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SARS-CoV-2, a deadly coronavirus sparked COVID-19 pandemic around the globe. With an increased mutation rate, this
infectious agent is highly transmissible inducing an escalated rate of infections and death everywhere. Hence, the discovery of a
viable antiviral therapy option is urgent. Computational approaches have offered a revolutionary framework to identify novel
antimicrobial treatment regimens and allow a quicker, cost-effective, and productive conversion into the health center by
evaluating preliminary and safety investigations. The primary purpose of this research was to find plausible plant-derived
antiviral small molecules to halt the viral entrance into individuals by clogging the adherence of Spike protein with human
ACE2 receptor and to suppress their genome replication by obstructing the activity of Nsp3 (Nonstructural protein 3) and
3CLpro (main protease). An in-house library of 1163 phytochemicals were selected from the NPASS and PubChem databases
for downstream analysis. Preliminary analysis with SwissADME and pkCSM revealed 149 finest small molecules from the large
dataset. Virtual screening using the molecular docking scoring and the MM-GBSA data analysis revealed that three candidate
ligands CHEMBL503 (Lovastatin), CHEMBL490355 (Sulfuretin), and CHEMBL4216332 (Grayanoside A) successfully formed
docked complex within the active site of human ACE2 receptor, Nsp3, and 3CLpro, respectively. Dual method molecular
dynamics (MD) simulation and post-MD MM-GBSA further confirmed efficient binding and stable interaction between the
ligands and target proteins. Furthermore, biological activity spectra and molecular target analysis revealed that all three
preselected phytochemicals were biologically active and safe for human use. Throughout the adopted methodology, all three
therapeutic candidates significantly outperformed the control drugs (Molnupiravir and Paxlovid). Finally, our research implies
that these SARS-CoV-2 protein antagonists might be viable therapeutic options. At the same time, enough wet lab evaluations
would be needed to ensure the therapeutic potency of the recommended drug candidates for SARS-CoV-2.

1. Introduction

The World Health Organization (WHO) reported that the
prevalence of SARS-CoV-2 is spreading at an alarming rate,
posing severe health problems. The most recent outburst of
second wave of SARS-CoV-2 has turned into a worldwide

catastrophe. Following the coronavirus (CoV) epidemic in
China in December 2019, WHO classified SARS-CoV-2, as
the newest candidate of theCoronaviridae family withinNido-
virales order [1]. As of 3rd May 2023, WHO has received a
report from around 765,222,932 diagnosed COVID-19 infec-
tions worldwide, with 6,921,614 fatalities [2, 3]. According to
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available information, the virus can be transmitted often by
close, indirect, or direct exposure to infectious persons, as well
as contaminated secretions such as nasal droplets and saliva,
and respiratory secretions released when an infected individ-
ual sneezes, coughs, or speaks [3]. It has been linked to a wide
range of signs and symptoms, consisting of minor to severe ill-
ness, which varies from patient to patient. Complications
might appear anywhere from two to fourteen days after the
virus has been infected. Fever, fatigue, chronic cough, sore
throat, difficulty breathing, impairment of taste/odor, nausea,
sputum production, headache, expectoration, diarrhea,
anorexia, and some other symptoms might occur at separate
phases of the disease [1, 4].

SARS-CoV-2 is a membrane-encased positive-sense
single-stranded RNA ((+) ssRNA) virus having a diameter
ranging from 60 to 140 nanometers [4, 5]. The envelope is
surrounded by spike-shaped glycoprotein protrusions that
resemble crowns under the electron microscope [6]. The
spike (S), nucleocapsid (N), envelope (E), and membrane
(M) proteins are among the four crucial targets encoded by
the SARS-CoV-2 genome. Main protease (3CLpro), RNA-
dependent RNA polymerase (RdRp), and papain-like prote-
ase (PLpro) are some of the nonstructural proteins synthe-
sized by the viral DNA [7]. Nonstructural protein 3 (Nsp3)
proteins containing macrodomains are pervasive and evolu-
tionarily conserved and responsible for the transcription
process [8]. Previous study has established that human
angiotensin converting enzyme 2 (ACE2) receptor has a
greater affinity for the RBD region of the spike protein [9].
The attachment of favorable ligands to the active pockets
of human ACE2 receptor might alter the protein’s structure.
As a result, the viral ACE2 entrance region might be a
feasible object for therapeutic advancement. Since the main
protease of SARS-CoV-2 is vital for its growth and the con-
sequent expression of the replicase polyproteins, it has
turned into an obvious target for anti-COVID-19 therapeu-
tic design [10]. As a result, focusing on these proteins might
help with long-term COVID-19 infection management and
eradication.

The viral disease is spreading at a surprising pace world-
wide, and researchers are racing to develop effective drugs to
use as therapeutic agents. The most promising choices
appear to be natural compounds with substantial bioavail-
ability and minimal cytotoxicity [1]. Clinically approved
antiviral drugs are effective; however, some people become
resistant to drugs. In contrast, it has been claimed that phy-
tochemicals have more acceptable side effects and can be a
satisfactory substitute for synthetic antiviral compounds for
the suppression of viral life-cycle and penetration [10].

Humans have always relied on natural compounds,
especially phytochemicals, to treat health problems since
the dawn of time. Recently, Shawan et al. presented luteo-
lin and abyssinone II as possible phytochemicals against
SARS-CoV-2 [1]. Besides, Manojkumar et al. reported
ervoside had anticoronavirus properties [11]. Similarly,
Emran et al. identified phytochemicals medicagol, faradiol,
and flavanthrin as the potential barrier of SARS-CoV-2
[12]. Computer-assisted drug development (CAD) entails
the usage of computerized techniques to discover, design,

and evaluate therapeutics and associated pharmacologically
active substances [13]. CAD techniques have improved
compound screening significantly over time, aimed at tar-
geting structure prediction and model development, active
site determination, comprehending the protein-ligand
complex, testing a huge dataset of substances by estimat-
ing their pharmacokinetics characteristics, and analyzing
the dynamics of proteins binding with ligands within bio-
logical settings [14]. Existing medicines like Molnupiravir
and Paxlovid have been authorized by the FDA for utiliza-
tion in emergencies; the treatment may be used either
alone or combined with others [15]. For COVID-19
patients, the antiviral drug Molnupiravir has been recom-
mended as a therapeutic for SARS-CoV-2 because it
increases the likelihood of viral RNA alterations while also
inhibiting viral replication [16]. Through inhibition of pro-
teasome breakdown of viral proteins, Paxlovid inhibits
protein production (RNA-dependent RNA polymerase,
helicase, exoribonuclease, RNA-binding protein endoribo-
nuclease). Consequently, the viral transcription and repli-
cation are halted [7].

The main focus of this in silico work was to utilize
computational tools, i.e., molecular docking and MD sim-
ulation to examine the effective binding interactivity and
affinities of repurposed antiviral phytochemicals with the
human ACE2 receptor, Nsp3 macrodomain, and the main
protease of the SARS-CoV-2 virus and identify the finest
ligand hit [17]. Among all other crucial characteristics,
absorption, distribution, metabolism, toxicity, and excre-
tion (ADMET) were evaluated, and the best of them were
selected. Finally, the most effective phytochemicals with
higher binding energy to the target receptor and stronger sta-
bilizing capacity were confirmed by employing molecular
dynamics simulation.

2. Materials and Methods

Virtual screening of natural bioactive molecules has become
the standard method in the present therapeutic development
workflow [18]. In this study, a wide range of repurposed
phytochemicals were used from the NPASS (http://bidd
.group/NPASS/) and PubChem (https://pubchem.ncbi.nlm
.nih.gov/) servers as prospective ligands for SARS-CoV-2.
The recently approved COVID-19 antiviral drugs Molnupir-
avir and Paxlovid were used as control drugs [19]. The
workflow of our work was provided in Figure 1.

2.1. Characterization of Drug-Likeness Properties. A drug-
like molecule can be considered a drug candidate by asses-
sing its drug-like properties. The canonical SMILE sequence
of the 1163 small molecules was fetched from the PubChem
drug web server. The free accessible SwissADME was
employed to compute the major physicochemical descrip-
tors, pharmacokinetic properties, drug-like parameters, and
associated factors [20]. To analyze the results, this applica-
tion employs five principles of Lipinski’s rule [21], Ghose’s
rule [22], Veber’s rule [23], Egan rule [24], Muegge’s rule
[24], the number of rotatable bonds, and TPSA.
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2.2. Characterization of ADMET Properties. pkCSM is an
online tool that employs graph-based structural signatures
for determining and improving pharmacokinetic character-
istics and toxicity in small molecules. To devise an ADMET
prediction benchmark for in silico drug discovery, pkCSM
applies a cut-off scanning strategy [25]. The chosen criteria
for the prediction model were hepatotoxicity, Ames toxicity,
oral rat acute toxicity, human intestinal absorption (HI),
hERG I inhibitor, hERG II inhibitor, P-glycoprotein I inhib-
itor, P-glycoprotein II inhibitor, P-glycoprotein substrate,
BBB permeability (log BB), Caco-2 permeability, CYP2D6
substrate, CYP3A4 substrate, CYP2C19 inhibitor, CYP1A2
inhibitor, CYP3A4 inhibitor, CYP2C9 inhibitor, and
CYP2D6 inhibitor.

2.3. Molecular Docking by AutoDock vina

2.3.1. Ligand Preparation. At pH7.4, polar hydrogen atoms
were introduced to the downloaded 3D molecular ligands
in SDF (spatial data file) format using the build module of
the Avogadro 1.2.0. The same program was then used to
conduct geometry optimization and energy reduction
employing the MMFF94 force field and steepest descent
option. These structures were retained in the PDB [26]
extension for additional investigation. To add polar hydro-
gens and fix torsions of the ligands, AutoDockT tools-
MGLTool 1.5.6 was used [27].

2.3.2. Protein Preparation. The preferred structures of SARS-
CoV-2 main protease in complex with FSCU015 (PDB ID:
7NT3), Nsp3 macrodomain in complex with ADP-ribose
(PDB ID: 7KQP), and inhibitor bound human ACE2-
related carboxypeptidase (PDB ID: 1R4L) were taken from
RCSB repository (https://www.rcsb.org/). Initially, the 3D
structures were prepared in the PyMOL program [1].

Swiss-PdbViewer was subsequently used to minimize the
energy of the selected proteins [28]. Next, the energy-
minimized structures were loaded into AutoDock-
MGLTools 1.5.6 to incorporate polar hydrogen and convert
the PDB to PDBQT format.

2.3.3. Active Site Detection and Grid Box Preparation. Find-
ing a ligand-binding region on a protein is the basic strategy
for the molecular docking technique [29]. The possibility
of protein-ligand attachment relies on numerous factors
such as hydrogen bonds, hydrophobic or hydrophilic
interactions, electrostatic and salt bridges. CASTp 3.0 web-
site (http://sts.bioe.uic.edu/castp/) was employed to detect
the active region of target proteins [30]. It applies an alpha
shape detection approach to determine topographic prop-
erties and estimate protein area and volume for identifying
ligand-binding cavities.

2.3.4. Binding Affinity Prediction by AutoDock vina. Virtual
screening via docking studies is extensively used in
computer-led pharmaceutical research to uncover promising
drug-like substances. Initially, AutoDock vina was exploited
to conduct rigid molecular docking among the proteins and
selected compounds (ligands and control drugs), including a
search area of 27,000m3 and exhaustiveness 10, and ligands
being flexible while receptors remained rigid [18]. AutoDock
vina calculates the binding energy and fixes the binding
poses using the Lamarckian genetic algorithm. Here, in this
study, 149 small molecules were docked with three target
proteins (coordinates of geometry-optimized ligands of the
best hits provided in Supplementary Table 5).

2.4. Glide Docking and MM-GBSA Analyses. Schrodinger
was employed to perform glide docking and MM-GBSA
analyses (Maestro 12.5, Schrodinger Suites 2020-3).
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Figure 1: Complete work flow of the structure-based virtual screening study.
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Previously screened ligands having higher affinity for target
proteins than the reference drugs were explored in this step.

2.4.1. Preparation of Ligand Structures. The LigPrep module
yields top hits of 3D configurations for small molecules,
beginning from 1-dimensional/2-dimensional/3-dimen-
sional structures in Maestro, Mol2, SMILES, or SD format
[31]. By introducing hydrogens, ionizing at pH (7 ± 2:0),
and subtracting salts, the LigPrep tool builds molecules
and constructs 3D structures of them. Following that energy
minimized and geometrically refined ligands were prepared
by employing a built-in OPLS3e force field in Schrödinger
Maestro 12.5 [32].

2.4.2. Preparation of Protein Structures. The protein struc-
tures (main protease, Nsp3, human ACE2 receptor) were
loaded straight into the protein preparation wizard [32].
Protein structures were preprocessed by setting up bond
orders, adding hydrogens and cap termini, and filling the
missing atoms by prime module. At pH7.0, the PROPKA
application was used to calculate the protonation phases.
Following that, the water portion around the protein was
eliminated above 3.0Å, and restrained minimization was
executed utilizing the OPLS3e force field.

2.4.3. Preparation of Receptor Grid Box. The grid region
directs small molecules to the binding center of the protein,
making it an important part of molecular docking research.
The grid model was created with the standard options of a
Van der Waals radius scaling marker of 1.0 and a charge
threshold score of 0.25 in the receptor grid generation pack-
age. The attached ligands UQZ, AR6, and XX5 within the
protein structures main protease, Nsp3, and human ACE2
receptor, respectively, were used to define the region for
the grid map.

2.4.4. Glide Docking and MM-GBSA Studies. Glide is a com-
bined molecular docking technology that can facilitate both
ligand and receptor flexibility [33]. Glide XP was developed
to retrieve the finest docking poses having the greatest-
scoring compounds. For drug molecules, a minimum scor-
ing of 0.15 and a Van der Waals radius scaling marker of
0.80 was applied.

Docking score = a × VdW+ b × Coul + Hbond +Metal
+ Lipo + BuryP + RotB + Site:

ð1Þ

Here, a and b are coefficient constants for VdW and
Coul, respectively, VdW is the Van der Waals energy, Coul
is the Coulomb energy, H-bond is the hydrogen bonding
with the receptor, Metal is the binding with metal, Lipo is
the constant term for lipophilic, BuryP is the buried polar
group penalty, RotB is the rotatable bond penalty, and Site
is the active site polar interaction [1].

The binding free energy among the receptor and the col-
lection of small molecules was measured using the prime
MM-GBSA module. The binding energy of the ligand-
protein constructs was estimated utilizing the OPLS3e force

field, and the docked conformations were minimized utiliz-
ing Prime’s native optimization tool.

ΔGbind Binding Free Energyð Þ = ΔEMM+ ΔGsolv + ΔGSA:
ð2Þ

Here, ΔEMM represents lowered energy deviations
among the totality of the energies of the protein and ligand
and protein-ligand complex. ΔGsolv displays the divergence
in the GBSA solvation energy of the complex structure and
the aggregate of the salvation energies for the ligand and
protein. ΔGSA describes the deviation in the energies for
the surface area of a complex and the total surface area of
the ligand and protein complex [34].

2.5. Molecular Dynamics Simulation by GROMACS. The
molecular dynamics program simulates the movements of
a protein molecule utilizing the interaction potential to com-
pute interatomic energies and equations of motion that reg-
ulate the machinery’s dynamics in the drug design study. It
illustrates the stability and flexibility data of ligand binding
to a flexible target protein. GROMACS (https://simlab
.uams.edu/) service was exploited to simulate the protein-
ligand conformations, and the GROMOS96 43a1 force field
was employed to produce the topological data of the com-
plex constructs [35]. The PRODRG (http://davapc1.bioch
.dundee.ac.uk/cgi-bin/prodrg) Server was employed to ren-
der small molecule topology and coordinate information
[36]. The aqueous phase of macromolecules was produced
sequentially using the SPC water model (simple point-
charge) and subsequently neutralized using 0.15M NaCl
solution [37]. A triclinic box was used to contain the bimo-
lecular environment, and 5000 iterations of steepest descent
strategies were used to minimize energy. The equilibrium of
ion molecules around the macromolecule was accomplished
at 310K and 1.0 bar utilizing NPT (constant pressure) and
NVT (constant volume) setups. After 100 nanoseconds of
simulation, it provided trajectories of simulated structures,
including the root-mean-square deviation (RMSD), the root-
mean-square fluctuation (RMSF), the solvent-accessible sur-
face area (SASA), hydrogen bonds (HBs), and the radius of
gyration (Rg) [38].

2.6. Molecular Dynamics Simulation and Post MM-GBSA
Evaluation by Desmond. The molecular dynamics simula-
tion provides evidence regarding the mobility and stability
of the bound protein-ligand complex. On Desmond soft-
ware, the MD simulation and post-MMGBSA analysis of
the main-protease_ligand, Nsp3_ligand, and human ACE2
receptor_ligand complexes were performed [39]. These
compounds were solvated on a cubic TIP3P water model
using the system builder package. A minimal spacing of 10
was maintained between the protein and the solvated region.
Subsequently, Na+ salts were supplied until the final system
strength reached 0.15M, which is the physiological salt con-
centration present in the human body. The integrated
OPLS3e force field was used to optimize the final system’s
energy. To complete the MDS, we used the isothermal iso-
baric ensemble (NPT) at 1.013 bar and 310° K. The total
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Figure 2: Schematic illustration of 7NT3_CHEMBL503 (Lovastatin), 7NT3_Molnupiravir, and 7NT3_Paxlovid complexes. (a, b) Share the
pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (c, d) Share 3D
and 2D interactions of protein and ligand complex. Magenta color represents proteins, and yellow color presents ligands. (e, f) Share the
pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (g, h) Share
3D and 2D interactions of protein and ligand complex. Here, protein is in agenta color and ligand is in yellow color. (i, j) Share the pose
and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (k, l) Share 3D
and 2D interactions of protein and ligand complex. Here, protein in magenta color and ligand in yellow color.
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Figure 3: Schematic illustration of 7KQP_CHEMBL490355 (Sulfuretin), 7KQP_Molnupiravir, and 7KQP_Paxlovid complexes. (a, b) Share the
pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (c, d) Share 3D and 2D
interactions of protein and ligand complex. Magenta color represents proteins and yellow color presents ligands. (e, f) Share the pose and surface
view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (g, h) Share 3d and 2D interactions of
protein and ligand complex. Here, protein inmagenta color and ligand in yellow color. (i, j) share the pose and surface view of protein and ligand
complex. Here, protein is in purple and cyan colors and ligand is in blue color. (k, l) Share 3D and 2D interactions of protein and ligand complex.
Here, protein is in magenta color and ligand is in yellow color.

11BioMed Research International



(a) (b)

(c) (d)

Interactions
Conventional hydrogen bond
Carbon hydrogen bond
Pi-anion
Alkyl
Pi-alkyl

GLU
A:145

ILE
A:54

LYS
A:341

ASP
A:269

TRP
A:271

HIS
A:345

(e) (f)

(g) (h)

Interactions
Conventional hydrogen bond
Carbon hydrogen bond
Pi-anion
Alkyl
Pi-alkyl

LYS
A:562HIS

A:401ASN
A:394PHE

A:504

TYR
A:510

ARG
A:514

HIS
A:378

ASP
A:206

(i) (j)

(k) (l)

Interactions
Conventional hydrogen bond
Carbon hydrogen bond
Pi-anion
Alkyl
Pi-alkyl

HIS
A:378

ARG
A:514

ASP
A:206

ALA
A:348

ASP
A:350TRP

A:349

PHE
A:40

Figure 4: Schematic illustration of 1R4L_CHEMBL4216332 (Grayanoside A), 1R4L_Molnupiravir, and 1R4L_Paxlovid complexes. (a, b)
Share the pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (c,,
d) Share 3D and 2D interactions of protein and ligand complex. Magenta color represents proteins and yellow color presents ligands. (e,
f) Share the pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors, and ligand is in blue color.
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Share the pose and surface view of protein and ligand complex. Here, protein is in purple and cyan colors and ligand is in blue color. (k,
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duration of the simulation run was 100 nanoseconds (ns). It
was paired with a recording duration of 100 picoseconds
(ps), during which 1000 frames were incorporated into the
trajectory. Next, we studied the trajectories in the simulation
interaction diagram (SID) program, and the reported results
comprised RMSD, RMSF, protein-ligand contact outline,
and biophysical properties of ligands. After running the sim-
ulations, MM-GBSA was evaluated employing the thermal
MM-GBSA.py program. During the assessment, a 0-1000
periodic frame was incorporated for the analysis [40].

2.7. Prediction of Molecular Target with SwissTargetPrediction
Server. The anticipation of a molecular target for a small-
molecule is vital for drug research and development. These
studies are essential for assessing the potential for adverse
reactions or cross-reactivity in Homo sapiens caused by the
action of that bioactive small molecule. We employed Swis-
sTargetPredcition (http://www.swisstargetprediction.ch/) to
determine the human body receptors for small compounds
that had previously been identified by molecular docking
and shown stability via MD simulation investigations [41].
The canonical smiles of the small compounds were used in
the server and analyzed.

2.8. Prediction of Biological Activity by PASS-Way2Drug Tool.
The PASS-Way2Drug webserver (http://www.pharmaexpert
.ru/passonline/) was employed to the prediction of biological
activity scales for Lovastatin, Sulfuretin, and Grayanoside A
[42]. For PASS recommendations to be reliable, the Pa (likeli-
hood to be effective) threshold should be set at 70% or above.
This is because surpassing the Pa>70% threshold yields very
reliable predictions [42]. Calculated ligand activity was based
on Pi and Pa scores.

3. Results

3.1. Analysis of Drug-Like Properties. In this experiment,
1163 drug-like substances were checked for their drug-like
activities. All of them have been filtered using five principles
of Lipinski’s filtration technique, which included molecular
mass (recommended value: <500), the number of hydrogen
bond donors (ideal value: ≤5), the number of hydrogen bond
acceptors (standard range: ≤10), lipophilicity (represented as
LogP, normal value: <5), and molar refractivity (preferable
range: 40–130). Additionally, the ligands were screened
based on the criteria of Ghose, Veber, Egan, and Muegge’s
rule. Subsequently, 497 out of 1163 compounds were

Table 6: XP Gscore and MM-GBSA values between the main protease (PDB ID: 7NT3) and the best hit phytochemical and control drugs.

Drug
XP Gscore
(kcalMol−1)

MM-GBSA scores
(kcalMol−1) Hydrogen bonds Hydrophobic bonds

Lovastatin -6.01 -52.85 HIS163, GLU166, GLN189
LEU27, CYS44, MET49, TYR54, PHE140,

LEU141, CYS145, GLY154, MET165

Molnupiravir -5.035 -43.48 GLU166
CYS44, MET49, PRO52, TYR54, CYS145,

MET165, LEU167, PRO168

Paxlovid -5.185 -43.34 GLU166, ASN142
CYS44, MET49, PRO52, TYR54, PHE140,

LEU141, GLY143, MET165, LEU167

Table 7: XP Gscore and MM-GBSA values between the Nsp3 (PDB ID: 7KQP) and the best hit phytochemical and control drugs.

Drug
XP Gscore
(kcalMol−1)

MM-GBSA scores
(kcalMol−1) Hydrogen bonds Hydrophobic bonds

Sulfuretin -9.563 -52.85 ALA38, ASN40, GLY47, ALA50
ALA39, VAL49, PRO125, LEU126, LEU127,

ALA129, ILE131, PHE132, PHE156

Molnupiravir -7.604 -43.48 VAL49, ALA39, LEU126
ALA38, ALA39, PRO125, LEU126, LEU127,

ALA129, ILE131, PHE132, PHE156

Paxlovid -2.727 -43.34 GLY48, GLY130, LEU126
ALA38, VAL49, PRO125, LEU126, LEU127,

ALA129, ILE131, VAL155, PHE156

Table 8: XP Gscore and MM-GBSA values between the human ACE2 receptor (PDB ID: 1R4L) and the best hit phytochemical and control
drugs.

Drug
XP Gscore
(kcalmol−1)

MM-GBSA scores
(kcalmol−1) Hydrogen bonds Hydrophobic bonds

Grayanoside A -7.87 -63.54 ARG273, HIS345, ALA348, GLN375
TYR127, LEU144, TRP271, PHE274, CYS344,
PRO346, ALA348, PHE504, TYR510, TYR515

Molnupiravir -6.02 -40.53 ALA348, GLN375, ARG514 PRO346, TRP349, PHE504, TYR510, TYR515

Paxlovid -5.679 -32.02 ARG273, HIS345, ALA348, GLN375,
TYR127, LEU144, TRP271, PHE274, CYS344,
PRO346, ALA348, PHE504, TYR510, TYR515
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Figure 5: 2D interaction of (a) 7NT3_Lovastatin, (b) 7NT3_Molnupiravir, and (c) 7NT3_Paxlovid complexes.
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Figure 6: 2D interaction of (a) 7KQP_Sulfuretin, (b) 7KQP_Molnupiravir, and (c) 7KQP_Paxlovid complexes.
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Figure 7: 2D interaction of (a) 1R4L_Grayanoside A, (b) 1R4L_Molnupiravir, and (c) 1R4L_Paxlovid complexes.
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shortlisted for the following evaluation (Supplementary
table1). Table 1 represented the drug-like properties of the
best-hit phytochemicals and control drugs.

3.2. Analysis of ADMET Properties. A total of 149 drug-like
substances were qualified after this analysis. Moreover, from
estimating distribution levels, all the compounds are imper-
meable to the blood-brain barrier. Metabolic inability could
cause lower bioavailability and excretion, high toxicity, and
drug-drug interactions. These 149 small substances function
as isoforms of the CYP 2D6 and 3A4 enzymes. Diverse com-
putational algorithms are used to evaluate toxicity: hERG
inhibitors, AMES toxicity, maximum tolerated dosage Hep-
atotoxicity. Ligands with a negative value in these models
were chosen for the following step. ADMET properties of
the best-hit phytochemicals and control drugs were pre-
sented in Table 2. Finally, we filtered out 149 drug-like sub-
stances from this analysis (Supplementary table2).

3.3. Analysis of Molecular Docking Results by AutoDock vina.
In structure-based pharmaceutical research, molecular dock-
ing is a commonly used strategy to identify the finest ligand
hits against a particular protein. The docking method pre-
dicts the ligand orientation, location, conformation in the
protein’s active site, binding interaction, and affinity. Auto-

Dock vina determines the binding energy and poses of trial
ligands by employing a grid-based technique. Previously
selected small molecules were docked with three SARS-
CoV-2 target proteins. Out of the 149 small compounds,
97 small molecules exhibited a higher binding affinity for
the main protease (Supplementary Table 3a), 75 small
molecules for the Nsp3 (Supplementary Table 3b), and 106
small molecules for human ACE2 receptor compared to
the control therapeutics (Supplementary Table 3c).

Lovastatin’s binding energy for the main protease was
-7.2 kcal/mol, which was considerably higher than that of
the control ligands, Molnupiravir (-6.4 kcal/mol), and Paxlo-
vid (-6.6 kcal/mol) (Table 3). Lovastatin produced a robust
hydrogen interaction with the amino acids ARG131
(2.30102Å) of the main protease, whereas Molnupiravir
and Paxlovid formed three and six hydrogen bonds with
the target protein, respectively, with THR26, HIS41,
ASN119, ASN142, GLY143 (1.98365Å), and CYS145 resi-
dues (AutoDock vina). Sulfuretin had binding energy of
-8.8 kcal/mol for Nsp3 compared to the control ligands mol-
nupiravir and Paxlovid, which had binding energies of -7.7
and -7.5 kcal/mol, respectively (Table 4). Sulfuretin formed
seven strong hydrogen bonds with the Nsp3 protein
(VAL49, LEU126, SER128, ALA129, GLY130, PHE156,
and ALA38), whereas Molnupiravir and Paxlovid created

(a) (b)

(c)

Figure 8: Illustration of 3D representation of (a) 7NT3_complexes, (b) 7KQP_complexes, and (c) 1R4L_complexes. Black circle portrays
the binding pockets and incorporates ligands and cocrystallized compounds.
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six (ASN40, GLY47, VAL49, ALA50, LYS44, and ALA38
(1.90623Å)) and three (LYS158, LEU160, and TYR161
(1.23877Å)) amino acid residues. Sulfuretin also created seven
hydrophobic bonds (ALA38, PHE132, VAL49, ALA38,
ALA50, VAL49, and PRO125) with the same protein. For
human ACE2 receptor, Grayanoside A showed a binding
affinity of 7.8 kcal/mol compared to the control molecules
Molnupiravir (-7.6 kcal/mol) and Paxlovid (-7.0 kcal/mol)
(Table 5). Molnupiravir and Paxlovid formed five (ASP206,
HIS378, ASN394, ARG514, and LYS562 (2.198Å)) and six
(ASP206, ALA348, TRP349 (1.978Å), ASP350, HIS378,
and ARG514) hydrogen bonds with the target protein,
human ACE2 receptor, respectively. Grayanoside A formed
three strong hydrogen bonds (ARG273, ARG273, and
GLU406) and six hydrophobic bonds (VAL209, LYS562,
TRP566, LEU95, LYS562, and ALA99) with the human
ACE2 receptor.

3.4. Analysis of Glide and MM-GBSA Scores. Glide incorpo-
rates high-throughput virtual screening (HVS), estimating
protein-ligand interacting sites and grading ligands using
experimental score systems. Out of the 149 small com-
pounds, 120 small molecules exhibited greater binding
energy for SARS-CoV-2 main protease (Supplementary
Table 4a), 75 small molecules for Nsp3 (Supplementary
Table 4b), and 99 small molecules for human ACE2
receptor compared to control therapeutics (Supplementary
Table 4c) (Figures 2–4), and it showed the comparative
representation of protein-ligand complexes of the best hit
ligands and control drugs. Here, Tables 6–8 summarized
the Glide score and MM-GBSA scores between three target
proteins and the best hit phytochemicals and control
drugs. Analysis of glide XP score and MMGBSA values, it
was evident that Lovastatin is better candidate than other
potential ligands. It formed three hydrogen bonds (HIS163,
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Figure 9: Schematic illustration of 100 ns molecular dynamics simulation of 7NT3_CHEMBL503 (Lovastatin) (green), 7NT3_Molnupiravir
(blue), and 7NT3_Paxlovid complexes (yellow). Representations (a, b, c, d, e, and f) share the RMSD, RMSF, Rg, hydrogen bonds, and SASA
values of 7NT3_CHEMBL503 (Lovastatin), 7NT3_Molnipiravir, and 7NT3_Paxlovid complexes. Representation b shares ligand RMSD
value of Chembl503, Molnupiravir and Paxlovid.
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GLU166, and GLN189) and nine hydrophobic bonds (LEU27,
CYS44, MET49, TYR54, PHE140, LEU141, CYS145, GLY154,
and MET165) with the main protease (PDB ID: 7NT3).
Sulfuretin showed glide and MMGBSA scores of -9.563 and
-52.85 (kcal/mol). It created four hydrogen bonds (ALA38,
ASN40, GLY47, and ALA50) and nine hydrophobic bonds
(ALA39, VAL49, PRO125, LEU126, LEU127, ALA129,
ILE131, PHE132, and PHE156). Grayanoside A managed a
glide and MMGBSA scores of -7.87 and -63.54 (kcal/mol). It
maintained four hydrogen bonds (ARG273, HIS345, ALA348,
and GLN375) and ten hydrophobic bonds (TYR127, LEU144,
TRP271, PHE274, CYS344, PRO346, ALA348, PHE504,
TYR510, and TYR515) with the human ACE2 receptor (PDB
ID: 1R4L) (Figures 5–7). Lovastatin, Sulfuretin, and
Grayanoside A were found inside the binding cavity with the
cocrystallized compound (Figure 8). As a result, they were
proved to be the best candidate for main protease and Nsp3
of SARS-CoV-2 and human ACE2 proteins, respectively.

3.5. Analysis of Molecular Dynamics Simulation. To circum-
vent the fundamental drawback of molecular docking, we
ran a computational MD simulation, which incorporated
the dynamic character of the protein following inhibitor
binding. This experiment produced statistical figures for
the RMSD, RMSF, hydrogen bonds, SASA, and Rg values
of protein-ligand complexes. The average RMSD of main
protease_Lovastatin, main protease_Molnupiravir, and main
protease_Paxlovid complexes for the main protease was
0.312696293nm, 0.291836715 nm, and 0.326214306nm,
respectively, indicating that the chosen drug candidate Lov-
astatin exhibited an identical result compared to Molnupira-
vir and Paxlovid (Figure 9). As per Figure 9, the main
protease_Lovastatin and main protease_Molnupiravir com-
plexes were stable with a fixed RMSD value less than 0.35
from 30 to 80ns, but the main protease_Paxlovid complex
had an increased RMSD value more than 0.35 after 75ns.
Similarly, the predicted average RMSD values of the ligands
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Figure 10: Schematic illustration of 100 ns molecular dynamics simulation of 7KQP_CHEMBL490355 (Sulfuretin) (green), 7KQP_
Molnupiravir (blue), and 7KQP_Paxlovid complexes (yellow). Representations (a, b, c, d, e, and f) shares the RMSD, RMSF, Rg,
hydrogen bonds, and SASA values of 7KQP_CHEMBL490355 (Sulfuretin), 7KQP_Molnipiravir, and 7KQP_Paxlovid complexes.
Representation b share Ligand RMSD value of CHEMBL490355, Molnupiravir, and Paxlovid.
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Lovastatin, Molnupiravir, and Paxlovid were 0.594898993nm,
0.96096714nm, and 0.531292037nm, respectively. Through-
out 100ns simulation, the RMSF value of amino acids for
backbone components of the main protease_Lovastatin com-
plex was less than 0.4nm, but the main protease_Molnupira-
vir and main protease_Paxlovid complexes showed some
inconsistent higher fluctuation. The RMSD fluctuation of the
ligands inside the first three loop regions between 50 and 80
amino acids was less than 0.40nm. However, the RMSF oscil-
lation inside the other three considerably larger loop areas was
higher than 0.40 for Molnupiravir and Paxlovid. The average
Rg values of the complexes main protease_Lovastatin, main
protease_Molnupiravir, and main protease_Paxlovid were
2.109437nm, 2.128492nm, and 2.122325654nm, respec-
tively, describing the increased compactness of the Lovastatin
complex. Main protease_Lovastatin, main protease_Molni-

piravir, and main protease_Paxlovid complexes had an aver-
age of 215.0, 209.0, and 216.0 hydrogen bonds, respectively,
showing a significant dynamic interaction of the main prote-
ase_Lovastatin complex. Figure 9(f) represented the solvent-
accessible surface area (SASA) of structures. While the main
protease_Lovastatin and main protease_Molnupiravir com-
plexes had an average SASA value of 127.8404086nm2 and
130.891962nm2, the main protease_Paxlovid complex had a
lower value of 119.4976923nm2.

The average RMSD value of the Nsp3_Sulfuretin and
Nsp3_Paxlovid complexes for SARS-CoV-2 Nsp3 protein
was 0.297815nm and 0.284552759 nm, respectively, though
the Nsp3_Molnupiravir complex displayed an increased var-
iation of RMSD value exceeding 0.35 nm after 45ns
(Figure 10). During the 100ns simulation timeline with
Nsp3 protein, control drugs molnupiravir and Paxlovid
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Figure 11: Schematic illustration of 100 ns molecular dynamics simulation of 1R4L_CHEMBL4216332 (Grayanoside A) (green), 1R4L_
Molnupiravir (blue), and 1R4L_Paxlovid (yellow). Representations (a, b, c, d, e, and f) share the RMSD, RMSF, Rg, hydrogen bonds, and
SASA values of 1R4L_CHEMBL4216332 (Grayanoside A), 1R4L_Molnipiravir, and 1R4L_Paxlovid complexes. Representation b share
ligand RMSD value of CHEMBL4216332, Molnupiravir and Paxlovid.
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had an RMSD value above 0.6nm and 0.8nm. However, after
an initial equilibration phase, Sulfuretin stayed below 0.4nm,
indicating the most stable of the three ligands. Except for the
C-terminal and N-terminal areas, the RMSF value of the
Nsp3_Sulfuretin, Nsp3_Molnupiravir, and Nsp3_Paxlovid
complexes was less than 0.4nm. Furthermore, there was higher
fluctuation among the structures inside larger loop sections
between 41 and 46, 83 and 91, 97 and 105, and 116 and 135
amino acids. The Rg values of the Nsp3_Sulfuretin and
Nsp3_Molnupiravir complexes stabilized after initial equilibra-
tion steps, but the Rg value of Nsp3_Paxlovid complexes oscil-
lated more during the whole run time. According to
Figure 10(e), the average count of hydrogen bonds among the
complexes Nsp3_Sulfuretin, Nsp3_Molnupiravir, and Nsp3_
Paxlovid were 116.0, 117.0, and 119.0, indicating a similar
course of interaction within the 100ns timeframe. The SASA
value of the Nsp3_Sulfuretin, Nsp3_Molnipiravir, and Nsp3_
Paxlovid complexes were stable with an average value of
79.26847nm, 79.74635nm, and 81.74065634nm respectively.

The RMSD value of the human ACE2 receptor_Grayano-
side A, human ACE2 receptor_Molnupiravir, and human
ACE2 receptor_Paxlovid complexes for human ACE2 protein
stayed under 0.35nm, and stable throughout the 100ns run

(Figure 11). Likewise, the ligands Grayanoside A, Molnupira-
vir, and Paxlovid had average RMSD values of 0.601344nm,
0.933326nm, and 0.43800nm, respectively. The RMSF of
backbone heteroatoms per residue of the human ACE2 recep-
tor_Grayanoside A complex stayed within 0.4nm, with higher
RMSF oscillation inside loops from 137 to 139 and 338 to 340
residues. On the other hand, peaks inside loop regions beyond
0.4 nm were evident from 137 to 140 and 331 to 345 residues
for human ACE2 receptor_Molnupiravir and human ACE2
receptor_Paxlovid complexes, respectively. The average Rg
values of human ACE2 receptor_Grayanoside A, human
ACE2 receptor_Molnipiravir, and human ACE2 receptor_
Paxlovid complexes were 2.329435, 2.342172667, and
2.335405325nm, respectively. The average hydrogen bond
interactions for the complexes human ACE2 receptor_Graya-
noside A and human ACE2 receptor_Molnupiravir were
499.0 and 492.0, respectively, whereas the complex human
ACE2 receptor_Paxlovid had a higher value of 498.0.
Figure 11 shows that the SASA values of the human ACE2
receptor_Grayanoside A, human ACE2 receptor_Molnupira-
vir, and human ACE2 receptor_Paxlovid complexes were sta-
ble throughout the simulation, suggesting that the protein’s
surface area remained unaltered.
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Figure 12: Simulation graph of root-mean-square deviation (RMSD) showing Lovastatin_7NT3 (orange), Molnupiravir_7NT3 (yellow),
and Paxlovid_7NT3 (green). (b) Simulation graph of root-mean-square deviation (RMSD) showing Lovastatin (orange), Molnupiravir
(yellow), and Paxlovid (green). (c) Simulation findings showing of root-mean-square fluctuation (RMSF) of Lovastatin_7NT3 (orange),
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3.6. Evaluation of MD Simulation and Post-MD Simulation
MM-GBSA Results from Desmond. Analyzing the simulation
trajectory, we plotted the RMSF, RMSD, biophysical proper-
ties of ligands, and protein-ligand network. We found an
average RMSD plot of 1.92, 1.78, and 1.75Å for Lova-
statin_7NT3, Molnupiravir_7NT3, and Paxlovid_7NT3
complexes. The protein structure of the Sulfuretin_7NT3
complex remained under 3Å throughout the simulation.
The ligands Sulfuretin, Molnupiravir, and Paxlovid had
average RMSD of 1.55, 1.27, and 1.71Å respectively, indicat-
ing a stable conformation with protein. Similarly, the aver-
age RMSF of Lovastatin_7NT3, Molnupiravir_7NT3, and
Paxlovid_7NT3 complexes was 0.87, 0.91, and 1.04Å respec-
tively. Except for N-terminal and C-terminal zones, all com-
plexes stayed under 3Å (Figure 12). Sulfuretin interacted
with 7NT3 creating bonds with THR26 (hydrogen bonds
and water bridges), GLY143 (hydrogen bonds and water
bridges), SER144 (hydrogen bonds and water bridges),
CYS145 (hydrogen bonds and water bridges), and GLU166
(hydrogen bonds, water bridges, and ionic bonds) amino
acids for 30%, 20%, 30%, 40%, 20%, and 100% of 100 ns
timeframe. Molnupiravir interacted with HIS41 (hydropho-
bic), GLU166 (water bridges), VAL186 (hydrogen bonds
and water bridges), and GLN189 (hydrogen bonds and
water bridges) for 80%, 100%, 70%, and 90% of 100ns time-
scale. Paxlovid had bonds with HIS41 (hydrophobic, hydro-

gen bonds, and water bridges), GLY143 (hydrogen bonds
and water bridges), SER144 (hydrogen bonds and water
bridges), and GLU166 (hydrogen bonds, water bridges, and
ionic bonds) for 50%, 90%, 40%, and 300% of the simulation
period (Figure 13).

Protein structures of Sulfuretin_7KQP, Molnupiravir_
7KQP, and Paxlovid_7KQP showed an average RMSD value
of 1.97, 1.77, and 1.65Å. All the complex structures
remained under 3Å which suggested that the ligands were
tightly bound inside the binding pocket of receptor struc-
tures. The ligands Sulfuretin, Molnupiravir, and Paxlovid
displayed an average RMSD of 0.19, 1.33, and 2.37Å respec-
tively. RMSF plot presented an average of 0.94, 1.97, and
0.92Å for Sulfuretin_7KQP, Molnupiravir_7KQP, and Pax-
lovid_7KQP complexes implying structural stability
(Figure 14). Sulfuretin made bonds with ASN40 (hydrogen
bonds and water bridges), LYS44 (hydrogen bonds, water
bridges, and ionic bonds), HIS45 (hydrogen bonds and
water bridges), GLY48 (hydrogen bonds and water bridges),
PHE156 (hydrogen bonds and water bridges) residues of
7KQP for 17%, 30%, 25%, 30%, and 20% of simulation time-
frame. Molnupiravir_7KQP complex formed bonds with
THR57 (hydrogen bonds and water bridges), ASN58
(hydrogen bonds and water bridges), HIS86 (hydrophobic,
hydrogen bonds, and water bridges) residues for 20%, 11%,
and 26% of simulation timeframe. Paxlovid_7KQP complex
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Figure 13: Contact maps of Lovastatin_7NT3 (a), Molnupiravir_7NT3 (b), and Paxlovid_7NT3 (c) complexes.
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maintained binding network with ALA38 (hydrophobic,
hydrogen bonds, and water bridges), ASN40 (hydrogen
bonds and water bridges), LYS44 (hydrogen bonds and
water bridges), GLY46 (hydrogen bonds and water bridges),
GLY48 (hydrogen bonds, water bridges, and ionic bonds),
ILE131 (hydrophobic, hydrogen bonds, and water Bridges),
and GLU156 (hydrophobic and water bridges) residues for
55%, 45%, 70%, 52%, 55%, 80%, and 55% of the simulation
run (Figure 15).

Next, the Grayanoside A_1R4L, Molnupiravir_1R4L,
and Paxlovid_1R4L complex structures maintained an aver-
age RMSD of 1.97, 1.80, and 2.22Å respectively. Grayano-
side A_1R4L complex remained 2.7Å throughout the
timeframe demonstrating a stable protein-ligand associa-
tion. The average RMSD of the ligands Grayanoside A, Mol-
nupiravir, and Paxlovid was 2.15, 1.23, and 2.03Å
respectively. The proteins of Grayanoside A_1R4L, Molnu-
piravir_1R4L, and Paxlovid_1R4L complexes maintained
an average RMSD of 0.83, 0.93, and 1.31Å respectively. A
small steep was observed between 115 to 125 residues for
Grayanoside A_1R4L and Molnupiravir_1R4L complexes
(Figure 16). Grayanoside A had TYR127 (hydrogen bonds),
GLU145 (hydrogen bonds and water bridges), ARG273
(hydrophobic, hydrogen bonds, and water bridges), HIS345

(hydrophobic and water bridges), GLU402 (hydrogen bonds
and water bridges), PHE504 (hydrogen bonds), and HIS505
(hydrophobic, hydrogen) binding residues with 1R4L pro-
tein for 90%, 110%, 330%, 110%, 80%, 100%, and 40% of
simulation cycle. Molnupiravir_1R4L complex formed inter-
action with ALA348, ASP350, GLU398, TYR510, and
ARG514 for 120%, 80%, 119%, 82%, and 80% of the simula-
tion period. On the other hand, Paxlovid_1R4L complex had
interactions with ARG273, HIS345, ALA348, and GLU406
residues for 200%, 70%, 65%, and 90% of the simulation
timescale (Figure 17). We also superimposed the pre_MD
and post_MD structures of protein-ligand complexes in
Desmond and found less than 2Å deviation (Figure 18).

The average postsimulation MM-GBSA of Lovastatin_
7NT3, Molnupiravir_7NT3, and Paxlovid_7NT3 complexes
were −52:56 ± 8:93, −50:52 ± 12:75, and −49:68 ± 16:27kcal/
mol, respectively. Sulfuretin_7KQP, Molnupiravir_7KQP,
and Paxlovid_7KQP complexes had average postsimulation
MM-GBSA scores of −66:17 ± 11:62, -36:51 ± 13:74, and −
54:30 ± 15:45kcal/mol, respectively. Grayanoside A_1R4L,
Molnupiravir_1R4L, and Molnupiravir_1R4L complexes
showed an average MM-GBSA value of −74:94 ± 8:50, −
34:23 ± 12:82, and −57:50 ± 24:35kcal/mol, respectively,
(Tables 9–11).
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Figure 14: Simulation graph of root-mean-square deviation (RMSD) showing Sulfuretin_7KQP (orange), Molnupiravir_7KQP (yellow),
and Paxlovid_7KQP (green). (b) Simulation graph of root-mean-square deviation (RMSD) showing Sulfuretin (orange), Molnupiravir
(yellow), and Paxlovid (green). (c) Simulation findings showing of root-mean-quare fluctuation (RMSF) of Sulfuretin_7KQP (orange),
Molnupiravir_7KQP (yellow), and Paxlovid_7KQP (green).
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3.7. Analysis of Target within Human. The target sites in
humans where Lovastatin binds (in humans) are cyto-
chrome p450, oxidoreductase, kinase, family A of G
protein-coupled receptor, enzyme, and membrane receptor
and the possibility of binding, respectively, are 16%, 12%,
8%, 8%, 8%, and 4% respectively. For Sulfuretin, they they
may bind with kinase (52%), enzyme (24%), and membrane
receptor (4%); and for Grayanoside A, they they may bind
with protease (20%), kinase (20%), surface antigen (4%),
enzyme (12%), and family A of G protein-coupled receptor
(4%). Control drug Paxlovid provides the binding possibility
in target sites are protease (60%), enzyme (16%), family A of
G protein-coupled receptor (8%), membrane receptor (4%),
and surface antigen (4%). The prediction tool did not show
any human target for Molnupiravir (Figure 19).

3.8. Analysis of Activity Spectra of the Phytochemicals. Using
the identified compounds, prediction of activity spectra for
substances (PASS) was carried out and is shown in Supple-
mentary Tables 6a, 6b, 6c. In our study, we used PASS to
build a predictive model, and we kept the Pa (likelihood of
activity) that was higher than 70%; since an absolutely
durable forecast may be made using the Pa > 70% (0.7)
criteria. Lovastatin had 18 biological activities, Sulfuretin
showed 27 activities, and Grayanoside A possessed 30
biological features. Lovastatin, Sulfuretin, and Grayanoside
A present Pa values greater than 0.70 across the board to

be considered for use as an active biological agent in the
treatment of SARS-CoV-2.

4. Discussion

In recent years, pandemics and epidemics caused by viruses
have become one of the most prevalent reasons for infec-
tions and mortality worldwide. SARS-CoV-2, the updated
variant of coronaviruses, has led to a catastrophe, with
665,518,891 and 6,714,212 confirmed cases and fatalities,
respectively (11th January,2023; https://covid19.who.int/).
Surprisingly, currently, a limited amount of effective anti-
SARS-CoV-2 therapeutics are available, and most of them
are under investigation [43].

Following the outbreak of SARS-CoV-2, Mpro, also
regarded as 3CLpro (main protease), became a viable thera-
peutic focus due to its involvement in the development of
replication-translation mechanisms. Furthermore, given the
accessibility of high-resolution protein structures, these pro-
teins have a highly conserved sequence and no homology
with human proteins [44]. Nsp3 is a multidomain protein
with a Glu-rich acidic domain at the N-terminus, an X
domain, a SUD domain, a papain-like protease domain,
and a transmembrane domain. Nsp3 is responsible for viral
multiplication and pathogenesis in humans and facilitates
immune evasion via its hydrolyzing capability [43]. The
attachment of the SARS-CoV-2 Spike protein to human
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Figure 15: Contact maps of Sulfuretin_7KQP (a), Molnupiravir_7KQP (b), and Paxlovid_7KQP (c) complexes.
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ACE2 receptor on the cellular wall permits the virus to enter
cells, which is required for infection to begin [45]. To inhibit
these viral proteins, we utilized phytochemicals with drug-
like properties.

This research was divided into three sections, namely,
virtual screening (VS) of the physicochemical and pharma-
cokinetic features of drug-like compounds, virtual screening
by molecular docking of proteins and ligands, and simula-
tion of the best hit complexes. In the initial stage, we studied
the drug-like characteristics of the ligands utilizing the five
principles of Lipinski. We stuck to the established guidelines,
i.e., hydrogen bond donors ≤ 5, hydrogen bond acceptors ≤
10, molecular mass < 500, and logP < 5. The molecular
weight of a small molecule can influence its absorption, bile
excretion ratio, blood-brain barrier passage, and engage-
ments involving receptors [46]. Likewise, hydrogen donor
and hydrogen acceptor groups are mostly responsible for
the permeability and polarity of the drug-like molecules.
Lipophilicity is an indicator that influences the metabolism
and solubility of those molecules. A lower or higher score
might impede this characteristic [47]. TPSA refers to the
area belonging to polar atoms like nitrogen, oxygen, and
their associated hydrogens [48]. Out of 1163 small mole-
cules, 497 of them passed the criteria. We tested the pharma-

cokinetic figure of the ligands before analyzing their binding
affinity and orientation. The characteristics of a small mole-
cule in terms of ADMET properties make it a viable candi-
date. Using the human intestinal absorption (HI)
prediction score and the Caco-2 permeable theory, the prob-
ability that the small molecules would reach systemic circu-
lation and exert their function was calculated [49]. P-
glycoprotein serves as a drug carrier and eliminating com-
pounds from different organs [50]. The main subfamily
(2D6, 2C9, and 3A4) of cytochrome P450 monooxygenase
(CYP) enzymes is crucial in the metabolism of the drug-
like molecules [51]. In the initial phases of pharmaceutical
research, AMES mutagenicity is commonly used to deter-
mine the probability of genotoxicity and teratogenicity
[52]. Cardiovascular poisoning might be caused by inhibit-
ing the cardiac human ether-a-go-go-related (hERG) gene
[53]. We also tested the maximum tolerated dose of chemi-
cal substances for the human body. Eventually, only 149
drug-like molecules passed the ADMET evaluation.

The importance of virtual screening employing molecu-
lar docking has grown significantly in the field of drug devel-
opment over time. According to the study, 24 small
molecules had a greater binding affinity against the main
protease (7NT3) than the reference compounds:
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Figure 16: Simulation graph of root-mean-square deviation (RMSD) showing Grayanoside A_1R4L (orange), Molnupiravir_1R4L (yellow),
and Paxlovid_1R4L (green). (b) Simulation graph of root-mean-square deviation (RMSD) showing Grayanoside A (orange), Molnupiravir
(yellow), and Paxlovid (green). (c) Simulation findings showing of root-mean-square fluctuation (RMSF) of Grayanoside A_1R4L (orange),
Molnupiravir_1R4L (yellow), and Paxlovid_1R4L (green).

25BioMed Research International



3.0

2.5

2.0

1.5

1.0

0.5

0.0

TY
R_

12
7

LE
U

_1
44

G
LU

_1
45

A
SN

_1
49

A
SP

_2
69

A
RG

_2
73

PH
E_

27
4

TH
R_

27
6

V
A

L_
34

3
CY

S_
34

4
H

IS
_3

45
PR

O
_3

46
TH

R_
34

7
A

LA
_3

48
LY

S_
36

3
A

SP
_3

67
A

SP
_3

68
TH

R_
37

1
H

IS
_3

74
G

LU
_3

75
H

IS
_3

78
G

LU
_4

02
G

LU
_4

06
TH

R_
44

5
TH

R_
44

9
LE

U
_5

03
PH

E_
50

4
H

IS
_5

05
TY

R_
51

0
SE

R_
51

1
PH

E_
51

2
A

RG
_5

14

A
RG

_5
18

TY
R_

51
5

H-Bonds
Hydrophobic

Ionic
Water bridges

In
te

ra
ct

io
ns

 fr
ac

tio
n

(a)

1.2

In
te

ra
ct

io
ns

 fr
ac

tio
n

1.0

0.8

0.6

0.4

0.2

0.0

PH
E_

40
SE

R_
44

SE
R_

47
A

SP
_2

06
A

RG
_2

73
H

IS
_3

45
PR

O
_3

46
TH

R_
34

7
A

LA
_3

48
TR

P_
34

9
A

SP
_3

50
H

IS
_3

74
G

LU
_3

75
H

IS
_3

78
A

SP
_3

82
A

SN
_3

94
G

LU
_3

98
H

IS
_4

01
G

LU
_4

02
PH

E_
50

4
H

IS
_5

05
A

SN
_5

08
A

SP
_5

09
TY

R_
51

0
SE

R_
51

1
A

RG
_5

14
TY

R_
51

5

H-Bonds
Hydrophobic

Ionic
Water bridges

(b)

2.00

0.00

A
SN

_5
1

TY
R_

12
7

LE
U

_1
44

G
LU

_1
45

A
SN

_1
49

A
SP

_2
69

TR
P_

27
1

A
RG

_2
73

PH
E_

27
4

TH
R_

27
6

A
SN

_2
77

V
A

L_
34

3
CY

S_
34

4
H

IS
_3

45
PR

O
_3

46
TH

R_
34

7
A

LA
_3

48
TR

P_
34

9
CY

S_
36

1
TH

R_
36

2

0.25

0.50

0.75

1.00

1.25

1.50

1.75

LY
S_

36
3

TH
R_

36
5

A
SP

_3
67

A
SP

_3
68

LE
U

_3
70

TH
R_

37
1

H
IS

_3
74

G
LU

_3
75

H
IS

_3
78

G
LU

_4
02

G
LU

_4
06

SE
R_

40
9

LY
S_

44
1

G
LN

_4
42

TH
R_

44
5

SE
R_

50
2

PH
E_

50
4

H
IS

_5
05

TY
R_

51
0

A
RG

_5
14

TY
R_

51
5

A
RG

_5
18

H-Bonds
Hydrophobic

Ionic
Water bridges

In
te

ra
ct

io
ns

 fr
ac

tio
n

(c)

Figure 17: Contact maps of Grayanoside A_1R4L (a), Molnupiravir_1R4L (b), and Paxlovid_1R4L (c) complexes.

Figure 18: Superimposed representation of the pre-MD and post-MD structures of Ligand_7NT3, Ligand_7KQP, and Ligand_1R4L
complexes.
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Molnupiravir and Paxlovid (-5.035 and -5.185 kcal/mol,
respectively). The MM-GBSA approach is recognized for
its impressive precision in estimating the free binding energy
of small molecules to target proteins. Both analyses indicated
that Lovastatin (CHEMBL503) had a higher glide score and
binding-free energy value of -6.01 kcal/mol and -52.85 kcal/
mol, respectively. Recently, Mashraqi et al. found fenoterol
had a glide score and MM-GBSA values of −7.14 and
-38.733 kcal/mol [54]. We found Lovastatin attached to the
active site residues (His41, Cys145) in the docking study
and after MD simulation. Though CHEMBL182992,
CHEMBL1909923, CHEMBL1972346, CHEMBL249454,
CHEMBL477778, CHEMBL557501, and CHEMBL4216332
had better glide XP scores over 6 kcal/mol, the binding-free
energy is higher for CHEMBL503 (Lovastatin). Similarly,
two small compounds, CHEMBL490355 (Sulfuretin) and
CHEMBL226683, showed binding energies greater than 9.0
Kcal/mol than control therapeutics against Nsp3 (7KQP).
But the binding free energy (-46.31 kcal/mol) and the num-
ber of hydrogen bonds were higher for CHEMBL490355
(Sulfuretin). So, Sulfuretin was selected as the best candidate
against Nsp3. Recently, Mishra et al. reported ZINC82673 as
the potential inhibitor of Nsp3 with glide and MM-GBSA
values of −9.348 and 50.175 kcal/mol [55]. It was also found
inside the binding pocket (Asp22, Ile23, Gly48, Val49,

Gly130, or Phe156) [43]. A total of 20 phytochemicals had
higher glide XP scores over 6 kcal/mol and 2 of them showed
binding-free energy above –50 kcal/mol against human
ACE2 receptor. Based on the glide and MMGBSA scores,
as well as the number of hydrogen bonds, we selected Graya-
noside A as the lead candidate against human ACE2 recep-
tor (1R4L). Most of the residues of the active site (Tyr515,
Arg514, His505, Phe504, Glu402, His378, Glu375, His374,
Asp368, Cys361, His345, Cys344, and Glu145) were found
attached to Grayanoside A [56]. Pai et al. found that iso-
chlorogenic acid showed inhibition activity against human
ACE2 receptor with a glide score MM-GBSA values of
−8.799 and −44.248.

MD simulations offer a plethora of energetic data on
protein and ligand binding, as well as a wealth of structural
figures on biological macromolecules. This type of knowl-
edge is crucial for comprehending the structural and func-
tional correlation of the receptor and the basis of protein-
ligand association, and also for steering the therapeutic
research [51]. During the simulation trajectory, the RMSD
of the protein Cα and RMSF of the amino acids, also the
ligand-protein H-bonding association, the solvent-
accessible surface area (SASA), and the radius of gyration
(Rg), were assessed to determine the steadiness of the com-
plex structures [52]. The RMSD value is considered to indi-
cate the flexibility and dynamic character of the protein. It
showcased the movement of amino acids along with the
MD simulation [38]. Thus, a relatively large RMSD value
suggested more motion, whereas a relatively low RMSD
value of protein showed less movement. The RMSD results
suggested that the RMSD value of the main protease_Lova-
statin backbone was identical to those of the reference com-
plexes main protease_Molnupiravir and main protease_
Paxlovid. The ligands Lovastatin and Paxlovid remained
steady, with two short peaks. As a result, the protein might
remain stable during the simulation, after the attachment
of the Lovastatin molecule. A detailed investigation of the
RMSF demonstrated the specific fluctuation of amino acids
in the catalytic and noncatalytic areas of the protein-ligand
complexes. The RMSF value confirmed that the attachment
of Lovastatin to the receptor might not increase flexibility.
The Rg values display the compactness of the protein with
folding and unfolding nature by the thermodynamic con-
cept. The interaction of the ligand Lovastatin did not
modify the structure of the protein. Hydrogen bonds are
another vital determinant of protein-ligand stability.
Protein-ligand interaction is stronger with more hydrogen
bonds. When compared to the reference complexes, the
main protease_Lovastatin complex had a similar amount
of hydrogen bonds, indicating a stable protein-ligand con-
struct. The unfolding of the protein during the denatur-
ation process exposes nonpolar hydrophobic interactions
to the aqueous system. As a result, the protein’s structure
is disrupted. The SASA value computing determines the
fluctuation in the accessibility of protein to solvent [57].
The SASA analysis revealed a similar tendency, with both
main protease_Lovastatin and main protease_Molnupiravir
complexes exhibiting significant similarities throughout the
simulation.

Table 9: Post MDMM-GBSA based binding free energy evaluation
for main protease (3CLpro) (PDB ID: 7NT3) and the best hit
phytochemical along with control drugs.

Name of complex
MM-GBSA (kcal/mol)

ΔG Bind ΔG Bind range

Lovastatin_7NT3 −52:56 ± 8:93 -61.49 to –43.63

Molnupiravir_7NT3 −50:52 ± 12:75 -63.27 to –37.77

Paxlovid_7NT3 −49:68 ± 16:27 -65.95 to –33.41

Table 10: Post MD MM-GBSA based binding free energy
evaluation for Nsp3 (PDB ID: 7KQP) and the best hit
phytochemical along with control drugs.

Name of complex
MM-GBSA (kcal/mol)

ΔG Bind ΔG Bind range

Sulfuretin_7KQP −66:17 ± 11:62 -77.79 to –54.55

Molnupiravir_7KQP −36:51 ± 13:74 -50.25 to –22.77

Paxlovid_7KQP −54:30 ± 15:45 -81.85 to –33.15

Table 11: Post MD MM-GBSA based binding free energy
evaluation for human ACE2 receptor (PDB ID: 1R4L) and the
best hit phytochemical along with control drugs.

Name of complex
MM-GBSA (kcal/mol)

ΔG Bind ΔG Bind range

Grayanoside A_1R4L −74:94 ± 8:50 -83.57 to –66.40

Molnupiravir_1R4L −34:23 ± 12:82 -46.22 to –21.72

Paxlovid_1R4L −57:50 ± 24:35 -81.85 to –33.15
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In the context of Nsp3, the ligand Sulfuretin did not pro-
duce conformational changes to the protein. Firstly, the
RMSD value revealed that Nsp3_Sulfuretin was consistently
stable compared to the reference complexes. Throughout the

simulation, the Sulfuretin molecule remained relatively sta-
ble. Upon binding of the Sulfuretin molecule, the Nsp3_Sul-
furetin complex displayed lesser fluctuation in comparison
to the reference complexes. According to the Rg value of
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Figure 19: Predicted top 25 classes of H. sapiens molecular targets for (a) Lovastatin, (b) Sulfuretin, (c) Grayanoside A, and (d) Paxlovid.
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the Nsp3_Sulfuretin complex, it remained steady during the
simulation timeframe, suggesting the compactness of the
protein following inhibitor binding. Nsp3_Sulfuretin com-
plex displayed a similar amount of hydrogen interactions
as the reference complexes demonstrating excellent
protein-ligand stability. Similarly, the SASA value revealed
that the Nsp3_Sulfuretin complex remained unchanged
throughout the simulation, supporting earlier findings. The
simulation results for human ACE2 protein showed that
the binding of the Grayanoside A molecule caused a small
consequence on the structure of human ACE2 protein. The
RMSD graph of protein-ligand complexes and ligands
implied that the ligand (CHEMBL1909923) might not desta-
bilize the protein. The RMSF results revealed that there was
a similar fluctuation, suggesting the identical nature of the
binding of the three ligands (CHEMBL1909923, Molnupira-
vir, and Paxlovid). The plots of Rg, hydrogen bond, and
SASA value also confirmed the previous viewpoint, indicat-
ing that the Grayanoside A molecule’s attachment did not
impair the stability of human ACE2 protein. In case of Des-
mond, we found similar results that further validate our
findings. The RMSD values suggested that Lovastatin, Sul-
furetin, and Grayanoside A were firmly bound to the pro-
teins. The RMSF plots implied that the main protease
(3CLpro), Nsp3, and human ACE2 receptor were structur-
ally stable while bound with respective ligands. The
protein-ligand attachment maps continuously showed that
the proposed ligands-maintained contact with active site res-
idues. Lastly, the postsimulation MM-GBSA results stated
that Lovastatin, Sulfuretin, and Grayanoside A had a higher
free-binding affinity for their respective proteins.

Previous structure-based computational research yielded
similar findings, demanding wet-lab investigation. Accord-
ing to study lead by Gurung et al., bonducellpin D was found
as a potential inhibitor for SARS-CoV-2 3CLpro protein
[58]. In another study, Eissa et al. identified vidarabine as
prospective antiviral agent for SARS-Cov-2 nonstructural
protein-10 [59]. Ottavia Spiga et al. found simeprevir and
lumacaftor the most potent inhibitors of Spike protein on
the basis of their computational findings [60]. Kusumaning-
sih et al. found luteolin and naringenin as the probable drug
candidates for main protease of SARS-CoV-2 [61]. Lova-
statin, Sulfuretin, and Grayanoside A have been reported
as antiviral agents [62–64]. Our structure-based strategy
again showed antiviral activity of these small substances
against SARS-CoV-2 critical protein targets. However, these
compounds should be examined further in the pharmaceuti-
cal research facility to evaluate their potency, inhibitory
power, and toxicity against their respective targets. While
there is no denying the enormous success of drug repurpos-
ing, the in silico approach is not without its limitations. In a
similar fashion, one disadvantage of molecular docking is
the lack of proper scoring functions and algorithms, which
may compromise molecular screening. Another challenge
that researchers face is the difficulty in selecting the most
effective target combinations due to the absence of quantifi-
able data for assessing network dynamics, as well as the
inability to construct the molecular network of the disease
[18, 65]. Apart from those certain constraints due to data

reliability, biasness and irregularities in the available current
data, our study shows a comparison between established
compounds and screened compounds using several bioin-
formatics tools and introduces in silico models that can
swiftly present a summary of prospective therapeutic
options economically and expediently for a microorganism
such as SARS-CoV-2, which is constantly mutating and
without any established therapy.

5. Conclusion

Repurposing drug-like phytochemicals is a secure means of
building new therapeutics, with the main benefit of lowering
the cost and duration of preclinical trials for novel candi-
dates. The COVID-19 infectious disease induced by the
SARS-CoV-2 outbreak has caused a worldwide medical
catastrophe and finding a suitable cure for the virus con-
tinues to be a primary concern. The findings of our work
indicated that using a structure-based strategy such as
molecular docking and MD simulations, novel therapeutic
candidates may be developed that selectively address the
nonstructural protein 3, the main protease from SARS-
CoV-2, and the human ACE2 protein. A preliminary screen-
ing of 1163 small phytochemicals combining drug-likeness
and ADMET characteristics resulted in the identification of
149 of them. The degree of binding interaction and energy
between the filtered compounds and the main protease, non-
structural protein 3, and human ACE2 receptor was esti-
mated utilizing the docking procedure on the AutoDock
vina and Schrodinger Suites. Compounds Lovastatin, Sulfur-
etin, and Grayanoside A outperformed Molnupiravir and
Paxlovid in terms of binding score and hydrogen bond num-
bers against the main protease, Nsp3, and human ACE2
receptor, respectively. Eventually, 100 ns MD simulation
studies of 3CLpro_ligand, Nsp3_ligand, Grayanoside A_
ligand complexes were completed to evaluate and improve
our proposed design. This investigation is aimed at deter-
mining the promising inhibitors and devise protocols for
continual improvement of COVID-19 medications. To sum-
marize, all the repurposed compounds suggested here may
provide a holistic understanding of structure-based drug
development for SARS-CoV-2 given that they continue to
remain potent in further drug development processes.
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Objective. This study is aimed at screening the potential ideal lead compounds from natural drug library (ZINC database), which
had potential inhibition effects against proprotein converse subtilisin/kexin type 9 (PCSK9), and contributing to enrich the
practical basis of PCSK9 inhibitor screening. Methods. A series of computer-aided virtual screening techniques were used to
identify potential inhibitors of PCSK9. Structure-based virtual screening by LibDock was carried out to calculate the LibDock
scores, followed by ADME (absorption, distribution, metabolism, and excretion) and toxicity predictions. Molecule docking
was next employed to demonstrate the binding affinity and mechanism between the candidate ligands and PCSK9
macromolecule. Finally, molecular dynamics simulation was performed to evaluate the stability of ligand-PCSK9 complex
under natural circumstance. Results. Two novel natural compounds ZINC000004099069 and ZINC000014952116 from the
ZINC database were found to bind with PCSK9 with a higher binging affinity together with more favorable interaction energy.
Also, they were predicted to be non-CYP2D6 inhibitors, together with low rodent carcinogenicity and AMES mutagenicity as
well as hepatotoxicity. Molecular dynamics simulation analysis demonstrated that these two complex ZINC000004099069- and
ZINC000014952116-PCSK9 had more favorable potential energy compared to the reference ligand, which could exist stably
whether in vivo or in vitro. Conclusion. This study elucidated that ZINC000004099069 and ZINC000014952116 were finally
screened as safe and potential drug candidates, which may have great significance in the development of PCSK9 inhibitor
development.

1. Introduction

Atherosclerosis is a chronic inflammatory disease with large/
medium size of arteries, characterized by the detention of
modified lipoproteins in the arterial wall, which could lead
to ischemic heart disease and strokes as well as peripheral
vascular disorders, collectively named as cardiovascular dis-
ease (CVD) [1, 2]. Lipoprotein is involved in the formation

of atherosclerosis and plays a pivotal role in plaque rupture,
which is a common pathophysiological indicator of acute
ischemic syndrome [3], among which low-density lipopro-
tein cholesterol (LDLc) is a type of the lipoprotein; lowering
LDLc could decrease the risk of CVD [4, 5], such as stroke,
which is the fifth leading cause of death in 2017 in the
United States [6]; atherosclerosis; and myocardial infarction
[7, 8]. Human PCSK9 gene, namely, proprotein converse
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subtilisin/kexin type 9, is mainly synthesized and secreted by
the liver and is one of the key modulators of LDLc; besides,
PCSK9 is also found to be closely connected with series of
pathophysiological processes, like brain development, plate-
let activation, intestinal physiology, pancreas, and adipose
tissue as well as neoplasms [2], suggesting that PCSK9 is
the key regulatory target among different diseases. Existing
genetic and interventional researches have fully reported
that reducing the levels of PCSK9 corresponds to CVD ben-
efits [2].

LDLc is eliminated through LDL-R recycling [9], while
this process could be altered negatively by PCSK9 through
degrading LDL-R. When PCSK9 capture the LDL-R/LDLc
complex, it could further combine with the complex closely
and then form a novel complex PCSK9/LDL-R/LDLc, which
is then internalized through the cell membrane and sent to
the lysosome for degradation, resulting in the degradation
of LDL-R, thus preventing LDL-R from recycling to the cell
membrane [10, 11]. Consequently, decreasing the degrada-
tion of LDL-R by PCSK9 inhibitor could help LDLc cleaning
and eventually reduce the risk of atherosclerosis [12, 13].
These findings implied that PCSK9 inhibition could be a
potential and effective therapeutic target to cure or prevent
CVD in individuals with high levels of PCSK9.

Recent researches showed that the current primary phar-
macological inhibitors of PCSK9 such as evolocumab and
alirocumab were monoclonal antibodies, which were potent
in the LDL-lowering process, together with good tolerance
by patients [14]. However, monoclonal antibodies still have
some disadvantages like the high cost, injection site adverse
reaction, and no oral administration approach. The expen-
sive as well as inconvenient situation makes it hard for
patients to receive this therapeutic approach widely. Current
methods in lowering LDLc level include inhibiting the func-
tion and influencing the synthesis as well as processing of
PCSK9 [15], interfering the PCSK9/LDLR protein-protein
interaction, and silencing PCSK9 gene expression by genetic
alteration such as siRNA [16]. However, most of these
approaches did not emerge promising effects because of lim-
itations, such as potential off-target mutagenesis for disrupt-
ing PCSK9 by gene genome editing and instability in plasma
parenteral administration for small peptide [13, 16].

Nature products and their derivatives play a crucial role
in today’s pharmacologic market, small molecules are piv-
otal aspect if not the first means to tackle an emergent or
unpredictable diseases, and they have still made a great con-
tribution to medication design and improvement [2, 17, 18].
Novel nature inhibitors targeting PCSK9 may benefit from
these aspects: newly aromatic compounds from the fruiting
body of Sparassis crispa, berberine, and inclisiran are
reported to be potent PCSK9 inhibitors, which can influence
PCSK9 mRNA expression [15, 19–21]. Imidazole-based
minimalist peptidomimetic and truncated LDL-R EGF-A-
domain peptides can disrupt the PCSK9/LDLR protein-
protein interaction [22]. However, a suitable novel nature
inhibitor targeting PCSK9 was hard to discover without
comprehensive and professional evaluation, not to mention
further in vivo studies. Currently, only small amount of
PCSK9 inhibitor researches were found to be relatively

mature, such as polydatin and tetrahydroxydiphenylethy-
lene-2-O-glucoside [23, 24]. Therefore, there still needs
more study to screen the potential PCSK9 inhibitors as well
as analyze possible mechanism of the interactions.

Structural biology study is an effective way on the basis
of high-throughput techniques, to screen nature compounds
targeting specialized protein molecules from huge of ligands,
which avoid the large amount of manpower, materials, and
financial resources required for traditional drug screening
(manual drug addition experiments). Current computational
simulation study on PCSK9 inhibitors include Exploring
Key Orientations (EKO) and computational GOLD algo-
rithm analysis [25, 26]. This study performed different
chemical molecule database and computational methods to
discover potential candidate compounds, aiming to screen
potential lead compounds with well binding affinity and
effective functions as well as existence of stability under nat-
ural environment. A set of virtual screening, molecular
docking, toxicity prediction, and ADME model was fully
performed to screen the promising compounds targeting
PCSK9; then, ligand binding analysis and molecular dynam-
ics simulation were used to understand the mechanism fur-
ther. A reported inhibitor of PCSK9 was chosen as reference
to make comprehensive evaluation for novel ligands and
existing inhibitors of PCSK9 [27].

2. Results

2.1. High-Throughput Screening of Natural Product Database
against PCSK9. Chemical structure of PCSK9 is displayed in
Figures 1(a) and 1(b), the existed ligand-binding pocket was
an essential active regulatory site of PCSK9, and small
ligands binding to this region could change the conforma-
tion of the protein and thus inactivate the activity of PCSK9,
so the initial ligand from PCSK9 complex was extracted and
the region was set as the binding sphere. Totally, 17776
purchasable-natural-named products were obtained from
ZINC repository for research. With high-throughput screen-
ing, each of these ligands was put into the binding sphere to
bind with the protein, and finally, 13430 compounds were
found to bind eligibly with PCSK9 through the screening
algorithm; among those, 2081 ligands had higher LibDock
scores than the reference ligand (LibDock score: 124.227).
The top 20 compounds with the highest LibDock scores
are listed in Table 1, together with these chemical structures
of these potential lead compounds (Figure 2).

2.2. Pharmacological Properties and Toxicity Prediction.
Pharmacological properties of these ligands were fully evalu-
ated through ADME (absorption, distribution, metabolism,
and excretion) algorithm; these indicators include solubility
level, brain/blood barrier (BBB) level, cytochrome P450
2D6 (CYP2D6) prediction, hepatotoxicity, absorption level,
and toxicity properties. As shown in Table 2, all compounds
could pass through the BBB indicated by BBB level (score:
4); solubility level showed that all compounds were soluble
in water except ZINC000008220036; three compounds were
predicted to be inhibitors of CYP2D6, which had an impor-
tant role in drug metabolism; and seven compounds were
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predicted to be hepatotoxic; seventeen compounds were
found to have a higher absorption level compared to the rest
of three compounds; as for the reference ligand, it was pre-
dicted to be toxic to the liver and non-CYP2D6 inhibitors.

Toxicity of candidate drugs also needs to be considered
when screening potential compounds, through TOPKAT
module (Table 3); indicators like AMES mutagenicity
(AMES), developmental toxicity potential (DTP), and rodent
carcinogenicity (based on the US. National Toxicology Pro-
gram dataset) were included to ensure the safety of these
potential drugs. Results revealed almost all drugs had develop-
mental toxicity potential except ZINC000008220036; the ref-
erence ligand had high probability of DTP and AMES
mutagenicity.

2.3. Ligand Binding Analysis. To further understand the
mechanism of the interaction between these candidate com-
pounds with PCSK9, CDOCKER modules were conducted
to make a precise docking algorithm, which could generate
more accurate chemical bonds between ligand and protein
and caused more running time. After the reference ligand
redocking into the binding region of PCSK9, RMSD between
initial ligand and docked posture was calculated as 0.92Å,
proving that the docking program applied in this study
was highly reliable. Then, CDOCKER interaction energy
was calculated to verify the binding affinity of ligands and
PCSK9. CDOCKER module provided a 3D structure of the
interaction between compounds and PCSK9, and
CDOCKER interaction energy showed the affinity of

(a) (b)

Figure 1: Molecular structure of proprotein converse subtilisin/kexin type 9 (PCSK9): (a) initial molecular structure; (b) surface of binding
area was added, blue indicated positive charge, and red indicated negative charge.

Table 1: Top 20 ranked compounds with higher LibDock scores than PCSK9.

Number ZINC ID Compounds LibDock score

1 ZINC000062238222 5-Methyltetrahydropteroyltri-L-glutamate 239.613

2 ZINC000085544839 Thf-polyglutamate 238.17

3 ZINC000095620524 Tetra-trans-P-coumaroylspermine 226.594

4 ZINC000004099069 S-(pga1)-glutathione 206.719

5 ZINC000004654845 3-Hexaprenyl-4-hydroxybenzoate 205.355

6 ZINC000085541163 (+-)-Grossamide 204.523

7 ZINC000008552069 Thf-L-glutamate 202.145

8 ZINC000013513540 1,14-Bis(dihydrocaffeoyl)spermine 201.87

9 ZINC000004228293 5-Formiminotetrahydrofolate 201.743

10 ZINC000009212428 Leucal 200.227

11 ZINC000014952116 Enkephalin 197.698

12 ZINC000014712793 Kukoamine B 196.511

13 ZINC000011616636 Hibon 196.025

14 ZINC000008220036 2-Hexaprenyl-3-methyl-6-methoxy-1,4 benzoquinone 195.582

15 ZINC000004096653 Dhhpba 195.52

16 ZINC000012494317 Isodesmosin 192.893

17 ZINC000014951658 Endomorphin 1 192.844

18 ZINC000085826835 (+-)-Grossamide 192.709

19 ZINC000042805482 Grossamide 192.559

20 ZINC000004097774 Lithospermic acid 192.238

3BioMed Research International



potential compounds with PCSK9. The CDOCKER interac-
tion energy of ZINC000004099069 with PCSK9 is
-87.8609Kcal/mol, lower than the CDOCKER interaction
energy of ZINC000014952116 with PCSK9, -65.9632 Kcal/
mol, which meant that the former complex could bind with
PCSK9 better (Table 4). The hydrogen bonds and hydropho-
bic interactions formed by PCSK9, and these two com-
pounds were visualized (Figures 3(a)–3(c)) and analyzed
(Figures 4(a)–4(c)). Table 5 displays that ZINC0000
04099069 formed 22 pairs of hydrogen bonds with PCSK9,
and ZINC000014952116 formed 18 pairs of hydrogen bonds
with PCSK9. The interaction between ZINC000004099069
and PCSK contains 1 hydrophobic interaction, and the
interaction between PCSK and the other promising chemical
molecular includes 4 hydrophobic interactions, as shown in
Table 6.

2.4. Molecular Dynamics Simulation. Molecular dynamics
simulation had been performed to further evaluate the sta-
bilities of PCSK9-ligand complexes under natural situation.

The initial conformation of these complexes was obtained
from CDOCKER module, an accurate molecular docking
program. RMSD curves as well as potential energy of
ZINC000004099069- and ZINC000014952116-PCSK9 com-
plexes are shown in Figure 5, the trajectory of each complex
got stable gradually at about 20 ps, and then, they both went
to equilibrium. It was convincing that through these MD
simulation procedures, hydrogen bonds and π-related
chemical bonds between ligands and PCSK9 could enhance
the interactions within the complex and thereby contributed
the stabilities of complexes. MD simulation results suggested
both of the two compounds could interact stably with
PCSK9, and ligand-PCSK9 complexes could exist steadily
under natural situation. Considering all results above,
ZINC000004099069 and ZINC000014952116 were finally
selected as potential lead compounds with less rodent carci-
nogenicity, hepatotoxicity, AMES mutagenicity, and good
solubility and intestinal absorption level; they were not toxic
to the liver and did not behave as CYP2D6 inhibitors. Addi-
tionally, in terms of molecular dynamics simulation, the
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Figure 2: The chemical structures of the top 20 compounds.
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formed complex could also behave stable performance under
natural situation.

2.5. Validation of the Effects of the Candidate Compounds.
This study recruited the top 20 compounds with the highest
LibDock scores conducted by high-throughput screening
and then put them into a more reliable algorithm “analyze
ligand poses,”, to test the binding affinity of ZINC0000
04099069 and ZINC000014952116 compounds. After calcu-
lating the residues and PCSK9 receptor, there displayed
favorable and unfavorable count and hydrophobic count as
well as hydrogen count, respectively. As shown in Figure 6,
results validated that ZINC000004099069 and ZINC0000
14952116 compounds had the most active residues and the
least unfavorable residues relatively, proving the reliability
of these two candidate compounds.

2.6. Possible Pharmacophore Modification of the Lead
Compounds. After screening the potential lead compounds
of PCSK9, this study further analyzed the editable skeleton
of these two compounds through pharmacophore proper-
ties, to observe the possible modification site. As shown in
Figures 7(a) and 7(b), results visualized that on the skeleton
of these compounds, there were 106 editable features in
ZINC000004099069 and 49 editable features in ZINC0000
14952116, among which, ZINC000004099069 had 40 hydro-
gen bond acceptors, 61 hydrogen bond donors, and 5 posi-

tive ionizable; ZINC000014952116 possessed 20 hydrogen
bond acceptors, 19 hydrogen bond donors, 5 hydrophobic
centers, and 1 positive ionizable as well as 4 ring aromatics,
which could be further improved targeting these editable
sites.

3. Discussion

PCSK9, mainly synthesized by the hepatocytes, is a pivotal
regulator of LDL-R, which could reverse the clearance of
LDLc [12, 13]. Many hypercholesterolemia patients possess
a high level of PCSK9. Therefore, targeting the function of
PCSK9 is a promising direction for lowering LDLc in order
to further cure CVD. Up to now, there have been some tar-
geted drugs of PCSK9, such as monoclonal antibodies (evo-
locumab and alirocumab) and nature inhibitors (polydatin
and tetrahydroxydiphenylethylene-2-O-glucoside) [14, 23,
24]. The high cost of using monoclonal antibodies and the
slow progression in putting natural inhibitors into clinical
trial require more candidate natural drug research in this
field. However, it is worth noting that most natural products
generally lead to low aqueous solubility and poor stability as
well as bioavailability like less cellular absorption and low
intestinal absorption and also high molecular weight due to
their physiochemical properties, which may block the devel-
opment of natural drug screening [28, 29]; these aspects all
prompt researchers to fully evaluate each compound when

Table 2: ADME (adsorption, distribution, metabolism, and excretion) properties of compounds.

Number ZINC ID Solubility levela BBB levelb CYP2D6 predictionc Hepatotoxicityd Absorption levele PPB predictionf

1 ZINC000062238222 3 4 0 1 3 0

2 ZINC000085544839 3 4 0 1 3 0

3 ZINC000095620524 4 4 0 1 3 0

4 ZINC000004099069 3 4 0 0 3 0

5 ZINC000004654845 1 4 1 0 3 1

6 ZINC000085541163 2 4 0 0 2 0

7 ZINC000008552069 4 4 0 1 3 0

8 ZINC000013513540 4 4 0 1 3 0

9 ZINC000004228293 4 4 0 1 3 0

10 ZINC000009212428 4 4 0 1 3 0

11 ZINC000014952116 4 4 0 0 3 0

12 ZINC000014712793 4 4 0 0 3 0

13 ZINC000011616636 2 4 0 0 3 0

14 ZINC000008220036 0 4 1 0 3 1

15 ZINC000004096653 1 4 0 0 3 1

16 ZINC000012494317 1 4 1 0 3 0

17 ZINC000014951658 3 4 0 0 3 0

18 ZINC000085826835 2 4 0 0 2 0

19 ZINC000042805482 2 4 0 0 2 0

20 ZINC000004097774 2 4 0 0 3 0

21 6U3X / / 0 1 / 0
aAqueous solubility level: 0 (extremely low); 1 (very low, but possible); 2 (low); and 3 (good); bblood-brain barrier level: 0 (very high penetrant); 1 (high); 2
(medium); 3 (low); and 4 (undefined); ccytochrome P450 2D6 level: 0 (noninhibitor) and 1 (inhibitor); dhepatotoxicity: 0 (nontoxic) and 1 (toxic); ehuman
intestinal absorption level: 0 (good); 1 (moderate); 2 (poor); and 3 (very poor); fplasma protein binding: 0 (binding is <90%); 1 (binding is >90%); and 2
(binding is >95%).
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drug screening to discover the best effective candidate drugs.
The high-throughput method used in this study could
reduce the cost of medicine research and development, such
as manpower and materials. Some studies have suggested a
high priority of using structural biology method [2, 18, 30].
To the best knowledge, the researches using this analytical
method to screen PCSK9 have not been reported so far; thus,
this study could provide a novel insight for exploring tar-
geted drug therapy of PCSK9 and contribute in this field.

In this study, a total of 13430 compounds of
purchasable-natural-named products taken from the ZINC
database were found to bind with PCSK9 eligibly. The top
20 of these compounds based on LibDock score were
screened firstly and selected for further ADME and toxicity
prediction. Through results, LibDock scores represented
their binding affinity with protein PCSK9; compounds with
higher LibDock score indicated a better energy optimization
and more stable structure in its complex. This study chose
the top 20 compounds with the best LibDock score for first
screening, which were pooled for the following study.

ADME and toxicity predictions were employed for com-
pounds to access their pharmacological properties. The
results demonstrated that ZINC000004099069 and
ZINC000014952116 were ideal compounds for high solubil-
ity, strong plasma protein binding affinity, and high absorp-
tion levels. At the same time, they were predicted to be non-
CYP2D6 inhibitors, with low rodent carcinogenicity and
AMES mutagenicity as well as hepatotoxicity. The high sol-
ubility and intestinal absorption level could promote the
drug dissolution and absorption process, which could bene-
fit from oral medication. Because of their noninhibition to
CYP2D6, they were not easy to be accumulated in the liver.
Additionally, these two compounds were assessed to have
less AMES mutagenicity and rodent carcinogenicity, which
presented their preferable safety characteristic. However,
the two compounds still had a relatively high DTP, showing
the possible risk of further usage; more refinements needed
to be conducted in these skeletons to avoid further toxicity.
Through trimming the molecular groups to overcome the
deficiency of these compounds, they still had potential in
PCSK9 inhibitor research and development.

Ligand binding analysis elucidated the mechanism of the
interaction between ZINC000004099069 and ZINC0000
14952116 with PCSK9. The main interaction of ZINC0000
04099069 with PCSK9 was hydrogen bonds, while the inter-
action of ZINC000014952116 with PCSK9 was composed of
hydrogen bonds and π-π bonds. From illustrations, we
could observe that these two compounds formed many
chemical bonds with the protein PCSK9, and more bonds

Table 3: Toxicities of compounds.

Number ZINC ID
Rat NTPa Mouse NTPa

AMESb DTPc
Male Female Male Female

1 ZINC000062238222 0.969 0.000 0.000 0.000 0.989 1.000

2 ZINC000085544839 0.964 0.000 0.080 0.000 0.999 1.000

3 ZINC000095620524 0.999 1.000 0.000 1.000 0.000 1.000

4 ZINC000004099069 0.000 0.000 0.000 0.000 0.002 0.864

5 ZINC000004654845 0.000 1.000 1.000 0.000 1.000 1.000

6 ZINC000085541163 0.998 1.000 1.000 0.186 0.000 1.000

7 ZINC000008552069 0.997 0.000 0.000 0.015 1.000 1.000

8 ZINC000013513540 0.840 0.020 0.000 0.139 0.000 1.000

9 ZINC000004228293 1.000 0.000 0.000 0.165 0.000 1.000

10 ZINC000009212428 1.000 0.000 0.000 1.000 0.356 1.000

11 ZINC000014952116 0.000 0.000 0.000 0.001 0.000 0.928

12 ZINC000014712793 0.632 1.000 0.000 0.640 0.000 1.000

13 ZINC000011616636 1.000 1.000 1.000 0.000 1.000 1.000

14 ZINC000008220036 0.000 1.000 1.000 0.000 0.064 0.000

15 ZINC000004096653 0.000 1.000 1.000 0.000 1.000 1.000

16 ZINC000012494317 0.000 0.000 0.000 0.222 0.000 1.000

17 ZINC000014951658 0.000 1.000 0.000 1.000 0.000 1.000

18 ZINC000085826835 0.998 1.000 1.000 0.186 0.000 1.000

19 ZINC000042805482 0.998 1.000 1.000 0.186 0.000 1.000

20 ZINC000004097774 0.053 0.987 0.916 0.000 0.002 1.000

21 6U3X 1.000 0.139 0.012 0.002 1.000 1.000
a0 (noncarcinogen) and 1 (carcinogen); b0 (nonmutagen) and 1 (mutagen); c0 (nontoxic) and 1 (toxic).

Table 4: CDOCKER interaction energy of compounds with
PCSK9.

ZINC ID CDOCKER interaction energy (Kcal/mol)

ZINC000004099069 -87.8609

ZINC000014952116 -65.9632
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suggested harder structure, which could not be easily broken
by other factors. Additionally, the CDOCKER interaction
energy illustrated that both ZINC000004099069 and
ZINC000014952116 had a high affinity with PCSK9, of
which the former is higher, which confirmed the two com-
plexes’ stability. For this reason, by binding with different
ligands which had high affinity with PCSK9, the conforma-
tion of PCSK9 could be changed, resulting in inactivation
of protein function and leading into the clearance of LDLc,
and ultimately played a major role in the treatment of
CVD disease.

Lastly, molecular dynamics simulation was used to assess
the stability of these complexes under natural circumstances.
The stable existence of a complex in the natural environ-
ment indicated that it could be metabolized in the body as
a whole unit and the ligand could not be separated from
the protein by some metabolism processes, inactivating the
function of the ligand. RMSD curves as well as potential
energy of these ligand-PCSK9 complexes suggested the sta-
bility alteration of this conformation; as the progress of
molecular dynamics went on, such as heating and equilib-
rium procedure, some groups and chemical bonds from
the complex might change slightly, like bond rotation or fold

conformation change; these alterations might cause the
change of potential energy and RMSD value; high fluctua-
tions indicated the instability of the conformation. From
the illustrations, we observed that RMSD curves as well as
potential energy got stable gradually, elucidating that these
two ligand-PCSK9 complexes might exist stably. Conse-
quently, these two complexes could keep stable and have
promotion under nature environment. Besides, the ligand
pose analysis as well as pharmacophore modification analy-
sis all validated our results that ZINC000004099069 and
ZINC000014952116 were potential lead compounds with
activities.

Currently, the medication screening and design by a
computational-aided method are mainly focused on tumor
field, while targeted drug on basic diseases had hardly been
studied. This study screened two ideal lead compounds tar-
geting PCSK9 from natural products, which had effective
activity and may inactivate the function of PCSK9, and
finally decreased the accumulation of LDLc in the body
and took place in the treatment of CVD disease. In conclu-
sion, from a series of computer-aided studies, ZINC0000
04099069 and ZINC000014952116, two compounds, were
finally selected as safe and potential candidate drugs.

ZINC00004099069-CDOCKER
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Figure 3: Schematic diagram of PCSK9 and the interaction of ZINC000004099069 (a), ZINC000014952116 (b), and reference (c) with
PCSK9.
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Meanwhile, the information of other candidates provided in
this study is listed in Tables 1–3, which can enrich the
researches of PCSK9 and contribute a strong basis for
PCSK9 inhibitor or other medication design and improve-
ment. It is noteworthy that despite the disadvantages of
some compounds analyzed from ADMET model in this
study, it still provided a novel drug skeleton for medication
design and refinement; different atoms or groups could be
added or deleted from the skeleton to avoid the toxicity or
other side effects. Thus, based on these two skeletons, more
alterations and modifications on pharmacophore would be
conducted to further improve the pesticide effects as well
as reducing toxicity.

Although precise measurements and detailed designs
had been conducted in this study, there were still some defi-
ciencies due to the method of computational study. Animal
model experiments were still needed to verify our research
in the further. More indicators, like half-maximal inhibitory
concentration and half-maximal effective concentration,
need to be conducted to advance these two compounds to
animals and eventually clinical application.

4. Methods and Materials

4.1. Docking Software and Ligand Library. Discovery Studio
4.5 software (BIOVIA, San Diego, California, US) applied

ZINC00004099069-CDOCKER

Interactions
van der Waals
Conventional hydrogen bond

Carbon hydrogen bond
Alkyl

(a)

ZINC000014952116-CDOCKER

Interactions
van der Waals

Conventional hydrogen bond

Pi-donor hydrogen bond

Pi-Alkyl
Carbon hydrogen bond

(b)

Reference

Interactions
van der Waals
Conventional hydrogen bond

Unfavorable positive
-positive

Pi-AlkylCarbon hydrogen bond

(c)

Figure 4: The intermolecular interaction of the predicted binding modes of ZINC00004099069 (a), ZINC000014952116 (b), and reference
(c) with PCSK9.
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Table 5: Hydrogen bond interaction parameters for potential compounds and PCSK9.

Receptor ZINC ID Donor atom Receptor atom Distances (Å)

PCSK9

ZINC000004099069

B:ARG476:HH11 ZINC000012494317:N22 2.52581

ZINC000012494317:H38 B:ARG357:O 2.05695

ZINC000012494317:H38 B:VAL359:O 2.3965

ZINC000012494317:H39 B:VAL359:O 2.0501

ZINC000012494317:H57 B:CYS477:O 2.32261

ZINC000012494317:H60 B:GLU332:OE2 2.18568

ZINC000012494317:H71 B:ILE474:O 2.08114

ZINC000012494317:H84 B:PRO331:O 2.25439

ZINC000012494317:H86 B:PRO331:O 2.22788

ZINC000012494317:H86 B:VAL333:O 2.64061

ZINC000012494317:H87 B:VAL333:O 2.1696

ZINC000012494317:H87 B:ASP360:OD2 2.22538

ZINC000012494317:H89 B:LEU436:O 1.85936

ZINC000012494317:H90 B:LEU436:O 2.0148

B:PRO331:HA ZINC000012494317:N31 2.49123

B:TRP461:HD1 ZINC000012494317:O36 2.22741

B:ALA478:HA ZINC000012494317:O16 2.67059

ZINC000012494317:H48 B:ARG357:O 2.56198

ZINC000012494317:H59 B:PRO331:O 2.82566

ZINC000012494317:H85 B:CYS358:O 2.49137

ZINC000012494317:H85 B:ASP360:OD2 2.83867

ZINC000012494317:H88 B:THR459:O 2.44502

ZINC000014952116

B:ARG357:HH12 ZINC000014952116:O8 2.89478

B:ARG357:HH22 ZINC000014952116:O40 1.86693

B:ARG458:HH11 ZINC000014952116:O35 2.07486

B:ARG458:HH12 ZINC000014952116:O23 2.05105

B:TRP461:HN ZINC000014952116:O27 2.7019

ZINC000014952116:H60 ZINC000014952116:O23 1.92783

ZINC000014952116:H63 B:ARG357:O 1.9849

ZINC000014952116:H68 B:LEU436:O 1.85726

ZINC000014952116:H74 B:ASP360:OD1 2.1021

B:PRO331:HA ZINC000014952116:O19 2.69646

B:VAL460:HA ZINC000014952116:O27 2.85792

B:TRP461:HD1 ZINC000014952116:O27 2.13275

ZINC000014952116:H61 B:ASP360:OD1 2.55504

ZINC000014952116:H62 B:CYS358:O 2.45617

ZINC000014952116:H62 B:ASP360:OD2 3.01446

ZINC000014952116:H65 B:ARG357:O 2.40176

ZINC000014952116:H77 ZINC000014952116:O8 2.41561

B:ARG458:HH22 ZINC000014952116 2.79122

Table 6: Hydrophobic interaction parameters for compounds and PCSK9 residues.

Receptor ZINC ID Donor atom Receptor atom Distances (Å)

PCSK9

ZINC000004099069 B:VAL460 ZINC000012494317 4.51394

ZINC000014952116

ZINC000014952116 B:ALA478 4.83821

ZINC000014952116 B:ILE416 4.45717

ZINC000014952116 B:PRO438 5.38467

ZINC000014952116 B:ARG458 4.74229
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computation-aided structural biologic analysis to protein
and other compounds for docking, modeling, prediction,
etc. Natural inhibitors of PCSK9 used in this study were
selected by analyzing information from the ZINC database,
a free repository containing numerous ligands for commer-
cial utility. And CDOCKER is used to explore the interaction
of compounds and proteins.

4.2. Structure-Based Virtual Screening Using LibDock.
Ligand-binding pocket region of PCSK9 was selected as the
binding site and was used to screen compounds that could
potentially bind with and then inhibit PCSK9. LibDock

was a program which was applied to screen small molecules
virtually. Using polar probes, nonpolar probes, and a grid
placed into the binding site, hotspots were calculated by Lib-
Dock for the protein. Ligands were arranged to form favor-
able interactions using these hotspots. For ligand
minimization, the Smart Minimiser algorithm and
CHARMm force field were used. All the ligands were ranked
according to the ligand score after minimization. The 2.0Å
crystal structure of human PCSK9 was downloaded from
the protein data bank (PDB ID: 6U3X) and imported to
the working circumstance of LibDock. To prepare the pro-
tein, crystal water and other heteroatoms around the protein
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Figure 5: Results of MD simulation of ZINC000004099069 and ZINC000014952116.
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Figure 6: Schematic intermolecular interactions of the candidate compounds with PCSK9.
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were removed, and then, protonation, ionization, hydrogen,
and energy minimization were added. Using the binding site
of prepared protein and ligands, the active site for docking
was generated. Using LibDock, the prepared ligands at the
defined active site was docked virtually. Based on the Lib-
Dock score, all docked poses were generated and the ligands
were ranked.

4.3. ADME (Absorption, Distribution, Metabolism, and
Excretion) Properties and Toxicity Prediction. The ADME
module and TOPKAT module of Discovery Studio 4.5 were
employed to calculate ADME and toxicity properties includ-
ing absorption, distribution, metabolism, and excretion. The
four ADME aspects included BBB (blood-brain barrier)
level, CYP2D6 prediction, hepatotoxicity, absorption (intes-
tinal absorption) level, solubility (defined at 25°C in water)
level, and PPB (plasma protein binding) prediction. These
characteristics were fully assessed when selecting appropri-
ate drugs for PCSK9.

4.4. Molecule Docking Analysis. CDOCKER module in Dis-
covery Studio, an implementation of a CHARMm-based
docking tool, was employed for precise docking study
between ligands and protein. During the docking process,
the receptor held rigid, while the ligands were allowed to
be flexible. The CHARMm energy and the interaction
energy, which demonstrated the ligand binding affinity, were
calculated for each complex pose. Because the fixed crystal
water molecules might affect the combination between the
receptor and ligand, they were generally removed in a rigid
and semiflexible docking process. Additionally, the water
molecules were removed, and then, hydrogen atoms were
added to the protein for protein optimization.

4.5. Molecular Dynamics Simulation. After the most appro-
priate ligand-PCSK9 complex was obtained and selected
from the above calculation, molecular dynamics simulation
would be done for valuing their stabilities. They were put
into an orthorhombic box and solvated using an explicit

periodic boundary solvated water model. Then, solid chlo-
ride was placed in this box with an ionic strength of 0.145
to simulate the natural environment. The box was subjected
to the CHARMm forced field and relaxed by energy minimi-
zation (1000 steps of the steepest descent and 1000 steps of
the conjugated gradient), with the final RMS gradient of
0.08326. The system’s temperature was slowly driven from
50K to 300K for 2 ns, and equilibration simulation was
run for 1 ns. With a time step of 2 fs, the whole MD simula-
tions were run for 40 ns. The results were saved every 2 fs.
Using Discovery Studio 4.5 software (BIOVIA, San Diego,
California, US), the structural properties, potential energy,
and RMSD of MD trajectory were determined. The
CHARMm force field was used for both receptors and
ligands. The binding site sphere of PCSK9 was defined as
the region that came with radius 5Å from the geometric
centroid of the ligands. During the docking process, the
ligands could bind with the residues within the binding
spheres. After the parts of identified site were determined,
the parts would be prepared into the binding site of PCSK9.
After the docking process, each ligand generated 10 docking
poses. And the posture with the highest docking score and
best affinity would be selected. Besides, the CDOCKER
interaction energy of different poses was also taken into
calculation.

4.6. Validation of the Effects of the Candidate Compounds.
To further validate if the selected compounds were the effec-
tive drugs in this study, we next performed ligand pose anal-
ysis based on the top 20 compounds in high-throughput
module and analyzed the residue interactions between each
compound and PCSK9. The candidate compounds with
the best binding affinity could be evaluated by counts with
favorable and unfavorable residues with PCSK9.

4.7. Pharmacophore Predictions of the Lead Compounds.
After comprehensive assessment of these two compounds,
this study then analyzed their pharmacophore characteris-
tics and editable site through 3D-QSAR pharmacophore

Editable pharmacophore of
ZINC000014952116

(a)

Editable pharmacophore of
ZINC000004099069

(b)

Figure 7: Pharmacophore predictions of ZINC000014952116 (a) and ZINC000004099069 (b) using 3D-QSAR. Green represents hydrogen
acceptor, blue represents hydrophobic center, purple represents hydrogen donor, and orange represents aromatic ring.
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algorithm, which could provide up to 255 fits per molecule
to represent a small molecule; only fits with energy values
within the threshold of 10Kcal/mol were retained.

5. Conclusions

This study employed a series of high-throughput methods
based on structural biology, like virtual screening, precisely
molecular docking, ADME, and toxicity prediction, as well
as molecular dynamics simulation to find novel natural
inhibitors regarding protein PCSK9, in order to treat cardio-
vascular disease by inhibiting the function of PCSK9.
Totally, two compounds, ZINC000004099069 and
ZINC000014952116, were finally screened as safe drug can-
didates, which had great significance in contributing to the
development of PCSK9 inhibitor.

Data Availability

The data used and analyzed in this study are available upon
reasonable request and can be found in the article/Supple-
mentary Material.

Conflicts of Interest

All authors declare no conflicts of interest related to this
manuscript.

Authors’ Contributions

This study was completed with teamwork. Each author had
made corresponding contribution to the study. Bo Gao,
Huasong Zhou, and Xinhui Wang conceived the idea. Yingj-
ing Zhao, Weihang Li, and Weiye Li wrote the main manu-
script. Weihang Li, Xinhui Wang, Weiye Li, Yingjing Zhao,
and Bo Wu used the software. Huasong Zhou, Hong Tao,
Yuting Li, and Bo Wu downloaded and collected data. Yingj-
ing Zhao, Weiye Li, Hong Tao, and Yuting Li analyzed the
data. Yingjing Zhao, Weihang Li, and Weiye Li prepared fig-
ures. All authors redressed the manuscript. Bo Gao, Wei-
hang Li, Huasong Zhou, and Xinhui Wang reviewed the
manuscript. Yingjing Zhao and Weihang Li contributed
equally as the co-first authors. All authors have approved
the publication of this work

Acknowledgments

This study was supported by Flow Station of Principal Inves-
tigator Program (2021HYPI05) and Innovative Talents Pro-
gram (2020SZRC1002) of Air Force Medical University.

References

[1] K. Kobiyama and K. Ley, “Atherosclerosis,” Circulation
Research, vol. 123, no. 10, pp. 1118–1120, 2018.

[2] C. Macchi, N. Ferri, C. R. Sirtori, A. Corsini, M. Banach, and
M. Ruscica, “Proprotein convertase subtilisin/kexin type 9: a
view beyond the canonical cholesterol-lowering impact,” The
American Journal of Pathology, vol. 191, no. 8, pp. 1385–
1397, 2021.

[3] R. K. Myler, C. Ryan, R. Dunlap et al., “Dyslipoproteinemias in
atherosclerosis, thrombosis and restenosis after coronary
angioplasty,” The Journal of Invasive Cardiology, vol. 7, no. 2,
pp. 33–46, 1995.

[4] P. Mourikis, S. Zako, L. Dannenberg et al., “Lipid lowering
therapy in cardiovascular disease: from myth to molecular
reality,” Pharmacology & Therapeutics, vol. 213, p. 107592,
2020.

[5] B. A. Ference, J. G. Robinson, R. D. Brook et al., “Variation
inPCSK9andHMGCRand risk of cardiovascular disease and
diabetes,” The New England Journal of Medicine, vol. 375,
no. 22, pp. 2144–2153, 2016.

[6] M. Heron, “Deaths: leading causes for 2017,” National Vital
Statistics Reports, vol. 68, no. 6, pp. 1–77, 2019.

[7] B. Genser and W. März, “Low density lipoprotein cholesterol,
statins and cardiovascular events: a meta-analysis,” Clinical
Research in Cardiology, vol. 95, no. 8, pp. 393–404, 2006.

[8] N. G. Seidah and A. Prat, “The multifaceted biology of
PCSK9,” Endocrine Reviews, vol. 43, no. 3, pp. 558–582, 2022.

[9] M. S. Brown and J. L. Goldstein, “A receptor-mediated path-
way for cholesterol homeostasis,” Science, vol. 232, no. 4746,
pp. 34–47, 1986.

[10] D. Cunningham, D. E. Danley, K. F. Geoghegan et al., “Struc-
tural and biophysical studies of PCSK9 and its mutants linked
to familial hypercholesterolemia,” Nature Structural & Molec-
ular Biology, vol. 14, no. 5, pp. 413–419, 2007.

[11] K. N. Maxwell and J. L. Breslow, “Adenoviral-mediated
expression of Pcsk9 in mice results in a low-density lipoprotein
receptor knockout phenotype,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101,
no. 18, pp. 7100–7105, 2004.

[12] S. Poirier, G. Mayer, S. Benjannet et al., “The proprotein con-
vertase PCSK9 induces the degradation of low density lipopro-
tein receptor (LDLR) and its closest family members VLDLR
and ApoER2,” The Journal of Biological Chemistry, vol. 283,
no. 4, pp. 2363–2372, 2008.

[13] A. J. P. Klein-Szanto and D. E. Bassi, “Keep recycling going:
new approaches to reduce LDL-C,” Biochemical Pharmacol-
ogy, vol. 164, pp. 336–341, 2019.

[14] R. D. Santos, A. Ruzza, G. K. Hovingh et al., “Evolocumab in
pediatric heterozygous familial hypercholesterolemia,” The
New England Journal of Medicine, vol. 383, no. 14, pp. 1317–
1327, 2020.

[15] G. K. Hovingh, N. E. Lepor, D. Kallend, R. M. Stoekenbroek,
P. L. J. Wijngaard, and F. J. Raal, “Inclisiran durably lowers
low-density lipoprotein cholesterol and proprotein convertase
subtilisin/kexin type 9 expression in homozygous familial
hypercholesterolemia,” Circulation, vol. 141, no. 22,
pp. 1829–1831, 2020.

[16] Q. Ding, A. Strong, K. M. Patel et al., “Permanent alteration of
PCSK9 with in vivo CRISPR-Cas9 genome editing,” Circula-
tion Research, vol. 115, no. 5, pp. 488–492, 2014.

[17] D. J. Newman, “Developing natural product drugs: supply
problems and how they have been overcome,” Pharmacology
& Therapeutics, vol. 162, pp. 1–9, 2016.

[18] L. Yang, W. Li, Y. Zhao et al., “Computational study of novel
natural inhibitors targeting O6-methylguanine-DNA methyl-
transferase,” World Neurosurgery, vol. 130, pp. e294–e306,
2019.

[19] S. Bang, H. S. Chae, C. Lee et al., “New aromatic compounds
from the fruiting body of Sparassis crispa (Wulf.) and their

12 BioMed Research International



inhibitory activities on proprotein convertase subtilisin/kexin
type 9 mRNA expression,” Journal of Agricultural and Food
Chemistry, vol. 65, no. 30, pp. 6152–6157, 2017.

[20] K. K. Ray, U. Landmesser, L. A. Leiter et al., “Inclisiran in
patients at high cardiovascular risk with elevated LDL choles-
terol,” The New England Journal of Medicine, vol. 376, no. 15,
pp. 1430–1440, 2017.

[21] K. Fitzgerald, S. White, A. Borodovsky et al., “A highly durable
RNAi therapeutic inhibitor of PCSK9,” The New England Jour-
nal of Medicine, vol. 376, no. 1, pp. 41–51, 2017.

[22] M. Stucchi, G. Grazioso, C. Lammi et al., “Disrupting the
PCSK9/LDLR protein-protein interaction by an imidazole-
based minimalist peptidomimetic,” Organic & Biomolecular
Chemistry, vol. 14, no. 41, pp. 9736–9740, 2016.

[23] L. Li, C. Shen, Y. X. Huang et al., “A new strategy for rapidly
screening natural inhibitors targeting the PCSK9/LDLR inter-
action in vitro,” Molecules, vol. 23, no. 9, p. 2397, 2018.

[24] P. Ahmad, S. S. Alvi, D. Iqbal, and M. S. Khan, “Insights into
pharmacological mechanisms of polydatin in targeting risk
factors-mediated atherosclerosis,” Life Sciences, vol. 254,
p. 117756, 2020.

[25] D. K. Min, H. S. Lee, N. Lee et al., “In silico screening of chem-
ical libraries to develop inhibitors that hamper the interaction
of PCSK9 with the LDL receptor,” Yonsei Medical Journal,
vol. 56, no. 5, pp. 1251–1257, 2015.

[26] J. Taechalertpaisarn, B. Zhao, X. Liang, and K. Burgess, “Small
molecule inhibitors of the PCSK9.LDLR interaction,” Journal
of the American Chemical Society, vol. 140, no. 9, pp. 3242–
3249, 2018.

[27] W. L. Petrilli, G. C. Adam, R. S. Erdmann et al., “From screen-
ing to targeted degradation: strategies for the discovery and
optimization of small molecule ligands for PCSK9,” Cell
Chemical Biology, vol. 27, no. 1, pp. 32–40.e3, 2020.

[28] J. Sharifi-Rad, A. Sureda, G. C. Tenore et al., “Biological activ-
ities of essential oils: from plant chemoecology to traditional
healing systems,” Molecules, vol. 22, no. 1, p. 70, 2017.

[29] K. Kesarwani, R. Gupta, and A. Mukerjee, “Bioavailability
enhancers of herbal origin: an overview,” Asian Pacific Journal
of Tropical Biomedicine, vol. 3, no. 4, pp. 253–266, 2013.

[30] B. Yang, J. Mao, B. Gao, and X. Lu, “Computer-assisted drug
virtual screening based on the natural product databases,”
Current Pharmaceutical Biotechnology, vol. 20, no. 4,
pp. 293–301, 2019.

13BioMed Research International



Research Article
Alterations of Microorganisms in Tongue Coating of Gastric
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Objective. In the research, the microbial changes in the tongue coating of patients with a damp phlegm pattern of gastric
precancerous lesion (GPL) were investigated. Methods. This was a case-control study, in which 80 tongue coating samples were
collected including 40 patients with a damp phlegm pattern of GPL, 20 patients with a nondamp phlegm pattern of GPL, and
20 healthy control people. The 16S rRNA microbiome technology was used to analyze the alterations of microorganisms in
tongue coating of GPL patients with a damp phlegm pattern. Results. Microorganisms in the genus level were analyzed.
Compared with the healthy control group, the relative abundance of 4 microorganisms (Solobacterium, Rothia, Oribacterium,
and Alloprevotella) in the GPL group was significantly higher (P < 0:05). The relative abundance of 10 microorganisms
(Terrisporobacter, Solobacterium, Porphyromonas, Parvimonas, Lactobacillus, Johnsonella, Gemella, Fusibacter, Azoarcus, and
Acidothermus) in the GPL damp phlegm pattern group was significantly lower than that in the GPL nondamp phlegm pattern
group (P < 0:05). In the comparison of phenotype “forms biofilms,” the relative abundance of microorganisms in the GPL
group was significantly higher than that in the healthy control group (P < 0:05). In the comparison of phenotype “contains
mobile elements,” the relative abundance of microorganisms in the GPL damp phlegm pattern group was significantly lower
than that in the GPL nondamp phlegm pattern group (P < 0:05). In the comparison of microbial metabolic functions, the
abundance ratio of “infectious diseases: bacterial” in the GPL group was significantly lower than that in the healthy control
group (P < 0:05). The abundance ratio of the “excretory system” and “folding, sorting, and degradation” in the GPL group was
significantly higher than that in the healthy control group (P < 0:05). Conclusions. Solobacterium may be a marker
microorganism of the GPL damp phlegm pattern. The differential phenotype of microorganisms in tongue coating of the GPL
damp tongue pattern is mainly reflected in “forms biofilms” and “contains mobile elements.”

1. Introduction

Gastric cancer is the 3rd most common malignant tumor in
the whole world in terms of incidence and mortality and is a
serious threat to human health [1]. According to the global
cancer statistics in 2018, new gastric cancer accounts for
5.7% of new cancer cases every year, of which more than

40% are in China. From normal tissue to gastric cancer, it
usually goes through several stages: chronic gastritis, atro-
phy, gastrointestinal epithelial metaplasia, and dysplasia,
and finally develops into gastric cancer [2]. Gastric precan-
cerous lesions (GPL) are a kind of histopathological changes
of gastric mucosa, mainly including intestinal metaplasia
and dysplasia whose developments are considered reversible
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[3, 4]. Therefore, early identification and active prevention
and treatment of GPL can reduce the incidence rate of gas-
tric cancer with a certain probability. However, modern
medicine still lacks ideal treatment for GPL. Numerous clin-
ical reports have confirmed that traditional Chinese medi-
cine (TCM) treatment can reduce and remove some
intestinal epithelial metaplasia and dysplasia and has certain
curative effect on both symptom improvement and patho-
logical reversal [5].

According to the theory of TCM, distinguishing the
TCM patterns of GPL correctly is fundamental to treat the
disease effectively by using Chinese medicine. One of the
common TCM patterns of GPL is damp phlegm pattern.
And the change of tongue coating appearance is one of the
most significant diagnostic criteria of the GPL damp phlegm
pattern. There are many pathogenic commensal bacteria in
the human body. In a healthy state, these microorganisms
exist in the form of symbiosis. It plays an important role in
human’s nutrition absorption, energy metabolism, immune
function, and other physiological activities. The diversity
and abundance of these microorganisms will also change rel-
atively under unhealthy conditions, leading to the formation
and development of multiple diseases, such as gastric cancer
and other tumor diseases [6]. Oral microorganism is an
important part to change the balance between oral and sys-
temic health and disease. In the oral cavity, the morphological
structure of the tongue surface allows the formation of a
unique bacterial biofilm. Therefore, tongue coating has been
considered the most complex ecological biofilm niche in the
mouth [7]. In the previous study, it was found that there were
different microorganisms in the tongue coating between GPL
patients and healthy people, and the metabolites in the tongue
coating of GPL patients with a damp phlegm pattern were sig-
nificantly different from those of the nondamp phlegm pattern
[8, 9]. Therefore, whether there are some special microorgan-
isms in the tongue coating of GPL patients with a damp
phlegm patternmay affect the formation of metabolites, which
is a problem worthy of study.

16S ribosomal RNA (16S rRNA) gene sequencing has
become the preferred method to study the composition
and distribution of microbial communities [10]. In recent
years, this technology has been widely used in the study of
microbial diversity and relative abundance in the human
body. Therefore, the 16S rRNA microbiome technology is
adopted in this study; the changes of microorganisms in ton-
gue coating of GPL patients with a damp phlegm pattern are
explored. The significant fluctuations in the species and
abundance of these microorganisms may help us better
understand the formation and development mechanism of
the GPL damp phlegm pattern from various aspects.

2. Materials and Methods

2.1. Samples. From December 2018 to October 2019, 60
patients with GPL voluntarily enrolled in Longhua Hospital
Affiliated to Shanghai University of Traditional Chinese
Medicine were selected as the GPL group, including 40 cases
of the damp phlegm pattern group and 20 cases of the non-
damp phlegm pattern group. There were 20 people in the

healthy control group who currently had no stomach dis-
comfort and no history of stomach disease. Their routine
physical examination indicators were normal. These indica-
tors included blood cell analysis, liver and renal function,
blood lipid, blood glucose, blood pressure, carcinoembryonic
antigen, alpha-fetoprotein, color Doppler ultrasound of neck
and abdomen, chest computed tomography, and X-ray bar-
ium meal. After the tongue coating samples of GPL patients
were collected, the gastric mucosae were immediately exam-
ined by gastroscopy and pathology.

Table 1 summarizes the demographic and clinical infor-
mation of all participants. It can be seen from this table that
the numbers of GPL patients with a damp phlegm pattern
with only mild, moderate, and severe intestinal metaplasia
were 31, 7, and 1, respectively. The numbers of GPL patients
with a nondamp phlegm pattern with only mild, moderate,
and severe intestinal metaplasia were 13, 3, and 4, respec-
tively. In addition, one GPL patient with a damp phlegm
pattern had mild intestinal metaplasia and dysplasia at the
same time. Among GPL patients with Helicobacter pylori
(Hp) infection, there were 9 cases of a damp phlegm pattern
and 1 case of a nondamp phlegm pattern.

In terms of treatment, there were 8, 10, 17, and 5 GPL
patients with a damp phlegm pattern who were not treated,
only treated with Western medicine, only treated with tradi-
tional Chinese medicine, and treated with integrated tradi-
tional and Western medicine, respectively, while there were
2, 5, 5, and 8 GPL patients with a nondamp phlegm pattern
corresponding to the above four treatments.

2.2. Ethics Approval. In the study, all subjects gave written
informed consent before collecting samples and the study
was conducted in accordance with the Declaration of Hel-
sinki. In addition, this study was approved by the Ethics
Committee of Shanghai University of TCM in December
2018.

2.3. Criteria. The diagnostic criteria of GPL were as follows:
When the doctor used the endoscope to examine the

patient’s stomach, a small amount of gastric mucosa was
removed from the suspected lesion sites (such as gastric
antrum, gastric horn, gastric body, or cardia) for histopa-
thological evaluation, which was conducted by two experi-
enced pathologists according to the clinical guidelines of
the “updated Sydney system” [11]. When the pathological
evaluation of gastric mucosa showed atrophy with intestinal
metaplasia or/and dysplasia, the patient was diagnosed with
GPL [12].

The diagnostic criteria of the GPL damp phlegm pattern
according to the “Diagnostics of Traditional Chinese Medi-
cine” [13] were as follows:

GPL patients felt full stomach, even nausea, and/or
vomiting, and their appetite decreases, accompanied by an
unformed stool and greasy tongue coating.

The inclusion criteria were as follows:

(1) Patients that meet the above diagnostic criteria of the
GPL damp phlegm pattern were included
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(2) The healthy controls were not found to have sys-
temic organic diseases in routine physical
examination

(3) The age range is 20–70 years old

(4) No antibiotics or probiotics were taken before
collection

(5) All signed informed consent

The exclusion criteria were as follows:

(1) The patients had other digestive system diseases
except gastritis

(2) Patients that are suffering from major organ diseases
such as nervous system, circulatory system, and
respiratory system were excluded

(3) Patients that are suffering from mental illness were
excluded

(4) The female subjects were pregnant or lactating

(5) There were lesions in oral mucosa

(6) The subjects took antibiotics within half a year or
probiotics as well as foods containing probiotics
within one month before the sample was collected

(7) The subjects who smoke or drink alcohol were
excluded

(8) The body mass index (BMI) exceeds 28 [14]

2.4. Sample Collection and Experimental Methods. We
followed the sample collection and experimental methods
of our previous research [8].

Tongue coating samples were collected in the morning,
and all the subjects need not eat breakfast before being sam-
pled. When collecting, first let the person to be collected gar-
gle with sterile normal saline for 3 times to ensure that the
residue in the mouth is removed as much as possible. Then,
we used sterile sample collection swabs (CY-98000, iClean,
Huachenyang Technology Co. Ltd., CN) to scrape tongue
coating samples five times in the area with thick tongue coat-
ing. Finally, the swab head with a tongue coating sample was
put into a sterile centrifuge tube and stored in an ultralow
temperature refrigerator at −80°C. All tongue coating sam-
ples were scraped by the same person to ensure that the force
used when scraping tongue coating was as consistent as pos-
sible. The patient underwent gastroscopy after the tongue
coating sample was collected.

The Power Soil DNA Isolation Kit (MO BIO Laborato-
ries) was used to extract microbial DNA from tongue coat-
ing samples. The quality and quantity of DNA were
evaluated according to the ratio of 260 nm/280 nm and
260 nm/230 nm. First, the V3-V4 region of the microbial
16S rRNA gene was amplified by combining the adapter
sequence and bar code sequence with common primer pairs
(forward primer, 5′-ACTCCTACGGGAGGCAGCA-3′;
reverse primer, 5′-GGACTACHVGGGTWTCTAAT-3′).
Then, PCR amplification was performed. The initial dena-
turation lasted for 5 minutes at 95°C, followed by lasting
for 1 minute cycles at 95°C (15 cycles), 1 minute at 50°C, 1
minute at 72°C, and finally 7 minutes at 72°C. The above is
the first round of PCR. In this process, PCR products are

Table 1: Summary of demographics and clinical information of the participants.

Demographics and clinical information
Damp phlegm
pattern group

Nondamp phlegm
pattern group

Healthy control
group

Sample number 40 20 20

Ratio of male to female 1 : 0.82 1 : 1.22 1 : 1.86

Average age (year) 43:28 ± 14:73 42:9 ± 16:1 30:95 ± 11:68
Number (percentage) of samples diagnosed for less than 10 years 30 (75.00%) 15 (75.00%) N/A

Number (percentage) of samples diagnosed for 10–20 years 6 (15.00%) 2 (10.00%) N/A

Number (percentage) of samples diagnosed for 20–30 years 2 (5.00%) 1 (5.00%) N/A

Number (percentage) of samples diagnosed for 30–40 years 2 (5.00%) 2 (10.00%) N/A

Number (percentage) of samples only with intestinal metaplasia (mild) 31 (77.50%) 13 (65.00%) N/A

Number (percentage) of samples only with intestinal metaplasia
(moderate)

7 (17.50%) 3 (15.00%) N/A

Number (percentage) of samples only with intestinal metaplasia (severe) 1 (2.50%) 4 (20.00%) N/A

Number (percentage) of samples with intestinal metaplasia (mild) and
dysplasia (mild)

1 (2.50%) 0 (0.00%) N/A

Number (percentage) of samples with Helicobacter pylori infection 9 (22.50%) 1 (5.00%) N/A

Number (percentage) of samples untreated 8 (20.00%) 2 (10.00%) N/A

Number (percentage) of samples only taking Western medicine 10 (25.00%) 5 (25.00%) N/A

Number (percentage) of samples only taking traditional Chinese medicine 17 (42.50%) 5 (25.00%) N/A

Number (percentage) of samples taking Western medicine and traditional
Chinese medicine

5 (12.50%) 8 (40.00%) N/A
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purified by VAHTSTM DNA Clean Beads. Then, the second
round of PCR was performed in the 40μL reaction. The ini-
tial denaturation lasted for half a minute at 98°C, followed by
lasting for 10 second at 98°C (10 cycles), half a minute at
65°C, half a minute at 72°C, and finally 5 minutes at 72°C.
Finally, Quant-iT™ dsDNA HS Reagent was used to quantify
and mix all PCR products. The Illumina Hiseq 2500 plat-
form (2 × 250 paired ends) was used to perform high-
throughput sequencing analysis of microbial rRNA genes
on the purified mixed samples.

3. Statistical Analysis

The operational taxonomic unit (OTU) was analyzed by
Trimmomatic (version 0.33), UCHIME (version 8.1), and
USEARCH (version 10.0). Alpha diversity was calculated
by mothur (version v.1.30). The Shannon index was used
to measure the diversity of microorganisms. Beta diversity

was calculated by QIIME. The unweighted algorithms
named unweighted UniFrac was used to calculate the dis-
tance between samples to obtain the beta value. Microbial
relative abundance between samples was compared using
the Mann–Whitney U test. BugBase algorithm was used to
predict the biological level coverage and biointerpretable
phenotype of functional pathways between the two groups.
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base was used to analyze the differences in metabolic path-
ways of functional genes between the two groups of
microbial communities. The P value was corrected by the
false discovery rate (FDR) of the rank sum test (P < 0:05).

4. Results

4.1. OTU Analysis. Through 16S rRNA gene sequencing of
80 tongue coating samples and subsequent splicing, filtering,
and evaluation of tags, we finally obtained 151 OTUs.
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Figure 1: Rarefaction curve of each sample. The abscissa was the number of randomly selected sequencing strips, and the ordinate was the
number of OTUs obtained by clustering based on the number of sequencing strips. Each curve represented a sample and was marked with
different colors. The figure reflected the rate of emergence of new OTUs (new species) under continuous sampling: within a certain range,
with the increase of the sequencing number, when the curve showed a sharp rise, it meant that a large number of species were found in the
community. When the curve tended to be flat, it indicated that the species in this environment would not increase significantly with the
increase of sequencing quantity.

4 BioMed Research International



4.2. Alpha Diversity Analysis. The rarefaction curve was plot-
ted before analyzing the microbial diversity of tongue coat-
ing. The rarefaction curve was formed by randomly
sampling a certain number of sequences from the samples,
counting the number of species represented by these
sequences, and constructing the sequence number and the
number of species. The curve was used to verify whether
the amount of sequencing data was sufficient to reflect the
species diversity in the samples and indirectly reflect the

richness of species in the samples [15]. As shown in
Figure 1, the curve representing each sample gradually
tended to be gentle, indicating that the sequencing amount
of each sample was sufficient and the data diversity analysis
can be conducted.

In the alpha diversity analysis, the Shannon index was
used to analyze the diversity of the microbiota between the
two groups. The Shannon index was affected by species
abundance and community evenness in samples. Under
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Figure 2: Shannon index curve of each group (E: GPL group, N: healthy control group, C: GPL damp phlegm pattern group, and D: GPL
non-damp phlegm pattern group). The abscissa was the number of sequencing strips randomly extracted from samples, and the ordinate
was the Shannon index. With the increase of sequencing quantity, more species were found. Until the species were saturated, increasing
the number of sampling strips could not find new OTUs (new species). The microbial diversity of tongue coating in the GPL group was
significantly higher than that in the healthy control group. There was no significant difference in microbial diversity of tongue coating
between the GPL damp phlegm pattern group and GPL nondamp phlegm pattern group.

5BioMed Research International



PC
3-

pe
rc

en
t v

ar
ia

tio
n 

ex
pl

ai
ne

d 
7.

90
%

PCoA - PC2 vs PC3

–15

PC2-percent variation explained 8.71%

–10 –5 0 5 10

10

0

–10

–20

E
N

(a)

PC
2-

pe
rc

en
t v

ar
ia

tio
n 

ex
pl

ai
ne

d 
10

.2
8%

PCoA - PC1 vs PC2

PC1-percent variation explained 24.31%

–20 –10 0 10

10

0

–10

C
D

(b)

Figure 3: (a) PCoA diagram of the GPL group compared with the healthy control group (E: GPL group, N: healthy control group). (b)
PCoA diagram of the GPL damp phlegm pattern group compared with the GPL non-damp phlegm pattern group. (C: GPL damp
phlegm pattern group, D: GPL nondamp phlegm pattern group). The dots represented each sample. The abscissa and ordinate were the
two characteristic values that lead to the largest difference between samples, and the main influence degree was expressed in the form of
percentage. (a) The GPL group and healthy control group had a certain degree of differentiation. (b) The GPL damp phlegm pattern
group and GPL non-damp phlegm pattern group had obvious differentiation.
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Figure 4: Continued.

7BioMed Research International



the same species abundance, the greater the evenness of each
species in the community, the greater the diversity of the
community. The larger the Shannon index value, the higher
the species diversity of the samples [16]. According to the
Shannon index (2:73 ± 0:25 vs. 2:59 ± 0:26, P = 0:03), there
was significant difference in microbiota diversity between
the GPL group and healthy control group, with higher diver-
sity being present in the GPL group. However, the Shannon
index (2:71 ± 0:26 vs. 2:77 ± 0:23, P = 0:41) between the

GPL damp phlegm pattern group and GPL nondamp
phlegm pattern group indicated that there was no significant
difference between the two groups (Figure 2).

4.3. Beta Diversity Analysis. In the beta diversity analysis,
principal coordinates analysis (PCoA) was used to analyze
the diversity of the microbiota between the two groups.
PCoA was a dimension reduction sorting method. By
assuming that there was data to measure the difference or
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Figure 4: (a) Column figure of differential microorganism of the GPL group compared with the healthy control group (E: GPL group, N:
healthy control group). (b) Column figure of differential microorganism of the GPL damp phlegm pattern group compared with the GPL
nondamp phlegm pattern group (C: GPL damp phlegm pattern group, D: GPL non-damp phlegm pattern group). The abscissa
represented the species of microorganisms (showing the top 20 species with the lowest P value), the ordinate represented the relative
abundance of species, the columns with different colors represented each sample, and the “∗” on the column represented significant
difference (P < 0:05). (a) The microorganisms named Solobacterium, Rothia, Oribacterium, and Alloprevotella with significant differences
in the relative abundance between the GPL and healthy control groups at the genus level. Compared to healthy controls, the relative
abundances of four microorganisms were significantly higher in the GPL group (P < 0:05). (b) The microorganisms named
Terrisporobacter, Solobacterium, Porphyromonas, Parvimonas, Lactobacillus, Johnsonella, Gemella, Fusibacter, Azoarcus, and
Acidothermus with significant differences in the relative abundance between the GPL damp phlegm pattern group and the GPL
nondamp phlegm pattern group at the genus level. The relative abundances of ten microorganisms were significantly lower in the GPL
damp phlegm pattern group compared to those in the GPL nondamp phlegm pattern group (P < 0:05).
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distance between the samples, a rectangular coordinate sys-
tem could be found to represent the samples as points and
make the square of the Euclidean distance between the
points equal to the original difference data, so as to realize
the quantitative conversion of the qualitative data and
extract the most important elements and structures from
the multidimensional data. Through the principal coordi-
nate analysis, the classification of multiple samples can be
realized to further display the species diversity differences
among the samples.

Figure 3(a) was the PCoA diagram of the GPL group
compared with healthy control group. This figure showed
that the samples (red dots) of the GPL group were relatively
concentrated on the right side, while the samples (blue dots)
of the healthy control group were relatively scattered on the
left side. The two groups had a certain degree of differentia-
tion. This result told that there were some differences in the
microbial diversity of tongue coating between the GPL
group and healthy control group.

Figure 3(b) was the NMDS diagram of the GPL damp
phlegm pattern group compared with the GPL nondamp
phlegm pattern group. From this figure, we can see that
the samples (red dots) of the damp phlegm pattern group
and the samples (blue dots) of the nondamp phlegm pattern
group were concentrated in the lower left and upper right of
the figure, respectively. The two groups had obvious differ-
entiation. The results showed that there were significant dif-
ferences in microbial diversity of tongue coating between the

GPL damp phlegm pattern group and GPL nondamp
phlegm pattern group.

4.4. Microbial Relative Abundance Analysis. In the compari-
son of the differences of microbial community abundance in
the tongue coating samples between GPL patients and
healthy controls, there were significant differences in the
abundance of four kinds of microorganisms at the genus
level. In Figure 4(a) and Table 2, the relative abundances
of Solobacterium, Rothia, Oribacterium, and Alloprevotella
were significantly higher in the GPL group compared to
those in the healthy control group (P < 0:05).

In the comparison of the differences of microbial com-
munity abundance in the tongue coating samples between
GPL damp phlegm pattern group and GPL nondamp
phlegm pattern group, there were significant differences in
the abundance of ten kinds of microorganisms at the genus
level. In Figure 4(b) and Table 3, the relative abundances
of Terrisporobacter, Solobacterium, Porphyromonas, Parvi-
monas, Lactobacillus, Johnsonella, Gemella, Fusibacter,
Azoarcus, and Acidothermus were significantly lower in
the damp phlegm pattern group compared to those in the
nondamp phlegm pattern group (P < 0:05).

It can be seen from the above results that, compared with
that of the healthy control group, the overall level of the rel-
ative abundance of microorganisms named Solobacterium
was increased in the tongue coating of GPL patients, but it
was at a relatively low level in GPL patients with a damp

Table 2: Microorganisms with significant differences in the relative abundance between the GPL and healthy control groups at the genus
level.

Microorganism GPL group Healthy control group P corrected

Solobacterium 3:19E − 03 ± 2:43E − 03 1:36E − 03 ± 1:53E − 03 5:13E − 03
Rothia 7:16E − 02 ± 6:66E − 02 2:93E − 02 ± 2:16E − 02 4:85E − 02
Oribacterium 4:61E − 03 ± 3:58E − 03 2:22E − 03 ± 2:73E − 03 6:47E − 03
Alloprevotella 1:36E − 02 ± 1:89E − 02 2:63E − 03 ± 3:56E − 03 1:08E − 03

Table 3: Microorganisms with significant differences in the relative abundance between the GPL damp phlegm pattern and nondamp
phlegm pattern groups at the genus level.

Microorganism Damp phlegm pattern group Nondamp phlegm pattern group P corrected

Terrisporobacter 1:85E − 05 ± 5:30E − 05 1:16E − 04 ± 1:20E − 04 8:71E − 04
Solobacterium 2:74E − 03 ± 2:36E − 03 4:09E − 03 ± 2:38E − 03 2:47E − 02
Porphyromonas 3:38E − 02 ± 4:95E − 02 6:91E − 02 ± 6:09E − 02 2:24E − 02
Parvimonas 9:25E − 04 ± 1:70E − 03 3:25E − 03 ± 4:07E − 03 1:11E − 02
Lactobacillus 3:51E − 05 ± 1:38E − 04 1:08E − 04 ± 1:73E − 04 5:33E − 03
Johnsonella 8:68E − 05 ± 2:47E − 04 3:61E − 04 ± 6:93E − 04 1:18E − 02
Gemella 6:88E − 04 ± 9:99E − 04 9:85E − 04 ± 5:77E − 04 2:40E − 02
Fusibacter 1:74E − 05 ± 5:49E − 05 4:29E − 05 ± 4:92E − 05 1:03E − 02
Azoarcus 2:65E − 05 ± 8:36E − 05 6:27E − 05 ± 6:58E − 05 1:33E − 02
Acidothermus 6:24E − 05 ± 1:91E − 04 1:02E − 04 ± 7:06E − 05 2:49E − 03
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Figure 5: Continued.
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phlegm pattern. The results suggested that Solobacterium
may be used as a microbial marker to identify the GPL damp
phlegm pattern.

4.5. Microbial Phenotype Prediction. In the prediction and
analysis of microbial phenotype of tongue coating, as shown
in Figure 5 and Tables 4 and 5, in the comparison of pheno-
type “contains mobile elements,” there was no significant
difference between the GPL group and the healthy control
group; however, the relative abundance of microorganisms
in the GPL damp phlegm pattern group was significantly
lower than that in the GPL nondamp phlegm pattern group

Re
la

tiv
e a

bu
nd

an
ce

0.7
Forms_biofilms

0.6

0.5

0.4

0.3

0.2

0.1

E N

Re
la

tiv
e a

bu
nd

an
ce

0.7
Forms_biofilms

0.6

0.5

0.4

0.3

0.2

0.1

C D

(b)

Figure 5: (a) BugBase phenotype “contains mobile elements” prediction diagram (E: GPL group, N: healthy control group). (b) BugBase
phenotype “forms biofilms” prediction diagram (C: GPL damp phlegm pattern group, D: GPL non-damp phlegm pattern group). The
abscissa was the group name, the ordinate was the relative abundance percentage, and the three lines from bottom to top were the lower
quartile, the average, and the upper quartile. (a) In the comparison of phenotype “contains mobile elements,” the relative abundance of
microorganisms in the GPL damp phlegm pattern group was significantly lower than that in the GPL nondamp phlegm pattern group
(P < 0:05). (b) In the comparison of phenotype “forms biofilms,” the relative abundance of microorganisms in the GPL group was
significantly higher than that in the healthy control group (P < 0:05).

Table 4: Comparison of relative abundance of microorganisms
between the GPL and healthy control groups with different
phenotypes.

Phenotype GPL group
Healthy control

group
P corrected

Contains mobile
elements

0:31 ± 0:17 0:31 ± 0:13 0.99

Forms biofilms 0:34 ± 0:14 0:26 ± 0:12 0.02
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(P < 0:05). In the comparison of phenotype “forms bio-
films,” the relative abundance of microorganisms in the
GPL group was significantly higher than that in healthy con-
trol group (P < 0:05), but there was no significant difference
between GPL damp phlegm pattern group and nondamp
phlegm pattern group.

4.6. Microbial Metabolic Function Prediction. In the predic-
tion and analysis of microbial metabolic function of tongue
coating, as shown in Figure 6 and Table 6, the abundance
ratio of metabolic function “infectious diseases: bacterial”
in the GPL group was significantly lower than that in the
healthy control group (P < 0:05). The abundance ratio of
metabolic function “excretory system” and “folding, sorting,
and degradation” in the GPL group was significantly higher
than that in the healthy control group (P < 0:05). However,
the significant difference in the metabolic pathway of the
functional genes of the tongue coating microorganisms
between the GPL damp phlegm pattern group and the
GPL nondamp phlegm pattern group was not found.

5. Discussion

GPL is an important stage in the development of chronic
gastritis into gastric cancer. The damp phlegm pattern is

one of the most common TCM patterns of GPL. The
appearance change of tongue coating is one of the important
criteria for TCM doctors to diagnose the GPL damp phlegm
pattern, but the related research on tongue coating microor-
ganisms of GPL and its patients with damp phlegm pattern
is rarely reported.

In this study, we used 16S rRNA technology to detect
microbial changes in patients’ tongue coating. From the
results of alpha and beta diversity analysis, it can be seen that
there are differences in the microbial diversity of tongue
coating between the GPL group and healthy control group
as well as the GPL damp phlegm pattern group and GPL
nondamp phlegm pattern group. In the further comparison
of the relative abundance of microorganisms in each group,
we found that there were significant differences in the rela-
tive abundance of 4 microorganisms between the GPL group
and the healthy control group, which were Solobacterium,
Rothia, Oribacterium, and Alloprevotella. The relative abun-
dance of these four microorganisms in the GPL group was
significantly higher than that in the healthy control group.
There are significant differences in the relative abundance
of 10 microorganisms between the GPL damp phlegm pat-
tern group and GPL nondamp phlegm pattern group,
including Terrisporobacter, Solobacterium, Porphyromonas,
Parvimonas, Lactobacillus, Johnsonella, Gemella, Fusibacter,

Table 5: Comparison of relative abundance of microorganisms between the GPL damp phlegm pattern and nondamp phlegm pattern
groups with different phenotypes.

Phenotype Damp phlegm pattern group Nondamp phlegm pattern group P corrected

Contains mobile elements 0:28 ± 0:18 0:37 ± 0:14 0.04

Forms biofilms 0:33 ± 0:16 0:36 ± 0:10 0.39

E
N

–0.041.50.0 –0.03 –0.02 –0.01

Difference between proportions (%)

95% confidence intervals

Mean proportions (%)

Infectious diseases: Bacterial
Excretory system

Folding, sorting and degradation

8.01e-03
1.12e-02
1.60e-02
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Figure 6: KEGG metabolic pathway difference analysis diagram (E: GPL group, N: healthy control group). The left part showed the
abundance ratio of different metabolic functions in the two groups of tongue coating microorganisms, the middle figure showed the
difference ratio of functional abundance within the 95% confidence interval, and the rightmost value was the P value. The abundance
ratio of metabolic function “infectious diseases: bacterial” in the GPL group was significantly lower than that in the healthy control
group (P < 0:05). The abundance ratio of the metabolic function “excretory system” and “folding, sorting, and degradation” in the GPL
group was significantly higher than that in the healthy control group (P < 0:05).

Table 6: Comparison of abundance ratio (%) between the GPL and healthy control groups with different metabolic functions.

Metabolic function GPL group Healthy control group P corrected

Infectious diseases: bacterial 0:41 ± 0:02 0:43 ± 0:02 8:01E − 03
Excretory system 0:02 ± 0:01 0:01 ± 0:05E − 02 1:12E − 02
Folding, sorting, and degradation 1:48 ± 0:04 1:45 ± 0:02 1:60E − 02
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Azoarcus, and Acidothermus. The relative abundance of
these 10 microorganisms in the GPL damp phlegm pattern
group was significantly lower than that in the GPL nondamp
phlegm pattern group.

Among these differential microorganisms, Solobacter-
ium deserves our attention. Its relative abundance in the
tongue coating of GPL patients increased, and its relative
abundance in GPL damp phlegm pattern patients was signif-
icantly higher than that in GPL nondamp phlegm pattern
patients. Studies have shown that Solobacterium is a
Gram-positive, non-spore-forming obligate anaerobic bacte-
rium from human feces [17]. This bacterium can cause hal-
itosis and affect the development of digestive tract cancer,
and the malodor causing cancer is hydrogen sulfide and
acetaldehyde produced by Solobacterium [18]. Among the
other three microorganisms whose relative abundance in
the GPL group is significantly higher than that in the healthy
control group, Rothia is a member of Gram-positive cocci of
the Micrococcus family, which is considered to be an oppor-
tunistic pathogen, mainly affecting people with low immune
function [19]. However, there is no report showing that this
bacterium is found in patients with chronic gastritis or gas-
tric cancer. Oribacterium has been found in saliva samples
from patients with reflux esophagitis that its abundance is
higher than that of healthy people [20]. Alloprevotella is also
rarely found in patients with chronic gastritis or gastric can-
cer, but it was found to be increased in stool samples of
ulcerative colitis or canceration [21].

Among the other 9 microorganisms with different rela-
tive abundance expression found in the comparison between
the GPL damp phlegm pattern group and nondamp phlegm
pattern group, Terrisporobacter has not been found in
patients with stomach disease, but its relative abundance is
different from that of healthy people in the feces of irritable
bowel syndrome patients [22]. Porphyromonas, as an anaer-
obic bacterium, not only has local effects on its natural oral
cavity but also has systemic tumorigenic effects, which may
be related to GPL. Porphyromonas gingivalis can promote
distant metastasis of cancer cells and resistance to anticancer
drugs. This mechanism is mainly through affecting the gene
expression of defensins, peptidyl arginine deaminase, and
noncanonical activation of β-catenin. In addition, the
microorganism can also convert ethanol into acetaldehyde,
which is a carcinogenic intermediate [23]. Parvimonas, as
an aerobic bacterium, is also related to the occurrence of
tumors [24]. A study claimed that the presence of this
microorganism in gastric mucosa could be used as one of
the biomarkers to distinguish superficial gastritis from gas-
tric cancer [25]. Lactobacillus has been confirmed in many
studies that its relative abundance will increase in the devel-
opment of gastric cancer [26]. Johnsonella was found in the
oral cavity of patients with gastric internal metaplasia, and
its enrichment degree was significantly higher than that of
healthy people, which was related to the regulation of
inflammation-related pathways [27]. Gemella has a high
degree of centrality in the progression of precancerous
lesions of gastric cancer [28]. Fusibacter, Azoarcus, and
Acidothermus have not been reported in the study of diges-
tive system diseases.

In the prediction and analysis of the microbial pheno-
type and metabolic function, we found that there was sig-
nificant difference between the GPL group and the healthy
control group in terms of phenotype “forms biofilms” and
there was significant difference between the GPL damp
phlegm pattern group and the GPL nondamp phlegm pat-
tern group in terms of phenotype “contains mobile ele-
ments.” In addition, there were significant differences
between the GPL damp phlegm pattern group and the
GPL nondamp phlegm pattern group in the abundance
ratio of metabolic function “infectious diseases: bacterial,”
“excretory system,” and “folding, sorting, and degrada-
tion.” Although there is no relevant research on gastric
diseases of the microbial phenotype and metabolic func-
tion which we found, our research results also provide
some evidence for the microbial characteristics of GPL
and its tongue coating of dampness syndrome and will
guide us to further explore.

However, there are still some deficiencies in our research
results. A total of 10 cases of Hp infection were distributed in
the GPL damp phlegm pattern group and nondamp phlegm
pattern group. In the current study, whether Hp affects oral
microbiota is still controversial [29]. And we previously ana-
lyzed the differential microorganisms in the tongue coating
of 60 patients with GPL in this study compared with 15
healthy people. The inclusion of these patients with Hp
infection does not affect our final screening of differential
microorganisms [8]. Even so, in future research, we will still
carefully consider the factors of Hp infection. In addition, we
will also expand the number of samples and use cohort
research methods, metagenomics methods, and multiomics
methods to further explore the formation mechanism of
GPL and its damp phlegm pattern.
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Predicting the polyproline type II (PPII) helix structure is crucial important in many research areas, such as the protein folding
mechanisms, the drug targets, and the protein functions. However, many existing PPII helix prediction algorithms encode the
protein sequence information in a single way, which causes the insufficient learning of protein sequence feature information. To
improve the protein sequence encoding performance, this paper proposes a BERT-based PPII helix structure prediction algorithm
(BERT-PPII), which learns the protein sequence information based on the BERT model. The BERT model’s CLS vector can fairly
fuse sample’s each amino acid residue information. Thus, we utilize the CLS vector as the global feature to represent the sample’s
global contextual information. As the interactions among the protein chains’ local amino acid residues have an important influence
on the formation of PPII helix, we utilize the CNN to extract local amino acid residues’ features which can further enhance the
information expression of protein sequence samples. In this paper, we fuse the CLS vectors with CNN local features to improve the
performance of predicting PPII structure. Compared to the state-of-the-art PPIIPRED method, the experimental results on the
unbalanced dataset show that the proposed method improves the accuracy value by 1% on the strict dataset and 2% on the less
strict dataset. Correspondingly, the results on the balanced dataset show that the AUCs of the proposed method are 0.826 on the
strict dataset and 0.785 on less strict datasets, respectively. For the independent test set, the proposed method has the AUC value of
0.827 on the strict dataset and 0.783 on the less strict dataset. The above experimental results have proved that the proposed
BERT-PPII method can achieve a superior performance of predicting the PPII helix.

1. Introduction

Cowan et al. firstly discovered a special protein secondary
structure the polyproline II (PPII) helix [1] which differs from
the conventional protein secondary structure such as α-helix,
β-pleated sheet, and random coil. The PPII helix consists of
almost 3~8 amino acid residues, and it occupies only about
2% in the protein. The PPII helix has special biological charac-
teristics and plays a crucial role in biochemical fields such as
signal transduction, cell movement, and immune response
[2, 3]. There are many interactions between the PPII helix
and proteins or nucleic acids, such as SH3, WW, EVH1,
GYF, UEV, and inhibitor proteins, which interact with the
PPII helix [4–6]. Meanwhile, the PPII helix relates to many

difficult diseases, such as the Alzheimer’s disease and Parkin-
son’s disease [7, 8]. Thus, it is very important to correctly pre-
dict the PPII helix. At present, the prediction of conventional
secondary structures has made great achievements. But, a few
researchers focused on the prediction of PPII helix. Further-
more, the PPII helix is very rare, which makes it become diffi-
cult to predict the PPII helix.

Anfinasen et al. [9] proposed the famous conclusion that
protein sequence determines its spatial structure on the basis
of experiments in 1961. Similarly, PPII structure is the same.
The protein structure determination methods can be divided
into two categories: traditional research methods of protein
structure analysis and computational biology prediction
methods. The traditional research methods use the X-ray
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crystal diffraction technology and the nuclear magnetic res-
onance imaging technology to predict the protein structure.
It is hard for human to recognize, and the determination
time is long. To solve the above problem, researchers pro-
posed to predict PPII helices using protein sequence data
in the bioinformatics field. However, the sequence based
prediction models manually extract the features, and it usu-
ally leads to an inferior prediction result. Fortunately, the
deep learning networks have powerful built-in feature
extractors and have been widely used to extract protein fea-
ture information [10–12].

Recently, the researchers proposed to further improve the
proteins features by using the natural language processing
(NLP) technology. Proteins and languages are similar in con-
cept [13], and Ofer et al. have descripted the relationship
among the natural language processing, machine learning,
and protein sequences. Ofer considers the protein sequence
as an unknown language. Correspondingly, the amino acid is
a word in biological vocabulary, and the biological sequence
(such as DNA sequence and protein sequence) is text informa-
tion. More and more natural language processing (NLP) tech-
niques have been applied to solve the sequence prediction
problems in bioinformatics [14–17].

The Bidirectional Encoder Representation from Trans-
formers (BERT) [18] is a simple but powerful language
model. We can pretrain BERT with the natural language
corpus and use the trained BERT to transfer learning the
biological sequences. Ho et al. [19] proposed the FAD-
BERT model to predict the flavin adenine dinucleotide
(FAD) binding sites, which can overcome the problem of
insufficient feature learning caused by the shortage of train-
ing data. Charoenkwan et al. [20] used BERT4Bitter model
to predict bitter peptides without system designing and fea-
ture coding selection. BERT4Bitter model automatically
generate feature descriptors based on the original protein
sequence. Li et al. [21] used the pretrained BERT model
to learn both the protein sequence features and the amino
acid hydrophilic features. As a result, it can improve the
performance of predicting the missense mutations in pro-
tein sequences. To improve the encoding performance, Ali
Shah et al. [22] utilized the pretrained BERT language
model to extract the protein sequences features, which
can effectively distinguish the three kinds of glucose trans-
porter families. Le et al. [23] regarded DNA sequence as a
natural language sentence and used BERT model to repre-
sent the DNA sequence information. It can capture the
information which is equivalent to human language.
BERT-m7G model [24] used the BERT model to convert
RNA sequence information into feature matrix and select
the optimal feature based on an elastic network. Finally,
BERT-m7G model can effectively improve the prediction
performance of RNA N7-methylguanosine.

As a special protein structure, many methods have been
proposed to predict the PPII helix. Siermala et al. [25] firstly
used the feed-forward neural network and back propagation
algorithms to predict PPII helix structure. The prediction
accuracy in reaches 75% on the datasets which has been
eliminated more than 65% redundant sequences. Wang
et al. [26] proposed to predict the PPII helix based on the

support vector machine, and the prediction accuracy
reached 70% on the dataset that further reduced homolo-
gous protein sequences. Lu et al. improved the artificial neu-
ral network [27] by jointly using the adjacent amino acid
residue information and the one-hot encoding. Thus, Lu
simultaneously use the improved artificial neural network,
the support vector machine (SVM) [28], and the genetic
neural network [29] to predict the PPII helix. O’Brien et al.
[30] predict the PPII helix structure based on bidirectional
recurrent neural network (BRNN). Its takes into account
that the formation of PPII helix is affected by the remote res-
idues, and other sequences are compared with the sequence
to obtain a position-specific scoring matrix (PSSM) contain-
ing evolutionary information as a feature representation.

The existing PPII helix structure prediction methods
usually adopt one kind of protein sequence code and only
use the local or global protein sequence features. This will
lead to an inferior performance. To solve the above prob-
lems, this paper uses the pretrained BERT model to improve
the performance of protein sequences code. Each protein
sequence is regarded as a sentence, and each amino acid is
regarded as a word. This paper predicts the PPII helix struc-
ture by jointly using the local and global features. The flow-
chart of this algorithm is shown in Figure 1.

The proposed algorithm mainly includes three steps:
learning global features, learning local features, and feature
fusion.

(1) In the learning global features, we segment the pro-
tein amino acid sequences into many datasets with different
sizes of sliding windows [34]. To further get the input of the
BERT model, we separate each protein sequence sample into
the amino acid residue by a space. After encoded by the
BERT embedding layer, each amino acid residue is repre-
sented as a 768 dimensional context embedding vector.
Then, each protein sequence sample is represented as n (n
is window size) 768 dimensional vectors and 1 CLS vector.
(2) In the learning local features, we use the multichannel
CNN to extract n embedding vectors with 768 dimensions.
The sizes of the multichannel CNN kernels are 3, 4, and 5,
respectively. (3) In the feature fusion, we fuse the global
CLS vector with the local features output by the multichan-
nel CNN. Then, we use the softmax function to classify the
fusion features.

In this paper, the BERT-PPII algorithm has the following
innovations:

(i) The proposed method automatically extracts the
feature extraction using protein primary sequences.
This process has abandoned the system designing
process and the feature selection procedure. Thus,
it can avoid to manually extract the feature from
raw amino acid sequences

(ii) We use the pretrained BERT model to improve the
protein sequence encoding, and features to enhance
the ability of feature representation

(iii) We design the comparative experiments on both the
Strict_data dataset and the NonStrict_data dataset.

2 BioMed Research International



The final experimental results show that the pro-
posed BERT-based model is better than the existing
algorithms

2. Materials and Methods

2.1. Problem Description. The PPII helix is a local spatial
conformation between amino acid residues in the protein
polypeptide chain. It usually consists of 3~8 amino acids.
Its prediction task maps the protein sequence composed of
20 amino acids to the corresponding the PPII helix structure
sequence. As shown in Figure 2, FQRP, the partial amino
acid residues of protein sequence, is mapped to PPII helix
structure. The existing PPII secondary structure prediction
algorithms adopt only one kind of the protein encoding
method, which causes the problem of insufficient learning
features. The PPII helix is determined by both the local
and the long-range among the amino acid residues in the
protein chain. If the prediction process only uses local or
global features, it will ignore the important PPII helix forma-
tion information and decrease the prediction accuracy.

To solve the problem of encoding protein sequence, this
paper employs the BERT to improve the code of amino
acids. Moreover, the CLS feature of the protein sequence
obtained by BERT and the local feature of the protein

sequence obtained by multichannel CNN are further inte-
grated to effectively improve the expression ability of sample
features. Our model mainly includes BERT embedding
encoding and global feature extraction, local feature extrac-
tion by multichannel convolution, and multifeature fusion,
which are described in Sections 2.2, 2.3, and 2.4, respectively.

2.2. Bert Embedding Encoding and Global Feature
Extraction. More and more natural language processing
(NLP) techniques have been employed to learn the feature
descriptors of protein sequences, DNA sequences, and
RNA sequences [14–17]. The BERT embedding layer can
obtain semantic and syntactic information from the context
of a sentence or paragraph, which enables to learn better fea-
tures. Recently, most PPII helix structure prediction algo-
rithms usually adopt only one kind of protein sequence
feature encoding method. In order to learn the better fea-
tures, the pretrained BERT model is used to improve the
of the PPII helix structure prediction performance. We
break this limitation by pretraining the model based on bidi-
rectional encoder representation from transformers (BERT).
The BERT model uses the multiattention mechanism to
obtain the CLS feature vector. The CLS feature vector can
fairly integrate the information of each amino acid residue
in the sample. Finally, the CLS feature is considered as the
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Figure 1: The flowchart of BERT-PPII model including input protein sequence samples, BERT embedding encoding and global feature
extraction, local feature extraction by multichannel convolution, multifeature fusion, and prediction. It is assumed that the sliding
window size is 13 and the amino acid residues in the sample are separated by space in the figure.
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global feature. The BERT model handles the migration task’s
input samples by the position encoding, self-attention mech-
anism, and residual connection.

Position encoding: Generally, the same characters with
different locations are assigned the same feature description.
Thus, they cannot capture the location information of the
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Figure 2: Some primary sequences of protein sequence (PDB id: 7ODCA) are assigned secondary structure conformations by DSSP
algorithm. This graph is derived from the online PPII and secondary structure assignment database developed by Chebrek et al. [35]. In
the graph, a letter represents a specific conformation, and its color relates to different secondary structure categories.
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Figure 4: (a) Positive sample; (b) negative sample.

4 BioMed Research International



input text. To solve the above problem, the input samples
are encoded according to the position of the character, as
shown in Equation (1). PE denotes the position code of each
input character. pos denotes the position of the character in
the sequence. dmodel denotes the dimension of WQðxÞ.
When the same characters appear in the input amino acid
residues, they will have different feature codes obtained by
the self-attentive mechanism due to the different position
codes.

PE pos, jð Þ =
sin

pos

10000j/dmodel

� �
, j = 2i

cos
pos

10000j−1/dmodel

� �
, j = 2i + 1

8>>><
>>>:

: ð1Þ

After that, the protein sequence sample X = ðx1, x2,
x3,⋯, xnÞ will be processed by word embedding query
(WQ) and position coding (PE), as shown in Equation
(2). Xinput represents the input vector of BERT:

Xinput =WQ Xð Þ + PE: ð2Þ

Self-attention mechanism: This paper utilizes the self-
attention mechanism to capture the relationship among
the amino acid residues of the input sample sequence,
as shown in Equation (3). As a result, each character contains
the information of the other characters, where Q = XinputW

Q,

K = XinputW
K , V = XinputW

V . Q, V , and K are the query vec-

tor, value vector, and key vector, respectively. WQ, WK , and
WV are the weight matrices of Q, K , and V , respectively.

Attention Q, K , Vð Þ = softmax
QKTffiffiffiffiffi
dk

p
 !

V : ð3Þ

Residual connection: To avoid the problems of gradient
disappearance and explosion during the training process,

we establish the residual connection for the output of the
self-attentive mechanism [36], as shown in Equation (4).

Xoutput = Xinput + Attention Q, K , Vð Þ: ð4Þ

During training the model, we normalize the data [37,
38] as shown in Equation (5). Thus, the algorithm can
quickly and smoothly converge to the optimal solution. μ is
the mean value of Xoutput and σ is the standard deviation of
Xoutput. When σ becomes 0, ε can avoid the denominator
being 0. The training parameters α and β can compensate
the information lost during the normalization process:

LayerStandary = α
Xoutput − μ

σ + ε
+ β: ð5Þ

To obtain the amino acid residues, we put the standard-
ized features into the fully connected neural network
followed by a residual connection and a standardization
procedure.

To ensure the transformer’s self-attention mechanism
[39] has excellent representation ability, BERT model
employs two pretraining tasks [18]: the “masked language
model” (MLM) and the “next sentence prediction” (NSP).
As a result, it can provide a better generalization result for
the downstream tasks.

2.3. Local Feature Extraction by Multichannel Convolution.
The interaction among the local amino acid residues in the
protein chain has an important influence on the formation
of the PPII helix. The protein sequences’ features can be rep-
resented as matrices, and the local spatial correlations exist
among the amino acids’ features in the sequences. Moreover,
the convolutional neural networks (CNNs) can handle the
spatial correlation among the dense data in the network. In
this paper, to obtain the relationships among the local amino
acid residues, we further use the CNN to learn the feature of
Bert’s output vectors. The convolution neural networks cap-
ture the important local information of the protein sequence
sample’s features. Correspondingly, the pooling procedure
learns the important local features. Thereafter, we obtain

Table 1: The dataset under strict definition (Strict_data).

Dataset Number of sequence Number of PPII Number of non-PPII Total

Training set 6561 36622 1494487 1531109

Test set 1640 9068 382819 391887

Independent test set 920 4855 201537 206392

Table 2: The dataset under less strict definition (NonStrict_data).

Dataset Number of sequence Number of PPII Number of non-PPII Total

Training set 7121 64490 1554142 1618432

Test set 1781 15880 379276 395156

Independent test set 1001 8639 208785 217424
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the final vector η by splicing the output vectors of the CNN
layers.

In this paper, we design the CNN models with convolu-
tional kernels of 3, 4, and 5, respectively (Section 3.5). As
shown in Figure 3, the sample’s local feature learning pro-
cess mainly consists of the convolution operation and the
pooling operation.

Convolution operation: We use the convolution opera-
tion to process the BERT layer’s output matrix B = fH1,
H2,⋯Hng. Assuming the convolution kernel’s size is m,
each time the convolution is computed based on m word
vectors. Generally, we slide the convolution kernel 1 step
from top to bottom and divide B into fH1:m,H2:m+1,⋯,
Hn−m+1:ng. Where Hi:j represents the concatenated vectors
of fHi ⋯Hjg. The vector C = fc1, c2,⋯, cn−m+1g and the
value ci is obtained by convolving Hi:i+m−1, as shown in
Equation (6):

c1 =WTHi:i+m−1 + b: ð6Þ

We initialize the convolution kernel’s parameter (W)
as a random uniform distribution. b is the bias variable.

Pooling operation: After the convolution operation, we
perform a pooling operation on the text feature mapping
vector C = fc1, c2,⋯, cn−m+1g. For the results obtained with
q convolution kernels, we use a global maximum pooling,
as shown in Equation (7).

Ĉm =max Cm1, Cm2,⋯, Cmq

� �
: ð7Þ

We concentrate the features extracted with the kernel
sizes m = ð3, 4, 5Þ as the local feature vector η, as shown in
Equation (8):

η = Ĉ3, Ĉ4, Ĉ5
� �

: ð8Þ

2.4. Multifeature Fusion. A survey about the PPII helix struc-
tures prediction shows that most algorithms use the tradi-
tional features and manually select features to combine.
Most research works only adopt the local features [26–29]
or the global features [30–33], which decreases the accuracy
of PPII helix structure prediction. Both the local and long-
range interactions among amino acid residues determine
the PPII helix. Therefore, the local features and global fea-
tures are equally important in prediction the PPII helix. In
this paper, we propose to fuse the protein sequences’ local
features η and the global features CLS, and the joint feature
in Equation (9) is used to predict the PPII helix structure:

M = concat CLS, ηð Þ: ð9Þ

The global feature CLS is obtained by the BERT model,
and the local feature η is obtained by the multichannel
CNN. We utilize the concat() algorithm to generate the final
feature vector M = fCLS, ηg. In this paper, we use the fusion
feature M to predict the PPII helix structure.

3. Results and Discussion

3.1. Sample and Dataset. In this paper, we design the com-
parative experiments on the PPIIPRED dataset [30]. The
filtering rules which define the PPII helix dataset [41]
include two kinds of definitions: the “strict” and “less strict.”
The filter criteria are percentage identity ≤30%, resolution
≤2.5, and R-value ≤0.25. The strict criteria include the trans
filtering, the dihedral filtering, and the regularization
filtering.

The trans filtering:

−145 < αC − 70: ð10Þ
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Figure 5: The amino acid composition of PPII and Non-PPII.
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The dihedral filtering:

−180 <Ψ < −160, ð11Þ

90 <Ψ < 180, ð12Þ

−105 <Φ < −45: ð13Þ

The regularization filtering:

∑n−1
k=1dk,k+1

n
, ð14Þ

dk−1,k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψi‐1 −Ψið Þ2 + Φi −Φi+1ð Þ2

q
: ð15Þ

Compared with the strict definition, the less strict defini-
tion removes the requirement: −105 <Φ < −45. Based on the
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Figure 6: (a) The ROC of BERT-PPII model with different sliding window sizes on the balanced Strict_data test set, WS_9 means that the
number of amino acid residues is 9. (b) The ROC plots of BERT-PPII model with different sliding window sizes on the balanced NonStrict_
data test set.
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above the definitions of the strict and less strict, we obtained
the strict and less strict PPII helix structure datasets.

We used the sliding window technique [34] to select
sequences as input samples. Assuming a protein sequence
of length L, we can obtain 2m + 1 protein sequence fragment
to represent a single amino acid sample. So, the number of
samples is L. Given the sliding window size is 13, the positive
samples (PPII helix structure) and negative samples (non-
PPII helix structure) are shown as in Figures 4(a) and 4(b).

For the problem of protein secondary structure identifi-
cation, we predict the PPII helix based on sample center res-
idues, since the prediction results relate to the information of
the neighbor amino acid residues. The datasets processed by
the sliding window are divided into training sets, validation
sets, and test sets. Table 1 is the dataset under strict defini-
tion (Strict_data), and Table 2 is the dataset under less strict
definition (NonStrict_data).

To solve the serious imbalance problem between positive
and negative samples, we employ the under-sampling
method to randomly select the same number of negative

samples as the positive samples in the original training data.
We utilize both the negative samples and the positive sam-
ples as the training data. Furthermore, the training data is
divided into training set and validation set, and their ratio
is 4 : 1. The training set, the validation set, and the test set
form a balanced dataset.

3.2. Analysis of Amino Acid Composition. We investigate the
PPII helix structure and the non-PPII helix structure
according to the relative frequency of the amino acid resi-
dues located in the center position of the PPII helix. In this
study, the relative frequency of the various amino acids in
the dataset is shown in Figure 5. It shows that A, E, L,
and P are the amino acids in the PPII helical structure. A,
G, L, and V are the main amino acids in the non-PPII helix
structure. Compared with the non-PPII helix structure,
amino acid P appears more frequently. Except the Proline
(P), the other amino acids have no obvious characteristic
in these two kinds of structure. The relative frequencies of
the P in the middle of the PPII helix structure is about five
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Figure 7: The ROC plots of the Multichannel CNN model with different integration of n-gram channels on the balanced Strict_data test set.

Table 3: The Comparative experiments of the BERT-PPII with different n-gram channel combinations on a balanced Strict_data test set.

Dataset Window size Sens Spec MCC ACC

Stirct_data

3_kernel 0.636 0.846 0.491 0.741

3_4_kernel 0.644 0.847 0.501 0.745

3_4_5_kernel 0.661 0.841 0.510 0.751

3_4_5_6_kernel 0.610 0.871 0.498 0.741

3_4_5_6_7_kernel 0.640 0.854 0.510 0.747
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times more than that in the middle of the non-PPII helix
structure. Therefore, P can distinguish the PPII helix struc-
ture and the non-PPII helix structure effectively. Although
P accounts for a large proportion, not all PPII helical struc-
tures contain P.

3.3. Evaluation Criteria. In this study, we adopt four com-
monly used metrics including sensitivity (Sens), specificity
(Spec), accuracy (ACC) and Matthews correlation coefficient

(MCC) to evaluate the performance. Their definitions are
shown as follows:

Sensitivity =
TP

TP + FN
, ð16Þ

Specif icity =
TN

TN + FP
, ð17Þ
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Figure 8: (a) The ROC plot of the BRET-PPII model on the Strict independent test set; (b) The ROC plot of the BERT-PPII model on the
NonStrict independent test set. TPR represents the rate that is correctly judged to be positive, and FPR represents the rate that is wrongly
judged to be positive.
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Accuracy =
TP + TN

TP + FP + TN + FN
, ð18Þ

MCC =
TP ∗ TN − FP ∗ FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp :

ð19Þ
Sensitivity represents the proportion of the positive sam-

ples which are correctly predicted. Specificity represents the
proportion of the negative samples which are correctly pre-
dicted. ACC indicates the proportion of correctly classified
samples; MCC represents the correlation coefficient between
the observed category and the predicted binary classification.
Its range is [−1,1]. We will get a better prediction result,
when the MCC value is close to 1. TP represents the true
positive. It is the number of positive samples correctly pre-
dicted. TF represents the true negative. It is the number of

negative samples correctly predicted. FP represents the false
positive. It is the number of negative samples incorrectly
predicted. FN represents the false negative. It is the number
of positive samples incorrectly predicted. AUC is the area
under the ROC curve. We evaluate the generalization perfor-
mance of the algorithm model based on AUC, and the value
of a robust model is close to 1.

3.4. Optimal Sliding Window. To obtain the optimal win-
dow, we set up comparison experiments to measure the pre-
diction performance with different windows. In this
experiment, the step length is 2, and its value range is [11,
21]. The ROC of BERT-PPII model on the balanced Strict_
data dataset and the NonStrict_data dataset is shown in
Figures 6(a) and 6(b), respectively. Figure 6(a) shows that
the model has the best performance with the window size
of [15, 17] and the AUC is 0.827. Figure 6(b) shows that
the model has the best performance with the window size
of [13, 19] and the AUC is 0.783. Usually, the training time
increases when the window size becomes. As a result, we set
the window size as 15.

3.5. The Optimal Convolutional Kernel Combinations. To
obtain the optimal channel number, we design the compar-
ative methods combined with different n-gram channels as
follows:

(1) 3_kernel: contains 3-gram CNN channels

(2) 3_4_kernel: a combination of 3-gram and 4-gram
CNN channels

(3) 3_4_5_kernel: a combination of 3-gram, 4-gram, and
5-gram CNN channels

(4) 3_4_5_6_kernel: a combination of 3-gram, 4-gram,
5-gram, and 6-gram CNN channels

(5) 3_4_5_6_7_kernel:a combination of 3-gram, 4-
gram, 5-gram, 6-gram, and 7-gram CNN channels

We test these five methods on the balanced Strict_data
dataset. The ROC curves are shown in Figure 7, and other
performances are shown in Table 3. The experimental
results show that the 3_4_5_kernel method has the best per-
formance, in the range of [0.2,0.7] of FPR and the range of
[0.7,1.0] of TPR, which is the most meaningful part for per-
formance comparison. We use the 3_4_5_kernel method in
the following experiments.

3.6. Predictive Performance Experiments on an Independent
Test Set. To further validate the generalization performance,
we conduct the experiments on the independent Strict_data
dataset and Nonstrict_data dataset. The ROC curves are
shown in Figures 8(a) and 8(b). The AUC value of the
BERT-PPII model is 0.827 on the independent Strict_data
dataset, and the value is 0.783 on the independent Non-
Strict_data dataset.

3.7. The Comparative Experiments. In this paper, we com-
pare BERT-PPII method with the following methods. To
predict PPII helices on a balanced dataset, Siermala et al.

Table 4: The comparative experiments on balanced Strict_data
dataset.

Methods Sens Spec MCC ACC AUC

ANN [25] 0.749 0.736 0.485 0.742 0.742

SVM [26] 0.673 0.841 0.493 0.744 0.822

RF 0.738 0.841 0.554 0.776 0.776

KNN 0.558 0.739 0.302 0.648 0.648

FAD-BERT [19] 0.660 0.821 0.492 0.741 0.752

EECL [10] 0.765 0.776 0.540 0.770 0.770

Adapt_Kcr [40] 0.792 0.767 0.559 0.779 0.855

BERT4Bitter [20] 0.661 0.825 0.493 0.744 0.762

OUR 0.661 0.838 0.198 0.834 0.826

Table 5: The comparative experiments on balanced NonStrict_
data dataset.

Methods Sens Spec MCC ACC AUC

ANN [25] 0.701 0.734 0.435 0.717 0.742

SVM [26] 0.629 0.789 0.423 0.709 0.822

RF 0.681 0.810 0.490 0.746 0.746

KNN 0.636 0.639 0.275 0.637 0.648

FAD-BERT [19] 0.581 0.797 0.411 0.732 0.733

EECL [10] 0.748 0.724 0.472 0.736 0.736

Adapt_Kcr [40] 0.751 0.736 0.487 0.744 0.823

BERT4Bitter [20] 0.590 0.798 0.397 0.695 0.743

OUR 0.559 0.833 0.219 0.824 0.826

Table 6: The comparative experiments with on unbalanced Strict_
data dataset and NonStrict_data dataset.

Dataset Methods Sens Spec MCC ACC

Strict_data
PPIIPRED 0.38 0.98 0.37 0.971

OUR 0.30 0.99 0.44 0.980

NonStrict_data
PPIIPRED 0.43 0.97 0.38 0.949

OUR 0.30 0.99 0.43 0.966
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[25] employs an artificial neural network (ANN), and Wang
et al. [26] adopt a support vector machine (SVM). In con-
trast, O’Brien KT [30] proposed the PPIIPRED model, and
it predicts PPII helix using a bidirectional recurrent neural
network (BRNN) on an unbalanced dataset. We conduct
the comparative experiments on both the balanced and

unbalanced datasets, respectively. The experimental results
are shown in Sections 3.7.1 and 3.7.2, respectively.

3.7.1. The Comparative Experiments on a Balanced Dataset.
This section conducts the comparative experiments on the
balanced dataset and the comparative methods including
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Figure 9: (a) Performance comparison between our algorithm and PPIIPRED on (a) Strict_data dataset and (b) NonStrict_data dataset,
respectively.
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ANN [25], SVM [26], random forest (RF), K-Nearest Neigh-
bor (KNN), FAD-BERT [19], EECL [10], Adapt_Kcr [40],
and BERT4Bitter [20]. All comparative methods use one-
hot to encode the amino acid residues. The evaluation
metrics are shown in Tables 4 and 5. On the dataset Strict
dataset, compared to the best performing support vector
machine algorithm (SVM), the BERT-PPII model improved
the ACC value by 9.0% and the AUC by 0.4%, as shown in
Table 4. On the NonStrict dataset, compared to the best
performing support vector machine (SVM), the BERT-PPII
model improved the ACC value by 11.5% and the AUC by
0.4%, as shown in Table 5. The BERT-PPII model has the
best performance in predicting the PPII helix.

3.7.2. The Comparative Experiments on an Unbalanced
Dataset. PPIIPRED model [30] uses a bidirectional recurrent
neural network (BRNN) to predict the PPII helix, and we
employ PPIIPRED model as the comparative method on
the unbalanced dataset. We divide the unbalanced dataset
(Strict_data, NonStrict_data) into training set, validation
set and test set, and their ratio is 3 : 1 : 1. The experimental
result is shown in Table 6 and Figure 9, and its shows that
our model outperforms PPIIPRED in predicting the PPII
helix. On the Strict_data dataset, the Spec, MCC, and ACC
values of the proposed method are 0.99, 0.44, and 0.980,
respectively. Compared to the PPIIPRED method, the values
of Spec, MCC, and ACC have been improved about 1%, 7%,
and 1%, respectively. On the NonStrict_data dataset, the
Spec, MCC, and ACC values of the proposed method are
0.99, 0.43, and 0.966, respectively. Compared to the PPII
PRED method, the values of Spec, MCC, and ACC have
been improved about 2%, 5% and 1.7%, respectively. The
above experiments show that our method can achieve the
best performance in predicting the PPII helix structure.

4. Conclusions

The PPII helix plays a very important role in many biochem-
ical processes, and it is necessary to quickly and accurately
predict the PPII helix. However, it is a time-consuming
and expensive work to identify PPII helix using traditional
physical and chemical experimental methods. In this study,
to some extent, protein sequences also have their own
arrangement motifs, which constitute the structure of pro-
teins in space and function in organisms. Due to the protein
sequences are similar to the natural language, we can apply
the natural language technology to the area of protein
sequences. We propose a new model BERT-PPII to identify
the PPII helix. The BERT-based BERT-PPII model automat-
ically generates the feature descriptors according to the orig-
inal amino acid sequence, and it does not need any system
design and feature coding selection. We use BERT encoding
mechanism to generate the CLS vector as the protein
sequence feature and fuse it and the CNN local feature vec-
tor to enhance feature expression. A large number of exper-
iments have shown that BERT-PPII achieves a better
performance than the existing methods. In particular, our
method is better than the PPIIPRED on the strict dataset.
The ACC value of our method is 1% higher than that of

PPIIPRED on the unbalanced datasets. Accuracy (ACC) is
2% higher than PPIIPRED on less stringent datasets. The
high prediction performance of our model BERT-PPII
enables it to provide robust performance and distinguish
between PPII helix and non-PPII helix.
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The BolA gene family member (BOLA1–3) plays an important role in regulating normal and pathological biological processes
including liver tumorigenesis. However, their expression patterns as prognostic factors in hepatocellular carcinoma (HCC)
patients have not to be elucidated. We examined the transcriptional expressions and survival data of BolA family member in
patients with HCC from online databases including ONCOMINE, TCGA, UALCAN, Gene Expression Profiling Interactive
Analysis (GEPIA), Kaplan-Meier plotter, SurvExpress, cBioPortal, and Exobase. Network molecular interaction views of BolA
family members and their neighborhoods were constructed by the IntAct web server. In our research, we had found that the
expression levels of BolA /2/3 mRNA were higher in HCC tissue than in normal liver tissues from TGCA databases. Moreover,
the BolA family gene expression level is significantly associated with distinct tumor pathological grade, TMN stage, and overall
survival (OS). The BolA family can be considered as prognostic risk biomarkers of HCC. A small number of BolA gene-
mutated samples were detected in the HCC tissue. IntAct analysis revealed that BolA1/2/3 was closely associated with the
GLRX3 expression in HCC, which is implicated in the regulation of the cellular iron homeostasis and tumor growth.
Furthermore, prognostic values of altered BolAs and their neighbor GLRX3 gene in HCC patients were validated by
SurvExpress analysis. In conclusion, the membrane BolA family identified in this study provides very useful information for
the mechanism of hepatic tumorigenesis.

1. Introduction

Hepatocellular carcinoma (HCC) has very aggressive neo-
plasms and describes as a major health problem worldwide
[1]. Genetic and epigenetic alterations, which lead to uncon-
trolled cellular proliferation and metastasis, are the charac-
ters of HCC development.

Recent research has revealed a critical role for cellular
iron homeostasis in the clinical context of liver tumorigene-
sis [2, 3]. Although significant progress has been made in
understanding the iron homeostasis disruption associated
with HCC, the precise molecular signals that trigger initia-
tion and progression of HCC remain to be identified.

The human BolA gene family consists of BOLA1,
BOLA2, and BOLA3 [4]. It has been suggested that BolA
family members serve as assembly factors for mitochondrial

iron-sulfur (Fe/S) cluster proteins that has involvement in
cancer cell biology [5, 6]; although, the functions of BOLA1
and BOLA3 are still undefined in cancer. Prior research has
highlighted the importance role of BOLA3 in human endo-
thelial metabolism and cardiovascular disease pathogenesis
[7]. More specifically, evidence points out that BOLA2 has
been shown to be highly correlated with hepatic iron
homeostasis [8]. And yet, even the overexpression of BOLA2
is required to drive HCC tumor growth and tumor hemor-
rhage [9, 10], and high BOLA2 can promote tumor growth
and predict the HCC prognosis [11]. BOLA1 plays a leading
role in mitochondrial morphology by potential regulation
and can induce diseases [12]. In the ovarian cancer, the
BOLA2 and BOLA3 were higher in cancer tissues and may
act as prognostic biomarkers [13], and in the lung adenocar-
cinoma, the BOLA3 was correlated with the immune cell
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infiltrates [14]. However, it has been poorly characterized
whether the expression of BolA family members in HCC is
correlated with clinical outcomes.

In our research, we analyzed the BolA family member
mRNA level in HCC tissues and nontumor liver tissues by
the public database. In addition, we investigated correlation
between their expressions and clinical characteristics and
performed SurvExpress analysis of prognostic risks for over-
all survival. The results showed that BOLA1\2\3 may be a
promising biomarker for the prognosis in HCC.

2. Material and Methods

2.1. ONCOMINE Database Analysis. The difference mRNA
expression level of the BolA family gene in human cancer
was identified in the ONCOMINE online microarray data-
base (http://www.oncomine.org). For each BolA family gene,
the thresholds were set as the following values: P value of
0.01, fold change of 2, and gene ranking of all. Analysis type
was set as follows: cancer vs. normal analysis.

2.2. UALCAN Database Analysis. The UALCAN online
database (http://ualcan.path.uab.edu) was used to calculate
the BolA gene expression level and clinicopathologic param-
eters in the TCGA database on patient with LIHC (liver
hepatocellular carcinoma) [15] .

2.3. cBioPortal and Exobase Database Analysis. The cBio
Cancer Genomics Portal (http://www.cbioportal.org/) per-
formed to estimate the cancer genomics data sets of BolA fam-
ily gene using TCGA-LIHC data [16]. The exoRBase database
(http://www.exoRBase.org) can analysis the human blood
exosomes, including circRNA, lncRNA, and mRNA [17].

2.4. GEPIA Database Analysis. Gene Expression Profiling
Interactive Analysis (GEPIA) web server (http://gepia
.cancer-pku.cn/) was used to study the correlation mRNA
expression of BolA family members and overall survival
(OS) in LIHC [18]. A total of 331 LIHC patients were
enrolled, and “median” was regarded as group cutoff value.

2.5. Kaplan-Meier Plotter Analysis. The Kaplan-Meier (KM)
plotter database (http://kmplot.com/analysis) was used to
calculate the survival time in LIHC patients [19]. Briefly,
each BolA family member was individually analyzed to
obtain KM plots. Group cutoff was set as “median.” Hazard
ratios (HR) with 95% confidence intervals (CI) were
extracted from the KM plotter webpage. Overall survival
(OS) data from 364 patients with HCC were enrolled.

2.6. SurvExpress Database Analysis. SurvExpress (http://
bioinformatica.mty.itesm.mx/SurvExpress) was used for
obtaining survival data for the expression of BolA family
members in patient with LIHC, for which information was
not available on the GEPIA and KM plotter database [20].
Briefly, in the TCGA-LIHC datasets containing 381 samples,
BOLA1, BOLA2, and BOLA3 were entered into the number-
at-risk cases, median mRNA expression levels, HRs, 95%
confidence interval (CI), and P values that were displayed.

2.7. IntAct Database Analysis. IntAct (http://www.ebi.ac.uk/
intact) was applied to identify densely connected network
components and BolA family members, for which protein-
protein interaction enrichment analysis data populated by
either curated from the literature or from direct data deposi-
tions [21].

2.8. Western Blot Analysis. Western blot analysis was per-
formed as previously described [11]. The antibody dilutions
were 1 : 1,000 for BOLA1 polyclonal antibody (Cat. # 18017-1-
AP, Proteintech), 1 : 1,000 for BOLA2 polyclonal antibody
(Cat. # ab169481, Abcam), 1 : 1,000 for BOLA3 polyclonal anti-
body (Cat. # ab185339, Abcam), and 1 : 5,000 for the β-actin
mouse monoclonal antibody (Sigma-Aldrich, Cat. # A1978).

3. Results

3.1. BolA Family Members Are Frequently Upregulated in
HCC. In order to analysis the expression differences of the
BolA family, we first performed an analysis using the
ONCOMINE database to investigate differences in the
mRNA levels of each BolA family in cancers. As shown in
Figure 1, the number of the upregulation BOLA1\2\3
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Figure 1: Transcriptional expression of BolA family members in 20
different types of cancer types (ONCOMINE database). Notes: the
BOLA1\2\3 mRNA expression (cancer tissue vs. normal tissue)
was compared by Students’ t-test. Cut-off of change values was as
follows: P value: 0.01, fold change: 1.5, gene rank: 10%, and data
type: mRNA.
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Figure 2: The BOLA1\2\3 mRNA expressions in HCC and adjacent nontumorous tissues (UALCAN database). Notes: BolA family
gene mRNA was higher in HCC tissues compared to nontumorous tissues. Statistically significant changes were indicated with
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Figure 3: Protein expressions of BolA family members in human normal liver tissue and HCC (Human Protein Atlas database). Notes:
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expression was found in tumors compared with normal tis-
sues in various types of cancers. Significantly higher mRNA
expressions of BOLA1\2 were found in multiple HCC tis-
sues datasets. The BOLA1\2 overexpression was found in
HCC tissues compared with normal tissues in Roessler Liver
2 dataset (1.51-fold increase, P = 3:26E − 33; 2.67-fold
increase, P = 3:72E − 83, respectively) [22], while were
observed in Wurmbach liver dataset (1.65-fold increase, P
= 0:003; 2.21-fold increase, P = 4:67E − 4, respectively)
[23]. Significant upregulation of BOLA1\2 was also found
in Chen Liver dataset (1.57-fold increase, P = 1:00E − 8; 1.56-
fold increase, P = 2:78E − 13, respectively) [24]. The above-
mentioned observations suggest that the overexpression of
BOLA family members is associated with cancer progression
and might be of clinical importance.

3.2. BolA Family Member Expression Was Higher in HCC.
To further validate the observations made in the ONCOMINE
database, TCGA-LIHC cohort performed a retrospective
study. As shown in Figure 2, the BolA family expression level
in HCC was higher than in the normal liver tissues (P < 0:05).
In order to confirm this, we investigated protein levels of BolA
family members by the Human Protein Atlas database (http://
www.proteinatlas.org/pathology) [25]. As shown in Figure 3,
BOLA1\2\3 proteins had lower level in the normal liver, while
medium and high level were observed in HCC. And we also
found that the BOLA1\2\3 expression level was higher in

HCC than in the nontumor using our HCC samples. Human
BolA proteins (BOLA1\2\3) are novel nonclassical secreted
proteins [4]. In addition, a very low mutation rate of
BOLA1\2\3 was observed in HCC patients (Figure S1A), the
BOLA1 mutation rate was 4%, and there was no mutation in
BOLA3. Intriguingly, using the Exosomes web-accessible
database (http://www.exoRBase.org) analysis, the increased
expression of BOLA2 may be used as circulating biomarkers
for HCC patients (Figure S1B). Taken together, BOLA2 may
had the potential ability for HCC diagnose.

3.3. Association between BolA Family Member and Tumor
Grades and Stages. Both the mRNA and protein expression
of BolA family members were found to be overexpressed in
HCC; we next analyzed the relationship between mRNA
expressions of each BolA family members with clinicopath-
ological parameters of HCC patients by UALCAN. As was
shown in Figure 4(a), we found that the elevated level of
BOLA1\2\3 mRNA had a higher proportion of high-grade
tumors (G3/G4). The BOLA1\2\3 mRNA level had signifi-
cantly correlated with tumor stage in HCCs, which means
that the advanced stage HCCs can express higher BolA
mRNA (Figure 4(b)). The reason why mRNA expressions
of BOLA1\2\3 in stage 3 seemed to be higher than that in
stage 4 may be due to the small sample size (only 6 HCC
patients were at stage 4). These findings indicated that the
BOLA1\2\3 may accelerate HCC growth and progression.
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3.4. BolA Family Member Predicts the Prognosis in HCC
Patients.We used GEPIA web server to analyze the prognos-
tic values of BolAs in TCGA-LIHC patients. As were shown

in Figure 5, upregulation of BOLA1, BOLA2, and BOLA3
were significantly associated with shorter OS (HR = 1:7, P =
0:0036;HR = 1:6, P = 0:012;HR = 1:5, P = 0:038, respectively,
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Figure 5: The BolA family members with clinical outcomes in HCC patients by Kaplan-Meier curves (GEPIA database and SurvExpress
database). Notes: overall survival data of BolA family members are generated from the GEPIA web server (a)–(c). Prognostic risk of the
mRNA expression of BolA family members in HCC patients (d). The concordance index and P value of log-rank testing equality of
survival curves are indicated. The box plots indicate the difference in the expression of gene between risks groups, and P values are
derived from t-test between both groups (e).

5BioMed Research International



Figures 5(a)–5(c)). The relationship between combinatory
mRNA expressions of all 3 BolA family members and progno-
sis of liver cancer patients were further analyzed by SurvEx-
press. In our study, we also found that higher combinatory
mRNA expressions of all 3 BolA family members were associ-
ated with poorer OS in LIHC patients (HR = 1:61, 95% CI:
1.14-2.26, and P = 0:006627, Figure 5(d)). And then, we
anlayed the prognostic role of BolA family members in HCC
patients.. As was shown in Figure 5(e), the higher mRNA
expression of BOLA1 (P = 5:81E − 06), BOLA2
(P = 8:96E − 02), and BOLA3 (P = 2:29E − 47) was signifi-
cantly associated with shorter OS of LIHC patients. These
results indicated that mRNA expressions of BOLA1\2\3 may
be exploited as useful biomarkers for prediction of HCC
patient’s survival.

3.5. Identification of Hub BolA Family Member and Their
Clinical Value in HCC. After analyzing the genetic alter-
ations in BolAs and their prognostic value in HCC patients,
we further analyzed the protein-protein interaction network
among BolAs using IntAct databases. The top hub genes
were GLRX3, DDIT4L, BIRC7, HDX, C1orf94, XIAP,
BIRC2, BCKDHA, PMPCA, PMPCB, GLRX5, and SDHAF3
(Figure 6). As was shown in Figure 7, Kaplan-Meier (KM)
plotter survival analysis, based on clinical information from

the TCGA liver cancer datasets, revealed that the low expres-
sion of BIRC2 (HR = 0:67, 95% CI: 0.46-0.96, and P = 0:028,
Figure 7(c)), BCKDHA (HR = 0:5, 95% CI: 0.34-0.74, and
P = 0:00031, Figure 7(d)), PMPCB (HR = 0:69, 95% CI:
0.49-0.99, and P = 0:042, Figure 7(e)), and GLRX5
(HR = 0:7, 95% CI: 0.5-1, and P = 0:046, Figure 7(f)) signif-
icantly correlated with shorter OS of LIHC patients. GLRX3
(HR = 2:05, 95% CI: 1.44-2.92, and P = 4:7E − 5, Figure 7(a))
and BIRC7 (HR = 1:54, 95% CI: 1.09-2.18, and P = 0:015,
Figure 7(b)) were quite the contrary. Notably, higher combi-
natory mRNA expressions of BOLA2 with GLRX3 were
associated with poorer OS in HCC patients (HR = 1:56,
95% CI: 1.1-2.22, P = 8:1E − 4 and P = 2:7E − 8, respectively,
Figure 8). Many studies have investigated the expression of
GLRX3 imply in regulating HCC cell proliferation, growth,
and microvascular invasion via disruption of iron homeosta-
sis [26]. Thus, we could guess that BOLA2 has the ability to
promote the development of HCC and maintains cancer cell
growth in the condition of metabolic stress.

4. Discussion

HCC is one of the leading causes of lethal, and there is great
interest in understanding the underlying differentially
expressed genes involved in the development and
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progression of individual tumors. In this study, we investi-
gated the relationship between BolA family members and
HCC patients using comprehensive data mining. We found
that BolA family members are uniquely overexpressed in
HCCs. Moreover, the mRNA expression levels of BolA fam-
ily genes are associated with distinct tumor grade, TMN
stage, and OS. Thus, BOLA1, BOLA2, and BOLA3 can pre-
dict the prognosis of HCC patients and may serve as onco-
genes that promote HCC growth.

It has been proved that HCC development is a multistep
process, including cell proliferation, adhesion, and metabo-
lism. Iron metabolism plays an important role in both nor-
mal and cancer cells. In the process of HCC development,
more iron is required to maintain the cancer cell prolifera-
tion, growth, and self-renewal in stem cells [27]. BOLA1, a
mitochondrial protein, makes balances the effect of L-

buthionine-(S, R)-sulfoximine (BSO)-induced glutathione
(GSH) depletion on the mitochondrial thiol redox potential
[12]. BOLA3 plays an important role in form [2Fe-2S]
cluster-bridged dimeric heterocomplexes with the human
monothiol glutaredoxin GRX5 [28]. A recent study indi-
cated that BOLA1 and BOLA3 are associated with clinical
outcomes in many diseases [5]. However, a thoughtful
description of the relationship between expression level
and cancer prognosis has not been analyzed. Although the
increased expression of BOLA1/3 was obverse in present
study, a correlation was observed between BOLA1/3 expres-
sion and defined genes in LIHC, such as oncogenic activity
of BIRC2 [29] and tumor suppressor PMPCB [30]. There-
fore, we can speculate that the BOLA1/3 expression in HCCs
contributes to uncontrolled cell cellular proliferation. Fur-
ther studies will be needed to clarify its role in HCC.
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BOLA2, a gene associated with iron homeostasis, has
been described in its biological function by the animal model
[10]. The mechanisms of BOLA2 regulation are as follows:
(i) specific in-frame fusion transcript regulation [31], (ii)
monothiol CGFS glutaredoxin binding partners, (iii)
GRX3-dependent anamorsin maturation pathway [32], and
(iv) as c-Myc-regulated gene in HCC [10]. In our study,
BOLA2 and GLRX3 are frequently overexpressed in HCC
tumors tissues. Interestingly, our study revealed that the
upregulation of BOLA2 and GLRX3 was associated with
worse OS in patients with HCC. Up to now, more and more
novel biomarkers, such as circular RNAs (circRNAs) [33],
circulating microRNAs [34], and serum extracellular vesicles
[35], had appeared for diagnosing HCC and predicting clin-
ical outcomes. Our study analyzed the relationship between
BOLA2 and serum extracellular vesicles. Hence, we postu-
late that the BOLA2 may have the potential for predicting
the prognosis in HCC patients. Due to the limitations in
our study, the relationship between the BOLA2 protein
expression was not be clearly assessed, and further
researches were needed to elaborate.

5. Conclusion

In our study, we found that BolA gene family members
(BOLA1-3) may serve as prognostic biomarkers of HCC.
In addition, BolA family members and their neighborhood
GLRX3 play a leading role in HCC stage and tumor grade.
These interesting results have important implications that
can identify novel therapeutic targets in HCC.
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