These neural networks try to replicate the way
the neurons in any intelligent organism (like human neu-
rons) are coded to take inputs. And neural networks have
been used extensively for classification problems, detection
problems, pattern recognition, nonlinear regression, feature
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selection, time series prediction, and data normalization. In
solar sunshine intensity, the BP neural network model is
used to predict solar sunshine intensity [6]. In the water
quality, BP neural network can be used to predict the water
quality of Yuqiao Reservoir in Tianjin, and the simulation
shows that the neural network has a good prediction perfor-
mance on reservoir water quality [7]. In the ethanol fuel,
generalized regression neural network can be used to predict
the emission characteristics of ethanol fuel HCCI engine,
and the results show that the error of parameter forecasting
is controlled within 2% [8]. In water evaporation capacity,
GRNN neural network and RBF neural network are used
to estimate water evaporation capacity, respectively [9].

The core idea of PdM is to optimize maintenance pol-
icy according to some criteria, such as risk, cost, reliability,
and availability. The effectiveness of this maintenance
strategy is determined by the age at which PdM takes
place. “Under-maintenance” will result in a high mainte-
nance cost per unit time. “Over-maintenance” will result
in a higher probability of failure and maintenance costs.
The common optimization problems include the optimiza-
tion of the structure, the optimization of maintenance
costs, and the optimization of reliability. As for the opti-
mization of the structure, the generalized perturbation-
based Stochastic Finite Element Method can be used to
optimize the structure of the truss-type [10]. As for the
optimization of maintenance costs, a methodology can be
proposed to minimize the life cycle maintenance costs
and maximize the life cycle quality level of the track-bed
[11]. As for the optimization of reliability, the mission
reliability model of unmanned aerial vehicles and the mea-
suring method can be used to support mission planning
and the design of the structure [12]. The co-optimization
of economy and reliability as a new target can be used
to improve the reliability of energy supply [13]. A
deducing-based reliability optimization method for electri-
cal equipment can be proposed to enhance the reliability
of electrical equipment [14]. The traditional method of
maintenance reliability analysis includes qualitative failure
mode, tree, and hazard analysis. And the common method
of reliability assessment is the Bayesian approaches,
reliability-based design optimization tools, multivariate
analyses, and fuzzy set theory [15]. The optimization
object normally includes reliability, failure rate, remaining
useful life, and expected cost per unit. The expected cost
per unit can normally be used as the optimization object
to take maintenance activity [16].

This paper proposes a predictive maintenance optimi-
zation framework based on the proportional hazard model
and BP-RBF-GRNN neural network model to improve the
maintenance efficiency and reduce the maintenance cost.
Owing to the accuracy of the sensor or complicated mon-
itoring environment, the condition monitoring data may
not directly reflect the degree of degeneration. Life data
and condition monitoring values must be considered com-
prehensively. To solve the above problem, we adopt the
degeneration modeling with dynamic explanatory covari-
ates, that is, proportional hazard model (PHM), to con-
sider both life data and condition monitoring values to

evaluate the failure rate of mechanical equipment. Com-
pared with the traditional conditional variable or basic
reliability model, PHM can reflect the statistical character-
istics of the whole sample to reduce the error of failure
rate evaluation. In addition, the single prediction model
can easily lead to low accuracy, and we adopt the combi-
nation BP-RBF-GRNN neural network model to improve
the prediction performance. The reason for the choice of
sub-prediction model is as follows. The BP neural network
model has high prediction accuracy, but it easily falls
down the local minimum and has a slow convergence
speed. RBF neural network model can solve the problem
of local minimum caused by BP, but it has a low predic-
tion accuracy when there are few data samples. The
GRNN neural network model has good generalization
ability and is good at dealing with prediction under small
samples. Therefore, this paper uses a combination fore-
casting model which contains BP, RBF, and GRNN neural
network to predict the degeneration process.

The structure of this paper is as follows. Section 2 is the
degeneration model with dynamic covariates. Section 3 is
the degeneration prognostics based on covariates prediction
via combination BP-RBF-GRNN neural network model.
Section 4 is predictive maintenance optimization based on
degeneration prognosis. Section 5 is the simulation case
study. Section 6 is the conclusion.

2. Degeneration Modeling with
Dynamic Covariates

In industrial applications, the risk factor which is called
covariate affects the lifetime of the mechanical equipment,
and it may influence or indicate the failure time. The covar-
iates can be classified into external and internal variables
[17]. The external covariate changes over time, but it is not
affected by previous failure. The internal covariate is the
measurement of the individual, and it is affected by survival
state. As for the research of prognostics and life prediction,
probabilistic model using covariates that contains the diag-
nostic factors and operating environment factors has
become one of the indispensable methods [18]. The propor-
tional hazard model is one of the basic theories of the covar-
iate model, which uses the historical failure data to build the
baseline hazard function and uses covariate data to build the
covariate function.

The hazard rate of WPHM contains the baseline failure
rate function and an exponential function including the
effect of the monitoring variable, as shown in Equation (1).

h tð Þ = h0 tð Þ exp γiZið Þ, ð1Þ

where the baseline hazard rate h0ðtÞ is related to the histor-
ical lifetime, and the covariate Zi is a row vector of the mon-
itoring variable at the time t. The covariance coefficient γi is
a column vector corresponding to the ith monitoring
variable.
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The baseline failure rate function is shown in Equation
(2).

h0 tð Þ = β

η

t
η

� �β−1
, ð2Þ

where β is the shape parameter and η is the scale parameter.
According to the principle of reliability analysis, the reli-

ability and failure probability density function can be
obtained by Equation (3).

R tð Þ = exp −
ðt
0
h tð Þdt

� �
: ð3Þ

The maximum likelihood method is constructed to esti-
mate the unknown parameters of WPHM. As shown in
Equation (4), the likelihood function is as follows.

L β, η, γð Þ =
Yn
i=1

f tið Þ
Ym
j=1

R tið Þ, ð4Þ

where n is the number of failure samples and m is the num-
ber of suspension samples.

The optimal solution of the parameters can be obtained
by solving the partial derivatives of Equation (5).

L β, η, γð Þ =
Yn
i=1

β

η

ti
η

� �β−1
exp γZti

� �Yn+m
j=1

exp −
t j
η

� �β

exp γZtj

� 	
dt

" #
:

ð5Þ

Since the condition monitoring data measured by the
various sensors can partially reflect the actual degeneration
state, the monitoring data can be regarded as dynamic
covariates to build a degeneration model. The degenera-
tion model based on monitoring data is as follows [19].
We assume that ZiðtijÞ can be the observed condition
monitoring measurements for the unit i at the time tij,
where i = 1,⋯, n, j = 1,⋯,m, n is the number of units,
and m is the number of measurement points for unit i.
ZiðtÞ = ½Zi1ðtÞ,⋯,ZikðtÞ� is a vector of dynamic covariate
observation, where k = 1,⋯, p, and p is the number of
the dynamic covariate. Therefore, ZiðtÞ = fZiðTÞ, 0 ≤ T ≤ t
g represents the history of dynamic covariate process for
unit i at time t. In conclusion, ZðtÞ = fZ1ðtÞ,⋯,ZnðtÞg is
the history of the dynamic covariate process from time 0
to time t for all units n.

3. Degeneration Prognostics Based on
Covariates Prediction via Combination BP-
RBF-GRNN Neural Network Model

3.1. Prediction Sub-Model

3.1.1. BP Neural Network. As shown in Figure 1, the back-
propagation (BP) neural network is a feed-forward neural
network, which is one of the common neural networks and
has good learning ability. The learning rule is to constantly

adjust the weight and threshold of network connection by
the steepest descent method [20]. But the method of obtain-
ing the optimal parameters with the gradient descent can
easily fall into local minimum [21].

The training process of BP neural network is as follows
[22, 23].

Step 1. Initialize parameters of BP network.
It is needed to confirm the weight, the threshold, and the

number of neurons in each layer.
Step 2. Calculate the jth neuron of output H in the hid-

den layer.

Hj = f 〠
n

i=1
wijXi − aj

 !
, ð6Þ

where X = ½X1,⋯,Xi,⋯,Xn�′ is a input matrix, i = 1, 2, 3,⋯
, n, n is the length of time series for the covariate, and it is
also the number of input layer neurons. Xi = ½x1,⋯,xs1 � rep-
resents the monitoring value of covariate at time i for all
samples s1. j = 1, 2,⋯, g, g is the number of neurons in the
hidden layer. O = ½O1,⋯,Ok,⋯,Om�′ is an output matrix, k
= 1, 2, 3,⋯,m, m is the length of time series for the covari-
ate, and it is also the number of output layer neurons. Ok

= ½o1,⋯,os2 � represents the predicted value of covariate at
time k for all samples s2.

Step 3. Calculate the kth neuron of output O in the out-
put layer.

Ok = f 〠
l

j=1
Hjwjk − bk

 !
: ð7Þ

Step 4. Calculate the error E.

E =
1
2
〠
m

k=1
Yk −Okð Þ2, ð8Þ

where Ok is the predictive result and Yk is the expected
output.

Step 5. Update the weight w.
The weight and threshold of the network should be

modified along the negative gradient direction with the fast-
est function decline.

The weight wjk is updated by Equation (9).

wjk =wjk + ηHjek, ð9Þ

where η is the learning rate.
The weight wij is updated by Equation (10).

wij =wij + η′ 1 −H2
j

� 	
X ið Þ〠

m

k=1
wjkek, ð10Þ

where η′ is the learning rate.
Step 6. Update the threshold values a and b.
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The process of updating the threshold is similar to the
process of updating weight. The process of updating the
threshold values a and b is as follows.

bk = bk + ηek, ð11Þ

aj = aj + η′ 1 −H2
j

� 	
〠
m

k=1
wjkek: ð12Þ

Step 7. Determine the requirement of iteration.
If the iteration requirement is not met, it should repeat

the process from Step 2 to Step 6. Otherwise, trained neural
network parameters can be outputted.

3.1.2. RBF Neural Network. As shown in Figure 2, the radial
basis function (RBF) is a two-layer feed-forward network
with a single hidden layer [24], which can approximate the
nonlinear function with arbitrary precision and realize the
global optimization in theory [25]. It is a direct mapping
from the input layer to the hidden layer. Therefore, the
training time of parameters is shorter than BP neural net-
work. The hidden layer and output layer are connected by
the linear weight.

As shown in Equation (13), the radial basis function is
used as the node transfer function of the hidden layer.

Rj = exp
X − cj
� �T X − cj

� �
2σ2j

" #
, ð13Þ

where X = ½X1,⋯,Xi,⋯,Xn�′ is a input matrix, i = 1, 2, 3,⋯
, n, n is the length of time series for the covariate, and it is
also the number of input layer neurons. Xi = ½x1,⋯,xs1 � rep-
resents the monitoring value of covariate at time i for all
samples s1. Rj is the output of the jth hidden node, cj is the
center of the Gaussian function in the jth hidden node, σj

is the output standardized variance of the jth hidden node,
j = 1, 2,⋯, g, and g is the number of neurons in the hidden
layer. O = ½O1,⋯,Ok,⋯,Om�′ is an output matrix, k = 1, 2, 3
,⋯,m, m is the length of time series for the covariate, and

it is also the number of output layer neurons. Ok = ½o1,⋯,
os2 � represents the predicted value of covariate at time k for
all samples s2.

The kth neuron output Ok in the output layer is shown in
Equation (14).

Ok = 〠
l

j=1
wjk∙Rj, ð14Þ

where l is the number of neurons in the hidden layer, k = 1
, 2, 3,⋯,m, and m is the number of neurons.

3.1.3. GRNN Neural Network. As shown in Figure 3, gener-
alized regression neural network (GRNN) has four layers.
GRNN is also a kind of radial basis function neural network
[26], which is used to solve the regression problem. It has
more advantages than RBF neural network in approxima-
tion ability and learning speed. Especially, it has a good effect
in prediction under small samples.

Data transmission from the input layer to the pattern
layer is direct transmission. In the pattern layer, the transfer
function is the radial basis function, as shown in Equation
(15).

Pi = exp −
X − Xið ÞT X − Xið Þ

2σ2

" #
, ð15Þ

where X = ½X1,⋯,Xi,⋯,Xn�′ is a input matrix, i = 1, 2, 3,⋯
, n, n is the length of time- series for the covariate, and it is
also the number of input layer neurons. Xi = ½x1,⋯,xs1 � rep-
resents the monitoring value of covariate at time i for all
samples s1. Pi is the output of the ith hidden node; σ denotes
the smoothing parameter. SD is the first type of the summa-
tion; SN is the second type of the summation. O =
½O1,⋯,Ok,⋯,Om�′ is an output matrix, k = 1, 2, 3,⋯,m, m
is the length of time series for the covariate, and it is also
the number of output layer neurons. Ok = ½o1,⋯,os2 �

Input layers

X1
wij wjkH1

Hj

Hg

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

O1

Ok

Om

Xi

Xn

Hidden layers Output layers

Figure 1: The architecture of BP neural network.
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represents the predicted value of covariate at time k for all
samples s2.

There are two summations in the summation layer [27],
namely, SD and SNK .

The first type of summation is shown in Equation (16).

SD = 〠
n

i=1
Pi: ð16Þ

The second type of summation is shown in Equation
(17).

SNk = 〠
n

i=1
wikPi: ð17Þ

The output layer can be calculated as shown in Equation
(21).

Ok =
SNk

SD
: ð18Þ

Input layers

X1
wjk

R1

Rj

Rg

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

O1

Ok

Om

Xi

Xn

Hidden layers Output layers

Figure 2: The architecture of RBF neural network.
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Figure 3: The architecture of GRNN neural network.
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3.2. Combination Method. As shown in Figure 4, three pre-
diction sub-models, respectively, use historical monitoring
data to predict the degeneration process, and the final pre-
diction result will be output by the combination method.
The combination forecasting model makes use of the charac-
teristics of different sub-models to comprehensively improve
the prediction performance. Reciprocal prediction error sum
of squares method (RPESSM) can be used as the combina-
tion method to predict degeneration process [28, 29]. A
small RPESSM value indicates the high performance of the
prediction sub-model.

Therefore, y1t , y2t , and y3t show the prediction result of
the BP, RBF, and GRNN neural network at the time t,
respectively. And e1t , e2t , and e3t are the prediction errors
correspondingly. As shown in Equation (19), yt is the pre-
diction result of the combination BP-RBF-GRNN neural
network model at the time t, respectively. As shown in Equa-
tions (20) to (22), w1t , w2t , and w3t are the weight coeffi-
cients at the time t.

yt =w1t∙y1t +w1t∙y1t +w1t∙y1t
w1t +w2t +w3t = 1

(
, ð19Þ

w1t =
e21t

e21t + e22t + e23t
, ð20Þ

w2t =
e22t

e21t + e22t + e23t
, ð21Þ

w3t =
e23t

e21t + e22t + e23t
: ð22Þ

The role of the weight coefficient allocation is to make
prediction sub-model with the highest prediction accuracy
play a decisive role in the final prediction result, thus reduc-
ing the negative influence of other prediction sub-models.
Therefore, the combination forecasting model can overcome
the low prediction accuracy of the single prediction sub-
model.

4. Predictive Maintenance Optimization Based
on Degeneration Prognosis

4.1. The Framework of Predictive Maintenance Optimization.
As shown in Figure 5, a PdM optimization framework
based on the combination BP-RBF-GRNN neural network
model and proportional hazard model is proposed in this
section. The first step is to collect historical lifetime and
condition monitoring data, which can be divided into
two types. Data set I containing historical lifetime and his-
torical condition monitoring data is used as the input of
the WPHM and combination BP-RBF-GRNN neural net-
work model for parameter estimation. Data set II contain-
ing historical condition monitoring data without failure is
used for the performance evaluation of condition forecast-
ing. In the second step, the hazard can be predicted based
on both condition forecasting and WPHM. In the third
step, the optimal preventive maintenance interval is
updated by the PdM policy. At the last step, the optimal
maintenance interval will be updated with the updated
condition monitoring data and events.

4.2. Predictive Maintenance Optimization Policy Based on
Proportional Hazard Model. As shown in Equation (23), a
quantitative function of the average cost in a maintenance
period for PdM optimization policy is established, which is
named as the cost rate function. The PdM policy for the
optimal age replacement can be divided into two types
[30]. One is to reach the replacement life T under the condi-
tion of preventive maintenance, and the other is to reach the
actual lifetime τ under the condition of repairing upon fail-
ure. Therefore, the cost types can be divided into two catego-
ries correspondingly. CPM denotes the cost of preventive
maintenance at the maintenance life T and CER denotes

YES

EndWhether to update
the data set I and II

PdM
policy

Historical condition
monitoring data

Historical lifetime

Historical condition
monitoring data without

failure

Combination
BP-RBF-GRNN
neural network

model

Degeneration
with dynamic

covariate
prediction

Parameters
estimation for WPHM

Estimate
hazard

Optimal
maintenance

interval

NO

Step 1 Collect data Step 2 Estimate hazard Step 3 Optimize maintenance interval Step 4 Update data

Data set I

Data set II

Figure 5: Flow chart of the PdM model framework based on combination BP-RBF-GRNN neural network model and proportional hazard
model.

Table 1: Parameter distribution of covariate model.

Symbol Normal distribution Numerical value

μ0 Mean -6.031

σ20 Variance 0.346

μ,1 Mean 8:061 × 10−3

σ21 Variance 1:034 × 10−5

μ Mean 0

σ2 Variance 7:3 × 10−3
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the cost of corrective maintenance at the maintenance life τ.
In general, CER is greater than CPM .

ηage Tð Þ =min
T

F Tð ÞCER + 1 − F Tð Þð ÞCPMÐ T
0 1 − F Xð Þð Þdx

, ð23Þ

where the denominator is the average maintenance age, and
the numerator is the average maintenance cost in a period.
FðtÞ is the unreliability function which can be obtained by
the Weibull distribution proportional hazard model. Own-
ing to the difficult explicit expression by the form of the
mathematical formula, it is hard to solve the optimal solu-
tion. Therefore, an approximate solution method, namely,
the trapezoidal numerical integration method, is used to
solve the calculation problem.

5. Simulation Case Study

5.1. Prediction Performance Criteria. The evaluation index of
prediction performance adopts root mean square percentage
error (RMSPE) and root mean square error (RMSE) [31].

RMSPE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1

yi− byi
yi

� �2
× 100%,

vuut ð24Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
yi− byið Þ2,

vuut ð25Þ

where yi is the actual value, byi is the prediction, and N is the
length of time series. RMSPE is a relative error-index, which
shows the deviation between the prediction and the actual
value. RMSE reflects the dispersion and concentration of
error size and distribution.

5.2. Maintenance Performance Criteria. To measure the
maintenance performance between combination BP-RBF-
GRNN neural network model and the traditional prediction
model (Bayesian parameter updating prediction model) in
PdM policy, we establish the evaluation index, as shown in
Equations (26) and (27) [32].

Ri
Topt =

ToptiC
ToptiP

− 1
� �

× 100%, ð26Þ

where Topt is the optimal maintenance interval. And the let-
ters subscript of “P” indicates the prediction model to be
compared, and the letters subscript of “C” indicates the com-
bination BP-RBF-GRNN neural network model. Ri

Topt
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Figure 6: Lifetime data and vibration amplitude of thrust ball bearings.

Table 2: Combination scheme of training set and test set.

Training set Test set

#2, #3, #4, #5,⋯, #30 #1
#1, #3, #4, #5,⋯, #30 #2
#1, #2, #4, #5,⋯, #30 #3
#1, #2, #3, #5,⋯, #30 #4
... ...

#1, #2, #3, #4,⋯, #29 #30
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represents the relative error percentage in maintenance
interval under the ith training-test set scheme.

Ri
η =

ηiC ToptiP
� �

ηiC ToptiC
� � − 1

 !
× 100%, ð27Þ

where η is the minimum cost rate under the optimal mainte-
nance age. And Ri

η represents the relative error percentage in
cost rate the ith training-test set scheme.

5.3. Case Study

5.3.1. Data Sources. As shown in Equation (28) [33], we use
the popular covariate model of vibration degeneration by the
MATLAB software for the simulation [34]. Equation (29)
can be obtained by the logarithm of Equation (36). Table 1
shows the probability distributions of model parameters in
Equation (29) [35].

S tð Þ =∅+θ exp βt + ε tð Þ − σ2

2
t

� �
, ð28Þ

L tð Þ = ln S tð Þ−∅ð Þ = θ′ + β′ + ε tð Þ, ð29Þ

where θ′ ~Nðμ0, σ20Þ, β′ ~Nðμ1′ , σ21Þ, and εðtiÞ − εðti−1Þ ~N
ðμ, σ2Þ). εðtÞ follows winner process, and it can be generated
by the method of pseudo-random number. Simulation fail-
ure threshold is D=0.03 MV [33], simulation length is 600
minutes, and simulation interval is 2 minutes. And we gen-
erate 30 group thrust ball bearing vibration signals for the
simulation case study. The double ordination of the simula-
tion lifetime data and simulation vibration amplitude is
shown in Figure 6.

5.3.2. Experiment Design. As shown in Table 2, to avoid the
problem of overfitting, we designed the experiment by the
method of leave-one-out cross-validation, and chose 1 group
as the test set and another 29 groups as the training set.
Therefore, there are 30 training-test set schemes.

We focus on five prediction point values of tki, tki ∈ f
0:1TAj, 0:3TAj, 0:5TAj, 0:7TAj, 0:9TAjg, which represent the
early-stage, early-to-mid stage, mid-stage, mid-to-late stage,
and late-stage for each component j, respectively. TAj is the
actual life of component j. As shown in Equations (30)–
(32), we use the modified newff MATLAB toolbox to con-
struct the structure of the BP neural network, use the newrb
MATLAB toolbox to construct the structure of the RBF neu-
ral network, and use the newgrnn MATLAB toolbox to con-
struct the structure of GRNN neural network. And the
detailed parameters are determined as shown in Tables 3–5.

net = newff P, T, S, TF, BTF, BLFð Þ, ð30Þ

Table 3: Model parameters of BP neural network.

The parameter name Value or option

P Input matrix. tk/2ð Þ × 29

T Output matrix. tend − tk/2ð Þ × 1
Hidden layer nodes (S) 18

Hidden layer nodes transfer function type (TF) tansig

Output layer neuron transfer function type (TF) logsig

Training function type (BTF) traingd

Learning function type (BLF) learngdm

The max iteration number 7000

Network training goal error 0.01

Table 4: Model parameters of RBF neural network.

The parameter name Value or option

P Input matrix. tk/2ð Þ × 29

T Output matrix. tend − tk/2ð Þ × 1
Network training goal error 0.001

Spread of radial basis function 0.01

Maximum number of neurons (MN) 400

Number of neurons to add between displays (DF) 5

Table 5: Model parameters of GRNN neural network.

The parameter name Value or option

P Input matrix. tk/2ð Þ × 29

T Output matrix. tend − tk/2ð Þ × 1
Spread of radial basis function 0.01
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net = newrb P, T, goal, spread, MN, DFð Þ, ð31Þ

net = newgrnn P, T, spreadð Þ: ð32Þ

Where tk is the prediction start point, tend is the predic-
tion end point, and sample interval is 2 minutes. We take 29
samples of ½0, tk� time series monitoring data as the input
vector and 1 sample of ½tk, tend� time series monitoring data
as the output vector. Where tansig means hyperbolic tangent

sigmoid transfer function, logsig means log-sigmoid transfer
function, traingd means gradient descent backpropagation,
learngdm means gradient descent with momentum weight
and bias learning function.

5.3.3. Result Analysis. The main WPHM parameters under
30 training-test set schemes, i.e., the covariance coefficient
γ, the shape parameter β, and the scale parameter η, are
shown in Figure 7.
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Figure 7: WPHM parameters.
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Figure 8: The error of RMSPE. (a) RMSPE mean; (b) RMSPE standard deviation.
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Figure 8 shows the mean and standard deviation of
RMSPE under 30 training-test set schemes, respectively.
Figure 9 shows the mean and standard deviation of the
RMSE under 30 training-test set schemes, respectively. We
can draw two conclusions. One is that the prediction accu-
racy of the Bayesian parameter updating prediction model
and combination BP-RBF-GRNN neural network model
can be improved when the prediction point shifts right.
The other is that the prediction accuracy of the combination
BP-RBF-GRNN neural network model is higher than that of
the Bayesian parameter updating prediction model from the
early-stage to mid-stage. But the prediction accuracy of two
prediction models is nearly equivalent from mid-to-late
stage to late-stage.

Figure 10 shows the box diagram of the cost ratio per-
centage when CPM/CER = 0:3,CPM/CER = 0:2, and CPM/CER
= 0:1. Figure 11 shows the box diagram of the maintenance
interval percentage when CPM/CER = 0:3,CPM/CER = 0:2, and
CPM/CER = 0:1. Figure 12(a) shows the average cost rate per-
centage with three maintenance ratios under 30 training-test
set schemes. Figure 12(b) shows the average maintenance
interval percentage with three maintenance ratios under 30
training-test set schemes. Figure 12 shows that the mainte-
nance ratio has a great influence on the average cost percent-
age and the average maintenance interval percentage from
the early-stage to mid-stage. With the increasement of main-
tenance cost ratio (CPM/CER), the combination BP-RBF-
GRNN neural network model has more advantages than
the Bayesian parameter updating prediction model in cost
rate percentage and maintenance interval percentage from
the early-stage to mid-stage.

To validate the effectiveness of the combination BP-
RBF-GRNN neural network model, we have compared the

combination BP-RBF-GRNN neural network model to other
three single deep learning models which are named the BP,
RBF, and GRNN neural network models in prediction per-
formance and maintenance performance. The leave-one-
out cross-validation is used as the validation method. The
model parameters of the combination BP-RBF-GRNN neu-
ral network model are shown in Tables 3–5. RMSE is used
as the prediction performance criteria.

Tables 6–8, respectively, show the maintenance perfor-
mance comparison of cost rate percentage between the sin-
gle deep learning model and combination BP-RBF-GRNN
neural network model. As shown in (27), the cost rate per-
centage of Tables 6–8 uses the cost of BP, RBF, and GRNN
neural network model to be divided by that of the combina-
tion BP-RBF-GRNN neural network model, respectively.
The value of cost rate percentage in Tables 6–8 is greater
than 0, which means that the cost of other three single deep
learning models is higher than that of the combination BP-
RBF-GRNN neural network model. And if the value of the
cost rate percentage is high, the cost of the combination
BP-RBF-GRNN neural network model will be low.
Tables 9–11, respectively, show the maintenance perfor-
mance comparison of maintenance interval percentage
between the single deep learning model and combination
BP-RBF-GRNN neural network model. As shown in (26),
the maintenance interval percentage of Tables 9–11 uses
the maintenance interval of the combination BP-RBF-
GRNN neural network model to be divided by that of the
BP, RBF, and GRNN neural network model, respectively.
The value of maintenance interval percentage in Tables 9–
11 is greater than 0, which means that the maintenance per-
formance of the combination BP-RBF-GRNN neural net-
work model is higher than that of other three single deep
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Figure 9: The error of RMSE. (a) RMSE mean; (b) RMSE standard deviation.
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learning models. And if the value of the maintenance inter-
val percentage is high, the maintenance performance of the
combination BP-RBF-GRNN neural network model will be
good. Table 12 shows the prediction performance compari-
son of the BP, RBF, GRNN, and combination BP-RBF-
GRNN neural network model. Tables 6 and 9 indicate that
the cost rate percentage and maintenance interval percent-
age of the combination BP-RBF-GRNN neural network
model from the early-stage to the mid-stage are more advan-
tageous than that of BP. And with the increasement of main-
tenance cost ratio, the combination BP-RBF-GRNN neural
network model has advantages over the BP in cost rate per-
centage and maintenance interval percentage. Table 7 indi-
cates that the cost rate percentage of the combination BP-
RBF-GRNN neural network model is basically equivalent
to that of RBF. Table 10 indicates that the maintenance

interval percentage of the combination BP-RBF-GRNN neu-
ral network model from the early-stage to the mid-to-late
stage is more advantageous than that of RBF. And with the
increasement of maintenance cost ratio, the combination
BP-RBF-GRNN neural network model has advantages over
the RBF in cost rate percentage and maintenance interval
percentage. Tables 8 and 11 indicate that the cost rate per-
centage and maintenance interval percentage of the combi-
nation BP-RBF-GRNN neural network model from the
early-stage to the mid-stage are more advantageous than
those of GRNN. And with the increasement of maintenance
rate, the combination BP-RBF-GRNN neural network
model is basically equivalent to the GRNN in cost rate per-
centage and maintenance interval percentage. Table 12 indi-
cates that the prediction accuracy of BP and GRNN can be
improved with the predicted point moving right. And RBF
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Figure 10: Box diagram of cost rate percentage. (a) Box diagram of cost rate percentage when CPM/CER = 0:3. (b) Box diagram of cost rate
percentage when CPM/CER = 0:2. (c) Box diagram of cost rate percentage when CPM/CER = 0:1.
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can control the prediction error at a relatively stable range. It
is obvious to find that the prediction accuracy of combina-
tion BP-RBF-GRNN neural network model is higher than
that of the BP, RBF, and GRNN under five prediction points.

To justify the validity of the proposed method, we will
change the covariate simulation parameters to simulate the
other degeneration scenarios, and verify the proposed
method. The covariate model parameters of θ′ and β′ are
the original property of thrust ball bearing vibration, and
the covariate model is mainly affected by the error term εðt
Þwhich represents the noise in the operation environment
or the measurement error caused by the human. Moreover,
the high value of the error term εðtÞ will increase the degen-

eration degree of thrust ball bearing, and lead to the decline
of lifetime. Therefore, as shown in Table 13, we designed
three simulation experiments by changing the normal distri-
bution of error term εðtÞ to randomly simulate the different
degeneration scenarios, and test the prediction performance
and maintenance performance of the combination BP-RBF-
GRNN neural network model. Each simulation experiment
will generate 30 group thrust ball bearing vibration signals
to be used as data sources. And we focus on five prediction
point values of tki, tki ∈ f0:1TAj, 0:3TAj, 0:5TAj, 0:7TAj, 0:9
TAjg, which represent the early-stage, early-to-mid stage,
mid-stage, mid-to-late stage, and late-stage for each compo-
nent j, respectively. TAj is the actual life of component j.
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Figure 11: Box diagram of maintenance interval percentage. (a) Box diagram of maintenance interval percentage when CPM/CER = 0:3. (b)
Box diagram of maintenance interval percentage when CPM/CER = 0:2. (c) Box diagram of maintenance interval percentage when CPM/
CER = 0:1.
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Table 6: The maintenance performance comparison of cost rate
percentage Rη (%) between the BP and the combination BP-RBF-
GRNN neural network model under three different maintenance
cost ratios ðCPM/CERÞ.
CPM/CER tk1 tk2 tk3 tk4 tk5
0.5 15.92 17.14 15.28 7.42 1.86

0.4 14.31 15.62 12.28 5.73 1.35

0.3 12.61 14.40 9.34 3.80 0.91

Table 7: The maintenance performance comparison of cost rate
percentage Rη (%) between the RBF and the combination BP-
RBF-GRNN neural network model under three different
maintenance cost ratios ðCPM/CERÞ.
CPM/CER tk1 tk2 tk3 tk4 tk5
0.5 0.26 0.24 0.27 0.20 0.17

0.4 0.14 0.20 0.17 0.18 0.12

0.3 0.09 0.10 0.10 0.10 0.12

Table 8: The maintenance performance comparison of cost rate
percentage Rη (%) between the GRNN and the combination BP-
RBF-GRNN neural network model under three different
maintenance cost ratios ðCPM/CERÞ.
CPM/CER tk1 tk2 tk3 tk4 tk5
0.5 4.18 2.00 0.55 0.29 0.17

0.4 3.81 1.46 0.73 0.35 0.24

0.3 3.51 1.56 1.05 0.36 0.01

Table 9: The maintenance performance comparison of
maintenance interval percentage RTopt (%) between the BP and
the combination BP-RBF-GRNN neural network model under
three different maintenance cost ratios ðCPM/CERÞ.
CPM/CER tk1 tk2 tk3 tk4 tk5
0.5 31.05 32.85 29.62 15.96 4.11

0.4 30.45 32.09 26.72 15.14 3.73

0.3 29.84 32.75 23.91 11.64 3.49

Table 10: The maintenance performance comparison of
maintenance interval percentage RTopt (%) between the RBF and
the combination BP-RBF-GRNN neural network model under
three different maintenance cost ratios ðCPM/CERÞ.
CPM/CER tk1 tk2 tk3 tk4 tk5
0.5 1.57 2.08 2.22 1.47 0.64

0.4 1.32 1.78 1.31 1.39 0.50

0.3 1.00 1.22 1.23 1.65 0.38

Table 11: The maintenance performance comparison of
maintenance interval percentage RTopt (%) between the GRNN
and the combination BP-RBF-GRNN neural network model
under three different maintenance cost ratios ðCPM/CERÞ.
CPM/CER tk1 tk2 tk3 tk4 tk5
0.5 9.47 5.72 2.38 1.86 0.90

0.4 9.99 5.54 3.11 1.46 1.21

0.3 9.89 5.75 4.77 1.83 0.51
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Table 14 is the prediction performance of the Bayesian
parameter updating prediction model and combination
BP-RBF-GRNN neural network model in RMSPE under
three different degeneration scenarios. The result in
Table 14 can be calculated by using the prediction error
minuses that of the combination BP-RBF-GRNN neural net-
work model, and the high value of RMSPE means the low
prediction performance. As shown in Table 14, we can draw
the conclusion that in every degeneration scenario, the pre-
diction performance of the combination BP-RBF-GRNN
neural network model from the early-stage to the mid-
stage is more advantageous than those of the Bayesian
parameter updating forecasting model.

Tables 15 and 16 are the maintenance performance of
the Bayesian parameter updating prediction model and
combination BP-RBF-GRNN neural network model in cost
rate and maintenance under three different degeneration
scenarios when CPM/CER = 0:3, respectively. Table 15 repre-
sents the cost rate percentage, which uses the cost rate of the
Bayesian parameter updating prediction model to be divided
by that of the combination BP-RBF-GRNN neural network
model. The value of the cost rate percentage is greater than
0, which means that the cost of the Bayesian parameter
updating prediction model is higher than that of the combi-
nation BP-RBF-GRNN neural network model. And if the
value of the cost rate percentage is high, the cost of the com-
bination BP-RBF-GRNN neural network model will be low.
As shown in Equation (26), Table 16 represents the mainte-
nance interval percentage, which uses the maintenance
interval of the combination BP-RBF-GRNN neural network
model to be divided by that of the Bayesian parameter
updating prediction model. The value of the maintenance
interval percentage is greater than 0, which means that the
maintenance performance of the combination BP-RBF-
GRNN neural network model is higher than that of the
Bayesian parameter updating prediction model. And if the
value of the maintenance interval percentage is high, the
maintenance performance of the combination BP-RBF-
GRNN neural network model will be good. The high value

Table 12: The prediction performance comparison of the BP, RBF, GRNN, and combination method.

Method tk1 tk2 tk3 tk4 tk5
BP 0.3101 0.3092 0.3139 0.2141 0.1907

RBF 0.0167 0.0175 0.0182 0.0177 0.0183

GRNN 0.1821 0.0358 0.0238 0.0165 0.0159

Combination BP-RBF-GRNN neural network model 0.0045 0.0049 0.0055 0.0055 0.0056

Table 13: The introduction of the experimental design scheme.

Experimental design scheme Covariate simulation parameter

1st degeneration scenario θ′ ~N μ0, σ
2
0

� �
, β′ ~N μ1′ , σ1′

� 	
, ε tið Þ − ε ti−1ð Þ ~N 0:5 × μ0, 0:5 × σ2

� �
2nd degeneration scenario θ′ ~N μ0, σ

2
0

� �
, β′ ~N μ1′ , σ1′

� 	
, ε tið Þ − ε ti−1ð Þ ~N 1 × μ0, 1 × σ2

� �
3rd degeneration scenario θ′ ~N μ0, σ

2
0

� �
, β′ ~N μ1′ , σ1′

� 	
, ε tið Þ − ε ti−1ð Þ ~N 2 × μ0, 2 × σ2

� �

Table 14: The prediction performance difference of RMSPE (%)
between the combination BP-RBF-GRNN neural network model
and Bayesian parameter updating prediction model under
different degeneration scenarios.

Experimental design scheme tk1 tk2 tk3 tk4 tk5
1st degeneration scenario 1.98 1.78 1.14 0.06 -0.06

2nd degeneration scenario 9.83 5.67 3.65 0.08 -0.07

3rd degeneration scenario 6.78 3.51 1.63 -0.09 -0.04

Table 15: The maintenance performance comparison of cost rate
percentage Rη (%) between the combination BP-RBF-GRNN
neural network model and Bayesian parameter updating
prediction model when CPM/CER = 0:3 under different
degeneration scenarios.

Experimental design scheme tk1 tk2 tk3 tk4 tk5
1st degeneration scenario 16.45 8.43 3.39 0.54 0.22

2nd degeneration scenario 18.25 4.01 2.96 1.07 -0.04

3rd degeneration scenario 20.70 14.56 9.02 2.92 1.31

Table 16: The maintenance performance comparison of
maintenance interval percentage RTopt (%) between the
combination BP-RBF-GRNN neural network model and Bayesian
parameter updating prediction model when CPM/CER = 0:3 under
different degeneration scenarios.

Experimental design scheme tk1 tk2 tk3 tk4 tk5
1st degeneration scenario 20.22 11.66 7.95 4.38 2.07

2nd degeneration scenario 26.47 9.80 7.32 3.60 1.32

3rd degeneration scenario 21.05 15.02 8.49 3.18 2.19
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in Tables 15 and 16 means that the combination BP-RBF-
GRNN neural network model has a better maintenance per-
formance than that of the Bayesian parameter updating pre-
diction model. As shown in Tables 15 and 16, we can draw
the conclusion that in every degeneration scenario, the cost
rate percentage and maintenance interval percentage of the
combination BP-RBF-GRNN neural network model from
the early-stage to the mid-stage are more advantageous than
those of Bayesian parameter updating prediction model. The
conclusion from Table 14 and Tables 15 and 16 can illustrate
the fact that the improvement of accuracy will improve the
maintenance efficiency.

5.3.4. Computational Cost. We use a laptop computer as a
baseline device. Its specifications include an Intel Core i7-
9750H processor with a base frequency of 2.60GHz, equipped
with 16GB of RAM. The comparison of computational cost
between the combination BP-RBF-GRNN neural network
model and the Bayesian parameter updating prediction model
is shown in Table 17. We calculated the cost of the first exper-
iment (Figures 8–12), which includes the cost from five pre-
dicted points for two prediction models under 30 training-
test set schemes. It can be clearly found that the computational
cost of the combination BP-RBF-GRNN neural network
model is not much higher than that of the Bayesian parameter
updating prediction model. But the combination BP-RBF-
GRNN neural network model has a better performance than
the Bayesian parameter updating prediction model in degen-
eration prediction and maintenance. The explanation for the
above result is as follows. The Bayesian parameter updating
prediction model uses the prior distributions of model param-
eters to obtain that of the posterior distributions, and the
Monte Carlo Simulation is used to simulate N degeneration
scenarios to predict the degeneration process. However, the
high degeneration scenario will lead to the high computational
cost of the Bayesian parameter updating prediction model. In
order to improve the accuracy of the degradation process, we
simulated 10000 degradation scenarios at each predicted point
under 30 training-test set schemes, which resulted in high
computational cost. The combination BP-RBF-GRNN neural
network model contains three prediction sub-models, namely,
BP, RBF, and GRNN neural network. The BP and RBF neural
networks adopt one hidden layer. One hidden layer normally
does not cause high computational cost. Although the GRNN
neural network uses two hidden layers, the weight of the whole
neural network is equal to 1, which indicates that two adjacent
layers can be connected without updating the weight, thus
reducing the computational cost.

6. Conclusion

This paper puts forward a predictive maintenance optimiza-
tion framework based on the proportional hazard model and

BP-RBF-GRNN neural network model to improve the accu-
racy of degeneration prediction and reduce the maintenance
cost to a certain extent. The main contribution can be illus-
trated in two aspects. Firstly, the combination forecasting
method based on deep learning is rarely applied in degener-
ation prediction, which can improve the accuracy of degen-
eration. Therefore, the combination BP-RBF-GRNN neural
network model based on deep learning is used to predict
the degeneration prediction. Secondly, condition monitoring
data may not directly reflect the degree of degeneration, life
data and condition monitoring values must be considered
comprehensively. Therefore, WPHM which considers both
life data and condition monitoring values can be used to
evaluate the hazard rate. We design two experiments to illus-
trate the advantage of combination BP-RBF-GRNN neural
network model. For the first experiment, we compared the
combination BP-RBF-GRNN neural network model to the
Bayesian parameter updating prediction model in prediction
performance and maintenance performance. The simulation
results show that the combination BP-RBF-GRNN neural
network model can effectively improve the accuracy of the
thrust ball bearings degeneration process and reduce the
maintenance cost percentage from early-stage to mid-stage
than that of the Bayesian parameter updating prediction
model. For the second experiment, we compared the combi-
nation BP-RBF-GRNN neural network model to other three
single deep learning models in prediction performance and
maintenance performance. The simulation results show that
the combination BP-RBF-GRNN neural network model has
advantages over other three single prediction sub-models in
cost rate percentage and maintenance interval percentage
from the early-stage to the mid-stage.
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In order to research the high-concentration CO2 effects on ignition delay time (IDT) of diesel surrogate fuel (70% n-heptane/
30% toluene), a carbon dioxide effect (CDE) model is established, which considers fuel and ambient gas concentration,
density, and temperature influence on autoignition under CO2/O2 atmosphere. Firstly, a chemical model of n-heptane/
toluene is established, and the coupling, reduction, and simulation processes are carried out in chemical kinetic software
with the IDT as the target parameter. Secondly, a constant volume combustion chamber (CVCC) visualization platform is
built by incorporating a high-speed camera system and different working conditions are set in the CO2 volume fraction
range (40%-70%) at 3.0MPa and 850K for an autoignition experiment. Thirdly, experiment and simulation results are
discussed in air, 60% CO2/40% O2, 50% CO2/50% O2, and 40% CO2/60% O2 atmospheres, including the IDT, CO2 effects,
temperature sensitivity, and OH radical rate of production (ROP). The results show that the CDE model well predicts the
70% n-heptane/30% toluene IDT under the CO2/O2 atmosphere and the average error in 60% CO2/40% O2 atmosphere is
5.29%. Besides, when the CO2 volume fraction increases from 40% to 60%, the CO2 thermal effect plays a leading role in
the IDT prolongation and the OH radical ROP peak of R4 (O+H2O⟶2OH) decreases by 180%.

1. Introduction

Diesel engines play an indispensable role in industrial
development, but the CO2 emission poses a great threat
to the lives of workers in such as underground, underwater,
and other closed environments [1]. When the CO2 concen-
tration reaches 5% in a closed environment, it causes severe
damage to body functions, loss of consciousness, and even
death [2, 3]. In order to solve the CO2 emission problem
in closed environments, Pei and Liu [4] proposed a closed
cycle diesel engine (CCDE) system with liquid oxygen car-

bon sequestration whose working principle is that diesel
burns in the “artificial atmosphere” (only O2 and CO2).
In addition, the combustion process takes advantage of
the CO2 high specific heat and the flame retardant proper-
ties to avoid diesel excessive combustion in the oxygen-rich
atmosphere, and the CO2 in the diesel exhaust is cooled
and collected by using the physical properties of liquid oxy-
gen vaporization heat absorption. The vaporized O2 and
the remaining unsolidified CO2 are sent to the cylinder
for the next combustion cycle through exhaust gas recircu-
lation. The unique advantage of the closed cycle system is
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that the emission of pollutants such as nitrogen oxides and
soot is almost “zero” during the working process. Unfortu-
nately, the CCDE has the problem of unstable combustion
and unpredictable autoignition in practice [5], so in-depth
research on diesel IDT under the CO2/O2 atmosphere is
necessary.

Diesel is a complex mixture composing hundreds of
different components, which is not feasible to consider the
oxidation chemistry of all the compounds [6, 7]. Encourag-
ingly, n-heptane is commonly adopted as DSF due to it
having a similar cetane number to diesel and the oxidation
reaction is well known [8–11]. Additionally, the aromatic
compounds in diesel account to about 30% [12], and the
most representative substance with a simple structure is tol-
uene. In general, binary mixed fuel can potentially provide
a better representation of autoignition delay properties than
those on the basis of a single fuel. In order to simulate the
diesel C/H ratio and the physical and chemical properties
in the actual autoignition process as accurately as possible,
binary mixed fuel becomes a hot topic in diesel IDT
research [13–19], especially toluene reference fuels (TRFs)
[20–23]. Therefore, the IDT of 70% n-heptane/30% toluene
under the CO2/O2 atmosphere needs to be further investi-
gated to provide a reference for the optimized design of
future diesel engines.

Researchers made extensive studies on the IDT of n-hep-
tane/toluene mixtures in air. Herzler et al. [24] studied the n-
heptane/toluene mixtures IDT by using a high-pressure
shock tube (HPST), which laid a foundation for developing
and improving the DSF autoignition kinetic model. Later,
Hartmann et al. [25] employed the HPST experiment to
prove the toluene inhibitory effect on autoignition in a
low-temperature environment by adding toluene to n-hep-
tane, and they explained the nonlinear effects on the IDT
of n-heptane/toluene mixtures. In addition, Di Sante [26]
obtained the n-heptane chemical properties that dominated
the toluene/n-heptane mixture when the toluene content
was low through a rapid compression machine (RCM)
experiment, while the effect of toluene content change on
IDT was not significant when the temperature was higher
than 800K. Malliotakis et al. [27] combined HPST and
RCM experiments to study the variation of n-heptane/tolu-
ene mixtures IDT with toluene content at different pressures
and equivalence ratios using reaction paths and sensitivity
analysis (SA) methods, and they also described the key
aspects of toluene oxidation and explained its characteristics
as reaction inhibition. Besides, Hernandez et al. [28] adopted
50% n-heptane/50% toluene as DSF to conduct an autoigni-
tion experiment in a single-cylinder engine and proved that
toluene eliminated numerous active groups through the
dehydrogenation reaction of OH radical at low tempera-
tures, which remarkably prolonged the IDT. Subsequently,
Hellier et al. [29] further researched the interaction between
toluene and n-heptane during the compression autoignition
process by changing the toluene content, which caused the
changes in IDT. The result proved that a distinct two-stage
autoignition process appeared with the increase of toluene
content, and the toluene content exceeded 50% without
spontaneous combustion. Further, Zhang et al. [30] selected

n-heptane and toluene (6 : 4 by mass) as DSF using a numer-
ical simulation to study the diesel autoignition in different
oxygen concentrations, and the oxidation process of the
mechanism was verified by the CVCC experiment.

In recent years, many studies have been reported on
ignition and combustion under the CO2/O2 atmosphere.
Zhou et al. [31] investigated the ignition characteristics of
single-particle slime in a tube furnace at initial temperatures
of 923-1173K and O2 volume fractions of 5%-80% and
showed that the IDT and ignition temperature decreased
significantly with increasing ambient temperature and oxy-
gen concentration. But Liu et al. [32] studied the ethane
IDT variation with the change of equivalence ratio and pres-
sure through a shock tube experiment. Hu and Wei [33]
further investigated the CO2 effects on the propane laminar
flow flame speed by Bunsen burner experiment, and the
results concluded that the CO2 thermal effect is the deter-
mining factor, followed by the chemical effect and finally
the radiation effect. Additionally, Chen et al. [34] studied
the diesel combustion process through optical engine exper-
iments, and the results showed that the engine power loss
was minimized and the IDT was shortened obviously in
the 50% CO2/50% O2 atmosphere. Peng et al. [35] compared
the autoignition delay of butane in CO2/O2 and air atmo-
sphere by HPST experiment and analyzed the equivalence
ratio and CO2 effect on the IDT. Subsequently, Zhao et al.
[36] studied the ignition characteristics of n-heptane by the
visualization platform experiment of CVCC, and the results
showed that the IDT in 35% CO2/65% O2 atmosphere was
significantly shortened by 50% than that in air. Moreover,
Liu et al. [37] studied the effects of CO2 concentration on
the combustion characteristics of diesel in different CO2/
O2 atmosphere through the CVCC experiment.

Although researchers extensively studied the n-hep-
tane/toluene mixtures auto-ignition characteristics in air,
few reports under CO2/O2 atmosphere, especially in a high-
concentration CO2 environment. Thus, the goal of the pres-
ent work is to propose a model that is appropriate for calcu-
lating the diesel IDT under the CO2/O2 atmosphere. Firstly,
the CDE model of 70% n-heptane/30% toluene is established
in the CO2/O2 atmosphere. Then, the n-heptane and toluene
chemical models are coupled and reduced. Finally, the CVCC
visualization experiment platform is built to verify the CDE
model, and the important factors affecting the IDT are specif-
ically analyzed and discussed. The discussion focuses on the
autoignition process, the flame natural luminosity, calcula-
tion and validation of IDT, CO2 effect, temperature sensitiv-
ity, and OH radical ROP.

2. Simulation

2.1. CDE Model. The CDE model is used to calculate the die-
sel IDT from the Arrhenius formula [38] as shown in Equa-
tion (1). Later, Ryan and Callahan [39] creatively converted
the pressure effect into the gas concentration and ambient
density effects on IDT on the basis of Equation (1). Besides,
the influence of fuel concentration, oxygen concentration,
and ambient temperature and density on IDT is considered
as shown in Equation (2).
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τid = Ap‐n exp Ea
~RT

� �
, ð1Þ

where A and n are calibration coefficients, which vary
with fuel type, test method, and test condition; p and T are
the gas average pressure and temperature before fuel sponta-
neous combustion, Pa, K; ~R is the universal gas constant, J/
(mol·K); and Ea is the global activation energy, kJ/mol.

τid = b0CO2
b1Cfuel

b2ρb3 exp b4
T

� �
, ð2Þ

where b0, b1, b2, and b3 are regression coefficients; b4 is
global activation energy over ~R (universal gas constant);
CO2

and Cfuel are the oxygen concentration and the fuel con-
centration before fuel spontaneous combustion, moles/m3; ρ
is the average gas density before fuel spontaneous combus-
tion, kg/m3; and T is the average gas temperature before fuel
autoignition, K.

However, Equation (2) describes the IDT in air without
considering the special CO2/O2 atmosphere, where the
CO2 concentration is much higher than that in air and
CO2 has a higher specific heat capacity compared to N2.
Additionally, in a high-temperature environment, CO2
cracks and directly participates in the reaction, which affects
the oxidation process. Thus, the CDE model is established as
shown in Equation (3), which considers the CO2 retardant
effect on autoignition.

τCDE = b0CO2
b1Cfuel

b2ρb3 exp b4
T

� �
CCO2

b5, ð3Þ

where τCDE is the ignition delay time, s; CCO2
is the

carbon dioxide concentration at the ignition moment; and
b5 is the regression coefficient.

The CDE model considers the coupled effects of gas
temperature and density and the ratio of oxygen to fuel
on IDT. Furthermore, the CO2 volume fraction is divided
into multiple group working conditions from 40% to 70%,
and the multiple linear regression analysis methods are
adopted to correlate the species data with the IDT. The
final function converges by iterative calculation, and the
goodness-of-fit (R2) of the CDE model is 0.9482 with the
coefficients shown in

τCDE = 0:221CO2
−1:127Cfuel

0:050ρ−4:512 exp 5914
T

� �
CCO2

1:762

ð4Þ

The coefficients in Equation (4) are expressed as fol-
lows. The τCDE decreases with increasing O2 concentration
in the mixture but increases with increasing CO2 concen-
tration, and they both influence each other coupling. The
ignition delay time is inversely proportional to the mixture
temperature, and the nature of this relationship can be
expressed by the Arrhenius formula. The effect of density
is more significant at higher fuel flow rates, as the spray

may hit the wall at lower densities. The effect of fuel flow
on ignition delay is relatively small but significant, with
evaporation at higher fuel flow (richer mixture) causing
pressure reduction and resulting in longer ignition delay.

The actual diesel engine has a different CO2 concentra-
tion before and after autoignition as the working conditions
change. More importantly, owing to the rapid and intense
working process of the diesel engine, the in-cylinder temper-
ature has strong transient characteristics, which affect the
reactions of CO2 and DSF. The CDE model has the advan-
tage of better linking experimental data to actual diesel
engines to quickly and accurately predict the IDT under
CO2/O2 atmosphere, and the autoignition parameters of
actual engines are further optimized to achieve the purpose
of stable combustion. In addition, the density effect depends
on the amount of fuel injected.

2.2. Chemical Model. The chemical model includes the n-
heptane and toluene mechanisms from Lawrence Livermore
National Laboratory. The adopted n-heptane mechanism is
version 3.1 of the detailed chemical kinetics model devel-
oped by Mehl et al. [40], which is prominent in numerical
research experiments in a wide temperature range and well
characterizes the ignition. Besides, the adopted chemical
kinetic model of toluene is developed by Nakamura et al.
[41] to simulate a single aromatic hydrocarbon, which has
outstanding performance in pioneering studies of reaction
pathways and reaction rates. In addition, when the chemical
reaction rate of the system reaches a high level, a large num-
ber of active molecules are clustered together at the autoigni-
tion moment, which accompanies by intense luminescence
and heating. Among them, the OH radical determines the
reaction activity in a low-temperature environment, so the
autoignition moment is defined as the OH radical reaching
the maximum [42], as shown in Figure 1.

2.3. Coupling and Reduction Processes of Mechanism. The n-
heptane and toluene mechanisms need to be coupled and
reduced by a directed relation graph with error propagation
(DRGEP) [43] and SA [44] methods to reduce calculation
time and cost. Firstly, according to the weight value, the
larger elementary reactions are retained when the mecha-
nisms are coupled. Secondly, the elementary reactions with
fewer correlations with the coupling mechanism are elimi-
nated according to the target parameter. Thirdly, the
DRGEP method eliminates the error propagation caused
by species reduction and further reduces the retained species
through the SA method. Finally, the reduction process is
controlled by setting the target parameters and error range
to obtain the skeleton mechanism with different accuracy.
However, if the target parameters are less and the error is
large, the final obtained mechanism is simplified and if the
error is small enough, the reduced mechanism converges
to the detailed mechanism. The n-heptane/toluene mecha-
nism with 273 components and 1544 elementary reactions
is obtained by setting the IDT as the target parameter and
the relative error is 10%. The reduced mechanism well sim-
ulates the diesel autoignition process thanks to the calcula-
tion errors of the simplified and detailed mechanism are
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within 5%, and the mechanism coupling and reduction pro-
cess are shown in Figure 2.

3. Experiment

In the experiment, the CVCC visualization platform is built
to analyze the auto-ignition process of 70% n-heptane/30%
toluene under the CO2/O2 atmosphere. As shown in
Figure 3, the experiment platform divides into six parts,
which are the CVCC device, cooling circulation system,
intake and exhaust system, high-pressure fuel injection sys-
tem, high-speed camera system, and electronic control unit
(ECU), and the experimental parameters are shown in
Table 1.

The shape of the CVCC device (product number: Y1403,
produced by Beijing Institute of Technology) is similar to
a cylinder with four fused quartz windows that are evenly
distributed as shown in Figure 4. The CVCC device simu-
lates the working environment of the actual diesel engine
top dead center with an interior radius of 150mm and
an interior height of 560mm. The electric heating wires
maximum power is 11 kW, regulating the CVCC tempera-
ture by thermal convection, and its internal maximum
temperature reaches 900K, which meets the actual engine
top dead center autoignition temperature. The quartz win-
dow diameter is 120mm, and its effective observation diam-
eter is 100mm, which can achieve the high-speed camera to
get the entire autoignition process. In addition, the cooling
circulation system is composed of a condition control cabi-
net, a water tank, a water pump, temperature sensors, and
cooling water channels. The CVCC outer wall is covered with
cooling water channels that are monitored in real time by
temperature sensors to regulate dynamically the temperature
and avoid danger. The intake and exhaust system consists of
the condition control cabinet, high-pressure gas cylinders,
pressure regulator valves, pressure sensors and intake, and
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Figure 2: Mechanism coupling and reduction flow diagram.

4 Journal of Sensors



exhaust pipelines. During the intake process, the pressure
regulator valve needs to be manually adjusted to feed evenly
the mixture gas with a 0.02MPa intake gradient. At the same
time, the heating wires are cooperatively heated to ensure a
steady rise in pressure and temperature in the CVCC until
the initial values for the experiment are reached. When the
first exhaust is completed, a certain amount of mixture gas
needs to be charged again before continuing the exhaust to
eliminate the disturbance of the previous cycle of combus-
tion. Additionally, the high-pressure fuel injection system
consists of the ECU, oil tank, oil pump and motor, battery,
high-pressure oil rail, and injector (0.14mm single-hole
injector from BOSCH). The high-pressure oil pump driven
by a variable-frequency motor enables the fuel to reach a
maximum injection pressure of 175MPa. The pressure is
increased in 10MPa gradients from 0 to 100MPa and in
5MPa gradient above 100MPa to achieve precise regulation
and protection of the high-pressure oil rail. A single-hole
injector with a diameter of 0.12mm is used for the experi-

ment. The high-speed camera system is composed of a
control computer, high-speed camera (FASTCAM SA5, Pho-
tron), digital delay generator (DG535), and the ECU. The
maximum shooting speed is 10000 frames per second (FPS)
of the high-speed camera, which is triggered by the digital
delay generator. The digital delay generator is employed to
adjust the time relationship between the fuel injection and
the high-speed camera. At the same time, the autoignition
process is recorded in real time by using the acquisition soft-
ware matching with the high-speed camera.

The testing procedure of the CVCC visualization exper-
iment platform is mainly divided into 4 steps. (a) Before the
experiment starts, the high-speed camera needs to complete
the focus and image size calibration, as shown in Figure 5.
(b) The CVCC is charged with a specific ratio of CO2/O2
mixture gas at a certain gradient pressure while the electric
heating wires are adjusted to heat until reaching the initial
temperature and pressure of the experiment. (c) When the
high-pressure fuel injection system reaches the experimental
injection pressure with a certain gradient, the control com-
puter sends an electrical signal to the digital delay generator
while the high-speed camera is triggered to work. (d) The
first 60 images are sent back to the control computer for
storage as a set of data since the combustion process is fin-
ished at 6ms.

4. Results and Discussion

4.1. Ignition Delay Time. Figure 6(a) shows the key frames of
the actual 70% n-heptane/30% toluene autoignition

1 2 3 4 5 6 7

8 9 10 11 12

13
14

15

16

17 18 19

V IECU

Figure 3: Schematic diagram of CVCC visualization platform. (1)
Oil tank. (2) Oil pump and motor. (3) High pressure oil rail. (4)
Water pump and motor. (5) Water tank. (6) Pressure regulator
valve. (7) Pressure gauge. (8) Digital delay generator. (9) High-
speed camera. (10) Constant volume combustion chamber. (11)
Injector. (12) Gas cylinder. (13) Visual window. (14) Electric
heating wire. (15) Electronic control unit. (16) Control computer.
(17) Vacuum pump. (18) Gas collecting tank. (19) Condition
control cabinet.

Table 1: Experimental parameters.

Parameters Value Units

Initial pressure 3.0 MPa

Initial temperature 850 K

Fuel temperature 300 K

Fuel injection pressure 120 MPa

Fuel injection pulse width 2.0 ms

Injection quantity (per time) 18.4 mg

Taken speed rate 10000 FPS

Time of exposure 20 μs

Image resolution 896 ∗ 848 px

Diaphragm 2.8 —

Figure 4: Constant volume combustion chamber.
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processes from the high-speed camera in four different con-
ditions. The images are processed with pseudocolor to better
highlight the autoignition moment and the flame shape as
shown in Figure 6(b). Thus, the IDT obtained using the
space integrated natural luminosity (SINL) [45, 46] method
are 2.3ms, 1.7ms, 1.4ms, and 1.1ms in the four working
conditions (air, 60% CO2/40% O2, 50% CO2/50% O2, and
40% CO2/60% O2). The IDT is reduced obviously by
52.17% in 40% CO2/60% O2 atmosphere than that in air.
Besides, the flame front has an “umbrella” shape in air, while
the flame is thinner and longer under CO2/O2 atmospheres.
Due to the oxygen concentration increases, the collision
chance between oxygen and fuel molecules becomes greater,
resulting in shorter IDT and more complete combustion
than that in air. Comparing the autoignition processes in
the different CO2/O2 atmospheres, the IDTs in 40% CO2/
60% O2 and 60% CO2/40% O2 atmospheres are 27.27% lon-
ger and 21.43% shorter than those in 50% CO2/50% O2
atmosphere, respectively. The result shows that the same
O2 and CO2 volume fractions of change have different pro-
motion and inhibition degrees of autoignition because the
two have a coupling effect. Liu et al. [36] studied the effects
of different CO2 concentrations on the diesel combustion
characteristics in the CVCC experiment at an initial temper-
ature and pressure of 850K and 3.0MPa, respectively. The
result shows that with the increase of CO2 concentration,
the flame length decreases and the IDT increases in the
CO2/O2 atmosphere, and similar conclusions are drawn in
the current experimental conditions.

The flame natural luminosity change processes of 70% n-
heptane/30% toluene in the four working conditions are
shown in Figure 7. The flame natural luminosity is obtained
by converting the red (R), green (G), and blue (B) values of
each pixel point on the image into the corresponding gray
values and then superimposing them [47]. As shown in
Figure 7, the flame natural luminosity in air is much smaller

than that in the CO2/O2 atmospheres. On the one hand, the
phenomenon is caused by a large amount of inert gas (N2) in
air as well as the low oxygen concentration, which leads to
insufficient combustion. On the other hand, N2 does not
participate in the fuel oxidation reaction, while CO2 is
involved in the reaction in localized high-temperature con-
ditions [48]. In the 50% CO2/50% O2 atmosphere, the area
enclosed by the flame natural luminosity curve and the time
axis are the largest, indicating that the combustion is suffi-
cient and lasts for a long time. However, the flame natural
luminosity curves fluctuate strongly and even show flame
breakage in the flame images in the different CO2/O2 atmo-
spheres. What may explain the phenomenon is that CO2 is a
triatomic gas, and its higher specific heat capacity and lower
polytropic index disrupt the oxygen-rich conditions in
CVCC, causing unstable combustion [49, 50]. Moreover,
the diffusive combustion of gas entrained fuel during the fuel
injection combustion process forms turbulence, which fur-
ther leads to combustion fluctuations. The time from the
beginning to the first slope of the flame natural luminosity
curve also reflects the trend that the IDT gradually prolongs
with increasing the CO2 volume fraction.

Figure 8 shows the simulation and experiment IDT in air
and the three different CO2/O2 atmospheres and the CDE
model reproduces negative temperature dependence. At the
initial temperature and pressure of 700K and 3.0MPa, the
IDT in air is much longer than that in CO2/O2 atmospheres,
which all decrease gradually as the initial temperature
increases from 700K to 850K. On the contrary, with the
increase of the initial temperature from 850K to 950K, the
IDT is prolonged, especially in air and 50% CO2/50% O2
atmospheres. The phenomenon shows that the oxidation
of toluene in air and 50% CO2/50% O2 atmospheres con-
sume a large amount of OH radical and the reaction heat
release is much less than the heat loss, which eventually leads
to a decrease in the system reactivity and a longer IDT.
Overall, this is similar to the conclusion reached by Fu and
Aggarwal [51], who explained the phenomenon of negative
temperature coefficients for n-heptane/methane mixtures,
where the reactions generating HO2 radical are preferred
over those generating OH radical in this temperature inter-
val, resulting in a smaller heat release than heat loss for
low-temperature reactions. Subsequently, with increasing
the initial temperature from 950K to 1200K, the IDT in
the four atmospheres gradually shortens to zero. Because
the higher initial temperature determines the progress of
the reaction, the fuel spontaneously ignites immediately as
soon as it is injected. The reasons for the error mainly
include the simplification of the model and the experimental
error, and the maximum error between the simulation and
experiment is 16.96% in air. Moreover, the errors between
the simulation and experiment IDT of 60% CO2/40% O2,
50% CO2/50% O2, and 40% CO2/60% O2 are 5.29%, 5.71%,
and 8.18%, respectively, which verifies the CDE model appli-
cability to predict the IDT in the O2/CO2 atmosphere.

4.2. The CO2 Effects. Figure 9 shows the correspondence
between the IDT and temperature for different CO2 volume
fraction working conditions at the initial temperature of

Figure 5: Image calibration of the high-speed camera.
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850K and the pressure of 3.0MPa. Under CO2/O2 atmo-
sphere, the IDT prolongs with the increases of CO2 volume
fraction and the corresponding autoignition temperature
gradually decreases, and the three effects of CO2 show dis-
tinct changes. Then, when the CO2 volume fraction changes
from 40% to 60%, the IDT growth rate gradually increases,
reaching amaximum of 18.75% between 55% and 60%. How-

ever, when the CO2 volume fraction continues to increase,
the growth rate drops instead, and the growth rate drops to
10.53% between 60% and 70%. Thus, the change in growth
rate indicates that the way of CO2 inhibiting autoignition
has changed. The CO2 thermal effect gradually increases
and causes a significant decrease in temperature with increas-
ing the CO2 volume fraction from 40% to 60%, which is the
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Air

60%CO2/40%O2

40%CO2/60%O2

50%CO2/50%O2

1.1 ms 1.4 ms 1.7 ms 2.3 ms 3.4 ms

(a) Actual flame images
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60%CO2/40%O2

40%CO2/60%O2

50%CO2/50%O2
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(b) Pseudocolor flame images

Figure 6: Autoignition processes in four working conditions.
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main reason for the increase in the IDT growth rate. How-
ever, when the volume fraction of CO2 reaches over 60%,
the CO2 third body collision efficiency is improved obviously,
which promotes the occurrence of autoignition and reduces
the IDT growth rate. Zhang et al. [10] and Sabia et al. [52]
studied the autoignition process of n-heptane and propane.
To study a certain CO2 effect separately, virtual species were
introduced to replace the thermal CO2 effect, the CO2 third
body collision effect, and the CO2 chemical effect through
numerical simulation. The research results under a low-
temperature environment are consistent with this paper that
the CO2 thermal effect is the most important factor affecting
the IDT. Furthermore, when the CO2 volume fraction
reaches 60%, the third body effect of CO2 is significantly
enhanced.

4.3. Sensitivity Analysis. The oxidation process of the mech-
anism strongly depends on temperature, so it is important to
identify the elementary reactions that are sensitive to the
temperature for studying the autoignition. The temperature
sensitivity of the n-heptane/toluene coupling mechanism is
analyzed by the SA module in the kinetic software
CHEMKIN-PRO [53] to determine the important elemen-
tary reactions affecting IDT, as shown in Figure 10. The ini-
tial ambient temperature and pressure for conducting SA are
850K and 3.0MPa, respectively, which are consistent with
the CVCC experiment. Besides, Table 2 lists the ten most
important elementary reactions affecting the IDT, including
dehydrogenation of nC7H16, chain branching, isomerization
of C7H15OO radical, and chain termination reaction.

The sensitivity coefficients of R13 and R43 are negative
for all four working conditions, implying the decrease in
the system temperature and inhibition of auto-ignition with
increasing the reaction rates, as shown in Figure 10. In addi-
tion, the R670, R852, R856, R861, and R864 are isomeriza-
tion reactions of C7H15OO radical to form isomeric
peroxyalkyl and the sensitivity coefficients are positive. The
sensitivity coefficients increase with increasing the oxygen
concentration, indicating that by increasing the reaction
rate, the system temperature is increased and the autoigni-
tion is promoted. The elementary reaction R15 has the
negative sensitivity coefficients in air and high CO2 volume
fraction ambient. However, the sensitivity coefficient of
R15 is positive when the CO2 volume fraction is reduced
to 40%. On the one hand, it shows that the R15 is the
H2O2 dehydrogenation reaction in high CO2 volume frac-
tion ambient, which absorbs a large amount of heat. On
the other hand, when the oxygen concentration is high, the
sensitivity coefficient is positive, which is explained by the
Le Chatelier principle.

The elementary reaction R16 has the negative sensitivity
coefficient in the 40% CO2/60% O2 atmosphere. Hence,
when the oxygen concentration is high, the R15 takes prece-
dence over the R16, resulting in an obvious decrease in the
H2O2 concentration. However, the R16 sensitivity coeffi-
cients are positive in the other three working conditions
because the reaction of H2O2 decomposition into two OH
radical releases a lot of heat, which is often adopted as an
autoignition sign. Also, the sensitivity coefficients are much

higher in 60% CO2/40% O2 and 50% CO2/50% O2 atmo-
spheres than in air under these three conditions. In fact,
the high concentration of CO2 enhances the CO2 third body
collision effect and increases the energy transfer efficiency,
resulting in a faster reaction process. Moreover, among the
ten elementary reactions with the greatest impact on IDT
in Table 2, the CO2 does not show a significant chemical
effect in the experimental conditions. Zhang et al. [10] stud-
ied the CO2 effects on the autoignition process of n-heptane
by separating the CO2 thermal effect and third body effect
and got similar results that the thermal effect of CO2 is the
main reason for the autoignition delay.

According to Figure 10 and Table 2, R16 (H2O2
(+M)⟶2OH (+M)) is sensitive to temperature also an
important reaction that affects the IDT. Also, R16 is the
major source of OH radical and the reaction most affected
by the CO2 third body collision effect [54]. With the prog-
ress of the elementary reaction, the reaction activity and
temperature of the system are increased markedly. The
R43 and R670 are dehydrogenation reactions through
OH radical, while R120 is the chain termination reaction,
and they all consume a certain number of OH radical.
Besides, R15 (H2O2+O2⟶2HO2) is dehydrogenated by
O2 to generate the HO2 radical, and then, HO2 radical is
consumed by R13 (HO2+OH⟶H2O+O2). Except in the
40% CO2/60%O2 atmosphere, R15 consumes a large number
of radicals in the other three working conditions and signifi-
cantly reduces the reaction activity and temperature of the
system. Additionally, the reactions R852, R856, R861, and
R864 are isomerization reactions of C7H15OO radical,
which release large amounts of heat and promote the auto-
ignition occurrence. The above reactions are consistent with
Wu et al. [55] using a zero-dimensional model to study the
reaction of O2 content to the low-temperature oxidation
process of n-heptane.

The SA of temperature shows that H2O2, HO2, and
OH radicals have strong correlations with the autoignition
of n-heptane/toluene mixtures. Therefore, it is necessary to
analyze the total production of H2O2, HO2, and OH radi-
cals in four different CO2 volume fractions, as shown in
Figure 11. Comparing Figures 11(a)–11(d), we conclude
that the production peaks of H2O2, HO2, and OH radicals
under the CO2/O2 atmosphere are obviously higher than
those in air, and the time to reach the peaks is shorter
obviously. Comparing Figures 11(a) and 11(b), the biggest
difference is that the time required for H2O2 to reach the
peak in Figure 11(b) is 16.67% shorter than Figure 11(a),
but the peaks reached by both are almost the same. How-
ever, the HO2 radical all first increase, then decrease, and
finally reach their peak at the same time as the OH radical
in all four working conditions. The first peak of the HO2
radical is mainly produced by the n-heptane dehydrogena-
tion reaction through oxygen in the low-temperature reac-
tion stage, and the second peak is caused by the oxidation
of hydrogen peroxide. Additionally, with the increase of the
CO2 volume fraction, the OH mole fraction change remark-
ably, reduced by 18.6%, and the time to reach the peak of
the OH mole fraction is prolonged by 17.78%. The results
show that the CO2 high-concentration atmosphere prolongs
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obviously the IDT, but the increase of the CO2 volume fraction
does not affect the formation of H2O2 and HO2 radicals.

4.4. Rate of Production Analysis. OH radical has a strong
relationship with IDT [56, 57], so further research on the
ROP of OH radical is essential for autoignition. The four ele-
mentary reaction processes with the greatest influence on
the OH radical ROP under the initial temperature of 850K
and pressure of 3.0MPa in four working conditions are
shown in Figure 12. What is most intuitive in Figure 12
are the rapid change processes of the R4 (O+H2O⟶2OH)
and R1 (H+O2⟶O+OH), while the peaks of R12
(HO2+O⟶OH+O2) and R16 (H2O2 (+M)⟶2OH (+M))
have lower peaks. In addition, two peaks appear during the
R16 reaction, which drops immediately after reaching the
second peak and shows negative values under the CO2/O2
atmosphere. Due to the rapid increase in temperature at
the moment of autoignition, the reaction R16 proceeds
towards heat absorption.

Next, the change processes of OH radical ROP under
four different working conditions are specifically analyzed.
From Figures 12(a) and 12(b), the OH radical maximum
ROP of reactions R4 and R16 increase by 138% and 94.2%,
respectively. The results show that the increase of oxygen
concentration significantly boosts the OH radical ROP,
which is consistent with the conclusions drawn from the
above analysis of OH production. Buras et al. [57] used con-
volutional neural networks to investigate the relationship
between the onset time scale of spontaneous oxidation and
the IDT of first-stage under stoichiometric engine-related
conditions and concluded that a strong relationship between
the ROP peak of radicals such as OH and IDT was derived.
From Figures 12(b) and 12(c), the OH radical maximum
ROP peaks of reactions R4 and R16 increase by 36.8% and
23.8%, respectively. Then, from Figures 12(c) and 12(d),
the OH radical maximum ROP peaks of reactions R4 and
R16 increase by 105% and 80%, respectively. Comparing
the changes of R4 and R16 in Figures 12(b)–12(d), we obtain

R13 R15 R16 R43 R120 R670 R852 R856 R861 R864
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Figure 10: Sensitivity coefficient to temperature in four working conditions.

Table 2: The most important ten elementary reactions affecting IDT.

Reaction number Reaction Reaction number Reaction

R13 HO2 +OH⟶H2O+O2 R670 nC7H16 +OH⟶C7H15-2 +H2O

R15 H2O2 +O2⟶2HO2 R852 C7H15O2-1⟶C7H14OOH1-3

R16 H2O2 (+M)⟶2OH (+M) R856 C7H15O2-2⟶C7H14OOH2-4

R43 CH2O+OH⟶HCO+H2O R861 C7H15O2-3⟶C7H14OOH3-5

R120 CH3O2 +OH⟶CH3OH+O2 R864 C7H15O2-4⟶C7H14OOH4-2
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Figure 11: Continued.
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that the ROP peaks of OH radical decrease significantly
with an equal proportional increase of the CO2 volume
fraction and do not show a regular linear change. Hence,
the result also indicates a change in the way CO2 affects
the ROP of OH radical as increasing the CO2 volume frac-

tion. In addition, with the increase of CO2 volume frac-
tion, the OH radical ROP peak shows a trend of rapid
decline first and then slowly decline. When the CO2 vol-
ume fraction is changed from 60% to 40%, the reaction
R4 and R16 OH radical ROP peaks increase by 180%
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Figure 11: Mole fraction of OH, HO2, and H2O2 in four working conditions.
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and 124%, respectively. The result shows that R16 has a
greater contribution to the generation of OH radical in a
high-concentration CO2 atmosphere, while the R16 is an
important reaction affecting IDT.

5. Conclusions

This work studies the IDT of 70% n-heptane/30% toluene in
a high-concentration CO2/O2 atmosphere and establishes
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Figure 12: The rate of production of OH radical in four working conditions.
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the CDE model. Then, the CDE model is verified through
experiment, and the relevant factors affecting the IDT are
discussed. In summary, we draw the following conclusions:

(1) The CDE model is employed to predict well the IDT
of 70% n-heptane/30% toluene under the CO2/O2
atmosphere, and the IDT average errors in 60%
CO2/40% O2, 50% CO2/50% O2, and 40% CO2/60%
O2 atmospheres are 5.29%, 5.71%, and 8.18%,
respectively

(2) With increasing the CO2 volume fraction from 40%
to 60%, the CO2 thermal effect is the main reason
for the prolongation of IDT, while the chemical
effect has little effect. However, when the CO2 vol-
ume fraction exceeds 60%, the CO2 third body effect
is significantly enhanced, reducing the growth rate of
IDT

(3) The CO2 content significantly affected the OH radi-
cal ROP, and the OH radical ROP peak of R4
(O+H2O⟶2OH) decreases by 180% when the
CO2 volume fraction increases from 40% to 60%

Limited by time and experimental conditions, there is
still room for further research in this paper in the future:
(1) The initial conditions of the constant volume combus-
tion chamber test in this paper are relatively simple, only
850K and 3MPa. In future research, tests can be carried
out for n-heptane ignition at different temperatures and
pressures to verify the CDE model. (2) In this paper, the
high-speed camera direct shooting method is used to photo-
graph the ignition process of the flame. This test method
cannot obtain the content and distribution of free radicals
in the flame. Laser-induced fluorescence testing can be
added in future research. (3) The inclusion of quantum
chemical calculations in the n-heptane/toluene mechanistic
study to explore new reaction pathways and the impact of
new pathways on ignition characteristics.
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Traction seat is an important connecting part of urban rail vehicle, which plays an important role in maintaining smooth running
and power transmission of the vehicle body. Timely diagnosis of early failure of traction seat is the key to ensure the safe operation
of urban rail vehicles. In order to realize the intelligent diagnosis of traction seat, a multialgorithm fusion scheme based on the
Harris Hawk algorithm (HHO) is proposed to realize the fault diagnosis of traction seat. Firstly, the early mechanism of
traction seat was studied, and the simulation experiment platform of urban rail vehicle traction seat was built to obtain the
vibration data of the early crack traction seat model, so as to facilitate the simulation experiment research. Then, the vibration
data of the traction seat were processed by HHO optimized variational mode decomposition (HVMD) to obtain several
intrinsic mode functions (IMFs). Secondly, the multiscale permutation entropy (MPE) of each IMF is quantified and its
average value is used to construct the energy characteristic vector. Finally, feature vectors are input into the HHO optimized
support vector machine (HSVM) model to train a pattern recognizer. Through Python simulation verification, the results show
that the model can accurately extract the characteristic information of traction seat and accurately identify the fault type, and
the recognition rate reaches 100%.

1. Introduction

As an economical and practical urban public transport sys-
tem, urban rail transit has the advantages of large capacity,
energy saving, and environmental protection and has
become the main force of urban transport development in
the world. With the support of the state, urban rail transit
is constantly improving and perfecting. At present, under
the promotion of the state, the urban rail network is expand-
ing, the number of urban rail vehicles is increasing, the
maintenance services are also increasing, and the quality
demand for operation and maintenance is also increasing.
Under the current situation, the fault diagnosis of urban rail

vehicles mainly relies on manual troubleshooting and
processing but has not realized real-time status monitoring,
and the troubleshooting process needs to spend a lot of
manpower, material resources, and financial resources to
do offline detection, diagnosis, and maintenance. In this
environment, the importance of intelligent perception and
operation and maintenance technology of urban rail vehicles
is self-evident. For the rapid development of transportation,
it is imperative to study the fault diagnosis of urban rail vehi-
cles. The safe operation and condition monitoring of urban
rail vehicles is an important research focus in the field of
modern urban rail transit, which bears the responsibility of
passengers’ safety and social stability.
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In urban rail vehicles, traction seat is an important part
connecting the car body and bogie. The traction seat not
only plays the role of power transmission but also plays
the role of traction and braking. At the same time, it can also
ensure the smooth running of urban rail vehicle by avoiding
the interference of bogie and car body when driving in com-
plex sections. Traction seat load is a complicated and intense
vibration environment for a long time, this makes the trac-
tion seat easy to produce slight early cracks in a weld, The
early crack detection is very difficult to the operation and
maintenance of the vehicle. If the crack of the traction seat
is not found in time, once the crack expands, it will bring
safety hazards to the safe operation of the vehicle. Crack
fault is a common defect in mechanical structure and is also
one of the common factors causing the failure of mechanical
equipment. In recent years, mechanical equipment is often
accompanied by cracks in the operation of the occurrence
of disasters and accidents, prompting many experts and
scholars to begin to study mechanical cracks. In the field of
urban rail transit, the state of traction seat affects the
effectiveness and reliability of urban rail vehicles, and the
traditional traction seat fault detection method has disad-
vantages of poor real-time performance and low efficiency.
Therefore, the establishment of an intelligent traction seat
fault detection system can prevent the further expansion of
early cracks in time to solve the occurrence of accidents.

At present, the crack detection of mechanical equipment
is mainly divided into two aspects [1–10]: one is the
nondamage detection method: the integration of modern
technology with physical or chemical technology to create
equipment that can detect the thermal, acoustic, optical,
electrical, magnetic, and other reaction changes within the
material, to detect the crack defects of mechanical equip-
ment; the second is the intelligent diagnosis method: analyze
the vibration signals of the mechanical equipment collected,
extract the sensitive characteristics of the equipment, and
then, use the pattern recognition method to identify the
crack state. Traditional nondamage detection technologies
(such as ultrasonic detection, X-ray detection, eddy current
detection, and magnetic particle detection) can detect cracks
in mechanical equipment without damaging or affecting the
performance of the test object, which has been widely used
in engineering [1–6]. When the traditional nondamage
detection technology cannot meet the requirements, many
scholars adopt intelligent diagnosis methods to diagnose
crack faults and adapt to more engineering applications,
among which the vibration diagnosis method is the most
widely studied [7–10]. Literature [7] analyzes gear cracks
based on vibration signals and proposes a re-weighted singu-
lar value decomposition (RSVD) method for periodic pulse
extraction, which has achieved good results in fault detection
and severity assessment. Literature [8] proposed a numerical
fault detection model based on dynamic transmission error
(DTE). The experimental results show that with the increase
of crack level, the meshing stiffness of gear decreases, which
provides a scheme to solve the crack fault in gear operation.
In Reference [9], the Jensen-Shannon Divergence (JSD)
algorithm was proposed, which had high sensitivity in mea-
suring small changes between probability distributions and

could detect small cracks (0.01mm~0.04mm) that could
not be detected in baseline impedance signal measurement.
In literature [10], the gear meshing stiffness under different
crack sizes was calculated by using the analytical tooth crack
model. Then, considering the nonlinearity of backlash and
bearing clearance, a 3-dof spur gear pair model was estab-
lished. Based on the multiple statistical indicators obtained
from the nonlinear frequency response of the gear system,
to assess the vibration characteristics of the gear system
and fault condition, the experiment results show that the
built model can predict the meshing stiffness of the gear sys-
tem and vibration behavior of crack, and the corresponding
vibration analysis, for researchers and engineers to provide
the reference for tooth crack detection. It can be seen from
the above research that the crack method based on vibration
diagnosis has a solid theoretical foundation and has been
fully studied, on the basis of the previous research results,
according to the data source, data processing method, and
fault identification model of traction seat fault diagnosis.
Therefore, based on the data and the characteristics of the
traction seat data collected, an intelligent fault diagnosis
model based on HHO_VMD and HHO_MPE_SVM is pro-
posed based on the vibration diagnosis method (i.e., the
framework of “signal acquisition + feature extraction + pat-
tern recognition”). The model puts forward novel improve-
ment measures in feature extraction and pattern recognition.

Fault diagnosis is affected by mechanical equipment sig-
nals, signal analysis methods, and signal features. In the
aspect of signal feature extraction, the commonly used signal
analysis methods are classical statistical analysis, time-
domain, frequency-domain, and time-frequency domain
combined methods. The signal analysis method is developed
from classical Fourier transform, short-time Fourier trans-
form, wavelet transform, empirical mode decomposition,
empirical mode decomposition, empirical wavelet trans-
form, and variational mode decomposition. Because of the
complexity of the mechanical system, these methods are
not always feasible, many experts and scholars try to on
the basis of the signal analysis methods was improved, and
the existing research mostly stays in the experimental valida-
tion phase. The feature extraction method has some limita-
tions in practical application, and domestic and foreign
researchers put forward various solutions for feature extrac-
tion algorithm. Jardine et al. studied statistical indicators in
time domain and frequency domain to diagnose the advan-
tages and disadvantages of bearing faults [11]. Ahrabian
et al. extended the synchronous compression transformation
method from one-dimensional to parallel multidimensional
in time-frequency analysis, which improved the antinoise
performance of the algorithm [12]. Wu et al., considering
the superior performance of variational modal decomposi-
tion (VMD) in signal processing, proposed an algorithm
based on EMD-VMD asymptotic reconstruction and qua-
dratic decomposition to solve the difficulty in accuracy of
bearing fault diagnosis [13]. Zhang et al. analyzed wind force
sequence based on VMD and built a prediction model, prov-
ing that VMD has a better prediction effect compared with
other decomposition methods [14]. Sun et al. used VMD
to decompose the signal into multiple IMFs to improve the
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signal-to-noise ratio, laying a foundation for the visual
detection of laser ultrasonic track surface defects [15]. Xu
et al. developed a variable mode decomposition method to
optimize management parameters, a particle swarm optimi-
zation algorithm, and a method based on maximum
entropy, which can accurately detect the existence of leakage
in the pipeline [16]. Jiang et al. proposed an improved VMD
strategy in view of the fact that VMD can be used to reveal
weak transient pulses in complex vibration signals, but its
reasonable modal number is difficult to be set in advance.
This method combines the advantages of traditional VMD
and empirical mode decomposition (EMD) and adaptively
selects sensitive intrinsic mode function (IMF) components
for fault component analysis using the proposed index
values to solve this difficulty [17]. Glowacz and other
scholars based on the current gear fault diagnosis mainly
based on vibration signals; acoustic signal analysis research
is less. A gear fault diagnosis method based on deep learning
based on acoustic signal analysis was proposed. Time-
domain and frequency-domain signals are input to the
model as original signals, without feature engineering [18].
Zhang et al. proposed a VMD optimization method based
on the grasshopper optimization algorithm (GOA) to ana-
lyze vibration signals of rotating machinery, which can esti-
mate the optimal modal number and modal frequency
bandwidth control parameters matching the analyzed vibra-
tion signals [19]. Many studies have demonstrated the obvi-
ous advantages of VMD in signal decomposition. In order to
further quantify the characteristics of fault signals extracted
from vibration signals, some scholars use nonlinear parame-
ter estimation (entropy theory). According to literature [20],
multiscale permutation entropy can describe the complexity
and randomness of signals. Reference [19] mentioned that
MPE has stronger robustness compared with sample entropy,
approximate entropy, and permutation entropy and can study
information changes of time series at multiple scales, so as to
extract fault features more comprehensively. The different
crack types of the traction seat of the bogie will lead to the
characteristics of nonlinear and nonstationary vibration sig-
nals collected. Since the complexity is difficult to analyze, this
experiment uses VMD, an adaptive signal processing tool, to
reveal the complex vibration signals of the traction seat. In
addition, in order to study traction on the output time series
of complex systems, which contains abundant characteristic
information, this paper decides to adopt MPE calculation of
the traction characteristic information and can dig the hidden
more abundant characteristic information in time series,
which accurately reflects the change of system, scale for more
than the original single state.

An important link in fault diagnosis is the selection of
pattern recognition methods. At present, an artificial neural
network (ANN) is a commonly used pattern recognition
method, which has the advantages of strong adaptability,
strong robustness, and good fault tolerance. Through suffi-
cient data training, the mapping relationship of nonlinear
input and output can be obtained [21]. However, ANN has
the disadvantages of overfitting, slow convergence speed,
and easy to fall into local extremum, which makes the diag-
nostic accuracy of ANN not high enough. Support vector

machine (SVM) is a new computational learning method
developed by Vapnik on the basis of statistical learning theory,
which can successfully solve the problems of overfitting, local
optimal solutions, and slow convergence in ANN [22]. SVM
has been successfully applied in many fields [23–27]. For
example, in the intelligent intrusion detection system, the
SVM intrusion detection algorithm has been widely used to
quickly and accurately identify intrusions [23]; in the field of
healthcare, the application of SVM to accurately diagnose Alz-
heimer’s disease (AD) and its early mild cognitive impairment
(MCI) is crucial to provide early treatment for patients [24]; in
text detection, SVM has high-dimensional spatial learning
ability and adopts SVM as a texture classifier. Compared with
the text detection method of the neural network, the SVM
classifier proves the superiority of this method [25]; in the field
of image recognition, SVM technology is currently a research
hotspot in the field of pattern recognition. Their combination
not only effectively solves the problem but also improves the
accuracy of classification and prediction [26, 27]. In this paper,
SVM is selected to classify the state of traction seat according
to the typical characteristics of traction seat samples.

Based on the above analysis of fault diagnosis results of
vibration diagnosis methods, VMD, MPE, and SVM were
selected as the theoretical basis for the study of crack fault
identification of traction seat of urban rail vehicles in this
experiment. Considering that selecting appropriate parameter
values is crucial to the accuracy of fault identification, param-
eter selection combined with an intelligent optimization algo-
rithm can directly affect the effectiveness of feature extraction
and the accuracy of state classification and then directly affect
the fault diagnosis results [28–30]. In recent years, a large
number of optimization algorithms have been applied to solve
complex optimization problems in various fields, among
which HHO is a new optimization algorithm whose potential
in practical problems has not been extensively studied [31].
Compared with the existing metaheuristic algorithms and tra-
ditional methods, HHO’s global search capability can better
select the parameters of VMD, MPE, and SVM.

The main contributions of this paper are as follows:

(i) According to the difficulty of the lack of traction
seat data, the operating force of the traction seat
under the actual working condition was simulated,
the appropriate experimental instruments were
selected, reasonable parameters were set, and vibra-
tion data were collected

(ii) According to the characteristics of traction seat vibra-
tion signal, a reasonable signal processing method is
selected to extract the feature set which can better
represent the traction seat operation state. The pat-
tern recognition algorithm suitable for the state char-
acteristics of the traction seat is selected to identify the
uneven crack state of the traction seat

(iii) According to the importance of determining rea-
sonable parameters, the key parameters of VMD
and SVM were optimized adaptively by the intelli-
gent optimization algorithm HHO
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(iv) The hybrid model based on VMD, MPE, and SVM
algorithms has accurate diagnostic performance.
The model can be used to accurately diagnose dif-
ferent crack conditions of traction seat

In this paper, based on the data acquisition of traction
seat, VMD, MPE, and SVM algorithms are used to diagnose
the fault state of traction seat of urban rail vehicles, in which
HHO is used for parameter optimization of multiple algo-
rithms. The validity of HVMD and HMSVM fault diagnosis
models is verified by experiments. This method provides a
new guarantee for the safe operation of urban rail vehicles
and has practical engineering application value.

2. Theory and Method

In the operation of urban rail vehicles, bogies bear high fre-
quency and random variation of load, and there is a large
probability of structural failure, leading to the decline of
vehicle running quality, and even leading to derailment
and overturn. In order to ensure the safe operation of urban
rail vehicles, we must pay attention to the frequent cracks of
traction seat. A fault diagnosis model of HVMD_HMSVM is
proposed to detect the early crack fault of traction seat and
to prevent irreparable loss caused by further crack propaga-
tion. At present, there are several difficulties in the fault
diagnosis research of urban rail vehicle bogie traction seat
as follows:

(1) Acquisition of traction seat data set: at the present
stage, the fault diagnosis of traction seat crack is mainly
through data analysis and mining, while urban rail
vehicle data is extremely scarce. Therefore, the acquisi-
tion of traction seat data is a difficulty in current
research. In order to solve the difficulty that there is
no test data at present, the simulation experiment plat-
form of bogie traction seat is built in this experiment

(2) Feature extraction of traction seat signals: at present,
there are two problems of “redundancy” and “spar-
sity” in signal feature analysis, which cannot be com-
prehensively analyzed. In order to solve the problem
of feature extraction, an information processing
method of HHO_VMD_MPE was proposed to
extract the feature information contained in the trac-
tion seat signal comprehensively

(3) Pattern recognition of traction seat fault: in the pro-
cess of crack fault identification of traction seat, the
selection of a classifier will affect the diagnosis accu-
racy. In order to solve the errors existing in the cur-
rent pattern recognition, the HHO_MPE_SVM
algorithm is proposed, and the feature set is input
into the classifier of HHO_SVM to accurately iden-
tify the fault types

In view of the technical difficulties existing in the trac-
tion seat at the present stage, the bogie traction seat was
taken as the research object, the simulation experiment plat-
form was completed, and the traction seat diagnostic model

based on HVMD_HMSVM was constructed. The general
framework of the research method is shown in Figure 1,
which can be described as six steps, as follows:

(1) Data samples of traction seat vibration signals were
obtained on the simulation experimental platform

(2) Use HHO to optimize VMD parameters, using the
optimized HHO_VMD signal decomposition, to
obtain an IMFs

(3) Calculate the MPE values of each modal component
and construct feature vectors to describe the state
characteristics of traction seat

(4) The traction seat sample data obtained in Step 3
were divided into two groups according to a certain
proportion for training samples and test samples,
respectively

(5) HHO was used to optimize SVM to obtain the
HHO_SVM diagnostic model

(6) Input the training samples into HHO_SVM for
training to obtain the HHO_SVM classifier, and
then input the test samples into the trained HHO_
SVM classifier to identify the traction seat fault type
through the classifier

2.1. Experimental Platform Construction and Traction Seat
Data Acquisition. The traction seat of urban rail vehicles is
affected by complex factors in vehicle operation. On the
one hand, it is affected by the environment, such as temper-
ature difference, strong and weak light, and bad weather, and
on the other hand, it is affected by complex forces, such as
the vertical and transverse force of the route, bend impact
force, and heavy load. Under the influence of many factors,
traction seat is prone to wear, corrosion, deformation, etc.,
which eventually leads to early slight cracks in traction seat,
and cracks usually appear at the weld. It is difficult to obtain
the operating state data of traction seat of urban rail vehicle
under actual working conditions, and it is impossible to fully
analyze the data for fault diagnosis, resulting in low diagnos-
tic accuracy. In order to prevent the irretrievable loss caused
by the bad evolution of the early crack, the detection method
of the traction seat early crack was studied. Therefore, the
vibration data of the traction seat model of the early crack
was firstly provided in the experiment, so as to facilitate
the study of the detection of the early crack failure state of
the traction seat.

According to the maintenance standard of the bogie of
the urban rail train in China, it can be known that when
there are scratches and cracks on the surface of the parts
and parts, their depth is less than or equal to 10% of the steel
plate thickness, and they need to be polished to eliminate
them. Welding is required when the defect depth is greater
than 10% of the plate thickness and cracks can be visually
detected. According to the above criteria, the different
widths and depths of the traction seat cracks of urban rail
vehicles were used as the quantitative representation indexes
for different crack failure states. Namely, the traction seat
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crack fault state is divided into no crack state (normal state),
small crack state, and large crack state. That is, when there is
a crack on the traction seat surface whose width is less than
or equal to 10% of the thickness of the vertical plate, it is a
small crack state and needs to be polished to eliminate it.
When the crack width is greater than 10% of the thickness
of the vertical plate, it is a big crack state and must be
repaired by welding. In the normal state, no operation is
required. Experimental design traction seat model size: roof
and bottom plate is 30 cm long, 20 cm wide, the height
between the roof and bottom plate is 20 cm, the middle sup-
port plate is a trapezoidal plate, the upper bottom is 21 cm
long, the lower bottom is 26 cm long, and the distance
between the two support plates is 15 cm. The vertical plate
thickness is 1.3 cm. Due to the crack fault that happens in
traction seat welding place, therefore making fault model,
not the side of the base plate and support plate welds welded
completely, set aside a weld as the crack fault, the simulation
of traction seat produced two different degree of crack model
and a normal traction model, respectively, set the model for
the degree of crack corresponding cracks (normal status is
not set). The traction seat without crack was quantified as
the normal model. The early crack width and depth of 1
mm × 3mm was the small crack model, and 2mm × 8mm
was the large crack model (Table 1, Figure 2).

According to the common failure states of the traction
seat (Table 1), the simulation experiment platform of urban
rail vehicle bogie was built, including the real model and
simulation model of the traction seat (Figure 2). In the
dynamic response experiment, the measured signal is gener-
ally the structural excitation vibration response signal. In
this experiment, the method of acceleration is selected for
the detection of vibration signal. Since the early crack signal
is difficult to detect, the dynamic performance, frequency
response bandwidth, and sensitivity of the sensor need to
be considered. A piezoelectric accelerometer is widely used
in vibration signal detection due to its advantages of conve-
nient use, good reliability, fast dynamic response speed, wide
frequency band, and so on. The CAYD051V piezoelectric

acceleration sensor is selected to be installed on the experi-
mental object. The sensitivity of the sensor is up to
100mV/g, and weak traction seat signal can be detected.
The host computer and wireless transmission technology
were used to obtain the original, true, and reliable data
source of the traction seat (Figure 3). Experimental environ-
ment: Inter(R) Core (TM) I7-7700HQ CPU @ 2.80GHz,
16GB RAM, Python3.7.

In the process of train running, the vibration of traction
seat will change with the change of speed, even if the train is
in a uniform speed state, the vibration of traction seat will
change with the change of road conditions, so the experi-
mental signal must be dynamic change, here choose to
provide vibration signal source with frequency sweep instru-
ment; the output end of the sweep is connected to the input
port of the power amplifier through the signal line; the signal
output end of the power amplifier is connected to the excita-
tion source input port of the shaker; the shaker is connected
to the side plane of the crack traction seat through the mag-
netic excitation top rod. The top rod must be perpendicular
to the side plane; otherwise, the shaker will be damaged dur-
ing the excitation. In order to reduce the interference of data
acquisition, the traction seat must be suspended by elastic
rope; in order to weaken the interference of the impact of
the excitation top rod and avoid the sensor falling off due
to too intense vibration, the acceleration sensor is installed
on the traction seat bottom plate and installed through the
magnetic head adsorption; the signal line of the acceleration
sensor is connected with the acceleration sensor to the
YE6213 data acquisition card; the YE6213 data acquisition
card is connected to the PC through USB, and the data
acquisition system matching the data acquisition card is
installed on the PC to collect and store vibration data. After
the control and sensing devices are installed, the entire sys-
tem needs to be checked (Figure 3 shows the device connec-
tion diagram). According to the actual operating conditions
and relevant theoretical basis, determine the experimental
excitation frequency range of 100Hz to 2500Hz; the excita-
tion output mode of frequency sweep is set as fixed

Training data

Traction seat early crack
data

Process vibration signal of
traction seat

Training classification
model

Construct the feature
vector set of traction seat

Fault diagnosis model of
traction seat

Build experimental platform
to obtain data

Testing data

HVMD processes the signal

HHO adaptive optimization
parameters

The MPE value of IMFs in
testing data

The feature vectors

VMD

The MPE value of IMFs in
training data

HMSVM model

HHO adaptive optimization
parameters

SVMMPE

MPE

Figure 1: General research block diagram of traction seat intelligent diagnosis model. Establishment of the traction seat fault diagnosis
model.
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frequency output, and the output signal is a steady sinusoi-
dal signal. Frequency sweep output frequency from 100Hz
to 2500Hz fixed output excitation signal; sampling fre-
quency was set as Fs = 12KHz; sampling time t = 5 s; the
sampling interval is T = 1h, and 6,000 samples and 30 sets
of data are collected in each state. After the completion of
experimental data collection, the data of the three states were
selected. Finally, according to the specific experimental situ-
ation, 600 groups of data were selected for the experiment,
including 200 groups of samples in the normal state, large
crack state, and small crack state. According to the experi-
mental situation, 75% were randomly selected as the training
set. Take 25% as the test set. The details are shown in
Table 2.

2.2. Traction Seat Feature Extraction Based on HMVMD

2.2.1. Harris Hawks Optimization. Harris Hawks Optimiza-
tion (HHO) is a novel crowd-based algorithm proposed by
Heidari et al. in 2019, inspired by the smartest birds around:
Harris eagle (chestnut-winged eagle) developed a corre-
sponding stochastic mathematical model by simulating its
behavior when hunting rabbits. The HHO algorithm has
been used to solve several optimization problems, including
manufacturing, feature selection, classification, and engi-
neering design. Because the structure is good, it can flexibly
improve the optimization performance, and the selection of

parameters determined by HHO is the most appropriate
choice at present. The HHO algorithm mainly includes three
stages: exploration stage, transition stage from exploration to
development, and development stage, which are briefly
introduced as follows:

Stage 1 (exploration stage): escape energy jEj ≥ 1, or the
location of the Harris Hawks according to the location of
the rabbit and with the center position of the entire group
vector difference, such as type (1) shown in the following:

X t + 1ð Þ =
Xrand tð Þ − r1 Xrand tð Þ − 2r2X tð Þj j, q ≥ 0:5,
Xrabbit tð Þ − Xm tð Þð Þ − r3 LB + r4 UB − LBð Þð Þ, q < 0:5,

(

ð1Þ

where Xðt + 1Þ and XðtÞ represent the position of the eagle
in the t + 1 and t iterations, respectively. XrandðtÞ represents
the position of the random eagle in the t iteration, and r and
q are uniformly distributed random numbers in the interval
[0,1]. XrabbitðtÞ and XmðtÞ represent the rabbit position (the
optimal value of the current iteration) and the center posi-
tion of the eagle flock. LB and UB represent the upper and
lower bounds of the value range, as shown in the following:

Xm tð Þ = 1
N
〠
N

i=1
Xi tð Þ, ð2Þ

Table 1: Classification of traction seat status.

State Normal Small crack Big crack

Judging basis: crack width and depth No set fault 1mm × 3mm 2mm × 8mm

(a) Real model-traction seat (b) Experimental model-traction seat

Small crack

(c) Experimental model-small crack

Big crack

(d) Experimental model-big crack

Figure 2: Real model and simulation model of traction seat.
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where XiðtÞ represents the position of each eagle at iteration
t and N represents the total number of eagles.

Stage 2 (transition stage): when the jEj > 1, one is
exploratory behavior. After the exploration phase, there is a
transition phase before entering the mining phase. In this

transient stage, the rabbit energy needs to be modeled accord-
ing to

E = 2E0 1 − t
T

� �
, ð3Þ
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Figure 3: Shows the installation of experimental acquisition equipment, excitation equipment, and sensing equipment.

Table 2: Experimental test data.

Model state The normal state Small crack Big crack

Tag name 0 1 2

Points in a single sample 60000 60000 60000

The training sample 90 group 90 group 90 group

The test sample 30 group 30 group 30 group

Number of sets of sample 12 group 12 group 120 group
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where E is the escape energy of the rabbit, T is the maximum
number of iterations, and E0 is the initial energy value of the
rabbit. According to the physical condition of the victim, the
random number ½−1, 1� is uniformly distributed. As E0 moves
towards −1, it means the victim is losing energy, and vice versa.

According to rabbit behavior, rabbit energy is inversely
proportional to time. That means as long as t goes up, E goes
down. According to Harris, when jEj ≥ 1|, the eagle decided
either to search different areas, to detect the location of
rabbit, or move forward into the development phase.

Stage 3 (development stage): when the jEj < 1, indicating
that the eagle has discovered the direction of the rabbit and
needs to model two behaviors. According to the energy of
the rabbit absolute value ∣E ∣ compared with 0:5 percentage
and escape r judgment, it can be divided into two kinds of
behavior, four kinds of strategy.

(1) Soft siege. If jEj ≥ 0:5, jrj ≥ 0:5, then the rabbit escape
has high energy; at the same time, the probability of
successful escape is higher than 50%. This means
that the eagle will carry out a soft siege and update
its position according to

X t + 1ð Þ = ΔX tð Þ − E J Xrabbit tð Þ − X tð Þj j, ð4Þ

where ΔXðtÞ is the position difference between rabbit and
eagle, and the calculation method is as follows:

ΔX tð Þ = Xrabbit tð Þ − X tð Þ: ð5Þ

J is a random number, representing the jump intensity
that can be obtained, as shown in the following:

J = 2 1 − r5ð Þ, ð6Þ

where r5 is a random number that varies between 0 and 1

(2) Fast dive soft siege. If jEj ≥ 0:5, r < 0:5, it indicates
that rabbits have higher energy. However, the
chances of a successful escape are not great. In this
case, the eagle will engage in a soft siege but will
gradually dive quickly. The eagle’s next move will
be based on the following:

Y = Xrabbit tð Þ − E J Xrabbit tð Þ − X tð Þj j: ð7Þ

The eagle will compare the current position to the previ-
ous dive to evaluate which is better. If the previous dive was
better, the eagle would take advantage of it. If not, the eagle
will make a new dive using the LF formula, as shown in LF
formula (8). Harris eagle will then evaluate the Y and Z posi-
tions and reupdate the positions according to formulas (9),
(10), and (11).

LF xð Þ = 0:01 u∙σ
vj j1/β

 !
, ð8Þ

Z = Y + S∙LF Dð Þ, ð9Þ

where D is the problem dimension and S is a random vector
with a size of 1 ×D. The LF function can be calculated from
equation (8), where u and σ are random numbers that vary
between 0 and 1. β is a constant value of 1:5. The formula for
calculating σ is shown in (10).

σ = 1 + βð Þ sin πβ/2ð Þ
1 + βð Þ/2ð Þ∙β∙2 β−1ð Þ/2

� �1/β
, ð10Þ

X t + 1ð Þ =
Y , F Yð Þ < F X tð Þð Þ,
Z, F Zð Þ < F X tð Þð Þ

(
ð11Þ

(3) A siege. If the jEj < 0:5, r ≥ 0:5, which means the rab-
bit has a relatively low energy, but it has a medium
chance of making a successful escape. In this case,
the eagle will carry out a difficult siege and update
its equations according to

X t + 1ð Þ = Xrabbit tð Þ − E ΔX tð Þj j ð12Þ

(4) Fast dive hard siege. If the jEj < 0:5, r < 0:5, it means
the victim has low energy and a low chance of
escape. In this case, the eagle will also perform a dif-
ficult encirclement, but with a gradual rapid dive, the
eagle’s next position will be updated using equation
(11). Z is calculated by equation (9) and Y by equa-
tion (13), as shown in the following:

Y = Xrabbit tð Þ − E J Xrabbit tð Þ − Xm tð Þj j ð13Þ

2.2.2. Variational Modal Decomposition. The VMD algo-
rithm is an adaptive, quasiorthogonal, and completely non-
recursive decomposition method, which can be divided
into two processes of constructing variational problem and
solving variational problem: (1) constructing variational
problem (equation (14)): the original input signal xðtÞ was
decomposed into K IMF components uðtÞ, each component
uðtÞ was demodulated by Hilbert transform to obtain its
envelope signal and then mixed with the estimated center
frequency ωk. Under the constraint that the sum of all uðtÞ
components was equal to the original signal xðtÞ, the con-
struction of the variational problem is shown in equation
(14). (2) To solve the variational problem (equation (15)):
the constrained variational problem is transformed into an
unconstrained variational problem by adding Lagrange mul-
tiplication to calculate λðtÞ and quadratic penalty factor α, as
shown in equation (15). Alternate Direction Method of
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Multiplier (ADMM) is used to obtain the saddle point in
equation (15), that is, the optimal solution of

min
ukf g∙ ωkf g

〠
K

k=1
∂t δ tð Þ + j

πt

� �
∗ uk tð Þ

� �
e−jωkt

����
����
2

2

( )

s:t: 〠
K

k=1
uk = x tð Þ,

8>>>>><
>>>>>:

ð14Þ

where ∂t is the partial derivative of t; δðtÞ is the shock
function.

L ukf g, ωk, λf gð Þ = α〠
k

∂i δ tð Þ + j
πt

� �
∗ uk tð Þ

� �
e−jωkt

����
����
2

2

+ x tð Þ − 〠
K

k=1
uk tð Þ

�����
�����
2

2

+ λ tð Þ, x tð Þ − 〠
K

k=1
uk tð Þ

* +
:

ð15Þ
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Traction seat original vibration signal

HHO_VMD processes the signal

Modal components IMF1, IMF2...... IMFK

Calculate the MPE value of each IMF respectively

Eigenvectors E1, E2... EK

Construct feature vector set

End

Set the HHO parameter to initialize the harris eagle
position

The fitness value of individual eagle was calculated
to determine the fitness of the optimal individual

Update eagle position and recalculate individual
fitness

The fitness of each individual was compared and the
optimal individual location was determined

The iteration termination condition is
satisfied

Optimal parameter combination (k,a)

N

Y

Figure 4: Feature extraction of traction seat vibration signals based on HVMD_MPE.
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Figure 5: Fault diagnosis flow chart based on HMVM.
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The data of traction seat has the characteristics of non-
linearity, nonstationarity, randomness, and noise. In order
to better describe these characteristics, the vibration signal
of traction seat needs to be decomposed into multiple
components. There are some defects in wavelet transform,
empirical mode decomposition, and ensemble empirical

mode decomposition, which are not suitable for the
analysis of traction seat vibration signal. VMD not only
ensures the integrity of the characteristics but also
improves the computational efficiency of the algorithm.
Compared with other common time-frequency domain
processing methods, VMD can better solve the problems
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(c) Time-domain diagram of the big crack

Figure 6: Time-domain diagram of traction seat in three states.
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of modal aliasing and boundary effect of signal decompo-
sition and has good robustness to noise; this paper intro-
duces the VMD algorithm. VMD was used to decompose
the original vibration signal of the traction seat intoK intrinsic
mode functions (IMF) under limited bandwidth, and the cor-
responding IMF central frequency was extracted, so that the
mode uk fluctuated around the central frequency K.

2.2.3. Multiscale Permutation Entropy. Mechanical equip-
ment usually contains rich feature information at multiple
scales. In order to study the complexity change of time series
at multiple scales, MPE can mine more rich feature informa-
tion hidden in time series, so as to accurately reflect the
change of the system and obtain more state quantity than
the original single scale. MPE can be summarized as follows:
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Figure 7: Frequency-domain diagram of traction seat in three states.
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calculate a group of permutation entropy values in time
series of different scales, combine coarse-grained process
with permutation entropy, and calculate results in different
time scales by calculating the entropy of coarse-grained time
series. The MPE algorithm includes two steps:(1) using
coarse-grained process to obtain multiscale time series from
original time series; (2) calculate the PE value of each coarse-
grained time series.

The detailed process is as follows:

(1) For a given time series xðkÞ, k = 1, 2,⋯,N , the
coarse-grained sequence is obtained after coarse-
grained processing, as shown in

yτj =
1
τ

〠
jτ

i= j−1ð Þτ+1
xi1 ≤ j ≤

N
τ

� �
, ð16Þ

where τ is the scale factor and is a positive integer. bac is an
integer less than or equal to a

(2) Multiscale permutation entropy MPE can be
obtained by calculating the permutation entropy PE
value of coarse-grained time series, as shown in

MPE x, τ,m, δð Þ = PE yτj ,m, δ
	 


, ð17Þ

where m is the embedding dimension; δ is the delay
parameter

PE is a method to analyze mechanical equipment under
one-dimensional time series, but it cannot analyze all the
characteristic information of mechanical equipment com-
prehensively. In order to analyze the characteristics of trac-
tion seat vibration signal in detail and study the
characteristics of equipment under multiscale time series,
more states hidden in the time series can be excavated, so
as to reflect the traction seat fault state more accurately.

2.2.4. HMVMD. At present, there are “redundancy” and
“sparsity” in signal characteristic analysis, which can not
achieve effective and comprehensive signal analysis. An
information processing method based on HHO_VMD_
MPE is proposed to extract feature information comprehen-
sively. Due to its good structure and high optimization
performance, HHO is used to solve several optimization
problems (such as manufacturing, feature selection, classifi-
cation, and engineering design). In view of the advantages
of HHO in optimization, selecting HHO to determine
parameter values is a more appropriate scheme at present.
In this section, when feature extraction of traction seat vibra-
tion signal is carried out, VMD is used to process vibration
signal of traction seat, and HHO is used to adaptively select
the optimal parameter combination of VMD ½k, a�.

In the process of HVMD, the fitness function is designed
to achieve the best searching effect. Kurtosis index (KI) and
Spearman correlation coefficient are two common indexes in
mechanical equipment damage. If KI is used as the optimi-
zation target to optimize VMD parameters for fault feature
extraction, some influences with large vibration amplitude
but dispersed distribution can be omitted. The correlation
coefficient can represent the similarity of two signals but is
easily affected by noise, in view of their own shortcomings
and complementary elimination. Therefore, this paper con-
structed the kurtosis index (SKI) integrating the Spearman
correlation coefficient as the objective function of VMD
parameter optimization. SKI is defined as follows:

KI = 1/Nð Þ∑N
i=1 xi − �xð Þ4

1/Nð Þ∑N
i=1 xi − �xð Þ2

	 
2 , ð18Þ

Sx,y =
E XYð Þ − E Xð ÞE Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E X2ð Þ − E2 Xð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E Yð Þ − E2 Yð Þ
p , ð19Þ

SKI = Sj j × Kj j,  Sj j ≤ 1: ð20Þ
Spielman kurtosis index, the calculation formula of sig-

nal sequence kurtosis index is shown in formulas (18),
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Figure 8: Results of HHO optimizing VMD parameters.
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(19), and (20). N is the signal length; S is the correlation
coefficient between signals X and Y .

The extraction process of traction seat features is shown
in Figure 4. Firstly, the position vector of the eagle group was
initialized, SKI was used as a fitness function, and the fitness
of each eagle was calculated. Then, the iterative formula was
selected to update iteratively by judging the size of the con-
vergence factor until the termination condition was satisfied,
and the optimal VMD parameter combination was output.
In order to more accurately reflect the characteristic infor-
mation of the traction seat fault state, as the common per-
mutation entropy (PE) is far from enough to only study
the one-dimensional time series, MPE is used to conduct
multiscale analysis of the vibration signals of the traction
seat under the time series to study the complexity changes

of the time series under the multiscale. You can get more
states hidden in time series.

2.3. Traction Seat Pattern Recognition Based on HSVM

2.3.1. Support Vector Machine. SVM is proposed based on
statistical learning theory and based on the VC dimension
theory and the minimum structural risk theory of statistical
learning theory. It obtains the best-expected value from lim-
ited sample information through learning. It is widely used
in mechanical equipment fault diagnosis and pattern recog-
nition. SVM is a machine learning method based on small
sample data processing. By mapping low-dimensional sam-
ple space to high-dimensional space, the nonlinear problems
in sample space are transformed into linear problems in
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high-dimensional space to solve nonlinear classification
problems. Through this method, the optimal solution of
the problem can be obtained well, so as to avoid the problem
of trapping local optimal.

The essence of SVM: for a nonlinear problem that is dif-
ficult to deal with in the original low-dimensional space, it
can be transformed into a linearly separable problem in
higher dimensional feature space under the action of kernel
function. A hyperplane is found to divide samples in a high-
dimensional space, so that the distance between the nearest
sample objects of the two kinds of samples distributed on
both sides of the hyperplane is the largest. For the training
sample M = fðx1, y1Þ, ðx2, y2Þ,⋯, ðxm, ymÞg, the classifica-
tion function constructed based on the principle of struc-
tural risk minimization is shown in formula (18):

F xð Þ = sign 〠
m

i=1
ajyik xi, yj

	 

+ d

 !
0 < aj < C, ð21Þ

where xi and xj are input feature vectors; yi is the output
vector; m is the total number of training samples; aj is the
Lagrange multiplier; kðxi, yjÞ is the kernel function; C is the
penalty factor; d is the threshold.

State identification is the last and most important step in
fault diagnosis. The final result of fault diagnosis depends on
the selection of an appropriate pattern recognition classifier.
In practice, the sample size of crack fault characteristic of
traction seat of locomotive bogie is small, so it is required
that pattern recognition classifier can be trained by small
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Figure 10: MPE diagram of the delay time t of small crack in traction seat under different embedding dimensions.
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sample, and then identify the crack state of traction seat with
high accuracy.

2.3.2. HSVM. The HHO_MPE_SVM (HSVM) algorithm is
proposed to reduce the diagnosis error and identify the fault
type accurately. In the process of traction seat diagnosis, the
selection of parameters is worth considering. The scale
factor s, embedding dimension m, sequence length N , delay
time t, penalty coefficient C, and kernel function parameter
g of MPE and SVM will affect the accuracy of fault diagno-
sis. With the classification accuracy as the evaluation index,
HHO is used to optimize the parameters of MPE and SVM
simultaneously, which is a beneficial attempt for traction
seat fault diagnosis. Fault diagnosis process based on
HMSVM is shown in Figure 5. The specific construction
process is described as follows:

(1) The training set and test set are constructed and
normalized

(2) HHO parameter initialization. Set the sum of ran-
dom values, set the sum of upper and lower bounds,
the maximum number of iterations, set the value
range of parameter combination ½m, t, S, C, g�, select
the Gaussian kernel function, and randomly initial-
ize the initial position of the Harris eagle group

(3) Using the classification accuracy of SVM as fitness
function, the fitness of each individual eagle group
was calculated to find and preserve the best habitat
position of the individual eagle group in the current
population

(4) The HHO algorithm is used to optimize the habitat
position of individual eagles

(5) The fitness function was used to recalculate the
fitness of each optimized eagle group and update
and save the current optimal eagle group individual
position
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Figure 11: MPE diagram of small cracks in traction seat under different embedding dimensions.
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(6) Determine whether the iteration termination condi-
tions are met. If so, end the optimization; otherwise,
continue the cycle

(7) Output the spatial position corresponding to the fit-
ness value of the best eagle group, that is, the optimal
parameter combination ½m, t, s, C, g�

3. Experimental Verification

3.1. Signal Analysis Based on HHO_VMD. The vibration sig-
nals of the traction seat in three states were collected through
the experimental platform, and the vibration signals of each
state were 6000 × 20, 6000 × 60 in total. In order to ensure
the accuracy of data and the prediction speed of the experi-
ment, the number of sampling points N was set to 1024 as
the experimental data set. Figures 6 and 7, respectively, show
the time-domain and frequency-domain analysis of a group

of original vibration signals in three states of the traction seat
when N = 1024.

Figures 6 and 7 show that the time-domain and frequency-
domain waveforms of the three states of the traction seat show
different changes, indicating that the method based on vibra-
tion signals can realize the identification of the traction seat
state, but there is uncertainty. In order to identify the fault
state of traction seat more accurately, VMD is used to decom-
pose the vibration signal of traction seat.

Taking the large crack fault of traction seat as an exam-
ple, in the experiment, the number of modes of the VMD
algorithm K ∈ ½2, 10� is an integer, and the penalty parameter
a ∈ ½200, 4000� is taken as an integer. The change of the SKI
value of the VMD parameter with the number of Harris
update iterations after HHO optimization is shown in
Figure 8. Figure 8 shows that SKI is -241.75, corresponding
to the optimal position, namely, the optimal parameter com-
bination [4, 2383]. After the optimization parameters are
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obtained, VMD decomposition is performed on the vibra-
tion signal of the traction seat, and the IMF component is
obtained by the decomposition, as shown in Figure 9. It
can be seen from Figure 9 that each IMF central frequency
is independent from each other, which can effectively avoid
the mode aliasing problem. Using this method, relatively
pure modal components can be obtained quickly.

3.2. Experimental Verification Based on HHO_MPE. From
the above analysis, it can be seen that there are obvious dif-
ferences between the signals of the traction seat in the nor-
mal state and the two fault states. Next, according to the
characteristics of traction seat vibration signal under the
actual working condition, the MPE was used to analyze the

experiment. Set the time series to N = 1024. The delay time
is generally set as 1-6, and the scale factor s = 12 is set in
the experiment. Figure 10 shows the change of MPE value
of small crack state under different embedding dimensions
(due to the limited space, a failure state of traction seat is
taken as an example). It can be concluded that the delay time
t = 1 is more appropriate. The embedding dimension is
generally 3-8. Figure 11 shows the MPE values of small crack
states under different embedding dimensions (delay time
t = 1, scale factor s = 12). By comparison, it can be concluded
that embedding dimension m = 4 is more appropriate.
Figure 12 shows (delay time t = 1, embedding dimension
m = 4) the MPE values of the traction seat in three states
under different scale factors S. The comparison shows that
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Figure 14: Three state diagrams of traction seat based on HHO_MPE.

Table 3: Multiscale permutation entropy values of the three health states of the traction seat (only part is shown due to limited space).

State Sample MPE1 MPE2 MPE3 MPE4

Normal (0)

0 0.816852 0.868982 0.892605 0.918061

1 0.708248 0.844968 0.781680 0.897962

2 0.847388 0.886976 0.910367 0.911917

3 0.860285 0.883452 0.914914 0.941772

4 0.844852 0.896652 0.931031 0.929070

Small crack (1)

0 0.727376 0.729275 0.551191 0.707729

1 0.792196 0.650526 0.565574 0.645749

2 0.746012 0.640071 0.619615 0.567530

3 0.756012 0.645144 0.623558 0.603248

4 0.748917 0.647531 0.597829 0.618770

Big crack (2)

0 0.724450 0.825055 0.758960 0.770725

1 0.703779 0.844347 0.742504 0.782242

2 0.725932 0.841112 0.767185 0.767448

3 0.706949 0.823326 0.750810 0.831523

4 0.709567 0.840849 0.749813 0.794277
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the scale factor s = 6 is more appropriate. To sum up, it
can be concluded from observation and comparison that
it is appropriate to select m = 4, t = 1, and s = 6 as MPE
parameters, respectively. Figure 12 shows that the normal
state and fault state of the traction seat can be distin-
guished by manually selected parameters, but the fault
type cannot be further distinguished.

In order to further illustrate the MPE values the impor-
tance of reasonable selection, Figure 13 shows the different
parameter selection, pulling the MPE values under different
conditions, it is not hard to find: the MPE parameters selec-
tion, traction is mixed overlapping between different states,
and distinguishing between each other is not obvious, which
is not conducive to further accurate judgment of the traction
state type. According to the manually selected MPE param-
eters, it is impossible to distinguish the three states of the
traction seat accurately. In order to avoid the inaccuracy of
selected parameters, HHO was used in this experiment to
optimize MPE parameters, and the optimization results were
as follows: m = 4, t = 4, and s = 14. Figure 14 shows the
three-state diagrams of traction seat of HHO_MPE. It is
not difficult to find that the three states of the traction seat
can be accurately separated at different scales. At the high
scale, the MPE of the different states of the traction seat
has no overlap and is clearly distinguished from each other,
which is conducive to further accurate judgment of the state
type of the traction seat.

When the traction seat fails, different modal components
will contain different impact components. In order to check

the fault information contained in each modal component,
the MPE of each IMF component was calculated and the fea-
ture vector was formed, which was used as the input data for
fault diagnosis. 90 sets of vibration signals of the traction
seat in three states were processed in the experiment, with
a total of 3 × 90 sets of data for feature analysis. That is,
for the 4 IMF of each group of data, the MPE of each IMFs
is calculated for quantitative processing, respectively, and
the average value of the MPE of each IMF is taken to con-
struct the energy feature Y = ½MPE1, MPE2, MPE3⋯MPE
14�, as shown in Table 3 (due to space limitation, 5 groups
of each state of the traction seat are displayed; MPE only
selects the first 4 dimensions for display).

As can be seen from Table 3, the normal state and fault
state of traction seat can be clearly identified. There are also
obvious differences between MPE values of large crack and
small crack in fault state. From the analysis, it can be con-
cluded that the IMF of each IMF component is calculated,
and the average value of MPE of each IMF is taken to con-
struct feature vectors, which are used as input data for fault
diagnosis to further identify the type of traction seat state.

3.3. Pattern Recognition Based on HHO_SVM. After the
above experiments, after the feature vector containing the
traction seat feature information is extracted, an effective
pattern recognition algorithm is needed for fault diagnosis.
In this experiment, HSVM was selected for traction seat fault
diagnosis. In order to verify that the diagnosis model of
HSVM has better fault diagnosis ability, the same traction

Table 4: Experimental comparative analysis of traction seat fault diagnosis.

SVM model Parameter C Kernel function g Accuracy (%) Time (s)

SVM 48.92 135.00 95.56 8.78

PSO_SVM 78.23 175.04 97.78 107.92

WOA_SVM 91.11 111.82 98.89 102.18

HHO_SVM 57.13 73.03 100.00 188.42
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Figure 15: Accuracy of different models.

21Journal of Sensors



seat feature vectors were used as input data to HHO_SVM,
WOA_SVM, PSO_SVM, and SVM models, respectively,
for fault identification. The population parameters of the
first 3 models are all 30, and the maximum iteration times
are 200. Among them, the optimization range of SVM
penalty parameter C is [0.01,200], the optimization range
of kernel function parameter G is [0.01,200], the training
data is 270 groups, and the test data is 90 groups. Finally,
the classification results of the four models are compared
and analyzed as shown in Table 4. The accuracy of different
models is shown in Figure 15.

It can be seen from Table 4 that the accuracy of all the
four classification models can reach more than 95%, indicat-
ing that the feature extraction method of HVMD_MPE
adopted in this experiment is feasible and contains relatively
complete feature information of traction seat. Figure 15
illustrates the following: HHO effect compared with other
algorithms at the beginning of the number of iterations is
poorer, attributed to HHO, WOA, and the population initial-
ization in a different way of PSO, HHO to avoid falling into
local optimum, as much as possible for a wide range of global
search; finally, on the whole, achieve HSVM least number of
iterations and identify fault has the highest accuracy.

4. Conclusion

In this paper, a bogie traction seat fault diagnosis model
based on HVMD and HMSVM is constructed. HHO was
used to optimize the parameters to determine the best
parameter combination of VMD, MPE, and SVM. The
VMD with optimized parameters was used to decompose
the traction seat vibration signal. The calculated MPE values
of each IMF were quantified, and the average MPE values of
each IMF were taken to form feature vectors, which were
used as input data for fault diagnosis. Finally, the effective
feature vectors are extracted and input into the classifier
HSVM to automatically identify the fault types. Finally, the
accuracy of fault identification reaches 100% by using the
vibration data set of traction seat, which proves the effective-
ness and generalization of the proposed method.
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With the improvement of the complexity and reliability of mechanical equipment, it has been difficult for the commonly used
variational modal decomposition method of vibration signal of rotating machinery to meet the current practical engineering
requirements. In order to further improve the adaptability, processing efficiency, and robustness of rotating machinery fault
diagnosis methods, a collaborative hybrid element heuristic to multiobjective optimization algorithm is introduced in this
paper. Combined with variational modal decomposition (VMD) method, the fault diagnosis method of rolling bearing under
complex working conditions is studied. This paper mainly uses a collaborative hybrid metaheuristic algorithm to improve the
nondominated sorting genetic algorithm II (NSGA II) and multiobjective particle swarm optimization (MOPSO), which
improves the convergence efficiency of multiobjective optimization method and solves the problem of uneven distribution of
optimal solutions. Then, the improved multiobjective optimization algorithm is combined with VMD to solve the problem of
parameter selection of the VMD method under complex working conditions of rotating machinery. At the same time, the
variation relationship between various signal features and VMD decomposition results is compared and studied, and the
features with good effect are taken as the objective function of the optimization algorithm; the ability of denoising and feature
extraction of VMD in rotating machinery fault diagnosis is improved. In this paper, the proposed method is explored by using
analog signals and experimental data of rolling bearings. Through comparison, the improvement of adaptive ability, operation
speed, and robustness of the proposed method in rotating machinery fault diagnosis is verified.

1. Introduction

With the mass production and operation of various modern
mechanical equipment, the safety and reliability require-
ments of modern industry for mechanical equipment are
also increasing [1]. As the most widely used rotating
mechanical component in various mechanical equipment,
rolling bearing plays an important supporting role in the
mechanical system. Because it undertakes most of the load
of mechanical equipment, the failure rate of various
mechanical components is also high [2]. If the fault of rolling
bearing is light, it will reduce the operation efficiency of
equipment. If it is serious, it may lead to complete failure
of mechanical equipment and even serious engineering acci-
dents. According to statistics, in various mechanical equip-
ment failure cases in recent years, more than 70% are
caused by rotating mechanical parts such as rolling bearing

and gear failure [3]. Therefore, the research on rolling bear-
ing fault method is of great significance [4].

At present, the most commonly used fault diagnosis
method for rotating parts of mechanical equipment is
through vibration signal analysis of mechanical equipment
[5]. The time-frequency characteristic of vibration signal is
the key to solve the problem of rotating machinery fault
diagnosis [6]. The classical methods and theories include
wavelet transform (WT), empirical mode decomposition
(EMD), and variational mode decomposition (VMD) [7].
In recent years, relevant scholars have also optimized and
improved these classical methods to make them more in line
with the current engineering safety and reliability require-
ments. For example, Chen et al. proposed an improved
VMD method based on fractional Fourier transform
(FRFT), which makes VMD more sensitive to periodic
pulses, so that the early fault features of rolling bearings
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can be extracted [8]. Zhu et al. improved the WT method by
using the double evaluation multiscale template matching
algorithm, which greatly improved the operation speed and
performance of the WT method [9]. Chen et al. combined
EMD with deep neural network (DNN) and proposed an
EMD-DNN method for acceleration signal noise reduction,
which achieved better results in acceleration data baseline
correction [10]. Therefore, the classical signal time-
frequency domain analysis methods can still be further opti-
mized to solve various practical engineering problems. This
paper will start with VMD [11], which is the most com-
monly used fault diagnosis of rolling bearing, and proposes
a fault state detection method which can adaptively distin-
guish the actual working conditions of rolling bearing, so
as to improve the safety and reliability of rotating machinery
equipment [12].

Although the VMD method can efficiently complete the
modal decomposition of vibration signals, the eigenmode
functions (IMFs) obtained by the decomposition often have
modal aliasing or underfitting [13]. Through the research
and exploration of scholars, it is found that the unsatisfac-
tory result of the VMD method is mainly due to the number
of parameter modes K and the quadratic penalty term α.
Due to improper selection, when K is less than the actual
number of modes, it will lead to the decomposition result
of multimodal aliasing. When K is greater than the actual
number of modes, it will lead to overdecomposition. The
noise component is decomposed as one of the IMFs, result-
ing in analysis errors; α will affect the division criteria of fre-
quency band in the decomposition process, affect the
decomposition between adjacent modes, and also cause
mode aliasing [14]. Therefore, to obtain the optimal VMD
parameters, it is necessary to optimize the parameter selec-
tion method of VMD [15]. At present, there are many stud-
ies on VMD parameter optimization methods. For example,
Li et al. proposed a PSO optimization method for VMD
parameter selection, combined with VMD and LSSVM clas-
sification methods to complete the early fault diagnosis of
rolling bearing signals [16]. Kumar et al. extracted the
instantaneous frequency feature of rolling bearing signal
through Fourier compression transform (FSST) and took
the feature as the objective function of genetic algorithm
(GA), so as to select the optimal parameters of VMD [17].
Wang et al. proposed a method of spatial scale, which adap-
tively obtains the optimal parameters of VMD by extracting
signal features and has been verified on the gearbox fault
data set [18]. Xu and Hu took the minimum average mutual
information (GWOMI) as the objective function of gray wolf
optimization algorithm (GWO), optimized the parameters
of VMD, and achieved good vibration signal analysis
results [19].

Through the research of the above scholars, it can be
found that the best VMD parameter results can be obtained
through the multiobjective optimization algorithm. In this
paper, a more efficient multiobjective optimization algo-
rithm—the cooperative optimization algorithm of nondomi-
nated genetic and multiobjective particle swarm
optimization (NSGA II MOPSO)— is used to optimize the
two parameters of VMD; as a collaborative hybrid meta-

heuristic optimization algorithm, this optimization method
can combine the advantages of the two optimization algo-
rithms. The performance of the NSGA II MOPSO method
used in this paper in multiparameter optimization has also
been verified [20]. By combining the generation by genera-
tion optimization scheme of NSGA II with the rapid optimi-
zation ability of MOPSO, this method can realize the rapid
and accurate optimization of multiobjective parameters
[21]. At present, it has been applied to multiparameter opti-
mization problems in some projects [22]. In addition, in
order to obtain the optimal parameters in rolling bearing
fault diagnosis, it is also necessary to provide a reasonable
objective function for the multiobjective optimization algo-
rithm [23]. Through the vibration signal, we can obtain a
variety of signal time-frequency domain characteristic
parameters, such as vibration signal extraction method
based on spectrum index [24], time-frequency spectrum
extraction method [25], information extraction method of
multifeature fusion, and the extraction method of signal
entropy [26]. Combined with the decomposition results of
the VMD method, this paper will also study the change rela-
tionship between eigenmode function and relevant features,
so as to select dominant features, combine them to form new
feature indexes, and improve the VMD processing method
for rolling bearing vibration signal [27]. Starting from the
optimization of variational modal decomposition parame-
ters, this paper proposes a new time-frequency characteristic
index to reflect the fault state of rolling bearing and com-
pletes the selection of variational modal decomposition
parameters of rolling bearing vibration signal by the NSGA
II MOPSO method. The multiobjective optimization
method used in this paper has stronger adaptability and also
ensures the efficiency of the method, the accuracy of the
results, and robustness.

In this paper, the research process is complete from the-
oretical research to method verification, as well as improved
methods and experimental verification. In the second part,
the basic theories and methods of this paper are introduced
in detail, such as VMD and the principle of multiobjective
optimization algorithm. Then, starting from the theoretical
research, the proposed method assumptions are introduced
in detail in the third part of the article, and the method is
verified and improved through the analog signal, forming a
complete feasible scheme. In the fourth part, the method is
verified by using the actually collected vibration signals of
rolling bearing, and the method is compared with ergodic
method, nondominated sorting genetic algorithm, and mul-
tiobjective particle swarm optimization method to verify the
efficiency and robustness of the proposed method. Finally,
the content of the article is summarized.

2. Involving Methods

2.1. Variational Modal Decomposition (VMD). VMD is a
common signal mode decomposition method. The VMD
method can iteratively decompose complex multimodal sig-
nals into eigenmodes (IMF) with different spectral compo-
nents [28]. In mechanical fault diagnosis, the IMFs can be
obtained by VMD of the vibration signal generated by the
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mechanical system. The specific components of the mechan-
ical system can be known by analyzing the obtained IMFs, so
as to judge the specific state of the mechanical system [29].

In the VMD method, the IMF obtained by initial signal
decomposition can be expressed as

Y =〠
K

uk tð Þ + residual: ð1Þ

The kth IMF obtained by decomposition can be
expressed as

uk tð Þ = Ak tð Þ cos ϕk tð Þð Þ, ð2Þ

where AkðtÞ represents the amplitude of the kth IMF at time
t, ϕkðtÞ represents the nonattenuation function of the kth
IMF at time t, and the derivative of ϕkðtÞ represents the
instantaneous frequency at time t.

The VMD method is essentially a solution method of a
constrained variational problem. In the process of process-
ing vibration signals, the constrained variational problem
required by this method can be expressed as

min
ukf g, ωkf g

〠 ∂t δ tð Þ + j
πt
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e−jωkt
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where δðtÞ represents the Dirac function at time t, ∂t repre-
sents the gradient function obeyed by t, and e−jωkt is the
complex exponent. In order to solve the constrained varia-
tional problem, the quadratic penalty term and Lagrange
multiplier are added on the basis of equation (3), and the
unconstrained variational solution function is obtained:
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where fukg and fωkg represent each IMF and its center fre-
quency, respectively. The extracted IMF and its center fre-
quency can be updated and obtained iteratively through
equations (5) and (6).
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n+1
k ωð Þ − ∑i<kÛ
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In the above formula, Û
n+1
k ðωÞ represents the Fourier

transform frequency domain of the kth IMF obtained by

decomposition; ŶðωÞ and bΛnðωÞ represent the Fourier

transform forms of yðtÞ and bλnðtÞ, respectively. Based on
the above conditions, the Fourier transform update formula
of the Lagrange operator is

bΛn+1
ωð Þ⟵ bΛn

ωð Þ + τ Ŷ ωð Þ −〠
k

Û
n+1
k ωð Þ

 !
: ð7Þ

τ in the formula represents the constraint strength. The
iteration termination condition of VMD can be expressed
by equation (8), where ε represents the minimum accuracy
value and ε = 10−7 is usually selected empirically.

〠
k

ûn+1k − ûnk
�� ��2

2
ûnkk k22

< ε: ð8Þ

2.2. Nondominated Sorting Genetic Algorithm II (NSGA II).
NSGA II is an improved multiobjective optimization method
based on genetic algorithm. The NSGA II algorithm intro-
duces the concepts of crowding degree and crowding distance
operator on the basis of traditional sorting genetic algorithm.
In the optimization process, samples are further selected
through crowding degree to form a new parent population.
Therefore, NSGA II can solve the problem of finding the opti-
mal solution of various multiobjective functions. It has strong
adaptability and high computing performance [30]. The basic
flow of the NSGA II algorithm is shown in Figure 1.

The optimal solution group of multiobjective optimiza-
tion can be obtained through the NSGA II method. This
method has the characteristics of simple use and high effi-
ciency, and its disadvantage is that it is unable to obtain a
more accurate optimal solution vector. Based on the charac-
teristics of the NSGA II method, this paper intends to use
this method to screen the optimal solution set and quickly
and effectively reduce the selection range of multiobjective
optimal solution.

2.3. Multiobjective Particle Swarm Optimization Algorithm
(MOPSO). The multiobjective particle swarm optimization
algorithm introduces Pareto advantage into particle swarm
optimization (PSO), so that PSO has the ability to optimize
multiobjective function. The biggest advantage of this
method is the use of mutation operator, which improves
the global exploration ability of the algorithm [31]. The algo-
rithm steps of MOPSO are shown in Table 1.

The MOPSO method can obtain the multiobjective opti-
mal solution with ideal effect under the condition of reason-
able parameters. This paper will effectively use the global
parameter search ability of MOPSO to quickly obtain the
optimal parameter vector within the optimal solution with
limited range.

2.4. Signal Time-Frequency Domain Characteristics. In order
to judge the decomposition effect of VMD, it is necessary to
extract the signal features related to eigenmode groups
(IMFs) to judge the decomposition effect. In order to verify
the best signal feature indexes, this paper selects some fea-
tures commonly used to evaluate the signal and uses XðtÞ

3Journal of Sensors



to represent the time series of the signal. Table 2 shows the
commonly used feature indexes [32].

The characteristic index can be used to evaluate the fluc-
tuation of vibration signal and the characteristics of time-
frequency domain, so as to determine the specific compo-
nents in the signal. The signal categories can be classified
by extracting the characteristic indexes of different signals.
At the same time, it also provides a method for further ana-
lyzing the signal components. By studying the correlation
between different characteristic indexes and signal catego-
ries, signal processing can be used and methods to solve
many practical engineering problems [33].

3. NSGA II-MOPSO VMD

3.1. Proposed Method. In order to realize the parameter opti-
mization of VMD, this paper proposes a collaborative hybrid
heuristic optimization algorithm—multiobjective particle

swarm optimization algorithm with nondominated sorting
(NSGA II-MOPSO). Firstly, the optimization target popula-
tion is nondominated sorted to obtain the particle popula-
tion with good and bad sorting, and then, the
multiobjective particle swarm optimization algorithm is
used to further find the optimal solution. This method com-
bines the fast optimization of nondominated genetic algo-
rithm and the high-precision optimization of particle
swarm optimization algorithm, solves the problems of low
optimization accuracy of nondominated genetic algorithm
and low efficiency of particle optimization, and forms an
efficient, adaptive, and robust algorithm combined with
VMD optimization. The proposed algorithm flow is shown
in Figure 2.

Figure 2 shows the specific process of optimizing VMD
parameters by using the NSGA II-MOPSO method. First,
determine the parameter selection range of the VMD
method according to the actual situation, find the optimal

Initialize data group

From the first
generation subgroup

Fast non dominated
sorting

First generation subgroup

Calculate
congestion

Selection, crossover,
variation

Parent and child individual
merging

Form new parent subgroups

Iteration
termination
condition
reached

Figure 1: Basic flow of the NSGA II algorithm.

Table 1: Algorithm steps of MOPSO.

Step 1
Initialize the population and storage space set, assign initial values to the parameters, generate the

initial population P1, and copy the noninferior solution in P1 to the storage space to obtain A1. Let the
current evolutionary algebra be t, and proceed to steps 2~4 when t is less than the total evolutionary algebra.

Step 2

Evolution produces the next generation of population:
Let the current evolving particle j complete the contents of (a)–(c) when j is smaller than the population size.

(a) Calculate the density information of particles in the storage space
(b) Select the optimal particle gj,t in At for particle Pj,t in the population; the quality of gj,t particles

determines the convergence performance of MOPSO algorithm and the diversity of noninferior
solution sets. Its selection is based on the density information of particles in the storage space

(c) Update the position and velocity of particles in the population, and search the optimal solution
in the particle swarm under the guidance of gj,t

Step 3 Update storage set.

Step 4

Truncate storage space set:
When the number of particles in the storage space set exceeds the specified size, redundant

individuals need to be deleted to maintain a stable storage space set size. For mesh k with more than
one particle number, calculate the number of particles PN to be deleted in the mesh and then delete PN

particles randomly in mesh k.

Step 5 Output particle information in the storage space set.
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parameter vector within the value range, and decompose the
fault components of the signal; first, obtain the dominant
group of the optimal solution through NSGA II and reduce
the global range of the MOPSO method, which can improve
the accuracy of the optimal solution search efficiency, while
further global search also ensures the accuracy of the
method.

3.2. Method Validation. In order to verify the feasibility of
the method, a group of analog signals are used to simulate
the actual rolling bearing fault vibration signal to verify the
effectiveness of the method. The analog signal function is
shown in the following equation:

x tð Þ =〠
i

AiS t − Tið Þ + n tð Þ, ð9Þ

where Sðt − TiÞ represents the waveform generated by the i
th pulse at time Ti and nðtÞ represents the random noise
generated during vibration. In this paper, a group of signals
with four vibration frequency components are simulated by
using periodic pulse signal, and the formed simulation signal
is shown in Figure 3.

The four vibration frequencies of the set simulation signal
are, respectively, f n1 = 800, f n2 = 1600, f n3 = 2200, and f n4
= 4000. In addition, noise with a signal-to-noise ratio of -8
is added to the mixed signal to simulate external conditions.

The obtained simulation signals are used to verify the
VMD method, and different K and α are verified, respec-
tively, the peak factor, waveform coefficient, kurtosis, and
the change of kurtosis factor. When the number of decom-
posed modes is 4, the signal characteristic index curve
obtained is shown in Figure 4.

Table 2: Some signal characteristics involved in this paper.

Time domain characteristics Average value μx tð Þ = lim
N⟶∞

1/Nð Þxi tð Þ

Variance ψ2
x tð Þ = lim

N⟶∞
1/N〠N

i=1x
2
i tð Þ

Root mean square Xrms =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠N

i=1X
2
i tð Þ/N

q

Standard deviation Xstd =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/Nð Þ ·〠N

i=1 Xi − μxð Þ2
q

Waveform characteristics Peak coefficient Cf = Xrms/Xmax − Xmin

Waveform coefficient Cs = Xrms/ 1/Nð Þ ⋅〠N

i=1 X tð Þj j
Kurtosis Ck = 1/N〠N

i=1X tð Þ4

Kurtosis factor Ckf = Ck/X4
rms

NSGA II-MOPSO-VMD

Input signal
initialize input parameters
set value range of K and 𝛼 

Traverse the input parameters
according to the value range
and VMD process the signal

Construct the processed
feature data set

Initialize input parameters of NSGA II
Fast non

dominated sorting of data
form a new dataset

Initialize input parameters of MOPSO

Multi-objective particle swarm
optimization

Varitation of output characteristics
and optimal results

VMD

NSGA II

MOPSO

Figure 2: NSGA II-MOPSO optimizing VMD parameter process.
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Figure 4 shows that the characteristics change regularly
with the penalty term α; as the value increases, kurtosis, peak
factor, waveform coefficient, and kurtosis factor tend to be
stable, so it can be studied according to its variation law α,
the range of the best value method. In the characteristic
curve, the characteristic curve at α = 1100 has mutation.
Take α = 800 and α = 1700 to test the mutation, respectively.
The comparison diagram of the decomposition results
before and after is shown in Figure 5.

Through the comparison of Figure 5, it can be found
that in case α < 1100, the VMD method cannot correctly
divide the center frequency of the signal, and its decom-
position result is unreliable, while in case α > 1100, the
decomposition result of VMD is basically consistent with
the simulation actual frequency. Therefore, it also shows

that among the above four eigenvalues, the peak factor,
waveform coefficient, and kurtosis factor other than kur-
tosis can determine the parameters within the correct
range. It can be seen from Figure 5 that the characteristic
parameters with strong correlation with α value are peak
factor and waveform coefficient. Therefore, this paper
proposes characteristic mutation factor Cm and accuracy
index Ca as the objective function of optimizing VMD
parameters, respectively. The two characteristic expres-
sions proposed are

Cm = N∑N
t=1X tð Þ4

Xmax − Xminð Þ ⋅ ∑N
t=1X tð Þ
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Ca =
∑N

t=1X tð Þ
N Xmax − Xminð Þ : ð10Þ

The proposed characteristic mutation factor and accu-
racy index comprehensively consider the change trend of
relevant indexes in Figure 4. When the parameter value is
gradually close to the optimal solution, the value of the
two eigenvalues will be stable at a certain level. Whether
the optimal result is obtained in the optimization process
can be judged by detecting whether the two groups of
eigenvalues tend to be stable.

Therefore, the two characteristic parameters proposed in
this paper will be used as the objective function of the NSGA
II-MOPSO method, so as to realize the parameter optimiza-
tion of VMD.

3.3. Overall Improvement Method and Process. Firstly, the
bearing signal is collected by the acceleration vibration sen-
sor, the selection range of VMD parameters is set, and the
characteristic mutation factor and accuracy index are taken
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Figure 5: VMD decomposition results of simulation signals obtained with different α values.
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as the objective function of the nondominated sorting
genetic algorithm. Then, the parameter set is optimized by
the nondominated sorting genetic algorithm. In this step,
the nondominated sorting genetic algorithm can optimize
the range of parameters, the disadvantage of this method is
that it cannot quickly obtain the optimal data set, and its
accuracy needs to be improved by multiple iterations, which
greatly affects the optimization efficiency. The disadvantage
of MOPSO is that if the parameter selection interval is too
large and the number of particle swarm optimization and
the number of iterations are limited, the optimization results
are not reliable. Therefore, taking the preliminary screening
data set of nondominated sorting genetic algorithm as the
optimization interval of MOPSO can not only improve the
optimization efficiency but also ensure the reliability of the
results. The collaborative hybrid metaheuristic algorithm
for VMD parameter optimization formed by combining
the two advantages is shown in Figure 6.

4. Experiment

In order to verify the effectiveness of the proposed method,
the actual data of the bearing data center of Case Western
Reserve University in the United States are used to verify
the method [34]. The experimental device and rolling bear-
ing are shown in Figure 7.

The acquisition frequency of vibration signal is fs = 12
kHz, the motor speed is set to rpm = 1750, the bearing
model adopted is SKF6205, the fault type is 0.014 inch wide
and 0.011 inch deep artificial pit inner ring fault, and a
group of fault free experimental data is used as the control
experimental group. The signal segment and its time-

frequency domain used in the experiment are shown in
Figure 8.

Take the selected signal as the input to verify the optimi-
zation performance of the NSGA II-MOPSO method on
VMD parameters. According to the proposed method, the
relevant parameters of the algorithm are shown in Table 3.

In Table 3, the value of K represents the value of the
number of modes, which is based on the number of modes
that can be generated by the rolling bearing experimental
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Figure 8: Time-frequency diagram of actual collected signal.

Table 3: Setting of parameter value in optimization algorithm.

Number of
modes

Quadratic penalty
term coefficient

Primary population size
of NSGA II

Target population size
of NSGA II

Initial population
number of MOPSO

Number of
optimization targets

K = 3, 8½ � α = 400, 5000½ � N1 = 5 × 1000 Nn = 3 × 200 P1 =Nn Pn = 1

9.7561
9.7522
9.7484
9.7445

9.7406
9.7368
9.7329
9.7290
9.7252
9.7213
9.7175
9.7136
9.7097
9.7059

4.9357 4.9359 4.9360 4.9362 4.9364 4.9366
Ca

Cm

X 4.936e+04
Y 9.756e+04

×104
Optimization process of NSGA-II MOPSO

Optimal iterative result

Figure 9: Optimization results obtained with Cm and Ca as
objective functions.
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equipment. When the rolling bearing has no fault and no
external noise, K can be taken as 3. When the rolling bearing
has compound fault and environmental noise interference,
K may be taken as 8. Therefore, the range of K value is ½3,
8�. The selection of quadratic penalty term coefficient α is
based on the possible modal frequency range in the signal.
By referring to the basic parameters of the experimental
bearing, the value α is set within the range of ½400, 5000�.
N1 represents the number of initial parameter groups, K
and α represent the initial population number of vector
combinations, and Nn represents the size of the dominant
data set processed by the NSGA II method. The initial pop-
ulation of the MOPSO method is the same as the dominant
set obtained by NSGA II. Finally, a group of optimal param-
eter vectors are selected from the dominant set by the
MOPSO method. There is only one optimal solution
obtained by this method, so there is no problem of uneven
distribution of the optimal solution. The experimental
results also verify the reliability of the obtained optimal
solution.

The parameter optimization results of this method are
shown in Figure 9

The values of K and α corresponding to the best point
are K = 5 and α = 2832. The decomposition results as shown
in Figure 10 can be obtained by substituting the optimal
parameter values into VMD. The inner ring fault frequency
of the experimental bearing is calculated through equation
(11) and compared with the obtained results to verify the
actual effect of this parameter.

BPFI = N
2 n 1 + cos α

D

� �h i
: ð11Þ

The inner ring fault frequency of the rolling bearing is
f inner = 157:94, which is basically close to the second modal
center frequency f IMF2 = 158:4 of the decomposition result,
so the improved method is effective.

In order to verify the effectiveness of the optimization
parameter methods, this paper compares the ergodic
method, nondominated sorting genetic optimization, and
multiobjective particle swarm optimization methods, respec-
tively. The results of the comparison are shown in Table 4.
The performance of different methods in optimizing VMD
is shown by comparing the time required for parameter opti-
mization and the differences between the optimal parameter
results.

The optimal parameters obtained by different algorithms
are substituted into VMD to obtain the decomposition
results. The difference between the calculated fault frequency
and the theoretically calculated frequency value is calculated
and expressed in the form of thousandth ratio on the fre-
quency scale to express the reliability of the decomposition
results. By comparing the experimental results, it can be
found that the traversal method needs to involve all the
parameter vector combinations, so the calculation efficiency
is very slow, while the defect of NSGA II lies in the low effi-
ciency of the iterative dominant group and the fast iteration

speed of MOPSO, but the optimization result is poor due to
the rapid selection of the best. The NSGA II MOPSO
method used in this paper is relatively fast in speed and
can ensure reliable operation results, so the method pro-
posed in this paper is feasible.

5. Conclusion

This paper mainly optimizes the parameter selection method
of VMD and completes the VMD parameter optimization of
rolling bearing vibration signal by using the NSGA II
MOPSO multiobjective optimization algorithm. In addition,
by analyzing the change of signal waveform characteristics,
the characteristic mutation factor and accuracy index are
proposed, and the new index is used as the objective
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Figure 10: VMD results of two sets of optimal parameters.

Table 4: Performance comparison of different optimization
methods.

Methods Running time

Difference between
parameter selection result
and theoretical real value

(difference ratio on
frequency axis, unit: ‰)

Ergodic
method

TErgodic ≫ TNSGA IIMOPSO 0.08 (158.4)

MOEA TMOEA < TNSGA IIMOPSO 9.44 (214.6)

NSGA II TNSGA II > TNSGA IIMOPSO 0.28 (159.6)

MOPSO TMOPSO < TNSGA IIMOPSO 5.08 (188.4)

NSGA II
MOPSO

TNSGA IIMOPSO 0.08 (158.4)
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function to optimize the parameter selection. The effective-
ness and the advanced nature of the method are verified by
comparison. The main contributions of this paper are as
follows:

(1) The practical performance of the cooperative hybrid
metaheuristic algorithm is studied. The NSGA II and
MOPSO are combined to optimize the VMD of roll-
ing bearing signals, which proves the advanced
nature of the cooperative hybrid metaheuristic
algorithm

(2) The relationship between the waveform characteris-
tics of signal modal decomposition results and
VMD parameters is studied, and two characteristics
of characteristic mutation factor and accuracy index
are proposed to be used in parameter optimization.
The performance of characteristics in VMD optimi-
zation is verified by experiments

(3) A complete process of optimizing VMD parameter
selection using NSGA II MOPSO is proposed. This
method is compared with other parameter optimiza-
tion methods to verify the improvement of the pro-
posed method in adaptive ability, operation speed,
and robustness
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Wireless sensor network sensing data is meaningless without any location information, and a large number of anchor node-based
localization methods have been proposed to obtain the location information of nodes. However, this kind of method requires a
certain number of anchor nodes deployed in the network and complex information interaction between nodes. Therefore, it is
not ideal in positioning cost and effect. A WSN positioning method based on the steering antenna of the base station is
proposed to address this problem. By rotating the orientation information of the antenna, accurate positioning can be achieved
without the assistance of anchor nodes, and no signal interaction between nodes is required. Theoretically, the method is easier
to be deployed in the actual scene to realize the positioning of sensor nodes. Experimental results show that the proposed
method is better than most positioning methods assisted by anchor node in positioning accuracy, positioning time, and energy
consumption.

1. Introduction

Wireless sensor networks (WSNs) are widely adopted in
data perception and collection, but it is meaningless to per-
ceive data without knowing its location information. For
example, if a WSN is used to monitor a forest for fires, it is
still meaningless to not know the location of the fire, even
though the fire can be determined based on the sensory data
of a node. The positioning of nodes with GPS modules on
each sensor node is impractical for large-scale wireless sen-
sor networks, so it is important to study accurate and low-
energy WSN positioning methods.

Research on wireless sensor network positioning is
mainly divided into several categories: (1) range-based
positioning; (2) range-free positioning; (3) anchor-based
positioning; (4) anchor-free positioning, etc. Among them,
range-based positioning and anchor-based node position-
ing are generally combined with each other, such as using
the Received Signal Strength Indication (RSSI) attenuation

of node interaction, signal Time of Arrival (TOA), signal
Time Difference of Arrival (TDOA), and signal Angle of
Arrival (AOA) model to calculate the distance between
nodes and other information, and combining multiple
anchor nodes can locate the positioning of unknown
nodes. For example, Yan et al. studied the WSN position-
ing algorithm based on fuzzy decision-making, which is
divided into several stages: knowledge accumulation,
knowledge fusion, and knowledge expansion. In the
knowledge accumulation stage, the RSS of the anchor node
is obtained and processed as a position relation index; the
knowledge fusion stage optimizes the membership degree
of anchor nodes in different environments; in the knowl-
edge expansion stage, the points with the highest matching
degree are used to estimate the position of unknown nodes
[1]. Furthermore, Yu et al. proposed a WSN node algo-
rithm based on social spider optimization and
opposition-based learning. Firstly, the Bounding-box
method was used to know the possible region of unknown
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nodes, and then, the opposition-based learning strategy is
combined with the social spider optimization algorithm
in the area to estimate the node locations. According to
the simulation results, the positioning accuracy is higher
than the traditional method [2]. Li et al. proposed a posi-
tioning method based on anchor nodes, using positioning
priority to improve accuracy. This method reduces posi-
tioning errors by introducing a new concept that explores
node positioning priorities.. Finally, the experiment com-
pares and evaluates Simulated Annealing Location(SAL),
Genetic Algorithm Locations (GAL), and the proposed
method, showing that the priority-based positioning
method has better positioning accuracy [3]. Xiong et al.
proposed a hybrid positioning algorithm of RSS and
TOA, which solved the multitarget positioning problem
of wireless sensor networks in three-dimensional space
and optimized the positioning results by using the least-
squares method. The experiment comparing RSS ranging
or TOA ranging alone has demonstrated that RSS com-
bined with TOA has a higher accuracy rate [4].

Range-free positioning and anchorless node positioning
are generally combined with each other. For example, Zhu
et al. implemented a WSN indoor positioning method based
on fingerprint matching. First, using the strength of the
wireless signal to construct a basic fingerprint map, then
constructing a high-resolution positioning fingerprint map
with the Kriging interpolation algorithm, and finally opti-
mizing the fingerprint matching result with K-means clus-
tering algorithm to get the target position [5]. Messous
et al. improved the DV-HOP positioning algorithm to inves-
tigate range-free localization algorithms in similar multihop
wireless sensor networks, which optimizes the average hop
length between nodes based on the recursive position of
the positioning node, thereby reducing the positioning error
[6]. Lee proposed a fingerprint database construction
method for indoor fingerprint positioning, which can effec-
tively solve the problem of large deviations in the fingerprint
data collected due to the positioning environment during the
construction of the fingerprint database. The method can
improve positioning accuracy by studying the optimal num-
ber of clusters and combining the K-means method to
obtain a more accurate radio fingerprint construction
method [7]. To address the problem of outdoor parking dif-
ficulties, Postigo-Málaga et al. investigated a parking space
location method based on RSS fingerprints of parking
spaces. By collecting the signal strength of parking spaces
during idle and busy hours, a fingerprint database was con-
structed, and then, the parking spaces were located by fin-
gerprint matching [8].

The above analysis of range-based and range-free posi-
tioning methods reveals that they all require a certain num-
ber of anchor or beacon nodes to locate unknown nodes.
Anchor nodes or beacon nodes require a large and complex
workload and are subject to greater external interference,
resulting in less than optimal positioning accuracy and
deployment costs [9–11].

To address the above problem, this paper proposes a
node positioning method based on the base station steering

antenna, which can achieve high accuracy positioning with-
out the need for an anchor node.

2. Related Assumptions and Positioning Model

2.1. Related Assumptions

(1) All nodes in the sensor network are deployed on the
XY two-dimensional plane and cannot obtain their
own position

(2) The signal energy emitted by the rotatable antenna
mounted on the base station is mainly concentrated
within its beam width, while the signal energy out-
side the beam width is weak and can be considered
zero

(3) The base station adopts an active power supply and
has strong calculation performance, supporting
communication with ordinary nodes and complex
calculations, and can achieve the purpose of adjust-
ing the maximum communication distance by vary-
ing its transmission power Pt

(4) The location of the base station can be obtained by
GPS technology

2.2. Positioning Model. The positioning model proposed in
this paper is shown in Figure 1. The Base Station (BS) is
located at the origin O, and a Dynamic Antenna (DA) is
erected at the position H above the base station. This
antenna can transmit beacon frames to ordinary sensor
nodes deployed in the XY plane. After receiving the beacon
frame, the node determines its own position based on the
horizontal rotation angle φ, the vertical elevation angle θ of
the antenna, and the distance information from the node
to the base station antenna. The positioning result of the
node can be expressed in polar coordinates (ρ, φ), where ρ
represents the distance between the node from the base sta-
tion position O. The model satisfies the following conditions:

(1) The rotating antenna is a parabolic reflector-type
directional antenna with a small beam width (θbw)

(2) DA locates at height H above BS

(3) DA can rotate around the z-axis, and the included
angle with the x-axis is φð0 ≤ φ ≤ 2πÞ

(4) DA rotates around the z-axis, the smallest unit of
each rotation is δϕ(δϕ≤θbw/2)

(5) The elevation angle θ of DA is adjustable
(0 ≤ θ ≤ θmax), and θmax can be used to calculate the
position of the node farthest from BS

(6) The minimum adjustment unit of DA elevation
angle θ is δθ(δθ≤θbw/2);

(7) By changing the φ and θ angles of the antenna, the
base station signal can scan all nodes in the position-
ing area

2 Journal of Sensors



(8) Each time DA changes its position (δθ or δϕ), the
beacon frame data is updated and the updated data
frame is sent to ordinary nodes. The beacon frame
includes antenna height H, elevation angle θ,

horizontal rotation angle φ, and the position of the
base station

3. Anchorless Positioning Algorithm

This section introduces the proposed method for positioning
wireless sensor networks without using anchor nodes,
followed by a theoretical analysis of the performance associ-
ated with this positioning method.

3.1. Positioning Algorithm

3.1.1. Principle of Positioning. The positioning method pro-
posed in this paper does not require frequent communica-
tion between anchor nodes and unknown nodes but
achieves positioning through the beacon data interaction
between the rotating antenna of the base station and the
ordinary node.

The beacon frame format is shown in Figure 2, including
the horizontal rotation angle φ, elevation angle θ of the
rotating antenna, the height H of the antenna, and the loca-
tion LBS of the base station (obtained by GPS). When the
antenna orientation is adjusted once, φ and θ are updated
again, while the values of antenna height H and base station
location LBS are fixed.

The beam signal sent by the rotating antenna at angles φ
and θ will get an elliptical signal coverage area in the XOY
plane. If an ordinary node exists in this area at this time,
the ordinary node can receive the beacon signal from the
antenna, which contains the rotation angle φ, the elevation
angle θ, and the height H of the rotating antenna. Ordinary
nodes can calculate the distance ρ from the base station O
based on these three parameters, as shown in Equation (1).
Then, the position of the node can be expressed as φ, ρ,
according to which the polar coordinate can be converted
to the horizontal and vertical coordinates (x, y) of the node,
and the conversion method is shown in Equation (2). As
shown in Figure 3, it is assumed that the ordinary node is
located at exactly point N , and it can calculate its own posi-
tion based on the beacon frame.

When the rotating antenna rotates along the horizontal
direction, each time rotating one unit angle δϕ(i.e., φ = φ ±
δϕ), then the signal coverage area will shift accordingly. As
shown in Figure 3, the signal coverage area moves from
the original position N to the position nj. If there are ordi-
nary nodes in the signal coverage area, the position coordi-
nates of the ordinary nodes can also be obtained by the
above method. When the steering antenna adjusts the eleva-
tion angle θ(i.e., θ = θ ± δθ), the coverage area of the signal
from the steering antenna in the XOY plane will also change,
such as moving from the original area with N as the signal
coverage center to the coverage area with nk as the center.
If the magnitude of each adjustment of the steering antenna
angle is relatively small, there is an overlap area in the signal
coverage area between adjacent antenna angles, And the
ordinary node in the overlapping area can receive a beacon
signal at least once, and the number of times a node receives
a beacon frame depends on the adjustment units δθ and δϕ
of the antenna angle. If a node receives n beacon frames,
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Figure 1: Positioning model diagram.
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Figure 2: Beacon frame structure diagram.
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Figure 3: Positioning schematic diagram.
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then the average antenna rotation angle and average eleva-
tion angle contained in these n beacon frames are calculated
as shown in Equations (3) and (4). The average antenna
rotation angle �ϕ and the average elevation angle �θ can be
used to calculate the location of the ordinary node more
accurately.

The specific steps of the tasks responsible for the base
station in the positioning process are shown in Algorithm 1,
and the tasks responsible for the ordinary nodes are shown
in Algorithm 2.

ρ =H · tan θð Þ, ð1Þ

x = ρ cos θð Þ
y = ρsin ϕð Þ

(
, ð2Þ

�ϕ = ∑n
i=1ϕi
n

, ð3Þ

�θ = ∑n
i=1θi
n

: ð4Þ

The positioning method based on the rotating antenna
of the base station has a maximum locating range. If this
range is exceeded, the beacon signal cannot be received by
the ordinary node, and it is naturally impossible to locate
the ordinary node. The positioning distance is the distance
between the node and the base station BS. Assuming that
the farthest one sensor node from the base station node is
na and the distance is ρmax, then the antenna elevation angle

The steps of BS positioning
Input: signal beam width (θbw ), Antenna height ( H ), the smallest unit of antenna azimuth adjustment (δθ or δϕ);
Output: Updated beacon frame: beacon;
Steps:
1: Initialize angle θ and ϕ, θ = θbw/2, ϕ = 0∘;
2: According to the current antenna’s azimuth information (beacon = {φ,θ,H,LBS}), construct a beacon frame and send it;
3: whileðθ + θbw/2≤θmaxÞ
4: if(φ<2π)
5: Horizontal rotating antenna: φ=φ+δϕ;
6: elseifφ==2π
7: φ←0;
8: θ=θ +δθ;
9: endif
10: Update the antenna’s orientation information and construct new beacon frames: Beacon = {φ’,θ’,H,LBS};
11: Send beacon frames through the antenna;

Algorithm 1: BS positioning process.

The steps of ordinary node positioning
Input: Received beacon frames: beacon = {φ,θ,H,LBS};
Output: Node coordinates:(x,y);
Steps:
1: while(1)
2: Node in listening state;
3: recv ← Received data frames;
4: if(recv is the end frame)
5: break;
6: else //Indicates beacon frames
7: if(recv≥1)
8: if(recv>1)
9: ϕ =∑n

i=1ϕi/n,θ =∑n
i=1θi/n

10: endif
11: ρ =H · tan ðθÞ
12: Node polar coordinates: (ρ,φ)
13: (x,y)←(ρ,φ)
14: endif
15: endif
16: endwhile

Algorithm 2: Ordinary node positioning process.
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Figure 4: Maximum positioning error analysis.
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Figure 5: Beacon repeated reception principle.
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θmax corresponding to this ρmax is shown in Equation (5).
Since the elevation angle of the antenna reaches 90°, the sig-
nal from the antenna is parallel to the XOY plane and can-
not locate any node, so θ must be less than or equal to
90∘ − θbw/2. Then, the farthest localization distance ρmax is
shown in Equation (6).

θmax = arctan H
ρmax

� �
, ð5Þ

ρmax ≤H · tan 90 − θbw
2

� �
: ð6Þ

In Equations (5) and (6), H represents the antenna
height, and θbw represents the signal beam width, both of
which are known values.

3.1.2. Coordinate Conversion. Part (1) of Section 3.1 details
the positioning method proposed in this paper, and based
on this method, the coordinates (x, y) of ordinary nodes
can be located, which is a coordinate system established with

the base station as the origin and represents only the coordi-
nates relative to the BS. Since the position of the BS can be
obtained by GPS, the coordinates (x, y) of the ordinary node
can also be converted to GPS coordinates based on the BS
coordinates (x∘BS，y

∘
BS). The conversion steps are as follows:

Step 1. Converting the position coordinates (x, y) of ordi-
nary nodes into GPS coordinates requires knowing the rela-
tionship between latitude and longitude and the actual
distance. The current commonly used conversion rate is 1°
= 111:32 km, which means that a difference of 1° in longi-
tude or latitude will result in a difference of 111.32 km in
the distance. Therefore, the ordinary node coordinates (x, y
) are divided by 111.32 km to get the transformed coordi-
nates, as shown in Equation (7).

x∘l =
x

111:32
y∘l =

y
111:32

:

8><
>: ð7Þ

Table 1: Experimental parameters.

Symbol Value

Positioning area A
Number of nodes deployed n
Antenna height H
Beam width θbw
Antenna elevation angle adjustment unit δθ
Antenna horizontal angle adjustment unit δϕ
Initial angle of the antenna θ
Initial angle of the antenna ϕ

100m × 100m
100

Dynamically adjustable
Dynamically adjustable

5°

4°

0
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Figure 6: The effect of θbw and H on positioning.
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Step 2. Add the GPS coordinates of the BS and the coor-
dinates (a, b) of the ordinary node to obtain the GPS coordi-
nates (c, d) of the ordinary node, as shown in Equation (8).

x∘GPS = x∘l + x∘BS

y∘GPS = y∘l + y∘BS

(
: ð8Þ

3.2. Positioning Performance

3.2.1. Analysis of Positioning Error. When the signal from
the steering antenna reaches the XOY plane, the signal cov-
erage area is elliptical, as shown in Figure 4; as already
described above, when a ordinary node can receive multiple
beacon frames, the positioning accuracy can be improved by
finding the positioning mean based on the data from multi-
ple beacon frames. However, some nodes are located just on
the boundary of the two signal coverage areas, as shown by
ni in Figure 4. The node at this location can only receive a
beacon frame once, and it may belong to the signal coverage
boundary centered on n1, or it may belong to the signal cov-
erage boundary centered on n2. In this case, the positioning
error is maximum, and its positioning error may be e1 or e2.
Therefore, the maximum positioning error of the position-
ing algorithm is shown in Equation (9).

e =max e1, e2ð Þ =max
�
H · tan θð Þ −H · tan

� θ −
θbw
2

� �
,H · tan θð Þ −H · tan θ + θbw

2

� ��
: ð9Þ

3.2.2. Analysis of Positioning Time. The time consumed by
the positioning method proposed in this paper mainly
includes the time T turn for the base station to adjust the
antenna orientation, the time TB for the base station to
update and send the beacon, and the position calculation

time TP for the normal node after receiving the beacon.
Therefore, the time T total consumed in the whole process
of positioning by this system is shown in Equation (10).

T total =Nstep · T turn + TB + TPð Þ: ð10Þ

In Equation (9), Nstep represents the number of
adjustments of the steering antenna, and the amplitude of
each adjustment is δθ or δϕ, and its value is shown in
Equation (11).

Nstep =Nφ +Nφ ·Nθ ð11Þ

In Equation (11), Nφ = 2π/δφ, Nθ = θmax.

3.2.3. Analysis of the Number of Beacon Frames Received. If
the step value δθ and δϕ of the steering antenna adjustment
of the base station are relatively small, there will be a large
overlap in the signal coverage area in the XOY plane. There-
fore, ordinary nodes can receive multiple beacon frames in
one rotation of the antenna, and the average position of
the node is found based on the multiple beacon frames
received, which is good for optimizing the positioning accu-
racy of the node. Assuming that the angle of each step of the
steering antenna in the horizontal direction is δϕ, and the
angle of each step of the elevation angle in the z-axis direc-
tion is δθ. Under this condition, the maximum possible
number of beacon frames Nrx received by the sensor node
in the positioning area is shown in Equation (12). The posi-
tion where the most beacon frames can be received is shown
by the point N in Figure 5.

Nrx ≤
θbw
δθ

× θbw
δϕ

� �
: ð12Þ

4. Experiment Analysis

4.1. Analysis of Positioning Error. The performance of the
algorithm proposed in this paper is verified through experi-
mental analysis. The experiment uses MATLAB for simula-
tion and randomly deploys 100 sensor nodes in a
positioning area of 100m × 100m, and the base station is
located in the center of the positioning area. Under this con-
dition, the maximum positioning distance of the system is
ρmax = 70:71m (the distance from the base station to a vertex
of the positioning area). In the experiment, the value of the
signal beamwidth angle θbw and the steering antenna height
H are dynamically adjusted. The specific parameters of the
simulation experiment are shown in Table 1.

We analyze their influence on the positioning accuracy
of the node by adjusting the height of the antenna and the
beam width of the signal during the simulation. In the exper-
iment, the experimental results obtained by varying the
beam width (10°, 40°, and 70°) when the antenna height is
all 20m and analyzing the effect of beam width on position-
ing accuracy are shown in Figure 6(a). Then, change the
antenna height when the beam width is all 30°, and analyze
the effect on the positioning accuracy, the experimental
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Figure 7: The effect of θbw and H on maximum locatable distance.
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results are shown in Figure 6(b). Both horizontal coordinates
indicate the distance of the node from the base station and
the vertical coordinates indicate the positioning error.

The experimental results in Figure 6(a) show that when
the beam widths are 10°, 40°, and 70°, respectively, the local-
ization error first increases gently as the distance between
the node and the base station increases, and then increases
faster when the distance from the base station is greater than
40m. When the distance between the node and the base sta-
tion is the same, the larger the beamwidth, the worse the
positioning accuracy. Because the larger the beamwidth,
the larger the area covered by the signal, and therefore, the
positioning accuracy will be reduced. The experimental
results in Figure 6(b) show that when the beamwidth is the

same, the higher the antenna height, the worse the corre-
sponding positioning accuracy. Similarly, when the antenna
height is higher, the signal coverage in the XOY plane is
larger, resulting in worse positioning accuracy.

The maximum locatable distance ρmax of the proposed
positioning method is affected by the antenna height and
beam width θbw (as in Equation (5)), which affects the max-
imum positioning range of the system when the antenna
height or beam width is adjusted. The experimental results
are shown in Figure 7, where the horizontal coordinates
indicate the antenna height and the vertical coordinates
indicate the maximum locatable range ρmax.

The experimental results are shown in Figure 7, which
indicate that the maximum positioning distance ρmax grows
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in a linear pattern with the increase of the antenna height.
Equation (5) for calculating ρmax shows that ρmax is linearly
related to H. So when the antenna height is the same, the
larger the beam width θbw is, the smaller the maximum posi-
tioning distance ρmax is. The distance of each node in the
positioning area from the base station and the positioning
error of each node are shown in Figures 8(a) and 8(b),
respectively. The final positioning result of the node is
shown in Figure 9. From the positioning results, it can be
seen that the positioning error is relatively large for the node
located in the lower left corner of the positioning area, while
the positioning error located in the central area is the smal-
lest, because the signal coverage at the positioning center
area is strongest, and its positioning error is also the
smallest.

The total time consumed by the proposed method to
locate nodes in this paper includes the antenna azimuth
adjustment time, the beacon frame construction and trans-
mission time, and the node reception of beacon frames
and localization calculation time. Therefore, the position-
ing time also reflects the distance between the node and
the base station. This experiment analyzes the relationship
between the positioning time and the positioning error of
different nodes. The experimental results are shown in
Figure 10.

The experimental results show that as the positioning
time increases, the maximum positioning error of the node
also increases, which indicates that the positioning error of
the node far from the base station is greater. Also for a single
node, the positioning error decreases as the localization time
increases because the number of beacon frames received by
the node increases with time, which optimizes the position-
ing results based on the mean value of the parameters of
multiple beacon frames [12–15].

4.2. Positioning Comparison Experiment. The localization
area of this experiment is a rectangle of 50m × 50m, and
the signal strength-based localization optimization algo-
rithm proposed in reference [16] is compared in the experi-
ment, which uses a Kalman filter to filter the data collected
from the optimal communication range and can easily solve
the problem of perturbation of RSSI values. The variable
relationship between communication distance and RSSI
can be analyzed for more accurate optimization of node
positioning. In reference [16], 20 anchor nodes and 100
ordinary nodes were deployed in the localization area, with
20 anchor nodes enabling the positioning of 100 nodes and
all sensor nodes having a communication radius of 15m.
In contrast, the method proposed in this paper does not
deploy anchor nodes, but only 100 ordinary nodes, and the
height of the antenna is 10m, the angle step unit δθ and
δϕ both are 4°, and the beam width θbw is 10°.

In Figure 11, the localization errors of 100 sensor nodes
in the localization area are compared under the two
methods. From the results, it can be seen that the maximum
localization error of the localization method proposed in lit-
erature [16] is much higher than that of the localization
method proposed in this paper, and the maximum localiza-
tion error of the method proposed in this paper is less than
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Table 2: . Energy consumption model parameter table.

Parameter Value

Eelec
Einit
EDA
The size of Beacon packet

50 nJ/bit
0.5 J

5 nJ/bit/signal
8bit
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3m, while the maximum error of the localization algorithm
proposed in [16] is higher than 8m.

The above experiments were verified 100 times and the
results of the cumulative distribution of positioning errors
were obtained as shown in Figure 12. The experimental
results show that the positioning error of the positioning
method proposed in this paper is basically in the range of
0-5m in the positioning area of 50m × 50m, while the posi-
tioning error of the positioning method proposed in litera-
ture [16] is basically distributed in the range of 0-10m.
CDF denotes Cumulative Distribution Function.

Since the residual energy of sensor nodes is fixed and the
residual energy of nodes decreases with the operation, if the
energy consumption of the localization algorithm is too
high, it is very detrimental to the long-term survival of the

sensor network. Therefore, the energy consumption of the
localization algorithm is one of the key metrics to measure
its performance. This experiment is based on an experimen-
tal analysis of the common used energy consumption model
(as presented in literature [17, 18]). The model parameters
during the experiments are shown in Table 2. The total
energy consumption of 100 nodes was compared in the
experiment, and the results are shown in Figure 13.

To complete the localization of 100 nodes, the total
energy consumed by the method proposed in this paper is
about 33.6mJ, and the total energy consumed by the local-
ization method proposed in literature [16] is about 77.3mJ.
Because the localization method proposed in this paper does
not require complex communication with anchor or neigh-
boring nodes and only receives beacon data frames from
the base station and is therefore less energy-intensive. In
contrast, the localization method proposed in literature
[16] requires communication with at least three surrounding
anchor nodes and therefore consumes more energy than the
method proposed in this paper. The actual experimental
setup is deployed as shown in Figure 14. It is an outdoor
Wifi Base Station with antenna.

5. Conclusion

As current wireless sensor network localization methods rely
on anchor nodes or require complex data interaction to
achieve localization, this paper proposes a localization
method that does not require anchor nodes. The method
uses base station steering antennas and interacts with the
nodes to achieve node localization, and the experimental
results show that the proposed method achieves good posi-
tioning accuracy and is of low energy consumption. In the
future, we would further investigate the node localization
method when the rotation angle of the steering antenna
changes irregularly.
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This paper takes the airport terminal area as the main research content and combines genetic algorithm with airport terminal area
analysis theory to analyze and study the traffic scheduling in the airport terminal area. Based on the study of traditional traffic
scheduling techniques and key techniques of genetic algorithms, this paper participates in the actual project of genetic
algorithm-based traffic scheduling, analyzes the requirements of the project, focuses on the design and implementation of the
traffic scheduling algorithm module in the genetic algorithm-based traffic scheduling system, and conducts further research on
the pathfinding by constraints submodule. In this paper, the flight approach and departure sequencing problem and runway
allocation problem are the main research objects. The dynamic optimal scheduling model of flight approach and departure is
established by considering the interests and demands of airlines and airports, and a new scheduling algorithm is proposed. In
this paper, a brief introduction to the airport terminal area is given, and the feasibility of the approach/departure optimal
scheduling is introduced from the perspective of airlines with a long-range parallel two-runway airport as the research
background. Secondly, through the analysis of the flight approach and departure process and the study of the approach and
departure cooperative optimization strategy, a single-runway flight approach and departure traffic scheduling model under the
joint sequencing strategy is established with the optimization objective of minimizing the total flight delay time, and the model
is solved by using the sliding time window algorithm. Then, based on the single-runway scheduling model, a multirunway
multiobjective flight optimal scheduling model is established with the objectives of minimizing total delay time, increasing
runway throughput per unit time and fairness of flight delay time allocation, and a dynamic algorithm (STW-GA) combining
sliding time window algorithm and dual-structured chromosome genetic algorithm is proposed to solve the model.

1. Introduction

With the rapid development of China’s economy, the scale
of the civil aviation industry is expanding; although the level
of protection of all parties is constantly improving, the huge
transport demand still brings many problems of unbalanced
and uncoordinated development to the civil aviation indus-
try, the use of airspace structure is becoming increasingly
complex and diversified, and simple analysis and rough
planning are no longer able to meet the requirements of
safety and efficiency [1]. In addition, the root cause of
ATC problems in flight delays is unreasonable airspace
structure and inadequate overall airspace planning, so more
accurate forecasting and long-term planning are fundamen-

tal methods to avoid flight delays, and in the airspace of
dense and busy terminal areas of airports, there is a greater
need for planning and management to keep up with the
times. Therefore, airspace restructuring and operational
optimization need to move from rough management based
on experience to a refined management model based on sci-
entific analysis, evaluation, and verification. In the State
Council’s opinion on promoting the development of civil
aviation, it is stated that the structure of air routes in busy
areas and the airspace structure of airport terminals should
be scientifically optimized [2]. In addition, there is a growing
demand for new airports in busy terminal areas. In 2020, the
total number of civil airports in the layout plan reaches 244,
including 97 new airports, and the number of new airports

Hindawi
Journal of Sensors
Volume 2022, Article ID 7926335, 13 pages
https://doi.org/10.1155/2022/7926335

https://orcid.org/0000-0003-3200-2687
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7926335


in busy terminal areas is also increasing [3]. The main
influencing factor of air traffic network congestion is the
“bottleneck” effect caused by the capacity constraints of air-
ports, terminal areas, and route intersections, and the termi-
nal area, as one of the subsystems of the ATC system, is in a
sense the most complex subsystem in terms of operational
status. The airspace has a complex route structure, limited
airspace resources, flight flow, and control difficulties, which
become the bottleneck of the whole airspace efficiency [4].
Airspace planning is an important element in the field of air-
space design and management and is an important method
to improve airspace operational efficiency and air traffic ser-
vice quality. The main influencing factor of air traffic net-
work congestion is the “bottleneck” effect caused by the
capacity constraints of airports, terminal areas, and route
intersections. As one of the subsystems of the air traffic con-
trol system, the terminal area is, in a sense, one of the most
complex subsystems; this airspace has complex characteris-
tics such as complex route structure, limited airspace
resources, and difficulty in-flight flow and control, which
has become a bottleneck for improving the efficiency of the
entire airspace. The research on how to reasonably plan
the airspace of new airports in busy terminal areas is an
important means to solve the effective allocation of airspace
resources and alleviate the pressure on airspace, which is of
great significance to improve the airspace management
capacity of terminal areas in China. Therefore, this paper
starts from the perspective of terminal area airspace plan-
ning, predicts the number of takeoffs and landings of air-
ports in the busy terminal area and the distribution of
flight traffic OD in the terminal area, establishes a terminal
area route network optimization model based on the layout
of waypoints, and ensures that the terminal area airspace
can provide safe and efficient services for users.

Traffic scheduling is the problem of optimizing resource
allocation for complex data flows in a cloud data center
when sharing network resources and is directly related to
the network transmission performance of applications with
differentiated performance requirements in cloud data cen-
ters. Therefore, traffic scheduling has been the focus of
industry and academia. To improve the convergence perfor-
mance of the genetic algorithm, researchers apply various
complex network models to the population structure design
of the genetic algorithm and analyze how different popula-
tion structures affect the performance of the genetic algo-
rithm. With the explosive growth of cloud data center
tenants and applications, cloud data center applications
show significant differentiation in performance require-
ments. For example, some applications (e.g., online sales,
web search, securities trading, and other services) have very
small data traffic, typically a few kb to a few hundred kb [5].
These small chunks of data streams are very sensitive to
latency during network transmission, and often a very small
transmission delay can result in a large loss of revenue. Some
other applications (e.g., data analysis, storage backup, virtual
machine migration, and other services) generally have very
large data traffic. These applications have little requirement
for transmission latency, but because their data traffic is gen-
erally very large, they need to occupy a large amount of

bandwidth in the cloud data center to achieve network
transmission. In practical application, the genetic algorithm
does not have high requirements on the model of the opti-
mization problem, and it also has good adaptability to the
ambiguity of data when solving. It has been well applied in
real life and is an efficient global search. The optimal algo-
rithm has the advantages of strong applicability, strong
robustness, and high efficiency. On the other hand, the lack
of effective isolation of different application data streams in
cloud data centers makes these data streams with differenti-
ated performance requirements must compete for the same
network resources frequently, thus posing a great challenge
to cloud data center traffic management.

As a typical representative of the search algorithm that
simulates the superiority and inferiority in nature, the
genetic algorithm is fundamentally similar to a complex sys-
tem; this system consists of a large number of individuals,
and the individuals in the system interact with each other,
thus having a large impact on the nature of the system; in
other words, the population structure of the genetic algo-
rithm has a significant impact on the transmission of genetic
information in the population. The population structure of a
genetic algorithm can adjust the propagation of genetic
information in the population, thus having a significant
impact on the convergence performance of the genetic algo-
rithm [6]. To improve the convergence performance of
genetic algorithms, researchers have applied various com-
plex network models to the design of population structures
of genetic algorithms and analyzed how different population
structures affect the performance of genetic algorithms. The
researchers classified these population topologies into two
types: stationary and kinematic structures. For genetic algo-
rithms that simulate natural evolutionary processes, the sta-
tionary structure does not reflect the changing interactions
between individuals in the population, so it can limit the
performance improvement of genetic algorithms [7]. The
study of the kinematic structure is divided into two main
categories: one is to adopt the corresponding adaptive
scheme for the genetic algorithm and improve the structure
according to the existing network model, and the other is to
improve the original network structure according to the
individuals in the population. In a sense, the real world
can be seen as a relatively complex self-organizing complex
network, and if the computational process of genetic algo-
rithms can be designed according to the evolutionary pro-
cess of self-organizing dynamic networks in the real world,
the individuals in genetic algorithms can interact with each
other like a biological population in nature. A genetic algo-
rithm is a heuristic algorithm based on the genetic evolution
mechanism of the natural population, which is widely used
in global optimization search. It is different from the tradi-
tional search method. It randomly searches the target space
by simulating the biological evolution process in nature.
Moreover, the theory of complex networks can open new
directions for the study of genetic algorithm performance
improvement, so genetic algorithms can be analyzed and
designed from the perspective of complex networks. How-
ever, few existing studies combine complex networks with
genetic algorithm performance improvement, and the study
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of genetic algorithm analysis and design based on complex
network theory has significant research significance for
genetic algorithm performance improvement. Complex net-
work theory has been widely used in virtual communities,
transportation systems, disaster spreading, and other fields.

2. Related Works

As an important area connecting the two sides of the air-
space, the terminal area airspace has been studied in many
developed countries. Mc Conkey firstly planned the airway
network from two different perspectives of aircraft flight
and control to meet the needs of both airspace users and
studied the airway network in the terminal area and transi-
tion area by comparing the structure of the airway network
under terminal area and normal flight [8]. In 2001, the
“National Airspace System Operation Development Plan
2001-2010” was released to solve the problems of route con-
gestion and airport congestion caused by various reasons
and proposed measures to improve the security capacity of
airport terminal areas by using ground-air data link and
regional navigation. In 2007, the FAA found that airspace
is another important factor, in addition to runways, limiting
the capacity of airports, and explored the effect of increasing
or improving air traffic control procedures and redesigning
airspace structures on improving airport capacity [9]. Dual
Serhan incorporates airline and passenger delay costs into
an integrated airport ground and terminal airspace traffic
management system, and Stavros Sidiropoulos constructs a
framework for dynamic approach and departure routes to
a multiairport terminal area, which leads to a significant
improvement in the efficiency of the multiairport terminal
area system [10]. In 2009, Hui Zhang established a terminal
area Voronoi finite element profile model based on flight
segments and combined traffic forecasting with route net-
work optimization for sector classification, and proposed a
“flight segment” theory for the characteristics of terminal
area flight paths. In the same year, Rui Zhou proposed the
“flight segment” theory for the characteristics of the terminal
area flight path. In the same year, Rui Zhou conducted an in-
depth and systematic study on the optimization of terminal
airspace structure, proposed a terminal airspace route
dynamic management model based on the principle of eco-
nomic optimality, and established an evaluation system to
evaluate the operational capacity and status of the route net-
work. 2014, Li Yinfeng combined the analysis of the factors
affecting terminal area capacity, established three types of
terminal airspace resource allocation strategies to improve
the guarantee capacity of the terminal area, which are run-
way operation mode adjustment, route structure optimiza-
tion, and traffic flow optimization, and established a
terminal area airspace resource allocation strategy evaluation
model. Previous studies on terminal area airspace focused on
traffic flow prediction, airport capacity assessment, flight
approach and departure sequencing, etc., but less research
was conducted on the overall planning of airspace in busy
terminal areas.

The early (the early 1990s) traffic scheduling technology
used in router-based core networks was Native IP. Native IP

changed the path of service traffic by simply adjusting the
routing weights/attributes of the interior gateway protocol
(IGP) or by issuing access control list (ACL) policies on
the router side. The ACL policy was issued at the router side,
in order to change the path of service traffic and realize traf-
fic scheduling. Fewer studies related to the aspect of airport
scheduling for traffic scheduling algorithms are mostly
focused on the study of heuristic algorithms. To minimize
the delay cost, Xiaohang Cheng solves the single-runway
entry scheduling problem by the essence adaptive genetic
algorithm and optimizes the entry sequence of flights and
the entry moment. To reduce the total flight delay time
and cumulative landing time, a backtracking and
swapping-based flight approach sequencing model is pro-
posed [11]. The model effectively utilizes the spare time slots
by the backtracking method and then determines the flight
exchange rules by the cumulative landing factor and the
delay factor. And the optimal values of the backtracking fac-
tor and weights are calculated through several simulations
[12]. With the research objective of reducing the total flight
delay time and increasing the airport capacity, the fusion
backtracking algorithm is proposed based on the location-
constrained exchange algorithm and the airway flow control
model.

The genetic algorithm was first proposed by Professor J.
Holland in 1975 in his monograph “Adaptation in Nature
and Artificial Systems,” which is a class of optimization algo-
rithms that simulate natural selection and meritocracy in
nature [13]. Genetic algorithms have no high requirements
for the model of optimization problems in real-life applica-
tions, they also have good adaptability to the ambiguity of
data in solving them, and they are well used in real life as
an efficient global optimization-seeking algorithm with the
advantages of high applicability, robustness, and efficiency.
Well-adapted in real-life applications, it is an efficient global
optimization-seeking algorithm with the advantages of high
applicability, robustness, and efficiency. In practical applica-
tions, the standard genetic algorithm has many defects in
maintaining population diversity, convergence accuracy,
and convergence speed, which limit the development and
application of genetic algorithms. Therefore, researchers
have improved genetic algorithms in terms of parameter
improvement and optimization, scheme adjustment, hybrid
genetic algorithms, and improved neighborhood topology
[14]. In terms of improvement and optimization of parame-
ters and adjustment of the scheme, a new improved genetic
algorithm is proposed, whose fitness function can change
with individual states, while the variation operation is
adjusted in the genetic algorithm, and it is experimentally
found that the performance of the improved genetic algo-
rithm is significantly improved, which makes the efficiency
of solving complex problems significantly improved. To deal
with optimization problems with large dimensions, an
improved genetic algorithm is proposed. The improved
genetic algorithm improves the strategy in selecting the ini-
tial population and adopts adaptive processing for the
assignment of individuals, uses three individual assignment
schemes, and applies the new strategy in selecting the initial
population. It is found that the improved genetic algorithm
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greatly improves the convergence speed of the algorithm and
effectively improves the solution performance of the genetic
algorithm. The operation operators of the genetic algorithm
were optimally adjusted, the crossover and mutation opera-
tions in the genetic algorithm were adaptively processed,
while the corresponding formulas were reasonably adjusted,
and the elite retention strategy was optimized with a more
reasonable and effective scheme. It is found that the
improved genetic algorithm greatly reduces the production
cost while effectively reducing the optimization time. In the
research of combining with other algorithms, the standard
genetic algorithm is combined with the particle swarm algo-
rithm, and the improved algorithm carries out special reten-
tion for the elite individuals, and the particle swarm
algorithm further optimizes the processing of the elite indi-
viduals, and the experiments find that the combination of
the two algorithms effectively improves the performance of
the algorithm. In recent years, with the popularity of the
Internet and the rapid development of artificial intelligence
algorithms, its application areas are also more and more
extensive, in which the aerospace path planning problem
can also be solved by artificial intelligence algorithms. A
genetic algorithm is a common method for production
scheduling problems. In many cases, the mathematical
models established for production scheduling problems are
difficult to solve accurately. After some simplifications in
time, the solution can be solved, and the solution results
are too different from the actual because of too much simpli-
fication. A genetic algorithm is an effective tool for solving
complex scheduling problems. Genetic algorithms are char-
acterized by strong robustness and outstanding global search
capability and perform well in performing problem-solving
[15]. Intelligent optimal collision avoidance techniques
formed using genetic algorithms are used to solve the path
planning problems, and the optimal fitness function is
obtained by finding the optimal path points. An aircraft
motion model is incorporated into the path planning for
spaceflight, which can roughly evaluate the aircraft motion
under the influence of external conditions.

3. Research on Airport Terminal Area Traffic
Scheduling Model Based on Improved
Genetic Algorithm

3.1. Improved Genetic Algorithm Design. A genetic algorithm
is a heuristic algorithm based on the mechanism of the
genetic evolution of the natural population, which is widely
used with global optimization search. It differs from tradi-
tional search methods by simulating the biological evolution
process in nature and performing a stochastic search of the
target space. The genetic algorithm simulates the genetic
phenomena of selection, crossover, and mutation in the pro-
cess of natural selection and natural inheritance in Darwin-
ian biological evolution, retains some candidate
chromosomes in each iteration, selects the best performing
chromosomes from these chromosomes according to certain
indicators, uses selection, crossover, and mutation to com-
bine these chromosomes again to produce a new generation

of chromosomes, and repeats until a chromosome is found
that meets the target. The core idea is survival of the fittest,
i.e., the better solutions are retained and passed on to the
next generation, and the worse ones are eliminated [16].
Genetic algorithms provide a general framework for solving
optimization problems for complex systems, which does not
depend on the specific domain of the problem and is robust
to the type of problem, so the method is widely used in var-
ious disciplines. For example, in function optimization: for
some nonlinear, multimodel, multiobjective function opti-
mization problems, which are difficult to solve by other opti-
mization methods, genetic algorithms do facilitate better
results. A genetic algorithm is a common method for pro-
duction scheduling problems. In many cases, the mathemat-
ical model established for production scheduling problems is
difficult to solve accurately, and even after some simplifica-
tion, the solution can be solved too far from the actual result
due to too much simplification. A genetic algorithm is an
effective tool for solving complex scheduling problems.

3.1.1. Coding. The primary problem of applying a genetic
algorithm is coding, which is the conversion of text, num-
bers, or other objects into a computer-recognizable language
according to specified guidelines. The design of coding
directly affects the successful operation of the algorithm, as
well as the design of crossover operations, mutation opera-
tions, selection operations, and the evolutionary efficiency
of the algorithm in genetic algorithms. The encoding of the
genetic algorithm is to establish the mapping relationship
between the genotype space of the expression space domain,
as shown in Figure 1. Decoding, on the other hand, is the
inverse process of encoding, converting computer language
into human-understandable text. The topology management
module inputs the topology information into the module,
the policy management module also takes the policy condi-
tions as the input of the module, and the traffic scheduling
algorithm module selects one or more paths according to
the traffic scheduling algorithm after acquiring the input
information. The path planned by the traffic scheduling
algorithm is the path that conforms to the policy and costs
as little as possible. If no path that conforms to the policy
is found, suboptimal pathfinding or priority preemption is
performed as needed. This module mainly includes submo-
dules of pathfinding according to constraints, multipath
pathfinding, and priority preemption.

Through the analysis of the multirunway flight schedul-
ing problem, it is known that the solution of the flight sched-
uling model is the optimal flight scheduling sequence and
the corresponding approach and departure runways of the
flights. Therefore, considering this feature of the solution
of the flight scheduling model, this paper adopts a dual
structure coding method in the coding of chromosomes
The first structure is the flight information, which represents
the queuing sequence of flights, and the second structure is
the runway information, which represents the takeoff and
departure runways of corresponding flights. Since the simu-
lation information of the arithmetic example in this paper is
based on parallel dual runways, the traditional numerical
coding method is used in this paper, with 0 and 1
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representing the two runways, respectively. But for the flight
sequence chromosome, if the binary encoding is used to
encode, it will generate meaningless encoding after the selec-
tion, crossover, and mutation operation regrets, which
causes encoding mismatch and leads to the algorithm cannot
continue to solve. Similarly, the same problem occurs if the
original flight sequence number is encoded directly. There-
fore, in this paper, GreenStreet codes are used to encode
the flight sequence chromosomes in the first layer to ensure
that no meaningless chromosomes are generated after the
evolutionary operation and to reduce the complexity and
difficulty of the algorithm.

3.1.2. Fitness Function. Genetic algorithms are heuristic
algorithms, an intuitive or empirically constructed algorithm
that does not rely on external information to validate the
results during the search but rather calculates the fitness of
feasible solutions as an important basis for evaluating the
merit of chromosomes by including a fitness function in
the algorithm. Also, the magnitude of chromosome fitness
is used as an important basis for the probability of chromo-
somes being selected in the selection operation. Chromo-
somes with large fitness can be inherited to the next
generation with greater probability, and conversely, chromo-
somes with small fitness lose their competitive advantage
and have low selection probability. Limited by the planned,
controlled, and fluctuating characteristics of traffic demand,
empirical methods can only simply reflect the static map-
ping relationship between traffic flow parameters under cer-
tain operating scenarios and lack of in-depth exploration of
the macrodynamic evolution of traffic flow under different
congestion levels. The database of its influence mechanism.

Therefore, the correct construction of the fitness function
directly affects the convergence result of the genetic algo-
rithm and its convergence speed. And in general, the fitness
function can be obtained directly by the transformation of
the objective function. If the solution objective is a maximi-
zation problem, the fitness function is Fitnessð f ðx1ÞÞ = f ðx1Þ
, and if the solution objective is a minimization problem, the
fitness function is Fitnessð f ðx1ÞÞ = f ðx1Þ. However, since the
model constructed in this paper is the objective minimiza-
tion problem, and the selection operation in this paper is
the choice of roulette wheel selection, the probability cannot
be negative, so this paper adopts the bounds construction
method and takes the inverse of the objective function as
the fitness function for solving the minimization problem.
And to prevent the denominator from being 0, a constant
1 is added to the denominator. In summary, the fitness func-
tion in the genetic algorithm is

Fitness f x1ð Þð Þ = f x1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f x1ð Þ − 1

p : ð1Þ

3.1.3. Selection. The selection operation involves replicating
chromosomes from a contemporary population into the
next generation population with probability proportional
to fitness. That is, chromosomes with higher fitness are bet-
ter adapted to their environment and have a greater chance
of replication. To make the optimal solution well preserved,
this paper performs the selection operation using the best-
preserved selection method. The roulette wheel selection
method is used to select and preserve the individuals with
higher fitness function values in the current population.
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Figure 1: Genetic algorithm coding and decoding.
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The roulette wheel selection method is used to sum the fit-
ness of all chromosomes in the contemporary population,
and the chromosomes are transformed into selection proba-
bilities in proportion to their fitness Pc. The principle of the
transformation method is shown in Figure 2.

The traditional genetic algorithm encodes all the flight
information, which makes the chromosome design compli-
cated and computationally inefficient when the number of
flights is large. The problem of coordinated release based
on airport priority in the terminal area of multiple airports
under an airport is newly added. A dual objective function
is established to minimize the total flight delay cost and total
delay time, and a multiairport coordinated release model
based on airport priority is constructed considering the
delay classification, and the multiobjective linear decreasing
particle algorithm (LD-MPSO) is used to solve the model.
And flight scheduling is a dynamic process, new flights will
be added at any time, and the traditional genetic algorithm
cannot be changed once the encoding is successful [17].
And the sliding time window algorithm studied in the previ-
ous chapter, although it is dynamic, for multirunway schedul-
ing, not only need to assign flight approach and departure
sequence and approach and departure time but also need to
assign flight approach and departure runway, so the complex-
ity of enumerating and arranging the flights in the time win-
dow will be greatly increased. Therefore, this paper combines
the genetic algorithm and the sliding time window algorithm,
combines the advantages of both, and designs an improved
dynamic genetic algorithm. The algorithm steps are as follows.

Step 1. Output the initialization queue with the first w
aircraft of the FCFS algorithm as the initial time window

Step 2. Based on the flight information in the time win-
dow, a two-layer structured chromosome coding is used to
encode and generate the primitive population

Step 3. Calculate the fitness of individuals within the
population

Step 4. Selection, crossover, and mutation operations are
performed on chromosomes to generate a new generation of
populations

Step 5. Determine if the genetic algorithm termination
condition is satisfied; if so, continue to Step 6, and if not,
skip Step 3

Step 6. Determine whether the time window reaches the
right boundary; if it does, the final scheduling result is out-
put, if there are still flights after the window, the optimiza-
tion window is moved backward by s steps, and the
remaining w-s aircraft in the previous window with the
newly added s aircraft generates a new window consisting
of w aircraft, jumping to Step 2. The flow chart of the algo-
rithm is shown in Figure 3

3.2. Airport Terminal Area Traffic Scheduling Modeling. The
strength of the terminal area route network structure affects
whether the terminal area airspace can be operated safely
and efficiently and whether the cost is reasonable. Way-
points are the connection points of various flight segments
in the route network, and their spatial layout is the key to
the topological characteristics of the route network [18].
Waypoints are the intersection of multiple flight paths,
which can easily cause conflicts when multiple aircraft enter
or breakaway, and determine the safety of air operation, and
the spatial location of waypoints directly determines the
operation cost of the flight path network, so the problem
of flight path network optimization usually starts from the
study of waypoint layout optimization. The waypoint layout
problem is a mathematical problem to determine the opti-
mization objectives, make them meet the established con-
straints, establish the corresponding optimization model,
design a reasonable and effective algorithm to dynamically
adjust the spatial geographic coordinates of waypoints, and
finally optimize each optimization objective of the waypoint
network. Another purpose of designing the double-crossing
operator genetic algorithm is to accelerate the convergence
speed of the algorithm; through the data statistics, the
change curve of the sum of squares of the cost of each flight
delay is shown in Figure 4. By analyzing the characteristics
of the airway network in the terminal area, the problem of
location selection of the new airport and the optimization
of the airway network are transformed into the optimization
of the waypoint layout, which is abstracted into the network
topology structure composed of points and lines. Then a
multiobjective optimization model that considers both econ-
omy and safety is established, with the constraints of not
generating new intersections and selecting in characteristic
regions.

Realistic problems can be expressed by the mathematical
models developed, but the reality is often so intricate that the
actual state cannot be fully reduced. The air-ground traffic
network in the terminal area, as a special traffic network sys-
tem that conveys flight flows, has nodes including airports,
waypoints, and handover points. In this paper, as a theoret-
ical study, to simplify the actual problem, reasonable
assumptions are made to translate the important features
of the research object into the mathematical language to
describe it. Therefore, this paper uses the abstraction G = ð
A, B,NÞ of the topology of the airway network to represent
the airway network in the terminal area of the study. With
the rapid development of my country’s economy, the scale
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Figure 2: Transformation diagram of selection probabilities and
fitness values.

6 Journal of Sensors



of the civil aviation industry has continued to expand;
although the level of support for all parties has continued
to improve, the huge transportation demand still brings
many problems of unbalanced and uncoordinated develop-
ment to the civil aviation industry, and the use of airspace
structure is becoming increasingly complex and diversified.
With the increasing complexity and diversity, simple analy-
sis and extensive planning can no longer meet the require-
ments of safety and efficiency. A indicates the set of airport

points and boundary points in the terminal airway network
that needs to be constructed, and since the boundary points
have the same characteristics as the airport points, which
both generate and absorb traffic, the boundary points and
airport points are regarded as immovable points; B indicates
the set of airway points in the terminal area as the optimiza-
tion B denotes the set of waypoints in the terminal area, as
the object of optimization in this paper, has movability; N
denotes the set of flight segments in the route network.
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min d =
ð
i=1

ð
j=1

f ijdij+
ð
f ij: ð2Þ

In the terminal area route network optimization model
established in this paper, the following premise assumptions
are made: (1) all inbound and outbound flights in the termi-
nal area fly according to the route structure, without consid-
ering the flight situation outside the route structure; (2) all
aircraft fly at the same speed and uniform speed in the cen-
ter of the route, without considering the overtaking and
changing altitude layer situation, and without considering
the type and performance differences; (3) since the research
content of this thesis is terminal area route network plan-
ning, the scope is the approach and departure route network,
so the route network can be seen as two-dimensional to
study. (4) Aircraft are treated as an unconditional straight-
line flight between node pairs, and the cost of the route net-
work depends on the cost of each route. (5) To avoid the
model solution from getting upside down in the planning
and not being able to arrive at an optimal solution, each
waypoint is allowed to search in a two-dimensional square
space centered at its original position, with the range of
square sides being 30 km. For the terminal area waypoint
layout problem, the model can be described as follows: with
the initial route network G = ðA, B,NÞ and the flight traffic
distribution of each node known, adjust n waypoint loca-
tions in a given region to satisfy the maximum economy
and safety of the route network and the best airline mobility
and passenger experience. According to the above definition,
the objective function of this mathematical model can be
expressed as

min d = 〠
i

n=1
〠
i

n=1
f idj

min e = x
f1 f2
v

sin 1
2

min θ =
ðv
j
∂ij:

8>>>>>>>>><
>>>>>>>>>:

ð3Þ

The traffic scheduling algorithm module is the core of
the traffic scheduling system and is the focus of this paper.
The topology management module inputs the topology
information into this module, the policy management mod-
ule takes the policy conditions as input to this module as
well, and the traffic scheduling algorithm module selects
one or more paths according to the traffic scheduling algo-
rithm after obtaining the input information. The path
planned by the traffic scheduling algorithm is the path that
conforms to the policy and costs as little as possible, and if
a path that conforms to the policy cannot be found, then
suboptimal pathfinding or priority preemption is performed
on demand [19]. The main submodules under this module
are pathfinding by constraint, multiple pathfinding, and pri-
ority preemption. Traffic scheduling is the problem of opti-
mal resource allocation for complex data flows in cloud
data centers when sharing network resources and is directly

related to the network transmission performance of applica-
tions with differentiated performance requirements in cloud
data centers. The main algorithm of pathfinding by con-
straint is a multiconstraint multiobjective pathfinding algo-
rithm, which is a pathfinding algorithm under multiple
constraints, where the multiple constraints include delay, jit-
ter, packet loss rate, and bandwidth. The purpose of multiple
pathfinding is to find multiple alternative paths between the
source nodes to the destination node in the network to meet
the user’s selection needs for different paths. Priority pre-
emption is to release the link resources occupied by low-
priority service applications to plan paths for high-priority
service applications when the paths cannot be computed
by the multiconstraint multiobjective routing algorithm,
and the system allows priority preemption. The overall
design of the traffic scheduling algorithm is first described
below. The demand for mandatory nodes, mandatory links,
disabled nodes, and disabled links occurs in the actual net-
work. The traffic scheduling algorithm first determines
whether the required or disabled node links are needed, then
performs pathfinding by constraint, and when the path plan-
ning by constraint fails and path preemption is allowed, pri-
ority preemption is performed to preempt the link resources
occupied by the low-priority service flow. Figure 5 shows the
overall flow design of the traffic scheduling algorithm. A
waypoint is the intersection of multiple routes. When multi-
ple aircraft enter or break free, it is easy to cause conflict,
which determines the safety of air operations, and the spatial
position of the waypoint directly determines what the route
network is. Therefore, the route network optimization prob-
lem usually starts from the route network. Start with
research on layout optimization.

4. Analysis of Results

4.1. Improved Genetic Algorithm System Analysis. Although
the genetic algorithm has strong global searchability, the
local searchability of the method is very poor, for the weak
local searchability of the genetic algorithm “persistent prob-
lem,” affecting the accuracy of the final search results of the
algorithm, and the reactive optimization problem is nonlin-
ear. In this paper, we introduce a nonlinear programming
function, which has a strong local searchability in dealing
with the nonlinear problem with constraints to find the min-
imum value. First, we use a mathematical multivariate func-
tion to perform a simple test of the improvement effect of
the improved genetic algorithm proposed in this paper,
and since f ðxÞ is a multivariate function in mathematics,
we can calculate the minimum value of the also function as
2. Taking f ðxÞ as the objective function, we use the simple
genetic algorithm with the improved genetic algorithm pro-
posed in this paper to find the minimum value of this func-
tion as follows.

f xið Þ = sin x1 sin x2 sin x3 sin x4
sin 5x1 sin 5x2 sin 5x3 sin 5x4

: ð4Þ

The process of the improved genetic algorithm is some-
what different from that of the simple genetic algorithm. Its
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basic process first requires calculating the initial trend by PQ
decomposition method, encoding the problem variables
using a hybrid approach, and then calculating the fitness
value of each individual in the population and secondly
using the improved genetic algorithm to perform genetic
operations to generate the new generation of individuals,
in which the minion function is used to perform a nonlinear
search for the optimum whenever the number of genetic
generations is an integer multiple of 10 until the termination
condition is satisfied to stop the genetic iteration process and
output the optimal solution at this time as the global optimal
solution. The genetic algorithm iteration diagram is shown
in Figure 6.

The empirical traffic flow basic diagram effectively por-
trays the correlations of traffic flow parameters under real
traffic demand and the characteristics of network supply
and demand dynamics in the terminal area. However, lim-
ited by the planned, controlled, and fluctuating characteris-
tics of traffic demand, the empirical method can only
simply reflect the static mapping relationships among traffic
flow parameters under certain operation scenarios and lacks
the data basis to deeply explore the macroscopic dynamic
evolution of traffic flow and its influence mechanism under
different congestion levels. Given this, this section relies on
the constructed traffic flow simulation platform in the termi-
nal area and adopts the manual adjustment of parameters to
reveal the spatial and temporal characteristics of the
approach and departure traffic flow and its evolution law,
analyze the sensitivity of the traffic flow phase threshold to
the traffic flow operational parameters, and provide a theo-
retical basis for the design of the approach and departure
air-ground integrated real-time control method. Under the
simulation parameter environment, the traffic flow ratio of
each approach and departure point is kept constant, and
the traffic scenarios under the independent operation of
the approach and departure field are designed in incremen-

tal steps of 0.1 vehicles/minute, and the duration of each sce-
nario is 8 hours of continuous service request [20]. Based on
the constructed CTM platform, we simulate the evolutionary
trajectory of the macroscopic basic diagram of inbound/
departure traffic flow under different scenarios, to reveal
the characteristic patterns of traffic flow congestion evolu-
tion in the terminal area. For the genetic algorithm that sim-
ulates the natural evolution process, the static state structure
cannot reflect the changing interaction relationship between
the individuals in the population, so it will limit the perfor-
mance improvement of the genetic algorithm. The research
on the kinematic structure is mainly divided into two cate-
gories: one is to use the corresponding adaptive scheme for
genetic algorithm and improve the structure according to
the existing network model and the other is to use the orig-
inal network structure according to the situation of the indi-
viduals in the population make improvements. According to
the general transportation flow congestion evolution charac-
teristics, combined with the critical traffic demand and
demand change trend, three states of traffic congestion evo-
lution in the terminal area are classified: (a) formation state:
traffic demand continues to grow and is smaller than the
critical demand, network throughput grows linearly with
traffic demand, and traffic flow has a congestion formation
trend but operates stably; (b) accumulation state: traffic
demand reaches and exceeds its critical, network throughput
tends to; (b) cumulative state: traffic demand reaches and
exceeds its threshold, network throughput tends to saturate
and decreases to some extent, and traffic flow congestion
keeps increasing; and (c) dissipation state: traffic demand
in the airspace gradually decreases, and traffic flow shows
slow or rapid dissipation depending on the degree of net-
work congestion. To deal with the large dimension of the
optimization problem, an improved genetic algorithm is
proposed. The improved genetic algorithm improves the
strategy when selecting the initial population and adopts
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adaptive processing for the allocation of individuals. Three
individual allocation schemes are used, and a new strategy
is applied when selecting the initial population.

C t1ð Þ =min
ð
me

ð
f m

ð
t
cf sin t fdc − t fec

� �
: ð5Þ

The FCFS algorithm, traditional genetic algorithm, seg-
mented genetic algorithm, and STW-GA algorithm are com-
piled using PYTHON3 and solved by simulation with the
algorithm examples. The results demonstrate that both the
traditional genetic algorithm and STW-GA algorithm can
significantly reduce the total delay time and increase the
runway throughput efficiency compared with the FCFS algo-
rithm, and the delay time is more equitably distributed. The
STW-GA algorithm is also dynamic, feasible, and efficient.
Traffic scheduling is a very important issue in cloud data
centers and has been a challenge. The current traffic sched-
uling schemes in cloud data centers go to two extremes.
Information agnostic schemes have a wide range of applica-
bility and good deployability; however, they have very lim-
ited effectiveness in optimizing the performance of
network transport. While information-aware traffic schedul-
ing solutions achieve excellent network performance, they
severely neglect the scope of the solution itself, and most
information-aware traffic scheduling solutions require cus-
tom switches, making them not only very limited in scope
but also difficult to deploy in current cloud data centers.

4.2. Airport Terminal Area Traffic Scheduling
Implementation. By analyzing the characteristics of the air-
way network in the terminal area, the problem of siting
new airports with airway network optimization is trans-
formed into the problem of airway point layout optimiza-
tion, which is abstracted into a network topology

composed of points and lines [21]. Then a multiobjective
optimization model that considers economy and safety is
established, with the constraints of not generating new inter-
sections and selecting in the characteristic area. Afterward,
an example analysis is conducted to process the airspace
data within the terminal area of Shanghai, traffic data pre-
processing, and position transformation coordination, and
the differential evolutionary algorithm solution procedure
is written using the MATLAB software, resulting in 19 way-
point locations being optimized, which proves the practical
significance and feasibility of considering the location of
the new airport site from the perspective of optimal route
network in the terminal area (see Figure 7 for the clustering
effect).

Based on the complex dynamic characteristics of traffic
flow in the terminal area, the air-ground traffic flow conges-
tion management solution for tactical operation is built from
the perspectives of both traffic flow and controllers, covering
“volume”-coordinated control of approach and departure
launch rates, “sequence”-multisector approach traffic flow
rate cooperative control, and “trace”-sector traffic flow hori-
zontal trajectory management under multiple constraints,
three major space-time overlapping functional modules,
respectively, using air-ground meta cell network microsimu-
lation platform, and terminal area airspace. The effectiveness
of the solution is verified by using three methods: a macro-
scopic simulation platform for air-ground meta cell net-
works, a microscopic fast simulation platform for terminal
area airspace, and a “human-in-the-loop” real-time simula-
tion experiment. Genetic algorithm provides a general
framework for solving complex system optimization prob-
lems; it does not depend on the specific field of the problem
and has strong robustness to the types of problems, so the
method is widely used in various disciplines. At the stage
when the trajectory-based operation has not yet been carried
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out, this solution can enrich and enhance the tactical/real-
time level of the terminal area congestion mitigation
methods and means for the external uncertain environment,
thus improving the control capability and the safety and effi-
ciency of traffic flow operation under congestion. It should
be noted that the sector traffic flow “sequencing” control in
this chapter only considers the first-come-first-served strat-
egy based on the sector flow rate, and further attempts can
be made to integrate with mature sequencing methods to
generate more optimal and reasonable arrival times for sec-
tor exit point control. At the same time, the horizontal tra-
jectory system can be extended to the network version and
fused with the “volume” and “sequence” control modules
to form a complete terminal area congestion decongestion
system, and the joint operation experiment of multiple sec-
tors in the terminal area can be designed for comprehensive
verification. In addition, the horizontal trajectory manage-
ment tool based on the inter-aircraft concept provides a
strong reference for the four-dimensional trajectory plan-
ning in real-time under certain performance optimization
objectives (fairness, economy, and efficiency) to support
the development of performance-based higher-order air
traffic management.

U j xi, xj
� �

=max
ij

U xi−j, xi+j
� �

: ð6Þ

For the problem of cooperative release based on airport
priority in the terminal area of multiple airports under the
addition of new airports, a dual objective function is estab-
lished to minimize the total delay cost and total delay time
of flights, a cooperative release model based on airport prior-
ity under consideration of delay classification is constructed,
a multiobjective linear decreasing particle algorithm (LD-
MPSO) is used to solve the model, and then an arithmetic
example under the addition of new airports in the terminal
area is. The simulation analysis is carried out to introduce

the operation of three airports in the terminal area, set the
airport priority, and finally find the multiairport cooperative
release strategy based on minimum delay time, based on
minimum delay cost and considering both delay time and
delay cost, respectively, and verify the validity of the model
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through analysis and comparison, so as to provide a theoret-
ical method and scientific basis for constructing a unified
cooperative release mechanism in the multiairport terminal
area. The comparison of the route network optimization
results is shown in Figure 8.

5. Conclusion

Along with the rapid development of China’s economy, the
development of the civil aviation industry has also ushered
in unprecedented opportunities and challenges. On the one
hand, the number of flights has been increasing. On the
one hand, the number of flights is increasing, the number
of airports is increasing, and the civil aviation industry is
thriving. On the other hand, however, airline congestion is
becoming increasingly serious, and if not properly
addressed, it will certainly hinder the progress of the aviation
industry. The problem of flight sequencing in the terminal
area has always been a key and difficult issue for research
in the field of aviation control; especially in this era of rapid
economic development, the phenomenon of congestion in
the terminal area is extremely serious. With the development
of the global air transport industry and the increasing num-
ber of aircraft, the flight sequencing problem has been cate-
gorized as an NP-hard problem. Genetic algorithms have
advantages such as high global search capability and poten-
tial concurrency in solving such problems but also possess
some disadvantages. By reading and studying the literature
related to solving flight sequencing problems with genetic
algorithms, it is found that simply setting the sequencing
goal to the shortest total flight landing time is an oversimpli-
fied goal and the practicality of the sequencing results is not
high. For the disadvantages of genetic algorithms such as
instability and prematureness, an adaptive genetic algorithm
is used to deal with it. At the same time, the convergence
speed of the algorithm can be improved. The implementa-
tion of the terminal area flight scheduling system is carried
out through the platform support provided by the national
ATC scenario simulation system, and the improved sorting
algorithm is applied to it. Through the analysis and compar-
ison of the sorting results, the algorithm improvement is
proved to be effective and achieves the research objectives.
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The fourth industrial revolution (industry 4.0) demands high-autonomy and intelligence robotic manipulators. The goal is to
accomplish autonomous manipulation tasks without human interventions. However, visual pose estimation of target object in
3D space is one of the critical challenges for robot-object interaction. Incorporating the estimated pose into an autonomous
manipulation control scheme is another challenge. In this paper, a deep-ConvNet algorithm is developed for object pose
estimation. Then, it is integrated into a 3D visual servoing to achieve a long-range mobile manipulation task using a single
camera setup. The proposed system integrates (1) deep-ConvNet training using only synthetic single images, (2) 6DOF object
pose estimation as sensing feedback, and (3) autonomous long-range mobile manipulation control. The developed system
consists of two main steps. First, a perception network trains on synthetic datasets and then efficiently generalizes to real-life
environment without postrefinements. Second, the execution step takes the estimated pose to generate continuous translational
and orientational joint velocities. The proposed system has been experimentally verified and discussed using the Husky mobile
base and 6DOF UR5 manipulator. Experimental findings from simulations and real-world settings showed the efficiency of
using synthetic datasets in mobile manipulation task.

1. Introduction

The use of autonomous mobile manipulators (AMM) has
grown in many industries with developments enabling these
systems to transport, organize, and process various assets.
The two main industries commonly utilize this technology
are manufacturing facilities and courier services that main-
tain a large inventory and benefit from efficient robots. To
evolve the performance in autonomy and versatility, applied
robots make use of several sensing technologies and control
algorithms. Two key steps are typically required to carry out
autonomous mobile manipulation tasks: firstly, perception
step based on sensor-fusion methods which are used to esti-
mate objects and perceive surroundings and secondly,
sensing-based robotic motion control technique. This sen-
sory network, however, leads to complex and expensive
robotic systems [1, 2].

Recent studies have aimed to use only vision sensors to
perceive the robot’s environment and gain adequate infor-
mation about target objects [3]. However, preparation of

training datasets requires effort and skills. As well as deep
convolutional network training is computationally expensive
and time-consuming [4]. Unlike 2D object detection, label-
ing 3D objects is a difficult task that requires a certain level
of expertise. Although the use of synthetic datasets in the
training of deep neural networks appeared and was dis-
cussed, it requires an endless supply of valuable prelabeled
training datasets that are produced in a responsible manner
[5]. Studies in [6] trained on synthetic and real-world data-
set collections, including fine-tuning efforts. As a result,
real-world applications of these methods are limited to
structured backgrounds.

Another set of visual perception studies [7–9] requires
complex vision-based setup to obtain the pose information
of target objects. A stereo vision algorithm was proposed
and tested in [3], using point cloud data from multiple stereo
systems and utilizing iterative closest points. Vision-based
mobile manipulator control was attempted in [10] using
evaluation policy and requiring off-line training step.
Minniti et al. in [11] addressed the whole-body control of
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mobile manipulator without considering tracking a target
object. Much of the latest studies [12] developed a mobile
manipulation system that included kinematic model where
a path planner, however, is still required.

Nevertheless, none of the prior works has demonstrated
a complete and continuous framework, for achieving 3D
visual servoing (VS) in mobile manipulator, based on
synthetic-trained deep neural network. A novel long-range
mobile manipulation system is proposed and verified in this
paper. This combines a visual perception network with a VS
technique for controlling robot motion. The system presents
an end-to-end framework of deep net-based 3D VS for
sophisticated robotic manipulation task. The perception net-
work constantly estimates the full pose of target object. It is
worthwhile to mention that perception network entirely
trains on synthetic (only RGB images) datasets and then suc-
cessfully generalizes to real-world experiments without post-
processing. To provide autonomous manipulation task,
outputs of perception network are directly fed to the VS con-
trol scheme.

The proposed system was successfully implemented in
the simulation environment as well as in real-world settings
using the 6 degrees of freedom (DOF) manipulator arm
mounted on 2DOF differential drive mobile base. The use
of synthetic datasets was applied in the context of 6DOF
object pose estimation from a single image and executed
robustly in 3D continuous AMM task. The findings have
shown the physical capabilities of generalization to novel
environments for the handling of light conditions and occlu-
sion variations.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews the related recent works. Section 3 illustrates
the modeling of the perception network for object detection
and pose estimation, manipulator, and visual servoing
model development. Section 4 shows experimentation
results with discussions. Lastly, the conclusions are set out
in Section 5.

2. Related Work

This section briefly highlights the recent methods of detect-
ing and estimating object’s pose for manipulation applica-
tions. In the meantime, the control techniques of mobile
manipulators are reviewed.

2.1. Target Pose Estimation for Visual Servoing Task. For
robots to work effectively in unpredictable surroundings,
they must understand the environment and possess ade-
quate information on target objects, such as object pose
information in the real world. Several studies use fiducial
marker as a reference point for location of target objects in
workspace. Additional research applied conventional com-
puter vision approaches to determine the location of the
target, for example, robot-object interaction tasks and
model-based and feature-based methods. However, many
inconveniences are associated with such methods such as
limited background structure and poor performance with
variations in lights and occlusion and require highly tex-
tured objects [13].

Robotic-object interaction task was conducted using
convolution neural network (CNN). Recent studies were
documented by Tekin et al. on single-shot network [9] and
other networks such as BB8 [8] and SSD-6D [7]. Other
works showed decent results and concentrated on problems
like occlusions and different lighting conditions. The pri-
mary issue of training data, however, is how to generate an
effective dataset. That presents sufficient variations for the
deep net to learn from a wide range of lighting and pose con-
ditions. Current labeling software like LabelFusion [14] has
useful functionality for 3D object labelling. However, as far
as we know, there is no simple and effective tool that helps
to generate real-life training datasets, which can be used
for 6DOF object pose estimation that is properly applied in
mobile manipulation applications. Due to this difficulty,
much of the existing studies presented systems for training
deep network based on synthetic datasets [15, 16]. Fine-
tuning efforts, however, are usually required to adjust the
predictions in real-life settings and eliminate a problem
known as reality gap. A recent solution was reported in
[17], in which synthetic data is domain-randomized in non-
realistic manner. Training datasets include varieties of
photorealistic and nonphotorealistic 3D backgrounds. This
technique reinforces the deep net’s understanding and pre-
pares it to deal with real-world scenarios. In this paper,
our perception network trains on only synthetic dataset that
was proved in [5] as the state-of-the-art, which also covers
adequate possibilities of various poses in different environ-
ments, for instance, excessive lighting or occlusions.

2.2. Mobile Manipulator Control. The configuration of the
mobile manipulator has advantage of mobility achieved by
the mobile base and dexterity executed by the manipulator.
This type of robot is more flexible for manufacturing than
any other traditional approach such as stationary manipula-
tors or limited automatic guided vehicles (AGV). Imple-
menting visual servoing control scheme into long-range
manipulation could be challenging when the robot continu-
ously operates in 3D space based on only visual features. In
pose-based visual servoing (PBVS) control techniques, the
measurement of the target is happening by utilizing the
vision feedback signal that controls the movement of robot
until the visual error becomes zero. Researchers in [18] used
a hybrid control scheme that used the strengths of image-
based and pose-based VS methods for aerial manipulation.
The polar and Cartesian parameters of a target object were
used in conjunction with a Jacobian equation to compute
the camera pose relative to the target object. This hybrid
method also creates an effective system for a manipulator
by resolving the rotational and translational issues during
object tracking [19]. The mobile manipulator configuration
typically creates redundant joints, which may inhibit its
functionality. Several published studies have established the
generic kinematic modeling of mobile manipulator configu-
ration. Researchers in [20] proposed metaheuristic algo-
rithms to enhance the kinematic solutions of mobile
manipulator designs. A different configuration for a mobile
manipulator system was introduced in [21]. The mobile base
has two types of wheels, including directional and fixed. The
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system was tested in simulation environments but still
lacked the guided vision-based method. The controller law
in [22] used fuzzy logic to present the path planning of a
mobile manipulator using vision-tracking system. However,
soft computing concepts might propose approximation
results, which may provide less accurate output. In [23], a
multicamera VS system architecture was modeled and pre-
sented to control a robotic system where a target object is
covered by multiple views. The controller could make differ-
ent decisions since the pose estimation system was processed
based on two perspectives. However, the computational level
required longer processing times in addition to the limited
applicable purposes.

The reviewed literature documented studies on mobile
robots, while other publications focused on stationary
robotic manipulators. However, combining the control tech-
niques of mobile platforms and manipulators, both work
based on deep nets, which is the challenge for new technol-
ogies. This work is, therefore, aimed at developing and test-
ing a complete 3D visual servoing system that operates based
on the collected feedback from a single camera. This paper
focuses on an alternative solution that jointly uses DeepNet
and PBVS to control an AMM system. This type of control
scheme requires the pose parameters (related to a target
object) that define the AMM robot’s final pose. The underly-
ing idea is how to control the pose of the mobile manipula-
tor robot with respect to the detected object by using visual
features synthetically trained.

3. Full System Model Development

The proposed system architecture consists of three intercon-
nected phases. First, a deep-ConvNet predicts 2D objects
and produces 2D belief maps using a single RGB image. Sec-
ond, a pose estimation algorithm utilizes the belief maps to
recover translational and rotational pose of a target object.
Finally, the execution step achieves the desired pose between
the end-effector and the target object, by employing the esti-
mated target’s pose and visual servoing control law. As the
intention is to achieve 3D VS synthetically trained for the
mobile manipulation system, we trained our system based
on YCB images [24]. Figure 1 demonstrates the entire sys-
tem architecture; the deep-ConvNet constantly detects and
estimates the pose of the current object. The generated pose
error stimulates the control law to send joint velocities and
reduce the error by achieving a robot pose relative to the tar-
get object. The modeling of the system is illustrated in this
section, which includes perception network and training,
mobile manipulator robot kinematics, and the designing of
VS control law based on the principle of Lyapunov.

3.1. Perception Network and Training Protocol. There are
two main steps in the perception network: a deep-
ConvNet step and a pose estimation step. Figure 2 depicts
the deep-ConvNet architecture that trains directly on RGB
image (w × h × 3), to predict the 2D key points of target
object in the image. Transform-learning (of the first ten
layers) is utilized as a feature extraction training step using
VGG-19 model [25], pretrained on ImageNet [26]. Deep-

ConvNet contains multiple stages of convolutional neural
network that is preceded by the feature extraction step.
The input to each stage involves image feature map of
transform-learning and belief maps of the prior stage.
Each stage of deep-ConvNet generates 2D belief maps of
a target object.

Feature dimensions are minimized from 512 to 128 by
using two 3 × 3 convolutional neural layers. The feature
map dimension-128 is the input to the first stage that con-
tains three layers of 50 × 50 × 128 and one layer of 50 × 50
× 512. This stage produces belief map (50 × 50 × 9) and vec-
tor field (50 × 50 × 16) that both are fed to the next stage, in
addition to the feature map (50 × 50 × 128). Similarly, the
remaining stages (from 2 to 6) should have the same struc-
ture as the first stage. But the receiving dimension input
(128 + 9 + 16 = 153) is different than a first stage. It is the
output of the image feature map, as well as the belief map
and vector field of the immediately preceding stage. In the
remaining training stages, there are six layers of 50 × 50 ×
128 which provide belief map and vector field. The final
stage produces nine belief maps. Each one represents a ver-
tex which will be at the end 8 projected vertices for 3D
bounding box and one vertex for the centroid. To detect
the object’s centroid, the network always seeks for local
peaks from the belief maps. It uses the greedy algorithm that
links the projected vertices to the indicated centroids.

Next, the object’s projected vertices of the 3D bounding
box are utilized by Perspective-n-Point (PnP) algorithm
[27], similar to [9]. This is to retrieve the 6DOF pose of tar-
get object, as shown in Figure 3. In order to recover the tar-
get pose, the PnP process requires at least four vertices. The
2D object vertices output from belief maps are followed by
PnP iterative approach to form 3D bounding box. To infer
the translation and orientation of a target object relative to
the camera frame, intrinsic camera parameters and object
dimensions are required. The purpose of PnP problem is
to estimate the translation and orientation of the calibrated
camera from the known 3D points to the corresponding
2D image projections. This method helps to find the object
pose from 3D-2D correspondence point. This is based on
the Levenberg-Marquardt optimization approach [28];
proper object pose should be found by minimizing the
reprojection error (RE). RE is the sum of squared distances
between the observed 2D projection image points and pro-
jected 3D object points, as shown below.

x2 m, bð Þ = Δy21 + Δy22 + Δy23+⋯, ð1Þ

where x2ðm, bÞ is the error and Δy2n is the difference
(between observed key point and object point) for n point.

The inputs of PnP are the intrinsic camera parameters,
object dimensions, and 2D observed points. The output
retrieves the translational and rotational vectors of the 3D
object into 2D image plane. We have three coordinate sys-
tems, namely, world, camera, and image plane coordinates.
The 3D point ½xwi  ywi  zwi �T is projected into the image
plane mi for ½ui vi�T . The perspective transformation for
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the pinhole camera model is shown.
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where K is the intrinsic camera matrix, ½R ∣ t� is the extrinsic
joint matrix which represents rotation and translation vec-
tors, respectively. It is used to describe the homogeneous

rigid motion of object point with respect to the camera coor-
dinates. Also, it translates the coordinates of each 3D point
into the coordinate system relative to the camera frame. S
indicates the scalar projective factor. f x and f y are the focal
length expressed in pixel coordinates. cr and cc are the prin-
cipal point of the image center in pixel frame. The process,
of changing ½R ∣ t� and reducing RE, requires object dimen-
sions and 2D observed projection points proposed by
deep-ConvNet.

We leverage 60 k of single synthetic images during the
training step, all collected from YCB object datasets [24].
Depth images and segmentation steps are not required.
The system has been implemented on PyTorch platform
[29] and trained on 4 GPUs (each one is GEFORCE RTX
2080 Ti) and processor Intel. Core i9-9820 for 70-80 epochs
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with batch size of 64. The learning rate is 0.0001 based on
network’s optimizer, similar to Adam [30]. During the
training, the regularization method of the loss function ð
L2Þ is used to calculate the loss error between the pre-
dicted output and the true value (ground truth) for each
input. At the end of each epoch, the error value is accu-
mulated by applying the mean square error (MSE) of each
input. This is applied for the entire training phase which
shows how the model learns by minimizing the square
of the differences between the true and estimated values.
Loss function will build and label belief and affinity maps.
The used L2 loss function calculates the loss error between
predicted belief maps and true value (ground truth) of the
training data. In Equation (3), Bi

v is the CNN output for a
belief map at stage i ϵ ð1⋯ nÞ for vertex v ϵ ð1⋯mÞ,
where n is the stage number and m stands for the number
of vertices. _Bv is the ground truth. Similar to [31], the total
loss in the stage i is the sum of losses L =∑n

i Li. The deep-
ConvNet utilizes intermediate supervision technique which
replenishes the gradient at the end of each stage. The
intermediate representations are significant to generate
increasingly accurate belief maps. This technique provides
essential structure to improve generalization by avoiding
the well-known issue of vanishing gradient.

Li =
1
n

〠
n

i=1
〠
m

v=1
Bi
v − _Bv

� �2
: ð3Þ

3.2. Mobile Manipulator Model Development. The relation-
ships between the wheel speeds of the mobile platform
and the 6-joint velocities of the manipulator arm are pre-
sented in this section. Homogeneous representation is used
to define the relationship between the frames of the
mobile manipulator. The robot’s rigid motion is demon-
strated by the homogeneous transformation matrix (H)
shown as

Hn−1
n =

R3×3 d3×1

0 1

" #
, ð4Þ

where R3×3 is a rotational matrix expressed in terms of
Euler’s angles (α, β, and γ) and d3×1 is a displacement vec-
tor. These both stand for defining the pose relationship
between two coordinate frames. A Denavit-Hartenberg
(DH) convention is used to define the coordinate frames
of our model.

Figure 4 illustrates the schematic diagram of the mobile
manipulator robot. The modeling of differential mobile base
is analogous to two-joint manipulator that comprises of
prismatic and revolute joints. The linear and angular veloci-
ties are the interpretations of the movements of prismatic
and revolute joints of the mobile robot relative to the world
frame. Along with the velocity of the base frame relative to
the world frame, the angular and linear velocities of the
mobile robot are obtained through forward kinematics. This
is shown in the equation below, where J is the Jacobian

matrix that relates w
b V with ½ _θn  _dn�T .

w
b V = J6×8

_θb
_db

" #
: ð5Þ

In the term of the left and right wheel velocities, kine-
matics of a differential drive mobile robot (D) are required.
In the presented work, the wheel diameter (d) and axle
length (l) are 0.33 and 0.545 meters, respectively. Equation
(6) demonstrates the relationship between the end-effector
velocity relative to the joint’s velocities (including two joints
for the mobile robot and 6 joints for the manipulator arm).
The final velocity equation of the system model is shown
in Equation (7), where E JD−1 relates end-effector velocity
ξeeee to joint velocities ½ndn�T . This equation will be combined
later with the derived control law of the visual servoing con-
trol scheme PBVS.

ξeeee = E−1 J D θ1 d2 θ2 ⋯ θn½ �T , ð6Þ

θn

dn

" #
= E J† D−1 ξeeee, ð7Þ

where J† is the pseudoinverse method of Jacobian matrix
that is used for solving inverse kinematics with J .

3.3. Mobile Manipulator Controller Design. The PBVS con-
trol aims to minimize the error between the desired and cur-
rent end-effector pose, by regulating the movement of the
robot through the determination of the necessary transla-
tional and rotational commands. Control law in PBVS is for-
mulated from the perspective of the desired end-effector
frame. The basis of the control law begins with Lyapunov’s
proportional control scheme, _eðtÞ = −keðtÞ. The propor-
tional gain is denoted as k and the solution yields an expo-
nential decrease of error. Visual servoing error is defined
by the difference between the current image and camera
parameters ðsÞ and the desired image and camera parame-
ters (sd), eðtÞ = s − sd .

The used robotic system operates in three-dimensional
Cartesian space; therefore, the error parameters must be
defined by two vectors representing the position and orien-
tation of end-effector. This data is obtained by means of pose
estimation algorithms, which use a 3D model of a target
object to refer to the image data for defining the pose end-
effector. Equation (8) defines the results from the pose esti-
mation algorithm.

s = Ted
e , ϕeedeð Þ, sd = 0, 0ð Þ: ð8Þ

The first vector,Ted
e , is the position vector of current

end-effector frame related to desired end-effector frame.
The second vector, ϕeede , is the orientation vector, in terms
of Euler’s angles, of current end-effector frame related to
desired end-effector frame. The desired pose vector is zero,
since all vectors are represented in relation to this desired
frame. The main error equation is further expressed as
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follows.

e tð Þ = Ted
e , ϕeedeð Þ: ð9Þ

The overall control scheme is derived from both the
position and orientation vectors introduced earlier. The
change in position vector can be expressed in terms of a
rotation matrix between current and desired end-effector
pose, Red

e , as seen in the following.

Ted
e = Red

eð ÞT _Teed
e : ð10Þ

Repeat the general process for the orientation vector
seen in

wed
e = Red

eð ÞT _weed
e : ð11Þ

Angular velocities are determined by the rate of change
in Euler angles found in ϕeede which are transformed using
TðϕÞ defined in the following.

_weed
e = T ϕð Þ ϕeede , ð12Þ

where,

T ϕð Þ =
0 −sin φ cos φ ∗ cosθ

0 cos φ sin φ ∗ cosθ

1 0 −sin θ

2
664

3
775: ð13Þ

Substituting Equation (12) into (11) determines the

velocity of the end-effector in terms of angular velocities.

wed
e = Red

eð ÞTT ϕð Þ ϕeede : ð14Þ

Equation (10) also defines _Teed
e as the rate of change in

translational error. This definition can produce the following
formula.

Ted
e = Red

eð ÞT _Teed
e = Red

eð ÞT _e tð Þt: ð15Þ

Like the translational error, the rate of change in orienta-
tion error is defined by ϕeede when considering Equation (9)
to generate the following equation.

wed
e = Red

eð ÞTT ϕð Þ ∗ _e tð ÞW : ð16Þ

The control law for the velocities of end-effector is
derived, as shown below, by applying Lyapunov’s propor-
tional control scheme from proportional error to Equations
(15) and (16).

ξeeee =
Ted
e

wed
e

" #
= −k L e tð Þ, ð17Þ

where L is known as the interaction matrix that relates the
error value to the end-effector velocity.

The estimated pose error is the input to the controller,
while end-effector velocity is the output. By combining this
with the previous system model developed in Equation (7),
the complete control law is designed and determined in
Equation (18). This law controls the joint speeds in propor-
tion to the error that happens between the current and

Mobile base

World frame

Base frame Arm base
frame

End-effector

xw

yw

zw

xb

zb

yb

xb0, xb1

yb0, yb1

d2

zb2, zb1

yb2

xb2

zb2
𝜃1

a3

a2

d1

d6 d4

y6

x6

z6

x0
y0

z0
z1x1

y1

z3

y3 x3

x5

z4

z5

θ1

θ2

𝜃6

𝜃5
𝜃4

𝜃3z2

x2
y2

Manipulator

Axle length

Diameter

Figure 4: Schematic diagram and frames of interest for mobile manipulator robot.

6 Journal of Sensors



desired robot end-effector pose. In order to analyze the per-
formance characteristics of the robot model, this control is
implemented physically by experimentations in the follow-
ing section.

θ1 ⋯ θn½ �T = −k E J† D−1 L e tð Þ: ð18Þ

4. Experiments and Discussion

In this section, the experiments were carried out in simula-
tion and real-world settings. Several tests of autonomous
3D visual servoing were conducted to show the performance
of the entire system. The perception network has shown
effective and robust findings that are reliably enough to be
implemented in long-range mobile manipulator model
designed in the previous section. The anticipated behavior
of the robot during the experiments involves navigating the
robot to a desired destination and orienting towards a target
object. The target is constantly detected, including its pose
estimation information. The controller law (designed in the
prior section) is implemented in the experimentations.
Training step is not required in the implementation with
VS of mobile manipulator. The mobile manipulator robot
consists of 6DOF manipulator arm (UR5 developed by Uni-
versal Robots) mounted on top of differential mobile base
(A200 Husky built by Clearpath Robotics).

4.1. Deep-Based 6DOF Object Pose Estimation. The percep-
tion network entirely trains on computer-generated images
and then generalizes to operate on real-world experimenta-
tions. The single input image is processed to produce belief
maps which hold probability values for each pixel of an
image. Higher values represent target object location (target
key points). Perception network detects the 2D key points
associated with target object defining a bounding box. The
detected key points include the centroid of target object with
vertices of bounding box. A 3D pose of target object is
retrieved by utilizing the estimated 2D key points, camera
parameters, and target object dimensions. In contrary to
recent researches [4, 8, 9] that demand complicated struc-
ture to segment target object in the input image, our deep-

ConvNet utilizes the threshold local peaks in the belief maps.
Then, a greedy algorithm links the projected vertices to the
indicated centroids.

As a result of feature extraction step, feature map is fed
to a series of CNNs that output belief map tensor. Each belief
map tensor represents one of each 9 vertices of the 3D
bounding boxes. Figure 5(a) illustrates the combination of
the 9 vertices (of the final stage) that can form bounding
box as well as one belief map for the centroid. 2D key points
are produced from a single input image. Similarly, a process
works simultaneously to infer multiple instances of objects.
Figure 5(b) is the output image with the combined vertices
and bounding box.

(a) (b)

Output image

RGB input
image

2D key-points

Figure 5: Single input image and 2D key points: (a) nine vertices of the final stage and (b) output image with a bounding box.

Table 1: Speed network performance (sec.) for different stages on
seven different objects.

Target objects S-1 S-2 S-3 S-4 S-5 S-6

Drill 0.019 0.0424 0.062 0.079 0.098 0.182

Mug 0.05 0.0901 0.124 0.166 0.208 0.248

Banana 0.052 0.089 0.13 0.168 0.209 0.249

Scissors 0.05 0.094 0.125 0.167 0.21 0.261

Meat can 0.063 0.092 0.174 0.167 0.224 0.25

Marker 0.054 0.094 0.136 0.17 0.217 0.258

Mustard 0.048 0.089 0.125 0.169 0.209 0.239

Table 2: Average distance (mm) between the projected points and
ground truth of seven different objects during different processing
stages.

Target objects S-1 S-2 S-3 S-4 S-5 S-6

Drill 51.21 22.49 9.366 6.66 3.587 1.462

Mug 91.15 18.79 11.243 3.933 1.934 0.949

Banana 92.04 26.93 17.129 7.725 4.525 1.841

Scissors 88.61 37.48 8.852 3.94 1.716 1.148

Meat can 117.7 33.56 14.298 9.722 6.084 2.61

Mustard 82.51 23.29 12.879 9.784 4.7147 1.907

Marker 94.52 37.85 22.98 13.01 5.58 1.717
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Figure 6: The process of 2D key point predictions throughout multistages.

Figure 7: Real-world performance of the perception network in difficult backgrounds operating on seven different objects.
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The entire execution time of the perception network is
reported in Table 1, including object detection and pose esti-
mation for different number of stages operating on seven
different objects (drill, mug, banana, scissors, meat can,
marker, and mustard). The average of the execution time
of the entire network is about 0:24 sec.

Evaluation metric during multistages was calculated to
find the accuracy performance. The average distance is the
difference between the ground truth and the estimated key
points from the perception network. Table 2 documents
the findings of the average distance of seven different target
objects. Table 2 shows how the accuracy improves through-
out the stages, in which later stages resolve the ambiguities
and result accurate performance. With lower distances
between the centroids of ground truth and estimated 2D
key points, the rate of the average distance (after the final
stage) is around 1.66mm. The accuracy threshold for the
robotic manipulation was measured experimentally to find
the necessary level of accuracy for grasping purposes. The
accuracy threshold was found around 15mm, by calculating
the difference of centroids between ground truth and esti-
mated points, using our robotic system (UR5 manipulator,
Husky mobile base, and 2-finger gripper from RobotiQ).

The early stages of generating 2D key points often pro-
duce ambiguities and unstable predictions that will be
resolved by later stages. Figure 6 illustrates the process of
generating 2D key points throughout multistages. Through-
out the stages, the accuracy of predictions improves gradu-
ally. Poor performance of the first 3 stages is clearly
indicated. However, the last 2 stages provide robust predic-
tions where all target objects are well estimated by the final
stage image.

The pose estimation of target objects is further examined
in difficult unstructured backgrounds. Figure 7 demonstrates
the performance of pose estimation operating on seven tar-
get objects with multiple poses in unprepared lab environ-
ment and difficult backgrounds.

The perception network is able to estimate the object’s
pose even when part of the object is invisible. Figure 8 shows
instances of occlusions on different target objects. Object
poses are well estimated even though objects obstruct each
other randomly.

Another round of testing was necessarily carried out to
show the network performance in various conditions of light-
ing. Figure 9 demonstrates the estimated poses of seven differ-
ent objects in various illuminations. As seen in the figure, a
light source was used closely to the target objects to disturb
the image view and examine the perception capability in such
lighting situations. The perception network performs robust
and stable predictions of estimated poses of multitarget objects.

The ultimate tests of perception network have presented
a sufficient model accuracy. That should be able to achieve
3D visual servoing in manipulation application. The next
step is the implementation of a synthetically trained mobile
manipulator system.

4.2. Visual Servoing for Long-Range Mobile Manipulator
System. After examining the perception network, a complete
autonomous system of 3D VS should be implemented to
extract the performance characteristics. There is no need to
conduct postrefinements of the estimated object’s pose. In
addition, extra fine-tuning or retraining step is not required.
Unlike a study in [32], our model detects and estimates the
pose of target object with 3D bounding box regression.
The estimated pose directly sends to the control scheme of
the mobile manipulator system. The experiments of an
entire AMM system were performed in simulation environ-
ment, as well as real-world settings.

In contrast to Bateux et al. in [33] who used gantry robot
to execute 6DOF direct visual servoing task based on deep
neural network method, our perception network does not rely
on photometric details of an entire input image, in which
image perturbations (such as pixel intensities) have no impact
on VS performance. In addition, our robot model is applicable
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Figure 8: Perception network performance with occlusion events. Seven different objects are tested at the same time.
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to both camera installations (eye-in-hand/eye-to-hand). This
makes it more practical in a variety of scenarios.

4.2.1. Simulation Environment. Figure 10 demonstrates the
experimental setup prepared in Gazebo (a 3D robotics sim-
ulator), a target object placed on the table is the desired pose
of the robot end-effector. Frames of target object, camera,
world base, and robot end-effector are processed by the
robotics middleware ROS (Robot Operating System), all
exhibited in 3D visualization tool called Rviz.

Multiple rounds of tests were carried out to show the
performance of the entire system. A straight test is where
the target object was placed in front of the robot. The end-
effector of the robot moved as expected towards the detected
target. Likewise, another test was performed but deliberately
positioned target object at an angle to cause a curved trajec-
tory for the end-effector.

4.2.2. Real-World Settings. Figure 11 shows the experimental
setup carried out in the lab environment. Husky mobile base
with 6DOF UR5 manipulator, mounted on the top of the
mobile robot, was used with uncostly single camera placed
at the end-effector. Tracking test was required to investigate
the physical capabilities of the proposed AMM system.

Figure 12 demonstrates a scene of the tracking test. Drill
object was used as a target object. Figure 12(a) shows the
frames of interest presented in Rviz visualizer, Figure 12(b)

indicates the estimated pose of the target object,
Figure 12(c) is the third person view that covers the used
robot with the target object. Eye-in-hand camera installation
was considered during the tracking test. This shows a stable
and robust performance of the entire manipulation system.

Figure 13 shows instances of the real-time tracking test,
which occurs between the target object and end-effector of
the AMM robot. Video recordings of the experiments have
been provided to show the performance of the proposed
AMM system. Comparing to such methods, our system esti-
mates target competitively, which are trained only on

Figure 9: Perception network performance during different lighting conditions.
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Figure 10: Experimental setup in simulation environment.

Figure 11: Experimental setup in unprepared lab environments.
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synthetic data and generalized to physical 3D pose-based VS
implemented in long-range mobile manipulator.

4.2.3. Robotic Manipulation. The ultimate purpose of this
research is to develop an autonomous framework for
vision-based mobile manipulation system. The accuracy of
a perception network is adequate to execute continuous 3D
VS implemented on long-range mobile manipulator. The
goal of experiment is to perform an end-to-end real-time
tracking test. Unlike the study in [17], our robotic model is
not restricted to static objects and does not require objects
to be placed in structured settings. In addition, the proposed
system could successfully approach target object with 6DOF

manipulation pose. This is different than traditional manip-
ulation system in [34] which is only limited to top-down
configuration. Moreover, our perception network entirely
trains on computer-generated single images, and depth
information or segmentation step is not required. This is
unlike reference [6] which demands collections of synthetic
and real-world dataset. Some recent studies might require
manual data which gathered via human demonstration. It
is worth mentioning that our robotic system is reliable to
achieve tracking task with the 6DOF pose of dynamic object.
This is appropriate to execute collaborative manipulation
challenge (for instance handoff target object from the human
to the robot).

Target
frame

(a) (b)

RGB cam

Target
object

(c)

Figure 12: Real-world experiments: (a) frames of interest exhibited in the 3D visualizer (ROS-Rviz), (b) detected target object with its pose,
and (c) mobile manipulator robot.

Target
frame

End-effector
frame

Figure 13: Instances of a real-time tracking test.
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To provide scalable visual manipulation system (unlike
an approach in [35]), two different VS configurations (eye-
in-hand and eye-to-hand) have been experimentally vali-
dated. Our robotic model can operate reliably even when
the camera and target object are moving at the same time.
This assists to overcome uncertainties of the environment
and robotic kinematic model.

To demonstrate the proposed robotic system suitable for
manipulation task, we carried out further experiments of the
whole system. The robot was tasked to move to a desired
pose relative to the target object. We ran 5 attempts per ses-
sion for 5 different sessions. At each test, the starting pose of
the end-effector was chosen differently. Similarly, target
object was placed randomly within the workspace. The dif-
ference between the centroid of target object and end-
effector frame was calculated as the average distance. This
yields about 2-3 cm in any direction.

5. Conclusions

This work sets out to develop an autonomous 3D VS system
based on DeepNet, implemented in a sophisticated mobile
manipulator system, and utilized single RGB image. Two
main steps construct the entire system: first, perception net-
work to detect and estimate the pose of objects in 3D space,
using an effective deep-ConvNet and pose estimation algo-
rithms and model architecture. Second, the pose estimation
data was then used in a 3D visual servoing scheme to control
the motion of AMM system. Visual servoing control law was
designed for the AMMmodel to avoid uncertain solutions of
the inverse kinematics.

Perception network was entirely trained using
computer-generated RGB images and depth images, and
segmentations are not required. The system was, then, gen-
eralized successfully into real-world environment without
fine-tuning or extra retraining. Besides simulation experi-
ments, the proposed system was physically tested (on
6DOF manipulator arm mounted on differential robot base)
to extract the performance characteristics of the robot
model. The findings of experimentations have resulted in a
robust and continuous 3D VS operations of AMM with han-
dling occlusion and lighting variations. In terms of future
work, it would be important to carry out further studies with
the goal of applying object grasping.
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Deep neural networks-based image classification systems could suffer from adversarial attack algorithms, which generate input
examples by adding deliberately crafted yet imperceptible noise to original inputs. To reduce the impact on human visual sense
and to ensure adversarial attack ability, the input image needs to be modified by pixels in considerable iterations which is time
consuming. By using sparse mapping network to map the input into a higher dimensional space, searching space of adversarial
perturbation distribution is enlarged to better acquire perturbation information. Taking both searching speed and searching
effectiveness into consideration, sparsity limitation is introduced to suppress unnecessary neurons during parameter updating
process. Based on different eye sensitivity of different colors, maps of each color channel are disturbed by perturbations with
different strengths to reduce visual perception. Numerical experiments confirm that compared with the state-of-the-art
adversarial attack algorithms, the proposed SparseAdv performs a relatively high attack ability, better imperceptible
visualization, and faster generation speed.

1. Introduction

In recent years, artificial intelligence technology has ushered
in rapid development, in which deep learning has emerged
strongly. Deep learning has demonstrated outstanding
results in a variety of domains, including image classification
[1–3], speech recognition [4], object detection [5], and self-
driving [6]. Though deep learning network shows excellent
performance, its complicated internal structure and in-
interpretability have raised security concerns, as such if a
model might be compromised to make wrong prediction
when exposed to adversarial attacks [7]. These attacks delib-
erately craft the input examples to mislead the deep learning
network, and such modifications could be hard to be
detected by bare human eyes [8]. The crafted examples are
named as adversarial examples.

Discovery of adversarial examples has gained increasing
attentions and researchers began to explore adversarial attack
algorithms. According to generation methods of adversarial

examples, the examples could be generated whether by directly
modifying each input example or training a generator to
achieve mass generation. The former generation methods are
traditional adversarial example generation methods which
update the input examples guided by feedback from specially
designed loss function [7]. These methods achieve high
successful attack rate, whereas sacrifice generation efficiency
due to time cost on the change of each individual example.
Especially in image classification domain, traditional genera-
tion methods need to alter all pixel values of an image during
each updating iteration. For example, Carlini and Wagner
(CW) attack [9] cost around two minutes to generate an
adversarial example. Therefore, the latter generation methods
which could speed up generation of adversarial examples have
been proposed. AdvGAN [10] trained a generative adversarial
network (GAN) to learn mapping from an original example to
the adversarial one and the trained GAN could immediately
alter the original input to its adversarial version. Moreover,
authors of [11] utilized autoencoder as an auxiliary generator
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to generate adversarial priors and thus reduced iterations for
searching adversarial distributions. Instead of updating each
pixels on the original input during the training process, the
trained generator is able tomass generate adversarial examples
in a fast speed.

The barely seeking local optimum, i.e., Nash equilib-
rium, with fluctuate results challenges the training process.
Additionally, other generation methods mainly use genera-
tor as supplementary means, which still need abundant
time-consuming iterations for further adversarial alteration.
We try to realize and propose that an individual generator is
enough to realize generator-based adversarial attacks and
propose a new generator structure which maps the data
from input space to high-dimensional space, and thus exca-
vates more effective information for disturbing. Moreover,
Kullback-Leibler divergence (KLD) is adopted for sparsity
limitation on neurons in hidden layers. With sparsity limita-
tion, computation complexity caused by high dimensional
mapping could be reduced. To make the attack more imper-
ceptible to human eyes, we conduct suitable operations on
maps from different color channels based on biological char-
acteristics of human visual system. Our contributions are
summarized as follows:

(i) We search the required information in high-
dimensional space and train a sparse mapping net-
work as a generator, which can raise dimension of
the input to dig out much effective perturbation and
speed up generation process of adversarial examples

(ii) A KLD loss is added in loss function for sparsity
limitation, so that neurons in the generator are
selectively activated to make the training procedure
more efficient

(iii) Based on different eye sensitivity of different colors,
maps of each color channel are disturbed by pertur-
bations with different strengths to reduce visual per-
ception. Experimental results show that SparseAdv
achieves higher successful rates of attacking and is
also less perceptible in visual sense

The rest of this paper is organized as follows. Section 2
briefly overviews the related works of adversarial attacks.
In Section 3, we specifically state the attack methodology
of SparseAdv. We present the experimental results in Section
4 and conclude the paper in Section 5.

2. Related Work

2.1. White-Box Adversarial Attacks. Earlier adversarial attacks
were mostly white-box adversarial attacks, in which attackers
had access to all information (i.e., model structure, parameter,
and hyper-parameter) of a target model. Adversarial attack
was firstly proposed by Szegedy et al. [8] in 2013, they found
that subtle modification of an example was able to mislead a
deep learning model, which was then widely researched by
experts from various fields. The example with nonsensitive
(to human eye) yet misguiding (to deep learning model) per-
turbation was recognized as adversarial example. Goodfellow

et al. [7] proposed fast gradient sign method (FGSM), which
used gradient direction to disturb clean examples and demon-
strated that adversarial examples had unstable transferability
among different target classifiers. Based on FGSM, a basic
iterative method (BIM) [12] was subsequently proposed to
superimpose the noise step by step. So that feedback of the gra-
dient information could be fully used under the same distur-
bance and BIM was able to successfully achieve better results
with a smaller disturbance effect. Considering that the com-
plex nonlinear model might change drastically in a very small
range, projected gradient descent [13] method used gradient
feedback to limit the noise to a small range. CW attack [9]
defined two impact factors according the two final goals—im-
perceptible visual effect to human and misleading result to the
recognition model. CW attack updated the input by optimiz-
ing the two factors and showed excellent performance.

2.2. Black-Box Adversarial Attacks. In real scenarios, black-
box attacks which do not need any information of the target
model and show high transferability among various models
have gained attention. The transferability of adversarial
example refers to the successful attacking rate of the example
set to a target model, could be almost the same when this set
attacks another model. Therefore, concept of transferability
means the ability to keep the performance when an adver-
sarial example set changes the task environment, i.e., the tar-
get model to be attacked. As a result, transferability of
adversarial examples indicates flexibility and adaptability of
an adversarial attack algorithm while facing different task
environments. Moreover, higher transferability of adversar-
ial example set in white-box research could make it more
transferable to black-box adversarial attack. Dong et al.
[14] proposed the Momentum Iterative Fast Gradient Sign
Method (MI-FGSM) [14] in the Neural Information Pro-
cessing Systems 2017 competition. MI-FGSM integrated
the momentum term into iterative process, stabilizing the
update direction and getting rid of undesirable local maxi-
mum. Diversity input method [15] proposed to enhance
data diversity by randomly transforming clean examples,
thereby improving transferability of adversarial examples.
Translation Invariant Method [16] proposed a translation-
invariant attack algorithm to generate adversarial examples
that were less sensitive to white-box model and so that trans-
ferred better among black-box models. AutoZoom [11]
added adversarial perturbation in low-dimensional space
and mapped the perturbation to high-dimensional embed-
ding space by autoencoder, thus reducing the mean query
counts in finding successful adversarial examples. Inspired
by AutoZoom, TREMBA [17] utilized AutoZoom’s frame-
work for gaining perturbation prior. Then by applying a
standard black-box attack method such as Natural Evolution
Strategy (NES) [18] on the embedding space, adversarial
perturbations could be found efficiently for a target model.

2.3. Generator-Based Adversarial Attacks. When the adver-
sarial examples are generated by altering the input to maxi-
mize the classification loss [8], it requires multiple iterations
to modify on the input. Such iterations lower the efficiency
of generating adversarial examples and thus consume much
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time while facing the tasks that need to generate a plenty of
adversarial examples. Generator-based adversarial attacks
are thus proposed for fast adversarial example generation,
including generating adversarial examples by general genera-
tors with neural network structure and by GAN. AutoZoom
[11] and TREMBA [17], which were the black-box adversarial
attacks mentioned above, both utilized autoencoder as a gen-
erator to generate perturbation prior. However, iterations on
the input were still required for achieving the whole attack
process. As for GAN, it is a generative network constituted
by a generator and discriminator, which could be trained to
learn the mapping between clean examples or random noise
and adversarial examples. An adversarial example could be
directly derived from trained network that generating itera-
tions on each input is skipped [10, 19, 20]. Xiao et al. [10]
proposed AdvGAN to generate an adversarial perturbation
to be mapped from an original input by its generator, which
was then added to this corresponding original image. The
discriminator in AdvGAN judged whether the input example
composed of original image and perturbation was an adversar-
ial example. Based on AdvGAN, AdvGAN++ [19] proposed
by Jandial et al. introduced latent vectors from the target clas-
sifier as the input of GAN to generate adversarial examples.
Rob-GAN [20] introduced adversarial examples into GAN
that not only could accelerate the training process by rapidly
generating adversarial examples but also improve the quality
of generating image and the robustness of discriminator. Zhao
et al. [21] introduced Natural GANmodel which could search
adversarial example vector in low-embedding latent space and
generate more targeted and natural adversarial perturbations.
Deb et al. [22] focused on adversarial face synthesis and
utilized human identity matching information to train GAN
to gain face adversarial examples.

GAN performs well in speeding up adversarial example
generation, whereas the two loss functions in generator and dis-
criminator makes the convergence point hard to reach, which
challenges the training process [23]. We propose to abandon
discriminator which is used for confining pixel value to reduce
visual effect on bare eye and conduct special noise adding
method based on biological characteristics of the human eyes
for better visualization. Therefore, the retained single loss func-
tion in training model could ease the convergence process.
Researchers have performed diverse noise adding operations
to balance visual effects and attack ability. Shamsabadi et al.
[24] and Bhattad et al. [25] introduced unrestricted perturba-
tions by exploiting image semantics such as color and texture
to generate effective and photorealistic adversarial examples.
Based on superpixel and attentional map, Dong et al. [26]
preserved the attack ability even in highly constrainedmodifica-
tion space, and it was robust to image processing based defense
and steganalysis-based detection. Above methods focus on the
machine’s characteristics for recognizing images, which omit
an important fact that perturbations added on adversarial
examples are expected to be imperceptible to humans rather
than machines. Human eyes are unevenly sensitive to red,
green, and blue colors [27, 28], while convolution operations,
which are conducted by machines, on maps from each color
channel are the same. So that different perturbation values on
different channels are necessary to achieve better balance

between attack ability and visual effect. More specifically,
weaker perturbations are added on maps from the color chan-
nel, to which human eyes are more sensitive, and stronger
perturbations are added on maps from other color channels.

3. Attack Methodology

In this section, we first overview SparseAdv and then intro-
duce each procedure in detail.

3.1. Overview of SparseAdv. In image classification area, adver-
sarial examples are the clean image inputs added with specifi-
cally designed noise which could not only deceive the deep
learning models based classifiers but are also least noticeable
to human visual sense. The adversarial example generating
framework SparseAdv is designed for the above task. As shown
in Figure 1, SparseAdv contains a sparse mapping neural net-
work that maps input image from input space to high-
dimensional space to search special distribution which could
potentially be the noise to mislead the categorization of target
classifiers. This special distribution extracted by neural network
in SparseAdv is then combined with its original image and fed
into classifier. The image, disturbed by the searched distribu-
tion, tends thus to be classified into a category different from
its true labeled class. Therefore, an adversarial example is then
produced by the SparseAdv framework in theory. The loss
function contains two parts, one of which is designed that the
predicted label is guided to be the class with the secondary
confidence [29] within four networks, which are ResNet-50
[30], VGG-16 [31], GoogleNet [32], and MobileNet-v2 [33],
in our research. The other part introduces KLD, which is an
indicator for sparsity measure. Suppression on KLD achieves
sparsity limitation that benefits effective application of each
neuron in a neural network. And then the whole loss function
is fed back to update the parameters of sparse mapping neural
network in SparseAdv. To increase the transferability, the over-
all loss function is constituted by the loss functions from each
attack process on the four target networks. Successful adversar-
ial attack means to generate perturbations which could change
categorization result of the classifier, while to deceive human
visual sense. Since human visualization is the focus, we follow
the analysis of human eyes’ biological characteristics in [27,
28] and learn that those are differently sensitive to different
colors. Thus, different operations are conducted on maps from
each color channel. For the insensitive color to human eyes,
relatively strong noises are added onmaps from corresponding
color channels, while weak disturbing is conducted to reduce
observability for the sensitive color. Note that strength of the
noise is represented by the thickness of blue lines in Figure 1.

3.2. Formal Description. Once get the input image x, a sparse
mapping network is used as a generator Gð·Þ and extract
perturbation distribution GðxÞ from input space. We com-
bine the generator operation with general adversarial attack
algorithm, in which the input x with its adversarial perturba-
tion δ is updated by minimizing the loss function Ladvðx, yÞ
defined as follows from CW attack [29], which leads the
label to another class with the secondary confidence:
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Ladv x, yð Þ = −κ,C x + δ½ �y −maxc≠yC x + δ½ �c
n o

, ð1Þ

where ðx, yÞ is the input x with its label y in a training set,
Cð·Þ is the target classifier, and κ is a margin parameter
which controls the strength of adversarial examples. So that
the generated perturbation δ is substituted by Gðx ; θÞ, gen-
erator Gð·Þ with input x and parameter θ, in Eq. (2):

Ladv x, yð Þ =max −κ,C x + G x ; θð Þ½ �y −maxc≠yC x +G x ; θð Þ½ �c
n o

:

ð2Þ

Another penalty term KLD (i.e., KLðρkbρ jðxÞÞ =∑i∈X ρ

· log ðρ/bρ jðxÞÞ) is added to achieve sparsity limitation. Note
that detailed introduction of KLD function is demonstrated
in Section 3.4. Thus, the final loss function Lfinal is defined
as follows:

Lfinal x, yð Þ = Ladv x, yð Þ + KL ρ bρ j

��� xð Þ
� �

: ð3Þ

Instead of directly updating the input image, SparseAdv
updates the parameters θ of the generator. The upgrade pro-
cess of parameter θ in sparse mapping network G according
to loss function Lfinalðx, yÞ is as follows:

θ = argmin
θ

Lfinal C G x ; θð Þ½ �, yf g: ð4Þ

The trained network G is thus able to generate adversar-
ial perturbations once given the input images. Attack process
is obtained by averaging out their loss functions as a new
overall loss function shown below:

Ladv trans x, yð Þ = 1
N

〠
N

n=1
Lfinal x, yð Þ

( )
, ð5Þ

where N denotes the number of target classifiers and n
denotes the classifier index.

3.3. Sparse Mapping Network. Under recognition task, hidden
layers in deep neural networks are designed for obtaining fea-
tures, each layer of which chooses key information from the
anterior layer for correct feature extraction. Therefore, size of
the feature map generated by each hidden layer is diminishing
as the layer goes deeper. General adversarial example genera-
tor follows such design, whereas ignores the fact that the key
information under adversarial attack task requires disturbing
ability rather than correct feature. Above analysis motivates
us to abandon general structure design of neural network,
which usually conducts down-sampling during feature extrac-
tion procedure, and raises the dimension of input image at
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Figure 1: Overview of SparseAdv.
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shallow layers to enlarge the searching space for perturbation
information.

In our SparseAdv framework, the sparse mapping network
consists of an up-sampling module, which mainly utilizes the
deconvolutional layer for dimension expansion, and a down-
samplingmodule, which uses the convolutional layer for effec-
tive information extraction and the max-pooling layer for
dimension adjusting. As shown in Figure 2, the right part of
the figure demonstrates the structure of sparse mapping
network, while the left part of the figure gives the detailed
design of two key blocks including Conv3D block and
ConvTP3D block. Each Conv3D block contains a three-
dimensional convolutional layer (i.e., Conc3D in the figure),
a rectified linear unit (ReLU) layer, and a batch normalization
layer. Each ConvTP3D block has the same structure with the
Conv3D block, except the first layer which is substituted by
a three-dimensional deconvolutional layer (i.e., ConvTP3D
in the figure).

The deconvolutional layer is designed for up-sampling,
which is used to enlarge searching space in SparseAdv algo-
rithm. Specifically, it is a special convolutional operation,
before which the size of input image is enlarged by supple-
menting zeros in proportion. Figure 3 gives an example for
deconvolutional operation, in which a 3 × 3 input is scaled
up to the size of 5 × 5 after deconvolutional operation. The
batch normalization layer speeds up the training process
by using a higher learning rate, thus the retraining process
consumes much less time. A max-pooling layer is invoked
for down-sampling after some convolutional layers to adjust

data dimensions to the same size as the input image. Note
that the introduction of nonlinear factors—ReLU—makes
the model more controllable.

As a kind of GAN, AdvGAN contains a generator and a
discriminator, each of which aims to converge its own loss
function to optimal result. Generator of AdvGAN is used
for misleading the target classifier, while the discriminator
of it confines value change of pixels in an algorithm-
allowed range. It would be a challenge on the overall gradient
descent process because both functions have distinguish gra-
dient directions [23]. Moreover, generator structure of GAN
is designed as a normal autoencoder which maps the input to
low-dimensional space, limiting access to effective perturba-
tion information. We use sparse mapping network as is
introduced above and conduct color-channel-based pertur-
bation adding methods by analyzing biological characteris-
tics of the human eyes to avoid loss function for those
algorithm restrictions on pixel values. With our specially
designed dimension raising structure and color-channel-
based perturbation adding method, single loss function of
SparseAdv is easy to be converged to expected point.

3.4. Kullback-Leibler Divergence. KLD is a method to
describe difference between two probability distributions.
Given a data set X and its two probability distribution P
and Q, KLD KLðPkQÞ is defined as follows:

KL P Qkð Þ =〠
i∈X

P ið Þ · log P ið Þ
Q ið Þ
� �

: ð6Þ
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When there is a tremendous quantity of neurons in a
neural network’s hidden layers, some limitations are neces-
sary for reducing computational complexity. Thus, KLD is
added to the loss function to achieve sparsity limitation on
sparse mapping network.

More specifically, given an input x, let ajðxÞ denote acti-
vation degree of the hidden neuron j, the average activation
degree of j could be formalized as follows:

bρ j =
1
M

〠
M

m=1
aj x mð Þ
� �

, ð7Þ

whereM denotes the number of samples in data set andm

denotes index of each sample. We could define an sparsity
parameter ρ, which is generally a low value close to 0 (e.g., ρ
= 0:05). Thus, the average activation degree bρ j is expected
to approach ρ for sparsity limitation. To achieve such limita-
tion, an additional penalty factor is added to the loss function
to punish those cases where ρ and bρ j are significantly differ-
ent, so that the average activation degree of hidden neurons
is kept within a small range. We choose KLD as a metric to
measure the difference between ρ and bρ j as follows:

KL ρ bρ j

���� �
=〠

i∈X
ρ · log ρbρ j

 !
: ð8Þ

B channelR channel G channel

Figure 4: Visual comparisons on three channels.

Table 1: Comparison experiments of the four algorithms.

Attack
ResNet-50 VGG-16 GoogleNet MobileNet-v2

Success (%) Time Success (%) Time Success (%) Time Success (%) Time

AdvGAN 98.20 17.32 s 95.72 16.39 s 98.16 17.99 s 97.77 18.32 s

TREMBA 99.52 437.7 s 100.0 316.9 s 99.85 280.2 s 100.0 144.8 s

ColorFool 89.72 26.98 h 91.25 24.50 h 85.29 29.88 h 89.23 30.93 h

SparseAdv 97.26 12.22 s 96.32 13.58 s 99.02 14.78 s 95.35 12.64 s

∗The four compared algorithms include AdvGAN, TREMBA, ColorFool, and our SparseAdv. There are two performance metrics containing attack successful
rate (%) and time of batch (1000) generation.
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When ρ is equal to bρ j,KLðρkbρ jÞ is equal to 0 and its value
increases monotonically as the difference between ρ and bρ j

increases. Therefore, minimizing the penalty KLðρkbρ jÞ has
the effect of bringing bρ j closer to ρ, achieving sparsity limita-
tion on the neural network.

3.5. Operations on Different Color Channels. We propose to
choose a map from one color channel to be strongly disturbed
and add weak perturbation on maps from other two channels.
Exploration of biological characteristic of human eye shows
that visual cones have different sensitivities to distinguished
colors including red, green, and blue, according to the research
of Dartnall et al. [27]. Cicerone et al. [28] measured the num-
ber of visual cones and found that the ratio of red-sensitive,
green-sensitive, and blue-sensitive cones is approximately
40 : 20 : 1. Such findings indicate that human eyes are least sen-

sitive to blue. However, convolutional neural networks (CNN)
multiply the same weights of maps from three channels during
feature extraction. Motivated by this finding, map from B
channel is chosen to be added relatively strong perturbation
since the sensitivity of blue color to human visualization is
the lowest while its influence as a perturbation on CNN is
equally of importance as the rest of two channels. Maps from
the two other channels are perturbed by weaker perturbation
compared with those added on maps from blue color channel.
We implement the above methodology, attempting to achieve
better visualization effects without confining pixel values of
the adversarial examples. To verify the effectiveness of our
color-channel-based operation, three groups of adversarial
examples are generated, with each group containing three gen-
erated examples being strongly perturbed on R,G, and B chan-
nels, respectively. The adversarial examples are shown in
Figure 4.

4. Experiments and Evaluations

4.1. Experimental Setup. The performance of SparseAdv on
four networks: ResNet-50 [30], VGG-16 [31], GoogleNet
[32], and MobileNet-v2 [33], was evaluated on dataset
ImageNet-1000 [34]. Various experiments were set for
different tasks: (1) for algorithm efficiency evaluation, Spar-
seAdv was compared to AdvGAN [10], TREMBA [17], and
ColorFool [24] in terms of generation efficiency of adversar-
ial examples; (2) a transfer matrix was demonstrated to show
transferability among the four networks (ResNet-50, VGG-

SparseAdvColorFoolTREMBAAdvGANOriginal input

Figure 5: Visual comparisons of the adversarial examples generated by compared algorithms—AdvGAN, TREMBA, ColorFool, and our
SparseAdv.

Table 2: Transferability of SparseAdv.

MobileNet-v2 ResNet-50 VGG-16 GoogleNet

MobileNet-v2 95.35 57.90 53.26 15.88

ResNet-50 76.52 97.26 90.19 89.66

VGG-16 72.83 50.24 96.32 37.85

GoogleNet 73.29 69.18 84.66 99.02

∗The transferability is represented by attack successful rate (%) when the
generated adversarial examples are fed into different deep learning models.
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16, GoogleNet, and MobileNet-v2) and other networks
including AlexNet [2], DenseNet [35], ResNet-152 [30],
and ResNet-34 [30]; (3) SparseAdv was compared to
AdvGAN [10], TREMBA [17], and ColorFool [24] to dem-
onstrate its performance on reducing visual sense. Addition-
ally, key parameters of the compared experiments are the
default given optimal parameters by the previous researches
as demonstrated in the literature for fair comparison.

Two indicators including attack successful rate (i.e., sta-
tistics the ratio of examples that are misclassified after attack
from correctly classified before) and time of batch genera-
tion (i.e., record the time of generating 1000 adversarial-
samples) were used for evaluating.

4.2. Comparison Experiments among Algorithms

4.2.1. Algorithm Efficiency.We set 1000 samples as a batch and
compared the sample generating time by different algorithms.
As shown in Table 1, SparseAdv achieves relatively high attack
successful rate among the comparison results, whereas time
consumption of each algorithm for generating adversarial
examples demonstrates that SparseAdv saves considerable
time compared to other algorithms.

4.2.2. Visual Comparisons. Several adversarial examples gener-
ated by the four algorithms are shown in Figure 5. It can be seen
that those adversarial examples look similar, but SparseAdv
realizes better visualization through our special perturbation
adding approach. Compared to the rest of the adversarial attack
algorithms, ours have finer-grained scratch at the background
and are the most similar to the original images.

4.3. Transferability Evaluation. White-box attack was firstly
conducted on each one of the four source models (ResNet-
50, VGG-16, GoogleNet, and MobileNet-v2) and adversarial
attack was transferred to the rest of the three models to evalu-
ate the transferability of the proposed algorithm. The same
attack was then conducted simultaneously on the four models.
That is, the average of their four loss functions was used as an
overall loss function for updating sparse mapping network to
generate universal adversarial examples. We used those uni-
versal adversarial examples to test their transferability on the
four target classifiers, and further tested their transferability
on other target classifiers (AlexNet, DenseNet, ResNet-152,
and ResNet-34). As shown in Table 2, the first four models in
the left column are source models. And the four models in
the top row are target models. Attack successful rate is used
as transferability metric. As can be seen in the four rows of
the table, values on the diagonal line from the upper left to
the lower right are higher than the others. While the target
model is different from the source model, attack successful rate
drops down to different degrees. Structures and parameters of a

neural network are formulated from the feedback of its loss
function [7]. The descendent and converge of the loss function
guide the search to perturbation distributions. So, the searched
perturbation distributions have strong correlation with such
network’s structure. When adversarial examples transfer
among target models which have similar structures, they tend
to be more transferable, and vice versa. That is the reason
why adversarial examples’ transferability shown in Table 2 is
unstable.

Results in Table 3 reveal that transferability of the gener-
ated universal adversarial examples are more stable and
higher. Because the universal adversarial examples are gener-
ated by the network which is used to simultaneously attack
the four networks, they would then contain general informa-
tion related to the four models’ structures. Thus, the perturba-
tion distributions would contain general structure information
for more other models with higher probability, therefore easier
to be transferable to more models which share this general
structure information. Experimental results demonstrate that
the four target models could be attacked with successful rate
of no less than 95%. In addition, more neural networks with
similar structure of all four target models could be successfully
attacked by the universal adversarial examples, with a success-
ful rate of no less than 75%.

5. Conclusion

In this paper, the purpose is to realize adversarial attack with
better balance among attack ability, less time consumption,
and more imperceptible visual result. Searching space is
enlarged to obtain adversarial information, which could be
used as the adversarial perturbation of the input example. A
sparse mapping network is trained for fast adversarial pertur-
bation generation and save considerable time than the tradi-
tional adversarial attack algorithms which need significant
iterations for updating each input with pixels. To improve
searching efficiency, KLD loss is introduced to selectively
suppress unnecessary neurons, thus effectively reduces compu-
tation complexity. Based on eye sensitivity of different color
channels, we add stronger perturbations on the B channel
and add relatively weak noise on R andG channels to minimize
the modifications under relatively eye-sensitive channels, for
the goal of reducing the visual perception of the perturbations.
SparseAdv could search universal adversarial information that
contains general structure information for more models. Thus,
the adversarial examples generated by those universal adversar-
ial information have relatively high transferability. Experimen-
tal results show that the proposed SparseAdv spends 13.30 s on
average, for generating 1000 adversarial examples, with an
average successful rate of 96.99%, against four target deep
learning models.

Table 3: Transferability of universal adversarial examples.

MobileNet-v2 ResNet-50 VGG-16 GoogleNet AlexNet DenseNet ResNet-152 ResNet-34

Universal adversarial example 95.98 97.32 96.65 95.06 75.46 86.75 82.09 88.24

∗The transferability is represented by attack successful rate (%) when the universal adversarial examples are fed into different deep learning models.
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The timing characteristics of the fault vibration signal of the rolling bearing are ignored by the ShufflenetV2 network. For the
bearing fault problem of multiple working conditions, the fault diagnosis signal is extracted by the feature, which cannot be
performed efficiently and accurately. The ShufflenetV2 network has a deep number of layers and a large amount of parameters,
which causes the network to be prone to overfitting. In response to the above problems, an improved ShufflenetV2-LSTM
intelligent fault diagnosis system is proposed, which is a model in which the long short-term memory network (LSTM) layer
and the Dropout layer are serially embedded in the ShufflenetV2 network. This method preserves the ability of the
ShufflenetV2 network to extract features, and the advantage of the ability of LSTM to strengthen the data sequence is also
inherited, so this improves the accuracy of fault diagnosis. The generalization ability of the model can be enhanced by
Dropout, which can effectively suppress the degree of overfitting. In addition, this paper also optimized the activation function
and optimizer in the model to make up for the additional time cost brought by the Dropout layer, so that the robustness of the
system is improved and fault diagnosis can be analyzed efficiently. Experimental analysis shows that the diagnosis accuracy of
the proposed algorithm is as high as 97% and early failures of rolling bearings can be effectively identified in real time.

1. Introduction

The rolling bearing in the mechanical transmission system is
a key component, and its failure causes the equipment to be
eccentrically loaded or the machine is destroyed. However,
in actual production activities, due to internal factors (such
as parts wear) or environmental factors (such as rapid
temperature change), the occurrence of system failure is
inevitable. Therefore, the early fault diagnosis of the roll-
ing bearing is of great significance [1, 2]. A large amount
of knowledge storage in signal processing is needed in the
field of traditional fault diagnosis [3]. With the develop-
ment of intelligent fault diagnosis methods, the ability of
shallow machine learning structures to learn complex fea-
ture relationships is very limited [4]. All the above deep
learning algorithms have been introduced in the field of

bearing fault diagnosis in recent years, making it more
intelligent [5].

Deep learning is a branch of machine learning where
multiple layers of data processing units are assembled into
a deep architecture to extract multiple levels of data abstrac-
tion, and each layer automatically learns higher level of data
representations from the output of the previous layer [6].
With the significant advantage of automatically learning
data representations, it is considered as an advanced tech-
nique in big data analysis [7]. Therefore, deep learning-
based intelligent diagnostic methods are more flexible and
capable to deal with difficulties in real-world applications
than traditional machine learning-based methods [8].

Most of the researches have realized the detection of
bearing composite fault and fault degree through the analy-
sis of vibration signals on experimental data or real-world
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data. For instense, Zhang C install accelerometers on the
running parts of high-speed trains to collect vibration signals
and use adaptive deep filtering technology to realize com-
posite fault detection of train bearings [9].

In 2012, the classic Alexnet network was the first to be
applied to image classification and achieved excellent results
[10]. Then, a large number of researchers applied the CNN
model to the field of mechanical fault diagnosis and achieved
remarkable success [11]. For example, Lu et al. proposed to
convert one-dimensional vibration signals into two-
dimensional gray maps and then use CNN for classification
[12]. Li et al. proposed an intelligent fault diagnosis method
for rolling element bearings based on the deep distance met-
ric learning [13]. The VGG-16 network is used to process
grayscale image signals [14]. The ShufflenetV2 network
was used to process the two-dimensional time-frequency
diagram of the fault signal, and it was found that the diagno-
sis result was better than other networks through a large
number of experiments [15]. However, in complex working
conditions and many types of faults, the diagnostic effect of a
single CNN model is not ideal [16].

With the continuous improvement and development of
intelligent fault diagnosis research, it is no longer enough
to diagnose simple faults. In complex multiconditions or
multiposition rolling bearing faults, the concept of time
sequence needs to be introduced [17]. In other words, the
ability to diagnose faults can be improved by realizing the
connection of time information before and after. LSTM
has the ability to remember information and transmit
long-term time series information [18]. It is very effective
to deal with a large amount of fault vibration data. The com-
bination of whale algorithm and Adam optimizer optimizes
LSTM, and the IWOA-LSTM algorithm is used for fault
diagnosis [19]. After the signal is denoised by improved
VMD, the variance is calculated. It inputs into LSTM net-
work for rolling bearing life prediction [20]. However, the
methods proposed in the above documents require feature
preprocessing on the collected vibration signals, which does
not meet the current requirements for real-time perfor-
mance [21].

In response to the above problems, the lightweight Shuf-
flenetV2 network is selected as the main body, in this article,
and LSTM is embedded in it, constructing an improved
ShufflenetV2-LSTM intelligent fault diagnosis system. In
view of the fact that LSTM strengthens the time sequence
of the data in order to learn hidden features, combining
the ability to extract features and the advantages of light-
weight networks, ShufflenetV2 deep structure makes up for
the shortcomings of the single CNN model. This paper also
uses Dropout layer to suppress the model overfitting,
changes all the activation functions in the model to Lea-
kyRelu, and uses the RMSprop algorithm to optimize the
cross-entropy function. At the end of this article, we use
ablation experiments and compare with other deep learn-
ing methods. The results show that the improved
ShufflenetV2-LSTM system performs very well in terms
of diagnostic efficiency and accuracy.

In summary, the main contributions of this study are
shown as follows:

(1) The original vibration signal was decomposed by
VMD to obtain several IMF components. The first
three IMF components with the minimum envelope
entropy were selected to reconstruct the signal, and
the one-dimensional reconstructed signal was used
to construct a 32 by 32 two-dimensional characteris-
tic matrix by transverse interpolation

(2) In order to make use of LSTM’s sensitivity to timing
signals, the ShufflenetV2 network is selected as the
main trunk, and LSTM modules are embedded in
series after ShufflenetV2’s global pooling layer. In
order to reduce the degree of overfitting, an
improved ShufflenetV2-LSTM intelligent fault diag-
nosis model for rolling bearings is proposed by con-
necting the Dropout layer after the LSTM

(3) The addition of Dropout layer to the Shuffle-
nnetV2-LSTM model brings additional time cost
and reduces the overall robustness of the system.
Therefore, the activation function and optimizer
are optimized in this paper to solve this problem
and improve also the diagnostic accuracy of the
model

(4) Compared with other models the experimental
results show that the proposed method can effec-
tively diagnose faults. The process of LSTM learning
fault features is shown by visualization technology

This paper is organized as follows: the theoretical back-
ground is given in Section 2. Section 3 presents the improved
ShufflenetV2-LSTM fault diagnosis method. The implemen-
tation of the proposed method to deal with the fault diagno-
sis of data in Western Reserve University is illustrated in
Section 4. Conclusions and future work are provided in Sec-
tion 5.

2. The Basic Theory of the Model

2.1. ShufflenetV2. Traditional CNN models include convolu-
tional layers, pooled layers, and fully connected layers. The
existence of large convolution kernels and pooling layers
makes the model computationally large. The model depth
and size are increasing to improve the accuracy of the model.
For some specific application scenarios such as mobile
devices, because of their limited performance, the model
requires high precision and small size.

ShuffleNetV1 solves the above problems. Based on the
“Four Principles of Efficient Networks,” ShufflenetV2 is
modified from the ShufflenetV1 network and verified the
superiority of ShufflenetV2 [22]. As a lightweight network,
the structure of ShufflenetV2 is shown in Table 1. Each stage
unit in the table is stacked by the unit structure shown in
Figures 1(a) and 1(b).

When Stride = 1, the structure shown in Figure 1(a) is
adopted. In order to meet the same number of input and
output feature matrix channels in the G1 criterion.Firstly,
the unit uses “Chanel Split” to divide the input feature chan-
nel into two parts c-c′and c′. Secondly, one of the branches
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is connected by a shortcut, and the other branch is used to
deepen the number of network layers through 3-layer con-
volution. Finally, the left and right branches are connected
in series through “Concat”.

When Stride = 2, the structure shown in Figure 1(b) is
adopted. This unit eliminates “Chanel Split” and performs
convolution operations on the two branches, respectively.
Therefore, the input feature width and height are reduced
to achieve spatial downsampling. In order to compensate
for the sudden decrease in parameters, the output results
on the two branches are concatenated to double the channel.

At the end of the two units, channel shuffle is required to
disrupt the order of output channels and ensure the
exchange of characteristic information between the two
branches.

ShufflenetV2 is the same as other lightweight models by
scaling the number of filters to change the complexity of the
model; “ShufflenetV2 s ×” means the complexity roughly s2

times of ShufflenetV2 1 ×, but in this paper, we only con-
sider ShufflenetV2 1 × case.

2.2. Long Short-Term Memory Network (LSTM). LSTM is a
variant of recurrent neural network (RNN) and solves the
problem of gradient disappearance and gradient explosion
[23]. The core design of LSTM is the cell state and the “gate”
structure. The cellular state acts as a pathway for informa-
tion to travel through a sequence. In theory, cell states can
transmit information about sequence processing all the
way down. Thus, even information of earlier time steps
can be carried into the cells of later time steps, which over-
comes the effect of short-term memory. Information is
added and removed through a “gate” structure, which learns
what information to save or forget during training. LSTM
cleverly combines short- and long-term memory through
gate control, which can effectively process time series signals,
as shown in Figure 2 [24]. Therefore, it is more reasonable to
use LSTM to process vibration signals with temporal charac-
teristics on the basis of extracting features by CNN.

LSTM is mainly composed of input gate, forget gate, and
output gate. In part one, the old information to be discarded
is determined through the forgetting gate, and the input xt at

t time and the output ht−1 of the hidden layer at the previous
moment are used as the input of the forgetting gate. The cal-
culation formula is as follows:

f t = sigmoid Wf × ht−1, xt½ � + bf
� �

, ð1Þ

where sigmoid is the sigmoid activation function, Wf is the
weight of the forgetting gate, bf is the bias of the forgetting
gate, and f t is a measure of the importance of past
memories.

In part two, the new information to be remembered is
determined through the input gate. The input xt at t time
and the output of the hidden layer at the previous time are
again calculated through formulas (2) and (3) to obtain the
new information importance measurement factor it and
candidate vector Ch. Finally, the cell state is updated by for-
mula (4).

it = sigmoid Wi × ht−1, xt½ � + bið Þ, ð2Þ

Ch = tanh Wc × ht−1, xt½ � + bcð Þ, ð3Þ
Ct = f t × Ct−1 + it × Ch, ð4Þ

whereWi andWc are the input gate weight and bi and bc
are the input gate bias. Ct−1 is the cell state at the previous
moment, and Ct is the cell state of the updated input gate.

In part three, the output gate combines the results of the
forget gate, and the final information to be output is deter-
mined. Firstly, the state of the cell at time t -1 is calculated
by formula (5) to obtain part of the output Ot . What is more,
the cell state at time t is normalized through the tanh func-
tion. Finally, multiply the two by formula (6) as the final out-
put result.

ot = sigmoid Wo × ht−1, xt½ � + boð Þ, ð5Þ

ht = ot × tanh Ctð Þ, ð6Þ
whereWo is the output gate weight and bo is the output gate
bias.

This study uses the sensitivity of LSTM to time series data
and embeds LSTM in series after the global pool of Shuffle-
netV2 to strengthen the timing correlation of signals and sup-
press irrelevant features to improve training accuracy.

2.3. Dropout. Compared with the training sample, there are
too many parameters in the network model, which makes
the training model prone to overfitting—the accuracy of
the model on the training data is higher, but the accuracy
on the test data is lower [25].

Stringing the Dropout layer in the network model can
effectively improve the overfitting phenomenon [26]. In each
training batch, the working principle of Dropout is to ran-
domly shield some neurons each time by ignoring the con-
nections between some neurons with a certain probability,
as shown in Figure 3.

If N is the number of hidden cells in any layer, P is the
probability of retaining a cell. In the expected case, only P

Table 1: ShufflenetV2 structure.

Layer
Convolution

kernel
Stride Repeat Output channel

Conv1 3 × 3 2 1 24

Max pool 3 × 3 2 1 24

Stage 2
2 1

116
1 3

Stage 3
2 1

232
1 7

Stage 4
2 1

464
1 3

Conv5 1 × 1 1 1 1024

Global pool 7 × 7 1

FC 40

3Journal of Sensors



Channel split

Channel shuffle

Concat

1x1 Conv

3x3 DWConv 

1x1 Conv

BN relu

BN

BN relu 

(a) Stride = 1: basic unit

Channel shuffle
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(b) Stride = 2: unit for spatial down sampling

Figure 1: Blocks of ShufflenetV2 2.2 long short-term memory network (LSTM).
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Figure 2: LSTM structure.
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×N units will appear after the Dropout layer, instead of N
hidden cells. This group of P ×N units varied each time
and did not allow the units to build coadaptations freely.
Therefore, if a layer of size N is optimal for a standard neural
network for any given task, then a good exit network should
have at least N/P units.

Applying Dropout layer to a neural network is equiva-
lent to extracting a “refined” network from it. The refined
network consists of all the units that have survived from
Dropout (Figure 3 (b)). Dropout introduces an additional
hyperparameter, the probability of retaining unit P. This
hyperparameter controls the intensity of Dropout. P = 1
means no Dropout, and a low P value means more Dropout.
Typical P values for hidden units range from 0.5 to 0.8. A
small P will slow down the training speed and lead to under-
fitting. Large P may not produce enough Dropout to prevent
overfitting. According to experience, P is 0.5 in this study.

In this way, each neuron is not sensitive to another spe-
cific neuron. The parameters will not rely too much on the
training data, which greatly enhances the generalization abil-
ity of the model. The Dropout layer connects to the back of
the network which is more effective and needs to work with
the fully connected layer. Therefore, a fully connected layer
(FC1) and a layer of Dropout are serially connected after
the LSTM, as shown in Figure 4.

3. The Improved ShufflenetV2-LSTM Rolling
Bearing Fault Diagnosis System

The single ShufflenetV2 network cannot diagnose the bear-
ing faults efficiently for multiposition and multiworking
conditions. In order to introduce timing characteristics,
improve training accuracy, and reduce overfitting degree,
the ShufflenetV2 network is selected as the main stem in this

paper. LSTM and Dropout modules are embedded in series
after ShufflenetV2’s global pool layer. An improved
ShufflenetV2-LSTM fault diagnosis method is proposed.
Combined with the sensitivity of LSTM to time series data,
the system strengthens the time series correlation of signals
and restrains irrelevant features to improve the training
accuracy of model .In addition, the generalization ability of
the model is increased by using Dropout random shielding
neurons. However, during the experiment, it was found that
the addition of Dropout module would reduce the overall
robustness of the system and bring additional computational
costs. In this study, we also improved the activation function
and optimizer of the model to improve this problem and
improve the diagnostic accuracy of the model.

3.1. Optimization Model

3.1.1. Activation Function. When improving the
ShufflenetV2-LSTM system to identify bearing faults, the
mapping relationship between fault types and labels is
complicated. The activation function introduces nonlinear
characteristics and transforms the current feature space
to another space through a certain mapping [27]. The
mapping ability of nonlinear equations for complex data
learning is stronger than linear. In order for the data to
be better classified, the selection of the activation function
is crucial [28].

The activation function used by the original ShufflenetV2
is Relu, and its mathematical expression is as follows [29].

ReLU xð Þ =
x x > 0,
0 x ≤ 0:

(
ð7Þ

(a) Standard neural net (b) After applying Dropout

Figure 3: Dropout principle.
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It can be seen from the expression that when x ≤ 0, the
output is 0 and its gradient is also 0. The neuron cannot
update the parameters, which will cause the network to
“necrotize.” To solve this problem, the leakage value is intro-
duced in the negative interval to obtain the LeakyRelu func-
tion [30].

LeakyReLU xð Þ =
x x > 0,
x/a x ≤ 0,

(
ð8Þ

where a is the fixed parameter in the ð1, +∞Þ and x is the
input. According to reference [30], the empirical a value is

100 in the study. By introducing leakage value, unilateral sup-
pression is achieved, and part of negative gradient information
is retained so that it is not completely lost. The LeakyRelu
function ranges from minus infinity to infinity. This expands
the range of values compared to Relu.

In order to accelerate the network convergence and
enhance the robustness of the model, this research changes
all the Relu in the original model to the LeakyRelu activation
function.

3.1.2. Optimizer. During the training period of the model,
the optimizer continuously optimizes the value of loss func-
tion by updating and calculating the network parameters of
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Figure 4: Intelligent fault diagnosis flow chart based on the improved ShufflenetV2-LSTM4
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the model, so that the model achieves the global optimal
point [31]. In practical application, the selection of loss func-
tion and optimizer determines the convergence speed and
effect of the model. The inappropriate loss function and
the optimizer will cause the model to fall into the local opti-
mal point, which is the value of loss function hovers around
the local optimal point, unable to reach the global optimal
point, resulting in poor accuracy of the final model.

In this paper, the cross-entropy cost function is used to
calculate the difference between the current model probabil-
ity distribution and the real distribution to obtain the loss
function value. Equation (9) is a formula for the cross-
entropy cost function, where a is the output value of the
neuron activation function and y is the desired output value.

C = −
1
n
〠 y ln a + 1 − yð Þ ln 1 − að Þ½ �: ð9Þ

Therefore, the choice of the optimizer plays a crucial role
in the training process [32]. RMSprop combines exponential
moving average of gradient square to adjust the change of
learning rate. This converges well in the case of nonstation-
ary objective functions. The RMSprop optimizer introduces
an attenuation factor β on the basis of AdaGrad and avoids
the continuous accumulation of second-order momentum
by focusing only on the descending gradient of the past
period of time, thereby solving the problem of premature
end of training [33]. The core part of RMSprop is the
second-order momentum, which is calculated as follows:

Vt = β ×Vt−1 + 1 − βð Þdw2, ð10Þ

where β is the attenuation factor, dw is the current gradient,
and Vt is the second-order momentum at time t. Adam is an
algorithm that combines the momentum and RMSprop [34].

mt = β1 ×mt−1 + 1 − β1ð Þdw, ð11Þ

Vt = β2 × Vt−1 + 1 − β2ð Þdw2, ð12Þ

where mt is the first-order momentum, β1 is the first-order
momentum decay factor for formula (11), and other param-
eters in formula (12) have the same meaning as in formula
(10).

Theoretically speaking, the optimization effect of Adam
should be better than RMSprop [35], but in the experiment
process of this study, it is found that the network model
using RMSprop optimizer can converge stably within a cer-
tain period of time, but the model using Adam is still oscil-
lating near the optimal value. The reason for the analysis
may be that the oscillation of the acceleration learning rate
of the first-order momentum in the later training period
makes the model difficult to converge.

The improved ShufflenetV2-LSTM fault diagnosis sys-
tem uses the RMSprop algorithm to optimize the cross-
entropy loss function instead of Adam, which makes the net-
work better converge to compensate for the additional time
cost of Dropout.

3.2. Improved ShufflenetV2-LSTM Basic Flow. An improved
ShufflenetV2-LSTM fault diagnosis method for rolling bear-
ings is proposed in this paper. The basic structure is shown
in Figure 4, and the specific steps are as follows:

(1) Collect vibration signals of rolling bearing running
state

(2) A series of IMF components were decomposed by
VMD algorithm. The first three IMF components
were selected to reconstruct the signal according to
the envelope entropy value, and a 32 × 32 two-
dimensional characteristic matrix was constructed
by transverse interpolation

(3) Sample training set and test set are divided according
to 8 : 2 ratio

(4) Set up network model and initialize parameters

(5) The training set trains the network model, and the
model learns the fault characteristics, uses RMSprop
algorithm to calculate the gradient of the loss func-
tion, and then updates the parameters

(6) Judge whether the training iteration number M
reaches the preset value N . If so, proceed to the next
step; otherwise, repeat the training

(7) Test set tests the trained model, outputs evaluation
indicators, and finishes the training

The network model in Figure 2 mainly consists of the
improved ShufflenetV2 module, the LSTM layer, the Drop-
out layer, and the Softmax layer. The detailed learning pro-
cess is as follows: (1) input the 2d eigenmatrix into the
network and firstly extract fault features using the improved
ShufflenetV2 module; (2) LSTM is used to learn hidden fea-
tures and discard noise features to retain the main feature
information; (3) the Dropout layer is used to hide neurons
with a certain probability. After the fault features pass
through a full connection layer, Softmax calculates the prob-
ability of each type and outputs the fault classification results.

4. Experiments and Results

4.1. Data Set. This article uses a data set from the Rolling
Bearing Experimental Center of Case Western Reserve Uni-
versity (CWRU) for experimental verification [36]. The
bearing designation is 6205-2RS JEM SKF deep groove ball
bearing, and the sampling frequency is 12 kHz. Bearing
damage is a single-point damage made by EDM, which can

Table 2: Experimental data set of CWRU.

Service load
Normal or fault

(degree of damage)
Number of samples

(training set/testing set)

0/1/2/3

N 100 (80/20)

IR (7/14/21) 100 80/20ð Þ × 3
B (7/14/21) 100 80/20ð Þ × 3
OR (7/14/21) 100 80/20ð Þ × 3
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be divided into three types of failure locations: inner ring,
rolling body, and outer ring failure. Each position is divided
into 3 different levels of failure: minor failure (7 mils), mod-
erate failure (14 mils), and serious failure (21 mils), plus a
group of healthy rolling bearing operating status, a total of
ten different bearing operating status. In order to verify that
the improved model can be applied to different types of
faults in different working conditions, each operating state
distinguishes four workloads of 0, 1, 2, and 3 horsepower.
Therefore, the data set in this article contains a total of 40
types of rolling bearing operating states, each of which has
100 small samples of data, and each small sample contains
1024 data points. According to reference [36], randomly
select 80% of the samples from each type of running state
for training set and the remaining 20% for testing set. The
samples are arranged out of order. For the convenience of
presentation, the inner ring, rolling body, and outer ring
are represented by IR, B, and OR, respectively, and the nor-
mal state is represented by N. Details of the data set are
shown in Table 2.

Before training the model, the data need to be prepro-
cessed. For clarity, take the sample data of 0 horsepower
slight inner ring failure as an example. Firstly, the sample
of 1024 data points is decomposed by VMD to obtain 7
IMF components. Then the envelope entropy is used as the
evaluation criterion [37], and the first three IMFs with the
smallest entropy value are selected to reconstruct the signal.
In order to meet the instantaneity, the vibration signal is
directly used as the training set to maintain the timing
characteristics of the vibration signal. Finally, the one-
dimensional reconstruction signal is sequentially constructed
in a horizontal order to construct a two-dimensional matrix
of 32 by 32, which is used as the model input layer.

4.2. Ablation Experiment. In order to show that the various
improvements made to the ShufflenetV2 network in this

article contribute to the improvement of the model’s perfor-
mance, an ablation experiment is carried out, where training
accuracy, test accuracy, and training time are mainly used as
evaluation indicators. During the experiment, the same sam-
ple data set was used, the learning rate was set to 0.001, the
loss function used cross-entropy, the training iteration was
30 times, and the minimum batch was 64.

In order to prove that LSTM can improve the accuracy
of the model, insert the LSTM after the global pooling layer
of the ShufflenetV2 model. In order to prove that Dropout
can prevent the model from overfitting, the fully connected
layer and Dropout layer are connected in series after the
LSTM layer. In order to prove the contribution of LeakyRelu
activation function to the model, replace all activation func-
tions in the network with LeakyRelu activation function. In
order to prove that the RMSprop optimizer is more suitable
for the model and accelerate the stable convergence of the
model, a comparative experiment was designed and the
Adam optimizer was changed to the RMSprop optimizer.

Table 3: Results of ablation experiments with data from CWRU.

Model
Factor

Training accuracy (%) Test accuracy (%) Time (min)
LSTM Optimizer Dropout Activation function

ShufflenetV2

0 0 0 0 92.19 88.25 9′42
1 0 0 0 98.44 95.63 9′57
0 1 0 0 100 94 9′44
0 0 1 0 91.88 90.75 20′39
0 0 0 1 94.44 89.37 10′10

This study 1 1 1 1 100 97.38 9′23

Table 4: Hyperparameter settings of each model.

Model LSTM Optimizer Activation function Dropout

Improved Alexnet Add RMSprop LeakyRelu Delete the original

Improved MobilenetV2 Add RMSprop LeakyRelu Without

Improved Squeezenet Add RMSprop LeakyRelu Keep the original

Improved Resnet-18 Add Adam LeakyRelu Without

Improved Xception Add Adam LeakyRelu Without

Table 5: Diagnostic results of different models under CWRU
bearing data set.

Model
Training accuracy

(%)
Test accuracy

(%)
Time
(min)

Improved Alexnet 40.63 38.75 25′16
Improved
MobilenetV2

98.44 94.63 12′59

Improved
Squeezenet

39.04 32.37 7′49

Improved Resnet-
18

96.88 91.87 21′53

Improved
Xception

93.76 93.63 31′53

This study 100 97.38 9′23
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The experimental results are shown in Table 3. The tem-
poral correlation between vibration data was enhanced by
adding LSTM. The running time of the ShufflenetV2 net-
work model is only increased by 15 s, but the accuracy rate
can be increased by 7.38%. For the ShufflenetV2 model,
the time cost of using RMSprop or Adam is the same basi-
cally. The accuracy rate of the model using the Adam opti-
mizer can only oscillate around 92.19% at the end of the
training. However, the model using the RMSprop optimizer
can stably maintain 100% at the end of training, and the
accuracy of the test set is 5.75% higher than that of Adam.
This shows that the Adam optimizer will not always perform
better than other optimizers, and the choice of optimizer
cannot be generalized. Replace all model Relu activation
functions with LeakyRelu activation functions to increase a
small amount of time cost (28 s) in exchange for a certain
classification accuracy rate. The improved model accuracy
rate increased by 2.25%. For this model, adding, alone, the
Dropout layer can reduce the degree of overfitting the differ-
ence between training accuracy, and test accuracy is reduced
from 3.94% to 1.13%. However, the accuracy of the model
will not be saturated until almost 2 times the time cost before
the improvement as a cost. Therefore, it is not advisable to
add alone the Dropout layer to avoid overfitting, and other
improvements proposed in this paper are needed to com-
pensate for the slow convergence rate and reduce the time
cost.

Ultimately, the algorithm proposed in this research,
introducing LSTM, selecting the RMSprop optimizer, using
the LeakyRelu activation function, and adding the Dropout
layer, reduces the degree of overfitting, improving the classi-
fication accuracy, and speeds up the model convergence
speed to compensate for the additional time cost brought
by the Dropout layer. The difference between the prediction
accuracy and the training accuracy is reduced from 3.94%
before the improvement to 2.62% in the rolling bearing data
set. During the training process, the accuracy of the model
can be stabilized at 100%, and the test accuracy can be as

high as 97.38%, an increase of 9.13% compared to the model
before the improvement.

4.3. Algorithm Comparison and Analysis. The current classic
popular and lightweight neural network are selected for
experimental comparison to compare with the method in
this article in order to further verify the performance of this
research method in the diagnosis of bearing faults. The
experimental model selected Alexnet, MobilenetV2, Squee-
zenet, Resnet-18, and Xception.

It is necessary to improve the selected network model in
order to ensure the fairness of the comparison experiment.
Since the optimal hyperparameter settings of each network
model are different for different networks, the optimization
method proposed in this paper is not necessarily suitable
for all the above models. Therefore, each of the above-
mentioned network needs to pass ablation experiments to
find the best hyperparameter settings of their respective net-
works with accuracy and time cost as indicators, as shown in
Table 4.

A large number of experimental results show that no
matter which type of network, embedding the LSTM can
effectively improve the original network for the time series
vibration signal from Table 4. The choice of the optimizer
should be selected appropriately according to different net-
works. The only model in the table is MobilenetV2, which
is replaced with LeakyRelu by the clippedRelu activation
function, and the rest are Relu instead of LeakyRelu.

The above-mentioned improved network is compared
with the research in this paper. The same sample data set
is used during the experiment, and the other parameter set-
tings are the same as those described above. The final exper-
imental results are shown in Table 5 and Figure 5 (the data
in Table 5 are plotted in Figure 5). It can be seen that the
improved ShufflenetV2-LSTM model training set accuracy
rate is the only one to reach 100% and the test set accuracy
rate is as high as 97.38%, which is higher than the accuracy
rate of other models. In addition, the loss function value is
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Figure 5: Classification accuracy of different algorithms based on the test bearing data set of Western Reserve University.
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the lowest, indicating that there is little difference between
the actual output and predicted value of the model. The
training time of this model is shorter compared with other
models, which is only longer than the improved Squeezenet
model. The improved Squeezenet model has an accuracy
rate of only 32.37%. The improved Alexnet is the network
with the least number of convolutional layers in the table,
with only 8 layers, but the time is nearly 3 times longer than
the improved ShufflenetV2-LSTM. The test accuracy rate
exceeds 90%: the improved MobilenetV2, the improved
Resnet-18, and the improved Xception. However, it is,
respectively, 2.75%, 5.51%, and 3.75% lower than the
improved ShufflenetV2-LSTM and the time cost is also high.
In particular, the Xception training time is 3 times that of the
improved ShufflenetV2-LSTM.

Therefore, the improved ShufflenetV2-LSTM proposed
in this article stands out in the face of many classification
models, with the best timeliness and the highest accuracy,
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and can efficiently and reliably solve the problem of fault
diagnosis of rolling bearings.

4.4. Data Visualization. In order to more intuitively study
and analyze the model learning process and LSTM classifica-
tion capabilities proposed, t-SNE (T-Stochastic Neighbor
Embedding) technology is used to visualize the feature dis-
tribution and analyze the performance of the constructed
model [37].

As shown in Figure 6(a), the input data is messy and dif-
ficult to classify. Though the features extraction of the multi-
convolutional neural layers, some faults can be distinguished
effectively. However, different working conditions of the
same fault location cannot be effectively distinguished, for
instance, the 2 and 3 horsepower conditions with moderate
inner ring failure and the 0 and 1 horsepower conditions
with serious outer ring failure. In addition, the minor and
moderate rolling body failures cannot be effectively distin-
guished with the same 0 horsepower condition. It can be
seen that LSTM strengthens the correlation of data timing
characteristics, separating and gathering effectively the
above-mentioned confusing faults comparing the two
Figures 6(b) and 6(c). This shows that LSTM is sensitive to
vibration signals and strengthens the ability to distinguish
subtle faults. The model can extract and classify the forty
types of fault features of rolling bearings under different
working conditions and at different positions in the
Figure 6(c). The model can effectively learn different fault
features in order to realize diagnosis and classification.

4.5. Model Generalization Ability Experiment and Result
Analysis. In order to further verify the generalization ability
of the proposed method, a rolling bearing fault test bench
was built, as shown in Figure 7. A rolling bearing of TYPE
ER-16K was selected to set up inner ring fault, rolling body
fault, and outer ring fault, plus a group of healthy bearings.
There were four bearing state types, and the specific faults
are shown in Figure 8. Twelve kinds of fault signals were
measured under 150 kg, 300 kg, and 500 kg loads, respec-
tively. The sampling frequency was 12.8 kHz. Each small
sample contained 1024 data points, and each type of signal
was composed of 1280 small samples. 80% of the samples
in the same category were randomly selected as the training
set and the rest as the test set from Table 6 for data details.
The same pretreatment is performed in Section 3.1: sample

signals are decomposed by VMD, the first three IMF com-
ponents with the best entropy are reconstructed, and the
two-dimensional characteristic matrix is constructed. The
network model mentioned in the previous section is used
for fault diagnosis. The results of diagnosis accuracy and
training time are shown in Table 7.

It can be seen from Table 7 that when the fault categories
are less, the diagnosis effect of the improved Alexnet model
becomes better and the accuracy can reach 96.74%, but its
accuracy and operation time are still inferior to the algo-
rithm proposed in this paper. The test accuracy of this
model is 98.86%, only lower than 99.09% of the improved
Xception, but the training time of the improved Xception
is up to 70 minutes. In the table, only the improved Squeeze-
net has a shorter calculation time than the model in this
paper, but its test accuracy is 81.93%, which is the lowest
among all models.

(a) Inner ring failure (b) Rolling body failure (c) Outer ring failure

Figure 8: Fault bearings at different positions.

Table 6: Data set of 12 bearing states.

Bearing
state

Label Number of samples
(training set/testing set)150 kg 300 kg 500 kg

Normal N-150 N-300 N-500 1280 1024/256ð Þ × 3
Inner ring
fault

IR-150 IR-300 IR-500 1280 1024/256ð Þ × 3

Rolling fault B-150 B-300 B-500 1280 1024/256ð Þ × 3

Outer ring
fault

OR-150 OR-300 OR-500 1280 1024/256ð Þ × 3

Table 7: Evaluation results of different models.

Model
Training accuracy

(%)
Test accuracy

(%)
Time
(min)

Improved Alexnet 98.44 96.74 16′40
Improved
MobilenetV2

100 97.66 26.33

Improved
Squeezenet

87.50 81.93 11′41

Improved Resnet-
18

100 98.8 76′12

Improved
Xception

100 99.09 70′02

This study 100 98.86 14′14

11Journal of Sensors



It can be seen that when the fault category becomes
smaller, the gap between the algorithms is narrowed. How-
ever, considering the diagnosis accuracy and training time
comprehensively, the improved ShufflenetV2-LSTM model
still performs best. In addition, combined with the experi-
mental fault diagnosis results in the previous section, it is
shown that the proposed algorithm performs better than
other algorithms and has certain reliability and generaliza-
tion ability, which is suitable for intelligent diagnosis of
various bearing faults.

5. Conclusion

This study proposes an improved ShufflenetV2-LSTM diag-
nosis system for the problem of rolling bearing fault diagno-
sis. Through the experimental study of the bearing failure
data set, the following conclusions can be obtained:

(1) This model strengthens the time series correlation
between vibration data through LSTM based on the
capability to extract fault features of ShufflenetV2.
It can be found that the ability to distinguish rolling
bearing faults is significantly enhanced from the
visual classification results. The experimental results
of the two groups also show that compared with
other network models, the proposed algorithm
model can diagnose rolling bearing faults quickly
and effectively and has excellent performance in
diagnosis accuracy and training time

(2) In view of the problem of overfitting caused by many
model parameters and small sample data, embed-
ding the Dropout layer alone can effectively alleviate
the degree of overfitting, but it will cause model
instability and bring additional training time costs.
This study proposes an improved method of replac-
ing the Relu with LeakyRelu activation function and
using the RMSprop optimizer to optimize the cross-
entropy function to achieve the purpose of making
up for the time cost of the Dropout layer. Experi-
mental verification shows that the proposed
improved method can not only avoid overfitting
but also meet the real-time requirements

(3) Breaking the convention, this research found that the
optimization effect of RMSprop is better than Adam
for the model in this paper. It can be seen that the
choice of optimizer cannot be generalized. For spe-
cific target tasks, how to select a suitable optimizer
for a specific network model needs to be further
explored in the future
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Cloud storage services bring great convenience to users, but also make data owners lose direct control of their data. How to ensure
that deleted cloud data can never be recovered by cloud servers or attackers is a key issue in the field of cloud storage security,
which is important to protect user privacy and data confidentiality in the cloud environment. Most existing schemes have the
drawbacks of overreliance on key destruction and having the ability to decrypt part of the ciphertext after cracking the key. To
solve these problems, a novel cloud data assured deletion scheme based on strong nonseparability is presented. By combining
XOR operation with the block cipher, the cipher data become strongly nonseparable; thus, destroying any piece of cipher data
will result in unrecoverable original data. Theoretical analysis and experimental results both show that the scheme achieves the
expected goals of assured deletion, which has obvious performance advantages and stronger security compared with similar
schemes.

1. Introduction

In cloud storage application mode, users enjoy the benefits
of flexible space, real-time sharing, disaster tolerance, and
other benefits. However, they lose direct control over the
data they own. When users want to delete data stored in
the cloud, how to ensure that the deleted data will not be
recovered by the cloud server or attackers, that is, assured
deletion of cloud data, is a key issue to be solved in the field
of cloud storage security. Because the cloud storage services
are completely out of the direct control of users, there is no
technical solution to ensure the direct destruction of cloud
data at present; only the idea of “encrypt data, destroy key”
[1] can indirectly achieve the assured deletion of cloud data.

The assured deletion schemes based on the above ideas
destroy the key, but there are still complete cipher data on
the cloud server. If the key is compromised or the cipher is
violently cracked, the deleted original data is still at risk of
being recovered. Even if it cannot be decrypted, the complete
cipher data can still be used for ciphertext analysis. In addi-
tion, under the common working mode of block ciphers (e.
g., ECB and CBC), if an attacker has the key, the intercepted
cipher fragments can be decrypted. To deal with these
threats, this paper presents a cloud data assured deletion

scheme based on strong nonseparability. By combining
XOR operation with the block cipher, the cipher data are
strongly nonseparable [2], that is, destroying any part of
the whole cipher data will result in the original data not
being recovered. Users host the key and some cipher data
to a trusted third party, which destroys these cipher data
and the key when the deletion operation is initiated. The
strong nonseparability ensures that recovering any part of
the original data without the complete cipher data is compu-
tationally infeasible, thus significantly enhancing the nonre-
coverability of the data after the deletion operation. This
scheme achieves the strong nonseparability by confusing
data blocks directly participating in cryptographic opera-
tions through XOR operation, which reduces the number
of cryptography computations. Therefore, it has obvious
performance advantages and stronger security over existing
similar assured deletion schemes.

2. Related Works

To realize the assured deletion of cloud data, Perlman first
proposed the idea of “encrypt data, destroy key” [1]. Firstly,
the user encrypts the original data by generating a random
key, then uploads the ciphertext to the remote server, and
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hosts the encryption key to a trusted third party. When per-
forming data deletion, the trusted third party destroys the
key to ensure that the cipher data on the remote server can-
not be decrypted, thus achieving assured deletion. Tang et al.
proposed FADE system [3, 4], which implements a policy-
based assured deletion mechanism for cloud data. Mo et al.
proposed a user-based assured deletion scheme [5] that does
not rely on third parties; users only need to keep a small
number of keys to achieve fine-grained assured deletion.
Geambasu et al. proposed a scheme [6] which uses a thresh-
old secret sharing mechanism to divide the encryption key
and save it on a DHT (Distributed Hash Table) node, using
the automatic update mechanism of DHT to delete the
encryption key regularly. Feng and Tan proposed a data
assured deletion scheme [7] based on trust value for cloud
storage; the core is to evaluate the trustworthiness of DHT
nodes, selecting a node with higher trustworthiness to store
the key component, and reduce the probability that users
cannot access their sensitive data during the authorized time.

Rivest pointed out that for existing encryption systems,
as long as the key is mastered, part of the cipher data
obtained can be decrypted [2]. This facilitates the attacker.
On the one hand, any cipher fragments have a direct value
because they can be decrypted to obtain the corresponding
plaintext. On the other hand, any cipher fragment can pro-
vide useful information for cracking the key. To address
these issues, Rivest proposed the concept of strongly nonse-
parable and proposed a way to construct a strongly nonse-
parable encryption scheme by existing cryptography
technology and AONT (All-Or-Nothing-Transform) and
an implementation scheme called Package Transform to
accommodate scenarios with higher security requirements.

On the basis of Rivest’s Package Transform scheme, Luo
proposed a strongly nonseparable encryption scheme [8].
Luo’s scheme first converts the original message sequence
into a strongly inseparable pseudomessage sequence using
AONT conversion and then encrypts the pseudomessage
sequence using a random key to generate a cipher sequence.
To improve the computational efficiency, Luo’s scheme uses
pseudorandom function (PRF) and hash operation to,
respectively, replace two times block encryption in the Pack-
age Transform scheme. It is important to note that the Pack-
age Transform scheme implements AONT, which is a
preprocessing process used to achieve strong nonseparability
and cannot replace encryption operations by itself, while
Luo’s scheme is a complete encryption scheme which imple-
ments strong nonseparability. The scheme proposed by
Zhang et al. [9, 10] uses a similar approach, but the use of
bilinear mapping may result in high computational
overhead.

Liu et al. proposed a blockchain-based verification
scheme for deletion operation in the cloud [11]. Users
invoke smart contracts to prove identity to the cloud server,
and then, the cloud server deletes the data and generates a
blockchain with deletion evidence embedded, while users
can verify the results of data deletion without a trusted third
party. Du et al. proposed a cloud data assured deletion
scheme based on cipher reencryption combined with over-
ride verification [12]. By reencrypting and changing the

access control strategy corresponding to the ciphertext, data
fine-grained deletion can be achieved. A searchable path
hash binary tree based on dirty data block override is con-
structed to verify the correctness of the data to be deleted
after overwriting. Zhang proposed an instantaneous deter-
ministic deletion method of cloud storage data based on fea-
ture iteration [13], which extracts and classifies the features
of redundant data in cloud storage data, iterates until con-
vergence, and achieves high-performance deletion of redun-
dant data. In addition, some assured deletion or self-
destruction schemes for cloud data based on DHT [10, 14],
attribute-based encryption [15–18], and identity-based
encryption [19, 20] are proposed in recent years. Xiong
et al. [21] made an in-depth analysis and comments on the
related research work in recent years from three aspects:
trusted execution environment, key management, and access
control strategy.

The above schemes use some new technologies, but
require considerable changes to the cloud storage service
framework, making it difficult to directly apply them to
existing cloud storage systems, complex to implementation,
and significantly increasing the computational time cost or
number of interactions, while the scheme in this paper does
not change the existing system architecture, but fully
exploits the mature cryptography technology, which
achieves the goals of assured deletion by making the cipher-
text strongly nonseparable.

3. Assured Deletion Scheme Based on
Strong Nonseparability

The cloud storage system in reality is full of various security
threats. To achieve assured deletion of cloud data, an effi-
cient assured deletion scheme for cloud data based on strong
nonseparability is proposed. This section first describes the
assured deletion system from the perspective of the model,
combs the real threats and proposes the expected design
goals, then introduces the concept of strongly nonseparable,
next describes the main algorithms, processes, and assured
deletion mechanisms in detail, and finally gives the perfor-
mance analysis of the scheme.

3.1. System Model

3.1.1. System Composition. To illustrate the assured deletion
of cloud data, an assured deletion system with four entities is
introduced, as Figure 1 illustrated.

Among them, the cloud storage server (CSS) provides
users with cloud storage and data sharing services. Trusted
third party (TTP) is the entity trusted by users, which is
responsible for hosting keys and partial cipher data and for
completely destroying the corresponding key and cipher
data when performing the deletion operation. Data owner
(DO) performs a specific encryption algorithm on the origi-
nal data, uploads the output to CSS and TTP, and authorizes
access for some users. Authorized users (AU) are those who
are allowed to download and decrypt specific data. Assured
deletion can be initiated by the DO or triggered by a strategy
such as shelf life.
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In fact, there is no credible third-party entity in some
cloud storage systems. At this time, DO can retain the partial
cipher data and destroy it when performing deletion.

3.1.2. Reality Threats. For traditional cloud storage systems,
cloud data may still be retained after a deletion request,
which poses a threat to user privacy and data confidentiality.
Specifically, the implementation of assured deletion faces the
following security threats:

(a) CSS does not perform data deletion operations, but
only prohibits user access

(b) Attackers or malicious cloud service providers
attempt to decrypt or mine the user data they hold

(c) Attackers intercept or crack the data encryption key
to decrypt the acquired cipher data

3.1.3. Expected Goals. Within the framework of this system,
in order to respond to these real threats and be operable,
assured deletion should meet the following objectives:

(a) Assured deletion must be valid, that is, no one
(including the DO) can recover all or part of the
original data with limited computing resources after
performing the data deletion

(b) Even if an attacker acquires all data stored by the
CSS or if the cloud service provider itself is mali-
cious, it cannot restore any of the original data

(c) Even if an attacker has the data encryption key, he
cannot decrypt incomplete cipher data fragments

(d) The algorithm introduced by assured deletion must
be easy to implement and will not significantly bur-
den users

3.1.4. Safety Assumptions. To make the scheme feasible, the
following assumptions need to be made:

(a) TTP is trustworthy and technically can ensure that
the corresponding keys and data are securely
destroyed

(b) The temporary data blocks generated by users will
not be saved, that is, attackers cannot obtain the
decrypted plaintext through the users

3.2. Strongly Nonseparable. Strongly nonseparable [2] intro-
duced by Rivest guarantees that any missing cipher data will
result in the failure to decrypt any part of the plaintext, as
defined below.

Hypothesis Γ is a block cipher mechanism used to con-
vert s plaintext sequence m1,m2,⋯,ms to t cipher sequence
c1, c2,⋯, ct . If it is satisfied that restoring any plaintext data
before obtaining and decrypting all t cipher blocks is com-
putationally infeasible, it is called the encryption mechanism
Γ can make a sequence strongly nonseparable.

In the face of a strongly nonseparable encryption mech-
anism, the cipher fragments obtained by the attacker no lon-
ger have the value of direct decryption, nor can they provide
a useful reference for cracking the key, so the security is sig-
nificantly enhanced. Based on the definition of strongly non-
separable, we can use existing cryptographic technology to
construct encryption schemes that satisfy the strong
nonseparability.

3.3. Scheme Implementation. This section describes in detail
the algorithms and processes for data encryption and data
decryption of the scheme and gives the mechanism and
security analysis of data deletion. Make Enc a block encryp-
tion algorithm, Dec the corresponding decryption algorithm
for Enc, and F = ðm1,m2,⋯,mnÞ the original message
sequence.

3.3.1. Data Encryption. The pseudocode for the data encryp-
tion algorithm is as follows.

The data encryption algorithm is executed by the DO.
The execution process is shown in Figure 2. After execution,
the DO randomly selects some data blocks in the cipher
sequence C′ to form a set Ψ. Specifically, makeΨ = fc0′g;
DO hosts Ψ and key K together to a TTP. The remaining

Data owner

Residual ciphertext

Cloud storage server

Residual ciphertext

Partial ciphertext
encryption key

Partial ciphertext
encryption key

Trusted third party Authorized users

Figure 1: Assured deletion system model.

Input: F
Output: K , C′
Randomly generate an initial vector m0′
Randomly generate a data encryption key K
for i in ½1, n�:

mi′=mi ⊕mi−1′
ci′= EncKðmi′Þ ⊕mi−1′

end for
c0′ =m0′ ⊕ c1′ ⊕ c2′ ⊕ ⊕ cn′
Make C′ = ðc0′ , c1′ , c2′ ,⋯, cn′Þ

Algorithm 1
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data blocks of cipher sequence C′ form a set Ω and DO
sends it to the CSS. DO grants access to some users.

3.3.2. Data Decryption. The pseudocode for the data decryp-
tion algorithm is as follows.

Data decryption algorithm is executed by AU when
accessing cloud data. The execution process is shown in
Figure 3. AU first retrieves the key K and the partial cipher
data set Ψ from the TTP, then retrieves the remaining cipher
data set Ω from the CSS, merges Ψ and Ω to get the com-

plete cipher sequence C′, and then executes the data decryp-
tion algorithm to recover the original message sequence F.

It is worth mentioning that if all mi−1′ appearing in the
above algorithms are fixed to the initial vector m0′, the
expected security characteristics can also be achieved. This
simplifies the scheme representation further, but may result
in the same plaintext blocks being converted to the same
cipher blocks. Therefore, it is necessary to use the block
cipher working mode other than ECB to hide the formatting
rules and statistical characteristics of the plaintext. Experi-
ments show that this simplification does not achieve perfor-
mance improvement, so it will not be repeated later.

3.3.3. Data Delete Mechanism. When performing the dele-
tion operation, the key K and the partial cipher data set Ψ
are destroyed by the TTP. Due to the strong nonseparability
of cipher data, any missing cipher data will result in the fail-
ure to decrypt any part of the plaintext.

The following security description analyzes whether the
scheme achieves the expected security goals after performing
deletion operations from the point of view of the strongest
attacker.

TTP destroys the key K and the partial cipher data set Ψ
(make Ψ = fc0′gÞ after deletion. Assume that the strongest
attacker A gets all remaining data Ω (make Ω = fc1′ , c2′ ,⋯,
cn′g) stored by CSS and has the key K . However, A is infeasi-
ble to recover m0′ without c0′; thus, no fragment of the origi-
nal message F can be recovered. Even if the attacker A gets
part of the plaintext blocks (make it mi), because A does
not know mi′, it is not possible to compute m0′ contained in
it; thus, no more plaintext blocks can be obtained.

In Luo’s scheme [8], mi′=mi ⊕ f rkðiÞ; f is a pseudoran-
dom function. Attacker A can get mi′ by decrypting ci′. In
the case of obtaining the plaintext block mi, f rkðiÞ can be
obtained. Pseudorandom functions usually do not satisfy
the characteristics of cryptographic algorithms. As long as
the seed rk is calculated inversely, other plaintext blocks
can be restored.

m1

EncK EncK EncK

Form 𝜓, upload to TTP

All

Randomly
generated

m2 mn

m′0 m′1 m′2 m′n

c′0
c′2c′1 c′n

Form 𝛺, upload to TTP 

Figure 2: Data encryption process.

Input: K , C′
Output: F
m0′ = c0′ ⊕ c1′ ⊕ c2′ ⊕⋯⊕ cn′
for i in ½1, n�:

mi′= DecKðci′⊕mi−1′ Þ
mi =mi′⊕mi−1′

end for
Make F = ðm1,m2,⋯,mnÞ

Algorithm 2

From TTPFrom CSS

All
DecK DecK DecK

m′0 m′1 m′2 m′n

m1 m2 mn

c′1 c′0c′2 c′n

Figure 3: Data decryption process.
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To sum up, with limited computing resources and exist-
ing technology, an attacker cannot obtain any plaintext after
performing the deletion operation under the assumptions.
Therefore, the scheme achieves data assured deletion and
has higher security than Luo’s scheme.

3.4. Performance Analysis. This section makes a theoretical
analysis of the scheme performance from three aspects: stor-
age, calculation, and communication. Table 1 shows the per-
formance analysis results of encryption only, Package
Transform [2], Luo’s scheme [8], and this scheme.

3.4.1. Storage Overhead. As mentioned earlier, for the origi-
nal message sequence F with n blocks, the cipher sequence
C′ generated by the encryption algorithm has ðn + 1Þ blocks.
Assuming that the size of each plaintext and cipher data
block is β, the size of key K is k, and the partial cipher data
set Ψ stored by TTP includes only one block. Thus, for each
file stored, the storage overhead of CSS is nβ, while it is ðβ
+ kÞ for TTP. The overall storage overhead of the scheme
is ðn + 1Þβ + k. The DO does not need to save any data
locally after uploading.

3.4.2. Calculation Overhead. The DO of this scheme needs 3
n · XOR + n · ENC + 1 · PRF operations to perform the data
encryption algorithm, while AU needs 3n · XOR + n · ENC
operations to perform the data decryption algorithm. Among

them, XOR stands for data block XOR operation, ENCmeans
block encryption/decryption operation, and PRF stands for
pseudorandom operation (including randomly generating an
initial vector). Luo’s scheme [8] requires 2n · XOR + n ·
HASH + ðn + 1Þ · ENC + n · PRF operations to perform file
upload or download algorithms, where HASH refers to the
hash operation. It can be seen that, compared with Luo’s
scheme, this scheme significantly reduces pseudorandom
operations and avoids hash operations, thus significantly
improving the computational efficiency.

3.4.3. Communication Overhead. After performing the data
encryption algorithm, the DO uploads nβ data to CSS and
ðβ + kÞ data to TTP. Accordingly, AU downloads nβ data
from CSS and ðβ + kÞ data from TTP. The total communica-
tion overhead for a complete file upload or file access is ðn
+ 1Þβ + k regardless of the handshake cost required to estab-
lish the communication channel.

4. Experiments and Analysis

To verify the validity of this scheme, the main algorithms
and processes of this scheme are implemented using Python
programming; also, the schemes of encryption only, Package
Transform [2], and Luo’s [8] are implemented. The compu-
tational efficiency of the data encryption/decryption algo-
rithms of each scheme is expected to be compared through
comparative experiments.

4.1. Environment and Parameters. The configuration of the
experimental computer is listed as Table 2.

128-bit key (k = 16B) was used in the experiments. The
original file size was 10MB (using 1MB, 100MB, 1GB,
and other sizes will get similar results; we use 10MB file as
an example), and the data block size β was 1KB, 2KB,
4KB, 8KB, and 16KB in turn. Experiments with the same
parameters were repeated 50 times, and their average values
were taken as the final results.

Some Python libraries are used for key operations such
as block encryption, hash, and pseudorandom involved in
the algorithm. The specific implementation method is
shown in Table 3.

To ensure the accuracy of the comparison, each scheme
should be as consistent as possible in programming style, be
optimized as possible in its own scheme framework, and use
the same parameters.

Table 1: Performance analysis of schemes.

Scheme
Storage
overhead

Calculation overhead
Communication

overhead
Strong

nonseparability
Confidentiality

Encryption only nβ + k nENC nβ + k No Yes

Package
Transform [2]

n + 1ð Þβ 3nXOR + 2nENC n + 1ð Þβ Yes No

Luo’s scheme [8] n + 1ð Þβ + k 2nXOR + nHASH + n + 1ð ÞENC + nPRF n + 1ð Þβ + k Yes Yes

This scheme n + 1ð Þβ + k Enc: 3nXOR + nENC + 1PRF
Dec: 3nXOR + nENC n + 1ð Þβ + k Yes Yes

Table 2: The configuration of experimental computer.

Item Configuration

Machine type PC

Operation system Windows 10 64-bit

CPU Intel Core i7-10710U

CPU quantity 6

Memory 16GB LPDDR3 2133MHz

Hard disk SAMSUNG MZVLB512HBJQ-000L7

Table 3: The key operation implementation.

Operation Implementation

Block encryption Python-Crypto.Cipher.AES

Pseudorandom Python-random

Hash Python-hashlib.md5

Data block XOR Python large integer bitwise XOR (“^”)
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4.2. Data Encryption Test. In the data encryption test, each
scheme executes the encryption algorithm for a random file
of 10MB in size, outputs a 10MB file to upload to CSS, and
also uploads a data block to TTP (except for encryption
only). The time cost of performing the encryption algorithm
of each scheme at different block sizes is shown in Figure 4.

Figure 4 shows that this scheme takes significantly less
time cost to execute the encryption algorithm than Package
Transform and Luo’s scheme (about 2/3 to 3/4 of Luo’s),
which is about two to three times as long as encryption only.
In addition, the time cost of each scheme decreases as the
block size increases, because an increase in the block size
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Figure 4: The data encryption time cost.
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Figure 5: The data decryption time cost.
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means a decrease in the total number of blocks, so the num-
ber of operations performed decreases.

4.3. Data Decryption Test. In the data decryption test, each
scheme executes the decryption algorithm on the 10MB file
generated by its own execution of the encryption algorithm.
The output file of each scheme is consistent with the original
file through hash verification. The time cost of performing
the decryption algorithm of each scheme at different block
sizes is shown in Figure 5.

As can be seen from Figure 5, the decryption algorithm
time consumed by each scheme is essentially the same as
the encryption algorithm.

Combining the above test results, this scheme is an
assured deletion encryption scheme based on strong nonse-
parability. It achieves greater security with only two to three
times the computation overhead of encryption only. Because
the hash operation is avoided and pseudorandom operation
is reduced, the computation overhead is about 2/3 to 3/4 of
Luo’s scheme.

5. Conclusion

Aiming at the assured deletion of cloud data, a novel scheme
based on strong nonseparability is presented. Compared
with the traditional schemes of “encrypt data, destroy key,”
making the ciphertext strongly nonseparable is a promising
way to achieve the assured deletion. By destroying the key
and part of the cipher data through a TTP, the nonrecover-
ability of the original data after deletion operation is signifi-
cantly enhanced. Compared with the existing similar
schemes, this scheme achieves strong nonseparability by
adding XOR operation instead of hash operation. The theo-
retical analysis and experimental results show that the pro-
posed scheme achieves the expected design goals of assured
deletion with less computation overhead, having obvious
performance advantages and stronger security in similar
schemes.

In fact, refining key management and realizing strong
nonseparability of ciphertext are two ideas to realize assured
deletion, which are not exclusive. If the two ideas are com-
bined, the “credibility” of cloud data deletion will be further
improved.

Data Availability

The codes and data used to support the findings of this study
are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper is supported by NSF of China (No. 61672531).

References

[1] R. Perlman, “File system design with assured delete,” in In
Third IEEE International Security in Storage Workshop, San
Francisco, CA, USA, 2005.

[2] R. L. Rivest, “All-or-nothing encryption and the package trans-
form,” in In International Workshop on Fast Software Encryp-
tion, pp. 210–218, Springer, Berlin, Heidelberg, 1997.

[3] Y. Tang, P. Lee, J. Lui, and R. Perlman, “Fade: secure overlay
cloud storage with file assured deletion,” in Security and Pri-
vacy in Communication Networks of Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and
Telecommunications Engineering, S. Jajodia and J. Zhou, Eds.,
pp. 380–397, Springer Berlin Heidelberg, 2010.

[4] Y. Tang, P. Lee, J. Lui, and R. Perlman, “Secure overlay cloud
storage with access control and assured deletion,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 9, no. 6,
pp. 903–916, 2012.

[5] Z. Mo, Y. Qiao, and S. Chen, “Two-party fine-grained assured
deletion of outsourced data in cloud systems, in: distributed
computing systems (ICDCS),” in In 2014 IEEE 34th Interna-
tional Conference on Distributed Computing Systems,
pp. 308–317, Madrid, Spain, 2014.

[6] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy, “Vanish:
increasing data privacy with self-destructing data,” USENIX
Security Symposium, vol. 316, p. 10-5555, 2009.

[7] F. Guilan and T. Liang, “Data assured deletion scheme based
on trust value for cloud storage,” Computer Science, vol. 41,
no. 6, pp. 108–122, 2014.

[8] Y. C. Luo, Research on public auditing for shared data and
assured deletion in cloud storage, [M.S. Thesis], National Uni-
versity of Defense Technology, Changsha, China, 2015.

[9] Z. Kun, Y. Chao, M. Jianfeng, and J. W. Zhang, “Novel cloud
data assured deletion approach based on ciphertext sample
slice,” Journal on Communications, vol. 36, no. 11, pp. 108–
117, 2015.

[10] W. Lina, Z.-W. Ren, R.-W. Yu, F. Han, and Y.-F. Dong, “A
data assured deletion approach adapted for cloud storage,”
Acta Electronica Sinica, vol. 40, no. 2, pp. 266–272, 2012.

[11] L. Yining, Z. Yuanjian, L. Rushi, and C. Tang, “Blockchain-
based verification scheme for deletion operation in cloud,”
Journal of Computer Research and Development, vol. 55,
no. 10, pp. 2199–2207, 2018.

[12] D. Ruizhong, S. Pengliang, and H. Xinfeng, “Cloud data
assured deletion scheme based on overwrite verification,” Jour-
nal on Communications, vol. 40, no. 1, pp. 130–140, 2019.

[13] Z. Xinhua, “Instantaneous deterministic deletion of cloud stor-
age data based on feature iteration,” Application Research of
Computers, vol. 37, no. 9, pp. 2840–2843, 2020.

[14] L. Chaoling, C. Yue, and Z. Yanzhou, “A data assured deletion
scheme in cloud storage,” China Communications, vol. 11,
no. 4, pp. 98–110, 2014.

[15] W. Lina, Z. Ren, Y. Dong, R. Yu, and R. Deng, “Amanagement
approach to key-used times based on trusted platform module
in cloud storage,” Journal of Computer Research and Develop-
ment, vol. 50, no. 8, pp. 1628–1636, 2013.

[16] Y. Yu, L. Xue, Y. Li, X. du, M. Guizani, and B. Yang, “Assured
data deletion with fine-grained access control for fog-based
industrial applications,” IEEE, vol. 14, no. 10, pp. 4538–4547,
2018.

7Journal of Sensors



[17] L. Xue, Y. Yu, Y. Li, M. H. Au, X. du, and B. Yang, “Efficient
attribute-based encryption with attribute revocation for
assured data deletion,” Information Sciences, vol. 479,
pp. 640–650, 2019.

[18] X. Jinbo, Y. Zhiqiang, M. Jianfeng, F. Li, X. Liu, and Q. Li, “A
secure self-destruction scheme for composite documents with
attribute based encryption,” Acta Electronica Sinica, vol. 42,
no. 2, pp. 366–376, 2014.

[19] Y. Zhiqiang, X. Jinbo, M. Jianfeng, Q. Li, and X. Liu, “A secure
electronic document self-destructing scheme in cloud comput-
ing,” Journal of Computer Research and Development, vol. 51,
no. 7, pp. 1417–1423, 2014.

[20] X. Jinbo, Y. Zhiqiang, M. Jianfeng, F. Li, and X. Liu, “A secure
self-destruction scheme with IBE for the Internet content pri-
vacy,” Chinese Journal of Computers, vol. 37, no. 1, pp. 139–
150, 2014.

[21] X. Jinbo, L. Fenghua, W. Yanchao, J. Ma, and Z. Yao,
“Research progress on cloud data assured deletion based on
cryptography,” Journal on Communications, vol. 37, no. 8,
pp. 167–184, 2016.

8 Journal of Sensors



Research Article
An In Situ Spectral Monitoring Scheme for Advanced
Manufacturing of Novel Nanodevices

Hui Qi 1,2 and Xing Fu 1,3

1State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
2School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
3Tianjin Research Center of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072, China

Correspondence should be addressed to Xing Fu; xingfu@tju.edu.cn

Received 23 January 2022; Accepted 19 February 2022; Published 10 March 2022

Academic Editor: Haidong Shao

Copyright © 2022 Hui Qi and Xing Fu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The advanced manufacturing of ultra-thin-film devices, especially the nano-semiconductor products, has drawn a significant
research interest over the past decades. In this field, monitoring the properties and thickness of the semiconductor layers is of
paramount importance, which has significant impact on the device quality. In this study, an in situ monitoring scheme for
manufacturing of nanodevices has been proposed, which is able to accurately analyse the optical absorption properties of the
semiconductor layers of varying thickness in nanodevices. The in situ reflectance spectral analysis of monolayer, bilayer, and
bulk-phase samples confirms the practicability and reliability of the monitoring scheme. The findings reported in this study
form the basis for the advanced manufacturing of nano- and sub-nanodevices in the future.

1. Introduction

The advanced manufacturing technologies have drawn a sig-
nificant in recent years, including intelligent sensing, artifi-
cial intelligence, advanced monitoring, and other smart
information technologies [1–6]. Owing to the critical role
in advanced manufacturing, many researchers have
attempted to exploit the opportunity of producing micro-
and nanodevices in the past decades since the discovery of
graphene in 2004 [7–10]. Particularly, the nanodevices based
on two-dimensional (2D) materials have attracted great
attention owing to their extraordinary properties, thus
becoming the focus of research in the field of nanodevice
manufacturing [11–16]. Considering material structure for
nanodevices, the hybrid systems consisting of 2D and
organic semiconductor thin films have sparked new research
directions [17–21], and the combination of the advantages of
both 2D and organic materials [22–24] has been widely con-

sidered to be promising for developing the novel nanode-
vices in the future. In recent years, the structures
comprising van der Waals (vdW) epitaxial organic semicon-
ductor films with controllable layers on the 2D material sur-
face have emerged as one of the prime research highlights, as
the properties and performance of the nanodevices based on
such structures effectively correlate with the thickness of the
organic layers [25–28]. Therefore, in order to satisfy the
device functions and improve the production quality, a
monitoring scheme, which is able to analyse the optical
properties of thin films with different thicknesses, is essential
for the advanced manufacturing of nano- and sub-nanode-
vices, especially the devices based on the structure of 2D/
organic thin films which have been mentioned above.

In this paper, an in situ reflectance spectral monitoring
scheme as microarea differential reflectance spectroscopy
has been proposed for manufacturing the nano-thin-film
devices, which is able to recognise and analyse the optical
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absorption characteristics of the ultrathin films at the mono-
layer level. The differential reflectance spectroscopy (DRS) is
a powerful tool to study the optical absorption characteris-
tics of the thin and ultrathin films, which measures a nor-
malized relative change in the reflectance of a surface, and
the respective intensities of the reflected light from the cov-
ered adsorbate and the bare substrate are subsequently com-
pared [29]. The DRS can be defined as [30–32]

DRS ≡ ΔR
R

≔
R E, dð Þ − R E, 0ð Þ

R E, 0ð Þ = I E, dð Þ − I E, 0ð Þ
I E, 0ð Þ , ð1Þ

where R ðE, 0Þ represents the reflectance from the clean sub-
strate at a photon energy E and R ðE, dÞ represents the reflec-
tance of the area covered by the films. The intensities of the
light reflected from the clean surface and sample films are
donated as I ðE, 0Þ and I ðE, dÞ, respectively, which are used
to calculate the DRS value. Owing to its high spectral resolu-
tion, the DRS technique has been successfully applied for the
in situ investigation of the optical absorption properties of
the organic semiconductive and 2D transition metal dichal-
cogenide (TMD) thin films [33–38]. The spectral resolution
and measurement sensitivity of DRS at the monolayer and
even sub-monolayer levels have been confirmed in the
reported studies. For the 2D/organic structures mentioned
above, which are randomly in the micrometer size owing
to the dimensions of the mechanically exfoliated 2D mate-
rials [39–41], the spectral monitoring scheme should not
only possess a high thickness resolution but also allow the
selection of the detection range at the microscale of desired
shape. Therefore, a DRS apparatus with the ability to select
the measuring region of any size and at any position has
been proposed here. In order to achieve the high resolution
of the monolayer in the microarea, a high irradiation inten-
sity Xenon lamp source and a large well depth scientific
complementary metal oxide semiconductor (sCMOS) detec-
tor have been unitized for attaining the high signal to noise
ratio. Moreover, based on the acquisition of signals by the
sCMOS camera, the shape and position of the measurement
region can be arbitrarily selected in the field of view. In par-
ticular, even one pixel can be selected as the measurement
region. Furthermore, the 2D/organic semiconductor hybrid
structure comprising of vdW epitaxial dimethyl-3,4,9,10-
perylenetetracarboxilic diimide (Me-PTCDI) on the hexago-
nal boron nitride (h-BN) surface has been selected as the
research target in this paper. The h-BN is widely used as
the substrate for the nanodevices based on 2D materials
due to its insulation [42–45], thus finding extensive use in
the 2D/organic structures [25, 26]. Among the organic semi-
conductor materials, perylene dyes are significant owing to
their optical and photoelectric properties [46–50]. Particu-
larly, Me-PTCDI, a typical perylene dye molecule, is consid-
ered to be practical for producing novel nanodevices owing
to its characteristics [51–54]. Consequently, the monolayer,
bilayers, and bulk phase of Me-PTCDI thin films on the h-
BN surface have been investigated by employing the micro-
area DRS. In addition, the phenomena such as peak broad-
ening, orientation of peak shift, and changes in intensity of

the peaks in the experiments have been discussed in detail.
The findings obtained in this paper not only provide the
practical information for the fabrication of devices based
on the h-BN/Me-PTCDI structures but also prove that the
spectral scheme is able to detect the structures with different
layers, which is highlighting the potential of the monitoring
scheme for advanced manufacturing of the nano- and sub-
nanodevices in the future.

2. Materials and Methods

2.1. Sample Preparation. The samples in this study consist of
three materials from bottom to top: quartz (0001) substrate,
h-BN film, and Me-PTCDI film. The samples have been pre-
pared by using the following procedure:

Firstly, the h-BN thin film on the surface is prepared as
follows:

Step 1. The pristine BN material is a single hexagonal
bulk crystal. The bottom and top of a BN bulk piece are
sandwiched between two pieces of tape, and the bulk is sub-
sequently torn manually. At this stage, the BN bulk with a
thickness about half of the original thickness is obtained.

Step 2. Step 1 is repeated several times until the h-BN
thin film with the thickness at nanoscale is obtained
gradually.

Step 3. The h-BN thin films are transferred onto the sur-
face of an optical single crystal quartz (0001) substrate.

Secondly, the Me-PTCDI films with different numbers of
layers are grown by van der Waals epitaxy on the h-BN/
quartz substrate as follows [26]:

Step 1. The Me-PTCDI powder in a container is placed
at the centre of the tube furnace, and the h-BN/quartz sub-
strate is placed downstream at a suitable distance in the
furnace.

Step 2. The tube is evacuated to 10-3 Pa.
Step 3. The Me-PTCDI powder is heated in the range

210-260°C to sublimate it, leading to the deposition on the
h-BN surface. The process is continued until the film growth
has been completed.

By controlling the factors such as the growing duration
and the distance between the Me-PTCDI molecules and sub-
strate, the Me-PTCDI thin films with varying number of
layers are obtained successfully.

The optical microscope and photoluminescence (PL)
images of a typical sample are shown in Figure 1.

The optical analysis has been carried out by using an
optical microscope (Olympus BX-51) using a 20x objective
lens, followed by the zooming out of the area of interest by
using a 150x objective lens. The optical microscopy images
in Figure 1 reveal that the samples exhibit a small size in
the range of several micrometres. The PL properties of the
Me-PTCDI thin films of different thicknesses illuminated
by a 450nm LED are shown in Figure 1(c). The green fluo-
rescence region represents the film formed by a monolayer
of Me-PTCDI, whereas the red fluorescence region repre-
sents the film formed by more than one layer of Me-
PTCDI [26].

Figure 1 demonstrates that it is inevitable that the Me-
PTCDI films deposited on the h-BN surface remain uniform
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Figure 1: The characteristics of the samples: (a, b) optical microscopy images; (c) PL image (scale bar: 10μm).
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Figure 2: Schematic illustration of the experimental system.
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Figure 3: The flow chart depicting the acquisition of the spectral signals.
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in such a microsize region. The mechanically exfoliated h-
BN films are not only small but also random in size, shape,
and surface quality. Besides, the deposition rates of the
organic molecules on different areas are not the same.
Therefore, the microarea DRS system with an ability to
select the measuring region of any size and at any position
is required.

2.2. Experimental Setup. The schematic illustration of the
DRS system employed in this paper is presented in
Figure 2. A brief introduction of the experimental system
is given as follows.

In order to cover the range of the characteristic peaks of
the organic molecules, which are always in the visible wave-
length band, a 75W Super-Quiet Xenon-lamp (Hamamatsu)
has been used as the light source. A fiber coupler is utilized
between the lamp and optical fiber to avoid the loss of inten-
sity as much as possible. A monochromatic (SP2150, Prince-
ton Instrument) with a grating flash at 500nm has been used
to obtain the single wavelength light. The off axis parabolic
mirror (OAP, Thorlabs) functions as a collimator. The iris
and the 50R/50T beam splitter (BS, produced by Thorlabs)
are placed before the 20x objective lens (Nikon CFI 60 TU
Plan Epi). To match the light source with high intensity, a
deep well miniature sCMOS camera (Panda 4.2 PCO) with
a 200mm tube lens (Edmund) is utilized as the detector,
employed simultaneously with homemade software for spec-
tral acquisition and recording.

2.3. Measurement Methods. The measurement methods con-
sist of the three steps: acquisition of spectral signal, selection
of measurement area, and the calculation of DRS, which are
described in detail as follows.

2.3.1. Step 1: Acquisition of Spectral Signals. The steps for
spectral signal acquisition are illustrated in Figure 3. The
experimental parameters, including the start and end wave-
length of the spectral detection range, step wavelength of the
monochromator, exposure duration, and average times of a
single acquisition, have been set according to the experimen-
tal requirements prior to the measurements. The reflected
light intensity of the signals at all wavelengths is subse-
quently recorded.

2.3.2. Step 2: Selection of the Area of Measurement. The
reflected intensity images at single wavelengths are imported
into the computer by using the homemade software. Subse-
quently, the images are employed to select the measurement
area. For instance, the image at 550nm wavelength is used to
select the measurement area, which has been shown in
Figure 4. The range of the black solid rectangle is selected
as the area covered by the Me-PTCDI film, and the range
of the red dashed rectangle is selected as the substrate. The
rectangular area is taken for example here. In fact, the
selected area can be of any shape and size, even a single
pixel.

2.3.3. Step 3: Calculation of DRS. The average reflected inten-
sities of the experimental wavelengths from the selected area
are calculated automatically by using the homemade
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Figure 4: The selection of the experimental area of the sample in
Figure 1.

Figure 5: The optical and PL (inset) images of the Me-PTCDI films
on the h-BN surface (scale bar: 10 μm).
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Figure 6: Normalized DRS of the Me-PTCDI monolayer at room
temperature.

4 Journal of Sensors



software. Afterwards, the calculated average intensities for
each wavelength from the sample area and substrate are
incorporated into equation (1) as I ðE, dÞ and I ðE, 0Þ,
respectively, to carry out the DRS analysis.

3. Experiments and Discussion

3.1. Absorption Characteristics of the Monolayer Me-PTCDI
Film on the h-BN Surface. The optical microscopy and PL
image of the sample including monolayer Me-PTCDI films
are shown in Figure 5. Based on the PL characteristics of
the Me-PTCDI film, the green fluorescence region can be
confirmed as the monolayer, whereas the red fluorescence
region represents the area covered with more than one layer
of the Me-PTCDI molecules. In order to analyse the charac-
teristics of the monolayer film, the samples are measured at
room temperature by using the microarea DRS system pro-
posed in this paper. The reflected intensities from the green
area representing the monolayer Me-PTCDI on h-BN and
the black area representing the quartz substrate are utilized
as the signals of the monolayer film and substrate, respec-
tively, to calculate DRS. The absorption of h-BN is noted

to be out of the range of experimental wavelengths; thus,
the peaks in Figure 6 correspond to the characteristics of
the Me-PTCDI monolayer.

Two peaks of the S0-S1 transition vibronic levels have
been observed in the monolayer films. Peak A is observed
at 2.26 eV whereas peak B is located at 2.46 eV. The posi-
tions of the two peaks are observed to be consistent with
the characteristics of the Me-PTCDI monolayer film in
the report earlier [26]. It proves that the microarea DRS
system proposed in this paper is able to realize the spectral
resolution at the monolayer level, even though the measur-
ing area is extremely small, and the reflected intensity is
relatively weak.

In addition, by comparing the position of the two peaks
with those of the monomer in solution at room temperature
[51], it can be observed that both peaks in the monolayer
exhibit the redshift from the monomer. The redshift phe-
nomena demonstrate that the first layer of the Me-PTCDI
deposited on the h-BN substrate has assembled to form the
J-aggregate, which has been extensively studied for novel
applications [55–57]. It indicates that the structure based
on the Me-PTCDI monolayer and h-BN is suitable for pro-
ducing the sub-nano-thin-film devices.

(a) (b)
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Figure 7: Images of the Me-PTCDI monolayer and bilayer films at the room temperature. (a) Optical microscopy image of the sample (scale
bar: 10μm). (b) PL image of the sample. (c) AFM image of the white dashed square region in (b) (scale bar: 500 nm).
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3.2. Absorption Characteristics of the Me-PTCDI Bilayers on
the h-BN Surface. The optical atomic force microscopy
(AFM) images of the sample are shown in Figure 7. The
measuring area of the monolayer film can be determined
based on the PL image in Figure 7(b). According to the
thickness of the monolayer film of Me-PTCDI on h-BN
of about 0.3 nm [26], the area with a step of 0.3 nm from
the monolayer region can be identified as bilayers in the
AFM (Oxford Instruments Asylum Cypher) image. In
addition, the DRS signals of the monolayer and bilayers
in the area demonstrated in Figure 7(c) are shown in
Figure 8.

It can be observed that the both characteristics peaks
in the bilayers (peak A′ at 2.18 eV and peak B′ at
2.40 eV) have been slightly redshifted as compared to the

monolayer, which usually occurs during the film growth.
However, the abnormal absorption has been observed that
the intensity of peak B has increased while the intensity of
peak A is decreased, although more molecules exist in the
bilayer films.

The phenomenon is likely attributed to the influence
of the different molecular aggregates in the Me-PTCDI
monolayer and bilayer films. The Me-PTCDI monolayer
films solely consist of the J-aggregates, formed by the
head-to-tail orientation of the molecules on the surface.
It is negative to the excitonic coupling, and the intensity
of the spectral peaks is mostly generated by the Frenkel
exciton (FE) transition. On the other hand, in bilayers,
the H-aggregates formed by the molecules depicting the
side-by-side orientation are noted to appear. It is positive
to the excitonic coupling between the molecules, thereby
resulting in the charge transfer (CT) transition, which
has a narrower band gap and more easily realized transi-
tion behaviours as compared with FE. Thus, the slight red-
shifting of the peaks is attributed to the excitonic coupling
in bilayers. Furthermore, once the second layer is depos-
ited on the monolayer, a growing number of Me-PTCDI
molecules enhance the absorption; however, the interac-
tion generated by the H-aggregates represses the FE tran-
sition which has taken place in the monolayer. In
addition, for the peaks at different energy positions, the
two absorbing species function differently. For some typi-
cal organic thin films, the lowest excited state is almost
pure FE exciton, whereas mixing between the FE and CT
excitons occurs in the region of its vibronic replicas at
higher energy positions [51].

Therefore, the experimental results indicate that for the
lowest absorption transition contributing to peak A, the
FE in the Me-PTCDI monolayer is so significant that the
repression of the FE transition results in a decline in the
absorption, although additional molecules exist in the
bilayers. This observed DRS result also confirms the giant
oscillator strength of the Me-PTCDI monolayer film
reported in literature [26]. On the other hand, for peak
B, which is the vibronic replica of peak A, the enhanced
absorption generated by CT in bilayers dominates the
characteristic behaviour, which represents an equilibrium
between the two exciton species. Actually, the interesting
phenomena have also been observed and investigated for
the 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA)
thin films [31–33], which is very similar to Me-PTCDI.

The experimental results prove the performance and
reliability of the microarea DRS scheme, along with pro-
viding insights for producing devices, where the mono-
layer photoelectric devices based on ultrathin Me-PTCDI
must exhibit a better performance at the sub-nanoscale
as compared to the bilayer-based devices.

3.3. Absorption Characteristics of the Bulk-Phase Me-PTCDI
Film on the h-BN Surface. The multilayers of Me-PTCDI
thin films have also been deposited on other areas of the
sample in Figure 5. Combining the AFM topography in
Figure 9 with the PL image in Figure 5, the target areas of
the multilayer films with different thicknesses can be
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Figure 9: AFM image of the monolayer and multilayers of Me-
PTCDI films on h-BN in Figure 5 (scale bar: 2 μm).
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selected. The DRS and normalized DRS results of the areas
with different monolayers and thicknesses of 6 nm and
10nm are illustrated in Figure 10.

The DRS signals for the sample films with monolayer
(green curve), 6 nm (blue curve), and 10nm (red curve)
thicknesses are shown in Figure 10(a). Comparing the curves
with different thicknesses, it is obvious that the absorption of
the films increases with the thickness owing to the availabil-
ity of an enhanced extent of molecules to absorb photons.

As shown in Figure 10(a), the positions of the two char-
acteristic peaks (peak A′ at 2.10 eV and peak B′ at 2.48 eV)
in the case of 6 nm and 10nm films are almost the same,
exhibiting independence on the film thickness. Therefore,
such films can be regarded as the bulk-phase films.

To analyse the differences between the monolayer and
bulk-phase films more effectively, the normalized DRS of
the monolayer and 10nm films is shown in Figure 10(b).
The interesting phenomena of peak broadening and peak
shift are described in the following.

By comparing the peak width of the bulk-phase film with
the monolayer, the broadening phenomena have been
observed apparently. The peaks observed in the case of the
monolayer film are mostly attributed to FE, which results
in the narrow peaks, while the coupling between the layers
in bulk-phase films contributes to different excitons (such
as FE, CT, and FE-CT) with different energy positions,
which results in peak broadening. In addition, the scattering
between the excitons and phonons in the thicker films at
room temperature also contributes to peak broadening.

Furthermore, it is interesting to note that peak A has
been redshifted from the monolayer to the bulk phase, while
peak B has been blueshifted. It is likely due to the impact of
the substrate described as follows.

In the monolayer film, the π-π conjugation is not formed
among the molecules owing to the molecular J-aggregates,

while in the bulk-phase films consisting of both J-
aggregates and H-aggregates, the π-π bond can be formed
between the adjacent layers of molecules. It leads to the elec-
tronic coupling, which leads to that the Coulomb potential
of molecules has been decreased. Therefore, the characteris-
tic peaks of the multilayer films must move to the lower
energy positions in case the interaction among the molecules
functions alone.

However, the Coulomb potential between h-BN and Me-
PTCDI is different from the Coulomb energy among the
Me-PTCDI molecules, also affecting the excitonic transition
at the same time. It is commonly reported that the initial
layers (especially the first layer) of the organic film are influ-
enced by the substrate significantly, while the impact
decreases in the subsequent molecular layers. As a result,
the films tend to become stable and form a bulk phase grad-
ually [33–37].

Therefore, the peak shifting from the monolayer to
bulk crystal is the combination of the two kinds of differ-
ent Coulomb energy interactions mentioned above. With
respect to the different peak shift phenomena, it is likely
that the interaction between the h-BN substrate and Me-
PTCDI contributes to locating the peaks in the monolayer
to a lower energy position, but the impact degrees of sub-
strate on the two characteristic peaks are different. For the
lowest exited transition (peak A and peak A′), the impact
of the h-BN substrate is weaker than the effect of Me-
PTCDI molecular layers; thus, peak A has been redshifted
to peak A′ from the monolayer to bulk phase, while for
the vibronic replicas of the lowest transition (peak B and
peak B′), the impact of the substrate is more significant
than the effect of molecules so that peak B in the mono-
layer is located at a rather lower energy positon as com-
pared to peak B′ in bulk crystal, which results in the
blueshift phenomena.
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Figure 10: DRS of the Me-PTCDI films with different thicknesses on h-BN: (a) DRS of the films with monolayer and thickness of 6 nm and
10 nm and (b) the normalized DRS of the monolayer and 10 nm films.
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The experimental results demonstrate that the microarea
DRS scheme is practical at both sub-nano- and nanoscales.
Also, the important information for producing devices is
revealed that the substrate influences the performance of
ultrathin films devices apparently and the devices based on
bulk crystal Me-PTCDI must function differently as com-
pared to the devices based on the monolayer films.

4. Conclusions

In this paper, an in situ microarea DRS scheme has been
applied to investigate the dependence of the absorption
properties on the thickness of the Me-PTCDI films on the
h-BN surface, which is a typical structure contained in the
nanodevices. The experimental results obtained in this study
demonstrate the successful application of the scheme to the
monolayer level.

The optical performance of the monolayer, bilayers, and
bulk phase of the Me-PTCDI films on the h-BN surface has
been analysed by using microarea DRS. Several interesting
phenomena and critical properties of the Me-PTCDI/h-BN
structure have been revealed. It is demonstrated that the
ultrathin Me-PTCDI films on h-BN can be utilized for the
sub-nanophotoelectric devices. In particular, the perfor-
mance of the monolayer device is noted to be superior owing
to its greater absorption. In addition, the substrate material
for the monolayer devices is also vital due to its significant
impact on the monolayer absorption. Furthermore, for the
devices produced by incorporating the bulk phase Me-
PTCDI films on h-BN at the nanoscale, the performance
based on absorption properties can be improved by increas-
ing film thickness, which will function at different character-
istic wavelengths with a wider band as compared to the
monolayer devices.

The findings reported in this study prove that the micro-
area DRS scheme is able to detect and analyse the thickness
and optical properties of the ultrathin films in the nano- and
sub-nanodevices. The scheme is practical and potentially
promoted for advanced manufacturing of the nano-thin-
film devices in the future.
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Medical robots are in great demand for orthopedic surgery. The robotic control could be divided into two layers, the top layer and
the bottom layer (also called joint control). However, how to improve the dynamic performance of joint control is still a
challenging issue. Traditional PID control and PID-based sliding mode control are commonly used methods for the joint
control of medical and industrial robots. In this paper, the proposed joint control is based on dynamic compensation.
Dynamic compensation includes inertia and friction. The joint control diagram includes PID, sliding mode control, and
adaptive dynamic compensation as a module unit. The design of the proposed joint control method could overcome the
disadvantages of model uncertainty and dynamic disturbances and improve robot dynamic performance. Additionally, since
control feedback is based on the joint position encoder, position encoder analysis is included in this paper. The dynamic
performance of the proposed joint control was tested on the six-DoF medical robot, and the indexes of rising time, task space
tracking, and contact space tracking were adopted to evaluate the dynamic performance. The experimental results show that
the proposed control method has a much smaller rising time than the commercial controller product. The control proposed in
this paper realized low delay control and improved the dynamic response of the control.

1. Introduction

Many medical robots are being developed for surgery
(Figure 1 shows examples of medical robot applications) to
realize better operation performance that is more precise
and minimally invasive, compared with traditional manual
procedures.

Research related to medical robots for orthopedic sur-
gery began in the mid-1980s [1, 2]. The orthopedic medical
robots are supposed to play an important role in orthopedic
surgery. The role of orthopedic medical robots is divided
into two kinds of essential features. The first feature is that
the orthopedic medical robots can be used for bone cut-
ting/drilling/milling, and the second feature is that the
orthopedic medical robots can be used for holding/placing
surgical tools [3].

The basic requirements for medical robots are safe,
reproducible, and precise [1]. One of these mentioned
requirements is to provide more precise control during
robotic surgical procedures. The robotic control could be
divided into two layers (see Figure 2), the top layer and the
bottom layer. The top layer focuses on manipulation plan-
ning, and the bottom layer focuses on joint control [4, 5].
Both the top layer and the bottom layer could improve the
precise control of the robot.

This paper will focus on the joint control of the medical
robot. For the joint control, the key is its dynamic perfor-
mance. The indexes of the dynamic performance of joint
control are included in [4, 6]. In this paper, the indexes of
rising time, task space tracking, and contact space tracking
will be adopted to test the dynamic performance of the
controller.
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To date, orthopedic medical robots, such as MAKO,
Robodoc, Praxim, and Navio, have good performance on
clinical surgical tasks [7]. However, how to improve the con-
trol performance and reduce the delay time of joint control
[8] is still a challenging issue in robotics.

In early robotic applications, because PID control [9] has a
simple structure and easy adjustment, PID control is used as a
component of joint control and is widely used in both indus-

trial robots and medical robots. With the development of
robotic applications, traditional joint control cannot meet
the requirements that are of good dynamic characteristics
and high precision result [10]. Therefore, many improved
joint control methods have been proposed [11–13]. Intelligent
methods for PID tuning are adopted to improve the joint con-
trol performance. In [11], some autotuning methods have
been proposed by researchers. Since PID fails in the case of

Femoral componer

Tibial components
Plastic spacer

Metal plate

Implants in placeBones cut 
and shaped

Diseased joint

(a)

Skull drilling

(b)

Figure 1: Examples of medical robot applications in surgery: (a) orthopedic surgery and (b) neurosurgery.
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Figure 2: General robotic control diagram (top layer and bottom layer).
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uncertain environment, to realize high-precision trajectory
tracking under model uncertainty and external disturbances,
researchers have adopted a sliding mode control (SMC)
method that includes PID and sliding mode control. In [12],
it lists different configurations of PID-based SMC to overcome
the drawbacks of PID. In [13], researchers combine the fuzzy
gain tuning, the robustness of the sliding mode controller,
and the rapid response characteristics of the PID, which effec-
tively reduces the chattering caused by the sliding mode con-
troller and improves the stability of the system. Although
PID-based SMC has the advantages of tracking trajectory with
high precision and overcoming the uncertain environment, it
still has a limit on dynamic performance.

The essence of dynamic performance of the joint control is
bandwidth. Both tuning control parameters and dynamic
compensation are approaches to improve bandwidth. Improv-
ing the bandwidth could reduce the delay time of the control
response [14]. However, researchers [9–13] focus on tuning
the control parameters, and the research on the dynamic com-
pensation of the joint control (bottom layer) is much less.

By considering that dynamic compensation is also a
good approach to reduce the delay time of the joint control,
this paper will improve the dynamic characteristics of the
joint control by adding dynamic compensation. Dynamic
compensation includes inertia and friction.

In this paper, the main contribution of the proposed
method over the previous methods is the joint control dia-
gram which includes PID, sliding mode control, and adap-
tive dynamic compensation as a module unit. The design
of the proposed joint control method could overcome the
disadvantages of model uncertainty and dynamic distur-
bances and improve the dynamic performance of robot.

The structure of this paper is as follows. In the second
section, the VDC method [5] is used to build the kinematics
of the 6-DoF medical robot. In the third section, it shows an
improved control approach that combines joint control and
dynamic compensation. Since control feedback is based on
the joint position encoder, the position encoder analysis
included in the fourth section will discuss how to determine
the data bits and sampling time. The control performance is
shown in the fifth section.

2. Kinematics of the 6-DoF Medical Robot

In this paper, the medical robot is with six DoFs (see
Figure 3), and its load capacity is 10 kg. In the project, this
robot is supposed to be used for drilling and placing. From
the base to the end effector, the six joints are labeled as J1–
J6. All six joints are the type of rotational joint.

For the 6-DoF robot, the inertial coordinate frame is
defined as F0‐x0y0z0; the coordinate frame for the end effec-
tor is labeled as Fee‐xeeyeezee; the coordinate frame for the ith
(i = 1, 2,⋯, 6) joint is Fi‐xiyizi, and the direction of the axis
zi aligns with the rotational axis of the ith joint, respectively.

Based on the VDCmethod [5], the 6-DoF robot is virtually
decomposed into six subsystems by placing six cutting points at
the six joints, respectively. As illustrated in Figure 4, a cutting
point is an interface of separation that virtually cuts through
the ith joint. The ith joint is located between the ði − 1Þth link

and the ith link. For the ith joint, two coordinate frames are
defined. The first is the inboard frame Fî which is attached on
Link i‐1 and labeled with Fî − xîyîzî, and the second is the out-
board frame Fi which is attached on Link i and labeled with
Fi‐xiyizi. Therefore, while the ith joint rotates with θi, the out-
board frame Fi will rotate along the axis zî as θi with respect to
the inboard frame Fî. If θi = 0, frame Fi and frame Fî will share
the same position and orientation at the cutting point. Since
frame Fî and frame Fi−1 are attached on the same Link i − 1,
the rotation matrices i−1Cî between frame Fi−1 and frame Fî
are constant. The rotation matrices associated with inboard
frame and outboard frame can be expressed as

iCî =
cos θi −sin θi 0
sin θi cos θi 0
0 0 1

2664
3775: ð1Þ

The transformation matrices between inboard frame and
outboard frame are defined as

îTi−1 =
îCi−1 −îCi−1 ⋅

i−rri−1,̂i
� �

03×3 îCi−1

24 35, ð2Þ

îTi−1 =
îCi 03×3
03×3 îCi

24 35, ð3Þ

where in Equation (2), is i−rri−1,̂i the position vector between the
origin of frame Fî and the origin of frame Fi−1 that is expressed
in frame Fi−1, and the cross-product operator is defined as

r ×ð Þ =
r1

r2

r3

2664
3775 ×

0BB@
1CCA =

0 −r3 r2

r3 0 −r1
−r2 r1 0

2664
3775: ð4Þ

Based on Table 1, which shows the D-H parameters of the
6-DoF robot, it can derive the following.

0r0,1̂ = 0, 0, a0½ �′, 0C1̂ = −1, 0, 0 ; 0,−1, 0 ; 0, 0, 1½ �′,
1r1,2̂ = 0, 0, a1½ �′, 1C2̂ = 0,−1, 0 ; 0, 0,−1 ; 1, 0, 0½ �′, ð5Þ

2r2,3̂ = a2, 0, 0½ �′, 2C3̂ = 0,−1, 0;−1, 0, 0 ; 0, 0,−1½ �′,
3r3,4̂ = 0,−a3, 0½ �′, 3C4̂ = 1, 0, 0 ; 0, 0,−1 ; 0, 1, 0½ �′,
4r4,5̂ = 0, 0, a4½ �′, 4C5̂ = 1, 0, 0 ; 0, 0, 1 ; 0,−1, 0½ �′,
5r5,6̂ = 0,−a5, 0,½ �′, 5C6̂ = 1, 0, 0 ; 0, 0,−1 ; 0, 1, 0½ �′:

ð6Þ

Hence, for the 6-DoF robot, the transformation matrix
from the base to the end effector is
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0T6 = 0T 1̂∙
1̂T1∙

1T 2̂∙
2̂T2∙

2T 3̂∙
3̂T3∙

3T 4̂∙
4̂T4∙

4T5̂∙
5̂T5∙

5T 6̂∙
6̂T6:

ð7Þ

3. Dynamics and Controller of the 6-DoF
Medical Robot

In this paper, the control is model-based. The classical adap-
tive identification method [15, 16] was adopted to identify
the inertial parameters in this research project. However,
in previous research, the adaptive identification method
was not included in the joint control structure of joint con-

trol, and it was included in the top layer of the control of the
system.

In this section, the first part will build the dynamics of
the subsystem, and the second part will show the joint con-
trol based on dynamic compensation.

3.1. Dynamics of the Subsystem. As mentioned above, the full
system of the 6-DoF robot is virtually decomposed into six
subsystems. This part will discuss the velocity transforma-
tion, force transformation, and dynamics of the subsystem.

For the velocity transformation, the defined labels have
the corresponding meanings: ivi represents that the linear
velocity of target (vi) is with respect to the origin of the
frame Fi and is expressed in frame Fi;

iωi represents that
the angular velocity of the target (ωi) is with respect to the
origin of the frame Fi and is expressed in frame Fi. Then,
the following will hold:

ivi
iwi

" #
= iTî ⋅

î v̂i
îwî

24 35 +
03×1
z
!

i

" #
⋅ _θi,

ci+1vci+1ci+1wci+1
264

375 =ci+1Ti ⋅
ivi
iwi

" #
,

iTî =
iCî 03×3
03×3 iCî

" #
,

ci+1T =
îCi −îCi ⋅

iri,mi ×
� �

03×3 îCi

24 35,

ð8Þ

where iri,mi is the CoM (center of mass) position of Link i
that is expressed in frame Fi.

For the force transformation, the defined labels have the
corresponding meanings: i f net,i represents the vector sum of
the force (except the gravitational force) that is acting on
Link i and expressed in frame Fi;

imnet,i represents the vector
sum of the moment of force (except the contribution of the
gravitational force) that is acting on Link i and expressed in

Knee joint Six dofs robot 

Figure 3: Medical robot with six DoFs for knee joint surgery.

Link i

Link i–1

Joint i

𝜃i

Fi

Xi

Yi
Zi

Fî

Xî

YîZî

Figure 4: Inboard frame and outboard frame of the ith joint.

Table 1: D-H parameters of the 6-DoF robot.

θi di (unit: m) ai−1 (unit: m) αi−1

Joint 1 θ1 0.26 0 90°

Joint 2 θ2 0 0.48 180°

Joint 3 θ3 0 0 90°

Joint 4 θ4 0.52 0 −90°

Joint 5 θ5 0 0 90°

Joint 6 θ6 0.196 0 0°
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frame Fi. τnet,i represents the sum of torque that is acting on
the ith joint. Then, Equations (9) and (10) will hold.

i f i
imi

" #
=ci+1TT

i ⋅

ci+1 fci+1ci+1mci+1
264

375 +
i f net,i
imnet,i

" #
, ð9Þ

î f̂i
îmî

24 35 = iT
T
î ⋅

i f i
imi

" #
+

03×1
z
!

i

" #
⋅ iτnet,i, ð10Þ

where in Equations (9) and (10), ½ i f i, î f̂i,ci+1 fci+1 � and ½imi, î

mî,
ci+1mci+1 � are all the intermediate calculation results.

For the ith subsystem, mi is the mass of Link i, Ii is the
moment of inertia of Link i which is with respect to the
CoM of Link i, and g! is the gravity vector. Then, the dynam-

ics of the ith subsystem is expressed as

Mi∙
i
_vi

i _ωi

" #
+ Ci∙

ivi
iωi

" #
+ Gi =

i f net,i
imnet,i

" #
, ð11Þ

where

Mi =
mi∙I3×3 −mi∙

iri,mi ×
� �

mi∙
iri,mi ×
� �

Ii −mi∙
iri,mi ×
� �2

24 35,

Ci =

mi∙
iωi ×
� �

−mi∙
iωi ×
� �

∙ iri,mi ×
� �

mi∙
iri,mi ×
� �

∙ iωi ×
� � iωi ×

� �
∙Ii + Ii∙

iωi ×
� �

−

mi∙
iri,mi ×
� �

∙ iωi ×
� �

∙ iri,mi ×
� �

26664
37775,

Gi =
−mi∙

iC0∙g
!

−mi∙
iri,mi ×
� �

∙iC0∙g
!

24 35: ð12Þ
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Figure 5: Encoder output comparison with different data bits.
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3.2. Control Based on Dynamic Compensation. In this paper,
the model-based design is adopted to set up the controller.
The classical adaptive identification method [15, 16] was
adopted to identify the inertial parameters in the bottom
layer of control. Additionally, joint control is the basic of
full-system control. Optimizing the joint control can
improve reducing the delay time of the dynamic response.
Therefore, in this part, the discussions will focus on joint
control.

In Equation (13), it shows the common sliding mode
control. θd,i and _θd,i are the command of the ith joint posi-
tion and velocity, respectively. For the control coefficient,
there is λi > 0.

_θr,i = _θd,i + λi∙ θd,i − θið Þ: ð13Þ

For the ith joint, its control law is defined as Equation
(14). In the right part of Equation (14), the first three items
play the role of dynamic compensation, and the last three
items play the role of control.

iτnet,i = I j,i∙€θr,i + k̂c,i∙sign _θr,i
� �

+ k̂v,i∙ _θr,i

+ kP,i∙θe,i + kI,i∙
ð
θe,i + kD,i∙ _θe,i:

ð14Þ

Additionally, θe,i = θd,i − θi, _θe,i = _θd,i − _θi; k̂c,i is the esti-
mated value for the Coulomb friction coefficient of the ith
joint, and k̂v,i is the estimated value for the viscous friction

coefficient of the ith joint; kP,i, kI,i, and kD,i are the PID con-
trol parameters.

In Equation (14), I j,i, k̂c,i, and k̂v,i are the unknown
variables. The inertial variable I j,i was identified based on
the classical adaptive identification method [15, 16] by the
top layer of control. k̂c,i and k̂v,i are identified by using the
following equations: Equations (15)–(17). �kc,i and kc,i are
supremum and infimum for kc,i, respectively; �kv,i and kv,i
are supremum and infimum for kv,i, respectively. The func-
tion P is the identification function [4], and its time deriva-
tive is shown in Equation (17).

sc,i

sv,i

" #
=

sign _θr,i
� �
_θr,i

24 35∙ _θe,i + λi∙θe,i
� �

, ð15Þ
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Figure 6: Encoder output comparison with different sampling times.

Table 2: Control parameters of the six joints.

Joint 6 5 4 3 2 1

kP,i 0.2 0.2 1.2 1.2 3.1 3.1

kI,i 0.06 0.06 0.5 0.5 1.2 1.2

kD,i 0.01 0.01 0.1 0.1 0.23 0.23

trise msð Þ 68 53 51 57 50 50

tc,rise msð Þ 110

tc,rise − trise
tc,rise

%ð Þ 38.2% 51.8% 53.6% 48.2% 54.4% 54.5%
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k̂c,i

k̂v,i

" #
=

P c,i sc,i, ρc,i, �kc,i, kc,i, t
� �

P v,i sv,i, ρv,i, �kv,i, kv,i, t
� �

" #
, ð16Þ

_P s tð Þ, ρ, �k, k, t� �
=

0, if P ≥ �k and s ≥ 0,
0, if P ≤ k and s ≤ 0,
ρ∙s tð Þ, otherwise:

8>><>>: ð17Þ

Finally, the computation result of iτnet,i in Equation (14)
is substituted into Equation (10). Then, a complete dynamic

equation of the subsystem shown in Equation (11) is
obtained. The matrices of Mi, Ci, and Gi are also identified
based on the classical adaptive identification method [15,
16].

4. Position Encoder Analysis

In this paper, the position encoders are fixed on the motor
axis of each joint. In this section, it will discuss how to
choose the position encoders based on the simulation
analysis.
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Figure 7: Joint control performance of Joint 6.
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Figure 8: Joint control performance of Joint 4.
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4.1. Data Bits Requirement Analysis. As well known, data
bits output by the encoder during one round of the encoder
shaft will determine the encoder resolution. If an encoder
has insufficient resolution, it will not provide effective feed-
back to the controller, and the system will not perform as
required.

In the data bits analysis, the target velocity is set as
0.2 deg/s (see Figure 5(a)), and the gear ratio for each motor
is 160 : 1. Two types of encoder are adopted to detect the
actual velocity. Figure 5(b) shows the recording result of
the encoder with 15 data bits. Figure 5(c) shows the record-
ing result of the encoder with 16 data bits.

Based on the comparisons, especially in the duration
from start to 1 second, it shows that the encoder with 16 data
bits has better tracking performance than the encoder with
15 data bits. Therefore, in this paper, the robot controller
is based on the position encoders with 16 data bits.

4.2. Sampling Time Requirement Analysis. Since the compu-
tation resource is limited, it is needed to choose an appropri-
ate sampling time of the encoder. Figure 6(a) shows the
recording result of the encoder with a sampling time of
0.1ms. Figure 6(b) shows the recording result of the encoder
with sampling time of 0.25ms.
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Figure 9: Joint control performance of Joint 1.
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By comparing the encoder performance of recording
continuity, it shows that the encoder with 0.1ms sampling
time is better. Therefore, in this paper, the robot controller
is based on position encoders with a sampling time of
0.1ms sampling time.

5. Control Performance

In control processing, the hardware is based on the BECKH-
OFF TwinCAT 3 real-time platform, and the communica-
tion protocol is EtherCAT.

In this section, the experimental test of the proposed
controller follows the performance criteria shown in [6].
The criteria include the tests of step response, trajectory
tracking without load, and payload verification. The experi-

mental tests of control performance are based on the 6-DoF
medical robot platform. As shown in Table 2, the control
parameters for the six joints are listed in detail.

5.1. Joint Control Performance. To reduce the delay time of
the dynamic response, in this part, this paper will focus on
the rising time for each joint under the command of a
sequence of step-square waves. The dynamic joint response
can be recorded by TwinCAT 3, and then, the rising time
based on the recorded curves can be detected.

Based on the control proposed in the last section, the
joint control performances are shown in Figures 7–9.

In Figures 7–9, all figures show that each joint control
can achieve the goal with high precision and well dynamic
response. More details are shown in Table 2. The rising time
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Figure 11: Tracking velocities of six joints.

9Journal of Sensors



for each joint is 68ms, 53ms, 51ms, 57ms, 50ms, and
50ms, respectively.

For comparison, a commercial controller was adopted to
control this 6-DoF robot, and the rising time of joint response
(tc,rise) was about 110ms based on the commercial controller.
Compared with the commercial controller, the controller pro-
posed in this paper could reduce the rising time of joint
response by almost more than 50% (see Table 2). Hence, the
controller proposed in this paper realized low delay control
and improved the dynamic response of control.

5.2. Task Space Tracking Performance. To test the tracking
performance of the 6-DoF robot in the task space, a set of
commanded velocities of the end effector is adopted as
shown in Figure 10.

In Figure 10, the path planning for the commanded
velocities follows three steps, speed up, constant speed, and
slow down.

Based on the commanded velocities of the end effector,
the six joints of the robot will track the commanded veloci-
ties in the joint space. As shown in Figure 11, it shows the
tracking results of the joint velocities. For the ith joint, _θd,i
is the commanded joint velocity, and _θi is the real joint

velocity (i = 1, 2,⋯, 6). Figure 11 shows that the six joints
could follow the commanded velocities well.

In Figure 12, it shows the tracking error of the six joints.
The tracking error is small and converging to zero.

Therefore, based on the experimental results shown in
Figures 11 and 12, the controller shown in this paper could
realize the good tracking performance of the 6-DoF robot
in the task space.

5.3. Contact Space Tracking Performance. To test the track-
ing performance of the 6-DoF robot in the contact space,
the test experiments include plate surface contact test and
curved surface contact test (see Figure 13). In both tests,
the robot is expected to move along the surface with a stable
contact force.

In Figure 14, it shows the trajectory of the contact force
when the robot is required to move along the plate surface.
The contact force is recorded by a six-dimensional force sen-
sor. The commanded contact force is set as 5N.

In Figure 15, it shows the trajectory of the contact force
when the robot is required to move along the curved surface.
The commanded contact force is set as 10N.

Both in Figures 14 and 15, the robot could track the sur-
face well. In particular, in the test of curved surface, the end
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Figure 12: Tracking velocity errors of six joints.
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of the robot could keep a stable contact force on the complex
curved surface. The experimental results of the contact
space tracking show the controller have well dynamic
performance.

6. Conclusions

In this paper, a method for joint control in robot-assisted
orthopedic surgery was proposed. Compared to traditional
joint control, improved joint control includes PID, sliding
mode control, and adaptive dynamic compensation as a
module unit. The performance of the proposed joint control

was tested on a six-DoF robot. The experimental results of
the joint dynamic response under square waves show that
the proposed control method has a much smaller rising time
than the commercial controller product, which means better
performance in high dynamic response for the robot. The
experimental results of the tracking performance in the task
space and contact space show that the robot could follow the
commanded velocities well.

In the near future, the proposed joint control method will
be applied for real orthopedic surgery experiments. And fur-
ther research will focus on improving human-machine collab-
oration based on the proposed control method.

0s 5s 10s 15s 20s 25s 30s 35s 40s 45s 50s
–5.4
–4.8
–4.2
–3.2
–3.0
–2.4
–1.8
–1.2
–0.6

0.0

Time (s)

Force (N)

Target : 5 N

Contact Force

Figure 14: Plate surface contact tracking performance.

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s

–10.950

–9.125

–7.300

–5.475

–3.700

–1.825

1.825

Time (s)

Force (N)

Target : 10 N

Contact Force

0.0

Tim

Target : 10t N

Contact Forcen c

Figure 15: Curved surface contact tracking performance.

Plate surface Curved surface

Figure 13: Contact space test (plate surface and curved surface).

11Journal of Sensors



Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Key Research
and Development Program of China (grant number
2017YFC0110702), the Beijing Natural Science Foundation
(grant number L192039), the Foundation of Suzhou Key
Laboratory of Minimally Invasive Neurosurgery (grant
number SZS2021262), and the Beijing Young Talents
Foundation (grant number 2018000026825G328).

References

[1] W. L. Bargar, “Robots in orthopaedic surgery,” Clinical Ortho-
pedics and Related Research, vol. 463, pp. 31–36, 2007.

[2] F. Picard, A. H. Deakin, P. E. Riches, K. Deep, and J. Baines,
“Computer assisted orthopaedic surgery: past, present and
future,” Medical Engineering and Physics, vol. 72, pp. 55–65,
2019.

[3] J. Kubicek, F. Tomanec, M. Cerny, D. Vilimeck, M. Kalova,
and D. Oczka, “Recent trends, technical concepts and compo-
nents of computer-assisted orthopedic surgery systems: a com-
prehensive review,” Sensors, vol. 19, no. 23, pp. 5199–5233,
2019.

[4] D. Kortenkamp and R. Simmons, “Robotic systems architec-
tures and programming,” in Springer Handbook of Robotics,
O. Khatib and B. Siciliano, Eds., pp. 187–206, Springer, 2008.

[5] W. H. Zhu, Virtual decomposition control: toward hyper
degrees of freedom robots, Springer, [New York, NY], 2012.

[6] P. Chiacchio, F. Pierrot, L. Sciavicco, and B. Siciliano, “Robust
design of independent joint controllers with experimentation
on a high-speed parallel robot,” IEEE Transactions on Indus-
trial Electronics, vol. 40, no. 4, pp. 393–403, 1993.

[7] M. W. Allen and D. J. Jacofsky, “Evolution of robotics in
arthroplasty,” in Robotics in Knee and Hip Arthroplasty,
pp. 14–25, Springer, 2019.

[8] X. Tian and Y. Xu, “Low delay control algorithm of robot arm
for minimally invasive medical surgery,” IEEE Access, vol. 8,
pp. 93548–93560, 2019.

[9] K. J. Strm and T. Hgglund, PID Controllers: Theory, Design and
Tuning, The Instrumentation, Systems and Automation Soci-
ety, 1995.

[10] C. A. Nelson, M. A. Laribi, and S. Zeghloul, “Multi-robot sys-
tem optimization based on redundant serial spherical mecha-
nism for robotic minimally invasive surgery,” Robotica,
vol. 37, no. 7, pp. 1202–1213, 2019.

[11] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar,
“A review of PID control, tuning methods and applications,”
International Journal of Dynamics and Control, vol. 9, no. 2,
pp. 818–827, 2021.

[12] S. J. Gambhlre, D. R. Klshore, P. S. Londhe, and S. N. Pawar,
“Review of sliding mode based control techniques for control

system applications,” International Journal of Dynamics and
Control, vol. 9, no. 1, pp. 363–378, 2021.

[13] X. Wang, H. Lan, and K. Li, “Treatment of femoral neck frac-
tures with cannulated screw invasive internal fixation assisted
by orthopaedic surgery robot positioning system,” Orthopedic
Surgery, vol. 11, no. 5, pp. 864–872, 2019.

[14] S. D. Eppinger, “Understanding bandwidth limitations in
robot force control,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 904–909, North
Carolina, USA, 1987.

[15] J. Wu, J. Wang, and Z. You, “An overview of dynamic param-
eter identification of robots,” Robotics and Computer-
Integrated Manufacturing, vol. 26, no. 5, pp. 414–419, 2010.

[16] W. Khalil, M. Gautier, and P. Lemoine, “Identification of the
payload inertial parameters of industrial manipulators,” in
Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 4943–4948, Roma, Italia, 2007.

12 Journal of Sensors



Research Article
Feature Fusion for Weld Defect Classification with Small Dataset

Wenhui Hou , Lulu Rao, Andong Zhu, and Dashan Zhang

Anhui Provincial Engineering Laboratory of Intelligent Agricultural Machinery, School of Engineering,
Anhui Agriculture University, No. 130 West Changjiang Road, Hefei 230026, China

Correspondence should be addressed to Dashan Zhang; zhangds@mail.ustc.edu.cn

Received 3 December 2021; Revised 16 January 2022; Accepted 26 January 2022; Published 23 February 2022

Academic Editor: Min Xia

Copyright © 2022 Wenhui Hou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Detecting defects from weld radiography images is an important topic in the field of nondestructive testing. Many intelligent
detection systems are constructed based on computer. Feature extraction is critical for constructing such system to recognize
and classify the weld defects. Deep neural networks have powerful ability to learn representative features that are more
sensitive to classification. However, a large number of samples are usually required. In this paper, a stacked autoencoder
network is used to pretrain a deep neural network with a small dataset. We can learn the hierarchical feature from the
network. In addition, two kinds of traditional manual features are extracted from the same set. These features are combined
into new fusion feature vectors for classifying different weld defects. Two evaluation methods are used to test the classification
performance of these features through several experiments. The results show that deep feature based on stacked autoencoder
network performs better than the other features. The classification performance of fusion features is better than single feature.

1. Introduction

As a basic technology, welding is widely used in many areas,
such as aerospace manufacturing, bridge engineering, and
mechanical manufacturing. Due to the complexity of the
welding process, the instability of the welding parameters,
or the influence of the welding stress and deformation in
the structure, welding defects are inevitable, such as the lack
of penetration, porosity, slag inclusion, and crack. The
appearance of welding defects directly affects the quality of
welding products, which causes the failure of welding struc-
ture and even safety accidents. Therefore, it is necessary to
detect and classify the welding defects.

Detection of welding defects is an important task of nonde-
structive testing of weldingmaterials. Among them, X-ray test-
ing is themost common preferred technique for examining the
quality of welded joints. For this, experienced workers need to
inspect the defects from the radiography film generated in X-
ray testing. This process is not only time-consuming but also
subjective [1]. Many scholars have been committed to building
an objective and intelligent detection systems for weld defects.
Such system based on digital radiography images often
involves feature extraction and pattern recognition.

Feature extraction from weld images is the core of intel-
ligent detection systems. According to the investigation, D’
Angelo and Rampone [2] pointed out that the key to the sys-
tem for recognizing the structure defects is to extract the fea-
tures that can express the defects more uniquely. The pattern
recognition is conducted for classifying different types of
defects. In the initial testing, the geometrical and the texture
features are commonly used for classifying the weld defects
[3–7]. The geometrical features which describe the shape
and orientation of defects are usually defined by experts.
Boaretto and Centeno [5] extracted several geometrical fea-
tures (area, eccentricity, solidity, ratio, etc.) from the discon-
tinuities detected in weld bead region. Then, a multilayer
perceptron (MLP) was used to classify discontinuities as
defect or no-defect through these features and achieved an
accuracy of 88.6%. In addition, they also tried to classify
the different defects, but the attempt was not successful
because of the unbalanced data. In these works, the geomet-
ric features extracted by different scholars are not the same.
Kumar et al. [7] used texture features based on the gray level
cooccurrence matrix (GLCM) as input features of back
propagation (BP) neural network, achieving a classification
accuracy of 86.1%. Furthermore, they simultaneously
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extracted both texture and geometric features, eventually
achieving an accuracy of 87.34% [8]. Wang and Guo [9]
extracted three numeral features from potential region and
used support vector machines (SVM) to distinguish real
defects from potential defects. The physical meaning of each
feature is different. In addition, the Mel-frequency cepstral
coefficients and polynomial coefficients were used as the
classification features in weld detection [10, 11]. These fea-
tures can be collectively known as manual features. How-
ever, the manual extraction of features has significant
drawback: it is task intensive [12]. The extracted features
are inconsistent, and it is difficult to find the general features
for varying task.

Recently, deep learning has been a significant break-
through in image analysis and interpretation. The popular
deep learning techniques including deep belief network
(DBN), recurrent neural network (RNN), and convolutional
neural network (CNN) have attracted increasing attention
and become the popular tools for fault diagnosis and defect
detection [13–15]. These networks can automatically extract
the features without any hand operation for detecting the
weld images. The classification performance of deep features
through deep neural network is better [16]. However, the
deep CNN got poor classification performance when the
training dataset is small [17]. This is just because of the char-
acteristic of deep learning: the good performance of deep
networks benefits from the training by lots of data. However,
it is not easy to collect big dataset of weld defects because the
resolution of radiography image for weld seam is usually
high. Stacked autoencoder (SAE) [18] is proposed as an
alternative to restricted Boltzmann machine (RBM) [19,
20] in pretraining [21, 22]. SAE is used to pretrain a deep
neural network with a small dataset. In our work, we use
SAE for pretraining and fine-turning strategies to train a
deep neural network (DNN).

In this paper, we applied information fusion technology
to combine different features for weld defect classification.
The workflow of classification is given in the following parts.
Firstly, feature extraction is discussed in Section 2. HOG fea-
tures and texture features are introduced. In addition, a SAE
network is constructed to learn multilevel features. More-
over, we investigate pretraining and fine-turning strategies
to get better features. Secondly, in Section 3, the above fea-
tures are combined with each other. Thirdly, an experiment
about weld defect classification is shown in Section 4. In this
part, we investigated the classification performance of differ-
ent kinds of features and fusion features. The experiment

results are discussed, and suggestions are given for future
research in Section 5.

2. Feature Extraction

Different defects in radiography image exhibit various visual
properties in shapes, sizes, textures, and positions. In order
to recognize various defects, the important features of the
specific type of defects should be artificially selected. The
characteristics based on intensity contrast are very useful
to classify weld defects because of different gray value distri-
butions of different defect types. In this section, two tradi-
tional manual features based on gray level distribution are
introduced. In addition, a feature learning technology based
on DNN is elaborated.

2.1. HOG Feature Vector. Histograms of oriented gradient
(HOG) descriptors based on a statistical evaluation of a
series of normalized local gradient direction histograms of
the image window are first proposed by Dalal and Triggs
for human detection [23]. They capture the gradient or edge
direction characterizing the appearance and shape of the
local objects. They are robust to small changes in image con-
tour locations and directions and significant change in image
illumination. The features of descriptors are extracted as
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Figure 1: The flowchart of extracting HOG feature.
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discriminative and separable as possible. In this paper, the
HOG features are used for presenting the local weld defect
in radiography images. The flowchart of algorithm is shown
in Figure 1.

2.2. Texture Feature Vector Based on GLCM. Gray level
cooccurrence matrix (GLCM) theory is an important
second-order statistical method for texture analysis [24,
25]. It reflects the spatial complexity, pixel distribution,
and roughness of the image through the joint probability
density of two pixels in different positions. The element
of matrix is expressed as Pði,j,d,θÞ, which is the probability
of the occurrence pixel pairs ði, jÞ. d is the distance
between i and j. θ is the position relation of pixel pairs
ði, jÞ, which is usually 0∘, 45∘, 90∘, and 135∘. Haralick
et al. [26] defined 14 statistical parameters as texture fea-
tures. In this paper, we used these features for describing
the weld defect. 5 pivotal parameters are listed here.

SE = 〠
L−1

i=0
〠
L−1

j−0
P i, j ∣ d, θð Þf g2, ð1Þ

where L is the number of gray level. SE is the energy fea-
ture, which is a second-moment measuring homogeneity
of the image.

SCon = 〠
L−1

n=0
n2 〠

L−1

i=1
〠
L−1

j=1
P i, j ∣ d, θð Þ, ð2Þ

where SCon is the contrast feature, which is the differ-
ence moment of the matrix measuring the contrast or the
amount of local variations in the image.

SCor =
1

σxσy
〠
L−1

i=1
〠
L−1

j=1
ij ⋅ P i, j ∣ d, θð Þ − μxμy
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Figure 3: Workflow of weld classification.
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where μx, μy , σx, andσy are average value and stan-
dard deviation, respectively. SCor is the correlation feature
measuring the similarity in one direction.

SS = −〠
L−1

i=1
〠
L−1

j=1
P i, j ∣ d, θð Þ log P i, j ∣ d, θð Þ½ �, ð4Þ

where SS is the entropy feature measuring the com-
plexity of image.

D = 〠
L−1

i=1
〠
L‐1

j=1
P i, j ∣ d, θð Þ 1

1 + i − jð Þ2 , ð5Þ

where D is the inverse difference moment reflecting
the homogeneity of the image texture and measuring
the local amount of variations of the texture.

2.3. Feature Based on Learning through SAE. Autoencoder
(AE) is a simple neural network containing input, hidden,
and output layers. It trains the network in an unsupervised
manner by reconstructing the input in output layer. The
process is divided into two parts: encoding and decoding.
The encoding is a connection from the input layer to hidden
layer. It can be expressed as h = f ðWð1Þx + bð1ÞÞ, where h is
the activation value of hidden layer, Wð1Þ and bð1Þ are weight
matrix and bias of encoding, and f is the encoding function.
Similarly, from the hidden layer to output layer, decoding is

expressed as x∧ = gðWð1Þ′x + bð1Þ′Þ, where x∧ is the recon-

struction of input, Wð1Þ′ and bð1Þ′ are the corresponding
parameters of decoding, and g is the encoding function.
The back propagation algorithm is used to obtain the opti-
mal parameters of the network for minimizing the cost func-
tion. For better feature, some restrictive constraints are
imposed on the hidden layer. The cost function of network
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SI
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Figure 5: The samples of different weld defects.
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is described as Equation (6).

J W, bð Þ = 1
2m〠

i

x
∧
− x

� �2
+ λ

2m〠W2 + β〠
j

KL ρ ρj
∧

���
� �

,

ð6Þ

where m is the number of samples, β∑jKLðρk ρj
∧Þ is the

sparse penalty term, and β is the weight of this term.
As is shown in Figure 2, we construct a deep neural net-

work (100-50-5) by stacking two AEs and a softmax layer for
supervised learning. The network initializes the parameters
by training each AE layer by layer. Once the pretraining of
AE is finished, the decoder is discarded. The activation of
previous AE in hidden layer is the input of the next AE.
For best parameter, the fine-tuning step is implemented by
supervised learning through training set.

3. Feature Fusion

It is critical to select appropriate features to classification of
weld defects. Silva et al. [27] pointed out that the mass of fea-
tures used for classification is more important. The weld
defects are usually distributed in the local space of the radi-
ography images with linear, circular, and other irregular
shapes. The HOG feature is sensitive to gradient and direc-
tion; thus, it focuses on describing the structure and contour
of objects. The HOG description has strong ability on iden-
tifying local regions. The Haralick feature based on GLCM
describes the texture of the image by counting the frequency
of pixel pairs with a particular relationship. The two kinds of
features with specific physical significance are useful for clas-
sifying the defects. However, it is not sufficient to describe
the image comprehensively by using each single feature. In
addition, the DNN can learn hierarchical features
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Table 1: The sample numbers of different defect types.

Defect types Number in training set Number in test set

CR 868 372

IP 839 360

ND 868 372

PO 868 372

SI 869 372

Total 4312 1848
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automatically; however, physical significance of these fea-
tures is undefined. For a more comprehensive description
of the objects, we tried to fuse these features.

The workflow of weld classification in this paper is
shown in Figure 3. Firstly, the weld defects are segmented.
Secondly, the samples with defects are formed. Thirdly,
two manual features are extracted. Meanwhile, the SAE net-
works are trained and fine-tuned for learning feature.
Finally, the fusion features are imported into the SVM for
classification. Our work mainly focused on the steps which

are encircled by the green rectangular box (feature extraction
and fusion).

As is shown in Figure 3, there are two ideas of fusion:
one is the fusion of two different manual features, and the
other one is the fusion of manual features and learning-
based features. Characteristic-level fusion is adopted, which
involves various feature extractions of images and then inte-
grates the different feature vectors. In the extraction for
HOG feature vector f1, the cell size is 4 × 4. Thus, the dimen-
sion of the vector is 1 × 5184. For the texture feature based
on GLCM f2, the mean and standard deviation of 14 features
are calculated in 3 different distances. Thus, the dimension
of the vector is 1 × 84. We obtain the vector (1 × 5) in the
softmax layer for learning-based feature based on SAE f3.
The parameters used in network are: λ = 4e − 3 and β = 3.
The fusion feature is noted asf fusion = ½ f i, f j�, i ≠ j.

4. Experimental Results and Discussion

In this section, several experiments are implemented based
on MATLAB for investigating the classification performance
of different features. Datasets, evaluation methods, and
results of experiments are introduced.

4.1. Experimental Database. The database for subsequent
learning is from the “welds” group in a public database
called GDXray [28]. An example of radiography images is
shown in Figure 4(a). Morphological analysis is used in this
paper for segmented weld defects. The processed result is
shown in Figure 4(b). Based on the results, we cropped the
patches with defects to form a Dataset _RUS [16]. In our
previous work, we used CNN for defect classification on this
dataset; however, the result is not good. Dataset _RUS
includes 6,160 cropped image patches with different weld
defects, including lack of penetration (LOP), porosity (PO),
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Figure 9: The t-SNE distribution map of texture feature based on
GLCM.
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Figure 10: The t-SNE distribution map of fusion feature of HOG-
GLCM feature.
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Figure 11: The t-SNE distribution map of fusion feature of SAE-
GLCM feature.
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slag inclusion (SI), and crack (CR). The patches without
defect are noted as ND. Some samples with different defects
are shown in Figure 5. The dataset is divided into the train-
ing set and testing set on a scale of 7 : 3 for later experiments.
The sample numbers of each defect patches are shown in
Table 1.

4.2. Results of Visualization. We extract the HOG feature
vector, texture feature vector based on GLCM, and
learning-based feature from 4312 patches (training set). In
order to show the performance of the abovementioned fea-
tures and fusion features more intuitively, the t-SNE method
is used for visualizing the features through 2D maps. The t-
SNE distribution maps of features are shown below.

The t-SNE method shows the high-dimensional data in
low-dimensional maps. Thus, the dimension of data should
be considered in fusion. The dimension of HOG feature is
too high, and PCA algorithm is adopted beforehand to
reduce the dimension to 5. Then, it is fused with a SAE fea-
ture, namely HOG-SAE feature. Figures 6 and 7 show the
distribution of single HOG feature and SAE feature.
Figure 8 shows the distribution map of the fusion feature.
In terms of the color distribution, the separability of fusion
feature is better.

For texture features, we select 5 listed in Section 2 show-
ing the t-SNE distribution map in Figure 9. The distribution
of texture feature is rambling. From the visual effects, the
conclusion is that the deep features perform better than
manual features for classification (this is consistent with
our previous result). Then, the feature vector is fused with
HOG feature and SAE feature, namely HOG-GLCM feature
and SAE-GLCM feature. The t-SNE distribution maps are
shown in Figures 10 and 11. Compared to the single GLCM
feature, the performance of fusion feature improved. How-
ever, it is not noticeable when comparing with HOG feature
or SAE feature from the visual effect. To evaluate the perfor-
mance of each feature more objectively, a quantitative evalu-
ation method is needed.

4.3. Results of SVM Classification. Support vector machine
(SVM) is developed based on the statistical learning theory,
which is suitable for use in solving high-dimensional classi-
fication problems with small samples. Thus, it is popular in
the classification and diagnosis of weld defects in recent
years [29, 30]. In this paper, SVM is used to build the rela-
tion model concerning features and weld defects. To reduce
the training time, the kernel function of the SVM adopted is
linear. The classification performance of the features is eval-

uated through accuracy rates and their mean of various
types. The classification rates are shown in Table 2.

The classification ability of deep features is stronger than
the manual features. However, the DCNN networks perform
poorly when the sample set is small [17]. In this paper, the
accuracies of different single features in the table demon-
strate that the learning feature based on SAE network per-
forms better than the manual features. This is consistent
with the above analysis.

The classification performance of fusion feature with two
different features is better than that of single features.
Among them, the fusion feature of texture feature based on
GLCM and learning feature based on SAE (SAE-GLCM fea-
ture) perform best. The average accuracy achieves 92.9%.

The table shows the separability of three single features
clearly. Based on this, we try to apply different weights on
each feature during fusion, namely f fusion = ½k1 f i, k2 f j�, i ≠ j

Table 2: The classification accuracies of different features.

Feature types CR LOP ND PO SI Mean

GLCM feature 75.2% 63.2% 74.3% 75.2% 61.7% 73.2%

HOG feature 69.1% 84.7% 86.6% 74.7% 69.1% 76.8%

SAE feature 79.8% 91.1% 94.6% 78.8% 74.2% 83.7%

HOG-GLCM feature 80.9% 95.6% 79.3% 87.6% 96.0% 87.8%

HOG-SAE 83.3% 93.9% 89.5% 84.9% 86.8% 87.7%

SAE-GLCM 92.7% 88.3% 91.9% 92.5% 98.9% 92.9%

Table 3: The classification accuracies of HOG-GLCM feature in
different weights.

k1 CR LOP ND PO SI Mean

0.6 80.6% 95.3% 92.7% 89.8% 93.0% 90.3%

0.7 89.0% 94.7% 92.5% 89.0% 91.9% 91.4%

0.8 87.1% 93.6% 92.5% 88.4% 91.4% 90.6%

0.9 84.7% 92.5% 90.6% 87.9% 89.5% 89.0%

Table 4: The classification accuracies of HOG-SAE feature in
different weights.

k1 CR LOP ND PO SI Mean

0.6 83.6% 95.0% 93.8% 85.8% 83.9% 88.4%

0.7 84.7% 93.6% 93.3% 85.8% 80.4% 87.5%

0.8 83.9% 92.5% 93.0% 84.4% 75.8% 85.9%

0.9 82.3% 91.7% 93.0% 84.1% 73.1% 84.8%

Table 5: The classification accuracies of SAE-GLCM feature in
different weights.

k1 CR LOP ND PO SI Mean

0.6 94.4% 94.2% 97.0% 93.5% 98.1% 95.5%

0.7 94.9% 95.0% 97.0% 93.3% 97.6% 95.6%

0.8 93.3% 94.7% 97.3% 93.3% 96.0% 94.9%

0.9 92.5% 94.4% 95.7% 92.2% 94.9% 93.9%
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, k1 + k2 = 1. Several experiments are set to test the classifica-
tion performance of three fusion feature vectors with differ-
ent weights. The results are shown in Tables 3–5.

From the tables, it is obvious that the classification accu-
racies of fusion features with weights improved, especially
the fusion of SAE feature and GLCM feature (SAE-GLCM
feature). The best accuracy achieves 95.6%.

5. Conclusion and Future Work

Considering that deep convolutional neural networks are
not suitable for the classification of small sample sets, a
SAE network is used to learn feature from the patches of
radiography images for classifying the weld defects in this
paper. Meanwhile, two kinds of different manual features
are extracted. In order to express the objectives more com-
prehensively, we fuse the features for combining different
information. The t-SNE distribution of these features and
their fusion feature is shown in figures for intuitive display.
We use SVM to classify the weld defects for evaluating the
performance of the different features objectively. The results
demonstrate that the fusion features perform better than the
single features on the classification ability. The fusion of tex-
ture feature based on GLCM and learning feature based on
SAE network has the best performance. The classification
power of the feature vectors becomes stronger when the
fusion is weighted. However, the performance promotion
of fusion of HOG feature and SAE feature is limited. This
may result from the large difference in the dimensionality
of the two features.

In the future, we will consider optimizing the weight
adopted in fusion. The fusion model will be used to the
entire X-ray image for detection of defects.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This project was funded by the National Natural Science
Foundation of China (No. 51805006) and Anhui Agriculture
University (rc412005 and k2041005).

References

[1] I. Valavanis and D. Kosmopoulos, “Multiclass defect detection
and classification in weld radiographic images using geometric
and texture features,” Expert Systems with Applications, vol. 37,
no. 12, pp. 7606–7614, 2010.

[2] G. D’Angelo and S. Rampone, “Feature extraction and soft
computing methods for aerospace structure defect classifica-
tion,” Measurement, vol. 85, pp. 192–209, 2016.

[3] J. Hassan, A. M. Awan, and A. Jalil, “Welding defect detection
and classification using geometric features 2012,” in 10th inter-

national conference on Frontiers of information technology,
pp. 139–144, Islamabad, Pakistan, 2012.

[4] J. Zapata, R. Vilar, and R. Ruiz, “Performance evaluation of an
automatic inspection system of weld defects in radiographic
images based on neuro-classifiers,” Expert Systems with Appli-
cations, vol. 38, pp. 8812–8824, 2011.

[5] N. Boaretto and T. M. Centeno, “Automated detection of
welding defects in pipelines from radiographic images
DWDI,” NDT&E International, vol. 86, pp. 7–13, 2017.

[6] D. Mery and M. A. Berti, “Automatic detection of welding
defects using texture features,” Insight-Non-Destructive Testing
and Condition Monitoring, vol. 45, no. 10, pp. 676–681, 2003.

[7] J. Kumar, R. S. Anand, and S. P. Srivastava, “Multi-class weld-
ing flaws classification using texture feature for radiographic
images,” in International Conference on Advances in Electrical
Engineering, Vellor, India, 2014.

[8] J. Kumar, R. S. Anand, and S. P. Srivastava, “Flaws classifica-
tion using ANN for radiographic weld images,” in 2014 Inter-
national Conference on Signal Processing and Integrated
Networks (SPIN), pp. 145–150, Noida, India, 2014.

[9] Y. Wang and H. Guo, “Weld defect detection of X-ray images
based on support vector machine,” IETE Technical Review,
vol. 31, no. 2, pp. 137–142, 2014.

[10] H. Kasban, O. Zahran, H. Arafa, M. El-Kordy, S. M. S. Elaraby,
and F. E. A. El-Samie, “Welding defect detection from radiog-
raphy images with a cepstral approach,” Ndt & E Interna-
tional, vol. 44, no. 2, pp. 226–231, 2011.

[11] O. Zahran, H. Kasban, M. El-Kordy, and F. E. Abd El-Samie,
“Automatic weld defect identification from radiographic
images,” NDT & E International, vol. 57, pp. 26–35, 2013.

[12] M. Xia, H. Shao, D. Williams, S. Lu, L. Shu, and C. W. de Silva,
“Intelligent fault diagnosis of machinery using digital twin-
assisted deep transfer learning,” Reliability Engineering & Sys-
tem Safety, vol. 215, article 107938, 2021.

[13] H. Shao, H. Jiang, H. Zhang, and T. Liang, “Electric locomotive
bearing fault diagnosis using a novel convolutional deep belief
network,” IEEE Transactions on Industrial Electronics, vol. 65,
no. 3, pp. 2727–2736, 2018.

[14] M. Xia, H. Shao, X. Ma, and C. W. de Silva, “A stacked GRU-
RNN-based approach for predicting renewable energy and
electricity load for smart grid operation,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 10, pp. 7050–7059, 2021.

[15] N. Yang, H. Niu, and L. Chen, “X-ray weld image classification
using improved convolutional neural network,” AIP Confer-
ence Proceedings, vol. 1995, no. 1, article 020035, 2018.

[16] W. Hou, Y. Wei, Y. Jin, and C. Zhu, “Deep features based on a
DCNN model for classifying imbalanced weld flaw types,”
Measurement, vol. 131, pp. 482–489, 2019.

[17] S. Feng, H. Zhou, and H. Dong, “Using deep neural network
with small dataset to predict material defects,” Materials &
Design, vol. 162, pp. 300–310, 2019.

[18] H. Shao, M. Xia, J. Wan, and C. De Silva, “Modified stacked
auto-encoder using adaptive Morlet wavelet for intelligent
fault diagnosis of rotating machinery,” IEEE/ASME Transac-
tions on Mechatronics, 2021.

[19] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504–507, 2006.

[20] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

8 Journal of Sensors



[21] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy
layer-wise training of deep networks,” Advances in Neural
Information Processing Systems, vol. 19, pp. 153–160, 2007.

[22] L. Yang and H. Jiang, “Weld defect classification in radio-
graphic images using unified deep neural network with
multi-level features,” Journal of Intelligent Manufacturing,
vol. 32, no. 2, pp. 459–469, 2021.

[23] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection computer vision and pattern recognition,”
in IEEE, vol. 1, pp. 886–893, San Diego, CA, 2005.

[24] D. A. Clausi, “An analysis of co-occurrence texture statistics as
a function of grey level quantization,” Canadian Journal of
Remote Sensing, vol. 28, pp. 45–62, 2002.

[25] L. K. Soh and C. Tsatsoulis, “Texture analysis of SAR sea ice
imagery using gray level co-occurrence matrices,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 37, no. 2,
pp. 780–795, 1999.

[26] R. M. Haralick, K. Shanmugam, and I.'. H. Dinstein, “Textural
features for image classification,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. SMC-3, no. 6, pp. 610–621,
1973.

[27] R. R. Da Silva, L. P. Calôba, M. H. S. Siqueira, L. V. S. Sagrilo,
and J. M. A. Rebello, “Evaluation of the relevant characteristic
parameters of welding defects and probability of correct classi-
fication using linear classifiers,” Insight, vol. 44, no. 10,
pp. 616–622, 2002.

[28] D. Mery, V. Riffo, U. Zscherpel et al., “GDXray: the database of
X-ray images for nondestructive testing,” Journal of Nonde-
structive Evaluation, vol. 34, no. 4, pp. 1–12, 2015.

[29] D. You, X. Gao, and S. Katayama, “WPD-PCA-based laser
welding process monitoring and defects diagnosis by using
FNN and SVM,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 1, pp. 628–636, 2014.

[30] M. S. El-Tokhy and I. I. Mahmoud, “Classification of welding
flaws in gamma radiography images based on multi-scale
wavelet packet feature extraction using support vector
machine,” Journal of Nondestructive Evaluation, vol. 34,
no. 4, 2015.

9Journal of Sensors



Research Article
Fast Method of Detecting Packaging Bottle Defects Based on ECA-
EfficientDet

Zhenwen Sheng and Guiyun Wang

Shandong Xiehe University, Jinan, China

Correspondence should be addressed to Guiyun Wang; xiehewsq@sdxiehe.edu.cn

Received 29 September 2021; Revised 6 January 2022; Accepted 19 January 2022; Published 23 February 2022

Academic Editor: Chao Wang

Copyright © 2022 Zhenwen Sheng and Guiyun Wang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

Conventional methods of detecting packaging defects face challenges with multiobject simultaneous detection for automatic filling
and packaging of food. Targeting this issue, we propose a packaging defect detection method based on the ECA-EfficientDet
transfer learning algorithm. First, we increased the complexity in the sampled data using the mosaic data augmentation
technique. Then, we introduced a channel-importance prediction mechanism and the Mish activation function and designed
ECA-Convblock to improve the specificity in the feature extractions of the backbone network. Heterogeneous data transfer
learning was then carried out on the optimized network to improve the generalization capability of the model on a small
population of training data. We conducted performance testing and a comparative analysis of the trained model with defect
data. The results indicate that, compared with other algorithms, our method achieves higher accuracy of 99.16% with good
stability.

1. Introduction

To guarantee high-quality products from automatic packag-
ing production lines, defect inspections are indispensable.
Usually, such inspections look for defects in the caps, labels,
packaging, spraying code, etc. In particular, the cap and label
significantly affect product quality and their appearance and
inspection are therefore of great importance.

Conventional packaging defect inspections are mostly
made using equipment based on image processing tech-
niques. For instance, Toxqui-Quitl et al. [1] proposed a
PET bottle defect inspection method with self-adaptive
gamma adjustments to bottle images through a frequency
filtering technique for highly accurate inspections of the face,
wall, and bottom of bottles. Zheng et al. [2] proposed a tex-
ture area defect detection algorithm based solely on phase
change. Zhou et al. [3] combined mean squared cyclic detec-
tion and entropy partition and proposed an improved ran-
dom cyclic detection method to determine defective
regions on the bottoms of bottles. The above-mentioned
works use image processing for packaging defect inspection.
However, they require many experiments to determine the

judgment rules. In addition, they require complex inspection
environments and face challenges with simultaneous detec-
tions in multiple categories. Therefore, their advantages for
practical inspection are limited.

Simultaneously detecting defects in multiple categories
thus remains an issue to be solved. Deep learning has
recently shown potential in the field of classification and
detection and is a promising solution in the field of packag-
ing defect inspection.

The development of deep learning techniques began
with the representative convolution neural network architec-
ture, LeNet-5 [4], followed by the iconic deep learning algo-
rithm, AlexNet [5]. Later algorithms included VGG [6],
ResNet [7], MobileNet [8], and EfficientNet [9]. Zhou et al.
[10] improved the size and number of kernels on the stan-
dard LeNet5 model and integrated the PSO optimization
algorithm and proposed an improved LeNet5 model for fault
detection of liquid plunger pumps. Wang et al. [11] pro-
posed an AlexNet-based convolutional neural network
method to deal with defects from a data-driven perspective.
Zhang et al. [12] proposed a cost-sensitive residual convolu-
tional neural network for unbalanced data defect detection.
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Marques [13] proposed a convolutional neural network
diagnosis system using EfficientNet, which effectively
improved the accuracy of the medical decision-making sys-
tem. Michele et al. [14] explored the applicability of the
MobileNet V2 deep convolutional network by fine-tuning
the pretrained MobileNet neural network. The results show
that 100% classification accuracy can be achieved based on
MobileNet V2. As network architectures became more com-
plex, their feature extraction capabilities increased as well.
Deep learning networks have demonstrated outstanding
performance in the field of image identification. In particu-
lar, feature extraction networks based on deep learning have
made great progress in object detection. Object detection
falls into two categories: one- stage object detection and
two-stage object detection. One-stage object detection has a
broader range of applications, due to its superior balancing
of speed and accuracy. EfficientDet, proposed by Tan et al.
[15] from the Google Brain Team, and YOLOv4, proposed
by Bochkovskiy et al. [16], are the best-performing object
detection models. However, there is little research on the
use of object detection for packaging defect inspection. We
used EfficientDet in this study because it is more accurate
than YOLOv4.

In addition, the object detection algorithm requires a
large amount of data to build the model. However, it is dif-
ficult to obtain packaging defect samples. Therefore, to
improve the model’s generalization capability, the model
must be specifically designed and the data must be proc-
essed. Regarding the latter, data augmentation and transfer
learning are effective techniques to improve model accuracy
with small datasets. Regarding the model design, effective
channel feature importance prediction can improve the gen-
eralization capability. For example, Hu et al. [17] proposed
the squeeze-and-excitation network (SE-Net), which makes
predictions on channel importance during convolution to
improve the overall accuracy of the model. Subsequently, a
large number of scholars applied SE to some networks [18,
19]. Wang et al. [20] showed that SE-Net can also be used
for dimension reduction. To prevent any unnecessary loss
in accuracy due to dimension reduction, they designed the
effective channel attention network (ECA-Net) for improved
model accuracy.

In summary, conventional imaging processing methods
have difficulties simultaneously detecting defects in multiple
categories. Moreover, the scarcity of defect samples renders
trained models weak in terms of generalization. Thus, we
propose a fast packaging defect detection method based on
the ECA-EfficientDet transfer learning algorithm. The con-
tributions of this study are twofold. First, we incorporated
the ECA mechanism in a backbone feature extraction net-
work and designed an ECA-Convblock convolution block
that is capable of predicting the channel importance during
convolution. This suppresses channels that carry no infor-
mation, to make specific representations of object features
and improve the defect detection accuracy. Second, we used
the mosaic augmentation technique on our sample data.
This effectively enhanced the sample complexity and there-
fore improved the generalization capability. In addition, we
adopted heterogeneous data transfer learning during the

training process and we utilized the Mish activation function
to improve the robustness of our model in complex
environments.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the structure of the Efficient-
Det algorithm. Section 3 describes the framework and design
of the packaging bottle defect detection model. In Section 4,
we describe our evaluation of the proposed method through
the analysis and comparison of simulation results. Section 5
offers conclusions.

2. EfficientDet Model Architecture

EfficientDet [21] is an object detection algorithm proposed
by the Google Brain Team at CVPR2020. It can be viewed
as an extension of EfficientNet [9], extending from classifica-
tion to object detection. EfficientDet balances efficiency and
accuracy. Its overall architecture consists of the backbone
feature extraction network, an enhanced feature extraction
network, and box/class determination.

The backbone feature extraction network for Efficient-
Net contains eight convolution layers. Except for the ordi-
nary convolution (Conv. +BN+Swish) operation in the
first layer, all the other layers are formed by piling up the
convolution block (MB_Convblock), as illustrated in
Figure 1. The overall structure is illustrated in Figure 2(c1,
I). First, the dimensions are increased through an ordinary
1 1 convolution. Then, a 3 3 or 5 5 deep separable convolu-
tion is carried out with the SE-Net channel attention mech-
anism. The remaining seven layers of the network can be
described as follows: MB_Convblock piles once in the sec-
ond and eighth layers, piles twice in the third and fourth
layers, piles three times in the fifth and sixth layers, and piles
four times in the seventh layer. The fourth, sixth, and sev-
enth layers all adopt 5 5 separable convolution (whereas
the other layers use 3 3). Therefore, the depth of the feature
extraction network increases. Finally, the fourth, sixth, and
eighth layers (P3–P7) of the backbone network are output-
ted as effective feature layers for the next stage of feature
fusion and reuse.

The enhanced feature extraction network repeatedly per-
forms upsampling and downsampling on the features
extracted by the backbone network to achieve effective
fusion and high utility of the extracted features, as illustrated

MB_convblock
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(1×1)

Dwise conv.
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Figure 1: MB_Convblock convolution block.
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in Figure 3. The enhanced feature extraction network is
formed by three serially connected BiFPNs. Feature layers
P6 and P7 are obtained by downsampling from P5. After
fusing the features, five feature maps with rich semantic
information are outputted for the final class and box infor-
mation detection. Two deep, separable convolution opera-
tions on the fused five feature maps are thus used to
predict the final class and box information.

3. Research on EfficientDet Optimization

The subject of our study is the detection of packaging
defects. Since there are many categories of defects but sam-
ples of defects are few, directly implementing the current
algorithms cannot meet the accuracy requirements of practi-
cal production. Since the backbone feature extraction net-
work is directly related to the feature extraction capability,
we optimize three aspects of the backbone network. First,
we utilize data augmentation to improve as much as possible
the complexity of the sample data to enhance the model’s
generalization capability. Second, we modify the structure
of the network to enhance the feature extraction capability.
And third, we conduct transfer learning on the optimized
model to improve the overall robustness of the model. Our
design of the bottle packaging defect detection model is illus-
trated in Figure 2. It consists of five parts: sample input (a),
mosaic data augmentation (b), the ECA-EfficientNet back-
bone feature extraction network (c1–c3), the BiFPN
enhanced feature extraction network (d), and the efficient
head box/class result output (e).

The detection flow can be generally described as follows.
First, before training, we perform random mosaic data aug-
mentation. Then, we feed the augmented data into the opti-

mized ECA-EfficientNet backbone network for multiscale
feature extraction. Five feature maps (P3–P7) of different
scales are obtained as a result. Next, we input the acquired
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Figure 3: BiFPN-enhanced feature extraction network.
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feature maps into the enhanced feature extraction network,
which is formed by three BiFPN modules concatenated seri-
ally for feature fusion and reuse. Finally, we conduct deep
separable convolution on the five fused feature maps to
detect the box and class information of the defect samples.

3.1. Mosaic Data Augmentation Structure. Mosaic data aug-
mentation [16] is a new type of data augmentation scheme
proposed at the same time as the YOLOv4 algorithm. It
was developed from CutMix augmentation [22] and is capa-
ble of improving the image background complexity with a
small population of samples to improve the generalization
capability of models. Therefore, we adopted mosaic augmen-
tation in this study. Considering that EfficientDet is an end-
to-end network, we also adopted an end-to-end network and
embedded data augmentation into model training. The pro-
cedures are illustrated in Figure 4.

First, we select a batch from the defect sample set. Next,
we randomly pick four images from the batch and generate a
new image by stitching the top-left, top-right, bottom-left,
and bottom-right sections of the four selected images. This
step is repeated until a new batch is created. Finally, the
newly generated batch and previous samples are fed to the
model for training. Notice that the total number of samples
used for training does not change, which enables the net-
work to perform data augmentation before training in an
end-to-end manner.

3.2. Reconstruction of the Backbone Feature
Extraction Network

3.2.1. Design of the ECA-Convblock Convolution Block. The
backbone network of EfficientDet is EfficientNet, which is
described above. The backbone network is all piled from
the MB_Convblock convolution block, as illustrated in
Figure 1. In terms of algorithm design, EfficientNet adopts
deep, separable convolution to decrease the number of
parameters in the model. To avoid insufficiency in feature
extraction, the authors of the algorithm utilized the SE-Net
[17] channel attention mechanism after layer-by-layer con-
volution to improve the specificity in the extracted features
by predicting channel importance during the convolution.
However, according to the structural principles of SE-Net,

there is a reduction in feature dimensions when applying
the attention mechanism, resulting in a loss in model accu-
racy. To avoid this, we introduce an ECA_Convblock convo-
lution block as illustrated in Figure 5 to prevent accuracy
loss due to the dimension reduction when applying SE-Net.

The structure of the ECA_Convblock convolution block
is very similar to that of MB_Convblock. The major differ-
ence is that there is no dimension reduction in the ECA
channel importance prediction. Instead, the weighted chan-
nel is obtained from a 1D convolution of size k, avoiding loss
in accuracy due to dimension reduction. Here, k is obtained
self-adaptively from the number of input feature map chan-
nels. The equation can be written as follows [20].

k = ψ Cð Þ = log2 Cð Þ
γ

+
b
γ

����
����
odd

, ð1Þ

where C is the number of input sample channels, odd means
taking the odd integer number of the input, and b and γ are
heuristic parameters, which are set to b = 2 and γ = 1, per the
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Figure 5: ECA_Convblock convolution block.
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values provided by the ECA authors. We maintain the out-
most residual edge, which many researchers have shown is
beneficial for stability when updating weights.

3.2.2. Introduction of the Mish Activation Function. After
showing the ECA’s improvement in model’s accuracy, we
proceed to discuss the impact of the activation function on
model accuracy. EfficientNet adopts Swish as the activation
function [23]. Based on the backbone feature extraction net-
work, we experimented with three other activation func-
tions: the hard-Swish function [24], the LeakyReLU
function [25], and the Mish function [26], as illustrated in
Figure 6.

Figure 6 shows that all four activation functions make
adjustments in the negative value region. These are benefi-
cial for preventing some of the weights from losing gradients
during model training. However, the excessive dispersion of
LeakyReLU in the negative value region makes updating the
weights unstable. The hard-Swish function, on the other
hand, has poor gradient flow during weight updating, since
it utilizes a hard zero boundary. Only the Mish function,
similar to the Swish function, avoids saturation by clipping
the positive value region and smoothly processing the nega-
tive value region, stabilizing weight updating during the iter-
ations to achieve good generalization capability. Therefore,
we adopted the Mish activation function in our model.
Through comparison, we found that the Mish function’s
performance is excellent.

3.2.3. Heterogeneous Data Transfer Learning. It is well
known that transfer learning is capable of applying model
parameters and weights learned from a large amount of data
to a small dataset to improve the generalization capability
when the relevant dataset is small. Therefore, to further
improve the overall robustness of the model after structural
optimization and because the number of defect samples is
small, we adopted transfer learning to improve the model’s
generalization capability.

When training the optimized model (ECA-EfficientDet),
in the early stage, we utilized the VOC2007 dataset.
VOC2007 is a comparatively large dataset for object detec-
tion. It contains rich data types and objects. However, due
to the differences between VOC2007 and the defect sample
data, transfer learning is heterogeneous in nature. After the
first stage, we transferred the obtained weights to the second
stage of training with defect sample data, after which we
obtained the model for defect detection.

4. Experiments and Results

4.1. Source of Data. For practical packaging defect inspec-
tion, we obtained defect samples from a common produc-
tion line packaging product, namely, bottles. A total of
1200 samples were collected with cap and label defects.
Cap defects included mislocated caps, absent caps, and nor-
mal caps. Label defects included mislocated labels, absent
label, damaged labels, and normal labels. The sample of the
packaging bottle defect image is shown in Figure 7, and the
number details are summarized in Table 1.

We utilized professional labeling software, LabelImg, to
build the ground-truth from the sample data and automati-
cally generated XML files to store practical information
about the defect data, which were used together with the
samples during model training and testing.

4.2. Model Training and Evaluation Metrics. Our experimen-
tal environment was Windows 10 OS, Anaconda Python 3.7,
NVIDIA RTX 2070 GPU, CUDA 10.1, and cuDNN 7.6.5.32.
We used the Keras library for programming. For data alloca-
tion, we selected 1000 samples from the dataset for training,
among which 900 samples were used for model training and
the other 100 for crossvalidation. The remaining 200 sam-
ples were used for performance testing after model training.
In terms of the training methodology, we adopted transfer
learning for overall model training. Then, we conducted
model optimization using our own defect sample data. We

No label Misloc label Damaged label Normal label

Normal cap Misloc cap No cap

Figure 7: Sample of the packaging bottle defect dataset; the red frame is the ground-truth box.
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configured hyperparameters with 512 × 512 input data. We
enabled early-stop, such that the iterations would not con-
tinue after the model had optimally converged. To speed
up the training, we froze the backbone network during the
first 50 epochs, during which time only the enhanced feature
extraction network’s weights were updated. The batch size
was set to 8, and the initial learning rate was 0.001. In the
next 50 epochs, we unfroze the backbone network for weight
updating to optimize the global network. During this time,
the batch size was set to 4 and the initial learning rate was
0.00005.

We used two commonly used metrics for object detec-
tion model evaluation, precision (P) and recall (R) [27].

P = TP
TP + FN

,

R =
TP

TP + FP
,

ð2Þ

where TP is the number of samples that the model correctly
detected, FN is the number of samples that the model failed
to detect, and FP is the number of samples that the model
falsely detected. Considering that the precision and recall
can vary for different confidence thresholds, we also
recorded the P-R (precision-recall) to obtain the average
precision (AP) [27].

AP =
ð1
0
P Rð ÞdR: ð3Þ

The AP value is the area under the P-R curve, where P
represents precision and R represents recall. For multicate-
gory defects, it is common to use the mean average precision
(mAP) of all categories for overall evaluation.

4.3. Model Evaluation and Performance Comparison
and Analysis

4.3.1. Evaluation of Model Training. It can be observed in
Figure 8 that, in general, the loss gradually decreases as the
number of epochs increase until convergence, indicating that
the model’s prediction error gradually decreases. In addition,
there is a sudden drop in the loss curves for the crossvalida-
tion set after epoch 43. This is because the model freezes the

backbone network in the early stage of the training. In later
iterations, after unfreezing the network, the model is trained
globally and the loss of the crossvalidation set approaches

Table 1: Defect sample number by category.

Category Count

Cap defect

No cap 263

Misloc cap 612

Normal cap 325

Label defect

No label 293

Misloc label 335

Damaged label 345

Normal label 227
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Figure 8: Model loss function.
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that of the training set, indicating a progressive improve-
ment in the model’s generalization capability.

4.3.2. Performance Testing. After model training, we
imported the files containing the learned weights into our
program and tested the model with 200 samples. The results
are illustrated in Figure 9 as P-R curves. The solid lines
denote label defects and the dashed lines denote cap defects.

From the P-R curve, the AP value for each type of defect
can be readily obtained. Overall, our method achieved a
mAP of 99.16%. For each individual defect category, except
for a slightly lower precision for mislocated labels, our
method achieved accuracy above 99% for all the other cate-
gories. This indicates that our method is capable of meeting
the practical needs of applications.

4.3.3. Performance Comparison and Analysis. In our investi-
gation, we conducted several experimental simulations to
validate the optimized model and demonstrate the advan-
tages of our method. In Tables 2–5, the results of our
method or strategy are presented in bold.

First, we investigated the impact of transfer learning and
the ECA mechanism on model performance. We compared
ECA-EfficientDet and EfficientDet with and without transfer
learning. The simulation results are summarized in Table 2.

It can be observed in Table 2 that, compared with the
model without transfer learning, the precision of the model
with transfer learning was substantially higher. This demon-
strates the effectiveness of transfer learning for small-sized
sample data and its ability to avoid hindering the model’s
generalization capability due to limited samples. In addition,
the ECA mechanism improved the model’s precision as well,
albeit at the cost of some loss in detection speed.

Next, in order to prove the necessity of the mosaic
method. We compared ECA-EfficientDet and EfficientDet
(transfer learning) with and without mosaic trick. The
results are shown in Table 3.

It can be seen from the results that the mosaic trick can
effectively improve the performance of ECA-EfficientDet
and EfficientDet. In addition, we also compared various acti-

vation functions on the ECA-EfficientDet with transfer
learning. The results are summarized in Table 4.

It can be observed in Table 4 that the Mish function has
higher precision than EfficientDet’s default activation func-
tion, Swish. However, Mish function’s detection speed is
lower than that of the others.

Because our method performs end-to-end single-stage
object detection, we compared our ECA-EfficientDet (with
Mish as the activation function) with transfer learning to
other object detection algorithms. The results are summa-
rized in Table 5.

It can be observed in Table 5 that our method achieved
higher precision (mAP = 99:16%) than the other five

Table 2: Impact of transfer learning and ECA on model performance.

Method Parameters (107) FPS Transfer learning? mAP (/%) Standard deviation (mAP)

EfficientDet 0.389 45.62
Yes 97.75 0.62

No 23.12 0.65

(Mish)ECA-EfficientDet 0.325 41.72
Yes 99.16 0.54

No 30.12 0.61

Table 3: Impact of mosaic trick on model performance.

Method Parameters (107) FPS Mosaic trick? mAP (/%) Standard deviation (mAP)

EfficientDet 0.389 45.62
Yes 97.75 0.62

No 95.45 0.59

(Mish)ECA-EfficientDet 0.325 41.72
Yes 99.16 0.54

No 97.88 0.63

Table 4: Impact of activation functions on model performance.

Method
Activation
function

mAP
(/%)

Standard deviation
(mAP)

FPS

ECA-
EfficientDet

Swish [23] 98.63 0.58 45.98

Hard-Swish
[24]

95.64 0.61 44.08

Hard-Swish
[24]

97.12 0.59 49.36

Mish [19] 99.16 0.54 41.72

Table 5: Performance of the proposed method compared with
other single-stage object detection algorithms.

Method
Parameters

(107)
mAP
(/%)

Standard deviation
(mAP)

FPS

YOLOv3
[28]

6.200 92.60 0.66 31.08

YOLOv4
[16]

6.443 97.22 0.58 22.64

YOLOv4-
tiny [16]

0.606 91.23 0.63 157.47

SSD [29] 2.628 97.55 0.71 62.56

EfficientDet
[21]

0.389 97.75 0.62 45.62

Our method 0.325 99.16 0.54 41.72
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single-stage object detection algorithms. In terms of detec-
tion speed, our method was faster than YOLOv3 and
YOLOv4 and close to EfficientDet. In addition, although
YOLOv4-tiny had the fastest detection speed, its accuracy
was the worst, rendering it disadvantageous in practical
applications.

To test the model’s stability in complex environments,
we lightened and darkened the 200 test samples using the
OpenCV library, thus generating two subsets that simulated
detection in light and dark environments. We tested our
object detection algorithm with these two subsets. The
results are illustrated in Figure 10. The dark color represents
testing in a dark environment, and the light color represents
testing in a light environment.

It can be observed in Figure 10 that, compared with
other object detection algorithms, our method was more
precise in both environments and there were few differences
between the two subsets, indicating good model stability.

In summary, although our method is slightly inferior in
terms of detection speed, it shows good performance in
terms of precision and stability. Our detection speeds can
meet the needs for practical inspection. Therefore, we expect
that our method will be advantageous for applications of
packaging defect detection.

5. Conclusions

We proposed a packaging defect detection method based on
the ECA-EfficientDet object detection algorithm. We vali-
dated its effectiveness and advantages on a sample dataset
of defects. Our results show the following: (1) The proposed
method solves a challenging problem in conventional
machine vision algorithms. It can simultaneously detect
multiple defect objects, effectively reducing inspection costs

on production lines. (2) Our design of ECA-Convblock in
the backbone feature extraction network prevents dimension
reduction in model channel importance prediction and
enhances high-quality expressions of object features, effec-
tively improving the defect detection accuracy. (3) The
incorporation of Mosaic data augmentation and the Mish
activation function into the model and the adoption of
heterogeneous-data-based transfer learning for model train-
ing effectively enhance the model’s generalization capability
and improve its robustness in complex environments. It
should be pointed out that the algorithm has obvious advan-
tage in accuracy performance and algorithm stability, but it
is slightly insufficient in detection speed. Therefore, combin-
ing light weight with the model in this paper to improve the
model’s actual generation and detection will be carried out
in the follow-up research.
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The SiamFC target tracking algorithm has attracted extensive attention because of its good balance between speed and
performance, but the tracking effect of the SiamFC algorithm is not satisfactory in complex background scenes. When SiamFC
algorithm uses deep semantic features for tracking, it has good recognition ability for different types of objects, but it has
insufficient discrimination for the same types of objects. Therefore, we propose an effective anti-interference module to
improve the discrimination ability of the algorithm. The anti-interference module uses another feature extraction network to
extract the features of the candidate target images generated by the SiamFC main network. In addition, we set up the feature
vector set to save the feature vectors of the tracking target and the template image. Finally, the tracking target is selected by
calculating the minimum cosine distance between the feature vector of the candidate target and the vector in the feature vector
set. A large number of experiments show that our anti-interference module can effectively improve the performance of SiamFC
algorithm, and the performance of this algorithm can be comparable to the popular algorithms.

1. Introduction

The field of computer vision has advanced rapidly in recent
years, and the direction of target tracking has become a
research hotspot for many research institutions and universi-
ties. Current target tracking is typically based on delimiting
the target area in the first frame of the video sequence and then
tracking the target in the subsequent frame [1]. Target track-
ing has a wide range of applications, such as autonomous
driving [2], video surveillance, and human-computer interac-
tion [3]. However, many problems still exist in the field of
target tracking, such as complex background, target occlusion,
and scale change [4].

Current mainstream target tracking algorithms can be
divided into two categories. One category is based on the Sia-
mese network [5–13]. Algorithms in this category are designed
using the Siamese network structure and have achieved good
results. The other category is based on a non-Siamese network
[14–18], which is mostly studied using correlation filter (CF)
[19–22]; however, because algorithms in this category are con-
stantly improving, their tracking speed and performance based
on CF cannot be well balanced. The majority of researchers

prefer a Siamese network-based target tracking algorithm,
and its classical algorithm SiamFC [5] has become a milestone
algorithm. It can effectively balance the speed and accuracy of
target tracking and has become the cornerstone of many
subsequent improved algorithms. However, these improved
algorithms [5–9] cannot effectively solve the intraclass inter-
ference problem of target tracking in a complex background
because they do not effectively distinguish the tracking target
from the interference target. Moreover, we believe that simply
relying on an improved network model to improve the anti-
interference ability of the target cannotmeet the requirements.
In some cases, the response value of the interference target in
the tracking process exceeds the response value of the tracking
target, as shown in Figure 1. However, this is inevitable
because a convolutional neural network (CNN) cannot obtain
such a high discriminant network model to avoid the overfit-
ting problem in the training process. If we want to further
improve the discrimination ability of the target while also con-
sidering the universality of the target tracking effect, we must
increase the number of training parameters and the training
set. These two requirements have significant limitations in
terms of current conditions.
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The similarities between these algorithms [5–8] are all
based on the screening of candidate targets, with the majority
of the screening aimed at selecting the target with the highest
score in the score map. SiamFC [5] is screened directly based
on the score map after cross-correlation operation, SiamRPN
[6] is screened directly based on the score map after nonmax-
imum suppression, and DaSiamRPN [7] is the same as
SiamRPN [6]. However, in the complex background, the
response value of the target is close to the interference target,
and even the response value of the interference target is higher
than that of the tracking target, which will inevitably affect the
tracking effect.

Based on this background, this study proposes an anti-
interference module and designs an appearance feature
extraction network. First, it extracts features of the tracking
target in recent and initial frames and then extracts features
of the candidate target in the current frame. Finally, it judges
the best tracking target by calculating the minimum cosine
distance of the feature vectors of the two parts and finally
realizes the effective judgment of the candidate target frame.

The main contributions of this paper are as follows:

(1) The anti-interference module is designed to improve
the robustness of the algorithm to complex back-
ground scenes

(2) An appearance feature extraction network which can
effectively extract the appearance features of the target
is designed. Multiple candidate boxes are extracted on
the basis of SiamFC, and the candidate boxes are input
into the appearance feature extraction network to
finally obtain the correlation vector

(3) The feature vector set is designed, which can save the
tracking target feature vector in recent frames and
the template image

(4) The cosine distance between the vector in the feature
vector set and the feature vector of the candidate tar-
get is calculated to determine the tracking target,
which solves the disadvantage that only template
image features can be used in SiamFC algorithm

and improves the performance of the algorithm for
long-time tracking

2. Related Works

2.1. Target Tracking Algorithm Based on Deep Learning. In
recent years, due to the continuous expansion of available data-
sets and the improvement in computing power, the advantages
of deep learning (DL) methods have gradually become evident.
DL methods are far more powerful than traditional algorithms
in terms of target tracking. In addition, the great potential of DL
direction has piqued the interest of an increasing number of
researchers. The advantage of a DL algorithm lies in the strong
feature extraction ability and representation ability of its net-
work model. At present, methods based on the DL network
model are mainly divided into the following categories: CNN
method, recurrent neural network (RNN) method, and genera-
tive adversarial network (GAN) method. The most popular DL
network model in the field of computer vision is CNNs, and
RNNs aremore commonly used in natural language processing.
Although GANs have some applications in image processing,
they are limited to data processing. DLwas first applied to target
tracking in [23], and a target tracking framework based on off-
line training and online fine-tuning was proposed. Several
subsequent algorithms have been improved on this network
framework and have achieved good results.

2.2. Convolutional Neural Network-Based Methods. In recent
years, CNNs have swept through the field of DL. From natural
language processing to image processing, computer vision has
also made great progress through the continuous improve-
ment of CNNs. In 2012, the success of the AlexNet network
model on the ImageNet classification dataset sparked a surge
in researchers’ interest in DL. There are three popular network
models: AlexNet [24], VggNet [25], and ResNet [26]. AlexNet
[24] has a network structure of only eight layers, of which five
layers are convolution layers and the other three layers are
fully connected layers. Compared with AlexNet [24], VggNet
[25] has more network depth, so the tracking effect is greatly
improved. However, with the increase in network depth, grid
degradation will occur. At this time, the emergence of ResNet
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Figure 1: Response scores of SiamFC algorithm. Red box target for interference target, and green box target for tracking target.
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[26] introduces neural networks in a new direction. ResNet
[26] connects network layers through the jump connection,
which effectively solves the problem of grid degradation when
the network depth is deepened. Finally, ResNet [26] won
ImagNet2015 [27]. In recent years, lightweight models have
attracted increasing attention. MobileNetV1 [28] uses depth-
wise (DW) separable convolutions, ignores the pooling layer,
and uses convolution with a stripe equal to 2. Compared with
V1, MobileNetV2 [29] introduces a residual structure. Before
DW, 1 × 1 convolution is used to increase the feature map
channel. After pointwise, a rectified linear unit (ReLU) is
abandoned and replaced with a linear activation function to
prevent the destruction of features by ReLU. MobileNetV3
[30] integrates the depth separable convolution of V1 and
the inverse residual structure of V2 and introduces the h-
swish activation function. EffNet [31] decomposes the DW
layer of MobileNetV1 into 3 × 1 and 1 × 3 convolutions. After
the first layer, pooling is adopted to reduce the amount of
calculation in the second layer. The smaller the size of the
model, the higher the accuracy is obtained. EfficientNet [32]
designs a standardized convolution network expansion
method to optimize the efficiency and accuracy of the network
from the three dimensions of balance resolution, depth, and
width. ShuffleNetV1 [33] reduces computation complexity
by grouping convolution and enriches channel information
by reorganizing channels. ShuffleNetV2 [34] mainly designs
and usesmore efficient CNN network structure design criteria.

CNNs typically extract the deep semantic features of
images through deep neural networks and then use the appro-
priate classifier to extract the target. At present, the full CNN is
the most popular; that is, there is no full connection layer in the
entire network model, which greatly reduces the number of
network parameters and increases the running speed. In
SiamFC [5] tracking algorithm, the networkmodel is improved
on the basis of AlexNet [24], removing the final full connection
layer and part of the convolution layer. Finally, the target track-
ing problem is transformed into a similarity matching problem,
and the location of the target is judged by a cross-correlation
operation. SiamRPN [6] algorithm introduces the RPN [35]
network to target detection based on the SiamFC algorithm,
significantly improving the accuracy of target tracking through
classification and regression. DaSiamRPN [7] optimizes the
imbalance of positive and negative samples in the training pro-
cess based on SiamRPN. SiamRPN + + [8] increases the net-
work depth based on SiamRPN [6] and has achieved good
results. CFNet [9] adds the CF layer based on the SiamFC [5]
structure to realize the end-to-end training of the network,
which proved that this network structure could use fewer
convolution layers of the network without degrading accuracy.
The main improvement of SiamFC++ [36] is to add a bound-
ary box regression branch and quality estimation branch based
on SiamFC [5]. In [37], the authors propose a multilevel simi-
larity model under a Siamese framework for robust TIR object
tracking, which solves the problem that only RGB images can
be used in the training process. Motivated by the forward-
backward tracking consistency of a robust tracker, self-SDCT
[38] proposes a multicycle consistency loss as self-supervised
information for learning feature extraction network from adja-
cent video frames. TRBACF [39] proposes a temporal regular-

ization strategy based on the correlation filter, which effectively
solves the problem that the model can not adapt to tracking
scene changes and improves the robustness and accuracy of
the algorithm.

2.3. Image Similarity Judgment. At present, there are several
ways to judge the similarity of images. The first method is
based on histograms. The histogram method judges the sim-
ilarity by describing the color distribution in an entire image,
but a histogram is too simple to capture the similarity of
color information and cannot use more information. The
second method is to calculate the mutual information about
two images. Although this method is accurate, it has great
limitations. It requires that the size of the two images must
be the same. If the two images are cut into the same size, it
is bound to lose a lot of information, thereby degrading
accuracy. The third method is the cosine distance judgment
method. Images are represented as vectors, and the cosine
distance between these vectors is calculated to determine
the similarity. The cosine distance pays more attention to
the direction of the vector to avoid the influence of the abso-
lute value of the vector on the similarity judgment. It is very
suitable for us to extract the target feature and use the vector
for similarity judgment.

3. The Proposed Algorithm

In the classical SiamFC [5] algorithm, an improved network
on AlexNet [24] is used as the backbone network of the
tracking network. The Siamese network is used to extract
the feature of the search and template images, respectively.
Finally, the position score map of 17 × 17 × 1 is obtained
by a cross-correlation operation, as shown in Figure 2.

However, the resolution of the feature map calculated
using the two feature branches in SiamFC [5] is too small.
Although it can effectively search the target, it cannot effec-
tively distinguish the target within a class. As shown in
Figure 1(b), the interference target even produces a higher
thermal value than the tracking target. Inspired by the appear-
ance feature module in DeepSort [40], we consider whether we
can construct another special appearance feature extraction
network to extract the appearance feature of the target to bet-
ter distinguish intraclass targets.

Thus, we design a new type of target anti-interference
module. The main body of the anti-interference module is
composed of a feature extraction network and similarity calcu-
lation. Unlike other algorithms for suppressing the interfer-
ence target, we choose the tracking results of several adjacent
frames of the tracking target to measure the tracking target
twice.

We will describe the overall framework of the algorithm
in Section 3.1. Section 3.2 focuses on the main framework of
the benchmark algorithm SiamFC [5]. Section 3.3 describes
the main network of our anti-interference module. Section
3.4 mainly describes the working mode of the anti-
interference module and how to determine the position of
the final target box.
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3.1. Overall Framework. The algorithm is mainly composed
of two parts. The first part is the main framework of SiamFC
[5], as shown in the red box in Figure 2. The main role is to
extract features and generate candidate targets. Different
from SiamFC [5], where only one target box is generated
in SiamFC [5], multiple candidate boxes are selected in our
algorithm. The second part is our anti-interference module,
such as the green box in Figure 2. The main function is to
process the multiple candidate boxes generated in the first
part to output the final target position. Figure 2 shows the
overall frame diagram.

3.2. The SiamFC Framework. The main framework of SiamFC
[5] is divided into two branches: template and search branches.
The main network of SiamFC [5] is improved on the basis of
AlexNet [24], removing the full connection layer and partial
convolution layer. There are only Conv and pooling layers in
the entire network structure, and the template branch shares
the same network parameters with the search branch, which
satisfies the definition of full convolution and twin network.
The processing of the original image in SiamFC [5] is as
follows: we select the first frame image of the video sequence
as the template image and other images as the search image.
We use 127 × 127-pixel template images and 255 × 255-pixel
search images. To facilitate the extraction of appearance fea-
tures by the anti-interference module, we cut the template
image to 128 × 128 pixels and the search image to 256 × 256
pixels. The specific feature processing process of SiamFC is as
follows. A template image of 128 × 128 × 3 is input into the
template branch to obtain the feature map of 6 × 6 × 128. Sim-
ilarly, a search image of 256 × 256 × 3 is input into the search
branch to obtain the feature map of 22 × 22 × 128. A template
image feature is used as the convolution kernel, and the two
feature maps are cross-correlated; sliding window detection is
performed on the features of the search image. Then, we obtain
a 17 × 17 × 1 score map about the target location information.
The cross-correlation operation formula is as follows:

F Z, Xð Þ = φ Zð Þ ∗ φ Xð Þ + bi: ð1Þ

φðZÞ and φðXÞ represent the extracted template and search
image features, respectively. The symbol ∗ indicates convolu-
tion operation, where bi denotes a signal that takes the value
b ∈ R in every location.

In the actual tracking process, our template branch only
needs to be executed once to obtain the features of a tem-
plate image. In the subsequent tracking process, information
about the target position can be obtained by convolution
operation between the extracted features of the search image
and the features of the template image. The position of the
target in the original image is obtained by upsampling
according to the score map of 17 × 17 × 1.

3.3. Extract Appearance Features. Figure 3 is our appearance
feature extraction network, which is also the main part of the
anti-interferencemodule. It is mainly composed of two convo-
lution layers and six residual blocks. The GOT10k [41] dataset
is used to train the residual network model offline and output
the normalized characteristics. Candidate boxes are reshaped
into 128 × 128 × 3 images, which are then input into the fea-
ture extraction network, producing 256-dimensional vectors.
Finally, the normalization operation is performed to facilitate
subsequent calculation.

3.4. Determination of Target Position by Minimum Cosine
Distance. First, the network extracts the appearance features
of five adjacent target frames and the initial frame and saves
them to the feature vector set. Then, the vector of multiple
prediction target frames in the current frame is extracted.
The best tracking target is judged by calculating the cosine
distance between the multiple candidate target features and
the feature vector set of the current frame. Then, the feature
vector set is updated according to the predicted target. The
specific flowchart is shown in Figure 4. There are typically
six vectors in the feature vector set, including five adjacent
frame vectors and one initial frame vector. The selection of
the prediction target box is based on the score map of 17
× 17 × 1 generated by SiamFC [5]. First, we normalize and
sort the score map of 17 × 17 × 1 and then select the maxi-
mum three values. Take out the candidate target boxes
corresponding to the three values. Then, their feature vectors
are obtained using the feature extraction network. By calcu-
lating the cosine distance between the feature vector set and
the feature vectors of the three prediction target boxes, the
matrix of 3 × 6 can be obtained. The formula for calculating
the single value of matrix Rði, jÞ is as follows:

R i, jð Þ = 1 − rTi r j i ∈ 1, 3ð Þ, j ∈ 1, 6ð Þ: ð2Þ

CNN

CNN

⁎
Candidate
target box

Template image :
128 × 128 × 3

6 × 6 × 256

22 × 22 × 256

17 × 17 × 1

Search image :
256 × 256 × 3

Appearance
features

extraction

Cosine
distance

calculation

Target
position

Figure 2: Overall frameworks.
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The value of each row of the matrix is calculated by lin-
ear weighting. The formula is as follows:

R i½ � = k1R i, 1ð Þ + k2〠
6

j=1
R i, jð Þ, i ∈ 1, 3ð Þ: ð3Þ

k1 and k2 are hyperparameters, typically k1 = 0:35 and
k2 = 0:65.

Select the smallest R½i� value as the final target location.
The cosine distance can judge the similarity between vectors
by calculating the angle between the directions of vectors,
which effectively avoids the effect of the difference in abso-
lute values of image pixels on the similarity judgment.

For update feature vector set, as shown in Figure 5, the
feature vector set saves the feature vectors of our last five
frames (as shown in Figure 5, blue vector) and template
pictures (as shown in Figure 5, red vector). When we deter-

mine the position of the target in the current frame, we save
the appearance feature vector obtained from the correspond-
ing target candidate box to our feature vector set and remove
the last feature vector.

4. Experiments

4.1. Experimental Configuration.We conducted experiments
on a Linux system, and the experimental code was written in
Python language and the PyTorch [42] framework. The
experimental system configuration is Inter Core i7-10700 k
CPU @ 3.80GHz×16, and a single GTX1070ti GPU.

4.2. Training Process. The training CNN part uses
ILSVRC15 [27] and GOT10k [41] datasets for training.
The appearance feature extraction network is trained using
GOT10k [41].

4.3. Test Process. The OTB2015 [43] dataset is used for per-
formance tests, and the VOT2016 [44] and VOT2017 [45]
datasets are used to test the universality of the algorithm.
To verify the effectiveness of the anti-interference module,
we first compare the discrimination ability of the anti-
interference module with the original algorithm, and then,
we conduct tracking experiments on public datasets
OTB2015 [43], VOT2016 [44], and VOT2017 [45] to prove
the effectiveness and universality of our algorithm.

4.4. Single Discriminant Ability Experiment. Figure 6(a) is
the first frame in the OTB2015 [43] video sequence “Board,”
where the green frame is the selected tracking target.
Figure 6(b) is the SiamFC [5] tracking failure frame, where
the red frame is the SiamFC [5] tracking failure position,
and the green frame is the ground truth of the tracking
target. To verify the effectiveness of our anti-interference

128 × 128 × 3 128 × 128 × 32 64 × 64 × 32 32 × 32 × 64 1 × 1 × 256

Figure 3: Deep appearance feature extraction network structure diagram.
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target box

Input feature
extraction
Network
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cosine distance of
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Target position
feature vector

Output target
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to cosine distance

Feature
vector set

Update feature vector set

Figure 4: Flowchart of anti-interference module.
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Figure 5: Update feature vector set.
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module, we first input the initial frame part as Figure 6(c) into
our anti-interference module to obtain the feature vector.
Then, we extract the tracking failure frame part, as shown in
Figure 6(d), and the tracking target of the first frame, as shown
in Figure 6(e). After that, we input Figures 6(d) and 6(e) into
our anti-interference module to obtain the corresponding vec-
tor and then calculate the cosine distance using the feature
vector of the initial frame tracking target. Finally, the cosine
distance between the failure target and the initial frame is
0.73, and the cosine distance obtained from the ground truth
part is 0.92. The higher the similarity, the closer the cosine dis-

tance is to 1. Thus, our anti-interference module can effec-
tively judge the intraclass interference target, allowing our
algorithm to outperform the baseline algorithm SiamFC [5].

4.5. Experiments in OTB2015.The OTB2015 [43] dataset is the
benchmark dataset to test the performance of the target track-
ing algorithm. The dataset contains 100 manually annotated
video sequences. The dataset mainly has two evaluation
indexes: success and precision rates. The success rate is deter-
mined by whether the overlap rate between the bounding box
and ground truth obtained using a frame during the tracking

(a) (b)

(c) (d)

(e)

Figure 6: (a, b) The initial frame and SiamFC [5] tracking failure frame images, respectively. (c–e) The input images of the anti-interference
module.
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process exceeds a certain threshold; if so, the frame is regarded
as a successful tracking frame. The percentage of successful
frames in all frames is the success rate. The precision rate is
defined as the center point of the target bounding box
estimated by the tracking algorithm and the center point of
the target manually labeled ground truth, and the distance
between the two is less than the percentage of the video frames
in a given threshold. Different thresholds have different per-
centages, and the general threshold is set to 20 pixels.

Figure 7(a) shows the comparison of our algorithm with
other popular algorithms and benchmark algorithm SiamFC
[5] on the OTB2015 [43] dataset. Other algorithms are SRDCF
[46], Staple [47], CFNet [9], and fDSST [48]. Figure 7(b) shows
the experimental results on the dataset in the OTB2015 com-
plex background section. Figure 7 shows that the effect of our
algorithm on the overall dataset has been compared to several
existing popular algorithms. Our algorithm outperforms the
benchmark algorithm SiamFC [5] in terms of accuracy and
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Figure 7: (a) The comparison of our algorithm with other algorithms on the OTB2015 dataset [43]. (b) The comparison of our algorithm
with other algorithms on the OTB2015 [43] complex background dataset.
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success rates. In particular, our algorithm has a good tracking
effect in the case of complex background, which also shows that
our algorithm can effectively distinguish between intraclass tar-
gets, reducing themisjudgment rate. In terms of running speed,
SiamFC [5] is 80 fps, whereas our algorithm is 56 fps. Although
the tracking speed of our algorithm is lower than that of the
SiamFC algorithm, it still exceeds 30 fps, meeting the speed
requirements of real-time target tracking. Figure 8 shows the
comparison of tracking effects between our algorithm and
other algorithms.

4.6. Experiments in VOT2016. To verify the universality of the
improved algorithm, we also conducted experiments on the
VOT2016 [44] dataset. The VOT challenge is one of the most
influential competitions in the field of computer vision. The
VOT2016 [44] benchmark dataset consists of 60 video

sequences, and all are color sequences. There are three main
evaluation indicators in VOT2016 [44]: accuracy (A), equiva-
lent filter operations (EFO), robustness (R), and expected
average overlap (EAO). Accuracy is the accuracy of the target
tracking, that is, the average overlap between the target box
and the true value box during successful tracking. Robustness
(R) is defined as the number of tracking failures. EAO repre-
sents the average value of the intersection and union ratio
between the prediction box and the true ground-truth box in
the entire video sequence. EFO is used to measure the tracking
speed of the tracker.

We compare our algorithm with ten other popular algo-
rithms on the VOT2016 [44] dataset, including the benchmark
algorithm SiamFC [1] and nine other popular algorithms:
Staple [47], CCOT [49], TCNN [50], DDC [44], EBT [51],
STAPLEp [44], DNT [52], DeepSRDCF [53], and MDNet_N
[54]. The comparison results are shown in Table 1. The chart
shows that CCOT [38] has the best EAO of 0.331, our algo-
rithm has the best accuracy of 0.558, CCOT [48] has the best
robustness of 0.238, and STAPLEp [44] has the best tracking
speed EFO of 44.745.

From the comparison results, our algorithm outperforms
the benchmark algorithm SiamFC [5] in terms of EAO, accu-
racy, and robustness. In particular, the robustness of our
algorithm is greatly improved compared with the original
algorithm SiamFC [5]. This is because our anti-interference
module effectively reduces the number of tracking failures,
thereby improving the robustness of tracking. The accuracy
of the algorithm is also improved compared with SiamFC
[5], and it is better than other algorithms. This is because the
tracking robustness can be increased after screening candidate
targets through the anti-interference module. Second, our
anti-interference module uses the minimum cosine distance
to judge similar targets and processes the tracking target vector

Our
SiamFC
SiamRPN

GradNet
Groundtruth

Figure 8: Comparison of tracking effects between our algorithm and other algorithms.

Table 1: Comparison of VOT2016 algorithm results.

Tracker EAO A R EFO

Our 0.301 0.558 0.286 3.857

SiamFC [5] 0.277 0.549 0.382 5.444

Staple [46] 0.295 0.544 0.378 11.114

CCOT [48] 0.331 0.539 0.238 0.507

TCNN [49] 0.325 0.554 0.268 1.049

DDC [44] 0.293 0.541 0.345 0.198

EBT [50] 0.291 0.465 0.252 3.011

STAPLEp [44] 0.286 0.557 0.368 44.765

DNT [51] 0.278 0.515 0.329 1.127

DeepSRDCF [52] 0.276 0.528 0.380 0.380

MDNet_N [53] 0.257 0.541 0.337 0.534
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of recent frames in a weighted way, which reduces the proba-
bility of losing targets in the tracking process and improves the
performance of long-time tracking. Therefore, accuracy can be
improved. However, the accuracy has not been greatly
improved. We believe that this is because the SiamFC regres-
sion is not sufficiently accurate. Compared with other algo-
rithms, even though our indicators are not the highest, we
do a good job of balancing speed and performance. For exam-
ple, although the EAO value of CCOT reaches 0.331, its track-
ing speed is very slow; its EFO is only 0.507, whereas ours
reaches 3.857.

4.7. Experiments in VOT2017. In this experiment, we evaluated
the proposed algorithm on the VOT2017 [45] benchmark
dataset. Then, we compared its accuracy, robustness, and
EAO score with SiamFC [5] and the seven popular real-time
tracker algorithms in VOT2017 [45]. These trackers are
SiamFC, ECOHC [55], KFebT, ASMS, SSKCF, CSRDCF,
UCT [56], and MOSSEca. Table 2 presents the experimental
results. It can be seen from Table 2 that all indexes of our algo-
rithm are better than other algorithms, and the accuracy is
improved by 1.5% compared with the benchmark algorithm
SiamFC. Especially in terms of robustness, our algorithm has
great advantages over other methods; we believe that this is
because the anti-interference module reduces the error rate in
complex background. In addition, combined with the charac-
teristics of targets in recent frames, the robustness of the algo-
rithm for long-time tracking is also improved. The above
experiments showed that on the VOT2017 [45] dataset, the
proposed method is highly competitive with other most
advanced trackers.

5. Conclusions

In this study, a new anti-interference module is proposed.
Based on the benchmark algorithm SiamFC [5], another
feature extraction network is designed, and its intraclass dis-
criminant ability is trained on the GOT10k [41] dataset. The
cosine distance is used to select the best tracking target by
extracting the vector of the target frame. The experimental
results show that, compared with the original benchmark algo-
rithm SiamFC [5], our algorithm can well cope with the effect
of intraclass targets on tracking performance in a complex
background, thereby improving tracking accuracy; this also
proves the effectiveness of the proposed anti-interference mod-
ule. In the future, we will incorporate the anti-interference
module into more advanced algorithms for research.
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The security, privacy, and operation efficiency of radio frequency identification (RFID) must be fully measured in practical use. A
few RFID authentication schemes based on elliptic curve cryptography (ECC) have been proposed, but most of them cannot resist
the existing attacks. The scheme presented by Qian et al. could not resist impersonation attack according to our security analysis.
Then, we propose a novel lightweight RFID authentication scheme, which is proved that it can resist server spoofing attack, tag
masquerade attack, and provide other security properties of a RFID authentication scheme. Comparisons of computation and
communication cost demonstrate that the proposed scheme is more suitable for the resource-constrained RFID authentication.

1. Introduction

Radio frequency identification (RFID) is a noncontact auto-
matic identification technology, and the basic principle is to
use the transmission characteristics of the RF signal space
coupling (inductive or electromagnetic coupling) or reflec-
tion to achieve automatic identification of the object. An
RFID system usually consists of tags, readers, and a back-
end server [1]. In recent years, radio frequency identification
technology has developed rapidly and been widely used in
various fields. However, due to the openness of the channel
between the tag and the reader, the security and privacy
problems it faces have become increasingly prominent. In
particular, the processing capacity, storage space, and energy
supply of tag chips are very limited, and many mature secu-
rity schemes cannot be applied to RFID. Hence, higher secu-
rity level, lightweight, and efficient RFID authentication
scheme has become the new research goal.

At present, several lightweight RFID authentication
schemes using cryptography have been successively pro-
posed. These schemes can be roughly divided into the fol-
lowing categories: the schemes using simple bitwise logic
operation, the schemes based on hash function, the schemes
based on symmetric cryptosystem (AES and others), and the
schemes based on public key cryptosystem. Among them,

lightweight authentication scheme using simple bitwise logic
operations satisfies the properties of low calculation amount,
low power consumption, and small chip area, but the secu-
rity cannot be well guaranteed. At the same time, the
authentication scheme using only the hash function and
the symmetric cryptographic algorithms has also been
proved to be unable to fully meet the security requirements
of RFID authentication [2]. Therefore, scholars have carried
out research on lightweight authentication schemes based on
public key cryptography. In this paper, we propose an
improved RFID authentication scheme based on the security
analysis of the scheme proposed by Qian et al. [3], analyze
the security of the improved scheme, and compare its per-
formance with the existing similar schemes. The security
and efficiency comparison results show that the proposed
scheme is more secure and has superior computing
performance.

2. Related Work

In recent years, the public key cryptosystem has been intro-
duced into the RFID authentication schemes. Chen et al. [4]
proposed the RFID authentication scheme based on the qua-
dratic residues for the first time, but Cao et al. [5]found that
it could not resist tag impersonation and desynchronization
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attacks [5]. Yeh et al. [6] further proved that the scheme in
[4] could not provide location privacy and resistance to
replay attacks and proposed an improved scheme.

Compared with public key cryptosystem based on qua-
dratic residues [7] and other public key cryptosystems (such
as RSA and ElGamal), elliptic curve public key cryptography
(ECC) requires a much shorter key length while providing
the same security strength, so it is especially suitable for
environments with limited computing resources and storage
space. Lee et al. [8] proposed an ECC-based RFID authenti-
cation scheme—EC-RAC—which proved to be unable to
resist impersonation attacks and location tracking attacks
[9]. Aiming at the security problems in the EC-RAC scheme
[10], Zhang et al. [11] proposed a randomized key RFID
authentication scheme based on the elliptic curve discrete
logarithm problem and proposed an improved scheme for
the classic Schnorr authentication scheme at the same time.
Babaheidarian et al. [12] pointed out that both of the two
improved schemes proposed in [11] have security problems:
the improved scheme for EC-RAC has the risk of tag imper-
sonation attack and cannot provide mutual authentication
between the server and the tag; the improved scheme for
the classic Schnorr authentication scheme is difficult to resist
location tracking attack and desynchronization attack. Liao
and Hsiao [13] proposed an ECC-based RFID authentica-
tion scheme, which does not need to update the data in the
server and tag memory and has high computational effi-
ciency. However, Peeters and Hermans [14] proved that
there is a server counterfeiting attack, and the attacker can
obtain the identity authentication factor of the tag by inser-
tion attack, so it is also difficult to resist the tag impersona-
tion attack. He et al. [15] improved the authentication
scheme in [13], but Wei et al. [16] found that the improved
scheme [15]could not resist the server impersonation attack.
This paper focuses on the analysis to another ECC-based
authentication scheme proposed by Qian et al. [3] recently.
Through analysis, we found that the scheme still has loop-
holes for attacks such as server impersonation and tag
impersonation.

3. Security Analysis of the RFID Authentication
Scheme Proposed by Qian et al.

3.1. The Authentication Scheme Proposed by Qian et al. Qian
et al. proposed an ECC-based RFID authentication scheme
in [3]. The detailed steps of this scheme are shown in
Figure 1.

3.2. Attacks against the Scheme

(i) Server impersonation attack

Assuming that the attacker can obtain the tag’s internal
ID information, he can impersonate database and reader to
interact with the tag and can pass the tag’s authentication.

The specific attack steps are as follows:

(a) Attacker→tag: The attacker generates a random
number R′ and sends M1′ = fR′, Queryg to the tag

(b) Tag→fake reader: Upon receiving query and R′, the
tag computes M2′ = fMðIDÞ + tPs + R′, Pt + R′g and
sends it to the fake reader

(c) Fake reader→fake database: The fake reader sends
fM2′ ;R′g to the fake database

(d) Fake database→tag: The fake database generates a
random number k′, calculates K ′ = k′G and M4′ = f
HðIDÞ⨁ Kx′ , ðKx′ + R′Þ⨁HðIDÞg, and sends M4′
to the tag

(e) Tag: Upon receiving M4′, the tag checks that ðM4′
ð1Þ

⨁HðIDÞ + Rx′Þ⨁M4′
ð2Þ =HðIDÞ holds

Therefore, the tag believes that the attacker is a legiti-
mate database, and the successful attack proves that the
scheme is unable to resist server impersonation attacks.

(ii) Tag impersonation attack

Supposing that after the attacker intercepting message
M2 that the tag sent to the reader, he can calculate MðIDÞ
+ tPs =M0 − R and then can impersonate the tag to interact
with the reader and database and pass the reader’s
authentication.

The specific steps are as follows:

(1) Attacker→reader: When the attacker receives query
and random number R′, he calculates M2′ = fM0 −
R + R′, Pt + R′g = fM0′ , Pt + R′g and sends M2′ to
the reader

(2) Reader→server: The reader sends M3′ = fM2′ , R′g to
the server

(3) Server: The server computes MðIDÞ =M0′ − R′ − n
Pt =M0 − R − nPt = ðMðIDÞ + tPsÞ − nPt and com-
pares MðIDÞ with MðID′Þ stored locally and finds
that it is consistent, so it verifies the fake tag.

Therefore, the database is made to consider the attacker
to be a legitimate tag, and the attack is successful, which
proves that the scheme is unable to resist the tag imperson-
ation attack.

At the same time, since the authentication scheme of
Qian et al. is difficult to resist server and tag impersonation
attacks, it is easy to prove that it cannot resist location track-
ing attacks nor does it satisfy anonymity and forward
security.

4. The Improved Scheme

To resist the above server and tag impersonation attacks, the
authentication scheme proposed by Qian et al. has been
modified. The detailed process is as follows:

4.1. System Parameter Setting
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(1) Generate a large prime number q, and FðqÞ is a finite
field, where q represents the number of elements in
the finite field.

(2) Choose a safe elliptic curve y2 = x3 + ax + b, where
a, b ∈ FðqÞ. Select the points on the elliptic curve to
form an additive cyclic group ðP, +Þ with order t,
and G is a generator of P. The reader, database,
and each tag store the elliptic curve parameters fq,
a, b,G, tg locally.

(3) The server selects n ∈ Zt
∗ as its private key and com-

putes Ps = nG as its public key and selects a random
value ID as the identity information of each tag and
encodes it as a point on the elliptic curve, denoted as
MðIDÞ. The server saves MðIDÞ and stores its public
key Ps together withMðIDÞ in the memory of the tag.

(4) Select a secure hash function: H : ðP,+Þ⟶ f0, 1g∗

4.2. The Authentication Process

(1) Reader→tag: The reader generates a random num-
ber r1, computes R1 = r1G, and sends M1 = fR1,
Queryg to the tag

(2) Tag→reader: Upon receiving M1, the tag generates a
random number r2, computes R2 = r2G and M2 =H
ðMðIDÞ + r2PsÞ⨁Hðr2R1Þ, and sends fM2, R2g to
the reader

(3) Reader→database: Upon receiving fM2, R2g, the
reader sends M3 = fM2, R2, r1g to the database

(4) Database→reader: Upon receiving M3, the database
uses stored tag identity information ID′ to vertify
whether HðMðID′Þ + nR2Þ⨁M2 =Hðr1R2Þ holds.
If so, it will compute M4 = nR2 and send M4 to the
reader

Forward M4 

DataBase Reader Tag

Public/private key pair (n, Ps)

M3 = (M2, R)

M4

M2 = {M(ID) + tPs + R, Pt + R}

M4 = {H(IDʹ)⊕Kx, (Kx +
Rx)⊕H(IDʹ)} = {M4

(1), M4
(2)}.

Rx)⊕M4
(2), if

H(IDʹ) = H(ID)

(M4
(1)⊕H(ID) +

= {M0, Pt + R}

M1 = R

③ ②

Public/private key pair (t, Pt)

①

④ ⑤

Calculate M(ID) = M0 – R –
Calculate H(IDʹ) =

holds, the tag
authenticates the
reader as legal.

nPt, compare it with stored
M (IDʹ), if it is consistent, the
tag is authenticated. Generate a
random number r, calculate
K = rG and

Figure 1: ECC-based RFID authentication scheme proposed by Qian et al.

Table 1: Comparison of computational overhead of the scheme in this paper and the existing schemes.

Qian et al.’s
scheme [3]

Lee et al.’s
scheme [8]

Zhang et al.’s
scheme I [11]

Zhang et al.’s scheme
II [11]

He et al.’s
scheme [15]

Wei et al.’s
scheme [16]

Our
scheme

Server 3SM+2TA 4SM+2TA 5SM+3TA 3SM+2TA 3SM+4TA 4SM+1TA
4SM
+1TA

Tag 1SM+3TA 2SM 2SM 1SM 3SM+4TA 5SM+1TA
4SM
+1TA

Table 2: Comparison of communication overhead of the scheme in this paper and the existing schemes.

Qian et al.’s
scheme [3]

Lee et al.’s
scheme [8]

Zhang et al.’s
scheme I [11]

Zhang et al.’s scheme
II [11]

He et al.’s
scheme [15]

Wei et al.’s
scheme [16]

Our
scheme

Server 640 bits 160 bits 160 bits 160 bits 640 bits 640 bits 640 bits

Tag 640 bits 800 bits 960 bits 640 bits 640 bits 960 bits 640 bits
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(5) Reader→tag: The reader forwards M4 to the tag

(6) Tag: Upon receiving M4, the tag checks whether
M4 = r2Ps holds, and if so, the reader and database
are authenticated.

5. Security Analysis of the Improved Scheme

(i) Resistance to server impersonation

Assume that the attacker can obtain the tag’s internal
information MðIDÞ and uses reader and database imperson-
ation attacks.

(a) Attacker→tag: The attack impersonates the reader to
generate a random number r1′, calculates R1′ = r1′G,
and sends R1′ to the tag

(b) Tag→fake reader (attacker): Upon receiving R1′, the
tag generates a random number r2′, computes M2′ =
HðMðIDÞ + r2′PsÞ⨁Hðr2′R1′Þ, and sends fM2′ , R2′g
to the fake reader (the attacker)

(c) Fake reader→fake database (attacker): The fake
reader sends M3′ = fM2′ , R2′ , r1′g to the fake database
(the attacker)

(d) Fake database: The fake database must forge M4′ =
nR2′ to pass the authentication of the tag. Because
of the unidirectionality of the hash function, the
attacker cannot recover out M4′ = nR2′ = r2′Ps even
though he obtains the MðIDÞ and uses M2′ , R2′ , r1′
to calculate HðMðIDÞ + r2′PsÞ =M2′⨁Hðr2′R1′Þ.
Meanwhile, the attacker cannot obtain the database’s
private key n or the random number r2′ generated by
the tag, so it is unable for him to forge M4′

(ii) Resistance to tag impersonation

(a) The attacker impersonates the tag to attack: Upon
receiving the message M1′ = fR1′ , Queryg of the
reader, the fake tag selects a random number r2′
and calculates R2′ = r2′G. However, it is unable to
recover the tag’s legal MðIDÞ, so the attack fails
because he cannot generate legal authentication
information M2′ =HðMðIDÞ + r2′PsÞ⨁Hðr2′R1′Þ

(b) Assuming that the attacker takes an active attack: The
attacker selects a random number r1′, calculates R1′ =
r1′G, and sends R1′ to the tag. Upon receiving R1′, the
tag generates a random number r2′, computes R2′ = r2
′G and M2′ =HðMðIDÞ + r2′PsÞ⨁Hðr2′R1′Þ, and sends
fM2′ , R2′g to the reader. After the attacker intercepts
fM2′ , R2′g, he can calculate Hðr1′R2′Þ⨁M2′ =HðMðI
DÞ + r2′PsÞ, but cannot obtain tag’s MðIDÞ because of
the unidirectionality of the hash function

(iii) Resistance to replay attack

In replay attack, the attacker can intercept the reader’s
past authentication information M4 = nR2 = r2Ps sent to
the tag and resend it to the tag. Upon receiving the replay
information, the tag can computeM4′ = r2′Ps using its current
one-time random number r2′. M4 ≠M4′, and it can be deter-
mined thatM4 is a replay information. The attacker can also
intercept the tag’s past authentication information fM2, R2g
sent to reader and send it to the reader. Upon receiving f
M2, R2g, the reader combines it with the random number
r1′ (it currently generates to get M3′ = fM2, R2, r1′g) and for-
ward M3′ to the database. Upon receiving M3′, the database
checks that HðMðID′Þ + nR2Þ⨁M2 ≠Hðr1′R2Þ to identify
replay attack.

Table 3: Comparison of security performance of the scheme in this paper and the existing schemes.

Qian et al.’s
scheme [3]

Lee et al.’s
scheme [8]

Zhang et al.’s
scheme I [11]

Zhang et al.’s
scheme II [11]

He et al.’s
scheme [15]

Wei et al.’s
scheme [16]

Our
scheme

Mutual authentication × × × × × √ √
Confidentiality of
authentication factor

√ √ √ × √ √ √

Anonymity × × √ × √ √ √
Practicability √ √ × × √ √ √
Perfect forward security × √ √ √ √ √ √
Scalability √ √ × × √ √ √
Resistance to replay attack √ √ √ √ √ √ √
Resistance to tag
impersonation attack

× × × √ √ √ √

Resistance to server
impersonation attack

× × × × × √ √

Resistance to DoS attack √ √ × × √ √ √
Resistance to location
tracking attack

× × √ × √ √ √

√ means providing; × means not providing.
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(iv) Forward security

Forward security ensures that attacker cannot associate
the past interaction information with tag’s identity. Assume
that the attacker can obtain tag’s identity information MðI
DÞ and intercept the past interaction information M1 = fR1
, Queryg, fM2, R2g, and M4, among them R1 = r1G, R2 = r2
G, and M2 =HðMðIDÞ + r2PsÞ⨁Hðr2R1Þ. Without obtain-
ing one-time random numbers r1 and r2 and database’s pri-
vate key n, the attacker cannot confirm the intercept
information M1, fM2, R2g, and M4 is related to the tag’s
identity MðIDÞ that he knows.

(v) Mutual authentication

The attacker can eavesdrop on the information passed
between the reader and tag to get the message M2 =HðMð
IDÞ + r2PsÞ⨁Hðr2R1Þ. Due to the unidirectionality of hash
function, he cannot get MðIDÞ, so he cannot generate the
legitimate information that can pass authentication. At the
same time, the database can use stored ID′ to check whether
HðMðID′Þ + nR2Þ⨁M2 =Hðr1R2Þ holds to authenticate
the tag. In addition, in the authentication process of the
tag to reader, the tag authenticates reader by verifying
whether M4 = r2Ps is true. If the attacker does not have pri-
vate key n of the legitimate database or the one-time random
number r2, it is difficult to calculate M4 and unable to pass
the authentication of the tag.

(vi) Confidentiality of the identity information MðIDÞ
In the improved scheme in this paper, the MðIDÞ infor-

mation of the tag is only contained in M2. Due to the unidir-
ectionality of hash function, the attacker cannot intercept the
previous interaction information between the reader and tag
to obtain the tag’s legitimate MðIDÞ. Similar to the antitag
impersonation attack analysis mentioned above, the attacker
is also difficult to obtain the tag’sMðIDÞ through active attack.

(vii) Resistance to location tracking attack

We assume that the attacker has mastered the tag’s Mð
IDÞ and intercepted the interaction information M1,M2, R2
. Since the attacker cannot obtain the database’s private
key n, the reader’s random number r1, and the tag’s random
number r2, so it is impossible to use HðMðIDÞ + nR2Þ⨁
M2 =Hðr1R2Þ to associate the intercepted interaction infor-
mation with a specific tag. Therefore, the improved scheme
can resist location tracking attack.

(viii) Anonymity

Anonymity of the scheme requires that the attacker can-
not associate the interaction information with tag’s identity.
According to the previous analysis, it is difficult for an
attacker to recover the tag’s MðIDÞ from the interaction
information between the reader and tag, and each interac-
tion uses different random numbers r1 and r2, so the
attacker cannot associate the interaction information with
tag’s specific identity, which ensures the anonymity.

(ix) Resistance to denial-of-service (DOS) attack

From the above analysis of the confidentiality of the tag’s
MðIDÞ, it can be seen that the tag’s MðIDÞ can be well pro-
tected, and it is difficult for an attacker to obtain the tag’s
MðIDÞ from the interaction information between the reader
and the tag. Therefore, the authentication scheme in this
paper does not need to update tag’s MðIDÞ, which can effec-
tively resist DOS attack.

6. Efficiency and Security
Performance Comparisons

We compared the computing efficiency, communication
overhead, and security of the improved authentication
scheme with similar schemes. For the convenience of com-
parison, the scalar dot product operation on the elliptic
curve is denoted as SM and the point addition operation as
TA. At the same time, assume that all schemes use the ellip-
tic curve with a key length of 160 bits, and the data length of
a point on the elliptic curve is 320 bits. Table 1 shows the
comparison of computational overhead between the
schemes in References [3, 8, 11, 15, 16] and the schemes in
this paper, among which scheme I in [11] refers to the
improvement of EC-RAC scheme, and scheme II in [11]
refers to the improved scheme of Schnorr authentication
scheme.

The communication overhead refers to the length of the
authentication information transmitted by the server and
the tag during the execution of the authentication scheme.
Table 2 gives the comparison of communication overhead
between the schemes in [3, 8, 11, 15, 16] and the improved
schemes. Only the length of communication data between
the server (or reader) and the tag is considered here, and
data interactions between the server and reader are ignored.

It can be seen from Table 2 that the length of data trans-
mitted by the tag and server in the scheme in this paper is
basically equal to that in the schemes in [3, 15]. Table 3
shows the comparison of security performance between the
proposed scheme and the existing schemes.

Through the above analysis, the scheme proposed in this
paper is basically the same as the original scheme in terms of
computational and communication overhead, which can
satisfy the practical application of low-cost tags, but com-
pared with other typical schemes with similar structure, this
scheme has a superior security advantage, which can fully
meet various security requirements such as mutual authenti-
cation and privacy protection in the RFID authentication
process.

7. Conclusion

This paper analyzes the security performance of the
improved scheme proposed by Qian et al. and proves that
it is difficult to resist server and tag impersonation and thus
cannot realize the mutual authentication between the server
and the tag. On this basis, we improved the scheme pro-
posed by Qian et al. Security analysis and efficiency compar-
ison show that compared with similar schemes, the
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proposed scheme has higher security while ensuring high
computing performance and can fully meet the security
requirements of mutual authentication and privacy protec-
tion in the RFID authentication process.

Data Availability

The experimental data used to support the findings of this
study are included within the article.
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Senior netizens play a unique role in crowdsourcing information obtaining, but the traditional crowdsourcing information
obtaining scheme based on intermediary platform cannot satisfy the senior netizens’ strong reliability on anonymity. Malicious
intermediary platform may leak out the privacy information of both parties. Data stored in intermediary platform may be
intercepted, tampered, and fraudulently used by attackers, so smooth crowdsourcing information transactions cannot be
ensured. In order to achieve secure and reliable crowdsourcing information obtaining, blockchain technology with
decentralization and nontampering was used to propose a crowdsourcing information obtaining scheme, which is independent
on intermediary platform. During processes of requirements releasing, information submitting, and rewarding, privacy
protection techniques were used to preserve the anonymity of participants and confidentiality of data. Compared with the
existing protocols, the proposed scheme has obvious advantages in privacy protection.

1. Introduction

The concept of crowdsourcing was proposed by Howe [1]
and refers to outsourcing tasks to unspecified mass networks
in a free and voluntary way. The basic model of traditional
crowdsourcing includes the outsourcer, the contractors,
and the crowdsourcing intermediary, which constitute the
crowdsourcing operation organization. The outsourcer
issues requirements and the intermediary provides tasks;
the contractors submit the information, and the intermedi-
ary feedbacks contractors’ submission. Crowdsourcing activ-
ities often involve many people in bidding for a task, and the
evaluation process is mainly based on the satisfaction of the
outsourcer of the task. According to the purpose of crowd-
sourcing, it can be divided into crowd wisdom [2], crowd
creation, crowd voting, and crowdfunding. Crowdsourcing
information obtaining activities are crowd wisdom activities,
in which the outsourcer attracts netizens to participate vol-
untarily, and the contracting netizens collect and provide
the information to the outsourcer through Web pages, news-
papers, and magazines and field investigations, and the out-
sourcer screens the effective crowdsourcing information
manually and systematically and gives appropriate rewards

to the participants. In the crowdsourcing information
obtaining scheme in this paper, the contractors mainly con-
sist of senior netizens, because the space-time extension and
anonymity of the network attract senior netizens to stay on
the Internet for a long time, which is an important force to
participate in network activities. However, in the traditional
crowdsourcing information obtaining scheme that relies on
the intermediary platform, it is difficult to ensure senior net-
izens’ strong requirement of anonymity, and the intermedi-
ary platform, driven by its interests, may disclose the private
data of the outsourcer and the contractors in the process of
crowdsourcing information transactions. At the same time,
attackers will take various measures to intercept, tamper,
and fraudulently use key data stored in the intermediary
platform. Once the intermediary platform is attacked, it will
directly threaten the fluent operation of the whole crowd-
sourcing transaction mechanism.

The main work of this paper is as follows:

(1) Establish a decentralized and nontampered crowd-
sourcing information obtaining framework based on
blockchain. Before joining the crowdsourcing infor-
mation obtaining blockchain, the key generation
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center generates certificateless public and private key
pairs, including initialization parameter generation
and nodes’ public/private key pair generation

(2) Design the release algorithm of the crowdsourcing
information requirements. The certificateless multi-
receiver anonymous signcryption scheme is used to
complete the release of the requirements, and the
blockchain address of the outsourcer, the informa-
tion requirements, and reward is encrypted together.
Except for the intended contractors, other nodes
cannot know the information such as requirements
and rewards. In the signcryption information issued
by the outsourcer, the blockchain address of the con-
tractor is hidden to prevent other nodes in the net-
work from tracking its identity through the
blockchain address of the contractor. At the same
time, each contractor only uses its private key and
blockchain address in the process of unsigncrypt
and does not need addresses of other contractors,
thus, ensuring mutual anonymity among contractors

(3) Design the submission algorithm of the crowdsour-
cing information using the idea of random address,
the outsourcer generates a temporary public key
address and records it in the blockchain. The con-
tractor uses its long-term private key to calculate
the temporary private key for the information sub-
mission. After receiving the crowdsourcing informa-
tion returned by the contractor, the outsourcer
decrypts and verifies it, thus, realizing the confiden-
tiality of the crowdsourcing information and pre-
venting the identity of the contractor from being
exposed in the process of submitting the information
many times

(4) Design the reward accounting algorithm of the
crowdsourcing information. The outsourcer deter-
mines the reward accounting of crowdsourcing
information by generating ring signcryption, so as
to prevent the leakage of identity privacy in the pro-
cess of awarding. The contractor uses the temporary
private key to decrypt the ring signcryption of the
outsourcer and confirm the legal reward from the
outsourcer. When using legal rewards, the contractor
only needs to use its temporary private key to com-
plete the signature, and the payee can verify the sig-
nature by using the temporary public key of the
contractor recorded in the blockchain. Because the
temporary public key addresses of the contractor
are different in each crowdsourcing information
transaction, the consumer anonymity of the contrac-
tor is realized

(5) Analyze the privacy protection effect and operation
efficiency of the scheme proposed in this paper. In
terms of privacy protection, this scheme is compared
with existing information sharing schemes based on
blockchain, mainly from three dimensions: outsour-
cer privacy protection, contractor privacy protection,

and transaction data privacy protection. By compar-
ison, it is verified that this scheme has obvious
advantages over other schemes in privacy protection
and has higher calculation efficiency

2. Relevant Work

Traditional crowdsourcing information obtaining is com-
posed of the outsourcer, the crowdsourcing intermediary
platform, and the contractors, and the crowdsourcing infor-
mation obtaining task is completed through 9 steps. In the
traditional process of obtaining crowdsourcing information,
the outsourcer and the contractor need to release and submit
the information through the intermediary crowdsourcing
platform, which brings extra cost to both parties. On the
other hand, there is no completely trusted intermediary in
the real network, and the malicious crowdsourcing interme-
diary platform may sell the private information of both
parties in crowdsourcing information transactions for its
own benefits. At the same time, once the intermediary plat-
form is attacked, the whole crowdsourcing transaction
mechanism will be paralyzed and chaotic. Therefore, we
can introduce decentralized blockchain technology into
crowdsourcing information transaction to remove the
dependence on crowdsourcing intermediary platform. The
traditional crowdsourcing information obtaining process is
shown in Figure 1.

Because blockchain technology has the characteristics of
no center, anti-tamper, and anonymity, scholars have
applied blockchain technology to the field of network infor-
mation sharing. Rawat et al. [3] designed a multimember
information sharing framework based on blockchain tech-
nology, in which nodes in blockchain can share network
security protection schemes, and analyzed possible attack
behaviors in the system based on game theory. Huang
et al. [4] designed a network security threat intelligence shar-
ing model based on blockchain to solve the privacy protec-
tion demand of users in the process of threat intelligence
sharing. However, this model directly uses the anonymity
of users’ accounts in the blockchain to protect the identity
privacy of both parties in the threat intelligence sharing,
which can only provide weak anonymity. In the frequent
information sharing process between the two parties,
attackers can infer the true identity of users by analyzing
the correlation between transactions, statistical characteris-
tics, and transaction amounts. At the same time, the status
of the threat intelligence center in the model is not equal
to that of the organization, and the organization needs to
register at the threat intelligence center when joining the
threat intelligence sharing blockchain. Wang et al. [5] pro-
posed a private data sharing model of medical blockchain
based on ring signature. However, this model only considers
the anonymity protection of transaction outsourcer and
lacks the anonymity protection mechanism of contractor.
At the same time, the ring signature message is not
encrypted, which easily leads to the leakage of users’ private
data. He et al. [6] proposed an incentive mechanism for
crowdsensing applications based on blockchain technology,
which uses digital signature and watermarking technology
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to prevent the sensing data from being tampered and used
under false pretences, but this scheme does not protect the
confidentiality of the sensing data and the identity privacy
of the sensing users. Cheng et al. [7] designed a framework
of network threat intelligence sharing and rating system
based on blockchain, but did not give technical details to
protect the confidentiality of threat intelligence and the ano-
nymity of nodes. Cai et al. [8] designed the application
framework of Internet public welfare crowdfunding plat-
form on blockchain, but also did not involve specific mea-
sures to protect the privacy of platform users and the
security of crowdfunding data. Xu et al. [9] designed a pri-
vacy protection scheme for electronic health records based
on blockchain and homomorphic encryption, which uses
proxy reencryption technology to protect the security of
patient’s privacy data. However, the protection of patient’s
identity privacy only depends on the anonymity of the
patient’s Ethereum address, and there is still the risk of iden-
tity being tracked and leaked during the frequent use. San-
dro et al. [10] designed a secure sharing framework of
personal health data based on blockchain, which mainly
relies on the anonymity of blockchain addresses to protect
user’s personal privacy. Li et al. [11] established a trusted
big data sharing model without center by using blockchain
and smart contract, but the privacy protection of data pro-
vider and data demander mainly depends on the anonymity
of blockchain address. Mohammad et al. [12] proposed a
data sharing framework based on licensed blockchain to
ensure real-time authentication of shared data and tracking
audit of data access in blockchain. The scheme uses the pub-
lic key of data subject to encrypt access records, which pro-
tects the privacy of data subject, but does not protect the
privacy of data accessor. Fan et al. [13] proposed a data shar-
ing scheme for content-centric 5G networks based on block-
chain. The scheme issues identity certificates to each user
and uses encryption technology to ensure the confidentiality
of data in the network, but it lacks protection measures for

the identity privacy of data sharing parties in blockchain.
Qiao et al. [14] designed a data sharing scheme for 5G IoT
based on blockchain to solve the privacy of transactions
under the chain, but did not discuss the privacy protection
strategy of both parties in the chain cash withdrawal
transaction.

The research of blockchain’s application in information
sharing in other industries has made some progress, but
these research results cannot be directly applied to crowd-
sourcing information obtaining. It is difficult to meet the
special needs of both parties of crowdsourcing transactions
for personal identity privacy and transaction privacy. To
solve the above problems, this paper designs a crowdsour-
cing information obtaining scheme based on blockchain.
The scheme uses a certificateless multireceiver anonymous
signcryption scheme with anonymous to release crowd-
sourcing information requirements and rewards, which
not only protects the confidentiality of information
requirements but also ensures the anonymity of the out-
sourcer and the contractor. To generate a temporary
public-private key pair for the contractor, the contractor
uses the temporary private key to signcrypt the collected
crowdsourcing information to ensure the secrecy of the
returned information and the identity untraceablity of the
contractor. The One-Time-Pad ring signcryption algorithm
is used to ensure the anonymity of the outsourcer in the
reward payment transaction and the secrecy of the reward
amount, and at the same time, the untraceability of the
contractor in the process of using the reward for consump-
tion is realized.

3. Background Knowledge

3.1. Blockchain Technology Foundation. Blockchain is a dis-
tributed ledger that records transaction data permanently
[15], which is formed by linking some ordered data struc-
tures (also called blocks). All nodes in the blockchain

2. Subdivide information
requirements

3. Choose the appropriate
intermediary

4. Release information
requirements

1. Collect information
requirements

5. Organize relevant
competitions

8. Give rewards for
the best feedback

7. Feedback results of
information obtaining

9. Spiritual or material
rewards

6. Submit the results of
information obtaining

Outsourcer
Crowdsourcing intermediary platform

Contractor

Figure 1: Flowchart of traditional crowdsourcing information obtaining.
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network share a complete ledger, and once the transactions
recorded in any ledger are released, it is difficult to modify
them. Due to the difference of decentralization degree, there
are two forms of blockchain [16]: the unlicensed chain and
the licensed chain. The unlicensed chain is completely
decentralized, and nodes are free to join and exit. It is suit-
able for a completely open and highly autonomous applica-
tion environment. In the licensed chain, there are a few
nodes that have higher authority than ordinary nodes. When
joining, the nodes need to be authorized by the central node.
The licensed chain is mainly suitable for small-scale internal
data sharing.

The data structure of blockchain consists of transaction
records and blocks [17]. First, both parties create a new
transaction and broadcast it to the blockchain. Miner nodes
package and merge the transactions generated and verified
to be legal within a certain period into blocks, compete for
the bookkeeping right through the Proof of Work (PoW)
mechanism, and then add the new blocks to the blockchain.

The core unit of blockchain is block, which is composed
of block header to ensure the orderly and complete block
data and block body containing several transaction records.
The block header stores the hash value of the block header
of the previous block, Merkleroot, which is the overall hash
value of all transaction data in this block, and a random
number named nonce, timestamp, and other structured
information; The block body is used to record the summary
information of all verified transactions and a Merkle Tree
[18] which ensures that transactions cannot be tampered.
Figure 2 shows the data structure of blockchain.

3.2. Unlicensed Signcryption Scheme [19]. The scheme
includes signer (IDA), signcryption receiver (IDB), and key

generation center (KGC). The algorithm includes seven
steps:

(1) Setting of System Parameter. Enter the security
parameter η, KGC sets the system public parameters,
generates the system master key s, and keeps it
secretly

(2) Setting of Partial Public and Private Keys. Enter sys-
tem parameters, master key s and user’s identity IDi,
and KGC sets user’s partial public and private key
ðDi, uiÞ

(3) Setting of User’s Secret Value. Taking system param-
eters and user’s identity IDi as input, the user sets its
secret value xi and keeps it secretly

(4) Setting of Complete Private Key. Taking system
parameters, user’s identity IDi, partial private key
ui, and secret value xi as inputs, the user sets its com-
plete private key ðxi, uiÞ

(5) Setting of Complete Public Key. Taking system
parameters, user’s identity IDi, partial public key Di,
and secret value xi as inputs, the user sets its complete
public key ðXi,DiÞ

(6) Signcryption. Take system parameters, message m,
signer’s identity IDA, private key ðxA, uAÞ, receiver’s
identity IDB, and public key ðXB,DBÞ as input, the
signer outputs the signcryption σ of message m

(7) Verification of Signcryption. Take system parameters,
σ, signer’s identity IDA, public key ðXA,DAÞ,
receiver’s identity IDB and private key ðXB,DBÞ as
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Transaction

Transaction

Block header 1
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Hash value
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Transaction

Transaction
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Nonce

Transaction

Transaction
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Block header 3
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Figure 2: Data structure of blockchain.
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input, receiver performs decryption and verification,
then outputs that m is “True” or “Rejected”

3.3. CryptoNote Protocol [20]. To protect the identity ano-
nymity of blockchain nodes, that is, to prevent attackers
from gradually analyzing the identity information corre-
sponding to their addresses through transaction records.
The following is a brief description of the process of using
one-time public and private keys to protect the anonymity
of the contractor’s identity in CryptoNote protocol: assume
that the contractor’s public and private key pair is ðA, BÞ/
ða, bÞ, which satisfies A = aG, B = bG. Both parties conduct
transactions through the following steps:

(1) The outsourcer randomly selects an integer r and
calculates R = rG; use the public key ðA, BÞ of the
contractor to calculate the one-time transaction pub-
lic key P =HðrAÞG + B

(2) The outsourcer initiates the transaction and releases
R, P, and the transaction amount on the blockchain

(3) The contractor calculates P’ =HðaRÞG + bG by
using its private key and compares it with the one-
time public key included in the transaction initiated
by the outsourcer. If it is consistent, it is determined
that it is the legal contractor of the transaction

(4) The legal contractor calculates the one-time private
key x =HðaRÞ + b corresponding to the one-time
public key and uses this private key to sign and con-
sume the transaction revenues

4. A Crowdsourcing Information Obtaining
Scheme Based on Blockchain

4.1. Overall Description of the Scheme. Because the contrac-
tors of the crowdsourcing information obtaining scheme in
this paper are senior netizens in the network, and the senior
netizens often have characteristics such as self-dependence,
independence, alertness, and low self-exposure, the anonym-
ity of the network plays a vital role in stimulating senior net-
izens to participate in crowdsourcing information obtaining.
The unlicensed blockchain can be completely decentralized,
allowing nodes to freely join and exit the network. This high
autonomy is completely consistent with the strong depen-
dence of senior netizens on network anonymity, which can
give full play to their own advantages. Therefore, this paper
designs a crowdsourcing information obtaining scheme in
unlicensed blockchain. The network nodes include the out-
sourcer node, the contractor node, and the miner node.
Among them, miner nodes compete to obtain the bookkeep-
ing right through the PoW mechanism, verify the crowd-
sourcing transactions, and package the verified transactions
into the new block. All miners are jointly responsible for
the maintenance of the blockchain. For the sake of simplifi-
cation, it is assumed that there is one outsourcer node F and
multiple contractor nodes J1, J2,⋯, Jk in the network, and
the scenarios of multiple outsourcers and multiple contrac-
tor nodes can be discussed similarly. Before joining the

crowdsourcing information obtaining blockchain, the out-
sourcer node and the contractor node need to generate their
own public and private key pairs and blockchain transaction
addresses.

The crowdsourcing information obtaining scheme based
on blockchain mainly consists of the following three stages:

(1) Release Stage of Crowdsourcing Information Require-
ments. The outsourcer collects information require-
ments and sends the requirements and reward to
the contractor (senior netizens). The release algo-
rithm of the crowdsourcing information require-
ments in 4.3 will be used in this stage

(2) Submission Stage of Crowdsourcing Information. The
contractor makes full use of its superior resources to
collect the information meeting the task require-
ments and submit the required information to the
outsourcer. The submission algorithm of crowdsour-
cing information in 4.4 will be used in this stage

(3) Evaluation and Reward Stage of Crowdsourcing
Information. The outsourcer evaluates the quality,
timeliness, and benefit of the crowdsourcing infor-
mation submitted by the contractor, selects the best
result to pay remuneration, and realizes the incentive
for the contractor to participate in the crowdsour-
cing information collection. The reward accounting
algorithm of the crowdsourcing information in 4.5
will be used to generate a reward transaction and
broadcast the transaction to the crowdsourcing
information obtaining blockchain. The basic archi-
tecture of crowdsourcing information obtaining
scheme based on blockchain is shown in Figure 3

4.2. Initialization Settings. Before joining the crowdsourcing
information obtaining blockchain, the outsourcer node and
the contractor node first generate certificateless public and
private key pairs.

Client wallet performs the following steps to set system
parameters and generate certificateless public and private
key pairs for nodes:

(1) Generation of initialization parameters

Select elliptic curve addition group G with large prime
order q, P is a generator of G; define the following four
secure Hash functions:

H0 : 0, 1f g∗ × G × G⟶ Z∗
q , ð1Þ

H1 : G × 0, 1f g∗ × G⟶ Z∗
q , ð2Þ

H2 : G⟶ 0, 1f g∗,H3 : 0, 1f g∗ ⟶ Z∗
q , ð3Þ

H4 : G⟶ Z∗
q : ð4Þ

s ∈ Z∗
q is the master key of the client wallet, PKm = sP is

its corresponding public key, and the system parameters
ðq, PKm,H0,H1,H2,H3,H4Þ are disclosed to the public.
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(2) Generation of node’s public/private key pair

Node IDi selects a random number xi ∈ Z
∗
q as its secret

value, calculates Xi = xiP, and sends XikIDi to the client
wallet.

Client wallet selects random number di ∈ Z
∗
q and calcu-

lates

Di = diP, ui = di + sH0 IDi,Di, Xið Þ: ð5Þ

Then, returns to part of the user’s partial public-private
key pair Di/ui and the node IDi obtains its complete
public-private key pair ðXi,DiÞ/ðxi, uiÞ.

According to the key generation algorithm, the public
and private key pair generated for the outsourcer node is
ðXF ,DFÞ/ðxF , uFÞ, and then the blockchain address is
ACCF =H0ðIDF ,DF , XFÞ calculated from the public key;
the certificateless public-private key pair of the contractor
node is ðXJi

,DJi
Þ/ðxJi , uJi

Þ, and the blockchain address is
ACCJi

=H0ðIDJi
,DJi

, XJi
Þ, 1 ≤ i ≤ k.

4.3. Release Algorithm of the Crowdsourcing Information
Requirements. The first stage of the crowdsourcing informa-
tion obtaining scheme based on blockchain is the release of
information requirements and rewards: the outsourcer col-
lects the information requirements of decision makers, sub-
divides the information requirements, and sends the
information requirements and rewards to the senior netizens
(contractors) positioned in the early stage. In order to ensure

the identity anonymity of the outsourcer and the contractor
in the process of releasing crowdsourced information
requirements and to realize the privacy of crowdsourcing
information and rewards, the certificateless multireceiver
anonymous signcryption scheme proposed in reference
[19] is used to sign the requirements and rewards. Set
M = ðTkrequirementskrewardÞ, where T is a timestamp.

The outsourcer releases M by the following algorithm:

(1) Randomly select a number r1 ∈ Z
∗
q calculate R1 = r1P

and h =H1ðR1 + XF ,ACCF ,M,DFÞ, SIG = r1 + xF/
xF + huF

(2) Randomly select r2 ∈ Z
∗
q , calculate R2 = r2P

C =H2 R2ð Þ⨁ M ACCFk kSIGð Þ ; ð6Þ

(3) Calculate yi =H3ðACCJi
Þ, 1 ≤ i ≤ k, and calculate

Lagrange interpolation polynomial

f i xð Þ =
Y

1≤j≠i≤k

y − yj
yi − yj

= ci1 + ci2y+⋯ciky
k−1, ð7Þ

where ci1, ci2,…,cik ∈ Z
∗
q

Contractor
ACCJ1

Contractor
ACCJ2

Contractor
ACCJK

Outsourcer
ACCF

Release information requirements

Release information requirements

Release information requirements

Submit information required

Submit information required

Submit information required

Broadcast reward transaction

Broadcast reward transaction

Broadcast reward transaction

...

Crowdsourcing information
obtaining blockchain

Figure 3: Basic architecture of crowdsourcing information obtaining scheme based on blockchain.
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(4) Calculate

Yi = r2 XJi
+DJi

+ ACCJi
PKm

� �
, Vi = 〠

k

j=1
cjiY j, ð8Þ

1 ≤ i ≤ k ð9Þ

(5) The outsourcer broadcasts ciphertext σ = ðV1, V2,
⋯, Vk, R1, CÞ to the group of the contractors

After receiving it, the contractor executes the following
algorithm for unsigncryption:

(1) Calculate

yi =H3 ACCJi

� �
, ð10Þ

Yi′=V1 + yiV2+⋯yk−1i mod qð ÞVk: ð11Þ

Calculate R2′ = ðxJi + uJi
Þ−1Yi′, recover the original mes-

sage and signature ðMkACCFkSIGÞ =H2ðR2′Þ ⊕ C.

(2) Get the blockchain address ACCF of the outsourcer
from the recovered message, and then calculate

h′ =H1 R1 + XF , ACCF ,M,DFð Þ ; ð12Þ

(3) Verify the equation by using the public key ðXF ,DFÞ
and address ACCF of the contractor

h′ =H1 SIG XF + h′ DF + ACCFPKmð Þ
� �

, ACCF ,M,DF

� �
:

ð13Þ

Whether it is true or not, if so, the contractor confirms
that the received signcryption is truly from the address
ACCF , otherwise, it refuses the signcryption.

In the above algorithm, the outsourcer encrypts its
blockchain address, information requirements, and reward
amount, which makes it impossible for other nodes in the
blockchain to know from which blockchain address the
information requirements are released, except for the nodes
in the intended contractor group. At the same time, in the
signcryption information released by the outsourcer, the
blockchain address of each contractor is also hidden. Not
only can the nodes outside the contractor group not know
the blockchain address of the contractor but also the con-
tractor only uses its private key and blockchain address in
the decryption process and does not use the address of other
contractors. This ensures that each contractor cannot know
each other’s blockchain address, that is, it can achieve

mutual anonymity, which is consistent with the contractor’s
requirement for privacy protection.

4.4. Submission Algorithm of the Crowdsourcing
Information. After receiving the crowdsourcing information
requirements released by the outsourcer, the senior netizens
voluntarily decide whether to join the crowdsourcing infor-
mation obtaining blockchain network based on their own
expertise and accumulated network resources. After col-
lecting the required information, the contractor submits
the information to the outsourcer. Although there is no
direct relationship between the blockchain address of the
contractor and the identity of senior netizens, which ensures
the anonymity of the contractor to a certain extent, the con-
tractor still has the risk of leaking his identity in the process
of using the same address for multiple crowdsourcing infor-
mation transactions with the outsourcer. Therefore, this
paper uses the idea of random address in CryptoNote [20].
First, the outsourcer performs the following steps to generate
a temporary public key address for each intended contractor
and record it in the blockchain:

(1) Randomly select a number ti1, ti2 ∈ Z∗
q , calculate Ti1

= ti1P, Ti2 = ti2P, 1 ≤ i ≤ k

(2) Calculate the temporary public key address of this
crowdsourcing information transaction ACCJ i

′ = ðXJi
′ ,

DJi
′ Þ= ðH4ðti1XJi

ÞP,H4ðti2ðDJi
+ ACCJi

PKmÞÞPÞ, 1 ≤
i ≤ k

(3) Record Ti1, Ti2, and ACCJi
′ = ðXJi

′ ,DJi
′ Þ, 1 ≤ i ≤ k, in

the blockchain

The contractor uses its long-term private key ðxJi , uJi
Þ, to

calculate the temporary private key ðxJi′ , uJi
′ Þ = ðH4ðxJiTi1Þ,

H4ðuJi
Ti2ÞÞ for the information submission this time, and

then executes the following algorithm to signcrypt I = ðTk
information dataÞ and return the signcryption to the
outsourcer:

(1) Randomly select a number zi ∈ Z
∗
q , calculate Zi = ziP,

hi =H1ðZi + XJi
′ , ACCJi

′ , I,DJi
′ Þ

(2) Generate the signature of I

SIGJ i
=

zi + xJi′
xJi′ + hiuJi

′ ; ð14Þ

(3) Calculate

V Ji
= zi + xJi′
� �

XF +DF + ACCFPKmð Þ, ð15Þ
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C =H2 V Ji

� �
⊕ IkSIGJi

� �
: ð16Þ

Send signcryption σ = fZi, Cg to the outsourcer F.
After receiving the signcryption returned by the contrac-

tor, the outsourcer performs the following steps to decrypt
and verify:

(1) Calculate VF = ðZi + XJi
′ ÞðxF + uFÞ

(2) Recover the data returned by the contractor

IkSIGJi
=H2 VFð Þ ⊕ C: ð17Þ

(3) Calculate

hi =H1ðZi + XJi
′ , ACCJi

′ , I,DJi
′ Þ and verify

hi =H1 SIGJ i
X Ji
′ + hiDJi

′
� �

, ACCJ i
′ , I,DJi

′
� �

: ð18Þ

Whether it is true or not, if it is true, confirm that the
information comes from the contractor corresponding to
the blockchain address ACCJ i

′ .
In the above algorithm, the contractor uses the tempo-

rarily generated private key to submit the data, so as to
ensure the confidentiality of the data and prevent exposing
its identity in the process of submitting. Normally, in order
to protect the contractor’s enthusiasm to collect informa-
tion, no disciplinary measures are taken for the contractor
submitting information with low quality. If very few con-
tractors maliciously submit irrelevant data for many times,
the outsourcer can trace the blockchain address information
of the malicious contractor according to the corresponding
relationship between its retained contractor blockchain
address and the temporary address, thus, excluding the mali-
cious contractor address from the contractor set in the
future information requirements release.

4.5. Reward Accounting Algorithm of the Crowdsourcing
Information. In order to encourage the contractor to com-
plete the collection and submission of crowdsourcing infor-
mation with high quality, the following is the reward
accounting algorithm of the crowdsourcing information.
After receiving the information provided by the contractor,
the outsourcer screens out valuable information manually
and systematically and pays appropriate remuneration to
the corresponding contractor. The higher the quality of the
submitted crowdsourcing information, the higher the
amount of reward. At the same time, in order to realize the
identity anonymity of the outsourcer and the contractor
and the reward confidentiality in the process of crowdsour-
cing information reward transaction, the following One-
Time-Pad ring signcryption algorithm [21] will be improved
and the following reward accounting algorithm of crowd-
sourcing information will be given to ensure that the trans-
action record will not expose the specific identity of the

outsourcer and the contractor in the blockchain and will
not expose the reward amount m:

(1) The outsourcer selects the one-time random key kF ,
calculates the corresponding public key KF = kFP,
and then constructs the public key set fK1, K2 ⋯ ,
Kng, which does not contain the one-time public
key KF

(2) The outsourcer selects ai, bi ∈ Z
∗
q ð1 ≤ i ≤ nÞ to set the

attribute value for the public key in the public key
set:

Ai = aiP + biKi, Bi = aiH2 Kið Þ + bikFH2 KFð Þ, 1 ≤ i ≤ n:

ð19Þ

Select aF , bF ∈ Z
∗
q to set the attribute value for the ran-

dom public key KF :

AF = aFP, BF = aFH2 KFð Þ: ð20Þ

(3) Set si = bi, ci = ai, 1 ≤ i ≤ n

(4) CalculatesF =H0ðm, A1, A2,⋯,An, AF , B1, B2,⋯Bn,
BFÞ − ∑n

i=1si:

(5) Calculate cF = aF − sFkF , and

XF = m, s1, s2,⋯, sn, sF , c1, c2,⋯, cn, cFð Þ: ð21Þ

(6) Select random number vF and calculate

VF = vFP, C =H2 VFð Þ⨁ XF : ð22Þ

(7) Calculate WF = vFðXJi
′ +DJi

′ Þ

The above algorithm is the process of generating ring
signcryption by the outsourcer.

(8) Define the reward transaction of crowdsourcing
information as <time stamp T, fK1, K2,⋯, Kn, KF g
, ACCJi

′ , ðWF , CÞ > , and broadcast the transaction to
the crowdsourcing information obtaining blockchain

After receiving the award transaction broadcasted by the
outsourcer, the contractor uses its long-term private key
ðxJi , uJi

Þ, calculates ðXJi
′ ,DJi

′ Þ = ðH4ðxJiTi1ÞP,H4ðuJi
Ti2ÞPÞ,

and compares it with the temporary public key address AC
CJ i
′ of the contractor recorded in the transaction. If it is con-

sistent, it is determined that the crowdsourcing information
provided by itself has received the reward from the
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outsourcer and then performs the following steps to decrypt
and verify the ring signcryption of the outsourcer:

(1) Calculate with its temporary private key

V Ji
= xJi′ , uJi

′
� �−1

WF : ð23Þ

(2) Restore the ring signature XF =HðV Ji
Þ ⊕ C

(3) Calculate Ai′= ciP + siKi

Bi′= ciH2 Kið Þ + sikFH2 KFð Þ, ð24Þ

AF′ = cFP + sFKF , ð25Þ

BF′ = cFH2 KFð Þ + sFkFH2 KFð Þ: ð26Þ

(4) Verify the equation

sF + 〠
n

i=1
si =H0 m, A1′ , A2′ ,⋯,An′ , AF′ , B1′ , B2′ ,⋯Bn′ , BF′

� �
:

ð27Þ

Whether it is true, if so, confirm that the electronic
money is the legal reward from the outsourcer for providing
crowdsourcing information, otherwise, refuse it.

When the contractor uses the obtained reward for con-
sumption, it only needs to use its temporary private key to
sign m, without using its long-term private key; the payee
uses the temporary public key address of the contractor
recorded in the blockchain for verification. Because the tem-
porary public key addresses of the contractor are different
from each other in each crowdsourcing information transac-
tion, the nodes in the crowdsourcing blockchain cannot link
the real identity of the contractor with its consumption
behaviors, thus, realizing the consumer anonymity of the
contractor.

5. Privacy Protection and Efficiency Analysis of
our Scheme

5.1. Privacy Protection Analysis. The crowdsourcing infor-
mation obtaining scheme based on blockchain is mainly
realized by the certificateless multireceiver anonymous sign-
cryption scheme [19] and one-time pad ring signature algo-
rithm [21] in the stage of crowdsourcing information
requirements release, crowdsourcing information submis-
sion by the contractor and crowdsourcing information eval-
uation and reward. The security of the algorithm has been
proved in detail in relevant references, so it will not be
described in detail. In this paper, based on the above algo-
rithm, the idea of temporary public key address and tempo-

rary private key is introduced to protect the identity
anonymity and data privacy of the outsourcer and the con-
tractor. The privacy protection effect of the scheme is ana-
lyzed emphatically below:

(1) Releasing of Information Requirements. In this stage,
the outsourcer signed the blockchain address,
released requirements, and reward together with
the public key of the contractor, so that other nodes
in the blockchain network could not know the spe-
cific information requirements and could not track
the specific identity information of the outsourcers
from the release of the crowdsourcing information
task. In addition, in the signcryption released by
the outsourcer, Lagrange interpolation polynomial
is used to hide the blockchain address of each con-
tractor, so as to prevent the blockchain address of
each contractor from being exposed in the block-
chain. Meanwhile, each contractor in the contractor
node set only uses its private key and blockchain
address information to decrypt the signcryption,
and cannot use the addresses of other contractors,
thus ensuring mutual anonymity among each
contractor

(2) Submission of Crowdsourcing Information by the
Contractor. In this stage, the contractor does not
directly use the private key corresponding to its
blockchain address to submit the collected crowd-
sourcing information, but the outsourcer first uses
the public key of the contractor to generate the tem-
porary public key of the contractor for this submis-
sion, and then the contractor uses the temporary
private key corresponding to the temporary public
key to signcrypt and transmit the collected informa-
tion to the outsourcer. Because the contractor uses
different temporary private keys every time, it can
ensure the confidentiality of the data and prevent
its identity from being exposed in the process of sub-
mitting the crowdsourcing information many times

(3) Evaluation and Reward Stage of Crowdsourcing
Information. In this stage, in order to prevent the
identity of the outsourcer from leaking in the process
of multiple awards, the outsourcer uses a ring sign-
cryption algorithm to sign the reward amount and
then publishes the crowdsourcing information
reward transaction in the blockchain. Attackers can-
not associate the reward transaction with the real
address of the outsourcer, and at the same time, the
temporary public key address of the contractor is
published in the transaction to prevent attackers
from tracking its identity by using the public key
address of the contractor

(4) When the contractor uses the obtained for consump-
tion, it only needs to use its temporary private key to
sign the reward m, and the payee uses the contrac-
tor’s temporary public key address for verification.
Because the contractor’s temporary public key

9Journal of Sensors



T
a
bl
e
1:
C
om

pa
ri
so
n
of

pr
iv
ac
y
pr
ot
ec
ti
on

pr
op

er
ty
.

[4
]

[5
]

[6
]

[7
]

[8
]

[9
]

[1
0]

[1
1]

[1
2]

[1
3]

[1
4]

O
ur
s

P
ri
va
cy

pr
ot
ec
ti
on

of
ou

ts
ou

rc
er

W
ea
k
an
on

ym
it
y

St
ro
ng

an
on

ym
it
y

×
×

×
W
ea
k
an
on

ym
it
y

W
ea
k
an
on

ym
it
y

W
ea
k
an
on

ym
it
y

W
ea
k
an
on

ym
it
y

×
×

St
ro
ng

an
on

ym
it
y

P
ri
va
cy

pr
ot
ec
ti
on

of
co
nt
ra
ct
or

W
ea
k
an
on

ym
it
y

W
ea
k
an
on

ym
it
y

×
×

×
W
ea
k
an
on

ym
it
y

W
ea
k
an
on

ym
it
y

W
ea
k
an
on

ym
it
y

×
×

×
St
ro
ng

an
on

ym
it
y

P
ri
va
cy

pr
ot
ec
ti
on

of
tr
an
sa
ct
io
n
da
ta

N
o
pr
ot
ec
ti
on

of
tr
an
sa
ct
io
n
am

ou
nt

×
×

×
×

√
√

√
√

√
√

√

10 Journal of Sensors



address is different from each other in each transac-
tion, it realizes the anonymity of the contractor’s
consumption

In the following, the privacy protection performance of
the scheme in this paper is compared with the existing infor-
mation sharing scheme based on blockchain. Here, we define
the scheme that only relies on the anonymity of user’s block-
chain address to protect the anonymity of user’s identity as
satisfying weak anonymity and define the scheme that uses
other special technologies to ensure the anonymity of user’s
identity as satisfying strong anonymity. The results are
shown in Table 1. The scheme in this paper has obvious
advantages over other schemes in privacy protection.

5.2. Efficiency Analysis. In this section, the calculation effi-
ciency of this scheme is quantitatively evaluated. The calcula-
tion cost of the scheme mainly depends on the calculation
amount of the outsourcer and the contractor in the release
of the requirements, the submission of the information, and
the reward accounting. In order to improve the calculation
efficiency, the above algorithms do not use bilinear pairing
operation and exponential operation on multiplication group
[22], but mainly use scalar multiplication operation on elliptic
curve to design. “SM” is used to represent scalar multiplication
operation on elliptic curve. Table 2 shows the calculation sta-
tistics of the outsourcer and the contractor in the scheme.
Because other operations (hash operation and point addition
operation) consume much less time than scalar multiplication
operation, they are not included in the statistics here.

Among them, the parameter k is the number of contrac-
tors in the crowdsourcing blockchain, and n is the number
of public keys in the public key set in the ring signature algo-
rithm (which is a fixed parameter). If choose a 160-bit ellip-
tic curve group on a hypersingular curve over a 512-bit finite
field based on PBC library (Version 0.5.14), one SM opera-
tion takes about 1.51ms [23]. It can be seen from Table 2
that the calculation cost of the outsourcer in the three algo-
rithms of crowdsourcing information obtaining scheme is
Oðk2Þ, OðkÞ, and Oð1Þ, which are all effective polynomial
time algorithms; as a contractor with weak computing
power, the computational overhead in the three algorithms
is OðkÞ, Oð1Þ, and Oð1Þ separately, which are all effective
polynomial time algorithms with less computation, espe-
cially in the submission and reward accounting algorithms
that the contractor frequently participates in.

6. Conclusion

On the basis of traditional crowdsourcing information
obtaining scheme based on intermediary platform, this

paper designs a crowdsourcing information obtaining
scheme aiming at senior netizens based on blockchain. The
scheme does not need intermediary platform, and in order
to satisfy the absolute dependence of senior netizens on
personal anonymity, the scheme uses the certificateless mul-
tireceiver anonymous signcryption scheme to release infor-
mation requirements and rewards, so as to ensure the
identity anonymity of the outsourcer and the contractor
and the confidentiality of crowdsourcing information. In
the submission stage, a temporary public-private key pair
is generated for the contractor, and the contractor uses the
temporary private key to sign and return the data to ensure
the identity anonymity of the contractor in the process of
submitting information for many times; in the process of
reward accounting, the outsourcer uses the one-time tem-
porary public key of the contractor to signcrypt the reward,
so as to ensure the anonymity of its identity and the secrecy
of the remuneration, and at the same time realize the
untraceability of the consumption. Compared with the pri-
vacy protection of similar schemes, this scheme has obvious
advantages.
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Intelligent diagnosis method has become a new focus for researchers, which can get rid of the dependence of diagnostic experience
and prior knowledge. However, in practical application, to deal with the new fault type of mechanical equipment, the number of
fault labels of the diagnosis model needs to be increased. We must retrain the whole training model, which is a time-consuming
process. To solve this problem, higher requirements are put forward for the generalization ability and universality of the
algorithm. In view of the feature extraction advantages of cross-sparse filtering (Cr-SF), which can be regarded as an
unsupervised minimum entropy learning method using the maximization of the proxy of sparsity, this paper proposed a
parallel network based on Cr-SF. The feature extraction process of each sample is independent, and the feature extraction and
classifier training process are separated. Therefore, the most prominent advantage of the proposed method is that when a new
fault occurs, it only needs to extract the feature of the new fault separately and then input it to the classifier at the last layer for
training. The experimental results show that the proposed method can obtain high accuracy and stability and can significantly
improve the adaptability of intelligent fault diagnosis in practical application.

1. Introduction

As the key parts of mechanical transmission, bearings and
gears are prone to failure during the runtime, which may
reduce the working efficiency and even cause accidents and
disasters [1]. Therefore, accurate early warning and corre-
sponding maintenance measures when bearing and gear fail-
ure are of great significance to ensure the safe operation of
mechanical equipment [2]. With the rapid development of
machine learning theory, intelligent fault diagnosis method
of rotating machinery has become an important topic in the
area of health monitoring of mechanical equipment [3, 4].

Recently, deep learning-based intelligent rotating
machinery fault diagnosis, which can automatically extract
the features from original data, has achieved remarkable suc-
cess [5–7]. These methods have great performance to over-
come the inherent disadvantages of traditional machine
learning methods, such as Support Vector Machine (SVM),

Artificial Neural Network (ANN), and Principal Component
Analysis (PCA). Jia et al. [8] proposed a novel intelligent
method based on DNNs to overcome the shortcomings of
the traditional methods, which can adaptively learn the fault
features and obtain superior diagnostic accuracy and robust-
ness. Wang et al. [9] improve the computation efficiency of
feature extraction using batch normalization based Stacked
Autoencoders (SAEs). Li et al. [10] enhanced the feature
learning ability using S-transform (ST) algorithm and con-
nected convolutional neural networks (CNN). Shao et al.
introduced Gaussian visible units to the electric locomotive
bearing fault diagnosis based on Convolutional Deep Belief
Network (CDBN) [11, 12]. The literature [13] presented a
novel deep autoencoder loss function based on maximum
corr-entropy to eliminate the effects of background noise. To
estimate the irregularity of the collected time series, Li et al.
[14] proposed a multiscale symbolic Lempel-Ziv- (MSLZ-)
based intelligent fault diagnosis method and successfully
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applied it the multiple fault diagnosis of railway vehicle sys-
tems. In [15], a novel feature learning method named multi-
scale symbolic dynamic entropy (MSDE) was firstly
proposed and then combined with transfer learning to obtain
the mapping matrix and achieve the novel cross-domain intel-
ligent fault diagnosis. In [16], the MSDE-based fault diagnosis
method was applied to the planetary gearboxes and shows
superior advantages in terms of computation efficiency and
robustness. Wang et al. [17] proposed subdomain adaptation
transfer learning network to reduce adaptively marginal and
conditional distribution biases. Jia et al. [18] proposed a partial
transfer fault diagnosis model based on a weighted subdomain
adaptation network (WSAN), which focuses on the distribu-
tion of local feature while aligning the global distribution.

However, deep learning requires training all types of
fault samples simultaneously. Therefore, if new fault types
appear in the application process, we need to retrain and
reoptimize a lot of parameters simultaneously with a large
number of training data. This is a time-consuming process
and will affect the real-time application of the monitoring
system. The main reason for this problem is that deep learn-
ing requires all label data to participate in feature extraction
and classification training. Lei et al. [19] applied sparse filter-
ing and softmax classifier to the intelligent diagnosis bearing
faults, which is a two-stage model, and feature learning and
classification training are independent of each other.
Although the feature learning and classifier training of these
methods are separated, the feature learning is still carried out
simultaneously for all fault types. Parallel network structure
is an effective way to solve this problem, in which each fault
can be trained separately. In this way, the feature learning
process is an independent process for each type of fault con-
dition. In [20], a concurrent convolution neural network (C–
CNN) composed of multiple branches was proposed for
bearing fault diagnosis, in which the convolutional layer of
different branches selects the kernels with different scales
in same level. In view of gearbox structure and operating
condition, Guo et al. [21] established reinforced input-
based multitask parallel convolutional neural network for
coupling fault diagnosis of gearbox that has parallel submul-
tiple classifiers and convolutional neural networks. This
method is to overcome the problem that all kinds of shared
features of multiparts cannot be adequately extracted simul-
taneously. The independent training of single fault sample
cannot be realized.

The independent training of samples puts forward
higher requirements for the feature extraction algorithm.
In an unsupervised learning method, sparse representation
is the core principle [22]. Data sparsity corresponds to infor-
mation entropy. The sparser the data is, the smaller the

entropy is. In [23], Zennaro and Ken’s study a thorough the-
oretical analysis of SF and the corresponding performance
and proved that the SF works by explicitly maximizing the
entropy of the learned representations through the maximi-
zation of the proxy of sparsity. Zhang et al. introduced gen-
eralized normalization to the sparse filtering and discussed
the lifetime and population sparsity [24]. In [25, 26], Intrin-
sic Component Filtering (ICF) and Cr-SF, the improved var-
iants of standard SF, were proposed for the in intelligent
fault diagnosis, weak feature extraction, and compound sep-
aration. Cr-SF is a variant of SF. Therefore, Cr-SF can be
regarded as an unsupervised minimum entropy feature
learning method, in which the entropy of the extracted fea-
tures is measured as cross-sparsity. Considering the advan-
tages of Cr-SF in extracting features of small sample [25],
this paper proposes parallel Cr-SF networks.

Firstly, each type of fault sample is trained through Cr-
SF to learn the weights of each fault condition. The second
step is feature selection and optimization, in which the most
representative features are selected to arrange and combine
the features of the whole fault conditions. The third step is
to input the entire features and label data into the classifier
for training. In this way, when new fault type data appears
and the trained monitoring system needs to be upgraded,
we only need to extract the features of the newly added data
and add the features to the existing feature matrix to retrain
the classifier. There is no need to retrain all training samples,
which saves the time of system upgrade.

The rest of this study is organized as follows. Section 2
introduces Cr-SF and the proposed structure of parallel
network. Section 3 verifies the effectiveness of the pro-
posed method through rolling bearing and planet gear
fault datasets. The visualization of weights and features is
discussed in Section 4. Finally, the conclusions are given
in Section 5.

2. Proposed Method

2.1. Cross-Sparse filtering. As shown in Figure 1, cross sparse
filtering is the variant of SF, Which can be regarded as a two-
layer neural network. The optimization process of Cr-SF is
simultaneous for the rows and columns of feature matrix.
Therefore, the objective function is composed of two terms:
l1/2-norms of rows and l1/2-norms of columns of feature
matrix. Suppose the input dimension and output dimension
of Cr-SF are N in and Nout. The collected original signal x
∈RN is randomly segmented into a matrix segment matrix
S ∈RN in×M , where M =Ns1 ×m, m is training samples num-
ber, and Ns1 is the segment number.

Input samples

Weight matrix

Feature vector

Figure 1: Architecture of sparse filtering.
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First, the local feature matrix F∈RNout×M is activated by
the product of weight matrixW ∈RNout×N in and input matrix
S ∈RN in×M , that is, F=WS.

Second, the objective function of Cr-SF can be constructed
by the l1/2-norms of rows and l1/2-norms of columns of the
feature matrix F. The two terms can be written as

L1 =
Fi

Fi
�� ��

2

�����

�����
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, ð1Þ
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F j
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�����
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Then, weight vectors are constrained to its l2-norm sphere
to eliminate the influence of redundancy in an optimization
process. Therefore, the final objective function of the Cr-SF
can be expressed as

L = 〠
M

i

L1 + λ〠
N in

j

L2S · T Wi�� ��
2 = 1, ð3Þ

where λ ≥ 0 is an adjustable parameter that adjusts the priority
of two items in the sparse optimization process. According to
the discussion of references [26], the value of λ is 1 in this

paper. Due to the fact that L is nonconvex and nonsmooth.
jFj is replaced by a soft-absolute function

ffiffiffiffiffiffiffiffiffiffiffi
F2 + ε

p
, where ε is

a small number and equals 1 × 10−8.
Third, the sparse optimization process uses the L-BFGS

algorithm. The gradient function of the objective function
can be given by
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where o ∈RN in×M is a matrix of all ones.
As discussed earlier, the optimization of Cr-SF is a cross-

sparse optimization process. In order to show more clearly,
we present the optimization diagram of SF and Cr-SF in
Figure 2. It can be seen that the optimization of SF is a pro-
cess in which the column features are gradually sparse under
row competition constraints. As one feature increases, the
other must decrease to ensure the direction of optimization.
Cr-SF is a sparse optimization of column features and row
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Figure 2: Schematic diagram of the optimization target and the constraints of various methods.
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features at the same time. The sparse process between col-
umn feature and row feature is separate. For a 2-to-2 matrix,
the ideal result of Cr-SF will become a standard orthogonal
matrix.

2.2. Parallel Networks Using Cr-SF. This section presents the
parallel networks based on the Cr-SF. Figure 3 shows the
flow chat of the parallel diagnosis model. The general proce-
dures can be summarized as follows.

(Step 1) Model training: different from the traditional
intelligent fault diagnosis methods, the pro-
posed method trains different fault conditions
separately. Specifically, suppose that the num-
ber of input fault types is L. The fault datasets
with same fault type are input into Cr-SF,
respectively. Each sample is randomly seg-
mented into a matrix. The sample features are
activated through formulas (1)–(3), and the

Vibration Data 

……

Softmax regression 

Overlap segment processing

Label vector

Condition 1 Condition 2

Cr-SF Cr-SF Cr-SF

Condition Condition N

… …

Parallel Cr-SF

Feature learning
process 

Feature learning
process 

Feature learning
process 

Weight matrix 1 Weight matrix 2 Weight matrix N

Feature selection
and combination 

Cr-SF

New condition 

Feature learning
process 

New weight matrix

New fault types
during application 

Cr-SF

Overlap segment
processing 

New label 

New feature 

Figure 3: Parallel network structure of the proposed method.
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weights are optimized following formula (4).
The trained weights Wi are obtained, where i
is the number of fault type.

(Step 2) Feature selection and arrangement: local fea-
tures Fi ∈RNout×M can be calculated using the
non-linear activation function and the trained
weights, Fi = Logð1 +WiSiÞ. The local features
are averaged to obtain the features of each fault
sample, fi = ð∑Ns

j=1F
j
iÞ/Ns2, where Ns is the num-

ber of segments. According to the order of
eigenvalues from large to small, n features are
selected as the final features of fault samples.
Then, the features of all fault samples are
arranged and combined into a feature matrix f
=Rn×m as the input of softmax, where m is
the number of training samples.

(Step 3) Classifier training using the learned features
ffigmi=1 and the corresponding label set fyigmi=1.
ffigmi=1 and fyigmi=1 are fed into the softmax clas-
sifier, where yi ∈ f1, 2, 3,⋯, kg denotes the label
vector of each fault type. The hypothesis hθðfÞ
can be written as
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where pðyi = j ∣ fÞ means the probability for
each feature and θ1, θ2,⋯, θk are the parame-
ters of softmax model.

The cost function of the softmax regression is a cross-
entropy function and takes the form
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where m is the training samples number and k is the cate-
gory number and 1f∙g is the indicator function.

After the model is trained, the features of the online
monitoring data are extracted through the trained weights
and then input into the softmax classifier to realize feature
recognition.

As shown in Figure 3, when a new fault needs to be
added, the features of the new fault sample data can be
trained through Cr-SF, and then the trained weights and fea-

tures are selected and arranged according to the way in Step
2 to establish a new weight matrix, and then feature extrac-
tion and classifier training are carried out for all fault sam-
ples. In this way, the newly added fault data does not need
to be trained at the same time with the existing fault data.
It only needs to train the classifier after combining the
trained features.

3. Experimental Validation

In this paper, the planetary gear and rolling bearing datasets
are employed to demonstrate the proposed parallel diagnosis
model. It should be noted that the proposed model is actu-
ally a process of adding new faults when training multiple
fault types. Therefore, this study does not separately verify
the accuracy of the experiment adding new faults. We only
need to compare the accuracy of multifault diagnosis and
the training time of adding a new fault.

3.1. Rolling Bearing Data Verification. In this experiment,
the rolling bearings fault datasets, which provided from the
Case Western Reserve University Lab, are used to demon-
strate the diagnostic performance of the proposed method.
The motor bearing test bench is mainly composed of an
induction electrical motor, the testing bearings, and an
acceleration sensor. Two vibration sensors are installed at
the drive end and output end of the motor, respectively. This
experiment consists of four different fault types: normal con-
dition (NC), inner race fault condition (IF), outer race fault
condition (OF), and roller fault condition (RF). For each
fault type, three different severity levels (0.18, 0.36, and
0.53mm) are designed. Therefore, this experiment totally
contains ten kinds of fault conditions. During data acquisi-
tion, the sampling frequency is set to 12 kHz. Each sample
contains 1200 data points. Each health condition includes
100 vibration samples under one load, and there are 1000
samples for this study, as shown in Table 1.

In the experimental verification, the output dimension
Nout of the parallel neural unit is 20 and the input dimension
N in is 100. Figure 4 shows the comparison of accuracy, stan-
dard deviation, and computational time obtained by differ-
ent methods with the change of percentage of training

Table 1: Description of the ten bearing working conditions.

Fault
condition

Fault diameter
(mm)

Motor load
(HP)

Sample
number

Condition
label

NC — 0 400 1

OF 0.18 0 400 2

OF 0.36 0 400 3

OF 0.53 0 400 4

IF 0.18 0 400 5

IF 0.36 0 400 6

IF 0.53 0 400 7

BF 0.18 0 400 8

BF 0.36 0 400 9

BF 0.53 0 400 10
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data. Firstly, by comparing Figures 5 and 4, it can be seen that
under the same output dimension, the parallel structure per-
forms a negative impact on the accuracy and calculation time.
When the standard SF algorithm is transformed to parallel net-
work, the accuracy decreases and the calculation time is longer.
The reason may be that the structure needs to calculate more
times and the number of training samples of each parallel neu-
ral unit is much smaller than that of the traditional structure.
Therefore, the experimental results also verify the problem
mentioned in the preface: the parallel structure requires higher
feature extraction ability of neural units in small samples.

As can be seen from Figure 6, compared with the other
methods, a parallel Cr-SF network has significantly improved
in the accuracy due to the stronger feature extraction ability of
Cr-SF. For example, when the proposed method is trained
with by only 2% data, the accuracy is above 99% and the stan-
dard deviation is only 0.81%. While when the parallel SF net-
work is trained with 15% samples, the accuracy rate is only
98.4% and standard deviation is 1.2%. With the increasing of

the percentage of training data, the accuracy increases. When
the percentage of training data is above 3%, the accuracy of the
proposedmethod can reach a relatively stable state. The exper-
imental results show that the proposed method has higher
accuracy and better robustness in case of small samples. The
accuracy and stability of feature extraction based on Cr-SF
are the premise to ensure the use of parallel network structure.

Figures 7 and 8 show the impact of the different feature
dimension of each condition on the diagnosis performance.
The output dimension Nout of the parallel neural unit is
20, the input dimension N in is 100, and the percentage of
training data is 10%. It can be observed that the test accuracy
of parallel SF gradually increases, when the dimension is 20,
which means the input dimension of softmax is 200, the
accuracy is 98.4%, and the standard deviation is 1.2%. How-
ever, when the dimension is greater than 8, the accuracy of
parallel Cr-SF is relatively stable, and the accuracy can
achieve above 99.9%. In this case, the input dimension of
softmax is only 80.
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Figure 4: Diagnostic results of parallel SF with different percentage of training data.
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Figure 6: Diagnostic results of parallel Cr-SF with different percentage of training data.
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3.2. Gear Data Verification and Analysis. In this experiment,
the vibration data is collected from the driving end of the
planetary gearbox on the test bench, as shown in Figure 9.
The test bench is composed of a motor with a rated speed
of 1500 rpm, a planetary gearbox with three planetary gears,

a multichannel data acquisition system, a three-way acceler-
ation sensor, and a tachometer. In order to increase the
interference of the environment, the test-bed is placed in
an assembly workshop, and the base of the test-bed has no
shock absorber. This test simulates four health conditions

(a) (b) (c)

(d) (e) (f)

Figure 9: Gear fault feature and test bench diagrams. (a) Test rig, (b) schematic of the gearbox, (c) triaxial accelerometer, (d) normal gear,
(e) worn teeth, and (f) broken teeth.
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Figure 10: Diagnostic results of parallel SF with different percentage of training data.
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Figure 11: Diagnostic results of parallel Cr-SF with different percentages of training data.
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of planetary gears, namely, normal working condition (NC),
planetary gear wear fault (WF), planetary gear broken tooth
(BT), and compound fault of broken tooth and wear (CF).
The sampling frequency is set as 12.8 kHz. There are 600
samples under each health condition. Each test data includes
2400 sample points.

The diagnostic results using parallel SF and Cr-SF with
various percentage of training data are shown in Figures 10
and 11. In this experiment, the parameter settings are con-
sistent with the previous verification. The diagnostic results
show a pattern similar to that in the previous section. With
the increase of the percentage of training data, the accuracy
increases gradually. The diagnostic results of parallel SF were
significantly worse than those of parallel Cr-SF. Taking the
training percentage of 3% as an example, the accuracy of
parallel Cr-SF is 99:28% ± 0:59%, but the accuracy of parallel
SF is only 80:17% ± 5:3%. When the training percentage is
greater than 3%, the accuracy is above 99%. The diagnostic
results show that the proposed method can ensure higher
diagnosis accuracy and robustness with fewer samples.

Figures 12 and 13 show the changes of accuracy and
standard deviation of the two methods with the increase of
feature dimension of each condition. The percentage of
training samples was 10%. When only two features are used
to express the fault condition, the accuracy of the proposed
method can reach 97.28%, and the standard disassembly is
only 1.62%, which is much better than parallel SF. When
the feature dimension is equal to 8, the accuracy can reach
99.83%.

4. Discussion on Feature and
Weight Visualization

In order to further intuitively explain the performance of the
proposed method and its feature extraction process, the
visualization of weights and features are studied in case of
10% of training samples.

As shown in Figure 14, it is obvious that the learning fea-
tures of Cr-SF are sparser, and there are only a few principal
components in the features, which can explain why the
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Figure 12: Diagnostic results of parallel SF with different feature dimensions of each condition.
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accuracy of the proposed method does not change signifi-
cantly after the feature number is 8; all the main features
have been selected in this case. The value of features of SF
has little change and performs poor sparsity. At this case,
more features need to be selected to express the main fault
information to achieve high diagnostic accuracy. Therefore,
the feature learning process of Cr-SF performs stronger
robustness and better sparsity, which is the key to ensure
the accuracy and robustness of the proposed algorithm in
the diagnosis process.

In order to further explain the sparsity of features, Fou-
rier transform is carried out on the learned filters to obtain
the corresponding spectrum, as shown in Figure 15. It can
be seen that the frequency components of the filters learned
by the proposed method are clearer, and the energy of the
filters is concentrated in a specific frequency range. How-
ever, the noise interference of the filters learned by SF is
obvious. Compared with Cr-SF, there are many noise distur-
bances, especially in the low frequency band. It should be
noted that some filters learned by Cr-SF contains high-
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Figure 14: Learned feature vectors of each condition: (a) parallel Cr-SF and (b) parallel SF.
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frequency noise. However, we find that the peak value of
characteristic frequency in these filters is small. The corre-
sponding feature value is very small. The characteristic
amplitudes corresponding to these filters are close to 0.
Therefore, these features can be discarded in the process of
feature selection.

5. Conclusions

This paper presents a parallel network structure based on the
Cr-SF, a minimum entropy unsupervised learning method.
The proposed method solves the problem that the detection
system is required to retrain the whole model when new
faults are added in real industrial application. The experi-
mental verification is carried out using the fault data of bear-
ing and planetary gearbox. The results confirm that the
proposed method can ensure the sparsity and training
robustness of the feature extraction process and performs
superior diagnostic accuracy, stability and computational
efficiency comparing with the traditional methods. In the
proposed method, fault feature training and classifier train-
ing are separated, and the training of each fault type is
implemented independently. When a new fault is added, it
only needs to extract the features of the new fault and then
input them into the classification for retraining.

The limitation of the proposed method is that there is no
clear judgment principle in the feature selection process. In
some cases, the magnitude of the amplitude does not indi-
cate the importance of the feature, especially in the strong
interference environment. Therefore, the future works of
authors will focus on more advanced feature selection
methods to further improve the performance of the pro-
posed algorithm.
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In the series arc fault detection of a low-voltage distribution network, the features of the fault current signal are easily submerged
and arc fault features are difficult to be represented, which greatly increases the difficulty of fault arc detection based on current
signals. To solve these problems, a series arc fault detection method combining CEEMDAN decomposition and sensitive IMF
selection is proposed. In this paper, the CEEMDAN algorithm is first applied to complete decomposition of the arc current in
series faults. Then, 12 feature indicators of the arc current are defined and the frequency band division of the IMF component
is realized according to the kurtosis index and energy feature which are more sensitive. The time window-based feature
calculation method is proposed to obtain the local features of the time scale of each high-frequency IMF component. Accurate
selection of sensitive IMF components is realized by comparing feature indexes such as the variance and root mean square
value. Finally, for the current feature set, the second dimension reduction is realized by the subspace transformation algorithm
and the series arc fault detection is realized based on the SVM. The actual experiments show that the optimal detection
accuracy of the proposed method is 91.67% and the average accuracy of 10 crossvalidation experiments is 88.33%. It shows
that the proposed sensitive IMF selection method can effectively capture the fault component signals in the current and the
proposed fault feature description method has good representation and discrimination ability.

1. Introduction

In the low-voltage distribution network, arc fault is easily
caused by line insulation damage and loose terminal. Local
high temperature associated with arc fault can easily lead
to electrical fire accident. Arc faults are divided into series
arc, parallel arc, and ground arc. When a series arc fault
occurs, it is equivalent to a series of time-varying resistor
in the circuit, which will easily lead to the fault current sim-
ilar to the load current. Sometimes, the waveform character-
istics of the fault current are difficult to distinguish from the
characteristics of the nonlinear load current [1–3]. It is the
above factors that bring great difficulties to series arc detec-
tion and make it become a hot and difficult research area of
arc detection [4, 5].

Arc fault detection methods can be divided into two cat-
egories: (1) arc detection based on the physical characteris-
tics of arc light, arc sound, and temperature and (2) arc

detection based on time-frequency domain analysis of the
arc voltage or current signal [6, 7]. Due to the randomness
of the location of the arc fault, the first detection method is
mostly used in electrical switchgear and its application in
line arc fault detection is limited [8, 9]. The time-frequency
analysis method based on current and voltage signals of
monitoring points has become a research hotspot in arc fault
detection. The current detection method can protect the
downstream branch arc fault by installing the monitoring
point in the upstream of the line. Therefore, compared with
the voltage detection method [10], its applicability and flex-
ibility is stronger and more favored by researchers [11, 12].

Fourier transform is widely used in early arc fault detec-
tion [13]. The essence of this method is to decompose the
electrical signal into the superposition sum of multifre-
quency sine waves, which transform the time domain
problem into the frequency domain for analysis. Fourier
transform realizes the correlation between the time domain
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and frequency domain of electrical signals, but signal analy-
sis can only be implemented independently in the time
domain or frequency domain, not simultaneously. Due to
the sound adaptability, wavelet transform can realize multi-
scale time-frequency analysis of the signal, which has been
applied in the analysis of mechanical fault signals [14] and
arc fault signals [15, 16]. Wang et al. [17] proposed a hybrid
time and frequency analysis and fully connected neural net-
work- (HTFNN-) based method to identify the series AC arc
fault. Firstly, the samples are roughly divided into the resis-
tive category, capacitive-inductive category, and switching
category. Then, in each category, a separate fully connected
neural network is used to identify the fault and the method
achieves high identification accuracy. Chu et al. [18] pro-
posed a novel high-frequency coupling sensor for extracting
the features of low-voltage series arc faults. In the method,
high-frequency feature signals under different loads are col-
lected and transformed into two-dimensional feature gray
images, which are used to train the convolutional neural net-
work to realize series arc fault detection. Experiments show
that the method is stable and universal.

Hilbert-Huang transform (HHT) [19] is a typical non-
linear and nonstationary signal processing method, and its
key step is empirical mode decomposition (EMD). EMD
can decompose complex signals adaptively into several
intrinsic mode functions (IMF), but this method has a seri-
ous mode mixing problem, which affects the performance
of HHT [20]. Therefore, Wu and Huang [21] proposed the
ensemble empirical mode decomposition (EEMD). By intro-
ducing Gaussian white noise with uniform frequency distri-
bution into the signal to be decomposed, EEMD overcomes
the problem of intermittent signal and avoids mode mixing.
However, due to the interference of white noise, the recon-
structed signal is easy to be distorted. Cheng et al. [22] pro-
posed an enhanced periodic mode decomposition (EPMD)
algorithm for accurate extraction of periodic pulses from
rolling bearing composite fault signals, which effectively
improved the accuracy of bearing fault diagnosis.

In 2011, Torres et al. [23] proposed the complete
ensemble empirical mode decomposition with adaptive
noise (CEEMDAN), which further improves the accuracy
and completeness of decomposition signals and effectively
overcomes the problem of mode mixing. However, the
CEEMDAN algorithm has not been applied in arc current sig-
nal analysis. CEEMDAN can achieve complete signal decom-
position, but in arc fault detection, usually, only a few IMF
components are sensitive to the arc fault and can reflect the
characteristics of the fault arc. Most of the other IMF compo-
nents are invalid for arc detection and even contain more
interference information. Therefore, it is extremely difficult
to extract fault identification features from all IMF compo-
nents obtained by CEEMDAN decomposition and the inter-
ference features easily affect the accuracy of arc fault detection.

Based on the above analysis, in this paper, a series arc
fault detection method based on CEEMDAN decomposition
and sensitive IMF selection is proposed. The CEEMDAN
algorithm is used to decompose the current signal and
obtain the complete IMF components. Then, this paper pro-
poses a strategy to automatically select the sensitive IMF

from the all IMF components. In this strategy, the kurtosis
index and energy feature are taken as the basis to determine
the fundamental frequency boundary and achieve frequency
division. For high-frequency IMF, we design a local feature
extraction method based on the time window. Using the
number of fundamental frequency periods as the interval,
IMF in the high-frequency band is divided into some non-
overlapping time windows and the feature indexes of the sig-
nal are calculated in each time window. The sensitive IMF
component with the strongest discriminability is selected
adaptively based on the feature indexes such as variance
and root-mean-square amplitude. After sensitive IMF selec-
tion, the local features of the best IMF component are used
as the feature description of the current signal, which can
be used to construct the current feature database. Finally,
the subspace transformation algorithm is used to implement
secondary dimension reduction for current features and the
support vector machine (SVM) is used to the series arc fault
detection. Experimental results show that the combination
of CEEMDAN decomposition and sensitive IMF selection
strategy, as well as the local feature construction method
based on the time window, can effectively capture the dis-
criminant features of the series arc, which realize the reliable
detection of the arc fault.

The main highlights of the proposed method are gener-
alized as follows:

(1) To obtain complete decomposition results of fault
current signals, the CEEMDAN decomposition algo-
rithm is first applied to current signal decomposition

(2) To extract the strongest discriminative IMF compo-
nent, a method of frequency division and an accurate
selection method of sensitive IMF are proposed

(3) To overcome the difficulty in fault feature represen-
tation, a local feature calculation method based on
the time window is proposed and 12 feature indexes
are defined to express fault features

(4) To better improve the effectiveness of series arc fault
features and fault detection accuracy, this paper
adopts subspace transformation for feature compres-
sion and SVM for fault detection

The remainder of this paper is structured as follows: in
Section 2, the CEEMDAN algorithm is described. The fea-
ture calculation methods of the current signal are illustrated
in Section 3. In Section 4, the selection method of the sensi-
tive IMF component and the series arc fault detection
method are proposed. Detailed experiments and analyses
are performed in Section 5. In Section 6, the conclusions
are drawn.

2. CEEMDAN Algorithm

Mode mixing refers to the phenomenon that a single IMF
component contains multiple components with different fre-
quencies or the same frequency component is decomposed
into different IMF components. Mode mixing is usually
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caused by the intermittency of the signal. Therefore, the
EEMD algorithm introduces Gaussian white noise into the
signal to be decomposed, which makes the signal become
continuous at different scales and alleviates the mode mixing
problem. However, the EEMD algorithm cannot completely
eliminate the introduced noise interference, which makes
the reconstructed signal distortion. In each stage of EMD
decomposition of signals, the CEEMDAN algorithm adap-
tively adjusts the noise coefficient to generate Gaussian
noises with different SNR introduced into the signals to be
decomposed, which can avoid mode mixing and eliminate
the interference of false information. The algorithm steps
are as follows:

(1) Gaussian white noise niðtÞ is added to the original
signal xðtÞ. The signal with added noise is xðtÞ + γ0
niðtÞ, where γ0 is the noise coefficient. EMD is used
to perform I decomposition for the signal with noise.
The first IMF component IMF1ðtÞ and the corre-
sponding residual component r1ðtÞ of CEEMDAN
are obtained through integration averaging:

IMF1 tð Þ = 1
I
〠
I

i=1
IMFi1 tð Þ,

r1 tð Þ = x tð Þ − IMF1 tð Þ,
ð1Þ

where I is the number of decomposition

(2) Assume that EMDjð⋅Þ is the j th mode function of
EMD decomposition. Decompose the signal r1ðtÞ + γ1
⋅ EMD1½niðtÞ� to obtain the second IMF component
of CEEMDAN:

IMF2 tð Þ = 1
I
〠
I

i=1
EMD1 r1 tð Þ + γ1 ⋅ EMD1 ni tð Þ½ �ð Þ ð2Þ

(3) Calculate the k-order residual component:

rk tð Þ = rk−1 tð Þ − IMFk tð Þ, ð3Þ

where IMFkðtÞ is the kth IMF component. EMD decomposi-
tion is performed for the k th signal rkðtÞ + γkEMDkðniðtÞÞ
until the first IMF component is obtained. On this basis,
the ðk + 1Þth IMF component of CEEMDAN is calculated:

IMFk+1 tð Þ = 1
I
〠
I

i=1
EMD1 rk tð Þ + γk ⋅ EMDk ni tð Þ½ �ð Þ ð4Þ

(4) The above calculation steps are repeated until the
residual components can no longer be decomposed

and all K IMF components of CEEMDAN are
obtained; the remaining residual RðtÞ is

R tð Þ = x tð Þ − 〠
K

k=1
IMFk tð Þ: ð5Þ

Therefore, after decomposition, the initial signal can be
expressed as

x tð Þ = 〠
K

k=1
IMFk tð Þ + R tð Þ: ð6Þ

The CEEMDAN method can realize complete recon-
struction of the original signal based on noise-assisted
analysis. Gaussian noises with different SNR are adjusted
adaptively by noise coefficient and introduced into the signal
to be decomposed, which improves the decomposition effect
of EMD effectively

3. Feature Calculation of the Current Signal

Learn from the feature calculation method commonly used
in mechanical fault diagnosis [24, 25], for each IMF compo-
nent of the current signal; this paper defines 9 statistical fea-
ture indicators, as well as the energy feature, entropy feature,
and energy entropy feature to form a 12-dimensional current
feature vector. Assume that K IMF components are obtained
after CEEMDAN decomposition and each component
sequence contains N sampling points, i.e., x1, x2,⋯, xi,⋯xN ,
where i represents the ith sampling point. The 12 feature
indicators are defined as follows:

The mean value is

�X = 1
N
〠
N

i=1
xi: ð7Þ

The variance is

σ2 = 1
N‐1〠

N

i=1
xi − �X
� �2 ð8Þ

The root-mean-square value is

XRMS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
xið Þ2

vuut ð9Þ

The root amplitude is

Xr =
1
N
〠
N

i=1
xij j

 !2

ð10Þ
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The average amplitude is

�Xa =
1
N
〠
N

i=1
xij j ð11Þ

The peak is

Xp =max xij jð Þ ð12Þ

The kurtosis is

K = 1
N − 1〠

N

i=1

xi − �X
� �4

σ4 ð13Þ

The kurtosis index is

Kf =
K

X4
RMS

: ð14Þ

The margin index is

Lf =
Xp

Xr
: ð15Þ

The energy feature is

E = 〠
N

i=1
xið Þ2: ð16Þ

The entropy feature is

H = −〠
N

i=1
P xið Þ lg P xið Þ, ð17Þ

where Pð⋅Þ is the probability.
The energy entropy features are

HEN = −〠
N

i=1
Pi lg Pi, ð18Þ

where Pi = Ei/∑K
i=1Ei and Ei represents the energy of the ith

IMF component.
After the above calculation, each IMF component

containing N sampling points is transformed into a
12-dimensional eigenvector, which reflects the overall state
of the signal sequence.

4. Selection of the Sensitive IMF Component
and Series Arc Fault Detection

4.1. Fundamental Frequency Determination and Frequency
Division. The 12 feature indexes defined in this paper reflect
the characteristics of IMF components at different frequen-
cies, among which the kurtosis index and energy feature
have strong sensitivity to current signal fluctuations. There-
fore, based on these two indicators, this paper divides the

frequency bands for all IMF components. In our study, it
is found that when the kurtosis index is the minimum value
and the energy feature is the maximum value, the corre-
sponding IMF component has the smallest fluctuation range
and contains the most information. This component is the
fundamental frequency component of the arc current signal,
which is selected as the boundary of division. Therefore, the
IMF component above this frequency is the high-frequency
signal and the IMF component below this frequency is the
low-frequency signal.

Since the current that causes the arc fault is usually a
high-frequency signal, so after frequency division, feature
index calculation and feature extraction only need to be car-
ried out for the initially selected high-frequency signals. It
can not only reduce the complexity of feature index calcula-
tion, feature extraction, and fault detection but also avoid the
interference of low-frequency signals and improve the accu-
racy of arc detection.

4.2. Local Feature Calculation and Selection of Sensitive IMF
Components. The global feature obtained from all N sam-
pling points of IMF component data participating in index
calculation can reflect the overall change of signals, which
reflects the characteristics of signals of different frequency
components in a macroscopic view. In the high-frequency
band, the global features of some IMF components with sim-
ilar frequencies are almost the same and the crucial features

Current signal

CEEMDAN decomposition

Frequency division and high
frequency signal selection

Time window local feature
calculation

Sensitive IMF selection

Construction of current
feature database

Secondary feature extraction and
arc detection

Figure 1: The overall flow chart of the proposed algorithm.
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that distinguish fault current signals are easily covered up.
Therefore, from the microviewpoint that the feature indexes
need to fully reflect the local changes of the arc current sig-
nal, a calculation method of local feature indexes based on
the time window is proposed. Then, the most sensitive
IMF component is accurately selected from the high-
frequency IMF components based on the time window local
features. The algorithm steps are as follows:

(1) Determine the period numberM of the fundamental
frequency IMF

(2) According to period number M, the high-frequency
IMF components are divided intoM nonoverlapping
time windows, namely, IMFi1,IMFi2,⋯, IMFiM , where
i represents the ith IMF high-frequency component

(3) For M time windows of the ith IMF component, 12
feature values are calculated according to the index
definition formula, e.g., the feature of the jth window
Fi
j = ½�X, σ2, XRMS, Xr , �Xa, Xp, K , Kf , Lf , E,H,HEN �.

Therefore, the feature formed by the ith IMF compo-
nent is M × 12 dimensions, i.e., Fi = ½Fi

1, Fi
2,⋯,Fi

M�
(4) The variance σ2, root mean square value XRMS, root

amplitude Xr , average amplitude �Xa, energy feature
E, and energy entropy feature HEN of each time win-
dow in the IMF component are selected as the judg-
ment indexes

If the fluctuation of the above judgment indexes in the
front and back time windows (such as the jth and ðj + 1Þth
windows) is less than the threshold θ, it indicates that the
signals in each window of the IMF component are stable.
That is, the IMF does not contain the current information
causing the fault arc.

If the judgment indexes in the front and back time win-
dows (such as the jth and ðj + 1Þth windows) have obvious

jump changes and the jump amplitude is greater than or
equal to the threshold θ, it indicates that the signal in the
IMF component is not stable. That is, the IMF contains
the current information causing the fault arc.

(5) Through above calculation and comparison, the IMF
component with the largest jump amplitude is selected
from the IMF components whose jump value of the
feature indexes in the front and back time windows
exceeded the threshold θ, which is the sensitive IMF
component. So, this component has the strongest dis-
crimination in the series arc fault detection

Local features with periodicity are captured by local fea-
ture calculation based on the time window, which can
express the signal change of the time scale in more detail.
It has obvious advantages and distinct degree for analyzing
the high-frequency signal fluctuation caused by the arc fault.
Based on this work, the selected sensitive IMF component
can better describe the key features of signals and improve
the accuracy of arc fault detection.

4.3. Series Arc Fault Detection. After the CEEMDAN decom-
position, sensitive IMF selection, and local feature calcula-
tion, the feature information of the best IMF component in

Schematic diagram of series fault arc generation circuit

Load

Current transformer

Fault arc generator

220V

N

L

(a) Schematic diagram of the series fault arc generation circuit

Fault arc generator Switch

Current transformer

Load: Computer Load: Microwave ovenLoad: Electric furnace

Oscilloscope

(b) Series fault arc generation circuit

Figure 2: Series fault arc generation platform.

Table 1: Current dataset under different loads.

Load type
Normal data

(group)
Fault data
(group)

Electric furnace
(400W)

10 30

Electric furnace
(800W)

10 30

Computer 10 30

Microwave oven 10 30
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the arc current is obtained. However, these features still con-
tain a lot of redundant information, even interference infor-
mation. Therefore, to improve the discriminant ability of the
features, it is very important to perform secondary feature
extraction and dimension reduction for the preliminary arc
current features.

Subspace mapping is to map feature vectors from the
original space to the new space by mathematical transforma-
tion, and the feature vectors in the new space have lower
dimension and more significant discriminant ability. Now,
the classic subspace feature extraction methods in machine
learning include PCA, LDA, ICA, KPCA, and KLDA [26].
In this work, the linear subspace mapping PCA and LDA
algorithms and the nonlinear subspace mapping KPCA
and KLDA algorithms are used for the secondary extraction
and dimension reduction of arc current features.

The support vector machine (SVM) [27] is a typical
binary classifier, which has unique advantages in solving
small sample, nonlinear, and high dimension pattern
recognition problems. It can mine the hidden decision
information of sample features to the maximum extent,
and it is widely used in the field of fault diagnosis. Therefore,
in this paper, the SVM is selected as the classifier of series arc
fault detection.

In summary, the overall flow of the proposed algorithm
is shown in Figure 1.

5. Experiment and Analysis

5.1. Current Signal Acquisition Platform. The circuit princi-
ple of the series fault arc generation platform is shown in
Figure 2. The input voltage is 220V and LPCT with a band-
width of 200 kHz is used as the current sensor. The arc fault

generator uses a copper electrode with a diameter of
10.0mm as the moving contact and a graphite electrode with
a diameter of 8.0mm as the reference static contact.

5.2. Current Dataset Construction. Based on the fault arc
generation circuit shown in Figure 2, the current signal is
collected by a recording device. The sampling frequency is
set to 50 kHz, and the sampling length is set to 20ms. The
current dataset constructed under different loads is shown
in Table 1.

Considering the load in the actual circuit can be divided
into three types: pure resistor load, resistor-inductance load,
and nonlinear load. The 800W electric furnace is selected as
the pure resistor load. When the furnace works at 400W, it
works in the state of half-wave rectification. Therefore,
800W and 400W electric furnaces basically cover the cur-
rent characteristics of resistor loads. A computer is a nonlin-
ear load, and its current waveform can represent most of the
switching power supply loads. A microwave oven belongs to
the nonlinear load with more inductance, which can repre-
sent the current characteristics of most resistor-inductance
loads. The above 4 kinds of loads are commonly used house-
hold appliances with higher frequency in life and can repre-
sent most loads, with typicality. In the experiment, 10
groups of normal current data and 30 groups of fault current
data are collected under each load. Figure 3 shows the com-
parison of current waveforms before and after the arc fault,
in which the first 5 periods are fault-free signals and the last
5 periods are fault signals.

5.2.1. Training Dataset. In the experiment, we randomly
select 5 groups of normal current data and 20 groups of fault
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Figure 3: Fault arc current waveforms under different loads.
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arc current data under 4 kinds of loads as training samples.
Therefore, the training sample set size is 100.

5.2.2. Test Dataset. The remaining 5 groups of normal cur-
rent and 10 groups of fault arc current under 4 kinds of loads
are taken as the test sample set, and the total number of test
samples is 60. In order to ensure reliable detection results,
the average accuracy of the proposed algorithm is evaluated
by 10 cross tests.

5.3. Decomposition Experiment of the Current Signal. In this
work, the CEEMDAN algorithm is used to decompose the
arc current signal and the results are shown in Figures 4
and 5. Figures 4(a) and 5(a) show the arc fault current wave-
form when the computer is used as the load and the micro-
wave oven is used as the load. The first 5 periods are normal
current waveform and the last 5 periods are fault current
waveform.

Experiments show that the CEEMDAN algorithm adap-
tively decomposes the current signals under computer load

and microwave load into 14 components and realizes the
detailed and complete decomposition of arc current signals
in different frequency ranges, which can effectively over-
come the mode mixing problem of the EMD decomposition
algorithm. Observing the decomposition results of
Figures 4(b) and 5(b), the component IMF10 contains 10
complete sinusoidal periodic signals whose frequency is con-
sistent with the original current signal. Therefore, IMF10
corresponds to the fundamental frequency component.
With IMF10 as the boundary, IMF1 to IMF9 are classified
as high-frequency signals, and IMF11 to IMF14 are classified
as low-frequency signals. The simple and clear division of
each frequency band indicates that the signal decomposition
is complete and no mode mixing occurs.

In addition, under computer load, high-frequency
decomposition signals show that IMF4, IMF5, and IMF6
components have significant differences in the time scale,
especially IMF5 and IMF6 which have good discrimination.
Under microwave load, the waveforms from IMF4 to IMF7
are significantly different before and after arc occurrence,
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especially IMF4 and IMF5 which have good differentiation
which contributes greatly to arc fault detection.

In conclusion, the CEEMDAN decomposition strategy
has a significant advantage in overcoming mode mixing
and the discriminant of decomposed component signals is
strong. Thus, it is feasible to select the CEEMDAN algorithm
for arc current signal decomposition in this paper.

5.4. Feature Calculation of the Arc Fault Current and
Sensitive IMF Selection. In order to make a better mathemat-
ical description of each IMF component and reduce the
complexity of the fault detection operation, we adopt statis-
tical feature indexes such as the mean and variance, as well
as the energy feature, entropy feature, and energy entropy

feature, a total of 12 feature values as the feature description
of each IMF component. Taking the decomposition results
shown in Figure 5(b) as an example, 12 features of 14 IMF
components are calculated and the feature matrix of 14 ×
12 dimension is constructed as shown in Table 2.

The data in Table 2 show that the 12 feature indexes
reflect different characteristics of multiscale IMF compo-
nents, among which the kurtosis index and energy feature
have strong discrimination. Therefore, by comparing the
kurtosis index and energy feature of each IMF component,
it can be clearly judged that IMF10 is the fundamental fre-
quency component. This component can be used as the
boundary of frequency division. IMF1–IMF9 correspond to
the high-frequency signals and IMF11–IMF14 correspond
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Figure 5: Fault arc current and decomposition results under microwave oven load.
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to the low-frequency signals. This conclusion is identical
with that obtained from the direct observation of
Figure 5(b) in Section 5.3. It further proves that the pro-
posed frequency division strategy is effective.

The current signals collected in our experiment all con-
tain 10 periods. Therefore, according to the local feature cal-
culation method of the time window, each IMF component
in the high-frequency band can be divided into 10 windows.
Then, 12 feature indexes such as the mean and variance are
calculated for each window. Table 3 shows the feature calcu-
lation results of IMF5 divided into 10 time windows in
Figure 5(b).

According to the data in Table 3, by comparing the
indexes such as the variance, root mean square, root ampli-
tude, average amplitude, energy feature, and energy entropy
feature, we can see that the index values of the first 5 periods
are significantly different from those of the last 5 periods. It
shows that this IMF component contains the information

that causes the arc fault, so this IMF component can be used
as one of the candidates of sensitive IMF components.

To accurately select the most sensitive IMF component,
in our experiment, the decomposition results under micro-
wave oven load are taken as an example. We calculate the
local features of the time window of 9 high-frequency com-
ponents including IMF1 to IMF9. After comprehensive com-
parison of all feature values, it is found that the features of
IMF4 in the first 5 periods and the last 5 periods had the largest
variation amplitude and the strongest distinguishing signifi-
cance. The feature values of other IMF components in the first
and last 5 periods also changed to some extent, but the ampli-
tude of change is lower than IMF4, and the differentiation
degree is weak. Therefore, the IMF4 component is selected as
the most sensitive component according to the principle of sig-
nificant differentiation and maximum variation amplitude.
Similarly, in the decomposition results under the computer
load in Figure 4(b), IMF6 is the most sensitive component.

Table 2: Calculation results of global eigenvalues of different IMF components.

IMF name Mean Variance Root mean square Square root amplitude Average amplitude Peak

IMF1 −1:03e − 4 4:75e − 4 0.0218 2:48e − 4 0.0157 0.3038

IMF2 −1:61e − 4 1:41e − 4 0.0119 7:45e − 5 0.0088 0.1235

IMF3 2:37e − 5 0.0027 0.0517 0.0010 0.0316 0.7145

IMF4 1:02e − 4 0.0016 0.0405 8:39e − 4 0.0290 0.3235

IMF5 1:37e − 4 0.0047 0.0682 0.0017 0.0408 0.6673

IMF6 −3:57e − 4 0.0065 0.0803 0.0028 0.0528 0.6124

IMF7 2:58e − 4 0.0090 0.0950 0.0050 0.0704 0.4450

IMF8 −2:21e − 4 0.0084 0.0918 0.0046 0.0682 0.5403

IMF9 0.0012 0.0572 0.2391 0.0369 0.1920 1.0379

IMF10 0.0129 5.1018 2.2588 4.1063 2.2064 3.5617

IMF11 −0.0034 0.0300 0.1731 0.0165 0.1286 0.5487

IMF12 9:22e − 4 0.0043 0.0653 0.0024 0.0488 0.2004

IMF13 0.0034 0.0017 0.0415 0.0012 0.0342 0.0917

IMF14 0.0160 0.0048 0.0711 0.0027 0.0520 0.2212

IMF name Kurtosis Kurtosis index Margin index Energy feature Entropy feature Energy entropy feature

IMF1 19.441 8:6e + 7 1:23e + 3 4.754 1.099 0.000841

IMF2 11.857 5:99e + 8 1:59e + 3 1.407 1.211 0.00028

IMF3 45.485 6:37e + 6 713.93 26.72 0.731 0.00376

IMF4 10.377 3:85e + 6 385.19 16.408 1.516 0.00263

IMF5 27.132 1:25e + 6 401.82 46.523 1.046 0.00626

IMF6 13.898 3:34e + 5 219.92 64.537 1.438 0.00828

IMF7 5.347 6:57e + 4 89.717 90.227 2.199 0.01071

IMF8 6.987 9:85e + 4 116.22 84.25 1.954 0.00986

IMF9 4.039 1:243 + 3 28.16 571.788 2.336 0.04906

IMF10 1.539 0.0591 0.8674 5:102e + 4 3.264 0.02517

IMF11 3.99 4:44e + 3 33.18 299.706 2.796 0.03512

IMF12 3.847 2:11e + 5 84.24 42.66 2.691 0.00541

IMF13 2.323 7:82e + 5 78.51 17.23 3.104 0.00095

IMF14 4.5012 1:76e + 5 81.89 50.51 2.548 0.00336
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In summary, in this paper, we accurately select the most
discriminating sensitive IMF component, and then, the fault
arc current signal is characterized by 10 time windows and
12 feature indexes. Thus, the original current signal with
each set of 10,000 sampling points is converted into a vector
with 120 feature values. After local feature extraction of the

time window, 160 groups of normal current and fault arc
current data under 4 load types finally form a current feature
database with a scale of 160 × 120.

5.5. Fault Arc Detection Experiment. The 160 × 120 dimen-
sion current feature database still contains some redundant

Table 3: Calculation results of local eigenvalues of IMF5 components in the time window.

Window Mean Variance Root mean square Square root amplitude Average amplitude Peak

Window 1 −5:96e − 4 0.0014 0.0372 0.00084 0.029 0.1433

Window 2 −1:49e − 4 0.0017 0.0416 0.0011 0.033 0.1155

Window 3 1:98e − 4 0.0015 0.0390 0.00097 0.0312 0.1363

Window 4 3:05e − 4 0.0017 0.0416 0.0011 0.0335 0.1367

Window 5 3:53e − 4 0.0014 0.0381 0.00092 0.0303 0.1157

Window 6 9:08e − 4 0.0046 0.0681 0.0021 0.0475 0.3939

Window 7 1:98e − 4 0.0079 0.0866 0.0031 0.0556 0.4836

Window 8 −2:20e − 6 0.0090 0.0947 0.0025 0.0503 0.6613

Window 9 5:45e − 6 0.0085 0.0924 0.0024 0.0493 0.6673

Window 10 1:47e − 4 0.0087 0.0933 0.0025 0.0499 0.6508

Window Kurtosis Kurtosis index Margin index Energy feature Entropy feature Energy entropy feature

Window 1 3.127 1:795e + 6 170.022 1.382 2.616 0.1045

Window 2 2.839 0:951e + 6 136.19 1.728 2.951 0.1223

Window 3 2.989 1:292e + 6 140.39 1.521 2.721 0.1118

Window 4 2.967 0:991e + 6 121.95 1.7306 2.767 0.1224

Window 5 2.900 1:38e + 6 125.75 1.4501 2.792 0.1081

Window 6 9.207 3:821e + 5 166.12 4.634 1.868 0.2597

Window 7 11.549 1:873e + 5 156.64 7.851 1.815 0.3003

Window 8 21.454 2:66e + 5 261.49 8.974 1.277 0.3174

Window 9 22.105 3:03e + 5 274.82 8.541 1.208 0.3120

Window 10 21.142 1:783e + 5 261.49 8.709 1.195 0.3126
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information and interference information, which not only
increases the complexity of arc fault detection but also affects
the accuracy of detection. Therefore, to mine the features with
higher discrimination, the subspace transformation method is
used to perform secondary feature extraction for the current
feature. The subspace transformation methods adopted in this
paper include linear subspace methods PCA and LDA and
nonlinear subspace methods KPCA and KLDA.

Series fault arc detection is a binary classification prob-
lem and the SVM is used as the fault detector in this paper.
In the experiment, Gaussian kernel is used in the kernel
function of the SVM and the optimal penalty factor of the
SVM is determined to be 10 and the adjustable parameter
of kernel function is determined to be 0.55 through the cross
verification grid search method.

The main influencing factor of PCA and LDA is the
retained feature dimension d during feature extraction. The
influence factors of KPCA and KLDA include reserved fea-
ture dimension d and adjustable parameter σ in kernel func-
tion. Therefore, comparison experiments are performed to
determine the parameter settings for optimal performance of
each algorithm. Figure 6 shows the influence of PCA and
LDA feature dimensions on detection accuracy in a cross
experiment. Figure 7 shows the influence of KPCA and KLDA
feature dimensions and the kernel function adjustable param-
eter on detection accuracy in a cross experiment.

As shown in Figure 6, the curves of arc fault detection
accuracy have similar trends. When the dimension is lower
than 25, the detection accuracy is generally low. At this
stage, as the dimension gradually increases, the effective
information contained in the feature gradually increases, so

the detection accuracy increases rapidly. When the dimen-
sion is 30–45, the detection accuracy reaches a high value
but there is a small fluctuation affected by the validity of
the feature. When the dimension exceeds 45, interference
information will be introduced into retained features, so
the detection accuracy will decrease slightly. At this stage,
as the dimension continues to increase, the detection accu-
racy is generally stable, remaining at around 80%.

In addition, because LDA is a supervised algorithm,
while PCA is an unsupervised feature extraction algorithm,
LDA is easier for capturing strong discriminant features
than PCA. Therefore, LDA shows more excellent detection
performance. In this experiment, when the feature dimen-
sion is 34, the optimal detection accuracy of PCA-SVM is
85%. When the feature dimension is 35, the optimal
detection accuracy of LDA-SVM is 88.33%. After 10 crossva-
lidation experiments, the average detection accuracy of
PCA-SVM is 77.2%. The average detection accuracy of the
LDA-SVM algorithm is 81.5%.

Figure 7 shows the influence of feature dimensions on
detection accuracy when the kernel function adjustable
parameter has different values. It is found that the effect of
the feature-retained dimension on detection accuracy is sim-
ilar to that of the linear subspace algorithm. The adjustable
parameter of kernel function plays a key role in improving
the detection accuracy. As shown in Figure 7, the optimal
value of the adjustable parameter of the KPCA algorithm is
0.4 and the optimal feature-retained dimension is 30 and
the highest detection accuracy is 88.33%. The optimal value
range of the adjustable parameter of the KLDA algorithm is
0.3-0.4, and the optimal feature-retained dimension is 30,
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and the highest detection accuracy reaches 91.67%. After
comprehensive analysis, the kernel function adjustable
parameter of the KLDA algorithm is set to 0.35. The optimal
feature dimension of both algorithms is 30.

In order to prove the reliability and effectiveness of the
proposed algorithm, 10 crossvalidation experiments are per-
formed and the average detection accuracy of all experi-
ments is calculated as the final performance evaluation.
The results and average accuracy of 10 crossvalidation
experiments are shown in Figure 8.

In general, the performance of the nonlinear subspace
transformation algorithm is better than that of the linear algo-
rithm. Although the detection performance of the LDA-SVM
algorithm is better than the KPCA-SVM algorithm in the 1st,
9th, and 10th experiments, the overall average detection accu-
racy of KPCA-SVM is 82.7%, which is better than that of
LDA-SVM 81.5%. It shows that the feature extraction ability
of nonlinear subspace transformation is better than that of lin-
ear subspace transformation and the feature set contains more
nonlinear information. In addition, the KLDA-SVM algo-
rithm has the highest average detection accuracy of 88.33%.
The advantage of the KLDA algorithm lies in the guidance
of supervision information. Under the same condition of
retaining 30-dimensional features, the KLDA algorithm can
capture features with more significant discrimination and
stronger classification ability. Therefore, compared with the
KPCA-SVM algorithm, the detection accuracy of the KLDA-
SVM improved by about 5%.

6. Conclusions

In order to realize arc detection of series faults accurately
and efficiently, a detection algorithm based on CEEMDAN
decomposition and sensitive IMF selection is proposed. In
this paper, a series arc generation platform is built and the
current data of four kinds of loads are collected. Based on
the CEEMDAN algorithm, arc current decomposition is
implemented and a frequency division strategy is proposed
to realize high-frequency signal rough selection. Then, an
accurate selection strategy for the sensitive IMF component
is proposed, which eliminates the interference of invalid
IMF components and reduces the complexity of fault detec-
tion. A local feature construction method based on the time
window is proposed to realize local feature extraction of the
sensitive IMF component and enhance the contrast and dis-
crimination of arc current features. Subspace transformation
is used to extract secondary feature and the reduce dimen-
sion, and the support vector machine is used to detect the
series fault arc. The optimal average detection accuracy of
the proposed algorithm is 88.33%, which proves the effective-
ness of the proposed algorithm and provides an important ref-
erence for fault arc detection technology and device design.

Data Availability

The dataset used in the experiment can be obtained by con-
tacting the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

Fu Guixia proposed the original idea and wrote this paper;
Chen Guizhen analyzed the data and corrected the translation;
Wang Wei and Wang Qinbing collected the experimental
data. Zou Guofeng participated in the reasonableness demon-
stration and manuscript modification.

Acknowledgments

This research was funded by the Integration Funds of
Shandong University of Technology and Zhangdian District
(no. 118228), the National Natural Science Foundation of
China (no. 61801272), and the Natural Science Foundation
of Shandong Province of China (no. ZR2016FL14).

References

[1] G. G. Liu, S. J. Du SH, and X. Han, “Research on LV arc fault
protection and its development trends,” Power System Tech-
nology, vol. 1, pp. 321–329, 2017.

[2] B. Basnet, H. Chun, and J. Bang, “An intelligent fault detection
model for fault detection in photovoltaic systems,” vol. 2020,
pp. 1–11, 2020.

[3] N. Qu, J. Wang, J. Liu, and Z. Wang, “An arc fault detection
method based on multidictionary learning,” Mathematical
Problems in Engineering, vol. 2018, 8 pages, 2018.

[4] Y. Kai, Z. Rencheng, Y. Jianhong, D. Jianhua, C. Shouhong,
and T. Ran, “Series arc fault diagnostic method based on frac-
tal dimension and support vector machine,” Transactions of
China Electrotechnical Society, vol. 31, no. 2, pp. 70–77, 2016.

[5] T. J. Zhao, J. Meng, Y. Q. Song, X. Y. Xie, and M. C. Zhang,
“Series arc detection and protection on the DC side of string-
type PVs,” Power System Protection and Control, vol. 48,
no. 20, pp. 74–82, 2020.

[6] Q. W. Lu, T. Wang, Z. R. Li, and C. Wang, “Detection method
of series arcing fault based on wavelet transform and singular
value decomposition,” Transactions of China Electrotechnical
Society, vol. 17, pp. 212–221, 2017.

[7] N. Qu, J. Chen, J. Zuo, and J. Liu, “PSO–SOM neural network
algorithm for series arc fault detection,” Adv. Math. Phys.,
vol. 2020, pp. 1–8, 2020.

[8] J. G. Wang, W. Lin, Z. Wang, J. Li, W. He, and P. Wang,
“Online detecting device for switchgear arc based on ultravio-
let detection,” Power System Protection and Control, vol. 39,
no. 5, pp. 128–133, 2011.

[9] B. R. Pan, C. Wei, X. Z. Gui, and L. P. Zhang, “Development
and application of a portable arc protection tester,” Power Sys-
tem Protection and Control, vol. 48, no. 13, pp. 149–155, 2020.

[10] J. C. Kim, D. O. Neacşu, B. Lehman, and R. Ball, “Series AC arc
fault detection using only voltage waveforms,” in 2019 IEEE
Applied Power Electronics Conference and Exposition (APEC),
pp. 2385–2389, Anaheim, CA, USA, 2019.

[11] Y. Wang, L. Hou, K. C. Paul, Y. Ban, C. Chen, and T. Zhao,
“ArcNet: series AC arc fault detection based on raw current
and convolutional neural network,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 1, pp. 77–86, 2022.

13Journal of Sensors



[12] J. Jiang, W. Li, Z. Wen, Y. Bie, H. Schwarz, and C. Zhang,
“Series arc fault detection based on random forest and deep
neural network,” IEEE Sensors Journal, vol. 21, no. 15,
pp. 17171–17179, 2021.

[13] N. Hadziefendic, M. Kostic, and Z. Radakovic, “Detection of
series arcing in low-voltage electrical installations,” European
Transactions on Electrical Power, vol. 19, no. 3, pp. 423–432,
2009.

[14] A. G. Kavaz and B. Barutcu, “Fault detection of wind turbine
sensors using artificial neural networks,” Journal of Sensors,
vol. 2018, 11 pages, 2018.

[15] G. Artale, A. Cataliotti, V. C. Nuccio, D. Di Cara, G. Tinè, and
G. Privitera, “A set of indicators for arc faults detection based
on low frequency harmonic analysis,” in 2016 IEEE interna-
tional instrumentation and measurement technology confer-
ence, pp. 1–6, Taipei, 2016.

[16] Y. Kun, M. Shang,W.Wei, D. Peng, and X. Zebao, “Simulation
and research of low voltage series arc discharge detection and
fault protection based on Cassie model and wavelet analysis,”
Electrical & Energy Management Technology, vol. 18, pp. 48–
52, 2019.

[17] Y. Wang, F. Zhang, X. Zhang, and S. Zhang, “Series AC arc
fault detection method based on hybrid time and frequency
analysis and fully connected neural network,” IEEE Transac-
tions on Industrial Informatics, vol. 15, no. 12, pp. 6210–
6219, 2019.

[18] R. Chu, P. Schweitzer, and R. Zhang, “Series AC arc fault
detection method based on high-frequency coupling sensor
and convolution neural network,” Sensors, vol. 20, no. 17,
pp. 4910–4919, 2020.

[19] N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode
decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings of the Royal
Society, vol. 454, no. 1971, pp. 903–995, 1998.

[20] G. Rilling, N. P. Flandr, and P. Goncalves, “On empirical mode
decomposition and its algorithms,” in IEEE-EURASIP work-
shop on nonlinear signal and image processing, NSIP-03, Grado
(I), pp. 9–11, Italy, 2003.

[21] Z. Wu and N. E. Huang, “Ensemble empirical mode decompo-
sition: a noise-assisted data analysis method,” Advances in
Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009.

[22] J. Cheng, H. S. Yang, H. Shao, H. Pan, J. Zheng, and J. Cheng,
“Enhanced periodic mode decomposition and its application
to composite fault diagnosis of rolling bearings,” ISA Transac-
tions, vol. 113, 2021.

[23] M. E. Torres, M. A. Colominas, G. Schlotthauer, and
P. Flandrin, “A complete ensemble empirical mode decompo-
sition with adaptive noise,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 4144–4147,
Prague, Czech Republic, 2011.

[24] G. Zhiqiang and L. Yuedie, “Fault diagnosis of rolling bearing
based on improved LMD and comprehensive characteristic
index,” Journal of Hefei University of Technology: Natural
Science, vol. 44, no. 2, pp. 145–150, 2021.

[25] J. Lingli, C. Liman, T. Hongchuang, and L. Xuejun, “Fault
diagnosis of spiral bevel gear based on CEEMDAN permuta-
tion entropy and SVM,” Journal of Vibration, Measurement
& Diagnosis, vol. 41, no. 1, pp. 33–40, 2021.

[26] K. C. Kempfert, Y. Wang, C. Chen, and S. W. K. Wong, “A
comparison study on nonlinear dimension reduction methods
with kernel variations: visualization, optimization and classifi-
cation,” Intelligent Data Analysis, vol. 24, no. 2, pp. 267–290,
2020.

[27] W. Miao, Q. Xu, K. H. Lam, P. W. T. Pong, and H. V. Poor,
“DC arc-fault detection based on empirical mode decomposi-
tion of arc signatures and support vector machine,” IEEE Sen-
sors Journal, vol. 21, no. 5, pp. 7024–7033, 2021.

14 Journal of Sensors



Research Article
Tradeoff Optimization Technology of Effectiveness-Cost for
Satellite-Based on CAIV Method

Zhiwei Chen ,1 Jian Jiao ,2 Xinlin De ,3 and Dongming Fan 2,4

1Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710109, China
2School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
3Beijing Institute of Structure & Environment Engineering, Beijing 100076, China
4School of Transportation Science and Engineering, Beihang University, Beijing, China

Correspondence should be addressed to Jian Jiao; jiaojian@buaa.edu.cn

Received 10 November 2021; Accepted 10 January 2022; Published 29 January 2022

Academic Editor: Haidong Shao

Copyright © 2022 Zhiwei Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The tradeoff of effectiveness and cost is a vital problem for complex industrial systems, mainly applied in the weapons and aviation
fields. As a typical complex industrial system, the effectiveness-cost tradeoff of the satellites becomes challenging and interesting.
This paper takes a remote sensing satellite as a research object, and an integrated approach to assess and optimize its effectiveness
and cost is proposed. The characteristic parameters are selected according to an analysis of its structure and mission. Furthermore,
the effectiveness evaluation model is established based on the Availability-Dependability-Capability (ADC) model, and the cost
parameter model is developed using historical data and regression analysis. According to the Cost as Independent Variable
(CAIV) method, the objective function of the satellite effectiveness-cost with the effectiveness-cost tradeoff space is established.
The objective function is solved and optimized using a genetic algorithm to achieve a more efficient and economical satellite
design scheme.

1. Introduction

The ability to complete missions efficiently by making the
most of available resources, i.e., the ability to make a tradeoff
between cost and effectiveness, has become a focus in com-
plex industrial systems. There is a great deal of effectiveness
study in industrial fields such as military, machinery
manufacturing, and civil aviation [1–6], and many classical
effectiveness evaluation methods have been proposed, such
as the Weapons System Effectiveness Industry Advisory
Committee (WSEIAC) model [7], the index method [8],
and the system effectiveness analysis (SEA) [3]. However,
due to significant differences between the working environ-
ment and mission characteristics, applying these methods
directly in satellites for effectiveness evaluation is challeng-
ing and interesting. In studies about satellite effectiveness,
Elhady [9] considered that effective measures usually depend
on system performance, availability, reliability, and product
quality. The effectiveness of the satellite was calculated semi-

quantitatively in the literature [10–12]. These studies made
some improvements in effectiveness evaluation, but they
mainly focused on the functions and structure of satellites
rather than the mission process. Based on system state trans-
formations that occur throughout missions, De et al. [13]
refined the effectiveness definition of remote sensing satel-
lites and assessed the effectiveness of different satellite states,
but the analysis was relatively simple.

With increasing demands for satellite applications, the
cost of satellites has also become a significant problem. Cur-
rently, different cost estimation models commonly used for
spacecraft include the Unmanned Space Vehicle Cost Model
(USCM) [14], the NASA/Air Force Cost Model (NAFCOM)
[15], and the Small Satellite Cost Model (SSCM) [16], most
of which are based on satellite mass and other performance
factors [17]. Furthermore, the Performance-Based Cost
Model (PBCM) [18] and KAU Earth Observation Satellite
Cost Model (KEOSCM) [19] are proposed to improve the
existing models. While cost estimation studies of spacecraft
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are conducive to reducing the cost of satellites, cost reduc-
tion cannot sacrifice system effectiveness, which means that
a rational balance between effectiveness and cost is needed.

The US military proposed the CAIV methodology in the
1990s to resolve the contradiction between the shortage of
military expenditure and the expansion of demand [20].
This methodology defines cost as an input variable and
emphasizes the tradeoff between effectiveness and cost. At
present, some scholars have applied the CAIV methodology
to the military field [21–23]. The CAIV methodology is used
to support the tradeoff of the environmental exploration sat-
ellite system, and a tradeoff model of the performance and
cost is established in [24]. Apgar discussed [25] the different
initiatives to control space mission costs, including CAIV. In
this paper, the system effectiveness and cost model are estab-
lished by analyzing a remote sensing satellite as an object.
Then, we optimize the satellite design by analyzing the tra-
deoff between effectiveness and cost (based on the CAIV
methodology) and ensure that the design meets performance
requirements at an affordable cost. Although we present this
effectiveness-cost modeling and tradeoff analysis methodol-
ogy for remote sensing satellites, this method can be applied
to other space products with minor modifications.

The following sections of the paper are organized as fol-
lows. Section 2 mainly analyzes the structure and mission
characteristics of a satellite and selects characteristic param-
eters. Section 3, combined with the mission process of the
remote sensing satellite, establishes the evaluation model of
effectiveness and cost of the remote sensing satellite, respec-
tively. Section 4 proposes the tradeoff model based on the
CAIV method, as well as the effectiveness assessment and
cost estimation models established in Section 3, and uses a
genetic algorithm to optimize the effectiveness-cost model
in the tradeoff space, and finally arrives at the remote
sensing satellite design solution with the optimal
effectiveness-cost ratio. Finally, the discussion and conclu-
sion are summarized in Section 5.

2. Structure and Mission of Remote
Sensing Satellite

2.1. Structure and Characteristics of Satellite. According to its
essential functions, the structure of the satellite, specifically a
microwave imaging observation satellite, can be divided into
payloads and satellite platforms. The specific composition is
shown in Figure 1.

2.1.1. Payloads. The payloads of microwave imaging obser-
vation satellites mainly include various remote imaging sen-
sors for earth observation, which is the core part of the
satellite.

2.1.2. Satellite Platform. Satellite platforms can be divided
into different subsystems, including structures-and-mecha-
nisms, thermal control, power, control, propulsion, tracking,
telemetry and command (TT&C), data management, and
data transmission, which provide support, control, com-
mand, and management services.

Limited by the size of the carrier, the materials and
instruments used in a satellite must satisfy the requirements
of negligible mass, small volume, and low power consump-
tion. Additionally, remote sensing satellites have other work-
ing, and technical characteristics, including long life and
high reliability, a high degree of automation, and a
technology-intensive design, and must suit particular envi-
ronmental conditions.

(1) Special environmental conditions. A remote sensing
satellite is subjected to severe shocks such as over-
load, vibration, and noise during launch and oper-
ates in a space environment with microgravity,
intense radiation, and ultralow temperatures

(2) Long life and high reliability. A remote sensing satel-
lite needs to work continuously in orbit for several
years, during which it is almost impossible to per-
form replenishment, maintenance, repair, or replace-
ment. Therefore, long life and high reliability are
essential characteristics for a satellite

(3) The high degree of automation. The control of
remote sensing satellites is mainly accomplished
through the ground station and the TT&C subsys-
tem. As satellite function improves, the degree of
automation increases and the ability for autonomous
control

(4) Technology-intensive. A satellite is a technology-
intensive system, and satellite platforms and pay-
loads apply specific theories, different materials,
and equipment, involving many fields of science
and technique

2.2. Capability and Mission Analysis of Satellite. To quickly
obtain detailed information about a target, a remote sensing
satellite needs to adjust its attitude in a short time after
receiving control information from the ground station.
Moreover, it should also change the angle of the remote sen-
sor rapidly according to user’s needs to observe the target
quickly and efficiently. When the satellite reaches the prede-
termined area, target’s electromagnetic wave radiated and
reflected can be collected and preprocessed by the sensors
to realize continuous imaging. The quality of the image will
directly affect subsequent decision-making. After obtaining
target information, the satellite needs to transmit the infor-
mation to the ground station for reprocessing in a short time
to ensure the timeliness of the information. Hence, a high
capability of information processing and transmission is
demanded.

According to the application and mission process of a
remote sensing satellite, three main functional characteris-
tics of the satellite can be concluded: the high-speed attitude
maneuvering capability, the high-resolution imaging
capability, and the ability to transmit large bandwidth infor-
mation. In order to quantitatively measure satellite capabili-
ties, these three functions or capabilities can be divided
based on the composition of the satellite and described using
design parameters so that they can be evaluated using the
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performance of the satellite. After discussing with aerospace
experts, some representative parameters are chosen as capa-
bility indicators to measure system capacity according to the
function and structure of the satellite. For example, the
imaging capability is measured by target location accuracy,
imaging width, imaging time, and ground resolution. The
specific composition is shown in Figure 2.

Among these three capabilities, high-resolution imaging
is the central capability that is fundamental in determining
the whole satellite’s capability. At the same time, the attitude
maneuvering and information transmission capabilities sup-
port the capability of the satellite platform from the perspec-
tive of satellite design and operation, reflecting the capability
of coordinating and matching with imaging capability.

Based on the analysis of the structural characteristics and
central capabilities of remote sensing satellites, we can safely
conclude that the subsystems influencing the capability of
satellites are payloads, control, propulsion, and data trans-
mission subsystems; the subsystems that indirectly impact
the capability are structures-and-mechanisms, thermal con-
trol, power, TT & C, and data management subsystems.
Therefore, the satellite structure is moderately simplified.
The indirect impact subsystems are collectively called auxil-

iary subsystems; furthermore, the reliability of the
structures-and-mechanisms subsystem is regarded as one.
Its impact on the capability of the satellite could be ignored
because it adopts margin design based on safety factors. The
logical relationships between the structure and the mission
capability of remote sensing satellites are shown in Figure 3.

The state changes of each subsystem will affect different
capability indicators, that will in turn affect the overall capa-
bility of the satellite. The arrows between the elements in
Figure 3 indicate their relationships of influence. For exam-
ple, the payload subsystem impacts all the capability indica-
tors of the imaging capability and has a specific influence on
the information transmission capability of the satellite. The
auxiliary subsystem does not directly affect the capability
index in the mission process, but it plays a fundamental role
in supporting the remote sensing satellite and indirectly
impacts all the capability indicators.

The propulsion, control, payload, data transmission, and
auxiliary subsystems are represented by N1,N2,N3,N4,N5,
respectively, and each subsystem has two states: normal (N)
and fault (�N). Therefore, there are 32 possible system states
of the satellite. However, according to the actual operation of
the satellite and the practical significance of these states, when
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the auxiliary subsystem fails or the fault number of other sub-
systems is greater than or equal to three (≥3), it can be
regarded that the remote sensing satellite has lost its essential
capability and cannot continue to perform the mission. The
states in which the satellite cannot continue to perform its
mission are classified as ERROR states, and thus, the number
of system states of the satellite is simplified to 12. The specific
meanings of each state are shown in Table 1.

3. Modeling of Effectiveness and Cost for
Remote Sensing Satellite

3.1. Effectiveness Model for Remote Sensing Satellite. Effec-
tiveness is a widely applied concept, so it should be precisely
defined before analysis. The most common understanding of
effectiveness is the real-world ability of a specific system to
accomplish a specific mission. Based on the above discussion
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Figure 3: The logical relationship between the structure and mission capability of the satellite.

Table 1: The meanings of remote sensing satellite states.

State number System state Capability situation

1 N1N2N3N4N5 Satellite capabilities are standard, and remote sensing missions can be carried out.

2 �N1N2N3N4N5 Attitude maneuver capability is impaired, and satellite capabilities are slightly reduced.

3 N1 �N2N3N4N5 Capabilities of attitude maneuver and imaging are impaired, and satellite capabilities are slightly reduced.

4 N1N2 �N3N4N5
Capabilities of information transmission and imaging are impaired, and satellite capabilities are

significantly reduced.

5 N1N2N3 �N4N5 Information transmission capabilities are impaired, and satellite capabilities are slightly reduced.

6 �N1 �N2N3N4N5
Capabilities of attitude maneuver and imaging are impaired, and satellite capabilities are significantly

reduced.

7 �N1N2 �N3N4N5 Three capabilities are impaired, and satellite capabilities are critically reduced.

8 �N1N2N3 �N4N5
Capabilities of attitude maneuver and information transmission are impaired, and satellite

capabilities are significantly reduced.

9 N1 �N2 �N3N4N5 Three capabilities are impaired, and satellite capabilities are critically reduced.

10 N1 �N2N3 �N4N5 Three capabilities are impaired, and satellite capabilities are critically reduced.

11 N1N2 �N3 �N4N5
Capabilities of information transmission and imaging are critically impaired, and satellite

capabilities are reduced.

12 Error Satellite capabilities are lost, and remote sensing missions cannot be carried out.
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about capability and mission characteristics, the definition of
the effectiveness of a remote sensing satellite can be summa-
rized as the ability to carry out mission-specific remote sens-
ing continuously within a designated area and a specified
period of time, where the collected information should meet
a specific requirement.

In this paper, the effectiveness of the satellite is calcu-
lated using the ADC model [7]. The ADC model was
proposed by WSEIAC, in which system effectiveness is
regarded as a measure of the degree to which a system can
meet a set of mission requirements and is the comprehensive
embodiment of system availability (A), dependability (D),
and capability (C). By combining the ADC model with prob-
ability theory, the effectiveness of remote sensing satellite
can be expressed as:

E = A∙D∙Ca, ð1Þ

where A is an availability vector, representing the probabili-
ties of the satellite in different states when it begins its
mission. D is a dependability matrix representing the transi-
tion probability between different system states during the
mission. Ca is a capability vector, representing the inherent
capability of the satellite under different states. The detailed
expression of A, D, and Cawill be discussed in the following
sections.

3.1.1. Availability of Remote Sensing Satellite. The availability
of remote sensing satellites is represented by a row vector A,
that is, A = ½A1, A2 ⋯ Ai ⋯ An�, where Ai is the probability
that the satellite is in the state i at the beginning of the mis-
sion, n is the total number of satellite states, and ∑n

i=1Ai = 1.
Since the analyzed satellite is a single satellite and there is no
backup, only repairable faults are considered, and nonre-
pairable faults will result in mission failure. Using a1, a2, a3
, a4, a5 represents the probabilities, respectively, that five
subsystems (shown in Figure 3) can operate normally, and
let MTBF and MTTR represent the average time between
fault and the average repair time of these subsystems, respec-
tively; thus,

ai =
MTBFi

MTBFi +MTTRið Þ : ð2Þ

And the probabilities that the subsystems cannot operate
normally at the beginning are

�ai = 1 − ai: ð3Þ

There are twelve states in remote sensing satellites
(shown in Table 1). The probability that the satellite is in a
particular state at the beginning of the mission is the product
of the state probabilities of five subsystems, for example,
A1 = a1a2a3a4a5. So, the availability vector is:

A = A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12½ �:
ð4Þ

3.1.2. Dependability of Remote Sensing Satellite. The depend-
ability matrix (D) of the remote sensing satellite is an n
-order-matrix, that is, D = ½dij�n×n, where dijði, j = 1, 2,⋯,nÞ
represents the probabilities of transitions from initial state i
to state j during the mission. Therefore, the state changes
of the satellite can be expressed mathematically as a stochas-
tic process, fXðtÞ, t ≥ 0g, where t is time. In the stochastic
process, the probability of the satellite transferring from
one state to another is only related to the present state so
that the process can be transformed into continuous-time
Markov chains. The mathematical expression of continuous
Markov chains is:

P X t + uð Þ = j X uð Þ = ijf g = pij u, tð Þ: ð5Þ

It represents the probability that the system is in state i at
time u and is transferred to state j after time interval t.
According to the historical data of similar satellites, it can
be assumed that the reliability of the subsystems is subject
to exponential distribution, so the probability of state transi-
tion is independent of the time u. Therefore, pijðu, tÞ can be
written as pijðtÞ.

In the state transition process, we assume that two or
more faults cannot cooccur in the satellite [13], and the sat-
ellite state does not change within an operation time of Δtð
Δt⟶ 0Þ after a state transition. This assumption is also in
line with the actual situation and can significantly reduce
the computational complexity. Then, the transition proba-
bility pijðtÞ satisfies regularity condition:

lim
t⟶0

pij tð Þ =
1, i = j,

0, i ≠ j:

(
ð6Þ

For any fixed i, j ∈ I, pijðtÞis a consistent, continuous
function of t and has the following limits:

lim
Δt⟶0

pij Δtð Þ − 1
Δt

= qij, i = j,

lim
Δt⟶0

pij Δtð Þ
Δt

= qij, i ≠ j,

8>><
>>: ð7Þ

where qij is called transfer intensity of a homogeneous Mar-
kov process. The transfer intensity of homogeneous Markov
chains of continuous-time can form a matrix shown below:

Q =

q11 q12 ⋯

q21 q22 ⋯

⋯ ⋯ qij

q1n

q2n

⋯

qn1 qn2 ⋯ qnn

2
666664

3
777775: ð8Þ

From the matrix Q, the equation can be deduced to eval-
uate the transition probability for any time interval t, which
can be expressed by the Kolmogorov forward:
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dpij tð Þ
dt

=〠
k

pik tð Þqkj, ð9Þ

where the initial conditions are pijð0Þ =
1, i = j

0, i ≠ j

(
, and PðtÞ

can be written in matrix form:

P tð Þ = d
dt

P tð ÞQ−1: ð10Þ

The transfer intensity matrix Q can be obtained based on
the fault rates of the satellite subsystems, and then, the state
transition probability matrix PðtÞ after a time interval t, i.e.,
the dependability matrix D, of the satellite can be calculated.
According to the definition of satellite effectiveness, the
remote sensing mission of the satellite is a continuous pro-
cess, so the mission will fail once the satellite fails. Therefore,
the dependability matrix D is an upper triangle matrix with-
out considering the maintenance of the satellite during the
mission.

Due to space constraints, only the fourth row of matrix
D is used as an example, where λ1, λ2, λ3, λ4, λ5 represent
the propulsion, control, payloads, data transmission, and
auxiliary subsystems’ failure rates. In the same way, other
elements in matrix D can be deduced.

D4,1 =D4,2 =D4,3 =D4,5 =D4,6 =D4,8 =D4,10 = 0,

D4,4 = e−t λ1+λ2+λ4+λ5ð Þ,

D4,7 = e−t λ2+λ4+λ5ð Þ − e−t λ1+λ2+λ4+λ5ð Þ,

D4,9 = e−t λ1+λ4+λ5ð Þ − e−t λ1+λ2+λ4+λ5ð Þ,

D4,11 = e−t λ1+λ2+λ5ð Þ − e−t λ1+λ2+λ4+λ5ð Þ,

D4,12 = 2e−t λ1+λ2+λ4+λ5ð Þ − e−t λ1+λ2+λ5ð Þ − e−t λ1+λ4+λ5ð Þ

− e−t λ2+λ4+λ5ð Þ + 1:
ð11Þ

3.1.3. Capability of Remote Sensing Satellite. The column
vector Ca represents the capability of remote sensing satel-
lites, CT

a = ½Ca1, Ca2 ⋯ Cak ⋯ Can�, where Ca1 implies the
perfect performance state and Can implies the worst state.
Therefore, when calculating the capability of remote sensing
satellites, Ca1 should be calculated first, and the remaining
capability values can be evaluated by comparing them with
Ca1. It is obvious that the capability indicators shown in
Figure 2 cannot be directly calculated, so they should first
be normalized and transformed into a unified quantitative
style. The design range of the indicator Pi can be divided
into subranges, and the evaluation value uðPiÞ can be deter-
mined according to the normalization function. Equation
(12) is an example of a normalization function, in which
the design range of the indicator Pi is divided into five sub-
ranges, and different evaluation values uðPiÞ are assigned
using the functions, where 10 represents the best perfor-
mance, and 0 represents the worst.

u Pið Þ =

0,∧Pi ≤ p1,

10 ×
Pi − p1
p2 − p1

,∧p1 < Pi < p2,

10,∧p2 ≤ Pi ≤ p3,

10 × 1 −
Pi − p3
p4 − p3

� �
,∧p3 < Pi < p4,

0,∧Pi ≥ p5:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð12Þ

For capability indicators that are difficult to evaluate
using a linear function in Equation (12), the piecewise inter-
val evaluation method can be adopted. According to the data
variation range of specific capability indicators, the dividing
point and number of capability evaluation intervals are
determined, and the corresponding capability evaluation
value uðPiÞ is given. Taking the symbol error rate as an
example, the lower rate corresponds to a better capability
evaluation value. The capability evaluation interval of this
indicator has five ranges, namely [0, 10-8], [10-8, 10-7], [10-
7, 10-6], [10-6, 10-5], and [10-5, ∞], and the corresponding
evaluation value is 10, 8, 6, 4, and 0, respectively.

Then, the AHP [26] is introduced to determine the
weight of the capability indicators so that the capability of
the satellite can be assessed quantitatively. A hierarchical
structure model is established according to the structure of
capability indicators in Figure 2, and values of pairwise con-
trast are scored by discussing with experts in the aerospace
industry in order to construct judgment matrices. Then,
the order of importance and consistency test is performed
on the indicators of the same level to get the weight wi of
each indicator in the hierarchical model. Using the weights
and the evaluation values uðPiÞ, the capability of the satellite
to accomplish the mission in a normal state can be calcu-
lated, i.e., Ca1=∑wi∙uðPiÞ.

According to the definition of different satellite states
(shown in Table 1), the capability of satellites in other states
can be regarded as a reduction of capability in normal states
because the state of the satellite subsystems impacts the
capability indicators. An influence coefficient of capability
indicators (ρ) is introduced to represent the extent to which
the satellite subsystems impact each capability indicator
under different conditions, where ρ =0 means that the sub-
system failure does not influence the capability indicator,
while ρ =1 means that the subsystem fault has a decisive
influence. Thus, the reduction of the capability indicator is
shown in the following equation:

u Pið Þ′ = 1−〠ρ
� �

∙u Pið Þ, 〠ρ ≤ 1
� �

,

u Pið Þ′ = 0, 〠ρ > 1
� �

,

8><
>: ð13Þ

where uðPiÞ is the evaluation value of capability indicator in
the normal state and uðPiÞ′ is the reduction value. Thus, the
capabilities of the satellite in other states are Cak=∑wi∙uðPiÞ′.
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3.2. Cost Model for Remote Sensing Satellite. The cost of
research and development can be quickly and efficiently esti-
mated based on the design parameters, which is usually
called parameter cost estimation [27]. Similarly, the cost of
remote sensing satellites is evaluated based on the analysis
of system composition. The functional relationship between
each subsystem cost and design parameters is established
based on the physical characteristics, design parameters,
and cost data from similar historical data. This study only
considered the cost associated with satellite design, develop-
ment, and test.

3.2.1. Establish the Cost Relationship Structure for Remote
Sensing Satellite. The cost relationship between the structure
and mission capability of the satellite is shown in Figure 4.
The cost of the satellite consists of the payload subsystem
and satellite platform subsystems, i.e.,

Co =〠
i

Coi, ð14Þ

where Coi is the cost of each subsystem of the satellite. The
cost is affected by many factors, such as weight, capability
indicators, and reliability requirements. The specific impacts
and cost models for each subsystem are discussed below.

3.2.2. Cost Models of Satellite Subsystems. According to the
USCM, which is widely used for cost estimation of satellites
[14], the cost model of the satellite subsystem is:

Coi = aiX
bi , ð15Þ

where Coi is the cost of the satellite subsystem, X is the
weight of subsystem, and ai and bi are correction coeffi-
cients. Based on the cost relationship structure of the remote
sensing satellite, the original USCM is amended, and differ-

ent capability indicators are introduced as correction vari-
ables so that the cost models of different subsystems can be
obtained. The correction coefficients in the models can be
calculated using regression analysis on historical data.

(1) The Cost Model of the Propulsion Subsystem

Co1 = A1∙X
a1∙Pb1

1 ∙P
c1
2 ∙P

d1
3 ∙P

f1
4 , ð16Þ

where Co1 is the cost of the propulsion subsystem, X is the
total weight of the propulsion subsystem, P1 is the velocity
measure precision, P2 is the system sensitivity, P3 is the sys-
tem stability, P4 is the reliability requirement, and A1, a1,
b1, c1, d1, and f1 are the correction coefficients.

(2) The Cost Model ofthe Data Transmission Subsystem

Co2 = A2∙X
a2∙Pb2

5 ∙P
c2
6 ∙P

f2
4 , ð17Þ

where Co2 is the cost of the data transmission subsystem, X
is the total weight of the data transmission subsystem, P5 is
the information transmission rate, P6 is the symbol error
rate, P4 is the reliability requirement, and A2, a2, b2, c2, d2,
and f2 are the correction coefficients.

(3) Cost Model ofPayload Subsystem

Co3 = A3∙X
a3∙Pb3

7 ∙P
c3
8 ∙P

d3
9 ∙P10

e3∙P11
g3∙Pf3

4 , ð18Þ

where Co3 is the cost of the payload subsystem, X is the total
weight of the payload subsystem, P7 is the target location
accuracy, P8 is the imaging width, P9 is the imaging time,
P10 is the ground resolution, P11 is the signal bandwidth,
P4 is the reliability requirement, and A3, a3, b3, c3, d3, e3, f3,
and g3 are the correction coefficients.

Satellite costPayloads
subsystem cost

Satellite
platform cost

Payloads weight

Reliability
requirements

Target location
accuracy

Imaging width

Imaging time

Ground
resolution

Velocity measure
precision

System
sensitivity

System stability

Signal
bandwidth

Information
transmission rate

Symbol error
rate

Subsystems
weight

Target location
accuracy

Figure 4: The cost relationship structure for a remote sensing satellite.

7Journal of Sensors



(4) The Cost Model of the Control Subsystem

Co4 = A4∙X
a4∙Pb4

1 ∙P
c4
2 ∙P

d4
3 ∙Pe4

7 ∙P
f4
4 , ð19Þ

where Co4 is the cost of the control subsystem, X is the total
weight of the control subsystem, P1 is the velocity measure
precision, P2 is the system sensitivity, P3 is the system stabil-
ity, P7 is the target location accuracy, P4 is the reliability
requirement, and A4, a4, b4, c4, d4, e4, and f4 are the correc-
tion coefficients.

(5) The Cost Model of the Auxiliary Subsystem

Co5 = A5∙X
a5∙Pf5

4 , ð20Þ

where Co5 is the cost of the auxiliary subsystem, X is the total
weight of the auxiliary subsystem, P4 is the reliability require-
ment, and A5, a5, and f5 are the correction coefficients.

By collecting and preprocessing the historical data of
remote sensing satellites, the design parameters and cost of
each subsystem of similar satellites can be estimated. Since
there are price fluctuations throughout different years, all
costs of historical satellites will be converted to the price in
2016 to maintain a uniform measurement of the fitted data.
The detailed data can be found in Tables 2–6. Nonlinear
multivariate regression analysis is performed to evaluate
the parameters in the above cost models. The Levenberg-

Marquardt algorithm [28] is chosen to ensure the stability
of the model and reduce the number of calculations and fit-
ting errors of the correction coefficients.

Nonlinear models are complex compared to other
models, and it is difficult to obtain their regression parame-
ters. Marquard introduced the damping factor based on the
Gauss-Newton method and proposed the Marquardt algo-
rithm. The method has a high fitting efficiency and low error
for nonlinear model fitting. It inherits the global
optimization-seeking feature of the original algorithm and
speeds up the convergence speed. The basic principle of
the Marquardt method is to calculate the sum of squares of
residuals through continuous data iteration, which is used
to evaluate whether the fitted parameters achieve the best fit-
ting effect. When the sum of squares of the residuals reaches
a minimum value, the iterative process ends, and the result-
ing regression parameters are the final results of the cost
curve fitting, which leads to the cost estimation model for
each subsystem.

The cost models for each subsystem are listed in Table 7.

4. Tradeoff Optimization between Effectiveness
and Cost of Remote Sensing Satellite

4.1. The Methodology of Cost as an Independent Variable
(CAIV). The US military proposes the CAIV methodology
to solve the contradiction between the limitation of system
resources and the unlimited expansion of demand. The
two most fundamental characteristics in the CAIV

Table 2: The reliability of subsystems.

Subsystem 1 2 3 4 5 6 7 8

Propulsion subsystem 0.9859 0.9859 0.988 0.988 0.988 0.988 0.988 0.985

Control subsystem 0.9033 0.9253 0.9338 0.9338 0.925 0.921 0.92 0.944

Payloads subsystem 0.902 0.8300 0.9266 0.926 0.901 0.895 0.808 0.8965

Data transmission subsystem 0.9495 0.9171 0.9675 0.9675 0.977 0.966 0.976 0.847

Auxiliary subsystem 0.9189 0.8914 0.8868 0.8868 0.9307 0.8791 0.9448 0.8846

Table 3: The weight of subsystems (kg).

Subsystem 1 2 3 4 5 6 7 8

Propulsion subsystem 96 111 103 103 75 45.5 55 175

Control subsystem 191 220.2 234 234 183 170.77 172 330

Payloads subsystem 606 729.8 798 750 475 940 392 742

Data transmission subsystem 136 175.2 190 190 72 63.3 125 227

Auxiliary subsystem 895 964 971 971 907 793.09 534 1162

Table 4: The cost of subsystems (RMB).

Subsystem 1 2 3 4 5 6 7 8

Propulsion subsystem 2018 2384 2517 2517 1829 1578 1528 3112

Control subsystem 1786 2251 2862 2862 1151 1011 1001 4207

Payloads subsystem 4884 3956 6497 6021 3264 6449 1687 5453

Data transmission subsystem 2247 2240 3130 3130 1223 1288 2484 2834

Auxiliary subsystem 14013 13244 13256 13256 15308 11128 10898 13404
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methodology are that it takes cost as an input variable rather
than an output variable and emphasizes the optimization of
the tradeoff between cost and effectiveness. In the process of
tradeoff and optimization, cost, like other input indicators, is
managed and controlled as a constraint by imposing upper
and lower limits. Therefore, when determining the cost
range, we should not set a particular target arbitrarily but
conduct a series of cost and effectiveness analyses to com-
prehensively understand what cost changes can improve
the effectiveness and which parameters can effectively con-
trol cost.

To define the value range for each parameter and cost,
the CAIV methodology also proposed the concept of the tra-
deoff optimization space. The tradeoff optimization space
can be defined using cost and effectiveness and regarded as
a set of all feasible alternatives, and each element in it repre-
sents a feasible alternative. For the cost of a satellite, it is nec-
essary to determine the upper limit of Comax within the
economically affordable range, and the lower limit Comin, if
necessary, it also needs to be determined. On the other hand,
we need to determine the ranges of the design parameters
used to measure effectiveness. For design parameters, we
need to know the constraints of equipment capabilities and
the level of the existing technology. Take a certain indicator
Pi for example, if the lowest value that can meet the mission
requirement is PL

i , and the highest value that can be achieved
under the current technical level is PU

i , then the value range
of the indicator isPL

i ≤ Pi ≤ PU
i . Of course, for some indica-

tors, a smaller value is better than a larger value so that the
range will be PU

i ≤ Pi ≤ PL
i .

4.2. Building and Solving the Tradeoff Optimization Model of
Satellite. The designers of remote sensing satellites need to
select the best design scheme among all alternatives in the

established tradeoff optimization space. There are many
evaluation criteria for measuring the effectiveness and cost
of a design scheme. This paper takes the effectiveness-cost
ratio as the criteria, and the tradeoff optimization space is
taken as the constraint condition. The tradeoff optimization
model of a remote sensing satellite is established as follows:

max K = E/Co,

s:t:E = F P1,⋯, Pnð Þ,
Co = φ P1,⋯, Pnð Þ,
E ≥ 6,

10000 ≤ Co ≤ 30000,

PL
i ≤ Pi ≤ PU

i , i = 1,⋯, n,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ

where K represents the value of the effectiveness-cost ratio,
and the larger the value, the better the satellite design
scheme. E = FðP1,⋯, PnÞ is the effectiveness evaluation
model of satellite, which can be calculated based on Equa-
tions (1)–(13). According to design’s requirements, satellite’s
effectiveness after running for 10,000 hours must be higher
than 6. Co = φðP1,⋯, PnÞ is the satellite cost model, which
can be calculated using Equations (14)–(20). According to
the design requirements, the total cost of remote sensing sat-
ellite is estimated to be between 100 million and 300 million
(RMB). P1,⋯, Pn represent all kinds of parameters of the
satellite, and their ranges can be estimated according to the
mission requirements.

The tradeoff optimization model can be transformed
into an extremum problem of the function with multiple
constraints. To avoid the problem of a locally optimal solu-
tion in the solving process, a generalized genetic algorithm

Table 5: The capability indicators of satellites.

Capability indicator 1 2 3 4 5 6 7 8

Velocity measure precision (m/s) 4 2 1.8 1.8 6 6 6 1

System sensitivity (°) 5 5 6 6 4 4 4 8

System stability (°/s) 0.55 0.5 0.6 0.6 0.4 0.35 0.35 0.6

Target location accuracy (m) 35 40 30 30 40 30 40 35

Imaging width (km) 25 25 28 25 18 28 18 30

Imaging time (h) 2 1.8 2.5 2 1.5 2.5 1 2.5

Ground resolution (m) 3 3 4 4.5 10 2 10 4

Signal bandwidth (mhz) 600 600 580 580 550 500 500 600

Information transmission rate (Gbps) 15 14 16 16 15 13 13 17

Symbol error rate 10-7 10-7 10-8 10-8 10-6 10-6 10-6 10-8

Table 6: The value range of satellite capability indicators.

Velocity measure precision (m/s) System sensitivity (°) System stability (°/s) Target location accuracy (m)
Imaging width

(km)

0.5-10 4-8 0.35-0.7 30-50 10-30

Imaging time (h)
Ground resolution

(m)
Signal bandwidth

(mhz)
Information transmission rate

(Gbps)
Symbol error rate

0.5-3.5 0.5-20 100-600 5-20 1∗10-8-1∗10-5
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[29, 30] is introduced to solve the extreme value of the
effectiveness-cost ratio of the model. The core idea of this
algorithm is to perform selection, crossover, mutation, and
other related operations on a biological population consist-
ing of a certain number of individuals by simulating the evo-
lutionary laws of organisms in nature to find the optimal
solution or approximate solution according to the target
requirements. On this basis, other scholars have continued
to supplement and develop the genetic algorithm to the
completeness, and it has become the most widely used opti-
mization algorithm. The basic parameters of the algorithm
are set as follows:

(i) The population size is 100

(ii) Mutation probability is 0.01

(iii) Crossover probability is 0.6

After 30 iterations, the optimization results tend to be
stable, and the highest value of effectiveness-cost ratio that
can be obtained in the tradeoff optimization space is
4:0705 × 10−4, where the effectiveness value is 6.8421, the
cost value is 168 million (RMB). The value of satellite’s capa-
bility indicators is shown in Table 8, and the weight and reli-
ability requirements of each subsystem are shown in Table 9.

Before performing the tradeoff optimization of effective-
ness-cost, the effectiveness of the satellite is 6.7794, and the
cost is about 251 million (RMB), meaning the effectiveness-
cost ratio is 2:7047 × 10−4. Compared with the tradeoff design
scheme, the effectiveness of the satellite has increased by
0.9249%, the cost of the satellite has reduced by 33%, and

the satellite effectiveness-cost ratio has increased significantly.
The tradeoff design scheme of the satellite is more practical
than the original design based on meeting performance
requirements and affordability.

5. Discussion and Conclusion

Based on the idea of the CAIV methodology, this paper pro-
poses a tradeoff optimization method of effectiveness-cost
for a remote sensing satellite, in which multiple models are
combined synthetically to improve satellite’s design scheme.
Compared with the other tradeoff optimization methods, the
input cost is taken as an independent variable and is consid-
ered in the whole tradeoff process in this work. The pro-
posed approach emphasizes that cost is integral to design
indicators to ensure that the input cost is within the tolerable
limit. Under the premise of meeting the performance
requirements of the satellite, the proposed method can find
the optimal scheme from the whole feasible design domain,
which is different from selecting the design scheme with
the highest effectiveness-cost ratio from several alternative
design schemes as the decision result. The tradeoff optimiza-
tion between cost and effectiveness can efficiently yield cal-
culated results close to the actual use situation, which is
beneficial to discover unreasonable links and helps improve
the design scheme.

Compared with the original design and effectiveness-cost
ratio, the optimized design scheme is more competitive, as
we can see from the case study. However, since the evalua-
tion criteria in the tradeoff optimization model are only
related to the effectiveness and cost of the satellite, the results

Table 8: The value of the capability indicators.

Velocity measure precision (m/s) System sensitivity (°) System stability (°/s) Target location accuracy (m)
Imaging width

(km)

9.7323 7.8769 0.6765 30.7965 20.0000

Imaging time (h)
Ground resolution

(m)
Signal bandwidth

(mhz)
Information transmission rate

(Gbps)
Symbol error rate

3.4614 8.0000 237.8178 7.8004 5:0592 × 10−6

Table 9: The weight and reliability requirements of each subsystem.

Parameter Propulsion subsystem Control subsystem Payloads subsystem Data transmission subsystem Auxiliary subsystem

Weight (kg) 185 51 571 255 883

Reliability 0.9804 0.9959 0.9683 0.9733 0.8022

Table 7: Cost models for subsystems.

Subsystem Cost model

Propulsion subsystem Co1 = 832:3837X0:3167∙P−0:1751
1 ∙Pc0:0200

2 ∙P0:0530
3 ∙P22:0525

4

Data transmission subsystem Co2 = 2:0764X1:2182∙P0:3836
5 ∙P−0:0007

6 ∙P2:6665
4

Payload subsystem Co3 = 2:5742X0:7652∙P−0:0032
7 ∙P0:0569

8 ∙P0:0236
9 ∙P−0:1204

10 ∙P0:4727
11 ∙P4:2080

4

Control subsystem Co4 = 392:1322X0:4898∙P−0:3508
1 ∙P0:0587

2 ∙P0:8144
3 ∙P−0:0464

7 ∙P0:1023
4

Auxiliary subsystem Co5 = 282:4148X0:6225∙P3:8215
4
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will be affected by the accuracy of the effectiveness and
cost models. Therefore, we need to make more precise cal-
culations on the cost and effectiveness of satellites in future
research. Additionally, the subjective preference of
decision-makers for effectiveness and cost also affects the
final satellite design scheme in the actual decision-making
process, which is difficult to quantify and should be fur-
ther discussed.
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Wireless sensor networks which are based on distributed information processing technology are taking an increasingly key role in
industrial digital twin scenarios. There are many important issues in the access of networks. One of the most important issues is
how to improve network access control and the effectiveness of load balancing. Based on the industrial digital twin technology,
this article first introduces several typical network access and network loads and performs tree-structured processing on the
outliers generated during the chain formation process to reduce the length of the data transmission path, optimize the main
chain head and subchain chain head selection strategy and chaining rules, and perform nonchain operations on common
nodes and chain heads near sink to reduce data inverse transfer. The experimental results show that this paper uses the digital
twin calculation formula to accurately and objectively determine the remaining cluster head and the distance head and the base
station, so that when the node distance is limited, the network energy consumption can be balanced as much as possible, and
the network load is promoted.

1. Introduction

Wireless sensor networks integrate sensor technology,
computing, and communication technology and become
an active research branch in the field of computer science.
In the wireless sensor network architecture, the digital twin
technology at the network layer is crucial to the life cycle
of the wireless sensor network [1]. The network load
algorithm has become the digital twin technology that is
currently the focus of research. The digital twin protocol is
the core technology of the wireless sensor network layer.
While discovering a path with a smaller delay, it avoids
network congestion and balances network energy consump-
tion. For different application environments, the digital twin
protocol can be divided into network access protocol,
network load protocol, and geographic digital twin protocol.
When designing a digital twin protocol, an important chal-
lenge will be faced, that is, how to complete the sensing,
communication, and control functions under the condition
that the node’s energy resources, computing capabilities,
storage space, and communication capabilities are highly
restricted. For this reason, the main goals of the wireless

sensor network digital twin protocol design are establishing
an energy efficiency path, forming a reliable data forwarding
mechanism, and maximizing the network life cycle [2–5].

With the rapid rise of the Internet and the Internet of
Things, as well as the rapid development of microelectro-
mechanical systems (MEMS), distributed information
processing, radio communications, multifunction sensors,
embedded software, and hardware technologies have
matured day by day, and wireless sensor networks have
become a representative of emerging fields. When it was
born, these software and hardware technologies have pro-
vided great help to promote the rapid development of WSN
technology [6–8]. WSN uses a variety of highly integrated
and low-cost micro wireless sensor nodes to collaborate to
achieve real-time monitoring and perception in different
application environments and collect relevant data or other
object data of interest [6], and then, the embedded system
performs preliminary processing on the monitoring data
[7], and then, the network sends these data digital twins to
the control center according to the defined transmission pro-
tocol. It divides a network with a large range and nodes into
multiple smaller clusters according to specified rules, making
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the network hierarchy clearer and more scalable. Since most
of the non-cluster-head nodes can close the communica-
tion module for a long time, for the traditional uniform
network load protocol, due to the multihop transmission
between clusters, the cluster head node near the base sta-
tion takes on more forwarding tasks, which consumes
more energy and causes the problem of uneven network
energy consumption [9–11].

Based on the study of multiple clustering and chained
digital twin algorithms, this paper proposes a tree-shaped
chained multihop digital twin algorithm (TUCM). The algo-
rithm introduces angle control between candidate cluster
heads to optimize the selection method of cluster heads,
builds a tree-shaped chain structure to optimize the strategy,
uses a hybrid hierarchical network topology structure, and
improves the path selection probability model of the ant col-
ony algorithm. And the pheromone update model realizes
the mixed multihop data transmission to eliminate the
shortcomings of the digital twin and other network load
algorithms in the large-area measurement area environment
of the cluster node to the sink node in the long-distance
single-hop transmission. Aiming at the problem of random
selection when selecting candidate cluster heads, this paper
sets a threshold calculation formula for each node according
to the remaining energy. By considering the remaining
energy of the node in the selection of the threshold, the
threshold generated by the node with less energy is smaller,
so that it has a smaller probability to become a candidate
cluster head node. The bottom layer constructs the network
nodes into multiple subchains and selects the main chain
head and the subchain heads to construct the top-level chain
head chain. In order to improve the success rate of data
transmission between clusters, this paper adopts Bayesian
link estimation for each cluster head node after each round
of cluster formation.

2. Related Work

Due to the huge application value of wireless sensor
network technology, which has a profound impact on the
development of the country and society, domestic and for-
eign scientific researchers have conducted in-depth research
on it from different directions. Because of the special appli-
cation environment of WSN, which is often unattended, the
design of the digital twin protocol plays a vital role in
whether the network can be used normally and how long
it can be used. Because traditional networks do not have
these new features, many different WSN digital twin algo-
rithms have emerged. The following briefly describes the
current research status of WSN at home and abroad [12].

Regarding network topology control, the existing
research results mainly have two ideas. One uses the posi-
tioning mechanism to accurately and effectively divide the
network. However, the positioning mechanism is more
expensive and generates greater internal friction; the other
is to use level type topology (clustering algorithm) takes
some nodes and then constructs a backbone network
responsible for data processing and forwarding. The rest of
the noncluster head nodes are mainly used to sense and

collect nearby information. And in the cluster head election
stage, the communication module is temporarily closed, and
the sleep mode is entered to save energy. At present, some
domestic and foreign scholars have conducted research on
this aspect as follows: Zheng and Sivabalan [13] proposed
a classic clustering protocol LEAcH. The protocol periodi-
cally performs two phases: cluster establishment and data
communication. In the cluster establishment stage, the
nodes in the network are randomly selected as cluster heads,
and the nodes that are not selected as cluster heads choose to
join the clusters that are closer to them. Leng et al. [14]
believe that in the data communication stage, the member
nodes in the cluster will transmit the collected information
to the cluster head, and the data will be fused in the cluster
head node. Compared with traditional network access proto-
cols, this algorithm extends the network life cycle by about
15%. However, this algorithm selects cluster head nodes
randomly, which can easily cause uneven distribution of
cluster head nodes.

The HEED protocol proposed in Li et al. [15] uses a
different competition mechanism from the LEAcH protocol
to select cluster head nodes. The HEPrint protocol fully con-
siders the role of node residual energy in selecting cluster
heads, so that the selected cluster heads can construct a more
reasonable network topology. Lim et al. [16] believe that this
protocol requires all nodes to communicate directly with the
base station, which requires relatively high hardware
requirements for sensor nodes. Both of the above two proto-
cols use single-hop communication within the cluster to
directly transmit the data collected by the member nodes
to the cluster head node. This single-hop communication
method within a cluster is simple and easy to expand. How-
ever, Barykin et al. [17] did not consider the cluster head.
For member nodes far away from the cluster head, energy
consumption may be too fast due to long-distance transmis-
sion. With the in-depth study of the digital twin protocol,
another multihop communication method within the cluster
has emerged. According to the effectiveness and timeliness
of the regional coverage of WSN in the monitoring environ-
ment, scholars proposed a nonuniform clustered wireless
sensor network digital twin algorithm based on energy effi-
ciency improvement [18–21]. This algorithm first optimizes
the cluster head election based on the node distribution
density and then controls the competition radius of the
clusters to achieve nonuniform clustering. Then, each cluster
head calculates the distance coefficient and the dispersion
coefficient to determine the internal communication mode
of each cluster. It adopts single-hop and multihop transmis-
sion mechanism. The results show that improves the energy
efficiency of network nodes, avoids the “hot spot” problem
of WSN, delays the dead time of network nodes, and
improves the effective coverage time of the monitoring area
and the overall network life cycle [22–25].

3. Network Construction of Industrial Digital
Twin Scene

3.1. Industrial Digital Network Cycle. In the structure of the
industrial digital network, the SU is responsible for
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collecting the required data information in the area to be
tested and then using corresponding means to send the data
information to the corresponding relay station; the DPU is
mainly composed of low-power embedded microcontrollers,
capable of coordinate various operations of the management
node, such as processing and saving the data collected by the
sensor unit; TU is mainly composed of low-power commu-
nication, etc., managing the communication process
between nodes, and at the same time exchanging related data
information; currently, PU mainly adopts that alkaline
batteries or lithium batteries are responsible for providing
energy for the work of nodes, and the energy unit is related
to the lifetime of the entire network.

〠I i, jð Þ−〠�δ i, jð Þ + �δ max
ffiffiffiffiffiffiffiffiffiffiffiffi
i2 + j2

q
= 0: ð1Þ

Many small nodes are scattered in the environment to be
tested, and nodes with specific functions form a wireless net-
work. Finally, the monitoring center also real-time control
and management of network nodes can be achieved through
the received information.

Since the functional characteristics of the sink node
determine its stronger data processing, fusion and informa-
tion transmission capabilities than ordinary nodes, it can
not only realize the connection between WSN and the Inter-
net and other external networks but also send the collected
data information to the external network.

lim
x⟶∞

�δ max − �δ min
� �

− lim
x⟶∞

�δ i, jð Þ + �δ max
� �

= 0: ð2Þ

With the collection and transmission of data, network
nodes gradually exhaust their own energy. Natural and
human factors may also cause node failure or death, com-
munication link quality, and wireless medium’s own factors
will affect the normal operation of the entire network. These
are several types of cause networks. At this time, if the net-
work is paralyzed and the tasks delivered by the user cannot
be completed normally, it means that the network does not
have good robustness, and the design of the digital twin
protocol must consider good robustness or robustness. In a
specific environment, robustness is difficult to evaluate by a
single value, and it is usually discussed in detail based on
node and link models.

3.2. Distribution of Sensor Node System. A wireless sensor
network system usually includes a sensor node, a base
station node, and an application node. A large number of
sensor nodes are arbitrarily scattered in the designated
sensor field. Each node can collect the information of the
sensing object in Figure 1. After the query is sent for a period
of time, the sink starts to receive the returned information
from multiple paths. At this time, it selects the optimal
path from it and sends a “path strengthening” message
to the corresponding neighboring node. The “path
enhancement” message is also a query command, which
is different from the previous one in that it contains a
larger information collection rate.

The “path strengthening” message is transmitted hop by
hop along the optimal path to the sensor node being queried.
This path becomes the “main path,” and the other paths
become the backup paths accordingly. After the sensor node
receives the “path enhancement” message, it will collect the
information according to the required rate in Table 1.

The closer the node is to the base station, the smaller the
node’s competition radius. Correspondingly, the cluster
structure closer to the base station is smaller, which will
reduce the energy consumption of data communication in
the cluster, and can reserve more energy for the relay and
forwarding services between clusters.

In the network access protocol, each wireless sensor
node in the network is homogeneous, that is, has the same
state, and is randomly distributed at any location in the net-
work. The disadvantage is that the cost of establishing and
maintaining a digital twin is high, and the number of data
transmission hops is large, which is not suitable for large-
scale network applications.

There is no hierarchy of nodes in the network access
protocol. The node sends data directly to the sink node, or
it can be forwarded to the sink node. The flooding digital
twin protocol is that after each node receives the informa-
tion, it forwards data packets to neighboring nodes in the
form of broadcast.

for t, t − 1 ∈ C r, tð Þð Þ, At α, βð Þ = F A t, t − 1ð Þ,M i, tð Þ½ �: ð3Þ

Flooding the digital twin agreement is prone to implo-
sion. The normal node first sends data to each neighboring
node to receive the data and sends it to other nodes except
itself. And so on, until the collected data information is
transmitted to the sink node, or until the node information
data expires. The biggest problem with this protocol is that
it generates a large number of duplicate data packets and
occupies a large amount of network resources, which makes
the digital twin and link resources too wasteful, resulting in
low efficiency.

3.3. Cluster before Digital Information Update. The GEAR
digital twin mechanism establishes an optimized event area,
avoiding flooding propagation, thereby reducing the cost of
establishing the digital twin. The future situation prediction
stage is based on the law of the development of the network
load process to realize the trend prediction of the future
operation state of the system. The future forecast results will
be submitted to the operation dispatcher for decision-
making and use, and the closed-loop control of the network
load will be realized.

∬At α, βð Þdadb−∬ A t, t − 1ð Þ,M i, tð Þ½ �dtd t − 1ð Þ = 0: ð4Þ

In the GEAR digital twin, the wireless links between
nodes are symmetrical. The query message propagation in
the GEAR route includes two stages. This link is the core
of the entire situational awareness process. It also runs
through the entire situational awareness process.
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βt =
α1 −

λ2 − λ1ð Þ
λ2 + λ1ð Þ , t ≤ 0,

α1 − 1, t > 0:

8><
>: ð5Þ

The chain head node will generate a token that can
control the transmission of data along the direction of the
chain head leader node. In each subsequent round, the node
closest to the end of the chain will join the current chain and
become the new end of the chain. When all sensor nodes
have joined the chain, the final network node chain structure
is formed.

In the chain structure, when a node dies, the chain struc-
ture needs to be reconstructed to prevent the chain from
breaking. In each round, the leader node at the head of the
chain stays with the node, and the remaining nodes only
collect and receive data and merge them, and forward the

fused data along the chain to the next-hop neighbor nodes
in Figure 2.

The directed diffusion protocol is a query-based digital
twin protocol and a data-centric digital twin protocol. The
agreement is divided into three stages: interest diffusion, gra-
dient establishment, and path strengthening. The sink node
determines the best path according to the magnitude of the
“gradient” value. This protocol is very energy-efficient, but
it is to establish the best path and consumes energy during
the digital twin.

3.4. Network Load Balancing Overlap. Because wireless
sensor networks are different from traditional wireless net-
works, other wireless sensor network digital twin algorithms
cannot be simply applied to wireless sensor networks. A suit-
able digital twin algorithm must be designed according to
the characteristics of the wireless sensor network itself for
network access algorithms and network load algorithms.

Yα1−1
α1

α2 + α1ð Þ E1
n + λ1

� �Yα1−1
α1

α2 + α1ð Þ
E1
n + λ1

� � = 1: ð6Þ

When there is a corresponding request, the data infor-
mation is sent to the destination. During data transmission
or reception, each node in Figure 3 first detects the energy
status, and if it is in a low energy status, it stops some unim-
portant operations, such as stopping as a relay node. But the
message sent by the publisher is asynchronous, there is no
need to wait for the subscriber to subscribe, and it does
not care whether the subscriber subscribes or not.
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Figure 1: Sensor node system distribution topology.

Table 1: Data forwarding in the sensor network.

Data
number

Sensor network
1

Sensor network
2

Sensor network
3

1 16.77 44.29 7.26

2 16.89 44.44 7.33

3 17.42 45.07 7.64

4 18.11 45.92 8.04

5 18.79 46.73 8.43

6 19.31 47.37 8.74

7 19.62 47.74 8.92
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The real-time situation understanding stage is mainly to
obtain network load data and information for integration
and analysis and then conduct situation assessment and
comprehensively evaluate the stability of network load
through the establishment of various stability indicators
and systems.

The advantage of the SPIN protocol is that the use of a
metadata negotiation mechanism eliminates the entire
network and solves the problems of implosion and overlap.

First of all, the protocol is established on a relatively
abstract level to analyze and design sensor networks, without
a more practical wireless network model. Secondly, the
volatility of network nodes and links is not taken into con-
sideration, and fault-tolerant technology is not supported.
Finally, the resource adaptive technology proposed is rela-
tively simple, not complete enough, and not suitable for
actual wireless sensor network applications.

G x, t, n ∣ x2 − t2 = 0
� �

−
α2 + α1 E1

n + λ1

E1
n‐λ1 α2 − α1

�����
����� = 0: ð7Þ

For the digital twin protocol, the cluster heads are ran-
domly selected in a probabilistic manner. Currently, various
types of network load data information that can be collected
mainly include network topology, real-time operation data,
equipment component information, and network load.

The entire network topology is constantly changing,
and the lifespan is short; the entire network chain digital
twin of the protocol causes 99% of the nodes to need to
fuse data, the first node of the chain has a large load and
high energy consumption, and the data transmission delay
of the end node is high. A WSN collaborative network load
design method based on hierarchical area division (CCRD-
HRD) is proposed. Based on SCA-HRD, this method adds
consideration to discrete clusters and designs collaborative
digital twins.

4. Wireless Sensor Network Access Control and
Load Balancing Model Construction in the
Industrial Digital Twin Scenario

4.1. Industrial Digital Hierarchical Topology. For wireless
sensor networks, network topology control has a particularly
important meaning. Using real-life temperature data for
simulation, the results show that compared with existing
data collection methods at different decoding rates, the
solution proposed in this chapter can always obtain better
data quality without the need to deploy a dedicated
sensor network.

for r, t − 1 ∈ C r − 1, tð Þð Þ,〠Qk ∗ giyik
2 = ∑giyik

2

∑Cx ∗ giyik
2 : ð8Þ

Situational awareness is the core link to realize real-
time monitoring of large network loads. It extracts,
analyzes, evaluates, and predicts network load and stable
behavior based on the wide-area operating status informa-
tion of the network load, in order to realize online secu-

rity early warning and intelligence to lay the foundation
for active regulation.

Among them, the prerequisite for the whole network
load situation awareness is to realize the extraction of situa-
tion elements first, and its purpose is to monitor the state of
the power system and obtain data information. With the
expansion and development of the power system in
Table 2, the collection scope and technical means of situa-
tion elements are constantly expanding.

In addition to traditional power control and hierarchical
topology control, people have also proposed heuristic node
wake-up and sleep mechanisms. This mechanism enables
the node to set the communication module to sleep when
no event occurs and automatically wakes up and wakes up
neighboring nodes in time when an event occurs. This
mechanism cannot be used independently as a topology
control mechanism and needs to be used in conjunction
with other topology control algorithms.

4.2. Wireless Sensor Network Protocol Stack. Due to the
limitations of sensor node energy, computing, and storage
capabilities, as well as the constant changes in sensor net-
work topology and network resources, traditional network
protocols cannot be used in wireless nodes. In wireless
sensor networks, the digital twin protocol not only cares
about the energy consumption of a single node but also
cares about the balanced network. At the same time, the
wireless sensor network is data-centric and establishes a
forwarding path from the data source to the sink node
based on the data of interest.

α2 + α1 E1
n + λ1

E1
n‐λ1 α2 − α1

∣
1 0
0 1

* +
=

λ −1
1 λ

∣
α1 1
1 α1

* +
:

ð9Þ

By placing a large number of sensor nodes, enough
paths are provided to satisfy the survival of the network
and adapt to the environment. The system must also
consider some important parameter settings, such as net-
work size, node density, and the trade-off between energy
consumption, reliability, and response time. Subscribers
can subscribe to multiple channels, and publishers can
send messages to subscribers through channels.

The energy waste at the MAC layer is mainly manifested
in idle listening, receiving unnecessary data, and collision
retransmissions. Assuming that the transmitting radius of
the node is R, the farthest distance from the base station to
the monitoring area is D. The base station in Figure 4 first
determines its own gradient level as O and calculates the
number of gradient levels N = ½D/R� to be divided.

The node that has not received the gradient message
determines that its gradient is n after receiving the message,
and the node that has determined its gradient discards it
when it receives this message. After the gradient is estab-
lished, the node sends interactive information to neighbor-
ing nodes and saves the received interactive information.

After the interaction is completed, the node calculates
and updates its own comprehensive weight based on the
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interaction by the neighboring node. In the clustering stage,
the node first uses the updated weight to compare with the
weight of the neighbor set: if the comparison between node
a and any node b in the neighbor set meets any of the follow-
ing rules, then the weight ratio of node a is considered.

∂
∂Wij

l
J w, bð Þ‐∬ ∂

∂Wij
l
At α, βð Þdadb = 0: ð10Þ

In order to reduce energy consumption, the MAC proto-
col usually adopts an alternate wireless channel listening
mechanism of “listening/sleeping.” The sensor node only
listens to the wireless channel when it needs to send and
receive data, and try to enter the sleep state when there is
no data to send and receive. Since the wireless sensor
network is an application-related network, when the appli-
cation requirements are different, the network protocol
often needs to be customized according to the application
type or the characteristics of the application target envi-
ronment. No single protocol can fully adapt to a variety
of different applications.

4.3. Network Algorithm Clustering Results. In the clustering
process of the network algorithm, first calculate the optimal
number of clusters for each divided area according to a
certain strategy, and then use the digital twin algorithm to
perform the first round of random clustering for each
divided area intermittently, and only need to cluster later
internal adjustment, and consider the nodes in Table 3, to
avoid the nodes of the whole network periodically and
frequently clustering and consuming too much energy
and low-energy nodes serving as cluster head nodes
multiple times.

In multihop data transmission between clusters, a
threshold TD-MAx is introduced. If the distance between
the cluster head node and the base station is less than TD-
MAx, the cluster head node directly transmits the data to
the base station. On the contrary, use the method described
below as much as possible to transmit the collected data.

When the intercluster multihop transmission starts, each
cluster head broadcasts a NoDE-s containing the cluster
head ID, the current remaining energy, and its distance to
the base station with the same power; it will maintain a set
of candidate digital twin nodes according to the received
message. The node decides whether to join the cluster head
competition according to its own remaining energy.

∇J w, bð Þ
∇J bð Þ −∇

1
b
〠
m

i=1
J w, b ; xi, yi
� �

+ λWij
l = 0: ð11Þ

The number of clusters is then refined into each divided
area, and each divided area is intermittently used to perform
specific clustering with the improved combination of digital
twin and PEGASIS algorithm. Once the clustering is done,
each divided region is formed. The member nodes in the
cluster perform data collection, and cluster head nodes per-
form data fusion. Finally, each cluster head node forwards
the fused data through the collaborative data transmission
digital twin between the clusters and finally transmits it to
the sink node. This process continues until the end of the
wireless sensor network life cycle, and the duration is as long
as possible.

5. Application and Analysis of Wireless Sensor
Network Access Control and Load Balancing
Model in the Industrial Digital
Twin Scenario

5.1. Industrial Digital Data Element Preprocessing. In the
wireless sensor network, the energy consumption of the
wireless communication module of the sensor node in the
idle state is equivalent to that in the transceiver state, so only
by turning off the node’s communication module can the
energy consumption of the wireless communication module
be greatly reduced, considering a certain mechanism choice.

A subscriber, such as a client, expresses an event or a
type of event that it is interested in receiving in the form
of event subscription. Some nodes are used as backbone net-
work nodes, and their communication modules are turned
on, and the communication modules of nonbackbone nodes
are turned off. The backbone nodes build a network to be
responsible for the digital twin forwarding of data.

∂J w, b ; xi, yi
� �
J xi, yið Þ = ∂f xi, yi

� �
∂f x, yð Þ : ð12Þ

After the wireless sensor network monitoring area is
divided into hierarchical regions, the first-level region closest
to the sink node is first used to calculate the probability and
the principle of minimizing total energy consumption and
then based on the total energy between regions.

Among them, the cluster head selection probability of
each area in Table 4 is different, and it becomes smaller as
the distance from the sink node increases, so as to ensure
the nonuniform clustering of the entire network. Through
this algorithm, participants can compress the sensory data
collected in the target area into CS measurement values. In
order to improve data quality, a data reconstruction algo-
rithm based on multiple rounds is further proposed.

A good clustering algorithm can provide a foundation
for data fusion, time synchronization, target positioning,
and network management and is beneficial to extending
the time of the entire network. Based on a reasonable and
effective network clustering structure, it is possible to

Table 2: Backbone network node communication module.

Node ID Distance from the node Neighbor node status

(S1, S2, S3) D12 Route_flag 1

(S2, S2, S3) D21 Power control 1

(S3, S2, S3) D33 Power control 2

(S1, S1, S3) D14 Route_flag 2

(S1, S3, S3) D42 Route_flag 3

(S1, S2, S1) D24 Power control 3

(S1, S2, S2) D13 Power control 4
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Figure 4: Gradient distribution of wireless sensor network protocol stack.

Table 3: Data transmission delay of chain end node.

Parameters Transmission node 1 Transmission node 2 Transmission node 3

Distribution area 509.26 32.10 14.14

Base station coordinates 509.88 31.49 11.30

Number of nodes 510.49 32.94 8.60

Data packet size 511.11 36.27 6.69

Node initialization energy 511.73 40.85 6.19

Signal threshold 512.35 45.76 7.39

State cluster 512.96 50.07 10.14

Table 4: Algorithm of optimal cluster number for hierarchical area.

Circle steps Algorithm meaning Step codes

1 Upper-layer applications in Xi % Program P1_1

2 An efficient network control system % Generation of a Unit Sample Sequence

3 The cluster head selection probability �X Clf;

4 Logical network structure as Xi − �X % Generate a vector from -10 to 20

5 A reasonable and effective network N = -10:20;

6 The distance from the sink node ∑n
i=1κXi % Generate the unit sample sequence

7 In networks depends on the clustered μX κ − tð Þ U = [zeros (1,3) ones(1,28)];

8 A foundation for data fusion in Xi + �X
� �2

% Plot the unit sample sequence

9 Good clustering algorithm Stem (n,u);

10 It becomes smaller as the distance ∑n
i=1 Xi + �X
� �2

Xlabel ('Time index n'); ylabel ('Amplitude');

11 It is possible to establish ℤ 0, 1½ � Title ('Unit Step Sequence');

12 The application of many protocols Axis ([-10 20 0 1.2]);

13 So as to ensure the nonuniform A t, t − 1ð Þ Clf; % Clear old graph

14 It provides channel control in cov Xi − �X ∣ X
� �

Stem (n,x); % Plot the generated sequence

15 It is beneficial to extending the lifetime Axis ([0 40 -4 4]);

16 A foundation for data fusion in lim
x⟶∞

Xi − �X
� �2h i

Grid;
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establish an efficient network control system, realize effective
resource scheduling and application including bandwidth
allocation and frequency reuse, provide channel access con-
trol, efficient digital twin computing, and establish virtual
circuits and other functions.

The application of many protocols in sensor networks
depends on the clustered logical network structure, and
many upper-layer applications can run on this structure.
By introducing a new spatiotemporal data abstract model
in the target perception area, the participant’s movement
process is represented as a random measurement of the
perception task.

∂J w, b ; xi, yi
� �
∂J w, bð Þ = ∂f w, bð Þ

∂f wð Þ∂f bð Þ : ð13Þ

The protocol uses digital twins in the multihop phase
between clusters to adaptively determine the weight coeffi-
cients occupied by multiple metric factors. The selection of
each metric factor is of great significance for the node when
selecting the next hop standard for evaluating the network
survival time, and the distance can reduce the number of
hops and reduce the transmission delay.

The quality status can estimate the reliability of the wire-
less link transmission channel, and they reserve more energy
for intercluster data forwarding. In this paper, when the
cluster head node selects the next hop node in the multihop
phase between clusters, it is based on a cost function
improved from the protocol, which includes the cluster
head. The number of internal members is used as a measure-
ment factor, and the weight coefficients occupied by each
measurement factor in the cost function are objectively and
adaptively calculated using digital twins.

5.2. Realization of Wireless Sensor Network Access Control
Simulation. Assuming that nodes in the wireless sensor net-
work access control, each node calculates the probability of
becoming a candidate cluster head according to the formula.
In each round of selection of cluster heads, the percentage of
candidate cluster heads to all nodes is p. For all nodes N , the
number of candidate cluster heads will be approximately N
× p, and HEAD_MsG will be broadcast.

lim
x⟶∞

A t, t − 1ð Þ −M i, tð Þ =ℤ 0, 1½ �,
lim

x⟶∞
A tð Þ −M tð Þ =ℤ 0, 0½ �:

*
ð14Þ

After that, if K nodes are generated from these candidate
cluster head nodes as cluster head nodes in this round, it is
necessary to broadcast MsG messages with the largest energy
and MsG messages for successful elections. Finally, the
remaining N-K ordinary nodes in the network select the
cluster head node with a stronger signal according to the
received signal strength.

The cluster head node in Figure 5 calculates and sends K
time slot information to the member nodes in the cluster.
Based on the above analysis, in each round of cluster forma-
tion, the total number of messages in the network is N × p.

Experimental results show that compared with existing
collection methods, the proposed scheme can obtain better
data quality under different decoding rates.

This article will use OMNeT++ (Objective Modular
Network Testbed in C++) as a simulation platform tool.
This software is a component-based, object-oriented mod-
ular simulation software. OMNeT++ provides a graphical
network editor and network data stream viewing tool
and can run on multiple operating system platforms. It
uses events as the basic communication mechanism to
provide the loosely coupled interaction mode required by
large-scale systems.

On the OMNeT++ platform, the network protocol is
written in “+” language, and the user-defined language
“NE0” is used to construct the network model. Compared
with simulation platforms such as Ns-2 and OPN, OMNe
++ not only can easily define the network topology and
has obvious advantages in the perfection of the model
library and the support for debugging and tracing of the
protocol code.

Qk ∗ giyik
2 Cx

−Cx Qk ∗ giyik
2

" #
×

sin θ −cos θ
cos θ −sin θ

" #
= 1:

ð15Þ

The main documents are introduced as follows: (1)
need file: use ned language to describe the network topol-
ogy, network simulation parameters, and network connec-
tions between nodes; (2) cc file: use “+ language to write
each module algorithm; (3) msg file: message file, mainly
used to simulate various events, messages, frames, etc. in
the transmission process; (4) I.b file: the kernel library
and user connection library used in the simulation pro-
cess; (5) ini file: users set various parameters in the simu-
lation module; and (6) -vec and -sna files: output vector
files and output scalar files, mainly it is used to store data
and record the simulation results.

〠
n

i=1
κXiZ ið Þ − 〠

n

i=1
κXi + μX = 〠

n

i=1
μX κ − tð ÞXi: ð16Þ

According to two different values of c, the sensory data
collected by each participant in the target area during a
period of time will be compressed into a measured value.
The original data is reconstructed by an iterative algorithm
using the measurement matrix and measured values. In
order to improve the quality of data reconstruction, a data
recovery algorithm based on multiple rounds is further
proposed by using the time correlation between the data.

5.3. Case Application and Analysis. In this paper, the algo-
rithm is mainly simulated and tested. In the case of limited
experimental conditions, MATLAB is mainly used as an
experimental simulation tool to simulate the setting of
WSN simulation scenarios and simulation parameters, and
the experimental simulation is performed based on the
simulation performance metrics.
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Through several simulations in MATLAB, better simula-
tion analysis results of the network survival time and total
energy consumption of the three algorithms are obtained.
For the simulation results of the network survival time in
Figure 6, we, respectively, counted the number of rounds
of the three algorithms at the beginning of dead nodes,
10% node deaths, 50% node deaths, 70% node deaths, and
the entire network node death.

This article is the effect diagram of the nonuniform clus-
tering of the protocol formed by 100 nodes in a square net-
work with a side length. Among them, the first to sixth steps
are the cluster formation stage, and the seventh to eighth
steps are the intercluster multihop data transmission stage.

In the first step of the protocol, network initialization for
the base station sends a start message to all nodes. All nodes
calculate the approximate distance from the base station
based on the received signal strength. The dead node no
longer establishes any contact with the base station. When
the participants move to some monitoring points to collect
data, the movement of the monitoring points is similar to
the random walk between nodes in WSNs to collect data.

cov Xi − �X ∣ X
� �

= 〠
n

i=1
Xi − �X
� �2 + 〠

n

i=1
Xi + �X
� �2 + 〠

n

i=1
Xið Þ2:

ð17Þ

In the text, the green dot represents the broadcast mes-
sage, and the straight line with the arrow represents the
wireless communication connection established by the node
and the base station; the right picture shows the start of the
surviving node in the network receiving the base station
transmission, where the white dots represent nodes that died

due to exhaustion of energy, and no communication
connection with the base station is established.

It can be seen that the algorithm prolongs the network
lifetime more effectively. For the simulation results of the
network, the number of rounds in which the three algo-
rithms consume 10% of the total energy, 50% of the total
energy, 70% of the total energy, and total energy consump-
tion of the three algorithms is, respectively, counted. In a
sense, its trajectory can completely cover the target area. In
this topic, a distributed coding algorithm based on com-
pressed sensing is proposed.

All nodes in the network in Figure 7 enter the dormant
state. Each node that becomes a candidate cluster head will
broadcast the message according to its own competition
radius. After receiving the message, the other candidate in
the election before will be awakened from the dormant state.

The message with stronger signal is selected, and the
message is sent to it to apply to join the cluster. The cluster
head node will calculate the TDMA time slot according to
the number of members in the cluster and send it to the
establishment of the cluster which is completed. First, we
simulate the movement trajectory of the participant and
obtain the respective measurement vector of the participant
through the trajectory position. Multiple participant trajec-
tories can obtain a binary measurement matrix.

cov Xi − �X ∣ X
� �

cov Xi + �X ∣ X
� � = lim

x⟶∞
Xi − �X
� �2h i

×
∑n

i=1 ∑n
i=1 Xi − �X
� �2� �2

∑n
i=1 Xi + �X
� �2 :

ð18Þ

After the cluster in each level area is formed in the clus-
ter domain, it will allocate time slots according to the TDMA
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scheduling method. At the beginning, the member nodes in
the cluster are in a dormant state. When the participants
move to some monitoring points to collect data, the move-
ment of the monitoring points is similar to the random walk
between nodes in WSNs to collect data.

When the node is activated, the member nodes in the
nonchain structure collect data and send it to the cluster
head in a single hop, while the cluster node in the chain
structure needs to transmit the data along the chain after
collecting the data pairs. If the node meets the conditions,
it will become a candidate cluster head, and then, the candi-
date cluster head selects the final cluster head node through
regional competition.

6. Conclusion

In the homogeneous node environment, based on the net-
work load algorithm, this paper optimizes the digital twin
topology structure, divides the network nodes into two
layers, constructs the network nodes into multiple subchains
at the bottom layer, and selects the main chain head and the
branch chain heads to construct the top-level chain head
chain. Secondly, the isolated points generated in the chain
formation process are processed in a tree structure to reduce
the length of the data transmission path, optimize the selec-
tion strategy of the main chain head and the branch chain
head and the chaining rules, and compare the common
nodes and chain heads near the sink. The number of clusters
generated is small, and the packet delivery delay is low; but
the overlap between the generated clusters is large, the clus-
ter head nodes are often overloaded, and the load among the
cluster heads is extremely uneven. At the same time, the
gateway node serves as another cluster head to share part
of the nodes, which not only maintains the advantages of
the original algorithm with less packet delivery delay but also
reduces the burden on the cluster head node that is over-
loaded. Finally, the digital twin algorithm is studied in detail,
and an energy adaptive nonuniform clustering algorithm
based on digital twin is designed. In addition, the idea of
nonuniform clustering is introduced in the single-hop mode,
and the clustering radius is determined by integrating node
connectivity and the distance between the node and the base
station, so that the cluster head far away from the base
station manages fewer nodes. The experimental results show
that the protocol proposed in this paper is stable in the net-
work, network energy efficiency, and data transmission effi-
ciency. It is superior to other comparison protocols in terms
of it and can improve the success rate of data transmission.
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In the era of digital manufacturing, huge amount of image data generated by manufacturing systems cannot be instantly handled
to obtain valuable information due to the limitations (e.g., time) of traditional techniques of image processing. In this paper, we
propose a novel self-supervised self-attention learning framework—TriLFrame for image representation learning. The TriLFrame
is based on the hybrid architecture of Convolutional Network and Transformer. Experiments show that TriLFrame outperforms
state-of-the-art self-supervised methods on the ImageNet dataset and achieves competitive performances when transferring
learned features on ImageNet to other classification tasks. Moreover, TriLFrame verifies the proposed hybrid architecture,
which combines the powerful local convolutional operation and the long-range nonlocal self-attention operation and works
effectively in image representation learning tasks.

1. Introduction

The researchers in the field of computer vision have
already achieved great progress in the techniques for
image recognition; most of these achievements are based
on supervised learning methods. For example, ImageNet
[1] acts as a large-scale labelled image dataset applicable
for all kinds of image learning tasks, among which super-
vised methods, e.g., ResNet [2] and AlexNet [3], are dom-
inating and providing the state-of-the-art performances.
Although with the thriving of semisupervised learning,
unsupervised learning, and self-supervised learning, some
competitive methods are emerging, e.g., fast-SWA [4],
VAT [5], CPC [6], DIM [7], AMDIM [8], and IIC [9].
These methods show that the performance gap between
reduced supervised and supervised methods is shrinking;
the amount of labels required for training a competitive
unsupervised or self-supervised method is dramatically

decreasing. It is noted that certain amount of labels as
guiding reference for learning methods is too valuable to
ignore that usually results in the gradually decreased adop-
tions of fully unsupervised methods [10]. All these studies
above imply that self-supervised methods are becoming
more and more promising in the area of image represen-
tation learning, yet we have not seen any self-supervised
learning method that surpasses the performance of super-
vised methods in a general perspective. On the other hand,
considering the huge amount of image data being gener-
ated every day by manufacturing systems, it is reasonable
to rethink the methodology of image learning. Specifically,
in the environment of manufacturing systems, applications
such as robotics, autopilot systems, medical diagnosis,
smart home, and smart city systems are generating signif-
icant amount of data every day. It is notable that a large
portion of data produced in manufacturing systems is
image, as shown in Figure 1.
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Figure 1: Continued.
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Images are generated by various kinds of manufacturing
systems in a sharp speed and are ready to be analyzed
though technologies like image classification, object detec-
tion, image segmentation, image filtering, denoising, etc.
However, it is noted that image data cannot be instantly
processed due to performance limitations by the
manufacturing systems. Although with the research focus
being transferred to subdivision fields of image learning,
e.g., medical image processing [11], face recognition [12],
image analysis in autonomous vehicle [13], and fault diagno-

sis in manufacturing system [14–17], the capability is gradu-
ally catching up with the explosive growth of image data
being generated in manufacturing environments. It should
be also well noted that, in order to equip models with spe-
cific processing capability in subdivision fields, many task-
specific image datasets with accurate labelling are created
for supervised training. The fact that, it demands tremen-
dous effort to label every image according to the training tar-
get, directly strangles the development of supervised
learning methods. Thus, many researchers attempt to

(c)

Road construction

Wrong direction

Queue length Dropping objects

Pedestrian crossing

Traffic accident

(d)

Figure 1: (a) A picture by a navigation terrain camera; (b) the object recognition result of pictures captured by camera mounted on an
autopilot vehicle; (c) the diagram of individual differences in brain area and shape, captured for further medical diagnosis; (d) images
from surveillance cameras of smart city system being processed for incident detection.
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exploring alternatives of supervised learning, for example,
self-supervised methods using the structural information of
the image data to supervise the learning process. In this
paper, we propose a general solution for image representa-
tion learning based on the self-supervised method, with the
capability of transferring to subdivision fields with trivial
effort.

Current methods of self-supervised learning for image
processing can roughly be divided into the following two
categories: generative methods and contrastive methods.
Generative methods based on Auto-Encoder [18–20] and
generative adversarial networks (GAN) [21–23] rely on
reconstruction error in pixel-level to learn image representa-
tion. Relying on pixel-based objectives significantly reduces
the capability to model correlations or complex structures
and makes model heavily focus on low-level features instead
of abstract representative features. Contrastive methods [6,
7, 24–27] learn image representations by contrasting positive
and negative samples in the latent space, which forces model
to discard pixel-wise information and focus on the structure
and correlation of the image as a whole. While executing an
image learning task, the aim is to get a semantic structural
embedding of image which is generalized and can be trans-
ferred to subdivision tasks which do not dependent on
pixel-level details; thus, contrastive methods better fit our
purpose. We are inspired by Contrastive Predictive Coding
(CPC) introduced in [6] which utilizes a probabilistic con-
trastive loss (called “the InfoNCE”) to force the model to
learn the underlying semantic information that is shared
among the input sequence. However, when applying CPC
to image representation learning, a major issue needs to be
addressed properly; as shown in Figure 2, it is difficult to
predict image patches which contain objects that never
appear in previous content as CPC lacks of knowledge of
long-range dependencies across the entire image. In this
paper, we equip the CPC framework with the power of
self-attention [28] which is skilled in capturing nonlocal
long-range dependencies, in order to learn a better semantic
structural representation of image. The intuition is that if
sending the latent embeddings of image patches through
the self-attention framework (i.e., a transformer encoder
architecture), then each patch embedding will have an
impression of the content of other patches, and features of
more correlation with others will be emphasized as a result.
This process facilitates the learning of nonlocal high-level
representation of image.

In this paper, we propose a novel data analytics oriented
approach for image representation learning with self-
supervised learning and self-attention for manufacturing
systems—TriLFrame. The framework is aimed at learning
nonlocal semantic features of image with the ability to pre-
dict the missing patches of image in latent space. Although
following the idea of contrastive self-supervision, TriLFrame
is different from [6, 25] in major aspects: first, TriLFrame
applies self-attention mechanism on the top of backbone
convolutional operations to capture long-range dependen-
cies; second, TriLFrame makes use of nonlocal image
patches with no overlap to construct positive and negative
samples for contrastive learning; and third, we introduce a

progressive prediction strategy instead of the simple linear
transformation used in [6]. It should also be noted that this
paper is an extension of our previous work CPCTR [29],
which is a self-supervised self-attention framework for video
representation learning. CPCTR utilizes self-attention oper-
ations to encode long-range spatio-temporal correlations of
video data in order to capture “slow features” in video. Dif-
ferent from CPCTR, this paper makes the following novel
contributions: first, specifically for image data processing,
we design a new self-supervision pretext, which is the first
few to introduce self-attention to contrastive image repre-
sentation learning; second, a novel positive and negative
sample construction is designed for contrastive learning
which only requires spatial information of data; and third,
under the context of manufacturing systems, we conduct
experiments on different image datasets to show the effec-
tiveness of the proposed method.

The contribution in this paper is summarized as follows:
(1) we propose the self-supervised self-attention coding
framework for image learning in manufacturing environ-
ment; (2) we apply the transformer encoder to TriLFrame
to learn nonlocal spatial dependencies to better learn the
semantic representation of image, and we experiment on
the self-attention module in TriLFrame to reveal its effec-
tiveness; and (3) we evaluate TriLFrame on the ILSVRC
ImageNet competition dataset [30] as many authors
[31–33]. With unlabeled image data, we show that a pre-
trained TriLFrame can be easily transferred to image classi-
fication tasks with competitive performances.

2. Related Literatures

2.1. Contrastive Learning. Based on the theory of Noise Con-
trastive Estimation (NCE) [34], contrastive learning uses
classification tasks to discriminate positive sample from neg-
ative sample. The learning process is greatly dependent on
operation on the latent space of input data (i.e., input data
is preprocessed to reduce dimension), which forces contras-
tive learning to pay more attention to semantic structural
representations while less attention to low-level pixel-wise
features. In order to improve the efficiency of contrastive
learning, users are required to carefully select positive and
negative samples. Generally, negative samples that are hard
to discriminate can improve the learning quality greatly.
Contrastive learning has been proven competitive in the
contexts of natural language processing [35, 36], audio pro-
cessing [6], image processing [24, 27], video understanding
[37, 38], etc., and a number of researches have been investi-
gating the prospect of contrastive learning using no negative
pairs [39] and no momentum encoder [40]. Its performance
shows a promising prospect of contrastive learning.
Recently, a new contrastive learning approach, Contrastive
Predictive Coding (CPC) in [6], proposes an effective frame-
work that can be applied to sequenced data modality, e.g.,
natural language, audio, video, or image (an image can be
cut into a spatial sequence of image patches). CPC encodes
underlying shared features that is slowly varying across data
sequences and discarding local information. These shared
features are called “slow features,” which refers to these
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Figure 2: Continued.

5Journal of Sensors



features that are slowly varying across time, e.g., the identity
of a speaker in an audio signal, an activity carried out in a
video, and an object in an image.

2.2. Self-Supervised Learning for Image. With the develop-
ment of self-supervised learning, especially the wide adop-
tion of contrastive learning, self-supervised methods have
shown a promising prospect for the images learning [6, 24,
25, 27, 31, 41]. CPC [6] using self-supervised training on
unlabeled ImageNet dataset and fine-tuned with linear clas-
sification already outperform the supervised AlexNet [3];
Data-Efficient CPC [25] as an extended work has scaled up

CPC and achieved Top 1 accuracy of 71.5% on the image
classification task on ImageNet; it also exhibits high data
efficiency when fine-tuning with labelled data compared
with fully supervised methods. Deep InfoMax (DIM) [7]
learns image representations through the internal structure
information. A follow-up work of DIM and Augment Multi-
scale DIM (AMDIM) [8] utilizes invariant features across
data augmentations, e.g., color jittering and random crop-
ping; it gets Top 1 accuracy of 68.4% on ImageNet with
unsupervised pretraining and evaluated by linear classifica-
tion task. Contrastive Multiview Coding (CMC) [26] learns
representations using different versions of the same image,

(b)

Figure 2: (a) The upper part of a full image. (b) The full image labelled as “Mobile Phone” in the ImageNet dataset.
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e.g., image of different angles, as data transformations which
the representation should cope with. In the conventional
formulation of contrastive learning, the size of minibatch
restricts the total number of negative samples; Momentum
Contrast (MoCo) [24] effectively lifts this restriction by
maintaining a long queue of all negative samples, when
training the negative encoder does not update with the pos-
itive encoder. The experiment results show that MoCo out-
performs supervised models in several downstream tasks
on different image datasets. Typically, these image down-
stream tasks need supervised training with labelled image
to achieve good results; however, MoCo shows that the per-
formance gap between supervised and unsupervised
methods has largely been closed.

2.3. Self-Attention. TriLFrame also adopts the idea of self-
attention mechanism [28], in which we know the emerging
transformer architecture. A self-attention operation calcu-
lates the response of a position in an input sequence by pay-
ing attention to every position in the sequence and uses the
average in the representation space, resulting each response
being embedded with correlations with every other position
regardless of their distance. Self-attention also carries a
major merit, i.e., self-attention module can be calculated
simultaneously, which dramatically accelerate the training
process. Self-attention, or transformer, already becomes the
de facto standard for natural language processing (NLP)
tasks [42, 43], and recently, many researches explore their
application in computer vision, e.g., object detection [44],
image classification [45], video classification [46], and video
segmentation [47]. Vision Transformer (ViT) [45] is con-
structed with pure transformer encoders and is applied
directly to a sequence of image patches; ViT achieves com-
petitive results on image classification tasks. After training
ViT on large-scale image datasets and transferred to image
recognition benchmarks, ViT gets remarkable results com-
pared to state-of-the-art CNNs. However, there is a major
drawback of ViT, i.e., it requires substantially more image
data and computational resources to train compared to
CNNs. Thus, the self-attention architecture (just the trans-
former encoder) is applied to a sequence of patch embed-
dings of image (preprocessed by CNNs, e.g., ResNet [2]),
aiming to learn nonlocal correlations to implement the
learning of semantic structural representation image.

2.4. Image Classification. Traditional image classification
architectures [2, 3, 48] take advantage of convolutional net-
works for processing images and get remarkable perfor-
mance. Convolutional network is still the de facto standard
for image processing tasks and has been implemented in
many practical applications. In recent research, new archi-
tectures, e.g., networks using transformer [45, 49, 50] or
multilayer perceptron (MLP) [51–53], are challenging the
leading position of CNNs. We also note that hybrid CNN-
Transformer architecture [54–57] argues that the combina-
tion of local convolutional operation and nonlocal self-
attention operation is the optimal solution for computer
vision tasks. All recent works are trying to break the limita-
tion of CNNs. Here, in our work, RGB image data is utilized

to train a hybrid CNN-Transformer architecture in a self-
supervised manner, and then, the model is fine-tuned for
image classification tasks; it is also an attempt to explore
new framework of image processing.

3. Self-Supervised Self-Attention
Learning Method

In this section, the core components and implementations of
TriLFrame which include the learning framework, the sam-
ple construction, and the self-attention module are
presented.

3.1. Framework. The aim of TriLFrame is to learn a nonlocal
semantic representation of image. The image is first proc-
essed by a convolutional operation, and then, patches of
latent representations are unfolded for self-attention opera-
tion. As illustrated in Figure 3, TriLFrame takes an RGB
image as input and unfolds the latent embedding into a
number of patches (16 patches as in the experiment), given
the former part of patches the TriLFrame predicts the latter
part of patches. We use the latter part patches and the pre-
dicted patches to construct positive and negative samples
for contrastive learning. First step, the RGB image is prepro-
cessed, and a convolutional operation f ð:Þ computes the
image embedding X:

X = f imageð Þ, ð1Þ

where X has dimension ℝC×H×W . As same as ViT, we break
apart the latent embedding X along the spatial dimension
ℝH×W to get patch 1 to patch 16, where each patch is named
as xi ∈ℝC , and we have X = fxi ∈ℝC, i ∈ f1, 2,⋯,H ×Wgg.
These patches are sent to the self-attention function
transEncð:Þ to compute nonlocal correlations:

Z = transEnc Xð Þ, ð2Þ

where Z = fzi ∈ℝC, i ∈ f1, 2,⋯,H ×Wgg.
Afterwards, patches are accumulated along the patch

sequence by an aggregation function gð:Þ to get a context
ci:

ci = g z1, z2,⋯, zið Þ: ð3Þ

The accumulated context ci is of the same dimension as
xi and zi. In our initial settings, xi, zi, ci ∈ℝ256.

If feature vector z1, z2,⋯, zi have embedded with
semantic structural features, e.g., the key features of image
patch and have been aware of the correlation with other
patches, then the accumulated context ci can predict embed-
dings of the rest patches by using a simple inference function
φð:Þ:

ẑi+1 = φ cið Þ = φ g z1, z2,⋯, zið Þð Þ, ð4Þ

ẑi+2 = φ ci+1ð Þ = φ g z1, z2,⋯, zi, ẑi+1ð Þð Þ, ð5Þ
where ẑi+1 is the predicted embedding of patch i + 1. As
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instructed in Seq2Seq [58], we infer future embeddings in a
sequential mode. For the prediction of patch i + 2, the con-
text ci+1 which accumulates every past embeddings including
the latest predicted ẑi+1, as illustrated in Equation (5). We
totally infer q patches for one image.

3.2. Contrastive Learning. In TriLFrame, contrastive learning
is implemented by discriminating positive “Predicted Patch -
Ground-truth Patch” sample pair (named “Pred-GT” sam-
ple pair) and negative Pred-GT sample pair. Follow the idea
of NCE [34] and CPC [6], a NCE variant is adopted as our
contrastive loss for contrastive image learning. The proposed
contrastive loss draws the predicted patches closer to the
ground-truth patches while the Pred-GT sample pair does
not need to be completely the same, i.e., model just needs
to learn nonlocal semantic structural representation without
paying attention to pixel-level details or noises.

As illustrated in Figure 4, the red arrow line connects the
only positive sample pair, and the dashed black arrow line
shows two negative sample pairs constructed by (1) the pre-
dicted patch embedding and a random ground-truth patch
embedding of the same image and (2) the predicted patch
embedding and the patch embedding of an image from the
same minibatch. In TriLFrame, we break down an image
representation X of dimension ℝC×H×W into H ×W patches,
for i-th image patch; the ground-truth latent embedding zi is
couple with its predicted latent embedding ẑi; both embed-
dings are of the same dimension ℝC . As illustrated in
Figure 4, we construct positive sample pairs with a predic-
tion embedding and its corresponding ground-truth embed-
ding and negative sample pairs with a prediction embedding
and ground-truth embeddings at other spatial positions of
the same image. We further utilize patch embeddings of
images from the same minibatch to produce more negative
Pred-GT pairs for contrastive learning.

The similarity score of the Pred-GT sample pair is calcu-
lated by dot product as ẑTi ∙zj where ẑTi , zj ∈ℝc, i and j

denote i-th and j-th patch (i, j ∈ f1, 2,⋯,H ×Wg). Hence,
TriLFrame is to optimize the contrastive loss:

L = −〠
i

log exp ẑTi ∙zi
� �

∑jexp ẑTi ∙zj
� �

" #

: ð6Þ

The loss function in the above equation is typically the
cross-entropy loss for distinguishing positive Pred-GT sam-
ple pairs from negative sample pairs. When training with
minibatch, we define the following types of negative Pred-
GT sample pairs to define the construction of negative
samples:

(i) Easy Negatives. In the same minibatch, easy nega-
tives are Pred-GT sample pairs from two images.
Easy negatives are relatively easy to discriminate in
general, but there exist similar patches from different
images; for instance, image patches both contain a
football

(ii) Spatial Negatives. In the same image, spatial nega-
tives are constructed with predicted patch and
ground-truth patch embeddings, where the two
patches are at different spatial locations in the image,
i.e., (ẑi, zj) pair with i ≠ j

3.3. Transformer Encoder. We implement the conventional
transformer architecture [28] as the transformer in TriL-
Frame except that the transformer decoder and the posi-
tional encoding are discarded. Although it is proven that
positional embeddings make self-attention operation be
aware of sequential information to some degree [44, 45],
when using self-attention on image patches, the goal is to
embed nonlocal correlations between patches of image, so
it is not important to be aware of sequential information of
patches.

As illustrated in Figure 5, the conventional transformer
encoder operation gets a one-dimensional sequence of patch

z1

f

13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4 x2 x13 x14 x15 x16

Transformer Encoder

z2 z13 z14 z15 z16

g g g g

14 15 16

g g

c13 c14
φ

c15

x1

φφ

ẑ ẑ ẑ

Figure 3: A diagram of self-supervised self-attention learning framework.
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embeddings. To make the transformer applicable in three-
dimensional latent embeddings of images, we break apart
the image embedding X ∈ℝC×H×W along the spatial dimen-
sion ℝH×W to a series of one-dimensional patches xi ∈ℝC .
Transformer encoder takes a total number of H ×W patches
as input. In our implementation, the transformer encoder is
repeated L times, with a shared feature vector dimension C
at all layers. Each layer has one multihead self-attention
operation and one MLP operation, where the number of
heads is H. After each transformer encoder, we get an output
Z ∈ℝC×H×W . Through the transformer encoder operation,
each patch of image links to every other patch; thus, the
nonlocal spatial dependencies are computed.

3.4. Image Processing Workflow. Due to the diversity of
images generated by manufacturing systems, e.g., images of
different resolution, images from different angles, pano-

ramas or close shot, grey-scale image or RGB image, infrared
images, and medical images (magnetic resonance imaging
images, CT images), image data must be preprocessed for
self-supervised learning afterwards. To help the model learn
nonlocal semantics, we deploy the following frame-wise aug-
mentation methods to every image in a minibatch, such as
color jittering which includes random contrast, random
brightness, random hue, random saturation, and random
greyscale during self-supervised training. It is noted that,
by introducing self-attention, in contrast to CPC, TriLFrame
does not require image patches to be overlapped; this effec-
tively avoids the network to perform feature extrapolation
as the prediction.

In contrast to the one-off prediction of the latter patches
presented in [6], we implement a successive predictive
mechanism (i.e., latter patches are predicted in a progressive
manner). As described in Equations (4) and (5), all previous
context of the image (an aggregated context) is utilized to
make the next inference. This successive prediction process
ensures that the model makes use of every previous image
patch when predicting the next patch embedding.

Batch normalization [59] (BN) is a conventional practice
in deep neural networks; however, it is not adopted in CPC
[6]. We argue that BN is necessary in TriLFrame, and it gives
2%-4% accuracy improvement in classification tasks we per-
formed. It is difficult to train a hybrid CNN-transformer net-
work without normalization either in self-supervised
training stage or supervised fine-tuning stage. In this paper,
BN is adopted for convolutional function and transformer
encoder.

4. Experiments and Analysis

We show the experiment setups and the self-supervised
training procedure in the following section, and then, we
show the ablation study of TriLFrame and the evaluation
of the model.

Norm

Multi-head
attention

MLP

Norm

L

Patch embeddings

Figure 5: The architecture of transformer encoder applied in
TriLFrame.
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Figure 4: The construction of positive and negative samples of contrastive learning.
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4.1. Experiment Setting

4.1.1. Network Architecture. A conventional ResNet [2] is
implemented as the convolutional operation f ð:Þ; ResNet
consists of four residual blocks wrapping up with final chan-
nel dimension of 256. We use the output from the fourth
residual block as the input to transformer encoder. In our
experiments, ResNet18 is implemented. After ResNet
encoder, the latent representation of an image is cut into a
sequence of patches and then processed by transformer as
[28] without the positional encoding module. Taking
account of the number of the image patches, we set the num-
ber of attention heads and encoder layers to 2 and 1, respec-
tively, in our experiments. This setting of transformer also
forces encoder f ð:Þ to learn a better quality of semantic
structural representation of image, i.e., in order to train a
strong feature encoder, a weak self-attention operation
transEncð:Þ and aggregation operation gð:Þ is preferable.
Thus, we apply a simple Convolutional Gated Recurrent
Unit with the smallest kernel size (1, 1) as our aggregation
operation. For inference, one simple MLP is applied in a
progressive manner.

4.1.2. Self-Supervised Training. In our experiments, we use
the ILSVRC ImageNet competition dataset [30] for self-
supervised training. The ImageNet dataset has been used
to evaluate unsupervised vision models by many works.
Before encoder function f ð:Þ, images are preprocessed for
data augmentation; we implement random grey, random
flip, random crop, and color jittering for each image before
feeding to ResNet18. These augmentations help the network
to avoid shortcuts, i.e., feature extrapolation, as discussed in
Section 3.4.1. For self-supervision, we train TriLFrame end-
to-end with Adam optimizer; we start with an initial learn-
ing rate of 10e-3 and weight decay rate of 10e-5. The learn-
ing rate is decayed by a linear function every 100 epoch and
is settled at the rate of 10-5.

4.2. Evaluation Methods

4.2.1. Self-Supervised Learning Evaluation. The TriLFrame is
first training with self-supervision on the ILSVRC ImageNet.
Self-supervised training is initially evaluated by the valida-
tion Top 1 accuracy, i.e., the Top 1 accuracy of classifying
the positive Pred-GT sample pairs from others in the valida-
tion set. Self-supervision with high validation accuracy tells
that the model learns a good distribution of image embed-
dings. After self-supervised training, TriLFrame is further
evaluated by downstream tasks, especially the image classifi-
cation task on the ILSVRC ImageNet. TriLFrame is fine-
tuned with a simple classification layer on the ILSVRC Ima-
geNet in a supervised manner; after model converges, TriL-
Frame is then evaluated by the classification task on the
ILSVRC ImageNet. We report all accuracy results as Top 1
accuracies.

4.2.2. Image Classification. Image classification is an impor-
tant metric for evaluation on the self-supervised image
learning approaches; thus, we take the image classification
task to evaluate the TriLFrame.

After contrastive learning, the model should be able to
encode the semantic structural representation of an input
image from any source in manufacturing systems, and
the image representation can then be used in classification
task. The last aggregated context representation c is uti-
lized to construct the image classification network as fol-
lows: at first stage, we first encode an image with the
convolutional operation f ð:Þ to get the latent embedding
X, which is subsequently broken into a sequence of image
patches with no overlapping. The patch sequence is then
sent to the self-attention operation transEncð:Þ to capture
nonlocal dependencies, and finally, we use the aggregation
function gð:Þ to aggregate the whole sequence of patch
embeddings into a context representation c which is a fea-
ture vector of the image. At second stage, the representa-
tion c is passed to a FC layer and a Softmax function to
get the probabilities for image classification. The classifica-
tion network is trained by Adam optimizer; we start with
the learning rate of 10e-3 and a weight decay rate of 10e
-3. Because TriLFrame is fine-tuned for image classifica-
tion, so the initial learning rate of the convolutional oper-
ation f ð:Þ, the self-attention operation transEncð:Þ, and the
aggregation operation gð:Þ is set to 10-4. At prediction
stage, an image is preprocessed except for random crop.
The final classification result is given by the Softmax
probability.

4.3. Performance Analysis

4.3.1. Ablation Study. We conduct several ablation studies
on the TriLFrame architecture, especially on the backbone
encoder and transformer encoder module, to show the con-
tribution of each module of TriLFrame and the effectiveness
of deeper convolutional encoder. The ablation study is first
conducted with ResNet18 as encoder, and the results are
given in the upper part of Table 1. The baseline model is
set up with random initialization and trained only in super-
vision for image classification on the ILSVRC ImageNet
dataset. TriLFrame is pretrained with contrastive learning
and fine-tuned with supervised learning on ILSVRC. We
observe that Top 1 accuracy increases from 54.1% to
75.6%, after TriLFrame is pretrained with self-supervision.
Also, it is obvious that after removing the transformer mod-
ule transEncðÞ, the Top 1 accuracy incurs a significant drop:
from 75.6% to 66.8%. This ablation study demonstrates that
the TriLFrame framework is effective in capturing the
semantic representation of image, and that the self-
attention module plays an important role in the framework.

We also try to use deeper convolutional networks, e.g.,
ResNet50 and ResNet101. The results are given in the lower
part of Table 1. It empirically shows that deeper convolu-
tional encoders contribute to better self-supervised accuracy
as well as better image classification accuracy. When adopt-
ing ResNet101 as backbone encoder, we observe that Top 1
accuracy of classification accuracy reaches 81.2%, which is
a considerable increase compared with 75.6% by ResNet18
and 78.3% by ResNet50. This ablation study proves that dee-
per convolutional encoder plays a more effective role in
TriLFrame architecture.
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4.3.2. Self-Supervision Accuracy Compared with
Classification Accuracy. We also conduct experiments to
show the correlation of self-supervision and image classifica-
tion tasks. During self-supervised training TriLFrame on the
ILSVRC dataset, we perform several early stops at different
self-supervision accuracy and fine-tune with supervision
for image classification. Then, we demonstrate the relation-
ship of self-supervision accuracy and image classification
accuracy. For simplicity, the correlation experiments are
conducted with ResNet18 as backbone encoder. The follow-
ing Figure 6 shows our findings.

As shown in Figure 6, TriLFrame is trained using self-
supervision on the ILSVRC dataset and is early-stopped at
validation Top 1 accuracy of {54.8, 64.0, 71.4, 80.9}; for each
early stop, the model is then fine-tuned with supervision for
image classification. It is obvious that the performance of
TriLFrame on downstream classification task is dependent
on the self-supervision accuracy, i.e., TriLFrame of higher
self-supervision accuracy yields higher accuracy of image
classification. This correlation of self-supervision accuracy
and classification accuracy shows that the image representa-
tion learnt in self-supervised training effectively capture
semantic structural features which is generalized and can
be used at downstream classification tasks.

4.4. Comparison with State-of-the-Art Methods.We show the
comparison with state-of-the-art self-supervised methods
using linear probing. Results of state-of-the-art methods
are reported by the implementation in [39, 60, 61]. For fair
comparison, all methods are pretrained with 224 × 224
image crop from the ILSVRC ImageNet dataset; data aug-
mentation is applied accordingly. Note that we try ResNet18,
ResNet50, and ResNet101 as backbone encoder in TriL-
Frame to show comparable results, which is different from
other model settings. The results are given in Table 2. It
shows that: first, the proposed TriLFrame framework out-
performs the state-of-the-art method with 81.2% Top 1
accuracy, but it has a relatively large parameters of 485M
compared with other methods listed in the table. Second,
when constructed with a shallow convolutional network
ResNet18, TriLFrame is a quite light-weight architecture of
only 75M parameters, which is significantly less than other

methods with close performance (CMC has a 94M parame-
ters but only 70.6% accuracy). This proves that the hybrid
CNN-Transformer architecture which combines local con-
volutional operation and nonlocal self-attention operation
is quite effective and efficient in capturing nonlocal semantic
image features.

4.5. Transfer to Other Image Classification Tasks. Another
important experiment to test whether self-supervised learn-
ing captures key semantic features is transfer learning.
Model is first trained with self-supervision on the ImageNet;
when the model settles, we follow the classification model
setting as described in Section 4.2.2 except that the model
will be fine-tuned end-to-end for transfer learning. Specifi-
cally, the parameters learned from self-supervision on Ima-
geNet dataset are used to initialize the classification model,
and then, the entire model will be trained with supervised
learning on other image datasets. We follow the transfer
learning settings and evaluation protocol in [39], and we
use image datasets CIFAR [62], VOC2007 [63], Pets [64],
and Flowers [65]. If features learned from self-supervision
are generic and contain key semantic features, then they
should be helpful in other the image datasets mentioned
above. Please note that TriLFrame uses ResNet50 as encoder,
which matches the conventional architecture setting. The
transfer learning results are given in Table 3.

Although TriLFrame only surpasses other methods in
one of the five classification tasks, it achieves competitive
performances compared with state-of-the-art methods. We
note that TriLFrame performs better with larger dataset;
for example, TriLFrame achieves the highest accuracy on
CIFAR100 and the second highest accuracy on CIFAR10;
both datasets have more training samples than VOC2007,
Pets, and Flowers. This characteristic of TriLFrame accords
with ViT which also requires large amount of training data
to get competitive performances.

4.6. Discussion. Through ablation study on the TriLFrame
framework and comparison with SOTA models, we believe
that the following factors contribute to the achievements of
TriLFrame: First, the contrastive self-supervised training
process forces the model to learn a strong semantic struc-
tural embedding of image through predicting

Table 1: The result of ablation studies on TriLFrame architecture.
The model is pretrained with contrastive learning and then fine-
tuned with supervised learning classification task on the ILSVRC
ImageNet dataset. “Random Init.” that represents random
initialization is used for setting up. “Remove transEnc()” that
represents the transformer of TriLFrame is removed; patch
embeddings are aggregated without transformer encoder.

Encoder
Self-Sup. (ILSVRC) Sup. (ILSVRC)
Setting Top1 Acc. Top1 Acc.

ResNet18 Random Init. — 54.1

ResNet18 Remove transEncðÞ 68.8 66.8

ResNet18 TriLFrame 80.9 75.6

ResNet50 TriLFrame 83.7 78.3

ResNet101 TriLFrame 88.5 81.2
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Figure 6: The correlation of self-supervision accuracy and image
classification accuracy.
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nondeterministic image patch embeddings given previous
context knowledge of the image. Second, it is apparent that
the hybrid CNN-Transformer architecture which combines
local convolutional operation and nonlocal self-attention
operation is quite effective and efficient in capturing nonlo-
cal semantic image features. Third, we trust that the frame-
work design of TriLFrame, which makes use of
convolutional operation, self-attention operation, and aggre-
gation operation, shows great performance and suits image
learning tasks.

5. Conclusion

In this paper, we propose a novel self-supervised self-
attention framework TriLFrame for image representation
learning in manufacturing systems. TriLFrame combines
the powerful local convolutional operation and the long-
range nonlocal attention operation; TriLFrame learns image
representation through contrasting predicted image patches
and ground-truth image patches. We show that the pro-
posed TriLFrame achieves state-of-the-art performances on
image classification task on the ImageNet, with a Top 1
accuracy of 81.2%; TriLFrame also achieves competitive per-
formance with a light-weight architecture of only 75M
parameters. When tested in transfer learning, TriLFrame is
proven to be reliable in capturing semantic features for
image classification tasks.

The work demonstrated shows that TriLFrame has a
promising future in image-related tasks in manufacturing

systems; it can be quickly transferred and deployed to appli-
cations such as anomaly detection, medical diagnosis, and
road analysis. Nevertheless, TriLFrame requires extra super-
vision information (e.g., image labels and segmentation
information) if it is to be deployed in manufacturing systems
for a specific task, and the supervision information may
require exquisite design and significant amount of effort.
Therefore, we hope the proposed TriLFrame can be consid-
ered as a baseline or backbone framework when solving
image-related tasks in manufacturing systems in the future.
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Table 2: The comparison with state-of-the-art self-supervised methods in ImageNet classification, evaluated by linear probing. “Params”
and “Architecture” column shows the basic features of the corresponding method. “Top1 Acc.” and “Top5 Acc.” are reported by a linear
classification on the ImageNet dataset, after models are pretrained with self-supervision.

Method Params Architecture Top1 Acc. (%) Top5 Acc. (%)

CMC 94M ResNet50 ×2 70.6 89.7

CPC v2 305M ResNet161 71.5 90.1

BYOL 375M ResNet50 ×4 78.6 94.2

SimCLR 375M ResNet50 ×4 76.5 93.2

MoCo v3 304M ViT-L/16 77.6 —

MoCo v3 304M ViT-BN-L/7 81.0 —

TriLFrame (ours) 75M ResNet18 + transformer 75.6 92.1

TriLFrame (ours) 265M ResNet50 + transformer 78.3 93.6

TriLFrame (ours) 485M ResNet101 + transformer 81.2 94.7

Table 3: Transfer learning results. Models are initialized with parameters from self-supervised learning on ImageNet dataset and are fine-
tuned for classification task on relative datasets. A supervised training (on ImageNet) version “Supervised-IN” is also provided for
comparison.

Method
Dataset CIFAR10 CIFAR100 VOC2007 Pets Flowers
Classes 10 100 20 37 102

BYOL [39] 97.8 86.1 85.4 91.7 97.0

SimCLR [27] 97.7 85.9 84.1 89.2 97.0

Supervised-IN [27] 97.5 86.4 85.0 92.1 97.6

MoCo v3 [61] 98.9 90.5 — 93.2 97.7

TriLFrame (ours) 98.2 90.7 85.2 91.5 96.2
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Deep learning is widely used in fault diagnosis of mechanical equipment and has achieved good results. However, these deep
learning models require a large number of labeled samples for training, which is difficult to obtain enough labeled samples in
the actual production process. However, it is easier to obtain unlabeled samples in the industrial environment. To overcome
this problem, this paper proposes a novel method to generative enough label samples for training deep learning models. Unlike
the generative adversarial networks, which required complex computing time, the calculation of the proposed novel generative
method is simple and effective. First, we calculate the Euclidean distance between the training sample and the test sample;
then, the weight coefficient between the training sample and the test sample is settled to generate pseudosamples; finally,
combine with the pseudosamples, the deep learning method is training for machine fault diagnosis. In order to verify the
effectiveness of the proposed method, two experiment datasets with planetary gearboxes and wind gearboxes are carried out
with different activation functions. Experimental results show that the proposed method is effective for most activation
function models.

1. Introduction

With the continuous development of industrial intelligence,
people are focusing on equipment health monitoring and
fault diagnosis. Gearboxes are widely used in mechanical
equipment, especially in large and complex equipment, and
gearboxes are the main transmission device. Therefore, con-
dition monitoring and fault diagnosis of gearboxes are very
important [1, 2]. In the manufacturing industry, machine
fault will directly affect machining accuracy and machining
quality, reducing production efficiency [3]. Equipment status
monitoring and fault diagnosis are essential to ensure the
machine’s normal operation, reduce maintenance costs,
and improve production efficiency. Therefore, it is of great
significance to conduct health monitoring and fault diagno-
sis of mechanical engineering equipment.

The data-driven fault diagnosis method usually includes
three stages: (1) using sensors to obtain sample data; (2)
denoising the sample data and extracting features; (3) input-
ting the extracted features into the classification algorithm

for fault identification [4]. Deep learning is an effective
method of fault diagnosis. In order to improve the accuracy
of fault diagnosis, researchers have developed several deep
learning networks. Such as recurrent neural networks
(RNN) [5], autoencoder(AE) [6, 7], long short-term mem-
ory (LSTM) [8], deep belief network (DBN) [9], and convo-
lutional neural network (CNN) [10], the advantage of these
deep learning algorithms is to reduce feature redundancy
and extract more information features for predictive models.
Deep learning technology has shown good performance in
fault detection and diagnosis with its powerful feature
extraction ability and excellent classification performance,
thus, it has become a research hotspot. Guo et al. [11] pro-
posed an intelligent method based on deep belief network
(DBN) and hyperparameter optimization for fault diagnosis
of rolling bearings. Li et al. [12] proposed a deep autoenco-
der network for cross-machine fault diagnosis. Zhou et al.
[13] designed a new generative confrontation network
generator and discriminator, using a global optimization
scheme to generate more discriminable fault samples. Ma
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and Mao [14] developed a novel deep neural network, a
convolution-based long short-term memory (CLSTM) net-
work, to predict the remaining service life (RUL) of rotating
machinery in field vibration data. Wang et al. [15] formed a
new fault diagnosis method by integrating the deformable
convolutional neural network (CNN), deep long short-
term memory (DLSTM), and transfer learning strategies.
Singh et al. [16] proposed a deep learning-based domain
adaptation (DA) method for fault diagnosis of gearboxes
when the speed changes significantly. Xue et al. [17] pro-
posed an enhanced deep sparse autoencoder (ADSAE) for
diagnosing gear pitting faults. He et al. [18] proposed an
improved deep autoencoder (MDAE) driven by multisource
parameters for cross-domain fault prediction.

Deep learning has a good effect on fault diagnosis; how-
ever, it requires a large number of condition samples in the
training process to achieve satisfactory accuracy. The limited
number of samples will directly lead to a reduction in model
performance. Due to different working conditions, it is diffi-
cult and expensive to collect enough fault samples for train-
ing models in actual industrial production. Therefore, it is
important to research the deep learning method for machine
fault diagnosis in small samples situation. Li et al. [19] pro-
posed a fusion framework based on the confidence weight
support matrix machine (CWSMM) for strong interference
and unbalanced data sets. Ti et al. [20] proposed a weighted
extended neural network (W-ENN) model for fault diagno-
sis of a small piece of steam turbine generator sets. He et al.
[21] suggested using depth transfer multiwavelet autoenco-
der to diagnose the gearbox fault with a few training sam-
ples. Zhang et al. [22] used generative adversarial networks
to learn the mapping between noise distribution and actual
mechanical time vibration data and then generate similar
fake samples to expand further the available data set for fault
diagnosis. Xiao et al. [23] proposed a fault diagnosis frame-
work using an improved TrAdaBoost algorithm and a con-
volutional neural network for a small amount of target
data for transfer learning. Meng et al. [24] proposed a data
enhancement method that divides a single sample into mul-
tiple cells and then reorganizes the cells to increase the num-
ber of data samples. Li et al. [25] proposed an enhanced
generative adversarial network (EGAN), which uses a gener-
ator to generate specified samples and automatically enrich
small sample data sets for fault diagnosis of rotating machin-
ery. In order to solve the problem of unbalanced sample
allocation, Zhang et al. [26] designed a weighted minority
oversampling (WMO) comprehensive oversampling method.

Although the deep learning model has high diagnostic
accuracy and prediction accuracy, it requires a large number
of label samples for training. Otherwise, the diagnostic accu-
racy will be greatly reduced. Since several novel deep learn-
ing methods have been proposed to overcome the problem
of the small sample, most of these methods are based on
deep learning network architecture and require a lot of com-
puting time. Therefore, a novel method with litter comput-
ing time has been proposed for the small sample problem.
The main contributions of the paper contains (1) a novel,
low-computing, and effective intelligent diagnosis method
is proposed for small samples problem; (2) the proposed

method calculates the Euclidean distance between a small
label samples and a large number of unlabeled samples and
generates pseudo samples with labels by a weight; (3) the
proposed method is used for fault detection of planetary
gearboxes, and the accuracy has been greatly improved.

The other sections of this paper are arranged as follows.
The second section mainly introduces the theory of the pro-
posed method. Sections 3 and 4 discuss the arrangement of
experiments on planetary gearboxes and industrial robots
and the analysis of the corresponding results. Finally, Sec-
tion 5 introduces the relevant conclusions.

2. Methodology

For the small sample problem of fault diagnosis, we use
unknown as training samples Xtrain and then use a num-
ber of label samples as test samples Xtest. The training
sample matrix is composed of m × n dimensional vectors,
expressed as

Xtrain = x11, x12,⋯,x1n;⋯;xm1, xm2,⋯,xmn½ �Xtrain ∈ R
m×n:

ð1Þ

Similarly, the test sample matrix is composed of f × n
dimensional vectors, expressed as

Xtest = x11, x12,⋯,x1n;⋯;xf 1, xf 2,⋯,xf n
� �

Xtest ∈ R
f×n: ð2Þ

By calculating the Euclidean distance between the test
sample and the training sample and comparing the distance,
find the training sample point closest to the test sample.

2.1. Novel Generative Method. Euclidean distance is the
actual distance between two points in n-dimensional space
or the distance from the point to the origin (that is, the
length of the vector). The Euclidean distance obtained in
two and three dimensions is equal to the actual distance
between two points. It is the simplest and most direct
method to calculate the distance between data sample
points. Suppose two n-dimensional vectors A = ½a1, a2,⋯,
an� and B = ½b1, b2,⋯, bn�, then, the Euclidean distance for-
mula in n-dimensional space is

Dist A,Bð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 − b1ð Þ2 + a2 − b2ð Þ2+⋯+ an − bnð Þ2

q
: ð3Þ

The above formula can calculate the Euclidean distance
between the vectors, extended from the Euclidean distance
between the vectors to the Euclidean distance between the
matrices. Let i × n dimensional matrix C as C = ½x11, x12,⋯
, x1n ;⋯ ; xi1, xi2,⋯, xin�, j × n dimensional matrix D as D =
½y11, y12,⋯, y1n ;⋯ ; yj1, yj2,⋯, yjn�. Calculating the Euclid-
ean distance of matrix C and matrix D will get distance
matrix E. The formula for calculating Euclidean distance
between matrices is
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Distci j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi1 − yj1

� �2
+ xi2 − yj2
� �2

+⋯+ xin − yjn
� �2

r
:

ð4Þ

The above formula can be found that each row vector of
matrix C has been calculated j times (the number of rows in
D). Therefore, the calculation of the Euclidean distance
between the matrices relies on the measure of the Euclidean
distance between the vectors, so the dimension of the matrix
E is i × j. After calculating the Euclidean distance of the data
sample points, compare the distance between the sample
points. Find the test sample point Distmin with the smallest
Euclidean distance from the training sample in the test sam-
ple and then generate the label sample by calculating the fol-
lowing formula.

Xnew = distmin, :ð Þ × k + Xtest: ð5Þ

In the formula, Xnew represents a new sample, and k rep-
resents a scale factor. We automatically classify sample points
with sufficiently small distance into one category, generate a
unique sample point at the distance k between the two sam-
ple points with the shortest distance, and expand the data
sample by this method in Figure 1.

2.2. SAE-Based Network Model

2.2.1. Autoencoder (AE). Autoencoders were used for dimen-
sionality reduction processing and feature learning of high-
dimensional complex data, which has a positive effect on the
development of deep learning neural networks. The autoenco-
ders use unsupervised neural network learning methods to
learn unlabeled raw data and extract low-dimensional data
features of high-dimensional complex data. The network
structure of the autoencoder is shown in Figure 2. It is com-
posed of three layers of neural networks, namely, the input
layer, the hidden layer, and the output layer. The hidden layer
means that the high-dimensional data is processed to obtain
the low-dimensional data features. The output layer has the
same number of nodes as the input layer, which means that
the input and output data dimensions are the same. The
autoencoder aims to reconstruct its input; that is, it uses the
backpropagation algorithm to make the output equal to the
input as much as possible. A function that the self-encoding
neural network tries to learn is

yw,b xð Þ ≈ x: ð6Þ

The autoencoder tries to approximate an identity func-
tion so that the output yðiÞ approximates the input xðiÞ. By
minimizing the reconstruction error, the input data can be
reconstructed as much as possible in the output layer, thereby
exerting the unsupervised learning effect and effectively
extracting low-dimensional data features. The autoencoder
method has been widely used in fault diagnosis.

The autoencoders are composed of a three-layer neural
network, which can also be seen as composed of two parts:
encoder and decoder. The encoder consists of an input layer
and a hidden layer. Through training, the input layer data x

is encoded and converted into a deterministic mapping of
the feature form h of the hidden layer. It can perform affine
mapping and nonlinear mapping. The coding network is
defined as

h = f θ w1x + b1ð Þ, ð7Þ

where f θ is the activation function in the coding network, w1
is the weight vector of the coding stage, b1 is the offset vector
of the coding stage, and θ = fw1, b1g is the trainable param-
eter set of the encoder and decoder. Then, in the decoding
stage, the decoder consists of a hidden layer and an output
layer. The decoding network maps the feature h of the hid-
den layer to the input layer, reconstructs the input data x,
and obtains the output layer data with the same dimensions.
Similarly, the decoding process can be defined as

x′ = yw,b xð Þ = f θ′ w2h + b2ð Þ: ð8Þ

The vector of approximate input data is reconstructed by
the output layer, the activation function in the decoding net-
work, w2 is the weight vector of the decoding stage, b2 is the
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Figure 1: Pseudosample generation.
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offset vector of the decoding stage, and θ = fw2, b2g is the
trainable parameter set of the encoder and decoder. The
reconstruction error Jðw, b ; x, x’Þ between the output x’

and the input x is expressed as

J w, b ; x, x′
� �

=
1
2

x − x′
�� ��2: ð9Þ

In the training process, given a training set of m samples,
we define the total cost function as

J w, bð Þ = 1
m
〠
m

i=1
J w, b ; x, x′
� �" #

+ λT , ð10Þ

where Jðw, bÞ represents the total cost function of the entire
data set, the last term is the average sum of square error, λT
is the regularization term (also called the weight penalty
term), and the weight penalty parameter λ is used to limit
the weight in order to achieve the purpose of preventing
overfitting.

2.2.2. SAE-Based Network. The SAE network structure is
composed of multiple autoencoder structure hierarchically,
and there is a classifier in the output layer. The SAE network
structure is shown in Figure 3.

The AE network has the problem of extracting feature
redundancy. In order to solve this problem, regularization
constraints are introduced in the SAE network, and con-
straints are added to the hidden layer neurons. In the encod-
ing and decoding process, in order to make the hidden layer
sparse, we need to add constraints to each hidden layer.

Only a few neuron nodes are active. The average activation
degree of the hidden layer neural unit node j can be
described as

ρj =
1
m
〠
m

i=1
hj x ið Þð Þ� �

: ð11Þ

The average activation degree of the hidden layer neuron
nodes generally approaches 0; that is, most neuron nodes are
disabled. Therefore, in order to ensure that the activation
degree of each node is close to 0, additional penalty terms
need to be added to the cost function, which is described
by the mathematical formula as follows:

KL ρ∥ρj

� �
= ρ log

ρ

ρj
+ 1 − ρð Þ log 1 − ρ

1 − ρj
, ð12Þ

where ρ is the sparsity parameter, and KLð:Þ is the Kulback-
Leibler divergence used as a penalty metric between the
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Figure 5: The drivetrain diagnostics simulator.
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expected distribution and the actual distribution. The pen-
alty term has the property that when ρj=ρ, KLðρ║ρjÞ = 0.
In the SAE network, the sparse penalty is added to the cost
function, which can be expressed by the following formula:

Jsparse w, bð Þ = J w, bð Þ + β〠
s

j=1
KL ρ∥ρj

� �
, ð13Þ

where β is the weight of the sparsity parameter. The param-
eters fw, bg can be updated using a stochastic gradient
descent algorithm.

2.3. Classical Activation Functions. The input datasets of the
neural network are weighted and, applied to the activation
function, which can enhance the nonlinearity of the entire
network model. Since the activation function can introduce
nonlinearity to neurons, the expressive ability of the network
model becomes stronger. The Sigmoid function is a com-
monly used activation function, but it has the problem of
vanishing gradient. In order to solve the problem of vanish-
ing gradient, many activation functions have been devel-
oped. In order to verify the effectiveness of the proposed
method, the following activation functions are used in the
SAE model.

(1) According to the literature [27], the expression of
Tanh function is

Tanh xð Þ = ex − e−x

ex + e−x
, ð14Þ

Tanh′ xð Þ = 4
ex + e‐xð Þ2 : ð15Þ

Tanh is a common activation function, and its value range
is [-1, 1]. Compared with Sigmoid, its output mean value is 0,
and the number of iterations is less. Moreover, the conver-
gence speed is faster. Note that the Tanh has soft saturation
and will cause the problem of gradient disappearance.

(2) According to the literature [28], the expression of
RelTanh function is

RelTanh xð Þ =
Tanh′ λ+

� 	
x − λ+
� 	

+ Tanh λ+
� 	

x ≥ λ+,

Tanh xð Þ λ− < x < λ+,

Tanh′ λ−ð Þ x − λ−ð Þ + Tanh λ−ð Þ x ≤ λ−:

8>><
>>:

ð16Þ

The RelTanh activation function is composed of a linear
function at both ends and a nonlinear Tanh function at the
middle. Therefore, it can solve the problems of the Tanh
function and ReLU function. λ+ and λ− are mainly used to
constrain the learnable range of the slope and avoid the dis-
appearance of the gradient. The initial threshold will be set
to λ+ = 0 and λ− = −1.

(3) According to the literature [29], the expression of
ELU function is

ELU xð Þ =
x x ≥ 0,

α exp xð Þ − 1ð Þ x < 0:

(
ð17Þ

ELU is an improved version of the ReLU function.
Through the parameter α, the output of the negative interval
is no longer to zero. The output has a certain degree of anti-
interference ability and enhances the robustness to noise;
however, it still has gradient disappearance.

2.4. The Proposed Algorithm. This paper proposes a novel
generative method to provide enough label samples for
training deep learning models. By calculating the relation-
ship between the label samples and their nearest unlabeled
samples, the proposed method can generate enough pseudo-
samples with labels. Combine with the pseudosamples, the
deep learning method is training for machine fault diagno-
sis. The structure of proposed in this paper is shown in
Figure 4 and summarized as follows.

Table 1: Faulty patterns set in the experiments.

Faulty pattern Fault type Load condition Faulty pattern Fault type Load condition

F1 Surface wear 0 nm F11 Chipped tooth 2.8 nm

F2 Surface wear 1.4 nm F12 Chipped tooth 5.2 nm

F3 Surface wear 2.8 nm F13 Missing tooth 0 nm

F4 Surface wear 5.2 nm F14 Missing tooth 1.4 nm

F5 Crack tooth 0 nm F15 Missing tooth 2.8 nm

F6 Crack tooth 1.4 nm F16 Missing tooth 5.2 nm

F7 Crack tooth 2.8 nm F17 Normal 0 nm

F8 Crack tooth 5.2 nm F18 Normal 1.4 nm

F9 Chipped tooth 0 nm F19 Normal 2.8 nm

F10 Chipped tooth 1.4 nm F20 Normal 5.2 nm
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(1) Collected the condition data set from machine
experiments

(2) Divide data into training and testing data set

(3) Calculating the Euclidean distance between the test
sample and the training sample, and comparing the
distance

(4) Finding the training sample point closest to the test
sample and generative the pseudosamples with labels

(5) Train SAE model with different activation functions

Fault classification using the trained SAE model and
evaluate the accuracy.

3. Experiments

3.1. Fault Experiment of Planetary Gearbox. Design experi-
ments to verify the validity of the proposed method. The
experimental device used the power transmission fault diag-
nosis experiment platform (DDS) designed by SpectraQuest,
as shown in Figure 5.

The failure of the transmission system is mainly caused
by the wear of the tooth surface in the spur gear and the heli-
cal gear, the crack of the tooth surface, the pitting of the
tooth surface, and the lack of teeth. Therefore, this experi-
ment sets these four types of failures. Since the planetary

gearbox’s secondary sun gear has a relatively high probabil-
ity of failure, this experiment’s focus is to test the secondary
sun gear of the planetary gearbox. In order to obtain a vari-
ety of vibration signals, by controlling the magnetic brake
under four different load conditions (0Nm, 1.4Nm,
2.8Nm, and 5.2Nm), the vibration signals of normal condi-
tions and four fault conditions are collected. A total of 20
groups of vibration signals, as shown in Table 1.

3.2. Fault Experiment of Wind Gearboxes. In order to further
verify the effectiveness and versatility of the method, we use
the wind gearboxes failure data set to test the method again.
The experiment was carried out on the industrial robot
experimental platform, as shown in Figure 6. The test bench
consists of a 3.7 kW electric motor, a two-stage parallel gear-
box with a speed increase ratio of 20, a 3 kW permanent
magnet synchronous motor, and a 3 kW load box. In order
to ensure the rationality of the collected signals, the sensor
is installed on the bearing chock of the gearbox, and the sen-
sor is connected to the computer to store the signal data. In
this case, it can better reflect the advantages of the proposed
method in adapting to different types of data sets under
small sample conditions.

Figure 6: Wind gearboxes test rig.

Table 2: FAULTY PATTERNS SET IN THE EXPERIMENTS.

Faulty pattern Fault location Degree of failure

A Normal Normal

B Planet gear Broken

C Planet gear Moderate

D Ring left Moderate

E Sun gear Broken

Table 3: The average accuracy of 100_train samples.

Samples
100 500 700 900

Function

Reltanh 0.3827 0.3600 0.4984 0.5637

Tanh 0.3535 0.3942 0.3705 0.4228

ELU 0.3476 0.4142 0.3700 0.4561

Table 4: The average accuracy of 200_train samples.

Samples
200 1000 1400 1800

Function

Reltanh 0.4893 0.6313 0.61660 0.6691

Tanh 0.4662 0.6416 0.5314 0.6267

ELU 0.4779 0.4640 0.5371 0.6084

Table 5: THE AVERAGE ACCURACY OF 300_TRAIN SAMPLES.

Samples
Function

300 1500 2100 2700

Reltanh 0.5767 0.7334 0.7435 0.7834

Tanh 0.5082 0.6410 0.7318 0.7547

ELU 0.5671 0.6450 0.6907 0.8212

Table 6: The average accuracy of 400_train samples.

Samples
400 2000 2800 3600

Function

Reltanh 0.7036 0.7355 0.7667 0.8500

Tanh 0.5928 0.5696 0.6685 0.8304

ELU 0.6548 0.5851 0.7455 0.8058

Table 7: THE AVERAGE ACCURACY OF 500_TRAIN SAMPLES.

Samples
500 2500 3500 4500

Function

Reltanh 0.7725 0.8266 0.8674 0.8675

Tanh 0.6695 0.7410 0.7589 0.8276

ELU 0.7809 0.7910 0.8004 0.8776
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The gearbox is a key component to ensure the normal
operation of the wind. The gearbox is mainly composed of
the two-stage parallel gearbox. As the internal gear is prone
to pitting and cracking failures, it will lead to reduced work
efficiency. Therefore, in this experiment, the sun gear and
planetary gears are tested, and a set of normal modes and
four sets of failure modes are set. Table 2 shows the detailed
description of the gear fault location and fault degree of the
gear simulated in this experiment. The experiment is carried
out under the condition that the motor speed is 300 r/min
and no load.

4. Fault Diagnosis and Result Analysis

4.1. Fault Diagnosis and Result Analysis for Planetary
Gearbox. By analyzing the fault diagnosis accuracy of each
activation function in the experiment, the effectiveness of
the method under the condition of small samples is verified.
In order to avoid the problem of the disappearance of the
gradient of the activation function, a 4-layer SAE network
structure was constructed, and different activation functions
were applied when experimenting with the gearbox. In order
to ensure the universality and reliability of the experimental
results of this method under small sample conditions, we
conducted experiments based on five groups of different
sample numbers. In the experiment, the basic numbers of
samples are 100, 200, 300, 400, and 500. To ensure the valid-
ity of the experimental results, in the experiment, each group
of basic samples used the method proposed in this paper to
carry out three generate sample, and four independent
experiments were carried out after each generate. The aver-
age diagnostic accuracy is a key measurable indicator that
reflects the functional differences between activation func-
tions and compares the performance of activation functions.

The proposed method is used to generate the label sam-
ples, and then deep learning models with different activation
functions are used for fault diagnosis. The average accuracy

of each activation function under different sample sizes is
listed in Tables 3 to 7.

In the case of 100 train samples, the activation functions,
as RelTanh, Tanh, and ELU, have improved diagnostic accu-
racy. When the train samples extended to 900, the highest
accuracy of activation function is RelTanh, which exceeds
50% (as shown in Table 3). For the basic samples number
is 200, the classification rate of the activation function is
ranging from 46.62% to 48.93%. When the training samples
are increasing to 1,800 by the proposed method, the accu-
racy of the activation functions is above 60%. As the number
of train samples increases, the accuracy of overall function is
significantly improved. When the train samples is 300 and
without samples generation, the accuracy of the activation
function range between 50.82% and 57.67%. Since the num-
ber of train samples becomes 2700 with generated method,
the average diagnostic accuracy of the ELU function reaches
82.12%. In the case of the original train samples is 400, the
diagnostic accuracy of the activation function is significantly
improved, and the diagnostic accuracy of RelTanh and Tanh
are exceeded 80%. For the original train samples is 500, the
accuracy of the activation function is ranging from 66.95%
to 78.09%. The accuracy of RelTanh, Tanh, and ELU are still
the highest. From Tables 3 to 7, it can be shown that the
average accuracy of RelTanh and Tanh functions is higher
in these cases, since they overcome the vanishing gradient
problem and the diagnostic accuracy will increase as the
number of samples increases.

The average accuracies of each activation function with
the proposed generate method are compared with the origi-
nal method, as shown in Figure 7. Form the Figure 7, it
shows that the fault diagnosis accuracy of activation func-
tion is significantly improved as increasing the training sam-
ples, which proves the effectiveness of the proposed method.

The ELU function has an average diagnostic accuracy
rate of 87.76% when the sample base is expanded from 500
to 4500, which has an absolute advantage over the activation
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Figure 7: Average accuracies of all activation functions.
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function of other functions. The ELU function negative
interval is saturated, allowing negative abnormal input and
avoiding a certain degree of gradient disappearance while
having stronger noise robustness. In summary, the ELU,
RelTanh, and Tanh function of our proposed sample expan-
sion method perform best. It is worthy of further develop-
ment and application in the case of small samples.

4.2. Fault Diagnosis and Result Analysis for Wind Gearboxes.
Like the experiment introduced in Section A, we use the SAE
network model in the wind gearboxes fault diagnosis exper-
iment. In the experiment, this method is used to expand and
train five groups of different numbers of samples. In order to
ensure the validity and rationality of the results, three gener-

ate sample experiments were carried out for each group of
samples, and four independent experiments were carried
out for each group of generated the sample.

In the wind gearboxes fault diagnosis experiment, each
activation function average diagnosis accuracy under differ-
ent sample bases is shown in Figures 8 to 12. Experimental
results show that the proposed method has certain effects
in the case of small samples, and the activation function
(Reltanh) has highest diagnostic accuracy. The diagnostic
accuracy is increasing as generates training samples
increases. For the original train samples is 100 (as shown
in Figure 8), the accuracy of Reltanh is ranging from
0.8743 to 0.9511. When the sample base is 200, the diagnosis
accuracy rates are ranging from 0.9009 to 0.9700, 0.9364 to
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Figure 9: Average accuracies of all activation functions based on 200 train samples.
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0.9717, and 0.9438 to 0.9711 for Reltanh, Tanh, and ELU,
respectively. For the original samples is 300 (as shown in
Figure 10), the accuracy rate is ranging between 0.7697
and 0.9626 without samples generated. However, the accu-
racy rates increase to more than 0.9766 under the pro-
posed method.

In the case of the sample base is 400, the diagnosis accu-
racy rate of Reltanh is 97.56~ 98.30%. The Tanh function
accuracy is increased by 2.09%, when the samples are
increased to 2,800. When the basic sample number is 500,
the diagnostic accuracy rate of the Reltanh function reaches
to 98.50% (as shown in Figure 12).

From Figures 8–12, it can be seen that the Reltanh func-
tion has the highest fault diagnosis accuracy. As the sample
size increases, the diagnostic accuracy of all activation func-
tions has raised with different degrees. This result proved the
effectiveness of the proposed method. In general, our
method has strong stability in the case of small samples
and has good results on different data sets with small train-
ing samples.

The average accuracies of each activation function with
the proposed generate method are compared with the origi-
nal method, as shown in Table 8. It should be noted that
nine-time of the original train samples is generated by the
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Figure 11: Average accuracies of all activation functions based on 400 train samples.

A
cc

ur
ac

y

Reltanh Tanh ELU

Activation function

Original samples⁎5
Original samples Original samples⁎7

Original samples⁎9

0.2

0

0.4

0.6

0.8

1

Figure 10: Average accuracies of all activation functions based on 300 train samples.

9Journal of Sensors



proposed method, and the average accuracies are calculated.
The average accuracy of the proposed method is better than
that of the SAE-based DNNs method for different training
samples. The accuracy is increased by 0.88% to 8.59% for
different training samples, when the samples are increased
by the proposed method.

5. Conclusions

Deep learning has been widely used in fault diagnosis of
mechanical equipment and has achieved ideal results. To
overcome the problem of the small sample, this paper pro-
posed a novel generative method to provide enough label
samples for deep learning model. First, the Euclidean dis-
tance between a label sample and unlabeled samples is calcu-
lated, and the nearest samples are selected to generate new
label samples. Then, the pseudosamples with label samples
are altogether for training deep model. The results of fault
diagnosis on planetary gearboxes and wind gearboxes show
that the proposed method can greatly improve accuracy. It
is worth noting that the effect of this method is related to
the activation function. In the gearbox experiment, as the
number of original samples increases, the proposed method
has a good effect on most activation functions, and
“ReLTanh,” “Tanh,” or “ELU” is the best activation function.
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A convolutional neural network has the characteristics of sharing information between layers, which can realize high-dimensional
data processing. In general, the convolutional neural network uses a feedback mechanism to realize parameter self-regulation,
which solves the disadvantages of manual parameter adjustment. However, it is unable to determine the iteration number with
the best calculation accuracy. Calculation efficiency cannot be guaranteed while achieving the best accuracy. In this paper, a
multilayer extreme learning convolutional neural network model is proposed for feature recognition and classification. Firstly,
two-dimensional spatial characteristics of planetary bearing status data were enhanced. Then, extreme learning machine is
embedded in a convolution layer to solve convex optimization problems. Finally, the parameters obtained from the training
model were nested into a network to initialize the model parameters to separate each status feature. Planetary bearing
experimental cases show the effectiveness and superiority of the proposed model in the recognition and classification of weak
signals.

1. Introduction

With the improvement of automation level in a modern pro-
duction system, rotating machinery presents the development
direction of high speed, high efficiency, and maximum eco-
nomic benefit. However, a continuous production process
makes the equipment run under heavy load for a long time,
which will easily lead to accelerated fatigue of transmission
parts. Furthermore, tight connections between devices make
the health status of an individual component affect the effi-
ciency and quality of the entire system. Once the transmission
parts fail, it will lead to a series of chain reactions and even
make the whole equipment or even the whole production line
stop working. Therefore, reliable monitoring of transmission
parts is crucial to maintain the whole safety production
process.

In recent years, a planetary gearbox with dual rotor bear-
ings has become the main transmission component due to
its series of advantages with compact structure, large trans-
mission ratio, light weight, and strong bearing capacity. It

is widely used in automotive, wind power, aerospace, and
other fields. Because the equipment works in complex envi-
ronment for a long time, it is easy to cause accelerated
fatigue of transmission parts [1]. For example, wind energy
as green energy has promoted wind power generation to
become one of the fastest growing branches of the current
power generation field. Typically, a wind turbine consists
of a planetary gear train (I level transmission) and two
fixed-shaft gear trains (II level and III level transmission),
as shown in Figure 1. Planetary gear trains are usually
mounted at the low-speed end to withstand greater torque.
In addition, wind turbines are usually located in a relatively
wide-open area or offshore areas and often affected by irreg-
ular variable speed winds and the external ambient temper-
ature that change with the season. Due to the complex
working environment, the key components (gears and bear-
ing) of the planetary gearbox are easily damaged. For exam-
ple, the G52-850 wind turbine, consisting of Gamesa and
Echesa speed-increasing gearboxes and INDER generators,
showed abnormalities after 5-year work. Through
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endoscopic and unpacking tests, it was found that the fault
was caused by planetary bearings [2]. It is the key to main-
tain the whole safety production process to adopt a reliable
monitoring method to monitor the equipment condition.
Therefore, the working efficiency and safety of a wind power
generation system can be greatly improved when the plane-
tary bearing is operated in stable status.

From the evolution process of bearing failure (Figure 2), it
can be seen that the initial stage of failure accounts for a larger
proportion of the entire damage. As the fault continues to
deteriorate, the degradation rate increases exponentially. In
the early stage of failure, the abnormal symptoms are slight,
the impact on the mechanical system is small, and the mainte-
nance cost is relatively low. If fault goes undiagnosed or unno-
ticed at an early stage, it will lead to a catastrophic accident
when early fault develops and accumulates to a certain extent.
Therefore, early detection, early diagnosis, and early mainte-
nance are essential to ensure the safe operation of high-
precision equipment. In addition, under the demand of intel-
ligent devices, the amount of data that needs to be analyzed is
also large. Traditional fault diagnosis based on point-by-point
single-signal analysis is difficult to detect the characteristic
components related to fault quickly and accurately, which seri-
ously hinders the development process of high precision, high
speed, and high reliability of high-end equipment, whereas
intelligent fault diagnosis based on “data-driven” can solve this
problem with high precision, high speed, and high reliabil-
ity [3].

In 2006, the birth of the deep learning algorithm [4, 5]
marks the development of fault diagnosis towards rapidity,
efficiency, and intelligence. High target feature resolution
of a data set will get accurate fault diagnosis results, and
complete data volume can improve model learning ability.
These existing data-driven neural network models have
achieved good results in some ideal environments. However,
there are still some factors restricting their application in the

field of fault diagnosis. However, due to the randomness and
uniqueness of faults, the field of intelligent diagnosis faces
some bottlenecks. Rotating machinery is in a healthy status
for a long time, and most of the collected signals are in a
healthy status. Due to the high cost of collecting measured
fault samples, it is difficult to obtain all types of fault sam-
ples, which makes the sample set unbalanced. Besides, in
case of early fault or large external interference, the fault
characteristic information is weak or even submerged. The
model may give interference information a high confidence
output. Aiming at the incomplete characteristics of the fault
data set, Gao et al. and Liu et al. are committed to using
finite element method simulation to simulate a sample with
different fault statuses [6, 7]. An et al. [8] proposed a self-
learning transferable neural network for fault intelligence
diagnosis with unlabeled and imbalanced data. Most of the
weak fault intelligent diagnosis methods [9, 10] use tradi-
tional fault feature extraction as the preprocessing to extract
sensitive information, and there is a lack of research on
improving the robustness of the model itself.

A convolutional neural network (CNN) [11, 12] is one of
the representative models for intelligent recognition and
classification of weak fault signals of bearings. It has
attracted the attention of many researchers and been widely
used in many fields such as bearing fault diagnosis. Fu et al.
[13] used 1D convolution kernels of different scales to
extract multiscale features and performed dimensional
assimilation on feature space of different scales based on
fusion theory to adapt to convolution operation. Zhao
et al. [14] converted one-dimensional time-domain signal
into 2D grayscale images, which were used as the analysis
sample data of the CNN model. This solved the problem
of insufficient data and avoided the process of artificial fea-
ture extraction. Cyclic spectral coherence was adopted as
preprocessing to extract information that best characterized
the status of bearing [15]. Then, group normalization

Figure 1: Layout of wind turbine transmission components and schematic diagram of planetary bearings.
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calculation was introduced to balance the distribution differ-
ence of data. Ye et al. [16] proposed a new method called
deep morphological convolutional network, which consists
of two parallel branches: noise filtering and feature selection
algorithm. Noise filtering can update structure elements
based on backpropagation. A feature selection algorithm
was based on kurtosis weight fusion. Besides, values of vari-
ous hyperparameters directly affect the training speed and
accuracy of the CNN model. Currently, an error backpropa-
gation (EBP) mechanism was often used to modify the
model parameters. In the process of parameter adjustment,
the initialization values of some parameters may also affect
the classification results of the model. In addition, the range
of adjustable parameters involved in the algorithm directly
affects the computational complexity. Therefore, the CNN
model is not suitable for rapid online monitoring, especially
for early diagnosis of weak faults. An effective model is
urgently needed to improve the performance of online
monitoring.

In order to build a model framework with superior per-
formance, the extreme learning machine (ELM) principle is
adopted to deal with the convex optimization problem of a
convolution layer. ELM was firstly proposed by Huang
et al. [17] for a feedforward single-layer neural network.
Subsequently, ELM was gradually introduced into the multi-
layer model structure [18, 19]. Compared with other models
such as Deep Belief Network (DBN) [20, 21] and Stacked
Autoencoder (SAE) [22], the ELM model involves fewer
parameters and has higher computational efficiency and less
complexity. Therefore, ELM has been favored by researchers
in many fields, such as image processing [23], objective opti-
mization [24, 25], dimensionality reduction [26], and fault
diagnosis [27–29].

ELM was combined with other models to improve the
training efficiency and recognition accuracy. For example,
ELM was combined with an autoencoder to mine deep fea-
tures of training data and proved to be superior to ELM,
SAE, and CNN [30]. Online sequential ELM was proposed
to classify and recognize the low-dimensional features
extracted from the SAE model, whose effectiveness of this
method has been proven for tool wear status recognition
[31]. ELM was used as an enhanced classifier to improve
the recognition accuracy of an integrating CNN model. Its
superiority in training speed and accuracy was verified by
comparing with other 6 models [32].

In general, ELM plays a role of an efficient classifier in
the hybrid model. The existing model framework based on
multilayer perceptron has shortcomings in improving the
training speed. The goal of this paper presented here is to
find a training model mechanism to improve the training
accuracy and speed. Based on this, a fast and effective
embedded hybrid model structure, called multilayer extreme
learning convolutional feature neural network model (M_
ELMConvNet), was proposed. The main contributions here
are twofold.

(1) The wavelet cyclic spectrum feature extraction
method [33] was used to convert the time-domain
signal into a two-dimensional image. Then, the
obtained image is partitioned, which is more suitable
for CNN analysis

(2) A new model training mechanism of embedding
ELM into a convolutional layer was proposed to
improve the calculation speed and classification
accuracy. The final classification and recognition
results are obtained by multilayer stacking structure.
The computational speed and accuracy of the pro-
posed algorithm are verified by comparing with the
results of other models

The remainder of this paper is structured as follows: the
relevant theoretical research background contents, such as
CNN and ELM models, are shown in Section 2. The pro-
posed model framework and implementation process are
introduced in Section 3. The proposed method is applied
to the experimental data in Section 4. Finally, conclusions
and the next step are described in Section 5.

2. Theoretical Background

2.1. CNN. CNN is a self-learning model that can automati-
cally extract the internal feature information of the input
data and implement classification tasks. Different from tra-
ditional neural networks, CNN generally contains a convo-
lution layer and a subsampling layer (also called pooling
layer). CNN learns hidden features by continuously running
the convolutional layer in a loop and performing pooling
operations. The convolution layer is used to convolute the
original input data with multiple local filters to generate
locally invariant feature information, which is used as the
input of the pooling layer to extract representative features.
The procedure is shown in Figure 3.

Suppose the size of the input layer is Height ×Width =
a × b, and the number of input layers is c which is the num-
ber of channels. Define a convolution kernel as K , whose size
is n × n. The entire operation process of the convolution
layer is to continuously perform convolution operations on
the input layer data and the convolution kernel. The features
extracted by the convolutional layer are served as the input
of the pooling layer to further reduce the dimension of the
feature matrix by calculating the local average or maximum.
Subsequently, the fully connection layer tiles the output
matrix of the pooling layer. The main task of each layer
before the fully connected layer is feature extraction. The
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Figure 2: Failure development trend chart.
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classification task starts at the fully connection layer. Gener-
ally, there are multiple full connection layers in the whole
network structure. Because the single-layer structure can
only solve the linear classification problem and most of the
problems in real life are nonlinear problems, the softmax
layer is also connected behind the fully connection layer to
further predict the label. By calculating the probability of
each sample’s category, the label category with the largest
probability value is assigned to the sample data.

2.2. ELM. ELM uses randomness and Moore-Penrose gener-
alized inverse theory to calculate parameters, which avoids
the use of EBP and greatly improves the training speed.
The input layer data is usually nonlinear and separable.
The core idea of the ELM algorithm is to map the original
data into a high-dimensional feature space by adding hidden
layer nodes on the premise that the input data is linearly sep-
arable. The connection weights between the input layer and
the hidden layer are randomly generated. The connection
matrix between the hidden layer and the output layer is cal-
culated by Moore-Penrose generalized inverse. The entire
training process only needs to adjust the number of hidden
layer nodes. The schematic diagram is shown in Figure 4.

3. Proposed Architecture and Method

3.1. Formulated General Model Framework. Suppose there is
a set of bearing status data to be classified. The data set are
Dx = fx1,⋯, xNg, xj ∈ R1×n×c, and the target matrix is DY =
fY1,⋯, YNg, Y j ∈ RC , where n and c are the length and the
number of channels of the input data, respectively. N is the
number of samples in the data set. C is the number of target
category to which the input data belongs. The relationship
between the sample set and the label matrix can be achieved
by the classification function, as shown in the following for-
mula:

DY = f c Dxð Þ, ð1Þ

where f c is the classification function of Dx.

3.2. Data Graphical Processing and Enhancement. In order to
improve the accuracy of model recognition, the two-
dimensional CNN model was used for data processing.
The original sample data is one-dimensional, which reflects
the time-domain waveform information and often over-
whelms some fault active components. In this paper, one-

dimensional time-domain data are converted into 2D
images based on wavelet cyclic spectrum theory [33] and
the periodic characteristics of nonstationary bearing infor-
mation are extracted. The local information in cycle spec-
trum of each fault type is similar. In order to make up for
the shortage of faulty data samples and improve the quality
of sample data, the converted image is further processed by
block localization. Suppose that Ws = fS1,⋯, SNg, Sj ∈
Rw×h×c is the 2D cyclic spectrum sample matrix, w and h
are the width and height of each single image sample matrix,
respectively, and the label matrix is WL = fL1,⋯, LNg, Lj ∈
RL. For the sample Ws, we regard it as being composed of
several submodules WP . Ps = fSP1 ,⋯, SPNg ⊆WP , and corre-
sponding labels PL = fLP1 ,⋯, LPNg.

PL = f p PIð Þ, ð2Þ

WL = f q f p ⊗WP

� �
, ð3Þ

where ⊗ is the tensor product and f p and f q are the classi-
fication functions for PI and Ws, respectively.

3.3. Parameter Transfer

3.3.1. Convolution Layer Detector Based on ELM. The ELM
algorithm is integrated into the model to further improve
the classification characteristics of the algorithm. As men-
tioned above, ELM is superior in complexity and accuracy
compared with other algorithms [34]. The weight matrix of
the input layer is randomized; that is, the weight matrix of
the input layer and the input data are independent of each
other. We can set it arbitrarily according to some distribu-
tion theories. The output matrix of the hidden layer and
the weight matrix between the hidden layer and output layer
need to be calculated relying on label data.

The specific implementation process is as follows:
Assuming there are N test samples ðXj, LjÞ, Xj =

fxj,1,xj,2,xj,3, ⋯ xj,ngTand corresponding labels are Lj =
fl j,1,l j,2,l j,3, ⋯ l j,ngT . NH is the number of hidden layer nodes.
Hidden layer output can be expressed as

Ho =Wi∙Xj + bi, ð4Þ

where Wi = fwi,1,wi,2 ⋯wi,ng is the connection matrix
between the input layer and hidden layer and bi is the offset
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Figure 3: CNN model frame diagram.
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vector. Both of them are randomly generated. The output
layer matrix can be expressed as

Oj =
f W1∙X1 + b1ð Þ ⋯ f WNH

∙X1 + bNH

� �

⋮

f W1∙Xn + b1ð Þ ⋯ f WNH
∙Xn + bNH

� �

2
664

3
775

β1

β2

⋮

βNH

2
666664

3
777775
= f Hoð Þβi,

f Hoð Þ =
σsig W1∙X1 + b1ð Þ ⋯ σsig WNH

∙X1 + bNH

� �

⋮

σsig W1∙Xn + b1ð Þ ⋯ σsig WNH
∙Xn + bNH

� �

2
664

3
775: ð5Þ

Oj = fo1, o2,⋯ong indicate the categories of the output
target label. βi is the layer connection weight (LW) between
the hidden layer and output layer. βi is unknown and must
be calculated based on the label data in the process of predic-
tion classification results of the ELM algorithm. The expres-
sion is

β =Ho
−1L: ð6Þ

In the training stage, the number of hidden layer nodes is
an uncertain factor, which has an impact on the prediction
performance. In order to evaluate the performance of the
parameters calculated by the model, the error minimization
loss function was used as an evaluation index of prediction
ability, shown as

E =min 〠
N

j=1
Oj − Lj

�� ��,  j = 1, 2, 3⋯N: ð7Þ

The parameters corresponding to the minimum E value
are the optimal values that best characterize the target fea-
tures. Finding the minimum number of hidden layers while
ensuring the highest accuracy is another factor to improve
operation efficiency.

3.3.2. Pooling Layer. The pooling layer is actually a down-
sampling layer, which is mainly used to extract local features
and prevent overfitting. The procedure is as follows: first,
define the size and step of the local pool module. Then, the
local feature extraction method is determined. The most
common method is to calculate the average or maximum
value of each module. In this paper, the pooling layer is
followed by the random parametric dimension reduction
layer, as shown in equation (4). The pooling process adopts
the method of calculating the average value as shown in

A u1, u2ð Þ = 〠
NH

u1=1
〠
NH

u2=1

1
r × r

〠
r

i=1
〠
r

j=1
O i + u1 − 1ð Þ × r, j + u2 − 1ð Þ × rð Þ,

ð8Þ

where r is the size of each step.

3.3.3. Normalization. After the pooling layer and before the
ELM classification layer, a min-max standardization process
was added to prevent the occurrence of gradient disappear-
ance. The normalization result is obtained by

Sx =
Ax −min Axð Þ

max Axð Þ −min Axð Þ × Nmax −Nminð Þ +Nmin, ð9Þ

where min and max are operators for calculating the
maximum and minimum elements in the matrix Ax, respec-
tively. Nmax and Nmin are the range of the interval for nor-
malizing the matrix.

3.4. Test Model. Intelligent diagnosis methods based on deep
learning theory mostly rely on a large amount of training
data to achieve classification and recognition. The premise
is that the performance of connection weights must be eval-
uated and modified on the basis of data with accurate label.
In this paper, a method based on parameter transfer theory
is proposed. The existing labeled data is input into the super-
vised model for training, and the connection weights of each
module are obtained. Afterward, interlayer connection
matrices are input into the test model to recognize and clas-
sify the unlabeled data.
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Figure 4: Schematic diagram of ELM structure and principle.
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3.5. Fault Diagnosis Method Based on M_ELMConvNet. This
paper presents a fast feature learning method based on two-
dimensional CNN and ELM, and the model frame is shown
in Figure 5.

Figure 6 shows the flowchart of the present method, and
the procedures are as follows:

Firstly, samples were collected and processed with 2D
data transformation and enhancement.

(1) The acceleration signals of bearings in four different
working conditions were collected. About 85% of the
data were labeled as training samples. The rest of the
data is unmarked and is considered the test sample

(2) The original data is transformed into a 2D image by
wavelet cyclic spectrum analysis

(3) Subsequently, the obtained image is partitioned to
enhance the data according to equation (3)

Secondly, an efficient and accuracy neural network clas-
sification model is constructed.

(1) The entire model framework consists of two parts.
One is the training process for labeled data, and the
other is the predictive classification process for unla-
beled data

(2) The labeled data is input into the supervised training
model. The first step of this model is to reduce the
dimension of the data by randomizing the connec-
tion matrix. The specific implementation process
was based on the ELM training principle, as shown
in equation (4). Then, the dimensionless data is
entered into the pooling layer and standardized.
Finally, the data is input to ELM for supervisory test-
ing. The error rate between the test data and the label
data is used as the loss function to adjust the random
parameterized dimensionality reduction and the
number of ELM hidden nodes. Subsequently, the
optimal node number was assigned to the model to
predict the connection matrix between each layer

(3) In the prediction process of the test sample set, based
on the idea of parameter transfer, the connection
matrix W1in,W2in and layer connection weight LW
obtained by the supervised test process were input
into the test model of the corresponding prediction
sample as the preset model parameter values, and
the final prediction results were obtained

Thirdly, the whole training process is applied to the rec-
ognition and classification of bearing status data.

4. Experimental Validation

The data for verifying the effectiveness of the proposed algo-
rithm were obtained from the comprehensive test bench for
power transmission fault diagnosis. The sample data analyzed
were measured under different conditions at different times.

4.1. Experiment Setup and Data Description. The power
transmission system of the testbed consists of a planetary
gearbox, a parallel shaft gearbox supported by rolling bear-
ings or sleeve bearings, bearing load, and programmable
magnetic brake, as shown in Figure 7. The testbed includes
all the necessary powertrain configurations for studying
gearbox dynamics and noise characteristics, health monitor-
ing techniques based on vibration signal analysis, lubrication
conditions, and wear particle analysis. The testbed has stable
performance and can withstand strong load impact. There is
enough space for the replacement and installation of gears
and the installation of a monitoring device. Planetary gear
systems, sun gears, planetary gears and gear rings, brackets,
and bearings are easy to be disassembled.

The vibration signals under four statuses: no damage,
first-stage planetary bearing outer ring failure, first-stage
planetary bearing inner ring failure, and first-stage planetary
bearing ball failure, were collected for analysis. In the exper-
iment, the relevant parameters are set as follows: sampling
frequency is 15360Hz and motor speed is 2100 r/min. Mul-
tiple acceleration signals under different working conditions
were collected. The data collected under each health condi-
tion were separated into 470 equal parts. Randomly select
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Pooling Normalization
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Pooling Normalization

Win
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Figure 5: Framework of the proposed algorithm.
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400 pieces of data in these four statuses as the training data
set and 70 pieces as the test data set, respectively. A detailed
partition of the sample set for status data analysis is shown
in Table 1. The time waveforms for 2.5 s and the spectrum
with bandwidth ½0Hz 2500Hz� of the vibration signal for
four statuses are shown in Figure 8. It can be seen from
Figure 8 that the time-domain waveforms and spectrums
for different four-status signals are inevitably affected by
external interference information, which is also one of the
factors that reduce the ability of model recognition.

4.2. Result Analysis. The purpose of this paper is to propose a
fast and effective intelligent classification method for weak
fault data of planetary bearings. In order to further verify

the effectiveness of the proposed M_ELMConvNet neural
network model, the experimental data were analyzed by
the algorithm described in Section 3.5. For comparison,
three other models including ELM, BP-based CNN, and
Deep Autoencoder (DAE) were also applied to status identi-
fication of experimental data.

The average recognition accuracy of the algorithm under
different hidden layer nodes is calculated by executing the
model for 20 times. The results are shown in the box dia-
gram in Figure 9. As shown in Figure 9, the prediction accu-
racy rate of most testing results was above 98%. The validity
of M_ELMConvNet in planetary bearing status recognition
is further verified. With the increase in the number of hid-
den layer nodes, the recognition accuracy rate fluctuates
slightly. When the number of hidden layer nodes is set to
290, the average prediction accuracy is relatively high and

Measured fault signals

2D Image transformation and 
feature extraction

Wavelet cyclic 
spectrum analysis

Data enhancementImage partition

Training samples Testing samples

Randomized connection 
matrix

Training CNN modelConvolution layer convex 
optimization

Normalization

Training ELM 

Testing CNN 
model

Normalization

Testing ELM 

Classified by the 
training ELM Classification results

Figure 6: The flowchart of the proposed fault diagnosis method.

Figure 7: Comprehensive test bench for power transmission fault
diagnosis.

Table 1: Description of status data sample set.

Planetary bearing
damage statuses

No
damage

Inner-
race fault

Outer-
race fault

Ball
fault

Number of training
samples

400 400 400 400

Number of test samples 70 70 70 70

Label 1 2 3 4
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the stability is strong. Meantime, the model training time
also showed an exponential growth trend, as shown in
Figure 10. In the subsequent analysis, the number of hidden
layer nodes was set to 290 based on the balance training time
and prediction accuracy.

Figure 11 is the confusion matrix of multistatus classifi-
cation and recognition accuracy based on the proposed
method. As can be seen from Figure 11, the highest predic-
tion accuracy is 100% for status 4. The minimum recogni-
tion accuracy is status 3 because there is no obvious
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Figure 8: Signal waveforms listed in Table 1: (a) no-damage bearing signal in the time domain; (b) the spectrum of no-damage bearing
signal; (c) inner-race fault bearing signal in the time domain; (d) the spectrum of inner-race fault bearing signal; (e) outer-race fault
bearing signal in the time domain; (f) the spectrum of outer-race fault bearing signal; (g) ball fault bearing signal in the time domain; (h)
the spectrum of ball fault bearing signal.
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distinction between status 2 and status 3. In general, the pro-
posed method in this paper can achieve high predictive rec-
ognition accuracy in each status.

4.3. Comparative Verification. The diagnosis performances
of the original data and multiparameters DAE and CNN

with the original data and wavelet cycle spectrum were also
compared with the M_ELMConvNet proposed in this paper.
Each model was executed multiple times, and the average
result was calculated. Figure 12 shows that the M_ELM-
ConvNet achieved the highest average prediction accuracy
of 99.24%. Thus, the proposed algorithm in this paper has
strong noise suppression capability in the identification
and classification of weak fault statuses.

In order to further verify the superiority of the proposed
algorithm in computing time, the CNN model based on EBP
was used as a comparison model to analyze the same sample
data set with M_ELMConvNet. The results are shown in
Figures 10 and 13. As can be seen from the figure, the calcu-
lation time of the algorithm increases linearly with the
increase in the number of hidden units and the number of
iterations. At the same time, the recognition accuracy of
the algorithm gradually improves and tends to be stable.
Considering the influence of the number of hidden units
and the number of iterations on the recognition accuracy,
the calculation time of 410 hidden units and 28 iterations
was compared. One was 0.43 s, and the other was about
2000 s. The time difference is several orders of magnitude,
which proved the superiority of the M_ELMConvNet algo-
rithm in computational efficiency.
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Figure 13: The result of different iteration times of the CNN model
based on BP for planetary bearing status recognition.
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5. Conclusions and Further Works

In this paper, a new deep feature extraction and diagnosis
method was proposed to improve the recognition accuracy
and reduce computational complexity for weak failure signal
of planetary bearing with large data volume. In M_ELM-
ConvNet, ELM was embedded in the CNN model instead
of convolution operation to avoid a repeated EBP operation
process. After two processes of ELM feature dimensionality
reduction and extraction, the amount of calculation was
reduced and the prediction accuracy was improved. In addi-
tion, based on the parameter transfer theory, the model
parameters extracted from the labeled training sample data
are introduced into the unlabeled sample data training
model to achieve prediction. The effectiveness and superior-
ity are proven on experiment setup testing data. Moreover,
analysis results show that the proposed model has advan-
tages in recognition accuracy and operation speed compared
with other methods.

The present work is mainly carried out in the case of suf-
ficient sample data. However, in the actual operation of
planetary bearings, the sample size of analysis data is unbal-
anced; that is, the trouble-free sample size is large, while the
failure sample size is small. For failure data, such as in the
early stage or in the case of large external noise, manual
marking often leads to missed diagnosis or misdiagnosis.
How to realize the self-supervised learning of unlabeled data
and make it able to automatically extract data features and
perform labeling is the work to be done in the future.
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This study investigates four characteristic damage mechanisms of fiber Bragg grating (FBG) sensors, with fatigue crack
propagation in aluminum alloy. The multipeak wavelength distinguish algorithm was developed for FBG spectrum quantitative
analysis. The results distinguish a subordinate peak skewing significantly, associated with strain patterns along the FBG,
corresponding to various crack lengths. For parallel bonded direction grating, the subordinate peak skewing appears at the
strain pattern transition region. This is located at the ratio 32%-34% of crack length lying in the crack tip. Meanwhile, the four
damage characteristics correspond to subordinate peak skewing. When the strain is distributed along the grating, spectral
distortion occurs. In this region, the cubic strain pattern determines the shorter wavelength location of subordinate peaks. This
corresponds to the 15%-17% ratio of crack length lying in the grating, causing spectral oscillations.

1. Introduction

Aluminum alloy is extensively employed in aircraft con-
struction, because the constructs will experience structural
damage in long-term service. This involves mechanisms
such as fatigue, material aging, corrosion, and cracking
problems [1]. Furthermore, the structural damage can be
identified synchronously in real-time monitoring of alumi-
num alloy crack propagation [2]. Fiber Bragg grating
(FBG) sensors have been acknowledged and used in struc-
tural health monitoring (SHM). For example, this is imple-
mented in the concrete structure of bridges, nuclear power
stations, and large dams. This is due to the following specific
benefits of FBG sensors which include erosion resistance,
small size, and multiplexing [3]. It is deliberated to be one
of the most hopeful sensors in observing the strain distribu-
tion near the crack tip for propagation prediction. However,
it is a challenge to utilize the FBG sensors in crack propaga-
tion monitoring of aluminum alloy components.

Several researchers have made contributions on inter-
pretations for mechanisms of spectral characteristics,

regarding the various damage pattern identifications of com-
posite materials. Takeda et al. place FBG sensors near the
delamination to correlate spectral intensity and spread with
crack progression [4]. They observe that the delamination
starts at the end of the sensor and grows parallel along the
longitudinal axis. The related spectrum shifts and splits into
two distinct peaks. Childs et al. [5] relate these two peaks to
the strain levels along the grating ahead and behind the
delamination. They attempt to correlate the intensity ratio
of these peaks to the delamination length. Sante [6] embed-
ded a chirped FBG sensor near the bond line of a GFRP
single-lap joint and validated the relationship between the
disbanded tip position and the wavelength of the shape
change. In addition, Ramly et al. [7] undertook research on
the monitoring composite delamination areas. These results
describe two peaks at lower and higher wavelengths in the
reflection spectra, corresponding to the various forms of
strain distribution. This continues with an increment of
the delaminated area.

The shapes of the reflected spectra depend on the
strain gradients along the axial grating of the FBG sensors
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[8]. Thus, Rajabzadeh et al. [8] assume that the nonuni-
form strain distribution along the grating may be the main
reason for spectrum distortion. In addition, numerical
models are constructed to verify Rajabzadeh’s statement.
However, for real-time applications, the spectral distortion
(or the subordinate peak appearance time) cannot be used
as the determinate factor for crack length propagation.
Our research suggests that the skewing of the subordinate
peak corresponds to the crack propagation. In addition,
Correia et al. [9] found that the turning of the subordinate

peak is correlated with the ratio of effective sensing length
to the actual bonded length. Also, the sensing grating
regions can be divided into three sections called the effec-
tive interaction subregions. To analyze the comprehensive
correlation of crack length with FBG spectral behavior,
we will investigate four damage characteristics. This
involves the primary wavelength variation, the number of
subordinate peaks, the spectral bandwidth, and the subor-
dinate wavelength skewing, in correspondence with the
crack length.

�e original
spectrum signal

Wavelet threshold de-noising
-Free state peak wavelength (four
peaks)
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decomposition level is 6
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�e de-nosing signal

�e pre-position of the peak
�e peak number

Peak region segmentation
- �e normalization reflectivity
- Primary peak range

�e primary peak region

�e primary peak wavelength

�e primary peak wavelength
change

�e improved centroid algorithm

- �e detected peak region

- �e centroid algorithm

- �e detected peak number satisfy the
pre-peak seek number

Pre-position of the peak point
- �e de-nosing signal
- �e Hilbert translation
- Zero points

–5
A

A B C D

B

C

Plate 1

D

–10

Re
fle

ct
iv

ity
 (d

B)
Re

fle
ct

iv
ity

 (d
B)

Re
fle

ct
iv

ity
 (d

B)
Re

fle
ct

iv
ity

 (d
B)

–15
–20
–25
–30
–35
–40
–45
–50

1530

30

20

10

0

–10

–20

–30

1520

–5
–10
–15
–20
–25
–30
–35
–40
–45
–50

–10

–15
–20
–25
–30
–35
–40
–45
–50
–55

1527
3

2.5

2

1.5

𝛥
𝜆

a (
nm

)

1

0.5

0

1527.5 1528 1528.5 1529

1525 1530

Detected peak

(75%)
(75%)

Xa1
–50dB threshold

Xb1Xa2 Xa3 Xa4 Xb4
Range 4Range 3Range 2Range 1 Xb2 Xb3

(75%)

(75%)

Xm1 Xm2

Xm3

Xm4

Xn1 Xn2

Xn3

Xn4

Detected peak Detected peak Detected peak

1535 1540 1545 1550 1555 1560

1532 1534 1536 1538
Wavelength (nm)

Wavelength (nm)

1540 1542 1544 1546 1548 1550

1530 1532 1534 1536 1538
Wavelength (nm)

Wavelength (nm)

1540 1542 1544 1546 1548 1550

Plate 1

T1

T1
Xm Xn

Range

Primary peak wavelength

BA

32%

6 8 10 12 14 16
Crack length (mm)

18 20

35% 33%

T1
T2

T3
T4

Figure 1: The diagram of the centroid peak shifting detection algorithm.
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2. Damage Characteristic Detection Algorithm

With the nonuniform strain sensing, the spectrum became
asymmetric, broadened, and distorted; the traditional algo-
rithm for extracting the FBG spectral central peak is difficult
to realize the accurate wavelength value. In this paper, a
multipeak wavelength distinguish algorithm is introduced.

It is necessary to denoise the spectrum signal, and the
variation mode decomposition (VMD) combined with
wavelet thresholding is developed. The subordinate wave-
length data were extracted under the 3 dB bandwidth region,
and the centroid algorithm is defined based on the damage
spectrum. The diagram of the centroid peak shifting detec-
tion algorithm is shown in Figure 1.

2.1. VMDWavelet Denoising Pretreatment Algorithm. Tradi-
tionally, the variation mode decomposition (VMD) can
sense multiple modes concurrently; under the same fre-
quency [10], Li and Yao [11] introduced the band-limited
intrinsic mode function (BLIMF) for signal acquisition.
However, the algorithm lacks adaptability due to the fixed
energy distribution of signal mode, corresponding to the
determined decomposition layers. In this paper, a variation
mode decomposition integrated with the wavelet threshold
algorithm is produced. And the procedure of VMD wavelet
denoising algorithm is as follows:

Step 1. The spectrum signal in the domain is decomposed
by the VMD algorithm into band-limited intrinsic mode
function (BLIMF) uk in the frequency domain. And the
optimal decomposition layers’ number K is set to 6, and
the corresponding optimal balance parameter α is set as
200.

Step 2. By soft thresholding the BLIMF value, the wavelet
type is set to sym5 and the wavelet layer is set to 6 [12].
The improved soft threshold can be set as

bdl =
sign dið Þ dij j − Ti

exp dij j/Tð Þ − 1ð Þ2
 !

, dij j ≥ Ti,

0, dij j < Ti,

8

>

>

<

>

>

:

ð1Þ

where di represents the ith improved threshold of the
BLIMF. Ti represents each submodule threshold, and the
solution formula is described as follows:

T = 100σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ei lg Nð Þp

lg j + 1ð Þ : ð2Þ

Here, mean square deviation σ is estimated by σ =
medianðjcij: i = 1, 2⋯ ,NÞ/0:675. The ith BLIMF energy Ei
is estimated as follows:

Êk =
E2
1
β
ρ−k, k = 2, 3, 4⋯ : ð3Þ

The shifting iteration process parameters β, ρ are set as
0.719 and 2.01 [13], respectively.

Step 2. The multidenoising is applied with various methods,
such as the EMD with the detrend fluctuation analysis
(EMD-DFA), EMD with the changed thresholding wavelet
(EMD-changed wavelet), EMD-wavelet, and VMD-
changed wavelet, as shown in Figure 2.

The VMD-changed wavelet method can efficiently preserve
the detail signal without affecting the noise signal filtered.

2.2. The Multipeak Wavelength Distinguish Algorithm. The
deformed spectrum was split primarily for multipeak prepo-
sitioning, and secondarily the spectrum central wavelength
was extracted segmentally. The detailed process is shown
in Figure 3.

To extract the zero crossing points of the transformed sig-
nal, the denoised signal must be transformed by the Hilbert
transform firstly. The Hilbert transform value equals the con-
volution integral between the signal xðtÞ and ðπtÞ−1. The Hil-
bert transform xðtÞ was denoted as

x̂ tð Þ =H x tð Þ½ � = x tð Þ ∗ 1
πt

: ð4Þ

The denoising spectrum signal is shown in Figure 4(a),
and the processed signal by the Hilbert transform is shown
in Figure 4(b). To reduce the error of extracting extreme poles
instead of zero crossing points, the peak slope and peak group-
threshold method is proposed for the initial estimate of the
primary peak area. The subsidiary peak recognition satisfy
not only the value of zero crossing points under the Hilbert
transform but also the peak threshold sharp increased 1nm
in slop shape, as shown in Figure 4(b). Meanwhile, to improve
the accuracy of detection, the 3dB threshold window function
is defined in the preprocessing, as shown in Figure 4(c).

The intensity of x̂ðλÞ has a sharp slop between the left
and right pole points in Figure 4(b). Additionally, the inten-
sity of xðλÞ in Figure 4(a) and x̂ðλÞ in Figure 4(b) have the
same fluctuating trend in the reflection area. The subsidiary
peak number and the FWHM can be estimated.

Due to the advantage of high computation and precision,
the centroid algorithm is applied to recognize the peak wave-
length, as shown in Figure 5. The centroid algorithm pro-
duces a point corresponding to the geometric centroid of a
spectrum, calculated by equation (5), where N is the size of
the spectrum point vector, λi is the ith point wavelength,
and Ii is the ith point reflectivity intensity.

λB =
∑N

i=1λiIi
∑N

i=1Ii
: ð5Þ

3. Experiment Performance

To investigate the mechanisms of damage characteristics of
different fatigue crack lengths, the employed specimens are
bonded with FBG sensors. In the existing literature, the
FBG sensors were embedded in composites for structural
health monitoring. Ramakrishnan et al. [14] found that the
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crack length was closely related to the delamination damage
of composites, and the FBG sensors could sense the compos-
ite delamination. However, it is still a challenge for FBG to
sense the crack damage of aluminum alloy. In this paper,
the FBG sensors are adhered on the aluminum alloy plate,
and the mechanism of damage characteristics corresponding
to the crack propagation is studied. In this section, we eval-
uate the conduct for four proposed damage characteristics
on FBG spectral experimental data. Therefore, an experi-
ment in real-time crack propagation monitoring was per-
formed with a high-resolution optical microscope SM125.
In addition, the reflectance spectra were obtained and
recorded with an optical spectral analyzer.

Strain field alternation caused changes in the full-spectral
response that were detected and indicated that disband depen-
dent nonlinear behavior of the structure appears in the
dynamic spectral response. Jin et al. [15] found that the subor-
dinate peak skewing corresponds closely to the crack length

and location. Meanwhile, further investigation on the subordi-
nate peak skewed various with the ratio of crack length to the
entire grating, which indicates that the first appeared time and
the skewing of the subordinate peak are indicated by the crack
location and length. Consequently, a real-time peak-seek algo-
rithm for subordinate peak detection is applied, aided by the
model carol method [16]. To calculate the peak width and sub-
ordinate peak location, the algorithm detects the maximum
reflected optical power of each FBG.

3.1. Specimen. The objective system established in this paper is
a plate made of aluminum alloy 7075-T6, with the dimensions
of 300mm × 100mm × 2mm, as shown in Figure 6. A 10mm
hole is in the center of the plate. To follow the crack tip with the
FBG sensors, a 3mm initial crack length is desired according to
the standard. The specimen properties are shown in Table 1.

For strain sensing in various shape distributions along
the grating, the FBG sensors with no covering layer are
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Figure 2: (a) The original spectrum signal. (b) The denoising signal by the proposed algorithm.
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directly bonded in a horizontal plane onto the hole side in the
7075-T6 aluminum alloy specimen. This ensures a slow prop-
agation of the crack into the sensing zone, and the FBG1 was
placed 4mm ahead of the initial crack tip with a 4mm dis-
tance between FBG1 and FBG2. FBG parameters adopted in
the experiment are as follows: grating length is 10.1 and
10.2mm; bonded length is 11.3 and 11.4mm; thickness of
adhesive layer is about 0.3mm; the liquid cyanoacrylate adhe-
sive is used; and Young’s modulus of the adhesive is 1.75MPa.

3.2. Experiment Setup. A fatigue crack damage recognition
test platform is developed, and FBG sensors are utilized to
abstract the damage indicator. The overall view of the
hole-edge crack experimental setup is composed of three
main segments: fatigue loading equipment, optical modula-
tion analyzer, and fatigue crack detection device (see
Figure 7). Fatigue testing is undertaken using a hydraulic
MTS machine with continuous fatigue loading along the
axial direction. Constant amplitude loading spectra are used
in this study, with a maximum loading set value of 65MPa
and a cycling frequency of 10Hz. The FBG sensors were
connected to an optical demodulator (SM125, Micro Optics
Inc.), with high wavelength resolution. The reflected spectral
data was recorded for real-time monitoring of crack propa-
gation. Fatigue crack length was measured with an optical
microscope, and crack tip propagation was observed with a
Charge-Coupled Device (CCD) camera.

3.3. Mechanism of Damage Characteristics. The natural
crack was initiated and propagated by submitting the plate

to a cyclical fatigue test. An FBG sensor was used to measure
the strain distribution along the axial grating at different
strain profiles, with the crack propagation. Data was
obtained using the FBG sensing demodulation system
throughout cyclic fatigue. Initially, the reflection spectra
were symmetrical and developed a primary reflection spec-
trum. Subsequently, the peak simply moves backwards or
forwards when the grating sensed a uniform strain profile.
In this stage, its pitch changes accordingly with internal peri-
odic modulation.

With the crack propagation, the spectral wavelength
shifted gradually while the reflection spectrum showed a sig-
nificant change in its shape. For example, Figure 8 shows when
the subordinate peaks appear. In this period, FBG sensors have
a gradual change in the grating period, which yield a charac-
teristically broad and flat reflection spectrum. The subordinate
peak skewing of the reflected spectra has a one-to-one corre-
spondence with the proportion of crack length in the grating
section. Meanwhile, the subordinate peak number changes
with the fatigue crack propagation. During this process, the
changing regularity of subordinate peak numbers closely
relates to the proportion of crack length in the grating length.
Noteworthy meaningful phenomena are that spectral distor-
tion appears in the stage of ratio alternation. The distortion
of the spectra is attributed to the eventually nonuniform distri-
bution of strain along the grating.

Figure 8 shows the signal changes of the FBG sensors
due to different crack lengths under cyclic crack propagation
tests. The above-mentioned features would be applied to
identify damage in real-time monitoring.

Input reflection spectrum x (𝜆)

Step 1: Hilbert transform

Pre-position of the
peak and the peak

region segmentation

Central wavelength
seeking

Step 2: Set threshold value

Step 3: Split reflection spectrum

Step 4: Select one single Bragg peak
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Figure 3: The diagram of multipeak central value diagnosis.
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3.3.1. The Primary Wavelength Variation. It is well under-
stood that the primary wavelength corresponds to the average
strain along the grating. When the grating senses compres-
sion/strain, the primary wavelength shifts towards shorter/

higher wavelength. Fernando et al. [17] illustrate the primary
wavelength corresponding to the delamination with strainmag-
nitude. According to Reference [18], the center wavelength
increased linearly with the composite delamination damage.
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However, FBG sensors used for fatigue-induced damage
monitoring were mainly bonded perpendicular to the exter-
nal loading force. However, this research applies a force per-
pendicular to the fast axis of the fiber, and the crack
propagation orientation is paralleled to the fast axis of the
fiber. The experimental result shows that the reflection spec-
tra were clearly narrow and symmetrical. Therefore, the pri-
mary reflection spectrum is only found at the initial state.
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Figure 5: Schematic of the central wavelength detection by the centroid algorithm.
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Figure 6: Schematic of the aluminum specimen.

Table 1: Mechanical properties of 7075-T6 aluminum alloy plates.

Material
Tensile
strength
(MPa)

Yield
strength
(MPa)

Poisson’s
ratio (MPa)

Elastic
modulus
(MPa)

AL7075-
T6

572 503 0.33 73100
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Afterwards, the peak simply moves backwards or forwards
when the grating sensed a uniform strain profile. In this
stage, its pitch changes accordingly with internal periodic
modulation. It was also observed that primary wavelength
shift value was less than 0.1 nm during crack propagation.
This is because there is a small offset between the center of
the FBG and the intersection point between the FBG and
neutral line.

With crack propagation, the nonuniform stain distri-
bution is induced by the crack tip causing the reflection
spectrum deformation. It should be noted here that the
turning point coincides well within the ratio of crack
length lying in the whole grating. At the ratio 32%-35%
of crack tip located on the grating, the average strain value
is distributed on the effective sensing. This value is rela-
tively large, and the cubic strain pattern is distributed
along the grating taking primary responsibility in spectral
peak location decision. Thus, in regions A and B, the
wavelength increased with crack propagation. When the
ratio reaches about 36%-67%, the average strain value
decreased and the quadratic strain pattern is distributed
along the grating. Figure 9 shows the primary wavelength
due to different crack lengths.

3.3.2. Spectral Bandwidth. The spectral bandwidth measure-
ments are well represented by the average strain gradient
along the FBG sensors. However, this does not yield an accu-
rate measurement of the complexity of the strain field.
Indeed, many researchers [19] found that the spectral band-
width could respond to strain gradient. Hence, it had been
applied for real-time in situ monitoring of composite mate-
rial damage. Ussorio et al. [20] used the spectral bandwidth
changes of distributed FBG sensors as indicators of matrix
crack. Takeda et al. [21] estimated the composite delamina-
tion based on the quantitative change in the spectral
bandwidth.

The spectral bandwidth indicator could be applied for
both composites and metal materials. Jin et al. [22] have
demonstrated that strain distributions along the grating cre-
ates localized resonances at different wavelengths by experi-
mental studies. This provides a reason why the spectral
distortion occurred. Meanwhile, the number of the subordi-
nate peaks could significantly affect the spectrum bandwidth
variation. Thus, spectral bandwidth would be used as an
indicator for the hole-edge crack diagnosis. Spectral band-
width represents the range of the induced strain values and
thus the magnitude of the strain gradient along the grating.
This research will utilize the full width at half maximum
(FWHM). Accordingly, the spectral bandwidth is the most
commonly used measurement of spectral distortion for
FBG sensors [23].

Previous studies have demonstrated that the strain dis-
tribution along the grating is mainly due to the ratio of crack
length lying in the grating with respect to the entire grating.
Another observation could be made for spectral changes,
due to crack propagation in which significant peak splitting
occurs. However, it should be noted the total bandwidth
increase may not be large in this period. The FWHM varia-
tion tendency shows gentle rise and decline in zones A and
B, as shown in Figure 10. Meanwhile, the FWHM displays
an obvious correlation with crack length until a crack satura-
tion length was reached. The spectrum bandwidth was also
directly related to strain distribution and has been previously
applied [24]. This is because there is a small offset between
the center of the FBG and the intersection point between
the FBG and the neutral line.

It is known that the deformity of the reflection spectra is
generally related to the strain distribution along the FBGs
[25]. In fact, the distribution of strain patterns along the
grating corresponds to crack propagation. The crack in the
aluminum material can produce a strain concentration or
gradient zone, which contains complex strain patterns. If
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Figure 7: Experiment setup for the crack detection in aluminum structure.
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different strain patterns are applied on the grating, the grat-
ing will suffer with the same nonuniform strain distribution
pattern, causing a sensor response that is significantly more
complicated relative to a uniform case [26]. The nonuniform
strain along the grating will change the periodicity of the
grating pattern. Hence, the grating pattern is modified from
a uniform to a chirped configuration [27], as shown in
Figure 10.

3.3.3. Number of Subordinate Peaks. The crack in the alumi-
num material can produce a strain concentration, which
contains complex strain patterns. The spectrum distortion
corresponds to the strain pattern in the grating. Meanwhile,
if the grating suffers with a similar nonuniform strain pat-
tern, the sensor response is significantly more complicated
compared to a uniform case [18]. This means that the spec-
tral distortion relates to both the ratio of crack tip lying in
the whole grating length and the location of the crack tip
in the grating. The number of subordinate peaks is depen-
dent on this ratio.

In this research, spectral datasets are collected by fixing
four parallel specimens under cyclic fatigue tests. The
reflected spectral data were normalized as for the spectral
subordinate peak number method. Figure 11 displays a sche-
matic diagram of the subordinate peak number counting.
Although the high-order peaks had been filtered using the
FBG sensing demodulation SM 125, the higher-order peaks
imply no significant contribution to the crack propagation.
Thus, the intensity of the reflection spectrum was normal-
ized by the intensity of the highest component. The reflected
spectrum data was selected with �r ≥ 0:5 (i.e., full width at
half maximum).

If the strain field is changing over a short effective seg-
ment of the whole grating length, the cubic strain pattern
as the main form distributed along the grating. As only a dis-
crete number of peaks are calculated, the relationship is not
as smooth as the spectral primary wavelength measure.

At the 1%-67% ratio of the crack length lying in the
whole grating, the number of the subordinate peaks shows
an upward trend. This is especially important during the
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ratio of 1%-32%, where the subordinate peak number
increased rapidly. The experimental spectral bandwidth is
plotted for four parallel plates in Figure 12.

Thus, the number of subordinate peaks may be useful as
an indicator of imminent failure of the aluminum material.

3.3.4. The Subordinate Wavelength Skewing. The location of
subordinate peaks corresponds to the location of strain con-
centration on the FBG sensors. At the initial stage, about

15% ratio of crack length lying in the whole grating causes
slitting of the spectra and distortion of the spectral shape.
The subordinate peak appears at the shorter wavelength,
and the wavelength only increased due to the strain value
concentered on the short effective sensitive grating. Mean-
while, at about 32% ratio of the crack length lying in the
whole grating, a similar trend of subordinate peak wave-
length can be observed for crack propagation. As our previ-
ous research shows, this depends on the strain pattern
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distribution along the grating. It must also include the differ-
ent shapes of the strain distributions, for the analysis directly
reflected the shape skewing of the subordinate peak.

Afterwards, the spectra become enlarged, and the subor-
dinate peak skews at a longer wavelength and drifts to the
same orientation. The nonuniform strain along the grating
will change the periodicity of the grating pattern. In this
way, the grating pattern is modified from a uniform to a
chirped configuration [28]. Meanwhile, the subordinate peak
wavelength shows a significant decline at the strain pattern
transition region with the average strain decrease, as shown
in zone A in Figure 13. Nevertheless, as the crack length
increases, the strain pattern is distributed along the variable
grating, and the widths of the measured spectra increased.

It is confirmed that oscillations of the spectrum can be
related to the nonuniform strain distribution along the grat-
ing caused by cracks. Thus, they serve nonuniform strain
patterns along the grating, and it is assumed to be the prin-
cipal reason for the spectral oscillation [29]. Meanwhile,
when the ratio reaches to about 67%, the subordinate peak

appears at a shorter wavelength, and the strain value distri-
bution on the effective sensing region increased. Thus, the
subordinate peak wavelength increased rapidly, as shown
in zone B in Figure 13. The reflection spectra were even slit
into several peaks at the ultimate break of the grating, at
about 15% ratio of crack length lying in the whole grating.

To further explore the subordinate wavelength variation,
the experimental data of four samples tested were analyzed,
as shown in Figure 13.

4. Discussion

4.1. Subordinate Wavelength Skewing. When the compres-
sion strain is identified by the grating, the spectrum moves
to a shorter wavelength. In contrast, when the tensile strain
is detected by the grating, the spectrum moves to a longer
wavelength [30]. The strain distribution around the crack
tip is highly variable. It is worth mentioning that if the
FBG was submitted to different strain patterns along the
grating, different lower peaks will distort the reflected peak.
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The slitting of the spectra occurred and the spectral shape
becomes distorted. Meanwhile, the primary wavelength,
FWHM, subordinate peak number, and subordinate wave-
length skewing with the strain pattern change along the
grating.

It is assumed that the subordinate peak location skewing
corresponds to the change of the strain pattern along the
grating, with respect to the crack propagation. This is espe-
cially true at the strain pattern transition region, which is
located at the ratio 32-34% of crack length lying in the whole
grating.

4.2. Spectral Distortion. Literature [31] shows that both elas-
tic and plastic strains can be experienced in the grating. In
combination with complex strain distributions around the
crack tip, a serve strain distribution pattern could be sensed
by the grating, such as linear, quadratic, and cubic strain dis-
tributions. The literature further reveals that the linear, qua-
dratic, and cubic strain patterns along the grating determine
the subordinate peak location.

Thus, it is assumed that the complex strain pattern per-
ceived by the grating could be the chief reason of spectrum
distortion, correlating with the ratio of crack length lying
in the whole grating.

5. Conclusion

To determine the characteristic damage variation of FBG
sensors with the crack propagation, FBG shows significant
changes in the strain due to damage in the specimen. The
four characteristic parameters were abstracted by analyzing
experimental data. This was followed by the correlation of
damage characteristics with crack length and investigated
with the four damage characteristics, namely, the primary
wavelength, the subordinate peak number, the FWHM,
and the subordinate wavelength skewing.

During crack propagation, the subordinate peak skewed
with the strain pattern transition region, with the ratio 32-
34% of crack length lying in the grating length. Meanwhile,
the FWHM, the primary wavelength, and the subordinate
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peak number correspond to the subordinate peak skewing.
Thus, it is confirmed that subordinate peak skewing can be
applied as an effective indicator to evaluate the crack propa-
gation for the aluminum.

Furthermore, the FBG-based demodulation method can
be used as an interesting and alternative technique for real-
time detection of transverse cracks in aluminum.
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The health management of weather radar plays a key role in achieving timely and accurate weather forecasting. The current
practice mainly exploits a fixed threshold prespecified for some monitoring parameters for fault detection. This causes
abundant false alarms due to the evolving working environments, increasing complexity of the modern weather radar, and the
ignorance of the dependencies among monitoring parameters. To address the above issues, we propose a deep learning-based
health monitoring framework for weather radar. First, we develop a two-stage approach for problem formulation that address
issues of fault scarcity and abundant false fault alarms in processing the databases of monitoring data, fault alarm record, and
maintenance records. The temporal evolution of weather radar under healthy conditions is represented by a long short-term
memory network (LSTM) model. As such, any anomaly can be identified according to the deviation between the LSTM-based
prediction and the actual measurement. Then, construct a health indicator based on the portion of the occurrence of deviation
beyond a user-specified threshold within a time window. The proposed framework is demonstrated by a real case study for the
Chinese S-band weather radar (CINRAD-SA). The results validate the effectiveness of the proposed framework in providing
early fault warnings.

1. Introduction

Aweather radar is a type of radar used to find precipitation, cal-
culate its motion and intensity, and estimate the precipitation
type [1]. Typically, a weather radar consists of five main subsys-
tems including signal processor, transmitter, antenna, receiver,
and control/communication processor. The data is sent to the
data centre and is essential for timely and accurate weather fore-
casting.Modernweather radar has becomemore advancedwith
higher levels of digitization and integration, which poses chal-
lenges to maintaining its operational efficiency [2]. There is a
need for proactive maintenance programs tomonitor andman-
age the health condition of weather radar in a cost-effective
manner. In the current practice, a fault alarm scheme is imple-
mented by setting a predefined threshold for some state param-
eters, which often causes a large number of false alarms mainly
due to the evolving working environments and the weakness of
fixed threshold strategies [3].

The recent advances of machine learning provide power-
ful tools to explore the value of operational data in the health
monitoring of weather radar. However, it is still at an infant
stage for the meteorological community to use the data accu-
mulated through the operating experience of weather radar
[3–5]. Indeed, a wide range of methods has been applied in
other industrial sectors that utilize data analytics to extract
knowledge from historical data [6]. For instance, develop a
knowledge-based system approach for sensor fault detection
[7], diagnose the fault of rotating machinery based on deci-
sion tree and principal component analysis [8], monitor the
condition of bridges based on a clustering approach [9], and
identify contamination source using a sequential Bayesian
approach [10].

Growing attention has been paid to deep learning tech-
niques for end-to-end health management frameworks,
because of their capability to handle large datasets and to
automatically learn hidden features. Various deep learning
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architectures and their variants are employed for fault detec-
tion, diagnosis, and prognostics such as feedforward neural
network, convolutional neural network, recurrent neural
network, and autoencoder [11]. For instance, develop a con-
volutional neural network-based model to detect wafer
structural defect using wafer images [12], adopt a stacked
autoencoder for the fault diagnosis of rotating machinery
[13], and address the variable working conditions through
deep transfer learning [14, 15]. Note that most current stud-
ies are developed using simulation or lab-testing datasets.
There is still a gap for real field applications in aggregating
data from various sources, which raises the challenges of
data preparation [16]. The literature on deep learning appli-
cations in PHM is quite large and has received growing
attention in a broad range of sectors. We refer the interested
readers to the references in [17, 18] for a comprehensive
review on this topic.

In this paper, we propose a deep learning-based health
monitoring framework with real applications to Chinese S-
band weather radar (CINRAD-SA). In particular, we
develop a long short-term memory (LSTM) network-based
predictive model to capture the temporal patterns of work-
ing conditions of weather radar. The multidimensional
time-series data collected in the normal condition are used
to train the LSTM network and hence obtain an LSTM net-
work to represent the health state of weather radar. Given
any future time instant, the anomaly can be identified based
on the deviation between the actual measurement and the
prediction provided by the LSTM. Once the degree of devi-
ation goes beyond a user-specified threshold, the weather
radar would be considered at a fault condition. Ultimately,
the number of occurrences beyond the threshold within a
time window would signify the severity of abnormalities,
which is then used to construct the health indicator of the
weather radar.

The effectiveness of our proposed framework is demon-
strated using the operational data obtained at a radar station
from 2019/01/01 to 2020/10/14. We discuss the issues in
problem formulation and our solution based on a two-
stage approach. Then, we validate the proposed framework
by successfully showing an early warning of a severe fault
that occurred on 2020/01/14. The results indicate the poten-
tial value of the proposed framework in support of practical
maintenance planning.

The rest of this paper is organized as follows. Section 2
describes the background of recurrent neural networks and
the data acquired through the operational experience of
CINRAD-SA. Section 3 presents the proposed framework
to predict and assess the health condition of weather radar.
Section 4 demonstrates the proposed framework using a real
case study. Section 5 presents the conclusions and discusses
future research.

2. Background

2.1. Data Available in the Chinese S-Band Weather Radar.
There are three types of data collected through the operation
of the CINRAD-SA: (1) the real-time monitoring data are
multidimensional time series in form of floating-point and

are collected based on the built-in sensors of the weather
radar. There are typically hundreds of parameters for a
weather radar; (2) fault alarm records are stored as a binary
data format once some monitoring parameters go beyond a
prespecified threshold value. Note that most of the alarm
records are false alarm without the actual occurrence of
fault; and (3) maintenance records contain the repair start
and end times, the fault description, the replacement part,
and the affiliated subsystem. The maintenance records can
be used to locate the actual occurrence of a fault.

2.2. Long Short-Term Memory. An LSTM is a type of recur-
rent neural network (RNN) that is specialized for sequential
data such as time-series data, text stream, and audio clips.
RNN can learn the sequential characteristics of data by for-
mulating a looping mechanism through a stack of building
units, called the cells. Specifically, a cell can memorize the
information given the current input and then pass through
the same cell sequentially to produce a single output for each
step, namely, the hidden state. Then, feed this hidden state
and new data input to the next step. This allows the cell in
the next step to learn from the previous steps, to understand
the sequential characteristics of the data.

As the simplest RNN, the vanilla RNN only has one hid-
den gate and is facing a common problem of gradient van-
ishing given long sequences of data. Hence, various cell
designs lead to variants of RNN, such as gated recurrent unit
and LSTM [11], among which the latter is the most com-
monly used. LSTM cell consists of three gates: forget, input,
and output gates, the operations of which are shown in
Figure 1. The previous hidden state Ht−1 and the current
data Xt are fed into the forget gate to remove the informa-
tion that is not relevant to the previous cell. Then, update
the cell state given the past hidden state and the current state
using the input gate it and generate a new hidden state Ht
using the output ot based on the information of the updated
cell Ct .

3. Proposed Health Monitoring Framework

This section presents the proposed framework as illustrated
by the flowchart in Figure 2. There are two main parts
including offline development and online deployment. The
historical data would be prepared and preprocessed to be
used for the LSTM-based predictive model development in
the offline stage. Then, construct the health indicator of
weather radar by leveraging the LSTM-based prediction
and the online measurement. This results in a health moni-
toring framework that tracks the health condition of weather
radar and provides early warning one health indicator. The
details of each part are discussed in the following sections.

3.1. Problem Formulation. We develop a two-stage approach
to address the challenges involving problem formulation.
There are two main challenges as follows:

(i) The first challenge is data preparation to label the
available monitoring data as either faulty or healthy
conditions. Particularly, the monitoring data and
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fault alarm records have the same timestamp. Ide-
ally, the fault alarm records can be applied to anno-
tate the radar condition. However, most of the fault
alarm records are false alarms and cannot properly
represent the actual radar condition and due to the
methodological deficiency of the prefixed threshold
strategy in the current practice. On the other hand,
maintenance records represent the actual fault
occurrence but have timestamps different from the
real-monitoring data and fault alarm records

(ii) The second challenge is the limited amount of actual
fault occurrence in the field. As such, it is not appli-
cable to formulate a classification problem and
directly use the binary state variable as the response
variable indicating the radar state

Figure 3 illustrates a flowchart of the proposed two-stage
approach. In the first stage, address the issue of abundant
false alarms by synchronizing between fault alarm records
and maintenance records. Specifically, we calibrate the fault
alarm records by labelling the alarm records as 1 if their
timestamp matches the maintenance records, otherwise 0.
This results in the calibrated fault alarm records, which are
representative of the actual radar faults. In the second stage,
we intend to explore the association between the monitoring
parameters and the calibrated fault alarm records. Then, for-
mulate the health monitoring task as a regression problem.
The response variable is set as the most relevant monitoring
parameter and uses the other associated monitoring param-
eter as the explanatory variable. Overall, it is important for
proper annotation of radar states and problem formulation
so that assure the quality of data for model development
and enable satisfactory predictive performance.

3.2. Predictive Model Development. Note that the working
condition of weather radar is evolving continuously and
pose challenges in learning predictive models with heteroge-
neity. Using the data of a large period would introduce much
heterogeneity and hence compromise the predictive perfor-
mance. Therefore, we recommend using the data two to
three weeks before the time of interest for model training
and learning to represent the latest working condition of

the weather radar. Suppose the condition of weather radar
can be represented by multidimensional time-series data, a
sliding window is firstly applied to segment the data into
batches and reshape the data into the format (number of
windows, window length, number of monitoring parame-
ters). This produces the data vector corresponding to each
LSTM cell as shown in Figure 4. Denote the training dataset
as D = fx, yg, where x represents the multidimensional time-
series data, and y represents the state parameter representing
the health state of the weather radar. The network training
aims to estimate the weights and bias parameters that char-
acterize the predictive model. This is conducted by gradient-
based optimization algorithms.

3.3. Health Indicator Construction. Suppose the LSTM-based
predictive model is well trained and is then deployed online,
given any time instant t, one can make a prediction dyt+1 for
a newly arrived real-time monitoring data xt within a time
window length n, where xt = ½xt−n+1,⋯, xt−1, xt�. As shown
in Equation (1). then calculate the deviation ρt between the
prediction byt and the actual measurement yt , where σt mea-
sures the dispersion under healthy conditions and is calcu-
lated based on the entire training dataset.

ρt = log yt − yt∧ð Þ2
σt

 !

: ð1Þ

Given a time instant, fault alarm would be triggered once
its deviation ρt greater than a user-specified threshold
ρthreshold, which is set as 0:78 in this study. However, the like-
lihood of false alarms would be high due to the turbulence of
the working condition. To alleviate the issue, a health indica-
tor needs to be constructed by aggregating the features of
deviation within a time duration. The key idea is that the
number of occurrences beyond the threshold within a time
duration can be considered as a precursor of the possibility
or severity of abnormalities. Suppose the length of the time
window for health indicator construction is m, we derive
the health indicator as to the portion of occurrences less
than the threshold in Equation (2). The health indicator
can be used to track the health evolution of weather radar
and provides references to support maintenance planning.

Ht =
∑m

j=1I ρt−j+1 ≤ ρthreshold
� �

m
, ð2Þ

where Ht is the health indicator at time t, and Ið∙Þ is the
indicator function, which equals 1 for deviation less than
the threshold, and otherwise equals 0. The health indicator
ranges from 0 to 1. The higher the health indicator, the bet-
ter the performance of weather radar.

4. Case Study

This section demonstrates the real application of the pro-
posed framework to monitor the health evolution of weather
radar. Section 4.1 describes the problem formulation and
model development. Section 4.2 presents the results and

tanh

Tanh

+ Ct

Ct

Xt

HtHt–1

Ct–1

ot
itft

𝜎3𝜎2𝜎1

×

×

×

Figure 1: A diagram of the cell design of the long short-term
memory (LSTM) network [19].
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discussions. The proposed framework was developed based
on Python v3.6 and TensorFlow v1.5.0 using a desktop with
Intel Core i7 9700 CPU@3.00GHz and 32GB DDR4 RAM.

4.1. Problem Formulation and Model Development. For
problem formulation, we apply the two-stage approach pro-
posed in Section 3.1 to process the historical data as follows.
(1) Use the maintenance records to calibrate the fault alarm
records. Any fault alert records that happen within 6
minutes forward or backward of the maintenance records
would be annotated as the actual faulty condition (1), other-
wise healthy condition 0; (2) investigate the association
between the monitoring parameters and the calibrated fault
alarm records using the stepwise regression method [20].
We start with no monitoring parameter and test the addition
of each monitoring parameter based on a linear regression
model. The monitoring parameter is added if its inclusion
can statistically significantly improve the model fit. Repeat
this process until no parameter can further improve the
model.

Indeed, the parameters considered important for fault
detection might vary accordingly in different radar stations.
This would detrimentally affect the stability of the prognos-
tic model. Therefore, the feature selection is conducted using
the historical data from 31 radar stations as summarized in
Table 1. For instance, in the first radar station, we analyzed

the data collected between 1/1/2019 and 10/14/2020. The
data contains 177814 examples with 139 monitoring param-
eters, each of which is collected every 6 minutes, 57625 fault
alarm records, and 8 maintenance records. The number of
false fault alarms is far greater than the actual number of
faults when comparing the number of fault alarm records
and the maintenance records. This highlights the limitation
of the current practice using a predefined threshold as dis-
cussed in Section 3.1.

We proceed to identify the top monitoring parameters
for each radar station, respectively, which account for 95%
of the sum of the absolute value of the regression coefficient.
Then, aggregate all the identified monitoring parameters.
For the parameters shared in multiple stations, we sum up
their regression coefficient in each station, namely, aggre-
gated regression coefficient. The importance of each param-
eter can be further measured by the percentage of
contribution to the total aggregated regression coefficient.
As such, 38 monitoring parameters are identified as summa-
rized in Table 2 in descending order. Expert judgment from
the radar specialist is used as additional data for aiding fea-
ture selection. Accordingly, we screen out the parameters
with an index within a range [24, 25] and [30, 38]. Finally,
this results in 27 monitoring parameters in this study. This
could help eliminate the parameter that is not important
from a perspective of radar operation and also reduce the

Historical
data

Calculate deviation

Data preparation

Problem
formulation

Prediction

Alarm triggered

Offline
development

Predictive model
development

Real-time
monitoring data

Online
deployment

Real-time
measurement

Health
indicator

Healthy
or

Faulty?

Figure 2: Flowchart of the proposed health monitoring framework for the weather radar.
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dimensionality of the data to facilitate the following mode
development.

The parameter of ANT_AVG_PWR has the strongest
relationship with a regression coefficient far greater than
that of the other monitoring parameters. Therefore, the
parameter of ANT_AVG_PWR is set as the response var-
iable to represent the radar state, referred to as the state
parameter in the following discussions. The other moni-
toring parameters constitute a 27-dimensional feature
matrix describing the operating condition of weather radar
and are used as the explanatory variables in the predictive
model.

To demonstrate the proposed framework, we examine
that whether the proposed framework can provide an early
warning of the occurrence of an actual fault on 2020/01/14.
A detailed failure analysis report showed that the root cause
is the inverse peak overcurrent resulting from a transmitter
modulator failure. We adopt the data collected both before
and after the fault occurrence that is from 2019/11/01 to

2020/01/02 for model development. Specifically, the radar
worked under healthy conditions from 2019/11/01 to 2020/
01/02, and hence the corresponding data is used as the train-
ing dataset with 15435 examples; use the data between 2020/
01/03 and 2020/01/20 as the test dataset with 4022 examples
in either faulty or health condition. The training and test
datasets are standardized and are reshaped with a time win-
dow length of 15. The model architecture consists of an
LSTM layer.

4.2. Results and Discussions. Figure 5 shows a comparison
between the actual state parameter and the LSTM-based pre-
diction in both training and testing phases, where the x-axis
is the operational time of weather radar, and the y-axis is the
state parameter. The prediction shows a good fit for the
actual measurement in the training phase. A significant dif-
ference is observed between the prediction and actual mea-
surement in the testing phase, which indicates the
occurrence of a radar fault.

Table 1: Summary of the historical dataset from 31 radar stations.

Index Starting date Ending date Number of data Number of fault alarms Number of maintenance records

1 1/1/2019 10/14/2020 177814 57625 8

2 1/1/2016 12/31/2017 326441 1119 4

3 1/1/2016 12/31/2017 168695 1332 4

4 1/1/2016 12/31/2017 174460 168 4

5 1/1/2016 12/29/2017 150898 1168 3

6 1/1/2016 12/31/2017 360754 1673 3

7 1/1/2016 12/31/2017 224993 2783 2

8 1/1/2016 12/31/2017 293327 3647 2

9 1/1/2016 12/31/2017 180917 25 2

10 1/1/2016 12/31/2017 196358 3012 2

11 1/1/2016 12/31/2017 168769 3963 2

12 1/1/2016 12/31/2017 355831 1069 2

13 1/1/2016 12/31/2017 174854 1796 2

14 1/1/2016 12/31/2017 185265 1571 2

15 1/1/2016 12/31/2017 265552 1063 1

16 2/25/2016 12/31/2017 248989 4734 1

17 1/1/2016 12/5/2017 167021 1233 1

18 1/1/2016 12/31/2017 164983 635 1

19 1/1/2016 12/31/2017 181167 8682 1

20 1/1/2016 12/31/2017 314534 5571 1

21 1/1/2016 12/31/2017 174489 391 1

22 1/1/2016 12/31/2017 180082 2781 1

23 1/1/2016 12/31/2017 116269 2222 1

24 1/1/2016 12/31/2017 172160 136 1

25 5/23/2016 12/31/2017 143409 981 1

26 1/1/2016 12/31/2017 224820 4674 1

27 5/23/2016 12/31/2017 143994 119 1

28 1/1/2016 12/31/2017 187362 8693 1

29 1/1/2016 12/31/2017 437120 776 1

30 1/1/2016 12/31/2017 203572 4423 1

31 1/1/2016 12/31/2017 140639 3316 1
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We further calculate the deviation between the actual
measurement and prediction according to Equation (1).
Figure 6 displays the deviation’s temporal evolution and dis-
tribution. In Figure 6(a), the deviation fluctuates in healthy
conditions below the threshold value as illustrated by the

red dotted line and then tends to increase rapidly once an
anomaly happens. As expected, the distribution of the devi-
ation is positively skewed in Figure 6(b). A bimodal distribu-
tion is observed and shows the existence of two different
modes (i.e., healthy and faulty conditions) in the operational

Table 2: The top monitoring parameters associated with the calibrated fault alarm records of weather radar based on the historical dataset
from 31 radar stations.

Index Monitoring parameters
Aggregated regression

coefficient
Importance
measure

Description

1 ANT_AVG_PWR 71.19 35.12% Average power of horizontally oriented antennas

2 XMTR_AVG_PWR 35.28 17.41% Average power of transmitter

3 ANT_PEAK_PWR 26.49 13.07% Peak power of horizontally oriented antennas

4 XMTR_PEAK_PWR 14.88 7.34% Peak power of transmitter

5 EXPECTED_REFL_AMP8 7.29 3.60% Reflectivity expectation 8

6 MEASURED_RF8_AMP3 4.19 2.07% KD calibration measurement 3

7 MEASURED_REFL_AMP7 4.02 1.98% Reflectivity measurement 7

8 MEASURED_REFL_AMP2 3.9 1.92% Reflectivity measurement 2

9 MEASURED_REFL_AMP8 3.56 1.76% Reflectivity measurement 8

10
UNFILTERED_LIN_CHAN_

PWR
3.2 1.58% Power of the horizontal channel before filtering

11 ANT_PWR_MTR_ZERO 2.81 1.39%
Power zero-calibration of horizontally oriented

antennas

12 MEASURED_RF8_AMP2 2.4 1.18% KD calibration measurement 2

13 MEASURED_REFL_AMP3 2.2 1.09% Reflectivity measurement 3

14 EXPECTED_REFL_AMP6 1.7 0.84% Reflectivity expectation 6

15 EXPECTED_RF8_AMP3 1.52 0.75% KD calibration expectation 3

16 MEASURED_RF8_AMP6 1.48 0.73% KD calibration measurement 6

17 MEASURED_REFL_AMP1 1.45 0.72% Reflectivity measurement 1

18 MEASURED_RF8_AMP4 1.43 0.71% KD calibration measurement 4

19
FILTERED_LIN_CHAN_

PWR
1.31 0.65% Power of the horizontal channel filtered

20 MEASURED_REFL_AMP4 1.31 0.65% Reflectivity measurement 4

21 MEASURED_RF8_AMP5 1.25 0.62% KD calibration measurement 5

22 EXPECTED_RF8_AMP1 1.18 0.58% KD calibration expectation 1

23 MEASURED_RF8_AMP1 1.16 0.57% KD calibration measurement 1

24 EXPECTED_RF8_AMP4 1.1 0.54% KD calibration expectation 4

25 IDU_TEST_DETECTIONS 1.1 0.54% Number of interference detections

26 EXPECTED_REFL_AMP1 1.08 0.53% Reflectivity expectation 1

27 MEASURED_REFL_AMP6 0.95 0.47% Reflectivity measurement 6

28 XMTR_PWR_MTR_ZERO 0.85 0.42% Power zero-calibration of transmitter

29 EXPECTED_REFL_AMP4 0.59 0.29% Reflectivity expectation 4

30 EXPECTED_REFL_AMP5 0.49 0.24% Reflectivity expectation 5

31 EXPECTED_RF8_AMP6 0.33 0.16% KD calibration expectation 6

32 EXPECTED_RF8_AMP5 0.3 0.15% KD calibration expectation 5

33 EXPECTED_REFL_AMP7 0.2 0.10% Reflectivity expectation 7

34
POWER_METER_RATIO_

DB
0.18 0.09% The power ratio of transmitter to antenna

35 EXPECTED_REFL_AMP3 0.1 0.05% Reflectivity expectation 3

36 RNLPLG 0.1 0.05% Long pulse noise level

37 EXPECTED_REFL_AMP2 0.08 0.04% Reflectivity expectation 2

38 MEASURED_REFL_AMP5 0.05 0.02% Reflectivity measurement 6

7Journal of Sensors



140
2019-10-31 2019-11-14

Actual
Prediction

2019-11-28 2019-12-12
Time

Training phase Testing
phase

2019-12-26 2020-01-09

160

180

200

220
St

at
e p

ar
am

et
er 240

260

280

Figure 5: A comparison between the actual state parameter and the LSTM-based prediction.

–25
2019-10-31 2019-11-14 2019-11-28 2019-12-12

Time

Training phase Testing
phase

2019-12-26 2020-01-09

–20

–15

–10D
ev

ia
tio

n –5

0

5

10

(a)

0
–25 –20 –15 –10

Deviation
–5 0 5

500

1000

1500

Fr
eq

ue
nc

y

2000

2500

(b)

Figure 6: (a) Temporal evolution of the deviation between prediction and actual measurement. (b) Distribution of the deviation between
prediction and actual measurement.

8 Journal of Sensors



weather radar. Only a few occurrences beyond the threshold
value of 0.78 and provide the basis to construct the health
indicator.

The health indicator is derived by examining the devia-
tion calculated within a duration of 80 measurements. This
is equivalent to 8 hours since the measurement interval is
6 minutes. In other words, we determine the radar condition
based on its overall performance within an 8-hour duration,
to alleviate the impacts of the turbulence of working condi-
tions. The resulting health indicator is illustrated in
Figure 7, where the yellow line marks the time of actual fault
occurrence and the red line marks the fault prediction given
a threshold of health indicator as 0.05. Specifically, the time
of fault prediction triggered is on 2020/01/04 at 17 : 15,
which is nearly 10 days ahead of the actual fault occurrence
on 2020/01/14. This would provide an early warning and
hence avoid serious consequences and unscheduled down-
time. Also, an early warning would provide sufficient time
to order the repair or replacement parts as needed. Note that
specifying the threshold of health indicators involves a
trade-off between the operational economics and the risk
of missed detections of actual faults. A higher threshold
value leads to a lower risk of missed detection but raises
operational costs.

5. Conclusions

In this paper, we developed a deep learning-based health
monitoring framework based on the real-time monitoring
parameters in weather radar. Specifically, we proposed a
two-stage approach to address the issues of fault scarcity
and abundant false fault alarm records in the current prac-
tice. Then, formulate the health monitoring framework as
a regression problem based on the monitoring parameter
relevant to actual radar fault. An LSTM model was devel-
oped to represent the temporal evolution of radar under
healthy conditions. In doing so, any anomaly can be cap-
tured by the deviation between the actual measurement

and the prediction provided by the LSTM. Ultimately, a
health indicator of weather radar was constructed based on
the portion of the occurrence of deviation beyond a user-
specified threshold within a time window. The effectiveness
of the proposed framework was validated by the data col-
lected from 2019/01/01 to 2020/10/14. The results showed
that the proposed framework successfully provided an early
warning of the actual fault occurrence on 2020/01/14. Future
work would be the development of maintenance planning
based on the health monitoring framework and case studies
using the monitoring data collected in other radar stations.
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Data-driven fault detection and diagnosis (FDD) methods, referring to the newer generation of artificial intelligence (AI)
empowered classification methods, such as data science analysis, big data, Internet of things (IoT), industry 4.0, etc., become
increasingly important for facility management in the smart building design and smart city construction. While data-driven
FDD methods nowadays outperform the majority of traditional FDD approaches, such as the physically based models and
mathematically based models, in terms of both efficiency and accuracy, the interpretability of those methods does not grow
significantly. Instead, according to the literature survey, the interpretability of the data-driven FDD methods becomes the main
concern and creates barriers for those methods to be adopted in real-world industrial applications. In this study, we reviewed
the existing data-driven FDD approaches for building mechanical & electrical engineering (M&E) services faults and discussed
the interpretability of the modern data-driven FDD methods. Two data-driven FDD strategies integrating the expert reasoning
of the faults were proposed. Lists of expert rules, knowledge of maintainability, international/local standards were concluded
for various M&E services, including heating, ventilation air-conditioning (HVAC), plumbing, fire safety, electrical and elevator
systems based on surveys of 110 buildings in Singapore. The surveyed results significantly enhance the interpretability of data-
driven FDD methods for M&E services, potentially enhance the FDD performance in terms of accuracy and promote the data-
driven FDD approaches to real-world facility management practices.

1. Introduction

1.1. Motivation. Aligning with the fast development of artifi-
cial intelligence (AI) technology, data-driven fault detection
and diagnosis (FDD) plays an essential role in modern smart
building maintenance and management systems [1]. How-
ever, while the data-driven FDD models are often viewed
as black-box models, the interpretability of FDD models
hinders the methods to be widely applied to real-world
applications [2, 3]. Expert rules and standards are helpful
for data-driven FDD methods to be adapted to real-world
scenarios. The expert rules and standards not only increase
the interpretability level of the data-driven FDD methods
but also improve the FDD performance in terms of diagnosis
accuracy rates. According to our literature survey, the rele-

vant expert knowledge is considered as a research gap in
the field and is highly demanded to detect and diagnose pos-
sible faults in building equipment and services [4–6]. In this
study, we are interested to concretize the expert knowledge,
using maintainability rules and standards for FDD, both
regionally and globally, of different building mechanical &
electrical engineering (M&E) services, including HVAC sys-
tems, plumbing & sanitary, fire safety, electrical and eleva-
tors & escalators systems, and their critical components.

1.2. Background. Building fault detection and diagnosis
(FDD) methods automatically recognize potential and exist-
ing building facility faults based on existing standards,
expert knowledge and sensor information, which are impor-
tant techniques ensuring the safety, efficiency and quality
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services of building infrastructure and development [7, 8].
According to the different approaches replying to different
types of evident information, FDD methods are categorized
into data-driven FDD, physical model based FDD and math-
ematical model based FDD methods [9]. Data-driven FDD
builds computational models based on historical sensor data,
while different types of building faults are recognized as clas-
ses [10]. A physical model based FDD understands the
whole building system using physics-based models and usu-
ally requires a significant amount of prior knowledge for
faults identifications [11, 12]. A mathematical model based
FDD methods also requires prior physics knowledge to
define a rule space for an inferencing method searching for
the corresponding faults [13, 14].

Data-driven fault detection and diagnosis methods rep-
resent the next-generation facility management and mainte-
nance techniques adopting modern AI techniques, such as
sensor networks [15, 16], data analytics [17], big data [18,
19], machine learning (ML) [20, 21], cybernetic intelligence
(CI) [22, 23] and Internet of things (IoT) [24, 25] and etc.
For different building infrastructures, such as heating, venti-
lation air-conditioning (HVAC), plumbing, fire safety, elec-
trical and elevator systems. In the era of big data, smart
building and smart city, data-driven FDD usually serves as
one of the most important applications utilizing big data
and one of the hottest research topics in the fields of smart
city and industry 4.0 [26–28].

Compared with traditional physical model based and
mathematical model based methods, data-driven FDD
methods are usually more efficient, robust and accurate in
detecting and diagnosing various building faults, while the
machine learning (ML) techniques, such as the neural net-
works, are constructed for predictive analysis. The ML tech-
niques are generally much more efficient and effective than
traditional PM-FDD, MM-FDD and manual classification
methods. For example, for HVAC FDD, the existing works
showed FDD accuracy rates over 99% for typical chiller
faults and 93% for air handling unit (AHU) faults [29–32].
Traditional approaches, such as the sensitivity test, can only
achieve accuracy rates close to 83% for chiller faults and
around 80% for AHU faults [33–37]. The 10% to 15%
improvement on different FDD approaches saves the energy
wasted in buildings significantly, enhances the overall build-
ing performance and maintains a sustainable environment
for building infrastructure maintenance.

However, the interpretability of the data-driven FDD
method has always been the problem for data-driven FDD
methods and hinders the data-driven FDD techniques to
be widely adopted in real-world applications. While the pre-
diction accuracy and efficiency of the data-driven FDD
methods improved significantly in recent years, the internal
structures of the AI approaches become more complex,
resulting in more challenges for model interpretation
[38–41]. The data-driven FDD models were also tentatively
called black-box models in many existing publications
[42–44], which we believe is not accurate. Many data-
driven FDD models are indeed interpretable. For example,
Yan et al. [45] presented a decision tree model for FDD of
air handling units (AHUs). The decision tree structure is

interpretable with if-else rules. However, the if-else rules
were not easily recognizable for experts deriving standards
for AHU maintenance.

It is evident that the expert knowledge, experience, rules,
ISO standards and maintenance guidelines are valuable
information and can deeply influence the performance of
data-driven FDD methods. Zhao et al. [46] demonstrated
that the additional expert knowledge inputs can greatly
enhance a Bayesian belief network (BBN) data-driven FDD
model’s performance by increasing the FDD accuracy for
various chiller faults. Li et al. [47] improved [46] by inte-
grated expert knowledge into a diagnostic Bayesian network
(DBN) for AHU fault FDD. The reasonings of the AHU
FDD were plotted by local casual graphs. The main short-
coming of the works [46, 47] is that the expert knowledge
inputs were generally generated based on the authors’
hypotheses.

1.3. Approach. In this study, we reviewed the recent publica-
tions on data-driven FDD for building mechanical & electri-
cal engineering (M&E) services, including HVAC,
plumbing, fire safety, electrical and elevator systems. Differ-
ent M&E faults were surveyed over 110 buildings in Singa-
pore, including commercial, hotels, industrial, institutional,
clinical and residential buildings, for all three stages of infra-
structure management life-cycles, in all design, construction
and management stages. The expert knowledge of M&E
FDD is converted into maintainability rules and interna-
tional/local standards in Singapore. It is evident that the
conveyed maintainability rules greatly enhance the inter-
pretability of the data-driven FDD approach and potentially
improve the diagnosis accuracy.

We propose two data-driven FDD methods integrating
the maintainability rules for general facility management in
buildings, particularly focusing on FDD. The two specific
data-driven FDD methods integrating maintainability rules
are 1. data-driven expert rules for decision making in smart
building facility FDD; and 2. maintainability rules as inputs
for data-driven FDD systems. The actual implementations
of the two proposed approaches were omitted, while there
were existing implementations such as [46, 47]. The main
aim of this study is to specify the expert knowledge pool of
M&E FDD using maintainability rules shown in Section 4.
The specification greatly enhances the interpretability of
the existing M&E FDD methods.

1.4. Contributions. The current work involves the following
contributions to the state-of-art.

(i) Extending the existing data-driven FDD from
HVAC systems to the infrastructure of the whole
building. The majority of the existing work of
data-driven FDD integrating expert knowledge,
e.g., maintainability rules, focuses on HVAC FDD.
In this study, we extend the above-mentioned
data-driven FDD framework to the whole building
system. The targeted facilities include almost all
M&E services for smart building design
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(ii) Identifying expert rules and standards for various
M&E faults in buildings. A total of 110 buildings
in Singapore, including commercial, hotels, indus-
trial, institutional, clinical and residential buildings
were surveyed, over all three stages of infrastructure
management life-cycles, in all design, construction
and management stages, collecting necessary FDD
information based on experts’ knowledge and inter-
national/local standards in Singapore. In this way,
typical faults for the major M&E equipment are sur-
veyed with detailed experts’ rules and standards
stated in tables. This main contribution impacts
the literature for data-driven FDD approaches tar-
geting building M&E services significantly

(iii) Enhancing the interpretability of the existing data-
driven FDD methods for building infrastructure
faults. The interpretability of the data-driven FDD
methods has been a bottleneck problem for a long
time. The surveyed expert rules and standards bridge
the gap between theoretical FDD strategy and real-
world practices. The interpretability enhancement
greatly improves the practicality of the data-driven
methods in Industry 4.0 [48] and Construction 4.0
[49].

(iv) Potentially improving the diagnosis accuracy of
the existing data-driven FDD methods for building
infrastructure faults. According to the literature
study, such as the works of [46, 47], expert knowl-
edge, e.g., the maintainability rules enhance the
FDD performance significantly in terms of accu-
racy. The diagnosis accuracy improvements are jus-
tified by various publications [46, 47, 50–52].

2. Literature Review for Interpretability
Study of the Existing M&E Services
FDD Methods

Intelligent facilities management is one of the important topics
for smart city design, smart building maintenance system
development, Industry 4.0 and Construction 4.0. Techniques
based on AI and data-driven approaches attract increasing
attention from various perspectives. Besides the effectiveness
and robustness of the data-driven approaches for data-
driven FDD, the shortcomings and issues, such as the inter-
pretability of the data-driven model and the efficiency for
data-driven FDD algorithms, were raised in recent years.

Yan et al. [45] introduced a decision tree induction
(DTI) based FDD method for detecting and diagnosing
AHU faults. The proposed method is data-driven, and inter-
pretable with a post-pruned binary tree structure. The main
concern of [45] is that the derived rules do not explicitly
map to expert reasoning available in the HVAC system
design. Most of the DTI rules were still unreadable from
the perspective of HVAC engineers. Mulumba et al. [50]
worked on a Kalman filter-based FDD reasonings for AHU
faults. The method works for various AHU faults and is also
considered a data-driven approach. The shortcoming is again

that the Kalman filter rules do not map correspondingly to
HVAC experts. Srinivasan et al. [51] showed the importance
of explainable AI (XAI) for chiller fault detection systems to
gain human trust. Li et al. [52] developed an explainable
one-dimensional convolutional neural networks (CNN)-
based fault diagnosis method for building HVAC systems.

Besides the interpretability study of FDD for HVAC sys-
tems, there are existing data-driven FDD approaches pro-
posed for other M&E service systems. Kumar et al. [53]
developed a deep learning detecting defects in sewerage sys-
tems. The deep learning structure relies on the CNN for
object detection in images. The image processing technology
using CNN is more interpretable using expert knowledge
compared to other ML techniques. Gonzalez-Jimenez et al.
[54] surveyed the existing fault diagnostic methods to exam-
ine faults for electric drives and revisited the general work-
flow using ML techniques for electric drive FDD. The
main drawback of the data-driven FDD method as con-
cluded in [54] is the lack of interpretability and the lack of
explanations for specific phenomena in every particular elec-
tric drive. Gavan et al. [55] proposed to integrate expert rules
and data-driven FDD methods to develop a positive energy
building in France. The project has a nice workflow chart
utilizing expert rules for building data analysis and FDD
practices. However, it is an ongoing project and the perfor-
mance of the proposed workflow is yet to be verified.

All the above-surveyed existing works showed that there
are already quite many efforts on integrating expert rules
and reasonings into the existing data-driven FDD methods
to enhance the interpretability of the methods as well as
improve the FDD performance on the classification accuracy
for building maintenance problems. However, there still
exist gaps between expert rules and data-driven methods,
such as neural networks. The gap is mainly from the reason-
ing of AI and the ordinary reasoning of human beings. The
most appropriate matching and fitting using the expert rules
with the modern data-driven FDD methods remain
unknown and desired further explorations, such as the cur-
rent study. The current study expands the scope of the
FDD methods and greatly enhances the applicable area of
data-driven FDD methods in building services.

3. Integrating the Maintainability Rules into
Data-Driven FDD for M&E Services

Two types of data-driven FDD strategies are available in
general for the concept of next-generation AI-technology
integrated smart buildings for facility management and
maintenance. The first strategy is named post-caution main-
tenance. This strategy is widely adopted for modern build-
ings when expert knowledge of precautions is lacking.
Without sufficient rules and guidance in the stages of design
and construction, the only option left is monitoring the facil-
ities regularly using physical, mathematical or AI-driven
models and detecting potential errors with frequent data
analysis. The expert knowledge and rules are added as an
additional layer of the ML model for performance enhance-
ment. Existing examples of post-caution maintenance
include [46, 47].
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Table 1: Normative References/Standards referred to for Mechanical and Electrical Systems.

Normative references/standards referred to for mechanical and electrical systems

AHRI 260 Sound rating of ducted air moving and conditioning equipment

ANSI/ASHRAE 188-2018 Legionellosis: Risk management for building water systems

ANSI/ASHRAE/ACCA standard 180-2018
Standard practice for inspection and maintenance of commercial building HVAC

systems

ANSI/ASHRAE/IES standard 90.1-2016 Energy standard for buildings except low- rise residential buildings

ANSI/ASHRAE/IES/USGBC standard 189.1-
2014

Standard for the Design of High- Performance Green Buildings

AS 1668.2-2012
The use of ventilation and airconditioning in buildings — Mechanical ventilation in

buildings

AS 1735.1 : 2016 Lifts, escalators and moving walks. General requirements

AS 2293 SET:2005 Emergency escape lighting and exit signs set

AS HB 197 : 1999 An introductory guide to the slip resistance of pedestrian surface materials

AS/NZS 2293.2 : 2019 Emergency escape lighting and exit signs for buildings inspection and maintenance

AS/NZS 4663 : 2004 Slip resistance measurement of existing pedestrian surfaces

ASHRAE guideline 12-2020 Managing the risk of Legionellosis associated with building water systems

ASME A17.1/CSA B44:2019 Safety code for elevators and escalators

ASME A17.3 : 2020 Safety code for existing elevators and escalators

ASME A17.6 : 2017 Standard for elevator suspension, compensation, and governor systems

BS 1363-4 : 2016
13 A plugs, socket-outlets, adaptors and connection units. Specification for 13 A fused

connection units switched and unswitched

BS 5266-1 : 2016 Emergency lighting. Code of practice for the emergency lighting of premises

BS 5306-3 : 2017
Fire extinguishing installations and equipment on premises. Commissioning and

maintenance of portable fire extinguishers. Code of practice

BS 5306-8 : 2012
Fire extinguishing installations and equipment on premises. Selection and positioning of

portable fire extinguishers. Code of practice

BS 5306-9 : 2015
Fire extinguishing installations and equipment on premises. Recharging of portable fire

extinguishers. Code of practice

BS 5655-11 : 2005
Lifts and service lifts. Code of practice for the undertaking of modifications to existing

electric lifts

BS 5655-6 : 2011
Lifts and service lifts. Code of practice for the selection, installation and location of new

lifts

BS 5839-1 : 2017
Fire detection and fire alarm systems for buildings. Code of practice for design, in-
stallation, commissioning and maintenance of systems in non-domestic premises

BS 5839-3 : 1988
Fire detection and alarm systems for buildings. Specification for automatic release

mechanisms for certain fire protection equipment

BS 5839-6 : 2019
Fire detection and fire alarm systems for buildings. Code of practice for the design,

installation, commissioning and maintenance of fire detection and fire alarm systems in
domestic premises

BS 5839-9 : 2011
Fire detection and fire alarm systems for buildings. Code of practice for the design,
installation, commissioning and maintenance of emergency voice communication

systems

BS 5908-1 : 2012
Fire and explosion precautions at premises handling flammable gases, liquids and dusts.
Code of practice for precautions against fire and explosion in chemical plants, chemical

storage and similar premises

BS 6391 : 2009
Specification for non-percolating lay flat delivery hoses and hose assemblies for fire-

fighting purposes

BS 6423 : 2014 Code of practice for maintenance of low-voltage switchgear and control gear

BS 6626 : 2010
Maintenance of electrical switchgear and control gear for voltages above 1 kV and up to

and including 36 kV. Code of practice

BS 7255 : 2012 Code of practice for safe working on lifts

BS 7291-1 : 2010
Thermoplastics pipe and fitting systems for hot and cold water for domestic purpos-es

and heating installations in buildings. General requirements

BS 7430 : 2011 +A1 : 2015 Code of practice for protective earthing of electrical installations
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Table 1: Continued.

Normative references/standards referred to for mechanical and electrical systems

BS 7671 : 2018 Requirements for electrical installations. IET wiring regulations

BS 7698-7 : 1996, ISO 8528-7 : 1994
Reciprocating internal combustion engine driven alternating current generating sets.

Technical declarations for specification and design

BS 8486-1 : 2007 +A1 : 2011
Examination and test of new lifts before putting into service. Specification for means of

determining compliance with BS EN 81. Electric lifts

BS 8512 : 2008
Electric cables. Code of practice for the storage, handling, installation and disposal of

cables on wooden drums

BS 8554 : 2015
Code of practice for the sampling and monitoring of hot and cold water services in

buildings

BS 8558 : 2015
Guide to the design, installation, testing and maintenance of services supplying water
for domestic use within buildings and their curtilages. Complementary guidance to BS

EN 806

BS 8899 : 2016
Improvement of fire-fighting and evacuation provisions in existing lifts. Code of

practice

BS 9990 : 2015 Non automatic fire-fighting systems in buildings. Code of practice

BS EN 1004 : 2020
Mobile access and working towers made of prefabricated elements. Materials, di-

mensions, design loads, safety and performance requirements

BS EN 10088-2 : 2014
Stainless steels. Technical delivery conditions for sheet/plate and strip of corro-Sion

resisting steels for general purposes

BS EN 1057 : 2006 +A1 : 2010
Copper and copper alloys. Seamless, round copper tubes for water and gas in sanitary

and heating applications

BS EN 115-1 : 2008 +A1:2017 Safety of escalators and moving walks. Construction and installation

BS EN 13015 : 2001 +A1:2008 Maintenance for lifts and escalators. Rules for maintenance instructions

BS EN 13121-3 : 2016 GRP tanks and vessels for use above ground. Design and workmanship

BS EN 1402 : 2009 Rubber and plastics hoses and hose assemblies. Hydrostatic testing

BS EN 1567 : 1999
Building valves. Water pressure reducing valves and combination water reducing valves.

Requirements and tests.

BS EN 16767 : 2016 Industrial valves. Steel and cast iron check valves

BS EN 1796 : 2013
Plastics piping systems for water supply with or without pressure. Glass-reinforced

thermosetting plastics (GRP) based on unsaturated polyester resin (UP)

BS EN 1838 : 2013 Lighting applications. Emergency lighting

BS EN 1947 : 2014
Fire-fighting hoses. Semi-rigid delivery hoses and hose assemblies for pumps and

vehicles

BS EN 1982 : 2017 Copper and copper alloys. Ingots and castings

BS EN 1992-1-1 : 2004 +A1 : 2014 Eurocode 2: Design of concrete structures. General rules and rules for buildings

BS EN 3 series Portable fire extinguishers

BS EN 50172 : 2004, BS 5266-8 : 2004 Emergency escape lighting systems

BS EN 545 : 2010
Ductile iron pipes, fittings, accessories and their joints for water pipe- lines. Require-

ments and test methods

BS EN 598 : 2007 +A1 : 2009
Ductile iron pipes, fittings, accessories and their joints for sewerage applications.

Requirements and test methods

BS EN 61009-2-1 : 1995
Specification for residual current operated circuit-breakers with integral overcur-rent
protection for household and similar uses (RCBOs). Applicability of the general rules to

RCBOs functionally independent of line voltage

BS EN 62305-1 : 2011 Protection against lightning. General principles

BS EN 694 : 2014 Fire-fighting hoses. Semi-rigid hoses for fixed systems

BS EN 805 : 2000 Water supply. Requirements for systems and components outside buildings

BS EN 806-5 : 2012
Specifications for installations inside buildings conveying water for human con-

sumption. Operation and maintenance

BS EN 81-20 : 2020
Safety rules for the construction and installation of lifts. Lifts for the transport of

persons and goods. Passenger and goods passenger lifts

BS EN 81-50 : 2020
Safety rules for the construction and installation of lifts. Examinations and tests. Design

rules, calculations, examinations and tests of lift components
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Table 1: Continued.

Normative references/standards referred to for mechanical and electrical systems

BS EN ISO 16841 : 2014 Steel wire ropes. Pulling eyes for rope installation. Types and minimum re-quirements

BS EN ISO 21003-2 : 2008 +A1 : 2011 Multilayer piping systems for hot and cold water installations in-side buildings. Pipes

BS EN ISO 21003-3 : 2008 Multilayer piping systems for hot and cold water installations inside build-ings. Fittings

BS EN ISO 21003-5 : 2008
Multilayer piping systems for hot and cold water installations inside build-ings. Fitness

for purpose of the system

BS ISO 10916 : 2014
Calculation of the impact of daylight utilization on the net and final energy de-mand for

lighting

BS ISO 18738 : 2012 Measurement of lift ride quality. Lift (elevators)

BS ISO 18738-2 : 2012 Measurement of ride quality — Part 2: Escalators and moving walks

CSA Z412-2000 (R2016) Guideline on office ergonomics

IEC 60079: 2021 Explosive atmosphere standards

IEC 61009-1 : 2010 +AMD1 : 2012 +AMD2:2013
CSV (Consolidated version)

Residual current operated circuit-breakers with integral overcurrent protection for
household and similar uses (RCBOs) — Part 1: General rules

IEC 62305-3 : 2010 Protection against lightning — Part 3: Physical damage to structures and life hazard

IEC 62305-4 : 2010
Protection against lightning — Part 4: Electrical and electronic systems within struc-

tures

ISO 10816-3 : 2009
Mechanical vibration — Evaluation of machine vibration by measurements on non-
rotating parts — Part 3: Industrial machines with nominal power above 15 kW and

nominal speeds be-tween 120 r/min and 15 000 r/min when measured in situ

ISO 12242 : 2012
Measurement of fluid flow in closed conduits — Ultrasonic transit- time meters for

liquid

IISO 13612-1 : 2014
Heating and cooling systems in buildings — Method for calculation of the system
performance and system design for heat pump systems — Part 1: Design and

dimensioning

ISO 1452-1 : 2009
Plastics piping systems for water supply and for buried and aboveground drainage and
sewerage under pressure – Unplaticized poly(vinyl chloride)(PVC-U) – Part 1: General

ISO 14798 : 2009
Lifts (elevators), escalators and moving walks — Risk assessment and reduction

methodology

ISO 16814 : 2008
Building environment design— Indoor air quality—Methods of expressing the quality

of indoor air for human occupancy

ISO 2017-1 : 2005
Mechanical vibration and shock — Resilient mounting systems — Part 1: Technical

information to be exchanged for the application of isolation systems

ISO 2230 : 2002 Rubber products — Guidelines for storage

IISO 2408 : 2017 Steel wire ropes for general purposes — Minimum requirements

ISO 25745-1 : 2012
Energy performance of lifts, escalators and moving walks — Part 1: Energy

measurement and verification

ISO 25745-2 : 2015
Energy performance of lifts, escalators and moving walks — Part 2: Energy calcula-tion

and classification for lifts (elevators)

ISO 25745-3 : 2015
Energy performance of lifts, escalators and moving walks — Part 3: Energy calculation

and classification of escalators and moving walks

ISO 29463-1 : 2011
High-efficiency filters and filter media for removing particles in air — Part 1: Classi-

fication, performance testing and marking

ISO 29463-5 : 2011
High-efficiency filters and filter media for removing particles in air — Part 5: Test

method for filter elements

ISO 3864-1 : 2011
Graphical symbols — Safety colours and safety signs — Part 1: Design principles for

safety signs and safety markings

ISO 4344 : 2004 Steel wire ropes for lifts — Minimum requirements

ISO 5149-1 : 2014/Amd 1 : 2015
Refrigerating systems and heat pumps - safety and environmental requirements - part 1:
Definitions, classification and selection criteria AMENDMENT 1: Correction of QLAV,

QLMV

ISO 6182 series Fire protection - automatic sprinkler systems

ISO 7240 series
ISO 7465 : 2007

Fire detection and alarm systems
Passenger lifts and service lifts — Guide rails for lift cars and counter- weights - T-type
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Table 1: Continued.

Normative references/standards referred to for mechanical and electrical systems

ISO 8995-1 : 2002/Cor 1 : 2005 Lighting of work places — Part 1: Indoor

ISO9996:1996
Mechanical vibration and shock — Disturbance to human activity and performance

-classification

IISO/CD 8100-30 : 2019
Lifts for the transport of persons and goods - part 30: Class I, II, III and VI lifts in-

stallation

ISO/DIS 22559-1 : 2014
Safety requirements for lifts (elevators) - part 1: Global essential safety requirements

(GESRs)

ISO/DTS 8100-21 : 2018
Lifts for the transport of persons and goods - part 21: Global safety parameters (GSPs)

meeting the global essential safety requirements (GESRs)

ISO/FDIS 13253 : 2017 Ducted air-conditioners and air-to-air heat pumps - testing and rating for performance

ISO/NP TR 16765 : 2003 Comparison of worldwide safety standards on lifts for firefighters

ISO/PRF 7165 : 2017 Firefighting - portable fire extinguishers - performance and construction

ISO/TR 11071-2 : 2006 Comparison of worldwide lift safety standards -part 2: Hydraulic lifts (elevators)

ISO/TR 25743 : 2010 Lifts (elevators) - study of the use of lifts for evacuation during an emergency

JIS A 4302 : 2006 Inspection standard of elevator, escalator and dumbwaiter

JIS A 4422 : 2020 Toilet seat with shower unit

NFPA 10 : 2013 Standard for portable fire extinguishers

NFPA 101 – 2018 Life safety code

NFPA 110 - 2019 Standard for emergency and standby power systems

NFPA 13 - 2019 Standard for the installation of sprinkler systems

NFPA 14 – 2016 Standard for the installation of standpipe and hose systems

NFPA 25 – 2017
Standard for the inspection, testing, and maintenance of water-based fire protection

systems

NFPA 72 – 2019 National Fire Alarm and signaling code

NFPA 780 – 2020 Standard for the installation of lightning protection systems

NFPA 80 – 2019 Standard for fire doors and other opening protectives

SS 141 : 2013 Specification for unplasticised PVC pipe for cold water services and industrial uses

SS 245 : 2014 Specification for glass reinforced polyester sectional water tanks

SS 332 : 2018 Specification for fire doors

SS 375-1 : 2015
Suitability of non-metallic products for use in contact with water intended for human
consumption with regard to their effect on the quality of the water - part 1: Specification

SS 403 : 2013 Specification for 13A fused connection units switched and unswitched

SS 480 : 2016
Residual current operated circuit-breakers with integral overcurrent protec- tion for

house-hold and similar uses (RCBOs) - general rules

SS 485 : 2011 Specification for slip resistance classification of pedestrian surface materials

SS 508-3 : 2013
Graphical symbols — Safety colours and safety signs — Design princi- ples for graph-

ical symbols for use in safety signs

SS 514 : 2016 Code of practice for office ergonomics

SS 530 : 2014 Code of practice for energy efficiency standard for building services and equipment

SS 531-1 : 2006 (2019) Code of practice for lighting of work places — Indoor

SS 532 : 2016 Code of practice for the storage of flammable liquids

SS 535 : 2018
Code of practice for installation, operation, maintenance, performance and construction

requirements of mains failure standby generating systems

SS 538 : 2008 Code of practice for maintenance of electrical equipment of electrical installations

SS 546 : 2009 Code of practice for emergency voice communication systems in buildings

SS 550 : 2020
Code of practice for installation, operation and maintenance of electric passenger and

goods lifts

SS 551 : 2009 Code of practice for earthing

SS 553 : 2016 Code of practice for air-conditioning and mechanical ventilation in buildings

SS 554 : 2016 Code of practice for indoor air quality for air-conditioned buildings

SS 555-1 : 2018 Code of practice for protection against lightning — Part 1: General principles
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Table 1: Continued.

Normative references/standards referred to for mechanical and electrical systems

SS 555-3 : 2018
Code of practice for protection against lightning — Part 3: Physical damage to struc-

tures and life hazard

SS 555-4 : 2018
Code of practice for protection against lightning — Part 4: Electrical and electronic

systems within structures

SS 563-1 : 2010 (2017)
Code of practice for the design, installation and maintenance of emergency lighting and

power supply systems in buildings — Part 1: Emergency lighting

SS 563-2 : 2010 (2017)
Code of practice for the design, installation and maintenance of emer- gency lighting

and power supply systems in buildings — Part 2: Installation requirements and
maintenance procedures

SS 564-1 : 2020 Green data centres - part 1: Energy and environmental management systems

SS 564-2 : 2020
Singapore standard for green data centres — Part 2: Guidance for energy and envi-

ronmental management systems

SS 575 : 2012 Code of practice for fire hydrant, rising mains and hose reel systems

SS 578 : 2019 Code of practice for use and maintenance of portable fire extinguishers

SS 591 : 2013
Code of practice for long term measurement of central chilled water system energy

efficiency

SS 626 : 2017
Code of practice for design, installation and maintenance of escalators and moving

walks

SS CP 10 : 2005 Code of practice for the installation and servicing of electrical fire alarm systems

SS CP 48 : 2005 Code of practice for water services

SS CP 5 : 1998 Code of practice for electrical installations

SS CP 52 : 2004 Code of practice for automatic fire sprinkler system

SS CP 82 : 1999 Code of practice for waterproofing of reinforced concrete buildings

SS CP 99 : 2003 Code of practice for industrial noise control

SS EN 3–7 : 2012 (2020))
Portable fire extinguishers — Characteristics, performance requirements and test

methods

SS IEC 60598-1 : 2016 Luminaires — Part 1: General requirements and tests

SS ISO 22301 : 2020 Security and resilience - business continuity management systems — Requirements

SS ISO 22313 : 2020
Security and Resilience - Business continuity management systems — Guidance on the

use of ISO 22301

V DI 4707 : 2007 Lifts energy efficiency

Sensor data 1 Sensor data 2

Maintainability rule 1 Maintainability rule 3

Maintainability rule 2 Maintainability rule 4

Knowledge pool

Sensor data n

Decision nDecision 3Decision 2Decision 1

Figure 1: Knowledge-based system for precaution maintenance that constructs the knowledge pool using maintainability rules.
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The second type of the data-driven FDD strategy is to
involve the expert knowledge in the FDD monitoring of
the entire life-cycle of all facilities, or precaution mainte-
nance. With the experts in the fields of, e.g., project manage-
ment, construction, interior design and quantity survey,
relevant regional and global standards, such as SS, BS, ISO,
EN, AS and ASTM (Table 1) can be adopted in the precau-
tion of potential risks in the early stage of the FDD. How-
ever, there are generally gaps between those standards and
the real-world maintenance strategy, i.e., lacking clear guid-
ance of different maintenance rules for different elements of
the M&E system. The main contribution of this study is pro-
viding systematic and comprehensive maintainability rules
for all kinds of M&E elements.

In this section, we demonstrate two data-driven FDD
strategies with the maintainability rules for precaution
and post-caution maintenance, which apply the maintain-

ability rules as the inputs and the knowledge pool,
respectively. These two strategies serve as examples of the
usage of the maintainability rules listed in the Tables in
Section 4.

3.1. Knowledge-Based Rule System Integrated Data-Driven
FDD for M&E Faults. A knowledge-based system is a funda-
mental AI system that makes decisions purely based on
rules. A traditional knowledge-based system comprises a
large set of if-else rules that builds a decision tree and pro-
cesses FDD queries efficiently. A semantic of a typical
knowledge-based FDD system is shown in Figure 1. The col-
lected sensor data is evaluated by maintainability rules. The
evaluation results lead to the various maintenance decisions
following a tree-alike structure.

For example, following the escalator maintainability
rules stated in Table 2: ‘The landing area of escalators and

Table 2: Elevators & Escalators - Escalator.

Problem Design Construction Maintenance

Escalator and passenger conveyor
related maintainability issues

Accumulation of debris within the
escalator interior

Footwear getting stuck between
steps

Good practice: Escalator cordoned
off during maintenance operations
to prevent unauthorised access

Ensure that the landing area of
escalators and passenger

conveyors have a surface that
provides a secure foothold for a
minimum distance of 0.85m

(measured from the root of the
comb teeth) in accordance with

AS 1735.1 or equivalent.
Ensure that the escalator and its
surroundings have sufficient and

adequate illumination. The
supporting structure for
escalators and passenger

conveyors should be designed in
accordance with BS EN 115-1,

SS 626 or equivalent.
Comply with the safety code for
elevator design and construction

in accordance with ASME
A17.1/CSA B44, ISO 8100-20,

BS 8899 or equivalent.
Incorporate anti-climbing, anti-
sliding, access restriction and
deflecting devices to maintain
safe operation in accordance
with SS 626 or equivalent.

Installation of escalators should
be guided by the relevant

standards and codes for safety
and reliability in accordance
with BS EN 115-1, SS 626 or

equivalent.
All machinery should be

mounted securely and be defect
free (e.g., should not have any

oil leakage).
To ensure safe operation

without issues due to corrosion
and wear and tear, all escalator

components should be of
durable and reliable make.
All signs, inscriptions and
notices should be made of

durable materials in accordance
with BS EN 115-1, SS 626 or

equivalent.

Ensure proper housekeeping of
escalator to keep it clean and
free of debris. Building owner/

operator need to conduct
monthly maintenance of
escalators (including

maintenance of safety switches,
sensors, emergency stops, and
handrails) in accordance with SS
626, BS EN 115-1 or equivalent.

The annual inspection and
testing should be performed by
an independent authorised

examiner (AE).
Bar access to the escalator or
passenger conveyor with

suitable devices and notices/
signage displaying “no access/no
entry” during maintenance,

repair works, or inspections, in
accordance with BS EN 115-1,

SS 626 or equivalent.
Adopt the inspection criteria for

safety of escalators in
accordance with JIS A 4302.
Refer to procedure for ride
quality measurements of

escalators and moving walks in
accordance with BS ISO
18738-2 or equivalent.
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passenger conveyors should have a surface that provides a
secure foothold for a minimum distance of 0.85 m (mea-
sured from the root of the comb teeth)’, the measurement
data collected from the sensor can be easily evaluated as ‘sat-
isfactory’ or ‘unsatisfactory’. Different evaluation results will
arrive to different decisions for automated maintenance.

A knowledge-based FDD system integrating traditional
data-driven FDD framework treats the knowledge pool

(Figure 1) as an expert system [9, 56]., where if-else rules
are derived from maintainability rules. Following the exist-
ing rule-based system structures proposed in the related
fields, such as [45, 57, 58], decisions for labeling various
faults can be reached. The accuracy and performance of such
FDD systems depend on the precision and reasonings of the
rules. Compared with the existing rule-based systems, the
maintainability rules proposed in this study are more precise

Historical data
(normal)

(x, 0) (xʹ, y) (x⁎)

Historical data
(faulty)

Future sensor
data

Binary ML model

Testing

Faulty

F1 F2 F3 F7

Normal

Training

Training Multi-class ML
model

Figure 2: A typical FDD framework uses machine learning (ML) models to classify sensor data.

Te
sti

ng

Tr
ai

ni
ng Faulty

F1 F2 F3 Fn

Normal

Future sensor data for testing

Maintainability rules

Binary ML models

Binary ML models
(for detection)

Multi-class ML models

Multi-class ML models
(for diagnosis)

N FMaintainability rules

Training pool

N F

Figure 3: The improved FDD framework with maintainability for facility management.

Layer 1: additional
maintainability layer Factor 1 Factor 2

Fault 1

Symptom 1 Symptom 2 Symptom 3 Symptom n

Fault 2

Factor n

Output
probabilities of
fault 1, fault 2

… factor n

Fault nLayer 1: fault layer

Layer 1: fault
symptom layer

Figure 4: The three-layer Bayesian Belief Network integrating maintainability rules as an additional layer.
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and reasonable, consequently providing better results in
terms of diagnostic accuracy.

3.2. Maintainability Rules as Inputs for Data-Driven FDD
Systems. Data-driven FDD applied machine learning tech-
niques to sensor data and performs automated classification
with a pre-defined training process on the collected data. A
typical data-driven FDD process is shown in Figure 2, where
historical data containing both normal operational and
faulty conditional data is received by the machine learning
(ML) models. Two particular ML models are trained. The
binary ML model handles the fault detection for facilities
management, which classifies the future sensor data into
normal or faulty classes. The multi-class ML model handles
the fault diagnosis part, which classifies the faulty sensor
data into different types of faults.

Traditional FDD methods, as shown in Figure 2, assume
completely no background knowledge of the maintainability
of the facilities. The maintainability rules that we proposed
in this study provide a great opportunity to improve the
existing FDD approaches. The simplest way of extending
the current FDD framework with the maintainability rules
is to treat them as inputs for the ML models. We formalize
the proposed extension of the existing FDD framework in
Figure 3.

In Figure 3, the traditional FDD framework has been
improved by adding maintainability rules as inputs for both
training and testing phases. Since ML models, in general,
do not require background knowledge for classifications,
the maintainability rules are served as additional inputs for
both training and testing of the ML models. The maintain-
ability rules have the potentials of enhancing the interpreta-
tion capability of the ML models as well as the prediction
performance.

A concrete example of the proposed framework shown
in Figure 3 is the three-layer Bayesian Belief Network
(BBN) adapting the maintainability rules as an additional
layer for FDD. The three-layer BBN is a three-layer neural
network, calculating the probabilities of label assignment
based on evidence and conditional probability. The details
of the BBN construction can be found in [46, 47]. The inter-
nal structure of the BBN is illustrated in Figure 4, where
expert knowledge is interpreted using maintainability rules
as introduced in the Introduction Section (Section 1) and
Section 4. For prediction probabilities calculated by neural
networks, the maintainability rules provide evidence that
influence the probability calculation. Therefore, the FDD
accuracy will be improved significantly.

4. Maintainability Rules Study for Facility
Management in M&E Services

In this section, we summarize the maintainability rules fol-
lowing the expert knowledge of typical components in
M&E services, namely, HVAC system, plumbing and sani-
tary system, fire safety, electrical system and elevator & esca-
lator system collected through survey and interview results
over 110 buildings in Singapore, including commercial,
hotels, industrial, institutional, clinical and residential build-

ings. The maintainability rules summarize the preventive
checklist based on expert knowledge as well as standards
regionally or globally in all design, construction and opera-
tional stages of buildings. The maintainability rules are use-
ful serving as the knowledge pool for the post-caution FDD
approach or as the additional maintainability layer for a pre-
caution FDD approach, as explained in Section 3.

The maintainability rules for the chiller plant, the cooling
tower, the air handling unit (AHU) and the air distribution,
terminal system of the HVAC system are summarized in
Tables 3–6, respectively. The maintainability guidance for
general pumping issues, the water supply system and the
water tank of the plumbing and sanitary system ae summa-
rized in Tables 7–9, respectively. The maintainability issues
for the fire detection, the fire hydrant system, the sprinkler
system and the fire extinguishers of the fire safety
(Table 10) are listed in Tables 11–13, respectively. The
maintainability rules for the switchgear, the standby gen-
erator, the artificial lighting, the lightning protection sys-
tem (LPS) and earthing are summarized in Tables 14–
17, respectively. The general rules for the elevators and
escalators, common faults for the elevators and escalators,
the elevator safety, energy efficiency for the elevators and
escalators and the maintenance for escalators, in general,
are summarized in Tables 18–21, respectively.

The details of the regional (Singapore-based) and global
standards, such as SS, BS, ISO, EN, AS and ASTM, are listed
in Table 1.

5. Conclusions, Limitation & Future Works

Maintainability rules for M&E systems based on the survey
and interview results of 110 buildings including commercial,
hotels, industrial, institutional, healthcare and residential
buildings are summarized. The maintainability rules are
useful to be integrated into the existing data-driven FDD
approaches for 1) an extension of the existing FDD algo-
rithm to all M&E facilities in buildings, 2) enhancing the
interpretability of the existing AI models and 3) improving
the performances of the AI models. In Section 3, we demon-
strate two data-driven FDD strategies integrating the main-
tainability rules, including 1) data-driven expert rules for
decision making in smart building facility FDD; and 2)
maintainability rules as inputs for data-driven FDD systems.

Based on the literature study, the surveyed maintainabil-
ity rules will greatly enhance the interpretability of the exist-
ing data-driven FDD methods for M&E services and
consequently promote the FDD methods to other building
facilities and to other industrial areas, such as the Industry
4.0 evolution solutions. Furthermore, existing works show
that the expert knowledge potentially improves the data-
driven FDD results by adding the rules to the machine learn-
ing models, such as the decision trees.

The limitation of this study includes not showing the
actual implementation of the maintainability rules inte-
grated FDD framework, which we believe is a repetitive work
to the existing publications. The main contribution of this
study is first, to further extend the existing studies and con-
cretize the maintainability rules that are used in existing
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interpretable data-driven FDD methods based on expert
knowledge and existing standards. The second main contri-
bution is to extend the existing FDD methods to a broader
scope of facility management.

Future study of this work includes the experiments on
the accuracy and efficiency improvement on existing BMS
system adding the maintainability rules for additional sup-
ports as well as a wider the scope of applications for main-
tainability rules in smart city design.
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SPARX is a family of ARX-based block ciphers designed according to the long-trail strategy, which has 32-bit ARX-based SBoxes
and has provable bounds against single-differential and single-linear cryptanalysis. Since its proposation, some third-party
cryptanalysis methods have been presented. As far as we know, the best attacks against SPARX-64 covered 16 (out of 24)
rounds. In this paper, we propose zero-correlation linear attacks on SPARX-64. At first, we construct some new zero-
correlation linear distinguishers covering 14-round and 15-round SPARX-64. Then, 15,16,17 and 18-round versions can be
attacked using multidimensional or multiple zero-correlation linear attack models, under DKP(distinct known plaintexts)
settings. These are the best attacks against SPARX-64 up to now, regarding to the number of attacked rounds. Finally, we
transform the zero-correlation distinguishers into integral ones using existing methods, which are also longer than the ones
proposed by the designers.

1. Introduction

SPARX [1], introduced by Dinu et al. at ASIACRYPT’16, is
the first ARX based family of block ciphers with the aim of
providing provable security against single-trail differential
and linear cryptanalysis. To achieve this target, the designers
developed the long trail strategy which is different from the
well-studied wide trail strategy [2] used in the design of
AES. The long trail strategy advocates the use of large and
comparatively expensive SBoxes in conjunction with
cheaper and weaker linear layers. All the instances of
SPARX, (SPARX-64/128, SPARX-128/128 and SPARX-
128/128) use three or four rounds of SPECK [3] with sub-
keys as the big SBox, which can be specified using three sim-
ple operations: addition modulo 216 (⊞), 16-bit rotations
(≪<2 and ≫>7) and 16-bit Xor ( ⊕ ).

There have been some cryptanalysis results on the family
of SPARX. The designers gave the provable bounds on the
probability of differential characteristic and the bias of linear
trail. There is no differential or linear trail with significant
probability for 5 (or more) steps. Also, they made integral

attacks with the help of Todo’s division property [4]. For
SPARX-64/128, the attack covers 15 rounds and recovers
the key in time 2101 using 237 chosen plaintexts. Morever,
the integral attacks cover 22-round SPARX-128/128 and
24-round SPARX-128/256. Then Abdelkhalek et al. [5]
attacked 16-round SPARX64-128 using impossible differen-
tial attack, with the help of one 13-round distinguisher and
the dependencies between the subkeys. Later, Tolba et al.
[6] proposed multidimensional zero-correlation linear
attacks on up to 25 rounds of SPARX-128/256 and 22
rounds of SPARX-128/128. Recently, Ankele and List [7]
presented chosen-ciphertext differential attacks on 16-
round SPARX-64/128. Previous attack results on SPARX-
64/128 are compared in Table 1.

There is no zero-correlation cryptanalysis results on
SPARX-64/128 from the literatures and we focus on this
method in this paper. Zero-correlation [8] is one powerful
tool in the cryptanalysis of block ciphers. Similar to that
the impossible differential distinguisher uses a differential
with probability zero, the zero-correlation distinguisher uses
a linear hull with correlation zero. Then this technique
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develops a lot and some new models have been proposed,
such as the multiple zero-correlation linear cryptanalysis
[9], the multidimensional zero-correlation linear cryptanaly-
sis [10] and some improved versions [11, 12]. In particular,
Sun et al. [12] removed the approximation from the χ2

-distribution to the normal distribution during the construc-
tion of multiple and multidimensional zero-correlation lin-
ear attack (MPZC and MDZC) models, which released the
restriction on the number ‘ℓ’ of zero-correlation linear hulls,
i.e., ‘ℓ’ sholud be large enough. The new models were called
χ2-MPZC and χ2-MDZC.

To improve the time complexity of linear attacks using
algorithm 2, FFT technique was proposed in [13]. When
the target bit for the linear distinguisher is a function of x
⊕ k where x, k are both n-bit values, the time can be
improved from 22·n to 3 · n · 2n simple calculations.

Our Contributions.We evaluate the security of SPARX-
64/128 using the zero-correlation cryptanalysis in this paper:

(1) We find some new zero-correlation distinguishers.
By extending the existing simple zero-correlation
distinguisher proposed in [6], we construct several
multidimensional zero-correlation distinguishers
covering 14-round SPARX-64. Morever, with careful
selection of the input mask, we can extend some dis-
tinguishers by one more round and get three 15-
round zero-correlation distinguishers. These are the
longest zero-correlation linear distinguishers of
SPARX-64 as we know

(2) Using the new zero-correlation distinguishers, we
make zero-correlation linear attacks with the help
of multiple/multidimensional zero-correlation linear
cryptanalysis model in [12]. The multidimensional
zero-correlation attack covers 15-round and 16-
round using 14-round distinguishers. Then the
zero-correlation attack with one single 15-round lin-
ear hull covers 17-round. What’s more, with the help
of FFT technique, we also can attack 18-round

SPARX-64. These are the best attacks from the view
of number of rounds attacked

(3) Also, we transform the zero-correlation linear distin-
guishers into integral distinguishers. As a result, we
can get some 14-round and 15-round integral distin-
guishers with balanced properties. The balanced
property means that the numbers of each value in
the output sets are equal for the integral distin-
guisher, while the zero-sum property means the
Xor-sum is zero

Outline. First, we describe the target block cipher
SPARX-64/128 and the zero-correlation linear attack models
in Sect.2. In Sect.3, we show how to construct the 14-round
and 15-round zero-correlation linear distinguishers for
SPARX-64. Then we give the multidimensional zero-
correlation and multiple zero-correlation linear cryptanaly-
sis against SPARX in Sect.4 and 5. Sect.6 describes some
new integral distinguishers and finally, Sect.7 concludes this
paper.

2. Preliminaries

2.1. Notations. The following symbols and notations are
used throughout this paper:

(i) ⊞: addition modulo 216

(ii) ⊕ : bit-wise Xor

(iii) ≪<: 16-bit rotation to the left

(iv) ≫>: 16-bit rotation to the right

(v) ‖: concatenation of two bit strings

(vi) xL: left half (16-bit) of the word x (32-bit).

(vii) xR: right half (16-bit) of the word x (32-bit).

(viii) SPECKEY-3R: three rounds of SPECKEY

Table 1: Attacks on SPARX-64/128.

#rounds Attack types Data Time Ref.

15 Integral 237CP 2101:0 [1]

15 Impossible differential 251:0CP 294:1 [5]

16 Impossible differential 261:5KP 294:0 [5]

16 Truncated differential 232CC 293 [7]

16 Rectangle 259:6CC 2122 [7]

16 Yoyo 264CP 2126 [7]

15 Multidimensional zero-correlation 258:6DKP 2106 Sect. 4.1

16 Multidimensional zero-correlation 262:5DKP 2101 Sect. 4.2

17 Zero-correlation 263:6DKP 2127 Sect. 5.1

18 Zero-correlation 263:6DKP 2127:2 Sect. 5.2

∗ CP: Chosen Plaintext; KP: Known Plaintext; ∗ CC: Chosen Ciphertext; DKP: Distinct Known Plaintext. ∗ In KP settings, the samples are obtained randomly
while in DKP settings there is a restriction that the plaintext-ciphertext samples are non-repeating.
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(ix) K2i, K2i+1: the subkeys used in the left and, respec-
tively, right SPECKEY-3R of the i-th step of
SPARX-64. Each has three 32-bit words K∗,1, K∗,2

, K∗,3, used in three rounds of SPECKEY-3R,
respectively

(x) 1xb(0xb,?xb): x-bit of ‘1’(‘0’,’?’).’?’ is one undetermined
bit

(xi) x½i�: the i-th bit of bit string x. x½0� is the least sig-
nificant bit

(xii) x½j ~ i�: the concatenation of x½j�, x½j − 1�,⋯, x½i�, j
> i

2.2. Brief Description of SPARX-64/128. SPARX-64/128 is
the lightest instance of the SPARX family. It operates on
two 32-bit words and uses a 128-bit key. There are 8 steps
and 3 rounds per step. A high level view of SPARX-64/128
and the general structure of a step is shown in Figure 1. Both
branches have non-linear operations SPECKEY-3R, which
means three rounds of SPECKEY, involving three 32-bit
subkeys. SPECKEY splits the state into two 16-bit branches
and xor the left and right half key bits, i.e., Ki,j

L and Ki,j
R , in

each branch before the non-linear operations. The linear
layer L operates 32-bit value as follows,

L xð Þ = xL ⊕ xL ⊕ xRð Þ≪<8ð Þ xR ⊕k xL ⊕ xRð Þ≪<8ð Þ: ð1Þ

In the i-th step of SPARX-64, six 32-bit subkeys K2i,1,
K2i,2, K2i,3, K2i+1,1, K2i+1,2, K2i+1,3 are involved. In particular,
K2i,1, K2i,2, K2i,3 are used in the left SPECKEY-3R and
K2i+1,1, K2i+1,2, K2i+1,3 are used in the right SPECKEY-3R.

The 128-bit permutation used in the key schedule is sim-
ple, which is shown in Algorithm 1. For more details, please
refer to [1].

2.3. χ2 − Multiple/Multidimensional Zero-Correlation
Cryptanalysis. We start this section with the introduction
of MPZC and MDZC models. Suppose that there are N
plaintext-ciphertext samples and ℓ zero-correlation linear
approximations for an n-bit block cipher. For the i-th
approximation, the adversary counts the samples which
make the linear approximation hold and gets the corre-
sponding counter Ti. Under the model of MPZC cryptanal-
ysis, the adversary evaluates the following statistic:

TMP =N〠
ℓ

i=1
2Ti

N
− 1

� �2
: ð2Þ

For MDZC model, the ℓ zero-correlation linear
approximations form a linear space (considering the zero
vector in) with dimension m and then ℓ = 2m − 1. For each
plaintext-ciphertext sample, the adversary evaluates the m
base linear approximation and obtains an m-bit value z.
By iterating all N samples, the adversary would get a
counter vector V ½z� with z = 0, 1,⋯, 2m − 1. The statistic

used in MDZC is:

TMD = 〠
2m−1

z=0

V z½ � −N2−mð Þ2
N2−m : ð3Þ

To estimate the data complexity and success probabil-
ity, researchers [14] considered two sampling models, i.e.,
KP and DKP. In KP settings, the samples are obtained
randomly while in DKP settings there is a restriction that
the plaintext-ciphertext samples are non-repeating. In [14],
Blondeau and Nyberg proved TMP and TMD followed the
same distribution when the same sampling method are
applied. They gave the estimation method of data com-
plexity under these two sampling models for MPZC and
MDZC. Later, Sun et al. proposed the χ2-MPZC and
MDZC, in which they use the χ2-distributions to model
the statistics [12], instead of the normal distributions.

Considering two types of errors:

(i) Type-1 error: made by wrongfully discarding the
cipher (false negative) and suppose the probability
is α0. This is related to the success probability PS
and PS = 1 − α0

(ii) Type-2 error: made by wrongfully accepting a ran-
domly chosen permutation as the cipher (false posi-
tive) and suppose the probability is α1. This is related
to the time complexity TS of the exhaustive search
phase and TS = 2k · α1 where k is the length of the
main key

Then the χ2-MPZC and MDZC evaluate the data com-

plexity as follows.where χðlÞ
1−α0 and χðlÞ

α1
are the respective

quantiles of the χ2-distribution with l degrees of freedom
evaluated on the points 1 − α0 and α1.In the attacks, the
threshold value to distinguisher the cipher and randomly

chosen permutation is calculated as τ = χðlÞ
1−α0 .

Theorem 1. in ([12])
Suppose that the linear approximations involved satisfy

the hypotheses in [14]. The number NKP of KPs requires in
a MPZC or MDZC linear attack is

NKP ≈
2n χ

lð Þ
1−α0 − χ

lð Þ
α1

� �
χ

lð Þ
α1

, ð4Þ

and the number NDKP of DKPs required in a MPZC or
MDZC linear attack is

NDKP ≈
2n χ

lð Þ
1−α0 − χ

lð Þ
α1

� �
χ

lð Þ
1−α0

, ð5Þ
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3. Zero-Correlation Linear Hulls of SPARX-64

The 12-round zero-correlation linear hull of SPARX-64 pro-
posed in [6] is shown in Figure 2, which is ðα, 0Þ⟶ð0, βÞ,
α ≠ 0, β ≠ 0. α1, α2 are linear masks derived from the input
mask α, while β1, β2 are linear masks derived from the out-
put mask β. The contradiction appears in the second linear
permutation L , where the corresponding input mask is zero
while the output mask is non-zero value α2ð= β2Þ . This dis-
tinguisher is like the 5-round zero-correlation linear hull of
Feistel structure [8] with bijected F functions, which only
takes advantage of the properties of the structures. In the fol-

lowing subsections, we will study the detailed property of
linear mask’s propogation in SPECKEY and construct longer
zero-correlation linear hulls.

Since there are only Xor ( ⊕ ), Modulo Addition (⊞),
Branch (⊢) and Rotation (≪< or >≫), we review how the
linear masks propogate through these operations. Let x, y, z
be values and Γx, Γy, Γz be the corresponding masks.

a 0

a1 0
SPECKEY-3R SPECKEY-3R

0 a1

0 a2

⊕
⊕L

SPECKEY-3R SPECKEY-3R

0⊕0=0 𝛼2=𝛽2≠0

Contradiction!

𝛽2 0

𝛽1 0

⊕
⊕L

SPECKEY-3R SPECKEY-3R

0 𝛽1

0 𝛽

⊕
⊕L

SPECKEY-3R SPECKEY-3R

Figure 2: 12-Round Zero Correlation Linear Hull of SPARX64.

KL
i,1

KR
i,1

⋘2

⋙7

⊕

⊕

⊞

(a) SPECKEY

⋘8

⊕⊕

⊕

(b) L

SPECKEY

SPECKEY

SPECKEY Ki, 3

Ki, 2

Ki, 1

(c) SPECKEY-3R

SPECKEY-3R SPECKEY-3RK2i K2i+1

⊕
⊕

(d) The i-th step of SPARX-64

x

Figure 1: (a) The SPECKEY function; (b) The linear layer L ; (c) SPECKEY-3R; (d) The i-th step of SPARX-64.

Input:MK = ðk1, k2, k3, k4Þ
Output: SKi = ðSKi,1, SKi,2, SKi,3Þ, i = 0, 1,⋯, 16
SK0 = ðk1, k2, k3Þ,r⟵ 0
For i⟵ 1to 16do

r = r + 1
k1 = SPECKEYðk1Þ
k2L = k2L⊞k

1
L

k2R = k2R⊞k
1
R

k4R = k4R⊞r
ðk1, k2, k3, k4Þ⟵ ðk4, k1, k2, k3Þ
SKi = ðk1, k2, k3Þ

Algorithm 1: Key schedule of SPARX-64/128
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Suppose the position of the first bit ‘1’ from the MSB is M
SB1ðxÞ for x. Then the masks’ relations are shown in Table 2.

Only the Modulo Addition (’⊞’) is non-linear and the
corresponding correlation may be not one. However, when
Γx = Γy = Γz = 0x0000 or Γx = Γy = Γz = 0x0001, the correla-
tion at’⊞’ is equal to 1.

3.1. Expand the Linear Hull with Input Mask ðα, 0Þ
Backward with Correlation One. In fact, by limiting the
values of α and β, we can expand the number of rounds of
zero-correlation linear hull. The main idea is to make the
input mask (or output mask) go back (or forward) one more
round with correlation one. The only non-linear operation
in one SPECK round is’⊞’, so we hope the corresponding
input mask or output mask of’⊞’ is 0x0000 or 0x0001, which
leads to linear approximations with correlation one.

For the case of input mask α, we expect that Γ1, Γ2 be
0x0001 or 0x0000, where Γ1, Γ2 are the output masks of
the ‘⊞’ in Figure 3. It’s easy to know that Γ2 = αL ⊕ αR and
Γ1 = ðLTαÞL ⊕ ðLTαÞR where LT is the transform of the linear
layer. So we can get the following four equations:

1ð Þ
αL ⊕ αR = 0x0000
LTα
� �

L
⊕ LTα
� �

R
= 0x0000

(
2ð Þ

αL ⊕ αR = 0x0000
LTα
� �

L
⊕ LTα
� �

R
= 0x0001

(

3ð Þ
αL ⊕ αR = 0x0001
LTα
� �

L
⊕ LTα
� �

R
= 0x0000

(
4ð Þ

αL ⊕ αR = 0x0001
LTα
� �

L
⊕ LTα
� �

R
= 0x0001

(

ð6Þ

According to LTα = ððLTαÞL, ðLTαÞRÞ = ðαL ⊕
ðαL ⊕ αRÞ>≫8, αR ⊕ ðαL ⊕ αRÞ>≫8Þ, we know that only the first
and forth equations have possible solutions.

(i) Equation Equation (4). holds when αL = αR

(ii) Equation Equation (7) holds when αL = αR ⊕ 0x0001

We set the condition αL = αR (See the left part of
Figure 3) and then we can derive that the linear mask
becomes

Γin1
1 , Γin1

2 , Γin1
3 , Γin1

4
� �

= 0, αRð Þ>≫2, 0, αRð Þ>≫2
� � ð7Þ

after one decrypted round. In a further step, there is Γ3 = ð
αR>≫2Þ = Γ4: To expand one more round with correlation
one, we hope the corresponding masks Γ3, Γ4 also be 0x
0000 or 0x0001. Then we obtain the only non-zero solution

αL = αR = 0x0004. At last, we get the linear mask

Γin0
1 , Γin0

2 , Γin0
3 , Γin0

4
� �

= 0x0080, 0x4001, 0x0080, 0x4001ð Þ:
ð8Þ

after two decrypted rounds.
Similarly, when the condition is αL = αR ⊕ 0x0001 (See

right part of Figure 3), we can derive that

Γin1
1 , Γin1

2 , Γin1
3 , Γin1

4
� �

= 0x0080, αRð Þ>≫2 ⊕ 0x0041, 0, αRð Þ>≫2 ⊕ 0x0001
� �

ð9Þ

Then there is Γ3 = ðαR>≫2Þ ⊕ 0x00c1, Γ4 = ðαR>≫2Þ ⊕
0x0081: In this situation, there is no value of α satisfying
Γ3, Γ4 ∈ f0x0000, 0x0001g at the same time. This means that
when αL = αR ⊕ 0x0001, we can only expand the linear hull
backward one more round and can not expand the linear
hull two more rounds backward with correlation one.

3.2. Expand the Linear Hull with Output Mask ð0, βÞ
Forward with Correlation One. For the output linear mask
ð0, βÞ, we follow the similar method. See Figure 4. At first,
we hope that the linear masks Γ5, Γ6 taking value 0x0000
or 0x0001. So we can list the following equations.

1ð Þ
βL>≫7 = 0x0000
LTβ
� �

L
>≫7 = 0x0000

(
2ð Þ

βL>≫7 = 0x0000
LTβ
� �

L
>≫7 = 0x0001

(

3ð Þ
βL>≫7 = 0x0001
LTβ
� �

L
>≫7 = 0x0000

(
4ð Þ

βL>≫7 = 0x0001
LTβ
� �

L
>≫7 = 0x0001

(

ð10Þ

According to LTβ = ððLTβÞL, ðLTβÞRÞ = ðβL ⊕
ðβL ⊕ βRÞ>≫8, βR ⊕ ðβL ⊕ βRÞ>≫8Þ, we know that only the
solutions are as follows.

(i) Equation Equation (4). holds when βL = βR = 0x
0000

(ii) Equation Equation (5) holds when βL = 0x0000, βR
= 0x8000

(iii) Equation Equation (7) holds when βL = 0x0080, βR
= 0x8080

(iv) Equation Equation (8) holds when βL = 0x0080, βR
= 0x0080

Figure 4 gives the detailed propogation of output linear
mask ð0, βÞ when βL = 0x0000, βR = 0x8000 or βL = 0x0080
, βR = 0x8080. The output mask after one more round is

Γout0
1 , Γout0

2 , Γout0
3 , Γout0

4
� �

= 0x0002, 0x0002, 0x0207, 0x0206ð Þ, Γout0
1 , Γout0

2 , Γout0
3 , Γout0

4
� �

= 0x0207, 0x0206, 0x0002, 0x0002ð Þ,
ð11Þ

Table 2: Linear Masks’ Relations among Some Simple Operations.

Operation Values’ relation Masks’ relation

⊕ z = x ⊕ y Γx = Γy = Γz

⊢ y = x, z = x Γx ⊕ Γy ⊕ Γz = 0.
≪< y = x≪ <i Γy = Γx ≪ <i
>≫ y = x >≫i Γy = Γx >≫i

⊞ z = x⊞y MSB1 Γxð Þ =MSB1 Γy

� �
=MSB1 Γzð Þ
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Figure 3: Expand the input mask (α, 0) by two more rounds. Red signals represent the variable names and the blue are the corresponding
values.
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Figure 4: Expand the linear hull with output mask (0, β) by one more round. Red signals represent the variable names and the blue are the
corresponding values.
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respectively. Otherwise, when βL = 0x0080, βR = 0x0080,
there is

Γout0
1 , Γout0

2 , Γout0
3 , Γout0

4
� �

= 0x0205, 0x0204, 0x0205, 0x0204ð Þ:
ð12Þ

We list the zero-correlation linear hulls in Table 3. #R
denotes the number of rounds of the distinguishers.

4. Multidimensional Zero-Correlation
Cryptanalysis of SPARX-64 Using 14-
round Distinguishers

In this section, we give 15-round and 16-round multidimen-
sional attacks with 14-round zero-correlation distinguishers
in DKP sampling setting.

4.1. 15-Round Multidimensional Zero-Correlation Attack
with One 14-round Distinguisher. Wu use one 14-round
multidimensional zero-correlation distinguisher

0, γ, 0, γð Þ⟶ 0x0207, 0x0206, 0x0002, 0x0002ð Þ ð13Þ

to mount the attack. By adding one round at the top, the
attack would cover 15 rounds. The symbols Xi, Yi denote
the corresponding states derived from the plaintexts or
ciphertexts (See Figure 5). For enough plaintext-ciphertext
samples, we need to guess the corresponding subkeys and
get the numbers of all possible values of

X1,1 ⊕ X1,3, 0x0207, 0x0206, 0x0002, 0x0002ð Þ · Y1½ �: ð14Þ

Since the MSB of X1,1, i.e., X1,1½15�, is linear with K2i,2
L ½

15� and K2i,2
R ½15�, in the attack there is no need guessing

these two key bits. For simplicity, we can set them as 0. Sim-
ilarly, we can also set K2i+1,2

L ½15� and K2i+1,2
R ½15� as constant

values. So in the round before the distinguisher, the keys
need to be guessed are k1 = ðK2i,2

L ½14 ~ 0�, K2i,2
R ½14 ~ 0�Þ and

k2 = ðK2i+1,2
L ½14 ~ 0�, K2i+1,2

R ½14 ~ 0�Þ. Since Y1 is linear with

K2i+10,2 and K2i+11,2, no key bits need to be guessed in the
backward rounds.

Suppose the number of samples in the attack is N , the
attack procedure is as follows.

(i) Step 1. For N values of ½X0, Y0�, suppose K2i+10,2,
K2i+11,2 = 0, then Y0 = Y1. We can compute

tout = 0x0207, 0x0206, 0x0002, 0x0002ð Þ · Y0: ð15Þ

We get N values of ½X0, tout�.

Table 3: Zero Correlation Linear Hulls of SPARX.

#R Input mask(s) Rounds covered Output mask(s)

12 αL, αR, 0, 0ð Þ SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

0
BB@

1
CCA 0, 0, βL, βRð Þ

14
0, γ, 0, γð Þ,
0, γ, 0, γð Þ ⊕

0x0080, 0x0040, 0x0000, 0x0000ð Þ
SPECKEY − 1R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207, 0x0206, 0x0002, 0x0002ð Þ,

0x0002, 0x0002, 0x0207, 0x0206ð Þ,
0x0205, 0x0204, 0x0205, 0x0204ð Þ

15 0x0080, 0x4001, 0x0080, 0x4001ð Þ SPECKEY − 2R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207, 0x0206, 0x0002, 0x0002ð Þ,

0x0002, 0x0002, 0x0207, 0x0206ð Þ,
0x0205, 0x0204, 0x0205, 0x0204ð Þ

γ : any 16-bit non-zero linear mask.

⊞

⊕

⊕ ⊕KL
2i,2 KL

2i+1,2 KR
2i+1,2KR

2i,2

⊞
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⊕ ⊕
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14-round multidimensional ZC distinguisher

⊕ ⊕ ⊕ ⊕
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Figure 5: 15-Round Multidimensional Zero Correlation Linear
Cryptanalysis on SPARX64.
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(ii) Step 2. Guess 30 valid bits of k1, encrypt X0,0, X0,1 by
one round and we can get X1,1. Store the numbers of
½X1,1, X0,2, X0,3, tout�.

(iii) Step 3. Guess 30 valid bits of k2, encrypt X0,2, X0,3 by
one round and we can get X1,3. Store the numbers of
½X1,1 ⊕ X1,3, tout�.

(iv) Step 4. For each guessed key, compute the statistic
value used in the multidimensional zero-
correlation attack, i.e.,

T = 〠
X1,1⊕X1,3,tout

V X1,1 ⊕ X1,3, tout½ � −N · 2−mð Þ2
N · 2−m , ð16Þ

where m = 17. When T is smaller than the threshhold value
τ, the key is supposed to be a right key candidate and can
then be checked using two plaintext-ciphertext pairs.

By setting α0 = 2−2:7 and α1 = 2−23, we can compute that
the data complexity N ≈ 258:616 and threshold τ = 131593.
The first three steps need

N · 1
15 + N · 230 + 249 · 230+30

� �
· 1
15 · 12 ≈ 2105 ð17Þ

encryptions. The last step needs 2128 · α1 = 2105 times encryp-
tion. So the total time complexity is about 2106 encryptions.

4.2. 16-Round Multidimensional Zero-Correlation Attack
with One 14-round Distinguisher. We can append one more
round at the bottom to attack 16 rounds (See Figure 6). To
control the time complexity, we use part of the above distin-
guisher. In detail, we only consider the input mask with
form γ = ð016−t∗tÞ, which means the distinguisher has
dimension t + 1. So k1 = ðK2i,2

L ½t − 2 ~ 0�, K2i,2
R ½t − 2 ~ 0�,

K2i+1,2
L ½t − 2 ~ 0�, K2i+1,2

R ½t − 2 ~ 0�Þ need to be guessed.
For the ouput mask ð0x0207, 0x0206, 0x0002, 0x0002Þ,

we expand it by one round. The mask pattern at Y0 would
become ð021?13, 021?1102, 031?12, 031?1002Þb. Only the non-
linear key bits need to be guessed for the last round, which
means we only consider k2 = ðK2i+10,3

L ½12 ~ 0�, K2i+10,3
R ½12 ~ 2

�Þ, k3 = ðK2i+11,3
L ½11 ~ 0�, K2i+11,3

L ½11 ~ 2�).
The attack proceudere is as follows.

(1) For N values of ½X0, Y0�, compress Y0 by one round
and get Yst1 = ðY0,0½13 ~ 0�, Y0,1½13 ~ 2�Þ and Yst2 =
ðY0,2½12 ~ 0�, Y0,3½12 ~ 2�Þ.

(2) Guess 4t − 4 bits of k1, encrypt X0 by one round and
get X1,1 ⊕ X1,3. Store the numbers of ½X1,1 ⊕ X1,3,
Yst1, Yst2�.

(3) Guess 24 valid bits of k2, decrypt Yst1 by one round
and we can get β1 = ð0x0207, 0x0206Þ · ðY2,0, Y2,1Þ.
Store the numbers of ½X1,1 ⊕ X1,3, β1, Yst2�.

(4) Guess 22 valid bits of k3, decrypt Yst2 by one round
and we can get βout = β1 ⊕ ð0x0002, 0x0002Þ · ðY2,2,
Y2,3Þ. Store the numbers of ½X1,1 ⊕ X1,3, βout�.

(5) For each guessed key, compute the statistic value
used in the multidimensional zero-correlation
attack, i.e.,

T = 〠
X1,1⊕X1,3,βout

V X1,1 ⊕ X1,3, βout½ � −N · 2−mð Þ2
N · 2−m , ð18Þ

where m = t + 1. When T is smaller than the threshhold
value τ, the key is supposed to be a right key candidate
and can then be checked using two plaintext-ciphertext
pairs.

By setting t = 8, α0 = 2−2:7 and α1 = 2−28, we can compute
that the data complexity N ≈ 262:531 and threshold τ = 543.

⊞
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⊕ ⊕
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⊕ ⊕
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Figure 6: 16-Round Multidimensional Zero Correlation Linear
Cryptanalysis on SPARX64.
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The first four steps need

N ⋅
1
16 +N ⋅ 24t−4 ⋅ 1

16 + 24t−4 ⋅ 254 ⋅ 224 + 231 ⋅ 224+22
� �

⋅
1
16 ⋅

1
2 ≈ 2100

ð19Þ

encryptions. The last step needs 2128 · α1 = 2100 times encryp-
tion. So the total time complexity is about 2101 encryptions.

5. Zero-Correlation Cryptanalysis of SPARX-64
Using 15-round Distinguisher

In this section, we give 17-round and 18-round attacks with
15-round zero-correlation distinguisher in DKP sampling
setting. Notice that there is only one single zero-correlation
linear hull. However, we also can use the multiple zero-
correlation linear attack model to estimate the data complex-
ity, as shown in [12].

5.1. 17-Round Zero-Correlation Attack with One 15-round
Distinguisher. We use the 15-round zero-correlation distin-
guisher

0x0080, 0x4001, 0x0080, 0x4001ð Þ⟶ 0x0207, 0x0206, 0x0002, 0x0002ð Þ
ð20Þ

to attack 17-round SPARX64/128.
We add one round at the top and one round at the bot-

tom to make the attack which is similar to the 16-round
attack, except that the distinguisher here is 15-round (See
Figure 7). The key bits involved in this attack are k1 = ð
K2i,1

L ½15 ~ 7, 4 ~ 0�, K2i,1
R ½13 ~ 0�, K2i+1,1

L ½15 ~ 7, 4 ~ 0�, K2i+1,1
R ½

13 ~ 0�Þ and k2 = ðK2i+10,3
L ½12 ~ 0�, K2i+10,3

R ½12 ~ 2�Þ, k3 = ð
K2i+11,3

L ½11 ~ 0�, K2i+11,3
L ½11 ~ 2�Þ.

The attack procedure is as follows.

(1) For N values of ½X0, Y0�, compress Y0 by one round
and get Yst1 = ðY0,0½13 ~ 0�, Y0,1½13 ~ 2�Þ and Yst2 =
ðY0,2½12 ~ 0�, Y0,3½12 ~ 2�Þ.

(2) Guess 56 bits of k1, encrypt X0 by one round and get
β0 = ð0x0080, 0x4001, 0x0080, 0x4001Þ · X1. Calcu-
late the numbers of ½Yst1, Yst2� according to the sign
of β0 (+1 if β0 = 0, −1 if β0 = 1).

(3) Guess 24 valid bits of k2, decrypt Yst1 by one round
and we can get β1 = ð0x0207, 0x0206Þ · ðY2,0, Y2,1Þ.
Calculate the numbers of ½Yst2� according to the sign
of β1

(4) Guess 22 valid bits of k3, decrypt Y′st2 by one round
and we can get β2 = ð0x0002, 0x0002Þ · ðY2,2, Y2,3Þ.
Calculate the final counter C according to the sign
of β2

(5) For each guessed key, compute the statistic value
used in the multiple zero-correlation attack, i.e.,

T =N
C
N

� �2
: ð21Þ

When T is smaller than the threshhold value τ, the key is
supposed to be a right key candidate and can then be
checked using two plaintext-ciphertext pairs.

By setting α0 = 2−2:7 and α1 = 2−1, we can compute that
the data complexity N ≈ 263:634 and threshold τ = 2. The first
four steps need

N · 1
17 +N · 256 · 1

17 + 256 · 246 · 224 + 222 · 224+22
� �

· 1
17 · 12 ≈ 2121:15

ð22Þ

encryptions. The last step needs 2128 · α1 = 2127 times encryp-
tion. So the total time complexity is T ≈ 2127 encryptions.
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Figure 7: 17-Round Multidimensional Zero Correlation Linear
Cryptanalysis on SPARX64.
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5.2. 18-Round Zero-Correlation Attack with One 15-round
Distinguisher. By adding one more round before the 17-
round attack, we can extend the attack to 18 rounds. The
key bits involved in the first round are K2i−2,3 and K2i−1,3.
According to the key schedule, we know that

K2i−2,3 = K2i,1, K2i−1,3 = K2i+1,1: ð23Þ

Let P, Y0 be the plaintext-ciphertext pair. The attack
proceudere is as follows.

(1) For N values of ½P, Y0�, guess 64 bits of K2i−2,3, K2i−1,3

and encrypt P by two rounds and get

β0 = 0x0080, 0x4001, 0x0080, 0x4001ð Þ · X1 ⊕ Y0,0 13½ � ⊕ Y0,1 13½ � ⊕ Y0,2 12½ � ⊕ Y0,3 12½ �:
ð24Þ

Calculate the numbers of ½Y ′� according to the value of
β0 (+1 if β0 = 0, −1 if β0 = 1), where

Y ′ = Y0,0 12 ~ 0½ �, Y0,1 12 ~ 2½ �, Y0,2 11 ~ 0½ �, Y0,3 11 ~ 2½ �ð Þ:
ð25Þ

(2) It’s clear that the target bit, i.e., is a function of Y ′
⊕ k, where k = ðK2i+10,3

L ½12 ~ 0�, K2i+10,3
R ½12 ~ 2�,

K2i+11,3
L ½11 ~ 0�, K2i+11,3

L ½11 ~ 2�Þ. So the target coun-
ter C can be computed using FFT techniques for all
possible keys

(3) For each guessed key, compute the statistic value
used in the multiple zero-correlation attack, i.e.,

T =N
C
N

� �2
: ð26Þ

When T is smaller than the threshhold value τ, the key is

supposed to be a right key candidate and can then be
checked using two plaintext-ciphertext pairs.

By setting α0 = 2−2:7 and α1 = 2−1, we can compute that
the data complexity N ≈ 263:634 and threshold τ = 2. The first
step needs N · 264 · 2/18 = 2124:464 encryptions. The second
step needs 264 · 3 · 46 · 246 = 2117:109 simple calculations. The
last step needs 2128 · α1 = 2127 times encryption. So the total
time complexity is T ≈ 2127:2 encryptions.

6. Integral Distinguishers on SPARX

Zero-correlation linear distinguishers can be transformed
into integral distinguishers according to the known results
in [10, 15]. Theorem 6 describes the result given in [15].

Theorem 2. (Corollary 4, [15])
Let F : Fn

2 ⟶ Fn
2 be a function on Fn

2 , and let A be a sub-
space of Fn

2 and b ∈ Fn
2 \ f0g. Suppose that A⟶ b is a zero

correlation linear hull of F, then for any λ ∈ Fn
2 , b · Fðx ⊕ λÞ

is balanced on A⊥.

As a result, we can transform the linear hulls in Table 3
to some integral distinguishers. Partial integral distinguisher
are geven in Table 4.

Suppose the state of SPARX64/128 is represented as ð
x0, x1,2, x3Þ where xi is a 16-bit word. The 12-round integral
distinguisher means if we set the value at x0 and x1 to consts
and let the value at x2, x3 take all possible values, the values
at x2, x3 after 4 steps (minus the last linear layer) will take all
possible values. This is the same with that proposed in [1].

The 14-round distinguisher means that when letting the
values at x0, x1, x2 take all possible values and setting x3 = x1,
after one SPECKEY round, four full steps and one SPECKEY
round, the one bit result of ð0x0207 · y0Þ ⊕ ð0x0206 · y1Þ ⊕ ð0
x0002 · y2Þ ⊕ ð0x0002 · y3Þ will be active, where ðy0, y1, y2, y3
Þ means the value after 14-round encryption. We can expand
this distinguisher one more round forward with probability 1
to get one 15-round distinguisher. The input set has 263 ele-
ments ðx0, x1, x2, x3Þ which satisfy ð0x0080 · x0Þ ⊕ ð0x4001 ·
x1Þ ⊕ ð0x0080 · x2Þ ⊕ ð0x4001 · x3Þ =‘0’ (or= ‘1’).

Table 4: Integral Distinguishers of SPARX.

#R Input sets( x0, x1, x2, x3ð Þ ∈ S) Rounds covered(f ) Active bit(s)( y0, y1, y2, y3ð Þ ∈ f Sð Þ)

12 C0, C1, A0, A1ð Þ SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

0
BB@

1
CCA ∗,∗,A3, A4ð Þ

14 A0, A1, A2, A1 ⊕ Cð Þ SPEKEY − 1R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207 · y0ð Þ ⊕ 0x0206 · y1ð Þ ⊕

0x0002 · y2ð Þ ⊕ 0x0002 · y3ð Þ

15
0x0080 · x0ð Þ ⊕ 0x4001 · x1ð Þ ⊕

0x0080 · x2ð Þ ⊕ 0x4001 · x3ð Þ = ‘0’
(or =‘1’)

SPECKEY − 2R, SPECKEY − 3R|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4steps

, SPECKEY − 1R

0
BB@

1
CCA 0x0207 · y0ð Þ ⊕ 0x0206 · y1ð Þ ⊕

0x0002 · y2ð Þ ⊕ 0x0002 · y3ð Þ
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7. Conclusion

We have given zero-correlation cryptanalysis results against
SPARX-64/128 in this paper. 14 and 15-round zero-
correlation linear distinguishers have been proposed, which
are the longest distinguishers as far as we know. Then, with
the help of χ2-MTZD and MPZC models, we have given 15,
16, 17 and 18-round key recovery attacks of SPARX-64/128
with post-whitening key. Our attacks cover the most rounds,
while the existing attack on SPARX-64/128 covers 16
rounds. Also, we have transformed the new zero-
correlation linear distinguishers into integral distinguishers.
The longest one is 15-round, which is three rounds longer
than the existing 12-round zero-correlation distinguisher.
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A new tensor transfer approach is proposed for rotating machinery intelligent fault diagnosis with semisupervised partial label
learning in this paper. Firstly, the vibration signals are constructed as a three-way tensor via trial, condition, and channel.
Secondly, for adapting the source and target domains tensor representations directly, without vectorization, the domain
adaptation (DA) approach named tensor-aligned invariant subspace learning (TAISL) is first proposed for tensor
representation when testing and training data are drawn from different distribution. Then, semisupervised partial label learning
(SSPLL) is first introduced for tackling a problem that it is hard to label a large number of instances and there exists much
data left to be unlabeled. Ultimately, the proposed method is used to identify faults. The effectiveness and feasibility of the
proposed method has been thoroughly validated by transfer fault experiments. The experimental results show that the
presented technique can achieve better performance.

1. Introduction

Fault diagnosis is a key process to ensure a reliable and cost-
effective performance of engineered system research. Down-
time caused by failures of components such as bearing faults
directly reflects on the economic viability of large systems
[1–4]. Therefore, for maintaining reliability and operational
safety, fault detection has attracted a lot of attention [5].

In recent years, the fault classification method has been
very successful for bearing based on an assumption, which
is that candidate label sets are provided for all training
examples [6]. Based on this assumption, lots of effort are
taken on traditional intelligent fault diagnosis approaches.
Liu et al. [7] proposed a personalized diagnosis method to
detect faults in a bearing based on acceleration sensors and
an finite element method (FEM) simulation driving SVM.
A novel supervised sparse feature extraction method is pro-
posed for rotating machine fault diagnosis in [8]. Reference
[9] proposed a novel fault diagnosis method based on
local-global deep neural network algorithm. A deep learning

model named renewable fusion fault diagnosis network is
proposed for updating automatically as the collected fault
data increases in [10]. Nowadays, various fault diagnosis
methods have enriched fields of fault diagnosis. Some novel
intelligent fault diagnosis techniques [11–14] are also pro-
moted for fault diagnosis. It can be found that these
approaches are applicable to vector data only. Aside from
this, some tensor-based diagnosis techniques become pros-
perity in the fields of fault diagnosis, especially in the age
of big data [5, 15, 16].

Although the researches above realized nice perfor-
mance, they may suffer the two drawbacks as follows: (1)
Through the literature review, it can be seen that an impor-
tant assumption in these intelligent fault diagnosis methods
is that the labeled training and unlabeled testing data come
from the same distribution [17]. However, assumption fails
by two main reasons [18]. Firstly, labeled fault signal are
hard to be obtained from some equipments. Secondly, an
intelligent fault diagnosis algorithm trained with labeled data
possibly fails in classifying unlabeled data when the labeled
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and unlabeled data are subject to different machines. Thus,
distribution discrepancy exists between source and target
domains, which causes important classification performance
degenerates [17]. In order to handle with the domain distri-
bution problem, DA techniques have been developed [19].

DA method establishes knowledge cross-domain trans-
fer from source to target-domains via studying a domain-
invariant feature subspace [17]. DA techniques have been
successfully developed and applied in [20, 21]. Reference
[22] proposed a defect identification method of wind turbine
blades based on defect semantic features with transfer fea-
ture extractor. Reference [23] presented a novel domain
adaptation model based on geodesic flow kernel (GFK) and
strengthened feature extraction and Z-score normalization.
Aside from this, reference [24] proposed a feature-based
transfer neural network to identify the health states of motor
bearings and gearbox bearings. A transferable convolutional
neural network (CNN) [25] is proposed for intelligent fault
diagnosis of rotary machinery.

Nevertheless, it can be seen that the existing diagnosis
technique of transfer learning with DA approaches focus
on the vector data. Therefore, the approaches are used to
establish high-dimensional data; the data must be vector-
ized. Aside from this, vectorization always leads to high
computational complexity and so on.

For addressing these issues, a new method is used for
tensor data representation. The idea of the proposed method
is that an invariant tensor subspace is used for adapting the
tensor representations [17].

Different from the vector subspace, the tensor subspace
concludes a set of subspaces characterizing each mode
separately [21]. The proposed technique realizes mode-wise
partial adaptation for reducing the dimensionality issue.
Therefore, a joint optimization problem is formulated by
seeking such a tensor subspace and learning the alignment
matrices [17]. The issue is optimized via an alternating mini-
mization method. In cross-domain visual recognition, the
TAISL has achieved great success. However, there is no
reports about TAISL for rotating machinery fault classifica-
tion in available references.

(2) Through the literature review, it can be also seen that
existing methods often assumes that each training example is
associated with a ground-truth label. Nevertheless, one can
only get access to a candidate label set associated with each
training example among which only one label is valid in many
practical applications [6]. Therefore, partial label learning
(PLL) has been proposed for dealing with this kind of training
examples in [26]. The PLL has attracted increasing research
attention, so extensive PLLmethods have been proposed in ref-
erences [27, 28]. However, there is no reports about PLL for
rotating machinery fault classification in available literatures.

A basic assumption is that all the candidate label sets are
provided for training sample in the previous researches on
PLL. Nevertheless, in practical applications, such assump-
tion is difficult to hold [6]. A fault can be labeled by a candi-
date label set, but there still exist many faults that have
actually no label information for them.

In this work, it is clear that neither PLL nor semisuper-
vised learning (SSL) can address the issue concerned. For

instance, although some examples could be very helpful,
large numbers of unlabeled instances are ignored via PLL.
The SSL assumes that the ground-truth single-label is acces-
sible to each labeled training example, which is not the case
in our situation.

A new method named SSPLL is introduced into the field
of bearing fault diagnosis. It is critical that the candidate
label sets of partial label instances are disambiguated and
the dataset distribution information of unlabeled examples
is used simultaneously. Particularly, the candidate label sets
of partial label instances are disambiguated by an iterative
label propagation step from partial label to unlabeled exam-
ples and the iterative label propagation procedure is used to
distribute valid labels to unlabeled examples in proposed
algorithm. Thus, a new approach is proposed for classifica-
tion of bearing faults with semisupervised partial label learn-
ing based on tensor representation. The main highlights of
the proposed method are generalized as follows:

(1) To deal with domain shift issue in tensor space, a
novel DA method is proposed for bearing fault diag-
nosis based on tensor representation

(2) To adapt the source domain and target domain
based on tensor representation, the tensor transfer
learning is introduced

(3) To tackle a problem that it is hard to label a large
number of instances and there exists much data left
to be unlabeled, a new method named SSPLL is
introduced to deal with this issue in intelligent fault
diagnosis field

(4) To realize the process of labeling information propa-
gation from the source domain to the target domain,
a weighted graph is established in this paper

(5) To assist the iterative label propagation step, estab-
lishing four normalized weight matrix correspond-
ing to the four phases in the label propagation step
separately in this work

The remainder of this paper is structured as follows: in
Section 2, the basic theory of the proposed method is
described. The explored method are illustrated in Section
3. The developed method is validated in Section 4. In Section
5, the conclusions are drawn.

2. The Basic Theory of the Proposed Method

In this section, the theory of semisupervised partial label
learning is introduced. Y ∈ℝt denotes the d-dimen-
sional example space and X = x1, x2,⋯x2 represents the
label space with n category labels in the raw PLL. Offi-
cially, C = ðyj,HjÞ∥1 ≤ j ≤m means the partial label training
set, where yj ∈Y denotes a d-dimensional signature vector
ðyi1, yi2,⋯yit andHj ∈Y means the associated candidate label
set. Basing on a critical assumption about PLL, the real label yj
for xj is concealed in its candidate label set ðyj ⊆ SjÞ and thus is
incapable of being attained by the learning method [6].
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The training set contains partial label instances Dp =
ðxj, SjÞ∥1 ≤ j ≤m and unlabeled examples Du = xj∥1 ≤ j ≤m
in the SSPLL. According to semisupervised partial label train-
ing set C =Dp ∪Du, a recognizing model f : Y ⟶X is
induced from C by SSPLL, f predicts its label. Please refer to
[5, 15, 16] for a basic theory of the proposed method.

3. The Proposed Method

Framework of the proposed technique is shown in Figure 1.

3.1. TAISL. Please refer to literature [29] for a detailed dis-
cussion of the TAISL. The domain adaptation and shift
based on tensor representation are illustrated in Figure 2.

3.2. A Scheme. The adapt domains problem is tackled by
introducing an invariant subspace between the source S

and the target domains T .
SSPLL is difficult that the learning approach is needed to

disambiguate the candidate label sets of partial label
instances and exploit the distribution information of unla-
beled data simultaneously. A simple scheme is proposed
for disambiguating the candidate label sets of partial label
training instances. For example, the effective single-label is
found from a candidate label set. Therefore, an easy SSL
issue is introduced to replace previous problem. This new
problem can be tackled by learning a method.

The step of label set disambiguation and unlabeled data
exploitation are completely separated in the technique
above. The disambiguation accuracy are incapable of being
improved via unlabeled examples. For solving this key
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Figure 1: Framework of the proposed technique.
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limitation, an iterative label propagation algorithm is pro-
posed for putting partial label instances and unlabeled exam-
ples into a structure in the presented the SSPLL technique.

3.3. Weighted Graph Construction Procedure. For achieving
the process of labeling information propagation between
the source domain set S = yj∥1 ≤ i ≤ s and the target domain
set T yj∥1 ≤ j ≤ t, a weighted graph [6] G = ðO, P,KÞ is
established over S and T , while vertex set O represents
the examples of source training set and vertex set P means
the examples of target training set. Edge set K consists of
the directed edges O and P. For each example yj in the target
training set, its k-nearest neighbors N ðyjÞ in the source

training set are recognized. Thus, the edges of graph G are
set as K = xi ; xj∥xj ∈N ðxjÞ ; 1 ≤ j ≤ t.

According to the graph G established above, a t × s
weight matrix W = ½wði,jÞ�ðt×sÞis able to be specified, where

wðj,iÞ ≫ 0 if ðxi, xjÞ ∈ Eand wðj,iÞ = 0 otherwise. In this paper,
for capturing the little influences between examples, the
weight calculation approach is proposed for applying in
the IPAL method [27], which selects the weights by address-
ing a new optimization issue:

min
W j

x j − 〠
k

a=1
Wj,ia · xia

�
�
�
�
�

�
�
�
�
�
s:t:Wj,ia ≫ 0, ia ∈N xj

� �
; 1 ≤ a ≤ t: ð1Þ
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Figure 4: The partial label examples are obtained in the whole training instance by randomly sampling: (a) p = 0:1, (b) p = 0:2, (c) p = 0:3,
and (d) p = 0:4.
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From Equation (1), a linear least square issue is fitted to
optimize the weight vector, which can be found simply via a
quadratic programming solver. Then, the row W =Dð−1ÞW
is utilized to normalize weight matrix W. Here, D = diag
½d1, d2, â� is a diagonal matrix with dj =∑s

ði=1Þ wðj,iÞ.

3.4. Iterative Label Propagation Algorithm. Four normalized
weight matrices are established for facilitating the iterative
label propagation step in the label propagation step sepa-
rately. Particularly, H =WGCðCp,Cu, kÞ is utilized for the
label propagation from source domain set Cp to target
domain set Cu. J =WGCðCp,Cp, kÞ is proposed for the label
propagation from Cp to itself. V =WGCðCu,Cu, kÞ is
utilized for the label propagation from Cu to itself.
L =WGCðCu,Cp, kÞ is constructed for the label propaga-
tion from Cu to Cp. Detailed description of the algorithm is
illustrated in reference [6].

4. Experimental Validation

In this work, to prove the proposed method, the compared
methods is introduced. These approaches contains: GFK
[30] (geodesic flow kernel), TJM [31] (transfer joint match-
ing), JDA [32] (joint distribution adaptation), and TCA [33]
(transfer component analysis).

4.1. Dataset. By Case Western Reserve University [34] and
Guilin University of Electronic Technology, the datasets
are acquired. The used data were obtained by the 0 HP, 1
HP, 2 HP, and 3 HP. The four fault classes concludes outer
race fault (OF), inner race fault (IF), ball fault (BF), and nor-
mal (N). Therefore, 12 transfer fault experiments have been
used to validate the proposed method in this section in
Figure 3. In addition, the three faults’ diameters were
0.007, 0.014, and 0.021 inches, respectively. Therefore, ten
conditions under four loads are used to demonstrate the
performance of the proposed method. Parameters applied
by the proposed method are set as k = 10, α = 0:70,
β = 0:25, r = 0:7, and T = 100. They are described as follows.

In this section, the proposed method is proved in 12
transfer experiments, which contains TC01, TC02, TC03, T
C10, TC12, TC13, TC20, TC21, TC23, TC30, TC31, and TC32.
The TC01 represents the 0 HP in the source domain and 1
HP in the target domain. The labeled samples are acquired
in each transfer task of the source domain, and the
unlabeled samples are acquired in each transfer task of
the target domain.

4.1.1. Transfer Fault Identify Results in CWRU Dataset. The
labeled examples are obtained in the source domain, and the
unlabeled samples are acquired in target domain. The partial
label samples are obtained in the whole training instance by
randomly sampling p ∈ 0:10,0:20,0:30,0:40. The experimen-
tal results are presented in Figure 4. As is illustrated in
Figure 4, the results of five transfer fault detection experi-
ments are shown. The transfer results of the proposed
method are also compared with four approaches. According
to the comparison results, it can be seen that the proposed

approach obtains the highest testing accuracy in the 12
transfer tasks among these four methods.

From Figure 4(a), the average testing accuracy of the
proposed method is 95.6%, which is the highest one among
these four methods. Due to be unsuitable to deal with tensor
data, the average testing accuracy of JDA reaches 35.7%,
which is smaller than the accuracy obtained by the proposed
method. The average testing accuracy of TJM reaches 34.7%
and the accuracy of GFK is 31.8%. Because they cannot
extract high-level signatures from tensor samples of the tar-
get-domain, these two techniques realize poorer testing
accuracies than the proposed method. In terms of TCA, its
average accuracy reaches 37.8%, which is smaller than the
testing accuracy realized by the proposed method.

When p = 0:20, the experimental results are presented in
Figure 4(b). From Figure 4(b), the average testing accuracy of
the proposed method is 96.8%, which is the highest one among
these four methods. Due to be unsuitable to deal with tensor
data, the average accuracy of JDA is 37.3%. The average testing
accuracy of TJM reaches 36.8% and the accuracy of GFK is
33.9%. In terms of TCA, its average accuracy reaches 39.7%.

When p = 0:30, the experimental results are presented in
Figure 4(c). From Figure 4(c), the average testing accuracy of
the proposed method is 97.9%, which is the highest one
among these four methods. Due to be unsuitable to deal with
tensor data, the average accuracy of JDA is 39.2%. The test-
ing accuracy of TJM is 38.4%, and the accuracy of GFK is
36.8%. In terms of TCA, its average accuracy reaches 41.8%.

The experimental results are presented in Figure 4(d)
when p = 0:40. From Figure 4(d), the average testing accu-
racy of the proposed method is 98.9%, which is the highest
one among these four methods. Due to being unsuitable to
deal with tensor data, the average testing accuracy of JDA
reaches 41.4%. The average testing accuracy of TJM reaches
41.9%, and the accuracy of GFK is 39.4%. In terms of TCA,
its average accuracy reaches 44.8%.

According to the experimental results, the presented
technique can correctly and accurately classify the 12 trans-
fer tasks in the target domain. The results clearly show that
TRSSPLL technology can identify fault categories more
accurately and effectively than other methods.

4.1.2. Transfer Fault Identify Results in GUET Dataset. In
this section, the data is acquired by Guilin University of

Speed monitor

Driving motor Coupling Bearing 2

Accelerometer Bearing 1

Figure 5: Machinery Fault Simulator test rig.
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Electronic Technology (GUET) for validating the presented
technique. Figure 5 contains outer race fault (OF), ball fault
(BF), inner race fault (IF), and normal (N). Used transfer
data were obtained with three rotating frequency 19.89Hz,
29.87Hz, and 39.84Hz. Therefore, four gear conditions
under three rotating frequency schemes are established to
validate performance of the proposed method in Figure 6.
The DA transfer task of TC12 is selected in this work. The
partial label examples are obtained in the whole training
instance by randomly sampling p ∈ 0:10,0:20,0:30,0:40.

The experimental results are showed in Figure 7.
Compared with the other approaches, the presented
approach can realize the best result. This further demon-
states effectiveness and superiority of the proposed method.
In addition, transfer diagnosis tasks can benefit from DA
algorithms. The GUET data demonstrate the performance
of the presented approach.

When p = 0:10, the results of the six cross-domain fault
detection methods are shown in Figure 7(a). From
Figure 7(a), it can be seen that the average test accuracy of the
proposed algorithm reaches 96.4%, which is the highest of the
five methods. The average test accuracy of JDA, TJM, GFK,
and TCA reached 35.7%, 43%, 49%, and 44.2%, respectively.

When p = 0:20, the results of the six cross-domain fault
detection methods are shown in Figure 7(b). It can be seen

that the average test accuracy of the proposed algorithm
reaches 97.9%, which is the highest of the five methods.
The average test accuracy of JDA, TJM, GFK, and TCA
reached 37.5%, 45%, 507%, and 46.4%, respectively.

When p = 0:30, the results of the six transfer fault diag-
nosis methods are shown in Figure 7(c). The average accu-
racy of proposed algorithm is 98.6%, which is the highest
of the five methods. The average test accuracy of JDA,
TJM, GFK, and TCA reached 39.5%, 47.4%, 52.8%, and
48.6%, respectively.

When p = 0:40, the results of the six cross-domain fault
detection methods are shown in Figure 7(d). The average
test accuracy of the proposed algorithm reaches 99.4%,
which is the highest of the five methods. The average test
accuracy of JDA, TJM, GFK, and TCA reached 41.6%,
49.3%, 54.6%, and 50.8%, respectively.

According to the experimental results, the presented
approach can accurately identify the six transfer tasks in
the target domain. The results clearly show that the pro-
posed technology can identify fault categories more accu-
rately and effectively than other methods.

The proposed method is validated by different experi-
ment data. The purpose of this paper is to deal with tensor
data in source and target domain. As for JDA, TJM, GFK,
and TCA, they are traditional transfer algorithms. It is
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Figure 6: The 6 transfer fault experiments of three rotating frequency schemes: (a) 19.89Hz, (b) 29.87Hz, and (c) 39.84Hz.
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undeniable that they have many advantages. They can only
tackle vector-based data with cross-domain issue.

4.1.3. Comparisons with Related Works. General fault iden-
tify issues assume the training and testing data are obtained
from the same machine.Various fault classification methods
[35–38] have realized very high testing accuracy. However,
these methods can not deal with the cross-domain fault
diagnosis issue. For the transfer fault diagnosis issue, which
the source and the target domains data are acquired for
training model. In existing literature, the transfer fault diag-
nosis methods [17, 39] are proposed for tackling domain
shift problems. Nevertheless, the proposed approach can

not handle with tensor data. Aside from this, the unlabeled
data is not considered by these fault diagnosis techniques.
Thus, for dealing with transfer, tensor data issues, and unla-
beled data, a new tensor transfer approach is proposed for
rotating machinery intelligent fault diagnosis with semi-
supervised partial label learning in this paper.

In this paper, the data of training and testing are
acquired in source and the target domains separately, so
the transfer fault detection experiment is more difficult than
existing cross-domain task. The testing accuracy has been
realized 98.9% and 99.4% in two transfer tasks by the pro-
moted technique, respectively. Therfore, according to conse-
quences, the proposed method are competitive.
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Figure 7: The partial label examples are obtained in the whole training instance by randomly sampling: (a) p = 0:1, (b) p = 0:2, (c) p = 0:3,
and (d) p = 0:4.
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5. Conclusion

Since some information is hard to denote by vector arith-
metic, thus, a new DA method based on tensor representa-
tion is first applied to adapt the source and target domains
tensor data directly, without vectorization in the field of
intelligent fault diagnosis. Then, SSPLL is proposed for
training set consists of two kinds of weak supervision, i.e.,
partial label data and unlabeled data. An iterative label prop-
agation method is introduced, which can process two kinds
of weakly supervised data simultaneously by jointly propa-
gating label between partial labeled and unlabeled instances
and derive a good label assignment.

The employed approach realizes higher classification
accuracy of bearing heath states compared with vector-
based representation algorithms. Aside from this, the exper-
imental results verify that the presented approach is superior
to methods that only considering one kind of weak supervi-
sion. In future works, the model will be used to large-scale
data, and weak supervision data will also be considered in
dynamic environments. Then, a powerful invariant tensor
subspace need to be learned in further research works.
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Under different transportation protection, the sample data of bogie traction motor bearings of urban rail vehicles are seriously
unbalanced, and the fault diagnosis ability and generalization effect are poor, which makes it difficult to evaluate the protection
effect of bearings effectively. In this paper, a multimeasure hybrid evaluation model based on compressed sensing is proposed
to evaluate the effect of bearing transportation protection under data imbalance. Firstly, bearing vibration signals under
different transport protection conditions were compressed and sampled, and the original high-Witt collection in time domain,
frequency domain, and time-frequency domain was extracted. Then, a multimeasure mixed feature evaluation model of
correlation, distance, and signal was constructed, and the optimal multimeasure combination strategy was optimized by using
comprehensive sensitivity score evaluation index. Finally, an evaluation model of bearing protection effect based on unified
feature index was constructed by using the best feature subset evaluated, and the unified indicator was quantified to
characterize the protection effect of different protection states. The experimental results show that the model can effectively
evaluate bearings under different transport protection.

1. Introduction

As an important part of the walking part of urban rail transit
vehicles, the bogie plays the role of motion orientation, bear-
ing, and vibration reduction and is also the ultimate executor
of traction and braking and plays an important role in the
safe driving of the train [1]. At the present stage, the bogies
put into use in China are mainly based on welding. Due to
the characteristics of the welding process itself, the weld
position of the bogies is easy to transmit residual stress
and deformation will have influence, and the traction and
driving device of the vehicle will be directly related to the
quality of force transmission, and whether the structure is
safety and reliable will directly affect the operation safety of

the train [2]. Traction motor is the key part of urban rail
vehicle driving device, its operation state will directly affect
the train performance and transportation efficiency, includ-
ing rolling bearing which is one of the most widely used
parts of traction motor, and the relevant research results
show that the most prone to failure parts of traction motor
is rolling bearing; bearing damage accounts for about 44%
of traction motor failure [3]. Therefore, ensuring the quality
of the bogie traction motor bearing is one of the important
factors to ensure the safe, stable, and comfortable operation
of the urban rail vehicles. Urban rail vehicles are often trans-
ported to the owner’s site [4]. If the bearings are not pro-
tected during transportation, pseudocloth marks will occur
due to the road turbulence, abnormal bearing sound during
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site operation, and eventually mass replacement, which
seriously affects the manufacturer’s product quality of the
bearing and causes serious hidden dangers to the safe oper-
ation of urban rail trains.

The protection effect assessment of the traction motor
bearing of urban rail vehicles under different transportation
protection has two main difficulties:

(1) In the signal collection of the urban rail vehicle steer-
ing gear traction motor bearing, there is a serious
data imbalance phenomenon. The main reasons of
this phenomenon are as follows. (a) With the vehicle
running speed and the complex environment, the
data flow accelerates, and the amount of state data
increases. Due to the development and deterioration
of the equipment state, the shortening of the moni-
toring period will also lead to the increase of the state
data volume. (b) The bearing produces vibration
signals containing impact attenuation components
under different transportation protection, all of
which have obvious nonlinear behavior, which even-
tually leads to the spectral bandwidth of the signal,
excessive number of data collection, and massive
data bring great pressure on data transmission, stor-
age, and processing. (c) Under the actual working
condition, the number of bearing fault signal sam-
ples is generally far less than the normal state signal.
In conclusion, the mentioned factors will cause
unbalanced bearing dataset

(2) The fault diagnosis ability of the bearing is poor, and
the protective effect assessment is difficult to be
effectively evaluated. The reasons of this phenome-
non are as follows: the complex rotating mechanical
structure and bad operating environment make the
fault mode usually show strong complexity [5], and
the “underlearning” problem of fault feature sensi-
tivity in the widely used single measure evaluation
model and the common feature parameter extraction
of different analysis fields can only state the informa-
tion of mechanical equipment characterized by
vibration signal be described from different angles.
The above situation causes the failure to obtain the
status information in the bearing fault diagnosis, so
as not to provide an accurate data basis for the
pattern recognition and then affect the subsequent
classification performance and effect assessment

2. Related Research Work

The application object of previous research is generally
limited to the error data with similar distribution under
constant and stable conditions. Unfortunately, this restric-
tion has little effect in real-life scenarios. The working condi-
tions are complex and changeable, which makes it difficult to
extract effective fault diagnosis representation in practical
application by previous deep representation learning
methods [6, 7]. To solve the serious data imbalance of bear-
ing vibration signal under continuous high sampling, this

paper adopts compression sensing (compressive sensing
(CS)) theory also called compression sampling theory. A
compressed sensing theory proposed by Donoho et al.
[8–10], whose signal compression theory breaks through
the Nyquist limit, can achieve less measurement compression
sampling and complete high probability accurate reconstruc-
tion. Although the observation data is reduced, it contains
enough original signal information for signal recovery to
realize the “compression sampling” of the signal. The
concept of this theory can be described as follows: for a
collected time-domain target signal, as long as the signal is
compression on a certain sparse transformation basis, a
linear measurement matrix unrelated to the sparse transfor-
mation base and select an appropriate reconstruction
algorithm to accurately reconstruct the signal based on the
low-dimensional compression measurement. Currently,
compressed sensing hotspots focus on three key problems:
sparse representation, signal observation, and signal recon-
struction [11, 12]. Early studies performed limited sampling
studies using the compressibility of signals and sampled con-
tinuous signals using a fixed structural basis function at twice
the information rate rather than twice the sampling
frequency [13]. The notion of the uncertainty principles of
sparse representation is first proposed by Donoho et al.
[14]. Based on this result, El Ad and Bruckstein [15] further
discuss the uniqueness of the sparse representation and prove
the boundary conditions for the exact sparse reconstruction.
Tropp [16] proposed more general conditions, unifying the
reconstruction conditions for the sparse representation prob-
lem of the l0 and l1 norm constraints. Candes et al. [16]
propose the exact reconstruction principle that further
demonstrates the uniqueness of the sparse representation
problem and discuss the stability, robustness, and the exten-
sion of the algorithm. Baraniuk et al. [17, 18] proposed that
constrained isometries provide a theoretical basis for the
observation matrix design and signal reconstruction. In
recent years, CS has made some progress in image compres-
sion, face recognition, radar imaging, communication, and
other fields [19], but at present, the research in the field of
mechanical equipment fault diagnosis is still widely involved,
and little research is applied in the field of urban rail vehicles.

The fault feature sensitivity “underlearning” problem in
the single measure evaluation model and the feature param-
eter characterization information extracted by different
single analysis domain often have significant undercomple-
teness. It is not difficult to find that extracting the multido-
main multifeature parameter is a necessary guarantee to
comprehensively describe the equipment fault state mode.
Meanwhile, the feature weighted has rich feature sensitivity
information to the original feature set with eigenweights
without losing any feature parameter, giving the weighted
feature set with better category discrimination ability.
According to the principle of feature weighting, the calcula-
tion of its weight coefficient is closely related to various types
of feature evaluation criteria, from which various character-
istic weighting methods based on typical characteristic
evaluation measures or their improved versions are born,
for example, fault feature weighting based on compensation
distance evaluation technology [20], nuclear space distance
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measure [21], feature weighted scheme based on entropy,
mean variance and mutual information, feature weighted
based on joint Laplacian score, and feature weighting based
on Fisher linear discrimination analysis. Moreover, Sáez
et al. [22] proposed a novel feature weighted scheme based
on interpolation method and Kolmogorov-Smirnov para-
metric statistical test for the performance improvement
limited to noise-containing, redundancy, and weak correla-
tion features; Ismail and Frigui [23] proposed a robust unsu-
pervised learning algorithm for finite generalized Dirichlet
hybrid model for realizing fuzzy clustering and feature
weighted of noise-containing high-dimensional data. Similar
to the selection of the optimal feature subset in feature
selection, the determination of feature-weighted weight coef-
ficient can be treated as a class of combinatorial optimiza-
tion problems, so various evolutionary algorithms
(including taboo search, harmonic search, and multiobjec-
tive optimization algorithm) [24] have been introduced into
the construction of feature-weighted framework. However,
most of the existing weight coefficient calculation methods
based on feature evaluation criterion learn the sensitivity of
features from a single measure such as distance, information,
and correlation, which often causes poor learning results of
fault feature sensitivity, which is not conducive to the
improvement of feature clustering and classification perfor-
mance. Based on the research of scholars, this paper pro-
poses a multimeasure mixed evaluation model for accurate
and comprehensive evaluation of bearings.

This paper studies the bogie traction motor bearing in
urban rail vehicles and evaluates the reasonable bearing
transportation protective measures during road transporta-
tion. A multimeasure hybrid evaluation model based on
compression perception is proposed and applied to the
transportation protection example of Ningbo Line 3 bear-
ings, to verify the feasibility and technical advantages of
the proposed method, evaluate the best protection measures
to reduce the failure rate of bearings, provide theoretical
basis and technical reference for the characterization of the
transportation protection effect of urban rail vehicles, and
then provide certain guarantee for the safe operation of
urban rail vehicles. The overall technical route for evaluating
the protection effect of urban rail vehicle bogie traction
motor bearings under different transportation protection is
shown in Figure 1.

3. Compression Sampling of Bearing Vibration
Signal in the Field of Rail Transit

The status data of the mechanical equipment can reflect the
real-time operation state of the equipment, which is an
important basis for obtaining the changing trend of the
equipment status and analyzing the root cause of the equip-
ment failure. In the fault diagnosis of rail transit field, status
data is an indispensable and important resource related to
the operation, monitoring, and management of urban rail
vehicles. In order to accurately grasp the health state of the
equipment, it is the urgent problem to solve the imbalance
of bearing dataset. Compression sensing theory provides
new ideas for signal acquisition, analysis, and feature extrac-

tion, which is currently rarely involved in fault diagnosis in
the field of rail transit. Compact data is used to obtain
compressed data and deal with the storage of massive data,
analyze compressed data from compressed data, reduce
analysis and calculation links, save computational resources,
and improve the efficiency of monitoring and diagnosis. The
application of compression sensing theory to the signal
sampling of equipment in rail vehicles provides an effective
solution to the problem of data imbalance and its application
in the storage, transmission, and analysis of urban rail vehi-
cle equipment data. CS first performs the sparse transforma-
tion processing of the original signal and then measures the
sparse data with the observation matrix, obtains the observa-
tion value far lower than the original signal dimension, and
then restores the signal reconstruction algorithm of the
compression perception theory framework to obtain the
reconstruction signal with very little error with the original
signal. The specific process is shown in Figure 2.

CS has been widely studied in many areas, but relatively
little in the field of mechanical troubleshooting. This paper
uses CS technology for the vibration signal of vehicle key
components in the field of urban rail transit. In the whole
evaluation process of the traction motor bearing of urban
rail vehicle bogie, the processing process of compression
sensing from the processing process of bearing vibration sig-
nal is mainly divided into two parts: one, acquisition and
compression of signal; two, data reconstruction and analysis.
The processing process of the bearing signal of the traction
motor is shown in Figure 3.

3.1. Sparse Representation of the Signals in the Compressed
Sampling. Sparse representation of signal in perception
observation problem: compressed perception theory is the
inverse problem of sparse representation theory, whose
theory foundation implies the basis of signal sparsity. Shown
in Figure 4 is a schematic diagram of sparse representation
theory. The sparse representation of the signal is to trans-
form the signal to a particular sparse space, yielding a small
value of most of the transformation coefficients, namely, the
resulting transformation coefficients are sparse or approxi-
mately sparse. Finding a base or compact frame Ψ makes
the signal x sparse on Ψ and finding the transform coeffi-
cients: S =ΨXwhere S is an equivalent or approximated
sparse representation of X. The choice of transform basis
Ψ can be some kind of basis that has been widely used, such
as wavelet base, Fourier base, and local Fourier base. In addi-
tion, a compact framework can be used to make a sparse
representation of signals such as curve waves and contour
waves, two classes of transform bases with better directivity
[25]. The prerequisite for compressed sensing is that the sig-
nal must be sparingly sparse. For most signals, it is usually
not sparse, but it is always able to find the appropriate base
for the sparse transformation of the signal.

3.2. Selection of the Observation Matrix in the Compressed
Sampling. Main content of the signal observation research:
how to design the M ×N-dimensional observation matrix
Φ, unrelated to the sparse basis to ensure that after the signal
x decreases from N dimension length to M dimension, the
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main information is still not lost, and the original signal x
can be recovered from the dimension-dimensional signal y.
The core of signal observation: to study sampling protocols
that can effectively extract useful information in the original
signal and to obtain as few sampling points as possible. The
need x to design a stable m × n dimensional observation
matrix Φ is required to obtain the S set Y =ΦS =ΦΨTX.
This process can also be represented as a signal x for non-
adaptive observations via matrix Acs: Y = ACSX (where ACS

=ΦΨT is called the CS information operator). The concern

is the selection of the observation matrix Φ, which needs to
guarantee that the important information is not broken
when the sparse vector S drops from n dimension to m
dimension. In compressed sensing theory, an important
criterion for judging whether a matrix can become a mea-
surement matrix is limited isometric property (RIP). For
example, for the k sparse vector S ∈ RN , when it satisfies for-
mula (1), the measurement matrix Φ satisfies the RIP. Most
random matrices satisfy RIP, such as Gaussian and Bernoulli
stochastic measurements [17].

Comprehensive evaluation of protective effect of bogie traction motor
bearing under different transportation protection

Compressed sampling of bearing vibration signals
for urban rail vehicle bogie traction motor

Feature evaluation scheme based on multi-measure mixed evaluation

Signal acquisition and compression Signal reconstruction and analysis
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Figure 1: Technical schematic diagram of a multimeasure mixed evaluation model based on compression sensing.
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Figure 2: Compression perception flowchart.

Compressed sampling of bearing vibration signals 
for urban rail vehicle bogie traction motor

Signal acquisition and compression Signal reconstruction and analysis

Signal acquisition

Sparse representation of the signal

Compressed signal

Signal reconstruction

Signal
analysis 

Time domain analysis
Frequency domain analysis

Time frequency analysis

Data transmission

Data storage

Figure 3: Signal processing process based on compression sensing for urban rail vehicle bearing.
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1 − εð Þ Sk k2 ≤ ΦSk k ≤ 1 + εð Þ Sk k2: ð1Þ

3.3. Design of the Reconstruction Algorithm in the
Compression Sampling. The reconstructed recovery signal
mainly solves the owed problem under a given sparse con-
straint and recovers the original signal with high probability
from partially sampled data. The reconstruction of signals
refers to the reconstruction of the original signal y ∈ RM×1

from the dimension reduction signal x ∈ RN×1. The key prob-
lem is how to design efficient, robust, and stable reconstruc-
tion algorithms. At the present stage, the CS reconstruction
algorithm can be roughly divided into four categories: the
first class: greedy iterative algorithm, aiming for the combi-
natorial optimization problem, which mainly take the link
between signal and atomic dictionary as a more effective or
nonzero way to measure atoms (coefficients). The funda-
mental principle is to find the support set of sparse vectors
in an iterative way and to reconstruct the signal using a con-
strained support least squares estimation. The second class:
convex optimization algorithm or optimization approxima-
tion methods, which find approximations of the signal by
transforming nonconvex problems into convex problem
solutions. The third kind of algorithm: based on the recon-
struction algorithmproposed by the Bayesian framework, this
algorithm takes into account the signal temporal correlation,
especially when the signal has a strong temporal correlation,
which can provide superior reconstruction accuracy than
other reconstruction algorithms. Class 4: other algorithms:
these methods support rapid signal sampling and reconstruc-
tion by packet testing, such as Fourier sampling, chain track-
ing, and Heavy Hitters on Steroids (HHS) tracking.

4. Evaluation Model Based on Multimeasure
Mixed Evaluation Based on
Compression Sensing

4.1. Compression Sensing of the Bearing Vibration Signal of
the Bogie Traction Motor. The observation matrix dimension
required to reconstruct the signal in the compressed sensing
theory process is independent of the data sampling rate and
the maximum frequency of the signal and is only directly
related to the sparsity. To achieve compression sampling,
the necessary sparsity processing of the signal is necessary
to obtain the sparse signal in a specific space. In real life,
the signal data is mostly nonsparse and requires some spatial

transformation methods. In this paper, we analyze the sparse
representation performance of bearings using three common
discrete cosine transform (DCT) [17], discrete Fourier trans-
form (DFT) [22], and discrete wavelet transform (DWT)
[26]. In order to intuitively analyze the sparse performance
from the perspective of the quantization indicators, 2% of
the threshold ε, data x peak value is first set as the threshold
interval. That is, ε = 2%jmax ðxi −min ðxiÞÞj, assumes the
data points between data values as ½−ε, ε� to 0, and then
exhausters the number of nonzero elements in N0 data
points in x, defines the sparse ratio η2%, η2% =N0/N , where
N0 represents the number of data with numerical nonzero,
the less sparse than η2%, the better the sparse ability of the
signal. The generalized orthogonal matching tracking algo-
rithm (GOMP) is chosen as the reconstruction algorithm,
enter the observation matrix ΦP×l, probational measure-
ments obtained from the observation matrix yp×l, sparsity
degree k, select the number of atoms S, ðS ≤ K&S ≤ p/KÞ
the output is the reconstructed signal x̂. GOMP algorithm
training procedure: first initialize the residual value of r0 =
y, index set Γ0 =∅, number of changes k = 1 (line 1); contin-
uous search for S matching atoms, k = k + 1, search out the S
atoms with the largest residual product change its corre-
sponding index value added, P = PSjjhrk−1,ΦPSij =maxMj
hrk−1,Φjijj, i ∈ ½1, S�, ΓK = ΓK−1 ∪ P (lines 2-7); update the
candidate support set as well as the residual and correlation
coefficients. The corresponding support set ΦΓK

is obtained
using the updated candidate atomic index set ΓK . Calculate
the updated residual and correlation coefficients, x̂TK

=Φ+
ΓK

y, rk = y −ΦΓK
x̂Γk

. If the iterative stop condition meets k <
min ðK , p/SÞ, the iterative process returns to step 2; other-
wise, the iteration stops with the reconstruction signal x̂ =
xΓk

, specifically, as shown in Algorithm 1.

4.2. Failure Characteristic Extraction of Bearing Vibration
Signal of Bogie Traction Motor. With the failure of a part
of the bogie or part of the bogie, the time domain waveform
of the bogie state signal and the corresponding spectrum are
different from the normal state, so it is considered that the
characteristic parameters of the signal time domain and
frequency domain distribution information are feasible to
reveal the occurrence of the bogie failure. In addition,
considering that the bearing is a rotating machine, the fault
signal has low signal-to-noise ratio, nonlinear, and

Original signal

Transformation signal

y∈RN×1 𝜃∈RN×1

x∈RN×1

Sparse signal

Sparse representation

Sparse decomposition

Signal transformation

Figure 4: Sparse representation of theoretical diagram.
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nonstationary characteristics, and the characteristics of the
time-frequency analysis methods (such as short-frequency
Fourier transform, wavelet transform, and EMD) have
higher fault state information ability than the time domain
and frequency domain characteristic parameters. In order
to obtain the bearing fault state information as fully as pos-
sible, the experiment selects 10 time domain and 5 frequency
domain and 10 time-frequency domain energy and Lempel-
Ziv frequency domain parameters. The selected time domain
feature parameters form the original time domain feature
set, ðT1, T2,⋯,T10Þ (respectively: peak, mean, variance,
harmonic average, margin index, cliff index, wavedness
index, pulse index, peak index, and deviation index). The
frequency domain characteristic parameters form the origi-
nal frequency domain characteristic sets ðF1, F2,⋯,F5Þ
(respectively: mean frequency, center of gravity frequency,
root mean square frequency, standard difference frequency,
and cliff frequency). Time-frequency characteristic parame-
ters are based on the adaptive decomposition of the original
fault signal using EMD. Energy features IMF = ½IMF1, IMF2,
⋯,IMF5� extract the first five eigenmode components
containing useful information and Lempel-Ziv complexity
features L = ½L1, L2,⋯,L5�.

4.3. Comprehensive Characteristic Index of Bearing Vibration
Signal Based on Multimeasure Mixed Evaluation Model. The
extraction of multicategory fault characteristic parameters is
usually regarded as the basic guarantee for accurate fault
diagnosis. However, if it is applied improperly, it is difficult
to improve the fault diagnosis accuracy, because the sensitiv-
ity of the characteristic parameters is different. If the original
Gavett collection is directly used as the input of the subse-
quent classifier, the advantage of sensitive characteristics
on fault classification cannot be outstanding, and the corre-
lation between nonsensitive characteristics will weaken the
classification effect and improve the fault diagnosis accuracy.
Characteristic evaluation just provides an effective solution

for the above problems. On the basis of certain evaluation
criteria, the sensitivity of each characteristic parameter is
learned, and the original characteristic set is filtered or
weighted according to the learning results, which thus plays
the purpose of improving the characteristic clustering and
classification performance. Most of the widely used feature
weighted methods use the weight coefficient (weight coeffi-
cient) as the core content [22] and screen the features and
weighting of high Vite solicitation based on a single sensitiv-
ity evaluation model. At present, the feature evaluation
model uses more distance, consistency, information, correla-
tion measures, etc. [26] Common distance measures are
pasteurized distance, Euclidean distance, and Marchhedean
distance; information measure mainly includes mutual
information and information gain; consistency measure is
the main indicator; correlation measure includes Pearson
(Pearson) correlation coefficient [27], minimum square
regression error, probability error, Fisher score, Laplacian
score, linear classification and analysis, and high calculation
efficiency. The above single measurement feature evaluation
methods can screen deredundancy features from a specific
perspective, but their limitations are strong, which cannot
be comprehensive screening features and fully reflect the
protection information. The existing feature-weighted
methods are realizing the learning and weighted processing
of feature sensitivity based on a feature evaluation model
of a single measure, ignoring the complementary effect of
the multimeasure evaluation model and the composite gain
effect on high-dimensional feature screening. Therefore,
the experimental mixed measure feature evaluation model
is composed of a random combination of n typical feature
evaluation models in each single measure index benchmark,
and the specific implementation process is shown in
Figure 5. Different measure combination mixed strategies
form Q = C2

n + C3
n +⋯Cn

n and then select the optimal
measure combination strategy with the maximum variation
coefficient. Secondly, the multimeasure optimal mixed

1: Initialize: residual value r0 = y, index set Γ0 =∅, number of changes k = 1
2: for k training iterations do
3: for kd iterations do
4: Search for S matching atoms continuously
5: The S atoms with the largest inner product of residuals are searched and added with their corresponding index value
6: P = PSjjhrk−1,ΦPSij =maxM jhrk−1,Φjijj, i ∈ ½1, S�
7: ΓK = ΓK−1 ∪ P
8: end for
9: for kp iterations do
10: update Φj, rj, Γj

11: The updated candidate atomic index set is used to obtain the corresponding support set, and the updated residuals and cor-
relation coefficients are calculated.
12: x̂TK

=Φ+
ΓK
y, rk = y −ΦΓK

x̂Γk

13: if k <min ðK , p/SÞ
14: return
15: else
16: x̂ = xΓk

17: end for

Algorithm 1: GOMP training process.
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evaluation model is calculated as the combined feature
weight and the original eigenvalue. The detailed flow is
shown in Figure 5.

Ten common feature evaluation models are selected as
alternative subevaluation models for the mixed measure
strategy model. It includes information measurement, corre-
lation measure, and distance measure feature evaluation
model. Due to the large number of mixed measure models
with random free combination of different single measures,
a large operational workload and too cumbersome mixed
measurement strategy will produce a preferred comparison
analysis process. Considering that the sensitivity of each
single measure to the high-Witt solicitation varies, different
feature subset dimensions remain when feature-weighted
and filtered, cases where a measure removes only less non-
sensitive features. The feature subsets are still too redundant,
and it may even be difficult to select more sensitive features
to form feature subsets for classification. Thus, initial screen-
ing and filtering of the submodel constituting the mixed
measure model are required. A single measurement feature
evaluation model with good sensitivity discrimination is
retained. Avoid the difficulty of learning the poor compre-

hensive performance of a large number of mixed measure
combination strategy sensitivity, resulting in the optimiza-
tion process. Therefore, a preliminary selection of a single
measure feature evaluation model before a mixed combina-
tion of a single measure feature evaluation model is done,
and several single measure feature evaluation models with
outstanding sensitivity are selected for the subsequent ran-
dommixing strategy and then the principle of the largest dis-
crete coefficient of the mixed measure sensitivity and the
largest cliff to select the best measure combination strategy.

Starting from ten common single measure feature evalu-
ation models, the sensitivity score of time domain, frequency
domain, and time-frequency domain of three different pro-
tective states of bogie is obtained of ten single measure
models. It is found that different measures have different
sensitivity to the feature set, some single measures are very
sensitive to the feature set, and it is almost impossible to
get a reduced subset of good features. Some single measures
have good sensitivity learning effect to the feature set, high
sensitivity features are more prominent, and nonsensitivity
features are weakened, making the feature sensitivity differ-
entiation more obvious. This section preliminarily selects

Feature evaluation scheme based on multi-measure mixed evaluation

Original feature set Selection of optimal measure combination strategy based on coefficient of variation

Original time domain feature set

Original frequency domain feature set
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Pearson correlation coefficient between
feature categories 
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Figure 5: An evaluation model based on multimeasure mixing.

(a) The screw on the nondrive end is top dead (b) The drive end is fixed by the strap

Figure 6: Protection status 1 setting.
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ten single measure evaluation models and is selected as the
submodel of the subsequent mixed measure feature evalua-
tion model. Because the dimension of each measure is
inconsistent, but the dimension of the feature on each single
measure is comparable, a uniformly defined threshold σi =
ð∑j

lλ
i
jÞ/j, λij is the type j feature sensitivity score of a single

measure which is set for each single measure. If the sensitiv-
ity score of more than 10 characteristics of a single measure
is greater than the mean value σi, the sensitivity score learn-
ing effect of the single measure is poor, and if the single
measure is abandoned, the submodel for the subsequent
evaluation model of mixed measurement characteristics is
retained. Secondly, construct a mixed measure feature
sensitivity learning model with cumulative effect composed

of individual measures, whose mathematical expression is
as follows:

wH
j =

w1
j ×w2

j ×⋯ ×wp
j

wp+1
j ×wp+2

j ×⋯ ×wn
j

: ð2Þ

In the formula, wH
j represents the comprehensive mea-

sure sensitivity value of the j feature of the sample feature
set in the H hybrid strategy; w1

j , w2
j ,⋯,wn

j , respectively,
represents the 1, 2, 3,⋯, n kind single measure sensitivity
value result of a sensitivity learned j feature in the feature
set of a single measure feature evaluation model of w1

j ∼
wp

j which is a sensitivity learning value that is positively

Protective status 1

(a)

Protective status 2

(b)

Figure 8: Overall layout of the protection scheme.

Table 1: Summary of protection status of motor bearings.

Protective status Drive end Nondrive end Fixed binding of transmission end Back and forth

1 Undecoupled Screw top is dead Longitudinal with the wheel axis Go/return

2 Decoupled Screw top is dead Unfastened Go

3 Undecoupled The screw is not dead Unfastened Return

(a) Drive end decoupling pressure plate plus tie rod protection (b) Drive end decoupling coupling fixing belt

Figure 7: Protection status 2 setting.
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related with the characteristic sensitivity of the characteris-
tic sensitivity of a single measurement evaluation model.
wp

j ∼wn
j is the sensitivity learning value of the first feature

sensitivity score of the single measure evaluation model
and the characteristic sensitivity of the single measurement
model. Among them is 1 ≤ p ≤ n ; 1 ≤ n ≤ 4. In order to

(a) Sensor 1 (b) Sensor 2

(c) Sensor 3 (d) Sensor 4

(e) Sensor 5 (f) Sensor 6

(g) Sensor 7 (h) Sensor 8

Figure 9: Sensor measuring point layout.
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avoid the diversity of sensitivity learning results of differ-
ent single measure feature evaluation models, affecting
the sensitivity learning of mixed measure evaluation
models, the sensitivity score value wi

j of each single mea-

sure model should be normalized. The formula for the
normalization of the comprehensive measure sensitivity
score wi

j of the type j feature in the type i hybrid model

is as follows:

~wi
j = 1 + 9

wi
j −min wi

� �
max wið Þ −min wið Þ

 !
: ð3Þ

After product mixing, the comprehensive measure
sensitivity learning results wi

j are obtained. The signifi-
cance is to compare and evaluate the comprehensive mea-
sure sensitivity scores wi

j obtained from the product effects
of different scales under the same scale coefficient, which
also makes the sensitivity of high-sensitivity features more
prominent and weakens the effect on classification and

clustering in the nonsensitivity features. Thus, the cluster-
ing effect of the optimal feature subset is improved.

In order to evaluate the multimeasure mixed evaluation
model after a single measure feature evaluation model, the
multimeasure evaluation model for the multimeasure evalu-
ation model with the maximum discrete coefficient and the
maximum cliff and extract the sensitive feature subset of
the best combination strategy for subsequent clustering
and evaluation. The core idea is a dimensionless parameter
index that reflects the degree of data discretization according
to the discretization coefficient and cliff of the time series.
The specific criterion of Ψm = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vm × Km
p

is that the greater
the cliff value Km and the greater the discrete coefficient Vm
of the mixed characteristic sensitivity score sequence, the
higher the discrete degree of the characteristic data sequence
and the greater the Ψm value. The reaction performance in
the feature concentration is strengthening the feature sensi-
tivity learning effect with high sensitivity and weakening
the learning effect of nonsensitivity features. Make the
high-sensitivity features stand out in the mixed measure
strategy. Thus, it can be considered that the higher the cliff
value of the eigenvalue and the greater the discrete
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coefficient of the mixed characteristic sensitivity score value,
the hybrid measure is best effective in sensitivity learning,
and the more streamlined the subset of eigenvalue used for
clustering classification. The formula for calculating the dis-
crete coefficient of the comprehensive feature sensitivity
score sequence defining Vm as the m kind mixed measure
feature evaluation model is as follows:

Vm = Sm
�wH−m =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/ N − 1ð Þð Þ∑N

j wH−m
j − �wH−m

� �2r

�wH−m : ð4Þ

In the formula, Sm is the standard difference in the
sequence of mixed feature sensitivity scores of type and
�wH−m is the mean of the mixed feature sensitivity score series
of the m kind mixed measure feature evaluation model:
�wH−m = ð∑N

j=1ðwH−m
j − �wH−mÞÞ/N , N is the total number of

features in the feature set, and wH−m
j is the comprehensive

sensitivity score of the j feature of different protective state
features in the m kind mixed measure feature evaluation
model. The formula defining the cliff value Km of the m kind
mixed measurement feature evaluation model is as follows:

Km = E xm − �xmð Þ4
σ4m

: ð5Þ

In the formula, xm, �xm, and σm are the data series, mean,
and standard difference of the mixed measure feature evalu-
ation model of type m, respectively.

The specific criterion of Ψm = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vm × Km

p
is based on the

greater the cliff value Km and the greater the discrete coeffi-
cient Vm of the mixed characteristic sensitivity score
sequence, the higher the characteristic data sequence and
the greater the Ψm value. The reaction performance in the
feature concentration is strengthening the feature sensitiv-
ity learning effect with high sensitivity and weakening the
learning effect of nonsensitivity features. Make the high
sensitivity features stand out in the mixed measure strat-
egy. Thus, it can be considered that the higher the cliff
value of the eigenvalue and the greater the discrete coeffi-
cient of the mixed characteristic sensitivity score value, the
hybrid measure is best effective in sensitivity learning and
the more streamlined the subset of eigenvalue used for
clustering classification.

The traditional feature evaluation model with a single
measure usually considers only from a single angle when
extracting the optimal feature subset, which makes it difficult
to evaluate the vibration signals in the whole time domain
under different protection conditions. In order to better
evaluate the protection effect of traction motor bearings
under different protection conditions during transportation,
this chapter proposes a multimeasure mixed evaluation
model, which can extract multicategory and multimeasure
characteristic parameters as feature sets. The novelty lies in
that based on the feature index, sensitivity learning is carried
out for the features in the multianalysis domain, a multimea-
sure mixed evaluation model is established based on the sin-

gle measure feature evaluation feature index, and the
optimal feature subset that is more conducive to evaluating
the effects of different protection states is optimized by using
the comprehensive feature evaluation index. Then, the
unified feature index was established based on the optimal
feature subset to comprehensively evaluate the protection
effect under different protection conditions.

4.4. Build a Multimeasure Hybrid Evaluation Model Based
on Compression Sensing. In this paper, based on the actual
operating conditions of bogie traction motor bearings in
urban rail vehicles, because the bearings are difficult to be
effectively evaluated under different transportation protec-
tion, a multimeasure hybrid evaluation model based on
compressive sensing is proposed. Firstly, vibration signals
of traction motor bearing are sampled and compressed
based on compressive sensing theory. Secondly, an optimal
hybrid model feature evaluation framework with single
measures such as distance, correlation, and information is
constructed to learn feature sensitivity from the original fea-
ture set composed of time-frequency, frequency-domain,
and frequency-domain feature parameters. At the same
time, to design comprehensive features based on sensitivity
score sequence variation coefficient of the multimeasure
portfolio strategy optimization method and mixed with the
optimal combination strategy measure corresponding com-
prehensive evaluation model to the original fault feature set
sensitivity study and then the optimal comprehensive score
of each feature sensitivity for each feature weights, build a
new weighted feature set. Finally, the proposed feature sen-
sitivity learning method is applied to the transportation
of bogie traction motor bearings of Ningbo Line 3 urban
rail vehicles, so as to verify the feasibility and technical
advantages of the proposed new method. This method
provides a technical basis for the difficulties existing in
the traction motor bearings of transit sentence frame in
the field of rail transit and provides a new idea for the
data collection and reduction of vibration signals of bear-
ings in the process of transportation, as well as reason-
able transportation protection.
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Figure 15: Original vibration signal.
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5. Experimental Analysis

5.1. Experimental Measurement

5.1.1. Three Protection States of Traction Motor Bearings.
The test object is the power bogie of Ningbo Line 3. The
bogie wheel pair is supported and fixed with iron shoes. In
the transportation process, the bogie two guided motors
adopt different protection methods to test the vibration
acceleration of bogie and motor bearings in Zhuzhou to
Ningbo section. In the process of road transportation, motor
bearings are protected as shown in Figure 6. Protection
status 1 and protection status 2 are used for the two motors,
respectively, during the departure, and protection status 1
remains unchanged while protection status 2 is changed to
protection status 3 during the return, so as to study the
protective effects of the three protection status on traction
motor bearings.

Figure 6 shows the defense mode in defense state 1,
Figure 7 shows the defense mode in defense state 2, and
Figure 8 shows the overall layout in defense state. In
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Figure 16: Comparison of reconstructed signals.
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addition, the coordinate directions of the three-way accel-
eration sensor are defined. Since the vertical direction
along the Z direction is most affected by road turbulence,
the analysis of vertical vibration acceleration signal is
mainly carried out. Table 1 shows three settings of the
same protection state.

5.1.2. Measuring Point Arrangement of Traction Motor
Bearing. A total of 8 acceleration sensors are arranged on
the bogie, and the acceleration sensors at each measuring
point are fixed by glue and magnetic suction seat. Accord-
ing to the designed sensor point position and sensor type,
the sensor is arranged on the bogie traction motor.
According to the position of the traction motor bearing
in the bogie, in order to better collect the bearing vibra-
tion signal in the process of traction motor in the road,
the arrangement of vibration sensor measuring points is
shown in Figure 9. Figures 10(a)–10(h) correspond to
sensors numbers 1-8.

5.2. Bearing Data Compression Perception. After the experi-
mental test, the experimental data was up to 254GB and
was difficult for subsequent data analysis. This paper pro-
poses a method to solve the problems of data mass and
redundant data. Firstly, the vibration signal of a transport
bearing is randomly selected to conduct compression sens-
ing sparse representation analysis, and the DCT, DFT, and
DWT transformation of the experimental signal are
performed. In Figure 11, the sparse ratio of the original
vibration signal is 91.4%. Figure 12 intuitively shows that
the sparse ratio is 27.6% after the DCT transformation,
and the sparsity of the vibration signal after the DCT trans-
formation is higher than that of the original signal. Figure 13
is the result of the vibration signal after the DFT transforma-
tion, and the sparse ratio of the DFT coefficient is 24.4% and
25.2%, respectively, which is more prominent compared
with the DCT transformation. Figure 14 shows that the spar-
sity of the vibration signal is well improved compared with
the original signal. The sparse score of Daubechies wavelet
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lengths 8, 12, and 16 is 41.8%, 39.6%, and 37%, and the
change of Daubechies wavelet length has little impact on
the sparsity after the coefficient transformation.

Next, consider the influence of different sparse dictio-
nary transformations on the compression effect of the bear-
ing vibration signal, by setting three different sparse
transformation dictionaries (DCT, DFT, and DWT), in
which the Daubechies wavelet length of DWT is set to 16,
selecting Gaussian random observation matrix and GOMP
reconstruction algorithm. Using these three different sparse
dictionaries to perform data compression measurement
and reconstruct the experimental signal, we obtain the
parameter indicators of the signal reconstruction perfor-
mance of three different sparse dictionaries. Comparing
Figures 15–17 shows that the signal reconstruction perfor-
mance index of the base DFT is superior to that of DCT
and DWT; in three different sparse transformation
methods, DFT has better sparse performance and perfor-
mance in data compression.

5.3. Quantitative Characterization of the Bearing Protection
Effect Based on the Unified Characteristic Index. The original
high-Witt collection including time domain features, fre-
quency domain features, energy features based on EMD,
and Lempel-Ziv complexity features of EMD is extracted.
In order to further realize the dimensionality reduction of
high-Witt collection and improve the performance of cluster
classification, ten sensitivity scores as described above are
learned, and the 3, 6, 7, and 10 single measure feature
evaluation models are selected as the submodels of mixed
multimeasure feature evaluation models according to the
sensitivity learning results. They are intraclass and interclass
integrated distance model, Pearson correlation coefficient
model, Fisher score model, and Laplacian scoring model.
The best sensitivity feature subset sensitivity score distribu-
tion under the four single measurement feature evaluation

indicators is shown in Figure 18. A hybrid measure feature
evaluation model is constructed for the four preferred mea-
sure evaluation submodels. Since four random combinations
into mixed measure models have 11 combination methods,
the 11 mixed measure feature evaluation models learn the
sensitivity, obtain the comprehensive sensitivity score
sequence, and obtain the discrete coefficient, cliff value,
and comprehensive evaluation index of the sensitivity learn-
ing results based on the comprehensive sensitivity score
evaluation index Ψm. The results are shown in Table 2.

It can be seen from the table above that the discrete coef-
ficient, cliff value, and comprehensive sensitivity score evalu-
ation indicators of the mixed measure feature evaluation
model after the random combination of four single measures
are best performed when the 3, 6, 7, and 10 measures are fully
combined. It can therefore be argued that the hybrid strategy
exhibits outstanding performance in strengthening the sensi-
tive features, weakening the nonsensitive features, and a sub-
set of reduced optimal features. Features with large sensitivity
scores are extracted as subfeatures of the subset of optimal
feature subsets. Its feature number is 1, 2, 3, 7, 9, and 16.

To further verify that the extracted sensitivity scores
perform well for the clustering effect of a subset of optimal
features, principal component analysis (PCA [28]) of the
best subsets of the optimal evaluation model is applied. To
facilitate the application of PCA, visual analysis is per-
formed. Figure 19 shows a visual analysis diagram of the first
characteristic subset of the 3, 6, 7, and 10 single measure
evaluation models. It can be seen that the best characteristic
subset characteristics of the 3 and 6 single measures cannot
be classified and clustered by data samples regardless of the
serious travel overlap between the distance and different
categories. The best characteristic subset corresponding to
the 7 and 10 single measure evaluation models can cluster
different protective state data samples effectively, but the dis-
tribution is scattered and the inner class range is large. From

Table 2: Results of various evaluation parameters of characteristic sensitivity score of multimeasure mixed model.

Hybrid policy
Group-up

A single
type of
measure
included

Sensitivity learning
score sequence

standard difference
Sm

Sensitivity scores
learn the score

sequence
mean�wH−m

Sensitivity scores learn
the score sequence
discrete coefficients

Vm

Sensitivity scores
learn the score
sequence cliff
values Km

Comprehensive
evaluation index of
sensitivity score
sequence Ψm

ωH−1 3#, 6# 2.5450 3.5357 0.7198 3.2073 1.5194

ωH−2 3#, 7# 2.1382 2.1456 0.9966 8.8875 2.9761

ωH−3 3#, 10# 2.1179 2.2097 0.9585 8.7751 2.9001

ωH−4 6#, 7# 1.9732 1.7685 1.1158 13.7512 3.9170

ωH−5 6#, 10# 1.9489 1.7830 1.0931 14.1195 3.9286

ωH−6 7#, 10# 1.8865 1.6264 1.1599 16.9705 4.4367

ωH−7 3#, 6#, 7# 1.9730 1.7800 1.1085 13.6794 3.8940

ωH−8 3#, 6#, 10# 1.9491 1.7938 1.0866 14.0398 3.9058

ωH−9 3#, 7#, 10# 1.8903 1.6315 1.1587 16.7992 4.4119

ωH−10 6#, 7#, 10# 1.8392 1.5276 1.2040 19.6013 4.8579

ωH−11 3#, 6#, 7#,
10#

1.8387 1.5254 1.2054 19.6395 4.8655
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the perspective of interclass distance, the clustering effect is
not prominent, and the optimal multimeasure mixed evalu-
ation model is far better than the other four single measure
subsets in classification clustering.

A Cartesian product is performed for the preferred opti-
mal subfeature subset based on a multimeasure mixed eval-

uation model. The Cartesian product calculation expressions
defining the unified feature metrics are

Q = v1 × v2 ×⋯ × vp

vp+1 × vp+2 ×⋯ × vn
: ð6Þ
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In the formula, v1 ∼ vp protection is negative, and
vp+1 ∼ vn is the positive value with the protection effect,
where Q is a unified feature indicator; 1 ≤ p ≤ n, 1 ≤ n ≤ 6
. The characteristics of the characteristic subset are nega-
tively related to the protection effect, that is, the greater
the characteristics, the worse the protection effect, so the
comprehensive characteristic indicators. And the larger
the unified characteristic indicators, the worse the protec-
tion effect.

Figure 20 shows the distribution of different protective
states in the time domain and the comprehensive evaluation
from a single feature. Figure 21 is the comprehensive charac-
teristic index of bogie bearing vibration signal after charac-
teristic combination. The unified characteristic index based
on the full time domain is the most significant in the protec-
tion state 3 (no protection) and the worst protection effect,
while the unified characteristic index of protection state 1
is not significant; its peak is far less than the protection states
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2 and 3, the best protection effect, and the protection effect
of protection state 2 is secondary.

6. Conclusion

In this paper, the state characterization of bogie traction
motor bearings under different transportation protection is
studied, and the multimeasure hybrid characterization
model based on compressive sensing theory is proposed,
which is verified by the highway transportation example of
Ningbo Line 3 urban rail vehicle bogie traction motor bear-
ings. Experiment: when the protection state is undecoupled
+ the screw is not jacked (protection state 3), the bearing
damage is the most serious. The second is when the protec-
tion state is decoupling + screw jacking (protection state 2).
In the case that the protection state is undecoupled +bind-
ing+ screw top (protection state 1), the bearing has almost
no damage. That is, the protection effect is protection state
1>protection state 2>protection status 3.
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Nowadays, deep learning has made great achievements in the field of rotating machinery fault diagnosis. But in the practical
engineering scenarios, when facing a large number of unlabeled data and variable operating conditions, only using a deep
learning algorithm may reduce the performance. In order to solve the above problem, this paper uses a method of
combining transfer learning with deep learning. First, the deep shrinkage residual network is constructed by adding soft
thresholds to extract the characteristics of bearing vibration data under noise redundancy. Then, the joint maximum mean
deviation (JMMD) criterion and conditional domain adversarial (CDA) learning domain adapting network are used to
align the source and target domains. At the same time, adding transferable semantic augmentation (TSA) regular items
improves alignment performance between classes. Finally, the proposed model is verified by three experiments: variable
load, variable speed, and variable noise, which overcomes the shortcomings of traditional deep learning and shallow
transfer learning algorithms.

1. Introduction

With the development of modern industry toward intelli-
gence, the health management mode of industrial equipment
based on big data has become a hot research field. To achieve
the goal of real-time monitoring of mechanical health and
performance, it is increasingly important to speed up the
establishment of a stable and reliable Prognostic and Health
Management (PHM) [1]. In an industrial system, all working
elements are in a relatively coupled working state, and any
failure may affect the normal operation of the whole mechan-
ical system. Since the measured signals are usually transient
and dynamic, it is difficult to achieve early diagnosis of mon-
itoring and failure by using the traditional time-frequency
analysis method [2]. In order to ensure the highest possible
uptime, the way of system maintenance should change to
the way of real-time monitoring and predictive prevention
[3]. To achieve these purposes, the intelligent fault diagnosis
method has become an important research field in recent
years.

The intelligent fault diagnosis method is developed on
the basis of traditional machine learning and deep learning.
Different from the traditional method of extracting fault fea-
ture signals manually, the intelligent fault diagnosis method
does not require much prior knowledge about signal pro-
cessing but directly extracts useful information from the
vibration data collected and realizes early fault diagnosis in
a data-driven way [4]. Among them, artificial neural net-
work (ANN), support vector machine (SVM), deep neural
network (DNN), and other models are the most widely used
models for intelligent fault diagnosis [5, 6]. Merainani et al.
[7] used a self-organizing feature map (SOM) neural net-
work to identify and classify gearbox faults automatically
and used a self-organizing and adaptive algorithm to identify
gearbox early faults effectively. Lu et al. [8] used the stacked
denoising autoencoder (SDA) for greedy layer-wise training
and achieved higher accuracy than ANN and SVM in diag-
nosing signals containing ambient noise and fluctuating
working conditions. In the development process of intelli-
gent fault diagnosis, algorithms and data are always the
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two most important cores. As the complexity of the system
and the volume of data acquired increase, the cost of labeling
data increases. When facing a large number of unlabeled
data, it is difficult to guarantee an ideal accuracy simply by
relying on the general deep learning network. At the same
time, it is impossible for monitoring data to maintain the
same spatial distribution throughout the survey period, con-
sidering the actual engineering conditions. The joint distri-
bution of data changes with the change of mechanical
speed, load, and noise. Therefore, in practical applications,
the generalization performance based on intelligent fault
diagnosis may be reduced.

Therefore, transfer learning as a new fault diagnosis tool
solves the above problems well.Moreover, the theory of
transfer learning has been continuously supplemented and
perfected and has proved its applicability in various fields
[9, 10]. The focus of transfer learning is how to solve new
problems according to the knowledge that has been learned
and reuse the learned knowledge through the similarity of
the intrinsic characteristics of things [11]. Deep learning is
superior in extracting the high-dimensional abstract features
of data. It can map two groups of data with different distri-
butions (source domain and target domain) into the same
space. At this time, it can reduce the difference between fea-
tures by transfer learning, which can not only accurately
classify the source domain data but also achieve the purpose
of domain adaptation. For some tasks with little difference in
distribution, better results can be achieved in the target
domain only by transferring the parameters of the pre-
trained network to the untrained network. However, in prac-
tice, the source and target domains have different feature
spaces, but they can be aligned by minimizing the measure-
ment differences between domains. Indicators for measuring
the distribution differences between domains include KL
divergence, maximum mean discrepancies (MMD), Wasser-
stein distance, and CORAL loss [12]. These indexes are
added to the loss function, and then, the adaptive purpose
is achieved through gradient descent. However, this shallow
adaptive layer is still inadequate because it can only achieve
the effect of domain adaptation globally, while overlapping
confusion can occur in some domains with smaller discrim-
ination. Deep transfer learning (DTL) based on deep net-
work inherits the ability of the deep neural network to
extract strong signal features. On the other hand, it over-
comes the shortcomings of robustness and generalization
of shallow transfer learning. Zheng et al. [13] summarized
DTL into the following five methods: instance reweighting
approach, feature transfer approach, classifier adaptation
approach, deep learning-based approach, and adversarial-
based approach. Han et al. [14] used the data of known
working conditions to pretrain the CNN and realized the
fault diagnosis under unknown working conditions based
on CNN by fine-tuning the weight parameters. An et al.
[15] used a multicore MMD domain adaptive framework
to make the features of different domains approach each
other in the reproducing kernel Hilbert space, which
improved the stability and accuracy of the results. Wen
et al. [16] used ResNet-50 combined with transfer learning
to extract the characteristics of time domain fault signals

converted to RGB images and had achieved the most
advanced results on the test dataset. These studies show
the validity of deep transfer learning in the diagnosis of
mechanical variable conditions, but there are still some
problems that need further study: (1) Most transfer learning
methods do not take into account the joint distribution
between the classifier output labels and the input data but
only the marginal distribution of the data. (2) The effect of
the nonlinear feature extraction capability of the deep learn-
ing framework on domain adaptation was not discussed in
the process of innovation of the transfer learning algorithm.

In view of the problems above, this paper conducts
related research through the following ideas.

(1) Two modules are constructed to achieve domain
adaptation for the source domain and target domain.
On the one hand, using the joint distribution differ-
ences of input features and output labels, domain
adaptations are made in feature extraction and clas-
sification layers by JMMD. On the other hand, cross-
entropy was used between feature and prediction
labels to conduct domain adversarial training to
reduce domain drift. The two modules not only real-
ize the maximum distinction between classes but
also realize domain adaptation under multimode
conditions. Meanwhile, transferable semantic aug-
mentation (TSA) regular terms are added to the loss
function to enhance the implicit characteristics of
the source domain and improve the effect of domain
adaptation

(2) A deep shrinkage residual network is constructed as
the main network for feature extraction of one-
dimensional vibration signals. By setting a soft
threshold in the residual block, the noise in the orig-
inal signal is suppressed, so that the fault character-
istics can be better adapted in the mapping space,
and the robustness of the whole algorithm frame-
work is enhanced

(3) The datasets used in the experiment are the CWRU
bearing dataset and the Canadian-Ottawa bearing
dataset. The validity of the deep denoising domain
adaptive network proposed in this paper is verified
by the three scenarios of staged operation, continu-
ous operation, and antinoise, and the most advanced
results are obtained

2. Transfer Learning Method

2.1. Preliminaries. In transfer learning, “domain” and “task”
are the two most important concepts. The domain and task
are separately divided into the source domain, target
domain, source task, and target task [11]. This paper intends
to solve the problem of unsupervised domain adaptation
where training data has labels and test data does not have

labels. Formally, we denote Ds
k = ðxs,ki , ys,ki Þki=1 as labeled

source domain data and Dt = fxt,ki gki=1 as unlabeled target
domain data, where xi and yi are, respectively, the ith
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sample’s features and the ith sample’s labels. Among them,
superscript s denotes the source domain, t denotes target
domain, and K denotes the number of domains. Here also
denotes a domain as D = fX , PðXÞg, where X is the d
-dimensional feature space of the souce domain and target
domain, and PðXÞ is the marginal probability distribution,
X = fx1, x2,⋯,xng ⊂X . For a domain D = fX , PðXÞg, T = f
Y , PðY jXÞg is used to represent a task of domain adapta-
tion. Among them, Y is the label space and PðY jXÞ is the
marginal probability distribution, that is, the marginal dis-
tribution relationship between feature vector X and label
space Y under the mapping of prediction function f ð⋅Þ.
In the network training period, only the source domain
has label space, but the target domain does not have label
space, so the training of prediction function f ð⋅Þ can only
rely on the source domain data. In the case of transfer,
Ds ≠Dt or Ts ≠ Tt is often present. Therefore, training
the prediction function f ð⋅Þ only through the source
domain data will lead to limited generalization ability of
the model. In order to achieve domain adaptation, it is
necessary to integrate the differences between target
domain data features and source domain data features into
network training, so that the target domain data in the test
set can be correctly mapped to its corresponding label
space in the case of PsðXsÞ ≠ PtðXtÞ.
2.2. JMMD and CDA. Borgwardt et al. [17] first proposed
the maximum mean discrepancies (MMD) method to mea-
sure the difference between the two distributions in the sta-
tistical sense. Given the data characteristic distributions Xs
and Xt of the source domain and target domain, MMD
can be defined as follows:

MMDH Xs, Xtð Þ = 1
nS

〠
nS

i=1
ϕ xsið Þ − 1

nT
〠
nT

j=1
ϕ xTj
� ������

�����
2

H

, ð1Þ

where H represents the reproducing kernel Hilbert space
(RKHS), and the data is mapped from high-dimensional
feature space to low-dimensional space through kernel
function ϕ. In practical application, the domain adapta-
tion of data through MMD under complex multimodal
conditions is very limited, and the kernel parameters are
difficult to optimize. Gretton et al. [18] proposed a con-
vex combination of multiple cores for effective mapping
estimation to achieve depth domain adaptation. However,
when Multikernel MMD (MK-MMD) is used for depth
domain adaptation, the feature can only be transferred
at the top layer by deepening the number of network
layers, and the transfer of label distribution PðYSÞ and
QðYtÞ still stays at the classification layer. In order to
fully consider the joint distribution of feature space and
label space in the field, Long et al. [19] proposed the
joint maximum mean deviation (JMMD) method, which
is defined as

L JMMD P,Qð Þ = EP ⊗ Lj j
l=1ϕ

l zsl
� �� �

− EQ ⊗ ∣L∣
l=1ϕ

l ztl
� �� ���� ���2

⊗∣L∣
l=1H

′
, ð2Þ

where Zsl represents the output of the activation function of
the lth level network, ⊗ ∣L∣

l=1ϕ
lðxlÞ = ϕ1ðx1Þ ⊗⋯ ⊗ ϕ∣L∣ðx∣L∣Þ.

Compared with formula (1), JMMD calculates the mapping
of each layer of feature space in tensor product Hilbert space
when measuring distance. The feature samples are mapped
to a fixed diameter hypersphere through the activation func-
tion, so that the samples with similar features gather more
closely in the feature space; that is, the distance between classes
is expanded and the distance between classes is reduced, so as
to balance the training difficulty between different distributed
data [20]. In order to enhance domain adaptation, this paper
adopts the idea of the domain adversarial neural network for
reference and forms a depth adversarial domain adaptation
network by adding the gradient reversal layer (GRL) after
the feature extraction layer. The structural parameters of
GRL are the same as those in literature [21], which are all three
fully connected layers. The specific parameters are shown in
Table 1.

Unlike the MMDmethod that takes the space metric dis-
tance, adversarial-based domain training follows the idea of
a game in the generative adversarial network, so that the
source domain and the target domain can be aligned in the
network training. The domain adversarial network is gener-
ally divided into feature extraction layer Gf , classification
layer Gc, and domain identification layer Gd , and the param-
eters of each layer are represented by θf , θc, and θd , respec-
tively. GRL is also called the domain discriminator. Its
function is to maximize the classification loss between
source domain and target domain and confuse target
domain data with source domain data. The classifier in the
network realizes the accurate classification of data by mini-
mizing the classification loss. Different from the generative
adversarial network, the domain adversarial network does
not need a generator. In order to carry out adversarial train-
ing, we multiply the error of the gradient inversion layer by a
negative parameter −λ, so that the network training objec-
tives before and after the GRL layer are opposite, achieving
adversarial training [22]. At the end of the adversarial train-
ing, it shows that the loss of the domain discriminator has
reached the maximum, so the domain discriminator has
aligned the source domain and the target domain to the
greatest extent. However, domain adversarial training still
has the same defect as MMD. It only calculates the marginal
distribution of PðXÞ and QðXÞ and ignores its joint distribu-
tion. Similar to JMMD, in order to solve the problem PðXs
, YsÞ ≠QðXt , YtÞ, it is necessary to consider the joint distri-
bution of the sign extraction layer and classification layer.

Table 1: Parameters of the GRL.

Layers Parameters

Fc1 out features = 2048

Dropout1 P = 0:5

Fc2 out features = 1024

Dropout2 P = 0:5

Fc3 out features = 2
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The multidimensional and multifeature data in the feature
layer and classification layer of the domain adversarial net-
work are matrix operated by means of mean mapping x ⊗
y. In the GRL layer, the source field label is set to 0, and
the target field label is set to 1. In order to prevent the loss
function value of individual samples from tending to infinity
due to nontransfer, so that the domain adversarial training
cannot converge effectively, before the training, the entropy
criterion is applied to the label prediction probability corre-
sponding to the feature [21]. The loss function formed by
the above form is a conditional domain adversarial (CDA)
loss function, which is defined as

w H pð Þð Þ = 1 + e−H pð Þ, H pð Þ = − 〠
C−1

c=0
pc log pc, ð3Þ

LCDA θf , θd
� �

= −
1
ns
w H psið Þð Þ〠

ns

i=1
log 1 −D F xsi ; θf

� �
; θd

� �� �

−
1
nt
w H pti

� �� �
〠
nt

i=1
log D F xtj ; θf

� �
; θd

� �h i
:

ð4Þ
2.3. Transferable Cross-Entropy Loss Learning. The methods
of CDA and JMMD use the depth transferable features of the
source domain and target domain to achieve domain adap-
tation. Therefore, superimposing the two in a transfer learn-
ing module can theoretically achieve the effect of
complementary advantages, as JMMD not only reduces the
difference of marginal distribution but also reduces the dif-
ference of joint distribution, and domain confrontation
helps to reduce the phenomenon of domain drift in the pro-
cess of domain adaptation. Transfer learning is widely
applied in image recognition, and many transfer learning
methods have achieved good results in the open dataset.
However, compared with some image public datasets, the
bearing fault signals also have the characteristics of high
coupling, nonlinearity, and nonstationary. Therefore, in
order to further enhance the domain adaptability of bearing
fault diagnosis, we should make full use of the labeled sam-
ples in the source domain. As shown in Figure 1, Li et al.
[23] proposed a transferable semantic augmentation (TSA)
method to enhance the adaptability of the classifier by
implicitly generating source features to target semantics.

For bearings of the same structure, the high-dimensional
characteristics of vibration signals will migrate in all direc-
tions in the transfer learning, and the high-frequency char-
acteristics induced by resonance will transfer along a
certain direction of bearing frequency. Therefore, a quantita-
tive measurement method is needed to highlight the direc-
tion that has the greatest impact on domain adaptation.
Use μs and μt to represent the mean value of the feature
space of the source domain and the target domain, respec-
tively, and use Δμc = μct − μcs to represent the difference of
the mean value of a class c sample in the source domain
and the target domain. The greater the difference, the greater
the overall deviation, so the domain drift can be reduced by
means of the value of Δμc. However, the value of Δμc is rel-

atively extensive. In order to more accurately measure the
distribution difference, it is also necessary to calculate the
covariance ∑c

t in the target class and measure the difference
of all offset directions of the target domain relative to the
source domain at the highest level of the network. Finally,
the multivariate distribution difference NðΔμc,∑c

tÞ is com-
posed of interdomain mean difference Δμc and intratarget
covariance ∑c

t . It should be noted that the TSA method
focuses on using the characteristics of the source domain
to approach the target domain as much as possible. Here,
the characteristics of the highest layer of the network refer
to the output matrix fsi ~NðΔμysi , Σysi

t Þ of the last full con-
nection layer, which will be reflected in the following for-
mula. In network training, the loss of transfer after M
iterations is given by using cross-entropy:

LM =
1
ns
〠
ns

i=1
E~fsi log 〠

C

c=1
e w⊤

c −w⊤
ysið Þ~fsi+ bc−bysið Þ

 !" #
, ð5Þ

whereW and b represent the weight matrix and offset vector
of the last layer of the network and the full connection layer,
respectively. Similarly, in order to improve the domain
adaptability under unsupervised learning, it is necessary to
use the joint distribution probability of label space and fea-
ture space. At this time, the target domain space lacks anno-
tation, so we need to use the pseudolabel method and target
features to form the mutual information value LMI

. There-
fore, TSA is defined as follows:

LTSA =LM + βLMI , ð6Þ

where β is an empirical parameter, and the value needs to be
compared and explored in the experimental part [23]. The
TSA loss function based on the interdomain characteristic
mean deviation and class conditional covariance has less
computation than the data generation antidomain adapta-
tion, and its lightweight advantage can be embedded in other
domain adaptation algorithms. Therefore, combined with
the above domain adaptation methods, the loss function of
unsupervised bearing fault transfer learning is constructed

Domain adaptation Source augmentation

Source domain
Target domain

Figure 1: Illustration of TSA method.
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as follows:

LLOSS =L JMMD +LCDA +LTSA: ð7Þ

In the process of domain adaptation, due to the random
initialization of the network, the network parameters cannot
reflect the real domain feature distribution in the initial
stage, so the rich labels in the bearing source domain data
are used for pretraining before transfer. After the set epoch,
the classification layer can achieve better classification effect
on the source domain and then start domain adaptation.

2.4. Deep Residual Shrinkage Networks. In the deep domain
adaptation, the network backbone plays an important role
in feature transfer. To some extent, the appropriate back-
bone network is more important than the advanced transfer
algorithm [21]. In many experiments on domain adaptation,
such as CNN [24], ResNet [25], VGG [26], and AE [27]
show excellent feature extraction ability in the application
of image transfer, semantic transfer, and signal transfer.
However, there is no relevant research on which appropriate
backbone network should be selected for specific transfer
objects. The purpose of this paper is to carry out the transfer
learning for bearing faults under complex and variable
working conditions. It is hoped that the fault can be diag-
nosed early by the vibration data and labels collected from
the bearings under unknown working conditions. Consider-
ing that in the process of actual vibration signal acquisition,
the sensor collects not only the actual vibration signal of the
tested bearing but also other noise signals, such as bearing
vibration interference of other parts, noise interference of
working environment, and noise interference of transmis-
sion parts. Suppressing noise interference is always a difficult
and hot issue to extract weak signals of bearing early fault by
signal processing methods [28]. Among them, various
improved algorithms based on wavelet transform are widely
used in bearing signal noise filtering, but the premise is to
master the prior knowledge of the signal, and the design of
the filter and the selection of wavelet parameters need con-
tinuous experiments to obtain the optimal value. In addition,
the existence of noise will reduce the ability of the neural
network to extract weak early fault feature signals and make
the boundary of high-dimensional feature clusters blurred in
clustering, so that the effect of domain adaptation becomes
worse in the process of transfer. Therefore, in order to over-
come the influence of noise on the domain adaptation of the
bearing fault signal, a network layer similar to the filtering
algorithm needs to be embedded in the backbone network
to adaptively reduce the influence of noise on feature extrac-
tion. Zhao et al. [29] proposed adding a soft threshold to the
residual network to automatically learn the noise threshold,
reduce the noise interference, and realize the bearing fault
diagnosis under high noise. Based on the deep residual
shrinkage network, this paper will improve part of the net-
work structure to build the backbone network in transfer
learning.

2.4.1. Deep Residual Shrinkage Module. The residual shrink-
age module is the basic unit of the deep residual shrinkage

network, which embodies the idea of an attention mecha-
nism: by eliminating the data features with a low contribu-
tion ratio, the important features are more prominent in
the overall data features. Although this approach may elim-
inate the features conducive to transfer learning, it will
remain in the network through the identity mapping in the
residual module, but its proportion will be reduced after
the transfer of the module. A residual shrinkage building
unit with channel-wise thresholds (RSBU-CW) is shown in
Figure 2.

C and W, respectively, represent the width and channel
of the feature. Each channel of RSBU-CW has an indepen-
dent threshold. The features are reduced to a one-
dimensional vector through absolute value and global aver-
age pooling, and then, the one-dimensional vector is trans-
mitted to the fully connected network with two-layer FC.
Each channel can have an independent threshold by making

C × W × 1

C × W × 1

BN, ReLU, Conv (K = c)

BN, ReLU, Conv (K = c)

BN, ReLU, FC (M = C)

Sigmoid
C × 1 × 1
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C × 1 × 1

C × 1 × 1

C × 1 × 1
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C × W × 1
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Figure 2: A building unit entitled RSBU-CW.
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Contact
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Figure 3: A building unit of improved pooling layer.

5Journal of Sensors



the number of neurons in the second layer consistent with
the number of channels of the input feature map. The
threshold τc can be defined as

τc = σc ⋅ average Xi,j,c
		 		, ð8Þ

where σc is the parameter of the cth layer scaled to ð0, 1Þ and

i, j, and c are the indexes of width, height, and channel of the
feature map X. In the network iterative training, the thresh-
old of each channel will change with time. When the feature
is in the range of ½−τc,−τc�, the channel threshold will be set
to 0, and those features X far from 0 will approach 0.

2.4.2. Improved Pooling Layer Based on Inception Module.
The inception module is proposed to solve the problem of per-
formance saturation and light weight when the number of
layers of the google net network is deepened. From
inception-V1 to V4, the model is constantly improved and
the performance is also continuously improved. Themain idea
of inception is to transform large convolution blocks into
small convolution blocks through series and stacking. Because
the collected bearing data is one-dimensional vibration data,
convolution pooling needs to be carried out before being
transmitted to RSBU-CW. If the traditional large convolution
block 7 × 1 is adopted, it will not be suitable for fault diagnosis
of large bearing data in industry. In order to ensure the effect
of feature extraction and reduce the volume of network calcu-
lation, for the one-dimensional time-domain input signal of
bearing, an improved data pooling layer is shown in Figure 3.

The improved data pooling layer in the figure adopts 3
small convolution layers instead of 7 × 1 convolution layers.
The number of channels is set to 8, 16, and 16, respectively,
and the residual connection structure is added. Finally, the
extracted data feature information is output through the
maximum pooling layer.

2.4.3. Residual Block-Based Dilated Convolution. Dilated
convolution has the same convolution operation as ordinary
convolution, but dilated convolution uses a specific step to
read data in a jumping way, which can obtain a larger recep-
tive field while keeping the parameters unchanged, so that
each convolution output contains more information. There-
fore, this paper replaces the ordinary convolution in RSBU-

Loss

Label

GRL

RSBU-CW blocks FC

Feedforward calculation Back-propagation of loss-pre Back-propagation of loss

Source domain

Target domain

Weights shared

Figure 4: Domain transfer network based on deep residual shrinkage residual module.

Table 2: The description of class labels of CWRU.

Task Speed (rpm) Fault location Fault size (mils) Class label

0/1
2/3

1797/1772
1750/1730

OF 7 1

OF 14 2

OF 21 3

BF 7 4

BF 14 5

BF 21 6

IF 7 7

IF 14 8

IF 21 9

NA 0 10

Table 3: The description of time-varying speed dataset.

Task Speed-varying conditions Fault location
Class
label

0 Increasing speed
Healthy 1

1 Decreasing speed

2
Increasing then decreasing

speed
Inner race

fault
2

3
Decreasing then increasing

speed
Outer race

fault
3
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CW with dilated convolution and increases the receptive
field by setting the dilated rate. It is assumed that the kernel
width of ordinary convolution is w. When the dilated convo-
lution with dilated rate d is introduced, the width of the
dilated convolution kernel becomes w + ðw − 1Þðd − 1Þ.
And one-dimensional convolution is used; the height of
the convolution kernel is always 1. Dilated convolution
improves the sparsity of bearing signal characteristics, but
at the same time, in order to ensure the continuity of vibra-
tion signal after convolution operation, the dilated rate
should not be set too large. It is verified by relevant experi-
ments that the bearing fault accuracy is higher when the
dilated rate d = 2 is adopted. At this time, the receptive field
obtained by the 3 × 3 convolution kernel in RSBU-CW is
equivalent to the receptive field brought by the 5 × 5 convo-
lution kernel.

2.5. Framework of Network Training. As shown in Figure 4,
it is the network training framework proposed in this paper.
Aiming at the problem of the generalization ability of tradi-
tional deep learning for bearing fault diagnosis under vari-
able conditions, a domain transfer training network based
on the deep residual shrinkage residual module is proposed.
The whole network is composed of a backbone network
using the RSBU-CW module and deep domain transfer
algorithm. In order to improve the effect of domain transfer,
the loss function consists of explicit JMMD loss and CDA
loss and implicit TSA loss. The network is pretrained
through the bearing vibration data with known labels in

the source domain. After updating the network parameters,
the unlabeled target domain data are transferred to acceler-
ate the speed of the domain adaptation.

3. Experimental Results

In this section, two open-source bearing datasets will be used
to verify the effectiveness of the proposed method in bearing
fault diagnosis. The main framework is written by Python.
All experiments were run on a computer equipped with i7-
9300h CPU and NVIDIA GeForce GTX 1050 GPU.

3.1. Datasets

3.1.1. Case Western Reserve University (CWRU) Dataset. The
CWRU [30] bearing dataset is an open-source dataset of the
Case Western Reserve University Laboratory which is widely
used in the research of bearing fault diagnosis. In the exper-
iment, the amplitude data of SKF6205 motor bearing are
collected by the acceleration sensors installed at the motor
driving end and fan end. The data consists of normal bearing
operation data and fault bearing operation data. The fault
location and damage size are different. Detailed data descrip-
tion is shown in Table 2.

The bearing transfer tasks are f0, 1, 2, 3g, corresponding
to four different speeds, respectively. The load of the bearing
is also different at each speed. At a certain constant speed, it
is divided into 10 data types. The locations of bearing faults
are inner fault (IF), ball fault (BF), and outer fault (OF),
where NA represents normal bearing.

3.1.2. University of Ottawa Bearing Dataset. The dataset is
collected from the University of Ottawa laboratory [31]. Each
sample of this dataset is collected under time-varying rota-
tional speed conditions, which is different from the CWRU
dataset. Detailed data description is shown in Table 3.

The collection time of each sample is 10 s in total, and
the sampling frequency is 200 kHz. During the sampling
time, the running speed of the bearing will change, which
can be divided into four types: acceleration, deceleration,
acceleration before deceleration, and deceleration before
acceleration. As shown in Figure 5, the changes of bearing
operating speed under four operating conditions are shown,
respectively, and the speed is represented by bearing rotation
frequency. The bearing health status is divided into three
conditions: normal, inner ring fault, and outer ring fault.
Among them, the transfer task 0⟶ 1 indicates that the
source domain is the fault data under the accelerated run-
ning condition, and the target domain is under the condition
of bearing deceleration.

3.2. Implementation Details

3.2.1. Division of Input Data. The two datasets are slightly
different in sample balance. Among them, the number of
samples under normal working conditions of the CWRU
dataset is more than that under other working conditions,
while the sample number of Ottawa bearing data is well bal-
anced. This experiment does not deal with the sample bal-
ance but makes the number of samples in each source
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Figure 5: The change of frequency under time-varying rotational
speed conditions.
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Figure 6: Division of input data.
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domain and target domain the same. When segmenting the
bearing timing vibration signal, the method of enhanced
data will not be used, because the enhanced data may over-
lap the training data and test data in a certain period of time,
resulting in unreliable test accuracy. As shown in Figure 6, it
is a schematic diagram of the division of source domain and
target domain samples. Among them, the training sets of
source domain samples and target domain samples account
for 80%, and the test sets account for 20%. Considering the
difference in sampling frequency between the two datasets,
1024 and 8192 are taken as the sample length of the CWRU
dataset and Ottawa dataset, respectively.

3.2.2. Training Method. After the reasonable division of sam-
ples, the data of the source domain and target domain are
sent to the network for training. The one-dimensional bear-

ing vibration data sample first passes through the improved
pooling layer proposed in this paper, then passes through
four RSBU-CW modules, and finally calculates the domain
adaptive loss value through the GRL layer and classifier
layer. In network training, the updating of parameters is
divided into two stages. As shown in Figure 7, the first is
the pretraining process using the marked source domain
data, in which the target domain data does not participate
in the training process. In the second stage, the source
domain and target domain data are sent to the network at
the same time for domain adaptation, and the loss value of
domain adaptation is used for back propagation. Among
them, 50 epochs are set for pretraining nodes and 200
epochs are set for domain adaptation nodes. The gradient
descent algorithm adopts Adam, the momentum value is
set to 0.9, and the batch size is 64.

Source domain data
&

Target domain data

Second step

Improved pooling layer

Four RSBU-CW modules

GRL layer Classifier layer

Marked source domain data

First step

Pre-training

Figure 7: Training method.
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Figure 8: Comparison of accuracy of five methods under CWRU dataset.
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3.3. Evaluation Results. In this paper, two open-source data-
sets are used to verify the effectiveness of the proposed
model for bearing fault diagnosis under variable working
conditions. In order to fit the industrial application scenario,
the applicability of the model under high noise will also be
discussed, and the results will be represented by visual
charts.

3.3.1. Results of Models. As shown in Figures 8 and 9, the test
accuracy of two datasets under five methods is shown,
respectively. The five methods are Basis, CORAL, MMD,
CDA, and the method proposed in this paper. Among them,

Basis means that it does not use any domain adaptation
method and only uses the network trained by the source
domain data to test the test set of the target domain directly.
The other three methods are common domain adaptation
methods. In order to ensure the reliability of the results, 10
experiments were carried out for each method, and the aver-
age value of the test results of the last epoch was taken as the
final result.

It can be seen from the figure that in addition to the
CORAL method, adopting other domain adaptation
methods can greatly improve the accuracy of fault diagno-
sis under variable working conditions; especially when the
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Figure 9: Comparison of accuracy of five methods under Ottawa dataset.
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working conditions are greatly different, the more obvious
the migration effect is. For example, for the mutual migra-
tion under the two working conditions f0, 3g in Figure 8,
the lifting effect is the most obvious under the domain
adaptation method. For CWRU datasets, although the pro-
posed method does not have much chance for improve-
ment, the overall accuracy is still slightly higher than
other methods. This is closely related to the dataset itself,
because the faults of the CWRU dataset are artificially
set, and the fault characteristics are obvious. In addition,
the migration of the CWRU dataset is mainly the transfer
under different loads, and the bearing data is measured
under a uniform speed condition. In comparison, the
working condition of the Ottawa dataset is more complex,
and the speed difference between the migrated datasets is
more obvious. The change of speed will lead to the change
of fault characteristics, so the accuracy of Figure 9 is lower
than that of Figure 8 as a whole. On the whole, the pro-
posed method combines the advantages of domain con-
frontation migration and joint distribution migration. By
embedding TSA loss, it solves the problem of domain drift
in the traditional domain adaptation methods and
enhances the adaptability of the classifier.

In order to further illustrate the influence of adding the
TSA regular term on the training convergence results,
Figure 10 draws the loss curve and test accuracy before
and after adding the TSA regular term. The transfer task of
the curve shown in the figure is (0, 1) in the Ottawa dataset.

It can be clearly seen that after adding the TSA regular
term, the fluctuation of the transfer loss decline curve is
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Figure 11: Schematic diagram of adding Gaussian white noise to the signal.
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Figure 12: Fault diagnosis accuracy of test dataset under Gaussian
noise.

Table 4: The time cost of three backbone networks.

Backbone network SNR (dB) Training time (s)

CNN -5 dB 1256 s

ResNet -5 dB 1302 s

RSBU-CW -5 dB 1109 s

CNN 5dB 1145 s

ResNet 5 dB 1204 s

RSBU-CW 5dB 1003 s
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improved, and the accuracy is significantly improved after
10 epochs. This is because before adding the TSA regular
term, the domain migration method based on confrontation
will cause the fluctuation of loss value, which will affect the
accuracy of the test set. TSA can implicitly strengthen the
migration of data features from the source domain to the
target domain, enhance the ability of the classifier to adapt
to the domain, and reduce the fluctuation of classification
effect caused by adversarial domain training.

3.3.2. Robustness of Backbone Network. Backbone networks
also have a great impact on domain adaptation. In order
to fairly compare the effects of transfer learning, compara-
tive experiments need to be carried out under the same
backbone network, so the discussion of backbone networks
has been ignored. In this paper, we choose a deep residual
shrinkage network with antinoise effect, one is because of
the need for industrial actual conditions, two is to sup-
press the effect of noise on domain migration. The actual
measured bearing vibration signals contain rich noise sig-
nals, which can cause redundancy in data-intensive places,
and denoising will help domain migration. As shown in
Figure 11, in order to simulate the actual working environ-
ment, Gaussian white noise is added to the target in the
experiment.

The experimental object is Ottawa bearing data. Three
different network structures CNN, ResNet, and RSBU-CW
are adopted to carry out the experiment according to the
set domain migration task. The noise intensity is −5 dB ~ 5

dB, 10 experiments are carried out for each migration diag-
nosis task, and finally, the average value is taken as the result.
As shown in Figure 12, the fault diagnosis accuracy of the
test set in Gaussian noise is the average of all migration
tasks. Among them, CNN and ResNet adopt convolution
blocks of the same size as RSBU-CW. From the final results,
it can be seen that the domain migration diagnosis effect of
RSBU-CW in high noise environment is better than that of
traditional CNN and ResNet and can maintain strong
robustness. This is because the backbone network adopts
the soft threshold as the shrinkage function, which effec-
tively suppresses the redundant noise features in the bearing
fault features, so as to give full play to the effect of the
domain adaptation method. Although the introduction of a
soft threshold will increase the amount of calculation of
the network, higher fault diagnosis accuracy under variable
working conditions of bearing is obtained. In order to fur-
ther compare the influence of soft threshold on model com-
plexity, Table 4 compares the training time of the three
models under the noise intensity of -5 dB and 5dB, respec-
tively. It can be seen that the improvement of the data pool-
ing layer in this paper has offset the influence brought by the
introduction of a soft threshold algorithm to a certain extent.

3.3.3. Network Visualization. Figures 13 and 14 are the net-
work visualization results embedded in the full connection
layer using t-distributed stochastic neighbor embedding (t-
SNE), where S represents the source domain sample, T rep-
resents the target domain sample, and S‐Na represents the
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Figure 13: Network visualization of CWRU dataset transfer task 3⟶ 1.
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normal sample in the source domain. It can be seen from the
clustering results that when no domain adaptation method is
used, classes in the same domain can be effectively distin-
guished, but classes with the same source domain and target
domain cannot get the correct mapping relationship, and a
large number of overlapping regions can be found in the
graph. Under the framework proposed in this paper, the
same category between source and target domains is aligned
well. Therefore, both the accuracy of domain adaptation and
the results of network visualization prove the effectiveness of
the network framework in this paper.

4. Conclusion

Based on the deep residual shrinkage network, this paper uses
the combination of conditional domain adversarial domain
adaptation and joint distribution domain adaptation to solve
the problems of low fault diagnosis accuracy, weak antinoise
performance, and weak generalization ability caused by load
change and noise interference in the actual operating environ-
ment of rolling bearing. According to the experiments on two
open-source datasets, the conclusions are as follows:

(1) The transfer method proposed in this paper inte-
grates the advantages of adversarial domain transfer
and joint distributed transfer. At the same time, by
adding the TSA regular term, it effectively solves
the problem of domain drift under unsupervised
domain adaptation. Compared with other traditional
preadaptation methods, the accuracy is increased. At
the same time, it improves the performance of trans-
fer between different fields and expands the applica-
tion scope of intelligent fault diagnosis. It provides a
new idea to solve the problem of facing a large num-
ber of unmarked data in bearing fault diagnosis

(2) Adding a soft threshold in the backbone network
improves the robustness of the whole network frame-
work. At the same time, in the antinoise experiment,
the performance of the deep residual shrinkage network
using a soft threshold is about 3% and 6% higher than
that of the traditional CNN and ResNet networks,
respectively, which realizes the antinoise function of
bearing fault diagnosis in industry. In addition, by
improving the pooling layer based on the concept mod-
ule, the feature information in the original data is effec-
tively extracted, so that this method can transfer the
feature information in the data efficiently

(3) The two datasets, respectively, contain the variable load
and variable speed operation of the bearing. From the
diagnosis accuracy of the final test set, the greater the
change difference between the source domain and the
target domain, the more difficult the transfer. However,
the dataset collection used in this paper is carried out in
the ideal experimental environment, and there is still a
gap with the actual industrial production environment.
Therefore, it is still a challenge to carry out early fault
prediction on the bearing data without labels under
complex variable working conditions. At the same time,
there is a lack of relevant comparative experiments on
the setting of network training parameters in this paper.
In the next research, it will be combined with other
intelligent algorithms for relevant optimization

Data Availability

The data used to support the findings of this study are
available from the Case Western Reserve University Bear-
ing Data Center Website (https://csegroups.case.edu/
bearingdatacenter/pages/welcome-case-western-reserve-
university-bearing-data-center-website).
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Figure 14: Network visualization of Ottawa dataset transfer task 3⟶ 1.
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The numerical model of supercavitating flow field was established based on multiphase model, cavitation model, and turbulence
model. The model was employed to simulate the supercavitation flow for the supercavitating vehicle with two types of control
surfaces: bow rudder and stern rudder. The influence of both control surfaces on the supercavity shape and rudder
effectiveness is compared under the different rudder angles (0-12°), and the effectiveness and the influences on supercavities of
bow rudder and stern rudder were explored according to the numerical research results. From the research results, the
following conclusions can be drawn: (1) the bow rudders have stable rudder effectiveness and available rudder angle, and the
bow rudders also have significant influence on supercavities’ shape. (2) By contrast with the bow rudder, stern rudders’
effectiveness is difficult to predict accurately, and the phenomenon of stalling will occur when stern rudders’ rudder angle
exceeds 6°; however, there is almost no influence of stern rudders on supercavities. (3) The bow and stern rudders joint control
mode must take the influence on supercavities’ shape and the accuracy of control force’s forecasting into account at the same
time. The research is helpful to the optimizing of superhigh-speed vehicles and the design of control modes.

1. Introduction

With the aid of a powerful propulsion device, the ultrahigh-
speed underwater vehicle can achieve a superhigh speed of
more than 200 kn in underwater [1], because it relies on
the unique hydrodynamic layout mode to achieve a substan-
tial reduction in the drag of the vehicle by wrapping most of
the body in the supercavity. However, due to the existence of
supercavitation, the hydrodynamic characteristics and the
response characteristics of the control system displayed for
the ultrahigh-speed vehicle are very different from those of
the conventional underwater vehicle. Therefore, the optimi-
zation of the hydrodynamic layout and the navigation con-
trol mode are the research focus and difficulty and are also
current research hotspots [2, 3]. The supercavitating vehicle
mainly adopts the stern rudder control mode, the bow rud-
der control mode, and the joint control mode of the bow and
stern control mode, and the precise prediction of rudder
effect and supercavity shape is the key to the research of
supercavitation navigation control technology [3, 4].

The supercavitation vehicle obtains greater control
power by increasing the wetted area of the rudder blade,
which can change the rudder effect characteristics and the
cavitation shape because of the interaction between the rud-
der blade and the cavitation. Ignoring the deformation of
supercavity and representing the rudder effect with the wet-
ted area of the theoretical rudder blade, Wang et al. [5] used
a wedge-shaped stern rudder as the control surface and stud-
ied the dynamic modeling and control problems. Li et al. [6]
proposed a hydrodynamic layout mode using bow rudder
control and studied the strong manoeuver control technol-
ogy of supercavitating vehicles through ballistic simulation,
but this study did not consider the effect of the hydroplaning
of the body because of the main body cavitation deformation
caused by the bow rudder. Dzieiski and Kurdila [7] proposed
a hydrodynamic prediction method for wedge-shaped rud-
der blades coupled with cavitation and studied the control
technology of supercavitating vehicle with the proposed
method. Kuklinski [8] used experimental methods to study
the formation and development of cavitation in disc
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cavitator, conical cavitator, star-shaped cavitator, and cone-
shaped cavitator with bow rudder and also carried quantita-
tive analysis of the influence of multiple supercavitation
morphology.

According to publicly published documents, the control
force of ultrahigh-speed vehicle mainly comes from the
hydrodynamic force of the bow rudder or the stern rudder.
The navigation control is mainly based on theoretical cavita-
tion to estimate the rudder effect according to the wetted
area. Accurate prediction of the control force of supercavi-
tating vehicle is very important for the optimization of
hydrodynamic layout and navigation control research. To
the best of our knowledge, there is no report on the study
of the interaction between supercavitation and rudder. Both
the bow rudder and the stern rudder cause the deformation
of the main body cavitation, and the change of the cavitation
shape also affects the rudder efficiency. In this paper, numer-
ical simulation is used to study the rudder effect of the bow
and stern rudder and the corresponding influence on the
supercavitation shape of the main body. The prediction
method of the rudder effect and the cavitation shape of the
supercavitation vehicle is proposed to demonstrate the bow
and stern rudder, and the pros and cons of the control mode
are also discussed. The research results of this paper can
provide references for the optimization of supercavitation
hydrodynamic layout and the research of navigation control
technology.

2. Numerical Model and Empirical Formula

For the study of supercavitation flow, the model test of low-
speed variation has many limitations, and the process of
high-speed cavitation test is difficult to control, and the
results are difficult to observe. A large number of verification
tests show that the numerical method simulates supercavita-
tion flow with good performance [9, 10]. Based on the
numerical methods and meshing strategies introduced in
the literature, numerical models were established for the
ultrahigh-speed aircraft with bow rudder and stern rudder
control modes, respectively, and the rudder effect of the con-
trol surface and its influence on the supercavitation shape
were also studied.

2.1. Description of the Problem. The control force of the bow
and tail rudders is derived from the fluid power of the rud-
der blades for a supercavitating vehicle, and the puncture
of the rudder blades will inevitably affect the cavitation
shape nearby and afterwards. The cavitation deformation
near the rudder blade will change the wetted area of the rud-
der blade, which in turn changes the rudder effect.

According to the position of the control surface, the
supercavitating vehicle mainly adopts three control modes:
the bow rudder mode, the stern rudder mode, and the joint
control mode of the bow and stern rudder. The stern rudder
mode relies on the rudder blade to pierce the cavitation to
generate control force, which is difficult to accurately predict
the rudder effect; the bow rudder mode uses the rudder
blades installed on the cavitator to control navigation, and
the rudder effect is stable, and the working distance is large,

which has a greater impact on the main body cavitation; the
joint control mode of the bow and stern rudder is a new type
of hydrodynamic layout mode, with the rudder piece of a
smaller size, which combines the characteristics of the bow
rudder mode and the stern rudder mode.

In this paper, numerical models were established for
supercavitating vehicle with different hydrodynamic layout
modes, and the rudder efficiency of the bow rudder and
stern rudder and their influence on the supercavitation
shape were studied, respectively. The bow and stern rudders
adopt the classic “cross” layout pattern. The tail rudder is
installed at the end of the cylindrical section of the vehicle,
and the bow rudder is arranged on the conical cavitator.
The layout of the bow and stern rudder is shown in Figure 1.

Both the bow rudder and the stern rudder use 24° wedge-
shaped rudder blades. The rudder blades and the dimensions
of the stern rudder model refer to a supercavitating under-
water vehicle that adopts the stern rudder control mode.
The diameter of the disc cavitator is 24mm, the chord length
is 20.18mm, and the spread length is 44mm. According to
the principle of approximate equal resistance, the cavitation
and tail rudder dimensions of the bow and rudder control
mode are designed, which uses a 90° cone-shaped cavitation
with a bottom diameter of 84mm, a bow rudder chord
length of 13.6mm, and a bow rudder maximum elongation
of 26.1mm, and rudder area is 301mm2. Considering that
the actual rudder effect of the stern rudder is related to the
high speed of cavitation puncture, the effective area of the
rudder blade is small, and the action distance of the rudder
force of the stern rudder is longer, so the area of the bow
rudder is only 20% of the area of the stern rudder.

2.2. Governing Equation. The governing equations involved
in the numerical simulation of supercavitation flow include
gas-liquid two-phase continuity equations, momentum
equations, and turbulence equations. According to literature
[11], the research content of this paper belongs to the homo-
geneous flow problem, and the mixture multiphase flow
model can be used. The cavitation problem can be consid-
ered by the mass transfer between the phases described by
the Schnerr and Sauer model. The turbulence simulation
adopts realizable k-e turbulence model, which is robust and
suitable for solving complex flow problems. The near-wall
processing method in turbulence simulation can use scaled
wall functions.

2.3. Model Processing and Meshing. This paper mainly stud-
ies the hydrodynamic characteristics of rudder blades under
supercavitation conditions when rudder blades exist. In
order to simplify the calculation process, the bow rudder
model establishes the geometric model of the conical cavita-
tion and the wedge-shaped rudder blades, without consider-
ing the rear body of the aircraft. The stern rudder model
needs to consider the puncture of the stern rudder to the
cavitation; therefore, a complete geometric model of the
supercavitating vehicle is established, including the disc
cavitator, the nose cone section, the cylindrical section, the
stern rudder, and the tail nozzle. On the basis of the bow
rudder and tail rudder models, the rudder blades are
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removed, and the model without appendage is established.
By comparing the numerical simulation results with or
without rudder blades, the influences of the bow rudder
and stern rudder on the cavitation shape are studied,
respectively.

For the numerical simulation of supercavitating flow
involving the capture of phase transition and two-phase
interface, a reasonable choice of the calculation domain scale
during modeling can reduce the influence of boundary con-
ditions on the calculation results. The diameter of the calcu-
lation domain is 35 times the maximum cross-sectional
diameter of the theoretical cavity. The distance between the
entrance of the calculation domain and the cavitator is 1
times the full length of the theoretical cavitation, and the
distance between the outlet of the calculation domain and
the cavitator is 2 times the full length of the theoretical
cavitation.

According to the established geometric models of the
bow and stern rudders, the GAMBIT software is used to
divide the structured grid, and a boundary layer to the near
wall is added, and the near wall grids are optimized to accu-
rately simulate turbulence based on the turbulence model’s
requirements for y + . The wake area around the rudder
blades and behind the rudder blades is divided into suffi-
ciently fine grids to accurately capture cavitation bubbles.
The grid independence test is carried to ensure that the
numerical simulation results of the cavitation shape and
fluid dynamics without the influence of the grid distribution.

According to the above-mentioned model simplification
method and grid division principle, the geometric model of
the rudder angle of 0°~12° is established, and the grid is

divided at 1° intervals, for the bow rudder and the stern rud-
der, respectively. The number of grid elements of the bow
rudder model is 1.8 million, while the number of grid units
in the stern rudder model is 2.2 million. The unattached
models for reference with the bow rudder and stern rudder
models are relatively simple, with a grid size of 0.9 million
and 1.2 million, respectively. Taking the 0° working condi-
tion as an example, the grid distribution of the bow rudder
and stern rudder models near the rudder blades is shown
in Figures 2(a) and 2(b), respectively.

2.4. Boundary Condition Setting. The calculation domain
uses a velocity inlet with free stream velocity of 100m/s.
The calculation domain uses a pressure outlet with an abso-
lute pressure of 118540Pa. The natural cavitation model is
used to simulate the generation and development of super-
cavitation with a cavitation pressure of 3540Pa. The calcula-
tion domain is surrounded by sliding walls, ignoring shear to
weaken the influence of the wall on the flow field.

3. Numerical Simulation Study of Bow and
Stern Rudder Models

According to the established bow rudder and stern rudder
models, numerical simulation studies were carried out,
respectively, and the hydrodynamic characteristics of the
rudder blades and the influence of the rudder blades on
the cavitation shape were obtained.

3.1. Layout of the Bow Rudder Mode. According to the
numerical results of the 0~12° rudder angle, the

(a) Installation of bow rudders (b) Installation of stern rudders

Figure 1: Local modes of the bow rudder and stern rudder: (a) the bow rudder; (b) the stern rudder.

(a) Grid of bow rudders (b) Grids of stern rudders

Figure 2: Grid distribution near the rudder blades. (a) The bow rudder model; (b) the stern rudder model.
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hydrodynamic characteristics of the bow rudder are
counted, and the rudder effect characteristics of the bow
rudder are obtained. Compared with the model excluding
the bow rudder, the influence of the bow rudder on the
major supercavity shape is obtained, by analyzing the defor-
mation of the supercavity.

3.1.1. The Influence of Bow Rudder on Supercavitation
Morphology. The bow rudder changes the inherent shape
of the rotating body of the cavitator, resulting in a change
in the shape of the supercavitation. Literature [12] pointed
out that during the motion of supercavitating vehicle, the
body would inevitably appear water skiing and be subjected
to greater “hydroplaning,” so the change of cavitation shape
will ultimately affect the motion characteristics of the vehi-
cle. In order to study the influence of the bow rudder on
the supercavitation, according to the numerical simulation
results of the bow rudder model, the supercavity shape is
characterized by the iso-surface of the 50% gas volume
fraction.

Considering that both the bow rudder and the rudder
angle will have a significant impact on the supercavitation
morphology, in order to highlight the focus of this research,
only the 0° rudder angle condition is taken as an example to
analyze the influence of the bow rudder on the supercavita-
tion morphology. The shape of the supercavitation, when
the bow rudder angle is 0°, is shown in Figure 3. The overall
cavitation morphology is shown in Figure 3(a), and the
initial cavitation morphology is shown in Figure 3(b). The
numerical simulation results shown in Figure 3 are similar
to the supercavity morphological characteristics obtained
by the water tunnel test of the star-shaped cavitation in the
literature [8].

Figure 3(a) shows that the supercavity generated by the
bow rudder model is ellipsoid-like overall, and the maxi-
mum cross-sectional diameter of the bubble is in the middle
position. The bow rudder cavitation has a great impact on
the previous part of the main cavity. Figure 3(b) shows that
four tail cavities are pulled out by the bow rudder, which
significantly changes the morphology of the forepart of the
supercavity. With the development of the main cavity, the
tail cavities gradually merge with the main cavity.

The bow rudder model adopts the “cross-rudder” layout
mode, which makes the cavitation profile of the cross-
section of the rudder blade different from other section.
According to the numerical simulation results, the cavitation
axial section contour lines are extracted, and the cavitation
contour lines through the axial section of the rudder blade
and the axial section between the two rudder blades are,

respectively, extracted for the bow rudder model. The two
sections are vertical section (section 1) and 45° oblique sec-
tion (section 2), which are reflected in the axial view of the
bow rudder model in Figure 1. The comparison between
the different cross-sectional contour lines of the supercavita-
tion of the bow rudder model and the cavitation longitudinal
profile of the no bow rudder model is shown in Figure 4.

Figure 4 shows that under the same flow conditions, the
geometric dimensions of the supercavitation generated by
the bow rudder model are larger than the supercavitation
generated by the single cavitation model, in which the axial
length is 7.7% larger. The cavitation profile of section 1 is
affected by the bow rudder, and the symmetry of the cavita-
tion bubble is destroyed, and the section with the largest
radial dimension moves backward. The radial dimension of
section 2 is larger than that of section 1, and the profile of
the cavitation is still elliptical. With the development of
cavitation, the difference between section 1 and section 2
gradually decreases.

In order to study the influence of the bow rudder on the
cavitation development process, according to the numerical
simulation results, the cavitation contours of the cross-
sections at different axial positions with the distances of
0.1 Lm, 0.3Lm, 0.5 Lm, and 0.7 Lm from the cavitation are
extracted and compared. The comparison of the cavitation
contour lines corresponding to different axial positions is
shown in Figure 5.

Figure 5 shows that the bow rudder has a significant
effect on the shape of supercavitation and will change the
original circular cross-section of the cavity. The rudder blade
changes the position of the cavitation seriously, and the
cavitation depression caused by the bow rudder disappears
after the middle section.

3.1.2. The Hydrodynamic Characteristics of the Bow Rudder.
The wetness of the bow rudder is not affected by the super-
cavitation of the main body; therefore, the rudder effect is
stable during the steering process, and the control force is
only related to the rudder angle. The hydrodynamic force
of the bow rudder includes the resistance in the same direc-
tion as the incoming flow and the lift perpendicular to the
incoming flow. In order to facilitate the analysis, the hydro-
dynamics of the bow rudder are dimensionless, and the ref-
erence quantities are the incoming flow velocity, the density
of water, and the wetted area of the rudder blades (the
wetted area of the rudder blades is defined as the area of
the longitudinal section of the wetted part). The hydrody-
namic characteristics of the bow rudder after the nondimen-
sionalization are shown in Figure 6.

(a) Supercavity produced by cavitator with bow rudders (wholly) (b) Supercavity produced by cavitator with bow rudders (partly)

Figure 3: Supercavitating shape when the rudder angle of the bow and rudder is 0°. (a) The overall cavitation morphology; (b) the initial
cavitation morphology.
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Figure 6 shows that the lift coefficient of the bow rudder
is positively correlated with the rudder angle. The linearity is
good in the range of 0~10°, and it is nonlinear in the range of
10~12°, and the lift derivative gradually decreases. With the
increase of the rudder angle, the drag coefficient of the bow
rudder is almost unchanged within the range of 0~5°, and it
increases significantly in the range of 6~12°. The drag coeffi-
cient of 12° rudder angle is about 80% higher than that of 0°

rudder angle. The bow rudder reaches the maximum lift-to-
drag ratio of 2.4 at 10° rudder angle.

3.2. Layout of the Stern Rudder Mode. According to the
numerical simulation results of the stern rudder model with
a rudder angle of 0~12°, the hydrodynamic characteristics of

the stern rudder are counted to obtain the rudder effect
characteristics of the stern rudder. Compared with the
model excluding the stern rudder, the influence of the stern
rudder on the major supercavity shape is obtained, by ana-
lyzing the deformation of the supercavity.

3.2.1. The Influence of Stern Rudder on Supercavitation
Morphology. According to the numerical simulation results,
the supercavitation of the stern rudder model and the unat-
tached vehicle model is compared, and the influence of the
stern rudder on the main body supercavitation is analyzed.
The stern rudder is located at the tail of the cylindrical sec-
tion of the supercavitation vehicle, and the shape of the main
body’s cavitation tail is mainly determined by the drainage
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of the engine nozzle for actual vehicle. Therefore, the main
concern is the influence of the stern rudder on its previous
supercavitation morphology. The main cavitation compari-
son of the stern rudder model and the unattached model is
shown in Figure 7(a). The supercavitation contour line
obtained by comparing the stern rudder with and without
the stern rudder is shown in Figure 7(b).

Figure 7(a) shows that the stern rudder model and the
unattached vehicle model have the same shape and size of
the supercavitation. Figure 7(b) shows that the supercavita-
tion contour lines obtained from the stern rudder model
with and without the stern rudder model almost coincide
before the rudder blade, which indicates that the stern rud-
der does not affect the shape of the supercavitation in front
of the rudder.

The stern rudder punctures the main body cavitation,
and the high pressure area of the rudder surface causes the
cavitation near the rudder blade to dent, which makes the
actual wet condition of the stern rudder change significantly.
Studying the influence of the stern rudder on the cavitation
shape near the rudder blade is helpful to predict the effective
wetting area of the rudder blade, and then accurately predict
the rudder effect. The comparison between the numerical
simulation results and the experimental results of the
supercavity deformation of the main body caused by the
stern rudder is shown in Figure 8(a). The intersections
of cavitation with stern flat rudder and stern straight rud-
der are shown in Figure 8(b). Figure 8(a) is a water tunnel
test result of low-velocity ventilated supercavity. It is
different from the numerical simulation conditions and
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shows that the stern rudder can cause the cavitation of the
main body.

As shown in Figure 8(a), both the numerical simula-
tion and water tunnel test results show that the rudder
blade piercing the cavitation will cause supercavity defor-
mation. Figure 8(b) shows that, when the angle of attack
of the vehicle and the rudder angle of the stern rudder
are both 0°, the actual wetted area of the stern rudder is
800mm2, which is 246mm2 larger than the theoretical
wetted area. Therefore, the prediction of the rudder effi-
ciency of the stern rudder should consider the supercavity
deformation. There is a big difference between the rudder
efficiency based on the theoretical cavitation shape and the
actual situation.

3.2.2. The Hydrodynamic Characteristics of the Bow Rudder.
The rudder effect of the stern rudder is directly related to the
wetted area of the rudder blade, and the control force is not
only related to the rudder angle but also affected by the
actual wetted condition of the rudder blade. According to

the numerical simulation results, the hydrodynamic force
received by the stern rudder is counted, and the rudder effect
of the stern rudder under the condition of cavitation punc-
ture is studied. The analysis method of the stern rudder
hydrodynamic characteristics and the dimensionless process
referred to the bow rudder model are also studied. The
hydrodynamic characteristic curve of the stern rudder is
shown in Figure 9.

Figure 9 shows the stern rudder lift characteristics
show two different stages when supercavitation is punc-
tured. The lift coefficient in the range of 0~6° has good
linearity with respect to the rudder angle, and the lift
coefficient of the rudder blade decreases abruptly at a
rudder angle of 7°, even stalling occurs. The lift coeffi-
cient is still positively related to the rudder angle within
the range of 7~12°, but it is only equivalent to the lift
level at the rudder angle of 5~6°. The drag coefficient
of the stern rudder in the range of 0~5° rudder angle
does not change much, and it increases significantly with
the increase of the rudder angle in the range of 5-12°.
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The drag coefficient of the rudder angle of 12° increases
by 60% relative to 5°.

4. Discussions

Figures 3–5 show the supercavitation generation and devel-
opment of the bow rudder model, indicating that the bow
rudder has a significant influence on the supercavitation
morphology. The cross-sectional profile of the bubble is no
longer circular, and the symmetry of the bubble is affected.
Figures 7 and 8 show the generation and development of
supercavitation in the stern rudder model, indicating that
the stern rudder has little effect on the main cavitation and
does not affect the shape and size of the cavitation in front
of the rudder, but only causes local depression of the super-
cavity near the rudder blade.

Figures 6 and 9 show the hydrodynamic characteristics
of the bow rudder model and the stern rudder blade, respec-
tively. The lift coefficient of the bow rudder continues to
increase with the increase of the rudder angle in the range
of 0-12°. The lift coefficient of the stern rudder increases
with the increase of the rudder angle in the range of 0-6°.
The lift coefficient of the blade drops suddenly when the
rudder angle is 7°. Although the lift coefficient in the range
of 7-12° is positively correlated with the rudder angle, the
value is only equivalent to the lift level at 5-6°. The maxi-
mum lift coefficient of the bow rudder is 0.41, while the stern
rudder is only 0.19. Taking the effective wetted area of the
rudder blade as a reference value, the lift derivative of the
bow rudder is greater than that of the stern rudder. In addi-
tion, considering that the distance from the cavitation of the
conventional supercavitation vehicle to the center of gravity
is about twice the distance from the stern rudder to the cen-
ter of gravity, therefore, the bow rudder control mode has
better maneuverability.

In summary, the bow rudder model has good hydrody-
namic characteristics, stable rudder efficiency, and large
usable rudder angles. Thus, the bow rudder of the same size
can provide greater control force and torque for the aircraft,
but it has a greater impact on the cavitation shape, which
will affect the prediction accuracy of the hydroplaning of
the hull. The influence of the stern rudder model on the pre-
vious supercavitation shape of the rudder blade is negligible,
but its effective wetting length is affected by the relative
position between the vehicle and the supercavitation. In
addition, the cavitation near the rudder blade also signifi-
cantly affects the effective wetting area of the rudder blade,
which brings difficulties to the hydrodynamic prediction of
the stern rudder.

Based on the above analysis, the advantages and disad-
vantages of the supercavitating vehicle bow and stern rudder
control modes are complementary. Reducing the elongation
of the bow rudder reasonably weakens the influence of its
multicavitation morphology, and reducing the chord length
of the stern rudder can weaken the influence of the main
cavitation on the rudder effect. Therefore, a large aspect ratio
bow rudder and a small aspect ratio stern rudder are used to
implement joint control of the supercavitation vehicle,

which can simultaneously take into account the supercavita-
tion shape and control force.

5. Conclusions

In this paper, a numerical model is established for the super-
cavitating vehicle in the bow and rudder control mode, and
the numerical simulation is carried out for the 0~12° rudder
angle. According to the numerical simulation results, the
influence law of supercavitation shape and its hydrodynamic
characteristics of the bow and stern rudder are studied. The
following conclusions can be drawn:

(1) In the bow rudder control mode, the rudder blades
have good hydrodynamic characteristics, stable rud-
der effect, and large available rudder angles, which
can provide greater control force and torque. The
bow rudder has a greater influence on the supercav-
ity morphology, and the cross-sectional profile of the
cavity before the midsection is significantly changed

(2) In the stern rudder control mode, the rudder blade
has almost no effect on the cavitation shape in front
of the rudder. The wetted length of the rudder blade
is determined by the relative position relationship
between the aircraft and the cavitation, and the
actual rudder effect is related to the attitude and
supercavitation morphology of the aircraft. The con-
trol force of the stern rudder is difficult to predict
accurately

(3) The advantages and disadvantages of the bow rudder
control mode and the stern rudder control mode are
complementary. The use of a small aspect ratio bow
rudder and a large aspect ratio stern rudder to imple-
ment joint control of the aircraft can simultaneously
take into account the supercavitation shape and con-
trol force

The research in this paper can provide a reference for the
optimization of the hydrodynamic layout of the supercavi-
tating vehicle and the design of the control model.
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A new parameter identification method under non-white noise excitation using transformer encoder and long short-term memory
networks (LSTMs) is proposed in the paper. In this work, the random decrement technique (RDT) processing of the data is
equivalent to eliminating the noise of the raw data. In general, the addition of the gate in LSTM allows the network to
selectively store data, which avoids gradient disappearance and gradient explosion to a certain extent. It is worthwhile
mentioning that the encoder can learn the essence of data, which reduces the burden for the LSTM. More specifically, establish
as simple LSTM structure as possible to learn the data of this essence to achieve the best training effect. Finally, the proposed
method is used for simulation and experimental verification, and the results show that the method has the advantages of high
recognition accuracy, strong anti-noise ability, and fast convergence rate. Specially, the results indicated appropriate accuracy
proposed by deep learning combined with traditional method for parameter identification as well as proper performance of the
proposed method.

1. Introduction

Operational modal analysis only needs to measure the vibra-
tion response data of the structure, and there is no need to
measure the input excitation, which saves the measure cost.
In addition, the modal parameters can be directly applied to
the on-line health monitoring and damage diagnosis of the
structure. What is more, for some complex and large struc-
tures, such as aerospace vehicles, offshore platforms, and brid-
ges, it is difficult to measure the excitation under the actual
working conditions, so it is of great engineering significance
to identify the modal parameters directly from the time-
domain response signals of the structure [1–4]. Conventional
modal analysis methods usually assume that the excitation of
the structure is white noise, but in fact, in the working state
of the structure, the ambient excitation is mostly non-white
noise. Therefore, the research on structural modal parameter
identification under non-white noise excitation is beneficial
to the further development of structural dynamic analysis
technology, so as to be better applied to engineering.

The RDT was a time-domain method to identify modal
parameters proposed by Cole [5]. Subsequently, Ibrahim
extended the RDT method to the field of multichannel
signals and formed Ibrahim time-domain method, which
was successfully applied to modal parameter identification
of spacecraft model structure [6]. The RDT was originally
applied to linear single degree of freedom systems with
constant damping ratios, which was later used to extract
aerodynamic damping from random crosswind responses
[7]. Moreover, Kordestani et al. have proposed a two-stage
time-domain output-only damage detection method with a
new energy-based damage index [8]. As mentioned earlier,
the RDT is used for monitoring and determining structural
performance, being able to predict damage and handle the
occurrence of sudden failures during operation of the struc-
ture. In brief, the RDT is considered as a unique nondestruc-
tive testing method, which is widely used in aerospace, civil
engineering, and mechanical engineering [9]. In addition,
other time-domain methods, such as natural excitation tech-
nique (NExT), eigensystem realization algorithm (ERA), and
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stochastic subspace identification (SSI), have also been
applied in engineering [10–15]. In general, the time-
domain methods use the measured response signal to iden-
tify the modal parameters of the system directly without
Fourier transform, which reduces the data transformation
error, but the anti-noise ability is poor.

On the contrary, deep learning methods demonstrate
more attractive advantages in the anti-noise interference
and can be used in damage assessment, health monitoring,
modal identification, and so on [16, 17]. Hopfield invented
a single-layer feedback neural network Hopfield network to
solve combinatorial optimization problems, which is the
prototype of the earliest RNN [18]. Nevertheless, given the
abundant literature for RNN, it is noticeable that the
conventional RNNs usually suffer from a dilemma between
the long-range dependence and gradient vanishing. As a
remedy, Hochreiter and Schmidhuber proposed the LSTM
[19], which greatly alleviated the problem of the early
RNN training by using gating unit and memory mechanism.
Subsequently, Gers et al. [20] introduced the forgetting gate
mechanism on the basis of literature [19], so that the LSTM
can reset its own state. Specifically, Greff et al. [21] reviewed
the development of the LSTM, compared and analyzed the
abilities of eight LSTM variants in speech recognition, hand-
writing recognition, and chord music modeling, and proved
that forgetting gate and output activation function are the
key components of the LSTM. It is fair to assert that the neu-
ral network represents the most successful identification
technology used in the modeling of dynamic system, and it
has a unique advantage in antinoise interference; scholars
began to study the parameter identification method based
on neural network, aiming at better application in practical
engineering [22, 23]. Many attempts have already started
in this field, such as Xu and Wang who proposed a RNN-
based approach for modal parameter identification of
structure-unknown systems [24]. Then, the work [25] pre-
sented a structural identification method based on RNN
and autoregressive and moving average (ARMA) model.
Zhang et al. studied the modal parameter identification
based on neural network with ARMA [26]. RNNs have
unique advantages in processing time series data, and the
time-domain method for modal parameter identification
based on RNNs has great development potential.

Generally speaking, the limitation of the conventional
OMA methods on input-type greatly reduces the adaptabil-
ity of this method in practical engineering application. How-
ever, using the advantages of traditional methods and neural
networks to establish a new method is worth studying. For
this purpose, an adaptive operational modal analysis method
using encoder LSTM with RDT is proposed in this paper.
Initially, the data is processed by RDT, so that the recogni-
tion accuracy is the highest on the premise of simplifying
the model as much as possible. In the second step, with the
addition of encoder, LSTM can be regarded as a decoder in
autoencoder. Then, establish the simplest network structure
as possible to achieve the best performance. Finally, the
results indicated appropriate accuracy proposed by encoder
LSTM for parameter identification as well as proper perfor-
mance of the proposed method. The rest of this paper is

organized as follows. The RDT and the architecture of LSTM
are described in Section 2. The proposed method and its
simulation are described in Section 3. Experimental verifica-
tion is described in Section 4. Finally, conclusions are given
in Section 5.

2. Background

2.1. RDT. RDT extracts the free attenuation vibration
response from the response of ambient excitation by means
of average and mathematical statistics [5–7]. In a linear mul-
tidegree of freedom system, the forced vibration response of
a measuring point under arbitrary excitation can be
expressed as

y tð Þ = y 0ð ÞD tð Þ + _y 0ð ÞV tð Þ +
ðt
0
m t − τð Þu τð Þdτ, ð1Þ

where DðtÞ is the free vibration response of the system with
an initial displacement of 1 and an initial speed of 0; VðtÞ is
the free vibration response of the system with initial
displacement 0 and initial velocity 1; yð0Þ and _yð0Þ are the
initial displacement and initial velocity of the system vibra-
tion, respectively; mðtÞ is the unit impulse response function
of the system; uðtÞ is external excitation.

Selecting the appropriate constant A to intercept the ran-
dom vibration response of a structure in situ yðtÞ, and a
series of different intersection times ti (i = 1, 2,⋯,N) are
obtained. The response from time ti can be expressed as

y t − tið Þ = y tið ÞD t − tið Þ + _y tið ÞV t − tið Þ +
ðt
ti

m t − τð Þu τð Þdτ:

ð2Þ

Since the uðtÞ is stable, the starting point of time does
not affect randomness. The yðt − tiÞ time series starting
point ti is moved to the origin of coordinates, and the corre-
sponding subsample function can be expressed as

xi tð Þ = AD tð Þ + _y tið ÞV tð Þ +
ðt
0
m t − τð Þu τð Þdτ: ð3Þ

Take the statistical average of xiðtÞ

x tð Þ = 1
N
〠
N

i=1
xi tð Þ ≈ E AD tð Þ + _y tið ÞV tð Þ +

ðt
0
m t − τð Þu τð Þdτ

� �

≈ AD tð Þ + E _y tið Þ½ �V tð Þ +
ðt
0
m t − τð ÞE u τð Þ½ �dτ:

ð4Þ

The excitation uðtÞ is random vibration with the mean
value of 0, and the system vibration response yðtÞ and _yðtÞ
are also stationary random vibration with mean value of 0.

E u tð Þ½ � = 0,

E _y tið Þ½ � = 0,

(
ð5Þ
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x tð Þ ≈ AD tð Þ: ð6Þ
After RDT processing, the free vibration response with

initial displacement A and initial velocity 0 is obtained
[5–9]. RDT has the characteristics of simplicity and clear
physical meaning, so it is used in the preprocessing part of
the dataset.

2.2. LSTM. RNN is very effective for data with sequence
characteristics, and it can mine temporal information in data
[16]. However, due to the problems of gradient vanishing
and gradient exploding, the training of RNN is very difficult
and its application is very limited. Compared with RNN,
LSTM has gating unit and memory mechanism and can
selectively store information, so it solves the problems of
gradient disappearance and gradient explosion.

In the LSTM, for each element in the input sequence,
each layer computes the following function:

it = σ Wiixt + bii +Whiht−1 + bhið Þ, ð7Þ

f t = σ W ifxt + bif +Whf ht−1 + bhf
� �

, ð8Þ

gt = tanh Wigxt + big +Whght−1 + bhg
� �

, ð9Þ

ot = σ Wioxt + bio +Whoht−1 + bhoð Þ, ð10Þ

ct = f t ⊙ ct−1+it ⊙ gt , ð11Þ

ht = ot ⊙ tanh ctð Þ, ð12Þ

tanh xð Þ = ex − e−x

ex + e−x
, ð13Þ

where ht is the hidden state at time t, ct is the cell state, xt is
the input, ht−1 is the hidden state of the layer at time t − 1 or
the initial hidden state at time 0, and it , f t , gt , and ot are the
input, forget, cell, and output gates, respectively. σ is the
sigmoid function, and ⊙ is the Hadamard product.

The method of Adam (adaptive moment estimation)
[27] is used to optimize, which has the advantages of simple
implementation, high efficiency, less memory consumption,
and suitable for large gradient noise problems. The loss
function is mean square error (MSE) as follows.

Loss =
1
2M

〠
M

i=1
yi − yyið Þ2, ð14Þ

where M is the total number of samples, yi is the actual
output value, and yyi is the predicted output value.

3. The Proposed Method

Generally speaking, the rocket works in stages during
launch, and the length is changing. Therefore, it is necessary
to study the dynamic characteristics of beams with varying
length. A cantilever beam with different length is taken as
an example to verify the proposed method. The flowchart
of the proposed method is shown in Figure 1.

3.1. Dataset Processing. Here, the cantilever beams with 11
different lengths are used for numerical simulation. Further-
more, each beam is divided into 10 elements (as shown in
Figure 2 and Table 1). The modal damping ratios of the
cantilever beam are set to 0.01. The lengths of these beams
are 0.75m, 0.755m, 0.76m, 0.765m, 0.77m, 0.775m,
0.78m, 0.785m, 0.79m, 0.795m, and 0.80m. The beam is
excited by uncorrelated white noise input, and the outputs
are acceleration responses.

The construction of dataset is the first and foremost step of
network training. Before going into the model, data prepro-
cessing is particularly important. The acceleration response
signal preprocessed by RDT and analytical solution are
regarded as the input and output data of the network, respec-
tively. More specifically, the dataset is composed of 11000
samples, and each sample is a two-dimensional matrix. The
ratio of training and testing data is 8 : 2.

I tð Þ = RDT y tð Þ½ �, ð15Þ

where RDT½·� denotes the RDT, as described in Section 2.1.

3.2. The Encoder LSTM Model. Transformer encoder layer is
made up of self-attention and feedforward network. The
encoder can get the essence of the raw data, and then, we
only need to create a small neural network to learn the
essence of the data, which not only reduces the burden of
the neural network but also achieves good results. The data-
set is written into g = ½g1, g2,⋯, gt ,⋯� after being processed
by the transformer encoder layer.

Then, g is substituted into the LSTM layer for
calculation.

L = LSTM gð Þ, ð16Þ

where LSTM½·�denotes the LSTM network calculation,
which is detailed in Section 2.2.

Finally, in the full connection layer,

Yi = PReLU LiWi + Bið Þ, ð17Þ

where L and Y are input and output data, respectively. The
PReLU function is selected in the fully connected layer,
which is characterized by fast convergence and simple gradi-
ent calculation,

PReLU xð Þ =
x x ≥ 0,

ax otherwise:

(
ð18Þ

In brief, the proposed encoder and LSTMmodel are con-
sist of the transformer encoder layer, the LSTM layers, and the
fully connected layer (Figure 1). For convenience, we use E, L,
and F to represent the transformer encoder layer, the LSTM
layer, and the fully connected layer, respectively. When given
data, the model first uses the transformer encoder layer E1 to
learn features, where the number of expected features in the
input is 512, and the number of heads in the multihead atten-
tion models is 8. Then, the features in E1 are inputted into the
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layer L2 for deep learning through LSTMs. In the LSTMs, the
number of expected features in the input is 512, the number of
features in the hidden state is 256, and the number of recur-

rent layers is 3. Finally, the result is obtained after the calcula-
tion of the FC3. The network training process uses loss
function to iterate until convergence.

RDT

Encoder

Dense

LSTM

Acceleration
response Modal 

parameters

Figure 1: Flowchart of the proposed method.
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Figure 2: The structure diagram of the simulation example.

Table 1: The experimental and physical parameters of the 11 beams.

Physical parameters Experimental parameters
Section height (m) Width (m) Elastic modulus (Pa) Mass density (kg/m3) Spectral lines Analysis frequency band (Hz)

0.012 0.06 7:1 × 1010 2770 1600 1000

269.08

0.75

18
17
16
15

110
100

300
280

600
550

0.755 0.76 0.765 0.77 0.775 0.78 0.785 0.79 0.795 0.8

0.75 0.755 0.76 0.765 0.77 0.775 0.78 0.785 0.79 0.795 0.8

15.33
15.33

96.1 96.1

0.75 0.755 0.76 0.765 0.77 0.775 0.78 0.785 0.79 0.795 0.8
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z)
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527.29
527.80

Finite element solution
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Figure 3: The natural frequencies of the simulation example.
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3.3. Results. Here, the encoder LSTM was established by
repeatedly training with the iteration steps as 100 and the
learning rate as 0.001. It is widely known that the finite ele-
ment method can be directly used to solve the modal param-
eters of beam [28, 29]. And the natural frequency equation
can be determined by the vibration differential equation [30]
and boundary conditions, and then, the natural frequencies
of the beam can be obtained.What is more, the analytical solu-
tion is taken as the output of the network and compared with
the finite element solution (as shown in Figures 3 and 4).

Additionally, the beam with length = 0:8m is taken as an
example to illustrate. It is generally known that signal to
noise ratio (SNR) [31] is a common index to evaluate the
strength of noise in a signal. When the signal contains more
noise, the value of SNR is smaller. Psignal is the power of the
effective signal in the signal, and Pnoise is the power of the
noise in the signal. So in order to test the antinoise ability
of the proposed method, noise with different SNR is added
to the response data of the beam. Then, the data is prepro-
cessed to establish a dataset. Finally, the dataset is
substituted into the model for training and tested.

Error =
Estimate value‐reference value

Reference value
× 100%, ð19Þ

SNR = 10 lg
Psignal

Pnoise

� �
: ð20Þ

The MSE of the first 10 steps is greatly reduced, and it is
close to the optimal value in the 20th step, reaching 10-5

orders ofmagnitude in the 50th step and the 100th step, which
indicates that the proposed method has the advantage of fast
convergence (as shown in Figure 5). In addition, the results
of the beamunder different SNRs are the same, which indicate
that the proposed method has strong anti-noise performance.

4. Experimental Verification

4.1. Dataset Processing. A slender aluminum beam (as
shown in Figure 6) is selected as the experimental specimen.
The shaker table provides a base excitation along the Y
direction. The sixth acceleration sensor measures the excita-
tion signal, including white noise and non-white noise
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Figure 4: The modal shapes of the simulation example.
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Figure 5: Loss functions with different SNRs.
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excitations, and other sensors measure the response signals.
The settings are shown in Table 2. The acquisition equip-
ment is the Agilent VXI plus and play system. Sensors are
the sensory organs of various mechanical and electronic
devices. Without sensors to capture and convert the original
information accurately and reliably, all measurement and
control cannot be realized [32, 33]. The sensor type is PCB
333B32 SN 25222.

The conventional OMAmethod usually assumes that the
excitation of the structure is a uniform spectrum excitation.
However, in the operational state of structures, such as the
flight of aerospace, the passing of bridge, the wind load, or
the earth pulsation action of high-rise structure, the ambient
excitation is mostly nonuniform. All these states will restrict
and affect the application and accuracy of the conventional

OMA method. Therefore, the modal analysis must be con-
ducted under the nonuniform excitation spectrum. Tradi-
tionally, the four typical non-white noises correspond to
blue noise, pink noise, purple noise, and brown noise. In
order to make a more comprehensive study of different
non-white noise excitation, the excitation spectra of four
typical colored noise and white noise are mixed to excite
the structure. Here, two typical trapezoidal spectra ambient
excitations are used to excite the beam, and the vibration
environment of the trapezoidal spectrum base excitation is
controlled by the shaker table controller. Excitation spec-
trum 1 can be regarded as a combination of blue noise, nar-
row band white noise, and pink noise. Excitation spectrum 2
can be regarded as the combination of purple noise, narrow
band white noise, and brown noise. More specifically, the

2 3 4 5
6

1

0.2 m
0.16 m 0.16 m 0.16 m 0.16 m 0.16 m

L = 1 m 

Y

Figure 6: Experimental system.

Table 2: Experimental and physical parameters of the experimental example.

Physical parameters Experimental parameters
Length
(m)

Section height
(m)

Width
(m)

Elastic modulus
(Pa)

Mass density
(kg/m3)

Spectral
lines

Analysis frequency band
(Hz)

Sampling frequency
(Hz)

1 0.012 0.06 7:1 × 1010 2770 800 1000 2560

3 dB/OctPSD

6 dB/Oct

f1 f2 f1 f2

f1 f2f1 f2

PSD

−3 dB/OctPSD

−6 dB/Oct
PSD

Blue noise Pink noise
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Figure 7: Four typical non-white noises and excitation spectrums.
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spectrums inflection frequency are 10, 100, 600, and
1000Hz, respectively (as shown in Figure 7).

The acceleration response signals generated under the
excitation of the white noise excitation spectrum, the excita-
tion spectrum 1, and the excitation spectrum 2 are denoted
as data 1, data 2, and data 3, respectively. Under laboratory
conditions, the method of using the simultaneously mea-
sured excitation and response signals of the structure to
obtain the transfer rate function of the system for parameter
identification is called experimental modal analysis method
(the results obtained by this method are referred to as
expected output). The acceleration response signals prepro-
cessed by RDT are still used as the input of the network,
but the difference is that the output data of the network
are the results of experimental modal analysis.

4.2. Model Training and Results. Under the laboratory con-
ditions described in Section 4.1, NExT-ERA, NExT-ARMA,
Data-Driven SSI (SSI-DATA) [34], Covariance-Driven SSI
(SSI-COV) [35], frequency and spatial domain decomposi-
tion (FSDD) [36], and other methods are used to identify
the modal parameters of the data 1, and the results are
compared with the proposed method. Obviously, the natural
frequencies identified by the proposed method are consistent
with the expected output, so the recognition accuracy of the
proposed method is higher than other methods (as shown in
Figure 8). The damping is greatly affected by the external
noise, and the recognition results of the proposed method
are similar to NExT-ARMA method and FSDD method (as
shown in Figure 9). The modal shape is consistent with the
actual situation (as shown in Figure 10). Mode is the natural
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vibration characteristic of the structure. Each mode has a
specific natural frequency, damping ratio, and modal shape,
so the modal parameters of the structure will not change due
to different excitations. Nevertheless, taking EFDD and
FSDD as examples, there are modal leakages and false modes
in parameter identification of the data 2 and the data 3 (as
shown in Figure 11), and the results are inconsistent with

the data 1, thereby suggesting that the conventional OMA
method is not suitable for non-white noise excitation.

In order to test the performance of the proposed
method, different network structures are used to train and
test the same data, and the data includes data 1, data 2,
and data 3. More specifically, Model 1 means that the data
is not processed by RDT, but directly trained by RNN.
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Model 2 means that the data is not processed by RDT but
directly trained by the encoder LSTM.

Obviously, Model 1 has obvious bulge in step 17, and
Model 2 has obvious bulge in step 25, which indicates that
these network training effects are not good (as shown in
Figure 12). Fortunately, the loss function of the proposed
method is smooth, and the results are consistent with
Figure 8, which shows that the network training effect is
good and the modal parameter identification accuracy of
the data is high. As well in the loss function of the proposed
method, the MSE of the first 10 steps is greatly reduced, and
it is close to the optimal value in the 20 steps, reaching 10-5

orders of magnitude in the 50th step and the 100th step,
which shows that the proposed method has a fast conver-
gence rate. As mentioned earlier, the proposed method has
strong generalization ability.

5. Conclusion

An adaptive operational modal analysis method using trans-
former encoder and LSTM is proposed and has been applied
to extract the mode from the acceleration response of canti-
lever beam model. Simulation and experimental results show
that the proposed method has the advantages of strong anti-
noise ability, fast convergence, and high accuracy, which
provides a new method for the application of modal analysis
in engineering.

(a) In the simulation, the proposed method is used to
identify the response data with noise of different
SNR, and the results are the same, which proves that
the method has strong anti-noise ability.

(b) In the experiment, different treatment methods are
used for the beam, and the recognition results show
that the proposed method is the best. Furthermore,
in the loss function of the proposed, the first 10 steps
decay rapidly and approach the optimal value at 20

steps, and the MSE of the 50th and 100th steps is
in the order of 10-5, which shows that the proposed
method has a fast convergence rate.

(c) In the experiment, compared with other conven-
tional methods, the proposed method has higher
recognition accuracy for the data 1. In addition, the
result of the data recognition by the proposed
method is consistent with that of the data 1, and
the convergence speed is fast, which shows that the
method has strong generalization ability.
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This paper studies a semiconductor wireless sensor system, which is composed of a semiconductor wireless sensor sampling
circuit, gas-sensitive signal alarm and wireless transmitting circuit, and wireless radio frequency signal receiving circuit. The
system is suitable for wireless monitoring of hydrogen fluoride gas in chemical plants. The hydrogen fluoride gas sensor is
designed, integrated, and classified according to the polarity and size of the sensor output signal. The signal processing circuit
of the sensor output signal is made with an integrated design. This paper developed a simulation experimental system for the
wireless monitoring network characteristics of toxic hydrogen fluoride gas and completed the monitoring system’s sensor
characteristic calibration and accuracy comparison simulation experiment, the communication distance test experiment of the
communication system, and the research experiment on the influence of environmental humidity on the sensor characteristics
of the monitoring system. In terms of software, the workflow of network nodes has been optimized. Since the structure of the
wireless sensor network is not exactly the same in different application fields, the toxic gas monitoring system based on
wireless sensor networks must focus on extending the network’s life cycle. Without affecting the normal operation of the
system, distributed compressed sensing can greatly extend the service life of the system. Therefore, this subject combines the
compressed sensing technology developed in recent years with the air monitoring system for the processing of transmission
data, in order to achieve the purpose of further reducing the energy consumption of the system. The simulation experiment
demonstrated that the lmF neural network combined with gas sensor array technology can realize qualitative identification,
quantitative analysis of single gas, and quantitative analysis of mixed combustible gas. The research work in this area also
provides a new way to further combine the miniature hydrogen fluoride gas sensor unit with sensor technology, integrate the
hydrogen fluoride gas sensor unit and the electronic tag, and expand the wireless application of the gas sensor.

1. Introduction

Toxic chemical leaks caused by chemical plant explosion acci-
dents, forest fires, etc. could result in severe damage to human
beings and be disastrous for the environment. With the devel-
opment of science and technology, gas monitoring technology
has been further developed, and various real-time and contin-
uous detection equipment has appeared [1–3]. The increasing
attention to hydrogen fluoride leak requires the expansion of
the scope of the monitoring environment. It is difficult for a
single monitoring point to cover these monitoring environ-
ments and monitor the measured environment in real time,
so a preliminary environmental monitoring network has

emerged [4]. Based on the wired system, data of eachmonitor-
ing point are transmitted to the central control platform to
realize online monitoring. It is very important to monitor
the toxic gas dispersion and improve the capabilities of disas-
ter response. And to understand the changing trend of toxic
and harmful hydrogen fluoride gas content in the environ-
ment, we provide very important data and basis for environ-
mental monitoring such as industrial environment and
people’s living environment [5–7].

For the measurement of toxic gases, commonly used
methods mainly include analytical chemistry methods, semi-
conductor gas-sensitive detection methods, contact combus-
tion detection methods, spectral analysis methods,
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electrochemical methods, etc. [8–10]. Among them, the elec-
trochemical measurement method has a fast response speed,
can realize online detection, and has good anti-interference
to nonmeasured hydrogen fluoride gas, and the produced
probe has a small volume and is easy to integrate. Therefore,
the system studied in this paper adopts the electrochemical
measurement method. Regarding the deficiencies of the
above-mentioned equipment, how to realize economic,
intelligent, and large-scale layout of monitoring points and
realize the networked environmental monitoring has
become a hot topic of research [11]. With the development
of wireless communication technology, it is possible to solve
these problems. At present, the gas detection equipment
available on the market is only developed for single gas
detection, and they transmit data through wires. If it is nec-
essary to detect a variety of gases, the integration of these gas
detection equipment will be very large. Moreover, for the
monitoring environment where a large number of monitor-
ing points need to be arranged, the wire transmission data
layout is very troublesome and costly [12].

In response to this reality, based on the technology of
sensors, wireless communication and wireless sensor net-
works, and other system-related technologies, this article
has carried out a more detailed study on the toxic gas mon-
itoring system and proposed a set of toxic gas monitoring
systems based on the wireless sensor network. This paper
proposes two design methods of gas sensor signal sampling
circuits that individually sample the key points of the hydro-
gen fluoride gas state. The sampling output signal of the cir-
cuit jumps only when the specific hydrogen fluoride gas
concentration in the environment to be measured reaches
the prewarning concentration value. The control unit alarms
by identifying the change in the output signal of the gas sen-
sor sampling circuit. We integrate the design of wireless
communication nodes and hydrogen fluoride gas sensors
to realize wireless node communication for sensor data
transmission and control command transmission and estab-
lish a central computer control platform to realize the selec-
tion of monitoring points and sensors and the automatic
processing of measurement signals. A reasonable gas sensor
conditioning circuit is designed in the article. In terms of
software, the workflow of network nodes is optimized. The
characteristic of the sampling circuit is that it can identify
the status information of the hydrogen fluoride gas without
continuous data collection and data analysis for the hydro-
gen fluoride gas sensor, and the detection speed is fast; at
the same time, the circuit structure is simple, the compo-
nents are few, and the cost is low, which is convenient for
the hydrogen fluoride gas sensor. The gas sensor sampling
circuit is integrated with various wireless sensor systems
such as electronic tags.

2. Related Works

When a single sensor cannot make a good selection of
hydrogen fluoride gas, it is necessary to use an array of
hydrogen fluoride gas sensors to solve the problem of iden-
tifying the type of hydrogen fluoride gas. The increase in sys-
tem power consumption brought about by a considerable

number of sensors makes its application conditions very
harsh, which greatly limits the application range of sensor
arrays. Therefore, reducing power consumption has become
one of the important core tasks of hydrogen fluoride gas sen-
sor research [13].

Nikolic et al. [14] pioneered a semiconductor hydrogen
fluoride gas sensor based on a microhotplate heating struc-
ture. The microhotplate of the sensor adopts a “sandwich”
structure; that is, the upper and lower layers are made of
SiO2, and the middle layer is made of Si3N4. By etching the
silicon substrate at the lower part of the microhotplate, the
heat dissipation path of the microhotplate is reduced, and
the power required to reach the predetermined operating
temperature can be reduced. After experimental calcula-
tions, a power consumption of about 100mW can ensure
that the microhotplate is heated to 300°C. It can be seen that
the application of MEMS technology in the sensor field has
greatly reduced the power consumption of the microhotplate
hydrogen fluoride gas sensor. Manes et al. [15] designed for
the first time a microhotplate hydrogen fluoride gas sensor
made of a CMOS compatible process. This initiative has laid
a solid foundation for the realization of a highly integrated
hydrogen fluoride gas sensor. The microhotplate is mainly
composed of a SiO2 dielectric film for electrical and thermal
isolation, a suspended dielectric film supported by four
arms, and a polysilicon heater. The microhotplate can be
heated to above 300°C in just a few milliseconds, and the
power consumption is less than 50mW, so it has a good
practical application prospect. Jo and Khan [16] combined
multiplexers and differential readout circuits with integrated
gas sensors and successfully developed a 4 × 4 tin dioxide
integrated hydrogen fluoride gas sensor array. The micro-
hotplate adopts a classic bridge structure, and its platinum
snake-shaped heating circuit is embedded in a multilayer
composite dielectric film. The differential readout circuit in
the array can distinguish the resistance value of the gas-
sensitive membrane within the range of 20M. When the
operating temperature is 300°C, its power consumption is
only 16mW.

Kim et al. [17] developed a CMOS compatible process
microhotplate hydrogen fluoride gas sensor. In this sensor,
metal tungsten is used as the heating resistance wire. At
the same time, taking into account the reduction of heat dis-
sipation of the microhotplate, the front body silicon corro-
sion suspension technology is adopted. The sensor can be
heated to 300°C within 8ms, and power consumption is only
19mW and has a good response to 50ppm ethanol hydro-
gen fluoride gas. In order to reduce power consumption,
Zhang et al. [18] designed an optimized heating structure
for the heating part of the semiconductor gas sensor. The
heating structure only needs about 2mW of power con-
sumption to maintain the temperature at about 300°C. At
the same time, the research group designed a pulse heating
mode for the optimized heating structure and reduced the
power consumption of the sensor heating part to about
350μW. The system is based on WSN technology. In the
event of a fire, we report to relevant personnel in time
[19]. Based on WSN and GSM technology, some scholars
have designed a set of data based on a solar power supply
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and wireless sensor network hydrogen fluoride gas monitor-
ing system and home security alarm system. This system
could play an important role in antitheft and combustible
hydrogen fluoride gas leakage and fire protection monitor-
ing when a dangerous situation occurs. It sends an alarm
message to the homeowner’s mobile phone to ensure the
safety of the family [20]. Some researchers have designed a
water quality monitoring system, which is also based on
WSN technology. The pH value, pollution level, tempera-
ture, and turbidity of water can be monitored, so that the
environmental protection department can provide real-
time guidance for industries such as industry, plantation,
and aquaculture that depend on local water quality condi-
tions [21–23].

3. The Detection and Early Warning Model
Construction of Poisonous Gases Based on
Semiconductor Wireless Sensors

3.1. Levels of Semiconductor Wireless Sensor Networks. The
hydrogen fluoride gas wireless monitoring network is mainly
composed of monitoring nodes that can detect hydrogen
fluoride gas and a central control platform that can receive
data from various monitoring points and send monitoring
commands. The monitoring node is an important part of
the system, which includes the hydrogen fluoride gas sensor
module, sensor working circuit, signal processing circuit,
and wireless module. Figure 1 shows the semiconductor
wireless sensor network topology.

Its working principle is as follows. The central control
platform is initialized, and a wireless network is constructed.
After each monitoring point joins the wireless network, the
central control platform sends a monitoring command.
After the monitoring point receives the command, the
hydrogen fluoride gas sensor starts to collect gas concentra-
tion information. After the output signal is processed by the
signal conditioning circuit, the data is sent to the corre-
sponding wireless module, and the wireless module sends
the data to the central control platform. The machine of
the central control platform processes the received data
and displays the concentration of various hydrogen fluoride
gases in real time.

α = i, j, kð Þ = i 1ð Þ, i 2ð Þ ; j 1ð Þ, j 2ð Þ ; k 1ð Þ, k 2ð Þð Þ, i, j, k ∈ Z:
ð1Þ

The working circuit of the hydrogen fluoride gas sensor
is to make each sensor work normally, which converts the
current signal output by the sensor into a voltage signal.
The signal conditioning circuit is classified according to the
polarity and size of the output signal of the sensor, and the
output signal of the sensor of the same type is amplified to
prepare it for entering the single-chip microcomputer. The
wireless network communication system is to realize the
wireless data transmission from the monitoring point to
the central control platform. The computer central control
platform is to realize the intelligent control of monitoring

points and automatic processing of measurement signals.

u x, yð Þ = �u x, yð Þ,
v x, yð Þ = �v x, yð Þ,

(
 �x, �y ∈ S �uð Þ: ð2Þ

A semiconductor element made of metal oxide or metal
semiconductor oxide material is put into the gas to be mea-
sured and interacts with hydrogen fluoride gas to produce
surface adsorption or reaction, which causes the characteris-
tic change of the resistive element to measure the concentra-
tion of hydrogen fluoride gas. We put the sensor into the
measured hydrogen fluoride gas, and the resistance value
of the sensor will change with the concentration of hydrogen
fluoride gas. It has the advantages of high sensitivity, conve-
nient operation, small size, low cost, and short response time
and recovery time.

ϕ i, 1ð Þ = ϕ+ ið Þ + ϕ− ið Þ½ �
2 ,

ϕ i, 2ð Þ = ϕ+ ið Þ − ϕ− ið Þ½ �
2 :

8>><
>>: ð3Þ

The high molecular hydrogen fluoride gas wireless sen-
sor mainly uses its resistance, material surface acoustic wave
propagation speed, frequency, material weight, and other
physical properties to change with the specific gas encoun-
tered to realize gas detection.

min TV uð Þ − s:t: f − u i, jð Þj j2t = σ2: ð4Þ

According to the different gas-sensing characteristics of
the materials used, this type of sensor can be divided into
polymer resistance gas sensors, concentration electric gas
sensors, surface acoustic wave gas sensors, and quartz vibra-
tor gas sensors. The surface acoustic wave gas sensor is based
on the speed or frequency of the sound wave propagating on
the surface of the material, which changes as the gas-
sensitive material absorbs the gas. The gas concentration
can be detected by measuring the speed or frequency of
the sound wave.

s_ = 1
k 1ð Þ × k 2ð Þð Þ × 〠

k1

i=0
〠
k2

j=0
s i, jð Þ × p x, tð Þ: ð5Þ

The nonresistive semiconductor hydrogen fluoride gas
sensor uses some physical benefits and device characteristics
to detect hydrogen fluoride gas, for example, the volt-
ampere characteristic of the Schottky diode and the change
characteristic of threshold voltage of the semiconductor field
effect tube, the gas sensor made by using these two charac-
teristics, and its current or voltage changes with the content
of hydrogen fluoride gas. This type of sensor is mainly used
to detect hydrogen fluoride gas.

3.2. Distribution of Early Warning Circuit Nodes. The wire-
less communication node is mainly composed of a processor
module, a wireless communication module, and an energy
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supply module. In the entire system, the sensor is the main
device that collects the type and concentration of hydrogen
fluoride gas. It is one of the cores of the entire system, and
its choice directly determines the entire system’s recognition
ability, recognition range, service life, and so on.

E f xð Þð Þ = ∑n
i=1w tð Þ × f x tð Þð Þ

∑n
i=1w tð Þ ,

f xð Þp x ∣ tð Þdx − 1
n × Ð

f xð Þp t ∣ xð Þp xð Þdx = 0
ð6Þ

In our system, a variety of different hydrogen fluoride
gas sensors are needed. Choosing a suitable sensor combina-
tion plays a vital role in improving the performance of the
entire system, and the semiconductor gas-sensing detection
method is to put a resistive element made of metal oxide
or metal semiconductor oxide material into the hydrogen
fluoride gas to be measured and interact with the hydrogen
fluoride gas to produce surface adsorption or reaction, caus-
ing the conductance of the resistive element rate or surface
potential change to measure the hydrogen fluoride gas con-
centration. Table 1 shows the node description of the early
warning circuit. Since it is necessary to amplify the sensor
signal, if interference is introduced, it is easy to overwhelm
the sensor signal or affect the quality of the sensor signal.

Therefore, an operational amplifier with high common-
mode rejection ratio, low temperature drift, and low offset
voltage must be selected. Considering the power consump-
tion factor, the selected amplifier must also be a low-power
amplifier.

The processor module is responsible for controlling the
operation of the entire sensor node, such as data storage,
data A/D conversion, and processing the data collected by
itself and data sent by other nodes; the wireless communica-
tion module is used to receive and send wireless signals, and
the wireless sensor network terminal node performs wireless
communication, which mainly includes two parts: radio fre-
quency and baseband. The former provides the air interface
for data communication, and the latter mainly provides the
physical channel and data packet of the link. The energy
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Figure 1: Semiconductor wireless sensor network topology.

Table 1: Node description of the early warning circuit.

Node
number

Response power (mW) Working frequency (kHz)

1 7.15 100

2 9.03 110

3 5.97 105

4 5.62 97

5 7.14 104
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supply module provides the energy required for the opera-
tion of the sensor nodes, usually using microbatteries. When
there is no toxic hydrogen fluoride gas in the environment
or monitoring is not required, the toxic hydrogen fluoride
gas wireless monitoring network sends control commands
to the monitoring node through the central control plat-
form, so that it turns off the sensor’s power supply and stops
the sensor from working. The use of multihop transmission
here is based on the consideration of communication range
or energy saving. The energy value and communication dis-
tance of the sink node are slightly stronger than those of the
sensor node. It is a bridge between the sensor monitoring
area and the external network. Due to the many monitoring
points, the intelligent control of the opening and closing of
the sensor greatly reduces the power consumption of the
entire system. Considering that system monitoring is used
not only in large-scale areas but also for some places where
the monitoring range is small and does not require wireless
data transmission, we consider adding system assistance
design. In terms of wired transmission, if the signal is sent
in the form of voltage, the signal is transmitted from the
sending point to the receiving point through a long trans-
mission line. The voltage signal will form a voltage drop
through the output impedance of the sending circuit, the
resistance of the transmission line, and other resistances,
which is likely to cause the transmission of the signal. If
the signal is sent in the form of current, the current provided
by the sending circuit is always the desired current regard-
less of the transmission line resistance and other resistances,
and the signal anti-interference ability is greatly improved.

3.3. Hydrogen Fluoride Gas Detection Based on
Semiconductor Sensors. Resistive semiconductor gas-
sensing materials have a gas-sensing effect. When a special
gas is adsorbed on the surface, the resistivity of the gas-
sensitive material will change. Gas-sensitive resistors are
made of metal oxide semiconductor materials. Through
doping, the selectivity of hydrogen fluoride gas can be
increased, and the gas sensitivity can be improved by setting
the appropriate working temperature and improving the
preparation process. Therefore, the gas sensor is designed
by using the impedance characteristics of the metal oxide
semiconductor gas sensor. To stabilize the output of vout,
we propose to control the gas. The sensitive resistance trans-
ducer is combined with the CMOS inverter, so that the high
and low levels that fluctuate in a certain range can be con-
verted into stable digital output signals 0 and 1. The gas-
sensitive recognition analog recognition unit can be con-
verted to a digital circuit. Therefore, the circuit can be effec-
tively integrated into the storage unit and the control unit,
and it is possible to realize the identification, storage, and
control of the hydrogen fluoride gas signal. Table 2 shows
the design of the hydrogen fluoride gas detection parameter.

The resistance Rx can be designed into a microarray
structure, and the array resistances R1, R2 ⋯ Rx can be
designed with different reference resistance values. Accord-
ing to actual use requirements, if you need to test the gas
state of different hydrogen fluoride gas concentration points,
you can choose different requirements through the digital

control switch. As the reference point, it can be designed
into a gas sensor array structure to realize the monitoring
of discrete monitoring points for hydrogen fluoride gas. In
the low-level phase of the clock, the master-level transmis-
sion gate T2 is turned on, and the gas-sensitive input signal
is directly transmitted to the master-level latch output termi-
nal QM. During this period, the slave-level is in the mainte-
nance state, and the bistable circuit feedback maintains its
original state. During the rising edge of the clock, the master
stage stops sampling the input and the slave stage starts sam-
pling. In the high state of the clock, the slave stage samples
the output (QM) of the master stage, and the master stage
is in the maintenance state. Since QM remains unchanged
during the high level of the clock, the output Q only samples
the input gas-sensing signal per cycle once. After the class A
gas sensor amplifier is turned on, due to the power con-
sumption of the tertiary tube being very high, after receiving
an effective alarm signal, before processing the alarm infor-
mation, the input voltage of the tertiary tube can be tempo-
rarily turned off through the digital switch. In this way, the
tertiary tube is cut off and the alarm stops. This design is
more flexible and can detect the return characteristics of
the hydrogen fluoride gas sensor. If the requirements are
not met, the gas-sensitive resistor can be replaced. The
inverter has infinite input impedance and low input loss.
Through a multistage inverter cascade, the output state can
be amplified step by step. By monitoring the final output
voltage change, the change of the gas state can be monitored.
In addition, this circuit has lower power consumption than
class A gas sensors and is more suitable for the power con-
sumption requirements of wireless gas sensor systems.

3.4. Model Parameter Weight Optimization. In the star-
shaped network topology, all terminal monitoring points
communicate directly with the central control platform,
and there is no need for a network router in the middle. This
kind of network topology is only suitable for the monitoring
environment less than the maximum communication dis-
tance of two nodes. When the monitoring environment is
greater than this distance, the central control platform can-
not receive the data of each monitoring point. The mesh
topology is different from the star topology. It can act as a
router in the mesh topology, forwarding data and various
control commands. As long as they are within the communi-
cation distance of each node, the central control platform
can communicate with network routers. This kind of net-
work is very complex, each node needs to maintain a large
amount of information, and there is no fixed path in data
transmission; the optimal path must be selected according

Table 2: Parameter design of hydrogen fluoride gas detection.

Gas
index

Upper limit of
concentration (%)

Lower limit of
concentration (%)

Proportion

1 1.17 0.65 0.54

2 2.11 0.88 1.21

3 1.89 1.13 0.87

4 1.76 1.31 1.03
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to the situation, and the construction is very difficult. When
the potential is close to and the bias voltage is 0, the bottom
current and noise are the smallest. When the sensor detects
low-concentration gas, since the response current is small, it
is desirable that the bottom current and bias current are as
small as possible, so the bias voltage is grounded. The clus-
tered network topology is an upgraded version of the star
network topology. This network topology is composed of
multiple star topology structures. In the clustered network
topology, the data and command transmission paths are
clear, and the functions of each wireless communication
node in the network are clear. Compared with the mesh
topology, the structure is simpler. Compared with the star
network topology, it can realize the functions of network
routing to forward data and control commands, which
greatly increases the coverage area of the network. Figure 2
shows the topology of the semiconductor wireless sensor
circuit.

First, the sensor nodes are deployed in the monitoring
area (sensor field), usually by manual deployment or aircraft
dissemination or even by means of rockets. Obviously, this
kind of deployment has strong randomness, and the number
of sensor nodes deployed each time is relatively large. Sec-
ondly, when the sensor nodes deployed in the monitoring
area are successfully awakened, they form a network in a
self-organizing manner and transfer data to the nodes
through multihop relays. Finally, the data in the entire area
is transmitted to the remote-control center for centralized
processing by means of the convergence node link. At the
same time, the user’s query request can be sent to the sensor
network. The sensitive element and the conversion element
constitute the basic part of the sensor, and they, respectively,
complete the two basic functions of detection and conver-
sion. It is worth noting that not all sensors can be clearly
divided into two parts: sensitive components and conversion
components, such as semiconductor gas or temperature sen-
sors, thermocouples, piezoelectric crystals, and optoelec-
tronic devices.

4. Application and Analysis of the Detection
and Early Warning Model of Toxic Gases
Based on Semiconductor Wireless Sensors

4.1. Wireless Sensor Data Processing. The working process of
the poisonous gas monitoring system based on the wireless
sensor network is as follows: the sensor nodes arranged in
the monitoring area will collect the data about the poisonous
gas to the gateway node through the multihop ad hoc net-
work, and the gateway node will collect the data to the gate-
way node. The data is transmitted to the Internet network
through the GPRS network, and then, the monitoring center
realizes real-time monitoring through the Internet network.
Figure 3 shows the fan-shaped distribution of wireless sensor
modules. The model of the GPRS module selected by this
system is ZHD121AX GPRS DTU, which is the most impor-
tant product of the ZZHD1X series of DTUs. It can enable
non-IP system equipment to easily connect to the GPRS net-
work and the Internet through the serial port. The GPRS

module is embedded with a TCP/IP protocol stack and
adopts a general RS232/RS485/TTL interface. At the same
time, the interactive interface of the GPRS module is easy
to operate.

The node needs to be connected to the router when it is
working, and the router is connected to the computer. At
this time, the node and the computer are in the same local
area network, and the data can be uploaded to the LabVIEW
platform. The NB-IoT node introduces the Internet of
thi5ngs card provided by National Telecom. This is con-
nected to a radio frequency antenna to upload data to the
developer platform through the NB-IoT network. Before
each communication is completed, the gateway node will
send a message requesting sleep to the data relay. After the
data relay communicates with the upper computer, it will
set up the entire network according to the requirements of
the upper computer. The response of the sensor will still
increase after it is removed from the test chamber. Under
normal circumstances, when the sensor is removed from
the gas to be measured, the response of the sensor will
immediately begin to decrease because the reactant that pro-
duces the response does not exist. In the wireless data trans-
mission part of the transformer online monitoring system,
the coordinator node is connected to many terminal nodes,
and the parameter data information collected by the termi-
nal nodes is transmitted to the monitoring terminal, so that
the coordinator node plays the role of the center, and many
terminal nodes are connected to it, so the matrix use of the
keyboard is necessary.

4.2. The Hardware Simulation Design of the Detection
System. This section will simulate the actual sensing data in
the WSN-based toxic gas monitoring system. The simulation
data uses the buffer voltage data in the environmental mon-
itoring data project. 100 nodes simultaneously detect the
buffer voltage, and the buffer voltage changes over time.
The amplitude changes slowly, and the geographical loca-
tions of the nodes are relatively close, so there is a correla-
tion between these perception data. Now, we suppose that
there are multiple signal groups, the number of signals con-
tained in each signal group is J = ð1, 5, 10, 40Þ, the length of
each signal is N = 50, and the sparsity is K = 5. Since the dif-
ference between the data perceived by 100 nodes at the same
time is small, it can be assumed that it is sparse in the Fou-
rier domain. The connection method of the microhotplate
hydrogen fluoride gas sensor in the two nodes is as described
in the text. The series resistance R is 510 k. To prevent the
wireless signal from being shielded, the node is placed in a
paper box, and 40 ppm hydrogen fluoride gas and 60 ppm
hydrogen fluoride gas are, respectively, introduced. We set
an alarm when the hydrogen fluoride gas concentration is
greater than 55ppm. Figure 4 shows the line graph of the
hydrogen fluoride concentration detected by wireless sens-
ing. The test data was extracted on the LabVIEW platform
and the National Internet of Things development platform,
and the results are as follows.

As the concentration of hydrogen fluoride gas increases,
the gas-sensitive resistance decreases, which will cause the
gas-sensitive voltage signal to rise. It can be seen that the
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gas-sensitive voltage signals collected by the two nodes are
close to the same, increasing with the increase in the hydro-
gen fluoride gas concentration. At the same time, when the
hydrogen fluoride gas concentration is greater than
55 ppm, the node immediately reports data and changes
the reporting frequency to 1min. When the hydrogen fluo-
ride gas concentration is less than 55ppm, the frequency of
the node reporting data is changed to reporting data once
every 10 minutes. Since TLC27C2L uses 5V power supply
and the power supply of the system is 12V, it is necessary

to perform power conversion to obtain a 5V voltage. The
stability and accuracy of the op amp voltage directly affect
the stability of the op amp and the stability of the output sig-
nal, so we must choose a high-precision power conversion
chip and we must do a good job of anti-interference process-
ing. According to these principles, we choose LM336. It is a
precision 5V shunt regulator diode integrated circuit. Since
the high-speed reference has a short start-up time and
remains in a low-power state when ADC conversion is not
in progress, the use of a high-speed reference will result in
lower overall power consumption. Based on the above
points, the voltage reference selects the internal 1.65V
high-speed reference voltage. These IC voltage references
can work like 5V Zener diodes with a low temperature coef-
ficient, with a dynamic impedance of 0.6, and the third ter-
minal provided on the chip can easily fine-tune the
reference voltage and temperature coefficient. The devices
of this series are suitable for precision 5V power supply
and low voltage reference for a digital voltmeter, power sup-
ply, or operational amplifier.

From the above comparison, we can see that the power
consumption of the processor and sensor module is lower
and the power consumption of the communication module
(sending, receiving, and idle) is higher. On the premise of
not affecting the performance of the system, reducing the
data transmission volume of the communication module
can naturally reduce the time for the communication mod-
ule to send and receive data, thereby achieving the goal of
reducing the energy consumption of the communication
module. Figure 5 shows the linear fit of the average energy
consumption of the wireless sensor network. When the
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network runs for 1000 s, the average energy consumption of
the nodes of the original algorithm is about 1.8 J, while the
average energy consumption of the nodes of the algorithm
in this paper is less than 1.6 J. At the same time, when the
original algorithm runs for 1250 s, the nodes are almost
exhausted, and the algorithm in this paper runs for about
2000 s before using up all the energy. Therefore, during the
entire running time of the network, the average energy con-
sumption of the algorithm nodes in this paper is significantly
less than that of the original algorithm; that is, the algorithm
in this paper has a better energy-saving effect than the orig-
inal algorithm. Through simulation verification, in the data
transmission of the toxic gas monitoring system based on
the wireless sensor network, the superiority of compressed
sensing and distributed compressed sensing is given. With-
out affecting the normal operation of the system, distributed
compressed sensing can greatly extend the service life of the
system.

4.3. Example Application and Analysis. The concentration of
the hydrogen fluoride gas sample used in the simulation
experiment in this section is limited to 40-4000ppm, and the
concentration interval is 20ppm. Among them, 1200 samples
are selected as the training samples of the wireless sensor net-
work, and the remaining 131 samples are used as the test sam-
ples. Due to the large number of test samples, only 20 of the
test result data are displayed here. Because the wireless module
sends data at an interval of about 10 minutes, the length of the
sent data is about 11kbps and the wireless transmission rate is
16Mbps. It only takes about milliseconds for the wireless
module to send data once, so the average power consumption
of the wireless module is approximately equal to its sleep
power consumption. Figure 6 shows the data transmission rate
comparison of the wireless sensor network. The sampling
module only samples 5 times in the cycle, so the working time
of the sampling module and impedance matching circuit cycle
is about 50μs. The pulse heating module is always working
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Figure 4: Line graph of hydrogen fluoride concentration detected by a wireless sensor.
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Figure 5: Linear fitting of average energy consumption of the wireless sensor network.
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during the heating phase, so the working time in the cycle is
2 s. Each node is allocated to 5 subzones according to the set
area number. In each zone, the nodes are randomly deployed,
and the position will not be adjusted after deployment. The
simulation time is 2500 s. Throughout the simulation process,
the capacity consumed by each sensor node and the number of
surviving nodes are recorded.

Compared with others, the CC3200 module, heating
module, and sensor module consume the most power,
because the CC3200 integrates a wireless module and con-
sumes a lot of power. However, because the module has a
very short working time in the node, the average power con-
sumption is still relatively small. The total power consump-
tion of the node is the sum of the average power
consumption of each module, about 1.01mW. Compared
with ordinary Wi-Fi nodes (power consumption is about
tens of milliwatts), it is reduced to about 1/20 of the original.

It can be seen that the power consumption of each module
of the node designed with NB-IoT is very low, especially
the wireless and processor modules. Relatively speaking,
the average power consumption of the hydrogen fluoride
gas sensor is the largest, followed by the heating module,
and that of the power supply and wireless module is the low-
est. Since multihop routing and forwarding are common
methods of internal communication in wireless sensor net-
works, the connectivity of the network will affect the infor-
mation exchange between sensor nodes, so it needs to be
considered in the process of considering some coverage
issues. Therefore, the power consumption of the hydrogen
fluoride gas sensor and the heating module can be further
reduced in the follow-up. Therefore, the wireless node devel-
oped in conjunction with NB-IoT is about 1/40 of the ordi-
nary node. Figure 7 shows the histogram of the average
power consumption of the wireless sensor network.
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The experiment selected transformer partial discharge
and hydrogen fluoride gas as monitoring parameters to con-
struct an online monitoring model of a wireless sensor net-
work. The normalized power spectrum content of the three
frequency bands was selected as the first three variables of
the input vector, and a tin dioxide semiconductor was also
selected. The gas sensor measures the relative percentages
of the seven faulty hydrogen fluoride gases of the trans-
former as the remaining seven variables of the input vector,
so that there are ten input nodes in the network, and the out-
put vector is selected as the fault code corresponding to the
four fault types. Then, the trial-and-error method is used
to determine that the number of nodes in the 30 hidden
layers is reasonable, and the learning and training of the net-
work are realized through learning samples. We can see that
in the same running time, the number of surviving nodes
using this algorithm is more than using the original algo-
rithm. In the original algorithm, when the network runs
for more than 1500 s, most of the nodes are dead, but with
the algorithm in this paper, most of the nodes die when it
runs for about 2250 s. Therefore, the survival rate of nodes
using the algorithm in this paper is significantly higher than
that in the original algorithm. The results show that both
nodes can complete the functions of timed heating of sen-
sors and data collection, wireless uploading, and network
access. At the same time, when encountering hydrogen fluo-
ride gas that exceeds the set threshold concentration, it can
report data in time and light up the alarm.

5. Conclusion

For the monitoring of hydrogen fluoride gas in a large envi-
ronment, monitoring points must be arranged at different
locations to form a monitoring network. If we use wired data
to transmit data, the cost is higher and the wiring is very
troublesome. In some places, wired monitoring points may
be difficult to achieve. In view of these shortcomings and
the characteristics of wireless sensor networks, this paper
needs to design a wireless monitoring network. This article
realized the design of the wireless alarm module circuit com-
posed of the gas sensor monitoring circuit and the wireless
transmitting circuit, which completed the communication
mode of the microcontroller and the radio frequency chip,
as well as the design of the interface circuit and the power
supply circuit. The key radio frequency parameters such as
the working frequency band and transmit power of the radio
frequency chip were selected. On the basis of compressed
sensing theory, the distributed compressed sensing theory
which has great advantages in signal group processing is fur-
ther introduced. At the same time, this topic analyzes the
energy consumption model of the node to prepare for the
software energy consumption simulation. We use MATLAB
software to verify the feasibility of these two algorithms in
data transmission based on the wireless sensor network for
the toxic gas monitoring system from the perspective of sim-
ulation. Using SILICON’s WDS simulation software and
IDE software, the RF parameters in the system and the
microcontroller’s register initialization parameters were set,
and the program code was generated. In the end, this paper

designs the overall system of the semiconductor wireless
sensor based on the above two gas sensor sampling circuits,
the microcontroller, and the UHF radio frequency chip. The
key parameters of the radio frequency circuit are tested on
the demo board, and the radio frequency signal transmission
distance can be greater than 10m.
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Data augmentation has become a hot topic in the field of mechanical intelligent fault diagnosis. It can expand the limited training
dataset by generating simulated samples, but there is still no effective method augmenting the resolution of low resolution sample.
In this paper, a simple algorithm, namely, efficient subpixel convolutional neural network (ESPCN), is proposed to solve this
deficiency. The ESPCN model performs the arrange operation on the raw low resolution data through the subpixel layer and
outputs the result of four-channel multifeature maps. Then, the sample resolution is increased to four times compared with the
raw low resolution sample. Finally, the generated high resolution dataset is employed to train the stacked autoencoders (SAE)
for fault classification, and the raw high resolution dataset is used for testing. Two fault diagnosis cases with different sample
dimensions and rotating speeds are set up to simulate the low resolution situation, and the experimental results verify the
feasibility of the proposed algorithm.

1. Introduction

Mechanical fault diagnosis has entered the age of artificial
intelligence as technology rapidly increases [1, 2]. Mean-
while, the development of intelligent fault diagnosis cannot
be separated from the support of enough measured vibration
signal. When a part of a rotating machine has a local defect,
a pulse with a short duration will be generated, and the
vibration signal will show the fault feature of amplitude
modulation [3, 4]. The vibration signal measured from the
surface of the machinery consists of many vibrating parts,
such as the rotation of bearings and the meshing of gears
[5]. Thus, vibration signal analysis is a useful technique for
mechanical fault diagnosis.

However, the phenomenon of insufficient samples occurs
frequently in practical application scenarios. Therefore,
many researchers focus on using deep learning algorithms
such as generative adversarial networks (GAN) [6] to
increase the number of raw samples. Zhou et al. [7] proposed
to use a scheme of global optimization to enhance the raw

GAN to generate more discriminative fault samples. Shao
et al. [8] input fault time-domain data with different label
types to GAN to generate 1D simulation signal samples and
then input them to convolutional neural network (CNN)
with raw signals to realize data augmentation and fault clas-
sification. Wang et al. [9] used conditional GAN (CGAN)
to simulate effective fault features automatically from fault
signal and realize data augmentation and selected stacked
autoencoders (SAE) [10] for accurate fault classification.

Furthermore, the quality of data is also particularly
important. The higher the sample resolution is, the easier
to detecting the smallest change of the measured object is
[11]. It is also the requirement for the establishment of dig-
ital twins. More data points collected per unit time facilitate
analyzing the internal characteristics of the measured object
and realizing the accurate diagnosis of the machinery
[12–14]. Thus, high resolution samples are generally
employed in the study of fault diagnosis [15, 16]. However,
the aforementioned methods can only increase the volume
of the dataset but cannot augment the sample resolution.
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For a set of mechanical devices rotating at high speed, it
is difficult to collect enough feature information by a signal
collector with a low sampling frequency. So, the higher of
the sample resolution is, the more conveniency to find the
fault of the equipment, but the high resolution samples
cannot be acquired due to the limitation of the signal acqui-
sition equipment. In addition, research on resolution
augmentation in fault diagnosis field is few and far between.
By contrast, the resolution augmentation technology is a
common tool to recreate high resolution image in the field
of image processing [17]. Thus, it is worth considering to
adopt resolution augmentation technology for the low reso-
lution signal of the rotating machinery. Superresolution con-
volutional neural network (SRCNN) [18], superresolution
generative adversarial network (SRGAN) [19], deep recon-
struction classification networks (DRCN) [20], and efficient
subpixel convolutional neural network (ESPCN) [21] are
common resolution augmentation algorithms. For example,
the low resolution image can be magnified to the shape of
the target according to bi-3 interpolation of the SRCNN,
and a CNN model is used to realize nonlinear mapping.
Next, the low resolution image can be expanded and recon-
structed by the upper sampling interpolation. In this paper,
ESPCN is presented to augment the signal resolution of
single sample. Furthermore, the accuracy of fault classifica-
tion is tested by the SAE network to evaluate the perfor-
mance of data augmentation. The contributions of this
study can be summarized as follows:

(1) The proposed ESPCN model can learn features from
a low resolution sample and enhance the sample
resolution by four times compared to raw signal

(2) The generated high resolution dataset is employed to
train the SAE model for fault classification and the
raw high resolution dataset are used for testing

(3) Two experimental cases (different sample dimen-
sions and rotating speeds) are set to simulate the
low resolution situation and verify the effectiveness
of the propose method

The remainder of this paper is structured as follows:
Section 2 details theoretical backgrounds of ESPCN and
SAE. In Section 3, the faut diagnosis framework based on
ESPCN is described. Two diagnosis cases of gear and bearing
datasets are set up in Section 4. Section 5 gives the conclusion.

2. Theoretical Background

2.1. ESPCN. Figure 1 shows that a subpixel convolutional
layer and several convolutional layers constitute the ESPCN
network. The raw image serves as the input to the network,
and the low resolution image with the same size is output
through the l-channel convolutional neural network. Then,
the subpixel convolution layer is adopted to sequentially
arrange the low resolution hidden layer features sequentially
into a group of high resolution images. The first l-1 channel
of the convolutional neural network is as follows:

f1 ILR ;W1 ; b1ð Þ = j W1 × ILR + b1ð Þ,
f l ILR ;W1:l ; b1:lð Þ = j Wl × f l−1 ILRð Þ + blð Þ,

ð1Þ

whereWl, bl, and l ∈ ð1, L − 1Þ are learnable weights and off-
sets, Wl is a 2D convolutional tensor with the shape of nl−1
× nl × kl × kl, where nl is the feature number at layer l, kl is
the convolutional kernel number at layer l, and offset bl is
the vector with the length of nl. After the convolutional net-
work layer, the feature map of r2 channel is obtained and
then is sent to the subpixel convolution layer for sampling.

ISR = f L ILRð Þ = PS WL × f L−1 ILRð Þ + bLð Þ, ð2Þ

where PS is a periodic shuffling operator that rearranges the
elements with shape H ×W × C ⋅ r2 to shape rH × rW × C,
and H and W are the height and width of the real-value
tensor, respectively. ILR and ISR own C color channels. x
and y denote the output pixel coordinates in the high resolu-
tion space. PS can sequentially arrange low resolution
features into a group of high resolution image and can be
defined as follows:

PS Tð Þx,y,c = T x/rb c, y/rb c,c⋅r⋅mod y/rð Þ+c⋅mod x/rð Þ, ð3Þ

where x and y are the output pixel coordinates in the high
resolution space.

Pixel-wise mean squared error (MSE) of the reconstruc-
tion is used as the cost function to train the network, whose
mathematical expression can be written as follows:

x W1:L, b1:Lð Þ = 1
r2HW

〠
rH

x=1
〠
rW

y=1
Ix,yHR − f x,yL ILRð Þ� �2, ð4Þ

where InHR(n = 1⋯N) denotes the high resolution image
examples, and InLR (n = 1⋯N) denotes the resulting low
resolution image examples.

2.2. Stacked Autoencoders. Autoencoder (AE) [22] is
adopted for feature extraction and sample reconstruction.
As the composition of SAE, it has the feedforward neural
network structure [23]. The basic architecture of AE consists
of an encoder section and a decoder section. The encoder
can compress the input data into latent space features,
whereas the decoder reconstructs the input from the latent
space representation.

Assuming fxngNn=1 is an unlabeled dataset where xn ∈
Rm×1, the process of the encoder can be depicted as follows:

hn = sf Wxn + bð Þ, ð5Þ

where hn is the hidden encoder vector mapped from xn, sf
denotes activation function, b denotes bias vector, and W
denotes the weight matrix.

gθ′ is the decoding function that maps hn from the low-
dimensional feature back into the high-dimensional feature.
The process of the decoder can be defined as follows:
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x̂n = sg WThn + d
� �

, ð6Þ

where the activation function sg is the same as sf , and d and

WT are the bias vector and weight matrix, respectively.
MSE is adopted to minimize the reconstruction error:

ϕAE θ, θ′
� �

= 1
n
〠
N

n=1
L xn, gθ′ f θ x̂nð Þð Þ
� �

, ð7Þ

where the parameter set of the AEs are θ = fW, bg and θ′
= fWT , dg.

Figure 2 depicts that SAE to stack the autoencoder layer
by layer to construct the DNN that is to take the hidden
layer of the first AE as the input of the second AE. Feed for-
ward layer-wise learning is employed for network training,
softmax regression is adopted as classifier, and back propa-
gation (BP) algorithm is used for weight updating and
parameter fine-tuning.

3. Proposed Framework

Figure 3 shows the structure of the proposed ESPCN and
SAE for signal resolution augmentation and fault classifica-
tion. In the process of signal resolution augmentation, the
hidden layers of ESPCN are expressed by the following:

f1 XLR ;W1ð Þ = f W1 × XLRð Þ,
f2 XLR ;W2ð Þ = f W2 × f1 XLRð Þð Þ,
f3 XLR ;W3ð Þ = f W3 × f2 XLRð Þð Þ,

ð8Þ

where the first two layers own 64 and 32 channels, respec-
tively [24]. Scaled exponential linear unit (SELU) [25] is
selected as the activation function ϕð⋅Þ, which makes the
sample distribution automatically normalized to zero mean
and unit variance, to ensure that the gradient does not
explode or disappear during the network training. Then,
the feature of low resolution sample is learned through the
hidden layers, and the subpixel layer is adopted to realize
the operation of resolution augmentation, which is com-
posed of a fully connected layer and a periodic shuffling
operator. The fully connected layer outputs r2 (r = 2) chan-
nel feature maps with the same dimension of the input data,
and then the generated data are obtained according to the
following formula:

XSR = f3 XLRð Þ = PS W3 × f2 XLRð Þð Þ, ð9Þ

where XSR is a high resolution sample generated by the
proposed network, PS function is adopted to enhance the
resolution by four times, and the form is able to be
defined by the following:

PS Tð Þp,q = T p/rj j⋅ q/rj j⋅r⋅mod q/rð Þ+mod p/rð Þ ð10Þ

The final loss function we used is MSE which can
measure the difference between the raw sample and the
generated low resolution features as follows:

ξ W1:L, b1:Lð Þ = 1
r2HW〠

rH

x=1
〠
rW

y=1
f x,y3 XLRð Þ − XLR

� �2
: ð11Þ

In the process of fault classification, the generated high
resolution dataset is input to the SAE directly for feature
extraction and fault classification, so as to achieve model
training. Then, the raw high resolution dataset is used
for testing.

4. Experiment Results and Analysis

4.1. Case 1: Fault Diagnosis of Bearing under the Same
Sampling Frequency

4.1.1. Data Description. Figure 4 shows that the bearing fault
test rig from Shandong University of Science and Technol-
ogy (SDUST) [3] is set to explore the performance of ESPCN
in resolution augmentation. The platform contains electric
motor, load disc, bearing seat, gearbox, and powder brake.
The bearing type is N205EU cylindrical roller bearing. As
shown in Figure 5, three fault types including inner race
fault (IF), outer race fault (OF), and roller fault (RF) are
introduced to the bearing. 800 (200 × 4) samples from 4
health states are extracted to form the required dataset.
The motor bearing vibration signal is collected from the
LMS data acquisition instrument, the type of the sensor is
vibration acceleration sensor as show in Figure 4, and the
sampling frequency is 25.6 kHz. The senor is installed on
the surface of the bearing seat. Simultaneously, motor speed
is set to 3000 r/min.

In this section, 600 is set as the dimension of a low res-
olution sample, and 300 Fourier coefficients are obtained
after FFT. Then, 2400 is set as the dimension of a high

Hidden layers Sub-pixel convolution layer

Low resolution image
(input) n1 feature maps nl–1 feature maps r2chanels High resolution image

Figure 1: Structure of ESPCN.
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resolution sample, and 1200 Fourier coefficients are
obtained. The parameters of ESPCN are set as follows: The
epoch is set to 40, the batch size is 50, the learning rate is
set to 0.1, and the SELU is selected as activation function.
Furthermore, SAE is used to evaluate the performance of
the sample generated by the ESPCN network, and the net-
work parameters of each layer in SAE are [1200, 600, 200,
100, 4]. The output size at the output layer equals the num-
ber of the fault types. Softmax regression [26] is adopted at
the classifier, and error back propagation [27] is used to
fine-tune the model. Batch normalization (BN) [28] is
applied before each hidden layer of the SAE. The raw low
resolution dataset is input into the ESPCN network, and
the generated high resolution dataset is used as the training

set of the SAE. Finally, the raw high resolution dataset are
used for testing.

4.1.2. Diagnosis Results. Figure 6 displays the spectra graphs
of three data types (low resolution spectra, generated high
resolution spectra, and raw high resolution spectra). Distin-
guish different fault types from th spectra graphs is difficult,
and the classification network based on SAE must be used
to extract features and distinguish fault types. On the one
hand, the higher the sampling frequency is, the better the
training effect of the SAE network, since the low resolution
sample includes just one circle information of the bearing
signal that contains much fewer features. On the other
hand, the feature distribution of the generated high

(a) (b)

(c)

Figure 5: Three fault modes of bearing: (a) IF, (b) OF, and (c) RF.
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resolution sample is almost the similar to the raw high res-
olution sample, which owns the same feature dimension
and frequency domain graphs.

For comparative analysis, two datasets (low/high resolu-
tion dataset) are employed for fault classification, respec-
tively. The diagnosis results are shown in Figure 7. 15 trials
are repeated for each experiment to reduce the effect of
randomness. It can be seen that the result from the low res-
olution dataset is not well, and the testing accuracy is 95.76%
with 0.25% standard deviation. In contrast, the data
obtained by the ESPCN can achieve a higher average accu-
racy which is 98:76 ± 0:46%. Since ESPCN can enhance the
resolution of low resolution dataset by 4 times, the sample
owns much more effective features, which helps the classifi-
cation network to identify samples with different health con-
ditions. Besides, the high resolution data achieves the highest
accuracy of 99:96 ± 0:06%, since the high resolution own the
raw and abundant information of the fault type.

To map the learned high-dimensional feature vector of
SAE into a 2D feature vector, t-distributed stochastic neigh-
bor embedding (t-SNE) [29] is applied that can show the
diagnosis effect of the three kinds of datasets. In
Figure 8(a), the clustering result of the low resolution data
is the worst, several samples are mixed with one another,
and various levels of misclassification are observed between
different fault types. In Figure 8(b), the classification result
of the ESPCN is much better than that of the low resolution
data, and almost all the samples under different health con-
ditions are well separated. In addition, the clustering result
of the high resolution dataset in Figure 8(c) is the best, and
the same sample set displays much more compact aggrega-
tion. Moreover, the feature learning process of the ESPCN
network is displayed in Figure 9. Figure 9(a) displays the
learned features of 64 channels from the low resolution
samples. Different colors in each channel represents the
current feature strength. The features of these channels are

combined and extracted into one feature value, and then
the feature map of Figure 9(b) is achieved. The differentia-
tion of all the channels increases as the network layer
increasing, and the learned features become more and more
apparent. Finally, four-channel low-resolution simulation
samples are obtained as shown in Figure 9(c).

4.2. Case 2: Fault Diagnosis of Bearing under Speed
Fluctuation Condition. Figure 10 shows the gearbox fault test
bench that contains electric motor, coupling, gearbox, and
bearing seats. Figure 11 shows 10 different health conditions:
normal condition (NC), sun wheel crack (WC), sun wheel
pit (WP), sun wheel worn (WW), pinion crack (PC), pinion
pit (PP), pinion worn (PW), and three compound fault types
(WWPW, WPPC, and WPPW). The sampling frequency is
12.8 kHz, and the senor is installed on the surface of the
gearbox. The rotating speed is controlled by a frequency
converter as shown in Figure 10, and the speed varies
between 700 r/min and 1500 r/min randomly. The sampling
frequency is fixed; so, the sample resolution will become
lower with the speed increasing, because the sample points
per rotate will become much less and the collected feature
information will also reduce.

The model parameters of ESPCN are the same as that in
case 1. The low resolution and high resolution datasets have
200 samples, and each sample owns 600 and 2400 sample
points, respectively. The structure of three gear samples is
randomly displayed in Figures 12(a)–12(c). The collected
signals of different fault categories exhibit different speed
fluctuations in the time domain. Figure 12(d) shows the
irregular rotation rate fluctuation curves of three fault cate-
gories vary from 700 to 1500 r/min. Figure 13 shows the
spectra of three different data types. It is found that the
low resolution spectra also have the least feature information
in Figure 13(a). Figure 13(b) illustrates the spectra generated
by the proposed method based on the low resolution data,
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and Figure 13(c) displays the raw high resolution spectra. It
can be easy to see that the generated high resolution spectra
also display the same feature trend as the raw high resolution
spectra, which is much helpful for the accurate fault diagno-
sis of gearbox.

The diagnosis results of the above three data types are
displayed in Figure 14. Undoubtedly, the high resolution
dataset achieves the highest accuracy 99:53 ± 0:23%. In com-
parison, the low resolution dataset obtains the lowest accu-
racy 94:56 ± 0:45%. The diagnosis accuracy of the ESPCN

is lower than that of the high resolution dataset: the average
accuracy is 98:23 ± 0:67%. In addition, t-SNE is also adopted
to display the visualization result of dimension reduction.
Figure 15(a) shows that the dimension reduction samples
of WC and WP are mixed with each other, and samples of
all the types are also not clustered. Figure 15(b) shows that
the cluster result of the ESPCN is better than those of the
low resolution dataset. In addition, the high resolution data-
set also performs the best, and all the samples under differ-
ent health states are separated with each other.
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5. Conclusions

In this paper, a generalizable deep learning framework based
on ESPCN is proposed to improve the resolution of bearing
and gearbox signals. First, four-channel features are mapped
from the low resolution sample. Then, the high resolution
sample is output from the subpixel fully connected layer.
Finally, the sample resolution is augmented by four times
by using the ESPCN network. In the case studies, the classi-
fication results illustrate that the sample generated by the
ESPCN model is effectiveness and can obtain a high diagno-
sis accuracy. Although the proposed method can improve
the diagnosis accuracy of the low resolution dataset, the
theoretical basis of the high resolution feature learning is
not explicit. Moreover, it is interest to generate high resolu-
tion sample directly from the raw time domain signal. The
authors will investigate this topic in future study.
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Aiming at the problem of low diagnosis efficiency and accuracy, due to noise and cross aliasing among various faults when
diagnosing composite faults of rolling bearing under actual working conditions, a composite fault diagnosis method of rolling
bearing based on optimized wavelet packet autoregressive (AR) spectral energy entropy and adaptive no velocity term particle
swarm optimization-self organizing map-back propagation neural network (ANVTPSO-SOM-BPNN) is proposed. The energy
entropy feature is extracted from the bearing vibration signal through wavelet packet AR spectrum, and SOM and BPNN are
combined to form a series network. For PSO, the velocity term is discarded and the inertia weight and learning factor are
adaptively adjusted. Finally, the Dempster-Shafer (D-S) evidence fusion diagnosis is carried out. To get closer to the
application condition, the data are collected near and far away from the fault point for the composite fault diagnosis, which
verifies the effectiveness of the proposed method.

1. Introduction

Rolling bearing is one of the most important components in
rotating machinery. It plays an important role in supporting
rotating shaft and reducing friction. Its working state is of
great significance to the normal operation of the whole rotat-
ing machine [1–4]. In practical engineering, the fault often
does not appear alone, and the probability of composite fault
of the same bearing is also large. Composite faults are two or
more faults that are interrelated and cross influenced at the
same time [5]. And the vibration signals caused by different
faults will interfere with each other and produce the coupling
phenomenon, which makes the signal more complex and dif-
ficult to accurately diagnose faults. Therefore, the fault diagno-
sis of rolling bearing has the important practical value [6].

For the fault diagnosis of bearing, the feature extraction,
neural network, andmulti-information fusion are the research
focuses. For the feature extraction, the wavelet packet decom-

position is a typical processing method of unsteady signal,
which can process the signal more finely [7]. Tang and Deng
[8] proposed a composite bearing fault feature separation
method based on the improved harmonic wavelet packet
decomposition to decompose the signal of intermediate
frequency part and extract more effective signals. He et al. [9]
applied the adaptive redundant multiwavelet packet to com-
posite fault diagnosis of rotating machinery, proposed the
normalized multifractal entropy as the evaluation criterion,
adaptively constructed multiwavelet, and determined the fault
sensitive frequency band by the relative energy ratio of charac-
teristic frequency. Ma et al. [10] decomposed the composite
fault signal using multiwavelet packet, reconstructed the signal
with permutation entropy as the evaluation index, and finally
demodulated and extracted the fault features using energy
operator. For the fault diagnosis of rolling bearing, Abbasion
et al. [11] preprocessed the vibration signal through wavelet
analysis and then used support vector machine (SVM) to
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diagnose the faults. Janssens et al. [12] applied the convolu-
tional neural network (CNN) to multi fault diagnosis. Lv and
Yao [13] used wavelet packet decomposition combined with
back propagation neural network (BPNN) to diagnose the
faults. Among them, BPNN is widely used for the fault diagno-
sis of rolling bearing due to its strong nonlinear mapping ability
and high self-learning and adaptive ability [14]. However, the
standard BPNN is easy to fall into the local optimal solution
and relies too much on samples. According to the defects of
BPNN,Huang et al. [15] used the global search ability of genetic
algorithm to optimize BPNN. Gong et al. [16] combined the
self-organizing map (SOM) with BPNN to obtain the better
classification results and improve the convergence speed. Ju
et al. [17] optimized the weight and threshold of BPNN through
particle swarm optimization (PSO) and extracted the feature
energy through wavelet packet, which improved the diagnosis
efficiency and accuracy. The standard PSO also has its disad-
vantages, such as low convergence accuracy and easy to fall into
local extremum. Wang and Wang [18] introduced the decline
index and iteration threshold to improve the linear decline
weight of the standard PSO and verified the advantages of
improved PSO in search accuracy, convergence speed, and sta-
bility. Zhu and Xue [19] adaptively modified the learning factor
to better balance the local and global search ability in view of the
problem that the fixed value of learning factor in PSO affects the
algorithm performance. Aiming at the signal fuzziness and
uncertainty of composite fault, the diagnosis result is further
improved by information fusion. Khazaee et al. [20] fused vibra-
tion and sound signals through Dempster-Shafer (D-S) evi-
dence theory for fault diagnosis of gearbox and achieved ideal
results. Feng and Pereira[21] applied the wavelet neural net-
work and evidence theory to fault diagnosis of rotating machine
and verified the effectiveness.

This paper proposes a new diagnosis method based on
optimized wavelet packet AR spectral energy entropy to
adaptive no velocity term PSO-SOM-BPNN (ANVTPSO-
SOM-BPNN). In order to be closer to the real working con-
ditions on site, data are collected near the fault points and far
away from the fault points, respectively. The energy entropy
characteristics of bearing vibration signals are extracted
through wavelet packet AR spectrum. The basis function
and decomposition layers of wavelet packet decomposition
are optimally selected. SOM and BPNN are combined to
form a series network, and PSO discards the velocity term
and adaptively adjusts the inertia weight and learning factor.
Finally, the proposed method is used to fuse the diagnosis
results at two measuring points at D-S evidence decision
level to improve the efficiency and accuracy in the composite
fault diagnosis of rolling bearing.

2. Methodology

During the operation of rolling bearing, due to the interaction
of inner ring, outer ring, and rolling element, it is easy to form
overlapping composite faults. Among them, the fault features
with weak energy may be submerged by the features with other
strong energy or noise, which affects the accuracy of fault diag-
nosis. Therefore, at first, vibration accelerators are installed at
two different measuring points to collect the vibration signals.

Secondly, two kinds of collected signal are preprocessed and
then extract the signal features. And two kinds of extracted
fault feature are diagnosed in the new method, to obtain two
kinds of basic probability distribution. Finally, two probability
distributions are fused by D-S evidence theory to achieve the
purpose of fault diagnosis using multi-information fusion.
The overall research idea of composite fault diagnosis of rolling
bearing is shown in Figure 1.

2.1. Wavelet Packet AR Spectral Entropy Feature
Extraction Method

2.1.1. Principle of Wavelet Packet Decomposition. Wavelet
packet decomposition overcomes the defect that wavelet
analysis only decomposes the low-frequency part of signal.
It also decomposes the high-frequency part and improves
time-frequency resolution. The specific algorithm is as
follows.

Given scaling function ϕðtÞ and wavelet basis function
ψðtÞ, two-scale equations are satisfied between them:

ϕ tð Þ =
ffiffiffi
2

p
〠
k∈Z

hkϕ 2t − kð Þ,

ψ tð Þ =
ffiffiffi
2

p
〠
k∈Z

gkϕ 2t − kð Þ,

8>><
>>: ð1Þ

where k is the time translation factor; hk is the low-pass filter
coefficient; and gk is the high-pass filter coefficient.

The wavelet packet decomposition algorithm is

dj,2n
l =〠

k

ak−2ld
j+1,n
k ,

dj,2n+1
l =〠

k

bk−2ld
j+1,n
k ,

8>><
>>: ð2Þ

where j is the number of wavelet packet decomposition
layers; dj,2n

l is the low-frequency coefficient decomposed by

layer j; and dj,2n+1
l is the high-frequency coefficient decom-

posed by layer j.
The wavelet packet reconstruction algorithm is

dj+1,n
l =〠

k

hl−2kd
j,2n
k + gl−2kd

j,2n+1
k

� �
, ð3Þ

where hl−2k is the low-frequency coefficient reconstructed by
wavelet packet and gl−2k is the high-frequency coefficient
reconstructed by wavelet packet.

2.1.2. AR Spectrum Estimation. Due to the complexity of
composite fault signal of rolling bearing, it is difficult to
obtain the accurate fault characteristics only by wavelet
packet decomposition. Therefore, it needs to be further
processed on the basis of wavelet packet decomposition.
The basic idea of AR spectrum estimation is to establish an
AR model for time series signal and then calculate the self-
power spectrum of signal with model coefficients [22].
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The general expression of AR model is

g xð Þ = s xð Þ − 〠
R

i=1
aig x − ið Þ, ð4Þ

where gðxÞ is autoregressive time series; sðxÞ is finite band-
width white noise with normal distribution with mean value
of 0 and variance of σ2s ; ai is regression coefficient; and R is
model order.

If equation (4) is regarded as the input/output equation
of a system, sðxÞ can be regarded as the white noise input
of the system, and gðxÞ is the response output of the system
under the excitation of limited bandwidth white noise.

According to the definition of self-power spectrum and
transfer function, the unilateral spectrum of signal can be
expressed by the following formula:

Gy fð Þ = 2Tsσ
2
s

1 +∑R
i=1aie

−i2πkTs

��� ���2 , ð5Þ

where f ∈ ½0, f s/2:56�; T s = 1/f s; and f s is the sampling
frequency.

2.1.3. Determination of Wavelet Packet Decomposition Levels.
The selection of decomposition levels not only affects the fault
feature extraction but also determines the dimension of
feature vector. When the number of decomposition layers is
too small, the information of each frequency band cannot be
completely decomposed, and the bearing feature information
is not accurately extracted, which affects the accuracy of fault
diagnosis. Although increasing the number of wavelet packet
decomposition layers can analyze the fault signal more finely,
the number of signals after decomposition increases. When
the number of decomposition layers is too many, the dimen-
sion of feature vector is too large, which affects the efficiency
of fault identification. Therefore, the number of wavelet packet
decomposition layers must consider the characteristics of the
signal itself. In this paper, the optimal number of decomposi-
tion layers is calculated by the following equation [23]:

J = max j < log2
f s
4f sf

����
� �

, j ∈ Z, ð6Þ

where J is the maximum number of layers; f s is the sampling
frequency; and f sf is the signal frequency.

For the vibration signal of rolling bearing, especially the
fault state signal, the frequency of useful signal is divided
into two types: (1) rotation frequency and (2) fault frequency
[24]. The wavelet packet decomposition aims to find fault

features, so the signal frequency f sf can be replaced by fault
feature frequency [25].

2.1.4. Selection of Wavelet Packet Basis Function

(1) Information Entropy Principle. Information entropy is the
measure of information disorder in information theory. The
greater the entropy, the greater the disorder of information
and the smaller the contribution of information. On the con-
trary, the smaller the entropy, the smaller the disorder of infor-
mation and the greater the contribution of information. The
working state of rolling bearing is often expressed in the form
of vibration state. When rolling bearing fails, the vibration sig-
nal will change accordingly. Therefore, extracting information
entropy from vibration signal in the time-frequency domain
can reflect the vibration state of rolling bearing.

(2) Wavelet Packet Energy Entropy. The construction steps
of wavelet packet energy entropy are as follows.

Step 1. The composite fault signal of rolling bearing is
decomposed by wavelet packet. After the signal is decom-
posed in j layers, 2j sub-signals are generated. The energy
of the node n of layer j, the Sj,n, is expressed as

Ej,n = 〠
Q

q=1
Sj,n qð Þ� 	2, ð7Þ

where j is the number of wavelet packet decomposition
layers; n = 0, 1,⋯, 2j − 1 is the node n of the layer j; and Q
is the signal length.

Step 2. The total signal energy is expressed as

Ej = 〠
2 j−1

n=0
Ej,n: ð8Þ

Step 3. The proportion of energy of each node in the total
energy is recorded as

pj,n =
Ej,n
Ej

: ð9Þ

Step 4. pj,0, pj,1,⋯, pj,2 j−1 is the energy distribution of each
frequency band in layer j after the signal is decomposed by
wavelet packet. According to Shannon’s theorem, the wave-
let packet energy entropy corresponding to each node is
defined as

Composite fault
of rolling bearing

Accelerator

Accelerator

Wavelet
packet

AR
spectrum

Feature
extraction

ANVTPSO-SOM-BPNN

ANVTPSO-SOM-BPNN

Basic probability
assignment 1

Basic probability
assignment 2

D-S evidence
fusion

Fault
diagnosis

Figure 1: General research idea of rolling bearing composite fault diagnosis.
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Hj,n = −pj,n ∗ log pj,n: ð10Þ

Step 5. The total energy entropy of the signal is expressed as

Hj = ‐ 〠
2 j−1

n=0
pj,n ∗ log pj,n: ð11Þ

(3) Selection of Wavelet Packet Basis Functions. In wavelet
packet decomposition, the parts where the signal waveform
is similar to the waveform of the selected wavelet packet
basis function are enhanced and the rest are suppressed
[26], so the greater the wavelet packet energy after decompo-
sition. In information theory, the more regular the signal is,
the higher the contribution value of information will be, and
the smaller the energy entropy of wavelet packet will be.
According to the principle of maximum ratio of total energy
and total energy entropy of wavelet packet, the larger the
ratio is, the more similar the selected wavelet packet basis
function is to the original signal [27]. The ratio formula
of total energy and total energy entropy of wavelet packet is

σ =
Ej

Hj
: ð12Þ

2.1.5. Construction of Wavelet Packet AR Spectral Entropy
Eigenvector. The construction steps of wavelet packet AR
spectral entropy eigenvector are as follows.

Step 1. The optimal wavelet basis is selected to decompose
the collected vibration signals by j level wavelet packet
decomposition and generate 2j wavelet packet coefficients.

Step 2. According to the wavelet packet filter selected in the
decomposition process, its dual filter is selected for recon-
struction. When reconstructing a certain frequency band
signal, set the wavelet packet coefficients of other frequency
bands to zero to make the reconstructed signal only contain
the time-domain waveform of the frequency band signal.

Step 3. The AR spectrum of each reconstructed signal is esti-
mated to obtain the AR spectrum containing only specific
frequency information.

Step 4. Calculate the energy entropy of wavelet packet AR
spectrum band.

Step 5. The energy entropy of wavelet packet AR spectrum
band is normalized, and the feature vector is constructed.

2.2. Fault Diagnosis Model of ANVTPSO-SOM-BPNN

2.2.1. SOM-BPNN Algorithm. BPNN is a multilayer feedfor-
ward neural network trained according to the error back prop-
agation. It is a supervised learning network, which is trained
on the premise of known expected output. SOM is an unsu-
pervised, self-organizing, and visual network composed of
fully connected neuron arrays. The two are connected in series

to form a combined SOM-BPNN model, which has both the
advantages of SOM and BPNN. After the sample data enters
SOM, the preliminary classification of samples is realized.
The essence of training the secondary network is to add a
dimension to the training sample vector and use it as the input
of the secondary network. The newly added dimension is used
to mark the classification results of the primary network,
which can promote the training of the secondary network.
Theoretically, it can effectively reduce the training time of
the secondary network and make the whole combined net-
work converge faster. As the primary network training, SOM
does not need a large sample set, so SOM-BPNN also has
the same characteristics. Therefore, the combination of two
neural networks can achieve the complementary advantages,
so as to improve the accuracy of fault diagnosis. The essence
of SOM-BPNN is to add a competition layer in front of the
hidden layer of BPNN, and its structure is shown in Figure 2.

The implementation process of SOM-BPNN is as follows.

Step 1. Construct the training samples, and normalize the
input samples.

Step 2. Determine the number of layers and nodes of SOM
and BPNN, respectively.

Step 3. Classify the input samples preliminarily with SOM.

Step 4. Add a dimension to the training sample vector
according to the preliminary classification results of SOM,
and use the new vector as the input of the secondary BPNN.

Step 5. Start training after the BPNN input layer of the
secondary network receiving the new sample vector, until
the model reaches the convergence requirement.

The combined network is the SOM-BPNN model which
can classify the input sample set more accurately. The classi-
fication of test samples is realized by inputting the test
sample set into the model.

2.2.2. ANVTPSO Algorithm. PSO is the search for the opti-
mal solution through the cooperation among individuals in
the group. In practice, a group of random particles is initial-
ized, and in each iterative search process, the particles con-
tinuously update through the extreme ðPia, PgaÞ until the
optimal solution is found within the set number of iterative
steps. Among them, Pia is the optimal solution found so far
by the particle itself, which is the individual extreme value,
and Pga is the optimal solution found so far by the whole
population, which is the global extreme value.

Via t + 1ð Þ =w tð ÞVia tð Þ + c1r1 Pia tð Þ − Xia tð Þð Þ + c2r2 Pga tð Þ − Xia tð Þ� 	
,

Xia t + 1ð Þ = Xia tð Þ +Via t + 1ð Þ,
ð13Þ

where Viaðt + 1Þ and Xiaðt + 1Þ are the particle velocity and
position of the i particle in the a dimension in the t + 1 iter-
ation, respectively; wðtÞ is inertia weight; t is the number of
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iterations; c1 and c2 are learning factors; and r1 and r2 are
random numbers at ½0, 1�.

In order to avoid the influence of randomly given initial
velocity of particles on the convergence speed and accuracy,
the velocity term of the standard PSO is abandoned [28], and
the position is updated according to the following equation:

Xia t + 1ð Þ =w tð ÞXia tð Þ + c1r1 Pia tð Þ − Xia tð Þð Þ + c2r2 Pga tð Þ − Xia tð Þ� 	
:

ð14Þ

PSO has the disadvantages of easy premature convergence,
low convergence accuracy, and low later iteration efficiency
[29]. Inertia weight w regulates the searching ability of parti-
cles in solution space, and its value affects the optimization
level of the algorithm. Meanwhile, because PSO has the evolu-
tionary stages, different learning factors should be set in differ-
ent stages. Based on this, this paper uses an adaptive method
to modify the inertia weight, which changes with the change
of particle objective function value [30], expressed by equation
(15). Asynchronous nonlinear adaptive adjustment learning
factor is adopted [31], which is expressed by equation (16).

w =
wmin −

wmax −wminð Þ ∗ f − fminð Þ
f avg − fmin

, f ≤ f avg,

wmax, f > f avg,

8><
>:

ð15Þ

where wmax is the maximum inertia weight; wmin is the mini-
mum inertia weight; f is the real-time objective function value
of the particle; and f avg and fmin are the average andminimum
values of all current particles, respectively.

c1=2+
f− f avg

f avg− fmin
,

c2=2−
f− f avg

f avg− fmin
,

(
ð16Þ

where 2 is the initial value of learning factors c1 and c2.

2.2.3. ANVTPSO-SOM-BPNN Model. The preliminary clas-
sification of input samples is realized through SOM. Accord-
ing to the preliminary classification results, a dimension is
added to the training sample vector, and the newly formed
feature vector is used as the input of SOM-BPNN. However,
the initial network connection weight and node threshold of

SOM-BPNN, like BPNN, are usually determined based on
experience and are easy to fall into local optimal solution,
which limits the convergence efficiency of the network. But
PSO can search in a large space, and when it is used to opti-
mize the threshold and weight of SOM-BPNN, it can avoid
the above problems to a certain extent. Because the parame-
ter setting of PSO has a great impact on the final result, this
paper adopts an adaptive way to adjust the inertia weight
and learning factor of PSO and round off its velocity term
to avoid the influence of particle initial velocity on the
convergence speed and solution accuracy, which is the new
ANVTPSO algorithm, used for SOM-BPNN threshold and
weight optimization, to improve the accuracy of fault
diagnosis. ANVTPSO-SOM-BPNN diagnostic model is con-
structed, and the process is shown in Figure 3.

The process of ANVTPSO-SOM-BPNN algorithm is as
follows.

Step 1. Set the input node, network competition layer, and
other parameters in SOM, according to the characteristic
data. Use the classification results obtained by SOM as the
training sample vector, and add a dimension; then, form a
new feature data set with the original feature data.

Step 2. Set the input node N , hidden layer node L, output
node M, and other parameters according to the new feature
data set. Clarify the structure of SOM-BPNN.

Step 3. Initialize PSO, calculate its search space dimension a,
and set parameters such as population number and maxi-
mum iteration times Tmax.

Step 4. Use the characteristic data as the input of SOM-
BPNN to calculate the fitness value of each particle. Fitness
function takes the mean square error function MSE between
the actual training output and the expected output.

Step 5. Calculate the initial individual optimal position Pia
and global optimal position Pga of PSO.

Step 6. Discard the velocity term of PSO, update the position
according to equation (14), update the inertia weight accord-
ing to equation (15), and update the learning factor accord-
ing to equation (16), so as to obtain the individual and global

x1

x2

y1

y2

xy yx

Energy
eigenvector

Input layer Competitive
layer

Hidden layer Output layer

Fault diagnosis result

˙˙
˙

˙˙
˙

˙˙
˙

˙˙
˙

˙˙
˙

˙˙
˙

Figure 2: Topological structure of the SOM-BPNN model.

5Journal of Sensors



SOM neural
network

End

Input samples
were constructed
and normalized

SOM neural network is used
to train and classify the input
samples, and add dimensions

to the input samples

The newly formed
vector is used as the

input of BPNN

Determine the BPNN
structure and set

parameters

SOM-BPNN weights and
thresholds are coded to obtain
the initial population, calculate

the PSO search space dimension
and set other parameters

The mean square error 
of SOM-BPNN is used
as the fitness function

Determine the relationship
between the optimal value of

individual and global extremum
and fitness function

PSO discards the velocity
term, updates the position,

adaptively updates the inertia
weight and learning factor

Calculation of ANVTPSO
fitness value

Update individual extremum
and global extremum

The optimal weight 
and threshold are

obtained

Calculation and 
training target error

Update weight
and threshold

Meet training
objectives

Get results

N Y

Y

N

N

Y

Original signal

Initialize connection
weight, neighborhood
radius, learning rate, 

learning times

Calculate the distance
between the sample and
the output neuron and

select the winning neuron

Update weight

Meet termination
conditions

The classification results
meet the requirements 

Figure 3: Flow chart of ANVTPSO-SOM-BPNN algorithm.
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Figure 4: Fault diagnosis comprehensive test platform.
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Figure 5: Fault machining equipment: (a) EDM; (b) laser welding machine.
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optimal extreme value. And then, the PSO position is
mapped to obtain the optimal weight and threshold.

Step 7. Bring the optimized weight and threshold into SOM-
BPNN, and continue tuning until the training objectives are
met.

2.3. D-S Evidence Theory

2.3.1. Principle of D-S Evidence Theory. D-S evidence theory
has good practicability, so it is widely used in the field of
multisensor target recognition [32, 33]. Its main characteris-
tics include the following: it satisfies the weaker conditions
than Bayesian probability theory and has the ability to
directly express “uncertainty” and “do not know” [34].

Definition 1. If Θ is a finite sample set and all propositions in
the set are mutually exclusive, set Θ is called the identifica-
tion framework. The power set of Θ is composed of all sub-
sets and various combinations of identification framework Θ
, noted as 2Θ. Take Θ as the identification framework of

(a) (b)

(c)

Figure 6: Finished fault bearings: (a) inner ring and outer ring; (b) inner ring and rolling element; (c) outer ring and rolling element.

Table 1: Fault size of rolling bearing.

Bearing status Fault size (mm)

Normal 0

Inner ring crack and outer ring crack 2 ∗ 1:5 ∗ 0:5 + 2 ∗ 1:5 ∗ 0:5
Inner ring crack and rolling element pitting 2 ∗ 1:5 ∗ 0:5 + 1s (pit corrosion)
Outer ring crack and rolling element pitting 2 ∗ 1:5 ∗ 0:5 + 1s (pit corrosion)

Table 2: Fault characteristic frequency of rolling bearing.

Fault location Frequency (Hz)

Inner ring 162.23

Outer ring 107.77

Rolling element 71.33
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proposition A. A assign the basic probability function m as
mðAÞ which is the mapping of set 2Θ to [0,1].

The function m : 2Θ ⟶ ½0, 1�satisfies the following
conditions:

m ϕð Þ = 0,

〠
A⊆Θ

m Að Þ = 1,

8<
: ð17Þ

where 0 ≤mðAÞ ≤ 1, A is called focal element, and mðAÞ is
the basic probability assignment of A, indicating the trust
degree in A.

Definition 2.Mapping BelðAÞ: 2Θ ⟶ ½0, 1� is the confidence
function defined on Θ, which reflects the exact trust degree
of A. The expression is

Bel Að Þ = 〠
B⊆A

m Bð Þ: ð18Þ

Mapping PIðAÞ: 2Θ ⟶ ½0, 1� is a plausible function
defined on Θ, which represents the degree of nonfalse trust
in proposition A. It is also an uncertainty measure that
seems to be possible for proposition A. The expression is

PI Að Þ = 1 − Bel �A
� 	 ð19Þ

where PIðAÞ and BelðAÞ represent the upper and lower
limits of the function, respectively.

Definition 3. ½BelðAÞ, PlðAÞ� is defined as the trust interval of
proposition A. ½0, BelðAÞ� represents the support evidence
interval of proposition A. ½PlðAÞ, 1� represents the rejection
evidence interval of proposition A.

Definition 4. D-S evidence theory synthesis rule: let m1 and
m2 be the basic reliability distribution on the same identifi-
cation framework Θ and meet the following conditions:

〠
Ai∩Aj=ϕ

m1 Aið Þm2 Aj

� 	
< 1: ð20Þ

Then, the combined basic probability distribution
function is

m Að Þ =
∑Ai∩Aj=Am1 Aið Þm2 Aj

� 	
1 −∑Ai∩Aj=ϕm1 Aið Þm2 Aj

� 	 : ð21Þ

2.3.2. Fault Diagnosis Based on D-S Evidence Fusion. The com-
posite fault signals of rolling bearing obtained by multiple sen-
sors are processed by wavelet packet AR spectral entropy, and
the relevant eigenvalues are extracted. The composite fault
diagnosis is carried out by using ANVTPSO-SOM-BPNN,
and the output is used as evidence which is fused through D-
S evidence theory to construct a new fault diagnosis model.
The model makes full use of the advantages of D-S theory in
dealing with uncertain problems and the powerful nonlinear
processing ability of neural network and uses the self-learning
ability of neural network to solve the problem that it is difficult
to obtain the basic probability assignment in D-S theory. At the
same time, if there is no noise, the target recognition will be
easy, but in practice, the noise is inevitable. Therefore, using
multiple sensors for recognition and fusing the recognition
results of each sensor can improve the recognition rate.

The implementation process of the proposed diagnosis
model based on D-S evidence fusion is as follows.

Step 1. Obtain the target feature vector. The collected com-
posite fault signals of rolling bearing are extracted by wavelet
packet AR spectral entropy.

Step 2. Input the target eigenvector into ANVTPSO-SOM-
BPNN model.

Step 3. Normalize the diagnostic output of ANVTPSO-
SOM-BPNN model, with a range of ½0, 1�; calculate the error
En between the actual output and the expected output of the
diagnostic model, as shown in equation (22). The basic
probability value of each focus element is shown in equation
(23). The uncertainty degree mðθÞ of the diagnostic model is
shown in equation (24).

En =
1
2∗〠 tni − ynið Þ, ð22Þ

where tni is the expected value of the output neuron and yni
is the actual value of the output neuron.

m Aið Þ = y Aið Þ
Sn

, ð23Þ

where mðAiÞ is the basic probability of each focal element;
yðAiÞ is the diagnostic result; and Sn =∑n

i=1yðAiÞ + En.

m θð Þ = 1 − 〠
R

i=0
m Aið Þ: ð24Þ

Step 4. Obtain the final result by multi-information fusion
with evidence combination rules.

3. Experiments

3.1. Experimental Data Collection. In order to verify the
effect of the composite fault diagnosis method of rolling
bearing based on ANVTPSO-SOM-BPNN combined with
wavelet packet AR spectral entropy, the experimental test

Table 3: Decomposition level of wavelet packet.

Fault location Decomposition level

Inner ring J < 3:98
Outer ring J < 4:57
Rolling element J < 5:16
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is carried out on the comprehensive experimental platform
for fault diagnosis of mechanical transmission system, as
shown in Figure 4. The test-bed consists of three-phase var-
iable frequency motor, rotor bearing system, radial loading
device, parallel shaft gearbox, and magnetic particle brake.
The rolling bearing in the bearing pedestal on the left side
of the rotor is selected as the tested object. The used bearing

model is NSK6205, the number of rolling elements Z is 9,
the diameter of rolling elements d is 7.94mm, the pitch
diameter D is 39.36mm, and the contact angle α is 0°.

Set the motor speed at 1800 r/min and no load; install
the composite fault part at the bearing seat as the fault
source. Set the bearing pedestal and gearbox as two measur-
ing points for vibration signal acquisition, and the vertical

Table 4: Ratio of total energy and total energy entropy of wavelet packet (radial mean value of direct fault point).

Type sym8 db4 db5 db8 db10

Normal 0.7071 0.7075 0.7069 0.7072 0.7078

Inner ring and outer ring 0.8215 0.8218 0.8212 0.8216 0.8221

Inner ring and rolling element 0.8714 0.8710 0.8705 0.8715 0.8728

Outer ring and rolling element 1.0236 1.0220 1.0219 1.0237 1.0249

Table 5: Ratio of total energy and total energy entropy of wavelet packet (axial mean value of direct fault point).

Type sym8 db4 db5 db8 db10

Normal 1.0148 1.0118 1.0122 1.0149 1.0156

Inner ring and outer ring 1.1893 1.1892 1.1886 1.1891 1.1896

Inner ring and rolling element 0.9888 0.9871 0.9872 0.9893 0.9903

Outer ring and rolling element 1.0543 1.0529 1.0528 1.0544 1.0553

Table 6: Ratio of total energy and total energy entropy of wavelet packet (radial mean value of gearbox).

Type sym8 db4 db5 db8 db10

Normal 2.6329 2.6375 2.6346 2.6329 2.6332

Inner ring and outer ring 2.5379 2.5415 2.5385 2.5393 2.5401

Inner ring and rolling element 2.6280 2.6309 2.6279 2.6286 2.6282

Outer ring and rolling element 2.5099 2.5119 2.5096 2.5088 2.5097

Table 7: Ratio of total energy and total energy entropy of wavelet packet (axial mean value of gearbox).

Type sym8 db4 db5 db8 db10

Normal 3.2479 3.2479 3.2456 3.2472 3.2497

Inner ring and outer ring 2.8983 2.8962 2.8951 2.8985 2.9004

Inner ring and rolling element 3.2146 3.2151 3.2128 3.2148 3.2167

Outer ring and rolling element 3.1967 3.1949 3.1932 3.1968 3.1991

Table 8: Parameters of ANSVTPSO-SOM-BPNN.

ANVTPSO parameters Value SOM parameters Value BPNN parameters Value

Number of population particles x 20 Input node 9 Input node N 10

Spatial dimension a 199 Network competition layer 6 ∗ 6 Hidden layer node L 13

Position X [-1, 1] Topological function Hextop Output node M 4

Learning factor c1 Undetermined Distance function Linkdist Maximum training times 1000

Learning factor c2 Undetermined Classification stage learning rate 0.9 Training objectives 10-8

Inertia weight Wmax 0.9 Classification stage learning step 1000 Learning rate 0.001

Inertia weight Wmin 0.4 Learning rate in tuning phase 0.02 Hidden layer transfer function Tansig

Maximum number of iterations Tmax 20 Tuning phase domain distance 1 Output layer transfer function Purelin
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radial and axial direction corresponding to the measuring
points adopt the accelerators with a sensitivity of 103mV/g
(g is gravity acceleration). When collecting the vibration sig-
nal of composite fault of rolling bearing, the sampling time is
set as 1 s and the sampling rate is set as 10.24 kHz. A total of
300 groups of vibration acceleration signals are collected,
including the normal, inner ring crack and outer ring crack,
inner ring crack and rolling element pitting, and outer ring
crack and rolling element pitting, and each type has 75
groups. The signal samples are divided into a training set
and test set in 2 : 1.

The inner ring and outer ring are machined by using
electrical discharge machine (EDM), and the rolling element
has the 1 second pit corrosion by using TH-RFT300 high-
speed laser welding machine. The fault machining equip-
ment is shown in Figure 5. The finished fault bearings are
shown in Figure 6. The fault size is shown in Table 1, and
the fault characteristic frequency is shown in Table 2.

3.2. Experimental Data Analysis

3.2.1. Determining the Optimal Number of Wavelet Packet
Decomposition Layers. The purpose of wavelet packet
decomposition is to find fault characteristics. Therefore,
the signal frequency can be replaced by fault characteristic
frequency. The number of decomposition layers can be
calculated by equation (6), as shown in Table 3.

Table 3 shows that according to the characteristic fre-
quencies of different fault parts of the bearing, the best
values of wavelet packet decomposition layers are 3 to 5.
Because the composite fault signal is more complex than a
single fault case, in order to retain the useful information
of four types of bearing vibration signals to the greatest
extent, in the selection of unified decomposition layers, if
the number of decomposition layers exceeds 3, the inner
ring signal may be over decomposed, resulting in the loss
of useful information in the composite fault. After compre-
hensive consideration, the number of wavelet packet decom-
position layers in this paper is 3.

3.2.2. Determining the Optimal Wavelet Basis Function. 75
groups of 4 types of bearing data are selected, and the 5 types
of wavelet bases sym8, db4, db5, db8, and db10 are decom-
posed in 3 layers by wavelet packet and calculated according

to formula (12) to obtain the ratio of wavelet packet total
energy and total energy entropy corresponding to the 4 types
of bearing data. In order to eliminate the uncertain influence
caused by individual signals, the mean value of parameters
under various states is calculated. The corresponding calcu-
lation results are shown in Tables 4–7.

It can be seen from Tables 4 and 5 that the ratio of total
energy and total energy entropy of wavelet packet in 4 types
of bearings in the measuring points of bearing pedestal
(direct fault point) is db10, which is the largest in the data
of radial and axial measuring points. According to the prin-
ciple that the greater the ratio of total energy and total
energy entropy of wavelet packet, the better the decomposi-
tion effect of wavelet packet, db10 is regarded as the optimal
wavelet basis function of wavelet packet decomposition of 4
kinds of bearing signals in radial measuring points and axial
measuring points of bearing pedestal. It can be seen from
Tables 6 and 7 that the ratio of total energy of wavelet packet
to total energy entropy of four types of bearings in the gear-
box measuring points is db4 and db10, respectively, in the
radial and axial data. Similarly, db4 and db10 are taken as
the optimal wavelet basis function for wavelet packet decom-
position of 4 types of bearing signals in the gearbox radial
direction measuring points and axial measuring points.

3.3. Determination of the ANVTPSO-SOM-BPNN
Parameters. The parameters of ANVTPSO-SOM-BPNN
are shown in Table 8, where the spatial dimension of parti-
cles a [35] and the selection of the optimal number of nodes
L in the hidden layer are shown in equations (25) and (26),
respectively.

a =N ∗ L + L ∗M + L +M, ð25Þ

L =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M +Nð Þ

p
+ ε, 0 < ε < 10: ð26Þ

3.4. Result Analysis. BPNN, SOM-BPNN, PSO-SOM-BPNN,
and ANVTPSO-SOM-BPNN were used for the composite
fault diagnosis of rolling bearing, respectively. The expected
output of the state categories of the tested rolling bearing are
normal (1 0 0 0), inner ring fault (0 1 0 0), outer ring fault (0
0 1 0), and rolling element fault (0 0 0 1).

In order to verify the advantages of the method proposed
in this paper, at first, optimize the wavelet basis function and
decomposition levels of wavelet packet AR spectrum energy
entropy, extract the characteristics of energy entropy, and
compare SOM-BPNN with standard BPNN to verify that
the series network has more advantages in convergence
speed than a single network. Second, the PSO-SOM-BPNN
is compared with SOM-BPNN to verify the optimization
effect of PSO on SOM-BPNN. Then, compare the above 3
schemes BPNN with ANVTPSO-SOM-BPNN, study the
series advantages of both unsupervised learning network
and supervised learning network, and verify the impact of
improved PSO on fault diagnosis results. Finally, the col-
lected multisensor data are used for fault diagnosis through
the ANVTPSO-SOM-BPNN constructed in this paper, and
the results are fused at the decision level through D-S evi-
dence theory, so as to improve the final fault diagnosis rate.

Table 10: Comparison of bearing fault diagnosis results (axial
direction of fault point).

Diagnostic method
Iteration
steps

Diagnostic accuracy
(%)

BPNN 135 97

ANVTPSO-SOM-
BPNN

81 97

Table 9: Comparison of bearing fault diagnosis results (radial
direction of fault point).

Diagnostic method Iteration steps Diagnostic accuracy (%)

BPNN 12 100
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Through fault diagnosis of vibration signals of radial
measuring points and axial measuring points of bearing ped-
estal, the diagnosis results are shown in Tables 9 and 10,
respectively.

As shown in Table 9, in the radial measuring points of
the bearing pedestal, because they are close to the fault point,

there is less noise interference, and the fault characteristics
of the collected vibration signals are obvious. Therefore,
the fault diagnosis using standard BPNN can reach 100%,
and the number of iterative steps is only 12. Table 10 pre-
sents that in the axial measuring point, the standard BPNN
used for fault diagnosis reach 97%, and the number of
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Figure 7: Error curves of four kinds of diagnosis models (gearbox radial direction).
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Figure 8: Error curves of four kinds of diagnosis models (gearbox axial direction).
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iterative steps is 135. The ANVTPSO-SOM-BPNN method
proposed in this paper is used for diagnosis, with an accu-
racy of 97%, which is the same as the diagnosis result of
the standard BPNN, but the number of iterative steps is
81; compared with the former, it reduces 54 steps.

To sum up, the data collected at the measuring point of
the bearing pedestal has less interference and obvious fault
characteristics, so the basic diagnosis algorithm used in both
radial and axial direction data has a high accuracy. However,
in real working conditions, due to the influence of various
on-site factors, it is impossible to install sensors to collect
vibration signals close to the direct fault point. Therefore,
the indirect gearbox measuring point is more universal in
line with the actual working conditions.

Figures 7 and 8, respectively, demonstrate the mean
square error of the four diagnostic methods of the radial
measuring point and axial measuring point of gearbox with
the number of training times. The comparison of diagnostic
results of the composite fault of rolling bearing is shown in
Tables 11 and 12.

Figure 7 indicates that BPNN, PSO-SOM-BPNN, and
ANVTPSO-SOM-BPNN intersect near 50 steps and the error
of ANVTPSO-SOM-BPNN is the smallest before the intersec-
tion. After the intersection, the BPNN always keeps the mini-
mum error until the second intersection with ANVTPSO-
SOM-BPNN near 200 steps. After the second intersection,
ANVTPSO-SOM-BPNN converges faster. Before SOM-
BPNN intersects with BPNN, SOM-BPNN error is always the
largest, and it converges faster after the bifurcation point. From
the details of the iterative process, the four methods all have
fallen into the local minimum for a short time, resulting in
the increase of the total iterative steps, but ANVTPSO-SOM-
BPNN performs better than the other methods. Figure 8
displays that BPNN and SOM-BPNN intersect near 100 steps.

The error of BPNN before intersection is the smallest, but it is
easier to fall into the local minimum than SOM-BPNN, and the
convergence speed becomes slower and the total number of
iterative steps increases after intersection. Before the intersec-
tion of PSO-SOM-BPNN and ANVTPSO-SOM-BPNN, the
error is the smallest among the four methods, and the number
of relative falling into the local minimum is the least. After the
intersection, ANVTPSO-SOM-BPNN converges faster and
takes the least iterative steps to reach the training target.

Above all, ANVTPSO-SOM-BPNN has the advantages
of series connection of unsupervised learning network and
supervised learning network. Combined with ANVTPSO,
at the gearbox measuring points with more interference, it
can reach the training target faster for both radial and axial
vibration signal diagnosis, which proves that the proposed
new method has an obvious optimization effect.

Tables 11 and 12 show the quantitative data of the four
methods in the radial and axial measuring points of gearbox.
Table 11 reveals that the diagnostic accuracy of SOM-BPNN
is 3% higher than that of BPNN. Compared with SOM-BPNN,
the diagnostic accuracy of PSO-SOM-BPNN is improved by
2%, and the number of iterative steps is reduced by 87.
Table 12 suggests that the diagnostic accuracy of SOM-
BPNN is 2% higher than that of BPNN. Compared with
SOM-BPNN, the diagnostic accuracy of PSO-SOM-BPNN is
improved by 2%, and the number of iterative steps is reduced
by 133. In both radial and axial directions, the PSO learning
factor in PSO-SOM-BPNN is taken as c1 = c2 = 1:49445
according to experience, while the ANVTPSO-SOM-BPNN
adaptively adjusts the inertia weight and learning factor, so
that the inertia weight is taken as w = 0:9 in the initial stage
and w = 0:4 in the later stage, the radial learning factor is c1
= 1:4175 and c2 = 2:5825 in the later stage, and the axial learn-
ing factor is c1 = 1:6984 and c2 = 2:3016 in the later stage. As
mentioned above, the axial learning factor of bearing pedestal
is c1 = 1:5736 and c2 = 2:4264 in the later stage. Both the iner-
tia weight and learning factor meet the needs of different
stages of the algorithm through adaptation. After many tests,
the accuracy of ANVTPSO-SOM-BPNN is higher than other
methods, and the number of iterative steps also has great
advantages. Table 11 presents that in the radial direction, the
diagnostic accuracy reaches 92% at step 240. Table 12 shows
that in the axial direction, the diagnostic accuracy reached
96% at step 182.

Tables 13 and 14 display the partial basic probability dis-
tribution values of the radial and axial measuring points of
gearbox after the output results of the ANVTPSO-SOM-
BPNN model are processed according to formula (22) and
formula (23) and the uncertainty degree of the diagnostic
model according to equation (24). Table 15 presents the par-
tial basic probability distribution values and uncertainty
degree of the two measuring points after D-S evidence
fusion. Table 16 indicates that the diagnosis results of the
newly proposed ANVTPSO-SOM-BPNN method in this
paper at the radial and axial measuring points of gearbox
are fused at the decision level, and the accuracy of fault diag-
nosis reaches 100%. The diagnostic accuracy after fusion was
improved by 8% and 4% compared with the radial and axial
ANVTPSO-SOM-BPNN in the gearbox, respectively. When

Table 11: Comparison of bearing fault diagnosis results (gearbox
radial direction).

Diagnostic method
Iteration
steps

Diagnostic accuracy
(%)

BPNN 448 82

SOM-BPNN 389 85

PSO-SOM-BPNN 302 87

ANVTPSO-SOM-
BPNN

240 92

Table 12: Comparison of bearing fault diagnosis results (gearbox
axial direction).

Diagnostic method
Iteration
steps

Diagnostic accuracy
(%)

BPNN 576 91

SOM-BPNN 415 93

PSO-SOM-BPNN 282 95

ANVTPSO-SOM-
BPNN

182 96
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compared with the diagnostic accuracy of BPNN in the
radial direction of the fault point, it also reaches 100%.
And compared with the diagnostic accuracy of ANVTPSO-
SOM-BPNN in the axial direction of the fault point, it is
improved by 3%. In conclusion, it is proved that the method
proposed in this paper can achieve high diagnosis accuracy
even at the gearbox measuring point far away from the fault
point.

4. Conclusions

(1) The method of wavelet packet AR spectrum energy
entropy can effectively extract the composite fault
feature components in the vibration signal of rolling
bearing and can better eliminate interference and
noise. The optimal selection of wavelet packet
decomposition layers and basis function in wavelet
packet AR spectrum energy entropy can avoid the
external interference caused by blind selection

(2) The adaptive inertia weight and learning factor are
introduced into the standard PSO algorithm to meet

the needs of the algorithm for parameters in different
stages, and the velocity term is discarded to avoid the
influence of the initial particle velocity on the conver-
gence speed and solution accuracy of the algorithm,
which significantly improves the search speed and
convergence accuracy of the algorithm compared with
the conventional method

(3) Build ANVTPSO-SOM-BPNN diagnostic model.
SOM-BPNN avoids the influence of the limitations
of a single algorithm on the diagnosis results, so that
the primary network can promote the training of the
secondary network. Then ANVTPSO is used to opti-
mize the threshold and weight of SOM-BPNN to
avoid falling into the local optimal solution, so as
to improve the diagnostic accuracy

(4) In the actual working condition, it is common for the
same rolling bearing to coexist multiple faults, and
the installation scheme of sensors also have a great
impact on the accuracy of diagnosis. In this paper, both
the data of fault point and far away from fault point are
collected by multiple acceleration sensors, and the pro-
posed method based on optimal wavelet packet AR
spectrum energy entropy combined with ANVTPSO-
SOM-BPNN is used formulti-information fusion diag-
nosis. By comparing the diagnosis results of two mea-
suring points, it is found that even at the gearbox
measuring point far away from the direct fault point,
the diagnosis results can achieve high accuracy and
effectively diagnose the composite fault of rolling bear-
ing under noise

Table 13: Basic probability distribution value of ANVTPSO-SOM-BPNN (gearbox radial direction).

Type m1 A1ð Þ m1 A2ð Þ m1 A3ð Þ m1 A4ð Þ m1 θð Þ
Normal 0.9373 0.0416 0.0200 0 0.0011

Inner ring and outer ring 0.0764 0.8403 0.0764 0 0.0069

Inner ring and rolling element 0.0212 0.0422 0.9354 0 0.0012

Outer ring and rolling element 0.0839 0 0.0840 0.8235 0.0086

Table 14: Basic probability distribution value of ANVTPSO-SOM-BPNN (gearbox axial direction).

Type m2 A1ð Þ m2 A2ð Þ m2 A3ð Þ m2 A4ð Þ m2 θð Þ
Normal 0.7670 0 0.2050 0.0006 0.0274

Inner ring and outer ring 0 0.9994 0.0004 0.0002 0

Inner ring and rolling element 0.1051 0 0.8887 0 0.0062

Outer ring and rolling element 0.0000 0.0059 0.0117 0.9823 0.0001

Table 15: Basic probability distribution value after D-S evidence fusion.

Type m A1ð Þ m A2ð Þ m A3ð Þ m A4ð Þ m θð Þ
Normal 0.9920 0.0015 0.0065 0 0

Inner ring and outer ring 0 1.0000 0 0 0

Inner ring and rolling element 0.0030 0.0003 0.9967 0 0

Outer ring and rolling element 0 0.0001 0.0013 0.9986 0

Table 16: D-S evidence fusion diagnosis results.

Diagnostic method
Diagnostic accuracy

(%)

ANVTPSO-SOM-BPNN (radial &
axial)

100
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