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*e aim of this paper is to define fuzzy contraction in the context of complex valued extended b-metric space and prove fuzzy
fixed-point results. Our results improve and extend certain recent results in literature. Moreover, we discuss an illustrative
example to highlight the realized improvements. As application, we derive fixed-point results for multivalued mappings in the
setting of complex valued extended b-metric space.

1. Introduction

In the theory of fixed points, there is vital role of metric
spaces which have useful applications in mathematics as well
as in computer science, medicine, physics, and biology (see
[1–3]). Many mathematicians generalized, improved, and
extended the notion of metric spaces to vector-valued metric
spaces of Perov [4], b-metric space of Czerwik [5], cone
metric spaces of Huang and Zhang [6], and others.

In 2011, Azam et al. [7] introduced the concept of
complex valued metric space and obtained some common
fixed-point results for rational contraction which consist of a
pair of single valued mappings. Later on, many researchers
[8–15] worked on this generalized metric space. Ahmad et al.
[16] and Azam et al. [17] defined the generalized Housdorff
metric function in the setting of complex valued metric space
and obtained common fixed-point results for multivalued
mappings. In [18], Mukheimer generalized the concept of
complex valued metric space to complex valued b-metric
space. Recently, Naimatullah et al. [19] introduced the notion
of complex valued extended b-metric space as extension of
complex valued b-metric space and established some results
for rational contractions in this generalized space.

On the contrary, Heilpern [20] introduced the concept of
fuzzy mappings in the setting of metric linear spaces and
extended Banach Contraction Principle [21]. In 2014, Kutbi
et al. [22] established fuzzy fixed-point results in complex
valued metric spaces and generalized the results in metric
spaces. Owing to the notion of a complex valued metric
space, Humaira et al. [23] proved some common fixed-point
results under contractive condition for rational expressions.

In this paper, we define the generalized fuzzy contraction
in the setting of complex valued extended b-metric space and
obtain some fuzzy fixed point results. As application, we
derive the main results of Azam et al. [7], Rouzkard and
Imdad [9], Ahmad et al. [16], and Kutbi et al. [22] for fuzzy
and multivalued mappings in complex valued metric spaces.

2. Preliminaries

In 2011, Azam et al. [7] introduced the complex valued
metric space as follows.

Definition 1 (see [7]). Let C be the set of complex numbers
and ℓ1, ℓ2 ∈ C. A partial order ≾ on C is defined in this way:
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ℓ1≾ℓ2⇔Re ℓ1( ≤Re ℓ2( , Im ℓ1( ≤ Im ℓ2( . (1)

It follows that

ℓ1 ≾ ℓ2 (2)

if one of these assertions is satisfied:

(a)Re ℓ1(  � Re ℓ2( , Im ℓ1( < Im ℓ2( ,

(b)Re ℓ1( <Re ℓ2( , Im ℓ1(  � Im ℓ2( ,

(c)Re ℓ1( <Re ℓ2( , Im ℓ1( < Im ℓ2( ,

(d)Re ℓ1(  � Re ℓ2( , Im ℓ1(  � Im ℓ2( .

(3)

(CV1) 0≾℘(ℓ, Z), for all ℓ, Z ∈ Q and ℘(ℓ, Z) � 0 if and
only if ℓ � Z

(CV2) ℘(ℓ, Z) � ℘(Z, ℓ), for all ℓ, Z ∈ Q
(CV3) ℘(ℓ, Z)≾℘(ℓ, ]) + ℘(], Z), for all ℓ, Z, ] ∈ Q.

Definition 2 (see [7]). Let Q≠∅. A mapping ℘: Q×

Q⟶ C is said to be a complex valued metric if the fol-
lowing assertions hold.

*en, (Q,℘) is called a complex valued metric space
(CVMS).

In 2014, Mukheimer [18] introduced the notion of
complex valued b-metric space as follows.

(CVB1) 0≾℘(ℓ, Z), for all ℓ, Z ∈ Q and ℘(ℓ, Z) � 0 if
and only if ℓ � Z

(CVB2) ℘(ℓ, Z) � ℘(Z, ℓ), for all ℓ, Z ∈ Q
(CVB3) ℘(ℓ, Z)≾ π[℘(ℓ, ]) + ℘(], Z)], for all ℓ, Z, ] ∈ Q

Definition 3 (see [18]). Let Q≠∅ and π ≥ 1 be a real
number. Amapping ℘: Q × Q⟶ C is said to be a complex
valued b-metric space if the following assertions hold.

*en, (Q,℘) is called a complex valued b- metric space
(CVbMS).

Recently, Naimatullah et al. [19] defined the notion of
complex valued extended b-metric space in the following
way.

(ECVB1) 0≾℘(ℓ, Z), for all ℓ, Z ∈ Q and ℘(ℓ, Z) � 0 if
and only if ℓ � Z

(ECVB2) ℘(ℓ, Z) � ℘(Z, ℓ), for all ℓ, Z ∈ Q
(ECVB3) ℘(ℓ, Z)≾φ(ℓ, Z)[℘(ℓ, ]) + ℘(], Z)], for all
ℓ, Z, ] ∈ Q

Definition 4 (see [19]). Let Q≠∅ and φ: Q × Q⟶ [1,

∞). A mapping ℘: Q × Q⟶ C is called a complex valued
extended b-metric if following conditions hold:

*en, (Q,℘) is called a complex valued extended b-
metric space (CVEbMS).

Lemma 1 (see [19]). Let (Q,℘) be a CVEbMS and let
ℓn ⊆Q. 9en, ℓn  converges to ℓ⇔|℘(ℓn, ℓ)|⟶ 0 as n

⟶∞.

Lemma 2 (see [19]). Let (Q,℘) be a CVEbMS and let
ℓn ⊆Q. 9en, ℓn  is a Cauchy sequence ⇔|℘(ℓn, ℓn+m)|

⟶ 0 as n⟶∞, where m ∈ N.

Let (Q,℘) be a CVEbMS; then, CB(Q) denotes the
family of all nonempty, closed, and bounded subsets of Q.

From now on, we denote s(ℓ1) � ℓ2 ∈ C: ℓ1 ≺ ℓ2  for
ℓ1 ∈ C, and

s ℓ1,R2(  � ∪
ℓ2∈R2

s ℘ ℓ1, ℓ2( (  � ∪
ℓ2∈R2

ℓ ∈ C: ℘ ℓ1, ℓ2( ≺ ℓ ,

(4)

for a ∈ Q and R2 ∈ CB(Q).
For R1,R2 ∈ CB(Q), we denote

s R1,R2(  � ∩
ℓ1∈R1

s ℓ1,R2(  ∩ ∩
ℓ2∈R2

s ℓ2,R1(  . (5)

(i) Let ℓ1, ℓ2 ∈ C. If ℓ1 ≺ ℓ2, then s(ℓ2) ⊂ s(ℓ1).
(ii) Let ℓ ∈ Q and R ∈ N(Q). If θ ∈ s(ℓ,R), then

ℓ ∈ R.
(iii) Let ℓ ∈ C and let R1,R2 ∈ CB(Q) and ℓ1 ∈ R1. If

ℓ ∈ s(R1,R2), then ℓ ∈ s(ℓ1,R2), for all ℓ1 ∈ R1, or
ℓ ∈ s(R1, ℓ2), for all ℓ2 ∈ R2.

Lemma 3 (see [19]). Let (Q,℘) be a CVEbMS.

Let (Q,℘) be a complex valued extended b-metric space
and C(Q) be a collection of nonempty closed subsets of Q.
Let I: Q⟶ CB(Q)be a multivalued mapping. For ℓ ∈ Q
and R ∈ CB(Q), we define

Wℓ(R) � ℘ ℓ, ℓ1( : ℓ1 ∈ R . (6)

*us, for ℓ, y ∈ Q,

Wℓ(Iy) � ℘ ℓ, ℓ1( : ℓ1 ∈ Iy . (7)

Definition 5 (see [19]). Let (Q,℘) be a complex valued
metric space. A subset R of Q is called bounded below if ∃
ℓ ∈ Q, such that ℓ ≺ ℓ1, for all ℓ1 ∈ R.

Definition 6 (see [19]). Let (Q,℘) be a complex valued
metric space. A multivalued mapping I: Q⟶ 2C is called
bounded below if, for each ℓ ∈ Q,∃ ℓx ∈ C,

ℓx ≺ u, (8)

for all u ∈ Iℓ.

In 1981, Heilpern [20] utilized the concept of fuzzy set
and introduced the notion of fuzzy mappings in metric
spaces (MS). A fuzzy set in Q is a function with domain Q

and values in [0, 1], and IQ is the collection of all fuzzy sets
inQ. IfR is a fuzzy set and x ∈ Q, then the function values
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R(ℓ) is called the grade of membership of ℓ inR.*e α-level
set of R is denoted by [R]α and is defined as follows:

[R]α � ℓ: R(ℓ)≥ α{ } if α ∈ (0, 1],

[R]0 � x: R(ℓ)> 0{ }.
(9)

Here, R denotes the closure of the set R. Let F(Q) be
the collection of all fuzzy sets in a metric space Q.

Definition 7 (see [20]). Let Q1 be a nonempty set and
(Q2,℘) be a MS. A mapping I is called fuzzy mapping if I
is a mapping from Q1 into F(Q2). A fuzzy mapping I is a
fuzzy subset on Q1 × Q2 with membership function
I(x)(y). *e function I(x)(y)is the grade of membership
of y in I(x).

Definition 8 (see [20]). Let (Q,℘) be a MS and I1,I2:
Q⟶ F(Q). A point ℓ ∈ Q is said to be a fuzzy fixed point
of I2 if ℓ ∈ [I2ℓ]α, for some α ∈ [0, 1]. *e point ℓ ∈ Q is
said to be a common fuzzy fixed point of I1 and I2 if
ℓ ∈ [I1ℓ]α∩ [I2ℓ]α, for some α ∈ [0, 1].

In 2014, Kutbi et al. [22] used the above notion of fuzzy
mappings in complex valued metric space (CVMS) and
established the result for these mappings.

In this paper, we establish fuzzy fixed-point results in the
setting of complex valued extended b-metric spaces
(CVEbMS) and derive the above result of Kutbi et al. [22] for
fuzzy mappings and some fixed-point result for multivalued
mappings in CVMS.

3. Main Result

Definition 9. Let (Q,℘) be a CVEbMS. *e fuzzy mapping
I: Q⟶ F(Q) is said to have g.l.b. property on (Q,℘) if,
for any ℓ ∈ Q and any α ∈ (0, 1], greatest lower bound of
Wℓ([IZ]α) exists in C, ∀Z ∈ Q. We denote ℘(ℓ, [IZ]α) by
the g.l.b of Wℓ([IZ]α). *at is,

℘ ℓ, [IZ]α(  � inf ℘(ℓ, ]): ] ∈ [IZ]α . (10)

Now, we state our main result in this way.

Theorem 1. Let (Q,℘) be a complete CVEbMS,
φ: Q × Q⟶ [1,∞), and let I1,I2: Q⟶ F(Q) satisfy
g.l.b property. Assume that ∃α ∈ (0, 1], such that, for each
ℓ ∈ Q, [I1ℓ]α, [I2ℓ]α ∈ CB(Q) and there exist nonnegative
real numbers ζ, κ, μ with ζ + κ + μ< 1 and λ(1 − κ) � ζ,
where λ ∈ [0, 1) such that

ζ℘(ℓ, Z) +
κ℘ ℓ, I1ℓ α( ℘ Z, I2Z α(  + μ℘ Z, I1ℓ α( ℘ ℓ, I2Z α( 

1 + ℘(ℓ, Z)
∈ s I1ℓ α, I2Z α( , (11)

for all ℓ, Z ∈ Q. If, for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)λ< 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ [I1ℓ∗]α∩ [I2ℓ∗]α.

Proof. Let ℓ0 be an arbitrary point in Q. By assumption, we
can find ℓ1 ∈ [I1ℓ0]α. So, we have

ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, I1ℓ0 α( ℘ ℓ1, I2ℓ1 α μ℘ ℓ1, I1ℓ0 α( ℘ ℓ0, I2ℓ1 α 

1 + ℘ ℓ0, ℓ1( 
∈ s I1ℓ0 α, I2ℓ1 α( ,

ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, I1ℓ0 α( ℘ ℓ1, I2ℓ1 α  + μ℘ ℓ1, I1ℓ0 α( ℘ ℓ0, I2ℓ1 α 

1 + ℘ ℓ0, ℓ1( 
∈ ∩

ω∈ I1ℓ0[ ]α
s ω, I2ℓ1 α( .

(12)

Since ℓ1 ∈ [I1ℓ0]α, so, we have

ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, I1ℓ0 α( ℘ ℓ1, I2ℓ1 α  + μ℘ ℓ1, I1ℓ0 α( ℘ ℓ0, I2ℓ1 α 

1 + ℘ ℓ0, ℓ1( 
∈ s ℓ1, I2ℓ1 α( . (13)

By definition,

ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, I1ℓ0 α( ℘ ℓ1, I2ℓ1 α  + μ℘ ℓ1, I1ℓ0 α( ℘ ℓ0, I2ℓ1 α 

1 + ℘ ℓ0, ℓ1( 
∈ ∪
ϱ∈ I2ℓ1[ ]α

s ℘ ℓ1, ϱ( ( . (14)
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*is implies that ∃ℓ2 ∈ [I2ℓ1]α such that

ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, I1ℓ0 α( ℘ ℓ1, I2ℓ1 α  + μ℘ ℓ1, I1ℓ0 α( ℘ ℓ0, I2ℓ1 α 

1 + ℘ ℓ0, ℓ1( 
∈ s ℘ ℓ1, ℓ2( ( . (15)

*at is,

℘ ℓ1, ℓ2( ⪯ ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, I1ℓ0 α( ℘ ℓ1, I2ℓ1 α  + μ℘ ℓ1, I1ℓ0 α( ℘ ℓ0, I2ℓ1 α 

1 + ℘ ℓ0, ℓ1( 
. (16)

By the meaning of Wℓ([I2Z]α) and Wℓ([I1Z]α) for
ℓ, Z ∈ Q, we obtain

℘ ℓ1, ℓ2( ⪯ ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, ℓ1( ℘ ℓ1, ℓ2(  + μ℘ ℓ1, ℓ1( ℘ ℓ0, ℓ2( 

1 + ℘ ℓ0, ℓ1( 

� ζ℘ ℓ0, ℓ1(  +
κ℘ ℓ0, ℓ1( ℘ ℓ1, ℓ2( 

1 + ℘ ℓ0, ℓ1( 

� ζ℘ ℓ0, ℓ1(  + κ℘ ℓ1, ℓ2( 
℘ ℓ0, ℓ1( 

1 + ℘ ℓ0, ℓ1( 
 .

(17)

*is implies

℘ ℓ1, ℓ2( 


≤ ζ ℘ ℓ0, ℓ1( 


 + κ ℘ ℓ1,ℓ2 



℘ ℓ0, ℓ1( 

1 + ℘ ℓ0, ℓ1( 





≤ ζ ℘ ℓ0, ℓ1( 


 + κ ℘ ℓ1,ℓ2 


,

(18)

such that

℘ ℓ1, ℓ2( 


≤
ζ

1 − κ
  ℘ ℓ0, ℓ1( 




� λ ℘ ℓ0, ℓ1( 


.

(19)

Similarly, for ℓ2 ∈ [I2ℓ1]α, we have

ζ℘ ℓ2, ℓ1(  +
κ℘ ℓ1, I2ℓ1 α ℘ ℓ2, I1ℓ2 α(  + μ℘ ℓ2, I2ℓ1 α ℘ ℓ1, I1ℓ2 α( 

1 + ℘ ℓ2, ℓ1( 
∈ s I2ℓ1 α, I1ℓ2 α( ,

ζ℘ ℓ2, ℓ1(  +
κ℘ ℓ1, I2ℓ1 α ℘ ℓ2, I1ℓ2 α(  + μ℘ ℓ2, I2ℓ1 α ℘ ℓ1, I1ℓ2 α( 

1 + ℘ ℓ2, ℓ1( 
∈ ∩

ω∈ I2ℓ1[ ]α
s ω, I1ℓ2 α( .

(20)

Since ℓ2 ∈ [I2ℓ1]α, so, we have

ζ℘ ℓ2, ℓ1(  +
κ℘ ℓ1, I2ℓ1 α ℘ ℓ2, I1ℓ2 α(  + μ℘ ℓ2, I2ℓ1 α ℘ ℓ1, I1ℓ2 α( 

1 + ℘ ℓ2, ℓ1( 
∈ s ℓ2, I1ℓ2 α( . (21)

By definition of “s” function, we have

ζ℘ ℓ2, ℓ1(  +
κ℘ ℓ1, I2ℓ1 α ℘ ℓ2, I1ℓ2 α(  + μ℘ ℓ2, I2ℓ1 α ℘ ℓ1, I1ℓ2 α( 

1 + ℘ ℓ2, ℓ1( 

∈ ∪
∈ I1ℓ2[ ]α

s ℘ ℓ2,( ( .

(22)
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By definition of “s” function, there exists some
ℓ3 ∈ [I1ℓ2]α, such that

ζ℘ ℓ2, ℓ1(  +
κ℘ ℓ1, I2ℓ1 α ℘ ℓ2, I1ℓ2 α(  + μ℘ ℓ2, I2ℓ1 α ℘ ℓ1, I1ℓ2 α( 

1 + ℘ ℓ2, ℓ1( 
∈ s ℘ ℓ2, ℓ3( ( . (23)

*at is,

℘ ℓ2, ℓ3( ⪯ ζ℘ ℓ2, ℓ1(  +
κ℘ ℓ1, I2ℓ1 α ℘ ℓ2, I1ℓ2 α(  + μ℘ ℓ2, I2ℓ1 α ℘ ℓ1, I1ℓ2 α( 

1 + ℘ ℓ2, ℓ1( 
. (24)

By the meaning of Wℓ([I2Z]α) and Wℓ([I1Z]α), for
ℓ, Z ∈ Q, we obtain

℘ ℓ2, ℓ3( ≺ ζ℘ ℓ2, ℓ1(  +
κ℘ ℓ1, ℓ2( ℘ ℓ2, ℓ3(  + μ℘ ℓ2, ℓ2, ℘ ℓ1, ℓ3( 

1 + ℘ ℓ2, ℓ1( 

� ζ℘ ℓ1, ℓ2(  + κ
℘ ℓ1, ℓ2( ℘ ℓ2, ℓ3( 

1 + ℘ ℓ1, ℓ2( 
,

(25)

which implies that

℘ ℓ2, ℓ3( 


≤ ζ ℘ ℓ1, ℓ2( 


 + κ℘ ℓ2, ℓ3( 
℘ ℓ1, ℓ2( 




1 + ℘ ℓ1, ℓ2( 



, (26)

which implies

℘ ℓ2, ℓ3( 


≤
ζ

1 − κ
  ℘ ℓ1, ℓ2( 




� λ|℘ ℓ1, ℓ2( |

(27)

Inductively, we can construct a sequence ℓn  in Q such
that

℘ ℓ1, ℓ2( 


≤ λ ℘ ℓ0, ℓ1( 


,

℘ ℓ2, ℓ3( 


≤ λ2 ℘ ℓ0, ℓ1( 


,

·

·

·

℘ ℓn, ℓn+1(  ≤ λn℘ ℓ0, ℓ1( ,

(28)

for all n ∈ N. Now, by triangular inequality, for m> n, we
have

℘ ℓn, ℓm( ⪯φ ℓn, ℓm( λn℘ ℓ0, ℓ1( 

+ φ ℓn, ℓm( φ ℓn+1, ℓm( λn+1℘ ℓ0, ℓ1( 

+ · · ·+

· φ ℓn, ℓm( φ ℓn+1, ℓm(  · · · φ ℓm−2, ℓm( φ ℓm−1, ℓm( λm− 1℘ ℓ0, ℓ1( 

≺wp ℓ0, ℓ1( 

φ ℓn, ℓm( λn

+φ ℓn, ℓm( φ ℓn+1, ℓm( λn+1
+ · · ·+

φ ℓn, ℓm( φ ℓn+1, ℓm(  · · · φ ℓm−2, ℓm( φ ℓm−1, ℓm( λm− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

Since limn,m⟶∞φ(ℓn, ℓm)λ< 1, so the series 
∞
n�1 λ

n


p
i�1 φ(ℓi, ℓm) converges by ratio test for each m ∈ N. Let

S � 
∞

n�1
λn


p

i�1
φ ℓi, ℓm( , Sn � 

n

j�1
λj



p

i�1
φ ℓi, ℓm( . (30)

*us, for m> n, the above inequality can be written as

℘ ℓn, ℓm( ≺℘ ℓ0, ℓ1(  Sm−1 − Sn . (31)

Now, by taking n⟶∞, we obtain

℘ ℓn, ℓm( 


⟶ 0. (32)

By Lemma 2, we conclude that ℓn  is a Cauchy sequence.
Since Q is complete, then there exists an element ℓ∗ such

Journal of Mathematics 5



RE
TR
AC
TE
D

that ℓn⟶ϱ∗ ∈ Q as n⟶∞. Now, to show ϱ∗ ∈ I1ϱ∗
and ϱ∗ ∈ I2ϱ∗, from (1), we have

ζ℘ ℓ2n, ϱ∗(  +
κ℘ ℓ2n, I1ℓ2n α( ℘ ϱ∗, I2ϱ

∗
 α(  + μ℘ ϱ∗, I1ℓ2n α( ℘ ℓ2n, I2ϱ

∗
 α( 

1 + ℘ ℓ2n, ϱ∗( 
∈ s I1ℓ2n α, I2ϱ

∗
 α( ,

ζ℘ ℓ2n, ϱ∗(  +
κ℘ ℓ2n, I1ℓ2n α( ℘ ϱ∗, I2ϱ

∗
 α(  + μ℘ ϱ∗, I1ℓ2n α( ℘ ℓ2n, I2ϱ

∗
 α( 

1 + ℘ ℓ2n, ϱ∗( 
∈ ∩

ω∈ I1ℓ2n[ ]α
s ω, I2ϱ

∗
 α( .

(33)

Since ℓ2n+1 ∈ [I1ℓ2n]α, we have

ζ℘ ℓ2n, ϱ∗(  +
κ℘ ℓ2n, I1ℓ2n α( ℘ ϱ∗, I2ϱ

∗
 α(  + μ℘ ϱ∗, I1ℓ2n α( ℘ ℓ2n, I2ϱ

∗
 α( 

1 + ℘ ℓ2n, ϱ∗( 
∈ s ℓ2n+1, I2ϱ

∗
 α( ,

ζ℘ ℓ2n, ϱ∗(  +
κ℘ ℓ2n, I1ℓ2n α( ℘ ϱ∗, I2ϱ

∗
 α(  + μ℘ ϱ∗, I1ℓ2n α( ℘ ℓ2n, I2ϱ

∗
 α( 

1 + ℘ ℓ2n, ϱ∗( 
∈ ∪
ϱ/∈ I2ϱ∗[ ]α

s ℘ ℓ2n+1, ϱ
/

  .

(34)

*is implies that ∃ϱn ∈ [I2ϱ∗]α such that

ζ℘ ℓ2n, ϱ∗(  +
κ℘ ℓ2n, I1ℓ2n α( ℘ ϱ∗, I2ϱ

∗
 α(  + μ℘ ϱ∗, I1ℓ2n α( ℘ ℓ2n, I2ϱ

∗
 α( 

1 + ℘ ℓ2n, ϱ∗( 
∈ s ℘ ℓ2n+1, ϱn( ( . (35)

*at is,

℘ ℓ2n+1, ϱn( ⪯ ζ℘ ℓ2n, ϱ∗(  +
κ℘ ℓ2n, I1ℓ2n α( ℘ ϱ∗, I2ϱ

∗
 α(  + μ℘ ϱ∗, I1ℓ2n α( ℘ ℓ2n, I2ϱ

∗
 α( 

1 + ℘ ℓ2n, ϱ∗( 
. (36)

*e g.l.b property of I2 yields

℘ ℓ2n+1, ϱn( ⪯ ζ℘ ℓ2n, ϱ∗(  +
κ℘ ℓ2n, ℓ2n+1( ℘ ϱ∗, ϱn(  + μ℘ ϱ∗, ℓ2n+1( ℘ ℓ2n, ϱn( 

1 + ℘ ℓ2n, ϱ∗( 
. (37)

We know that

℘ ϱ∗, ϱn( ⪯ θ ϱ∗, ϱn(  ℘ ϱ∗, ℓ2n+1(  + ℘ ℓ2n+1, ϱn(  . (38)

Hence,

℘ ϱ∗, ϱn( ⪯ θ ϱ∗, ϱn( ℘ ϱ∗, ℓ2n+1(  + ζθ ϱ∗, ϱn( ℘ ℓ2n, ϱ∗( 

+ κθ ϱ∗, ϱn( 
℘ ℓ2n, ℓ2n+1( ℘ ϱ∗, ϱn( 

1 + ℘ ℓ2n, ϱ∗( 

+ μθ ϱ∗, ϱn( 
℘ ϱ∗, ℓ2n+1( ℘ ℓ2n, ϱn( 

1 + ℘ ℓ2n, ϱ∗( 
.

(39)
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It follows that

℘ ϱ∗, ϱn( 


≤ θ ϱ∗, ϱn(  ℘ ϱ∗, ℓ2n+1( 


 + ζθ ϱ∗, ϱn(  ℘ ℓ2n, ϱ∗( 




+ κθ ϱ∗, ϱn( 
℘ ℓ2n, ℓ2n+1( 


 ℘ ϱ∗, ϱn( 




1 + ℘ ℓ2n, ϱ∗( 




+ μθ ϱ∗, ϱn( 
℘ ϱ∗, ℓ2n+1( 


 ℘ ℓ2n, ϱn( 




1 + ℘ ℓ2n, ϱ∗( 



.

(40)

Letting n⟶∞, we get |℘(ϱ∗, ϱn)|⟶ 0. By using
Lemma 1, we have ϱn⟶ϱ∗. Since [I2ϱ∗]α is closed, so
ϱ∗ ∈ [I2ϱ∗]α. Following the similar steps, we can prove that
ϱ∗ ∈ [I1ϱ∗]α. Hence, there exists ϱ∗ ∈ Q such that
ϱ∗ ∈ [I1ϱ∗]α∩ [I2ϱ∗]α.

By setting μ � 0 in *eorem 1, we get the following
Corollary. □

Corollary 1. Let (Q,℘) be a complete CVEbMS, φ: Q×

Q⟶ [1,∞), and let I1,I2: Q⟶ F(Q) satisfy g.l.b
property. Assume that ∃α ∈ (0, 1], such that, for each ℓ ∈ Q,
[I1ℓ]α, [I2ℓ]α ∈ CB(Q) and there exist nonnegative real
numbers ζ, κ with ζ + κ< 1 and λ(1 − κ) � ζ, where λ ∈ [0, 1)

such that

ζ℘(ℓ, Z) + κ
℘ ℓ, I1ℓ α( ℘ Z, I2Z α( 

1 + ℘(ℓ, Z)
∈ s I1ℓ α, I2Z α( .

(41)

for all ℓ, Z ∈ Q. If, for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)λ< 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ [I1ℓ∗]α∩ [I2ℓ∗]α.

By setting I1 � I2 in *eorem 1, we get the following
corollary.

Corollary 2. Let (Q,℘) be a complete CVEbMS,
φ: Q × Q⟶ [1,∞), and let I: Q⟶ F(Q) satisfy g.l.b
property. Assume that ∃α ∈ (0, 1], such that, for each ℓ ∈ Q,
[Iℓ] ∈ CB(Q) and there exist nonnegative real numbers
ζ, κ, μ with ζ + κ + μ< 1 and λ(1 − κ) � ζ, where λ ∈ [0, 1)

such that

ζ℘(ℓ, Z) +
κ℘ ℓ, [Iℓ]α( ℘ Z, [IZ]α(  + μ℘ Z, [Iℓ]α( ℘ ℓ, [IZ]α( 

1 + ℘(ℓ, Z)
∈ s [Iℓ]α, [IZ]α( , (42)

for all ℓ, Z ∈ Q. If, for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)λ< 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ [Iℓ∗]α.

Remark 1. If we take φ(ℓ, Z) � 1 in *eorem 1, then we get
main result of Kutbi et al. [22].

4. Application

In this section, we derive some fixed-point results for
multivalued mappings as application of our main result.

Theorem 2. Let (Q,℘) be a complete CVEbMS, φ: Q×

Q⟶ [1,∞), and let ℵ1,ℵ2: Q⟶ CB(Q) satisfy g.l.b
property. If there exist nonnegative real numbers ζ, κ, μ with
ζ + κ + μ< 1 and λ(1 − κ) � ζ, where λ ∈ [0, 1) such that

ζ℘(ℓ, Z) +
κ℘ ℓ,ℵ1ℓ( ℘ Z,ℵ2Z(  + μ℘ Z,ℵ1ℓ( ℘ ℓ,ℵ2Z( 

1 + ℘(ℓ, Z)
∈ s ℵ1ℓ,ℵ2Z( , (43)

for all ℓ, Z ∈ Q. If, for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)λ< 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ ℵ1ℓ∗ ∩ℵ2ℓ∗.

Proof. Consider I1,I2: Q⟶ F(Q) defined by

I1(ℓ)(t) �
α, t ∈ ℵ1ℓ

0, t ∉ ℵ1ℓ
,I2(ℓ)(t) �

α, t ∈ ℵ2ℓ

0, t ∉ ℵ2ℓ
, (44)

where α ∈ (0, 1]. *en,
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I1ℓ α � t: I1(ℓ)(t)≥ α  � ℵ1ℓ,

I2ℓ α � ℵ2ℓ.
(45)

*us, *eorem 1 can be applied to obtain ℓ∗ ∈ Q such
that

ℓ∗ ∈ I1ℓ
∗

 α∩ I2ℓ
∗

 α � ℵ1ℓ
∗ ∩ℵ2ℓ

∗
. (46)

If we consider just onemultivaluedmapping, then we get
the following result. □

Corollary 3. Let (Q,℘) be a complete CVEbMS, φ: Q×

Q⟶ [1,∞), and let ℵ: Q⟶ CB(Q) satisfy g.l.b prop-
erty. If there exist nonnegative real numbers ζ, κ, μ with ζ +

κ + μ< 1 and λ(1 − κ) � ζ, where λ ∈ [0, 1), then

ζ℘(ℓ, Z) +
κ℘(ℓ,ℵℓ)℘(Z,ℵZ) + μ℘(Z,ℵℓ)℘(ℓ,ℵZ)

1 + ℘(ℓ, Z)
∈ s(ℵℓ,ℵZ), (47)

for all ℓ, Z ∈ Q. If for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)λ< 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ ℵℓ∗.

Corollary 4. Let (Q,℘) be a complete CVEbMS, φ: Q×

Q⟶ [1,∞), and let ℵ1,ℵ2: Q⟶ CB(Q) satisfy g.l.b
property. If there exist nonnegative real numbers ζ, κ with ζ +

κ< 1 and λ(1 − κ) � ζ, where λ ∈ [0, 1) such that

ζ℘(ℓ, Z) + κ
℘ ℓ,ℵ1ℓ( ℘ Z,ℵ2Z( 

1 + ℘(ℓ, Z)
∈ s ℵ1ℓ,ℵ2Z( , (48)

for all ℓ, Z ∈ Q. If, for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)λ< 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ ℵ1ℓ∗ ∩ℵ2ℓ∗.

Proof. Take μ � 0 in *eorem 2. □

Corollary 5. Let (Q,℘) be a complete CVEbMS, φ: Q×

Q⟶ [1,∞), and let ℵ1,ℵ2: Q⟶ CB(Q) satisfy g.l.b
property. If there exists nonnegative real number ζ ∈ [0, 1),
then

ζ℘(ℓ, Z) ∈ s ℵ1ℓ,ℵ2Z( , (49)

for all ℓ, Z ∈ Q. If, for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)ζ < 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ ℵ1ℓ∗ ∩ℵ2ℓ∗.

Proof. Take κ � μ � 0 in *eorem 2.
If we take φ(ℓ, Z) � 1 in *eorem 2, then we get main

result of Ahmad et al. [16] as follows. □

Corollary 6 (see [16]). Let (Q,℘) be a complete CVMS, and
let ℵ1,ℵ2 :Q⟶ CB(Q) satisfy g.l.b property. If there exist
nonnegative real numbers ζ, κ, μ with ζ + κ + μ< 1 such that

ζ℘(ℓ, Z) +
κ℘ ℓ,ℵ1ℓ( ℘ Z,ℵ2Z(  + μ℘ Z,ℵ1ℓ( ℘ ℓ,ℵ2Z( 

1 + ℘(ℓ, Z)
∈ s ℵ1ℓ,ℵ2Z( , (50)

for all ℓ, Z ∈ Q, then ∃ℓ∗ ∈ Q such that ℓ∗ ∈ ℵ1ℓ∗ ∩ℵ2ℓ∗.

*e following result is a direct consequence of *eorem
2 if we replace multivalued mappings with single valued
mappings.

Theorem 3. Let (Q,℘) be a complete CVEbMS,
φ: Q × Q⟶ [1,∞), and let ℵ1,ℵ2: Q⟶ Q. If there
exist nonnegative real numbers ζ, κ, μ with ζ + κ + μ< 1 and
λ(1 − κ) � ζ, where λ ∈ [0, 1) such that

℘ ℵ1ℓ,ℵ2Z( ≺ ζ℘(ℓ, Z) +
κ℘ ℓ,ℵ1ℓ( ℘ Z,ℵ2Z(  + μ℘ Z,ℵ1ℓ( ℘ ℓ,ℵ2Z( 

1 + ℘(ℓ, Z)
, (51)

for all ℓ, Z ∈ Q. If, for each ℓ0 ∈ Q, limn,m⟶∞φ(ℓn, ℓm)λ< 1,
then ∃ℓ∗ ∈ Q such that ℓ∗ � ℵ1ℓ∗ ∩ℵ2ℓ∗.

If we take φ(ℓ, Z) � 1 in *eorem 3, then we get main
result of Rouzkard and Imdad [9] as follows.

Corollary 7 (see [9]). Let (Q,℘) be a complete CVMS and
let ℵ1,ℵ2: Q⟶ Q. If there exist nonnegative real numbers
ζ, κ, μ with ζ + κ + μ< 1 such that

℘ ℵ1ℓ,ℵ2Z( ≺ ζ℘(ℓ, Z) +
κ℘ ℓ,ℵ1ℓ( ℘ Z,ℵ2Z(  + μ℘ Z,ℵ1ℓ( ℘ ℓ,ℵ2Z( 

1 + ℘(ℓ, Z)
, (52)
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Algebraic structures play a prominent role in mathematics with wide ranging applications in many disciplines such as theoretical
physics, computer sciences, control engineering, information sciences, coding theory, and topological spaces. )is provides
sufficient motivation to researchers to review various concepts and results from the realm of abstract algebra in the broader
framework of fuzzy setting. In this paper, we introduce the notions of int-soft (m, n)-ideals, int-soft (m, 0)-ideals, and int-soft
(0, n)-ideals of semigroups by generalizing the concept of int-soft bi-ideals, int-soft right ideals, and int-soft left ideals in
semigroups. In addition, some of the properties of int-soft (m, n)-ideal, int-soft (m, 0)-ideal, and int-soft (0, n)-ideal are studied.
Also, characterizations of various types of semigroups such as (m, n)-regular semigroups, (m, 0)-regular semigroups, and
(0, n)-regular semigroups in terms of their int-soft (m, n)-ideals, int-soft (m, 0)-ideals, and int-soft (0, n)-ideals are provided.

1. Introduction

Soft set theory of Molodtsov [1] is an important mathematical
tool to dealing with uncertainties and fuzzy or vague objects
and has huge applications in real-life situations. In soft sets,
the problems of uncertainties deal with enough numbers of
parameters which make it more accurate than other math-
ematical tools. )us, the soft sets are better than the other
mathematical tools to describe the uncertainties. Aktaş and
Çaǧman [2] show that the soft sets are more accurate tools to
deal the uncertainties by comparing the soft sets to rough and
fuzzy sets. )e decision-making problem in soft sets had been
considered by Maji et al. [3]. In [4], Maji et al. investigated
several operations on soft sets. )e notions of soft sets in-
troduced in different algebraic structures had been applied
and studied by several authors, for example, Aktaş and
Çaǧman [2] for soft groups, Feng et al. [5] for soft semirings,
and Naz and Shabir [6, 7] for soft semi-hypergroups.

Song [8] introduced the notions of int-soft semigroups,
int-soft left (resp. right) ideals, and int-soft quasi-ideals.
Afterthat, Dudek and Jun [9] studied the properties of int-
soft left (resp. right) ideals, and characterizations of these
int-soft ideal are obtained. Moreover, they introduced the
concept of int-soft (generalized) bi-ideals, and

characterizations of (int-soft) generalized bi-ideals and int-
soft bi-ideals are obtained. Dudek and Jun [9] introduced
and characterized the notion of soft interior ideals of
semigroups. )e concept of union-soft semigroups, union-
soft l-ideals, union-soft r-ideals, and union-soft semiprime
soft sets have been considered by [10]. In addition,
Muhiuddin et al. studied the soft set theory on various
aspects (see, for example, [11–21]). For more related con-
cepts, the readers are referred to [22–31].

)e results of this paper are arranged as follows. Section
2 summarises some concepts and properties related to
semigroups, soft sets, and int-soft ideals that are required to
establish our key results, while Section 3 presents the
principle of int-soft (m, n)-ideals. We prove that the int-soft
bi-ideals are int-soft (m, n)-ideals for each positive integer
m, n, but the converse is not necessarily valid.)en, we prove
that theA subset of the S semigroup is (m, n)-ideal of S if and
only if (χA, S) over U is an int-soft (m, n)-ideal over U. Also,
we prove that a soft set ( K, S) over U is an int-soft
(m, n)-ideal over U if and only if ( K

m
° χS° K

n
, S) ⊆ ( K, S).

Moreover, we characterize (m, n) regular semigroups in
terms of int-soft (m, n)-ideals over U. In this respect, we
prove that a semigroup S is (m, n)-regular if and only if
( K, S) � ( K

m
° χS° K

n
, S) for each int-soft (m, n)-ideal
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( K, S) over U. In Section 4, first, we present the idea of int-
soft (m, 0)-ideal and (0, n)-ideal over U. After that, we
obtain some analogues’ results to the previous section.
Furthermore, we prove that a semigroup S is (m, n)-regular
if and only if ( K∩ G, S) � ( K

m
° G∩ K° G

n
, S) for each int-

soft (m, 0)-ideal ( K, S) and for each int-soft (0, n)-ideal
( G, S) over U. At the end of this section, we provide the
existence theorem for int-soft (m, n)-ideal overU and for the
minimality of int-soft (m, n)-ideal over U. We also provide
a conclusion in Section 5 that contains the direction for
certain potential work.

2. Preliminaries

Let S be a semigroup. For (∅≠ )Ω, [⊆ S, Ω[ is defined as
Ω[ � υZ|υ ∈ Ω, Z ∈ [{ }. A subset (∅≠ )Ω of S is called
a sub-semigroup of S if υZ ∈ Ω∀υ, Z ∈ Ω. A subset (∅≠ )Ω
of S is called a left (resp. right) ideal of S if
SΩ⊆Ω (resp.ΩS⊆Ω) and is called an ideal of S if Ω is both

left and right ideal of S. A sub-semigroup [ of S is called a bi-
ideal of S if [S[⊆[.

Let U be a universal set and let E be a set of parameters.
Let P(U) denote the power set of U and let Ω⊆E. A pair
( K,Ω) is called a soft set (over U) [32] if F: Ω⟶ P(U) is
a mapping. We denote the set of all soft sets over U with
parameter set S by SS(U).

Let ( K,Ω) and ( G, [) be soft sets over U. )en, (G, [)

is called a soft subset of ( K,Ω) if [⊆Ω and G(υ)⊆ K(υ),
∀υ ∈ [.

Let ( K,Ω) and ( G,Ω) be two soft sets. )en, for each
υ ∈ Ω, the union and intersection are defined as

( K⋓ G)(υ) � K(υ)∪ G(υ),

( K⋒ G)(υ) � K(υ)∩ G(υ).
(1)

For any two soft sets ( K,Ω) and ( G,Ω) of S, the int-soft
product K° G is defined as

( K° G)(υ) �
∪

υ�Zκ
K(Z)∩ G(κ) , if there exist Z, κ ∈ S such that υ � Zκ,

∅, otherwise.

⎧⎪⎨

⎪⎩
(2)

A soft set ( K, S) over U is called an int-soft right (resp.
Left) ideal over U if K(υκ)⊇ K(υ)(resp. K(υκ)⊇ K(κ))

for all υ, κ ∈ S. It is called an int-soft ideal over U if it is both
int-soft left and int-soft right ideal over U. An int-soft sub-
semigroup ( K, S) over U is called an int-soft bi-ideal over U

if K(υκZ)⊇ K(υ)∩ K(Z) for all υ, κ, Z ∈ S. )e set of all
int-soft left (resp. Right) ideals and int-soft bi-ideals over U

will be denoted by IL(U) (resp. IR(U)) and IB(U).
More concepts related to our study in different aspects

have been studied in [33–39].
For (∅≠ )Ω⊆ S, the characteristic soft set over U is

denoted by (χΩ, S) and defined as

χΩ(υ) �
U, if υ ∈ Ω,

∅, if υ ∉ Ω.
 (3)

Let (∅≠ )Ω, [⊆ S. )en, we have (1) χΩ°χ[ � χΩ[ and
(2) χΩ ∩ χ[ � χΩ∩[.

)e concept of (m, n)-ideals of semigroups was in-
troduced by Lajos [40] as follows. Let S be a semigroup and
m, n be nonnegative integers. )en, a sub-semigroup Ω of S

is said to be an (m, n)-ideal of S ifΩmSΩn ⊆Ω. After that, the
concept of (m, n)-ideals in various algebraic structures such
as ordered semigroups, LA-semigroups, and fuzzy

semigroups had been studied by, for instance, Akram et al.
[41], Bussaban and Changphas [42], Changphas [43],
Mahboob et al. [44], and many others.

We denote by [υ](m,n) the principal (m, n)-ideal, [υ](m,0)

the principal (m, 0)-ideal, and [υ](0,n) the principal
(0, n)-ideal generated by an element υ of S, respectively.
)ey were given by Krgovic [45] as follows:

[υ](m,n) � ∪
m+n

i�1
υi ∪ υm

Sυn
,

[υ](m,0) � ∪
m

i�1
υi ∪ υm

S,

[υ](0,n) � ∪
n

i�1
υi ∪ Sυn

.

(4)

In whatever follows, M(m,n), M(m,0), and M(0,n) denote
the set of all (m, n)-ideals, (m, 0)-ideals, and (0, n)-ideals of
S.

3. Int-Soft (m, n)-Ideals

Definition 1. An int-soft sub-semigroup ( K, S) over U is
called an int-soft (m, n)-ideal over U if

K Z1Z2, . . . , Zmκυ1υ2, . . . , υm( ⊇ K Z1( ∩ K Z2( ∩ · · · K Zm( ∩ K υ1( ∩ K υ2( ∩ · · · ∩ K υn( , (5)

for all Z1, Z2, . . . , Zn, κ, υ1, υ2, . . . , υm ∈ S.
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)e set of all int-soft (m, n)-ideals over U will be denoted
by I(m,n)(U).

Example 1. Let S � 0, υ, Z{ }. Define the binary operation ′ · ′
on S as follows.

·
0 0

0
0 0
υ ℏ

0 0 0
0

υ
ℏ 0 υ

)en, (S, ·) is a semigroup. Define ( K, S) ∈ SS(U) as

K(κ) �
U1, if κ ∈ 0, υ{ },

U2, if κ � Z,
 (6)

where U1, U2 ⊆U such that U2 ⊆U1. It is straightforward to
verify that ( K, S) ∈ I(m,n)(U).

Lemma 1. In S, ( K, S) ∈ IB(U)⇒( K, S) ∈ I(m,n)(U).

Proof (straightforward). □

Remark 1. In general, in a semigroup S, ( K, S) ∈ I(m,n)(U)

⇏( K, S) ∈ IB(U).

Example 2. Let S � 0, υ, Z, κ{ }. Define the binary operation

′ · ′ on S as follows.

·
0
υ
ℏ

κ

0 0 0 0
0 υ ℏ κ

υ υ υ υ
ℏ ℏ ℏ ℏ

0 0 υ 0

)en, S is a semigroup. Define ( K, S) ∈ SS(U) as

K(ω) �
U, if ω ∈ 0, κ{ },

∅, if ω ∈ υ, Z{ }.
 (7)

)en, ( K, S) ∈ I(m,n)(U), ∀m, n≥ 2, but K ∉ IB(U)

because ∅ � K(υ) � K(κZ0)⊉ K(κ)∩ K(0) � U.

Theorem 1. Let ( K, S), ( F, S) ∈ I(m,n)(U). 1en,
( K∩ F, S) ∈ I(m,n)(U).

Proof. Let υ, Z ∈ S. We have

( K∩ F)(υZ) � K(υZ)∩ F(υZ), � K(υ)∩ K(Z)∩ F(υ)∩ F(Z) � ( K∩ F)(υ)∩ ( K∩ F)(Z). (8)

Let υ1, υ2, . . . , υm, κ, Z1, Z2, . . . , Zn ∈ S. Now, we have

( K∩ F) υ1υ2, . . . , υmκZ1Z2, . . . , Zn( ⊇ K υ1υ2, . . . , υmκZ1Z2, . . . , Zn( ∩ F υ1υ2, . . . , υmκZ1Z2, . . . , Zn( ,

⊇ K υ1( ∩ K υ2( ∩ · · · ∩ K υm( ∩ K Z1( ∩ K Z2( ∩ · · · ∩ K Zn( ∩ F υ1( ∩ F υ2( 

∩ · · · ∩ F υm( ∩ F Z1( ∩ F Z2( ∩ · · · ∩ F Zn( 

⊇ ( K∩ F) υ1( ∩ ( K∩ F) υ2( ∩ · · · ∩ ( K∩ F) υm( ∩ ( K∩ F) Z1( ∩ ( K∩ F) Z2( ∩ · · · ∩ ( K∩ F) Zn( .

(9)

)erefore, ( K∩ F, S) ∈ I(m,n)(U). □

Theorem 2. Let (∅≠ )Ω⊆ S. 1en,
(∅≠ )Ω ∈M(m,n)⇔(χΩ, S) ∈ I(m,n)(U).

Proof. (⇒) Let υ1, υ2, . . . , υm, κ, Z1, Z2, . . . , Zn ∈ S. Below are
the cases we have:

Case 1. If xk ∉ Ω for some k ∈ 1, 2, . . . , m{ }, then

χΩ υ1υ2, . . . , υmκZ1Z2, . . . , Zn( ⊇χΩ υ1( ∩χΩ υ2( ∩ · · · ∩χΩ υm( ∩χΩ Z1( ∩χΩ Z2( ∩ · · · ∩χΩ Zn( . (10)

Case 2. If yl ∉ Ω for some l ∈ 1, 2, . . . , n{ }, then

χΩ υ1υ2, . . . , υmκZ1Z2, . . . , Zn( ⊇χΩ υ1( ∩χΩ υ2( ∩ · · · ∩χΩ υm( ∩χΩ Z1( ∩χΩ Z2( ∩ · · · ∩χΩ Zn( . (11)
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When xk ∉ Ω and yl ∉ Ω for k ∈ 1, 2, . . . , m{ } and
l ∈ 1, 2, . . . , n{ } are used in previous cases.

Case 3. If xk, yl ∈ Ω, ∀k ∈ 1, 2, . . . , m{ } and
l ∈ 1, 2, . . . , n{ }, then
υ1υ2, . . . , υmzZ1Z2, . . . , Zn ∈ ΩmSΩn ⊆Ω. )erefore,

χΩ υ1υ2, . . . , υmcZ1Z2, . . . , Zn(  � 1,

⊇χΩ υ1( ∩χΩ υ2( ∩ · · · ∩χΩ υm( ∩χΩ Z1( ∩χΩ Z2( ∩ · · · ∩χΩ Zn( .
(12)

Hence, (χΩ, S) ∈ I(m,n)(U).
(⇐) Let υ1, υ2, . . . , υm, Z1, Z2, . . . , Zn ∈ Ω and κ ∈ S.

)en, χΩ(υ1υ2, . . . , υmcZ1Z2, . . . , Zn)⊇χΩ(υ1)∩ χ
Ω(υ2)∩ · · · ∩χΩ(υm)∩χΩ(Z1)∩χΩ(Z2)∩ · · · ∩χΩ(Zn) � 1
implies χΩ(υ1υ2, . . . , υmcZ1Z2, . . . , Zn) � 1. )erefore,
υ1υ2, . . . , υmκZ1Z2, . . . , Zn ∈ Ω. )us, ΩmSΩn ⊆Ω, as
required. □

Theorem 3. Let ( K, S) ∈ SS(U). 1en, ( K, S) ∈ I(m,n)

(U)⇔( K
m
° χS° K

n
, S)⊆ ( K, S).

Proof. (⇒) Let a ∈ S. If ( K
m
° χS° K

n
)(a) � ∅, then

( K
m
° χS° K

n
, S)⊆ ( K, S). In the other case, when

(fm°S°fn)(a)≠∅, then there exist elements r, s ∈ S such
that a � rs, ( K

m
° χS)(r)≠∅ and K

n
(s)≠∅. As

( K
m
° χS)(s)≠∅, there exist u1, v1 ∈ S such that x � u1v1,

K
m

(u1)≠∅ and χS(v1) � U. It is easy to show that there
exist u2, v2, . . . , um, vm ∈ S such that, for any l ∈ 2, . . . , m{ },
we have ul−1 � ulvl, K(ul)≠ 0 and K

m− l+1
(vl)≠∅. As

K
n
(y)≠∅, there exist u1′, v1′ ∈ S such that y � u1′v1′,

K(u1′)≠∅ and K
n− 1

(v1′)≠∅. Similarly, there exist
u2′, v2′, . . . , un−1′, vn−1′ ∈ S such that, for l ∈ 2, . . . , n − 1{ }, we
have ul−1 � ul

′vl
′, K(ul
′)≠∅ and K

n− l
(vl
′)≠∅. Now, we

have

K
m
° χS° K

n
 (a) � ∪

a�rs

K
m
° χS(r)∩ K

n
(s) ,

� ∪
a�rs
∪

r�u1v1

K
m

u1( ∩ χS v1(  ∩ ∪
s�u1′v1′

K u1′( ∩ K
n− 1

v1′(   

� ∪
a�rs
∪

r�u1v1
∪

s�u1′v1′
K

m
u1( ∩ S v1( ∩ K u1′( ∩ K

n− 1
v1′(  

� ∪
a�rs
∪

r�u1v1
∪

s�u1′v1′
K

m
u1( ∩ K u1′( ∩ K

n− 1
v1′(  

� ∪
a�rs
∪

x�u1v1
∪

y�u1′v1′
∪

u1�u2v2

K u2( ∩ K
m− 1

v2(  ∩ ∪
u1′�u2′v2′

K u2′( ∩ K
n− 2

v2′(  ∩ K v1′(  

� ∪
a�xy
∪

x�u1v1
∪

y�u1′v1′
∪

u1�u2v2
∪

u1′�u2′v2′
K u2( ∩ K

m− 1
v2( ∩ K u2′( ∩ K

n− 2
v2′( ∩ K v1′(  

� ∪
a�xy
∪

x�u1v1
∪

y�u1′v1′
∪

u1�u2v2
∪

u1′�u2′v2′
· · · ∪

um−1�um,vm

∪
un−2′�un−1′vn−1′

K u2( ∩ K u3( ∩ · · · ∩ K um( ∩ K vm( ∩ K un−1′( ∩ K vn−1′( ∩ · · · ∩ K v2′( ∩ K v1′(  

⊆ ∪
a�xy

K u2u3, . . . , umvmv1u1′u2′, . . . , un−1′ vn−1′(  

� ∪
a�xy

K(xy) , sincex � u2u3, . . . , umvmv1 andy � u1′u2′, . . . , un−1′ vn−1′( 

� K(a).

(13)

(⇐) For any υ1, υ2, . . . , υm, κ, Z1, Z2, . . . , Zn ∈ S, let
a � υ1υ2, . . . , υmκZ1Z2, . . . , Zn. Since ( K

m
° χS° K

n
, S)

⊆ ( K, S), we have
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K υ1υ2, . . . , υmκZ1Z2, . . . , Zn(  � K(a),

⊇ K
m
° χS° K

n
 (a)

� ∪
a�pq

K
m
° χS (p)∩ K

n
(q) 

⊇ K
m
° χS  υ1υ2, . . . , υmκ( ∩ K

n
Z1Z2, . . . , Zn(  

⊇ ∪
υ1υ2 ,...,υmκ�uv

K
m

(u)∩ χS(v) ∩ ∪
Z1Z2 ,...,Zn�u′v′

K u′( ∩ K
n− 1

v′(   

⊇ K
m

υ1υ2, . . . , υm( ∩ χS(κ) ∩ K Z1( ∩ K
n− 1

Z2, . . . , Zn−1Zn(   

⊇ K
m

υ1υ2, . . . , υm( ∩ K
n− 1

Z1Z2, . . . , Zn−1( ∩ K Zn(  

⋮

⊇ K υ1( ∩ K υ2( ∩ · · · ∩ K υm( ∩ K Z1( ∩ K Z2( ∩ · · · ∩ K Zn(  .

(14)

Hence, ( K, S) ∈ I(m,n)(U). □

Definition 2. A semigroup S is called the (m, n)-regular if,
∀ a ∈ S∃x ∈ S such that a � amxan.

Lemma 2. If S is (m, n)-regular, ( K, S) ∈ I(m,n) (U)⇏( K,

S) ∈ IB(U).

Proof. Suppose that ( K, S) ∈ I(m,n)(U) and υ, κ, Z ∈ S.
Since S is (m, n)-regular, υκZ � υmpυnκZmqZn for some
p, q ∈ S. )erefore,

K(υκZ) � K υm
pυnκZ

m
qZ

n
( ,

� K υm
pυnκZ

m
q( Z

n
( 

⊇ K(υ)∩ K(Z) ,

(15)

as required. □

Lemma 3. Let ( K, S) ∈ SS(U). 1en, K(υ)⊆ K
l
(υl),

∀l ∈ Z+ and υ ∈ S.

Proof. Let υ ∈ S. As υl � υυl− 1, we have

K
l
υl

  � ∪
υl�Zκ

K(Z)∩ K
l− 1

(κ) ,

⊇ K(υ)∩ K
l− 1

υl− 1
 

� K(υ)∩ ∪
υl− 1�Z′κ′

K Z′( ∩ K
l− 2

κ′(  

⊇ K(υ)∩ K(υ)∩ K
l− 2

υl− 2
 

⋮

⊇ K(υ)∩ · · · ∩ K(υ)∩ K(υ)

� K(υ).

(16)

□

Theorem 4. S is (m, n)-regular⇔( K, S)⊆ ( K
m
° χS° K

n
, S),

∀( K, S) ∈ SS(U).

Proof. (⇒) Let υ ∈ S. )en, υ � υmxυn for some x ∈ S. We
have

K
m
° χS° K

n
 (υ) � ∪

υ�rs

K
m
° χS (r)∩ K

n
(s) ,

⊇ K
m
° χS  υm

x( ∩ K
n
υn

( 

� ∪
υmx�pq

K
m

(p)∩ χS(q) ∩ K
n
υn

( 

⊇ K
m

υm
( ∩ χS(x)∩ K

n
υn

( 

� K
m

υm
( ∩ K

n
υn

( ⊇ K(υ)∩ K(υ), by Lemma 3

� K(υ).

(17)
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)erefore, ( K, S)⊆ ( K
m
° χS° K

n
, S).

(⇐) Let υ ∈ S. Since ( χυ, S) ∈ SS(U), so by )eorem 2,
( χυ, S)⊆ ( χυ

m° χS° χυ
n, S). )erefore, χυ(x)⊆ χυ

m° χS° χυ
n

(x) � χυmSυn (x). It follows that υ ∈ υmSυn, and so, S is
(m, n)-regular. □

Theorem 5. S is (m, n)-regular ⇔( K, S) � ( K
m
° χS° K

n
,

S)∀( K, S) ∈ I(m,n)(U).

Proof. (⇒) Suppose that S is (m, n)-regular and
( K, S) ∈ I(m,n)(U). )en, by )eorems 3 and 4,
( K

m
° χS° K

n
, S)⊆ ( K, S) and ( K, S)⊆ ( K

m
° χS° K

n
, S).

Hence, ( K, S) � ( K
m
°χS° K

n
, S).

(⇐) Suppose that ω ∈ S. As [ω](m,n) ∈M(m,n), by )e-
orem 2, (χ[ω](m,n)

, S) ∈ I(m,n)(U). )us, by hypothesis, we
have

χ[ω](m,n)
� χm

[ω](m,n)
° χS°χ

n
[ω](m,n)

� χ [ω](m,n)( )
mS [ω](m,n)( )

n. (18)

)erefore, [ω](m,n) � ([ω](m,n))
mS([ω](m,n))

n. By
Lemma 1 in [4], [ω](m,n) � ωmSωn. )us, ω ∈ ωmSωn, as
required. □

Lemma 4. If ( K, S) ∈ I(m,n)(U) and ( F, S) is an int-soft
sub-semigroup over U, such that

K
m
° χS° K

n
, S ⊆ ( F, S)⊆ ( K, S), (19)

then ( F, S) ∈ I(m,n)(U).

Proof. As ( F, S) is an int-soft sub-semigroup over U, by
)eorem 3, it is sufficient to show that
( F

m
° χS° F

n
, S)⊆ ( F, S). Now,

F
m
° χS° F

n
 (υ)⊆ F

m
° χS° F

n
 (υ)⊆ F(υ). (20)

Hence, ( F, S) ∈ I(m,n)(U). □

Lemma 5. Let ( K, S) ∈ I(m,n)(U) and ( F, S) ∈ SS(U). If
( K° F, S)⊆ ( K, S) or ( F° K, S)⊆ ( K, S), then

(1) ( K° F, S) ∈ I(m,n)(U)

(2) ( F° K, S) ∈ I(m,n)(U)

Proof. When ( K° F, S)⊆ ( K, S), then we have

(( K° F)°( K° F))(υ)⊆ ( K°( K° F))(υ)

� ( K° K° F)(υ)

⊆ ( K° F)(υ).

(21)

It follows that ( K° F, S) is an int-soft sub-semigroup
over U. Also, we have

( K° F)
m° χS°( K° F)

n
 (υ) � ( K° F)

m° χS°( K° F)
n− 1°( K° F) (υ),

⊆ K
m
° χS° K

n− 1
°( K° F) (υ)

⊆ K
m
° χS° K

n
° F (υ)⊆ ( K° F)(υ).

(22)

)us, ( K° F, S) ∈ I(m,n)(U). Similarly, when
( F° K, S)⊆ ( K, S), then ( K° F, S) ∈ I(m,n)(U). Similar to
(1), it can be verified. □

4. Int-Soft (m, 0)-Ideals and Int-Soft (0, n)-
Ideals

Definition 3. An int-soft sub-semigroup ( K, S) over S is
called an int-soft (m, 0)-ideal over U if

K υ1υ2, . . . , υmκ( ⊇ K υ1( ∩ K υ2( ∩ · · · ∩ K υm( ,

(23)

for all υ1, υ2, . . . , υm, κ ∈ S.
An int-soft (0, n)-ideal can be described dually.
Whatever follows, we denote the set of all int-soft

(m, 0)-ideals and (0, n)-ideals over U by I(m,0)(U) and
I(0,n)(U).

Example 3. Let S � 0, υ, Z, κ{ }. Define the binary operation

′ · ′ on S as follows.

·
0
υ
ℏ

κ

0 0 0 0
0 υ ℏ κ

0 0 κ 0
0 0 0 0
0 0 0 0

)en, S is a semigroup. Define ( K, S), ( F, S) ∈ SS(U)

as

K(ω) �
U, if ω ∈ 0, Z{ },

∅, if ω ∈ υ, κ{ },


F(ω) �
V, if ω ∈ 0, υ{ },

∅, if ω ∈ Z, κ{ }.


(24)

It is straightforward to verify that ( K, S) ∈ I(m,0)(U)

and ( F, S) ∈ I(0,n)(U).

Lemma 6. In S, ( K, S) ∈ IR(U) (resp.( K, S) ∈ IL(U))⇒
( K, S) ∈ I(m,0)(U)(resp.( K, S) ∈ I(0,n)(U)).

Proof (straightforward). □

6 Journal of Mathematics



RE
TR
AC
TE
D

Remark 2. In general, ( K, S) ∈ I(m,0)(U)(resp.( K, S) ∈
I(0,n)(U))⇏( K, S) ∈ IR(U)(resp.( K, S) ∈ IL(U)).

Example 4. In Example 3, ( K, S) ∈ SS(U)⇒ ( K, S) ∈
I(m,0)(U),I(0,n)(U)∀m, n≥ 2, but ( K, S) ∉ IR(U),

IL(U).

Definition 4. A semigroup S is called the (m, 0)-regular
(resp. (0, n)-regular) if ∀υ ∈ S∃Z ∈ S such that
υ � υmZ(resp.υ � Zυn).

Lemma 7. 1e following assertions hold:

(1) In (m, 0)-regular S, ( K, S) ∈ I(m,0)(U) ⇒( K, S)

∈ IR(U)

(2) In (0, n)-regular S, ( K, S) ∈ I(0,n)(U)⇒( K, S)

∈ IL(U)

Proof. Let υ, Z ∈ S. Since S is (m, 0)-regular, so ∃κ ∈ S such
that υZ � υmκZ. )erefore, we have

K(υZ) � K υmκZ(  � K υm
(κZ)( ⊇ K(υ). (25)

Hence, ( K, S) ∈ IR(U). (2). Similarly, this can be
proved. □

Lemma 8. Let (∅≠ )Ω⊆ S. 1en, Ω ∈M(m,0) (resp.
Ω ∈∈M(0,n)) ⇔ the (χΩ, S) ∈ I(m,0)(U) (resp.
(χΩ, S) ∈ I(0,n)(U)).

Proof. (⇒) Let υ1, υ2, . . . , υm, κ ∈ S. If xk ∉ Ω, for some
k ∈ 1, 2, . . . , m{ }, then χΩ(υ1υ2, . . . , υmκ)⊇χΩ(υ1)∩
χΩ(υ2)∩ · · · ∩χΩ(υm). If xk ∈ Ω for each k ∈ 1, 2, . . . , m{ },
then υ1υ2, . . . , υmκ ∈ ΩmS⊆Ω. )erefore,

χΩ υ1υ2, . . . , υmc(  � 1⊇χΩ υ1( ∩χΩ υ2( ∩ · · · ∩χΩ υm( .

(26)

Hence, (χΩ, S) ∈ I(m,0)(U).
(⇐) Let υ1, υ2, . . . , υm ∈ Ω and κ ∈ S. )en,

χΩ(υ1υ2, . . . , υmc)⊇χΩ(υ1)∩χΩ(υ2)∩ · · · ∩χΩ(υm) � 1
implies χΩ(υ1υ2, . . . , υmc) � 1.)erefore, υ1υ2, . . . , υmc ∈ Ω.
)us, ΩmS⊆Ω, as required. □

Theorem 6. Let ( K, S) be any int-soft sub-semigroup over
U. 1en, ( K, S) ∈ I(m,0)(U) (resp. ( K, S) ∈ I(0,n)(U))
⇔( K

m
° χS, S)⊆ ( K, S) (resp. ( χS° K

n
, S)⊆ ( K, S)).

Proof. It is similar to the proof of )eorem 3. □

Lemma 9. Let S be (m, n)-regular, ( K, S) ∈ I(m,0)(U), and
( F, S) ∈ I(0,n)(U). 1en, ( K, S) � ( K° K, S) and
( F, S) � ( F° F, S).

Proof. Let ( K, S) ∈ I(m,0)(U). )en, ( K° K, S)⊆ ( K, S).
We have

K(x) ⊆ K
m
° χS° K

n
 (x) � K

m
° χS° K

n− 1
° K (x),

⊆ K
m
° χS° K

n− 1
° K

m
° χS° K

n
 (x)

⊆ K
m
° χS° K

m
° χS (x)

⊆ ( K° K)(x),

(27)

so we obtain ( K, S)⊆ ( K° K, S). Hence, ( K, S) �

( K° K, S). □

Theorem 7. In S, the following assertions are true:

(1) S is (m, 0)-regular ⇔( K, S)⊆ ( K
m
° χS, S),

∀( K, S) ∈ SS(U)

(2) S is (0, n)-regular ⇔( K, S)⊆ ( χS° K
n
, S),

∀( K, S) ∈ SS(U)

Proof. (⇒) Let υ ∈ S. )en, ∃Z ∈ S such that υ � υmZ. Now,
we have

K
m
° χS (υ) � ∪

υ�κs

K
m

 (κ)∩ χS(s) ,

⊇ K
m

υm
( ∩ χS(Z)

� K
m

υm
( 

⊇ K(υ).

(28)

)erefore, ( K, S)⊆ ( K
m
° χS, S).

(⇐) Take any υ ∈ S. Since ( χυ, S) ∈ SS(U),
( χυ, S)⊆ ( χυ

m°S, S). )erefore, χυ(Z)⊆ χυ
m°S(Z) � χυmS(Z).

It follows that υ ∈ υmS and so, S is (m, 0)-regular. Similar to
(1), (2) can be verified. □

Theorem 8. 1e following assertions are true in S:

(1) S is (m, 0)-regular ⇔( K, S) � ( K
m
° χS, S), ∀( K, S)

∈ I(m,0)(U)

(2) S is (0, n)-regular ⇔( K, S) � ( χS° K
n
, S), ∀( K, S)

∈ I(0,n)(U)

Proof. (1) (⇒) Suppose that S is (m, 0)-regular and
( K, S) ∈ I(m,0)(U). )en, by )eorems 7 and 6, we have
( K, S)⊆ ( K

m
° χS, S) and ( K

m
° χS, S)⊆ ( K, S). Hence,

( K, S) � ( K
m
° χS, S).

(⇐) Take R ∈∈M(m,0). By Lemma 8,
(χR, S) ∈ I(m,0)(U). By hypothesis (χR, S) � (χm

R ° χS, S). So,
χR(Z) � χm

R ° χS(Z) � χRmS(Z), and it follows that RmS � R.
)erefore, by )eorem 1 in [45], S is (m, n)-regular. Similar
to (1), (2) can be verified. □

Theorem 9. S is (m, n)-regular ⇔( K∩ F, S) � ( K
m
°

F
n
, S), ∀( K, S) ∈ I(m,0)(U), and ( F, S) ∈ I(0,n)(U).

Proof. (⇒) Suppose that ( K, S) ∈ I(m,0)(U) and
( F, S) ∈ I(0,n)(U). As S is (m, n)-regular, we have
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( K∩ F, S)⊆ ( K∩ F)
m° χS°( K∩ F)

n
, S ⊆ K

m
° χS° F

n
, S .

(29)

By )eorem 8 and Lemma 9, we have
( χS° F

n
, S) � ( F, S) and ( F, S) � ( F

n
, S). )erefore,

( K∩ F, S)⊆ ( K
m
° F

n
, S). Also, ( K

m
° F

n
, S)⊆ ( K∩ F, S).

)erefore, ( K∩ F, S) � ( K
m
° F

n
, S).

(⇐) Take R ∈M(m,0) and L ∈M(0,n). By Lemma 2,
( χR, S) ∈ I(m,0)(U) and (χL, S) ∈ I(0,n)(U). By hypothesis,
we have

χR∩L � χR∧ χL � χR
m° χL

n
� χRmLn , (30)

it follows that R∩L � RmLn. )us, by )eorem 12 in [44], S

is (m, n)-regular. □

Corollary 1. If S is (m, n)-regular, then ( K∩ F, S) � ( K°
F, S), ∀( K, S) ∈ I(m,0)(U) and ( F, S) ∈ I(0,n)(U).

Theorem 10. S is (m, n)-regular ⇔( K∩ F, S) � ( K
m
°

F∩ K° F
n
, S)∀ ( K, S) ∈ I(m,0)(U) and ( F, S) ∈ I(0,n)

(U).

Proof. (⇒) Suppose that ( K, S) ∈ I(m,0)(U) and
( F, S) ∈ I(0,n)(U). As S is (m, n)-regular, we have

( K∩ F, S)⊆ ( K∩ F)
m° χS°( K∩ F)

n
, S ⊆ K

m
° χS° F

n
, S ⊆ K

m
° F, S , (31)

and so, ( K∩ F, S)⊆ ( K
m
° F, S). Similarly, ( K∩ F, S)

⊆ ( K° F
n
, S). )us, ( K∩ F, S)⊆ ( K

m
° F∩ K° F

n
, S).

Since ( K, S) ∈ I(m,0)(U) and ( F, S) ∈ I(0,n)(U), the re-
verse inclusion holds. Hence, ( K∩ F, S) �

( K
m
° F∩ K° F

n
, S).

(⇐) Take R ∈M(m,0) and L ∈M(0,n). By Lemma 8,
( χR, S) ∈ I(m,0)(U) and ( χL, S) ∈ I(0,n)(U). Observe that,
by hypothesis, we have

χR∩L � χR ∩ χL � χR
m° χL ∩ χR° χL

n
� χRmL∩RLn , (32)

and it follows that R∩ L � RmL∩RLn. )erefore, by )eo-
rem 3 in [45], S is (m, n)-regular. □

Lemma 10. For ( K, S) ∈ SS(U), ( K∪ K
m
° χS, S)

∈ I(m,0)(U) (resp. ( K∪ χS° K
n
, S) ∈ I(0,n)(U)).

Proof (straightforward). □

Lemma 11. In (m, n)-regular semigroup S, for each
( K, S) ∈ I(m,n)(U), there exist ( G, S) ∈ I(m,0)(U) and
( F, S) ∈ I(0,n)(U) such that ( K, S) � ( G° F, S).

Proof. Suppose that ( K, S) ∈ I(m,n)(U). )en,
( K

m
° χS° K

n
, S)⊆ ( K, S). As S is (m, n)-regular, ( K, S)

⊆ ( K
m
° χS° K

n
, S). )erefore, ( K, S) � ( K

m
° χS° K

n
, S). Let

( G, S) � ( K∪ K
m
° χS, S) and ( F, S) � ( K∪ χS° K

n
, S). By

Lemma 9, ( G, S) ∈ I(m,0)(U) and ( F, S) ∈ I(0,n)(U). Since
S is (m, n)-regular, ( G, S) � ( K∪ K

m
° χS, S) � ( K

m
° χS, S)

and ( F, S) � ( K∪ χS° K
n
, S) � ( χS° K

n
, S), so

( G° F, S) � K
m
°S°S° K

n
, S  � K

m
°S° K

n
, S  � ( K, S),

(33)

as required. □

Lemma 12. In (m, n)-regular semigroup S,
∀( K, S) ∈ I(m,0)(U) and ( F, S) ∈ SS(U),
( K° F, S) ∈ I(m,n)(U).

Proof. Let ( K, S) ∈ I(m,0)(U) and ( F, S) ∈ SS(U). Now,

( K° F)
m° χS°( K° F)

n
 (υ) � ( K° F)°( K° F)°· · ·°( K° F)√√√√√√√√√√√√√√√√√√√√√√√√

m−times
° χS° ( K° F)°( K° F)°· · ·°( K° F)√√√√√√√√√√√√√√√√√√√√√√√√

n−times

⎛⎝ ⎞⎠(υ),

� ( K° F)° ( K° F)°( K° F)°· · ·°( K° F)√√√√√√√√√√√√√√√√√√√√√√√√
m−1−times

° χS° ( K° F)°( K° F)°· · ·°( K° F)√√√√√√√√√√√√√√√√√√√√√√√√
n−1−times

°( K° F)⎛⎝ ⎞⎠(υ)

⊆ ( K° F)° χS° χS° χS°( K° F) (υ)⊆ K° χS° F (υ)

⊆ K
m
° χS° F (υ) (by Lemma 9)

⊆ ( K° F)(υ).

(34)
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)erefore, ( K° F, S) ∈ I(m,n)(U).
By Lemmas 11 and 12, we have the following. □

Theorem 11. Let S be a (m, n)-regular and ( K, S) ∈ SS(U).
1en, ( K, S) ∈ I(m,n)(U)⇔ there exist ( F, S) ∈ I(m,0)(U)

and ( F, S) ∈ I(0,n)(U) such that ( K, S) � ( F° F, S).

Definition 5. An int-soft (m, n)-ideal ( K, S) over U is called
minimal if, for all int-soft (m, n)-ideal ( K′, S) over U,
( K′, S)⊆ ( K, S) implies ( K′, S) � ( K, S).

Dually, a minimum int-soft (m, 0)-ideal and minimal
int-soft (0, n)-ideal over U can be described.

Theorem 12. In (m, n)-regular semigroup S, a soft set
( K, tS) over U is a minimal int-soft (m, n)-ideal over U⇔
there exist a minimal int-soft (m, 0)-ideal ( G, S) and
a minimal int-soft (0, n)-ideal ( F, S) over U such that
( K, S) � ( G° F, S).

Proof. (⇒) Let ( K, S) ∈ I(m,n)(U) be minimal. By Lemma
11, ( K, S) � ( K∪ K

m
° χS, S)°( K∪ χS° K

n
, S). We show

that ( K∪ K
m
° χS, S) ∈ I(m,0)(U) is minimal. To show this,

let ( K′, S) ∈ I(m,0)(U) such that ( K′, S)⊆ ( K∪
K

m
° χS, S). Since S is (m, n)-regular, so, by Corollary 1,

( K∪ K
m
° χS, S)∩ ( K∪ χS° K

n
, S) � ( K∪ K

m
° χS, S)°

( K∪ χS° K
n
, S). Again, by Corollary 1, ( K′, S)°( K∪ χS°

K
n
, S) � ( K′, S)∩ ( K∪ χS° K

n
, S)⊆ ( K∪ K

m
° χS, S)∩ ( K

∪ χS° K
n
, S) � ( K, S). By Lemma 12, ( K′, S)°( K∪

χS° K
n
, S) ∈ I(m,n)(U). Since ( K′, S)°( K∪ χS° K

n
, S)⊆

( K, S), by minimality of the int-soft (m, n)-ideal ( K, S)

over U, we have ( K′, S)°( K∪ χS° K
n
, S) � ( K, S). )ere-

fore, ( K∪ K
m
° χS, S)∩ ( K∪ χS° K

n
, S) � ( K′, S)∩ ( K∪

χS° K
n
, S). As ( K, S)⊆ ( K∪ K

m
° χS, S)∩ ( K∪ χS° K

n
, S),

we have ( K, S)⊆ ( K′, S). So, ( K∪ K
m
° χS, S)⊆ ( K′, S).

Hence, ( K′, S) � ( K, S). )us, ( K∪ K
m
° χS, S) ∈ I(m,0)(U)

is minimal. Similarly, ( K∪ χS° K
n
, S) ∈ I(0,n)(U) is

minimal.
(⇐) Assume that ( K, S) � ( G° F, S) for some minimal

int-soft (m, 0)-ideal ( G, S) and minimal int-soft (0, n)-ideal
( F, S) over U. By Lemma 11, ( K, S) ∈ I(m,n)(U). To show
that ( K, S) ∈ I(m,n)(U) is minimal, let (W, S) ∈ I(m,n)(U)

such that (W, S)⊆ ( K, S). )en, (W
m
° χS, S)⊆ ( K

m
°

χS, S)⊆ (( G° F)m° χS, S) � (( G° F)°( G° F) °· · ·°( G° F) ° χS)
⊆ (( G° F)°( G° F)°· · ·°( G° F)° χS ⊆ G° χS ⊆ ( G

m
° χS° G

n
) ° χS

⊆ G
m
° χS ⊆ G.

As (W
m
° χS, S) ∈ I(m,0)(U) and ( G, S) ∈ I(m,0)(U) is

minimal, (W
m
° χS, S) � ( G, S). Similarly, ( χS°W

n
, S) �

( F, S). Now, ( K, S) � ( G° F, S) � ((W
m
° χS)°( χS°W

n
),

S)⊆ (W
m
° χS°W

n
, S)⊆ (W, S). Hence, ( K, S) ∈ I(m,n)(U) is

minimal. □

Corollary 2. 1ere is at least one minimal int-soft
(m, n)-ideal over U in (m, n)-regular semigroup S⇔ S has at
least one minimal int-soft (m, 0)-ideal and one minimal int-
soft (0, n)-ideal over U.

5. Conclusion

)e main purpose of this article is to present in semigroups
the ideas of int-soft (m, n)-ideals, int-soft (m, 0)-ideals, and
int-soft (0, n)-ideals. If we take m � 1 � n in the int-soft
(m, n)-ideals, int-soft (m, 0)-ideals, and int-soft (0, n)-ideals
in particular, then we get the int-soft bi-ideals, int-soft right
ideals, and int-soft left ideals. )e ideas proposed in this
paper can also be seen to be more general than int-soft bi-
ideals, int-soft right ideals, and int-soft left ideals. Also, if we
place m � 1 � n in the results of this paper, then the results
of [8] are deduced as corollaries, which is the main appli-
cation of the results of this paper.

In the future work, one can further study these concepts
to various algebraic structures such as semi-hypergroups,
semi-hyperrings, rings, LA-semigroups, BL-algebras, MTL-
algebras, R0-algebras, MV-algebras, EQ-algebras, and lattice
implication algebras.
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In this paper, the notions of (∈, ∈∨q)-fuzzy soft BCK/BCI-algebras and (∈, ∈∨q)-fuzzy soft sub-BCK/BCI-algebras are introduced,
and related properties are investigated. Furthermore, relations between fuzzy soft BCK/BCI-algebras and (∈, ∈∨q)-fuzzy soft
BCK/BCI-algebras are displayed. Moreover, conditions for an (∈, ∈∨q)-fuzzy soft BCK/BCI-algebra to be a fuzzy soft
BCK/BCI-algebra are provided. Also, the union, the extended intersection, and the “AND”-operation of two (∈, ∈∨q)-fuzzy soft
(sub-)BCK/BCI-algebras are discussed, and a characterization of an (∈, ∈∨q)-fuzzy soft BCK/BCI-algebra is established.

1. Introduction

'e uncertainty which appeared in economics, engineering,
environmental science, medical science, social science, and
so on is too complicated to be captured within a traditional
mathematical framework. In order to overcome this situa-
tion, a number of approaches including fuzzy set theory
[1, 2], probability theory, rough set theory [3, 4], vague set
theory [5], and the interval mathematics [6] have been
developed. 'e concept of soft set was introduced by
Molodtsov [7] as a new mathematical method to deal with
uncertainties free from the errors being occurred in the
existing theories. Later, Maji et al. [8, 9] defined fuzzy soft
sets and also described how soft set theory is applied to the
problem of decision making. Study on the soft set theory is
currently moving forward quickly. In [10], Jun et al. dis-
cussed the intersection-soft filters in R0-algberas. Roh and
Jun [11] studied positive implicative ideals of BCK-algebras
based on intersectional soft sets. Roy and Mayi [12] gave
results on applying fuzzy soft sets to the problem of decision
making. Aygünoǧlu and Aygün [13] proposed and inves-
tigated the notion of a fuzzy soft group. Furthermore, Jun
et al. [14] applied the theory of fuzzy soft sets to
BCK/BCI-algebras and introduced the notion of fuzzy soft
BCK/BCI-algebras (briefly, FSB-algebras) and related

notions. Moreover, Muhiuddin et al. studied and applied the
soft set theory to the different algebraic structures on various
aspects (see, e.g., [15–23]). Also, some related concepts based
on the present work are studied in [24–33].

In this paper, we define the notions of (∈, ∈∨q)-FSB-
algebras and (∈, ∈∨ q)-fuzzy soft sub-BCK/BCI-algebras.
Further, we investigate related properties and consider re-
lations between fuzzy soft BCK/BCI-algebras and
(∈, ∈∨q)-fuzzy soft BCK/BCI-algebras. Moreover, we prove
that every FSB-algebra over X is an (∈, ∈∨q)-FSB-algebra
over X and also show by an example that the converse of the
aforesaid statement is not true in general. In fact, we provide
a condition for an (∈, ∈∨q)-FSB-algebra to be a FSB-algebra.
In addition, we discuss the union, the extended intersection,
and the “AND”-operation of two (∈, ∈∨q)-FSB-algebras.
Finally, we establish a characterization of an (∈, ∈∨q)-fuzzy
soft BCK/BCI-algebra. 'e paper is organized as follows.
Section 2 summarizes some definitions and properties re-
lated to BCK/BCI-algebras, fuzzy sets, soft sets, and fuzzy
soft sets which are needed to develop our main results. In
Section 3, the notions of FSB-algebras are studied and the
concepts of θ-identity and θ-absolute FSB-algebras are in-
troduced. Section 4 is devoted to the study of (∈, ∈∨q)-FSB-
algebra. 'e paper ends with a conclusion and a list of
references.
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2. Preliminaries

A BCK/BCI-algebra is the most important class of logical
algebras which was introduced by K. Iséki.

By a BCI-algebra, we mean a system ( X; ∗ , 0), where X

be a nonempty set with a constant 0 and a binary operation
∗ if

(i) (∀ϖ, ϱ, ϑ ∈ X)(((ϖ∗ ϱ)∗ (ϖ∗ ϑ))∗ (ϑ∗ ϱ) � 0)

(ii) (∀ϖ, ϱ ∈ X)((ϖ∗ (ϖ∗ϱ))∗ ϱ � 0)

(iii) (∀ϖ ∈ X)(ϖ∗ϖ � 0)

(iv) (∀ϖ, ϱ ∈ X)(ϖ∗ϱ � 0, ϱ ∗ϖ � 0⇒ϖ � ϱ)
If a BCI-algebra X satisfies

(v) (∀ϖ ∈ X)(0∗ϖ � 0),
then X is called a BCK-algebra. Any BCK-algebra X

satisfies
(a1) (∀ϖ ∈ X)(ϖ∗ 0 � ϖ),
(a2) (∀ϖ, ϱ, ϑ ∈ X)(ϖ≤ϱ⟹ϖ∗ ϑ≤ ϱ∗ ϑ, ϑ∗ ϱ ≤
ϑ∗ϖ),
(a3) (∀ϖ, ϱ, ϑ ∈ X)((ϖ∗ ϱ)∗ ϑ � (ϖ∗ ϑ)∗ ϱ),
(a4) (∀ϖ, ϱ, ϑ ∈ X)((ϖ∗ ϑ)∗ (ϱ ∗ ϑ)≤ϖ∗ϱ)
where ϖ≤ ϱ if and only if ϖ∗ϱ � 0.
'e following conditions are satisfied in any
BCI-algebra X:
(a5) (∀ϖ, ϱ, ϑ ∈ X)(0∗ (0∗ ((ϖ∗ ϑ)∗ (ϱ ∗ ϑ))) �

(0∗ ϱ)∗ (0∗ϖ)).
(a6) (∀ϖ, ϱ ∈ X)(0∗ (0∗ (ϖ∗ϱ)) � (0∗ ϱ)∗ (0∗
ϖ)).

In a BCK/BCI-algebra X, a nonempty subset T of
X is called a BCK/BCI-subalgebra of X if
ϖ∗ϱ ∈ T∀ϖ, ϱ ∈ T.

In a BCK/BCI-algebra X, a fuzzy set μ in X is called a
fuzzy BCK/BCI-algebra if it satisfies

(∀ϖ, ϱ ∈ X)(μ(ϖ∗ϱ)≥min μ(ϖ), μ(ϱ) ). (1)

In a set X, a fuzzy set μ in X of the form

μ(ϑ) ≔
t ∈ (0, 1], if ϑ � ϖ,

0, if ϑ≠ϖ,
 (2)

is called a fuzzy point with support ϖ and value t and is
denoted by ϖt.

For a fuzzy set μ in a set X and a fuzzy point ϖt, Pu and
Liu [34] presented the symbol ϖtαμ, where
α ∈ ∈, q, ∈∨q, ∈∧q . If ϖt ∈ μ (resp. ϖt qμ), then we mean
μ(ϖ)≥ t (resp. μ(ϖ) + t> 1), and in this case, ϖt is said to
belong to (resp. be quasi-coincident with) a fuzzy set μ. If
ϖt ∈∨qμ (resp.ϖt ∈∧qμ), then wemeanϖt ∈ μ orϖtqμ (resp.
ϖt ∈ μ and ϖtqμ).

For an initial universe set U and a set of parameters E, let
P(U) denote the power set of U and Ω ⊂ E. Molodtsov [7]
defined the soft set as follows.

Definition 1 (see [7]). A pair (ζ,Ω) is called a soft set over U,
where ζ is a function given by

ζ: Ω⟶ P(U). (3)

'e set ζ(ε) for ε ∈ Ω may be considered as the set of
ε-approximate elements of the soft set (ζ,Ω). Clearly, a soft
set is not a set. We refer the reader to [7] for illustration
where several examples are presented.

Let F(U) denote the set of all fuzzy sets in U.

Definition 2 (see [9]). A pair (ζ,Ω) is called a fuzzy soft set
over U where ζ is a mapping given by

ζ: Ω⟶ F(U). (4)

For all ϖ ∈ Ω, ζ[ϖ] ∈ F(U) and it is called fuzzy value
set of parameter ϖ. If ζ[ϖ], for all ϖ ∈ Ω, is a crisp subset of
U, then (ζ,Ω) is degenerated to be the standard soft set.
'us, fuzzy soft sets are a generalization of standard soft sets.

We will useFS(U) to denote the set of all fuzzy soft sets
over U.

Definition 3 (see [9]). Let (ζ,Ω), (η,Ω) ∈ FS(U). 'e
union of (ζ,Ω) and (η, [) is defined to be the fuzzy soft set
(ξ,Υ) satisfying the following conditions:

(i) Υ � Ω∪[,
(ii) for all θ ∈ Υ,

ξ[θ] �

ζ[θ], if θ ∈ Ω\[,

η[θ], if θ ∈ [\Ω,

ζ[θ]∪ η[θ], if θ ∈ Ω∩[.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

In this case, we write (ζ,Ω)∪ (η, [) � (ξ,Υ).

Definition 4 (see [9]). If (ζ,Ω), (η, [) ∈ FS(U), then
“(ζ,Ω) AND (η, [)” denoted by (ζ,Ω) ∧ (η, [) is defined by

(ζ,Ω) ∧ (η, [) � (ξ,Ω × [), (6)

where ξ[α, β] � ζ[α]∩ η[β]∀(α, β) ∈ Ω × [.

Definition 5 (see [35]). For two soft sets (ζ,Ω) and (η, [),
the extended intersection is the soft set (ξ,Υ) where
Υ � Ω∪[, and for every θ ∈ Υ,

ξ[θ] �

ζ[θ], if θ ∈ Ω\[,

η[θ], if θ ∈ [\Ω,

ζ[θ]∩ η[θ], if θ ∈ Ω∩[.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

We write (ζ,Ω)∩ θ(η, [) � (ξ,Υ).

Definition 6 (see [35]). Let (ζ,Ω), (η, [) ∈FS(U) such
that Ω∩[≠∅. 'e restricted intersection of (ζ,Ω) and
(η, [) is denoted by (ζ,Ω)∩ r(η, [) and is defined as
(ζ,Ω)∩ r(η, [) � (ξ,Υ), where Υ � Ω∩[ and for all c ∈ Υ,
ξ[c] � ζ[c]∩ η[c].
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3. (∈, ∈∨q)-Fuzzy Soft BCK/BCI-Algebras

Definition 7 (see [36]). A fuzzy set μ in X is said to be an
(∈, ∈∨q)-fuzzy subalgebra of X if

(∀Z, κ ∈ X) ∀ω1,ω2 ∈ (0, 1](  Zω1
, κω2
∈ μ⟹ (Z∗ κ)min ω1 ,ω2{ } ∈∨qμ .

(8)

Definition 8. Let (ζ,Ω) ∈FS( X) where Ω⊆E. If there
exists a parameter υ ∈ Ω such that ζ[υ] is an (∈, ∈∨q)-fuzzy
subalgebra of X, we say that (ζ,Ω) is an (∈, ∈∨q)-fuzzy soft
BCK/BCI-algebra over X based on a parameter υ. If (ζ,Ω) is
an (∈, ∈∨q)-fuzzy soft BCK/BCI-algebra over X based on all
parameters, we say that (ζ,Ω) is an (∈, ∈∨q)-fuzzy soft
BCK/BCI-algebra over X.

'e notion FSBCK/BCIA( X) will be used for the set
of all (∈, ∈∨q)-fuzzy soft BCK/BCI-algebras.

Example 1. Let X � 0, i,J, ℓ{ } be a BCI-algebra with the
following table.

∗ 0   

0   

 0  

  0 



0





   0

LetΩ � e1, e2, e3  and let (ζ,Ω) ∈ FS( X). 'en, ζ[e1],
ζ[e2], and ζ[e3] are fuzzy sets in X. We define them as
follows:

e1

e2

e3

0   

0.8

0.7 0.3 0.3

0.2 0.4 0.2

0.3 0.3 0.7

0.6

0.6

ζ
~

'en, (ζ,Ω) is an (∈, ∈∨q)-fuzzy soft BCI-algebra over X.

Proposition 1. If (ζ,Ω) ∈ FSBCK/BCIA( X), then

(∀Z ∈ X)(ζ[υ](0)≥min ζ[υ](Z), 0.5 ), (9)

where υ is any parameter in Ω.

Proof. For Z ∈ X and υ ∈ Ω, we have
ζ[υ](0) � F[υ](Z∗ Z)≥min ζ[υ](Z), F[υ](Z), 0.5 

� min ζ[υ](Z), 0.5 .
(10)

Hence, ζ[υ](0)≥min F[υ](Z), 0.5  for all Z ∈ X and
any parameter υ in Ω. □

Theorem 1. Let (ζ,Ω) ∈ FSBCK/BCIA( X). If ρ⊆Ω, then
(ζ|ρ, [) ∈ FSBCK/BCIA( X).

Proof (straightforward) □

'e following example shows that there exists
(ζ,Ω) ∈ FS( X) such that

(i) (ζ,Ω) is not an (∈, ∈∨q)-fuzzy soft BCK/BCI-algebra
over X

(ii) 'ere exists a subset ρ of Ω such that (ζ|ρ, [) is an
(∈, ∈∨q)-fuzzy soft BCK/BCI-algebra over X

Example 2. Consider a BCK-algebra X � 0, i,J, κ, ℓ{ }{ with
the following table.

∗ 0

0 0 0 0 0

  0  0

0 0 0



 

 0 0 

  0 

  

0









Let Ω � e1, e2, e3, e4, e5  and let (ζ,Ω) ∈FS( X). 'en,
ζ[e1], ζ[e2], ζ[e3], ζ[e4], and ζ[e5] are fuzzy sets in X. We
define them as follows:

e1

e2

e3

e4

e5

0    

0.7

0.7

0.6

0.6

0.3

0.3 0.3

0.3

0.4 0.9

0.8

0.2

0.2

0.2

0.4

0.4

0.4

0.4 0.4

0.1 0.1

0.9

0.8 0.8

0.6

ζ
~

'en, (ζ,Ω) is not an (∈, ∈∨q)-fuzzy soft BCK-algebra
over X since it is not an (∈, ∈∨q)-fuzzy soft BCK-algebra
over X based on two parameters e2 and e4. However, if we
take ρ � e1, e3, e5 , then (ζ|ρ, [) is described as follows:

0ζ|ρ
~

0.7

0.7

0.9 0.9 0.3 0.3

0.2 0.2

0.6

0.6

0.4

0.4 0.4

0.4

0.4

  

e1

e3

e5

and it is an (∈, ∈∨q)-fuzzy soft BCK-algebra over X.

Theorem 2. Every fuzzy soft BCK/BCI-algebra over X is an
(∈, ∈∨q)-fuzzy soft BCK/BCI-algebra over X.

Proof (straightforward) □

'e converse of 'eorem 2 is not true as follows.

Example 3. Consider (ζ,Ω) ∈ FSBCIA( X) in Example 1.
We know that (ζ,Ω) is not a fuzzy soft BCI-algebra over X
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since (ζ,Ω) is not a fuzzy soft BCI-algebra over X based on
the parameter e1 as ζ[e1](0) � 0.6< 0.7 � ζ[e1](a).

Lemma 1 (see [36]). A fuzzy set μ in X is an (∈, ∈∨q)-fuzzy
subalgebra of

X⇔(∀Z, κ ∈ X)(μ(Z∗ κ)≥min μ(Z), μ(κ), 0.5 ). (11)

According to the Lemma 1, the following theorem is
straightforward.

Theorem 3. A fuzzy soft set (ζ,Ω) ∈FSBCK/BCIA( X) if
and only if

(∀Z, κ ∈ X)(∀u ∈ Ω)ζ[u](Z ∗ κ)≥min ζ[u](Z), ζ[u](κ), 0.5 .

(12)

Theorem 4. If (ζ,Ω) ∈ FSBCK/BCIA( X) such that

(∀υ ∈ Ω)(∀Z ∈ X)(ζ[υ](Z) < 0.5), (13)

then (ζ,Ω) is a fuzzy soft BCK/BCI-algebra over X.

Proof. Let Z, κ ∈ X and υ ∈ Ω. Since
(ζ,Ω) ∈FSBCK/BCIA( X), it follows from 'eorem 3
and (13) that

ζ[υ](Z∗ κ)≥min ζ[υ](Z), ζ[υ](κ), 0.5 

� min ζ[υ](Z), ζ[υ](κ) .
(14)

'erefore, (ζ,Ω) is a fuzzy soft BCK/BCI-algebra over
X. □

Theorem 5. If (ζ,Ω), (η, [) ∈FSBCK/BCIA( X), then
the extended intersection of (ζ,Ω) and (η, [) is an
(∈, ∈∨q)-fuzzy soft BCK/BCI-algebra over X.

Proof. Let (ζ,Ω)∩ e(η, [) � (ξ,Υ) be the extended inter-
section of (ζ,Ω) and (η, [). 'en, Υ � Ω∪[. For any υ ∈ Υ,
if υ ∈ Ω∖[ (resp. υ ∈ [∖Ω), then ξ[υ] � ζ[υ] ∈
FSBCK/BCIA( X) (resp. ξ[υ] � η[υ] ∈
FSBCK/BCIA( X)). If Ω∩[≠∅, then ξ[υ] � ζ[υ]∩
η[υ] ∈ FSBCK/BCIA( X) for all υ ∈ Ω∩[ since
the intersection of two (∈, ∈∨q)-fuzzy BCK/BCI-algebras
is an (∈, ∈∨q)-fuzzy BCK/BCI-algebra. 'erefore,
(ξ,Υ) ∈FSBCK/BCIA( X). □

Corollary 1. Ge restricted intersection of two (∈, ∈∨q)-fuzzy
soft BCK/BCI-algebras is an (∈, ∈∨q)-fuzzy soft
BCK/BCI-algebra.

Theorem 6. Let (ζ,Ω), (η, [) ∈FSBCK/BCIA( X).
If Ω∩[ � ∅, then the union (ζ,Ω)∪ (η, [) ∈
FSBCK/BCIA( X).

Proof. By Definition 3, we can write
(ζ,Ω)∪ (η, [) � (ξ,Υ), where Υ � Ω∪[ and for all e ∈ Υ,

ξ[e] �

ζ[e], if e ∈ Ω\[,

η[e], if e ∈ [\Ω,

ζ[e]∪ η[e], if e ∈ Ω∩[.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

Since υ ∈ Ω\[ or υ ∈ [\Ω for all υ ∈ Υ. If υ ∈ Ω\[, then
ξ[υ] � ζ[υ] ∈ FSBCK/BCIA( X) because (ζ,Ω) ∈ F
SBCK/BCIA( X). If υ ∈ [\Ω, then ξ[υ] � η[υ] ∈ F
SBCK/BCIA( X) because (η, [) ∈ FSBCK/BCIA( X).
Hence, (ξ,Υ) � (ζ,Ω) ∪(η,[) ∈ FSBCK/BCIA( X). □

'e following illustration shows that 'eorem 6 is not
valid if Ω∩[≠∅.

Example 4. Let X � 0, 1, i,J, κ{ } be a BCI-algebra with the
following table.

∗ 0 1

11

0 0





 

 

0

0

0

0







 

















 

0







Consider sets of parameters as follows:

Ω � α1, α2, α3, α4 ,

[ � α3, α4, β5 .
(16)

'en, Ω and [ are not disjoint sets of parameters. Let
(ζ,Ω) be a fuzzy soft set over X. 'en, ζ[α1], ζ[α2], ζ[α3],
and ζ[α4] are fuzzy sets in X. We define them as follows:

α1

α2

α3

α4

0ζ
~

1   

0.7

0.6

0.6 0.3 0.3 0.3

0.3

0.4

0.4

0.1 0.1

0.2

0.2 0.2

0.2

0.8

0.5 0.5

0.5

0.5

'en, (ζ,Ω) ∈FSBCK/BCIA( X). Let
(η, [) ∈ FS( X). 'en, η[α3], η[α4], and η[β5] are fuzzy
sets in X. We define them as follows:

α3

α4
β5

η~ 0 1   

0.7

0.9

0.6

0.6

0.3

0.3 0.3

0.2 0.4

0.1 0.1

0.2

0.8

0.5

0.5

'en, (η, [) ∈ FSBCK/BCIA( X), and the union

(ζ,Ω)∪ (η, [) � (ξ,Υ), (17)

of (ζ,Ω) and (η, [) is described as follows:
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α1

α2

α3

α4

β5

~
ξ 0 1   

0.7

0.7

0.9

0.6

0.6

0.6

0.6

0.3 0.3 0.3

0.3

0.3

0.3

0.3

0.2 0.2

0.2 0.2

0.4

0.4

0.10.8

0.5

0.5

0.5

For a parameter α3 ∈ Ω∩[, we have

ξ α3 (J∗ i) � ζ α3 ∪ η α3  (J∗ i)

� ζ α3 ∪ η α3  (κ)

� max ζ α3 (κ), η α3 (κ) 

� max 0.1, 0.1{ } � 0.1,

min ξ α3 (J), ξ α3 (i), 0.5 

� min ζ α3 ∪ η α3  (J), ζ α3 ∪ η α3  (i), 0.5 

� min max ζ α3 (J), η α3 (J) , max ζ α3 (J), η α3 (J) , 0.5 

� min max 0.3, 0.1{ }, max 0.1, 0.3{ }, 0.5{ }

� 0.3.

(18)

'us, from 'eorem 3, (ξ,Υ) ∉ FSBCK/BCIA( X)

based on the parameter α3 and so that
(ξ,Υ) ∉FSBCK/BCIA( X).

Theorem 7. If (ζ,Ω), (η, [) ∈FSBCK/BCIA( X), then
(ζ,Ω) ∧ (η, [) ∈ FSBCK/BCIA( X).

Proof. By Definition 4, we have

(ζ,Ω) ∧ (η, [) � (ξ,Ω × [), (19)

where ξ[u, v] � ζ[u]∩ η[v], ∀(u, v) ∈ Ω × ρ. For any
Z, κ ∈ X, we have

ξ[u, v](Z∗ κ) � (ζ[u]∩ η[v])(Z∗ κ) � min ζ[u](Z∗ κ), η[v](Z∗ κ) 

≥min min ζ[u](Z), ζ[u](κ), 0.5 , min η[v](Z), η[v](κ), 0.5  

� min min ζ[u](Z), η[v](Z) , min ζ[u](κ), η[v](κ) , 0.5 

� min (ζ[u]∩ η[v])(Z), (ζ[u]∩ η[v])(κ), 0.5 

� min ξ[u, v](Z), ξ[u, v](κ), 0.5 .

(20)

Hence, (ξ,Ω × [) � (ζ,Ω) ∧ (η, [) ∈FSBCK/BCI

A( X) based on (u, v) by using 'eorem 3. Since (u, v) is
arbitrary,

(ξ,Ω × [) � (ζ,Ω) ∧ (η, [) ∈FSBCK/BCIA( X).

(21)
□

Definition 9. Let (ζ,Ω), (η, [) ∈ FSBCK/BCIA( X). We
say that (ζ,Ω) is an (∈, ∈∨q)-fuzzy soft sub-BCK/BCI-al-
gebra of (η, [) if

(1) Ω⊆ ρ,

(2) ζ[u] is an (∈, ∈∨q)-fuzzy sub-BCK/BCI-algebra
of η[u] for all u ∈ Ω; that is, ζ[u] is an
(∈, ∈∨q)-fuzzy BCK/BCI-algebra satisfying the fol-
lowing condition:

(∀Z ∈ X)(ζ[u](Z) ≤ η[u](Z)). (22)

Example 5. Let (ζ,Ω) ∈ FSBCK/BCIA( X) in Example 1.
For a subset ρ � e1, e3  ofΩ, let (η, [) be fuzzy soft set over
X which is defined as follows:
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~η 0

e1

e3

  

0.56 0.67

0.670.23

0.23 0.23

0.230.56

'en, (η, [) is an (∈, ∈∨q)-fuzzy soft sub-BCI-algebra of
(ζ,Ω).

Example 6. Let X � 0, 1, 2, 3, 4{ } be a BCK-algebra with the
following Cayley table.

∗ 0

0 0

0

0 0

0

0

0

0 0

00

1

2

3

4

1

1

1

11

2

2 2
2

2

3

33

4

4 4 4 4

Let ρ � e1, e2, e3, e4, e5  be a set of parameters and let
(η, [) ∈FS( X) which is defined as follows:

~η

e1

e2

e3

e4

e5

0

0.7 0.7

0.1 0.10.8

0.2 0.2

0.2

0.6

0.9

0.6

0.60.6

0.3

0.3 0.3

0.3

0.3

0.3 0.3

0.8

0.4

0.4

0.5

0.4

1 2 3 4

'en, (η, [) ∈ FSBCKA( X). For a subset
Ω � e1, e3, e4  of ρ, let (ζ,Ω) ∈ FS( X) defined by

~
ζ 0

e1

e3

e4

0.56

0.56 0.56 0.56

0.78

0.78

0.1 0.1

0.2 0.2

0.3 0.3

0.23

0.34

0.34

1 2 3 4

'en, (ζ,Ω) is an (∈, ∈∨q)-fuzzy soft sub-BCK-algebra
of (η, [).

Theorem 8. Let (ζ,Ω), (η,Ω) ∈FSBCK/BCIA( X). If
ζ[u]⊆ η[u] for all u ∈ Ω, then (ζ,Ω) is an (∈, ∈∨q)-fuzzy soft
sub-BCK/BCI-algebra of (η,Ω).

Proof (straightforward) □

Theorem 9. Let (ξ,Υ) ∈FSBCK/BCIA( X). If (ζ,Ω) and
(η, [) are (∈, ∈∨q)-fuzzy soft sub-BCK/BCI-algebras of
(ξ,Υ), then so is the extended intersection of (ζ,Ω) and
(η, [).

Proof. 'e proof is followed from'eorem 5 and Definition
9. □

Theorem 10. Let (ξ,Υ) ∈ FSBCK/BCIA( X). If (ζ,Ω)

and (η, [) are (∈, ∈∨q)-fuzzy soft sub-BCK/BCI-algebras of
(ξ,Υ), then so is the union of (ζ,Ω) and (η, [) whenever Ω
and ρ are disjoint.

Proof. 'e proof is followed from'eorem 6 and Definition
9. □

Theorem 11. Let (ξ,Υ) ∈ FSBCK/BCIA( X). If (ζ,Ω)

and (η, [) are (∈, ∈∨q)-fuzzy soft sub-BCK/BCI-algebras of
(ξ,Υ), then (ζ,Ω) ∧ (η, [) is an (∈, ∈∨q)-fuzzy soft sub-
BCK/BCI-algebra of (ξ,Υ) ∧ (ξ,Υ).

Proof. 'e proof is followed from'eorem 7 and Definition
9. □

4. Conclusion

In this paper, we introduced the notions of (∈, ∈∨q)-fuzzy
soft BCK/BCI-algebras and (∈, ∈∨q)-fuzzy soft sub-
BCK/BCI-algebras and investigated their related prop-
erties. Also, we discussed relations between fuzzy soft
BCK/BCI-algebras and (∈, ∈∨q)-fuzzy soft BCK/BCI-al-
gebras. Moreover, conditions for an (∈, ∈∨q)-fuzzy soft
BCK/BCI-algebra to be a fuzzy soft BCK/BCI-algebra are
provided. Moreover, the union, the extended intersec-
tion, and the “AND”-operation of two (∈, ∈∨q)-fuzzy soft
(sub-) BCK/BCI-algebras are discussed, and a charac-
terization of an (∈, ∈∨q)-fuzzy soft BCK/BCI-algebra is
established.

We hope that this work will provide a deep impact on
the upcoming research in this field and other soft algebraic
studies to open up new horizons of interest and inno-
vations. To extend these results, one can further study
these notions on different algebras such as rings, hem-
irings, LA-semigroups, semihypergroups, semi-
hyperrings, BL-algebras, MTL-algebras, R0-algebras, MV-
algebras, EQ-algebras, d-algebras, Q-algebras, and lattice
implication algebras. Some important issues for future
work are (1) to develop strategies for obtaining more
valuable results and (2) to apply these notions and results
for studying related notions in other algebraic (soft)
structures.
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'e researcher has been facing problems while handling imprecise and vague information, i.e., the problems of networking,
decision-making, etc. For encountering such complicated data, the notion of fuzzy sets (FS) has been considered an influential
tool. 'e notion was extended to its generalizations by a number of researchers in different ways which helps to understand and
assess even more complex issues. 'is article characterizes imprecision with four kinds of values of membership. In this work, we
aim to define and examine cubic picture fuzzy sets and give an application on averaging aggregation operators. We first introduce
the notion of a cubic picture fuzzy set, which is a pair of interval-valued picture fuzzy set and a picture fuzzy set by giving examples.
'en, we define two kinds of ordering on these sets and also discuss some set-theoretical properties. Moreover, we introduce three
kinds of averaging aggregation operators based on cubic picture fuzzy sets and, at the end, we illustrate the results with a decision-
making problem by using one of the provided aggregation operators.

1. Introduction

In 1965, Zadeh generalized the classical set and perceived the
idea of fuzzy sets [1] to deal with uncertainty. 'is idea
allows creating some new dimensions in the field of research
and has been applied in many fields such as decision-
making, medical diagnosis, and pattern recognition [1–6].
But in fuzzy set only the membership degree is considered.
'e limitation of fuzzy sets is that the nonmembership
degree cannot be defined independently. To overcome this
limitation, several extensions have been made by many
researchers such as interval-valued fuzzy sets [7], intui-
tionistic fuzzy sets (IFSs) [8], cubic sets [9], and neu-
trosophic sets [10]. Among these various extensions of fuzzy
sets, cubic set is one of the most prominent extensions. Jun
[9] presented the idea of cubic sets in terms of interval-
valued fuzzy set and fuzzy set in 2012. 'e very basic
properties of cubic sets were studied, and some useful op-
erations were defined successfully in his paper. Khir et al.
[11] presented the idea of fuzzy sets and fuzzy logic and their

application. Later on, the idea of cubic sets was applied to
various fields by many authors (see [12–17]).

In recent years, the notion of fuzzy sets was further
generalized by Coung et al. and they proposed the concept of
picture fuzzy sets [18, 19], and this idea gained more and
more attention from the researchers. Several similarity
measures, correlation coefficients, and entropy measures for
picture fuzzy sets were defined by many authors and they
applied these sets in various fields (see [20–28]). Recently,
Coung et al. [29] have extended the picture fuzzy sets to the
interval-valued picture fuzzy sets. For some works on picture
fuzzy sets and several types of aggregation operators, we
refer the reader to [24, 25, 30–35].

Inspiring from the above study, we propose the concept
of cubic picture fuzzy sets, which is an extension of cubic
sets, picture fuzzy sets, and interval-valued picture fuzzy sets.

'e rest of the paper is organized as follows. In Section 2,
some basic definitions and results which are necessary for
the main sections are discussed. In Section 3, the concept of
cubic picture fuzzy sets which is amixture of an interval-valued
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picture fuzzy set and a picture fuzzy set is introduced, and some
basic operations on these sets were defined by giving several
examples. 'en the related theorems are studied. In Section 4,
three types of aggregation operators in the environment of
cubic picture fuzzy sets are discussed and, finally, one of them is
applied in decision-making problem in the last section.

2. Preliminaries

Definition 1 (see [1]). Let
_
S
⌣_

be a nonempty set. 'en U �

〈
_
s
⌣_

,UU(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

  is called a fuzzy set, where UU is a
membership function that maps each element of _S

_
in[0, 1].

Here we say that U is a fuzzy subset of
_
S
⌣_

.

Definition 2 (see [8]). Consider closed subinterval UU �

[U−
U,U+

U] of I where I � [0, 1] is called an interval number,
where 0≤U−

U ≤U
+
U ≤ 1. 'e set of all interval numbers is

denoted by [I]. A function β:
_
S
⌣_

⟶ [I] is said to be an
interval-valued fuzzy (IVF) set of

_
S
⌣_

. 'e set of all IVF sets of
_
S
⌣_

is denoted by [I]
_
s
⌣_

. For each UU ∈ [I]
_
s
⌣_

and _
s
⌣_ ∈

_
S
⌣_

,
UU(

_
s
⌣_

) � [U−
U(

_
s
⌣_

),U+
U(

_
s
⌣_

)] is called the degree of mem-
bership of an element _

s
⌣_ toUU; in this caseU−

U:
_
S
⌣_

⟶ I and
U+

U:
_
S
⌣_

⟶ I are fuzzy subsets of
_
S
⌣_

; these sets are known as
lower fuzzy set and upper fuzzy subset of

_
S
⌣_

, respectively.

Definition 3 (see [9]). 'e cubic set of a nonempty set
_
S
⌣_

is
defined as follows: I � 〈

_
s
⌣_

, A
_
(

_
s
⌣_

),B(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

 , where A
_

is an interval-valued fuzzy (IVF) set of
_
S
⌣_

and B is a fuzzy
subset of

_
S
⌣_

. A cubic set is simply denoted by I � 〈A
_
,B〉.

Definition 4 (see [9]). A cubic set I � 〈A
_
,B〉 is known to be

(1) an internal cubic set (briefly, ICS) if A
−

_ (
_
s
⌣_

)≤
B(

_
s
⌣_

)≤ A
+

_ (
_
s
⌣_

),∀ _s⌣_ ∈
_
S
⌣_

(2) an external cubic set (briefly, ECS) if B(
_
s
⌣_

) ∉
(A

−

_ (
_
s
⌣_

), A
+

_ (
_
s
⌣_

)),∀ _s⌣_ ∈
_
S
⌣_

Example 1. If A
_

is an IVF set of
_
S
⌣_

, then U �

〈
_
s
⌣_

, A
_
(

_
s
⌣_

), 1(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

 ,V �
_
s
⌣_

, A
_
(

_
s
⌣_

), 0(
_
s
⌣_

)> |
_
s
⌣_ ∈

_
S
⌣_

  and

C � 〈
_
s
⌣_

, A
_
(

_
s
⌣_

),B(
_
s
⌣_

)〉|
_
s
⌣_ε

_
S
⌣_

 , where λ(
_
s
⌣_

) � (A
−

_ (
_
s
⌣_

)+

A
+

_ (
_
s
⌣_

)/2) are cubic sets of
_
S
⌣_

.

Example 2. Let U � 〈
_
s
⌣_

, A
_
(

_
s
⌣_

), 1(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

  be a cubic set
of

_
S
⌣_

and A
_
(

_
s
⌣_

) � [0.3, 0.7] and B(
_
s
⌣_

) � 0.4, for each _
s
⌣_ ∈

_
S
⌣_

.
'en U is an ICS. If A

_
(

_
s
⌣_

) � [0.3, 0.7] and B(
_
s
⌣_

) � 0.8, for
each _

s
⌣_ ∈

_
S
⌣_

, then U is an ECS. If A
_
(

_
s
⌣_

) � [0.3,

0.7] andB(
_
s
⌣_

) �
_
s
⌣_, for each _

s
⌣_ ∈

_
S
⌣_

, then U is neither an ICS
nor an ECS.

Definition 5 (see [9]). Let
_
S
⌣_

be a nonempty set and let U �

〈A
_
,B〉 and V � 〈J, K〉 be two cubic sets of

_
S
⌣_

. 'en the
orderings are defined in the following way:

(1) (Equality) U � V⇔ A
_

� J and B � K

(2) (P-Order) U⊆ PV⇔ A
_
⊆ J and B≤K

(3) (R-Order) U⊆ RV⇔ A
_
⊆ J and B≥K

Definition 6 (see [9]). For arbitrary indexed family of cubic
setsUi � 〈

_
s
⌣_

, A_i(
_
s
⌣_

),Bi(
_
s
⌣_

)〉|
_
s
⌣_ε

_
S
⌣_

 , where iε∧, we define the
P-union, P-intersection, R-union, and R-intersection as
follows:

(1) ∪ P,iε∧Ui � 〈
_
s
⌣_

, (∪ iε∧Ii)(
_
s
⌣_

), (∨i∈Γαi)(
_
s
⌣_

)〉 |
_
s
⌣_ ∈

_
S
⌣_

}

(P − union)

(2) ∩ P,iε∧Ui � 〈
_
s
⌣_

, (∩ iε∧Ii)(
_
s
⌣_

), (∧iε∧αi)(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

 

(P − intersection)

(3) ∪ R,iε∧Ui � 〈
_
s
⌣_

, (∩ iε∧Ii)(
_
s
⌣_

), (∧iε∧αi)(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

 

(R − union)

(4) ∩ R,iε∧Ui � 〈
_
s
⌣_

, (∩ iε∧Ii)(
_
s
⌣_

), (∨i∈Λαi)(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

 

(R − intersection)

'e complement of U � 〈I, α〉 is also a cubic set that is
defined by Uc � 〈

_
s
⌣_

, Ic(
_
s
⌣_

), 1 − α(
_
s
⌣_

)〉|
_
s
⌣_ε

_
S
⌣_

 . Obviously,
(Uc)c � U for any indexed family of cubic sets Ui � 〈

_
s
⌣_

,

Ii(
_
s
⌣_

), αi(
_
s
⌣_

)〉|
_
s
⌣_ε

_
S
⌣_

}(iε∧):

(1) (∪ P,iε∧Ui)
c � ∩ P,iε∧(Ui)

c and (∩ P,iε∧Ui)
c � ∪ P,iε∧

(Ui)
c

(2) (∪ R,iε∧Ui)
c � ∩ R,iε∧(Ui)

c and ∩ R,iε∧Ui � ∪ R,iε∧
(Ui)

c

Definition 7 (see [18, 19]). A picture fuzzy set (briefly, PFS)

U of a universe
_
S
⌣_

is an object in the form of
_
s
⌣_

,UU(
_
s
⌣_

), ρU(
_
s
⌣_

), ϑU(
_
s
⌣_

)|
_
s
⌣_ ∈

_
S
⌣_

 , where UU, ρU, ϑU:
_
S
⌣_

⟶
[0, 1] are fuzzy sets that satisfy 0≤UU(

_
s
⌣_

)+ ρU(
_
s
⌣_

)+

ϑU(
_
s
⌣_

)≤ 1 for each _
s
⌣_ ∈

_
S
⌣_

. 'en the values UU(
_
s
⌣_

),

ρU(
_
s
⌣_

), ϑU(
_
s
⌣_

) are called the degree of positive membership of
_
s
⌣_ in U, the degree of neutral membership of _

s
⌣_ in U, and the

degree of negative membership of _
s
⌣_ in U, respectively. Now

(1 − UU(
_
s
⌣_

) + ρU(
_
s
⌣_

) + ϑU(
_
s
⌣_

)) could be called the degree of

refusal membership of _
s
⌣_ inU. Let PFS(

_
S
⌣_

) represent the set of

all picture fuzzy sets of a universe
_
S
⌣_

.

Definition 8 (see [18, 19]). LetU and V be the PFSs.'en the
set of operations are defined as follows:

(1) U⊆V if f(∀ _
s
⌣_ ∈

_
S
⌣_

,UU (
_
s
⌣_

)≤UV(
_
s
⌣_

) and ρU
(

_
s
⌣_

)≤ ρV(
_
s
⌣_

) and ϑU(
_
s
⌣_

)≤ ϑV(
_
s
⌣_

))

(2) U � V if f(U⊆V andV ⊆U)

(3) U∪V �
_
s
⌣_

, Max(UU(
_
s
⌣_

),UV(
_
s
⌣_

)),Min(ρU

(
_
s
⌣_

), ρV(
_
s
⌣_

)),Min(ϑU(
_
s
⌣_

), ϑV(
_
s
⌣_

))|
_
s
⌣_ ∈

_
S
⌣_

}

(4) U∩V � (
_
s
⌣_

,Min(UU (
_
s
⌣_

),UV (
_
s
⌣_

)),Min(ρU(
_
s
⌣_

),

ρV(
_
s
⌣_

)),Max(ϑU(
_
s
⌣_

), ϑV(
_
s
⌣_

))|
_
s
⌣_∈

_
S
⌣_

}
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Now, a generalization of interval-valued fuzzy set U is
proposed. Here int[0, 1] stands for the set of all closed
subintervals of [0, 1].

Definition 9 (see [29]). An interval-valued picture fuzzy set
(briefly, IVPFS) U of a universe

_
S
⌣_

is an object in the fol-
lowing form: U � (MU(

_
s
⌣_

), LU(
_
s
⌣_

), NU(
_
s
⌣_

))|
_
s
⌣_ ∈

_
S
⌣_

 , where

MU:
_
S
⌣_⟶ int([0, 1]), MU(

_
s
⌣_

) � MUL(
_
s
⌣_

)) , MUU(
_
s
⌣_

)   ∈ int([0, 1]), LU:
_
S
⌣_

⟶ int([0, 1]), LU(
_
s
⌣_

)

� LUL(
_
s
⌣_

) , LUU(
_
s
⌣_

)   ∈ int([0, 1]), NU:
_
S
⌣_

⟶ int([0, 1]), NU(
_
s
⌣_

)

� NUL(
_
s
⌣_

) , NUU(
_
s
⌣_

)   ∈ int([0, 1]). (1)

'e following condition is satisfied: supMU(
_
s
⌣_

)+

supLU(
_
s
⌣_

) + supNU(
_
s
⌣_

)≤ 1, (∀ _
s
⌣_ ∈

_
S
⌣_

). 'e IVPFS(
_
S
⌣_

) de-

notes the set of all interval-valued picture fuzzy sets of
_
S
⌣_

.

3. Cubic Picture Fuzzy Sets

In this section, we propose the notion of a cubic picture
fuzzy set and investigate its set-theoretical operations and
some basic properties by giving illustrative examples.

Definition 10. A cubic picture fuzzy set (briefly, CPFS) of
_
S
⌣_

is denoted and defined by CP � 〈
_
s
⌣_

, A
_
(

_
s
⌣_

),B(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

 ,
where A is an interval-valued picture fuzzy set and B is a
picture fuzzy set of

_
S
⌣_

. A CPFS CP � 〈
_
s
⌣_

, A_(
_
s
⌣_

),

B(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

} is simply denoted by CP � 〈A
_
,B〉.

Definition 11. A cubic picture fuzzy set CP � 〈A
_
,B〉 of

_
S
⌣_

is
said to be

(1) positive internal CPFS if B−
1(

_
s
⌣_

)≤B1(
_
s
⌣_

)≤B+
1(

_
s
⌣_

),
where B−

1(
_
s
⌣_

),B+
1(

_
s
⌣_

) are the lower and the upper

positive degrees in
_
S
⌣_

, respectively
(2) negative internal CPFS if B−

2(
_
s
⌣_

)≤B2(
_
s
⌣_

)≤B+
2(

_
s
⌣_

),
where B−

2(
_
s
⌣_

),B+
2(

_
s
⌣_

) are the lower and the upper

negative degrees in
_
S
⌣_

, respectively
(3) indeterminacy internal CPFS if B−

3(
_
s
⌣_

)≤ B3(
_
s
⌣_

)≤
B+

3(
_
s
⌣_

), where B−
3(

_
s
⌣_

),B+
3(

_
s
⌣_

) are the lower and the

upper indeterminacy degrees in
_
S
⌣_

, respectively

When conditions (1), (2), and (3) hold, then it is called an
internal cubic picture fuzzy set (ICPFS) in

_
S
⌣_

.

Definition 12. A cubic picture fuzzy set CP � 〈A
_
,B〉 is said

to be an external cubic picture fuzzy set (ECPFS) if

B1(
_
s
⌣_

) ∉ (B−
1 (

_
s
⌣_

),B+
1(

_
s
⌣_

)),B2(
_
s
⌣_

) ∉ (B−
2(

_
s
⌣_

),B+
2

(
_
s
⌣_

)) andB3(
_
s
⌣_

) ∉B−
3(

_
s
⌣_

),B+
3(

_
s
⌣_

) for all _
s
⌣_ ∈

_
S
⌣_

.

Example 3. Let
_
S
⌣_

�
_
s
⌣_

1,
_
s
⌣_

2,
_
s
⌣_

3  be given. 'en, the CPFS,

U �

_
s
⌣_

1, [0.1, 0.3], [0.3, 0.4], [0.1, 0.3], 0.2, 0.3, 0.2 ,

_
s
⌣_

2, [0.1, 0.3], [0.3, 0.5], [0.0, 0.2], 0.2, 0.4, 0.1 ,

_
s
⌣_

3, [0.1, 0.3], [0.1, 0.4], [0.0, 0.2], 0.2, 0.3, 0.1 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

(2)

is an internal cubic picture fuzzy set of
_
S
⌣_

.

Example 4. Let
_
S
⌣_

�
_
s
⌣_

1,
_
s
⌣_

2,
_
s
⌣_

3  be given; then the CPFS,

U �

_
s
⌣_

1, [0.2, 0.4], [0.0, 0.2], [0.1, 0.3], 0.4, 0.3, 0.0 ,

_
s
⌣_

2, [0.1, 0.3], [0.1, 0.4], [0.0, 0.3], 0.0, 0.5, 0.4 ,

_
s
⌣_

3, [0.1, 0.3], [0.2, 0.5], [0.0, 0.2], 0.4, 0.1, 0.3 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

(3)

is an external cubic picture fuzzy set of
_
S
⌣_

.

Theorem 1. If CP � 〈A
_
,B〉 is a cubic picture fuzzy set,

which is not an ECPFS, then there exists _
s
⌣_ ∈

_
S
⌣_

such that
B1(

_
s
⌣_

) ∈ (B−
1(

_
s
⌣_

),B+
1(

_
s
⌣_

)),B2(
_
s
⌣_

) ∈ (B−
2(

_
s
⌣_

),B+
2(

_
s
⌣_

)), and
B3(

_
s
⌣_

) ∈B−
3(

_
s
⌣_

)∩B+
3(

_
s
⌣_

).

Proof. 'e proof is straightforward and therefore is
omitted. □

Theorem 2. If CP � 〈A,B〉R is both ICPFS and ECPFS,

then the following is satisfied for each _
s
⌣_ ∈

_
S
⌣_

:
B1(

_
s
⌣_

) ∈ (B−
1(

_
s
⌣_

)∪B+
1(

_
s
⌣_

)), B2(
_
s
⌣_

) ∈ (B−
2(

_
s
⌣_

)∪B+
2(

_
s
⌣_

)),
and B3(

_
s
⌣_

) ∈ (B−
3(

_
s
⌣_

)∪B+
3(

_
s
⌣_

)).

Proof. Assume that CP is both ICPFS and ECPFS. 'en, by
using the definitions of ICPFS and ECPFS, we have
B−

1(
_
s
⌣_

)≤B1(
_
s
⌣_

)≤B+
1(

_
s
⌣_

) and B1(
_
s
⌣_

) ∉ (B−
1(

_
s
⌣_

), B+
1(

_
s
⌣_

)),

B−
2(

_
s
⌣_

)≤B2(
_
s
⌣_

)≤B+
2(

_
s
⌣_

) and B2(
_
s
⌣_

) ∉ (B−
2(

_
s
⌣_

), B+
2(

_
s
⌣_

),

B−
3(

_
s
⌣_

)≤B3(
_
s
⌣_

)≤B+
3(

_
s
⌣_

) and B3(
_
s
⌣_

), ∉ (B−
3(

_
s
⌣_

),B+
3(

_
s
⌣_

)

for all _
s
⌣_ ∈

_
S
⌣_

. 'us B1(
_
s
⌣_

) � B−
1(

_
s
⌣_

) or B1(
_
s
⌣_

) � B+
1(

_
s
⌣_

),

implying that (B1(
_
s
⌣_

) ∈ (B−
1(

_
s
⌣_

)∪B+
1(

_
s
⌣_

)), B2(
_
s
⌣_

) �

B−
2(

_
s
⌣_

) or B2(
_
s
⌣_

) � B+
1(

_
s
⌣_

) implying that B2(
_
s
⌣_

) ∈
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(B−
2(

_
s
⌣_

)∪B+
2(

_
s
⌣_

)),B3(
_
s
⌣_

) � B−
3(

_
s
⌣_

) or B3(
_
s
⌣_

) � B+
3(

_
s
⌣_

)

implying that B3(
_
s
⌣_

) ∈B−
3(

_
s
⌣_

)∪B+
3(

_
s
⌣_

). □

Definition 13. If U � CP � 〈A,B〉 and V � Sp � (J, K) are
the cubic picture fuzzy sets, then equality, P-order, and
R-order are defined as follows:

(1) (Equality) U � V⇔A � J and B � K

(2) (P-order) U⊆ PV⇔A⊆ J and B≤K

(3) (R-order) U⊆ RV⇔A⊆ J and B≥K

Definition 14. For any indexed family of CPFSs Ui �

〈
_
s
⌣_

, A_i(
_
s
⌣_

),Bi(
_
s
⌣_

)〉|
_
s
⌣_ ∈

_
S
⌣_

 (i ∈ Λ)we define the following:

(1) ∪ PUi � 〈
_
s
⌣_

, (∪ i∈I
A_i)(

_
s
⌣_

), (∨i∈IBi)(
_
s
⌣_

)〉/ _
s
⌣_ ∈

_
S
⌣_

 

(P-union)
(2) ∩ PUi � 〈

_
s
⌣_

, (∩ i∈I
A_i)(

_
s
⌣_

), (∧i∈IBi)(
_
s
⌣_

)/ _
s
⌣_ ∈

_
S
⌣_

〉 

(P-intersection)
(3) ∪ RUi � 〈

_
s
⌣_

, (∪ i∈I
A_i)(

_
s
⌣_

), (∧i∈IBi)(
_
s
⌣_

)/ _
s
⌣_ ∈

_
S
⌣_

〉 

(R-union)
(4) ∩ RUi � 〈

_
s
⌣_

, (∩ i∈I
A_i)(

_
s
⌣_

), (∨i∈IBi)(
_
s
⌣_

)/ _
s
⌣_ ∈

_
S
⌣_

〉 

(R-intersection)

'e complement of U � 〈A,B〉 is also a cubic picture
fuzzy set which is defined by Uc �

_
s
⌣_

, A
c
(

_
s
⌣_

),Bc(
_
s
⌣_

)|
_
s
⌣_∈

_
S
⌣_

 .

Proposition 1. For any CPFS U � 〈A,B〉, V � (J, K),
C � (L, M), and D � (O, T), we have the following:

(1) If U ⊆ PV and V ⊆ PC thenU ⊆ PC

(2) If U ⊆ PV andU⊆ PC thenU ⊆ PV ∩ PC

(3) If U ⊆ PV andC⊆ PV thenU∪ PC ⊆ PV

(4) If U ⊆ PV andC⊆ PD thenU∪ PC⊆ PV ∪ PD and
U∩ PC⊆ PV ∩ PD

(5) If U⊆ RV and V ⊆ RC thenU⊆ RC

(6) If U⊆ RV andU⊆ RC thenU⊆ RV ∩ RC

(7) If U⊆ RV andC⊆ RV thenU∪ RC⊆ RV

(8) If U⊆ RV andC⊆ RD thenU∪ RC⊆ RV ∪ RD andU∩
RC⊆ RV ∩ RD

Proof. 'e proof is straightforward and therefore is
omitted. □

Remark 1. Te following are noted:

(1) If U⊆ PV , thenVc⊈PUc

(2) If U⊆ RV , thenVc⊈RUc

Example 5. Let

U � [0.1, 0.2], [0.2, 0.25], [0.2, 0.4], (0.1, 0.2, 0.2){ },

V � [0.1, 0.2], [0.2, 0.3], [0.2, 0.5], (0.1, 0.2, 0.3){ },
(4)

and then U⊆ pV .
Since

U
c

� [0.2, 0.4], [0.2, 0.25], [0.1, 0.2], (0.2, 0.2, 0.1){ },

V
c

� [0.2, 0.5], [0.2, 0.3], [0.1, 0.2], (0.3, 0.2, 0.1){ },
(5)

we obtain V c⊈pUc.

Example 6. Let

U � [0.1, 0.2], [0.2, 0.25], [0.2, 0.4], (0.1, 0.2, 0.3){ },

V � [0.1, 0.2], [0.2, 0.3], [0.2, 0.5], (0.1, 0.2, 0.2){ },
(6)

and then U⊆ RV .
Since

U
c

� [0.2, 0.4], [0.2, 0.25], [0.1, 0.2], (0.3, 0.2, 0.1){ },

V
c

� [0.2, 0.5], [0.2, 0.3], [0.1, 0.2], (0.2, 0.2, 0.1){ },
(7)

we have Vc⊈RUc.

Theorem 3. LetU � 〈A,B〉 be a cubic picture fuzzy set. IfU
is an ICPFS (resp., ECPFS), then Uc is an ICPFS (resp.,
ECPFS).

Proof. 'e proof is straightforward and therefore is
omitted. □

Theorem 4. P-union and P-intersection of arbitrary indexed
family of ICPFSs Ui � 〈Ai,Bi〉|i ∈ Λ  are ICPFSs.

Proof. As Ui is an ICPFSs,

B
−
1i(

_
s
⌣_

)≤B1i(
_
s
⌣_

)≤B+
1i(

_
s
⌣_

),B
−
2i(

_
s
⌣_

)≤B2i(
_
s
⌣_

)≤B+
2i(

_
s
⌣_

),

B
−
3i(

_
s
⌣_

)≤B3i(
_
s
⌣_

)≤B+
3i(

_
s
⌣_

),

(8)

for each i ∈ Λ. 'is implies that

∪
i∈Λ

B
−
1i(

_
s
⌣_

)≤ ∨
i∈Λ

B1i(
_
s
⌣_

)≤ ∪
i∈Λ

B
+
1i(

_
s
⌣_

),

∪
i∈Λ

B
−
2i(

_
s
⌣_

)≤ ∨
i∈Λ

B2i(
_
s
⌣_

)≤ ∪
i∈Λ

B
+
2i(

_
s
⌣_

),

∪
i∈Λ

B
−
3i(

_
s
⌣_

)≤ ∨
i∈Λ

B3i(
_
s
⌣_

)≤ ∪
i∈Λ

B
+
3i(

_
s
⌣_

),

(9)

and, likewise,

∩
i∈Λ

B
−
1i(

_
s
⌣_

)≤ ∧
i∈Λ

B1i(
_
s
⌣_

)≤ ∩
i∈Λ

B
+
1i(

_
s
⌣_

),

∩
i∈Λ

B
−
2i(

_
s
⌣_

)≤ ∧
i∈Λ

B2i(
_
s
⌣_

)≤ ∩
i∈Λ

B
+
2i(

_
s
⌣_

),

∩
i∈Λ

B
−
3i(

_
s
⌣_

)≤ ∧
i∈Λ

B3i(
_
s
⌣_

)≤ ∩
i∈Λ

B
+
3i(

_
s
⌣_

).

(10)

Hence, P-union and P-intersection of Ui are CPFSs. □

Remark 2. P-union and P-intersection of ECPFSs need not
be an ECPFS.

Example 7. Let U � 〈A,B〉 and V � (J, K) be the ECPFSs
of I � [0, 1], where
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A.(
_
s
⌣_

) � 〈[0.2, 0.3], [0.0, 0.2], [0.0, 0.2]〉,B(
_
s
⌣_

) � 〈0.1, 0.3, 0.3〉 ,

J(
_
s
⌣_

) � 〈[0.0, 0.2], [0.1, 0.3], [0.2, 0.3]〉, K(
_
s
⌣_

) � 〈0.3, 0.0, 0.1〉 ,

(11)

for all _
s
⌣_ ∈ I.

(1) We know that U∪ PV � 〈
_
s
⌣_

, J(
_
s
⌣_

),B(
_
s
⌣_

)|
_
s
⌣_ ∈

_
S
⌣_

〉 

and B1(
_
s
⌣_

) ∈ (B−
1(

_
s
⌣_

), B+
1(

_
s
⌣_

)), B2(
_
s
⌣_

) ∈ (B−
2

(
_
s
⌣_

),B+
2(

_
s
⌣_

)),B3(
_
s
⌣_

) ∈ (B−
3(

_
s
⌣_

),B+
3(

_
s
⌣_

)) for all
_
s
⌣_ ∈

_
S
⌣_

. Hence, U∩ PV is not an ECPFS.
(2) We know that U∩ PV �

_
s
⌣_

, A_(
_
s
⌣_

), K(
_
s
⌣_

)|
_
s
⌣_ ∈

_
S
⌣_

  and
K1(

_
s
⌣_

) ∈ (K−
1(

_
s
⌣_

), K+
1(

_
s
⌣_

)), K2(
_
s
⌣_

) ∈ (K−
2(

_
s
⌣_

)

∪K+
2(

_
s
⌣_

)), K3(
_
s
⌣_

) ∈ (K−
3(

_
s
⌣_

), K+
3(

_
s
⌣_

)) for all _
s
⌣_ ∈

_
S
⌣_

.
Hence U∩ PV is not an ECPFS.

'e following example shows that the R-union and
R-intersection of CPFSs need not be an CPFS.

Example 8. Let U � 〈A
_
,B〉 and V � (J, K) be CPFSs in

I � [0, 1], where A
_
(

_
s
⌣_

) � [0.0, 0.2], [0.1, 0.3], [0.2, 0.3]{ },

B(
_
s
⌣_

) � 0.1,{ 0.3, 0.3} andJ(
_
s
⌣_

) � [0.2, 0.3],{ [0.0, 0.2],

[0.0, 0.2]}, K(
_
s
⌣_

) � 0.3, 0.0, 0.1 for all _s⌣_ ∈ I.

(1) We know that U∪ RV � 〈
_
s
⌣_

, J(
_
s
⌣_

), Z(
_
s
⌣_

)|
_
s
⌣_ ∈ I〉 

and B1(
_
s
⌣_

) ∉ (B−
1(

_
s
⌣_

),B+
1(

_
s
⌣_

)), B2(
_
s
⌣_

) ∉ (B−
2(

_
s
⌣_

),

B+
2(

_
s
⌣_

)), B3(
_
s
⌣_

) ∉ (B−
3(

_
s
⌣_

),B+
3(

_
s
⌣_

)) for all _s⌣_ ∈ I.
Hence, U∪ RV is not a CPFS.

(2) We know that U∩ RV � 〈
_
s
⌣_

, A
_
(

_
s
⌣_

), K(
_
s
⌣_

)|
_
s
⌣_ ∈ I〉 

and K1(
_
s
⌣_

) ∉ (K−
1(

_
s
⌣_

), K+
1(

_
s
⌣ _)), K2(

_
s
⌣_

) ∉ (K−
2(

_
s
⌣_

),

K+
2(

_
s
⌣_

)), (K3(
_
s
⌣_

) ∉ (K−
3(

_
s
⌣_

), K+
3 (

_
s
⌣_

))) for all _
s
⌣_ ∈ I.

Hence, U∩ RV is not a CPFS.

'e following example shows that “R-union” and “R-
intersection” of ECPFS need not be an ECPFS.

Example 9. Let U � 〈A
_
,B〉 and V � (J, K) be ECPFSs of

I � [0, 1] in whichA
_
(

_
s
⌣_

) � [0.0, 0.2], [0.1, 0.4], [0.2,{

0.3],B(
_
s
⌣_

) � 0.3, 0.0, 0.1{ },
andJ(

_
s
⌣_

) � [0.0, 0.3], [0.0, 0.2], [0.1, 0.2]{ }, and K(
_
s
⌣_

) �

〈0.4, 0.3, 0.0〉 for all _
s
⌣_ ∈ I.

(1) We know that U∪ RV � 〈
_
s
⌣_

, J(
_
s
⌣_

),B(
_
s
⌣_

)|
_
s
⌣_ ∈ I〉 ;

clearly B1(
_
s
⌣_

) ∈ (B−
1(

_
s
⌣_

),B+
1(

_
s
⌣_

)). Hence, U∩ RV is
not an ECPFS in I.

(2) We know that U∩ RV � 〈
_
s
⌣_

, A
_
(

_
s
⌣_

), K(
_
s
⌣_

)|
_
s
⌣_ ∈ I〉 ;

clearly K3(
A
_
) ∈ (K−

3(
_
s
⌣_

), K+
3(

_
s
⌣_

)) for all _
s
⌣_ ∈ I.

Hence, U∩ RV is not an ECPFS.

Theorem 5. Let U � 〈A
_
,B〉 and V � (J, K) be the CPFSs,

such that

Max B
−
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

) ≤ B1ΛK1( (
_
s
⌣_

) ,

Max B
−
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

) ≤ B2ΛK2( (
_
s
⌣_

),

Max B
−
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

) ≤ B3ΛK3( (
_
s
⌣_

) ,

(12)

for each _
s
⌣_ ∈

_
S
⌣_

. >en the “R-union” of U and V is a CPFS.

Proof. Let U � 〈A
_
,B〉 and V � (J, K) be two CPFSs, which

satisfy the conditions given in 'eorem 5; then we have
B−

1(
_
s
⌣_

)≤B1(
_
s
⌣_

)≤B+
1(

_
s
⌣_

), B−
2(

_
s
⌣_

)≤B2(
_
s
⌣_

)≤ B+
2(

_
s
⌣_

),

B−
3(

_
s
⌣_

)≤B3(
_
s
⌣_

)≤B+
3(

_
s
⌣_

), and K′−1 (
_
s
⌣_

)≤K1(
_
s
⌣_

)≤K′+1 (
_
s
⌣_

),

K′−2 (
_
s
⌣_

)≤K2 (
_
s
⌣_

)≤K′+2 (
_
s
⌣_

), K′−3 (
_
s
⌣_

)≤K3(
_
s
⌣_

)≤K′+3 (
_
s
⌣_

).
'ese imply that (B1(

_
s
⌣_

)ΛK1(
_
s
⌣_

))≤ (B1 ∪K1′)
− (

_
s
⌣_

),

(B2(
_
s
⌣_

)ΛK2(
_
s
⌣_

))≤ (B2 ∪K2′)
− (

_
s
⌣_

), (B3(
_
s
⌣_

)ΛK3(
_
s
⌣_

))≤
(B3 ∪K3′)

− (
_
s
⌣_

). It follows from the assumption that

B1 ∪K1′( 
−

(
_
s
⌣_

) � Max B
−
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  ≤ B1ΛK1( (w)≤ B1 ∪K1′( 
+
(

_
s
⌣_

),

B2 ∪K2′( 
−

(
_
s
⌣_

) � Max B
−
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  ≤ B2ΛK2( (w)≤ B2 ∪K2′( 
+
(

_
s
⌣_

),

B3 ∪K3′( 
−

(
_
s
⌣_

) � Max B
−
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  ≤ B3ΛK3( (
_
s
⌣_

)≤ B3 ∪K3′( 
+
(

_
s
⌣_

),

(13)

where U∪ RV � 〈
_
s
⌣_

, (A
_
∪ J)(

_
s
⌣_

), (BVK)(
_
s
⌣_

)|
_
s
⌣_ ∈

_
S
⌣_

〉 is a
CPFS. For two ECPFSs U and V of

_
S
⌣_

, two CPFSs U∗ and V∗

derived from the given sets need not be CPFSs. □

Example 10. Let U � 〈A
_
,B〉 and V � (J, K) be ECPFSs of

I � [0, 1], in which
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A _(
_s⌣_

) � [0.1, 0.2], [0.1, 0.3], [0.2, 0.4]{ }, B(
_s⌣_
)

� 〈0.3, 0.0, 0.5〉{ }, J(
_s⌣_
)

� [0.0, 0.2], [0.0, 0.3], [0.1, 0.3]{ }, K(
_s⌣_
)

� 〈0.3, 0.4, 0.0〉{ }, (14)

for all _
s
⌣_ ∈ I.

It is seen that U∗ � (A
_
, K) and V∗ � (J,B) are not

CPFSs, because in U∗, B1(
_
s
⌣_

) ∉ [0.1, 0.2], B2(
_
s
⌣_

) ∉ [0.1,

0.3],B3(
_
s
⌣_

) ∉ [0.2, 0.4] and in V∗, K1(
_
s
⌣_

) ∉ [0.0, 0.2],

K3(
_
s
⌣_

) ∉ [0.1, 0.3].
'e following example shows that the “P-union” of two

ECPFSs need not be a CPFS.

Example 11. Let U � 〈A
_
,B〉 and V � (J, K) be ECPFSs of

I � [0, 1] in whichA _(
_
s
⌣_

) � [0.2, 0.4], [0.1, 0.2],{ [0.0, 0.3]},

B(
_
s
⌣_

) � 0.1, 0.3, 0.4{ }. J(
_
s
⌣_

) � [0.0, 0.2], [0.1, 0.4],{ [0.2,

0.3]} and K(
_
s
⌣_

) � 0.3, 0.0, 0.1{ } for all _
s
⌣_∈ I, U∪ PV �

_
s
⌣_

, J(
_
s
⌣_

),B(
_
s
⌣_

)|
_
s
⌣_∈ I ; clearly, 0.4 ∉ [0.2, 0.3]. HenceU∪ PV

is not a CPFS of I.

Theorem 6. Let U � (A
_
,B) and V � (J, K) be the CPFSs in

W satisfying the following inequalities:

Min B
−
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

) ≥ B1∨K1( (
_
s
⌣_

),

Min B
−
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

) ≥ B2∨K2( (
_
s
⌣_

),

Min B
−
3(

_
s
⌣_

), K
′−
3i (

_
s
⌣_

) ≥ B3∨K3( (
_
s
⌣_

),

(15)

for all _
s
⌣_ ∈

_
S
⌣_

. >en the “R-intersection” of U and V is a CPFS.

Proof. 'e proof is straightforward and therefore is
omitted. □

Theorem 7. Let U � (A
_
,B) and V � (J, K) be the ECPFSs.

if U∗ � (A
_
, K) and V∗ � (J,B) are CPFSs, then P-union

(U∪ PV) of U and V is a CPFS.

Proof. 'e proof is straightforward and therefore is
omitted. □

Theorem 8. Let U � (A
_
,B) and V � (J, K) be the ECPFSs.

If U∗ � (A
_
, K) and V∗ � (J,B) are CPFSs, then P-inter-

section (U∪ PV) of U � (A
_
,B) and V � (J, K) is a CPFS.

Proof. 'e proof is straightforward and therefore is
omitted. □

Remark 3. For two ECPFSs U and V of W, the derived
CPFSs U∗ and V∗ need not be ECPFSs.

Example 12. Let U � (A
_
,B) and V � (J, K) be ECPFSs of

I � [0, 1] in which

A _(
_
s
⌣_

) � [0.0, 0.3], [0.1, 0.2], [0.2, 0.4]{ },B(
_
s
⌣_

)

� 0.4, 0.0, 0.1{ }, J(
_
s
⌣_

)

� [0.1, 0.2], [0.0, 0.3], [0.2, 0.3]{ }, K(
_
s
⌣_

)

� 0.3, 0.4, 0.1{ }, (16)

for all _
s
⌣_ ∈ I. Now, from the above, we observe that U∗ �

(A
_
, K) and V∗ � (J,B) are not ECPFSs, because, in

U∗, K1(
_
s
⌣_

) ∈ [0.0, 0.3], and, in V∗,B2(
_
s
⌣_

) ∉ [0.0, 0.3].

Theorem 9. Let U � (A
_
,B) and V � (J, K) be two ECPFSs.

If U∗ � (A
_
, K) and V∗ � (J,B) are ECPFSs, then P-union

(U∪ PV) of U � (A
_
,B) and V � (J, K) is an ECPFS.

Proof. Let U � (A
_
,B) and V � (J, K) be ECPFSs, such that

U∗ � (A
_
, K) and V∗ � (J,B) are ECPFSs. 'en we obtain

that B1(
_
s
⌣_

) ∉ (B−
1(

_
s
⌣_

),B+
1(

_
s
⌣_

)),B2(
_
s
⌣_

) ∉ (B−
2(

_
s
⌣_

),B+
2(

_
s
⌣_

)),

and B3(
_
s
⌣_

) ∉ (B−
3(

_
s
⌣_

),B+
3(

_
s
⌣_

)), and K1(
_
s
⌣_

) ∉ K′−1 (
_
s
⌣_

),

K′+1 (
_
s
⌣_

)}, K2(
_
s
⌣_

) ∉ K′−2 (
_
s
⌣_

), K′+2 (
_
s
⌣_

) , and K3(
_
s
⌣_

) ∉

K′−3 (
_
s
⌣_

), K′+3 (
_
s
⌣_

) .
Hence,

B1∨K1( (
_
s
⌣_

) ∉ Max B
−
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  ,Max B
+
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)  ,

B2∨K2( (
_
s
⌣_

) ∉ Max B
−
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  ,Max B
+
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)  ,

B3∨K3( (
_
s
⌣_

) ∉ Max B
−
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  ,Max B
+
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)  .

(17)
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'is implies that

B1∨K1( (w) ∉ B1 ∪K1′( 
−

(
_
s
⌣_

), B1 ∪K1′( 
+
(

_
s
⌣_

) ,

B1∨K1( (w) ∉ B2 ∪K2′( 
−

(
_
s
⌣_

), B2 ∪K2′( 
+
(

_
s
⌣_

) ,

B1∨K1( (w) ∉ B3 ∪K3′( 
−

(
_
s
⌣_

), B3 ∪K3′( 
+
(

_
s
⌣_

) .

(18)

Hence, U∪ PV is an ECPFS. □

Theorem 10. Let U � (A
_
,B) and V � (J, K) be the ECPFSs

of
_
S
⌣_

such that

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   

≥ B1∨K1( (
_
s
⌣_

)>Max Min B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   

≥ B1∨K2( (
_
s
⌣_

)>Max Min B
+
2(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   

≥ B3∨K3( (w)>Max Min B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Min B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(19)

for all _
s
⌣_ ∈

_
S
⌣_

.
Then, the P-intersection of U and V is an ECPFS.

Proof. 'e proof is straightforward by the definitions in
[11, 13]. □

Theorem 11. Let U � (A
_
,B) and V � (J, K) be the CPFSs,

such that the following implications are valid:

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)    � B1∨K1( (
_
s
⌣_

)

� Max Min B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)    � B2∨K2( (
_
s
⌣_

)

� Max Min B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Min B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ≥ B3∨K3( (
_
s
⌣_

)

� Max Min B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Min B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(20)

for all _
s
⌣_ ∈

_
S
⌣_

. >en the P-intersection ofU and V is both an
ECPFS and a CPFS.

Proof. It is straightforward by the definitions in [11, 13].
'e following example shows that the P-union of two

ECPFSs needs not be an ECPFS. □
Example 13. Let U � (A

_
,B) and V � (J, K) be two ECPFSs

of I � [0, 1] defined as follows:

Â _(
_
s
⌣_

) � [0.1, 0.3], [0.2, 0.3], [0.0, 0.2]{ },

B(
_
s
⌣_

) � 0.0, 0.1, 0.3{ },

J(
_
s
⌣_

) � [0.1, 0.2], [0.2, 0.4], [0.1, 0.3]{ },

K(
_
s
⌣_

) � 0.3, 0.1, 0.4{ },

(21)

for all _
s
⌣_ ∈ I.
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Since U∪ PV �
_
s
⌣_

, J(
_
s
⌣_

),B(
_
s
⌣_

)
_
s
⌣_ ∈ I , clearly

0.3 ∈ [0.1, 0.3]. Hence U∪ PV is not an ECPFS of I.

Theorem 12. Let U � (A
_
,B) and V � (J, K) be two

ECPFSs, such that the following are satisfied:

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   > B1∨K1( (
_
s
⌣_

)

≥Max Min B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   > B2∨K2( (
_
s
⌣_

)

≥Max Min B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Min B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   > B3∨K3( (
_
s
⌣_

)

≥Max Min B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Min B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(22)

for all _
s
⌣_ ∈

_
S
⌣_

. >en, P-union of U and V is an ECPFS.

Proof. 'e proof is straightforward and therefore is
omitted. □

Theorem 13. Let U � (A
_
,B) and V � (J, K) be two

ECPFSs, which satisfy the followings conditions:

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   > B1∨K1( (w)

≥Max Min B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   > B2∨K2( (
_
s
⌣_

)

≥Max Min B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Min B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   > B3∨K3( (
_
s
⌣_

)

≥Max Min B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Min B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(23)

for all _
s
⌣_ ∈

_
S
⌣_

. >en R-union of U and V is an ECPFS. Proof. 'e proof is straightforward. □
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Theorem 14. LetU � (A
_
,B) and V � (J, K) be the ECPFSs,

such that the following are satisfied:

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ≥ B1∨K1( (
_
s
⌣_

)

>Max Min B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ≥ B2∨K2( (
_
s
⌣_

)

>Max Min B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Min B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ≥ B3∨K3( (w)

>Max Min B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Min B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(24)

for all _
s
⌣_ ∈

_
S
⌣_

. >en R-intersection ofU and V is an ECPFS.

Proof. 'e proof is straightforward. □

Remark 4. Let U � (A
_
,B) and V � (J, K) be two ECPFSs,

such that the following are satisfied:

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   > B1∨K1( (
_
s
⌣_

)

� Max Min B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   > B2∨K2( (
_
s
⌣_

)

� Max Min B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Min B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   > B3∨K3( (w)

� Max Min B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Min B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(25)

for all _
s
⌣_ ∈

_
S
⌣_

. 'en R-intersection of U and V may not be
an ECPFS.

Theorem 15. Let U � (A
_
,B) and V � (J, K) be two

ECPFSs, such that the following are satisfied:

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)    � B1∨K1( (
_
s
⌣_

)

� Max Min B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Min B
−
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)    � B2∨K2( (
_
s
⌣_

)

� Max Min B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Min B
−
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   > B3∨K3( (w)

� Max Min B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Min B
−
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(26)

Journal of Mathematics 9



RE
TR
AC
TE
D

for all _
s
⌣_ ∈

_
S
⌣_

.>en R-intersection ofU and V is both an ECPFS
and a CPFS.

Proof. 'e proof is straightforward. □

Theorem 16. Let U � (A
_
,B) and V � (J, K) be two CPFSs.

If the implications are satisfied, for all _
s
⌣_ ∈

_
S
⌣_

,

B1∧K1( (
_
s
⌣_

)≤Max B
−
1(

_
s
⌣_

), K
−
1(

_
s
⌣_

) ,

B2∧K2( (
_
s
⌣_

)≤Max B
−
2(

_
s
⌣_

), K
−
2(

_
s
⌣_

) ,

B3∧K3( (
_
s
⌣_

)≤Max B
−
3(

_
s
⌣_

), K
−
3(

_
s
⌣_

) ,

(27)

then the R-union of U and V is an EPCFS.

Proof. 'e proof is straightforward. □

Theorem 17. Let U � (A
_
,B) and V � (J, K) be two CPFSs.

If the following implications are satisfied for all _
s
⌣_

∈
_
S
⌣_

, (B1∨K1) (
_
s
⌣_

)≥Min B+
1(

_
s
⌣_

), K′+1 (
_
s
⌣_

) ,(B2 ∨K2)(w)

≥Min (B+
2(

_
s
⌣_

), K′+2 (
_
s
⌣_

)), and(B3∨K3)(w)≥Min(B3
+(

_
s
⌣_

), K′+3 (
_
s
⌣_

)), then R-intersection of U and V is an ECPFS.

Proof. 'e proof is straightforward. □

Theorem 18. Let U � (A
_
,B) and V � (J, K) be two

ECPFSs, such that the following implications hold:

Min Max B
+
1(

_
s
⌣_

), K
′−
1 (

_
s
⌣_

)  , Max B
−
1(

_
s
⌣_

), K
+
1(

_
s
⌣_

)   ≤ B1∧K1( (
_
s
⌣_

)≤Max B
+
1(

_
s
⌣_

), K
′+
1 (

_
s
⌣_

)   ,

Min Max B
+
2(

_
s
⌣_

), K
′−
2 (

_
s
⌣_

)  , Max B
−
2(

_
s
⌣_

), K
+
2(

_
s
⌣_

)   ≤ B2∧K2( (
_
s
⌣_

)≤Max Min B
+
2(

_
s
⌣_

), K
′+
2 (

_
s
⌣_

)   ,

Min Max B
+
3(

_
s
⌣_

), K
′−
3 (

_
s
⌣_

)  , Max B
−
3(

_
s
⌣_

), K
+
3(

_
s
⌣_

)   ≤ B3∧K3( (
_
s
⌣_

)≤Max Min B
+
3(

_
s
⌣_

), K
′+
3 (

_
s
⌣_

)   ,

(28)

for all _
s
⌣_ ∈

_
S
⌣_

. >en, R-union of U and V is a CPFS.

Proof. 'e proof is straightforward. □

4. Averaging Aggregation Operators

In this section, we present three types of new aggregation
operators called cubic picture fuzzy weighted averaging,
cubic picture fuzzy ordered weighted averaging, and cubic
picture fuzzy hybrid weighted averaging operators based on
cubic picture fuzzy sets. Let CPF denote the collection of
all CPFSs.

Definition 15 (see [11]). A function T: [0, 1] × [0, 1] −⟶ [0,
1] is said to be a t-norm which satisfies the following:

(1) Boundary: T (0, 0)� 0; T (x, 1)�T (1, x)� x for all x ∈
[0, 1]

(2) Monotonicity: If x1 ≤y1 and x2 ≤y2, then
T(x1, x2)≤T(y1, y2)

(3) Commutativity: T(x1, x2) � T(x2, x1)

(4) Associativity: T(x1, T(x2, x3)) � T(T(x1, x2), x3)

A function S defined by S(x, y) � 1 − T(1 − x, 1 − y) is
called t-co-norm. A decreasing function g generates a
t-norm as T(x, y) � g−1(g(x) + g(y)) such that g(1) � 0
and function h generates the t-co-norm as
S(x, y) � h−1(h(x) + h(y)), where h(t) � g(1 − t). Based
on these norms’ generators, g and h will be used in the next
theorems.

Definition 16. Let C � ((M, L, N), (U, ρ, ϑ)), C1 � ((M1,

L1, N1), (U1, ρ1, ϑ1)), and C2 � ((M2, L2, N2), (U2, ρ2, ϑ2))
be three CPFSs. 'en the operations ⊕ , ⊗ , λC, andCλ are
defined as follows:

(1) C1 ⊕ C2 � (h
−1

(h(M1) +h(M2)), g
−1

(g(L1)+

g(L2)), g
−1

(g(N1) + g(N2))), (h
−1

(h(U1) +

h(U2)), g
−1

(g(ρ1) + g(ρ2)), g
−1

(g(ϑ1) + g(ϑ2))))
(2) C1 ⊗C2 � (g

− 1
(g(M1) + g (M2)), h

− 1
(h(L1)+

h(L2)), h
− 1

(h(N1) + h(N2))), (g
− 1

(g(U1)+ g

(U2)), h
− 1

(h(ρ1) + h(ρ2)), h
− 1

(h(ϑ1) + h(ϑ2))))

(3) λC �
(h

− 1
(λh(M)), g

− 1
(λg(L)), g

− 1
(λg(N))),

(h
− 1

(λh(U)), g
− 1

(λg(ρ)), g
− 1

(λg(ϑ)))
 

(4) Cλ �
(g

− 1
(λg(M)), h

− 1
(λh(L)), h

− 1
(λh(N))),

(g
− 1

(λg(U)), h
− 1

(λh(ρ)), h
− 1

(λh(ϑ)))
 

Theorem 19. Let C1, C2, and C3 be three CPFNs and λ, λ1,
and λ2 > 0. >en, we have the following:

(1) C1 ⊕ C2 � C2 ⊕C1

(2) C1 ⊗C2 � C2 ⊗C1

(3) λ(C1 ⊕ C2) � λC1 ⊕ λC2

(4) (C1 ⊗C2)
λ � Cλ

1 ⊗Cλ
2

(5) λ1C ⊕ λ2C � (λ1 + λ2)C
(6) Cλ1 ⊗Cλ1 � Cλ1+λ2

Proof. It is easily obtained by the above definition. □
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4.1. Cubic Picture Fuzzy Weighted Averaging (CPFWA)
Operators

Definition 17. Let Ui i∈Λ be a collection of CPFSs. 'en
theCPFWA CPFn⟶ CPF is defined as follows:

CPFWA U1,U2, . . . ,Un(  � €w1 U1 ⊕ €w2 U2 ⊕ · · · ⊕ €wnUn

� ⊕ n
i�1 €wiUi,

(29)

where €w � €w1, €w2, . . . , €wn 
T is the weighted vector ofUi, s.t.

€wi > 0 and 
n
i�1 €wi � 1.

Theorem 20. f Ui � (A_i(
_
s
⌣_

),Bi(
_
s
⌣_

)),
_
s
⌣_ ∈

_
S
⌣_

is the collection
of CPFSs, then the averaging value by using CPFWA operator
is still CPFS and is given by

CPFWA U1,U2, . . . ,Un(  � h
−1



n

i�1
€wih Mi( ⎛⎝ ⎞⎠, g

−1


n

i�1
€wig Li( ⎛⎝ ⎞⎠, g

−1


n

i�1
€wig Ni( ⎛⎝ ⎞⎠⎛⎝ ⎞⎠,⎛⎝

h
−1



n

i�1
€wih Ui( ⎛⎝ ⎞⎠, g

−1


n

i�1
€wig ρi( ⎛⎝ ⎞⎠, g

−1


n

i�1
€wig ϑi( ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎞⎠.

(30)

Proof. We shall prove the result by using the principle of
mathematical induction on “n.”

Step 1. For n � 2, we have
U1 � (A_1,B1),U2 � (A_2,B2); thus, by the operations
of CPFSs, we get

w1U1 � h
− 1

€w1h M1( ( , g
− 1

€w1g L1( ( , g
− 1

€w1g N1( (  ,

h
− 1

€w1h U1( ( , g
− 1

€w1g ρ1( ( , g
− 1

€w1g ϑ1( (  ,

w2U2 � h
− 1

€w2h M2( ( , g
− 1

€w2g L2( ( , g
− 1

€w2g N2( (  ,

h
− 1

€w2h U2( ( , g
− 1

€w2g ρ2( ( , g
− 1

€w2g ϑ2( (  .

(31)

Hence, by additive properties of CPFSs, we get

CPFWA U1,U2(  � w1U1 ⊕w2U2

� h
− 1

€w1h M1( ( , g
− 1

€w1g L1( ( , g
− 1

€w1g N1( (  , h
− 1

€w1h U1( ( , g
− 1

€w1g ρ1( ( , g
− 1

€w1g ϑ1( (   

⊕ h
− 1

€w2h M2( ( , g
− 1

€w2g L2( ( , g
− 1

€w2g N2( (  , h
− 1

€w2h U2( ( , g
− 1

€w2g ρ2( ( , g
− 1

€w2g ϑ2( (   

� h
− 1

h h
− 1

€w1h M1( (   + h h
− 1

€w2h M2( (   , g
− 1

g g
− 1

€w1g L1( (   + g g
− 1

€w2g L2( (   ,

g
− 1

g g
− 1

€w1g N1( (   + g g
− 1

€w2g N2( (   ,

h
− 1

h h
− 1

€w1h U1( (   + h h
− 1

€w2h U2( (   , g
− 1

g g
− 1

€w1g ρ1( (   + g g
− 1

€w2g ρ2( (   ,

g
− 1

g g
− 1

€w1g ϑ1( (   + g g
− 1

€w2g ϑ2( (   

� h
− 1

€w1h M1( (  + €w2h M2( (  , g
− 1

€w1g L1( (  + €w2g L2( (  , g
− 1

€w1g N1( (  + €w2g N2( (   ,

h
− 1

€w1h U1( (  + €w2h U2( (  , g
− 1

€w1g ρ1( (  + €w2g ρ2( (  , g
− 1

€w1g ϑ1( (  + €w2g ϑ2( (   

� h
− 1



2

i�1
€wih Mi( ( , g

− 1


2

i�1
€wig Li( ( , g

− 1


2

i�1
€wig Ni( ( ⎛⎝ ⎞⎠,⎛⎝

h
− 1



2

i�1
€wih Ui( ( , g

− 1


2

i�1
€wig ρi( ( , g

− 1


2

i�1
€wig ϑi( ( ⎛⎝ ⎞⎠⎞⎠.

(32)

'en, the results hold for n � 2.
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Step 2. If equation (30) holds for n � k, then, for
n � k + 1, we have

CPFWA U1,U2, . . . ,UK+1(  � ⊕ K+1
i�1 wiUi � w1U1 ⊕ €w2U2 ⊕ · · · ⊕ €wK+1UK+1

� ⊕ K
i�1 €wiUi ⊕ €wK+1UK+1

� h
− 1



K

i�1
€wih Mi( ( , g

− 1


K

i�1
€wig Li( ( , g

− 1


K

i�1
€wig Ni( ( ⎛⎝ ⎞⎠,⎛⎝

· h
− 1



K

i�1
€wih Ui( ( , g

− 1


K

i�1
€wig ρi( ( , g

− 1


K

i�1
€wig ϑi( ( ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎞⎠

⊕ h
− 1

€wK+1h MK+1( ( , g
− 1

€wK+1g LK+1( ( , g
− 1

€wK+1g NK+1( (  , h
− 1

€wK+1h UK+1( ( ,

g
− 1

€wK+1g ρK+1( ( , g
− 1

€wK+1g ϑK+1( ( 

� h
− 1

h h
− 1



K

i�1
€wih Mi( (  + h

− 1
€wK+1h MK+1( ( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭,⎛⎝⎛⎝

g
− 1

g g
− 1



K

i�1
€wig Li( (  + g

− 1
€wK+1g LK+1( ( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭,

g
− 1

g g
− 1



K

i�1
€wig Ni( (  + g

− 1
€wK+1g Nk+1( ( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎞⎠,

· h
− 1

h h
− 1



K

i�1
€wih Ui( (  + h

− 1
€wK+1h UK+1( ( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭,⎛⎝

g
− 1

g g
− 1



K

i�1
€wig ρi( (  + g

− 1
€wK+1g ρK+1( ( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭,

g
− 1

g g
− 1



K

i�1
€wig ϑi( (  + g

− 1
€wK+1g ϑK+1( ( ⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎞⎠⎞⎠

� h
− 1



K

i�1
€wih Mi( (  + €wK+1h MK+1( 

⎧⎨

⎩

⎫⎬

⎭, g
− 1



K

i�1
€wig Li( (  + €wK+1g LK+1( 

⎧⎨

⎩

⎫⎬

⎭,⎛⎝⎛⎝

g
− 1



K

i�1
€wig Ni( (  + vK+1g Nk+1( 

⎧⎨

⎩

⎫⎬

⎭
⎞⎠

· h
− 1



K

i�1
€wih Ui( (  + €wK+1h UK+1( 

⎧⎨

⎩

⎫⎬

⎭, g
− 1



K

i�1
€wig ρi( (  + €wK+1g ρK+1( 

⎧⎨

⎩

⎫⎬

⎭,⎛⎝

g
− 1



K

i�1
€wig ϑi( (  + €wK+1g ϑK+1( 

⎧⎨

⎩

⎫⎬

⎭
⎞⎠⎞⎠

� h
− 1



K+1

i�1
€wih Mi( ( 

⎧⎨

⎩

⎫⎬

⎭, g
− 1



K+1

i�1
€wig Li( ( 

⎧⎨

⎩

⎫⎬

⎭, g
− 1



K+1

i�1
€wig Ni( ( 

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠,⎛⎝

· h
− 1



K+1

i�1
€wih Ui( ( 

⎧⎨

⎩

⎫⎬

⎭, g
− 1



K+1

i�1
€wig ρi( ( 

⎧⎨

⎩

⎫⎬

⎭, g
− 1



K+1

i�1
€wig ϑi( ( 

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠⎞⎠.

(33)

Since the results hold for n � k + 1, hence, by the
principle of mathematical induction, the result given in
equation (30) holds for all positive integers n. □
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Remark 5. If g(t) is taken to be g(t) � −log(t), then by
equation (30) we have that

CPFWA U1,U2, . . . ,Un(  � 1 − 
n

i�1
1 − Mi( ( 

€wi , 
n

i�1
Li( 

€wi , 
n

i�1
Ni( 

€wi⎛⎝ ⎞⎠, 1 − 
n

i�1
1 − Ui( ( 

€wi , 
n

i�1
ρi( 

€wi , 
n

i�1
ϑi( 

€wi⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(34)

which is called cubic picture fuzzy Archimedean weighted
averaging operator.

4.2. Cubic Picture Fuzzy Ordered Weighted Averaging
(CPFOWA) Operator. In this section, we intend to take the
idea of OWA into CPFWA operator and propose a new
operator which is defined as follows.

Definition 18. Let Ui i∈Λ be a collection of CPFSs. 'en the
CPFOWA CPFn⟶ CPF is defined in the following
way:

CPFOWA U1,U2, . . . ,Un(  � €w1 Uo(1) ⊕ €w2Uo(2) ⊕ · · · ⊕ €wnUo(n)

� ⊕ n
i�1 €wiUo(i),

(35)

where €w � €w1, €w2, . . . , €wn 
T is the weighted vector of Ui,

such that €wi > 0 and 
n
i�1 €wi � 1. Here o(1), o(2), . . . , o(n){ }

is the permutation of (1, 2, . . . , n), such that Uo(i−1) ≥Uo(i),
and Uo(i) is the ith largest of CPFSs Ui(iε∧).

Theorem 21. Let Ui i∈Λ be a collection of CPFSs. >en,
based on the CPFOWA operator, the aggregated CPFSs can be
expressed as follows:

CPFOWA U1,U2, . . . ,Un(  � h
− 1



n

i�1
€wih Mo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig Lo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig No(i) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠,⎛⎝

h
− 1



n

i�1
€wih Uo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig ρo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig ϑo(i) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎞⎠.

(36)

In particular, if Lo(i) � ρo(i) � 0 for all i, then equation
(36) reduces to

CPFOWA U1,U2, . . . ,Un(  � h
− 1



n

i�1
€wih Mo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig No(i) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠,⎛⎝

h
− 1



n

i�1
€wih Uo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig ϑo(i) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎞⎠,

(37)

which becomes cubic intuitionistic OWA operator.

Proof. 'e proof follows from 'eorem 19. □

4.3. Cubic Picture Fuzzy Hybrid Averaging (CPFHA)
Operator. CPFWA operator weighs the CPFSs only, while
CPFOWA weighs the ordered positions of it. However, in
order to combine these two aspects in one, we introduce
CPFHA operator.

Definition 19. Let Ui i∈Λ be a collection of CPFSs. 'en
theCPFHA CPFn⟶ CPF is defined as follows:

CPFHA U1,U2, . . . ,Un(  � €w1
_Uo(1) ⊕ €w2

_Uo(2) ⊕ · · · ⊕ €wn
_Uo(n)

� ⊕ n
i�1 €wi

_Uo(i),

(38)

where €w � €w1, €w2, . . . , €wn 
T is the standard weight vector of

Ui, such that €wi > 0 and 
n
i�1 €wi � 1, _Uo(i) is the ith largest of
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the weighted CPFSs _Ui(
_Ui � n _€wiUi, i � 1, 2, . . . , n), where n

is the number of CPFSs. 'en CPFHA is called cubic picture
fuzzy hybrid averaging operator.

Theorem 22. Let Ui i∈Λ be a collection of CPFSs; then, based
on CPFHA operator, the aggregated CPFSs can be expressed
as

CPFHA U1,U2, . . . ,Un(  � h
− 1



n

i�1
€wih

_
Mo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig

_
Lo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig

_
No(i) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠,⎛⎝

h
− 1



n

i�1
€wih

_
Uo(i) ⎛⎝ ⎞⎠, g

− 1


n

i�1
€wig

_ρo(i) ⎛⎝ ⎞⎠, g
− 1



n

i�1
€wig

_ϑo(i) ⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎞⎠.

(39)

Proof. 'e proof is similar to 'eorem 20, so it is omitted
here. □

5. MCDM Based on the Proposed Operation

In this section, we need the previous aggregation operators
in a decision-making for CPFSs with illustrative example for
evaluating the approach.

Let a set of m′ alternatives denoted by
A � (A1,A2, . . . ,Am′) be found by the decision-maker
under the set of the unlikely criteria �G � (�G1,

�G2, . . . , �Gn)

whose weight vector is €w � ( €w1, €w2, . . . , €wn)T such that
€wi > 0 and 

n
i�1 €wi � 1.

Suppose that the ranking of an alternative
xj, (j � 1, 2, . . . , m′) on the criteria �Gi, (i � 1, 2, . . . , m′) is
assessed by the decision-maker in the form of CPFSs
Uij � (A_ij,Bij), i, j ∈ (1, 2, . . . ., n), where A_ij is the degree
of VPFS and βij is the degree of PFS that the alternative Ai

does not satisfy the attribute �Gi. So we develop an approach
for evaluating the best alternative based on the proposed
operators for MCGDM problem whose steps are as follows:

Step 1. Construct the decision matrix of CPFSs.
Uij � (A_ij,Bij), where A_ij � (Mij, Lij, Nij) are VPFNs
and βij � (Uij, ρij, ϑij) are the PFSs towards the al-
ternative Ai and hence construct a cubic picture fuzzy
decision matrix D � ( €Pij)m′×n.
Step 2. Normalized decision matrix, namely, cost (C)

and benefits i(B), so we normalize

rij �

€P
C
ij, k ∈ B,

€Pij, k ∈ C

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (40)

where €P
C

ij is the complement of €Pij.
Step 3. Aggregated assessment of alternative, based on
the decision matrix, as taken from step 2, all the

aggregated values of the alternatives
Ai, (i � 1, 2, . . . , m′) under the different criteria �Gi are
obtained by using either CPFWA or CPFOWA or
CPFHA operator and we collect the value of ri for each
alternative Ai, (i � 1, 2, . . . , m′).
Step 4. We compute the score values of
ri(i � 1, 2, . . . , n).
Step 5. At last, we find that the rank of the alternatives
Ai, i(i � 1, 2, . . . , m′) according to the descending
value of the score value are most valuable.

6. Illustrative Example

In this section, we illustrate with the mathematical example
for the decision-making studied as follows.

Suppose few companies design their financial strategy
for the next fiscal year, and according to their plan of
strategy, they are picking three alternatives defined as
follows: A1: to invest in the “Chinese markets”; A2: to
invest in the “Indian markets”; and A3: to invest in “USA
markets.” 'ese proceed for finding the aspect as follows:
�G1: “the increases analysis,” �G2: “the decreases analysis,”
and �G3: “the neutral analysis,” whose weight vector
w � (0.5, 0.2, 0.3)T.

6.1. Example by the CPFWA Operator. 'e example is ap-
plied in CPFWA operator to calculate the best one.

Step 1. 'ese three alternativesAi, (i � 1, 2, 3) are to be
solved by an expert under the three aspects �Gj(j �

1, 2, 3) by using cubic picture fuzzy decision matrix
D � ( €Pij)3×3 � ([A_]ij,Bij) for (i, j � 1, 2, 3).
Step 2. Since the criteria �G2 and �G3 are the porches
criteria while �G1 are losses criteria R � (rij)3×3, equa-
tion (40) is used as follows:

14 Journal of Mathematics



RE
TR
AC
TE
DR �

[0.1, 0.3],

[0.2, 0.1],

[0.1, 0.1]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.3, 0.2, 0.1〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.1, 0.1],

[0.2, 0.1],

[0.3, 0.2]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.4, 0.3, 0.2〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.3, 0.4],

[0.2, 0.2],

[0.1, 0.3]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.1, 0.2, 0.1〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.3, 0.1],

[0.1, 0.2],

[0.1, 0.3]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.1, 0.2, 0.3〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.1, 0.2],

[0.1, 0.3],

[0.2, 0.3]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.2, 0.3, 0.4〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.4, 0.3],

[0.2, 0.1],

[0.3, 0.1]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.1, 0.1, 0.2〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.3, 0.1],

[0.2, 0.1],

[0.1, 0.0]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.3, 0.4, 0.1〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.1, 0.1],

[0.2, 0.2],

[0.3, 0.3]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.1, 0.1, 0.1〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[0.3, 0.3],

[0.2, 0.3],

[0.2, 0.1]

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

(〈0.4, 0.3, 0.0〉)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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. (41)

Step 3. By following the CPFWA given in equation (30)
with generatorg(t) � −Log(t), we obtain the overall
rating value of each alternative Ai as

r1 � CPFWA r11, r12, r13( 

� (([0.15, 0.28], [0.20, 0.12], [0.14, 0.165]), (〈0.32, 0.19, 0.11〉)),

r2 � CPFWA r21, r22, r23( 

� (([0.28, 0.18], [0.12, 0.17], [0.16, 0.21]), (〈0.11, 0.18, 0.28〉)),

r3 � CPFWA r21, r22, r23( 

� (([0.25, 0.16], [0.19, 0.16], [0.15, 0]), (〈0.29, 0.27, 0〉)).

(42)

Step 4. 'e definitions of the score functions of ri(i �

1, 2, 3) are S(r1) � −0.0054, S(r2) � −0.19, and
S(r3) � −0.11.
Step 5. Since S(r1)> S(r3)> S(r2), we have
A1 >A3 >A2. Hence, the gorgeous financial strategy is
A1, that is, to invest in the Chinese markets.

7. Conclusion

'e article is based on a novel approach to CPFSs as a
generalization of two new strong concepts of CSs and PFSs.
'e basic operations for CPFSs are developed and exem-
plified. Some related results based on proposed operations
are discussed. Several aggregation operators are defined for
CPFSs and their properties are investigated. 'e proposed
aggregation operators are subjected to a decision-making
problem and the results are discussed. Furthermore, we
developed multicriteria decision-making (MCDM) to prove
the effectiveness and validity of the proposed methodology.
A numerical example showed that the proposed operators
can resolve decision-making more accurately. We compared
these with predefined operators to show the validity and
effectiveness of the proposed methodology.

In the future, some similarity measures for CPFS can be
developed and can be applied in pattern recognition
problems. We will define other methods with CPFS such as
Dombi aggregation operators and introduce the idea of
cubic picture fuzzy Dombi weighted average (CPFDWA),

cubic picture fuzzy Dombi ordered weighted average
(CPFDOWA), cubic picture fuzzy Dombi weighted geo-
metric (CPFDWG), cubic picture fuzzy Dombi ordered
weighted geometric (CPFDOWG), and generalized opera-
tors in multicriteria decision-making.
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In this paper, a new decision-making algorithm has been presented in the context of a complex intuitionistic uncertain linguistic
set (CIULS) environment. CIULS integrates the concept the complex of a intuitionistic fuzzy set (CIFS) and uncertain linguistic
set (ULS) to deal with uncertain and imprecise information in a more proactive manner. To investigate the interrelation between
the pairs of CIULSs, we combine the concept of the Heronian mean (HM) and the complex intuitionistic uncertain linguistic
(CIUL) to describe some new operators, namely, CIUL arithmetic HM (CIULAHM), CIUL weighted arithmetic HM (CIUL-
WAHM), CIUL geometric HM (CIULGHM), and CIUL weighted geometric HM (CIULWGHM). -e main advantage of these
suggested operators is that they considered the interaction between pairs of objects during the formulation process. Also, a
number of distinct brief cases and properties of the operators are analyzed. In addition, based on these operators, we have stated a
MAGDM (“multiattribute group decision-making”) problem-solving algorithm.-e consistency of the algorithm is illustrated by
a computational example that compares the effects of the algorithm with a number of well-known existing methods.

1. Introduction

MAGDM issues are the critical exploration aspects of the
current judgement philosophy to deal with questionable and
incorrect facts in time complications. If the reasons remain
fuzzy, the signature values involved in decision-making
problems are not continuously seen to be crisp artefacts, and
some of them are extensively sufficient to be identified by a
number of hypotheses. -e fuzzy set (FS) theory is one of
those that Zadeh [1] has built to handle with awkward and

difficult facts. FS applies only to the term of the degree of
truth limited to the unit interval. FS has gained a great deal of
interest from various academics and has been exploited by a
number of scientists in the nature of separate fields. For
example, L-FS was investigated by Goguen [2]. L-FS is es-
sentially a mixture of two theories, such as FS and lattice’s
ordered series, which is a useful strategy for dealing with
difficult facts. In addition, Torra [3] reworked the FS the-
orem to explain the hesitant FS (HFS) principle, which
covers the degree of truth in the form of the finite subset of
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the unit interval. Pawlak [4] looked at the rough sets and the
FSs. Zhang [5] introduced the concept of bipolar FS (BFS)
containing two degrees with a law that is the degree of truth
belonging to [0, 1] and the degree of falsehood belonging to
[− 1, 0]. BFS has gained considerable attention from separate
intellectuals and has been extensively used by many scien-
tists in the world of various fields. For instance, the theory of
bipolar soft set was developed by Mahmood [6].

FS is a major apparatus for dealing with troublesome and
complex information in day-to-day natural life problems,
and a number of researchers have made extensive use of it in
different fields. However, in some cases, the theory of FS is
not capable of dealing with such a kind of concern, for
example, if an individual gives certain sources of knowledge,
including the degree of truth and falsehood, then the theory
of FS has failed. To deal with such problems, Atanassov [7]
used the principle of intuitionistic FS (IFS) with the law that
the totality of the degrees of each other lies inside the unit
interval. IFS is a simplified version of FS to deal with un-
comfortable experience of natural life problems. IFS has
gained considerable recognition from various academics and
has been employed by a number of scientists in distinct
neighbourhoods. For example, Beg and Rashid [8] discussed
the principle of intuitionistic HFS (IHFS) holding the degree
of truth and the degree of falsehood in the form of a finite
unit interval subset. -e law of IHFS is that the absolute
maximum (also for the least) of the truth and the minimum
(also for the maximum) falsity is limited to the unit interval.
In addition, Atanassov [9] introduced the principle of in-
terval-valued IFS (IVIFS), which is the extension of the
interval-valued FS (IVFS). IVIFS refers to the degree of truth
and falsehood in the shape of a subinterval of the unit in-
terval. -e IFS and IVIFS have received large concentrations
from separate intellectuals and have been extensively used by
many scientists in the world in various fields [10–14].

Complex FS (CFS) theory is one of the most proficient
techniques developed by Ramot et al. [15] to manage un-
comfortable and difficult details. CFS covers only the term of
the degree of truth in the structure of complex numbers
relevant to the complex plane in the unit disc with a re-
striction that the true and imaginary portions of the degree
of truth are limited to the unit interval. CFS has attracted
considerable interest from a variety of researchers and has
been exploited by a number of scientists in distinct fields. For
example, the neuro fuzzy architecture used was investigated
by Chen et al. [16]. Ramot et al. [17] has studied a dynamic
fuzzy logic. Zhang et al. [18] investigated the activity
properties of CFSs. -e CFS theory has also been established
by Nguyen et al. [19], Dick [20], and Tamir et al. [21]. Tamir
et al. [22] presented a concept of generalized complex fuzzy
propositional logic. -e aggregation operators on the
complex fuzzy information have been defined by the re-
searchers in [23–25].

CFS is an important apparatus for dealing with trou-
blesome and complex information in day-to-day natural
life problems, and a number of researchers have made
extensive use of it in different fields. However, in some
cases, the theory of CFS is not capable of dealing with this
kind of concern, for example, if an individual gives certain

sources of knowledge, including the degree of truth and
falsehood, then the theory of CFS has failed. To handle with
such sort of troubles, Alkouri and Salleh [26] used the
theory of complex IFS (CIFS) with a requirement that the
totality of the real parts (also for imaginary parts) of both
degrees is inside the unit interval. CIFS is a modified form
of CFS to deal with awkward and convoluted awareness of
natural world problems. -e CIFS has attracted consid-
erable interest from various academics and has been
exploited by a number of scientists in separate fields. For
example, Al-Qudah et al. [27] presented a decision-making
approach under the complex multifuzzy soft set environ-
ment. Kumar and Bajaj [28] used the CIF concept in the
soft set environment to investigate the dynamic intuitive
fuzzy soft set. Garg and Rani [29] have established a
number of knowledge measures for the CYPSs. Ngan et al.
[30] looked at the quaternion number depending on the
CIFS. Rani and Garg [31] presented preference relation for
the complex intuitionistic fuzzy set in individual and group
decision-making process. Ali et al. [32] studied the complex
intuitionistic fuzzy groups. Garg and Rani have established
the theory of aggregation operators for IFCS [33]. In ad-
dition, Rahman et al. [34] developed the hybrid model of
the hypersoft set with complex fuzzy set and complex
intuitionistic fuzzy set and neurtrosophic set. CIFS has
received considerable attention from separate intellectuals
and has been widely used by many scientists in the world in
various fields [35–37].

However, in different real difficulties, it is not easy for
decision makers to express their views in quantitative rep-
resentations. For example, as a professional considering the
applicant’s degree of advanced expertise, the use of linguistic
expressions, such as linguistic phrases, “very good,” “good,”
or “medium” may be considered for being additionally
suitable or familiar to convey his or her opinion. To handle
such sorts of concerns, Zadeh [38] investigated the linguistic
variable theory (LV) in order to describe the interests of
decision makers. In addition, the principle of the two-fold
linguistic set was established by Herrera and Martinez [39].
Liu and Jin [40] have studied the uncertain LV (ULV).
Heronian mean operators based on the intuitionistic un-
certain linguistic set (IULS) were developed in [41]. Liu and
Liu [42] studied the partitioned Bonferroni mean IULS
operators. In addition, Liu et al. [43] investigated the
weighted Bonferroni order weighted average operators for
IULS. Liu et al. [44] used the concept of Hamy as a mean
operator for IULSs. -e theory of Bonferroni mean IULS
operators has been established by Liu and Zhang [45]. But, to
date, no one has used these concepts in the CIULS setting,
and to discover the interrelationship between some numbers
of CIULS, HM operators are very useful for dealing with
uncomfortable and troublesome knowledge in everyday
difficulties.

(1) To investigate the CIULS and discuss their opera-
tional laws.

(2) To explore the CIULAHM, CIULWAHM,
CIULGHM, and CIULWGHM operators and dis-
cuss their special cases with some properties.
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(3) A MAGDM procedure is developed by using the
explored operators based on CIULSs.

(4) Some numerical examples are illustrated with the
help of investigated approaches.

(5) In order to determine the efficiency and competence
of the developed operators, comparative analysis and
graphic expressions are often used to demonstrate
the superiority of the methods developed.

-e remainder of the paper is presented as follows. In
Section 2, we refer to some basic concepts, such as the CIFS and
their operating rules. -e current idea of LSs, ULVs, and their
operations is also updated in this report. In addition, the
definition of HM with parameters and without parameters is
discussed. In Section 3, we investigated the CIULS and ex-
amined their operating rules. In Section 4, we examined the
CIULAHM, the CIULWAHM, the CIULGHM, and the
CIULWGHMoperators and addressed their specific cases with
those properties. Section 5 develops a MAGDM procedure by
using CIULS-based explored operators. Some numerical ex-
amples are illustrated with the help of investigated approaches.
To discover the consistency and expertise of the developed
operators, comparative analysis and graphic expressions are
often used to show the superiority of the methods developed.
-e end of the script is explored in Section 6.

2. Preliminaries

For better describing the investigated ideas, we recall some
fundamental notions such as CIFSs and their operational
laws. -e existing idea of LSs, ULVs, and their operations is
also revised in this study. Moreover, the idea of HMO with
parameters and without parameters is also discussed.
-roughout the article, the symbol XUNI

√√√√
is used for fixed

sets and the terms JWCI
and KWCI

are shown the grade of
positive and the grade of negative.

Definition 1 (see [26]). A CIFS WCI is demonstrated by

WCI � JWCI
(�k),KWCI

(�k) : �k ∈ XUNI
√√√√

 , (1)

where JWCI
(�k) � JWRP

(�k)ei2π(JWIP
(�k)) and KWCI

(�k) �

KWRP
(�k)ei2π(KWIP(�k)) with the rules such that 0≤JWRP

(�k) +

KWRP
(�k)≤ 1 and 0≤JWIP

(�k) + KWIP
(�k)≤ 1. Furthermore,

the refusal grade is demonstrated in the form of LWCI
(�k) �

LWRP
(�k)ei2π(LWIP(�k)) � (1 − JWRP

(�k) − KWRP
(�k))

ei2π(1− JWIP(�k)− KWIP(�k)). In this paper, the complex intui-
tionistic fuzzy numbers (CIFNs) are represented byWCI− i �

(JWRP− i
(�k)ei2π (JWIP− i

(�k)),KWRP− i
(�k)ei2π(KWIP− i

(�k))),

i � 1, 2, . . . , Ξ


.

Definition 2 (see [33]). Based on any two CIFNs WCI− i �

(JWRP− i
(�k) ei2π(JWIP− i

(�k)),KWRP− i
(�k)ei2π(KWIP− i

(�k))), i � 1, 2,
then

(1) WCI− 1⊕WCI− 2 � (JWRP− 1
(�k) + JWRP− 2

(�k)− JWRP− 1

(�k)JWRP− 2
(�k))e

i2π(JWIP− 1(�k)+JWIP− 2(�k)− JWIP− 1(�k)
JWIP− 2

(�k)),KWRP− 1
(�k)KWRP− 2

(�k)e
i2π(KWIP− 1(�k)

KWIP− 2
(�k))).

(2) WCI− 1 ⊗WCI− 2 �

JWRP− 1
(�k)JWRP− 2

(�k)e
i2π(JWIP− 1

(�k)JWIP− 2
(�k))

,

(KWRP− 1
(�k) + KWRP− 2

(�k) − KWRP− 1
(�k)KWRP− 2

(�k))e
i2π(KWIP− 1(�k)+KWIP− 2(�k)− KWIP− 1(�k)KWIP− 2(�k))

 .

(3) ΦSCWCI− 1 � ((1 − (1 − JWRP− 1
(�k))ΦSC)

ei2π(1− (1− JWIP− 1(�k))ΦSC ),K
ΦSC
WRP− 1

(�k)e
i2π(K

ΦSC
WIP− 1

(�k))
).

(4) WΦSCCI− 1 � (J
ΦSC
WRP− 1

(�k)e
i2π(J

ΦSC
WIP− 1

(�k))
, (1 − (1 − KWRP− 1

(�k))ΦSC)ei2π(1− (1− KWIP− 1(�k))ΦSC )).

Definition 3 (see [33]). For two CIFNs WCI− i � (JWRP− i
(�k)

ei2π(JWIP− i
(�k)),KWRP− i

(�k)ei2π(KWIP− i
(�k))), i � 1, 2, the score

value and accuracy value are demonstrated by

ζ WCI− 1(  � JWRP− 1
(�k) − KWRP− 1

(�k) + JWIP− 1
(�k) − KWIP− 1

(�k),

F WCI− 1(  � JWRP− 1
(�k) + KWRP− 1

(�k) + JWIP− 1
(�k) + KWIP− 1

(�k),

(2)

where ζ(WCI− 1) ∈ [− 1, 1] and F(WCI− 1) ∈ [0, 1]. To find
the relationships between any two CIFNs, we use the fol-
lowing rules:

(1) If ζ(WCI− 1)> ζ(WCI− 2), then WCI− 1 >WCI− 2.

(2) If ζ(WCI− 1)< ζ(WCI− 2), then WCI− 1 <WCI− 2.

(3) If ζ(WCI− 1) � ζ(WCI− 2), then

(1) If ζ(WCI− 1)> ζ(WCI− 2), then WCI− 1 >WCI− 2.
(2) If ζ(WCI− 1)< ζ(WCI− 2), then WCI− 1 <WCI− 2.
(3) If ζ(WCI− 1) � ζ(WCI− 2), then WCI− 1 � WCI− 2.

Definition 4 (see [38]). A LS is demonstrated by

ψ � ψ0,ψ1,ψ2, . . . ,ψ
kSC

− 1 , (3)

where kSC should be odd, which grips the ensuing
circumstances:

(1) If kSC > kSC
′, then ψ

kSC
>ψ

kSC
′.

(2) -e negative operator neg(ψ
kSC

) � ψ
kSC
′ with a rule

kSC + kSC
′ � kSC + 1.

(3) If kSC ≥ kSC
′, max(ψ

kSC
,ψ

kSC
′) � ψ

kSC
, and if

kSC ≤ kSC
′, max(ψ

kSC
,ψ

kSC
′) � ψ

kSC
.

Likewise, ψ � ψi: i ∈ R  conveyed the LSs. A set
ψ � [ψφi

,ψϕs],ψφi
,ψϕs ∈ ψ(i≤ s), where ψφi

,ψϕs characterize
the upper and lower limits of ψ is called ULVs [40]. By
utilizing any two ULVs ψ1 � [ψφ1

,ψϕ1] and ψ2 � [ψφ2
,ψϕ2]

belonging to ψ[0,h],

(1) ψ1⊕ψ2 � [ψφ1,ψϕ1]⊕[ψφ2,ψϕ2] � [ψφ1+φ2− (φ1φ2/h),

ψϕ1+ϕ2− (ϕ1ϕ2/h)].

(2) ψ1 ⊗ψ2 � [ψφ1
,ψϕ1]⊗ [ψφ2

,ψϕ2] � [ψφ1×φ2/h,

ψϕ1×ϕ2/h].

(3) ΦSCψ1 � ΦSC[ψφ1,ψϕ1] � [ψh(1− (1− (φ1/h))ΦSC ),

ψh(1− (1− (ϕ1/h))ΦSC )].

(4) ψΦSC1 � [ψh(φ1/h)ΦSC ,ψh(ϕ1/h)ΦSC].
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Definition 5 (see [41]). -e HM operator HMPSC,qSC :

Θ Ξ


⟶Θ is demonstrated by

HMpSC,qSC WCI− 1,WCI− 2, . . . ,W
CI− Ξ

  �
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W

pSC
CI− iW

qSC
CI− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

. (4)

If we define the HM operator without parameter, it is
demonstrated by:

HMpSC ,qSC : Θ Ξ


⟶Θ, by

HM WCI− 1,WCI− 2, . . . ,W
CI− Ξ

  �
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
WCI− iWCI− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

(5)

3. Complex Intuitionistic Uncertain
Linguistic Variables

In this study, we elaborate the fundamental notions of
CIULVs and their related principles by utilizing the
remaining theories of ULVs and CIFSs.

Definition 6. A CIULV WCIU is demonstrated by

WCIU � ψφi
,ψϕs , JWCIU

(�k),KWCIU
(�k)  : �k ∈ XUNI

√√√√
 ,

(6)

where JWCIU
(�k) � JWRP

(�k)ei2π(JWIP(�k)) and
KWCIU

(�k) � KWRP
(�k)ei2π(KWIP(�k)) with the rules such that

0≤JWRP
(�k) + KWRP

(�k)≤ 1 and 0≤JWIP
(�k) + KWIP

(�k)≤ 1
with ψφi

,ψϕs ∈ ψ(i≤ s). Furthermore, the refusal grade is
demonstrated in the form of LWCIU

(�k) � LWRP
(�k)

ei2π(LWIP
(�k)) � (1 − JWRP

(�k) − KWRP
(�k))

ei2π(1− JWIP(�k)− KWIP(�k)). In this paper, the complex intui-
tionistic uncertain linguistic numbers (CIULNs) are rep-
resented by

WCIU− i � ψφi
,ψϕs , JWRP− i

(�k)e
i2π JWIP− i

(�k) 
,KWRP− i

(�k)e
i2π KWIP− i

(�k) 
  , i, s � 1, 2, . . . , Ξ


. (7)

Definition 7. For two CIULNs WCIU− i � ([ψφi
,ψϕs],

(JWRP− i
(�k)ei2π(JWIP− i

(�k)),KWRP− i
(�k)ei2π(KWIP− i

(�k)))), i � 1, 2,
some operational laws are stated as

(1) WCIU− 1⊕WCIU− 2 � [ψφ1+ φ2 − (φ1φ2/h),ψϕ1+ϕ2− (ϕ1
ϕ2/h) ], (JWRP− 1 (�k) + JWRP− 2

(�k) − JWRP− 1
(�k)JWRP− 2

(�k))e
i2π(JWIP− 1 (�k) + JWIP− 2

(�k) − JWIP− 1
(�k)JWIP− 2

(�k)),KWRP− 1
(�k)KWRP− 2

(�k)e
i2π(KWIP− 1(�k)

KWIP− 2
(�k)))).

(2) WCIU− 1 ⊗WCIU− 2 � [ψφ1×φ2/h, ψϕ1×ϕ2/h], JWRP− 1

(�k)JWRP− 2
(�k)e

i2π(JWIP− 1
(�k)JWIP− 2

(�k))
, (KWRP− 1

(�k) +

KWRP− 2
(�k) − KWRP− 1

(�k)KWRP− 2
(�k))

e
i2π(KWIP− 1

(�k)+KWIP− 2 (�k) − KWIP− 1
(�k)KWIP− 2

(�k)))).

(3) ΦSCWCIU− 1 �
[ψh(1− (1− (φ1/h))ΦSC ),ψh(1− (1− (ϕ1/h))ΦSC )],

((1 − (1 − JWRP− 1
(�k))
ΦSC )e

i2π(1− (1− JWIP− 1
(�k))ΦSC )

,K
ΦSC
WRP− 1

(�k)e
i2π(K

ΦSC
WIP− 1

(�k))
)

 .

(4) WΦSCCIU− 1 � [ψh( (φ1/h)ΦSC,ψh(ϕ1/h)ΦSC] , (J
ΦSC
WRP− 1

(�k)

e
i2π(J

ΦSC
WIP− 1

(�k))
, (1 − (1 − KWRP− 1

(�k))
ΦSC)

e
i2π(1− (1− KWIP− 1(�k))ΦSC )

)).

Proposition 1. For two CIULNs WCIU− i � ([ψφi
,ψϕs],

(JWRP− i
(�k)ei2π(JWIP− i

(�k)),KWRP− i
(�k)ei2π(KWIP− i

(�k)))), the oper-
ations defined in Definition 7 are also CIULNs.

Proof. For any two CIULNs WCIU− 1 � ([ψφ1
, ψϕ1],

(JWRP− 1
(�k)ei2π(JWIP− 1(�k)),KWRP− 1

(�k)ei2π(KWIP− 1(�k)))) and
WCIU− 2 � ([ψφ2

,ψ ϕ2], (JWRP− 2
(�k)ei2π(JWIP− 2(�k)),KWRP− 2

(�k)

ei2π(KWIP− 2(�k)))), then by using the idea of T-norm and
T-conorm such that

T: [0, 1] ×[0, 1]⟶ [0, 1]. (8)
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is called T-norm, if T holds the following conditions:

(1) Commutativity
(2) Monotonicity
(3) Associativity
(4) T(x, 1) � x

And similarly, for T-conorm, we defined a function such
that

S: [0, 1] ×[0, 1]⟶ [0, 1] (9)

is called T-conorm, if S holds the following conditions:

(1) Commutativity
(2) Monotonicity
(3) Associativity
(4) S(x, 0) � x

-en, we prove that the above four conditions.

(1) -e addition of two linguistic number is again lin-
guistic number such that φ1 + φ2 − (φ1φ2/h) and

ϕ1 + ϕ2 − (ϕ1ϕ2/h) are also T-conorm, the real and
imiginary parts of the truth are T-conorm which
indicates that these two satisfy the conditions of T-
conorm such that JWRP− 1

(�k) + JWRP− 2
(�k) − JWRP− 1

(�k)JWRP− 2
(�k) and JWIP− 1

(�k) + JWIP− 2
(�k) − JWIP− 1

(�k)JWIP− 2
(�k), the real and imaginary parts of the

truth are T-conorm which means that these two
function satisfy the conditions of T-conorm such
that S(JWRP− 1

(�k), 0) � JWRP− 1
(�k) + JWRP− 2

(�k)−

JWRP− 1
(�k)JWRP− 2

(�k) � JWRP− 1
(�k) +0 − JWRP− 1

(�k)0 �

JWRP− 1
(�k), and thus, by using the definition of T-

conorm, the values of the two should be in unit
interval. Similarly, the functionKWRP− 1

(�k)KWRP− 2
(�k)

and KWIP− 1
(�k)KWIP− 2

(�k) are in the form of T-con-
orm, which means that these two satisfy the con-
ditions of T-norm such that T(KWRP− 1

(�k), 1)

� KWRP− 1
(�k)KWRP− 2

(�k) � KWRP− 1
(�k)1 � KWRP− 1

(�k).
-erefore, from the above analysis, we get the result
such that

WCIU− 1 ⊕WCIU− 2 �

ψφ1+φ2− φ1φ2/h( ),ψϕ1+ϕ2− ϕ1ϕ2/h( ) ,

JWRP− 1
(�k) + JWRP− 2

(�k) − JWRP− 1
(�k)JWRP− 2

(�k) e
i2π JWIP− 1

(�k)+JWIP− 2
(�k)− JWIP− 1

(�k)JWIP− 2
(�k) 

,

KWRP− 1
(�k)KWRP− 2

(�k)e
i2π KWIP− 1(�k)KWIP− 2(�k) 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

-e points 2–4 are similar. □ Definition 8. For CIULN WCIU− 1 � ([ψφ1,ψϕ1],

(JWRP− 1
(�k)ei2π(JWIP− 1

(�k)),KWRP− 1
(�k)ei2π(KWIP− 1

(�k)))), the score
and accuracy functions are defined as

ζ WCIU− 1(  �
1
4

φ1 + ϕ1(  × JWRP− 1
(�k) − KWRP− 1

(�k) + JWIP− 1
(�k) − KWIP− 1

(�k) ,

F WCIU− 1(  �
1
4

φ1 + ϕ1(  × JWRP− 1
(�k) + KWRP− 1

(�k) + JWIP− 1
(�k) + KWIP− 1

(�k) ,

(11)

where ζ(WCIU− 1) ∈ [− 1, 1] and F(WCIU− 1) ∈ [0, 1].
An order relation between pairs of two CIULNs is stated

as

(1) If ζ(WCIU− 1)> ζ(WCIU− 2), then WCIU− 1 >WCIU− 2.
(2) If ζ(WCIU− 1)< ζ(WCIU− 2), then WCIU− 1 <WCIU− 2.

(3) If ζ(WCIU− 1) � ζ(WCIU− 2), then

(1) If F(WCIU− 1)>F(WCIU− 2), then WCIU− 1 >
WCIU− 2.

(2) If F(WCIU− 1)<F(WCIU− 2), then WCIU− 1 <
WCIU− 2.

(3) If ζ(WCIU− 1) � ζ(WCIU− 2), then WCIU− 1 �

WCIU− 2.

4. Complex Intuitionistic Uncertain Linguistic
Heronian Mean Operators

In this study, we investigate the ideas of the CIULAHM
operator, CIULWAHM operator, CIULGHM operator, and
CIULWGHM operator and discuss their particular cases
with the help of parameters. Some properties for investigated
operators are developed such that idempotency, monoto-
nicity, and boundedness are also explored.

Definition 9. For the families of CIULNs
WCIU− i � ([ψφi

,ψϕs], (JWRP− i
(�k)ei2π(JWIP− i

(�k)) ,KWRP− i
(�k)

ei2π(KWIP− i
(�k)))), i, s � 1, 2, . . . , Ξ


, the CIULAHMoperator is

mapping CIULAHMpSC ,qSC : Θ Ξ


⟶Θ, defined by
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CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

  �
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W

pSC
CIU− iW

qSC
CIU− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

. (12)

By using Definition 9, we investigate the following result.

Theorem 1. For the families of CIULNs WCIU− i � ([ψφi
,

ψϕs], (JWRP− i
(�k)ei2π(JWIP− i

(�k)),KWRP− i
(�k)

ei2π(KWIP− i
(�k)))), i, s � 1, 2, . . . ,︷Ξ, and by using Definitions 7

and 9, we obtain

CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,WCIU− Ξ( 

�

ψ

1− 
Ξ



i�1


Ξ


S�1
1 − φpSC

i φqSC
S /h  

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( ),ψ

1− 
Ξ



i�1

Ξ



S�1
1− ϕpSC

i
ϕqSC

S
/h( )( )⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 − 
Ξ



i�1


Ξ


S�1
1 − J

pSC
WRP− i

(�k)J
qSC
WRP− S

(�k) 
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

e

i2π 1− 
Ξ



i�1

Ξ



S�1
1− J

pSC
WIP− i

(�k)J
qSC
WIP− S

(�k) ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

,

1 − 1 − 
Ξ



i�1


Ξ


S�1
1 − 1 − KWRP− i

(�k) 
pSC 1 − KWRP− S

(�k) 
qSC

 
2/ Ξ



( Ξ


+1)
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e

i2π 1− 1− 
Ξ



i�1

Ξ



S�1
1− KWIP− i

(�k) 
pSC

1− KWIP− S
(�k) 

qSC⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(13)

Proof. By using Definition 7, we obtain

W
pSC
CIU− i �

ψ
h φi/h( )

pSC ,ψ
h ϕi/h( )

pSC ,

J
pSC
WRP− i

(�k)e
i2π J

pSC
WIP− i

(�k) 
,

1 − 1 − KWRP− i
(�k) 

pSC
 e

i2π 1− 1− KWIP− i
(�k) 

pSC
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W
pSC
CIU− s �

ψ
h φs/h( )

pSC ,ψ
h ϕs/h( )

pSC ,

J
pSC
WRP− s

(�k)e
i2π J

pSC
WIP− s

(�k) 
,

1 − 1 − KWRP− s
(�k) 

pSC
 e

i2π 1− 1− KWIP− s
(�k) 

pSC
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

6 Journal of Mathematics



RE
TR
AC
TE
D
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

CIULAHM
pSC ,qSC WCIU− 1,WCIU− 2, . . . ,W

CIU− Ξ
  �

2
Ξ


( Ξ


+1)


Ξ



i�1

Ξ



s�1
W

pSC
CIU− iW

qSC
CIU− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )
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�

ψ

1− 
Ξ



i�1

Ξ



S�1
1− φpSC

i
φqSC

S
/h( )( )⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( ),ψ

1− 
Ξ



i�1

Ξ



S�1
1− ϕpSC

i
ϕqSC

S
/h( )( )⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 

Ξ


i�1


Ξ


S�1
1 − J

pSC
WRP− i

(�k)J
qSC
WRP− S

(�k) 
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

e

i2π 1− 
Ξ



i�1

Ξ



S�1
1− J

pSC
WIP− i

(�k)J
qSC
WIP− S

(�k) ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

,

1 − 1 − 
Ξ



i�1


Ξ


S�1
1 − 1 − KWRP− i

(�k) 
pSC 1 − KWRP− S

(�k) 
qSC

 
2/ Ξ



( Ξ


+1)
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e

i2π 1− 1− 
Ξ



i�1

Ξ



S�1
1− 1− KWIP-i

(�k) 
pSC

1− KWIP− S
(�k) 

qSC
 ⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(16)

Moreover, by using Definition 7, we prove that certain
properties for investigated ideas are similar to idempotency,
monotonicity, and boundedness, which are stated
below. □

Property 1. For the families of CIULNs WCIU− i � ([ψφi
,

ψϕs], (JWRP− i
(�k)ei2π(JWIP− i

(�k)),KWRP− i
(�k)ei2π(

KWIP− i
(�k)))), i, s � 1, 2, . . . ,︷Ξ, we have

(1) If WCIU− i � WCIU, then

CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

  � WCIU. (17)

(2) For CIULN WCIU− i
′ � ([ψφi

′,ψϕs
′], (JWRP− i

′(�k)

ei2π(JWIP− i
′(�k)),KWRP− i

′(�k)ei2π(K WIP− i
′(�k)))), i, s � 1, 2,

. . . , Ξ


, such that ψφi
′ ≤ψφi

, ψϕs
′ ≤ ψϕs , JWRP− i

′ ≤

JWRP− i
, JWIP− i

′ ≤JWIP− i
, KWRP− i

′ ≥KWRP− i
, and

KWIP− i
′ ≥KWIP− i

, we have

CIULAHMpSC,qSC WCIU− 1′,WCIU− 2′, . . . ,W
CIU− Ξ

′ ≤CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 . (18)

(3) If WCIU− A � min(WCIU− 1,WCIU− 2, . . . ,WCIU− ︷Ξ)
and WCIU− B � max(WCIU− 1,WCIU− 2, . . . ,

WCIU− ︷Ξ), then

WCIU− A ≤CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 ≤WCIU− B (19)
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Proof. We prove the above three equations, such that (1) If WCIU− i � WCIU, i � 1, 2, . . . , Ξ


, then

CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

  �
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W

pSC
CIU− iW

qSC
CIU− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

�
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W

pSC
CIUW

qSC
CIU

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

�
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W

pSC+qSC
CIU

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

� W
pSC+qSC
CIU 

1/pSC+qSC( )
� WCIU.

(20)

(2) When ψφi
′ ≤ψφi

, ψϕs
′ ≤ ψϕs , JWRP− i

′ ≤JWRP− i
, JWIP− i

′
≤JWIP− i

, KWRP− i
′ ≥KWRP− i

, and KWIP− i
′ ≥KWIP− i

, thenwe have WCIU− i
′ ≤WCIU− i, i � 1, 2, . . . , Ξ


.

-us, WCIU− i
′ ≤WCIU− i and WCIU− s

′ ≤WCIU− s, such
that

W
′pSC
CIU− iW

′qSC
CIU− s ≤W

pSC
CIU− iW

qSC
CIU− s

⟹
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W
′pSC
CIU− iW

′qSC
CIU− s ≤

2
Ξ


( Ξ


+1)



Ξ


i�1


Ξ


s�1
W

pSC
CIU− iW

qSC
CIU− s

⟹
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W
′pSC
CIU− iW

′qSC
CIU− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

≤
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
W

pSC
CIU− iW

qSC
CIU− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

.

(21)

-en, we obtain

CIULAHMpSC,qSC WCIU− 1′,WCIU− 2′, . . . ,W
CIU− Ξ

′ ≤CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 . (22)

(3) If WCIU− A � min(WCIU− 1,WCIU− 2, . . . ,WCIU− ︷Ξ)
and WCIU− B � max(WCIU− 1,WCIU− 2, . . . ,

WCIU− ︷Ξ), then by using Property 1, we get

WCIU− A ≤CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 ,

CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 ≤WCIU− B,

(23)
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and then

WCIU− A ≤CIULAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 ≤WCIU− B. (24)

Moreover, by using the investigated operators, we dis-
cuss some cases of the explored operators, which are dis-
cussed below.

(1) For qSC⟶ 0, the idea of CIULAHM operator is
converted to CIUL generalized linear descending
weighted mean (CIULGLDWM) operator, such that

CIULAHMpSC ,0
WCIU− 1,WCIU− 2, . . . ,W

CIU− Ξ
 

� lim
qSC⟶ 0

2
Ξ


( Ξ


+1)


Ξ



i�1

Ξ



s�1
W

pSC
CIU− iW

qSC
CIU− s

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

�
2

Ξ


( Ξ


+1)


Ξ


i�1
W

pSC
CIU− i

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/pSC( )

�

ψ

1− 
Ξ



i�1
1− φpSC

i
/h( )( )

( Ξ


+1− i)⎛⎝ ⎞⎠

(2/ Ξ


( Ξ


+1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC( ),ψ

1− 
Ξ



i�1
1− ϕpSC

i
/h( )( )

( Ξ


+1− i)⎛⎝ ⎞⎠

(2/ Ξ


( Ξ


+1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 
Ξ



i�1
1 − J

pSC
WRP− i

(�k) 
( Ξ


+1 − i)
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.

(25)

(2) For pSC⟶ 0, the idea of CIULAHM operator is
converted to CIUL generalized linear ascending
weighted mean (CIULGLAWM) operator, such that
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.

(26)

(3) For pSC � qSC � (1/2), the idea of CIULAHM op-
erator is converted to CIUL basic HM (CIULBHM)
operator, such that
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.

(27)

(4) For pSC � qSC � 1, the idea of CIULAHM operator is
converted to CIUL basic HM (CIULBHM) operator,
such that
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(28)

□
Definition 10. Based on any families of CIULNs WCIU− i �

([ψφi
,ψ ϕs], (JWRP− i

(�k)ei2π(JWIP− i
(�k)), KWRP− i

(�k)

ei2π(KWIP− i
(�k)))), i, s � 1, 2, . . . , Ξ


, the CIULWAHM

operator is a mapping CIULWAHMpSC ,qSC : Θ Ξ


⟶Θ
defined by

CIULWAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 

�
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
Ξ


ΩW− iWCIU− i)

pSC Ξ


ΩW− sWCIU− s)
qSC 

1/pSC+qSC( )
,

⎛⎜⎜⎜⎜⎜⎝

(29)

where ΩW � ΩW− 1,
ΩW− 2, . . . , ΩW− ︷Ξ  expresses the

weight vector with a condition that is

︷Ξ
i�1

ΩW− i � 1, ΩW− i ∈ [0, 1]. By using Definition 10, we
investigate the following result.

Theorem 2. For families of CIULNs WCIU− i � ([ψφi
,ψϕs],

(JWRP− i
(�k)ei2π(JWIP− i

(�k)),KWRP− i
(�k)ei2π(KWIP− i

(�k)))), i, s � 1, 2, . . . ,︷Ξ, by using Definitions 7 and 10, we
obtain
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Ξ


ΩW− S 

qSC

  

(2/ Ξ


( Ξ


+1))
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

ψ

1− 
Ξ



i�1

Ξ



S�1
1− 1− 1− φi/h( )

Ξ


ΩW− i 

pSC

1− 1− φs/h( )( )
Ξ


ΩW− S 

qSC

  

(2/ Ξ


( Ξ


+1))
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 1 − 
Ξ



i�1


Ξ


S�1
1 − 1 − 1 − JWRP− i

(�k) 
Ξ



ΩW− i
⎛⎝ ⎞⎠

pSC

1 − 1 − JWRP− S
(�k) 
Ξ



ΩW− S
⎛⎝ ⎞⎠

qSC

⎛⎝ ⎞⎠⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

(2/ Ξ


( Ξ


+1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e

i2π 1− 
Ξ



i�1

Ξ



S�1
1− 1− 1− JWIP− i

(�k) 
Ξ



ΩW− i
⎛⎝ ⎞⎠

pSC

1− 1− JWIP− S
(�k) 
Ξ



ΩW− S
⎛⎝ ⎞⎠

qSC

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

(2/ Ξ


( Ξ


+1)) 1/pSC+qSC( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 − 1 − 
Ξ



i�1

Ξ



S�1
1 − 1 − K

Ξ


WRP− i

ΩW− i(
�k) 

pSC

1 − K
Ξ



WRP− S

ΩW− S(�k) 

qSC

 
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

(2/ Ξ


( Ξ


+1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e

i2π 1− 1− 
Ξ



i�1

Ξ



S�1
1− 1− K Ξ



WIP− i
ΩW− i(

�k) 

pSC

1− K
qSC
WIP− S

(�k) 
qSC

 ⎛⎝ ⎞⎠

(2/ Ξ


( Ξ


+1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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.

(30)

Proof. Trivial. □

Theorem 3. �eCIULAHM operator is a certain brief case of
CIULWAHM operator.

Proof. We know that

CIULWAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 

�
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
Ξ


ΩW− iWCIU− i 

pSC Ξ


ΩW− sWCIU− s 
qSC⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

.

(31)

If ΩW � (1/ Ξ


), (1/ Ξ


), . . . , (1/ Ξ


) , then

CIULWAHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 

�
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
Ξ


ΩW− iWCIU− i 

pSC Ξ


ΩW− sWCIU− s 
qSC⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

�
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
Ξ

 1
Ξ

WCIU− i)
pSC Ξ

 1
Ξ

WCIU− s)
qSC 

1/pSC+qSC( )

�
2

Ξ


( Ξ


+1)


Ξ


i�1


Ξ


s�1
WCIU− i( 

pSC WCIU− s( 
qSC⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� CIULAHM
pSC ,qSC WCIU− 1,WCIU− 2, . . . ,W

CIU− Ξ
 . (32)

□
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Definition 11. For the families of CIULNs, the CIULGHM
operator is mapping CIULGHMpSC ,qSC : Θ︷Ξ ⟶ Θdefined
by

CIULGHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

  �
1

pSC + qSC


Ξ


i�1


Ξ


s�1
pSCWCIU− i + qSCWCIU− s( 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1).
(33)

By using Definition 11, we investigate the following
result.

Theorem 4. For families of CIULNs WCIU− i � ([ψφi
,ψϕs],

(JWRP− i
(�k)ei2π(JWIP− i

(�k)),KWRP− i
(�k)ei2π (KWIP− i

(�k)))), i, s �

1, 2, . . . , Ξ


( Ξ


+1), and by using Definitions 7 and 11, we
obtain

CIULWAHMpSC,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 

�

ψ

1− 1− 
Ξ



i�1

Ξ



S�1
1− 1− φi/h( )( )

pSC 1− φS/h( )( )
qSC( )⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ψ

1− 1− 
Ξ



i�1

Ξ



S�1
1− 1− ϕi/h( )( )

pSC 1− ϕS/h( )( )
qSC( )⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 1 − 
Ξ



i�1


Ξ


S�1
1 − 1 − JWRP− i

(�k) 
pSC 1 − JWRP− S

(�k) 
qSC

 
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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e

i2π 1− 1− 
Ξ



i�1

Ξ



S�1
1− 1− JWIP− i

(�k) 
pSC

1− JWIP− S
(�k) Ξ


Ω
⌢

W− S 

qSC

 ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 − 
Ξ



i�1


Ξ


S�1
1 − K

pSC
WRP− i

(�k)K
qSC
WRP− S

(�k) 
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC( )

e

i2π 1− 
Ξ



i�1

Ξ



S�1
1− K

pSC
WRP− i

(�k)K
qSC
WRP− i

(�k) ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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1/pSC+qSC( )
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.

(34)

Proof. Trivial.
Moreover, by using the investigated operators, we dis-

cuss some cases of the explored operators, which are dis-
cussed below.

(1) For qSC⟶ 0, the idea of CIULGHM operator is
converted to CIUL generalized geometric linear
descending weighted mean (CIULGGLDWM) op-
erator, such that
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CIULGHMpSC ,0
WCIU− 1,WCIU− 2, . . . ,W

CIU− Ξ
 

� lim
qSC⟶ 0

1
pSC + qSC



Ξ


i�1


Ξ


s�1
pSCWCIU− i + qSCWCIU− s( 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

(2/ Ξ


( Ξ


+1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1

pSC


Ξ


i�1
pSCWCIU− i

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

(2/ Ξ


( Ξ


+1))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

ψ

1− 1− 
Ξ



i�1
1− 1− φi/h( )( )
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(35)

(2) For pSC⟶ 0, the idea of CIULGHM operator is
converted to CIUL generalized geometric linear
ascending weighted mean (CIULGGLAWM) oper-
ator, such that
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.

(36)

(3) For pSC � qSC � (1/2), the idea of CIULGHM op-
erator is converted to CIUL basic geometric HM
(CIULBGHM) operator, such that
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.

(37)

(4) For pSC � qSC � 1, the idea of CIULGHM operator is
converted to CIUL geometric line HM
(CIULGLHM) operator, such that
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CIULGHM1,1
WCIU− 1,WCIU− 2, . . . ,W

CIU− Ξ
 

�

ψ

1− 1− 
Ξ



i�1

Ξ



s�1
1− 1− φi/h( )( )

1 1− φs/h( )( )
(1)( ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ψ

1− 1− 
Ξ



i�1

Ξ



s�1
1− 1− ϕi/h( )( )

1 1− ϕs/h( )( )
1( ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 1 − 
Ξ



i�1


Ξ


s�1
1 − 1 − JWRP− i

(�k)  1 − JWRP− s
(�k)  

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 1− 
Ξ



i�1

Ξ



s�1
1− 1− JWIP− i

(�k)  1− JWIP− s
(�k)  ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

,

1 − 
Ξ



i�1


Ξ


s�1
1 − KWRP− i

(�k)KWRP− s
(�k) 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

e

i2π 1− 
Ξ



i�1

Ξ



s�1
1− KWIP− i

(�k)KWIP− s
(�k) ⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1/2)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(38)

□
Property 2. For families of CIULNs WCIU− i � ([ψφi

,ψϕs],

(JWRP− i
(�k)ei2π(JWIP− i

(�k)),KWRP− i
(�k)ei2π( KWIP− i

(�k)))), i, s � 1,

2, . . . ,︷Ξ, then

(1) If WCIU− i � WCIU, then

CIULGHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

  � WCIU. (39)

(2) For CIULN WCIU− i
′ � ([ψφi

′, ψϕs
′], (JWRP− i

′(�k)

ei2π(JWIP− i
′(�k)),KWRP− i

′(�k)ei2π( KWIP− i
′(�k)))), i, s � 1, 2,

. . . , Ξ


, such that ψφi
′ ≤ψφi

, ψϕs
′ ≤ ψϕs , JWRP− i

′

≤JWRP− i
, JWIP− i

′ ≤JWIP− i
, KWRP− i

′ ≥KWRP− i
, and

KWIP− i
′ ≥KWIP− i

, we have

CIULGHMpSC,qSC WCIU− 1′,WCIU− 2′, . . . ,W
CIU− Ξ

′ ≤CIULGHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 . (40)

(3) If WCIU− A � min(WCIU− 1,WCIU− 2, . . . , W
CIU− Ξ

)

and WCIU− B � max(WCIU− 1, WCIU− 2, . . . ,

W
CIU− Ξ

), then
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WCIU− A ≤CIULGHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 ≤WCIU− B. (41)

Proof. Follows from the proof similar to Property 1. □ Definition 12. For the families of CIULNs, the
CIULWGHM operator is mapping CIULWGHMpSC ,qSC :

Θ Ξ


⟶Θstated by

CIULWGHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

  �
1

pSC + qSC

Ξ



i�1

Ξ



s�1
pSCWCIU− i( 

Ξ


ΩW− i + qSCWCIU− s( 
Ξ


ΩW− s 

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1),

(42)

where ΩW � ΩW− 1,
ΩW− 2, . . . , Ω

W− Ξ
  expresses the

weight vector with a condition that is 
Ξ



i�1
ΩW− i � 1, ΩW− i ∈ [0, 1]. By using Definition 12, we inves-
tigate the following result.

Theorem 5. Based on any families of CIULNs WCIU− i �

([ψφi
,ψϕs], (JWRP− i

(�k)ei2π(JWIP− i
(�k)),KWRP− i

(�k)ei2π( KWIP− i

(�k)))), i, s � 1, 2, . . . , Ξ


, then by using Definitions 7 and 12,
we obtain

CIULGHMpSC ,qSC WCIU− 1,WCIU− 2, . . . ,W
CIU− Ξ

 

�

ψ

1− 
Ξ



i�1

Ξ



S�1
1− 1− 1− φi/h( )

Ξ


Ω
⌢

W− S 

Ξ


Ω
⌢

W− S

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

pSC

1− 1− φs/h( )
Ξ



Ω
⌢

W− S 

Ξ


Ω
⌢

W− S

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

qSC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC

ψ

1− 
Ξ



i�1

Ξ



S�1
1− 1− 1− ϕi/h( )

Ξ


Ω
⌢

W− S 

Ξ


Ω
⌢

W− S

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

pSC

1− 1− ϕs/h( )
Ξ



Ω
⌢

W− S 

Ξ


Ω
⌢

W− S

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

qSC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1 − 
Ξ



i�1

Ξ



S�1
1 − 1 − 1 − J

Ξ


WRP− i
Ω
⌢

W− i(
�k) 

Ξ


Ω
⌢

W− i
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

pSC

1 − 1 − J
Ξ



WRP− S
Ω
⌢

W− S(�k) 

Ξ


Ω
⌢

W− S
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

qSC

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC

e

i2π 1− 
Ξ



i�1

Ξ



S�1
1− 1− 1− J Ξ



WIP− i
Ω
⌢

W− i(
�k) 
Ξ



Ω
⌢

W− i
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

pSC

1− 1− J Ξ


WIP− S
Ω
⌢

W− S(�k) 
Ξ



Ω
⌢

W− S
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

qSC

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC

1 − 
Ξ



i�1

Ξ



S�1
1 − 1 − 1 − KWRP− i

(�k) 
Ξ



Ω
⌢

W− S
⎛⎝ ⎞⎠

pSC

1 − 1 − KWRP− S
(�k) 
Ξ



Ω
⌢

W− S
⎛⎝ ⎞⎠

qSC

⎛⎝ ⎞⎠⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e

i2π 1− 
Ξ



i�1

Ξ



S�1
1− 1− 1− KWIP− i

(�k) 
Ξ



Ω
⌢

W− S
⎛⎝ ⎞⎠

pSC

1− 1− KWIP− S
(�k) 
Ξ



Ω
⌢

W− S
⎛⎝ ⎞⎠

qSC

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2/ Ξ


( Ξ


+1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/pSC+qSC

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(43)
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Proof. Trivial. □

Theorem 6. �eCIULGHM operator is a certain brief case of
CIULWGHM operator.

Proof. Trivial. □

5. MADM Procedure Based on
CIULSHM Operators

In genuine decision troubles, there occur the exchanges
among the attributes. At the similar moment, due to the
ambiguity of the attributes, they can be certainly shown by
the CIULSs. So, by using the CIUL information (CIULI), it is
essential to utilize various decision-making processes to sort
out the exchanges among the characteristics.

In this analysis, we shall investigate a methodology to
MAGDM procedure by using the CIULI by CIULWAHM
operator or CIULWGHM operator. Reflect a MAGDM
procedure by using the CIULI: let ΦAl � ΦAl− 1,

ΦAl− 2, . . . ,ΦAl− ︷Ξ} be the family of alternatives and their
attributes LAt � LAt− 1,LAt− 2, . . . ,LAt− ︷m . For this, we
choose the weight vectors ΩW � ΩW− 1,

ΩW− 2, . . . , ΩW− ︷n 

with a rule that is 
︷n
i�1

ΩW− i � 1. Moreover, we choose the
family of decision makers such that
DDm � DDm− 1,DDm− 2, . . . ,DDm− ︷Ξ , and ΩW

′ � ΩW− 1′,
ΩW− 2′, . . . , ΩW− ︷n

′} with a rule that is 
︷n
i�1

ΩW− i
′ � 1 are

expressing the weight vectors of decision makers. To resolve
the above discussed issues, we choose the decision matrix
�R

i
, i � 1, 2, . . . ,︷n, whose every term in the form of

CIULNs such that WCIU � ([ψφi
,ψϕs], (JWCIU

(�k),

KWCIU
(�k))), where JWCIU

(�k) � JWRP
(�k)ei2π(JWIP(�k)) and

KWCIU
(�k) � KWRP

(�k)ei2π(KWIP
(�k)) with the rules such that

0≤JWRP
(�k) + KWRP

(�k)≤ 1 and 0≤JWIP
(�k) + KWIP

(�k)≤ 1
with ψφi

,ψϕs ∈ ψ(i≤ s). For resolving the aforementioned
issues, we use the following MAGDM procedures:

Step 1: utilize the CIULWAHM operator to total the
choice matrices which are given by decision makers
with weighted vectors.
Step 2: utilize the CIULAHM operator, CIULWAHM
operator, CIULGHM operator, and CIULWGHM
operator to collect the choice matrices which are in Step
1.
Step 3: by using the score function, we analyze the score
principles of the accumulated values in Step 2.
Step 4: rank all the options and discover the most
excellent one.

Example 1. -eMAGDM issue is cited from Ref. [41].-ere
is a speculation organization, which plans to pick the most
ideal interest in some options. -ere are four potential al-
ternatives for the speculation organization to browse: (1) a
vehicle organizationΦAl− 1; (2) a food organizationΦAl− 2; (3)
a PC organizationΦAl− 3; and (4) a mobile organization
ΦAl− 4. -e venture organization considers four criteria to
settle on decisions: (1) the hazard investigationLAt− 1; (2) the
development examination LAt− 2; (3) the natural impact

investigation LAt− 3; and (4) social impact LAt− 4, where all
criteria values are benefit type. -e weight vector of the
criteria is ΩW

′ � (0.5, 0.4, 0.1)T, ΩW � (0.4, 0.3, 0.2, 0.1)T.
-e four potential options are assessed regarding the four
rules by the type of CIULNs, and complex intuitionistic
uncertain linguistic decision matrices �R

i
, i � 1, 2, 3 are de-

veloped and listed in the form of Tables 1–3 , respectively.
For resolving the aforementioned issues, we use the

following MAGDM procedures:

Step 1: by utilizing the CIULWAHM operator, we
aggregated the decision matrices which are given by
decision makers with weighted vectors. -e aggregated
decision matrix is discussed in the form of Table 4 for
pSC, qSC � 1.
Step 2: utilize the CIULAHM operator, CIULWAHM
operator, CIULGHM operator, and CIULWGHM
operator to aggregate the decisionmatrices which are in
Step 1, which are discussed in the form of Table 5 for
pSC, qSC � 0.4.
Step 3: by using the score function, we compute their
values which are listed in Table 6.
Step 4: rank all the options and invent the superlative
one, which are discussed in the form of Table 7.

From the above analysis, we obtain different results by
using the investigated operators such as CIULAHM oper-
ator, CIULWAHM operator, CIULGHM operator, and
CIULWGHM operator. -e best options are ΦAI− 1,ΦAI− 2,
and ΦAI− 4 by using different operators. -e graphical in-
terpretations of the information of Table 6 are discussed in
the form of Figure 1.

5.1. Influence of Parameters. To demonstrate the stability
and validity of the investigated operators with the help of the
parameters pSC and qSC are discussed by using the infor-
mation of Example 1. -e stability of the parameters by
using the information of Example 1 is discussed in the form
of Tables 8–10 by using the investigated CIULAHM,
CIULWAHM, CIULGHM, and CIULWGHM operators
with the help of parameter qSC � 0.4.

5.2. Comparative Analysis. In addition, we want to enhance
the excellence and quantity of the investigated operators
centered on CIULSs with the help of comparative analysis
between explored operators with certain prevailing opera-
tors to find the validity and capability of the investigated
operators. -e information related to existing ideas are
discussed as follows: Heronian mean operators based on
intuitionistic uncertain linguistic set (IULS) were developed
by Liu et al. [41]. Liu and Liu [42] investigated the parti-
tioned Bonferroni mean (PBM) operators for IULS.
Moreover, Liu et al. [43] explored weighted Bonferroni
ordered weighted averaging (WBOWA) operators for IULS.
Liu et al. [44] utilized the idea of Hamy mean (HaM) op-
erators for IULSs. -e theory of Bonferroni mean (BM)
operators for IULS was developed by Liu and Zhang [45].
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Table 1: Decision matrix in terms of CIULNs provided by expert �R
1
.

Alternatives/attributes LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1
[ψ5,ψ5],

0.2e
i2π(0.2)

,

0.7e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ2,ψ3],

0.4e
i2π(0.4)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ5,ψ6],

0.5e
i2π(0.5)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 2
[ψ4,ψ5],

0.2e
i2π(0.2)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ5,ψ5],

0.4e
i2π(0.4)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.1e
i2π(0.1)

,

0.8e
i2π(0.8) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ4],

0.5e
i2π(0.5)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 3
[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.7e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ4],

0.2e
i2π(0.2)

,

0.7e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ5],

0.3e
i2π(0.3)

,

0.7e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ5],

0.2e
i2π(0.2)

,

0.7e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 4
[ψ6,ψ6],

0.5e
i2π(0.5)

,

0.4e
i2π(0.4) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ2,ψ3],

0.2e
i2π(0.2)

,

0.8e
i2π(0.8) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ3],

0.3e
i2π(0.3)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

Table 2: Decision matrix in terms of CIULNs provided by expert �R
2
.

Alternatives/attributes LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1
[ψ5,ψ5],

0.2e
i2π(0.2)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ2,ψ3],

0.4e
i2π(0.4)

,

0.5e
i2π(0.1) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ5,ψ6],

0.5e
i2π(0.5)

,

0.3e
i2π(0.2) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.1e
i2π(0.1) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 2
[ψ4,ψ5],

0.2e
i2π(0.2)

,

0.5e
i2π(0.3) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ5,ψ6],

0.5e
i2π(0.5)

,

0.3e
i2π(0.2) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.1e
i2π(0.1)

,

0.6e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ4],

0.5e
i2π(0.5)

,

0.3e
i2π(0.3) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 3
[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.4e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.1e
i2π(0.1)

,

0.6e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ5],

0.3e
i2π(0.3)

,

0.4e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ5],

0.2e
i2π(0.2)

,

0.4e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 4
[ψ6,ψ6],

0.5e
i2π(0.5)

,

0.4e
i2π(0.4) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ5],

0.3e
i2π(0.3)

,

0.4e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.3e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ3],

0.3e
i2π(0.3)

,

0.3e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

Table 3: Decision matrix in terms of CIULNs provided by expert �R
3
.

Alternatives/attributes LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1
[ψ5,ψ5],

0.2e
i2π(0.2)

,

0.7e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ2,ψ3],

0.4e
i2π(0.4)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ5,ψ6],

0.5e
i2π(0.5)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 2
[ψ5,ψ5],

0.2e
i2π(0.2)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ2,ψ3],

0.4e
i2π(0.4)

,

0.5e
i2π(0.1) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.1e
i2π(0.1)

,

0.8e
i2π(0.8) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ4,ψ4],

0.5e
i2π(0.5)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 3
[ψ4,ψ5],

0.2e
i2π(0.2)

,

0.5e
i2π(0.3) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ5,ψ6],

0.5e
i2π(0.5)

,

0.3e
i2π(0.2) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ2,ψ3],

0.4e
i2π(0.4)

,

0.6e
i2π(0.6) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ5,ψ6],

0.5e
i2π(0.5)

,

0.5e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 4
[ψ3,ψ4],

0.2e
i2π(0.2)

,

0.4e
i2π(0.7) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.1e
i2π(0.1)

,

0.6e
i2π(0.5) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ2,ψ3],

0.4e
i2π(0.4)

,

0.5e
i2π(0.1) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ3,ψ4],

0.1e
i2π(0.1)

,

0.8e
i2π(0.8) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
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-e comparative analyses of the investigated operators with
certain remaining operators are discussed in the form of
Table 10, by using the information of Example 1.

-e graphical interpretations of the information of Ta-
ble 10 are discussed in the form of Figure 2.

From the obtained results, we acquire the effect; if we
choose the complex intuitionistic uncertain linguistic type of

information, then the existing operators centered on IULVs
are not able to cope with it. But, if we prefer the intuitionistic
uncertain linguistic type of knowledge, then the proposed
operators centered on IUL variables can cope with it. For
this, we choose the intuitionistic uncertain linguistic type of
knowledge and resolve it by utilizing scrutinized and ac-
cessible operators to discover the consistency and efficiency
of the offered approaches.

Example 2. -e information of this example is taken from
Ref. [41]. -ere is a speculation organization, which plans to
pick the most ideal interest in some options. -ere are four
potential alternatives for the speculation organization to
browse: (1) a vehicle organization ΦAl− 1; (2) a food orga-
nizationΦAl− 2; (3) a PC organizationΦAl− 3; and (4) a mobile
organization ΦAl− 4. -e venture organization considers four

Table 4: Aggregated decision matrix of the experts by CIULWAHM operator.

LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1
[ψ1.6489,ψ1.6489],

0.6665e
i2π(0.6665)

,

0.2189e
i2π(0.2189) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.6595,ψ0.9893],

0.7947e
i2π(0.7947)

,

0.1834e
i2π(0.1393) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.6489,ψ1.9786],

0.8474e
i2π(0.8474)

,

0.1188e
i2π(0.1089) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9893,ψ1.3191],

0.6665e
i2π(0.6665)

,

0.1393e
i2π(0.1393) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 2
[ψ1.3693,ψ1.6489],

0.6665e
i2π(0.6665)

,

0.1769e
i2π(0.141) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.4874,ψ1.6737],

0.8166e
i2π(0.8166)

,

0.1188e
i2π(0.0804) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9893,ψ1.3191],

0.5891e
i2π(0.5891)

,

0.2803e
i2π(0.2596) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.3191,ψ1.3191],

0.8474e
i2π(0.8474)

,

0.1188e
i2π(0.1188) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 3
[ψ1.0392,ψ1.3693],

0.6665e
i2π(0.6665)

,

0.1823e
i2π(0.2493) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.2247,ψ1.4177],

0.6488e
i2π(0.6488)

,

0.2217e
i2π(0.1942) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.2124,ψ1.5431],

0.7409e
i2π(0.7409)

,

0.191e
i2π(0.2591) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.3693,ψ1.6993],

0.6824e
i2π(0.6824)

,

0.1823e
i2π(0.2544) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 4
[ψ1.8187,ψ1.8735],

0.8212e
i2π(0.8212)

,

0.107e
i2π(0.1313) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9447,ψ1.2845],

0.6854e
i2π(0.6854)

,

0.2186e
i2π(0.2867) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9367,ψ1.2669],

0.6786e
i2π(0.6786)

,

0.141e
i2π(0.1916) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9893,ψ1.0392],

0.7167e
i2π(0.7167)

,

0.1765e
i2π(0.2221) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

Table 5: Aggregated values of the alternatives by CIULAHM, CIULWAHM, CIULGHM, and CIULWGHM operators.

CIULAHM CIULWAHM CIULGHM CIULWGHM

ΦAl− 1
[ψ1.2043,ψ1.5056],

0.745e
i2π(0.745)

,

0.0808e
i2π(0.0723) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9328,ψ1.1553],

0.9873e
i2π(0.9873)

,

0.0014e
i2π(0.001) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.147,ψ1.4558],

0.6082e
i2π(0.6082)

,

0.1622e
i2π(0.1482) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.0985,ψ1.246],

0.1072e
i2π(0.1072)

,

0.7938e
i2π(0.7828) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 2
[ψ1.2632,ψ1.4188],

0.732e
i2π(0.732)

,

0.0852e
i2π(0.0699) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9789,ψ1.1316],

0.9853e
i2π(0.9853)

,

0.0015e
i2π(0.0009) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.2462,ψ1.4112],

0.5974e
i2π(0.5974)

,

0.1663e
i2π(0.1409) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.1493,ψ1.2644],

0.0959e
i2π(0.0959)

,

0.7799e
i2π(0.7576) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 3
[ψ1.2662,ψ1.5712],

0.6847e
i2π(0.6847)

,

0.1001e
i2π(0.1307) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.9406,ψ1.1606],

0.9786e
i2π(0.9786)

,

0.0019e
i2π(0.0033) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.2638,ψ1.5664],

0.5324e
i2π(0.5324)

,

0.1939e
i2π(0.2383) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.1212,ψ1.2707],

0.0796e
i2π(0.0796)

,

0.8017e
i2π(0.8218) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

ΦAl− 4
[ψ1.0178,ψ1.223],

0.7258e
i2π(0.7258)

,

0.078e
i2π(0.1085) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ0.7861,ψ0.9838],

0.9877e
i2π(0.9877)

,

0.001e
i2π(0.0022) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.0313,ψ1.2197],

0.582e
i2π(0.582)

,

0.1572e
i2π(0.203) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

[ψ1.0612,ψ1.1872],

0.1009e
i2π(0.1009)

,

0.7749e
i2π(0.8036) 

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

Table 6: Score values of each alternative from the aggregated values by different operators.

CIULAHM CIULWAHM CIULGHM CIULWGHM
ΦAl− 1 0.1971 1.0359 1.0944 − 0.896
ΦAl− 2 0.1797 1.045 1.0732 − 0.934
ΦAl− 3 − 0.0260 1.0353 1.0701 − 0.9700
ΦAl− 4 0.0295 0.8747 0.8849 − 0.888

Table 7: Ranking values of the alternatives based on score values by
different operators.

Methods Ranking values
CIULAHM operator ΦAI− 1 ≥ΦAI− 2 ≥ΦAI− 4 ≥ΦAI− 3
CIULWAHM operator ΦAI− 2 ≥ΦAI− 1 ≥ΦAI− 3 ≥ΦAI− 4
CIULGHM operator ΦAI− 1 ≥ΦAI− 2 ≥ΦAI− 3 ≥ΦAI− 4
CIULWGHM operator ΦAI− 4 ≥ΦAI− 1 ≥ΦAI− 2 ≥ΦAI− 3
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Figure 1: Geometrical expressions of the information given in Table 6.

Table 8: Influence of the parameters pSC on the ranking of the alternatives with qSC � 0.4.

pSC Operators Score values Ranking values

0.1

AHM ζ(ΦAl− 1) � 0.8313, ζ(ΦAl− 2) � 0.8962,ζ(ΦAl− 3) � 0.8114, ζ(ΦAl− 4) � 0.4714 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WAHM ζ(ΦAl− 1) � 0.3543, ζ(ΦAl− 2) � 0.4224,ζ(ΦAl− 3) � 0.427, ζ(ΦAl− 4) � 0.3226 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.1441, ζ(ΦAl− 2) � 0.1348,ζ(ΦAl− 3) � − 0.034, ζ(ΦAl− 4) � 0.0354 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.233, ζ(ΦAl− 2) � − 0.295,ζ(ΦAl− 3) � − 0.331, ζ(ΦAl− 4) � − 0.254 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

0.2

AHM ζ(ΦAl− 1) � 0.4547, ζ(ΦAl− 2) � 0.5372,ζ(ΦAl− 3) � 0.4055, ζ(ΦAl− 4) � 0.3124 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WAHM ζ(ΦAl− 1) � 0.4426, ζ(ΦAl− 2) � 0.5227,ζ(ΦAl− 3) � 0.4544, ζ(ΦAl− 4) � 0.4137 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.3201, ζ(ΦAl− 2) � 0.3139,ζ(ΦAl− 3) � 0.1428, ζ(ΦAl− 4) � 0.2552 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.21, ζ(ΦAl− 2) � − 0.251,ζ(ΦAl− 3) � − 0.248, ζ(ΦAl− 4) � − 0.235 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

0.5

AHM ζ(ΦAl− 1) � 0.4353, ζ(ΦAl− 2) � 0.5036,ζ(ΦAl− 3) � 0.1744, ζ(ΦAl− 4) � 1.5009 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WAHM ζ(ΦAl− 1) � 0.1718, ζ(ΦAl− 2) � 0.2607, ζ(ΦAl− 3) � 0.1246, ζ(ΦAl− 4) � 0.1527 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.211, ζ(ΦAl− 2) � 0.233,

ζ(ΦAl− 3) � 0.0433, ζ(ΦAl− 4) � 0.121 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.314, ζ(ΦAl− 2) � − 0.352,ζ(ΦAl− 3) � − 0.335, ζ(ΦAl− 4) � − 0.303 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

1

AHM ζ(ΦAl− 1) � 0.0441, ζ(ΦAl− 2) � 0.1156,ζ(ΦAl− 3) � − 0.4113, ζ(ΦAl− 4) � 0.0221 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WAHM ζ(ΦAl− 1) � 0.4053, ζ(ΦAl− 2) � 0.4044,ζ(ΦAl− 3) � 0.3418, ζ(ΦAl− 4) � 0.4539 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.5304, ζ(ΦAl− 2) � 1.0322,ζ(ΦAl− 3) � 0.3434, ζ(ΦAl− 4) � 0.4446 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.312, ζ(ΦAl− 2) � − 0.344,ζ(ΦAl− 3) � − 0.323, ζ(ΦAl− 4) � − 0.413 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

2

AHM ζ(ΦAl− 1) � 0.1345, ζ(ΦAl− 2) � 0.1343,ζ(ΦAl− 3) � − 0.041, ζ(ΦAl− 4) � 0.1431 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WAHM ζ(ΦAl− 1) � 1.0332, ζ(ΦAl− 2) � 1.1143,

ζ(ΦAl− 3) � 0.4513, ζ(ΦAl− 4) � 1.2151 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 1.0352, ζ(ΦAl− 2) � 1.2243,ζ(ΦAl− 3) � 0.5315, ζ(ΦAl− 4) � 1.0533 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.341, ζ(ΦAl− 2) � − 0.442ζ(ΦAl− 3) � − 0.342, ζ(ΦAl− 4) � − 0.404 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

Table 9: Influence of the parameter qSC on the ranking of the alternatives with pSC � 0.4.

qSC Operators Score values Ranking values

0.1

AHM ζ(ΦAl− 1) � 0.535, ζ(ΦAl− 2) � 1.0244,
ζ(ΦAl− 3) � 0.432, ζ(ΦAl− 4) � 1.0034 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

WAHM ζ(ΦAl− 1) � 0.4201, ζ(ΦAl− 2) � 0.4541,ζ(ΦAl− 3) � 0.3452, ζ(ΦAl− 4) � 0.4557 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.1039, ζ(ΦAl− 2) � 0.1034,ζ(ΦAl− 3) � − 0.042, ζ(ΦAl− 4) � 0.0533 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.333, ζ(ΦAl− 2) � − 0.321,ζ(ΦAl− 3) � − 0.345, ζ(ΦAl− 4) � − 0.332 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

0.2

AHM ζ(ΦAl− 1) � 0.3007, ζ(ΦAl− 2) � 0.5451,ζ(ΦAl− 3) � 0.4005, ζ(ΦAl− 4) � 0.4342 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WAHM ζ(ΦAl− 1) � 0.5032, ζ(ΦAl− 2) � 0.5695,ζ(ΦAl− 3) � 0.4581, ζ(ΦAl− 4) � 0.5416 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.4981, ζ(ΦAl− 2) � 0.5053,ζ(ΦAl− 3) � 0.1559, ζ(ΦAl− 4) � 0.4139 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.441, ζ(ΦAl− 2) � − 0.506,ζ(ΦAl− 3) � − 0.463, ζ(ΦAl− 4) � − 0.529 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

24 Journal of Mathematics



RE
TR
AC
TE
D

Table 9: Continued.

qSC Operators Score values Ranking values

0.5

AHM ζ(ΦAl− 1) � 0.5501, ζ(ΦAl− 2) � 0.6017,
ζ(ΦAl− 3) � 0.2114, ζ(ΦAl− 4) � 0.213 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

WAHM ζ(ΦAl− 1) � 0.1353, ζ(ΦAl− 2) � 0.2332,ζ(ΦAl− 3) � 0.1344, ζ(ΦAl− 4) � 0.1244 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.3308, ζ(ΦAl− 2) � 0.3387,ζ(ΦAl− 3) � 0.0881, ζ(ΦAl− 4) � 0.1706 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.372, ζ(ΦAl− 2) � − 0.436,ζ(ΦAl− 3) � − 0.418, ζ(ΦAl− 4) � − 0.434 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

1

AHM ζ(ΦAl− 1) � 0.0311ζ(ΦAl− 2) � 0.0204,
ζ(ΦAl− 3) � 0.6622, ζ(ΦAl− 4) � 0.6731 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

WAHM ζ(ΦAl− 1) � 0.5365, ζ(ΦAl− 2) � 0.6144,ζ(ΦAl− 3) � 0.5654, ζ(ΦAl− 4) � 0.4057 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
GHM ζ(ΦAl− 1) � 0.8633, ζ(ΦAl− 2) � 0.8637,ζ(ΦAl− 3) � 0.6737, ζ(ΦAl− 4) � 0.5025 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
WGHM ζ(ΦAl− 1) � − 0.316, ζ(ΦAl− 2) � − 0.380,ζ(ΦAl− 3) � − 0.388, ζ(ΦAl− 4) � − 0.351 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

2

AHM ζ(ΦAl− 1) � 0.2822, ζ(ΦAl− 2) � 0.2485,
ζ(ΦAl− 3) � − 0.042, ζ(ΦAl− 4) � 0.049 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

WAHM ζ(ΦAl− 1) � 1.0817, ζ(ΦAl− 2) � 1.08,
ζ(ΦAl− 3) � 1.0606, ζ(ΦAl− 4) � 0.6393 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

GHM ζ(ΦAl− 1) � 1.0444, ζ(ΦAl− 2) � 1.0233,
ζ(ΦAl− 3) � 1.0203, ζ(ΦAl− 4) � 0.4354 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

WGHM ζ(ΦAl− 1) � − 0.379, ζ(ΦAl− 2) � − 0.442,ζ(ΦAl− 3) � − 0.475, ζ(ΦAl− 4) � − 0.386 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3

Table 10: Comparative analysis of the proposed and existing operators for Example 1.

Methods Operators Score values Ranking values
Liu et al.
[41] HM Failed Failed

Liu and Liu
[42] PBM Failed Failed

Liu et al.
[43] WBOWA Failed Failed

Liu et al.
[44] HaM Failed Failed

Liu and
Zhang [45] BM Failed Failed

Proposed
operators

CIULAHM
operator ζ(ΦAl− 1) � 0.1971, ζ(ΦAl− 2) � 0.1797,ζ(ΦAl− 3) � − 0.026, ζ(ΦAl− 4) � 0.0295 ΦAl− 1 ≥ΦAl− 2 ≥ΦAl− 4 ≥ΦAl− 3

CIULWAHM
operator ζ(ΦAl− 1) � 1.0359, ζ(ΦAl− 2) � 1.045,ζ(ΦAl− 3) � 1.0353, ζ(ΦAl− 4) � 0.8747 ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 3 ≥ΦAl− 4

CIULGHM
operator ζ(ΦAl− 1) � 1.0944, ζ(ΦAl− 2) � 1.0732,ζ(ΦAl− 3) � 1.0701, ζ(ΦAl− 4) � 0.8849 ΦAl− 1 ≥ΦAl− 2 ≥ΦAl− 3 ≥ΦAl− 4

CIULWGHM
operator ζ(ΦAl− 1) � − 0.896, ζ(ΦAl− 2) � − 0.934,ζ(ΦAl− 3) � − 0.97, ζ(ΦAl− 4) � − 0.888 ΦAl− 4 ≥ΦAl− 1 ≥ΦAl− 2 ≥ΦAl− 3

CIULWGHM
CIULGHM

CIULWAHM
CIULAHM

BM
HaM

WBOMA
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BM
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Figure 2: Geometrical interpretation of the information given in Table 10.
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Table 11: Decision matrix provided by expert �R
1
in terms of CIULNs.

Alternatives/attributes LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1 [ψ5,ψ5],

(0.2, 0.7)
 

[ψ2,ψ3],

(0.4, 0.6)
 

[ψ5,ψ6],

(0.5, 0.5)
 

[ψ3,ψ4],

(0.2, 0.6)
 

ΦAl− 2 [ψ4,ψ5],

(0.4, 0.6)
 

[ψ5,ψ5],

(0.4, 0.5)
 

[ψ3,ψ4],

(0.1, 0.8)
 

[ψ4,ψ4],

(0.5, 0.5)
 

ΦAl− 3 [ψ3,ψ4],

(0.2, 0.7)
 

[ψ4,ψ4],

(0.2, 0.7)
 

[ψ4,ψ5],

(0.3, 0.7)
 

[ψ4,ψ5],

(0.2, 0.7)
 

ΦAl− 4 [ψ6,ψ6],

(0.5, 0.4)
 

[ψ2,ψ3],

(0.2, 0.8)
 

[ψ3,ψ4],

(0.2, 0.6)
 

[ψ3,ψ3],

(0.3, 0.6)
 

Table 12: Decision matrix provided by expert �R
2
in terms of CIULNs.

Alternatives/attributes LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1 [ψ4,ψ4],

(0.1, 0.7)
 

[ψ3,ψ4],

(0.2, 0.7)
 

[ψ3,ψ4],

(0.2, 0.8)
 

[ψ6,ψ6],

(0.4, 0.5)
 

ΦAl− 2 [ψ5,ψ6],

(0.4, 0.5)
 

[ψ3,ψ4],

(0.3, 0.6)
 

[ψ4,ψ5],

(0.2, 0.6)
 

[ψ3,ψ4],

(0.2, 0.7)
 

ΦAl− 3 [ψ4,ψ5],

(0.2, 0.6)
 

[ψ4,ψ4],

(0.2, 0.7)
 

[ψ2,ψ3],

(0.4, 0.6)
 

[ψ3,ψ4],

(0.3, 0.7)
 

ΦAl− 4 [ψ5,ψ5],

(0.3, 0.6)
 

[ψ4,ψ5],

(0.4, 0.5)
 

[ψ2,ψ3],

(0.3, 0.6)
 

[ψ4,ψ4],

(0.2, 0.6)
 

Table 13: Decision matrix provided by expert �R
3
in terms of CIULNs.

Alternatives/attributes LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1 [ψ5,ψ5],

(0.2, 0.6)
 

[ψ3,ψ4],

(0.3, 0.7)
 

[ψ4,ψ5],

(0.4, 0.5)
 

[ψ4,ψ4],

(0.2, 0.7)
 

ΦAl− 2 [ψ4,ψ5],

(0.3, 0.7)
 

[ψ5,ψ5],

(0.3, 0.6)
 

[ψ2,ψ3],

(0.1, 0.8)
 

[ψ3,ψ4],

(0.4, 0.6)
 

ΦAl− 3 [ψ4,ψ4],

(0.2, 0.7)
 

[ψ5,ψ5],

(0.3, 0.6)
 

[ψ1,ψ3],

(0.1, 0.8)
 

[ψ4,ψ4],

(0.2, 0.7)
 

ΦAl− 4 [ψ3,ψ4],

(0.2, 0.7)
 

[ψ3,ψ4],

(0.1, 0.7)
 

[ψ4,ψ5],

(0.3, 0.6)
 

[ψ5,ψ5],

(0.4, 0.5)
 

Table 14: Aggregated decision matrix of the expert by CIULWAHM operator.

LAt− 1 LAt− 2 LAt− 3 LAt− 4

ΦAl− 1 [ψ1.6377,ψ1.6377],

(0.6394, 0.2512)
 

[ψ0.9178,ψ1.2718],

(0.7743, 0.2101)
 

[ψ1.4011,ψ1.7561],

(0.6645, 0.249)
 

[ψ1.4746,ψ1.6219],

(0.7514, 0.1921)
 

ΦAl− 2 [ψ1.5179,ψ1.8703],

(0.7318, 0.2452)
 

[ψ1.508,ψ1.6377],

(0.7548, 0.1879)
 

[ψ1.0473,ψ1.4029],

(0.6832, 0.2512)
 

[ψ1.1758,ψ1.4063],

(0.6785, 0.2613)
 

ΦAl− 3 [ψ1.2718,ψ1.5179],

(0.7682, 0.2164)
 

[ψ1.51,ψ1.51],

(0.6125, 0.2971)
 

[ψ0.7869,ψ1.2855],

(0.7058, 0.2701)
 

[ψ1.285,ψ1.5289],

(0.7056, 0.2076)
 

ΦAl− 4 [ψ1.6432,ψ1.7664],

(0.7029, 0.2101)
 

[ψ1.0194,ψ1.377],

(0.7682, 0.2084)
 

[ψ1.03,ψ1.3856],

(0.6857, 0.2678)
 

[ψ1.3704,ψ1.3704],

(0.7254, 0.193)
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criteria to settle on decisions: (1) the hazard investigation
LAt− 1; (2) the development examination LAt− 2; (3) the
natural impact investigation LAt− 3; and (4) social impact
LAt− 4, where all criteria values are benefit type. -e weight
vector of the criteria is ΩW

′ � (0.4, 0.32, 0.28)T,
ΩW � (0.32, 0.26, 0.18, 0.24)T. -e four potential options
are assessed regarding the four rules by the type of CIULNs,
and complex intuitionistic uncertain linguistic decision
matrices �R

i
, i � 1, 2, 3 are developed and listed in the form

of Tables 11–13 .
For resolving the aforementioned issues, we use the

following MAGDM procedures:

Step 1: by utilizing the CIULWAHM operator, we
aggregated the decision matrices which are given by
decision makers with weighted vectors. -e aggregated
decision matrix is discussed in the form of Table 14 for
pSC, qSC � 1.
Step 2: utilize the CIULAHM operator, CIULWAHM
operator, CIULGHM operator, and CIULWGHM
operator to aggregate the decisionmatrices which are in
Step 1, which are discussed in the form of Table 15 for
pSC, qSC � 1.
Step 3: the score values of the given alternatives are
computed and results are listed in Table 16.
Step 4: rank all the alternatives and find the best one,
which are discussed in the form of Table 17.

From the above analysis, we obtain different results by
using the investigated operators such as CIULAHM oper-
ator, CIULWAHM operator, CIULGHM operator, and
CIULWGHM operator. -e best options are ΦAl− 2 and
ΦAl− 4. -e graphical interpretations of the information of
Table 16 are discussed in the form of Figure 3.

-e comparative analysis of the investigated operators
with some existing operators is discussed in the form of
Table 18 by using the information of Example 2.

From this, we acquire the result; if we choose the
complex intuitionistic uncertain linguistic type of knowl-
edge, then the existing operators grounded on IULVs are not
able to cope with it. But, if we choose the intuitionistic
uncertain linguistic type of information, then the proposed
operators based on CIUL variables can cope with it.
-erefore, the proposed operators are extensively powerful
and more reliable than the existing ideas [41–45]. -e

Table 15: Aggregated values of the alternatives by CIULAHM, CIULWAHM, CIULGHM, and CIULWGHM operators.

CIULAHM CIULWAHM CIULGHM CIULWGHM

ΦAl− 1 [ψ1.349,ψ1.5684],

(0.7112, 0.6388)
 

[ψ1.0074,ψ1.1614],

(0.9854, 0.0032)
 

[ψ1.3489,ψ1.5684],

(0.9575, 0.0305)
 

[ψ1.2581,ψ1.3935],

(0.0893, 0.8493)
 

ΦAl− 2 [ψ1.3068,ψ1.5753],

(0.729, 0.6321)
 

[ψ0.9926,ψ1.1902],

(0.9898, 0.0029)
 

[ψ1.3068,ψ1.5753],

(0.9628, 0.0247)
 

[ψ1.2501,ψ1.4363],

(0.1025, 0.838)
 

ΦAl− 3 [ψ1.2038,ψ1.4594],

(0.6848, 0.672)
 

[ψ0.9192,ψ1.0962],

(0.9833, 0.0044)
 

[ψ1.2038,ψ1.4594],

(0.9491, 0.2595)
 

[ψ1.1739,ψ1.3417],

(0.0807, 0.859)
 

ΦAl− 4 [ψ1.2568,ψ1.4716],

(0.7154, 0.6171)
 

[ψ0.9543,ψ1.1079],

(0.9875, 0.0025)
 

[ψ1.2567,ψ1.4716],

(0.9587, 0.213)
 

[ψ1.216,ψ1.3588],

(0.0934, 0.8385)
 

Table 16: Score values of the given alternatives.

CIULAHM CIULWAHM CIULGHM CIULWGHM
ΦAl− 1 0.0528 0.5325 0.5302 − 0.5038
ΦAl− 2 0.0698 0.5386 0.5318 − 0.494
ΦAl− 3 0.0085 0.4932 0.4591 − 0.4895
ΦAl− 4 0.067 0.5078 0.5087 − 0.4796

Table 17: Ordering of the given alternatives.

Methods Ranking values
CIULAHM operator ΦAl− 2 ≥ΦAl− 4 ≥ΦAl− 1 ≥ΦAl− 3
CIULWAHM operator ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
CIULGHM operator ΦAl− 2 ≥ΦAl− 1 ≥ΦAl− 4 ≥ΦAl− 3
CIULWGHM operator ΦAl− 4 ≥ΦAl− 3 ≥ΦAl− 2 ≥ΦAl− 1

ΦAl–1

ΦAl–2

ΦAl–3

ΦAl–4

CIULWGHM
CIULGHM

CIULWAHM
CIULAHM
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Figure 3: Geometrical interpretation of the information given in
Table 16.
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graphical interpretations of the information of Table 18 are
discussed in the form of Figure 4.

6. Conclusion

-e idea of CIULS is developed, and their fundamental laws
are discussed. CIULS covers the uncertain linguistic terms;
the degree of truth and the degree of falsity are in the form of
complex number, whose sum of the real parts (Imaginary
parts) is restarted to unit interval. In addition, to analyze the
interrelation between any numbers of CIULS, we use the
concept of CIULS and HM operators being formed by
CIULAHM operator, CIULWAHM operator, CIULGHM
operator, and CIULWGHM operator. -e major advantages
of utilizing the HM operator in the given pairs of CIULNs
are that it can interact the different pairs of the argument at
the same time. Also, the stated operators have well handled
the pairs of the linguistic values along with their mem-
bership degrees. Certain higher accidents and the charac-
teristics of the operators under investigation are often
illustrated by the use of parameters. In comparison, the
MAGDMprocedure is built through the use of CIULS-based
explored operators. A number of numerical representations
are demonstrated with the aid of the methods examined. In
order to discover the continuity and experience of the op-
erator’s generated, comparative analysis and graphic ex-
pressions are often used to show the predominance of
residential approaches. Based on the different pairs of the
stated operators and their associated parameters, a decision
maker can select their required task as per their preferences.
Also, they can analyze their decision impact on the optimal
alternatives by varying the parameters used in the decision-
making process. -erefore, the suggested decision-making
approach is beneficial for an expert to handle the decision-
making problem in an uncertain and vague environment.
Future work can focus on extending the proposed approach

in different fuzzy environments to solve the problems related
to decision making, medical diagnosis, pattern recognition,
and so on [46–50].
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Picture fuzzy set is the most widely used tool to handle the uncertainty with the account of three membership degrees, namely,
positive, negative, and neutral such that their sum is bound up to 1. It is the generalization of the existing intuitionistic fuzzy and
fuzzy sets. ,is paper studies the interval probability problems of the picture fuzzy sets and their belief structure. ,e belief
function is a vital tool to represent the uncertain information in a more effective manner. On the other hand, the Dempster–Shafer
theory (DST) is used to combine the independent sources of evidence with the low conflict. Keeping the advantages of these, in the
present paper, we present the concept of the evidence theory for the picture fuzzy set environment using DST. Under this, we
define the concept of interval probability distribution and discuss its properties. Finally, an illustrative example related to the
decision-making process is employed to illustrate the application of the presented work.

1. Introduction

Decision making is based on experts opinion, and often
experts have to take decisions based on limited data or
knowledge. ,us, in any decision-making process, two types
of uncertainties arise. Epistemic uncertainties occur due to
lack of knowledge, insufficient data, and ambiguity, whereas
aleatory uncertainty is due to the randomness of the physical
system under study [1–6]. Probability theory is proposed to
deal with randomness and is not effective in dealing with
epistemic uncertainties. ,eory based on evidence to handle
uncertainty is Dempster–Shefer theory [7, 8]. It has vast
applications [9]. In a finite discrete space, Dempster–Shafer
theory can be interpreted as a generalization of probability
theory where probabilities are assigned to sets as opposed to

mutually exclusive singletons. In traditional probability
theory, evidence is associated with only one possible event.
In Dempster–Shafer theory, evidence can be associated with
multiple possible events, in contrast to one single event. DS
theory was extended to fuzzy sets by Zadeh [10, 11]. DS
theory in fuzzy sets is presented in [12–16]. DS theory in
intuitionistic domain was introduced by Grzegorzewski and
Mrowka in [17]. Representation theorem was proved by
Riecan [18, 19]. Gerstenkorn and Manko defined intui-
tionistic probability in two ways [20]. Also, Feng et al. [21]
used intuitionistic fuzzy lower and upper approximation
operators. Fuzzy clustering based on DS theory was applied
for breast cancer cell detection in [22]. Pavement condition
distress index was calculated using DS theory in [23], and the
combination of quantum theory and DS theory has been
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investigated in [24]. Belief degrees and belief structures are
required for Dempster–Shafer theory.

Cong and Kreinovich [25] introduced picture fuzzy sets
and developed some operations and relations on them.
Temporal picture fuzzy soft set and related concepts were
developed in [26]. Picture fuzzy geometric operators were
proposed, and using it, the multiple attribute decision-
making problem was addressed in [27]. P-order and R-order
union and the intersection of internal (external) cubic
picture fuzzy sets were discussed in [28]. In the interval-
valued picture fuzzy domain, the similarity measures are
developed in [29]. Einstein information-based aggregation
operators applied in group decision-making problem were
dealt in [30]. Distance measure and dissimilarity measure
are defined in [31]. Generalized weighted distance measure,
the generalized weighted Hausdorff distance measure, and
the generalized hybrid weighted distance measure between
LPFSs and their properties are discussed and applied to
TOPSIS [32]. Decomposition theorems for PFS are proved
in [33].

,e estimation of the probability of belief function in the
environment of fuzzy events and intuitionistic fuzzy events
exist in literature. Dempster–Shafer theory is based on belief
degrees and structures with precision, but in decision-
making situations, the data are incomplete, and there is a
lack of information. In face recognition, when two persons
have highly similar features, a classifier may be unable to give
a precise decision. In such situations, its belief degree may be
imprecise. ,us, in the decision-making process involving
elucidation of multiple experts’ opinion, interval-valued
belief degree is appropriate. Interval probability distribution
based on Dempster–Shafer evidence theory in fuzzy and
intuitionistic fuzzy environment is discussed by the authors.
Fuzzy theory takes into account membership function, in
contrast to intuitionistic fuzzy which accommodates non-
membership. In some decision-making situations, some
experts prefer neutral membership. Picture fuzzy assents
positive, negative, and neutral memberships, thereby pro-
viding refusal degree. ,us, picture fuzzy sets are more
apposite in decision making, indicating the need for ex-
tension of evidence theory for picture fuzzy sets. ,e main
motivation of this paper is to frame probability distribution
based on evidence theory for picture fuzzy sets and illustrate
it through a suitable example.

2. Background

Dempster–Shafer theory of evidence is based on a finite set
of mutually exclusive elements, called the frame of dis-
cernment denoted by Ω. 2Ω is the power set of Ω, and it
contains all possible unions of the sets in Ω. Atomic sets are
the singleton sets in a frame of discernment.

DS theory can express and deal with uncertainty in crisp
sets. However, it fails to handle vague information and
linguistic terms. ,us, fuzzy evidence theory was developed,
and it was extended to intuitionistic fuzzy sets. In this paper,
we define evidence theory using picture fuzzy sets. ,e

probability distribution is expressed as an interval. ,e
following definitions are provided as background for this
paper.

(1) Definition [7, 8]: let Ω � A1, A2, . . . , An be the frame
of discernment. A basic belief assignment or basic
probability assignment (BPA) is a function
m: 2Ω ⟶ [0, 1] satisfying the conditions:
m(∅) � 0; A⊆Ωm(A) � 1. For each subset A⊆Ω,
the value taken by the BPA at A is called the basic
probability assigned to A and denoted by m(A). A
subset A of Ω is called the focal element of a belief
function m if m(A)> 0.

(2) Dempster’s rule of combination [7, 8]: let m1 and m2
be two basic probability assignments (BPAs) on the
frame of discernment Ω, where the BPAs m1 and m2
are independent. ,e orthogonal sum based on
Dempster’s rule of combination defined by
m � m1⊕m2 is m(A) � (1/1 − K)B∩C�Am1(B)m2
(C). ,e conflict between the BPAs m1 and m2 is
K � B∩C�∅m1(B)m2(C).

(3) Definition [25]: a picture fuzzy set A on a universe X

is of the form A � x, PA(x), NuA(x), NgA(x)|x ∈ X

where PA(x) ∈ [0, 1] is the degree of positive
membership of x in A, NuA(x) ∈ [0, 1] is the degree
of neutral membership of x in A, and
NgA(x) ∈ [0, 1] is the degree of negative member-
ship of x in A. ,ese memberships satisfy the
condition PA(x) + NuA(x) + NgA(x) � 1. Further,
the refusal degree of x in A is RA(x) � 1−

(PA(x) + NuA(x) + NgA(x)).
(4) Arithmetic operations on intervals: consider [a1, a2]

and [b1, b2], with a1, b1 > 0. ,en, the arithmetic
operations on these intervals are given by

(a) Addition: [a1, a2] + [b1, b2] � [a1 + b1, a2 + b2]

(b) Subtraction: [a1, a2] − [b1, b2] � [a1 − b2,

a2 − b1]

(c) Multiplication: [a1, a2] · [b1, b2] � [a1 · b1,

a2 · b2]

(d) Division: ([a1, a2]/[b1, b2]) � [(a1/b2), (a2/b1)]

3. Picture Fuzzy Interval Probability (PFIP)

Probability distribution in the framework of picture fuzzy
sets is introduced in this section.,e probability distribution
is in the form of an interval. ,e validation of this interval
probability distribution is examined. Further, this definition
coincides with fuzzy and intuitionistic interval probabilities
when the negative, neutral, and refusal degrees are zero for
the former and neutral membership is zero for the latter. Let
X � x1, x2, . . . , xn be a universe of discourse and F be the set
of all focal elements. A picture fuzzy belief function m is
given as 〈APF

i , m(APF
i ), PPF

Ai
(xj), NgPF

Ai
(xj), NuPF

Ai
(xj)〉 

where APF
i ∈ F, xj ∈ X. ,en, the probability of

xj, j � 1, 2, . . . , n is defined as P(xj) � [aj, bj], where aj

and bj are given by
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aj � 

APF
i
∈F

m A
PF
i P

PF
Ai

xj 


n
j�1 − Nu

PF
Ai

xj  − Ng
PF
Ai

xj    − R
PF
Ai

xj 
,

(1)

bj � 

APF
i
∈F

m A
PF
i  1 − Nu

PF
Ai

xj  − Ng
PF
Ai

xj  


n
j�1 P

PF
Ai

xj    + R
PF
Ai

xj 
. (2)

Theorem 1. �e picture fuzzy set interval probability esti-
mation P(xj) � [aj, bj], j � 1, 2, . . . , n forms a valid inter-
val-valued probability distribution in X � x1, x2, . . . , xn.

Proof. To prove that P(xj) � [aj, bj], j � 1, 2, . . . , n is a
valid interval-valued probability distribution, we need to
prove that



n

j�1
aj

⎛⎝ ⎞⎠ + bq − aq ≤ 1,



n

j�1
bj

⎛⎝ ⎞⎠ − bq − aq ≥ 1, ∀q ∈ 1, 2, . . . , n.

(3)

,e picture fuzzy set interval probability estimation is
defined on picture fuzzy set. In picture fuzzy set, the re-
jection membership is given by RPF

Ai
(xj) � 1 − PPF

Ai

(xj) − NgPF
Ai

(xj) − NuPF
Ai

(xj). Consider equation (1):

aj � 

APF
i
∈F

m A
PF
i P

PF
Ai

xj 


n
j�1 1 − Nu

PF
Ai

xj  − Ng
PF
Ai

xj    − R
PF
Ai

xj 
,

(4)

where aj can be rewritten as

aj � 

APF
j
∈F
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j P

PF
Aj

xj 

 n
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k≠ j

1 − Nu
PF
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(5)

Now,
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(6)
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Again, for ∀q ∈ 1, 2, . . . , n{ },
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(7)

Consider

Table 1: Comparison of the proposed approach with DST, fuzzy, and intuitionistic approaches.

S.
no. Dempster–Shafer theory Evidence theory for fuzzy

sets
Evidence theory for

intuitionistic fuzzy sets Evidence theory for picture fuzzy sets

1 Based on probability
distribution

Based on fuzzy
probability distribution

Based on intuitionistic
probability distribution

Based on picture fuzzy probability
distribution

2 Deals with aleatory
uncertainties

Deals with epistemic
uncertainties

Deals with epistemic
uncertainties along with

hesitancy in experts’ opinion

Deals with epistemic uncertainties along
with neutral in experts’ opinion

3
Can be provided as
interval probability
distribution [34]

Can be provided as
interval probability
distribution [35]

Can be provided as interval
probability distribution [9]

Can be provided as interval probability
distribution (present study)

4 —
Supports degree of

membership for belief
functions

Supports degrees of
membership and

nonmembership for belief
functions

Supports degrees of positive, negative, and
neutral for belief functions

5 — — Accommodates hesitancy
degree Accommodates refusal degree

6 —
Reduces to crisp case
interval probability

distribution when degree

Reduces to fuzzy interval
probability distribution when
degree of nonmembership

Reduces to fuzzy interval probability
distribution when degree negative, neutral,
and refusal memberships are zero; reduces

to intuitionistic interval probability
distribution when neutral membership is

zero
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Hence, finally by equations (9) and (10),
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(11)

,erefore, PPF
Ai

(xj) � [aj, bj] is an interval-valued
probability distribution in X. □

Theorem 2. �e interval picture fuzzy probability estimation
APF

i � PPF
Ai

(xj) � [aj, bj] if it reduces to interval intuitionistic
probability estimation AIF

i . Further, it also reduces to interval
fuzzy probability estimation.
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In fuzzy sets, NuPF
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xj 
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(13)

,e interval probability estimation based on evidence
theory for picture fuzzy sets is established. ,e similarities
and contrasts against the fuzzy and intuitionistic fuzzy sets
are provided in Table 1. □

3.1. Example 1. Submarines form a significant and crucial
part of the navy of any country. ,e overall cost of the
submarine includes the cost of paint used to coat it. Properly
formulated protective coatings are important to the dura-
bility and performance of the submarine. Coating systems
for the underwater parts of a ship should be corrosion-
inhibiting, antifouling, abrasion-resistant, smooth, and
compatible with cathodic protection. To minimise bunker
(fuel) costs, the underwater hull should remain smooth
during service. Consequently, a coating system should be
applied as evenly as possible, and it should provide long-
term protection against corrosion and fouling. Increased

hull friction due to fouling can result in up to 40% more fuel
consumption compared to a clean hull and greater air
pollution because of the extra fuel burned to maintain a
ship’s speed. Systems for the underwater hull/boottop areas
consist of anticorrosive paint and antifouling paint on top of
it. ,us, choosing a cost-effective paint with anticorrosive
and antifouling properties is important. Often the estimated
cost is based on experts’ opinion as it decides the cost of the
submarine. Let the universe of discourse beX � { 80, 90, 100}.
,e assessment result from some experts is that the proba-
bility of “assigning about 90 thousand rupees for paint” is 0.5,
the probability of “assigning a small amount of money for
paint” is 0.3, and the probability of “assigning a large amount
of money for paint” is 0.2. ,e linguistic terms “about 90
thousand,” “small amount of money,” and “large amount of
money” can be captured using picture fuzzy sets, as the
opinion of experts often differs and uncertainty is involved.
Let these linguistic terms be expressed by three picture fuzzy
events A, B, and C, respectively. ,ese focal elements can be
expressed as

A � (80, 0.7, 0.1, 0.1), (90, 1, 0, 0), (100, 0.7, 0.1, 0.1){ },

B � (80, 0.7, 0.2, 0.1), (90, 0.5, 0.1, 0.3), (100, 0.3, 0.3, 0.3){ },

C � (80, 0.5, 0.2, 0.2), (90, 0.6, 0.1, 0.1), (100, 1, 0, 0){ }.

(14)

,e picture fuzzy interval probability distribution is
calculated using the proposed approach as

P(80) � [0.307, 0.3545],

P(90) � [0.34055, 0.40915],

P(100) � [0.27955, 0.3302].

(15)

To make a decision on the assigning money to paint is
obtained by comparing the picture fuzzy interval probability
distribution. Based on comparison of intervals using their
centers, P(100)≤P(80)≤P(90). ,us, the decision of
assigning 90 thousand for paint can be inferred.

3.2. Example 2. Let us continue with the previous case study
of choosing suitable paint for the submarine. Decision is
often based on more than one variety of paints. For each
paint variety, more than one expert opinion is obtained to
take a decision as the cost of paint for the submarine is
higher. Suppose the independent opinion of two experts for
a variety of paint is obtained based on four main factors of
corrosion-inhibiting, antifouling, abrasion-resistant, and
smoothness. ,ese factors can be taken as the frame of
discernment. Let this frame of discernment be
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Ω � x1, x2, x3, x4 . Let m1 and m2 be two BPAs defined on
Ω, given by Table 2.

By Dempster rule of combination, the combined opinion
of the two experts can be estimated. ,e combined opinion
of interval picture fuzzy probability is given by

m12 x1(  � [0.092, 0.1425],

m12 x2(  � [7.2000072E − 3, 0.1439246],

m12 x3(  � [0.22806, 0.171505],

m12 x4(  � [0.064, 0.12],

m12 x1, x2(  � [0.0736, 0.159605],

m12 x1, x3(  � [0.08326, 0.14250456],

m12 x2, x4(  � [0.0512, 0.1344043],

m12 x1, x2, x3(  � [0.0966, 0.216606].

(16)

,e decision of selecting this variety of paint is suitable
for submarine is decided based on the interval picture fuzzy
probability distribution by comparison of these interval
values with more than one characteristic. ,e midpoints of
the intervals are given in Table 3.

Based on Table 3, the paint has three attributes, namely,
corrosion-inhibiting, antifouling, and abrasion-resistant,
but it lacks smoothness. ,us, the paint variety can be used
with less smoothness in the finish.

4. Conclusion

In this paper, we have utilized the picture fuzzy set to address
the uncertainty and vagueness in the data. ,e picture fuzzy
set captures the uncertainty of the element with respect to
the three membership degrees such that their sum is
bounded by 1. In this paper, we reviewed the definition and
properties of the interval probability distribution for the
picture fuzzy information using the belief function and DST.
,e proof of their validation is also given in the work. By
employing the belief functions on picture fuzzy information
systems, the interval probability can be estimated and hence
ranking of the number can be accessed. ,e functionality of
the structure is also explained with two numerical examples.

Also, the combined IPFP is used to compare two experts’
opinions of the choice of paint.

In the future, we will utilize the belief function to address
the decision-making problems arising under the different
environmental issues such as greenhouse gas emissions,
healthcare, green supplier selection, and so on. Also, we have
established some generalized measures to combine the
different preference values, and therefore, in the future work,
we will try to develop different information measures for
determining the nature of the decision-making process
[36–38].

Data Availability

No data were used to support this study.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Acknowledgments

,is study was supported by the Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (grant no.
NRF-2020R1I1A3074141), the Brain Research Program
through the NRF funded by the Ministry of Science, ICTand
Future Planning (grant no. NRF-2019M3C7A1020406), and
“Regional Innovation Strategy (RIS)” through the NRF
funded by the Ministry of Education.

References

[1] R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, and B. Veitch,
“Analyzing system safety and risks under uncertainty using a
bow-tie diagram: an innovative approach,” Process Safety and
Environmental Protection, vol. 91, pp. 1–18, 2013.

[2] R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, and B. Veitch,
“Handling and updating uncertain information in bowtie
analysis,” Journal of Loss Prevention in the Process Industries,
vol. 25, p. 819, 2012.

[3] A. S. Markowski and M. S. Mannan, “Fuzzy risk matrix,”
Journal of Hazardous Materials, vol. 159, p. 1527, 2008.

[4] M. Yazdi, “,e application of bow-tie method in hydrogen
sulfide risk management using layer of protection analysis
(LOPA),” Journal of Failure Analysis and Prevention, vol. 17,
pp. 291–303, 2017.

[5] Y. Hong, H. J. Pasman, S. Sachdeva, A. S. Markowski, and
M. S. Mannan, “A fuzzy logic and probabilistic hybrid ap-
proach to quantify the uncertainty in layer of protection
analysis,” Journal of Loss Prevention in the Process Industries,
vol. 43, p. 1017, 2016.

[6] A. S. Markowski and A. Kotynia, “Bow-tie” model in layer of
protection analysis,” Process Safety and Environmental Pro-
tection, vol. 89, pp. 205–213, 2011.

[7] A. P. Dempster, “Upper and lower probabilities induced by a
multivalued mapping,”�e Annals of Mathematical Statistics,
vol. 38, no. 2, pp. 325–339, 1967.

[8] G. Shafer, A Mathematical �eory of Evidence, Princeton
University Press, Princeton, NJ, USA, 1976.

[9] Y. Song and X. Wang, “Probability estimation in the
framework of intuitionistic fuzzy evidence theory,”

Table 2: Basic probability assignments by two experts.

S. no. BPA m1 BPA m2

1 x1, x3  � [0.045, 0.514] x1, x3  � [0.181, 0.25]
2 x3  � [0.081, 0.172] x1, x2, x4  � [0.016, 0.28]
3 x1, x2, x3  � [0.46, 0.57] x1, x4  � [0.2, 0.25]
4 x2, x4  � [0.32, 0.48] x1, x2, x3, x4  � [0.21, 0.38]

Table 3: Midpoint of combined IPFP.

S. no. Combined IPFP m12 Midpoints

1 x1, x2  � [0.0736, 0.159605] 0.1166025
2 x1, x3  � [0.08326, 0.14250456] 0.11288228
3 x2, x4  � [0.0512, 0.1344043] 0.09280215
4 x1, x2, x3  � [0.0966, 0.216606] 0.156603

Journal of Mathematics 7



Retraction
Retracted: Graphical Structures of Cubic Intuitionistic
Fuzzy Information

Journal of Mathematics

Received 10 October 2023; Accepted 10 October 2023; Published 11 October 2023

Copyright © 2023 Journal of Mathematics. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] S. U. Khan, N. Jan, K. Ullah, and L. Abdullah, “Graphical
Structures of Cubic Intuitionistic Fuzzy Information,” Journal
of Mathematics, vol. 2021, Article ID 9994977, 21 pages, 2021.

Hindawi
Journal of Mathematics
Volume 2023, Article ID 9760102, 1 page
https://doi.org/10.1155/2023/9760102

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9760102


RE
TR
AC
TE
DResearch Article

Graphical Structures of Cubic Intuitionistic Fuzzy Information

Sami Ullah Khan,1 Naeem Jan ,1 Kifayat Ullah ,2 and Lazim Abdullah 3

1Department of Mathematics, Institute of Numerical Sciences, Gomal University D. I. Khan, Dera Ismail Khan, Pakistan
2Department of Mathematics, Riphah Institute of Computing and Applied Sciences, Riphah International University Lahore,
Lahore 54000, Pakistan
3Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, University of Malaysia Terengganu,
Kuala Nerus 2103, Malaysia

Correspondence should be addressed to Naeem Jan; naeem.phdma73@iiu.edu.pk

Received 20 March 2021; Revised 6 April 2021; Accepted 20 April 2021; Published 12 May 2021

Academic Editor: Basil Papadopoulos

Copyright © 2021 Sami Ullah Khan et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

,e theory developed in this article is based on graphs of cubic intuitionistic fuzzy sets (CIFS) called cubic intuitionistic fuzzy
graphs (CIFGs). ,is graph generalizes the structures of fuzzy graph (FG), intuitionistic fuzzy graph (IFG), and interval-valued
fuzzy graph (IVFG). Moreover, several associated concepts are established for CIFG, such as the idea subgraphs, degree of CIFG,
order of CIFG, complement of CIFG, path in CIFG, strong CIFG, and the concept of bridges for CIFGs. Furthermore, the
generalization of CIFG is proved with the help of some remarks. In addition, the comparison among the existing and the proposed
ideas is carried out. Finally, an application of CIFG in decision-making problem is studied, and some future study is proposed.

1. Introduction

Jun et al. [1] proposed cubic set (CS) and started a new
research area. A CS is a mixture of two concepts known as
fuzzy set (FS) and interval-valued fuzzy set (IVFS). ,e
concept of CS draws the attentions of researchers and some
potential works in this direction have been done; for ex-
ample, the idea of CS was proposed in semigroup theory by
Khan et al. [2], as well as some KU-ideal by Yaqoob et al. [3],
and KU-algebras are developed for CS by Lu and Ye [4]; the
similarity measures of CSs have been proposed and applied
in decision-making problem. ,e framework of cubic
neutrosophic sets is proposed by Jun et al. [5], while some
pattern recognition problems are solved using neutrosophic
sets by Ali et al. [6]. ,e concept of cubic soft sets was
proposed by Muhiuddin and Al-roqi [7], which was further
utilized by Muhiuddin et al. [8]. ,e theory of G-algebras is
studied by Jun and Khan in [9] and by Jana and Senapati [10]
along with the concepts of ideal in semigroups. Some other
works in this direction are given in [11–14].

,e theory of intuitionistic fuzzy set (IFS) was developed
by Atanassov [15] as a generalization of FS by Rosenfeld [16].

An IFS described the membership and nonmembership
degree of an element by two characteristic functions and can
model phenomena of yes or no type easily. Garg and Kaur
[17] initiated the concept of cubic intuitionistic fuzzy sets
(CIFSs) and discussed their properties. Atanassov model of
IFS provided a motivation for the concept of intuitionistic
fuzzy graphs (IFGs) defined by Parvathi and Karunambigai
[18].,e concept of IFG was a generalization of fuzzy graphs
(FGs) proposed by Kauffman and Rosenfeld [19, 20] after
Zadeh’s exemplary work in [16]. FG theory has a potential
role in application point of view as described by Chan and
Cheung [21] who studied an approach to clustering algo-
rithm using the concepts of FGs. Some FG problems are
solved by a novel technique in [22, 23] by discussing the
domination of FGs in pattern recognitions. Mathew and
Sunitha [24] worked on fuzzy attribute graphs applied to
Chinese character recognitions, and Bhattacharya [25] used
FGs in image classifications and so forth. For some other
works on FG, one may refer to [26–31].

,e theory of IFG received great attention as Parvathi
and ,amizhendhi [32] introduced the concept of strong
IFGs; Akram and Dudek [33] discussed the order, degree,
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and size of IFGs; Akram and Alshehri [34] developed op-
erations for IFGs; Karunambigai [35] worked on the
domination of IFGs; Pasi et al. [36] developed the theory of
intuitionistic fuzzy hypergraphs; Karunambigai et al. [37]
studied the concepts of trees and cycles for IFGs; Parvathi
[38] developed the idea of balanced IFGs, a multicriteria and
multiperson decision-making based on IFGs was discussed
by Chountas [39]; Akram and Dudek [40] studied constant
IFGs; Mathew [41] discussed IF hypergraphs; and the au-
thors of [42] discussed the matrix representation of IFGs.
Interval-valued FGs have also been studied extensively after
Akram [43] proposed interval-valued FGs, Rashmanlou and
Pal [44] discussed the results proposed by [43], complete
interval-valued FGs developed interval-valued fuzzy line
graphs are discussed by Rashmanlou and Pal [45, 46], and
Pramanik et al. [47] proposed balanced interval-valued FGs.
Xiao et al. [48] worked on green supplier selection in steel
industry with intuitionistic fuzzy Taxonomy method, Zhao
et al. [49] proposed an extended CPT-TODIM method for
IVIF MAGDM and applied it to urban ecological risk as-
sessment, and Wu et al. [50] presented VIKOR method for
financing risk assessment of rural tourism under IVIF en-
vironment. Further, for some works on interval-valued FGs,
one may refer to [51–55]. Motivated by the existing theory,
we proposed the framework of cubic intuitionistic fuzzy sets
(CIFSs) and cubic intuitionistic fuzzy graphs (CIFGs).
Several graphical and theoretical terms are illustrated with
the help of examples and some results.

,e manuscript is organized as follows: In Section 1, a
brief introduction about existing concepts is presented. In
Section 2, some basic definitions from the theories of FG,
IFG, and IVFG are defined.,e concept of CIFG is proposed
in Section 3 along with some other related terms and results
including the concepts of subgraphs, degrees, orders, and
bridges in CIFGs. Section 4 is based on operations on CIFGs
and their results. ,e applications of CIFG in decision-
making problems are discussed in Section 5. Section 6
provides a comparison of CIFG with existing concepts, and
Section 7 provides a brief discussion and concluding
remarks.

2. Preliminaries

In this section, we introduce some basic concepts about
fuzzy set, fuzzy graph, intuitionistic fuzzy set, and intui-
tionistic fuzzy graph, which provide a base for our graphical
work on CIFG. ,roughout this manuscript, X denotes the
universe of discourse and M,Ŋ are considered to be two
mappings on [0, 1] intervals denoting the membership and
nonmembership grades, respectively, of an element.

Definition 1 (see [13]). A FS on Ẋ is defined as
A � u, (MA(u)/u ∈ _X) , where MA(1/2) is a map on [0, 1].

Definition 2 (see [20]). A pair Ğ∗ � (V, E) is known as FG if

(i) V � Mi: i ∈ I  and M1: V⟶ [0, 1] is the asso-
ciation degree of Mi ∈ V

(ii) E � (ui, uj): (ui, uj) ∈ V × V  and M2: V×

V⟶ [0, 1] where M2(ui, uj)≤min[M1(ui), M1
(uj)] for all (ui, uj) ∈ E.

Definition 3 (see [15]). An IFS A on X is defined as
A � 〈〈u, MA(u),ŊA(u)〉/u ∈ _X〉 , where MA and ŊA are
mappings on 0,1 interval such that 0≤MA+ŊA≤1.

Definition 4 (see [18]). A Pair Ğ∗�(V, Ể) is known as IFG if

(i) V is the collection of nodes such that M1 and Ŋ1are
mappings on unit intervals from V with a condition
0≤M1(ui) + Ŋ1(ui)≤1 for all ui ∈V, i ∈ I

(ii) E⊆V × V, where M2 and Ŋ2 are mappings that
associate some grade to each (ui, uj) ∈ E from [0, 1]

interval such that M2(ui, uj)≤ min M1(ui), M1

(uj)} and Ŋ2(ui, uj)≤ max Ŋ1(ui),Ŋ1((uj))  with
a condition 0≤M2 + Ŋ2 ≤ 1

Example 1. ,e graph in Figure 1 is an IFG having four
vertices and four edges.

Definition 5 (see [33]). ,e complement of an IFG Ğ∗ �

(V, E) is Ğ∗c � (Vc, Ec), where

(i) Vc � V

(ii) MA(ui)c� MA(ui), ŊA(ui)c� ŊA(ui),∀ ui ∈V
(iii) MB(ui, uj)

c � min[MB(ui), MB(uj)] − MB(ui, uj),

ŊB(ui, uj)
c � max[ŊB(ui),ŊB(uj)] − ŊB(ui, uj),

for all (ui, uj) ∈ E

Here (ui, MA,ŊA) represent the vertices and
(eij, MB,ŊB) represent the edges.

Definition 6 (see [32]). A Pair Ğ∗ � (V, E) is known as
strong IFG if

(i) V is the collection of nodes such that M1 and Ŋ1 are
mappings on unit intervals fromV with a condition
0≤M1(ui) + Ŋ1(ui)≤ 1 for all ui ∈ V (i ∈ I)

(ii) E⊆V × V, where M2 and Ŋ2 are mappings that
associate some grade to each (ui, uj) ∈ E from [0, 1]

interval such that M2(ui, uj) � min
M1(ui), M1(uj)  and Ŋ2(ui, uj) � max Ŋ1(ui),Ŋ1

(uj)} with a condition 0≤M2 + Ŋ2 ≤ 1

Remark 1 (see [32]). If Ğ∗ � (V, E) is an IFG, then by the
above definition (Ğ∗c)c � Ğ∗ and it is called self-
complementary.

Proposition 1 (see [32]). If Ğ∗ is strong IFG, then it preserves
self-complementary law.

Example 2. Figures 2(a) and 2(b) provide a verification of
Proposition 1.

Clearly (Ğ∗c)c � Ğ∗ is self-complementry.
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Definition 7 (see [55]). A pair Ğ � (A,B) of a graph Ğ∗ �

(V, E) is known as IVIFG, where A �

([MAL, MAU], [ŊAL,ŊAU])  is IVFS on V, and B �

([MBL, MBU], [ŊBL,ŊBU])  is the IVF relation on E
satisfying the following conditions:

(i) V � u1, u2, u3, . . . , un such that MAL: V⟶
[0, 1], MAU: V⟶ [0, 1] and ŊAL: V⟶ [0, 1],
ŊAU: V⟶ [0, 1] represent the degrees of mem-
bership and nonmembership of the element u ∈V,
respectively, and 0≤MA + ŊA ≤ 1 for all ui ∈V
(i � 1, 2, . . . , n)

(ii) ,e functions MBL: V × V⟶ [0, 1], MBU: V ×

V⟶ [0, 1], ŊBL: V × V⟶ [0, 1], and
ŊBU: V × V⟶ [0, 1] are such that MBL

(u, y)≤min(MAL(u), MAL(y)), ŊBL (u, y)≤ max
(ŊAL(u),ŊAL(y)) MBU(u, y)≤ min(MAU

(u), MAU(y)), and ŊBU(u, y)≤max(ŊAU

(u),ŊAU(y)); 0≤MB(u, y) + ŊB(u, y)≤ 1 for all
(ui, yj) ∈ E (i, j � 1, 2, . . . , n)

Example 3. Let Ğ∗ � (V, E) be a graph, where
V � u1, u2, u3  is the set of vertices and
E � u1u2, u2u3, u3u1  is the set of edges.

3. Cubic Intuitionistic Fuzzy Graphs

In this section, we discussed the basic concept of CIFG-like
complement of CIFG, degree of CIFG, and bridge and cut
vertex of CIFG with the help of examples and several results
(Figures 3 and 4).

Definition 8. A pair Ğ � (A,B) of a graph Ğ∗ � (V, E) is
known as cubic IFG, where A �

([MAL, MAU], [ŊAL,ŊAU]), (MA,ŊA)  is a cubic IFS onV,

and B � ([MBL, MBU], [ŊBL,ŊBU]), (MB,ŊB)  is the
cubic IF relation on E satisfying the following conditions:

(iii) V � u1, u2, u3, . . . , un  such that MAL: V⟶
[0, 1], MAU: V⟶ [0, 1] and ŊAL: V⟶ [0, 1],
ŊAU: V⟶ [0, 1] and MA: V⟶ [0, 1],

ŊA: V⟶ [0, 1]⊸ represent the degrees of
membership and nonmembership of the element
u ∈ V, respectively, and 0≤MA + ŊA ≤ 1 for all
ui ∈ V (i � 1, 2, . . . , n)

(iv) ,e functions MBL: V × V⟶ [0, 1], MBU: V ×

V⟶ [0, 1], ŊBL: V × V⟶ [0, 1], ŊBU: V×

V ⟶ [0, 1] and MB: V × V⟶
[0, 1],ŊB: V × V⟶ [0, 1] are such that
MBL(u, y)≤min(MAL(u), MAL(y)), ŊBL(u, y)≤

u1 u2

u4 u3

(0
.4

, 0
.2

)

(0
.1

, 0
.5

)
(0.4, 0.2)

(0.1, 0.5)(0.6, 0.1) (0.1, 0.5)

(0.4, 0.2) (0.5, 0.2)

(a)

u1 u2

u4 u3

(0.4, 0.2)

(0.6, 0.1)

(0.5, 0.2) (0.1, 0.5)

(0.5, 0.2)

(0.1, 0.5)

(b)

Figure 2: (a) Intuitionistic fuzzy graph. (b) Complement of intuitionistic fuzzy graph.

u1 u2

u4 u3

(0.3, 0.3)
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, 0
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)

(0
.4
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)

(0.4, 0.3)

(0.5, 0.4)

(0.5, 0.3)

(0.6, 0.3)
(0.4, 0.3)

Figure 1: Intuitionistic fuzzy graph.
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max(ŊAL(u),ŊAL(y)) MBU(u, y)≤min (MAU

(u), MAU(y)), and ŊBU(u, y)≤max(ŊAU

(u),ŊAU(y)); and MB(u, y)≤min(MA(u),

MA(y)) and ŊB(u, y)≤max(MA(u), MA(y))

such that 0≤MB(u, y) + ŊB(u, y)≤ 1 for all
(ui, yj) ∈ E (i, j � 1, 2, . . . , n)

Example 4. Consider a graph Ğ∗ � (V, E), where
V � u1, u2, u3  is the set of vertices and
E � u1u2, u2u3, u3u1  is the set of edges.

Definition 9. A pair Ğ � (A,B) of a graph Ğ∗ � (V, E) is
known as strong cubic IFG, where
A � ([MAL, MAU], [ŊAL,ŊAU]), (MA,ŊA)  is a cubic IFS
on V, and B � ([MBL, MBU], [ŊBL,ŊBU]), (MB,ŊB) 

is a cubic IF relation on E satisfying the following conditions:

(i) V � u1, u2, u3, . . . , un  such that MAL: V⟶
[0, 1], MAU: V⟶ [0, 1] and ŊAL: V⟶ [0, 1],
ŊAU: V⟶ [0, 1] and MA: V⟶ [0, 1],

ŊA: V⟶ [0, 1] represent the degrees of mem-
bership and nonmembership of the element u ∈ V,
respectively, and 0≤MA + ŊA ≤ 1 for all ui ∈ V
(i � 1, 2, . . . , n)

(ii) ,e functions MBL: V × V⟶ [0, 1], MBU: V ×

V⟶ [0, 1], ŊBL: V × V⟶ [0, 1], ŊBU: V×

V⟶ [0, 1], and MB: V × V⟶
[0, 1],ŊB: V × V⟶ [0, 1] are such that
MBL(u, y) � min(MAL(u), MAL(y)), ŊBL(u, y) �

max(ŊAL(u),ŊAL(y)) MBU(u, y) � min(MAU

(u), MAU(y)), and ŊBU(u, y) � max(ŊAU

(u),ŊAU(y)); and MB(u, y) � min(MA

(u), MA(y)) and ŊB(u, y) � max(MA(u), MA(y))

such that 0≤MB(u, y) + ŊB(u, y)≤ 1 for all
(ui, yj) ∈ E (i, j � 1, 2, . . . , n)

Definition 10. A cubic IFG H � (V⋎, E⋎) is said to be cubic
IFG subgraph of Ğ∗ � (V, E) if V⋎⊆V and E⋎⊆E. In other
words, [MALi, MAUi]

⋎ ≤ [MALi, MAUi], [ŊALi,ŊAUi]
⋎ ≤

[ŊALi,ŊAUi], and (MAi,ŊAi)
⋎ ≤ (MAi,ŊAi) and

[MBLij,MBUij]
⋎ ≤ [MBLij,MBUij], [ŊBLij,ŊBUij]

⋎ ≤
[ŊBLij,ŊBUij], and (MBij,ŊBij)

⋎ ≤ (MBij,ŊBij) for
i, j � 1, 2, . . . , n.

Definition 11. ,e order of cubic IFG Ğ∗ � (V,Ể) is
denoted and defined by

O Ğ∗  � 
u∈V

MAḼ(u), 
u∈V

MAȖ(u), 
u∈V

ŊAḼ(u), 
u∈V

ŊAȖ(u)⎛⎝ ⎞⎠, 
u∈V

MA(u), 
u∈V

ŊA(u)⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (1)

and the size of cubic IFG is

S(G) � 

u≠y
u,y∈V

MBL(uy) 

u≠y
u,y∈V

MBAȖ(uy), 

u≠y
u,y∈V

ŊBL(uy), 

u≠y
u,y∈V

ŊBAȖ(uy)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 

u≠y
u,y∈V

MB(uy), 

u≠y
u,y∈V

ŊB(uy)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2)
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], 
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Figure 3: Interval-valued intuitionistic fuzzy graph.
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 0
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], 
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Figure 4: Cubic intuitionistic fuzzy graph.
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Definition 12. ,e degree of a vertex in a cubic IFG Ğ∗ �

(V, E) is denoted and defined by

d(u) � dMAL(u), dMAU(u), dŊAU(u), dŊAU(u)( ,(

d MA( (u), d ŊA( (u)( ),
(3)

where

dMAL(u) � 
u≠y
u∈V

MBL(uy),

dMAU(u) � 
u≠y
u∈V

MBU(uy),

dŊAL(u) � 

u≠y
u,y∈V

ŊBL(uy),

dŊAU(u) � 

u≠y
u,y∈V

ŊBU(uy),

d MA( (u) � 

u≠y
u,y∈V

MB(uy),

d ŊA( (u) � 

u≠y
u,y∈V

ŊB(uy).

(4)

Example 5. Let Figure 5 be a graph Ğ∗ � (V, E), whereV �

u1, u2, u3, u4  is the set of vertices and
E � u1u2, u2u3, u3u4, u4u1  is the set of edges.

,e degrees of vertices are

d u1(  � ([0.3, 0.6], [0.5, 0.8], (0.3, 0.8)),

d u2(  � ([0.4, 0.7], [0.5, 0.8], (0.3, 0.8)),

d u3(  � ([0.3, 0.7], [0.4, 0.8], (0.2, 0.8)),

d u4(  � ([0.2, 0.6], [0.4, 0.8], (0.2, 0.9)).

(5)

Definition 13. ,e complement of a cubic IFG Ğ � (A,B)

on Ğ∗ � (V, E) is defined as follows:

(i) A � A

(ii) MAL(ui) � MAL(ui), MAU(ui) � MAU(ui),ŊAL

(ui) � ŊAL(ui),ŊAU(ui) � ŊAU(ui) and MA(ui) �

MA(ui), ŊA(ui) � ŊA(ui) for all ui ∈ V
(iii) MBL(ui, uj) � min[MAL(ui), MAL(uj)] − MBU

(ui, uj), MBU(ui, uj) � min[MAU(ui), MAU(uj)]−

MBU(ui, uj), ŊBL(ui, uj) � max[ŊAL(ui), ŊAL

(uj)] − ŊBU(ui, uj), ŊBU(ui, uj) � (1/2)max
[ŊAL(ui), ŊAL(uj)] − ŊBU(ui, uj) for all
(ui, uj) ∈ E

Proposition 2. Ğ � Ğ if and if Ğ is strong cubic IF graph.

Proof. ,e proof is straightforward. □

Definition 14. A strong IFG is said to be self-complementary
if Ğ � Ğ, where Ğ is the complement of IFG Ğ.

Example 6. Let Figures 6 and 7 be two graphs of
Ğ∗ � (V, E), whereV � u1, u2, u3, u4  is the set of vertices
and E � u1u2, u2u3, u3u4, u4u1  is the set of edges.

Clearly Ğ � Ğ; hence, Ğ is self-complementary.

Definition 15. ,e power of edge relation in a cubic IFG is
defined as

e
1
ij � eij, MBijL, MBijU , ŊBijL,ŊBijU  , MBij,ŊBij   

e
2
ij � e
∗
ijeij � eij, MBijL, MBijU 

2
, ŊBijL,ŊBijU 

2
, M

2
Bij,Ŋ

2
Bij  

e
3
ij � e
∗
ije
∗
ijeij � eij, MBijL, MBijU 

3
, ŊBijL,ŊBijU 

3
, M

3
Bij,Ŋ

3
Bij  .

(6)

Also,

e
∞
ij � eij, MBijL, MBijU 

∞
, ŊBijL,ŊBijU 

∞
, M
∞
Bij,Ŋ

∞
Bij  .

(7)

Here, [MBijL, MBijU]∞ � max( [MBijL, MBijU]k ,

M∞Bij � max Mk
Bij ) and [ŊBijL,ŊBijU]∞ � min

[ŊBijL,ŊBijU]k , Ŋ∞Bij � min Ŋk
Bij] are the M − strength

([0.2, 0.3], [0.3, 0.4], (0.2, 0.4))

([0.1, 0.3], [0.2, 0.4], (0.1, 0.4))

([0.2, 0.4], [0.2, 0.4], (0.1, 0.4))([0.1, 0.3], [0.2, 0.4], (0.1, 0.5))

([0.2, 0.4], [0.2, 0.5],
(0.1, 0.4))

([0.4, 0.6], [0.1, 0.3],
(0.2, 0.5))

([0.3, 0.5], [0.2, 0.3],
(0.3, 0.4))

([0.3, 0.4], [0.3, 0.5],
(0.4, 0.3))

u1 u2

u4 u3

Figure 5: Cubic intuitionistic fuzzy graph.
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and Ŋ − strength of the connectedness between the two
vertices (yi, yj).

Definition 16. An edge in a cubic IFG Ğ∗ � (V, E) is said to
be bridge, if deleting that edge reduces the strength of
connectedness between some pair of vertices.

Example 7. Let Figure 8 be a graph Ğ∗ � (V, E), whereV �

u1, u2, u3, u4  is the set of vertices and E � u1u2, u2

u3, u2u4, u4u1} is the set of edges.
,e strength of (u1, u4) is ([0.1, 0.4], [0.3,

0.5], (0.1, 0.4)), so (u1, u4) is a bridge because when dele-
teing (u1, u4) the strength of the connectedness between u1
and u4 is decreased.

Theorem 1. If Ğ∗ � (V, E) is a cubic IFG, then, for any two
vertices yi and yj, the following are equivalent:

(i) (yi, yj) is a bridge
(ii) [MBijL, MBijU]′

∞ < [MBijL, MBijU], M′∞Bij <MBij

and [ŊBijL,ŊBijU]′
∞ > [ŊBijL,ŊBijU],Ŋ′∞Bij >ŊBij

(iii) (yi, yj) is not an edge of any cycle

Proof. (ii)⟹ (i).
Consider [MBijL, MBijU]′

∞ < [MBijL, MBijU], M′∞Bij <
MBij and [ŊBijL,ŊBijU]′

∞ > [ŊBijL,ŊBijU],Ŋ′∞Bij >ŊBij to
show that (yi, yj) is a bridge; then
[MBijL, MBijU]′

∞
� [MBijL, MBijU]∞ ≥ [MBijL, MBijU],

M′∞Bij � M∞Bij ≥MBij and [ŊBijL,ŊBijU]′
∞

� [ŊBijL,

ŊBijU]∞ ≤ [ŊBijL,ŊBijU],Ŋ′∞Bij � Ŋ∞Bij ≤ŊBij.
[MBijL, MBijU]′

∞ ≥ [MBijL, MBijU], M′∞Bij ≥MBij and
[ŊBijL,ŊBijU]′

∞ ≤ [ŊBijL,ŊBijU],Ŋ′∞BijŊ
′∞
Bij, which is a

contradiction. Hence, (yi, yj) is a bridge.
(i)⟹ (iii).
Suppose that (yi, yj) is a bridge to show that (yi, yj) is

not an edge of any cycle. If (yi, yj) is an edge of cycle, then
any path involving the edge (yi, yj) can be converted into a
path not involving (yi, yj) by using the rest of the cycle as a
path from yi to yj. ,is implies that (yi, yj) cannot be a
bridge, which is a contradiction to our supposition. Hence,
(yi, yj) is not an edge of any cycle.

(iii)⟹ (i).
,e proof is straightforward. □

Definition 17. A vertex ui in a cubic IFG Ğ∗is said to be cut-
vertex if deleting a vertex ui reduces the strength of con-
nectedness between some pair of vertices.

Example 8. Consider a graph Ğ∗ � (V, E), where
V � u1, u2, u3, u4, u5  is the set of vertices and
E � u1u2, u2u4, u4u3, u4u5, u4u1  is the set of edges.

In Figure 9, u1 is a cut-vertex.

4. Operations on Cubic IFG

In this section, the operations of CIFG-like Cartesian
product of CIFG, union of CIFG, joint operation of CIFG,
and so forth with the help of examples are discussed and
some interesting results related to these operations are
proved.

([0.4, 0.6], [0.1, 0.3],
(0.2, 0.5))

([0.3, 0.5], [0.2, 0.3],
(0.3, 0.4))

([0.3, 0.5], [0.2, 0.3], (0.2, 0.5))([0.2, 0.4], [0.2, 0.5], (0.1, 0.5))

([0.3, 0.4], [0.3, 0.5], (0.3, 0.4))([0.2, 0.4], [0.3, 0.5], (0.1, 0.4))

([0.2, 0.4], [0.2, 0.5],
(0.1, 0.4))

([0.3, 0.4], [0.3, 0.5],
(0.4, 0.3))

u1 u2

u4 u3

Figure 6: Cubic strong intuitionistic fuzzy graph.

([0.3, 0.4], [0.3, 0.5], (0.2, 0.5))

([0.2, 0.4], [0
.2, 0.5], (0

.1, 0.4))

([0.4, 0.6], [0.1, 0.3],
(0.2, 0.5))

([0.3, 0.5], [0.2, 0.3],
(0.3, 0.4))

([0.2, 0.4], [0.2, 0.5],
(0.1, 0.4))

([0.3, 0.4], [0.3, 0.5],
(0.4, 0.3))

u4 u3

u1 u2

Figure 7: Complement of cubic strong intuitionistic fuzzy graph.
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Definition 18. ,e Cartesian product Ğ � Ğ1 × Ğ2 �

(A1 × A2,B1 × B2)of two cubic IFGs Ğ1 � (A1,B1) and
Ğ2 � (A2,B2) of the graphs Ğ∗1 � (V1, E1) and
Ğ∗2 � (V2, E2) is defined as follows:

(i)

MA1L × MA2L(  u1, u2(  � min MA1L u1( , MA2L u2( ( ,

MA1U × MA2U(  u1, u2(  � min MA1U u1( , MA2UM u2( ( ,

ŊA1L × ŊA2L(  u1, u2(  � max ŊA1L u1( ,ŊA2L u2( ( ,

ŊA1U × ŊA2U(  u1, u2(  � max ŊA1U u1( ,ŊA2U u2( ( ,

MA1 × MA2(  u1, u2(  � min MA1 u1( , MA2 u2( ( ,

ŊA1 × ŊA2(  u1, u2(  � max ŊA1 u1( ,ŊA2 u2( ( , for all u1, u2 ∈ V.

(8)

([0.3, 0.4], [0.3, 0.5], (0.4, 0.3))

([0
.1,

 0.
4]

, [
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, 0
.5]

, (
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, 0
.4)

) ([0.2, 0.3], [0.2, 0.4], (0.1, 0.4))

([0.1, 0.3], [0.2, 0.4], (0.1, 0.4))

([0.2, 0.4], [0.2, 0.5], (0.1, 0.4)) ([0.4, 0.6], [0.1, 0.3], (0.2, 0.5))

([0.2, 0.3], [0.2, 0.5], (0.1, 0.3))

u1

u4 u2 u3

([
0.

3,
 0

.4
], 

[0
.3

, 0
.5

], 
(0

.4
, 0

.3
))

Figure 8: Cubic intuitionistic fuzzy graph.
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,0
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],(
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0.
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)
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,[0
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],(
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)
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.2,
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Figure 9: Cubic intuitionistic fuzzy graph.

Journal of Mathematics 7



RE
TR
AC
TE
D

(ii)

MB1L × MB2L(  u, u2(  u, y2(  � min MA1L(u), MB2L u2y2( ( ,

MB1U × MB2U(  u, u2(  u, y2(  � min MA1U(u), MB2U u2y2( ( ,

ŊB1L × ŊB2L(  u, u2(  u, y2(  � max ŊA1L(u),ŊB2L u2y2( ( ,

ŊB1U × ŊB2U(  u, u2(  u, y2(  � max ŊA1U(u),ŊB2U u2y2( ( ,

MB1 × MB2(  u, u2(  u, y2(  � min MA1(u), MB2 u2y2( ( ,

ŊB1 × ŊB2(  u, u2(  u, y2(  � max ŊA1(u),ŊB2 u2y2( ( , for all u ∈ V1 and u2y2 ∈ E2.

(9)

(iii)

MB1L × MB2L(  u1, z(  y1, z(  � min MB1L u1y1( , MA2L(z)( ,

MB1U × MB2U(  u1, z(  y1, z(  � min BA1U u1y1( , MA2U(z)( ,

ŊB1L × ŊB2L(  u1, z(  y1, z(  � max ŊB1L u1y1( ,ŊA2L(z)( ,

ŊB1U × ŊB2U(  u1, z(  y1, z(  � max ŊB1U u1y1( ,ŊA2U(z)( ,

MB1 × MB2(  u1, z(  y1, z(  � min MB1 u1y1( , MA2(z)( ,

ŊB1 × ŊB2(  u1, z(  y1, z(  � max ŊB1 u1y1( ,ŊA2(z)( , for all z ∈V2 and u1y1 ∈ E1.

(10)

Example 9. Let Ğ∗ � (V, E) be a graph, where V is the set
of vertices and E is the set of edges; then the product of two
cubic IFGs in Figures 10–12 is given below.

Proposition 3. If Ğ1 and Ğ2 are strong cubic IFGs, then the
Cartesian product Ğ1 × Ğ2 is also strong cubic IFG.

Proof. Suppose that Ğ1 and Ğ2 are strong cubic IFGs; then
there exist ui, yi ∈ Ei such that

MBL ui, yi(  � min MAL ui( , MAL yi( ( ,

ŊBL ui, yi(  � max ŊAL ui( ,ŊAL yi( ( ,

MBU ui, yi(  � min MAU ui( , MAU yi( ( ,

ŊBU ui, yi(  � max ŊAU ui( ,ŊAU yi( ( ,

MB ui, yi(  � min MA ui( , MA(y)( ,

ŊB ui, yi(  � max MA ui( , MA yi( ( .

(11)

Consider E � (u, u2)(u, y2)/u2 ∈ V1, u2y2 ∈ E2}∪
(u1, z) (y1, z)/z ∈V2, u1y1 ∈ E1}.

Let (u, u2)(u, y2) ∈ E; then

MB1L × MB2L(  u, u2(  u, y2(  � min MA1L(u), MB2L u2y2( ( 

� min MA1L(u), MA2L u2( , MA2L y2( ( .
(12)
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Similarly,

MB1L × MB2L(  u, u2(  u, y2(  � min MA1L(u), MB2L u2y2( (  � min MA1U(u), MA2U u2( , MA2U y2( ( ,

MA1L × MA2L(  u1, u2(  � min MA1L u1( , MA2L u2( ( ,

MA1L × MA2L(  u1, u2(  � min MA1L u1( , MA2LM u2( ( ,

MA1U × MA2U(  u1, y2(  � min MA1U u1( , MA2U y2( ( ,

MA1U × MA2U(  u1, y2(  � min MA1U u1( , MA2U y2( ( ,

� min MA1U × MA2U(  u, u2( , MA1U × MA2U(  u, y2( ( 

� min min MA1U(u), MA2U u2( ( , min MA1U(u), MA2U y2( ( ( 

� min MA1U(u), MA2U u2( , MA2U y2( ( ( .

(13)

([0.2,0.4],[0.4,0.6],(0.2,0.6))

([
0.

2,
0.

4]
,[0

.4
,0

.6
],(

0.
2,

0.
6)

)

([0.3,0.5],[0.3,0.5],(0.3,0.5))

u1

y1

Figure 10: Cubic intuitionistic fuzzy graph.
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,0

.6
],(
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Figure 11: Cubic intuitionistic fuzzy graph.
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Hence,

MB1L × MB2L(  u, u2(  u, y2(  � min MA1L × MA2L(  u, u2( , MA1L × MA2L(  u, y2( ( ,

MB1U × MB2U(  u, u2(  u, y2(  � min MA1U × MA2U(  u, u2( , MA1U × MA2U(  u, y2( ( .
(14)

Similarly, we can show that

ŊB1L × ŊB2L(  u, u2(  u, y2(  � max ŊA1L × ŊA2L(  u, u2( , ŊA1L × ŊA2L(  u, y2( ( ,

ŊB1U × ŊB2U(  u, u2(  u, y2(  � max ŊA1U × ŊA2U(  u, u2( , ŊA1U × ŊA2U(  u, y2( ( ,

MB1 × MB2(  u, u2(  u, y2(  � min MA1 × MA2(  u, u2( , MA1 × MA2(  u, y2( ( ,

ŊB1 × ŊB2(  u, u2(  u, y2(  � max ŊA1 × ŊA2(  u, u2( , ŊA1 × ŊA2(  u, y2( ( .

(15)

□
Proposition 4. If Ğ1 × Ğ2 is a strong cubic IFG, then at least
Ğ1 or Ğ2 must be strong.

Proof. Suppose that Ğ1 and Ğ2 are not strong cubic IFGs,
then there exist ui, yi ∈ Ei such that

MBL ui, yi( <min MAL ui( , MAL yi( ( ,

ŊBL ui, yi( >max ŊAL ui( ,ŊAL yi( ( ,

MBU ui, yi( <min MAU ui( , MAU yi( ( ,

ŊBU ui, yi( >max ŊAU ui( ,ŊAU yi( ( ,

MB ui, yi( <min MA ui( , MA(y)( ,

ŊB ui, yi( >max MA ui( , MA yi( ( .

(16)

Consider E � (u, u2)(u, y2)/u2 ∈ V1, u2y2 ∈ E2}∪
(u1, z)(y1, z)/z ∈ V2, u1y1 ∈ E1 .

Let (u, u2)(u, y2) ∈ E, then

MB1L × MB2L(  u, u2(  u, y2( 

� min MA1L(u), MB2L u2y2( ( 

<min MA1L(u), MA2L u2( , MA2L y2( ( .

(17)

Similarly,

([
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2,
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,[0
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,0
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],(

0.
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0.
6)

)

([0.2,0.4],[0.4,0.6],(0.2,0.6))([0.1,0.4],[0.4,0.6],(0.1,0.6))

([0.1,0.4],[0.4,0.6],(0.1,0.6))

([
0.

1,
0.

4]
,[0

.4
,0

.6
],(

0.
1,

0.
6)

)

([0.1,0.4],[0.3,0.6],(0.1,0.6))

([0.1,0.4],[0.3,0.6],(0.1,0.6)) ([0.2,0.5],[0.3,0.5],(0.2,0.5))

(y1, u2)

(u1, u2) (u1, y2)

(y1, y2)

Figure 12: Cartesian product of cubic intuitionistic fuzzy graph.
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MB1L × MB2l(  u, u2(  u, y2(  � min MA1L(u), MB2L u2y2( ( <min MA1U(u), MA2U u2( , MA2U y2( ( ,

MA1L × MA2L(  u1, u2(  � min MA1L u1( , MA2L u2( ( ,

MA1U × MA2UM(  u1, u2(  � min MA1U u1( , MA2U u2( ( ,

MA1L × MA2L(  u1, y2(  � min MA1L u1( , MA2L y2( ( ,

MA1U × MA2U(  u1, y2(  � min MA1U u1( , MA2U y2( ( 

� min MA1U × MA2U(  u, u2( , MA1U( × MA2U(  u, y2( ( 

� min min MA1U(u), MA2U u2( , min MA1U(( ( u), MA2U y2( ( ( 

� min MA1U(u), MA2U u2( , MA2U y2( ( .

(18)

Hence,

MB1L × MB2L(  u, u2(  u, y2( <min MA1L × MA2L(  u, u2( , MA1L × MA2L(  u, y2( ( ,

MB1U × MB2U(  u, u2(  u, y2( <min MA1U × MA2U(  u, u2( , MA1U × MA2U(  u, y2( ( .
(19)

Similarly, we can show that

ŊB1L × ŊB2L(  u, u2(  u, y2( >max ŊA1L × ŊA2L(  u, u2( , ŊA1L × ŊA2L(  u, y2( ( ,

ŊB1U × ŊB2U(  u, u2(  u, y2( >max ŊA1U × ŊA2U(  u, u2( , ŊA1U × ŊA2U(  u, y2( ( ,

MB1 × MB2(  u, u2(  u, y2( <min MA1 × MA2(  u, u2( , MA1 × MA2(  u, y2( ( ,

ŊB1 × ŊB2(  u, u2(  u, y2( >max ŊA1 × ŊA2(  u, u2( , ŊA1 × ŊA2(  u, y2( ( .

(20)

,erefore, Ğ1 × Ğ2 is not a strong cubic IFG, which is a
contradiction. ,is completes the proof. □

Definition 19. ,e composition Ğ1[Ğ2] � Ğ1°Ğ2 �

(A1°A2,B1°B2) of two cubic IFGs Ğ1 � (A1,B1) and Ğ2 �

(A2,B2) of the graphs Ğ
∗
1 � (V1, E1) and Ğ∗2 � (V2, E2) is

defined as follows:

(i)

MA1L°MA2L(  u1, u2(  � min MA1L u1( , MA2L u2( ( ,

MA1U°MA2U(  u1, u2(  � min MA1U u1( , MA2U u2( ( ,

ŊA1L°ŊA2L(  u1, u2(  � max ŊA1L u1( ,ŊA2L u2( ( ,

ŊA1U°ŊA2U(  u1, u2(  � max ŊA1U u1( ,ŊA2U u2( ( ,

MA1°MA2(  u1, u2(  � min MA1 u1( , MA2 u2( ( ,

ŊA1°ŊA2(  u1, u2(  � max ŊA1 u1( ,ŊA2 u2( ( , for all u1, u2 ∈ V

(21)

(ii)

MB1L°MB2L(  u, u2(  u, y2(  � min MA1L(u), MB2L u2y2( ( ,

MB1U°MB2U(  u, u2(  u, y2(  � min MA1U(u), MB2U u2y2( ( ,

ŊB1L°ŊB2L(  u, u2(  u, y2(  � max ŊA1L(u),ŊB2L u2y2( ( ,

ŊB1U°ŊB2U(  u, u2(  u, y2(  � max ŊA1U(u),ŊB2U u2y2( ( ,

MB1°MB2(  u, u2(  u, y2(  � min MA1(u), MB2 u2y2( ( ,

ŊB1°ŊB2(  u, u2(  u, y2(  � max ŊA1(u),ŊB2 u2y2( ( , for all u ∈V1 and u2y2 ∈ E2.

(22)

Journal of Mathematics 11



RE
TR
AC
TE
D

(iii)

MB1L°MB2L(  u1, z(  y1, z(  � min MB1L u1y1( , MA2L(z)( ,

MB1U°MB2U(  u1, z(  y1, z(  � min BA1U u1y1( , MA2U(z)( ,

ŊB1L°ŊB2L(  u1, z(  y1, z(  � max ŊB1L u1y1( ,ŊA2L(z)( ,

ŊB1U°ŊB2U(  u1, z(  y1, z(  � max ŊB1U u1y1( ,ŊA2U(z)( ,

MB1( °MB2(  u1, z(  y1, z(  � min MB1 u1y1( , MA2(z)( ,

ŊB1°ŊB2(  u1, z(  y1, z(  � max ŊB1 u1y1( ,ŊA2(z)( , for all z ∈V2 and u1y1 ∈ E1.

(23)

(iv)

MB1L°MB2L(  u1, u2(  y1, y2(  � min MA2L u2( , MA2L y2( , MB1L u1y1( ( ,

MB1U°MB2U(  u1, u2(  y1, y2(  � min MA2U u2( , MA2U y2( , MB1U u1y1( ( ,

ŊB1L°ŊB2L(  u1, u2(  y1, y2(  � max ŊA2L u2( ,ŊA2L y2( ,ŊB1L u1y1( ( ,

ŊB1U°ŊB2U(  u1, u2(  y1, y2(  � max ŊA2U u2( ,ŊA2U y2( ,ŊB1U u1y1( ( ,

MB1°MB2(  u1, u2(  y1, y2(  � min MA2 u2( , MA2 y2( , MB1 u1y1( ( ,

ŊB1°ŊB2(  u1, u2(  y1, y2(  � max ŊA2 u2( ,ŊA2 y2( ,ŊB1 u1y1( ( , for all u1, u2(  y1, y2(  ∈ E° − E.

(24)

Example 10. Let Ğ∗ � (V, E) be a graph; then the com-
positions of two cubic IFGs in Figures 13–15 are given as
follows.

Proposition 5. ?e composition Ğ1[Ğ2] of cubic IFG for the
graphs Ğ1 and Ğ2 of the graphs Ğ

∗
1 and Ğ∗2 is a cubic IFG of

Ğ∗1 [Ğ∗2 ].

Proof. ,e proof is straightforward. □

Definition 20. ,e union Ğ1 ∪ Ğ2 � (A1 ∪A2,B1 ∪B2)of
two cubic IFGs Ğ1 � (A1,B1) and Ğ2 � (A2,B2) of the
graphs Ğ∗1 � (V1, E1) and Ğ∗2 � (V2, E2) is defined as
follows:

(i)

MA1L ∪MA2L( (u) � MA1L(u), if u ∈ V1 − V2,

MA1L ∪MA2L( (u) � MA2L(u), if u ∈ V2 − V1,

MA1L ∪MA2L( (u) � max MA1L(u), MA2L(u)( , if u ∈ V1 ∩V2.

⎧⎪⎪⎨

⎪⎪⎩
(25)

(ii)

MA1U ∪MA2U( (u) � MA1U(u), if u ∈V1 − V2,

MA1U ∪MA2U( (u) � MA2U(u), if u ∈V2 − V1,

MA1U ∪MA2U( (u) � max MA1U(u), MA2U(u)( , if u ∈V1 ∩V2.

⎧⎪⎪⎨

⎪⎪⎩
(26)

(iii)

ŊA1L ∩ŊA2L( (u) � ŊA1L(u), if u ∈ V1 − V2,

ŊA1L ∩ŊA2L( (u) � ŊA2L(u), if u ∈ V2 − V1,

ŊA1L ∩ŊA2L( (u) � min ŊA1L(u),ŊA2L(u)( , if u ∈ V1 ∩V2.

⎧⎪⎪⎨

⎪⎪⎩
(27)
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(iv)

ŊA1U ∩ŊA2U( (u) � ŊA1U(u), if u ∈ V1 − V2,

ŊA1U ∩ŊA2U( (u) � ŊA2U(u) if u ∈ V2 − V1,

ŊA1U ∩ŊA2U( (u) � min ŊA1U(u),ŊA2U(u)( , if u ∈ V1 ∩V2.

⎧⎪⎪⎨

⎪⎪⎩
(28)

(v)

MA1 ∪MA2( (u) � MA1(u), if u ∈ V1 − V2,

MA1 ∪MA2( (u) � MA2(u), if u ∈ V2 − V1,

MA1 ∪MA2( (u) � max MA1(u), MA2(u)( , if u ∈ V1 ∩V2.

⎧⎪⎪⎨

⎪⎪⎩
(29)

([0.2,0.5],[0.3,0.6],(0.3,0.6))
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)

([0.1,0.4],[0.2,0.5],(0.4,0.2))

u1

y1

Figure 13: Cubic intuitionistic fuzzy graph.
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Figure 14: Cubic intuitionistic fuzzy graph.
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(vi)

ŊA1 ∩ŊA2( (u) � ŊA1(u), if u ∈ V1 − V2,

ŊA1 ∩ŊA2( (u) � ŊA2(u), if u ∈ V2 − V1,

ŊA1 ∩ŊA2( (u) � min ŊA1(u),ŊA2(u)( , if u ∈ V1 ∩V2.

⎧⎪⎪⎨

⎪⎪⎩
(30)

(vii)

MB1L ∪MB2L( (uy) � MB1L(uy), if uy ∈ E1 − E2,

MB1L ∪MB2L( (uy) � MB2L(uy), if uy ∈ E2 − E1,

MB1L ∪MB2L( (uy) � max MB1L(uy), MB2L(uy)( , if y ∈ E1 ∩E2.

⎧⎪⎪⎨

⎪⎪⎩
(31)

(viii)

MB1U ∪MB2U( (uy) � MB1U(uy), if uy ∈ E1 − E2,

MB1U ∪MB2U( (uy) � MB2U(uy), if uy ∈ E2 − E1,

MB1U ∪MB2U( (uy) � max MB1U(uy), MB2U(uy)( , if uy ∈ E1 ∩E2.

⎧⎪⎪⎨

⎪⎪⎩
(32)

(ix)

ŊB1L ∩ŊB2L( (uy) � ŊB1L(uy), if uy ∈ E1 − E2,

ŊB1L ∩ŊB2L( (uy) � ŊB2L(uy), if uy ∈ E2 − E1,

ŊB1L ∩ŊB2L( (uy) � min ŊB1L(uy),ŊB2L(uy)( , if uy ∈ E1 ∩E2.

⎧⎪⎪⎨

⎪⎪⎩
(33)

(x)

ŊB1U ∩ŊB2U( (uy) � ŊB1U(uy), if uy ∈ E1 − E2,

ŊB1U ∩ŊB2U( (uy) � ŊB2U(uy), if uy ∈ E2 − E1,

ŊB1U ∩ŊB2U( (uy) � min ŊB1U(uy),ŊB2U(uy)( , if uy ∈ E1 ∩E2.

⎧⎪⎪⎨

⎪⎪⎩
(34)

(xi)

MB1 ∪MB2( (uy) � MB1(uy), if uy ∈ E1 − E2,

MB1 ∪MB2( (uy) � MB2(uy), if uy ∈ E2 − E1,

MB1 ∪MB2( (uy) � max MB1(uy), MB2(uy)( , if uy ∈ E1 ∩E2.

⎧⎪⎪⎨

⎪⎪⎩
(35)

([
0.

1,
0.

4]
,[0

.3
,0

.6
],(

0.
3,

0.
6)

)

([0.1,0.2],[0.4,0.5],(0.3,0.4))

([0
.1,0.2],[0

.4,0.5],(0
.3,0.4))

([
0.

1,
0.

2]
,[0

.4
,0

.5
],(

0.
3,

0.
4)

)

([0.2,0.2],[0.4,0.6],(0.3,0.6))

([0.1,0.2],[0.4,0.6],(0.3,0.6))

([0.1,0.2],[0.4,0.5],(0.3,0.4))

([0.1,0.4],[0.3,0.6],(0.3,0.6))

([0.1,0.2],[0.4,0.5],(0.4,0.2)) ([0.1,0.4],[0.2,0.5],(0.3,0.4))

Figure 15: Composition of cubic intuitionistic fuzzy graph.
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(xii)

ŊB1 ∩ŊB2( (uy) � ŊB1(uy), if uy ∈ E1 − E2,

ŊB1 ∩ŊB2( (uy) � ŊB2(uy), if uy ∈ E2 − E1,

ŊB1 ∩ŊB2( (uy) � min ŊB1(uy),ŊB2(uy)( , if uy ∈ E1 ∩E2.

⎧⎪⎪⎨

⎪⎪⎩
(36)

Example 11. Let Ğ∗ � (V, E) be a graph; then the union of
two cubic IFGs is given below.

In Figures 16–18 the union of two CIFGs is defined.

Proposition 6. ?e union of two cubic IFGs is a cubic IFG.

Proof. Let Ğ1 � (A1,B1) and Ğ2 � (A2,B2) be the cubic
IFGs Ğ∗1 and Ğ∗2 , respectively. ,en, we have to prove
Ğ1 ∪ Ğ2 � (A1 ∪A2,B1 ∪B2)is a cubic IFG and of the
graphs Ğ∗1 ∪ Ğ

∗
2 . As all the conditions of A1 ∪A2 are satisfied,

we only have to verify the conditions of B1 ∪B2.

First assume that uy ∈ E1 ∩E2. ,en,

MB1L ∪MB2L( (uy) � max MB1L(uy), MB2L(uy)( 

≤max min MA1L(u), MA1L(y)( , min MA2L(u), MA2L(y)( ( ,

� min max MA1L(u), MA2L(u)( , max MA1L(y), MA2L(y)( ( ,

� min MA1L ∪MA2L( (u), MA1L ∪MA2L( (y),

MB1U∪MB2U( (uy) � max MB1U(uy), MB2U(uy)( 

≤max min MA1U(u), MA1U(y)( , min MA2U(u), MA2L(y)( ( 

� min max MA1U(u), MA2U(u)( , max MA1UM(y), MA2U(y)( ( 

� min MA1U ∪MA2U( (u), MA1U ∪MA2U( (y),

ŊB1L ∪ŊB2L( (uy) � min ŊB1L(uy),ŊB2L(uy)( 

≤min max ŊA1L(u),ŊA1L(y)( , max ŊA2L(u),ŊA2L(y)( ( ,

� max min ŊA1L(u),ŊA2L(u)( , min ŊA1L(y),ŊA2L(y)( ( ,

� max ŊA1L ∪ŊA2L( (u), ŊA1L ∪ŊA2L( (y),

ŊB1U ∪ŊB2U( (uy) � min ŊB1U(uy),ŊB2U(uy)( 

≤min max ŊA1U(u),ŊA1U(y)( , max ŊA2U(u),ŊA2U(y)( ( ,

� max min ŊA1U(u),ŊA2U(u)( , min ŊA1U(y),ŊA2U(y)( ( ,

� max ŊA1U ∪ŊA2U( (u), ŊA1U ∪ŊA2U( (y),

MB1 ∪MB2( (uy) � max MB1(uy), MB2(uy)( 

≤max min MA1(u), MA1(y)( , min MA2(u), MA2(y)( ( ,

� min max MA1(u), MA2(u)( , max MA1(y), MA2(y)( ( ,

� min MA1 ∪MA2( (u), MA1 ∪MA2( (y),

ŊB1 ∪ŊB2( (uy) � min ŊB1(uy),ŊB2(uy)( 

≤min max ŊA1(u),ŊA1(y)( , max ŊA2(u),ŊA2(y)( ( 

� max min ŊA1(u),ŊA2(u)( , min ŊA1(y),ŊA2(y)( ( 

� max ŊA1 ∪ŊA2( (u), ŊA1 ∪ŊA2( (y).

(37)
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If uy ∈ E1 and uy ∉ E2, then

MB1L ∪MB2L( (uy)≤min MA1L ∪MA2L( (u), MA1L ∪MA2L( (y)( ,

MB1U ∪MB2U( (uy)≤min MA1U ∪MA2U( (u), MA1U ∪MA2U( (y)( ,

ŊB1L ∪ŊB2L( (uy)≤max ŊA1L ∪ŊA2L( (u), ŊA1L ∪ŊA2L( (y)( ,

ŊB1U ∪ŊB2U( (uy)≤max ŊA1U ∪ŊA2U( (u), ŊA1U ∪ŊA2U( (y)( ,

MB1 ∪MB2( (uy)≤min MA1 ∪MA2( (u), MA1 ∪MA2( (y)( ,

ŊB1 ∪ŊB2( (uy)≤max ŊA1 ∪ŊA2( (u), ŊA1 ∪ŊA2( (y)( .

(38)

([0.1,0.3],[0.4,0.6],(0.1,0.3))

([0.2,0.3],[0.4,0.6],(0.2,0.4))

([0.2,0.3],[0.4,0.6],(0.2,0.3))

[0.3,0.4],[0.2,0.5],(0.3,0.4))

([
0.

1,
0.

3]
,[0

.4
,0

.6
],(

0.
1,

0.
4)

)

u1

u3u2

Figure 17: Cubic intuitionistic fuzzy graph.

([0.3,0.4],[0.2,0.3],(0.3,0.4))

([0.3,0.4],[0.3,0.5],(0.3,0.5))

([0.3,0.5],[0.2,0.4],(0.3,0.5))

([0.4,0.5],[0.3,0.5],(0.4,0.5))

((
[0

.3
,0

.5
],[

0.
3,

0.
5]

,(0
.3

,0
.5

))

u1 u2

u3

Figure 16: Cubic intuitionistic fuzzy graph.
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If uy ∉ E1 and uy ∈ E2, then

MB1L ∪MB2L( (uy)≤min MA1L ∪MA2L( (u), MA1L ∪MA2L( (y)( ,

MB1U ∪MB2U( (uy)≤min MA1U ∪MA2U( (u), MA1U ∪MA2U( (y)( ,

ŊB1L ∪ŊB2L( (uy)≤max ŊA1L ∪ŊA2L( (u), ŊA1L ∪ŊA2L( (y)( ,

ŊB1U ∪ŊB2U( (uy)≤max ŊA1U ∪ŊA2U( (u), ŊA1U ∪ŊA2U( (y)( ,

MB1 ∪MB2( (uy)≤min MA1 ∪MA2( (u), MA1 ∪MA2( (y)( ,

ŊB1 ∪ŊB2( (uy)≤max ŊA1 ∪ŊA2( (u), ŊA1 ∪ŊA2( (y)( .

(39)

,is completes the proof. □

Definition 21. ,e joint Ğ1 + Ğ2 � (A1 + A2,B1 + B2) of
two cubic IFGs Ğ1 � (A1,B1) and Ğ2 � (A2,B2) of the
graphs Ğ∗1 � (V1, E1) and Ğ∗2 � (V2, E2) is defined as
follows:

(i)

MA1L + MA2L( (u) � MA1L ∪MA2L( (u),

MA1U + MA2U( (u) � MA1U ∪MA2U( (u)

ŊA1L + ŊA2L( (u) � ŊA1L ∪ŊA2L( (u),

ŊA1U + ŊA2U( (u) � MA1U ∪MA2U( (u),

MA1 + MA2( (u) � MA1 ∪MA2( (u)

ŊA1 + ŊA2( (u) � ŊA1 ∪ŊA2( (u).

(40)

If u ∈ V1 ∪V2,
(ii)

MB1L + MB2L( (uy) � MB1L ∪MB2L( (uy),

MB1U + MB2U( (uy) � MB1U ∪MB2U( (uy),

ŊB1L + ŊB2L( (uy) � ŊB1L ∪ŊB2L( (uy),

ŊB1U + ŊB2U( (uy) � MB1U ∪MB2U( (uy),

MB1 + MB2( (uy) � MB1 ∪MB2( (uy),

ŊB1 + ŊB2( (uy) � ŊB1 ∪ŊB2( (uy)

(41)

uy ∈ E1 ∩E2, and then

MB1L + MB2L( (uy) � min MA1L(u), MA2L(y)( ,

MB1U + MB2U( (uy) � min MA1U(u), MA2U(y)( ,

ŊB1L + ŊB2L( (uy) � max ŊA1L(u),ŊA2L(y)( ,

ŊB1U + ŊB2U( (uy) � max ŊA1U(u),ŊA2U(y)( ,

MB1 + MB2( (uy) � min MA1(u), MA2(y)( ,

ŊB1 + ŊB2( (uy) � max ŊA1(u),ŊA2(y)( ,

(42)

uy ∈ E′, where E’ is the set of all edges joining the
nodes of V1 and V2.

([0.4,0.5],[0.3,0.5],(0.4,0.4))

([
0.

3,
0.

5]
,[0

.3
,0

.5
],(

0.
4,

0.
4)

)

([0.3,0.4],[0.2,0.3],(0.3,0.3))

([0.3,0.4],[0.3,0.5],(0.3,0.5))

([0.3,0.5],[0.2,0.4],(0.3,0.4))

([0.1,0.3],[0.4,0.6],(0.1,0.4))

u1 u2

u3

Figure 18: Union of cubic intuitionistic fuzzy graphs.

Journal of Mathematics 17



RE
TR
AC
TE
D

Proposition 7. ?e joint of two cubic IFGs is a cubic IFG.

Proof. Assume that Ğ1 � (A1,B1) and Ğ2 � (A2,B2) are
two cubic IFGs of the graphs Ğ∗1 � (V1, E1) and

Ğ∗2 � (V2, E2). ,en, we have to prove Ğ1 + Ğ2 � (A1 +

A2,B1 + B2) is a cubic IFG. In view of proposition 6 is
sufficient to verify the case when uy ∈ E′. In this case, we
have

MB1L ∪MB2L( (uy) � min MA1L(u)( , MA2U(y)( ( 

MB1L ∪MB2L( (uy) � min MA1L(u)( , MA2U(y)( ( 

� min MA1L + MA2L( (u), MA1L + MA2L( (y)( ,

MB1U ∪MB2U( (uy) � min MA1U(u)( , MA2U(y)( ( 

≤min MA1U ∪MA2U( (u), MA1U ∪MA2U( (y)( 

� min MA1U + MA2U( (u), MA1U + MA2U( (y)( ,

ŊB1L ∪ŊB2L( (uy) � max ŊA1L(u)( , ŊA2L(y)( ( 

≤max ŊA1L ∪ŊA2L( (u), ŊA1L ∪ŊA2L( (y)( 

� max ŊA1L + ŊA2L( (u), ŊA1L + ŊA2L( (y)( ,

ŊB1U ∪ŊB2U( (uy) � max ŊA1U(u)( , ŊA2U(y)( ( 

≤max ŊA1U ∪ŊA2U( (u), ŊA1U ∪ŊA2U( (y)( 

� max ŊA1U + ŊA2U( (u), ŊA1U + ŊA2U( (y)( ,

MB1 ∪MB2( (uy) � min MA1(u)( , MA2(y)( ( 

≤min MA1 ∪MA2( (u), MA1 ∪MA2( (y)( 

� min MA1 + MA2( (u), MA1 + MA2( (y)( ,

ŊB1 ∪ŊB2( (uy) � max ŊA1(u)( , ŊA2(y)( ( 

≤max ŊA1 ∪ŊA2( (u), ŊA1 ∪ŊA2( (y)( 

� max ŊA1 + ŊA2( (u), ŊA1 + ŊA2( (y)( .

(43)

,is completes the proof. □

5. Application

In this section, we apply the concept of CIFGs in multi-
attribute decision-making problem, where the selection of
suitable subjects has been carried out.

,ere are many career options for the students of
present times. Moreover, some of the courses are usually
chosen where all the available choices remain superior
and best choices until a single student has to choose a
field of his interest by keeping in view his preferences. At
the finishing of college level education requires selecting
their first choice of career planning. During this time,
pupils must be given enough information about choosing
career according to their interest. According to the
survey of random sample of 100 pupils of class X carried
out in this part, pupils with favour of interests and no
favouring of choices of a specific subject up to class X are
measured and given below. Based on the data, cubic
nonrational fuzzy graph is used as a tool as it makes the
level of membership (interval-valued membership)
(percentage of students who favour a subject or a pair of
subjects) and level of nonmembership (interval-valued
nonmembership) (percentage of students who disfavour

a subject or a pair of subjects). Employing CIFS, the best
subject’s combination may be evaluated that are the class
having subjects that could be productive to most students
and have best academic performance of most of the
students.

Let S � English(E), Language(L),Maths(M),

Science(S), Social Sciences(SS)} be the set of vertices. Ta-
bles 1 and 2 illustrate the percentages of students with in-
terest/disinterest towards a subject or a pair of subjects.

Based on the above information, we generate an CIFG as
follows (Figure 19).

In every vertex of the graph, the degree of membership
shows the percentage of students with zeal for a specific
subject and the degree of nonmembership is the per-
centage of students with no zeal in subject from a random
sample of 100 students of class X chosen for survey. Also,
the corners of graph of both membership and non-
membership show the favour and disfavour of students to
study the combined two subjects at higher secondary
corner. From the given graph, the corner (L − SS) pos-
sesses high degree of nonmembership, which shows that
majority of pupils do not like to study the combined
subjects Language and Social Science, and the corner
(M − S) possesses high degree of membership, which
shows that majority of pupils have zeal for studying the

18 Journal of Mathematics
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combined subjects of Math and Science.,ere is disfavour
to study the combined subjects of Tamil and Math, which
indicates that these subjects do not require to be com-
bined. ,erefore, a high (low) level of membership of any
corner shows the high (low) weightage of combined
subjects at higher studies.

6. Comparison

Proposition 8. A cubic IFG is a generalization of cubic FG.

Proof. Let Ğ∗ � (V, E) be a cubic IFG. ,en if we put the
value of nonmembership of the vertex set and edge set as

(([0
.2,0.3],[0

.6,0.7]),(
0.3,0.7)) (([0.1,0.3],[0.6,0.7]),(0.3,0.5))

M(([0.2,0.3],[0.6,0.7]),(0.3,0.5))

(([0.1,0.4],[0.5,0.6]),(0.3,0.7))

L(([0.2,0.4],[0.55,0.6]),(0.4,0.6)) (([0.2,0.3],[0.55,0.6]),(0.4,0.6)) SS(([0.2,0.3],[0.3,0.6]),(0.7,0.3))

(([0.2,0.3],[0.4,0.6]),(0.3,0.7))

(([
0.

2,
0.

4]
,[0

.5
5,

0.
6]

),(
0.

3,
0.

7)
)

(([0
.1,0.4],[0

.55,0.6]),(
0.4,0.6))

(([
0.

1,
0.

3]
,[0

.5
,0

.6
]),

(0
.5

,0
.4

))E(
([

0.
3,

0.
4]

,[0
.4

,0
.5

])
,(0

.3
,0

.7
)) S(([0.1,0.4],[0.5,0.6]),(0.5,0.4))

(([0.2,0.3],[0.6,0.7]),(0.3,0.5))(([
0.2

,0.
3]

,[0
.6,

0.7
]),

(0
.3,

0.6
))

Figure 19: Cubic intuitionistic fuzzy graph.

Table 1: Subject combination.

Subject combination Interest percentage Disinterest percentage
E [0.3, 0.4], 0.3 [0.4, 0.5], 0.7
L [0.2, 0.4], 0.4 [0.55, 0.6], 0.6
M [0.2, 0.3], 0.3 [0.6, 0.7], 0.5
S [0.1, 0.4], 0.5 [0.5, 0.6], 0.4
SS [0.2, 0.3], 0.7 [0.3, 0.6], 0.3

Table 2: Subjects combinations.

Subjects combination Interest percentage Disinterest percentage
E − M [0.2, 0.3], 0.3 [0.6, 0.7], 0.7
E − L [0.2, 0.4], 0.3 [0.55, 0.6], 0.7
E − S [0.1, 0.4], 0.3 [0.5, 0.6], 0.7
E − SS [0.2, 0.3], 0.3 [0.4, 0.6], 0.7
L − M [0.2, 0.3], 0.3 [0.6, 0.7], 0.6
L − S [0.1, 0.4], 0.4 [0.55, 0.6], 0.6
L − SS [0.2, 0.3], 0.4 [0.55, 0.6], 0.6
M − S [0.1, 0.3], 0.3 [0.6, 0.7], 0.5
M − SS [0.2, 0.3], 0.3 [0.6, 0.7], 0.5
S − SS [0.1, 0.3], 0.5 [0.5, 0.6], 0.4
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zero in the IVFS and FS, then the cubic IFG reduces to cubic
FG. □

Proposition 9. An IVIFG is a generalization of IVFG.

Proof. Let Ğ∗ � (V, E) be an IVIFG. If we put the value of
nonmembership of the vertex set and edge set as zero, then
the IVIFG reduces to IVFG. □

Proposition 10. An IFG is a generalization of FG.

Proof. Let Ğ∗ � (V,E) be an IFG. If we put the value of
nonmembership of the vertex set and edge set as zero, then
the IFG reduces to FG. □

7. Conclusion

In this article, we developed a novel concept of CIFG as a
generalization of IFGs. ,e graph theoretic terms like
subgraphs, complements, degree of vertices, strength of
graphs, paths, and cycle are briefly presented with the help of
examples. Some related results and properties of the defined
concepts are discussed.,e generalization of CIFG is proved
by some examples and remarks. A comparison of CIFG with
IFG and other related concepts is given. ,e theory of CIFG
is a generalization of IFG and can be applied to many real-
life problems such as shortest path problem, communication
problem, cluster analysis, and traffic signal problems. In the
future, the graphs of the cubic Pythagorean fuzzy sets, cubic
q-rung orthopair fuzzy sets, and cubic spherical fuzzy sets
can be developed and different aggregation operators are
defined for better decision-making.
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We aim through this paper to achieve two goals: first, we define some types of belong and nonbelong relations between ordinary
points and double-framed soft sets. ,ese relations are one of the distinguishing characteristics of double-framed soft sets and are
somewhat expression of the degrees of membership and nonmembership. We explore their main properties and determine the
conditions under which some of them are equivalent. Also, we introduce the concept of soft mappings between two classes of
double-framed soft sets and investigate the relationship between an ordinary point and its image and preimage with respect to the
different types of belong and nonbelong relations. By the notions presented herein, many concepts can be studied on double-
framed soft topology such as soft separation axioms and cover properties. Second, we give an educational application of optimal
choices using the idea of double-framed soft sets. We provide an algorithm of this application with an example to show how this
algorithm is carried out.

1. Introduction

,e (crisp) set theory is a main mathematical approach to
deal with a class of problems that are characterized by
precision, exactness, specificity, perfection, and certainty.
However, many problems in the real-life inherently involve
inconsistency, imprecision, ambiguity, and uncertainties. In
particular, such classes of problems arise in engineering,
economics, medical sciences, environmental sciences, social
sciences, and many different scopes. ,e crisp (classical)
mathematical tools fail to model or solve these types of
problems.

In the course of time, mathematicians, engineers, and
scientists, particularly those who focus on artificial intel-
ligence, are seeking for alternative mathematical ap-
proaches to solve the problems that contain uncertainty or
vagueness. ,ey initiated several set theories such as
probability theory, fuzzy set [1], intuitionistic fuzzy set [2],
and rough set [3].

In 1999, Molodtsov [4] proposed the concept of soft sets
as a new mathematical tool to cope with uncertainties. He
investigated the efficiency of soft sets to deal with compli-
cated problems compared with the probability theory and
fuzzy set theory. After Molodtsov’s work, many researchers
have studied several operations and relations between soft
sets (see, for example, [5–10]). Soft sets were applied in
various domains such as algebraic structures (see, for ex-
ample, [11–13]), soft topological spaces (see, for example,
[14–16]), and decision-making problems (see, for example,
[17–25]). Also, the relationship among soft sets, rough sets,
and fuzzy sets was the goal of some papers such as
[17, 26, 27].

In the last few years, a number of scholars have ex-
tensively studied some extensions of soft set. ,ese studies
go into two ways: the first one is initiated by giving some
generalizations of the structure of soft sets. ,is leads to
define binary soft set [28], N-soft set [29], double-framed
soft set [30], and bipolar soft set [31] (several relations
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between bipolar soft sets and ordinary points were presented
in [32]). ,e second one is coming from the combination of
soft set (or its updating forms) with rough set or fuzzy set or
both. ,is leads to define fuzzy soft set [33], fuzzy bipolar
soft set [34], bipolar fuzzy soft set [35], soft rough set [26],
bipolar soft rough set [36], and modified rough bipolar soft
set [37].

Soft set was formulated over an initial universal set X by
using a map from a set of parameters A into the power set of
X. However, we need sometimes to define two maps from A

into the power set of X; for example, if we schedule students’
results in n subjects, we define n different maps over the
same sets X and A. For this purpose, Jun and Ahn [30]
initiated the notion of double-framed soft sets and applied in
BCK/BCI algebras. In 2014, Muhiuddin and Al-Roqi [38]
studied the concept of double-framed soft hypervector
spaces, and in 2015, Naz [39] revealed some algebraic
properties of double-framed soft set. In 2017, Khana et al.
[40] introduced the concept of double-framed soft LA-
semigroups. In the same year, Shabir and Samreena [41]
made use of a double-framed soft set to define a new soft
structure called a double-framed soft topological space.,ey
initiated its basic notions such as DFS open and closed sets
and DFS neighborhoods. In 2018, Iftikhar and Mahmood
[42] presented some results on lattice-ordered double-
framed soft semirings; and Park [43] discussed double-
framed soft deductive system of subtraction algebras.
Bordbar et al. [44] applied double-framed soft set theory to
hyper-BCK algebras. Saeed et al. [45] formulated the con-
cepts of N-framed soft set and then defined the soft union
and intersection of two double-framed soft sets. ,ey also
provided an example to elucidate an application ofN-framed
soft set.

,e motivation for this work is to define new types of
belong and nonbelong relations between ordinary points
and double-framed soft sets which create new degrees of
membership and nonmembership for the ordinary points. In
fact, this leads to initiate novel concepts on double-framed
soft topology, in particular in the areas of soft separation
axioms and cover properties.

We organize the rest of this paper as follows. Section 2
recalls some operations between double-framed soft sets. In
Section 3, we formulate four types of belong relations be-
tween ordinary points and double-framed soft sets called
weakly partial belong, strongly partial belong, weakly total
belong, and strongly total belong relations and formulate
four types of nonbelong relations between ordinary points

and double-framed soft sets called weakly partial nonbelong,
strongly partial nonbelong, weakly total nonbelong, and
strongly total nonbelong relations. ,en, we examine their
behaviours under the operations of soft intersection and
union. Also, we study soft mappings with respect to the
classes of double-framed soft sets and prob the relationships
between ordinary points and their images and preimages. In
Section 4, we propose a method of optimum choice based on
double-framed soft sets. We provide an example to illustrate
how this method can be applied to model some real-life
problems. Finally, we summarize the main obtained results
and present some future works in Section 5.

2. Preliminaries

In this part, we mention some definitions and results of
double-framed soft sets.

In this article, the sets of parameters are denoted by
A, B, C, D, E, M, N; the initial universal sets are denoted by
X, Y; and the power set of X is denoted by 2X.

Definition 1 (see [4]). A soft set over X, denoted by (h, A), is
a map h from A to 2X. We call X an initial universal set and
A a set of parameters.

Usually, we write (h, A) as a set of ordered pairs:

(h, A) � (a, h(a)): a ∈ A and h(a) ∈ 2X
 . (1)

Definition 2 (see [30]). Let h, k be two mappings from A to
2X. A double-framed soft set over X, determined by h and k,
is the set (a, h(a), k(a)): a ∈ A{ }.

We will denote this double-framed soft set by (h, k, A).
,e set X is called the initial universal set, and the set A is
called the set of parameters.

A class of all double-framed soft sets defined over X with
all parameters subsets of A is denoted by C(XA).

In a similar way, one define the concepts of triple-framed
soft set, quadruple-framed soft set, quintuple-framed soft
set, sextuple-framed soft set, septuple-framed soft set,. . .,
and N-framed soft set.

Definition 3 (see [45]). (h1, h2, . . . , hn, A) is said to be an N-
framed soft set over a nonempty set X, where hi is a map
from A into 2X for i � 1, 2, . . . , n, X is an initial universal set,
and A is a set of parameters.

An N-framed soft set is expressed as follows:

h1, h2, . . . , hn, A(  � a, h1(a), h2(a), . . . , hn(a)( : a ∈ A and hi(a) ∈ 2Xfor each i � 1, 2, . . . , n . (2)

Henceforth, we assume that the initial universal set of
every double-framed soft set in this paper is nonempty.

Example 1. Let X � x1, x2, . . . , x50  be the universal set of
third graders and A � a1, a2, a3, a4  be a set of parameters,
where a1 represents the students holding first rank, a2

represents the students holding second rank, a3 represents
the students holding third rank, and a4 represents the
students holding fourth rank.

Let h: A⟶ 2X be a map of ranking students in
mathematics subject and k: A⟶ 2X be a map of ranking
students in physics subject.
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Suppose that h and k are given as follows:

h a1(  � x14 ,

k a1(  � x3, x14 ,

h a2(  � x19 ,

k a2(  � x7 ,

h a3(  � x7, x21, x26 ,

k a3(  � x35 ,

h a4(  � x2 ,

k a4(  � x2, x43 .

(3)

Now, we can describe this system using a double-framed
soft set as follows:

(h, k, A) � a1, x14 , x3, x14 ( , a2, x19 , x7 ( , a3, x7, x21, x26 , x35 ( , a4, x2 , x2, x43 (  . (4)

If there are three maps of subjects, a system is described
using a triple-framed soft set; and if there are four maps of
subjects, a system is described using a quadruple-framed soft
set and so on.

Definition 4 (see [41]). Let (h, k, A) be a double-framed soft
set and x ∈ X. We say that x ∈ (h, k, A) if x ∈ h(a) and
x ∈ k(a) for all a ∈ A and x ∉ (h, k, A) if x ∉ h(a) or
x ∉ k(a′) for some a, a′ ∈ A.

Definition 5 (see [39]). A double-framed soft set (h, k, A) is
said to be a null double-framed soft set (resp., an absolute
double-framed soft set) if h(a), k(a) equals to the empty
(resp., universal) set for each a ∈ A.

Henceforth, the null and absolute double-framed soft
sets are symbolized by ( ΦA, ΦA) and ( XA, XA), respectively.

Definition 6 (see [45]). ,e intersection of two double-
framed soft sets (h1, h2, A) and (k1, k2, B) is a double-framed
soft set (f1, f2, C) such that C � A∩B≠∅ and
f1: C⟶ 2X and f2: C⟶ 2X are defined by
f1(c) � h1(c)∩ k1(c) and f2(c) � h2(c)∩ k2(c).

It is symbolized by (h1, h2, A)∩ (k1, k2, B).

Definition 7 (see [45]).,e soft union of two double-framed
soft sets (h1, h2, A) and (k1, k2, B) is a double-framed soft set
(f1, f2, C), where C � A∪B and f1: C⟶ 2X and
f2: C⟶ 2X are defined by

fi(c) �

hi(c), : c ∈ A − B,

ki(c), : c ∈ B − A,

hi(c)∪ ki(c), : c ∈ A∩B.

⎧⎪⎪⎨

⎪⎪⎩
(5)

It is symbolized by (h1, h2, A)∪ (k1, k2, B).

Definition 8 (see [30]). A double-framed soft set (h1, h2, A)

is called a subset of a double-framed soft set (k1, k2, B),
denoted by (h1, h2, A) ⊆ (k1, k2, B), if A⊆B, and h1(a)⊆k1(a)

and h2(a)⊆k2(a) holds true for all a ∈ A.

,e double-framed soft sets (h1, h2, A) and (k1, k2, B)

are called equal if (h1, h2, A) ⊆ (k1, k2, B) and
(k1, k2, B) ⊆ (h1, h2, A).

Definition 9 (see [39]). ,e relative complement of a
double-framed soft set (h, k, A) is a double-framed soft set
(h, k, A)c � (hc, kc, A), where hc and kc are two maps from A

to 2X defined as follows:

h
c
(a) � X − h(a),

k
c
(a) � X − k(a).

(6)

Proposition 1 (see [39]). 3e operations of soft union and soft
intersection of double-framed soft sets are commutative and
associative.

Proposition 2 (see [39]). We have the following results for
two double-framed soft sets:

(i) [(h, k, A)∪ (p, t, A)]c � (h, k, A)c∩ (p, t, A)c.
(ii) [(h, k, A)∩ (p, t, A)]c � (h, k, A)c∪ (p, t, A)c.

3. Belong and Nonbelong Relations on Double-
Framed Soft Sets

We dedicate this section to establish four types of mem-
berships and four types of nonmemberships between an
ordinary point and double-framed soft set and lay the
foundations of them. We obtain some results that concern
the soft intersection and union operators, the product of
double-framed soft sets and soft mappings.

Definition 10. Let (h, k, A) be a double-framed soft set and
δ ∈ X. We say that

(i) δ⋐w(h, k, A), reading as δ weakly partial belongs to
(h, k, A), if δ ∈ h(a) or δ ∈ k(a′) for some a, a′ ∈ A.

Journal of Mathematics 3
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(ii) δ⋐s(h, k, A), reading as δ strongly partial belongs to
(h, k, A), if δ ∈ h(a) and δ ∈ k(a′) for some
a, a′ ∈ A.

(iii) δ∈w(h, k, A), reading as δ weakly total belongs to
(h, k, A), if δ ∈ h(a) or δ ∈ k(a) for all a ∈ A.

(iv) δ∈s(h, k, A), reading as δ strongly total belongs to
(h, k, A), if δ ∈ h(a) and δ ∈ k(a) for all a ∈ A.

Definition 11. Let (h, k, A) be a double-framed soft set and
δ ∈ X. We say that

(i) δ /⋐w(h, k, A), reading as δ weakly partial belong to
(h, k, A), if δ ∈ h(a) or δ ∈ k(a′) for some a, a′ ∈ A.

(ii) δ /⋐s(h, k, A), reading as δ strongly partial belong to
(h, k, A), if δ ∈ h(a) and δ ∈ k(a′) for some
a, a′ ∈ A.

(iii) δ ∉ w(h, k, A), reading as δ does not weakly total
belong to (h, k, A), if δ ∉ h(a) or δ ∉ k(a) for all
a ∈ A.

(iv) δ ∉ s(h, k, A), reading as δ does not strongly total
belong to (h, k, A), if δ ∉ h(a) and δ ∉ k(a) for all
a ∈ A.

Remark 1. ,e relations of strongly total belong and weakly
partial nonbelong were introduced in [41] (see Definition 4).

Proposition 3. For a double-framed soft set (h, k, A) and
δ ∈ X, we have the following results:

(i) δ⋐w(h, k, A) iff δ /⋐w(hc, kc, A).
(ii) δ⋐s(h, k, A) iff δ /⋐s(hc, kc, A).

(iii) δ∈w(h, k, A) iff δ ∉ w(hc, kc, A).
(iv) δ∈s(h, k, A) iff δ ∉ s(hc, kc, A).

Proof. We will just prove (i) and (iv).

(i) δ⋐w(h, k, A)⇔δ ∈ h(a) or δ ∈ k(a′) for some
a, a′ ∈ A⇔δ ∉ X − h(a) � hc(a) or δ ∉ X − k(a′) �

kc(a′) for some a, a′ ∈ A⇔δ /⋐w(hc, kc, A).
(ii) δ∈s(h, k, A)⇔δ ∈ h(a) and δ ∈ k(a) for all

a ∈ A⇔δ ∉ X − h(a) � hc(a) and δ ∉ X − k(a′) �

kc(a′) for all a ∈ A⇔δ ∉ s(hc, kc, A).

,e following proposition is a direct result of Defi-
nition 10. □

Proposition 4. Let (h, k, A) be a double-framed soft set and
δ ∈ X. @en,

(i) δ∈s(h, k, A)⇒δ∈w(h, k, A)⇒δ⋐w(h, k, A).
(ii) δ∈s(h, k, A)⇒δ⋐s(h, k, A)⇒δ⋐w(h, k, A).
(iii) δ ∉ s(h, k, A)⇒δ ∉ w(h, k, A)⇒δ /⋐w(h, k, A).
(iv) δ ∉ s(h, k, A)⇒δ /⋐s(h, k, A)⇒δ /⋐w(h, k, A).

Example below is given to clarify that the converse of
Proposition 4 fails. Also, it shows that the relations of
strongly partial belong and weakly total belong (the relations
of weakly total nonbelong and strongly partial nonbelong)
are independent of each other.

Example 2. Let A � a1, a2, a3  be a set of parameters and
(h, k, A) double-framed soft set over X � x1, x2, . . . , x10  be
defined as follows:

(h, k, A) � a1, x1 , x2, x4, x10 ( , a2,∅, x4, x10 ( , a3, x2, x3 , x4, x5, x10 (  . (7)

We find the next relations:

(i) x1⋐w(h, k, A), but x1∈w(h, k, A) and x1⋐s(h, k, A)

do not hold.
(ii) x4∈w(h, k, A), but x4∈s(h, k, A) does not hold.
(iii) x2⋐s(h, k, A), but x2∈s(h, k, A) does not hold.
(iv) x2 /⋐s(h, k, A), but x2 ∉ w(h, k, A) and x2 ∉ s(h, k, A)

do not hold.
(v) x4∈w(h, k, A), but x4⋐s(h, k, A) does not hold. Also,

x2⋐s(h, k, A), but x2∈w(h, k, A) does not hold.
(vi) x3 ∉ w(h, k, A), but x2 ∉ s(h, k, A) does not hold.

Remark 2. It is well-known in the Quantum physics the
possibility of existence and nonexistence of an electron in
the same place. ,is matter also occurs here with respect to
weakly partial belong and weakly partial nonbelong rela-
tions; strongly partial belong and strongly partial nonbelong
relations; and weakly total belong and weakly total

nonbelong relations. To illustrate that it can be seen from
Example 2 that

x5⋐w(h, k, A),

x5 /⋐w(h, k, A),

x2⋐s(h, k, A),

x2 /⋐s(h, k, A),

x10∈w(h, k, A),

x10 ∉ w(h, k, A).

(8)

Proposition 5. Let (h, k, A) and (p, t, A) be double-framed
soft sets such that (h, k, A) ⊆ (p, t, A). @en,

(i) If δ⋐w(h, k, A) (resp., δ⋐s(h, k, A), δ∈w(h, k, A),
δ∈s(h, k, A)), then δ⋐w(p, t, A) (resp., δ⋐s(p, t, A),
δ∈w(p, t, A), δ∈s(p, t, A)).
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(ii) If δ /⋐w(p, t, A) (resp., δ /⋐s(p, t, A), δ ∉ w(p, t, A),
δ ∉ s(p, t, A)), then δ /⋐w(h, k, A) (resp., δ /⋐s(h, k, A),
δ ∉ w(h, k, A), δ ∉ s(h, k, A)).

Proof. Straightforward. □

Remark 3. Note that satisfying the two conditions (i) and (ii)
of the above proposition does not imply (h, k, A) ⊆ (p, t, A).
To illustrate this fact, consider Example 2 and let (p, t, A) �

(a1, x2, x4, x10 ,

x1 ), (a2∅, x4, x10 ), (a3, x4, x5, x10  x2, x3 )}. It is clear
that δ⋐w(h, k, A) (resp., δ⋐s(h, k, A), δ∈w(h, k, A),
δ∈s(h, k, A)) if and only if δ⋐w(p, t, A) (resp., δ⋐s(p, t, A),
δ∈w(p, t, A), δ∈s(p, t, A)). However, (h, k, A)/⊆(p, t, A) and
(p, t, A)/⊆(h, k, A).

Proposition 6. For two double-framed soft sets (h, k, A) and
(p, t, A) and δ ∈ X, we have the following results:

(i) δ⋐w(h, k, A) or
δ⋐w(p, t, A)⇔δ⋐w(h, k, A)∪ (p, t, A).

(ii) δ⋐s(h, k, A) or
δ⋐s(p, t, A)⇒δ⋐s(h, k, A)∪ (p, t, A).

(iii) δ∈w(h, k, A) or
δ∈w(p, t, A)⇒δ∈w(h, k, A)∪ (p, t, A).

(iv) δ∈s(h, k, A) or
δ∈s(p, t, A)⇒δ∈s(h, k, A)∪ (p, t, A).

(v) δ⋐w(h, k, A)∩ (p, t, A)⇒δ⋐w(h, k, A) and
δ⋐w(p, t, A).

(vi) δ⋐s(h, k, A)∩ (p, t, A)⇒δ⋐s(h, k, A) and
δ⋐s(p, t, A).

(vii) δ∈w(h, k, A)∩ (p, t, A)⇒δ∈w(h, k, A) and
δ∈w(p, t, A).

(viii) δ∈s(h, k, A)∩ (p, t, A)⇔δ∈s(h, k, A) and
δ∈s(p, t, A).

Proof. Since (h, k, A) and (p, t, A) are subsets of
(h, k, A)∪ (p, t, A), then the necessary parts of (i) to (iv)
hold; and since (h, k, A)∩ (p, t, A) are subsets of (h, k, A)

and (p, t, A), then the necessary parts of (v) to (viii) hold.
To prove the sufficient part of (i), let

δ⋐w(h, k, A)∪ (p, t, A). ,en, δ ∈ h(a)∪p(a) or
δ ∈ k(a′)∪ t(a′) for some a, a′ ∈ A. Say δ ∈ h(a)∪p(a) for
some a ∈ A.,erefore, δ ∈ h(a) or p(a) for some a ∈ A, and
hence, δ⋐w(h, k, A) or δ⋐w(p, t, A).

To prove the sufficient part of (viii), let δ∈s(h, k, A) and
δ∈s(p, t, A). ,en, for all a ∈ A, we have δ ∈ h(a) and
δ ∈ k(a) and δ ∈ p(a) and δ ∈ t(a). ,erefore,
δ ∈ h(a)∩p(a) and δ ∈ k(a)∩ t(a) for all a ∈ A, and hence,
δ∈s(h, k, A)∩ (p, t, A).

Example below is given to clarify that the converse of the
results (ii) to (iv) and (v) to (vii) of Proposition 6 fails. □

Example 3. Let A � a1, a2  be a set of parameters and
(h, k, A), (p, t, A) double-framed soft sets over
X � x1, x2, x3, x4, x5  defined as follows:

(h, k, A) � a1, x1, x3 ,∅( , a2, x3, x4 , x4, x5 (  ,

(p, t, A) � a1, x4 , x3, x4, x5 ( , a2, x2 , x1, x3 (  .

(9)

,en, (h, k, A)∪ (p, t, A) � (a1, x1, x3, x4 , x3, x4,

x5}), (a2, x2, x3, x4 , x1, x3, x4, x5 )} and (h, k, A)∩ (p, t,

A) � Φ.
We note the following:

(i) x1⋐s(h, k, A)∪ (p, t, A), but x1⋐s(h, k, A) or
x1⋐s(p, t, A) does not hold.

(ii) x5∈w(h, k, A)∪ (p, t, A), but x5∈w(h, k, A) or
x5∈w(p, t, A) does not hold.

(iii) x4∈s(h, k, A)∪ (p, t, A), but x4∈s(h, k, A) or
x4∈s(p, t, A) does not hold.

(iv) x4⋐w(h, k, A) and x4⋐w(p, t, A), but
x4⋐w(h, k, A)∩ (p, t, A) does not hold.

(v) x4⋐s(h, k, A) and x4⋐s(p, t, A), but
x4⋐s(h, k, A)∩ (p, t, A) does not hold.

(vi) x3∈w(h, k, A) and x3∈w(p, t, A), but
x3∈w(h, k, A)∩ (p, t, A) does not hold.

Similarly, it can be proved the following result.

Proposition 7. For two double-framed soft sets (h, k, A) and
(p, t, A) over X and δ ∈ X, we have the following results:

(i) δ /⋐w(h, k, A)∪ (p, t, A)⇒δ /⋐w(h, k, A) and
δ /⋐w(p, t, A).

(ii) δ /⋐s(h, k, A)∪ (p, t, A)⇒δ /⋐s(h, k, A) and
δ /⋐s(p, t, A).

(iii) δ ∉ w(h, k, A)∪ (p, t, A)⇒δ ∉ w(h, k, A) and
δ ∉ w(p, t, A).

(iv) δ ∉ s(h, k, A)∪ (p, t, A)⇔δ ∉ s(h, k, A) and
δ ∉ s(p, t, A).

(v) δ /⋐w(h, k, A) or
δ /⋐w(p, t, A)⇒δ /⋐w(h, k, A)∩ (p, t, A).

(vi) δ /⋐s(h, k, A) or
δ /⋐s(p, t, A)⇒δ /⋐s(h, k, A)∩ (p, t, A).

(vii) δ ∉ w(h, k, A) or
δ ∉ w(p, t, A)⇒δ ∉ w(h, k, A)∩ (p, t, A).

(viii) δ ∉ s(h, k, A) or
δ ∉ s(p, t, A)⇒δ ∉ s(h, k, A)∩ (p, t, A).

Definition 12. A double-framed soft set (h, k, A) is said to be
2-stable if h(a) � U⊆X and k(a) � V⊆X for each a ∈ A. If
U � V, then (h, k, A) is said to be 1-stable.

Obviously, a 1-stable double-framed soft set is 2-stable,
but the converse is not always true.

Proposition 8. Let (h, k, A) be a 1-stable double-framed soft
set. @en,
δ⋐w(h, k, A)⇔δ⋐s(h, k, A)⇔δ∈w(h, k, A)⇔δ∈s(h, k, A).

Proof. Since (h, k, A) is a 1-stable double-framed soft set,
there is a subset U of X such that h(a) � k(a) � U for each
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a ∈ A. ,is means that δ ∈ h(a) or δ ∈ k(a) for some a ∈ A

iff δ ∈ h(a) and δ ∈ k(a) for each a ∈ A. Hence, the desired
result is proved. □

Corollary 1. Let (h, k, A) be a 1-stable double-framed soft
set. @en, δ /⋐w(h, k, A)⇔δ /⋐s(h, k, A)⇔δ ∉ w(h, k, A)⇔
δ ∉ s(h, k, A).

Proposition 9. Let (h, k, A) be a 2-stable double-framed soft
set. @en,

(i) δ⋐w(h, k, A)⇔δ∈w(h, k, A).
(ii) δ⋐s(h, k, A)⇔δ∈s(h, k, A).

Proof. Since (h, k, A) is a 2-stable double-framed soft set,
there exist two subsets U, V of X such that h(a) � U and
k(a) � V for each a ∈ A. Now, we have the following two
cases:

Case 1: δ ∈ h(a) or δ ∈ k(a′) for some a, a′ ∈ A if and
only if δ ∈ h(a) or δ ∈ k(a′) for all a, a′ ∈ A.
Case 2: δ ∈ h(a) and δ ∈ k(a′) for some a, a′ ∈ A if and
only if δ ∈ h(a) and δ ∈ k(a′) for all a, a′ ∈ A.

Hence, the desired results are proved. □

Corollary 2. Let (h, k, A) be a 2-stable double-framed soft
set. @en,

(i) δ /⋐w(h, k, A)⇔δ ∉ w(h, k, A).
(ii) δ /⋐s(h, k, A)⇔δ ∉ s(h, k, A).

Definition 14. ,e Cartesian product of two double-framed
soft sets (h, k, A) and (p, t, B), denoted by (h × p, k × t,

A × B), is defined as (h × p)(e, e′) � h(e) × p(e′) and (k ×

t)(e, e′) � k(e) × t(e′) for each (e, e′) ∈ A × B.

Proposition 10.
(i) (δ, ζ)⋐s(h, k, A) × (p, t, B) if and only if δ⋐s(h, k, A)

and ξ⋐s(p, t, B).
(ii) If (δ, ζ)⋐w(h, k, A) × (p, t, B), then δ⋐w(h, k, A) and

ξ⋐w(p, t, B).
(iii) (δ, ζ)∈s(h, k, A) × (p, t, B) if and only if δ∈s(h, k, A)

and ξ∈s(p, t, B).
(iv) If (δ, ζ)∈w(h, k, A) × (p, t, B), then δ∈w(h, k, A) and

ξ∈w(p, t, B).

Proof. (i) (δ, ζ)⋐s(h, k, A) × (p, t, B) � (h × p, k × t, A × B).

⇔(δ, ζ) ∈ (h × p)(a, b) � h(a) × p(b) and
(δ, ζ) ∈ (k × t)(a′, b′) � k(a′) × t(b′) for some
(a, b), (a′, b′) ∈ A × B.
⇔δ ∈ h(a) and ξ ∈ p(b) for some a ∈ A and b ∈ B and
δ ∈ k(a′) and ξ ∈ t(b′) for some a′ ∈ A and b′ ∈ B.
⇔δ ∈ h(a) and δ ∈ k(a′) for some a, a′ ∈ A and
ξ ∈ p(b) and ξ ∈ t(b′) for some b, b′ ∈ B.
⇔δ⋐s(h, k, A) and ξ⋐s(p, t, B).

,e other cases can be achieved similarly.
,e following example explains that the converses of (ii)

and (iv) of the above proposition fail. □

Example 4. Let A � a1, a2  be a set of parameters and
(h, k, A), (p, t, A) double-framed soft sets over
X � x1, x2, x3, x4  defined as follows:

(h, k, A) � a1, x1, x2 ,∅( , a2, x2 , x4 (  ,

(p, t, A) � a1, x1 , x3 ( , a2, x4 , x3 (  .
(10)

,en, (h,k,A) × (p,t,A) � ((a1,a1), (x1,x1),(x2,x1) ,

∅),((a1,a2), (x1,x4),(x2,x4) ,∅), ((a2,a1), (x2,x1) ,

(x4,x3) ),((a2,a2), (x2,x4) , (x4, x3)})}.
We find the following relations:

(i) x1⋐w(h, k, A) and x3⋐w(p, t, B); however,
(x1, x3)⋐w(h, k, A) × (p, t, B) does not hold true.

(ii) x2∈w(h, k, A) and x3∈w(p, t, B); however,
(x2, x3)∈w(h, k, A) × (p, t, B) does not hold true.

Definition 15. A soft mapping πφ from C(XA) into C(YB)

is a pair (π,φ) of crisp mappings such that π: X⟶ Y

and φ: A⟶ B and is defined as follows: the image
of a double-framed soft set (f1, f2, M) in C(XA) is a
double-framed soft set πφ(f1, f2, U) � (πf1

, πf2
, E) in

C(YB) such that E � φ(β)⊆B and πf1
and πf2

are two maps
defined as

πfi
(e) � π ∪

ε∈φ− 1(e)∩ β
fi(ε) , (11)

for each e ∈ E and i � 1, 2.

Definition 16. A soft map πφ: C(XA)⟶ C(YB) is said to
be injective (resp., surjective and bijective) if π and φ are
injective (resp., surjective and bijective).

Definition 17. Let πφ: C(XA)⟶ C(YB) be a soft mapping.
,en, the preimage of a double-framed soft set (g1, g2, N) in
C(YB) is a double-framed soft set π−1

φ (g1, g2, N) �

(π−1
g1

, π−1
g2

, D) in C(XA) such that D � φ− 1(N)⊆A and π−1
g1

and π−1
g2

are two maps defined as

π−1
gi

(d) � π− 1
giφ(d)( , (12)

for each d ∈ D and i � 1, 2.

Proposition 11. Let πφ: C(XA)⟶ C(YB) be a soft map-
ping, and let (f1, f2, β) and (h1, h2, β′) be two double-framed
soft sets in C(XA). @en,

(i) πφ( ΦA, ΦA) ⊆ (ΦB, ΦB). @e equality holds if φ is
surjective.

(ii) πφ( XA, XA) ⊆ (YB, YB). @e equality holds if π and φ
are surjective.

(iii) If (f1, f2, β) ⊆ (h1, h2, β′), then
πφ(f1, f2, β) ⊆ πφ(h1, h2, β′).
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(iv) πφ[(f1, f2,

β)∪ (h1, h2, β′)] � πφ(f1, f2, β)∪ πφ(h1, h2, β′).
(v) πφ[(f1, f2, β)∩ (h1,

h2, β′)] ⊆ πφ(f1, f2, β)∩ πφ(h1, h2, β′).

@e equality holds if π and φ are injective.

Proof. To prove (i), let πφ( ΦA, ΦA) � πφ(u, u, A) � (v, v, E),
where u(a) � ∅ for each a ∈ A and E � φ(A). ,en, v(e) �

π(∪ ε∈φ−1(e)u(ε)) � π(∅) � ∅ for each e ∈ E. ,erefore,
(v, v, E) � (ΦE, ΦE). Since E⊆B, then
πφ( ΦA, ΦA) � (ΦE, ΦE) ⊆ (ΦB, ΦB).

If φ is surjective, then E � φ(A) � B. Hence,
πφ( ΦA, ΦA) � (ΦE, ΦE) � (ΦB, ΦB).

To prove (ii), let πφ( XA, XA) � πφ(u, u, A) � (u, u, E),
where u(a) � X for each a ∈ A and E � φ(A). ,en, v(e) �

π(∪ ε∈φ−1(e)u(ε)) � π(X)⊆Y for each e ∈ E. ,erefore,
(v, v, E) ⊆ (YB, YB).

If φ and π are surjective, then E � φ(A) � B and
π(X) � Y. Hence, πφ( XA, XA) � (YB, YB).

One can prove (iii) easily.
To prove (iv), first, let πφ[(f1, f2, β)∪ (h1,

h2, β′)] � πφ(u1, u2, β∪ β′) � (v1, v2, E), where
E � φ(β∪ β′). Now, for each e ∈ E, we have
vi(e) � π(∪ ε∈φ−1(e)∩Eui(ε)). Since

ui(ε) �

fi(ε), : ε ∈ β − β′,

hi(ε), : ε ∈ β′ − β,

fi(ε)∪ hi(ε), : ε ∈ β∩ β′,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

then

π ∪
ε∈φ− 1(e)∩E

ui(ε)  � π ∪

fi(ε) : ε ∈ β − β′( ∩φ− 1
(e)

hi(ε) : ε ∈ β′ − β( ∩φ− 1
(e)

fi(ε)∪ hi(ε) : ε ∈ β∩ β′( ∩φ− 1
(e)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(14)

Second, let πφ(f1, f2, β)∪ πφ(h1, h2, β′) � (w1, w2, N),
where N � φ(β)∪φ(β′). Now, for each n ∈ N, we have

wi(n) � π ∪
ε∈φ− 1(n)∩N

fi(ε) ∪ π ∪
ε∈φ− 1(n)∩N

hi(ε) 

� π ∪
ε∈φ− 1(n)∩N

fi(ε)∪ ∪
ε∈φ− 1(n) ∩N

hi(ε) 

� π ∪

fi(ε) : ε ∈ β − β′( ∩φ− 1
(n)

hi(ε) : ε ∈ β′ − β( ∩φ− 1
(n)

fi(ε)∪ hi(ε) : ε ∈ β∩ β′( ∩φ− 1
(n)

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(15)

Since φ(β∪ β′) � φ(β)∪φ(β′), then E � N. ,us,
vi(e) � wi(e) for each e ∈ E � N. Hence, we obtain the
desired result.

One can prove (v) similarly.
By using a similar technique, one can prove the following

result. □

Proposition 12. Let πφ: C(XA)⟶ C(YB) be a soft map-
ping and let (g1, g2, N) and (l1, l2, N′) be two double-framed
soft sets in C(YB). @en, we have the following results:

(i) π−1
φ (ΦB, ΦB) � ( ΦA, ΦA).

(ii) π−1
φ (YB, YB) � ( XA, XA).

(iii) If (g1, g2, N) ⊆ (l1, l2, N′), then π−1
φ (g1, g2, N) ⊆ π−1

φ
(l1, l2, N′).

(iv) π−1
φ [(g1, g2, N)∪ (l1, l2,

N′)] � π−1
φ (g1, g2, N)∪ π−1

φ (l1, l2, N′).
(v) π−1

φ [(g1, g2, N)∩ (l1,

l2, N′)] � π−1
φ (g1, g2, N)∩ π−1

φ (l1, l2, N′).

Proposition 13. Let πφ: C(XA)⟶ C(YB) be a soft map-
ping, and let (h, k, M) be a double-framed soft set in C(XA).
@en, we have the following results:

(i) If δ⋐w(h, k, M), then π(δ)⋐wπφ(h, k, M).
(ii) If δ⋐s(h, k, M), then π(δ)⋐sπφ(h, k, M).
(iii) If δ∈w(h, k, M), then π(δ)∈wπφ(h, k, M).
(iv) If δ∈s(h, k, M), then π(δ)∈sπφ(h, k, M).
(v) If δ /⋐w(h, k, M) and φ is injective, then

π(δ) /⋐wπφ(h, k, M).
(vi) If δ /⋐s(h, k, M) and φ is injective, then

π(δ) /⋐sπφ(h, k, M).
(vii) If δ ∉ w(h, k, M), then π(δ) ∉ wπφ(h, k, M).
(viii) If δ ∉ s(h, k, M), then π(δ) ∉ sπφ(h, k, M).

Proof. We only prove (i), (ii), (v), and (viii). ,e other cases
can be made similarly.

To prove (i), let δ⋐w(h, k, M), then there exist param-
eters a, a′ ∈M⊆A such that δ ∈ h(a) or δ ∈ k(a′). Without
loss of generality, consider δ ∈ h(a). Now, there is a pa-
rameter b ∈ φ(M)⊆B such that a ∈ φ− 1(b). Obviously,
a ∈ φ− 1(b)∩M, so that it follows from Definition 15 that
π(δ) ∈ πh(b) � π(∪ ε∈φ−1(b) ∩Mh(ε)). ,erefore,
π(δ)⋐w(πh, πk,φ(M)) � πφ(h, k, M), as required.

To prove (ii), let δ⋐s(h, k, M). ,en, there exist pa-
rameters a, a′ ∈M⊆A such that δ ∈ h(a) and δ ∈ k(a′).
Without loss of generality, suppose that there exist two
distinct parameters b, b′ ∈ φ(M)⊆B such that a ∈ φ− 1(b)

and a′ ∈ φ− 1(b′). Obviously, a ∈ φ− 1(b)∩M and
a′ ∈ φ− 1(b′)∩M so that it follows from Definition 15 that
π(δ) ∈ πh(b) � π(∪ ε∈φ−1(b) ∩Mh(ε)) and
π(δ) ∈ πk(b′) � π(∪ ε∈φ−1(b′)∩Mk(ε)). ,erefore,
π(δ)⋐s(πh, πk,φ(M)) � πφ(h, k, M), as required.

To prove (v), let δ /⋐w(h, k, M). ,en, there exist pa-
rameters a, a′ ∈M⊆A such that δ ∉ h(a) or δ ∉ k(a′). Say
δ ∉ h(a). ,en, there is a parameter b ∈ φ(M)⊆B such that
a ∈ φ− 1(b). Since φ is injective, then a � φ− 1(b). ,is means
that a{ } � φ− 1(b)∩M. ,erefore,
π(δ) ∉ πh(b) � π(∪ ε∈φ−1(b) ∩Mh(ε)) � π(h(a)). ,erefore,
π(δ) /⋐w(πh, πk,φ(M)) � πφ(h, k, M), as required.

To prove (viii), let δ ∉ s(h, k, M). ,en, δ ∉ h(a) and
δ ∉ k(a) for all a ∈M⊆A. ,erefore, for each parameter
b ∈ φ(M)⊆B, there is a ∈M such that a ∈ φ− 1(b). ,us, for
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each b ∈ φ(M), we obtain π(δ) ∉ πh(b) �

π(∪ ε∈φ−1(b) ∩Mh(ε)) � π(h(a)) and π(δ) ∉ πk(b) �

π(∪ ε∈φ−1(b) ∩Mk(ε)) � π(h(a)). Hence, π(δ) ∉ s

(πh, πk,φ(M)) � πφ(h, k, M), as required. □

Proposition 14. Let πφ: C(XA)⟶ C(YB) be a soft map-
ping and let (p, t, N) be a double-framed soft set in C(YB). If
φ is surjective, then we have the following results:

(i) If ξ⋐w(p, t, N), then δ⋐wπ−1
φ (p, t, N) for each

δ ∈ π− 1(ξ).
(ii) If ξ⋐s(p, t, N), then δ⋐sπ−1

φ (p, t, N) for each
δ ∈ π− 1(ξ).

(iii) If ξ∈w(p, t, N), then δ∈wπ−1
φ (p, t, N) for each

δ ∈ π− 1(ξ).
(iv) If ξ∈s(p, t, N), then δ∈sπ−1

φ (p, t, N) for each
δ ∈ π− 1(ξ).

(v) If ξ /⋐w(p, t, N) such that π is injective, then
π− 1(ξ) /⋐wπ−1

φ (p, t, N).
(vi) If ξ /⋐s(p, t, N) such that π is injective, then

π− 1(ξ) /⋐sπ−1
φ (p, t, N).

(vii) If ξ ∉ w(p, t, N) such that π is injective, then
π− 1(ξ) ∉ wπ−1

φ (p, t, N).
(viii) If ξ ∉ s(p, t, N) such that π is injective, then

π− 1(ξ) ∉ sπ−1
φ (p, t, N).

Proof. We only prove (i), (ii), (v), and (viii). ,e other cases
can be made similarly.

To prove (i), let ξ⋐w(p, t, N). ,en, there exist param-
eters b, b′ ∈ N⊆B such that ξ ∈ p(b) or ξ ∈ t(b′). Without
loss of generality, consider ξ ∈ p(b). Since φ is surjective,
then there is a parameter a ∈ φ− 1(N)⊆A such that φ(a) � b.
It follows from Definition 17 that
π−1

h (a) � π− 1(pφ(a)) � π− 1(p(b)). Now, for each
δ ∈ π− 1(ξ), we obtain δ⋐w(π−1

p , π−1
t ,φ− 1(N)) � π−1

φ (p, t, N),
as required.

To prove (ii), let ξ⋐s(p, t, N). ,en, there exist param-
eters b, b′ ∈ N⊆B such that ξ ∈ p(b) and ξ ∈ t(b′). Since φ is
surjective, then there are two parameters a, a′ ∈ φ− 1(N)⊆A
such that φ(a) � b and φ(a′) � b′. It follows fromDefinition
17 that π−1

h (a) � π− 1(pφ(a)) � π− 1(p(b)) and
π−1

l (a′) � π− 1(tφ(a′)) � π− 1(t(b′)). Now, for each
δ ∈ π− 1(ξ), we obtain δ⋐s(π−1

p , π−1
t ,φ− 1(N)) � π−1

φ (p, t, N),
as required.

To prove (v), let ξ /⋐w(p, t, N). ,en, there exist pa-
rameters b, b′ ∈ N⊆B such that ξ ∉ p(b) or ξ ∉ t(b′). Say
ξ ∉ p(b). Since φ is surjective, then there exists a parameter
a ∈ φ− 1(N)⊆A such that φ(a) � b. It follows from Defini-
tion 17 that π−1

h (a) � π− 1(pφ(a)) � π− 1(p(b)). Since π is
injective, then π− 1(ξ) /⋐s(π−1

p , π−1
t ,φ− 1(N)) � π−1

φ (p, t, N),
as required.

To prove (viii), let ξ ∉ s(p, t, N). ,en, ξ ∉ p(b) and
ξ ∉ t(b) for all b ∈ N⊆B. Since φ is surjective, then there
exists a parameter a ∈ φ− 1(N)⊆A such that φ(a) � b. It
follows from Definition 17 that π−1

h (a) � π− 1 (pφ(a)) �

π− 1(p(b)) and π−1
l (a) � π− 1(tφ(a)) � π− 1(t(b)). Since π is

injective, then π− 1(ξ) /⋐s(π−1
p , π−1

t ,φ− 1(N)) � π−1
φ (p, t, N),

as required. □

Proposition 15. Let πφ: C(XA)⟶ C(YB) be a soft map-
ping and let (h, k, M) and (p, t, N) be two double-framed soft
sets in C(XA) and C(YB), respectively. @en, the following
holds:

(i) If π is bijective, then πφ((h, k, M)c) � [πφ(h, k, M)]c.
(ii) π−1

φ ((p, t, N)c) � [π−1
φ (p, t, N)]c.

Proof. We only prove (i).
It is clear that πφ((h, k, M)c) � πφ(hc, kc, M), where

πhc (e) � π(∪ ε∈φ−1(e)∩Mhc(ε)) and
πkc (e) � π(∪ ε∈φ−1(e)∩Mkc(ε)) for each e ∈ φ(M). Since π is
bijective, then πhc (e) � π(∪ ε∈φ−1(e)∩Mhc(ε)) �

(π(∪ ε∈φ−1(e)∩Mh(ε)))c and πkc (e) � π(∪ ε∈φ−1(e)∩Mkc(ε)) �

(π(∪ ε∈φ−1(e)∩Mk(ε)))c □

4. Application of Double-Framed Soft Sets

In this section, we present an application of optimal choices
using the idea of double-framed soft sets. ,e idea of this
application is based on the evaluation of rank of the ap-
plicants in the different disciplines under study, not on the
total summation of marks obtained by the applicant. ,e
philosophy of this method is based on comprehensive
evaluation, in other words, confirming the ability of ap-
plicants of satisfying high levels for all testing criteria.

Now, we provide an example to demonstrate: how we
make optimal choices? ,en, we construct an algorithm of
this method.

Example 5. Ministry of education advertises of five schol-
arships supported from the government for the students
who finished secondary stage. ,e trade-off between ap-
plicants is based on the examinations of two subjects: maths
and physics.

Twenty students S � si: i � 1, 2, . . . , 20  applied to
compete with each other to gain one of these scholarships.
,ey carried out the examination of the two subjects. ,en,
we input subjects’ marks of all students in Table 1.

Now, we determine the ranks of the students for each
subject. In fact, this step will depend on the content of the
application or the desire of those in charge of work. Re-
garding our example, we put a set A � ai: i � 1, 2, . . . , 10 

expressing ten levels of ranks:

a1 stands for the students with the first rank.
a2 stands for the students with the second rank.
⋮
an stands for the students with the n-th rank.

From Table 1, we complete Table 2 by constructing a
double-framed soft set (fMaths, fPhysics, A) over S, where the
maps fMaths and fPhysics from A into the power set of S are
given by fMaths(ai) � the set of students who rank are ai in
maths subject and fPhysics(ai) � the set of students who rank
are ai in physics subject.
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Finally, we give each rank a standard score. Regarding
our example, we consider the following standard score of
each rank ai:

Rank a1 takes 10 standard scores of each subject.
Rank a2 takes 9 standard scores of each subject.
⋮
Rank a10 takes 1 standard score of each subject.

Any rank am such that m> 10 takes standard zero score
of each subject.

For each map fj of a double-framed soft set
(fMaths, fPhysics, A) and each student si ∈ S, we calculate the
value of each pair (si, fj) of Table 3 by the following rule:

si, fj  �
the standard score am, si ∈ fj am( ,

0, si /⋐ fj, A .

⎧⎪⎨

⎪⎩
(16)

We sum the standard scores of all subjects for each
student and then decide the student’s rank depending on the
summation of his/her standard scores.

Table 3 illustrates this step.

One can note from the above table that we can decide
four wining students: s5 is the first, s3 and s16 are the second,
and s15 is the third. However, the last wining student is
chosen from the set s9, s17 . ,e method of choosing them
can be done by ways such as interview, total marks, or
random lottery.

In the following, we present an algorithm of determining
the wining students.

On the contrary, if the subjects fj are not of equal
significance, that is, Ministry of education imposes weights
on the subjects, i.e., corresponding to each subject fj, there
is a weight wi ∈ 0, 1.

Table 1: Subjects’ marks of twenty students.

Subjects
Student Maths Physics
s1 35 31
s2 28 25
s3 42 48
s4 22 19
s5 49 47
s6 33 36
s7 18 23
s8 34 34
s9 50 37
s10 21 25
s11 20 18
s12 27 32
s13 11 17
s14 30 25
s15 49 40
s16 50 41
s17 36 44
s18 14 16
s19 16 25
s20 46 38

Table 2: Maps of subjects.

Maps
A fMaths fPhysics

a1 s9, s16  s3 

a2 s5, s15  s5 

a3 s1  s20, s17 

a4 s3  s16 

a5 s17  s15 

a6 s20  s19 

a7 s8  s9 

a8 s6  s6 

a9 s14  s8 

a10 s2  s12 

Table 3: Students’ rank.

fj

Student fMaths fPhysics Total Rank

s1 5 0 5 7th

s2 1 0 1 9th

s3 7 10 17 2nd

s4 0 0 0 10th

s5 9 9 18 1st

s6 3 3 6 6th

s7 0 5 5 7th

s8 4 2 6 6th

s9 10 4 14 4th

s10 0 0 0 10th

s11 0 0 0 10th

s12 0 1 1 8th

s13 0 0 0 13th

s14 2 0 2 8th

s15 9 6 15 3rd

s16 10 7 17 2nd

s17 6 8 14 4th

s18 0 0 0 10th

s19 0 5 5 7th

s20 5 8 13 5th
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In this case, we modify the previous algorithm to be
convenient for weighted selection.

With respect to our example (Algorithm 2), suppose that
the weights 30% and 70% are, respectively, corresponding to
maths and physics subjects. ,en, we update Table 3 to be as
follows.

Now, one can note from the above table that the five
wining students are as follows: s3 is the first, s5 is the second,
s16 is the third, s17 is the fourth, and s20 is the fifth.

5. Conclusions

In this article, we have initiated four types of belong relations
and four types of nonbelong relations between an ordinary
point and double-framed soft sets. ,ese relations are pri-
mary indicator of the degree of membership and non-
membership of an element. ,en, we have defined soft
mappings between two classes of double-framed soft sets
and determine the conditions under which an ordinary
point and its image and preimage are preserved with respect
to the different types of belong and nonbelong relations. In
the end, we have exploited the idea of double-framed soft
sets to investigate an educational application of choosing the
best students in terms of their performance rank in all testing
criteria. An algorithm of the application was explained with
the aid of an illustrative example.

We draw attention to that the different types of belong
and nonbelong relations classify the relationships between
elements and double-framed soft sets into eight levels as well
as classify the stability into two levels. One of the unique
properties of these relations is the possibility of belonging
and nonbelonging of the element to the same double-framed
soft sets with respect to weakly partial belong and weakly
partial nonbelong relations, strongly partial belong and
strongly partial nonbelong relations, and weakly total belong
and weakly total nonbelong relations. ,is matter leads to
new relations between belonging and nonbelonging of the
ordinary points and the soft intersection and union of
double-framed soft sets.

As future works, we shall apply the relations presented in
this work to formulate several types of soft separation ax-
ioms and compact spaces on double-framed soft topological
spaces. To simplify and clarify this idea, we define four types

Step 1. Repeat Step 1–Step 5 of Algorithm 1.
Step 2. Find a weighted table of the subjects fj according to the weights decided by the organizer of the competition, and the weights
are denoted by wi: i � 1, 2, . . . , m.
Step 3. Multiple each standard score with its corresponding weight (see Table 4).
Step 4. Sum the weight standard scores of all subjects for each student.
Step 5. Order the column of the total standard scores in descending order.
Step 6. Choose the first students according to the permissible range, if there are more than one student in the last chosen rank, then
you can compare between them by interview, or total marks, or random lottery.

ALGORITHM 2: Algorithm of determining the winning students in the case of different significance.

Table 4: Students’ weight rank.

fj, wi

S fMaths, W1 � 30% HPhysics, W2 � 70% Total Rank

s1 1.5 0 1.5 11th

s2 0.3 0 0.3 15th

s3 2.1 7 9.1 1st

s4 0 0 0 16th

s5 2.7 6.3 9 2nd

s6 0.9 2.1 3 9th

s7 0 3.5 3.5 8th

s8 1.2 1.4 2.6 10th

s9 3 2.8 5.8 7th

s10 0 0 0 16th

s11 0 0 2.6 10th

s12 0 0.7 0.7 12th

s13 0 0 0 16th

s14 0.6 0 0.6 13th
s15 2.7 4.2 6.9 6th

s16 3 4.9 7.9 3rd

s17 1.8 5.6 7.4 4th

s18 0 0 0.4 14th

s19 0 0 3.5 8th

s20 1.5 5.6 7.1 5th

Step 1. Examine the applicants in the specified subjects.
Step 2. Input the marks of each applicant in the specified subjects (see Table 1).
Step 3. Determine the range of rank ai: i � 1, 2, . . . , n

Step 4. Classify the students according to the proposed range rank of each subject (see Table 2).
Step 5. Give each rank a standard score.
Step 6. Sum the standard scores of all subjects for each student (see Table 3).
Step 7. Order the column of the total standard scores in descending order.
Step 8. Choose the first students according to the permissible range, if there are more than one student in the last chosen rank, then
you can compare between them by interview, or total marks, or random lottery.

ALGORITHM 1: Algorithm of determining the winning students in the case of equal significance.
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of covers of a double-framed soft topological space using
weakly partial belong, strongly partial belong, weakly total
belong, and strongly total belong relations. In addition, we
try to model some natural phenomena using the idea of N-
framed soft set. It is worthy to note that one can extend this
work by studying the belong and nonbelong relations in-
troduced herein with respect to N-framed soft sets, where
N � 3, 4, . . ..
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In this manuscript, the theory of constant picture fuzzy graphs (CPFG) is developed. A CPFG is a generalization of constant
intuitionistic fuzzy graph (CIFG) and a special case of picture fuzzy graph (PFG). Additionally, the article includes some basic
definitions of CPFG such as totally constant picture fuzzy graphs (TCPFGs), constant function, bridge of CPFG, and their related
results. Also, an application of CPFG inWi-Fi network system is discussed. Finally, a comparison of CPFG is established with that
of the CIFG which exhibits the superiority of the proposed idea over the existing ones is discussed.

1. Introduction

Wi-Fi systems and the analysis of their signals have been
under discussion during the last decades [1, 2]. To provide
signals effectively, potential research has been carried out in
[3, 4]. A Wi-Fi device within the range can either be con-
nected, disconnected, or fluctuate between the state of
connected and disconnected or it could be out of range. Such
uncertain situations can be dealt by the idea of PFG which
proves to be helpful in such cases.

Zadeh [5] proposed the theory of fuzzy sets (FSs) that is
very popular tool and is considered the superior tool till now.
Kaufman defined fuzzy graph (FG) in [6]. A detailed study is
contributed by Rosenfeld in his article [7]. Since then theory
of FGs has been extensively applied to many fields such as
clustering [8–10], networking [11, 12] and communication
problems [13–15].

Atanassov [16] proposed intuitionistic fuzzy set (IFS) as
a generalization of fuzzy set (FS). &e concept of intui-
tionistic fuzzy relations has also been discussed in [16]
providing fundamentals of the theory of IFGs. Parvathi and
Karunambigai [17] defined IFGs as generalization of FGs
and discussed various graph theoretic concepts. For detailed
work in the course of IFGs, one may refer to [18–26]. &e

structure of IFGs is diverse than that of FGs and it is applied
to many problems such as radio coverage networking [22],
decision making and shortest path problems [20, 27–31],
and social networks [32].

In Wi-Fi networks, we usually face more situations that
we could not handle by FGs and IFGs. &erefore, in this
article, the idea of PFG and consequently CPFG is intro-
duced as a generalization of constant IFGs. &e properties
and results of CPFG are discussed and illustrated with ex-
amples. In addition, a Wi-Fi network problem is modeled
using CPFGs.

&e article starts with introduction followed by the
section that discusses some basic ideas. &e third section is
based on concepts of PFGs while section four is based on
CPFGs and its related theory. In section five, an application
is discussed thoroughly with some numerical explanations.
Finally, the concluding statements are added to the
manuscript.

2. Preliminaries

&is section discusses some basic ideas of graph theory
including the ideas of FGs and IFGs. &ese concepts of FGs
and IFGs are illustrated with the help of examples.

Hindawi
Journal of Mathematics
Volume 2021, Article ID 9931792, 8 pages
https://doi.org/10.1155/2021/9931792

mailto:agumaei.c@ksu.edu.sa
https://orcid.org/0000-0001-8512-9687
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9931792


RE
TR
AC
TE
D

Definition 1 (see [7]). An FG is a pair G
⌣

� (V, Ě) such that

(I) V is the set of vertices and Τ1maps on [0, 1] are the
association degree of vi ∈ V.

(II) Ě � (vi, vj): (vi, vj) ∈ V × V} andT2: V × V⟶
[0, 1],
where T2(vi, vj)≤min T1(vi), T1(vj)  for all
(vi, vj) ∈ Ě.

Example 1. An FG G
⌣

� (V, Ě) with the collection of vertices
V and the collection of edges Ě is depicted in Figure 1.

Definition 2 (see [17]). An IFG is a pair G
⌣

� (V, Ě) such that

(i) V is the set of vertices such that T1 and F1 maps on
the closed interval [0, 1] represent the grads of
membership and nonmembership of the vertex el-
ements vi ∈ V, respectively, with a condition 0≤T1 +

F1 ≤ 1 for all vi ∈ V, (i ∈ I).
(ii) Ě⊆V × Vwhere T2, F2: V × V⟶ [0, 1] represent

the grads of membership and nonmembership of the
edge elements (vi, vj) ∈ Ě such that T2(vi, vj )≤
min T1(vi), T1(vj)  and F2(vi, vj)≤ max F1(vi),

F1(vj)} with a condition 0≤ T2(vi, vj)+ F2(vi,

vj)≤ 1 for all (vi, vj) ∈ Ě, (i ∈ I).

Example 2. Consider an IFG G
⌣

� (V, Ě) depicted in
Figure 2.

3. Picture Fuzzy Graphs

&is section is based on some very basic concepts related to
PFGs including its definition, and some of its associated
terms such as degree of PFGs and completeness of PFGs are
discussed.

Definition 3. A PFG is a pair G
⌣

� (V, Ě) such that

(i) V is the collection of vertices such that
T1, Ґ1, F1: V⟶ [0, 1] represent the grads of
membership, abstinence, and nonmembership of the
vertex elements vi ∈ V, respectively, so long as
0≤T1 + Ґ1 + F1 ≤ 1 for all vi ∈ V, (i ∈ I).

(ii) Ě⊆V × Vwhere T2, Ґ2, F2: V × V⟶ [0, 1] repre-
sent the grads of membership, abstinence, and
nonmembership of the edge elements (vi, vj) ∈ Ě
such that T2(vi, vj )≤min T1(vi), T1(vj) , Ґ2(vi,

vj )≤min Ґ1(vi), Ґ1(vj) , and F2(vi, vj)≤ max F1

(vi), F1(vj)} as long as 0≤ T2(vi, vj) + Ґ2(vi, vj) ∈ +

F2(vi, vj)≤ 1 for all (vi, vj) ∈ Ě, (i ∈ I).

Moreover, 1 − (T1i + Ґ1i + F1i) represent refusal degree.

Example 3. A PFG G
⌣

� (V, Ě) is depicted in Figure 3.

Definition 4. Let G
⌣

� (V, Ě) be PFG.&en, the degree of any
vertex v is defined by d(v) � (dT(v), dҐ(v), dD(v)), where

dT(v) � u≠vT2(v, u), dҐ(v) � u≠vҐ2(v, u) , and
dF(v) � u≠vF2(v, u).

Example 4. A PFG G
⌣

� (V, Ě) depicted in Figure 4 is cal-
culated as follows.

Degree of vertices is

d v1(  � (0.3, 0.3, 0.8),

d v2(  � (0.2, 0.3, 0.8),

d v3(  � (0.0, 0.3, 0.8),

d v4(  � (0.1, 0.3, 0.8).

(1)

Definition 5. &e complement G
⌣′ of PFGG

⌣
� (V, Ě) is as

follows:

(1) T1(vi)′ � T1(vi), Ґ1(vi)′ � Ґ1(vi), F1(vi)′ � F1(vi),

∀vi ∈ V.
(2) T2(vi, vj)′ � min[T1(vi), T1(vj)] − T2(vi, vj), Ґ2

(vi, vj)′ � min[Ґ1(vi), Ґ1(vj)] − Ґ2(vi, vj)

and F2(vi, vj)′ � max[F2(vi), F2(vj)]− F2(vi, vj)∀vi,

vj ∈ Έ.

�v1 �v2

�v4 �v3

(0.3)

(0.3)

(0.3)

(0.2)

(0.1)

(0.5)

(0.6)

(0.4)

Figure 1: (FG).

v4 = (0.2, 0.5)�

v5 = (0.4, 0.5)�

v1 = (0.1, 0.1)�

v3 = (0.0, 0.1)�

v2 = (0.2, 0.5)�

(0.0, 0.5)

(0.1, 0.5)

(0.0, 0.4)

(0.1, 0.4)
(0

.1
, 0

.4
)

(0
.1

, 0
.3

)

Figure 2: (IFG).
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Remark 1. According to definition of a compliment, for a
PFG, G

⌣
� (V, Ě), the graph G

⌣″ � (V″, Ě″) � G
⌣
.

Proposition 1. G
⌣

� G
⌣″⇔G

⌣
is a strong PFG.

Proof. According to the definition of G
⌣′, the result and the

proof are straight forward. □

Example 5. Figures 5 and 6 provide a verification of
Proposition 1.

Definition 6. A PFG G
⌣
is called a self-complementary graph

if G
⌣

� G
⌣″.

Definition 7. A PFG is said to be a complete PFG if
T2(vi, vj ) � min T1(vi), T1(vj) ,
Ґ2(vi, vj ) � min Ґ1(vi), Ґ1(vj) , and
F2(vi, vj) � max F1(vi), F1(vj) .

Example 6. A complete PFG is depicted in Figure 7.

Definition 8. For any pair of different vertices (vi, vj) in a
PFG, G

⌣
� (V, Ě), if deleting the edge (vi, vj) lessens the

strength between that pair of vertices, then this edge is called
the bridge in graph G

⌣
.

Example 7. A PFG G
⌣

� (V, Ě) is depicted in Figure 8 and
explained as follows.

In Figure 8, the strength of v1v4 is (0.1, 0.3, 0.4). Since
the removal of (v1, v4) from G lessens the strength between
the vertices v1 and v4 in G, therefore, (v1, v4) is a bridge.

Definition 9. For a PFG G, If we remove a vertex vi in G
⌣

which decreases the strength of connectedness among some
pairs of vertices, then it is called cut vertex of G

⌣
.

4. Constant Picture Fuzzy Graph

Definition 10. A PFG G
⌣

� (vi, T1i, Ґ1i, F1i), (èij, T2ij,

Ґ2ij, F2ij)} is known as CPFG of degree (ki, kj, kk) or
(ki, kj, kk) − PFG. If

dT vi(  � ki,

dҐ vj  � kj,

df vk(  � kk ∀ vi,

vj, vk ∈ V. (2)

Example 8. A G
⌣

� (V, Ě). &en, the CPFG is depicted in
Figure 9.

Example 9. A complete PFG needs not be a CPFG depicted
in Figure 10 and explained as follows.

Figure 8 clearly shows that it is a complete PFG but not
constant.

Definition 11. &e total degree (τ1, τ2, τ3) of a vertex v ∈ V

in PFG G is defined as

v4 = (0.2, 0.3, 0.5)�

v1 = (0.1, 0.3, 0.1)�

(0.0, 0.2, 0.5)

v3 = (0.0, 0.2, 0.1)�

v2 = (0.2, 0.1, 0.5)�

(0.0, 0.1, 0.5)

(0.2, 0.1, 0.5)

(0.1, 0.0, 0.4)

(0.1, 0.2, 0.4) (0.0, 0.2, 0.1)

Figure 3: (PFG).

v4 = (0.2, 0.3, 0.5)�

v1 = (0.2, 0.1, 0.5)�

(0.0, 0.2, 0.4)

v3 = (0.0, 0.2, 0.1)�

v2 = (0.4, 0.3, 0.1)�(0.2, 0.1, 0.4)

(0.0, 0.1, 0.4)

(0.1, 0.2, 0.4)

Figure 4: (PFG).

(0.2, 0.3, 0.5)

(0.0, 0.0, 0.3)

(0.0, 0.2, 0.1)

(0.2, 0.0, 0.4)
(0.1, 0.0, 0.4)

(0.0, 0.1, 0.4)

(0.0, 0.3, 0.4)

�v2

(0.1, 0.3, 0.1)
�v1

�v3�v4

Figure 5: (PFG).

(0.1, 0.3, 0.1)

(0.2, 0.3, 0.5) (0.0, 0.1, 0.1) (0.0, 0.2, 0.1)

(0.2, 0.0, 0.4)

(0
.1

, 0
.0

, 0
.1

)

(0
.0

, 0
.0

, 0
.1

)

�v2�v1

�v3
�v4

Figure 6: (Complement of Figure 5).
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td(v) � 

v∈Ě

dT2
(v) + T1(v), 

v∈Ě

dҐ2(v) + Ґ1(v), 

v∈Ě

dF2
(v) + F1(v)⎡⎢⎢⎣ ⎤⎥⎥⎦.

(3)

If total degree of each vertex of G
⌣
is same, then G

⌣
is called

PFG of total degree (τ1, τ2, τ3) or (τ1, τ2, τ3)-TCP.

Example 10. Consider a TCPFG depicted in Figure 11.

Theorem 1. (T1, Ґ1, F1) is a constant function (CF) in a
PFGG

⌣
iff the following are equivalent:

(i) G
⌣
is a constant PFG.

(ii) G
⌣
is totally PFG.

Proof. (i)⟹(ii) Consider (T1, Ґ1, F1) is a constant func-
tion. Suppose T1(vi) � c1, Ґ1(vi) � c2 and F1(vi) � c3 ∀ vi

∈ Vwhere c1, c2, and c3 are constants. LetG
⌣
be a constantPFG.

&en, dF(vi) � v1, dҐ(vi) � v2 and dF(vi) � k3 ∀ vi ∈ V. So,
tdT(vi) � dF(vi) + T1(vi), tdҐ(vi) � dҐ(vi) + Ґ1(vi) and dF

(vi) � dF(vi) + F1(vi) ∀ vi ∈ V, tdT(vi) � k1 + c1, tdҐ(vi)

� k2 + c2, tdF(vi) � k3 + c3 ∀ vi ∈ V. Hence, (ii) is proved.
(ii)⇒(i) Assume that G

⌣
is a (τ1, τ2, τ3)-TCPFG. &en,

tdT(vi) � τ1, tdҐ(vi) � τ2 and tdF(vi) � τ3 ∀ vi ∈ V dT

(vi) + c1(vi) � τ1, dT(vi) + c1 � τ1, dT(vi) � τ1 − c1,

dҐ(vi) + Ґ1(vi) � τ1, dҐ(vi) + c2 � τ2, dҐ(vi) � τ2 − c2, and
dF(vi) + c3 � τ3, dF(vi) � τ3 − c3 . So, G

⌣
is CPFG. Conversely,

if (i) and (ii) are equivalent, then (T1, Ґ1, F1) is a constant
function. Now, (T1, Ґ1, F1) is a constant function iff
(T1, Ґ1, F1) is a TCPFG. Assume that (T1, Ґ1, F1) is not a
constant function. &en, T1(v1)≠T2(v2), Ґ1(v1)≠ Ґ2
(v2), F1(v1)≠F2(v2) for v1, v2 ∈ V and if (T1, Ґ1, F1) is a
constant function, then T1(v1) � T2(v2) � k1,

Ґ1(v1) � Ґ2(v2) � k2, F1(v1) � F2(v2) � k3. So, tdT(v1)

� dT(v1) + T1(v1) � k1 + T1(v1) and tdT(v2) � k1 + T1(v2),
tdҐ(v1) � dҐ(v1) + Ґ1(v1) � k2 + Ґ1(v1) and tdҐ(v2) �

k2 + Ґ1(v2), tdF(v1) � dF(v1) + F1(v1) � k3 + F1(v1) and
tdF(v2) � k3 + F1(v2). Hence, T1(v1)≠T1(v2), Ґ1(v1)≠ Ґ1
(v2), F1(v1)≠F1(v2) implies tdT(v1)≠ tdT(v2), tdҐ(v1)≠
tdҐ(v2), tdF(v1)≠ tdF(v2) implies G

⌣
is not TCPFG which is

leading to contradiction. Now, ifG
⌣
is TCPFG, then, by contrary,

we can easily see that dT(v1)≠dT(v2),

dҐ(v1)≠ dҐ(v2), dF(v1)≠ dF(v2). &erefore, (T1, Ґ1, F1) is a
CF. □

(0.4, 0.3, 0.3)

(0
.2

, 0
.3

, 0
.2

)

(0
.2

, 0
.3

, 0
.2

)

(0.4, 0.3, 0.2)

(0.4, 0.3, 0.3)(0.2, 0.3, 0.3)

(0.2, 0.3, 0.3)

�v2(0.4, 0.4, 0.2) �v1

�v3�v4

Figure 11: (Totally constant PFG).

(0.4, 0.2, 0.1)
(0.4, 0.2, 0.2)

(0.2, 0.5, 0.1)

(0.5, 0.0, 0.3)

(0.4, 0.3, 0.2)

(0.2, 0.3, 0.2)

(0.4, 0.0, 0.3)

(0.2, 0.0, 0.3)

(0.4, 0.0, 0.3)

(0.2, 0.2, 0.1)

�v2

�v1

�v3

�v4

Figure 7: (Complete PFG).

(0.3, 0.4, 0.1)

(0.3, 0.2, 0.5)(0.2, 0.4, 0.4) (0.1, 0.3, 0.2)

(0
.1,

 0.
3, 

0.4
) (0.2, 0.3, 0.4)

(0.2, 0.4, 0.4)

(0.1, 0.2, 0.5)

�v2

�v1

�v3�v4

Figure 8: (PFG).

(0.4, 0.2, 0.3)

(0
.1

, 0
.3

, 0
.3

)

(0
.1

, 0
.3

, 0
.3

)

(0.3, 0.3, 0.4)

(0.2, 0.2, 0.4)(0.2, 0.3, 0.3)

(0.2, 0.3, 0.3)

�v2(0.2, 0.4, 0.3) �v1

�v3�v4

Figure 9: (CPFG). &e degree of the vertices v1, v2, v3, and v4 is
(0.3, 0.6, 0.6).

(0.4, 0.2, 0.1)
(0.4, 0.2, 0.2)

(0.2, 0.5, 0.1)

(0.5, 0.0, 0.3)

(0.4, 0.3, 0.2)

(0.2, 0.3, 0.2)

(0.4, 0.0, 0.3)

(0.2, 0.0, 0.3)

(0.4, 0.0, 0.3)

(0.2, 0.2, 0.1)

�v2

�v1

�v3

�v4

Figure 10: (Complete PFG).
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Example 11. A PFG G � (V, Ě) is CPFG and TCPFG.
Figure 12 explains the defined concept.

Theorem 2. A constant and totally constant graph G
⌣
implies

that (T1, Ґ1, F1) is CF.

Proof. Suppose G
⌣

is CPFG and TCPFG. &en, dT(v1) �

k1, dҐ(v1) � k2 anddF(v1) � k3 and tdT(v1) � τ1, tdҐ(v1) �

τ2, tdF(v1) � τ2. As tdT(v1) � τ1 where v ∈ V, then dT(v1)

+T1(v1) � τ1, ∀v ∈ V. k1 + T1(v1) � τ1, ∀v ∈ V implies
T1(v1) � τ1 − k1, ∀v ∈ V. &erefore, Γ1(v1) is a constant
function. Likewise, Ґ1(v1) � τ2 − k2 and F1(v1) �

τ3 − k3, ∀v ∈ V. □

Remark 2. Converse of the above theorem is not true in
general.

Example 12. A PFG is not CPFG and not TCPFG. Figure 13
explains the defined concept.

Theorem 3. If a crisp graph G is an odd cycle and G
⌣
is aPFG,

then G
⌣
is CPFG ⇔ (T2, Ґ2, F2) which is a CF.

Proof. Assume that (T2, Ґ2, F2) is a constant function that
implies T2 � c1, Ґ2 � c2, F2 � c3 ∀vi, vj ∈ Ě, and implies
dT(v1) � 2c1, dҐ(v1) � 2c2, and dF(v1) � 2c3, for any
vi ∈ Ě, therefore, G

⌣
is a CPFG.

Conversely, assume that G
⌣
is a (k1, k2, k3)-regular PFG.

Consider è1, è2, è3, . . . , èn+1 represented the edges of G
⌣
in

order. Suppose T2(è1) � c1, T2(è2) � k1 − c1, T2(e3) � k1 −

(k1 − c1) � c1, T2(e4) � k1 − c1, and so on. Likewise,
Ґ2(è1) � c1, Ґ2(è2) � k1 − c1, Ґ2(è3) � k1 − (k1 − c1) � c1,

Ґ2(è4) � k1 − c1, and so on; F2(è1) � c1, F2(è2) �

k1 − c1, F2(è3) � k1 − (k1− c1) � c1, F2(e4) � k1 − c1, and so
on.

Hence, T2(èi) �
c1, if i is odd,

k1 − c1, if i is even.
 .

&erefore, T2(è1) � T(è2n+1) � c1. Consequently, if è1
and è2n+1 connected at a vertex v1, then dT(v1) � k1, d(è1) +

d(è2n+1) � k1, c1 + c1 � k1, 2c1 � k1/2. □

Remark 3. For TCPFG, the above theorem does not hold.

Example 13. &e following PFG supports the above remark.
In Figure 14, the defined concept is explained.

Theorem 4. Let G be a crisp graph and G
⌣
be an even cycle.

:en, G
⌣
is CPFG ⇔ (T2, Ґ2, F2) which is a CF or different

edges have same truth membership, abstinence membership,
and false membership values.

Proof. Assume (T2, Ґ2, F2) is a CF, then obviously G
⌣
is a

constant PFG. Conversely, suppose that G
⌣

is
(k1, k2, k3)CPFG. Consider è1, è2, è3, . . . , è2n to be the edges
of even cycle G in that order. By theorem (3.3),

T2 èi(  �
c1, if i is odd,

k1 − c1, if i is even.
 . (4)

Likewise,

Ґ2 èi(  �
c1, if i is odd,

k1 − c1, if i is even,
 ,

F2 èi(  �
c1, if i is odd,

k1 − c1, if i is even.
 .

(5)

If c1 � k1 − c1, then (T2, Ґ2, F2) is a constant function. If
c1 ≠ k1 − c1, then different edges have same truth mem-
bership, abstinence membership, and false membership
values. □

Remark 4. &e above theorem does not hold for TCPFG.

Example 14. &e following PFG graph supports that a PFG
is constant but not totally constant. Figure 15 explains the
defined concept.

4.1. Properties of Constant PFG

Theorem 5. If a c CPFG is an odd cycle, then there is no PF
bridge and no PF cut vertex.

Proof. Suppose G is a crisp graph having odd cycle and G
⌣
is

a constant PFG. &en, (T2, Ґ2, F2) is a CF. Consequently,
deleting any vertex does not decrease the strength of

(0.3, 0.2, 0.4)

(0
.2

, 0
.2

, 0
.3

)

(0
.2

, 0
.2

, 0
.3

)

(0.3, 0.2, 0.4)

(0.3, 0.2, 0.4)(0.3, 0.1, 0.4)

(0.3, 0.1, 0.4)

�v2(0.3, 0.2, 0.4) �v1

�v3�v4

Figure 12: (T1, Ґ1, F1) is CF, then G
⌣

is constant and totally
constant).

(0.4, 0.1, 0.4)

(0
.2

, 0
.0

, 0
.4

)

(0
.3

, 0
.0

, 0
.4

)

(0.4, 0.1, 0.4)

(0.4, 0.1, 0.4)(0.1, 0.1, 0.4)

(0.4, 0.0, 0.4)

�v1(0.4, 0.1, 0.4) �v2

�v3�v4

Figure 13: ((T1, Ґ1, F1) is CF, then G
⌣
is not a CPFG nor a TCPFG).
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connectedness between any pair of vertices. &erefore, G
⌣
is

no bridge and no PF cut vertex. □

Theorem 6. If a CPFG is an even cycle, then there is no PF
bridge and no PF cut vertex.

Proof. Suppose G is a crisp graph having even cycle and G
⌣
is

a CPFG.&en, by&eorem 5, (T2, Ґ2, F2) is a CF or different
edges have same truth membership, abstinence member-
ship, and false membership values.

Case (i). If (T2, Ґ2, F2) is CF, then deleting any vertex
does not decrease the strength of connectedness be-
tween any pair of vertices.&erefore, G

⌣
is no bridge and

no PF cut vertex
Case (ii). Straight forward. □

Remark 5. For TPFG, the above theorem does not hold.

Example 15. Figure 16 supports the above remark 5 in
which the PFG constant is neither bridge nor cut vertex.
Figure 16 explains the defined concept.

5. Application

In this section, the application of CPFG in Wi-Fi network
system is discussed.

&e Wi-Fi technology offers Internet access through a
wireless network linked to the Internet to the electronic
devices andmachines that are in its range.&e broadcasting of
one or more interconnected access points (hotspots) can

extend the range of the connection from a small area of a few
rooms to a vast area of many square kilometers. &e range of
Wi-Fi signals depends on the frequency band, radio power
output, and the modulation technique. Although the Wi-Fi
connection provides easy access to the Internet, it is also a
security risk as compared to the wired connection called
Ethernet. For gaining access to Internet connection in a wired
network connection, it is necessary to gain physical access to a
building that has got the Internet connection or break
through an external firewall. On the other hand, in a wireless
Wi-Fi connection, the requirement for accessing the Internet
is just to get within the range of theWi-Fi.&ere are two types
of Wi-Fi networks, namely, indoor and outdoor Wi-Fi net-
works. A compact Wi-Fi hotspot device is called an indoor
coin Wi-Fi that intends to facilitate all the indoor owners to
access the Internet. &ese provide Wi-Fi signals ranging at
100 meters (outdoor)/30 meters (indoor). &is type of Wi-Fi
network is discussed and modeled with the help of CPFG.

Since there are four values to deal with, therefore, the
CPFG has been applied to a Wi-Fi network. &e first value
represents the state of connectedness, the second value de-
scribes the fluctuating state of the connection of the device
amid the connectedness and disconnectedness states, the
third value shows the disconnection, and the last value shows
that the device is not in the range. Since the structure of an
IFG is limited to just two values, i.e., state of connection and
disconnection, therefore, a Wi-Fi system is almost impossible
to model through the concept of IFG, whereas the CPFG
discusses more than these two situations. Consider an out-
doorWi-Fi system that contains four vertices representing the
Wi-Fi devices in such a way that there is a block between every
two routers and both routers have been giving signals to the
block together, as shown in Figure 17.With the help of CPFG,
the devices can give a constant signal to each block.

&e four vertices in Figure 17 represent four different
routers. &e edge between each pair of routers shows the
strength of the signals of the routers. Each edge and vertex
are in the form of a picture fuzzy number where the first
value represents the connectivity. &e second one describes
the fluctuating state of the device, i.e., the device is in range
but fluctuates between the connected and disconnected

(0.4, 0.3, 0.3)

(0.4, 0.2, 0.4)

(0.3, 0.3, 0.3)

(0.2, 0.2, 0.3)

(0.2, 0.2, 0.3)

(0.2, 0.2, 0.3)

�v3�v2

�v1

Figure 14: ((T2, Ґ2, F2) is constant function but no totally constant
PFG).
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)

(0.3, 0.3, 0.4)

(0.4, 0.2, 0.4)(0.3, 0.1, 0.3)

(0.3, 0.1, 0.3)

�v2(0.4, 0.2, 0.3) �v1

�v3
�v4

Figure 15: ((T2, Ґ2, F2) is CF, then G
⌣
is CPFG, but no TCPFG).

(0.4, 0.1, 0.4)(0.5, 0.1, 0.3) (0.3, 0.1, 0.4)

(0.3, 0.2, 0.4)

(0.3, 0.1, 0.4)
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0.4
)

�v3 �v2

�v1

Figure 16: ((T2, Ґ2, F2) is constant but there is no PF bridge and no
cut vertex).
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states, the third value shows disconnection, and the last value
indicates that the device is out of the range. &e degree of
each vertex is calculated using Definition 4. In this case, the
degree of every router is same, which interprets that every
router has been giving the same signals. It means that each
router is providing the same signal to the block. &us, the
idea of CPFG has been successfully applied to practical
problems showing its significance.

Table 1 shows the degree of the vertices in Figure 17.

5.1.Advantages of PFG. &e advantage of PFGs over existing
concept of IFGs is that IFGs cannot be used tomodel theWi-
Fi network systems as it allows to only deal with just two

states, i.e., the state of connectedness and the state of dis-
connectedness only. &e diverse structure of PFGs enables
us to deal with uncertain situations with additional types of
states, as presented in the application section. &e block
together is shown in Figure 18. With the help of IFG, the
devices can give a constant signal to each block. But that
IFGs cannot be used to model the Wi-Fi network system
because it only allows to deal with two states, i.e., the state of
connectedness and the state of disconnectedness only.

6. Conclusion

&is manuscript proposes the ideas of PFG and CPFG. Some
fundamental graph theoretic concepts are discussed and
illustrated with the help of examples. Moreover, the com-
parison between PFG and IFG is carried out that shows the
significance of the proposed concept. Furthermore, the
proposed concept is applied to a practical problem of Wi-Fi
network system, and results are discussed. More applications
in the different fields can be discussed in the proposed
framework, such as in engineering and computer sciences.
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Pythagorean cubic set (PCFS) is the combination of the Pythagorean fuzzy set (PFS) and interval-valued Pythagorean fuzzy set
(IVPFS). PCFS handle more uncertainties than PFS and IVPFS and thus are more extensive in their applications. (e objective of
this paper is under the PCFS to establish some novel operational laws and their corresponding Einstein weighted geometric
aggregation operators. We describe some novel Pythagorean cubic fuzzy Einstein weighted geometric (PCFEWG) operators to
handle multiple attribute group decision-making problems. (e desirable relationship and the characteristics of the proposed
operator are discussed in detail. Finally, a descriptive case is given to describe the practicality and the feasibility of the
methodology established.

1. Introduction

Multicriteria decision-making (MCDM) is a process that can
give the ranking result of finite alternatives according to the
attribute value of different alternatives, and it is an important
aspect of decision sciences. A significant part of the decision-
making model that has been commonly used in human
impacts is MCDM (or MCGDM) [1]. (e assessment in-
formation is generally fuzzy because the real decision-
making issues have always been created from a complicated
context. In general, fuzzy data take two models: one
quantitatively and one qualitatively. Fuzzy set (FS) [2],
intuitionistic fuzzy set (IFS) [3], Pythagorean fuzzy set (PFS)
[4], and so on, can express quantitative fuzzy knowledge.(e
theory of FS suggested by Zadeh [2] was used to explain
fuzzy quantitative knowledge containing only a degree of
membership. On this basis, Atanassov [5] proposed the idea
of IFS as a generalization of FS; the important aspect is that it
has two fuzzy values: the first is called membership grade
and the second is called nonmembership grade. Sometimes,

meanwhile, the two degrees do not satisfy the limit, so the
square sum is less than or equal to one. (e PFS was in-
troduced by Yager [4] in which the sum of squares of
membership and nonmembership is equal to or less than
one. In certain conditions, PFS is capable of expressing the
fuzzy data compared to the IFS. For instance, PFS improved
the concept of IFS by enlarging its domain. To define this
decision information, IFS is invalid, but it can be efficiently
defined by PFS. In the Pythagorean fuzzy set, Peng et al. [6]
introduced some characteristics, which are division, sub-
traction, and other significant properties.

To understand multicriteria problems in group decision-
making in the Pythagorean fuzzy setting, authors are con-
cerned with the methods of dominance and a ranking of
dependencies. For multicriteria decision-making based on
Pythagorean fuzzy sets, Khan et al. established prioritized
aggregation operators in [7]. Peng et al. [8] advanced lin-
guistic Pythagorean fuzzy sets (LPFSs) and the Pythagorean
fuzzy linguistic numbers’ operating laws and score function.
An optimizing variance technique was developed by Wei
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et al. [9] to clarify problems involving decision-making
depending on Pythagorean fuzzy environments valued at
intervals. (e Pythagorean fuzzy numbers (PFNs) sub-
traction and division acts were intended by Gou et al. [10].
(e notion of the obvious concept of the Pythagorean fuzzy
distance degree was provided by Pend et al. [11], which is
categorized by a Pythagorean fuzzy number that will min-
imize a drawback of data additionally proceeding to provide
imaginative proof. (e well-known definition of the novel
score function is also well defined. Liang et al. [12] intro-
duced the Bonferroni weighted Pythagorean fuzzy geometric
(BWPFG) operator.

In [13], Garg introduced an interval-valued Pythagorean
fuzzy geometric (IVPFG) operator and discussed a new
precision function. Khan et al. improved the definition of the
multiattribute decision-making TOPSIS system as well as
established the integral Choquet method of TOPSIS on the
basis of IVPFNs [14]. In [15], Khan suggested the GRA
method for making multicriteria decisions under the Py-
thagorean fuzzy condition valued at intervals. (e authors
first developed the Choquet integral average interval-valued
Pythagorean operator and then developed a system for
making multiattribute decisions dependent on the GRA
technique. An Einstein geometric intuitionistic fuzzy (EGIF)
operator was introduced by Wang [16] and an ordered
weighted Einstein geometric intuitionistic fuzzy (OWEGIF)
operator.

(e definition of the intuitionistic fuzzy Einstein
weighted averaging operator was introduced by Wang and
Liu [17] and an ordered weighted Einstein average intui-
tionistic fuzzy (OWEAIF) operator. Einstein operations can
be divided into two categories: Einstein sum and product. In
[18], Garg implemented the Einstein sum definition of the
Pythagorean fuzzy mean aggregation operators such as the
average operator of Pythagorean fuzzy Einstein, the
weighted average operator of Pythagorean fuzzy Einstein,
the geometric operator of Pythagorean fuzzy Einstein, and
the ordered geometric weighted operator of Pythagorean
fuzzy Einstein. For more related work, one may refer to
[19–39].

We will use the Einstein product in this article and
present the Pythagorean cubic fuzzy Einstein weighted
geometric (PCFEWG) operator definition. Under Pythag-
orean fuzzy data, these two are new decision-making
methods, but the Pythagorean cubic fuzzy Einstein weighted
geometric (PCFEWG) operator is more reliable than mean
aggregation operators.

(is paper is composed of nine sections. We begin
with a brief overview relevant to the literature review in
Section 1. We provide essential concepts and conse-
quences in Section 2 that we can include in the following
aspects. In Section 3, we define the Pythagorean cubic
fuzzy number and their properties. We propose Pythag-
orean cubic fuzzy Einstein operations in Section 4 and
examine some excellent features of the suggested opera-
tions. We present a Pythagorean cubic fuzzy Einstein
weighted geometric aggregation operator (PCFEWG) in
Section 5. With Pythagorean cubic fuzzy data, we apply
the (PCFEWG) operator to MADM in Section 6 and we

also give a case of numerical development (PFEWG)
operator in Section 7. In Section 8, the comparative
analysis is given and the conclusion is in Section 9.

2. Preliminaries

We introduce a basic definition and essential characteristics
in this section.

Definition 1 (see [8]). Let X be a universal set, then the fuzzy
set (FS) F is defined as follows:

F � x, μF
(x)|x ∈ X  , (1)

where μF
(x) is a mapping from X to [0,1] and μF

(x) is
known as the membership function of x ∈ X.

Definition 2 (see [3]). Let X be a universal set, then the
intuitionistic fuzzy set (IFS) I is defined as follows:

I � x, μI(x), ]I(x)|x ∈ X  , (2)

where μI(x) and ]I(x) are a mapping from X to [0,1] also
satisfy the condition 0≤ μI ≤ 1, 0≤ ]I ≤ 1 for all x ∈ X and
represent the membership and nonmembership function of
x in X.

Definition 3 (see [19]). Let X be a universal set, then the
Pythagorean fuzzy set (PFS) P is defined as follows:

P � x, μP
(x), ]P

(x)|x ∈ X  , (3)

where μP
and ]P are a mapping from X to [0,1] also sat-

isfying the conditions 0≤ μP
≤ 1, 0≤ ]P

≤ 1, and 0≤ (μP
)2

≤ 1, 0≤ (]P)2 ≤ 1, for all x ∈ X and characterize the mem-
bership and nonmembership degree to set P. Let πP

(x) �
��������������
1 − (μP

)2 − (]P)2


, then it is known as the Pythagorean

fuzzy index of x ∈ X to set P, representing the degree of
indeterminacy of P. Also, for every x ∈ X, we represent the
Pythagorean fuzzy number (PFN) by B � ΛB, ΓB .

Definition 4 (see [19]). Let B1 � ΛB1
, ΓB1

 , B2 �

ΛB2
, ΓB2

 , and B � ΛB, ΓB be three (PFNs) and λ> 0,
then we have

(1) B1⊕B2 � (
���������������
μ2B1

+ μ2B2
− μ2B1

μ2B2


, ]B1

]B2
);

(2) B1 ⊗ B2 � (μB1
μB2

,
��������������
]2B1

+ ]2B2
− ]2B1

]2B2


);

(3) λB � (

�����������

1 − (1 − μ2B)
λ



, (]B)
λ);

(4) B
λ

� ((μB)
λ,

�����������

1 − (1 − ]2B)
λ



);

(5) B
c

� (]B, μB).

Definition 5 (see [20]). Let X be a universal set, then the
object with the following formulation is an IVPFS set R:

R � x, μR
(x), ]R

(x) | x ∈ X  , (4)
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Where μR
(x) � [μL

R
(x), μL

R
(x)]⊆[0, 1] and ]R

(x) � []L

R
(x), ]L

R
(x)]⊆[0, 1] are the intervals, and μL

R
(x) � infμR

(x)

and μU

R
(x) � SupμR

(x); similarly, ]L

R
(x) � inf]R

(x) and
]U

R
(x) � Sup]R

(x), for all x ∈ X.Also, 0≤ (μU

R
(x))2+

(]U

R
(x))2 ≤ 1. Let πR

(x) � [πL

R
(x), πL

R
(x)], for all x ∈ X,

then it is known as the interval-valued Pythagorean fuzzy
index of x to R, where πL

R
(x) �

��������������������
1 − (μL

R
(x))2 + (]L

R
(x))2



and πU

R
(x) �

��������������������
1 − (μU

R
(x))2 + (]U

R
(x))2


which meet the

requirements of the following relationship:

(1) If μL

R
(x) � μU

R
(x) and ]L

R
(x) � ]U

R
(x), then an IVPFS

set becomes a PFS set.
(2) If μU

R
(x) + ]U

R
(x)≤ 1, then an IVPFS becomes an

IVIFS.

Definition 6 (see [21]). Let A � ([μL

A
, μU

A
], []L

A
, ]U

A
]), A1 �

([μL

A1
, μU

A1
], []L

A1
, ]U

A1
]), and A2 � ([μL

A2
, μU

A2
], []L

A2
, ]U

A2
])

arethree IVPFNs and λ> 0, then we have the following:

(1) λA � ([

������������

1 − (1 − (μL

A
))

λ


,

������������

1 − (1 − (μU

A
))

λ


],[]L

A
,]U

A
]),

(2) A
λ

� ([μL

A
,μU

A
],[

������������

1 − (1 − (]L

A
))

λ


,

������������

1 − (1 − (]U

A
))

λ


]),

(3) A1⊕A2 �
[

�������������������������

(μL

A1
)
2

+ (μL

A2
)
2

− (μL

A1
)
2
(μL

A2
)
2



,

�������������������������

(μU

A1
)
2

+ (μU

A2
)
2

− (μU

A1
)
2
(μU

A2
)
2



],

[]L

A1
]L

A2
, ]U

A1
]U

A2
]

 ,

(4) A1 ⊗ A2 �
[μL

A1
μL

A2
, μU

A1
μU

A2
],

[

�������������������������

(]L

A1
)
2

+ (]L

A2
)
2

− (]L

A1
)
2
(]L

A2
)
2



,

�������������������������

(]U

A1
)
2

+ (]U

A2
)
2

− (]U

A1
)
2
(]U

A2
)
2



]
 .

Definition 7 (see [21]). Let A � ([μL

A
, μU

A
], []L

A
, ]U

A
]); the score

function of A can be defined as follows using the IVPFN A:

S(A) �
1
2

μL

A
 

2
+ μU

A
 

2
− ]L

A
 

2
− ]U

A
 

2
 ,

where S(A) ∈ [0, 1].

(5)

Definition 8 (see [23]). Let A � ([μL

A
, μU

A
], []L

A
, ]U

A
]); the

accuracy function of A can be defined as follows using the
IVPFN A:

H(A) �
1
2

μL

A
 

2
+ μU

A
 

2
+ ]L

A
 

2
+ ]U

A
 

2
 ,

where H(A) ∈ [0, 1].

(6)

Definition 9 (see [21]). Let A � ([μL

A
, μU

A
], []L

A
, ]U

A
]) and A1 �

([μL

A1
, μU

A1
], []L

A1
, ]U

A1
]) be two IVPFNs, then

S(A) �
1
2

μL

A
 

2
+ μU

A
 

2
− ]L

A
 

2
− ]U

A
 

2
 ,

S A1  �
1
2

μL

A1
 

2
+ μU

A1
 

2
− ]L

A1
 

2
− ]U

A1
 

2
 

(7)

are the score of A and A1, separately, while

H(A) �
1
2

μL

A
 

2
+ μU

A
 

2
+ ]L

A
 

2
+ ]U

A
 

2
 ,

H A1  �
1
2

μL

A1
 

2
+ μU

A1
 

2
+ ]L

A1
 

2
+ ]U

A1
 

2
 

(8)

are the accuracy of A and A1, separately, which meet the
following criteria:

(1) If S(A)< S(A1), then A< A1;
(2) If S(A)> S(A1), then A> A1;
(3) If S(A) � S(A1), we have the following:

(a) If H(A) � H(A1), then A � A1,
(b) If H(A)<H(A1), then A< A1,
(c) If H(A)>H(A1), then A> A1.

Definition 10 (see [22]). Let X be a universal set. (en, a
cubic set can be stated:

C � x, μC(x), ]C(x)|x ∈ X  , (9)

where μC is an interval-valued fuzzy set in X and ]C is a fuzzy
set in X.

Definition 11 (see [19]). Let p1 and p2 be two PFNs, then the
distance between p1 and p2 can be described as

d p1, p2(  �
1
2

μp1
 

2
− μp2

 
2





+ ]p1
 

2
− ]p2

 
2



 + πp1
 

2
− πp2

 
2



.

(10)

Definition 12 (see [23]). Let pi � ( [ai, bi], [ci, di] ),

(i � 1, 2), be two IVPFNs, then the distance between p1and
p2is defined as follows:

d p1, p2(  �
1
4

a1( 
2

− a2( 
2



 + b1( 
2

− b2( 
2





+ c1( 
2

− c2( 
2



 + d1( 
2

− d2( 
2





+ π1( 
2

− π2( 
2



 + ψ1( 
2

− ψ2( 
2



,

(11)

where [π1,ψ1] � [

��������������

1 − (a1)
2 − (c1)

2


,

��������������

1 − (b1)
2 − (d1)

2


]

and [π2,ψ2] � [

��������������

1 − (a2)
2 − (c2)

2


,

��������������

1 − (b2)
2 − (d2)

2


].

Definition 13 (see [24]). Let pi � ( [ai,bi],[ci,di] ),

(i � 1,2,3, . . . ,n), be the collection of IVPFNs, then IVPFWG
operator is defined as
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IVPFWGw p1, p2, . . . , pn(  � 
n

i�1
ai( 

wi , 
n

i�1
bi( 

wi⎡⎣ ⎤⎦,

����������������

1 − 
n

i�1
1 − ci( 

2
 

wi




,

����������������

1 − 
n

i�1
1 − di( 

2
 

wi




⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (12)

where w � (w1, w2, . . . , wn)T is the weight vector of pi(i �

1, 2, 3, . . . , n) and wi ∈ [0, 1] and 
n
i�1 wi � 1.

Definition 14 (see [24]). Let pi � ( [ai, bi], [ci, di]〉), (i �

1, 2, 3, . . . , n), be the collection of IVPFNs, then IVPFOWG
operator is defined as

IVPFOWGw p1, p2, . . . , pn(  �



n

i�1
aσ(i) 

wi
, 

n

i�1
bσ(i) 

wi⎡⎣ ⎤⎦,

������������������

1 − 
n

i�1
1 − cσ(i) 

2
 

wi



,

�������������������

1 − 
n

i�1
1 − dσ(i) 

2
 

wi



⎡⎣ ⎤⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

where pσ(i) is the i-th largest value and w � (w1, w2,

. . . , wn)T is the weight vector of pi(i � 1, 2, 3, . . . , n).
Definition 15 (see [24]). Let pi � ( [ai,bi],[ci,di] ), (i �

1,2,3, . . . ,n), be the collection of IVPFNs, then IVPFHWG
operator is defined as

IVPFHGw p1, p2, . . . , pn(  �



n

i�1
aτ(i) 

wi
, 

n

i�1
bτ(i) 

wi⎡⎣ ⎤⎦,

������������������

1 − 
n

i�1
1 − cτ(i) 

2
 

wi



,

�������������������

1 − 
n

i�1
1 − dτ(i) 

2
 

wi



⎡⎣ ⎤⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

where w � (w1, w2, . . . , wn)T is the weight vector of
pi(i � 1, 2, 3, . . . , n).

Definition 16 (see [25, 26]). Let pi � ( [ai,bi],[ci,di] ), (i �

1,2,3, . . . ,n), be the collection of IVPFNs, and δ>0, then the
following operational laws are satisfied:

(1) δp1 � ([

�������������

1 − (1 − (a1)
2)δ



,

������������

1 − (1 − (b1)
2)δ



], [(c1)
δ,

(d1)
δ]),

(2) (p1)
δ � ([(a1)

δ, (b1)
δ], [

�������������

1 − (1 − (c1)
2)δ



,
���
1−

√

(1 − (d1)
2)δ ]),

(3) p1⊗p2 � ([a1a2,b1b2],[

����������������

(c1)
2 + (c2)

2 − (c1)
2



(c2)
2 ,���������������������

(d1)
2 + (d2)

2 − (d1)
2(d2)

2


]),

(4) p1⊕p2 � ([

����������������������

(a1)
2 + (a2)

2 − (a1)
2(a2)

2


,

������

(b1)
2+



(b2)
2 − (b1)

2(b2)
2 ], [c1c2, d1d2]).

3. Pythagorean Cubic Fuzzy Numbers and
Their Characteristics

In this unit, we define some new concepts of the Pythagorean
cubic fuzzy set and discuss the characteristics of the Py-
thagorean cubic fuzzy set that is not an intuitionistic cubic
fuzzy set with the help of illustrations. In this article, pc

stands for a Pythagorean cubic fuzzy set.

Definition 17 (see [27]). Let X be a fixed set, then a Py-
thagorean cubic fuzzy set can be defined as

pc � x, μc1
(x), ]c1

(x)|x ∈ X  , (15)

where

μc1
(x) � A(x), λ(x)〈 〉,

]c1
(x) � A(x), μ(x) ,

0≤ μc1
(x) 

2
+ ]c1

(x) 
2
≤ [1, 1].

(16)

(e preceding condition may also be written as follows:

0≤ (sup(A(x)))
2

+(sup(A(x)))
2 ≤ 1,

0≤ λ2(x) + μ2(x)≤ 1.
(17)

For a Pythagorean cubic set, the degree of indeterminacy
is classified as

πpc
�

���������������������������

1 − (sup(A(x)))
2

− (sup(A(x)))
2



,

·

���������������

1 − λ2(x) − μ2(x)



.

(18)

For simplicity, we call (μc1
, ]c2

) a Pythagorean cubic
fuzzy number (PCFN) denoted by Pc � (μc1

, ]c2
).
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Example 1. Let X � x1, x2, x3  be a fixed set and consider a
set in X by

pc �

x1, [0.5, 0.6], 0.7( , ([0.6, 0.7], 0.5) ,

x2, [0.4, 0.7], 0.6( , ([0.5, 0.4], 0.6) ( ,

x3, [0.4, 0.6], 0.7( , ([0.5, 0.2], 0.6) ( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (19)

(en, also (0.7)2 + (0.5)2 � 0.49 + 0.25 � 0.74< 1; sim-
ilarly, we can calculate the other cases. (us, pc1

, pc2
, and pc3

are (PCFNs). (erefore, pc are PCFS.

Definition 18. Let pc1
� ( A1, λ1 , A1, μ1 ), pc2

� ( A2,

λ2〉, A2, μ2 ) and pc � ( A, λ〈 〉, A, μ ) be three PCFNs
and δ > 0, where
A1 � [a1, b1],

A1 � [a1,
b1], A2 � [a2, b2],

A2 �

[a2,
b2], A � [a, b], and A � [a, b]; the operational laws are

as follows:

(1) pc1
⊕pc2

� ( [

�����������

a2
1 + a2

2 − a2
1a

2
2



,

�����������

b21 + b22 − b21b
2
2



],

���

λ21+


λ22 − λ21λ
2
2〉, [a1,a2],μ1μ2 ),

(2) pc1
⊗pc2

� ( [a1, a2], λ1λ2 , [

������������
a2
1 + a2

2 − a2
1a2

2



,�����������
b
2
1 + b

2
2 − b

2
1
b
2
2



],

������������

μ21 + μ22 − μ21μ22


〉),

(3) δpc1
� (( [

�����������

1 − (1 − a2
1)

δ


,

����������

1 − (1 − b21)
δ



],
�����
1 − (1




− λ21)
δ ), ([(a1a2)

δ, (b1
b2)

δ], (μ1μ2)
δ)〉),

(4) pδ
c1

�([(a1a2)
δ,(b1b2)

δ],(λ1λ2)
δ),(( [

�����
1− (1


 − a2

1)
δ ,���������

1− (1− b
2
1)

δ


],

���������

1− (1− μ21)
δ



)〉),

(5) pc
c1

� A1, μ1 , A1, λ1 .

Theorem 1. Let pc1
� ( A1, λ1 , A1, μ1 ), pc2

� ( A2, λ2〉,
A2, μ2 ), and pc � ( A, λ〈 〉, A, μ ) be three PCFNs and

δ > 0, δ1 > 0, and δ2 > 0, where A1 � [a1, b1],
A1 � [a1,

b1],

A2 � [a2, b2],
A2 � [a2,

b2], A � [a, b], and A � [a, b], then
the following will hold:

(1) pc1
⊕pc2

� pc2
⊕pc1

,
(2) pc1
⊗pc2

� pc2
⊗pc1

,
(3) δ(pc1

⊕pc2
) � δ(pc1

)⊕δ(pc2
),

(4) (δ1 + δ2)pc � δ1pc⊕δ2pc,
(5) (pq1

⊗pc2
)δ � (pq1

)δ ⊗ (pc2
)δ,

(6) p
(δ1+δ2)
c � p

δ1
c ⊗p

δ2
c .

Proof. (e proof is obvious.
We describe a score function and its basic properties to

equate two PCFNs. □

Definition 19. Let pc � ( A1, λ1 , A1, μ1 ) be a PCFN,
where A1 � [a1, b1],

A1 � [a1,
b1]. We can introduce the

score function of pc as

S pc(  �
a1 + b1 − λ1

3
 

2

−
a1 + b1 − μ1

3
 

2

, (20)

where S(pc) ∈ [− 1, 1].

Definition 20. Let pc1
� ( A1, λ1 , A1, μ1 ) and pc2

� ( A2,

λ2〉, A2, μ2 ) be two PCFNs, S(pc1
)be the score function of

pc1
, and S(pc2

) be the score function of pc2
. (en,

(1) If S(pc1
)< S(pc2

), then pc1
<pc2

.
(2) If S(pc1

)> S(pc2
), then pc1

>pc2
.

(3) If S(pc1
) � S(pc2

), then pc1
∼ pc2

.

Example 2. Let pc1
� (([0.5, 0.7], 0.9), ([0.1, 0.5], 0.6)), pc2

�

(([0.4, 0.7], 0.6), ([0.2, 0.4], 0.6)), and pc3
� (([0.03, 0.8],

0.9), ([0.0, 0.3], 0.7)) be three PCFNs. (en, by Definition 18,
we have S(pq) � 0.01, S(pc2

) � 0.027 and S(pc3
) � − 0.0173.

(us, S(pc2
)> S(pc1

)> S(pc3
). Let pc1

� (([0.5, 0.7], 0.9),

([0.1, 0.5], 0.6)) and pc2
� (([0.4, 0.7], 0.6), ([0.2, 0.4], 0.7))

be two PCFNs. (en by Definition 19, we have S(pq) � 0.01
and S(pc2

) � 0.01 (us, S(pq) � S(pc2
).

(erefore, by Definition 20, we cannot get information
from Pc1

and Pc2
. Usually, such a case grows in preparation.

It is clear from Definition 20 that we are unable to consider
the requirement that two PCFNs have the same ranking. On
the other side, deviancy may be changed. (e consistency
property of all the components to the average number in a
PCFNs returns that they may accept. For the comparison of
two PCFNs, we present a definition of accuracy degree.

Definition 21. Let pc � ( A1, λ1 , A1, μ1 ) be a PCFN.
(en, we define the accuracy degree of pc which is denoted
by α(pc), where A1 � [a1, b1],

A1 � [a1,
b1] can be defined as

α pc(  �
a1 + b1 − λ1

3
 

2

+
a1 + b1 − μ1

3
 

2

, (21)

where α(pc) ∈ [0, 1].

Definition 22. Let pc1
� ( A1, λ1 , A1, μ1 ) and pc2

�

( A2, λ2 , A2, μ2 ) be two PCFNs, α(pc1
)be the accuracy

degree of pc1
, and α(pc2

) be the accuracy degree of pc2
. (en,

(1) If α(pc1
)< α(pc2

), then pc1
<pc2

.
(2) If α(pc1

)> α(pc2
), then pc1

>pc2
.

(3) If α(pc1
) � α(pc2

), then pc1
− pc2

.

Example 3. From example 2, since S(pc1
) � 0.01 and

S(pc2
) � 0.01, thus, S(pc1

) � S(pc2
)..So, we have α(pc1

) �

0.01 and α(pc2
) � 0.044. (us, α(pc1

)> α(pc2
). Hence,

pc1
>pc2

. As a result, the condition when two PCFNs have
the same score has been resolved.

Definition 23. Let Pc1
and pc2

be any two PCFNs on a set
X � x1, x2, . . . , xn . (e following is a definition of the
distance measure between Pc1

and Pc2
:

D pc1
, pc2

  �
1
6

a
2
1 − a

2
1


 + b

2
1 − b

2
1


 + a

2
1 − a

2
1




+ b
2
1 − b

2
1



 + λ21 − λ21


 + μ21 − μ21


.

(22)
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Example 4. Let pc1
� ( [0.6, 0.7], 0.3〈 〉, [0.5, 0.7], 0.8〈 〉) and

pc2
( [0.5, 0.6], 0.4〈 〉, [0.4, 0.7], 0.5〈 〉)be two PCFNs. (en,

D pc1
, pc2

  �
1
6

[|0.36 − 0.25| +|0.49 − 0.36| +|0.25 − 0.16| +|0.49 − 0.49| +|0.9 − 0.16| +|0.64 − 0.25|],

D pc1
, pc2

  �
1
6

[|0.11| +|0.13| +|0.09| +|0| +|0.74| +|0.39|] � 0.2433.

(23)

4. Einstein Operations of Pythagorean Cubic
Fuzzy Sets

In this section, we defined the Einstein product (pc1
⊗ εpc2

)

and the Einstein sum (pc1
⊕εpc2

)on two PCFSs pc1
and pc2

which can be defined in the following forms.

Definition 24. Let pc1
� ( A1, λ1 , A1, μ1 ) and pc2

�

( A2, λ2 , A2, μ2 ) be two PCFNs, where A1 � [a1, b1],
A1 � [a1,

b1], A2 � [a2, b2], and A2 � [a2,
b2], then

pc1
⊗ εpc2

�
a
2
1, b

2
1 , λ2I  · a

2
2, b

2
2 , λ22 

�����������������������������
1 + 1 − a

2
1, b

2
1 , λ2I  1 − a

2
1, b

2
1 , λ21 

 ,

���������������������

a
2
1,

b
2
1 , μ21 + a

2
2,

b
2
2 , μ22



�������������������������

1 + a
2
1,

b
2
1 , μ21  a

2
2,

b
2
2 , μ2 



⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

pc1
⊕ εpc2

�

�����������������������
a
2
1, b

2
1 , λ21  + a

2
2, b

2
2 , λ22 



�������������������������
1 + a

2
1, b

2
1 , λ21  · a

2
1, b

2
1 , λ21 

 ,

a
2
1,

b
2
1 , μ2  · a

2
2,

b
2
2 , μ2 

2


��������������������������������

1 + 1 − a
2
1,

b
2
1 , μ21  · 1 − a

2
2,

b
2
2 , μ2 



⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(24)

Theorem 2. Let n be any positive integer and pc1
is a PCFS,

then the exponentiation operation pc1
∧εn is a mapping from

Z+ ×◇⟶◇:

pc1
∧ εn

�

�������������

2 a
2
1, b

2
1 , λ24 

n


����������������������������

2 − a
2
1, b

2
1 , λ21 

n
+ a

2
1, b

2
1 , λ21 

n
 ,

����������������������������������������

1 + a
2
1,

b
2
1 , μ21   

n

− 1 − a
2
1,

b
2
1 , μ21   

n


����������������������������������������

1 + a
2
1,

b
2
1 , μ21   

n

+ 1 − a
2
1,

b
2
1 , μ21   

n


⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (25)

where pc1
∧εn �︷pc1

⊗ εpc1
⊗ εpc1
⊗ ε, . . . , pc1

⊗ εpc1

n
. More-

over, pc1
∧εn is a Pythagorean cubic fuzzy set (PCFS), even if

n ∈ R+.

Proof. We may prove that equation (25) holds for all
positive integers n using mathematical induction. First, it
holds for n � 1.

pc1
∧ε1 �

�������������

2 a
2
1, b

2
1 , λ21 

1


���������������������������

2 − a
2
1, b

2
1 , λ21 

1
+ q

2
1, b

2
1 , λ21 

1
 ,

���������������������������������������

1 + a
2
1,

b
2
1 , μ21   

1
− 1 − a

2
1,

b
2
1 , μ21   

1


����������������������������������������

1 + a
2
1,

b
2
1 , μ21   

1
+ 1 − a

2
1,

b
2
1 , μ21   

1


⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

. (26)
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Taking the left-hand side of the equation above,

pc1
∧ε1 � pc1

� x, μpq
, vpc

 |x ∈ X . (27)

Taking the right-hand side of the equation above,

�

�������������

2 a
2
1, b

2
1 , λ21 

1


����������������������������

2 − a
2
1, b

2
1 , λ21 

1
+ a

2
1, b

2
1 , λ21 

1


���������������������������������������

1 + a
2
1,

b
2
1 , μ21   

1
− 1 − a

2
1,

b
2
1 , μ21   

1


���������������������������������������

1 + a
2
1
b
2
1 , μ21   

1
+ 1 − a

2
1,

b
2
1 , μ21   

1


⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� pc1
� x, μpq

, vpq
 |x ∈ X .

(28)

From equations (25) and (27), we have equation (25)
which holds for n � 1. Next, we show that equation (25)

holds for n � k. If equation (25) holds for n � k, then
equation (25) also holds for n � k + 1.

�������������

2 a
2
1, b

2
1 , λ21 

k


����������������������������

2 − a
2
1, b

2
1 , λ21 

k
+ a

2
1, b

2
1 , λ21 

k
 ,

����������������������������������������

1 + a
2
1,

b
2
1 , μ21   

k

− 1 − a
2
1,

b
2
1 , μ21   

k


��������������������������������������

1 + a
2
1
b
2
1 , μ21   

k

+ 1 − a
2
1
b
2
1 , μ21   

k


⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⊗ εpc1
� x, μp1

, vpq
 |x ∈ X 

�

��������������

2 a
2
1, b

2
1 , λ21 

k+1


�������������������������������

2 − a
2
1, b

2
1 , λ21 

k+1
+ a

2
1, b

2
1 , λ21 

k+1


������������������������������������������

1 + a
2
1,

b
2
1 , μ21   

k+1
− 1 − a

2
1,

b
2
1 , μ21   

k+1


������������������������������������������

1 + a
2
1
b
2
1 , μ21   

k+1
+ 1 − a

2
1,

b
2
1 , μ21   

k+1


⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(29)

Now, we’ll show that equation (25) is valid for every
positive integer n,

0≤

�������������

2 a2
1, b21 , λ21 

n


���������������������������

2 − a2
1, b21 , λ21 

n
+ a2

1, b21 , λ21 
n

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

,

�����������������������������������

1 + a2
1,

b
2
1 , μ21(  

n

− 1 − a2
1,

b
2
1 , μ21(  

n


�����������������������������������

1 + a2
1
b
2
1 , μ21(  

n

+ 1 − a2
1,

b
2
1 , μ21(  

n


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 1, (30)

even if n ∈ R+. Since 0≤ μpq2
(x)≤ 1, 0≤ vpq2

(x)≤ 1, 0≤
μ2pq1

(x) + v2pq
(x)≤ 1, then 1 − μ2pc1

(x)≥ v2pc1
(x)≥ 0,.so

0≤

�������������

2 a2
1, b21 , λ21 

n


���������������������������

2 − a2
1, b21 , λ21 

n
+ a2

1, b21 , λ21 
n

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

,

��������������������������������������

1 + a2
1,

b
2
1 , μ21( 

w1 
n

− 1 − a2
1,

b
2
1 , μ21( 

w1 
n



���������������������������������������

1 + a2
1,

b
2
1 , μ21( 

w1 
n

+ 1 − a2
1,

b
2
1 , μ21( 

m1 
n


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 1

0≤

�������������

2 a
2
1, b

2
1 , λ21 

n


����������������������������

2 − a
2
1, b

2
1 , λ21 

n
+ a

2
1, b

2
1 , λ21 

n
 ,

��������������������������������������

1 + a
2
1,

b
2
1 , μ21 

v1
 

n

− 1 − a
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≤ 1.

(31)
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From equations (14) and (34), we have
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(us, a PCFS pε
ci

defined above is a PCFS for any
n ∈ R+. □

5. Pythagorean Cubic Fuzzy Einstein Weighted
Geometric Aggregation Operator

Definition 25. Let pcj
� (μpcj

, vpj
), (j � 1, . . . , m), be the

collection of PCFVS with ≤L, then a PCFWGε operator of
dimension n is a mapping PCFWGε

w: ϕm⟶ ϕ, and

PCFWGε
w pc1

, pc2
, . . . , pcm

  � p
εw1
c1
⊗ εp

ε2
c2
⊗ ε, . . . , ⊗ εp

εm

cm
,

(37)

where w � (w1, w2, . . . , wm)T is the weighted vector of
Pcj(j � 1, . . . , n) such that wj ∈ [0, 1]and 

m
j�1 wj � 1.

Theorem 3. Let pcj
� (μpcj

, vptj
), (j � 1, . . . , n), be the col-

lection of PCFVs with ≤L, then their aggregated value by
using the PCFWGε operator is also a PCFV, and let pc1

�

( A1, λ1 , A1, μ1 ) and pc2
� ( A2, λ2 , A2, μ2 ), where

A1 � [a1, b1],
A1 � [a1,

b1], A2 � [a2, b2], and A2 � [a2,
b2],

then
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(38)

where w � (w1, w2, . . . , wm)T is the weighted vector of Pcj
(j� 1,...,n) such that wj ∈ [0, 1] and 

m
j�1 wj � 1.

Proof. Mathematical induction may be used to prove this
theorem. To begin, we prove that equation (38) holds for
m� 1. Taking the left side,

PCFWGε
w pc1

, pc2
, . . . , pcm

 

� PCFWGε
w pc(  � p

εw
c .

(39)

Now, taking right-hand side,
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(40)

From equations (39) and (40), we have equation (38)
which holds for m� 1. Now, we show that equation (38)
holds for m� k.
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Next, we are going to show that equation (38) holds for
m� k+ 1.
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2
k
j�1 λ2j 

wj



������������������������


k
j�1 2 − λ2j 

wj
+ 

k
j�1 λ2j 

wj

 ;



���������������������������


k
j�1 1 + a

2
j 

wj
− 

k
j�1 1 − a

2
j 

wj



���������������������������


k
j�1 1 + a

2
j 

wj
+ 

k
j�1 1 − a

2
j 

wj

 ,

����������������������������


k
j�1 1 + b

2
j 

wj

− 
k
j�1 1 − b

2
j 

wj



����������������������������


k
j�1 1 + b

2
j 

wj

+ 
k
j�1 1 − b

2
j 

wj



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

���������������������������


k
j�1 1 + μ2j 

wj
− 

k
j�1 1 − μ2j 

wk



���������������������������


k
j�1 1 + μ2j 

wj
+ 

k
j�1 1 − μ2j 

wk
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⊗ ε



�����������

2
k+1
j�1 a

2
j 

wj



�������������������������


k+1
j�1 2 − a

2
j 

wj
+ 

k+1
j�1 a

2
j 

wj

 ,

�����������

2
k+1
j�1 b

2
j 

wj



������������������������


k+1
j�1 2 − b

2
j 

wj
+ 

k+1
j�1 b

2
j 

wj


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�����������

2
k+1
j�1 λ2j 

wj



������������������������


k+1
j�1 2 − λ2j 

wj
+ 

k+1
j�1 λ2j 

wj

 ;



���������������������������


k+1
j�1 1 + a

2
j 

wj
− 

k+1
j�1 1 − a

2
j 

wj



����������������������������


k+1
j�1 1 + a

2
j 

wj
+ 

k+1
j�1 1 − a

2
j 

wj

 ,

����������������������������


k+1
j�1 1 + b

2
j 

wj

− 
k+1
j�1 1 − b

2
j 

wj



����������������������������


k+1
j�1 1 + b

2
j 

wj

+ 
k+1
j�1 1 − b

2
j 

wj
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,

���������������������������


k+1
j�1 1 + μ2j 

wj
+ 

k+1
j�1 1 − μ2j 

wj



����������������������������


k+1
j�1 1 + μ2j 

wj
+ 

k+1
j�1 1 − μ2j 

wj
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.

(42)
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Let

s1 �

�����������

2
k
j�1 a

2
j 

wj



������������������������


k
j�1 2 − a

2
j 

wj
+ 

k
j�1 a

2
j 

wj

 ,

�����������

2
k
j�1 b

2
j 

wj



������������������������


k
j�1 2 − b

2
j 

wj
+ 

k
j�1 b

2
j 

wj


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

s2 �

�����������

2
k
j�1 λ2j 

wj



������������������������


k
j�1 2 − λ2j 

wj
+ 

k
j�1 λ2j 

wj

 ,

s3 �

���������������������������


k
j�1 1 + a

2
j 

wj
− 

k
j�1 1 − a

2
j 

wj



���������������������������


k
j�1 1 + a

2
j 

wj
+ 

k
j�1 1 − a

2
j 

wj

 ,

����������������������������


k
j�1 1 + b

2
j 

wj

− 
k
j�1 1 − b

2
j 

wj



����������������������������


k
j�1 1 + b

2
j 

wj

+ 
k
j�1 1 − b

2
j 

wj
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s4 �
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j�1 1 + μ2j 

wj
− 

k
j�1 1 − μ2j 

wj



���������������������������


k
j�1 1 + μ2j 

wj
+ 

k
j�1 1 − μ2j 

wj

 ,

u1 �

�����������

2
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j�1 a

2
j 

wj



�������������������������


k+1
j�1 2 − a
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wj
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k+1
j�1 a

2
j 

wj

 ,

�����������

2
k+1
j�1 b
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j 

wj



������������������������


k+1
j�1 2 − b
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j 

wj
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k+1
j�1 b
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j 

wj


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,
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k+1
j�1 2 − λ2j 

wj
+ 

k+1
j�1 λ2j 

wj

 ,

u3 �

���������������������������


k+1
j�1 1 + a
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j 

wj
− 

k+1
j�1 1 − a

2
j 

wj



����������������������������


k+1
j�1 1 + a

2
j 

wj
+ 

k+1
j�1 1 − a

2
j 

wj

 ,

����������������������������


k+1
j�1 1 + b

2
j 

wj

− 
k+1
j�1 1 − b

2
j 

wj



����������������������������


k+1
j�1 1 + b
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j 

wj
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k+1
j�1 1 − b

2
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

u4 �

���������������������������


k+1
j�1 1 + μ2j 

wj
− 

k+1
j�1 1 − μ2j 

wj



����������������������������


k+1
j�1 1 + μ2j 

wj
+ 

k+1
j�1 1 − μ2j 

wj

 .

(43)

Now, putting these values in equation (40), we have

PCFWGε
w pc1

, pc2
, . . . , pck+1

  �
s1
s2

,
s3
s4

 ⊗ z

u1

u2
,
u3

u4
 

·
s1u1���������������������

2s
2
2u

2
2 + s

2
1u

2
1 − s

2
2u

2
1 − s

2
1u

2
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(44)
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Now, putting the values in equation (42), we have

PCFWGw
ε

pc1
, pc2

, . . . , pck+1
 

�



�����������

2
k
j�1 a

2wj

j 



������������������������


k
j�1 2 − a

2
j 

wj
+ 

k
j�1 a

2
j 

wj

 ,

�����������

2
k
j�1 b

2
j 

wj



������������������������


k
j�1 2 − b

2
j 

wj
+ 

k
j�1 b

2
j 

wj


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�����������

2
k
j�1 λ2j 

wj



������������������������


k
j�1 2 − λ2j 

wj
+ 

k
j�1 λ2j 

wj

 ;



���������������������������


k
j�1 1 + a

2
j 

wj
− 

k
j�1 1 − a

2
j 

wj



���������������������������


k
j�1 1 + a

2
j 

wj
+ 

k
j�1 1 − a

2
j 

wj

 ,

����������������������������


k
j�1 1 + b

2
j 

wj

− 
k
j�1 1 − b

2
j 

wj



����������������������������


k
j�1 1 + b

2
j 

wj

+ 
k
j�1 1 − b

2
j 

wj



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

���������������������������


k
j�1 1 + μ2j 

wj
− 

k
j�1 1 − μ2j 

wk



���������������������������


k
j�1 1 + μ2j 

wj
+ 

k
j�1 1 − μ2j 

wk
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⊗ ε
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 ,
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k+1
j�1 2 − b
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k+1
j�1 b
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j 

wj


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

�����������

2
k+1
j�1 λ2j 

wj



������������������������


k+1
j�1 2 − λ2j 

wj
+ 

k+1
j�1 λ2j 

wj
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j�1 1 + a

2
j 

wj
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j�1 1 − a

2
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wj
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k+1
j�1 1 + a
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+ 

k+1
j�1 1 − a

2
j 

wj

 ,

����������������������������


k+1
j�1 1 + b

2
j 

wj

− 
k+1
j�1 1 − b

2
j 

wj



����������������������������


k+1
j�1 1 + b
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j�1 1 − b

2
j 

wj



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,
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k+1
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wj
+ 

k+1
j�1 1 − μ2j 
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����������������������������


k+1
j�1 1 + μ2j 
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.

(45)

Equation (38) holds for m� k+ 1. (us, equation (38)
holds for all m. □

Lemma 1. Let pcj
> 0, wj > 0, (j � 1, . . . , n) and 

m
j�1 wj �

1. Hen,



m

j�1
pcj

 
wj

≤ 
m

j�1
wjpcj

, (46)

where the equality holds if and only if pc1
� pc2

� · · · � pcm.

Theorem 4. Let pcj
� (μpcj

, vptj
), (j � 1, . . . , n), be the col-

lection of PCFVs with ≤L, then

PCFWGw pc1
, pc2

, . . . , pcm
 ≤PCFWGε

w pc1
, pc2

, . . . , pcm
 ,

(47)

where w � (w1, w2, . . . , wm)T is the weighted vector of pcj

(j� 1,..., n) such that wj ∈ [0, 1] and 
m
j�1 wj � 1.

ProofStraight. forward. □

Theorem 5. Let pcj
(j� 1,...,n) be the collection of PCFVs with

≤L, where w � (w1, w2, . . . , wm)T is the weighted vector of
(j� 1,...,n) such that wj ∈ [0, 1] and im

j�1 wj � 1. Hen,

(1) Idempotency: if all Pcj
(j� 1,...,n) are equal, i.e., Pcj

(j� 1,...,n)� Pcj
, then

PCFWGε
w pc1

, pc2
, . . . , pcm

  � pcj
. (48)

(2) Boundary:

pmin ≤ PCFWGε
w pc1

, pc2
, . . . , pcm

 ≤pmax for every w.

(49)

(3) Monotonicity: let p∗cj
� (μ∗pcj

, v∗pcj

), (j � 1, . . . , n) be
the collection of PCFVs with ≤L, and μpcj

≤ μ∗pcj

,
vpcj
≤ v∗pcj

, for all, then

PCFWGε
w pc1

, pc2
, . . . , pcm

 

≤ PCFWGε
w p
∗
c1

, p
∗
2 , . . . , p

∗
cm

  for every w.
(50)
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Proof. (1) Idempotency: since

PCFWGε
w pc1

, pc2
, . . . , pcm

  �



�����������

2
m
j�1 a

2wj

j 



������������������������


m
j�1 2 − a

2
j 

wj
+ 

m
j�1 a

2
j 

wj

 ,

�����������

2
m
j�1 b

2
j 

wj



������������������������


m
j�1 2 − b

2
j 

wj
+ 

m
j�1 b

2
j 

wj


⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�����������

2
m
j�1 λ2j 

wj



������������������������


m
j�1 2 − λ2j 

wj
+ 

m
j�1 λ2j 

wj

 ;



���������������������������


m
j�1 1 + a

2
j 

wj
− 

m
j�1 1 − a

2
j 

wj



���������������������������


m
j�1 1 + a

2
j 

wj
+ 

m
j�1 1 − a

2
j 

wk

 ,

����������������������������


m
j�1 1 + b

2
j 

wj

− 
m
j�1 1 − b

2
j 

wj



����������������������������


m
j�1 1 + b

2
j 

wj

+ 
m
j�1 1 − b

2
j 

wj



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

���������������������������


m
j�1 1 + μ2j 

wj
− 

m
j�1 1 − μ2j 

wk



���������������������������


m
j�1 1 + μ2j 

wj
+ 

m
j�1 1 − μ2j 

wk

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(51)

For simplicity, we use the notation of PCFSs. Let
pcj

� (μpcj
, vptj

) where μpq
� ( A1, λ1 , A1, μ1 )

and μpc2
� ( A2, λ2 , A2, μ2 ), where

A1 � [a1, b1],
A1 � [a1,

b1], A2 � [a2,

b2], and A2 � [a2,
b2], then the above equation can

be written in the following form:

PCFWGε
w pc1

, pc2
, . . . , pcm

  �

������������

2
m
j�1 μ2pcj

 
wj



���������������������������


m
j�1 2 − μ2pcj

 
wj

+ 
m
j�1 μ2pcj

 
wj

 ,

������������������������������


m
j�1 1 + ]2pcj

 
wj

− 
m
j�1 1 − ]2pcj

 
wj



�����������������������������


m
j�1 1 + ]2pcj

 
wj

+ 
m
j�1 1 − ]cj

 
wj



⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (52)

Now, pcj(j� 1,...,n)� pc. (en, equation (26) can be
written as

PCFWGε
w pc1

, pc2
, . . . , pcm

  �

�������

2 μ2pcj

 



����������������

2 − μ2pcj

  + μ2pcj

 

 ,

������������������

1 + ]2pcj

  − 1 − ]2pcj

 



������������������

1 + ]2pcj

  + 1 − ]cj
 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (53)

(2) Boundary:

pmin ≤PCFWGε
w pc1

, pc2
, . . . , pcm

 ≤pmax for every w,

(54)

where pmin � min(pcj
) and pmax � max(pcj

). Let f

(x) �
����������
(2 − x2/x2)


, x ∈ [0, 1], then f(x) � (− 2/

x3)
����������
(x2/2 − x2)


< 0. So, f(x) is the decreasing

function on (0, 1]. Since μpc min≤ μpcj
≤ μpc max for all

j, then f(μpc max)≤f(μpc
)≤f (μpc min)(j � 1, . . .n)

����������������
(2 − μ2pc max/μ2pc max)


≤

�������
(2 − μ2pc

/


μ2pc
)≤

����������
(2 − μ2pcmin/



μ2pc min)where w � (w1, w2, . . . , wm)T is the weighted
vector of pcj

(j � 1, . . . ,n) such that wj ∈ [0,1] and


m
j�1 wj � 1. (en, we have

⟺

����������������



m

j�1

2 − μ2pc max

μ2pc max

⎛⎝ ⎞⎠

wj




≤

��������������



m

j�1

2 − μ2pc

μ2pc

⎛⎝ ⎞⎠

wj




≤

����������������



m

j�1

2 − μ2pc min

μ2pc min

⎛⎝ ⎞⎠

wj
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⇔

��������������������



m

j�1

2 − μ2pc max

μ2pc max

⎛⎝ ⎞⎠


m

j�1
wj




≤

�����������������



m

j�1

2 − μ2pc

μ2pc

⎛⎝ ⎞⎠


m

j�1
wj




≤

��������������������



m

j�1

2 − μ2pc min

μ2pc min

⎛⎝ ⎞⎠


m

j�1
wj




⇔]pc min≤

����������


m
j�1 μ2pc

 
wj



��������������������������


m
j�1 2 − μ2pc

 
wj

+ 
m
j�1 μ2pc

 
wj

 ≤ μpc max.

(55)

Again, let h(y) �
������������
(1 − y2/1+ y2)


,x ∈ [0,1], then

h(y) � (− 2y/(1 − y3)2)
������������
(1+ y2/1 − y2)


<0. So, h(y)

is the decreasing function on (0,1]. Since vpc min≤ vpcj

≤vpc maxfor all j.(en, h(vpc max)≤h (vpc
)≤ h(vpcmin)

for all j
������������������
(1 − v2pc max/1+ v2pc max)


≤

����������
(1 − v2pc

/v2pc
)


≤

���������������
(1 − v2pc min/v2pc min)


, where w � (w1, w2, . . . , wm)T is

the weighted vector of pcj
(j � 1, . . . ,n) such that

wj ∈ [0,1]and 
m
j�1 wj � 1. (en, we have

⇔

����������������



m

j�1

1 − ]2pc max

1 + ]2pc max

⎛⎝ ⎞⎠

wj




≤

��������������



m

j�1

1 − ]2pc

1 + ]2pc

⎛⎝ ⎞⎠

wj




≤

����������������



m

j�1

1 − ]2pc min

1 + ]2pc min

⎛⎝ ⎞⎠

wj




⇔

��������������������



m

j�1

1 − ]2pc max

1 + ]2pc max

⎛⎝ ⎞⎠


m

j�1
wj




≤

�����������������



m

j�1

1 − ]2pc

1 + ]2pc

⎛⎝ ⎞⎠


m

j�1
wj




≤

��������������������



m

j�1

1 − ]2pc min

1 + ]2pc min

⎛⎝ ⎞⎠


m

j�1
wj




⇔]pc max≤

����������������������������


m
j�1 1 + ]2pc

 
wj

− 
m
j�1 1 − ]2pc

 
wj



����������������������������


m
j�1 1 − ]2pc

 
wj

+ 
m
j�1 1 + ]2pc

 
wj

 ≤ μpc min.

(56)

Let PCFWGε
w (pc1

, pc2
, . . . , pcm

) � pc. (en, equations
(52) and (55) can be written as μpc min≤ μpcj

≤ μpc max
and vpc min≤ vpcj

≤ vpc max, respectively. (us, S(pc) �

μ2pc
− v2pc
≤ μ2pc max − v2pc max � S(pcmax) and S(pc) �

μ2pc
− v2pc
≥ μ2pc min − v2pc min � S(pcmin).

If S(pc)< S(pcmax) and S(pc)> S(pcmin), then

pcmin <PCFWGε
w pc1

, pc2
. . . , pcm

 <pcmax for all w.

(57)

If S(pc) � S(pcmax ), then μ2pc
� μ2pcc max and

v2pc
� v2pc max.

(us,
H(pc) � μ2pc

+ v2pc
� μ2pc max + v2pcmax

� H(pcmax).
(en, we have

PCFWGε
w pc1

, pc2
, . . . , pcm

  � pcmax, for every w.

(58)

If S(pc) � S(pcmin), then μ2pc
− v2pc

� μ2pc min − v2pc min,
then μ2pc

� μ2pc min and v2pc
� v2pc min. (us, H(pc)

� μ2pc
+ v2pc

� μ2pc min + v2pcmin
� H(pcmin ). (en, we

have

PCFWGε
w pc1

, pc2
, . . . , pcm

 <pcmin for every w. (59)

(us, from equations (55) to (57), we have pcmin <
PCFWGε

w(pc1
, pc2

, . . . , pcm
)<pcmax for every w.

(3) Monotonicity:

(e proof follows from (2). □

6. An Application of the Pythagorean Cubic
Fuzzy Einstein Weighted Geometric
(PCFEWG) Aggregation Operator to Group
Decision-Making Problems

In this unit, we develop an application of Pythagorean cubic
fuzzy Einstein weighted geometric (PCFEWG) operator to
multicriteria decision-making problem.

Algorithm. Let F � F1, F2, . . . , Fn  be the set of n alterna-
tives, H � H1, H2, . . . , Hm  be the set of m attributes, and

D
→

� D
→

1, D
→

2, . . . , D
→

k  be the set of k decision makers. Let

w � (w1, w2, . . . , wm)T be the weighted vector of the attri-
butes Hi(i � 1, 2, . . . , m), such that wi ∈ [0, 1] and 

m
i�1 wi �
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1. Let η→ � ( η→1, η
→

2, η
→

3, . . . , η→k)T be the weighted vector of
the decision makers D

→
s(s � 1, 2, . . . , k), such that η→s ∈

[0, 1] and 
k
s�1 η→s � 1. (is method has the following steps:

Step 1. In this step, we construct the Pythagorean cubic
fuzzy decision-making matrices, D

→s
� [ α→(s)

ji ]n×m(s �

1, 2, . . . , k). If the criteria have two types, such as benefit
criteria and cost criteria, then the Pythagorean cubic
fuzzy decision matrices, D

→s

� [ α→(s)

ji ]n×m can be con-
verted into the normalized Pythagorean cubic fuzzy
decision matrices, R

→s

� (ε(s))m×n, where ε
(s)
ij . If all the

criteria have the same type, then there is no need of
normalization.
Step 2. We use the Pythagorean cubic fuzzy Einstein
weighted geometric (PCFEWG) operator to aggregate
all the individual normalized Pythagorean cubic fuzzy
decision matrices, R

→s

� (ε(s))m×n(s � 1, 2, . . . , k), into
the single Pythagorean cubic fuzzy decision matrix,
R
→

� (εij)m×n.
Step 3. We aggregate all the preference values εij(j �

1, 2, 3, . . . , n, i � 1, 2, . . . , m) by using the PCFEWG
operator and get the overall preference values εj(j �

1, 2, . . . , n) corresponding to the alternatives Fj(j � 1,

. . . , n).
Step 4. We calculate the scores of εij(j � 1, 2, 3, . . . , n).
If there is no difference between two or more than two
scores, then we must have to find out the accuracy
degrees of the collective overall preference values.
Step 5. We arrange the scores of all the alternatives in
the form of descending order and select that alternative
which has the highest score function.

7. Numerical Example

In Pakistan’s stock exchange, listed Internet companies play
an important role. (e performance of listed companies
affects capital market resource allocation and has become a
common concern of shareholders, creditors, government
bodies, and other stakeholders. An investment firm would
like to invest a sum of money in stocks on the Internet. So,
the investment bank employs three kinds of experts to
determine the possible investment value: market maker,
dealer, and finder. (ree Internet stocks are chosen in which
the earnings ratio is higher than other stocks: (1) is PTCL; (2)
is NayaTel; (3) is Wi-Tribe out of three characteristics: (1) is
the trend in the stock market; (2) is in the course of policy;
(3) is the annual results. About the attributes Aj (j� 1, 2, 3),
the three experts test Internet stocks xi (I� 1, 2, 3) and create
the following three Pythagorean cubic fuzzy decision ma-
trices in Table 1. Tablesss 2 and 3 display the expert weights
and attribute weights, which all take the form of PCFEs,
respectively. (en, to get the most desirable alternative(s),
which includes the following steps, we use the approach
developed in Section 6:

Step 1. (e decision maker gives his decision in
Tables 1–3.
Step 2. We apply the Pythagorean cubic fuzzy Einstein
weighted geometric (PCFEWG) operator to aggregate

all the individual normalized Pythagorean cubic fuzzy
decision matrices R

→s

� (ε(s))m×n, (s � 1, 2, . . . , k), into
the single Pythagorean cubic fuzzy decision matrix,
R
→

� (εij)m×n.
Aggregated Pythagorean cubic fuzzy decision matrix
D1,

X1 � ([.4660, .6120], .7323; [.5760, .7056], .5726),

X2 � ([.5780, .7306], .5360; [.4810, .6235], .7283),

X3 � ([.6662, .7908], .5691; [.4661, .5657], .7381).

(60)

Aggregated Pythagorean cubic fuzzy decision matrix
D2,

X1 � ([.5700, .6742], .6364; [.5532, .7443], .5563),

X2 � ([.5095, .6564], .5333; [.5972, .6994], .5637),

X3 � ([.6733, .7002], .6155; [.4523, .5812], .5810).

(61)

Aggregated Pythagorean cubic fuzzy decision matrix
D3,

X1 � ([.6204, .7207], .5655; [.4523, .5810], .5703),

X2 � ([.6784, .7788], .7024; [.4233, .5232], .5434),

X3 � ([.6291, .7306], .4948; [.4765, .6040], .6994).

(62)

Step 3. We aggregate all the preference values, which
are

X1 � ([.6808, .7692], .7472; [.4468, .5859], .4777),

X2 � ([.7041, .8039], .7070; [.4312, .5310], .5221),

X3 � ([.7591, .8173], .6866; [.3902, .4940], .5743).

(63)

Step 4. We calculate the scores of Xj(j � 1, 2, 3).

S X1(  � .0207,

S X2(  � .0532,

S X3(  � .0773.

(64)

Step 5. We organize the scores of the alternatives in
descending order and choose the highest score func-
tion. Hence, X3 >X2 >X1. (us, the most wanted al-
ternative is X3.

8. Comparison Analysis

(e same numerical example is solved by using other ag-
gregation operators, including IFEWG (intuitionistic fuzzy
Einstein weighted geometric) operator, IFEOWG (intui-
tionistic fuzzy Einstein ordered weighted geometric) oper-
ator, PFEWG (picture fuzzy Einstein weighted geometric)
operator, PFEOWG (picture fuzzy Einstein ordered
weighted geometric) operator, PyFEWG (Pythagorean fuzzy
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Einstein weighted geometric) operator, PyFEOWG (Py-
thagorean fuzzy Einstein ordered weighted geometric) op-
erator, ICFEWG (intuitionistic cubic fuzzy Einstein
weighted geometric) operator, ICFEOWG (intuitionistic
cubic fuzzy Einstein ordered weighted geometric) operator,
CPFEWG (cubic picture fuzzy Einstein weighted geometric)
operator, and CPFEOWG (cubic picture fuzzy Einstein
ordered weighted geometric) operator to demonstrate the
efficiency and eminent benefits of the proven aggregation
operators, by ignoring the additional preference matrix in
some existing operators. Different aggregation operators
have distinct strategic classifications so that, in compliance

with their consultation, they may retain a small disparity. By
contrast, the appropriate choice developed by any aggre-
gation operator is important and recognizes the proposed
solution’s feasibility and effectiveness of aggregation oper-
ators. Table 4 gives a comparative study of the final rankings
of all aggregation operators.

9. Conclusion

We introduced the Pythagorean cubic fuzzy set, which is a
generalization of the interval-valued Pythagorean fuzzy set,
in this paper. Einstein’s Pythagorean cubic fuzzy weighted

Table 1: Decision matrix Cby decision maker D1.

A1 A2 A3 A4

X1
[.5, .7]; .5〈 〉

[.4, .5]; .6〈 〉
 

[.3, .4]; .8〈 〉

[.8, .9]; .6〈 〉
 

[.5, .7]; .8〈 〉

[.4, .6]; .6〈 〉
 

[.6, .7]; .8〈 〉

[.5, .6]; .5〈 〉
 

X2
[.5, .6]; .8〈 〉

[.4, .7]; .6〈 〉
 

[.6, .7]; .6〈 〉

[.5, .6]; .7〈 〉
 

[.6, .8]; .2〈 〉

[.5, .6]; .6〈 〉
 

[.6, .8]; .7〈 〉

[.5, .6]; .6〈 〉
 

X3
[.8, .9]; .3〈 〉

[.3, .4]; .9〈 〉
 

[.7, .8]; .9〈 〉

[.5, .6]; .3〈 〉
 

[.6, .8]; .5〈 〉

[.5, .6]; .7〈 〉
 

[.6, .7]; .6〈 〉

[.5, .6]; .8〈 〉
 

Table 2: Decision matrix Cby decision maker D2.

A1 A2 A3 A4

X1
[.5, .6]; .8〈 〉

[.7, .8]; .5〈 〉
 

[.4, .5]; .8〈 〉

[.7, .9]; .5〈 〉
 

[.7, .8]; .4〈 〉

[.4, .5]; .7〈 〉
 

[.7, .8]; .6〈 〉

[.3, .6]; .5〈 〉
 

X2
[.7, .8]; .4〈 〉

[.4, .5]; .7〈 〉
 

[.4, .5]; .7〈 〉

[.7, .8]; .5〈 〉
 

[.5, .8]; .7〈 〉

[.6, .7]; .4〈 〉
 

[.5, .6]; .4〈 〉

[.5, .7]; .6〈 〉
 

X3
[.7, .8]; .6〈 〉

[.4, .5]; .5〈 〉
 

[.6, .7]; .7〈 〉

[.5, .6]; .6〈 〉
 

[.7, .5]; .7〈 〉

[.5, .7]; .6〈 〉
 

[.7, .8]; .5〈 〉

[.4, .5]; .6〈 〉
 

Table 3: Decision matrix Cby decision maker D3.

A1 A2 A3 A4

X1
[.7, .8]; .4〈 〉

[.4, .5]; .7〈 〉
 

[.6, .7]; .4〈 〉

[.5, .6]; .7〈 〉
 

[.6, .7]; .8〈 〉

[.5, .6]; .4〈 〉
 

[.6, .7]; .7〈 〉

[.4, .6]; .4〈 〉
 

X2
[.6, .7]; .7〈 〉

[.5, .6]; .6〈 〉
 

[.7, .8]; .5〈 〉

[.4, .5]; .7〈 〉
 

[.7, .8]; .7〈 〉

[.4, .5]; .5〈 〉
 

[.7, .8]; .9〈 〉

[.4, .5]; .3〈 〉
 

X3
[.5, .6]; .6〈 〉

[.6, .7]; .5〈 〉
 

[.6, .7]; .5〈 〉

[.5, .6]; .8〈 〉
 

[.7, .8]; .4〈 〉

[.4, .5]; .7〈 〉
 

[.7, .8]; .5〈 〉

[.4, .6]; .7〈 〉
 

Table 4: Final ranking comparative study with existing aggregation operators.

Models Aggegation operators Ranking
IFEWG Intuitionistic fuzzy Einstein weighted geometric [18] X3 >X1 >X2
IFEOWG Intuitionistic fuzzy Einstein ordered weighted geometric [18] X3 >X1 >X2
PFEWG Picture fuzzy Einstein weighted geometric [28] X3 >X2 >X1
PFEOWG Picture fuzzy Einstein ordered weighted geometric [28] X3 >X2 >X1
PyFEWG Pythagorean fuzzy Einstein weighted geometric [29] X3 >X2 >X1
PyFEOWG Pythagorean fuzzy Einstein ordered weighted geometric [29] X3 >X2 >X1
ICFEWG Intuitionistic cubic fuzzy Einstein weighted geometric [22] X3 >X2 >X1
ICFEOWG Intuitionistic cubic fuzzy Einstein ordered weighted geometric [22] X3 >X2 >X1
PCFEWG Pythagorean cubic fuzzy Einstein weighted geometric (proposed) X3 >X2 >X1
PCFEOWG Pythagorean cubic fuzzy Einstein ordered weighted geometric (proposed) X3 >X2 >X1
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geometric operator has been described (PCFEWG). We also
discussed some of the fundamental properties of this op-
erator, such as idempotency, boundary, and monotonicity.
(e Pythagorean cubic fuzzy Einstein weighted geometric
(PCFEWG) operator was then used to deal with different
parameters for decision-making problems under Pythago-
rean cubic fuzzy details. We developed a multicriteria de-
cision-making algorithm for Pythagorean cubic fuzzy
Einstein weighted geometric problems (PCFEWG). Finally,
we put together a numerical example of a decision-making
problem.

In future, we can extend this concept for spherical cubic
fuzzy sets and their application in multicriteria group de-
cision-making, pattern recognition, and cluster analysis. We
can also extend Pythagorean cubic fuzzy sets for various
aggregation operators such as Hamacher, Dombi, Haronian
mean, Bonferroni mean, TOPSIS, and their applications in
group decision-making.

Data Availability

No data were used in this study.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

References

[1] G. Kou, D. Ergu, and C. Lin, “Pairwise comparison matrix in
multiple criteria decision making,” Technological and Eco-
nomic Development of Economy, vol. 22, no. 5, pp. 738–765,
2016.

[2] L. A. iZadeh, “Fuzzy sets,” Information Iand control, vol. 8,
pp. 338–356, 1965.

[3] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy sets and
systems, vol. 20, pp. 87–96, 1986.

[4] R. R. Yager, “Pythagorean fuzzyisubsets,” in Proceedings of the
Joint IFSA World Congress and NAFIPS Annual Meeting,
pp. 57–61, Edmonton, Canada, 2013.

[5] K. T. Atanassov, “More on intuitionistic Fuzzy sets,” Fuzzy
sets and systems, vol. 33, pp. 37–46, 1989.

[6] X. Peng and Y. Yang, “Some results for Pythagorean Fuzzy
sets,” International Journal of Intelligent systems, vol. 30,
no. 11, pp. 1133–1160, 2015.

[7] M. S. A. Khan, S. Abdullah, and M. Y. Ali, “Extension of
TOPSIS method base on Choquet Integral under Interval-
valued Pythagorean Fuzzy environment,” Journal of Intelli-
gent Fuzzysystems, vol. 34, pp. 267–282, 2018.

[8] X. D. Peng, “Multiple attribute group decision making
methods based on Pythagorean Fuzzyilinguistic set,” Com-
puter Engineering and Application, vol. 52, no. 23, pp. 50–55,
2016.

[9] W. Liang and X. L. Zhang, “(emaximizing deviationmethod
based on Interval-valued Pythagorean Fuzzyweighted ag-
gregating operator ifor multiple criteria group decision
analysis,” Discrete Dynamics in Nature Society, vol. 2015,
pp. 1–15, 2015.

[10] X. Gou, Z. Xu, and P. Ren, “(e properties of continuous
Pythagorean FuzzyInformation,” International Journal of
Intelligent Systems, vol. 31, no. 5, pp. 401–424, 2016.

[11] X. Dai, “Approaches to pythagorean Fuzzyistochastic multi-
criteria decision making based on prospect theory and regret
theory with new distance measure and score function,” In-
ternational Journal of Intelligent systems, vol. 11, pp. 1–28,
2017.

[12] D. Liang and Z. Xu, A. P. Darko, Projection model for fusing
the Information of pythagorean Fuzzy multi-criteria group
decision making based ion geometric bonferroni mean,”
International Journal of Intelligent systems, vol. 9, pp. 1–22,
2017.

[13] H. Garg, “A novel accuracy functioniunder Interval-valued
Pythagorean Fuzzy environment for solving multi-criteria
decision making problem,” Journal of Intelligent and Fuzzy-
systems, vol. 31, pp. 529–540, 2016.

[14] M. S. A. Khan, S. Abdullah, and M. Y. Ali, “Pythagorean
Fuzzyiprioritized aggregation operators and their application
to multi-attribute group decision making,” Granular Com-
puting, vol. 2, pp. 1–15, 2018.

[15] M. S. A. Khan, S. Abdullah, and M. Y. Ali, “Interval-valued
Pythagorean FuzzyGRA method for imultiple attribute de-
cision making with Incomplete weight Information,” Inter-
national Journal of Intelligent Systems, vol. 8, 2018.

[16] Y. M. Wang, “Using the method of maximizing deviations to
make decision for multi-indices,” System Engineering and
Electronics, vol. 7, pp. 24–26, 1998.

[17] W. Liu, “Intuitionistic Pythagorean FuzzyInformation ag-
gregation using einstein operations,” Fuzzysystems, vol. 20,
no. 5, pp. i923–938, 2012.

[18] H. Garg, “iA inew igeneralized Pythagorean FuzzyInforma-
tion aggregation using einstein operations and Its application
to decision making,” International Journal Iof Intelligent
systems, vol. i, pp. i1–35, 2011.

[19] R. R. Yager, “Pythagoreanmembership grades In multicriteria
decision making,” IEEE Transactions on Fuzzysystems, vol. 22,
pp. 958–965, 2014.

[20] Y. Yang, “Induced Interval-valued Intuitionistic FuzzyEin-
stein ordered weighted geometric operator and their appli-
cation ito multiple attribute decision making,” Journal of
Intelligent and Fuzzy Systems, vol. 26, pp. 2945–2954, 2014.

[21] X. Peng and Y. Yang, “Fundamental properties of interval-
valued pythagorean Fuzzyaggregation operators,” Interna-
tional Journal of Intelligent Systems, vol. 5, pp. 1–44, 2015.

[22] S. Muneeza, “Multicriteria Group Decision-Making for
Supplier Selection Based on Intuitionistic Cubic FuzzyiAg-
gregation operators,” International Journal of Fuzzysystems,
vol. 22, pp. 810–823, 2020.

[23] X. L. Zhang, “Multi-criteria Pythagorean Fuzzydecision
analysis: a hierarchical QUALIFLEX approach with the
closeness Index-based ranking methods,” Information Sci-
ences, vol. 330, pp. 104–124, 2016.

[24] M. S. A. Khan, S. Abdullah, and M. Y. Ali, “Interval-valued
Pythagorean Fuzzyigeometric aggregation operators and their
application to group decision making problem,” Cogent
Mathematics, vol. 4, 2017.

[25] H. Garg, “A novel accuracy function under Interval-valued
Pythagorean Fuzzyenvironment for solving multi criteria
decision making problem,” International Journal of Intelligent
Systems, vol. 31, no. 1, pp. 529–540, 2016a.

[26] H. Garg, “A novel accuracy function under Interval-valued
Pythagorean Fuzzyenvironment for solving multi criteria
decision making problem,” International Journal of Intelligent
Systems, vol. i31, no. 9, pp. 886–920, 2016b.

[27] F. Khan, “Pythagoreanicubic Fuzzyaggregation operators and
their application to multi-criteria decision making problems,”

Journal of Mathematics 17



Retraction
Retracted: More on Dα-Closed Sets in Topological Spaces

Journal of Mathematics

Received 10 October 2023; Accepted 10 October 2023; Published 11 October 2023

Copyright © 2023 Journal of Mathematics. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tis article has been retracted by Hindawi following an
investigation undertaken by the publisher [1]. Tis in-
vestigation has uncovered evidence of one or more of the
following indicators of systematic manipulation of the
publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research

reported
(3) Discrepancies between the availability of data and

the research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Peer-review manipulation

Te presence of these indicators undermines our con-
fdence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this
article is unreliable. We have not investigated whether au-
thors were aware of or involved in the systematic manip-
ulation of the publication process.

Wiley and Hindawi regrets that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our own Research Integrity and Re-
search Publishing teams and anonymous and named ex-
ternal researchers and research integrity experts for
contributing to this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] X. Gao and A. M. Khalil, “More on Dα-Closed Sets in To-
pological Spaces,” Journal of Mathematics, vol. 2021, Article ID
5525739, 9 pages, 2021.

Hindawi
Journal of Mathematics
Volume 2023, Article ID 9821873, 1 page
https://doi.org/10.1155/2023/9821873

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9821873


RE
TR
AC
TE
DResearch Article

More on Dα-Closed Sets in Topological Spaces

Xiao-Yan Gao1 and Ahmed Mostafa Khalil 2

1School of Mathematics and Statistics, Yulin University, Yulin 719000, China
2Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

Correspondence should be addressed to Ahmed Mostafa Khalil; a.khalil@azhar.edu.eg

Received 23 February 2021; Revised 1 April 2021; Accepted 8 April 2021; Published 26 April 2021

Academic Editor: Sami Ullah Khan

Copyright © 2021 Xiao-Yan Gao and Ahmed Mostafa Khalil. .is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

.e aim of this paper is to present and study topological properties ofDα-derived,Dα-border,Dα-frontier, andDα-exterior of a
set based on the concept of Dα-open sets. .en, we introduce new separation axioms (i.e., Dα − R0 and Dα − R1) by using the
notions of Dα-open set and Dα-closure. .e space of Dα − R0 (resp., Dα − R1) is strictly between the spaces of α − R0 (resp.,
α − R1) and g − R0 (resp., g − R1). Further, we present the notions of Dα-kernel and Dα-convergent to a point and discuss the
characterizations of interesting properties between Dα-closure and Dα-kernel. Finally, several properties of weakly Dα − R0
space are investigated.

1. Introduction and Preliminaries

Many researchers (see [1–9]) were interested in general
topology-like family (e.g., the family of all α-open sets) and
also the notion of generalized closed (briefly, g-closed)
subset of a topological space [10–14]. In 1982, Dunham [14]
used the generalized closed sets to define a novel closure
operator and consequently a novel topology τ∗, on the space,
and discussed several of the properties of this novel to-
pology. Sayed and Khalil [15] introduced and studied a novel
type of sets called Dα-open sets in topological spaces and
studied the notions of Dα-continuous, Dα-open, and
Dα-closed functions between topological spaces. Further,
they investigated several properties of Dα-closed and
strongly Dα-closed graphs. In fact, research on spaces
analogous to topological spaces and generalized closed sets
among topological spaces may have certain driving effect on
research on theory of rough set, soft set, spatial reasoning,
implicational spaces and knowledge spaces, and logic (see
[16–18]). For this reason, we will define the notions of
Dα-derived, Dα-border, Dα-frontier, and Dα-exterior of a
set based on the notion ofDα-open sets. We will also discuss
new separation axioms (Dα − R0 andDα − R1) by using the
notions of Dα-open set and Dα-closure operator.

.e rest of this article is arranged as follows. In this
section, we briefly recall several notions: α-open set, an
α-closed set, generalized open set, generalized closed set, α −

R0 space, g − R0 space, α − R1 space, g − R0 space, α-derived,
α-border, α-frontier, and α-exterior of a set, which are used
in the sequel. In Section 2, we define the notions of
Dα-derived, Dα-border, Dα-frontier, and Dα-exterior of a
set based on Dα-open sets. In Section 3, we present the
notions Dα − R0, Dα − R1, Dα-kernel, and Dα-convergent
to a point and introduce the characterizations of interesting
properties betweenDα-closure andDα-kernel. In Section 4,
we define the weakly Dα − R0 space and investigate some
properties of weakly Dα − R0 space.

.roughout the present paper, two subsets A of a space
(X, τ), C(A) andI(A), denote the closure and the interior
of A, respectively. Since we require the following known
definitions, notations, and some properties, we recall in this
section.

Definition 1. Let (X, τ) be a topological space and A ⊆ X.
.en,

(1) A is α-open [1] if A ⊆ ICI(A) and α-closed [1] if
C(I(C(A))) ⊆ A
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(2) A is generalized closed (briefly, g-closed) [10] if
C(A)⊆U whenever A⊆U and U is open in X

(3) A is generalized open (briefly, g-open) [10] if X\A is
g-closed

(4) A isDα-open [15] if A⊆I∗CI∗(A) and Dα-closed
[15] if C∗(I(C∗(A)))⊆A

.e α-closure of a subset A of X [2] is the intersection of
all α-closed sets containing A and is denoted byCα(A). .e
α-interior of a subset A of X [2] is the union of all α-open
sets contained in A and is denoted by Iα(A). .e inter-
section of all g-closed sets containing A [14] is called the
g-closure ofA and is denoted byC∗(A) and the g-interior of
A [19] is the union of all g-open sets contained in A and is
denoted by I∗(A). .e intersection of all Dα-closed sets
containing A [15] is called the Dα-closure of A and is
denoted by CD

α (A) and the Dα-interior of A [15] is the
union of all Dα-open sets contained in A and is denoted by
ID

α (A).
We need the following notations:

(i )αO(X) (resp., αC(X)) denotes the family of all
α-open sets (resp., α-closed sets) in (X, τ)

(ii) GO(X) (resp., GC(X)) denotes the family of all
generalized open sets (resp., generalized closed sets)
in (X, τ)

(iii) DαO(X) (resp.,DαC(X)) denotes the family of all
Dα-open sets (resp., Dα-closed sets) in (X, τ)

(iv) αO(X, x) � U|x ∈ U ∈ αO(X, τ){ }, O(X, x) �

U|x ∈ U ∈ τ{ }, and αC(X, x) �

U|x ∈ U ∈ αC(X, τ){ }

(v) DαO(X, x) � U|x ∈ U ∈ DαO(X, τ){ } and
DαC(X, x) � U|x ∈ U ∈ DαC(X, τ){ }

Definition 2. A topological space (X, τ) is said to be

(1) α − R0 space [20] (resp., g − R0 space [21]) if every
α-open (resp., g-open) set contains the α-closure
(resp., g-closure) of each of its singletons

(2) α − R1 space [20] (resp., g − R1 space [21]) if, for x, y

in X with Cα( x{ })≠Cα( y ) (resp.,
C∗( x{ })≠C∗( y )), there exist disjoint α-open
(resp., g-open) sets U and V such that Cα( x{ })

(resp., C∗( x{ })) is a subset of U and Cα( y ) (resp.,
C∗( y )) is a subset of V

Definition 3 (see [22]). A point x ∈ X is said to be α-limit
point of A in topological space (X, τ) if, for each α-open set
U containing x, U∩ (A∖ x{ })≠ ϕ. .e set of all α-limit points
of A is called an α-derived set of A.

Definition 4 (see [22]). Let A be a subset of a space X:

(1) An α-border of A is defined by bα(A) � A∖Iα(A)

(2) An α-frontier of A is defined by
Fα(A) � Cα(A)∖Iα(A)

(3) An α-exterior of A is defined by Extα(A) �

Iα(X∖A)

2. ADα-Derived,Dα-Border,Dα-Frontier, and
Dα-Exterior of a Set

Definition 5. Let A be a subset of a space X. A point x ∈ X is
said to be Dα-limit point of A if it satisfies the following
assertion:

∀U ∈ DαO(X)(x ∈ U ⇒ U∩ (A∖ x{ })≠ϕ) (1)

.e set of allDα-limit points of A is called aDα-derived
set of A and is denoted by dD

α (A).
Note that, for a subset A of X, a point x ∈ X is not a

Dα-limit point of A if and only if there exists aDα-open set
U in X such that

x ∈ U, U∩ (A∖ x{ }) � ϕ, (2)

or, equivalently,

x ∈ U, U∩A � ϕ, U∩A � x{ }, (3)

or equivalently,

x ∈ U, U∩A⊆ x{ }. (4)

Theorem 1. Let A and B be subsets of a topological space X.
0en, the following results hold:

(1) dD
α (A)⊆ dα(A), where dα(A) is the α-derived set

([22], Definition 2.1) of A

(2) If A⊆B, then dD
α (A)⊆ dD

α (B)

(3) dD
α (A)∪ dD

α (B)⊆dD
α (A∪B) and dD

α (A∩B)⊆ dD
α

(A)∩dD
α (B)

(4) dD
α (dD

α (A))∖A⊆dD
α (A)

(5) dD
α (A∪dD

α (A))⊆A∪dD
α (A)

Proof. (1) It follows from ([15], .eorem 3.6 (i)).
(2) Let x ∈ dD

α (A) and U ∈ DαO(X) with x ∈ U. .en
(U∩A)∖ x{ }≠ ϕ. Since A⊆B, it follows that
(U∩B)∖ x{ }≠ϕ. .erefore x ∈ dD

α (B).
(3) It follows from (2) above.
(4) Let x ∈ dD

α (dD
α (A))∖A and U ∈ DαO(X) with

x ∈ U. .en U∩ (dD
α (A)∖ x{ })≠ ϕ. Let

y ∈ U∩ (dD
α (A)∖ x{ }). .en y ∈ U and y ∈ dD

α (A),
and so U ∈ (A∖ y )≠ϕ. If we take z ∈ U∩ (A∖ y ),
then z≠x for z ∈ A and x ∉ A. Hence,
U ∈ (A∖ y )≠ ϕ. .erefore x ∈ dD

α (A).
(5) Let x ∈ dD

α (A∪dD
α (A)). If x ∈ A, the result is ob-

vious. Suppose that x ∉ A. .en
U∩ ((A∪ dD

α (A))∖ x{ })≠ ϕ for all U ∈ DαO(X)

with x ∈ U. Hence, (U∩A)∖ x{ }≠ ϕ or
U∩ (dD

α (A)∖ x{ })≠ϕ. .e first case implies that
x ∈ dD

α (A). If U∩ (dD
α (A)∖ x{ })≠ϕ, then

x ∈ dD
α (dD

α (A)). Since x ∉ A, it follows similarly

2 Journal of Mathematics
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from (4) that x ∈ dD
α (dD

α (A))∖A ⊆dD
α (A). .ere-

fore, dD
α (A∪dD

α (A))⊆A∪dD
α (A) holds. □

Theorem 2. Let A be a subset of a topological space X. 0en
CD

α (A) � A∪ dD
α (A).

Proof. Let x ∈ CD
α (A). If x ∈ A, then the proof is complete.

If x ∉ A and U ∈ DαO(X) with x ∈ U, then
(U∩A)∖ x{ }≠ϕ, and so x ∈ dD

α (A). Hence,
CD

α (A)⊆A∪dD
α (A). .e converse follows from ([15],

.eorem 2.14 (i)) and dD
α (A)⊆CD

α (A). .us,
A∪dD

α (A)⊆CD
α (A). .erefore CD

α (A) � A∪dD
α (A). □

Corollary 1. A subset A is a Dα-closed set if and only if it
contains the set of the Dα-limit points

Theorem 3. Let A and B be subsets of X. If A is Dα-closed,
then CD

α (A∩B)⊆A∩CD
α (B).

Proof. It follows from .eorems 2.13 and 2.14 (vi) in
[15]. □

Lemma 1. Let A be a subset of a topological space X. If A is
Dα-closed set, then dD

α (A)⊆A.

Proof. Suppose that A is aDα-closed set. Let x ∉ A; that is,
x ∈ X∖A. Since it is aDα-open, x is not aDα-limit point of
A, that is, x ∉ dD

α (A), because (X∖A)∩ (A∖ x{ }) � ϕ.
Hence, dD

α (A)⊆A. □

Theorem 4. Let A be a subset of a topological space X. If F is
a Dα-closed set of A, then dD

α (A)⊆F.

Proof. By .eorem 1 (2) and Lemma 1, A⊆F implies that
dD
α (A)⊆ dD

α (F)⊆F. □

Theorem 5. Let A be a subset of a topological space X. If a
point x ∈ X is aDα-limit point of A, then x is also aDα-limit
point of A∖ x{ }.

Proof. .e proof is obvious. □

Definition 6. Let A be a subset of a topological space X. .e
Dα-border of A, denoted by bDα (A), is defined as
bDα (A) � A∖ID

α (A).

Theorem 6. Let A be a subset of a topological space X. 0en,
the following results hold:

(1) bDα (A)⊆ bα(A), where bα(A) is the α-border ([22],
Definition 2.8) of A

(2) A � ID
α (A)∪ bDα (A)

(3) ID
α (A)∩ bDα (A) � ϕ

(4) A is a Dα-open set if and only if bDα (A) � ϕ
(5) bDα (ID

α (A)) � ϕ
(6) bDα (A) � A∩CD

α (X∖A)

(7) bDα (A) � A∩dD
α (X∖A)

Proof. (1) Since Iα(A)⊆ID
α (A) ([1], .eorem 3.15 (i)),

we have

b
D
α (A) � A∖ID

α (A)⊆A∖Iα(A) � bα(A), (5)

(2) and (3) are obvious.
(4) Itfollows from .eorems 3.14 and 3.15 (i) in [15].
(5) Since ID

α (A) is a Dα-open, it follows from (4) that
bDα (ID

α (A)) � ϕ.
(6) Using ([15], Lemma 3.13 (i)), we have

b
D
α (A) � A∖ID

α (A) � A∖ X∖CD
α (X∖A) 

� A∩CD
α (X∖A).

(6)

(7) Applying (6) and .eorem 3, we have

b
D
α (A) � A∩CD

α (X∖A) � A∩ (X∖A)∪d
D
α (X∖A) 

� A∩ d
D
α (X∖A).

(7)
□

.e converse of (1) of .eorem 6 is not true in general as
shown in the following example.

Example 1. Let (X, τ) be a topological space, where X �

a, b, c{ } and τ � ϕ, a{ }, X . .en, FX � ϕ, b, c{ },

X},αO(X) � ϕ, a{ }, a, b{ }, a, c{ }, X ,αC(X) � ϕ, b{ }, c{ },

b, c{ }, X},DαO(X) � DαC(X) � P(X). Let A � c{ }. .en
bα(A) � c{ }⊈ bDα (A) � ϕ.

Definition 7. Let A be a subset of a topological space X. .e
Dα-frontier of A, denoted by FrDα (A), is defined as
FrDα (A) � CD

α (A)∖ID
α (A).

Lemma 2. Let A be a subset ofX. IfA is aDα-closed subset of
X, then bDα (A) � FrDα (A).

Proof. It follows from ([15], .eorem 2.13). □

Theorem 7. Let A be a subset of a topological space X. 0en
the following results hold:

(1) FrDα (A)⊆ Frα(A), where Frα(A) is the α-frontier
([22], Definition 2.11) of A.

(2) CD
α (A) � ID

α (A)∪ FrDα (A).
(3) ID

α (A)∩ FrDα (A) � ϕ.
(4) bDα (A)⊆ FrDα (A).
(5) FrDα (A) � bDα (A)∪ (dD

α (A)∖ID
α (A)).

(6) If A is a Dα-open set, then FrDα (A) � bDα (X∖A).
(7) FrDα (A) � CD

α (A)∩CD
α (X∖A).

(8) FrDα (A) � FrDα (X∖A).
(9) FrDα (A) is a Dα-closed set.
(10) FrDα (FrDα (A)) ⊆ FrDα (A).
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(11) FrDα (ID
α (A))⊆ FrDα (A).

(12) FrDα (CD
α (A)) ⊆ FrDα (A).

(13) ID
α (A) � A∖FrDα (A).

(14) FrDα (A) � CD
α (A)∖ID

α (A).
(15) CD

α (A)⊆A∪ FrDα (A).
(16) X∖FrDα (A) � ID

α (A)∪ID
α (X∖A).

Proof
(1) Since CD

α (A)⊆Cα(A) ([15], .eorem 2.14 (i)) and
Iα(A)⊆ID

α (A) ([15], .eorem 3.15 (i)), we have
FrDα (A) � CD

α (A)∖ID
α (A)⊆

Cα(A)∖Iα(A) � Frα(A).
(2) It is obvious.
(3) ID

α (A)∩ FrDα (A) � (CD
α (A)∖ID

α (A)) � ϕ.
(4) Since A⊆CD

α (A) ([15], .eorem 2.14 (i)), we have
bDα (A) � A∖ID

α (A)⊆CD
α (A)∖ID

α (A) � Frα(A).
(5) Using .eorem 2, we have

FrDα (A) � C
D
α (A)∖ID

α (A)

� A∪ d
D
α (A) ∩ X∖ID

α (A) 

� A∖ID
α (A) ∪ d

D
α (A)∖ID

α (A) 

� b
D
α (A)∪ d

D
α (A)∖ID

α (A) .

(8)

(6) It follows from (5) above, .eorem 6 (4), (7), and
([15], .eorem 3.14).

(7) It follows from ([15], Lemma 3.13 (ii)).
(8) It follows from (7) above.
(9) CD

α (FrDα (A)) � CD
α (CD

α (A)∩CD
α (X∖A)) ⊆ CD

α
(CD

α (A))∩ CD
α (CD

α (X∖A)) � CD
α (A)∩ CD

α (X∖
A) � FrDα (A)

Obviously, FrDα (A)⊆CD
α (FrDα (A)) ([15], .eorem

2.14 (i)), and so FrDα (A) � CD
α (FrDα (A)). Hence,

FrDα (A) is a Dα-closed set.
(10) It follows from (9) above and Lemma 2.
(11) It follows fromDefinition 7 and ([15],.eorem 3.15

(vi)).
(12) It follows fromDefinition 7 and ([15],.eorem 2.14

(vi)).
(13) A∖FrDα � A∖(CD

α (A)∖ID
α (A)) � A∩ ((X∖ CD

α
(A))∪ID

α (A)) � ϕ∪ (A∪ID
α (A)) � ID

α (A)

(14) It follows from (7) above and ([15], Lemma 3.13
(ii)).

(15) A∪ FrDα (A) � A∪ (Cα
D(A)∩ C

D
α (X∖A)) �

(A∪CD
α (A))∩ (A∪CD

α (X∖A)) � C
D
α (A)∩ (A∪

C
D
α (X∖A))⊇CD

α (A)∩ (A∪ (X∖A)) � C
D
α (A)∩

X � C
D
α (A)

(16) I
D
α (A)∪ID

α (X∖A) � (X∖(X∖ID
α (A)))∪ (X∖

(X∖ID
α (X∖A))) � X∖((X∖ID

α (A))∩ID
α (X∖

A)) � X∖(CD
α (X∖A)∩CD

α (A)) � X∖FrDα (A) □

.e converse of (1) and (4) of .eorem 7 is not true as
shown in the following examples.

Example 2. Consider the topological space (X, τ) which is
given in Example 1. Let A � c{ }. .en
Frα(A) � c{ } ⊈ FrDα (A) � ϕ.

Example 3. Let (X, τ) be a topological space, where X �

a, b, c{ } and τ � ϕ, a, b{ }, X . .en FX � ϕ, c{ },

X,DαO(X) � ϕ, a{ }, b{ }, a, b, a,{ c, b, c,{ X, DαC(X) � ϕ,

a{ }, b{ }, c{ }, a, c, b, c, X. Let A � a, b{ }. .en FrDα (A) �

c{ }⊈ brDα (A) � ϕ.

Theorem 8. Let A be a subset of a topological space X. 0en
FrDα (A) � ϕ if and only if A is aDα-closed set and aDα-open
set.

Proof. Suppose that FrDα (A) � ϕ. First, we prove that A is a
Dα-closed set. We have FrDα (A) � ϕ or
CD

α (A)∩CD
α (X∖A) � ϕ. Hence, CD

α (A)⊆X∖CD
α

(X∖A) � ID
α (A). .erefore, CD

α (A)⊆A and so A is a
Dα-closed set. Now, we prove that A is a Dα-open set.
Indeed, we have FrDα (A) � ϕ or CD

α (A)∩CD
α (X∖A) � ϕ.

Hence, A∩ (X∖ID
α (A)) � ϕ and so A⊆ID

α (A). .erefore,
A is a Dα-open set. Conversely, suppose that A is a
Dα-closed set and a Dα-open set. .en
FrDα (A) � CD

α (A)∩CD
α (X∖A) � CD

α (A)∩ (X∖ID
α (A)) �

A∩ (X∖A) � ϕ. □

Theorem 9. Let A be a subset of a topological space X. 0en,

(1) A is a Dα-open set if and only if A∩ FrDα (A) � ϕ;
(2) A is a Dα-closed set if and only if FrDα (A)⊆A.

Proof
(1) Let A be a Dα-open set. .en ID

α (A) � A implies
that A∩ FrDα (A) � ID

α (A)∩ FrDα (A) � ϕ (by .eo-
rem 7 (3)). Conversely, suppose thatA∩ FrDα (A) � ϕ.
.en A∩ (CD

α (A)∩CD
α (X∖A)) � ϕ or A∩CD

α
(A)∩ CD

α (X∖A) � ϕ⇒ A∩CD
α (X∖A) � ϕ, which

implies thatA⊆X∖CD
α (X∖A) � ID

α (A). Moreover,
ID

α (A)⊆A. .erefore, ID
α (A) � A and thus A is a

Dα-open set.
(2) Let A be a Dα-closed set. .en CD

α (A) � A. Now,
FrDα (A) � CD

α (A)∩CD
α (X∖A)⊆CD

α (A) � A. .at
is, FrDα (A)⊆A. Conversely, suppose that
FrDα (A)⊆A. .en FrDα (A)∩ (X∖A) � ϕ. Since FrDα
(A) � FrDα (X∖A) (by .eorem 7 (8)), we have
FrDα X∖A∩X∖A � ϕ. By (1), X∖A is a Dα-open set.
Hence, A is a Dα-closed set. □

Lemma 3. Let A be a subset of a topological space X. If A is a
Dα-closed set, then A∖ID

α (A) � FrDα (A).

Proof. It follows from ([15], .eorem 2.13) and .eorem 7
(14). □
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Theorem 10. Let A and B be subsets ofX.0en, the following
results hold:

(1) FrDα (A∪B)⊆ FrDα (A)∪ FrDα (B).
(2) FrDα (A∩B)⊆ [FrDα (A)∩CD

α (B)]∪ [FrDα (B)∩
CD

α (A)].

(3) FrDα (FrDα (FrDα (A))) � FrDα (FrDα (A)).

Proof.

(1) FrDα (A∪B) � C
D
α (A∪B)∩CD

α (X∖A∪B)

� C
D
α (A)∪CD

α (B) ∩CD
α ((X∖A)∩ (X∖B))

⊆ C
D
α (A)∪CD

α (B) ∩ C
D
α (X∖A)∩CD

α (X∖B) 

� C
D
α (A)∩CD

α (X∖A) ∩ C
D
α (X∖B)∪CD

α (B) ∩ C
D
α (X∖A)∩CD

α (X∖B) 

� FrDα (A)∩CD
α (X∖B) ∪ FrDα (B)∩CD

α (X∖A) ⊆ FrDα (A)∪ FrDα (B)

(2) FrDα (A∩B) � C
D
α (A∩B)∩CD

α (X∖A∩B)

⊆ C
D
α (A)∩CD

α (B) ∩ C
D
α (X∖A)∪ (X∖B) 

� C
D
α (A)∩CD

α (B) ∩ C
D
α (X∖A)∪CD

α (X∖B) 

� C
D
α (A)∩CD

α (B)∩CD
α (X∖A) ∪ C

D
α (A)∩CD

α (B)∩CD
α (X∖B) 

� FrDα (A)∩CD
α (B) ∪ C

D
α (A)∩ FrDα (B) 

(3) FrDα FrDα FrDα (A)   � C
D
α FrD

α FrDα (A)  ∩CD
α X∖FrDα FrDα (A)  

� FrDα FrDα (A) ∩CD
α X∖FrDα FrDα (A)  (i).

(9)

Now consider

X∖ FrDα FrDα (A)   � X∖ C
D
α FrDα (A) ∩CD

α X∖FrDα (A)  

� X∖ FrDα (A)∩CD
α X∖FrDα (A)  

� X∖FrDα (A) ∪ X∖CD
α X∖FrDα (A)  .

(10)

.erefore,

C
D
α X∖FrDα FrDα (A)   � C

D
α C

D
α X∖FrDα (A) ∪X∖CD

α X∖FrDα (A) 

� C
D
α C

D
α X∖FrDα (A)  ∪CD

α X∖CD
α X∖FrDα (A)  

� B∪ X∖CD
α X∖FrDα (B)   � X (ii),

(11)

where B � CD
α C

D
α X∖FrDα (A). From (i) and (ii), we have

FrDα FrDα FrDα (A)   � FrDα FrDα (A) ∩X � FrDα FrDα (A) .

(12)
□

Definition 8. Let A be a subset of a topological space X. .e
Dα-exterior of A, denoted by ExtDα (A), is defined as
ExtDα (A) � ID

α (X∖A).

Theorem 11. Let A and B be subsets of X. 0en the following
results hold:

(1) Extα(A)⊆ExtDα (A), where Extα(A) is the α-exterior
([22], Definition 2.16) of A.

(2) ExtDα (A) � X∖CD
α (A).

(3) ExtDα (ExtDα (A)) � ID
α (CD

α (A)).
(4) If A⊆B, then ExtDα (B)⊆ ExtDα (A).
(5) ExtDα (A∪B)⊆ExtDα (A)∩ExtDα (B).
(6) ExtDα (A∩B)⊇ExtDα (A)∪ExtDα (B).
(7) ExtDα (X) � ϕ and ExtDα (ϕ) � X.
(8) ExtDα (A) � ExtDα (X∖ExtDα (A)).
(9) X � ID

α (A)∪ ExtDα (A)∪ FrDα (A).
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Proof.
(1) It follows from ([15], .eorem 3.15 (i)).
(2) It follows from ([15], Lemma 3.13 (i)).
(3) It follows from ([15], Lemma 3.13 (ii)).
(4) It follows from ([15], .eorem 3.15 (iii)).
(5) It follows from ([15], .eorem 3.15 (vi)).
(6) It follows from ([15], .eorem 3.15 (v)).
(7) It is obvious.
(8) It follows from ([15], .eorem 3.15 (iv)).
(9) It is obvious. □

.e opposite of (1) and (4) of .eorem 11 is not true as
shown in the following examples.

Example 4. Consider the topological space (X, τ) which is
given in Example 1. Let A � a{ }. .en
ExtDα (A) � b, c{ }⊈Extα(A) � ϕ.

Example 5. Consider the topological space (X, τ) which is
given in Example 3. Let A � a{ } and B � a, b{ }. .en
ExtDα (A) � b, c⊈ExtDα (B) � ϕ.

Remark 1. .e equality in statements (5) of .eorem 11
need not be true as seen from Example 3. Let
A � a{ }, B � b{ }, and A∪B � a, b{ }. .en ExtDα (A∪B) �

ϕ≠ c{ } � ExtDα (A)∩ExtDα (B). Furthermore, the equality in
statement (6) of the above theorem need not be true as seen
from Example 3. Let A � a, b{ }, B � c{ }, and A∩B � ϕ. .en
ExtDα (A∩B) � X≠ a, b{ } � ExtDα (A)∪ExtDα (B).

3. Dα−R0 and Dα−R1 Spaces

Definition 9. Let A be a subset of a topological space X. .e
Dα-kernel of A, denoted by KerDα (A), is defined as
KerDα (A) � ∩ U ∈ DαO(X)|A ⊂ U{ }.

Definition 10. Let x be a point of a topological space X. .e
Dα-kernel of x, denoted by KerDα ( x{ }), is defined as
KerDα ( x{ }) � ∩ U ∈ DαO(X)|x ∈ U{ }.

Lemma 4. Let (X, τ) be a topological space and x ∈ X.0en,

(1) y ∈ KerDα ( x{ }) if and only if x ∈ CD
α ( y );

(2) KerDα (A) � ∩ x ∈ X|CD
α ( x{ })∩A≠ϕ .

Proof
(1) Suppose that y ∉ KerDα ( x{ }). .en there exists a

Dα-open set V containing x such that y ∉ V.
.erefore, we have x ∉ CD

α ( y ). .e proof of the
opposite case can be done similarly.

(2) Let x ∈ KerDα (A) and CD
α ( x{ })∩A � ϕ. Hence,

x ∉ X − CD
α ( x{ }) which is aDα-open set containing

A. .is is impossible, since x ∈ KerDα (A). Conse-
quently, CD

α ( x{ })∩A≠ ϕ. Let CD
α ( x{ })∩A≠ϕ and

x ∉ KerDα (A). .en, there exists a Dα-open set W

containing A and x ∉W. Let y ∉ CD
α ( x{ })∩A.

Hence, W is a Dα-neighborhood of y where x ∉W.
By this contradiction, x ∈ KerDα (A) and the proof is
completed. □

Lemma 5. 0e following statements are equivalent for any
points x and y in a topological space (X, τ):

(1) KerDα ( x{ })≠KerDα ( y ).
(2) CD

α ( x{ })≠CD
α ( y ).

Proof
(i) (1)⇒(2) Suppose that KerDα ( x{ })≠KerDα ( y ).

.en there exists a point z in X such that
z ∈ KerDα ( x{ }) and z ∉ KerDα ( y ). It follows from
z ∈ KerDα ( x{ }) that x{ }∩CD

α ( z{ })≠ϕ. .is implies
that x ∈ CD

α ( z{ }). By z ∉ KerDα ( y ), we have
y ∩CD

α ( z{ }) � ϕ. Since x ∈ CD
α ( z{ }), CD

α ( x{ }) ⊂
CD

α ( z{ }) and y ∩CD
α ( x{ }) � ϕ, CD

α ( x{ })≠
CD

α ( y ). Now, KerDα ( x{ })≠KerDα ( y ) implies that
CD

α ( x{ })≠CD
α ( y ).

(ii) (2)⇒(1) Suppose that CD
α ( x{ })≠CD

α ( y ). .en
there exists a point z in X such that z ∈ CD

α ( x{ }) and
z ∉ CD

α ( y ). .en, there exists a Dα-open set
containing z and therefore x but not y, that is,
y ∉ KerDα ( x{ }). Hence, KerDα ( x{ })≠KerDα ( y ). □

Definition 11. A topological space (X, τ) is said to be aDα −

R0 space if every Dα-open set contains the Dα-closure of
each of its singletons.

Theorem 12. Let (X, τ) be a topological space. 0en,

(1) every α − R0 space is Dα − R0

(2) every g − R0 space is Dα − R0

Proof. It is obvious from ([15], .eorem 3.6). □

From the above discussions, we have the following di-
agram in which the opposites of implications need not be
true.

α − R0⟶ Dα − R0⟵g − R0. (13)

Theorem 13. A topological space (X, τ) is aDα − R0 space if
and only if, for any x and y in X,CD

α ( x{ })≠CD
α ( y ) implies

that CD
α ( x{ })∩CD

α ( y ) � ϕ.

Proof.
Necessity. Suppose that (X, τ) is a Dα − R0 and
x, y ∈ X such that CD

α ( x{ })≠CD
α ( y ). .en, there

exists z ∈ CD
α ( x{ }) such that z ∉ CD

α ( y ) (or
z ∈ CD

α ( y ) such that z ∉ CD
α ( x{ })). .ere exists

U ∈ DαO(X) such that y ∉ U and z ∈ U; hence,
x ∈ U. .erefore, we have x ∉ CD

α ( y ). .us,
x ∈ X − CD

α ( y ) ∈ DαO(X), which implies that
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CD
α ( x{ }) ⊂ X − CD

α ( y ) and CD
α ( x{ })∩CD

α ( y ) �

ϕ. .e proof for otherwise is similar.
(i) Sufficiency. Let U ∈ DαO(X) and x ∈ U. We will

show that CD
α ( x{ }) ⊂ U. Let y ∉ U; that is,

y ∈ X − U. .en x≠y and x ∉ CD
α ( y ). .is shows

that CD
α ( x{ })≠CD

α ( y ). By assumption,
CD

α ( x{ })∩CD
α ( y ) � ϕ. Hence, y ∉ CD

α ( x{ }) and
therefore CD

α ( x{ }) ⊂ U. □

Theorem 14. A topological space (X, τ) is aDα − R0 space if
and only if, for any x and y in X,KerDα ( x{ })≠KerDα ( y )

implies that KerDα ( x{ })∩KerDα ( x{ }) � ϕ.

Proof. Suppose that (X, τ) is a Dα − R0 space. .en, by
Lemma 5, for any points x and y in X if
KerDα ( x{ })≠KerDα ( y ), thenCD

α ( x{ })≠CD
α ( y ). Now, we

prove that KerDα ( x{ })∩KerDα ( y ) � ϕ. Assume that
z ∈ KerDα ( x{ })∩KerDα ( y ). By z ∈ KerDα ( x{ }) and Lemma
4 (1), it follows that x ∈ CD

α ( z{ }). Since x ∈ CD
α ( x{ }), by

.eorem 13 CD
α ( x{ }) � CD

α ( z{ }). Similarly, we have
CD

α ( y ) � CD
α ( z{ }) � CD

α ( x{ }). .is is a contradiction.
.erefore, we have KerDα ( x{ })∩KerDα ( y ) � ϕ. Conversely,
let (X, τ) be a topological space such that, for any points x

and y in X,KerDα ( x{ })≠KerDα ( y ) implies that
KerDα ( x{ })∩KerDα ( y ) � ϕ. If CD

α ( x{ })≠CD
α ( y ), then,

by Lemma 5, KerDα ( x{ })≠KerDα ( x{ }). Hence,
KerDα ( x{ })∩KerDα ( y ) � ϕ, which implies that
CD

α ( x{ })∩CD
α ( y ) � ϕ. Because z ∈ CD

α ( x{ }) implies that
x ∈ KerDα ( z{ }), KerDα ( x{ })∩KerDα ( z{ })≠ ϕ. By hypothesis,
we have KerDα ( x{ }) � KerDα ( z{ }). .en z ∈ CD

α ( x{ })∩
CD

α ( x{ }) implies that KerDα ( x{ }) � KerDα ( z{ }) � KerDα ( y ).
.is is a contradiction. Hence, CD

α ( x{ })∩CD
α ( y ) � ϕ. By

.eorem 13, we have that (X, τ) is a Dα − R0 space. □

Theorem 15. For a topological space (X, τ), the following
properties are equivalent:

(1) (X, τ) is a Dα − R0 space.
(2) For any A≠ϕ and G ∈ DαO(X) such that A∩G≠ ϕ,

there exists F ∈ DαC(X) such that A∩F≠ϕ and
F ⊂ G.

(3) Any A ∈ DαO(X), G � ∪ F ∈ DαC(X)|F ⊂ G{ }.
(4) Any F ∈ DαO(X), F � ∩ G ∈ DαO(X)|F ⊂ G{ }.
(5) For any x ∈ X,CD

α ( x{ }) ⊂ KerDα ( x{ }).

Proof. (1)⇒(2) Let A be a nonempty set of X and
G ∈ DαO(X) such that A∩G≠ ϕ. .ere exists
x ∈ A∩G. Since x ∈ G ∈ DαO(X),

CD
α ( x{ }) ⊂ G. Set F � CD

α ( x{ }); then
F ∈ DαC(X), F ⊂ G, and A∩F≠ϕ.

(2)⇒(3) Let G ∈ DαO(X). .en G∪ F ∈ DαC(X)|F ⊂ G{ }.
Let x be any point of G. .ere exists F ∈ DαC(X) such
that x ∈ F and F ⊂ G. .erefore, we have
x ∈ F ⊂ ∪ F ∈ DαC(X)|F ⊂ G{ } and hence
G � ∪ F ∈ DαC(X)|F ⊂ G{ }.
(3)⇒(4) .is is obvious.

(4)⇒(5) Let x be any point of X and y ∉ KerDα ( x{ }).
.ere exists U ∈ DαO(X) such that x ∈ U and y ∉ U.
Hence, CD

α ( y )∩U � ϕ. By (4) ∩G ∈ DαO(X)|

CD
α ( y ) ⊂ G∩U � ϕ. .ere exists G ∈ DαO(X) such

that x ∉ G and CD
α ( y ) ⊂ G. .erefore,

CD
α ( x{ })∩G � ϕ and y ∉ CD

α ( x{ }). Consequently, we
obtain CD

α ( x{ }) ⊂ KerDα ( x{ }).
(5)⇒(1) Let G ∈ DαO(X) and x ∈ G. Suppose that
y ∈ KerDα ( x{ }). .en x ∈ CD

α ( y ) and y ∈ G. .is
implies that CD

α ( x{ }) ⊂ KerDα ( x{ }) ⊂ G. .erefore,
(X, τ) is a Dα − R0 space. □

Corollary 2. For a topological space (X, τ), the following
properties are equivalent:

(1) (X, τ) is a Dα − R0 space.
(2) CD

α ( x{ }) � KerDα ( x{ }) for all x ∈ X.

Proof
(1)⇒(2) Suppose that (X, τ) is a Dα − R0 space. By
.eorem 15, CD

α ( x{ }) ⊂ KerDα ( x{ }) for each x ∈ X. Let
y ∈ KerDα ( x{ }). .en x ∈ CD

α ( x{ }) and so
CD

α ( x{ }) � CD
α ( y ). .erefore, y ∈ CD

α ( x{ }) and
hence KerDα ( x{ }) ⊂ CD

α ( x{ }). .is shows that
CD

α ( x{ }) � KerDα ( x{ }).
(2)⇒(1) .is is obvious by .eorem 15. □

Theorem 16. For a topological space (X, τ), the following
properties are equivalent:

(1) (X, τ) is a Dα − R0 space.
(2) x ∈ CD

α ( y ) if and only if y ∈ CD
α ( x{ }), for any

points x and y in X.

Proof
(1)⇒(2) Assume that (X, τ) is a Dα − R0 space. Let
x ∈ CD

α ( y ) and let W be any Dα-open set such that
y ∈W. Now, by hypothesis, x ∈W. .erefore, every
Dα-open set containing y contains x. Hence,
y ∈ CD

α ( x{ }).
(2)⇒(1) Let U be a Dα-open set and x ∈ U. If y ∉ U,
then x ∉ CD

α ( y ) and hence y ∉ CD
α ( x{ }). .is im-

plies that CD
α ( x{ }) ⊂ U. Hence, (X, τ) is a Dα − R0

space. □

Theorem 17. For a topological space (X, τ), the following
properties are equivalent:

(1) (X, τ) is a Dα − R0 space.
(2) If F is Dα-closed, then F � KerDα (F).
(3) If F is Dα-closed and x ∈ F, then KerDα ( x{ }) ⊂ F.
(4) If x ∈ X, then KerDα ( x{ }) ⊂ CD

α ( x{ }).

Proof

Journal of Mathematics 7



RE
TR
AC
TE
D

(1)⇒(2) Let F beDα-closed and x ∉ F. .us, X − F is
Dα-open and contains x. Since (X, τ) is
Dα − R0,C

D
α ( x{ }) ⊂ X − F. .us CD

α ( x{ })∩F � ϕ and
by Lemma 4 (2) x ∉ KerDα (F). .erefore, KerDα (F) � F.
(2)⇒(3) In general, A ⊂ B implies that
KerDα (A) ⊂ KerDα (B)..erefore, it follows from (2) that
KerDα ( x{ }) ⊂ KerDα (F) � F.
(3)⇒(4) Since x ∈ CD

α ( x{ }) and CD
α ( x{ }) is

Dα-closed, by (3), KerDα ( x{ }) ⊂ CD
α ( x{ }).

(4)⇒(1) We show the implication by using .eorem
16. Let x ∈ CD

α ( x{ }). .en, by Lemma 4 (1),
y ∈ KerDα ( x{ }). Since x ∈ CD

α ( x{ }) and CD
α ( x{ }) is

Dα-closed, by (4), we obtain
y ∈ KerDα ( x{ }) ⊂ CD

α ( x{ }). .erefore, x ∈ CD
α ( y )

implies that y ∈ CD
α ( x{ }). .e opposite is obvious and

(X, τ) is a Dα − R0 space. □

Definition 12. A filter base F is called Dα-convergent to a
point x in X, if, for any Dα-open set U of X containing x,
there exists B in F such that B is a subset of U.

Lemma 6. Let (X, τ) be a topological space and x and y are
any two points in X such that every net in XDα-converging to
yDα-converges to x. 0en x ∈ CD

α ( y ).

Proof. Suppose that xn � y for each n ∈ N. .en xn n∈N is a
net in CD

α ( y ). Since xn n∈N Dα-converges to y,
xn n∈NDα-converges to x and this implies that

x ∈ CD
α ( y ). □

Theorem 18. For a topological space (X, τ), the following
statements are equivalent:

(1) (X, τ) is a Dα − R0 space.
(2) If x, y ∈ X, then y ∈ CD

α ( x{ }) if and only if every net
in XDα-converging to yDα-converges to x.

Proof
(1)⇒(2) Let x, y ∈ X such that y ∈ CD

α ( x{ }). Suppose
that xα α∈N is a net in X such that xα α∈NDα-con-
verges to y. Since y ∈ CD

α ( x{ }) and by .eorem 15, we
have CD

α ( x{ }) � CD
α ( y ). .erefore, x ∈ CD

α ( y ).
.ismeans that xα α∈ΛDα-converges to x. Conversely,
let x, y ∈ X such that every net in XDα-converging to
yDα-converges to x. .en x ∈ CD

α ( y ) by Lemma 4
(2). By .eorem 15, we have CD

α ( x{ }) � CD
α ( y ).

.erefore, y ∈ CD
α ( x{ }).

(2)⇒(1) Assume that x and y are any two points of X

such that CD
α ( x{ })∩CD

α ( y )≠ϕ. Let
z ∈ CD

α ( x{ })∩CD
α ( y ). So there exists a net xα α∈Λ in

CD
α ( x{ }) such that xα α∈ΛDα-converges to z. Since

z ∈ CD
α ( y ), we have xα α∈ΛDα-converges to y. It

follows that y ∈ CD
α ( x{ }). Similarly, we obtain

x ∈ CD
α ( y ). .erefore, CD

α ( x{ }) � CD
α ( y ) and, by

.eorem 15, (X, τ) is a Dα − R0 space. □

Definition 13. A topological space (X, τ) is said to be Dα −

R1 space if, for x, y in X with CD
α ( x{ })≠CD

α ( y ), there
exist disjoint Dα-open sets U and V such that CD

α ( x{ }) is a
subset of U and CD

α ( y ) is a subset of V.

Theorem 19. Let (X, τ) be a topological space. 0en,

(1) every α − R1 space is Dα − R1

(2) every g − R1 space is Dα − R1

Proof. It is obvious. □

From the above discussions, we have the following di-
agram in which the opposite of implications need not be
true.

α − R1⟶ Dα − R1⟵g − R1. (14)

Theorem 20. If (X, τ) is a Dα − R1 space, then (X, τ) is a
Dα − R0 space.

Proof. Let U be Dα-open such that x ∈ U. If y ∉ U, then
since x ∉ CD

α ( y ),CD
α ( x{ })≠CD

α ( y ). Hence, there exists
Dα-open Vy such that CD

α ( y ) ⊂ Vy and x ∉ Vy, which
implies that y ∉ CD

α ( x{ }). .us, CD
α ( x{ }) ⊂ U. .erefore,

(X, τ) is a Dα − R0 space. □

Theorem 21. A topological space (X, τ) is said to be aDα −

R1 space if and only if x, y ∈ X,KerDα ( x{ })≠KerDα ( y ), and
there exist disjoint Dα-open sets U and V such that
CD

α ( x{ }) ⊂ U and CD
α ( y ) ⊂ V.

Proof. It follows from Lemma 4 (1). □

4. Weakly Dα−R0 Space

Definition 14. A topological space (X, τ) is said to be weakly
Dα − R0 space if ∩ x∈XC

D
α ( x{ }) � ϕ.

Theorem 22. A topological space (X, τ) is weakly Dα − R0
space if and only if KerDα ( x{ })≠X for every x ∈ X.

Proof. Assume that the space (X, τ) is weakly Dα − R0
space. Suppose that there is a point y in X such that
KerDα ( y ) � X. .en y ∉ O, where O is some proper
Dα-open subset of X. .is implies that y ∈ ∩ x∈XC

D
α ( x{ }).

But this is a contradiction. Now suppose that KerDα ( x{ })≠X

for every x ∈ X. If there exists a point y ∈ X such that
y ∈ ∩ x∈XC

D
α ( x{ }), then every Dα-open set containing y

must contain every point of X. .is implies that the space X

is the unique Dα-open set containing y. .us,
KerDα ( x{ }) � X, which is a contradiction. Hence, (X, τ) is a
weakly Dα − R0 space. □

Theorem 23. A topological space (X, τ) is a weaklyDα − R0
space if and only if KerDα ( x{ })≠X for every x ∈ X.
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After the establishment of the Banach contraction principle, the notion of metric space has been expanded to more concise and
applicable versions. One of them is the conception of F-metric, presented by Jleli and Samet. Following the work of Jleli and
Samet, in this article, we establish common fixed points results of Reich-type contraction in the setting ofF-metric spaces. Also, it
is proved that a unique common fixed point can be obtained if the contractive condition is restricted only to a subset closed ball of
the wholeF-metric space. Furthermore, some important corollaries are extracted from the main results that describe fixed point
results for a single mapping. *e corollaries also discuss the iteration of fixed point for Kannan-type contraction in the closed ball
as well as in the whole F-metric space. To show the usability of our results, we present two examples in the paper. At last, we
render application of our results.

1. Introduction and Preliminaries

In recent years, along withF-metric presented by Jleli et al.
[1], many authors presented interesting generalizations of
metric spaces [2–9]. Jleli and Samet introduced generalized
metric spaces, known as F-metric spaces, and proved their
generality to metric spaces with the help of concrete ex-
amples. *e idea of F-metric spaces was compared with
b-metric and s-relaxed metric spaces, and hence, the Banach
contraction principle was established in the frame of
F-metric spaces.

Banach contraction principle states that any contraction
on a complete metric space has a unique fixed point. *is
principle guarantees the existence and uniqueness of the
solution of considerable problems arising in mathematics.
Because of its importance for mathematical theory, the
Banach contraction principle has been extended and gen-
eralized inmany directions [10, 11].*e fixed point theory of
multivalued contraction mappings using the Hausdorff
metric was initiated by Nadler [12], who extended the
Banach contraction principle to multivalued mappings.
Since then, many authors have studied various fixed point
results for multivalued mappings. Nazam et al. [13] proved
fixed point theorems for Kannan-type contractions on

closed balls in complete partial metric spaces. *e above-
mentioned results and its generalizations are recently in-
vestigated for fixed point in the setting of F-metric space (see
[14–16]).

In this article, we prove fixed point and common fixed
points results of Reich-type contractions for single-valued
mappings in F-metric spaces.

*is article is organized into three sections. Section 2
contains a short history of the previous literature that be-
comes a motivation for this article. *ere are some basic
definitions which help readers to understand our results
easily. In Section 3, we established theorems of fixed points
and common fixed points of single-valued Reich contrac-
tions inF-metric spaces. An example is provided to explain
our results. Section 4 deals with fixed point theorems of
contractions with respect to closed balls in F-metric spaces
along with an example.

2. Basic Relevant Notions

Definition 1 (see [1]). A self-mapping g on a nonempty set A

is said to be Kannan contraction if there exists a number k,
0< k< (1/2), such that, for each a, b ∈ A, we have
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d(g(a), g(b))≤ k[d(a, g(a)) + d(b, g(b))]. (1)

Let f: (0,∞)⟶ R with following characteristics:

(F1) f is strictly increasing
(F2) For any sequence tn  ⊂ (0,∞), we have

lim
n⟶∞

tn � 0⇔ lim
n⟶∞

f tn(  � − ∞. (2)

*e collection of all such functions satisfying (F1) and
(F2) is denoted by F. *e concept of F-metric is gener-
alized as follows:

Definition 2 (see [1]). SupposeAis a nonempty set and
(f, α) ∈F × [0,∞). Let the function d: A × A⟶ [0,∞)

be such that

(d1) For all (a, b) ∈ A × A, d(a, b) � 0⇔a � b

(d2) For all (a, b) ∈ A × A, d(a, b) � d(b, a)

(d3) {tn}i�1n⊂X For every (a, b) ∈ A × A,for each
N′ ∈ N, N′ ≥ 2 and for every with
(t1, tN′) � (a, b), we have

d(a, b)> 0⇒f(d(a, b))≤f 

N′− 1

i�1
d ti, ti+1( ⎛⎝ ⎞⎠ + α.

(3)

*en, d is known as anF-metric on A, and the pair
(A, d) is called anF-metric space.

Example 1 (see [1]). Let A � N (set of natural numbers) and
d: A × A⟶ (0,∞) be defined by

d(a, b) �
(a − b)

2
, if (a, b) ∈ [0, 3] ×[0, 3],

|a − b|, if (a, b) ∉ [0, 3] ×[0, 3],

⎧⎨

⎩ (4)

for all (a, b) ∈ A × A. It can easily be seen that d is an
F-metric with f(x) � ln(x).

Example 2 (see [1]). Let A � N and d: A × A⟶ (0,∞) is
defined as

d(a, b) �
0, if a � b,

e
|a− b|

, if a≠ b,
 (5)

for all (a, b) ∈ A × A. *en, d is F-metric on A.

Definition 3 (see [1]). Suppose an is a sequence in A. *en,

(i) an  is F-convergent to a point a ∈ A if
limn⟶∞d(an, a) � 0

(ii) an  is anF-Cauchy sequence if
limn,m⟶∞d(an, am) � 0

(iii) *e space(A, d) is F-complete if everyF-Cauchy
sequence an  ⊂ A isF-convergent to a point a ∈ A

Definition 4 (see [1]). Let (A, d)be an F-metric space. A
subset Oof A is said to beF-open if, for every a ∈ O, there is
some r> 0 such that B(a, r) ⊂ O, where

B(a, r) � b ∈ A: d(a, b)< r{ }. (6)

We say that a subset C of A is F-closed if A\C is
F-open.

Definition 5 (see [1]). Let (A, d)be anF-metric space andB

be a nonempty subset of A. *en, the following statements
are equivalent:

(i) B isF-closed.
(ii) For any sequence an  ⊂ B, we have

lim
n⟶∞

d an, a(  � 0, a ∈ A⟹ a ∈ B. (7)

Theorem 1 (see [1]). Suppose(f, α) ∈ F × [0,∞) and
(A, d) is an F-complete F-metric space. Let g: A⟶ A be
a given mapping. Suppose that there exists k ∈ (0, 1) such
that

d(g(a), g(b))≤ k d(a, b), (a, b) ∈ A × A. (8)

*en, g has a unique fixed point a∗ ∈ A. Moreover, for
any a0 ∈ A, the sequence an  ⊂ A defined by an+1 �

g(an), n ∈ N is F-convergent to a∗.

Theorem 2 (see [17]). Suppose A is a complete metric
space with metric d, and let g: A⟶ A be a function such
that

d(g(a), g(b))≤ α d(a, b) + β d(a, g(a)) + c d(b, g(b)),

(9)

for all a, b ∈ A, where α, β, and c are nonnegative integers
and satisfy α + β + c< 1. 7en, g has a unique fixed point.

Lemma 1 (see [18]). 9e Banach space (B(W), ‖ · ‖)along with
the metric d defined by

d(g, h) � ‖g − h‖ � max
a∈W

|g(a) − h(a)|, g, h ∈ B(W).

(10)

is an F-metric space.

3. Fixed Points of Reich-Type Contractions in
F−Metric Spaces

In this section, we construct fixed point and common fixed
points results for single-valued Reich-type and Kannan-type
contractions in the setting of F-metric space.

Theorem 3. Suppose (f, α) ∈ F × [0,∞) and (X, d) is an
F-complete F-metric space. Let S, T: X⟶ Xbe self-map-
pings such that
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d(Sx, Ty)≤ a d(x, y) + b d(x, Sx) + c d(y, Ty), (11)

fora, b, c ∈ [0,∞) such a + b + c< 1, for all (x, y) ∈ X × X.
7en, S and Thave at most one common fixed point in X.

Proof. Suppose x0 is an arbitrary point and define a se-
quence (xn) by

Sx2j � x2j+1,

Tx2j+1 � x2j+2, j � 0, 1, 2, . . . ,
(12)

Using (11) and (12), we can write

d x2j+1, x2j+2  � d Sx2j, Tx2j+1 ≤ a d x2j, x2j+1  + b d x2j, Sx2j  + c d x2j+1, Tx2j+1 

� a d x2j, x2j+1  + b d x2j, x2j+1  + c d x2j+1, x2j+2 .
(13)

*is implies

(1 − c)d x2j+1, x2j+2 ≤ (a + b)d x2j, x2j+1 

d x2j+1, x2j+2 <
a + b

1 − c
d x2j, x2j+1  � λ d x2j, x2j+1 ,

(14)

where ((a + b)/(1 − c)) � λ
Similarly,

d x2j+2, x2j+3 <
a + b

1 − c
d x2j+1, x2j+2  � λ d x2j+1, x2j+2 .

(15)

Continuing this way, we get

d xn, xn+1( < λ d xn− 1, xn( , for all n εN, (16)

which yields

d xn, xn+1( < λ d xn− 1, xn( < λ2d xn− 2, xn− 1( < · · · < λn
d x0, x1( .

(17)

Hence,

d xn, xn+1( < λn
d x0, x1( , n ∈ N. (18)

Using (18), we can write



m− 1

k�n

d xk, xk+1(  � d xn, xn+1(  + d xn+1, xn+2(  + · · · + d xm− 1, xm( 

< λn
d x0, x1(  + λn+1

+ · · · + λm− 1
d x0, x1( 

< λn 1 + λ + λ2 + · · · + λm− n− 1
 d x0, x1( 

≤
λn

1 − λ
d x0, x1( , m> n.

(19)

Since limn⟶∞(λn/(1 − λ))d(x0, x1) � 0, for any δ > 0,
there exists some n′ ∈ N such that

0<
λn

1 − λ
d x0, x1( < δ, n≥ n′. (20)

Furthermore, suppose (f, α) ∈ F × [0,∞) satisfies (d3)
andε> 0is fixed. By (F2), there is someδ > 0 such that

0< t< δ⟹f(t)<f(ε) − α. (21)

By (21), we write

f
λn

1 − λ
d x0, x1(  <f(ε) − α, m> n≥ n′. (22)

Using (20), we write

f 

m− 1

k�n

d xk, xk+1( ⎛⎝ ⎞⎠≤f
λn

1 − λ
d x0, x1(  <f(ε) − α, m> n≥ n′.

(23)

By (d3) and above equation, we obtain

d xn, xm( > 0, m> n> n′⟹f d xn, xm( ( <f(ε).
(24)

*is shows that

d xn, xm( < ε, m> n≥ n′. (25)

Hence, we showed that (xn) is anF-Cauchy sequence in
X. Since (X, d) isF-complete, there exists z∗ ∈ X such that
(xn) is F-convergent to z∗, i.e.,

lim
n⟶∞

d xn, z
∗

(  � 0. (26)

To prove that z∗ is the fixed point of S, assume
d(Sz∗, z∗)> 0. *en,

d Sz
∗
, x2j+2  � d Sz

∗
, Tx2j+1 

≤ a d z
∗
, x2j+1  + b d z

∗
, Sz
∗

(  + c d x2j+1, Tx2j+1 

� a d z
∗
, x2j+1  + b d z

∗
, Sz
∗

(  + c d x2j+1, x2j+2 ,

(27)

which implies (1 − b)d(Sz∗, z∗)< 0, which is a contradic-
tion. Hence, d(Sz∗, z∗) � 0, i.e., Sz∗ � z∗. Similarly, suppose
d(z∗, Tz∗)> 0:

d Tz
∗
, x2j+1  � d Tz

∗
, Sx2j 

≤ a d z
∗
, x2j  + b d x2j, Sx2j  + c d z

∗
, Tz
∗

( 

� a d z
∗
, x2j  + b d z

∗
, Sz
∗

(  + c d x2j, x2j+1 ,

(28)

i.e.,
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(1 − c)d z
∗
, Tz
∗

( < 0, (29)

which is contradiction to the assumption. *erefore, we get
Tz∗ � z∗. Hence, Tz∗ � Sz∗ � z∗.

Uniqueness.Assume thatz∗∗is also a common fixed point
of S and T and z∗ ≠ z∗∗.Then,

d z
∗
, z
∗∗

(  � d Sz
∗
, Tz
∗∗

( ≤ a d z
∗
, z
∗∗

( 

+ b d z
∗
, Sz
∗

(  + c d z
∗∗

, Tz
∗∗

( 

� a d z
∗
, z
∗∗

(  + b d z
∗
, z
∗

(  + c d z
∗∗

, z
∗∗

( .

(30)

We get (1-a)d(z∗, z∗∗)< 0, which is a contradiction.
Hence, z∗ � z∗∗ □

Example 3. Suppose

Y � Yj ≔
6j + 1
2

, j ∈ N ,

d(x, y) �

0, if x � y

e
|x− y|

, if x≠y

⎧⎪⎨

⎪⎩

(31)

Let f(x) � ln x and S, T: X⟶ X are defined by

T Yj  �
Y1 if j � 1, 2,

Yj− 1 if j> 2,

⎧⎨

⎩

S Yj  �

Y1 if j � 1,

Y2 if j � 2,

Yj− 2 if j> 2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(32)

It can be easily verified that d is an F-metric and f

satisfies (F1) − (F2). Fix b � c � 0 and (x, y) ∈ X × X.

Suppose i≠ j, then

d SYj, TYi  � d Yj− 2, Yi− 1  � e
Yj− 2− Yi− 1




� e
|((6j− 12+1)/2)− ((6i− 6+1)/2)|

� e
|3(j− i)− 3| < e

− 2
· e

|3(j− i)|
� a d Yj, Yi 

� a d Yj, Yi  + b d Yj, SYj  + c d Yi, TYi( ,

(33)

where a � e− 2. *e inequality (11) holds true. Moreover, it is
clear that Y1 is the only common fixed point of S and T.

Taking a � 0 in*eorem 1, we get the following result of
Kannan contractions.

Replacing S in*eorem 3, we get the following corollary.

Corollary 1. Suppose (f, α) ∈F × [0,∞) and (X, d) is an
F-complete F-metric space. Let T: X⟶ Xis a self-map-
ping such that

d(Tx, Ty)≤ a d(x, y) + b d(x, Tx) + c d(y, Ty), (34)

for a, b, c ∈ [0,∞) such a + b + c< 1,for all (x, y) ∈ X × X.
7en, Thas at most one fixed point in X.

Taking b � c � 0 in Corollary 1, we get the following
result.

Corollary 2. Suppose (f, α) ∈ F × [0,∞) and (X, d) is an
F-complete F-metric space. Let T: X⟶ Xis a self-map-
ping such that

d(Tx, Ty)≤ a d(x, y), (35)

for a ∈ (0,∞)and (x, y) ∈ X × X. 7en, Thas at most one
fixed point in X.

Besides the above important results, 7eorem 3 also led us
to the following fixed point result of Kannan-type contraction.

Corollary 3. Suppose(f, α) ∈F × [0,∞) and (X, d) is an
F-complete F-metric space. Let S, T: X⟶ Xbe self-map-
pings. Suppose that, for k ∈ [0, 1)such that

d(Sx, Ty)≤
k

2
(d(x, Sx) + d(y, Ty)), (36)

for all (x, y) ∈ X × X, then S and Thave at most one common
fixed point in X.

Proof. Suppose x0 is an arbitrary point and define a se-
quence (xn) by Sx2j � x2j+1 and Tx2j+1 � x2j+2 ;
j � 0, 1, 2, . . . ,

Using the contraction and the iteration given above, we
can write

d x2j+1, x2j+2  � d Sx2j, Tx2j+1 

�
k

2
d x2j, Sx2j  + d x2j+1, Tx2j+1  

�
k

2
d x2j, x2j+1  + d x2j+1, x2j+2  .

(37)

*is implies

1 −
k

2
 d x2j+1, x2j+2 ≤

k

2
d x2j, Sx2j . (38)

or

d x2j+1, x2j+2 ≤
k

2 − k
d x2j, Sx2j 

d x2j+1, x2j+2 ≤ λ d x2j, x2j+1 ,

(39)

where (k/(2 − k)) � λ. Similarly,

d x2j+2, x2j+3 <
k

2 − k
d x2j+1, x2j+2  � λ d x2j+1, x2j+2 .

(40)

Continuing the same way as in *eorem 3, we get the
common fixed point of S and T.

Replacing S with T, we get the following result of single
mapping. □
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Corollary 4. Suppose(f, α) ∈ F × [0,∞) and (X, d) is an
F-complete F-metric space. Let T: X⟶ Xbe a self-map-
ping. Suppose that, fork ∈ [0, 1)such that

d(Tx, Ty)≤
k

2
(d(x, Tx) + d(y, Ty)), (41)

for all (x, y) ∈ X × X, then Thas at most one fixed point in X.

4. Fixed Points of Reich-Type Contractions on
F-Closed Balls

*is portion of the paper deals with the fixed points the-
orems of Reich-type contractions that hold true only on the
closed balls rather than on the whole space X.

Definition 6. Let (X, d) be an F-complete F-metric space
and S, T: X⟶ Xbe self-mappings. Suppose that a + b +

c< 1 fora, b, c ∈ [0,∞). *en, the mappings S and T are
called Reich-type contractions on B(x0, r)⊆X such that

d(Sx, Ty)≤ a d(x, y) + b d(x, Sx) + c d(y, Ty),

∀x, y ∈ B x0, r( .
(42)

Theorem 4. Suppose (f, α) ∈F × [0,∞) and (X, d) is an
F-complete F-metric space. Let S and Tbe Reich-type
F-contractions on B(x0, r). Suppose that for x0 ∈ X and r> 0,

the following conditions are satisfied:

(a) B(x0, r) is F-closed
(b) d(x0, x1)≤ (1 − λ)r, for x1 ∈ X and

λ � ((a + b)/(1 − c))

(c) 7ere exist 0< ϵ< r such as f((1 − λk+1)r)≤f(ε) − α,
where k ∈ N

7en, S and Thave at most one common fixed point in
B(x0, r).

Proof. Suppose x0 is an arbitrary point and define a se-
quence (xn) by T(x2j) � x2j+1 and S(x2j+1) � x2j+2 ;
j � 0, 1, 2, . . . ,.

We need to show that xn is in B(x0, r) for all n ∈ N. We
show it by mathematical induction. By (b), we write

d x0, x1( < r. (43)

*erefore, x1 ∈ B(x0, r). We know by previous theorems
that

d x1, x2( ≤ λ d x0, x1( . (44)

Now,

f d x0, x2( ( ≤f d x0, x1(  + d x1, x2( (  + α

≤f d x0, x1(  + λ d x0, x1( (  + α

� f (1 + λ)d x0, x1( (  + α � f((1 + λ)(1 − λ)r) + α

� f 1 − λ2 r  + α≤f(ε)<f(r).

(45)

*is implies that

d x0, x2( < r, (46)

i.e., x2 ∈ B(x0, r). Suppose x3, . . . , xk ∈ B(x0, r) for some
k ∈ N. Now, if x2j+1 ≤xk, then by (42), we can write

d x2j, x2j+1  � d Sx2j− 1, Tx2j ≤ a d x2j− 1, x2j 

+ b d x2j− 1, Sx2j− 1  + c d x2j, Tx2j 

� a d x2j− 1, x2j  + b d x2j− 1, x2j  + c d x2j, x2j+1 .

(47)

*is implies

(1 − c)d x2j, x2j+1 ≤ (a + b)d x2j− 1, x2j , (48)

or

d x2j, x2j+1 <
a + b

1 − c
d x2j− 1, x2j . (49)

Let ((a + b)/(1 − c)) � λ, we get

d x2j, x2j+1 < λ d x2j− 1, x2j . (50)

Similarly, if x2j ≤ xk, then

d x2j− 1, x2j <
a + b

1 − c
d x2j− 2, x2j− 1  � λ d x2j− 2, x2j− 1 .

(51)

*erefore, from inequality (50) and (51), we write

d x2j, x2j+1 < λd x2j− 1, x2j < · · · < λ2j
d x0, x1(  (52)

and

d x2j− 1, x2j < λ d x2j− 2, x2j− 1 < · · · < λ2j− 1
d x0, x1( .

(53)

From (52) and (53), we write

d xk, xk+1( ≤ λk
d x0, x1( , for some k ∈ N. (54)

Now, using (54), we have

f d x0, xk+1( ( ≤f 
k+1

i�1
d xi− 1, xi( ⎛⎝ ⎞⎠ + α

� f d x0, x1(  + · · · + d xk, xk+1( (  + α

≤f 1 + λ + λ2 + · · · + λk
 d x0, x1(   + α

� f
1 − λk+1

1 − λ
d x0, x1(   + α.

(55)

Using (b), we write

f d x0, xk+1( ( ≤f
1 − λk+1

1 − λ
(1 − λ)r  + α � f 1 − λk+1

 r  + α.

(56)

Using (c), we deduce that
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f d x0, xk+1( ( ≤f(ε)<f(r). (57)

Hence, by (F1), we notice that

d x0, xk+1( ≤ r. (58)

*is implies that xk+1 ∈ B(x0, r). *erefore,
xn ∈ B(x0, r) for all n ∈ N. Now, we have by (42)

d x2i+1, x2i+2(  � d Sx2i, Tx2i+1( 

≤ a d x2i, x2i+1(  + b d x2i, Sx2i(  + c x2i+1, Tx2i+1( 

� a d x2i, x2i+1(  + b d x2i, x2i+1(  + c d x2i+1, x2i+2( .

(59)

Following the same steps of proof of *eorem 3 and
using (a), we obtain that the sequence (xn) isF-convergent
to some z∗ in B(x0, r) · z∗ can be proved as common fixed
point of S and T in the same way as in *eorem 3.

Taking S � T in*eorem 4, we get the following result of
single mappings. □

Corollary 5. Suppose(f, α) ∈F × [0,∞), (X, d) is an
F-complete F-metric space and T: X⟶ Xis a self-map-
ping. Suppose that a + b + c< 1,fora, b, c ∈ [0,∞). Suppose
that for x0 ∈ X and r> 0, the following conditions are
satisfied:

(a) B(x0, r)⊆X is F-closed
(b) d(Tx, Ty)≤ a d(x, y) + b d(x, Tx) + c d(y, Ty),

for all x, y ∈ B(x0, r)

(c) d(x0, x1)≤ (1 − λ)r, for x1 ∈ X and
λ � ((a + b)/(1 − c))

(d) 7ere exists 0< ε< r such as
f((1 − λk+1)r)≤f(ε) − α, where k ∈ N

7en, Thas at most one fixed point in B(x0, r).

Example 4. Let X � [0,∞) andf(x) � ln x.
Define T: X⟶ X by

Tx �

x

3
, if x ∈ [0, 1],

x
3 if x ∈ (1,∞),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(60)

and define d by

d(x, y) �
(x − y)

2
, if (x, y) ∈ [0, 1] ×[0, 1],

|x − y|, if (x, y) ∉ [0, 1] ×[0, 1].

⎧⎨

⎩ (61)

It can be easily verified that d is an F-metric and
function f satisfies (F1) − (F2). Fix x0 � r � (1/4), then
B(x0, r) � [0, (1/2)]. Clearly, B(x0, r) is F-closed so con-
dition (a) of Corollary 5 is satisfied. Now, if
a � (3/4), b � c � 0, then λ � a and

d x0, x1(  � d x0, Tx0(  �
1
4

−
1
12

 
2

�
1
36

< 1 −
3
4

 
1
4

� (1 − λ)r.

(62)

*is shows that condition (b) is fulfilled. Furthermore,
suppose k � 1, then

f 1 − λk+1
 r  � ln 1 −

3
4

 
2

 
1
4

  � ln
7
64

 

ln
8
64

  − ln
8
7

  � f(ε) − α,

(63)

i.e.,

f 1 − λk+1
 r  � f(ε) − α. (64)

Hence, condition (d) is satisfied for ε � (8/64)≤ (1/4) �

r and α � ln(8/7) Similarly, for all values of k ∈ N, we can
find some 0< ε< r and α such that condition (d) is fulfilled.
Now, checking for condition (b), we have two cases:

(i) If (x, y) ∈ B(x0, r) × B(x0, r), then

d(Tx, Ty) �
x

3
−

y

3
 

2
�
1
9
(x − y)

2 <
3
4
(x − y)

2
 

� a d(x, y) + 0. d(x, Tx) + 0. d(y, Ty)

� a d(x, y) + b d(x, Tx) + c d(y, Ty),

(65)

as b � c � 0.

*erefore, for all (x, y) ∈ B(x0, r) × B(x0, r), con-
dition (d) is also satisfied.

(ii) If (x, y) ∉ B(x0, r) × B(x0, r), e.g., x � 2 and y � 3,
then

d(Tx, Ty) � 23 − 33


>
3
4

|(2 − 3)| 

� a d(x, y)

� a d(x, y) + 0. d(x, Tx) + 0. d(y, Ty)

� a d(x, y) + b d(x, Tx) + c d(y, Ty).

(66)

Hence, condition (b) holds only for B(x0, r) and not
on X × X. Moreover, 0 ∈ B(x0, r) is the fixed point
of T.

Corollary 6. Suppose (f, α) ∈F × [0,∞) and (X, d) is an
F-complete F-metric space. Let S, T: X⟶ Xare self-
mappings and k ∈ [0, 1), assume that, for x0 ∈ X and r> 0,

the following conditions are satisfied:

(a) B(x0, r)⊆X is F-closed
(b) d(Sx, Ty)≤ (k/2)(d(x, Sx) + d(y, Ty)), for all

x, y ∈ B(x0, r)

(c) d(x0, x1)≤ (1 − λ)r, for x1 ∈ X and λ � (k/(2 − k))

(d) there exist 0< ε< r such as f((1 − λk+1)r)≤f(ε) − α,
where k ∈ N
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7en, S and T
a11 a12
a21 a22

  have at most one common fixed
point in B(x0, r).

Corollary 7. Suppose (f, α) ∈ F × [0,∞) and (X, d) is an
F-complete F-metric space. Let S, T: X⟶ Xare self-
mappings and k ∈ [0, 1), assume that, for x0 ∈ X and r> 0,

the following conditions are satisfied:

(a) B(x0, r)⊆X is F-closed
(b) d(Sx, Ty)≤ k d(x, y), for all x, y ∈ B(x0, r)

(c) d(x0, x1)≤ (1 − λ)r, for x1 ∈ X and λ � (k/(2 − k))

(d) there exist 0< ϵ< r such as f((1 − λk+1)r)≤f(ε) − α,
where k ∈ N

7en, S and Thave at most one common fixed point in
B(x0, r).

An example can be proved in a similar way as that to the
previous examples.

5. Application

*is section is concerned with the application of the main
result proved in Section 2, in finding a unique common
solution of the functional equations that are used in dynamic
programming.

*e two main components of dynamic programming are
decision space (DS) and a state space (SS). *e SS includes
different states such as transitional states, initial, and action
states, while the DS is composed of the steps that are taken
for locating the possible solution point of the problem.
Optimization and computer programming are based on this
system. In particular, a problem of dynamic programming is
converted to functional equations as

p(u) � max
v∈V

F(u, v) + f1(u, v, p(η(u, v))) , for u ∈ U,

(67)

x(u) � max
v∈V

F(u, v) + f2(u, v, p(η(u, v))) , for u ∈ U,

(68)

where Y and Z are Banach spaces such as U⊆Y and V⊆Z and

η: U × V⟶ U

F: U × V⟶ R,

f1, f2: U × V × R⟶ R.

(69)

Suppose U andV are the DS and SS, respectively.We aim
to locate a single common solution point for equations (67)
and (68). We denote the set of all bounded real-valued
mappings on U by W(U). Let j be arbitrary member of

W(U) and say ‖j‖ � maxu∈U|j(u)|. *en, the duplet
(W(U), ‖ · ‖) is a Banach space with ddefined by

d(j, k) � max
u∈U

|j(u) − k(u)|. (70)

Let the following conditions holds true:

(C1) F, f1, f2 are bounded.
(C2)For u ∈ U and j ∈W(U), define
S, T: W(U)⟶W(U) by

Sj(u) � max
v∈V

F(u, v) + f1(u, v, j(η(u, v))) , for u ∈ U,

Tj(u) � max
v∈V

F(u, v) + f2(u, v, j(η(u, v))) , for u ∈ U.

(71)

Observe that, S and T are well-defined whenever
the functions F,f1 and f2 are bounded.

(C3) For (u, v) ∈ U × V, j, k ∈W(U) and l ∈ U, we
write

f1(u, v, j(l)) − f1(u, v, k(l))


≤M(j, k), (72)

where

M(j, k) � α d(j, k) + β d(j, Sj) + c d(k, Tk), (73)

for α, β, c ∈ [0,∞) and α + 2β + 2c< 1
Now, we develop the following theorem.

Theorem 5. Suppose conditions (C1)–(C3) hold true, then
there exists a single bounded common solution of equations
(67) and (68).

Proof. From Lemma 1.10, we have (W(U), d) is an
F-complete F− MS. d is defined by (70), and from (C1), we
deduce that S and T are self-mappings on W(U). Let ω be an
arbitrary positive number and j1, j2 ∈W(U). Take u ∈ U

and v1, v2 ∈ V such as

Sjx <F u, vx(  + f1 u, vx,jx η u, vx( (   + ω, (74)

Tjx <F u, vx(  + f2 u, vx,jx η u, vx( (   + ω, (75)

and

Sj1 ≥F u, v2(  + f1 u, v2,j1 η u, v2( (  , (76)

Tj2 ≥F u, v1(  + f1 u, v, j2 η u, v1( ( ( . (77)

*en, using (74) and (77), we obtain

Sj1(u) − Tj2(u)<f1 u, v1, j1 η u, v1( ( (  − f1 u, v1, j2 η u, v1( ( (  + ω≤ f1 u, v1, j1 η u, v1( ( (  − f1 u, v1, j2 η u, v1( ( ( 


 + ω

≤M j1(u), j2(u)(  + ω.

(78)
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Also, from (75) and (76), we get

Tj2(u) − Sj1(u)<M j1(u), j2(u)(  + ω. (79)

Merging the above two inequalities, we write

Sj1(u) − Tj2(u)


<M j1(u), j2(u)(  + ω, (80)

for all ω> 0. *us,

d Sj1(u), Tj2(u)( ≤M j1(u), j2(u)( , (81)

i.e.,

d Sj1, Tj2( ≤M j1, j2( , (82)

for every∈∈U. All the requirements of *eorem 3 are ful-
filled. *erefore, by using *eorem 3, S and T have a unique
bounded and common solution for equations (67) and
(68). □

6. Conclusion

*is article has furthered the idea of F-metric space and
fixed point and common fixed point results are elaborated
in the setting of F-metric space. It is obtained that the fixed
point and common fixed point of a contraction mapping
can be availed even if the contractive condition is restricted
to only a subset closed ball of the whole F-metric space.
Examples have been provided for both locally and globally
contractions and a comparison between them is made for
better understanding. Some important corollaries have
been developed from the proved results. At last, application
of the main result in finding a unique solution of the
functional equation is given. In future, we opt to explore
similar results in the frame of fuzzy cone metric space.
Fixed point of Reich-type contractions will be investigated
in picture fuzzy metric space, fuzzy soft sets, and other
applicable abstract spaces. *e proposed research will be
primarily based upon some existing literature on the topics
([19–22]).
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Teaching effect evaluation of College English is frequently considered as a multiattribute group decision-making (MAGDM) issue.
*us, a novel MAGDM method is needed to tackle it. Depending on the classical TOPSIS method and interval-valued
intuitionistic fuzzy sets (IVIFSs), this paper designs a novel intuitive distance-based IVIF-TOPSIS method for teaching effect
evaluation of College English. First of all, a related literature review is conducted. Furthermore, some necessary theories related to
IVIFSs are briefly reviewed. In addition, the weights of attribute are decided objectively by using the CRITIC method. Afterwards,
relying on novel distance measures between IVIFSs, the conventional TOPSIS method is extended to the IVIFSs to calculate
closeness degree of each alternative from the interval-valued intuitionistic fuzzy positive ideal solution (IVIF-PIS). Finally, an
empirical example about teaching effect evaluation of College English and some comparative analyses have been given.*e results
show that the designed method is useful for teaching effect evaluation of College English.

1. Introduction

Since the process of making decision is filled with un-
certainty and ambiguity [1–7], in order to cope with the
accuracy of decision-making [8–14], Zadeh [15] defined the
fuzzy sets (FSs). Atanassov [16] defined the concept of
intuitionistic fuzzy sets (IFSs). Liu et al. [17] built some
intuitionistic fuzzy BM fused operators with Dombi op-
erations. Gupta et al. [18] extended the fuzzy entropy to
IFSs. He et al. [19] integrated the power averaging with
IFSs. Garg [20] presented a method related to MAGDM
on the basis of intuitionistic fuzzy multiplicative prefer-
ence and defined several geometric operators. Chen et al.
[21] developed TOPSIS method and similarity measures
under IFSs. Rouyendegh [22] used the ELECTRE method
in IFSs to tackle some MCDM issues. Gan and Luo [23]
used the hybrid method with DEMATEL and IFSs. Jin
et al. [24] defined two GDM methods which can obtain
the normalized intuitionistic fuzzy priority weights from
IFPRs on the basis of the order consistency and the multi-
plicative consistency. Xiao et al. [25] defined the intuitionistic
fuzzy Taxonomy method. Zhao et al. [26] defined TODIM

method for IF-MAGDM based on CPT. Cali and Balaman
[27] extended ELECTRE I with VIKOR method in IFSs to
reflect the decision-makers’ preferences. Hao et al. [28]
presented a theory of decision field for IFSs. Gupta et al. [29]
modified the SIR method and combined it with IFSs. Li et al.
[30] gave a grey target decision-making with IFNs. Gou et al.
[31] defined some exponential operational law for IFNs.
Khan and Lohani [32] defined similarity measure about
IFNs. Bao et al. [33] defined prospect theory and evidential
reasoning method under IFSs. Oztaysi et al. [34] solved
the research proposals evaluation for grant funding using
IVIFSs. Sahu et al. [35] defined the hierarchical clustering of
IVIFSs. Xian et al. [36] defined combined weighted aver-
aging operator for GDM under IVIFSs. Zhang et al. [37]
defined the programming technique for MAGDM based on
Shapley values and incomplete information. Zhang [38]
proposed some Frank aggregation operators under IVIFSs.
An et al. [39] gave the project delivery system selection with
IVIF-MAGDMmethod. Zeng et al. [40] solved IVIF-MADM
based on nonlinear programming methodology and TOPSIS
method. Zhao et al. [41] defined the CPT-TODIM method
for interval-valued intuitionistic fuzzy MAGDM. Wang and
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Mendel [42] solved the aggregation methodology for IVIF-
MADM with a prioritization of criteria.

TOPSIS was initially developed by Hwang and Yoon [43]
to solve MAGDM issues. Compared with other MAGDM,
TOPSIS method can consider the distances degree of every
alternative from PIS and NIS. *is method has been used in
various fuzzy settings [44–49]. *is paper’s goal is to use
TOPSIS method in IVIFSs and build a new decision-making
model for actual MADM problems. *us, the motivation of
this study is the following: (1) the weights of attributes are
decided objectively by CRITIC method; (2) an empirical
example about teaching effect evaluation of College English
and some comparative analyses have been given. In order to
do so, the reminder of this paper is organized as follows:
Some concepts of IVIFSs are reviewed in Section 2. *e
improved TOPSIS method is defined with IVIFSs and the
calculating steps is simply listed in Section 3. An empirical
application about teaching effect evaluation of College
English is given to show the superiority of this designed
approach and some comparative analyses are given to prove
the merits of such method in Section 4. At last, we make an
overall conclusion of such work in Section 5.

2. Preliminaries

2.1. IVIFSs

Definition 1 (see [50]).*e interval-valued IFS (IVIFS) on X

is

I � 〈x, μI(x), ]I(x)〉, |x ∈ X , (1)

where μI(x) ⊂ [0, 1] is named as “membership degree of I”
and ]I(x) ⊂ [0, 1] is called “non-membership degree of I,”
and μI(x) and ]I(x) meet the following condition: 0≤
supμI(x) + sup]I(x)≤ 1, ∀x ∈ X. For convenience, we call
I � ([μL, μR], []L, ]R]) an IVIFN.

Definition 2 (see [51]). Let I1 � ([μL
1 , μR

1 ], []L
1 , ]R

1 ]) and I2 �

([μL
2 , μR

2 ], []L
2 , ]R

2 ]) be two IVIFNs; the operation formula of
them can be defined:

I1⊕I2 � μL
1 + μL

2 − μL
1μ

L
2 , μR

1 + μR
2 − μR

1 μ
R
2 , ]L

1]
L
2 , ]R

1 ]
R
2  ,

I1 ⊗ I2 � μL
1μ

L
2 , μR

1 μ
R
2 , ]L

1 + ]L
2 − ]L

1]
L
2 , ]R

1 + ]R
2 − ]R

1 ]
R
2  ,

λI1 � 1 − 1 − μL
1 

λ
, 1 − 1 − μR

1 
λ

 , ]L
1 

λ
, ]R

1 
λ

  , λ> 0,

I
λ
1 � μL

1 
λ
, μR

1 
λ

 , 1 − 1 − λL
1 

λ
, 1 − 1 − λR

1 
λ

  , λ> 0.

(2)

Definition 3 (see [52]). Let I1 � ([μL
1 , μR

1 ], []L
1 , ]R

1 ]) and I2 �

([μL
2 , μR

2 ], []L
2 , ]R

2 ]) be IVIFNs; the score and accuracy values
of I1 and I2 can be defined:

S I1(  �
μL
1 + μL

1 1 − μL
1 − ]L

1  + μR
1 + μR

1 1 − μR
1 − ]R

1 

2
,

S I2(  �
μL
2 + μL

2 1 − μL
2 − ]L

2  + μR
2 + μR

2 1 − μR
2 − ]R

2 

2
,

H I1(  �
μL
1 + ]L

1 + μR
1 + ]R

1
2

,

H I2(  �
μL
2 + ]L

2 + μR
2 + ]R

2
2

.

(3)

For two IVIFNs I1 and I2, according to Definition 3, we
have the following:

(1) if s(I1)< s(I2), then I1 < I2

(2) if s(I1) � s(I2), h(I1)< h(I2), then I1 > I2

(3) if s(I1) � s(I2), h(I1) � h(I2), then I1 � I2

Definition 4 (see [53]). Let I1 � ([μL
1 , μR

1 ], []L
1 , ]R

1 ]) and I2 �

([μL
2 , μR

2 ], []L
2 , ]R

2 ]) be IVIFNs; the Euclidean distance be-
tween two IVIFNs can be given as follows:

IVIFED I1, I2(  �

�������������������������������������������
1
4

μL
1 − μL

2 
2

+ μR
1 − μR

2 
2

+ ]L
1 − ]L

2 
2

+ ]R
1 − ]R

2 
2

 



. (4)

2.2. Two Aggregation Operators under IVIFSs. Under the
IVIFSs, some fused operators will be introduced in this
section, including IVIFWA fused operator and IVIFWG
fused operator.

Definition 5 (see [54]). Let Ij � ([μL
Ij

, μR
Ij

], []L
Ij

, ]R
Ij

]) (j �

1, 2, . . . , n) be a set of IVIFNs; the IFWA operator is

IVIFWAω I1, I2, . . . , In(  � ⊕
n

j�1
ωjIj 

� 1 − 
n

j�1
1 − μL

Ij
 

ωj

, 1 − 
n

j�1
1 − μR

Ij
 

ωj

,  

n

j�1
]L

Ij
 

ωj

, 
n

j�1
]R

Ij
 

ωj

,

(5)
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where ω � (ω1,ω2, . . . ,ωn)T is the weight vector of Ij (j �

1, 2, . . . , n) and ωj > 0, 
n
j�1 ωj � 1.

Definition 6 (see [51]). Let Ij � ([μL
Ij

, μR
Ij

], []L
Ij

, ]R
Ij

]) (j �

1, 2, . . . , n) be a set of IVIFNs; the IVIFWG operator is

IVIFWGω I1, I2, . . . , In(  � ⊗
n

j�1
Ij 

ωj

�  

n

j�1
μL

Ij
 

ωj

, 
n

j�1
μR

Ij
 

ωj

, 1 − 
n

j�1
1 − ]L

Ij
 

ωj

, 1 − 
n

j�1
1 − ]R

Ij
 

ωj

,

(6)

where ω � (ω1,ω2, . . . ,ωn)T is the weight vector of Ij (j �

1, 2, . . . , n) and ωj > 0, 
n
j�1 ωj � 1.

3. TOPSIS Method for IVIF-MAGDM with the
CRITIC Method

In this section, we build the IVIF-TOPSIS method for
MAGDM. *e calculating steps of the designed method can
be described subsequently. Let R � R1, R2, . . . , Rn  be the
group of attributes, and let r � r1, r2, . . . , rn  be the weight
of attributes Rj, where rj ∈ [0, 1], j � 1, 2, . . . , n, 

n
j�1 rj � 1.

Assume that H � H1, H2, . . . , Hl  is a set of DMs that have
degree of h � h1, h2, . . . , hl , where hk ∈ [0, 1], k � 1, 2, . . . ,

l. 
l
k�1 hk � 1. Let F � F1, F2, . . . , Fm  be a set of alterna-

tives. Q � (qij)m×n is the matrix with IVIFNs, where qij

means Fi for Rj. Subsequently, the specific calculating steps
will be depicted.

Step 1. Build each DM’s matrix Q(k) � (qk
ij)m×n with

IVIFNs and calculate the overall IVIF decision
matrix Q � (qij)m×n.

Q
(k)

� q
k
ij 

m×n
�

q
k
11 q

k
12 . . . q

k
1n

q
k
21 q

k
22 . . . q

k
2n

⋮ ⋮ ⋮ ⋮

q
k
m1 q

k
m2 . . . q

k
mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q � qij 
m×n

�

q11 q12 . . . q1n

q21 q22 . . . q2n

⋮ ⋮ ⋮ ⋮

qm1 qm2 . . . qmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

qij � 1 − 
l

k�1
1 − μL

qk
ij

 
dk

, 1 − 
l

k�1
1 − μR

qk
ij

 
dk

,  

l

k�1
]L

qk
ij

 
dk

, 
l

k�1
]R

qk
ij

 
dk

,

(7)

where qk
ij is the assessment value of Fi (i � 1, 2,

. . . , m) on the basis of the attribute Rj (j � 1, 2, . . . ,

n) and the DM Hk (k � 1, 2, . . . , l).
Step 2. Normalize the overall matrix Q � (qij)m×n

with IFNs to QN � [qN
ij ]m×n.

q
N
ij �

μL
ij, μ

R
ij , ]L

ij, ]
R
ij  , Zj is a benefit criterion,

]L
ij, ]

R
ij , μL

ij, μ
R
ij  , Zj is a cost criterion.

⎧⎪⎨

⎪⎩

(8)

Step 3. Employ CRITIC method to determine the
weighting of attributes.
CRiteria Importance *rough Intercriteria Corre-
lation (CRITIC) method [55] will be proposed in this
part, which is utilized to decide attributes’ weights.

(1) Depending on the normalized overall matrix
QN � (qN

ij )m×n with IVIFNs, the correlation co-
efficient between attributes can be defined.

IVIFCCjr �


m
i�1 S q

N
ij  − S q

N
j   S q

N
ir  − S q

N
r  

�������������������


m
i�1 S q

N
ij  − S q

N
j  

2
 �������������������


m
i�1 S q

N
ir  − S q

N
r  

2
 , j, r � 1, 2, . . . , n, (9)
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where S(qN
j ) � (1/m) 

m
i�1 S(qN

ij ) and S(qN
t ) � (1/m)


m
i�1 S(qN

it ).
(2) Obtain attributes’ standard deviation.

IVIFSDj �

�����������������������

1
m − 1



m

i�1
S q

N
ij  − S q

N
j  

2




,

j � 1, 2, . . . , n,

(10)

where S(qN
j ) � (1/m) 

m
i�1 S(qN

ij ).
(3) Obtain the attributes’ weights.

rj �
IVIFSDj 

n
t�1 1 − IVIFCCjt 


n
j�1 IVIFSDj 

n
t�1 1 − IVIFCCjt  

,

j � 1, 2 . . . , n,

(11)

where rj ∈ [0, 1] and 
n
j�1 rj � 1.

Step 4. Define the interval-valued intuitionistic fuzzy
PIS (IVIF-PIS) A+

j and the interval-valued intui-
tionistic fuzzy NIS (IVIF-NIS) A−

j as

IVIFPISj � μL+
j , μR+

j , ]L+
j , ]R+

j  ,

IVIFNISj � μL+
j , μR+

j , ]L+
j , ]R+

j  ,
(12)

whereIVIFPISj � ([maxj(μL
ij),maxj(μR

ij)], [minj

(]L
ij), minj(]R

ij)]) and IVIFNISj � ([minj (μL
ij),

minj(μR
ij)], [maxj(]L

ij),maxj(]R
ij)]).

Step 5. Compute the positive distances d+
i between

each alternative and IVIF-PIS and the negative dis-
tances d−

i between each alternative and IVIF-NIS as

d
+
i � 

n

j�1
rjIVIFED q

N
ij , A

+
j , i � 1, 2, . . . , m,

d
−
i � 

n

j�1
rjIVIFED q

N
ij , A

−
j , i � 1, 2, . . . , m,

(13)

where IVIFED(qN
ij , A+

j ) and IVIFED(qN
ij , A−

j ) denote
the IVIF Euclidean distances given in Definition 4,
and rj is the weight of attributes.
Step 6. Compute each alternative’s closeness degree
from IVIF-PIS as

Ci �
d

−
i

d
−
i + d

+
i

, i � 1, 2, . . . , m. (14)

Step 7. According to the value, Ci (i � 1, 2, . . . , m).
*e highest value of Ci (i � 1, 2, . . . , m) is the op-
timal alternative which is designed.

4. The Empirical Example and
Comparative Analysis

4.1. Empirical Example. With the increasing development of
economy and more frequent communication between

countries, English, as an international language, has more
important position and plays a greater role. Accordingly, the
requirements for English teaching and learning become
higher. Although experts and scholars have been trying to
reform the English teaching approaches, the result is not
satisfactory. In particular, the recent increasing enrollment
has challenged the teaching of College English greatly. *e
increasing number of students and the lack of faculties lead
to the larger number of students in English class. So how to
improve the quality of large-class English teaching is the
great concern of teachers and students, which is also the
ultimate purpose of this research. It is evident that the
traditional teacher-centered teaching approach cannot meet
the demands of the development. At this moment, the
popular cooperative learning approach has gained wide
attention. Cooperative learning theories and methods have
been researched deeply and are adopted widely in many
countries all over the world. *e core of the cooperative
learning is the group work. It emphasizes the student as
center and the teacher as designer, instructor, monitor, etc.
By means of such instruments as questionnaires, tests, in-
terviews, and classroom observations, the research on the
effect of cooperative learning on the large-class College
English teaching is conducted. *e result of the research
shows that the cooperative learning theories and methods
are suitable for the large-class English teaching and are
helpful to improve the quality of the teaching. *e coop-
erative learning’s heterogeneous group, positive interde-
pendence, individual accountability and group work, and so
forth make the classroom atmosphere relaxed and greatly
improve students’ positivity of participation and interest in
learning. Students make great progress not only in academic
performance but also in communication skills, self-confi-
dence, self-esteem, and so forth.*rough this research, some
disadvantages of cooperative learning in large-class College
English teaching are found, such as students’ inadequate
preparations for the group work and unequal opportunities
and time for participation of groupmembers. On the basis of
these findings in the research, some pedagogical implica-
tions are put forward to improve the effect of cooperative
learning and the quality of large-class College English
teaching. In this chapter, an empirical application about
teaching effect evaluation of College English will be provided
by making use of IVIF-TOPSIS method. *ere are five
potential College English teaching methods
Fi (i � 1, 2, 3, 4, 5) preparing to evaluate their investment
environment. In order to assess the effect of College English
teaching methods fairly, three experts H � H1, H2, H3 

(expert’s weight h � (0.35, 0.32, 0.33)) are invited. All ex-
perts depict their assessment information through four
subsequent attributes:① R1 denotes teaching attitude;② R2
denotes the teaching methods; ③ R3 denotes student
feedback; ④ R4 denotes peer recognition. *e decision-
making matrices are given in Tables 1–3.

*en, we shall use the defined TOPSIS method for
teaching effect evaluation of College English.:

Step 1. Based on the decision-making information
Q(k) � (qk

ij)m×n (i � 1, 2, . . . , m, j � 1, 2, . . . , n) given in
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Tables 1–3 and the expert’s weightsh � (0.35, 0.32,

0.33), we can derive the overall matrix Q � (qij)m×n (i �

1, 2, . . . , m, j � 1, 2, . . . , n) according to equation (10),
and the computing results are listed in Table 4.
Step 2. All the attributes are beneficial attributes; thus,
this step is omitted.
Step 3. Decide the attribute weights rj (j � 1, 2, . . . , n)

by CRITIC method as listed in Table 5.
Step 4. Calculate the IVIF-PIS A+

j and the IVIF-NIS A−
j

according to equations (20) and (21).

A
+
j �

(0.6862, 0.1569), (0.4924, 0.2844),

(0.4413, 0.1625), (0.5054, 0.2042)
 ,

A
−
j �

(0.3169, 0.2763), (0.1986, 0.5885),

(0.2051, 0.3945), (0.3078, 0.4041)
 .

(15)

Step 5. Compute the distances d+
i and d−

i ; the results are
as follows:

d
+
1 � 0.1823, d

+
2 � 0.1978, d

+
2 � 0.1043, d

+
2 � 0.2123, d

+
2 � 0.2213;

d
−
1 � 0.1246, d

−
2 � 0.1623, d

−
2 � 0.2509, d

−
2 � 0.1366, d

−
2 � 0.1735.

(16)

Step 6. Compute each alternative’s closeness degree Ci

from IVIF-PIS by equation (14); the results are as
follows:

C1 � 0.3709,

C2 � 0.4982,

C3 � 0.6976,

C4 � 0.3869,

C5 � 0.3916.

(17)

Step 7. Relying on Ci, all the alternatives can be ordered,
and the higher the value of Ci is, the best alternative

selected will be. Evidently, the order is F3 >F2 > F5 >
F4 >F1 and F3 is the optimal College English teaching
method.

4.2. Comparison Analysis. In this section, our defined
method is compared with some other methods to show its
superiority.

First of all, our defined method is compared with
IVIFWA and IVIFWG operators [54]. For the IVIFWA
operator, the calculating result is S(F1) � 0.0795, S(F2) �

0.1508, S(F3) � 0.3435, S(F4) � 0.0498, S(F5) � 0.0421.
*us, the ranking order is F3 >F2 >F1 >F4 >F5. For the

Table 1: Decision-making information given by H1.

R1 R2 R3 R4

F1 ([0.16, 0.22], [0.65, 0.78]) ([0.33, 0.42], [0.50, 0.58]) ([0.24, 0.30], [0.65, 0.70]) ([0.47, 0.55], [0.40, 0.45])
F2 ([0.32, 0.40], [0.55, 0.60]) ([0.17, 0.25], [0.70, 0.75]) ([0.71, 0.80], [0.14, 0.20]) ([0.60, 0.70], [0.25, 0.30])
F3 ([0.43, 0.47], [0.50, 0.53]) ([0.32, 0.40], [0.55,0.60]) ([0.57, 0.62], [0.30, 0.38]) ([0.29, 0.36], [0.58, 0.64])
F4 ([0.32, 0.39], [0.41, 0.61]) ([0.27, 0.36], [0.57, 0.64]) ([0.34, 0.40], [0.50, 0.60]) ([0.32, 0.40], [0.55, 0.60])
F5 ([0.25, 0.30], [0.55, 0.70]) ([0.44, 0.48], [0.50, 0.52]) ([0.62, 0.70], [0.25, 0.30]) ([0.60, 0.65], [0.30, 0.35])

Table 2: Decision-making information given by H2.

R1 R2 R3 R4

F1 ([0.36, 0.41], [0.56, 0.59]) ([0.41, 0.45], [0.50, 0.55]) ([0.74, 0.80], [0.15, 0.20]) ([0.52, 0.62], [0.32, 0.38])
F2 ([0.70, 0.80], [0.15, 0.20]) ([0.36, 0.40], [0.57, 0.60]) ([0.59, 0.65], [0.30, 0.35]) ([0.66, 0.75], [0.20, 0.25])
F3 ([0.55, 0.62], [0.27, 0.38]) ([0.29, 0.35], [0.60, 0.65]) ([0.57, 0.62], [0.32, 0.38]) ([0.60, 0.65], [0.30, 0.35])
F4 ([0.28, 0.46], [0.50, 0.54]) ([0.53, 0.60], [0.35, 0.40]) ([0.68, 0.75], [0.20, 0.25]) ([0.35, 0.40], [0.55, 0.60])
F5 ([0.52, 0.60], [0.35, 0.40]) ([0.46, 0.52], [0.40, 0.48]) ([0.41, 0.52], [0.40, 0.48]) ([0.58, 0.63], [0.30, 0.37])

Table 3: Decision-making information given by H3.

R1 R2 R3 R4

F1 ([0.59, 0.62], [0.26, 0.38]) ([0.63, 0.70], [0.25, 0.30]) ([0.37, 0.45], [0.50, 0.55]) ([0.55, 0.60], [0.32, 0.40])
F2 ([0.65, 0.75], [0.20, 0.25]) ([0.35, 0.40], [0.55, 0.60]) ([0.70, 0.80], [0.10, 0.20]) ([0.52, 0.62], [0.30, 0.38])
F3 ([0.37, 0.40], [0.53, 0.60]) ([0.42, 0.48], [0.50, 0.52]) ([0.19, 0.25], [0.70, 0.75]) ([0.59, 0.65], [0.30, 0.35])
F4 ([0.61, 0.65], [0.30, 0.35]) ([0.38, 0.42], [0.52, 0.58]) ([0.62, 0.70], [0.25, 0.30]) ([0.37, 0.45], [0.55, 0.60])
F5 ([0.35, 0.45], [0.50, 0.55]) ([0.61, 0.65], [0.30, 0.35]) ([0.36, 0.40], [0.55, 0.60]) ([0.55, 0.62], [0.28, 0.38])
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IVIFWG operator, the calculating result is S(F1) � −0.0116,

S(F2) � 0.1239, S(F3) � 0.3213, S(F4) � 0.0368, S(F5) �

0.0087. So the ranking order is F3 >F2 >F4 >F5 >F1.
Furthermore, our defined method is compared with the

IVIF-VIKOR method [56]. *en we can obtain the calcu-
lating result. *e closest ideal score values are the following:
CI∗(F1) � 0.9034, CI∗(F2) � 0.6714, CI∗(F3) � 0.0000,
CI∗(F4) � 0.9854, and CI∗(F5) � 0.9509; and the farthest
worst score values are the following: CI− (F1) � 0.0134,
CI− (F2) � 0.3467, CI− (F3) � 1.0000, CI− (F4) � 0.0176,
and CI− (F5) � 0.0000. *en the alternatives’ relative
closeness is calculated as follows: DRC1 � 0.9859,
DRC2 � 0.6656, DRC3 � 0.0000, DRC4 � 0.9796, and
DRC5 � 1.0000. Hence, the order is F3 >F2 >F4 >F1 >F5.

In the end, our defined method is also compared with
IVIF-CODASmethod [57].*en we can have the calculating
result. *e total assessment score (AS) of each alternative is
calculated as follows: AS1 � −0.8023, AS2 � 0.1650,
AS3 � 1.4827, AS4 � −0.3976, and AS5 � −0.4436. *ere-
fore, the order is F3 >F2 >F4 >F5 >F1.

Eventually, the results of these methods are in Table 6.
From Table 6, it is evident that the best alternative is

F3, while the worst alternative is F1 in most situations. In
other words, these methods’ order is slightly different.
Different methods can tackle MAGDM from different
angles.

5. Conclusion

With the development of multimedia technology and the
wide use of the Internet and computer, College English
teaching is becoming more and more multimodal. *e rapid
development of information technology promotes the
change in the ways of communication and the education
idea. However, the traditional teaching mode is not adapted
to the requirements of the times. *is paper offers an
effective solution for this issue, since it designs a novel
intuitive distance based IVIF-TOPSIS method to build the
teaching effect evaluation of College English. *en a nu-
merical example has been given to confirm that this novel
method is reasonable. What is more, to verify the validity
and feasibility of the developed method, some comparative
analysis is also given. However, the main drawback of this
paper is that the numbers of DMs and attributes are small,
and interdependency of attributes is not taken into con-
sideration, which may limit the application scope of the
developed method to some extent. *us, the highlights of
this study are the following: (1) the weights of attributes are
derived objectively by CRITIC method; (2) an empirical
example about teaching effect evaluation of College English
and some comparative analyses have been given to show the
effectiveness of the designed IVIF-TOPSIS method in
MAGDM issues. In our future works, the designed model

Table 4: *e overall matrix with IVIFNs.

R1 R2 R3 R4

F1
([0.5265, 0.5879], [0.2908,

0.4079])
([0.4478, 0.5187], [0.3848,

0.4723])
([0.5356, 0.6149], [0.4550,

0.3636])
([0.4872, 0.5702], [0.4127,

0.4153])

F2
([0.5623, 0.6406], [0.3011,

0.3594])
([0.3034, 0.3589], [0.5872,

0.6411])
([0.6589, 0.7498], [0.1660,

0.2502])
([0.5875, 0.6829], [0.2511,

0.3171])

F3
([0.4125, 0.4685], [0.4625,

0.5315])
([0.3638, 0.4299], [0.5243,

0.5701])
([0.5273, 0.5805], [0.3471,

0.4195])
([0.5144, 0.5866], [0.3420,

0.4134])

F4
([0.4759, 0.5699], [0.3497,

0.4301])
([0.4333, 0.5053], [0.4275,

0.4947])
([0.5314, 0.6012], [0.3298,

0.3988])
([0.3010, 0.3678], [0.5677,

0.6322])

F5
([0.3160, 0.4106], [0.5152,

0.5894])
([0.4702, 0.5165], [0.4317,

0.4835])
([0.5080, 0.5864], [0.3567,

0.4136])
([0.4932, 0.5582], [0.3658,

0.4418])

Table 5: *e attributes weights rj.

R1 R2 R3 R4

rj 0.2778 0.2192 0.2612 0.2418

Table 6: Evaluation results of these methods.

Methods Ranking order *e best alternative *e worst alternative
IVIFWA operator [54] F3 >F2 >F1 >F4 >F5 F3 F5
IVIFWG operator [54] F3 >F2 >F4 >F5 >F1 F3 F1
IVIF-VIKOR method [56] F3 >F2 >F4 >F1 >F5 F3 F5
IVIF-CODAS method [57] F3 >F2 >F4 >F5 >F1 F3 F1
*e developed method F3 >F2 >F5 >F4 >F1 F3 F1

6 Journal of Mathematics



RE
TR
AC
TE
D

and algorithm will be needful and meaningful to apply to
solve other real MADM or MAGDM problems [58–62], and
the designed methods can also be extended to other un-
certain settings [63–68].

Data Availability

*e data used to support the findings of this study are in-
cluded in the article.
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Fire safety plays a vital role in tourism management, which can cause significant loss of life and property. It is necessary to present
an efficient fire safety evaluation for scenic spots. However, some key issues are not well addressed in existing methods. For
example, how to model experts’ opinions and how to combine them are still open problems. To address these issues, a new
evaluation method based on the Dempster–Shafer evidence theory and best-worst method is presented. First, a fire safety
evaluation index system is constructed using the domino model. Domain experts can evaluate different factors with linguistic
assessments. -e best-worst method is used to determine the weights of different factors. -en, these weighted linguistic as-
sessments are efficiently fused by Dempster’s combination rule to obtain the evaluation result. Finally, a case study is illustrated to
demonstrate the efficiency of the proposedmethod in fire safety evaluation for scenic spots.-emain contribution of the proposed
method is to represent and handle the uncertainty in experts’ linguistic assessments, so as to decrease the uncertainty and improve
decision making. In addition, the weight determination method BWM is easier and more reliable than the existing method AHP.

1. Introduction

Safety is of great significance for the development of tourism.
A tourism accident can cause a great damage to the economy
of tourism and tourists’ lives and properties. Tourism safety
has been an unavoidable problem since accidents occur
frequently. Studies concerning tourism safety mainly focus
on food safety [1], terrorist incidents [2], natural disasters
[3], social crime [4], and road accidents [5]. However, there
is not enough focus on fire safety.

Fire accident in tourism reminds us of the importance of
fire safety in scenic spots. For example, on September 30,
2018, Longji Terraced Fields Scenic Area, a famous scenic
spot in Guilin, Guangxi Zhuang Autonomous Region,
China, caught fire. 48 ancient houses burned down and the
fire almost destroyed the whole scenic area. Scenic spots
afford a remarkable tourism service and have capacity for a
great number of tourists, so it is necessary and significant to
establish a fire safety evaluation system for scenic spots.

Reviewing the existing literature, we find that there are
very few articles concerning fire safety in tourism, but only
some research on related situations has been carried out. For
example, Spyrou et al. [6] proposed a general risk model for
evaluating the fire safety of passenger ships. Chen et al. [7]
carried out a quantitative risk assessment of cotton storage
fire accidents. Brzezinska et al. [8] presented a new evalu-
ation and indicating approach for sustainable fire safety in
the process industry. However, it is still an open problem to
handle uncertainty in evaluation models.

A common idea in evaluating a fire system is to ask
authoritative experts for opinions and then to make a
comprehensive consideration for decision. Hence, the fire
system evaluation problem is a kind of multicriteria deci-
sion-making (MCDM) problem. One of the important
problems in MCDM is to deal with uncertainty [9,10]. Many
mathematical tools such as fuzzy sets [11–14], neutrosophic
sets [15], and Z-numbers [16] are used. For example, Xue
et al. [17] addressed the uncertain database retrieval problem
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based on intuitionistic fuzzy set. Li et al. [18] proposed a new
uncertainty measure of discrete Z-numbers and applied it to
solve MCDM problems. Harish and Gagandeep [19] de-
veloped a method to solve MCDM problems under the
probabilistic dual hesitant fuzzy set environment.

In view of the uncertainty in experts’ linguistic assess-
ments and the need for opinion integration, a suitable tool,
named Dempster–Shafer evidence theory (DSET) [20–22],
can solve the two problems perfectly. DSET is an efficient
tool for decision making under uncertain environment and
provides a combination rule for information fusion [23, 24].
In addition, in this paper, we apply the best-worst method
(BWM) [25, 26] to determine different weights of factors.
Actually, there are some research studies on the combination
of DSET and BWM. For example, Fei et al. [27] extended
BWM by belief functions in DSET and implemented the
algorithm in hospital service evaluation. Liu et al. [28] de-
veloped a MCDM method in combination with DSET and
BWM to solve the sustainable development alternative se-
lection problem.

-erefore, based on DSETand BWM, this paper presents
an evidential fire safety evaluation method for scenic spots,
which can help managers to assess fire risk and take mea-
sures to prevent fire accidents. -e proposed model can well
deal with the uncertainty flexibly. In summary, the main
contribution of the proposed method is that it can well deal
with the uncertainty flexibly by modeling and fusing un-
certain information, which is useful to reduce uncertainty
and improve decision making. In addition, the weight de-
termination method BWM is easier and more reliable than
the existing method AHP (analytic hierarchy process).

-e remainder of the paper is organized as follows.
Section 2 introduces the accident model and the related
theory including DSET and BWM. In Section 3, we present
the index system and the evidential BWM for fire safety.
Section 4 illustrates a case of fire safety evaluation. Finally,
we conclude this paper in Section 5.

2. Preliminaries

2.1. AccidentModel. -e accident model plays a critical part
in processing safety management, since it can provide a
better understanding of accident scenarios and describe the
relation between causes and consequences [29]. Heinrich
[30] originally proposed the domino theory to illustrate
sequential aspects of accident occurrence. -is considers the
accident as the outcome of series of successive events, rather
than an isolated incident, and distinguishes five stages or
factors in an accident, including ancestry and social envi-
ronment, fault of person, unsafe act and/or mechanical or
physical hazard, accident, and injury [31].

Updating and modifying the domino theory, which
stressed on inherent shortcomings of humans, the loss
causationmodel was proposed andmany different variations
appeared subsequently [32]. -e loss causation model ap-
plied in the current work is usually called the domino model
[33], which places more emphasis on management and
organizational factors. In the domino model, an accident is
directly caused by human’s unsafe behaviors and objects’

insecurity state and indirectly caused by personal factors and
work-related factors. Management deficiency is the root
cause, namely, the problem or deficiency in management
leads to the remote cause, which then results in the im-
mediate cause and ultimately brings about an accident. In
summary, person, work-related object, and management
comprise the accident model.

-e domino model is appropriate for tourism, and this
article applies it to construct a safety evaluation index system
for touristic scenic spots (Figure 1).

2.2. Dempster–Shafer Evidence 0eory. Dempster–Shafer
evidence theory, abbreviated as DSET, was first proposed by
Dempster [34] and then developed by Shafer [35]. DSET has
two unique characteristics: one is to assign belief values to
multi-subset propositions and the other is to fuse bodies of
evidence. However, DSET still has some unresolved issues,
like conflict management [36–39], dependence evidence
combination [40–42], and belief entropy [43–45]. Consid-
ering its superiority under uncertain environment and its
practicability in engineering [46–48], DSET has a broad
application in many areas, such as risk assessment [49–52],
fault diagnosis [53–55], and classification and clustering
[56–58].

Assume a random variable X taking values from
Θ � Θ1,Θ2, . . . ,Θn , where Θ is called a frame of dis-
cernment (FOD). 2Θ denotes the power set of Θ.

A mass function (also called a basic probability as-
signment, BPA) is a mapping from 2Θ to [0, 1], formally
defined by [34, 35]

m: 2Θ ⟶ [0, 1], (1)

satisfying the following condition:


A∈2Θ

m(A) � 1, m(∅) � 0, (2)

where m(A) represents the belief value that supports A.
Assuming two BPAs m1 and m2 are from two pieces of

dependent evidence, Dempster’s combination rule, repre-
sented as m � m1 ⊕m2, is defined as follows [34, 35]:

m(A) �
A1 ∩A2�Am1 A1( m2 A2( 

1 − K
, (3)

where K is called the conflict coefficient of two BPAs and is
calculated by A1 ∩A2�∅m1(A1)m2(A2).

2.3.Best-WorstMethod. -e best-worst method (BWM) was
put forward by Rezaei to manage multicriteria decision
problems [59, 60]. One of the common applications of BWM
is to determine weights. By making comparisons between
the most important (best)/least important (worst) criteria
and the others, BWM establishes a minimum optimization
problem to derive weights. BWM has been broadly applied
in many fields such as medical system [61, 62], risk as-
sessment [63, 64], and supplier selection [65]. -e detailed
procedures of BWM are described below.
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and least important criteria, respectively, and then give a
preference judgment of the most important criteria over all
criteria with a scale from 1 to 9. A larger number means
more preference. -e results are stored in two vectors UBO

and VOW as follows [59]:

UBO � uB1, uB2, . . . , uBl( ,

VOW � v1W, v2W, . . . , vlW( ,
(4)

where uBj means the preference of the best criteria B over the
criteria j, and uBB � 1. vjW means the preference of the
criteria j over the worst criteria W, and vWW � 1.

With the two vectors obtained, an optional linear pro-
gramming model is established to determine the optional
weight (w∗1 , w∗2 , . . . , w∗l ) [59]:

minε

s.t.

wB

wj

− uBj

���������

���������
≤ ε for all j

wj

wW

− vjW

��������

��������
≤ ε for all j


j

wj � 1

wj ≥ 0

for all j.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Furthermore, to guarantee the consistency of compar-
ison, the definition of consistency ratio (CR) is given by
BWM [59]:

CR �
ε∗

CI
, (6)

where ε∗ is the best solution of ε corresponding to equation
(5) and CI is determined by uBW (the preference of the most
important criteria B over the least important one W), as
shown in Table 1. -e range of CR is [0, 1]; the larger CR is,
the more inconsistent the comparison vector is. In general,
CR≤ 0.1 shows that the comparison vector is acceptable.

3. Evaluation Methodology

3.1. Establishing the Evaluation Index System. -e domino
model is applicable to evaluate fire safety in tourism scenic
spots, wherein person includes tourists and staff, work-related
object contains firefighting equipment and surroundings of
scenic spots, and management means how to mobilize per-
sons and work-related objects to be out of fire danger.

Combining this with the general actual situation of tourism
scenic spots and reference to the prior related studies [66–68],
we establish a fire safety evaluation index system as shown in
Table 2. As we can see, the system is a hierarchical structure,
including the target level, the base level, and the criteria level.
-e target level contains three factors: management (η1),
person (η2), and work-related job (η3).-e base level is in the
second level, such as inner management (η11). -ere are 6
factors at the base level. -e criteria level contains the most
specific factors, such as fire safety education and training
(η111). -ere are 14 indexes at the criteria level.

3.2. Evaluation Method. Following the construction of the
evaluation index system for fire safety, this section presents
an evaluationmodel using DSETand BWM.-emain idea is
to use BWM to weight different factors at all levels, and then
based on experts’ linguistic evaluations on fire safety levels,
the corresponding mass functions of factors at the target
level can be constructed for each expert; finally, using the
combination rule to fuse experts’ opinions, we can deter-
mine the fire security level of scenic spots, along with the
confidence degree of the assessment result. -e flowchart of
the proposed model is given in Figure 2. -e procedure of
the fire safety evaluation method is divided into six steps.

Step 1: expert evaluation on the fire security level.
Based on the fire safety evaluation index system in
Table 2, experts should evaluate the fire safety status of
the project on factors at the criteria level and then give
linguistic assessments with a range of [0, 1]. A value
closer to 0 means that the safety status of the corre-
sponding project is more dangerous, or the working
ability of the project is lower, and hence the possibility
of a fire is greater. -e linguistic evaluation corre-
sponding to different scores is shown in Table 3. Ah

ijz

means the value of the factor ηijz assessed by the hth
expert, i ∈ [1, 3], j ∈ [1, 2], z ∈ [1, 3].
Step 2: weight all factors at different levels based on the
BWM.
According to the fire safety evaluation index system in
Table 2, BWM is applied to compute the weight of
indexes on the same level. Here we use wijz to represent
the weight of the criteria ηijz. For example, w2 means
the weight of person (η2) and w21 means the weight of
tourists (η21).

Defect in
management

Personal factors
Work-related factors

Human’s unsafe behaviors
Object’s insecurity state Accident

Figure 1: -e domino model.

Table 1: Consistency index.

uBW 1 2 3 4 5 6 7 8 9

CI 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23

Journal of Mathematics 3
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Example 1. Suppose experts are requested to evaluate the
weight of three factors η321, η322, and η323. After their dis-
cussion, they identify η323 and η321 as the most important
and the least important factors, respectively. UBO � (8, 2, 1),
VOW � (1, 5, 8). -e optional linear programming model is
established based on equation (6):

minε

s.t.

w3

w1
− 8

��������

��������
≤ ε

w3

w2
− 2

��������

��������
≤ ε

w2

w1
− 5

��������

��������
≤ ε



3

i�1
wi � 1

wi ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Using Matlab R2018a to solve this model, we can get
w∗321 � 0.0714, w∗322 � 0.3387, w∗323 � 0.5589, ε∗ � 0.26,
and CR � (0.26/4.47) � 0.058< 0.1, which means a
good consistency.-at is, w321 � 0.0714, w322 � 0.3387,
and w323 � 0.5589.
Step 3: compute weighted probability values for factors
at the criteria level.
Based on the level of each factor, the weighted prob-
ability value for the hth expert is computed as follows:

p
h ηijz  � A

h
ijz ∗wijz ∗wij ∗wi. (8)

Example 2. As shown in Table 1, we take the subsystem of
management (η1) as an example. It has two factors on the base
level, η11 and η12. Each base factor includes two criteria factors,
that is, η111, η112 and η121, η122. Supposing that two experts
participate in the evaluation, the weights of factors and the
experts’ scale are shown in Tables 4 and 5, respectively.

Table 2: -e fire safety evaluation index system.

Target level Base level Criteria level

Management (η1)

Inner management (η11)
Fire safety education and training (η111)
Fire emergency response plan (η112)

External management (η12)
Regular fire safety inspection (η121)

Inspection for inflammable and explosive dangerous goods before entering the
scenic spot (η122)

Person (η2)
Tourists (η21)

Tourists’ fire safety awareness and firefighting skills (η211)
Tourist quantity (η212)

Staff members (η22)
Staff’s fire safety awareness and firefighting skills (η221)

Firefighting quantity (η222)

Work-related object
(η3)

Firefighting device (η31)
Fire detection alarm system (η311)
Fire extinguishing equipment (η312)

Evacuation equipment (η313)

Surroundings of scenic spots
(η32)

Distance from the nearest fire station (η321)
Fire resistance of building materials (η322)

Traffic planning and spatial layout of scenic area (η323)

Expert evaluation on the
fire security level

Determine the weights of
all factors using BWM

Compute comprehensive probability
values for factors at the criteria level

Construct mass functions for factors
at the target level

Fuse expert evaluation using DSET

Determine the safety level

Figure 2: -e flowchart of the proposed method.

Table 3: -e linguistic assessment on fire safety levels.

Fire safety
status Dangerous General Subsafe Safe

Scale 0 ∼ < 0.25 0.25 ∼ < 0.5 0.5 ∼ < 0.75 0.75 ∼ < 1
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Hence, the weighted probability values for η111 are
calculated by p1(η111) � 0.3∗0.5∗0.6∗0.1 � 0.009.
p2(η111) � 0.5∗0.5∗0.6∗0.1 � 0.015. Other results are
shown in the fourth column of Table 5.
Step 4: construct mass functions for factors at the target
level.
Under the framework of DSET, mass functions are
obtained by the sum of weighted probability values of
factors at the criteria level. -e specified formula is
shown as follows:

m
h ηi(  � 

f

z�1

f

j�1
m

h ηijz , (9)

m
h
(Θ) � 1 − 

i

m
h ηi( , (10)

where f is the number of all factors at the criteria level
and mh(Θ) can be regarded as the uncertainty of ex-
perts’ evaluation.

Example 3. Calculate the mass functions of the target factor
η1 in Table 5:

m
1 η1(  � p

1 η111(  + p
1 η112(  + p

1 η121(  + p
1 η122(  � 0.094,

m
2 η1(  � p

2 η111(  + p
2 η112(  + p

2 η121(  + p
2 η122(  � 0.0776.

(11)

Step 5: fuse experts’ evaluations using DSET.
According to Dempster’s combination rule (see
equation (3)), the fused experts’ evaluation can be
obtained. -e specified formula is shown below.

m ηi(  � m
1 ηi( ⊕m

2 ηi( ⊕ · · · ⊕m
n ηi( . (12)

Step 6: determine the safety level.
-e comprehensive belief value for safety assessment
can be obtained by equation (13), i.e., the sum of the
fused belief value for each factor at the target value.
According to the criteria in Table 2, the safe level is
finally determined.

p � 
i

m ηi( . (13)

-e confidence of the assessment result is calculated by
1 − m(Θ).

4. An Evaluation Case

In this paper, a case study of fire safety evaluation for one
scenic spot is provided based on the proposed model.
Assume that 3 experts are required to evaluate the se-
curity level on all factors at the criteria level based on
Table 2; the detailed assessments are shown in Table 6.
-e weights of different factors based on BWM are given
in Table 7.

According to Step 3 of this model, with the weights of
factors at all levels and experts’ linguistic assessments on
security status, we can calculate the weighted probability
values of indexes at the criteria level using equation (8). -e
results are shown in Table 8.

Based on Step 4 and Step 5 of the model, we can con-
struct mass functions using equations (9) and (10) for each
expert and then fuse them using equation (12). -e results
are shown below:

m
1 η1(  � 0.2174, m

1 η2(  � 0.1743, m
1 η3(  � 0.1073, m

1
(Θ) � 0.5010,

m
2 η1(  � 0.1952, m

2 η2(  � 0.1766, m
2 η3(  � 0.1444, m

2
(Θ) � 0.4838,

m
3 η1(  � 0.2350, m

3 η2(  � 0.1649, m
3 η3(  � 0.1666, m

3
(Θ) � 0.4335,

m η1(  � 0.3611, m η2(  � 0.2643, m η3(  � 0.2029, m(Θ) � 0.1716.

(14)

Table 4: Weights of factors.

Factor η1 η11 η12 η111 η112 η121 η122
Weight 0.1 0.6 0.4 0.5 0.5 0.2 0.8

Table 5: -e experts’ evaluation.

Expert 1’s evaluation Expert 2’s evaluation Weighted probability values
η111 0.3 0.5 p1(η111) � 0.009, p2(η111) � 0.015
η112 0.7 0.7 p1(η112) � 0.021, p2(η112) � 0.021
η121 0.6 0.5 p1(η121) � 0.048, p2(η121) � 0.016
η122 0.4 0.8 p1(η122) � 0.016, p2(η122) � 0.0256
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Table 6: Experts’ assessments on security level.

Expert 1 Expert 2 Expert 3
η111 0.75 0.60 0.70
η112 0.80 0.75 0.80
η121 0.45 0.55 0.65
η122 0.65 0.50 0.70
η211 0.65 0.70 0.65
η212 0.70 0.75 0.85
η221 0.60 0.65 0.50
η222 0.35 0.30 0.25
η311 0.15 0.35 0.45
η312 0.35 0.50 0.60
η313 0.45 0.35 0.50
η321 0.80 0.70 0.65
η322 0.70 0.80 0.75
η323 0.30 0.50 0.45

Table 7: -e weights of different factors based on BWM.

Target level Base level Criteria level

η1 � 0.333
η11 � 0.456 η111 � 0.655

η112 � 0.345

η12 � 0.544 η121 � 0.5
η122 � 0.5

η2 � 0.333
η21 � 0.450 η211 � 0.604

η212 � 0.396

η22 � 0.550 η221 � 0.215
η222 � 0.785

η3 � 0.333

η31 � 0.701
η311 � 0.595
η312 � 0.083
η313 � 0.321

η32 � 0.299
η321 � 0.071
η322 � 0.339
η323 � 0.560

Table 8: Weighted probability values of factors at the criteria level.

p1
ηijz

p2
ηijz

p3
ηijz

η111 0.0746 0.0597 0.0696
η112 0.0431 0.0404 0.0431
η121 0.0408 0.0498 0.0589
η122 0.0589 0.0453 0.0634
η211 0.0588 0.0634 0.0588
η212 0.0415 0.0445 0.0504
η221 0.0236 0.0256 0.0197
η222 0.0503 0.0431 0.0359
η311 0.0208 0.0486 0.0625
η312 0.0068 0.0097 0.0116
η313 0.0337 0.0262 0.0375
η321 0.0057 0.0049 0.0046
η322 0.0236 0.0270 0.0253
η323 0.0167 0.0279 0.0251
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Finally, the overall belief value of safety assessment can
be computed using equation (13):

p � m η1(  + m η2(  + m η3(  � 0.8283. (15)

Hence, according to Table 2, we can conclude that the
comprehensive evaluation result is safe, and the confidence
of the result is 1–0.1716� 0.8284.

In addition, we compare the proposed method with
Chen and Deng’s method [69]. An evidential AHP method
was presented in [69] to evaluate sustainable transport so-
lutions, where AHP was applied to determine weights and
Dempster–Shafer evidence theory was used for handling
uncertain information. -e two methods are different in the
weight determination methods by AHP and BWM, re-
spectively, which will be analyzed next.

From Table 2, we can find that in most situations, there
are just two factors that can be compared to determine
weights, like η11 and η12. It is easy for experts to determine
the relative importance between them and get reasonable
weights. -erefore, two groups with three compared factors
η311, η312, η313  and η321, η322, η323  are taken as examples
to show the advantages of BWM. It should be noted that for
simplicity and fair comparison, the relative importance in
the comparison matrix in AHP refers to the values in
comparison vectors in BWM. Table 9 shows the weight
results by AHP and BWM, respectively.

As shown in Table 9, the weights of factors for each
group are very similar, and their consistency ratios (CRs) are
all less than 0.1. On the one hand, the third column gives the
comparison data required by BWM and AHP, which shows
that BWM needs less comparison data than AHP. Exactly,
BWM needs to have (2n − 3) comparisons while for AHP,
n(n − 1)/2 comparisons are needed, where n means the
number of factors. On the other hand, the fifth column gives
CR values computed by BWM and AHP. In AHP, the values
of CR are far smaller than 0.1; it means that the comparison
relationship given by BWM performs well in AHP. -is
shows that BWM provides consistent comparison data.

Since BWM considers the best and worst factors to compare,
the weights derived by BWM are highly reliable as it pro-
vides more consistent comparison data compared to AHP.
Actually, Rezaei has analyzed the two advantages of BWM
compared to AHP in [59]. In conclusion, BWM is easier and
more reliable than AHP.

Based on the weights determined by AHP in Table 9, the
safety evaluation result by Chen and Deng’s method [69] can
be obtained. For simplicity we just display the results of the
last two steps, as shown in Table 10. Compared with the
proposed method, both suggest that the comprehensive
evaluation result is safe, the belief values of safety assessment
are very similar (0.8283 vs 0.8287), and so is the confidence
of results (0.8284 vs 0.8288), which shows the effectiveness of
the proposed method. However, considering the superiority
of BWM compared to AHP, the proposed method is easier
and more reliable than Chen and Deng’s method [69].

5. Conclusion

In tourism management, fire safety is a significant problem
worthy of attention, since a fire security accident will have a
great negative impact on the loss of life and property. In this
paper, a new evidential BWM is presented to address the fire
safety evaluation for scenic spots. First, a fire safety evalu-
ation index system is constructed using the domino model,
which constructs a three-level hierarchical structure of
factors. Based on the established index model, experts are
required to assess the safety level using fuzzy linguistic
variables. Combined with the weights determined by BWM,
these linguistic assessments can be transformed into mass
functions in DSET. Finally Dempster’s combination rule is
applied to fuse mass functions to obtain the overall belief
value of safety level. -e proposed method has an advantage
to represent and handle the uncertainty in experts’ linguistic
assessments, so as to decrease the uncertainty and improve
decision making. Furthermore, the weight determination
method BWM is easier and more reliable than the existing

Table 9: -e weight results of two groups of factors by BWM and AHP.

Method Comparison data Weights CR

η311, η312, η313 

BWM UBO � (1, 7, 2) w � {0.5954, 0.0833, 0.3213} 0.04< 0.1
VOW � (7, 1, 4)

AHP
1 7 2
1/7 1 1/4
1/2 4 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ w � {0.6026, 0.0823, 0.3150} 0.0017< 0.1

η321, η322, η323 

BWM UBO � (8, 2, 1) w � {0.0714, 0.3387, 0.5589} 0.058< 0.1
VOW � (1, 5, 8)

AHP
1 1/5 1/8
5 1 1/2
8 2 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ w � {0.0701, 0.3255, 0.6044} 0.0048< 0.1

Table 10: -e fire safety evaluation result by Chen and Deng’s method [69].

-e fused experts’ result m(η1) � 0.3607, m(η2) � 0.2641, m(η3) � 0.2039, m(Θ) � 0.1712

-e final belief value p� 0.3607 + 0.2641 + 0.2039� 0.8287 (-e safe level)
-e confidence of the result 1 – 0.1712� 0.8288
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method AHP. In conclusion, the proposed method can
address the fire safety evaluation issue for scenic spots under
uncertain environment, which is useful to lower the risk of
fire and prevent fire accidents.

However, there still exist some problems to be consid-
ered. One is that the weights of experts can also be con-
sidered into the model, such as using the belief entropy [70].
-e other is that using interval-valued linguistic variables as
in [71, 72] may be a more flexible way to represent uncertain
information.
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In this article, we are generalizing the concept of control fuzzy metric spaces by introducing orthogonal control fuzzy metric
spaces. We prove some fixed point results in this setting. We provide nontrivial examples to show the validity of our main results
and the introduced concepts. An application to fuzzy integral equations is also included. Our results generalize and improve
several developments from the existing literature.

1. Introduction and Preliminaries

Many authors studied fixed point theory explicitly, intro-
duced and popularized lot of spaces, and made the area of
fixed point theory more fascinating. In this connectedness,
Bakhtin [1] and Czerwik [2] provided a generalization of
metric spaces, named as a b-metric space. Zadeh [3] orig-
inated fuzzy sets.+e formulation of metric spaces and fuzzy
sets, named as fuzzy metric spaces, helped many authors in
various ways. Nădăban [4] originated fuzzy b-metric spaces.
Many authors [5–7] worked in fuzzy b-metric spaces.

In [8], the authors introduced the concept of an extended
fuzzy b-metric space as a generalization of fuzzy b-metric
spaces. +e work [9] originates the concept of controlled
metric type spaces (see also [10]). Recently, in [11], the
notion of controlled-type metric spaces has been generalized
by a formulation of controlled fuzzy metric spaces, which are
also generalizations of extended fuzzy b-metric spaces.

Eshaghi et al. [12] introduced the notion of an or-
thogonal set and proved the Banach fixed point result. Many
of the authors [13–15] continued working on orthogonal
spaces. In this article, we are generalizing the concept of

control fuzzy metric spaces [11]. Namely, we initiate the
notion of orthogonal control fuzzy metric spaces.

Let us first recall some basic definitions related to this
manuscript.

Definition 1 (see [4]). A 4-tuple (Ζ,Δ, ∗ , u) is called a fuzzy
b-metric space if Ζ is an arbitrary (nonempty) set, ∗ is a
continuous t-norm, and Δ is a fuzzy set on Ζ × Ζ × (0,∞)

satisfying the following conditions, for all ],ω, ϰ ∈ Ζ, r, s> 0
and for a given real numberu≥ 1:

(B1) Δ(],ω, r)> 0
(B2) Δ(],ω, r) � 1 if and only if ] � ω
(B3) Δ(],ω, r) � Δ(ω, ], r)

(B4) Δ(], ϰ, u(r + s))≥Δ(],ω, r)∗Δ(ω, ϰ, s)s

(B5) Δ(],ω, ·): (0,∞)⟶ [0, 1] is continuous

Definition 2 (see [8]). A 4-tuple (Ζ,Δα, ∗ , α) is called an
extended fuzzy b-metric space if Ζ is a (nonempty) set, where
α: Ζ × Ζ⟶ [1,∞), ∗ is a continuous t-norm, and Δα is a
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fuzzy set on Ζ × Ζ × (0,∞), satisfying the following con-
ditions, for all ],ω, ϰ ∈ Ζ and r, s> 0:

(Δ1)Δα(],ω, 0) � 0
(Δ2) Δα(],ω, r) � 1⟺] � ω
(Δ3) Δα(],ω, r) � Δα(ω, ], r)

(Δ4) Δα(], ϰ, α(], ϰ)(r + s))≥Δα(],ω, r)∗Δα(ω, ϰ, s)

(Δ5) Δα(],ω, ·): (0,∞)⟶ [0, 1] is continuous

Definition 3 (see [11]). A 4-tuple (Ζ,Δc, ∗) is called a
control fuzzy metric space if Ζ is a (nonempty) set, c: Ζ ×

Ζ⟶ [1,∞), where ∗ is a continuous t-norm and Δc is a
fuzzy set on Ζ × Ζ × (0,∞), satisfying the following con-
ditions, for all ],ω, ϰ ∈ Ζ and r, s> 0:

(Δ1)Δc(],ω, 0) � 0
(Δ2) Δc(],ω, r) � 1⟺] � ω
(Δ3) Δc(],ω, r) � Δc(ω, ], r)

(Δ4) Δc(], ϰ, r + s)≥Δc(],ω, (r/(c(],ω))))∗Δc(ω, ϰ,
(s/(c(ω, ϰ))))
(Δ5) Δc(],ω, ·): (0,∞)⟶ [0, 1] is continuous

Definition 4 (see [11]). Let Ζ be a set and let ζ: Ζ⟶ Ζ and
O(]) � ]0, ζ]0, ζ

2]0, . . . , for some ]0 ∈ Ζ, be the orbit ofζ .
A functionT: Ζ⟶ Ζ is said to be ζ-orbitally lower semi-
continuous at u ∈ Ζ if ]n  ∈ O(]0) such that ]n⟶ u, then
we get T(u)≥ limn⟶∞infT(]n).

2. Main Results

In this section, we introduce orthogonal control fuzzy metric
spaces and prove some fixed point results.

Definition 5. A 4-tuple (Ζ, θc, ∗ , ⊥ ) is called an orthogonal
control fuzzy metric space if Ζ is an (nonempty) orthogonal
set, c: Ζ × Ζ⟶ [1,∞), where ∗ is a continuous t-norm
and θc is a fuzzy set on Ζ × Ζ × (0,∞), satisfying the fol-
lowing conditions:

(θc1)θc(],ω, r)>0, ∀],ω ∈Ζ, r>0suchthat ]⊥ω and
ω⊥]
(θc2) θc(],ω, r) � 1⟺] � ω,

∀],ω ∈ Ζ, r> 0 such that ]⊥ω and ω⊥ ]
(θc3) θc(],ω, r) � θc(ω,],r), ∀],ω ∈Ζ, r>0suchthat
]⊥ωandω⊥]
(θc4) θc(], ϰ, r + s)≥ θc(],ω, (r/c(],ω)))∗ θc (ω, ϰ,
(s/c(ω, ϰ))), or θc(], ϰ, c(],ω)c(ω, ϰ)(r+ s))≥ θc

(],ω, r)∗ θc(ω, ϰ, s), ∀],ω,ϰ ∈ Ζ, r, s> 0 such that
]⊥ω, ω⊥ϰ, and ]⊥ϰ
(θc5) θc(],ω, ·): (0,∞)⟶ [0, 1] is continuous,
∀],ω ∈ Ζ such that ]⊥ω and ω⊥ ]

Now, we show that the following are equivalent:

(i) θc(], ϰ, r + s)≥ θc(],ω, (r/c(],ω)))∗ θc(ω, ϰ, (s/c
(ω, ϰ)))

(ii) θc(], s,c(],ω)c(ω,ϰ)(r + s))≥θc(],ω, r)∗θc(ω,ϰ, s)

Proof. (ii)⟹ (i)

θc(], ϰ, c(],ω)c(ω, ϰ)(r + s))

� θc(], ϰ, c(],ω)c(ω, ϰ)r + c(],ω)c(ω, ϰ)s)

≥ θc ],ω,
c(],ω)c(ω, ϰ)r
c(],ω)c(ω, ϰ)

 ∗ θc ω,ϰ,
c(],ω)c(ω, ϰ)s
c(],ω)c(ω, ϰ)

 

� θc(],ω, r)∗ θc(ω, ϰ, s).

(1)

Similarly, we can easily prove (i)⇒ (ii).

Example 1. Let Ζ � − 1, 1, 2, 3, 4, . . .{ } � A⋃B, where
A � − 1, 1{ } and B � N\ 1{ }. Define a binary relation ⊥ by
]⊥ω⟺],ω ∈ |]|, |ω|{ }. Given θc: Ζ × Ζ × [0,∞) ⟶
[0, 1] as

θc(],ω, r) �

1, if ] � ω,

r +(1/])

r +(1/ω)
, if ] ∈ B andω ∈ A,

r +(1/ω)

r +(1/])
, if ] ∈ A andω ∈ B,

r +(1/max ],ω{ })

r +(1/min ],ω{ })
, if otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

with a continuous t-norm ∗ defined by r1 ∗ r2 � r1 · r2.

Given c: Ζ × Ζ⟶ [1,∞) as

c(],ω) �
1, if ],ω ∈ A,

max ],ω{ }, otherwise.
 (3)

+en, (Ζ, θc, ∗ , ⊥ ) is an orthogonal control fuzzy
metric space, but it is not a control fuzzy metric space.

Proof. (θc1), (θc2), (θc3), and (θc5) are obvious. Here, we
prove (θc4):

(θc4) θc(], ϰ, r + s)≥ θc(],ω, (r/c(],ω)))∗ θc(ω, ϰ,
(s/c (ω, ϰ))), ∀],ω,ϰ ∈ Ζ, r, s> 0, such that ]⊥ω, ω⊥ϰ, and
]⊥ϰ

We have the following cases to prove (θc4).

Case 1. If ϰ � ], then θc(], ϰ, r + s) � 1. Also, θc(],ω,

(r/c(],ω)))≤ 1 and θc(ω, ϰ, (s/c(ω, ϰ)))≤ 1.

+is implies

θc ],ω,
r

c(],ω)
 ∗ θc ω, ϰ,

s

c(ω, ϰ)
 ≤ 1. (4)
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Case 2. If ϰ � ω, then θc(ω, ϰ, (s/c(ω, ϰ))) � 1, and clearly,
θc(], ϰ, r + s)≥ θc(],ω, (r/c(],ω))). +is implies

θc(], ϰ, r + s)≥ θc ],ω,
r

c(],ω)
 ∗ θc ω, ϰ,

s

c(ω, ϰ)
 .

(5)

Case 3. If ϰ≠ ], ϰ≠ω, and ] � ω, then
θc(],ω, (r/c(],ω))) � 1 and clearly,

θc(], ϰ, r + s)≥ θc ω,ϰ,
s

c(ω, ϰ)
 . (6)

+is implies

θc(], ϰ, r + s)≥ θc ],ω,
r

c(],ω)
 ∗ θc ω, ϰ,

s

c(ω, ϰ)
 .

(7)

Case 4. If ϰ≠ ], ϰ≠ω, and]≠ω, then we have the following
cases:

(1) ], ϰ ∈ A and ω ∈ B

(2) ω ∈ A and ], ϰ ∈ B

(3) ω,ϰ ∈ A and ] ∈ B

(4) ],ω ∈ A and ϰ ∈ B

(5) ϰ ∈ A and ],ω ∈ B

(6) ] ∈ A and ω, ϰ ∈ B

(7) ], b,ω ∈ A

(8) ], b,ω ∈ B

Proof of (1). If ], ϰ ∈ A and ω ∈ B, then

θγ(], ϰ, r + s) �
r + s +(1/max ], ϰ{ })

r + s +(1/min ], ϰ{ })
. (8)

Observe that max ], ϰ{ } � min ], ϰ{ } � 1. +is implies
θc(], ϰ, r + s) � 1.

On the contrary,

θγ ],ω,
r

c(],ω)
  �

(r/c(],ω)) +(1/ω)

(r/c(],ω)) +(1/])
. (9)

Observe that c(],ω) � ω; then,

θc ],ω,
r

c(],ω)
  �

]r + ]
]r + ω
< 1,

θc ω,ϰ,
s

c(ω, ϰ)
  �

(s/c(ω, ϰ)) +(1/ω)

(s/(c(ω, ϰ))) +(1/ϰ)
.

(10)

Note that c(ω, ϰ) � ω; then,

θc ω, ϰ,
s

c(ω, ϰ)
  �

ϰs + ϰ
ϰs + ω
< 1. (11)

+is implies

θγ(], ϰ, r + s)≥ θc ],ω,
r

c(],ω)
 ∗ θc ω,ϰ,

s

c(ω, ϰ)
 .

(12)

Similarly, (2)–(8) are easily satisfied.
Now, we show that θc is not a control fuzzy metric space.

Let ],ω, ϰ ∈ A. Also, let ] � ϰ � 1, ω � − 1, and r, s> 1; then,

θc(], ϰ, r + s) � 1. (13)

On the contrary,

θc ],ω,
r

c(],ω)
  �

r + 1
r − 1

, (r≠ 1),

θc ω, ϰ,
s

c(ω, ϰ)
  �

s + 1
s − 1

, (s≠ 1).

(14)

+is implies

1≥
r + 1
r − 1

+
s + 1
s − 1

. (15)

+is fails (θc4).

Example 2. Let Z � A⋃B, where A � − 1, − 2, − 3, . . .{ } and
B � 0, 1, 2, 3, . . .{ }. Define a binary relation ⊥ by
]⊥ω⟺] + ω≥ 0. Define θc: Ζ × Ζ × [0,∞)⟶ [0, 1] by

θc(],ω, r) �
r

r + max ],ω{ }
, (16)

for all r> 0 and ],ω ∈ Ζwith a continuous t-norm ∗ defined
by r1 ∗ r2 � r1 · r2. Given c: Ζ × Ζ⟶ [1,∞) as

c(],ω) �
1, if ],ω ∈ A or ] � 0 orω � 0,

max ],ω{ }, otherwise.


(17)

+en, (Ζ, θc, ∗ , ⊥ ) is an orthogonal control fuzzy
metric space, but it is not a control fuzzy metric space.

Proof. First, we show that θc is an orthogonal control fuzzy
metric space. (θc1), (θc3), and (θc5) are obvious. Here, we
prove (θc2) and (θc4):

(θc2) θc(],ω, r) � 1⟺] � ω, ∀],ω ∈ Ζ, r> 0 such that
]⊥ω andω⊥ ]:

θc(],ω, r) � 1,

⟺
r

r + max ],ω{ }
� 1,

⟺r � r + max ],ω{ },

⟺max ],ω{ } � 0,

⟺] � ω.

(18)

(θc3) θc(],ω, r) � θc(ω, ], r), ∀],ω ∈ Ζ, r> 0 such that
]⊥ω andω⊥ ]:
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θc(],ω, r) �
r

r + max ],ω{ }
�

r

r + max ω, ]{ }
� θc(ω, ], r).

(19)

(θc4) θc(], ϰ, c(],ω)c(ω, ϰ)(r + s)≥ θc (],ω, r)∗ θc

(ω, ϰ, s), ∀],ω, ϰ ∈ Ζ, r, s> 0, such that ]⊥ω, ω⊥ϰ, and
]⊥ϰ:

⇒max ], ϰ{ }≤ c(],ω)[max ],ω{ }] + c(ω, ϰ)[max ω,ϰ{ }]

⇒rsmax ], ϰ{ }≤ c(],ω) rs + s
2

 [max ],ω{ }] + c(ω, ϰ) rs + r
2

 [max ω, ϰ{ }]

⇒rsmax ], ϰ{ }≤ c(],ω)(r + s)s[max ],ω{ }] + c(ω, ϰ)(s + r)r[max ω, ϰ{ }]

⇒rsmax ], ϰ{ }≤ c(],ω)c(ω, ϰ)(r + s)
smax ],ω{ }

c(ω, ϰ)
+

rmax ω, ϰ{ }

c(],ω)
 

⇒rsmax ], ϰ{ }≤ c(],ω)c(ω, ϰ)(r + s)[smax ],ω{ } + rmax ω,ϰ{ }]

⇒rsmax ], ϰ{ }≤ c(],ω)c(ω, ϰ)(r + s)[smax ],ω{ } + rmax ω,ϰ{ } + max ],ω{ }max ω, ϰ{ }]

⇒c(],ω)c(ω, ϰ)(r + s)rs + rsmax ], ϰ{ }≤ c(],ω)c(ω, ϰ)(r + s)rs + c(],ω)c(ω, ϰ)(r + s)[smax ],ω{ }

+ rmax ω, ϰ{ } + max ],ω{ }max ω, ϰ{ }]

⇒c(],ω)c(ω, ϰ)(r + s)rs + rsmax ], ϰ{ }≤ c(],ω)c(ω, ϰ)(r + s)[rs + smax ],ω{ } + rmax ω, ϰ{ } + max ],ω{ }max ω, ϰ{ }]

⇒rs[c(],ω)c(ω, ϰ)(r + s) + max ], ϰ{ }]≤ c(],ω)c(ω, ϰ)(r + s)[r + max ],ω{ }][s + max ω, ϰ{ }]

⇒
c(],ω)c(ω, ϰ)(r + s)

c(],ω)c(ω, ϰ)(r + s) + max ], ϰ{ }
≥

rs

[r + max ],ω{ }][s + max ω, ϰ{ }]

⇒
c(],ω)c(ω, ϰ)(r + s)

c(],ω)c(ω, ϰ)(r + s) + max ], ϰ{ }
≥

r

r + max ],ω{ }
·

s

s + max ω, ϰ{ }

⇒θγ(], ϰ, c(],ω)c(ω, ϰ)(r + s))≥ θc(],ω, r)∗ θc(ω, ϰ, s).

(20)

Now, we show that θc is not a control fuzzy metric space.
Indeed,

θγ(], ϰ, c(],ω)c(ω, ϰ)(r + s)) �
c(],ω)c(ω, ϰ)(r + s)

c(],ω)c(ω, ϰ)(r + s) + max ], ϰ{ }

θc(],ω, r) �
r

r + max ],ω{ }

θc(ω,ϰ, s) �
s

s + max ω, ϰ{ }
.

(21)

+is implies

c(],ω)c(ω, ϰ)(r + s)

c(],ω)c(ω, ϰ)(r + s) + max ], ϰ{ }
≥

r

r + max ],ω{ }

·
s

s + max ω, ϰ{ }
.

(22)

Now, let] � ω � ϰ � − 1; then, c(],ω) � c(ω, ϰ) � 1 and
max ], ϰ{ } � max ],ω{ } � max ω,ϰ{ } � − 1. +is implies that

r + s

r + s − 1
≥

r

r − 1
·

s

s − 1
�

rs

(r − 1)(s − 1)
, r, s≠ 1. (23)

Taking r � s � 2, we get a contradiction.

Remark 1. Every control fuzzy metric space is an orthogonal
control fuzzy metric space, but the converse is not true.
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Remark 2. Note that Example 2 also holds for the t-norm
: r1 ∗ r2 � min r1, r2 .

Definition 6. Let (Ζ, θc, ∗ , ⊥ ) be an orthogonal control
fuzzy metric space. +en, a sequence ]n  is said to be
G-convergent to ], where ], ]n  ∈ Ζ if and only if
limn⟶∞θc(]n, ], r) � 1 for any n> 0 and for all r> 0.

Definition 7. Let (Ζ, θc, ∗ , ⊥ ) be an orthogonal control
fuzzy metric space. +en, a sequence ]n  is said to be a
G-Cauchy sequence with ]n  ∈ Ζ if and only if
limn⟶∞θc(]n, ]n+m, r) � 1 for all m> 0 and r> 0.

Definition 8. Let (Ζ, θc, ∗ , ⊥ ) be an orthogonal control
fuzzy metric space; then, it is G-complete if and only if every
G-Cauchy sequence is convergent.

Definition 9. ζ: Ζ⟶ Ζ is ⊥-continuous at ] ∈ Ζ in an
orthogonal control fuzzy metric space (Ζ, θc, ∗ , ⊥ ) if for
each orthogonal sequence ]n  in Ζ so that if
limn⟶∞θc(]n, ], r) exists and is finite for all r> 0, then
limn⟶∞θc(ζ]n, ζ], r) again exists and is finite for all r> 0.
Furthermore, ζ is ⊥-continuous if ζ is ⊥-continuous at each
] ∈ Ζ. Also, ζ is ⊥-preserving if ζ]⊥ ζω; hence, ]⊥ω.

Remark 3. It is not necessary that the limit of a convergent
sequence will be unique in an orthogonal control fuzzy
metric space.

For this, take a sequence ]n  defined by ]n � 1 − (1/n)

for each integer n, and define an orthogonal control fuzzy
metric space as in Example 2 with ]≥ 1. Also, in particular,
take c(],ω) � c(ω, ϰ) � 1; then,

lim
n⟶∞

θc ]n, ], r(  � lim
n⟶∞

r

r + max ]n, ] 
� lim

n⟶∞

r

r + ]

� θc(], ], r),

(24)

for all r> 0. Observe that the sequence ]n  converges to all
] ∈ Ζ with ]≥ 1.

Remark 4. It is not necessary that the convergent sequence
will be a Cauchy sequence in an orthogonal control fuzzy
metric space.

For this, take a sequence ]n  defined by ]n � 1 + (− 1)n

for each integer n, and define an orthogonal control fuzzy
metric space as in Example 2 with ]≥ 2. Also, in particular,
take c(],ω) � c(ω, ϰ) � 1; then,

lim
n⟶∞

θc ]n, ], r(  � lim
n⟶∞

r

r + max ]n, ] 

� lim
n⟶∞

r

r + ]
� θc(], ], r),

(25)

for all r> 0. Observe that the sequence ]n  converges to all
] ∈ Ζ with ]≥ 2. However, limn⟶∞θc(]n, ]n+m, r) does not
exist.

Mihet [16] introduced a control function ψ. We gen-
eralize it as follows.

Definition 10. Let ψ be the class of all mappings
Ψ: [0, 1]⟶ [0, 1] such that Ψ is orthogonal continuous,
nondecreasing, and Ψ(E)>E, for allE∈ (0, 1). If
Ψ ∈ ψ, thenΨ(1) � 1 and limn⟶∞Ψn(E) �

1, for allE∈ (0, 1).

Theorem 10. Let (Ζ, θc, ∗ , ⊥ ) be an orthogonal G-complete
control fuzzy metric space with c: Ζ × Ζ⟶ [1,∞) such that

lim
r⟶∞

θc(],ω, r) � 1, (26)

for all ] ∈ Ζ. Suppose that ζ: Ζ⟶ Ζ is an ⊥-continuous,
⊥-contraction, and ⊥-preserving mapping so that

θc(ζ], ζω, kr)≥ θc(],ω, r), (27)

for all ],ω ∈ Ζ, r> 0, where k ∈ (0, 1). Also, assume that, for
every ] ∈ Ζ,

lim
n⟶∞

c ]n,ω( ,

lim
n⟶∞

c ω, ]n( ,
(28)

exist and are finite. ?en, ζ has a unique fixed point in Ζ.
Furthermore,

lim
n⟶∞

θc ζn
u, u, r(  � θc(u, u, r), for all u ∈ Ζ and r> 0.

(29)

Proof. Since (Ζ, θc, ∗ , ⊥ ) is an orthogonal G-complete
control fuzzy metric space, there exists ]0 ∈ Ζ such that

]0 ⊥ω, for allω ∈ Ζ. (30)

+is yields that]0 ⊥ ζ]0. Consider

]1 � ζ]0, ]2 � ζ2]0 � ζ]1, . . . , ]n � ζn]0 � ζ]n− 1. (31)

If ]n � ]n− 1, then ]n is a fixed point of ζ. Suppose that
]n ≠ ]n− 1 for all n ∈ N. Since ζ is ⊥-preserving, ]n  is an
orthogonal sequence. Since ζ is an ⊥-contraction, we have

θc ]n, ]n+1, r(  � θc ζ]n− 1, ζ]n, r( 

≥ θc ]n− 2, ]n− 1,
r

k
 

≥ · · · ≥ θc ]0, ]1,
r

k
n− 1 .

(32)

Now, from(θc4), we have
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θc ]n, ]n+m, r( ≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+m,

r

2c ]n+1, ]n+m( 
 

≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+2,

r

(2)
2
c ]n+1, ]n+m( c ]n+1, ]n+2( 

 

∗ θc ]n+2, ]n+m,
r

(2)
2
c ]n+1, ]n+m( c ]n+2, ]n+m( 

 

≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+2,

r

(2)
2
c ]n+1, ]n+m( c ]n+1, ]n+2( 

 

∗ θc ]n+2, ]n+3,
r

(2)
3
c ]n+1, ]n+m( c ]n+2, ]n+m( c ]n+2, ]n+3( 

 

∗ θc ]n+3, ]n+m,
r

(2)
3
c ]n+1, ]n+m( c ]n+2, ]n+m( c ]n+3, ]n+m( 

 

≥ . . . ≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ ∗ n+m− 2

i�n+1 θc ]i, ]i+1,
r

(2)
m− 2


i
j�n+1 c ]j, ]n+m c ]i, ]i+1(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

∗ θc ]n+m− 1, ]n+m,
r

(2)
m− 1


n+m− 1
i�n+1 c ]i, ]n+m(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≥ θc ]0, ]1,
r

2k
n− 1

c ]n, ]n+1( 
 ∗ ∗ n+m− 2

i�n+1 θc ]0, ]1,
r

(2)
m− 1

k
i− 1


i
j�n+1 c ]j, ]n+m c ]i, ]i+1(   

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

∗ θc ]0, ]1,
r

(2)
m− 1

k
n+m− 1


n+m− 1
i�n+1 c ]i, ]n+m(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(33)

Now, taking limit as n⟶∞ in (33), in (32) together
with (26), we have

lim
n⟶∞

θc ]n, ]n+m, r( ≥ 1∗ 1∗ · · · ∗ 1 � 1, (34)

for all r> 0 and m ∈ N. +us, ]n  is an orthogonal
G-Cauchy sequence in Ζ. +e completeness of (Ζ, θc, ∗ , ⊥ )

implies the existence of u ∈ Ζ such that

lim
n⟶∞

θc ]n, u, r(  � 1, (35)

for all r> 0. Now, since ζ is an⊥-continuous mapping, one
writes limθc(]n+1, ζu, r) � limθc(ζ]n, ζu, r) � 1. For r> 0
and from (θc4), we have

θc(u, ζu, r)≥ θc u, ]n+1,
r

2c u, ]n+1( 
 

∗ θc ]n+1, ζu,
r

2c ]n+1, ζu( 
 

� θc u, ]n+1,
r

2c u, ]n+1( 
 

∗ θc ζ]n, ζu,
r

2c ]n+1, ζu( 
 .

(36)

Taking n⟶∞ in (36) and using (35), we get
θc(u, ζu, r) � 1 for all r> 0, that is, ζu � u.
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Now, for uniqueness, let w ∈ Ζ be another fixed point for ζ
and let there exist r> 0 such thatθc(u, w, r)≠ 1.We can obtain

]0 ⊥ u,

]0 ⊥w.
(37)

Since ζ is an ⊥-preserving, this implies that

ζn]0 ⊥ ζ
n
u,

ζn]0 ⊥ ζ
n
w,

for all n ∈ N. (38)

From (27), we can derive

θc ζn]0, ζ
n
u, r( ≥ θc ζn]0, ζ

n
u, kr( ≥ θc ]0, u,

r

k
n 

θc ζn]0, ζ
n
w, r( ≥ θc ζn]0, ζ

n
w, kr( ≥ θc ]0, w,

r

k
n .

(39)

We can write

θc(u, w, r) � θc ζn
u, ζn

w, r( ≥ θc ζn]0, ζ
n
u,

r

2c ]0, u( 
 

∗ θc ζn]0, ζ
n
w,

r

2c ]0, w( 
 

≥ θc ]0, u,
r

k
n2c ]0, u( 

 

∗ θc ]0, w,
r

k
n2c ]0, w( 

 ,

(40)

for all n ∈ N. By taking limit as n⟶∞, we get
θc(u, w, r) � 1, for all r> 0; hence, u � w.

Corollary 1. Let (Ζ, θc, ∗ , ⊥ ) be an orthogonal G-complete
control fuzzy metric space. Let ζ: Ζ⟶ Ζ be ⊥-contraction
and ⊥-preserving. Also, assume that if ]n  is an O-sequence
with ]n⟶ ] ∈ Ζ, then ]⊥ ]n for all n ∈ N. ?erefore, ζ has a
unique fixed point ]∗ ∈ Ζ. Furthermore,
limn⟶∞θc(ζn], ]∗, r) � θc(]∗, ]∗, r), for all ] ∈ Ζ and r> 0.

Proof. We can prove alike as in the proof of +eorem 1 that
]n  is a G-Cauchy sequence and converges to ]∗ ∈ Ζ. Hence,
]∗ ⊥ ]n for all n ∈ N. We get from (26) that

θc ζ]∗, ]n+1, r(  � θc ζ]∗, ζ]n, r( ≥ θc ζ]∗, ζ]n, kr( 

≥ θc ]∗, ]n, r( ,

lim
n⟶∞

θc ζ]∗, ]n+1, r(  � 1.

(41)

+en, we can write

θc ]∗, ζ]∗, r( ≥ θc ]∗, ]n+1,
r

2c ]∗, ]n+1( 
 

∗ θc ]n+1, ζ]∗,
r

2c ]n+1, ζ]∗( 
 .

(42)

Taking limit as n⟶∞, we get
θc(]∗, ζ]∗, r) � 1∗ 1 � 1, and hence, ζ]∗ � ]∗. +e rest of
proof is similar as in +eorem 1.

Theorem 2. Let (Ζ, θc, ∗ , ⊥ ) be an orthogonal G-complete
control fuzzy metric space with c: Ζ × Ζ⟶ [1,∞) so that

lim
r⟶∞

θc(],ω, r) � 1, (43)

for all ] ∈ Ζ. If ζ: Ζ⟶ Ζ is an ⊥-contraction and
⊥-preserving and satisfies

θc ζ], ζ2], kr ≥ θc(], ζ], r), (44)

for all ] ∈ O(]), r> 0, where k ∈ (0, 1), thenζn]0⟶ u.
Furthermore, u is a fixed point of ζ if and only if
ζ] � θc(], ζ], r) is ζ-orbitally lower semicontinuous at u.

Proof. Since (Ζ, θc, ∗ , ⊥ ) is an orthogonal G-complete
control fuzzy metric space, there exists ]0 ∈ Ζ such that

]0 ⊥ω, for allω ∈ Ζ. (45)

+is says that ]0 ⊥ ζ]0. Consider

]1 � ζ]0, ]2 � ζ2]0 � ζ]1, . . . , ]n � ζn]0 � ζ]n− 1. (46)

If ]n � ]n− 1, then ]n is a fixed point of ζ. Suppose that
]n ≠ ]n− 1 for all n ∈ N. Since ζ is ⊥-preserving, ]n  is
an orthogonal sequence. Since ζ is an ⊥-contraction, we
have

θc ζn]0, ζ
n+1]0, kr  � θc ]n, ]n+1, kr( 

≥ θc ]n− 1, ]n,
r

k
 

≥ · · · ≥ θc ]0, ]1,
r

k
n− 1 .

(47)

Now, from (θc4), we have

Journal of Mathematics 7



RE
TR
AC
TE
D

θc ]n, ]n+m, r( ≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+m,

r

2c ]n+1, ]n+m( 
 

≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+2,

r

(2)
2
c ]n+1, ]n+m( c ]n+1, ]n+2( 

 

∗ θc ]n+2, ]n+m,
r

(2)
2
c ]n+1, ]n+m( c ]n+2, ]n+m( 

 

≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+2,

r

(2)
2
c ]n+1, ]n+m( c ]n+1, ]n+2( 

 

∗ θc ]n+2, ]n+3,
r

(2)
3
c ]n+1, ]n+m( c ]n+2, ]n+m( c ]n+2, ]n+3( 

 

∗ θc ]n+3, ]n+m,
r

(2)
3
c ]n+1, ]n+m( c ]n+2, ]n+m( c ]n+3, ]n+m( 

 

≥ · · · ≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ ∗ n+m− 2

i�n+1 θc ]i, ]i+1,
r

(2)
m− 2


i
j�n+1 c ]j, ]n+m c ]i, ]i+1(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

∗ θc ]n+m− 1, ]n+m,
r

(2)
m− 1


n+m− 1
i�n+1 c ]i, ]n+m(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≥ θc ]0, ]1,
r

2k
n− 1

c ]n, ]n+1( 
 ∗ ∗ n+m− 2

i�n+1 θc ]0, ]1,
r

(2)
m− 1

k
i− 1


i
j�n+1 c ]j, ]n+m c ]i, ]i+1(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

∗ θc ]0, ]1,
r

(2)
m− 1

k
n+m− 1


n+m− 1
i�n+1 c ]i, ]n+m(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(48)

Now, taking limit as n⟶∞ in (48), we have

lim
n⟶∞

θc ]n, ]n+m, r( ≥ 1∗ 1∗ · · · ∗ 1 � 1, (49)

for all r> 0 and m ∈ N. +us, ]n  is an orthogonal
G-Cauchy sequence in Ζ. From the completeness of
(Ζ, θc, ∗ , ⊥ ), there is ]n⟶ ζn]0 � u. Assume that ζ is
ζ-orbitally lower semicontinuous at u ∈ Ζ; then, we have

θc(u, ζu, kr) � lim
n⟶∞

supθc ζn]0, ζ
n+1]0, kr 

≥ lim
n⟶∞

supθc ]0, ]1,
r

k
n− 1  � 1.

(50)

Conversely, let u � ζu and ]n ∈ Zwith ]n⟶ u; then,
we obtain

ζ(u) � θc(u, ζu, kr) � 1≥ lim
n⟶∞

supζ ]n( 

� θc ζn]0, ζ
n+1]0, kr .

(51)

Theorem 3. Let (Ζ, θc, ∗ , ⊥ ) be an orthogonal G-complete
control fuzzy metric space and ζ: Ζ⟶ Ζ be an ⊥--
continuous, ⊥-contraction, and ⊥-preserving mapping so that

θc(],ω, r)> 0⇒θc(ζ], ζω, r)≥Ψ θc(],ω, r) , (52)

for all ],ω ∈ Ζ and r> 0. ?en, ζ has a unique fixed point in
Ζ.

Proof. Since (Ζ, θc, ∗ , ⊥ ) is an orthogonal G-complete
control fuzzy metric space, there exists ]0 ∈ Ζ such that

]0 ⊥ω, for allω ∈ Ζ. (53)

+us, ]0 ⊥ ζ]0. Assume

]1 � ζ]0,

]2 � ζ2]0 � ζ]1, . . . , ]n � ζn]0 � ζ]n− 1.
(54)

If ]n � ]n− 1, then ]n is a fixed point of ζ. Suppose that
]n ≠ ]n− 1 for all n ∈ N. Since ζ is ⊥-preserving, ]n  is an
orthogonal sequence. Since ζ is an ⊥-contraction, we have

θc ]n, ]n+1, r(  � θc ζ]n− 1, ζ]n, r( 

≥Ψ θc ]n− 2, ]n− 1, r(  

≥ · · · ≥Ψn θc ]0, ]1, r(  .

(55)

Now, from (θc4), we have
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θc ]n, ]n+m, r( ≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+m,

r

2c ]n+1, ]n+m( 
 

≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+2,

r

(2)
2
c ]n+1, ]n+m( c ]n+1, ]n+2( 

 

∗ θc ]n+2, ]n+m,
r

(2)
2
c ]n+1, ]n+m( c ]n+2, ]n+m( 

 

≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ θc ]n+1, ]n+2,

r

(2)
2
c ]n+1, ]n+m( c ]n+1, ]n+2( 

 

∗ θc ]n+2, ]n+3,
r

(2)
3
c ]n+1, ]n+m( c ]n+2, ]n+m( c ]n+2, ]n+3( 

 

∗ θc ]n+3, ]n+m,
r

(2)
3
c ]n+1, ]n+m( c ]n+2, ]n+m( c ]n+3, ]n+m( 

 

≥ · · · ≥ θc ]n, ]n+1,
r

2c ]n, ]n+1( 
 ∗ ∗ n+m− 2

i�n+1 θc ]i, ]i+1,
r

(2)
m− 2


i
j�n+1 c ]j, ]n+m c ]i, ]i+1(   

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

∗ θc ]n+m− 1, ]n+m,
r

(2)
m− 1


n+m− 1
i�n+1 c ]i, ]n+m(  

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≥Ψn θc ]0, ]1,
r

2c ]n, ]n+1( 
  ∗ ∗ n+m− 2

i�n+1 Ψ
i θc ]0, ]1,

r

(2)
m− 1


i
j�n+1 c ]j, ]n+m c ]i, ]i+1(   

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

∗ Ψn+m− 1 θc ]0, ]1,
r

(2)
m− 1


n+m− 1
i�n+1 c ]i, ]n+m(  

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(56)

Now, taking limit as n⟶∞ in (55 and 56), we have

lim
n⟶∞

θc ]n, ]n+m, r( ≥ 1∗ 1∗ · · · ∗ 1 � 1, (57)

for all r> 0 and m ∈ N. +us, ]n  is an orthogonal
G-Cauchy sequence in Ζ. From the completeness of
(Ζ, θc, ∗ , ⊥ ), there exists u ∈ Ζ such that

lim
n⟶∞

θc ]n, u, r(  � 1, (58)

for all r> 0. Now, since ζ is an ⊥-continuous mapping, one
gets limθc(]n+1, ζu, r) � limθc(ζ]n, ζu, r) � 1 as n⟶∞.
For r> 0 and from (θc4), we have

θc(u, ζu, r)≥ θc u, ]n+1,
r

2c u, ]n+1( 
 ∗ θc ]n+1, ζu,

r

2c ]n+1, ζu( 
 

� θc u, ]n+1,
r

2c u, ]n+1( 
 ∗ θc ζ]n, ζu,

r

2c ]n+1, ζu( 
 

≥ θc u, ]n+1,
r

2c u, ]n+1( 
 ∗Ψ θc ]n, u,

r

2c ]n+1, ζu( 
  .

(59)

Taking n⟶∞ in (59) and using (58), we get
θc(u, ζu, r) � 1 for all r> 0, that is, ζu � u.

Now, for uniqueness, let w ∈ Ζ be another fixed point for
ζ and let there exist r> 0 such that u≠w. We can obtain

]0 ⊥ u,

]0 ⊥w.
(60)

Since ζ is an ⊥-preserving, this implies

Journal of Mathematics 9
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ζn]0 ⊥ ζ
n
u,

ζn]0 ⊥ ζ
n
w,

for all n ∈ N. (61)

We can derive

θc ζn]0, ζ
n
u, r( ≥ θc ζn]0, ζ

n
u, kr( ≥Ψ θc ]0, u, r(  ,

θc ζn]0, ζ
n
w, r( ≥ θc ζn]0, ζ

n
w, kr( ≥Ψ θc ]0, w, r(  .

(62)

We can write

θc(u, w, r) � θc ζn
u, ζn

w, r( ≥ θc ζn]0, ζ
n
u, kr( 

∗ θc ζn]0, ζ
n
w, kr( 

≥Ψ θc ]0, u, r(  ∗Ψ θc ]0, w, r(  

≥ θc ]0, u, r( ∗ θc ]0, w, r( ,

(63)

for all n ∈ N. +is is a contradiction; hence, u � w.

Example 3. Let Ζ � Z � A⋃B, where A � − 1, − 2, − 3, . . .{ }

⋃ 0, 1{ } and B � 2, 3, 4, . . .{ }. Define a binary relation ⊥
by]⊥ω⟺],ω ∈ |]|, |ω|{ }. Define θc: Ζ × Ζ × [0,∞)⟶
[0, 1] by

θc(],ω, r) �
r

r + max ],ω{ }
, (64)

for all r> 0 and ],ω ∈ Ζwith a continuous t-norm ∗ defined
by: r1 ∗ r2 � r1 · r2. Define c: Ζ × Ζ⟶ [1,∞) by

c(],ω) �
1, if ],ω ∈ A or ] � 0 orω � 0,

max ],ω{ }, otherwise.


(65)

+en, (Ζ, θc, ∗ , ⊥ ) is an orthogonal G-complete control
fuzzy metric space. Observe that

lim
r⟶∞

θc(],ω, r) � 1. (66)

Now, we define ζ: Ζ⟶ Ζ by

ζ] �

]
2
, if ] ∈ A,

1, if ] ∈ B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(67)

for all ] ∈ Ζ.

Proof. Observe that if ]⊥ω, then clearly ζ]⊥ ζω. Now, there
are some cases to prove that the contraction is orthogonal for
k ∈ [(1/2), 1).

(1) If ],ω ∈ A, then ζ] � v/2 and ζω � ω/2. We have

θc(ζ], ζω, kr) � θc

v

2
,
ω
2

, kr  �
kr

kr + max (v/2), (ω/2){ }

≥
r

r + max ],ω{ }

� θc(],ω, r).

(68)

(2) If ],ω ∈ B, then ζ] � 1 and ζω � 1. In this case,

θc(ζ], ζω, kr) � θc(1, 1, kr) �
kr

kr + max 1, 1{ }

≥
r

r + max ],ω{ }
� θc(],ω, r).

(69)

(3) If ] ∈ A and ω ∈ B, then ζ] � v/2 and ζω � 1. Here,

θc(ζ], ζω, kr) � θc

v

2
, 1, kr  �

kr

kr + max (v/2), 1{ }

≥
r

r + max ],ω{ }
� θc(],ω, r).

(70)

(4) If ] ∈ B and ω ∈ A, then ζ] � 1 and ζω � ω/2. +is
implies that

θc(ζ], ζω, kr) � θc 1,
ω
2

, kr  �
kr

kr + max 1, (ω/2){ }

≥
r

r + max ],ω{ }
� θc(],ω, r).

(71)

Hence, it is an⊥-contraction. Now, we show that it is not
a contraction. Let ],ω ∈ A, then ζ] � ]/2 and ζω � ω/2.
Here,

θc(ζ], ζω, kr) � θc

]
2
,
ω
2

, kr  �
kr

kr + max (]/2), (ω/2){ }
.

(72)

Let ] � ω � − 2, k � (9/10) and r � 10, so

θc(ζ], ζω, kr) �
9

9 + max − 1, − 1{ }
≤

10
10 + max − 2, − 2{ }

� θc(],ω, r),

(73)

which implies θc(ζ], ζω, kr)≤ θc(],ω, r). +is is wrong.
If limn⟶∞θc(]n, ], r) is finite and exists, then also

limn⟶∞θc(ζ]n, ζ], r) is finite and exists. +is implies that it
is ⊥-continuous. Also, observe that

lim
n⟶∞

c ]n,ω( ,

lim
n⟶∞

c ω, ]n( ,
(74)

are finite and exist. All circumstances of +eorem 1 are
fulfilled and 0 is the unique fixed point of ζ.

3. An Application to a Fuzzy Integral Equation

In this section, we utilize+eorem 1 to examine the existence
and uniqueness of a solution of a fuzzy Fredholm-type
integral equation of second kind.

Let Ζ � C([e, g],R) be the set of all continuous real-
valued functions defined on [e, g].
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Now, we consider the fuzzy Fredholm-type integral
equation of the second kind:

](l) � f(j) + β
g

e
F(l, j)](l)dj, for l, j ∈ [e, g]. (75)

where β> 0, f(j) is a fuzzy function of j ∈ [e, g] and F ∈ Ζ.
Define θc by

θc(](l),ω(l), r) � sup
l∈[e,g]

r

r + max ](l),ω(l){ }
,

for ],ω ∈ Ζ and r> 0,

(76)

with a continuous t-norm ∗ defined by r1 ∗ r2 � r1 · r2.
Define c: Ζ × Ζ⟶ [1,∞) by

c(],ω) �
1, if ],ω ∈ A or ] � 0 orω � 0,

max ],ω{ }, otherwise.


(77)

+en, (Ζ, θc, ∗ ⊥ ) is an orthogonal G-complete control
fuzzy metric space.

Theorem 4. Assume that max F(l, j)](l),

F(l, j)ω(l)}≤max ](l),ω(l){ } for ],ω ∈ Ζ, k ∈ (0, 1), and
∀l, j ∈ [e, g].

Also, consider 
g

e
dj � g − e≤ k< 1. Let ζ: Ζ⟶ Ζ be

(i) ⊥-preserving

(ii) ⊥-contraction
(iii) ⊥-continuous

?en, the fuzzy Fredholm-type integral equation of second
kind in equation (75) has a unique solution.

Proof. Define ζ: Ζ⟶ Ζ by

ζ](l) � f(j) + β
g

e
F(l, j)e(l)dj, for all l, j ∈ [e, g].

(78)

(i) Take orthogonality as ](l)⊥ω(l)⟺](l)ω(l) ∈
|](l)|, |ω(l)|{ }. We see that ](l) and ζ](l) belong to
Ζ. So, if ](l)⊥ω(l), then clearly ζ](l)⊥ ζω(l).

(ii) Observe that the existence of a fixed point of the
operator ζ is equivalent to the existence of a so-
lution of the Fredholm-type integral Equation (75).

(iii) Note that

max F(l, j)](l), F(l, j)ω(l) ≤max ](l),ω(l){ }

⇒f(j) + β
g

e
max F(l, j)](l), F(l, j)ω(l) 

≤f(j) + β
g

e
max ](l),ω(l){ }.

(79)

(iv)Now, for all ],ω ∈ Ζ, we have

θc(ζ](l), ζω(l), kr) � sup
l∈[e,g]

kr

kr + max ζ](l), ζω(l){ }

� sup
l∈[e,g]

kr

kr + max 
g

e
F(l, j)](l)dj, 

g

e
F(l, j)ω(l)dj 

� sup
l∈[e,g]

kr

kr + 
g

e
max F(l, j)](l), F(l, j)ω(l) dj

≥ sup
l∈[e,g]

kr

kr + 
g

e
max ](l),ω(l){ }dj

� sup
l∈[e,g]

kr

kr + max ](l),ω(l){ } 
g

e
dj

≥ sup
l∈[e,g]

kr

kr + kmax ](l),ω(l){ }

≥
r

r + max ](l),ω(l){ }

� θc(](l),ω(l), r).

(80)

(v) Hence, ζ is an ⊥-contraction.
(vi) Suppose ]n  is an orthogonal sequence in Ζ such

that ]n  converges to ] ∈ Ζ. Because ζ is

⊥-preserving, ζ]n  is an orthogonal sequence for
each n ∈ N. From (ii), we have

θc(](l),ω(l), kr)≥ θc(](l),ω(l), r). (81)
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In this paper, we study the connection between topological spaces, hyperrings (semi-hypergroups), and rough sets. We con-
centrate here on the topological parts of the lower and upper approximations of hyperideals in hyperrings and semi-hypergroups.
We provide the conditions for the boundary of hyp-ideals of a hyp-ring to become the hyp-ideals of hyp-ring.

1. Introduction

Algebraic hyp-structure (hyperstructure) represents a real
extension of classical algebraic structure. Algebraic hyp-
structures depend on hyperoperations and their properties.
Sm-hyp-group (semi-hypergroup) was first introduced by
FrenchMathematicianMarty [1] in 1934.&e sm-hyp-group
concept is the generalization of sm-group (semigroup)
concept, likewise the hyp-ring (hyperring) concept is the
generalization of ring concept. In [2, 3], authors provided
many applications of hyp-structures. &ere are several
creators who added numerous outcomes to the hypothesis of
algebraic hyp-structures, for instance, Hila and Dine [4]
studied the hyperideals of left almost semi-hypergroups.
Tang et al. [5] introduced the idea of hyperfilters in ordered
semi-hypergroups, also see [6, 7].

In 1982, Pawlak [8] introduced R-sets (rough sets) for
the very first time. R-set theory has been a knowledge
discovery in rational databases. Set approximation is di-
vided into two parts, i.e., lower approximation and upper
approximation. &e applications of R-sets are considered
in finance, pattern recognition, industries, information
processing, and business. It provides a mathematical tool
to find out pattern hidden in data.&emajor advantages of

R-set approach is that it does not need any primary/
secondary information about the data like the theory of
probability in statistics and the grade of membership in
the theory of fuzzy set. It gives systematic procedures,
tools, and algorithms to find out hidden patterns in data,
and it permits generating in mechanized way the sets of
decision rules from data. &ivagar and Devi [9] intro-
duced the concept of nanotopology via ring structure.
R-set theory has been studied by several authors in al-
gebraic structures and also in algebraic hyperstructures.
Ahn and Kim applied R-set theory to BE-algebras [10]. Ali
et al. [11] studied generalized roughness in (ε, ε∨qk)-fuzzy
filters of ordered semigroups. Biswas and S. Nanda [12]
applied R-set theory to groups. Shabir and Irshad [13]
applied roughness in ordered semigroups. In [14–22],
authors studied roughness in different hyperstructures.
Fuzzy sets were also considered by many authors, for
instance, Fotea and Davvaz [23] studied fuzzy hyperrings.
Ameri and Motameni [24] applied fuzzy set theory to the
hyperideals of fuzzy hyperrings. Bayrak and Yamak [25]
introduced some results on the lattice of fuzzy hyperideals
of a hyperring. Davvaz [26] studied fuzzy Krasner (m, n)-
hyperrings. Connections between fuzzy sets and topology
are considered in [27–29].
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2. Preliminaries and Notations

Definition 1. A topological space refers to a pair (5, τ),
where 5 is a nonempty set and τ is a topology on 5.

Definition 2. A hyp-groupoid (hypergroupoid) (F, °) is
called a sm-hyp-group if, for all a, b, c of F, we have
(a°b)°c � a°(b°c), which means that

∪
dε a°b

d°c � ∪
eεb°c

a°e. (1)

Definition 3. A subset I of a sm-hyp-groupF is called right
hyp-ideal (resp., left hyp-ideal) if

(i) I°I⊆ I

(ii) I°F⊆ I (resp., F°I⊆ I)

A left and right hyp-ideal I of F is known as hyp-ideal
of F.

Definition 4. (lower approximation of a subset, see [8]). &e
l-approximation (lower approximation) of Υ⊆U w.r.t E (E
is an equivalence relation) is a set of all those objects, which
are contained in Υ. From the diverse representations of an
E-relation, we attain three productive definitions of
l-approximation:

(i) ELower (Υ) � aεU: [a]E ⊆Υ 

(ii) ELower (Υ) � ∪ [a]E ⊆Υ[a]E

(iii) ELower(Υ) �⋃ AεU|E: A⊆Υ{ }, where
[a]E � q: qEa 

(i) is element-based definition, (ii) is granule-based
definition, and (iii) is subsystem-based definition.

Definition 5. (upper approximation of a subset, see [8]). &e
u-approximation (upper approximation) of a set Υ w.r.t E is
a set of all those objects which have nonempty intersection
with Υ. From the unlike representations of an E-relation, we
obtain three constructive definitions of u-approximation:

(i) EUpper(Υ) � aεU: [a]E ∩Υ≠∅ 

(ii) EUpper(Υ) � ∪ [a]E ∩Υ≠∅[a]E

(iii) EUpper(Υ) � ∩ AεU/E: A∩Υ≠∅{ }, where [a]E �

q: qEa 

&e following properties hold in approximation space [8]:

(1) ELower (Υ)⊆Υ⊆EUpper(Υ)
(2) ELower (∅) � ∅ � EUpper(∅);

ELower (U) � U � EUpper(U)

(3) EUpper(Υ1 ∪Υ2) � EUpper(Υ1)∪EUpper(Υ2)
(4) ELower (Υ1 ∪Υ2)⊇ELower (Υ1)∪ ELower (Υ2)
(5) EUpper(Υ1 ∩Υ2)⊆EUpper(Υ1)∩EUpper(Υ2)
(6) ELower (Υ1 ∩Υ2) � ELower (Υ1)∩ ELower (Υ2)
(7) Υ1 ⊆Υ2 implies ELower (Υ1)⊆ ELower (Υ2),

EUpper(Υ1)⊆ EUpper(Υ2)
(8) ELower (Υ) � EUpper(Υ)

(9) EUpper(Υ) � ELower (Υ)
(10) ELower ELower (Υ) � EUpper ELower (Υ) � ELower (Υ)

(11) EUpperEUpper(Υ) � ELower EUpper(Υ) � EUpper(Υ)

3. T-Structures of R-Sets Based on Sm-Hyp-
Groups

In this section, we develop some concepts related to topology
of R-sets based on sm-hyp-groups.

Definition 6. Let F be a sm-hyp-group, Υ⊆F, and ξ be a
REG-relation (regular relation) on F. &en, the (l−)
u-approximations and boundary of Υ with respect to the
REG-relation ξ are given as follows:

(i) ξLower (Υ) � x εF: ξ(x)⊆Υ{ }

(ii) ξUpper(Υ) � x εF: ξ(x)∩Υ≠∅{ }

(iii) ξB
(Υ) � ξUpper(Υ) − ξLower (Υ)

&e family of sets

ξτ(Υ) � F,∅, ξLower (Υ), ξUpper(Υ), ξ
B
(Υ)  (2)

forms a topology on F.

Example 1. Let F � aF, bF, cF, dF  be a sm-hyp-group
under the binary hyperoperation “°” defined in Cayley
(Table 1).

Let

ξ � aF, aF( , aF, bF( , aF, cF( , bF, aF( , bF, bF( ,

bF, cF( , cF, aF( , cF, bF( , cF, cF( , dF, dF( 

(3)

be a REG-relation on the sm-hyp-group F with the fol-
lowing regular classes:

ξ aF(  � ξ bF(  � ξ cF(  � aF, bF, cF  and ξ dF(  � dF .

(4)

Now, let Υ � aF, bF, dF ⊆F. &en, ξLower (Υ) � dF ,
ξUpper(Υ) � F, and ξB

(Υ) � aF, bF, cF . Hence, ξτ(Υ) �

F,∅, dF , aF, bF, cF  , which is clearly a topology onF.

Remark 1. LetF be a sm-hyp-group, ξ be a REG-relation on
F, and Υ⊆F.

(i) If ξLower (Υ) � ∅ and ξUpper(Υ) � F, then ξτ(Υ) �

F,∅{ } is called the indiscrete topology on F.
(ii) If ξLower (Υ) � ξUpper(Υ) � Υ, then the topology

ξτ(Υ) � F,∅, ξLower (Υ)  � F,∅, ξUpper(Υ) 

� F,∅,Υ{ }.
(5)

(iii) If ξLower (Υ) � ∅ and ξUpper(Υ)≠F, then
ξτ(Υ) � F,∅, ξUpper(Υ) .
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F,∅, ξB
(Υ) .

(v) If ξLower (Υ)≠ ξUpper(Υ), where ξLower (Υ)≠∅, then
ξτ(Υ) � F,∅, ξLower (Υ), ξUpper(Υ), ξ

B
(Υ)  is the

discrete topology on F.

Theorem 1. Let F be a sm-hyp-group, ξ be a REG-relation
on F, and Υ ⊆F. 6en,

(i) ξLower (Υ)⊆Υ ⊆ ξUpper(Υ)

(ii) ξLower (∅) � ∅ � ξUpper(∅)

(iii) ξLower (F) � F � ξUpper(F)

Proof

(i) We have to prove that ξLower (Υ)⊆Υ⊆ ξUpper(Υ).
First, we prove that ξLower (Υ)⊆Υ.
Let

x ε ξLower (Υ)⇒ ξ(x)⊆Υ. (6)

As ξ(x) is a regular class of x, so xεξ(x). However,
as ξ(x)⊆Υ, thus xεΥ. Now, we prove that Υ⊆ ξUpper
(Υ). Let y εΥ. As ξ(y) is a regular class of y, so y

εξ(y). &us,

yεξ(y)∩Υ⇒ ξ(y)∩Υ≠∅. (7)

&us, yεξUpper(Υ).
(ii) &e proof of this part is straightforward.
(iii) &e proof of this part is straightforward.

It is easy to see from Example 1 that
ξUpper(Υ)⊈Υ⊈ ξLower (Υ). □

Proposition 1. Let F be a sm-hyp-group, ξ be a REG-re-
lation on F, and Υ1 and Υ2 two subsets of F such that
Υ1 ⊆Υ2. 6en,

(i) ξLower (Υ1)⊆ ξLower (Υ2)

(ii) ξUpper(Υ1)⊆ ξUpper(Υ2)

(iii) ξB
(Υ1)⊆ ξ

B
(Υ2)

Proof

(i) Given Υ1 ⊆Υ2 and xε ξLower (Υ1), by definition

⇒ ξ(x)⊆Υ1 for allxεF

⇒ ξ(x)⊆Υ1 ⊆Υ2⇒ ξ(x)⊆Υ2 for allxεF.
(8)

&us, ξLower (Υ1)⊆ ξLower (Υ2).
(ii) Let xεξUpper(Υ1)⇒ ξ(x)∩Υ1 ≠∅. Let

yεξ(x)∩Υ1
⇒yεξ(x) andyεΥ1
⇒yεξ(x) andyεΥ1 ⊆Υ2
⇒yεξ(x)∩Υ2yεξ(x) andyεΥ2
⇒ ξ(x)∩Υ2 ≠∅

⇒xεξUpper Υ2( .

(9)

Hence, we get ξUpper(Υ1)⊆ ξUpper(Υ2).
(iii) From (i) and (ii),

ξUpper Υ1(  − ξLower Υ1( ⊆ ξUpper Υ2(  − ξLower Υ2( .

(10)

&us, we have ξB
(Υ1)⊆ ξ

B
(Υ2). □

Theorem 2. Let F be a sm-hyp-group and ξ be a REG-re-
lation on F, Υ1,Υ2 ⊆F such that Υ1 ⊆Υ2. 6en,
ξτ(Υ1)⊆ ξ

τ
(Υ2).

Proof. Since Υ1 ⊆Υ2 ⊆F, the approximations with respect
to the sm-hyp-group satisfy

ξLower Υ1( ⊆ ξLower Υ2( ,

ξUpper Υ1( ⊆ ξUpper Υ2(  and

ξB Υ1( ⊆ ξB Υ2( ,

(11)

which implies that ξτ(Υ1)⊆ ξ
τ
(Υ2). □

Proposition 2. Suppose ξ and c are two REG-relations onF

such that ξ ⊆ c, and let Υ1 be the nonempty subset ofF. 6en,

(i) cLower (Υ1)⊆ ξLower (Υ1)

(ii) ξUpper(Υ1)⊆ cUpper(Υ1)

(iii) ξB
(Υ1)⊆ cB(Υ1)

Proof. Suppose ξ and c are two REG-relations on F such
that ξ ⊆ c, and let Υ1 be the nonempty subset of F.

(i) Let xε cLower (Υ1). &en, c(x)⊆Υ1. Now, as ξ ⊆ c, so
ξ(x)⊆ c(x) for any x ϵF. &en, we get ξ(x)⊆Υ1.
Hence, xε ξLower (Υ1).

(ii) Let xεξUpper(Υ1). &en, ξ(x)∩Υ1 ≠∅. Now, as
ξ ⊆ c, so

ξ(x)⊆ c(x) for any xεF

⇒ ξ(x)∩Υ1 ⊆ c(x)∩Υ1 for any x εF.
(12)

As ∅≠ ξ(x)∩Υ1 ⊆ c(x)∩Υ1. &us, c(x)∩Υ1 ≠∅.
Hence, xεcUpper(Υ1).

Table 1: Tabular form of the hyperoperation “ °” defined in
Example 1.

° aF bF cF dF

aF aF bF aF, cF  dF

bF bF bF bF dF

cF aF, cF  bF cF dF

dF dF dF dF dF
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(iii) &e proof of this part implies from (i) and (ii). □

Theorem 3. Let F be a sm-hyp-group and ξ and c be the
REG-relations on F such that ξ ⊆ c, and let Υ1 be the
nonempty subset of F. 6en, ξτ(Υ1)≠ cτ(Υ1).

Proof. Since ξ and c are the REG-relations on F such that
ξ ⊆ c, then

cLower Υ1( ⊆ ξLower Υ1( ,

ξUpper Υ1( ⊆ cUpper Υ1(  and

ξB Υ1( ⊆ c
B Υ1( ,

(13)

which implies that ξτ(Υ1)≠ cτ(Υ1). □

4. T-Structures of R-Sets Based on Hyp-Rings

In this section, we develop some concepts related to topology
of R-sets based on hyp-rings.

Definition 7. Let R be a hyp-ring, Υ⊆R, and F be a
hyperideal ofR. &en, the (l-) u-approximations and boundary
of Υ with respect to the hyp-ideal F are given as follows:

(i) FLower (Υ) � xεR: x⊕F⊆Υ{ }

(ii) FUpper(Υ) � xεR: (x⊕F)∩Υ≠∅{ }

(iii) FB(Υ) � FUpper(Υ) − FLower (Υ)

&e family of sets

F
τ
(Υ) � R,∅,FLower (Υ),FUpper(Υ),F

B
(Υ) , (14)

forms a topology on R with respect to F.

Example 2. Let R � aR, bR, cR, dR, eR, fR  be a hyp-ring
under the binary hyperoperations ⊕ and ° defined in the
Cayley (Tables 2 and 3).

Let F � aR, eR  be a hyp-ideal of R. Consider
Υ � aR, cR, dR, fR ⊆R. &en,

FLower (Υ) � cR, dR ,FUpper(Υ) � R,

F
B
(Υ) � aR, bR, eR, fR .

(15)

Hence, Fτ(Υ) � R,∅, cR, dR , aR, bR, eR, fR  ,
which is clearly a topology on R.

Remark 2. Let R be a hyp-ring, F be a hyp-ideal ofR, and
Υ⊆R.

(i) If FLower (Υ) � ∅ and FUpper(Υ) � R, then
Fτ(Υ) � R,∅{ } is called the indiscrete topology on
R.

(ii) If FLower (Υ) � FUpper(Υ) � Υ, then the topology

F
τ
(Υ) � R,∅,FLower (Υ) 

� R,∅,FUpper(Υ) 

� R,∅,Υ{ }.

(16)

(iii) If FLower (Υ) � ∅ and FUpper(Υ)≠R, then

Fτ(Υ) � R,∅,FUpper(Υ) .
(iv) If FLower (Υ)≠∅ and FUpper(Υ) � R, then

Fτ(Υ) � R,∅,FB(Υ) .
(v) If FLower (Υ)≠FUpper(Υ) where FLower (Υ)≠∅,

then Fτ(Υ) � R,∅,FLower (Υ),FUpper(Υ),

FB(Υ)} is the discrete topology on R.

Theorem 4. LetR be a hyp-ring,F be a hyp-ideal ofR, and
Υ ⊆R. 6en,

(i) FLower (Υ)⊆Υ ⊆FUpper(Υ)

(ii) FLower (∅) � ∅ � FUpper(∅)

(iii) FLower (R) � R � FUpper(R)

Proposition 3. Let R be a hyp-ring, F be a hyp-ideal of R,
and Υ1 and Υ2 two subsets of R such that Υ1 ⊆Υ2. 6en,

(i) FLower (Υ1)⊆ FLower (Υ2)

(ii) FUpper(Υ1)⊆FUpper(Υ2)

(iii) FB(Υ1)⊆FB(Υ2)

Theorem 5. LetR be a hyp-ring andF be a hyp-ideal ofR,
and Υ1,Υ2 ⊆R such that Υ1 ⊆Υ2. 6en, Fτ(Υ1)⊆Fτ(Υ2).

Proposition 4. Suppose F, W are two hyp-ideals of R such
that F⊆W, and let Υ1 be the nonempty subset of R. 6en,

(i) WLower (Υ1)⊆ FLower (Υ1)

(ii) FUpper(Υ1)⊆WUpper(Υ1)

(iii) FB(Υ1)⊆WB(Υ1)

Theorem 6. LetR be a hyp-ring andF, W be the hyp-ideals
of R such that F⊆W and let Υ1 be the non-empty subset of
R. 6en Fτ(Υ1)≠Wτ(Υ1).

6e following theorem can also be seen in [17].

Theorem 7. Let F and Υ2 be two hyp-ideals of R. 6en,

(i) FLower (Υ2) is, if it is nonempty, a hyp-ideal of R

(ii) FUpper(Υ2) is a hyp-ideal of R

Proof

(i) Suppose x, yεFLower (Υ2) and rεR; then,

x⊕F⊆Υ2 andy⊕F⊆Υ2. (17)

&is implies that (x⊕y⊕F)⊆Υ2 and −y⊕F⊆Υ2.
Also, (r°x⊕F)⊆Υ2 and (x°r⊕F)⊆Υ2. &is im-
plies that

x⊕y⊆ FLower Υ2(  and − yεFLower Υ2( . (18)
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Also,

r°x⊆ FLower Υ2(  and x°r⊆ FLower Υ2( . (19)

&erefore, FLower (Υ2) is a hyp-ideal of R.
(ii) Suppose x, yεFUpper(Υ2) and rεR; then,

(x⊕F)∩Υ2 ≠∅ and (y⊕F)∩Υ2 ≠∅. (20)

So, there exists

pε(x⊕F)∩Υ2 and qε(y⊕F)∩Υ2. (21)

Since Υ2 is a hyp-ideal of R, we have p⊕ q⊆Υ2 and
−qεΥ2; also,

p⊕ q⊆ (x⊕F)⊕ (y⊕F) � x⊕y⊕F and − qε − y⊕F.

(22)

Hence, (x⊕y⊕F)∩Υ2 ≠∅ and (−y⊕F)∩Υ2 ≠∅,
which implies that

x⊕y⊆FUpper Υ2(  and − yεFUpper Υ2( . (23)

Also, we have r · pεΥ2 and

r°p⊆ r°(x⊕F) � (r°x)⊕F. (24)

So, (r°x⊕F)∩Υ2≠∅, which implies r°x⊆FUpper(Υ2).
Similarly, we can prove that x°r⊆FUpper(Υ2). &erefore,
FUpper(Υ2) is a hyp-ideal of R. □

Theorem 8. Let F and Υ2 be two hyp-ideals of R. 6en,

(i) FB(Υ2) is not a hyp-ideal of R if FLower (Υ2)≠∅
(ii) FB(Υ2) is a hyp-ideal of R if FLower (Υ2) � ∅

Corollary 1. Let F,Υ be two hyp-ideals of R.6en,

(i) ΥLower (F) is also a hyp-ideal of R, where
ΥLower (F)≠∅

(ii) ΥUpper(F) is also a hyp-ideal of R
(iii) ΥB(F) is a hyp-ideal of R, when ΥLower (F) � ∅

Theorem 9. Let R and S be two hyp-rings and f be a
homomorphism fromR to S. If Υ1 is a nonempty subset ofR,
then

(i) f(kerfUpper(Υ1)) � f(Υ1)

(ii) f(kerfLower (Υ1)) ⊂ f(Υ1)

Proof

(i) Since Υ1 ⊆ kerfUpper(Υ1), it follows that f(Υ1)⊆
f(kerfUpper(Υ1)). Conversely, let yεf(kerfUpper

(Υ1)). &en, there exist an element x ϵ kerfUpper(Υ1)
such that f(x) � y, so we have (x⊕ kerf)∩Υ1 ≠∅.
&en, there exists an element aε(x⊕ kerf)∩Υ1.
&en, a � x⊕ b for some bεkerf, that is, x � a − b.
&en, we have

y � f(x) � f(a − b)

� f(a) − f(b)

� f(a)εf Υ1( ,

(25)

and so f(kerfUpper(Υ1)) � f(Υ1).
(ii) &e proof is easy. □

5. Conclusion and Future Work

Relations between R-sets, hyp-rings, and topological
structures are considered in this paper. In place of universal
set, we added sm-hyp-groups and hyp-rings. In future, this
work can be extended to soft set theory [30], bipolar fuzzy
sets [31], intuitionistic fuzzy sets [32], or neutrosophic sets
[33].

Data Availability

No data were used to support this study.

Table 2: Tabular form of the hyperoperation “⊕ ” defined in Example 2.

⊕ aR bR cR dR eR fR

aR aR bR cR dR eR fR

bR bR aR, bR  dR cR, dR  fR eR, fR 

cR cR dR aR, cR, eR  bR, dR, fR  cR dR

dR dR cR, dR  bR, dR, fR  R dR cR, dR 

eR eR fR cR dR aR, eR  bR, fR 

fR fR eR, fR  dR cR, dR  bR, fR  aR, bR, eR, fR 

Table 3: Tabular form of the hyperoperation “°” defined in
Example 2.

° aR bR cR dR eR fR

aR aR aR aR aR aR aR

bR aR bR aR bR aR bR
cR aR aR cR cR eR eR
dR aR bR cR dR eR fR

eR aR aR eR eR aR aR

fR aR bR eR fR aR bR
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+is paper aims to introduce the new concept of rational type fuzzy-contraction mappings in fuzzy metric spaces. We prove some
fixed point results under the rational type fuzzy-contraction conditions in fuzzy metric spaces with illustrative examples to
support our results. +is new concept will play a very important role in the theory of fuzzy fixed point results and can be
generalized for different contractive type mappings in the context of fuzzy metric spaces. Moreover, we present an application of a
nonlinear integral type equation to get the existing result for a unique solution to support our work.

1. Introduction

+e theory of fixed point is one of the most interesting areas
of research in mathematics. In the last decades, a lot of work
was dedicated to the theory of fixed point. A point μ be-
longing to a nonempty set U is called a fixed point of a
mapping ℓ: U⟶ U if and only if ℓμ � μ. In 1922, Stefan
Banach, a well-known mathematician, proved a Banach
contraction principle in [1], which is stated as “A self-
mapping in a complete metric space satisfying the con-
traction condition has a unique fixed point.” After the
publication of this principle, many researchers contributed
their ideas to the theory of fixed point and proved different
contractive type mapping results for single and multivalued
mappings in the context of metric spaces for fixed point,
coincidence point, and common fixed point. Some of these
results can be found in [2–13].

In 1965, the theory of fuzzy set was introduced by Zadeh
[14]. Recently, this theory is used, investigated, and applied
in many directions. One direction is the evaluation of test
results which is the application of fuzzy logic in the

processing of students evaluation; moreover, the application
is expected to represent the mechanisms of human thought
processes capable of resolving the problem of evaluation of
students, which can be directly monitored by the teacher (for
example, see [15–19]). Many researchers have extensively
developed the theory of fuzzy sets and their applications in
different fields. Some of their results can be found in [20–29]
the references therein.

+e other direction is the generalization of metric spaces
to fuzzy metric spaces. In [30], Kramosil and Michalek
introduced the concept of fuzzy metric spaces (FM-space)
and some more notions. Later on, the stronger form of the
metric fuzziness was given by George and Veeramani [31].
In 2002, Gregory and Sapena [32] proved some contractive
type fixed point theorems in FM-spaces. Some more fixed
point results in the said space can be found in [33–41].

+is research work aims to present the new concept of
rational type fuzzy-contraction mappings in G-complete
FM-spaces. We use the concept of Gregory and Sapena [32]
and the “triangular property of fuzzy metric” presented by
Bari and Vetro [33] and prove some unique fixed point
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theorems under the rational type fuzzy-contraction condi-
tions in G-complete FM-spaces with some illustrative ex-
amples.+is new theory will play a very important role in the
theory of fuzzy fixed point results and can be generalized for
different contractive type mappings in the context of fuzzy
metric spaces. Moreover, we present an integral type ap-
plication in the sense of Jabeen et al. [42] to prove a result for
a unique solution to support our work. +e application
section of the paper is more important; one can use this
concept and present different types of nonlinear integral
type equations for the existence of unique solutions for their
results. Some integral type application results in the theory
of fixed point can be found in [43–46].

2. Preliminaries

Definition 1 (see [47]). An operation ∗: [0, 1]2⟶ [0, 1] is
called a continuous t-norm, if

(i) ∗ is commutative, associative, and continuous.
(ii) 1∗ ξ1 � ξ1 and ξ1 ∗ ξ2 ≤ ξ3 ∗ ξ4, whenever ξ1 ≤ ξ3 and

ξ2 ≤ ξ4, ∀ξ1, ξ2, ξ3, ξ4 ∈ [0, 1].

+e basic t-norms, the minimum, the product, and the
Lukasiewicz continuous t-norms are defined as follows (see
[47]):

ξ1 ∗ ξ2 � min ξ1, ξ2 , ξ1 ∗ ξ2 � ξ1ξ2,

ξ1 ∗ ξ2 � max ξ1 + ξ2 − 1, 0 .
(1)

Definition 2 (see [31]). A 3-tuple (U, Mr, ∗ ) is said to be a
FM-space if U is an arbitrary set, ∗ is a continuous t-norm,
and Mr is a fuzzy set on U2 × (0,∞) satisfying the following
conditions:

(i) Mr(μ1, μ∗, t)> 0 and Mr(μ1, μ∗, t) � 1⟺ μ1 � μ∗

(ii) Mr(μ1, μ∗, t) � Mr(μ∗, μ1, t)

(iii) Mr(μ1, μ, t)∗Mr(μ, μ∗, s)≤Mr(μ1, μ∗, t + s)

(iv) Mr(μ1, μ∗, .): (0,∞)⟶ [0, 1] is continuous,

∀μ, μ1, μ∗ ∈ U and t, s ∈ (0,∞).

Lemma 1 (see [31]). Mr(μ1, μ∗, ∗ ) is nondecreasing
∀μ1, μ∗ ∈ U.

Definition 3 (see [31]). Let (U, Mr, ∗ ) be a FM-space,
v1 ∈ U, and a sequence (μj) in U is

(i) Converges to v1 if ξ ∈ (0, 1) and t> 0∃j1 ∈ N, such
that Mr(μj, v1, t)> 1 − ξ, ∀j≥ j1. We may write this
limj⟶∞μj � v1 or μj⟶ μ1 as j⟶∞.

(ii) Cauchy sequence if ξ ∈ (0, 1) and t> 0∃j1 ∈ N such
that Mr(μj, μk, t)> 1 − ξ, ∀j, k≥ j1.

(iii) (U, Mr, ∗ ) is complete if every Cauchy sequence is
convergent in U.

(iv) [32] fuzzy-contractive if ∃a ∈ (0, 1) such that

1
Mr μj, μj+1, t 

− 1≤ a
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠, for t> 0, j≥ 1.

(2)

In the sense of Gregori and Sapena [32], a sequence (μj)

in a FM-space is said to be G-Cauchy if
limjMr(μj, μj+p, t) � 1, for t> 0 and p> 0. A FM-space
(U, Mr, ∗ ) is called G-complete if every G-Cauchy sequence
is convergent.

+roughout this paper, N represents the set of natural
numbers.

Lemma 2 (see [31]). Let (U, Mr, ∗ ) be a FM-space and let a
sequence (μj) in U converge to a point v1 ∈ U iff
Mr(μj, v1, t)⟶ 1, as j⟶∞, for t> 0.

Definition 4 (see [33]). Let (U, Mr, ∗ ) be a FM-space. +e
fuzzy metric Mr is triangular, if

1
Mr μ1, μ

∗
, t( 

− 1≤
1

Mr μ1, μ, t( 
− 1 

+
1

Mr μ, μ∗, t( 
− 1 , ∀μ, μ1, μ

∗ ∈ U, t> 0.

(3)

Definition 5 (see [32]). Let (U, Mr, ∗ ) be a FM-space and
ℓ: U⟶ U. +en, ℓ is said to be fuzzy-contractive if
∃a ∈ (0, 1) such that

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ a
1

Mr μ1, μ
∗
, t( 

− 1 , ∀μ1, μ
∗
, ∈ U, t> 0.

(4)

In the following, we present some rational type fixed
point results under the rational type fuzzy-contraction
conditions in G-complete FM-spaces by using the “trian-
gular property of fuzzy metric.” We present illustrative
examples to support our results. In the last section of this
paper, we present an integral type application for a unique
solution to support our work.

3. Main Result

In this section, we define rational type fuzzy-contraction
maps and prove some unique fixed point theorems under the
rational type fuzzy-contraction mappings in G-complete
FM-spaces.
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Definition 6. Let (U, Mr, ∗ ) be a FM-space; a mapping
ℓ: U⟶ U is called a rational type fuzzy-contraction if
∃a, b ∈ [0, 1) such that

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ a
1

Mr μ1, μ
∗
, t( 

− 1 

+ b
Mr μ1, μ

∗
, t( 

Mr μ1, ℓμ1, t( ∗Mr μ∗, ℓμ1, 2t( 
− 1 ,

(5)

∀μ1, μ∗, ∈ U, t> 0.

Theorem 1. Let (U, Mr, ∗ ) be a G-complete FM-space in
which Mr is triangular and a mapping ℓ: U⟶ U is a ra-
tional type fuzzy-contraction satisfying (5) with a + b< 1.
(en, ℓ has a unique fixed point in U.

Proof. Fix μ0 ∈ U and μj+1 � ℓμj, j≥ 0. +en, by (5), for
t> 0, j≥ 1,

1
Mr μj, μj+1, t 

− 1 �
1

Mr ℓμj−1, ℓμj, t 
− 1

≤ a
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠

+ b
Mr μj−1, μj, t 

Mr μj−1, ℓμj−1, t ∗Mr μj, ℓμj−1, 2t 
− 1⎛⎝ ⎞⎠

� a
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠

+ b
Mr μj−1, μj, t 

Mr μj−1, μj, t ∗Mr μj, μj, 2t 
− 1⎛⎝ ⎞⎠,

(6)

and after simplification,

1
Mr μj, μj+1, t 

− 1≤ a
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠, for t> 0.

(7)

Similarly,

1
Mr μj−1, μj, t 

− 1≤ a
1

Mr μj−2, μj−1, t 
− 1⎛⎝ ⎞⎠, for t> 0.

(8)

Now, from (7) and (8) and by induction, for t> 0, we
have that

1
Mr μj, μj+1, t 

− 1≤ a
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠

≤ a
2 1

Mr μj−2, μj−1, t 
− 1⎛⎝ ⎞⎠

≤ · · · ≤ a
j 1

Mr μ0, μ1, t( 
− 1 ⟶ 0, as j⟶∞.

(9)

Hence, (μj) is a fuzzy-contractive sequence in
(U, Mr, ∗ ); therefore,

lim
j⟶∞

Mr μj, μj−1, t  � 1, for t> 0. (10)

Now, we show that (μj) is a G-Cauchy sequence; let
j ∈ N, and there is a fixed q ∈ N such that

Mr μj, μj+q, t  � Mr μj, μj+q,
1
q

+
1
q

+ · · · +
1
q

√√√√√√√√√√√√
q−times

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥Mr μj, μj+1,
t

q
 ∗Mr μj+1, μj+2,

t

q
 ∗ · · · ∗Mr μj+q−1, μj+q,

t

q
 

⟶ 1∗ 1∗ · · · ∗ 1√√√√√√√√√√√√
q−times

� 1, as j⟶∞.

(11)

Hence, it is proved that (μj) is a G-Cauchy sequence.
Since (U, Mr, ∗ ) is G-complete, ∃v1 ∈ U such that
μj⟶ v1, as j⟶∞, i.e.,

lim
j⟶∞

Mr μj, v1, t  � 1, for t> 0. (12)

Since Mr is triangular, from (5), (10), and (12), for t> 0,
we have

Journal of Mathematics 3
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1
Mr v1, ℓv1, t( 

− 1≤
1

Mr v1, μj+1, t 
− 1⎛⎝ ⎞⎠

+
1

Mr ℓμj, ℓv1, t 
− 1⎛⎝ ⎞⎠

≤
1

Mr v1, μj+1, t 
− 1⎛⎝ ⎞⎠

+ a
1

Mr μj, v1, t 
− 1⎛⎝ ⎞⎠

+ b
Mr μj, v1, t 

Mr μj, ℓμj, t ∗Mr v1, ℓμj, 2t 
− 1⎛⎝ ⎞⎠

�
1

M v1, μj+1, t 
− 1⎛⎝ ⎞⎠

+ a
1

Mr μj, v1, t 
− 1⎛⎝ ⎞⎠

+ b
Mr μj, v1, t 

Mr μj, μj+1, t ∗Mr v1, μj+1, 2t 
− 1⎛⎝ ⎞⎠

⟶ 0, as j⟶∞.

(13)

Hence, Mr(v1, ℓv1, t) � 1⇒ℓv1 � u1, for t> 0.

Uniqueness. Let ∃z1 ∈ U such that ℓz1 � z1 and ℓv1 � v1;
then, from (5) and by using Definition 2 (iii), for t> 0, we
have

1
Mr v1, z1, t( 

− 1 �
1

Mr ℓv1, ℓz1, t( 
− 1

≤ a
1

Mr v1, z1, t( 
− 1  + b

Mr v1, z1, t( 

Mr v1, ℓv1, t( ∗Mr z1, ℓv1, 2t( 
− 1 

≤ a
1

Mr v1, z1, t( 
− 1  + b

Mr v1, z1, t( 

Mr z1, v1, t( ∗Mr v1, v1, t( 
− 1 

� a
1

Mr v1, z1, t( 
− 1  � a

1
Mr ℓv1, ℓz1, t( 

− 1 

≤ a
2 1

Mr v1, z1, t( 
− 1 ≤ · · · ≤ a

j 1
Mr v1, z1, t( 

− 1 ⟶ 0, as j⟶∞.

(14)

Hence, it is proved that Mr(v1, z1, t) � 1, and this im-
plies that v1 � z1. □

Corollary 1 (fuzzy Banach contraction principle). Let (U, Mr,

∗ ) be a G-complete FM-space in which Mr is triangular and a

mapping ℓ: U⟶ U is a fuzzy-contraction satisfying (4) with
a ∈ (0, 1). (en, ℓ has a unique fixed point in U.

Example 1. Let U � [0,∞), ∗ be a continuous t-norm, and
Mr: U2 × (0,∞)⟶ [0, 1] be defined as
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Mr μ1, μ
∗
, t(  �

t

t + 4μ1 − 4μ∗( /5



, ∀μ1, μ

∗ ∈ U, t> 0.

(15)

+en, one can easily verify that Mr is triangular and
(U, Mr, ∗ ) is a G-complete FM-space. Now we define a
mapping ℓ: U⟶ U as

ℓ μ1(  �

3μ1
4

, if μ1 ∈ [0, 1],

2μ1
3

+ 8, if μ1 ∈ (1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

+en, we have

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1 �
3
4

1
Mr μ1, μ

∗
, t( 

− 1 , ∀μ1, μ
∗ ∈ U, t> 0.

(17)

Hence, a mapping ℓ is a fuzzy contraction. Now, from
Definition 2 (iii), for t> 0,

Mr μ1, μ
∗
, t( 

Mr μ1, ℓμ1, t( ∗Mr μ∗, ℓμ1, 2t( 
− 1≤

Mr μ1, μ
∗
, t( 

Mr μ1, ℓμ1, t( ∗Mr μ∗, μ1, t( ∗Mr μ1, ℓμ1, t( 
− 1

�
1

Mr μ1, ℓμ1, t( ∗Mr μ1, ℓμ1, t( 
− 1

�
1

Mr μ1, ℓμ1, t( ( 
2 − 1⎛⎝ ⎞⎠ �

2μ1
5t

2
μ1
5

+ t .

(18)

Hence, all the conditions of +eorem 1 are satisfied with
a � (3/4) and b � (2/9). A mapping ℓ has a fixed point, i.e.,
ℓ(24) � 24 ∈ [0,∞).

Next, we present a generalized rational type fuzzy-
contraction theorem.

Theorem 2. Let (U, Mr, ∗ ) be a G-complete FM-space in
which Mr is triangular and a mapping ℓ: U⟶ U satisfies

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ a
1

Mr μ1, μ
∗
, t( 

− 1  + b
Mr μ1, μ

∗
, t( ∗Mr μ∗, ℓμ∗, t( 

Mr μ1, ℓμ1, t( ∗Mr μ1, ℓμ
∗
, 2t( 

− 1 

+ c
Mr μ1, ℓμ1, t( 

Mr μ1, ℓμ
∗
, 2t( 

− 1 +
Mr μ∗, ℓμ∗, t( 

Mr μ1, ℓμ
∗
, 2t( 

− 1 

+ d
1

Mr μ1, ℓμ1, t( 
− 1 +

1
Mr μ∗, ℓμ∗, t( 

− 1 ,

(19)
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∀μ1, μ∗ ∈ U, t> 0, a, b, c, d≥ 0 with (a + b + 2c + 2d)< 1.
(en, ℓ has a unique fixed point.

Proof. Fix μ0 ∈ U and μj+1 � ℓμj, j≥ 0. +en, by (19), for
t> 0, j≥ 1,

1
Mr μj, μj+1, t 

− 1 �
1

Mr ℓμj−1, ℓμj, t 
− 1

≤ a
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠ + b

Mr μj−1, μj, t ∗Mr μj, ℓμj, t 

Mr μj−1, ℓμj−1, t ∗Mr μj−1, ℓμj, 2t 
− 1⎛⎝ ⎞⎠

+ c
Mr μj−1, ℓμj−1, t 

Mr μj−1, ℓμj, 2t 
− 1 +

Mr μj, ℓμj, t 

Mr μj−1, ℓμj, 2t 
− 1⎛⎝ ⎞⎠

+ d
1

Mr μj−1, ℓμj−1, t 
− 1 +

1
Mr μj, ℓμj, t 

− 1⎛⎝ ⎞⎠

� a
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠ + b

Mr μj−1, μj, t ∗Mr μj, μj+1, t 

Mr μj−1, μj, t ∗Mr μj−1, μj+1, 2t 
− 1⎛⎝ ⎞⎠

+ c
Mr μj−1, μj, t 

Mr μj−1, μj+1, 2t 
− 1 +

Mr μj, μj+1, t 

Mr μj−1, μj+1, 2t 
− 1⎛⎝ ⎞⎠

+ d
1

Mr μj−1, μj, t 
− 1 +

1
Mr μj, μj+1, t 

− 1⎛⎝ ⎞⎠.

(20)

From Definition 2 (iii), Mr(μj−1, μj+1, 2t)≥Mr(μj−1, μj,

t)∗Mr(μj, μj+1, t), for t> 0, and after simplification, we
have

1
Mr μj, μj+1, t 

− 1≤ β
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠, where β �

a + b + c + d

1 − c − d
< 1. (21)

Similarly, for t> 0, we have

1
Mr μj−1, μj, t 

− 1≤ β
1

Mr μj−2, μj−1, t 
− 1⎛⎝ ⎞⎠, where β �

a + b + c + d

1 − c − d
< 1. (22)
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Now, from (21) and (22) and by induction, for t> 0, we
have

1
Mr μj, μj+1, t 

− 1≤ β
1

Mr μj−1, μj, t 
− 1⎛⎝ ⎞⎠≤ β2

1
Mr μj−2, μj−1, t 

− 1⎛⎝ ⎞⎠

≤ · · · ≤ βj 1
Mr μ0, μ1, t( 

− 1 ⟶ 0, as j⟶∞.

(23)

Hence, (μj) is a rational type fuzzy-contractive sequence
in U such that

lim
j⟶∞

Mr μj, μj+1, t  � 1, for t> 0. (24)

Now we have to show that (μj) is a G-Cauchy sequence;
let j ∈ N, and there is a fixed q ∈ N such that

Mr μj, μj+q, t  � Mr μj, μj+q,
1
q

+
1
q

+ · · · +
1
q

√√√√√√√√√√√√
q−times

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥Mr μj, μj+1,
t

q
 ∗Mr μj+1, μj+2,

t

q
 

∗ · · · ∗Mr μj+q−1, μj+q,
t

q
 

· ⟶ 1∗ 1∗ · · · ∗ 1√√√√√√√√√√√√
q−times

� 1, as j⟶∞.

(25)

Hence, it is proved that (μj) is a G-Cauchy sequence.
Since (U, Mr, ∗ ) is G-complete, then ∃v1 ∈ U such that
μj⟶ v1, as j⟶∞, i.e.,

lim
j⟶∞

Mr μj, v1, t  � 1, for t> 0. (26)

Since Mr is triangular,

1
Mr v1, ℓv1, t( 

− 1≤
1

Mr v1, μj+1, t 
− 1⎛⎝ ⎞⎠

+
1

Mr μj+1, ℓv1, t 
− 1⎛⎝ ⎞⎠, for t> 0.

(27)

Now from (19), (24), and (26), for t> 0, we have

1
Mr μj+1, ℓv1, t 

− 1 �
1

Mr ℓμj, ℓv1, t 
− 1

≤ a
1

Mr μj, v1, t 
− 1⎛⎝ ⎞⎠ + b

Mr μj, v1, t ∗Mr v1, ℓv1, t( 

Mr μj, ℓμj, t ∗Mr μj, ℓv1, 2t 
− 1⎛⎝ ⎞⎠

+ c
Mr μj, ℓμj, t 

Mr μj, ℓv1, 2t 
− 1 +

Mr v1, ℓv1, t( 

Mr μj, ℓv1, 2t 
− 1⎛⎝ ⎞⎠

+ d
1

Mr μj, ℓμj, t 
− 1 +

1
Mr v1, ℓv1, t( 

− 1⎛⎝ ⎞⎠

� a
1

Mr μj, v1, t 
− 1⎛⎝ ⎞⎠ + b

Mr μj, v1, t ∗Mr v1, ℓv1, t( 

Mr μj, μj+1, t ∗Mr μj, ℓv1, 2t 
− 1⎛⎝ ⎞⎠

+ c
Mr μj, μj+1, t 

Mr μj, ℓv1, 2t 
− 1 +

Mr v1, ℓv1, t( 

Mr μj, ℓv1, 2t 
− 1⎛⎝ ⎞⎠

+ d
1

Mr μj, μj+1, t 
− 1 +

1
Mr v1, ℓv1, t( 

− 1⎛⎝ ⎞⎠.

(28)
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From Definition 2 (iii), Mr(μj, ℓv1, 2t)≥Mr(μj, v1, t)∗
Mr(v1, ℓv1, t), for t> 0, and we have

1
Mr μj+1, ℓv1, t 

− 1≤ a
1

Mr μj, v1, t 
− 1⎛⎝ ⎞⎠ + b

Mr μj, v1, t ∗Mr v1, ℓv1, t( 

Mr μj, μj+1, t ∗Mr μj, v1, t ∗Mr v1, ℓv1, t( 
− 1⎛⎝ ⎞⎠

+ c
Mr μj, μj+1, t 

Mr μj, v1, t ∗Mr v1, ℓv1, t( 
− 1 +

Mr v1, ℓv1, t( 

Mr μj, v1, t ∗Mr v1, ℓv1, t( 
− 1⎛⎝ ⎞⎠

+ d
1

Mr μj, μj+1, t 
− 1 +

1
Mr v1, ℓv1, t( 

− 1⎛⎝ ⎞⎠

⟶ (c + d)
1

Mr v1, ℓv1, t( 
− 1 , as j⟶∞.

(29)

+en,

limsup
j⟶∞

1
Mr μj+1, ℓv1, t 

− 1⎛⎝ ⎞⎠≤ (c + d)
1

Mr v1, ℓv1, t( 
− 1 , for t> 0.

(30)

Now, from (26), (27), and (30), as j⟶∞, we get that

1
Mr v1, ℓv1, t( 

− 1≤ (c + d)
1

Mr v1, ℓv1, t( 
− 1 , for t> 0,

(31)

and c + d< 1 where (a + b + 2c + 2d)< 1, and hence
Mr(v1, ℓv1, t) � 1, i.e., ℓv1 � v1, for t> 0.

Uniqueness. Let ∃z1 ∈ U such that ℓz1 � z1 and ℓv1 � v1.
+en, from (19) and from Definition 2 (iii), for t> 0, we have

1
Mr v1, z1, t( 

− 1 �
1

Mr ℓv1, ℓz1, t( 
− 1

≤ a
1

Mr v1, z1, t( 
− 1  + b

Mr v1, z1, t( ∗Mr z1, ℓz1, t( 

Mr v1, ℓv1, t( ∗Mr v1, ℓz1, 2t( 
− 1 

+ c
Mr v1, ℓv1, t( 

Mr v1, ℓz1, 2t( 
− 1 +

Mr z1, ℓz1, t( 

Mr v1, ℓz1, 2t( 
− 1 

+ d
1

Mr v1, ℓv1, t( 
− 1 +

1
Mr z1, ℓz1, t( 

− 1 

� a
1

Mr v1, z1, t( 
− 1  + b

Mr v1, z1, t( 

Mr v1, z1, 2t( 
− 1 

+ c
1

Mr v1, z1, 2t( 
− 1 +

1
Mr v1, z1, 2t( 

− 1 

� a
1

Mr v1, z1, t( 
− 1  + b

Mr v1, z1, t( 

Mr v1, z1, t( ∗Mr z1, z1, t( 
− 1 

+ c
1

Mr v1, z1, t( ∗M − r z1, z1, t( 
− 1 +

1
Mr v1, z1, t( ∗Mr z1, z1, t( 

− 1 

� (a + 2c)
1

Mr v1, z1, t( 
− 1  � (a + 2c)

1
Mr ℓv1, ℓz1, t( 

− 1 

≤ (a + 2c)
2 1

Mr v1, z1, t( 
− 1 ≤ · · · ≤ (a + 2c)

j 1
Mr v1, z1, t( 

− 1 

⟶ 0, as j⟶∞,where(a + 2c)< 1.

(32)
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Hence, Mr(v1, z1, t) � 1, and this implies that v1 � z1,
for t> 0. □

Corollary 2. Let (U, Mr, ∗ ) be a G-complete FM-space in
which Mr is triangular and a mapping ℓ: U⟶ U satisfies

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ a
1

Mr μ1, μ
∗
, t( 

− 1 

+ b
Mr μ1, μ

∗
, t( ∗Mr μ∗, ℓμ∗, t( 

Mr μ1, ℓμ1, t( ∗Mr μ1, ℓμ
∗
, 2t( 

− 1 

+ d
1

Mr μ1, ℓμ1, t( 
− 1 +

1
Mr μ∗, ℓμ∗, t( 

− 1 ,

(33)

∀μ1, μ∗ ∈ U, t> 0, a, b, d≥ 0 with a + b + 2d< 1. (en, ℓ has a
unique fixed point.

Corollary 3. Let (U, Mr, ∗ ) be a G-complete FM-space in
which Mr is triangular and a mapping ℓ: U⟶ U satisfies

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ a
1

Mr μ1, μ
∗
, t( 

− 1 

+ c
Mr μ1, ℓμ1, t( 

Mr μ1, ℓμ
∗
, 2t( 

− 1 +
Mr μ∗, ℓμ∗, t( 

Mr μ1, ℓμ
∗
, 2t( 

− 1 

+ d
1

Mr μ1, ℓμ1, t( 
− 1 +

1
Mr μ∗, ℓμ∗, t( 

− 1 ,

(34)

∀μ1, μ∗ ∈ U, t> 0, a, c, d≥ 0 with a + 2c + 2d< 1. (en, ℓ has
a unique fixed point.

Corollary 4. Let (U, Mr, ∗ ) be a G-complete FM-space in
which Mr is triangular and a mapping ℓ: U⟶ U satisfies

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ a
1

Mr μ1, μ
∗
, t( 

− 1  + d
1

Mr μ1, ℓμ1, t( 
− 1 +

1
Mr μ∗, ℓμ∗, t( 

− 1  , (35)

∀μ1, μ∗ ∈ U, t> 0, a, d≥ 0 with a + 2d< 1. (en, ℓ has a
unique fixed point.

Example 2. From Example 1, we define Mr as

Mr μ1, μ
∗
, t(  �

t

t + μ1 − μ∗( /2



, ∀μ1, μ

∗ ∈ U, t> 0.

(36)

+en, one can easily show that Mr is triangular and
(U, Mr, ∗ ) is G-complete FM-space. Now we define a
mapping ℓ: U⟶ U as

ℓ μ1(  �

3μ1
7

, if μ1 ∈ [0, 1],

3μ1
4

+ 1, if μ1 ∈ (1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(37)

+en, we have

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1 �
3
7

1
Mr μ1, μ

∗
, t( 

− 1 , ∀μ1, μ
∗ ∈ U, t> 0.

(38)

A mapping ℓ satisfies (4), and hence ℓ is a fuzzy con-
traction. Now, from Definition 2 (iii),
Mr(μ1, ℓμ∗, 2t)≥Mr(μ1, μ∗, t)∗Mr(μ∗, ℓμ∗, t) for t> 0, and
after simplification, we get the following:

Mr μ1, μ
∗
, t( ∗Mr μ∗, ℓμ∗, t( 

Mr μ1, ℓμ1, t( ∗Mr μ1, ℓμ
∗
, 2t( 

− 1≤
1

Mr μ1, ℓμ1, t( 
− 1  �

2μ1
7t

,

Mr μ1, ℓμ1, t( 

Mr μ1, ℓμ
∗
, 2t( 

− 1 +
Mr μ∗, ℓμ∗, t( 

Mr μ1, ℓμ
∗
, 2t( 

− 1 ≤
10
7

1
Mr μ1, μ

∗
, t( 

− 1  �
5 μ1 − μ∗




7t
,

1
Mr μ1, ℓμ1, t( 

− 1 +
1

Mr μ∗, ℓμ∗, t( 
− 1  �

2 μ1 + μ∗




7t
.

(39)
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Hence, all the conditions of +eorem 2 are satisfied with
a � (3/7), b � c � (1/9), and d � (1/12), and ℓ has a unique
fixed point, i.e., ℓ(4) � 4 ∈ [0,∞).

4. Application

In this section, we present an integral type application to
support our work. Let U � C([0, η],R) be the space of all
R-valued continuous functions on the interval [0, η], where
0< η ∈ R. +e nonlinear integral equation is

μ1(τ) � 
τ

0
Γ τ, v, μ1(v)( dv, ∀μ1 ∈ U, (40)

where τ, v ∈ [0, η] and Γ: [0, η] × [0, η] × R⟶ R. +e
induced metric m: U2⟶ R can be defined as

m μ1, μ
∗

(  � sup
τ∈[0,η]

μ1(τ) − μ∗(τ)


 � μ1 − μ∗
����

����,

where μ1, μ
∗ ∈ C([0, η],R) � U.

(41)

+e binary operation ∗ is defined by α∗ λ � αλ,
∀α, λ ∈ [0, η]. A standard fuzzy metric
Mr: U2 × (0,∞)⟶ [0, 1] can be defined as

Mr μ1, μ
∗
, t(  �

t

t + m μ1, μ
∗

( 
, for t> 0,∀μ1, μ

∗ ∈ U.

(42)

+en, one can easily verify that Mr is triangular and
(U, Mr, ∗ ) is a G-complete FM-space.

Theorem 3. Let the integral equation be defined in (40), and
there exists β ∈ (0, 1), satisfying

m ℓμ1, ℓμ
∗

( ≤ βN ℓ, μ1, μ
∗
(  ∀μ1, μ

∗ ∈ U, (43)

where

N ℓ, μ1, μ
∗

(  � max μ1 − μ∗
����

����, 2 μ1 − ℓμ1
����

���� , ∀μ1, μ
∗ ∈ U.

(44)

(en, the integral equation in (40) has a unique solution
in U.

Proof. Define the integral operator ℓ: U⟶ U by

ℓμ1(τ) � 
τ

0
Γ τ, v, μ1(v)( dv, ∀μ1 ∈ U. (45)

Notice that ℓ is well defined and (40) has a unique so-
lution if and only if ℓ has a unique fixed point in U. Now we
have to show that +eorem 1 applies to the integral operator
ℓ. +en, ∀μ1, μ∗ ∈ U, we have the following two cases:

(a) If N(ℓ, μ1, μ∗) � ‖μ1 − μ∗‖ in (44), then, from (42)
and (43), we have

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1 �
m ℓμ1, ℓμ

∗
( 

t

≤ β
N ℓ, μ1, μ

∗
( 

t

� β
μ1 − μ∗

����
����

t

� β
1

Mr μ1, μ
∗
, t( 

− 1 ,

(46)

and this implies that

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ β
1

Mr μ1, μ
∗
, t( 

− 1 , for t> 0,

(47)

∀μ1, μ∗ ∈ U such that ℓμ1 ≠ ℓμ∗. Inequality (47) holds
if ℓμ1 � ℓμ∗. +us, the integral operator ℓ satisfies all
the conditions of +eorem 1 with β � a and b � 0 in
(5). +e integral operator ℓ has a unique fixed point,
i.e., (40) has a solution in U.

(b) If N(ℓ, μ1, μ∗) � ‖μ1 − ℓμ1‖ in (44), then, from (42)
and (43), we have

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1 �
m ℓμ1, ℓμ

∗
( 

t

≤ β
N ℓ, μ1, μ

∗
( 

t

� β
μ1 − ℓμ1

����
����

t

≤ 2β
μ1 − ℓμ1

����
����

t
,

(48)

and this implies that

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ 2β
μ1 − ℓμ1

����
����

t
, for t> 0. (49)

Here, we simplify the term (Mr(μ1, μ∗, t)/Mr (μ1,
ℓμ1, t)∗Mr(μ∗, ℓμ1, 2t)) − 1, and by using Definition 2 (iii)
and (42), for t> 0, we have
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Mr μ1, μ
∗
, t( 

Mr μ1, ℓμ1, t( ∗Mr μ∗, ℓμ1, 2t( 
− 1≤

Mr μ1, μ
∗
, t( 

Mr μ1, ℓμ1, t( ∗Mr μ∗, μ1, t( ∗Mr μ1, ℓμ1, t( 
− 1

�
1

Mr μ1, ℓμ1, t( ( 
2 − 1 �

t + m μ1, ℓμ1( ( 
2

− t
2

t
2

�
2m μ1, ℓμ1( 

t
+

m μ1, ℓμ1( 

t
 

2

�
2 μ1 − ℓμ1
����

����

t
+

μ1 − ℓμ1
����

����

t
 

2

,

(50)

and this implies that

Mr μ1, μ
∗
, t( 

Mr μ1, ℓμ1, t( ∗Mr μ∗, ℓμ1, 2t( 
− 1≤

2 μ1 − ℓμ1
����

����

t
+

μ1 − ℓμ1
����

����

t
 

2

, for t> 0. (51)

Now from (49) and (51), we have

1
Mr ℓμ1, ℓμ

∗
, t( 

− 1≤ β
Mr μ1, μ

∗
, t( 

Mr μ1, ℓμ1, t( ∗Mr μ∗, ℓμ1, 2t( 
− 1 , for t> 0, (52)

∀μ1, μ∗ ∈ U such that ℓμ1 ≠ ℓμ∗. Inequality (52) holds if
ℓμ1 � ℓμ∗. +us, the integral operator ℓ satisfies all the
conditions of +eorem 1 with β � b and a � 0 in (5). +e
integral operator ℓ has a unique fixed point, i.e., (40) has a
solution in U. □

5. Conclusion

In this paper, we have presented the concept of rational type
fuzzy-contraction maps in FM-spaces and proved some
rational type fixed point theorems in G-complete FM-spaces
under the rational type fuzzy-contraction conditions by
using the “triangular property of fuzzy metric.” In the last
section, we presented an integral type application for ra-
tional type fuzzy-contraction maps and proved a result of a
unique solution for an integral operator in FM-space. In this
direction, one can prove more rational type fuzzy-con-
traction results in G-complete FM-spaces with different
types of applications.
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Lately, covering fuzzy rough sets via variable precision according to a fuzzy c-neighborhood were established by Zhan et al. model.
Also, Ma et al. gave the definition of complementary fuzzy c-neighborhood with reflexivity. In a related context, we used the
concepts byMa et al. to construct three new kinds of covering-based variable precision fuzzy rough sets. Furthermore, we establish
the relevant characteristics. Also, we study the relationships between Zhan’s model and our three models. Finally, we introduce a
MADM approach to make a decision on a real problem.

1. Introduction

Pawlak [1, 2] presented the classical definition of rough sets as
a valuable mathematical method to deal with the vagueness
and granularity of information systems and data processing.
His theory and its generalizations since then have produced
applications in different areas [3–13].

One of the most elaborated generalizations of rough sets
is potentially covering-based rough sets (CRS). (ere are
several scholars working on CRS with various views in
previous years, see, for more information, [14–22]. After
that, the definition of a fuzzy β-neighborhood was seen by
Ma [23] and the fuzzy complementary β-neighborhood by
Yang and Hu [24]. Also, Yang and Hu [25, 26] introduced
the concepts of fuzzy β-minimal description and fuzzy
β-maximal description. (ey used these definitions to
construct a fuzzy β covering approximation space (FβCAS).
D’eer et al. [27] studied fuzzy neighborhoods based on fuzzy
coverings.

(e definition of rough fuzzy sets and fuzzy rough sets
was found by Dubois and Prade [28]. Different research
studies on covering-based rough set and fuzzy rough set
have recently been investigated [29–33].

Variable precision rough sets’ (VPRSs) notion was ob-
tained by Ziarko [34] and variable precision fuzzy rough sets
(VPFRSs) were built by Zhao et al. [35]. In addition, the
PROMETHEE II approach based on variable precision fuzzy
rough sets was also proposed by Jiang et al. [36]. Different
kinds of variable precision were further applied in various
areas [37–40].

One of the standard decision-making processes is
TOPSIS (technique for order preference by similarity to an
ideal solution). Yoon and Hwang [41] indicated that TOPSIS
will solve the problem of multiattribute decision-making
(MADM), where the aim is to obtain an object with the
highest effect value (PIS) and the lowest effect value (NIS).
(ere are several papers concerning TOPSIS published in
different fields [42–51].

Zhan et al. [52] put the definition of fuzzy c-neigh-
borhoods and also studied the covering-based variable
precision fuzzy rough sets (CVPFRSs). Furthermore, Ma
et al. [53] defined the complementary fuzzy c-neighbor-
hoods and presented another two types of neighborhoods by
merging the fuzzy c-neighborhoods and the complementary
fuzzy c-neighborhoods. Based on these kinds of fuzzy
c-neighborhoods, this paper proposes to introduce three

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5525766, 10 pages
https://doi.org/10.1155/2021/5525766

mailto:azzam0911@yahoo.com
https://orcid.org/0000-0001-9439-3404
https://orcid.org/0000-0002-1206-9326
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5525766


RE
TR
AC
TE
D

new kinds of CVPFRSs models as a generalization of the
Zhan et al. [52] method. (us, we discuss some of their
properties. (e relationships between these methods are also
established. (en, we present and explain the methodology
to solve MADM problems. (e paper structure is as follows.
Section 2 gives the basic notions. Section 3 establishes three
novel types of CVPFRSs. A decision-making process to
explain the theoretical study is advanced in Section 4. We
deduced in Section 5.

2. Preliminaries

We extend a short scanning of some concepts utilized over
the paper in this section. In this article, we work on
R-implication operator, in particular, I � IL, i.e.,
IL(a, b) � 1∧(1 − a + b), and T � TL, i.e.,
TL(a, b) � 0∨(a + b − 1). To get more information, see
[54].

Definition 1 (see [32, 55]). Suppose that Ω is the universal
arbitrary set andF(Ω) is the fuzzy power set ofΩ. We mean
C � C1, tC2n, q . . . h, Cm}

 , for Ci ∈F(Ω) (i � 1, 2, . . . , m),

a fuzzy covering of Ω if (∪ m
i�1

Ci)(a) � 1, ∀a ∈ Ω.

(e notion of a fuzzy β-covering was considered by Ma
[23] via substituting 1 for the threshold β(0< β≤ 1), i.e., we

mean C � C1, tC2n, q . . . h, Cm}
 , for Ci ∈F(Ω) (i � 1, 2,

. . . , m), a fuzzy β-covering of Ω if (∪m
i�1

Ci)(a) � 1,

∀a ∈ Ω,. In addition, (Ω, C) is referred to as the a fuzzy
β-covering approximation space (briefly, FβCAS).

Definition 2 (see [23–26]). Assume that (Ω, C) is a FβCAS
for some β ∈ (0, 1]. For each a ∈ Ω, the fuzzy β-neighbor-
hood (resp., the fuzzy complementary β-neighborhood and
the fuzzy β-minimal description) of a is defined by

N
β
a � ∩ Ci ∈ t Cn: qCih≥ β ,

M
β
a(b) � N

β
b(a),

Md
β
C

(a) � C ∈ t Cn: q( C(a)≥ β)h∧(∀ D ∈ C∧ D(a)≥ β∧ D⊆ C⟶ D � C) .

(1)

Zhan et al. [52] presented a new definition called fuzzy
c-neighborhood with reflexivity. Using these definitions, they
describe the notion of a CVPFRSs based on this definition and
solve problems in MADM. (e (Ω, C) pair produced by this
neighborhood is called a fuzzy c-covering approximation space
(FcCAS for short) and C is called a fuzzy c-covering [51].

Definition 3 (see [52]). Suppose that (Ω, C) is a FcCAS and
C � C1,

C2, . . . , Cm . For every a, b ∈ Ω, the fuzzy
c-neighborhood of a is as follows:

N
c
1(a)(b) � ∧

C∈Mdc(a)

I( C(a), C(b)). (2)

According to the above definition, we have the following
result.

Assume that (Ω, C) is a FcCAS and the variable pre-
cision parameter is ξ ∈ [0, 1]. For every a ∈ Ω and
A ∈ F(Ω), the first model of a covering-based variable
precision fuzzy rough lower and upper approximation which
are denoted by 1-CVPFRLA and 1-CVPFRUA, respectively,
are given as follows.

Model 1:

O
− 1

( A)(a) � ∧
b∈Ω

I N
c
1(a)(b), ξ∨ A(b) ,

O
+1

( A)(a) � ∧
b∈Ω

T N
c
1(a)(b), ξ∧ A(b) .

(3)

If O− 1( A)≠O+1( A), then A is said to be a covering-
based variable precision fuzzy rough set (briefly, 1-
CVPFRS); otherwise it is definable [52].

Ma et al. [53] generalizes Zhan’s model by introducing
three kinds of neighborhoods as follows.

Definition 4. Assume that (Ω, C) is a FcCAS. For any
a, b ∈ Ω, three types of the fuzzy c-neighborhoods of x are as
follows:

(1) Nc
2(a)(b) � N

c
1(b)(a)

(2) Nc
3(a)(b) � N

c
1(a)(b)∧Nc

2(a)(b)

(3) Nc
4(a)(b) � N

c
1(a)(b)∨Nc

2(a)(b)

To explain the comparisons between these four kinds of
neighborhoods, we give the next example.

Example 1. If (Ω, C) is a FcCAS, Ω � a1, a2, a3, a4  and
C � C1, tC2n, qC3} is a three fuzzy c covering on Ω set as
follows:

C1 �
0.89
a1

+
0.88
a2

+
0.79
a3

+
0.56
a4

,

C2 �
0.77
a1

+
0.85
a2

+
0.67
a3

+
0.84
a4

,

C3 �
0.69
a1

+
0.78
a2

+
0.93
a3

+
0.63
a4

.

(4)
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Let c � 0.74 and I � IL. (en, the following values
hold for each point on Ω for the three types of neighbor-
hoods which are set in Definition 4.

Firstly, we compute the results forNc
2(ar)∀i ∈ 1, 2, 3, 4{ }:

N
c
2 a1(  �

1
a1

+
0.91
a2

+
0.76
a3

+
0.93
a4

,

N
c
2 a2(  �

0.99
a1

+
1
a2

+
0.85
a3

+
1
a4

,

N
c
2 a3(  �

0.9
a1

+
0.82
a2

+
1
a3

+
0.83
a4

,

N
c
2 a4(  �

0.67
a1

+
0.68
a2

+
0.7
a3

+
1
a4

.

(5)

Secondly, we compute the results for
N

c
3(ar)∀i ∈ 1, 2, 3, 4{ }:

N
c
3 a1(  �

1
a1

+
0.91
a2

+
0.76
a3

+
0.67
a4

,

N
c
3 a2(  �

0.91
a1

+
1
a2

+
0.82
x3

+
0.68
a4

,

N
c
3 a3(  �

0.76
a1

+
0.82
a2

+
1
a3

+
0.7
a4

,

N
c
3 a4(  �

0.67
a1

+
0.68
a2

+
0.7
a3

+
1
a4

.

(6)

Finally, we compute the results for
N

c
4(ar)∀i ∈ 1, 2, 3, 4{ }:

N
c
4 a1(  �

1
a1

+
0.99
a2

+
0.9
a3

+
0.93
a4

,

N
c
4 a2(  �

0.99
a1

+
1
a2

+
0.85
a3

+
1
a4

,

N
c
4 a3(  �

0.9
a1

+
0.85
a2

+
1
a3

+
0.83
a4

,

N
c
4 a4(  �

0.93
a1

+
1
a2

+
0.83
a3

+
1
a4

.

(7)

From the above example, you can see the differences
between these kinds of neighborhoods. Also, you can con-
clude that Nc

3(ar) is considered as the union between N
c
1(ar)

and N
c
2(ar). Furthermore, Nc

4(ar) is considered as the in-
tersection between N

c
1(ar) and N

c
2(ar). (erefore, it is easy to

say that the third neighborhood N
c
3(ar) is better than others.

3. Three New Models of Covering Fuzzy Rough
Sets via Variable Precision

Now, we are implementing three CVPFRSs’ models based on
different kinds of a reflexive fuzzy c-neighborhood.

Assume that (Ω, C) is a FcCAS and the parameter
ξ ∈ [0, 1]. For every a ∈ Ω and A ∈ F(Ω), three models of
CVPFRSs are defined as follows.

Model 2:

O
− 2

( A)(a) � ∧
b∈Ω

I N
c
2(a)(b), ξ∨ A(b) ,

O
+2

( A)(a) � ∨
b∈Ω

T N
c
2(a)(b), ξ∧ A(b) .

(8)

Model 3:

O
− 3

( A)(a) � ∧
b∈Ω

I N
c
3(a)(b), ξ∨ A(b) ,

O
+3

( A)(a) � ∨
b∈Ω

T N
c
3(a)(b), ξ∧ A(b) .

(9)

Model 4:

O
− 4

( A)(a) � ∧
b∈Ω

I N
c
4(a)(b), ξ∨ A(b) ,

O
+4

( A)(a) � ∨
b∈Ω

T N
c
4(a)(b), ξ∧ A(b) ,

(10)

where the three models are called the 2-CVPFRLA
(resp., 3-CVPFRLA and 4-CVPFRLA) and the 2-
CVPFRUA (resp., 3-CVPFRUA and 4-CVPFRUA),
respectively.

If O− 2( A) (resp., O− 3( A), O− 4( A)) ≠O+2( A) (resp.,
O+3( A), O+4( A)), then A is called a 2-CVPFRS (resp., 3-
CVPFRS, 4-CVPFRS)), otherwise it is definable.

(e next example clarifies the above.

Example 2. (continued from Example 1). Suppose that
A � (0.58/a1) + (0.65/a2) + (0.77/a3) + (0.76/a4). (en, we
have the following results for the above four models (i.e., 1-
CVPFRS, 2-CVPFRS, 3-CVPFRS, and 4-CVPFRS).

Model 1:

O
− 1

( A) �
0.58
a1

+
0.65
a2

+
0.77
a3

+
0.65
a4

,

O
+1

( A) �
0.67
a1

+
0.65
a2

+
0.77
a3

+
0.76
a4

.

(11)

Model 2:

O
− 2

( A) �
0.58
a1

+
0.59
a2

+
0.68
a3

+
0.76
a4

,

O
+2

( A) �
0.69
a1

+
0.76
a2

+
0.77
a3

+
0.76
a4

.

(12)

Model 3:

O
− 3

( A) �
0.58
a1

+
0.65
a2

+
0.77
a3

+
0.76
a4

,

O
+3

( A) �
0.67
a1

+
0.65
a2

+
0.77
a3

+
0.76
a4

.

(13)
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Model 4:

O
− 4

( A) �
0.58
a1

+
0.59
a2

+
0.68
a3

+
0.65
a4

,

O
+4

( A) �
0.69
a1

+
0.76
a2

+
0.77
a3

+
0.76
a4

.

(14)

Remark 1. From Example 2, it is easy to see that

(1) O− 2( A)⊈O− 1( A) and O− 1( A)⊈O− 2( A)

(2) O+2( A)⊆O+1( A) and O+1( A)⊈O+2( A)

(e 1-CVPFRS model and the 2-CVPFRS model are
clearly not capable of containing each other.

Next, if r� 1, we propose(eorem 1, and also, it meets in
case r� 2, 3, 4.

Theorem 1. Assume that (Ω, C) is a FcCAS and the pa-
rameter is ξ ∈ [0, 1]. For any A, B ∈ F(Ω) and ξ, ε ∈ [0, 1)

(∀r ∈ 1, 2, 3, 4{ }), the following properties hold:

(1) O− r( A
c
) � (O+r( A))c

(2) O+r( A
c
) � (O− r( A))c

(3) O− r(Ω) � Ω
(4) O+r(∅) � ∅
(5) If A≤ B, then O− r( A)≤O− r( B)

(6) If A≤ B, then O+r( A)≤O+r( B)

(7) O− r( A∧ B) � O− r( A)∧O− r( B)

(8) O+r( A∧ B)≤O+r( A)∧O+r( B)

(9) O− r( A∨ B)≥O− r( A)∨O− r( B)

(10) O+r( A∨ B) � O+r( A)∨O+r( B)

(11) If ξ ≤ ε, then O−r
ξ ( A)≤O−r

ε ( B)

(12) If ξ ≤ ε, then O+r
ε ( A)≤O+r

ξ ( B)

Proof. We shall only prove (1), (3), (5), (7), (9), and (11).

(1) (O
− 1

( A
c
)) � ∧b∈ΩI(N

c
1(a)(b), ξ∨N ( A(b))) �

∧b∈ΩN(T(N
c
1 (a)(b),N(ξ) ∧ A(b))) � N(∧b∈Ω

(T(N
c
1 (a)(b),N(ξ)∧ A(b)))) � (O

+1
( A))

c.
(3) As I is left monotonic and Ω(a) � 1, for every

a ∈ Ω. (en, we have O− 1(Ω) � ∧b∈Ω I(N
c
1(a)(b),

ξ∨Ω(b)) � ∧b∈ΩI(N
c
1(a)(b), Ω(b)) � ∧b∈ΩI(N

c
1

(a) (b), 1) � 1 � Ω(a).
(5) I is right monotonic and for every a ∈ Ω. If A≤ B,

then we get the following result. O− 1( A)(a) � ∧b∈Ω
I(N

c
1(a)(b), ξ∨ A(b)) ≤∧b∈ΩI(N

c
1(a)(b), ξ∨ B

(b)) � O− 1( B)(a).
(7) I is right monotonic and for all a ∈ Ω. (en, we

have O
− 1

( A∧ B) (a) � ∧b∈ΩI(N
c
1(a)(b), ξ∨( A∧

B)(b)) � ∧b∈Ω I(N
c
1(a)(b), ξ∨ A(b)) ∧∧b∈ΩI(N

c
1

(a) (b), ξ∨ B(b)) � O
− 1

( A)(a)∧O− 1
( B)(a).

(9) AsI is right monotonic, A≤ A∨ B and B≤ A∨ B.
(en, by (3), we obtain the following

O− 1( A)≤O− 1( A∨ B) and O− 1( B)≤O− 1( A∨ B).
(us, O− 1( A∨ B)≥O− 1( A)∨O− 1( B).

(11) It is obtained directly fromDefinition ofModel 1. □

(e relationships between our models and the Zhan
model in [52] are defined as follows. (e following char-
acteristics are clear and will be seen without proof.

Proposition 1. Assume that (Ω, C) is a FcCAS of Ω. For
every A ∈F(Ω) and ∀r ∈ 1, 2, 3, 4{ }, we have the following
properties:

(1) O− r( A)⊆ A⊆O+r( A)

(2) O− 3( A) � O− 1( A)∨O− 2( A) and O− 3( A) � O+1

( A)∨O+2( A)

(3) O− 4( A) � O− 1( A)∨O− 2( A) and O+4( A) � O+1

( A)∨O+2( A)

(4) O− 4( A) � O− 1( A)∨O− 3( A) and O+3( A) � O+1

( A)∨O+4( A)

(5) O− 4( A) � O− 2( A)∨O− 3( A) and O+3( A) � O+2

( A)∨O+4( A)

Proposition 2. Suppose that (Ω, C) is a FcCAS of Ω. For
any A ∈ F(Ω) and ∀a ∈ Ω.

=en, N
c
1(a)�N

c
2(a)⇔ either O−1( A)�O−2( A)�

O−3( A)�O−4( A) or O+1( A)�O+2( A)�O+3( A)� O+4( A).

4. Decision-Making Approach to MADM
Based on CVPFRS

(is section introduces a new decision-making method to
solve MADM problems by using CVPFRSs’ models.

4.1. Description and Process. In medicine, some types of
drugs exist for the treatment of a disease, such as viral fever,
dysentery, and chest problems. Assume that
Ω � a1, a2, . . . , an  is n kinds of drugs (alternatives) and
C � C1,

C2, . . . , Cm  is m symptoms (attributes).
According to the decision assessment, maker’s efficacy effect
of the drug xi on the symptoms Cr (∀r � 1, 2, . . . , m and
i � 1, 2, . . . , n) has been determined. Hence, (Ω, C) estab-
lishes an FcCAS. According to the presented work, in the
next steps, we introduce a decision-making algorithm that
finds the most effective drug.

Step 1 : fuzzy decisionmatrixF of medicine evaluations
set as below:

F �

Ω
C

C1
C2 . . . Cm

a1 d11 d12 . . . d1m

a2 d21 d22 . . . d2m

⋮ ⋮ ⋮ ⋱ ⋮

an dn1 dn2 . . . dnm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)
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Step 2 : calculate the lower and upper approximations of
Cr and evaluate the lower and upper fuzzy de-
cision-making matrix of medicine evaluations:

O
− k Cr (a) � ∧

b∈Ω
I N

c
q(a)(b), ξ∨Cr(b) ,

O
+k Cr (a) � ∨

b∈Ω
T N

c
q(a)(b), ξ∧Cr(b) , (∀k, q ∈ 1, 2, 3, 4{ }).

(16)

Step 3 : three deflections among the estimations of any
two alternatives are called the deflections among
drugs Dr, the lower deflections among drugs D

⊖
r ,

and the upper deflections among drugs D
⊕
r , re-

spectively. (ese three deviations are computed
as follows:

Dr ai, aj  � Cr ai(  − Cr aj 

D
⊖
r ai, aj  � O

− k Cr  ai(  − O
− k Cr  aj ,

D
⊕
r ai, aj  � O

+k Cr  ai(  − O
+k Cr  aj ,

(17)

where k ∈ 1, 2, 3, 4{ }.

Step 4 : according to the three deviations, three drug
preference values are referred to as drug pref-
erence values Pr, lower drug preference values
P
⊖
r , and upper drug preference values P

⊕
r . (ese

three values of choice among alternatives are
therefore computed as follows:

Pr ai, aj  �

0 if Dr ai, aj < 0,

Dr ai, aj 

α
if 0≤ Dr ai, aj ≤ α,

1 if Dr ai, aj > α,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
⊖
r ai, aj  �

0 if D
⊖
r ai, aj < 0,

D
⊖
r ai, aj 

α
if 0≤ D

⊖
r ai, aj ≤ α,

1 if D
⊖
r ai, aj > α,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
⊕
r ai, aj  �

0 if D
⊕
r ai, aj < 0,

D
⊕
r ai, aj 

α
if 0≤ D

⊕
r ai, aj ≤ α,

1 if D
⊕
r ai, aj > α.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where α denotes the value of preference threshold.

Step 5 : calculate three general drug preference indices,
referred to as the overall drug preference indices
for alternatives O, the overall lower drug pref-
erence indices for alternatives O

⊖
, and the overall

upper drug preference indices for alternatives O
⊕
,

as follows:

O ai, aj  � 
m

r�1

Wr
Pr ai, aj ,

O
⊖

ai, aj  � 
m

r�1

Wr
P
⊖
r ai, aj ,

O
⊕

ai, aj  � 
m

r�1

Wr
P
⊕
r ai, aj ,

(19)

where W � ( W1,
W2, . . . , Wm) is the vector of the weight of

attributes such that 
m
r�1

Wr � 1 and Wr ∈ [0, 1].

Step 6 : three outflows of medicines are referred to as the
outflows of alternativesL•, the lower outflows of
alternatives L⊖• , and the upper outflows of
medicines L⊕• . (ese flows are thus constructed
as follows:

L• ai, aj  � 
m

r�1

O ai, aj ,

L
⊖
• ai, aj  � 

m

r�1

O
⊖

ai, aj ,

L
⊕
• ai, aj  � 

m

r�1

O
⊕

ai, aj .

(20)

We also create three input flows of drugs called the input
flows of drugsL°, the lower input flows of drugsL

⊖
° , and the

upper input flows of drugs L⊕° , respectively, as follows:

L° ai, aj  � 
m

r�1

O ai, aj ,

L
⊖
° ai, aj  � 

m

r�1

O
⊖

ai, aj ,

L
⊕
° ai, aj  � 

m

r�1

O
⊕

ai, aj .

(21)

Step 7 : the next formula computes the net flow of
alternatives:

L ai, aj  � L• + L
⊖
• + L

⊕
•(  − L° + L

⊖
° + L

⊕
° , (22)
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hence ranking the alternatives.
In accordance with these steps, we include an algorithm

based on Model 3 (3-CVPFRS) to solve decision-making
issues. Algorithm 1 summarizes the measures leading to it.

4.2. A Numerical Example. (e steps aforementioned have
been illustrated as follows with a check instance.

Example 3. Alternatives (medicines) construct a set Ω �

a1, a2, . . . , a6  which are treated a diseases A, and their
symptoms are gathered by the attribute set C � fever (C1),
cough (C2), headache (C3), stomachaches (C4), dizzy giddy
(C5) . Here, the following steps of the algorithm mentioned
are implemented.

Step 1: over the set of symptoms, experts analyze each
medication and present its conclusions with acceptable
values set out in Table 1.
Step 2: let us fix IL and TL. (en, by 2-CVPFRS, we
have the following:

N
c
3 a1(  �

1
a1

+
0.89
a2

+
0.82
a3

+
0.77
a4

+
0.54
a5

+
0.49
a6

,

N
c
3 a2(  �

0.89
a1

+
1
a2

+
0.83
a3

+
0.74
a4

+
0.65
a5

+
0.55
a6

,

N
c
3 a3(  �

0.82
a1

+
0.83
a2

+
1
a3

+
0.87
a4

+
0.48
a5

+
0.64
a6

,

N
c
3 a4(  �

0.77
a1

+
0.74
a2

+
0.87
a3

+
1
a4

+
0.73
a5

+
0.51
a6

,

N
c
3 a5(  �

0.54
a1

+
0.65
a2

+
0.48
a3

+
0.73
a4

+
1
a5

+
0.51
a6

,

N
c
3 a6(  �

0.49
a1

+
0.55
a2

+
0.64
a3

+
0.51
a4

+
0.51
a5

+
1
a6

.

(23)

(us, the 3-CVPFRLA and 3-CVPFRUA are obtained
as follows:

O
− 3 C1  �

0.92
a1

+
0.91
a2

+
0.86
a3

+
0.73
a4

+
0.56
a5

+
1
a6

,

O
+3 C1  �

0.9
a1

+
0.9
a2

+
0.9
a3

+
0.77
a4

+
0.56
a5

+
1
a6

,

O
− 3 C2  �

0.54
a1

+
0.65
a2

+
0.48
a3

+
0.61
a4

+
1
a5

+
0.51
a6

,

O
+3 C2  �

0.61
a1

+
0.65
a2

+
0.71
a3

+
0.84
a4

+
0.9
a5

+
0.51
a6

,

O
− 3 C3  �

0.95
a1

+
0.94
a2

+
0.82
a3

+
0.95
a4

+
0.82
a5

+
0.49
a6

,

O
+3 C3  �

0.9
a1

+
0.9
a2

+
0.82
a3

+
0.9
a4

+
0.82
a5

+
0.49
a6

,

O
− 3 C4  �

0.48
a1

+
0.52
a2

+
0.57
a3

+
0.44
a4

+
0.52
a5

+
0.93
a6

,

O
+3 C4  �

0.48
a1

+
0.52
a2

+
0.57
a3

+
0.44
a4

+
0.52
a5

+
0.9
a6

,

O
− 3 C5  �

0.28
a1

+
0.25
a2

+
0.42
a3

+
0.51
a4

+
0.24
a5

+
0.28
a6

,

O
+3 C5  �

0.28
a1

+
0.29
a2

+
0.46
a3

+
0.51
a4

+
0.24
a5

+
0.28
a6

.

(24)

Steps 3 and 4: by using the previous data, it is easy to
compute the three deflections among the estimations of
any two alternatives and the three preference values
among drugs.
Step 5: from this information, we construct the values
for three overall preference indices among drugs as set
in Tables 2–4.
Step 6: the three leaving flows of drugs are calculated as
follows:

Input: the F fuzzy decision matrix, the α choice threshold, and the ξ parameter.
Output: decision-aking.

(1)Compute the lower and upper approximations by using Model 3
(2)Compute three deflections among drugs (i.e., Dr,

D
⊖
r , and D

⊕
r )

(3)Compute three preference values among drugs (i.e., Pr,
P
⊖
r , and P

⊕
r )

(4)Compute three overall preference indices among drugs (i.e., O, O
⊖
, and O

⊕
)

(5)Compute three leaving flows of drugs (i.e., L•,L⊖• , and L⊕• )
(6)Compute three entering flows of drugs (i.e., L°,L

⊖
° , and L⊕° )

(7)Compute the net flow of alternatives L
(8) Ranking the alternatives and obtain the decision

ALGORITHM 1: Algorithm for the presented drug selections.
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L• ai, aj  �
0.66895

a1
+
0.9367

a2
+
0.6456

a3
+
1.411

a4
+
0.8467

a5
+
0.58875

a6
,

L
⊖
• ai, aj  �

0.61255
a1

+
0.70305

a2
+
0.6116

a3
+
0.9596

a4
+
0.9227

a5
+
0.64875

a6
,

L
⊕
• ai, aj  �

0.45795
a1

+
0.5091

a2
+
0.7696

a3
+
1.04425

a4
+
0.5787

a5
+
0.58775

a6
,

L° ai, aj  �
0.6219

a1
+
0.3413

a2
+
0.975

a3
+
0.5367

a4
+
1.0578

a5
+
1.565

a6
,

L
⊖
° ai, aj  �

0.4894
a1

+
0.456

a2
+
0.65545

a3
+
0.4811

a4
+
0.9353

a5
+
1.441

a6
,

L
⊕
° ai, aj  �

0.51755
a1

+
0.4273

a2
+
0.32625

a3
+
0.3077

a4
+
0.86605

a5
+
1.5025

a6
.

(25)

Step 7: the values of the net flow of alternatives are
computed as follows:

L a1(  � 0.1106,

L a2(  � 0.92425,

L a3(  � 0.0701,

L a4(  � 2.08935,

L a5(  � −0.51105,

L a6(  � −2.68325.

(26)

(us, the drugs’ ranking is as follows:

a4 ≥ a2 ≥ a1 ≥ a3 ≥ a5 ≥ a6. (27)

4.3. Comparative Analysis. Here, we give the differences
between the proposed method (i.e., 2-CVPFRS, 3-
CVPFRS, and 4-CVPFRS) and the previous methods (i.e.,
Jiang’s method [36], PROMETHEE II [56], TOPSIS [57],
WAA [58], OWA [59], and VIKOR [60]). Based on the
sorting values of various decision-making approaches
summarized in Table 5, our approach is therefore rational
and effective.

According to Table 5, (1) the best position of our
presented method, Jiang’s method [36], PROMETHEE II
[56], TOPSIS [57], WAA [58], OWA [59], and VIKOR
[60], is still consistent, that is, a4 is the best drug.(us, our
suggested approach is rational and efficient from the point
of view of the decision outcome (the best option in the
decision-making process). (2) Five drug classifications
based on various methods are not precisely the same in
[36], meaning that the best drug is equal (i.e., the drug a4).
However, operating on the fuzzy c-neighborhoods
without reflexivity in Jiang’s [36] process, our method-
ology relies on the fuzzy c-neighborhoods with reflexivity,

which makes our approach proposed more rational and
effective.

(e best way to clarify these results, you can see Figures 1
and 2 which simplify the comparisons between the presented
method and others.

Figure 1 explains the comparisons between the lower
approximation for the four models (i.e., 1-CVPFRLA, 2-
CVPFRLA, 3-CVPFRLA, and 4-CVPFRLA). (is figure
clarifies that the 3-CVPFRLA is larger than the others.

Figure 2 clarifies the comparisons between the upper
approximation for the four models (i.e., 1-CVPFRUA, 2-
CVPFRUA, 3-CVPFRUA, and 4-CVPFRUA). (is figure
shows that 3-CVPFRUA is smaller than the others.

(1) Two documented issues with fuzzy c-neighborhoods
are conquered by our presented methods. However,
not all techniques can escape the obstacles that are
not reflexive operators in fuzzy c-neighborhoods and
that the lower approximations they describe are not
usually included in the corresponding upper ap-
proximation. For this reason, our approach for
solving MADM issues is based on the CVPFRS
models (i.e., 1-CVPFRS, 2-CVPFRS, and 3-
CVPFRS). Moreover, by a comparative study in
Section 4.3, by using fuzzy c-neighborhoods, the
proposed models are more freely used than the
classical models.

(2) We can see in Section 4 that our presented models
(i.e., Algorithm 1) are elastic and scalable, whereby
decision makers can use fuzzy c-neighborhoods to
pick various logical operators and parameters
according to current status.

(3) We can easily observe from a comparative study that
our models presented are superior to Jiang’s method
[36], PROMETHEE II [56], TOPSIS [57], WAA [58],
OWA [59], and VIKOR [60]. (is implies that the
innovative decision-making approaches suggested
are rational and feasible.
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5. Conclusion

As an improvement of the Zhan et al. method [52] and by
using the concepts of neighborhoods by Ma et al. in [53], we
then established new three kinds of covering-based variable
precision fuzzy rough sets (i.e., 2-CVPFRS, 3-CVPFRS, and
4-CVPFRS). Relationship between these three paradigms
and the paradigm of Zhan is also dealt with. (is correlation
indicates that the 3-CVPFRS is better than other models (i.e.,
the lower approximation is greater than others and the upper
approximation is lower than others, as can be seen in
Figures 1 and 2 based on Example 3). Finally, we set up an
application for MADM to solve a problem. In the existing
decision-making principles of interval-valued q-rung
orthopair fuzzy sets [61] and linguistic interval-valued Py-
thagorean fuzzy sets [62], we hope this fuzzy rough concept
can be incorporated.

Table 1: Decision-making matrix F with fuzzy information.

a1 a2 a3 a4 a5 a6

C1 0.92 1 1 0.73 0.56 1
C2 0.54 0.65 0.48 0.84 1 0.51
C3 1 0.94 0.82 1 0.82 0.49
C4 0.48 0.52 0.57 0.44 0.52 0.93
C5 0.28 0.25 0.46 0.51 0.24 0.28

Table 2: (e overall preference indices among drugs.

O(ai, aj) a1 a2 a3 a4 a5 a6

a1 0 0.0622 0.1095 0.195 0.1607 0.0945
a2 0.0425 0 0.0083 0.094 0.116 0.0805
a3 0.11 0.2035 0 0.4175 0.174 0.07
a4 0.0547 0.188 0.0775 0 0.067 0.1495
a5 0.19675 0.212 0.2103 0.2445 0 0.19425
a6 0.265 0.271 0.24 0.46 0.329 0

Table 3: (e overall lower preference indices among drugs.

O
⊖
(ai, aj) a1 a2 a3 a4 a5 a6

a1 0 0.0427 0.0725 0.119 0.1607 0.0945
a2 0.0431 0 0.0783 0.1126 0.116 0.106
a3 0.101 0.12845 0 0.1475 0.174 0.1045
a4 0.0547 0.0714 0.0625 0 0.143 0.1495
a5 0.17275 0.1895 0.1583 0.2205 0 0.19425
a6 0.241 0.271 0.24 0.36 0.329 0

Table 4: (e overall upper preference indices among drugs.

O
⊕
(ai, aj) a1 a2 a3 a4 a5 a6

a1 0 0.02435 0.124 0.171 0.1027 0.0955
a2 0 0 0.0983 0.1565 0.084 0.0885
a3 0.039 0.039 0 0.10375 0.064 0.0805
a4 0.0397 0.046 0.055 0 0.033 0.134
a5 0.14125 0.14125 0.1863 0.204 0 0.18925
a6 0.238 0.2545 0.306 0.409 0.295 0

Table 5: Table for the ranking results for different methods.

Different models Obtain a decision
Our model a4 ≥ a2 ≥ a1 ≥ a3 ≥ a5 ≥ a6
Jiang model [36] a4 ≥ a2 ≥ a3 ≥ a1 ≥ a5 ≥ a6
PROMETHEE II [56] a4 ≥ a2 ≥ a1 � a3 ≥ a5 ≥ a6
TOPSIS [57] a4 ≥ a2 ≥ a1 ≥ a5 ≥ a3 ≥ a6
WAA [58] a4 ≥ a2 ≥ a1 � a3 ≥ a5 ≥ a6
OWA [59] a4 ≥ a3 ≥ a2 ≥ a1 ≥ a6 ≥ a5
VIKOR [60] a4 ≥ a3 ≥ a1 ≥ a2 ≥ a5 ≥ a6
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Figure 1: (e presentation of lower approximations by using our
models and the previous model.
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Figure 2: (e presentation of upper approximations by using our
models and the previous model.
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In this article, the generalized parameter is involved in T-spherical fuzzy set (TSFS), and with the help of this generalized
parameter, some generalized geometric aggregation operators for TSFSs are proposed. +en these operators are extended for
group-generalized parameter. By using proposed operators, an algorithm is developed for the MADM problem. To check the
validity of proposed operators, a numerical example is also investigated. In a comparative analysis, it is discussed that, under some
conditions, the proposed work can be reduced to other fuzzy structures. An example is also solved in which it is shown that our
proposed technique is superior to the existing technique.

1. Introduction

+e concept of fuzzy set (FS) was introduced by Zadeh [1]
which tells the membership grade (MG) of an object. FS
plays an important role in solving problems in imprecise and
uncertain environment. A generalization of the FS called an
intuitionistic fuzzy set (IFS) was introduced by Atanassov
[2], which tells the MG and nonmembership grade (NMG)
of an object with a restriction that the sum of MG and NMG
mu[0, 1]st belong to . IFS fails when the sum of MG and
NMG exceeds 1. To overcome this issue, an extension of IFS
was introduced by Yager [3] called Pythagorean fuzzy set
(PyFS). In PyFS, the condition was relaxed to that the sum of
squares of MG and NMG must belong to [0, 1].

IFS and PyFS fail when the third degree of abstinence is
involved. To deal with this type of data, the idea of picture fuzzy
set (PFS) was given by Cuong [4]. In PFS, there are four grades
known as MG, abstinence, NMG, and refusal. PFS has a re-
striction that the sum of MG, abstinence, and NMG belongs to

[0, 1]. PFS fails when their sum exceeds 1. To overcome this
issue, Mahmood et al. [5] proposed the notions of spherical
fuzzy set (SFS) and TSFS. SFS has a restriction that the square
sum ofMG, abstinence, andNMGmust belong to [0, 1], and in
TSFS, the experts have the flexibility that the sum of any integral
power of MG, abstinence, and NMG must belong to [0, 1].

Many authors defined different aggregation operators
for these tools of uncertainty. Xu [6] defined intuitionistic
fuzzy (IF) averaging operators. Xu and Yager [7] defined IF
geometric operators and applied them to solve the MADM
problem. Liu and Chen [8] proposed Heronian operators
for IFSs. Liu [9] proposed several intuitionistic fuzzy power
Heronian operators. Hayat et al. [10] proposed some ag-
gregation operators on group-based generalized intui-
tionistic fuzzy soft sets. Based on the conception of entropy,
some IF power operators are proposed by Jiang et al. [11].
Some MADM problems were investigated using IFSs in
[12–16]. Jana et al. [17] proposed Pythagorean fuzzy Dombi
aggregation operators and investigated their usefulness in
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the MADM. Teng et al. [18] introduced some power
Maclaurin symmetric mean aggregation operators for
PyFS. Liu et al. [19] extended Bonferroni mean operators to
study the MADM problem for PyFSs. Jana et al. [20]
proposed some Dombi aggregation operators for q-rung
orthopair fuzzy set and investigated the MADM problem.
Joshi [21] proposed group-generalized averaging aggre-
gation operators for PyFSs and solved the MADM problem.
Some MADM problems were solved using PyFSs in
[22–25].

Wei [26] proposed averaging and geometric aggregation
operators for PFSs and studied their usefulness in MADM.
Garg [27] investigated decision-making problem using av-
eraging operators for PFSs. Jana et al. [28] investigated the
MADM problem by utilizing picture fuzzy Dombi aggre-
gation operators. Some MADM problems were investigated
using PFSs in [29–31]. Zeng et al. [32] investigated the
decision-making problem by utilizing the idea of spherical
fuzzy covering-based rough set model. Jin et al. [33] in-
troduced logarithmic aggregation operators for SFSs.
Donyatalab et al. [34] proposed harmonic mean aggregation
operators and investigated their applications in MADM.
Munir et al. [35] studied the MADM problem using TSF
Einstein operators. Guleria and Bajaj [36] studied the
MADM problem using aggregation operators for T-spher-
ical fuzzy soft sets. Gündoğdu and Kahraman [37] inves-
tigated the MADM problem for SF VIKOR method. More
studies on MADM problems with complex fuzzy tools can
be found in [38–40].

If a pharmacist suggests a medicine only on symptoms
provided by the patient, then he may not be cured because a
patient may havemore than one disease due to which hemay
not be able to express the symptoms more clearly. For ex-
ample, pain is the main symptom of a heart attack if a patient
suffering from a congenital disease has a heart attack, then he
is unable to express pain. If junior doctors give the treatment
only on symptoms provided by a patient without consulting
specialist/senior doctor, then the patient may lead to death.
So, it is necessary to consult with some specialist/senior
doctor for good treatment. Another example in which expert
opinion is involved is the construction of a house/building.
If labor constructs a house/building only following the in-
structions of the owner, then it may be beautiful but not
durable. So, for making a house more durable, an opinion of
the engineer is necessary. By keeping this type of problem in
mind, some generalized and group-generalized geometric
aggregation operators are proposed in which the opinion of
an expert is also involved in decision making.

In this article, by utilizing the most generalized fuzzy
structure called TSFS, some aggregation operators based on
generalized and group-generalized parameters are proposed.
In these aggregation operators, the decision makers have a
huge space for assigning the values to membership, absti-
nence, and nonmembership grades. In these aggregation
operators, the opinion of an expert is also involved due to
which these aggregation operators are more reliable.

+e purposes of writing this manuscript are as follows:

(i) To define generalized parameter (GP) for TSFSs

(ii) To propose generalized geometric aggregation op-
erators for TSFSs

(iii) To propose group-generalized geometric aggrega-
tion operators for TSFSs

(iv) To develop an algorithm for solving MADM
problem using proposed operators

(v) To discuss the advantages of proposed operators

+e manuscript can be concluded as follows. Section 2
reviews some basic definitions. In Section 3, a GP is defined
for TSFSs. In Section 4, some generalized geometric oper-
ators are proposed for TSFSs. In Section 5, some group-
generalized geometric operators are proposed for TSFSs. In
Section 6, an approach to solve the MADM problem is
proposed. In Section 7, a comparative analysis is developed
in which it is described that the newly defined operators can
be reduced to other fuzzy structures by using some con-
ditions. +e whole article is concluded in Section 8.

2. Preliminaries

In this section, some basic notions will be discussed which
help in further study.

Definition 1. (see [4]). For a nonempty set X, TSFS is

T � (x, h(x), o(x), s(x): x ∈ X){ }, (1)

where h, o, s: X⟶ [0, 1] having a condition that
0≤ ht(x) + ot(x) + st(x)≤ 1 for any positive integer t and the
refusal degree will be r(x) �

����������������������
1 − (ht(x) + ot(x) + st(x))t


.

Remark 1. Definition 1 can be reduced to SFSs, PFSs, PyFSs,
IFSs, and FSs by using the following conditions:

(i) t � 2 reduced it to SFSs
(ii) t � 1 reduced it to PFSs
(iii) t � 2, o � 0 reduced it to PyFSs
(iv) t � 1, o � 0 reduced it to IFSs
(v) t � 1, o � 0, s � 0 reduced it to FSs

Definition 2. (see [4]). Consider any two TSFNs T1 � (h1,

o1, s1) and T2 � (h2, o2, s2), then some operations on these
will be defined as follows:

(i) T1⊕T2 � (
����������������
1 − (1 − ht

1)(1 − ht
2)

t


, o1o2, s1s2)

(ii) T1 ⊗T2 � (h1h2,
����������������
1 − (1 − ot

1)(1 − ot
2)

t


,����������������
1 − (1 − st

1)(1 − st
2)

t


)

(iii) τT1 � (
�����������
1 − (1 − ht

1)
τt


, (o1)

τ , (s1)
τ), τ > 0

(iv) Tτ
1 � ((h1)

τ ,
�����������
1 − (1 − ot

1)
τt


,

����������
1 − (1 − st

1)
τt


), τ > 0

Definition 3. (see [4]). For any collection of TSFNs Tj �

(hj, oj, sj) (j � 1, 2, . . . , m), TSFWG operator is defined as
follows:
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TSFWGϖ T1, T2, . . . , Tm(  � 
m

j�1
hj 
ϖj

,

��������������

1 − 
m

j�1
1 − o

t
j 
ϖj

t




,

��������������

1 − 
m

j�1
1 − s

t
j 
ϖj

t




⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (2)

where the weight vector ϖ � (ϖ1,ϖ2, . . . ,ϖm) satisfies
ϖ ∈ [0, 1] and 

m
j�1 ϖj � 1.

Definition 4. +e score and accuracy functions for any TSFN
T � (h, o, s) are defined as follows:

Sc(T) � h
t

− o
t

− s
t
,

Ac(T) � h
t

+ o
t

+ s
t
.

(3)

(1) If Sc(T1)< Sc(T2), then T2 is greater than T1

(2) If Sc(T1) � Sc(T2), then we have to check accuracy,
if, then T2 is greater than T1, and if again
Ac(T1) � Ac(T2), then both numbers will be equal

3. Generalized Parameter for T-Spherical
Fuzzy Sets

In a medical diagnosis problem, a patient goes to a doctor
and provides the symptoms based on his perception. If a
disease is only diagnosed on symptoms provided by the
patient, then he may not be cured, e.g., if a person who is also
a patient of congenital disease (not feeling pain) has a stress.
+e preferences of the patient will be

T � (0.7, 0.2, 0.4)Low energy, (0.8, 0.4, 0.3)Upset stomach,

(0.0, 0.1, 0.5)Pains, (0.7, 0.3, 0.1)Insomnia.
(4)

Here, the patient gives 0 membership value to pains
because he does not feel pain. If a doctor provides a
treatment, then he may not be cured. So for a better
treatment, it is required to get an opinion from an expert. To
achieve this concept, generalized parameter is proposed.

Definition 5. For a nonempty setX, generalized T-spherical
fuzzy set (GTSFS) is defined as follows:

T � (x, h(x), o(x), s(x)) hg, og, sg  : x ∈ X , (5)

where h, o, s: X⟶ [0, 1] having a condition that 0≤ ht

(x) + ot(x) + st(x)≤ 1 for any positive integer t and
hg, og, sg ∈ [0, 1] denote the expert opinion with a condition
0≤ ht

g + ot
g + st

g ≤ 1. (hg, og, sg) is called GP for TSFS.

4. Generalized T-Spherical Fuzzy Geometric
Aggregation Operators

In this section, the generalized TSF weighted geometric
(GTSFWG) operator, generalized TSF ordered weighted
geometric (GTSFOWG) operator, and generalized TSF
hybrid geometric (GTSFHG) operator are defined. Some
basic results of these operators are also proved.

4.1. Generalized T-Spherical Fuzzy Weighted Geometric
Operator

Definition 6. Considering the GP Tg � (hg, og, sg) for the
TSFNs Tj � (hj, oj, sj)(j � 1, 2, . . . , m), then the GTSFWG
operator is defined as

GTSFWG 〈T1, T2, . . . , Tm〉, Tg 

� Tg⊕TSFWG〈T1, T2, . . . , Tm〉.
(6)

Theorem 1. Considering a collection of TSFNs Tj � (hj,

oj, sj)(j � 1, 2, . . . , m) with GP Tg � (hg, og, sg) having a
weight vector ϖ � (ϖ1,ϖ2, . . . ,ϖm)T such that ϖ ∈ [0, 1] and


m
j�1 ϖj � 1, then the GTSFWG operator is given by

GTSFWG 〈T1, T2, . . . , Tm〉, Tg  � Tg⊕ ⊗
m
j�1T
ϖj

j 

�

�������������������

h
t
g + 1 − h

t
g  

m

j�1
h

t
j 
ϖj

t




, og.

��������������

1 − 
m

j�1
1 − o

t
j 
ϖj

t




, sg.

��������������

1 − 
m

j�1
1 − s

t
j 
ϖj

t




⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(7)

Proof. By using mathematical induction, this proof can be
done.

For m � 2,

GTSFWG 〈T1, T2〉, Tg  � Tg⊕ T
ϖ1
1 ⊗T

ϖ2
2 

� hg, og, sg ⊕ h
ϖ1
1 ,

�����������

1 − 1 − o
t
1 
ϖ1

t


,

�����������

1 − 1 − s
t
1 
ϖ1

t


 ⊗ h
ϖ2
2 ,

�����������

1 − 1 − o
t
2 
ϖ2

t


,

�����������

1 − 1 − s
t
2 
ϖ2

t
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� hg, og, sg ⊕ h
ϖ1
1 h
ϖ2
2 ,

�������������������

1 − 1 − o
t
1 
ϖ1 1 − o

t
2 
ϖ2

t


,

�������������������

1 − 1 − s
t
1 
ϖ1 1 − s

t
2 
ϖ2

t


 

�

�����������������������������

h
t
g + h

t
1 
ϖ1

h
t
2 
ϖ2

− h
t
g h

t
1 
ϖ1

h
t
2 
ϖ2

t


, og.

�������������������

1 − 1 − o
t
1 
ϖ1 1 − o

t
2 
ϖ2

t


, sg.

�������������������

1 − 1 − s
t
1 
ϖ1 1 − s

t
2 
ϖ2

t


 

�

���������������������

h
t
g + 1 − h

t
g  h

t
1 
ϖ1

h
t
2 
ϖ2

t


, og.

�������������������

1 − 1 − o
t
1 
ϖ1 1 − o

t
2 
ϖ2

t


, sg.

�������������������

1 − 1 − s
t
1 
ϖ1 1 − s

t
2 
ϖ2

t


 .

(8)

+is shows that results hold for m � 2. Let us consider
that the result is true for m � l,

GTSFWG 〈T1, T2, . . . , T〉l, Tg 

�

�������������������

h
t
g + 1 − h

t
g  

l

j�1
h

t
j 
ϖj

t




, og.

��������������

1 − 
l

j�1
1 − o

t
j 
ϖj

t




, sg.

��������������

1 − 
l

j�1
1 − s

t
j 
ϖj

t




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(9)

Now

GTSFWG 〈T1, T2, . . . , Tl〉, Tl+1, Tg 

�

���������������������������

h
t
g + 1 − h

t
g  h

t
l+1 
ϖk+1



l

j�1
h

t
j 
ϖj

t




, og.

�������������������������

1 − 1 − o
t
l+1 
ϖk+1



l

j�1
1 − o

t
j 
ϖj

t




, sg.

������������������������

1 − 1 − s
t
l+1 
ϖk+1



l

j�1
1 − s

t
j 
ϖj

t




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠,

GTSFWG 〈T1, T2, . . . , Tl+1〉, Tg ,

�

�������������������

h
t
g + 1 − h

t
g  

l+1

j�1
h

t
j 
ϖj

t




, og.

��������������

1 − 
l+1

j�1
1 − o

t
j 
ϖj

t




, sg.

��������������

1 − 
l+1

j�1
1 − s

t
j 
ϖj

t




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(10)

□
Theorem 2. Considering a collection of TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m) with GP Tg � (hg, og, sg)

having a weight vector ϖ � (ϖ1,ϖ2, . . . ,ϖm)T such that
ϖ ∈ [0, 1] and 

m
j�1 ϖj � 1, then the following properties hold:

(i) If Tj � T0 for all (j � 1, 2, . . . , m), then
GTSFWG(〈T1, T2, . . . , Tm〉, Tg) � Tg⊕T0

(ii) If TL
j � (min hTg⊕Tj

, min oTg⊕Tj
, max sTg⊕Tj

) and
TU

j � (max hTg⊕Tj
, max oTg⊕Tj

, min sTg⊕Tj
), then

TL
j ≤GTSFWG(〈T1, T2, . . . , Tm〉, Tg)≤TU

j

(iii) Considering a collection of TSFNs Tj
′ � (hj
′,

oj
′, sj
′)(j � 1, 2, . . . , m) such that hj ≤ hj

′, oj ≤ oj
′ and

sj ≥ sj
′ for all j, then GTSFWG (〈T1, T2, . . . ,

Tm〉, Tg)≤GTSFWG(〈T1′, T2′, . . . , Tm
′〉, Tg)

Proof.

(i) If Tj � T0 � (h0, o0, s0) for all (j � 1, 2, . . . , m),
then from the definition of GTSFWG operator

GTSFWG T1, T2, . . . , Tm, Tg  �

�������������������

h
t
g + 1 − h

t
g  

m

j�1
h

t
j 
ϖj

t




, og.

��������������

1 − 
m

j�1
1 − o

t
g 
ϖj

t




, sg.

��������������

1 − 
m

j�1
1 − s

t
g 
ϖj

t




⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

�

��������������������

h
t
g + 1 − h

t
g  h

t
j 


m

j�1 ϖj

t


, og.

���������������

1 − 1 − o
t
j 


m

j�1 ϖj

t


, sg.

���������������

1 − 1 − s
t
j 


m

j�1 ϖj

t
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�

�������������

h
t
g + 1 − h

t
g h

t
0

t


, og.

����������

1 − 1 − o
t
0 

t


, sg.

����������

1 − 1 − s
t
0 

t


 

�

������������

h
t
g + h

t
0 − h

t
0h

t
g

t


, og.o0, sg.s0 . (11)

(ii) Consider TL
j � (min hTg⊕Tj

, min oTg⊕Tj
, max sTg⊕Tj

)

and TU
j � (max hTg⊕Tj

, max oTg⊕Tj
, min sTg⊕Tj

)

where min hTg⊕Tj
�

�������������������
ht

g + (1 − ht
g)(min hj)

tt


,

max hTg⊕Tj
�

�������������������
ht

g + (1 − ht
g)(max hj)

tt


, min oTg⊕Tj

� og.min oj, max oTg⊕Tj
� og.max oj, min sTg⊕Tj

� sg.min sj, and max sTg⊕Tj
� sg.max sj. +en, for

every j � 1, 2, . . . , m

min hj ≤ hj ≤max hj,

min hj 
t
≤

m

j�1
h

t
j 
ϖj ≤ max hj 

t
.

(12)

For every 0≤ hg ≤ 1

1 − h
t
g  min hj 

t
≤ 1 − h

t
g  

m

j�1
h

t
j 
ϖj ≤ 1 − h

t
g  max hj 

t
,

h
t
g + 1 − h

t
g  min hj 

t
≤ h

t
g + 1 − h

t
g  

m

j�1
h

t
j 
ϖj ≤ h

t
g + 1 − h

t
g  max hj 

t
,

�������������������

h
t
g + 1 − h

t
g  min hj 

t
t



≤

�������������������

h
t
g + 1 − h

t
g  

m

j�1
h

t
j 
ϖj

t




≤
�������������������

h
t
g + 1 − h

t
g  max hj 

t
t



,

min hTg⊕Tj
≤

�������������������

h
t
g + 1 − h

t
g  

m

j�1
h

t
j 
ϖj

t




≤max hTg⊕Tj
.

(13)

Furthermore, min oj ≤ oj ≤max oj

min o
t
j ≤ o

t
j ≤max o

t
j,

1 − max o
t
j ≤ 1 − o

t
j ≤ 1 − min o

t
j,



m

j�1
1 − max o

t
j 
ϖj ≤

m

j�1
1 − o

t
j 
ϖj ≤

m

j�1
1 − min o

t
j 
ϖj

,

1 − max o
t
j 


m

j�1
ϖj ≤

m

j�1
1 − o

t
j 
ϖj ≤ 1 − min o

t
j 


m

j�1
ϖj

,

1 − 1 − min o
t
j ≤ 1 − 

m

j�1
1 − o

t
j 
ϖj ≤ 1 − 1 − max o

t
j ,

�������������

1 − 1 − min o
t
j 

t


≤

��������������

1 − 
m

j�1
1 − o

t
j 
ϖj

t




≤
�������������

1 − 1 − max o
t
j 

t


,

min oj ≤

��������������

1 − 
m

j�1
1 − o

t
j 
ϖj

t




≤max oj.

(14)
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For every 0≤ og ≤ 1,

og min oj ≤ og.

��������������

1 − 
m

j�1
1 − o

t
j 
ϖj

t




≤ og max oj ,

min oTg⊕Tj
≤ og.

��������������

1 − 
m

j�1
1 − o

t
j 
ϖj

t




≤max oTg⊕Tj
.

(15)

Now, min sj ≤ sj ≤max sj

min s
t
j ≤ s

t
j ≤max s

t
j,

1 − max s
t
j ≤ 1 − s

t
j ≤ 1 − min s

t
j,



m

j�1
1 − max s

t
j 
ϖj ≤

m

j�1
1 − s

t
j 
ϖj ≤

m

j�1
1 − min s

t
j 
ϖj

,

1 − max s
t
j 


m

j�1
ϖj ≤

m

j�1
1 − s

t
j 
ϖj ≤ 1 − min s

t
j 


m

j�1
ϖj

,

1 − 1 − min s
t
j ≤ 1 − 

m

j�1
1 − s

t
j 
ϖj ≤ 1 − 1 − max s

t
j ,

�������������

1 − 1 − min s
t
j 

t


≤

��������������

1 − 
m

j�1
1 − s

t
j 
ϖj

t




≤
�������������

1 − 1 − max s
t
j 

t


,

min sj ≤

��������������

1 − 
m

j�1
1 − s

t
j 
ϖj

t




≤max sj.

(16)

For every 0≤ sg ≤ 1,

sg min sj ≤ sg.

��������������

1 − 
m

j�1
1 − s

t
j 
ϖj

t




≤ sg max sj ,

min sTg⊕Tj
≤ sg.

��������������

1 − 
m

j�1
1 − s

t
j 
ϖj

t




≤max sTg⊕Tj
.

(17)

(iii) +is can be proved by following part (ii). □

4.2. Generalized T-Spherical Fuzzy Ordered Weighted Geo-
metric Operator

Definition 7. Considering the GP Tg � (hg, og, sg) for the
TSFNs Tj � (hj, oj, sj)(j � 1, 2, . . . , m), then the
GTSFOWG operator is defined as

GTSFOWG 〈T1, T2, . . . , Tm〉, Tg  � Tg⊕TSFOWG〈T1, T2, . . . , Tm〉. (18)
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Theorem 3. Considering a collection of TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m) with GP Tg � (hg, og, sg)

having a associated weight vector ω � (ω1,ω2, . . . ,ωm)T such

that ϖ ∈ [0, 1] and 
m
j�1 ϖj � 1, then the GTSFOWG oper-

ator is given by

GTSFOWG 〈T1, T2, . . . , Tm〉, Tg  � Tg⊕ ⊗
m
j�1T

ωj

ς(j) 

�

���������������������

h
t
g + 1 − h

t
g  

m

j�1
h

t
ς(j) 

ωj
t




, og.

����������������

1 − 

m

j�1
1 − o

t
ς(j) 

ωj
t




, sg.

����������������

1 − 

m

j�1
1 − s

t
ς(j) 

ωj
t




⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(19)

Theorem 4. Considering a collection of TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m) with GP Tg � (hg, og, sg)

having a associated weight vector ω � (ω1,ω2, . . . ,ωm)T such
that ϖ ∈ [0, 1] and 

m
j�1 ϖj � 1, then the following properties

hold:

(i) If Tj � T0 for all (j � 1, 2, . . . , m), then
GTSFOWG(〈T1, T2, . . . , Tm〉, Tg) � Tg⊕T0

(ii) If TL
j � (min hTg⊕Tj

, min oTg⊕Tj
, max sTg⊕Tj

) and
TU

j � (max hTg⊕Tj
, max oTg⊕Tj

, min sTg⊕Tj
), then

TL
j ≤GTSFOWG(〈T1, T2, . . . , Tm〉, Tg)≤TU

j

(iii) Considering a collection of TSFNs
Tj
′ � (hj
′, oj
′, sj
′)(j � 1, 2, . . . , m) such that hj ≤ hj

′,
oj ≤ oj
′ and sj ≥ sj

′ for all j, then GTSFOWG(〈T1,

T2, . . . , Tm〉, Tg)≤GTSFOWG(〈T1′, T2′, . . . ,

Tm
′〉, Tg)

Proof. +e proof is as in +eorem 2. □

4.3. Generalized T-Spherical Fuzzy Hybrid Weighted Geo-
metric Operator. In this section, the GTSFHG operator
which weights both TSFNs and their ordered positions is
proposed. Some of its basic properties are also proved.

Definition 8. Considering the GP Tg � (hg, og, sg) for the
TSFNs Tj � (hj, oj, sj)(j � 1, 2, . . . , m), then the GTSFHG
operator is defined as

GTSFHG 〈T1, T2, . . . , Tm〉, Tg  � Tg⊕TSFHG〈T1, T2, . . . , Tm〉.

(20)

Theorem 5. Considering a collection of TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m) with GP Tg � (hg, og, sg)

having a weight vector ϖ � (ϖ1,ϖ2, . . . ,ϖm)T and associated
weight vector ω � (ω1,ω2, . . . ,ωm)T such that ϖ,ω ∈ [0, 1],


m
j�1 ϖj � 1 and 

m
j�1 ωj � 1, then the GTSFHG operator is

given by

GTSFHG T1, T2, . . . , Tm, Tg  � Tg⊕ ⊗
m
j�1

T
ωj

ς(j) 

�

���������������������

h
t
g + 1 − h

t
g  

m

j�1

h
t

ς(j) 
ωjt




, og.

����������������

1 − 
m

j�1
1 − o

t
ς(j) 

ωj
t




, sg.

����������������

1 − 
m

j�1
1 − s

t
ς(j) 

ωj
t




⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(21)

where Tς(j) � T
mϖj

j (j � 1, . . . , m) is the permutation and m

is the balancing coefficient.

Theorem 6. Considering a collection of TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m) with GP Tg � (hg, og, sg)

having a weight vector ϖ � (ϖ1,ϖ2, . . . ,ϖm)Tand associated
weight vector ω � (ω1,ω2, . . . ,ωm)T such that ϖ,ω ∈ [0, 1],
and 

m
j�1 ωj � 1, then the following properties hold:

(i) If Tj � T0 for all (j � 1, 2, . . . , m), then
GTSFHG(〈T1, T2, . . . , Tm〉, Tg) � Tg⊕T0

(ii) If TL
j � (min hTg⊕Tj

, min oTg⊕Tj
, max sTg⊕Tj

) and
TU

j � (max hTg⊕Tj
, max oTg⊕Tj

, min sTg⊕Tj
), then

TL
j ≤GTSFHG(〈T1, T2, . . . , Tm〉, Tg)≤TU

j

(iii) Considering a collection of TSFNs
Tj
′ � (hj
′, oj
′, sj
′)(j � 1, 2, . . . , m) such that hj ≤ hj

′,

oj ≤ oj
′ and sj ≥ sj

′ for all j, then
GTSFHG(〈T1, T2, . . . , Tm〉, Tg)≤GTSFHG

(〈T1′, T2′, . . . , Tm
′〉, Tg)

Proof. +e proof is as in +eorem 2. □

5. Group-Generalized T-Spherical Fuzzy
Geometric Aggregation Operators

In this section, the group-generalized TSF weighted geo-
metric (GGTSFWG) operator, group-generalized TSF or-
dered weighted geometric (GGTSFOWG) operator, and
group-generalized TSF hybrid geometric (GGTSFHG) op-
erator are defined. Some basic results of these operators are
also discussed.
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5.1. Group-Generalized T-Spherical Fuzzy Weighted Geo-
metric Operator

Definition 9. Considering the Tgk
� (hgk

, ogk
, sgk

)(k �

1, . . . , n) be the expert preferences for the TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m), then the GGTSFWG op-
erator is defined as

GGTSFWG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉  � TSFWG〈Tg1

, Tg2
, . . . , Tgn

〉⊕TSFWG〈T1, T2, . . . , Tm〉. (22)

Theorem 7. Considering a Tgk
� (hgk

, ogk
, sgk

) (k �

1, 2, . . . , n) with a weight vector ϖ′ � (ϖ1′,ϖ2′, . . . ,ϖn
′)T be the

expert preferences for TSFNs Tj � (hj, oj, sj)(j � 1, 2, . . . , m)

having a weight vector ϖ � (ϖ1,ϖ2, . . . ,ϖm)T, then the
GGTSFWG operator is given by

GGTSFWG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉  � ⊗ n

k�1T
ϖk
′

gk
 ⊕ ⊗m

j�1T
ϖj

j 

�

��������������������������������������������������������������������������������������������������������
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t
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t
j 
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.
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1 − 
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1 − o

t
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.
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1 − 
m
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1 − s

t
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′
.

����������������

1 − 
m
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1 − s

t
j 
ϖj ⎞⎠.
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(23)

Proof. By using mathematical induction, this proof can be
done.

For m � 2,

GGTSFWG 〈T1, T2〉, 〈Tg1
, Tg2

, . . . , Tgn
〉  � ⊗ n

k�1T
ϖk
′

gk
 ⊕ T

ϖ1
1 ⊗T

ϖ2
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n

k�1
hgk
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(24)

+is shows that results hold for m � 2. Let us consider
that result is true for m � l,
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GGTSFWG 〈T1, T2, . . . , Tl〉, 〈Tg1
, Tg2

, . . . , Tgn
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(25)

Now

GGTSFWG 〈T1, T2, . . . , Tl, Tl+1〉, 〈Tg1
, Tg2
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(26)

+us, results hold for all m. □

Theorem 8. Consider a collection of TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m) and the expert preferences
Tgk

� (hgk
, ogk

, sgk
)(k � 1, 2, . . . , n) having a weight vectors

ϖ � (ϖ1,ϖ2, . . . ,ϖm)T and ϖ′ � (ϖ1′,ϖ2′, . . . ,ϖn
′)T, respec-

tively. Cen, the following properties hold:

(i) If Tj � T0 for all (j � 1, 2, . . . , m) and Tgk
� Tg0

for
all (k � 1, 2, . . . , n), then GGTSFWG

(〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉) � Tg0

⊕T0

(ii) If TL
j � (min hTgk

⊕Tj
, min oTgk

⊕Tj
, max sTgk

⊕Tj
) and

TU
j � (max hTgk

⊕Tj
, max oTgk

⊕Tj
, min sTgk

⊕Tj
), then

T
L
j ≤GGTSFWG 〈T1, T2, . . . , Tm〉, 〈Tg1

, Tg2
, . . . , Tgn

〉 ≤T
U
j .

(27)

(iii) Considering a collection of TSFNs
Tj
′ � (hj
′, oj
′, sj
′)(j � 1, 2, . . . , m) such that hj ≤ hj

′,
oj ≤ oj
′ and sj ≥ sj

′ for all j, then

GGTSFWG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 ≤GGTSFWG 〈T1′, T2′, . . . , Tm

′〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 . (28)
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Proof. +e proof is as in +eorem 2. □

5.2. Group-Generalized T-Spherical Fuzzy Ordered Weighted
Geometric Operator

Definition 10. Considering the Tgk
� (hgk

, ogk
, sgk

)(k �

1, . . . , n) be the expert preferences for the TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m), then the GGTSFOWG
operator is defined as

GGTSFOWG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉  � TSFWG〈Tg1

, Tg2
, . . . , Tgn

〉⊕TSFOWG〈T1, T2, . . . , Tm〉. (29)

Theorem 9. Considering a Tgk
� (hgk

, ogk
, sgk

)(k �

1, 2, . . . , n) with weight vector ϖ′ � (ϖ1′,ϖ2′, . . . ,ϖn
′)T be the

expert preferences for TSFNs Tj � (hj, oj, sj)(j � 1, 2, . . . , m)

having associated weight vector ω � (ω1,ω2, . . . ,ωm)T, then
the GGTSFOWG operator is given by

GGTSFOWG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉  � ⊗ n
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 ⊕ ⊗ m
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⎛⎜⎜⎜⎜⎜⎜⎜⎝
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(30)

Theorem 10. Considering a collection of TSFNs
Tj � (hj, oj, sj)(j � 1, 2, . . . , m) and the expert preferences
Tgk

� (hgk
, ogk

, sgk
)(k � 1, 2, . . . , n) having associated weight

vectors ω � (ω1,ω2, . . . ,ωm)T and weight vector
ϖ′ � (ϖ1′,ϖ2′, . . . ,ϖn

′)T, respectively, with a condition that
each weight vector must belong to [0, 1] and the sum of all
weights must be equal to 1, then the following properties hold:

(i) If Tj � T0 for all (j � 1, 2, . . . , m) and Tgk
� Tg0

for
all (k � 1, 2, . . . , n), then
GGTSFOWG(〈T1, T2, . . . ,

Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉) � Tg0

⊕T0

(ii) If TL
j � (min hTgk

⊕Tj
, min oTgk

⊕Tj
, max sTgk

⊕Tj
) and

TU
j � (max hTgk

⊕Tj
, max oTgk

⊕Tj
, min sTgk

⊕Tj
), then

T
L
j ≤GGTSFOWG 〈T1, T2, . . . , Tm〉, 〈Tg1

, Tg2
, . . . , Tgn

〉 ≤T
U
j .

(31)

(iii) Considering a collection of TSFNs
Tj
′ � (hj
′, oj
′, sj
′)(j � 1, 2, . . . , m) such that hj ≤ hj

′,
oj ≤ oj
′ and sj ≥ sj

′ for all j, then

GGTSFOWG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 ≤GGTSFOWG 〈T1′, T2′, . . . , Tm

′〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 . (32)

Proof. +e proof is as in +eorem 2. □

5.3. Group-Generalized T-Spherical Fuzzy Hybrid Weighted
Geometric Operator. In this section, the GGTSFHG oper-
ator which weights both TSFNs and their ordered positions
is proposed. Some of its basic properties are also discussed.

Definition 11. Considering the
Tgk

� (hgk
, ogk

, sgk
)(k � 1, . . . , n) be the expert preferences

for the TSFNs Tj � (hj, oj, sj)(j � 1, 2, . . . , m), then the
GGTSFHG operator is defined as

GGTSFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉  � TSFWG〈Tg1

, Tg2
, . . . , Tgn

〉⊕TSFHG〈T1, T2, . . . , Tm〉. (33)

Theorem 11. Considering a Tgk
� (hgk

, ogk
, sgk

)

(k � 1, 2, . . . , n) with weight vector ϖ′ � (ϖ1′,ϖ2′, . . . ,ϖn
′)T be

the expert preferences for TSFNs

Tj � (hj, oj, sj)(j � 1, 2, . . . , m) having a weight vector ϖ �

(ϖ1,ϖ2, . . . ,ϖm)T and associated weight vector
ω � (ω1,ω2, . . . ,ωm)T, GGTSFHG operator is given by

10 Journal of Mathematics



RE
TR
AC
TE
D

GGTSFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉  � ⊗ n

k�1T
ϖk
′

gk
 ⊕ ⊗ m

j�1
T
ωj

ς(j) 

�

������������������������������������������



n

k�1
h

t
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′
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m

j�1

h
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ς(j) 
ωj
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n

k�1
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t
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ϖk
′
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m

j�1

h
t

ς(j) 
ωjt




,

���������������

1 − 
n

k�1
1 − o

t
gk

 
ϖk
′t




.

����������������

1 − 
m

j�1
1 − o

t
ς(j) 

ωj
t




⎛⎜⎜⎜⎜⎜⎜⎜⎝

· t1 − 
n

k�1
1 − s

t
gk

 
ϖk
′
.

����������������

1 − 
m

j�1
1 − s

t
ς(j) 
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⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(34)

where Tς(j) � T
mϖj

j (j � 1, . . . , m) is the permutation and m

is the balancing coefficient.

Theorem 12. Considering a Tgk
� (hgk

, ogk
, sgk

)(k �

1, 2, . . . , n) with weight vector ϖ′ � (ϖ1′,ϖ2′, . . . ,ϖn
′)T be the

expert preferences for TSFNs Tj � (hj, oj, sj)(j � 1, 2, . . . , m)

having a weight vector ϖ � (ϖ1,ϖ2, . . . ,ϖm)T and associated
weight vector ω � (ω1,ω2, . . . ,ωm)T, then the following
properties hold:

(i) If Tj � T0 for all (j � 1, 2, . . . , m) and Tgk
� Tg0

for all (k � 1, 2, . . . , n), then GGTSFHG

(〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉) � Tg0

⊕T0

(ii) If TL
j � (min hTgk

⊕Tj
, min oTgk

⊕Tj
, max sTgk

⊕Tj
) and

TU
j � (max hTgk

⊕Tj
, max oTgk

⊕Tj
, min sTgk

⊕Tj
), then

T
L
j ≤GGTSFHG 〈T1, T2, . . . , Tm〉, 〈Tg1

, Tg2
, . . . , Tgn

〉 ≤T
U
j .

(35)

(iii) Considering a collection of TSFNs
Tj
′ � (hj
′, oj
′, sj
′)(j � 1, 2, . . . , m) such that hj ≤ hj

′,
oj ≤ oj
′ and sj ≥ sj

′ for all j, then

GGTSFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 ≤GGTSFHG 〈T1′, T2′, . . . , Tm

′〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 . (36)

Proof. +e proof is as in +eorem 2. □

6. Approach to MADM Problem Using
Proposed Operators

Let T1, T2, . . . , Tl  be the set of alternatives and
G1, G2, . . . , Gm  be the set of attributes with a weight vector
ϖ � (ϖ1,ϖ2, . . . ,ϖm)T satisfying ϖj ∈ [0, 1] and


m
j�1 ϖj � 1. A group of experts Tg1

, Tg2
, . . . , Tgn

  with a
weight vector ϖ′ � (ϖ1′,ϖ2′, . . . ,ϖm

′)T satisfying ϖk
′ ∈ [0, 1]

and 
n
k�1 ϖk
′ � 1 evaluates each alternative against each at-

tribute. Each expert rates alternatives in the form of TSFN.
+en, an algorithm for solving the MADM problem is
proposed as follows:

Step 1: the expert evaluates the alternatives by con-
sidering the attributes in terms of TSFNs and sum-
marizes them in the decision matrix as

T �

h11, o11, s11(  · · · h1m, o1m, s1m( 

⋮ ⋱ ⋮

hl1, ol1, sl1(  · · · hlm, olm, slm( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (37)

Step 2: convert cost type data into benefit type data and
normalize the decision matrix by using

τm �
hlm, olm, slm( , if attribute is of benefit type,

slm, olm, hlm( , if attribute is of cost type.


(38)

Step 3: calculate t for which the given information lies
in TSF environment.
Step 4: aggregate the given information using
GGTSFWG (GTSFWG) operator with weight vector ϖ
and ϖ′.
Step 5: order the aggregated values in descending order
with respect to score function.
Step 6: aggregate the ordered information using
GGTSFHG (GTSFHG) operator with associated weight
vector ω � (ω1,ω2, . . . ,ωm).
Step 7: find out the best option using score function.

Example 1. A construction company wants to construct new
apartments.+e company wants to select a place from the set
T1, T2, T3, T4  on the basis of following attributes
G1, G2, G3, G4 , where G1: cost of land, G2: surroundings,

G3: technological, G4: rental value, with a weight
vector(0.2, 0.1, 0.3, 0.4)T. An expert evaluates all given al-
ternatives on the basis of given attributes as given in Table 1.

+e normalized decision matrix is shown in Table 2.
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A group of senior experts Tg1
, Tg2

, Tg3
  with weight

vector (0.3, 0.3, 0.4)T assesses the alternatives listed in
Table 3.

Table 4 is obtained by combining Tables 2 and 3.
As 0.83 + 0.44 + 0.35 � 1.62 ∉ [0, 1],

0.832 + 0.442 + 0.352 � 1.005 ∉ [0, 1],
0.833 + 0.443 + 0.353 � 0.6999 ∈ [0, 1]. Similarly, all values
in Table 3 belong to [0, 1] fort � 3.

After aggregating the values of Table 4 by utilizing
GGTSFWG operators, the results will be as shown in Table 5.

+e corresponding scores of aggregated values of Table 5
are as shown in Table 6.

In Table 7, the aggregated values are ordered on the basis
of descending order of score function.

Aggregated values of Table 7 by utilizing the GGTSFHG
operators will be as follows:

Tς(1) � (0.7821, 0.1739, 0.2230),

Tς(2) � (0.6903, 0.0892, 0.1369),

Tς(3) � (0.5944, 0.0584, 0.2448),

Tς(4) � (0.8594, 0.1008, 0.1131).

(39)

+e score values of these aggregated values are

SC Tς(1)  � 0.4620,

SC Tς(2)  � 0.3257,

SC Tς(3)  � 0.1951,

SC Tς(4)  � 0.6322.

(40)

+e score value of T4 is highest. So T4 is the best option
for a company to construct new apartments.

7. Comparative Analysis

In this section, some conditions are studied under which the
defined work can be reduced to other fuzzy structures, and
the significance of proposed operators is proved by solving
an example of the existing literature by using proposed
operators.

Consider

GGTSFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 

�

������������������������������������������



n

k�1
h

t
gk

 
ϖk
′
+ 

m

j�1

h
t

ς(j) 
ωj

− 
n

k�1
h

t
gk

 
ϖk
′
. 

m

j�1

h
t

ς(j) 
ωjt




,
⎛⎜⎜⎜⎜⎜⎜⎜⎝

���������������

1 − 
n

k�1
1 − o

t
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ϖk
′t




.

����������������

1 − 
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j�1
1 − o

t
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ωj
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���������������

1 − 
n

k�1
1 − s

t
gk

 
ϖk
′t




.

����������������

1 − 
m

j�1
1 − s

t
ς(j) 

ωj
t




⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(41)

(i) For t � 2, (1) can be reduced to group-generalized
spherical fuzzy hybrid geometric (GGSFHG)
operators

GGSFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 

� 
n

k�1
h
2
gk

 
ϖk
′
+ 

m

j�1

h
2
ς(j) 

ωj

− 
n

k�1
h
2
gk

 
ϖk
′
. 

m

j�1

h
2
ς(j) 

ωj

,⎛⎝

1 − 
n

k�1
1 − o

2
gk

 
ϖk
′

⎛⎝ ⎞⎠. 1 − 
m

j�1
1 − o

2
ς(j) 

ωj⎛⎝ ⎞⎠, 1 − 
n

k�1
1 − s

2
gk

 
ϖk
′

⎛⎝ ⎞⎠. 1 − 
m

j�1
1 − s

2
ς(j) 

ωj⎛⎝ ⎞⎠⎞⎠.

(42)

(ii) For t � 1, (1) can be reduced to group-generalized
picture fuzzy hybrid geometric (GGPFHG)
operators
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GGPFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 

� 
n

k�1
hgk

 
ϖk
′
+ 

m

j�1

hς(j) 
ωj

− 
n

k�1
hgk

 
ϖk
′
. 

m

j�1

hς(j) 
ωj

,⎛⎝

1 − 
n

k�1
1 − ogk

 
ϖk
′

⎛⎝ ⎞⎠. 1 − 
m

j�1
1 − oς(j) 

ωj⎛⎝ ⎞⎠, 1 − 
n

k�1
1 − sgk

 
ϖk
′

⎛⎝ ⎞⎠. 1 − 
m

j�1
1 − sς(j) 

ωj⎛⎝ ⎞⎠⎞⎠.

(43)

(iii) For t � 2 and o � 0, (1) can be reduced to group-
generalized Pythagorean fuzzy hybrid geometric
(GGPyFHG) operators

GGPyFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 

�

������������������������������������������
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2
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⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(44)

(iv) For t � 1 and o � 0, (1) can be reduced to group-
generalized intuitionistic fuzzy hybrid geometric
(GGIFHG) operators

GGIFHG 〈T1, T2, . . . , Tm〉, 〈Tg1
, Tg2

, . . . , Tgn
〉 

� 
n

k�1
hgk

 
ϖk
′
+ 

m

j�1

hς(j) 
ωj

− 
n

k�1
hgk

 
ϖk
′
. 

m

j�1

hς(j) 
ωj

, 1 − 
n

k�1
1 − sgk

 
ϖk
′

⎛⎝ ⎞⎠. 1 − 
m

j�1
1 − sς(j) 

ωj⎛⎝ ⎞⎠⎛⎝ ⎞⎠.
(45)

Similarly, all other defined operators can be reduced to
other fuzzy structures by using these conditions.

Example 2. ConsiderTg � (0.4, 0.7) be the GP of
T1 � (0.4, 0.5), T2 � (0.6, 0.6), T3 � (0.8, 0.3) and
T4 � (0.7, 0.6) have a weight vector ϖ � (0.4, 0.3, 0.1, 0.2)T.
+en find the aggregated value by using GTSFWG operator.

Solution. +e given information can be written in TSF en-
vironment as Tg � (0.4, 0.0, 0.7), T1 � (0.4, 0.0, 0.5),
T2 � (0.6, 0.0, 0.6), T3 � (0.8, 0.0, 0.3), and
T4 � (0.7, 0.0, 0.6).

As0.4 + 0.0 + 0.7 � 1.1 ∉ [0, 1],
0.62 + 0.02 + 0.52 � 0.65 ∈ [0, 1]. Similarly, all values lie in
TSF environment fort � 2.

Table 1: Information given by an expert in TSFSs.

G1 G2 G3 G4

T1 (0.43, 0.20, 0.61) (0.54, 0.35, 0.63) (0.81, 0.62, 0.11) (0.18, 0.33, 0.66)

T2 (0.14, 0.32, 0.74) (0.26, 0.17, 0.26) (0.77, 0.23, 0.55) (0.61, 0.34, 0.57)

T3 (0.75, 0.12, 0.41) (0.59, 0.29, 0.13) (0.56, 0.22, 0.36) (0.11, 0.14, 0.45)

T4 (0.35, 0.44, 0.83) (0.91, 0.12, 0.49) (0.63, 0.11, 0.27) (0.31, 0.36, 0.84)

Table 2: Normalized decision matrix.

G1 G2 G3 G4

T1 (0.61, 0.20, 0.43) (0.54, 0.35, 0.63) (0.81, 0.62, 0.11) (0.66, 0.33, 0.18)

T2 (0.74, 0.32, 0.14) (0.26, 0.17, 0.26) (0.77, 0.23, 0.55) (0.57, 0.34, 0.61)

T3 (0.41, 0.12, 0.75) (0.59, 0.29, 0.13) (0.56, 0.22, 0.36) (0.45, 0.14, 0.11)

T4 (0.83, 0.44, 0.35) (0.91, 0.12, 0.49) (0.63, 0.11, 0.27) (0.84, 0.36, 0.31)
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Table 3: Information given by senior experts in TSFSs.

Tg1
Tg2

Tg3

T1 (0.71, 0.30, 0.40) (0.58, 0.21, 0.79) (0.49, 0.52, 0.43)

T2 (0.74, 0.41, 0.25) (0.34, 0.24, 0.23) (0.44, 0.19, 0.28)

T3 (0.32, 0.29, 0.69) (0.67, 0.35, 0.21) (0.56, 0.22, 0.36)

T4 (0.78, 0.46, 0.39) (0.87, 0.13, 0.17) (0.53, 0.21, 0.37)

Table 4: Combination of Tables 1 and 2.

G1 G2 G3 G4 Tg1
Tg2

Tg3

T1

0.61,

0.2,

0.43
⎛⎜⎝ ⎞⎟⎠

0.54,

0.35,

0.63
⎛⎜⎝ ⎞⎟⎠

0.81,

0.62,

0.11
⎛⎜⎝ ⎞⎟⎠

0.66,

0.33,

0.18
⎛⎜⎝ ⎞⎟⎠

0.71,

0.30,

0.40
⎛⎜⎝ ⎞⎟⎠

0.58,

0.21,

0.79
⎛⎜⎝ ⎞⎟⎠

0.49,

0.52,

0.43
⎛⎜⎝ ⎞⎟⎠

T2

0.74,

0.32,

0.14
⎛⎜⎝ ⎞⎟⎠

0.26,

0.17,

0.26
⎛⎜⎝ ⎞⎟⎠

0.77,

0.23,

0.55
⎛⎜⎝ ⎞⎟⎠

0.57,

0.34,

0.61
⎛⎜⎝ ⎞⎟⎠

0.74,

0.41,

0.25
⎛⎜⎝ ⎞⎟⎠

0.34,

0.24,

0.23
⎛⎜⎝ ⎞⎟⎠

0.44,

0.19,

0.28
⎛⎜⎝ ⎞⎟⎠

T3

0.41,

0.12,

0.75
⎛⎜⎝ ⎞⎟⎠

0.59,

0.29,

0.13
⎛⎜⎝ ⎞⎟⎠

0.56,

0.22,

0.36
⎛⎜⎝ ⎞⎟⎠

0.45,

0.14,

0.11
⎛⎜⎝ ⎞⎟⎠

0.32,

0.29,

0.69
⎛⎜⎝ ⎞⎟⎠

0.67,

0.35,

0.21
⎛⎜⎝ ⎞⎟⎠

0.56,

0.22,

0.36
⎛⎜⎝ ⎞⎟⎠

T4

0.83,

0.44,

0.35
⎛⎜⎝ ⎞⎟⎠

0.91,

0.12,

0.49
⎛⎜⎝ ⎞⎟⎠

0.63,

0.11,

0.27
⎛⎜⎝ ⎞⎟⎠

0.84,

0.36,

0.31
⎛⎜⎝ ⎞⎟⎠

0.78,

0.46,

0.39
⎛⎜⎝ ⎞⎟⎠

0.87,

0.13,

0.17
⎛⎜⎝ ⎞⎟⎠

0.53,

0.21,

0.37
⎛⎜⎝ ⎞⎟⎠

Table 5: Aggregated values by utilizing the GGTSFWG operator.

G1 G2 G3 G4 Tg1
Tg2

Tg3

T1

0.6734,

0.1857,

0.4003
⎛⎜⎝ ⎞⎟⎠

0.7816,

0.2509,

0.4773
⎛⎜⎝ ⎞⎟⎠

0.7766,

0.6532,

0.1169
⎛⎜⎝ ⎞⎟⎠

0.5144,

0.3846,

0.2104
⎛⎜⎝ ⎞⎟⎠

0.7347,

0.2898,

0.3866
⎛⎜⎝ ⎞⎟⎠

0.6125,

0.2028,

0.7705
⎛⎜⎝ ⎞⎟⎠

0.4248,

0.5499,

0.4557
⎛⎜⎝ ⎞⎟⎠

T2

0.7859,

0.2974,

0.1300
⎛⎜⎝ ⎞⎟⎠

0.5834,

0.1253,

0.1919
⎛⎜⎝ ⎞⎟⎠

0.7308,

0.2443,

0.5811
⎛⎜⎝ ⎞⎟⎠

0.4068,

0.3961,

0.6963
⎛⎜⎝ ⎞⎟⎠

0.7626,

0.3963,

0.2414
⎛⎜⎝ ⎞⎟⎠

0.3787,

0.2318,

0.2221
⎛⎜⎝ ⎞⎟⎠

0.3734,

0.2019,

0.2973
⎛⎜⎝ ⎞⎟⎠

T3

0.4900,

0.1114,

0.7080
⎛⎜⎝ ⎞⎟⎠

0.8097,

0.2142,

0.0958
⎛⎜⎝ ⎞⎟⎠

0.4987,

0.2337,

0.3820
⎛⎜⎝ ⎞⎟⎠

0.2787,

0.1637,

0.1286
⎛⎜⎝ ⎞⎟⎠

0.3586,

0.2801,

0.6703
⎛⎜⎝ ⎞⎟⎠

0.6974,

0.3382,

0.2028
⎛⎜⎝ ⎞⎟⎠

0.4987,

0.2337,

0.3820
⎛⎜⎝ ⎞⎟⎠

T4

0.8615,

0.4097,

0.3254
⎛⎜⎝ ⎞⎟⎠

0.9630,

0.0884,

0.3655
⎛⎜⎝ ⎞⎟⎠

0.5744,

0.1169,

0.2867
⎛⎜⎝ ⎞⎟⎠

0.7566,

0.4191,

0.3615
⎛⎜⎝ ⎞⎟⎠

0.7996,

0.4449,

0.3769
⎛⎜⎝ ⎞⎟⎠

0.8822,

0.1255,

0.1642
⎛⎜⎝ ⎞⎟⎠

0.4668,

0.2231,

0.3925
⎛⎜⎝ ⎞⎟⎠

Table 6: Score values.

G1 G2 G3 G4 Tg1
Tg2

Tg3

T1 0.2348 0.3513 0.1880 0.0699 0.3145 − 0.2360 − 0.1842
T2 0.4570 0.1896 0.1795 − 0.3324 0.3672 0.0309 0.0175
T3 − 0.2386 0.5202 0.0555 0.0151 − 0.2771 0.2922 0.0555
T4 0.5362 0.8435 0.1643 0.3122 0.3697 0.6802 0.0301
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0.4

1 − 0.62 
0.3

1 − 0.32 
0.1

1 − 0.62 
0.2



� 0.7393.

(46)

Now we have

GTSFWG 〈T1, T2, . . . , Tm〉, Tg  � (0.6374, 0.0, 0.7393).

(47)

8. Conclusion

In this manuscript, it is pointed out that existing geo-
metric aggregation operators fail when the opinion of a
senior expert is also involved with moderator’s opinion
because all decision makers are not much familiar with
alternatives that is why an opinion of expert is necessary.
In it, a generalized parameter is defined for TSFSs. +en,
by using this, generalized TSF geometric operators are
proposed. +en, these operators are extended to group-
generalized TSF geometric operators which deal with a
group of experts’ opinion.+en, an algorithm is developed
to solve MADM problem. +e validity of defined oper-
ators is checked by a numerical example. A comparative
analysis is also constructed in which the defined operators
are reduced to other fuzzy structures such as SFSs, PFSs,
PyFSs, and IFSs by using some conditions. An example is
also solved by using proposed operators in which infor-
mation is given in the form of PyFS. In future, it would be
interesting to extend the concept generalized and group-
generalized parameter to other aggregation operators and
other structures like soft sets.
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In this paper, we introduce types of relations on complex fuzzy sets such as the complex fuzzy (CF) inverse relation, complex fuzzy
reflexive relation, complex fuzzy symmetric relation, complex fuzzy antisymmetric relation, complex fuzzy transitive relation,
complex fuzzy irreflexive relation, complex fuzzy asymmetric relation, complex fuzzy equivalence relation, and complex fuzzy-
order relation. We study some basic results and particular examples of these relations. Moreover, we discuss the applications of
complex fuzzy relations in Future Commission Market (FCM). We show that the introduction of CF relations to applications of
FCMs can give a significant method for describing the temporal dependence between parameters of a Future CommissionMarket.

1. Introduction

Models reflecting the phenomena of real life with just
choices of truth and falsehood are not enough to reflect the
true reality of the problems. ,e explanation for this is that
the models have many complications, which is why a
framework needs to be built to deal with the models’ ill-
defined situations.,ere are now two ways to deal with these
kinds of situations, one is to find the problems’ numerical
solutions and the other is to create a numerical model. We
get numerical solutions to the problems in both cases. ,e
second is about the fuzzy set theory, which includes the
theory of probability, the theory of fuzzy soft sets, the theory
of intuitionist fuzzy sets, and most specifically, the theory of
neutrosophic sets.,e later theory for dealing with problems
involving complexities is more generalized. One of the ac-
ceptable examples of these theories is the fuzzy differential
equations theory, which is more generalized than the dif-
ferential equations to solve problems of everyday life with
greater precision.

Zadeh [1] gave the description of a fuzzy set (FS) in 1965,
which is similar to a probability function. For models of real-
world problems in different branches of science, a fuzzy set

plays a vital role. Fuzzy set theory has many applications in
operational research, decision making, medicine, engi-
neering design, psychology, quantum physics, image pro-
cessing, mathematical chemistry, biological classification,
thermodynamics, economics, and nonequilibrium. Dubois
et al. in [2] discussed the applications of fuzzy sets in ap-
proximate reasoning and information systems, pattern
recognition and image processing, decision analysis, oper-
ation research and statistics, and modeling and control of
systems. Ngan et al. in [3] provided two numerical examples
of applying the complex t-norm and t-conorm to multi-
criteria decision making in the context of medicine-related
problems using medical datasets. Nisren et al. introduced the
concept of complexmultifuzzy soft expert set (CMFSES) and
discussed the application of a complex multifuzzy expert soft
set in decision-making problems [4]. Poodeh studied and
evaluated a randomized-learning approach to train this
neurofuzzy system and proposed a machine-learning al-
gorithm, which is designed for fast training of a compact,
accurate forecasting model [5]. Singh in [6] introduced a
method to provide an effective way to analyze the uncer-
tainty and vagueness in a complex (or dynamic) dataset
using a complex vague concept lattice. Xindong et al. in [7]
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discussed the relationship between the distance measure, the
similarity measure, the entropy, and the inclusion measure
for Pythagorean fuzzy sets. ,ey showed the efficiency of the
proposed similarity measure in pattern recognition, clus-
tering analysis, and medical diagnosis. Moreover, Xindong
et al. in [8] studied deeper insights into the decision-making
problem based on the interval-valued fuzzy soft set. Xindong
et al. provided two novel algorithms in decision-making
problems under a Pythagorean fuzzy environment [9]. Naz
et al. developed a new decision-making approach based on
graph theory to deal with the multiattribute decision-
making problems. ,ey utilized the numerical examples
concerning the energy project selection and software eval-
uation to show the detailed implementation procedure and
reliability of our method in solving multiattribute decision-
making problems under hesitant fuzzy, interval-valued
hesitant fuzzy, and a hesitant triangular fuzzy environment
[10].

Ramot et al. in [11] first gave the concept of a complex
fuzzy set (CFS). ,e generalization of a real number set
introduced by Gauss in 1795 is the complex number set.
Accordingly, a CFS is the extension of a fuzzy set, the range
of which extends from a closed interval [0, 1] to a disc of
radius one in a complex plane. ,e membership function of
CFS C is denoted as λC(u) and defined on the universal U as
for any u ∈ U a complex value in the disc of radius one in a
complex plane. ,us, all values of λC(u) exist inside a circle
of radius one in a complex plane and λC(u) � aC(u)eipC(u),
where i �

���
−1

√
. ,e term pC(u) is said to be phase term,

aC(u) is said to be an amplitude term, and both of these are
real valued with aC(u) ∈ [0, 1]. ,e CFS C is represented as
(u, λC(u)) | u ∈ U .

Imprecise, inconsistent, and incomplete knowledge of
the periodic nature cannot be treated by fuzzy sets and
intuitionistic fuzzy sets. ,ese theories refer to various fields
of research, but in both sets, there is one significant
weakness, that is, a lack of capacity to discuss two-dimen-
sional phenomena. Ramot presented a complex fuzzy set to
address this challenge. ,e phase term of the CFS plays a
crucial role in defining the functionality of the complex fuzzy
set model. ,is term differentiates a model of the CFS from
all other models available in the literature. ,e ability of a
complex fuzzy set to depict two-dimensional phenomena
makes it superior to the handling of vague and intuitive
details prevalent in time-periodic phenomena. Complex
fuzzy sets, their classes, and logic play an important role in
applications including periodic event prediction and ad-
vanced control systems. A complex fuzzy set is somewhat
similar to a Fourier transform; in reality, it is the particular
form of the Fourier transformation by limiting the range of
the Fourier transformation to a complex disc unit. Fourier
transform has a lot of applications in various fields such as in
signals and systems, communication, astronomy, geology,
and optics. A complex fuzzy set can also be used in models
such as the Fourier transform. Several other real-life phe-
nomena are vague and cannot be modeled using one-di-
mensional variables. For example, objects can be represented
as a collection of measurements in pattern recognition and
are seen as vectors in a multidimensional space. ,ese

multidimensional variables cannot be expressed through a
simple combination of variables, particularly the consider-
ation of fuzzy sets. ,ese types of sets can be expressed via
complex classes. For periodic phenomena, a complex fuzzy
set is very useful. Ramot et al. proposed that the intermittent
problems or repeated-problem phenomenon be more pre-
cisely modeled using the phase term of the complex fuzzy set
membership, such as describing the effect of two countries’
financial measures on each other over time. He suggested
that signal processing is yet another attractive area of op-
eration for a complex fuzzy set. Xueling et al. in [12] pro-
posed the model for identifying the reference signal out of
largely interested signals by using complex fuzzy sets. In
addition, it is used to convey solar activity (solar maximum
and solar minimum) by means of the average sunspot
number [11]. Dick suggested that one of the beneficial
applications of complex fuzzy sets is to use it to represent
relatively periodic behavioral phenomena [13]. Traffic
congestions in a big city are aperiodic phenomena that never
repeat themselves. Complex fuzzy logic can also be used to
solve those forms of issues more easily and reliably than
fuzzy logic. Akram et al. [14] introduced the concept of
competition graphs under a complex fuzzy environment.
,ey described an application in the ecosystem. Moreover,
Akram et al. [15] discussed the complex Pythagorean Dombi
fuzzy graph (CPDFG). ,ey utilized CPDFAA and
CPDFGA operators in solving a decision-making numerical
example. Akram et al. [16] gave the notion of the complex
Pythagorean fuzzy planar graph (CPFPG), and an extension
of a Pythagorean fuzzy planar graph is presented to study the
planarity. Moreover, Akram et al. proposed a new graph, a
complex Pythagorean fuzzy competition graph by com-
bining the complex Pythagorean fuzzy information with a
competition graph. ,ey also investigate the two extensions
of complex Pythagorean fuzzy competition graphs, namely,
complex Pythagorean fuzzy k-competition and complex
Pythagorean fuzzy p-competition graphs [17].

,e idea of relations is one of the most important no-
tions in pure and applied science. Science has been defined
as the discovery of the relation between events, objects, and
states. Relations are associations that remain at the very core
of the majority of science and engineering methodological
approaches. Fuzzy relations in fuzzy theory are important
concepts and have been commonly used in many fields, such
as fuzzy control, fuzzy clustering, and uncertainty reasoning.
In fuzzy diagnosis and fuzzy modeling, they also play a
significant role. How to estimate and compare them is a
significant issue when fuzzy relations are used in practice.
Some researchers have carried out ambiguous measure-
ments of fuzzy relations.

Klir studied the crisp relations in [18]. A crisp relation
shows the existence or absence of association, intercon-
nectedness, or interaction between the parameters. ,e
relation between two sets is denoted by R(M, N), and its
membership function is represented by λR(m, n), where
m ∈M and n ∈ N. ,e membership function λR(m, n) has
two values either 1 or 0.,e generalization of a crisp relation
is the fuzzy relation. ,e fuzzy relation was discussed by
Mendel in [19]. Fuzzy relations show a degree of the
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presence or absence of association, interaction, or inter-
connectedness between the elements of two or more fuzzy
sets. A fuzzy relation between two fuzzy sets M and N is
denoted by R(M, N), and its membership function is rep-
resented by λR(m, n), where m ∈M and n ∈ N. All the
values of λR(m, n) ∈ [0, 1]. Fuzzy relations play a vital role in
a fuzzy logic system. Triapathi et al. in [20] used the complex
fuzzy relations to obtain diagnostic conclusions about dia-
betes by restricting grade values to symptoms of a disease
from 0 to 1. Majid in [21] discussed some important
compositions of fuzzy relations for predicting scores in
cricket. Moreover, it studied the restoration and the iden-
tification of the causes (diagnosis) through the observed
effects (symptoms) on the basis of fuzzy relations.

In crisp relations and fuzzy relations, there is one
significant weakness, which is a lack of capacity to ex-
amine two-dimensional phenomena. Ramot discussed the
complex fuzzy relations in [11], which is the generaliza-
tion of crisp relations and fuzzy relations. Complex fuzzy
relations represent both the degree of the presence or
absence of association, interaction, or interconnectedness
and the phase of association, interaction, or intercon-
nectedness between the elements of two or more crisp sets.
For any two crisp sets M and N, the complex fuzzy re-
lation is denoted by R(M, N). ,e relation R(M, N) may
be represented as the set of ordered pairs R(M,

N) � (m, n), λR(m, n)/(m, n)) ∈ tMn × qN . ,e mem-
bership function of a complex fuzzy relation is denoted by
λR(m, n), and all its values lie within the unit circle in the
complex plane. Ramot et al. in [11] discussed the appli-
cations of complex fuzzy relations in Future Commission
Merchant.

,e purpose of this article is two-fold. ,e first half aims
to present the theoretical foundations of the types of
complex fuzzy relations. In any field of mathematics, we
have needed such relations to solve problems. We can solve
lots of problems with the help of these relations easily. ,e
second half aims to present these theoretical foundations
and key techniques in Future Commission Market, decision
making, and the principle of the types of complex fuzzy
relations in a coherent manner. ,e purpose of these in-
novative concepts is to provide a new approach with useful
mathematical tools to address the fundamental problem of
decision making (FCM problem). ,e generality of these
new concepts is given special importance, illustrating how
many interesting uncertainty problems can be formulated
easily. ,ese applied contexts provide solid evidence of the
wide applications of the complex fuzzy relation approach to
the model. ,is article will stimulate the interest in types of
complex fuzzy relations and their application in various
fields of science.

Now in this paper, we define some types of complex
fuzzy relations such as the complex fuzzy inverse relation,
complex fuzzy reflexive relation, complex fuzzy symmetric
relation, complex fuzzy antisymmetric relation, complex
fuzzy transitive relation, complex fuzzy irreflexive relation,
complex fuzzy asymmetric relation, complex fuzzy equiv-
alence relation, complex fuzzy-order relation, and complex
fuzzy equivalence class and discuss the particular examples

of these relations. We also study some basic results.
Moreover, we discuss the applications of complex fuzzy
relations in Future Commission Merchant.

2. Preliminaries

Wewill discuss here the types of complex fuzzy relations and
also discuss particular examples of these relations.

Definition 1 (See [11]). A CFS S, defined on a universal set U,
is represented by a grade value λC(u) whose codomain is the
disc of the radius on in the complex plane. Mathematically,
the grade value of CFS C can be represented by λC(u) �

aC(u)eipC(u) where aC(u) and pC(u) are known as an am-
plitude term and phase term, respectively. 2ese two terms are
real valued and aC(u) ∈ [0, 1].

Mathematically, CFS can be expressed as a set of ordered
pairs given by

C � u; λC(u)( : u ∈ U . (1)

Definition 2 (See [22]). Let Xm, m � 1, 2, 3, . . . , M be M CFS
defined on U and λCm

(u) � aCm
(u)eipCm

(u) their membership
functions. 2e complex fuzzy Cartesian product of Cm

denoted by C1 × C2 × C3 × · · · × Cm is specified by a function

λC1×C2×C3×···×Cm
(u) � aC1×C2×C3×···×Cm

(u)e
ipC1×C2×C3×···×Cm

(u)
,

� min aC1
u1( , aC2

u2( , . . . , aCm


um( e
imin pC1 u1( ),pC2 u2( ),...,pCm

um( ) 
.

(2)

Definition 3 (See [11]). For any two crisps sets X and Y, the
fuzzy relation R(X, Y) is a fuzzy subset of the product space
X × Y. 2e grade value of the fuzzy relation is represented by
λX×Y(x, y), where x ∈ X and y ∈ Y. All the values of grade
value lie in the closed interval [0, 1].

,e fuzzy relation may be represented as the set of
ordered pairs

R(X, Y) �
(x, y), λX×Y(x, y))

(x, y)
∈ X × Y . (3)

Definition 4 (See [11]). For any two crisp sets X and Y, the
complex fuzzy relation R(X, Y) is a complex fuzzy subset of
the product space X × Y. 2e grade value of the complex fuzzy
relation is represented by λX×Y(x, y), where x ∈ X and y ∈ Y.
All the values of the grade value of the complex fuzzy relation
lie in unit disc in a complex plane.

,e complex fuzzy relation may be represented as the set
of ordered pairs:

R(X, Y) � G �
(x, y), λX×Y(x, y))

(x, y)
∈ X × Y , (4)

where
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λX×Y(x, y) � min aX(x), aX(y)( 
e

imin pX(x),pY(y)( )

(x, y)
. (5)

Example 1. For any complex fuzzy set
C � (0.8eiπ/1 + 1ei2π)/2, the product space X × X is

C × C �
0.8e

iπ

(1, 1)
+
0.8e

iπ

(1, 2)
+
0.8e

iπ

(2, 1)
+
1e

i2π

(2, 2)
. (6)

So, the complex fuzzy relation on C is subset of C × C is
given by

R(C, C) � G �
0.8e

iπ

(1, 1)
+
0.8e

iπ

(1, 2)
+
1e

i2π

(2, 2)
. (7)

3. Types of Complex Fuzzy Relations

Definition 5. If G is a complex fuzzy relation on a complex
fuzzy set C, then the inverse relation G−1 in C is defined by

G
−1

�
λC×C(v, u)

λC×C(u, v)
∈ G . (8)

Definition 6. If G is a complex fuzzy relation on a complex
fuzzy set C, G is said to be complex fuzzy reflexive relation if
for all u ∈ U and λC(u) ∈ C⟹λC×C(u, u) ∈ G.

Example 2. For any complex fuzzy set
C � (0.4ei2π/1) + (1ei(π/2)/2) + (0.5eiπ/3) defined on any
universal set U � 1, 2, 3{ }, the product space C × C is

C × C �
0.4e

i2π

(1, 1)
+
0.4e

i(π/2)

(1, 2)
+
0.4e

iπ

(1, 3)
+
0.4e

i(π/2)

(2, 1)
+
1e

i(π/2)

(2, 2)

+
0.5e

i(π/2)

(2, 3)
+
0.4e

iπ

(3, 1)
+
0.5e

i(π/2)

(3, 2)
+
0.5e

iπ

(3, 3)
.

(9)

So, the complex fuzzy reflexive relation on C is subset of
C × C is given by

G �
0.4e

i2π

(1, 1)
+
1e

i(π/2)

(2, 2)
+
0.5e

iπ

(3, 3)
. (10)

Definition 7. If G is a complex fuzzy relation on a complex
fuzzy set C, G is said to be a complex fuzzy symmetric relation
if λC×C(u, v) ∈ G⟹λC×C(v, u) ∈ G.

Example 3. For any complex fuzzy set
C � (0.4ei2π/a) + (1ei(π/2)/b) + (0.5eiπ/c) defined on any
universal set U � a, b, c{ }, the product space C × C is

C × C �
0.4e

i2π

(a, a)
+
0.4e

i(π/2)

(a, b)
+
0.4e

iπ

(a, c)
+
0.4e

i(π/2)

(b, a)
+
1e

i(π/2)

(b, b)

+
0.5e

i(π/2)

(b, c)
+
0.4e

iπ

(c, a)
+
0.5e

i(π/2)

(c, b)
+
0.5e

iπ

(c, c)
.

(11)

So, the complex fuzzy symmetric relation on C is given
by

G �
0.4e

i2π

(a, a)
+
1e

i(π/2)

(b, b)
+
0.5e

iπ

(c, c)
+
0.4e

i(π/2)

(a, b)
+
0.4e

i(π/2)

(b, a)
. (12)

Definition 8. If G is a complex fuzzy relation on a complex
fuzzy set C, G is said to be a complex fuzzy antisymmetric
relation if λC×C(u, v) ∈ G and λC×C(v, u) ∈ G⟹λC×C(u, v)

� λC×C(v, u).

Example 4. For any complex fuzzy set
C � (0.5ei2π/x) + (1ei(π/2)/y) + (0eiπ/z) defined on any
universal set U � a, b, c{ }, the product space C × C is

C × C �
0.5e

i2π

(x, x)
+
0.5e

i(π/2)

(x, y)
+

0e
iπ

(x, z)
+
0.5e

i(π/2)

(y, x)
+
1e

i(π/2)

(y, y)

+
0e

i(π/2)

(y, z)
+

0e
iπ

(z, x)
+
0e

i(π/2)

(z, y)
+

0e
iπ

(z, z)
.

(13)

So, the complex fuzzy antisymmetric relation on C is
given by

G �
0.5e

i2π

(x, x)
+
1e

i(π/2)

(y, y)
+

0e
iπ

(z, z)
. (14)

Definition 9. If G is a complex fuzzy relation on a complex
fuzzy set C, G is said to be complex fuzzy transitive relation if
λC×C(u, v) ∈ G and λC×C(v, w) ∈ G⟹λC×C(u, w) ∈ G.

Example 5. For any complex fuzzy set
C � (0.5ei2π/x) + (1ei(π/2)/y) + (0eiπ/z) defined on any
universal set U � a, b, c{ }, the product space C × C is

C × C �
0.5e

i2π

(x, x)
+
0.5e

i(π/2)

(x, y)
+

0e
iπ

(x, z)
+
0.5e

i(π/2)

(y, x)
+
1e

i(π/2)

(y, y)

+
0e

i(π/2)

(y, z)
+

0e
iπ

(z, x)
+
0e

i(π/2)

(z, y)
+

0e
iπ

(z, z)
.

(15)

So, the complex fuzzy transitive relation on C is given by

G �
0.5e

i2π

(x, x)
+
1e

i(π/2)

(y, y)
+

0e
iπ

(z, z)
+
0.5e

i(π/2)

(x, y)
+

0e
iπ

(x, z)
. (16)

4 Journal of Mathematics



RE
TR
AC
TE
D

Definition 10. If G is a complex fuzzy relation on a complex
fuzzy set C, G is said to be a complex fuzzy irreflexive relation
if for all u ∈ U and λC(u) ∈ C⟹λC×C(u, u) ∉ G.

Example 6. For any complex fuzzy set
C � (0.4ei2π/1) + (1ei(π/2)/2) + (0.5eiπ/3) defined on any
universal set U � 1, 2, 3{ }, the product space C × C is

C × C �
0.4e

i2π

(1, 1)
+
0.4e

i(π/2)

(1, 2)
+
0.4e

iπ

(1, 3)
+
0.4e

i(π/2)

(2, 1)
+
1e

i(π/2)

(2, 2)

+
0.5e

i(π/2)

(2, 3)
+
0.4e

iπ

(3, 1)
+
0.5e

i(π/2)

(3, 2)
+
0.5e

iπ

(3, 3)
.

(17)

So, the complex fuzzy irreflexive relation on C is subset
of C × C is given by

G �
0.4e

i2π

(1, 1)
+
1e

i(π/2)

(2, 2)
+
0.4e

iπ

(1, 3)
+
0.4e

i(π/2)

(2, 1)
. (18)

Definition 11. If G is a complex fuzzy relation on a complex
fuzzy set C, G is said to be a complex fuzzy asymmetric re-
lation if λC×C(u, v) ∈ G⟹λC×C(v, u) ∉ G.

Example 7. For any complex fuzzy set
C � (0.4ei2π/a) + (1ei(π/2)/b) + (0.5eiπ/c) defined on any
universal set U � a, b, c{ }, the product space C × C is

C × C �
0.4e

i2π

(a, a)
+
0.4e

i(π/2)

(a, b)
+
0.4e

iπ

(a, c)
+
0.4e

i(π/2)

(b, a)
+
1e

i(π/2)

(b, b)

+
0.5e

i(π/2)

(b, c)
+
0.4e

iπ

(c, a)
+
0.5e

i(π/2)

(c, b)
+
0.5e

iπ

(c, c)
.

(19)

So, the complex fuzzy asymmetric relation on C is given
by

G �
0.4e

i2π

(a, a)
+
1e

i(π/2)

(b, b)
+
0.5e

iπ

(c, c)
+
0.4e

i(π/2)

(a, b)
. (20)

Definition 12. A relation G is said to be a complex fuzzy
equivalence relation if it satisfies the following conditions:

(i) G is reflexive
(ii) G is symmetric
(iii) G is transitive

Example 8. For any complex fuzzy set C � (0.8ei2π /u) +

(0.5ei(π/2)/v) + (0.2eiπ/v) defined on any universal set
U � 1, 2, 3{ }, the product space C × C is given by

C × C �
0.8e

i2π

(u, u)
+
0.5e

i(π/2)

(u, v)
+
0.2e

iπ

(u, w)
+
0.5e

i(π/2)

(v, u)
+
0.5e

i(π/2)

(v, v)

+
0.2e

i(π/2)

(v, w)
+
0.2e

iπ

(w, u)
+
0.2e

i(π/2)

(w, v)
+

0.2e
iπ

(w, w)
.

(21)

So, the complex fuzzy equivalence relation on C is given
by

G �
0.8e

i2π

(u, u)
+
0.5e

i(π/2)

(v, v)
+

0.2e
iπ

(w, w)
+
0.2e

i(π/2)

(v, w)
+
0.2e

i(π/2)

(w, v)
.

(22)

Definition 13. A relation G is said to be a complex fuzzy-
order relation if it satisfies the following conditions:

(i) G is reflexive
(ii) G is antisymmetric
(iii) G is transitive

Example 9. For any complex fuzzy set
C � (0.8ei2π/u) + (0.5ei(π/2)/v) + (0.2eiπ/v) defined on any
universal set U � 1, 2, 3{ }, the product space C × C is given by

C × C �
0.8e

i2π

(u, u)
+
0.5e

i(π/2)

(u, v)
+
0.2e

iπ

(u, w)
+
0.5e

i(π/2)

(v, u)
+
0.5e

i(π/2)

(v, v)

+
0.2e

i(π/2)

(v, w)
+
0.2e

iπ

(w, u)
+
0.2e

i(π/2)

(w, v)
+

0.2e
iπ

(w, w)
.

(23)

So, the complex fuzzy-order relation on C is given by

G �
0.8e

i2π

(u, u)
+
0.5e

i(π/2)

(v, v)
+

0.2e
iπ

(w, w)
+
0.5e

i(π/2)

(u, v)
+
0.2e

i(π/2)

(v, w)
.

(24)

Definition 14. Let C be a complex fuzzy set and G be a
complex fuzzy equivalence relation in C. If λC(u) ∈ C, then
the complex fuzzy equivalence class of λC(u) modulo G is the
set GλC(u) defined by

GλC(u) �
λC(v)

λC(v, u)
∈ G . (25)

Example 10. For any complex fuzzy set
C � (1ei1.2π/1) + (0.5eiπ/2) + (0ei(π/2)/3) defined on any
universal set U � 1, 2, 3{ }, the product space C × C is given by

C × C �
1e

i1.2π

(1, 1)
+
0.5e

iπ

(1, 2)
+
0e

i(π/2)

(1, 3)
+
0.5e

iπ

(2, 1)
+
0.5e

iπ

(2, 2)

+
0e

i(π/2)

(2, 3)
+
0e

i(π/2)

(3, 1)
+
0e

i(π/2)

(3, 2)
+
0e

i(π/2)

(3, 3)
.

(26)

Journal of Mathematics 5



RE
TR
AC
TE
D

Also, let

G �
1e

i1.2π

(1, 1)
+
0.5e

iπ

(2, 2)
+
0.5e

iπ

(2, 1)
+
0e

i(π/2)

(3, 2)
+
0e

i(π/2)

(3, 3)
, (27)

be the complex fuzzy relation in C. ,en, the complex fuzzy
equivalence class of λC(1) is given by

GλC(1) � λC(1), λC(2) . (28)

,e complex fuzzy equivalence class of λC(2) is given by

GλC(2) � λC(2), λC(3) . (29)

Also, the complex fuzzy equivalence class of λC(3) is
given by

GλC(3) � λC(3) . (30)

Definition 15. Let C be a complex fuzzy set and G be a
complex fuzzy relation in C. For any λC×C(u, v) ∈ G and
λC×C(v, w) ∈ G, λC×C(u, w) ∈ G°G for all u, v, w ∈ U (uni-
versal set). G°G is called the complex fuzzy composition
relations.

4. Main Results

Proposition 1. If G and H are symmetric relations in a
complex fuzzy set C, then G∩H is also a complex fuzzy
symmetric relation in C.

Proof. Suppose that G and H are complex fuzzy symmetric
relations in a complex fuzzy set C. Since G⊆C × C and
H⊆C × C, G∩H⊆C × C. ,erefore, G∩H is a complex
fuzzy relation in C.

Let λC×C(u, v) ∈ G∩H; then, λC×C(u, v) ∈ G and
λC×C(u, v) ∈ H. But, G and H are symmetric. ,erefore
λC×C(v, u) ∈ G and λC×C(v, u) ∈ H, so that
λC×C(v, u) ∈ G∩H. □

Proposition 2. Let G be a complex fuzzy relation in a
complex fuzzy set C; then, G is symmetric if G � G−1.

Proof. Suppose G is a complex fuzzy symmetric relation;
then,

λC×C(u, v) ∈ G⟺λC×C(v, u) ∈ G⟺λC×C(u, v) ∈ G
−1

.

(31)

,us,

G � G
−1

. (32)

Conversely, let G � G−1; then,

λC×C(u, v) ∈ G⟺λC×C(u, v) ∈ G
−1⟺λC×C(v, u) ∈ G.

(33)

,us, G is a complex fuzzy symmetric relation. □

Proposition 3. Let G be a complex fuzzy relation in a
complex fuzzy set C; then, G is transitive if G°G⊆G.

Proof. Suppose G is transitive. Assume that
λC×C(u, w) ∈ G°G. ,en, there exists v ∈ U such that
λC×C(u, v) ∈ G and λC×C(v, w) ∈ G. Since G is complex fuzzy
transitive relation and, hence, by the transitive property,
λC×C(u, w) ∈ G.

,us,

G°G⊆G. (34)

Conversely, suppose that G°G⊆G. ,en, λC×C(u, v) ∈ G

and λC×C(v, w) ∈ G⟺λC×C(u, w) ∈ G°G⊆G. ,us,
λC×C(u, w) ∈ G, and hence, G is transitive. □

Proposition 4. If G is a complex fuzzy equivalence relation
in a complex fuzzy set C, then G°G � G.

Proof. Let λC×C(u, v) ∈ G°G; then, there exists w ∈ U such
that λC×C(u, w) ∈ G and λC×C(w, v) ∈ G, but G is a complex
fuzzy equivalence relation in C, so G is a complex fuzzy
transitive relation. ,erefore, by the transitive property,
λC×C(u, v) ∈ G. ,us,

G°G⊆G. (35)

Conversely, assume that λC×C(u, v) ∈ G. Since G is a
complex fuzzy reflexive relation, for
v ∈ U⟹λC×C(v, v) ∈ G. Now, λC×C(u, v) ∈ G and
λC×C(v, v) ∈ G. Since G is a complex fuzzy transitive relation,
so by the transitive property, λC×C(u, v) ∈ G°G. ,us,

G⊆G°G. (36)

From (35) and (36), we have

G � G°G. (37)
□

Proposition 5. 2e inverse of a complex fuzzy-order relation
in a complex fuzzy set C is also a complex fuzzy-order relation
in C.

Proof. Let G be a complex fuzzy-order relation in a complex
fuzzy set C. To show that G−1 is also a complex fuzzy-order
relation in C, we have to satisfy the three conditions of a
complex fuzzy-order relation.

Since G is a complex fuzzy-order relation, for any
u ∈ U⟹λC×C(u, u) ∈ G⟹λC×C(u, u) ∈ G−1. ,us, G−1 is a
complex fuzzy reflexive relation.

Let λC×C(u, v) ∈ G−1 and λC×C(v, u) ∈ G−1. ,en,
λC×C(v, u) ∈ G and λC×C(u, v) ∈ G, but G is a complex fuzzy-
order relation in C. ,erefore, λC×C(u, v) � λC×C(v, u), and
hence, G−1 is antisymmetric.

Assume that λC×C(u, v) ∈ G−1 and λC×C(v, w) ∈ G−1.
,en, λC×C(v, u) ∈ G and λC×C(w, v) ∈ G. Since G is a
complex fuzzy transitive relation. By the transitive property,
λC×C(w, u) ∈ G. ,us, λC×C(u, w) ∈ G−1, and hence, G−1 is a
complex fuzzy transitive relation in C. Since G−1 satisfies all
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the properties of a complex fuzzy-order relation, G−1 is a
complex fuzzy-order relation. □

Theorem 1. Let G be any complex fuzzy equivalence relation
in a complex fuzzy set C. 2en, λC×C(v, u) ∈ G if and only if
GλC(u) � GλC(v).

Proof. Suppose that λC×C(u, v) ∈ G. Let λC(w) ∈ GλC(u).
,en, λC×C(w, u) ∈ G. Now, λC×C(w, u) ∈ G and
λC×C(u, v) ∈ G. But, since G is a complex fuzzy equivalence
relation in a complex fuzzy set C, by the transitive property,
λC×C(w, v) ∈ G, so that λC(w) ∈ GλC(v). ,us,

GλC(u)⊆GλC(v). (38)

Let λC(w) ∈ GλC(v); then, λC×C(w, v) ∈ G and also
λC×C(u, v) ∈ G. Since G is a complex fuzzy symmetric re-
lation, so by the symmetric property, λC×C(v, u) ∈ G. Also, G
is a complex fuzzy equivalence relation. ,erefore, by the
transitive property, λC×C(w, u) ∈ G. ,us, λC(w) ∈ GλC(u),
and hence,

GλC(v)⊆GλC(u). (39)

From (38) and (39), we have

GλC(v) � GλC(u). (40)

Conversely, suppose that GλC(v) � GλC(u). Since G is a
complex fuzzy equivalence relation, so by the reflexive
property, λC×C(u, u) ∈ G. By definition of a complex fuzzy
equivalence class of modulo G,

λC(u) ∈ GλC(u) � GλC(v)λC(u) ∈ GλC(v). (41)

Hence, λC×C(u, v) ∈ G. □

5. Applications

In this section, we will discuss the application of complex
fuzzy relations in Future Commission Market.

We are going to discuss a real-life application of newly
defined types/properties of complex fuzzy relations. Ramot
et al. in [11] discussed the application of the complex fuzzy
relation in Future Commission Merchant. ,e physical
meaning of the Ramot and proposed model is the same, but
here, we will show that how the types of complex fuzzy
relations play a significant role in real-life applications.

5.1. Decision-Making Method. Let U be a collection of fi-
nancial indicators or indexes of any country. Possible
components of this collection are import, export, agricul-
ture, unemployment, and development rate, that is, U �

import, export, agriculture,

unemployment, devlopment rate}. Let

C � λC(import), λC(export), λC(agriculture),

λC(unemployment), λC(development rate)
(42)

represent the complex fuzzy sets and λC×C(x, y) represent
the membership function of the complex fuzzy relations.

,e membership function λC×C(x, y) is complex-valued,
with a phase term and amplitude term. ,e amplitude term
shows the grade of influence of one parameter on another
parameter. ,e amplitude term with a value close to zero
shows more influence, while a value close to zero shows a
small influence. ,e phase term refers to the “phase” of
control or time lag that characterizes one parameter’s effect
on another parameter.

Consider, for example, we find the relation set G for the
complex fuzzy set C, that is, the cross product of C.

G � λC×C(import, import), λC×C(import, export), λC×C(import, agriculture), λC×C(import, unemployment),

λC×C(import, development rate),

λC×C(export, import), λC×C(export, export), λC×C(export, agriculture),

λC×C(export, unemployment), λC×C(export, development rate),

λC×C(agriculture, import), λC×C(agriculture, export),

λC×C(agriculture, agriculture), λC×C(agriculture, unemployment),

λC×C(agriculture, development rate), λC×C(unemployment, import),

λC×C(unemployment, export), λC×C(unemployment, agriculture),

λC×C(unemployment, unemployment), λC×C(unemployment, development rate),

λC×C(development rate, import), λC×C(development rate, export),

λC×C(development rate, agriculture), λC×C(development rate, unemployment),

λC×C(development rate, development rate)}.

(43)

,e relation G is an equivalence relation, that is, G is a
complex fuzzy reflexive, complex fuzzy symmetric, and complex
fuzzy transitive relation. From this relation, we can easily de-
termine the influence of one parameter on another parameter.
For example, we take λC×C(import, agriculture)�(min

aC(import),aC (agriculture)} eimin pC(import),pC(agriculture){ }/
(import, agriculture)).

,e min aC (import), aC(agriculture)} shows the degree
of influence of import on agriculture or agriculture on
import of a country with respect to time.
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min pC(import), pC(agriculture) . (44)

,is means that the degree of influence depends on the
min value of the parameter. Moreover, if we know the in-
fluence of import on agriculture and agriculture on devel-
opment rate, then by the complex fuzzy transitive relation,
we can determine the influence of import on the develop-
ment rate. Similarly, we have to find the influence of each
parameter on the other. ,e more significant relation is the
complex fuzzy transitive relation because if we know the
degree of influence of the first parameter on the second
parameter and second parameter on the third parameter,
then by the complex fuzzy transitive relation, we can find the

degree of influence of the first parameter on the third pa-
rameter. Moreover, the complex fuzzy symmetric relation
shows that the degree of influence of the first parameter on
the second parameter and the second parameter on the first
parameter is the same.

Example 11. Consider a complex fuzzy set

C �
0.4e

iπ

development rate
+

0.8e
i(π/2)

agriculture
+
0.2e

i2π

export
 . (45)

,en, the relation G on C × C is

G � C × C �
min 0.4, 0.4{ }e

imin π,π{ }

(development rate, development rate)
+

min 0.4, 0.8{ }e
imin π,(π/2){ }

(development rate, dgriculture)
+

min 0.4, 0.2{ }e
imin π,2π{ }

(development rate, export)
+

min 0.8, 0.4{ }e
imin (π/2),π{ }

(agriculture, development rate)
+

min 0.8, 0.8{ }e
imin (π/2),(π/2){ }

(agriculture, agriculture)
+

min 0.8, 0.2{ }e
imin π/2,t2nπ{ }

(agriculture, export)
+

min 0.2, 0.4{ }e
imin 2π,π{ }

(export, development rate)
+

min 0.2, 0.8{ }e
imin 2π,(π/2){ }

(export, agriculture)
+

min 0.2, 0.2{ }e
imin (π/2),π{ }

(export, export)
,

G � C × C �
0.4e

iπ

(development rate, development rate)
+

0.4, e
i(π/2)

(development rate, dgriculture)
+

0.2e
iπ

(development rate, export)

+
0.4e

i(π/2)

(agriculture, development rate)
+

0.8e
i(π/2)

(agriculture, agriculture)

+
0.2e

i(π/2)

(agriculture, export)
+

0.2e
iπ

(export, development rate)

+
0.2e

i(π/2)

(export, agriculture, )
+

0.2e
i(π/2)

(export, export)
.

(46)
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From the abovementioned relation G (complex fuzzy
equivalence relation), we can determine the influence of the
development rate, agriculture, and export on each other. For
example,

λC×C(agriculture, development rate) � 0.4e
i(π/2) ∈ G.

(47)

Here, 0.4 shows the degree of influence of agriculture on
the development rate with respect to half a month. More-
over, the membership function λC×C(agriculture, export),
that is,

λC×C(agriculture, export) � 0.2e
i(π/2) ∈ G, (48)

shows that the degree of influence of agriculture on export is
0.2 with respect to the half a month.

If we compare the influence of agriculture on the de-
velopment rate and export, we find that the degree of in-
fluence of agriculture on export is less than the degree of
influence on the development rate.

From the abovementioned relation G, we have the same
degree of influence of agriculture on the development rate
and the development rate on agriculture.

Moreover, if we have the degree of influence of agri-
culture on the development rate and the degree of influence
of the development rate on export, then by complex fuzzy
transitive relations, we can obtain the degree of influence of
agriculture on export.

In the second example, we will discuss the degree of
influence of American financial indexes on China’s financial
indexes and China’s financial indexes on Saudi Arabia’s
financial indexes.

Example 12. Let C1, C2, and C3 represent the set of America,
China, and Saudi Arabia’s financial indexes. A possible
collection of these sets are import, export, growth rate, interest
rate, and unemployment rate. 2ey are all complex-valued
functions. Let the complex fuzzy relation λC1×C2

(x, y) rep-
resent the relation of influence of American financial indexes
on China financial indexes and the complex fuzzy relation
λC2×C3

(x, y) represent the relation of influence of China fi-
nancial indexes on Saudi Arabia financial indexes, where x, y

represent any two parameters.
Consider

C1 � λC1
(import), λC1

(export), λC1
(growth rate), λC1

(interest rate)λC1
(unemployment rate) ,

C2 � λC2
(import), λC2

(export), λC2
(growth rate), λC2

(interest rate)λC2
(unemployment rate) ,

C3 � λC3
(import), λC3

(export), λC3
(growth rate), λC3

(interest rate)λC3
(unemployment rate) .

(49)

Now, the complex fuzzy relationG1 betweenC1 andC2 is
given by

G1 � C1 × C2 � λC1×C2
(import, import), λC1×C2

(import, export),

λC1×C2
(import, growth rate), λC1×C2

(import, interest rate),

λC1×C2
(import, unemployment rate), λC1×C2

(export, import),

λC1×C2
(export, export), λC1×C2

(export, growth rate),

λC1×C2
(export, interest rate), λC1×C2

(export, unemployment rate),

λC1×C2
(growth rate, import), λC1×C2

(growth rate, export),

λC1×C2
(growth rate, growth rate), λC1×C2

(growth rate, interest rate),

λC1×C2
(growth rate, unemployment rate), λC1×C2

(interest rate, import),

λC1×C2
(interest rate, export), λC1×C2

(interest rate, growth rate),

λC1×C2
(interest rate, interest rate), λC1×C2

(interest rate, unemployment rate),

λC1×C2
(unemployment rate, import), λC1×C2

(unemployment rate, export),

λC1×C2
(unemployment rate, growth rate), λC1×C2

(unemployment rate, interest rate),

λC1×C2
(unemployment rate, unemployment rate).

(50)
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,e relation G1 shows the relation of influence of
American financial indexes on China financial indexes.

,e complex fuzzy relation between C2 and C3 is given
by

G2 � C2 × C3 � λC2×C3
(import, import), λC2×C3

(import, export),

λC2×C3
(import, growth rate), λC2×C3

(import, interest rate),

λC2×C3
(import, unemployment rate), λC2×C3

(export, import),

λC2×C3
(export, export), λC2×C3

(export, growth rate),

λC2×C3
(export, interest rate), λC2×C3

(export, unemployment rate),

λC2×C3
(growth rate, import), λC2×C3

(growth rate, export),

λC2×C3
(growth rate, growth rate), λC2×C3

(growth rate, interest rate),

λC2×C3
(growth rate, unemployment rate), λC2×C3

(interest rate, import),

λC2×C3
(interest rate, export), λC2×C3

(interest rate, growth rate),

λC2×C3
(interest rate, interest rate), λC2×C3

(interest rate, unemployment rate),

λC2×C3
(unemployment rate, import), λC2×C3

(unemployment rate, export),

λC2×C3
(unemployment rate, growth rate), λC2×C3

(unemployment rate, interest rate),

λC2×C3
(unemployment rate, unemployment rate).

(51)

,e relation G2 represents the relation of influence of
China’s financial indexes on Saudi Arabia’s financial
indexes.

From relation G1 and G2, we have the relation of in-
fluence of American financial indexes on China’s financial
indexes and China financial indexes on Saudi Arabia

financial indexes. By the complex fuzzy composition rela-
tion, we can find the relation of the influence of American
financial indexes on Saudi Arabia’s financial indexes.

,e relation G represents the relation of influence of
American financial indexes on Saudi Arabia financial in-
dices, that is,

G1 � C1 × C3 � λC1×C3
(import, import), λC1×C3

(import, export),

λC1×C3
(import, growth rate), λC1×C3

(import, interest rate),

λC1×C3
(import, unemployment rate), λC1×C3

(export, import),

λC1×C3
(export, export), λC1×C3

(export, growth rate),

λC1×C3
(export, interest rate), λC1×C3

(export, unemployment rate),

λC1×C3
(growth rate, import), λC1×C3

(growth rate, export),

λC1×C3
(growth rate, growth rate), λC1×C3

(growth rate, interest rate),

λC1×C3
(growth rate, unemployment rate), λC1×C3

(interest rate, import),

λC1×C3
(interest rate, export), λC1×C3

(interest rate, growth rate),

λC1×C3
(interest rate, interest rate), λC1×C3

(interest rate, unemployment rate),

λC1×C3
(unemployment rate, import), λC1×C3

(unemployment rate, export),

λC1×C3
(unemployment rate, growth rate), λC1×C3

(unemployment rate, interest rate),

λC1×C3
(unemployment rate, unemployment rate).

(52)

For example, the membership function λC1×C2
(import,

export) ∈G1 shows the degree of influence of American
import on a China export and the membership function

λC2×C3
(export, growth rate) ∈G2 shows the degree of influ-

ence of China export on a Saudi Arabia growth rate. By the
complex fuzzy composition relation of these two relations,
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we have the membership function λC1×C3
(import, growth

rate)∈∈G, which is more significant and gives the degree of
influence of American import on the Saudi Arabia growth
rate.

Moreover, the types of complex fuzzy relations play a
vital role in applications. If we have known the degree of
influence of American financial indexes on China financial
indexes, then by the inverse complex fuzzy relations, we can
find the degree of China financial indexes on American
financial indexes.

Similarly, the complex fuzzy transitive relation is the
most important type of complex fuzzy relations and plays a
major role in applications. For example, if we have the
degree of the influence of import on the interest rate and the
interest rate on the unemployment rate, that is,

λC1×C3
(import, interest rate) and λC1×C3

(interest rate, un-
employment rate), then by complex fuzzy transitive rela-
tions, we can easily find the degree of influence of import on
interest rate λC1×C3

(import, interest rate).
,e abovementioned process may be applied to discuss

the degree of financial indexes of more than three countries.

Example 13. Let C1 � 0.8ei(π /2)//import,(0.5eiπ

/export), (1ei2π/interestrate), (0.7ei(3π/2)/unemploymnt rate
rate)}, C2 � 0.5ei(3π/2)/import , 0.9ei2π /export, (0.3eiπ/
interest rate), 0.4ei(π/2)/unemployment rate, , and C3
� 0.6ei(5π/2)/ import, 1ei(π/2)/export 0.7ei(π/3)/interest rate,
0.5eiπ/unemployment rate, represent the sets of American,
China, and Saudi Arabia’s financial indexes. 2en, the re-
lation G1 on C1 × C2 is

G1 � C1 × C2 �
0.5e

i(π/2)

(import, import)
,

0.8e
i(π/2)

(import, export)
,

0.3e
i(π/2)

(import, interest rate)
,

0.4e
i(π/2)

(import, unemployment rate)
,

0.5e
i(3π/2)

(export, import)
,

0.5e
iπ

(export, export)
,

0.3e
iπ

(export, interest rate)
,

0.4e
i(π/2)

(export, unemployment rate)
,

0.5e
i(3π/2)

(interest rate, import)
,

0.9e
i2π

(interest rate, export)
,

0.3e
iπ

(interest rate, interest rate)
,

0.4e
i(π/2)

(interest rate, unemployment rate),

0.5e
i(3π/2)

(unemployment rate, import)
,

0.7e
i(3π/2)

(unemployment rate, export)
,

0.3e
iπ

(unemployment rate, interest rate)
,

0.4e
i(π/2)

(unemployment rate, unemployment rate)
.

(53)

,e relation G1 shows the relation of influence of
American financial indexes on China financial indexes.

,e complex fuzzy relation between C2 and C3 is given
by
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G2 � C2 × C3 �
0.5e

i(3π/2)

(import, import)
,

0.5e
i(π/2)

(import, export)
,

0.5e
i(π/3)

(import, interest rate)
,

0.5e
i(3π/2)

(import, unemployment rate)
,

0.6e
i(5π/2)

(export, import)
,

0.9e
i(π/2)

(export, export)
,

0.7e
i(π/3)

(export, interest rate)
,

0.5e
iπ

(export, unemployment rate)
,

0.3e
i(5π/2)

(interest rate, import)
,

0.3e
i(π/2)

(interest rate, export)
,

0.3e
i(π/3)

(interest rate, interest rate)
,

0.3e
iπ

(interest rate, unemployment rate)
,

0.4e
i(π/2)

(unemployment rate, import)
,

0.4e
i(π/2)

(unemployment rate, export)
,

0.4e
i(π/3)

(unemployment rate, interest rate)
,

0.4e
i(π/2)

(unemployment rate, unemployment rate)
.

(54)

,e relation G2 represents the relation of influence of
China’s financial indexes on Saudi Arabia’s financial in-
dexes. By the complex fuzzy composition relation, we can
find the relation of the influence of American financial

indexes on Saudi Arabia’s financial indexes. ,e relation G3
represents the relation of influence of American financial
indexes on Saudi Arabia financial indices, that is,

G3 � C1 × C3 �
0.6e

i(π/2)

(import, import)
,

0.8e
i(π/2)

(import, export)
,

0.7e
i(π/2)

(import, interest rate)
,

0.5e
i(π/2)

(import, unemployment rate)
,

0.5e
iπ

(export, import)
,

0.5e
i(π/2)

(export, export)
,

0.5e
i(π/3)

(export, interest rate)
,

0.5e
iπ

(export, unemployment rate)
,

0.6e
i2π

(interest rate, import)
,

1e
i(π/2)

(interest rate, export)
,

0.7e
i(π/3)

(interest rate, interest rate)
,

0.5e
iπ

(interest rate, unemployment rate)
,

0.6e
i(3π/2)

(unemployment rate, import)
,

0.7e
i(π/2)

(unemployment rate, export)
,

0.7e
i(π/3)

(unemployment rate, interest rate)
,

0.5e
iπ

(unemployment rate, unemployment rate)
.

(55)
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,e abovementioned three relations G1, G2, and G3 show
the degree of influence of American financial indexes on
China financial indexes, China financial indexes on Saudi
Arabia financial indexes, and American financial indexes on
Saudi Arabia financial indexes, respectively. Moreover, by
the inverse complex fuzzy relations, we can obtain the degree
of influence of China financial indexes on American fi-
nancial indexes, Saudi Arabia financial indexes on China
financial indexes, and Saudi Arabia financial indexes on
American financial indexes.

Moreover, if we have the degree of the influence of
import on the interest rate and the interest rate on the
unemployment rate, then by complex fuzzy transitive re-
lations, we can easily find the degree of influence of import
on the interest rate. For example,

0.5ei(π/3)/import, interest rate, ∈∈G and 0.3eiπ/(interest
rate, unemployment rate)∈∈G; then, by complex fuzzy
transitive relations, we have 0.5ei(3π/2)/(import, unemploy-
ment rate).

6. Comparison

,ere are many applications of crisp relations and fuzzy
relations, particularly in fuzzy logic systems, diagnostic of
symptoms, and decision making. But, there is one significant
weakness, which is a lack of capacity to examine two-di-
mensional phenomena. ,ey cannot deal with two-di-
mensional parameters. Ramot et al. in [11] introduced
complex fuzzy relations which is the generalization of a fuzzy
relation. Complex fuzzy relations show a degree of the
presence or absence of association, interaction, or inter-
connectedness between two-dimensional parameters.
Ramot et al. in [11] discussed the application of the complex
fuzzy relation in Future Commission Merchant. He studied
the degree of influence of parameters with respect to
complex fuzzy relations. We explore this concept in detail
and used the types of complex fuzzy relations such as the
complex fuzzy transitive relation and complex fuzzy
equivalence relation.,emethod we proposed here gives the
degree of influence of the financial indexes of the three
countries. ,is method can be used to find the degree of
influence of financial indexes of more than three countries
by using complex fuzzy transitive relations or composition
of complex fuzzy relations. Moreover, this approach pro-
vides the degree of influence of the two countries financial
indexes that do not have a direct relation by using the types
of complex fuzzy relations. Similarly, by the inverse complex
fuzzy relations, we can obtain the degree of influence of
financial indexes on each other. However, our designed
model is not complete, but it is stuck with a shortage of
theoretical support. For applications, the types of complex
fuzzy relations can be useful. ,erefore, it will be significant
for future work.

7. Conclusions

In this paper, we have discussed some new types of complex
fuzzy relations such as the complex fuzzy inverse relation,
complex fuzzy reflexive relation, complex fuzzy symmetric

relation, complex fuzzy antisymmetric relation, complex
fuzzy transitive relation, complex fuzzy irreflexive relation,
complex fuzzy asymmetric relation, complex fuzzy equiv-
alence relation, complex fuzzy-order relation, and complex
fuzzy equivalence class. We have presented some basic re-
sults and examples of these relations. Moreover, we have
discussed the application of complex fuzzy relations in
Future Commission Market. ,e complex fuzzy relation
may be used in geology, signals and systems, and engi-
neering fields for the identification of reference signals [23].
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Intelligent transportation system (ITS) is the development direction of the future traffic system. ITS can effectively employ the
existing traffic facilities and ensure the safety of traffic, urban traffic, and public security management for effective control in order to
satisfy people’s travel demand. *erefore, the results of the system in-depth understanding and objective evaluation are very
necessary. And it is frequently regarded as a multiattribute group decision-making (MAGDM) issue.*us, a novelMAGDMmethod
is required to tackle it. Depending on the conventional multiattributive border approximation area comparison (MABAC) method
and intuitionistic fuzzy sets (IFSs), this article designs a novel intuitive distance-based IF-MABACmethod to assess the performance
of financial management. First of all, a related literature review is conducted. Furthermore, some necessary theories related to IFSs are
briefly reviewed. In addition, since subjective randomness frequently exists in determining criteria weights, the weights of criteria are
decided objectively by utilizing the maximizing deviation method. Afterwards, relying on novel distance measures between
intuitionistic fuzzy numbers (IFNs), the conventional MABAC method is extended to the IFSs to calculate the final value of each
enterprise. *erefore, all enterprises can be ranked, and the one with the best environmental behaviors and awareness can be
identified. Eventually, an application for evaluating the intelligent transportation system and some comparative analyses have been
given. *e results illustrate that the designed algorithm is useful for assessing the performance of financial management.

1. Introduction

With our rapid economic development, accelerating urban-
ization, and the rapid rise of motor vehicle ownership,
existing roads’ hardware facilities have failed to meet the
demand of swelling traffic. Traffic congestion, frequent ac-
cidents, and serious environmental pollution have become
increasingly serious problems. It is not a good and effective
way to solve them by limiting demand, increasing supply, and
expanding the scale of the road.*e best strategy to ensure the
sustainable development of the urban traffic is adopting
modern technology to transform the existing transportation
system and grasp the real-time traffic conditions. It can be
called ITSs (intelligent transportation systems). *e key of
intelligent transportation systems is to obtain comprehensive,
real-time, accurate, and dynamic traffic information.

Like most other phenomena in organizational research,
the intelligent transportation system cannot be observed

directly. *us, for enterprises, evaluating the intelligent
transportation system can be regarded as a significant
strategic issue and great challenge. To overcome it, a novel
intuitionistic fuzzy MAGDM method on the basis of the
improved MABAC method is designed to tackle this issue.
Our work’s contributions can be listed as follows:

(1) Although Liang, He, Wang, Chen, and Li [1] ex-
tended the MABAC to the intuitionistic fuzzy en-
vironment on the basis of novel generalized
measures, these measures may generate situations
which do not consider wavering in IFSs. Opposite,
depending on the distance measures introduced in
this paper, our method can reflect intuitionistic fuzzy
information more comprehensively. Besides, the
calculation process of our method is simpler.

(2) *ere are various criteria in the intelligent trans-
portation system evaluation which frequently have
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different weights. Since the DMs are restrained
through their limited knowledge, it not easy to assign
the criteria weights correctly. In this paper, an ob-
jectively weight-determining method is built to
calculate the values of weight.

*e remainder of this paper proceeds as follows. A
literature review is given in Section 2. *e knowledge of IFSs
is concisely listed in Section 3. *e improved MABAC
method with IFSs is defined for MAGDM in Section 4. An
empirical application for evaluating the intelligent trans-
portation system is given and some comparative analyses are
also offered in Section 5. At last, the conclusion of this work
is given in Section 6.

2. Literature Review

Since the process of evaluating the intelligent transportation
system is filled with uncertainty and ambiguity [2, 3], thus, in
order to improve the accuracy of MAGDM, Zadeh [4] built
the fuzzy sets (FSs). Atanassov [5] built the intuitionistic
fuzzy sets (IFSs). Garg [6] presented the intuitionistic fuzzy
multiplicative preference relations and defined several
geometric operators. Gou, Xu, and Lei [7] built the expo-
nential operational law of IFNs. Garg [8] defined the
intuitionistic fuzzy averaging fused operators with hesitation
degrees. He, He, and Huang [9] integrated the power op-
erators with IFSs. Liu, Liu, and Chen [10] built the BM
operator and Dombi operations under IFSs. Gupta, Arora,
and Tiwari [11] built the fuzzy entropy through IFSs and
parameter alpha. Li and Wu [12] presented the intuitionistic
fuzzy cross-entropy distance and grey correlation analysis
method. Khan and Lohani [13] defined the similarity
measure of IFNs through the distance measure of bounded
variation. Li, Liu, Liu, Su, and Wu [14] built the grey target
decision-making for IFNs. Bao, Xie, Long, and Wei [15]
defined the prospect theory and the evidential reasoning
method under IFSs. Chen, Cheng, and Lan [16] built the
TOPSIS method for MCDM through similarity measures
under IFSs. Gan and Luo [17] used a hybrid method with the
decision-making trial and evaluation laboratory (DEMA-
TEL) and IFSs. Gupta, Mehlawat, Grover, and Chen [18]
defined the superiority and inferiority ranking (SIR) method
under IFSs. Hao, Xu, Zhao, and Zhang [19] defined the
intuitionistic fuzzy method through the decision field.
Krishankumar, Arvinda, Amrutha, Premaladha, and Rav-
ichandran [20] integrated AHP with IFSs to design a GDM
method for effective cloud vendor selection. Krishankumar,
Ravichandran, and Saeid [21] built the IF-PROMETHEE
method. Luo and Wang [22] built the VIKOR method with
distance measure for IFSs. Rouyendegh [23] integrated the
ELECTRE method under IFSs to tackle some MCDM issues.
Cali and Balaman [24] extended ELECTRE I with the
VIKOR method in the context of intuitionistic fuzzy to
reflect the decision makers’ preferences. Phochanikorn and
Tan [25] incorporated DEMATEL with ANP to determine
uncertainties and interdependencies among criteria and
modified VIKOR to evaluate the sustainable supplier per-
formance’s desired level under the intuitionistic fuzzy

context. Liu [26] researched on the teaching quality eval-
uation of physical education with the intuitionistic fuzzy
TOPSIS method.

MABAC method was initially developed through
Pamucar and Cirovic [27] to solve MAGDM. Compared
with other MAGDM models, MABAC method is used to
obtain the alternatives’ order by calculating the potential
values of gains and losses. *is method has been extended
to various fuzzy environments. For example, Sahin and
Altun [28] integrated MABAC with the probabilistic
neutrosophic hesitant fuzzy environment. Wei, He, Lei,
Wu, and Wei [29] defined the probabilistic uncertain
linguistic MABAC. Wei et al. [30] defined the uncertain
probabilistic linguistic MABAC method. Xu, Shi, Zhang,
and Liu [31] designed the MABAC with heterogeneous
criteria information. Liang, He, Wang, Chen, and Li [1] put
forward some novel distance measures of IFSs and com-
bined them with the MABAC method to tackle MCGDM
issues. Jia, Liu, and Wang [32] designed two models which
were an IF-MABAC and an IFRN-MABAC model, re-
spectively. Liang, Zhao, Wu, and Dai [33] defined the
MABAC method related to TFNs.

3. Preliminaries

3.1. IFSs

Definition 1 (see [5]). An IFS on the universe X is defined:

I � 〈x, μI(x), ]I(x)〉|x ∈ X , (1)

where μI(x) ∈ [0, 1] is called the “membership degree of I”
and ]I(x) ∈ [0, 1] is called the “nonmembership degree of
I,” and μI(x), ]I(x) meet the mathematical condition:
0≤ μI(x) + ]I(x)≤ 1, ∀x ∈ X.

Definition 2 (see [34]). Let I1 � (μ1, ]1) and I2 � (μ2, ]2) be
two IFNs; the operation of them is defined:

I1⊕I2 � μ1 + μ2 − μ1μ2, ]1]2( , (2)

I1 ⊗ I2 � μ1μ2, ]1 + ]2 − ]1]2( , (3)

λI1 � 1 − 1 − μ1( 
λ
, ]λ1 , λ> 0, (4)

I
λ
1 � μλ1, 1 − 1 − ]1( 

λ
 , λ> 0. (5)

Definition 3 (see [35]). Let I1 � (μ1, ]1) and I2 � (μ2, ]2) be
IFNs; the score and accuracy functions of I1 and I2 can be
expressed:

S I1(  � μ1 + μ1 1 − μ1 − ]1( ,

S I2(  � μ2 + μ2 1 − μ2 − ]2( ,
(6)

H I1(  � μ1 + ]1, H I2(  � μ2 + ]2. (7)

For two IFNs I1 andI2, according to Definition 3,

(i) If s(I1)< s(I2), then I1 < I2
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(ii) If s(I1)> s(I2), then I1 > I2

(iii) If s(I1) � s(I2) and h(I1)< h(I2), then I1 < I2

(iv) If s(I1) � s(I2) and h(I1)> h(I2), then I1 > I2

(v) If s(I1) � s(I2) and h(I1) � h(I2), then I1 � I2

Definition 4 (see [22]). Let I1 � (μ1, ]1) and I2 � (μ2, ]2) be
IFNs; the Hamming distance between two IFNs is defined:

IFHD I1, I2(  �
1
6

ℓ1 + ℓ2 + ℓ3( , (8)

where

ℓ1 �
μ1 − μ2


 + ]1 − ]2


 + μ1 + 1 − ]1(  − μ2 + 1 − ]2( 




2
,

ℓ2 �
π1 + π2

2
,

ℓ3 � max μ1 − μ2


, ]1 − ]2


,
π1 − π2




2
 .

(9)

3.2. Intuitionistic Fuzzy Aggregation Operators. Under the
context of the IFSs, some operators are introduced, in-
cluding intuitionistic fuzzy weighted averaging (IFWA) and
intuitionistic fuzzy weighted geometric (IFWG) operator.

Definition 5 (see [34]). Let Ij � (μIj
, ]Ij

)(j � 1, 2, . . . , n) be
a set of IFNs; the intuitionistic fuzzy weighted averaging
(IFWA) operator is defined:

IFWAω I1, I2, . . . , In(  � ⊕
n

j�1
ωjIj , (10)

where ω � (ω1,ω2, . . . ,ωn)T is the weight of Ij(j � 1, 2, . . . ,

n) and ωj > 0, 
n
j�1 ωj � 1.

From Definition 5, the following theorem can be
obtained.

Theorem 1. /e fused value by the IFWA operator is also a
IFN, where

IFWAω I1, I2, . . . , In(  � ⊕
n

j�1
ωjIj 

� 1 − 

n

j�1
1 − μIj

 
ωj

, 

n

j�1
]Ij

 
ωj

⎛⎝ ⎞⎠,

(11)

where ω � (ω1,ω2, . . . ,ωn)T is the weight of Ij(j � 1, 2, . . . ,

n) and ωj > 0, 
n
j�1 ωj � 1.

Definition 6 (see [34]). Let Ij(j � 1, 2, . . . , n) be a set of
IFNs; the IFWG operator is defined:

IFWGω I1, I2, . . . , In(  � ⊗
n

j�1
Ij 

ωj
, (12)

where ω � (ω1,ω2, . . . ,ωn)T is the weight of Ij(j � 1, 2, . . . ,

n) and ωj > 0, 
n
j�1 ωj � 1.

From Definition 6, the following theorem can be
obtained.

Theorem 2. /e fused value by the IFWG operator is also an
IFN, where

IFWGω I1, I2, . . . , In(  � ⊗
n

j�1
Ij 

ωj

� 
n

j�1
μIj

 
ωj

, 1 − 
n

j�1
1 − ]Ij

 
ωj

⎛⎝ ⎞⎠,

(13)

where ω � (ω1,ω2, . . . ,ωn)T is the weight vector of Ij(j �

1, 2, . . . , n) and ωj > 0, 
n
j�1 ωj � 1.

4. MABAC Method for MAGDM with
Intuitionistic Fuzzy Information

Integrating the MABAC method with IFSs, the IF-MABAC
method is given by IFNs. *e calculating procedures of the
designed method can be listed subsequently. Let Z � Z1,

Z2, . . . , Zn} be a set of attributes and z � z1, z2, . . . zn  be
the weight vector of attributes Zj, where rj ∈ [0, 1], j �

1, 2, . . . , n, 
n
j�1 rj � 1. AssumeH � H1, H2, . . . , Hl  is a set

of DMs that have a significant degree of h � h1, h2, . . . , hl ,
where hk ∈ [0, 1], k � 1, 2, . . . , l, 

l
k�1 hk � 1. Let P � P1,

P2, . . . , Pm} be a set of alternatives. And Q � (qij)m×n is the
overall decision matrix, and qij means the value of alter-
native Fi regarding the attribute Rj with IFNs. Subsequently,
the corresponding calculating steps will be depicted:

Step 1: build the decision maker’s decision matrix
Q(k) � (qk

ij)m×n and calculate the overall decision
matrixQ � (qij)m×n:

Q
(k)

� q
k
ij 

m×n
�

q
k
11 q

k
12 . . . q

k
1n

q
k
21 q

k
22 . . . q

k
2n

⋮ ⋮ ⋮ ⋮

q
k
m1 q

k
m2 . . . q

k
mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

Q � qij 
m×n

�

q11 q12 . . . q1n

q21 q22 . . . q2n

⋮ ⋮ ⋮ ⋮
qm1 qm2 . . . qmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

qij � 1 − 
l

k�1
1 − μqk

ij
 

hk

, 
l

k�1
]qk

ij
 

hk
⎛⎝ ⎞⎠, (16)

where qk
ij is the assessment value of the alternative

Pi(i � 1, 2, . . . , m) for attribute Zj(j � 1, 2, . . . , n) and
DM Hk(k � 1, 2, . . . , l).
Step 2: normalize the overall intuitionistic fuzzy matrix
Q � (qij)m×n to QN � [qN

ij ]m×n:
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q
N
ij �

μij, ]ij , Zj is a benefit criterion,

]ij, μij , Zjis a cost criterion.

⎧⎪⎨

⎪⎩
(17)

Step 3: utilize the maximizing deviation method to
determine the weighting matrix of attributes.

*e maximizing deviation method will be integrated
with IFSs in this part to determine each attribute’s weight
with completely unknown information. *is method was
initially put forward by Wang [36] which took the differ-
ences among all alternatives’ performance values into

consideration. Subsequently, the calculating procedures of
this method are presented:

(1) Depending on the normalized overall decision ma-
trix QN � (qN

ij )m×n, the deviation of Pi to all the other
alternatives could be calculated.

IFDij � 
m

t�1
zj · d q

N
ij , q

N
tj , (18)

where

d q
N
ij , q

N
tj  �

1
6

μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 




2
+
πij + πtj

2
+ max μij − μtj



, ]ij − ]tj



,
πij − πtj





2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(19)

(2) Calculate the total weighted deviation values of all
alternatives:

IFDj(z) � 
m

i�1
IFDij(z) � 

m

i�1


m

t�1
zj

1
6

μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 




2
+
πij + πtj

2
⎛⎝⎛⎝

+ max μij − μtj



, ]ij − ]tj



,
πij − πtj





2
⎛⎝ ⎞⎠⎞⎠⎞⎠.

(20)

(3) Construct a nonlinear programming model with
IFNs.

(M − 1)

max D(z) � 
n

j�1


m

i�1


m

t�1
zj

1
6

μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 




2
+
πij + πtj

2
⎛⎝⎛⎝

+max μij − μtj



, ]ij − ]tj



,
πij − πtj





2
⎛⎝ ⎞⎠⎞⎠⎞⎠,

s.t. zj ≥ 0, j � 1, 2, . . . , n, 
n

j�1
z
2
j � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

To solve this model, the Lagrange function can be
utilized:

L(z, ξ) � 
n

j�1


m

i�1


m

t�1
zj

1
6

μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 




2
+
πij + πtj

2
⎛⎝⎛⎝

+ max μij − μtj



, ]ij − ]tj



,
πij − πtj





2
⎛⎝ ⎞⎠⎞⎠⎞⎠ +

ξ
2



n

j�1
z
2
j − 1⎛⎝ ⎞⎠,

(22)
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where ξ is the Lagrange multiplier. *en, the partial
derivatives of L can be calculated:

zL

zzj

� 
m

i�1


m

t�1

1
6

μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 




2
+
πij + πtj

2
⎛⎝⎛⎝

+max μij − μtj



, ]ij − ]tj



,
πij − πtj





2
⎛⎝ ⎞⎠⎞⎠⎞⎠ + ξzj � 0,

zL

zξ
�
1
2



n

j�1
z
2
j − 1⎛⎝ ⎞⎠ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

And then, a simple formula for determining the
weight can be obtained by solving the above
equations:

z
∗
j �


m
i�1 

m
t�1 1/6 μij − μtj



 + ]ij − ]tj



 + | μij + 1 − ]ij  − μtj + 1 − ]tj |/2 πij + πtj/2 + max μij − μtj



, ]ij − ]tj



, πij − πtj



/2 
��������������������������������������������������������������������������������������������������������������


n
j�1 

m
i�1 

m
t�1 1/6 μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 


/2πij + πtj/2 + max μij − μtj



, ]ij − ]tj



, πij − πtj



/2    
2

 .

(24)

Finally, the normalized weights can be determined:

zj �


m
i�1 

m
t�1 1/6 μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 


/2πij + πtj/2 + max μij − μtj



, ]ij − ]tj



, πij − πtj



/2   


n
j�1 

m
i�1 

m
t�1 1/6 μij − μtj



 + ]ij − ]tj



 + μij + 1 − ]ij  − μtj + 1 − ]tj 


/2πij + πtj/2 + max μij − μtj



, ]ij − ]tj



, πij − πtj



/2   

.

(25)

Step 4: calculate the weighted matrix O � (oij)m×n by
equation (12):

oij � zj · q
N
ij � 1 − 1 − μqN

ij
 

zj

, ]zj

qN
ij

 . (26)

Step 5: compute the border approximation area
matrix G � (gi)1×n. *e border approximation area
(BAA) for every attribute is obtained from the fol-
lowing equation:

gj � 
m

i�1
oij 

1/m
� 

m

i�1
μoij

 
1/m

, 1 − 
m

i�1
1 − ]oij

 
1/m

⎛⎝ ⎞⎠.

(27)

Step 6: calculate the distance matrix D � (dij)m×n.
*e alternatives’ distances from the BAA are derived
with the following equation:

dij �
d oij, gj  

ϑ
, if S oij ≥ S gj ,

−ρ d oij, gj  
ς
, if S oij < S gj ,

⎧⎪⎨

⎪⎩
(28)

where the distance measure is defined as equation
(8). ϑ and ς are the parameters of DMs’ risk attitudes,
and ρ is the loss aversion’s parameter. In this article,
ϑ � 0.88, ς � 0.88, and ρ � 2.25. *e values come
from Tversky and Kahneman [37] who conducted an
experiment to determine the most acceptable values
from numerous researchers.
Now, if dij � 0, the alternative Pi will belong to the
border approximation area (G). If dij > 0, Pi belongs
to the upper approximation area (G+). And if dij < 0,
Pi belongs to the lower approximation area (G− ). G+

is the area involving the positive alternative (P+),
whereas G− is the area involving the negative al-
ternative (P− ).
Step 7: calculate the final value of criterion functions
Fi:
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Fi � 
n

j�1
dij, i � 1, 2, . . . , m, j � 1, 2, . . . , n. (29)

Step 8: depending on the calculating results of Fi, all
the alternatives could be ranked. *e larger the value
of Fi is, the optimal the alternative will be.

5. Numerical Example and
Comparative Analysis

5.1. Numerical Example. Intelligent transportation system is
the development direction of the future traffic system. It is
the advanced information technology, data communication
transmission technology, electronic sensor technology,
control technology, and computer technology to effectively
integrate with the whole ground traffic management system
and establish a large-range, all-round function, real-time,
accurate, and efficient integrated transportation manage-
ment system. Not only that, the high-tech project is a process
full of unknown by its size, complexity of technology,
economic investment, the degree of market demand, and
other aspects of influence and restriction. *erefore, the
project evaluation plays an important role during the process
of investment to project the overall technology evaluation,
market evaluation, and economic evaluation; risk forecast
has a great impact on the project decision makers for the
project development scheme and is also the key to the
success of a project. Intelligent transportation system
evaluation could be regarded as the MADM or MAGDM
issues [38–45]. In this section, an empirical application of
evaluating the intelligent transportation system is provided
with the IF-MABAC method. *ere are five potential cities
Pi(i � 1, 2, 3, 4, 5) preparing to evaluate their intelligent
transportation system. In order to assess these cities fairly,
five experts H � H1, H2, H3, H4, H5  (expert’s weight h �

(0.20, 0.20, 0.20, 0.20, 0.20) are invited. All experts could
give their assessment information through four subsequent
attributes: ① Z1 is the intelligent transportation environ-
ment;②Z2 is the intelligent transportation cost;③Z3 is the
intelligent transportation safety; and④ Z4 is the intelligent
transportation equipment investment. Evidently, Z2 is the
cost attribute, while Z1, Z3, and Z4 are the benefit attributes.

Step 1: build each DM’s matrix Q(k) � (qk
ij)m×n as in

Tables 1–5. Derived from the tables and equations
(14)–(16), the overall decision matrix could be calcu-
lated. *e results are recorded in Table 6.
Step 2: normalize the matrix Q � [qij]m×n to QN �

[qN
ij ]m×n (see Table 7).

Step 3: decide the attribute weights zj(j � 1, 2, . . . , n)

through the maximizing deviation method (see
Table 8).
Step 4: calculate the weighted matrix O � (oij)m×n by
utilizing equation (26) (Table 9).
Step 5: determine the BAA matrix G � (gj)1×n

(Table 10).

Table 1: Intuitionistic fuzzy matrix by H1.

Z1 Z2 Z3 Z4
P1 (0.63, 0.15) (0.45, 0.50) (0.57, 0.31) (0.26, 0.63)
P2 (0.70, 0.30) (0.21, 0.69) (0.72, 0.28) (0.64, 0.22)
P3 (0.39, 0.51) (0.38, 0.48) (0.50, 0.40) (0.61, 0.30)
P4 (0.53, 0.37) (0.42, 0.51) (0.35, 0.56) (0.55, 0.34)
P5 (0.26, 0.69) (0.58, 0.35) (0.55, 0.35) (0.69, 0.13)

Table 2: Intuitionistic fuzzy matrix by H2.
Z1 Z2 Z3 Z4

P1 (0.56, 0.33) (0.21, 0.53) (0.49, 0.35) (0.57, 0.43)
P2 (0.56, 0.33) (0.28, 0.63) (0.75, 0.25) (0.67, 0.25)
P3 (0.52, 0.37) (0.16, 0.68) (0.49, 0.51) (0.58, 0.35)
P4 (0.71, 0.18) (0.35, 0.57) (0.45, 0.47) (0.56, 0.34)
P5 (0.59, 0.39) (0.26, 0.65) (0.46, 0.52) (0.71, 0.11)

Table 3: Intuitionistic fuzzy matrix by H3.
Z1 Z2 Z3 Z4

P1 (0.19, 0.65) (0.30, 0.60) (0.54, 0.37) (0.54, 0.35)
P2 (0.80, 0.20) (0.24, 0.58) (0.75, 0.15) (0.77, 0.23)
P3 (0.58, 0.39) (0.19, 0.66) (0.44, 0.51) (0.49, 0.39)
P4 (0.48, 0.47) (0.23, 0.53) (0.63, 0.30) (0.67, 0.20)
P5 (0.54, 0.35) (0.26, 0.55) (0.41, 0.57) (0.69, 0.15)

Table 4: Intuitionistic fuzzy matrix by H4.
Z1 Z2 Z3 Z4

P1 (0.56, 0.25) (0.32, 0.58) (0.59, 0.35) (0.58, 0.25)
P2 (0.66, 0.20) (0.36, 0.64) (0.55, 0.25) (0.52, 0.33)
P3 (0.53, 0.31) (0.43, 0.51) (0.34, 0.41) (0.41, 0.35)
P4 (0.43, 0.37) (0.29, 0.63) (0.55, 0.30) (0.49, 0.51)
P5 (0.59, 0.29) (0.39, 0.55) (0.27, 0.67) (0.63, 0.19)

Table 5: Intuitionistic fuzzy matrix by H5.
Z1 Z2 Z3 Z4

P1 (0.39, 0.55) (0.26, 0.68) (0.47, 0.38) (0.58, 0.27)
P2 (0.72,0.15) (0.32, 0.64) (0.64, 0.25) (0.70, 0.30)
P3 (0.48, 0.51) (0.23, 0.58) (0.54, 0.41) (0.44, 0.55)
P4 (0.58, 0.33) (0.36, 0.53) (0.60, 0.30) (0.25, 0.61)
P5 (0.44, 0.55) (0.29, 0.65) (0.51, 0.39) (0.39, 0.59)

Table 6: Overall intuitionistic fuzzy matrix.
Z1 Z2 Z3 Z4

P1 (0.4874, 0.3382) (0.3130, 0.5747) (0.5342, 0.3512) (0.5187,
0.3641)

P2 (0.7184, 0.2087) (0.2840, 0.6350) (0.6906, 0.2309) (0.6696,
0.2628)

P3 (0.5039, 0.4103) (0.2863, 0.5766) (0.4662, 0.4452) (0.5123,
0.3796)

P4 (0.5575, 0.3284) (0.3331, 0.5524) (0.5265, 0.3718) (0.5219,
0.3727)

P5 (0.4975, 0.4319) (0.3695, 0.5372) (0.4479, 0.4860) (0.6371,
0.1889)
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Step 6: calculate the distance matrix D � (dij)m×n (see
Table 11).
Step 7: sum up each row’s elements, and each alter-
native’s final value Fi can be determined as in Table 12.
Step 8: relying on Fi, all the alternatives could be
ranked; the larger the value of Fi is, the optimal the
alternative will be. Evidently, the rank of all alternatives
is P2 >P1 >P4 >P3 >P5, and P2 is the optimal city.

5.2. ComparativeAnalysis. First of all, the designed method is
comparedwith IFWAand IFWGoperators [34]. For the IFWA
operator, the calculating result is S(P1) � 0.5936, S(P2) �

0.7358, S(P3) � 0.5620, S(P4) � 0.5971, and S(P5) � 0.5961.
*us, the ranking order isP2 >P4 >P5 >P1 >P3. For the
IFWG operator, the calculating result is S(P1) � 0.5922,

S(P2) � 0.7336, S(P3) � 0.5573, S(P4) � 0.5963, and S(P5)

� 0.5724. So, the ranking order is P2 >P4 >P1 >P5 >P3.
Furthermore, the designed method is compared with the

modified IF-VIKOR method [46]. *en, we can obtain the
calculating result. *en, each alternatives’ relative closeness
is calculated as DRC1 � 0.8683, DRC2 � 0.0000, DRC3 �

1.0000, DRC4 � 0.8878, and DRC5 � 0.9366. Hence, the
order is P2 >P1 >P4 >P5 >P3.

Besides, the designed method is compared with the IF-
GRA method [47]. *en, we can obtain the calculating
result. *e grey relational grades of every alternative are
c1 � 0.8065, c2 � 0.9800, c3 � 0.7847, c4 � 0.8274, and
c5 � 0.8342. *erefore, the order is P2 >P5 >P4 >P1 >P3.

In the end, the designed method is also compared with
the IF-MABAC method [1]. *en, we can obtain the cal-
culating result. *e overall value of every alternative is
I1 � 2.9135, I2 � 3.3834, I3 � 1.3719, I4 � 2.8685, and
I5 � 1.0845. *erefore, the order is P2 >P1 >P4 >P3 >P5.

Eventually, the results of these methods are depicted in
Table 13.

From Table 13, it is evident that the optimal enterprise is
P2, while the worst is P3 in most cases. In other words, these
methods’ order is slightly different. *ese methods can ef-
fectively solve MAGDM from different angles.

Table 7: *e normalized intuitionistic fuzzy matrix.
Z1 Z2 Z3 Z4

P1 (0.4874, 0.3382) (0.5747, 0.3130) (0.5342, 0.3512) (0.5187,
0.3641)

P2 (0.7184, 0.2087) (0.6350, 0.2840) (0.6906, 0.2309) (0.6696,
0.2628)

P3 (0.5039, 0.4103) (0.5766, 0.2863) (0.4662, 0.4452) (0.5123,
0.3796)

P4 (0.5575, 0.3284) (0.5524, 0.3331) (0.5265, 0.3718) (0.5219,
0.3727)

P5 (0.4975, 0.4319) (0.5372, 0.3695) (0.4479, 0.4860) (0.6371,
0.1889)

Table 8: *e attribute weights rj.

Z1 Z2 Z3 Z4
zj 0.2793 0.1699 0.2845 0.2663

Table 9: Intuitionistic fuzzy weighted normalized performance
values of alternatives.

Z1 Z2 Z3 Z4

P1 (0.1703, 0.7387) (0.1352, 0.8209) (0.1954, 0.7425) (0.1769,
0.7641)

P2 (0.2981,0.6456) (0.1574, 0.8074) (0.2838, 0.6590) (0.2554,
0.7005)

P3 (0.1778, 0.7797) (0.1359, 0.8085) (0.1635, 0.7944) (0.1740,
0.7727)

P4 (0.2036, 0.7327) (0.1277, 0.8296) (0.1916, 0.7547) (0.1784,
0.7689)

P5 (0.1749, 0.7910) (0.1227, 0.8444) (0.1555, 0.8144) (0.2366,
0.6416)

Table 10: BAA.
BAA

Z1 (0.2002, 0.7422)
Z2 (0.1353, 0.8227)
Z3 (0.1933, 0.7585)
Z4 (0.2015, 0.7341)

Table 11: Distance matrix.
Z1 Z2 Z3 Z4

P1 −0.0948 0.0144 0.0289 −0.1133
P2 0.1209 −0.0801 0.1186 −0.1532
P3 −0.1165 −0.0572 −0.1189 −0.1273
P4 −0.0591 −0.0498 −0.0404 −0.1174
P5 −0.1338 −0.0759 −0.1529 −0.2261

Table 12: *e final value.
Alternative Final value
P1 −0.1647
P2 0.0063
P3 −0.4200
P4 −0.2667
P5 −0.5888

Table 13: Evaluation results of these methods.

Methods Ranking order
*e

optimal
alternative

*e worst
alternative

IFWA operator
[34] P2 >P4 >P5 >P1 >P3 P2 P3

IFWG operator
[34] P2 >P4 >P1 >P5 >P3 P2 P3

IF-VIKOR
method [46] P2 >P1 >P4 >P5 >P3 P2 P3

IF-GRA method
[47] P2 >P5 >P4 >P1 >P3 P2 P3

IF-MABAC
method [1] P2 >P1 >P4 >P3 >P5 P2 P5

*e designed
method P2 >P1 >P4 >P3 >P5 P2 P5
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6. Conclusion

ITS is the trend of future traffic development. *e problem
of traffic jam exists in all the big cities around the world.
Intelligent transportation project has made the world attach
great importance in the development of the intelligent
transportation system, which domestic and foreign scholars
in succession of the intelligent transportation management
project and related research work on performance appraisal.
*e performance appraisal of our national public program
currently has not formed a set of appraising systems of
standard and systemization and has problems of insufficient
technology system, appraising subjective color, and public
participation intensity. With respect to the intelligent
transportation project, carrying on the project expenditure
performance appraisal of the intellectual traffic has the vital
significance. *is paper designs an effective method for this
issue since it designs a novel intuitive distance-based IF-
MABAC method for evaluating the intelligent trans-
portation system. And then, a numerical example for
evaluating the intelligent transportation system has been
given to confirm that this novel method is reasonable.
Furthermore, to show the validity and feasibility of the
developed method, some comparative analyses are also
conducted. However, the main drawback of this paper is that
the number of DMs and attributes is small, and interde-
pendency of criteria is not taken into consideration, which
may limit the application scope of the developed method to
some extent. Furthermore, the developed method can be
utilized to tackle many other MAGDM issues such as risk
evaluation, project selection, and site selection [48–59].
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A Fermatean fuzzy set is a more powerful tool to deal with uncertainties in the given information as compared to intuitionistic
fuzzy set and Pythagorean fuzzy set and has energetic applications in decision-making. Aggregation operators are very helpful for
assessing the given alternatives in the decision-making process, and their purpose is to integrate all the given individual evaluation
values into a unified form. In this research article, some new aggregation operators are proposed under the Fermatean fuzzy set
environment. Some deficiencies of the existing operators are discussed, and then, new operational law, by considering the
interaction between themembership degree and nonmembership degree, is discussed to reduce the drawbacks of existing theories.
Based on Hamacher’s norm operations, new averaging operators, namely, Fermatean fuzzy Hamacher interactive weighted
averaging, Fermatean fuzzy Hamacher interactive ordered weighted averaging, and Fermatean fuzzy Hamacher interactive hybrid
weighted averaging operators, are introduced. Some interesting properties related to these operators are also presented. To get the
optimal alternative, a multiattribute group decision-making method has been given under proposed operators. Furthermore, we
have explicated the comparison analysis between the proposed and existing theories for the exactness and validity of the
proposed work.

1. Introduction

*e process of multiattribute group decision-making
(MAGDM) yields the best alternative when the list of all
possible alternatives has been compiled according to some
certain attributes. Previously, the data about alternatives
corresponding to attributes and their weights were given in
crisp values. However, nowadays, uncertainties play an
important part in the decision-making (DM) approach. Each
alternative is allotted a preference to some certain degree to
deal with the complicated system. However, information
regarding real-world system is indefinite and fuzzy with a lot
of ambiguities. Such type of conditions is appropriately
explained by fuzzy set (FS) [1] and intuitionistic fuzzy set
(IFS) [2] rather than crisp values. IFS is a more efficient tool
to deal with vague information because it has both the

membership degree (MD) and nonmembership degree
(NMD), but there are some drawbacks. *e sum of MD and
NMD is constrained to unit interval in IFS’s model. Py-
thagorean fuzzy set (PFS) was introduced by Yager [3] to
tackle vague decisions more effectively. However, this model
also has some restrictions; if MD of an element is 0.8 and
NMD is 0.76, then 0.82 + 0.762 > 1. *erefore, Yager [4]
narrated the theory of q-rung orthopair fuzzy set (q-ROFS)
with condition 0≤ ϱq + σq ≤ 1. *e basic notions about
Fermatean fuzzy set (FFS) were studied by Senapati and
Yager [5].

*e idea of aggregation operators (AOs) performs
a crucial role in getting an optimal solution when there are
a lot of choices for one given problem. *e idea of aggre-
gation of infinite sequences was presented byMesiar and Pap
[6]. Xu [7] gave the theory of intuitionistic fuzzy (IF) AOs.

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5556017, 17 pages
https://doi.org/10.1155/2021/5556017

mailto:chishtygm@gmail.com
https://orcid.org/0000-0002-5596-5841
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5556017


RE
TR
AC
TE
D

Zhao et al. [8] developed the theory of generalized AOs for
IFS. *e Einstein hybrid AOs under IF environment were
studied by Zhao and Wei [9]. *e concept of IF AOs using
Einstein operations were discussed by Wang and Liu [10].
Garg [11] combined the theories of IFS and interactive
averaging AOs. Garg et al. [12] gave the idea of Choquet
integral aggregation operators for interval-valued IFS. Garg
[13] introduced IF Hamacher AOs with entropy weight.
Alcantud et al. [14] elaborated the idea of aggregation of
infinite chains of IFS. Wu and Wei [15] gave the theory of
Pythagorean fuzzy (PF) Hamacher AOs. Wei [16] proposed
the PF interaction AOs. Shahzadi and Akram [17] combined
the concept of PF numbers and Yager operators. *e theory
of novel interactive hybrid weighted AOs with PF envi-
ronment was studied by Li et al. [18]. *e idea of q-ROF
power Maclaurin symmetric mean operators was narrated
by Liu et al. [19]. q-rung orthopair fuzzy (q-ROF) weighted
AOs were expressed by Liu and Wang [20]. *e exponential
aggregation operators for q-ROFS were defined by Peng et al.
[21]. Some confidence levels about q-ROF AOs were studied
by Joshi and Gegov [22]. *e hybrid DM model under
q-ROF Yager AOs was developed by Akram and Shahzadi
[23]. Akram et al. [24] presented the Einstein geometric
operators for q-ROF information. Akram et al. [25] gave the
protraction of Einstein operators under q-ROF environ-
ment. Darko and Liang [26] examined q-ROF Hamacher
AOs and their application in MAGDMwith modified EDAS
method. Senapati and Yager [27] elaborated the theory of
Fermatean fuzzy (FF) averaging/geometric operators. Sen-
apati and Yager [28] studied subtraction, division, and
Fermatean arithmetic mean operations over FFS. Many new
operations for FFS were defined by Senapati and Yager [28].
Garg et al. [29] developed the theory for the choice of a most
suitable laboratory for COVID-19 test under FF environ-
ment. *e effectiveness of a sanitizer in COVID-19 was
discussed by Akram et al. [30]. For more knowledge and
applications, the readers are suggested to study [31–44].

1.1. Motivations of Proposed Work

(i) *e proposed operators have the ability to deal with
the interaction between the MD and NMD.

(ii) *e proposed theory shows that the change in MD
will affect the NMD.

(iii) *e developed operators show that there will be
nonzero NMD of the whole aggregated FF numbers
(FFNs) even if at least one of them is zero.*erefore,
the others grades of nonmembership function of
FFNs perform a significant role in the aggregation
process (AP).

1.2. Contributions of Proposed Work

(i) Some novel operators such as Fermatean fuzzy
Hamacher interactive weighted averaging
(FFHIWA), Fermatean fuzzy Hamacher interactive
ordered weighted averaging (FFHIOWA), and
Fermatean fuzzy Hamacher interactive hybrid

weighted averaging (FFHIHWA) operators are
explored here.

(ii) Some special cases of these operators along with
their attractive properties are discussed, which re-
duce the shortcomings of the existing operators.

(iii) Some basic steps for MAGDM under proposed
operators are explained with the help of a numerical
example.

(iv) *e comparison analysis with other developed
approaches shows the validity of proposed theory.

1.3. Framework and Organization of the Paper. *e
remaining paper is arranged as follows: Section 2 recalls
some elementary definitions. Section 3 defines the hybrid
structure of Hamacher, interactive operators, and FFNs such
as FFHIWA operator along with some fundamental prop-
erties. In Section 4, we elaborate the idea of FFHIOWA
operator with some attractive properties. Section 5 presents
the notion of FFHIHWA operator. Section 6 discusses an
algorithm to deal with MAGDM along with a numerical
example. Section 7 gives a comparison analysis with FF
Einstein weighted averaging (FFEWA) operator for the
validity and importance of proposed theory. In Section 8, we
have summarized the results.

2. Preliminaries

In this section, we recall some basic definitions.

Definition 1 (see [5]). A FFS P on nonempty set O is given
by

P � r, ϱP(r), σP(r)  , (1)

where ϱP: O⟶ [0, 1], σP: O⟶ [0, 1], and ϖP(r) �
��������������������
1 − (ϱP(r))3 − (σP(r))33


indicate MD, NMD, and in-

determinacy degree (InD), respectively.

Definition 2 (see [5]). For FFN P � (ϱP, σP), the score
function and accuracy function are given as

S(P) � ϱ3P − σ3P, S(P) ∈ [− 1, 1],

A(P) � ϱ3P + σ3P, A(P) ∈ [0, 1].
(2)

Definition 3 (see [5]). Consider two FFNs P1 � ϱP1
, σP1

 

and P2 � ϱP2
, σP2

 . *en, the following holds:

(1) If S(P1)< S(P2), then P1≺P2.
(2) If S(P1)> S(P2), then P1≻P2.
(3) If S(P1) � S(P2), then

(a) If A(P1)<A(P2), then P1≺P2.
(b) If A(P1)>A(P2), then P1≻P2.
(c) If A(P1) � A(P2), then P1 ∼ P2.
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T(r, s) �
rs

δ +(1 − δ)(r + s − rs)
,

T
∗
(r, s) �

r + s − rs − (1 − δ)rs

1 − (1 − δ)rs
.

(3)

(i) For δ � 1, these operations become algebraic t-norm
and t-conorm T(r, s)) � rs and T∗(r, s) � r+

s − rs.
(ii) For δ � 2, these operations become Einstein t-norm

and t-conorm T(r, s) � rs/1 + (1 − r)(1 − s) and
T∗(r, s) � r + s/1 + rs.

3. Fermatean Fuzzy Hamacher Interactive
Average Operators

Definition 4. Let P1 � ϱ1, σ1 , P2 � ϱ2, σ2 , and P � ϱ,

σ〉 be three FFNs and β> 0.*en, some arithmetic operations
between them by using Hamacher norms are as follows:

(i) P1⊕P2 � 〈 �����������������������������������������������������������������


2
i�1(1 + (δ − 1)ϱ3i ) − 

2
i�1 (1 − ϱ3i )/

2
i�1(1 + (δ − 1)ϱ3i ) + (δ − 1) 

2
i�1 (1 − ϱ3i )

3


,
������������������������������������������������������������������
δ 

2
i�1 (1 − ϱ3i ) − 

2
i�1(1 − ϱ3i − σ3i ) /

2
i�1(1 + (δ − 1)ϱ3i ) + (δ − 1) 

2
i�1 (1 − ϱ3i )

3


〉,

(ii) β.P �
����������������������������������������������������

(1 + (δ − 1)ϱ3)β − (1 − ϱ3)β/(1 + (δ − 1)ϱ3)β + (δ − 1)(1 − ϱ3)β3


,
����������������������������������������������������
δ (1 − ϱ3) − (1 − ϱ3 − σ3)β /(1 + (δ − 1)ϱ3)β + (δ − 1)(1 − ϱ3)β3


〉.

3.1. Weighted Average Aggregation Operators. Let Pi � (ϱi,
σi)(i � 1, 2, . . . , y) be a collection of FFNs and κ � (κ1,
κ2, . . . , κy)T be its weight vector (WV) such that κi > 0 and


y
i�1 κi � 1, then FFHIWA: Ωy⟶Ω is defined as

FFHIWA P1,P2, . . . ,Py  � κ1P1⊕κ2P2⊕ · · · κyPy. (4)

Theorem 1. Let Pi � (ϱi, σi) be a collection of FFNs, then

FFHIWA P1,P2, . . . ,Py  �

������������������������������������������������������������������������


y

i�1 1 +(δ − 1)ϱ3i 
κi

− 
y

i�1 1 − ϱ3i 
κi /

y

i�1 1 +(δ − 1)ϱ3i 
κi

+(δ − 1)
y

i�1 1 − ϱ3i 
κi3



 ,

��������������������������������������������������������������������������

δ 
y

i�1 1 − ϱ3i 
κi

− 
y

i�1 1 − ϱ3i − σ3i 
κi

 /
y

i�1 1 +(δ − 1)ϱ3i 
κi

+(δ − 1)
y

i�1 1 − ϱ3i 
κi3



.

(5)

Proof. For y � 1, κ � κ1 � 1,

FFHIWA P1(  � κ1P1

� P1

� ϱ1, σ1( 

� 〈
��������������������������

1 +(δ − 1)ϱ31  − 1 − ϱ31 

1 +(δ − 1)ϱ31  +(δ − 1) 1 − ϱ31 

3




,

�������������������������

δ 1 − ϱ31  − 1 − ϱ31 − σ31  

1 +(δ − 1)ϱ31 (δ − 1) 1 − ϱ31 

3


 〉.

(6)

*us, the result holds for y � 1. Suppose that result holds
for y � p, i.e.,

FFHIWA P1,P2, . . . ,Pp  � 〈
����������������������������������


p
i�1 1 +(δ − 1)ϱ3i 

κi
− 

p
i�1 1 − ϱ3i 

κi


p
i�11 +(δ − 1)ϱ3i +(δ − 1)

p
i�1 1 − ϱ3i 

κi

3




,

·

����������������������������������

δ 
p
i�1 1 − ϱ3i 

κi
− 

p
i�1 1 − ϱ3i − σ3i 

κi
 


p
i�11 +(δ − 1)ϱ3i +(δ − 1)

p
i�1 1 − ϱ3i 

κi

3


 〉.

(7)
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Now, for y � p + 1,

FFHIWA P1,P2, . . . ,Pp+1  � ⊕
p+1

i�1
κiPi

�

��������������������������������������


p
i�1 1 +(δ − 1)ϱ3i 

κi
− 

p
i�1 1 − ϱ3i 

κi


p
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

p
i�1 1 − ϱ3i 

κi

3




,

��������������������������������������

δ 
p
i�1 1 − ϱ3i 

κi
− 

p
i�1 1 − ϱ3i − σ3i 

κi
 


p
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

p
i�1 1 − ϱ3i 

κi

3




 

⊕

��������������������������������

1 +(δ − 1)ϱ3p+1 
κp+1

− 1 − ϱ3p+1 
κp+1

1 +(δ − 1)ϱ3p+1  +(δ − 1) 1 − ϱ3p+1 
κp+1

3




,

�����������������������������������

δ 1 − ϱ3p+1 
κp+1

− 1 − ϱ3p+1 − σ3p+1 
κp+1

 

1 +(δ − 1)ϱ3p+1 
κp+1

+(δ − 1) 1 − ϱ3p+1 
κp+1

3




 

�

��������������������������������������


p
i�1 1 +(δ − 1)ϱ3i 

κi
− 

p
i�1 1 − ϱ3i 

κi


p
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

p
i�1 1 − ϱ3i 

κi

3




,

��������������������������������������

δ 
p
i�1 1 − ϱ3i 

κi
− 

p
i�1 1 − ϱ3i − σ3i 

κi
 


p
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

p
i�1 1 − ϱ3i 

κi

3




 .

(8)

⇒ Result holds ∀ y. □

Remark 1. We elaborate two cases of the FFHIWA operator:

(i) For δ � 1, FFHIWA operator becomes FF interactive
weighted averaging (FFIWA) operator:

FFIWA P1,P2, . . . ,Py  �

��������������

1 − 

y

i�1
1 − ϱ3i 

κi
3




,

����������������������������



y

i�1
1 − ϱ3i 

κi
− 

y

i�1
1 − ϱ3i − σ3i 

κi
3




 . (9)

(ii) For δ � 2, FFHIWA operator becomes FF Einstein
interactive weighted averaging (FFEIWA) operator:

FFEIWA P1,P2, . . . ,Py  �

��������������������������


y
i�1 1 + ϱ3i 

κi
− 

y
i�1 1 + ϱ3i 

κi


y
i�1 1 + ϱ3i 

κi
+ 

y
i�1 1 + ϱ3i 

κi

3




 ,

·

���������������������������������

2 
y
i�1 1 + ϱ3i 

κi
− 

y
i�1 1 − ϱ3i − σ3i 

κi
 


y
i�1 1 + ϱ3i 

κi
+ 

y
i�1 1 + ϱ3i 

κi

3




.

(10)

Theorem 2. LetPi � (ϱi, σi) be FFNs, then the accumulated
value by using FFHIWA operator is a FFN, i.e.,

FFHIWA P1,P2, . . . ,Py  ∈ FFN. (11)

Proof. As Pi
′s are FFNs, 0≤ ϱi, σi ≤ 1 and 0≤ ϱ3i + σ3i ≤ 1.

*erefore,


y
i�1 1 +(δ − 1)ϱ3i 

κi
− 

y
i�1 1 − ϱ3i 

κi


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi � 1 −
δ

y
i�1 1 − ϱ3i 

κi


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi

≤ 1 − 
y

i�1 1 − ϱ3i 
κi ≤ 1.

(12)
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Also, (1 + (δ − 1)ϱ3i )≥ (1 − ϱ3i )⇒
y
i�1(1 + (δ − 1)ϱ3i )−


y
i�1 (1 − ϱ3i )≥ 0. *erefore,


y
i�1 1 +(δ − 1)ϱ3i 

κi
− 

y
i�1 1 − ϱ3i 

κi


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi ≥ 0,

⇒

��������������������������������������


y
i�1 1 +(δ − 1)ϱ3i 

κi
− 

y
i�1 1 − ϱ3i 

κi


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi

3




≥ 0.

(13)

*us,
Moreover,

δ 
y
i�1 1 − ϱ3i 

κi
− 

y
i�1 1 − ϱ3i − σ3i 

κi
 


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi

≤
δ 

y
i�1 1 − ϱ3i 

κi
 


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi

≤ ≤
y

i�1 1 − ϱ3i 
κi ≤ 1.

(14)

Also,



y

i�1
1 − ϱ3i 

κi
− 

y

i�1
1 − ϱ3i − σ3i 

κi ≥ 0,

δ 
y
i�1 1 − ϱ3i 

κi
− 

y
i�1 1 − ϱ3i − σ3i 

κi
 


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi ≥ 0,

��������������������������������������

δ 
y
i�1 1 − ϱ3i 

κi
− 

y
i�1 1 − ϱ3i − σ3i 

κi
 


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi

3




≥ 0.

(15)

*us, □

Property 1. (idempotency). If Pi � Po � (ϱo, σo), ∀ i, then

FFHIWA P1,P2, . . . ,Py  � Po. (16)

Proof. Since Pi � Po � (ϱo, σo)(∀ i � 1, 2. . . . , y) and


y
i�1 κi � 1, by *eorem 1,

FFHIWA P1,P2, . . . ,Py  �

��������������������������������������


y
i�1 1 +(δ − 1)ϱ3o 

κi
− 

y
i�1 1 − ϱ3o 

κi


y
i�1 1 +(δ − 1)ϱ3o 

κi
+(δ − 1)

y
i�1 1 − ϱ3o 

κi

3




,

��������������������������������������

δ 
y
i�1 1 − ϱ3o 

κi
− 

y
i�1 1 − ϱ3o − σ3o 

κi
 


y
i�1 1 +(δ − 1)ϱ3o 

κi
+(δ − 1)

y
i�1 1 − ϱ3o 

κi

3




 

�

��������������������������������������

1 +(δ − 1)ϱ3o 


y
i�1 κi − 1 − ϱ3o 


y
i�1 κi

1 +(δ − 1)ϱ3o 


y
i�1 κi +(δ − 1) 1 − ϱ3o 


y
i�1 κi

3





,

��������������������������������������

δ 1 − ϱ3o 


y
i�1 κi − 1 − ϱ3o − σ3o 


y
i�1 κi 

1 +(δ − 1)ϱ3o 


y
i�1 κi +(δ − 1) 1 − ϱ3o 


y
i�1 κi

3






 

�

��������������������������

1 +(δ − 1)ϱ3o  − 1 − ϱ3o 

1 +(δ − 1)ϱ3o  +(δ − 1) 1 − ϱ3o 

3




,

��������������������������

δ 1 − ϱ3o  − 1 − ϱ3o − σ3o  

1 +(δ − 1)ϱ3o  +(δ − 1) 1 − ϱ3o 

3




 

� ϱo, σo( .

(17)

□
Property 2. (boundedness). Let P− � (mini(ϱi),maxi(σi))
and P+ � (mini(ϱi),maxi(σi)), then

P
− ≤ FFHIWA P1,P2, . . . ,Py ≤P+

. (18)

Proof. Let f(r) � 1 − r/1+ (δ − 1)r, r ∈ [0,1], then f′(r) �

− δ/(1+ (δ − 1)r)2<0, so f(r) is a decreasing function
(DF). As ϱ3i,min≤ϱ

3
i ≤ϱ

3
i,max, ∀i� 1,2, . . . ,y, then

f(ϱ3i,max)≤f(ϱ3i ) ≤f(ϱ3i,min), ∀i; that is, 1 − ϱ3i,max/1+ (δ −

1)ϱ3i,max≤1 − ϱ3i /1+ (δ − 1)ϱ3i ≤1− ϱ3i,min/1+ (δ − 1)ϱ3i,min, ∀i.
Let κi ∈ [0,1] and 

y
i�1 κi � 1, we have

1 − ϱ3i,max

1 +(δ − 1)ϱ3i,max
 

κi

≤
1 − ϱ3i

1 +(δ − 1)ϱ3i
 

κi
≤

1 − ϱ3i,min

1 +(δ − 1)ϱ3i,min
 

κi



y

i�1

1 − ϱ3i,max

1 +(δ − 1)ϱ3i,max
 

κi

≤

y

i�1

1 − ϱ3i
1 +(δ − 1)ϱ3i

 

κi
≤

y

i�1

1 − ϱ3i,min

1 +(δ − 1)ϱ3i,min
 

κi
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⇔
1 − ϱ3i,max

1 +(δ − 1)ϱ3i,max
 


y

i�1
κi

≤

y

i�1

1 − ϱ3i
1 +(δ − 1)ϱ3i

 

κi
≤

1 − ϱ3i,min

1 +(δ − 1)ϱ3i,min
 


y

i�1
ϖi

⇔
1 − ϱ3i,max

1 +(δ − 1)ϱ3i,max

⎛⎝ ⎞⎠≤

y

i�1

1 − ϱ3i
1 +(δ − 1)ϱ3math fraki

 

κi
≤

1 − ϱ3i,min

1 +(δ − 1)ϱ3i,min

⎛⎝ ⎞⎠

⇔(δ − 1)
1 − ϱ3i,max

1 +(δ − 1)ϱ3i,max

⎛⎝ ⎞⎠≤ (δ − 1) 

y

i�1

1 − ϱ3i
1 +(δ − 1)ϱ3i

 

ϖi
≤ (δ − 1)

1 − ϱ3i,min

1 +(δ − 1)ϱ3i,min

⎛⎝ ⎞⎠

⇔
δ

1 +(δ − 1)ϱ3i,max

⎛⎝ ⎞⎠≤ 1 +(δ − 1) 

y

i�1

1 − ϱ3i
1 +(δ − 1)ϱ3i

 

κi
≤

δ
1 +(δ − 1)ϱ3i,min

⎛⎝ ⎞⎠

⇔
1 +(δ − 1)ϱ3i,min

δ
 ≤

1
1 +(δ − 1)

y
i�1 1 − ϱ3i /1 +(δ − 1)ϱ3i 

κi ≤
1 +(δ − 1)ϱ3i,max

δ
 

⇔ 1 +(δ − 1)ϱ3i,min ≤
δ

1 +(δ − 1)
y
i�1 1 − ϱ3i /1 +(δ − 1)ϱ3i 

κi ≤ 1 +(δ − 1)ϱ3i,max 

⇔(δ − 1)ϱ3i,min ≤
δ

1 +(δ − 1)
y
i�1 1 − ϱ3i /1 +(δ − 1)ϱ3i 

κi − 1≤ (δ − 1)ϱ3i,max

⇔ϱ3i,min ≤


y
i�1 1 +(δ − 1)ϱ3i 

κi
− 

y
i�1 1 − ϱ3i 

κi


y
i�1 1 +(δ − 1)ϱ3i 

ϖi
+(δ − 1)

y
i�1 1 − ϱ3i 

ϖi
≤ ϱ3i,max.

(19)

*us,

ϱi,min ≤

��������������������������������������


y
i�1 1 +(δ − 1)ϱ3i 

κi
− 

y
i�1  1 − ϱ3i 

κi


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

ϖi

3




≤ ϱi,max.

(20)

Consider g(s) � δ − (δ − 1)s/(δ − 1)s, s ∈ (0, 1], then
g′(s) � − δ/(δ − 1)s2; i.e., g(s) is a DF on (0, 1]. Since
1 − ϱ3i,max ≤ 1 − ϱ3i ≤ 1 − ϱ3i,min, ∀ i, then g(1 − ϱ3i,max)≤ g(1
− ϱ3i )≤g(1 − ϱ3i,max), ∀ i, that is, δ − (δ − 1)(1 − ϱ3i,min)/(δ −

1)(1 − ϱ3i,min)≤ δ − (δ − 1)(1 − ϱ3i )/ (δ − 1)(1 − ϱ3i )≤ δ − (δ
− 1)(1 − ϱ3i,max)/(δ − 1)(1 − ϱ3i,max). *en,

δ − (δ − 1) 1 − ϱ3i,min 

(δ − 1) 1 − ϱ3i,min 
⎛⎝ ⎞⎠

κi

≤
δ − (δ − 1) 1 − ϱ3i( 

(δ − 1) 1 − ϱ3i 
⎛⎝ ⎞⎠

κi

≤
δ − (δ − 1) 1 − ϱ3i,max 

(δ − 1) 1 − ϱ3i,max 
⎛⎝ ⎞⎠

κi



y

i�1

δ − (δ − 1) 1 − ϱ3i,min 

(δ − 1) 1 − ϱ3i,min 
⎛⎝ ⎞⎠

κi

≤

y

i�1

δ − (δ − 1) 1 − ϱ3i( 

(δ − 1) 1 − ϱ3i 
⎛⎝ ⎞⎠

κi

≤

y

i�1

δ − (δ − 1) 1 − ϱ3i,max 

(δ − 1) 1 − ϱ3i,max 
⎛⎝ ⎞⎠

κi

⇒
δ − (δ − 1) 1 − ϱ3i,min 

(δ − 1) 1 − ϱ3i,min 
⎛⎝ ⎞⎠


y

i�1
κi

≤

y

i�1

δ − (δ − 1) 1 − ϱ3i( 

(δ − 1) 1 − ϱ3i 
⎛⎝ ⎞⎠

κi

≤
δ − (δ − 1) 1 − ϱ3i,max 

(δ − 1) 1 − ϱ3i,max 
⎛⎝ ⎞⎠


y

i�1
κi

⇒
δ − (δ − 1) 1 − ϱ3i,min 

(δ − 1) 1 − ϱ3i,min 
⎛⎝ ⎞⎠≤

y

i�1

δ − (δ − 1) 1 − ϱ3i( 

(δ − 1) 1 − ϱ3i 
⎛⎝ ⎞⎠

κi

≤
δ − (δ − 1) 1 − ϱ3i,max 

(δ − 1) 1 − ϱ3i,max 
⎛⎝ ⎞⎠
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⇒
δ

(δ − 1) 1 − ϱ3i,min 
⎛⎝ ⎞⎠≤

y

i�1

δ − (δ − 1) 1 − ϱ3i( 

(δ − 1) 1 − ϱ3i 
⎛⎝ ⎞⎠

κi

+ 1≤
δ

(δ − 1) 1 − ϱ3i,max 
⎛⎝ ⎞⎠

⇒
(δ − 1) 1 − ϱ3i,max 

δ
⎛⎝ ⎞⎠≤

1


y
i�1 δ − (δ − 1) 1 − ϱ3i /(δ − 1) 1 − ϱ3i  

κi
+ 1
≤

(δ − 1) 1 − ϱ3i,min 

δ
⎛⎝ ⎞⎠

⇒ 1 − ϱ3i,max ≤
δ

(δ − 1)
y
i�1 δ − (δ − 1) 1 − ϱ3i /(δ − 1) 1 − ϱ3i  

κi
+(δ − 1)

≤ 1 − ϱ3i,min 

⇒ 1 − ϱ3i,max ≤
δ

(δ − 1)
y
i�1 δ − (δ − 1)σ3i /(δ − 1)σ3i 

κi
+(δ − 1)

≤ 1 − ϱ3i,min .

(21)

Let FFHIWA (P1,P2, . . . ,Py) � P � ϱP, σP , then
from inequalities (20) and (21), ϱmin ≤ ϱP ≤ ϱmax, σmax ≤ σP
≤ σmin, where ϱmin � mini ϱi , ϱmax � maxi ϱi , σmin � mini
σi , and σmax � maxi σi . So S(P) � ϱ3P − σ3P ≤ ϱ

3
max−

σ3max � S(P+) and S(P) � ϱ3P − σ3P ≥ ϱ
3
min − σ3min � S(P− ).

As S(P)< S(P+) and S(P)> S(P− ),

P
− ≤ FFHIWA P1,P2, . . . ,Py ≤P+

. (22)
□

Property 3. (monotonicity). When Pi ≤Ti, ∀ i, then

FFHIWA P1,P2, . . . ,Py ≤ FFHIWA T1,T2, . . . ,Ty .

(23)

Proof. It is similar to above. □

Property 4. (shift invariance). If T � (ϱT, σT) is another
FFN, then

FFHIWA P1⊕T,P2⊕T, . . . ,Py⊕T 

� FFHIWA P1,P2, . . . ,Py ⊕T.
(24)

Proof. As Pi,T ∈ FFNs,

Pi⊕T �

����������������������������������������������

1 +(δ − 1)ϱ3i  1 +(δ − 1)ϱ3T  − 1 − ϱ3i  1 − ϱ3T 

1 +(δ − 1)ϱ3i  1 +(δ − 1)ϱ3T  +(δ − 1) 1 − ϱ3i  1 − ϱ3T 

3




,

·

����������������������������������������������

δ 1 − ϱ3i  1 − ϱ3T  − 1 − ϱ3i − σ3i  1 − ϱ3T − σ3T  

1 +(δ − 1)ϱ3i  1 +(δ − 1)ϱ3T  +(δ − 1) 1 − ϱ3i  1 − ϱ3T 

3






(25)

*erefore,

FFHIWA P1⊕T,P2⊕T, . . . ,Py⊕T  �

�������������������������������������������������������������


y
i�1 1 +(δ − 1)ϱ3i  1 +(δ − 1)ϱ3T  

κi
− 

y
i�1 1 − ϱ3i  1 − ϱ3T  

κi


y
i�1 1 +(δ − 1)ϱ3i  1 +(δ − 1)ϱ3T  

κi
+(δ − 1)

y
i�1 1 − ϱ3i  1 − ϱ3T  

κi

3




,

·

�������������������������������������������������������������

δ 
y
i�1 1 − ϱ3i  1 − ϱ3T  

κi
− 

y
i�1 1 − ϱ3i − σ3i  1 − ϱ3T − σ3T  

κi
 


y
i�1 1 +(δ − 1)ϱ3i  1 +(δ − 1)ϱ3T  

κi
+(δ − 1)

y
i�1 1 − ϱ3i  1 − ϱ3T  

κi

3






�

������������������������������������������������������������


y
i�1 1 +(δ − 1)ϱ3i 

κi 1 +(δ − 1)ϱ3T 
κi

− 
y
i�1 1 − ϱ3i 

κi 1 − ϱ3T 
κi


y
i�1 1 +(δ − 1)ϱ3i 

κi 1 +(δ − 1)ϱ3T 
κi

+(δ − 1)
y
i�1 1 − ϱ3i 

κi 1 − ϱ3T 
κi

3




,
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·

������������������������������������������������������������

δ 
y
i�1 1 − ϱ3i 

κi 1 − ϱ3T 
κi

− 
y
i�1 1 − ϱ3i − σ3i 

κi 1 − ϱ3T − σ3T 
κi

 


y
i�1 1 +(δ − 1)ϱ3i 

κi 1 +(δ − 1)ϱ3T 
κi

+(δ − 1)
y
i�1 1 − ϱ3i 

κi 1 − ϱ3T 
κi

3






�

�������������������������������������������������������������


y
i�1 1 +(δ − 1)ϱ3i 

κi
  1 +(δ − 1)ϱ3T  − 

y
i�1 1 − ϱ3i 

κi
  1 − ϱ3T 


y
i�1 1 +(δ − 1)ϱ3i 

κi
  1 +(δ − 1)ϱ3T  +(δ − 1) 

y
i�1 1 − ϱ3i 

κi
  1 − ϱ3T 

3




,

·

�������������������������������������������������������������

δ 
y
i�1 1 − ϱ3i 

κi
  1 − ϱ3T  − 

y
i�1 1 − ϱ3i − σ3i 

κi
  1 − ϱ3T − σ3T  


y
i�1 1 +(δ − 1)ϱ3i 

κi
  1 +(δ − 1)ϱ3T  +(δ − 1) 

y
i�1 1 − ϱ3i 

κi
  1 − ϱ3T 

3






� FFHIWA P1,P2, . . . ,Py ⊕T.

(26)

□Property 5. (homogeneity). Let β> 0, then

FFHIWA βP1, βP2, . . . , βPy 

� βFFHIWA P1,P2, . . . ,Py .
(27)

Proof. Since Pi � (ϱi, σi) are FFNs, for β> 0,

βPi �

�����������������������������

1 +(δ − 1)ϱ3 
β

− 1 − ϱ3 
β

1 +(δ − 1)ϱ3 
β

+(δ − 1) 1 − ϱ3 
β

3




,

�����������������������������

δ 1 − ϱ3 
β

− 1 − ϱ3 − σ3 
β

 

1 +(δ − 1)ϱ3 
β

+(δ − 1) 1 − ϱ3 
β

3




 . (28)

*erefore,

FFHIWA βP1, βP2, . . . , βPy  �

��������������������������������������������


y
i�1 1 +(δ − 1)ϱ3 

β
 

κi
− 

y
i�1 1 − ϱ3 

β
 

κi


y
i�1 1 +(δ − 1)ϱ3 

β
 

κi
+(δ − 1)

y
i�1 1 − ϱ3 

β
 

κi

3





,

·

��������������������������������������������

δ 
y
i�1 1 − ϱ3 

β
 

κi
− 

y
i�1 1 − ϱ3 − σ3 

β
 

κi
 


y
i�1 1 +(δ − 1)ϱ3 

β
 

κi
+(δ − 1)

y
i�1 1 − ϱ3 

β
 

κi

3







�

��������������������������������������������


y
i�1 1 +(δ − 1)ϱ3 

κi
 

β
− 

y
i�1 1 − ϱ3 

κi
 

β


y
i�1 1 +(δ − 1)ϱ3 

κi
 

β
+(δ − 1) 

y
i�1 1 − ϱ3 

κi
  

β

3




,

·

�������������������������������������������

δ 
y
i�1 1 − ϱ3 

κi
 

β
− 

y
i�1 1 +(δ − 1)ϱ3 

κi
 

β
 


y
i�1 1 +(δ − 1)ϱ3 

κi
 

β
+(δ − 1) 

y
i�1 1 − ϱ3 

κi
 

β

3







� β

��������������������������������������


y
i�1 1 +(δ − 1)ϱ3i 

κi
− 

y
i�1 1 − ϱ3i 

κi


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi

3




,

·

��������������������������������������

δ 
y
i�1 1 − ϱ3i 

κi
− 

y
i�1 1 − ϱ3i − σ3i 

κi
 


y
i�1 1 +(δ − 1)ϱ3i 

κi
+(δ − 1)

y
i�1 1 − ϱ3i 

κi

3






� βFFHIWA P1,P2, . . . ,Py .

(29)

□
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Property 6. Let Pi � (ϱPi
, σPi

) and Ti � (ϱTi
, σTi

) be two
collections of FFNs, then

FFHIWA P1⊕T1,P2⊕T2, . . . ,Py⊕Ty 

� FFHIWA P1,P2, . . . ,Py ⊕FFHIWA T1,T2, . . . ,Ty .

(30)

Proof. As Pi � (ϱPi
, σPi

) and Ti � (ϱTi
, σTi

) are two
collections of FFNs, then

Pi⊕Ti �

�������������������������������������������������

1 +(δ − 1)ϱ3Pi
  1 +(δ − 1)ϱ3Ti

  − 1 − ϱ3Pi
  1 − ϱ3Ti

 

1 +(δ − 1)ϱ3Pi
  1 +(δ − 1)ϱ3Ti

  +(δ − 1) 1 − ϱ3Pi
  1 − ϱ3Ti

 

3




,

·

�������������������������������������������������

δ 1 − ϱ3Pi
  1 − ϱ3Ti

  − 1 − ϱ3Pi
− σ3Pi

  1 − ϱ3Ti
− σ3Ti

  

1 +(δ − 1)ϱ3Pi
  1 +(δ − 1)ϱ3Ti

  +(δ − 1) 1 − ϱ3Pi
  1 − ϱ3Ti

 

3






(31)

*erefore,

FFHIWA P1⊕T1,P2⊕T2, . . . ,Py⊕Ty 

�

����������������������������������������������������������������


y
i�1 1 +(δ − 1)ϱ3Pi

  1 +(δ − 1)ϱ3Ti
  

κi
− 

y
i�1 1 − ϱ3Pi

  1 − ϱ3Ti
  

κi


y
i�1 1 +(δ − 1)ϱ3Pi

  1 +(δ − 1)ϱ3Ti
  

κi
+(δ − 1)

y
i�1 1 − ϱ3Pi

  1 − ϱ3Ti
  

κi

3




,

·

����������������������������������������������������������������

δ 
y
i�1 1 − ϱ3Pi

  1 − ϱ3Ti
  

κi
− 

y
i�1 1 − ϱ3Pi

− σ3Pi
  1 − ϱ3Ti

− σ3Ti
  

κi
 


y
i�1 1 +(δ − 1)ϱ3Pi

  1 +(δ − 1)ϱ3Ti
  

κi
+(δ − 1)

y
i�1 1 − ϱ3Pi

  1 − ϱ3Ti
  

κi

3






�

�����������������������������������������������������������������������


y
i�1 1 +(δ − 1)ϱ3Pi

 
κi


y
i�1 1 +(δ − 1)ϱ3Ti

 
κi

− 
y
i�1 1 − ϱ3Pi

 
κi


y
i�1 1 − ϱ3Ti

 
κi


y
i�1 1 +(δ − 1)ϱ3Pi

 
κi


y
i�1 1 +(δ − 1)ϱ3Ti

 
κi

+(δ − 1)
y
i�1 1 − ϱ3Pi

 
κi


y
i�1 1 − ϱ3Ti

 
κi

3




,

·

�����������������������������������������������������������������������

δ 
y
i�1 1 − ϱ3Pi

 
κi


y
i�1 1 − ϱ3Ti

 
κi

− 
y
i�1 1 − ϱ3Pi

− σ3Pi
 

κi


y
i�1 1 − ϱ3Ti

− σ3Ti
 

κi
 


y
i�1 1 +(δ − 1)ϱ3Pi

 
κi


y
i�1 1 +(δ − 1)ϱ3Ti

 
κi

+(δ − 1)
y
i�1 1 − ϱ3Pi

 
κi


y
i�1 1 − ϱ3Ti

 
κi

3






�

���������������������������������������


y
i�1 1 +(δ − 1)ϱ3Pi

 
κi

− 
y
i�1 1 − ϱ3Pi

 
κi


y
i�1 1 +(δ − 1)ϱ3Pi

 
κi

+(δ − 1)
y
i�1 1 − ϱ3Pi

 
κi

3




,

���������������������������������������

δ 
y
i�1 1 − ϱ3Pi

 
κi

− 
y
i�1 1 − ϱ3Pi

− σ3Pi
 

κi
 


y
i�1 1 +(δ − 1)ϱ3Pi

 
κi

+(δ − 1)
y
i�1 1 − ϱ3Pi

 
κi

3




 

⊕

����������������������������������������


y
i�1 1 +(δ − 1)ϱ3Ti

 
κi

− 
y
i�1 1 − ϱ3Ti

 
κi


y
i�1 1 +(δ − 1)ϱ3Ti

 
κi

+(δ − 1)
y
i�1 1 − ϱ3Ti

 
κi

3




,

����������������������������������������

δ 
y
i�1 1 − ϱ3Ti

 
κi

− 
y
i�1 1 − ϱ3Ti

− σ3Ti
 

κi
 


y
i�1 1 +(δ − 1)ϱ3Ti

 
κi

+(δ − 1)
y
i�1 1 − ϱ3Ti

 
κi

3




 

� FFHIWA P1,P2, . . . ,Py ⊕FFHIWA T1,T2, . . . ,(

(32)

□
Property 7. Let Pi � (ϱi, σi) and T � (ϱ, σ) be FFNs and
η> 0, then

FFHIWA ηP1⊕T, ηP2⊕T, . . . , ηPy⊕T  � ηFFHIWA P1,P2, . . . ,Py ⊕T. (33)
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Proof. By applying the Properties 1, 5, and 6, we can proof
it. □

4. Ordered Weighted Averaging Operator

Definition 5. Let Pi � (ϱi, σi) be a collection of FFNs and
κ � (κ1, κ2, . . . , κy)T be its WV such that κi > 0 and


y
i�1 κi � 1, then FFHIOWA: Ωy⟶Ω is defined as

FFHIWA P1,P2, . . . ,Py  � κ1Pσ(1)⊕κ2Pσ(2)⊕ · · · κyPσ(y),

(34)

where (σ(1), σ(2), . . . , σ(y)) is a permutation of (1, 2, . . . ,

y) such that σ(i − 1)≥ σ(i) for any i.

Theorem 3. Let Pi � (ϱi, σi) be a collection of FFNs, then

FFHIOWA P1,P2, . . . ,Py  �

������������������������������������������


y
i�1 1 +(δ − 1)ϱ3σ(i) 

κi
− 

y
i�1 1 − ϱ3σ(i) 

κi


y
i�1 1 +(δ − 1)ϱ3σ(i) 

κi
+(δ − 1)

y
i�1 1 − ϱ3σ(i) 

κi ,

3






·

������������������������������������������

δ 
y
i�1 1 − ϱ3σ(i) 

κi
− 

y
i�1 1 − ϱ3σ(i) − σ3σ(i) 

κi


y
i�1 


y
i�1 1 +(δ − 1)ϱ3σ(i) 

κi
+(δ − 1)

y
i�1 1 − ϱ3σ(i) 

κi

3






(35)

Proof. It is similar to *eorem 1. □

Remark 2. We elaborate two cases of the FFHIOWA
operator.

(i) For δ � 1, FFHIOWA operator becomes FF in-
teractive ordered weighted averaging (FFIOWA)
operator:

FFIOWA P1,P2, . . . ,Py  �

����������������

1 − 

y

i�1
1 − ϱ3σ(i) 

κi
3




,

���������������������������������



y

i�1
1 − ϱ3σ(i) 

κi
− 

y

i�1
1 − ϱ3σ(i) − σ3σ(i) 

κi
3




 . (36)

(ii) For δ � 2, FFHIOWA operator becomes FF Einstein
interactive ordered weighted averaging (FFEIOWA)
operator:

FFEIOWA P1,P2, . . . ,Py  �

������������������������������


y
i�1 1 + ϱ3σ(i) 

κi
− 

y
i�1 1 − ϱ3σ(i) 

κi


y
i�1 1 + ϱ3σ(i) 

κi
+ 

y
i�1 1 − ϱ3σ(i) 

κi

3




,

·

��������������������������������������

2 
y
i�1 1 − ϱ3σ(i) 

κi
− 

y
i�1 1 − ϱ3σ(i) − σ3σ(i) 

κi
 


y
i�1 1 + ϱ3σ(i) 

κi
+ 

y
i�1 1 − ϱ3σ(i) 

κi

3




.

(37)

Property 8. Let Pi � (ϱi, σi) be a collection of FFNs and
κ � (κ1, κ2, . . . , κy)T be its WV such that κi > 0 and


y
i�1 κi � 1.

(i) Idempotency: if Pi � Po � (ϱo, σo), ∀ i, then

FFHIOWA P1,P2, . . . ,Py  � Po. (38)

(ii) Boundedness: let P− � (mini(ϱi),maxi(σi)) and
P+ � (maxi(ϱi),mini(σi)), then

P
− ≤ FFHIOWA P1,P2, . . . ,Py ≤P+

. (39)
(iii) Monotonicity: when Pi ≤Ti,∀ i, then

FFHIOWA P1,P2, . . . ,Py 

≤ FFHIOWA T1,T2, . . . ,Ty .
(40)

(iv) Shift invariance: if T � (ϱT, σT) is another FFN,
then

FFHIOWA P1⊕T,P2⊕T, . . . ,Py⊕T 

� FFHIOWA P1,P2, . . . ,Py ⊕T.
(41)
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(v) Homogeneity: let β> 0, then

FFHIOWA βP1, βP2, . . . , βPy 

� βFFHIOWA P1,P2, . . . ,Py .
(42)

Proof. It is similar to the FFHIWA properties. □

5. Hybrid Weighted Averaging Operator

Definition 6. Let Pi � (ϱi, σi) be a collection of FFNs, then
FFHIHWA: Ωy⟶Ω is defined as

FFHIHWA P1,P2, . . . ,Py  � κ1P
.

1⊕κ2P
.

2⊕ · · · κyP
.

y,

(43)

where κ � (κ1, κ2, . . . , κy)T is the WV associated with
FFHIHWA operator and ϕ � (ϕ1, ϕ2, . . . ,ϕy)T is the WV of
Pi such that ϕi ∈ [0, 1] and 

y
i�1 ϕi � 1. Let P

.

is the ith

largest of the weighted FFNs ((P
.

� yϕiPi) and (σ(1),

σ(2), . . . , σ(y)) is a permutation of (1, 2, . . . , y) such that
σ(i − 1)≥ σ(i) for any i.

Theorem 4. Let Pi � (ϱi, σi) be a collection of FFNs, then

FFHIHWA P1,P2, . . . ,Py  �

�����������������������������������������


y
i�1 1 +(δ − 1) _ϱ3σ(i) 

κi
− 

y
i�1 1 − _ϱ3σ(i) 

κi


y
i�1 1 +(δ − 1) _ϱ3σ(i) 

κi
+(δ − 1)

y
i�1 1 − _ϱ3σ(i) 

κi

3




,

·

����������������������������������������������

δ


y
i�1 1 − _ϱ3σ(i) 

κi
− 

y
i�1 1 − _ϱ3σ(i) − _σ3σ(i) 

κi



y
i�1 1 +(δ − 1) _ϱ3σ(i) 

κi
+(δ − 1)

y
i�1 1 − _ϱ3σ(i) 

κi
.

⎧⎨

⎩

3




(44)

Proof. It is similar to *eorem 1. □

Remark 3. FFHIHWA operator also satisfies the same
properties as given in Property 8.

6. MAGDM under Fermatean
Fuzzy Environment

In MAGDM problem, it is a biggest challenge for decision
makers (DMrs) to choose the best alternative among the list of
possible alternatives. Let S1,S2, . . . ,Sy  be y distinct al-
ternatives which can be classified under the set of m different
attributes c1, c2, . . . , cm  by the DMrs. Suppose that DMrs
give their preferences in terms of FFNs αij � (ϱij, σij)(i �

1, 2, . . . , y; j � 1, 2, . . . , m), where ϱij and σij are the satis-
faction and dissatisfaction degrees, respectively, of the alter-
native corresponding to given parameter given by the DMrs
such that 0≤ ϱij3 + σij3 ≤ 1. *e different steps for MAGDM
problem are given as follows:

Step 1. Attain the normalize FF decision matrix by
exchanging the assessment value of cost parameter
(CP) into benefit parameter (BP) [40], i.e.,

Pij �
αc
ij; for CP,

αij; for BP. (45)

Step 2. By using the decisionmatrix of step 1, the overall
aggregated value of alternative Si under the distinct
choices of attributes cj is obtained by using FFHIWA or
FFHIOWA or FFHIHWA operator and get the overall
value of them.
Step 3. By using the score function, calculate the score
values of all alternatives.

Step 4. Rank the alternatives S1,S2, . . . ,Sy  in the
descending order of score values and then select the
most suitable alternative.

6.1. Numerical Example. To classify the air quality (AQ) of
Guangzhou for the 16th Asian Olympic Games [41] held
during November 12-27, 2010, the AQ data in Guangzhou
for November 2006, November 2007, November 2008,
and November 2009 are collected to find out the trends in
the AQ. Suppose that there are three AQ monitoring
stations E1, E2, and E3, which are considered as DMrs and
suppose that the 0.314, 0.355, and 0.331 are weights of E1,
E2, and E3, respectively. *ere are three measured in-
dexes, namely, SO2(c1),NO2(c2), and PM10(c3), and their
weight is κ � (0.40, 0.20, 0.40)T. LetS1,S2,S3, andS4 be
alternatives, whereS1 �November 2006,S2 �November
2007, S3 �November 2008, and S4 �November 2009.
Suppose that the measured values obtained from the AQ
monitoring stations E1, E2, and E3 under the measured
indexes SO2 (i.e., the attribute c1), NO2 (i.e., the attribute
c2), and PM10 (i.e., the attribute c3) in the form of FFNs
are shown in Tables 1–3, respectively. We rank the AQ
from 2006–2009 by using the proposed method.

By FFHIWA operator, the steps are as follows:

Step 1: as all criteria are of same type, decision matrix
cannot be normalized. *e aggregated decision matrix
by using FF weighted averaging operator with WV λ �

(0.314, 0.355, 0.331)T is shown in Table 4.
Step 2: to find the overall assessment of each alternative,
we apply the FFHIWA operator for δ � 1 as follows.
ForP1,
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� FFHIWA S11,S12,S13( 

�

�������������������������������������������

1 − 1 − 0.40313 
0.40

1 − 0.62083 
0.20

1 − 0.58003 
0.403



 ,

·

����������������������������������������������������������������������������������������������������������

1 − 0.40313 
0.40

1 − 0.62083 
0.20

1 − 0.58003 
0.40

− 1 − 0.40313 − 0.84003 
0.40

1 − 0.62083 − 0.49013 
0.20

1 − 0.58003 − 0.58893 
0.403



� (0.5374, 0.7106).

(46)

For P2,

� FFHIWA S11,S12,S13( 

�

�������������������������������������������

1 − 1 − 0.49863 
0.40

1 − 0.16623 
0.20

1 − 0.50483 
0.403



,

·

������������������������������������������������������������������������������������������������������������

1 − 0.0.49863 
0.40

1 − 0.16623 
0.20

1 − 0.50483 
0.40

− 1 − 0.49863 − 0.60073 
0.40

1 − 0.16623 − 0.72523 
0.20

1 − 0.50483 − 0.74303 
0.403

 〉
� (0.4691, 0.6934).

(47)

Table 2: Air quality data by expert E2.

E1 c1 c2 c3

S1 (0.6, 0.88) (0.3, 0.57) (0.46, 0.76)
S2 (0.3, 0.7) (0.1, 0.99) (0.4, 0.77)
S3 (0.96, 0.3) (0.7, 0.22) (0.6, 0.01)
S4 (0.88, 0.2) (0.86, 0.01) (0.96, 0.33)

Table 1: Air quality data by expert E1.

E1 c1 c2 c3

S1 (0.5, 0.7) (0.9, 0.6) (0.8, 0.7)
S2 (0.3, 0.7) (0.1, 0.9) (0.66, 0.8)
S3 (0.8, 0.3) (0.7, 0.2) (0.8, 0.4)
S4 (0.9, 0.1) (0.8, 0.1) (0.7, 0.3)

Table 3: Air quality data by expert E3.

E3 c1 c2 c3

S1 (0.1, 0.93) (0.7, 0.3) (0.5, 0.3)
S2 (0.9, 0.4) (0.3, 0.56) (0.47, 0.66)
S3 (0.93, 0.3) (0.76, 0.2) (0.76, 0.1)
S4 (0.97, 0.4) (0.88, 0.3) (0.89, 0.5)

Table 4: Aggregated FF decision matrix.

c1 c2 c3

S1 (0.4031, 0.8400) (0.6208, 0.4901) (0.5800, 0.5889)
S2 (0.4986, 0.6007) (0.1662, 0.7252) (0.5048, 0.7430)
S3 (0.8998, 0.3000) (0.7199, 0.2071) (0.7158, 0.1623)
S4 (0.9161, 0.2348) (0.8478, 0.1343) (0.8552, 0.3769)
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For P3,

� FFHIWA S11,S12,S13( 

�

�������������������������������������������

1 − 1 − 0.89983 
0.40

1 − 0.71993 
0.20

1 − 0.71583 
0.403



,

·

����������������������������������������������������������������������������������������������������������

1 − 0.89983 
0.40

1 − 0.71993 
0.20

1 − 0.71583 
0.40

− 1 − 0.89983 − 0.30003 
0.40

1 − 0.71993 − 0.20713 
0.20

1 − 0.71583 − 0.16233 
0.403

 〉
� (0.8191, 0.2754).

(48)

For P4,

� FFHIWA S11,S12,S13( 

�

�������������������������������������������

1 − 1 − 0.91613 
0.40

1 − 0.84783 
0.20

1 − 0.85523 
0.403



,

·

����������������������������������������������������������������������������������������������������������

1 − 0.91613 
0.40

1 − 0.84783 
0.20

1 − 0.85523 
0.40

− 1 − 0.91613 − 0.23483 
0.40

1 − 0.84783 − 0.13433 
0.20

1 − 0.85523 − 0.37693 
0.403

 〉
� (0.8831, 0.2951).

(49)

Step 3: the score values for alternatives are

S S1(  � − 0.2036, S S2(  � − 0.2302, S S3( 

� 0.5287, S S4(  � 0.6630.
(50)

Step 4: as S4≻S3≻S1≻S2, the best AQ in Guangzhou
is November of 2009.

*e whole method which we have adopted in this ap-
plication is given in Figure 1.

7. Comparison Analysis

For the validity and importance of proposed operators, we
aggregate the same information using different operator,
namely, FFEWA or FFEOWA operator [30].

Definition 7. (see [30]). *e FFEWA operator is as follows:

FFEWA P1,P2, . . . ,Py  �

��������������������������


y
i�1 1 + ϱ3i 

κi
− 

y
i�1 1 + ϱ3i 

κi


y
i�1 1 + ϱ3i 

κi
+ 

y
i�1 1 + ϱ3i 

κi

3




,

�
23

√


y
i�1σ

κi
i������������������������


y
i�1 2 − σ3i 

κi
+ 

y
i�1 σ3i 

κi3 . (51)

*e FF Einstein ordered weighted averaging (FFEOWA)
operator is

FFEOWA P1,P2, . . . ,Py  �

������������������������������


y
i�1 1 + ϱ3σ(i) 

κi
− 

y
i�1 1 − ϱ3σ(i) 

κi


y
i�1 1 + ϱ3σ(i) 

κi
+ 

y
i�1 1 − ϱ3σ(i) 

κi

3




,

�
23

√


y
i�1σ

κi
σ(i)���������������������������


y
i�1 2 − σ3σ(i) 

κi
+ 

y
i�1 σ3σ(i) 

κi3 . (52)

By FFEWA operator, the steps are as follows:

Step 1: same as above.

Step 2: to find the overall assessment of each alternative,
we apply the FFEWA operator as
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P1 � FFEWA S11,S12,S13( 

�

�����������������������������������������������������������������������������������

1 + 0.40313 
0.40

1 + 0.62083 
0.20

1 + 0.58003 
0.40

− 1 − 0.40313 
0.40

1 − 0.62083 
0.20

1 − 0.58003 
0.40

1 + 0.40313 
0.40

1 + 0.62083 
0.20

1 + 0.58003 
0.40

+ 1 − 0.40313 
0.40

1 − 0.62083 
0.20

1 − 0.58003 
0.40

3




,

�
23

√
(0.8400)

0.40
(0.4901)

0.20
(0.5889)

0.40
 

2 − 0.84003 
0.40

2 − 0.49013 
0.20

2 − 0.58893 
0.40

+ 0.84003 
0.40

0.49013 
0.20

0.58893 
0.40

� (0.5347, 0.6628).

P2 � FFEWA S11,S12,S13( 

�

��������������������������������������������������������������������������������������

1 + 0.49863 
0.40

1 + 0.16623 
0.20

1 + 0.50483 
0.40

− 1 − 0.49863 
0.40

1 − 0.16623 
0.20

1 − 0.50483 
0.40

1 + 0.49863 
0.40

1 + 0.16623 
0.20

1 + 0.50483 
0.40

+ 1 − 0.49863 
0.40

1 − 0.16623 
0.20

1 − 0.50483 
0.40

⎛⎜⎝ ⎞⎟⎠
3




,

·

�
23

√
(0.6007)

0.40
(0.7252)

0.20
(0.7430)

0.40
 

2 − 0.60073 
0.40

2 − 0.72523 
0.20

2 − 0.74303 
0.40

+ 0.60073 
0.40

0.72523 
0.20

0.74303 
0.40

� (0.4674, 0.6810).

P3 � FFEWA S11,S12,S13( 

Start

Normalize the decision
matrix

Aggregated value of all
fermatean fuzzy numbers

Calculate the score values
of each alternative

Select the optimal
alternative

End

Preference values of all
alternatives

FF averaging operator

FFHIWA operator

Applying score function

Figure 1: Flow chart for the classification of the air quality of Guangzhou.
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�

�����������������������������������������������������������������������������������

1 + 0.89983 
0.40

1 + 0.71993 
0.20

1 + 0.71583 
0.40

− 1 − 0.89983 
0.40

1 − 0.71993 
0.20

1 − 0.71583 
0.40

1 + 0.89983 
0.40

1 + 0.71993 
0.20

1 + 0.71583 
0.40

+ 1 − 0.89983 
0.40

1 − 0.71993 
0.20

1 − 0.71583 
0.40

3




,

·

�
23

√
(0.3000)

0.40
(0.2071)

0.20
(0.1623)

0.40
 

2 − 0.30003 
0.40

2 − 0.20713 
0.20

2 − 0.16233 
0.40

+ 0.30003 
0.40

0.20713 
0.20

0.16233 
0.40

� (0.8137, 0.2180).

P4 � FFEWA S11,S12,S13( 

�

�����������������������������������������������������������������������������������

1 + 0.91613 
0.40

1 + 0.84783 
0.20

1 + 0.85523 
0.40

− 1 − 0.91613 
0.40

1 − 0.84783 
0.20

1 − 0.85523 
0.40

1 + 0.91613 
0.40

1 + 0.84783 
0.20

1 + 0.85523 
0.40

+ 1 − 0.91613 
0.40

1 − 0.84783 
0.20

1 − 0.85523 
0.40

3




,

·

�
23

√
(0.2348)

0.40
(0.1343)

0.20
(0.3769)

0.40
 

2 − 0.23483 
0.40

2 − 0.13433 
0.20

2 − 0.37693 
0.40

+ 0.23483 
0.40

0.13433 
0.20

0.37693 
0.40

� (0.8831, 0.2951). (53)

Step 3: the score values for alternatives are

S S1(  � − 0.1383, S S2(  � − 0.2137, S S3( 

� 0.5284, S S4(  � 0.6704.
(54)

Step 4: as S4≻S3≻S1≻S2, the best AQ in Guangzhou
is November of 2009.

*e results obtained from these operators are shown in
Table 5 and Figure 2. It is clear that the most suitable al-
ternative obtained by using FFHIWA and FFEWA operators
is the same. *is implies that our proposed methods are
accurate and can be utilized in DM problems.

Advantages of proposed operators: the main reason
behind proposed approach is that

(i) We can see the effect of other grades of non-
membership in the aggregated value even if non-
membership of any one alternative is zero.

(ii) We can see that there is a proper interaction between
the MD and NMD.

*e operators defined in [30] are very concise and have
been extensively used, but these operators have certain
drawbacks. Few of them have been highlighted as follows:

(1 )Let P1 � (0.9, 0), P2 � (0.77, 0.45), P3 � (0.80,

0.63), and P4 � (0.58, 0.67) be four FFNs and κ �

(0.3, 03, 0.2, 0.2)T is the WV corresponding to FFNs.
By applying the FFEWA operator, we get FFEWA
(P1,P2,P3,P4) � (0.88, 0). *is shows that NMD
of a FFN is independent of the NMD of others FFNs
(which are nonzero in Pi

′s) and hence does not play

a significant role during the AP. *e aggregated
FFNs as FFHIWA(P1,P2,P3,P4) � (0.81, 0.49) for
δ � 1 and for δ � 2 FFHIWA(P1, P2,P3,P4) �

(0.88, 0.43). It can be seen that NMD is nonzero of
the whole aggregated FFNs even if at least one of the
NMD of FFNs is zero. *us, the others non-
membership values of FFNs play a predominant role
during the AP in the proposed operator.

(2) Let P1 � (0.53, 0.42), P2 � (0.98, 0.34), P3 � (0.61,

0.54), and P4 � (0.71, 0.46) be four FFNs and κ �

(0.4, 0.2, 0.3, 0.1)T is the WV corresponding to FFNs.
By applying the FFEWA operator, we get FFEWA
(P1,P2,P3,P4) � (0.78, 0.44). If we replace FFNs
P2 and P3 with T2 � (0.78, 0.34) and T3 � (0.67,

0.54), then their corresponding aggregated FFN be-
come (0.66, 0.44). Hence, the NMD part of aggregated
FFN becomes independent of the change in MD’s
values. *at is why it is incompatible and does not
produce an accurate information to the decision
maker. *e aggregated FFNs as FFHIWA(P1,P2,

P3,P4) � (0.80, 0.53) for δ � 1 and FFHIWA(P1,

P2,P3,P4) � (0.78, 0.55) for δ � 2, and if we con-
sider modified FFNs, then FFHIWA(P1,T2,T3,

P4) � (0.67, 0.45) for δ � 1 and FFHIWA(P1,T2,

T3,P4) � (0.66, 0.45) for δ � 2. It can be seen that
the modification in membership function will affect
aggregated value of nonmembership function and is
nonzero. *at is why, there is a proper interaction
between the MD and NMD, and hence, the results are
unchangeable and more realistic than the existing
operators results.
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8. Conclusions

FFS is a generalized structure of IFS and PFS. It is more
powerful tool to solve DM problems involving uncertainty
and satisfies the condition 0≤ ϱ3 + σ3 ≤ 1. *e structure of
Hamacher’s t-norm and t-conorm is more generalized that
effectively integrates the complex information. *e
shortcomings of the existing methods and beneficial
characteristics of Hamacher AOs motivate us to endeavor
for the development of a fruitful fusion with FFNs. In this
research article, we have developed a group of novel FF
Hamacher interactive averaging AOs, such as FFHIWA,
FFHIOWA, and FFHIHWA operators. *ese proposed
operators have the characteristic of idempotency, bound-
edness, monotonicity, homogeneity, and shift invariance.
*ese operators reduce the shortcomings of FFEWA op-
erators. We have also discussed some particular cases of
proposed operators. Moreover, the developed operators
study the interaction between membership and non-
membership grades. We have presented an algorithm to
deal with MAGDM problems. For the validity and flexi-
bility of proposed work, we have given the comparison
analysis. In short, this work focuses on role of Hamacher
interactive AOs as well as the propitious characteristics of
FFNs. It is concluded that the new model of uncertain data
is flexible which aptly depicts imprecise and inexact in-
formation in complicated scenarios. *us, the operators
serve as a powerful tool with further applications due to
their highly adaptable nature. In future, we will work on the
following topics:

(1) Neutrality aggregation operators for Fermatean
fuzzy sets.

(2) Fermatean fuzzy power aggregation operators.
(3) Fermatean fuzzy Hamy mean aggregation operators

and their application in multiattribute decision making.
(4) Fermatean fuzzy soft Dombi aggregation operators.

Data Availability

No data were used to support this study.

Disclosure

*is article does not contain any studies with human par-
ticipants or animals performed by any of the authors.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[3] R. R. Yager, “Pythagorean fuzzy subsets,” in Proceedings of the
Joint IFSA World Congress and NAFIPS Annual Meeting
(IFSA/NAFIPS), pp. 57–61, IEEE, Edmonton, Canada, June
2013.

[4] R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE
Transactions on Fuzzy Systems, vol. 25, no. 5, pp. 1222–1230,
2016.

[5] T. Senapati and R. R. Yager, “Fermatean fuzzy sets,” Journal of
Ambient Intelligence and Humanized Computing, vol. 11,
no. 2, pp. 663–674, 2020.

[6] R. Mesiar and E. Pap, “Aggregation of infinite sequences,”
Information Sciences, vol. 178, no. 18, pp. 3557–3564, 2008.

[7] Z. Xu, “Intuitionistic fuzzy aggregation operators,” IEEE
Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1179–1187,
2007.

[8] H. Zhao, Z. Xu, M. Ni, and S. Liu, “Generalized aggregation
operators for intuitionistic fuzzy sets,” International Journal of
Intelligent Systems, vol. 25, no. 1, pp. 1–30, 2010.

[9] X. Zhao and G. Wei, “Some intuitionistic fuzzy Einstein
hybrid aggregation operators and their application to multiple
attribute decision making,” Knowledge-Based Systems, vol. 37,
pp. 472–479, 2013.

[10] W. Wang and X. Liu, “Intuitionistic fuzzy information ag-
gregation using Einstein operations,” IEEE Transactions on
Fuzzy Systems, vol. 20, no. 5, pp. 923–938, 2012.

[11] H. Garg, “Some series of intuitionistic fuzzy interactive av-
eraging aggregation operators,” SpringerPlus, vol. 5, no. 1,
p. 999, 2016.

[12] H. Garg, N. Agarwal, and A. Tripathi, “Choquet integral-
based information aggregation operators under the interval-
valued intuitionistic fuzzy set and its applications to decision
making process,” International Journal for Uncertainty
Quantification, vol. 7, no. 3, 2017.

[13] H. Garg, “Intuitionistic fuzzy Hamacher aggregation opera-
tors with entropy weight and their applications to multi-
criteria decision-making problems,” Iranian Journal of Science
and Technology, Transactions of Electrical Engineering, vol. 43,
no. 3, pp. 597–613, 2019.

FFHIWA operator
FFEWA operator

0.5284

0.5287

–0.2302–0.2036

–0.2137–0.1383

A_1

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6

A_2 A_3 A_4

0.6704

0.663

Figure 2: Comparison with FFEWA operator.

Table 5: Comparison analysis with FFEWA operator.

Methods S(S1) S(S2) S(S3) S(S4) Ranking order

FFEWA operator − 0.1383 − 0.2137 0.5284 0.6704 S4≻S3≻S1≻S2
FFHIWA operator (proposed) − 0.2036, − 0.2302 0.5287 0.6630 S4≻S3≻S1≻S2
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*is paper presents the novel concept of complex spherical fuzzy N-soft set (CSFNSfS) which is capable of handling two-
dimensional vague information with parameterized ranking systems. First, we propose the basic notions for a theoretical de-
velopment of CSFNSfSs, including ranking functions, comparison rule, and fundamental operations (complement, union,
intersection, sum, and product). Furthermore, we look into some properties of CSFNSfSs. We then produce three algorithms for
multiattribute decision-making that take advantage of these elements. We demonstrate their applicability with the assistance of a
numerical problem (selection of best third-party app of the year). A comparison with the performance of Pythagorean N-soft sets
speaks for the superiority of our approach. Moreover, with an aim to expand the range of techniques for multiattribute group
decision-making problems, we design a CSFNSf-TOPSIS method. We use a complex spherical fuzzy N-soft weighted average
operator in order to aggregate the decisions of all experts according to the power of the attributes and features of alternatives. We
present normalized-Euclidean distances (from the alternatives to both the CSFNSf positive and negative ideal solutions, re-
spectively) and revised closeness index in order to produce a best feasible alternative. As an illustration, we design a mathematical
model for the selection of the best physiotherapist doctor of Mayo hospital, Lahore. We conduct a comparison with the existing
complex spherical fuzzy TOPSIS method that confirms the stability of the proposed model and the reliability of its results.

1. Introduction

Multiattribute decision-making (MADM) and multi-
attribute group decision-making (MAGDM) methods are
broad sections in the field of decision-making. Researchers
and practitioners have resorted to them in order to evaluate
optimal solutions among a finite number of choices under
several attributes. For the purpose of improving the flexi-
bility of the evaluations that support the decision-making
process, Zadeh [1] proposed fuzzy set (FS) theory that
reshaped the field of decision-making and related disciplines
such as mathematical social sciences [2, 3]. In FS theory, a
membership degree belongs to the interval [0, 1]; thus, when
assigned to an object, it represents its degree of

belongingness to a mathematical object (a fuzzy set); in
formal logic, it means a degree of truth. *is means an
extension of binary valuations, which is, henceforth, re-
ferred to as crisp evaluations. Concerning its use for solving
MADM and MAGDM problems in fuzzy environments,
Song et al. [4] gave an algorithm based on arithmetic
operators, and Chen [5] built up a theory for a fuzzy-
TOPSIS method. No doubt, FS theory produced a turn of
direction in the field of decision-making. However, it was
not designed to look at the dissatisfaction nature of humans
in decision-making. *is drawback prompted Atanassov
[6] to present intuitionistic fuzzy sets (IFS) in 1986. *ey
allocate both degrees of satisfaction and dissatisfaction to
an object.
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Other extensions soon followed. Yager [7] further ex-
tended the IFS to Pythagorean fuzzy set (PyFS) in which the
sums of the squares of degree of satisfaction and dissatis-
faction should be within the closed unit interval. Later on,
Cuong [8] introduced picture fuzzy set (PFS) keeping in
view the existence of neutral positions under natural cir-
cumstances. For example, in case of voting systems a can-
didate could be either satisfied, remain neutral, and disagree
with any given participant [9]. Many researchers chose this
environment for solving decision-making problems, but
others pointed out that PFS has the limitation that it is not
applicable in situations where the sum of the degrees of
satisfaction, neutrality, and dissatisfaction exceeds 1. *is is
the origin of spherical fuzzy sets and the spherical fuzzy
TOPSIS method presented by Gundogdu and Kahraman
[10] in 2019. Similarly and also motivated by spherical fuzzy
sets, Kahraman et al. [11] used a spherical TOPSISmethod to
find the best location for hospital. Later on, Mahmood et al.
[12] proposed T-spherical fuzzy sets, a generalization of
spherical fuzzy sets, which are less restrictive.*ey overcame
all the limitations of the existing models except in the
presence of 2-dimensional problems. Such 2-dimensional
problems in MADM and MAGDM can now be analyzed
with the tool developed by Ramot et al. [13], who introduced
complex fuzzy set in which the degree of satisfaction belongs
to the complex unit circle and consists of a periodic term as
well as the amplitude term which belong to the unit closed
interval. Akram and Bashir [14] extended the averaging
operators in the framework of complex fuzzy sets. Alkouri
and Salleh [15] presented the idea of complex intuitionistic
fuzzy set (CIFS), which describes both degree of satisfaction
and dissatisfaction within the complex unit circle, where the
sum of amplitude and periodic terms of the satisfaction and
dissatisfaction degrees should be within the unit interval
[0, 1].

Recently, Akram et al. [16] introduced the concept of
complex spherical fuzzy set and extended the TOPSIS
method to that setting. As an application, a model for the
selection of best water supply strategy for Nohoor village in
Iran was considered. *is novel concept contains degrees of
satisfaction, neutrality, and dissatisfaction which lie in the
complex unit circle. *ey are further restricted by the
condition that the sum of the squares of their amplitude and
phase terms should be less than or equal to 1.

*ere is a widespread handicap in the aforementioned
models and methods: they discard the frameworks that are
characterized by the satisfaction of certain attributes or the
fulfilment of properties. Soft set theory, launched in 1999,
accommodates all type of parameters [17]. Alkouri and
Salleh [15] introduced some new operators on soft set theory
which soon found applications in the fields of operations
research, game theory, stability, regularization, medicine,
and obviously in decision-making. Following this trend,
researchers brought up many models and methods for soft
sets and its extensions, inclusive of a new decision-making
method for valuation fuzzy soft sets introduced by Alcantud
et al. [18]. Despite these improvements there were still
problems in real life that could not be solved using the
existing MADM and MAGDM methods, for example,

because the objects are evaluated using a ranking system or a
nonbinary scale. When we check out from hotels, hotel staff
ask for our feedback, which we give, for example, in the form
of 4 stars, 3 stars, 2 stars, 1 star, and big dot: 4 stars mean
“outstanding,” 3 stars mean “superb,” 2 stars mean “good,” 1
star means “satisfactory,” and big dot means “unacceptable.”
Similarly, nonbinary rates are given to third-party apps,
whether we use a transportation service (Uber, Cabify, etc.)
or online shopping facilities. As technology improved and
extended, people have become accostumed to such types of
ranking systems due to their ease of use and widespread
utilization. For this reason, many researchers have become
interested in formal models for nonbinary evaluations. *e
idea presented by Fatima et al. [19], namely, N-soft set and
their decision-making methods, stirred up new decision-
making methodologies. Very soon and keeping in view the
possible fuzziness of the parameters, Akram et al. [20]
combined the concept of N-soft with a fuzzy definition of
the attributes thus producing fuzzy N-soft sets (FNSfS).
*is novel prescription involves a finite number of ordered
grades as well as fuzziness in the conception of the attributes
that are used for decision-making. Still another hybrid
model called hesitant N-soft set was introduced by Akram
et al. [21] in order to allow for hesitancy in the allocation of
grades. Hesitant fuzzy N-soft sets [22] combine the features
of these two models. Akram et al. [23] extended the idea of
fuzzy N-soft set in another direction. *ey conceived
intuitionistic fuzzy N-soft sets (IFNSfS) that describe the
dissatisfactory part separately, with the usual constraint that
the sums of the degrees of membership and nonmembership
always belong to [0, 1]. Finally, so far, Zhang et al. [24]
extended IFNSfS to Pythagorean fuzzy N-soft set
(PFNSfS) which is more flexible than the existing models.

*e motivation of this article depends on the following
facts:

(1) *e existing models IFNSfS and PFNSfS make
decisions based on degrees of membership and
nonmembership; however, they are unable to in-
corporate a neutral part of judgement.

(2) *e decision-making techniques based on existing
models FNSfS, IFNSfS, and PFNSfS can solve
only problems of the 1-dimensional type. Neither of
these models can operate in the presence of a pe-
riodic term or 2-dimensional type problems.

(3) Although CSFSs deal with 2-dimensional problems
of real life, they are unable to describe parameterized
information as well as finitely many ranked grades of
association of the alternatives with the pertinent
parameters.

(4) *ese limitations motivated us to put forward a new
model called CSFNSfS which efficiently deals with
abstention (together with degrees of satisfaction and
dissatisfaction) as well as the periodic term of 2-
dimensional decision-making problems. At the same
time, CSFNSfS competently handles the ordered
grades of the alternatives according to the different
attributes.
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*e main contributions of this article are as follows:

(1) *e proposed model, CSFNSfS, allows for neutral
opinions in the framework of 2-dimensional prob-
lems. In this way, it can manipulate conditions on
amplitude and periodic terms with more flexibility.

(2) *is model establishes a modern theory that captures
a new perspective of decision-making. It is based on
ratings or ranking systems including ordered grades
of elements according to related attributes.

(3) *e algorithms and CSFNSf-TOPSIS method de-
fined in this article solve MADM and MAGDM
problems, respectively. *ey apply to more general
situations than the existing algorithms and TOPSIS
Method. *ese methods for decision-making under
the framework of CSFNSf are illustrated with nu-
merical examples.

(4) *e comparative study with PFNSf algorithms and
the CSF-TOPSIS method shows their ability and
significance.

*e rest of the paper is organized as follows. Section 2
contains some definitions from existingmodels. In Section 3,
we propose the novel concept of CSFNSfS which is then
followed by the operations on CSFNSfSs and CSFNSfNs.
Section 3 describes three algorithms for making decisions
and performs a comparison with a PFNSf method. In
Section 4, we develop a theatrical foundation for the
CSFNSfS-TOPSIS method. In Section 5, we present the
mathematical algorithms of these decision-making mecha-
nisms that are applied to some numerical examples. Section
6 describes the comparison analysis with CSF-TOPSIS
method. In Section 7, we conclude the paper and provide
future directions of research.

2. Preliminaries

Definition 1 (see [10]). A spherical fuzzy set (SFS) Υ on a
universe of discourse U has the form

Υ �〈u, μΥ(u), ηΥ(u), ]Υ(u)|u ∈ U〉, (1)

where μΥ(u), ηΥ(u), and ]Υ(u), which lie within the unit
interval, are called the grade of the positive, neutral, and
negative membership, respectively; and they are restricted by
the condition μΥ(u)2 + ηΥ(u)2 + ]Υ(u)2 ≤ 1, for every u ∈ U.
*e degree of refusal of u in U is defined as

ΘΥ(u) �

��������������������������

1 − pΥ(u)
2

+ vΥ(u)
2

+ rΥ(u)
2

 



. (2)

*e triplet (μΥ(u), ηΥ(u), ]Υ(u)) is called spherical fuzzy
number (SFN).

Definition 2 (see [25]). A complex T-spherical fuzzy set
(CTSFS) Υ on the universe U is defined as

Υ �〈 u, μΥ(u), ηΥ(u), ]Υ(u)( |u ∈ U〉, (3)

where μΥ(u) � pΥ(u)ei2πϕΥ(u), ηΥ(u) � vΥ(u)ei2πδΥ(u), and
]Υ(u) � rΥ(u)ei2πλΥ(u), which denote the positive, neutral,

and negative degree of membership, respectively. *ey are
restricted by the conditions pΥ(u)q + vΥ(u)q + rΥ(u)q ≤ 1
and ϕΥ(u)q + δΥ(u)q + λΥ(u)q ≤ 1, for each u ∈ U, where
i �

���
− 1

√
, and pΥ, vΥ, rΥ, ϕΥ, δΥ, λΥ ∈ [0, 1]. *e degree of

refusal of u in U is defined as

ΠΥ(u) �

��������������������������

1 − pΥ(u)
q

+ vΥ(u)
q

+ rΥ(u)
q

( 



· e
i2π

�����������������
1− ϕΥ(u)q+δT(u)q+λΥ(u)q( )



.

(4)

*e triplet (μΥ, ηΥ, ]Υ) � (pΥe
i2πϕΥ , vΥe

i2πδΥ , rΥe
i2πλΥ) is

called CTSFN.

Particular case: When T � 2, a CTSFS becomes a
complex spherical fuzzy set (CSFS).

Definition 3 (see [26]). Let W be a nonempty set and R be a
set of attributes and Z⊆R. A soft set SfS over W is a pair
(Γ, Z), where Γ is a set-valued function from Z to the set of
all subsets of W, which is denoted as

(Γ, Z) � 〈z, Γ(z)〉|z ∈ Z, Γ(z) ∈ 2W
 . (5)

Definition 4. Let W be a nonempty set and R be a set of
attributes, Z⊆R. A complex spherical fuzzy soft set (CSFSfS)

over W is a pair (Λ, Z), where Λ is a function from Z to the
set of all subsets of CSFSs of W, which is denoted as

(Λ, Z) � 〈z,Λ(z)〉|z ∈ Z,Λ(z) ∈ CSFS
W

 

� 〈z, w, μz(w), ηz(w), ]z(w)( ( 〉 

� 〈z, w, pz(w)e
i2πϕz(w)

, vz(w)e
i2πδz(w)

, rz(w)e
i2πλz(w)

 〉 ,

(6)

where pz, vz, rz, ϕz, δz, λz ∈ [0, 1] are restricted by the
conditions

0≤pz(w)
2

+ vz(w)
2

+ rz(w)
2 ≤ 1,

0≤ ϕz(w)
2

+ δz(w)
2

+ λz(w)
2 ≤ 1,

∀w ∈W.

(7)

Definition 5 (see [19]). Let W be a nonempty set and R be a
set of attributes. Let Z⊆R and G � 0, 1, 2, . . . , N − 1{ } be a
set of ordered grades with N ∈ 2, 3, . . .{ }. A triple (F, Z, N) is
called N-soft set (NSfS) over W if F is a mapping from Z to
2U×G, with the property that, for each z ∈ Z and w ∈W,
there exist a unique (w, gw

z ) ∈W × G such that
(w, gw

z ) ∈ F(z), w ∈W, gw
z ∈ G [27–40].

3. Complex Spherical Fuzzy N-Soft Sets

Definition 6. Let W be a nonempty set and R be a set of
attributes. Let Z⊆R and G � 0, 1, 2, . . . , N − 1{ } be a set of
ordered grades with N ∈ 2, 3, . . .{ }. A triple (FJ, Z, N) is
called a complex spherical fuzzy N-soft set (CSFNSfS) on Z,

when (F, Z, N) (F: Z⟶ 2W×G) is an NSfS on W, if
FJ: Z⟶ 2W×G × CSFN is a mapping, which is defined as
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FJ, Z, N  � 〈z, F(z), J(z)〉|z ∈ Z, (F(z), J(z)) ∈ 2W×G
× CSFN 

� 〈z, w, g
w
z( , μz(w), ηz(w), ]z(w)( ( 〉 

� 〈z, w, g
w
z( , pz(w)e

i2πϕz(w)
, vz(w)e

i2πδz(w)
, rz(w)e

i2πλz(w)
 〉 ,

(8)

where J: Z⟶ CSFN, CSFN denotes the collection of all
complex spherical fuzzy numbers of W, gw

z denotes the level
of attribute for the element w and pz, vz, rz, ϕz, δz, λz ∈
[0, 1], restricted with conditions

0≤pz(w)
2

+ vz(w)
2

+ rz(w)
2 ≤ 1,

0≤ ϕz(w)
2

+ δz(w)
2

+ λz(w)
2 ≤ 1, for allw belongs toW.

(9)

Definition 7. Let FJ(zk) � ((wj, g
j

k), pkje
i2πϕkj , vkje

i2πδkj

rkje
i2πλkj ) be a CSFNSfS. *en, the complex spherical fuzzy

N-soft number (CSFNSfN) is defined as

Υkj � g
j

k, pkje
i2πϕkj , vkje

i2πδkj , rkje
i2πλkj ,

ΩΥkj
�

�����������������

1 − p
2
kj + w

2
kj + r

2
kj 



e
i2π

�����������
1− ϕ2

kj
+δ2kj+λ2kj 



,

(10)

is the hesitancy degree, where pkj, vkj, rkj, ϕkj, δkj, and λkj

represent pzk
(wj), vzk

(wj), rzk
(wj), ϕzk

(wj), δzk
(wj), and

λzk
(wj), respectively.

Definition 8. Consider a CSFNSfNΥkj � (g
j

k, pkje
i2πϕkj ,

vkje
i2πδkj rkje

i2πλkj ). *e score function S(Υkj) is

SΥkj
�

g
j

k

N − 1
⎛⎝ ⎞⎠

2

+ p
2
kj − w

2
kj − r

2
kj  + ϕ2kj − δ2kj − λ2kj ,

(11)

where SΥkj
∈ [− 2, 3]. *e accuracy function A(Υkj) is

AΥkj
�

g
j

k

N − 1
⎛⎝ ⎞⎠

2

+ p
2
kj + w

2
kj + r

2
kj  + ϕ2kj + δ2kj + λ2kj ,

(12)

where AΥkj
∈ [0, 3], respectively.

Definition 9. Let Υlj � (g
j

l , plje
i2πϕlj , vlje

i2πδlj , rlje
i2πλlj ) and

Υkj � (g
j

k, pkje
i2πϕkj , vkje

i2πδkj , rkje
i2πλkj ) be two CSFNSfNs:

(1) If SΥlj
< SΥkj

, then Υlj≺Υkj (Υlj is inferior to Υkj).
(2) If SΥlj

> SΥkj
, then Υlj≻Υkj (Υlj is superior to Υkj).

(3) If SΥlj
� SΥkj

, then

(i) AΥlj
<AΥkj

, then Υlj≺Υkj (Υlj is inferior to Υkj)
(ii) AΥlj

>AΥkj
, then Υlj≻Υkj (Υlj is superior to Υkj)

(iii) AΥlj
� AΥkj

, then Υlj ∼ Υkj (Υlj is equivalent to
Υkj)

Remark 1. We see that

(1) For N � 2, CSFNSfS becomes complex spherical
fuzzy soft set

(2) When |Z| � 1, CSFNSfS becomes complex spherical
fuzzy set

(3) When ϕz � δz � λz � 0, CSFNSfS becomes spheri-
cal fuzzy N-soft set

Example 1. In a city, a parent wants to choose the best
school for their child. It is necessary to go after the advice of
experts, for the selection of a school based on rankings and
ratings. Let W � w1, w2, w3  be the family of three schools
under consideration and Z � {z1 � size of school,
z2 � location, z3 � academic performance, z4 � services} be
the attributes which are used to assign rankings to schools by
the experts. In a relation to these parameters, a 5-soft set is
given in Table 1, where

Four diamonds means “Outstanding”
*ree diamonds means “Super”
Two diamonds means “Good”
One diamond means “Satisfactory”
Big dot means “Acceptable”

*is level assessment by diamonds can be represented by
numbers as G � 0, 1, 2, 3, 4{ }, where

0 means “•”
1 means “◇”
2 means “◇◇”
3 means “◇◇◇”
4 means “◇◇◇◇”

Table 2 can be adopted as natural convention of 5-soft set
model.

By Definition 6, when the data is vague and uncertain, we
need CSFNSfSs which provides us information on how
these grades are given to schools. *e evaluation of schools
by experts follows the following grading:

wheng
w
z � 0, − 2.00≤ SJ < − 1.85,

wheng
w
z � 1, − 1.85≤ SJ < − 1.30,

wheng
w
z � 2, − 1.30≤ SJ < 0.15,

wheng
w
z � 3, 0.15≤ SJ < 1.30,

wheng
w
z � 4, 1.30≤ SJ < 2.00.

(13)

According to the above criteria, we can obtain Table 3.
At last, CSF5SfS is defined as
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μz1
, ηz1

, ]z1
  � w1, 2( , 0.4e

i0.82π
, 0.017e

i0.0356π
, 0.6e

i1.22π
  , w2, 0( , 0.02e

i0.06π
, 0.012e

i0.026π
, 0.98e

i1.962π
  ,

w3, 4( , (1, 0, 0)( ,

μz2
, ηz2

, ]z2
  � w1, 3( , 0.65e

i1.32π
, 0.018e

i0.038π
, 0.28e

i0.58π
  , w2, 3( , 0.7e

i1.42π
, 0.019e

i0.04π
, 0.3e

i0.56π
  ,

w3, 1( , 0.16e
i0.34π

, 0.1e
i0.204π

, 0.89e
1.784π

  ,

μz3
, ηz3

, ]z3
  � w1, 0( , 0.1e

i0.24π
, 0.012e

i0.022π
, 0.985e

i1.964π
  , w2, 1( , 0.2e

i0.36π
, 0.027e

i0.05π
, 0.91e

i1.824π
  ,

w3, 3( , 0.69e
i1.384π

, 0.101e
i0.204π

, 0.32e
0.62π

  ,

μz4
, ηz4

, ]z4
  � w1, 2( , 0.5e

i1.1π
, 0.1e

i0.18π
, 0.59e

1.28iπ
  , w2, 1( , 0.3e

i0.56π
, 0.019e

i0.042π
, 0.885e

1.72iπ
  ,

w3, 2( , 0.45e
i0.86π

, 0.015e
i0.022π

, 0.78e
i1.566π

  .

(14)

*e tabular representation of CSF5SfS is shown by
Table 4.

Definition 10. A CSFNSfS (FJ, Z, N) over a nonempty set
W is said to be efficient, where (F, Z, N) is an NSfS if
FJ(z) � 〈(w, N − 1), 1, 0, 0〉 for some z ∈ Z, w ∈W.

Example 2. Let (FJ, Z, 5) be CSF5SfS, as in Example 1. It is
easy to check from Table 4 that FJ(z1) � ((w3, 4), 1, 0, 0), i.e.,
Example 1 is efficient.

Definition 11. Let (FJ, Z, N1) and (HA, B, N2) be two
CSFNSfSs on a universe of discourse W. *en, they are said
to be equal if and only if F � H, J � A, Z � B, and N1 � N2.

Definition 12. Let (FJ, Z, N) be CSFNSfS on W. *e weak
complement of CSFNSfS is defined as the weak comple-
ment of the N-soft set (F, Z, N), that is, any N-soft set
such that Fc(z)∩F(z) � ∅ for all z ∈ Z. *e weak com-
plement of CSFNSfS of (FJ, Z, N) is represented as
(Fc

J, Z, N).

Example 3. Let (FJ, Z, 5) be CSF5SfS, as in Example 1. *e
weak complement (Fc

J, Z, N) is given in Table 5.

Definition 13. Let (FJ, Z, N) be CSFNSfS on W. *e
complex spherical fuzzy complement of CSFNSfS is denoted
as (FJc , Z, N) and is defined as

Table 1: Evaluation data provided by the experts.

W/Z z1 z2 z3 z4

w1 ◇◇ ◇◇◇ • ◇◇
w2 • ◇◇◇ ◇ ◇
w3 ◇◇◇◇ ◇ ◇◇◇ ◇◇

Table 2: Tabular representation of 5-soft set.

W/Z z1 z2 z3 z4

w1 2 3 0 2
w2 0 3 1 1
w3 4 1 3 2

Table 3: Grading criteria.

gw
z /J Positive membership Neutral membership Negative membership

Grades pz 2πϕz vz 2πδz rz 2πλz

gw
z � 0 [0, 0.15] [0, 0.3π) [0, 0.017) [0, 0.034π) [0.98, 1) [1.96π, 2π]

gw
z � 1 (0.15, 0.35) [0.3π, 0.7π) [0.017, 0.1031) [0.034π, 0.2062π) (0.88, 0.98) [1.76π, 1.96π)

gw
z � 2 [0.35, 0.65) [0.7π, 1.3π) [0, 0.017) [0, 0.034π) (0.58, 0.88] [1.16π, 1.76π)

gw
z � 3 [0.65, 0.85] [1.3π, 1.7π] [0.017, 0.1031) [0.034π, 0.2062π) [0.28, 0.58] [0.56π, 1.16π)

gw
z � 4 (0.85, 1] (1.7π, 2π] [0, 0.017) [0, 0.034π) [0, 0.28) [0, 0.56π)
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FJc (z) �〈]z(w), ηz(w), μz(w)〉

�〈 w, g
w
z(  rz(w)e

i2πλz(w)
, vz(w)e

i2πδz(w)
,

pz(w)e
i2πϕz(w)

〉.

(15)

Example 4. Let (FJ, Z, 5) be CSF5SfS, as in Example 1. *e
complex spherical fuzzy complement (FJc , Z, N) is given in
Table 6.

Definition 14. Let (FJ, Z, N) be a CSFNSfS on W.
(Fc

Jc , Z, N) is referred to as a weak complex spherical fuzzy

complement of (FJ, Z, N) if and only if (Fc
J, Z, N) is a weak

complement and (FJc , Z, N) is a complex spherical fuzzy
complement of (FJ, Z, N).

Example 5. Let (FJ, Z, 5) be CSF5SfS, as in Example 1. *e
weak complex spherical fuzzy complement (Fc

Jc , Z, N) is
given in Table 7.

Definition 15. Let (FJ, Z, N) be a CSFNSfS on W; then, the
top weak complex spherical fuzzy complement (F>J , Z, N) is
defined as

F
>
J , Z, N  �

FJ zk(  �  wj, N − 1 , rzk
wj e

i2πλzk
wj( 

, vzk
wj e

i2πδzk
wj( 

pzk
wj e

i2πϕzk
wj( 

, if g
j

k <N − 1,

FJ zk(  �  wj, 0 , rzk
wj e

i2πλzk
wj( 

, vzk
wj e

i2πδzk
wj( 

pzk
wj e

i2πϕzk
wj( 

, if g
j

k � N − 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

Example 6. Let (FJ, Z, 5) be CSF5SfS, as in Example 1. *e
top weak complex spherical fuzzy complement (F>J , Z, N), is
given in Table 8.

Definition 16. Let (FJ, Z, N) be CSFNSfS on W; then, the
bottom weak complex spherical fuzzy complement (F<J , Z, N)

is defined as

F
<
J , Z, N  �

FJ zk(  �  wj, 0 , rzk
wj e

i2πλzk
wj( 

, vzk
wj e

i2πδzk
wj( 

pzk
wj e

i2πϕzk
wj( 

, if g
j

k > 0,

FJ zk(  �  wj, N − 1 , rzk
wj e

i2πλzk
wj( 

, vzk
wj e

i2πδzk
wj( 

pzk
wj e

i2πϕzk
wj( 

, if g
j

k � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

Example 7. Let (FJ, Z, 5) be CSF5SfS, as in Example 1. *e
bottom weak complex spherical fuzzy complement
(F<J , Z, N) is given in Table 9.

Definition 17. Let W be a nonempty set and (FJ, Z, N1) and
(HA, B, N2) be CSFN1SfS and CSFN2SfSs on W, respec-
tively, and their restricted intersection is defined as
(KL, M, S) � (FJ, Z, N1)∩ R(HA, B, N2), where KL �

FJ ∩ RHA, M � Z∩B, S � min(N1, N2), i.e., ∀uk ∈M and
wJ ∈W, (g

j

k, (μij, ηij, ]ij)) ∈ KL(uj), g
j

k � min(g1
k, g2

k),
μij(uj) � min(μ1ij(u1

k), μ2ij(u2
k)) �min(p1

ij(u1
k), p2

ij(u2
k))

ei2π(min(ϕ1ij(u1
k
),ϕ2ij(u2

k
))), ηij(uj) � max(η1ij(u1

k), η2ij(u2
k)) �max

(v1ij(u1
k), v2ij(u2

k))ei2π(max(δ1ij(u1
k
),δ2ij(u2

k
))), ]ij(uj) � max (]1ij

(u1
k), ]2ij(u2

k)) �max(r1ij(u1
k), r2ij(u2

k))ei2π(max(λ1ij(u1
k
),λ2ij(u2

k
))),

where, (g1
k, (μ1ij(u1

k), η1ij(u1
k), ]1ij(u1

k))) ∈ (μFJ
(u1

k), ηFJ
(u1

k),

]FJ
(u1

k)), and (g2
k, (μ2ij(u2

k), η2ij(u2
k), ]2ij (u2

k))) ∈ (μHA

(u2
k), ηHA

(u2
k), ]HA

(u2
k)), with u1

k ∈ Z and u2
k ∈ B.

Example 8. Let (EP, Z, 5) and (HA, B, 6) be two CSF5SfS

and CSF6SfS, given in Tables 10 and 11, respectively. *eir
restricted intersection (KL, M, 5) � (EP, Z, 5)∩ R(HA, B, 6)

is shown in Table 12.

Definition 18. Let W be a nonempty set and (FJ, Z, N1) and
(HA, B, N2) be two CSFNSfSs on W; their extended in-
tersection is defined as (QD, C, Y) � (FJ, Z, N1)∩ E(HA, B,

N2), where QD � FJ ∩ EHA, C � Z∪B, and Y � max(N1,

N2), that is, ∀uk ∈ C and wj ∈W, (g
j

k, (μkj, ηkj, ]kj)) ∈ QD

(uk), with

8 Journal of Mathematics
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QD uk(  �

g
1
k, μ1kj, η

1
kj, ]

1
kj  , if uk ∈ Z − B,

g
2
k, μ2kj, η

2
kj, ]

2
kj  , if uk ∈ B − Z,

g
j

k, μkj, ηkj, ]kj  , such thatg
j

k � min g
1
k, g

2
k ,

μkj uk(  � min μ1kj u
1
k , μ2kj u

2
k   � min p

1
kj u

1
k , p

2
kj u

2
k  e

i2π min ϕ1
kj

u1
k( ),ϕ2

kj
u2

k( )  
,

ηkj uk(  � max η1kj u
1
k , η2kj u

2
k   � max v

1
kj u

1
k , v

2
kj u

2
k  e

i2π max δ1kj u1
k( ),δ2kj u2

k( )  
,

� ]ij uk(  � max ]1kj u
1
k , ]2kj u

2
k   � max r

1
kj u

1
k , r

2
kj u

2
k  e

i2π min λ1kj u1
k( ),λ2kj u2

k( )  
,

where g
1
k, μ1kj u

1
k , η1kj u

1
k , ]1kj u

1
k    ∈ μFJ

u
1
k , ηFJ

u
1
k , ]FJ

u
1
k  ,

and g
2
k, μ2kj u

2
k , η2kj u

2
k , ]2kj u

2
k    ∈ μHA

u
2
k , ηHA

u
2
k , ]HA

u
2
k  ,

with u
1
k ∈ Z and u

2
k ∈ B.
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(18)

Example 9. Let (EP, Z, 5) and (HA, B, 6) be two CSF5SfS

and CSF6SfS, given in Tables 10 and 11, respectively. *eir
extended intersection (QD, C, Y) � (EP, Z, N1)∩ E(HA,

B, N2) is shown in Table 13.

Definition 19. Let W be a nonempty set and (FJ, Z, N1) and
(HA, B, N2) be two CSFNSfSs on W; their restricted union is
defined as (RT, M, S) � (FJ, Z, N1)∪ R(HA, B, N2), where
RT � FJ ∪ RHA, M � Z∩B, S � max(N1, N2), i.e., ∀uk ∈M

and wj ∈W, (g
j

k,(μkj,ηkj,]kj)) ∈RT(uk), gj

k �max(g1
k, g2

k),

μkj(uk) �max(μ1kj(u1
k),μ2kj(u2

k))�max(p1
kj(u1

k), p2
kj (u2

k))

e
i2π(max(ϕ1

kj
(u1

k
),ϕ2

kj
(u2

k
))), ηkj(uk) �min(η1kj (u1

k),η2kj (u2
k))�min

(v1kj(u1
k),v2kj(u2

k))ei2π(min(δ1kj(u1
k
),δ2kj(u2

k
))), ]kj(uk) � min(]1kj

(u1
k),]2kj(u2

k))�min (r1kj(u1
k), r2kj(u2

k)) ei2π(min(λ1kj(u1
k
),λ2kj(u2

k
))),

where, (g1
k,(μ1kj(u1

k),η1kj(u1
k),]1kj (u1

k))) ∈ (μFJ
(u1

k),ηFJ
(u1

k),

]FJ
(u1

k)), and (g2
k,(μ2kj(u2

k),η2kj (u2
k),]2kj (u2

k))) ∈ (μHA
(u2

k),

ηHA
(u2

k),]HA
(u2

k)), with u1
k ∈Z and u2

k ∈B.

Example 10. Let (EP, Z, 5) and (HA, B, 6) be two CSF5SfS

and CSF6SfS, given in Tables 10 and 11, respectively. *eir
restricted union (QD, C, Y) � (EP, Z, N1)∩ E(HA, B, N2) is
shown in Table 14.

Definition 20. Let W be a nonempty set (FJ, Z, N1) and
(HA, B, N2) be CSFN1SfSs and CSFN2SfSs on W; their
extended union is defined as (OX, C, Y) � (FJ, Z, N1)∪ E

(HA, B, N2), where OX � FJ ∪ EHA, C � Z∪B, Y � max
(N1, N2), that is, ∀uk ∈ C and wj ∈W, (g

j

k, (μkj, ηkj,

]kj)) ∈ OX(uk), with

Table 10: Tabular representation of the CSF5SfS (EP, Z, 5).

(EP, Z, 5) z1 z2 z3

w1 (2, (0.4ei0.82π , 0.017ei0.0356π, 0.6ei1.22π)) (3, (0.65ei1.32π, 0.018ei0.038π , 0.28ei0.58π)) (0, (0.1ei0.24π , 0.012ei0.022π , 0.985ei1.964π))

w2 (0, (0.02ei0.06π , 0.012ei0.026π , 0.98ei1.962π)) (3, (0.7ei1.42π , 0.019ei0.04π , 0.3ei0.56π)) (1, (0.2ei0.36π , 0.027ei0.05π , 0.91ei1.824π))

w3 (4, (1, 0, 0)) (1, (0.16ei0.34π , 0.1ei0.204π , 0.89e1.784π)) (3, (0.69ei1.384π , 0.101ei0.204π , 0.32e0.62π))

Table 11: Tabular representation of CSF6SfS (HA, B, 6).

(HA, B, 6) z1 z2 z6

w1 (1, (0.23ei0.44π, 0.019ei0.036π , 0.92ei1.85π)) (5, (0.95ei1.88π , 0.03ei0.062π , 0.14ei0.29π)) (3, (0.69ei1.39π, 0.04ei0.084π, 0.65ei1.36π))

w2 (0, (0.03ei0.1π, 0.015ei0.032π , 0.983ei1.968π)) (2, (0.35ei0.66π, 0.014ei0.029π , 0.8ei1.6π)) (4, (0.87e1.72π , 0.035ei0.068π , 0.93ei1.862π))

w3 (2, (0.4ei0.82π, 0.012ei0.026π , 0.77ei1.52π)) (3, (0.6e1.22π, 0.02ei0.06π, 0.49eiπ)) (1, (0.17e0.344π , 0.035ei0.068π, 0.93ei1.862π))

Table 12: Tabular representation of restricted intersection (KL, M, 5).

(KL, M, 5) z1 z2

w1 (1, (0.23ei0.44π, 0.019ei0.036π , 0.92ei1.85π)) (3, (0.65ei1.32π , 0.03ei0.062π , 0.28ei0.58π))

w2 (0, (0.02ei0.06π , 0.015ei0.032π , 0.983ei1.968π)) (2, (0.35ei0.66π , 0.019ei0.04π , 0.8ei1.6π))

w3 (2, (0.4ei0.82π, 0.012ei0.026π , 0.77ei1.52π)) (1, (0.16ei0.34π , 0.1ei0.204π , 0.89e1.784π))
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k, μ1kj, η
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kj, ]
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kj  , if uk ∈ Z − B,

g
2
k, μ2kj, η

2
kj, ]

2
kj  , if uk ∈ B − Z,

g
j

k, μkj, ηkj, ]kj  , such thatg
j

k � max g
1
k, g

2
k ,

μkj uk(  � max μ1kj u
1
k , μ2kj u
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k   � max p

1
kj u

1
k , p

2
kj u
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i max ϕ1
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kj
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ηkj uk(  � min η1kj u
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kj u
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kj u
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k , r

2
kj u
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,
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k , ]1kj u
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k    ∈ μFJ
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1
k , ηFJ

u
1
k , ]FJ

u
1
k  ,
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k, μ2kj u

2
k , η2kj u

2
k , ]2kj u

2
k    ∈ μHA
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k , ηHA
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2
k , ]HA
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2
k  ,

with u
1
k ∈ Z and u

2
k ∈ B.
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Example 11. Let (EP, Z, 5) and (HA, B, 6) be two CSF5SfS

and CSF6SfS, given in Tables 10 and 11, respectively. *eir
restricted union (QD, C, Y) � (EP, Z, N1)∩ E(HA, B, N2) is
shown in Table 15.

We state the following properties without their proofs.

Theorem 1. Let (FJ, Z, N) be CSFNSfS over a nonempty set
W. Aen,

(1) (FJ, Z, N)∩ R(FJ, Z, N) � (FJ, Z, N)

(2) (FJ, Z, N)∩ E(FJ, Z, N) � (FJ, Z, N)

(3) (FJ, Z, N)∪ R(FJ, Z, N) � (FJ, Z, N)

(4) (FJ, Z, N)∪ E(FJ, Z, N) � (FJ, Z, N)

We state the following properties without their proofs.

Theorem 2. Let (FJ, Z, N1) and (HA, B, N2) be two
CSFNSfSs over the same universe W; then, the absorption
properties hold:

(1) ((FJ, Z, N1)∪ E(HA, B, N2))∩ R(FJ, Z, N1) � (FJ,

Z, N1)

(2) (FJ, Z, N1)∪ E((HA, B, N2)∩ R(FJ, Z, N1) � (FJ,

Z, N1))

(3) ((FJ, Z, N1)∩ R(HA, B, N2))∪ E(FJ, Z, N1) � (FJ,

Z, N1)

(4) (FJ, Z, N1)∩ R((HA, B, N2)∪ E(FJ, Z, N1)) � (FJ,

Z, N1)

We state the following properties without their proofs.

Theorem 3. Let (FJ, Z, N1), (HA, B, N2) and (D℘,R, N2)

be any three CSFNSfSs over the same universe W; then, the
following properties hold:

(1) (FJ, Z, N1)∪ E(HA, B, N2) � (HA, B, N2)∪ E (FJ,

Z, N1)

(2) (FJ, Z, N1)∪ R (HA, B, N2) � (HA, B, N2)∪ R(FJ,

Z, N1)

(3) (FJ, Z, N1)∩ E(HA, B, N2) � (HA, B, N2)∩ E(FJ,

Z, N1)

(4) (FJ, Z, N1)∩ R(HA, B, N2) � (HA, B, N2)∩ R(FJ,

Z, N1)

(5) ((FJ, Z, N1)∪ E(HA, B, N2))∪ E(D℘,R, N3) � (FJ,

Z, N1)∪ E((HA, B, N2)∪ E(D℘,R, N3))

(6) ((FJ, Z, N1)∪ R(HA, B, N2)) ∪ R (D℘,R, N3) �

(FJ, Z, N1)∪ R((HA, B, N2)∪ R(D℘,R, N3))

(7) ((FJ,Z,N1)∩E(HA,B,N2)) ∩E (D℘,R,N3) � (FJ,

Z,N1)∩E((HA,B,N2)∩E(D℘,R,N3))

(8) ((FJ, Z, N1)∩ R(HA, B, N2))∩ R(D℘,R, N3) � (FJ,

Z, N1)∩ R((HA, B, N2)∩ R(D℘,R, N3))

(9) (FJ,Z,N1)∪E((HA,B,N2)∩R(D℘,R,N3)) � ((FJ,

Z,N1)∪E(HA,B,N2))∩R((FJ,Z, N1)∪E(D℘, R,

N3))

Table 14: Tabular representation of restricted union (RT, M, 6).

(RT, M, 6) z1 z2

w1 (2, (0.4ei0.82π , 0.017ei0.0356π, 0.6ei1.22π)) (5, (0.95ei1.88π , 0.018ei0.038π , 0.14ei0.29π))

w2 (0, (0.03ei0.1π, 0.012ei0.026π , 0.98ei1.962π)) (3, (0.7ei1.42π , 0.014ei0.029π , 0.3ei0.56π))

w3 (4, (1, 0, 0)) (3, (0.6e1.22π , 0.02ei0.06π , 0.49eiπ))
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(10) (FJ,Z,N1)∩E((HA,B,N2)∪R(D℘,R,N3)) � ((FJ,

Z, N1)∩E(HA,B,N2))∪R ((FJ,Z,N1)∪E(D℘, R,

N3))

(11) (FJ,Z,N1)∪R((HA,B,N2)∩E(D℘,R,N3)) � ((FJ,

Z,N1)∪R(HA,B,N2))∩E((FJ,Z,N1)∪R(D℘,R,N3))

(12) (FJ,Z,N1)∩R((HA,B,N2)∪E(D℘,R,N3)) � ((FJ,

Z,N1)∩R(HA,B,N2)) ∪E((FJ,Z,N1)∩R(D℘,R,

N3))

Definition 21. Let (FJ, Z, N) be a CSFNSfS, where
(F, Z, N) is NSfS over the universe W, and 0< L<N be a
threshold. CSFSfS over W associated with (F, Z, N) and L,
denoted by (FL

J , Z), is defined as follows:

F
L
J (z) �

μkj(z), ηkj(z), ]kj(z) , if w, g
w
z(  ∈ F(z) andg

w
z ≥ L,

(0, 0, 1), otherwise.

⎧⎨

⎩ (20)

Example 12. Let (EJ, Z, N) be a CSF5SfS given in Table 10.
*en, CSFSfS associated with the thresholds 1, 2, 3, and 4
are shown in Tables 16–19, respectively.

Definition 22. Let (FJ, Z, N) be CSFNSfS, where (F, Z, N)

is NSfS over the universe W. Let 0<L<N and α ∈ [− 2, 2]

be two thresholds. SfS over W associated with (FJ, Z, N)

and (L, α), denoted by (F
(L,α)
J , Z), is defined as follows:

F
(L,α)
J (z) � S

FL
J

z (w)> α: w ∈W, ∀z ∈ Z , (21)

where S
FL

J
z represents the score function of FL

J (z).

Definition 23. Let Tlj � (g
j

l , plje
i2πϕlj , vlje

i2πδlj , rlje
i2πλlj ) and

Tkj � (g
j

k, pkje
i2πϕkj , vkje

i2πδkj , rkje
i2πλkj ) be two CSFNSfNs

and σ > 0. Some operation for CSFNSfNs are

σTlj � g
j

l , 1 − 1 − p
2
lj 

σ
 e

i2π 1− 1− ϕ2
lj 

σ
 

, v
σ
lje

i2πδσlj , r
σ
lje

i2πλσlj ,

T
σ
lj � g

j

l , p
σ
lje

i2πϕσ
lj , 1 − 1 − v

2
lj 

σ
 e

i2π 1− 1− δ2lj 
σ

 
, 1 − 1 − r

2
lj 

σ
 e

i2π 1− 1− λ2lj 
σ

 
 ,

Tlj⊕Tkj � max g
j

l , g
j

k ,

��������������

p
2
lj + p

2
kj − p

2
ljp

2
kj



e
i2π

���������
ϕ2

lj
+ϕ2

kj
− ϕ2

lj
ϕ2

kj



, vljvkje
i2πδljδkj , rljrkje

i2πλljλkj ,

Tlj ⊗Tkj � min g
j

l , g
j

k , pljpkje
i2πϕljϕkj ,

�������������

v
2
lj + v

2
kj − v

2
ljv

2
kj



e
i2π
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δ2lj+δ2kj− δ2ljδ

2
kj



,
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r
2
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2
kj − r

2
ljr

2
kj



e
i2π

���������
λ2lj+λ2kj − λ2ljλ

2
kj



 .

(22)

4. CSFNSf-TOPSIS Method for MAGDM

In this section, we combine CSFNSfS with the TOPSIS
method. *e main idea of this methodology is the selection
of a best alternative using both the positive ideal solution
(PIS) and the negative ideal solution (NIS). *erefore, we
present the corresponding CSFNSf-TOPSIS method in
order to solve MAGDM problems in a CSFNSf envi-
ronment under such methodology. *e elements and steps
of this algorithm for MAGDM are as follows.

Let W � w1, w2, w3, . . . , wq  denote the set of alter-
natives that are evaluated by s experts E1,

E2,
E3, . . . , Es.

According to the needs of MAGDM problems, set of m

attributes Z � z1, z2, z3, . . . , zm  are assigned to these
alternatives by the experts. Let σ � (σ1, σ2, σ3, . . . , σs)

T be
the weight vector, which represents the weightage of
experts such that 

s
d�1 σd � 1, where σd ∈ [0, 1]. *e step

by step Algorithm 1 of CSFNSf-TOPSIS method is

presented in Section 5.1, and its theoretical description is
as follows:

Step 1: according to the MAGDM problem and attributes
related to the alternatives, each expert assigns ratings to
them. *ere is a linguistic term corresponding with each
rating, which could be a number of stars (such as “three
stars,” “two stars,” and “one star” inMAGDM), numerical
labels (such as 3 as a label for “high,” 2 for “medium,” and
0 for “low”). In such a way, NSfS (Fd, Z, N) is found
corresponding to each expert Ed with G � 0, 1, 2, 3,{

. . . , N − 1} as the set of grades, where N ∈ 1, 2, 3, . . .{ }

and d ∈ 1, 2, 3, . . . , s{ }. Now, CSFNSfN is assigned by
the dth expert Ed, corresponding to each rank in the
NSfS (Fd, Z, N), according to the grading criteria de-
fined for the MAGDM problem. Similarly, we get
s CSFNSfSs by s experts, respectively. *e complex
spherical fuzzy N-soft decision matrix CSFNSfDM of
the dth expert Ed is as follows:
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, (23)

where P(d)
jk � ((g

j

k)(d), μ(d)
jk , ηjk (d), ](d)

jk ) � ((g
j

k)(d),

p
(d)
jk e

i2πϕ(d)

jk , v
(d)
jk e

i2πδ(d)

jk , r
(d)
jk e

i2πλ(d)

jk ), j � 1, 2, 3, . . . , q ,
k � 1, 2, 3, . . . , m{ }, and d � 1, 2, 3, . . . , s{ }.
Step 2: to formulate the aggregate complex spherical
fuzzy N-soft decision matrix (ACSFNSfDM),

P � (Pjk)q×m, CSFNSfDM of all experts are assem-
bled with the help of CSFNSfWA operator. For
ACSFNSfDM, CSFNSfWA operator is defined as

Pjk � CSFNSfWA P
(1)
jk ,P

(2)
jk , . . . ,P

(s)
jk 

� σ1P
(1)
jk ⊕σ(2)P

(2)
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� g
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k, pjke
i2πϕjk , vjke

i2πδjk , rjke
i2πλjk .

(24)

Table 19: CSFSfS related with (E, Z, 5) and threshold 4.

(E4, Z, 5) z1 z2 z3

w1 (0, 0, 1) (0, 0, 1) (0, 0, 1)

w2 (0, 0, 1) (0, 0, 1) (0, 0, 1)

w3 (1, 0, 0) (0, 0, 1) (0, 0, 1)

Table 16: CSFSfS related with (E, Z, 5) and threshold 1.

(E1, Z, 5) z1 z2 z3

w1 (0.4ei0.82π , 0.017ei0.0356π, 0.6ei1.22π) (0.65ei1.32π , 0.018ei0.038π , 0.28ei0.58π) (0, 0, 1)

w2 (0, 0, 1) (0.7ei1.42π , 0.019ei0.04π, 0.3ei0.56π) (0.2ei0.36π, 0.027ei0.05π, 0.91ei1.824π)

w3 (1, 0, 0) (0.16ei0.34π, 0.1ei0.204π , 0.89e1.784π) (0.69ei1.384π , 0.101ei0.204π , 0.32e0.62π)

Table 18: CSFSfS related with (EJ, Z, 5) and threshold 3.

(E3, Z, 5) z1 z2 z3

w1 (0, 0, 1) (0.65ei1.32π , 0.018ei0.038π , 0.28ei0.58π) (0, 0, 1)

w2 (0, 0, 1) (0.7ei1.42π, 0.019ei0.04π , 0.3ei0.56π) (0, 0, 1)

w3 (1, 0, 0) (0, 0, 1) (0, 0, 1)

Table 17: CSFSfS related with (E, Z, 5) and threshold 2.

(E2, Z, 5) z1 z2 z3

w1 (0.4ei0.82π , 0.017ei0.0356π, 0.6ei1.22π) (0.65ei1.32π, 0.018ei0.038π , 0.28ei0.58π) (0, 0, 1)

w2 (0, 0, 1) (0.7ei1.42π , 0.019ei0.04π , 0.3ei0.56π) (0, 0, 1)

w3 (1, 0, 0) (0, 0, 1) (0, 0, 1)
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Using these entities, we can form ACSFNSfDM as

P �

g
1
1, μ11, η11, ]11  g
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. (25)

Step 3: in MAGDM problem, each attribute has it is
own worth. *erefore, each expert Ed assigns rank as
weightage of each attribute zk relative to their im-
portance in MAGDM problem. Furthermore,
CSFNSfNs are assigned to the weights, according to

the grading criteria, by the experts. Let
χ(d)

k � (g
(d)
k , p

(d)
k ei2πϕ(d)

k , v
(d)
k ei2πδ(d)

k , r
(d)
k ei2πλ(d)

k ) be the
weightage of kth attribute given by the dth expert. To
find out the weight vector χ � (χ1, χ2, . . . , χm)T, we
aggregated them, as follows:

χk � CSFNSfWA χ(1)
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(26)

Step 4: calculate the aggregated weighted complex
spherical fuzzy N-soft decision matrix

(AWCSFNSfDM) using ACSFNSfDMYjk and the
weight vector of attribute χk as follows:

Pjk � Pjk ⊗ χk

� min g
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Using these entities, we can form AWCSFNSfDM as
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Step 5: let PB and PC be the collection of benefit-type
attribute and cost-type attribute, respectively.
CSFNSf-PIS related to the attribute zk can be taken as
follows:

Pk �
maxq

j�1Pjk, if zk ∈ PB,

minq
j�1Pjk, if zk ∈ PC.

⎧⎪⎨

⎪⎩
(29)
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Now, CSFNSf-NIS related to the attribute zk can be
taken as follows:

�Pk �
maxq

j�1Pjk, if zk ∈ PC,

minq

j�1Pjk, if zk ∈ PB.

⎧⎪⎨

⎪⎩
(30)

To evaluate maxPjk and minPjk, we use the score
value and accuracy value of CSFNSfN. CSFNSf-PIS
and CSFNSf-NIS are denoted as follows: Pk �

(gk, μk, ηk, ]k) � (gk, pkei2πϕk , vkei2πδk , rkei2πλk ) and

�Pk � (�gk, �μk, �ηk, �]k) � (�gk, �pkei2π�ϕk , �vkei2π�δk , �rkei2π�λk ),
respectively.
Step 6: calculate the normalized Euclidean distance of
each alternative wj from CSFNSf-PIS and
CSFNSf-NIS. In this way, we get the best alternative
that is nearer to CSFNSf-PIS and far from
CSFNSf-NIS. *e normalized Euclidean distance be-
tween CSFNSf-PIS and any of the alternativewj can be
formulated as follows:
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(31)

Similarly, the normalized Euclidean distance between
CSFNSf-NIS and any of the alternative wj, can be
formulated as follows:
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Step 7: to chose one of the most appropriate alternative,
we have to use some ranking index. For this purpose,
the revised closeness index corresponding to the al-
ternative wk is evaluated using the formula [10]

I wj  �
d Pk, wj 

minjd
Pk, wj 

−
d �Pk, wj 

maxjd
�Pk, wj 

, (33)

where k � 1, 2, . . . , m.
Step 8: the alternative with the minimum value of
revised closeness index would be the best solution for
the MAGDM problem. *erefore, the ascending order
of the revised closeness index gives the ranking of the
alternatives.

5. Development of Algorithms and
Numerical Examples

In this section, we describe multiattribute decision-making
(MADM) methods that work on models to identify the best
alternative. *erefore, we characterize respective algorithms
for the MADM problems in CSFNSf environment, as well
as we present Algorithm 1 for CSFNSf-TOPSIS method

described in Section 4. Let W � w1, w2, w3, . . . , wq  be a set,
representing the available alternatives with a set of attributes
Z � z1, z2, z3, . . . , zm  having weight vector
σ � (σ1, σ2, σ3, . . . , σm)T describing the worth of attributes
according to the MADM problem, where 

m
k�1 σk � 1 and

σk ∈ [0, 1].
*e algorithm for CSFNSf-TOPSIS method is described

in Algorithm 1.
Let us now introduce some explicit MADM and

MAGDM problems and solve them using Algorithms 1– 4,
respectively. We apply Algorithms 2– 4 to solve the MADM
problem defined in Section 5.1 and Algorithm 1 is used to
solve the MAGDM problem defined in Section 5.2 which
show their importance and feasibility in the field of decision-
making.

5.1. Selection of Best Aird-Party App of the Year. A third-
party app is a software application made by someone other
than the manufacturer of a mobile device or its operating
system. *is world is full of gadgets and gadgets are full of
apps. We can access the world if we have these apps.
*erefore, selecting one of the best third-party app of the
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year and keeping in view the priorties of people is a very
difficult task. For this purpose, the data has been collected
from the websites http://www.makeawebsitehub.com and
http://www.trustraduis.com regarding to each third-party
app. To find out the best app of the year, we will use
CSFNSfS.

Let A� {a1 � Facebook, a2 � Skype, a3 �Viber,
a4 �Twitter, a5 �Whatsapp } be universe of third-party apps
and Z� {z1 � telecom framework, z2 � reliability,
z3 �worldwide contact, z4 � data usage } be the attributes.
According to these attributes, a 6-soft set is modeled in
Table 20, where

Input: W � w1, w2, w3, . . . , wq  as universal element.
Z � z1, z2, z3, . . . , zm  as set of attributes.
NSfS (F, Z, N) with G � 0, 1, 2, 3, . . . , N − 1{ }, N ∈ 1, 2, 3, . . .{ }, (σ1, σ2, σ3, . . . , σk)T as weight vector.

(1) Construct CSFNSfNΥkj, corresponding to each level of attribute for the element wj.
(2) Compute Xσ

j � ⊕mk�1σkΥkj, where Υkj � (g
j

k, pkje
i2πϕkj , vkjei2πδkj , rkje

i2πλkj ), (wj, g
j

k) ∈ F(z).
(3) Calculate the score function SXj

, for all j � 1, 2, 3, . . . , q . Calculate all the indices j for which Sj � maxjSXσ
j
.

(4) if Sj � Sp, for some j, p ∈ 1, 2, 3, . . . , q , then
(5) Use accuracy degree and identify alternative with maximum accuracy value
(6) else
(7) Identify the alternative with maximum score value.
(8)

ALGORITHM 3: *e algorithm of weighted choice values of CSFNSfSs.

Input: W � w1, w2, w3, . . . , wq  as universal element.
Z � z1, z2, z3, . . . , zm  as set of attributes.
NSfS (F, Z, N) with G � 0, 1, 2, 3, . . . , N − 1{ }, N ∈ 1, 2, 3, . . .{ }, (σ1, σ2, σ3, . . . , σs)

T as weight vector of experts Ed.
(1) Construct CSFNSfDMP(d), corresponding to each level of attribute for the element wj.
(2) Compute ACSFNSfDM using equation Pjk � (maxd�s

1 ((g
j

k)(d)),
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(3) Evaluate the weight vector χ � (χ1, χ2, . . . , χm)T as follows: χk � (maxs
d�1((g
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(4) Calculate AWCSFNSfDM using ACSFNSfDM and the weight vector of attributes as follows:

Pjk � (min((g
j

k), gk), pjkpkei2πϕjkϕk ,
�������������
v2jk + v2k − v2jkv2k


e

i2π
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e
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λ2jk+λ2k − λ2jkλ
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k



)

(5) Calculate CSFNSf PIS and CSFNSf NIS, using equations (29) and (30).
(6) Calculate the normalized Euclidean distance of CSFNSf PIS and CSFNSf NIS from each alternative, by utilizing equations (31)

and (32), respectively.
(7) Calculate the revised closeness index corresponding to each alternative using the formula from [10]

I(wj) � (d( Pk, wj)/minjd( Pk, wj)) − (d( �Pk, wj)/maxjd( �Pk, wj)).
(8) Identify the alternative with minimum revised closeness index.

ALGORITHM 1: *e algorithm of CSFNSf-TOPSIS method.

(1) h!
Input: W � w1, w2, w3, . . . , wq  as universal element.
Z � z1, z2, z3, . . . , zm  as set of attributes.
NSfS (F, Z, N) with G � 0, 1, 2, 3, . . . , N − 1{ }, N ∈ 1, 2, 3, . . .{ }.

(2) Construct the CSFNSfNΥkj, corresponding to each level of attribute for the element wj.
(3) Compute Xj � ⊕mk�1Υkj using equation (22), where Υkj � (g

j

k, pkje
i2πϕkj , vkje

i2πδkj , rkjei2πλkj ), (wj, g
j

k) ∈ F(z).
(4) Calculate the score function SXj

, using equation (11) for all j � 1, 2, 3, . . . , q .
(5) if Sj � Sp, for some j, p ∈ 1, 2, 3, . . . , q , then
(6) Use accuracy degree and identify alternative with maximum accuracy value
(7) else
(8) Identify the alternative with maximum score value.
(9)

ALGORITHM 2: *e algorithm of choice values of CSFNSfSs.
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Five diamonds mean “Marvellous”
Four diamonds mean “Outstanding”
*ree diamonds mean “Super”
Two diamonds mean “Good”
One diamond means “Satisfactory”
Big dot means “Acceptable.”

*is level assessment by diamonds can be represented by
numbers as G � 0, 1, 2, 3, 4, 5{ }, where

0 means “•”
1 means “◇”
2 means “◇◇”
3 means “◇◇◇,”
4 means “◇◇◇◇”
5 means “◇◇◇◇◇”

*us, tabular representation of 6-soft set is shown in
Table 21 and the tabular representation of
CSF6SfS (FJ, Z, 6) is shown in Table 22.

5.1.1. Choice Values of CSF6SfS. *e choice values of
CSF6SfS is evaluated using the steps defined in Algorithm 2.
Table 23 presents the calculated choice values of CSF6SfS for
the selection of the third-party app. We can observe from Ta-
ble 23 that, according to the choice values, the ranking of third-
party apps is as follows:a1 >a4 >a5 >a2 >a3, which shows that
a1 � Facebook has maximum choice value.*erefore, Facebook
is selected as best third-party app of the year.

5.1.2. Weighted Choice Values of CSF6SfS. Let
σ1 � 0.4, σ2 � 0.3, σ3 � 0.2, and σ4 � 0.1 be the weights for
each attribute zk, k � 1, 2, 3, 4. Using these weights in Al-
gorithm 3, we can compute weighted choice values of
CSF6SfS, which are given by Table 24.

It is clear from Table 24 that G4 has maximum score;
therefore, a4 � Facebook is selected as best third-party app of
the year. According to the weighted choice values, ranking of
third-party apps is as follows: a1 > a4 > a5 >a2 >a3.

5.1.3. L-Choice Values of CSF6SfS. *e L-choice values of
CSF6SfS are evaluated using Algorithm 4 to find out the best
alternative for the proposed MADM problem. Let L � 4 be
threshold; then, 4-choice values of CSFSfS is shown in
Table 25. We can observe that, from Table 25, the ranking of
third-party apps according to 4-choice values is as follows:
a1 >a4 > a5 > a2 ≥ a3, which shows that a1 � Facebook has
maximum choice value so that Facebook is selected as the
best third-party app of the year.

5.2. Selection of the Best Physiotherapist Doctor of Mayo
Hospital in Lahore. Physiotherapy helps to restore move-
ment and function when people are affected by injury or
disability. A physiotherapist treats such kind of people and
helps them through exercise, manual therapy, education,
and advice. A physiotherapist is very helpful in maintaining
the health of people of all ages as well as encourages them for
happy life. A physiotherapist must have patience, commu-
nication skills, and ability to establish a good relationship
with patients and their families.*emotive of this study is to
select the best physiotherapist doctor in Lahore relative to
their attributes under the environment of CSFNSf. For this
purpose, the data has been collected from the students of
Mayo Hospital, Lahore, enact here as experts E1, E2, E3, and
E4 whose weight vectors are σ � (0.4, 0.2, 0.1, 0.3)T. *e
following physiotherapists of Mayo Hospital are treated as
alternatives in this MAGDM problem:

w1: Dr. Amna
w2: Dr. Rizwan
w3: Dr. Akmal
w4: Dr. Sidra
w5: Dr. Saleem

Five attributes considered as key factors for a physio-
therapist are as follows:

z1: knowledge and experience.
z2: behavioral (positivity, patience, and humbleness).
z3: availability and flexibility.

Input: W � w1, w2, w3, . . . , wq  as universal element.
Z � z1, z2, z3, . . . , zm  as set of attributes.
NSfS (F, Z, N) with G � 0, 1, 2, 3, . . . , N − 1{ },
N ∈ 1, 2, 3, . . .{ },
Input 0<L<N − 1, threshold.

(1) Work out for FL
J (z) �

(μkj(z), ηkj(z), ]kj(z)), if (w, g
w
z ) ∈ F(z) andg

w
z ≥ L,

(0, 0, 1), otherwise.

(2) First, compute XL
j � ⊕mk�1Υ

L
kj, where Υ

L
kj � (pkje

i2πϕkj , vkjei2πδkj , rkje
i2πλkj ), (wj, g

j

k) ∈ F(z).
(3) Calculate the score function SXL

j
, for all j � 1, 2, 3, . . . , q .

(4) Calculate all the indices j for which SL
j � maxjSXL

j
.

(5) if Sj � Sp, for some j, p ∈ 1, 2, 3, . . . , q , then
(6) Use accuracy degree and identify alternative with maximum accuracy value
(7) else
(8) Identify the alternative with maximum score value.
(9)

ALGORITHM 4: *e algorithm of L-choice values of CSFNSfSs.
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z4: master of skills (communication, organizational, or
problem-solving skills).
z5: session fee.

We solve this MAGDM problem by following the
CSFNSf-TOPSIS method.

Step 1: according to these attributes, each expert model
6-soft set is in Table 26, where

Five stars mean “Marvellous”
Four stars mean “Outstanding”
*ree stars mean “Super”
Two stars mean “Good”
One star mean “Satisfactory”
Big dot means “Acceptable”

Table 3 represents the grading criteria, used for
assigning the CSFNSfN corresponding to each rank by
the expert E1, E2, E3, and E4 tabulated in Tables 27–30,
respectively.
Step 2: using equation (24), we can put together the
opinions of all experts. ACSFNSfDM formed by ag-
gregation is given in Table 31.
Step 3: to demonstrate the importance of attributes in
theMAGDMproblem, experts rank them and associate
CSFNSfN to each attribute which are arranged in
Table 32. We cumulated the weights given by experts
using equation (26) to form CSFNSf weight vector χ of
attributes, i.e.,

χ �

4, 0.89e
i1.72π

, 0.017e
i0.034π

, 0.23e
0.5iπ

  

4, 0.91e
i1.86π

, 0.016e
i0.034π

, 0.09e
0.2iπ

  

3, 0.62e
i1.24π

, 0.016e
i0.028π

, 0.53e
1.1iπ

  

3, 0.53e
i1.06π

, 0.02e
i0.04π

, 0.73e
1.42iπ

  

2, 0.55e
i1.14π

, 0.019e
i0.042π

, 0.67e
1.34iπ

  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(34)

Step 4: by utilizing ACSFNSfDM and weight vector χ
of attribute in equation (34), AWCSFNSfDM is
evaluated and summarized in Table 33.
Step 5: in the MAGDM problem, all the attributes’
knowledge and experience, behavior, availability and
flexibility, and master of skills are benefit-type attri-
butes except the session fee, which is a cost-type at-
tribute. According to the nature of attributes and
applying equation (29) and (30), CSFNSf-PIS and
CSFNSf-NIS are evaluated and arranged in Table 34
Step 6: Table 35 represents the normalized Euclidean
distance from each alternative to CSFNSf-PIS and
CSFNSf-NIS using equations (31) and (32),
respectively.
Step 7: the revised closeness index of each alternative is
calculated by utilizing equation (33) and given in
Table 36.
Step 8: since w1 has least revised closeness index,
therefore, Dr. Amna is the best physiotherapist inMayo
Hospital, Lahore. *e ranking of alternatives is shown
in Table 37.

6. Comparative Analysis

We now compare our proposed model with Pythagorean
fuzzy N-soft set (PFNSfS) that was discussed by Zhang et al.
[24].

(1) Table 38 represents the ratings of MADMproblem as
shown in Section5.1. in PFNSfNs.

(2) Table 39 presents the calculated choice values of
PF6SfS using the algorithm defined in [24] for the
selection of the third-party app. Clearly, from Ta-
ble 39, a1 is the best choice, and the ranking of third-
party apps is as follows: a1 > a4 >a5 >a2 >a3.

(3) Let L � 4 be threshold; then, 4-choice values of
PFSfS are shown in Table 40. *e ranking of third-
party apps according to 4-choice values is as follows:

Table 21: Tabular representation of 6-soft set.

A/Z z1 z2 z3 z4

a1 5 4 4 2
a2 3 2 3 3
a3 2 2 2 3
a4 2 3 5 4
a5 3 4 3 2

Table 20: Evaluation of data from the websites.

A/Z z1 z2 z3 z4

a1 ◇◇◇◇◇ ◇◇◇◇ ◇◇◇◇ ◇◇
a2 ◇◇◇ ◇◇ ◇◇◇ ◇◇◇
a3 ◇◇ ◇◇ ◇◇ ◇◇◇
a4 ◇◇ ◇◇◇ ◇◇◇◇◇ ◇◇◇◇
a5 ◇◇◇ ◇◇◇◇ ◇◇◇ ◇◇
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a1 > a4 >a5 >a2 ≥a3, which further shows that
a1 � Facebook has maximum choice value.

(4) We conclude the same results from both choice
values and L-choice values of PFNSfS [24], which
shows the reliability of our proposed method, and it
can be applied to any MADM problem.

(5) *e data arranged in Table 23 is able to handle more
real-life problems compared to Pythagorean N-soft
set and intuitionistic N-soft set as it includes the
neutral membership degree as well as it could deal
with 2-dimensional data.

(6) *e proposed model would provide the same results
under spherical fuzzy N-soft environment by taking
the periodic terms equal to zero.

6.1. Comparison with Complex Spherical Fuzzy TOPSIS
Method. In this section, we solve the MAGDM problem
“selection of best physiotherapist doctor of Mayo Hospital in

Lahore” by complex spherical fuzzy TOPSIS method, pro-
posed by Akram et al. [16], to demonstrate the importance
and superiority of the proposed model. *e solution by the
complex spherical fuzzy TOPSIS method is as follows:

Step 1: the linguistic term corresponding to each rank
assessed by the experts are the same as given in Ta-
ble 26. To apply the CSF TOPSIS method, the grading
part is excluded from CSFNSfN and CSFNs are
assigned by each expert E1,

E2, E3, and E4, which are
arranged in Tables 41–44, respectively, according to the
grading criteria defined in Table 3.
Step 2: using the weight vector of experts
σ � 0.4, 0.2, 0.1, 0.3{ }T and complex spherical fuzzy
weighted average (CSFWA) operator [16], we can
calculate the aggregated complex spherical fuzzy de-
cision matrix (ACSFDM), whose entries are evaluated
by the formula defined as follows [16]:

Pjk �

�������������������

1 − 
d�s

1
1 − p

(d)
jk 

2
 

σd




e

i2π

��������������������

1− 
d�s
1 1 − ϕ(d)

jk 
2

 

σd



, 
d�s

1
v

(d)
jk e

i2π 
d�s
1 δ(d)

jk , 
d�s

1
r

(d)
jk e

i2π 
d�s
1 λ(d)

jk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (35)

ACSFDM is summarized in Table 45. Step 3: the experts’ opinion about the importance of
attributes are given in Table 46.*e experts’ opinion are
combined using (CSFWA) operator [16], to formulate

Table 26: Experts’ rating according to attributes.

Attributes Alternatives E1
E2

E3
E4

z1

w1 ∗∗∗∗ � 4 ∗∗∗ � 3 ∗∗∗ � 3 ∗∗∗∗ � 4
w2 ∗∗∗ � 3 ∗∗∗ � 3 ∗∗∗ � 3 ∗∗∗ � 3
w3 ∗ � 1 • � 0 ∗∗ � 2 ∗ � 1
w4 ∗∗ � 2 ∗∗∗ � 3 ∗∗∗∗ � 4 ∗∗ � 2
w5 ∗∗ � 2 ∗ � 1 ∗∗ � 2 • � 0

z2

w1 ∗∗∗∗ � 4 ∗∗∗∗ � 4 ∗∗∗∗ � 4 ∗∗∗ � 3
w2 ∗∗ � 2 ∗∗∗ � 3 ∗∗ � 2 ∗ � 1
w3 ∗ � 1 ∗ � 1 ∗ � 1 ∗∗ � 2
w4 ∗∗∗ � 3 ∗∗ � 2 ∗∗∗ � 3 ∗∗∗∗ � 4
w5 ∗ � 1 ∗∗ � 2 ∗∗ � 2 ∗ � 1

z3

w1 ∗∗∗∗ � 4 ∗∗∗∗ � 4 ∗∗∗∗ � 4 ∗∗∗∗ � 4
w2 ∗ � 1 ∗∗ � 2 ∗∗ � 2 • � 0
w3 ∗∗ � 2 ∗∗ � 2 ∗∗ � 2 ∗∗ � 2
w4 ∗∗∗ � 3 ∗ � 1 • � 0 ∗∗ � 2
w5 ∗∗∗ � 3 ∗∗ � 2 ∗∗∗∗ � 4 ∗ � 1

z4

w1 ∗∗∗ � 3 ∗∗∗ � 3 ∗∗ � 2 ∗∗ � 2
w2 ∗∗∗∗ � 4 ∗∗∗∗ � 4 ∗∗∗ � 3 ∗∗∗ � 3
w3 ∗ � 1 ∗∗∗ � 3 ∗∗∗∗ � 4 ∗∗ � 2
w4 ∗∗ � 2 ∗∗∗ � 3 ∗∗∗ � 3 ∗∗∗ � 3
w5 ∗ � 1 ∗ � 1 ∗∗ � 2 ∗∗ � 2

z5

w1 ∗∗∗∗ � 4 ∗∗∗ � 3 ∗∗∗ � 3 ∗∗ � 2
w2 ∗∗ � 2 ∗∗ � 2 ∗∗∗ � 3 ∗∗ � 2
w3 ∗ � 1 ∗∗ � 2 ∗ � 1 ∗ � 1
w4 ∗∗∗ � 3 ∗∗ � 2 ∗ � 1 • � 0
w5 ∗∗ � 2 • � 0 ∗∗∗ � 3 ∗ � 1
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the weight vector χ for the attributes, and are defined as
follows:

χk �

�������������������

1 − 
d�s

1
1 − p

(d)
k 

2
 

σd




e
i2π

��������������������

1− 
d�s
1 1 − ϕ(d)

k 
2

 
σd



,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝



d�s

1
v

(d)
k e

i2π 
d�s
1 δ(d)

k , 
d�s

1
r

(d)
k e

i2π 
d�s
1 λ(d)

k ⎞⎠.

(36)

*us, we have

χ �

0.89e
i1.72π

, 0.017e
i0.034π

, 0.23e
0.5iπ

 

0.91e
i1.86π

, 0.016e
i0.034π

, 0.09e
0.2iπ

 

0.62e
i1.24π

, 0.016e
i0.028π

, 0.53e
1.1iπ

 

0.53e
i1.06π

, 0.02e
i0.04π

, 0.73e
1.42iπ

 

0.55e
i1.14π

, 0.019e
i0.042π

, 0.67e
1.34iπ

 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Step 4: the aggregated weighted complex spherical
decision matrix (AWCSFDM) is arranged in Table 47,
where the entries of AWCSFDM are calculated using
the formula [16]

Pjk � pjkpke
i2πϕjkϕk ,

�������������

v
2
jk + v

2
k − v

2
jkv

2
k



e
i2π

��������
δ2jk+δ2k− δ2jkδ

2
k



,

������������

r
2
jk + r

2
k − r

2
jkr

2
k



e
i2π

��������
λ2jk+λ2k− λ2jkλ

2
k



 . (38)

Step 5: to compute the complex spherical fuzzy positive
ideal solution (CSF-PIS) and negative ideal solution
(CSF-NIS), we evaluate the score degree of all CSFNs in
AWCSFDM, using the formula

Sc Pjk  � p
2
kj − w

2
kj − r

2
kj  + ϕ2kj − δ2kj − λ2kj . (39)

Table 48 represents the CSF-PIS and CSF-NIS with the
help of equation (26).
Step 6: the complex spherical fuzzy normalized Eu-
clidean distance of each alternative is given in Table 49
and computed by the formula [16], from CSF-PIS:

Table 34: Tabular representation of CSFNSf-PIS and CSFNSf-NIS.

Attribute CSFNSf-PIS CSFNSf-NIS

z1 (4, (0.85ei1.66π , 0.021ei0.042π , 0.23ei0.52π)) (2, (0.22ei0.44π , 0.027ei0.058π , 0.91ei1.74π))

z2 (4, (0.88ei1.76π, 0.021ei0.042π , 0.174ei0.038π)) (2, (0.31ei0.66π , 0.029ei0.06π , 0.87ei1.74π))

z3 (3, (0.601ei1.22π, 0.019ei0.034π , 0.53ei1.1π)) (2, (0.2ei0.4π, 0.019ei0.034π , 0.91e1.82π))

z4 (3, (0.47ei0.96π , 0.028ei0.056π , 0.73e1.42π)) (2, (0.15ei0.318π , 0.025ei0.052π , 0.89e1.8π))

z5 (2, (0.19ei0.38π, 0.035ei0.068π , 0.95ei1.9π)) (2, (0.5eiπ , 0.023ei0.046π , 0.67ei1.36π))

Table 35: Tabular representation of normalized Euclidean distance from ideal solution.

Alternative d( Pk, wj) d( �Pk, wj)

w1 0.20559 0.55439
w2 0.36677 0.311911
w3 0.528106 0.18778
w4 0.254649 0.396793
w5 0.50649 0.1936

Table 36: Tabular representation of revised closeness index of each
alternative.

Alternative I(wj)

w1 0
w2 1.22136
w3 2.236816
w4 0.485238
w5 2.1143

Table 37: Tabular representation of revised closeness index of each
alternative.

Alternative Ranking
w1 1
w2 3
w3 5
w4 2
w5 4
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Similarly, the normalized Euclidean distance between
the CSF-NIS and any of the alternative wj can be
formulated as follows:
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Step 7: Equation (33) is used to calculate the revised
closeness index of each alternative, as given in Table 50.
Step 8: revised closeness index in Table 50 reveals that
w1 is the best alternative within the ranking
w1 >w4 >w2 >w5 >w3.

6.1.1. Discussion

(1) We now compare the proposed model
CSFNSf-TOPSIS method with the existing tech-
nique CSF-TOPSIS method to evaluate the accuracy
of the result. *e same result concludes from both
methods as well as the ranking of the alternatives also
same.

(2) We also apply technique on SF-TOPSIS methods
[10, 11], to select the most appropriate physiother-
apist. *e same results including the ranking and best
solution are organized in Table 51, which enhance the
credibility of the proposed method.

(3) *e proposed model deals not only with 2-dimen-
sional uncertainties but also with the level of attri-
bute for the alternative. *e existing models are
unable to handle MAGDM problems, but the pro-
posed model has the ability to tackle those real-life
DM problems having ranking system and parame-
terized information.

(4) *e proposed model, CSFNSf-TOPSIS method,
could be efficiently applied to the environment of

Table 38: Tabular representation of the PF6SfS defined from the problem proposed in Section 5.1.

z1 z2 z3 z4

a1 (5, (0.95, 0.13)) (4, (0.87, 0.21)) (4, (0.88, 0.2)) (2, (0.48, 0.77))

a2 (3, (0.7, 0.49)) (2, (0.32, 0.9)) (3, (0.6, 0.69)) (3, (0.62, 0.73))

a3 (2, (0.41, 0.77)) (2, (0.33, 0.89)) (2, (0.35, 0.84)) (3, (0.53, 0.67))

a4 (2, (0.4, 0.9)) (3, (0.72, 0.59)) (5, (0.9, 0.18)) (4, (0.77, 0.35))

a5 (3, (0.71, 0.51)) (4, (0.89, 0.145)) (3, (0.55, 0.7)) (2, (0.49, 0.76))

Table 39: Tabular representation of Choice value of PF6SfS in Section 5.1.

z1 z2 z3 z4 Hi

a1 (5, (0.95, 0.13)) (4, (0.87, 0.21)) (4, (0.88, 0.2)) (2, (0.48, 0.77)) (15, 2.83162)

a2 (3, (0.7, 0.49)) (2, (0.32, 0.9)) (3, (0.6, 0.69)) (3, (0.62, 0.73)) (11, 1.6754702)

a3 (2, (0.41, 0.77)) (2, (0.33, 0.89)) (2, (0.35, 0.84)) (3, (0.53, 0.67)) (9, 1.3498273)

a4 (2, (0.4, 0.9)) (3, (0.72, 0.59)) (5, (0.9, 0.18)) (4, (0.77, 0.35)) (14, 2.30656384)

a5 (3, (0.71, 0.51)) (4, (0.89, 0.145)) (3, (0.55, 0.7)) (2, (0.49, 0.76)) (12, 2.231012)

Table 40: Tabular representation of 4 choice value of PF6SfS Section 5.1.

z1 z2 z3 z4 H4
i

a1 (0.95, 0.13) (0.87, 0.21) (0.88, 0.2) (0, 1) 0.33532
a2 (0, 0.5) (0, 1) (0, 0.5) (0, 0.5) − 0.4375
a3 (0, 1) (0, 1) (0, 1) (0, 0.5) − 0.8125
a4 (0, 1) (0, 0.5) (0.9, 0.18) (0.77, 0.35) − 0.0005
a5 (0, 0.5) (0.89, 0.145) (0, 0.5) (0, 1) − 0.18223125
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SFNSf, CSFSf, and SFSf, by substituting periodic
terms equal to zero and N � 2.

7. Conclusions

Complex spherical fuzzy N-soft sets (CSFNSfS) broaden
the families of both fuzzy sets and N-soft sets. *is novel
concept has allowed us to propose techniques in a wide
environment that have a large ability of solving real-life
MADM and MAGDM problems. *e model of CSFNSfS

described in this paper copes with 2-dimensional fuzziness,
parameterized information, and ordinal ranking systems. In
addition to the notion of CSFNSfS, we have defined score
and accuracy functions for the purpose of comparing two
CSFNSfNs. We have defined useful operations on
CSFNSfS and given relevant examples. We developed three
direct algorithms and, furthermore, a CSFNSf-TOPSIS
Method to solve decision-making problems. We compared
them with existing methods for Pythagorean fuzzy N-soft
sets and with the complex spherical fuzzy TOPSIS Method,

respectively. For the purpose of extending the theoretical
background of TOPSIS methods to the new
CSFNSf-TOPSIS method, we have defined complex
spherical fuzzy N-soft weighted averaging operator
CSFNSfWA which produces an aggregate complex
spherical fuzzy N-soft decision matrix ACSFNSfDM and
aggregates the weight vectors of attributes given by experts.
Similarly, we have defined a normalized Euclidean distance
in CSFNSf environment that simultaneously evaluates the
distances of alternatives from CSFNSf-PIS and
CSFNSf-NIS. *is is required to find a revised closeness
index. *e ascending order of such an index gives us a
ranking of the alternatives, where the smallest revised
closeness index indicates a best solution. In the future, we
intend to pursue the formalization of other methods
(ELECTRE I, II, and III and VIKOR methodologies), under
the framework ofCSFNSf. We can also extend this theory to
accommodate T-spherical fuzzy soft sets, T-spherical fuzzy
N-soft sets, and complex T-spherical fuzzy N-soft sets.
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Table 51: Comparison.

Method Ranking Best physiotherapist
CSFNSf-TOPSIS w1 >w4 >w2 >w5 >w3 w1
CSF-TOPSIS [16] w1 >w4 >w2 >w5 >w3 w1
SF-TOPSIS [10] w1 >w4 >w2 >w5 >w3 w1
SF-TOPSIS [11] w1 >w4 >w2 >w5 >w3 w1

Table 48: Tabular representation of CSF-PIS and CSF-NIS.

Attribute CSF-PIS CSFN-NIS
z1 (0.85ei1.66π , 0.021ei0.042π , 0.23ei0.52π) (0.22ei0.44π , 0.027ei0.058π , 0.91ei1.74π)

z2 (0.88ei1.76π , 0.021ei0.042π , 0.174ei0.038π) (0.31ei0.66π , 0.029ei0.06π, 0.87ei1.74π)

z3 (0.601ei1.22π , 0.019ei0.034π , 0.53ei1.1π) (0.2ei0.4π , 0.019ei0.034π, 0.91e1.82π)

z4 (0.47ei0.96π , 0.028ei0.056π , 0.73e1.42π) (0.15ei0.318π , 0.025ei0.052π , 0.89e1.8π)

z5 (0.19ei0.38π , 0.035ei0.068π , 0.95ei1.9π) (0.5eiπ , 0.023ei0.046π , 0.67ei1.36π)

Table 49: Normalized Euclidean distance from ideal solution.

Alternative d( Pk, wj) d( �Pk, wj)
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w5 0.510455 0.208933

Table 50: Revised closeness index of each alternative.

Alternative I(wj)

w1 0
w2 1.5132
w3 2.5911
w4 0.838853
w5 2.42088
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In this paper, we establish a Hausdorff metric over the family of nonempty closed subsets of an extended b-metric space.
'ereafter, we introduce the concept of multivalued fuzzy contractionmappings and prove related α-fuzzy fixed point theorems in
the context of extended b-metric spaces that generalize Nadler’s fixed point theorem as well as many preexisting results in the
literature. Further, we establish α-fuzzy fixed point theorems for Ćirić type fuzzy contraction mappings as a generalization of
previous results. Moreover, we give some examples to support the obtained results.

1. Introduction

In 1928, Von Neumann [1] introduced the concept of fixed
points for multivalued mappings because of its applications
in several branches of mathematics. 'e development of the
geometric fixed point theory for multivalued mappings was
initiated by the work of Nadler [2]. He used the Pom-
peiu–Hausdorff metric to prove the multivalued contraction
principle over the collection of nonempty closed and
bounded subsets of a metric space. After that, several re-
searchers have studied and generalized Nadler’s contraction
principle in many directions.

In 1965, Zadeh [3] initiated the concept of fuzzy set
theory. After that, several authors extended the Banach
contraction principle for single and multivalued mappings
in the context of fuzzy sets. In 1981, Heilpern [4] proved a
fixed point theorem for fuzzy contraction mappings as a
generalization of Nadler’s contraction principle. Conse-
quently, several authors studied and generalized fuzzy fixed
point theorems in many directions (see [5–11]). In 2015,

Phiangsungnoen and Kumam [12] established the concept of
multivalued fuzzy contraction mappings in b-metric spaces
and proved a related α-fuzzy fixed point theorem. In [13],
Anita extended α-fuzzy fixed point theorems involving Ćirić
type fuzzy contraction mappings.

Meanwhile, Kamran in [14] introduced the concept of an
extended b-metric, as a generalization of a b-metric, and
proved fixed point results on such space. 'ereafter, many
researchers have studied and generalized fixed point results
for single and multivalued mappings (see [15–24]).

In this paper, we establish a Hausdorff metric over the
family of nonempty closed subsets of an extended
b-metric space. After that, we introduce the concept of
multivalued fuzzy contraction mappings and prove
α-fuzzy fixed point theorems for such mappings in the
context of extended b-metric spaces that generalize many
preexisting results in the literature. To justify our results,
we give some examples. In the last section, we further
establish the fact that, by utilizing these concepts, we can
also derive results for multivalued mappings. 'roughout
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this paper, we will denote by CLB(U) the collection of
nonempty closed and bounded subsets of U and by
CLD(U) the collection of nonempty closed subsets of U.

Definition 1 (see [14]). Let U be a nonempty set with
θ: U × U⟶ [1,∞). 'en, a mapping
dθ: U × U⟶ [0,∞) is called an extended b-metric, if for
all μ, ],ω ∈ U, it satisfies the following:

(1) dθ(μ, ]) � 0 iff μ � ]
(2) dθ(μ, ]) � dθ(], μ)

(3) dθ(μ,ω)≤ θ(μ,ω)[dθ(μ, ]) + dθ(],ω)]

Clearly, every b-metric space is an extended b-metric
space with θ(μ, ]) � s≥ 1.

Example 1 (see [14]). Let U � [0,∞). Define
dθ: U × U⟶ [0,∞) by

dθ(μ, ]) � (μ − ])
2
, (1)

for all μ, ] ∈ U.'us, dθ is an extended b-metric onU, where
θ: U × U⟶ [1,∞) is defined as θ(μ, ]) � μ + ] + 1.

Samreen et al. in [25] established the concept of an
extended b-comparison function as an extension of a
b-comparison function and generalized the concept of
α-ψ-contraction mappings in the framework of extended
b-metric spaces.

Definition 2 (see [25]). Let (U, dθ) be an extended b-metric
space. 'en, a function φ: [0,∞)⟶ [0,∞) is called an
extended b-comparison function if it is increasing, and there
exists a mapping f: D ⊂ U⟶ U such that, for some
μ0 ∈ D, O(μ0) ⊂ D, 

∞
n�0 φ

n(t) 
n
i�1 θ(μi, μm) converges for

all t ∈ [0,∞) and for every m ∈ N. Here, μn � fnμ0 for n �

1, 2, . . . andO(μ0) is an orbit at a point μ0 ∈ U. We say that φ
is an extended b-comparison function for f at μ0. It is known
that, for each extended b-comparison function φ, we have
φ(t)< t for all t> 0 and φ(0) � 0 for t � 0.

We denote by Ψθ the collection of all extended
b-comparison functions. If we put θ(μi, μm) � s in Definition
2, we get 

∞
n�0 φ

n(t) 
n
i�1 sn <∞, which is a b-comparison

function.We denote byΨb the collection of all b-comparison
functions.

In [17], Subashi and Gjini introduced the concept of a
Pompeiu–Hausdorff metric on the collection of all compact
subsets of extended b-metric spaces. On the other hand,
Subashi in [18] initiated Pompeiu–Hausdorff metric on the
collection of all nonempty closed and bounded subsets of
extended b-metric spaces.

Next, recall definitions of fuzzy sets, fuzzy mappings,
α-fuzzy fixed point, Ćirić type contraction, and related fixed
point theorem in b-metric spaces from [12, 13, 26].

Let (U, dθ) be a b-metric space.'en a fuzzy set A inU is
characterized by a membership function

fA: U⟶ [0, 1], (2)

which assigns every member ofU a membership grade in A.
Denote by F(U) the collection of all fuzzy sets in U. Let us
take A ∈ F(U) and α ∈ [0, 1]. 'e α-level set of A is denoted
by [A]α and is defined as follows:

[A]α � μ ∈ U: A(μ)≥ α , α ∈ (0, 1],

[A]0 � μ ∈ U: A(μ)> 0 ,
(3)

where A denotes the closure of A. Clearly, [A]α and [A]0 are
subsets of U.

For A, B ∈ F(U), a fuzzy set A is said to bemore accurate
than a fuzzy set B and is denoted by A ⊂ B, if and only if
fA(μ)≤fB(μ) for each μ ∈ U. Now, for μ ∈ U,
A, B ∈ F(U), α ∈ [0, 1], and [A]α, [B]α ∈ CLD(U), define

ρα μ, [A]α(  � inf d(μ, a): a ∈ [A]α ,

ρα [A]α, [B]α(  � inf d(a, b): a ∈ [A]α, b ∈ [B]α ,

ρ [A]α, [B]α(  � sup
α

ρα [A]α, [B]α( .

(4)

'en Hausdorff fuzzy b-metric is denoted by
H([A]α, [B]α) and is defined as follows:

H [A]α, [B]α(  � max sup
a∈[A]α

d a, [B]α( , sup
b∈[B]α

d b, [A]α( 
⎧⎨

⎩

⎫⎬

⎭.

(5)

Remark 1 (see [12]). 'e function H: CLD(U)

×CLD(U)⟶ F(U) is a generalized Hausdorff fuzzy
b-metric induced by d and is defined as follows:

H [A]α, [B]α(  �
max sup

a∈[A]α

d a, [B]α( , sup
b∈[B]α

d b, [A]α( 
⎧⎨

⎩

⎫⎬

⎭, if themaximum exists;

∞, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where [A]α, [B]α ∈ CLD(U).

Definition 3 (see [12]). LetU be a nonempty set andV be a
b-metric space. 'en

(1) A mapping R: U⟶ F(V) is called a fuzzy
mapping

(2) For a fuzzy mapping R: U⟶ F(U), an element
ξ ∈ U is called a α fuzzy fixed point ofR, if ξ ∈ [Rξ]α

2 Journal of Mathematics



RE
TR
AC
TE
D

Theorem 1 (see [12]). Let (U, d) be a complete b-metric
space with s≥ 1. Let R: U⟶ F(U) and α ∈ (0, 1] such
that, for each μ ∈ U, [Rμ]α is a nonempty closed subset ofU
and φ ∈ Ψb such that

H [Rμ]α, [R]]α( ≤φ(d(μ, ])), (7)

for all μ, ] ∈ U. Fen, R has an α-fuzzy fixed point.

Definition 4 (see [26]). A self-mapping R: U⟶ U on a
metric space (U, d) is called a Ćirić type contraction if and
only if for all μ, ] ∈ U, there exists h< 1 such that

d(Rμ,R])≤ hmax d(μ, ]), d(μ,Rμ), d(],R]),
d(μ,R]) + d(],Rμ)

2
 . (8)

Theorem 2 (see [13]). Let (U, d) be a complete b-metric
space with s≥ 1. Let R: U⟶ F(U) and α ∈ (0, 1] such
that, for each μ ∈ U, [Rμ]α is a nonempty closed subset ofU
and φ ∈ Ψb such that

H [Rμ]α, [R]]α( ≤φ(M(μ, ])), (9)

where

M(μ, ]) � max d(μ, ]), d μ, [Rμ]α( , d ], [R]]α( ,
d μ, [R]]α(  + d ], [Rμ]α( 

2s
 , (10)

for all μ, ] ∈ U. Fen, R has an α-fuzzy fixed point.

Remark 2. If M(μ, ]) � d(μ, ]) in 'eorem 2, we get 'e-
orem 1. Hence, 'eorem 2 is an extension of 'eorem 1.

2. Main Results

For A ⊂ U, θ(μ, A) � infa∈Aθ(μ, a) and
dθ(μ, A) � infa∈Adθ(μ, a). 'e following lemma is essential
in the sequel.

Lemma 1. Let (U, dθ) be an extended b-metric space. Fen

dθ(μ, A)≤ θ(μ, A)dθ(μ, ]) + θ(], A)dθ(], A), (11)

for all μ, ] ∈ U and a ∈ A ⊂ U, where
θ(μ, A) � infa∈Aθ(μ, a).

Proof. Since (U, dθ) is an extended b-metric space, therefore
by using the triangle inequality one writes

dθ(μ, a)≤ θ(μ, a) dθ(μ, ]) + dθ(], a) , for all μ, ], a ∈ U.

(12)

'is implies that

dθ(μ, a)≤ θ(μ, a)dθ(μ, ]) + θ(μ, a)dθ(], a), (13)

for all μ, ], a ∈ U. By taking infimum overA in equation (13),
we obtain

inf
a∈A

dθ(μ, a)≤ inf
a∈A

θ(μ, a) inf
a∈A

dθ(μ, ]) + dθ(], a) 

� inf
a∈A

θ(μ, a)dθ(μ, ]) + inf
a∈A

θ(μ, a) inf
a∈A

dθ(], a).

(14)

Since dθ(μ, A) � infa∈Adθ(μ, a) and
θ(μ, A) � infa∈Aθ(μ, a), thus from equation (14), we have

dθ(μ, A)≤ θ(μ, A)dθ(μ, ]) + θ(], A)dθ(], A). (15)
□

Lemma 2. Let μk 
n
k�0 ⊂ U. Fen

dθ μ0, μn( ≤ θ μ0, μn( dθ μ0, μ1(  + θ μ0, μn( θ μ1, μn( dθ μ1, μ2( 

+ · · · + θ μ0, μn( θ μ1, μn(  + · · · + θ μn−1, μn( dθ μn−1, μn( .
(16)

Proof. From triangle inequality, we have

dθ μ0, μn( ≤ θ μ0, μn(  dθ μ0, μ1(  + dθ μ1, μn(  . (17)

'is implies that

dθ μ0, μn( ≤ θ μ0, μn( dθ μ0, μ1(  + θ μ0, μn( dθ μ1, μn( .

(18)

Again, by the triangle inequality,
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dθ μ0, μn( ≤ θ μ0, μn( dθ μ0, μ1(  + θ μ0, μn(  θ μ1, μn(  dθ μ1, μ2(  + dθ μ2, μn(   ,

dθ μ0, μn( ≤ θ μ0, μn( dθ μ0, μ1(  + θ μ0, μn( θ μ1, μn( dθ μ1, μ2(  + θ μ0, μn( θ μ1, μn( dθ μ2, μn( .
(19)

By continuing in this fashion, we have

dθ μ0, μn( ≤ θ μ0, μn( dθ μ0, μ1(  + θ μ0, μn( θ μ1, μn( dθ μ1, μ2(  +

· · · + θ μ0, μn( θ μ1, μn(  + · · · + θ μn−1, μn( dθ μn−1, μn( .
(20)

□
Theorem 3. Let μn  be a sequence in an extended b-metric
space with the property that, for all n, dθ(μn, μn+1)< (ε/kn)

and limn⟶∞θ(μn, μn+1)k< 1, where k≥ 1 is a real constant.
Fen, μn  is a Cauchy sequence.

Proof. Let ε> 0 and choose a positive integer N. 'en, from
the triangle inequality for all m> n≥N, we have

dθ μn, μm( ≤ θ μn, μm( dθ μn, μn+1(  + θ μn, μm( θ μn+1, μm( dθ μn+1, μn+2( 

+ · · · + θ μn, μm( θ μn+1, μm(  + · · · + θ μm−1, μm( dθ μm−1, μm( ,

dθ μn, μm( ≤ θ μn, μm( 
ε

k
n + θ μn, μm( θ μn+1, μm( 

ε
k

n+1 + · · ·

+ θ μn, μm( θ μn+1, μm(  + · · · + θ μm−1, μm( 
ε

k
m− 1,

dθ μn, μm( ≤ θ μ1, μm( θ μ2, μm(  + · · · + θ μn, μm( 
ε

k
n + θ μ1, μm( θ μ2, μm(  + · · · + θ μn+1, μm( 

ε
k

n+1

+ · · · + θ μ1, μm( θ μ2, μm(  + · · · + θ μn, μm( θ μn+1, μm(  + · · · + θ μm−1, μm( 
ε

k
m− 1.

(21)

Since limn,m⟶∞θ(μn+1, μm)k< 1, the series

∞
j�1 ε/k

n 
j

i�1 θ(μi, μm) converges by the ratio test for each
m ∈ N. Let

S � 

∞

p�1

ε
k

p 

p

q�1
θ μq, μm ,

Sn � 
n

p�1

ε
k

p 

p

q�1
θ μq, μm .

(22)

'us, for m> n, the above inequality implies

dθ μn, μm( ≤ Sm−1 − Sn . (23)

Let us take n⟶∞. Hence, we conclude that μn  is a
Cauchy sequence. □

Now we will introduce the Pompeiu–Hausdorff metric.

Definition 5. Consider nonempty subsets A, B of extended
b-metric space (U, dϕ), and we define

Hϕ(A, B) �
max sup

a∈A
dθ(a, B), sup

b∈B
dθ(b, A) , if themaximumexists;

∞, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(24)

By following the same procedure as Lemma 2 of [27], we
state the following lemma.

Lemma 3. For all A, B, C ⊂ U, we have

Hθ(A, C)≤max sup
a∈A

θ(a, C), sup
c∈C

θ(c, A) Hθ(A, B)

+ max sup
a∈A

θ(a, C), sup
c∈C

θ(c, A) Hθ(B, C).

(25)
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Same as 'eorem 2.1 of [27], we have the following
theorem.

Theorem 4. Let (U, dθ) is an extended b-metric space, then
the function Hθ: CLD(U) × CLD(U)⟶ [0,∞] is a gen-
eralized extended b-metric space in CLD(U).

Definition 6. a ∈ A, where A is the closure of a set A ⊂ U, if
and only if there exists a sequence an  in A such that
a � limn⟶∞an.

Denote for ε> 0 and A ⊂ U

B(ε, A) � μ ∈ U: dθ(μ, A)≤ ε . (26)

Lemma 4. If μ ∈ B(ε, A), then dθ(μ, A)≤ θ(μ, A)ε, where

θ(μ, A) � inf
a∈A

θ(μ, a). (27)

Proof. Let μ ∈ B(ε, A), then there exists a sequence μn  in
B(ε, A), where n � 1, 2, 3, . . . such that μ � limn⟶∞μn.
Hence, by Lemma 1,

dθ(μ, A)≤ θ(μ, A)dθ μ, μn(  + θ(μ, A)dθ un, A( ≤ θ(μ, A)ε.
(28)

'is implies that

dθ(μ, A)≤ θ(μ, A)ε, (29)

which proves the lemma. □

Definition 7. 'e upper topological limit of a sequence
Ak 
∞
k�1 in the extended b-metric spaceU is denoted by ltAk

which is determined by

a ∈ ltAk, iff limk⟶∞infdθ a, Ak(  � 0. (30)

Following 'eorem 2.2 of [27], we have the following.

Theorem 5. A point a ∈ ltAk if and only if there exists a
subsequence ank

  ⊂ A such that limk⟶∞ank
� a and

ank
∈ Ank

, for k � 1, 2, 3, . . .

As 'eorem 2.3 of [27], we have the following theorem.

Theorem 6. L � ltAk is closed.

Similar to Corollary 2.1 of [27], we state the following.

Corollary 1.

ltAk � ∩
∞

k�1
∪
∞

n�0
Ak+n . (31)

Again, as Corollary 2.2 of [27], we have the following.

Corollary 2.

limk⟶∞Ak � ltAk � ltAk. (32)

By applying the same procedure as 'eorem 2.4 of [27],
we state the following.

Theorem 7. Let us consider a complete extended b-metric
space (U, dθ) with limn,m⟶∞θ(μn, μm)k< 1 for all
μm, μn ∈ U, where k≥ 1. Fen, (CLD(U), Hθ) is complete.

Definition 8. Let (U, dθ) be an extended b-metric space with
θ: U × U⟶ [1,∞). 'en, a fuzzy set Aθ in U is char-
acterized by a membership function

fAθ
: U⟶ [0, 1], (33)

which assigns every member of U a membership grade in
Aθ.

We denote by Fθ(U) the collection of all fuzzy sets inU.
Let us takeAθ ∈ Fθ(U) and α ∈ [0, 1]. 'e α-level set ofAθ
is denoted by [Aθ]α and is defined as follows:

Aθ α � μ ∈ U: Aθ(μ)≥ α , α ∈ (0, 1],

Aθ 0 � μ ∈ U: Aθ(μ)> 0 ,
(34)

where B denotes the closure of B. Clearly, [Aθ]α and [Aθ]0
are subsets of the extended b-metric space U. For
Aθ,Bθ ∈ Fθ(U), a fuzzy set Aθ is said to be more accurate
than a fuzzy setBθ and is denoted byAθ ⊂Bθ, if and only if
fAθ

(μ)≤fBθ
(μ) for each μ ∈ U. Now, for μ ∈ U,

Aθ,Bθ ∈ Fθ(U), α ∈ [0, 1], and [Aθ]α, [Bθ]α ∈ CLD(U),
define

ρα μ, Aθ α(  � inf dθ μ,Bθ( : a ∈ Aθ α ,

ρα Aθ α, Bθ α(  � inf dθ(a, b): a ∈ Aθ α, b ∈ Bθ α ,

ρ Aθ α, Bθ α(  � sup
α

ρα Aθ α, Bθ α( .

(35)

Remark 3. From 'eorem 4, the function Hθ: CLD(U) ×

CLD(U)⟶ [0,∞] defined by

Hθ Aθ α, Bθ α(  �
max sup

a∈ Aθ[ ]α

dθ a, Bθ α( , sup
b∈ Bθ[ ]α

dθ b, Aθ α( 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, if themaximum exists;

∞, otherwise

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(36)
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is a Hausdorff extended fuzzy b-metric on CLD(U).

Theorem 8. Let (U, dθ) be a complete extended b-metric
space with θ: U × U⟶ [1,∞). Let R: U⟶ F(U) be a
fuzzy mapping and α: U⟶ (0, 1] such that, for each μ ∈ U,
[Rμ]α is a nonempty closed subset ofU and φ ∈ Ψθ such that

Hθ [Rμ]α, [R]]α( ≤φ dθ(μ, ])( , (37)

for all μ, ] ∈ U. Fen, R has an α-fuzzy fixed point.

Proof. Let us take an arbitrary point μ0 ∈ U. Suppose there
exists μ1 ∈ [Rμ0]α. As [Rμ0]α is a nonempty closed subset of

U, thus clearly if μ0 � μ1 and μ1 ∈ [Rμ1]α, we get μ1 as an
α-fuzzy fixed point of T and the proof is complete. Hence,
throughout our proof, we will assume μ0 ≠ μ1 and
μ1 ∉ [Rμ1]α. 'us, dθ(μ1, [Rμ1]α)> 0. From the definition
of Hausdorff metric, equation (37), and φ ∈ Ψθ, we have

0<dθ μ1, Rμ1 α( ≤Hθ Rμ0 α, Rμ1 α( 

≤φ dθ μ0, μ1( ( 

<φ rdθ μ0, μ1( ( ,

(38)

where r> 1 is a real number. Suppose there exists
μ2 ∈ [Rμ1]α with μ1 ≠ μ2 such that

0< dθ μ1, μ2( ≤ dθ μ1, Rμ1 α( ≤Hθ Rμ0 α, Rμ1 α( ≤φ dθ μ0, μ1( ( <φ rdθ μ0, μ1( ( . (39)

As [Rμ2]α is a nonempty closed subset of U, therefore
we assume μ2 ∉ [Rμ2]α, so dθ(μ2, [Rμ2]α)> 0. From the
definition of Hausdorff metric, equation (37), and φ ∈ Ψθ,
we have

0< dθ μ2, Rμ2 α( ≤Hθ Rμ1 α, Rμ2 α( 

≤φ dθ μ1, μ2( ( 

<φ2
rdθ μ0, μ1( ( .

(40)

Suppose there exists μ3 ∈ [Rμ2]α with μ2 ≠ μ3 such that

0<dθ μ2, μ3( ≤φ dθ μ1, μ2( ( <φ2
rdθ μ0, μ1( ( . (41)

As [Rμ3]α is a nonempty closed subset of U, so we
assume μ3 ∉ [Rμ3]α, so dθ(μ3, [Rμ3]α)> 0. From the defi-
nition of Hausdorff metric, equation (37), and φ ∈ Ψθ, we
have

0<dθ μ3, Rμ3 α( ≤Hθ Rμ2 α, Rμ3 α( 

≤φ dθ μ2, μ3( ( 

<φ3
rdθ μ0, μ1( ( .

(42)

By induction, we can construct a sequence μn 
∞
n�0 in U

such that μn ∉ [Rμn]α, μn+1 ∈ [Rμn]α, and

0<dθ μn, Rμn α( ≤Hθ Rμn−1 α, Rμn α( 

≤φ dθ μn−1, μn( ( 

<φn
rdθ μ0, μ1( ( ,

(43)

for all n ∈ N. From the triangle inequality, for all m> n, we
have

dθ μn, μm( ≤ θ μn, μm( dθ μn, μn+1(  + θ μn, μm( θ μn+1, μm( dθ μn+1, μn+2(  +

· · · + θ μn, μm( θ μn+1, μm(  + · · · + θ μm−1, μm( dθ μm−1, μm( 

≤ θ μn, μm( φn
rdθ μ0, μ1( (  + θ μn, μm( θ μn+1, μm( φn+1

rdθ μ0, μ1( (  + · · ·

+ θ μn, μm( θ μn+1, μm(  + · · · + θ μm−1, μm( φm− 1
rdθ μ0, μ1( ( .

(44)

Since the series 
∞
i�0 θ(μj, μm)φj(rdθ(μ0, μ1)) converges,

therefore μn 
∞
n�0 is a Cauchy sequence. AsU is complete, so

there exists μ ∈ U such that limn⟶∞μn � μ. Next, we will

show that μ is an α-fuzzy fixed point. From the triangle
inequality, we have

dθ μ, [Rμ]α( ≤ θ μ, [Rμ]α(  dθ μ, μn+1(  + dθ μn+1, [Rμ]α(  

≤ θ μ, [Rμ]α(  dθ μ, μn+1(  + Hθ Rμn α, [Rμ]α(  

≤ θ μ, [Rμ]α(  dθ μ, μn+1(  + φ dθ μn, μ( (  .

(45)
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By letting n⟶∞ and φ(0) � 0, we get
dθ(μ, [Rμ]α) � 0. Since [Rμ]α is closed, we get μ ∈ [Rμ]α.
Hence, μ is an α-fuzzy fixed point of R. □

By putting φ(R) � κR, where κ ∈ (0, 1) in 'eorem 8,
we get the following corollary.

Corollary 3. Let (U, dθ) be a complete extended b-metric
space with θ: U × U⟶ [1,∞). Let R: U⟶ F(U) be a
fuzzy mapping and α: U⟶ (0, 1] such that, for each μ ∈ U,
[Rμ]α is a nonempty closed subset ofU and φ ∈ Ψθ such that

Hθ [Rμ]α, [R]]α( ≤ k dθ(μ, ])( , (46)

for all μ, ] ∈ U, where k ∈ (0, 1). Assume k< (1/r), where
r≥ 1 is a real constant. Fen, R has an α-fuzzy fixed point.

Remark 4. 'eorem 8 generalizes 'eorem 3.1 of [12]. Also,
Corollary 3 generalizes Corollary 3.2 and 3.4 of [12].

Example 2. LetU � [0, 1]. Define dθ: U × U⟶ [0,∞) by
dθ(μ, ]) � (μ − ])2 and θ: U × U⟶ [1,∞) by
θ(μ, ]) � μ + ] + 2, for all μ, ] ∈ U. 'en, (U, dθ) is a
complete extended b-metric space, which is not a b-metric
space. Define R: U⟶ F(U) by

(Rμ)(t) �

0, if 0≤ t<
4
5
;

4
5
, if

4
5
≤ t≤

4(μ + 1)

5
;

4
7
, if

4(μ + 1)

5
< t≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

Define α: U⟶ (0, 1] by α(μ) � (4/5), for all μ ∈ U.
Clearly, we can see that, for all μ ∈ U,

[Rμ]α �
4
5
,
4(μ + 1)

5
 . (48)

Hence, [Rμ]α is a nonempty closed subset of U. Also,
Hθ([Rμ]α, [R]]α) � (16/25)(μ − ])2 � (16/25)(dθ(μ, ])),
where φ(t) � (16/25)t. 'erefore, all the conditions of
'eorem 8 are satisfied, and hence, (4/5) ∈ U is an α-fuzzy
fixed point of R.

Next, we will prove the existence of α-fuzzy fixed point
for multivalued fuzzy contraction mapping under Ćirić type
contractive condition in the setting of complete extended
b-metric spaces.

Theorem 9. Let (U, dθ) be a complete extended b-metric
space with θ: U × U⟶ [1,∞). Let R: U⟶ F(U) be a
fuzzy mapping and α: U⟶ (0, 1] such that, for each μ ∈ U,
[Rμ]α is a nonempty closed subset ofU and φ ∈ Ψθ such that

Hθ [Rμ]α, [R]]α( ≤φ(M(μ, ])), (49)

where

M(μ, ]) � max dθ(μ, ]), dθ μ, [Rμ]α( , dθ ], [R]]α( ,
dθ μ, [R]]α(  + dθ ], [Rμ]α( 

2θ μ, [R]]α( 
 , (50)

for all μ, ] ∈ U, where

θ μ, [R]]α(  � inf
]∈[R]]α

θ(μ, ]). (51)

Fen, R has an α-fuzzy fixed point.

Proof. Let us take an arbitrary point μ0 ∈ U. Suppose there
exists μ1 ∈ [Rμ0]α. Recall that [Rμ0]α is a nonempty closed
subset ofU. 'us, clearly if μ0 � μ1 and μ1 ∈ [Rμ1]α, we get
μ1 as an α-fuzzy fixed point of T and the proof is complete.
Hence, throughout our proof, we will assume μ0 ≠ μ1 and
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μ1 ∉ [Rμ1]α. 'us, dθ(μ1, [Rμ1]α)> 0. From the definition
of Hausdorff metric, equation (49), and φ ∈ Ψθ, we have

0< dθ μ1, Rμ1 α( ≤Hθ Rμ0 α, Rμ1 α( 

≤φ M dθ μ0, μ1( ( ( ,

� φ max dθ μ0, μ1( , dθ μ0, Rμ0 α( , dθ μ1, Rμ1 α( ,
dθ μ0, Rμ1 α(  + dθ μ1, Rμ0 α( 

2θ μ0, Rμ1 α( 
  

≤φ max dθ μ0, μ1( , dθ μ0, Rμ0 α( , dθ μ1, Rμ1 α( ,(

θ μ0, Rμ1 α(  dθ μ0, μ1(  + dθ μ1, Rμ1 α( (  + dθ μ1, Rμ0 α( 

2θ μ0, Rμ1 α( 


≤φ max dθ μ0, μ1( , dθ μ0, μ1( , dθ μ1, Rμ1 α( ,
dθ μ0, μ1(  + dθ μ1, Rμ1 α(  + dθ μ1, μ1( 

2
  ,

� φ max dθ μ0, μ1( , dθ μ0, μ1( , dθ μ1, Rμ1 α( ,
dθ μ0, μ1(  + dθ μ1, Rμ1 α( 

2
  ,

� φ max dθ μ0, μ1( , dθ μ1, Rμ1 α(  ( .

(52)

'is implies that

dθ μ1, Rμ1 α( ≤φ max dθ μ0, μ1( , dθ μ1, Rμ1 α(  ( .

(53)

Now, we will take the following two cases:

Case 1: if max dθ(μ0, μ1), dθ(μ1, [Rμ1]α)  � dθ(μ1,
[Rμ1]α), then we have

0< dθ μ1, Rμ1 α( ≤φ dθ μ1, Rμ1 α( ( <dθ μ1, Rμ1 α( , (54)

which is a contradiction.
Case 2: if max dθ(μ0, μ1), dθ(μ1, [Rμ1]α)  � dθ(μ0, μ1),
then we have

0< dθ μ1, Rμ1 α( ≤φ dθ μ0, μ1( ( <φ rdθ μ0, μ1( ( ,

(55)

where r> 1 is a real number.

'is ensures that there exists μ2 ∈ [Rμ1]α with μ1 ≠ μ2
such that

0< dθ μ1, μ2( ≤φ dθ μ0, μ1( ( <φ rdθ μ0, μ1( ( . (56)

As [Rμ2]α is a nonempty closed subset of U, therefore,
we assume μ2 ∉ [Rμ2]α, so dθ(μ2, [Rμ2]α)> 0. From the
definition of Hausdorff metric, equation (49), and φ ∈ Ψθ,
we have
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0< dθ μ2, Rμ2 α( ≤Hθ Rμ1 α, Rμ2 α( 

≤φ M dθ μ1, μ2( ( ( 

� φ max dθ μ1, μ2( , dθ μ1, Rμ1 α( , dθ μ2, Rμ2 α( ,(

dθ μ1, Rμ2 α(  + dθ μ2, Rμ1 α( 

2θ μ1, Rμ2 α( 


≤φ max dθ μ1, μ2( , dθ μ1, Rμ1 α( , dθ μ2, Rμ2 α( ,(

θ μ1, Rμ2 α(  dθ μ1, μ2(  + dθ μ2, Rμ2 α( (  + dθ μ2, Rμ1 α( 

2θ μ1, R2 α( 


≤φ max dθ μ1, μ2( , dθ μ1, μ2( , dθ μ2, Rμ2 α( ,
dθ μ1, μ2(  + dθ μ2, Rμ2 α(  + dθ μ2, μ2( 

2
  ,

� φ max dθ μ1, μ2( , dθ μ1, μ2( , dθ μ2, Rμ2 α( ,
dθ μ1, μ2(  + dθ μ2, Rμ2 α( 

2
  

� φ max dθ μ1, μ2( , dθ μ2, Rμ2 α(  ( .

(57)

If max dθ(μ1, μ2), dθ(μ2, [Rμ2]α)  � dθ(μ2, [Rμ2]α),
then we have

0<dθ μ2, Rμ2 α( ≤φ dθ μ2, Rμ2 α( ( < dθ μ2, Rμ2 α( ,

(58)

which is a contradiction. 'us,
max dθ(μ1, μ2), dθ(μ2, [Rμ2]α)  � dθ(μ1, μ2). As φ is in-
creasing, we have

0< dθ μ2, Rμ2 α( ≤φ dθ μ1, μ2( ( <φ rdθ μ1, μ2( ( ,

(59)

where r> 1 is a real number. By induction, we can construct
a sequence μn 

∞
n�0 in μ such that μn ∉ [Rμn]α,

μn+1 ∈ [Rμn]α, and

0<dθ μn, Rμn α( ≤Hθ Rμn−1 α, Rμn α( 

≤φ dθ μn−1, μn( ( 

<φn
rdθ μ0, μ1( ( ,

(60)

for all n ∈ N. By applying the same procedure as 'eorem 8,
we prove that μ is an α-fuzzy fixed point of R. □

Remark 5. If we put M(μ, ]) � dθ(μ, ]) in'eorem 9, we get
'eorem 8. Hence, 'eorem 9 is an extension of 'eorem 8.

Example 3. Let U � 0, 1, 2{ }. Define dθ: U × U⟶ [0,∞)

by

dθ(μ, ]) �

0, if μ � ];

1
6
, if μ≠ ], μ, ] ∈ 0, 1{ };

1
4
, if μ≠ ], μ, ] ∈ 0, 2{ };

1, if μ≠ ], μ, ] ∈ 1, 2{ }.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

Hence, (U, dθ) is a complete extended b-metric space,
where θ: U × U⟶ [1,∞) is defined by
θ(μ, ]) � μ + ] + 1. Define R: U⟶ F(U) by

(R0)(t) � (R1)(t) �

1
4
, if t � 0;

0, if t � 1, 2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(R2)(t) �

0, if t � 0, 2;

1
4
, if t � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(62)

Define α: U⟶ (0, 1] by α(μ) � (1/2), for all μ ∈ U.
Clearly, we can see that, for all μ ∈ U,

[Rμ]α �
0{ }, if μ � 0, 1;

1{ }, if x � 2.
 (63)
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Now, for all μ, ] ∈ U, we get Hθ([R0](1/2), [R1](1/2)) �

Hθ(0, 0) � 0 and Hθ([R0](1/2), [R2](1/2)) � Hθ(0, 1) �

(1/6) � Hθ([R1](1/2), [R2](1/2)).

Also since for all μ, ] ∈ U

M(μ, ]) � max dθ(μ, ]), dθ μ, [Rμ]α( , dθ ], [R]]α( ,
dθ μ, [R]]α(  + dθ ], [Rμ]α( 

2θ μ, [R]]α( 
 . (64)

For μ � 0 any ] � 1, we have

M(0, 1) � max dθ(0, 1), dθ 0, [R0](1/2) , dθ 1, [R1](1/2) ,
dθ 0, [R1](1/2)  + dθ 1, [R0](1/2) 

2θ 0, [R1](1/2) 

⎧⎨

⎩

⎫⎬

⎭,

M(0, 1) � max
1
6
, 0,

1
6
,
0 +(1/6)

2
 .

(65)

'is implies that M(0, 1) � (1/6). Similarly,
M(0, 2) � M(1, 2) � 1. Define φ: [0,∞)⟶ [0,∞) by
φ(t) � (1/2)t for all t> 0. Hence, for all μ, ] ∈ U, we have

Hθ [R0](1/2), [R1](1/2)  � 0<
1
2

(M(0, 1)),

Hθ [R0](1/2), [R2](1/2)  � Hθ(0, 1) �
1
6
<
1
2

(M(0, 2)),

Hθ [R1](1/2), [R2](1/2)  � Hθ(0, 1) �
1
6
<
1
2

(M(1, 2)).

(66)

Hence, all the conditions of 'eorem 9 hold, and
therefore, there exists 0 ∈ U such that 0 ∈ [R0](1/2) is an
α-fuzzy fixed point of R.

Next, we will show that, by utilizing Corollary 3, we can
prove fixed point results for multivalued mappings.

Corollary 4. Let (U, dθ) be a complete extended b-metric
space with θ: U × U⟶ [1,∞). Let I: U⟶ CLD(U) be
a multivalued mapping such that

Hθ(Iμ,I])≤ k dθ(μ, ])( , (67)

for all μ, ] ∈ U, where k ∈ (0, 1). Assume k< (1/r), where
r≥ 1 is a real constant. Fen, I has a fixed point.

Proof. Let α: U⟶ (0, 1] be any arbitrary mapping and
define R: U⟶ F(U) by

(Rμ)(t) �
α, if t ∈ Iμ;

0, if t≠Iμ.
 (68)

Hence, we obtain

[Rμ]α � t: (Rμ)t≥ α  � Iμ. (69)

'us, condition (37) becomes (49). 'erefore, Corollary
3 can be applied to get an α-fuzzy fixed point
μ ∈ [Rμ]α � Iμ, where μ ∈ U. Hence, the multivalued
mapping I has a fixed point. □
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(e role of multipolar uncertain statistics cannot be unheeded while confronting daily life problems on well-founded basis. Fusion
(aggregation) of a number of input values in multipolar form into a sole multipolar output value is an essential tool not merely of
physics or mathematics but also of widely held problems of economics, commerce and trade, engineering, social sciences,
decision-making problems, life sciences, and many more. (e problem of aggregation is very wide-ranging and fascinating, in
general. We use, in this article, Pythagorean fuzzy numbers (PFNs) in multipolar form to contrive imprecise information. We
introduce Pythagorean m-polar fuzzy weighted averaging (PmFWA), Pythagorean m-polar fuzzy weighted geometric (PmFWG),
symmetric Pythagorean m-polar fuzzy weighted averaging (SPmFWA), and symmetric Pythagorean m-polar fuzzy weighted
geometric (SPmFWG) operators for aggregating uncertain data. Finally, we present a practical example to illustrate the application
of the proposed operators and to demonstrate its practicality and effectiveness towards investment strategic decision making.

1. Introduction and Literature Review

(e process of MCGDM focuses upon assisting the choice
makers in evaluating the most appropriate choice amongst a
finite number of options according to some criteria in such a
manner that inclination of any member from the group
towards a particular choice is diffused. Such knotty problems
occur frequently in daily life situations. Due to the presence
of uncertain, imprecise, and ever changing information, the
decision makers face problems in reaching some unanimous
decision. To address the issue of uncertainty, Zadeh [1]
founded fuzzy set (FS) theory by annexing membership map
to each element of the traditional set. (e so-called

membership function yields information about level of as-
sociation of some particular element with the underlying set.

Soft set (SS), initiated by Molodtsov [2], is yet another
model to handle imprecisions available in data. Zhang [3]
suggested bipolar fuzzy sets as a generality of FSs. Lee [4]
proposed bipolar-valued fuzzy sets. Ensuing the realization
of Zhang and Lee, Chen et al. [5] inaugurated m-polar fuzzy
sets as an extension of bipolar fuzzy sets.

After the actuation of FSs, the researchers around the
globe initiated working on its further expansions in different
directions. Atanassov [6] supplemented FSs by including
anti-membership map and denominated the resulting family
as intuitionistic fuzzy set (IFS). According to Atanassov, the
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mappings used in an IFS drag members of underlying
universe to [0, 1] with the additional restriction that their
aggregate should also fall in the same interval.

Yager [7] initiated the concept of ordered weighted
averaging aggregation operators and information aggrega-
tion. Yager [8, 9] adjusted the curtailment imposed on
parameters in IFSs so that the sum total of their squared
values should lie in [0, 1] and acknowledged the evolved
structure as Pythagorean fuzzy set (PFS). Yager [10] further
acquainted the notion of q-ROFS as an enlargement of PFS.
A short time ago, Pythagorean m-polar fuzzy sets with their
practical implementations have been unveiled by Naeem
et al. [11, 12]. Well along, Riaz et al. [13] extended the notion
of soft sets towards Pythagorean m-polar fuzzy soft sets and
prooffered some fascinating utilizations of this model. Riaz
et al. [14] unveiled Pythagorean fuzzy multisets with their
applications.

Peng and Yang [15, 16] proposed some properties of
PFSs and interval-valued Pythagorean fuzzy aggregation
operators. Peng and Yuan [17] studied fundamental prop-
erties of PF aggregation operators. Selvachandran and Peng
[18] presented a new approach for the supplier selection
problem based on the modified TOPSIS method under
vague parameterized vague soft information. Peng and
Selvachandran [19] proposed state of the art and future
directions for Pythagorean fuzzy set. Peng [20] introduced a
new similarity measure and distance measure for Pythag-
orean fuzzy set. Feng et al. [21] discussed generalized
intuitionistic fuzzy soft sets with their practical usage. Feng
et al. [22] proposed Minkowski weighted score functions of
intuitionistic fuzzy values and developed an algorithm for
solving decision-making problems.

Aggregation operators are used to fuse a given infor-
mation as a single resultant from the same structure. Diverse
sorts of operators employed on different expansions of FSs
along with their practical usage are studied by different
researchers. Jose and Kuriaskose [23] studied aggregation
operators, score function, and accuracy function for mul-
ticriteria decision making in intuitionistic fuzzy context.
Kaur and Garg [24] studied cubic intuitionistic fuzzy ag-
gregation operators. Garg and Arora [25] presented t-norm-
based generalized intuitionistic fuzzy soft power aggregation
operator accompanied by its practical implementation. Garg
and Arora [26] proposed scaled prioritized intuitionistic
fuzzy soft interaction averaging operator. Garg [27] sug-
gested neutrality operations-based Pythagorean fuzzy ag-
gregation operators. Garg and Kaur [28] introduced a robust
correlation coefficient for probabilistic dual hesitant fuzzy
sets and its applications. Karaaslan and Hunu [29] intro-
duced type-2 single-valued neutrosophic sets and their
applications in multicriteria group decision making based
on the TOPSIS method.

Liu and Wang [30] discussed some q-rung orthopair
fuzzy aggregation operator. Liu et al. [31] extended prioritized
weighted aggregation operators. Liu et al. [32] explored the
ranking range-based approach to MADM under incomplete
context. Li et al. [33] established decision making based on
interval-valued complex single-valued neutrosophic hesitant
fuzzy generalized hybrid weighted averaging operators. Liu

et al. [34] proposed group decision making using complex
q-rung orthopair fuzzy Bonferroni mean. Liu and Wang [35]
introduced the multiattribute group decision-making method
based on intuitionistic fuzzy Einstein interactive operations.
Liu et al. [36] introduced the concept of hesitant intuitionistic
fuzzy linguistic aggregation operators and their applications
to multiattribute decision making.

Akram et al. [37] studied Pythagorean Dombi fuzzy
aggregation operators. Akram et al. [38, 39] introduced
decision-making analysis based on q-rung picture fuzzy
graph structures and complex picture fuzzy Hamacher ag-
gregation operators.

Lu et al. [40] coined hesitant Pythagorean fuzzy
Hamacher aggregation operators. Ma and Xu [41] launched
symmetric Pythagorean fuzzy weighted geometric/averaging
operators. Akram and Shahzadi [42] established q-rung
orthopair fuzzy Yager aggregation operators.

Zararsiz and Sengönül [43] introduced certain concepts
on the gravity of center of sequence of fuzzy numbers.
Zararsiz [44] proposed new similarity measures of sequence
of fuzzy numbers and fuzzy risk analysis. Riaz and Hashmi
[45] introduced a novel approach to censuses process by
using Pythagorean m-polar fuzzy Dombi’s aggregation
operators. Riaz et al. [46] introduced a robust q-rung
orthopair fuzzy Einstein prioritized aggregation operators
with application towards MCGDM. Riaz and Tehrim
[47, 48] introduced the concept of cubic bipolar fuzzy set
with application to multicriteria group decision making
using geometric aggregation operators. (ey proposed a
robust extension of the VIKORmethod for bipolar fuzzy sets
using connection numbers of SPA theory-based metric
spaces.

Wei and Lu [49] unveiled PF power aggregation oper-
ators. Wei [50] coined PF interaction aggregation operators.
Faizi et al. [51] developed Einstein aggregation operational
laws for intuitionistic 2-tuple linguistic set and further de-
veloped weighted averaging and weighted geometric oper-
ators. Xu [52] studied intuitionistic fuzzy aggregation
operators. Xu and Cai [53] explored IF information
aggregation.

(e motive behind this article is to study (symmetric)
Pythagorean fuzzy weighted averaging and geometric ag-
gregation operators encompassing multipolar information
and their characteristics. Contribution of multipolar data
cannot be overlooked in coping with daily life problems.
Pythagorean m-polar fuzzy sets have a range of applications
in diverse real-life circumstances, and these models boost the
management of uncertainty and vagueness by using mul-
tipolarity in the membership and nonmembership grades in
a broader way. (e practical characteristic of PmFSs is that
the decisionmakers (DMs) can be asked to assignmultipolar
ordered pairs of membership and nonmembership grades
with the condition that their sum of squares may not exceed
unity. Before reaching a solid decision, we think time and
again about the pros and cons of the problem which is
indeed a process of manipulating multipolar information.

(e leftover part of this article is organized as follows.
Section 2 gives access to preliminary notions mainly in-
cluding operational laws of Pythagorean m-polar fuzzy

2 Journal of Mathematics



RE
TR
AC
TE
D

numbers. (e next segment presents Pythagorean m-polar
fuzzy weighted averaging operator in company with its
desirable qualities, whereas Section 4 deals with the corre-
sponding geometric operator. Section 5 deals with sym-
metric Pythagorean m-polar fuzzy weighted averaging
operator as well as its worthwhile characteristics, whereas
Section 6 is dedicated to deal with the corresponding geo-
metric operator.(e four suggested operators are applied on
MCGDM problem of capital investment analysis accom-
panied by an algorithm in Section 7. Comparative analysis
and superiority of the proposed work is also rendered in the
same segment. We conclude the paper in Section 8 with
some further future directions.

2. Preliminaries

We recall some fundamentals of Pythagorean m-polar fuzzy
sets and their operational laws accompanied by operational
laws of corresponding numbers in this segment.

Definition 1 (see [11]). A Pythagorean m-polar fuzzy set
(PmFS) O is characterized by two sets of mappings Υ(i)

O

(denoting affiliation degrees) and o�
(i)
O (meant for dissocia-

tion grades) dropping members of X to [0, 1] constrained to
obey 0≤ (Υ(i)

O (g))2 + (o�
(i)
O (g))2 ≤ 1, for all i. (e quantity

ε(i)
O (g) �

����������������������

1 − (o�
(i)
O (g))2 − (Υ(i)

O (g))2


is known as hesita-
tion margin or indeterminacy degree of g ∈ X to O.
ε(i)

O : X↦[0, 1] are mappings expressing lack of knowledge

regarding g ∈ O or g ∉ O. (e pair (Υ(i), o
(i)

�
) is commonly

acknowledged as Pythagorean fuzzy number (PFN).
A PmFS is usually expressed as

B �
g

Υ(i)
O (g), o

(i)
O (g) 

⎧⎨

⎩

⎫⎬

⎭

m

i�1

. (1)

If |X| � r, then tabulatory array of O is as in Table 1.
(e corresponding matrix format is

O �

Υ(1)
O g1( , o�

(1)
O g1(   Υ(2)

O g1( , o�
(2)
O g1(   · · · Υ(m)

O g1( , o�
(m)
O g1(  

Υ(1)
O g2( , o�

(1)
O g2(   Υ(2)

O g2( , o�
(2)
O g2(   · · · Υ(m)

O g2( , o�
(m)
O g2(  

⋮ ⋮ ⋱ ⋮

Υ(1)
O gr( , o�

(1)
O gr(   Υ(2)

O gr( , o�
(2)
O gr(   · · · Υ(m)

O gr( , o�
(m)
O gr(  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

(is matrix of size r × m is titled as PmF matrix.

2.1. Operational Laws of Pythagorean m-Polar Fuzzy Sets
(PmFSs)

Definition 2 (see [11]). Let O1 � 〈Υ(i)
O1

(c), o�
(i)
O1

(c)〉 and O2 �

〈Υ(i)
O2

(c), o�
(i)
O2

(c)〉 be PmFSs on X and λ be a fuzzy number.
(en,

(1) (O1)
c � 〈o�

(i)
O1

(c),Υ(i)
O1

(c)〉.

(2) O1 ⊑O2 on condition that Υ(i)
O1

(℘)≤Υ(i)
O2

(℘) and
o�

(i)
O2

(℘)≤ o�
(i)
O1

(℘).

(3) O1 ⊔O2 � 〈max Υ(i)
O1

(℘), Υ(i)
O2

(℘)}, min o�
(i)
O1

(℘), o�
(i)
O2



(℘)}〉.

(4) O1 ⊓O2 � 〈min Υ(i)
O1

(℘), Υ(i)
O2

(℘)}, max o�
(i)
O1

(℘), o�
(i)
O2



(℘)}〉.

(5) O1 ⊕O2 � 〈
��������������������������������������
(Υ(i)

O1
(℘))2 + (Υ(i)

O2
(℘))2 − (Υ(i)

O1
(℘))2(Υ(i)

O2
(℘))2


,

o�
(i)
O1

(℘) o�
(i)
O2

(℘)〉.

(6) O1 ⊗O2 � 〈Υ(i)
O1

(℘)Υ(i)
O2

(℘),
�������������������������������������
(o�

(i)
O1

(℘))2 + (o�
(i)
O2

(℘))2 − (o�
(i)
O1

(℘))2(o�
(i)
O2

(℘))2


〉.

(7) λO1 � 〈
�����������������
1 − (1 − (Υ(i)

O1
(℘)2)λ


, (o�

(i)
O1

(℘))λ〉.

(8) Oλ
1 � 〈(Υ(i)

O1
(℘))λ,

����������������
1 − (1 − (o�

(i)
O1

(℘)2)λ


〉.

2.2. Operational Laws of Pythagorean Oλ
1 � 〈(Υ(i)

O1
(℘))λ,����������������

1 − (1 − (o�
(i)
O1

(℘)2)λ


〉-Polar Fuzzy Numbers (PmFNs)

Definition 3. Suppose O1 � 〈Υ(i)
1 , o�

(i)
1 〉 

m

i�1 and
O2 � 〈Υ(i)

2 , o�
(i)
2 〉 

m

i�1 are two PmFNs and λ is a fuzzy
number. (en,

(1) (O1)
c � 〈o�

(i)
1 ,Υ(i)

1 〉 
m

i�1.
(2) O1⊔O2 � 〈max Υ(i)

1 ,Υ(i)
2 , min o�

(i)
1 , o�

(i)
2 〉 

m

i�1.

(3) O1⊓O2 � 〈min Υ(i)
1 ,Υ(i)

2 , max o�
(i)
1 , o�

(i)
2 〉 

m

i�1.

(4) O1⊕O2 � 〈

��������������������������

(Υ(i)
1 )2 + (Υ(i)

2 )2 − (Υ(i)
1 )2(Υ(i)

2 )2


, o�
(i)
1

o�
(i)
2 〉}m

i�1.
(5) O1 ⊗O2 � 〈Υ(i)

1 Υ
(i)
2 ,

�������������������������

(o�
(i)
1 )2 + (o�

(i)
2 )2 − (o�

(i)
1 )2(o�

(i)
2 )2



〉}m
i�1.

(6) O1⊞O2 � 〈(Υ(i)
1 Υ

(i)
2 /

�������������������������������

[1 − (Υ(i)
1 )2][1 − (Υ(i)

2 )2] + [Υ(i)
1 Υ

(i)
2 ]2



), (o�
(i)
1 o�

(i)
2 /

����������

[1 − (o�
(i)
1 )2]



[1 − (o�
(i)
2 )2] + [o�

(i)
1 o�

(i)
2 ]2 )〉}m

i�1.
(7) O1∔O2 � 〈

�����������������������������������������������������������

(1 − [1 − (Υ(i)
1 )2][1 − (Υ(i)

2 )2]/2 − [1 − (Υ(i)
1 )2][1 − (Υ(i)

2 )2] − [Υ(i)
1 Υ

(i)
2 ]2)



,
���������������������������������������������������������

(1 − [1 − (o�
(i)
1 )2][1 − (o�

(i)
2 )2]/2 − [1 − (o�

(i)
1 )2][1 − (o�

(i)
2 )2] − [o�

(i)
1 o�

(i)
2 ]2)



〉}
m
i�1.

(8) λO1 � 〈

��������������

1 − (1 − (Υ(i)
1 )2)λ



, (o�
(i)
1 )λ〉 

m

i�1
.

(9) λ⊡O1 � 〈((Υ(i)
1 )λ/

�������������������

[1 − (Υ(i)
1 )2]λ + [Υ(i)

1 ]2λ


),

((o�
(i)
1 )λ/

�������������������

[1 − (o�
(i)
1 )2]λ + [o�

(i)
1 ]2λ



)〉}m
i�1.

Journal of Mathematics 3



RE
TR
AC
TE
D

(10) λ · O1 �

〈

��������������������������������������

(1 − [1 − (Υ(i)
1 )2]λ/2 − [1 − (Υ(i)

1 )2]λ − [Υ(i)
1 ]2λ)



, ��������������������������������������

(1 − [1 − (o�
(i)
1 )2]λ/2 − [1 − (o�

(i)
1 )2]λ − [o�

(i)
1 ]2λ)



〉}m
i�1.

(11) Oλ
1 � 〈(Υ(i)

1 )λ,

��������������

1 − (1 − (o�
(i)
1 )2)λ



〉 
m

i�1
.

Definition 4 (see [12]). (e score function of a PmFN O �

〈Υ(i), o
(i)

�
〉 

m

i�1
is specified by

s(O) �
1
m



m

i�1
Υ(i)

O 
2

− o�
(i)
O 

2
 . (3)

(e value of this score function always falls in [− 1, 1].

Definition 5 (see [12]). (e accuracy function of a PmFN

O � 〈Υ(i), o
(i)

�
〉 

m

i�1
is determined by

a(O) �
1
m



m

i�1
Υ(i)

O 
2

+ o�
(i)
O 

2
 . (4)

(e value of this accuracy function always falls in [0, 1].
We get advantage of score and accuracy functions of two

PmFNs O1 and O2 in deciding ordering of O1 and O2 as
described in Definition 6.

Definition 6 (see [12]). Let O1 � 〈Υ(i)
1 , o�

(i)
1 〉 

m

i�1 and O2 �

〈Υ(i)
2 , o�

(i)
2 〉 

m

i�1 be two PmFNs.

(1) If s(O1)< s(O2), then O1≺O2.
(2) If, however, s(O1) � s(O2) and
(i) a(O1)< a(O2), then O1≺O2.
(ii) a(O1) � a(O2), then O1 ∼ O2.

Note that O1≺O2 means O1 precedes O2, and O1 ∼ O2
means O1 and O2 are identical (same).

3. Pythagorean m-Polar Fuzzy Weighted
Averaging Operator

We dedicate this segment for inauguration of the notion of
Pythagorean m-polar fuzzy weighted averaging operator for
Pythagorean m-polar fuzzy numbers along with some of its
prime characteristics.

Definition 7. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1 (k � 1, 2, . . . , n) be
an assemblage of PmFNs. Define PmFWA: Tn⟶ T given
by

PmFWA O1, O2, . . . , On(  � ⊕nk�1ZkOk

� Z1O1⊕Z2O2⊕ · · ·⊕ZnOn,
(5)

where Tn is the collection of all PmFNs and Zk’s are fuzzy
weights of (O1, O2, . . . , On), such that addition of all Zk’s
results in unity. (en, PmFWA is called the Pythagorean
m-polar fuzzy weighted averaging operator.

If weight vector W � ((1/n), (1/n), . . . , (1/n))t, then
PmFWA operator reduces to Pythagorean m-polar fuzzy
averaging (PmFA) operator of dimension n and is given as

PmFA O1, O2, . . . , On(  �
1
n
⊕nk�1Ok

�
1
n

O1⊕O2⊕ · · ·⊕On( .

(6)

As maintained by operational laws of PmFNs given in
Definition 3, the following theorem assists in computing
PmFWA for any PmFNs.

Theorem 1. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) be an
assemblage of PmFNs; then,

PmFWA O1, O2, . . . , On(  �

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




, 
n

k�1
o�

(i)
k 

Zk
 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

. (7)

Table 1: Tabulatory array of O.

O

g1 (Υ(1)

O

(g1), o
(1)

O

(g1)) (Υ(2)

O

(g1), o
(2)

O

(g1)) · · · (Υ(m)

O

(g1), o
(m)

O

(g1))

g2 (Υ(1)

O

(g2), o
(1)

O

(g2)) (Υ(2)

O

(g2), o
(2)

O

(g2)) · · · (Υ(m)

O

(g2), o
(m)

O

(g2))

⋮ ⋮ ⋮ ⋱ ⋮

gr (Υ(1)

O

(gr), o
(1)

O

(gr)) (Υ(2)

O

(gr), o
(2)

O

(gr)) · · · (Υ(m)

O

(gr), o
(m)

O

(gr))
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Proof. We establish the result by means of induction.
By definition,

Z1O1 �

���������������

1 − 1 − Υ(i)
1 

2
 

Z1



, o�
(i)
1 

Z1
 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

m

i�1

,

Z2O2 �

���������������

1 − 1 − Υ(i)
2 

2
 

Z2



, o�
(i)
2 

Z2
 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

m

i�1

,

(8)

so that

PmFWA O1, O2( & � Z1O1⊕Z2O2 & �

���������������

1 − 1 − Υ(i)
1 

2
 

Z1



, o�
(i)
1 

Z1
 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

m

i�1

⊕

���������������

1 − 1 − Υ(i)
2 

2
 

Z2



, o�
(i)
2 

Z2
 

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

m

i�1

.

(9)

(e x-component of the resultant is

����������������������������������������������������������������������������������
���������������

1 − 1 − Υ(i)
1 

2
 

Z1



⎛⎝ ⎞⎠

2

+

���������������

1 − 1 − Υ(i)
2 

2
 

Z2



⎛⎝ ⎞⎠

2

−

���������������

1 − 1 − Υ(i)
1 

2
 

Z1

 ���������������

1 − 1 − Υ(i)
2 

2
 

Z2



⎛⎝ ⎞⎠

2



�

��������������������������������������������������������������������

1 − 1 − Υ(i)
1 

2
 

Z1
+ 1 − 1 − Υ(i)

2 
2

 
Z2

− 1 − 1 − Υ(i)
1 

2
 

Z1
  1 − 1 − Υ(i)

2 
2

 
Z2

 



� 1 − 1 − Υ(i)
1 

2
 

Z1
+ 1 − 1 − Υ(i)

2 
2

 
Z2

− 1 + 1 − Υ(i)
1 

2
 

Z1

 + 1 − Υ(i)
2 

2
 

Z2

 − 1 − Υ(i)
1 

2
 

Z1
1 − Υ(i)

2 
2

 
Z2

 

(1/2)

�

���������������������������

1 − 1 − Υ(i)
1 

2
 

Z1
1 − Υ(i)

2 
2

 
Z2



�

������������������

1 − 
2

k�1
1 − Υ(i)

k 
2

 
Zk




,

(10)

and the y-component is (o�
(i)
1 )Z1(o�

(i)
2 )Z2 . (us,

PmFWA O1, O2(  �

������������������

1 − 
2

k�1
1 − Υ(i)

k 
2

 
Zk




, 
2

k�1
o�

(i)
k 

Zk
 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

. (11)
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Now assuming that the result is valid for n PmFNs, we
exhibit its validity for n + 1 PmFNs. By definition,

PmFWA O1, O2, . . . , On+1(  � ⊕nk�1ZkOk⊕Zn+1On+1

� 〈

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




, 
n

k�1
o�

(i)
k 

Zk〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

⊕ 〈

�����������������

1 − 1 − Υ(i)
n+1 

2
 

Zn+1



, o�
(i)
n+1 

Zn+1〉
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

m

i�1

.

(12)

(e x-component of the resultant would be

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

+

�����������������

1 − 1 − Υ(i)
n+1 

2
 

Zn+1



⎛⎝ ⎞⎠

2

−

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2 �����������������

1 − 1 − Υ(i)
n+1 

2
 

Zn+1



⎛⎝ ⎞⎠

2⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

1/2

� 1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk

⎛⎝ ⎞⎠ + 1 − 1 − Υ(i)
n+1 

2
 

Zn+1

  − 1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk

⎛⎝ ⎞⎠ 1 − 1 − Υ(i)
n+1 

2
 

Zn+1

 
⎧⎨

⎩

⎫⎬

⎭

1/2

� 1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk

+ 1 − 1 − Υ(i)
n+1 

2
 

Zn+1
− 1 + 

n

k�1
1 − Υ(i)

k 
2

 
Zk

+ 1 − Υ(i)
n+1 

2
 

Zn+1
− 

n+1

k�1
1 − Υ(i)

k 
2

 
Zk⎧⎨

⎩

⎫⎬

⎭

1/2

�

������������������

1 − 
n+1

k�1
1 − Υ(i)

k 
2

 
Zk




,

(13)

and the y-component is



n

k�1
o
(i)

�
 

Zk

× o
(i)

�
 

Zn+1

� 
n+1

k�1
o
(i)

�
 

Zk

. (14)

(is concludes the proof. □

Theorem 2. If Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) is an
aggregate of PmFNs, then

PmFWA O1, O2, . . . , On( 

� 〈

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




, 
n

k�1
o�

(i)
k 

Zk〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

(15)

is also a PmFN.

Proof. Since Υ(i)
k , o�

(i)
k ∈ [0, 1], for each k and i,

0≤ Υ(i)
k 

2
≤ 1

⟹ 0≤ 1 − Υ(i)
k 

2
≤ 1

⟹ 0≤ 1 − Υ(i)
k 

2
 

Zk

≤ 1

⟹ 0≤
n

k�1
1 − Υ(i)

k 
2

 
Zk

≤ 1

⟹ 0≤ 1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk

≤ 1

⟹ 0≤

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




≤ 1,

0≤ o�
(i)
k 

Zk ≤ 1

⟹ 0≤
n

k�1
o�

(i)
k 

Zk ≤ 1.

(16)

(us,
��������������������

1 − 
n
k�1 (1 − (Υ(i)

k )2)Zk



, 
n
k�1 (o�

(i)
k )Zk ∈ [0, 1].

Now,
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Υ(i)
k 

2
+ o�

(i)
k 

2
≤ 1

⇒ o�
(i)
k 

2
≤ 1 − Υ(i)

k 
2

⇒ o�
(i)
k 

2
 

Zk

≤ 1 − Υ(i)
k 

2
 

Zk

⇒
n

k�1
o�

(i)
k 

2
 

Zk

≤
n

k�1
1 − Υ(i)

k 
2

 
Zk

⇒

n

k�1
o�

(i)
k 

Zk
 

2
≤

n

k�1
1 − Υ(i)

k 
2

 
Zk

,

(17)

so that

0≤

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

+ 
n

k�1
o�

(i)
k 

Zk⎛⎝ ⎞⎠

2

� 1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk

+ 
n

k�1
o�

(i)
k 

Zk⎛⎝ ⎞⎠

2

≤ 1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk

+ 
n

k�1
1 − Υ(i)

k 
2

 
Zk

� 1,

(18)

i.e., 0≤ (

��������������������

1 − 
n
k�1 (1 − (Υ(i)

k )2)Zk



)2 + (
n
k�1

(o�
(i)
k )Zk )2 ≤ 1. □

Example 1. Let

O1 � 〈0.62, 0.39〉, 〈0.55, 0.68〉, 〈0.37, 0.26〉, 〈0.46, 0.61〉{ },

O2 � 〈0.41, 0.37〉, 〈0.19, 0.73〉, 〈0.10, 0.05〉, 〈0.37, 0.46〉{ },

O3 � 〈0.47, 0.68〉, 〈0.39, 0.40〉, 〈0.84, 0.35〉, 〈0.15, 0.92〉{ },

(19)

be three P4FNs with corresponding weights Z1 � 0.4 and
Z2 � Z3 � 0.3. We aggregate the three PmFNs utilizing the
result rendered in (eorem 1 as below:

P4FWA O1, O2, O3(  � 〈

������������������

1 − 
3

k�1
1 − Υ(i)

k 
2

 
Zk




, 
3

k�1
o�

(i)
k 

Zk〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

4

i�1

� 〈0.526, 0.454〉, 〈0.430, 0.592〉, 〈0.590, 0.173〉, 〈0.369, 0.634〉{ }.

(20)

Theorem 3. Assume that Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1(k � 1, . . . , n)

is an assembly of PmFNs. !en,

(1) (Idempotency) if Ok � O � 〈Υ(i), o
(i)

�
〉

m

i�1
(k � 1, 2,

. . . , n) for all k, then

PmFWA O1, O2, . . . , On(  � O. (21)

(2) (Boundedness) if O− � (min(Υ(i)
k ), max(o�

(i)
k )) and

O+ � (max(Υ(i)
k ), min(o�

(i)
k )), then

O
− ≤PmFWA O1, O2, . . . , On( ≤O

+
. (22)

(3) (Monotonicity) let Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1 and
O∗k � 〈(Υ(i)

k )∗, (o�
(i)
k )∗〉

m

i�1(k � 1, . . . , n) be two sets of
PmFNs such that Υ(i)

k ≥ (Υ(i)
k )∗ and o�

(i)
k ≤ (o�

(i)
k )∗ for

all k and all permissible value of i; then,

PmFWA O1, O2, . . . , On( ≥ PmFWA O
∗
1 , O
∗
2 , . . . , O

∗
n( .

(23)

Proof. For idempotency, consider

PmFWA O1, O2, . . . , On( 

� 〈

������������������

1 − 
n

k�1
1 − Υ(i) 

2
 

Zk




, 
n

k�1
o�

(i)
k 

Zk〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

� 〈

������������������

1 − 
n

k�1
1 − Υ(i) 

2
 

Zk




, 
n

k�1
o
(i)

�
 

Zk

〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

� 〈

�������������������

1 − 1 − Υ(i) 
2

 


n

k�1
Zk



, o
(i)

�
 


n

k�1
Zk

〉
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

m

i�1

� 〈
��������������

1 − 1 − Υ(i) 
2

 



, o
(i)

�
〉 

m

i�1

� 〈Υ(i)
, o

(i)

�
〉 

m

i�1

� O.

(24)

Now, we establish boundedness. For membership grades
of PmFWA(O1, O2, . . . , On), we have
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����������������������

1 − 
n

k�1
1 − min Υ(i)

k 
2

 
Zk




≤

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




≤

����������������������

1 − 
n

k�1
1 − max Υ(i)

k 
2

 
Zk




⇒

����������������������

1 − 1 − min Υ(i)
k 

2
 


n

k�1
Zk



≤

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




≤

�����������������������

1 − 1 − max Υ(i)
k 

2
 


n

k�1
Zk



⇒
�����������������

1 − 1 − min Υ(i)
k 

2
 



≤

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




≤
�����������������

1 − 1 − max Υ(i)
k 

2
 



⇒min Υ(i)
k ≤

������������������

1 − 
n

k�1
1 − Υ(i)

k 
2

 
Zk




≤max Υ(i)
k ,

(25)

and for the nonmembership grades, we have



n

k�1
min o�

(i)
k 

Zk ≤
n

k�1
o�

(i)
k 

Zk ≤
n

k�1
max o�

(i)
k 

Zk

⇒min o�
(i)
k 


n

k�1
Zk ≤

n

k�1
o�

(i)
k 

Zk ≤max o�
(i)
k 


n

k�1
Zk

⇒min o�
(i)
k ≤

n

k�1
o�

(i)
k 

Zk ≤max o�
(i)
k .

(26)

Now, we prove the monotonicity. Since Υ(i)
k ≥ (Υ(i)

k )∗

and o
(i)
k ≤ (o

(i)
k )∗ for all k and all permissible value of i,

1 − Υ(i)
k ≤ 1 − Υ(i)

k 
∗

⇒ 1 − Υ(i)
k 

Zk ≤ 1 − Υ(i)
k 
∗

 
Zk

⇒
n

k�1
1 − Υ(i)

k 
Zk ≤

n

k�1
1 − Υ(i)

k 
∗

 
Zk

⇒1 − 
n

k�1
1 − Υ(i)

k 
Zk ≥ 1 − 

n

k�1
1 − Υ(i)

k 
∗

 
Zk

⇒

���������������

1 − 
n

k�1
1 − Υ(i)

k 
Zk




≥

������������������

1 − 
n

k�1
1 − Υ(i)

k 
∗

 
Zk




,

o�
(i)
k 

Zk ≤ o�
(i)
k 
∗

 
Zk

⇒

n

k�1
o�

(i)
k 

Zk


n

k�1
o�

(i)
k 
∗

 
Zk

.

(27)

(erefore,

���������������

1 − 
n

k�1
1 − Υ(i)

k 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

− 
n

k�1
o�

(i)
k 

Zk⎛⎝ ⎞⎠

2

≥

������������������

1 − 
n

k�1
1 − Υ(i)

k 
∗

 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

− 
n

k�1
o�

(i)
k 
∗

 
Zk⎛⎝ ⎞⎠

2

.

(28)

Assume that O � PmFWA(O1, O2, . . . , On) and
O∗ � PmFWA(O∗1 , O∗2 , . . . , O∗n ); then, s(O)≥ s(O∗).

(i) If s(O)> s(O∗), then O>O∗, i.e.,
PmFWA(O1, O2, . . . , On)> PmFWA(O∗1 , O∗2 ,

. . . , O∗n ).
(ii) If s(O) � s(O∗), then

���������������

1 − 
n

k�1
1 − Υ(i)

k 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

− 
n

k�1
o�

(i)
k 

Zk⎛⎝ ⎞⎠

2

�

������������������

1 − 
n

k�1
1 − Υ(i)

k 
∗

 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

− 
n

k�1
o�

(i)
k 
∗

 
Zk⎛⎝ ⎞⎠

2

,

(29)

along with the given conditions Υ(i)
k ≥ (Υ(i)

k )∗ and
o�

(i)
k ≤ (o�

(i)
k )∗ which yield

���������������

1 − 
n

k�1
1 − Υ(i)

k 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

�

������������������

1 − 
n

k�1
1 − Υ(i)

k 
∗

 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2



n

k�1
o�

(i)
k 

Zk⎛⎝ ⎞⎠

2

� 
n

k�1
o�

(i)
k 
∗

 
Zk⎛⎝ ⎞⎠

2

,

(30)
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so that

a(O) �
1
m

���������������

1 − 
n

k�1
1 − Υ(i)

k 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

+ 
n

k�1
o�

(i)
k 

Zk⎛⎝ ⎞⎠

2⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

�
1
m

������������������

1 − 
n

k�1
1 − Υ(i)

k 
∗

 
Zk




⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

2

+ 
n

k�1
o�

(i)
k 
∗

 
Zk⎛⎝ ⎞⎠

2⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

� a O
∗

( .

(31)

(us, O � O∗, i.e., PmFWA(O1, O2, . . . , On) �

PmFWA(O∗1 , O∗2 , . . . , O∗n ), and hence

PmFWA O1, O2, . . . , On( ≥ PmFWA O
∗
1 , O
∗
2 , . . . , O

∗
n( .

(32)
□

4. Pythagorean m-Polar Fuzzy Weighted
Geometric Operator

In this segment, we present the notion of Pythagorean
m-polar fuzzy weighted geometric operator for Pythagorean
m-polar fuzzy numbers accompanied by some of its prime
characteristics.

Definition 8. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) be an
assemblage of PmFNs. Define PmFWG: Tn⟶ T given by

PmFWG O1, O2, . . . , On(  � ⊗ n
k�1O

Zk

k

� O
Z1
1 ⊗O

Z2
2 ⊗ · · · ⊗O

Zn

n ,
(33)

where Tn is the collection of all PmFNs and Zk’s are fuzzy
weights of (O1, O2, . . . , On), such that their sum equals
unity. PmFWG is called Pythagorean m-polar fuzzy
weighted geometric operator.

If each Zk equals (1/n), then PmFWG operator turns
down to n-dimensional Pythagorean m-polar fuzzy geo-
metric (PmFG) operator and is given as

PmFG O1, O2, . . . , On(  � ⊗ n
k�1Ok( 

(1/n)

� O1 ⊗O2 ⊗ · · · ⊗On( 
(1/n)

.
(34)

In conformity with operational laws of PmFNs given in
Definition 3, the following theorem accommodates in ag-
gregating any finite number of PmFNs.

Theorem 4. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) be an
assemblage of PmFNs; then,

PmFWG O1, O2, . . . , On( 

� 〈
n

k�1
Υ(i)

k 
Zk

,

������������������

1 − 
n

k�1
1 − o�

(i)
k 

2
 

Zk




〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

.

(35)

Proof. (e proof may be furnished on the parallel track as
proof of (eorem 1. □

Theorem 5. If Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) is an
aggregate of PmFNs, then

PmFWG O1, O2, . . . , On( 

� 〈
n

k�1
Υ(i)

k 
Zk

,

������������������

1 − 
n

k�1
1 − o�

(i)
k 

2
 

Zk




〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

m

i�1

(36)

is also a PmFN.

Proof. (e proof may be established in the same manner as
the proof of (eorem 2. □

Example 2. We utilize the input of Example 1. (e P4FWG,
using (eorem 4, is

P4FWG O1, O2, O3(  � 〈
3

k�1
Υ(i)

k 
Zk

,

������������������

1 − 
3

k�1
1 − o�

(i)
k 

2
 

Zk




〉
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

4

i�1

� 〈0.504, 0.506〉, 〈0.361, 0.641〉, 〈0.320, 0.256〉, 〈0.308, 0.748〉{ }.

(37)
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Theorem 6. Assume that Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1(k � 1, . . . , n)

is an assemblage of PmFNs. !en,

(1) (Idempotency) if
Ok � O � 〈Υ(i), o

(i)

�
〉

m

i�1
(k � 1, 2, . . . , n) for all k, then

PmFWG O1, O2, . . . , On(  � O. (38)

(2) (Boundedness) if O− � (min(Υ(i)
k ), max(o�

(i)
k )) and

O+ � (max(Υ(i)
k ), min(o�

(i)
k )), then

O
− ≤PmFWG O1, O2, . . . , On( ≤O

+
. (39)

(3) (Monotonicity) let Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1 and
O∗k � 〈(Υ(i)

k )∗, (o�
(i)
k )∗〉

m

i�1(k � 1, . . . , n) be two sets of
PmFNs such that Υ(i)

k ≥ (Υ(i)
k )∗ and o�

(i)
k ≤ (o�

(i)
k )∗ for

all k and all permissible value of i; then,

PmFWG O1, O2, . . . , On( ≥PmFWG O
∗
1 , O
∗
2 , . . . , O

∗
n( .

(40)

Proof. (e proof may be established in the same fashion as
the proof of (eorem 3. □

5. Symmetric Pythagorean m-Polar Fuzzy
Weighted Averaging Operator

In this portion, we render the notion of symmetric Py-
thagorean m-polar fuzzy weighted averaging operator for
Pythagorean m-polar fuzzy numbers accompanied by some
of its prime characteristics.

Definition 9. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) be an
assemblage of PmFNs. Define SPmFWA: Tn⟶ T given by

SPmFWA O1, O2, . . . , On(  � ∔nk�1 Zk · Ok( 

� Z1 · O1( ∔ Z2 · O2( ∔ · · ·

∔ Zn · On( ,

(41)

where Tn is the collection of all PmFNs and Zk’s are fuzzy
weights of (O1, O2, . . . , On), such that their addition yields
unity. SPmFWA is called symmetric Pythagorean m-polar
fuzzy weighted averaging operator.

If W � (w, w, . . . , w)t � ((1/n), (1/n), . . . , (1/n))t, then
SPmFWA operator shrinks to symmetric Pythagorean
m-polar fuzzy averaging (SPmFA) operator of dimension n

and is given as

SPmFA O1, O2, . . . , On(  �
1
n

· ∔nk�1Ok( 

�
1
n

· O1∔O2∔ · · ·∔On( .

(42)

In keeping with operational laws of PmFNs given in
Definition 3, the forthcoming theorem benefits in aggre-
gating PmFNs.

Theorem 7. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, . . . , n) be a
family of PmFNs; then,

SPmFWA O1, O2, . . . , On( 

� 

���������������������������������

1 − 
n
k�1 1 − Υ(i)

k 
2

 
Zk

2 − 
n
k�1 1 − Υ(i)

k 
2

 
Zk

− 
n
k�1 Υ

(i)
k 

2Zk






,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

���������������������������������

1 − 
n
k�1 1 − o�

(i)
k 

2
 

Zk

2 − 
n
k�1 1 − o�

(i)
k 

2
 

Zk

− 
n
k�1 o�

(i)
k 

2Zk








⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

m

i�1

.

(43)

Proof. (e proof may be furnished by means of
induction. □

Theorem 8. If Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) is an
aggregate of PmFNs, then

SPmFWA O1, O2, . . . , On( 

� 

���������������������������������

1 − 
n
k�1 1 − Υ(i)

k 
2

 
Zk

2 − 
n
k�1 1 − Υ(i)

k 
2

 
Zk

− 
n
k�1 Υ

(i)
k 

2Zk






,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

���������������������������������

1 − 
n
k�1 1 − o�

(i)
k 

2
 

Zk

2 − 
n
k�1 1 − o�

(i)
k 

2
 

Zk

− 
n
k�1 o�

(i)
k 

2Zk








⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

m

i�1

(44)

is also a PmFN.

Proof. Straight forward. □

Example 3. Consider the data of Example 1. (e SP4FWA,
using (eorem 7, is
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SPmFWA O1, O2, O3( 

�

���������������������������������

1 − 
3
k�1 1 − Υ(i)

k 
2

 
Zk

2 − 
3
k�1 1 − Υ(i)

k 
3

 
Zk

− 
3
k�1 Υ

(i)
k 

2Zk






,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

���������������������������������

1 − 
3
k�1 1 − o�

(i)
k 

2
 

Zk

2 − 
3
k�1 1 − o�

(i)
k 

2
 

Zk

− 
3
k�1 o�

(i)
k 

2Zk








⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

4

i�1

� 〈0.520, 0.494〉, 〈0.419, 0.623〉, 〈0.529, 0.252〉,{

0.361, 0.695〉〈 }.

(45)

Theorem 9. Assume that Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1(k � 1, . . . , n)

is a setting of PmFNs. !en,

(1) (Idempotency) if
Ok � O � 〈Υ(i), o

(i)

�
〉

m

i�1
(k � 1, 2, . . . , n) for all k, then

SPmFWA O1, O2, . . . , On(  � O. (46)

(2) (Boundedness) if O− � (min(Υ(i)
k ), max(o�

(i)
k )) and

O+ � (max(Υ(i)
k ), min(o�

(i)
k )), then

O
− ≤ SPmFWA O1, O2, . . . , On( ≤O

+
. (47)

(3) (Monotonicity) let Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1 and
O∗k � 〈(Υ(i)

k )∗, (o�
(i)
k )∗〉

m

i�1(k � 1, . . . , n) be two col-
lections of PmFNs such that Υ(i)

k ≥ (Υ(i)
k )∗ and

o�
(i)
k ≤ (o�

(i)
k )∗ for all k and all permissible value of i;

then,

SPmFWA O1, O2, . . . , On( ≥ SPmFWA O
∗
1 , O
∗
2 , . . . , O

∗
n( .

(48)

Proof. Straight forward. □

6. Symmetric Pythagorean m-Polar Fuzzy
Weighted Geometric Operator

We assign this unit to render the notion of symmetric
Pythagorean m-polar fuzzy weighted geometric operator for
Pythagorean m-polar fuzzy numbers in company with some
of its prime characteristics.

Definition 10. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) be
an assemblage of PmFNs. Define SPmFWG: Tn⟶ T given
by

SPmFWG O1, O2, . . . , On(  � ⊞nk�1 Zk⊡Ok( 

� Z1⊡O1( ⊞ Z2⊡O2( 

⊞ · · ·⊡ Zn⊡On( ,

(49)

where Tn is the collection of all PmFNs and Zk’s are fuzzy
weights of (O1, O2, . . . , On), bearing the constraint that they
add up to unity. SPmFWG is called symmetric Pythagorean
m-polar fuzzy weighted geometric operator.

If W � (w, w, . . . , w)t � ((1/n), (1/n), . . . , (1/n))t, then
SPmFWG operator diminishes to symmetric Pythagorean
m-polar fuzzy geometric (SPmFG) operator of dimension n

and is specified as

SPmFG O1, O2, . . . , On(  �
1
n
⊡ ⊞nk�1Ok( 

�
1
n
⊡ O1⊞O2⊞ · · ·⊞On( .

(50)

Relying upon the operational laws of PmFNs given in
Definition 3, the approaching theorem suggests mathe-
matical formulation of SPmFWG operator meant for ag-
gregating PmFNs.

Theorem 10. Let Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) be
an assemblage of PmFNs; then,

SPmFWG O1, O2, . . . , On( 

� 〈


n
k�1 Υ

(i)
k 

Zk

������������������������������


n
k�1 1 − Υ(i)

k 
2

 
Zk

+ 
n
k�1 Υ

(i)
k 

2Zk

 ,


n
k�1 o�

(i)
k 

Zk

������������������������������


n
k�1 1 − o�

(i)
k 

2
 

Zk

+ 
n
k�1 o�

(i)
k 

2Zk

 〉

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

m

i�1

.

(51)

Proof. (e proof may be furnished by means of
induction. □

Theorem 11. If Ok � 〈Υ(i)
k , o�

(i)
k 〉 

m

i�1(k � 1, 2, . . . , n) is an
aggregate of PmFNs, then
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SPmFWG O1, O2, . . . , On( 

� 〈


n
k�1 Υ

(i)
k 

Zk

������������������������������


n
k�1 1 − Υ(i)

k 
2

 
Zk

+ 
n
k�1 Υ

(i)
k 

2Zk

 ,


n
k�1 o�

(i)
k 

Zk

������������������������������


n
k�1 1 − o�

(i)
k 

2
 

Zk

+ 
n
k�1 o�

(i)
k 

2Zk

 〉

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

m

i�1

(52)

is also a PmFN.

Proof. Straight forward. □

Example 4. Consider the data of Example 1. (e SP4FWA,
using (eorem 10, is

SPmFWG O1, O2, O3( 

� 〈


3
k�1 Υ

(i)
k 

Zk

������������������������������


3
k�1 1 − Υ(i)

k 
2

 
Zk

+ 
3
k�1 Υ

(i)
k 

2Zk

 ,


3
k�1 o�

(i)
k 

Zk

������������������������������


3
k�1 1 − o�

(i)
k 

2
 

Zk

+ 
3
k�1 o�

(i)
k 

2Zk

 〉

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

4

i�1

� 〈0.510, 0.466〉, 〈0.134, 0.362〉, 〈0.118, 0.177〉, 〈0.314, 0.691〉{ }.

(53)

Theorem 12. Assume that Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1(k � 1, . . . , n)

is a family of PmFNs. !en,

(1) (Idempotency) if Ok � O � 〈Υ(i), o
(i)

�
〉

m

i�1
(k � 1, 2,

. . . , n) for all k, then

SPmFWG O1, O2, . . . , On(  � O. (54)

(2) (Boundedness) if O− � (min(Υ(i)
k ), max(o�

(i)
k )) and

O+ � (max(Υ(i)
k ), min(o�

(i)
k )), then

O
− ≤ SPmFWG O1, O2, . . . , On( ≤O

+
. (55)

(3) (Monotonicity) let Ok � 〈Υ(i)
k , o�

(i)
k 〉

m

i�1 and O∗k �

〈(Υ(i)
k )∗, (o�

(i)
k )∗〉

m

i�1(k � 1, . . . , n) be two sets of
PmFNs such that Υ(i)

k ≥ (Υ(i)
k )∗ and o�

(i)
k ≤ (o�

(i)
k )∗ for

all k and all permissible value of i; then,

SPmFWG O1, O2, . . . , On( ≥ SPmFWG O
∗
1 , O
∗
2 , . . . , O

∗
n( .

(56)

Proof. Straight forward. □

7. Robust Decision Making through
Pythagorean m-Polar Fuzzy Weighted
Aggregation Operators

In the wake of investment, a venture capitalist usually faces
manifold challenges in deciding about pros and cons of the
trade and commerce industry. Companies entice the in-
vestor by cutting down the prices of their commodities,
despite the fact that they have evaluated that consumer
consummation is one of the most significant and funda-
mental features to stay alive and subsist in the market. A
view of capital market is shown in Figure 1.

To take a clearer, rewarding, and intelligent decision, a
financier will definitely want to have awareness about which
market is suitable for investment and then consult a team of
experts to get benefitted from their experience to have better
safeguard for his investment. So, subsequent upon their
prefatory scrutinization, a commission has been instituted to
act as aide in investing the finances in the paramount
markets where there is least chance of loss, according to the
following major criteria:

Safeguard of principal: protection of funds financed is
one of the indispensable components of any worthy
investment program. Security of principal indicates
fortification against any probable forfeiture under
fluctuating environments. Protection of principal may
be accomplished over and done with a watchful analysis
of fiscal and industrial inclinations afore deciding on
nature of investment. Obviously, no one can predict the
yet to come commercial conditions with ultimate ex-
actitude. To defend against definite slips which may
sneak in while taking a decision on investment, far-
reaching diversification is recommended.

Liquidity and collateral value: an investment that may
be transformed into cash instantly without having any
financial loss is known as liquid investment. Liquid
investments comfort financiers to meet crises and di-
sasters. Stocks are with no trouble merchantable only
when they make available satisfactory profit through
dividends and funds appreciation. Assortment of liquid
investments empowers the financiers to raise funds
through sale of liquid securities or borrowing by
proposing them as collateral security. (e venture
capitalist finances in top ranked and readily profit-
making investments for ensuring their liquidity and
collateral value.
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Tax implications: associated tax implications should be
earnestly and well thought out before scheduling an
investment plan. Singularly, the amount of revenue that
investment offers and the liability of income tax levied
on that revenue must be pondered well. Financiers in
small revenue brackets go on to make best use of cash
earnings on their monies and hence are diffident to take
extreme jeopardies. On the contrary, venture capitalists
who are not specific about cash returns do not cogitate
tax implications earnestly.
Steady revenue: financiers endow their treasuries in
such assets that offer steady revenue. Monotony of
revenue is consistent with a good investment program.
Investors are attracted towards those programs that
generate revenue not only stably but also adequately.
Permanency of buying power: investment is utilization
of money with the aim of receiving capital appreciation
or profits. Stated differently, current assets are sur-
rendered with the object of getting loftier volumes of
future funds. (us, the financier must deliberate the
buying power of future funds. For maintaining the
constancy of buying power, the financier must scru-
tinize the projected price level inflation and the like-
lihoods of additions and sufferings in the investment
accessible to them.
Capital growth: capital appreciation is one of the es-
sential main beliefs of investment. (e firmness of an
industry warranties its allied companies to flourish and
progress. So, by identifying the association flanked by
industry evolution and assets appreciation, the finan-
ciers should capitalize in growth stocks. In brief, right
matter in the suitable business must be taken on board
at the appropriate stage.
Lawfulness: the financier must capitalize only in those
assets which are legitimate and sanctioned by law. Il-
legitimate securities land the financier in misfortune. In
addition to being mollified with the rightfulness of
investment, the financier ought to be at liberty from
administration of securities.

We develop an algorithm (Algorithm 1) first to intel-
ligibly decipher a decision-making problem.

(e flowchart of the algorithm is portrayed in Figure 2.

Example 5. Consider the decision-making problem of
capital investment comprising three experts. Assume that
there are five choices l1, l2, l3, l4, l5 that are to be assessed by
the financial experts keeping in view four attributes c1, c2, c3,
and c4, where

c1 � analysis of permanency of buying power,

c2 � analysis of liquidity and collateral value,

c3 � principal safeguard analysis,

c4 � analysis of capital growth.

(57)

(e weights of three experts, in order, are assigned as
Z1 � 0.40 and Z2 � Z3 � 0.30 according to their expertise
and importance of their opinion. (e three experts provide
the information in the form of PFNs which are transformed
in the form of PF matrices in which rows represent choices
and the columns are meant for criteria.

M1 �

(0.37, 0.49) (0.76, 0.36) (0.72, 0.41) (0.61, 0.08)

(0.77, 0.48) (0.81, 0.39) (0.32, 0.89) (0.21, 0.56)

(0.42, 0.71) (0.56, 0.54) (0.37, 0.80) (0.11, 0.39)

(0.56, 0.21) (0.42, 0.06) (0.58, 0.60) (0.45, 0.82)

(0.54, 0.21) (0.31, 0.73) (0.50, 0.59) (0.62, 0.15)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M2 �

(0.76, 0.29) (0.54, 0.09) (0.11, 0.23) (0.37, 0.52)

(0.48, 0.61) (0.58, 0.63) (0.67, 0.36) (0.91, 0.40)

(0.52, 0.53) (0.48, 0.21) (0.34, 0.79) (0.54, 0.21)

(0.28, 0.09) (0.48, 0.19) (0.21, 0.86) (0.40, 0.90)

(0.33, 0.76) (0.79, 0.21) (0.67, 0.71) (0.49, 0.36)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M3 �

(0.54, 0.11) (0.28, 0.56) (0.38, 0.21) (0.06, 0.82)

(0.47, 0.54) (0.39, 0.46) (0.41, 0.43) (0.35, 0.11)

(0.37, 0.24) (0.54, 0.11) (0.48, 0.42) (0.47, 0.18)

(0.36, 0.29) (0.58, 0.16) (0.39, 0.22) (0.41, 0.32)

(0.41, 0.49) (0.54, 0.41) (0.37, 0.18) (0.46, 0.33)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(58)

We present these PF matrices in lamellar formation in
Table 2.

(e values of PmFWA(O1, O2, O3) for each choice are
given in Table 3.

(e values of score function against each choice are given
in Table 4.

Hence, the rank of choices is

l1 ≻ l2 ≻ l5 ≻ l4 ≻ l3. (59)

Let us experience what happens if we proceed with
PmFWG operator instead of PmFWA operator. (e values
of PmFWA(O1, O2, O3) for each choice are given in Table 5.

(e score function values against each choice are given
in Table 6.

Hence, the rank of choices is

Figure 1: Capital market (source: cushmanwakefield.com).
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PF matrices of given information
PF matrices in the form of PmF

array

Use PmFWA,PmFWG, SPmFWA,
or SPmFW Goperator to

aggregate PFNs for each choice Compute value of score function s
for each choice

Locate the alternative with
maximum value of sEnd

Choices, criteria, and weights
of decision experts Input

Computations

Output

Figure 2: Flowchart of the algorithm.

Table 2: PmFNs for each choice.

Choice PFNs

l1

O1 � 〈0.37, 0.49〉, 〈0.76, 0.36〉, 〈0.72, 0.41〉, 〈0.61, 0.08〉{ }

O2 � 〈0.76, 0.29〉, 〈0.54, 0.09〉, 〈0.11, 0.23〉, 〈0.37, 0.52〉{ }

O3 � 〈0.54, 0.11〉, 〈0.28, 0.56〉, 〈0.38, 0.21〉, 〈0.06, 0.82〉{ }

l2

O1 � 〈0.77, 0.48〉, 〈0.81, 0.39〉, 〈0.32, 0.89〉, 〈0.21, 0.56〉{ }

O2 � 〈0.48, 0.61〉, 〈0.58, 0.63〉, 〈0.67, 0.36〉, 〈0.91, 0.40〉{ }

O3 � 〈0.47, 0.54〉, 〈0.39, 0.46〉, 〈0.41, 0.43〉, 〈0.35, 0.11〉{ }

l3

O1 � 〈0.42, 0.71〉, 〈0.56, 0.54〉, 〈0.37, 0.80〉, 〈0.11, 0.39〉{ }

O2 � 〈0.52, 0.53〉, 〈0.48, 0.21〉, 〈0.34, 0.79〉, 〈0.54, 0.21〉{ }

O3 � 〈0.37, 0.24〉, 〈0.54, 0.11〉, 〈0.48, 0.42〉, 〈0.47, 0.18〉{ }

l4

O1 � 〈0.56, 0.21〉, 〈0.42, 0.06〉, 〈0.58, 0.60〉, 〈0.45, 0.82〉{ }

O2 � 〈0.28, 0.09〉, 〈0.48, 0.19〉, 〈0.21, 0.86〉, 〈0.40, 0.90〉{ }

O3 � 〈0.36, 0.29〉, 〈0.58, 0.16〉, 〈0.39, 0.22〉, 〈0.41, 0.32〉{ }

l5

O1 � 〈0.54, 0.21〉, 〈0.31, 0.73〉, 〈0.50, 0.59〉, 〈0.62, 0.15〉{ }

O2 � 〈0.33, 0.76〉, 〈0.79, 0.21〉, 〈0.67, 0.71〉, 〈0.49, 0.36〉{ }

O3 � 〈0.41, 0.49〉, 〈0.54, 0.41〉, 〈0.37, 0.18〉, 〈0.46, 0.33〉{ }

Input:
(1) Analyze the problem: Let X � l1, l2, . . . , lp  be the collection of choices and the set of criteria be E � c1, c2, . . . , cq . Suppose that

Z1, Z2, . . . , Zn are respective weights of n decision experts.
Computations:

(2) Present the information given by experts in the form of PF matrices as M1,M2, . . . ,Mn.
(3) Present the matrices M1,M2, . . . ,Mn in Pythagorean m-polar fuzzy array.
(4) Use PmFWA, PmFWG, SPmFWA, or SPmFWG operator to aggregate the PFNs for each choice.
(5) Compute value of score function s for each choice.

Output:
(6) (e alternative with highest value of s is the desired alternative.

ALGORITHM 1
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l1≻l5≻l2≻l3≻l4. (60)
Let us employ SPmFWA operator to experience if there

is any change in the optimal choice. (e values of
SPmFWA(O1, O2, O3) for each choice are given in Table 7.

(e values of score function against each choice are given
in Table 8.

Hence, the rank of choices is

l1≻l2≻l5≻l4≻l3 (61)

Finally, we wield SPmFWG operator to discuss whether
this operator brings any revision in the choice of optimal
option. (e values of SPmFWA(O1, O2, O3) for each choice
are given in Table 9.

(e values of score function against each choice are given
in Table 10.

Hence, the rank of choices is

l1≻l5≻l2≻l4≻l3. (62)

From these four ranking indices, we observe that the
optimal choice, which is l1, stays unaltered. We exhibit the
four ranking catalogues through the medium of horizontal
bar chart cited in Figure 3.

7.1. Comparison Analysis and Superiority of the Proposed
Work. We have observed that the optimal solution remains
the same by use of either of the four proposed operators in
this article. Further, the optimal choice attained through our
suggested techniques does not alter by use of other methods.
No computationally easy to use aggregation operator for
PmFSs has yet been introduced so far, according to our best
knowledge. Our suggested technique is simple to apply and
yields definitive outputs. It can handle the data given at
repeated spans of times or by different decision experts
efficiently. (e comparison of presented aggregation oper-
ators with some existing operators is given in Table 11.

Table 4: Values of score function against each choice.

Choice s

l1 0.229
l2 0.158
l3 0.006
l4 0.032
l5 0.137

Table 5: Values of PmFWA(O1, O2, O3) for each choice.

Choice PmFWA(O1, O2, O3)

l1 〈0.514, 0.361〉, 〈0.508, 0.396〉, 〈0.338, 0.313〉, 〈0.262, 0.592〉{ }

l2 〈0.576, 0.542〉, 〈0.588, 0.501〉, 〈0.430, 0.720〉, 〈0.380, 0.432〉{ }

l3 〈0.431, 0.573〉, 〈0.529, 0.379〉, 〈0.390, 0.730〉, 〈0.274, 0.292〉{ }

l4 〈0.398, 0.214〉, 〈0.482, 0.142〉, 〈0.380, 0.671〉, 〈0.422, 0.790〉{ }

l5 〈0.429, 0.549〉, 〈0.485, 0.558〉, 〈0.499, 0.569〉, 〈0.528, 0.286〉{ }

Table 3: Values of PmFWA(O1, O2, O3) for each choice.

Choice PmFWA(O1, O2, O3)

l1 〈0.586, 0.267〉, 〈0.614, 0.271〉, 〈0.539, 0.282〉, 〈0.455, 0.282〉{ }

l2 〈0.633, 0.534〉, 〈0.671, 0.473〉, 〈0.492, 0.545〉, 〈0.666, 0.311〉{ }

l3 〈0.441, 0.470〉, 〈0.532, 0.252〉, 〈0.400, 0.657〉, 〈0.409, 0.257〉{ }

l4 〈0.441, 0.179〉, 〈0.494, 0.114〉, 〈0.451, 0.495〉, 〈0.424, 0.636〉{ }

l5 〈0.451, 0.398〉, 〈0.595, 0.423〉, 〈0.536, 0.437〉, 〈0.542, 0.247〉{ }

Table 6: Score function values against each choice.

Choice s

l1 − 0.008
l2 − 0.061
l3 − 0.099
l4 − 0.107
l5 − 0.018

Journal of Mathematics 15
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Figure 3: Horizontal bar chart of the two rankings.

Table 10: Values of score function against each choice.

Choice s

l1 0.138
l2 − 0.025
l3 − 0.040
l4 − 0.035
l5 0.081

Table 7: Values of SPmFWA(O1, O2, O3) for each choice.

Choice SPmFWA(O1, O2, O3)

l1 〈0.564, 0.351〉, 〈0.580, 0.381〉, 〈0.497, 0.311〉, 〈0.426, 0.525〉{ }

l2 〈0.613, 0.540〉, 〈0.639, 0.494〉, 〈0.479, 0.652〉, 〈0.584, 0.414〉{ }

l3 〈0.439, 0.544〉, 〈0.531, 0.365〉, 〈0.398, 0.695〉, 〈0.391, 0.290〉{ }

l4 〈0.434, 0.212〉, 〈0.491, 0.141〉, 〈0.438, 0.611〉, 〈0.424, 0.715〉{ }

l5 〈0.447, 0.514〉, 〈0.563, 0.524〉, 〈0.526, 0.535〉, 〈0.538, 0.283〉{ }

Table 8: Values of score function against each choice.

Choice s

l1 0.111
l2 0.056
l3 − 0.053
l4 − 0.037
l5 0.044

Table 9: Values of SPmFWA(O1, O2, O3) for each choice.

Choice SPmFWA(O1, O2, O3)

l1 〈0.536, 0.276〉, 〈0.541, 0.283〉, 〈0.373, 0.285〉, 〈0.282, 0.093〉{ }

l2 〈0.344, 0.537〉, 〈0.622, 0.480〉, 〈0.443, 0.618〉, 〈0.454, 0.326〉{ }

l3 〈0.433, 0.497〉, 〈0.530, 0.263〉, 〈0.392, 0.693〉, 〈0.288, 0.259〉{ }

l4 〈0.406, 0.181〉, 〈0.484, 0.114〉, 〈0.391, 0.555〉, 〈0.423, 0.720〉{ }

l5 〈0.433, 0.430〉, 〈0.517, 0.454〉, 〈0.509, 0.469〉, 〈0.532, 0.247〉{ }
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8. Conclusion

Pythagorean m-polar fuzzy set is a mighty model for ex-
amining the information given in multipolar form. We
suggested four operators, namely, Pythagorean m-polar
fuzzy weighted averaging operator, Pythagorean m-polar
fuzzy weighted geometric operator, symmetric Pythagorean
m-polar fuzzy weighted averaging operator, and symmetric
Pythagorean m-polar fuzzy weighted geometric operator for
the sake of aggregating the statistics given in multipolar
form. (e aggregated resultant falling in the same structure
has also been manifested. We established the desirable
qualities of idempotency, monotonicity, and boundedness
for the proposed operators.

(e results presented in this article are also valid for
intuitionistic m-polar fuzzy sets and have potential to be
generalized to q-rung orthopair m-polar fuzzy sets and
many other models. We rendered an algorithm for capital
investment analysis problem as practical usage of the
suggested operators in daily life situations and found that
our computed results are compatible with the existing
techniques. (e suggested algorithm may be used in
human resource management problems, life sciences,
economics analysis, business and trade analysis, pattern
recognition, water management problems, agribusiness,
and many other areas. We anticipate that this article will
attract the attention of vibrant researchers working in this
field.
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'e aim of this manuscript is to initiate the study of the Banach contraction in R-fuzzy b-metric spaces and discuss some related
fixed point results to ensure the existence and uniqueness of a fixed point. A nontrivial example is imparted to illustrate the
feasibility of the proposed methods. Finally, to validate the superiority of the provided results, an application is presented to solve
the first kind of a Fredholm-type integral equation.

1. Introduction and Preliminaries

Since the axiomatic interpretation of metric spaces and the
inception of the Banach contraction principle, many authors
have studied fixed point theory vividly. A number of results
have been introduced, and metric fixed point has been
generalized in different directions. In this connectedness,
Bakhtin [1] and Czerwik [2] gave a generalization of a metric
space and named it as a b-metric space. Zadeh [3] introduced
the concept of fuzzy sets and generalized the concept of
metric spaces and fuzzy sets and named them as fuzzy metric
spaces, which became a point of interest for many authors
[2, 4]. Nădăban [5] extended the concept of a fuzzy metric
and introduced the notion of fuzzy b-metric spaces. For
related works in this setting, refer to [6–9].

Recently, Baghani and Ramezani [10] tossed the concept
of orthogonal sets and gave an extension of the Banach
contraction principle. For more details, refer to [10–24].

In this article, we further aim to establish fixed point
results in the setting of R-complete fuzzy b-metric spaces.
We provide an example dealing with an R-fuzzy b-metric

space, but it is not a fuzzy b-metric space. 'e presented
results improve and generalize many results in the literature.

First, we recall some basic definitions and notions, which
are essential for this work.

Definition 1 (see [11]). A binary operation ∗: [0, 1]× [0,
1]⟶ [0, 1] is referred to as a continuous t-norm if the
following assumptions hold:

(1) e∗f � f∗ e,∀e, f ∈ [0, 1]

(2) e∗ 1 � e,∀e ∈ [0, 1]

(3) (e∗f)∗ s � e∗ (f∗ s),∀e, f, s ∈ [0, 1]

(4) If e≤ s and f≤ u, with e, f, s, u ∈ [0, 1], then
e∗f≤ s∗ u

Some fundamental examples of a t-norm are
e∗f � e · f, e∗f � min e, f , and
e∗f � max e + f − 1, 0 .

Definition 2 (see [12, 13]). A 3-tuple (H, M, ∗ ) is said to be
a fuzzy metric space if H≠M is an arbitrary set, ∗ is a
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continuous t-norm, and M is a fuzzy set on H × H × (0,∞)

meeting the following conditions for all σ, H, z ∈M, τ, s> 0:

(B1) M(σ, M, τ)> 0
(B2) M(σ, M, τ) � 1 iff σ � M

(B3) M(σ, M, τ) � M(M, σ, τ)

(B4) M(σ, z, τ + s)≥M(σ, M, τ)∗M(M, z, s)
(B5) M(σ, M, M): (0,∞)⟶ [0, 1] is continuous

Example 1 (see [12]). Let (H, d) be a metric space with a
continuous t-norm ɑ∗M � ɑ · M, and let M be a fuzzy set
defined on H × H × (0,∞) by

M(σ, M, τ) �
τ

τ + d(σ, M)
. (1)

'en, (H, M, ∗ ) is called a standard fuzzy metric space.

Definition 3 (see [6]). A 4-tuple (H, M, ∗ , u) is said to be a
fuzzy b-metric space if H≠M is an arbitrary set, ∗ is a
continuous t-norm, and M is a fuzzy set on H × H × (0,∞)

meeting the following conditions for all σ, M, z ∈ H, τ, s> 0
and for a given real number u≥ 1:

(B1) M(σ, M, τ)> 0
(B2) M(σ, M, τ) � 1 iff σ � M

(B3) M(σ, M, τ) � M(M, σ, τ)

(B4) M(σ, z, τ + s)≥M(σ, M, τ/u)∗M(M, z, s/u)

(B5) M(σ, M, M): (0,∞)⟶ [0, 1] is continuous

Example 2 (see [7]). Let M(σ, M, τ) � e− |σ− M|p/τ , where
p> 1 represents a real number. It is then simple to prove
that M is a fuzzy b-metric with u � 2p− 1. It should be noted
that, for p � 2, (H, M, ∗ ) is not a fuzzy metric space.

Definition 4. Assume H≠M and R ∈ H × H is a binary
relation. Suppose there exists σ0 ∈M such that σ0Rσ or σRσ0
for all σ ∈ H. 'en, we say that H is an R-set.

Example 3

(i) Let H � [0,∞) and define σRM if σM � min σ, M{ };
then, by putting σ0 � 1, (H, R) is an R-set.

(ii) Suppose M is a set of scalar matrices of order 2 × 2
with entries from natural numbers (i.e.,

M �
ɑ 0
0 ɑ , for all ɑ ∈ N). Define the relation R by

ARB if det(A)≤ det(B). (2)

'en, by taking A � I, (M, R) is an R-set.

Definition 5 (see [10]). Suppose that (H, R) is an R-set. A
sequence σn  for all n ∈ N is said to be an R-sequence if
(∀n; σnRσn+1) or (∀n; σn+1Rσn).

Definition 6 (see [14])

(a) A metric space (H, d) is an R-metric space if (H, R)

is an R-set.
(b) A mapping Ƒ: H⟶ H is R-continuous at σ ∈ H if

for each R-sequence σn  for all n ∈ N in H if
limn⟶∞ d(σn, σ) � 0, then limn⟶∞ d(Ƒσn,Ƒσ)

� 0. Furthermore, Ƒ is R-continuous if Ƒ is R-
continuous at each σ ∈ H.

(c) A mapping Ƒ: H⟶ H is called R-preserving if
σ RƑ , then Ƒσ RƑM for all σ, M ∈ H.

(d) An R-sequence σn  in H is said to be an R-Cauchy
sequence if for every ε> 0, there exists an integer N
such that d(σn, σm)< ε for all n≥N and m≥N. It is
clear that σnRσm or σmRσn.

(e) H is R-complete if every R-Cauchy sequence is
convergent.

2. Main Results

We start this section with the introduction of R-fuzzy b-
metric spaces.

Definition 7. Let H≠M and R be a reflexive binary relation
on H. Let ∗ be a continuous t-norm and H be a fuzzy set on
H × H × (0,∞). Suppose that, for all τ, s> 0 and for all
σ, M, z ∈ H, with either (σ R z or z R σ), either (σ R M or
M R σ), and either (M R z or z R M), the following condi-
tions hold:

(1) M(σ, M, τ)> 0
(2) M(σ, M, τ) � 1 if and only if σ � M

(3) M(σ, M, τ) � M(M, σ, τ)

(4) M(σ, z, τ + s)≥M(σ, M, τ/u)∗M(M, z, s/u),
where u≥ 1

(5) M(σ, M, M): (0,∞)⟶ [0, 1] is continuous

'en, (H, M, ∗ , u, R) is called an R-fuzzy b-metric space
with the coefficient u≥ 1.

Remark 1. In the above definition, the setH is endowed with
a reflexive binary relation R, and M is a fuzzy set on H ×

H × (0,∞) satisfying (1)–(5) for those comparable elements
with respect to the reflexive binary relation R. An R-fuzzy b-
metric may not be a fuzzy b-metric.

'e following simplest example shows that the R-fuzzy
b-metric with u � 4 does not need to be a fuzzy b-metric with
u � 4.

Example 4. Let H � [− 1, 1] and M(σ, M, τ) � e− (σ− M)3/τ .
Define a binary relation such that σ R M iff |σ|≥ |M|. It is
clear that M(σ, M, τ) is an R-fuzzy b-metric on H with
u � 4.

Note that for σ � 0.1, M � 0.5 , and z � 0.8, the fol-
lowing condition does not hold:

M(σ, z, τ + s)≥M σ, M,
τ
u

 ∗M M, z,
s
u

 . (3)

So, M(σ, M, τ) is not a fuzzy b-metric.
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Definition 8. Let (H, M, ∗ , u, R) represent an R-fuzzy
b-metric space.

(a) A sequence σn  for all n ∈ N is said to be an R-
sequence if (∀n; σn R σn+1) or (∀n; σn+1 R σn).

(b) A Cauchy sequence σn  is said to be an R-Cauchy
sequence if (∀n; σn R σn+1) or (∀n; σn+1 R σn).

(c) A mapping Ƒ: H⟶ H is R-continuous at σ ∈M if
for each R-sequence σn  for all n ∈ N in M with
limn⟶∞M(σn, σ, τ) � 1 for all τ > 0, then
limn⟶∞M(Ƒσn,Ƒσ, τ) � 1 for all τ > 0. Further-
more, Ƒ is R-continuous if Ƒ is R-continuous at each
σ ∈ H.

(d) A mapping Ƒ: H⟶ H is called R-preserving if
σ R M, then Ƒσ RƑM for all σ, M ∈ H.

(e) If each R-Cauchy sequence is convergent, then M is
R-complete.

Motivated by the work of Baghani and Ramezani [10]
and Hezarjaribi et al. [14], we introduce the concept of
Banach contraction principle in the setting of R-fuzzy b-
metric spaces.

Definition 9. Let (H, M, ∗ , u, R) be an R-fuzzy b-metric
space. A map Ƒ: H⟶ H is an R-contraction if there exists
q ∈ (0, 1) such that, for every τ > 0 and σ, M ∈ H with
σ R M, we have

M(Ƒσ,ƑM, qτ)≥M(σ, M, τ). (4)

Theorem 1. Assume that (H, M, ∗ , u, R) is an R-complete
fuzzy b-metric space. Let Ƒ: H⟶ H be an R-continuous, R-
contraction, and R-preserving mapping. >us, Ƒ has a unique
fixed point σ∗ ∈ H. Furthermore,

lim
n⟶∞

M Ƒnσ, σ∗, τ(  � 1, for all σ ∈ H and τ > 0. (5)

Proof. Since (H, M, ∗ , u, R) is an R-complete fuzzy b-
metric space, there exists σ0 ∈ H such that

σ0 R M, for allM ∈ H. (6)

'is yields that σ0 RƑσ0. Assume that

σ1 � Ƒσ0, σ2 � Ƒ2σ0 � Ƒσ1, . . . , σn � Ƒnσ0 � Ƒσn− 1, for all n ∈ N.

(7)

Since Ƒ is R-preserving, σn  is an R-sequence and Ƒ is an
R-contraction. 'us,

M σn+1, σn, qτ(  � M Ƒσn,Ƒσn− 1, qτ( ≥M σn, σn− 1, τ( ,

(8)

for all n ∈ N and τ > 0. 'erefore, by applying the above
expression, we deduce

M σn+1, σn, τ( ≥M σn+1, σn, qτ(  � M Ƒσn,Ƒσn− 1, qτ( ≥M σn, σn− 1, τ( 

� M Ƒσn− 1,Ƒσn− 2, τ( ≥M σn− 1, σn− 2,
τ
q

 ≥ . . . ≥M σ1, σ0,
τ
q

n ,

(9)

for all n ∈ N and τ > 0. 'us, from (9) and (B4), we have

M σn, σn+p, τ ≥M σn, σn+1,
τ
u

 ∗M σn+1, σn+p,
τ
u

 

≥M σn, σn+1,
τ
u

 ∗M σn+1, σn+2,
τ
u
2 ∗M σn+2, σn+3,

τ
u
3 ∗ . . . ∗M σn+p− 1, σn+p,

τ
u

n+p 

≥M σ1, σ0,
τ

uq
n ∗M σ1, σ0,

τ
u
2
q

n ∗ . . . ∗M σ1, σ0,
τ

u
n+p

q
n .

(10)

Here, u is an arbitrary positive integer. We know that
limn⟶∞M(σ, M, τ) � 1 for all σ, M ∈ H and τ > 0. From
(10), we get

lim
n⟶∞

M σn, σn+p, τ ≥ 1∗ 1∗ . . . ∗ 1 � 1. (11)

'en, σn  is an R-Cauchy sequence. 'e hypothesis of
R-completeness of the fuzzy b-metric space (H, M, ∗ , u, R)

ensures that there exists σ∗ ∈ H such that M(σn, σ∗, τ)⟶
1 as n⟶ +∞ for all τ > 0. Since Ƒ is an R-continuous
mapping, one writes M(σn+1,Ƒσ∗, τ) � M(Ƒσn,Ƒσ∗, τ)⟶
1 as n⟶ +∞. Hence,

M σ∗,Ƒσ∗, τ( ≥M σ∗, σn+1,
τ
2u

 ∗M σn+1,Ƒσ∗,
τ
2u

 .

(12)
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As n⟶ +∞, we get Ƒ(σ∗,Ƒσ∗, τ) � 1∗ 1 � 1; hence,
Ƒσ∗ � σ∗.

To show the uniqueness of the fixed point for the
mapping Ƒ, assume that σ∗ and M∗ are two fixed points of Ƒ
such that σ∗ ≠M∗. We have

σ0Rσ∗ and σ0RM∗. (13)

Since M is R-preserving, we can write

Ƒnσ0RƑ
nσ∗ andƑ

nσ0RƑ
nƑυ∗, (14)

for all n ∈ N. Using (4), we have

M Ƒnσ0,Ƒ
nσ∗, τ( ≥M Ƒnσ0,Ƒ

nσ∗, qτ( ≥M σ0, σ∗,
τ
q

n ,

M Ƒnσ0,Ƒ
nυ∗, τ( ≥M Ƒnσ0,Ƒ

nυ∗, qτ( ≥M σ0, υ∗,
τ
q

n .

(15)

Hence,

M σ∗, υ∗, τ(  � M Ƒnσ∗,Ƒ
nυ∗, τ( ≥M Ƒnσ0,Ƒ

nσ∗,
τ
2u

 ∗M Ƒnσ0,Ƒ
nυ∗,

τ
2u

 

≥M σ0, σ∗,
τ

2uq
n ∗M σ0, υ∗,

τ
2uq

n ⟶ 1 as n⟶∞.

(16)

So, σ∗ � M∗; hence, σ∗ is the unique fixed point.

Corollary 1. Let (H, M, ∗ , u, R) be an R-complete fuzzy b-
metric space. Let H: H⟶ H be an R-contraction and R-
preserving. Also, if σn  is an R-sequence with σn⟶ σ ∈ Ƒ,
then σ R σn for all n ∈ N. >erefore, M has a unique fixed
point σ∗ ∈ H. Furthermore, limn⟶∞M

(Ƒnσ, σ&lowast;, τ) � 1, for all σ ∈ H and τ > 0.

Proof. 'e proof of this result moves along the same lines as
in 'eorem 1, that is, σn  is an R-Cauchy sequence and
converges to σ∗ ∈ H. Hence, σ∗ R σn for all n ∈ N. From (4),
we have

M Ƒσ∗, σn+1, τ(  � M Ƒσ∗, Ƒσn, τ( ≥M Ƒσ∗, Ƒσn, τq( 

≥M σ∗, σn, τ( .

(17)

Also,

lim
n⟶∞

M Ƒσ∗, σn+1, τ(  � 1. (18)

Hence,

M σ∗,Ƒσ∗, τ( ≥M σ∗, σn+1,
τ
2u

 ∗M σn+1,Ƒσ∗,
τ
2u

 .

(19)

As n⟶ +∞, we get M(σ∗,Ƒσ∗, τ) � 1∗ 1 � 1, and
so, Ƒσ∗ � σ∗. 'e rest of the proof is the same as in
'eorem 1.

Corollary 2. Let (Ƒ, M, ∗ , u, R) be an R-complete fuzzy b-
metric space and Ƒ: H⟶ H be an R-continuous and R-
preserving mapping. Suppose that there exist q ∈ (0, 1/2) and
τ > 0 such that

M(Ƒσ, Ƒυ, qτ)≥M Ƒσ, σ,
τ
2

  + M Ƒυ, υ,
τ
2

 . (20)

>en, M has a unique fixed point.

Corollary 3. Let (H, M, ∗ , u, R) be an R-complete fuzzy b-
metric space and Ƒ: H⟶ H be an R-continuous and R-
preserving mapping. Assume that there exist q ∈ (0, 1/u ) and
τ > 0 such that

M(Ƒσ, Ƒυ, qτ)≥min M(Ƒσ, σ, τ), M(Ƒυ, υ, τ){ }. (21)

>en, Ƒ has a unique fixed point.

Proof. 'e proof is a part of the next corollary.

Corollary 4. Let (Ƒ, M, ∗ , u, R) be an R-complete fuzzy
b-metric space and Ƒ: H⟶ H be an R-continuous and
R-preserving mapping. Assume that there exist q ∈ (0, 1/u)

and τ > 0 such that
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M(Ƒσ, Ƒυ, qτ)≥min M(Ƒσ, σ, τ), M(Ƒυ, υ, τ), M(σ, υ, τ){ }. (22)

>en, Ƒ has a unique fixed point.

Proof. 'is corollary is a generalization of 'eorem 2.5 in
[8]. It is easy to prove this result by the help of 'eorem 1 of
this article and 'eorem 2.5 of [8].

Example 5. Let H � [− 1, 1]. 'e relation on H is defined as
σ R MM|σ|≥ |M|. Define the R-fuzzy b-metric given as in
Example 4:

M(σ, M, τ) �
e

− (σ− M)3/τ
, if τ > 0,

0, if τ ≤ 0,

⎧⎨

⎩ (23)

with the t-norm ɑ∗M � ɑMM. Let σn  be an R-sequence
in H such that σn � 1. Hence, σn  converges to 1. 'erefore,
(H, M, ∗ , u, R) is an R-complete fuzzy b-metric space with
u � 4.

Define Ƒ: H⟶ H by

Ƒ(σ) �

σ
4

if σ ∈ [0, 1],

0 if σ ∈ [− 1, 0).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

Note the following:

(1) If σ ∈ [0, 1] and υ ∈ [0, 1], then Ƒ(σ) � σ/4
andƑ(υ) � υ/4

(2) If σ ∈ [0, 1] and υ ∈ [− 1, 0), then Ƒ(σ) � σ/4 and
Ƒ(υ) � 0

(3) If σ ∈ [− 1, 0) and σ ∈ [− 1, 0), then Ƒ(σ) � 0 and
Ƒ(υ) � 0

In all cases, we have |Ƒ(σ)|≥ |Ƒ(M)|. 'us, Ƒ is an R-
preserving map.

Let σn  be an arbitrary R-sequence in H so that σn 

converges to σ ∈ H. Now,

lim
n⟶∞

M σn, σ, τ(  � lim
n⟶∞

e
− σn− σ( )

3/τ
. (25)

As σn  converges to σ ∈ H, we have e− (0)3/τ � e0 � 1.
Now, we need to show that

limn⟶∞M(Ƒσn, Ƒσ, qτ) � 1. For this purpose, there are
some cases.

(1) Take σn, σ ∈ [− 1, 0); then,

lim
n⟶∞

M Ƒσn, Ƒσ, qτ(  � lim
n⟶∞

M(0, 0 , qτ) � lim
n⟶∞

e
0

� 1.

(26)

(2) Take σn, σ ∈ [0, 1]; then,

lim
n⟶∞

M Ƒσn, Ƒσ, qτ(  � lim
n⟶∞

M
σn

4
,
σ
4

, qτ 

� lim
n⟶∞

e
− σn− σ( )

3/64qτ
.

(27)

As σn  converges to σ ∈ H, we have
e− (0)3/64τ � e0 � 1.

(3) Now, take σn ∈ [0, 1] and σ ∈ [− 1, 0); then,

lim
n⟶∞

M Ƒσn, Ƒσ, qτ(  � lim
n⟶∞

M
σn

4
, 0, qτ 

� lim
n⟶∞

e
− σn( )

3/64qτ
.

(28)

As n⟶∞, we can easily see limn⟶∞e− (σn)3/64qτ �

e0 � 1.
Hence, Ƒ is R-continuous.
For each σ, M ∈ H with σ R M, we have the following.

Case (a) For σ, H ∈ [0, 1], we have

M(Ƒσ, Ƒυ, qτ) � M
σ
4

,
υ
4
, qτ  � e

− (σ− M)3/64qτ

≥ e
− (σ− M)3/τ

� M(σ, υ, τ).

(29)

Case (b) For σ, υ ∈ [− 1, 0), we have

M(Ƒσ, Ƒυ, qτ) � M(0, 0, qτ) � e
0

≥ e
− (σ− M)3/τ

� M(σ, υ, τ).
(30)

Hence, Ƒ is an R-contraction. Hence, by 'eorem 1, Ƒ
has a unique fixed point.

3. An Application to an Integral Equation

Within this part, we apply 'eorem 1.
Let ƕ � C([ɑ, M],R) be the set of all continuous real-

valued functions defined on [ɑ, M].
Now, we consider the following Fredholm-type integral

equation of first kind:
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σ(l) � 

M

ɑ

F(l, τ)σ(l)dτ , for l, τ ∈ [ɑ, M], (31)
where F ∈ H. Define M as in Example 4, that is,

M(σ(l), υ(l), τ) � sup
l∈[ɑ,M]

e
− (σ(l)− M(l))3/τ

 , for all σ, υ ∈ ƕ and τ > 0. (32)

'en, (ƕ, M, ∗ , u, R) is an R-complete fuzzy b-metric
space.

Theorem 2. Assume that (F(l, τ)σ(l) −

F(l, τ)M(l)) ≤ q(σ(l) − M(l)) for σ, M ∈ H, q ∈ (0, 1), and
∀ l, τ ∈ [ɑ, M]. Also, consider 

M

ɑ dτ � M − ɑ � 1. Let
Ƒ: H⟶ H be

(i) R-preserving
(ii) R-contraction
(iii) R-continuous

>en, the Fredholm-type integral equation of first kind in
equation (31) has a unique solution.

Proof. Define Ƒ: ƕ⟶ ƕ by

Ƒσ(l) � 
M

ɑ
F(l, τ)σ(l)dτ, for all l, τ ∈ [ɑ, M]. (33)

(i) Define R as σ(l) R M(l)M|σ(l)|≥ |M(l)|. We have
σ(l) R M(l), and we want to show that
Ƒσ(l) RƑM(l). We see that σ(l) and Ƒσ(l) belong to
H because Ƒ is a self-map. So, observe that if
σ(l) R M(l), then it must be Ƒσ(l) RƑM(l). Hence,
Ƒ is R-preserving.

(ii) Observe that the existence of a fixed point of Ƒ is
equivalent to the existence of a solution of Fred-
holm-type integral equation (31). Now, for all
σ, M ∈M, we have

M(Mσ(l),ƑM(l), qτ) � e
− (Ƒσ(l)− ƑM(l))3/qτ

� e
− 

M

ɑ F(l, τ)σ(l) dτ – 
M
ɑ F(l, τ)M(l)dτ3/qτ

� e
− 

M

ɑ (F(l, τ)σ(l) – F(l, τ)M(l))dτ/qτ

≥ e
− 

M

ɑ q(σ(l)–M(l))dτ/qτ ≥ sup
l∈[ɑ,M]

e
− q(σ(l)− M(l))3 

M

ɑ dτ/qτ
 

� sup
l∈[ɑ,M]

e
− (σ(l)− M(l))3/τ

 

� M(σ(l), M(l), τ).

(34)

Hence, Ƒ is an R-contraction.
(iii) Suppose pn  is an R-sequence in H such that pn 

converges to p ∈ H. Because Ƒ is R-preserving, Ƒpn 

is an R-sequence for each n ∈ N. From (ii), we have

M Ƒpn(l), Ƒp(l), qτ( ≥ Ƒ pn(l), p(l), τ( . (35)

As limn⟶∞M(pn(l), p(l), τ) � 1, for all τ > 0, it is
clear that

lim
n⟶∞

Ƒ Mpn(l), Ƒp(l), qτ(  � 1. (36)

Hence, Ƒ is R-continuous.
Now, assume that σ and M are two fixed points of F;

then, we have

M(σ(l), M(l), τ)≥M σ(l), M(l),
τ
q

 . (37)

'us, for all n ∈ N,
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In this article, a repetitive sampling control chart for the gamma distribution under the indeterminate environment has been
presented. )e control chart coefficients, probability of in-control, probability of out-of-control, and average run lengths have
been determined under the assumption of the symmetrical property of the normal distribution using the neutrosophic interval
method. )e performance of the designed chart has been evaluated using the average run length measurements under different
process settings for an indeterminate environment. In-control and out-of-control nature of the proposed chart under different
levels of shifts have been described. )e comparison of the proposed chart has been made with the existing chart. A real-world
example from the healthcare department has been included for the practical application of the proposed chart. It has been
observed from the simulation study and real example that the proposed control chart is efficient in quick monitoring of the out-of-
control process. It can be concluded that the proposed control chart can be applied effectively in uncertainty.

1. Introduction

)e control chart is considered as the most efficient, fab-
ulous, and powerful tool of statistical process control. )e
control charts have been widely used in various fields.
Suman and Prajapati [1] discussed the application in the
healthcare department. Zaman et al. [2] applied a control
chart in the wind turbine field. Hossain et al. [3] discussed
the application of a control chart for monitoring the glass
fiber process. )e effectiveness and efficiency of the control
chart are judged by its reaction behavior against changes in
its designed parameters. )ere are two types of changes
observed in the control chart literature, i.e., common
changes and special changes. Common changes also known
as common causes are natural and have no threatening effect
on the interested quality characteristic as compared to the
special changes or special causes [4]. )e early and quick
detection of the special cause of variation is the prime
property of any control chart which not only detects the out-
of-control process quickly but also timely stops the process
from producing a bulk of defective items which ultimately

cause a bad impression for the producer and results in heavy
losses [5]. )e idea of the control chart was floated by
Shewhart during the 1920s [6], and researchers are en-
deavoring to propose a robust control chart since its in-
ception but remained unsuccessful. )e proposed chart is an
efficient struggle for the quick monitoring of the
manufacturing process. )e variable control chart is used
when the data obtained from the measurement process and
attribute control charts are applied when the data is obtained
from the counting process. Abbas et al. [7] proposed the
control chart for monitoring healthcare. Aslam et al. [8]
designed the control chart for the process capability index.
Nazir et al. [9] proposed the improved control chart for the
industrial processes. Saghir et al. [10] proposed the improved
control chart for modified gamma data. Saghir et al. [11]
incorporated auxiliary information and repetitive sampling
for the monitoring of the process.

Repetitive sampling scheme (RSS) is an efficient sam-
pling scheme for the statistical process control techniques
that attracted the attention of many researchers during the
last two decades. )e RSS was basically introduced by
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Sherman [12] in the attribute acceptance sampling plans.
)e acceptance sampling plans for the normal distribution
and the log-normal distribution using the variable RSS were
proposed by Balamurali et al. [13]. Later on, the RSS for the
variable acceptance sampling plan was developed by Bala-
murali and Jun [14]. )e efficiency of the RSS for the average
sample number is intermediate between the single sampling
scheme and the probability to ratio sampling scheme
Balamurali et al. [13]. Ahmad et al. [15] developed the
Shewhart X-bar control chart for the RSS for monitoring the
mean value of the process capability index Cp. Ahmad et al.
[15] applied the RSS for the efficient monitoring of the coal
quality. Azam et al. [16] developed plans for the exponen-
tially weighted moving average regression estimators. Re-
petitive sampling plans based on one-sided specifications
limits were presented by Yen et al. [17] Recently, Saghir et al.
[10] developed a repetitive control chart for exponentially
weighted moving average (EWMA) statistic using auxiliary
information for monitoring process means. During the last
few years, repetitive sampling has been explored by many
authors including Adeoti and Olaomi [18], Aslam et al. [19],
Aslam et al. [19], Aslam et al. [20], Balamurali and Jun [14],
Balamurali et al. [13], Jun et al. [21], Liu and Wu [22], and
Radhakrishnan and Sivakumaran [23].

In probability theory, the gamma distribution is con-
sidered as the family of two-parameter continuous proba-
bility distributions and is extremely useful in quality control
literature when used under appropriate conditions. )e
normal probability distribution which is also very common
in quality control literature but may lead to erroneous results
when the shape of the underlying observations or the var-
iable of quality of interest is unknown [24] or does not follow
the normal distribution [25]. Another reason in which the
normal distribution is inappropriate is the size of the col-
lected data, particularly the single size data. However, these
situations are handled by using the gamma distribution as an
excellent substitute for the normal distribution in the study
carried out by Khan et al. [26] and Saghir et al. [11]. In
general, the gamma distribution is very common in mod-
eling the waiting time of the events or modeling the failure
time of the systems or the processes of Aksoy [27] and Saghir
et al. [10]. Many other distributions such as chi-square
distribution, Erlang distribution, and exponential distribu-
tion are the special cases of the gamma distribution. For
larger values of the shape parameter, the gamma distribution
approaches to the normal probability distribution [28]. )e
gamma distribution is considered as a better approximation
of the interested quality characteristic when its distribution
is skewed [29, 28]. Many control charts have been developed
for monitoring the skewed statistic and proved to be effective
and useful, for example, Jearkpaporn et al. [30] developed a
monitoring scheme to detect a shift in the shape parameter,
Zhang et al. [31] developed the gamma chart based on the
random shift model for monitoring the out-of-control
process, Chen and Yeh [32] developed an X-bar chart for
nonnormal distribution using the gamma distribution, and
Gonzalez and Viles [33] presented the method to monitor
the variable quality characteristic using the r-chart under the
gamma distribution.

Several control chart schemes have been developed for
the processes having clear, certain, determined, and crisp
observations of the interested quality characteristic. )ere
are many situations when the observations are unclear,
uncertain, vague, indeterminate, incomplete, and fuzzy.
Bradshaw [34] developed a control chart for monitoring the
observations from the fuzzy set theory. Williams and Zigli
[35] proposed charts for fuzzy logic for the service industry.
Taleb and Limam [36] constructed procedures for moni-
toring of linguistic data based on probability and fuzzy
theory. Gülbay et al. [37] developed a fuzzy control chart for
linguistic data. Hsieh et al. [38] explained a Poisson-based
control chart for monitoring wafer defects for fuzzy theory.
Sorooshian [39] investigated the fuzzy theory for monitoring
attribute quality characteristics.

)e neutrosophic logic which is the extension of the
fuzzy logic was proposed by Smarandache [40]. )e neu-
trosophic provides information about the measure of in-
determinacy which fuzzy logic is unable to provide.
Smarandache [41] discussed the generalization of intui-
tionistic fuzzy logic. Smarandache [42] introduced neu-
trosophic theory using the generalization form of the fuzzy
set theory. Abu Qamar and Hassan [43] and Abu Qamar and
Hassan [44] discussed Q-neutrosophic with appellations in
decision-making. More information on the applications of
neutrosophic logic can be found in the study carried out by
Alhabib et al. [45], Abdel-Baset et al. [46], and Jana and Pal
[47].

Smarandache [48] introduced the generalized class of the
traditional statistics under the neutrosophic logic and called
it the neutrosophic statistics. )e neutrosophic statistics
tend to transform to the classical statistics if all the obser-
vations are clear, certain, complete, or determined. Chen
et al. [49] analyzed the scale effect and anisotropy for
neutrosophic numbers of rock joint roughness coefficient
based on neutrosophic statistics. Aslam [50] introduced a
new sampling plan for the indeterminate environment
under the process loss consideration. Aslam et al. [51]
studied the indeterminate environment for testing of
grouped product using the Weibull distribution. Aslam and
Raza [8] developed a novel neutrosophic sampling plan for
the multiple manufacturing lines using an exponentially
weighted moving average and classical process capability
index under the neutrosophic optimization solution
method. Recently, Aslam et al. [52] designed the control
chart for the gamma distribution using the indeterminate
environment. More information regarding the control
charts can be found in the study carried out by Intaramo and
Pongpullponsak [53], Charongrattanasakul and Pongpull-
ponsak [54], Panthong and Pongpullponsak [55], Aslam
et al. [29], Aslam et al. [56], Fernández [57], Khan et al. [26],
Aslam et al. [58], and Mashuri and Ahsan [59].

Average run length (ARL) is used very commonly in
control chart literature as the evaluation tool of any pro-
posed chart. ARL is defined as the average number of
samples falling inside the control limits before the process
shows an out-of-control condition Montgomery [4]. In a
statistically controlled process, the values of neutrosophic
ARL (NARL) must be larger, but for the shifted process, the
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smaller NARL values are preferred under the indeterminate
environment for quick indication of out-of-control process
and thus resulting in a smaller amount of defective items.
More information about ARL can be found in the study
carried out by Woodall [60], Molnau et al. [61], Kim [62],
Knoth [63], Li et al. [64], Chananet et al. [65], and Phanyaem
et al. [66].

In this article, a control chart scheme has been de-
veloped for a repetitive sampling scheme using the gamma
distribution for the indeterminate environment with the
objective that it will be an efficient monitoring scheme. To
the best of the author’s knowledge, no work has been done
on a repetitive sampling control chart for gamma distri-
bution using the indeterminate environment. )e rest of
the paper is organized as follows.)e Neutrosophic gamma
distribution is introduced in Section 2. )e design of the
proposed neutrosophic gamma distribution chart has been
given in Section 3. In Section 3, the control chart for
aN ∈ [3, 5] and bN ∈ [1.9, 2.1] and aN ∈ [5, 10] and
bN ∈ [1.45, 1.55] has been discussed. In addition, tables of
NARLs have been generated and the simulation study of
the neutrosophic statistics has been explained. In Section 4,
a comparison of the proposed chart with an existing chart
has been given. In Section 5, a real example has been
explained for the practical application of the proposed
chart. Conclusion and the direction for future research
have been given in the Section 6.

2. Neutrosophic Gamma Distribution

Let the neutrosophic failure time be TN ∈ [TL, TU], where
TL and TU represent the indeterminacy interval of lower and
upper failures of an item that follows the neutrosophic
gamma distribution with neutrosophic scale parameter
bN ∈ [bL, bU] and neutrosophic shape parameter
aN ∈ [aL, aU]. )en, the neutrosophic probability density
function (npdf) of the neutrosophic gamma distribution is
given as

f tN(  �
b

aN

N

Γ aN( 
t
aN−1
N e

− bNtN ; tN, aN, bN

> 0; aN ∈ aL, aU , bN ∈ bL, bU ,

(1)

where Γ(x) describes the neutrosophic gamma function; for
more details, readers may refer to [20].

)e resultant neutrosophic cumulative distribution
(ncd) of the neutrosophic Gamma distribution (NGD) is

P TN ≤ tN(  � 1 − 

aN−1

j�1

e
− tN/bN( ) tN/bN( 

j

j!
; TN

∈ TL, TU , aN ∈ aL, aU , bN ∈ bL, bU .

(2)

It is to be noted that the NGD under the classic statistics
is the generalization of the traditional gamma distribution.
)e mean and variance of the neutrosophic statistics can be
written as

μN �
aN

bN

; aN ∈ aL, aU , bN ∈ bL, bU ,

σ2N �
aN

b
2
N

; aN ∈ aL, aU , bN ∈ bL, bU .

(3)

To construct control chart, we need the neutrosophic
normal distribution which is developed using the approx-
imation developed by [67] as T∗N � T1/3

N andTN ∈ [TL, TU].
More information regarding neutrosophic distribution can
be found in the study carried out by Smarandache [48], Peng
and Dai [68], Peng and Dai [69], Aslam et al. [51], Aslam
et al. [51], Aslam and Raza [8], and Aslam [50]. )en, the
mean and variance of the transformed neutrosophic dis-
tribution T∗N ∈ [T∗L, T∗U] can be written as

μT∗
N

�
b
1/3
N Γ aN + 1/3( 

Γ aN( 
, aN ∈ aL, aU , bN ∈ bL, bU ,

σT∗
N

�
b
2/3
N Γ aN + 2/3( 

Γ aN( 
−

b1/3N Γ aN + 1/3( 

Γ aN( 
 

2

, aN

∈ aL, aU , bN ∈ bL, bU .

(4)

3. Design of the Proposed Control Chart

In this section, we described the designing of the proposed
neutrosophic control chart for the transformed variable
T∗N � T1/3

N , T∗N ∈ [TL, TU]. According toWilson and Hilferty
[67], the random variable T∗N � T1/3

N , T∗N ∈ [TL, TU], has the
symmetry property of the normal probability distribution.
We developed the neutrosophic control chart using the
neutrosophic statistical interval method under the condition
that the interested quality characteristic follows the NGD.

As mentioned by Wilson and Hilferty [67], the trans-
formed variableT∗N � T1/3

N , T∗N ∈ [TL, TU], has the symmetry
property of the neutrosophic normal distribution. We
propose the following control chart under the NISM when
the quality of interest follows the NGD. )e following two
steps have been adopted to develop the neutrosophic control
chart:

(1) Determine T∗N � T1/3
N , where T∗N is the transformed

random variable based on the randomly selected
items from the manufacturing process.

(2) Using control limits, plot T∗N; then, declare the
process as out-of-control when T∗N ≥UCL1N or
T∗N ≤ LCL1N, where LCL1N ∈ [LCL1L, LCL1U] and
UCL1N ∈ [UCL1L,UCL1U] are neutrosophic lower
and upper control limits, respectively. Note here that
the decision about the process is out-of-control and
is taken if T∗N is beyond the outer of neutrosophic
control limits.

)e proposed neutrosophic control chart under the
neutrosophic statistical interval method is the extension of
the Sheu and Lin [70] control chart under the classical
statistics. )e proposed chart converts to Sheu and Lin [70]
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control chart when developed under the crisp, complete, or
certain observations. Let the process lie in-control state
under the neutrosophic scale parameter b0N ∈ [b0L, b0U].

)en, the control limits of the proposed neutrosophic
control chart can be developed as

LCL1N � μT∗
N

− k1NσT∗
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�
b
1/3
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where k1N ∈ [k1L, k1U] and k2N ∈ [k2L, k2U] are the neu-
trosophic control limit coefficients.

Furthermore, we define
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)erefore, the neutrosophic control limits can be written
as follows:

LCL1N � b
1/3
0NLL1N,

LCL2N � b
1/3
0NLL2N,

UCL1N � b
1/3
0NUL1N,

UCL2N � b
1/3
0NUL2N.

(7)

For a shifted process, note that a shift occurs in the
neutrosophic scale parameter, whereas the shape parameter
remains constant. )en, the probability under the neu-
trosophic statistical interval method of the in-control pro-
cess when the process shows the state of in-control can be
calculated as

P
0
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(9)

)e probability of out-of-control under neutrosophic
statistics is given by

P
0
out �

P
0
out,N

1 − P
0
rep,N

. (10)
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As mentioned earlier the ARL is used to evaluate the
developed scheme for its efficiency to declare the shifted
process as out-of-control quickly. So, the neutrosophic ARL
(NARL) for the in-control process ARL0N can be defined as

ARL0N �
1

P
0
out

; ARL0N ∈ ARL0L,ARL0U . (11)

We will measure the efficiency of the proposed control
chart under the neutrosophic average run length (NARL)
which shows on the average when the process is out-of-
control and is defined by

ARL0N �
1

P
0
out

; ARL0N ∈ ARL0L,ARL0U . (12)

Let a shift occur in the process; then, the process is
shifted from the targeted b0N ∈ [b0L, b0U] to
b1N � cb0N, b1N ∈ [b1L, b1U], where the constant c shows the
shift in the process. )en, the probability of the out-of-
process under the neutrosophic statistical interval method
can be developed as
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)e probability of out-of-control under neutrosophic
statistics for the shifted process is given by

P
1
out �

P
1
out,N

1 − P
1
rep,N

. (15)

)us, the NARL for the shifted process ARL1N is defined
as

ARL1N �
1

P
1
out,N

; ARL1N ∈ ARL1L,ARL1U . (16)

Using the abovementioned equations, the R-language
code program was written to estimate the neutrosophic
parameters of the proposed chart for different process set-
tings. Tables 1 and 2 have been generated for aN ∈ [3, 5] and
bN ∈ [1.9, 2.1] and aN ∈ [5, 10] and bN ∈ [1.45, 1.55] with
NARL values for different shifts from 1.0 to 4.0.

Table 1 provides NARL values for the in-control
NARL0 � 200, 300, and 370 with
kaN � [4.594878, 5.233344], [5.282686, 5.430229], and
[5.000939, 5.409798] and krN � [1.527915, 2.881848],
[0.3242994, 2.66222], and [0.9223276, 4.060355]. Figure 1
has been given for the plotting of aN ∈ [3, 5] and
bN ∈ [1.9, 2.1].

From Tables 1 and 2, we made the following trends in
NARL:

(1) As the values of the shift c increase from 1.0 to 4.0,
the indeterminacy intervals
ARL1N ∈ [ARL1L,ARL1U] decrease

(2) As the values of aN ∈ [aL, aU] and bN ∈ [bL, bU]

increase from aN ∈ [3, 5] and bN ∈ [1.9, 2.1] to

aN ∈ [5, 10] and bN ∈ [1.45, 1.55], the indetermi-
nacy intervals decrease

4. Comparison of the Proposed Chart with the
Existing Chart

In this section, the comparative advantages and efficiency of
the proposed chart over the existing chart of the traditional
chart for gamma distribution under the indeterminacy
environment have been discussed with the help of the
simulated data. For the purpose of fair comparison, we fixed
the same values of the process parameters. Table 3 shows the
in-control NARL0 and out-of-control NARL1 values for
different shifts from 1.0 to 4.0.

A simple comparison shows that the proposed chart has
smaller NARL1 values as compared to the existing chart [52].
From example, when c � 1.1, the indeterminacy intervals of
NARL for the existing chart is ARL1N ∈ [89.86, 101.98] and
for the proposed chart is ARL1N ∈ [80.02, 86.99]. From this
comparison, it can be concluded that the proposed control
chart will indicate the shift in the process between 80th to
86th samples. On the contrary, the chart proposed by Aslam
et al. [8] will indicate the shift in the process between 89th

and 101st samples. )erefore, the proposed control chart has
the ability to detect a shift in the process earlier than the
existing control chart.

We will now discuss the efficiency of the proposed
control chart over the existing control chart using the
simulated data. According to the proposed chart, the process
is said to out-of-control if T∗N ≥UCL1N or T∗N ≤ LCL1N. )e
first 20 observations are generated from the neutrosophic
gamma distribution when the process is an in-control state.
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)enext 20 observations are from the out-of-control process
when c � 1.4. )e proposed control chart for simulated data
is shown in Figure 1. )e existing control chart for the
simulated data is shown in Figure 2. From Table 1, it is
expected that the shift should be detected between 16th

sample to 22nd sample. From Figure 1, it can be seen that the
proposed control chart detects a shift in the process
according to expectation.)e determinate part (lower value)
of the statistic T∗N is beyond UCL1N between 16th samples to
22nd sample. We also note that several observations are
within indeterminacy interval and resampling areas. On the
contrary, the existing control chart does not show any shift
in the process. From this simulation study, it is concluded
that the proposed chart has the ability to detect a shift in the
process as compared to the existing control chart.

5. Application of the Proposed Chart

In this section, we will discuss the application of the pro-
posed control chart in the healthcare department. A large
hospital management is interested to track the urinary tract
infections (UTIs) patients. According to Santiago and Smith
[71], “data were provided from a large hospital system
concerned with a very high rate of hospital-acquired UTIs.
Specifically, the hospital would like to track the frequency of
patients being discharged who had acquired a UTI while in
the hospital as a way to quickly identify an increase in in-
fection rate or, conversely, monitor whether the forth-
coming process or material changes result in fewer
infections because the root cause often differs based on
gender, male and female patients.” )e UTIs’ data of male

Table 1: Neutrosophic average run length of the proposed chart for aN ∈ [3, 5] and bN ∈ [1.9, 2.1].

kaN [4.594878, 5.233344] [5.282686, 5.430229] [5.000939, 5.409798]
krN [1.527915, 2.881848] [0.3242994, 2.66222] [0.9223276, 4.060355]
aN [3, 5] [3, 5] [3, 5]
bN [1.9, 2.1] [1.9, 2.1] [1.9, 2.1]
c ARLN
1.0 [200, 200.01] [300.01, 300] [370, 370]
1.1 [80.02, 86.99] [101.62, 111.28] [149.4, 138.84]
1.2 [37.51, 43.40] [41.19, 48.86] [71.14, 61.11]
1.3 [19.92, 24.14] [19.33, 24.49] [38.39, 30.54]
1.4 [11.71, 14.68] [10.28, 13.69] [22.84, 16.95]
1.5 [7.50, 9.62] [6.11, 8.40] [14.7, 10.29]
1.6 [5.18, 6.72] [4.01, 5.58] [10.1, 6.75]
1.7 [3.81, 4.96] [2.88, 3.99] [7.32, 4.75]
1.8 [2.97, 3.85] [2.23, 3.03] [5.56, 3.55]
1.9 [2.42, 3.11] [1.84, 2.43] [4.39, 2.80]
2.0 [2.05, 2.60] [1.59, 2.03] [3.58, 2.31]
2.3 [1.55, 1.88] [1.28, 1.51] [2.44, 1.66]
2.5 [1.32, 1.54] [1.15, 1.29] [1.88, 1.37]
2.8 [1.18, 1.33] [1.08, 1.16] [1.53, 1.21]
3.0 [1.13, 1.25] [1.06, 1.11] [1.39, 1.15]
4.0 [1.03, 1.08] [1.01, 1.03] [1.12, 1.04]

Table 2: Neutrosophic average run length of the proposed chart for aN ∈ [5, 10] and bN ∈ [1.45, 1.55].

kaN [4.006202, 4.571112] [3.939843, 4.788404] [4.14799, 4.867394]
krN [1.086602, 2.200099] [2.939107, 1.818469] [1.414571, 1.799174]
aN [5, 10] [5, 10] [5, 10]
bN [1.45, 1.55] [1.45, 1.55] [1.45, 1.55]
c ARLN
1.0 [200.01, 200] [300.01, 300.01] [370, 370.02]
1.1 [58.89, 72.91] [77.12, 125.12] [91.79, 130.98]
1.2 [21.72, 31.51] [25.26, 61.28] [29.13, 55.15]
1.3 [9.65, 15.64] [10.15, 33.91] [11.36, 26.64]
1.4 [5.06, 8.74] [4.93, 20.64] [5.36, 14.42]
1.5 [3.09, 5.42] [2.87, 13.56] [3.04, 8.60]
1.6 [2.15, 3.68] [1.97, 9.48] [2.04, 5.60]
1.7 [1.68, 2.72] [1.53, 6.98] [1.57, 3.93]
1.8 [1.42, 2.15] [1.31, 5.37] [1.33, 2.95]
1.9 [1.27, 1.79] [1.19, 4.29] [1.20, 2.35]
2.0 [1.18, 1.57] [1.12, 3.54] [1.12, 1.96]
2.3 [1.07, 1.27] [1.04, 2.45] [1.04, 1.46]
2.5 [1.03, 1.15] [1.02, 1.90] [1.02, 1.25]
2.8 [1.01, 1.08] [1.01, 1.56] [1.01, 1.13]
3.0 [1.01, 1.05] [1, 1.42] [1, 1.09]
4.0 [1, 1.01] [1, 1.13] [1, 1.02]
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patients are selected from [8] and shown in Table 4. From the
UTIs’ data, it is clear that the data is presented in the interval.
)erefore, the existing control chart proposed by [71] cannot
apply for the monitoring of UTIs patients. )e hospital
management can apply the proposed control chart for
tracking UTIs patients. Suppose that ARL0N ∈ [370, 370],
aN ∈ [7.6666, 7.7777], bN ∈ [1.0959, 1.1559], and
nN ∈ [50, 50]. )e control limit coefficients are
k1N ∈ [3.3590, 3.7703] and k2N ∈ [0.1637, 2.0479]. Figure 3
shows the proposed control chart for UTIs patients. From
Figure 3, it can be seen that two points are outside the upper
control limits. Aslam et al. [8] presented a control chart for
UTIs data. )e neutrosophic control chart proposed by

Aslam et al. [8] shows that all points are within the control
limits. In addition, it can be noted from the proposed chart that
several points are within the indeterminacy interval and be-
tween repetitive areas. It means that the hospital management
can be indeterminate about the several observations in the
UTIs data and need to repeat the process from those obser-
vations in the repetitive areas. By comparing the proposed
UTIs chart with the UTIs chart proposed by Aslam et al. [8], it
can be concluded that the proposed control chart clearly in-
dicates some issues in tracking the UTIs’ patient, and therefore,
the hospital management should take action to bring back the
process to in-control state. )e proposed control chart can be
applied to any other data in the same way.

xU
xL

UCL1U = 27.1238

UCL1L = 18.8307

UCL2U = 13.9249

UCL2L = 5.9478
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Simulated data

LCL2U = 0.8259
0

5

10

15

20

25

30

35

Sa
m

pl
e v

al
ue

s

10 20 30 400
Observations

Figure 1: )e proposed control for simulated data when aN ∈ [3, 5], bN ∈ [1.9, 2.1], nN ∈ [20, 20], k1N ∈ [4.5948, 5.2333], and k2N ∈
[1.5279, 2.8818].

Table 3: Comparison of proposed control chart with neutrosophic Shewhart control chart.

Existing Proposed Existing Proposed Existing Proposed
[200, 200] [200, 200.01] [300, 300] [300.01, 300] [370.01, 370.01] [370, 370]
[89.86, 101.98] [80.02, 86.99] [128.26, 146.33] [101.62, 111.28] [154.21, 176.4] [138.84, 149.4]
[47.25, 58.86] [37.51, 43.40] [64.73, 81.41] [41.19, 48.86] [76.20, 96.30] [61.11, 71.14]
[27.98, 37.33] [19.92, 24.14] [37.02, 50.05] [19.33, 24.49] [42.82, 58.27] [30.54, 38.39]
[18.15, 25.47] [11.71, 14.68] [23.32, 33.26] [10.28, 13.69] [26.57, 38.20] [16.95, 22.84]
[12.64, 18.42] [7.50, 9.62] [15.84, 23.51] [6.11, 8.40] [17.82, 26.68] [10.29, 14.70]
[9.32, 13.95] [5.18, 6.72] [11.43, 17.45] [4.01, 5.58] [12.72, 19.61] [6.75, 10.1]
[7.2, 10.97] [3.81, 4.96] [8.66, 13.49] [2.88, 3.99] [9.54, 15.02] [4.75, 7.32]
[5.77, 8.90] [2.97, 3.85] [6.83, 10.77] [2.23, 3.03] [7.46, 11.90] [3.55, 5.56]
[4.77, 7.41] [2.42, 3.11] [5.56, 8.85] [1.84, 2.43] [6.03, 9.70] [2.80, 4.39]
[4.04, 6.30] [2.05, 2.60] [4.65, 7.43] [1.59, 2.03] [5.01, 8.10] [2.31, 3.58]
[2.92, 4.53] [1.55, 1.88] [3.27, 5.21] [1.28, 1.51] [3.47, 5.61] [1.66, 2.44]
[2.30, 3.52] [1.32, 1.54] [2.53, 3.97] [1.15, 1.29] [2.66, 4.23] [1.37, 1.88]
[1.88, 2.80] [1.18, 1.33] [2.02, 3.10] [1.08, 1.16] [2.10, 3.27] [1.21, 1.53]
[1.69, 2.48] [1.13, 1.25] [1.81, 2.72] [1.06, 1.11] [1.87, 2.85] [1.15, 1.39]
[1.27, 1.69] [1.03, 1.08] [1.31, 1.79] [1.01, 1.03] [1.33, 1.85] [1.04, 1.12]
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Figure 2: )e existing control chart for simulated data when aN ∈ [3, 5], bN ∈ [1.9, 2.1], nN ∈ [20, 20], k1N ∈ [4.5948, 5.2333], and
k2N ∈ [1.5279, 2.8818].

Table 4: )e neutrosophic UTIs’ data.

Sr# TN T∗N

1 [13.13, 13.56] [2.35, 2.38]
2 [3.57, 15.55] [1.52, 2.49]
3 [4.31, 16.50] [1.62, 2.54]
4 [2.76, 25.53] [1.40, 2.94]
5 [7.75, 15.38] [1.97, 2.48]
6 [11.45, 13.18] [2.25, 2.36]
7 [9.20, 15.18] [2.09, 2.47]
8 [5.51, 9.77] [1.76, 2.13]
9 [8.18, 13.07] [2.01, 2.35]
10 [7.07, 19.91] [1.91, 2.71]
11 [7.35, 14.89] [1.94, 2.46]
12 [5.62, 11.09] [1.77, 2.23]
13 [8.38, 16.72] [2.03, 2.55]
14 [9.49, 10.06] [2.11, 2.15]
15 [4.90, 23.67] [1.69, 2.87]
16 [4.45, 14.68] [1.64, 2.44]
17 [7.11, 16.44] [1.92, 2.54]
18 [9.37, 15.95] [2.10, 2.51]
19 [12.00, 16.38] [2.28, 2.53]
20 [7.41, 16.62] [1.95, 2.55]
21 [10.64, 15.15] [2.19, 2.47]
22 [6.63, 11.21] [1.87, 2.23]
23 [2.87, 14.27] [1.42, 2.42]
24 [6.87, 10.37] [1.90, 2.18]
25 [6.16, 18.85] [1.83, 2.66]
26 [6.53, 12.47] [1.87, 2.31]
27 [6.85, 12.13] [1.89, 2.29]
28 [8.08, 22.69] [2.00, 2.83]
29 [11.61, 17.14] [2.26, 2.57]
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6. Concluding Remarks

In this article, we presented the control chart using repetitive
sampling under neutrosophic statistics when the data follow
the gamma distribution. We presented some necessary
measures to evaluate the proposed control chart. A simu-
lation study and real example from the healthcare were
included to show the efficiency of the proposed control chart

over the existing control chart. From the study, it is observed
that the proposed chart is an efficient addition in the tool kit
of the quality control personnel. )e proposed scheme can
be extended for the multivariate case as future research. )e
proposed control using some other transformation for
nonnormal distribution and different datasets can be con-
sidered as future research. )e proposed chart using the cost
model can be studied as future research. )e proposed
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Figure 3: )e proposed control chart for UTIs’ patients.

Table 4: Continued.

Sr# TN T∗N

30 [3.98, 17.16] [1.58, 2.57]
31 [6.81, 17.25] [1.89, 2.58]
32 [4.42, 12.53] [1.64, 2.32]
33 [6.53, 13.96] [1.86, 2.40]
34 [8.73, 9.30] [2.05, 2.10]
35 [5.37, 9.43] [1.75, 2.11]
36 [8.44, 6.35] [2.03, 1.85]
37 [11.79, 17.01] [2.27, 2.57]
38 [5.33, 14.90] [1.74, 2.46]
39 [4.20, 21.20] [1.61, 2.76]
40 [5.74, 11.95] [1.79, 2.28]
41 [5.24, 11.09] [1.73, 2.23]
42 [5.10, 10.10] [1.72, 2.16]
43 [9.11, 24.54] [2.08, 2.90]
44 [8.39, 10.21] [2.03, 2.16]
45 [5.33, 18.03] [1.74, 2.62]
46 [7.90, 11.43] [1.99, 2.25]
47 [3.62, 13.00] [1.53, 2.35]
48 [5.01, 13.62] [1.71, 2.38]
49 [4.09, 12.88] [1.60, 2.34]
50 [9.38, 17.45] [2.10, 2.59]
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control chart for monitoring imbalanced data can be con-
sidered as future research.

Data Availability
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within the article.
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*e theory of complex hesitant fuzzy set (CHFS) is a modification technique of the complex fuzzy set (CFS) to cope with awkward
and unreliable information’s in daily life issues. CHFS contains the grade of truth in the form of complex number, whose real and
imaginary parts are in the form of the finite subset of the unit interval. CHFS is the mixture of hesitant fuzzy set (HFS) and CFS,
which handles the complex and uncertain information in real-world issues which is compared with fuzzy sets and complex fuzzy
sets. *e positive membership in CHFS is in the form a polar coordinate belonging to unit disc in the complex plane. *e aims of
this manuscript are to explore some similarity measures (SMs), weighted SMs (WSMs) such as cosine SMs, weighted cosine SMs,
SMs based on cosine function, WSMs based on cosine function, SMs based on tangent function, and WSMs based on tangent
function of CHFS. Some special cases of the presented measures are discussed in detail. Moreover, we use our described SMs and
weighted SMs of CHFS in the environment of medical diagnosis and pattern recognition to assess the practicality and competence
of the described SMs. Finally, to find the validity and proficiency of the investigated measures based on CHFSs, the comparison
between explored measures with some already defined measures and their graphical representations are also discussed in detail.

1. Introduction

*e fuzzy set (FS) is the modification of crisp set which was
given by Zadeh [1] to manage the vagueness and uncertainty
in the information in real-life decisions. In the theory of FS,
the positive grade belongs to closed interval [0, 1], where
greatest value designated greatest positive grade. FS has
numerous applications in various fields [2–4]. Bustince et al.
[5] operated on FSs and their models, extensions portrayal,
and aggregation. SMs between FSs play an essential role in
the theory of FS, which attracted a lot of attention from the
authors. SMs have a lot of applications in real-world
problems and are extremely useful in numerous fields [6, 7].
Chen [8] interpreted the similarity function to find the
similarity degree among FSs. Pedrycz [9] presented fuzzy
control and fuzzy systems. FSs in pattern recognition,

methodology, and methods are also presented by Pedrycz
[10]. Rangel-Valdez et al. [11] described parallel designs for
metaheuristics that solve portfolio selection problems using
fuzzy outranking relations. Mahmood [12] described a novel
approach towards bipolar soft set and their applications.

Numerous authors mentioned the issue, what will be the
impact when we alter the range of FS into a unit circle of a
complex plane. To deal with such sorts of circumstance,
Ramot et al. [13] described the notion of CFS as a modi-
fication of FS to handle the complex and tricky data in real-
world. *e idea of CFS is represented by complex-valued
positive grade, which carries two-dimensional data in a
particular set. Moreover, Tamir et al. [14] presented the
Cartesian form of CFS and the Cartesian complex fuzzy
positive grade where both real and imaginary parts carry the
fuzzy data. In polar portrayal, the fuzzy data carries the
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phase value and absolute value of complex positive grade.
*e complex fuzzy number is not the same as the CFS. *e
δ-equalities and operation properties of CFS were intro-
duced by Zhang et al. [15].

HFS are the significant expansions of the theory of FS.
Torra [16, 17] described the notion of HFS. An HFS is
represented by positive grade which is in the shape of a finite
subset of closed interval [0, 1]. Torra and Narukawa [17]
characterized some fundamental operations on HFS.
Rodriguez et al. [18] built up the idea of hesitant fuzzy
linguistic term sets. Farhadinia [19] interpreted the idea of
similarity and distance measures for higher order HFS. *e
notion of hesitant fuzzy data aggregation in decision-making
(DM) was described by Xia and Xu [20]. Wei et al. [21]
interpreted the idea of hesitant fuzzy Choquet aggregation
operators and their applications to multiple attribute DM
(MADM). Zhang [22] characterized hesitant fuzzy aggre-
gation operators and their application to MADM. Xu and
Xia [23] explored the idea of separation and correlation
measures of HFS. Zhu et al. [24] gave the idea of hesitant
fuzzy geometric Bonferroni means. Herrera et al. [25] de-
scribed HFSs, an emerging tool in decision-making. A re-
view of HFSs, quantitative and qualitative extensions, was
explored by Rodriguez et al. [26]. Li et al. [27] described the
consistency of hesitant fuzzy linguistic preference relations.
Muhiuddin et al. [28] interpreted the generalized hesitant
fuzzy ideals in semigroups.

*e idea of similarity is a fundamental idea in human
cognizance. Similarity has a key role in recognition, taxon-
omy, and several different fields. *ere are numerous aspects
of the notion of the similarity that have escaped formalization.
As per (HFS) detailing of a substantial, broadly useful defi-
nition of similarity is a difficult issue. *ere does not exist a
legitimate, universally useful definition of similarity. *ere
exist numerous specific definitions that have been utilized
with accomplishment in diagnostics, classification, cluster
analysis, and recognition. *ere are a few comparability
measures that are interpreted and utilized for different
purposes [29]. *e SMs are categorized into 3 classifications:
(1) measures based on implicators. (2) Measure based on
metric. (3) Measure based on set-theoretic. While managing
SMs based on distance, examples have been developed for
perceptual similarity where each distance adage is obviously
damaged by dissimilarity measures, especially the triangle
inequality [17], and thusly the relating SM ignores transitivity.
*is model hypothesizes that the perceptual distance fulfils
the metric adages, the observational legitimacy of which has
been tentatively tested by a few authors, especially the triangle
inequality (for subtleties see [16] and [17, 30, 31]).*us, in the
event of set-theoretic SMs, it is seen that crisp transitivity is a
lotmore grounded condition to be put upon SM. Set-theoretic
SMs are additionally partitioned in three gatherings: (i)
measures dependent on crisp logic; (ii) measures dependent
on fuzzy logic; (iii) measures dependent on HFSs.

In this paper, we present complex HFSs. *e inspiration
is that when characterizing the positive grade of the element,
the struggle of establishing the positive grade is not as we
have margin of error (as in complex intuitionistic FS [32]),
or some chance circulations (as in type 2 CFSs) on the

probable values. In the existing theories, numerous scholars
have faced several troubles. When a decision-maker pro-
vides such types of information for the grade of truth in the
form of 0.22e(0.3) and 0.5e(0.31), this circumstance can emerge
in a multicriteria DM. Basically, the theory of complex
hesitant fuzzy set contains the grade of truth in the form of
complex number, whose real and imaginary parts are in the
form of the finite subset of the unit interval. In this unique
situation, rather than considering only an aggregation op-
erator [12], it is helpful to manage all the possible values.*is
circumstance, as we will talk about later, can be demon-
strated utilizing multisets. *erefore, the existing theories
are not able to cope with such types of troubles. *e in-
vestigated ideas are more able to cope with it effectivelyg.

Due to this and preserving the advantages of the SMs, in
this manuscript, the notion of CHFS is explored, which is the
fusion of HFS and CFS to manage the uncertainty and
complicated data in real world. *e positive membership in
CHFS is in the form of a finite subset of unit disc in the
complex plane. Moreover, in this manuscript, we interpreted
some similarity measures (SMs) and weighted SMs (WSMs).
Additionally, we use our explored SMs and weighted SMs of
CHFS in the environment of medical diagnosis and pattern
recognition to assess the practicality and competence of the
described SMs. *e comparison between explored measures
with some already defined measures and their graphical
representations are also discussed in detail.

*e structure of this manuscript is given as follows: in
Section 2 of this manuscript, we present preliminaries. In
Section 3, the notion of the CHFS and its fundamental
properties are explored. In Section 4 of this manuscript, we
explore some similarity measures (SMs) and weighted SMs
(WSMs) of CHFS. In Section 5, we use proposed SMs and
weighted SMs in the environment of medical diagnosis and
pattern recognition. *e comparison between explored mea-
sure with some already defined measures and their graphical
representations are also discussed in detail in Section 6. In
Section 7, we discuss the conclusion of the article.

2. Preliminaries

In this section, we revise fundamental definitions such as FS,
CFS, and HFS. *roughout this paper, x denotes the fix set.

Definition 1 (see [1]). An FS E is of the shape,

E � x, μΕ(x)( |x ∈ χ , (1)

with a condition 0≤ μΕ(x)≤ 1, where μE(x) stands for the
grade of membership. *roughout this paper, the family of
all FSs on X are designated by FS(X). *e pair
E � (x, μE(x)) is said to be fuzzy number (FN).

Definition 2 (see [13]). A CFS E is of the shape,

E � x, μE(x)( |x ∈ χ , (2)

where μE(x) � cE(x).ei2π(ωc
(x)

E
) stands for the complex-valued

membership grade in the shape of polar coordinate, where
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cE(x),ωcE
(x) ∈ [0, 1]. Moreover, the pair E � (x, cE

(x).ei2π(ωc
(x)

E
)) is said to be complex fuzzy number (CFN).

Definition 3 (see [16, 17]). An HFS E is of the shape,

E � x, μΕ(x)( |x ∈ χ , (3)

where μE(x) is a finite subset of [0, 1] standing for the grade
of membership for every element x ∈ χ. Moreover, the pair
E � (x, μE(x)) is said to be hesitant fuzzy number (HFN).

Definition 4 (see [29]). For any two HFSs E and F, the SM
D(E, F) fulfils the following axioms:

(1) 0≤S(E, F)≤ 1;
(2) S(E, F) � 1⟺E � F;
(3) S(E, F) � S(F, E).

Definition 5 (see [29]). For any two HFSs E and F, the
distance measure d(E, F) fulfils the following properties:

(1) 0≤D(E, F)≤ 1;
(2) D(E, F) � 1⟺ E � F;
(3) D(E, F) � D(F, E).

From the discussion we did above, we get that the
S(E, F) � 1 � D(E, F).

3. Complex Hesitant Fuzzy Sets

In this section, we explored the notion of complex hesitant
fuzzy sets (CHFSs) and some of its properties.

Definition 6. A CHFS E is of the shape,

E � x, μE(x)( |x ∈ X , (4)

where

μΕ(x) � cEj
(x).e

i2π ωc
(x)

Ej
 

, j � 1, 2, 3, . . . , n
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� cE1
(x).e

i2π ωcE1(x) 
, cE2(x).e

i2π ωcE2(x) 
, . . . . . . , cEn(x).e

i2π ωcEn
(x) 

 ,

(5)

expressed the complex-valued grade of membership which is
the subset of unit disc in complex plane with acondition

cEj
(x),ωcEj

(x) ∈ [0, 1]. Further, E � (x, cEj
(x).e

i2π(ωx
cEj

)
) is

known as the complex hesitant fuzzy number (CHFN).

Definition 7. Let E � (x, cEj
(x).e

i2π(ωx
cEj

)
) and

F � (x, cEj
(x).e

i2π(ωx
cEj

)
) be two CHFNs. *en,

(1) c(cE(x)) � (x, 1 − cEj
(x) .e

i2π( 1−ω(x)
cEj

 )

)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
;

(2) E∪F� (x,max(cEj
(x),cFj

(x)).e
i2π(max(ωcEj

(x),ωcEj
))

) ;

(3) E∩F� (x,min(cEj
(x),cFj

(x)).e
i2π(min(ωcEj

(x),ωcEj
))

) .

*e theory of CHFS is a powerful tool to deal with
unsure and complicated data in real-world issues. *e CHFS
holds the grade of membership in the shape of a finite subset
of the unit disc in the complex plane, whose entities are in
the shape of polar coordinates. Essentially, the CHFS holds
two-dimensional data in a particular set. *e explored CHFS
is more general than the existing notions such as FS, CFS,
and HFS.

Example 1. Let
E�

(x1, 0.8e
i2π(0.9)

,0.6e
i2π(0.5)

 ),(x2, 0.5e
i2π(0.7)

,0.2e
i2π(1)

,1e
i2π(0.5)

 ),(x3, 0.1e
i2π(0.2)

 )

(x4, 0.4e
i2π(0.5)

,0.5e
i2π(0.6)

,0.3e
i2π(0.4)

 ),(x5, 0.1e
i2π(0.3)

,0.3e
i2π(0.5)

 )

⎧⎨

⎩

⎫⎬

⎭ and

F�
(x1, 0.5e

i2π(0.8)
,0.7e

i2π(0.4)
,1e

i2π(0.5)
 ),(x2, 0.4e

i2π(0.6)
 ),(x3, 0.8e

i2π(0.6)
,0.5e

i2π(0.8)
 )

(x4, 0.9e
i2π(0.6)

,0.4e
i2π(0.3)

 ),(x5, 0.5e
i2π(0.7)

,0.3e
i2π(0.6)

,0.2e
i2π(0.5)

 ),

⎧⎨

⎩

⎫⎬

⎭ be

two CHFSs. *en,

(1) Ec �
0.2e

i2π(0.1)
, 0.4e

i2π(0.5)
 , 0.5e

i2π(0.3)
, 0.8e

i2π(0.0)
, 0.0e

i2π(0.5)
 , 0.9e

i2π(0.8)
 

0.6e
i2π(0.5)

, 0.5e
i2π(0.4)

, 0.7e
i2π(0.6)

 , 0.9e
i2π(0.7)

, 0.7e
i2π(0.5)

 

⎧⎨

⎩

⎫⎬

⎭;

(2) E∪F �
0.8e

i2π(0.9)
, 0.7e

i2π(0.5)
 , 0.5e

i2π(0.7)
, 0.2e

i2π(1)
, 1e

i2π(0.5)
 , 0.8e

i2π(0.6)
, 0.5e

i2π(0.8)
 

0.9e
i2π(0.6)

, 0.5e
i2π(0.6)

, 0.3e
i2π(0.4)

 , 0.5e
i2π(0.7)

, 0.3e
i2π(0.6)

, 0.2e
i2π(0.5)

 

⎧⎨

⎩

⎫⎬

⎭;

(3) E∩F �
0.5e

i2π(0.8)
, 0.6e

i2π(0.4)
 , 0.4e

i2π(0.6)
 , 0.1e

i2π(0.2)
 

0.4e
i2π(0.5)

, 0.4e
i2π(0.3)

 , 0.1e
i2π(0.3)

, 0.3e
i2π(0.5)

 

⎧⎨

⎩

⎫⎬

⎭;

4. Similarity Measures Based on the Cosine
Function for CHFSs

In this section, we interpreted some SMs such as cosine SMs
for CHFSs, SMs of CHFSs based on cosine function, and
SMs of CHFSs based on cotangent function.

Definition 8. Let E and F be two CHFSs on set X. *en, SM
between E and F is represented by Sc(E, F), which fulfils the
following postulate:

(1) 0≤Sc(E, F)≤ 1;
(2) Sc(E, F) � 1 if and only if E � F;
(3) Sc(E, F) � Sc(F, E).

4.1. Cosine Similarity Measures for CHFS. Let E be a CHFS
on a set X. *en, the elements contained in CHFS can be
presented as the function of membership degree μE(x),
which is a subset of a unit disc in a complex plane. Con-
sequently, a cosine SM and weighted cosine SM with CHF
data are expressed similarly to the cosine SM based on
Bhattacharya’s distance [33].
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Definition 9. Let E and F be two CHFSs on a set X. *en, the
cosine SM between E and F can be presented as

S
1
c(E, F) �

1
n



n

κ�1

(1/L) 
L
j�1 cEj

xκ(  · cFj
xκ(  +(1/L) 

L
j ωcEj

xκ(  · ωcFj
xκ( 

������������������������������

1/L
L
j�1 c

2
Ej

xκ(  +(1/L) 
L
j�1 ω

2
cEj

xκ( 

 ��������������������������������

(1/L) 
L
j�1 c

2
Ej

xκ(  +(1/L) 
L
j�1 ω

2
cEj

xκ( 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

In Definition 9, if we assume the imaginary parts zero,
then the interpreted SM transforms for HFS. Likewise, if we
assume the CHFS as a singleton set, then the interpreted SM
transforms for CFS. Moreover, if we assume the CHFS as a
singleton set and the imaginary part zero, then the inter-
preted SM transforms for FS. Its structure makes it im-
portant and expert to deal with unknown and undependable
data in real decision theory.

Theorem 1. !e SM S1
c(E, F) fulfils the following postulates:

(1) 0≤S1
c(E, F)≤ 1;

(2) S1
c(E, F) � 1 if E � F;

(3) S1
c(E, F) � S1

c(F, E).

Proof

(1) Since 1/L
L
j�1 cEj

(xκ) · cFj
(xκ) ∈ [0, 1], 1/L

L
j ωcEj

(xκ) · ωcFj
(xκ) ∈ [0, 1], 1/L

L
j�1 c2

Ej
(xκ) ∈ [0, 1],

1/L
L
j�1 ω

2
cEj

(xκ) ∈ [0, 1], and 1/L
L
j�1 c2

Ej
(xκ) ∈

[0, 1], 1/L
L
j�1 ω2

cEj
(xκ) ∈ [0, 1] and denominator

will always remain greater than the nominator. So,
for κ � 1, we have

1/L
L
j�1 cEj

x1(  · cFj
x1(  + 1/L

L
j�1 ωcEj

x1(  · ωcFj
x1( 

�����������������������������

1/L
L
j�1 c

2
Ej

x1(  + 1/L
L
j�1 ω

2
cEj

x1( 

 �����������������������������

1/L
L
j�1 c

2
Ej

x1(  + 1/L
L
j�1 ω

2
cEj

x1( 

 ∈ [0, 1]. (7)

For κ � 2, we have

1/L
L
j�1 cEj

x2(  · cFj
x2(  + 1/L

L
j�1 ωcEj

x2(  · ωcFj
x2( 

�����������������������������

1/L
L
j�1 c

2
Ej

x2(  + 1/L
L
j�1 ω

2
cEj

x2( 

 �����������������������������

1/L
L
j�1 c

2
Ej

x2(  + 1/L
L
j�1 ω

2
cEj

x2( 

 ∈ [0, 1]. (8)

By continuing this procedure, we obtain



n

κ�1

1/L
L
j�1 cEj

xκ(  · cFj
xκ(  + 1/L

L
j�1 ωcEj

xκ(  · ωcFj
xκ( 

�����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 

 �����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ n[0, 1]. (9)
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*is implies that

0≤
n

κ�1

1/L
L
j�1 cEj

xκ(  · cFj
xκ(  + 1/L

L
j�1 ωcEj

xκ(  · ωcFj
xκ( 

�����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 

 �����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ n,

0≤
1
2



n

κ�1

1/L
L
j�1 cEj

xκ(  · cFj
xκ(  + 1/L

L
j�1 ωcEj

xκ(  · ωcFj
xκ( 

�����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 

 �����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 1,

(10)

which implies that

0≤S1
c xκ( ≤ 1. (11)

(2) We have

S
1
c(E, F) �

1
n



n

κ�1

1/L
L
j�1 cEj

xκ(  · cFj
xκ(  + 1/L

L
j�1 ωcEj

xκ(  · ωcFj
xκ( 

�����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 

 �����������������������������

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

Now, as E � F⟹ μE(xκ) � μF(xκ), for κ � 1, 2, . . . ,

n⟹ cEj
(xκ)e

i2π(ωEj(xκ))
� cFj

(xκ)e
i2π(ωFj(xκ)) for κ �

1, 2, . . . , n⟹ cEj
(xκ) � cFj

(xκ) and e
i2π(ωEj(xκ))

�

e
i2π(ωFj(xκ)) for κ � 1, 2, . . . , n. *en,

S
1
c(E, F) �

1
n



n

κ�1

1/L
L
j�1 c

2
Ej

xκ(  + 1/L
L
j�1 ω

2
cEj

xκ( 

������������������������������

1/L
L
j�1 c2

Ej
xκ(  + 1/L

L
j�1 ω2

cEj

xκ( 



 

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

S
1
c(E, F) �

1
n



n

κ�1

1/L c
2
E1

xκ(  + c
2
E2

xκ(  + · · · + c
2
EL

xκ(   + 1/L ω2
cE1

xκ(  + ω2
cE2

xκ(  + · · · + ω2
cEL

xκ(  

1/L c
2
E1

xκ(  + c
2
E2

xκ(  + · · · + c
2
EL

xκ(   + 1/L ω2
cE1

xκ(  + ω2
cE2

xκ(  + · · · + ω2
cEL

xκ(  

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(13)

S
1
c(E, F) �

1
n

1/L c
2
E1

x1(  + c
2
E2

x1(  + · · · + c
2
EL

x1(   + 1/L ω2
cE1

x1(  + ω2
cE2

x1(  + · · · + ω2
cEL

x1(  

1/L c
2
E1

x1(  + c
2
E2

x1(  + · · · + c
2
EL

x1(   + 1/L ω2
cE1

x1(  + ω2
cE2

x1(  + · · · + ω2
cEL

x1(  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
1/L c

2
E1

x2(  + c
2
E2

x2(  + · · · + c
2
EL

x2(   + 1/L ω2
cE1

x2(  + ω2
cE2

x2(  + · · · + ω2
cEL

x2(  

1/L c
2
E1

x2(  + c
2
E2

x2(  + · · · + c
2
EL

x2(   + 1/L ω2
cE1

x2(  + ω2
cE2

x2(  + · · · + ω2
cEL

x2(  

+ · · ·

+
1/L c

2
E1

xn(  + c
2
E2

xn(  + · · · + c
2
EL

xn(   + 1/L ω2
cE1

xn(  + ω2
cE2

xn(  + · · · + ω2
cEL

xn(  

1/L c
2
E1

xn(  + c
2
E2

xn(  + · · · + c
2
EL

xn(   + 1/L ω2
cE1

xn(  + ω2
cE2

xn(  + · · · + ω2
cEL

xn(  

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

S
1
c(E, F) � 1.

(14)
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(3) We have

S
1
c(E, F) �

1
n



n

K�1

1/L
L
j�1 cEj

xK( .cFj
xK(  + 1/L

L
j ωcEj

xK( .ωcFj
xK( 

�������������������������������

1/L
L
j�1 c

2
Ej

xK(  + 1/L
L
j�1 ω

2
cEj

xK( 

 �������������������������������

1/L
L
j�1 c

2
Fj

xK(  + 1/L
L
j�1 ω

2
cFj

xK( 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1
n



n

K�1

1/L
L
j�1 cFj

xK( .cEj
xK(  + 1/L

L
j ωcFj

xK( .ωcEj
xK( 

�������������������������������

1/L
L
j�1 c

2
Fj

xK(  + 1/L
L
j�1 ω

2
cFj

xK( 

 �������������������������������

1/L
L
j�1 c

2
Ej

xK(  + 1/L
L
j�1 ω

2
cEj

xK( 


⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

� S
1
c(F, E).

(15)

We defined distance measure of the angle as
d(E, F) � arccos(S1

c(E, F)). It holds the following axioms:

(1) d(E, F)≥ 0 if 0≤S1
c(F, E)≤ 1;

(2) d(E, F) � arccos(1) � 0 if S1
c(E, F) � 1;

(3) d(E, F) � d(F, E) if Sc(E, F) � Sc(F, E). □

Definition 10. Let E and F be two CHFSs on a set X. *en,
the weighted cosine SM between E and F can be presented as

S
1
cw(E, F) � 

n

K�1
wK

1/L
L
j�1 cEj

xK( .cFj
xK(  + 1/L

L
j ωcEj

xK( .ωcFj
xK( 

�������������������������������

1/L
L
j�1 c

2
Ej

xK(  + 1/L
L
j�1 ω

2
cEj

xK( 

 �������������������������������

1/L
L
j�1 c

2
Fj

xK(  + 1/L
L
j�1 ω

2
cFj

xK( 

 , (16)

where w � (w1, w2, . . . , wn)T represents the weight vector
of every element xK(K � 1, 2, . . . , .n) included in CHFS
and the weight vector satisfies wK ∈ [0, 1] for every
K � 1, 2, . . . , n, n

K�1 wK � 1. When we suppose the weight
vector to be w � (1/n, 1/n, . . . , 1/n)T, the weighted cosine
SM will transform into cosine SM. Otherwise speaking,
when wK � 1/n, K � 1, 2, 3, . . . , n, the
S1

cw(E, F) � S1
c(E, F).

4.2. Similarity Measures of CHFSs Based on Cosine Function.
In this part of the paper, we interpreted SMs of CHFSs based
on cosine function and studied their properties.

Definition 11. Let E and F be two CHFSs on a set X. *en,
the SMs based on the cosine function between E and F can
be presented as

S
2
c(E, F) �

1
n



n

K�1
Cos

π
2

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (17)

where S2
c(E, F) means the SM based on the cosine function

between E and F, which considers the maximum distance
based on the amplitude and phase terms.

S
3
c(E, F) �

1
n



n

K�1
Cos

π
4

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (18)

where S3
c(E, F) means the SM based on the cosine function

between E and F, which considers the sum of the distance
based on the amplitude and phase terms.

Theorem 2. !e SM S2
c(E, F) fulfils the following postulates:

(1) 0≤S2
c(E, F)≤ 1;
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(2) S2
c(E, F) � 1 if E � F;

(3) S2
c(E, F) � S2

c(F, E).

Proof

1. Since 1/L
L
j�1 |cEj

(xK) − cFj
(xK)| ∈ [0, 1],

1/L
L
j |ωcEj

(xK) − ωcFj
(xK)| ∈ [0, 1], this implies

that max(1/L
L
j�1 |cEj

(xK) − cFj
(xK)|, 1/L

L
j�1 |ωcEj

(xK) − ωcFj
(xK)| ) ∈ [0, 1]. So, for K � 1, we have

Cos
π
2

max
1
L



L

j�1
cEj

x1(  − cFj
x1( 



,
1
L



L

j�1
ωcEj

x1(  − ωcFj
x1( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (19)

For K � 2, we have

Cos
π
2

max
1
L



L

j�1
cEj

x2(  − cFj
x2( 



,
1
L



L

j�1
ωcEj

x2(  − ωcFj
x2( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (20)

By continuing this procedure, we obtain



n

K�1
Cos

π
2

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ n[0, 1]. (21)

*is implies that

0≤ 
n

K�1
Cos

π
2

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj

xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≤ n,

0≤
1
n



n

K�1
Cos

π
2

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≤ 1,

(22)

which implies that

0≤S2
c xK( ≤ 1. (23)

(2) We have

S
2
c(E, F) �

1
n



n

K�1
Cos

π
2

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (24)

Now, as E � F ⟹ μE(xK) � μF(xK), for
K � 1, 2, . . . , n ⟹ cEj

(xK)e
i2π(ωEj

(xK))
�

cFj
(xK)e

i2π(ωFj(xK)) forK � 1, 2, . . . , n⟹ cEj
(xK) �

cFj
(xK) and e

i2π(ωEj
(xK))

� e
i2π(ωFj

(xK)) forK � 1, 2,

. . . , n. *en, |cEj
(xK) − cFj

(xK)| � 0 and |ωcEj
(xK) −

ωcFj
(xK)| � 0 for K � 1, 2, . . . , n. *is implies that
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S
2
c(E, F) � 1. (25) (3) We have

S
2
c(E, F) �

1
n



n

K�1
Cos

π
2

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

�
1
n



n

K�1
Cos

π
2

max
1
L



L

j�1
cFj

xK(  − cEj
xK( 



,
1
L



L

j�1
ωcFj

xK(  − ωcE
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

� S
2
c(F, E).

(26)

□
Theorem 3. !e SM S3

c(E, F) fulfils the following postulates:

(4) 0≤S3
c(E, F)≤ 1;

(5) S3
c(E, F) � 1 if E � F;

(6) S3
c(E, F) � S3

c(F, E).

Proof

(1) Since 1/L
L
j�1 |cEj

(xK) − cFj
(xK)| ∈ [0, 1], 1/L

L
j�1

|ωEj
(xK) − ωFj

(xK)| ∈ [0, 1], this implies that,

1/2max(1/L
L
j�1 |cEj

(xK) − c Fj
(xK)| ∈ [0, 1], 1/L


L
j�1 |ωEj

(xK) − ωFj
(xK)| ∈ [0, 1] ). So, for K � 1,

we have

Cos
π
4

1
L



L

j�1
cEj

x1(  − cFj
x1( 



 +
1
L



L

j�1
ωcEj

x1(  − ωcFj
x1( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (27)

For K � 2, we have

Cos
π
4

1
L



L

j�1
cEj

x2(  − cFj
x2( 



 +
1
L



L

j�1
ωcEj

x2(  − ωcFj
x2( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (28)

By continuing this procedure, we obtain



n

K�1
Cos

π
4

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ n[0, 1]. (29)

*is implies that

0≤ 

n

K�1
Cos

π
4

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≤ n,

0≤
1
n



n

K�1
Cos

π
4

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≤ 1,

(30)
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which implies that

0≤S3
c xK( ≤ 1. (31)

(2) We have

S
3
c(E, F) �

1
n



n

K�1
Cos

π
4

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (32)

Now, as E � F ⟹ μE(xK) � μF(xK). for
K � 1, 2, . . . , n ⟹ cEj

(xK)e
i2π(ωEj(xK))

�

cFj
(xK)ei2π

(ωFj
(xK)) forK � 1, 2, . . . , n⟹ cEj

(xK) � cFj
(xK)

and e
i2π(ωEj

(xK))
� e

i2π(ωFj
(xK)) forK � 1, 2, . . . , n.

*en, |cEj
(xK) − cFj

(xK)| � 0 and |ωcEj
(xK) − ωcFj

(xK)| � 0 for K � 1, 2, . . . , n. *is implies that

S
3
c(E, F) � 1. (33)

(3) We have

S
3
c(E, F) �

1
n



n

K�1
Cos

π
4

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

�
1
n



n

K�1
Cos

π
4

1
L

cFj
xK(  − cEj

xK( 


,
1
L



L

j�1
ωcFj

xK(  − ωcE
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

� S
3
c(F, E).

(34)

□
Definition 12. Let E and F be two CHFSs on a set X. *en,
the weighted SMs based on the cosine function between E

and F can be presented as

S
2
cw(E, F) � 

n

K�1
wKCos

π
2

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

S
3
cw(E, F) � 

n

K�1
wKCos

π
4

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(35)

where w � (w1, w2, . . . , wn)T represents the weight vector of
every element xK(K � 1, 2, , , .n) carried in CHFS and the
weight vector satisfies wK ∈ [0, 1] for every K � 1, 2, 3,

, , , . n, 
n
K�1 wK � 1. When we assume the weight vector to

be w � (1/n, 1/n, . . . , 1/n)T, the weighted SMs based on the
cosine function will transform into SMs based on the cosine
function. Otherwise speaking, when wK � 1/n, K �

1, 2, 3, . . . , n, the Sm
cw(E, F) � Sm

c (E, F) m � 2, 3

4.3. Similarity Measures of CHFSs Based on Cotangent
Function. In this section, according to the cotangent
function, we interpreted some cotangent SMs between
CHFSs and studied their properties.

Definition 13. Let E and F be two CHFSs on a set X. *en,
the cotangent SMs between E and F can be presented as

S
4
c(E, F) �

1
n



n

K�1
Cot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (36)
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where S4
c(E, F) means the cotangent SM between E and F,

which considers the maximum distance based on the am-
plitude and phase terms.

S
5
c(E, F) �

1
n



n

K�1
Cot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (37)

where S5
c(E, F) means the cotangent SM between E and F,

which considers the sum of distance based on the amplitude
and phase terms.

Theorem 4. !e SM S4
c(E, F) fulfils the following postulates:

(7) 0≤S4
c(E, F)≤ 1;

(8) S4
c(E, F) � 1 if E � F;

(9) S4
c(E, F) � S2

c(F, E).

Proof

1. Since 1/L
L
j�1 |cEj

(xK) − cFj
(xK)| ∈ [0, 1], 1/L

L
j�1

|ωEj
(xK) − ωFj

(xK)| ∈ [0, 1], this implies that

max(1/L
L
j�1 |cEj

(xK) − cFj
(xK)|, 1/L

L
j�1 |ωEj

(xK) − ωFj
(xK)| ) ∈ [0, 1]. So, for K � 1, we have

Cot
π
4

+
π
4

max
1
L



L

j�1
cEj

x1(  − cFj
x1( 



,
1
L



L

j�1
ωcEj

x1(  − ωcFj
x1( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (38)

For K � 2, we have

Cot
π
4

+
π
4

max
1
L



L

j�1
cEj

x2(  − cFj
x2( 



,
1
L



L

j�1
ωcEj

x2(  − ωcFj
x2( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (39)

By continuing this procedure, we obtain


n

K�1
Cot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ n[0, 1]. (40)

*is implies that

0≤ 
n

K�1
Cot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≤ n,

0≤
1
n



n

K�1
Cot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj

xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≤ 1,

(41)
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which implies that

0≤S4
c xK( ≤ 1. (42)

(2) We have

S
4
c(E, F) �

1
n



n

K�1
Cot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (43)

Now, as E � F ⟹ μE(xK) � μF(xK), for
K � 1, 2, . . . , n ⟹ cEj

(xK)e
i2π(ωEj(xK))

� cFj
(xK)

e
i2π(ωFj

(xK)) forK � 1, 2, . . . , n⟹ cEj
(xK) � cFj

(xK)

and e
i2π(ωEj(xK))

� e
i2π(ωFj(xK)) forK� 1,2, . . . ,n. *en,

|cEj
(xK) − cFj

(xK)| � 0 and |ωcEj
(xK) −ωcFj

(xK)| � 0
for K� 1,2, . . . ,n. *is implies that

S
4
c(E, F) � 1. (44)

(3) We have

S
4
c(E, F) �

1
n



n

K�1
Cot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

�
1
n



n

K�1
Cot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� S
4
c(F, E).

(45)

□
Theorem 5. !e SM S5

c(E, F) fulfils the following postulates:

(10) 0≤S5
c(E, F)≤ 1;

(11) S5
c(E, F) � 1 if E � F;

(12) S5
c(E, F) � S5

c(F, E).

Proof

(1) Since 1/L
L
j�1 |cEj

(xK) − cFj
(xK)| ∈ [0, 1], 1/L

L
j�1

|ωEj
(xK) − ωFj

(xK)| ∈ [0, 1], this implies that,

1/2max(1/L
L
j�1 |cEj

(xK)− cFj
(xK)|, 

L
j�1 |ωEj

(xK)− ωFj
(xK)| ) ∈ [0, 1]. So, for K � 1, we have

Cot
π
4

+
π
8

1
L



L

j�1
cEj

x1(  − cFj
x1( 



 +
1
L



L

j�1
ωcEj

x1(  − ωcFj
x1( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (46)

For K � 2, we have

Cot
π
4

+
π
8

1
L



L

j�1
cEj

x2(  − cFj
x2( 



 +
1
L



L

j�1
ωcEj

x2(  − ωcFj
x2( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ [0, 1]. (47)

Journal of Mathematics 11



RE
TR
AC
TE
D

By continuing this procedure, we obtain



n

K�1
Cot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∈ n[0, 1]. (48)

*is implies that

0≤ 

n

K�1
Cot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≤ n,

0≤
1
n



n

K�1
Cot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦≤ 1,

(49)

which implies that

0≤S5
c xK( ≤ 1. (50)

(2) We have

S
5
c(E, F) �

1
n



n

K�1
Cot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (51)

Now, as E � F ⟹ μE(xK) � μF(xK), for
K � 1, 2, . . . , n ⟹ cEj

(xK)e
i2π(ωEj(xK))

� cFj
(xK)

e
i2π(ωFj(xK)) forK � 1, 2, . . . , n⟹ cEj

(xK) � cFj
(xK)

and e
i2π(ωEj

(xK))
� e

i2π(ωFj
(xK)) forK� 1,2, . . . ,n. *en,

|cEj
(xK) − cFj

(xK)| � 0 and |ωcEj
(xK) −ωcFj

(xK)| � 0
for K� 1,2, . . . ,n. *is implies that

S
5
c(E, F) � 1. (52)

(3) We have

S
5
c(E, F) �

1
n



n

K�1
Cot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

�
1
n



n

K�1
Cot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



 +
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

� S
5
c(F, E).

(53)

□
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Definition 14. Let E and F be two CHFSs on a set X. *en,
the weighted cotangent SMs between E and F can be pre-
sented as

S
4
cw(E, F) � 

n

K�1
wKCot

π
4

+
π
4

max
1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

S
5
cw(E, F) � 

n

K�1
wKCot

π
4

+
π
8

1
L



L

j�1
cEj

xK(  − cFj
xK( 



,
1
L



L

j�1
ωcEj

xK(  − ωcFj
xK( 




⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(54)

where w � (w1, w2, . . . , wn)T represents the weight vector
of every element xK(K � 1, 2, , , .n) carried in CHFS and the
weight vector satisfies wK ∈ [0, 1] for every
K � 1, 2, 3, , , , .n, 

n
K�1 wK � 1. When we assume the

weight vector to be w � (1/n , 1/n, . . . , 1/n)T, the weighted
cotangent SMs will transform into cotangent SMs. Other-
wise speaking, when wK � 1/n, K � 1, 2, . . . , n, the
Sm

cw(E, F) � Sm
c (E, F) m � 4, 5.

5. Applications

In this section, we gave two applications about cosine SM,
SMs based on cosine function, and cotangent SM under
CHF environment. *e interpreted SMs are applied to

pattern recognition and medical diagnosis to express the
usefulness of these SMs.

5.1. Pattern Recognition

Example 2. Without any hesitancy, the quantity of con-
struction usually relies on the standard of building materials.
Accordingly, building material scrutiny is the assumption of
good engineering standards. *e selection of material must
be strictly controlled. Scrutiny authorizes the builders to
correctly recognize qualified materials and upgrade the
standard of the project. To resolve the abovementioned
issues, we choose the building meterials Ej(j� 1, 2, 3, 4, 5),
which are discussed as follows:

E1 �
x1, 0.6e

i2π(1)
, 0.5e

i2π(0.5)
  , x2, 0.7e

i2π(0.4)
  , x3, 0.6e

i2π(0.8)
, 0.4e

i2π(0.7)
  

x4, 0.8e
i2π(0.9)

, 0.2e
i2π(0.7)

  , x5, 0.2e
i2π(0.3)

, 0.6e
i2π(0.5)

, 0.4e
i2π(0.6)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E2 �
x1, 0.1e

i2π(0.4)
  , x2, 0.5e

i2π(0.1)
, 0.1e

i2π(0.6)
  , x3, 0.2e

i2π(0.6)
, 0.7e

i2π(0.4)
  

x4, 0.1e
i2π(0.4)

, 0.3e
i2π(0.1)

  , x5, 0.5e
i2π(0.6)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E3 �
x1, 1e

i2π(0.8)
, 0.6e

i2π(0.8)
, 0.5e

i2π(0.9)
  , x2, 0.5e

i2π(0.7)
  , x3, 0.8e

i2π(1)
, 0.7e

i2π(0.9)
  

x4, 0.9e
i2π(0.8)

, 0.7e
i2π(0.6)

,  , x5, 0.7e
i2π(0.5)

, 0.2e
i2π(0.4)

, 0.3e
i2π(0.7)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E4 �
x1, 0.3e

i2π(0.9)
, 1 e

i2π(1)
,  , x2, 0.4.e

i2π(0.2)
, 0.2e

i2π(0.5)
  , x3, 0.2e

i2π(1)
  

x4, 0.8e
i2π(0.6)

  , x5, 0.5e
i2π(0.1)

, 0.6e
i2π(0.3)

, 0.8e
i2π(0.5)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

E5 �
x1, 0.4e

i2π(0.2)
, 0.2e

i2π(0.5)
  , x2, 0.4.e

i2π(0.2)
, 0.4e

i2π(0.1)
  , x3, 0.2e

i2π(0.4)
, 0.3e

i2π(0.1)
  

x4, 0.6e
i2π(0.7)

, 0.3e
i2π(0.5)0.6e

i2π(0.1)
  , x5, 0.1e

i2π(0.3)
  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(55)

To resolve the abovementioned issue, we choose the
complex hesitant fuzzy set in the form of unknown materials.

E �
x1, 0.9e

i2π(0.8)
, 0.7e

i2π(0.4)
, 1e

i2π(0.8)
  , x2, 0.4e

i2π(0.6)
  , x3, 0.8e

i2π(0.6)
, 0.5e

i2π(0.8)
  

x4, 0.9e
i2π(0.6)

, 0.4e
i2π(0.3)

   x5, 0.5e
i2π(0.7)

, 0.3e
i2π(0.9)

, 0.2e
i2π(0.5)

  ,

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (56)
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*e aim of this issue is to categorize the unspecified
building material E in one of the categories Ej(j � 1, 2, 3, 4, 5).
For it, the cosine SM, SMs based on cosine function, and
cotangent SMs which are explored in this paper have been used
to determine the similarity from E to Ej(j � 1, . . . , 5) and
calculations are introduced in Tables 1 and 2.

As stated by the above-computed calculations given in
Table 1, we simply note that the degree of similarity between
E and E3 is the greatest one as an extract by all five SMs.*is
specifies that all five SMs assign the unspecified building
material E to the specified building material E3 based on the
principle of the maximum degree of similarity. Ranking of
the explored cosine and cotangent SMs between E and Ej(j �

1, . . . , 5) is also introduced in Table 1. *e graphical rep-
resentation of the interpreted SMs between E and Ej(j �

1, . . . , 5) is indicated in Figure 1.
*e weight of elements has great significance to suppose

in real decision-making problems. If we suppose the weight
of elements xK(K � 1, 2, 3, 4, 5) to be
wK � (0.15, 0.1, 0.25, 0.2, 0.3), respectively, then the inter-
pretedWSMs (weighted cosine SMs and weighted cotangent
SMs) have been used to determine the similarity from E to
Ej(j � 1, . . . , 5) and calculations are introduced in Table 2.

As stated by the above-computed calculations given in
Table 2, we simply note that the degree of similarity between

E and E3 is the greatest one as an extract by all five WSMs.
*is specifies that all five WSMs assign the unspecified
building material E to the specified building material E3
based on the principle of the maximum degree of similarity.
Ranking of the explored weighted cosine SMs, weighted SMs
based on cosine function, and weighted cotangent SMs
between E and Ej(j � 1, . . . , 5) is also introduced in Table 2.
*e graphical representation of the interpreted WSMs be-
tween E and Ej(j � 1, . . . , 5) is indicated in Figure 2.

5.2. Medical Diagnosis. Symptoms of every diseases are al-
most different. To examine that the victim is suffering from
what type of diseases, the medical diagnosis relies on the
victim’s symptoms. *e victim’s symptoms are a set of
symptoms and unspecified diseases will be a set of diagnostic
diseases. *e interpreted SMs are illustrated by a following
numerical example of medical diagnosis.

Example 3. Let a set of diagnosis D � D1(Typhoid),

D2(Flu), D3(Heart problem), D4(Pneumonia), D5
(Coronavirus)} and set of symptoms X � x1(fever),

x2(cough) , x3(heart pain), x4(loss of ppetite), x5
(short of breath)}. *e victim’s symptoms are represented in
the form of CHFSs as follows:

P �
x1, 0.8e

i2π(0.9)
, 0.6e

i2π(0.5)
  , x2, 0.5e

i2π(0.7)0.9e
i2π(1)

, 1e
i2π(0.5)

  , x3, 0.1e
i2π(0.2)

  

x4, 0.4e
i2π(0.5)

, 0.5e
i2π(0.6)

, 0.7e
i2π(0.4)

  , x5, 0.1e
i2π(0.3)

, 0.3e
i2π(0.5)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (57)

*e indications of each disease Dj(j � 1, 2, 3, 4, 5) are
represented in the form CHFSs as follows:

D1 �
x1, 0.7e

i2π(1)
, 0.9e

i2π(0.8)
  , x2, 1e

i2π(0.8)
, 0.5e

i2π(0.6)
, 0.6e

i2π(0.9)
  , x3, 0.4e

i2π(0.6)
,  

x4, 0.9e
i2π(0.8)

, 0.7e
i2π(0.6)

, 0.5e
i2π(0.7)

  , x5, 0.2e
i2π(0.4)

, 0.3e
i2π(0.4)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

D2 �
x1, 0.5e

i2π(0.6)
, 0.9e

i2π(0.8)
  , x2, 0.8e

i2π(1)
, 0.7e

i2π(0.8)
  , x3, 0.1e

i2π(0.05)
  

x4, 0.2e
i2π(0.1)

, 0.5e
i2π(0.2)

  , x5, 0.5e
i2π(0.3)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

D3 �
x1, 0.6e

i2π(0.5)
  , x2, 0.2e

i2π(0.2)
, 0.4e

i2π(0.1)
  , x3, 0.8e

i2π(1)
, 1e

i2π(1)
, 0.7e

i2π(0.9)
  

x4, 0.5e
i2π(0.7)

, 0.3e
i2π(0.4)

,  , x5, 0.7e
i2π(0.6)

, 0.2e
i2π(0.7)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

D4 �
x1, 0.6e

i2π(0.9)
, 0.7e

i2π(0.8)
, 0.4e

i2π(0.7)
  , x2, 0.5e

i2π(0.7)
, 0.7e

i2π(0.3)
, 0.1e

i2π(0.6)
  ,

x3, 0.1e
i2π(0.4)

  , x4, 0.6e
i2π(0.8)

  , x5, 0.4e
i2π(0.1)

, 0.2e
i2π(0.4)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

D5 �
x1, 0.8e

i2π(0.4)
, 0.5e

i2π(0.7)
  , x2, 0.6e

i2π(0.7)
, 0.7e

i2π(0.9)
  , x3, 0.1e

i2π(0.4)
, 0.3e

i2π(0.2)
  

x4, 0.3e
i2π(0.4)

  , x5, 0.8e
i2π(0.7)

, 0.9e
i2π(1)

, 1e
i2π(0.7)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(58)

*e aim of this issue is to find the disease of the victim P

in one of the diseases Dj(j � 1, 2, 3, 4, 5). For it, the cosine
SM, SMs based on cosine function, and cotangent SMs

which are explored in this paper have been utilized to de-
termine the similarity from P to Dj(j � 1, . . . , 5) and cal-
culations are introduced in Tables 3 and 4.
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As stated by the above-computed calculations described
in Table 3, we simply note that the degree of similarity
between P and D1 is the greatest one as an extract by five
SMs. *is specifies that all five SMs express that the victim P

has typhoid based on the principle of the maximum simi-
larity degree. Ranking of the explored cosine and cotangent
SMs between P and Dj(j � 1, . . . , 5) is also introduced in
Table 3. Next, the graphical representation of the interpreted
SMs between P and Dj(j � 1, . . . , 5) is indicated in Figure 3.

*e weight of elements has great significance to suppose
in real decision-making problems. If we suppose the weight
of elements xK(K � 1, 2, 3, 4, 5) to be
wK � (0.15, 0.1, 0.25, 0.2, 0.3), respectively, then the inter-
pretedWSMs (weighted cosine SMs and weighted cotangent
SMs) have been used to determine the similarity from P to
Dj(j � 1, . . . , 5) and calculations are introduced in Table 4.

As stated by the above-computed calculations described
in Table 3, we simply note that the degree of similarity
between P and D1 is the greatest one as an extract byWSMs,
except S5

cw. *is specifies that WSMs S1
cw, S

2
cw, S

3
cw, and S

4
cw

show that the victim P has typhoid based on the principle of
the maximum similarity degree. We also note that degree of
similarity between P and D5 is the highest one as an extract
byWSM S5

cw.*is specifies that theWSMS5
cw shows that the

victim P has coronavirus. Ranking of the explored weighted
cosine SMs, weighted SMs based on cosine function, and

Table 1: *e explored SMs between E and Ej(j � 1, 2, 3, 4, 5).

SMs (E,E1) (E,E2) (E,E3) (E,E4) (E,E5) Ranking

S1
c(E,Ej) 0.4733 0.2829 0.517 0.3429 0.2844 E3 ≥E1 ≥E4 ≥E5 ≥E2

S2
c(E,Ej) 0.8674 0.6372 0.9321 0.6047 0.7278 E3 ≥E1 ≥E5 ≥E2 ≥E4

S3
c(E,Ej) 0.9022 0.796 0.959 0.7405 0.8054 E3 ≥E1 ≥E5 ≥E2 ≥E4

S4
c(E,Ej) 0.6056 0.3777 0.6988 0.3762 0.4605 E3 ≥E1 ≥E5 ≥E2 ≥E4

S5
c(E,Ej) 0.6528 0.5264 0.7563 0.4746 0.7479 E3 ≥E5 ≥E1 ≥E2 ≥E4

Table 2: *e explored WSMs between E and Ej(j � 1, 2, 3, 4, 5).

SMs (E,E1) (E,E2) (E,E3) (E,E4) (E,E5) Ranking

S1
cw(E,Ej) 0.4247 0.2933 0.4557 0.3128 0.2826 E3 ≥E1 ≥E4 ≥E2 ≥E5

S2
cw(E,Ej) 0.8829 0.6705 0.9219 0.672 0.7072 E3 ≥E1 ≥E5 ≥E4 ≥E2

S3
cw(E,Ej) 0.911 0.816 0.9551 0.7603 0.7964 E3 ≥E1 ≥E2 ≥E5 ≥E4

S4
cw(E,Ej) 0.628 0.4011 0.6737 0.4207 0.4359 E3 ≥E1 ≥E5 ≥E4 ≥E2

S5
cw(E,Ej) 0.6664 0.5434 0.7431 0.4933 0.7386 E3 ≥E5 ≥E1 ≥E2 ≥E4
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Figure 1: *e graphical representation of interpreted SMs.
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Figure 2: *e graphical representation of interpreted WSMs.
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weighted cotangent SMs between P and Dj(j � 1, . . . , 5) is
also introduced in Table 4. Next, we have the graphical
representation of the interpreted WSMs between P and
Dj(j � 1, . . . , 5) in Figure 4.

6. Comparison

In this section of the paper, we expressed the effectiveness
and advantages of the interpreted SMs by comparing with
some already defined SMs.

Example 4. Without any hesitancy, the quantity of con-
struction usually relies on the standard of building materials.
Accordingly, building material scrutiny is the assumption of
good engineering standards. *e selection of material must
be strictly controlled. Scrutiny authorizes the builders to
correctly recognize qualified materials and upgrade the
standard of the project. Suppose pattern recognition
problem about the categorization of building materials, Let
five specified building materials Ej(j � 1, 2, 3, 4, 5) which are
represented in the form of HFSs as follows:

E1 �
x1, 0.6, 0.5{ }( , x2, 0.7{ }( , x3, 0.6, 0.4{ }( 

x4, 0.8, 0.2{ }( , x5, 0.2, 0.6, 0.4{ }( 
 ,

E2 �
x1, 0.1{ }( , x2, 0.5, 0.1{ }( , x3, 0.2, 0.7{ }( 

x4, 0.1, 0.3{ }( , x5, 0.5{ }( 
 ,

E3 �
x1, 1, 0.6, 0.5{ }( , x2, 0.5{ }( , x3, 0.8, 0.7{ }( 

x4, 0.9, 0.7,{ }( , x5, 0.7, 0.2, 0.3{ }( 
 ,

E4 �
x1, 0.3, 1{ }( , x2, 0.4, 0.2{ }( , x3, 0.2{ }( 

x4, 0.8{ }( , x5, 0.5, 0.6, 0.8{ }( 
 ,

E5 �
x1, 0.4, 0.2{ }( , x2, 0.4, 0.4{ }( , x3, 0.2, 0.3{ }( 

x4, 0.6, 0.3, 0.6{ }( , x5, 0.1{ }( 
 .

(59)

Next, let an unspecified building material E in the form
of CHFS which needs to be recognized be

E �
x1, 0.9, 0.7, 1{ }( , x2, 0.4{ }( , x3, 0.8, 0.5{ }( 

x4, 0.9, 0.4{ }(  x5, 0.5, 0.3, 0.2{ }( ,
 .

(60)

Table 3: *e explored SMs between P and Dj(j � 1, 2, 3, 4, 5).

Similarity measures (P,D1) (P,D2) (P,D3) (P,D4) (P,D5) Ranking

S1
C(P,Dj) 0.5132 0.4279 0.3019 0.4216 0.3039 D1 ≥D2 ≥D4 ≥D5 ≥D3

S2
C(P,Dj) 0.8833 0.8465 0.6363 0.8701 0.7434 D1 ≥D4 ≥D2 ≥D5 ≥D3

S3
C(P,Dj) 0.9119 0.8843 0.6736 0.8985 0.8249 D1 ≥D4 ≥D2 ≥D5 ≥D3

S4
C(P,Dj) 0.6367 0.5777 0.3953 0.6044 0.4858 D1 ≥D4 ≥D2 ≥D5 ≥D3

S5
C(P,Dj) 0.7288 0.6797 0.6361 04314 0.6621 D1 ≥D2 ≥D5 ≥D3 ≥D4

Table 4: *e explored WSMs between P and Dj(j � 1, 2, 3, 4, 5)

Similarity measures (P,D1) (P,D2) (P,D3) (P,D4) (P,D5) Ranking

S1
cw(P,Dj) 0.5575 0.393 0.3089 0.4598 0.2974 D1 ≥D4 ≥D2 ≥D3 ≥D5

S2
cw(P,Dj) 0.8972 0.8652 0.6369 0.8856 0.7065 D1 ≥D4 ≥D2 ≥D5 ≥D3

S3
cw(P,Dj) 0.9224 0.8992 0.6785 0.9111 0.7898 D1 ≥D4 ≥D2 ≥D5 ≥D3

S4
cw(P,Dj) 0.6635 0.601 0.4026 0.6302 0.465 D1 ≥D4 ≥D2 ≥D5 ≥D3

S5
cw(P,Dj) 0.7058 0.6618 0.4433 0.6893 0.7526 D5 ≥D1 ≥D4 ≥D2 ≥D3
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Figure 3: *e graphical representation of interpreted SMs.
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Figure 4: *e graphical representation of interpreted WSMs.
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We convert the HFSs in the CHFSs by taking 1 � e0 as
follows:

E1 �
x1, 0.6e

i2π(0.0)
, 0.5e

i2π(0.0)
  , x2, 0.7e

i2π(0.0)
  , x3, 0.6e

i2π(0.0)
, 0.4e

i2π(0.0)
  

x4, 0.8e
i2π(0.0)

, 0.2e
i2π(0.0)

  , x5, 0.2e
i2π(0.0)

, 0.6e
i2π(0.0)

, 0.4e
i2π(0.0)

  

⎧⎨

⎩

⎫⎬

⎭,

E2 �
x1, 0.1e

i2π(0.0)
  , x2, 0.5e

i2π(0.0)
, 0.1e

i2π(0.0)
  , x3, 0.2e

i2π(0.0)
, 0.7e

i2π(0.0)
  

x4, 0.1e
i2π(0.0)

, 0.2e
i2π(0.0)

  , x5, 0.5e
i2π(0.0)

  

⎧⎨

⎩

⎫⎬

⎭,

E3 �
x1, 1e

i2π(0.0)
, 0.6e

i2π(0.0)
, 0.5e

i2π(0.0)
  , x2, 0.5e

i2π(0.0)
  , x3, 0.8e

i2π(0.0)
, 0.7e

i2π(0.0)
  

x4, 0.9e
i2π(0.0)

, 0.7e
i2π(0.0)

  x5, 0.7e
i2π(0.0)

, 0.2e
i2π(0.0)

, 0.3e
i2π(0.0)

   

⎧⎨

⎩

⎫⎬

⎭,

E4 �
x1, 0.3e

i2π(0.0)
, 1 e

i2π(0.0)
  , x2, 0.4e

i2π(0.0)
, 0.2e

i2π(0.0)
  , x3, 0.2e

iπ(0.0)
  

x4, 0.8e
i2π(0.0)

   x5, 0.5e
iπ(0.0)

, 0.6e
i2π(0.0)

, 0.8e
i2π(0.0)

  

⎧⎨

⎩

⎫⎬

⎭,

(61)

Table 5: *e comparison between interpreted and some already defined SMs of Example 4.

Method Score value Ranking

Xu and Xia [29]

S(E, E1) � 0.7667,
S(E, E2) � 0.5967
S(E, E3) � 0.7733,
S(E, E4) � 0.3467
S(E, E5) � 0.7067

E3 ≥E1 ≥E5 ≥E2 ≥E4

Zeng et al. [30]

Sh(E, E1) � 0.8367,
Sh(E, E2) � 0.5283,
Sh(E, E3) � 0.845,
Sh(E, E4) � 0.415,
Sh(E, E4) � 0.6872

E3 ≥E1 ≥E5 ≥E2 ≥E4

Jun [31]

CosHFS(E, E1) � 0.963,
CosHFS(E, E2) � 0.841,
CosHFS(E, E3) � 0.911,
CosHFS(E, E4) � 0.883,
CosHFS(E, E5) � 0.925

E1 ≥E5 ≥E3 ≥E4 ≥E2

Proposed SM

S1
c (E, E1) �0.5006,

S1
c (E, E2) �0.3334,

S1
c (E, E3) � 0.5234

S1
c (E, E4) � 0.453,

S1
c (E, E5) � 0.3147

E3 ≥E1 ≥E4 ≥E2 ≥E5

Proposed SM

S2
c (E, E1) �0.8914,

S2
c (E, E2) �0.7565,

S2
c (E, E3) � 0.9719,

S2
c (E, E4) � 0.7922,

S2
c (E, E5) � 0.8036

E3 ≥E1 ≥E5 ≥E4 ≥E2

Proposed SM

S3
c (E, E1) � 0.9721,

S3
c (E, E2) � 0.9342,

S3
c (E, E3) � 0.9929,

S3
c (E, E4) � 0.9456,

S3
c (E, E5) � 0.9486

E3 ≥E1 ≥E5 ≥E4 ≥E2

Proposed SM

S4
c (E, E1) � 0.6513,
S4

c (E, E2) �0.5454,
S4

c (E, E3) � 0.7994,
S4

c (E, E4) � 0.5352,
S4

c (E, E5) � 0.5395

E3 ≥E1 ≥E2 ≥E5 ≥E4

Proposed SM

S5
c (E, E1) � 0.8105,

S5
c (E, E2) � 0.7457,

S5
c (E, E3) � 0.8953,

S5
c (E, E4) � 0.7418,

S5
c (E, E5) � 0.8671

E3 ≥E5 ≥E1 ≥E2 ≥E4
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and

E �
x1, 0.9e

i2π(0.0)
, 0.7e

i2π(0.0)
, 1e

i2π(0.0)
  , x2, 0.4e

i2π(0.0)
  , x3, 0.8e

i2π(0.0)
, 0.5e

i2π(0.0)
  

x4, 0.9e
i2π(0.0)

, 0.4e
i2π(0.0)

   x5, 0.5e
i2π(0.0)

, 0.3e
i2π(0.0)

, 0.2e
i2π(0.0)

  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (62)

For Example 4, we need to find that the unknown
building material E belongs to which of the specified
building material Ej(j � 1, 2, 3, 4, 5). In Example 4, the data
are in the shape of HFSs. We found similarity between E and
Ej(j � 1, . . . , 5) through some already defined SMs for HFSs,
as shown in Table 5. As 1 � e0, then the data given in Ex-
ample 4 are transformed into CHFSs. *en, through

interpreted SMs, we found the similarity between E and
Ej(j � 1, 2, 3, 4, 5) which is also given in Table 5. Our
interpreted SMs showed that unspecified building material E

belongs to the specified building material E3 because the
similarity between E and E3 is the greatest one. Ranking of
the interpreted and already defined SMs is also described in
Table 5. Next, we have the graphical representation of the

0
0.2
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0.6
0.8

1
1.2

0 2 4 6 8 10

Comparison of interpreted SMs with some
existing SMs

Reference
Xu and Xia [27]
Zeng et al. [28]

Jun [29]
Proposed SMs

Figure 5: *e graphical representation of interpreted SMs with some existing SMs for Example 4.

Table 6: *e comparison between interpreted and some already defined SMs of Example 2.

Method Score value Ranking
Xu and Xia [29] Unsuccessful Unsuccessful
Zeng et al. [30] Unsuccessful Unsuccessful
Jun [31] Unsuccessful Unsuccessful

Proposed SM

S1
c (E, E1) � 0.4733, S1

c (E, E2) � 0.2829
S
1
c (E, E3) � 0.517

S
1
c (E, E4) � 0.3429

,

S1
c (E, E5) � 0.2844

E3 ≥E1 ≥E4 ≥E5 ≥E2

Proposed SM

S2
c (E, E1) � 0.8674,

S2
c (E, E2) � 0.6372,

S2
c (E, E3) � 0.9321,

S2
c (E, E4) � 0.6047,

S2
c (E, E5) � 0.7278

E3 ≥E1 ≥E5 ≥E2 ≥E4

Proposed SM

S3
c (E, E1) � 0.9022,
S3

c (E, E2) � 0.796,
S3

c (E, E3) � 0.959,
S3

c (E, E4) � 0.7405,
S3

c (E, E5) � 0.8054

E3 ≥E1 ≥E5 ≥E2 ≥E4

Proposed SM

S4
c (E, E1) � 0.6056,

S4
c (E, E2) � 0.3777,

S4
c (E, E3) � 0.6988,

S4
c (E, E4) � 0.3762,

S4
c (E, E5) � 0.4605

E3 ≥E1 ≥E5 ≥E2 ≥E4

Proposed SM

S5
c (E, E1) � 0.6528,

S5
c (E, E2) � 0.5264,

S5
c (E, E3) � 0.7563,
S5

c (E, E4) �0.4746,
S5

c (E, E5) � 0.7479

E3 ≥E5 ≥E1 ≥E2 ≥E4
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comparison of the proposed and already defined SMs which
is represented in Figure 5.

Now, we discuss the comparison between interpreted
and already defined SMs for Example 2. In Example 2, the
data are in the shape of CHFSs. We know that no SM exists
in the literature to solve this kind of data. *e existing SMs
are ineffective to find the similarity between E and Ej(j �

1, . . . , 5) as demonstrated in Table 6. From Table 6, we observe
that the data given in Example 2 are solvable by the interpreted
SMs. *e interpreted SMs get the similarity between E and
Ej(j � 1, . . . , 5), as demonstrated in Table 6. Our interpreted
SMs showed that unspecified buildingmaterialE belongs to the
specified building material E3 because the similarity between E

and E3 is the greatest one. Ranking of the explored SMs is also
introduced in Table 6. Next, we have the graphical represen-
tation of the comparison of proposed and already defined SMs
which is represented in Figure 6.

From the above discussion, our explored SMs can
represent extra fuzzy information and put it broadly in
circumstances in real-life problems. Based on CHFS, we
explored the SMs; our SMs are more satisfactory for real-life
problems, and the existing SMs and our SMs are more
general than the existing SMs.

7. Conclusion

*eCHFS is one of the enlargements of the CFS in which the
possibility of the enrollment work is stretched out from the
subset of the genuine number to the unit disc which is
interpreted. In this article, we explored another type of
similarity measure (SM) which relies on the cosine and
cotangent functions. At that stage, we use our introduced
SMs and weighted SMs (based on the cosine and cotangent
functions) between CHFSs to manage pattern recognition
and medical diagnosis problems including design ac-
knowledgment and plan choice. Finally, two numerical
models are given to represent the logic and effectiveness of
the likeness measures for design acknowledgment and
conspire choice. *e comparison between explored measure
with some existing measures and their graphical represen-
tations are also discussed in detail.

Consequently, the measures defined in this manuscript can
be utilized in a larger range of applications. In future research,

we will extend this work to suppose the two facts: (1) similarity
measures and aggregation operators [34–42]; (2) methods [43].
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)e notion of bipolar fuzzy implicative ideals of a BCK-algebra is introduced, and several properties are investigated. )e relation
between a bipolar fuzzy ideal and a bipolar fuzzy implicative ideal is studied. Characterizations of a bipolar fuzzy implicative ideal
are given. Conditions for a bipolar fuzzy set to be a bipolar fuzzy implicative ideal are provided. Extension property for a bipolar
fuzzy implicative ideal is stated.

1. Introduction

Fuzzy sets are characterized by a membership function
which associates elements with real numbers in the interval
[0, 1] that represents its membership degree to the fuzzy set.
Several kinds of fuzzy set extensions have been introduced
such as interval-valued, intuitionistic, and bipolar-valued
fuzzy sets. )e bipolar-valued fuzzy set notion [1] was in-
troduced to treat imprecision as in traditional fuzzy sets,
where the degree of membership belongs to the interval [0,
1], and we cannot tell apart unrelated elements from the
opposite elements. )e extension here enlarges the range of
the membership degree from the interval [0, 1] to the in-
terval [−1, 1] to solve such a problem (we refer the reader to
[2–4]).)emembership degrees which lie in the interval [−1,
1] represent the satisfaction degree to the corresponding
property in a fuzzy set and its counter property as follows:
having a membership degree in the interval [−1, 0) means
that the elements are satisfying implicit counter property,
having (0, 1] means that the elements are satisfying the
property, and having 0 means that the elements are unre-
lated to the corresponding property.

)e bipolar-valued fuzzification has been used to study
different notions in BCK/BCI-algebras such as subalgebras
and ideals of BCK/BCI-algebras [5], a-ideals of BCI-algebras
[6], and more, see the references [7–10]. Other researches
also added their contribution to the study in this field on

different branches of algebra in various aspects (see, e.g.,
[11–26]). Also, some more general concepts on bipolar fuzzy
have been studied in [27–31].

Recently, the bipolar fuzzy BCI-implicative ideals of
BCI-algebras were studied in [32]. Moreover, new types of
bipolar fuzzy ideals of BCK-algebras have been investigated
in [33], typically bipolar fuzzy (closed, positive implicative,
and implicative) ideals. Moreover, some related concepts on
fuzzy sets and their useful generalizations were applied in
various algebraic structures (see, e.g., [33–53]).

In this paper, we apply the notion of a bipolar-valued fuzzy
set to implicative ideals of BCK-algebras and obtain further
results in thismanner. Furthermore, we consider the relation of
a bipolar fuzzy ideal with a bipolar fuzzy implicative ideal. We
provide characterizations of a bipolar fuzzy implicative ideal.
Moreover, we display conditions for a bipolar fuzzy set to be a
bipolar fuzzy implicative ideal. Finally, we discuss extension
property for a bipolar fuzzy implicative ideal.

2. Preliminaries

)e basic results on BCK-algebras are given in this section.
By a BCK-algebra, we mean an algebra (Ł;∗, 0) of type (2,

0) satisfying the axioms:

(a1) (∀ϰ, ℓ, υ ∈ Ł)(((ϰ∗ ℓ)∗ (ϰ∗ υ))∗ (υ∗ ℓ) � 0)

(a2) (∀ϰ, ℓ ∈ Ł)((ϰ∗ (ϰ∗ ℓ))∗ ℓ � 0)

Hindawi
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(a3) (∀ϰ ∈ Ł)(ϰ∗ϰ � 0, 0∗ϰ � 0)

(a4) (∀ϰ, ℓ ∈ Ł)(ϰ∗ ℓ � 0, ℓ ∗ϰ � 0⟹ϰ � ℓ)

We can define a partial ordering ≤ by ϰ≤ ℓ if and only if
ϰ∗ ℓ � 0.

In any BCK-algebra Ł, the following hold:

(b1) (∀ϰ ∈ Ł)(ϰ∗ 0 � ϰ)
(b2) (∀ϰ, ℓ, υ ∈ Ł)((ϰ∗ ℓ)∗ υ � (ϰ∗ υ)∗ ℓ)
(b3) (∀ϰ, ℓ, υ ∈ Ł)((ϰ∗ υ)∗ (ℓ ∗ υ)≤ϰ∗ ℓ)
(b4) (∀ϰ, ℓ, υ ∈ Ł)(ϰ≤ ℓ⇒ϰ∗ υ≤ ℓ ∗ υ, υ∗ ℓ ≤ υ∗ ϰ)

Let us consider a subset (∅≠ I) of a BCK-algebra Ł. We
say I is an ideal if

(c1) 0 ∈ I, (c2)(∀ϰ ∈ Ł)(∀ℓ ∈ I)(ϰ ∗ ℓ ∈ I⇒ϰ ∈ I)

A nonempty subset I of a BCK-algebra Ł is called an
implicative ideal of Ł if it satisfies (c1) and
(c3) (∀ϰ, ℓ, υ ∈ Ł)((ϰ∗ ℓ)∗ υ ∈ I, ℓ ∗ υ ∈ I⇒ϰ∗ υ ∈ I)

3. Bipolar Fuzzy Ideals

In the following sections, Ł denotes a BCK-algebra.
For any family δi|i ∈ Δ  of real numbers, we define

∨ δi|i ∈ Δ  ≔
max δi|i ∈ Δ , if Δ is finite,
sup δi|i ∈ Δ , otherwise,



∧ δi|i ∈ Δ  ≔
min δi|i ∈ Δ , if Δ is finite,
inf δi|i ∈ Δ  otherwise.



(1)

Moreover, if Δ � 1, 2, . . . , n{ }, then ∨ δi|it ∈ nΔ  and
∧ δi|it ∈ nΔ  are denoted by δ1∨ δ2∨ · · ·∨ δn and
δ1∧ δ2 ∧ · · ·∧ δn, respectively.

For a bipolar fuzzy set q � (Ł; qn, qp), we define negative
α-cut of q � (Ł; qn, qp) and the positive β-cut of
q � (Ł; qn, qp), respectively, as follows:

N(q; α) ≔ ϰ ∈ Ł|qn(ϰ)≤ α ,

P(q; β) ≔ ϰ ∈ Ł|qp(ϰ)≥ β ,
(2)

where (α, β) ∈ [−1, 0 ) × ( 0, 1]. )e set

C(q; (α, β)) ≔ N(q; α)∩P(q; β) (3)

is called the (α, β)-cut of q � (Ł; qn, qp). For every k ∈ (0, 1),
if (α, β) � (−k, k), then the set

C(q; k) ≔ N(q; −k)∩P(q; k) (4)

is called the k-cut of q � (Ł; qn, qp).

Definition 1 (see [5]). A bipolar fuzzy set q � (Ł; qn, qp) in a
BCK-algebra Ł is called a bipolar fuzzy ideal of Ł if it satisfies
the following assertions:

(i) (∀ϰ ∈ Ł)(qn(0)≤ qn(ϰ), qp(0)≥ qp(ϰ))

(ii) (∀ϰ, ℓ ∈ Ł)
qn(ϰ)≤ qn(ϰ∗ ℓ)∨qn(ℓ),
qp(ϰ)≥ qp(ϰ∗ ℓ)∧qp(ℓ). 

For any w ∈ Ł and any bipolar fuzzy set q � (Ł; qn, qp) in
Ł, we let

I(w) � ϰ ∈ Ł|qn(ϰ)≤ qn(w), qp(ϰ)≥ qp(w) . (5)

Obviously, w ∈ I(w). If q � (Ł; qn, qp) is a bipolar fuzzy
ideal of Ł, then 0 ∈ I(w). )e following is our question: For a
bipolar fuzzy set q � (Ł; qn, qp) in Ł satisfying Definition 1
(i), is I(w)an ideal of Ł? )e following example provides a
negative answer; that is, there exists an element w ∈ Ł such
that I(w) is not an ideal of Ł.

Example 1. Let Ł � θ, ℓ, υ,ω, δ{ } be a set with a Cayley table
which is given in Table 1.

)en, (Ł; ∗ , θ) is a BCK-algebra. Let q � (Ł; qn, qp) be a
bipolar fuzzy set in Ł defined by

qn −0.7 −0.5 −0.3 −0.1 −0.4

θ l v w δ

qp 0.8 0.7 0.4 0.2 0.5

)en, q � (Ł; qn, qp) satisfies Definition 1 (i), and it is not
a bipolar fuzzy ideal of Ł because

qn(υ) � −0.3> − 0.4 � qn(υ∗ δ)∨qn(δ), (6)

and/or

qp(υ) � 0.4< 0.5 � qp(υ∗ δ)∧qp(δ). (7)

)en, I(δ) � θ, ℓ, δ{ } is not an ideal of Ł since υ∗ δ �

θ ∈ I(δ) and δ ∈ I(δ), while υ ∉ I(δ). Note that
I(υ) � θ, ℓ, υ, δ{ } is an ideal of Ł.

We give conditions for the set I(w) to be an ideal.

Theorem 1. Let w ∈ Ł. If q � (Ł; qn, qp) is a bipolar fuzzy
ideal of Ł, then I(w) is an ideal of Ł.

Proof. We recall that 0 ∈ I(w). Let ϰ, ℓ ∈ Ł such that
ϰ∗ ℓ ∈ I(w) and ℓ ∈ I(w). )en, qn(w)≥ qn(ϰ∗ ℓ), qp(w)≤
qp(ϰ∗ ℓ), qn(w)≥ qn(ℓ) and qp(w)≤ qp(ℓ). Since q � (Ł;qn,

qp) is a bipolar fuzzy ideal of Ł, we have fromDefinition 1 (ii)
that

qn(ϰ)≤ qn(ϰ∗ ℓ)∨qn(ℓ)≤ qn(w),

qp(ϰ)≥ qp(ϰ∗ ℓ)∧qp(ℓ)≥ qp(w),
(8)

and so, ϰ ∈ I(w). )erefore, I(w) is an ideal of Ł. □

Theorem 2. Let q � (Ł; qn, qp) be a bipolar fuzzy set in Ł and
w ∈ Ł.

(1) If I(w) is an ideal of Ł, then q � (Ł; qn, qp) satisfies
the following implications for all ϰ, ℓ, υ ∈ Ł:

qn(ϰ)≥ qn(ℓ ∗ υ)∨qn(υ)⇒ qn(ϰ)≥ qn(ℓ),

qp(ϰ)≤ qp(ℓ ∗ υ)∧qp(υ)⇒ qp(ϰ)≤ qp(ℓ).
(9)

(2) If q � (Ł; qn, qp) satisfies Definition 1(i) and (9), then
I(w) is an ideal of Ł.
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(1) We assume that I(w) is an ideal of Ł for each w ∈ Ł.
We suppose that qn(ϰ)≥ qn(ℓ ∗ υ)∨qn(υ) and
qp(ϰ)≤ qp(ℓ ∗ υ)∧qp(υ) for all ϰ, ℓ, υ ∈ Ł. )en,
ℓ ∗ υ ∈ I(ϰ) and υ ∈ I(ϰ). Since I(ϰ) is an ideal of Ł,
it follows that ℓ ∈ I(ϰ), that is, qn(ϰ)≥ qn(ℓ) and
qp(ϰ)≤ qp(ℓ).

(2) We suppose that q � (Ł; qn, qp) satisfies Definition 1
(i) and (9). For each w ∈ Ł, let ϰ, ℓ ∈ Ł such that
ϰ∗ ℓ ∈ I(w) and ℓ ∈ I(w). )en, qn(ϰ∗ ℓ)≤ qn(w),
qp(ϰ∗ ℓ)≥ qp(w), qn(ℓ)≤ qn(w), and qp(ℓ)≥ qp(w),
which imply that qn(w)≥ qn(ϰ∗ ℓ)∨qn(ℓ) and
qp(w)≤ qp(ϰ∗ ℓ)∧qp(ℓ). Using (9), we have
qn(w)≥ qn(ϰ) and qp(w)≤ qp(ϰ), and so, ϰ ∈ I(w).
Since q � (Ł; qn, qp) satisfies Definition 1 (i), it fol-
lows that 0 ∈ I(w). )erefore, I(w) is an ideal of
Ł. □

Lemma 1 (see [5]). Every bipolar fuzzy ideal q � (Ł; qn, qp)

of Ł satisfies the following implication:

(∀ϰ, ℓ ∈ Ł) ϰ≤ ℓ⇒qn(ϰ)≤ qn(ℓ), qp(ϰ)≥ qp(ℓ) . (10)

Proposition 1. For any bipolar fuzzy ideal q � (Ł; qn, qp) of
Ł, the following are equivalent:

(1) (∀ϰ, ℓ ∈ Ł)
qn(ϰ∗ ℓ)≤ qn((ϰ∗ ℓ)∗ ℓ),

qp(ϰ∗ ℓ)≥ qp((ϰ∗ ℓ)∗ ℓ).
⎛⎝ ⎞⎠

(2)
(∀ϰ,ℓ,υ ∈ Ł)

qn((ϰ∗υ)∗(ℓ∗υ))≤qn((ϰ∗ℓ)∗υ),

qp((ϰ∗υ)∗(ℓ∗υ))≥qp((ϰ∗ℓ)∗υ).
⎛⎝ ⎞⎠

Proof We assume that condition (2) is valid. Note that

((ϰ∗ (ℓ ∗ υ))∗ υ)∗ υ � ((ϰ∗ υ)∗ (ℓ ∗ υ))∗ υ≤ (ϰ∗ ℓ)∗ υ,

(11)

for all ϰ, ℓ, υ ∈ Ł by using (b2), (b3), and (b4). It follows from
Lemma 1 that

qn((ϰ∗ ℓ)∗ υ)≥ qn(((ϰ∗ (ℓ ∗ υ))∗ υ)∗ υ),

qp((ϰ∗ ℓ)∗ υ)≤ qp(((ϰ∗ (ℓ ∗ υ))∗ υ)∗ υ).
(12)

So, from (b2) and (2), it follows that

qn((ϰ∗ υ)∗ (ℓ ∗ υ)) � qn((ϰ∗ (ℓ ∗ υ))∗ υ)

≤ qn(((ϰ∗ (ℓ ∗ υ))∗ υ)∗ υ)

≤ qn((ϰ∗ ℓ)∗ υ),

qp((ϰ∗ υ)∗ (ℓ ∗ υ)) � qp((ϰ∗ (ℓ ∗ υ))∗ υ)

≥ qp(((ϰ∗ (ℓ ∗ υ))∗ υ)∗ υ)

≥ qp((ϰ∗ ℓ)∗ υ).

(13)

)us, (9) holds. Now, we suppose that (9) is valid. Using
(b1), (a3), and (9) with replacing υ by ℓ, we have

qn(ϰ∗ ℓ) � qn((ϰ∗ ℓ)∗ 0) � qn((ϰ∗ ℓ)∗ (ℓ ∗ ℓ))

≤ qn((ϰ∗ ℓ)∗ ℓ),

qp(ϰ∗ ℓ) � qp((ϰ∗ ℓ)∗ 0) � qp((ϰ∗ ℓ)∗ (ℓ ∗ ℓ))

≥ qp((ϰ∗ ℓ)∗ ℓ),

(14)

which proves (2). □

Proposition 2 (see [5]). A bipolar fuzzy set q � (Ł; qn, qp) in
Ł is a bipolar fuzzy ideal of Ł if and only if for all ϰ, ℓ, υ ∈ Ł,
(ϰ∗ ℓ)∗ υ � 0 implies qn(ϰ)≤ qn(ℓ)∨qn(υ) and qp(ϰ)≥
qp(ℓ)∧qp(υ).

As a generalization of Proposition 2, we have the fol-
lowing results.

Theorem 3. If a bipolar fuzzy set q � (Ł; qn, qp) in Ł is a
bipolar fuzzy ideal of Ł, then for all ϰ, w1, w2, . . . , wn ∈ Ł,



n

i�1
ϰ∗wi � 0⇒

qn(ϰ)≤ qn w1( ∨qn w2( ∨ · · ·∨qn wn( ,

qp(ϰ)≥ qp w1( ∧qp w2( ∧ · · ·∧qp wn( ,
 

(15)

where 
n
i�1 ϰ∗wi � (· · · ((ϰ∗w1)∗w2)∗ · · ·)∗wn.

Proof. )eproof is by induction on n. Let q � (Ł; qn, qp) be a
bipolar fuzzy ideal of Ł. Lemma 1 and Proposition 2 show
that condition (15) is valid for n � 1, 2. We assume that q �

(Ł; qn, qp) satisfies condition (15) for n � k, that is, for all
ϰ, w1, w2, . . . , wk ∈ Ł, 

k
i�1 ϰ∗wi � 0 implies

qn(ϰ)≤ qn w1( ∨qn w2( ∨ · · ·∨qn wk( ,

qp(ϰ)≥ qp w1( ∧qp w2( ∧ · · ·∧qp wk( .
(16)

Let ϰ, w1, w2, . . . , wk, wk+1 ∈ Ł such that 
k+1
i�1 ϰ∗wi � 0.

)en,

qn ϰ∗w1( ≤ qn w2( ∨qn w3( ∨ · · ·∨qn wk+1( ,

qp ϰ∗w1( ≥ qp w2( ∧qp w3( ∧ · · ·∧qp wk+1( .
(17)

Since q � (Ł; qn, qp) is a bipolar fuzzy ideal of Ł, it
follows from Definition 1 (ii) that

Table 1: Cayley table.

∗ θ ℓ υ ω δ
θ θ θ θ θ θ
ℓ ℓ θ ℓ θ θ
υ υ υ θ υ θ
ω ω ω ω θ ω
δ δ δ δ δ θ
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qn(ϰ)≤ qn ϰ∗w1( ∨qn w1( 

≤ qn w1( ∨qn w2( ∨ · · ·∨qn wk+1( ,

qp(ϰ)≥ qp ϰ∗w1( ∧qp w1( 

≥ qp w1( ∧qp w2( ∧ · · ·∧qp wk+1( .

(18)

)is completes the proof. □

Now, we consider the converse of )eorem 3.

Theorem 4. Let q � (Ł; qn, qp) be a bipolar fuzzy set in Ł
satisfying condition (15). Aen, q � (Ł; qn, qp) is a bipolar
fuzzy ideal of Ł.

Proof. Note that ( · · · ( ( 0∗ ϰ )∗ϰ )∗ · · · )∗ϰ√√√√√√√√√√√√√√
n times

� 0 for all

ϰ ∈ Ł. It follows from (15) that qn(0)≤ qn(ϰ) and
qp(0)≥ qp(ϰ) for all ϰ ∈ Ł. Let ϰ, ℓ, υ ∈ Ł such that ϰ∗ ℓ ≤ υ.
)en,

0 � ( ϰ∗ ℓ )∗ υ � ( · · · ( ( ( ϰ∗ ℓ )∗ υ )∗ 0 )∗ · · · )∗ 0√√√√√√√√√√
n−2 times

,

(19)

and so,

qn(ϰ)≤ qn(ℓ)∨qn(υ)∨qn(0) � qn(ℓ)∨qn(υ),

qp(ϰ)≥ qp(ℓ)∧qp(υ)∧qp(0) � qp(ℓ)∧qp(υ).
(20)

Hence, by Proposition 2, we conclude that q � (Ł; qn, qp)

is a bipolar fuzzy ideal of Ł. □

4. Bipolar Fuzzy Implicative Ideals

Definition 2. A bipolar fuzzy set q � (Ł; qn, qp) in Ł is called
a bipolar fuzzy implicative ideal of Ł if both the nonempty
negative α-cut and the nonempty positive β-cut of
q � (Ł; qn, qp) are implicative ideals of Ł for all
(α, β) ∈ [−1, 0] × [0, 1].

Example 2. Let Ł � θ, ℓ, υ{ } be a set in which the operation
∗ is defined by Table 2.

)en, (Ł; ∗, θ) is a BCK-algebra. Let (t0, s0), (t1, s1) ∈
[−1, 0] × [0, 1] satisfy (t0, s0)> (t1, s1), that is, t0 < t1 and
s0 > s1. Let q � (Ł; qn, qp) be a bipolar fuzzy set in Ł given by

θ l v

qn t0 t0 t1
qp s0 s0 s1

By routine calculations, we know that q � (Ł; qn, qp) is a
bipolar fuzzy implicative ideal of Ł.

Theorem 5. A bipolar fuzzy set q � (Ł; qn, qp) in Ł is a
bipolar fuzzy implicative ideal of Ł if and only if it satisfies
Definition 1 (i) and the following assertions:

(∀ϰ,ℓ,υ ∈ Ł)
qn(ϰ∗υ)≤qn((ϰ∗ℓ)∗υ)∨qn(ℓ∗υ),

qp(ϰ∗υ)≥qp((ϰ∗ℓ)∗υ)∧qp(ℓ∗υ).
⎛⎝ ⎞⎠ (21)

Proof. We suppose that q � (Ł; qn, qp) is a bipolar fuzzy
implicative ideal of Ł. If qn(0)> qn(b) or qp(0)< qp(d) for
some b, d ∈ Ł, then 0 ∉ N(q; qn(b)) or 0 ∉ P(q; qp(d)),
which contradicts the fact. Hence, qn(0)≤ qn(ϰ) and
qp(0)≥ qp(ϰ) ∀ϰ ∈ Ł. For some b, d, c ∈ Ł, we assume that
we have the following relation:

qn(b∗ c)> qn((b∗ d)∗ c)∨qn(d∗ c) � s. (22)

)en, (b∗d)∗ c ∈ N(q; s) and d∗ c ∈ N(q; s), but
b∗ c ∉ N(q; s). )is is not possible; therefore, we have

qn(ϰ∗ υ)≤ qn((ϰ∗ ℓ)∗ υ)∨qn(ℓ ∗ υ), (23)

for all ϰ, ℓ, υ ∈ Ł. If qp(b∗ c)< qp((b∗ d)∗ c)∧qp(d∗ c) � t

for some b, d, c ∈ Ł, then (b∗ d)∗ c ∈ P(q; t) and
d∗ c ∈ P(q; t), but b∗ c ∉ P(q; t). We reach a contradiction
because P(q; t) is an implicative ideal of Ł. Henceforth,

qp(ϰ∗ υ)≥ qp((ϰ∗ ℓ)∗ υ)∧qp(ℓ ∗ υ), (24)

for all ϰ, ℓ, υ ∈ Ł. Consequently, a bipolar fuzzy implicative
ideal q � (Ł; qn, qp) satisfies Definition 1 (i) and (21).

Conversely, we suppose that q � (Ł; qn, qp) satisfies
Definition 1 (i) and (21) and let (α, β) ∈ [−1, 0] × [0, 1] s.th.
N(q; α)≠∅ and P(q; β)≠∅. It is clear that
0 ∈ N(q; α)∩P(q; β). Let ϰ, ℓ, υ ∈ Ł be such that
(ϰ∗ ℓ)∗ υ ∈ N(q; α) and ℓ ∗ υ ∈ N(q; α). )en, qn((ϰ∗
ℓ)∗ υ)≤ α and qn(ℓ ∗ υ)≤ α. It follows from (21) that

qn(ϰ∗ υ)≤ qn((ϰ∗ ℓ)∗ υ)∨qn(ℓ ∗ υ)≤ α, (25)

and so, ϰ∗ υ ∈ N(q; α). Hence, N(q; α) is an implicative
ideal of Ł. Similarly, we can show that

qp(ϰ∗ υ)≥ qp((ϰ∗ ℓ)∗ υ)∧qp(ℓ ∗ υ)≥ β, (26)

for all ϰ, ℓ, υ ∈ Ł, and so, ϰ∗ υ ∈ P(q; β). )erefore, P(q; β)

is an implicative ideal of Ł. Consequently, q � (Ł; qn, qp) is a
bipolar fuzzy implicative ideal of Ł. □

Next, we have the following theorems.

Theorem 6. A bipolar fuzzy ideal q � (Ł; qn, qp) of Ł is a
bipolar fuzzy implicative ideal of Ł if and only if it satisfies
Proposition 1 (1).

Proof. Let q � (Ł; qn, qp) be a bipolar fuzzy implicative ideal
of Ł. If υ is replaced by ℓ in (21), then

qn(ϰ∗ ℓ)≤ qn((ϰ∗ ℓ)∗ ℓ)∨qn(ℓ ∗ ℓ),

� qn((ϰ∗ ℓ)∗ ℓ)∨qn(0),

� qn((ϰ∗ ℓ)∗ ℓ),

Table 2: Cayley table.

∗ θ ℓ υ
θ θ θ θ
ℓ ℓ θ θ
υ υ υ θ
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qp(ϰ∗ ℓ)≥ qp((ϰ∗ ℓ)∗ ℓ)∧qp(ℓ ∗ ℓ),

� qp((ϰ∗ ℓ)∗ ℓ)∧qp(0),

� qp((ϰ∗ ℓ)∗ ℓ),

(27)

which is Proposition 1 (1). Conversely, let q � (Ł; qn, qp) be a
bipolar fuzzy ideal of Ł satisfying Proposition 1 (1). Note that

((ϰ∗ υ)∗ υ)∗ (ℓ ∗ υ)≤ (ϰ∗ υ)∗ ℓ � (ϰ∗ ℓ)∗ υ, (28)

for all ϰ, ℓ, υ ∈ Ł. Using Lemma 1, we have

qn((ϰ∗ ℓ)∗ υ)≥ qn(((ϰ∗ υ)∗ υ)∗ (ℓ ∗ υ)),

qp((ϰ∗ ℓ)∗ υ)≤ qp(((ϰ∗ υ)∗ υ)∗ (ℓ ∗ υ)).
(29)

It follows from Definition 1 (ii) and Proposition 1 (1) that

qn(ϰ∗ υ)≤ qn((ϰ∗ υ)∗ υ)

≤ qn(((ϰ∗ υ)∗ υ)∗ (ℓ ∗ υ))∨qn(ℓ ∗ υ)

≤ qn((ϰ∗ ℓ)∗ υ)∨qn(ℓ ∗ υ),

qp(ϰ∗ υ)≥ qp((ϰ∗ υ)∗ υ)

≥ qp(((ϰ∗ υ)∗ υ)∗ (ℓ ∗ υ))∧qp(ℓ ∗ υ)

≥ qp((ϰ∗ ℓ)∗ υ)∧qp(ℓ ∗ υ).

(30)

)us, q � (Ł; qn, qp) is a bipolar fuzzy implicative ideal
of Ł. □

Combining Proposition 1 and )eorem 6, we have the
following characterization of a bipolar fuzzy implicative
ideal.

Theorem 7. Let q � (Ł; qn, qp) be a bipolar fuzzy ideal of Ł.
Aen, it is a bipolar fuzzy implicative ideal of Ł if and only if it
satisfies Proposition 1 (2).

Theorem 8 (see [33]). Every bipolar fuzzy implicative ideal
is a bipolar fuzzy ideal.

Theorem 9. Let q � (Ł; qn, qp) be a bipolar fuzzy set in Ł.
Aen, q � (Ł; qn, qp) is a bipolar fuzzy implicative ideal of Ł if
and only if it satisfies Definition 1 (i) and

(∀ϰ, ℓ, υ ∈ Ł)

qn(ϰ∗ ℓ)≤ qn(((ϰ∗ ℓ)∗ ℓ)∗ υ)∨qn(υ),

qp(ϰ∗ ℓ)≥ qp(((ϰ∗ ℓ)∗ ℓ)∗ υ)∧qp(υ).

⎛⎝ ⎞⎠

(31)

Proof. We suppose that q � (Ł; qn, qp) is a bipolar fuzzy
implicative ideal of Ł. )en, q � (Ł; qn, qp) is a bipolar fuzzy
ideal of Ł by)eorem 8, and so, Definition 1 (i) is true. From
)eorem 7, it follows that q � (Ł; qn, qp) satisfies Proposi-
tion 1 (2). )us,

qn(ϰ∗ ℓ)≤ qn((ϰ∗ ℓ)∗ υ)∨qn(υ),

� qn(((ϰ∗ υ)∗ ℓ)∗ (ℓ ∗ ℓ))∨qn(υ)

≤ qn(((ϰ∗ υ)∗ ℓ)∗ ℓ)∨qn(υ),

� qn(((ϰ∗ ℓ)∗ ℓ)∗ υ)∨qn(υ)

qp(ϰ∗ ℓ)≥ qp((ϰ∗ ℓ)∗ υ)∧qp(υ),

� qp(((ϰ∗ υ)∗ ℓ)∗ (ℓ ∗ ℓ))∧qp(υ)

≥ qp(((ϰ∗ υ)∗ ℓ)∗ ℓ)∧qp(υ),

� qp(((ϰ∗ ℓ)∗ ℓ)∗ υ)∧qp(υ),

(32)

which proves (31). Conversely, let q � (Ł; qn, qp) be a bipolar
fuzzy set in Ł satisfying Definition 1 (i) and (31). )en,

qn(ϰ) � qn(ϰ∗ 0)≤ qn(((ϰ∗ 0)∗ 0)∗ υ)∨qn(υ)

� qn(ϰ∗ υ)∨qn(υ),

qp(ϰ) � qp(ϰ∗ 0)≥ qp(((ϰ∗ 0)∗ 0)∗ υ)∧qp(υ)

� qp(ϰ∗ υ)∧qp(υ).

(33)

)us, q � (Ł; qn, qp) is a bipolar fuzzy ideal of Ł. Now, we
take υ � 0 in (31) and use (b1) and Definition 1 (i) to get

qn(ϰ∗ ℓ)≤ qn(((ϰ∗ ℓ)∗ ℓ)∗ 0)∨qn(0),

� qn((ϰ∗ ℓ)∗ ℓ)∨qn(0),

� qn((ϰ∗ ℓ)∗ ℓ),
qp(ϰ∗ ℓ)≥ qp(((ϰ∗ ℓ)∗ ℓ)∗ 0)∧qp(0),

� qp((ϰ∗ ℓ)∗ ℓ)∧qp(0),

� qp((ϰ∗ ℓ)∗ ℓ).

(34)

It follows from)eorem 6 that q � (Ł; qn, qp) is a bipolar
fuzzy implicative ideal of Ł. □

Summarizing the abovementioned results, we have a
characterization of a bipolar fuzzy implicative ideal of Ł.

Theorem 10. Let q � (Ł; qn, qp) be a bipolar fuzzy set in Ł.
Aen, the following assertions are equivalent:

(1) q � (Ł; qn, qp) is a bipolar fuzzy implicative ideal of Ł
(2) q � (Ł; qn, qp) satisfies Definition 1 (i) and (21)
(3) q � (Ł; qn, qp) is a bipolar fuzzy ideal of Ł satisfying

Proposition 1 (1)
(4) q � (Ł; qn, qp) is a bipolar fuzzy ideal of Ł satisfying

Proposition 1 (2)
(5) q � (Ł; qn, qp) satisfies Definition 1 (i) and (31)

Theorem 11. Let w ∈ Ł. If q � (Ł; qn, qp) is a bipolar fuzzy
implicative ideal of Ł, then I(w) is an implicative ideal of Ł.

Proof. We recall that 0 ∈ I(w). Let ϰ, ℓ, υ ∈ Ł such that
(ϰ∗ ℓ)∗ υ ∈ I(w) and ℓ ∗ υ ∈ I(w). )en, qn(w)≥
qn((ϰ∗ ℓ)∗ υ), qp(w)≤ qp((ϰ∗ ℓ)∗ υ), qn(w)≥ qn(ℓ ∗ υ),
and qp(w)≤ qp(ℓ ∗ υ). Since q � (Ł; qn, qp) is a bipolar fuzzy
implicative ideal of Ł, it follows from (21) that
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qn(ϰ∗ υ)≤ qn((ϰ∗ ℓ)∗ υ)∨qn(ℓ ∗ υ)≤ qn(w),

qp(ϰ∗ υ)≥ qp((ϰ∗ ℓ)∗ υ)∧qp(ℓ ∗ υ)≥ qp(w),
(35)

so that ϰ∗ υ ∈ I(w). )erefore, I(w) is an implicative ideal
of Ł. □

Theorem 12. If q � (Ł; qn, qp) is a bipolar fuzzy implicative
ideal of Ł, then for all ϰ, ℓ, υ, a, b ∈ Ł,

(1) ((ϰ∗ ℓ)∗ ℓ)∗ a≤ b⇒
qn(ϰ∗ ℓ)≤ qn(a)∨qn(b),

qp(ϰ∗ ℓ)≥ qp(a)∧qp(b).
 

(2) ((ϰ∗ ℓ)∗ υ)∗ a≤ b⇒
qn((ϰ∗ υ)∗ (ℓ ∗ υ))≤ qn(a)∨qn(b),

qp((ϰ∗ υ)∗ (ℓ ∗ υ))≥ qp(a)∧qp(b).
 

Proof. Let ϰ, ℓ, a, b ∈ Ł such that ((ϰ∗ ℓ)∗ ℓ)∗ a≤ b. Using
Proposition 2, we have qn((ϰ∗ ℓ)∗ ℓ)≤ qn(a)∨qn(b) and
qp((ϰ∗ ℓ)∗ ℓ)≥ qp(a)∧qp(b). It follows that

qn(ϰ∗ ℓ)≤ qn((ϰ∗ ℓ)∗ ℓ)∨qn(ℓ ∗ ℓ),

� qn((ϰ∗ ℓ)∗ ℓ)∨qn(0),

� qn((ϰ∗ ℓ)∗ ℓ)

≤ qn(a)∨qn(b),

qp(ϰ∗ ℓ)≥ qp((ϰ∗ ℓ)∗ ℓ)∧qp(ℓ ∗ ℓ),

� qp((ϰ∗ ℓ)∗ ℓ)∧qp(0),

� qp((ϰ∗ ℓ)∗ ℓ)

≥ qp(a)∧qp(b).

(36)

Now, let ϰ, ℓ, υ, a, b ∈ Ł such that ((ϰ∗ ℓ)∗ υ)∗ a≤ b,
that is,

(((ϰ∗ ℓ)∗ υ)∗ a)∗ b � 0. (37)

Since q � (Ł; qn, qp) is a bipolar fuzzy implicative ideal of
Ł, it follows from )eorem 7 and Proposition 2 that

qn((ϰ∗ υ)∗ (ℓ ∗ υ))≤ qn((ϰ∗ ℓ)∗ υ)≤ qn(a)∨qn(b),

qp((ϰ∗ υ)∗ (ℓ ∗ υ))≥ qp((ϰ∗ ℓ)∗ υ)≥ qp(a)∧qp(b).

(38)

)is completes the proof. □

Theorem 13. Let q � (Ł; qn, qp) be a bipolar fuzzy set in Ł
satisfying Aeorem 12 (1). Aen, q � (Ł; qn, qp) is a bipolar
fuzzy implicative ideal of Ł.

Proof. We first prove that q � (Ł; qn, qp) is a bipolar fuzzy
ideal of Ł. Let ϰ, ℓ, υ ∈ Ł such that ϰ∗ ℓ ≤ υ. )en,

(((ϰ∗ 0)∗ 0)∗ ℓ)∗ υ � (ϰ∗ ℓ)∗ υ � 0,

that is, ((ϰ∗ 0)∗ 0)∗ ℓ ≤ υ,
(39)

which implies from (b1) and )eorem 12 (1) that qn(ϰ) �

qn(ϰ∗ 0)≤ qn(ℓ)∨qn(υ) and qp(ϰ) � qp(ϰ∗ 0)≥ qp(ℓ)∧
qp(υ). )erefore, by Proposition 2, we know that
q � (Ł; qn, qp) is a bipolar fuzzy ideal of Ł. Note that

(((ϰ∗ ℓ)∗ ℓ)∗ ((ϰ∗ ℓ)∗ ℓ))∗ 0 � 0 for all ϰ, ℓ ∈ Ł. Using
)eorem 12 (1) and Definition 1 (i), we have

qn(ϰ∗ ℓ)≤ qn((ϰ∗ ℓ)∗ ℓ)∨qn(0) � qn((ϰ∗ ℓ)∗ ℓ),

qp(ϰ∗ ℓ)≥ qp((ϰ∗ ℓ)∗ ℓ)∧qp(0) � qp((ϰ∗ ℓ)∗ ℓ),
(40)

and so, q � (Ł; qn, qp) is a bipolar fuzzy implicative ideal of Ł
by )eorem 6. □

Theorem 14. Let q � (Ł; qn, qp) be a bipolar fuzzy set in Ł
satisfying Aeorem 12 (2). Aen, q � (Ł; qn, qp) is a bipolar
fuzzy implicative ideal of Ł.

Proof. Let ϰ, ℓ, a, b ∈ Ł such that ((ϰ∗ ℓ)∗ ℓ)∗ a≤ b, that is,

(((ϰ∗ ℓ)∗ ℓ)∗ a)∗ b � 0. (41)

)en,

qn(ϰ∗ ℓ) � qn((ϰ∗ ℓ)∗ 0) � qn((ϰ∗ ℓ)∗ (ℓ ∗ ℓ))

≤ qn(a)∨qn(b),

qp(ϰ∗ ℓ) � qp((ϰ∗ ℓ)∗ 0) � qp((ϰ∗ ℓ)∗ (ℓ ∗ ℓ))

≥ qp(a)∧qp(b),

(42)

and so, q � (Ł; qn, qp) is a bipolar fuzzy implicative ideal of Ł
by )eorem 13. □

Corollary 1. If q � (Ł; qn, qp) is a bipolar fuzzy implicative
ideal of Ł, then

qn((ϰ∗ υ)∗ (ℓ ∗ υ))≤∨ qn wi( |i � 1, 2, · · · , n ,

qp((ϰ∗ υ)∗ (ℓ ∗ υ))≥∧ qp wi( |i � 1, 2, · · · , n ,
(43)

whenever 
n
i�1((ϰ∗ ℓ)∗ υ)∗wi � 0 for all ϰ, ℓ, υ, w1, . . . ,

wn ∈ Ł.

Proof. Let ϰ, ℓ, υ, w1, . . . , wn ∈ Ł such that


n
i�1((ϰ∗ ℓ)∗ υ)∗wi � 0. )en,

qn((ϰ∗ υ)∗ (ℓ ∗ υ))≤ qn((ϰ∗ ℓ)∗ υ)

≤∨ qn wi( |i � 1, 2, · · · , n ,

qp((ϰ∗ υ)∗ (ℓ ∗ υ))≥ qp((ϰ∗ ℓ)∗ υ)

≥∧ qp wi( |i � 1, 2, · · · , n .

(44)

)is completes the proof. □

Theorem 15 (Extension Property). Let q � (Ł; qn, qp) and
g � (Ł; gn, gp) be bipolar fuzzy ideals of Ł such that qn(0) �

gn(0) and qp(0) � gp(0) and qn(ϰ)≥gn(ϰ) and
qp(ϰ)≤gp(ϰ) for all ϰ ∈ Ł. If q � (Ł; qn, qp) is a bipolar
fuzzy implicative ideal of Ł, then so is g � (Ł; gn, gp).

Proof. We assume that q � (Ł; qn, qp) is a bipolar fuzzy
implicative ideal of Ł. For any ϰ, ℓ, υ ∈ Ł, we have
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gn(((ϰ∗ υ)∗ (ℓ ∗ υ))∗ ((ϰ∗ ℓ)∗ υ)),

� gn(((ϰ∗ υ)∗ ((ϰ∗ ℓ)∗ υ))∗ (ℓ ∗ υ)),

� gn(((ϰ∗ ((ϰ∗ ℓ)∗ υ))∗ υ)∗ (ℓ ∗ υ))

≤ qn(((ϰ∗ ((ϰ∗ ℓ)∗ υ))∗ υ)∗ (ℓ ∗ υ))

≤ qn(((ϰ∗ ((ϰ∗ ℓ)∗ υ))∗ ℓ)∗ υ),

� qn(((ϰ∗ ℓ)∗ ((ϰ∗ ℓ)∗ υ))∗ υ),

� qn(((ϰ∗ ℓ)∗ υ)∗ ((ϰ∗ ℓ)∗ υ)),

� qn(0) � gn(0),

gp(((ϰ∗ υ)∗ (ℓ ∗ υ))∗ ((ϰ∗ ℓ)∗ υ)),

� gp(((ϰ∗ υ)∗ ((ϰ∗ ℓ)∗ υ))∗ (ℓ ∗ υ)),

� gp(((ϰ∗ ((ϰ∗ ℓ)∗ υ))∗ υ)∗ (ℓ ∗ υ))

≥ qp(((ϰ∗ ((ϰ∗ ℓ)∗ υ))∗ υ)∗ (ℓ ∗ υ))

≥ qp(((ϰ∗ ((ϰ∗ ℓ)∗ υ))∗ ℓ)∗ υ),

� qp(((ϰ∗ ℓ)∗ ((ϰ∗ ℓ)∗ υ))∗ υ),

� qp(((ϰ∗ ℓ)∗ υ)∗ ((ϰ∗ ℓ)∗ υ)),

� qp(0) � gp(0).

(45)

It follows from Definition 1 (i) and (ii) that

gn((ϰ∗ υ)∗ (ℓ ∗ υ))

≤gn(((ϰ∗ υ)∗ (ℓ ∗ υ))∗ ((ϰ∗ ℓ)∗ υ))∨gn((ϰ∗ ℓ)∗ υ)

≤gn(0)∨gn((ϰ∗ ℓ)∗ υ),

� gn((ϰ∗ ℓ)∗ υ),

gp((ϰ∗ υ)∗ (ℓ ∗ υ))

≥gp(((ϰ∗ υ)∗ (ℓ ∗ υ))∗ ((ϰ∗ ℓ)∗ υ))∧gp((ϰ∗ ℓ)∗ υ)

≥gp(0)∧gp((ϰ∗ ℓ)∗ υ),

� gp((ϰ∗ ℓ)∗ υ),

(46)

for all ϰ, ℓ, υ ∈ Ł. Hence, by )eorem 7, g � (Ł; gn, gp) is a
bipolar fuzzy implicative ideal of Ł. □

5. Conclusions

In the present paper, we apply the notion of a bipolar-valued
fuzzy set to implicative ideals of BCK-algebras and obtain
more related results. We considered the relation of a bipolar
fuzzy ideal with a bipolar fuzzy implicative ideal and pro-
vided characterizations of a bipolar fuzzy implicative ideal.
Also, we studied conditions for a bipolar fuzzy set to be a
bipolar fuzzy implicative ideal. Furthermore, an extension
property for a bipolar fuzzy implicative ideal is discussed.

We hope that this work will give a deep impact on the
upcoming research in this field and other fuzzy algebraic
study to open up new horizons of interest and innovations.
One may apply this concept to study some application fields
such as decision making, knowledge base system, and data
analysis. In our opinion, these definitions and main results

can be similarly extended to some other algebraic systems
such as subtraction algebras, B-algebras, MV-algebras,
d-algebras, and Q-algebras.
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In rule optimization, some rule characteristics were extracted to describe the uncertainty correlations of fuzzy relations, but the
concrete numbers cannot express correlations with uncertainty, such as “at least 0.1 and up to 0.5.” To solve this problem, a novel
definition concerning interval information content of fuzzy relation has been proposed in this manuscript to realize the fuzziness
measurement of the fuzzy relation. Also, its definition and expressions have also been constructed. Meanwhile based on the
interval information content, the issues of fuzzy implication ranking and clustering were analyzed. Finally, utilizing the
combination of possibility’s interval comparison equations and interval value’s similarity measure, the classifications of im-
plication operators were proved to be realizable. ,e achievements in the presented work will provide a reasonable index to
measure the fuzzy implication operators and lay a solid foundation for further research.

1. Introduction

Nowadays, we are in the midst of an information revolution,
which is driving the development and deployment of new
kinds of science and technologywith ever-increasing depth and
breadth. Information is related to data and knowledge, as data
represents the values attributed to parameters, and knowledge
signifies the understanding of real things or abstract concepts
[1]. With the development of computer science, the amount of
information generated by people has grown from a trickle to a
torrent. In 1948, the definition of information theory was first
proposed by Shannon, in which the statistics method was used
to measure the information content quantitatively.

,e rapid progress of information theory makes people
realize its significance [2], and its conception has been
applied in many regions such as communication, decision
making, and pattern recognition [3–5]. But unfortunately,
the application research studies of information theory in
semantic and pragmatic information science have not been
conducted widely until now. As the era of big data has been
opened, useful information must be mined from more and
more data. In this process, the information needs to be
expressed by various rules. From a practical standpoint, it is

difficult to describe decision makers’ experience with precise
mathematical models. So, how to select and evaluate rules is
the key issue to realize the control of fuzzy system, which can
be summarized as rule optimization [6, 7].

To solve this issue, many researches have been conducted
to develop several methods, which can be divided into two
categories: (1) by means of extracting some rule charac-
teristics [8–13], such as uncertainties of operators by Yu et al.
[8], information entropy by Sendi and Ayoubi [7], and fuzzy
reliance by Hu et al. [12], the optimizations of fuzzy systems
have been realized. (2) First, the structure of fuzzy rules was
established; then, some algorithms [14–19], such as the
gradient descent method [14] and neural networks [16], have
been used to optimize the variable parameters in fuzzy
systems. In the classical compositional rule of inference
methods, the fuzzy rules were often converted into impli-
cation operators. So, many fuzzy implication operators can
be constructed [20–24], and for them, the research on how to
realize better control of fuzzy systems is still lacking. To
address these issues, a novel method has been proposed in
the paper, utilizing which the interval information contents
of fuzzy relations have been extracted to realize the ranking,
clustering, and classification.
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Information content is used to describe the correlations
between the sets in fuzzy relation. But, owing to the com-
plexities of the things and the uncertainties of human
cognition, the concrete numbers cannot be used to express
the correlations between two sets. For example, when the
correlation is “at least 0.1 and up to 0.5,” how to measure it is
still an unsolved problem. In order to solve this problem, a
new definition of uncertainty measurement is constructed,
which is named as the interval information content of the
fuzzy relation. First, the fuzzy relation of the interval in-
formation content was proposed, and five different ex-
pressions were developed, with which the ranking,
clustering, and classification of fuzzy implication operators
have been realized.

2. Preliminaries

In this section, some definitions and theories involved in this
paper are introduced.

Definition 1 (see [8]). Let X and Y be two sets, a fuzzy
relation R from X to Y be a fuzzy subset of X×Y, and R(x, y)
be the membership degree of x and y to fuzzy relation R, and
the class of all fuzzy relations from X to Y can be denoted by
Ƒ(X×Y).

Let X � x1, x2, . . . , xm , Y � y1, y2, . . . , yn  be the fi-
nite sets and rij � R(xi, yi); then, the fuzzy relation R can be
denoted by fuzzy relation matrix R � (rij)m×n.

Remark 1
(1) For fuzzy relation matrix R � (rij)m×n, S � (Sij)m×n, the

operations of the fuzzy relationmatrix are defined as follows:

R∩ S � rij ∧ Sij 
m×n

,

R∪ S � rij ∨ Sij 
m×n

,

R
c

� 1 − rij 
m×n

,

(1)

where rij∧sij ≜ min(rij, sij) and rij∨sij ≜ max(rij, sij).
(2) Rλ � ( x, y )|R( x, y )≥ λ  is defined as the λ-cut

relations of R. Furthermore, the ((rij)λ)m×n is defined as
λ-cut matrix of R with the expression as follows:

rij λ �
1, rij ≥ λ,

0, rij < λ.

⎧⎨

⎩ (2)

Definition 2 (see [10]). Let X � x1, x2, . . . , xm ,
Y � y1, y2, . . . , yn , and R be a fuzzy relation from X to Y,
and the information content of R is measured as follows:

IC(R) �
m

m + n
IC(R|X) +

n

m + n
IC(R|Y), (3)

where IC( R|X ), IC( R|Y ) are the information contents of R
restricted on X and Y, respectively with the expression as
follows:

IC(R | X) � − 

m

i�1


n
j�1 R xi, yj 


m
i�1 

n
j�1 R xi, yj 

log2


n
j�1 R xi, yj 

n
,

IC(R|Y) � − 
n

j�1


m
i�1 R

− 1
yj, xi 


n
j�1 

m
i�1 R

−1
yj, xi 

log2


m
i�1 R

− 1
yj, xi 

m
.

(4)

,e U-uncertainty of A is also used to measure the
information content of fuzzy sets.

Definition 3 (see [25]). A is a fuzzy set defined on
X � x1, x2, . . . , xm , and all A(xi) (i� 1, 2, . . ., m) can be
designed to an ordered possibility distribution
λ1, λ2, . . . , λm . It is always the case that λi+1 ≤ λi; then,

U( A ) � − 
m

i�1
( λi − λi+1 ) log2 Aλi





� − 
m

i�1
λi log2 Aλi



 − log2 Aλi−1



 

(5)

is defined as theU-uncertainty of A, | · | is the cardinality of a
set, and

Aλi
� x ∈ X|A(x) ≥ λi . (6)

Definition 4 (see [20]). A fuzzy implication operator is any
mapping I: [0,1]× [0,1]⟶ [0,1] satisfying the border
conditions:

(P1) ∃ a ∈ [0,1], b∈[0,1], I (a, b)� 1
(P2) ∃ c ∈ [0,1], d∈[0,1], I (c, d)� 0
Furthermore,
(P3) If I(1,0)� 0, I(0,1)� I(1,1)� I(0,0)� 1, then I is
a normal implication operator. Otherwise, it is
called an abnormal implication operator.
For instance,

(1) Zadeh operator: I1(a, b) � (1 − a)∨(a∧b)

(2) Kleene–Dienes operator: I2(a, b) � (1 − a)∨b
(3) Lukasiewicz operator: I3(a, b) � (1 − a + b)∧1
(4) Reichenbach operator: I4(a, b) � 1 − a + ab

(5) Mamdani operator: I5(a, b) � a∧b
(6) Probability product operator: I6(a, b) � ab

(7) R0 operator:

I7(a, b) �
1, a≤ b,

(1 − a)∨b, a> b
 (7)

(8) Goguen operator:

I8(a, b) �

1, a � 0,

b

a
 ∧1, a> 0

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)
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(9) Gaines–Reseher operator:

I9(a, b) �
1, a≤ b,

0, a> b
 (9)

(10) Yager operator:

I10(a, b) � b
a

(10)

(11) Bounded product operator: I11(a, b) � (a + b − 1)

∨0
(12) Gödel operator:

I12(a, b) �
1, a≤ b,

b, a> b


(11)

(13) I13( a, b ) �
1, a≤ b,

1 − a, a> b.


To indicate the degree of similarity of two fuzzy sets, the
concept of similarity measure is proposed as follows.

Definition 5 (see [26, 27]). A real function SI: D×D⟶
[0,1] is called similarity measure, where
D � [ a− , a+ ]|0≤ a− ≤ a+ ≤ 1{ }, if SI satisfies the following
properties:

(SI1) SI(A, Ac) � 0 if A is a crisp set
(SI2) SI(A, B) � 1⟺A � B

(SI 3) SI(A, B) � SI(B, A)

(SI 4) ∀A, B, C ∈ D, if A⊆B⊆C, then SI(A, C)≤ SI(A, B)

, SI(A, C)≤ SI(B, C)

For instance, let A � [a− , a+], B � [b− , b+] ∈ D, and

SI(A, B) � SI a
−

, a
+

 , b
−

, b
+

 (  �
1
2

a
−∧b−

a
−∨b− +

a
+∧b+

a
+∨b+ .

(12)

3. The Construction of Interval Information
Content of the Fuzzy Relation

In fact, IC(R) can be used to measure information content
transferred by two fuzzy sets by means of an exact value. But,
with uncertainty, the value of the information content be-
tween two fuzzy sets cannot be measured precisely. For
instance, when it is measured as a maximum of 0.7 and a
minimum of 0.1, how about it? It is necessary to extend the
value from the exact number to interval value, and then, the
definition of interval information content is proposed as
follows:

Definition 6. Let X � x1, x2, . . . , xm , Y � y1, y2, . . . , yn ,
the interval information content of fuzzy relation R be the
mapping IIC(R): X×Y⟶D, and

IIC1(R) � [IC(R|X)∧IC(R|Y), IC(R|X)∨IC(R|Y)]. (13)

Based on U-uncertainty, interval information content of
the fuzzy relation can also be expressed as follows.

Definition 7. Let X � x1, x2, . . . , xm , Y � y1, y2, . . . , yn ,
R be the fuzzy relation from X to Y, and
R(x1, y1), R(x1, y2), . . . , R(xi, yj)  be ranked in descend-
ing order λ1, λ2, . . . , λmn , where λi+1 ≤ λi, λmn+1 � 0, and
then,

IIC2(R) � 
mn

i�1
λi − λi+1( log2

mn

Rλi+1




, 

mn

i�1
λi − λi+1( log2

mn

Rλi





⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(14)

is the interval information content of R from X to Y.
Similarly, by Definition 3, the interval information

content of R can also be constructed as

IIC3(R) � 
mn

i�1

λi


mn
i�1λi

log2
mn

Rλi+1





⎛⎝ ⎞⎠, 
mn

i�1

λi


mn
i�1λi

log2
mn

Rλi





⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

IIC4(R) � 
mn

i�1
λi − λi+1(  IC Rλi

|X ∧IC Rλi
|Y  , 

mn

i�1
λi − λi+1(  IC Rλi

|X ∨IC Rλi
|Y  ⎡⎣ ⎤⎦,

IIC5(R) � 
mn

i�1

λi


mn
i�1λi

IC Rλi
|X ∧IC Rλi

|Y  , 
mn

i�1

λi


mn
i�1λi

IC Rλi
|X ∨IC Rλi

|Y  ⎡⎣ ⎤⎦.

(15)

Journal of Mathematics 3



RE
TR
AC
TE
D

,en, we have IICi(R) ∈ D, i � 1, 2, . . . , 5.

Example 1. Let X � x1, x2, . . . , x9 , Y � y1, y2, . . . , y9 ,
and R be the fuzzy relation from X to Y; the results of R(xi, yj)
are listed in Table 1.

Taking IIC1(R) for example, we have

IC(R|X) � − 
9

i�1


9
j�1 R xi, yj 


9
i�1 

9
j�1 R xi, yj 

log2


9
j�1 R xi, yj 

9
,

�
2 × 3.1
63.4

log2
9
3.1

+
5.2
63.4

log2
9
5.2

+
7

63.4
log2

9
7

+
5 × 9
63.4

log2
9
9
,

� 0.2553,

IC(R|Y) � − 
9

j�1


9
i�1 R

− 1
yj, xi 


9
j�1 

9
i�1 R

−1
yj, xi 

log2


9
i�1 R

− 1
yj, xi 

9
,

�
5 × 5.9
63.4

log2
9
5.9

+
7.5
63.4

log2
9
7.5

+
8.4
63.4

log2
9
8.4

+
2 × 9
63.4

log2
9
9
,

� 0.3278,

(16)

and then, IIC1(R)� [0. 2553, 0. 3278].
{R(xi, yj)} is ranked in descending order {1, 0.7, 0.6, 0.4,

0.3, 0}; then, λ1 � 1, λ2 � 0.7, λ3 � 0.6, λ4 � 0.4, λ5 � 0.3, and
λi � 0 (i� 6, 7, . . ., 81). Taking the case of λ1 � 1, the values of
R1(xi, yj) are listed in Table 2.

So,

IC R1|X(  �
2 × 2
56

log2
9
2

+
3
56
log2

9
3

+
4
56
log2

9
4

+
5 × 9
56

log2
9
9

� 0.3235,

IC R1|Y(  �
5 × 5
56

log2
9
5

+
6
56
log2

9
6

+
7
56
log2

9
7

+
2 × 9
56

log2
9
9

� 0.4866.

(17)

,en,

IIC2(R) � 
mn

i�1
λi − λi+1( log2

mn

Rλi+1




, 

mn

i�1
λi − λi+1( log2

mn

Rλi





⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � [0.2492, 0.36].

(18)

Similarly, we have

IIC3(R) � 
mn

i�1

λi


mn
i�1λi

log2
mn

Rλi+1





⎛⎝ ⎞⎠, 
mn

i�1

λi


mn
i�1λi

log2
mn

Rλi





⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � [0.3161, 0.4106],

IIC4(R) � 
mn

i�1
λi − λi+1(  IC Rλi

|X ∧IC Rλi
|Y  , 

mn

i�1
λi − λi+1(  IC Rλi

|X ∨IC Rλi
|Y  ⎡⎣ ⎤⎦ � [0.2342, 0.3292],

IIC5(R) � 
mn

i�1

λi


mn
i�1λi

IC Rλi
|X ∧IC Rλi

|Y  , 
mn

i�1

λi


mn
i�1λi

IC Rλi
|X ∨IC Rλi

|Y  ⎡⎣ ⎤⎦ � [0.2683, 0.3722].

(19)

4. TheRanking for Fuzzy ImplicationOperators
Based on Interval Information Content

In data mining, it is necessary to extract rules from large
databases, which means that a large number of rules will be
generated during the process. So, how to evaluate these rules
and get valid and useful information by determining the
ranking of rules has become a new hotspot of data mining
area. Here, the ranking of fuzzy implication operators can be
realized by the interval information content of fuzzy rela-
tion. Let I� {I1, I2, . . ., In}be the set of fuzzy implication
operators, and the ranking method is defined as follows:

Step 1: to calculate the interval information content
IIC(Ii) of fuzzy implication operator Ii (i� 1, 2, . . ., n).
Step 2: to calculate the possibility-based comparison
value of interval information content pij, where
pij � P(IIC(Ii) > IIC(Ij)) [28].

Step 3: to construct interval information content possi-
bility-based comparison matrix P, where P � (pij).
Step 4: let Pi � 

n
j�1 pij, and the ranking of implication

operator is determined by the value of Pi. ,at is to say,
if Pi > Pj, then Ii > Ij.

For implication operators, the ranking can be confirmed
by extracting the interval information content of the cor-
responding fuzzy relation, but as the fuzzy relation matrix is
only aimed for the discrete domain, it is necessary discretize
the interval [0,1] by dividing into n parts, that is to say, let
X � m0 � 0, m1, m2, . . . , mn−1, mn � 1 , and the implication
operators can be expressed as

I: X × X⟶ [0, 1] mi, mj ⟼ I mi, mj , i, j ∈ 0, 1, 2, . . . , n{ }.

(20)
Here, four insertions can be adopted for the dis-

cretization: the average insertion of 9 points (a scale of zero
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to ten), the average insertion of 19 points, the average in-
sertion of 99 points, and the random insertion of 9 points. By
equation (13), the interval information content of impli-
cation operators I1, . . ., I13 is listed in Table 3.

Taking the average insertion of 9 points among the
interval [0,1] as an example, the interval information content
comparison matrix can be constructed as follows:

P � pij  �

0 1 1 1 0 0 1 1 0 1 0 1 1

0 0 1 1 0 0 1 1 0 0.8199 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0.6501 0 0 0 0.0061 0.0061

1 1 1 1 0 0 1 1 1 1 0 1 1

1 1 1 1 1 0 1 1 1 1 0 1 1

0 0 1 0 0 0 0 0.3591 0 0 0 0 0

0 0 1 0.3499 0 0 0.6409 0 0 0 0 0 0

1 1 1 1 0 0 1 1 0 1 0 1 1

0 0.1801 1 1 0 0 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 1 1

0 0 1 0.9939 0 0 1 0.8067 0 0 0 0 0

0 0 1 0.9939 0 0 1 0.8067 0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Table 1: ,e value of R(xi, yj) in Example 1.

R y1 y2 y3 y4 y5 y6 y7 y8 y9 
9
j�1 R(xi, yj)

x1 0 0 0 0 0 0.4 0.7 1 1 3.1
x2 0 0 0 0 0 0.4 0.7 1 1 3.1
x3 0.3 0.3 0.3 0.3 0.3 0.7 1 1 1 5.2
x4 0.6 0.6 0.6 0.6 0.6 1 1 1 1 7
x5 1 1 1 1 1 1 1 1 1 9
x6 1 1 1 1 1 1 1 1 1 9
x7 1 1 1 1 1 1 1 1 1 9
x8 1 1 1 1 1 1 1 1 1 9
x9 1 1 1 1 1 1 1 1 1 9


9
i�1 R(xi, yj) 5.9 5.9 5.9 5.9 5.9 7.5 8.4 9 9 63.4

Table 2: ,e value of R1(xi, yj).

R1 y1 y2 y3 y4 y5 y6 y7 y8 y9 
9
j�1 R1(xi, yj)

x1 0 0 0 0 0 0 0 1 1 2
x2 0 0 0 0 0 0 0 1 1 2
x3 0 0 0 0 0 0 1 1 1 3
x4 0 0 0 0 0 1 1 1 1 4
x5 1 1 1 1 1 1 1 1 1 9
x6 1 1 1 1 1 1 1 1 1 9
x7 1 1 1 1 1 1 1 1 1 9
x8 1 1 1 1 1 1 1 1 1 9
x9 1 1 1 1 1 1 1 1 1 9


9
i�1 R1(xi, yj) 5 5 5 5 5 6 7 9 9 56
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,en,

P1 � 

n

j�1
p1j � 0 + 1 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + 1 + 0 + 1 + 1 � 8.

(22)
Similarly, we have P2 � 6.8199, P3 � 0, P4 � 2.6562,

P5 �10, P6 �11, P7 �1.3591, P8 �1.9908, P9 � 9, P10 � 4.1801,
P11 � 12, P12 � 3.8006, and P13 � 3.8006; then,

I11 ≻ I6 ≻ I5 ≻ I9 ≻ I1 ≻ I2 ≻ I10 ≻ I12, I13 ≻ I4 ≻ I8 ≻ I7 ≻ I3.

(23)
,e ranking results indicated that I11, I6, and I5 transfer

large amounts of information content, whereas I3 (Luckasiewz
operators) transmits the least amount of information content.
Also, when the average insertion is concerned, the ranking
results of I12 and I13 cannot be sure, but could be improved
with the help of the random ways. All results with different
insertions are listed in Table 4. From Table 4, it can be con-
cluded that even though the insertion is different, the ranking
results are different, but I11, I6, and I5 always transfer large
amounts of information content, whereas I3 (Luckasiewz
operators) transmits the least. In fact, the former three oper-
ators are used in the construction of fuzzy systems with higher
frequency. However, there is almost no research on the ad-
vantages of these operators in the construction of fuzzy control
systems, and the ranking results based on interval information
content provide theoretical basis for the study of the above-
mentioned problems.

5. The Clustering and Classification of Fuzzy
Implication Operators

,e clustering analysis is focused on cluster the things with
similar attributes into a category by means of extracting the

things’ attribute. Also, whether the classification is rea-
sonable is a question worth considering. In this section,
clustering analysis is carried out for 13 fuzzy operators
according to the attributes of interval information content,
which are commonly used to construct fuzzy control sys-
tems. After confirming the best classification, the similarity
measure is used to classify the category of the implication
operator.

5.1. Clustering of Fuzzy Implication Operators Based on In-
terval Information Content. Based on similarity measure of
the interval value, fuzzy implication operators can be
clustered utilizing interval information content. Let I� {I1,
I2, . . ., In}be the set containing finite implication operators;
the cluster analysis can be undertaken as follows:

Step 1: to complete the interval information content
IIC(Ii) (i� 1, 2, . . ., n) of Ii
Step 2: to complete the similarity measure
sij � SI(IIC(Ii), IIC(Ij)) by equation (12)
Step 3: to construct similarity matrix S � (sij) based on
interval information content
Step 4: to compute transitive closure matrix t(S)
Step 5: to cluster the implication operators according to
the value of λ

In the same way, four methods are used to disperse the
interval [0,1]: the average insertion of 9 points, the average
insertion of 19 points, the average insertion of 99 points, and
the random insertion of 9 points. By equation (12), the
interval information content of I1, . . ., I13 is listed in Table 3.
Next, taking the average insertion of 9 points for example,
the 13×13 similarity matrix S10 based on interval informa-
tion content is expressed as

Table 3: Interval information content of Ii.

Ii
,e average insertion of 9

points
,e average insertion of 19

points
,e average insertion of 99

points ,e random insertion of 9 points

I1 [0.5995, 0.6340] [0.6155, 0.6477] [0.6292, 0.6595] [0.4978, 0.5060]
I2 [0.5126, 0.5126] [0.5304, 0.5304] [0.5460, 0.5460] [0.3506, 0.3944]
I3 [0.2592, 0.2592] [0.2495, 0.2495] [0.2410, 0.2410] [0.2400, 0.2679]
I4 [0.3825, 0.3825] [0.3853, 0.3853] [0.3875, 0.3875] [0.2972, 0.3305]
I5 [1.0813, 1.0813] [1.2214, 1.2214] [1.3760, 1.3760] [0.7492, 0.7905]
I6 [1.2058, 1.2058] [1.4142, 1.4142] [1.6487, 1.6487] [0.8869, 0.9217]
I7 [0.3509, 0.3509] [0.3603, 0.3603] [0.3692, 0.3692] [0.3301, 0.3301]
I8 [0.3119, 0.4205] [0.3077, 0.4075] [0.3067, 0.3925] [0.2545, 0.3775]
I9 [0.6514, 0.6514] [0.6854, 0.6854] [0.7141, 0.7141] [0.5656, 0.6152]
I10 [0.4320, 0.5303] [0.4394, 0.5192] [0.4531, 0.5043] [0.3051, 0.4310]
I11 [1.2174, 1.2174] [1.4865, 1.4865] [1.8393, 1.8393] [0.9064, 0.9215]
I12 [0.3817, 0.5126] [0.3916, 0.5304] [0.4016, 0.5460] [0.2917, 0.4293]
I13 [0.3817, 0.5126] [0.3916, 0.5304] [0.4016, 0.5460] [0.4228, 0.5118]
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S10 �

1 0.8318 0.4206 0.6207 0.5704 0.5115 0.5694 0.5918 · · · 0.7226

0.8318 1 0.5057 0.7462 0.4741 0.4251 0.6845 0.7144 · · · 0.8723

0.4206 0.5057 1 0.6776 0.2397 0.2150 0.7387 0.7237 · · · 0.5924

0.6207 0.7462 0.6776 1 0.3537 0.3172 0.9174 0.8625 · · · 0.8721

0.5704 0.4741 0.2397 0.3537 1 0.8967 0.3245 0.3387 · · · 0.4135

0.5115 0.4251 0.2150 0.3172 0.8967 1 0.2910 0.3037 · · · 0.3708

0.5694 0.6845 0.7387 0.9174 0.3245 0.2910 1 0.8617 · · · 0.8019

0.5918 0.7144 0.7237 0.8625 0.3387 0.3037 0.8617 1 · · · 0.8187

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0.7226 0.8723 0.5924 0.8721 0.4135 0.3708 0.8019 0.8187 · · · 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Furthermore, the transitive closure matrix is constructed
as follows:

t10(S) �

1 0.8318 0.7387 0.8318 0.6024 0.6024 0.8318 0.8318 · · · 0.8318

0.8318 1 0.7387 0.8721 0.6024 0.6024 0.8721 0.8625 · · · 0.9047

0.7387 0.7387 1 0.7387 0.6024 0.6024 0.7387 0.7387 · · · 0.7381

0.8318 0.8721 0.7387 1 0.6024 0.6024 0.9174 0.8625 · · · 0.8721

0.6024 0.6024 0.6024 0.6024 1 0.8967 0.6024 0.6024 · · · 0.6024

0.6024 0.6024 0.6024 0.6024 0.8967 1 0.6024 0.6024 · · · 0.6024

0.8318 0.8721 0.7387 0.9174 0.6024 0.6024 1 0.8625 · · · 0.8721

0.8318 0.8625 0.7387 0.8625 0.6024 0.6024 0.8625 1 · · · 0.8625

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0.8318 0.9047 0.7387 0.8721 0.6024 0.6024 0.8721 0.8625 · · · 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

,e elements in the abovementioned matrix are
arranged in ascending order {0.6024, 0.7387, 0.8318, 0.8625,
0.8721, 0.8967, 0.9047, 0.9174, 0.9251, 0.9468, 0.9905, 1},
then the cluster can be conducted by the abovementioned
value, and all cluster results are listed in Figure 1.

Similarly, cluster analyses of average insertion of 19 and
99 points, as well as random insertion of 9 points, are listed
in Figures 2–4.

Judging from the abovementioned four figures, the
uniformity clustering results are divided into two categories
of 13 fuzzy implication operators: I5, I6, I11  and
I1, I2, I3, I4, I7, I8, I9, I10, I12, I13 . ,erefore, it can be
granted as the optimum category. According to Definition 4,
all fuzzy implication operators can be strictly divided into
two categories. Evenly, I5, I6, and I11 are abnormal

implications, and others are normal implications. ,at is to
say, the optimum cluster of the fuzzy implication operators
based on interval information content is divided into two
categories: normal and abnormal. ,erefore, the classifica-
tion method is reasonable.

5.2. Classification of Implication operators. In the problem of
pattern recognition, as soon as the best classifications are
selected, it is necessary to determine which category of
classification features is the closest to the sample. For any
fuzzy implication operator, after determining the best
classification by extracting the interval information content
characteristics, the final categories are confirmed by the
similarity measure between the sample implication opera-
tors and the clustering centers of each category. Concretely,

Table 4: Ranking results of implication operators.

Interval segmentation Ranking results
,e average insertion of 9 points I11 ≻ I6 ≻ I5 ≻ I9 ≻ I1≻I2 ≻ I10 ≻ I12, I13 ≻ I4 ≻ I8 ≻ I7 ≻ I3
,e average insertion of 19 points I11 ≻ I6 ≻ I5 ≻ I9 ≻ I1≻I2 ≻ I10 ≻ I12, I13 ≻ I4 ≻ I8 ≻ I7 ≻ I3
,e average insertion of 99 points I11 ≻ I6 ≻ I5 ≻ I9 ≻ I1≻I2 ≻ I10 ≻ I12, I13 ≻ I4 ≻ I8 ≻ I7 ≻ I3
,e random insertion of 9 points I11 ≻ I6 ≻ I5 ≻ I9 ≻ I1≻I13 ≻ I2 ≻ I7 ≻ I10 ≻ I12 ≻ I4 ≻ I8 ≻ I3
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Figure 1: Cluster analysis of average insertion of 9 points.
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Figure 2: Cluster analysis of average insertion of 19 points.
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Step 1: to compute IIC(I) of the sample operator I
Step 2: by equation (12), to compute the similarity
measure between the sample operators and the

clustering centers of each category, where the center of
the ith category xi � [(xi)− , (xi)+] and
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, (26)

ni is the sample number of the ith category
Step 3: to determine the categories according to the
maximum similarity principle

For instance, I14 and I15 are selected as the sample op-
erators for classification:

I14( a, b ) �
( 1 − a )∨b, ( 1 − a )∧b � 0,

1, else,


I15( a, b ) �
a∧b, a∨b � 1,

0, a∨b< 1.


(27)

I14 and I15 are the normal and abnormal fuzzy impli-
cation operators, respectively. Under the abovementioned
optimum category, can these two implication operators be
classified into correct categories? Firstly, to compute the
interval information content with different insertions by
equation (13), the results are listed in Table 5.

Secondly, to compute the similarity measure between
them and cluster centers, the results are shown in Table 6.

From Table 6, it can be seen that I14 is always divided into
the category of normal implication operators
I1, I2, I3, I4, I7, I8, I9, I10, I12, I13  and I15 is always divided
into the contrary, which is consistent with the nature of I14
and I15 as normal and abnormal implication.
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Figure 3: Cluster analysis of average insertion of 99 points.
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Figure 4: Cluster analysis of random insertion of 9 points.
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6. Conclusions

Facing the era of big data, it is essential to process a large
amount of data. So, it is a key issue to extract the attribute of
data. ,e novel attribute in the presented work can be used to
realize the rules’ ranking and clustering effectively. Utilizing
the interval information content, the Mamdani, probability
product, and Yager operators show better ranking results than
others, which provides a solid theoretical base for the operator
selection in constructing fuzzy system. For clustering issues,
by means of extracting the interval information content, the
operators can be divided into two categories: normal and
abnormal. ,en, the correct clustering result of the operator
with known attribute proves valid.

In the future, the following works will be carried out:

(1) If the axiomatic representation of interval infor-
mation quantity of fuzzy relation can be established,
the research of information quantity will be of great
theoretical significance

(2) For the defined interval information content, if it can
be applied to data mining to optimize and ranking
the inference rules, it will be of practical significance
to improve the accuracy of the fuzzy system
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I15 [1.1719, 1.1719] [1.2999, 1.2999] [2.0703, 2.0703] [1.1093, 1.1093]

Table 6: Similarity measure between the implication operator and cluster center.

Interval segmentation Cluster Result Cluster
center

Similarity measure between I14 and
clustering centers

Similarity measure between I15 and
clustering centers

,e average insertion of 9
points

{I5, I6, I11}
[1.1682,
1.1682] 0.0910 1.0032

{ I1, I2, I3, I4, I7, I8, I9,
I10, I12, I13}

[0.4263,
0.4263] 0.2494 0.3628

,e average insertion of
19 points

{I5, I6, I11}
[1.3790,
1.3790] 0.0413 0.9426

{ I1, I2, I3, I4, I7, I8, I9,
I10, I12, I13}

[0.4357,
0.4357] 0.1308 0.3352

,e average insertion of
99 points

{I5, I6, I11}
[1.6213,
1.6213] 0.0074 0.7831

{ I1, I2, I3, I4, I7, I8, I9,
I10, I12, I13}

[0.4450,
0.4450] 0.027 0.2149

,e random insertion of
9 points

{I5, I6, I11}
[0.8475,
0.8779] 0.1156 0.7495

{ I1, I2, I3, I4, I7, I8, I9,
I10, I12, I13}

[0.3555,
0.4194] 0.2576 0.3358
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Overlap function is a special type of aggregation function which measures the degree of overlapping between different classes.
Recently, complex fuzzy sets have been successfully applied in many applications. In this paper, we extend the concept of overlap
functions to the complex-valued setting. We introduce the notions of complex-valued overlap, complex-valued 0-overlap,
complex-valued 1-overlap, and general complex-valued overlap functions, which can be regarded as the generalizations of the
concepts of overlap, 0-overlap, 1-overlap, and general overlap functions, respectively.We study some properties of these complex-
valued overlap functions and their construction methods.

1. Introduction

Bustince et al. [1] introduced the concept of overlap function
in order to express the overlapping degree between two
different classes. Overlap functions are a special type of
aggregation functions [2] that are used in many applications
such as image processing [1, 3], classification [4, 5], and
decision making [6, 7]. It has gained a rapid development
with various forms. *e concepts of Archimedean, general,
0-overlap, 1-overlap, n-dimensional, interval-valued overlap
functions have been proposed [8–11]. Various properties
including migrativity, distributivity, idempotency, and ho-
mogeneity of overlap functions have been investigated
[7, 8, 12–17]. *e additive generators [11, 18] and multi-
plicative generators [19] of overlap functions have been
given. Implications derived from overlap functions have
been studied [20, 21].

Ramot et al. [22, 23] introduced the concept of complex
fuzzy sets. It is an effective tool to handle uncertainty and
periodicity simultaneously. It has been successfully applied
in signal processing [23–25], image processing [26], time
series forecasting [27–30], and decision making [31, 32].
Different measures including distance, similarity, and

entropy of complex fuzzy sets have been proposed [33–38].
Various properties including δ-equality, parallelity, or-
thogonality, and rotational invariance of complex fuzzy sets
have been investigated [39–42].

Complex fuzzy sets have been successfully applied in
many different fields. In some cases, overlapping degree is
needed for complex-valued information of two or more
objects. In this paper, we extend traditional real-valued
overlap functions to complex-valued overlap function. *e
starting point is that complex-valued overlap differs from
other real-valued overlap functions. For example, ej·x

(j �
���
−1

√
) is a periodic function and negative operation (–)

is closed in the range of complex unit circle. *ese features
may lead to special properties and construction methods of
complex-valued overlap functions and provide a good issue
for generation of overlap functions. As far as we know,
nowadays, there are no corresponding discussions to pro-
pose the complex-valued overlap functions. *erefore, in
this paper, from the theoretical point of view, we propose the
definitions and construction methods of complex-valued
overlap functions.

*is paper is organized as follows. In Section 2, we recall
the concepts of overlap functions. In Section 3, we introduce
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complex-valued overlap functions and their properties. In
Section 4, we propose some construction methods of
complex-valued overlap functions. Conclusions are given in
Section 5.

2. Preliminaries

In this section, we recall some concepts of bivariate overlap
functions and n-dimensional overlap functions, which are
largely studied [1, 10, 11].

2.1. Overlap Functions

Definition 1 (see [1]). A mapping O: [0, 1]2⟶ [0, 1] is an
overlap function if, for all a, b ∈ [0, 1], it is commutative,
nondecreasing, and continuous and satisfies the following
conditions:

(O1) O(a, b) � 0 if and only if ab � 0;
(O2) O(a, b) � 1 if and only if ab � 1.

As introduced in [11], a mapping O: [0, 1]2⟶ [0, 1] is
a 0-overlap function if we loose the condition (O1) to (O1’)
ab � 0⇒O(a, b) � 0 without changing any other condition.

Similarly, a mapping O: [0, 1]2⟶ [0, 1] is a 0-overlap
function if we loose the condition (O2) to (O2’)
ab � 1⇒O(a, b) � 1 without changing any other condition.

Definition 2 (see [10]). A mapping On: [0, 1]n⟶ [0, 1] is a
n-dimensional overlap function if, for all a1, . . . , an ∈ [0, 1],
it is commutative, nondecreasing, and continuous and
satisfies the following conditions:

(On1) On(a1, . . . , an) � 0 if and only if 
n
i�1 ai � 0;

(On2) On(a1, . . . , an) � 1 if and only if 
n
i�1 ai � 1.

As introduced in [11], a mappingOn: [0, 1]n⟶ [0, 1] is
an n-dimensional 0-overlap function if we loose condition
(On1) to (On1’) 

n
i�1 ai � 0⇒On(a1, . . . , an) � 0 without

changing any other condition.
Analogously, a mapping On: [0, 1]n⟶ [0, 1] is an

n-dimensional 1-overlap function if we loose condition
(On2) to (On2’) 

n
i�1 ai � 1⇒On(a1, . . . , an) � 1without

changing any other condition.
Based on the concepts of n-dimensional 0-overlap and 1-

overlap functions, the general overlap functions are defined
as follows:

Definition 3 (see [10]). A mapping On: [0, 1]n⟶ [0, 1] is
an n-dimensional general overlap function if, for all
a1, . . . , an ∈ [0, 1], it is commutative, nondecreasing, and
continuous and satisfies the following conditions:

(GOn1) if 
n
i�1 ai � 0, then On(a1, . . . , an) � 0;

(GOn2) if 
n
i�1 ai � 1, then On(a1, . . . , an) � 1.

3. N-Dimensional Complex-Valued
Overlap Functions

Let D � α ∈ C‖α|t≤ n1{ }, then we define n-dimensional
complex-valued overlap functions.

Definition 4. A mapping COn: Dn⟶ D is an n-dimen-
sional complex-valued overlap function if, for all
a1, . . . , an ∈ D, it is commutative and continuous and sat-
isfies the following conditions:

(COn1) COn(a1, . . . , an) � 0 if and only if 
n
i�1 ai � 0;

(COn2) COn(a1, . . . , an) � 1 if and only if 
n
i�1 ai � 1;

(COn3) COn is amplitude monotonic in the first
component: |COn(a, a2, . . . , an)≤ |COn(b, a2, . . . , an)|

when |a|≤ |b|.

Since COn is commutative, n-dimensional complex-
valued overlap functions also are amplitude monotonic in
any other component based on (GCOn3). Obviously, these
conditions are analogous to those of Definition 1. When the
domain is limited to [0,1], n-dimensional complex-valued
overlap function reduces to n-dimensional real-valued
overlap function of Definition 1.

Example 1. Nevertheless, there are mappings that are
overlap functions in the domain [0,1] but are not complex-
valued overlap functions. *e function f: D2⟶ D given
by

f(a, b) � ab
a + b

2
(1)

is an overlap function but not a complex-valued overlap
function.

*ere are many types of real-valued overlap functions.
Similarly, we extend the concept of 0-overlap and 1-overlap
functions to n-dimensional complex-valued overlap
functions.

A mapping COn: Dn⟶ D is an n-dimensional com-
plex-valued 0-overlap function if we loose condition (COn1)
to (COn1’) 

n
i�1 ai � 0⇒COn(a1, . . . , an) � 0 without

changing any other condition.
A mapping COn: Dn⟶ D is an n-dimensional 1-

overlap complex-valued function if we loose condition
(COn2) to (COn2’) 

n
i�1 ai � 1⇒COn(a1, . . . , an) � 1 with-

out changing any other condition.
Based on the concepts of n-dimensional complex-valued

0-overlap and 1-overlap functions, we define the concept of
n-dimensional general complex-valued overlap functions

Definition 5. A mapping COn: Dn⟶ D is an n-dimen-
sional general complex-valued overlap function if, for all
a1, . . . , an ∈ D, it is commutative and continuous and sat-
isfies the following conditions:

(GCOn1) if 
n
i�1 ai � 0, then COn(a1, . . . , an) � 0;

(GCOn2) if 
n
i�1 ai � 1, then COn(a1, . . . , an) � 1;
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GCOn COn is amplitude monotonic in the first com-
ponent: |COn(a, a2, . . . , an)≤ |COn(b, a2, . . . , an)|

when |a|≤ |b|.

*e relations between n-dimensional complex-valued
overlap functions, complex-valued 0-overlap functions, com-
plex-valued 1-overlap functions, and general complex-valued
overlap functions are shown in Figure 1. Asmus et al. [17] gave
the relations between n-dimensional interval-valued overlap
functions, interval-valued 0-overlap functions, interval-valued
1-overlap functions, and general interval-valued overlap
functions, which are similar to that of Figure 1.

Clearly, we have the following.

Proposition 1. If a mapping g: Dn⟶ D is either an
n-dimensional complex-valued overlap, complex-valued 0-
overlap, or complex-valued 1-overlap function, then g is also a
general complex-valued overlap function.

We give some examples of these complex-valued overlap
functions to demonstrate their relations.

Example 2. *e function π: D2⟶ D given by

π(a, b) � a · b (2)

is a complex-valued overlap function.

Example 3. *e function π2: D2⟶ D given by

π2(a, b) � a
2

· b
2 (3)

is a general complex-valued overlap function. Moreover, it is
a complex-valued 1-overlap function but not a complex-
valued 0-overlap function.

Example 4. *e function g: D2⟶ D given by

g(a, b) � min(|a|, |b|) · a · b (4)

is a general complex-valued overlap function. Moreover, it is
a complex-valued 1-overlap function but not a complex-
valued 0-overlap function.

Example 5. *e function h: D2⟶ D given by

h(a, b) � max(|a| +|b| − 1, 0) · a · b (5)

is a general complex-valued overlap function. Moreover, it is
a complex-valued 0-overlap function but not a complex-
valued 1-overlap function.

Note that the class of overlap functions is convex. But the
convex sun is not amplitude monotonic [?], then the class of
complex-valued overlap functions is not convex.

Negative operation (–) is closed in the range of complex
unit circle, but is not closed in [0,1]. *en, we have the
following properties only for complex-valued overlap
functions.

Definition 6. We say the complex-valued overlap function
CO: Dn⟶ D satisfies the self-duality property, if it
satisfies

CO a1, . . . , an(  � −CO −a1, −a2, . . . , −an( , (6)

for any a1, . . . , an ∈ D.

Definition 7. We say the complex-valued overlap function
CO: Dn⟶ D is symmetric with respect to the point 0, if it
satisfies

CO a1, . . . , an(  � CO −a1, −a2, . . . , −an( , (7)

for any a1, . . . , an ∈ D.

*ere are complex-valued overlap functions satisfying
the abovementioned properties.

Example 8. *e function g: Dn⟶ D given by

g a1, . . . , an(  � max 

n

i�1
ai


 − n + 1, 0⎛⎝ ⎞⎠ · 

n

i�1
ai (8)

is a complex-valued overlap function. Interestingly, it sat-
isfies the self-duality property when n is an odd number. It is
symmetric with respect to the point 0 when n is an even
number.

4. Construction of Complex-Valued
Overlap Functions

We assume that the complex numbers are used in the form
of exponent, i.e., a ∈ D is of the form raejθa , where j �

���
−1

√
,

the amplitude term ra ∈ R, and the phase term θa ∈ [0, 2π).
In order to let the phase termwithin valid range, we compute
the least positive residue modulo 2π of the phase term when
it is out of range. For simplicity, we omit the symbol
(mod 2π).

Proposition 2. If a mapping f: Dn⟶ D is n-dimensional
complex-valued overlap (complex-valued 0-overlap, complex-
valued 1-overlap, or general complex-valued overlap) func-
tion is expressed as

General complex-valued overlap functions

Complex-valued 
0-overlap
functions

Complex-valued 
1-overlap
functions

Complex-valued 
overlap

functions

Figure 1: Relations between complex-valued overlap functions,
complex-valued 0-overlap functions, complex-valued 1-overlap
functions, and general complex-valued overlap functions.
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f a1, . . . , an(  � g ra1
, ra2

, . . . , ran
 e

jh θa1 ,θa2 ,...θan
 

, (9)

then the function g is an n-dimensional overlap (0-overlap, 1-
overlap, or general overlap) function.

Theorem 1. If the function g: [0, 1]n⟶ [0, 1] is an
n-dimensional overlap function, the function
h: [0, 2π)n⟶ [0, 2π) satisfies the following properties:

(i) h is commutative;
(ii) 

n
i�1 θai

� 0 if and only if h(θa1
, . . . , θan

) � 0;
(iii) h is continuous.

then, the function f: Dn⟶ D defined by equation (9)
is an n-dimensional complex-valued overlap (complex-
valued 0-overlap, complex-valued 1-overlap, or general
complex-valued overlap) function.

Proof. It is immediate that f is commutative, amplitude
monotonic, and continuous, since g is nondecreasing, and g

and h are both commutative and continuous.

(COn1): (⇒) if f(a1, . . . , an) � g(ra1
, ra2

, . . . ran
)ejh

(θa1
, θa2

, . . . θan
) � 0, then g(ra1

, ra2
, . . . ran

) � 0. *en,


n
i�1 rai

� 0 since g is an overlap function. *en,


n
i�1 ai � 

n
i�1 rai

· ej(
n

i�1 θai
) � 0 · ej(

n

i�1 θai
) � 0.

(COn1): (⇐) if 
n
i�1 ai � 

n
i�1 rai

· ej(
n

i�1 θai
) � 0, this

means 
n
i�1 rai

� 0, then g(ra1
, ra2

, . . . ran
) � 0 since g is

an overlap function. *en, f(a1, . . . , an) � g(ra1
, ra2

, . . . ran
)ejh(θa1 ,θa2 ,...θan

) � 0 · ejh(θa1 ,θa2 ,...θan
) � 0.

(COn2): (⇒) if f(a1, . . . , an) � g(ra1
, ra2

, . . . ran
)ejh

(θa1
, θa2

, . . . θan
) � 1, then g(ra1

, ra2
, . . . ran

) � 1 and
h(θa1

, θa2
, . . . θan

) � 0. *en, 
n
i�1 rai

� 1 since g is an
overlap function, and 

n
i�1 θai

� 0 since h satisfies (ii).
*en, 

n
i�1 ai � 

n
i�1 rai

· ej(
n

i�1 θai
) � 1 · ej0 � 1.

(COn2): (⇐) if 
n
i�1 ai � 

n
i�1 rai

· ej(
n

i�1 θai
) � 1, this

means 
n
i�1 rai

� 1 and 
n
i�1 θai

� 0, then
g(ra1

, ra2
, . . . ran

) � 1 since g is an overlap function, and
h(θa1

, θa2
, . . . θan

) � 0 since h satisfies (ii). *en,
f(a1, . . . , an) � g(ra1

, ra2
, . . . ran

)ejh(θa1 ,θa2 ,...θan
) �

1 · ej0 � 1. □ □

Theorem 2. If the function g: [0, 1]n⟶ [0, 1] is an
n-dimensional 0-overlap function, the function
h: [0, 2π)n⟶ [0, 2π) satisfies the following properties:

(i) h is commutative;
(ii) 

n
i�1 θai

� 0 if and only if h(θa1
, . . . , θan

) � 0;
(iii) h is continuous.

@en, the function f: Dn⟶ D defined by equation (9) is
an n-dimensional complex-valued 0-overlap function.

Proof. Analogous to the proof of *eorem 1. □

Theorem 3. If the function g: [0, 1]n⟶ [0, 1] is an
n-dimensional 1-overlap (or general overlap) function, the

function h: [0, 2π)n⟶ [0, 2π) satisfies the following
properties:

(i) h is commutative;
(ii) If 

n
i�1 θai

� 0, then h(θa1
, . . . , θan

) � 0;
(iii) h is continuous.

@en, the function f: Dn⟶ D defined by equation (9) is
an n-dimensional complex-valued 1-overlap (or general
complex-valued overlap) function.

Proof. Analogous to the proof of *eorem 1. □

*ere are several construction methods of (general)
overlap functions. Here, we consider the construction of
(general) complex-valued overlap functions. If the n-di-
mensional complex-valued function f: Dn⟶ D is defined
by equation (9), then we can easily see that it is a key step to
construct the function h: [0, 2π)n⟶ [0, 2π), which sat-
isfies the condition (ii) of *eorem 2 (or 3).

Now, we give some examples of bivariate functions
h: [0, 2π)2⟶ [0, 2π) satisfying condition (ii) of*eorem 2
(or 3).

Example 6. *e function h1: [0, 2π)2⟶ [0, 2π) given by

h1(a, b) � a + b (10)

satisfies condition (ii) of *eorem 2. *e function
h2: [0, 2π)2⟶ [0, 2π) given by

h2(a, b) � −a − b (11)

satisfies condition (ii) of *eorem 2. *e function
h3: [0, 2π)2⟶ [0, 2π) given by

h3(a, b) � 2(a + b) (12)

satisfies condition (ii) of *eorem 3. But it does not satisfy
condition (ii) of *eorem 2.

Note that we omit the operation of mod 2π. If
a � b � (π/2), then h3(a, b) � 2(a + b) � 2π � 0, but
a + b � π ≠ 0. So, h3 does not satisfy condition (ii) of *e-
orem 2. In general, we have the following results.

Example 7. *e function h4: [0, 2π)2⟶ [0, 2π) given by

h4(a, b) � k(a + b), k � ± 2, ± 3, . . . , (13)

satisfies condition (ii) of *eorem 3. But it does not satisfy
condition (ii) of *eorem 2.

Based on results of complex-valued overlap functions,
we give the following examples.

Example 8. *e function hn,p,k: Dn⟶ D given by

hn,p,k � ra1
· ra2

, . . . , ran
 

p
· e

jk θa1+θa2+···+θan
  (14)

is a complex-valued overlap function when p> 0 and
k � ±1.
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*e function hn,p,k: Dn⟶ D given by

hn,L,k � max 
n

i�1
rai

− n + 1, 0⎛⎝ ⎞⎠ · e
jk θa1+θa2+···+θan

 
(15)

is a complex-valued 0-overlap function when k � ±1.
*e function hn,p,k: Dn⟶ D given by

hn,∧,k � minn
i�1rai

  · e
jk θa1+θa2+···+θan

  (16)

is a complex-valued 1-overlap function when
k � ±2, ±3, . . ..

5. Conclusions

In this paper, we introduced the concepts of complex-valued
overlap, complex-valued 0-overlap, complex-valued 1-
overlap, and general complex-valued overlap functions. We
gave the relationship between them and studied their
properties. Different from the traditional real-valued overlap
functions, we added the following properties for complex-
valued overlap functions since the domain of each variable is
the unit disk of complex plane:

f a1, . . . , an(  � −f −a1, −a2 . . . , −an( , f a1, . . . , an( 

� f −a1, −a2 . . . , −an( .

(17)
*en, we presented some construction methods for

complex-valued overlap functions. Because of the period-
icity of exponential function ejx, our method includes the
construction of a continuous, commutative function
h: [0, 2π)n⟶ [0, 2π) satisfying the following property:



n

i�1
θai

� 0 if and only if h θa1
, . . . , θan

  � 0. (18)

Of course, we should note that complex-valued overlap
functions have many differences with the traditional real-
valued overlap functions. Some interesting properties are
useful for complex-valued overlap functions but they do not
appear in traditional real-valued overlap functions. As
further works, we intend to investigate these special prop-
erties of complex-valued overlap functions.

Complex-valued overlap functions can be viewed as a
special class of complex fuzzy aggregation functions which
have been widely used in many application fields. How to
apply the complex-valued overlap functions is another
problem of interest.

Data Availability

No data were used to support this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is research was funded by the National Science Foun-
dation of China under Grant no. 62006168 and Zhejiang

Provincial Natural Science Foundation of China under
Grant no. LQ21A010001.

References

[1] H. Bustince, J. Fernández, R. Mesiar, J. Montero, and
R. Orduna, “Overlap functions, nonlinear analysis: theory,”
Methods & Applications, vol. 72, no. 3-4, pp. 1488–1499, 2010.

[2] G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions:
A Guide for Practitioners, Springer, Berlin, Germany, 2007.

[3] A. Jurio, H. Bustince, M. Pagola, A. Pradera, and R. R. Yager,
“Some properties of overlap and grouping functions and their
application to image thresholding,” Fuzzy Sets and Systems,
vol. 229, pp. 69–90, 2013.

[4] M. Elkano, M. Galar, J. Sanz, and H. Bustince, “Fuzzy Rule-
Based Classification Systems for multi-class problems using
binary decomposition strategies: on the influence of n-di-
mensional overlap functions in the Fuzzy Reasoning
Method,” Information Sciences, vol. 332, pp. 94–114, 2016.

[5] M. Elkano, M. Galar, J. A. Sanz et al., “Enhancing multiclass
classification in FARC-HD fuzzy classifier: on the synergy
between n-Dimensional overlap functions and decomposition
strategies,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 5,
pp. 1562–1580, 2015.

[6] M. Elkano, M. Galar, J. A. Sanz et al., “Consensus via penalty
functions for decision making in ensembles in fuzzy rule-
based classification systems,” Applied Soft Computing, vol. 67,
pp. 728–740, 2017.

[7] H. Santos, L. Lima, B. Bedregal, G. P. Dimuro, M. Rocha, and
H. Bustince, “Analyzing subdistributivity and super-
distributivity on overlap and grouping functions,” in Pro-
ceedings of the 8th International Summer School on
Aggregation Operators (AGOP 2015), pp. 211–216, Katowice,
Poland, July 2015.

[8] B. Bedregal, G. P. Dimuro, H. Bustince, and E. Barrenechea,
“New results on overlap and grouping functions,” Information
Sciences, vol. 249, pp. 148–170, 2013.

[9] B. Bedregal, H. Bustince, E. Palmeira, G. Dimuro, and
J. Fernandez, “Generalized interval-valued OWA operators
with interval weights derived from interval-valued overlap
functions,” International Journal of Approximate Reasoning,
vol. 90, pp. 1–16, 2017.
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Recently, the concept of a soft rough fuzzy covering (briefly, SRFC) by means of soft neighborhoods was defined and their
properties were studied by Zhan’s model. As a generalization of Zhan’s method and in order to increase the lower approximation
and decrease the upper approximation, the present work aims to define the complementary soft neighborhood and hence three
types of soft rough fuzzy covering models (briefly, 1-SRFC, 2-SRFC, and 3-SRFC) are proposed. We discuss their axiomatic
properties. According to these results, we investigate three types of fuzzy soft measure degrees (briefly, 1-SMD, 2-SMD, and 3-
SMD). Also, three kinds of ψ-soft rough fuzzy coverings (briefly, 1-ψ-SRFC, 2-ψ-SRFC, and 3-ψ-SRFC) and three kinds ofD-soft
rough fuzzy coverings (briefly, 1-D-SRFC, 2-D-SRFC, and 3-D-SRFC) are discussed and some of their properties are studied.
Finally, the relationships among these three models and Zhan’s model are presented.

1. Introduction

Pawlak [1, 2] developed the rough set theory for addressing
the vagueness and granularity of information systems and
data analysis. His theory and its generalizations since then
have produced applications in different areas [3–15]. As
mentioned above, a large variety of generalized rough set
models have been investigated. )ese extensions include
variable precision rough sets, covering-based rough sets
(CRSs), fuzzy rough sets and rough fuzzy sets, covering-
based multigranulation fuzzy rough sets, decision-theoretic
rough sets, soft fuzzy rough sets, and probabilistic rough sets
[16–19].

Covering-based rough sets are arguably one of the most
studied generalizations of rough sets. Pomykala [20, 21]
produced two pairs of operators with dual approximation.
)e definitions of neighborhood and granularity gave fur-
ther insights of these approximation operators I (cf., Yao
[22, 23]). Under the assumption of incomplete knowledge,
Couso and Dubois [24] studied both pairs as well. Boni-
kowski et al. [25] proposed a model of CRS that depends on

the concept of minimal description. )ere are other CRS
models and relationships between them in [26–29]. Some
CRS models were proposed by Tsang et al. [30] and Xu and
Zhang [31]. Liu and Sai [32] compared CRS models defined
by Zhu [26] and Xu and Zhang [31]. Ma [33] developed
some neighborhood-related forms of covering rough sets
using the neighborhood and complementary neighborhood
concepts in 2012.

)e fuzzy covering from a fuzzy relation is introduced by
Deng et al. [34] in 2007. In 2016, Ma [35] introduced the
concept of a fuzzy β-neighborhood to generate two types of
fuzzy rough coverings. In 2017, Yang and Hu [36] defined
the fuzzy β-complementary neighborhood to establish some
types of the fuzzy covering-based rough sets. Also, Yang and
Hu [37] in 2019 introduced the concept of fuzzy β-minimal
description and fuzzy β-maximal description to propose
four types of fuzzy neighborhood operators and studied their
properties. D’eer et al. [38] discussed the fuzzy neighbor-
hoods according to fuzzy coverings.

Dubois and Prade [39] presented the concepts of rough
fuzzy set and fuzzy rough set in 1990. Lately, some scholars
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worked on covering-based rough fuzzy sets and fuzzy rough
sets, for more information see [40–45].

Molodtsov [46] conceived the soft set theory as another
valuable mathematical method for tackling the uncertainty
problem. )e soft set theory has a unique benefit compared
to conventional mathematical methods, namely, parame-
terization by attributes. Maji et al. [47] introduced the
concept of fuzzy soft sets (briefly, FSSs) in 2002. Recently,
many researchers have studied the soft set theory, see
[48–62]. Recently, the notion of a soft rough fuzzy covering
by using soft neighborhoods was defined and their prop-
erties were studied by Zhan and Sun [63].

)e aim of the paper is to increase the lower approxi-
mation and decrease the upper approximation of Zhan’s
model; this paper’s contribution is to introduce three new
kinds of soft rough fuzzy covering based on soft neigh-
borhoods and complementary soft neighborhoods. Also,
some of the related properties are studied. Further, the
relationships among these models are discussed. )e outline
of this paper is as follows. Section 2 gives technical pre-
liminaries. Sections 3 and 4 describe the three types of SRFC
by using the notions of soft neighborhoods and comple-
mentary soft neighborhoods. In Section 5, we establish re-
lationships among our model and Zhan’s model. We
conclude in Section 6.

2. Preliminaries

In this section, we review some concepts and results related
to RST, CRS, SST, and SRFC.

Definition 1 (see [64]). Let Ω be a nonempty finite universe.
A fuzzy subset on the universe Ω is defined by the mapping
A(•): Ω⟶ [0, 1], where the A(x) denotes the member-
ship grade of the element x(x ∈ Ω) in the fuzzy setA.F(Ω)

for the set of all fuzzy subsets of the Ω.

Definition 2 (see [65]). Let Ω be a universe of discourse,
A,B ∈F(Ω). )en, we have the following statements:

(1) A⊆B⇔A(x)≤B(x),
(2) A � B⇔A⊆B and B⊆A,
(3) (A∩B)(x) � A(x)∧B(x) and

(A∪B)(x) � A(x)∨B(x),
(4) Ac(x) � 1 − A(x).

Definition 3 (see [26]). Let Ω be a universe and C be a
family of subsets ofΩ. If the empty set does not belong to C
and Ω � ∪ C∈CC, then C is called a covering of Ω, and the
ordered pair (Ω,C) is called a covering approximation
space.

Definition 4 (see [26]). Let (Ω,C) be a covering approxi-
mation space.)en, for each x ∈ Ω, define the neighborhood
of x as follows:

NC(x) � ∩ C ∈ C: x ∈ C{ }. (1)

As already mentioned, the notion of soft sets was in-
troduced in [46].)e beauty of soft sets lies in their quality of
hybridization with other theories such as fuzzy sets and
rough sets.

Definition 5 (see [46]). LetΩ be a universe of discourse, and
let E be a finite set of relevant parameters regarding Ω. )e
pair S � ( F, tA) is a soft set over Ω, when A⊆E and
F: A⟶ P(Ω) (i.e., F is a set-valued mapping from the
subset of attributes A to Ω and P(Ω) denotes the set of all
subsets of Ω ).

Definition 6 (see [52, 54]). )e soft set S � ( F, tA) is called
a full soft set if ∪ a∈A

F(a) � Ω and a full soft set S �

( F, tA) is called a soft covering (briefly, SC) over Ω if for
each a ∈ A, then F(a)≠∅. In addition, (Ω, F,A) is called
a soft covering approximation space (briefly, SCAS).

Zhan et al. [63] introduced the concept of soft rough
fuzzy covering (briefly, SRFC). So, in the following, some
basic concepts related to SRFC are given.

Definition 7 (see [63]). Let (Ω, F,A) be an SCAS. For each
x ∈ Ω, then we define a soft neighborhood of x as follows:

NS(x) � ∩ F(a)t: naq ∈ hA,xx7 ∈ C F;(a) . (2)

Definition 8 (see [63]). Let (Ω, F,A) be a SCAS of Ω. For
eachA ∈F(Ω), the setS− 0(A) (resp.S+0(A)) is called the
soft covering lower approximation (resp. the soft covering
upper approximation), briefly 0-SCLA (resp. 0-SCUA),
where

S
− 0

(A)(x) � ∧ A(y): y ∈ NS(x) ,

S
+0

(A)(x) � ∨ A(y): y ∈ NS(x) , ∀x ∈ Ω.
(3)

If S− 0(A)≠S+0(A), then A is called a soft rough
covering-based fuzzy set (briefly, 0-SRFC); otherwise, it is
definable.

3. The First Kind of Soft Rough Covering-Based
Fuzzy Sets

)is section deals with the 1-SRFC, 1-SMD, 1-ψ-SRFC, and
1-D-SRFC as complementary soft neighborhoods and
studies some of their properties.

Definition 9 Let (Ω, F,A) be an SCAS. )en, for each
x ∈ Ω, define the complementary soft neighborhood of x as
follows:

MS(x) � y ∈ Ω, x ∈ NS(y) . (4)
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Example 1. Let (Ω, F,A) be an SCAS and ( F, tA) be a soft
set given as Table 1.

Compute the soft neighborhoods and complementary
soft neighborhoods as the following:

NS x1(  � x1, x2 ,

NS x2(  � x1, x2 ,

NS x3(  � x3 ,

NS x4(  � x4, x5 ,

NS x5(  � x5 ,

NS x6(  � x3, x5, x6 ,

MS x1(  � x1, x2 ,

MS x2(  � x1, x2 ,

MS x3(  � x3, x6 ,

MS x4(  � x4 ,

MS x5(  � x4, x5, x6 ,

MS x6(  � x6 .

(5)

Definition 10. Let (Ω, F,A) be an SCAS of Ω. For each
A ∈ F(Ω), the set S− 1(A) (resp. S+1(A)) is called the first
type of a soft covering lower approximation (resp. the first
type of a soft covering upper approximation), briefly 1-SCLA
(resp. 1-SCUA), where

S
− 1

(A)(x) � ∧ A(y): y ∈MS(x) ,

S
+1

(A)(x) � ∨ A(y): y ∈MS(x) , ∀x ∈ Ω.
(6)

If S− 1(A)≠S+1(A), then A is called a soft rough
covering-based fuzzy set (briefly, 1-SRFC); otherwise, it is
definable.

Example 2 (continued from Example 1). If we take fuzzy set
A � (0.1/x1) + (0.3/x2) + (0.8/x3) + (0.2/x4) + (0.5/x5) +

(0.7/x6) , then we have the following results:

S
− 1

(A) �
0.1
x1

+
0.1
x2

+
0.7
x3

+
0.2
x4

+
0.2
x5

+
0.7
x6

,

S
+1

(A) �
0.3
x1

+
0.3
x2

+
0.8
x3

+
0.2
x4

+
0.7
x5

+
0.7
x6

.

(7)

)erefore, A is a 1-SRFC. In addition, we can obtain

S
− 0

(A) �
0.1
x1

+
0.1
x2

+
0.8
x3

+
0.2
x4

+
0.5
x5

+
0.5
x6

,

S
+0

(A) �
0.3
x1

+
0.3
x2

+
0.8
x3

+
0.5
x4

+
0.5
x5

+
0.8
x6

.

(8)

)us, A is a 0-SRFC.

Remark 1. From Example 2, we can see that

(1) S− 1(A)⊈S− 0(A) and S− 0(A)⊈S− 1(A),
(2) S+1(A)⊈S+0(A) and S+0(A)⊈S+1(A).

)erefore, it is clear that 0-SRFC model and 1-SRFC
model cannot contain each other.

Theorem 1. Let (Ω, F,A) be an SCAS of Ω and
A,B ∈ F(Ω). 6en, we have the following properties:

(1) (L1) S− 1(Ac) � (S+1(A))c.
(H1) S+1(Ac) � (S− 1(A))c.
(2) If A⊆B, then

(L2) S− 1(A)⊆S− 1(B).
(H2) S+1(A)⊆S+1(B).
(3) (L3) S− 1(A∩B) � S− 1(A)∩S− 1(B).

(H3) S+1(A∩B)⊆S+1(A)∩S+1(B).
(4) (L4) S− 1(A∪B)⊇S− 1(A)∪S− 1(B).

(H4) S+1(A∪B) � S+1(A)∪S+1(B).
(5) (L5) S− 1(A) � S− 1(S− 1(A)).

(H5) S+1(A) � S+1(S+1(A)).
(6) (LH) S− 1(A)⊆A⊆S+1(A).

Proof. We shall only prove (L1), (L2), (L3), (L5), and (LH),
since (L1) (resp. (L2), (L4), and (L5)) is equivalent to (H1)
(resp. (H2), (H4), and (H5)) and (L3), (L4), (H3), and (H4)
are all equivalent to each other.

(1) (L1):

S
− 1

A
c

(  � ∧ Ac
(y): y ∈MS(x) 

� ∧ 1 − A(y): y ∈MS(x) 

� 1 − ∨ A(y): y ∈MS(x)  � S
+1

(A) 
c
.

(9)

(2) (L2): let A,B ∈F(Ω) such that A⊆B and x ∈ Ω.
)en, we get the following result:

S
− 1

(A)(x) � ∧ A(y): y ∈MS(x) 

≤∧ B(y): y ∈MS(x)  � S
− 1

(B)(x).

(10)

(3) (L3): if x ∈ Ω, then we have

Table 1: Table for ( F, tA).

Ω ]1 ]2 ]3 ]4 ]5
x1 1 1 1 0 0
x2 1 1 1 0 0
x3 0 1 0 1 1
x4 0 0 1 1 0
x5 0 0 1 1 1
x6 0 0 0 1 1

Journal of Mathematics 3
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S
− 1

(A∩B)(x) � ∧ (A∩B)(y): y ∈MS(x) 

� ∧ A(y): y ∈MS(x) ∩∧ B(y): y ∈MS(x)  � S
− 1

(A)(x)∩S− 1
(B)(x).

(11)

(4) (L5):

S
− 1

S
− 1

(A) (x) � ∧ S− 1
(A)(y): y ∈MS(x)  � ∧ ∧ A(w): w ∈MS(y) : y ∈MS(x) 

� ∧ A(w): w ∈MS(y)∧y ∈MS(x) 

� ∧ A(w): w ∈MS(y)⊆MS(x)  � ∧ A(w): w ∈MS(x)  � S
− 1

(A)(x).

(12)

(5) (LH): it is clear from Definition 10. □

Let us define the first type of a soft measure degree
(briefly, 1-SMD) as follows.

Definition 11. Let (Ω, F,A) be an SCAS of Ω and x, y ∈ Ω.
)e first kind of a soft measure degree between x and y

(briefly, 1-SMD), denoted byD1
S(x, y), is defined as follows:

D
1
S(x, y) �

MS(x)∩MS(y)




MS(x)∪MS(y)



. (13)

Obviously,D1
S(x, x) � 1 andD1

S(x, y) � D1
S(y, x). Also,

0≤D1
S(x, y)≤ 1.

Example 3 (continued from Example 1). We have the fol-
lowing results as shown in Table 2.

From the concept of 1-SMD, we define a new kind called
a first type of a soft rough covering-based ψ-fuzzy set
(briefly, 1-ψ-SRFC) as follows.

Definition 12. Let (Ω, F,A) be an SCAS ofΩ andD1
S(x, y)

be a 1-SMD ofΩ. For eachA ∈ F(Ω), the setS−1
ψ (A) (resp.

S+1
ψ (A)) is called the first type of a soft covering ψ-lower

approximation (resp. the first type of a soft covering ψ-upper
approximation), briefly 1-ψ-SCLA (resp. 1-ψ-SCUA), where

S
−1
ψ (A)(x) � ∧ A(y): D

1
S(x, y)>ψ ,

S
+1
ψ (A)(x) � ∨ A(y): D

1
S(x, y)>ψ , ∀x ∈ Ω.

(14)

If S−1
ψ (A)≠S+1

ψ (A), then A is called 1-ψ-SRFC; oth-
erwise, it is definable.

Example 4 (continued from Example 3). If ψ � 0.2 andA �

(0.1/x1) + (0.3/x2) + (0.8/x3) + (0.2/x4) + (0.5/x5) + (0.7/
x6), then we have the following results:

S
−1
ψ (A) �

0.1
x1

+
0.1
x2

+
0.5
x3

+
0.2
x4

+
0.2
x5

+
0.5
x6

,

S
+1
ψ (A) �

0.3
x1

+
0.3
x2

+
0.8
x3

+
0.5
x4

+
0.8
x5

+
0.8
x6

.

(15)

)e proof of the following theorem is similar to)eorem
1, so we omit it.

Theorem 2. Let (Ω, F,A) be an SCAS of Ω and
A,B ∈ F(Ω). 6en, we have the following properties:

(1) (L1) S−1
ψ (Ac) � (S+1

ψ (A))c.
(H1) S+1

ψ (Ac) � (S−1
ψ (A))c.

(2) If A⊆B, then
(L2) S−1

ψ (A)⊆S−1
ψ (B).

(H2) S+1
ψ (A)⊆S+1

ψ (B).
(3) (L3) S−1

ψ (A∩B) � S−1
ψ (A)∩S−1

ψ (B).
(H3) S+1

ψ (A∩B)⊆S+1
ψ (A)∩S+1

ψ (B).
(4) (L4) S−1

ψ (A∪B)⊇S−1
ψ (A)∪S−1

ψ (B).
(H4) S+1

ψ (A∪B) � S+1
ψ (A)∪S+1

ψ (B).
(5) If α≤ β, then

(L5) S−1
α (A)⊆S−1

β (A).
(H5) S+1

α (A)⊆S+1
β (A).

(6) (LH) S−1
ψ (A)⊆A⊆S+1

ψ (A).

Next, we define other SRFC models induced by 1-SMD
as follows.

Definition 13. Let (Ω, F,A) be an SCAS ofΩ andD1
S(x, y)

be a 1-SMD ofΩ. For eachA ∈ F(Ω), the setS−1
D (A) (resp.

S+1
D (A)) is called the first type of soft covering D-lower

approximation (resp. the first type of soft coveringD-upper
approximation), briefly 1-D-SCLA (resp. 1-D-SCUA),
where

S
−1
D (A)(x) � ∧

y∈Ω
1 − D

1
S (x, y)∨A(y) ,

S
+1
D (A)(x) � ∨

y∈Ω
D

1
S(x, y)∧A(y) , ∀x ∈ Ω.

(16)

If S−1
D (A)≠S+1

D (A), then A is called 1-D-SRFC; oth-
erwise, it is definable.

Example 5 (continued from Example 3). If we take the fuzzy
set A � (0.1/x1) + (0.3/x2) + (0.8/x3) + (0.2/x4) + (0.5/
x5)+ (0.7/x6), then we have the following results:
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−1
D (A) �

0.1
x1

+
0.1
x2

+
0.7
x3

+
0.2
x4

+
0.5
x5

+
0.7
x6

,

S
+1
D (A) �

0.3
x1

+
0.3
x2

+
0.8
x3

+
0.3
x4

+
0.5
x5

+
0.7
x6

.

(17)

Theorem 3. Let (Ω, F,A) be an SCAS of Ω and
A,B ∈F(Ω). 6en, we have the following properties:

(1) (L1) S−1
D (Ac) � (S+1

D (A))c.
(H1) S+1

D (Ac) � (S−1
D (A))c.

(2) If A⊆B, then
(L2) S−1

D (A)⊆S−1
D (B).

(H2) S+1
D (A)⊆S+1

D (B).
(3) (L3) S−1

D (A∩B) � S−1
D (A)∩S−1

D (B).
(H3) S+1

D (A∩B)⊆S+1
D (A)∩S+1

D (B).
(4) (L4) S−1

D (A∪B)⊇S−1
D (A)∪S−1

D (B).
(H4) S+1

D (A∪B) � S+1
D (A)∪S+1

D (B).
(5) (LH) S−1

D (A)⊆A⊆S+1
D (A).

Proof. It is similar to )eorem 1. □

4. The Other Two SRFC Models

)e implementation of the other two types of SRFC models
(i.e., 2-SRFC and 3-SRFC) will be the subject of this section
by merging soft neighborhoods and complementary soft
neighborhoods. We list only the baseline concepts and omit
the properties.

4.1. Type 2-SRFC

Definition 14. Let (Ω, F,A) be an SCAS of Ω. For each
A ∈ F(Ω), the set S− 2(A) (resp. S+2(A)) is called the
second type of a soft covering lower approximation (resp.
the second type of a soft covering upper approximation),
briefly 2-SCLA (resp. 2-SCUA), where

S
− 2

(A)(x) � ∧ A(y): y ∈ NS ∩MS( (x) ,

S
+2

(A)(x) � ∨ A(y): y ∈ NS ∩MS( (x) , ∀x ∈ Ω.

(18)

If S− 2(A)≠S+2(A), then A is called a soft rough
covering-based fuzzy set (briefly, 2-SRFC); otherwise, it is
definable.

Example 6. Let us consider Examples 1 and 2. )en, for all
x ∈ Ω, we have

NS ∩MS(  x1(  � x1, x2 ,

NS ∩MS(  x2(  � x1, x2 ,

NS ∩MS(  x3(  � x3 ,

NS ∩MS(  x4(  � x4 ,

NS ∩MS(  x5(  � x5 ,

NS ∩MS(  x6(  � x6 .

(19)

Also, we get S− 2(A) and S+2(A) as the following:

S
− 2

(A) �
0.1
x1

+
0.1
x2

+
0.8
x3

+
0.2
x4

+
0.5
x5

+
0.7
x6

,

S
+2

(A) �
0.3
x1

+
0.3
x2

+
0.8
x3

+
0.2
x4

+
0.5
x5

+
0.7
x6

.

(20)

We define the second type of a soft measure degree
(briefly, 2-SMD) as follows.

Definition 15. Let (Ω, F,A) be an SCAS ofΩ and x, y ∈ Ω.
)e second type of a soft measure degree between x and y

(briefly, 2-SMD), denoted byD2
S(x, y), is defined as follows:

D
2
S(x, y) �

NS ∩MS( (x)∩ NS ∩MS( (y)




NS ∩MS( (x)∪ NS ∩MS( (y)



. (21)

Obviously,D2
S(x, x) � 1 andD2

S(x, y) � D2
S(y, x). Also,

0≤D2
S(x, y)≤ 1.

Example 7 (continued from Example 6). We have the fol-
lowing results as set in Table 3.

From the concept of 2-SMD, we define a second type of a
soft rough covering-based ψ-fuzzy set (briefly, 2-ψ-SRFC) as
follows.

Definition 16. Let (Ω, F,A) be an SCAS ofΩ andD2
S(x, y)

be a 2-SMD ofΩ. For eachA ∈ F(Ω), the setS−2
ψ (A) (resp.

S+2
ψ (A)) is called the second type of a soft covering ψ-lower

approximation (resp. the second type of a soft covering
ψ-upper approximation), briefly 2-ψ-SCLA (resp. 2-
ψ-SCUA), where

S
−2
ψ (A)(x) � ∧ A(y): D

2
S(x, y)>ψ ,

S
+2
ψ (A)(x) � ∨ A(y): D

2
S(x, y)>ψ , ∀x ∈ Ω.

(22)

If S−2
ψ (A)≠S+2

ψ (A), then A is called 2-ψ-SRFC; oth-
erwise, it is definable.

Example 8. Let us consider Example 7. If we take ψ � 0.2
and A � (0.1/x1) + (0.3/x2) + (0.8/x3) + (0.2/x4)+

(0.5/x5) + (0.7/x6), then 2-ψ-SCLA and 2-ψ-SCUA are
obtained as follows:

Table 2: Table for D1
S(xi, xj)∀i, j ∈ 1, 2, . . . , 6{ }.

Ω x1 x2 x3 x4 x5 x6

x1 1 1 0 0 0 0
x2 1 1 0 0 0 0
x3 0 0 1 0 (1/4) (1/2)

x4 0 0 0 1 (1/3) 0
x5 0 0 (1/4) (1/3) 1 (1/3)

x6 0 0 (1/2) 0 (1/3) 1
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−2
ψ (A) �

0.1
x1

+
0.1
x2

+
0.8
x3

+
0.2
x4

+
0.5
x5

+
0.7
x6

,

S
+2
ψ (A) �

0.3
x1

+
0.3
x2

+
0.8
x3

+
0.2
x4

+
0.5
x5

+
0.7
x6

.

(23)

Now, we define other SRFC models induced by 2-SMD
as follows.

Definition 17. Let (Ω, F,A) be an SCAS ofΩ andD2
S(x, y)

be a 2-SMD ofΩ. For eachA ∈ F(Ω), the setS−2
D (A) (resp.

S+2
D (A)) is called the second type of soft covering D-lower

approximation (resp. the second type of soft covering
D-upper approximation), briefly 2-D-SCLA (resp. 2-
D-SCUA), if

S
−2
D (A)(x) � ∧

y∈Ω
1 − D

2
S (x, y)∨A(y) ,

S
+2
D (A)(x) � ∨

y∈Ω
D

2
S(x, y)∧A(y) , ∀x ∈ Ω.

(24)

If S−2
D (A)≠S+2

D (A), then A is called 2-D-SRFC; oth-
erwise, it is definable.

Example 9. Let us consider Example 7 and fuzzy set A �

(0.1/x1) + (0.3/x2) + (0.8/x3) + (0.2/x4) + (0.5/x5) +

(0.7/x6) obtains 2-D-SCLA and 2-D-SCUA as follows:

S
−2
D (A) �

0.1
x1

+
0.1
x2

+
0.8
x3

+
0.2
x4

+
0.5
x5

+
0.7
x6

,

S
+2
D (A) �

0.3
x1

+
0.3
x2

+
0.8
x3

+
0.2
x4

+
0.5
x5

+
0.7
x6

.

(25)

4.2. Type 3-SRFC

Definition 18. Let (Ω, F,A) be an SCAS of Ω. For each
A ∈ F(Ω), the set S− 3(A) (resp. S+3(A)) is called the
third type of a soft covering lower approximation (resp. the
third type of a soft covering upper approximation), briefly 3-
SCLA (resp. 3-SCUA), if

S
− 3

(A)(x) � ∧ A(y): y ∈ NS ∪MS( (x) ,

S
+3

(A)(x) � ∨ A(y): y ∈ NS ∪MS( (x) , ∀x ∈ Ω.

(26)

If S− 3(A)≠S+3(A), then A is called a soft rough
covering-based fuzzy set (briefly, 3-SRFC); otherwise, it is
definable.

Example 10. Let us consider Examples 1 and 2. )en, for all
x ∈ Ω, we have

NS ∪MS(  x1(  � x1, x2 ,

NS ∪MS(  x2(  � x1, x2 ,

NS ∪MS(  x3(  � x3, x6 ,

NS ∪MS(  x4(  � x4, x5 ,

NS ∪MS(  x5(  � x4, x5, x6 ,

NS ∪MS(  x6(  � x3, x5, x6 .

(27)

Also, S− 3(A) and S+3(A) are obtained as follows:

S
− 3

(A) �
0.1
x1

+
0.1
x2

+
0.7
x3

+
0.2
x4

+
0.2
x5

+
0.5
x6

,

S
+3

(A) �
0.3
x1

+
0.3
x2

+
0.8
x3

+
0.5
x4

+
0.7
x5

+
0.8
x6

.

(28)

In the following definition, third type of a soft measure
degree (briefly, 3-SMD) is given.

Definition 19. Let (Ω, F,A) be an SCAS ofΩ and x, y ∈ Ω.
)e third kind of a soft measure degree (briefly, 3-SMD)
between x and y, denoted by D3

S(x, y), is defined by

D
3
S(x, y) �

NS ∪MS( (x)∩ NS ∪MS( (y)




NS ∪MS( (x)∪ NS ∪MS( (y)



. (29)

Obviously,D3
S(x, x) � 1 andD3

S(x, y) � D3
S(y, x). Also,

0≤D3
S(x, y)≤ 1.

Example 11 (continued from Example 10). We have the
following results as summarized in Table 4.

From the concept of 3-SMD, we define a third type of a
soft rough covering-based ψ-fuzzy set (briefly, 3-ψ-SRFC) as
follows.

Definition 20. Let (Ω, F,A) be an SCAS ofΩ andD3
S(x, y)

be a 3-SMD ofΩ. For eachA ∈ F(Ω), the setS−3
ψ (A) (resp.

S+3
ψ (A)) is called the third type of a soft covering ψ-lower

approximation (resp. the third type of a soft covering
ψ-upper approximation), briefly 3-ψ-SCLA (resp. 3-
ψ-SCUA), if

S
−3
ψ (A)(x) � ∧ A(y): D

3
S(x, y)>ψ ,

S
+3
ψ (A)(x) � ∨ A(y): D

3
S(x, y)>ψ , ∀x ∈ Ω.

(30)

If S−3
ψ (A)≠S+3

ψ (A), then A is called 3-ψ-SRFC; oth-
erwise, it is definable.

Table 3: Table for D2
S(xi, xj)∀i, j ∈ 1, 2, . . . , 6{ }.

Ω x1 x2 x3 x4 x5 x6

x1 1 1 0 0 0 0
x2 1 1 0 0 0 0
x3 0 0 1 0 0 0
x4 0 0 0 1 0 0
x5 0 0 0 0 1 0
x6 0 0 0 0 0 1
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and A � (0.1/x1) + (0.3/x2) + (0.8/x3) + (0.2/x4) + (0.5/
x5)+ (0.7/x6), then 3-ψ-SCLA and 3-ψ-SCUA of fuzzy sets
A are obtained as follows:

S
−3
ψ (A) �

0.1
x1

+
0.1
x2

+
0.8
x3

+
0.2
x4

+
0.2
x5

+
0.2
x6

,

S
+3
ψ (A) �

0.3
x1

+
0.3
x2

+
0.8
x3

+
0.7
x4

+
0.7
x5

+
0.7
x6

.

(31)

We define other SRFC models induced by 3-SMD as
follows.

Definition 21. Let (Ω, F,A) be an SCAS ofΩ andD3
S(x, y)

be a 3-SMD ofΩ. For eachA ∈ F(Ω), the setS−3
D (A) (resp.

S+3
D (A)) is called the third type of soft covering D-lower

approximation (resp. the third type of soft coveringD-upper
approximation), briefly 3-D-SCLA (resp. 3-D-SCUA),
where

S
−3
D (A)(x) � ∧

y∈Ω
1 − D

3
S (x, y)∨A(y) ,

S
+3
D (A)(x) � ∨

y∈Ω
D

3
S(x, y)∧A(y) , ∀x ∈ Ω.

(32)

If S−3
D (A)≠S+3

D (A), then A is called 3-D-SRFC; oth-
erwise, it is definable.

Example 13. Consider Example 11 and fuzzy set
A � (0.1/x1) + (0.3/x2) + (0.8/x3) + (0.2/x4)+

(0.5/x5) + (0.7/x6), then 3-D-SCLA and 3-D-SCUA of
fuzzy set A are obtained as follows:

S
−3
D (A) �

0.1
x1

+
0.1
x2

+
0.8
x3

+
0.2
x4

+
0.3
x5

+
0.5
x6

,

S
+3
D (A) �

0.3
x1

+
0.3
x2

+
0.8
x3

+
0.5
x4

+
0.5
x5

+
0.7
x6

.

(33)

5. The Relationships between Zhan’s Model
and Our’s

Now, we proceed to explain some relationships among the
models presented in previous sections.

Proposition 1. Let (Ω, F,A) be an SCAS of Ω and
A ∈ F(Ω). 6en, we have the following properties.

(1) S− 3(A)⊆S− 1(A)⊆S− 2(A).
(2) S− 3(A)⊆S− 0(A)⊆S− 2(A).
(3) S+2(A)⊆S+1(A)⊆S+3(A).
(4) S+2(A)⊆S+0(A)⊆S+3(A).

Proof. )e proof is clear from Definitions 8, 10, 14, and
18. □

Proposition 2. Let (Ω, F,A) be an SCAS of Ω and
A ∈ F(Ω). 6en, we have the following properties:

(1) S− 2(A) � S− 0(A)∪S− 1(A).
(2) S+2(A) � S+0(A)∩S+1(A).
(3) S− 3(A) � S− 0(A)∩S− 1(A).
(4) S+3(A) � S+0(A)∪S+1(A).

Table 4: Table for D3
S(xi, xj)∀i, j ∈ 1, 2, . . . , 6{ }.

Ω x1 x2 x3 x4 x5 x6

x1 1 1 0 0 0 0
x2 1 1 0 0 0 0
x3 0 0 1 0 0 0
x4 0 0 0 1 (2/3) (1/4)

x5 0 0 0 (2/3) 1 (1/2)

x6 0 0 0 (1/4) (1/2) 1

0.8

0.6

0.4

0.2

0.0
x1 x2 x3 x4 x5 x6

0-SCLA
1-SCLA

2-SCLA
3-SCLA

Figure 1: )e representations of the four types of SCLA models.

0.8

0.6

0.4

0.2

0.0
x1 x2 x3 x4 x5 x6

0-SCUA
1-SCUA

2-SCUA
3-SCUA

Figure 2: )e representations of the four types of SCUA models.
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Proof. Straightforward. □

)e comparison of the results is given in Figures 1 and 2.
Clearly, it is easy to see that the 2-SRFC model is better than
0-SRFC, 1-SRFC, and 2-SRFC model. )us, this study in-
dicates that our models are reasonable and effective.

6. Conclusion

In this paper, three new types of SRFC models are con-
structed as a generalization of definitions given in [63] by
Zhan and Sun and their related properties are studied. )e
relationships between our model and Zhan’s model are
established. From Figures 1 and 2, it is obvious to see that the
2-SRFC is the best model (i.e., the increasing of the lower
approximation and the decreasing of the upper approxi-
mation against Zhan’s method) among the other models
which are presented.
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