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Uno Hämarik, Estonia
Ferenc Hartung, Hungary
Behnam Hashemi, Iran
Norimichi Hirano, Japan
Jafari Hossein, Iran
Jiaxin Hu, China
Chengming Huang, China
Zhongyi Huang, China
Gennaro Infante, Italy
Ivan Ivanov, Bulgaria
Jaan Janno, Estonia
Aref Jeribi, Tunisia
Un C. Ji, Korea
Zhongxiao Jia, China
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Antonio Suárez, Spain
Wenchang Sun, China
Robert Szalai, UK
Sanyi Tang, China
Chun-Lei Tang, China
Youshan Tao, China
Gabriella Tarantello, Italy
N.-e. Tatar, Saudi Arabia
Susanna Terracini, Italy
Gerd Teschke, Germany
Alberto Tesei, Italy
BevanThompson, Australia
Sergey Tikhonov, Spain
Claudia Timofte, Romania
Thanh Tran, Australia

Juan J. Trujillo, Spain
Ciprian A. Tudor, France
Gabriel Turinici, France
Milan Tvrdy, Czech Republic
Mehmet Unal, Turkey
Csaba Varga, Romania
Carlos Vazquez, Spain
Gianmaria Verzini, Italy
Jesus Vigo-Aguiar, Spain
Yushun Wang, China
Qing-WenWang, China
Jing Ping Wang, UK
Shawn X. Wang, Canada
Qing Wang, USA
Youyu Wang, China
Peixuan Weng, China
Noemi Wolanski, Argentina
Ngai-Ching Wong, Taiwan
Patricia J. Y. Wong, Singapore
Zili Wu, China
Yong Hong Wu, Australia
Shanhe Wu, China
Tie-cheng Xia, China
Xu Xian, China
Yanni Xiao, China
Gongnan Xie, China
Fuding Xie, China
Naihua Xiu, China
Daoyi Xu, China
Xiaodong Yan, USA
Zhenya Yan, China
Norio Yoshida, Japan
Beong In Yun, Korea
Vjacheslav Yurko, Russia
Agacik Zafer, Turkey
Sergey V. Zelik, UK
Jianming Zhan, China
Chengjian Zhang, China
Weinian Zhang, China
Meirong Zhang, China
Zengqin Zhao, China
Sining Zheng, China
Tianshou Zhou, China
Yong Zhou, China
Chun-Gang Zhu, China
Qiji J. Zhu, USA
Malisa R. Zizovic, Serbia
Wenming Zou, China



Contents

Advances in Nonlinear Complexity Analysis for Partial Differential Equations, Zhengde Dai,
Qianshun S. Chang, Lan Xu, Syed Tauseef Mohyud-Din, Hafez Tari, and Peicheng Zhu
Volume 2013, Article ID 585716, 1 page

Stability for the Kirchhoff Plates Equations with Viscoelastic Boundary Conditions in Noncylindrical
Domains, Jum-Ran Kang
Volume 2013, Article ID 420803, 12 pages

Combined Exp-Function Ansatz Method and Applications, Gui Mu, Jun Liu, Zhengde Dai, and Xi Liu
Volume 2013, Article ID 234319, 3 pages

A Local Fractional Variational Iteration Method for Laplace Equation within Local Fractional
Operators, Yong-Ju Yang, Dumitru Baleanu, and Xiao-Jun Yang
Volume 2013, Article ID 202650, 6 pages

Pullback Attractors for Nonautonomous 2D-Navier-Stokes Models with Variable Delays, Xiaoli Liu and
Yejuan Wang
Volume 2013, Article ID 425031, 10 pages

ContinuumModeling and Control of Large NonuniformWireless Networks via Nonlinear Partial
Differential Equations, Yang Zhang, Edwin K. P. Chong, Jan Hannig, and Donald Estep
Volume 2013, Article ID 262581, 16 pages

Shock in the Yarn during Unwinding from Packages, Stanislav Praček, Klemen Možina, and Franci Sluga
Volume 2013, Article ID 972941, 6 pages

Exponential Attractor for Coupled Ginzburg-Landau Equations Describing Bose-Einstein Condensates
and Nonlinear Optical Waveguides and Cavities, Gui Mu and Jun Liu
Volume 2013, Article ID 390476, 8 pages

Allee-Effect-Induced Instability in a Reaction-Diffusion Predator-Prey Model, Weiming Wang,
Yongli Cai, Yanuo Zhu, and Zhengguang Guo
Volume 2013, Article ID 487810, 10 pages

Various Heteroclinic Solutions for the Coupled Schrödinger-Boussinesq Equation, Murong Jiang and
Zhengde Dai
Volume 2013, Article ID 158140, 5 pages

Variational Iteration Method for the Magnetohydrodynamic Flow over a Nonlinear Stretching Sheet,
Lan Xu and Eric W. M. Lee
Volume 2013, Article ID 573782, 5 pages

Adaptive Wavelet Precise Integration Method for Nonlinear Black-Scholes Model Based on Variational
Iteration Method, Huahong Yan
Volume 2013, Article ID 735919, 6 pages

A Lotka-Volterra Competition Model with Cross-Diffusion, Wenyan Chen and Ya Chen
Volume 2013, Article ID 624352, 5 pages



Analysis of Stability of TravelingWave for Kadomtsev-Petviashvili Equation, Jun Liu, Xi Liu, Gui Mu,
Chunyan Zhu, and Jie Fu
Volume 2013, Article ID 230871, 3 pages

TheMultisoliton Solutions for the (2 + 1)-Dimensional Sawada-Kotera Equation, Zhenhui Xu,
Hanlin Chen, and Wei Chen
Volume 2013, Article ID 767254, 5 pages

Symmetry Reduced and New Exact NontravelingWave Solutions of (2+1)-Dimensional Potential
Boiti-Leon-Manna-Pempinelli Equation, Chen Han-Lin and Xian Da-Quan
Volume 2013, Article ID 784134, 5 pages

Construction of Target Controllable Image Segmentation Model Based on Homotopy Perturbation
Technology, Shu-Li Mei
Volume 2013, Article ID 131207, 8 pages

A Novel Method for Solving KdV Equation Based on Reproducing Kernel Hilbert Space Method,
Mustafa Inc, Ali Akgül, and Adem Kiliçman
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Nonlinear Partial Differential Equations (NPDE) including
integrable, nearintegrable, and nonintegrable systems arise
from a number of physical, chemical, biological, and life
sciences. The complexity analysis of solutions for NPDE is
a very important subject in nonlinear science all the time.
In recent years, this research field has taken many new
advances. The purpose of this special issue is to highlight
some recent researches carried out on the asymptotical
behavior analysis of solution with initial boundary value
problem, spatiotemporal feature analysis, variety analysis of
dynamics, stochastic behavior analysis, numerical simulation
and analysis, and so forth.

We have received 81 submissions to the special issue
which were rigorously reviewed by up to 8 reviewers as well
as by at least one of the guest editors; all the manuscripts
had 2 reviewers. As a result, 27 manuscripts are accepted.
In these articles, the most new results in the research field
of nonlinear complexity of solutions are obtained. We hope
that this special issue can lead to both theoretical insight and
practical applications in nonlinear complexity analysis for
NPDE.
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We study Kirchhoff plates equations with viscoelastic boundary conditions in a noncylindrical domain. This work is devoted to
proving the global existence, uniqueness of solutions, and decay of the energy of solutions for Kirchhoff plates equations in a non-
cylindrical domain.

1. Introduction

Let Ω be an open bounded domain of R2 containing the
origin and having 𝐶2 boundary. Let 𝛾 : [0,∞[→ R be a
continuously differentiable function. Consider the family of
subdomains {Ω

𝑡
}
0≤𝑡<∞

of R2 given by

Ω
𝑡
= 𝑇 (Ω) , 𝑇 : 𝑦 ∈ Ω 󳨀→ 𝑥 = 𝛾 (𝑡) 𝑦, (1)

whose boundaries are denoted by Γ
𝑡
, and let 𝑄 be the

noncylindrical domain of R3 given by

𝑄 = ⋃

0≤𝑡<∞

Ω
𝑡
× {𝑡} (2)

with boundary

Σ̂ = ⋃

0≤𝑡<∞

Γ
𝑡
× {𝑡} . (3)

In this paper, we consider the following Kirchhoff plates
equations with viscoelastic boundary conditions:

𝑢
󸀠󸀠
+ Δ
2
𝑢 = 0 in Ω

𝑡
× (0,∞) , (4)

𝑢 =
𝜕𝑢

𝜕]
= 0 on Γ

0,𝑡
× (0,∞) , (5)

−𝑢 + ∫

𝑡

0

𝑔
1
(𝑡 − 𝑠)B

2
𝑢 (𝑠) 𝑑𝑠 = 0 on Γ

1,𝑡
× (0,∞) , (6)

𝜕𝑢

𝜕]
+ ∫

𝑡

0

𝑔
2
(𝑡 − 𝑠)B

1
𝑢 (𝑠) 𝑑𝑠 = 0 on Γ

1,𝑡
× (0,∞) , (7)

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑢

󸀠
(0, 𝑥) = 𝑢

1
(𝑥) in Ω

0
, (8)

where ] = (]
1
, ]
2
) is the unit normal at (𝜎, 𝑡) ∈ Σ̂ directed

towards the exterior of 𝑄. We divide the boundary into two
parts:

Γ
𝑡
= Γ
0,𝑡
∪ Γ
1,𝑡

with Γ
0,𝑡
∩ Γ
1,𝑡
= 0, Γ

0,𝑡
̸= 0. (9)

We are denoting by B
1
and B

2
the following differential

operators:

B
1
𝑢 = Δ𝑢 + (1 − 𝜇) 𝐵

1
𝑢, B

2
𝑢 =

𝜕Δ𝑢

𝜕]
+ (1 − 𝜇)

𝜕𝐵
2
𝑢

𝜕𝜂
,

(10)

where 𝐵
1
and 𝐵

2
are given by

𝐵
1
𝑢 = 2]

1
]
2
𝑢
𝑥
1
𝑥
2

− ]
2

1
𝑢
𝑥
2
𝑥
2

− ]
2

2
𝑢
𝑥
1
𝑥
1

,

𝐵
2
𝑢 = (]

2

1
− ]
2

2
) 𝑢
𝑥
1
𝑥
2

+ ]
1
]
2
(𝑢
𝑥
2
𝑥
2

− 𝑢
𝑥
1
𝑥
1

) ,

(11)

and the constant 𝜇, 0 < 𝜇 < 1/2, represents Poisson’s
ratio. From the physics point of view, system (4) describes
the small transversal vibrations of a thin plate with a moving
boundary device. The integral equations (6) and (7) describe
the memory effects which can be caused, for example, by the
interaction with another viscoelastic element. The relaxation
functions 𝑔

1
, 𝑔
2
∈ 𝐶
1
(0,∞) are positive and nondecreasing.
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The uniform stabilization of plates equations with linear
or nonlinear boundary feedback in cylindrical domain was
investigated by several authors; see for example [1–3] among
others. The uniform decay for viscoelastic plates with mem-
ory was studied by [4, 5] and the references therein. Santos
et al. [6] studied the asymptotic behavior of the solutions of
a nonlinear wave equation of Kirchhoff type with boundary
condition of memory type. Santos and Junior [7] investigated
the stability of solutions for Kirchhoff plate equations with
boundary memory condition. Park and Kang [8] studied
the exponential decay for the Kirchhoff plate equations with
nonlinear dissipation and boundarymemory condition.They
proved that the energy decays uniformly exponentially or
algebraically with the same rate of decay as the relaxation
functions. But the existence of solutions and decay of energy
for the Kirchhoff plate equations with viscoelastic boundary
conditions in noncylindrical domain are not studied yet. In a
moving domain, the transverse deflection 𝑢(𝑥, 𝑡) of the thin
plate which changes its configuration at each instant of time
increases its deformation and hence increases its tension.
Moreover, the horizontal movement of the boundary yields
nonlinear terms involving derivatives in the space variables.
To control these nonlinearities, we add in the boundary a
memory type. This term will play an important role in the
dissipative nature of the problem.

In [9–17], the authors considered the global existence and
the uniform decay of solution in noncylindrical domains. Dal
Passo and Ughi [15] investigated a certain class of parabolic
equations in noncylindrical domains. Benabidallah and Fer-
reira [9] proved the existence of solutions for the nonlinear
beam equation in noncylindrical domains. Santos et al. [17]
studied the global solvability and asymptotic behavior for the
nonlinear coupled system of viscoelastic waves with memory
in noncylindrical domains. Park and Kang [14] investigated
the global existence and stability for von Karman equations
with memory in noncylindrical domains. Motivated by these
results, we prove the exponential decay of the energy to
the Kirchhoff plate equations with viscoelastic boundary
conditions in noncylindrical domains.

This paper is organized as follows. In Section 2, we
recall notations and hypotheses. In Section 3, we prove the
existence and uniqueness of solutions by employing Faedo-
Galerkin’s method. In Section 4, we establish the exponential
decay rate of the solution.

2. Notations and Hypotheses

We begin this section introducing notations and some
hypotheses. Throughout this paper we use standard func-
tional spaces and denote that ‖ ⋅ ‖

𝑝
, ‖ ⋅ ‖
𝑝,𝑡

are 𝐿𝑝(Ω) norm
and 𝐿𝑝(Ω

𝑡
) norm. We define the inner product

(𝑢, V) = ∫
Ω

𝑢 (𝑥) V (𝑥) 𝑑𝑥, (𝑢, V)
𝑡
= ∫
Ω
𝑡

𝑢 (𝑥) V (𝑥) 𝑑𝑥.

(12)

Also, let us assume that there exists 𝑥
0
∈ R2 such that

Γ
0,𝑡
= {𝑥 ∈ Γ

𝑡
: ] (𝑥) ⋅ (𝑥 − 𝑥

0
) ≤ 0} ,

Γ
1,𝑡
= {𝑥 ∈ Γ : ] (𝑥) ⋅ (𝑥 − 𝑥

0
) > 0} .

(13)

The method used to prove the result of existence and
uniqueness is based on the transformation of our problem
into another initial boundary value problem defined over a
cylindrical domain whose sections are not time dependent.
This is done using a suitable change of variable. Then we
show the existence and uniqueness for this new problem.
Our existence result on noncylindrical domains will follow
by using the inverse transformation. That is, by using the
diffeomorphism

𝜏 : 𝑄 󳨀→ 𝑄, (𝑥, 𝑡) ∈ Ω
𝑡
× {𝑡} 󳨀→ (𝑦, 𝑡) = (

𝑥

𝛾 (𝑡)
, 𝑡)

(14)

and 𝜏−1 : 𝑄 → 𝑄 defined by

𝜏
−1
(𝑦, 𝑡) = (𝑥, 𝑡) = (𝛾 (𝑡) 𝑦, 𝑡) . (15)

For each function 𝑢 we denote by V the function

V (𝑦, 𝑡) = 𝑢 ∘ 𝜏
−1
(𝑦, 𝑡) = 𝑢 (𝑥, 𝑡) , (16)

the initial boundary value problem (4)–(8) becomes

V
󸀠󸀠
+ 𝛾
−4
Δ
2
V + 𝐴 (𝑡) V + 𝑏 (𝑦, 𝑡) ⋅ ∇V + 𝑐 (𝑦, 𝑡) ⋅ ∇V

󸀠
= 0

in Ω × (0,∞) ,

(17)

V =
𝜕V

𝜕]
= 0 on Γ

0
× (0,∞) , (18)

−V + ∫
𝑡

0

𝑔
1
(𝑡 − 𝑠) 𝛾

−2
(𝑠)B
2
V (𝑠) 𝑑𝑠 = 0 on Γ

1
× (0,∞) ,

(19)

𝜕V

𝜕]
+ ∫

𝑡

0

𝑔
2
(𝑡 − 𝑠) 𝛾

−2
(𝑠)B
1
V (𝑠) 𝑑𝑠 = 0 on Γ

1
× (0,∞) ,

(20)

V (𝑦, 0) = V
0
(𝑦) , V

󸀠
(𝑦, 0) = V

1
(𝑦) in Ω, (21)

where

𝐴 (𝑡) V =
2

∑

𝑖,𝑗=1

𝜕
𝑦
𝑖

(𝑎
𝑖𝑗
𝜕
𝑦
𝑗

V) ,

𝑎
𝑖𝑗
= (𝛾
󸀠
𝛾
−1
)
2

𝑦
𝑖
𝑦
𝑗

(𝑖, 𝑗 = 1, 2) ,

𝑏 (𝑦, 𝑡) = −𝛾
−2
(𝛾
󸀠󸀠
𝛾 + (𝛾

󸀠
)
2

) 𝑦,

𝑐 (𝑦, 𝑡) = −2𝛾
󸀠
𝛾
−1
𝑦.

(22)

The above method was introduced by Dal Passo and Ughi
[15] for studying a certain class of parabolic equations in non-
cylindrical domains. This idea was used in [11, 13, 14, 16, 17].
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We will use (19) and (20) to estimate the values B
1
and

B
2
on Γ
1
. Denoting by

(𝑔 ∗ V) (𝑡) = ∫

𝑡

0

𝑔 (𝑡 − 𝑠) V (𝑠) 𝑑𝑠 (23)

the convolution product operator and differentiating (19) and
(20) we arrive at the following Volterra equations:

B
2
V

𝛾2
+

1

𝑔
1
(0)

𝑔
󸀠

1
∗
B
2
V

𝛾2
=

1

𝑔
1
(0)

V
󸀠
,

B
1
V

𝛾2
+

1

𝑔
2
(0)

𝑔
󸀠

2
∗
B
1
V

𝛾2
= −

1

𝑔
2
(0)

𝜕V󸀠

𝜕]
.

(24)

Applying Volterra’s inverse operator, we get

B
2
V

𝛾2
=

1

𝑔
1
(0)

{V
󸀠
+ 𝑘
1
∗ V
󸀠
} ,

B
1
V

𝛾2
= −

1

𝑔
2
(0)

{
𝜕V󸀠

𝜕]
+ 𝑘
2
∗
𝜕V󸀠

𝜕]
} ,

(25)

where the resolvent kernels of −𝑔󸀠
𝑖
/𝑔
𝑖
(0) satisfy

𝑘
𝑖
+

1

𝑔
𝑖
(0)

𝑔
󸀠

𝑖
∗ 𝑘
𝑖
= −

1

𝑔
𝑖
(0)

𝑔
󸀠

𝑖
, ∀𝑖 = 1, 2. (26)

Denoting by 𝜏
1
= 1/𝑔

1
(0) and 𝜏

2
= 1/𝑔

2
(0), we obtain

B
2
V

𝛾2
= 𝜏
1
{V
󸀠
+ 𝑘
1
(0) V − 𝑘

1
(𝑡) V
0
+ 𝑘
󸀠

1
∗ V} , (27)

B
1
V

𝛾2
= −𝜏
2
{
𝜕V󸀠

𝜕]
+ 𝑘
2
(0)

𝜕V

𝜕]

−𝑘
2
(𝑡)

𝜕V
0

𝜕]
+ 𝑘
󸀠

2
∗
𝜕V

𝜕]
} .

(28)

Therefore, we use (27) and (28) instead of the boundary
conditions (19) and (20).

Let us define the bilinear form 𝑎(⋅, ⋅) as follows:

𝑎 (𝑤, V) = 𝑤
𝑥
1
𝑥
1

V
𝑥
1
𝑥
1

+ 𝑤
𝑥
2
𝑥
2

V
𝑥
2
𝑥
2

+ 𝜇 (𝑤
𝑥
1
𝑥
1

V
𝑥
2
𝑥
2

+ 𝑤
𝑥
2
𝑥
2

V
𝑥
1
𝑥
1

)

+ 2 (1 − 𝜇)𝑤
𝑥
1
𝑥
2

V
𝑥
1
𝑥
2

.

(29)

Since Γ
0

̸= 0we know that ∫
Ω
𝑎(V, V)𝑑𝑦 is equivalent to the

𝐻
2
(Ω) norm, that is,

𝑐
0‖V‖
2

𝐻
2
(Ω)

≤ ∫
Ω

𝑎 (V, V) 𝑑𝑦 ≤ 𝐶
0‖V‖
2

𝐻
2
(Ω)
, (30)

where 𝑐
0
and 𝐶

0
are generic positive constants.

Let us denote that

(𝑔 ∘ V) (𝑡) := ∫

𝑡

0

𝑔 (𝑡 − 𝑠) (V (𝑡) − V (𝑠)) 𝑑𝑠,

(𝑔◻V) (𝑡) := ∫

𝑡

0

𝑔 (𝑡 − 𝑠) |V (𝑡) − V (𝑠)|
2
𝑑𝑠.

(31)

The following lemma states an important property of the
convolution operator.

Lemma 1. For 𝑔, V ∈ 𝐶1([0,∞) : R) one has

(𝑔 ∗ V) V
󸀠
= −

1

2
𝑔 (𝑡) |V (𝑡)|

2
+
1

2
𝑔
󸀠
◻V

−
1

2

𝑑

𝑑𝑡
[𝑔◻V − (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) |V|
2
] .

(32)

The proof of this lemma follows by differentiating the
term 𝑔◻V.

We state the following lemmawhichwill be useful inwhat
follows.

Lemma 2 (see [7]). Let 𝑤 and V be functions in 𝐻
4
(Ω) ∩

𝐻
2

0
(Ω). Then one has

∫
Ω

(Δ
2
𝑤) V 𝑑𝑦 = ∫

Ω

𝑎 (𝑤, V) 𝑑𝑦

+ ∫
Γ
1

{(B
2
𝑤) V − (B

1
𝑤)

𝜕V

𝜕]
}𝑑Γ.

(33)

Lemma 3 (see [18]). Suppose that 𝑓 ∈ 𝐿
2
(Ω), 𝑔 ∈ 𝐻

1/2
(Γ
1
),

and ℎ ∈ 𝐻3/2(Γ
1
); then, any solution of

∫
Ω

𝑎 (V, 𝑤) 𝑑𝑦 =∫
Ω

𝑓𝑤𝑑𝑦 + ∫
Γ
1

𝑔𝑤𝑑Γ

+ ∫
Γ
1

ℎ
𝜕𝑤

𝜕]
𝑑Γ, ∀𝑤 ∈ 𝐻

2

0
(Ω)

(34)

satisfies V ∈ 𝐻4(Ω) and also

Δ
2
V = 𝑓, V =

𝜕V

𝜕]
= 0 on Γ

0
,

B
1
V = ℎ, B

2
V = 𝑔 on Γ

1
.

(35)

To show the existence of solution, we will use the
following hypotheses:

𝛾
󸀠
≤ 0, 𝛾 ∈ 𝐿

∞
(0,∞) , inf

0≤𝑡<∞

𝛾 (𝑡) = 𝛾
0
> 0, (36)

𝛾
󸀠
∈ 𝑊
2,∞

(0,∞) ∩𝑊
2,1
(0,∞) , (37)

0 < max
0≤𝑡<∞

󵄨󵄨󵄨󵄨󵄨
𝛾
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝛾 (𝑡) ≤

1

√2𝑐
1
𝑐
−1

0
𝑀𝑑

, (38)

where 𝑑 = diam(Ω), 𝑀 = meas(Ω), and 𝑐
0
is a positive

imbedding constant such that ‖∇V‖2 ≤ 𝑐
1
‖ΔV‖2, for all V ∈

𝐻
2

0
(Ω).

3. Existence and Regularity

In this section we will study the existence and regularity of
solutions for system (4)–(8).

The well posedness of system (17)–(21) is given by the
following theorem.
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Theorem 4. Let 𝑘
𝑖
∈ 𝐶
2
(R+) be such that

𝑘
𝑖
, −𝑘
󸀠

𝑖
, 𝑘
󸀠󸀠

𝑖
≥ 0. (39)

The function 𝛾 satisfies that

󵄨󵄨󵄨󵄨󵄨
𝛾
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝛾
−1
(𝑡) < min{1, −

𝑘
󸀠

𝑖
(𝑡)

2
} . (40)

If (V
0
, V
1
) ∈ (𝐻

4
(Ω)∩𝐻

2

0
(Ω))×𝐻

2

0
(Ω) satisfy the compatibility

condition

B
2
V
0
− 𝜏
1
𝛾
2
(0) V
1
= 0, B

1
V
0
+ 𝜏
2
𝛾
2
(0)

𝜕V
1

𝜕]
𝑜𝑛 Γ
1

(41)

then there exists only one solution for system (17)–(21) satisfy-
ing

V ∈ 𝐿
∞
(0, 𝑇;𝐻

4
(Ω) ∩ 𝐻

2

0
(Ω)) ,

V
󸀠
∈ 𝐿
∞
(0, 𝑇;𝐻

2

0
(Ω)) , V

󸀠󸀠
∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(Ω)) .

(42)

Proof. The main idea is to use the Galerkin method. To do
this let us denote by 𝐵 the operator

𝐵𝑤 = Δ
2
𝑤, 𝐷 (𝐵) = 𝐻

2

0
(Ω) ∩ 𝐻

4
(Ω) . (43)

It is well known that 𝐵 is a positive self-adjoint operator
in the Hilbert space 𝐿2(Ω) for which there exist sequences
{𝑤
𝑛
}
𝑛∈N and {𝜆

𝑛
}
𝑛∈N of eigenfunctions and eigenvalues of 𝐵

such that the set of linear combinations of {𝑤
𝑛
}
𝑛∈N is dense

in 𝐷(𝐵) and 𝜆
1
< 𝜆
2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
→ ∞ as 𝑛 → ∞. Let us

define

V
0𝑚

=

𝑚

∑

𝑗=1

(V
0
, 𝑤
𝑗
)𝑤
𝑗
, V

1𝑚
=

𝑚

∑

𝑗=1

(V
1
, 𝑤
𝑗
)𝑤
𝑗
. (44)

Note that for any (V
0
, V
1
) ∈ 𝐷(𝐵)×𝐻

2

0
(Ω), we have V

0𝑚
→ V
0

strong in𝐷(𝐵) and V
1𝑚

→ V
1
strong in𝐻2

0
(Ω).

Let us denote by 𝑉
𝑚

the space generated by 𝑤
1
, 𝑤
2
,

. . . , 𝑤
𝑚
. Standard results on ordinary differential equations

guarantee that there exists only one local solution

V
𝑚
(𝑡) =

𝑚

∑

𝑗=1

𝑔
𝑗𝑚
(𝑡) 𝑤
𝑗
, (45)

of the approximate system

∫
Ω

V
󸀠󸀠

𝑚
𝑤
𝑗
𝑑𝑦 + 𝛾

−4
∫
Ω

𝑎 (V
𝑚
, 𝑤
𝑗
) 𝑑𝑦 + ∫

Ω

𝐴 (𝑡) V
𝑚
𝑤
𝑗
𝑑𝑦

+ ∫
Ω

𝑐 (𝑦, 𝑡) ⋅ ∇V
󸀠

𝑚
𝑤
𝑗
𝑑𝑦 + ∫

Ω

𝑏 (𝑦, 𝑡) ⋅ ∇V
𝑚
𝑤
𝑗
𝑑𝑦

= −𝜏
1
𝛾
−2
∫
Γ
1

{V
󸀠

𝑚
+ 𝑘
1
(0) V
𝑚
− 𝑘
1
(𝑡) V
0𝑚

+ 𝑘
󸀠

1
∗ V
𝑚
}𝑤
𝑗
𝑑Γ

− 𝜏
2
𝛾
−2
∫
Γ
1

{
𝜕V󸀠
𝑚

𝜕]
+ 𝑘
2
(0)

𝜕V
𝑚

𝜕]
− 𝑘
2
(𝑡)

𝜕V
0𝑚

𝜕]

+𝑘
󸀠

2
∗
𝜕V
𝑚

𝜕]
}

𝑤
𝑗

𝜕]
𝑑Γ (𝑗 = 1, 2, . . . , 𝑚) ,

(46)

V
𝑚
(𝑥, 0) = V

0𝑚
, V
󸀠

𝑚
(𝑥, 0) = V

1𝑚
. (47)

By standard methods for differential equations, we prove the
existence of solutions to the approximate equation (46) on
some interval [0, 𝑡

𝑚
). Then, this solution can be extended to

the whole interval [0, 𝑇], for all 𝑇 > 0, by using the following
first estimate.

The First Estimate. Multiplying (46) by 𝑔
󸀠

𝑗𝑚
(𝑡), summing

up the product result 𝑗 = 1, 2, . . . , 𝑚, and making some
calculations using Lemma 1, we get

1

2

𝑑

𝑑𝑡
[∫
Ω

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑦 + 𝛾
−4
∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦

+ 𝜏
1
𝛾
−2
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
𝑚
) 𝑑Γ

+𝜏
2
𝛾
−2
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V
𝑚

𝜕]
)𝑑Γ]

+ 2𝛾
−5
𝛾
󸀠
∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦

+ 𝜏
1
𝛾
−3
𝛾
󸀠
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
𝑚
) 𝑑Γ

+ 𝜏
2
𝛾
−3
𝛾
󸀠
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V
𝑚

𝜕]
)𝑑Γ

= −∫
Ω

𝐴 (𝑡) V
𝑚
V
󸀠

𝑚
𝑑𝑦 − ∫

Ω

𝑐 (𝑦, 𝑡) ⋅ ∇V
󸀠

𝑚
V
󸀠

𝑚
𝑑𝑦

− ∫
Ω

𝑏 (𝑦, 𝑡) ⋅ ∇V
𝑚
V
󸀠

𝑚
𝑑𝑦

− 𝜏
1
𝛾
−2
∫
Γ
1

(
󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
1
(𝑡) V
0𝑚
V
󸀠

𝑚
−
1

2
𝑘
󸀠

1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

+
1

2
𝑘
󸀠󸀠

1
◻V
𝑚
)𝑑Γ

− 𝜏
2
𝛾
−2
∫
Γ
1

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
2
(𝑡)

𝜕V
0𝑚

𝜕]

𝜕V󸀠
𝑚

𝜕]

−
1

2
𝑘
󸀠

2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝑘
󸀠󸀠

2
◻
𝜕V
𝑚

𝜕]
)𝑑Γ.

(48)

Now we will estimate terms of the right-hand side of (48).
From the hypotheses on 𝛾 and Green’s formula, we get

− ∫
Ω

𝐴 (𝑡) V
𝑚
V
󸀠

𝑚
𝑑𝑦

= −∫
Ω

2

∑

𝑖,𝑗=1

𝜕
𝑦
𝑖

(𝑎
𝑖𝑗
𝜕
𝑦
𝑗

V
𝑚
) V
󸀠

𝑚
𝑑𝑦

= ∫
Ω

2

∑

𝑖,𝑗=1

(𝑎
𝑖𝑗
𝜕
𝑦
𝑗

V
𝑚
) 𝜕
𝑦
𝑖

V
󸀠

𝑚
𝑑𝑦



Abstract and Applied Analysis 5

= ∫
Ω

2

∑

𝑖,𝑗=1

(𝛾
󸀠
𝛾
−1
)
2

𝑦
𝑖
𝑦
𝑗
𝜕
𝑦
𝑗

V
𝑚
𝜕
𝑦
𝑖

V
󸀠

𝑚
𝑑𝑦

=
𝑑

𝑑𝑡
∫
Ω

1

2
(𝛾
󸀠
𝛾
−1
)
2󵄨󵄨󵄨󵄨∇V𝑚 ⋅ 𝑦

󵄨󵄨󵄨󵄨

2

𝑑𝑦

− (𝛾
󸀠
𝛾
−1
) [𝛾
󸀠󸀠
𝛾
−1
− (𝛾
󸀠
𝛾
−1
)
2

]
󵄩󵄩󵄩󵄩∇V𝑚 ⋅ 𝑦

󵄩󵄩󵄩󵄩

2

2
,

∫
Ω

𝑐 (𝑦, 𝑡) ⋅ ∇V
󸀠

𝑚
V
󸀠

𝑚
𝑑𝑦

= −∫
Ω

2𝛾
󸀠
𝛾
−1
𝑦 ⋅ ∇V

󸀠

𝑚
V
󸀠

𝑚
𝑑𝑦

= −∫
Ω

𝛾
󸀠
𝛾
−1
𝑦 ⋅ ∇

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑦 = 2𝛾
󸀠
𝛾
−1󵄩󵄩󵄩󵄩󵄩

V
󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
,

− ∫
Ω

𝑏 (𝑦, 𝑡) ⋅ ∇V
𝑚
V
󸀠

𝑚
𝑑𝑦

= ∫
Ω

𝛾
−2
(𝛾
󸀠󸀠
𝛾 + (𝛾

󸀠
)
2

) 𝑦 ⋅ ∇V
𝑚
V
󸀠

𝑚
𝑑𝑦

≤ (

󵄨󵄨󵄨󵄨󵄨
𝛾
󸀠󸀠
𝛾
−1󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝛾
󸀠
𝛾
−1󵄨󵄨󵄨󵄨󵄨

2

2
)(

󵄩󵄩󵄩󵄩𝑦 ⋅ ∇V𝑚
󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩󵄩
V
󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
)

≤ 𝐶
1
(
󵄩󵄩󵄩󵄩∇V𝑚

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩󵄩
V
󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
) .

(49)

Young’s inequality yields

∫
Γ
1

𝑘
1
(𝑡) V
0𝑚
V
󸀠

𝑚
𝑑Γ ≤

1

2
∫
Γ
1

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝑘
2

1
(𝑡)

2
∫
Γ
1

󵄨󵄨󵄨󵄨V0𝑚
󵄨󵄨󵄨󵄨

2

𝑑Γ,

∫
Γ
1

𝑘
2
(𝑡)

𝜕V
0𝑚

𝜕]

𝜕V󸀠
𝑚

𝜕]
𝑑Γ

≤
1

2
∫
Γ
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝑘
2

2
(𝑡)

2
∫
Γ
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
0𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ.

(50)

Replacing the above calculations in (48) and using our
assumptions 𝑘

𝑖
, −𝑘
󸀠

𝑖
, 𝑘
󸀠󸀠

𝑖
≥ 0 and (30), we have

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩󵄩
V
󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛾
−4
∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦 − (𝛾

󸀠
𝛾
−1
)
2󵄩󵄩󵄩󵄩∇V𝑚 ⋅ 𝑦

󵄩󵄩󵄩󵄩

2

2

+ 𝜏
1
𝛾
−2
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
𝑚
) 𝑑Γ

+𝜏
2
𝛾
−2
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V
𝑚

𝜕]
)𝑑Γ]

≤ 𝐶
2
[
󵄩󵄩󵄩󵄩󵄩
V
󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦

+ ∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
𝑚
) 𝑑Γ

+∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V
𝑚

𝜕]
)𝑑Γ]

+
𝜏
1
𝛾
−2

2
𝑘
2

1
(𝑡) ∫
Γ
1

󵄨󵄨󵄨󵄨V0𝑚
󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝜏
2
𝛾
−2

2
𝑘
2

2
(𝑡) ∫
Γ
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
0𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ.

(51)

From our choice of V
0𝑚

and V
1𝑚

and integrating (51) over
(0, 𝑡) with 𝑡 ∈ (0, 𝑡

𝑚
), we obtain

󵄩󵄩󵄩󵄩󵄩
V
󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛾
−4
∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦 − (𝛾

󸀠
𝛾
−1
)
2󵄩󵄩󵄩󵄩∇V𝑚 ⋅ 𝑦

󵄩󵄩󵄩󵄩

2

2

+ 𝜏
1
𝛾
−2
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
𝑚
) 𝑑Γ

+ 𝜏
2
𝛾
−2
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V
𝑚

𝜕]
)𝑑Γ

≤ 𝐶
3
∫

𝑡

0

[
󵄩󵄩󵄩󵄩󵄩
V
󸀠

𝑚
(𝑠)
󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫
Ω

𝑎 (V
𝑚
(𝑠) , V
𝑚
(𝑠)) 𝑑𝑦

+ ∫
Γ
1

(𝑘
1
(𝑠)

󵄨󵄨󵄨󵄨V𝑚 (𝑠)
󵄨󵄨󵄨󵄨

2

− (𝑘
󸀠

1
◻V
𝑚
) (𝑠)) 𝑑Γ

+ ∫
Γ
1

(𝑘
2
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚
(𝑠)

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− (𝑘
󸀠

2
◻
𝜕V
𝑚

𝜕]
) (𝑠)) 𝑑Γ] 𝑑𝑠

+ 𝐶
4
.

(52)

We observe that, from (30) and (38),

(𝛾
󸀠
𝛾
−1
)
2󵄩󵄩󵄩󵄩∇V𝑚 ⋅ 𝑦

󵄩󵄩󵄩󵄩

2

2
≤ (𝛾
󸀠
𝛾
−1
)
2

𝑀𝑑
2󵄩󵄩󵄩󵄩∇V𝑚

󵄩󵄩󵄩󵄩

2

2

≤ (𝛾
󸀠
𝛾
−1
)
2

𝑐
1
𝑐
−1

0
𝑀𝑑
2
∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦

≤
𝛾
−4

2
∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦,

(53)

for all 𝑡 ≥ 0. Hence, by Gronwall’s lemma we get

󵄩󵄩󵄩󵄩󵄩
V
󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫
Ω

𝑎 (V
𝑚
, V
𝑚
) 𝑑𝑦 + ∫

Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
𝑚
) 𝑑Γ

+ ∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V
𝑚

𝜕]
)𝑑Γ ≤ 𝐶

5
,

(54)

where 𝐶
5
is a positive constant which is independent of 𝑚

and 𝑡.

The Second Estimate. First of all, we are going to estimate
V󸀠󸀠
𝑚
(0) in 𝐿

2
(Ω)-norm. Letting 𝑡 → 0

+ in (46), multiplying
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the result by 𝑔󸀠󸀠
𝑗𝑚
(0), and using the compatibility condition

(41), we have

󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚
(0)

󵄩󵄩󵄩󵄩󵄩

2

2
≤ 𝐶
6
. (55)

Now, differentiating (46) with respect to 𝑡, we obtain

∫
Ω

V
󸀠󸀠󸀠

𝑚
𝑤
𝑗
𝑑𝑦 + 𝛾

−4
∫
Ω

𝑎 (V
󸀠

𝑚
, 𝑤
𝑗
) 𝑑𝑦

− 4𝛾
−5
𝛾
󸀠
∫
Ω

𝑎 (V
𝑚
, 𝑤
𝑗
) 𝑑𝑦

= − ∫
Ω

𝑑

𝑑𝑡
[𝐴 (𝑡) V

𝑚
] 𝑤
𝑗
𝑑𝑦 − ∫

Ω

𝑑

𝑑𝑡
[𝑐 (𝑦, 𝑡) ⋅ ∇V

󸀠

𝑚
]𝑤
𝑗
𝑑𝑦

− ∫
Ω

𝑑

𝑑𝑡
[𝑏 (𝑦, 𝑡) ⋅ ∇V

𝑚
] 𝑤
𝑗
𝑑𝑦

− 𝜏
1
𝛾
−2
∫
Γ
1

{V
󸀠󸀠

𝑚
+ 𝑘
1
(0) V
󸀠

𝑚
+ 𝑘
󸀠

1
∗ V
󸀠

𝑚
}𝑤
𝑗
𝑑Γ

− 𝜏
2
𝛾
−2
∫
Γ
1

{
𝜕V󸀠󸀠
𝑚

𝜕]
+ 𝑘
2
(0)

𝜕V󸀠
𝑚

𝜕]
+ 𝑘
󸀠

2
∗
𝜕V󸀠
𝑚

𝜕]
}

𝑤
𝑗

𝜕]
𝑑Γ

+ 2𝜏
1
𝛾
−3
𝛾
󸀠
∫
Γ
1

{V
󸀠

𝑚
+ 𝑘
1
(0) V
𝑚
− 𝑘
1
(𝑡) V
0𝑚

+𝑘
󸀠

1
∗ V
𝑚
}𝑤
𝑗
𝑑Γ

+ 2𝜏
2
𝛾
−3
𝛾
󸀠
∫
Γ
1

{
𝜕V󸀠
𝑚

𝜕]
+ 𝑘
2
(0)

𝜕V
𝑚

𝜕]
− 𝑘
2
(𝑡)

𝜕V
0𝑚

𝜕]

+𝑘
󸀠

2
∗
𝜕V
𝑚

𝜕]
}

𝑤
𝑗

𝜕]
𝑑Γ.

(56)

Multiplying (56) by 𝑔󸀠󸀠
𝑗𝑚
(𝑡), summing up the product result in

𝑗, and using Lemma 1, we have

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛾
−4
∫
Ω

𝑎 (V
󸀠

𝑚
, V
󸀠

𝑚
) 𝑑𝑦

− 8𝛾
−5
𝛾
󸀠
∫
Ω

𝑎 (V
𝑚
, V
󸀠

𝑚
) 𝑑𝑦

+ 𝜏
1
𝛾
−2
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
󸀠

𝑚
) 𝑑Γ

+𝜏
2
𝛾
−2
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
)𝑑Γ]

+ 6𝛾
−5
𝛾
󸀠
∫
Ω

𝑎 (V
󸀠

𝑚
, V
󸀠

𝑚
) 𝑑𝑦

+ 4𝛾
−4
(𝛾
󸀠󸀠
𝛾
−1
− 5(𝛾
󸀠
𝛾
−1
)
2

)∫
Ω

𝑎 (V
𝑚
, V
󸀠

𝑚
) 𝑑𝑦

+ 𝜏
1
𝛾
−3
𝛾
󸀠
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
󸀠

𝑚
) 𝑑Γ

+ 𝜏
2
𝛾
−3
𝛾
󸀠
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
)𝑑Γ

= −∫
Ω

𝑑

𝑑𝑡
[𝐴 (𝑡) V

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦 − ∫

Ω

𝑑

𝑑𝑡
[𝑐 (𝑦, 𝑡) ⋅ ∇V

󸀠

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

− ∫
Ω

𝑑

𝑑𝑡
[𝑏 (𝑦, 𝑡) ⋅ ∇V

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

− 𝜏
1
𝛾
−2
∫
Γ
1

(
󵄨󵄨󵄨󵄨󵄨
V
󸀠󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝑘
󸀠󸀠

1
◻V
󸀠

𝑚
−
1

2
𝑘
󸀠

1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

)𝑑Γ

− 𝜏
2
𝛾
−2
∫
Γ
1

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1

2
𝑘
󸀠󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
−
1

2
𝑘
󸀠

2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)𝑑Γ

+ 2𝜏
1
𝛾
−3
𝛾
󸀠
∫
Γ
1

{V
󸀠

𝑚
+ 𝑘
1
(0) V
𝑚
− 𝑘
1
(𝑡) V
0𝑚

+𝑘
󸀠

1
∗ V
𝑚
} V
󸀠󸀠

𝑚
𝑑Γ

+ 2𝜏
2
𝛾
−3
𝛾
󸀠
∫
Γ
1

{
𝜕V󸀠
𝑚

𝜕]
+ 𝑘
2
(0)

𝜕V
𝑚

𝜕]
− 𝑘
2
(𝑡)

𝜕V
0𝑚

𝜕]

+𝑘
󸀠

2
∗
𝜕V
𝑚

𝜕]
}
V󸀠󸀠
𝑚

𝜕]
𝑑Γ.

(57)

Now we will estimate terms of the right-hand side of (57).
From the hypotheses on 𝛾 and Green’s formula, we get

− ∫
Ω

𝑑

𝑑𝑡
[𝐴 (𝑡) V

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

= −∫
Ω

𝑑

𝑑𝑡

[

[

2

∑

𝑖,𝑗=1

𝜕
𝑦
𝑖

((𝛾
󸀠
𝛾
−1
)
2

𝑦
𝑖
𝑦
𝑗
𝜕
𝑦
𝑗

V
𝑚
)]

]

V
󸀠󸀠

𝑚
𝑑𝑦

= −∫
Ω

[

[

2

∑

𝑖,𝑗=1

𝜕
𝑦
𝑖

(2𝛾
󸀠
𝛾
−1
(𝛾
󸀠󸀠
𝛾
−1
− (𝛾
󸀠
𝛾
−1
)
2

) 𝑦
𝑖
𝑦
𝑗
𝜕
𝑦
𝑗

V
𝑚

+(𝛾
󸀠
𝛾
−1
)
2

𝑦
𝑖
𝑦
𝑗
𝜕
𝑦
𝑗

V
󸀠

𝑚
)]

]

V
󸀠󸀠

𝑚
𝑑𝑦

= −∫
Ω

[

[

2

∑

𝑖,𝑗=1

𝜕
𝑦
𝑖

(2𝛾
󸀠
𝛾
−1
(𝛾
󸀠󸀠
𝛾
−1
− (𝛾
󸀠
𝛾
−1
)
2

)

×𝑦
𝑖
𝑦
𝑗
𝜕
𝑦
𝑗

V
𝑚
)]

]

V
󸀠󸀠

𝑚
𝑑𝑦

+ ∫
Ω

2

∑

𝑖,𝑗=1

(𝛾
󸀠
𝛾
−1
)
2

𝑦
𝑖
𝑦
𝑗
𝜕
𝑦
𝑗

V
󸀠

𝑚
𝜕
𝑦
𝑖

V
󸀠󸀠

𝑚
𝑑𝑦
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=−∫
Ω

[

[

2

∑

𝑖,𝑗=1

𝜕
𝑦
𝑖

(2𝛾
󸀠
𝛾
−1
(𝛾
󸀠󸀠
𝛾
−1
−(𝛾
󸀠
𝛾
−1
)
2

)𝑦
𝑖
𝑦
𝑗
𝜕
𝑦
𝑗

V
𝑚
)]

]

V
󸀠󸀠

𝑚
𝑑𝑦

+
𝑑

𝑑𝑡
∫
Ω

1

2
(𝛾
󸀠
𝛾
−1
)
2󵄨󵄨󵄨󵄨󵄨
∇V
󸀠

𝑚
⋅ 𝑦
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑦

− (𝛾
󸀠
𝛾
−1
) [𝛾
󸀠󸀠
𝛾
−1
− (𝛾
󸀠
𝛾
−1
)
2

]
󵄩󵄩󵄩󵄩󵄩
∇V
󸀠

𝑚
⋅ 𝑦
󵄩󵄩󵄩󵄩󵄩

2

2
,

(58)

− ∫
Ω

𝑑

𝑑𝑡
[𝑐 (𝑦, 𝑡) ⋅ ∇V

󸀠

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

= ∫
Ω

𝑑

𝑑𝑡
[2𝛾
󸀠
𝛾
−1
𝑦 ⋅ ∇V

󸀠

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

= ∫
Ω

[2 (𝛾
󸀠󸀠
𝛾
−1
− (𝛾
󸀠
𝛾
−1
)
2

) 𝑦 ⋅ ∇V
󸀠

𝑚

+2𝛾
󸀠
𝛾
−1
𝑦 ⋅ ∇V

󸀠󸀠

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

= ∫
Ω

[2 (𝛾
󸀠󸀠
𝛾
−1
− (𝛾
󸀠
𝛾
−1
)
2

) 𝑦 ⋅ ∇V
󸀠

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

+ ∫
Ω

𝛾
󸀠
𝛾
−1
𝑦 ⋅ ∇|V

󸀠󸀠

𝑚
|
2

𝑑𝑦

≤ (
󵄨󵄨󵄨󵄨󵄨
𝛾
󸀠󸀠
𝛾
−1󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝛾
󸀠
𝛾
−1󵄨󵄨󵄨󵄨󵄨

2

) (
󵄩󵄩󵄩󵄩󵄩
𝑦 ⋅ ∇V

󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
)

− 2𝛾
󸀠
𝛾
−1󵄩󵄩󵄩󵄩󵄩

V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
,

(59)

− ∫
Ω

𝑑

𝑑𝑡
[𝑏 (𝑦, 𝑡) ⋅ ∇V

𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

= ∫
Ω

𝑑

𝑑𝑡
[(𝛾
󸀠󸀠
𝛾
−1
+ (𝛾
󸀠
𝛾
−1
)
2

) 𝑦 ⋅ ∇V
𝑚
] V
󸀠󸀠

𝑚
𝑑𝑦

= ∫
Ω

𝑑

𝑑𝑡
[𝛾
󸀠󸀠
𝛾
−1
+ (𝛾
󸀠
𝛾
−1
)
2

] 𝑦 ⋅ ∇V
𝑚
V
󸀠󸀠

𝑚
𝑑𝑦

+ ∫
Ω

(𝛾
󸀠󸀠
𝛾
−1
+ (𝛾
󸀠
𝛾
−1
)
2

) 𝑦 ⋅ ∇V
󸀠

𝑚
V
󸀠󸀠

𝑚
𝑑𝑦

≤ 𝐶
7
(
󵄩󵄩󵄩󵄩𝑦 ⋅ ∇V𝑚

󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩󵄩
𝑦 ⋅ ∇V

󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
) .

(60)

We know that

(𝑘
󸀠

1
∗ V
𝑚
) (𝑡) = ∫

𝑡

0

𝑘
󸀠

1
(𝑡 − 𝑠) (V

𝑚
(𝑠) − V

𝑚
(𝑡)) 𝑑𝑠

+ 𝑘
1
(𝑡) V
𝑚
(𝑡) − 𝑘

1
(0) V
𝑚
(𝑡) .

(61)

By using Hölder’s inequality and our assumption 𝑘󸀠
1
≤ 0, we

note that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑘
󸀠

1
(𝑡 − 𝑠) (V (𝑡) − V (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

Γ
1

≤ (∫

𝑡

0

𝑘
󸀠

1
(𝑠) 𝑑s)∫

Γ
1

∫

𝑡

0

𝑘
󸀠

1
(𝑡 − 𝑠) (V (𝑡) − V (𝑠))

2
𝑑𝑠 𝑑Γ

≤ ∫
Γ
1

𝑘
1
(0)

󵄨󵄨󵄨󵄨󵄨
𝑘
󸀠

1

󵄨󵄨󵄨󵄨󵄨
◻V 𝑑Γ

(62)

and, hence, by applying Young’s inequality, we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝜏
1
𝛾
−3
𝛾
󸀠
∫
Γ
1

{V
󸀠

𝑚
+ 𝑘
1
(0) V
𝑚
− 𝑘
1
(𝑡) V
0𝑚

+ 𝑘
󸀠

1
∗ V
𝑚
} V
󸀠󸀠

𝑚
𝑑Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜏
1
𝛾
−3 󵄨󵄨󵄨󵄨󵄨

𝛾
󸀠󵄨󵄨󵄨󵄨󵄨
∫
Γ
1

󵄨󵄨󵄨󵄨󵄨
V
󸀠󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ + 𝜏
1
𝛾
−3 󵄨󵄨󵄨󵄨󵄨

𝛾
󸀠󵄨󵄨󵄨󵄨󵄨

× ∫
Γ
1

(
󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑘
2

1
(𝑡)

󵄨󵄨󵄨󵄨V0𝑚
󵄨󵄨󵄨󵄨

2

+ 𝑘
1
(0)

󵄨󵄨󵄨󵄨󵄨
𝑘
󸀠

1

󵄨󵄨󵄨󵄨󵄨
◻V
𝑚

+𝑘
2

1
(𝑡)

󵄨󵄨󵄨󵄨V𝑚
󵄨󵄨󵄨󵄨

2

) 𝑑Γ.

(63)

By the same argument of (63), we can obtain the similar
estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝜏
2
𝛾
−3
𝛾
󸀠
∫
Γ
1

{
𝜕V󸀠
𝑚

𝜕]
+ 𝑘
2
(0)

𝜕V
𝑚

𝜕]

−𝑘
2
(𝑡)

𝜕V
0𝑚

𝜕]
+ 𝑘
󸀠

2
∗
𝜕V
𝑚

𝜕]
}
V󸀠󸀠
𝑚

𝜕]
𝑑Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜏
2
𝛾
−3 󵄨󵄨󵄨󵄨󵄨

𝛾
󸀠󵄨󵄨󵄨󵄨󵄨
∫
Γ
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V󸀠󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ + 𝜏
2
𝛾
−3 󵄨󵄨󵄨󵄨󵄨

𝛾
󸀠󵄨󵄨󵄨󵄨󵄨

× ∫
Γ
1

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝑘
2

2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
0𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+𝑘
2
(0)

󵄨󵄨󵄨󵄨󵄨
𝑘
󸀠

2

󵄨󵄨󵄨󵄨󵄨
◻
𝜕V
𝑚

𝜕]
+ 𝑘
2

2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

)𝑑Γ.

(64)

Applying (58)–(64) to (57) and using the first estimate
(54) and our assumptions 𝑘

𝑖
, −𝑘
󸀠

𝑖
, 𝑘
󸀠󸀠

𝑖
≥ 0 and |𝛾

󸀠
|𝛾
−1

<

min{1, −(𝑘󸀠
𝑖
/2)}, we have

1

2

𝑑

𝑑𝑡
[
󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛾
−4
∫
Ω

𝑎 (V
󸀠

𝑚
, V
󸀠

𝑚
) 𝑑𝑦 − (𝛾

󸀠
𝛾
−1
)
2󵄩󵄩󵄩󵄩󵄩
∇V
󸀠

𝑚
⋅ 𝑦
󵄩󵄩󵄩󵄩󵄩

2

2

− 8𝛾
−5
𝛾
󸀠
∫
Ω

𝑎 (V
𝑚
, V
󸀠

𝑚
) 𝑑𝑦

+ 𝜏
1
𝛾
−2
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
󸀠

𝑚
) 𝑑Γ

+𝜏
2
𝛾
−2
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
)𝑑Γ]
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≤ 𝐶
8
[
󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫
Ω

𝑎 (V
󸀠

𝑚
, V
󸀠

𝑚
) 𝑑𝑦 + ∫

Ω

𝑎 (V
𝑚
, V
󸀠

𝑚
) 𝑑𝑦

+ ∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
󸀠

𝑚
) 𝑑Γ

+ ∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
)𝑑Γ]

+ 𝜏
1
𝛾
−3 󵄨󵄨󵄨󵄨󵄨

𝛾
󸀠󵄨󵄨󵄨󵄨󵄨
∫
Γ
1

𝑘
2

1
(𝑡)

󵄨󵄨󵄨󵄨V0𝑚
󵄨󵄨󵄨󵄨

2

𝑑Γ

+ 𝜏
2
𝛾
−3 󵄨󵄨󵄨󵄨󵄨

𝛾
󸀠󵄨󵄨󵄨󵄨󵄨
∫
Γ
1

𝑘
2

2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V
0𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ + 𝐶
9
.

(65)

From (55) and our choice of V
0𝑚

and V
1𝑚

and integrating (65)
over (0, 𝑡) with 𝑡 ∈ (0, 𝑡

𝑚
), we obtain

󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝛾
−4
∫
Ω

𝑎 (V
󸀠

𝑚
, V
󸀠

𝑚
) 𝑑𝑦 − (𝛾

󸀠
𝛾
−1
)
2󵄩󵄩󵄩󵄩󵄩
∇V
󸀠

𝑚
⋅ 𝑦
󵄩󵄩󵄩󵄩󵄩

2

2

− 8𝛾
−5
𝛾
󸀠
∫
Ω

𝑎 (V
𝑚
, V
󸀠

𝑚
) 𝑑𝑦

+ 𝜏
1
𝛾
−2
∫
Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
󸀠

𝑚
) 𝑑Γ

+ 𝜏
2
𝛾
−2
∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
)𝑑Γ

≤ 2𝐶
8
∫

𝑡

0

[
󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚
(𝑠)
󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫
Ω

𝑎 (V
󸀠

𝑚
(𝑠) , V
󸀠

𝑚
(𝑠)) 𝑑𝑦

+ ∫
Ω

𝑎 (V
𝑚
(𝑠) , V
󸀠

𝑚
(𝑠)) 𝑑𝑦

+ ∫
Γ
1

(𝑘
1
(𝑠)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2

− (𝑘
󸀠

1
◻V
󸀠

𝑚
) (𝑠)) 𝑑Γ

+ ∫
Γ
1

(𝑘
2
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚
(𝑠)

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

−(𝑘
󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
) (𝑠))𝑑Γ] 𝑑𝑠

+ 𝐶
10
.

(66)

Using the same arguments as for (53), we get

(𝛾
󸀠
𝛾
−1
)
2󵄩󵄩󵄩󵄩󵄩
∇V
󸀠

𝑚
⋅ 𝑦
󵄩󵄩󵄩󵄩󵄩

2

2
<
𝛾
−4

2
∫
Ω

𝑎 (V
󸀠

𝑚
, V
󸀠

𝑚
) 𝑑𝑦, (67)

for all 𝑡 ≥ 0. Therefore, by Gronwall’s lemma, we obtain

󵄩󵄩󵄩󵄩󵄩
V
󸀠󸀠

𝑚

󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫
Ω

𝑎 (V
󸀠

𝑚
, V
󸀠

𝑚
) 𝑑𝑦 + ∫

Γ
1

(𝑘
1
(𝑡)

󵄨󵄨󵄨󵄨󵄨
V
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

1
◻V
󸀠

𝑚
) 𝑑Γ

+ ∫
Γ
1

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕V󸀠
𝑚

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕V󸀠
𝑚

𝜕]
)𝑑Γ ≤ 𝐶

11
,

(68)

where 𝐶
11

is a positive constant which is independent of 𝑚
and 𝑡.

According to (54) and (68), we get

{V
𝑚
} is bounded in 𝐿

∞
(0, 𝑇;𝐻

2

0
(Ω)) , (69)

{V
󸀠

𝑚
} is bounded in 𝐿

∞
(0, 𝑇;𝐻

2

0
(Ω)) , (70)

{V
󸀠󸀠

𝑚
} is bounded in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) . (71)

From (69) to (71), there exists a subsequence of {V
𝑚
},

which we still denote by {V
𝑚
}, such that

V
𝑚
󳨀→ V weak star in 𝐿

∞
(0, 𝑇;𝐻

2

0
(Ω)) , (72)

V
󸀠

𝑚
󳨀→ V
󸀠 weak star in 𝐿

∞
(0, 𝑇;𝐻

2

0
(Ω)) , (73)

V
󸀠󸀠

𝑚
󳨀→ V
󸀠󸀠 weak star in 𝐿

∞
(0, 𝑇; 𝐿

2
(Ω)) . (74)

Letting𝑚 → ∞ in (46) and using (72)–(74), we obtain

∫
Ω

𝑎 (V, 𝑤) 𝑑𝑦

= −𝛾
4
∫
Ω

V
󸀠󸀠
𝑤𝑑𝑦 − 𝛾

4
∫
Ω

𝐴 (𝑡) V𝑤𝑑𝑦

− 𝛾
4
∫
Ω

𝑐 (𝑦, 𝑡) ⋅ ∇V
󸀠
𝑤𝑑𝑦

− 𝛾
4
∫
Ω

𝑏 (𝑦, 𝑡) ⋅ ∇V𝑤𝑑𝑦

− 𝜏
1
𝛾
2
∫
Γ
1

{V
󸀠
+ 𝑘
1
(0) V − 𝑘

1
(𝑡) V
0
+ 𝑘
󸀠

1
∗ V}𝑤𝑑Γ

− 𝜏
2
𝛾
2
∫
Γ
1

{
𝜕V󸀠

𝜕]
+ 𝑘
2
(0)

𝜕V

𝜕]
− 𝑘
2
(𝑡)

𝜕V
0

𝜕]

+𝑘
󸀠

2
∗
𝜕V

𝜕]
}
𝜕𝑤

𝜕]
𝑑Γ

(75)

for any 𝑤 ∈ 𝐻
2

0
(Ω). From Lemma 3 we obtain that V ∈

𝐿
∞
(0, 𝑇; 𝐻

4
(Ω)). The uniqueness of solutions follows by

using standard arguments.

Theorem 5. Under the hypotheses of Theorem 4, let 𝑢
0

∈

𝐻
2

0
(Ω
0
) ∩ 𝐻

4
(Ω
0
), 𝑢
1
∈ 𝐻
2

0
(Ω
0
). Then there exists a unique

solution 𝑢 of the problem (4)–(8) satisfying

𝑢 ∈ 𝐿
∞
(0, ∞; 𝐻

2

0
(Ω
𝑡
) ∩ 𝐻

4
(Ω
𝑡
)) ,

𝑢
󸀠
∈ 𝐿
∞
(0,∞;𝐻

2

0
(Ω
𝑡
)) ,

𝑢
󸀠󸀠
∈ 𝐿
∞
(0,∞; 𝐿

2
(Ω
𝑡
)) .

(76)

Proof. This idea was used in [11, 13, 14, 16, 17]. To show
the existence in noncylindrical domains, we return to our
original problem in the noncylindrical domains by using the
change variable given in (14) by (𝑦, 𝑡) = 𝜏(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄.
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Let V be the solution obtained fromTheorem 4 and 𝑢 defined
by (16); then 𝑢 belongs to the class

𝑢 ∈ 𝐿
∞
(0,∞;𝐻

2

0
(Ω
𝑡
) ∩ 𝐻

4
(Ω
𝑡
)) ,

𝑢
󸀠
∈ 𝐿
∞
(0,∞;𝐻

2

0
(Ω
𝑡
)) ,

𝑢
󸀠󸀠
∈ 𝐿
∞
(0,∞; 𝐿

2
(Ω
𝑡
)) .

(77)

Denoting by

𝑢 (𝑥, 𝑡) = V (𝑦, 𝑡) = (V ∘ 𝜏) (𝑥, 𝑡) , (78)

then from (15) it is easy to see that 𝑢 satisfies (4)–(8) in the
sense of𝐿∞(0,∞; 𝐿

2
(Ω
𝑡
)). If𝑢

1
,𝑢
2
are two solutions obtained

through the diffeomorphism 𝜏 given by (14), then V
1
= V
2
, so

𝑢
1
= 𝑢
2
. Thus the proof of Theorem 5 is completed.

4. Exponential Decay

In this section, we show that the solution of system (4)–
(8) decays exponentially. First of all, we introduce the useful
lemma for a noncylindrical domain.

Lemma 6 (see [11, 12]). Let 𝐺(⋅, ⋅) be the smooth function
defined in Ω

𝑡
× [0,∞[. Then

𝑑

𝑑𝑡
∫
Ω
𝑡

𝐺 (𝑥, 𝑡) 𝑑𝑥 = ∫
Ω
𝑡

𝑑

𝑑𝑡
𝐺 (𝑥, 𝑡) 𝑑𝑥

+ 𝛾
󸀠
𝛾
−1
∫
Γ
𝑡

𝐺 (𝑥, 𝑡) (𝑥 ⋅ ]) 𝑑Γ,

(79)

where ] is the 𝑥-component of the unit normal exterior ].

By the same argument of (27) and (28), it can be written
as

B
2
𝑢 = 𝜏
1
{𝑢
󸀠
+ 𝑘
1
(0) 𝑢 − 𝑘

1
(𝑡) 𝑢
0
+ 𝑘
󸀠

1
∗ 𝑢} , (80)

B
1
𝑢 = −𝜏

2
{
𝜕𝑢
󸀠

𝜕]
+ 𝑘
2
(0)

𝜕𝑢

𝜕]
− 𝑘
2
(𝑡)

𝜕𝑢
0

𝜕]
+ 𝑘
󸀠

2
∗
𝜕𝑢

𝜕]
} .

(81)

We use (80) and (81) instead of the boundary conditions (6)
and (7).

We will use the following lemma.

Lemma 7 (see [4]). For every 𝑢 ∈ 𝐻4(Ω) and for every 𝜇 ∈ R,
one has

∫
Ω
𝑡

(𝑚 ⋅ ∇𝑢) Δ
2
𝑢 𝑑𝑥

= ∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥 +
1

2
∫
Γ
𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ

+ ∫
Γ
𝑡

[(B
2
𝑢) (𝑚 ⋅ ∇𝑢) − (B

1
𝑢)

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)] 𝑑Γ.

(82)

Now, we define the energy of problem (4)–(8) by

𝐸 (𝑡) =
1

2
[
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩

2

2,𝑡
+ ∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥

+ 𝜏
1
∫
Γ
1,𝑡

(𝑘
1
(𝑡) |𝑢|

2
− 𝑘
󸀠

1
◻𝑢) 𝑑Γ

+𝜏
2
∫
Γ
1,𝑡

(𝑘
2
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

− 𝑘
󸀠

2
◻
𝜕𝑢

𝜕]
)𝑑Γ] .

(83)

We observe that 𝐸(𝑡) is a positive function. Using Lemmas 6
and 1, we have

𝐸
󸀠
(𝑡) ≤

𝛾
󸀠
𝛾
−1

2
∫
Γ
1,𝑡

[
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

+ 𝑎 (𝑢, 𝑢)] (𝑥 ⋅ ]) 𝑑Γ

−
𝜏
1

2
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝜏
1

2
𝑘
2

1
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
1

2
𝑘
󸀠

1
(𝑡) ∫
Γ
1,𝑡

|𝑢|
2
𝑑Γ −

𝜏
1

2
∫
Γ
1,𝑡

𝑘
󸀠󸀠

1
◻𝑢𝑑Γ

−
𝜏
2

2
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
󸀠

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝜏
2

2
𝑘
2

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
0

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2

2
𝑘
󸀠

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ −
𝜏
2

2
∫
Γ
1,𝑡

𝑘
󸀠󸀠

2
◻
𝜕𝑢

𝜕]
𝑑Γ.

(84)

Let us consider the following functional:

𝜓 (𝑡) = ∫
Ω
𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠
𝑑𝑥. (85)

The following lemma plays an important role for the
construction of the Lyapunov functional.

Lemma 8. Let one suppose that the initial data (𝑢
0
, 𝑢
1
) ∈

(𝐻
4
(Ω
0
) ∩ 𝐻

2

0
(Ω
0
)) × 𝐻

2

0
(Ω
0
) and satisfies the compatibility

condition (41). Then the solution of system (4)–(8) satisfies

𝜓
󸀠
(𝑡) ≤

1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ])
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ − ∫
Ω
𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− ∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥 −
1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ

− ∫
Γ
1,𝑡

[(B
2
𝑢) (𝑚 ⋅ ∇𝑢) − (B

1
𝑢)

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)] 𝑑Γ

+ 𝛾
󸀠
𝛾
−1
∫
Γ
1,𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠
(𝑥 ⋅ ]) 𝑑Γ.

(86)
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Proof. Differentiating 𝜓 and using (4) and Lemmas 6 and 7,
we get

𝜓
󸀠
(𝑡) = ∫

Ω
𝑡

(𝑚 ⋅ ∇𝑢
󸀠
) 𝑢
󸀠
𝑑𝑥 + ∫

Ω
𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠󸀠
𝑑𝑥

+ 𝛾
󸀠
𝛾
−1
∫
Γ
1,𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠
(𝑥 ⋅ ]) 𝑑Γ

=
1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ])
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ − ∫
Ω
𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

− ∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥 −
1

2
∫
Γ
𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ

− ∫
Γ
𝑡

[(B
2
𝑢) (𝑚 ⋅ ∇𝑢) − (B

1
𝑢)

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)] 𝑑Γ

+ 𝛾
󸀠
𝛾
−1
∫
Γ
𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠
(𝑥 ⋅ ]) 𝑑Γ.

(87)

Let us next examine the integrals over Γ
0,𝑡

in (87). Since 𝑢 =

𝜕𝑢/𝜕] = 0 on Γ
0,𝑡
, we have

𝐵
1
𝑢 = 𝐵

2
𝑢 = ∇𝑢 = 0 on Γ

0,𝑡
,

𝑢
𝑥
1

=
𝜕𝑢

𝜕]
]
1
, 𝑢

𝑥
2

=
𝜕𝑢

𝜕]
]
2
,

(88)

and hence

∫
Γ
0,𝑡

(B
1
𝑢)

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢) 𝑑Γ = ∫

Γ
0,𝑡

Δ𝑢 (𝑚 ⋅ ])
𝜕
2
𝑢

𝜕]2
𝑑Γ

= ∫
Γ
0,𝑡

(𝑚 ⋅ ]) |Δ𝑢|
2
𝑑Γ,

(89)

∫
Γ
0,𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ = ∫
Γ
0,𝑡

(𝑚 ⋅ ]) |Δ𝑢|
2
𝑑Γ. (90)

Therefore, from (87)–(90) we have

𝜓
󸀠
(𝑡) =

1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ])
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ − ∫
Ω
𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 − ∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥

+
1

2
∫
Γ
0,𝑡

(𝑚 ⋅ ]) |Δ𝑢|
2
𝑑Γ

−
1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ − ∫
Γ
1,𝑡

(B
2
𝑢) (𝑚 ⋅ ∇𝑢) 𝑑Γ

+ ∫
Γ
1,𝑡

(B
1
𝑢)

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢) 𝑑Γ

+ 𝛾
󸀠
𝛾
−1
∫
Γ
1,𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠
(𝑥 ⋅ ]) 𝑑Γ.

(91)

Noting that 𝑚 ⋅ ] ≤ 0 on Γ
0,𝑡

follows from (91), we have the
conclusion of the lemma.

Let us introduce the Lyapunov functional

L (𝑡) = 𝑁𝐸 (𝑡) + 𝜓 (𝑡) , (92)

with 𝑁 > 0. Using Young’s inequality and choosing 𝑁 > 0

sufficiently large, we see that

𝑞
0
𝐸 (𝑡) ≤ L (𝑡) ≤ 𝑞

1
𝐸 (𝑡) (93)

for 𝑞
0
and 𝑞
1
are positive constants.Wewill show later that the

functionalL satisfies the inequality of the following result.

Lemma 9 (see [7]). Let 𝑓 be a real positive function of class
𝐶
1. If there exist positive constants 𝑝

0
, 𝑝
1
, and 𝑝

2
such that

𝑓
󸀠
(𝑡) ≤ −𝑝

0
𝑓 (𝑡) + 𝑝

1
𝑒
−𝑝
2
𝑡 (94)

then there exist positive constants 𝑝 and 𝑐 such that

𝑓 (𝑡) ≤ (𝑓 (0) + 𝑐) 𝑒
−𝑝𝑡

. (95)

Finally, we will show the main result of this section.

Theorem 10. Assume that there exist positive constants 𝛽
1
and

𝛽
2
such that

𝑘
𝑖
(0) > 0, 𝑘

󸀠

𝑖
(𝑡) ≤ −𝛽

1
𝑘
𝑖
(𝑡) ,

𝑘
󸀠󸀠

𝑖
(𝑡) ≥ −𝛽

2
𝑘
󸀠

𝑖
(𝑡) , 𝑖 = 1, 2.

(96)

If (𝑢
0
, 𝑢
1
) ∈ 𝐻

2

0
(Ω
0
)×𝐿
2
(Ω
0
) then there exist constants 𝜔, 𝐶 >

0 such that

𝐸 (𝑡) ≤ 𝐶𝐸 (0) 𝑒
−𝜔𝑡

, ∀𝑡 ≥ 0. (97)

Proof. From (84) and Lemma 8 we have

L
󸀠
(𝑡) ≤

𝛾
󸀠
𝛾
−1
𝑁

2
∫
Γ
1,𝑡

[
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

+ 𝑎 (𝑢, 𝑢)] (𝑥 ⋅ ]) 𝑑Γ

−
𝜏
1
𝑁

2
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝜏
1
𝑁

2
𝑘
2

1
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
1
𝑁

2
𝑘
󸀠

1
(𝑡) ∫
Γ
1,𝑡

|𝑢|
2
𝑑Γ −

𝜏
1
𝑁

2
∫
Γ
1,𝑡

𝑘
󸀠󸀠

1
◻𝑢𝑑Γ

−
𝜏
2
𝑁

2
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
󸀠

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2
𝑁

2
𝑘
2

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
0

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2
𝑁

2
𝑘
󸀠

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

−
𝜏
2
𝑁

2
∫
Γ
1,𝑡

𝑘
󸀠󸀠

2
◻
𝜕𝑢

𝜕]
𝑑Γ

+
1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ])
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ
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− ∫
Ω
𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 − ∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥

−
1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ

− ∫
Γ
1,𝑡

[(B
2
𝑢) (𝑚 ⋅ ∇𝑢) − (B

1
𝑢)

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)] 𝑑Γ

+ 𝛾
󸀠
𝛾
−1
∫
Γ
1,𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠
(𝑥 ⋅ ]) 𝑑Γ.

(98)

Since the boundary conditions (80) and (81) can be written as

B
2
𝑢 = 𝜏
1
{𝑢
󸀠
+ 𝑘
1
(𝑡) 𝑢 − 𝑘

1
(𝑡) 𝑢
0
− 𝑘
󸀠

1
∘ 𝑢} ,

B
1
𝑢 = −𝜏

2
{
𝜕𝑢
󸀠

𝜕]
+ 𝑘
2
(𝑡)

𝜕𝑢

𝜕]
− 𝑘
2
(𝑡)

𝜕𝑢
0

𝜕]
− 𝑘
󸀠

2
∘
𝜕𝑢

𝜕]
} ,

(99)

by using Young’s inequality we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

− ∫
Γ
1,𝑡

(B
2
𝑢) (𝑚 ⋅ ∇𝑢) 𝑑Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜏
1

2𝜖
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
1

2𝜖
𝑘
2

1
(𝑡) ∫
Γ
1,𝑡

|𝑢|
2
𝑑Γ

+
𝜏
1

2𝜖
𝑘
2

1
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
1

2𝜖
∫
Γ
1,𝑡

𝑘
1
(0)

󵄨󵄨󵄨󵄨󵄨
𝑘
󸀠

1

󵄨󵄨󵄨󵄨󵄨
◻𝑢 𝑑Γ

+
𝜖

2
∫
Γ
1,𝑡

|𝑚 ⋅ ∇𝑢|
2
𝑑Γ,

(100)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
Γ
1,𝑡

(B
1
𝑢)

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢) 𝑑Γ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜏
2

2𝜖
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
󸀠

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2

2𝜖
𝑘
2

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2

2𝜖
𝑘
2

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
0

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2

2𝜖
∫
Γ
1,𝑡

𝑘
2
(0)

󵄨󵄨󵄨󵄨󵄨
𝑘
󸀠

2

󵄨󵄨󵄨󵄨󵄨
◻
𝜕𝑢

𝜕]
𝑑Γ

+
𝜖

2
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ,

(101)

where 𝜖 is a positive constant. Since the bilinear form 𝑎(𝑢, 𝑢) is
strictly coercive, using the trace theory and the fact𝑚⋅ ] ≥ 𝛿

0

on Γ
1,𝑡
, we get

∫
Γ
1,𝑡

|𝑚 ⋅ ∇𝑢|
2
𝑑Γ + ∫

Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕]
(𝑚 ⋅ ∇𝑢)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

≤ 𝜆
0
∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥 +
𝜆
0

𝛿
0

∫
Γ
1,𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ,

(102)

where 𝜆
0
is a constant depending on Ω and 𝜇. Substituting

inequalities (100)–(102) into (98) we have

L
󸀠
(𝑡) ≤

𝛾
󸀠
𝛾
−1
𝑁

2
∫
Γ
1,𝑡

[
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

+ 𝑎 (𝑢, 𝑢)] (𝑥 ⋅ ]) 𝑑Γ

−
𝜏
1
𝑁

2
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝜏
1
𝑁

2
𝑘
2

1
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑Γ

−
𝜏
1
𝛽
1
𝑁

2
𝑘
1
(𝑡) ∫
Γ
1,𝑡

|𝑢|
2
𝑑Γ +

𝜏
1
𝛽
2
𝑁

2
∫
Γ
1,𝑡

𝑘
󸀠

1
◻𝑢𝑑Γ

−
𝜏
2
𝑁

2
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
󸀠

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2
𝑁

2
𝑘
2

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
0

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

−
𝜏
2
𝛽
1
𝑁

2
𝑘
2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2
𝛽
2
𝑁

2
∫
Γ
1,𝑡

𝑘
󸀠

2
◻
𝜕𝑢

𝜕]
𝑑Γ

− ∫
Ω
𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 − (1 −
𝜖𝜆
0

2
)∫
Ω
𝑡

𝑎 (𝑢, 𝑢) 𝑑𝑥

− (
1

2
−
𝜖𝜆
0

2𝛿
0

)∫
Γ
1,𝑡

(𝑚 ⋅ ]) 𝑎 (𝑢, 𝑢) 𝑑Γ

+
1

2
∫
Γ
1,𝑡

(𝑚 ⋅ ])
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝜏
1

2𝜖
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
1

2𝜖
𝑘
2

1
(𝑡) ∫
Γ
1,𝑡

|𝑢|
2
𝑑Γ +

𝜏
1

2𝜖
𝑘
2

1
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨𝑢0
󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
1

2𝜖
∫
Γ
1,𝑡

𝑘
1
(0)

󵄨󵄨󵄨󵄨󵄨
𝑘
󸀠

1

󵄨󵄨󵄨󵄨󵄨
◻𝑢𝑑Γ +

𝜏
2

2𝜖
∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
󸀠

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2

2𝜖
𝑘
2

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ +
𝜏
2

2𝜖
𝑘
2

2
(𝑡) ∫
Γ
1,𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
0

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑Γ

+
𝜏
2

2𝜖
∫
Γ
1,𝑡

𝑘
2
(0)

󵄨󵄨󵄨󵄨󵄨
𝑘
󸀠

2

󵄨󵄨󵄨󵄨󵄨
◻
𝜕𝑢

𝜕]
𝑑Γ

+ 𝛾
󸀠
𝛾
−1
∫
Γ
1,𝑡

(𝑚 ⋅ ∇𝑢) 𝑢
󸀠
(𝑥 ⋅ ]) 𝑑Γ.

(103)



12 Abstract and Applied Analysis

First, choose 𝜖 > 0 sufficiently small such that

1 −
𝜖𝜆
0

2
> 0,

1

2
−
𝜖𝜆
0

2𝛿
0

> 0. (104)

Then, choosing𝑁 large enough, we have

L
󸀠
(𝑡) ≤ −𝑐

2
𝐸 (𝑡) + 𝑐

3
𝐾
2
(𝑡) 𝐸 (0) , (105)

where 𝑐
2
, 𝑐
3
> 0 and𝐾(𝑡) = 𝑘

1
(𝑡) +𝑘

2
(𝑡). From (93), (96), and

(105), we obtain

L
󸀠
(𝑡) ≤ −

𝑐
2

𝑞
1

L (𝑡) + 𝑐
4
𝑐
3
𝐸 (0) 𝑒

−2𝛽
1
𝑡 for some 𝑐

4
> 0.

(106)

By Lemma 9, there exist positive constants 𝑐
5
and 𝑐
6
such that

L (𝑡) ≤ (L (0) + 𝑐
5
𝐸 (0)) 𝑒

−𝑐
6
𝑡
, ∀𝑡 ≥ 0. (107)

Using (93), we conclude that

𝐸 (𝑡) ≤ 𝐶𝐸 (0) 𝑒
−𝜔𝑡

, ∀𝑡 ≥ 0 (108)

for some positive constants 𝐶 and 𝜔.
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Our aim is to present a combined Exp-function ansatzmethod.Thismethod replaces the traditional assumptions ofmultisolitons by
a combination of the hyperbolic functions and triangle functions in Hirota bilinear forms of nonlinear evolution equation. Using
this method, we can obtain many new type analytical solutions of various nonlinear evolution equations including multisoliton
solutions as well as breath-like solitons solutions. These solutions will exhibit interesting dynamic diversity.

1. Introduction

Up to now, many kinds of integrable nonlinear partial
differential equations have been discovered, such as nonlinear
Schrodinger equation, KdV equation, Sine-Gordon equation,
KP, BKP, coupled KP, and Toda lattice and Toda molecule
equations. All of these equations can be transformed into
bilinear forms by some special transformations including
rational transformation, logarithmic transformation, and
bilogarithmic transformation [1]. Once we get the bilinear
forms of these equations, one can construct directly their
𝑁-soliton solutions following Hirota’s basic assumptions. In
addition, bilinear forms can be utilized to construct the other
kinds of solutions. Lou [2–6] has constructed many localized
structures by a variable separation method, and the author
of [1] has obtained determinants and pfaffians solutions
using the bilinear forms. Recently, Dai et al. [7] proposed
the three-wave method for nonlinear evolution equations
(NEE). Meanwhile, some fractional differential equations
and local fractional equations are studied extensively using
different methods [8–10]. Analytical solutions for nonlinear
partial differential equations are discussed systematically in
[11]. Motivated by the above considerations, we investigate
another ansatz and present “combined Exp-function ansatz
method” as follows.

Consider a (2 + 1)-dimensional nonlinear evolution
equation of the general form

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑦
, . . .) = 0, (1)

where 𝐹 is a polynomial of 𝑢(𝑥, 𝑦, 𝑡) and its derivatives.
With the help of rational transformation, logarithmic trans-
formation, and bilogarithmic transformation, for a KdV-type
bilinear equation, it has just one dependent variable 𝑓. We
next consider a bilinear equation of the form

𝐺(𝐷
𝑡
, 𝐷
𝑥
, 𝐷
𝑦
, . . .) 𝑓 ⋅ 𝑓 = 0, (2)

where 𝐺 is a general polynomial in 𝐷
𝑡
,𝐷
𝑥
,𝐷
𝑦
, where the 𝐷-

operator is defined by
𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝐹 (𝑥, 𝑦, 𝑡)⋅𝐺 (𝑥, 𝑦, 𝑡)

= (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑥󸀠
)

𝑚

(
𝜕

𝜕𝑡
−

𝜕

𝜕𝑡󸀠
)

𝑛

× 𝐹 (𝑥, 𝑦, 𝑡) 𝐺 (𝑥
󸀠
, 𝑦
󸀠
, 𝑡
󸀠
)
󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑦󸀠=𝑦,𝑡󸀠=𝑡

.

(3)

Traditionally, one obtains 𝑁-soliton solutions with the
assumption

𝑓 = ∑

𝜇=0,1

exp(

𝑁

∑

𝑖>𝑗

𝐴
𝑖𝑗
𝜇
𝑖
𝜇
𝑗
+

𝑛

∑

𝑖=1

𝜇
𝑖
𝜉
𝑖
) . (4)
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Here, instead of the above assumption, the function 𝑓 is
assumed in terms of cosh functions and cos functions

𝑓 =

𝑚

∑

𝑖=1

𝑎
𝑖
(exp (𝜉

𝑖
) + exp (−𝜉

𝑖
))

+

𝑛

∑

𝑗=1

𝑏
𝑖
(exp (𝑖𝜉

𝑗
) + exp (−𝑖𝜉

𝑗
)) ,

(5)

or equivalently

𝑓 = 2

𝑚

∑

𝑖=1

𝑎
𝑖
cosh (𝜉

𝑖
) + 2

𝑚

∑

𝑗=1

𝑏
𝑖
cos (𝜂

𝑗
) , (6)

where 𝜉
𝑖

= 𝑘
𝑖
𝑥 + 𝑙

𝑖
𝑦 + 𝑐

𝑖
𝑡 and 𝜂

𝑖
= 𝑑
𝑖
𝑥 + 𝑒

𝑖
𝑦 + 𝑓

𝑖
𝑡.

In (5), it is seen that real and complex variables coexist in
Exp-function; hence, this method is called combined Exp-
function ansatzmethod. To derive analytic expression,we can
take the following procedure in detail: inserting (5) into (2),
then equating the coefficients of the same kind terms to zero,
and subsequently solving the resulting algebraic equations to
determine the relationship between variables 𝑘

𝑖
, 𝑙
𝑖
. . . with

the help of symbolic computation software such as Maple.
In (5), cosh functions are responsible for energy localization,
but cosine functions take into account periodic effect in real
physical background. If cosh functions and cosine functions
coexist, the intensity of periodic effect depends on the scale
distance between the coefficients 𝑎

𝑖
and 𝑏

𝑗
. When all of

the coefficients of cosine functions 𝑏
𝑗
are equal to zero, (5)

corresponds to multisoliton of (1).

2. Application to (2 + 1)-Dimensional
NLEE Equation

In this section, firstly, we study the (2 + 1)-dimensional
nonlinear evolution equation

𝑢
𝑥𝑥𝑥𝑦

+ 3𝑢
𝑦
𝑢
𝑥𝑥

+ 3𝑢
𝑥
𝑢
𝑥𝑦

+ 2𝑢
𝑦𝑡

= 0. (7)

In [12], Bekir has studied its Painlevé property. By the
independent variable transformation 𝑢 = 2(ln𝜑)

𝑥𝑥
, (7) is

reduced to Hirota bilinear form

(𝐷
𝑦
𝐷
𝑡
+ 𝐷
3

𝑥
𝐷
𝑦
) 𝜑 ⋅ 𝜑 = 0. (8)

Firstly, we obtain𝑁-solitonwith the aid of Hirotamethod. To
get one-soliton solution, we assume that

𝜙 = 1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡
. (9)

Inserting (9) into (8), then one-soliton solution can be
derived as

𝑢 (𝑥, 𝑡) =
2𝑘
1
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−𝑘
3

1
𝑡

1 + 𝑒𝑘1𝑥+𝑙1𝑦−𝑘
3

1
𝑡
. (10)

For the two-soliton solutions, substituting

𝜙 = 1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡
+ 𝑒
𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡
+ 𝑎
12
𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡+𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡

(11)

into (8) and solving for the phase shift 𝑎
12
, one can find

the two-soliton solutions explicitly. The higher level soliton
solutions can be obtained in a parallel manner. Next, we
will show how the combined Exp-function ansatz method is
used to construct new exact solution of nonlinear evolution
equation. In fact, the basic procedure is similar to 𝑁-soliton
procedure. For simplification, we only present the case for the
parameters 𝑚 = 2 and 𝑛 = 1 in (5) to explain our method.
That is, we assume in the following form that

𝜑 = cosh (𝑘
1
𝑥 + 𝑙
1
𝑦 + 𝑐
1
𝑡) + cos (𝑘

2
𝑥 + 𝑙
2
𝑦 + 𝑐
2
𝑡)

+ 𝑎
3
cosh (𝑘

3
𝑥 + 𝑙
3
𝑦 + 𝑐
3
𝑡) .

(12)

Substituting (12) into (8), we have

𝑐
1
= −𝑘
3

3
(−1 + 3𝑙

2

3
− 6𝑙
2

3
𝑎
2

3
+ 3𝑙
4

3
𝑎
2

3
) ,

𝑐
2
= 𝑘
3

3
𝑙
3
(1 − 𝑎

2

3
) (𝑙
2

3
− 2𝑙
2

3
𝑎
2

3
+ 𝑎
4

3
𝑙
2

3
− 3) ,

𝑐
3
= 𝑘
3

3
(−1 + 3𝑙

2

3
− 6𝑙
2

3
𝑎
2

3
+ 3𝑎
4

3
𝑙
2

3
) ,

𝑘
1
= −𝑘
3
, 𝑘

2
= 𝑙
3
𝑘
3
(1 − 𝑎

2

3
) ,

𝑙
2
= 1, 𝑙

1
= 𝑙
3
,

(13)

where 𝑙
3
, 𝑎
3
, and 𝑘

3
are free parameters. This case leads to a

breath-kink solitary solution

𝑢 (𝑥, 𝑡) = (2 (𝑘
1
sin (𝑘
1
𝑥 + 𝑙
1
𝑦 + 𝑐
1
𝑡)

− 𝑘
2
sin (𝑘
2
𝑥 + 𝑙
2
𝑦 + 𝑐
2
𝑡)

+ 𝑎
3
𝑘
3
sin (𝑘
3
𝑥 + 𝑙
3
𝑦 + 𝑐
3
𝑡)))

× ( cosh (𝑘
1
𝑥 + 𝑙
1
𝑦 + 𝑐
1
𝑡) + cos (𝑘

2
𝑥 + 𝑙
2
𝑦 + 𝑐
2
𝑡)

+ 𝑎
3
cosh (𝑘

3
𝑥 + 𝑙
3
𝑦 + 𝑐
3
𝑡))
−1

.

(14)

The dynamics of this family of solutions will breathe period-
ically in the process of propagation of the soliton resulting
from cosine function. In order to explain the university of
our method, next, we continue to consider the (2 + 1)-
dimensional AKNS equation

4𝑢
𝑥𝑡

+ 𝑢
𝑥𝑥𝑥𝑦

+ 8𝑢
𝑥
𝑢
𝑥𝑦

+ 4𝑢
𝑦
𝑢
𝑥𝑥

= 0. (15)

Taking the transformation 𝑢 = (ln𝜑)
𝑥
, (15) leads to

multibilinear form

(4𝐷
𝑥
𝐷
𝑡
+ 𝐷
3

𝑥
𝐷
𝑦
) 𝜑 ⋅ 𝜑 = 0,

𝐷
𝑥
(ln𝑓)

𝑥𝑥
⋅ (ln𝑓)

𝑥𝑦
= 0.

(16)

According to the one-soliton assumption, the one-soliton
solution of (2 + 1)-dimensional AKNS equation is derived as

𝑢 (𝑥, 𝑡) =
𝑘
1
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡

1 + 𝑒𝑘1𝑥+𝑙1𝑦−(1/4)𝑙1𝑘1
2
𝑡
. (17)
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For the two-soliton solutions which can be obtained follow-
ing the assumption in (16)

𝜑 = 1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡
+ 𝑒
𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡
+ 𝑎
12
𝑒
𝑘
1
𝑥+𝑙
1
𝑦+𝑐
1
𝑡+𝑘
2
𝑥+𝑙
2
𝑦+𝑐
2
𝑡
,

(18)

we have

𝑎
12

=

(𝑘
1
− 𝑘
2
) (𝑙
2
𝑘
2

1
+ 2𝑙
1
𝑘
1
𝑘
2
− 2𝑙
2
𝑘
1
𝑘
2
− 𝑙
1
𝑘
2

2
)

(𝑘
1
+ 𝑘
2
) (𝑙
2
𝑘
2

1
+ 2𝑙
1
𝑘
1
𝑘
2
+ 2𝑙
2
𝑘
1
𝑘
2
+ 𝑙
1
𝑘
2

2
)
. (19)

In addition,

𝑙
1
𝑘
2
− 𝑙
2
𝑘
1
= 0. (20)

Thus, we found the two-soliton solutions explicitly

𝑢 (𝑥, 𝑡) = (𝑘
1
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡
+ 𝑘
2
𝑒
𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡

+𝑎
12

(𝑘
1
+ 𝑘
2
) 𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡+𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡
)

× (1 + 𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡
+ 𝑒
𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡

+𝑎
12
𝑒
𝑘
1
𝑥+𝑙
1
𝑦−(1/4)𝑙

1
𝑘
1

2
𝑡+𝑘
2
𝑥+𝑙
2
𝑦−(1/4)𝑙

2
𝑘
2

2
𝑡
)

−1

.

(21)

Similarly, the higher order soliton solutions can be examined
in a parallel manner. Finally, following the procedure of
combined Exp-function ansatz method, the two periodic
solutions of AKNS equation can be obtained by setting𝑚 = 2

and 𝑛 = 1in (5) in the following form:

𝜑 = cos (𝑘𝑥 + 𝑙𝑦 + (2𝑘
2
𝑙 − 𝑐) 𝑡) + cos (𝑘𝑥 + 𝑙𝑦 + 𝑐𝑡) , (22)

where 𝑙 and 𝑘 are free parameters. This case leads to a family
of double periodic solutions as

𝑢 (𝑥, 𝑡) = (−𝑘 sin (𝑘𝑥 + 𝑙𝑦 + (2𝑘
2
𝑙 − 𝑐) 𝑡)

+𝑘 sin (𝑘𝑥 + 𝑙𝑦 + 𝑐𝑡) )

× (cos (𝑘𝑥 + 𝑙𝑦 + (2𝑘
2
𝑙 − 𝑐) 𝑡)

+ cos (𝑘𝑥 + 𝑙𝑦 + 𝑐𝑡) )
−1

.

(23)

The above solutions are given out for the first time in the
literature.

3. Conclusions

Generally, 𝑁-soliton solution can be constructed after one
obtains multilinear form of nonlinear evolution equations
according to Hirota method. In this paper, we proposed
a different ansatz method which is composed of complex
and real exponential functions. This method allows us to
construct multiple kinds of solutions, such as N-soliton
solutions and breath-type solitary solutions. By taking two
(2 + 1)-dimensional nonlinear evolution equations as exam-
ples, it is shown that this method is effective and direct
for constructing new exact solutions of nonlinear integrable
partial differential equations.

Acknowledgments

The work was supported by the Chinese Natural Science
Foundation Grant no. 11061028, Yunnan NSF Grant no.
2010CD086, and Qujin Normal University NSF Grant no.
2010QN018.

References

[1] R. Hirota, The Direct Method in Soliton Theory, vol. 155 of
Cambridge Tracts in Mathematics, Cambridge University Press,
Cambridge, UK, 2004.

[2] S.-Y. Lou, “Searching for higher-dimensional integrable models
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The local fractional variational iteration method for local fractional Laplace equation is investigated in this paper. The operators
are described in the sense of local fractional operators. The obtained results reveal that the method is very effective.

1. Introduction

As it is known, the partial differential equations [1, 2] and
fractional differential equations [3–5] appear in many areas
of science and engineering. As a result, various kinds of
analytical methods and numerical methods were developed
[6–8]. For example, the variational iteration method [9–
15] was applied to solve differential equations [16–18], inte-
gral equations [19], and numerous applications to differ-
ent nonlinear equations in physics and engineering. Also,
the fractional variational iteration method [20–23] and
the fractional complex transform [24–27] were discussed
recently. The efficient techniques have successfully addressed
a wide class of nonlinear problems for differential equa-
tions; see [28–36] and the references therein. We notice
that the developed methods are very convenient, efficient,
and accurate.

Recently, the local fractional variational iterationmethod
[37] is derived from local fractional operators [38–48]. The
method, which accurately computes the solutions in a local
fractional series form or in an exact form, presents interest

to applied sciences for problems where the other methods
cannot be applied properly.

In this paper, we investigate the application of local
fractional variational iteration method for solving the local
fractional Laplace equations [49] with the different fractal
conditions.

This paper is organized as follows.
In Section 2, the basic mathematical tools are reviewed.

Section 3 presents briefly the local fractional variational
iteration method based on local fractional variational for
fractal Lagrange multipliers. Section 4 presents solutions to
the local fractional Laplace equations with differential fractal
conditions.

2. Mathematical Fundamentals

In this section, we present few mathematical fundamentals
of local fractional calculus and introduce the basic
notions of local fractional continuity, local fractional
derivative, and local fractional integral of nondifferential
functions.
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2.1. Local Fractional Continuity

Lemma 1 (see [42]). Let 𝐹 be a subset of the real line and a
fractal. If 𝑓 : (𝐹, 𝑑) → (Ω

󸀠
, 𝑑
󸀠
) is a bi-Lipschitz mapping, then

there is, for constants 𝜌, 𝜏 > 0 and 𝐹 ⊂ 𝑅,

𝜌
𝑠
𝐻
𝑠

(𝐹) ≤ 𝐻
𝑠

(𝑓 (𝐹)) ≤ 𝜏
𝑠
𝐻
𝑠

(𝐹) (1)

such that for all 𝑥
1
, 𝑥
2

∈ 𝐹,

𝜌
𝛼󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨

𝛼

≤
󵄨󵄨󵄨󵄨𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝜏
𝛼󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨

𝛼

. (2)

As a direct result of Lemma 1, one has [42]
󵄨󵄨󵄨󵄨𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝜏
𝛼󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨

𝛼 (3)

such that
󵄨󵄨󵄨󵄨𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)
󵄨󵄨󵄨󵄨 < 𝜀
𝛼

, (4)

where 𝛼 is fractal dimension of 𝐹.
Suppose that there is [38–43]

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥
0
)
󵄨󵄨󵄨󵄨 < 𝜀
𝛼 (5)

with |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, then 𝑓(𝑥) is called

local fractional continuous at 𝑥 = 𝑥
0
and it is denoted by

lim
𝑥→𝑥

0

𝑓 (𝑥) = 𝑓 (𝑥
0
) . (6)

Suppose that the function 𝑓(𝑥) is satisfied the condition (5)
for𝑥 ∈ (𝑎, 𝑏), and hence it is called a local fractional continuous
on the interval (𝑎, 𝑏), denoted by

𝑓 (𝑥) ∈ 𝐶
𝛼

(𝑎, 𝑏) . (7)

2.2. Local Fractional Derivatives and Integrals. Suppose that
𝑓(𝑥) ∈ 𝐶

𝛼
(𝑎, 𝑏), then the local fractional derivative of 𝑓(𝑥)

of order 𝛼 at 𝑥 = 𝑥
0
is given by [37–43]

𝐷
𝑥

(𝛼)
𝑓 (𝑥
0
) = 𝑓
(𝛼)

(𝑥
0
) =

𝑑
𝛼

𝑓 (𝑥)

𝑑𝑥𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥
0

= lim
𝑥→𝑥

0

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

,

(8)

where Δ
𝛼

(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

There is [38–40]

𝑓 (𝑥) ∈ 𝐷
𝑥

(𝛼)
(𝑎, 𝑏) (9)

if

𝑓
(𝛼)

(𝑥) = 𝐷
𝑥

(𝛼)
𝑓 (𝑥) (10)

for any 𝑥 ∈ (𝑎, 𝑏).
Local fractional derivative of high order is written in the

form [38–40]

𝑓
(𝑘𝛼)

(𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐷
𝑥

(𝛼)
⋅ ⋅ ⋅ 𝐷
𝑥

(𝛼)
𝑓 (𝑥) ,

(11)

and local fractional partial derivative of high order is [38–40]

𝜕
𝑘𝛼

𝜕𝑥𝑘𝛼
𝑓 (𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕
𝛼

𝜕𝑥𝛼
⋅ ⋅ ⋅

𝜕
𝛼

𝜕𝑥𝛼
𝑓 (𝑥) .

(12)

Let a function 𝑓(𝑥) satisfy the condition (7). Local
fractional integral of 𝑓(𝑥) of order 𝛼 in the interval [𝑎, 𝑏] is
given by [37–43]

𝑎𝐼𝑏
(𝛼)

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(13)

where Δ𝑡
𝑗

= 𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .}, and

[𝑡
𝑗
, 𝑡
𝑗+1

], 𝑗 = 0, . . . , 𝑁 − 1, 𝑡
0

= 𝑎, 𝑡
𝑁

= 𝑏, is a partition
of the interval [𝑎, 𝑏]. For other definition of local fractional
derivative, see [44–48].

There exists [38–40]

𝑓 (𝑥) ∈ 𝐼
𝑥

(𝛼)
(𝑎, 𝑏) (14)

if

𝑓
(𝛼)

(𝑥) =
𝑎𝐼𝑥
(𝛼)

𝑓 (𝑥) (15)

for any 𝑥 ∈ (𝑎, 𝑏).
Local fractionalmultiple integrals of𝑓(𝑥) is written in the

form [40]

𝑥
0
𝐼
𝑥

(𝑘𝛼)
𝑓 (𝑥) =

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑥
0
𝐼
𝑥

(𝛼)
⋅ ⋅ ⋅
𝑥
0
𝐼
𝑥

(𝛼)
𝑓 (𝑥)

(16)

if (7) is valid for 𝑥 ∈ (𝑎, 𝑏).

3. Local Fractional Variational
Iteration Method

In this section, we introduce the local fractional variational
iterationmethod derived from the local fractional variational
approach for fractal Lagrange multipliers [40].

Let us consider the local fractional variational approach
in the one-dimensional case through the following local
fractional functional, which reads [40]

𝐼 (𝑦) =
𝑎𝐼𝑏
(𝛼)

𝑓 (𝑥, 𝑦 (𝑥) , 𝑦
(𝛼)

(𝑥)) , (17)

where 𝑦
(𝛼)

(𝑥) is taken in local fractional differential operator
and 𝑎 ≤ 𝑥 ≤ 𝑏.

The local fractional variational derivative is given by [40]

𝛿
𝛼

𝐼 =
𝑎𝐼𝑏
(𝛼)

{(
𝜕𝑓

𝜕𝑦
−

𝑑
𝛼

𝑑𝑥𝛼
(

𝜕𝑓

𝜕𝑦(𝛼)
)) 𝜂 (𝑥)} , (18)

where 𝛿
𝛼 is local fractional variation signal and 𝜂(𝑎) = 𝜂(𝑏) =

0.
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The nonlinear local fractional equation reads as

𝐿
𝛼

𝑢 + 𝑁
𝛼

𝑢 = 0, (19)

where 𝐿
𝛼
and 𝑁

𝛼
are linear and nonlinear local fractional

operators, respectively.
Local fractional variational iteration algorithm can be

written as [37]

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛

(𝑡) +
𝑡
0
𝐼
𝑡

(𝛼)
{𝜉
𝛼

[𝐿
𝛼

𝑢
𝑛

(𝑠) + 𝑁
𝛼

𝑢
𝑛

(𝑠)]} . (20)

Here, we can construct a correction functional as follows [37]:

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛

(𝑡) +
𝑡
0
𝐼
𝑡

(𝛼)
{𝜉
𝛼

[𝐿
𝛼

𝑢
𝑛

(𝑠) + 𝑁
𝛼

𝑢̃
𝑛

(𝑠)]} , (21)

where 𝑢̃
𝑛
is considered as a restricted local fractional varia-

tion and 𝜉
𝛼 is a fractal Lagrange multiplier; that is, 𝛿

𝛼
𝑢̃
𝑛

= 0

[37, 40].
Having determined the fractal Lagrangian multipliers,

the successive approximations 𝑢
𝑛+1

, 𝑛 ≥ 0, of the solution
𝑢 will be readily obtained upon using any selective fractal
function 𝑢

0
. Consequently, we have the solution

𝑢 = lim
𝑛→∞

𝑢
𝑛
. (22)

Here, this technology is called the local fractional variational
method [37]. We notice that the classical variation is recov-
ered in case of local fractional variation when the fractal
dimension is equal to 1. Besides, the convergence of local
fractional variational process and its algorithms were taken
into account [37].

4. Solutions to Local Fractional Laplace
Equation in Fractal Timespace

The local fractional Laplace equation (see [38–40] and the
references therein) is one of the important differential equa-
tions with local fractional derivatives. In the following, we
consider solutions to local fractional Laplace equations in
fractal timespace.

Case 1. Let us start with local fractional Laplace equation
given by

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑡2𝛼
+

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 0 (23)

and subject to the fractal value conditions

𝜕
𝛼

𝜕𝑡𝛼
𝑇 (𝑥, 0) = 0, 𝑇 (𝑥, 0) = −𝐸

𝛼
(𝑥
𝛼

) . (24)

A corrected local fractional functional for (24) reads as

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛

(𝑥, 𝑡)

+
0𝐼𝑡
(𝛼)

{
𝜆
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝑥2𝛼
)} .

(25)

Taking into account the properties of the local fractional
derivative, we obtain

𝛿
𝛼

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡)

+ 𝛿
𝛼

0𝐼𝑡
(𝛼)

{
𝜆
𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝑥2𝛼
)} .

(26)

Hence, from (25)-(26) we get

𝛿
𝛼

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡) +
𝜆
𝛼

Γ (1 + 𝛼)
𝛿
𝛼

𝑢
𝑛

(𝛼)
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝑡

− [
𝜆
𝛼

Γ (1 + 𝛼)
]

(𝛼)

𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝑡

− (𝛿
𝛼

𝑢
𝑛

(𝑥, 𝜏))
0𝐼𝑡
(𝛼)

(
𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)

= 𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡) +
𝜆
𝛼

Γ (1 + 𝛼)
𝛿
𝛼

𝑢
𝑛

(𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝑡

− (
𝜆
𝛼

Γ (1 + 𝛼)
)

(𝛼)

𝛿
𝛼

𝑢
𝑛

(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝑡

+ (𝛿
𝛼

𝑢
𝑛

(𝑥, 𝜏))
0𝐼𝑡
(𝛼)

(
𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)

= 0.

(27)

As a result, from (27) we can derive

(
𝜆
𝛼

Γ (1 + 𝛼)
)

(2𝛼)

= 0,
𝜆
𝛼

Γ (1 + 𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝑡

= 0,

(
𝜆
𝛼

Γ (1 + 𝛼)
)

(𝛼)

= 1.

(28)

We have 𝜆 = 𝜏 − 𝑡 such that the fractal Lagrange multiplier
reads as

𝜆
𝛼

Γ (1 + 𝛼)
=

(𝜏 − 𝑡)
𝛼

Γ (1 + 𝛼)
. (29)

From (24) we take the initial value, which reads as

𝑢
0

(𝑥, 𝑡) = −𝐸
𝛼

(𝑥
𝛼

) . (30)

By using (25) we structure a local fractional iteration proce-
dure as

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛

(𝑥, 𝑡)

+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
𝑛

(𝑥, 𝜏)

𝜕𝑥2𝛼
)} .

(31)
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Hence, we can derive the first approximation term as

𝑢
1

(𝑥, 𝑡)

= 𝑢
0

(𝑥, 𝑡)

+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= −𝐸
𝛼

(𝑥
𝛼

) +
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(−𝐸
𝛼

(𝑥
𝛼

))}

= 𝐸
𝛼

(𝑥
𝛼

) (−1 +
𝑡
2𝛼

Γ (1 + 2𝛼)
) .

(32)

The second approximation can be calculated in the similar
way, which is

𝑢
2

(𝑥, 𝑡)

= 𝑢
1

(𝑥, 𝑡)

+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= 𝐸
𝛼

(𝑥
𝛼

) (−1 +
𝑡
2𝛼

Γ (1 + 2𝛼)
)

+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(

𝑡
2𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 2𝛼)
)}

= 𝐸
𝛼

(𝑥
𝛼

) (−1 +
𝑡
2𝛼

Γ (1 + 2𝛼)
−

𝑡
4𝛼

Γ (1 + 4𝛼)
) .

(33)

Proceeding in this manner, we get

𝑢
𝑛

(𝑥, 𝑡) = 𝐸
𝛼

(𝑥
𝛼

) (

𝑛

∑

𝑘=0

(−1)
𝑘 𝑡

2𝑘𝛼

Γ (1 + 2𝑘𝛼)
) . (34)

Thus, the final solution reads as

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢
𝑛

(𝑥, 𝑡)

= 𝐸
𝛼

(𝑥
𝛼

) (

∞

∑

𝑘=0

(−1)
𝑘 𝑡

2𝑘𝛼

Γ (1 + 2𝑘𝛼)
)

= −𝐸
𝛼

(𝑥
𝛼

) cos
𝛼

(𝑡
𝛼

) .

(35)

Case 2. Consider the local fractional Laplace equation as

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑡2𝛼
+

𝜕
2𝛼

𝑇 (𝑥, 𝑡)

𝜕𝑥2𝛼
= 0 (36)

subject to fractal value conditions given by

𝜕
𝛼

𝜕𝑡𝛼
𝑇 (𝑥, 0) = −𝐸

𝛼
(𝑥
𝛼

) , 𝑇 (𝑥, 0) = 0. (37)

Now we can structure the same local fractional iteration
procedure (31).

By using (36)-(37) we take an initial value as

𝑢
0

(𝑥, 𝑡) = −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
. (38)

The first approximation term reads as

𝑢
1

(𝑥, 𝑡)

= 𝑢
0

(𝑥, 𝑡)

+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
0

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(−

𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)
.

(39)

In the same manner, the second approximation is given by

𝑢
2

(𝑥, 𝑡)

= 𝑢
1

(𝑥, 𝑡)

+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝜏2𝛼
+

𝜕
2𝛼

𝑇
1

(𝑥, 𝜏)

𝜕𝑥2𝛼
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)

+
0𝐼𝑡
(𝛼)

{
(𝜏 − 𝑡)

𝛼

Γ (1 + 𝛼)
(

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)
)}

= −
𝑡
𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 𝛼)
+

𝑡
3𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 3𝛼)
−

𝑡
5𝛼

𝐸
𝛼

(𝑥
𝛼

)

Γ (1 + 5𝛼)
.

(40)

Finally, we can obtain the local fractional series solution as
follows:

𝑢
𝑛

(𝑥, 𝑡) = 𝐸
𝛼

(𝑥
𝛼

) (

𝑛

∑

𝑘=0

(−1)
𝑘 𝑡

(2𝑘+1)𝛼

Γ (1 + (2𝑘 + 1) 𝛼)
) . (41)

Thus, the expression of the final solution is given by

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝑢
𝑛

(𝑥, 𝑡)

= 𝐸
𝛼

(𝑥
𝛼

) (

∞

∑

𝑖=0

(−1)
𝑘 𝑡

(2𝑘+1)𝛼

Γ (1 + (2𝑘 + 1) 𝛼)
)

= −𝐸
𝛼

(𝑥
𝛼

) sin
𝛼

(𝑡
𝛼

) .

(42)

As is known, the Mittag-Leffler function in fractal space
can be written in the form

󵄨󵄨󵄨󵄨𝐸𝛼 (𝑥
𝛼

) − 𝐸
𝛼

(𝑥
𝛼

0
)
󵄨󵄨󵄨󵄨 ≤ 𝐸
𝛼

(𝑥
𝛼

0
)

󵄨󵄨󵄨󵄨𝑥 − 𝑥
0

󵄨󵄨󵄨󵄨

𝛼

< 𝜀
𝛼

,

󵄨󵄨󵄨󵄨sin𝛼 (𝑡
𝛼

) − sin
𝛼

(𝑡
𝛼

0
)
󵄨󵄨󵄨󵄨 <

󵄨󵄨󵄨󵄨cos𝛼 (𝑥
𝛼

0
)
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑡 − 𝑡
0

󵄨󵄨󵄨󵄨

𝛼

< 𝜀
𝛼

.

(43)

Hence, the fractal dimensions of both 𝐸
𝛼

(𝑥
𝛼

) and
cos
𝛼

(𝑡
𝛼

) are equal to 𝛼.
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5. Conclusions

Local fractional calculus is set up on fractals and the local
fractional variational iteration method is derived from local
fractional calculus. This new technique is efficient for the
applied scientists to process these differential and integral
equations with the local fractional operators. The variational
iteration method [9–19, 27] is derived from fractional calcu-
lus and classical calculus; the fractional variational iteration
method [20–22, 27] is derived from the modified fractional
derivative, while the local fractional variational iteration
method [37] is derived from the local fractional calculus [37–
43]. Other methods for local fractional ordinary and partial
differential equations were considered in [27].

In this paper, two outstanding examples of applications of
the local fractional variational iteration method to the local
fractional Laplace equations are investigated in detail. The
reliable obtained results are complementary with the ones
presented in the literature.
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Using a method based on the concept of the Kuratowski measure of the noncompactness of a bounded set as well as some new
estimates of the equicontinuity of the solutions, we prove the existence of a unique pullback attractor in higher regularity space for
the multivalued process associated with the nonautonomous 2D-Navier-Stokes model with delays and without the uniqueness of
solutions.

1. Introduction

It is well known that the Navier-Stokes equations are very
important in the understanding of fluids motion and tur-
bulence. These equations have been studied extensively over
the last decades (see [1–3], and the references cited therein).
Recently, Caraballo and Real [4] considered global attractors
for functional Navier-Stokes models with the uniqueness of
solutions and for the delay, so that a wide range of hereditary
characteristics (constant or variable delay, distributed delay,
etc.) can be treated in a unified way. Very recently, Maŕın-
Rubio and Real [5] used the theory of multivalued dynamical
system to establish the existence of attractors for the 2D-
Navier-Stokes model with delays, when the forcing term
containing the delay is sublinear and only continuous.

For the study of asymptotic behavior for functional partial
differential equations without the uniqueness of solutions,
as far as we know, not many papers have been published.
However, some results in the finite dimensional context can
be found in [6, 7] (see also [8–10] for some preliminary
and interesting results on the structure of the attractors for
ordinary differential delay systems).

The pullback attractor is a possible approach to define an
“attractor” for the nonautonomous dynamical systems, the
long time behavior of nonautonomous dynamical systems is
an interesting and challenging problem; see, for example, [11–
19], and so forth.The purpose of our current paper is to study

existence of pullback attractors for the following functional
Navier-Stokes problem:

𝜕𝑢

𝜕𝑡
− ]Δ𝑢 +

2

∑

𝑖=1

𝑢
𝑖

𝜕𝑢

𝜕𝑥
𝑖

= 𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) − ∇𝑝 + 𝑔 (𝑡) in (𝜏, +∞) × Ω,

div 𝑢 = 0 in (𝜏, +∞) × Ω,

𝑢 = 0 on (𝜏, +∞) × Γ,

𝑢 (𝜏 + 𝑡, 𝑥) = 𝜙 (𝑡, 𝑥) , 𝑡 ∈ [−ℎ, 0] , 𝑥 ∈ Ω,

(1)

whereΩ ⊂ R2 is an open bounded set with regular boundary
Γ, ] > 0 is the kinematic viscosity, 𝑢 is the velocity field
of the fluid, 𝑝 is the pressure, 𝜏 ∈ R is the initial time,
𝑔 is a nondelayed external force field, 𝑓 is another external
force term and contains some memory effects during a fixed
interval of time of length ℎ > 0, 𝜌 is an adequate given delay
function, and 𝜙 the initial datum on the interval [−ℎ, 0].

Using the technique of measure of noncompactness, not-
ing that all norms on finite dimensional spaces are equivalent,
we apply the new method to check the pullback 𝜔-limit
compactness given in [20] and then get the existence of the
pullback attractors in 𝐶

𝑉
.
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We consider the following usual abstract spaces:

V = {𝑢 ∈ (𝐶
∞

0
(Ω))

2

: div 𝑢 = 0} , (2)

where 𝐻 = the closure of V in (𝐿2(Ω))2 with norm | ⋅ | and
inner product (⋅, ⋅), where for 𝑢, V ∈ (𝐿2(Ω))2,

(𝑢, V) =
2

∑

𝑗=1

∫
Ω

𝑢
𝑗
(𝑥) V

𝑗
(𝑥) 𝑑𝑥, (3)

where 𝑉 = the closure ofV in (𝐻1

0
(Ω))

2 with norm ‖ ⋅ ‖ and
associated scalar product ((⋅, ⋅)), where for 𝑢, V ∈ (𝐻1

0
(Ω))

2,

((𝑢, V)) =
2

∑

𝑖,𝑗=1

∫
Ω

𝜕𝑢
𝑗

𝜕𝑥
𝑖

𝜕V
𝑗

𝜕𝑥
𝑖

𝑑𝑥. (4)

Note that 𝑉 ⊂ 𝐻 ≡ 𝐻
󸀠
⊂ 𝑉

󸀠, where the injections are dense
and compact. We will use ‖ ⋅ ‖

∗
for the norm in 𝑉󸀠 and ⟨⋅, ⋅⟩

for the duality pairing between 𝑉 and 𝑉󸀠.
Define the trilinear form 𝑏 on 𝑉 × 𝑉 × 𝑉 by

𝑏 (𝑢, V, 𝑤) =
2

∑

𝑖,𝑗=1

∫
Ω

𝑢
𝑖

𝜕V
𝑗

𝜕𝑥
𝑖

𝑤
𝑗
𝑑𝑥, ∀𝑢, V, 𝑤 ∈ 𝑉. (5)

Now, let us establish some assumptions for (1).
We assume that the given delay function satisfies 𝜌 ∈

𝐶
1
(R; [0, ℎ]), and there exists a constant 𝜌

∗
satisfying

𝜌
󸀠
(𝑡) ⩽ 𝜌

∗
< 1, ∀𝑡 ∈ R. (6)

Furthermore, we suppose that 𝑓 and 𝑔 satisfy the following
assumptions:

(H1) 𝑓(⋅, V) : R → 𝐻 is measurable for all V ∈ 𝐻,
(H2) 𝑓(𝑡, ⋅) : 𝐻 → 𝐻 is continuous for all 𝑡 ∈ R,
(H3) there exist positive constants 𝑘

1
, 𝑘

2
such that for any

V ∈ 𝐻,
󵄨󵄨󵄨󵄨𝑓 (𝑡, V)

󵄨󵄨󵄨󵄨

2

⩽ 𝑘
2

1
+ 𝑘

2

2
|V|

2
, ∀𝑡 ∈ R, (7)

(H4) there exists a fixed 𝛿
0
> 0 such that for any 𝛿 ∈ (0, 𝛿

0
),

the external force 𝑔 ∈ 𝐿2loc(R; 𝐻) satisfies

∫

𝑡

−∞

󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

2

𝑒
𝛿𝑟
𝑑𝑟 < ∞, ∀𝑡 ∈ R. (8)

Set𝐴 : 𝑉 → 𝑉
󸀠 as ⟨𝐴𝑢, V⟩ = ((𝑢, V)), 𝐵 : 𝑉×𝑉 → 𝑉

󸀠 by
⟨𝐵(𝑢, V), 𝑤⟩ = 𝑏(𝑢, V, 𝑤), for all 𝑢, V, 𝑤 ∈ 𝑉. Denote by 𝑃 the
corresponding orthogonal projection𝑃 : (𝐿2(Ω))2 → 𝐻.We
further set 𝐴 := −𝑃Δ. The Stokes operator 𝐴 is self-adjoint
and positive from 𝐷(𝐴) = 𝑉 ∩ (𝐻

2
(Ω))

2 to 𝐻. The inverse
operator is compact. Excluding the pressure, the system (1)
can be written in the form

𝑑

𝑑𝑡
𝑢 (𝑡) + ]𝐴𝑢 (𝑡) + 𝐵 (𝑢 (𝑡) , 𝑢 (𝑡))

= 𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) + 𝑔 (𝑡) in D
󸀠
(𝜏, +∞;𝑉

󸀠
) ,

𝑢 (𝜏 + 𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] , 𝑥 ∈ Ω.

(9)

2. Preliminaries

Let 𝑋 be a complete metric space with metric 𝑑
𝑋
(⋅, ⋅), and

denote byP(𝑋) the class of nonempty subsets of𝑋. As usual,
let us denote by𝐻∗

𝑋
(⋅, ⋅) the Hausdorff semidistance between

𝐴 and 𝐵, which are defined by

𝐻
∗

𝑋
(𝐴, 𝐵) = sup

𝑎∈𝐴

dist
𝑋
(𝑎, 𝐵) , (10)

where dist
𝑋
(𝑎, 𝐵) = inf

𝑏∈𝐵
𝑑
𝑋
(𝑎, 𝑏). Finally, denote by N(𝐴,

𝑟) the open neighborhood {𝑦 ∈ 𝑋 | dist
𝑋
(𝑦, 𝐴) < 𝑟} of radius

𝑟 > 0 of a subset 𝐴 of a Banach space𝑋.

Definition 1. A family of mappings 𝑈(𝑡, 𝜏) : 𝑋 → P(𝑋),
𝑡 ⩾ 𝜏, 𝜏 ∈ R is called to be a multivalued process (MVP in
short) if it satisfies

(1) 𝑈(𝜏, 𝜏)𝑥 = {𝑥}, for all 𝜏 ∈ R, 𝑥 ∈ 𝑋;
(2) 𝑈(𝑡, 𝑠)𝑈(𝑠, 𝜏)𝑥 = 𝑈(𝑡, 𝜏)𝑥, for all 𝑡 ⩾ 𝑠 ⩾ 𝜏, 𝜏 ∈

R, 𝑥 ∈ 𝑋.

Let D be a nonempty class of parameterized sets D =

{𝐷(𝑡)}
𝑡∈R ⊂ P(𝑋).

Definition 2. Let {𝑈(𝑡, 𝜏)} be amultivalued process on𝑋. One
says that {𝑈(𝑡, 𝜏)} is

(1) pullback D-dissipative, if there exists a family Q =

{𝑄(𝑡)}
𝑡∈R ∈ D, so that for any B = {𝐵(𝑡)}

𝑡∈R ∈ D
and each 𝑡 ∈ R, there exists a 𝑡

0
= 𝑡

0
(B, 𝑡) ∈ R+ such

that

𝑈 (𝑡, 𝑡 − 𝑠) 𝐵 (𝑡 − 𝑠) ⊂ 𝑄 (𝑡) , ∀𝑠 ⩾ 𝑡
0
; (11)

(2) pullbackD-limit-set compact with respect to each 𝑡 ∈
R, if for anyB = {𝐵(𝑡)}

𝑡∈R ∈ D and 𝜀 > 0, there exists
a 𝑡

1
= 𝑡

1
(B, 𝑡, 𝜀) ∈ R+ such that

𝑘(⋃

𝑠⩾𝑡
1

𝑈 (𝑡, 𝑡 − 𝑠) 𝐵 (𝑡 − 𝑠)) ⩽ 𝜀, (12)

where 𝑘 is the Kuratowski measure of noncompactness.

Definition 3. A family of nonempty compact subsets A =

{𝐴(𝑡)}
𝑡∈R ⊂ P(𝑋) is called to be a pullback D-attractor for

the multivalued process {𝑈(𝑡, 𝜏)}, if it satisfies

(1) A = {𝐴(𝑡)}
𝑡∈R is invariant; that is,

𝑈 (𝑡, 𝜏) 𝐴 (𝜏) = 𝐴 (𝑡) , ∀𝑡 ⩾ 𝜏, 𝜏 ∈ R, (13)

(2) A is pullback D-attracting; that is, for every B ∈ D
and any fixed 𝑡 ∈ R,

lim
𝑠→+∞

𝐻
∗

𝑋
(𝑈 (𝑡, 𝑡 − 𝑠) 𝐵 (𝑡 − 𝑠) , 𝐴 (𝑡)) = 0. (14)

Let 𝑋, 𝑌 be two Banach spaces, and let 𝑋∗, 𝑌∗ be their
dual spaces, respectively. We also assume that 𝑋 is a dense
subspace of 𝑌, the injection 𝑖 : 𝑋 󳨅→ 𝑌 is continuous, and its
adjoint 𝑖∗ : 𝑌∗

󳨅→ 𝑋
∗ is densely injective.
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Theorem 4 (see [21, 22]). Let 𝑋,𝑌 be two Banach spaces sat-
isfy the previous assumptions, and let {𝑈(𝑡, 𝜏)} be amultivalued
process on𝑋 and𝑌, respectively. Assume that {𝑈(𝑡, 𝜏)} is upper
semicontinuous or weak upper semicontinuous on 𝑌. If for
fixed 𝑡 ⩾ 𝜏, 𝜏 ∈ R, 𝑈(𝑡, 𝜏) maps compact subsets of 𝑋 into
bounded subsets ofP(𝑋), then 𝑈(𝑡, 𝜏) is norm-to-weak upper
semicontinuous on𝑋.

By slightly modifying the arguments of Theorem 3.4 and
Remark 3.9 in [21], we have the following.

Theorem 5. Let 𝑋 be a Banach space, and let {𝑈(𝑡, 𝜏)} be a
multivalued process on 𝑋. Also let 𝑈(𝑡, 𝜏)𝑥 be norm-to-weak
upper semicontinuous in 𝑥 for fixed 𝑡 ⩾ 𝜏, 𝜏 ∈ R; that is, if
𝑥
𝑛
→ 𝑥, then for any 𝑦

𝑛
∈ 𝑈(𝑡, 𝜏)𝑥

𝑛
, there exist a subsequence

𝑦
𝑛
𝑘

∈ 𝑈(𝑡, 𝜏)𝑥
𝑛
𝑘

and a 𝑦 ∈ 𝑈(𝑡, 𝜏)𝑥 such that 𝑦
𝑛
𝑘

⇀ 𝑦 (weak
convergence). Then the multivalued process {𝑈(𝑡, 𝜏)} possesses
a pullbackD-attractorA = {𝐴(𝑡)}

𝑡∈R in𝑋 given by

𝐴 (𝑡) = 𝜔
𝑡
(𝑄)

= ⋂

𝑇∈R+

⋃

𝑠⩾𝑇

𝑈(𝑡, 𝑡 − 𝑠)𝑄(𝑡 − 𝑠) ⊂ 𝑄 (𝑡)
(15)

if and only if {𝑈(𝑡, 𝜏)} is pullback D-dissipative and pullback
D-limit-set compact with respect to each 𝑡 ∈ R, where Q =

{𝑄(𝑡)}
𝑡∈R ∈ D is pullback D-absorbing for the multivalued

process {𝑈(𝑡, 𝜏)}.

A multivalued process {𝑈(𝑡, 𝜏)} is said to be pullbackD-
asymptotically upper-semicompact in 𝑋 if for each fixed 𝑡 ∈
R, any B = {𝐵(𝑡)}

𝑡∈R ∈ D, any sequence {𝑇
𝑛
} with 𝑇

𝑛
→

+∞, {𝑥
𝑛
} with 𝑥

𝑛
∈ 𝐵(𝑡 − 𝑇

𝑛
), and any {𝑦

𝑛
} with 𝑦

𝑛
∈ 𝑈(𝑡, 𝑡 −

𝑇
𝑛
)𝑥

𝑛
; this last sequence {𝑦

𝑛
} is relatively compact in𝑋.

Remark 6. Let {𝑈(𝑡, 𝜏)} be a multivalued process on𝑋. Then
{𝑈(𝑡, 𝜏)} is pullbackD-asymptotically upper-semicompact if
and only if {𝑈(𝑡, 𝜏)} is pullbackD-limit-set compact; see [21].

Let𝑋 be a Banach space, and let ℎ > 0 be a given positive
number (the delay time). Denote by 𝐶

𝑋
the Banach space

𝐶([−ℎ, 0]; 𝑋) endowed with the norm
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐶
𝑋

= sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝜙(𝜃)
󵄩󵄩󵄩󵄩𝑋
. (16)

Let us consider D
𝐶
𝑋

a class of sets parameterized in time,
D = {𝐷(𝑡)}

𝑡∈R ⊂ P(𝐶
𝑋
). To study the pullback D-limit-set

compactness of the multivalued process on 𝐶
𝑋
, we need the

following result from [20].

Theorem 7. Let {𝑈(𝑡, 𝜏)} be a multivalued process on 𝐶
𝑋
.

Suppose that for each 𝑡 ∈ R, any B ∈ D
𝐶
𝑋

and 𝜀 > 0, there
exist 𝜏

0
= 𝜏

0
(𝑡,B, 𝜀) > 0, a finite dimensional subspace 𝑋

1
of

𝑋, and a 𝛿 > 0 such that

(1) for each fixed 𝜃 ∈ [−ℎ, 0],
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

⋃

𝑠⩾𝜏
0

⋃

𝑢
𝑡
(⋅)∈𝑈(𝑡,𝑡−𝑠)𝐵(𝑡−𝑠)

𝑃𝑢(𝑡 + 𝜃)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋

is bounded; (17)

(2) for all 𝑠 ⩾ 𝜏
0
, 𝑢

𝑡
(⋅) ∈ 𝑈(𝑡, 𝑡−𝑠)𝐵(𝑡−𝑠), 𝜃

1
, 𝜃

2
∈ [−ℎ, 0]

with |𝜃
2
− 𝜃

1
| < 𝛿,

󵄩󵄩󵄩󵄩𝑃(𝑢(𝑡 + 𝜃1) − 𝑢(𝑡 + 𝜃2))
󵄩󵄩󵄩󵄩𝑋
< 𝜀; (18)

(3) for all 𝑠 ⩾ 𝜏
0
, 𝑢

𝑡
(⋅) ∈ 𝑈(𝑡, 𝑡 − 𝑠)𝐵(𝑡 − 𝑠),

sup
𝜃∈[−ℎ,0]

‖(𝐼 − 𝑃)𝑢(𝑡 + 𝜃)‖𝑋 < 𝜀, (19)

where 𝑃 : 𝑋 → 𝑋
1
is the canonical projector.Then {𝑈(𝑡, 𝜏)} is

pullbackD-limit-set compact in𝐶
𝑋
with respect to each 𝑡 ∈ R.

3. Existence of an Absorbing Family of
Sets in 𝐶

𝑉

By the classical Faedo-Galerkin scheme and compactness
method, analogous to the arguments in [5], we have the
following.

Theorem 8. Let one consider 𝜙 ∈ 𝐶
𝐻
, 𝑔 ∈ 𝐿2loc(R; 𝐻), and

assume that 𝑓 : R × 𝐻 → 𝐻 satisfies the hypotheses
(H1)–(H3). Then, for each 𝜏 ∈ R,

(a) there exists a weak solution 𝑢 to problem (9) satisfying

𝑢 ∈ 𝐶 ([𝜏 − ℎ, 𝑇] ;𝐻) ∩ 𝐿
∞
(𝜏, 𝑇;𝐻) ∩ 𝐿

2
(𝜏, 𝑇; 𝑉) ∀𝑇 ⩾ 𝜏;

(20)

(b) if 𝜙 ∈ 𝐶
𝑉
, then there exists a strong solution 𝑢 to

problem (9); that is,

𝑢 ∈ 𝐶 ([𝜏 − ℎ, 𝑇] ; 𝑉) ∩ 𝐿
∞
(𝜏, 𝑇; 𝑉) ∩ 𝐿

2
(𝜏, 𝑇;𝐷 (𝐴)) ,

∀𝑇 ⩾ 𝜏.

(21)

Given 𝑇 > 𝜏 and 𝑢 : [𝜏 − ℎ, 𝑇) → 𝐻, for each 𝑡 ∈ [𝜏, 𝑇),
we denote by 𝑢

𝑡
the function defined on [−ℎ, 0] by the relation

𝑢
𝑡
(𝑠) = 𝑢(𝑡 + 𝑠), 𝑠 ∈ [−ℎ, 0]. We also denote 𝐶

𝐻
= 𝐶([−ℎ, 0];

𝐻) and 𝐶
𝑉
= 𝐶([−ℎ, 0]; 𝑉). Let 𝐶 be the arbitrary positive

constants, which may be different from line to line and even
in the same line.

Thanks to Theorem 8, we can define a multivalued pro-
cess (𝐶

𝑉
, {𝑈(⋅, ⋅)}) as

𝑈 (𝑡, 𝜏) (𝜙) = {𝑢
𝑡
(⋅; 𝜏, 𝜙) | 𝑢 (⋅) is a strong solution of

(9) with initial datum 𝜙 ∈ 𝐶
𝑉
} .

(22)

We first need a priori estimates for the solution 𝑢 of (9)
in the space 𝐶

𝐻
and a necessary bound on the term

∫
𝑡

𝑡−1
𝑒
𝛼𝑟
‖ 𝑢(𝑟) ‖

2
𝑑𝑟, which will be very useful in our analysis;

it relates the absorption property for the multivalued process
{𝑈(𝑡, 𝜏)} on 𝐶

𝑉
.

Lemma 9. In addition to the assumptions (H1)–(H4), assume
that

𝑘
2

2
< (

]𝜆
1

2
)

2

(1 − 𝜌
∗
) (23)
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holds true. Then

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

⩽ (1 +
2𝑘

2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑡+ℎ)󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+
2𝑘

2

1

]𝜆
1
𝛼
+
𝑒
−𝛼(𝑡−ℎ)

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠,

∀𝑡 ⩾ 𝜏 + ℎ,

(24)

]∫
𝑡

𝑡−1

𝑒
𝛼𝑟
‖𝑢(𝑟)‖

2
𝑑𝑟

⩽ 𝐶𝑒
𝛼𝜏󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝑡

+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟, ∀𝑡 ⩾ 𝜏 + ℎ + 1,

(25)

provided that 𝛼 > 0 is small enough.

Proof. By the energy inequality and the Poincaré inequality,
we have

𝑑

𝑑𝑡
|𝑢 (𝑡)|

2
+ ]𝜆

1|𝑢 (𝑡)|
2
+ ]‖𝑢(𝑡)‖

2

⩽ 2 (𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝑢 (𝑡)) + 2 (𝑔 (𝑡) , 𝑢 (𝑡)) .

(26)

We fixed two positive parameters 𝜀
1
and 𝜀

2
to be chosen later

on. Then by (H3) and Young’s inequality, we can deduce that

󵄨󵄨󵄨󵄨(𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝑢 (𝑡))
󵄨󵄨󵄨󵄨 ⩽

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡)))
󵄨󵄨󵄨󵄨 |𝑢 (𝑡)|

⩽ 𝜀
1|𝑢 (𝑡)|

2

+
𝑘
2

1
+ 𝑘

2

2

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))
󵄨󵄨󵄨󵄨

2

4𝜀
1

,

󵄨󵄨󵄨󵄨𝑔 (𝑡) , 𝑢 (𝑡)
󵄨󵄨󵄨󵄨 ⩽ 𝜀2|𝑢 (𝑡)|

2
+
1

4𝜀
2

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨

2

.

(27)

Therefore,

𝑑

𝑑𝑡
|𝑢 (𝑡)|

2
+ ]‖𝑢(𝑡)‖

2
⩽ (2𝜀

1
+ 2𝜀

2
− ]𝜆

1
) |𝑢 (𝑡)|

2

+
𝑘
2

1
+ 𝑘

2

2

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))
󵄨󵄨󵄨󵄨

2

2𝜀
1

+

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨

2

2𝜀
2

.

(28)

Let 𝛼 > 0 to be determined later on. Then it follows that

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
|𝑢 (𝑡)|

2
)

= 𝛼𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
+ 𝑒

𝛼𝑡 𝑑

𝑑𝑡
|𝑢 (𝑡)|

2

⩽ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
) 𝑒

𝛼𝑡
|𝑢 (𝑡)|

2
+
𝑒
𝛼𝑡
𝑘
2

1

2𝜀
1

+
𝑒
𝛼𝑡
𝑘
2

2

󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))
󵄨󵄨󵄨󵄨

2

2𝜀
1

+
𝑒
𝛼𝑡󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨

2

2𝜀
2

.

(29)

Integrating between 𝜏 and 𝑡 (⩾ 𝜏), we have

𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
⩽ 𝑒

𝛼𝜏
|𝑢 (𝜏)|

2

+ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
) ∫

𝑡

𝜏

𝑒
𝛼𝑠
|𝑢 (𝑠)|

2
𝑑𝑠

+
𝑘
2

1

2𝜀
1

∫

𝑡

𝜏

𝑒
𝛼𝑠
𝑑𝑠

+
𝑘
2

2

2𝜀
1

∫

𝑡

𝜏

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑢 (𝑠 − 𝜌 (𝑠))

󵄨󵄨󵄨󵄨

2

𝑑𝑠

+
1

2𝜀
2

∫

𝑡

𝜏

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(30)

Let 𝑟 = 𝑠 − 𝜌(𝑠); note that 𝜌(𝑠) ∈ [0, ℎ] and 1/(1 − 𝜌󸀠(𝑠)) ⩽
1/(1 − 𝜌

∗
) for all 𝑠 ∈ R. Hence,

𝑘
2

2

2𝜀
1

∫

𝑡

𝜏

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑢 (𝑠 − 𝜌 (𝑠))

󵄨󵄨󵄨󵄨

2

𝑑𝑠

⩽
𝑘
2

2

2𝜀
1

1

1 − 𝜌
∗

∫

𝑡

𝜏−ℎ

𝑒
𝛼(𝑟+ℎ)

|𝑢 (𝑟)|
2
𝑑𝑟

⩽
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)

× (∫

𝜏

𝜏−ℎ

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟 + ∫

𝑡

𝜏

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟)

⩽

𝑘
2

2
𝑒
𝛼(ℎ+𝜏)󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

2𝜀
1
(1 − 𝜌

∗
) 𝛼

+
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)
∫

𝑡

𝜏

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟.

(31)

Combining (30) and (31) together, we get

𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
⩽ (1 +

𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+
𝑘
2

1
𝑒
𝛼𝑡

2𝜀
1
𝛼
+
1

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠

+ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
+

𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)
)

× ∫

𝑡

𝜏

𝑒
𝛼𝑠
|𝑢 (𝑠)|

2
𝑑𝑠.

(32)
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Let 𝜀
1
= ]𝜆

1
/4 and using (23), so we can choose positive

constants 𝛼 and 𝜀
2
small enough such that 𝛼 + 2𝜀

1
+ 2𝜀

2
−

]𝜆
1
+ (𝑘

2

2
𝑒
𝛼ℎ
/2𝜀

1
(1 − 𝜌

∗
)) < 0 and 𝛼 < 𝛿

0
(where 𝛿

0
is given

in the assumption (H4)). Then, it follows that

𝑒
𝛼𝑡
|𝑢 (𝑡)|

2
⩽ (1 +

2𝑘
2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+
2𝑘

2

1
𝑒
𝛼𝑡

]𝜆
1
𝛼
+
1

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(33)

Setting now 𝑡 + 𝜃 instead of 𝑡 (where 𝜃 ∈ [−ℎ, 0]), multiplying
by 𝑒−𝛼(𝑡+𝜃), it holds

|𝑢 (𝑡 + 𝜃)|
2
⩽ (1 +

2𝑘
2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑡−𝜃)󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+
2𝑘

2

1

]𝜆
1
𝛼
+
𝑒
−𝛼(𝑡+𝜃)

2𝜀
2

∫

𝑡+𝜃

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠

⩽ (1 +
2𝑘

2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑡+ℎ)󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+
2𝑘

2

1

]𝜆
1
𝛼
+
𝑒
−𝛼(𝑡−ℎ)

2𝜀
2

∫

𝑡

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠.

(34)

Note that ‖ 𝑢
𝑡
‖
2

𝐶
𝐻

= sup
𝜃∈[−ℎ,0]

|𝑢(𝑡+𝜃)|
2, thus the conclusion

(24) follows immediately from (34).
Finally, we will obtain the bound on the term

]∫
𝑡

𝑡−1
𝑒
𝛼𝑟
‖ 𝑢(𝑟) ‖

2
𝑑𝑟. It follows from (28) that

]𝑒
𝛼𝑡
‖𝑢(𝑡)‖

2
⩽ (2𝜀

1
+ 2𝜀

2
− ]𝜆

1
) 𝑒

𝛼𝑡
|𝑢 (𝑡)|

2

+
𝑘
2

1
𝑒
𝛼𝑡

2𝜀
1

+
𝑘
2

2
𝑒
𝛼𝑡󵄨󵄨󵄨󵄨𝑢 (𝑡 − 𝜌 (𝑡))

󵄨󵄨󵄨󵄨

2

2𝜀
1

+
𝑒
𝛼𝑡󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨

2

2𝜀
2

+ 𝛼𝑒
𝛼𝑡
|𝑢 (𝑡)|

2

−
𝑑

𝑑𝑡
(𝑒

𝛼𝑡
|𝑢 (𝑡)|

2
) .

(35)

Integrating from 𝑡 − 1 to 𝑡, we have

]∫
𝑡

𝑡−1

𝑒
𝛼𝑟
‖𝑢(𝑟)‖

2
𝑑𝑟

⩽ (𝛼 + 2𝜀
1
+ 2𝜀

2
− ]𝜆

1
) ∫

𝑡

𝑡−1

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟

+
𝑘
2

1

2𝜀
1

∫

𝑡

𝑡−1

𝑒
𝛼𝑟
𝑑𝑟

+
𝑘
2

2

2𝜀
1

∫

𝑡

𝑡−1

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑢 (𝑟 − 𝜌 (𝑟))

󵄨󵄨󵄨󵄨

2

𝑑𝑟

+
1

2𝜀
2

∫

𝑡

𝑡−1

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟

+ 𝑒
𝛼(𝑡−1)

|𝑢 (𝑡 − 1)|
2
.

(36)

Similar to the arguments of (31), we can deduce that

𝑘
2

2

2𝜀
1

∫

𝑡

𝑡−1

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑢 (𝑟 − 𝜌 (𝑟))

󵄨󵄨󵄨󵄨

2

𝑑𝑟

⩽
𝑘
2

2

2𝜀
1

1

1 − 𝜌
∗

∫

𝑡

𝑡−1−ℎ

𝑒
𝛼(𝑟+ℎ)

|𝑢 (𝑟)|
2
𝑑𝑟

⩽
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)

× (∫

𝑡−1

𝑡−1−ℎ

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟 + ∫

𝑡

𝑡−1

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟)

⩽

𝑘
2

2
𝑒
𝛼(ℎ+𝑡−1)󵄩󵄩󵄩󵄩𝑢𝑡−1

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

2𝜀
1
(1 − 𝜌

∗
) 𝛼

+
𝑘
2

2
𝑒
𝛼ℎ

2𝜀
1
(1 − 𝜌

∗
)
∫

𝑡

𝑡−1

𝑒
𝛼𝑟
|𝑢 (𝑟)|

2
𝑑𝑟.

(37)

Recall that 𝜀
1
= ]𝜆

1
/4 and 𝛼+2𝜀

1
+2𝜀

2
−]𝜆

1
+(𝑘

2

2
𝑒
𝛼ℎ
/2𝜀

1
(1−

𝜌
∗
)) < 0. By (24) and (36)-(37), we have (25) as desired, and

thus the proof of this lemma is completed.

By slightly modifying the proof of Lemma 1.1 in [23], we
have the following result.

Lemma 10. Let 𝑡 ∈ R be given arbitrarily. Let 𝑔, ℎ, and 𝑦 be
three positive locally integrable functions on (−∞, 𝑡] such that
𝑦
󸀠 is locally integrable on (−∞, 𝑡], which satisfy that

𝑑𝑦

𝑑𝑠
⩽ 𝑔𝑦 + ℎ for 𝑠 ⩽ 𝑡,

∫

𝑡

𝑡−1

𝑔 (𝑠) 𝑑𝑠 ⩽ 𝑎
1
, ∫

𝑡

𝑡−1

ℎ (𝑠) 𝑑𝑠 ⩽ 𝑎
2
,

∫

𝑡

𝑡−1

𝑦 (𝑠) 𝑑𝑠 ⩽ 𝑎
3
,

(38)

where 𝑎
1
, 𝑎

2
, and 𝑎

3
are positive constants. Then

𝑦 (𝑡) ⩽ exp (𝑎
1
) (𝑎

3
+ 𝑎

2
) . (39)

Now we state and prove the main result in this section.

Theorem 11. Suppose in addition to the hypotheses in
Lemma 9, assume that

lim
𝑡→−∞

∫

𝑡

−∞

𝑒
−𝛾(𝑡−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟 < ∞ ∀𝛾 > 0 (40)

holds true. Then the multivalued process {𝑈(𝑡, 𝜏)} on 𝐶
𝑉
is

pullbackD-dissipative.

Proof. We take the inner product of (9) with𝐴𝑢(𝑡), we obtain

1

2

𝑑

𝑑𝑡
‖𝑢(𝑡)‖

2
+ ]|𝐴𝑢 (𝑡)|

2
+ (𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) , 𝐴𝑢 (𝑡))

= (𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝐴𝑢 (𝑡)) + (𝑔 (𝑡) , 𝐴𝑢 (𝑡)) .

(41)
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Now we evaluate the terms, using (H3) and Young’s inequal-
ity, and we arrive to

󵄨󵄨󵄨󵄨(𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡))) , 𝐴𝑢 (𝑡))
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝑔 (𝑡) , 𝐴𝑢 (𝑡))

󵄨󵄨󵄨󵄨

⩽
]

2
|𝐴𝑢 (𝑡)|

2
+

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡)))
󵄨󵄨󵄨󵄨

2

]
+

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨

2

]

⩽
]

2
|𝐴𝑢 (𝑡)|

2
+

𝑘
2

1
+ 𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

]
+

󵄨󵄨󵄨󵄨𝑔 (𝑡)
󵄨󵄨󵄨󵄨

2

]
.

(42)

Next,

|(𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) , 𝐴𝑢 (𝑡))|

⩽ 𝐶
1|𝑢 (𝑡)|

1/2
‖𝑢 (𝑡)‖ |𝐴𝑢 (𝑡)|

3/2

⩽
]

4
|𝐴𝑢 (𝑡)|

2
+
𝐶
2

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

4
.

(43)

Thanks to (41)–(43) and the fact that ‖ 𝜑 ‖2 ⩽ 𝜆−1
1
|𝐴𝜑|

2 for
𝜑 ∈ 𝐷(𝐴), we can deduce that

𝑑

𝑑𝑡
‖𝑢(𝑡)‖

2
+
]𝜆

1

2
‖𝑢(𝑡)‖

2

⩽

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

]
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨

2

]

+
2𝐶

2

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

4
,

(44)

and consequently,

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
‖𝑢(𝑡)‖

2
) + (

]𝜆
1

2
− 𝛼) 𝑒

𝛼𝑡
‖𝑢(𝑡)‖

2

⩽

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

]
𝑒
𝛼𝑡
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨

2

]
𝑒
𝛼𝑡

+
2𝐶

2
𝑒
𝛼𝑡

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

4
.

(45)

Since 𝜀
1
= ]𝜆

1
/4 and 𝛼+2𝜀

1
+2𝜀

2
−]𝜆

1
+(𝑘

2

2
𝑒
𝛼ℎ
/2𝜀

1
(1−𝜌

∗
)) <

0, it is easy to see that (]𝜆
1
/2) − 𝛼 > 0. Then

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
‖𝑢 (𝑡)‖

2
)

⩽

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

]
𝑒
𝛼𝑡
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑡)

󵄨󵄨󵄨󵄨

2

]
𝑒
𝛼𝑡

+
2𝐶

2

]3
|𝑢 (𝑡)|

2
‖𝑢(𝑡)‖

2
‖𝑢(𝑡)‖

2
𝑒
𝛼𝑡
.

(46)

Let 𝑡 ∈ R be given arbitrarily and taking 𝜏 such that 𝑡 ⩾
𝜏 + ℎ + 1. In order to apply Lemma 10, in view of (24), now
we firstly obtain

∫

𝑡

𝑡−1

(

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

]
𝑒
𝛼𝑟
+
2
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

]
𝑒
𝛼𝑟
)𝑑𝑟

⩽ ∫

𝑡

𝑡−1

2𝑘
2

1
+ 2𝑘

2

2

󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

]
𝑒
𝛼𝑟
𝑑𝑟

+ ∫

𝑡

𝑡−1

2
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

]
𝑒
𝛼𝑟
𝑑𝑟

⩽ 𝐶𝑒
𝛼𝑡
+ 𝐶𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟.

(47)

Then, it follows from (24) and (25) that

2𝐶
2

]3
∫

𝑡

𝑡−1

|𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

2
𝑑𝑟

⩽
2𝐶

2

]3
∫

𝑡

𝑡−1

󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

‖𝑢(𝑟)‖
2
𝑑𝑟

⩽
2𝐶

2

]3
∫

𝑡

𝑡−1

(1 +
2𝑘

2

2
𝑒
𝛼ℎ

]𝜆
1
(1 − 𝜌

∗
) 𝛼
) 𝑒

𝛼(𝜏−𝑟+ℎ)

×
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

‖𝑢(𝑟)‖
2
𝑑𝑟

+
4𝐶

2
𝑘
2

1

]4𝜆
1
𝛼
∫

𝑡

𝑡−1

‖𝑢(𝑟)‖
2
𝑑𝑟

+
2𝐶

2

]3
∫

𝑡

𝑡−1

(
𝑒
−𝛼(𝑟−ℎ)

2𝜀
2

‖𝑢(𝑟)‖
2
∫

𝑟

−∞

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑔 (𝑠)

󵄨󵄨󵄨󵄨

2

𝑑𝑠)𝑑𝑟

⩽ 𝐶𝑒
2𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶

+ 𝐶𝑒
−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟 + 𝐶𝑒
𝛼𝜏
𝑒
−𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟

+ 𝐶𝑒
−2𝛼𝑡

(∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟)

2

.

(48)

Combining (25) and (47)-(48) together, by Lemma 10, we can
conclude that

‖𝑢(𝑡)‖
2
⩽ (𝑎

3
+ 𝑎

2
) 𝑒

𝑎
1 ∀𝑡 ⩾ 𝜏 + ℎ + 1, (49)
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where

𝑎
3
= 𝐶𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝑡
+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟,

𝑎
2
= 𝐶𝑒

𝛼𝑡
+ 𝐶𝑒

𝛼𝜏󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟,

𝑎
1
= 𝐶𝑒

2𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶

+ 𝐶𝑒
−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟 + 𝐶𝑒
𝛼𝜏
𝑒
−𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶𝑒
𝛼𝜏
𝑒
−2𝛼𝑡󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟

+ 𝐶𝑒
−2𝛼𝑡

(∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟)

2

.

(50)

Therefore, if we take 𝜏 such that 𝑡 ⩾ 𝜏 + 1 + 2ℎ, then similar
to the above mentioned, we get

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩

2

𝐶
𝑉

= sup
𝜃∈[−ℎ,0]

‖𝑢(𝑡 + 𝜃)‖
2
⩽ (𝑎

3
+ 𝑎

2
) 𝑒

𝑎
1 . (51)

We denote byR the set of all functions 𝑟 : R → (0, +∞)

such that
lim

𝑡→−∞

𝑟
2
(𝑡) = 0, (52)

and denote by D
𝐶
𝑉

the class of all families D = {𝐷(𝑡)}
𝑡∈R ⊂

P(𝐶
𝑉
) such that 𝐷(𝑡) ⊂ N(0, 𝑟D(𝑡)), for some 𝑟D ∈ R,

where P(𝐶
𝑉
) denotes the family of all nonempty subsets of

𝐶
𝑉
andN(0, 𝑟D(𝑡)) denotes the closed ball in 𝐶

𝑉
centered at

zero with radius 𝑟D(𝑡).
Denote by 𝑅(𝑡) the nonnegative number given for each

𝑡 ∈ R by

(𝑅 (𝑡))
2
= (𝐶𝑒

𝛼𝑡
+ 𝐶∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟)

× exp(𝐶𝑒−𝛼𝑡 ∫
𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟

+𝐶𝑒
−2𝛼𝑡

(∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟)

2

) ,

(53)

and consider the family of closed balls Q = {𝑄(𝑡)}
𝑡∈R in 𝐶

𝑉

defined by

𝑄 (𝑡) = {𝜓 ∈ 𝐶
𝑉
:
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐶
𝑉

⩽ 𝑅 (𝑡)} . (54)

It is straightforward to check thatQ ∈ D
𝐶
𝑉

, andmoreover, by
(51) and (52), the family of Q is pullbackD-absorbing for the
multivalued process {𝑈(𝑡, 𝜏)} on 𝐶

𝑉
.

The proof of Theorem 11 is completed.

4. Existence of the Pullback Attractors in 𝐶
𝑉

Theorem 12. Suppose in addition to the hypotheses in
Theorem 11 that 𝑔 ∈ 𝐶(R; 𝐻). Then there exists a unique
pullback D-attractor {𝐴

𝐶
𝑉

(𝑡)}
𝑡∈𝑅

for the multivalued process
{𝑈(𝑡, 𝜏)} in 𝐶

𝑉
.

Proof. Since 𝐴−1 is a continuous compact operator in 𝐻, by
the classical spectral theory, there exist a sequence {𝜆

𝑗
}
∞

𝑗=1
,

0 < 𝜆
1
⩽ 𝜆

2
⩽ ⋅ ⋅ ⋅ ⩽ 𝜆

𝑗
⩽ ⋅ ⋅ ⋅ , 𝜆

𝑗
󳨀→ +∞, as 𝑗 󳨀→ +∞,

(55)

and a family of elements {𝑤
𝑗
}
∞

𝑗=1
of𝐷(𝐴)which are orthonor-

mal in𝐻 such that

𝐴𝑤
𝑗
= 𝜆

𝑗
𝑤
𝑗
∀𝑗 ∈ N. (56)

Let 𝑉
𝑚
= span{𝑤

1
, . . . , 𝑤

𝑚
} in 𝑉 and 𝑃

𝑚
: 𝑉 → 𝑉

𝑚
be an

orthogonal projector.
Let 𝑢 = 𝑢

1
+ 𝑢

2
, where 𝑢

1
= 𝑃

𝑚
𝑢 and 𝑢

2
= (𝐼 − 𝑃

𝑚
)𝑢. We

decompose (9) as follows:

𝜕𝑢
2
(𝑡)

𝜕𝑡
+ ]𝐴𝑢

2
(𝑡) + 𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) − 𝑃

𝑚
𝐵 (𝑢

1
(𝑡) , 𝑢

1
(𝑡))

= 𝑓 (𝑡, 𝑢 (𝑡 − 𝜌 (𝑡)))

− 𝑃
𝑚
𝑓 (𝑡, 𝑢

1
(𝑡 − 𝜌 (𝑡))) + (𝐼 − 𝑃

𝑚
) 𝑔 (𝑡) ,

𝑢
2
(𝜏 + 𝑡) = (𝐼 − 𝑃

𝑚
) 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

(57)

𝜕𝑢
1
(𝑡)

𝜕𝑡
+ ]𝐴𝑢

1
(𝑡) + 𝑃

𝑚
𝐵 (𝑢

1
(𝑡) , 𝑢

1
(𝑡))

= 𝑃
𝑚
𝑓 (𝑡, 𝑢

1
(𝑡 − 𝜌 (𝑡))) + 𝑃

𝑚
𝑔 (𝑡) ,

𝑢
1
(𝜏 + 𝑡) = 𝑃

𝑚
𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0] .

(58)

We divide the proof into three steps.
(1) For every fixed 𝑡 ∈ R, any B = {𝐵(𝑡)}

𝑡∈R ∈ D
𝐶
𝑉

and
𝜀 > 0, we observe that for any 𝑇 ⩾ 𝑡 − 𝑠 with 𝑠 ⩾ 0,

𝑈 (𝑇, 𝑡 − 𝑠) (𝜙)

= {𝑢
𝑇
(⋅; 𝑡 − 𝑠, 𝜙) | 𝑢 (⋅) is a strong solution

of (9) with 𝜙 ∈ 𝐵 (𝑡 − 𝑠) } .

(59)

Taking the inner product in𝐻 of (57) with𝐴𝑢
2
= 𝐴(𝐼−𝑃

𝑚
)𝑢,

we get

1

2

𝑑

𝑑𝑇

󵄩󵄩󵄩󵄩𝑢2(𝑇)
󵄩󵄩󵄩󵄩

2

+ ]
󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)

󵄨󵄨󵄨󵄨

2

⩽
󵄨󵄨󵄨󵄨(𝑓 (𝑇, 𝑢 (𝑇 − 𝜌 (𝑇))) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝑃𝑚𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇))) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝐵 (𝑢 (𝑇) , 𝑢 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝑃𝑚𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨((𝐼 − 𝑃𝑚) 𝑔 (𝑇) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨 .

(60)

By (H3) and Young’s inequality, we have
󵄨󵄨󵄨󵄨(𝑓 (𝑇, 𝑢 (𝑇 − 𝜌 (𝑇))) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝑔 (𝑇) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

⩽
]

8

󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)
󵄨󵄨󵄨󵄨

2

+ 𝐶 + 𝐶
󵄩󵄩󵄩󵄩𝑢𝑇

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶
󵄨󵄨󵄨󵄨𝑔 (𝑇)

󵄨󵄨󵄨󵄨

2

.

(61)
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To estimate (𝐵(𝑢(𝑇), 𝑢(𝑇)), 𝐴𝑢
2
(𝑇)), we recall some inequal-

ities [19]:

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨(𝐿∞(Ω))2

⩽ 𝐶
3

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩(1 + log

󵄨󵄨󵄨󵄨𝐴𝜑
󵄨󵄨󵄨󵄨

2

𝜆
1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2
)

1/2

∀𝜑 ∈ 𝐷 (𝐴) ,

(62)

and thus

|𝐵 (𝑢, V)| ⩽ 𝐶
4 |(𝑢 ⋅ ∇) V| ⩽ 𝐶4|𝑢|𝐿∞(Ω) ‖V‖

⩽ 𝐶
4
𝐶
3 ‖𝑢‖ ‖V‖ (1 + log |𝐴𝑢|

2

𝜆
1‖𝑢‖

2
)

1/2

.

(63)

Note that |𝐴𝑢
1
|
2
⩽ 𝜆

𝑚
‖𝑢

1
‖
2, and set 𝐿 = 1 + log(𝜆

𝑚+1
/𝜆

1
).

Then by Young’s inequality, we can deduce that

󵄨󵄨󵄨󵄨(𝐵 (𝑢 (𝑇) , 𝑢 (𝑇)) , 𝐴𝑢2 (𝑇))
󵄨󵄨󵄨󵄨

⩽
󵄨󵄨󵄨󵄨(𝐵 (𝑢2 (𝑇) , 𝑢1 (𝑇) + 𝑢2 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇) + 𝑢2 (𝑇)) , 𝐴𝑢2 (𝑇))

󵄨󵄨󵄨󵄨

⩽ 𝐶
1

󵄨󵄨󵄨󵄨𝑢2 (𝑇)
󵄨󵄨󵄨󵄨

1/2󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)
󵄨󵄨󵄨󵄨

3/2

× (
󵄩󵄩󵄩󵄩𝑢1 (𝑇)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢2 (𝑇)

󵄩󵄩󵄩󵄩)

+ 𝐶
3
𝐶
4
𝐿
1/2 󵄩󵄩󵄩󵄩𝑢1 (𝑇)

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)

󵄨󵄨󵄨󵄨

× (
󵄩󵄩󵄩󵄩𝑢1 (𝑇)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢2 (𝑇)

󵄩󵄩󵄩󵄩)

⩽
]

8

󵄨󵄨󵄨󵄨𝐴𝑢2 (𝑇)
󵄨󵄨󵄨󵄨

2

+ 𝐶|𝑢 (𝑇)|
2
‖𝑢(𝑇)‖

4
+ 𝐶‖𝑢(𝑇)‖

4
.

(64)

By (60)–(64) and Poincaré inequality, we obtain

𝑑

𝑑𝑇

󵄩󵄩󵄩󵄩𝑢2(𝑇)
󵄩󵄩󵄩󵄩

2

+ ]𝜆
𝑚+1

󵄩󵄩󵄩󵄩𝑢2(𝑇)
󵄩󵄩󵄩󵄩

2

⩽ 𝐶 + 𝐶
󵄩󵄩󵄩󵄩𝑢𝑇

󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶
󵄨󵄨󵄨󵄨𝑔 (𝑇)

󵄨󵄨󵄨󵄨

2

+ 𝐶|𝑢 (𝑇)|
2
‖𝑢(𝑇)‖

4
+ 𝐶‖𝑢(𝑇)‖

4
.

(65)

Applying the Gronwall’s lemma in the interval [𝑡 − 𝑠, 𝑡 + 𝜃], it
yields

󵄩󵄩󵄩󵄩𝑢2(𝑡 + 𝜃)
󵄩󵄩󵄩󵄩

2

⩽
󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩

2

𝑒
−]𝜆
𝑚+1

(𝜃+𝑠)

+ 𝐶∫

𝑡+𝜃

𝑡−𝑠

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)

× (1 +
󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

+ |𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

4
+ ‖𝑢(𝑟)‖

4
) 𝑑𝑟.

(66)

Let 𝜀 > 0 be given arbitrarily. Note that 𝑔 ∈ 𝐶(R; 𝐻), then we
can take𝑚 + 1 large enough such that for any fixed 𝜂 > 0,

𝐶∫

𝑡+𝜃

𝑡−ℎ−𝜂

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟 ⩽
𝐶

]𝜆
𝑚+1

<
𝜀

4
, (67)

sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡−ℎ−𝜂

−∞

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟

⩽ 𝐶∫

𝑡−ℎ−𝜂

−∞

𝑒
−]𝜆
𝑚+1

(𝑡−ℎ−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟

⩽ 𝐶𝑒
−]𝜆
𝑚+1

(𝑡−ℎ)

× (∫

𝑡−ℎ−𝜂

𝑡−ℎ−𝜂−1

𝑒
]𝜆
𝑚+1

𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟

+∫

𝑡−ℎ−𝜂−1

𝑡−ℎ−𝜂−2

𝑒
]𝜆
𝑚+1

𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟 + ⋅ ⋅ ⋅ )

⩽ 𝐶𝑒
−]𝜆
𝑚+1

(𝑡−ℎ)

× (𝑒
(]𝜆
𝑚+1

−𝛼)(𝑡−ℎ−𝜂)
+ 𝑒

(]𝜆
𝑚+1

−𝛼)(𝑡−ℎ−𝜂−1)
+ ⋅ ⋅ ⋅ )

× ∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟

⩽
𝐶𝑒

−]𝜆
𝑚+1

𝜂
𝑒
−𝛼(𝑡−ℎ−𝜂)

1 − 𝑒−(]𝜆𝑚+1−𝛼)
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟

<
𝜀

4
.

(68)

Combining (67) and (68) together, we can get for𝑚+ 1 large
enough,

sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡+𝜃

−∞

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)󵄨󵄨󵄨󵄨𝑔 (𝑟)
󵄨󵄨󵄨󵄨

2

𝑑𝑟 <
𝜀

2
. (69)

On the other hand, thanks to Lemma 9 and Theorem 11, we
can deduce that when𝑚 + 1 and 𝑠 are large enough,

sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)
󵄩󵄩󵄩󵄩

2

𝑒
−]𝜆
𝑚+1

(𝜃+𝑠)

⩽
󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩

2

𝑒
−]𝜆
𝑚+1

(𝑠−ℎ)
<
𝜀

4
,

sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡+𝜃

𝑡−𝑠

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)

× (𝐶 +
󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ |𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

4
+ ‖𝑢(𝑟)‖

4
) 𝑑𝑟

<
𝜀

4
.

(70)
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Thanks to (69) and (70), it follows from (66) that when𝑚+1
and 𝑠 are large enough,

󵄩󵄩󵄩󵄩𝑢2𝑡
󵄩󵄩󵄩󵄩

2

𝐶
𝑉

= sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝑢2(𝑡 + 𝜃)
󵄩󵄩󵄩󵄩

2

⩽ sup
𝜃∈[−ℎ,0]

󵄩󵄩󵄩󵄩𝑢2(𝑡 − 𝑠)
󵄩󵄩󵄩󵄩

2

𝑒
−]𝜆
𝑚+1

(𝜃+𝑠)

+ sup
𝜃∈[−ℎ,0]

𝐶∫

𝑡+𝜃

𝑡−𝑠

𝑒
−]𝜆
𝑚+1

(𝑡+𝜃−𝑟)

× (𝐶 +
󵄩󵄩󵄩󵄩𝑢𝑟
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+
󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

+ |𝑢 (𝑟)|
2
‖𝑢(𝑟)‖

4

+‖𝑢(𝑟)‖
4
) 𝑑𝑟

< 𝜀.

(71)

(2) Now we consider the ordinary functional differential
system (58) and check the condition (2) in Theorem 7. Note
that |𝐴𝑢

1
|
2
⩽ 𝜆

𝑚
‖ 𝑢

1
‖
2
⩽ 𝜆

2

𝑚
|𝑢

1
|
2. Without generality, we

assume that 𝜃
1
, 𝜃

2
∈ [−ℎ, 0] with 0 < 𝜃

1
− 𝜃

2
< 1. Hence

󵄩󵄩󵄩󵄩𝑢1 (𝑡 + 𝜃1) − 𝑢1 (𝑡 + 𝜃2)
󵄩󵄩󵄩󵄩

⩽ √𝜆
𝑚

󵄨󵄨󵄨󵄨𝑢1 (𝑡 + 𝜃1) − 𝑢1 (𝑡 + 𝜃2)
󵄨󵄨󵄨󵄨

⩽ √𝜆
𝑚
∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑢
1
(𝑇)

𝑑𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑇

⩽ √𝜆
𝑚
∫

𝑡+𝜃
1

𝑡+𝜃
2

(]
󵄨󵄨󵄨󵄨𝐴𝑢1 (𝑇)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇)))

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑃𝑚𝑔 (𝑇)

󵄨󵄨󵄨󵄨) 𝑑𝑇.

(72)

Notice that

󵄨󵄨󵄨󵄨𝐵 (𝑢1, 𝑢1)
󵄨󵄨󵄨󵄨 ⩽ 𝐶

󵄨󵄨󵄨󵄨𝐴𝑢1
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 ⩽ 𝐶

√𝜆
𝑚

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

⩽ 𝐶𝜆
3/2

𝑚

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

.

(73)

Then, it follows from (H3), (H4), and (24) that

∫

𝑡+𝜃
1

𝑡+𝜃
2

(
󵄨󵄨󵄨󵄨𝐴𝑢1 (𝑇)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐵 (𝑢1 (𝑇) , 𝑢1 (𝑇))

󵄨󵄨󵄨󵄨) 𝑑𝑇

⩽ 𝐶∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑢1 (𝑇)
󵄨󵄨󵄨󵄨 𝑑𝑇 + 𝐶∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑢1 (𝑇)
󵄨󵄨󵄨󵄨

2

𝑑𝑇

⩽ 𝐶∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑢1 (𝑇)
󵄨󵄨󵄨󵄨

2

𝑑𝑇 + 𝐶 (𝜃
1
− 𝜃

2
)

⩽ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) + 𝐶 (𝜃

1
− 𝜃

2
)

+ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) 𝑒

−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟,

∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇)))
󵄨󵄨󵄨󵄨 𝑑𝑇

⩽ ∫

𝑡+𝜃
1

𝑡+𝜃
2

(
󵄨󵄨󵄨󵄨𝑓 (𝑇, 𝑢1 (𝑇 − 𝜌 (𝑇)))

󵄨󵄨󵄨󵄨

2

+ 𝐶) 𝑑𝑇

⩽ ∫

𝑡+𝜃
1

𝑡+𝜃
2

(𝑘
2

2

󵄩󵄩󵄩󵄩𝑢1𝑇
󵄩󵄩󵄩󵄩

2

𝐶
𝐻

+ 𝐶) 𝑑𝑇

⩽ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) + 𝐶 (𝜃

1
− 𝜃

2
)

+ 𝐶 (𝑒
−𝛼𝜃
2 − 𝑒

−𝛼𝜃
1) 𝑒

−𝛼𝑡
∫

𝑡

−∞

𝑒
𝛼𝑟󵄨󵄨󵄨󵄨𝑔 (𝑟)

󵄨󵄨󵄨󵄨

2

𝑑𝑟.

(74)

Since 𝑔 ∈ 𝐶(R; 𝐻) and 𝑡 is fixed,

∫

𝑡+𝜃
1

𝑡+𝜃
2

󵄨󵄨󵄨󵄨𝑃𝑚𝑔 (𝑇)
󵄨󵄨󵄨󵄨 𝑑𝑇 ⩽ 𝐶 (𝜃1 − 𝜃2) .

(75)

Equations (74)–(75) imply that the condition (2) in
Theorem 7 is proved.

(3) Invoking Theorem 7, in view of the previous argu-
ments and Theorem 11, we can see that the multivalued pro-
cess {𝑈(𝑡, 𝜏)} is pullback D-limit-set compact and pullback
D-dissipative in 𝐶

𝑉
.

In order to get the existence of pullbackD-attractors, by
the proof of Theorem 3.2 in [21], now we only need to show
the negative invariance of {𝐴

𝐶
𝑉

(𝑡)}
𝑡∈R, where

𝐴
𝐶
𝑉
(𝑡) = 𝜔

𝑡
(Q)

= ⋂

𝑇∈R+

⋃

𝑠⩾𝑇

𝑈(𝑡, 𝑡 − 𝑠)𝑄(𝑡 − 𝑠), ∀𝑡 ∈ R,
(76)

and Q = {𝑄(𝑡)}
𝑡∈R ∈ D

𝐶
𝑉

is a pullback D-absorbing set of
{𝑈(𝑡, 𝜏)} in 𝐶

𝑉
.

Let𝑦 ∈ 𝐴
𝐶
𝑉

(𝑡).Then there exist sequences 𝑠
𝑛
∈ R+, 𝑠

𝑛
→

+∞ (𝑛 → ∞), 𝑥
𝑛
∈ 𝑄(𝑡 − 𝑠

𝑛
), and 𝑦

𝑛
∈ 𝑈(𝑡, 𝑡 − 𝑠

𝑛
)𝑥

𝑛
such

that
𝑦
𝑛
󳨀→ 𝑦 in 𝐶

𝑉
as 𝑛 󳨀→ ∞. (77)

On the other hand, for 𝑛 sufficiently large,

𝑦
𝑛
∈ 𝑈 (𝑡, 𝑡 − 𝑠

𝑛
) 𝑥

𝑛
= 𝑈 (𝑡, 𝜏) 𝑈 (𝜏, 𝑡 − 𝑠

𝑛
) 𝑥

𝑛
. (78)

Then by the pullback D-limit-set compactness of the mul-
tivalued process {𝑈(𝑡, 𝜏)}, there is a subsequence of 𝑥

𝑛
∈

𝑈(𝜏, 𝑡 − 𝑠
𝑛
)𝑥

𝑛
= 𝑈(𝜏, 𝜏 − (𝜏 + 𝑠

𝑛
− 𝑡))𝑥

𝑛
, which we still relabel

as 𝑥
𝑛
such that 𝑦

𝑛
∈ 𝑈(𝑡, 𝜏)𝑥

𝑛
and

𝑥
𝑛
󳨀→ 𝑥 in 𝐶

𝑉
as 𝑛 󳨀→ ∞. (79)

Clearly, 𝑥 ∈ 𝐴
𝐶
𝑉

(𝜏).
We observe that 𝑦

𝑛
is bounded in 𝐶

𝑉
for 𝑛 sufficiently

large. Then by slightly modifying the proof of the existence
of solutions (see [16] for details), in view of Theorem 2.11 in
[21], we can see that

𝑦
𝑛
(⋅) ⇀ 𝑢 (⋅ + 𝑡, 𝜏, 𝑥) in 𝐿2 ([−ℎ, 0] ; 𝑉) . (80)

This together with (77)–(79), we can deduce that 𝑦 ∈

𝑈(𝑡, 𝜏)𝑥 ⊂ 𝑈(𝑡, 𝜏)𝐴
𝐶
𝑉

(𝜏), and thus the proof of Theorem 12
is finished.
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We introduce a continuummodelingmethod to approximate a class of largewireless networks by nonlinear partial differential equa-
tions (PDEs).Thismethod is based on the convergence of a sequence of underlyingMarkov chains of the network indexed by𝑁, the
number of nodes in the network. As𝑁 goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain
nonlinear PDE.We first describe PDEmodels for networks with uniformly located nodes and then generalize to networks with non-
uniformly located, and possiblymobile, nodes. Based on the PDEmodels, we develop amethod to control the transmissions in non-
uniformnetworks so that the continuum limit is invariant under perturbations in node locations.This enables the networks tomain-
tain stable global characteristics in the presence of varying node locations.

1. Introduction

This paper is concerned with modeling and control of large
stochastic networks via nonlinear partial differential equa-
tions (PDEs). Recently, we introduced a continuummodeling
method for large wireless networksmodeled by a certain class
of Markov chains.We start with a family of networks indexed
by 𝑁, the number of nodes, and a related sequence of
Markov chains. Under appropriate conditions, the sequence
ofMarkov chains converges in a certain sense to a continuum
limit, which is the solution of a nonlinear PDE, as𝑁 goes to
infinity. Therefore we can use the limiting PDE to approxi-
mate the large network [1–5]. This result assumed uniform
networks, that is, networks with immobile and uniformly
located nodes. Moreover, the model assumes that the nodes
have a fixed transmission range in the sense that they com-
municate (exchange data and interfere) only with their im-
mediate neighbors.

The work in this paper builds on the above method. We
consider nonuniform networks, that is, networks with non-
uniformly located and possibly mobile nodes. We also con-
sider nodes with more general transmission ranges; that is,

they may communicate with neighbors further away than
immediate ones. For such networks, a natural problemwould
be to find their continuum limits (the limiting PDEs). A less
obvious butmore interesting problem concerns the control of
nonuniform networks. For example, suppose that a uniform
network with certain transmissions achieves a steady state
that is desirable in terms of global traffic distribution (e.g.,
load is well balanced over the network). Further suppose that
we want the network to maintain such global characteristics
if the nodes are no longer at their original uniform locations.
Then the problem is to control the transmissions in the net-
work such that its continuum limit remains invariant.

We address these problems as follows. First, we present a
more general network model than that in the existing results
[1, 2] and derive its limiting PDEs in the setting of uniform
node locations. This generalization is necessary for the dis-
cussion of the control of nonuniform networks later. Second,
through transformation between uniform and nonuniform
node locations, we derive limiting PDEs for nonuniform
networks. Finally, by comparing the limiting PDEs of corre-
sponding uniform and nonuniform networks, we develop a
method to control the transmissions of nonuniformnetworks
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so that the continuum limit is invariant under node locations.
In other words, we can maintain a stable global characteristic
for nonuniform networks.

The remainder of the paper is organized as follows. First,
to describe and contextualize our contribution in this paper,
we provide in Section 2 the existing results on continuum
modeling of uniform networks. Next, we present the main
results of the paper in Section 3; in Section 3.1, we introduce
a more general network model and derive its limiting PDEs;
in Section 3.2, we derive limiting PDEs for nonuniform and
possibly mobile networks; and in Section 3.3, we present
a control method for nonuniform networks so that the
continuum limit is invariant under node locations. Then we
present some numerical examples in Section 4 and conclude
the paper in Section 5.

2. Existing Results on Continuum Modeling of
Stochastic Networks

This section is devoted to reviewing our continuummodeling
method [1, 2] for stochastic networks whose nodes are uni-
formly located and have a fixed transmission range.The study
of nonuniform networks in this paper builds on this result.
We first describe the network model and then present the
result on the convergence of its underlying Markov chain to
its continuum limit, which is the solution of a limiting PDE.
We discuss some related literature on stochastic network
modeling at the end of this section.

We will generalize this modeling method to uniform net-
works with more general transmission ranges in Section 3.1
and to nonuniform networks in Section 3.2.

2.1. Network Model. Consider a compact, convex Euclidean
domain D ⊂ R𝐽 representing a spatial region, with dimen-
sion 𝐽. In practice, 𝐽 is typically either 1 or 2. However, our
analysis in this paper applies to general 𝐽, though our exam-
ples are for 𝐽 = 1, 2. Next, consider 𝑁 points 𝑉

𝑁
= {V
𝑁
(1),

. . . , V
𝑁
(𝑁)} inD that form a uniform grid. We refer to these

points as grid points and denote the distance between any two
neighboring grid points by 𝑑𝑠

𝑁
.

Now consider a network of𝑁 wireless sensor nodes over
D, where the nodes are labeled by 𝑛 = 1, . . . , 𝑁. By a uniform
network we mean that node 𝑛 is located at the grid point
V
𝑁
(𝑛) ∈ 𝑉

𝑁
, where 𝑛 = 1, . . . , 𝑁. We focus on uniform net-

works in this section.
The sensor nodes generate, according to a probability dis-

tribution, datamessages that need to be communicated to the
destination nodes located on the boundary ofD, which repre-
sent specialized devices that collect the sensor data. The sen-
sor nodes also serve as relays for routing messages to the des-
tination nodes. Each sensor node has the capacity to store
messages in a queue and is capable of either transmitting or
receiving messages to or from its immediate neighbors. In
other words, it has a fixed 1-step transmission range. (We will
generalize to further steps of transmission range later in
Section 3.1.) At each time instant 𝑘 = 0, 1, . . ., each sensor
node probabilistically decides to be a transmitter or receiver,
but not both. This simplified rule of transmission allows for

a relatively simple representation. We illustrate such a uni-
form network over a two-dimensional (2D) domain in
Figure 1(a).

In this network, communication between nodes is inter-
ference limited because all nodes share the same wireless
channel. We assume a simple collision protocol: a transmis-
sion from a transmitter to an immediate neighboring receiver
is successful if and only if none of the other immediate
neighbors of the receiver is a transmitter, as illustrated in
Figure 1(b). This is the case presented in [1]. (Later, in
Section 3.1, when we consider further transmission ranges,
interference will occur between not only immediate neigh-
bors, but also neighbors further apart.) In a successful trans-
mission, one message is transmitted from the transmitter to
the receiver.

We assume that the probability that a node decides to be
a transmitter is a function of its normalized queue length
(normalized by an “averaging” parameter 𝑀). That is, at
time 𝑘, node 𝑛 decides to be a transmitter with probability
𝑊(𝑛,𝑋

𝑁,𝑀
(𝑘, 𝑛)/𝑀), where 𝑋

𝑁,𝑀
(𝑘, 𝑛) is the queue length

of node 𝑛 at time 𝑘, and𝑊 is a given function.
The queue lengths 𝑋

𝑁,𝑀
(𝑘) = [𝑋

𝑁,𝑀
(𝑘, 1), . . .,𝑋

𝑁,𝑀
(𝑘,

𝑁)]
⊤
∈ R𝑁 (the superscript ⊤ represents transpose) form a

Markov chain whose evolution is given by

𝑋
𝑁,𝑀

(𝑘 + 1) = 𝑋
𝑁,𝑀

(𝑘) + 𝐹
𝑁
(
𝑋
𝑁,𝑀

(𝑘)

𝑀,𝑈
𝑁
(𝑘)

) . (1)

Here, the 𝑈
𝑁
(𝑘) are i.i.d. random vectors that do not

depend on the state𝑋
𝑁,𝑀

(𝑘), and 𝐹
𝑁
is a given function. As a

concrete example, below we present the expression of (1) for
a particular network.

For the sake of explanation, we simplify the problem fur-
ther and consider a 1Ddomain (2Dnetworkswill be treated in
the next section). Here,𝑁 sensor nodes are uniformly located
in an interval D ⊂ R and labeled by 𝑛 = 1, . . . , 𝑁. The des-
tination nodes are located on the boundary of D, labeled by
𝑛 = 0 and 𝑛 = 𝑁 + 1.

We assume that if node 𝑛 is a transmitter at a certain time
instant, it randomly chooses to transmit one message to the
right or the left immediate neighbor with probability 𝑃

𝑟
(𝑛)

and 𝑃
𝑙
(𝑛), respectively, where 𝑃

𝑟
(𝑛) + 𝑃

𝑙
(𝑛) ≤ 1. In contrast to

strict equality, the inequality here allows for a more general
stochastic model of transmission: after a sensor node ran-
domly decides to transmit over the wireless channel, there
is still a positive probability that the message is not trans-
ferred to its intended receiver (what might be called an
“outage”).

The special destination nodes at the boundaries of the
domain do not have queues; they simply receive any message
transmitted to them and never themselves transmit anything.
We illustrate the time evolution of the queues in the network
in Figure 1(c).

For the particular network introduced above, we have the
following expression for 𝑈

𝑁
(𝑘) in (1)

𝑈
𝑁
(𝑘) = [(𝑘, 1) , . . . , 𝑄 (𝑘,𝑁) , 𝑇 (𝑘, 1) , . . . , 𝑇 (𝑘,𝑁) ,

𝐺 (𝑘, 1) , . . . , 𝐺 (𝑘,𝑁)]
⊤
,

(2)
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(a) (b)

𝐺

𝑃𝑙 𝑃𝑟

0 1
· · ·· · ·

𝑛𝑛 − 1 𝑛 + 1 𝑁 𝑁+ 1

(c)

Figure 1: (a) An illustration of a uniform wireless sensor network over a 2D domain. Destination nodes are located at the far edge. We show
the possible path of a message originating from a node located in the left-front region. (b) An illustration of the collision protocol: reception
at a node fails when one of its other neighbors transmits (regardless of the intended receiver). (c) An illustration of the time evolution of the
queues in the 1D network model.

which is a random vector comprising independent random
variables: 𝑄(𝑘, 𝑛) are uniform random variables on [0, 1]

used to determine if the node is a transmitter or not; 𝑇(𝑘, 𝑛)
are ternary random variables used to determine the direction
in which a message is passed, which take values 𝑅, 𝐿, and 𝑆
(representing transmitting to the right, the left, and neither,
resp.) with probabilities 𝑃

𝑟
(𝑛), 𝑃
𝑙
(𝑛), and 1 − (𝑃

𝑟
(𝑛) + 𝑃

𝑙
(𝑛)),

respectively; and 𝐺(𝑘, 𝑛) are the number of messages gener-
ated at node 𝑛 at time 𝑘. We model 𝐺(𝑘, 𝑛) by independent
Poisson random variables with mean 𝑔(𝑛) and call 𝑔(𝑛) the
incoming traffic to the network.

For a generic𝑥 = [𝑥
1
, . . . , 𝑥

𝑁
]
⊤
∈ R𝑁, the 𝑛th component

of 𝐹
𝑁
(𝑥, 𝑈
𝑁
(𝑘)), where 𝑛 = 1, . . . , 𝑁, is

1 + 𝐺 (𝑘, 𝑛)

if 𝑄 (𝑘, 𝑥
𝑛−1

) < 𝑊(𝑛 − 1, 𝑥
𝑛−1

) , 𝑇 (𝑘, 𝑛 − 1) = 𝑅,

𝑄 (𝑘, 𝑥
𝑛
) > 𝑊(𝑛, 𝑥

𝑛
) , 𝑄 (𝑘, 𝑥

𝑛+1
) > 𝑊(𝑛 + 1, 𝑥

𝑛+1
) ;

or 𝑄 (𝑘, 𝑥
𝑛+1

) < 𝑊(𝑛 + 1, 𝑥
𝑛+1

) , 𝑇 (𝑘, 𝑛 + 1) = 𝐿,

𝑄 (𝑘, 𝑥
𝑛
) > 𝑊(𝑛, 𝑥

𝑛
) , 𝑄 (𝑘, 𝑥

𝑛−1
) > 𝑊(𝑛 − 1, 𝑥

𝑛−1
)

− 1 + 𝐺 (𝑘, 𝑛)

if 𝑄 (𝑘, 𝑥
𝑛
) < 𝑊(𝑛, 𝑥

𝑛
) , 𝑇 (𝑘, 𝑛) = 𝐿,

𝑄 (𝑘, 𝑥
𝑛−1

) > 𝑊(𝑛 − 1, 𝑥
𝑛−1

) ,

𝑄 (𝑘, 𝑥
𝑛−2

) > 𝑊(𝑛 − 2, 𝑥
𝑛−2

) ;

or 𝑄 (𝑘, 𝑥
𝑛
) < 𝑊(𝑛, 𝑥

𝑛
) , 𝑇 (𝑘, 𝑛) = 𝑅,

𝑄 (𝑘, 𝑥
𝑛+1

) > 𝑊(𝑛 + 1, 𝑥
𝑛+1

) ,

𝑄 (𝑘, 𝑥
𝑛+2

) > 𝑊(𝑛 + 2, 𝑥
𝑛+2

)

𝐺 (𝑘, 𝑛) otherwise,
(3)

where 𝑥
𝑛
with 𝑛 ≤ 0 or 𝑛 ≥ 𝑁 + 1 are defined to be zero, and

𝑊 is the function that specifies the probability that a node
decides to be a transmitter, as defined earlier. Here, the three
possible values of 𝐹

𝑁
correspond to the three events that, at

time 𝑘, node 𝑛 successfully receives onemessage, successfully
transmits one message, and does neither of the above, res-
pectively.The inequalities and equations on the right describe
conditions under which these three events occur: for exam-
ple, 𝑄(𝑘, 𝑥

𝑛−1
) < 𝑊(𝑛 − 1, 𝑥

𝑛−1
) corresponds to the choice of

node 𝑛 − 1 to be a transmitter at time 𝑘, 𝑇(𝑘, 𝑛 − 1) = 𝑅 cor-
responds to its choice to transmit to the right, and so on.

We assume that 𝑊(𝑛, 𝑦) = min(1, 𝑦). (We will use this
assumption throughout the paper.) Under this assumption,
the probability that a node is a transmitter increases linearly
with its queue length, up to a maximum value of 1 when the
normalized queue length exceeds 1. In general, we would
naturally adopt a𝑊 function that is increasing in the queue
length, so that nodes with more data are more likely to trans-
mit. Here, we assume this function to be linear purely for the
sake of simplicity. We could have used a more complicated
increasing function. However, doing so complicates the deri-
vation of the resulting PDE and does not serve any insightful
purpose.

2.2. Continuum Limit of the Markov Chain. Next, we present
inTheorem 2 a result on the convergence of theMarkov chain
(1) to its continuum limit, which is the solution of a PDE.
Based on this theorem, we can approximate the network
introduced above by the limiting PDE. We stress that this
theorem is not limited to the particular networkmodel above
but holds for uniform networks in a more general setting,
which we will introduce later in Section 3.1.

The Markov chain model (1) is related to a deterministic
difference equation. We set

𝑓
𝑁
(𝑥) = 𝐸𝐹

𝑁
(𝑥, 𝑈
𝑁
(𝑘)) , 𝑥 ∈ R

𝑁
, (4)

and define𝑥
𝑁,𝑀

(𝑘) = [𝑥
𝑁,𝑀

(𝑘, 1), . . . , 𝑥
𝑁,𝑀

(𝑘,𝑁)]
⊤
∈ R𝑁 by

𝑥
𝑁,𝑀

(𝑘 + 1) = 𝑥
𝑁,𝑀

(𝑘) +
1

𝑀
𝑓
𝑁
(𝑥
𝑁,𝑀

(𝑘)) ,

𝑥
𝑁,𝑀

(0) =
𝑋
𝑁,𝑀

(0)

𝑀
a.s.

(5)

(“a.s.” is short for “almost surely”).
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Example 1. For the 1D 1-step network model in Section 2.1,
it follows from (3) (with the particular choice of 𝑊(𝑛, 𝑦) =

min(1, 𝑦)) that, for 𝑥 = [𝑥
1
, . . . , 𝑥

𝑁
]
⊤

∈ [0, 1]
𝑁, the 𝑛th

component of 𝑓
𝑁
(𝑥) in its corresponding deterministic dif-

ference equation (5), where 𝑛 = 1, . . . , 𝑁, is (after some tedi-
ous algebra, as described in [3])

(1 − 𝑥
𝑛
) [𝑃
𝑟
(𝑛 − 1) 𝑥

𝑛−1
(1 − 𝑥

𝑛+1
)

+𝑃
𝑙
(𝑛 + 1) 𝑥

𝑛+1
(1 − 𝑥

𝑛−1
)]

− 𝑥
𝑛
[𝑃
𝑟
(𝑛) (1 − 𝑥

𝑛+1
) (1 − 𝑥

𝑛+2
)

+𝑃
𝑙
(𝑛) (1 − 𝑥

𝑛−1
) (1 − 𝑥

𝑛−2
)] + 𝑔 (𝑛) ,

(6)

where 𝑥
𝑛
with 𝑛 ≤ 0 or 𝑛 ≥ 𝑁 + 1 are defined to be zero.

We now construct the PDE whose solution describes the
limiting behavior of the Markov chain.

For any continuous function 𝑤 : D → R, let 𝑦
𝑁
be the

vector in R𝑁 composed of the values of 𝑤 at the grid points
V
𝑁
(𝑛); that is, 𝑦

𝑁
= [𝑤(V

𝑁
(1)), . . . , 𝑤(V

𝑁
(𝑁))]
⊤. Given a

point 𝑠 ∈ D, we let {𝑠
𝑁
} ⊂ D be any sequence of grid points

𝑠
𝑁
∈ 𝑉
𝑁
such that as 𝑁 → ∞, 𝑠

𝑁
→ 𝑠. Let 𝑓

𝑁
(𝑦
𝑁
, 𝑠
𝑁
) be

the component of the vector 𝑓
𝑁
(𝑦
𝑁
) corresponding to the

location 𝑠
𝑁
; that is, if 𝑠

𝑁
= V
𝑁
(𝑛) ∈ 𝑉

𝑁
, then 𝑓

𝑁
(𝑦
𝑁
, 𝑠
𝑁
) is

the 𝑛th component of 𝑓
𝑁
(𝑦
𝑁
).

Assume that there exists a function 𝑓 such that as 𝑁 →

∞, given 𝑠 in the interior ofD, for any sequence of grid points
𝑠
𝑁
→ 𝑠,

𝑓
𝑁
(𝑦
𝑁
, 𝑠
𝑁
)

𝑑𝑠
2

𝑁

󳨀→ 𝑓(𝑠
𝑁
, 𝑤 (𝑠
𝑁
) , ∇𝑤 (𝑠

𝑁
) , ∇
2
𝑤 (𝑠
𝑁
)) .

(7)

Here, ∇𝑖𝑤 represents all the 𝑖th order derivatives of 𝑤, where
𝑖 = 1, 2. These assumptions are technical conditions on the
asymptotic behavior of the sequence of functions {𝑓

𝑁
} that

insure that 𝑓
𝑁
(𝑦
𝑁
, 𝑠
𝑁
) is asymptotically close to an expres-

sion that looks like the right-hand side of a time-dependent
PDE. Such conditions are familiar in the context of PDE
limits of Brownian motion. Checking these conditions often
amounts to a simple algebraic exercise.

Assume that there exists a unique function 𝑧 : [0, 𝑇] ×

D → R that solves the limiting PDE

̇𝑧 (𝑡, 𝑠) = 𝑓 (𝑠, 𝑧 (𝑡, 𝑠) , ∇𝑧 (𝑡, 𝑠) , ∇
2
𝑧 (𝑡, 𝑠)) , (8)

with boundary condition 𝑧(𝑡, 𝑠) = 0 and initial condition
𝑧(0, 𝑠) = 𝑧

0
(𝑠).Throughout the paperwe assume that𝑋

𝑁,𝑀
(0,

𝑛)/𝑀 = 𝑧
0
(V
𝑁
(𝑛)) a.s. for each 𝑛. We call 𝑋

𝑁,𝑀
(0) the initial

state of the network.
Establishing existence and uniqueness for the resulting

nonlinear models is a difficult problem in theoretical analysis
of partial differential equations in general.The techniques are
heavily dependent on the particular formof𝑓.Therefore, as is
common with numerical analysis, we assume that this has
been established. Below, limiting PDE of the network is
a nonlinear diffusion-convection problem. Existence and
uniqueness for such problems for “small” data and short times

can be established under general conditions. Key ingredients
are coercivity, which will hold as long as 𝑧 is bounded away
from 1, and diffusion dominance, which will also hold as long
as 𝑧 is bounded above.

We now present a convergence theorem from [1], which
states that theMarkov chain𝑋

𝑁,𝑀
(𝑘) converges uniformly to

the solution 𝑧 of its limiting PDE, as𝑁 → ∞ and𝑀 → ∞

in a dependent way. By this we mean that we set 𝑀 to be a
function of𝑁, written𝑀

𝑁
, such that𝑀

𝑁
→ ∞ as𝑁 → ∞.

Then we can treat 𝑋
𝑁,𝑀

as sequences of the single index 𝑁,
written 𝑋

𝑁
. We apply such changes of notation throughout

the rest of the paper whenever 𝑀 is treated as a function of
𝑁. Define the time step

𝑑𝑡
𝑁
=
𝑑𝑠
2

𝑁

𝑀
𝑁

(9)

and the total number of time steps𝐾
𝑁
= ⌊𝑇/𝑑𝑡

𝑁
⌋.

Theorem 2. Almost surely, there exist a sequence {𝛾
𝑁
}, 𝑐
0
<

∞, 𝑁
0
, and 𝑀̂

1
< 𝑀̂
2
< 𝑀̂
3
, . . ., such that as 𝑁 → ∞,

𝛾
𝑁
→ 0, and for each𝑁 ≥ 𝑁

0
and each𝑀

𝑁
≥ 𝑀̂
𝑁
,

max
𝑘=0,...,𝐾

𝑁

𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑁
(𝑘, 𝑛)

𝑀
𝑁

− 𝑧 (𝑘𝑑𝑡
𝑁
, V
𝑁
(𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑐
0
𝛾
𝑁
. (10)

Hence we can approximate the Markov chain by its con-
tinuum limit, the limiting PDE solution, and the accuracy of
the approximation increases with𝑁.

Example 3. As a concrete example, we now construct the lim-
iting PDE for the 1D 1-step network model in Section 2.1. To
satisfy the conditions on 𝑓

𝑁
introduced above, we make fur-

ther assumptions to the networkmodel.We assume that there
are functions 𝑝

𝑟
and 𝑝

𝑙
fromD to R such that

𝑃
𝑟
(𝑛) = 𝑝

𝑟
(V
𝑁
(𝑛)) , 𝑃

𝑙
(𝑛) = 𝑝

𝑙
(V
𝑁
(𝑛)) ; (11)

and further that

𝑝
𝑟
(𝑠) =

1

2
+ 𝑐
𝑟
(𝑠) 𝑑𝑠
𝑁
, 𝑝

𝑙
(𝑠) =

1

2
+ 𝑐
𝑙
(𝑠) 𝑑𝑠
𝑁
, (12)

where 𝑐
𝑟
and 𝑐
𝑙
are functions fromD to R. Let 𝑐 = 𝑐

𝑙
− 𝑐
𝑟
. We

call 𝑐 the convection.
In order to guarantee that the number of messages enter-

ing the system from outside over finite time intervals remains
finite throughout the limiting process, we set the incoming
traffic

𝑔 (𝑛) = 𝑀𝑔
𝑝
(V
𝑁
(𝑛)) 𝑑𝑡

𝑁
. (13)

We call 𝑔
𝑝
the incoming traffic function. Assume that 𝑐

𝑙
, 𝑐
𝑟
,

and 𝑔
𝑝
are inC1.

By these assumptions, it follows from (6) that the limiting
PDE (8) for the 1D 1-step network is as follows:

̇𝑧 =
1

2

𝜕

𝜕𝑠
((1 − 𝑧) (1 + 3𝑧)

𝜕𝑧

𝜕𝑠
) +

𝜕

𝜕𝑠
(𝑐𝑧(1 − 𝑧)

2
) + 𝑔
𝑝
,

(14)

with boundary condition 𝑧 = 0. The detailed derivation for
this PDE was presented in [3].
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This is a nonlinear diffusion-convection PDE. Note that
the computations needed to obtain this require tedious but
elementary algebraic manipulations. For this purpose, we
found it helpful to use the symbolic tools in Matlab. A com-
parison of this PDE and the simulation of the corresponding
network is provide in Section 4.1.1.

2.3.The Related Literature. Themodeling and analysis of sto-
chastic networks is a large field of research and much of
the previous contributions share goals with our continuum
modeling method.

The analysis for establishing our continuum modeling
result used Kushner’s ordinary differential equation (ODE)
method [6], which is closely related to the line of research
called stochastic approximation. This line of research was
started by Robbins and Monro [7] and Kiefer and Wolfowitz
[8] in the early 1950s and widely used in many areas (see,
e.g., [9, 10], for surveys). These results do not study the
“large-system” limit in the same sense as our method, and
the limits of the system they study are ODEs instead of
PDEs. Markov chains modeling’s various systems have also
been shown by other endeavors to converge to ODEs [11, 12],
abstract Cauchy problems [13], or other stochastic processes
[6, 14].These results usemethods different fromKushner’s but
share with it the principle idea in weak convergence theory
[6, 14, 15].

There are a variety of other analysis methods for large
systems taking completely different approaches. For example,
the well-cited work of Gupta and Kumar [16], followed by
many others (e.g., [17, 18]), derives scaling laws of network
performance parameters (e.g., throughput); many efforts
based on mean field theory [19–22] or on the theory of large
deviations [23–25] study the limit of the so-called empirical
(or occupancy) measure or distribution. These approaches
differ fromourwork because they do not study the spatiotem-
poral characteristics of the system.

There do exist numerous continuum models in a wide
spectrum of areas that formulate spatiotemporal phenomena
(e.g., [26–29]), many of which use PDEs. All these works dif-
fer from our continuum limit method both by the properties
of the system being studied and the analytic approaches. In
addition, most of them study distributions of limiting pro-
cesses that are random, while our limiting functions them-
selves are deterministic.

There is a vast literature on the convergence of a large
variety of network models different from ours, to fluid and
diffusion limits [30–35]. Unlike our work, this field of re-
search focuses primarily on networks with a fixed number of
nodes.

There are well-established mathematical tools to solve
PDEs, which include analytical methods, such as the method
of characteristics, integral transforms [36], and asymptotic
methods [37], and numerical methods such as the finite
element method [38] and the finite difference method [39].
The continuum model allows us to use these tools to greatly
reduce computation time.The limiting PDEs for the networks
in this paper can be solved by computer software packages
in Matlab or Comsol that use numerical methods.

3. Main Results

3.1. ContinuumModels of Uniform Networks. We introduced
the wireless sensor network model in a simple setting in
Section 2.1. In this subsection, we consider uniform networks
in amore general setting where the network nodes havemore
general transmission ranges and derive their limiting PDEs.
Such generalization is necessary for the control of nonuni-
form networks to be possible (explained in Section 3.3.1). We
consider nonuniform networks in Section 3.2.

3.1.1. A More General Network Model. Recall that in
Section 2.1 we introduced 1-step networks where the sensor
nodes communicate (exchange data and interfere) with their
immediate neighbors. We now consider 𝐿-step networks
where the nodes communicate with their communicating
neighbors, which can be further away than the immediate
ones. To be specific, at each time instant, a transmitter tries
to transmit amessage to one of its communicating neighbors;
a receiver may receive a message from one of its communi-
cating neighbors. Interference also occurs among communi-
cating neighbors: a transmission from a transmitter to a
receiver (one of the communicating neighbors of the trans-
mitter) is successful if and only if none of the other communi-
cating neighbors of the receiver is a transmitter.

For an 𝐿-step network, we call the positive integer 𝐿 its
communication range and assume that it determines the com-
municating neighbors as follows.

In a 1D 𝐿-step network of 𝑁 nodes, communicating
neighbors of the node at 𝑠 ∈ 𝑉

𝑁
⊂ R are the nodes at 𝑠± 𝑙𝑑𝑠

𝑁
,

where 1 ≤ 𝑙 ≤ 𝐿.
In 2D networks, we consider two types of communicating

neighbors. In a 2-D 𝐿-step network of𝑁 nodes, for a node at
𝑠 = (𝑠

1
, 𝑠
2
) ∈ 𝑉
𝑁
⊂ R2, its communicating neighbors are the

nodes at

(𝑠
1
± 𝑙
1
𝑑𝑠
𝑁
, 𝑠
2
± 𝑙
2
𝑑𝑠
𝑁
) , (15)

where

(i) for Type I networks, 0 ≤ 𝑙
1
, 𝑙
2
≤ 𝐿, 𝑙

1
+ 𝑙
2
> 0, and

𝑙
1
𝑙
2
= 0;

(ii) for Type II networks, 0 ≤ 𝑙
1
, 𝑙
2
≤ 𝐿 and 𝑙

1
+ 𝑙
2
> 0.

We illustrate the two types of definition of communicating
neighbors for 2-D 1-step networks in Figure 2.

We assume the use of directional antennas and power
control to accommodate such routing schemes. Here we con-
sider two types of communicating neighbors because they
may correspond to two types of routing schemes, and one
may be a better model than the other for networks with dif-
ferent design choices. For example, a Type-II network may
offer higher rate in propagating information to the destina-
tion nodes at the boundaries but at the same timemay require
more complex directional antennas and power control to
implement.

Next we derive the limiting PDEs for this more general
network model.
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𝑃2𝑃1

𝑃3

𝑃4

Type-I

(a)

Type-II

𝑃2𝑃1

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃8

(b)

Figure 2: The two types of communicating neighbors of 2D 1-step networks. The nodes pointed by the arrows are the communicating
neighbors of the node in the center. The labels on the arrows are probabilities of transmitting to the pointed communicating neighbors.

3.1.2. Limiting PDEs for Uniform Networks. The network
model above can again be written as (1), for whichTheorem 2
still holds.

We assume that if, at time 𝑘, node 𝑛 is a transmitter, it ran-
domly chooses to transmit a message to its 𝑖th communicat-
ing neighbor with probability 𝑃

𝑖
(𝑘, 𝑛), where the possible val-

ues of 𝑖 depend on the number of its communicating neigh-
bors. Note that here 𝑃

𝑖
depends on 𝑘, that is, is time variant,

which generalizes the case in Section 2.1. Correspondingly,
we now assume that

𝑃
𝑖
(𝑘, 𝑛) = 𝑝

𝑖
(𝑘𝑑𝑡
𝑁
, V
𝑁
(𝑛)) ; (16)

that

𝑝
𝑖
(𝑡, 𝑠) = 𝑏

𝑖
(𝑡, 𝑠) + 𝑐

𝑖
(𝑡, 𝑠) 𝑑𝑠

𝑁
, (17)

where 𝑏
𝑖
and 𝑐
𝑖
are C1 functions from [0, 𝑇] × D to R. We

call 𝑝
𝑖
the direction function. We have assumed above that the

probabilities 𝑃
𝑖
of the direction of transmission are the values

of the continuous functions 𝑝
𝑖
at the grid points, respectively.

This may correspond to stochastic routing schemes where
nodes in close vicinity behave similarly based on some local
information that they share or to those with an underlying
network-wide directional configuration that are continuous
in space, designed to relay messages to destination nodes at
known locations.

For a 𝐽D 𝐿-step network, let 𝜆
(𝐽, 𝐿)

be the number of the
communicating neighbors of its nodes that are away from the
boundaries. We have that

𝜆
(𝐽,𝐿)

:= {
2𝐿𝐽, for Type-I networks;
(1 + 2𝐿)

𝐽
− 1, for Type-II networks.

(18)

We assume that the communicating neighbors of each
node are indexed according only to their relative locations
with respect to the node. For example, if we call the left im-
mediate neighbor of any node its 1st neighbor, then the left
immediate neighbor of all nodes must be their 1st neighbor,

respectively. That is, for a node at V
𝑁
(𝑛), if we denote by

V
𝑁
(𝑛, 𝑖) the location of its 𝑖th communicating neighbor, then

V
𝑁
(𝑛) − V

𝑁
(𝑛, 𝑖) depends on 𝑖, but not on 𝑛.

We present below the limiting PDE in the sense of
Theorem 2 for an arbitrary 𝐽-D 𝐿-step network with both
Type-I and II communicating neighbors. The PDE is derived
in a way similar to that of (14) for the 1-D 1-step network
in Section 2, which involves writing down the expression of
the corresponding Markov chain (1) and then the difference
equation (5), except that we now have to consider transmis-
sion to and interference frommore neighbors instead of only
the two immediate ones, requiring more arduous, but still
elementary, algebraic manipulation. We omit the algebraic
details here.

Let {𝑒
1
, . . . , 𝑒

𝐽
} be the standard basis ofR𝐽; that is, 𝑒

𝑗
is the

element of R𝐽 with the 𝑗th entry being 1 and other entries 0.
Define

𝑏
(𝑗)
=

𝜆
(𝐽,𝐿)

∑

𝑖

((V
𝑁
(𝑛, 𝑖) − V

𝑁
(𝑛))
⊤

𝑒
𝑗
)
2

𝑏
𝑖

2
,

𝑐
(𝑗)
=

𝜆
(𝐽,𝐿)

∑

𝑖

(V
𝑁
(𝑛, 𝑖) − V

𝑁
(𝑛))
⊤

𝑒
𝑗
𝑐
𝑖
.

(19)

Then the limiting PDE for a 𝐽-D 𝐿-step network is

̇𝑧 =

𝐽

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠
𝑗

((1 + (𝜆
(𝐽,𝐿)

+ 1) 𝑧) (1 − 𝑧)
(𝜆
(𝐽,𝐿)
−1) 𝜕𝑧

𝜕𝑠
𝑗

)

+ 2(1 − 𝑧)
(𝜆
(𝐽,𝐿)
−1) 𝜕𝑧

𝜕𝑠
𝑗

𝜕𝑏
(𝑗)

𝜕𝑠
𝑗

+ 𝑧(1 − 𝑧)
𝜆
(𝐽,𝐿)

𝜕
2
𝑏
(𝑗)

𝜕𝑠
2

𝑗

+
𝜕

𝜕𝑠
𝑗

(𝑐
(𝑗)
𝑧(1 − 𝑧)

𝜆
(𝐽,𝐿))) + 𝑔

𝑝
,

(20)

with boundary condition 𝑧(𝑡, 𝑠) = 0. This general PDE works
for both Type-I and II communicating neighbors, provided
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that 𝜆
(𝐽,𝐿)

is calculated with (18) accordingly. We will present
some concrete examples of the PDEs and the corresponding
network models in Section 4.1.

3.2. ContinuumModels of NonuniformNetworks. In this sub-
section we extend the continuummodels to nonuniform and
mobile networks. First we introduce the transformation func-
tion, which is the mapping between the node locations of
uniform and nonuniform networks.Then, through the trans-
formation function, we derive the continuum limits of non-
uniform and mobile networks with given trajectories and
transmissions. We consider the domain D ⊂ R𝐽 and a fixed
time interval [0, 𝑇].

3.2.1. Location Transformation Function. For networks with
the design of uniform node placement, there may be small
perturbations to the uniformgrid because of imperfect imple-
mentation or landscape limitation; some sensor networks
may have nodes with moderate mobility. The study of non-
uniformnetworks here ismotivated by the need formodeling
these networks. Againwe assume the use of directional anten-
nas and power control to preserve the neighborhood struc-
ture in the nonuniform or mobile networks.

Consider a nonuniform and possibly mobile network
with𝑁 nodes indexed by 𝑛 = 1, . . . , 𝑁 overD. The nodes no
longer are located at the grid points 𝑉

𝑁
and possibly change

their locations at each time step 𝑘.
We denote by Ṽ

𝑁
(𝑘, 𝑛) the location of node 𝑛 of the

nonuniform network at time 𝑘. Let Ṽ
𝑁
(𝑘) = [Ṽ

𝑁
(𝑘, 1), . . . ,

Ṽ
𝑁
(𝑘,𝑁)] and 𝑉̃

𝑁
= [Ṽ
𝑁
(0), . . . , Ṽ

𝑁
(𝐾
𝑁
)]. Assume that there

exists a smooth transformation function 𝜙(𝑡, 𝑠) : [0, 𝑇]×D →

D such that, for each 𝑘 and 𝑛,

Ṽ
𝑁
(𝑘, 𝑛) = 𝜙 (𝑘𝑑𝑡

𝑁
, V
𝑁
(𝑛)) , (21)

and, for each 𝑡
𝑜
, 𝜙(𝑡
𝑜
, ⋅) is bijective. Hence 𝜙 is the mapping

between the nonuniform node locations and uniform grid
points.

Note that, for mobile networks, by assuming that 𝜙(𝑡
𝑜
, ⋅)

is bijective for each 𝑡
𝑜
, we focus on a subset of all possible

nodemovements, which simplifies the problem.This restricts
the mobility of nodes but is still a reasonable model in many
practical scenarios, for example, in sensor networks where
each node collects environmental data from its designated
area andmoves in a small neighborhood of, instead of arbitra-
rily far away from, their original locations.

Since 𝜙(𝑡
𝑜
, ⋅) is bijective, its inverse with respect to 𝑠 exists

and we denote it by 𝜂 : [0, 𝑇] ×D → D; that is, for each 𝑡
and 𝑠,

𝜂 (𝑡, 𝜙 (𝑡, 𝑠)) = 𝑠. (22)

Throughout the paper we assume fixed nodes on the bound-
ary; that is, 𝜙(𝑡, 𝑠) = 𝑠 for 𝑠 on the boundary ofD.

For given 𝑁 and 𝑉̃
𝑁
, a transformation function 𝜙 can be

constructed using some interpolation scheme. Note that 𝜙 is
not unique because of the freedom we have in choosing dif-
ferent schemes. Let 𝜙

𝑗
and 𝜂
𝑗
be the 𝑗th components of 𝜙 and

𝜂, respectively, where 𝑗 = 1, . . . , 𝐽. For the rest of the paper,

we assume that for 𝑖 ̸=𝑗,
𝜕𝜙
𝑗

𝜕𝑠
𝑖

= 0. (23)

Then equivalently, for 𝑖 ̸=𝑗, (𝜕𝜂
𝑗
/𝜕𝑠
𝑖
) = 0. This assumption

can be achieved by choosing a proper interpolation scheme,
and it simplifies the analysis below.

On the other hand, a given 𝜙, by (21), specifies a sequence
{𝑉̃
𝑁
} of nonuniform node locations indexed by𝑁. We study

the continuum limit of a sequence of nonuniform networks
associated with such {𝑉̃

𝑁
}; that is, for each 𝑁, the 𝑁-node

nonuniform network has node locations 𝑉̃
𝑁
.

3.2.2. Continuum Limits of Mirroring Networks. For an 𝑁-
node network (uniform or nonuniform), we define its trans-
mission-interference rule to be

(i) the probability that node 𝑚 sends a message to node
𝑛 at time 𝑘;

(ii) the fact of whether nodes𝑚 and 𝑛 interfere at time 𝑘,
for 𝑚, 𝑛 = 1, . . . , 𝑁 and 𝑘 = 0, 1, . . . , 𝐾

𝑁
. The trans-

mission-interference rule specifies how the nodes in a net-
work interact with each other at each time step. At each time
step, each node chooses to be a transmitter with a certain
probability; if it chooses to be a transmitter, it then chooses
one of its communicating neighbors to send amessage to.The
first component of this definition is determined by the proba-
bilities of the above choices of all the nodes at all the time
steps.The second component of this definition is determined
by the neighborhood structure of the network at each time
step; that is, which nodes are the communicating neighbors
of each node (so that they interfere with it) at each time step.

For each 𝑁, write 𝑋
𝑁
= [𝑋
𝑁
(0), . . . , 𝑋

𝑁
(𝐾
𝑁
)]. Then we

can describe a network during [0, 𝑇] entirely by its states𝑋
𝑁
.

Define the network behavior of a network𝑋
𝑁
to be the com-

bination of its initial state 𝑋
𝑁
(0), transmission-interference

rule, and incoming traffic 𝑔(𝑛). Two sequences {𝑋
𝑁
} and

{𝑋
𝑁
} of networks indexed by the number 𝑁 of nodes, with

different node locations in general, are said to mirror each
other if, for each 𝑁, 𝑋

𝑁
and 𝑋

𝑁
have the same network

behavior. We state in the following theorem the relationship
between the continuum limits of mirroring networks.

Theorem 4. Suppose that a sequence {𝑋
𝑁
} of networks has

node locations specified by a given transformation function 𝜙
with inverse 𝜂. If {𝑋

𝑁
}mirrors a sequence {𝑋

𝑁
} of uniformnet-

works, then {𝑋
𝑁
} converges to a function 𝑞(𝑡, 𝑠) on [0, 𝑇] ×D

in the sense of Theorem 2 if and only if {𝑋
𝑁
} converges to

𝑢 (𝑡, 𝑠) := 𝑞 (𝑡, 𝜂 (𝑡, 𝑠)) , (24)

in the sense that almost surely there exist a sequence {𝛾
𝑁
}, 𝑐
0
<

∞, 𝑁
0
, and 𝑀̂

1
< 𝑀̂
2
< 𝑀̂
3
, . . ., such that as 𝑁 → ∞,

𝛾
𝑁
→ 0, and for each𝑁 ≥ 𝑁

0
and each𝑀

𝑁
≥ 𝑀̂
𝑁
,

max
𝑘=0,...,𝐾

𝑁

𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑁
(𝑘, 𝑛)

𝑀
𝑁

− 𝑢 (𝑘𝑑𝑡
𝑁
, Ṽ
𝑁
(𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑐
0
𝛾
𝑁
, (25)

where Ṽ
𝑁
(𝑘, 𝑛) is the location of node 𝑛 at time 𝑘 in𝑋

𝑁
.
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Proof. “⇒”: Since {𝑋
𝑁
} and {𝑋

𝑁
} mirror each other, they

would converge to the same continuum limit on a uniform
grid.Therefore, byTheorem 2, almost surely, there exist a seq-
uence {𝛾

𝑁
}, 𝑐
0
< ∞, 𝑁

0
, and 𝑀̂

1
< 𝑀̂
2
< 𝑀̂
3
, . . ., such that

as 𝑁 → ∞, 𝛾
𝑁

→ 0, and for each 𝑁 ≥ 𝑁
0
and each

𝑀
𝑁
≥ 𝑀̂
𝑁
,

max
𝑘=0,...,𝐾

𝑁

𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑁
(𝑘, 𝑛)

𝑀
𝑁

− 𝑞 (𝑘𝑑𝑡
𝑁
, V
𝑁
(𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑐
0
𝛾
𝑁
. (26)

We note that

𝑞 (𝑘𝑑𝑡
𝑁
, V
𝑁
(𝑛)) = 𝑢 (𝑘𝑑𝑡

𝑁
, 𝜙 (𝑘𝑑𝑡

𝑁
, V
𝑁
(𝑛)))

= 𝑢 (𝑘𝑑𝑡
𝑁
, Ṽ
𝑁
(𝑘, 𝑛)) ,

(27)

where the first equality follows from (22) and (24), and the
second from (21). Then (26) is equivalent to (25).

“⇐”: Done analogously in the opposite direction.

3.2.3. Sensitivity of Uniform Continuum Models to Location
Perturbation. In networks with nodes not necessarily at, but
close to, the uniform grid points, we can use uniform contin-
uum models to approximate nonuniform networks, that is,
treat them as uniform while deriving limiting PDEs. Then
a certain approximation error arises from ignoring nonuni-
formity. If we treat such nonuniformities as perturbations to
the uniformmodels, the above theorem enables us to analyze
the error sensitivity of these models with respect to such per-
turbation.

Consider a sequence {𝑋
𝑁
} of nonuniform networks with

node locations specified by the transformation function 𝜙

with inverse 𝜂. Suppose that we ignore the nonuniformity and
approximate {𝑋

𝑁
} by the continuum limit 𝑞 of the sequence

{𝑋
𝑁
} of uniform networks that mirrors {𝑋

𝑁
}. We now chara-

cterize the maximum approximation error

𝜀
𝑁
:= max
𝑘=0,...,𝐾

𝑁

𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑁
(𝑘, 𝑛)

𝑀
𝑁

− 𝑞 (𝑘𝑑𝑡
𝑁
, Ṽ
𝑁
(𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(28)

by 𝜙 in the following proposition.

Proposition 5. Almost surely, there exist a sequence {𝛾
𝑁
}, 𝑐
0
,

𝑐
1
< ∞,𝑁

0
, and 𝑀̂

1
< 𝑀̂
2
< 𝑀̂
3
, . . ., such that as𝑁 → ∞,

𝛾
𝑁
→ 0, and for each𝑁 ≥ 𝑁

0
and each𝑀

𝑁
≥ 𝑀̂
𝑁
,

𝜀
𝑁
≤ 𝑐
0
𝛾
𝑁
+ sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝑞𝑠 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝜂 (𝑡, 𝑠) − 𝑠
󵄨󵄨󵄨󵄨

+ 𝑐
1
sup
(𝑡,𝑠)

(𝜂 (𝑡, 𝑠) − 𝑠)
2

.

(29)

Proof. We have, from the triangle inequality, that

𝜀
𝑁
≤ max
𝑘,𝑛

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑁
(𝑘, 𝑛)

𝑀
𝑁

− 𝑢 (𝑘𝑑𝑡
𝑁
, Ṽ
𝑁
(𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑘𝑑𝑡
𝑁
, Ṽ
𝑁
(𝑘, 𝑛)) − 𝑞 (𝑘𝑑𝑡

𝑁
, Ṽ
𝑁
(𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

≤ max
𝑘,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋
𝑁
(𝑘, 𝑛)

𝑀
𝑁

− 𝑢 (𝑘𝑑𝑡
𝑁
, Ṽ
𝑁
(𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
(𝑡,𝑠)∈[0,𝑇]×D

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠) − 𝑞 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 ,

(30)

where 𝑢 is defined by (24).
ByTheorem 4, almost surely, there exist a sequence {𝛾

𝑁
},

𝑐
0
< ∞,𝑁

0
, and 𝑀̂

1
< 𝑀̂
2
< 𝑀̂
3
, . . ., such that as𝑁 → ∞,

𝛾
𝑁
→ 0, and for each𝑁 ≥ 𝑁

0
and each𝑀

𝑁
≥ 𝑀̂
𝑁
, the first

term above is smaller than 𝑐
0
𝛾
𝑁
.

The second term represents the error caused by location
perturbation. By (24) and Taylor’s theorem, there exists 𝑐

1
<

∞ such that

𝑢 (𝑡, 𝑠) − 𝑞 (𝑡, 𝑠) = 𝑞 (𝑡, 𝜂 (𝑡, 𝑠)) − 𝑞 (𝑡, 𝑠)

≤ 𝑞
𝑠
(𝑡, 𝑠) (𝜂 (𝑡, 𝑠) − 𝑠) + 𝑐

1
(𝜂 (𝑡, 𝑠) − 𝑠)

2

.

(31)

Therefore we have that

sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠) − 𝑞 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 ≤ sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝑞𝑠 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝜂 (𝑡, 𝑠) − 𝑠
󵄨󵄨󵄨󵄨

+ 𝑐
1
sup
(𝑡,𝑠)

(𝜂 (𝑡, 𝑠) − 𝑠)
2

.

(32)

By (30) this completes the proof.

This proposition states that, for fixed 𝑞 and for𝑁 and𝑀
𝑁

sufficiently large, 𝜀
𝑁
is dominated by the supremum location

perturbation sup
(𝑡,𝑠)

|𝜂(𝑡, 𝑠) − 𝑠|, when it is close to 0. We note
that by definition sup

(𝑡,𝑠)
|𝜂(𝑡, 𝑠) − 𝑠| = sup

(𝑡,𝑠)
|𝜙(𝑡, 𝑠) − 𝑠|. In

the case where 𝑋
𝑁
are uniform; that is, 𝜂(𝑡, 𝑠) = 𝜙(𝑡, 𝑠) = 𝑠,

the last two terms on the right-hand side of (29) vanish.

3.2.4. Limiting PDEs for Nonuniform Networks. Consider a
sequence {𝑋

𝑁
} of networks with given network behavior

and with node locations specified by a given transformation
function 𝜙 with inverse 𝜂. If a sequence {𝑋

𝑁
} of uniform

networksmirrors {𝑋
𝑁
}, from this given network behavior, we

can find the continuum limit 𝑞 of {𝑋
𝑁
} by constructing its

limiting PDE as in Section 3.1.2. Suppose that this PDE has
the form

̇𝑞 (𝑡, 𝑠) = 𝑄(𝑠, 𝑞 (𝑡, 𝑠) ,
𝜕𝑞

𝜕𝑠
𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑞

𝜕𝑠
2

𝑗

(𝑡, 𝑠)) , (33)

with initial condition 𝑞(0, 𝑠) = 𝑞
0
(𝑠), where 𝑗 = 1, . . . , 𝐽, 𝑡 ∈

[0, 𝑇], and 𝑠 = (𝑠
1
, . . . , 𝑠

𝐽
) ∈ D. By Theorem 4, we have that

the continuum limit 𝑢(𝑡, 𝑠) of {𝑋
𝑁
} satisfies (24).

However, in general, we can only solve (33) numerically
instead of analytically. In fact, all the limiting PDEs in this
paper are solved by software using numericalmethods. In this
case we cannot find the closed-form expression of 𝑢 from 𝑞

using (24). Instead, we derive a PDE that 𝑢 satisfies so that we
can solve it numerically.
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Suppose that 𝑢(𝑡, 𝑠) solves the PDE

̇𝑢 (𝑡, 𝑠) = Γ(𝑠, 𝑢 (𝑡, 𝑠) ,
𝜕𝑢

𝜕𝑠
𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑢

𝜕𝑠
2

𝑗

(𝑡, 𝑠)) , (34)

with initial condition 𝑢(0, 𝑠) = 𝑢
0
(𝑠), where 𝑗 = 1, . . . , 𝐽 and

(𝑡, 𝑠) ∈ [0, 𝑇] ×D. We now find Γ from the known PDE (33).
By (23), (24), and the chain rule,

𝜕𝑢

𝜕𝑠
𝑗

(𝑡, 𝑠) =

𝜕𝜂
𝑗

𝜕𝑠
𝑗

(𝑡, 𝑠)
𝜕𝑞

𝜕𝑠
𝑗

(𝑡, 𝜂 (𝑡, 𝑠)) . (35)

By (23), the product rule, and the chain rule,

𝜕
2
𝑢

𝜕𝑠
2

𝑗

(𝑡, 𝑠) =

𝜕
2
𝜂
𝑗

𝜕𝑠
2

𝑗

(𝑡, 𝑠)
𝜕𝑞

𝜕𝑠
𝑗

(𝑡, 𝜂 (𝑡, 𝑠))

+ (

𝜕𝜂
𝑗

𝜕𝑠
𝑗

(𝑡, 𝑠))

2

𝜕
2
𝑞

𝜕𝑠
2

𝑗

(𝑡, 𝜂 (𝑡, 𝑠)) .

(36)

Note that, without assumption (23), the expression of the
derivatives above would be much more complex. Then by
(24), (33), and (34) we have

Γ(𝑠, 𝑢 (𝑡, 𝑠) ,
𝜕𝑢

𝜕𝑠
𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑢

𝜕𝑠
2

𝑗

(𝑡, 𝑠))

= 𝑄(𝜂 (𝑡, 𝑠) , 𝑢 (𝑡, 𝑠) ,

(𝜕𝑢/𝜕𝑠
𝑗
) (𝑡, 𝑠)

(𝜕𝜂
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠)

,

(𝜕
2
𝑢/𝜕𝑠
2

𝑗
) (𝑡, 𝑠)

((𝜕𝜂
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠))

2
,

−

(𝜕
2
𝜂
𝑗
/𝜕𝑠
2

𝑗
) (𝑡, 𝑠) (𝜕𝑢/𝜕𝑠

𝑗
) (𝑡, 𝑠)

((𝜕𝜂
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠))

3
) ,

(37)

where 𝑢
0
(𝑠) = 𝑞

0
(𝜂(0, 𝑠)). Hence we find the limiting PDE

(34) of {𝑋
𝑁
}.

We present a concrete numerical example of the nonuni-
form network and its continuum limit later in Section 4.2.

3.3. Control of Nonuniform Networks. The global character-
istic of the network is determined by the transmission-inter-
ference rule defined in Section 3.2.2 and is described by its
limiting PDE. The transmission-interference rule depends
entirely on the transmission range 𝐿 and the probabilities 𝑃

𝑖
,

which in turn by (16) depends on the direction function 𝑝
𝑖
.

On the other hand, 𝐿 and 𝑝
𝑖
also determine the limiting PDE

of a sequence of networks.Therefore we can control the trans-
mission-interference rule to obtain the desired limiting PDE,
and hence the desired global characteristic of the network, by
changing 𝐿 and 𝑝

𝑖
.

For uniform networks, this procedure is straightforward
because 𝐿 and 𝑝

𝑖
relate directly to the form and coefficients of

the limiting PDE. For example, for the 1D 1-step network in
Section 2.2 with limiting PDE (14), increasing the convection
𝑐 results in a greater bias of the PDE solution to the left side
of the domain. (A numerical example of this network is pro-
vided in Section 4.1.1.)

We now study this kind of control for nonuniform and
possibly mobile networks. For such networks, we have to take
into account the varying node locations in order to still
achieve certain global characteristics. The goal is to develop
a control method so that the continuum limit is invariant
under node locations and mobility, that is, remains the same
as a reference, which is the continuum limit of the sequence
of corresponding uniform networks with a certain transmis-
sion-interference rule. We then say the sequence has a loca-
tion-invariant continuum limit.

We illustrate this idea in Figure 3. The plus signs in both
figures represent the queues of a certain uniform network at a
certain time.The solid lines in both figures represent the con-
tinuum limit (the limiting PDE solution) of the same uniform
network at the same time.Thus they resemble each other. On
the left, the diamonds represent the queues of a nonuniform
network with the same transmission-interference rule as the
uniform network, but no longer resembling the continuum
limit because of the changes in node locations. On the right,
the circles represent the queues of a second nonuniform
networkwith the same node locations as the first nonuniform
network, but under some control over its transmission-inter-
ference rule, therefore resembling the continuum limit of the
uniform network. In other words, location invariance in the
second nonuniform network has been achieved by network
control. Apparently, for this particular network, such a con-
trol scheme has to be able to direct more (and the right
amount of) data traffic to the right-hand side. Inwhat follows,
we describe how this can be done by properly increasing the
probabilities of the nodes transmitting to the right through
the use of the limiting PDEs.

Throughout the paper we assume no control over node
location or motion.

3.3.1. Transmission-Interference Rule for Location Invariance.
Consider a sequence {𝑋

𝑁
} of nonuniform networks whose

node locations are specified by a given transformation func-
tion 𝜙 with inverse 𝜂 and a sequence {𝑋

𝑁
} of uniform net-

works with given transmission-interference rule and con-
tinuum limit 𝑢. We want to control the transmission-inter-
ference rule of {𝑋

𝑁
} so that it also converges to 𝑢, that is,

obtains the location-invariant continuum limit.
Again we do not assume a known closed-form expression

of 𝑢. Instead, assume that 𝑢(𝑡, 𝑠) solves (34), except that Γ is
now given.

Define

𝑞 (𝑡, 𝑠) = 𝑢 (𝑡, 𝜙 (𝑡, 𝑠)) . (38)

Suppose that a sequence {𝑋
𝑁
} of uniform networks has

continuum limit 𝑞(𝑡, 𝑠). By Theorem 4, for {𝑋
𝑁
} to converge

to this desired 𝑢(𝑡, 𝑠), it suffices that {𝑋
𝑁
} mirrors {𝑋

𝑁
}.

Therefore all we have to do is to specify the transmission-
interference rule of {𝑋

𝑁
} to {𝑋

𝑁
}. Next we find this trans-

mission-interference rule.
Suppose that 𝑞(𝑡, 𝑠) solves (33), except that 𝑄 is now

unknown. Again using the product rule and the chain rule as
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Uncontrolled network

Uniform network
Limit of uniform network

(a)

Controlled network

Uniform network
Limit of uniform network

(b)

Figure 3: An illustration of control of nonuniform networks. On the 𝑥-axis, the × marks are the uniform grid, and the Δ marks are the
nonuniform node locations.

we did in Section 3.2.4, by (33), (34), and (38), we have that

𝑄(𝑠, 𝑞 (𝑡, 𝑠) ,
𝜕𝑞

𝜕𝑠
𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑞

𝜕𝑠
2

𝑗

(𝑡, 𝑠))

= Γ(𝜙 (𝑡, 𝑠) , 𝑞 (𝑡, 𝑠) ,

(𝜕𝑞/𝜕𝑠
𝑗
) (𝑡, 𝑠)

(𝜕𝜙
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠)

,

(𝜕
2
𝑞/𝜕𝑠
2

𝑗
) (𝑡, 𝑠)

((𝜕𝜙
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠))

2

−

(𝜕
2
𝜙
𝑗
/𝜕𝑠
2

𝑗
) (𝑡, 𝑠) (𝜕𝑞/𝜕𝑠

𝑗
) (𝑡, 𝑠)

((𝜕𝜙
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠))

3
) ,

(39)

and 𝑞
0
(𝑠) = 𝑢

0
(𝜙(0, 𝑠)), where 𝑗 = 1, . . . , 𝐽.

Since 𝑞(𝑡, 𝑠) is the continuum limit of a sequence of
uniform networks, (33) must be a case of (20), the general
limiting PDE. Therefore we can replace the left-hand side of
(39) by the right-hand side of (20) and get

𝐽

∑

𝑗=1

(𝑏
(𝑗)
(𝑡, 𝑠)

𝜕

𝜕𝑠
𝑗

( (1 + (𝜆
(𝐽,𝐿)

+ 1) 𝑧 (𝑡, 𝑠))

× (1 − 𝑧 (𝑡, 𝑠))
(𝜆
(𝐽,𝐿)
−1) 𝜕𝑧

𝜕𝑠
𝑗

(𝑡, 𝑠))

+ 2(1 − 𝑧 (𝑡, 𝑠))
(𝜆
(𝐽,𝐿)
−1) 𝜕𝑧

𝜕𝑠
𝑗

(𝑡, 𝑠)
𝜕𝑏
(𝑗)

𝜕𝑠
𝑗

(𝑡, 𝑠)

+ 𝑧 (𝑡, 𝑠) (1 − 𝑧 (𝑡, 𝑠))
𝜆
(𝐽,𝐿)

𝜕
2
𝑏
(𝑗)

𝜕𝑠
2

𝑗

(𝑡, 𝑠)

+
𝜕

𝜕𝑠
𝑗

(𝑐
(𝑗)
(𝑡, 𝑠) 𝑧 (𝑡, 𝑠) (1 − 𝑧 (𝑡, 𝑠))

𝜆
(𝐽,𝐿))) + 𝑔

𝑝
(𝑡, 𝑠)

= Γ(𝜙 (𝑡, 𝑠) , 𝑞 (𝑡, 𝑠) ,

(𝜕𝑞/𝜕𝑠
𝑗
) (𝑡, 𝑠)

(𝜕𝜙
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠)

,

(𝜕
2
𝑞/𝜕𝑠
2

𝑗
) (𝑡, 𝑠)

((𝜕𝜙
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠))

2

−

(𝜕
2
𝜙
𝑗
/𝜕𝑠
2

𝑗
) (𝑡, 𝑠) (𝜕𝑞/𝜕𝑠

𝑗
) (𝑡, 𝑠)

((𝜕𝜙
𝑗
/𝜕𝑠
𝑗
) (𝑡, 𝑠))

3
) .

(40)

We call this the comparison equation. If we can solve it for 𝐿,
𝑝
𝑙
, and 𝑔

𝑝
, our goal is accomplished because they determine

the network behavior, which includes the transmission-inter-
ference rule, for each𝑁-node uniformnetwork in themirror-
ing sequence {𝑋

𝑁
}. If we assign the same transmission-inter-

ference rule to {𝑋
𝑁
}, then it has the location-invariant con-

tinuum limit 𝑢(𝑡, 𝑠).
We note a constraint for (40): by (16), for each 𝑖, 𝑝

𝑖
has to

be sufficiently small such that, for each 𝑘 and 𝑛,

𝑃
𝑖
(𝑘, 𝑛) ∈ [0, 1] , ∑

𝑖

𝑃
𝑖
(𝑘, 𝑛) ∈ [0, 1] . (41)

In turn by (17), 𝑏
𝑖
and 𝑐
𝑖
have to be sufficiently small for (41)

to hold. By further observing (18) and (19), it follows that the
transmission range 𝐿 has to be sufficiently large. For this rea-
son, it is necessary to generalize from 1-step to 𝐿-step trans-
mission range, as we did in Section 3.1. Note that with this
constraint, (40) is still underdetermined. Such freedom gives
us a class of transmission-interference rules to assign to {𝑋

𝑁
}

instead of just one.
Oneway to solve (40) is this. Suppose that we have chosen

𝐿 sufficiently large. Since (34) is now given, we know the
numerical form of 𝑢 and in turn that of 𝑞 by (38). For fixed 𝑡

𝑜
,

we put 𝑞(𝑡
𝑜
, 𝑠) in (40). For each 𝑗, if we fix 𝑏(𝑗)(𝑡

𝑜
, 𝑠), then we

can solve (40), which is now an ordinary differential equation
(ODE), for 𝑐(𝑗)(𝑡

𝑜
, 𝑠). Similarly, fixing 𝑐(𝑗)(𝑡

𝑜
, 𝑠)makes (40) an

ODE that we can solve for 𝑏(𝑗)(𝑡
𝑜
, 𝑠). Then by (19) we can fur-

ther choose 𝑏
𝑖
and 𝑐
𝑖
and further determine𝑝

𝑖
by (17).Thuswe
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have found 𝑃
𝑖
by (16), which together with 𝐿 determines the

transmission-interference rule.

3.3.2. Distributed Control Using Local Information. The con-
trol method presented above is centralized in the sense that it
requires knowledge of the transformation function 𝜙 overD.
This assumes that each node knows the location of all other
nodes. However, this is generally not the case in practice,
especially for networks without a central control unit. In this
subsection we present a distributed version of our control
method, where only the locations of nearby nodes are needed
for each node to determine its transmission-interference rule.
We can do this because all the information needed to solve the
comparison equation (40) can be approximated locally at
each node.

The derivatives of 𝜙 in (40) can be approximated from the
locations of neighboring nodes using a certain finite differ-
encemethod. For example, in the 1-D case, we can use the fol-
lowing approximation:

𝜕𝜙

𝜕𝑠
(𝑡, 𝑠) ≈

𝜙 (𝑘𝑑𝑡
𝑁
, V
𝑁
(𝑛 + 1)) − 𝜙 (𝑘𝑑𝑡

𝑁
, V
𝑁
(𝑛 − 1))

2𝑑𝑠
𝑁

=
Ṽ
𝑁
(𝑘, 𝑛 + 1) − Ṽ

𝑁
(𝑘, 𝑛 − 1)

2𝑑𝑠
𝑁

,

(42)

where 𝑡 = 𝑘𝑑𝑡
𝑁
and 𝑠 ∈ [V

𝑁
(𝑛 − 1), V

𝑁
(𝑛 + 1)). Note that we

can also use the location information of further neighbors to
get a more accurate approximation of 𝜕𝜙/𝜕𝑠. The trade-off
between locality and accuracy can be flexibly adjusted.

The ODE for 𝑏(𝑗) or 𝑐(𝑗) can also be solved based on local
information using numerical procedures such as Euler’s
method [40].

We present two concrete examples of network control in
1D and 2D case, in Sections 4.3.1 and 4.3.2, respectively.

4. Numerical Examples

We now present numerical examples for continuum model
of uniform networks, continuum model of nonuniform net-
works, and control of nonuniform networks in Sections 4.1,
4.2, and 4.3, respectively.

4.1. Examples of Uniform Networks

4.1.1. 1D Example. We discussed the 1D 1-step network as a
running example through Section 2 and derived its limiting
PDE (14). We now runMonte Carlo simulation for such a net
work and compare the simulation result with the limiting
PDE solution. (Simulations and PDEs presented in this paper
are run and solved using Matlab.) We set the spatial domain
D = [−1, 1]. We set the number of nodes 𝑁 = 50 and the
normalizing parameter 𝑀 = 5000. We set the initial condi-
tion of the limiting PDE 𝑧

0
(𝑠) = 𝑟

1
𝑒
−𝑠
2

, where 𝑟
1
> 0 is a con-

stant, so that initially the nodes in the middle have messages
to transmit, while those near the boundaries have very few.
We set the incoming traffic function 𝑔

𝑝
(𝑠) = 𝑟

2
𝑒
−𝑠
2

, where

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

Monte Carlo simulation
PDE solution

Figure 4:TheMonte Carlo simulation and the PDE solution of a 1D
1-step network.

𝑟
2
> 0 is a constant determining the total load of the network,

so that the nodes in the middle generate more messages than
those near the boundaries. We set the diffusion function 𝑏 =
1/2 and the convection function 𝑐 = 2, so that each node
transmits to the leftwith a higher probability than to the right;
that is, more data traffic in the network is routed to the left. In
Figure 4, we show the PDE solution and the simulation result
at time 𝑡 = 1 s, where the 𝑥-axis denotes the node location
and 𝑦-axis denotes the normalized queue length. As we can
see, the PDE well resembles the network.

4.1.2. 2D Examples. We consider 2-D 1-step networks with
the two types of communicating neighbors separately (as
illustrated in Figure 2).

Type I Communicating Neighbors. For 2D 1-step networks of
Type I communicating neighbors, we define the probabilities
𝑃
𝑖
of transmitting to the 4 communicating neighbors as in

Figure 2. This is the same as the 2D network studied in [1].
The limiting PDE for this network is as follows:

̇𝑧 =

2

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠
𝑗

((1 + 5𝑧) (1 − 𝑧)
3 𝜕𝑧

𝜕𝑠
𝑗

)

+ 2(1 − 𝑧)
3 𝜕𝑧

𝜕𝑠
𝑗

𝜕𝑏
(𝑗)

𝜕𝑠
𝑗

+ 𝑧(1 − 𝑧)
4 𝜕
2
𝑏
(𝑗)

𝜕𝑠
2

𝑗

+
𝜕

𝜕𝑠
𝑗

(𝑐
(𝑗)
𝑧(1 − 𝑧)

4
)) + 𝑔

𝑝
,

(43)

where 𝑏(1) = (𝑏
1
+𝑏
2
)/2, 𝑏(2) = (𝑏

3
+𝑏
4
)/2, 𝑐

(1)
= 𝑐
1
−𝑐
2
, 𝑐(2) =

𝑐
3
− 𝑐
4
, and (𝑠

1
, 𝑠
2
) ∈ D. (As mentioned in Section 3.1.2, we

omit the detailed algebraic derivation.)
We consider such a network over the spatial domain𝐷 =

[−1, 1] × [−1, 1]. We set the number of nodes𝑁 = 80 × 80
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and the normalizing parameter 𝑀 = 80
3. We set the initial

condition

𝑧
0
(𝑠) = 𝑟

1
𝑒
−4((𝑠
1
+0.65)

2
+(𝑠
2
+0.75)

2
)

+ 𝑟
2
𝑒
−3((𝑠
1
−0.75)

2
+(𝑠
2
−0.85)

2
)

+ 𝑟
3
𝑒
−2((𝑠
1
−0.75)

2
+(𝑠
2
+0.75)

2
)

+ 𝑟
4
𝑒
−3((𝑠
1
+0.85)

2
+(𝑠
2
−0.75)

2
)
,

(44)

where the constants 𝑟
1
, . . . , 𝑟

4
> 0, so that initially the nodes

near (−0.65, −0.75), (0.75, 0.85), (0.75, −0.75), and (−0.85,

0.75) have more messages to transmit than those far away
from these points. We set the incoming traffic function

𝑧
0
(𝑠) = 𝑟

5
𝑒
−4((𝑠
1
+0.65)

2
+(𝑠
2
+0.75)

2
)

+ 𝑟
6
𝑒
−3((𝑠
1
−0.75)

2
+(𝑠
2
−0.85)

2
)

+ 𝑟
7
𝑒
−2((𝑠
1
−0.75)

2
+(𝑠
2
+0.75)

2
)

+ 𝑟
8
𝑒
−3((𝑠
1
+0.85)

2
+(𝑠
2
−0.75)

2
)
,

(45)

where the constants 𝑟
5
, . . . , 𝑟

8
> 0, so that the nodes near

(−0.65, −0.75), (0.75, 0.85), (0.75, −0.75), and (−0.85, 0.75)

generate more messages to transmit than those far away
from these points. This may correspond to four information
sources at these four points that generate different rate of data
traffic. Set the diffusion functions 𝑏

𝑖
= 1/4, where 𝑖 = 1, . . . , 4,

and the convection functions 𝑐
1
= 0, 𝑐

2
= 1, 𝑐

3
= 0.1, and

𝑐
4
= −0.1. Hence 𝑏(1) = 𝑏

(2)
= 1/4, 𝑐(1) = −1, and 𝑐(2) = 0.2,

so that more data traffic in the network is routed to the south
and the east. In Figure 5, we show the contour of the PDE
solution and the simulation result at 𝑡 = 0.1 s. We can again
see the resemblance.

Type II Communicating Neighbors. For 2-D 1-step networks of
Type II communicating neighbors, we define the probabilities
𝑃
𝑖
of transmitting to the 8 communicating neighbors as in

Figure 2. The limiting PDE is as follows:

̇𝑧 =

2

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠
𝑗

((1 + 9𝑧) (1 − 𝑧)
7 𝜕𝑧

𝜕𝑠
𝑗

)

+ 2(1 − 𝑧)
7 𝜕𝑧

𝜕𝑠
𝑗

𝜕𝑏
(𝑗)

𝜕𝑠
𝑗

+ 𝑧(1 − 𝑧)
8 𝜕
2
𝑏
(𝑗)

𝜕𝑠
2

𝑗

+
𝜕

𝜕𝑠
𝑗

(𝑐
(𝑗)
𝑧(1 − 𝑧)

8
)) + 𝑔

𝑝
,

(46)

where 𝑏(1) = ∑
𝑙=1,2,5,...,8

(𝑏
𝑙
/2), 𝑏(2) = ∑

𝑙=3,4,5,...,8
(𝑏
𝑙
/2), 𝑐(1) =

𝑐
1
− 𝑐
2
+ 𝑐
5
− 𝑐
7
+ 𝑐
6
− 𝑐
8
, and 𝑐(2) = 𝑐

3
− 𝑐
4
+ 𝑐
5
− 𝑐
6
+ 𝑐
7
− 𝑐
8
.

Again the spatial domain 𝐷 = [−1, 1] × [−1, 1]. We set
the number of nodes 𝑁 = 80 × 80 and the normalizing
parameter𝑀 = 80

3. We set the initial condition

𝑧
0
(𝑠) = 𝑟

1
𝑒
−4((𝑠
1
+0.55)

2
+(𝑠
2
+0.55)

2
)

+ 𝑟
2
𝑒
(𝑠
1
−0.55)

2
+(𝑠
2
−0.55)

2

,

(47)

where the constants 𝑟
1
, 𝑟
2
> 0, so that initially the nodes

near (−0.55, −0.55) and (0.55, 0.55) have more messages to
transmit than those far away from these two points. We set
the incoming incoming traffic function

𝑔
𝑝
(𝑠) = 𝑟

3
𝑒
−4((𝑠
1
+0.55)

2
+(𝑠
2
+0.55)

2
)

+ 𝑟
4
𝑒
(𝑠
1
−0.55)

2
+(𝑠
2
−0.55)

2

,

(48)

where the constants 𝑟
3
, 𝑟
4
> 0, so that the nodes near (−0.55,

−0.55) and (0.55, 0.55) generate more messages to transmit
than those far away from these two points. This may corre-
spond to two information sources at these two points that
generate different rates of data traffic. In Figure 6, we show the
contours of the PDE solution and the simulation results with
the diffusion functions 𝑏

𝑖
= 1/8, for 𝑖 = 1, . . . , 8, and convec-

tion functions 𝑐
1
= 1, 𝑐
2
= 2, 𝑐
3
= 3, 𝑐
4
= 4, 𝑐
5
= −1, 𝑐

6
= −2,

𝑐
7
= −3, and 𝑐

8
= −4. Hence 𝑏(1) = 𝑏

(1)
= 3/8, 𝑐(1) = 3,

and 𝑐(2) = 1, so that more data traffic in the network is routed
to the west and the south.

The reader can verify that the two PDEs (43) and (46)
above are special cases of (20).

4.2. Example of Nonuniform Network. We illustrate a 2-D
nonuniform network𝑋

𝑁
, its continuum limit 𝑢(𝑡, 𝑠), and the

continuum limit 𝑞(𝑡, 𝑠) of its mirroring uniform network in
Figure 7.The spatial domain𝐷 = [−1, 1]×[−1, 1].We assume
that the mirroring uniform network is a 2D 1-step network
of Type-I communicating neighbors.Therefore 𝑞 satisfies the
limiting PDE (43). For themirroring uniformnetwork, we set
the initial condition 𝑞

0
(𝑠) = 𝑙

1
𝑒
−(𝑠
2

1
+𝑠
2

2
), and incoming traffic

𝑔
𝑝
(𝑠) = 𝑙

2
𝑒
−(𝑠
2

1
+𝑠
2

2
) where the constants 𝑙

1
, 𝑙
2
> 0; we set the

diffusion functions 𝑏
𝑖
= 1/4 and the convection functions

𝑐
𝑖
= 0, for 𝑖 = 1, . . . , 4. The inverse transformation function

here is set to be 𝜂
𝑗
(𝑠) = (𝑠

𝑗
+ 1)
2
/2 − 1 for 𝑗 = 1, 2. (Notice

that this satisfies (23))Therefore the continuum limit 𝑢 of the
nonuniform network𝑋

𝑁
is 𝑢(𝑡, 𝑠) = 𝑞(𝑡, 𝜂(𝑠)).

4.3. Examples of Control of Nonuniform Networks

4.3.1. 1D Example. Let the domainD = [−1, 1]. Let 𝑢(𝑡, 𝑠) be
the continuum limit of a sequence {𝑋

𝑁
} of 1-D 1-step uniform

networks with transmission range 𝐿̂ = 1, the diffusion func-
tion 𝑏̂ = 1/2, the convection function 𝑐 = 0, and a given
incoming traffic function 𝑔

𝑝
for all (𝑡, 𝑠) ∈ [0, 𝑇]×D. A given

transformation function 𝜙 specifies the node locations of a
sequence {𝑋

𝑁
} of nonuniform networks. We show how to

find the transmission-interference rule for {𝑋
𝑁
} to converge

to 𝑢(𝑡, 𝑠). As the continuum limit of this particular 1-D 1-step
network, 𝑢(𝑡, 𝑠) solves the PDE

̇𝑢 =
𝜕

𝜕𝑠
(
1

2
(1 − 𝑢) (1 + 3𝑢)

𝜕𝑢

𝜕𝑠
) + 𝑔
𝑝
, (49)

with boundary condition 𝑢(𝑡, 𝑠) = 0 and initial condition
𝑢(0, 𝑠) = 𝑢

0
(𝑠). This is a special case of (14).
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Figure 5: The Monte Carlo simulation and the PDE solution of a 2D 1-step network of Type I communicating neighbors.
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Figure 6: The Monte Carlo simulation and the PDE solution of a 2D 1-step network of Type II communicating neighbors.
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Figure 7: A nonuniform network, its limiting PDE solution, and the limiting PDE solution of its mirroring uniform network.
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In this case 𝜆
(𝐽,𝐿)

= 2𝐿. Let 𝜃 = 1/(2(𝜕𝜙/𝜕𝑠)
2
). Then the

comparison equation (40) becomes

𝑏
(1) 𝜕

𝜕𝑠
((1 + (2𝐿 + 1) 𝑞) (1 − 𝑞)

(2𝐿−1) 𝜕𝑞

𝜕𝑠
)

+ 2(1 − 𝑞)
(2𝐿−1) 𝜕𝑞

𝜕𝑠

𝜕𝑏
(1)

𝜕𝑠
+ 𝑞(1 − 𝑞)

2𝐿 𝜕
2

𝜕𝑠2
𝑏
(1)

+
𝜕

𝜕𝑠
(𝑐
(1)
𝑞(1 − 𝑞)

2𝐿

) + 𝑔
𝑝

= 𝜃 (1 − 𝑞) (1 + 3𝑞)
𝜕
2
𝑞

𝜕𝑠2
+ 2 (1 − 3𝑞) 𝜃(

𝜕𝑞

𝜕𝑠
)

2

+
1

2
(1 − 𝑞) (1 + 3𝑞)

𝜕𝜃

𝜕𝑠

𝜕𝑞

𝜕𝑠
+ 𝑔
𝑝
(𝜙) ,

(50)
where 𝑞 is the continuum limit of the mirroring sequence
{𝑋
𝑁
} of {𝑋

𝑁
}.

We assume that 𝑔
𝑝
(𝑠) = 𝑔

𝑝
(𝜙(𝑡, 𝑠)), which corresponds

to the assumption that the continuum limit of the incoming
traffic is invariant under node locations and mobility. This
assumption is feasible in a large class of networkswhere traffic
load depends directly on actual physical location. For exam-
ple, in a wireless sensor network that detects environmental
events such as a forest fire, the event-triggered data traffic
depends on the distribution of heat rather than the node loca-
tions.

Suppose that we set

𝑏
(1)

= 𝜃. (51)
Since 𝑞 is known to be the solution of (49), (50) has now
become a first-order linear ODE for 𝑐(1).

We can use Euler’s method to solve this ODE based on
local information. For fixed 𝑡

𝑜
, suppose the ODE is written in

the formΦ(𝑡
𝑜
, 𝑠, 𝑐
(1)
) = 𝑑𝑐

(1)
/𝑑𝑠. We first choose 𝑐(1)(𝑡

𝑜
, 𝑠(1))

such that 𝑃
𝑖
(𝑘
𝑜
, 1) satisfies (41), where 𝑡

𝑜
= 𝑘
𝑜
𝑑𝑡
𝑁
. Then

we can approximate 𝑐(𝑗)(𝑡
𝑜
, 𝑠(𝑛)) by 𝑐(𝑡

𝑜
, 𝑛), where 𝑐(𝑡

𝑜
, 1) =

𝑐
(𝑗)
(𝑡
𝑜
, 𝑠(1)), and 𝑐(𝑡

𝑜
, 𝑛 + 1) = 𝑐(𝑡

𝑜
, 𝑛) + Φ(𝑡

𝑜
, 𝑠(𝑛),

𝑐(𝑡
𝑜
, 𝑛))𝑑𝑠

𝑁
, for 𝑛 = 1, . . . , 𝑁.

With this given 𝜙, the transmission range 𝐿 of the mobile
network has to be greater or equal to 2 for (41) to hold. We
choose 𝐿 = 2. Then any 𝑏

𝑖
, 𝑐
𝑖
, where 𝑖 = 1, 2, that satisfy (50)

and (51) will give us the desired transmission-interference
rule of networks in {𝑋

𝑁
} and, hence, that of {𝑋

𝑁
}.

We simulate a 51-node controlled mobile network 𝑋
𝑁
in

the sequence {𝑋
𝑁
} that mirrors {𝑋

𝑁
}, whose node locations

are specified by this given 𝜙. In Figure 8, we compare the sim-
ulation result with the continuum limit of {𝑋

𝑁
}, at 𝑡 = 1 s.We

set the initial condition 𝑧
0
(𝑠) = 𝑟

1
𝑒
−𝑠
2

and the incoming traffic
function 𝑔

𝑝
(𝑠) = 𝑟

2
𝑒
−𝑠
2

, where the constants 𝑟
1
, 𝑟
2
> 0. As we

can see, the global characteristic of 𝑋
𝑁
resembles 𝑢(𝑡, 𝑠), the

continuum limit of {𝑋
𝑁
}.

4.3.2. 2D Example. Let the domainD = [−1, 1] × [−1, 1]. Let
𝑢(𝑡, 𝑠) be the continuum limit of a sequence {𝑋

𝑁
} of 2-D 1-

step uniform networks of Type-II communicating neighbors

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

Network 𝑋̃𝑁
Limit of {𝑋̂𝑁}

Figure 8: The comparison of the 1D controlled network and the
location-invariant continuum limit at 𝑡 = 1 s. On the 𝑥-axis, the ×
marks are the uniform grid, and the Δ marks are the nonuniform
node locations.

with transmission range 𝐿̂ = 1, the diffusion functions
𝑏̂
𝑖
(𝑡, 𝑠) = 1/8, for 𝑖 = 1, . . . , 8, the convection functions 𝑐(𝑗) =

0, for 𝑗 = 1, 2, and given incoming traffic function 𝑔
𝑝
for all

(𝑡, 𝑠) ∈ [0, 𝑇] × D. Again denote the given transformation
function that specifies the node locations of {𝑋

𝑁
} by 𝜙(𝑡, 𝑠).

As the continuum limit of this particular 1D 1-step net-
work, 𝑢(𝑡, 𝑠) solves the PDE

̇𝑢 =
3

8

2

∑

𝑗=1

𝜕

𝜕𝑠
𝑗

((1 + 9𝑢) (1 − 𝑢)
7 𝜕𝑢

𝜕𝑠
𝑗

) + 𝑔
𝑝
, (52)

with boundary condition 𝑢(𝑡, 𝑠) = 0 and initial condition 𝑢(0,
𝑠) = 𝑢

0
(𝑠). This is a special case of (46).

Let 𝜃
𝑗
= 1/(2(𝜕𝜙

𝑗
/𝜕𝑠
𝑗
)
2
). Then the comparison equation

(40) becomes

2

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠
((1 + (𝜆

(2,𝐿)
+ 1) 𝑞) (1 − 𝑞)

(𝜆
(2,𝐿)
−1) 𝜕𝑞

𝜕𝑠
)

+ 2(1 − 𝑞)
(𝜆
(2,𝐿)
−1) 𝜕𝑞

𝜕𝑠

𝜕𝑏̂
𝑗

𝜕𝑠
𝑗

+𝑞(1 − 𝑞)
𝜆
(2,𝐿)

𝜕
2
𝑏
(𝑗)

𝜕𝑠2
+
𝜕

𝜕𝑠
(𝑐
(𝑗)
𝑞(1 − 𝑞)

𝜆
(2,𝐿)

)) + 𝑔
𝑝

=

2

∑

𝑗=1

(
3

4
(1 − 𝑞)

7

(1 + 9𝑞) 𝜃
𝑗

𝜕
2
𝑞

𝜕𝑥
2

𝑗

+
3

8
(1 − 𝑞)

7

(1 + 9𝑞)

𝜕𝜃
𝑗

𝜕𝑥
𝑗

𝜕𝑞

𝜕𝑥
𝑗

+
3

2
(1 − 36𝑞) (1 − 𝑞)

6

𝜃
𝑗
(
𝜕𝑞

𝜕𝑥
𝑗

)

2

) + 𝑔
𝑝
(𝜙) ,

(53)
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Figure 9: The comparison of the 2D controlled network and the location-invariant continuum limit at 𝑡 = 1 s.

where 𝑞 is the continuum limit of the mirroring sequence
{𝑋
𝑁
} of {𝑋

𝑁
}. Assume that 𝑔

𝑝
(𝑡, 𝑠) = 𝑔

𝑝
(𝜙(𝑡, 𝑠)) and

𝑏
(𝑗)
= 𝜃
𝑗
. (54)

Since 𝑞 is known to be the solution of (52), we have two first-
order linear ODEs of 𝑐(𝑗), where 𝑗 = 1, 2.

For this given 𝜙, 𝐿 = 2 is sufficient for (41) to hold. Then
any 𝑏
𝑖
, 𝑐
𝑖
, 𝑙 = 1, 2 that satisfy (53) and (54) will give us the

desired transmission-interference rule for {𝑋
𝑁
} and, hence,

{𝑋
𝑁
}.
We simulate a (100 × 100)-node controlled mobile net-

work 𝑋
𝑁

in the sequence {𝑋
𝑁
} that mirrors {𝑋

𝑁
}, whose

node locations are specified by 𝜙. In Figure 9, we compare
the simulation result with the continuum limit of {𝑋

𝑁
}, at

𝑡 = 1𝑠. We set the initial condition

𝑧
0
(𝑠) = 𝑟

1
𝑒
−4((𝑠
1
+0.6)
2
+(𝑠
2
+0.6)
2
)

+ 𝑟
2
𝑒
−3((𝑠
1
−0.6)
2
+(𝑠
2
−0.6)
2
)

(55)

and the incoming traffic function

𝑔
𝑝
(𝑠) = 𝑟

3
𝑒
−4((𝑠
1
+0.6)
2
+(𝑠
2
+0.6)
2
)

+ 𝑟
4
𝑒
−3((𝑠
1
−0.6)
2
+(𝑠
2
−0.6)
2
)
,

(56)

where the constants 𝑟
1
, . . . , 𝑟

4
> 0. Again, the global chara-

cteristic of𝑋
𝑁
resembles 𝑢(𝑡, 𝑠), the continuum limit of {𝑋

𝑁
}.

5. Conclusion

In this paper we study the modeling of nonuniform and pos-
sibly mobile networks via nonlinear PDEs and develop a dis-
tributed method to control their transmission-interference

rules to maintain certain global characteristics. We demon-
strate our method with a family of wireless sensor networks.
Our method can be extended to other network models. The
freedom in the control method mentioned in Section 3.3
can also be further exploited to improve the network perfor-
mance.
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Tension in the yarn and its oscillations during the over-end unwinding of the yarn from stationary packages depend on the
unwinding speed, the shape and the winding type of the package, the air drag coefficient, and also the coefficient of friction between
the yarn and the package. The yarn does not leave the surface package immediately at the unwinding point. Instead, it first slides
on the surface and then lifts off to form the balloon.The problem of simulating the unwinding process can be split into two smaller
subproblems: the first task is to describe the motion of the yarn in the balloon; the second one is to solve the sliding motion. In
spite of the seemingly complex form of the equations, they can be partially analytically solved as we show in the paper.

1. Introduction

During the yarn unwinding from a stationary package, the
yarn slides on the surface of the package before it lifts off to
form a balloon. The point where the yarn begins to slide is
known as the unwinding point, while the point where the
yarn lifts off from the surface is known as the lift-off point.
On this section of the yarn, that is, between the unwinding
point and the lift-off point, the tension in the yarn drops from
its value in the balloon (at the lift-off point) to its residual
value, defined as the tension of the yarn inside the package.
The equations of motion which govern the motion of the
yarn are known: we have established them in Section 2 of
this paper. They can be partially analytically solved, as we
show in the following. The theory of yarn unwinding off a
package and the balloon theory had a quick development in
the fifties because of Padfield’s work [1, 2]. She fixed Mack
equations for the balloon [3] so that they take into account
the Coriolis system force. She found the results for a single
balloon as it unwinds from a cylindrical package. The same
theory was later used to calculate the parameters for multiple
consecutive balloons with a nonzero unwinding angle and
a cylindrical, conical, or empty package [1]. Kothari and
Leaf derived motion equations that include the effect of the
gravity force and air resistance force tangential component
[4, 5]. Using extensive numerical methods for cylindrical

and conical packages they showed that these effects can be
ignored. Recently Fraser used themotion theory to show that
the time dependence can be excluded frommotion equations
in a mathematical correct way [6, 7]. He derived movable
boundary conditions for packages with small winding angle.
Fraser also determined that the tension inside and the radius
of a balloon are smaller for an elastic yarn. Using simple
physics He recently introduced different nanophenomena in
nanotextile that are the newest additions to the theory of
electrospinning [8, 9].

2. The Equation of Motion for Yarn

The problem of yarn motion on the package surface during
the unwinding can be treated in analogy with the motion of
the yarn forming the balloon between the lift-off point and
the eyelet, through which the yarn is being pulled.

The yarn is being withdrawn with velocity 𝑉 through
an eyelet, where we also fix the origin 𝑂 of our coordinate
system (Figure 1). The yarn is rotating aroun the 𝑧-axis with
an angular velocity 𝜔. At the lift-off point Lp, the yarn lifts
from the package and forms a balloon. At the unwinding
pointUp, the yarn starts to slide on the surface of the package.
Angle 𝜙 is the winding angle of the yarn on the package.
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Figure 1: Mechanical setup in over-end yarn unwinding from
cylindrical package.

The general equation of motion for the yarn was derived
and justified in one of the previous works [10]:

𝜌 (𝐷
2
𝑟 + 2𝜔 × 𝐷𝑟 + 𝜔 × (𝜔 × 𝑟) + ̇𝜔 × 𝑟) =

𝜕

𝜕𝑠
(𝑇

𝜕𝑟

𝜕𝑠
) + 𝑓.

(1)

The position vector 𝑟 points from the origin of the coor-
dinate system to a chosen point along the yarn, 𝜌 is the
linear density of the yarn mass, 𝜔 is the angular velocity
vector of the spinning coordinate system in which the yarn
is being described and which points along the 𝑧-axis,𝐷 is the
operator of the total time derivative which follows themotion
of the point inside the spinning coordinate system, 𝐷 =

𝜕/𝜕𝑡|
𝑟,𝜃,𝑧

− 𝑉𝜕/𝜕𝑠, 𝑇 is the mechanical tension, and 𝑓 is the
linear density of external forces.

3. Friction between the Yarn and
the Package Surface

There is a friction between the package and the yarn which is
sliding on its surface before it lifts off to form the balloon.
The yarn is exerting a normal force on the package (i.e., a
force perpendicular to the package surface, thus in radial
direction). This force is not known a priori, but must be
determined as part of the solution to the full problem. The
simplest expression of the friction law states that the friction
force is proportional to the normal component of the force.
The coefficient of proportionality is known as the coefficient

�

𝑛𝑒𝑟

−𝜇𝑛
�

|�|

Figure 2: The force of friction between the package surface and the
yarn.

of friction 𝜇. The friction force points in the direction
opposite to the yarn motion.

The quantity 𝑓 in (1) therefore has two components: the
radial force of the package on the yarn (which is equal in
magnitude to the force of the yarn on the package, in accor-
dance with Newton’s law of reciprocal action) and the friction
force proper (Figure 2):

𝑓 = 𝑛𝑒
𝑟
− 𝜇𝑛

V

|V|
. (2)

Here 𝑛 is the linear density of the normal component of the
force between the yarn and the surface, 𝑒

𝑟
is the unit vector

in the radial direction, and V/|V| is the unit vector in the
direction of the yarn.

When the yarn slides on the surface, it thus experiences
the normal force 𝑛𝑒

𝑟
and the friction force −𝜇𝑛 V/|V|.

The friction law is at best a rough approximation to amore
complex real behavior. In reality, the coefficient of friction
depends in a complicated way on the sliding velocity [11–16],
and it is different at various points of the package surface since
the package is seldom fully homogenous.We thus take 𝜇 to be
some average coefficient of friction which one can determine
empirically [17].

4. Quasi-Stationary Approximation

Equation (1) is generally valid and describes an arbitrary
motion of the yarn, even in cases when the conditions are
rapidly changing, for example, near the package edges. Near
the package edge the winding angle suddenly changes, there-
fore the motion of the yarn on the package surface and in the
part of the balloon near the lift-off point becomes very com-
plex. Near the edges, undesired events can occur: the yarn
can fall off the package or a layer of the yarn collapses. The
description of such transient effects is beyond the validity of
our simplified model, since one should accurately model the
behavior of the yarn also in the layers forming the package
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bulk. For example, the residual forces of the yarn in the
package would also play a role [18].

Strictly speaking, the yarn undergoes sliding motion on
the package surface only when the unwinding point is at a
certain distance away from the package edges. In such cir-
cumstances, the conditions are quasi-stationary: in the rotat-
ing coordinate frame the yarn only slowly changes its form.
For this reason, in the first approximation the time depen-
dence can be fully described by time-variable boundary
conditions, while the time-derivative terms in the equation
of motion can be neglected:

𝜌(𝑉
2 𝜕
2
𝑟

𝜕𝑠2
− 2𝑉𝜔 ×

𝜕𝑟

𝜕𝑠
+ 𝜔 × (𝜔 × 𝑟)) =

𝜕

𝜕𝑠
(𝑇

𝜕𝑟

𝜕𝑠
) + 𝑓.

(3)

5. The Equation of Motion for
the Yarn on the Package: Simplification to
a Two-Dimensional Problem

When the yarn slides on the package surface, its motion
effectively occurs within a two-dimensional subspace. This
fact can be taken into account in (3) in order to simplify the
problem to a two-dimensional problemwhich can be handled
more easily. It turns out that in the case of sliding motion
on the cylindrical package, the problem can be solved to a
large extent using analytical techniques. Analytical solutions
allow for amore direct understanding of the relation between
the different quantities. For this reason, we will henceforth
assume that the package is cylindrical, and we will determine
the analytical solution.

The radius vector to a point on the surface of a cylinder
can be expressed as (compare with equation (17) in [10])

𝑟 (𝑠) = 𝑐𝑒
𝑟
(𝜃 (𝑠)) + 𝑧 (𝑠) 𝑒

𝑧
. (4)

The quantity 𝑐 is the constant distance of the point 𝑟 from
the package axis. It is equal to the radius of the layer which is
being unwound.The unit vector 𝑒

𝑧
points along the direction

of the package axis, and the unit vector 𝑒
𝑟
points in the radial

direction with the polar angle 𝜃(𝑠) (see Figure 3). There are
two unknowns in this expression, 𝜃(𝑠) and 𝑧(𝑠), while the
third [𝑟(𝑠)] drops out since it is constant on the surface.
The motion of the yarn has thus been translated to a two-
dimensional problem.This ansatz will be used in (4) to find a
simplified equation of motion.

The arc-length derivatives of the radius vector are com-
puted using the relations (18) from [10] to obtain

𝑟
󸀠
(𝑠) = 𝑐𝜃

󸀠
(𝑠) 𝑒
𝜃
+ 𝑧
󸀠
(𝑠) 𝑒
𝑧
,

𝑟
󸀠󸀠
(𝑠) = 𝑐𝜃

󸀠󸀠
(𝑠) − 𝑐[𝜃

󸀠
(𝑠)]
2

𝑒
𝑟
+ 𝑧
󸀠󸀠
(𝑠) 𝑒
𝑧
,

(5)

𝑒𝑧

𝑧

𝑟

𝑒𝜃

𝑒𝑟

𝜃

Figure 3: The cylindrical coordinate system.

where the dashes indicate the arc-length derivative. We then
obtain

𝜕

𝜕𝑠
(𝑇

𝜕𝑟

𝜕𝑠
)

=
𝜕𝑇

𝜕𝑠

𝜕𝑟

𝜕𝑠
+ 𝑇

𝜕
2
𝑟

𝜕𝑠2

= 𝑇
󸀠
(𝑐𝜃
󸀠
𝑒
𝜃
+ 𝑧
󸀠
𝑒
𝑧
) + 𝑇 (𝑐𝜃

󸀠󸀠
𝑒
𝜃
− 𝑐(𝜃
󸀠
)
2

𝑒
𝑟
+ 𝑧
󸀠󸀠
𝑒
𝑧
)

= −𝑐𝑇(𝜃
󸀠
)
2

𝑒
𝑟
+ 𝑐 (𝑇

󸀠
𝜃
󸀠
+ 𝑇𝜃
󸀠󸀠
) 𝑒
𝜃
+ (𝑇
󸀠
𝑧
󸀠
+ 𝑇𝑧
󸀠󸀠
) 𝑒
𝑧
.

(6)

We also need the relations

𝜔 × 𝑟
󸀠
= −𝑐𝜔𝜃

󸀠
(𝑠) 𝑒
𝑟
,

𝜔 × (𝜔 × 𝑟) = −𝜔
2
𝑐𝑒
𝑟

(7)

which can be derived using a simple calculation of the vector
products.

Equation (3) may then be decomposed along its different
components:

(𝑟) 𝜌 (−𝑐𝑉
2
(𝜃
󸀠
)
2

+ 2𝑉𝑐𝜔𝜃
󸀠
− 𝜔
2
𝑐) = −𝑐𝑇(𝜃

󸀠
)
2

+ 𝑓
𝑟
, (8)

(𝜃) 𝜌 (𝑐𝑉
2
𝜃
󸀠󸀠
) = 𝑐𝑇𝜃

󸀠󸀠
+ 𝑐𝑇𝜃

󸀠
+ 𝑓
𝜃
, (9)

(𝑧) 𝜌 (𝑉
2
𝑧
󸀠󸀠
) = 𝑇𝑧

󸀠󸀠
+ 𝑇𝑧
󸀠
+ 𝑓
𝑧
. (10)

The quantities 𝑓
𝑟
, 𝑓
𝜃
, and 𝑓

𝑧
are the components of the linear

density of the external force (2).The first one is simply𝑓
𝑟
= 𝑛,

while the other two still need to be determined. The velocity
of the yarn in the quasi-stationary approximation is (see
equation (23) in [10], where we substitute Vrel = 0)

V = −𝑉𝑡 + 𝜔 × 𝑟 = 𝑐 (𝜔 − 𝑉𝜃
󸀠
) 𝑒
𝜃
− 𝑧
󸀠
𝑉𝑒
𝑧
. (11)
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This expression can then be used to derive the unit vector in
the direction of the yarn velocity:

V

|V|
=

1

√𝑐2(𝜔 − 𝑉𝜃󸀠)
2

+ 𝑧󸀠
2
𝑉2

[𝑐 (𝜔 − 𝑉𝜃
󸀠
) 𝑒
𝜃
− 𝑧
󸀠
𝑉𝑒
𝑧
] ,

(12)

from which then finally follow the two components of the
linear density of the force:

𝑓
𝜃
=

−𝜇𝑛𝑐 (𝜔 − 𝑉𝜃
󸀠
)

√𝑐2(𝜔 − 𝑉𝜃󸀠)
2

+ 𝑧󸀠
2
𝑉2

,

𝑓
𝑧
=

𝜇𝑛𝑧
󸀠
𝑉

√𝑐2(𝜔 − 𝑉𝜃󸀠)
2

+ 𝑧󸀠
2
𝑉2

.

(13)

Equations (8)–(10) and (13) are the simplified equations of
motions that we required. At first they appear more complex
than the vector expressions (2) and (3), since they are
expressed component by component. Nevertheless, they are
indeed simpler: the unknown functions are 𝜃, 𝑧, 𝑛

𝜃
, 𝑛
𝑧
, and

𝑇, but we have managed to eliminate 𝑟 and 𝑛
𝑟
. In this part

of the paper we will show that the function 𝑇 can equally be
eliminated.

6. Partial Analytical Solution

Equation (9) from the previous section is multiplied by 𝑐𝜃
󸀠,

(10) by 𝑧
󸀠; they are then added together and reorganized to

read

𝜌𝑉
2
(𝑐
2
𝜃
󸀠
𝜃
󸀠󸀠
+ 𝑧
󸀠
𝑧
󸀠󸀠
) = 𝑇 (𝑐

2
𝜃
󸀠
𝜃
󸀠󸀠
+ 𝑧
󸀠
𝑧
󸀠󸀠
)

+ 𝑇
󸀠
(𝑐
2
𝜃
󸀠2

+ 𝑧
󸀠2

) + 𝑐𝜃
󸀠
𝑓
𝜃
+ 𝑧
󸀠
𝑓
𝑧
.

(14)

In this equation, 𝜌 is the linear density of the yarn, 𝑉 the
unwinding velocity, 𝑐 the package radius, 𝑇 the tension in
the yarn, 𝑓 the linear density of the force of friction, and the
position of the point is given in the cylindrical coordinate
system (𝑟𝜃𝑧). The dash after a symbol denotes the operation
of taking the derivative with respect to the arc length 𝑠. Now
we take into account the condition of nonextensibility, which
states that the extension of yarnmay be neglected. Formotion
on the package surface, this condition (equation (34) in [10])
can be expressed as

𝑐
2
𝜃
󸀠2

+ 𝑧
󸀠2

= 1. (15)

Taking a derivative of this equation, we obtain

𝑐
2
𝜃
󸀠
𝜃
󸀠󸀠
+ 𝑧
󸀠
𝑧
󸀠󸀠

= 0. (16)

Inserting (15) and (16) into (14), we end up with

𝑇
󸀠
= −𝑐𝜃

󸀠
𝑓
𝜃
− 𝑧
󸀠
𝑓
𝑧
. (17)

In this equation we insert the expressions for the components
of the linear density of the force

𝑓
𝜃
=

−𝜇𝑛𝑐 (𝜔 − 𝑉𝜃
󸀠
)

√𝑐2(𝜔 − 𝑉𝜃󸀠)
2

+ 𝑧󸀠
2
𝑉2

,

𝑓
𝑧
=

𝜇𝑛𝑧
󸀠
𝑉

√𝑐2(𝜔 − 𝑉𝜃󸀠)
2

+ 𝑧󸀠
2
𝑉2

(18)

and we obtain

𝑇
󸀠
=

𝜇𝑛 (𝑐
2
𝜃
󸀠
(𝜔 − 𝑉𝜃

󸀠
) − 𝑧
󸀠2

𝑉)

√𝑐2(𝜔 − 𝑉𝜃󸀠)
2

+ 𝑧󸀠
2
𝑉2

=

𝜇𝑛 (𝑐
2
𝜔𝜃
󸀠
− 𝑉)

√𝑐2(𝜔 − 𝑉𝜃󸀠)
2

+ 𝑧󸀠
2
𝑉2

.

(19)

To obtain the last expression we have used (15). The 𝑛 from
this equation is evaluated and inserted in the expression for
𝑓
𝜃
in (18):

𝑓
𝜃
= 𝑐𝑇
󸀠 𝑉𝜃
󸀠
− 𝜔

𝑐2𝜔𝜃󸀠 − 𝑉
. (20)

This is then used in

𝜌𝑐𝑉
2
𝜃
󸀠󸀠

= 𝑐𝑇𝜃
󸀠󸀠
+ 𝑐𝑇
󸀠
𝜃
󸀠
+ 𝑓
𝜃

(21)

to obtain

(𝜌𝑉
2
− 𝑇) 𝜃

󸀠󸀠
= 𝑇
󸀠
𝜃
󸀠
+

𝑉𝜃
󸀠
− 𝜔

𝑐2𝜔𝜃󸀠 − 𝑉
𝑇
󸀠
= 𝜔𝑇
󸀠 𝑐
2
𝜃
󸀠2

− 1

𝑐2𝜔𝜃󸀠 − 𝑉
.

(22)

We rewrite this equation as

𝑐𝜔

𝑉

𝑇
󸀠

𝜌𝑉2 − 𝑇
= 𝑐𝜃
󸀠󸀠
[

(𝑐
2
𝜔/𝑉) 𝜃

󸀠
− 1

𝑐2𝜃󸀠
2

− 1

] . (23)

After introducing the dimensionless angular velocity Ω =

𝑐𝜔/𝑉 and a new variable 𝜒 = 𝑐𝜃, the equation takes a more
clear expression:

Ω
𝑇
󸀠

𝜌𝑉2 − 𝑇
= 𝜒
󸀠󸀠
[
1 − Ω𝜒

󸀠

1 − 𝜒󸀠
2
] . (24)

The quantity 𝜒
󸀠
= 𝑐𝜃
󸀠 is always smaller than 1 when the yarn

slides on the package surface, since the length of one loop of
yarn on the package is at least 2𝜋𝑐. A simple consideration
(and the help of Figure 4) can convince us that the derivative
𝜒
󸀠 is related with the tangential direction of the yarn on the

package surface. In fact, one has 𝜒
󸀠
= cos𝜙. Using a similar

consideration one can also establish that 𝑧󸀠 = tan𝜙.
Equation (24) can be integrated analytically.The left hand

side is the derivative of the function−Ω ln |𝑇−𝜌𝑉
2
|, while the

right hand side is the derivate of the function ((Ω−1)/2) ln |1−

𝜒
󸀠󸀠
| + ((Ω + 1)/2) ln |1 + 𝜒

󸀠󸀠
|.
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(a)

𝜙

𝜒

𝑧

(b)

Figure 4: (a) The surface of the cylinder is cut along the long edge and the surface is flattened. (b) The flattened surface is a plane with axes
𝑧 and 𝜒. The angle 𝜙 is the angle of the yarn in the (𝑧𝜒) plane.

As can be easily verified, we thus obtain

− Ω ln 󵄨󵄨󵄨󵄨󵄨
𝑇 − 𝜌𝑉

2󵄨󵄨󵄨󵄨󵄨

(Ω − 1)

2
ln 󵄨󵄨󵄨󵄨󵄨

1 − 𝜒
󸀠󵄨󵄨󵄨󵄨󵄨

+
(Ω + 1)

2
ln 󵄨󵄨󵄨󵄨󵄨

1 + 𝜒
󸀠󵄨󵄨󵄨󵄨󵄨

+ const.
(25)

The tension𝑇 is always larger than the quantity 𝜌𝑉
2, which is

twice the linear density of the kinetic energy which the yarn
has because of it being pulled through the eyelet [19, 20]. We
have also already established that 𝜒󸀠 < 1. For this reason, all
quantities between the absolute value brackets are positive,
thus the brackets do not need to be written.

Exponentiating the expression we had obtained and
rearranging it slightly, we obtain

𝑇 − 𝜌𝑉
2
= 𝐾[(1 − 𝑐𝜃

󸀠
)
((1−Ω)/2Ω)

(1 + 𝑐𝜃
󸀠
)
−((1+Ω)/2Ω)

] ,

(26)

where 𝐾 is an integration constant. It can be determined by
considering the behavior at the lift-off point. If the winding
angle is Φ, then the change of the arc length 𝑠 by 2𝜋𝑐/ cosΦ
(i.e., the length of one loop) corresponds to a change of 𝜃 by
2𝜋.

Therefore at the lift-off point 𝜃󸀠 is equal to cosΦ/𝑐, and
finally 𝜒

󸀠(Od) = cosΦ. (The winding angle Φ is by definition
equal to the angle of the yarn in the (𝑧𝜒) plane, therefore this
result is in full agreement with the expression 𝜒

󸀠
= cos𝜙

which we had established before.) In this point the tension in
the yarn is equal to the residual tension of the yarn inside the
package, 𝑇res. If both expressions are used in (26), we obtain

𝑇res − 𝜌𝑉
2
= 𝐾 [(1 − cosΦ)

((1−Ω)/2Ω)
(1 + cosΦ)

−((1+Ω)/2Ω)
] .

(27)

Equation (26) may therefore be written as

𝑇 − 𝜌𝑉
2

𝑇res − 𝜌𝑉2

= [(
1 − 𝑐𝜃

󸀠

1 − cos |Φ|
)

((1−Ω)/2Ω)

(
1 + 𝑐𝜃

󸀠

1 + cos |Φ|
)

−((1+Ω)/2Ω)

] .

(28)

In parallel cylindrical package with dense parallel winding,
the dimensionless angular velocity Ω = 𝑐𝜔/𝑉 is approxi-
mately equal to 1. Setting Ω = 1 in (26) we obtain

𝑇 − 𝜌𝑉
2
=

𝐾

1 + 𝑐𝜃󸀠
. (29)

This result had already been established by Fraser et al.
[6], but our equation (26) holds in general. In cross-wound
package one namely has

Ω =
cosΦ

1 − sinΦ
, (30)

where Φ is the winding angle at the point where the yarn is
currently being unwound. This implies that in cross-wound
packages, the dimensionless angular velocity is not equal
to one, but it is larger than 1 during the unwinding in the
backward direction (Φ > 1) and smaller than 1 during the
unwinding in the forward direction (Φ < 1).

In the section of yarn which slides on the surface and
experiences friction from the lower layers, the tension
decreases from the value at the lift-off point to the residual va-
lue. At the same time, the angle 𝜙 increases from its value at
the unwinding point to the value ofΦ at the lift-off point.The
relation between these two phenomena is given precisely by
(28).

Equation (19) can be rewritten as

𝑇
󸀠
=

𝜇𝑛 (𝑉Ω cos𝜙 − 𝑉)

√𝑉2(Ω − cos𝜙)2 + 𝑉2tan2𝜙

=
𝜇𝑛 (Ω cos𝜙 − 1)

√(Ω − cos𝜙)2 + tan2𝜙
.

(31)

Using the approximation of Ω = 1 and cos𝜙 ∼ 1 − 𝜙
2
/2,

tan𝜙 ∼ 𝜙, we obtain

𝑇
󸀠
≈

−𝜇𝑛𝜙

2
. (32)

The decrease of the tension along the yarn is proportional
to the coefficient of friction, as expected. The larger the
coefficient of friction is, the shorter is the sliding segment of
the yarn. The derivative is also proportional to the angle 𝜙,
thus the decrease is larger near the lift-off point where 𝜙 is
large, but smaller at the unwinding point where in the case of
dense parallel winding the angle 𝜙 is almost equal to zero.
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7. Conclusion

We have shown how the equation of motion on the package
surface can be obtained from the general equation of yarn
motion by considering the force of friction.The external force
has two components: the normal force of the package surface
and the force of friction. We have described the conditions
for the validity of the quasi-stationary approximation which
was then used to simplify the equation of motion to a two-
dimensional problem. We have also shown that the simpli-
fication of the equation of motion for the sliding motion of
the yarn to a two-dimensional problem makes it possible to
establish the main conclusions analytically. We have shown
how the section of the yarn which slides on the package
surface makes it possible that the tension in the yarn reduces
to its residual yarn and how this is related to the form of
the sliding yarn. More accurate solutions of the problem can,
however, only be obtained using a full numerical solution of
the equations using the shooting method [6, 19, 20]. Another
very interesting approach for solving the equation of motion
for the yarn would be the use of the methods described by Ji-
Huan He. The analytical solution can be obtained using the
variational iteration method or the homotopy perturbation
method reviewed in [8, 21, 22].
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The existence of the exponential attractors for coupled Ginzburg-Landau equations describing Bose-Einstein condensates and
nonlinear optical waveguides and cavities with periodic initial boundary is obtained by showing Lipschitz continuity and the
squeezing property.

1. Introduction

Inertial set was introduced (see [1–5]) in order to overcome
some of the theoretical difficulties that are associated with
inertial manifolds. An inertial set, by definition, contains
the global attractor and attracts all trajectories at a uniform
exponential rate. Consequently, it contains the slow transients
as well as the global attractor. In the theory of dynamical
systems the slow transients correspond to slowly converging
stable manifolds that are in some sense close to central
manifolds. Numerical simulations of infinite dimensional
dynamical systems often capture both slow transients and
parts of the attractor. After a large but finite time the state
of the system obtained from the numerical calculation may
often be at a finite distance from the global attractor but at
an infinitesimal distance to the inertial set. In this sense, we
propose to call the inertial set an exponential attractor to be
consistent with the physical intuition [5].

An exponential attractor is an exponentially attracting
compact set with finite fractal dimension that is positively
invariant under the forward semiflow. The notion of expo-
nential attractors was introduced by Eden et al. [3] and has
been shown to be one of the very important notions in the
study of long time behavior of solutions to nonlinear diffusion
equations [6]. The easiest way of obtaining an exponential
attractor is by taking the intersection of an absorbing set with
an inertial manifold.

In the area of hyperbolic evolutionary equations, the
existence of exponential attractors has been proved for many
equations. In this paper, we will prove the existence of expo-
nential attractor for coupled Ginzburg-Landau equations

𝑖𝑢
𝑡
+ 𝛾
2
Δ𝑢 + 𝑖𝛾𝑢 + (𝜎

1
+ 𝑖𝜎
2|𝑢|
2
) |𝑢|
2
𝑢 + V = 0,

𝑖V
𝑡
+ 𝛾
2
Δ𝑢 + (𝑖Γ − 𝜒) V + 𝑢 = 0,

(1)

with the periodic boundary conditions

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥 + 𝐷, 𝑡) , V (𝑥, 𝑡) = V (𝑥 + 𝐷, 𝑡) ,

𝑥 ∈ 𝑅, 𝑡 > 0,

(2)

and initial value

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , V (𝑥, 0) = V

0
(𝑥) , 𝑥 ∈ 𝑅. (3)

Its physical realizations include systems from nonlinear
optics and a double-cigar-shaped Bose-Einstein condensate
with a negative scattering length. In particular, in the case of
the optical systems, 𝑢 and V are amplitudes of electromagnetic
waves in two cores of the system, the evolutional variable 𝑡 is
either time or propagation distance in the dual-core optical
fiber, and 𝑥 is the transverse coordinate in the cavity or the
reduced time in the application to the fibers [7].

This paper is organized as follows. In Section 2, we give
a description of preliminaries with existence of exponential



2 Abstract and Applied Analysis

attractor and the properties of solutions and bounded absorb-
ing sets of (1). In Section 3, the existence of the exponential
attractor in 𝑉

2
type exponential attractor is proved. In

Section 4, we give some conclusions for this paper.

2. Preliminaries

Let𝑉
1
, 𝑉
2
be twoHilbert spaces, and let𝑉

2
be dense in𝑉

1
and

compactly imbedded into𝑉
1
. Let 𝑆(𝑡)

𝑡≥0
be a continuousmap

from 𝑉
1
, 𝑉
2
into itself. We study

𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 + 𝑔 (𝑢) = 𝑓 (𝑥) , 𝑡 > 0, 𝑥 ∈ Ω, (4)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , (5)

Dirichlet problem or periodic boundary problem, (6)

where Ω is a bounded open set in 𝑅𝑛, 𝜕Ω is smooth, and
𝐴 is a positive self-adjoint operator with a compact inverse.
Letting {𝑤

𝑖
}
∞

𝑖=1
denote the complete set of eigenvectors of 𝐴,

the corresponding eigenvalues are

0 ≤ 𝜆
1
< 𝜆
1
⋅ ⋅ ⋅ 𝜆
𝑖
< ⋅ ⋅ ⋅ 󳨀→ +∞. (7)

We assume that the nonlinear semigroup 𝑆(𝑡)
𝑡≥0

defined
in (4)–(6) possesses a compact attractor B of (𝑉

2
, 𝑉
1
)-type;

namely, there exists a compact set B in 𝑉
1
, and B attracts all

bounded subsets in 𝑉
2
and is invariant under the action of

𝑆(𝑡)
𝑡≥0

.
Let 𝐶 be a compact subset of 𝑉

2
. 𝑆(𝑡)
𝑡≥0

leaves the set 𝐶
invariant and set

B = ⋂
𝑠≥0

⋃

𝑡≥𝑠

𝑆(𝑡)
𝑡≥0
𝐶, (8)

that is, for 𝑆(𝑡)
𝑡≥0

on 𝐶, B is the global attractor.

Definition 1. A compact set 𝑀 is called an exponential
attractors for 𝑆(𝑡)

𝑡≥0
, 𝐶 if

(i) B ⊆ 𝑀 ⊆ 𝐶;
(ii) 𝑆(𝑡)𝑀 ⊆ 𝑀, for every 𝑡 ≥ 0;
(iii) 𝑀 has finite fractal dimension 𝑑

𝐹
< ∞;

(iv) There exist constants 𝑐
1
and 𝑐
2
such that

distV
2
(𝑆 (𝑡) 𝐶,𝑀) ≤ 𝑐

1
exp (−𝑐

2
𝑡) , ∀𝑡 > 0, (9)

where

distV
2
(𝐴,𝐷) = sup

𝑥∈𝐴

inf
𝑦∈𝐷

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑉
2

. (10)

Definition 2. If there exists a bounded function 𝑙(𝑡) indepen-
dent 𝑢 and V such that

‖𝑆 (𝑡) 𝑢 − 𝑆 (𝑡) V‖𝑉
2

≤ 𝑙 (𝑡) ‖𝑢 − V‖𝑉
2

, (11)

for every 𝑢, V ∈ 𝐶, then we say 𝑆(𝑡) is Lipschitz continuous in
𝐶 and 𝑙(𝑡) is Lipschitz constant for 𝑆(𝑡) in 𝐶.

Definition 3. A continuous semigroup 𝑆(𝑡)
𝑡≥0

is said to satisfy
the squeezing property on 𝐶 if there exists 𝑡

∗
> 0 such that

𝑆(𝑡
∗
) satisfies the following.
For every 𝛿 ∈ (0, (1/8)), there exists an orthogonal

projection 𝑃
𝑁
0

of rank equal to𝑁
0
such that for every 𝑢 and

V in 𝐶 if
󵄩󵄩󵄩󵄩󵄩
𝑃
𝑁
0

(𝑆 (𝑡
∗
) 𝑢 − 𝑆 (𝑡

∗
) V)
󵄩󵄩󵄩󵄩󵄩V
2

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑁
0

(𝑆 (𝑡
∗
) 𝑢 − 𝑆 (𝑡

∗
) V)
󵄩󵄩󵄩󵄩󵄩V
2

(12)

holds, then we also have
󵄩󵄩󵄩󵄩𝑆 (𝑡∗) 𝑢 − 𝑆 (𝑡∗) V

󵄩󵄩󵄩󵄩V
2

≤ 𝛿‖𝑢 − V‖V
2

, (13)

where 𝑄
𝑁
0

= 𝐼 − 𝑃
𝑁
0

.

Theorem 4 (see [3]). Suppose (4)–(6) satisfy the following
conditions.

(1) There exist nonlinear semigroup 𝑆(𝑡)
𝑡≥0

and a compact
attractor B.

(2) There exists a compact set C in 𝑉
2
which is positively

invariant for 𝑆(𝑡)
𝑡≥0

.
(3) 𝑆(𝑡)

𝑡≥0
is Lipschitz continuous and is squeezing in 𝐶.

Then (4)–(6) admit an exponential attractor 𝑀 in 𝑉
2
for

𝑆(𝑡)
𝑡≥0

and

𝑀 = ⋃

0≤𝑡≤𝑡
∗

𝑆 (𝑡)𝑀
∗
, (14)

where

𝑀
∗
= B⋃(

∞

⋃

𝑗=1

∞

⋃

𝑘=1

𝑆(𝑡
∗
)
𝑗

(𝐸
(𝑘)
)) . (15)

Moreover,

𝑑
𝐹
(𝑀) ≤ 1 + 𝐶𝑁

0
,

dist
𝑉
2
(𝑆 (𝑡) 𝐵,𝑀) ≤ 𝐶

0
exp (−𝐶

1
𝑡) ,

(16)

where𝑁
0
,𝐸(𝑘) are defined as in [4],𝐶,𝐶

0
,𝐶
1
are the constants

independent of 𝐵, and 𝑡
∗
is a positive constant.

Proposition 5. There exists 𝑡
0
(𝐵
0
) such that

𝐵
∗
= ⋃

0≤𝑡≤𝑡
0

𝑆 (𝑡) 𝐵
0 (17)

is a compact positively invariant set in 𝑉
1
and is absorbing set

for all bounded subsets in𝑉
2
, where 𝐵

0
is a closed absorbing set

in 𝑉
2
for 𝑆(𝑡)

𝑡≥0
.

Proposition 6. Let 𝐵
0
, 𝐵
1
be bounded and closed absorbing

sets for (4)–(6) in (𝑉
2
, 𝑉
1
), respectively. Then there exists

a compact attractor 𝐴∗ of (𝑉
2
, 𝑉
1
)-type. For the proof of

Proposition 5 and Proposition 6, we refer the reader to [5].

Denoting by | ⋅ |
𝐿
𝑝 the norm in 𝐿𝑝(0, 𝐿), 1 ≤ 𝑝 ≤ ∞, for

simplicity, we denote by | ⋅ |
0
and | ⋅ |

∞
the norm in the case
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𝑝 = 2 and 𝑝 = ∞, respectively. Suppose that 𝐻 = 𝐿2(0, 𝐿),
𝐸
𝑖
= 𝐻
𝑖
(0, 𝐿) × 𝐻

𝑖
(0, 𝐿) (𝑖 = 1, 2), where𝐻𝑖(0, 𝐿) is a Hilbert

space for the scalar product

((⋅, ⋅))
𝐻
𝑖 = (⋅, ⋅) +

𝑖

∑

𝑗=1

(𝐷
𝑗
⋅, 𝐷
𝑗
⋅) , 𝐷 =

𝜕

𝜕𝑥
. (18)

The norm of 𝐸
𝑖
is defined by ‖(𝑢, V)‖2

𝐸
𝑖

= ‖𝑢‖
2

𝐻
𝑖 + ‖V‖

2

𝐻
𝑖 .

We now establish some time-uniform a priori estimates
on (𝑢, V) in 𝐸

1
and 𝐸

2
, respectively.

Lemma 7. Assume that (𝑢
0
, V
0
) ∈ 𝐸
1
; then

‖(𝑢, V)‖
2

𝐸
1

≤ 𝑐
󵄩󵄩󵄩󵄩(𝑢0, V0)

󵄩󵄩󵄩󵄩

2

𝐸
1

𝑒
−𝛿
1
𝑡
+ 𝑐
1
. (19)

Thus there exists 𝑡
1
= 𝑡
1
(𝑅) > 0 such that

‖(𝑢, V)‖
2

𝐸
1

≤ 𝑐
2
, 𝑡 ≥ 𝑡

1
, (20)

whenever ‖(𝑢
0
, V
0
)‖
𝐸
1

≤ 𝑅.

Lemma 8. Assume that (𝑢
0
, V
0
) ∈ 𝐸
2
; then

‖(𝑢, V)‖
2

𝐸
2

≤ 𝑐
󵄩󵄩󵄩󵄩(𝑢0, V0)

󵄩󵄩󵄩󵄩

2

𝐸
2

𝑒
−𝛿
2
𝑡
+ 𝑐
3
. (21)

Thus there exists 𝑡
2
= 𝑡
2
(𝑅) > 0 such that

‖(𝑢, V)‖
2

𝐸
2

≤ 𝑐
4
, 𝑡 ≥ 𝑡

2
, (22)

whenever ‖(𝑢
0
, V
0
)‖
𝐸
2

≤ 𝑅.

Theorem 9. Assume that all the parameters of (1) are positive.
For (𝑢

0
, V
0
) given in 𝐸

𝑖
(𝑖 = 1, 2), there exists a unique solution

(𝑢, V) ∈ 𝐿
∞
(𝑅
+
, 𝐸
𝑖
) . (23)

And also

(𝑢, V) ∈ C (𝑅
+
, 𝐸
1
) , ∀ (𝑢

0
, V
0
) ∈ 𝐸
1
. (24)

Furthermore, the solution operator of the system is a continuous
semigroup 𝑆(𝑡) on 𝐸

1
which possesses bounded absorbing sets

𝐵
𝑖
⊂ 𝐸
𝑖
, for 𝑖 = 1, 2.

Thus, we observe that Lemmas 7 and 8 show that there
exists constant 𝑘 depending only on the data that the balls

𝐵
1
= {(𝑢, V) ∈ 𝐸

1
, ‖𝑢‖𝐻

1

+ ‖V‖𝐻
1

≤ 𝑘} ,

𝐵
2
= {(𝑢, V) ∈ 𝐸

2
, ‖𝑢‖𝐻

2

+ ‖V‖𝐻
2

≤ 𝑘}

(25)

are bounded absorbing sets for 𝑆(𝑡) in𝐸
1
and𝐸

2
, respectively:

Let

𝑉
1
= 𝐸
1
, 𝑉

2
= 𝐸
2
, 𝐵 = ⋃

𝑡≥0

𝑆 (𝑡) 𝐵
2
, (26)

then 𝐵 is a compact invariant subset in 𝑉
2
; we know that

semigroup 𝑆(𝑡) defined by problem (31)–(34) possesses a 𝑉
2
-

type compact attractor. According to Theorem 4, we need
only to show the Lipschitz continuity and the squeezing
property of the dynamical system 𝑆(𝑡) in 𝐵, respectively. That
is what we proceed to do in the following sections.

3. Exponential Attractor in 𝑉
2

for Problem
(1)-(2)

In this section, we show the existence of the exponential
attractor in 𝑉

2
for problem (1)-(2). In order to prove the

Lipschitz continuity and the squeezing property, we need to
extend Hölder inequality

∫
Ω

󵄨󵄨󵄨󵄨𝑢 (𝑥) 𝑢2 (𝑥) ⋅ ⋅ ⋅ 𝑢𝑘 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤

𝑘

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗
, (27)

where ∑𝑘
𝑗=1
(1/𝑝
𝑗
) = 1, 𝑝

𝑗
> 1 and Gagliardo-Nirenberg (G-

N) inequality
󵄩󵄩󵄩󵄩󵄩
∇
𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝
≤ 𝑐
󵄩󵄩󵄩󵄩∇
𝑚
𝑢
󵄩󵄩󵄩󵄩

𝑎

𝑟
‖𝑢‖
1−𝑎

𝑞
, (28)

where

1

𝑝
=
𝑗

𝑛
+ 𝑎 (

1

𝑟
−
𝑚

𝑛
) +
1 − 𝑎

𝑞
,

1 ≤ 𝑞, 𝑟 ≤ ∞, 0 ≤ 𝑗 < 𝑚,
𝑗

𝑚
≤ 𝑎 ≤ 1,

(29)

and the Young’s inequality

𝑎𝑏 ≤
𝜀

𝑝
𝑎
𝑝
+
1

𝑞
𝜀
(−𝑞/𝑏)
𝑏
𝑞
, 𝑎, 𝑏, 𝜀 > 0, 1 < 𝑝,

𝑞 < ∞,
1

𝑝
+
1

𝑞
= 1.

(30)

Theorem 10. Assume 𝑤
1
(𝑡) = (𝑢

1
(𝑡), V
1
(𝑡)), and 𝑤

2
(𝑡) =

(𝑢
2
(𝑡), V
2
(𝑡)) are two solutions of problem (1)-(2) with initial

values 𝑤
10
= (𝑢
10
, V
10
), 𝑤
20
= (𝑢
20
, V
20
) ∈ 𝐵 = 𝐻

2
× 𝐻
2; then

one has
󵄩󵄩󵄩󵄩𝑤1 (𝑡) − 𝑤2 (𝑡)

󵄩󵄩󵄩󵄩𝑉
2

≤ exp (2𝐶
0
𝑡)
󵄩󵄩󵄩󵄩𝑤10 − 𝑤20

󵄩󵄩󵄩󵄩𝑉
2

. (31)

Proof. Letting ℎ(𝑡) = 𝑢
1
(𝑡) − 𝑢

2
(𝑡), 𝑔(𝑡) = V

1
(𝑡) − V

2
(𝑡), from

(1)-(2), we have

𝑖ℎ
𝑡
+ 𝛾
2
Δℎ + 𝑖𝛾ℎ + 𝑓 (𝑢

1
, 𝑢
2
) + 𝑔 = 0, (32)

𝑖𝑔
𝑡
+ 𝛾
2
Δ𝑔 + (𝑖Γ − 𝜒) 𝑔 + ℎ = 0, (33)

with periodic initial value

ℎ (𝑥, 𝑡) = ℎ (𝑥 + 𝐷, 𝑡) , 𝑔 (𝑥, 𝑡) = 𝑔 (𝑥 + 𝐷, 𝑡) ,

𝑥 ∈ 𝑅, 𝑡 > 0,

(34)

ℎ (𝑥, 0) = 𝑢
10
(𝑥) − 𝑢

20
(𝑥) , 𝑔 (𝑥, 0) = V

10
(𝑥) − V

20
(𝑥) ,

𝑥 ∈ 𝑅,

(35)

where

𝑓 (𝑢
1
, 𝑢
2
) = 𝜎
1
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

𝑢
2
) + 𝑖𝜎

2
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

4

𝑢
2
) .

(36)
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Taking 𝜙
1
(𝑢) = |𝑢|

2 and 𝜙
2
(𝑢) = |𝑢|

4, then we get

𝜙
󸀠

1
(𝜉) ℎ =

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

, (37)

𝜙
󸀠

2
(𝜂) ℎ =

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

4

. (38)

Substituting (37) and (38) into (36), we get

𝑓 (𝑢
1
, 𝑢
2
) = 𝜎
1
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
2
+
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
2
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

𝑢
2
)

+ 𝑖𝜎
2
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
1
+
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
2
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

4

𝑢
2
)

= 𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))

+ 𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) .

(39)

Substituting (39) into (32), we obtain

𝑖ℎ
𝑡
+ 𝛾
2
Δℎ + 𝑖𝛾ℎ + 𝜎

1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))

+ 𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) + 𝑔 = 0,

(40)

𝑖𝑔
𝑡
+ 𝛾
2
Δ𝑔 + (𝑖Γ − 𝜒) 𝑔 + ℎ = 0. (41)

To prove theTheorem 4, we take the following four steps.

Step 1. Taking the inner product of (40) with ℎ and (41) with
𝑔, respectively, we have

(𝑖ℎ
𝑡
, ℎ) + (𝛾

2
Δℎ, ℎ) + (𝑖𝛾ℎ, ℎ)

+ (𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , ℎ)

+ (𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , ℎ) + (𝑔, ℎ) = 0,

(42)

(𝑖𝑔
𝑡
, 𝑔) + (𝛾

2
Δ𝑔, 𝑔) + ((𝑖Γ − 𝜒) 𝑔, 𝑔) + (ℎ, 𝑔) = 0, (43)

using

𝑑

𝑑𝑡
∫
Ω

|𝑢|
2
𝑑𝑥 =

𝑑

𝑑𝑡
∫
Ω

𝑢𝑢 𝑑𝑥 = ∫
Ω

(𝑢
𝑡
𝑢 + 𝑢𝑢

𝑡
) 𝑑𝑥

= 2Re∫
Ω

𝑢
𝑡
𝑢 𝑑𝑥.

(44)

Thus,

Im(𝑖 ∫
Ω

𝑢
𝑡
𝑢 𝑑𝑥) =

1

2

𝑑

𝑑𝑡
∫
Ω

|𝑢|
2
𝑑𝑥,

(𝛾
2
Δℎ, ℎ) = −𝛾

2

󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

, (𝑖𝛾ℎ, ℎ) = 𝑖𝛾‖ℎ‖
2
,

(45)

then taking the imaginary part of (42) and (43), respectively,

1

2

𝑑

𝑑𝑡
‖ℎ‖
2
+ 𝛾‖ℎ‖

2
+ 𝜎
1
Im∫
Ω

𝑢
2
𝜙
󸀠

1
(𝜉) |ℎ|

2
𝑑𝑥

+ 𝜎
2
Im∫
Ω

𝜙
2
(𝑢
1
) |ℎ|
2
𝑑𝑥

+ 𝜎
2
Re∫
Ω

𝜙
󸀠

2
(𝜂) |ℎ|

2
𝑑𝑥 + Im∫

Ω

𝑔ℎ 𝑑𝑥 = 0,

(46)

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Im∫
Ω

ℎ𝑔 𝑑𝑥 = 0, (47)

by using the extend Hölder inequality, we can obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Im∫
Ω

𝑔ℎ 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
1

2
(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ ‖ℎ‖
2
) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎
1
Im∫
Ω

𝑢
2
𝜙
󸀠

1
(𝜉) |ℎ|

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ∫
Ω

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 𝜙
󸀠

1
(𝜉) |ℎ|

2
𝑑𝑥

≤
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ‖ℎ‖
2󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

1
(𝜉)
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶‖ℎ‖
2
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎
2
Re∫
Ω

𝑢
2
𝜙
󸀠

2
(𝜂) |ℎ|

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝜎2
󵄨󵄨󵄨󵄨 ∫
Ω

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 𝜙
󸀠

2
(𝜉) |ℎ|

2
𝑑𝑥

≤
󵄨󵄨󵄨󵄨𝜎2
󵄨󵄨󵄨󵄨 ‖ℎ‖
2󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

2
(𝜂)
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶‖ℎ‖
2
.

(48)

Combining (46) and (47), then we infer that

1

2

𝑑

𝑑𝑡
(‖ℎ‖
2
+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

) + 𝛾‖ℎ‖
2
+ 𝛾
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
) |ℎ|
2
𝑑𝑥 ≤ 𝐶‖ℎ‖

2
+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

.

(49)

Step 2. Taking the inner product of (40) with −ℎ
𝑥𝑥

and (41)
with −𝑔

𝑥𝑥
, respectively, we have

(𝑖ℎ
𝑡
, ℎ
𝑥𝑥
) + (𝛾

2
Δℎ, −ℎ

𝑥𝑥
) + (𝑖𝛾ℎ, −ℎ

𝑥𝑥
)

+ (𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , −ℎ

𝑥𝑥
)

+ (𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , −ℎ

𝑥𝑥
)

+ (𝑔, −ℎ
𝑥𝑥
) = 0,

(50)

(𝑖𝑔
𝑡
, −𝑔
𝑥𝑥
) + (𝛾
2
Δ𝑔, −𝑔

𝑥𝑥
) + ((𝑖Γ − 𝜒) 𝑔, −𝑔

𝑥𝑥
)

+ (ℎ, −𝑔
𝑥𝑥
) = 0.

(51)

Note that

(𝑖ℎ
𝑡
, −ℎ
𝑥𝑥
) = 𝑖 ∫

Ω

ℎ
𝑥𝑡
ℎ
𝑥
𝑑𝑥,

(𝑔, −ℎ
𝑥𝑥
) = ∫
Ω

𝑔
𝑥
ℎ
𝑥
𝑑𝑥,

(𝛾
2
Δℎ, −ℎ

𝑥𝑥
) = ‖Δℎ‖

2
,

(𝑖𝛾ℎ, −ℎ
𝑥𝑥
) = 𝑖𝛾

󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

,
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(𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , −ℎ

𝑥𝑥
)

= 𝜎
1
∫
Ω

[
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))

+ ℎℎ
𝑥
(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))
𝑥
] 𝑑𝑥,

(𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , −ℎ

𝑥𝑥
)

= 𝑖𝜎
2
∫
Ω

[
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))

+ ℎℎ
𝑥
(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))
𝑥
] 𝑑𝑥,

(52)

then taking the imaginary part of (50) and (51), respectively,

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
1
Im∫
Ω

(𝑢
2
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))x
) 𝑑𝑥

+ 𝜎
2
Im∫
Ω

𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ 𝜎
2
Re∫
Ω

(𝑢
2
𝜙
󸀠

2
(𝜂)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))
𝑥
) 𝑑𝑥

+ Im∫
Ω

𝑔
𝑥
ℎ
𝑥
𝑑𝑥 = 0,

(53)

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Im∫
Ω

ℎ𝑔 𝑑𝑥 = 0. (54)

Note the following inequalities:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎
1
Im∫
Ω

(𝑢
2
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))
𝑥
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 Im∫
Ω

(
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ |ℎ|
󵄨󵄨󵄨󵄨󵄨
ℎ
𝑥

󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨𝜙1(𝑢1)𝑥

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢2𝑥
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

1
(𝜉)
𝑥

󵄨󵄨󵄨󵄨󵄨
)) 𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ‖ℎ‖
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑥

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩𝜙1(𝑢1)𝑥

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩𝑢2𝑥
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

1
(𝜉)
󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

1
(𝜉)
𝑥

󵄩󵄩󵄩󵄩󵄩∞
) ,

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝑐‖ℎ‖
2
,

𝜎
2
Re∫
Ω

(𝑢
2
𝜙
󸀠

2
(𝜂)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))
𝑥
) 𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝑐‖ℎ‖
2
,

(55)

Combining (53) and (54), one can obtain

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛾
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

+ 𝑐‖ℎ‖
2
.

(56)

Step 3. Taking the inner product of (40) with ℎ
𝑥𝑥𝑥𝑥

and (41)
with 𝑔

𝑥𝑥𝑥𝑥
, respectively, we have

(𝑖ℎ
𝑡
, ℎ
𝑥𝑥𝑥𝑥
) + (𝛾

2
Δℎ, ℎ
𝑥𝑥𝑥𝑥
) + (𝑖𝛾ℎ, ℎ

𝑥𝑥𝑥𝑥
)

+ (𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , ℎ

𝑥𝑥𝑥𝑥
)

+ (𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , ℎ

𝑥𝑥𝑥𝑥
)

+ (𝑔, ℎ
𝑥𝑥𝑥𝑥
) = 0,

(𝑖𝑔
𝑡
, 𝑔
𝑥𝑥𝑥𝑥
) + (𝛾
2
Δ𝑔, 𝑔
𝑥𝑥𝑥𝑥
) + ((𝑖Γ − 𝜒) 𝑔, 𝑔

𝑥𝑥𝑥𝑥
)

+ (ℎ, 𝑔
𝑥𝑥𝑥𝑥
) = 0,

(57)

using

(𝑖ℎ
𝑡
, ℎ
𝑥𝑥𝑥𝑥
) = 𝑖 ∫

Ω

ℎ
𝑥𝑥𝑡
ℎ
𝑥𝑥
𝑑𝑥,

(𝑔, ℎ
𝑥𝑥𝑥𝑥
) = ∫
Ω

𝑔
𝑥𝑥
ℎ
𝑥𝑥
𝑑𝑥,

(𝛾
2
Δℎ, ℎ
𝑥𝑥𝑥𝑥
) =
󵄩󵄩󵄩󵄩ℎ𝑥𝑥𝑥

󵄩󵄩󵄩󵄩

2

,

(𝑖𝛾ℎ, ℎ
𝑥𝑥𝑥𝑥
) = 𝑖𝛾

󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

,

(𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , ℎ

𝑥𝑥𝑥𝑥
)

= 𝜎
1
((ℎ (𝜙

1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)))
𝑥𝑥
, ℎ
𝑥𝑥
)

= 𝜎
1
(ℎ
𝑥𝑥
𝜙
1
(𝑢
1
) + 𝜓
1
, ℎ
𝑥𝑥
) ,

(𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , ℎ

𝑥𝑥𝑥𝑥
)

= 𝑖𝜎
2
((ℎ (𝜙

2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)))
𝑥𝑥
, ℎ
𝑥𝑥
)

= 𝑖𝜎
2
(ℎ
𝑥𝑥
𝜙
2
(𝑢
1
) + 𝜓
2
, ℎ
𝑥𝑥
) ,

(58)

where

𝜓
1
= ℎ
𝑥𝑥
𝑢
2
𝜙
󸀠

1
(𝜉)

+ 2ℎ
𝑥
(𝜙
1
(𝑢
1
)
𝑥
+ 𝑢
2𝑥
𝜙
󸀠

1
(𝜉) + 𝑢

2
𝜙
󸀠

1
(𝜉)
𝑥
)

+ ℎ (𝜙
1
(𝑢
1
)
𝑥𝑥
+ 𝑢
2𝑥𝑥
𝜙
󸀠

1
(𝜉) + 2𝑢

2𝑥
𝜙
󸀠

1
(𝜉)
𝑥

+𝑢
2
𝜙
󸀠

1
(𝜉)
𝑥𝑥
) ,
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𝜓
2
= ℎ
𝑥𝑥
𝑢
2
𝜙
󸀠

2
(𝜂)

+ 2ℎ
𝑥
(𝜙
2
(𝑢
1
)
𝑥
+ 𝑢
2𝑥
𝜙
󸀠

2
(𝜂) + 𝑢

2
𝜙
󸀠

2
(𝜂)
𝑥
)

+ ℎ (𝜙
2
(𝑢
1
)
𝑥𝑥
+ 𝑢
2𝑥𝑥
𝜙
󸀠

2
(𝜂) + 2𝑢

2𝑥
𝜙
󸀠

2
(𝜂)
𝑥

+𝑢
2
𝜙
󸀠

2
(𝜂)
𝑥𝑥
) ,

(59)

then taking the imaginary part of (50) and (51), respectively,

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
1
Im (𝜓

1
, ℎ
𝑥𝑥
)

+ 𝜎
2
(ℎ
𝑥𝑥
𝜙
2
(𝑢
1
) , ℎ
𝑥𝑥
) + 𝜎
2
Re (𝜓

2
, ℎ
𝑥𝑥
)

+ Im∫
Ω

𝑔
𝑥𝑥
ℎ
𝑥𝑥
𝑑𝑥 = 0,

(60)

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ Im∫
Ω

ℎ
𝑥𝑥
𝑔
𝑥𝑥
𝑑𝑥 = 0. (61)

Note the following inequalities:

󵄨󵄨󵄨󵄨󵄨
Im (𝜓

1
, ℎ
𝑥𝑥
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶‖ℎ‖

2

𝐻
2 ,

󵄨󵄨󵄨󵄨󵄨
𝜎
2
Re (𝜓

2
, ℎ
𝑥𝑥
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶‖ℎ‖

2

𝐻
2 .

(62)

Combining (60) and (61), one can obtain

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨ℎ𝑥𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

.

(63)

Step 4. Combining (49), (56) and (63), we get

1

2

𝑑

𝑑𝑡
(‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝛾‖ℎ‖

2

𝐻
2 + 𝛾
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
) (|ℎ|
2
+
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨ℎ𝑥𝑥
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

≤ 𝐶 (‖ℎ‖
2
+
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ ‖ℎ‖
2

𝐻
2) +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

.

(64)

Taking 𝜇 = min(Γ, 𝛾),𝐶
0
= max(𝐶, 1) and noting that

𝜎
2
∫
Ω

(|ℎ|
2
+
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨ℎ𝑥𝑥
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥 ≥ 0, (65)

so (64) can be reduced to

1

2

𝑑

𝑑𝑡
(‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝜇 (‖ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤ 𝐶
0
(‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) .

(66)

By Gronwall’s inequality

‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2 ≤ exp (2𝐶0𝑡) (‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) , (67)

that is,
󵄩󵄩󵄩󵄩𝑤1 (𝑡) − 𝑤2 (𝑡)

󵄩󵄩󵄩󵄩𝑉
2

≤ exp (2𝐶
0
𝑡)
󵄩󵄩󵄩󵄩𝑤10 − 𝑤20

󵄩󵄩󵄩󵄩𝑉
2

. (68)

Meanwhile, it indicates that the Lipschitz constant 𝑙(𝑡) ≤
exp(2𝐶

0
𝑡). This completes the proof.

Now, we intend to show the squeezing property for
semigroup 𝑆(𝑡). To this end, we introduce the operator 𝐴 =
−(𝜕/𝜕𝑥

2
) from𝐷(𝐴) to𝐻 with domain

𝐷 (𝐴) = {𝑢 ∈ 𝐻
2
(Ω)} . (69)

Obviously, 𝐴 is an unbounded self-adjoint positive opera-
tor and the inverse 𝐴−1 is compact. Thus, there exists an
orthonormal basis {𝑤

𝑖
}
∞

𝑖=1
𝑖 = 1 of 𝐻 consisting of eigen-

vectors of 𝐴 such that

𝐴𝑤
𝑖
= 𝜆
𝑖
𝑤
𝑖
,

0 ≤ 𝜆
1
< 𝜆
1
⋅ ⋅ ⋅ 𝜆
𝑖
< ⋅ ⋅ ⋅ 󳨀→ +∞, when 𝑖 󳨀→ ∞.

(70)

For all𝑁 denote by 𝑃 = 𝑃
𝑛
: 𝐻 → span{𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
} the

projector 𝑄 = 𝑄
𝑁
= 𝐼 − 𝑃

𝑁
. In the following, we will use

󵄩󵄩󵄩󵄩󵄩
𝐴
(1/2)
𝑢
󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

󵄩󵄩󵄩󵄩󵄩
𝐴
(1/2)
𝑢
󵄩󵄩󵄩󵄩󵄩
≥ 𝜆
(1/2)

𝑁+1
, 𝑢 ∈ 𝑄

𝑁
𝐻,

󵄩󵄩󵄩󵄩𝑄𝑁𝑢
󵄩󵄩󵄩󵄩 ≤ ‖𝑢‖ , 𝑢 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝐴𝑄𝑁𝑢
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑄𝑁𝐴𝑢

󵄩󵄩󵄩󵄩 ≤ ‖𝐴𝑢‖ , 𝑢 ∈ 𝐷 (𝐴) .

(71)

Decompose ℎ, 𝑔 as

ℎ = 𝑃ℎ + 𝑄ℎ, 𝑔 = 𝑃𝑔 + 𝑄𝑔. (72)

Applying 𝑄 to (32) and (33) we find that

𝑖𝑄ℎ
𝑡
+ 𝛾
2
Δ𝑄ℎ + 𝑖𝛾ℎ + 𝑄𝑓 (𝑢

1
, 𝑢
2
) + 𝑄𝑔 = 0, (73)

𝑖𝑄𝑔
𝑡
+ 𝛾
2
Δ𝑄𝑔 + (𝑖Γ − 𝜒)𝑄𝑔 + 𝑄ℎ = 0. (74)

Take the inner product of (73) with 𝑄ℎ and (74) with 𝑄𝑔,
respectively. Then like Step 1, we can get

1

2

𝑑

𝑑𝑡
(‖𝑄ℎ‖

2
+
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

) + 𝛾‖𝑄ℎ‖
2
+ Γ
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝑄𝜙
2
(𝑢
1
) |𝑄ℎ|

2
𝑑𝑥

≤ 𝐶‖𝑄ℎ‖
2
+
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

.

(75)

Take the inner product of (73) with −𝑄ℎ
𝑥𝑥

and (74) with
−𝑄𝑔
𝑥𝑥
, respectively. Then like Step 2, we can get

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑄ℎ𝑥

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑄𝑔𝑥

󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩𝑄ℎ𝑥

󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑄𝑔𝑥

󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝑄𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨𝑄ℎ𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩𝑄ℎ𝑥

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑄𝑔𝑥

󵄩󵄩󵄩󵄩

2

+ 𝑐‖𝑄ℎ‖
2
.

(76)
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Take the inner product of (73) with 𝑄ℎ
𝑥𝑥𝑥𝑥

and (74) with
𝑄𝑔
𝑥𝑥𝑥𝑥

, respectively. Then like Step 3, we can get

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥

󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝑄𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨𝑄ℎ𝑥𝑥

󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶‖𝑄ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩

2

.

(77)

Combining (75), (76), and (77), we get

1

2

𝑑

𝑑𝑡
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝜇 (‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤ 𝐶
0
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) .

(78)

Using the G-N inequality

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

≤ ‖𝑢‖
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 ≤
1

2
(‖𝑢‖
2
+
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

) , (79)

from (78), we have

1

2

𝑑

𝑑𝑡
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝜇 (‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤
3𝐶
0

2
(‖𝑄ℎ‖ +

󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩)

≤
3𝐶
0

2
𝜆
−1

𝑁+1
(
󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩)

≤
3𝐶
0

2
𝜆
−1

𝑁+1
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤
3𝐶
0

2
𝜆
−1

𝑁+1
exp (2𝐶

0
𝑡) (‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) .

(80)

By Gronwall lemma we get

‖𝑄ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2

≤ (‖ℎ (0)‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) exp (−2𝜇𝑡)

+ 𝐶𝜆
−1

𝑁+1
exp (2𝐶

0
𝑡) (‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2)

≤ [exp (−2𝜇𝑡) + 𝐶𝜆−1
𝑁+1

exp (2𝐶
0
𝑡)]

× (‖ℎ (0)‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) .

(81)

Letting 𝑡
∗
> 0 be fixed we take 𝑤(𝑡) = 𝑤

1
(𝑡) − 𝑤

2
(𝑡) =

(ℎ(𝑡), 𝑔(𝑡)) and assume that

exp (−2𝜇𝑡
∗
) ≤

1

256
. (82)

Then we choose𝑁 large enough so that

𝐶𝜆
−1

𝑁+1
exp (2𝐶

0
𝑡) ≤

1

256
, (83)

that is,

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡) . (84)

From (82) and (84), we obtain

‖𝑄ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2 ≤

1

128
(‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) . (85)

This shows that when 𝑡
∗
> 0 is fixed, Lipschitz constant for

𝑆(𝑡) in 𝐵 is equal to exp(2𝐶
0
𝑡
∗
) and𝑁 satisfies

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡
∗
) . (86)

We have

‖𝑄𝑤‖𝑉
2

≤ ‖𝑄𝑤 (0)‖𝑉
2

. (87)

So when
󵄩󵄩󵄩󵄩𝑄𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

>
󵄩󵄩󵄩󵄩𝑃𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

,

󵄩󵄩󵄩󵄩𝑤 (𝑡∗)
󵄩󵄩󵄩󵄩𝑉
2

=
󵄩󵄩󵄩󵄩𝑄𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

+
󵄩󵄩󵄩󵄩𝑃𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

< 2
󵄩󵄩󵄩󵄩𝑄𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

≤
1

64
‖𝑄𝑤 (0)‖𝑉

2

≤
1

64
‖𝑤 (0)‖𝑉

2

.

(88)

This completes the proof of Theorem 4.

Theorem 11. The semigroup 𝑆(𝑡) associated with problem (1)-
(2) is squeezing in 𝐵. Now we conclude this section by giving
our main result.

Theorem 12. Suppose that problem (1)-(2) satisfiesTheorem 9;
there exist 𝑡

∗
≥ (1/2𝜇) ln(256) and N large enough such that

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡
∗
) . (89)

Then for the nonlinear semigroup 𝑆(𝑡) defined in (4) and (5),
𝑆(𝑡)
𝑡≤0

; 𝐵 admits an exponential attractor𝑀 in 𝑉
2
and

𝑑
𝐹
(𝑀) ≤ 1 + 𝐶𝑁

0
,

dist
𝑉
2
(𝑆 (𝑡) 𝐵,𝑀) ≤ 𝐶

0
exp (−𝐶

1
𝑡) ,

(90)

where 𝐶
0
, 𝐶
1
, 𝐶 are constants independent of the solution of

the equation.

4. Conclusions

In this paper, we have studied the coupled Ginzburg-Landau
equations which describe Bose-Einstein condensates and
nonlinear optical waveguides and cavities with periodic
initial boundary; the existence of the exponential attractors is
obtained by showing Lipschitz continuity and the squeezing
property. For exponential attractor, 𝑁 is only large enough
such that

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡
∗
) . (91)
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We investigate the spatiotemporal dynamics induced byAllee effect in a reaction-diffusion predator-preymodel. In the case without
Allee effect, there is nonexistence of diffusion-driven instability for the model. And in the case with Allee effect, the positive equili-
briummay be unstable under certain conditions.This instability is induced by Allee effect and diffusion together. Furthermore, via
numerical simulations, the model dynamics exhibits both Allee effect and diffusion controlled pattern formation growth to holes,
stripes-holes mixture, stripes, stripes-spots mixture, and spots replication, which shows that the dynamics of the model with Allee
effect is not simple, but rich and complex.

1. Introduction

In 1952, Turing published one paper [1] on the subject called
“pattern formation”—one of the central issues in ecology
[2], putting forth the Turing hypothesis of diffusion-driven
instability. Pattern formation in mathematics refers to the
process that, by changing a bifurcation parameter, the spa-
tially homogeneous steady states lose stability to spatially
inhomogeneous perturbations, and stable inhomogeneous
solutions arise [3]. Turing’s revolutionary idea was that
passive diffusion could interact with the chemical reaction in
such away that even if the reaction by itself has no symmetry-
breaking capabilities, diffusion can destabilize the symmetry,
so that the system with diffusion can have them [4]. From
then on, pattern formation has become a very active area
of research, motivated in part by the realization that there
are many common aspects of patterns formed by diverse
physical, chemical, and biological systems and by cellular
automata and reaction-diffusion equations [5–7]. And the
appearance and evolution of these patterns have been a focus
of recent research activity across several disciplines [8–15].

Segel and Jackson [16] were the first to call attention to
the Turing’s ideas that would be also applicable in population

dynamics. At the same time, Gierer and Meinhardt [17] gave
a biologically justified formulation of a Turing model and
studied its properties by employing numerical simulation.
Levin and Segel [18, 19] suggested this scenario of spatial
pattern formation as a possible origin of planktonic patchi-
ness.

The understanding of patterns andmechanisms of spatial
dispersal of interacting species is an issue of significant cur-
rent interest in conservation biology, ecology, and biochem-
ical reactions [20–22]. The spatial component of ecological
interaction has been identified as an important factor in how
ecological communities are shaped. Empirical evidence sug-
gests that the spatial scale and structure of environment can
influence population interactions [23]. A significant amount
of work has been done by using this idea in the field of
mathematical biology byMurray [20], Okubo and Levin [21],
Cantrell and Cosner [23], and others [3, 24–27].

In general, assume that the species prey and predator
move randomly on spatial domain, and the spatial movement
of the individuals ismodeled by diffusionwith diffusion coef-
ficients 𝑑

1
> 0, 𝑑

2
> 0 for the prey 𝑢 and predator

V, respectively. As an example, a prototypical predator-prey
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interaction model with logistic growth rate of the prey in the
absence of predation is of the following form [28, 29]:

d𝑢
d𝑡
= 𝑢 (𝛼 − 𝛽𝑢) − 𝑓 (𝑢) 𝑔 (V) + 𝑑

1
Δ𝑢,

dV
d𝑡
= 𝜎𝑓 (𝑢) 𝑔 (V) − 𝑧 (V) + 𝑑

2
ΔV,

(1)

where 𝑢(𝑡) and V(𝑡) are the densities of the prey and predator
at time 𝑡 > 0, respectively. And Δ = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 is the
Laplacian operator in two-dimensional space.

In recent years, many studies, for example, [30–40] and
the references therein, show that the reaction-diffusion pre-
dator-prey model (e.g., model (1)) is an appropriate tool for
investigating the fundamental mechanism of complex spa-
tiotemporal predation dynamics. Of them, Alonso et al.
[30] studied how diffusion affects the stability of predator-
prey coexistence equilibria and show a new difference bet-
ween ratio- and prey-dependent models; that is, the prey-
dependent models cannot give rise to spatial structures
through diffusion-driven instabilities; however, predator-
dependent models with the same degree of complexity can.
Baurmann et al. [31] investigated the emergence of spatiotem-
poral patterns in a generalized predator-prey system, derived
the conditions for Hopf and Turing instabilities without
specifying the predator-prey functional responses discussed
their biological implications, identified the codimension-
2 Turing-Hopf bifurcation and the codimension-3 Turing-
Takens-Bogdanov bifurcation, and found that these bifurca-
tions give rise to complex pattern formation processes in their
neighborhood. And Banerjee and Petrovskii [36] studied
possible scenarios of pattern formation in a ratio-dependent
predator-prey system and found that the emerging patterns
are stationary in the large time limit and exhibit only an
insignificant spatial irregularity, and spatiotemporal chaos
can indeed be observed but only for parameters well inside
the Turing-Hopf parameter domain, away from the bifurca-
tion point. Rodrigues et al. [40] paid their attentions to system
properties in a vicinity of the Turing-Hopf bifurcation of
the predator-prey and found that the asymptotical stationary
pattern arises as a sudden transition between two different
patterns.

On the other hand, in the research of population dynam-
ics, Allee effect in the population growth has been studied
extensively. Allee effect, named after ecologist Allee [41], is
a phenomenon in biology characterized by a positive corre-
lation between population size or density and the mean indi-
vidual fitness (often times measured as per capita population
growth rate) of a population or species [42] and may occur
under several mechanisms, such as difficulties in finding
mates when population density is low, social dysfunction
at small population sizes, and increased predation risk due
to failing flocking or schooling behavior [43–45]. In an
ecological point of view, Allee effect has been modeled into
strong and weak cases. The strong Allee effect introduces a
population threshold, and the population must surpass this
threshold to grow. In contrast, a population with a weak Allee
effect does not have a threshold. It has been attracting much
more attention recently owing to its strong potential impact

on the population dynamics of many plants and animal
species [46]. Detailed investigations relating to Allee effect
may be found in [47–59].

In most predation models, it has been considered that
Allee effect influences only the prey population. For instance,
in model (1), corresponding to the function of prey growth
rate of the prey 𝑢(𝛼 − 𝛽𝑢), to express Allee effect, the most
usual continuous growth of the equation that is given as:

𝐺 (𝑢) = 𝑢 (𝛼 − 𝛽𝑢 −
𝑞

𝑢 + 𝑏
) , (2)

is called additive Allee effect, which was first deduced in [43]
and applied in [60–62]. Here, 𝑞𝑢/(𝑢+𝑏) is the termof additive
Allee effect and 𝑏 ∈ (0, 1) and 𝑞 ∈ (0, 1) are Allee-effect
constants. If 𝑞 < 𝑏𝛼, then 𝐺(0) = 0, 𝐺󸀠(0) > 0, and 𝐺(𝑢) is
called weak Allee effect; if 𝑞 > 𝑏𝛼, then 𝐺(0) = 0, 𝐺󸀠(0) < 0,
and 𝐺(𝑢) is strong Allee effect.

Corresponding tomodel (1), a prototypical predator-prey
interaction model with Allee effect on the prey is given by

d𝑢
d𝑡
= 𝑢 (𝛼 − 𝛽𝑢 −

𝑞

𝑢 + 𝑏
) − 𝑓 (𝑢) 𝑔 (V) + 𝑑

1
Δ𝑢,

dV
d𝑡
= 𝜎𝑓 (𝑢) 𝑔 (V) − 𝑧 (V) + 𝑑

2
ΔV.

(3)

According to Turing’s idea [1], for model (1)—the special
case of model (3) without Allee effect (i.e., 𝑞 = 0)—if the
positive equilibrium point 𝐸∗ = (𝑢∗, V∗) is stable in the case
𝑑
1
= 𝑑
2
= 0 (the nonspatial model) but unstable with

respect to solutions in the cases 𝑑
1
> 0 and 𝑑

2
> 0 (the

spatial model), then 𝐸∗ is called diffusion-driven instability
(i.e., Turing instability or Turing bifurcation), and model (1)
may exhibit Turing pattern formation. In contrast, if 𝐸∗ =
(𝑢
∗
, V∗) is stable in the cases 𝑑

1
> 0 and 𝑑

2
> 0, then there

is nonexistence of diffusion-driven instability for model (1),
and the model cannot exhibit any pattern formation. And in
this situation, for model (3), with Allee effect on the prey,
there comes a question: is there any instability of the positive
equilibrium occurring? Or, is there any diffusion-driven
instability of the positive equilibrium occurring? In addition,
does model (3) exhibit any pattern formation controlled by
Allee effect?

The goal of this paper is to make an insight into the
instability induced by the Allee effect in model (3). Our main
interest is to check whether the Allee effect is a plausible
mechanism of developing spatiotemporal pattern in the
model.

The paper is organized as follows. In the next section, we
give the model and stability of the equilibria. In Section 3,
we discuss the stability/instability of the spatial model with/
without Allee effect, derive the conditions for the occurrence
of Allee-diffusion-driven instability of the case with Allee
effect, and illustrate typical Turing patterns via numerical
simulations. Finally, conclusions and remarks are presented
in Section 4.
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2. The Model System

Inmodel (1), the product𝑓(𝑢)𝑔(V) gives the rate atwhich prey
is consumed. The prey consumed per predator, 𝑓(𝑢)𝑔(V)/V,
was termed as the functional response by Solomon [63].
These functions can be defined in differentways. In this paper,
following Lotka [64], we adopt

𝑓 (𝑢) = 𝑐𝑢, (4)

which is a linear functional response without saturation,
where 𝑐 > 0 denotes the capture rate [65]. And followingHar-
rison [28, 29], we set

𝑔 (V) =
V

𝑚V + 1
, (5)

where 𝑚 > 0 represents a reduction in the predation rate at
high predator densities due tomutual interference among the
predators while searching for food.

The proportionality constant 𝜎 is the rate of prey con-
sumption. And the function 𝑧(V) is given by

𝑧 (V) = 𝛾V + 𝑙V
2
, 𝛾 > 0, 𝑙 ≥ 0, (6)

where 𝛾 denotes the natural death rate of the predator, and
𝑙 > 0 can be used tomodel predator intraspecific competition
that is not the direct competition for food, such as some type
of territoriality [28]. In this paper, we will discuss the case
𝑙 = 0, which is used in a much more traditional case.

Based on the previous discussions, we can establish the
following predation model of two partial differential equa-
tions with additive Allee effect on prey:

𝜕𝑢

𝜕𝑡
= 𝑢 (𝛼 − 𝛽𝑢 −

𝑞

𝑢 + 𝑏
) −

𝑐𝑢V

𝑚V + 1
+ 𝑑
1
Δ𝑢,

𝜕V

𝜕𝑡
= V (−𝛾 +

𝑠𝑢

𝑚V + 1
) + 𝑑
2
ΔV,

(7)

with the positive initial conditions:

𝑢 (𝑥, 𝑦, 0) > 0, V (𝑥, 𝑦, 0) > 0,

(𝑥, 𝑦) ∈ Ω = (0, 𝐿) × (0, 𝐿) ,

(8)

and the zero-flux boundary conditions:

𝜕𝑢

𝜕𝜐
=
𝜕V

𝜕𝜐
= 0, (𝑥, 𝑦) ∈ 𝜕Ω, (9)

where 𝑠 denotes conversion rate, and Ω is a bounded open
domain in R2

+
with boundary 𝜕Ω. 𝜐 is the outward unit

normal vector on 𝜕Ω, and zero-flux conditions reflect the
situationwhere the population cannotmove across the boun-
dary of the domain.

Themain purpose of this paper is to focus on the impacts
of diffusion or/andAllee effect on themodel system about the
positive equilibrium, especially for the instability and pattern
formation.

3. Stability Analysis

3.1.The Case without Allee Effect. Wefirst consider the stabil-
ity of the positive equilibria of model (7) without Allee effect;
that is, 𝑞 = 0, and the model is given by

𝜕𝑢

𝜕𝑡
= 𝑢 (𝛼 − 𝛽𝑢) −

𝑐𝑢V

𝑚V + 1
+ 𝑑
1
Δ𝑢,

𝜕V

𝜕𝑡
= V (−𝛾 +

𝑠𝑢

𝑚V + 1
) + 𝑑
2
ΔV.

(10)

Easy to know that model (10) has a unique positive equi-
librium 𝐸∗ = (𝑢∗, V∗) with 𝑠𝛼 > 𝛽𝛾, where

𝑢
∗
=

𝑚𝑠𝛼 − 𝑐𝑠 + √𝑠2(𝑚𝛼 − 𝑐)
2
+ 4𝑐𝑚𝑠𝛽𝛾

2𝑚𝑠𝛽
,

V
∗
=

s𝑢∗ − 𝛾
𝑚𝛾

,

(11)

which is locally asymptotically stable. Next, we will discuss
the effect of diffusion on 𝐸∗.

Set 𝑈
1
= 𝑢 − 𝑢

∗
, 𝑉
1
= V − V∗, and the linearized system

(10) around 𝐸∗ = (𝑢∗, V∗) is as follows:

𝜕𝑈
1

𝜕𝑡
= 𝑑
1
Δ𝑈
1
− 𝛽𝑢
∗
𝑈
1
−

𝑐𝑢
∗

(𝑚V∗ + 1)2
𝑈
2
,

𝜕𝑈
2

𝜕𝑡
= 𝑑
2
Δ𝑈
2
+

𝑠V∗

𝑚V∗ + 1
𝑈
1
−
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
𝑈
2
,

𝜕𝑈
1

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω

=
𝜕𝑈
2

𝜕]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜕Ω

= 0.

(12)

FollowingMalchow et al. [66], we know that any solution
of system (12) can be expanded into a Fourier series as follows:

𝑈
1
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝑢
𝑛𝑚
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝛼
𝑛𝑚
(𝑡) sin kr,

𝑈
2
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

V
𝑛𝑚
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝛽
𝑛𝑚
(𝑡) sin kr,

(13)

where r = (𝑥, 𝑦) and 0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐿. k = (𝑘
𝑛
, 𝑘
𝑚
) and

𝑘
𝑛
= 𝑛𝜋/𝐿, 𝑘

𝑚
= 𝑚𝜋/𝐿 are the corresponding wavenumbers.

Having substituted 𝑢
𝑛𝑚

and V
𝑛𝑚

into (12), we obtain

𝑑𝛼
𝑛𝑚

𝑑𝑡
= (−𝛽𝑢

∗
− 𝑑
1
𝑘
2
) 𝛼
𝑛𝑚
+ −

𝑐𝑢
∗

(𝑚V∗ + 1)2
𝛽
𝑛𝑚
,

𝑑𝛽
𝑛𝑚

𝑑𝑡
=

𝑠V∗

𝑚V∗ + 1
𝛼
𝑛𝑚
+ (−

𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
− 𝑑
2
𝑘
2
)𝛽
𝑛𝑚
,

(14)

where 𝑘2 = 𝑘2
𝑛
+ 𝑘
2

𝑚
.

A general solution of (14) has the form 𝐶
1
exp(𝜆

1
𝑡) +

𝐶
2
exp(𝜆

2
𝑡), where the constants 𝐶

1
and 𝐶

2
are determined
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by the initial conditions (8) and the exponents 𝜆
1
, 𝜆
2
are the

eigenvalues of the following matrix:

𝐽
𝐸
∗ = (

−𝛽𝑢
∗
− 𝑑
1
𝑘
2

−
𝑐𝑢
∗

(𝑚V∗ + 1)2

𝑠V∗

𝑚V∗ + 1
−
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
− 𝑑
2
𝑘
2

). (15)

Correspondingly, 𝜆
𝑖
(𝑖 = 1, 2) arises as the solution of fol-

lowing equation:

𝜆
2

𝑖
− tr (𝐽

𝐸
∗) 𝜆
𝑖
+ det (𝐽

𝐸
∗) = 0, (16)

where the trace and determinant of 𝐽
𝐸
∗ are, respectively,

tr (𝐽
𝐸
∗) = − (𝑑

1
+ 𝑑
2
) 𝑘
2
− 𝛽𝑢
∗
−
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
,

det (𝐽
𝐸
∗) = 𝑑

1
𝑑
2
𝑘
4
+ (𝑑
2
𝛽𝑢
∗
+
𝑑
1
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
)𝑘
2

+
𝑏𝑚𝛽𝑢

∗2V∗

(𝑚V∗ + 1)2
+

𝑏𝑐𝑢
∗V∗

(𝑚V∗ + 1)3
.

(17)

It is easy to know that tr(𝐽
𝐸
∗) < 0 and det(𝐽

𝐸
∗) > 0.

Hence, the positive equilibrium𝐸∗ ofmodel (10) is uniformly
asymptotically stable.

Obviously, there is no effect on the stability of the positive
equilibrium whether model (10) with diffusion or not. That
is to say, there is nonexistence of diffusion-driven instability
in model (10), which is the special case of model (7) without
Allee effect.

3.2. The Case with Allee Effect

3.2.1. Allee-Diffusion-Driven Instability. In this subsection,
we restrict ourselves to the stability analysis of spatial model
(7), which is in the presence of Allee effect on prey.

For the sake of learning the effect of Allee effect on the
positive equilibrium of model (7), we first give a definition
called Allee-diffusion-driven instability as follows.

Definition 1. If a positive equilibrium is uniformly asymptot-
ically stable in the reaction-diffusion model without Allee-
effect (e.g., model (10)) but unstable with respect to solutions
of the reaction-diffusion model with Allee effect (e.g., model
(7)), then this instability is called Allee-diffusion-driven
instability.

Next, we will only investigate the stability of the positive
equilibrium of model (7). For simplicity, we take the weak
Allee effect case (0 < 𝑞 < 𝑏𝛼) as an example, and the unique
positive equilibrium is named 𝐸

𝑤
= (𝑢
𝑤
, V
𝑤
) = (𝑢

𝑤
, (𝑠𝑢
𝑤
−

𝛾)/𝑚𝛾). We first give the stability of 𝐸
𝑤
in the case without

diffusion as follows that is, 𝑑
1
= 𝑑
2
= 0 in model (7):

d𝑢
d𝑡
= 𝑢 (𝛼 − 𝛽𝑢 −

𝑞

𝑢 + 𝑏
) −

𝑐𝑢V

𝑚V + 1
≜ 𝑓 (𝑢, V) ,

dV
d𝑡
= V (−𝛾 +

𝑠𝑢

𝑚V + 1
) ≜ 𝑔 (𝑢, V) .

(18)

The Jacobianmatrix of (18) evaluated in the positive equi-
librium 𝐸

𝑤
takes the form:

𝐽
𝐸
𝑤

= (

−𝛽𝑢
𝑤
+

𝑞𝑢
𝑤

(𝑢
𝑤
+ 𝑏)
2

−
𝑐𝛾
2

𝑠2𝑢
𝑤

𝑠𝑢
𝑤
− 𝛾

𝑚𝑢
𝑤

(𝛾 − 𝑠𝑢
𝑤
) 𝛾

𝑠𝑢
𝑤

). (19)

Suppose that (𝑢
𝑤
+ 𝑏)
2
(𝑐𝛾 + 𝑚𝑠𝛽𝑢

2

𝑤
) − 𝑚𝑞𝑠𝑢

2

𝑤
> 0, and set

𝑞
[𝑢
𝑤
]
= (𝛽𝑢

𝑤
−
(𝛾 − 𝑠𝑢

𝑤
) 𝛾

𝑠𝑢
𝑤

)
(𝑢
𝑤
+ 𝑏)
2

𝑢
𝑤

. (20)

By some computational analysis, we obtain tr(𝐽
𝐸
𝑤

) < 0,
det(𝐽
𝐸
𝑤

) > 0. Hence 𝐸
𝑤
= (𝑢
𝑤
, (𝑠𝑢
𝑤
− 𝛾)/𝑚𝛾) is locally

asymptotically stable.
And the Jacobian matrix of model (7) at 𝐸

𝑤
= (𝑢
𝑤
, V
𝑤
) is

given by

𝐽̃
𝐸
𝑤

= (

(−𝛽 +
𝑞

(𝑢
𝑤
+ 𝑏)
2
)𝑢
𝑤
− 𝑑
1
𝑘
2

−
𝑐𝛾
2

𝑠2𝑢
𝑤

𝑠𝑢
𝑤
− 𝛾

𝑚𝑢
𝑤

−
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑠𝑢
𝑤

− 𝑑
2
𝑘
2

)

(21)

and the characteristic equation of 𝐽̃
𝐸
𝑤

at 𝐸
𝑤
is

𝜆
2
− tr (𝐽̃

𝐸
𝑤

) 𝜆 + det (𝐽̃
𝐸
𝑤

) = 0, (22)

where

tr (𝐽̃
𝐸
𝑤

) = tr (𝐽
𝐸
𝑤

) − (𝑑
1
+ 𝑑
2
) 𝑘
2
,

det (𝐽̃
𝐸
𝑤

) = det (𝐽
𝐸
𝑤

) + 𝑑
1
𝑑
2
𝑘
4

+ (
𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑠𝑢
𝑤

+(𝛽 −
𝑞

(𝑢
𝑤
+ 𝑏)
2
)𝑑
2
𝑢
𝑤
)𝑘
2
.

(23)

And the instability sets in when at least tr(𝐽̃
𝐸
𝑤

) > 0 or
det(𝐽̃
𝐸
𝑤

) < 0 is violated.
Since tr(𝐽

𝐸
𝑤

) < 0,

tr (𝐽̃
𝐸
𝑤

) = tr (𝐽
𝐸
𝑤

) − (𝑑
1
+ 𝑑
2
) 𝑘
2
< 0 (24)

is always true. Hence, only violation of det(𝐽̃
𝐸
𝑤

) < 0 gives rise
to Allee-diffusion-driven instability, which leads to

𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑠𝑢
𝑤

+ (𝛽 −
𝑞

(𝑢
𝑤
+ 𝑏)
2
)𝑑
2
𝑢
𝑤
≜ Θ < 0, (25)

otherwise, det(𝐽̃
𝐸
𝑤

) > 0 for all 𝑘 if det(𝐽
𝐸
𝑤

) > 0.
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Figure 1: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑠 = 1.75,
𝑑
1
= 0.015, and 𝑑

2
= 1. Times: (a) 0; (b) 50; (c) 250; (d) 2500.

Notice that det(𝐽̃
𝐸
𝑤

) achieves its minimum

min
𝑘

det (𝐽̃
𝐸
𝑤

) =

4𝑑
1
𝑑
2
det (𝐽

𝐸
𝑤

) − Θ
2

4𝑑
1
𝑑
2

(26)

at the critical value 𝑘∗2 > 0 where

𝑘
∗2

= −
Θ

2𝑑
1
𝑑
2

. (27)

And Θ < 0 is equivalent to

(
𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑑
2
𝑠𝑢2
𝑤

+ 𝛽) (𝑢
𝑤
+ 𝑏)
2
< 𝑞 < 𝑏𝛼, (28)

where min
𝑘
det(𝐽̃
𝐸
𝑤

) < 0 is equivalent to 4𝑑
1
𝑑
2
det(𝐽
𝐸
𝑤

) −

Θ
2
< 0, which is equivalent to

𝑞 > (𝑢
𝑤
+ 𝑏)
2

(𝛽 +
𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑑
2
𝑠𝑢2
𝑤

+

2√𝑑
1
𝑑
2
det (𝐽

𝐸
𝑤

)

𝑑
2
𝑢
𝑤

).

(29)

And from det(𝐽̃
𝐸
𝑤

) = 0, we can determine 𝑘
1
and 𝑘
2
as

𝑘
2

1
=

−Θ + √Θ2 − 4𝑑
1
𝑑
1
det (𝐽

𝐸
𝑤

)

2𝑑
1
𝑑
2

,

𝑘
2

2
=

−Θ − √Θ2 − 4𝑑
1
𝑑
1
det (𝐽

𝐸
𝑤

)

2𝑑
1
𝑑
2

.

(30)

In conclusion, if 𝑘2
1
< 𝑘
2
< 𝑘
2

2
, then det(𝐽̃

𝐸
𝑤

) < 0, and the
positive equilibrium 𝐸

𝑤
of model (7) is unstable.That’s to say,
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Figure 2: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑠 = 2,
𝑑
1
= 0.015, and 𝑑

2
= 1. Times: (a) 0; (b) 50; (c) 250; (d) 2500.

Allee-diffusion-driven instability occurs, and model (7) may
exhibit Turing pattern formation.

3.2.2. Pattern Formation. In this subsection, in two-dimen-
sional space, we perform extensive numerical simulations of
the spatially extended model (7) in the case with weak Allee
effect and show qualitative results. All of the numerical simu-
lations employ the zero-flux boundary conditions (9) with a
system size of 200× 200. Other parameters are fixed as 𝛼 = 1,
𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35,
𝑑
1
= 0.015, and 𝑑

2
= 1.

The numerical integration of model (7) is performed by
using an explicit Euler method for the time integration [67]
with a time step size Δ𝑡 = 1/100 and the standard five-point
approximation [68] for the 2𝐷 Laplacian with the zero-flux
boundary conditions.The initial conditions are always a small
amplitude random perturbation around the positive constant

steady state solution𝐸
𝑤
. After the initial period during which

the perturbation spreads, the model goes into either a time-
dependent state or an essentially steady state solution (time-
independent state).

In the numerical simulations, different types of dynamics
can be observed, and it is found that the distributions of
predator and prey are always of the same type. Consequently,
we can restrict our analysis of pattern formation to one
distribution. We only show the distribution of prey 𝑢 as an
instance.

In Figure 1, with 𝑠 = 1.75, there is a pattern consisting of
blue hexagons (minimum density of 𝑢) in a red (maximum
density of 𝑢) background, that is, isolated zones with low
population densities. We call this pattern as “holes.”

When increasing 𝑠 to 𝑠 = 2, the model dynamics exhibits
a transition from stripes-holes growth to stripes replication;
that is, holes decay and the stripes pattern emerges (c.f.,
Figure 2).
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Figure 3: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑠 = 3.0,
𝑑
1
= 0.015, and 𝑑

2
= 1. Times: (a) 0; (b) 50; (c) 250; (d) 2500.

When 𝑠 increasing to 𝑠 = 3.0, the later random pertur-
bations make these stripes decay, end with the time-indepen-
dent regular spots (c.f., Figure 3), which is isolated zones with
high prey densities.

In Figure 4, we show patterns of time-independent
stripes-holes and stripes-spots mixture obtained with model
(7). These two patterns are similar to each other. With 𝑠 =
1.9 (c.f., Figure 4(a)), the stripes-holes mixture pattern is at
relatively low prey densities, while 𝑠 = 2.45 (c.f., Figure 4(b)),
at high prey densities.

From Figures 1 to 4, one can see that, on increasing the
control parameter 𝑠, the pattern sequence “holes → stripes-
holes mixture → stripes → stripes-spots mixture → spots”
is observed.

From the viewpoint of population dynamics, “spots” pat-
tern (c.f., Figure 3) shows that the prey population is driven by
predator to a very low level in those regions. The final result
is the formation of patches of high prey density surrounded
by areas of low prey densities [30]. That is to say, under the

control of these parameters, the prey is predominant in the
domain. In contrast, “holes” pattern (c.f., Figure 1) indicates
that the predator is predominant in the domain.

4. Conclusions and Remarks

In summary, in this paper, we have investigated the spa-
tiotemporal dynamics of a predator-prey model that involves
Allee effect on prey analytically and numerically.

For model (7), in the case without Allee effect, there is
no effect on the stability of the positive equilibrium whether
with diffusion or not. That is to say, there is nonexistence of
diffusion-driven instability in the model without Allee effect.
More precisely, the distribution of species converge to a spa-
tially homogeneous steady state which varies in time.

And in the case with Allee effect, the positive equilibrium
may be unstable.This instability is induced byAllee effect and
diffusion together, so we give a new definition called “Allee-
diffusion-driven instability” and present the analysis of this
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Figure 4: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑑
1
= 0.015,

and 𝑑
2
= 1. (a) 𝑠 = 1.9; (b) 𝑠 = 2.45.

instability of the model in details. To the best of our knowl-
edge, this is the first reported case. Furthermore, via numer-
ical simulations, it is found that the model dynamics exhibits
both Allee effect and diffusion controlled pattern formation
growth to holes, stripes-holes mixtures, stripes, stripes-spots
mixtures, and spots replication.That is to say, the distribution
of species is aggregation. This indicates that the pattern for-
mation of the model with Allee effect is not simple, but rich
and complex.

In fact, for a predator-prey system, Okubo and Levin [21]
noted Allee effect on the functional response, and a density-
dependent death rate of the predator is necessary to generate
spatial patterns. And in this paper, we show that a predator-
prey system with Allee effect on prey can generate complex
Turing spatial patterns, which may be a supplementary to
[21].

It is needed to note that, in this paper, we investigate the
dynamics of localized patterns inmodel (7). Such patterns are
characterized by a highly spatially heterogeneous solutions
and are far from the spatially uniform state. These patterns
occur in two-component systems when the ratio of the two
diffusion coefficients are very large. In the numerical simula-
tions, we take the diffusivity ratio as 1/0.015 ≫ 1, and so we
are close to the regime of localized patterns. And the existence
of these spatial patterns can be rigorously proved using
tools from nonlinear functional analysis such as Liapunov-
Schmidt reduction and fixed-point theorems [13, 14], this is
desirable in future studies.
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Various closed-formheteroclinic breather solutions including classical heteroclinic, heteroclinic breather andAkhmediev breathers
solutions for coupled Schrödinger-Boussinesq equation are obtained using two-soliton and homoclinic test methods, respectively.
Moreover, various heteroclinic structures of waves are investigated.

1. Introduction

The existence of the homoclinic and heteroclinic orbits is
very important for investigating the spatiotemporal chaotic
behavior of the nonlinear evolution equations (NEEs). In
recent years, exact homoclinic and heterclinic solutions were
proposed for some NEEs like nonlinear Schrödinger equa-
tion, Sine-Gordon equation, Davey-Stewartson equation,
Zakharov equation, and Boussinesq equation [1–7].

The coupled Schrödinger-Boussinesq equation is consid-
ered as

𝑖𝐸
𝑡

+ 𝐸
𝑥𝑥

+ 𝛽
1
𝐸 − 𝑁𝐸 = 0,

3𝑁
𝑡𝑡

− 𝑁
𝑥𝑥𝑥𝑥

+ 3(𝑁
2
)
𝑥𝑥

+ 𝛽
2
𝑁
𝑥𝑥

− (|𝐸|
2
)
𝑥𝑥

= 0,

(1)

with the periodic boundary condition

𝐸 (𝑥, 𝑡) = 𝐸 (𝑥 + 𝑙, 𝑡) , 𝑁 (𝑥, 𝑡) = 𝑁 (𝑥 + 𝑙, 𝑡) , (2)

where 𝑙, 𝛽
1
, 𝛽
2
are real constants, 𝐸(𝑥, 𝑡) is a complex func-

tion, and 𝑁(𝑥, 𝑡) is a real function. Equation (1) has also
appeared in [8] as a special case of general systems governing
the stationary propagation of coupled nonlinear upper-
hybrid and magnetosonic waves in magnetized plasma. The
complete integrability of (1) was studied by Chowdhury et al.

[9], and 𝑁-soliton solution, homoclinic orbit solution, and
rogue solution were obtained by Hu et al. [10], Dai et al. [11–
13], and Mu and Qin [14].

2. Linear Stability Analysis

It is easy to see that (𝑒
𝑖𝜃
0 , 𝛽
1
) is a fixed point of (1), and 𝜃

0
is

an arbitrary constant.We consider a small perturbation of the
form

𝐸 = 𝑒
𝑖𝜃
0 (1 + 𝜖) , 𝑁 = 𝛽

1
(1 + 𝜙) , (3)

where |𝜖(𝑥, 𝑡)| ≪ 1, |𝜙(𝑥, 𝑡)| ≪ 1. Substituting (3) into (1), we
get the linearized equations
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1
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(4)

Assume that 𝜖 and 𝜙 have the following forms:

𝜖 = 𝐺𝑒
𝑖𝜇
𝑛
𝑥+𝜎
𝑛
𝑡

+ 𝐻𝑒
−𝑖𝜇
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𝑛
𝑡
,
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𝑖𝜇
𝑛
𝑥+𝜎
𝑛
𝑡

+ 𝑒
−𝑖𝜇
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𝑛
𝑡
) ,

(5)

where 𝐺, 𝐻 are complex constants, and 𝐶 is a real number;
𝜇
𝑛

= 2𝜋𝑛/𝑙, and 𝜎
𝑛
is the growth rate of the 𝑛th modes.
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Substituting (5) into (4), we have
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Solving (6), we obtain that
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, (7)

with

Δ = 4𝜇
8
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Obviously, (7) implies that 𝜇
2

𝑛
(𝛽
2

+ 2𝛽
2

1
) − 2𝜇

4

𝑛
> 0; then,
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2
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3. Various Heterclinic Breather Solutions

Set

𝐸 (𝑥, 𝑡) = 𝑒
−𝑖𝑎𝑡

𝑢 (𝑥, 𝑡) , 𝑁 (𝑥, 𝑡) = V
0

+ V (𝑥, 𝑡) . (10)

Substituting (10) into (1), we get
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We can choose 𝑎, V
0
such that 𝑎 + 𝛽

1
− V
0

= 0.
By using the following transformation

𝑢 =
𝑔 (𝑥, 𝑡)

𝑓 (𝑥, 𝑡)
, V = −2(ln 𝑓 (𝑥, 𝑡))

𝑥𝑥
. (12)

Equation (11) can be reduced into the following bilinear form:

(𝑖𝐷
𝑡

+ 𝐷
2

𝑥
) 𝑔 ⋅ 𝑓 = 0,

(3𝐷
2

𝑡
+ (6V
0

+ 𝛽
2
) 𝐷
2

𝑥
− 𝐷
4

𝑥
− 𝜆) 𝑓 ⋅ 𝑓 + 𝑔𝑔

∗
= 0,

(13)

where 𝑔(𝑥, 𝑡) is an unknown complex function and 𝑓(𝑥, 𝑡) is
a real function, 𝑔

∗ is conjugate function of 𝑔(𝑥, 𝑡), and 𝜆 is an
integration constant.TheHirota bilinear operators 𝐷

𝑚

𝑥
𝐷
𝑛

𝑡
are

defined by

𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝑓 (𝑥, 𝑡) ⋅ 𝑔 (𝑥, 𝑡)

= (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑥󸀠
)

𝑚

(
𝜕

𝜕𝑡
−

𝜕

𝜕𝑡󸀠
)

𝑛

[𝑓 (𝑥, 𝑡) 𝑔 (𝑥
󸀠
, 𝑡
󸀠
)]
𝑥
󸀠
=𝑥, 𝑡
󸀠
= 𝑡

.

(14)

We use three test functions to investigate the variation
of the heterclinic solution for the coupled Schrödinger-
Boussinesq equation (1). (1) We seek the following forms of
the heterclinic solution:

𝑔 = 1 + 𝑏
1
cos (𝑝𝑥) 𝑒

Ω𝑡+𝛾
+ 𝑏
2
𝑒
2Ω𝑡+2𝛾

,

𝑓 = 1 + 𝑏
3
cos (𝑝𝑥) 𝑒

Ω𝑡+𝛾
+ 𝑏
4
𝑒
2Ω𝑡+2𝛾

,

(15)

where 𝑏
1
, 𝑏
2
are complex numbers and 𝑏

3
, 𝑏
4
are real numbers.

𝑏
𝑖

(𝑖 = 1, 2, 3, 4), 𝑝, Ω, 𝛾 will be determined later.
Choosing V

0
= 𝛽
1
, then 𝑎 = 0. Substituting (15) into the

(13), we have the following relations among these constants:

𝜆 = 1, 𝑏
1

=
𝑖Ω + 𝑝

2

𝑖Ω − 𝑝2
𝑏
3
,

𝑏
2

= (
𝑖Ω + 𝑝

2

𝑖Ω − 𝑝2
)

2

𝑏
4
, 𝑏

4
=

Ω
2

+ 𝑝
4

4Ω2
𝑏
2

3
,

(3Ω
2

− 𝑝
4

− (6𝛽
1

+ 𝛽
2
) 𝑝
2
) (Ω
2

+ 𝑝
4
) = 2𝑝

4
.

(16)

Therefore, we have the heterclinic solution for (1) as:

𝐸 (𝑥, 𝑡) =
𝑒
Ω𝑡+𝛾

+ 𝑏
1
cos (𝑝𝑥) + 𝑏

2
𝑒
Ω𝑡+𝛾

√𝑏
4

(2 cosh (Ω𝑡 + 𝛾 + ln√𝑏
4
) + 𝑏
3
cos (𝑝𝑥))

,

𝑁 (𝑥, 𝑡)

= 𝛽
1
+

2𝑏
3
𝑝
2

(2√𝑏
4
cos (𝑝𝑥) cosh (Ω𝑡 + 𝛾 + ln√𝑏

4
) + 𝑏
3
)

𝑏
4
(2 cosh (Ω𝑡 + 𝛾 + ln√𝑏

4
) + 𝑏
3
cos (𝑝𝑥))

2
.

(17)

It is easy to see that (𝐸, 𝑁) → (1, 𝛽
1
) as 𝑡 → −∞ and

(𝐸, 𝑁) → (((𝑖Ω + 𝑝
2
)/(𝑖Ω − 𝑝

2
))
2
, 𝛽
1
) as 𝑡 → +∞. After

giving some constants in (17), we find that the shape of the
heterclinic orbit for Schrödinger-Boussinesq equation likes
the hook, and the orbits are heterclinic to two different fixed
points (see Figure 1 with 𝛽

1
= 1, 𝛽

2
= −2, 𝑝 = 1, and 𝛾 = 1).

(2) We take ansatz of extended homoclinic test approach
for (13) as follows:

𝑓 (𝑥, 𝑡) = 𝑒
−𝑝
1
(𝑥−𝛼𝑡)−𝜂

0 + 𝑏
3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

+ 𝑏
4
𝑒
𝑝
1
(𝑥−𝛼𝑡)+𝜂

0 ,

𝑔 (𝑥, 𝑡) = 𝑒
−𝑖𝜃

(𝑒
−𝑝
1
(𝑥−𝛼𝑡)−𝜂

0 + 𝑏
1
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

+ 𝑏
2
𝑒
𝑝
1
(𝑥−𝛼𝑡)+𝜂

0) ,

(18)

where the parameters 𝑝, 𝑝
1
, 𝛼, 𝜂
0
, 𝜂
1
, 𝑏
𝑠

(𝑠 = 1, 2, 3, 4) will be
determined later, 𝑏

1
and 𝑏
2
are complex numbers, and 𝑏

3
and

𝑏
4
are real numbers. Substituting (18) into (13) and choosing

V
0

= 𝛽
1
, we get the following relations among the parameters:
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Figure 1: Hook heteroclinic orbits for Schrödinger-Boussinesq equation as 𝑡 → −∞ (a) and 𝑡 → +∞ (b).

𝑝
2

= 3𝑝
2

1
, 𝜆 = 1,

𝑝
2

1
=

3

4
𝛼
2

−
1

4
𝛽
2

−
3

2
𝛽
1
, 𝛼

2
=

(𝛽
2

+ 6𝛽
1
)
2

− 2

4 (𝛽
2

+ 6𝛽
1
)

,

𝑏
1

=
𝑏
3

(𝑖𝛼 − 2𝑝
1
)

𝑖𝛼 + 2𝑝
1

, 𝑏
2

=
𝑏
4
(𝑖𝛼 − 2𝑝

1
)
2

(𝑖𝛼 + 2𝑝
1
)
2

,

𝑏
3

= ±

2𝑝
1
√(3𝛼2 − 4𝑝

2

1
) 𝑏
4

𝑝√𝛼2 + 4𝑝
2

1

.

(19)

From (19), we get the restrictive conditions with

−√2 < 𝛽
2

+ 6𝛽
1

< 0, 𝑏
4

< 0. (20)

Denote that (𝑖𝛼 − 2𝑝
1
)/(𝑖𝛼 + 2𝑝

1
) = 𝑒

𝑖𝜃
0 . Then, sub-

stituting (10) into (1) and employing (19), we obtain the
solution of the coupled Schrödinger-Boussinesq equation as
follows:

𝐸 (𝑥, 𝑡) = 𝑒
𝑖(𝜃
0
−𝜃)

2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
) + 𝑖𝜃
0
) − 𝑏
3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) − 𝑏

3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

,

𝑁 (𝑥, 𝑡) = 𝛽
1

−

8√−𝑏
4
𝑏
3
𝑝
2

1
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

(2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) − 𝑏

3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
))
2

−

2 (−4√−𝑏
4
𝑝𝑝
1
𝑏
3
cosh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln√−𝑏

4
) sin (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
) + (4𝑏

4
− 3𝑏
2

3
) 𝑝
2

1
)

(2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) − 𝑏

3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
))
2

,

(21)

where 𝜂
0
, 𝜂
1
are arbitrary numbers.

Solution in (21) is a heteroclinic breather wave solution.
It is easy to see that (𝐸, 𝑁) → (𝑒

−𝑖(𝜃+2𝜃
0
)
, 𝛽
1
) as 𝑡 → −∞

and (𝐸, 𝑁) → (𝑒
−𝑖𝜃

, 𝛽
1
) as 𝑡 → +∞. Given some constants

in (21), this kind of the heterclinic orbit likes a spiral, and it
is heterclinic to the points (𝑒

−𝑖(𝜃+2𝜃
0
)
, 𝛽
1
) and (𝑒

−𝑖𝜃
, 𝛽
1
) (see

Figure 2 with 𝛽
1

= −1.5, 𝛽
2

= 8, and 𝑏
4

= −4).
Note that (𝑒

−𝑖(𝜃+2𝜃
0
)
, 𝛽
1
) and (𝑒

−𝑖𝜃
, 𝛽
1
) are two different

fixed points of (21), which is a heteroclinic solution (see
Figure 3). This wave also contains the periodic wave, and its
amplitude periodically oscillates with the evolution of time,
which shows that this wave has breather effect. The previous
results combined with (21) show that interaction between a

solitary wave and a periodic wave with the same velocity 𝛼

and opposite propagation direction can form a heteroclinic
breather flow. This is a new phenomenon of physics in the
stationary propagation of coupled nonlinear upper-hybrid
and magnetosonic waves in magnetized plasma.

(3) Use the following forms of the heterclinic solution
[14]:

𝑔 = 𝑏
1
cosh (𝛼𝑡) + 𝑏

2
cos (𝑝𝑥) + 𝑏

3
sinh (𝛼𝑡) ,

𝑓 = 𝑏
4
cosh (𝛼𝑡) + 𝑏

5
cos (𝑝𝑥) ,

(22)

where 𝑏
1
, 𝑏
2
, 𝑏
3
are complex numbers and 𝑏

4
, 𝑏
5
are real

numbers. 𝑏
𝑖

(𝑖 = 1, 2, 3, 4, 5), 𝑝, 𝛼 will be determined later.
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Figure 2: Spiral heteroclinic orbits for Schrödinger-Boussinesq equation as 𝑡 → −∞ (a) and 𝑡 → +∞ (b).
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Figure 3: One heteroclinic orbit for Schrödinger-Boussinesq equation as 𝑥 = 0.

We also choose V
0

= 𝛽
1
and substitute (22) into (13). We

have the following relations among these constants:

𝑖𝑏
3
𝑏
4
𝛼 = 𝑏
2
𝑏
5
𝑝
2
,

𝑏
5

(𝑏
1

+ 𝑏
3
) (𝑖𝛼 − 𝑝

2
) = 𝑏
2
𝑏
4

(𝑖𝛼 + 𝑝
2
) ,

𝑏
2
𝑏
4

(𝑖𝛼 − 𝑝
2
) = 𝑏
5

(𝑏
1

− 𝑏
3
) (𝑖𝛼 + 𝑝

2
) ,

− 𝑏
2

4
+ 12𝛼

2
𝑏
2

4
− 2𝑏
2

5
cos2 (𝑝𝑥) − 16𝑏

2

5
𝑝
4

− 4𝑏
2

5
𝑝
2

(6𝛽
1

+ 𝛽
2
)

+ 𝑏
1
𝑏
∗

1
− 𝑏
3
𝑏
∗

3
+ 2𝑏
2
𝑏
∗

2
cos2 (𝑝𝑥) = 0.

(23)
Solving (23), we get

𝑏
1

=

(𝑝
4

− 𝛼
2
) 𝑏
2

𝛼√2 (𝛼2 + 𝑝4)

, 𝑏
3

= ±𝑖
√2𝑝
2
𝑏
2

√𝛼2 + 𝑝4
,

𝑏
2

4
=

(𝛼
2

+ 𝑝
4
) 𝑏
2

5

2𝛼2
.

(24)

Therefore, we have the heterclinic solution for (1) as

𝐸 (𝑥, 𝑡) =
𝑏
1
cosh (𝛼𝑡) + 𝑏

2
cos (𝑝𝑥) + 𝑏

3
sinh (𝛼𝑡)

𝑏
4
cosh (𝛼𝑡) + 𝑏

5
cos (𝑝𝑥)

,

𝑁 (𝑥, 𝑡) = 𝛽
1

+ 2
𝑏
5
𝑝
2

(𝑏
4
cos (𝑝𝑥) cosh (𝛼𝑡) + 𝑏

5
)

(𝑏
4
cosh (𝛼𝑡) + 𝑏

5
cos (𝑝𝑥))

2
.

(25)

Giving some special parameters in (25), we see that the shape
of the heterclinic orbits likes the arc (see Figure 4 with 𝛽

1
= 1,

𝛼 = √3, and 𝑝 = √2). The fixed points are (𝐸, 𝑁) → ((𝑏
1

−

𝑏
3
)/𝑏
4
, 𝛽
1
) as 𝑡 → −∞ and (𝐸, 𝑁) → ((𝑏

1
+ 𝑏
3
)/𝑏
4
, 𝛽
1
) as

𝑡 → +∞.

4. Conclusion

In this work, by using three special test functions in two-
soliton method and homoclinic test method, we obtain three
families of heteroclinic breather wave solution heteroclinic
to two different fixed points, respectively. Moreover, we
investigate different structures of these wave solutions. These
results show that the Schrödinger-Boussinesq equation has
the variety of heteroclinic structure. As the further work, we
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Figure 4: Arc Heteroclinic orbit for Schrödinger-Boussinesq equation as 𝑡 → ±∞ at 𝑥 = 10 ∗ (2𝑘 + 1) (a) and 𝑥 = 10 ∗ (4𝑘 + 2) (b), where
𝑘 = 0, 1, 2, . . ..

will consider whether there exist the spatiotemporal chaos for
the coupled Schrödinger-Boussinesq equation or not.
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The variational iteration method (VIM) is applied to solve the boundary layer problem of magnetohydrodynamic flow over a
nonlinear stretching sheet. The combination of the VIM and the Padé approximants is shown to be a powerful method for solving
two-point boundary value problems consisting of systems of nonlinear differential equations. And the comparison of the obtained
results with other available results shows that the method is very effective and convenient for solving boundary layer problems.

1. Introduction

It is well known that most of the phenomena that arise in
mathematical physics and engineering fields can be described
by partial differential equations. Recent advances of partial
differential equations are stimulated by new examples of
applications in fluid mechanics, viscoelasticity, mathematical
biology, electrochemistry, and physics. There are many tra-
ditional and recently developed methods to give numerical
and analytical approximate solutions of nonlinear differen-
tial equations such as Euler method, Runge-Kutta method,
Taylor series method, Adomian decomposition method [1],
Variational iteration method [2, 3], Hankel-Padé method [4],
DTM-Padé method [5], homotopy perturbation method [6],
and Hamiltonian method [7].

In this paper, we consider the model proposed by authors
in [1] describing the problem of the boundary layer flow of
an incompressible viscous fluid over a nonlinear stretching
sheet. The boundary layer flow is often encountered in many
engineering and industrial processes. Such processes include
the aerodynamic extrusion of plastic sheets, hot rolling, glass
fiber production, and so on [1, 4, 5]. And various aspects
of the stretching flow problem were discussed by various

investigators. Chiam [8] analyzed the MHD flow of a viscous
fluid bounded by a stretching surface with power law velocity.
He presented the numerical solution of the boundary value
problem by utilizing the Runge-Kutta shooting algorithm
with Newton iteration. Here, we aim to solve the MHD flow
caused by a sheet with nonlinear stretching.The approximate
solution of the nonlinear problem is obtained by the varia-
tional iteration method.

The variational iteration method [2] is a type of Lagrange
multiplier method to find analytical solutions. The method
gives the possibility to solve many kinds of non linear
equations. In this method, general Lagrange multipliers
are introduced to construct correction functional for the
problems. The multipliers can be identified optimally via
variational theory. It has been used to solve effectively, easily,
and accurately a large class of nonlinear problems with
approximation [9].

2. Basic Idea of the VIM

The basic idea was systematically illustrated and discussed in
[9, 10]. To illustrate the basic idea of the VIM, we consider the



2 Abstract and Applied Analysis

following general nonlinear system:

𝐿 [𝑢 (𝑡)] + 𝑁 [𝑢 (𝑡)] = 𝑔 (𝑡) , (1)

where 𝐿, 𝑁, and 𝑔(𝑡) are the linear operator, the nonlinear
operator, and a given continuous function, respectively. The
basic character of the method is to construct a correction
functional for the system, which reads

𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡) + ∫

𝑡

0

𝜆 (𝑠) [𝐿𝑢
𝑛
(𝑠) + 𝑁𝑢̃

𝑛
(𝑠) − 𝑔 (𝑠)] 𝑑𝑠,

(2)

where 𝜆 is a Lagrange multiplier which can be identified
optimally via the variational theory.The subscript 𝑛 indicates
the 𝑛th approximation, and 𝑢̃

𝑛
denotes a restricted variation,

that is, 𝛿𝑢̃
𝑛
= 0.

3. Problem Statement and
Governing Equations

We consider the magnetohydrodynamic (MHD) flow of an
incompressible viscous fluid over a stretching sheet at 𝑦 =

0. The fluid is electrically conducting under the influence
of an applied magnetic field 𝐵(𝑥) normal to the stretching
sheet. The induced magnetic field is neglected. The resulting
boundary layer equations are as follows [1]:

𝜕𝑢

𝜕𝑥
+
𝜕V

𝜕𝑦
= 0, (3)

𝑢
𝜕𝑢

𝜕𝑥
+ V

𝜕𝑢

𝜕𝑦
= ]

𝜕
2
𝑢

𝜕𝑦2
−
𝜎𝐵
2
(𝑥)

𝜌
𝑢, (4)

where 𝑢 and V are the velocity components in the 𝑥 and 𝑦

directions, respectively, ] is the kinematic viscosity, 𝜌 is the
fluid density, and 𝜎 is the electrical conductivity of the fluid.
In (4), the external electric field and the polarization effects
are negligible, and in [8]

𝐵 (𝑥) = 𝐵
0
𝑥
(𝑛−1)/2

. (5)

The boundary conditions corresponding to the nonlinear
stretching of a sheet are

𝑢 (𝑥, 0) = 𝑐𝑥
𝑛
, V (𝑥, 0) = 0,

𝑢 (𝑥, 𝑦) 󳨀→ 0 as 𝑦 󳨀→ ∞.

(6)

Upon making use of the following substitutions:

𝜂 = √
𝑐 (𝑛 + 1)

2]
𝑥
(𝑛−1)/2

𝑦, 𝑢 = 𝑐𝑥
𝑛
𝑓
󸀠
(𝜂) , (7)

V = −√
𝑐] (𝑛 + 1)

2
𝑥
(𝑛−1)/2

[𝑓 (𝜂) +
𝑛 − 1

𝑛 + 1
𝜂𝑓
󸀠
(𝜂)] , (8)

Substituting (8) into (3)–(6), the resulting nonlinear differen-
tial system can be written in the following form:

𝑓
󸀠󸀠󸀠

+ 𝑓𝑓
󸀠󸀠
− 𝛽𝑓
󸀠2

−𝑀𝑓
󸀠
= 0, (9)

𝑓 (0) = 0, 𝑓
󸀠
(0) = 1, 𝑓

󸀠
(∞) = 0, (10)

where

𝛽 =
2𝑛

1 + 𝑛
, 𝑀 =

2𝜎𝐵
2

0

𝜌𝑐 (1 + 𝑛)
. (11)

The parameter 𝛽 is a measure of the pressure gradient,
and 𝑀 is the magnetic parameter. Positive 𝛽 denotes the
favorable negative pressure gradient, and negative 𝛽 denotes
the unfavorable positive pressure gradient; naturally, 𝛽 = 0

denotes the flat plate. For the special case of 𝛽 = 1, the exact
analytical solution of (9) is [11]

𝑓 (𝜂) =

1 − exp (−√1 +𝑀𝜂)

√1 +𝑀
. (12)

4. Approximate Solution by the VIM

In order to obtain VIM solution of (9), we construct a
correction functional which reads

𝑓
𝑛+1

(𝜂)

= 𝑓
𝑛
(𝜂) + ∫

𝜂

0

𝜆 (𝜏) [
𝜕
3
𝑓
𝑛
(𝜏)

𝜕𝜏3
+ 𝑓̃
𝑛
(𝜏)

𝜕
2
𝑓̃
𝑛
(𝜏)

𝜕𝜏2
− 𝛽

× (
𝜕𝑓̃
𝑛
(𝜏)

𝜕𝜏
)

2

−𝑀
𝜕𝑓̃
𝑛
(𝜏)

𝜕𝜏

]

]

𝑑𝜏,

(13)

where 𝜆(𝜏) is the general Lagrangian multiplier which can be
identified optimally via the variational theory. And 𝑓̃

𝑛
(𝜏) is

considered as a restricted variation, that is, 𝛿𝑓̃
𝑛
(𝜏) = 0. We

omit asterisks for simplicity. Its stationary conditions can be
obtained as follows:

1 + 𝜆
󸀠󸀠
(𝜏)

󵄨󵄨󵄨󵄨󵄨𝜏=𝜂
= 0, 𝜆

󸀠
(𝜏)

󵄨󵄨󵄨󵄨󵄨𝜏=𝜂
= 0, 𝜆

󸀠󸀠󸀠
(𝜏) = 0.

(14)

The Lagrange multipliers can be readily identified as the
following form:

𝜆 (𝜏) = −
1

2
(𝜏 − 𝜂)

2

. (15)

As a result, we obtain the following variational iteration
formula

𝑓
𝑛+1

(𝜂)

= 𝑓
𝑛
(𝜂) −

1

2
∫

𝜂

0

(𝜏 − 𝜂)
2

[
𝜕
3
𝑓
𝑛
(𝜏)

𝜕𝜏3
+ 𝑓̃
𝑛
(𝜏)

𝜕
2
𝑓̃
𝑛
(𝜏)

𝜕𝜏2
− 𝛽

× (
𝜕𝑓̃
𝑛
(𝜏)

𝜕𝜏
)

2

−𝑀
𝜕𝑓̃
𝑛
(𝜏)

𝜕𝜏

]

]

𝑑𝜏.

(16)

Now, we assume that an initial approximation

𝑓
0
(𝜂) = 𝑎 + 𝑏𝜂 + 𝑐𝜂

2
. (17)
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where 𝑎, 𝑏, and 𝑐 are unknown constants to be further
determined.

By the iteration formula (16) and the initial approxima-
tion (17), we can obtain directly the first-order approximate
solution as follows:

𝑓
1
(𝜂) = 𝑓

0
(𝜂) −

1

2
∫

𝜂

0

(𝜏 − 𝜂)
2

× [
𝜕
3
𝑓
0
(𝜏)

𝜕𝜏3
+ 𝑓
0
(𝜏)

𝜕
2
𝑓
0
(𝜏)

𝜕𝜏2

−𝛽(
𝜕𝑓
0
(𝜏)

𝜕𝜏
)

2

−𝑀
𝜕𝑓
0
(𝜏)

𝜕𝜏
] 𝑑𝜏

= 𝑎 + 𝑏𝜂 + 𝑐𝜂
2
−

𝑐
2

30
𝜂
5
+
𝑏𝑀

6
𝜂
3
+
𝑐𝑀

12
𝜂
4
𝜂
5

+
𝛽𝑏
2

6
𝜂
3
+
𝛽𝑐
2

15
−
𝑎𝑐

3
𝜂
3
−
𝑏𝑐

12
𝜂
4
+
𝑏𝑐𝛽

6
𝜂
4

= 𝑎 + 𝑏𝜂 + 𝑐𝜂
2
+
𝑏𝑀 + 𝛽𝑏

2
− 2𝑎𝑐

6
𝜂
3

+
𝑐𝑀 + 𝑏𝑐 (2𝛽 − 1)

12
𝜂
4
+
(2𝛽 − 1) 𝑐

2

30
𝜂
5
.

(18)

Making use of the initial conditions 𝑓(0) = 0, 𝑓
󸀠
(0) = 1, we

can readily obtain the results as follows:

𝑎 = 0, 𝑏 = 1, 𝑐 =
1

2
𝑓
󸀠󸀠
(0) , (19)

where 𝑓󸀠󸀠(0) = 𝛼 will be examined in this work, according
the initial condition 𝑓

󸀠
(∞) = 0.

Then,

𝑓
1
(𝜂) = 𝜂 +

1

2
𝛼𝜂
2
+
𝑀 + 𝛽

6
𝜂
3
+
𝛼 (𝑀 + 2𝛽 − 1)

24
𝜂
4

+
(2𝛽 − 1) 𝛼

2

120
𝜂
5
.

(20)

And the following second-order approximate solution can be
obtained

𝑓
2
(𝜂) = 𝑓

1
(𝜂) −

1

2
∫

𝜂

0

(𝜏 − 𝜂)
2

× [
𝜕
3
𝑓
1
(𝜏)

𝜕𝜏3
+ 𝑓
1
(𝜏)

𝜕
2
𝑓
1
(𝜏)

𝜕𝜏2

−𝛽(
𝜕𝑓
1
(𝜏)

𝜕𝜏
)

2

−𝑀
𝜕𝑓
1
(𝜏)

𝜕𝜏
] 𝑑𝜏

= 𝜂 +
1

2
𝛼𝜂
2
+
𝑀 + 𝛽

6
𝜂
3
+
𝛼 (𝑀 + 2𝛽 − 1)

24
𝜂
4

+ [
(2𝛽 − 1) 𝛼

2

120
+
𝛽
2

60
+
𝛽𝑀

40
−

1

60
+
𝑀
2

120
−
𝑀

60
] 𝜂
5

+ (
𝛽
2
𝛼

72
+
𝛽𝑀𝛼

72
−
𝛽𝛼

60
+
𝑀
2
𝛼

720
−
𝑀𝛼

90
+

𝛼

240
) 𝜂
6

+ (
𝛽
3

840
+
𝛽
2
𝑀

420
+
𝛽
2
𝛼
2

252
−

𝛽
2

1260
+
𝛽𝑀
2

840
+
𝛽𝑀𝛼
2

504

−
𝛽𝑀

630
−
2𝛽𝛼
2

315
−

𝑀
2

1260
−
𝑀𝛼
2

630
+
11𝛼
2

5040
) 𝜂
7

+ (
𝛽
3
𝛼

1008
+
𝛽
2
𝑀𝛼

672
+
𝛽
2
𝛼
3

2016
−
5𝛽
2
𝛼

4032
+
𝛽𝑀
2
𝛼

2016

−
13𝛽𝑀𝛼

8064
−
7𝛽𝛼
3

1260
+

𝛽𝛼

2688
−
𝑀
2
𝛼

2688
+

𝑀𝛼

2688

+
11𝛼
3

40320
) 𝜂
8

+ (
𝛽
3
𝛼
2

2592
+
𝛽
2
𝑀𝛼
2

2592
−
37𝛽
2
𝛼
2

60480
+
𝛽𝑀
2
𝛼
2

18144

−
13𝛽𝑀𝛼

2

25920
+

53𝛽𝛼
2

181440
−
𝑀
2
𝛼
2

24192
+
𝑀𝛼
2

6480

−
𝛼
2

24192
) 𝜂
9

+ (
𝛽
3
𝛼
3

12960
+
𝛽
2
𝑀𝛼
3

25920
−
𝛽
2
𝛼
3

7200
−
13𝛽𝑀𝛼

3

259200

+
7𝛽𝛼
3

86400
+
𝑀𝛼
3

64800
−

𝛼
3

64800
) 𝜂
10

+ (
𝛽
3
𝛼
4

142560
−

𝛽
2
𝛼
4

79200
+

7𝛽𝛼
4

950400
−

𝛼
4

712800
) 𝜂
11
.

(21)

Therefore, according to (13), we can easily obtain higher-
order approximate solution as follows:

𝑓 (𝜂) = 𝑟
0
+ 𝑟
1
𝜂 + 𝑟
2
𝜂
2
+ 𝑟
3
𝜂
3
+ 𝑟
4
𝜂
4
+ 𝑟
5
𝜂
5
+ ⋅ ⋅ ⋅ , (22)

by using mathematical software such as MATLAB.
It is evident that the main problem for solving (21) is to

obtain the value of𝑓󸀠󸀠(0), thenwe can resort to any numerical
integration routine to obtain the solution of the problem. For
this purpose, we will employ the Padé method to determine
this unknown value with high accuracy.

5. Padé Approximation

It is well known that Padé approximations [12] have the
advantage of manipulating the polynomial approximation
into a rational function of polynomials. This manipulation
provides us with more information about the mathematical
behavior of the solution. Besides that, power series are not
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Table 1: Comparison of the values of 𝑓
󸀠󸀠
(0) obtained by the

variational iteration method and other methods [1] for various
values ofM when 𝛽 = 1.

𝑀 VIM ADM [1] Exact [1]
1.0 −1.41421 −1.41421 −1.41421
5.0 −2.44948 −2.44948 −2.44948
10.0 −3.31662 −3.31662 −3.31662
50.0 −7.14142 −7.14142 −7.14142
100.0 −10.04987 −10.04987 −10.04987
500.0 −22.38302 −22.38302 −22.38302

Table 2: Comparison of the values of 𝑓󸀠󸀠(0) obtained by the varia-
tional iteration method and the modified Adomian decomposition
method [1] for various values of 𝛽 andM.

𝑀
𝛽 = −1.5 𝛽 = 1.5 𝛽 = 5

VIM ADM [1] VIM ADM [1] VIM ADM [1]
1.0 −0.6530 −0.6532 −1.5253 −1.5252 −2.1529 −2.1528
5.0 −2.0852 −2.0852 −2.5162 −2.5161 −2.9414 −2.9414
10 −3.0562 −3.0562 −3.3663 −3.3663 −3.6957 −3.6956
50 −7.0239 −7.0239 −7.1647 −7.1647 −7.3256 −7.3256
100 −9.9667 −9.9666 −10.0776 −10.0776 −10.1816 −10.1816
500 −22.3458 −22.3457 −22.3905 −22.3904 −22.4426 −22.4425

useful for large values of 𝜂, say 𝜂 = ∞. This can be attributed
to the possibility that the radius of convergence may not be
sufficiently large to contain the boundaries of the domain.
Therefore, the combination of the series solution through
the decomposition method or any other series solution
method with the Padé approximation provides an effective
tool for handling boundary value problems on infinite or
semi-infinite domains. Furthermore, it is noted that Padé
approximants can be easily evaluated by using Matlab.

Therefore, we suppose that the solution 𝑓(𝜂) can be
expanded as a Taylor series about 𝜂 = 0

𝑓 (𝜂) =

∞

∑

𝑗=0

𝑓
𝑗
𝜂
𝑗
. (23)

Padé approximant, symbolized by [𝑆/𝑁], is a rational func-
tion defined by

[
𝑆

𝑁
] (𝜂) =

∑
𝑆

𝑗=0
𝑝
𝑗
𝜂
𝑗

∑
𝑁

𝑗=0
𝑞
𝑗
𝜂𝑗

. (24)

If we selected 𝑆 = 𝑁, then the approximants [𝑁/𝑁]

are called diagonal approximants. More importantly, the
diagonal approximants are the most accurate approximants;
therefore, we have to construct only diagonal approximants.

Then,

𝑝
0
+ 𝑝
1
𝜂 + 𝑝
2
𝜂
2
+ 𝑝
3
𝜂
3
+ ⋅ ⋅ ⋅ + 𝑝

𝑁
𝜂
𝑁

𝑞
0
+ 𝑞
1
𝜂 + 𝑞
2
𝜂1 + 𝑞

3
𝜂3 + ⋅ ⋅ ⋅ + 𝑞

𝑁
𝜂𝑁

= 𝑟
0
+ 𝑟
1
𝜂 + 𝑟
2
𝜂
2
+ 𝑟
3
𝜂
3
+ 𝑟
4
𝜂
4
+ ⋅ ⋅ ⋅ .

(25)
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Figure 1: Comparison between the approximate solution by the
VIM and exact solution for 𝛽 = 1 and𝑀 = 10.

By using cross multiplication in (25), we find

𝑝
0
+ 𝑝
1
𝜂 + 𝑝
2
𝜂
2
+ 𝑝
3
𝜂
3
+ ⋅ ⋅ ⋅ + 𝑝

𝑁
𝜂
𝑁

= 𝑟
0
𝑞
0
+ (𝑟
1
𝑞
0
+ 𝑞
1
𝑟
0
) 𝜂 + (𝑟

2
𝑞
0
+ 𝑞
1
𝑟
1
+ 𝑞
2
𝑟
0
) 𝜂
2

+ (𝑟
3
𝑞
0
+ 𝑞
1
𝑟
2
+ 𝑞
2
𝑟
1
+ 𝑞
3
𝑟
0
) 𝜂
3
+ ⋅ ⋅ ⋅ .

(26)

Using the boundary condition 𝑓
󸀠
(∞) = 0, the diagonal

approximant [𝑁/𝑁] vanishes if the coefficient of 𝜂 with the
highest power in the numerator vanishes. By putting the
coefficients of the highest power of 𝜂 equal to zero, we can
easily obtain the values of 𝑓󸀠󸀠(0) listed in Tables 1 and 2
and Figure 1, using Matlab. The order of Padé approximation
[12/12] has sufficient accuracy; on the other hand, if the order
of Padé approximation increases, the accuracy of the solution
increases.

Substituting (21) and the value of 𝑓󸀠󸀠(0) into (8), we can
easily obtain the second-order approximate solution of (3)-
(4).

6. Conclusion

In this paper, the variational iteration method is used
to obtain approximate solutions of magnetohydrodynamics
boundary layer equations. The analytical solutions of the
governing nonlinear boundary layer problem are obtained.
Without using the Padé approximation, the analytical solu-
tion that were obtained by the VIM cannot satisfy the
boundary condition at infinity 𝑓󸀠(∞) = 0. The combination
of the VIM and the Padé approximants is shown to be
a powerful method for solving two-point boundary value
problems consisting of systems of nonlinear differential
equations. And the obtained solutions are in good agreement
with exact values.
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An adaptive wavelet precise integrationmethod (WPIM) based on the variational iterationmethod (VIM) for Black-Scholes model
is proposed. Black-Scholes model is a very useful tool on pricing options. First, an adaptive wavelet interpolation operator is
constructed which can transform the nonlinear partial differential equations into a matrix ordinary differential equations. Next,
VIM is developed to solve the nonlinearmatrix differential equation, which is a new asymptotic analytical method for the nonlinear
differential equations. Third, an adaptive precise integration method (PIM) for the system of ordinary differential equations is
constructed, with which the almost exact numerical solution can be obtained. At last, the famous Black-Scholes model is taken as
an example to test this new method. The numerical result shows the method’s higher numerical stability and precision.

1. Introduction

The Black-Scholes equation is a mathematical model of a
financial market containing certain derivative investment
instruments (definition). The idea behind the Black-Scholes
model is that the price of an option is determined implicitly
by the price of the underlying stock.TheBlack-Scholesmodel
is a mathematical model based on the notion that prices of
stock follow a stochastic process. It is widely employed as a
useful approximation, but proper application requires under-
standing its limitations. Therefore, many nonlinear Black-
Scholes equations are proposed in recent years [1, 2]. But it
is very difficult to obtain the exact analytical solutions of the
nonlinear Black-Scholes models. There are some numerical
algorithms that have been proposed based on the difference
method to solve those nonlinear problems, but the precision
depends on the time step and the discretization in definition
domain [3, 4].

Variational iteration method [5–9] proposed by He is a
new analytical method to solve nonlinear differential equa-
tions, which has been rapidly developed to solve various non-
linear problems of science and engineering as its flexibility

and ability to solve nonlinear equations accurately and con-
veniently [10]. The typical application includes solving free-
convective boundary-layer equation [11], q-difference equa-
tions [12, 13], and Burgers’ flow with fractional derivatives
[14, 15]. Comparing with the traditional numerical methods,
VIM needs no discretization, linearization, transformation,
or perturbation. The wavelet precise integration method
(WPIM) is a simple and effective method for linear partial
differential equations proposed by Mei [16–20]. For linear
steady structural dynamic systems, its numerical results at
the integration points are almost equal to that of the exact
solution in machine accuracy. But in solving the nonlinear
partial differentials, the time step has to be limited to a small
value in WPIM for high accuracy.

Themain purpose of this paper is to construct a modified
VIM for nonlinear Black-Scholes model with combining the
VIM with WPIM. According to WPIM, the nonlinear differ-
ential equation should be transformed to a system of ordinary
differential equations with the multiscales wavelet interpola-
tion operator, and then the nonlinear PDEs become a system
of nonlinear ordinary differential equations. So solving the
matrix differential equation (MDE) is the key in solving
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nonlinear PDEs with WPIM. In fact, the matrix differential
equation (MDE) is a crucial mathematical foundation of
the system engineering and the control theory. But most
matrix differential equations do not have precise analytical
solutions except linear time-invariant system. In this paper,
a coupling technique of He’s VIM and WPIM is developed
to establish an approximate analytical solution of the matrix
differential equations. In contrast to the traditional finite
difference approximation, the numerical result obtained with
PIM for a set of simultaneous linear time-invariant ODEs
approaches the computer precision and is also free from the
stiff problem.

2. Fundamental Theory of Coupling Technique
of VIM and WPIM

2.1. VIM for Matrix Differential Equation. Consider the non-
linear matrix differential equations as follows:

𝐿 (V̇,V, 𝑡) + 𝑁 (V̇,V, 𝑡) = G (𝑡) , (1)

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator, G(𝑡)

is an inhomogeneous term, V is an 𝑛-dimensional unknown
vector, and dot stands for the differential with respect to time
variable 𝑡. For convenience, (1) can be rewritten as

V̇ −HV − F (V̇,V, 𝑡) = 0, (2)

where H is a given 𝑛 × 𝑛 constant matrix, and F(V̇,V, 𝑡) is a
𝑛-dimensional nonlinear external force vector.

According to VIM, we can write down a correction
functional as follows:

V
𝑛+1

(𝑡)

= V
𝑛
(𝑡) + ∫

𝑡

0

𝜆 ⌊V̇
𝑛
(𝜏) −HV

𝑛
(𝜏) − F (

̇Ṽ
𝑛
, Ṽ
𝑛
, 𝜏)⌋ 𝑑𝜏,

(3)

where 𝜆 is a general Lagrange vector multiplier [4, 5, 8]
which can be identified optimally via the variational theory.
The subscript 𝑛 denotes the 𝑛th approximation, and Ṽ

𝑛
is

considered as a restricted variation [13–15]; that is, 𝛿Ṽ
𝑛
= 0.

Using VIM, the stationary conditions of (3) can be
obtained as follows:

𝜆
󸀠
+ 𝜆H = 0,

1 + 𝜆 (𝜏)|𝜏=𝑡 = 0.

(4)

The Lagrange vector multiplier can therefore be readily
identified as follows:

𝜆 (𝜏) = −𝑒
H(𝑡−𝜏)

. (5)

As a result, we obtain the following iteration formula:

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) − ∫

𝑡

0

𝑒
H(𝑡−𝜏)

⌊V̇
𝑛
(𝜏)HV

𝑛
(𝜏) −

−F (
̇Ṽ
𝑛
, Ṽ
𝑛
, 𝜏)⌋ 𝑑𝜏.

(6)

According to VIM, we can start with an arbitrary initial
approximation that satisfies the initial condition. So we take
the exact analytical solution of V̇ − HV = 0 as the initial
approximation; that is,

V
0
(𝑡) = 𝑒

H𝑡A, (7)

where A is the given initial value vector.
Substituting (7) into (6) and after simplification, we have

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + ∫

𝑡

0

𝑒
H(𝑡−𝜏)F (

̇Ṽ
𝑛
, Ṽ
𝑛
, 𝜏) 𝑑𝜏. (8)

According to the theory of matrices, the analytical expression
of the external force F( ̇Ṽ

𝑛
, Ṽ
𝑛
, 𝜏) is required now, but it is

not always available, except F( ̇Ṽ
𝑛
, Ṽ
𝑛
, 𝜏) is a constant vector

f ; that is,

F (
̇Ṽ
𝑛
, Ṽ
𝑛
, 𝜏) = f (9)

the integration term of (8) is

∫

𝑡

0

𝑒
H(𝑡−𝜏)f𝑑𝜏 = (𝑒

H𝑡
− I)H−1f , (10)

where the exponentialmatrix 𝑒H𝑡 can be calculated accurately
in PIM and I is a unit matrix.

Substituting (10) into (8), we obtain the variational itera-
tion formula of the matrix differential equation:

V
𝑛+1

(𝑡) = V
𝑛
(𝑡) + (𝑒

H𝑡
− I)H−1f . (11)

2.2. Coupling Technique of VIM and WPIM for Nonlinear
Partial Differential Equation. Inmost cases, the second-order
nonlinear PDEs about the unknown function 𝑢(𝑡, 𝑥) can be
expressed as follows:

𝐹 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡,𝑥
, 𝑢
𝑥𝑥
) = 0. (12)

In order to transform the previous nonlinear PDEs into the
matrix ODEs form as (1), an adaptive multilevels wavelet
interpolation operator should be constructed firstly.

In this section, we take the quasi-Shannon wavelet
function as the basis function to approximate the solution
function of the nonlinear PDEs.The quasi-Shannon function
is defined as follows:

𝛿
Δ𝜎

(𝑥) =
sin (𝜋𝑥/Δ)

𝜋𝑥/Δ
exp(− 𝑥

2

2𝜎2
) , (13)

where Δ is the discrete step and 𝜎 = 𝑟Δ (𝑟 is a constant) is a
parameter relative to the size of the window.

To construct the multilevel interpolation wavelet opera-
tor, it is necessary to discretize the wavelet function and the
solution function 𝑢(𝑥) evenly in the definition domain [𝑎, 𝑏].
Let the amount of the discrete points be 2𝑗 + 1(𝑗 ∈ 𝑍), and
then the discrete points can be defined as

𝑥
𝑖

𝑗
= 𝑎 +

𝑖 (𝑏 − 𝑎)

2𝑗
. (14)
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The corresponding discrete basis function can be rewritten as

𝜑
𝑖

𝑗
(𝑥) =

sin (2
𝑗
𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥

𝑖
)

(2𝑗𝜋/ (𝑏 − 𝑎)) (𝑥 − 𝑥
𝑖
)

exp(−
2
2𝑗−1

(𝑥 − 𝑥
𝑖
)
2

𝑟2(𝑏 − 𝑎)
2

) .

(15)

The interpolation operator can be defined as

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝐽

Ω

𝐼
𝑖
(𝑥) 𝑢
𝑖

𝐽
, 𝑍

𝐽

Ω
:= 0, 1, 2, . . . , 2

𝐽
, (16)

where 𝐼
𝑖
(𝑥) is the interpolation function. According to the

wavelet transform theory, function 𝑢(𝑥) can be expressed
approximately as

𝑢
𝐽
(𝑥) =

2
𝑗0

∑

𝑘
0
=0

𝑢 (𝑥
𝑘
0

𝑗
0

) 𝜑
𝑘
0

𝑗
0

(𝑥) +

𝐽−1

∑

𝑗=𝑗
0

∑

𝑘∈𝑍
𝑗

𝛼
𝑘

𝑗
𝜓
𝑘

𝑗
(𝑥) , (17)

where 𝑍
𝑗

:= 0, 1, 2, . . . , 2
𝑗 and the interpolation wavelet

transform coefficient can be denoted as

𝛼
𝑘

𝑗
= 𝑢 (𝑥

2𝑘+1

𝑗+1
) − [

[

2
𝑗0

∑

𝑘
0
=0

𝑢 (𝑥
𝑘
0

𝑗
0

) 𝜑
𝑘
0

𝑗
0

(𝑥
2𝑘+1

𝑗+1
)

+

𝑗−1

∑

𝑗
1
=𝑗
0

2
𝑗1−1

∑

𝑘
1
=0

𝛼
𝑘
1

𝑗
1

𝜓
𝑘
1

𝑗
1

(𝑥
2𝑘+1

𝑗+1
)]

]

=

2
𝐽

∑

𝑛=0

[

[

𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘
0
=0

𝑅
𝑘
0
,𝑛

𝑗
0
,𝐽
𝜑
𝑘
0

𝑗
0

(𝑥
2𝑘+1

𝑗+1
)]

]

𝑢 (𝑥
𝑛

𝐽
)

−

2
𝐽

∑

𝑛=0

𝑗−1

∑

𝑗
1
=𝑗
0

2
𝑗1−1

∑

𝑘
1
=0

𝛼
𝑘
1

𝑗
1

𝜓
𝑘
1

𝑗
1

(𝑥
2𝑘+1

𝑗+1
) ,

(18)

where 0 ≤ 𝑗 ≤ 𝐽 − 1, 𝑘 ∈ 𝑍
𝑗, 𝑛 ∈ 𝑍

𝐽, and 𝑅 is the restriction
operator defined as

𝑅
𝑖,𝑚

𝑙,𝑗
= {

1, 𝑥
𝑖

𝑙
= 𝑥
𝑚

𝑗

0, others.
(19)

Suppose that

𝛼
𝑘

𝑗
=

2
𝐽

∑

𝑛=0

𝐶
𝑘,𝑛

𝑗,𝐽
𝑢 (𝑥
𝑛

𝐽
) . (20)

Substituting (20) into (18), we can obtain

𝐶
𝑘,𝑛

𝑗,𝐽
= 𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘
0
=0

𝑅
𝑘
0
,𝑛

𝑗
0
,𝐽
𝜑
𝑘
0

𝑗
0

(𝑥
2𝑘+1

𝑗+1
)

−

𝑗−1

∑

𝑗
1
=𝑗
0

2
𝑗1−1

∑

𝑘
1
=0

𝐶
𝑘
1
,𝑛

𝑗
1
,𝐽
𝜓
𝑗
1
,𝑘
1

(𝑥
2𝑘+1

𝑗+1
) .

(21)

If 𝑗 = 𝑗
0
, then

𝐶
𝑘,𝑛

𝑗,𝐽
= 𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘
0
=0

𝑅
𝑘
0
,𝑛

𝑗
0
,𝐽
𝜑
𝑘
0

𝑗
0

(𝑥
2𝑘+1

𝑗+1
) . (22)

Substituting the restriction operator (19) and the wavelet
transform coefficient (20) into (17), the approximate expres-
sion of the solution function 𝑢(𝑥) can be obtained as

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝐽

(

2
𝑗0

∑

𝑘
0
=0

𝑅
𝑘
0
,𝑛

𝑗
0
,𝐽
𝜑
𝑘
0

𝑗
0

(𝑥
2𝑘+1

𝑗+1
)

+

𝑗−1

∑

𝑗
1
=𝑗
0

2
𝑗1−1

∑

𝑘
1
=0

𝐶
𝑘
1
,𝑛

𝑗
1
,𝐽
𝜓
𝑗
1
,𝑘
1

(𝑥
2𝑘+1

𝑗+1
))𝑢 (𝑥

𝑖

𝐽
) .

(23)

According to the definition of the interpolation operator (16),
it is easy to obtain the expression of the interpolation operator

𝐼
𝑖
(𝑥) =

2
𝑗0

∑

𝑘
0
=0

𝑅
𝑘
0
,𝑖

𝑗
0
,𝐽
𝜑
𝑘
0

𝑗
0

(𝑥) +

𝐽−1

∑

𝑗=𝑗
0

∑

𝑘∈𝑍
𝑗

𝐶
𝑘,𝑖

𝑗,𝐽
𝜓
𝑘

𝑗
(𝑥) . (24)

The corresponding 𝑚-order derivate of the interpolation
operator is

𝐷
(𝑚)

𝑖
(𝑥) =

2
𝑗0

∑

𝑘
0
=0

𝑅
𝑘
0
,𝑖

𝑗
0
,𝐽
𝜑
(𝑚)

𝑗
0
,𝑘
0

(𝑥) +

𝐽−1

∑

𝑗=𝑗
0

∑

𝑘∈𝑍
𝑗

𝐶
𝑘,𝑖

𝑗,𝐽
𝜓
(𝑚)

𝑗,𝑘
(𝑥) . (25)

Substituting (24) and (25) into (12), the nonlinear PDEs can
be changed into an nonlinear ODEs like (1), and then the
corresponding analytical solution can be obtained with (11).

In order to solve (1) accurately, the exponential matrix
𝑇(𝑡) = 𝑒

H𝑡 can be calculated accurately by WPIM as follows:

𝑇 (𝑡) = exp (H𝑡) = [exp(H𝑡

2𝑁
)]

2
𝑁

. (26)

Let Δ𝑡 = 𝜏/2
𝑁, where 𝑁 is a positive integer (usually take

𝑁 = 20, and then Δ𝑡 = 𝜏/1048576). As 𝜏 is a small time step,
Δ𝑡 is a much smaller value, then

exp (H𝑡) = 𝐼 + Ta

= 𝐼 +H𝑡 +

(H𝑡)
2
[𝐼 + (H𝑡) /3 + (H𝑡)

2
/12]

2

(27)

which is the Taylor series expansion of exp(HΔ𝑡). In order
to calculate the matrix 𝑇 more accurately, it is necessary to
factorize the matrix 𝑇 as

T (𝑡) = [exp (H𝑡)]
2
𝑁

= (𝐼 + Ta)
2
𝑁−1

(𝐼 + Ta)
2
𝑁−1

. (28)

After doing 𝑁 times of factorization as mentioned above, a
more accurate solution of 𝑇 can be obtained.

The calculation of the exponent matrix 𝑇(𝑖ℎ) at different
time steps is needed in solving nonlinear equations through
iteration based on the precise integration method, and the
algorithm of the matrix 𝑇(𝑖ℎ) presented here can obtain all
the matrices at different time steps for once.

3. Coupling Technique of VIM and WPIM for
the Nonlinear Black-Scholes Model

In order to test the accuracy of the coupling technique of
VIM andWPIM for solving nonlinear PDEs, wewill consider
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Figure 1: Initial condition of Black-Scholes model.
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Figure 2: Evolution of the call option price with the parameter 𝑡.
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Figure 3: Error of call option price between the linear and nonlinear Black-Scholes models.

the nonlinear Black-Scholes equations which have been
increasingly attracting interest over the last two decades,
since they provide more accurate values by taking into
account more realistic assumptions, such as transaction
costs, risks from an unprotected portfolio, large investor’s
preferences, or illiquid markets, which may have an impact
on the stock price, the volatility, the drift, and the option price
itself.

Consider the Black-Scholes equation:

𝜕𝑉

𝜕𝑡
= 𝑟𝑉 −

1

2
𝜎
2
𝑆
2 𝜕
2
𝑉

𝜕𝑆2
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
, (29)

where 𝑆(𝑡) denotes the underlying asset, 𝑡 ∈ (0, 𝑇), 𝑇 denotes
the expiry date, 𝜎 is the volatility (measures the standard
deviation of the returns), and 𝑟 is the riskless interest rate.

In (29), the parameter 𝜎 is constant since the transaction
cost is taken as zero. Obviously, the 𝜎 is not really a constant,
and then we can obtain the nonlinear Black-Scholes equation
as follows:

𝜕𝑉

𝜕𝑡
= 𝑟𝑉 −

1

2
𝜎̃
2
(𝑡, 𝑆,

𝜕𝑉

𝜕𝑆
,
𝜕
2
𝑉

𝜕𝑆2
)𝑆
2 𝜕
2
𝑉

𝜕𝑆2
− 𝑟𝑆

𝜕𝑉

𝜕𝑆
, (30)

where 𝜎̃ denotes a nonconstant volatility.
In order to solve the problem, it is necessary to perform a

variable transformation as follows:

𝑥 = ln(
𝑆

𝐾
) , 𝜏 =

1

2
𝜎
2
(𝑇 − 𝑡) , 𝑢 (𝑥, 𝜏) = 𝑒

−𝑥𝑉 (𝑠, 𝑡)

𝐾
.

(31)

Substituting (31) into (30), the following equation can be
obtained:

𝜕𝑢

𝜕𝑡
=

𝜎̃
2

𝜎2
(
𝜕
2
𝑢

𝜕𝑥2
+
𝜕𝑢

𝜕𝑥
) + 𝐷

𝜕𝑢

𝜕𝑥
, (32)

where

𝐷 =
2𝑟

𝜎2
, 𝑥 ∈ 𝑅, 0 ≤ 𝜏 ≤ 𝑇̃ =

𝜎
2

2
. (33)

Initial condition

𝑢 (𝑥, 0) = (1 − 𝑒
−𝑥
)
+ for𝑥 ∈ 𝑅. (34)

Boundary condition

𝑢 (𝑥, 𝜏) = 0 as𝑥 󳨀→ −∞,

𝑢 (𝑥, 𝜏) ∼ 1 − 𝑒
−𝐷𝜏−𝑥 as𝑥 󳨀→ ∞.

(35)

The initial condition is shown in Figure 1. According to the
transformation relation (31), it is easy to understand that
the point 𝑥 = 0 is corresponding to the strike price 𝑆 =

𝐾. Obviously, the initial solution curve is smooth in most
positions except that near 𝑥 = 0, where a sharp steep wave
happened. So, an adaptive numerical method is necessary to
this problem.

The evolution of the call option price with the develop-
ment of the parameter 𝑡 is illustrated in Figure 2, which shows
that the volatility around the strike is greater and there is
a sharp shock around it in the transformation form of the
option price. The adaptive WPIM and VIM can capture it
precisely; that is, there are more collocation points around
this place than other places. This is helpful to improve the
accuracy and efficiency.

In following, an adaptive interpolation wavelet numerical
method is used to solve the nonlinear partial differential
equation.

It is well known that the analytical solution of the linear
Black-Scholes model for call option price (𝐶) can be obtained
as follows:

𝐶 = 𝑆 ⋅ 𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟𝑇
𝑁(𝑑2) , (36)

where

𝑑
1
=

ln (𝑆/𝐾) + (𝑟 + (1/2) 𝜎
2
) 𝑇

𝜎√𝑇

, 𝑑
2
= 𝑑
1
− 𝜎√𝑇, (37)

where 𝐶 is the call price, 𝑆 is the underlying asset price, 𝐾 is
the strike price, 𝑟 is the riskless rate, 𝑇 is the maturity, 𝜎 is the
volatility, and𝑁(𝑑

1
) expresses the normal distribution.

The error of the call option price between linear and
nonlinear Black-Scholes models is shown in Figure 3. It
is obvious that the error arising around the strike price,
which expresses the nonlinear B-S model, and the coupling
technique are effective.With the call option price that is going
far away from the strike price, the error is becoming smaller
and smaller, which shows that coupling technique is accurate
and efficient.
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4. Conclusion

The coupling technique of VIM and WPIM developed in
this paper can solve nonlinear partial differential equations
successfully. Comparison between the numerical results of
the linear and nonlinear Black-Scholes models illustrates that
the proposed method is an accurate and efficient method for
the nonlinear PDEs. In addition, as the coupling technique
of VIM and WPIM for matrix differential equations has the
uniform analytical solution, it can be easily used to solve
various nonlinear problems.
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A Lotka-Volterra competition model with cross-diffusions under homogeneous Dirichlet boundary condition is considered, where
cross-diffusions are included in such a way that the two species run away from each other because of the competition between them.
Using the method of upper and lower solutions, sufficient conditions for the existence of positive solutions are provided when the
cross-diffusions are sufficiently small. Furthermore, the investigation of nonexistence of positive solutions is also presented.

1. Introduction

In this paper, we deal with the following Lotka-Volterra
competition model with cross-diffusions:

−Δ (𝑢 + 𝛼V) = 𝑢 (𝑎 − 𝑢 − 𝑐V) , 𝑥 ∈ Ω,

−Δ (𝛽𝑢 + V) = V (𝑏 − V − 𝑑𝑢) , 𝑥 ∈ Ω,

𝑢 = V = 0, 𝑥 ∈ 𝜕Ω,

(1)

where Ω is a bounded domain in R𝑁 with smooth boundary
𝜕Ω and all parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝛼, 𝛽 are positive constants.
𝑢 and V stand for the densities of the two competitors; 𝑎
and 𝑏 are the intrinsic growth rates of 𝑢 and V, respectively;
𝑐 and 𝑑 are the competitive parameters between the two
species; Here 𝛼 and 𝛽 are referred to as cross-diffusions.
Cross-diffusions express the two species run away from each
other because of the competition between them. In this paper,
the boundary condition is under homogeneous Dirichlet
boundary condition which in biologically means that the
boundary is not suitable for both species and they will all die
on the boundary, and this is an ideal case.

In order to describe the meaning of cross-diffusions in
this model (1) from the biological point, we give the general
model with intrinsic diffusion and cross-diffusion:

𝜕𝑢

𝜕𝑡
= div {𝑘

11
(𝑢, V) ∇𝑢 + 𝑘

12
(𝑢, V) ∇V} + 𝑓 (𝑢, V) ,

𝜕V

𝜕𝑡
= div {𝑘

21
(𝑢, V) ∇𝑢 + 𝑘

22
(𝑢, V) ∇V} + 𝑔 (𝑢, V) ,

(2)

where 𝑢 and V stand for the densities of the two species,
intrinsic diffusion parameters 𝑘

11
(𝑢, V), 𝑘

22
(𝑢, V) > 0, cross-

diffusion parameters 𝑘
12
(𝑢, V), 𝑘

21
(𝑢, V),

𝐽
𝑢
= − {𝑘

11
(𝑢, V) ∇𝑢 + 𝑘

12
(𝑢, V) ∇V} ,

𝐽V = − {𝑘21 (𝑢, V) ∇𝑢 + 𝑘22 (𝑢, V) ∇V}
(3)

can be seen as the out-flux vector of 𝑢 and V at 𝑥. The
cross-diffusion parameters 𝑘

12
(𝑢, V), 𝑘

21
(𝑢, V) ≥ 0 imply

that the two competitors 𝑢 and V diffuse in the direction
of lower contrary of their competitor to avoid each other.
𝑓(𝑢, V), 𝑔(𝑢, V) are response function and in this paper the
classical Logistic Type is considered and 𝛼, 𝛽 ≥ 0. More
biological meaning of the system can be seen in [1–3].

The method of upper and lower solutions is a useful
tool to study the existence of solutions of elliptic systems.
However, there are many difficulties in investigating the
existences of positive solutions of strongly coupled elliptic
systems. Recently, by changing general strongly coupled
elliptic systems into weakly coupled ones, the author in paper
[4] gives the method to judge the solutions existence of
elliptic systems by using the Schauder theorem. Furthermore,
the method can be used to solve the existence of solutions
of strongly coupled elliptic systems. In [5] Ko and Ryu
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investigate Lotka-Volterra prey-predator model with cross-
diffusion:

−Δ𝑢 = 𝑢 (𝑎
1
− 𝑢 − 𝑏

12
V) , 𝑥 ∈ Ω,

−𝐷Δ𝑢 − ΔV = V (𝑎
2
+ 𝑏
21
𝑢 − V) , 𝑥 ∈ Ω,

𝑢 = V = 0, 𝑥 ∈ 𝜕Ω.

(4)

Here 𝐷 may be positive or negative. Using the developing
method of upper and lower solutions in [4], the author gave
a sufficient conditions for the existence of positive solutions
to (4). Inspired by the paper [5], we investigate the existence
and nonexistence of positive solutions to (1).

The main goal of this paper is to provide sufficient
conditions for the existence of positive solutions to (1) when
the cross-diffusions𝛼 and𝛽 are small.More precisely, we have
the following theorem. Let 𝜆

1
> 0 be the principal eigenvalue

of−Δunder homogeneousDirichlet boundary condition. It is
well known that the principal eigenfunction 𝜙 corresponding
to 𝜆
1
does not change sign in Ω and ||𝜙||

∞
= 1.

Theorem 1. Ifmin{𝑎−𝑐𝑏, 𝑏−𝑑𝑎} > 𝜆
1
, then there exist positive

constants 𝛼 = 𝛼(𝑎, 𝑏, 𝑐, 𝑑, Ω), 𝛽 = 𝛽(𝑎, 𝑏, 𝑐, 𝑑, Ω), when 𝛼 <
𝛼, 𝛽 < 𝛽, (1) has at least one positive solution.

For 𝛼 = 𝛽 = 0, (1) is the Lotka-Volterra competition
model under homogeneous Dirichlet boundary condition. In
[6, 7], the authors use differentmethods to prove the existence
of positive solutions, a sufficient condition for the existence
is min{𝑎 − 𝑐𝑏, 𝑏 − 𝑑𝑎} > 𝜆

1
. The conclusion implies that

weakly cross-diffusion does not affect the existence of positive
solution.

This paper is organized as follows. In Section 2, the
existence theorem of solutions for a general class of strongly
coupled elliptic systems is presented using the method of
upper and lower solutions. In Section 3, sufficient conditions
for the existence and nonexistence of positive solutions of (1)
are investigated. Moreover, we give the corresponding results
simply if the competitive system only has one cross-diffusion.

2. The Existence Theorem of Solutions for
a Class of Strongly Coupled Elliptic Systems

In this section, we presented the existence theorem of solu-
tions for a general class of strongly coupled elliptic systems:

−Δ𝐴 (𝑢, V) = 𝑓
1
(𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) = 𝑓
2
(𝑢, V) , 𝑥 ∈ Ω,

𝑢 = V = 0, 𝑥 ∈ 𝜕Ω.

(5)

Here let 𝐴, 𝐵, 𝑓
1
, 𝑓
2
satisfy the following hypotheses condi-

tions.

(H1) 𝑈,𝑉 are domain in R2, (0, 0) ∈ 𝑈. (𝐴, 𝐵) is a 𝐶2
function about (𝑢, V) from𝑈 to𝑉,𝐴(0, 0) = 𝐵(0, 0) =
0, and have a continuous inverse (𝐴∗, 𝐵∗) ∈ 𝐶2(𝑉, 𝑈).
Then for all (𝑢, V) ∈ 𝑈, let

𝑤 = 𝐴 (𝑢, V) , 𝑧 = 𝐵 (𝑢, V) . (6)

There exists only one (𝑤, 𝑧) ∈ 𝑉, satisfying

𝑢 = 𝐴
∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) . (7)

(H2) The function 𝐴∗ is increasing in 𝑤 and decreasing in
𝑧; 𝐵∗ is decreasing in 𝑤 and increasing in 𝑧.

(H3) The functions 𝑓
1
(𝑢, V), 𝑓

2
(𝑢, V) are Lipschitz continu-

ous in 𝑈, and there exist positive constants 𝑀
1
,𝑀
2

such that for all (𝑢, V) ∈ 𝑈, the function 𝑓
1
(𝑢, V) +

𝑀
1
𝐴(𝑢, V) is increasing in 𝑢; the function 𝑓

2
(𝑢, V) +

𝑀
2
𝐵(𝑢, V) is increasing in V.

According to the hypothesis (H1), (5) can be rewritten as
the following equal PDE equations:

−Δ𝑤 +𝑀
1
𝑤 = 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑧 +𝑀
2
𝑧 = 𝑓
2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

𝑢 = 𝐴
∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑤 = 𝑧 = 0, 𝑥 ∈ 𝜕Ω.

(8)

Remark 2. According to the hypothesis (H1), (5) can also be
equal to the following weakly coupled elliptic equations:

−Δ𝑤 = 𝑓
1
(𝐴
∗
(𝑤, 𝑧) , 𝐵

∗
(𝑤, 𝑧)) := 𝑔

1
(𝑤, 𝑧) , 𝑥 ∈ Ω,

−Δ𝑧 = 𝑓
2
(𝐴
∗
(𝑤, 𝑧) , 𝐵

∗
(𝑤, 𝑧)) := 𝑔

2
(𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑤 = 𝑧 = 0, 𝑥 ∈ 𝜕Ω.

(9)

In its pure form, (9) is simpler than (8). However, due
to the complicity of mixed functions 𝑔

1
(𝑤(𝑥), 𝑧(𝑥)) and

𝑔
2
(𝑤(𝑥), 𝑧(𝑥)), it is difficult to find the solutions of (9)

directly. Therefore, we discuss (8).
Assume functions 𝑢, V, 𝑢, V ∈ 𝐶(Ω), 𝑤, 𝑧, 𝑤, 𝑧 ∈

𝐶
𝛼
(Ω) ⋂ 𝐶

2
(Ω), the values of functions (𝑢, V) and (𝑢, V) are

in𝑉 and the values of functions (𝑤, 𝑧) and (𝑤, 𝑧) are in𝑈. To
describe easily, let

𝑈 = {𝑢 ∈ 𝐶 (Ω) : 𝑢 (𝑥) ≤ 𝑢 (𝑥) ≤ 𝑢 (𝑥)} ,

𝑉 = {𝑢 ∈ 𝐶 (Ω) : V (𝑥) ≤ V (𝑥) ≤ V (𝑥)} .
(10)

According the definition of upper and lower solutions in
[4] and conditions (H1)–(H3), we give the definition of upper
and lower solutions of (5).

Definition 3. A pair of functions ((𝑢, V, 𝑤, 𝑧), (𝑢, V, 𝑤, 𝑧)) are
called upper and lower solutions of (9) provided that they
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satisfy the relation (𝑢, V, 𝑤, 𝑧) ≥ (𝑢, V, 𝑤, 𝑧), and for all (𝑢, V) ∈
𝑈 × 𝑉, satisfy the following inequalities:

−Δ𝑤 +𝑀
1
𝑤 ≥ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑧 +𝑀
2
𝑧 ≥ 𝑓
2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑤 +𝑀
1
𝑤 ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝑧 +𝑀
2
𝑧 ≤ 𝑓
2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

𝑢 ≥ 𝐴
∗
(𝑤, 𝑧) , V ≥ 𝐵

∗
(𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑢 ≤ 𝐴
∗
(𝑤, 𝑧) , V ≤ 𝐵

∗
(𝑤, 𝑧) , 𝑥 ∈ Ω,

𝑤 ≥ 0 ≥ 𝑤, 𝑧 ≥ 0 ≥ 𝑧, 𝑥 ∈ 𝜕Ω.

(11)

We can have the following conclusion from [4, Theorem
2.1].

Proposition 4. Assume that (8) has coupled upper and lower
solutions ((𝑢, V, 𝑤, 𝑧), (𝑢, V, 𝑤, 𝑧)), then there exists at least one
solution (𝑢, V, 𝑤, 𝑧), satisfying the relation

(𝑢, V, 𝑤, 𝑧) ≤ (𝑢, V, 𝑤, 𝑧) ≤ (𝑢, V, 𝑤, 𝑧) . (12)

Furthermore, (𝑢, V) is the solution of (5).

Next, if 𝑢, V, 𝑢, V satisfy

𝑢 = 𝐴
∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) ,

𝑢 = 𝐴
∗
(𝑤, 𝑧) , V = 𝐵

∗
(𝑤, 𝑧) ,

(13)

then

𝑤 = 𝐴 (𝑢, V) , 𝑧 = 𝐵 (𝑢, V) ,

𝑤 = 𝐴 (𝑢, V) , 𝑧 = 𝐵 (𝑢, V) ,
(14)

(11) can be rewritten as

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≥ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≥ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≤ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

𝐴 (𝑢, V) ≥ 0 ≥ 𝐴 (𝑢, V) , 𝐵 (𝑢, V) ≥ 0 ≥ 𝐵 (𝑢, V) , 𝑥 ∈ 𝜕Ω.

(15)

Synthetically, we have the following result.

Theorem 5. If there is a pair of functions ((𝑢, V), (𝑢, V)),
satisfying

(𝑢, V, 𝐴 (𝑢, V) , 𝐵 (𝑢, V)) ≥ (𝑢, V, 𝐴 (𝑢, V) , 𝐵 (𝑢, V)) , (16)

and for all (𝑢, V) ∈ 𝑈 × 𝑉, (15) is satisfied, then (5) has at
least one solution (𝑢, V), satisfying the relation (𝑢, V) ≤ (𝑢, V) ≤
(𝑢, V).

To make sure the upper and lower solutions reasonable,
we give the following two lemmas; more details can be found
in [8, 9].

Lemma 6. If the functions 𝑢, V ∈ 𝐶1(Ω) satisfy 𝑢|
𝜕Ω
= V|
𝜕Ω
=

0, 𝑢|
Ω
> 0, (𝜕𝑢/𝜕𝜈)|

𝜕Ω
< 0, 𝜈 is the outer unit normal vector

of 𝜕Ω, then there exists positive constant 𝜀, such that 𝑢(𝑥) >
𝜀V(𝑥), for all 𝑥 ∈ Ω.

For the equation:

−Δ𝑢 = 𝑢 (𝑎 − 𝑢) , 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω.

(17)

Lemma 7. If 𝑎 > 𝜆
1
, then (17) has a unique positive solution

𝜃
𝑎
satisfying 𝜃

𝑎
≤ 𝑎. In addition, 𝜃

𝑎
is increasing with respect

to 𝑎.

3. A Lotka-Volterra Competition Model with
Two Cross-Diffusions

In this section, the existence of positive solutions of (1)
corresponding to 𝛼 ≥ 0, 𝛽 ≥ 0, is investigated by applying
Theorem 5 to proveTheorem 1.

Proof. We seek some positive constants 𝑅,𝐾, 𝛿, 𝑅, 𝐾 > 𝜆
1

sufficiently large and 𝛿 sufficiently small, Lemma 6 may
guarantee the existence of 𝜃

𝑅
and 𝜃
𝐾
. It can be easily known

from Hopf boundary lemma:

𝜕𝜙

𝜕𝜈
(𝑥) < 0,

𝜕𝜃
𝑅

𝜕𝜈
(𝑥) < 0,

𝜕𝜃
𝐾

𝜕𝜈
(𝑥) < 0, ∀𝑥 ∈ 𝜕Ω.

(18)

Observe that min{𝑎 − 𝑐𝑏, 𝑏 − 𝑑𝑎} > 𝜆
1
, using Lemma 7, we

can have 𝑅,𝐾, 𝛿, 𝑎 < 𝑅 < (𝑏 − 𝜆
1
)/𝑑, 𝑏 < 𝐾 < (𝑎 − 𝜆

1
)/𝑐,

satisfying the following three conditions:

(i) 𝛿𝜙(𝑥) < 𝜃
𝑅
(𝑥), 𝛿𝜙(𝑥) < 𝜃

𝐾
(𝑥), for all 𝑥 ∈ Ω;

(ii) (𝜕(𝜃
𝑅
− 𝛿𝜙)/𝜕𝜈)(𝑥) < 0, (𝜕(𝜃

𝐾
− 𝛿𝜙)/𝜕𝜈)(𝑥) < 0;

(iii) 𝛿 < min{𝑎 − 𝜆
1
− 𝑐𝐾, 𝑏 − 𝜆

1
− 𝑑𝑅}.

Let𝑀
1
= 2𝑅+𝑐𝐾, 𝑀

2
= 2𝐾+𝑑𝑅. Using Lemma 7 again,

there exist 𝛼 = 𝛼(𝑎, 𝑏, 𝑐, 𝑑, Ω) < 1, 𝛽 = 𝛽(𝑎, 𝑏, 𝑐, 𝑑, Ω) < 1,
for all (𝜌, 𝜏) ∈ [0, 𝛼) × [0, 𝛽), for all 𝑥 ∈ Ω, satisfying

(iv) 𝜃
𝑅
− 𝛿𝜙 > 𝜌(𝜃

𝐾
− 𝛿𝜙), 𝜃

𝐾
− 𝛿𝜙 > 𝜏(𝜃

𝑅
− 𝛿𝜙);

(v) (𝑅 − 𝑎)𝜃
𝑅
> 𝜌[𝑀

1
𝜃
𝐾
− (𝑀
1
+ 𝜆
1
)𝛿𝜙], (𝐾 − 𝑏)𝜃

𝐾
>

𝜏[𝑀
2
𝜃
𝑅
− (𝑀
2
+ 𝜆
1
)𝛿𝜙];

(vi) (𝑎 − 𝜆
1
− 𝛿 − 𝑐𝐾)𝛿𝜙 > 𝜌[(𝐾 +𝑀

1
− 𝜃
𝐾
)𝜃
𝐾
−𝑀
1
𝛿𝜙];

(vii) (𝑏 − 𝜆
1
− 𝛿 − 𝑑𝑅)𝛿𝜙 > 𝜏[(𝑅 +𝑀

2
− 𝜃
𝑅
)𝜃
𝑅
−𝑀
2
𝛿𝜙].

We will verify 𝛼, 𝛽 satisfying Theorem 5. Suppose that
(𝛼, 𝛽) ∈ [0, 𝛼) × [0, 𝛽). Then we construct a pair of upper and
lower solutions of the form

(𝑢, V) = (𝜃
𝑅
, 𝜃
𝐾
) , (𝑢, V) = (𝛿𝜙, 𝛿𝜙) , (19)
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where 𝛿 satisfies conditions (i)–(iii). Let

𝐴 (𝑢, V) = 𝑢 + 𝛼V, 𝐵 (𝑢, V) = 𝛽𝑢 + V. (20)

Then

𝐴
∗
(𝑤, 𝑧) =

𝑤 − 𝛼𝑧

1 − 𝛼𝛽
, 𝐵

∗
(𝑤, 𝑧) =

𝑧 − 𝛽𝑤

1 − 𝛼𝛽
. (21)

By simply computing, (H1) and (H2) are satisfied, where𝑈 =

[0, 𝑅] × [0, 𝐾], 𝑉 = [0, 𝑅 + 𝛼𝐾] × [0, 𝐾 + 𝛽𝑅].
Note

𝑓
1
(𝑢, V) = 𝑢 (𝑎 − 𝑢 − 𝑐V) , 𝑓

2
(𝑢, V) = V (𝑏 − V − 𝑑𝑢) .

(22)

And for all (𝑢, V) ∈ 𝑈, we have

[𝑓
1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V)]

𝑢
= 𝑎 − 2𝑢 − 𝑐V +𝑀

1

≥ −2𝑅 − 𝑐𝐾 +𝑀
1
= 0,

[𝑓
2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V)]V = 𝑏 − 2V − 𝑑𝑢 +𝑀2

≥ −2𝐾 − 𝑑𝑅 +𝑀
2
= 0.

(23)

So (H3) is satisfied; observer that 𝑢|
𝜕Ω

= V|
𝜕Ω

= 𝑢|
𝜕Ω

=

V|
𝜕Ω

= 0, (𝑢, V) ≥ (𝑢, V) and (iv) and (15) and the boundary
conditions of (16) can be checked. Therefore, if we want to
obtain the existence of solutions through [4, Theorem 2.1], we
should only verify for all (𝑢, V) ∈ 𝑈 × 𝑉,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≥ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≥ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≤ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω.

(24)

Because𝑓
1
is decreasing in V,𝑓

2
is decreasing in 𝑢, and𝐴(𝑢, V)

is increasing in V, 𝐵(𝑢, V) is increasing in 𝑢, only to verify the
following inequations:

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≥ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≥ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐴 (𝑢, V) + 𝑀
1
𝐴 (𝑢, V) ≤ 𝑓

1
(𝑢, V) + 𝑀

1
𝐴 (𝑢, V) , 𝑥 ∈ Ω,

−Δ𝐵 (𝑢, V) + 𝑀
2
𝐵 (𝑢, V) ≤ 𝑓

2
(𝑢, V) + 𝑀

2
𝐵 (𝑢, V) , 𝑥 ∈ Ω.

(25)

It is easy to check (25) by (v), (vi), and (vii). So from
[4, Theorem 2.1], (1) has a solution (𝑢, V), in addition (𝑢, V) ≥
(𝑢, V) ≥ (𝑢, V) > (0, 0).

In the end, before investigating the nonexistence of
positive solutions of (1), we give its priori bound of positive
solutions.

Theorem 8. Any positive solutions (𝑢, V) of (1) have a priori
bound; that is

𝑢 (𝑥) ≤
𝑏

𝑑
, V (𝑥) ≤

𝑎

𝑐
. (26)

Proof. Let 𝑤 = 𝑢 + 𝛼V, 𝑧 = 𝛽𝑢 + V; then

𝑢 =
𝑤 − 𝛼𝑧

1 − 𝛼𝛽
, V =

𝑧 − 𝛽𝑤

1 − 𝛼𝛽
. (27)

Equation (1) can be rewritten as

−Δ𝑤 =
𝑤 − 𝛼𝑧

1 − 𝛼𝛽
(𝑎 −

𝑤 − 𝛼𝑧

1 − 𝛼𝛽
− 𝑐
𝑧 − 𝛽𝑤

1 − 𝛼𝛽
) , 𝑥 ∈ Ω,

−Δ𝑧 =
𝑧 − 𝛽𝑤

1 − 𝛼𝛽
(𝑏 −

𝑧 − 𝛽𝑤

1 − 𝛼𝛽
− 𝑑

𝑤 − 𝛼𝑧

1 − 𝛼𝛽
) , 𝑥 ∈ Ω,

(𝑤, 𝑧) = (0, 0) , 𝑥 ∈ 𝜕Ω.

(28)

Since (𝑢, V) > (0, 0), it easily follows that𝑤−𝛼𝑧 > 0, 𝑧−𝛽𝑤 >
0. Assume that 𝑧(𝑥) attains its positive maximum at 𝑥

0
∈ Ω,

then

𝑎 (1 − 𝛼𝛽) − 𝑤 (𝑥
0
) + 𝛼𝑧 (𝑥

0
) − 𝑐𝑧 (𝑥

0
) + 𝑐𝛽𝑤 (𝑥

0
) > 0

𝑎 (1 − 𝛼𝛽) − 𝑐𝑧 (𝑥
0
) + 𝑐𝛽𝛼𝑧 (𝑥

0
) > 0,

𝑧 (𝑥) ≤ 𝑧 (𝑥
0
) ≤

𝑎

𝑐

(29)

so that

V = 𝑧 − 𝛽𝑢 ≤ 𝑧 (𝑥
0
) ≤

𝑎

𝑐
. (30)

Similarly, we can obtain the desired result

𝑢 ≤
𝑏

𝑑
. (31)

Theorem 9. If one of the following conditions:

(i) 𝑏 ≤ 𝑎𝑑, 𝜆
1
≥ (𝑏 + 𝑐𝛽(𝑏/𝑑))/(1 − 𝛼𝛽);

(ii) (1 − (𝛼 + 𝛽)/2)𝜆
1
≥ max{𝑎, 𝑏};

is satisfied, then (1) with 𝛼 < 𝛼, 𝛽 < 𝛽 has no positive solution.

Proof. Multiplying 𝑢 and V to the first and second equations
in (1), and integrating these equations onΩ, we have

∫
Ω

|∇𝑢|
2
𝑑𝑥 + 𝛼∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

𝑢
2
(𝑎 − 𝑢 − 𝑐V) 𝑑𝑥,

𝛼∫
Ω

|∇V|
2
𝑑𝑥 + ∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

𝑢V (𝑎 − 𝑢 − 𝑐V) 𝑑𝑥,

𝛽∫
Ω

|∇𝑢|
2
𝑑𝑥 + ∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

𝑢V (𝑏 − V − 𝑑𝑢) 𝑑𝑥,

∫
Ω

|∇V|
2
𝑑𝑥 + 𝛽∫

Ω

∇𝑢∇V𝑑𝑥 = ∫
Ω

V
2
(𝑏 − V − 𝑑𝑢) 𝑑𝑥.

(32)
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(i) Suppose, by contradiction that (1) has a positive
solution (𝑢, V), then the second and fourth equations in (32)
yield

∫
Ω

V
3
𝑑𝑥 + 𝛽∫

Ω

𝑢V (𝑎 − 𝑢) 𝑑𝑥

= − (1 − 𝛼𝛽)∫
Ω

|∇V|
2
𝑑𝑥 + 𝛽∫

Ω

𝑐𝑢V
2
𝑑𝑥

+ ∫
Ω

V
2
(𝑏 − 𝑑𝑢) 𝑑𝑥.

(33)

Since 𝑢 ≤ 𝑏/𝑑 by Theorem 8, the left-hand side of (33)
must be positive. On the other hand, the Poincare inequality,
‖∇V‖2
𝐿
2 ≥ 𝜆1‖V‖

2

𝐿
2 , for V ∈ 𝑊12 (Ω) and the given assumption

shows the following contradiction:

− (1 − 𝛼𝛽)∫
Ω

|∇V|
2
𝑑𝑥 + 𝛽∫

Ω

𝑐𝑢V
2
𝑑𝑥 + ∫

Ω

V
2
(𝑏 − 𝑑𝑢) 𝑑𝑥

≤ − [(1 − 𝛼𝛽) 𝜆
1
− 𝑐𝛽

𝑏

𝑑
− 𝑏]∫

Ω

V
2
𝑑𝑥 ≤ 0.

(34)

(ii) A contraction argument is also used assuming that (1)
has a positive solution (𝑢, V). Adding the first equation to the
fourth equation, and then subtracting 𝑎 ∫

Ω
𝑢
2
𝑑𝑥 + 𝑏 ∫

Ω
V2𝑑𝑥

from the both sides, the following identity is obtained:

∫
Ω

|∇𝑢|
2
𝑑𝑥 + (𝛼 + 𝛽)∫

Ω

∇𝑢∇V𝑑𝑥

+ ∫
Ω

|∇V|
2
𝑑𝑥 − 𝑎∫

Ω

𝑢
2
𝑑𝑥 − 𝑏∫

Ω

V
2
𝑑𝑥

= −∫
Ω

𝑢
2
(𝑢 + 𝑐V) 𝑑𝑥 − ∫

Ω

V
2
(V + 𝑑𝑢) 𝑑𝑥.

(35)

Since 2∇𝑢∇V = |∇(𝑢 + V)|2 − |∇𝑢|2 − |∇V|2 and (1 − (𝛼 +
𝛽)/2)𝜆

1
≥ max{𝑎, 𝑏}, the Poincare inequality shows that the

left-hand side of (35) must be nonnegative, more precisely,

∫
Ω

|∇𝑢|
2
𝑑𝑥 + (𝛼 + 𝛽)∫

Ω

∇𝑢∇V𝑑𝑥

+ ∫
Ω

|∇V|
2
𝑑𝑥 − 𝑎∫

Ω

𝑢
2
𝑑𝑥 − 𝑏∫

Ω

V
2
𝑑𝑥

= (1 −
𝛼 + 𝛽

2
)∫
Ω

|∇𝑢|
2
𝑑𝑥 +

𝛼 + 𝛽

2
∫
Ω

|∇ (𝑢 + V)|
2
𝑑𝑥

+ (1 −
𝛼 + 𝛽

2
)∫
Ω

|∇V|
2
𝑑𝑥 − 𝑎∫

Ω

𝑢
2
𝑑𝑥 − 𝑏∫

Ω

V
2
𝑑𝑥

≥ [(1 −
𝛼 + 𝛽

2
)𝜆
1
− 𝑎]∫

Ω

𝑢
2
𝑑𝑥 +

𝛼 + 𝛽

2

⋅ ∫
Ω

|∇ (𝑢 + V)|
2
𝑑𝑥+[(1 −

𝛼 + 𝛽

2
)𝜆
1
− 𝑏]∫

Ω

V
2
𝑑𝑥

≥ [(1 −
𝛼 + 𝛽

2
)𝜆
1
− 𝑎]∫

Ω

𝑢
2
𝑑𝑥

+ [(1 −
𝛼 + 𝛽

2
)𝜆
1
− 𝑏]∫

Ω

V
2
𝑑𝑥 ≥ 0.

(36)

However, this results in a contradiction since the right-hand
side of (35) is clearly strictly negative by the positivity of 𝑢
and V.

Remark 10. Before closing this section, more sufficient con-
ditions of the nonexistence of positive solutions of (1) with
𝛼 + 𝛽 > 0, 𝛼𝛽 = 0 are investigated. Take 𝛼 = 0, 𝛽 > 0 for
example, then (1) may be reduced as

−Δ𝑢 = 𝑢 (𝑎 − 𝑢 − 𝑐V) , 𝑥 ∈ Ω,

−Δ (𝛽𝑢 + V) = V (𝑏 − V − 𝑑𝑢) , 𝑥 ∈ Ω,

(𝑢, V) = (0, 0) , 𝑥 ∈ 𝜕Ω.

(37)

Using the same method, we can obtain that (37) has no posi-
tive solution, if one of the following conditions is satisfied:

(i) 𝜆
1
≥ 𝑏 + 𝛽𝑐𝑎;

(ii) 𝜆
1
≥ 𝑎;

(iii) (1 − 𝛽/2)𝜆
1
≥ max{𝑎, 𝑏};

(iv) 𝑐 < 1 < 𝑎/𝑏 and (1 − 𝑑)/𝛽 ≤ 𝜆
1
/(𝑏 + 𝛽𝑎) ≤ 1.
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This paper presents the boundedness and uniform boundedness of traveling wave solutions for the Kadomtsev-Petviashvili (KP)
equation. They are discussed by means of a traveling wave transformation and Lyapunov function.

1. Introduction

We consider the Kadomtsev-Petviashvili (KP) equation:

𝑢
𝑡𝑥
+ 6𝑢
𝑥
𝑢
𝑥𝑥
+ 𝑢
𝑥𝑥𝑥𝑥

+ 𝑢
𝑦𝑦
+ 𝑐𝑢 = 0. (1)

It is well known that Kadomtsev-Petviashvili equation arises
in a number of remarkable nonlinear problems both in
physics and mathematics. By using various methods and
techniques, exact travelingwave solutions, solitary wave solu-
tions, doubly periodic solutions, and some numerical solu-
tions have been obtained in [1–6].

In this paper, (1) can be changed into an ordinary differ-
ential equation by using traveling wave transformation; the
boundedness and uniform boundedness of solution for the
resulting ordinary differential equation are discussed using
the method of Lyapunov function.

2. The Boundedness

Taking a traveling wave transformation 𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑡 in
(1), then (1) can be transformed into the following form:

𝑢
(4)
+ (

𝛾

𝛼3
+
𝛽
2

𝛼4
+

6

𝛼2
𝑢)𝑢
󸀠󸀠
+

6

𝛼2
𝑢
󸀠2

+
𝑐

𝛼4
𝑢 = 0. (2)

In general, we use the following system, which is equiva-
lent to (2):

𝑢
(4)
+ 𝑎𝑢
󸀠󸀠󸀠
+ 𝑓 (𝑡, 𝑢, 𝑢

󸀠󸀠
) + 𝑔 (𝑢

󸀠
) + 𝑑𝑢

= 𝑝 (𝑡, 𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
, 𝑢
󸀠󸀠󸀠
) ,

(3)

where

𝑓 (𝑡, 𝑢, 𝑢
󸀠
) = (

𝛾

𝛼3
+
𝛽
2

𝛼4
+

6

𝛼2
𝑢)𝑢
󸀠󸀠
, 𝑔 (𝑢

󸀠
) =

6

𝛼2
𝑢
󸀠2

,

𝑝 (𝑡, 𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
, 𝑢
󸀠󸀠󸀠
) = −𝑎𝑢

󸀠󸀠󸀠
, 𝑑 =

𝑐

𝛼4
.

(4)
We consider the following system, which is equivalent to

(3):
𝑥
󸀠

1
= 𝑥
2
, 𝑥

󸀠

2
= 𝑥
3
, 𝑥

󸀠

3
= 𝑥
4
,

𝑥
󸀠

4
= − 𝑎𝑥

4
− 𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
) − 𝑔 (𝑥

2
) − 𝑑𝑥

1

+ 𝑝 (𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) .

(5)

Theorem 1. If the following conditions hold for the system (5):

(i) there are positive constants 𝑎, 𝑏, 𝑑, 𝛿, 𝑘, and 𝜆 such that

𝑘 ≤ 𝑏
2
𝜆, 𝑎𝑏

𝑔 (𝑥
2
)

𝑥
2

− [
𝑔 (𝑥
2
)

𝑥
2

]

2

− 𝑎
2
𝑑 ≥ 𝛿, (𝑥

2
̸= 0) .

(6)
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(ii) 𝑓(𝑡, 𝑥
1
, 𝑥
2
, 0) = 0, 0 ≤ 𝑓(𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)/𝑥
3
− 𝑏 ≤ 2𝛿𝜆/

𝑘 (𝑥
2

̸= 0).

(iii) 𝑥
3
𝑓
󸀠

t (𝑡, 𝑥1, 𝑥2, 𝑥3)+𝑥2𝑥3𝑓
󸀠

𝑥
1

(𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
)+𝑥
2

3
𝑓
󸀠

𝑥
2

(𝑡, 𝑥
1
,

𝑥
2
, 𝑥
3
) ≤ 0.

(iv) |𝑝(𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
)| ≤ 𝑞(𝑡)(𝑥

2

1
+ 𝑥
2

2
+ 𝑥
2

3
+ 𝑥
2

4
)
1/2,

where 𝑞(𝑡) is a nonnegative continuous function and
∫
∞

0
𝑞(𝑡)𝑑𝑡 < ∞.

Then, all the solutions of system (5) are bounded.

Proof. We first construct the Lyapunov function𝑉 = 𝑉(𝑡, 𝑥
1
,

𝑥
2
, 𝑥
3
, 𝑥
4
) defined by

𝑉 = 𝑏
2
(2𝑥
4
+ 𝑎𝑥
3
+ 𝑏𝑥
2
)
2

+ 2𝑏𝑑(2𝑥
3
+ 𝑎𝑥
2
+ 𝑏𝑥
1
)
2

+ (𝑏
2
− 4𝑑) (𝑎𝑥

4
+ 𝑏𝑥
2
)
2

+ 4𝑎𝑏
2

× ∫

𝑥
2

0

[
𝑔 (𝑥
2
)

𝑥
2

−
𝑎𝑑

𝑏
] 𝑥
2
𝑑𝑥
2

+ [2𝑏 (𝑏
2
− 4𝑑) + 4𝑎

2
𝑑] 𝑥
2

3

+ 8𝑏
2
∫

𝑥
3

0

[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] 𝑥
3
𝑑𝑥
3
.

(7)

It follows from conditions (i) and (ii) that

𝑏
2
− 4𝑑 ≥ 0,

0 ≤ ∫

𝑥
2

0

[
𝑔 (𝑥
2
)

𝑥
2

−
𝑎𝑑

𝑏
] 𝑥
2
𝑑𝑥
2
≤

𝑎 (𝑏
2
− 𝑑)

2𝑏
𝑥
2

2
,

0 ≤ ∫

𝑥
3

0

[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] 𝑥
3
𝑑𝑥
3
≤
𝛿𝜆

𝑘
𝑥
2

3
.

(8)

Summing up the above discussions, we get

𝑉 ≥ 2𝑏 (𝑏
2
− 4𝑑) 𝑥

2

3
+ 4𝑎
2
𝑑𝑥
2

3
. (9)

Thus, we deduce that the function 𝑉(𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
)

defined in (7) is a positive definite function which has infinite
inferior limit and infinitesimal upper limit. Hence, there
exsits a positive constant 𝜀(>0) such that

𝑉 (𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) ≥ 𝜀 (𝑥

2

1
+ 𝑥
2

2
+ 𝑥
2

3
+ 𝑥
2

4
) . (10)

Taking the total derivative of (7) with respect to 𝑡 along the
trajectory of (5), we obtain

𝑑𝑉

𝑑𝑡
= − 2𝑎𝑏

2
[𝑥
4
+
1

𝑎
𝑔(𝑥
2
)]

2

− 2𝑏
3
𝑥
2
𝑥
3
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏]

− 2𝑎𝑏
2
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] 𝑥
2

3
−
2𝑏
2

𝑎

× [𝑎𝑏
𝑔 (𝑥
2
)

𝑥
2

−
𝑔
2
(𝑥
2
)

𝑥
2

2

− 𝑎
2
𝑑]𝑥
2

2

+ 4𝑏
2
∫

𝑥
3

0

𝑓
󸀠

𝑡
(𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑑𝑥
3

+ 4𝑏
2
𝑥
2
∫

𝑥
3

0

𝑓
󸀠

𝑥
1

(𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑑𝑥
3

+ 4𝑏
2
𝑥
3
∫

𝑥
3

0

𝑓
󸀠

𝑥
2

(𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑑𝑥
3

+ 2𝑏
2
(𝑏𝑥
2
+ 𝑎𝑥
3
+ 2𝑥
4
) 𝑝 (𝑡, 𝑥, 𝑥

2
, 𝑥
3
, 𝑥
4
) .

(11)

By using conditions (i) and (iii), it follows that

𝑑𝑉

𝑑𝑡
≤ −

2𝑏
2
𝛿

𝑎
𝑥
2

2
− 2𝑏
3
𝑥
2
𝑥
3
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏]

− 2𝑎𝑏
2
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] 𝑥
2

3

+ 2𝑏
2
(𝑏𝑥
2
+ 𝑎𝑥
3
+ 2𝑥
4
) 𝑝 (𝑡, 𝑥, 𝑥

2
, 𝑥
3
, 𝑥
4
) .

(12)

According to (ii), we have

2𝑏
3
𝑥
2
𝑥
3
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏]

+ 2𝑎𝑏
2
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] 𝑥
2

3

= −
𝑏
4

2𝑎
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] 𝑥
2

2

+
2𝑏
2

𝑎
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] ⋅ (𝑎𝑥
3
+
𝑏

2
𝑥
2
)

2

≥ −
𝑏
4

2𝑎
[
𝑓 (𝑡, 𝑥

1
, 𝑥
2
, 𝑥
3
)

𝑥
3

− 𝑏] 𝑥
2

2

= −
𝑏
4

2𝑎
⋅
2𝛿𝜆

𝑘
𝑥
2

2
= −

𝑏
4
𝛿𝜆

𝑎𝑘
𝑥
2

2
.

(13)
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Hence,

𝑑𝑉

𝑑𝑡
≤ −

2𝑏
2
𝛿

𝑎
𝑥
2

2
+
𝑏
4
𝛿𝜆

𝑎𝑘
𝑥
2

2

+ 2𝑏
2
(𝑏𝑥
2
+ 𝑎𝑥
3
+ 2𝑥
4
) 𝑝 (𝑡, 𝑥, 𝑥

2
, 𝑥
3
, 𝑥
4
)

= −
𝑏
2
𝛿

𝑎
𝑥
2

2
+
𝑏
2
𝛿

𝑎𝑘
(𝑏
2
𝜆 − 𝑘) 𝑥

2

2

+ 2𝑏
2
(4 + 𝑎

2
+ 𝑏
2
)
1/2

(𝑥
2

2
+ 𝑥
2

3
+ 𝑥
2

4
)
1/2

× (𝑥
2

2
+ 𝑥
2

3
+ 𝑥
2

4
)
1/2

𝑞 (𝑡)

≤ −
𝑏
2
𝛿

𝑎
𝑥
2

2
+ 2𝑏
2
(4 + 𝑎

2
+ 𝑏
2
)
1/2

(𝑥
2

2
+ 𝑥
2

3
+ 𝑥
2

4
) 𝑞 (𝑡)

≤ −
𝑏
2
𝛿

𝑎
𝑥
2

2
+ 2𝑏
2
(4 + 𝑎

2
+ 𝑏
2
)
1/2

⋅ 𝑞 (𝑡) ⋅
𝑉

𝜀

≤ 2𝑏
2
(4 + 𝑎

2
+ 𝑏
2
)
1/2

⋅
𝑞 (𝑡)

𝜀
⋅ 𝑉 ≡ 𝜑 (𝑉, 𝑡) .

(14)

Thus, all the solutions of system (5) are bounded.

Theorem2. Let conditions (i)–(iv) ofTheorem 1 be satisfied for
the system (5), and let the following condition hold:

(4 + 𝑎
2
+ 𝑏
2
)
1/2

⋅
𝑞 (𝑡)

𝜀
⋅ 𝑉 −

𝛿

𝑎
𝑥
2

2
≤ 0. (15)

Then, all the solutions of system (5) are uniformly bounded.

Proof. It is clear that the function 𝑉(𝑡, 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) defined

in (7) satisfies the conditions (15), therefore, all the solutions
of system (5); are uniformly bounded [7].
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Applying bilinear form and extended three-wavetype of ansätz approach on the (2 + 1)-dimensional Sawada-Kotera equation, we
obtain new multisoliton solutions, including the double periodic-type three-wave solutions, the breather two-soliton solutions,
the double breather soliton solutions, and the three-solitary solutions. These results show that the high-dimensional nonlinear
evolution equation has rich dynamical behavior.

1. Introduction

As is well known that the exact solutions of nonlinear evo-
lution equations play an important role in nonlinear science
field, especially in nonlinear physical science since they can
providemuch physical information andmore insight into the
physical aspects of the problem and thus lead to further appli-
cations. The search for exact solutions of nonlinear partial
differential equations has long been an interesting and hot
topic in nonlinearmathematical physics. Consequently,many
methods are available to look for exact solutions of nonlinear
evolution equations, such as the inverse scattering method,
the Lie group method, the mapping method, Exp-function
method, and ansätz technique [1–4]. Very recently, Wang
et al. [5] proposed a new technique called extended three-
wave approach to seek multiwave solutions for integrable
equations, and this method has been used to investigate
several equations [6, 7]. In this paper, we consider the
following Sawada-Kotera equation:

𝑢
𝑡
= (𝑢
𝑥𝑥𝑥𝑥

+ 5𝑢𝑢
𝑥𝑥

+
5

3
𝑢
3
+ 5𝑢
𝑥𝑦
)
𝑥

− 5∫ (𝑢
𝑦𝑦
) 𝑑𝑥 + 5𝑢𝑢

𝑦
+ 5𝑢
𝑥
∫(𝑢
𝑦
) 𝑑𝑥.

(1)

Equation (1) was derived by B. G. Konopelchenko and V. G.
Dubrovsky, and was called the Sawada-Kotera (SK) equation;
for example, see [8]. By means of the two-soliton method,
the exact periodic soliton solutions, N-soliton solutions, and
traveling wave solutions of the SK equation were found [8–
10].

In this paper, we discuss further the (2 + 1)-dimensional
SK equation, by using bilinear form and extended three-wave
type of ansätz approach, respectively [5, 11–15], and some new
multisoliton solutions are obtained.

2. The Multisoliton Solutions

We assume

𝑢 = −2(ln𝑓)
𝑥𝑥
, (2)

where 𝑓 = 𝑓(𝑥, 𝑦, 𝑡) is an unknown real function. Substitut-
ing (2) into (1), we can reduce (1) into the following equation
[8]:

(𝐷
6

𝑥
+ 5𝐷
𝑦
𝐷
3

𝑥
− 5𝐷
2

𝑦
+ 𝐷
𝑥
𝐷
𝑡
) 𝑓 ⋅ 𝑓 = 0, (3)
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where the Hirota bilinear operator𝐷 is defined by (𝑛,𝑚 ≥ 0)

𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝑓 (𝑥, 𝑡) ⋅ 𝑔 (𝑥, 𝑡)

= (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑥󸀠
)

𝑚

(
𝜕

𝜕𝑡
−

𝜕

𝜕𝑡󸀠
)

𝑛

× [𝑓 (𝑥, 𝑡) 𝑔 (𝑥
󸀠
, 𝑡
󸀠
)]
󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑡󸀠=𝑡

.

(4)

Now we suppose the solution of (3) as

𝑓 = 𝑒
−𝜉

+ 𝛿
1
cos (𝜂) + 𝛿

2
cosh (𝛾) + 𝛿

3
𝑒
𝜉
, (5)

where 𝜉 = 𝑎
1
𝑥 + 𝑏
1
𝑦 + 𝑐
1
𝑡, 𝜂 = 𝑎

2
𝑥 + 𝑏
2
𝑦 + 𝑐
2
𝑡, 𝛾 = 𝑎

3
𝑥 +

𝑏
3
𝑦 + 𝑐
3
𝑡, and 𝑎

𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
(𝑖 = 1, 2, 3) are some constants

to be determined later. Substituting (5) into (3) and equating
all the coefficients of different powers of 𝑒𝜉, 𝑒−𝜉, sin(𝜂), cos(𝜂),
sinh(𝛾), cosh(𝛾), and the constant term to zero, we can obtain
a set of algebraic equations for 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝛿

𝑗
(𝑖 = 1, 2, 3;

𝑗 = 1, 2, 3). Solving the system with the aid of Maple, we get
the following results.

Case 1. If 𝑎
2
= 0, then

𝑏
1
= −

1

4
𝑎
1
(4𝑎
2

1
+ 3𝑎
2

3
) , 𝑏

2
=
3

2
𝑖𝑎
2

1
𝑎
3
,

𝑏
3
= −

1

4
𝑎
3
(6𝑎
2

1
+ 𝑎
2

3
) , 𝛿

2
= −

𝛿
1
𝑎
2

1

𝑎
2

1
− 𝑎
2

3

,

𝛿
3
= 𝛿
3
,

𝑐
1
=

9

16
𝑎
1
(5𝑎
4

3
+ 40𝑎

2

1
𝑎
2

3
+ 16𝑎

4

1
) ,

𝑐
2
= −

45

4
𝑖𝑎
2

1
𝑎
3
(2𝑎
2

1
+ 𝑎
2

3
) ,

𝑐
3
=

9

16
𝑎
3
(𝑎
4

3
+ 20𝑎

2

1
𝑎
2

3
+ 40𝑎

4

1
) ,

(6)

where 𝑎
1
, 𝑎
3
, 𝛿
1
, and 𝛿

3
are free real constants. Substituting

(6) into (5) and taking 𝛿
3
> 0, we have

𝑓
1
= 2√𝛿

3
cosh (𝑎

1
𝑥 + 𝐾

1
𝑦 + 𝐿

1
𝑡 +

1

2
ln (𝛿
3
))

− 𝛿
1
cosh (𝑀

1
𝑦 + 𝑁

1
𝑡) −

𝛿
1
𝑎
2

1

𝑎
2

1
− 𝑎
2

3

× cosh (𝑎
3
𝑥 − 𝐻

1
𝑦 + 𝐽
1
𝑡) ,

(7)

where𝐾
1
= (1/4)𝑎

1
(4𝑎
2

1
+3𝑎
2

3
), 𝐿
1
= (9/16)𝑎

1
(5𝑎
4

3
+40𝑎
2

1
𝑎
2

3
+

16𝑎
4

1
), 𝑀
1
= −(3/2)𝑎

2

1
𝑎
3
, 𝑁
1
= (45/4)𝑎

2

1
𝑎
3
(2𝑎
2

1
+ 𝑎
2

3
), 𝐻
1
=

(1/4)𝑎
3
(6𝑎
2

1
+ 𝑎
2

3
), and 𝐽

1
= (9/16)𝑎

3
(𝑎
4

3
+ 20𝑎

2

1
𝑎
2

3
+ 40𝑎

4

1
).

Substituting (7) into (2) yields the three-soliton solution of
SK equation as follows:

𝑢
1
= −(2[2√𝛿

3
𝑎
2

1
cosh (𝜉

1
+
1

2
ln (𝛿
3
))

−
𝛿
1
𝑎
2

1
𝑎
2

3
cosh (𝜂

1
)

𝑎
2

1
−𝑎
2

3

])

× (2√𝛿
3
cosh (𝜉

1
+
1

2
ln (𝛿
3
))

−
𝛿
1
𝑎
2

1
cosh (𝜂

1
)

𝑎
2

1
− 𝑎
2

3

− 𝛿
1
cosh (𝛾

1
))

−1

+ [(2(2√𝛿
3
𝑎
1
sinh(𝜉

1
+
1

2
ln (𝛿
3
))

−
𝛿
1
𝑎
2

1
𝑎
3
sinh (𝜂

1
)

(𝑎
2

1
−𝑎
2

3
)

))

× (2√𝛿
3
cosh (𝜉

1
+
1

2
ln (𝛿
3
))

−
𝛿
1
𝑎
2

1
cosh (𝜂

1
)

𝑎
2

1
− 𝑎
2

3

− 𝛿
1
cosh (𝛾

1
))

−1

]

2

,

(8)

where 𝜉
1
= 𝑎
1
𝑥 + 𝐾

1
𝑦 + 𝐿

1
𝑡, 𝜂
1
= 𝑎
3
𝑥 − 𝐻

1
𝑦 + 𝐽
1
𝑡, and

𝛾
1
= 𝑀
1
𝑦 + 𝑁

1
𝑡.

If taking 𝑎
3
= 𝑖𝐴
3
in (7), then we have

𝑓
2
= 2√𝛿

3
cosh (𝑎

1
𝑥 + 𝐾

2
𝑦 + 𝐿

2
𝑡 +

1

2
ln (𝛿
3
))

+ 𝛿
1
cos (𝑀

2
𝑦 + 𝑁

2
𝑡)

−
𝛿
1
𝑎
2

1
cos (𝐴

3
𝑥 − 𝐻

2
𝑦 + 𝐽
2
𝑡)

𝑎
2

1
+ 𝐴
2

3

,

(9)

where𝛿
3
> 0,𝐾

2
= −(1/4)𝑎

1
(4𝑎
2

1
−3𝐴
2

3
),𝐿
2
= (9/16)𝑎

1
(5𝐴
4

3
−

40𝑎
2

1
𝐴
2

3
+ 16𝑎

4

1
),𝑀
2
= (3/2)𝑎

2

1
𝐴
3
,𝑁
2
= −(45/4)𝑎

2

1
𝐴
3
(2𝑎
2

1
−

𝐴
2

3
),𝐻
2
= 𝐴
3
𝑥−(1/4)𝐴

3
(6𝑎
2

1
−𝐴
2

3
), and 𝐽

2
= (9/16)𝐴

3
(𝐴
4

3
−

20𝑎
2

1
𝐴
2

3
+ 40𝑎

4

1
). Substituting (9) into (2) yields the double

breather soliton solution of SK equation as follows:

𝑢
2
= −(2[2𝑎

2

1
√𝛿
3
cosh (𝜉

2
+
1

2
ln (𝛿
3
))

+
𝛿
1
𝑎
2

1
𝐴
2

3
cos (𝜂

2
)

𝑎
2

1
+ 𝐴
2

3

])

× (2√𝛿
3
cosh (𝜉

2
+
1

2
ln (𝛿
3
))

+𝛿
1
cos (𝛾

2
) −

𝛿
1
𝑎
2

1
cos (𝜂

2
)

𝑎
2

1
+ 𝐴
2

3

)

−1
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+ 2 [(2𝑎
1
√𝛿
3
sinh(𝜉

2
+
1

2
ln (𝛿
3
))

+
𝛿
1
𝑎
2

1
𝐴
3
sin (𝜂
2
)

𝑎
2

1
+𝐴
2

3

)

× (2√𝛿
3
cosh (𝜉

2
+
1

2
ln (𝛿
3
))

+𝛿
1
cos (𝛾

2
)−

𝛿
1
𝑎
2

1
cos (𝜂

2
)

𝑎
2

1
+𝐴
2

3

)

−1

]

2

,

(10)

where 𝜉
2
= 𝑎
1
𝑥 + 𝐾

2
𝑦 + 𝐿

2
𝑡, 𝜂
2
= 𝐴
3
𝑥 − 𝐻

2
𝑦 + 𝐽
2
𝑡, and

𝛾
2
= 𝑀
2
𝑦 + 𝑁

2
𝑡.

Case 2. If 𝑎
2

̸=0, then

𝑏
1
= −𝑎
3

1
, 𝑏

2
= 𝑎
3

2
, 𝑏

3
= −𝑎
3

3
,

𝛿
1
= 𝛿
1
, 𝛿

2
= 𝛿
2
, 𝛿
3
= 𝛿
3
,

𝑐
1
= 9𝑎
5

1
, 𝑐

2
= 9𝑎
5

2
, 𝑐

3
= 9𝑎
5

3
,

(11)

where 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝛿
1
, 𝛿
2
, and 𝛿

3
are free real constants.

Substituting (11) into (5) and taking 𝛿
3
> 0, we have

𝑓
3
= 2√𝛿

3
cosh (𝑎

1
𝑥 − 𝑎
3

1
𝑦 + 9𝑎

5

1
𝑡 +

1

2
ln (𝛿
3
))

+ 𝛿
1
cos (𝑎

2
𝑥 + 𝑎
3

2
𝑦 + 9𝑎

5

2
𝑡)

+ 𝛿
2
cosh (𝑎

3
𝑥 − 𝑎
3

3
𝑦 + 9𝑎

5

3
𝑡) .

(12)

Substituting (12) into (2) yields the breather two-soliton
solution of SK equation as follows:

𝑢
3
= −(2 [2√𝛿

3
𝑎
2

1
cosh (𝜉

3
+
1

2
ln (𝛿
3
))

−𝛿
1
𝑎
2

2
cos (𝜂

3
) + 𝛿
2
𝑎
2

3
cosh (𝛾

3
) ])

× (2√𝛿
3
cosh (𝜉

3
+
1

2
ln (𝛿
3
))

+𝛿
1
cos (𝜂

3
) + 𝛿
2
cosh (𝛾

3
) )

−1

+ [(2 (2√𝛿
3
𝑎
1
sinh(𝜉

3
+
1

2
ln (𝛿
3
))

−𝛿
1
𝑎
2
sin (𝜂
3
) + 𝛿
2
𝑎
3
sinh (𝛾

3
) ))

× (2√𝛿
3
cosh (𝜉

3
+
1

2
ln (𝛿
3
))

+𝛿
1
cos (𝜂

3
) + 𝛿
2
cosh (𝛾

3
) )

−1

]

2

,

(13)

where 𝜉
3
= 𝑎
1
𝑥 − 𝑎

3

1
𝑦 + 9𝑎

5

1
𝑡, 𝜂
3
= 𝑎
2
𝑥 + 𝑎

3

2
𝑦 + 9𝑎

5

2
𝑡, and

𝛾
3
= 𝑎
3
𝑥 − 𝑎
3

3
𝑦 + 9𝑎

5

3
𝑡.

The expression (𝑢
3
) is the breather two-soliton solution of

SK equation which is a periodic wave in 𝑥, 𝑦 and meanwhile
is a two-soliton in 𝑥, 𝑦 (refer to Figure 1(b)).

Case 3. If 𝑎
2
= 𝑏
1
= 0, then

𝑎
1
= 2𝑎
3
, 𝑏

2
= √21𝑎

3

3
, 𝑏

3
= −

3

2
𝑎
3

3
,

𝑐
1
= −

169

2
𝑎
5

3
,

𝑐
2
= −20√21𝑎

5

3
, 𝑐

3
= −

349

4
𝑎
5

3
,

𝛿
3
=

5

152
𝛿
2

2
−

7

228
𝛿
2

1
,

(14)

where 𝑎
3
, 𝛿
1
, and 𝛿

2
are free real constants. Substituting (14)

into (5) and taking 𝛿
3
> 0, we have

𝑓
4
= 2√

5

152
𝛿
2

2
−

7

228
𝛿
2

1

× cosh (−2𝑎
3
𝑥 +

169

2
𝑎
5

3
𝑡 −

1

2
ln( 5

152
𝛿
2

2
−

7

228
𝛿
2

1
))

+ 𝛿
1
cos (−√21𝑎

3

3
𝑦 + 20√21𝑎

5

3
𝑡)

+ 𝛿
2
cosh (−𝑎

3
𝑥 +

3

2
𝑎
3

3
𝑦 +

349

4
𝑎
5

3
𝑡) ,

(15)

where (5/152)𝛿2
2
− (7/228)𝛿

2

1
> 0. Substituting (15) into (2)

yields the breather two-soliton solution of SK equation as
follows:

𝑢
4
= −(2 [8√𝐾

4
𝑎
2

3
cosh (𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
2
𝑎
2

3
cosh (𝜂

4
) ])

× (2√𝐾
4
cosh (𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
1
cos (𝛾

4
) + 𝛿
2
cosh (𝜂

4
) )

−1

+ 2 [ (4√𝐾
4
𝑎
3
sinh(𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
2
𝑎
3
sinh (𝜂

4
) )

× (2√𝐾
4
cosh (𝜉

4
−
1

2
ln (𝐾
4
))

+𝛿
1
cos (𝛾

4
) + 𝛿
2
cosh (𝜂

4
) )

−1

]

2

,

(16)

where𝐾
4
= (5/152)𝛿

2

2
− (7/228)𝛿

2

1
, 𝜉
4
= −2𝑎

3
𝑥 + (169/2)𝑎

5

3
𝑡,

𝜂
4
= −𝑎
3
𝑥 + (3/2)𝑎

3

3
𝑦 + (349/4)𝑎

5

3
𝑡, and 𝛾

4
= −√21𝑎

3

3
𝑦 +

20√21𝑎
5

3
𝑡.
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Figure 1: (a) The figure of 𝑢
2
as 𝛿
1
= 1, 𝛿

3
= 1, and 𝑡 = 1. (b) The figure of 𝑢

3
as 𝛿
1
= √2, 𝛿

2
= 1, and 𝑡 = 0. (c) The figure of 𝑢

4
as 𝛿
1
= √2,

𝛿
2
= √5, and 𝑡 = 0.005. (d) The figure of 𝑢

5
as 𝛿
1
= 1, 𝛿

2
= 1, and 𝑡 = 0.

The expression (𝑢
4
) is the breather two-soliton solution of

SK equation which is a periodic wave in 𝑦-𝑡 and meanwhile
is a two-soliton in 𝑥, 𝑦 and in 𝑥-𝑡, respectively (refer to
Figure 1(c)).

Notice that 𝑢
3
and 𝑢

4
are also the breather two-soliton

solutions, but their structure is different, because the two
wave propagation directions are different in the 𝑢

3
and 𝑢

4
,

respectively (refer to Figures 1(b) and 1(c)).
If taking 𝑎

1
= 𝑖𝐴
1
, 𝑎
3
= 𝑖𝐴
3
in (12), then we have

𝑓
5
= 2 cos (𝐴

1
𝑥 + 𝐴

3

1
𝑦 + 9𝐴

5

1
𝑡)

+ 𝛿
1
cos (𝑎

2
𝑥 + 𝑎
3

2
𝑦 + 9𝑎

5

2
𝑡)

+ 𝛿
2
cos (𝐴

3
𝑥 + 𝐴

3

3
𝑦 + 9𝐴

5

3
𝑡) ,

(17)

when 𝛿
3

= 1. Substituting (17) into (2) gives the double-
periodic three-wave solution of SK equation as follows:

𝑢
5
=

2 [2𝐴
2

1
cos (𝜉

5
) + 𝛿
1
𝑎
2

2
cos (𝜂

5
) + 𝛿
2
𝐴
2

3
cos (𝛾

5
)]

2 cos (𝜉
5
) + 𝛿
1
cos (𝜂

5
) + 𝛿
2
cos (𝛾

5
)

+ 2[
2𝐴
1
sin (𝜉
5
) + 𝛿
1
𝑎
2
sin (𝜂
5
) + 𝛿
2
𝐴
3
sin (𝛾
5
)

2 cos (𝜉
5
) + 𝛿
1
cos (𝜂

5
) + 𝛿
2
cos (𝛾

5
)

]

2

,

(18)

where 𝜉
5
= 𝐴
1
𝑥 + 𝐴

3

1
𝑦 + 9𝐴

5

1
𝑡, 𝜂
5
= 𝑎
2
𝑥 + 𝑎
3

2
𝑦 + 9𝑎

5

2
𝑡, and

𝛾
5
= 𝐴
3
𝑥 + 𝐴

3

3
𝑦 + 9𝐴

5

3
𝑡.

3. Conclusion

By using bilinear form and extended three-wave type of
ansätz approach, we discuss further the (2 + 1)-dimensional
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Sawada-Kotera equation and find some new multisoliton
solutions.The result shows that the extended three-wave type
of ansätz approachmay provide uswith a straightforward and
effectivemathematical tool for seekingmultiwave solutions of
high-dimensional nonlinear evolution equations.
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With the aid ofMaple symbolic computation and Lie groupmethod, (2+1)-dimensional PBLMP equation is reduced to some (1+1)-
dimensional PDE with constant coefficients. Using the homoclinic test technique and auxiliary equation methods, we obtain new
exact nontraveling solution with arbitrary functions for the PBLMP equation.

1. Introduction

In this paper, we will consider the potential Boiti-Leon-
Manna-Pempinelli (PBLMP) equation

𝑢
𝑦𝑡
+ 𝑢
𝑥𝑥𝑥𝑦

− 3𝑢
𝑥𝑥
𝑢
𝑦
− 3𝑢
𝑥
𝑢
𝑥𝑦

= 0, (1)

where 𝑢 : 𝑅
𝑥
× 𝑅
𝑦
× 𝑅
+

𝑡
→ 𝑅. By some transformations,

the PBLMP equation (1) can be equivalent to the asymmet-
ric Nizhnik-Novikov-Veselov (ANNV) system. In fact, the
ANNV equation can be obtained from the inner parameter-
dependent symmetry constraint of the KP equation [1] and
may be considered as a model for an incompressible fluid
[2]. The Painlevé analysis, Lax pair, and some exact solutions
have been studied for the PBLMP equation [3]. Tang and
Lou obtained the bilinear form of (1) and variable separation
solutions including two arbitrary functions by themultilinear
variable separation approach [4, 5].

In this paper, by means of Maple symbolic computation,
we will use the Lie group method [6, 7], homoclinic test
technique [8, 9] and so forth to reduce and solve the PBLMP
equation. First, we will derive symmetry of (1). Then we use
the symmetry to reduce (1) to some (1 + 1)-dimensional
PDE with constant coefficients. Finally, solving the reduced
PDE by Homoclinic test technique and auxiliary equation
methods [10, 11] implies abundant exact nontraveling wave
periodic solutions for the PBLMP equation.

2. Symmetry of (1)
This section is devoted to Lie point group symmetries of (1).
Let

𝜎 = 𝜎 (𝑥, 𝑦, 𝑡, 𝑢, 𝑢
𝑥
, 𝑢
𝑦
, 𝑢
𝑡
) (2)

be the symmetry of (1). Based on Lie group theory [6], 𝜎
satisfies the following symmetry equation:

𝜎
𝑦𝑡
+ 𝜎
𝑦𝑥𝑥𝑥

− 3𝑢
𝑥𝑥
𝜎
𝑦
− 3𝑢
𝑦
𝜎
𝑥𝑥

− 3𝑢
𝑥
𝜎
𝑥𝑦

− 3𝑢
𝑥𝑦
𝜎
𝑥
= 0.

(3)

To get some symmetries of (1), we take the function 𝜎 in the
form

𝜎 = 𝑎 (𝑥, 𝑦, 𝑡) 𝑢
𝑥
+ 𝑏 (𝑥, 𝑦, 𝑡) 𝑢

𝑦
+ 𝑐 (𝑥, 𝑦, 𝑡) 𝑢

𝑡

+𝑑 (𝑥, 𝑦, 𝑡) 𝑢 + 𝑒 (𝑥, 𝑦, 𝑡) ,
(4)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are functions of 𝑥, 𝑦, 𝑡 to be determined, and
𝑢(𝑥, 𝑦, 𝑡) satisfies (1). Substituting (4) and (1) into (3), one can
get

𝑎 =
1

3
𝑘
1
𝑥 + 𝜆 (𝑡) , 𝑏 = 𝜇 (𝑦) ,

𝑐 = 𝑘
1
𝑡 + 𝑘
2
, 𝑑 =

1

3
𝑘
1
, 𝑒 =

1

3
𝜆
󸀠
(𝑡) 𝑥 + 𝜉 (𝑡) ,

(5)
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where 𝑘
1
, 𝑘
2
are arbitrary constants. 𝜆(𝑡), 𝜉(𝑡) are arbitrary

functions of t. 𝜇(𝑦) is a arbitrary function of y. Substituting
(5) into (4), we obtain the symmetries of (1) as follows:

𝜎 = (
1

3
𝑘
1
𝑥 + 𝜆 (𝑡)) 𝑢

𝑥
+ 𝜇 (𝑦) 𝑢

𝑦
+ (𝑘
1
𝑡 + 𝑘
2
) 𝑢
𝑡
+
1

3
𝑘
1
𝑢

+
1

3
𝜆
󸀠
(𝑡) 𝑥 + 𝜉 (𝑡) .

(6)

3. Symmetry Reduction of (1)
Based on the integrability of reduced equation of the symme-
try (6), we consider the following three cases.

Case 1. Let 𝑘
1
= 𝑘
2
= 0, 𝜆(𝑡) = 𝑟, 𝜉(𝑡) = 1, 𝜇(𝑦) = −1/𝜏(𝑦)

in (6), then

𝜎 = 𝜏(𝑦)
−1

(𝑟𝜏 (𝑦) 𝑢
𝑥
− 𝑢
𝑦
+ 𝜏 (𝑦)) , (7)

where 𝑟 is an arbitrary nonzero constant, 𝜏(𝑦) ̸= 0. Solving the
differential equation for 𝜎 = 0, one gets

𝑢 = ∫ 𝜏 (𝑦) 𝑑𝑦 + 𝑤 (𝜃, 𝑡) , 𝜃 = 𝑥 + ∫ 𝑟𝜏 (𝑦) 𝑑𝑦. (8)

Substituting (8) into (1), we get the following (1 + 1)-dimen-
sional nonlinear PDE with constant coefficients:

𝑟𝑤
𝜃𝜃𝜃𝜃

− 6𝑟𝑤
𝜃
𝑤
𝜃𝜃

+ 𝑟𝑤
𝜃𝑡
− 3𝑤
𝜃𝜃

= 0. (9)

Integrating (9) once with respect to 𝜃 and taking integration
constant to zero yield

𝑟𝑤
𝜃𝜃𝜃

− 3𝑟𝑤
2

𝜃
+ 𝑟𝑤
𝑡
− 3𝑤
𝜃
= 0. (10)

Case 2. Taking 𝑘
1
= 0, 𝑘

2
= 1, 𝜆(𝑡) = 0, 𝜉(𝑡) = 0, 𝜇(𝑦) =

1/𝜏(𝑦) in (6) yields

𝜎 = 𝜏(𝑦)
−1

(𝑢
𝑦
+ 𝑟𝜏 (𝑦) 𝑢

𝑡
) . (11)

Solving the differential equation for 𝜎 = 0, one gets

𝑢 = 𝑤 (𝑥, 𝜃) , 𝜃 = 𝑡 − ∫ 𝜏 (𝑦) 𝑑𝑦. (12)

Substituting (12) into (1), we have the function 𝑤(𝑥, 𝜃) which
must satisfy the following PDE:

𝑤
𝑥𝑥𝑥𝜃

− 3𝑤
𝑥𝑥
𝑤
𝜃
− 3𝑤
𝑥
𝑤
𝑥𝜃

+ 𝑤
𝜃𝜃

= 0. (13)

Case 3. Let 𝑘
1
= 𝑘
2
= 0, 𝜆(𝑡) = 1, 𝜉(𝑡) = 0, 𝜇(𝑦) = −1/𝜏(𝑦)

in (6), then

𝜎 = 𝜏(𝑦)
−1

(𝜏 (𝑦) 𝑢
𝑥
− 𝑢
𝑦
) . (14)

Solving the equation for 𝜎 = 0, we obtain

𝑢 = 𝑤 (𝜃, 𝑡) , 𝜃 = 𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦. (15)

Substituting (15) into (1) yields a reduced PDE of (1) with
constant coefficients:

𝑤
𝜃𝜃𝜃𝜃

− 6𝑤
𝜃𝜃
𝑤
𝜃
+ 𝑤
𝜃𝑡
= 0. (16)

Integrating (16) once with respect to 𝜃 and taking integration
constant to zero yield

𝑤
𝜃𝜃𝜃

− 3𝑤
2

𝜃
+ 𝑤
𝑡
= 0. (17)

Combining the above results, we obtain some reduced
equations of (1) expressed by (10), (13), and (17), respectively.
Meanwhile many new explicit solutions of (1) from these
reduced Equations. can be achieved. We omit other cases
based on symmetries (6) here.

4. Solve Reduced PDE and Get Exact
Nontraveling Wave Solutions of (1)

In this section, we seek exact nontraveling wave solutions
of (1) by using some appropriate methods to solve reduced
equations (10), (13), and (17).

4.1. Solve Reduced PDE (10). Now,we seek solutions of (10) by
auxiliary equation method. Make transformation as follows:

𝑤 (𝜃, 𝑡) = 𝜑 (𝜉) , 𝜉 = 𝑝𝜃 + 𝑞𝑡, (18)

where 𝑝, 𝑞 are nonzero constants. Substituting (18) into (10)
obtains an ordinary differential equation for 𝜑(𝜉) as follows:

𝑝
3
𝑟𝜑
󸀠󸀠󸀠

− 3𝑟𝑝
2
𝜑
󸀠2
+ (𝑞𝑟 − 3𝑝) 𝜑

󸀠
= 0, (19)

where 𝜑󸀠 = 𝑑𝜑/𝑑𝜉. Let 𝜑󸀠 = 𝑓, then (19) can be written as

𝑝
3
𝑟𝑓
󸀠󸀠
− 3𝑟𝑝

2
𝑓
2
+ (𝑞𝑟 − 3𝑝) 𝑓 = 0. (20)

This is the fourth type of ellipse equation (12), its solutions are
as follows:

𝑓 =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

−
3𝑝 − 𝑞𝑟

2𝑝2𝑟
sech2 [√

3𝑝 − 𝑞𝑟

4𝑝3𝑟
(𝜉 − 𝜉

0
)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

3𝑝 − 𝑞𝑟

2𝑝2𝑟
csch2 [√

3𝑝 − 𝑞𝑟

4𝑝3𝑟
(𝜉 − 𝜉

0
)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

−
3𝑝 − 𝑞𝑟

2𝑝2𝑟
sec2 [√−

3𝑝 − 𝑞𝑟

4𝑝3𝑟
(𝜉 − 𝜉

0
)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) < 0,

(21)
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where 𝜉
0
is the integration constant. From the result of

(21), some new exact solutions 𝑢
1
through 𝑢

3
of (1) can be

obtained:

𝑢
1
= ∫ 𝜏 (𝑦) 𝑑𝑦 − √

3𝑝 − 𝑞𝑟

𝑝𝑟

× tanh[√
3𝑝 − 𝑞𝑟

4𝑝3𝑟
(𝑝 (𝑥 + 𝑟∫ 𝜏 (𝑦) 𝑑𝑦) + 𝑞𝑡 − 𝜉

0
)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

𝑢
2
= ∫ 𝜏 (𝑦) 𝑑𝑦 − √

3𝑝 − 𝑞𝑟

𝑝𝑟

× coth[√
3𝑝 − 𝑞𝑟

4𝑝3𝑟
(𝑝 (𝑥 + 𝑟∫ 𝜏 (𝑦) 𝑑𝑦) + 𝑞𝑡 − 𝜉

0
)] ,

𝑝𝑟 (3𝑝 − 𝑞𝑟) > 0,

𝑢
3
= ∫ 𝜏 (𝑦) 𝑑𝑦 − √

𝑞𝑟 − 3𝑝

𝑝𝑟

× tan[√
𝑞𝑟 − 3𝑝

4𝑝3𝑟
(𝑝 (𝑥 + 𝑟∫ 𝜏 (𝑦) 𝑑𝑦) + 𝑞𝑡 − 𝜉

0
)] ,

𝑝𝑟 (𝑞𝑟 − 3𝑝) < 0.

(22)

Particularly, we assume 𝑝 = 𝑞 = 1, 𝑟 = 2, 𝜏(𝑦) = sin(𝑦),
𝜉
0
= 0, 𝑥 = sech(𝑡), then the solution 𝑢

1
can be depicted by

Figure 1(a). If 𝑝 = −1, 𝑞 = 1, 𝑟 = −1, 𝜏(𝑦) = ∓ cos(𝑦), 𝜉
0
=

0, 𝑥 = sin(t), then 𝑢
3
can be depicted by Figures 1(b) and 2(a).

4.2. Solve Reduced PDE (13). Make transformation to (13) as
follows:

𝑤 (𝑥, 𝜃) = 𝜑 (𝜉) , 𝜉 = 𝑘𝑥 + 𝑐𝜃, (23)

where 𝑘, 𝑐 are non-zero constants. Substituting (23) into (13)
then we have

𝑐𝜑
󸀠
+ 𝑘
3
𝜑
󸀠󸀠󸀠

− 3𝐾
2
𝜑
󸀠2
= 0. (24)

It is equivalent to (19). Based on the above accordant idea, we
can get

𝑢
4
= √−

𝑐

2𝑘

×tanh [√−
𝑐

2𝑘3
(𝑘𝑥+𝑐 (𝑡−∫𝜏 (𝑦) 𝑑𝑦)− 𝜉

0
)] , 𝑘𝑐<0,

𝑢
5
= √−

𝑐

2𝑘

×coth [√−
𝑐

2𝑘3
(𝑘𝑥+𝑐(𝑡−∫𝜏 (𝑦) 𝑑𝑦)−𝜉

0
)] , 𝑘𝑐<0,

u

yt

−0.5

−1.5

0.5

1.5

−15−10

−10
5

50 0
10

15

10−5

−5

(a)

0 0.5
1 1.5

0 5
10 15

u

yt

−6
−4
−2

0
2
4
6

−1.5−1−0.5

−10−15
−5

(b)

Figure 1: (a) The figure of 𝑢
1
as 𝑝 = 1, 𝑞 = 1, 𝑟 = 2, 𝜏(𝑦) =

sin(𝑦), 𝜉
0
= 0, 𝑥 = sech(𝑡). (b) The figure of 𝑢

3
as 𝑝 = −1, 𝑞 =

1, 𝑟 = −1, 𝜏(𝑦) = − cos(𝑦), 𝜉
0
= 0, 𝑥 = sin(𝑡).
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Figure 2: (a) The figure of 𝑢
3
as 𝑝 = −1, 𝑞 = 1, 𝑟 = −1, 𝜏(𝑦) =

cos(𝑦), 𝜉
0
= 0, 𝑥 = sin(𝑡). (b) The figure of 𝑢

9
as 𝑝
1
= 1, 𝑐

1
=

1, 𝑝
2
= 1, 𝜏(𝑦) = sin(𝑦), 𝑥 = sin(𝑡).
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𝑢
6
= √

𝑐

2𝑘

×tan[√ 𝑐

2𝑘3
(𝑘𝑥+𝑐 (𝑡−∫ 𝜏 (𝑦) 𝑑𝑦)−𝜉

0
)] , 𝑘𝑐>0.

(25)

4.3. Solve Reduced PDE (17). In this section, we use homo-
clinic test technique [8, 9] to (17) and transform the unknown
function as follows:

𝑤 (𝜃, 𝑡) = −2(ln 𝑓 (𝜃, 𝑡))
𝜃
. (26)

Substituting (26) into (17) and using the bilinear form, we can
get

(𝐷
𝜃
𝐷
𝑡
+ 𝐷
4

𝜃
) (𝑓 ⋅ 𝑓) = 0, (27)

where the Hirota operator𝐷 is defined in [12]. In this case we
choose extended homoclinic test function

𝑓 = 𝑒
−𝑝
1
(𝜃−𝜔
1
𝑡)
+ 𝑐
1
cos (𝑝

2
(𝜃 + 𝜔

2
𝑡)) + 𝑐

2
𝑒
𝑝
1
(𝜃−𝜔
1
𝑡)
, (28)

where 𝑝
2
, 𝜔
1
, 𝜔
2
, 𝑐
1
, and 𝑐

2
are real constants to be deter-

mined. Substituting (28) into (27) yields a set of algebraic
equations as follows:

𝑝
1
𝑐
1
𝑝
2
(4 (𝑝
2

1
− 𝑝
2

2
) + 𝜔
2
− 𝜔
1
) = 0,

𝑐
1
((𝑝
4

1
+ 𝑝
4

4
− 6𝑝
2

1
𝑝
2

2
) − 𝑝
2

1
𝜔
1
− 𝑝
2

2
𝜔
2
) = 0,

𝑝
1
𝑝
2
𝑐
1
𝑐
2
(4 (𝑝
2

1
− 𝑝
2

2
) + 𝜔
2
− 𝜔
1
) = 0,

𝑐
1
𝑐
2
((𝑝
4

1
+ 𝑝
4

4
− 6𝑝
2

1
𝑝
2

2
) − 𝑝

2

1
𝜔
1
− 𝑝
2

2
𝜔
2
) = 0,

4 (4𝑝
4

1
𝑐
2
+ 𝑐
2

1
𝑝
4

2
) − 4𝑝

2

1
𝜔
1
𝑐
2
− 𝑐
2

1
𝑝
2

2
𝜔
2
= 0.

(29)

Solving the above equations (29) yields

(1) {
𝑝
1
= 𝑝
1
, 𝑝

2
= 𝑝
2
, 𝑐

1
= 0, 𝑐

2
= 𝑐
2
,

𝜔
1
= 4𝑝
2

1
, 𝜔

2
= 𝜔
2
,

(30)

(2)

{{

{{

{

𝑝
1
= 𝑝
1
, 𝑝

2
= 𝑝
2
, 𝑐

1
= 𝑐
1
, 𝑐

2
= −

𝑐
2

1
𝑝
2

2

𝑝
2

1

,

𝜔
1
= −3𝑝

2

2
+ 𝑝
2

1
, 𝜔

2
= −3𝑝

2

1
+ 𝑝
2

2
,

(31)

(3) {
𝑝
1
= 𝑝
2
𝑖, 𝑝
2
= 𝑝
2
, 𝑐

1
= 𝑐
1
, 𝑐

2
= 𝑐
2
,

𝜔
1
= −4𝑝

2

2
, 𝜔

2
= 4𝑝
2

2
,

(32)

(4)
{

{

{

𝑝
1
= 𝑝
2
𝑖, 𝑝
2
= 𝑝
2
, 𝑐

1
= 𝑐
1
, 𝑐

2
=

1

4
𝑐
2

1
,

𝜔
1
= 𝜔
2
− 8𝑝
2

2
, 𝜔

2
= 𝜔
2
,

(33)

where 𝑖
2

= −1. Substituting (30)–(33) into (28) yields the
solutions 𝑢

7
through 𝑢

11
of (1) as follows:

𝑢
7
= −2𝑝

1
tanh(𝑝

1
(𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − 4𝑝

2

1
𝑡 +

1

2
ln 𝑐
2
) ,

(34)

when 𝑐
2
> 0 in (30);

𝑢
8
= −2𝑝

1
coth(𝑝

1
(𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − 4𝑝

2

1
𝑡 +

1

2
ln (−𝑐

2
)) ,

(35)

when 𝑐
2
< 0 in (30);

𝑢
9
= −2𝑝

1
𝑝
2

× (coth(𝑝
1
(𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦)

− (𝑝
2

1
− 3𝑝
2

2
) 𝑡 + ln

𝑐
1
𝑝
2

𝑝
1

)

+ sin(𝑝
2
(𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − (3𝑝

2

1
− 𝑝
2

2
) 𝑡))

× (𝑝
2
sinh(𝑝

1
(𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦)

− (𝑝
2

1
− 3𝑝
2

2
) 𝑡 + ln

𝑐
1
𝑝
2

𝑝
1

)

+ 𝑝
1
cos(𝑝

2
(𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) − (3𝑝

2

1
− 𝑝
2

2
) 𝑡))

−1

,

(36)

when 𝑐
1
𝑝
1
𝑝
2
> 0 in (31) (see Figure 2(b));

𝑢
10
(𝑥, 𝑦, 𝑡) = 𝑝

2
tan(𝑝

2
(𝑥 + ∫ 𝜏 (𝑦) 𝑑𝑦) + 4𝑝

2

2
𝑡) ,

(37)

when 𝑐
2
= 1 in (32);

𝑢
11
(𝑥, 𝑦, 𝑡)

= −2𝑝
2

×

sin (𝑝
2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+(8𝑝

2

2
−𝜔
2
) 𝑡)+sin (𝑝

2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+𝜔

2
𝑡)

cos (𝑝
2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+(8𝑝

2

2
−𝜔
2
) 𝑡)+cos (𝑝

2
(𝑥+∫ 𝜏 (𝑦) 𝑑𝑦)+𝜔

2
𝑡)

,

(38)

when 𝑐
1
= 2 in (33).

Remark 1. If one lets 𝑤
𝜃
= 𝑣 in (16), then (16) can be written

as

𝑣
𝑡
− 6𝑣𝑣

𝜃
+ 𝑣
𝜃𝜃𝜃

= 0. (39)

This is the famous KdV equation.

5. Conclusions

In this paper, a combination of Lie group method and
homoclinic test technique and so forth is applied and thus the
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symmetries (6) are obtained. The (2+1)-dimensional poten-
tial Boiti-Leon-Manna-Pempinelli equation (1) is reduced to
(1 + 1)-dimensional nonlinear PDE of constant coefficients
(10), (13), and (17). Further auxiliary equation method and
homoclinic test technique are used and some new exact non-
traveling wave solutions are obtained. And they include some
special and strange structures to be further studied and other
relevant solutions about symmetry (6) will be discussed later
in another paper. Our results show that combining the Lie
group method with homoclinic test technique and so forth
is effective in finding nontraveling wave exact solutions of
nonlinear evolution equations.
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analysis and solutions,” Inverse Problems, vol. 11, no. 4, pp. 925–
937, 1995.

[4] X. Y. Tang, Locallized Excitations and Symmetries of (2+1)-
Dimensional Nonlinear Systems, Shanghai Physics Department,
Shanghai Jiao Tong University, Shanghai, China, 2004.

[5] S. Y. Lou and X. Y. Tang, Methods of Nonlinear Mathematical
Physics, Beling Science Press of China, Beijing, China, 2006.

[6] P. J. Olver, Applications of Lie Groups to Differential Equations,
vol. 107, Springer, New York, NY, USA, 1986.

[7] D. Q. Xian, “New exact solutions to a class of nonlinear
wave equations,” Journal of University of Electronic Science and
Technology of China, vol. 35, no. 6, pp. 977–980, 2006.

[8] Z. Dai and D. Xian, “Homoclinic breather-wave solutions for
Sine-Gordon equation,” Communications in Nonlinear Science
and Numerical Simulation, vol. 14, no. 8, pp. 3292–3295, 2009.

[9] Z.-D. Dai, D.-Q. Xian, and D.-L. Li, “Homoclinic breather-wave
with convective effect for the (1+1)-dimensional boussinesq
equation,” Chinese Physics Letters, vol. 26, no. 4, Article ID
040203, 2009.

[10] H. L. Chen and D. Q. Xian, “Periodic wave solutions for the
Klein-Gordon-Zakharov equation,” Acta Mathematicae Appli-
catae Sinica, vol. 29, no. 6, 2006.

[11] S. K. Liu and S. D. Liu, Nonliner Equations in Physics, Peking
University Press, Beijing, China, 2000.

[12] R.Hirota, “Exact envelope-soliton solutions of a nonlinear wave
equation,” Journal of Mathematical Physics, vol. 14, no. 7, pp.
805–809, 1973.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 131207, 8 pages
http://dx.doi.org/10.1155/2013/131207

Research Article
Construction of Target Controllable Image Segmentation Model
Based on Homotopy Perturbation Technology

Shu-Li Mei

College of Information and Electrical Engineering, China Agricultural University, Postbox 53, East Campus,
17 Qinghua Donglu Road, Haidian District, Beijing 100083, China

Correspondence should be addressed to Shu-Li Mei; meishuli@163.com

Received 31 December 2012; Revised 4 January 2013; Accepted 6 January 2013

Academic Editor: Lan Xu

Copyright © 2013 Shu-Li Mei. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the basic idea of the homotopy perturbation method which was proposed by Jihuan He, a target controllable image
segmentation model and the corresponding multiscale wavelet numerical method are constructed. Using the novel model, we can
get the only right object from themultiobject images, which is helpful to avoid the oversegmentation and insufficient segmentation.
The solution of the variationalmodel is the nonlinear PDEs deduced by the variational approach. So, the bottleneck of the variational
model on image segmentation is the lower efficiency of the algorithm. Combining the multiscale wavelet interpolation operator
and HPM, a semianalytical numerical method can be obtained, which can improve the computational efficiency and accuracy
greatly.The numerical results on some images segmentation show that the novel model and the numerical method are effective and
practical.

1. Introduction

In general, choosing different parameters in the most com-
mon image segmentation methods usually leads to different
image segmentation results [1]. In other words, the object
segmentation results are uncontrollable by the common
methods. To solve the problem, one of the most common
strategies is choosing thresholds using prior knowledge or
analyzing the distribution of gray values of an image with
the gray value histogram. Another method is image enhance-
ment, which can often destroy the contour of the objects.

The variational method on image segmentation is a new
image processing technology, which processes lots of better
properties in processing medical images such as MRI and
CI [2]. In this method, the pictures are taken as continuous
energetic fields, and so the corresponding information in dig-
ital images such as gradient, divergence, and the curvature of
the object contour can be viewed as the differential operators
embedded in the variational model on image processing.The
traditional complicated image processing such as denoising
with texture preserving and exact segmentation can be done
by this model.The outstanding work of this field is the energy
function for image segmentation proposed by Mumford and

Shah, which has been widely used, and its mathematical
properties are well analyzed. This is a general approach on
image segmentation, where it is assumed that objects can
be characterized by smooth surfaces or volumes in three
dimensions. In order to solve theMumford-Shahmodel with
the Euler-Lagrange method, a simplified model was deduced
by Chan and Vese, in which the Euclid length was employed
instead of the Hausdorff length [3]. So, the simplified model
is also called Chan-Vese model. Similar to other image
segmentationmethods, Chan-Vesemodel cannot identify the
object as well. Multilevel set approach for solving C-V model
can segment all the objects in a picture. But it will obviously
lead to oversegmentation [4].

In many cases, the purpose of the image segmentation is
to get one special single object instead of all the objects in
a multiobject image. Therefore, the purpose of this paper is
to construct a target controllable image segmentation model
based on the basic idea of homotopy perturbation technology
(HPM). Using the variational method, the optimal solution
of the energy function can be expressed as a nonlinear
partial differential equation. So, another task of this study
is to construct an effective numerical method on nonlinear
PDEs by combining the multiscale wavelet interpolation
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(a) Original image (b) 10 iteration times

(c) 50 iteration times (d) 500 iteration times

(e) 750 iteration times (f) 1000 iteration times

Figure 1: Multiobject image segmentation at 𝑘 = 1 (𝜆
1
= 𝜆
2
= 10, Δ𝑡 = 10).

operator and the homotopy perturbationmethod.Thehomo-
topy perturbation method (HPM) proposed by He [5, 6]
is constantly being developed and applied to solve various
nonlinear problems by He [7–15] and by others [16–20]. The
better improvement is adding an auxiliary parameter into the
homotopy equation, which is helpful to eliminate the secular
term in the perturbation solution.This can improve the rate of
convergence greatly. Unlike analytical perturbationmethods,
HPM does not depend on small parameter which is difficult
to find. The variational iteration method was another simple
and effective method for nonlinear equations proposed by
He [21–26], which can provide analytical approximations to
a rather wide class of nonlinear equations [27–33] without
linearization, perturbation, or discretization which can result
in massive numerical computation. In order to solve the
nonlinear PDEs, it is necessary to introduce the wavelet
numerical algorithm [34–37] into HPM.

2. Construction of Target Controllable Image
Segmentation Model

In order to solve the Mumford-Shah model with the Euler-
Lagrange method, a simplified model was deduced by Chan

and Vese, in which the Euclid length was employed instead of
theHausdorff length.This simplifiedmodel can also be called
the Chan-Vese model, which can be expressed as follows:

𝐸
CV

(𝑐
1
, 𝑐
2
, 𝐶) = 𝜆

1
∫
Ω
1

(𝐼
0
− 𝑐
1
)
2

𝑑𝑥𝑑𝑦

+ 𝜆
2
∫
Ω
2

(𝐼
0
− 𝑐
2
)
2

𝑑𝑥𝑑𝑦 + 𝜈 |𝐶| ,

𝑐
𝑖
= mean

Ω
𝑖

(𝑢
0
) =

∫
Ω
𝑖

𝑢
0
(𝑥, 𝑦) 𝑑𝑥𝑑𝑦

Area (Ω
𝑖
)

, 𝑖 = 1, 2,

(1)

where 𝜆
1
and 𝜆

2
are positive constants and 𝑐

1
and 𝑐
2
are the

average gray level values inside (Ω
1
) and outside (Ω

2
) of the

object contour, respectively. 𝐼
0
denotes the image to process,

|𝐶| is the length of the object contour, and 𝜈 is the weight
parameter. According to the level set method, the contour
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curves of the objects should be embedded into the level set
function as follows:

𝐶 = {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ Ω, 𝜙 (𝑥, 𝑦) = 0} ,

Ω
1
= {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ Ω, 𝜙 (𝑥, 𝑦) > 0} ,

Ω
2
= {(𝑥, 𝑦) | (𝑥, 𝑦) ∈ Ω, 𝜙 (𝑥, 𝑦) < 0} .

(2)

Then, the level set-based C-V model can be rewritten as
follows:

𝐸 (𝑐
1
, 𝑐
2
, 𝜙) = 𝜆

1
∫
Ω

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
1

󵄨󵄨󵄨󵄨

2

𝐻(𝜙) 𝑑𝑥𝑑𝑦

+ 𝜆
2
∫
Ω

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
2

󵄨󵄨󵄨󵄨

2

(1 − 𝐻 (𝜙)) 𝑑𝑥𝑑𝑦

+ 𝜈∫
Ω

󵄨󵄨󵄨󵄨𝐻 (𝜙)
󵄨󵄨󵄨󵄨 𝑑𝑥𝑑𝑦,

𝐻 (𝜙) = {
1, 𝜙 ≥ 0 ,

0, 𝜙 < 0 ,
𝛿
𝜀
=

𝜀

𝜋 (𝜀2 + 𝜙2)
.

(3)

Using the variational method, the PDEs with respect to the
variable 𝜙 can be obtained as follows:

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) [𝜈div(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) − 𝜆
1

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
1

󵄨󵄨󵄨󵄨

2

+ 𝜆
2

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
2

󵄨󵄨󵄨󵄨

2

] .

(4)

Obviously, div(∇𝜙/|∇𝜙|) is the curvature of the level set
function 𝜙, and 𝛿

𝜀
(𝜙) is used to constrain the growth of the

level set function.
The solution of (4) is the level set function 𝜙(𝑥, 𝑦, 𝑡) at

time 𝑡. The zero level set is the object contour curve, which
can be obtained by solving 𝜙(𝑥, 𝑦, 𝑡) = 0.

In the following, what we are talking about is how to
construct the target controllable image segmentation model
based on the basic idea of HPM. It is easy to understand
that the function of the curvature in C-V model is just to
preserve the smoothness of the object contour. Neglecting
the curvature in (4), the simplified model can be obtained as
follows:

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) [−𝜆

1

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
1

󵄨󵄨󵄨󵄨

2

+ 𝜆
2

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
2

󵄨󵄨󵄨󵄨

2

] . (5)

In solving the C-V model with HPM and iteration method,
the average gray level values inside and outside of the contour
curves 𝑐

1
and 𝑐

2
vary with the evolution of the level set

function. This evolution will end up with that the contour
curve coincides with the object boundary. Then, 𝑐

1
and 𝑐
2

become constants, and the right hand of (5) should equal
zero; that is,

𝜆
1

𝜆
2

=

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
2

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
1

󵄨󵄨󵄨󵄨

2
. (6)

In general, 𝜆
1
and 𝜆

2
are constant, which are correlated to 𝑐

1

and 𝑐
2
obviously.

It is easy to understand that the segmentation results and
the values of 𝑐

1
/𝑐
2
are in one-to-one correspondence with

each other. So, the object segmentation can be controlled by
the value of (𝜆

1
/𝜆
2
). Let 𝑘 = 𝜆

1
/𝜆
2
,𝑚 = 𝑐

1
/𝑐
2
, and substitute

𝑘,𝑚 into (5), we can obtain

𝜕𝜙

𝜕𝑡
= 𝛿
𝜀
(𝜙) [(1 − 𝑘) 𝐼

2

0
− 2𝐼
0
𝑐
2
(1 − 𝑘𝑚) + 𝑐

2

2
(1 − 𝑘𝑚

2
)] .

(7)

Let

𝐹 (𝐼
0
) = (1 − 𝑘) 𝐼

2

0
− 2𝐼
0
𝑐
2
(1 − 𝑘𝑚) + 𝑐

2

2
(1 − 𝑘𝑚

2
) . (8)

It is obviously that 𝐹(𝐼
0
) = 0 is the necessary condition

for the functional extremum problem about C-V model. The
solution of the necessary condition is

𝐼
0
=

2𝑐
2
(1 − 𝑘𝑚) ± √4𝑐

2

2
(1 − 𝑘𝑚)

2
− 4 (1 − 𝑘) 𝑐

2

2
(1 − 𝑘𝑚2)

2 (1 − 𝑘)

=
(𝑐
2
− 𝑘𝑐
1
) ± (𝑐
2
− 𝑐
1
)√𝑘

1 − 𝑘
.

(9)

In the end of the image segmentation processing, the gray
level value 𝐼

0
of the pixel inside the object contour equals

𝑐
2
; that is, 𝐼

0
= 𝑐
2
(in Ω

2
). Then, the relation between the

parameter 𝑘 and the average gray level value of the image can
be expressed as

𝑘 = (
𝑐
1

𝑐
2
− 𝑐
1

)

2

or 𝑘 = (
2𝑐
2
− 𝑐
1

𝑐
2
− 𝑐
1

)

2

. (10)

In the end of the image segmentation procedure, the final 𝑐
1

and 𝑐
2
should be coincident with average gray level values

inside and outside of the segmentation target, respectively.
They can be determined in advance by the priori knowledge.
But in the beginning of the image segmentation processing,
𝑐
1
and 𝑐
2
are the average gray level values inside and outside

of the zero level set, respectively. They are determined by the
position of the level set function, which is random in most
cases. It is easy to understand that there is a continuous map
between the two cases, that is, the connection between the
two cases can be set up by the HPM. In other words, the
parameter 𝑘 in (10) can be taken as the homotopy parameter;
then, a linear homotopy function for (4) can be constructed
as

𝜕𝜙

𝜕𝑡
− 𝛿
𝜀
(𝜙) [𝜈div(

∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) −
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

1

󵄨󵄨󵄨󵄨

2

] + 𝑝𝛿
𝜀
(𝜙)

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
2

󵄨󵄨󵄨󵄨

2

+ 𝛼𝑝 (1 − 𝑝) 𝜙 = 0,

(11)
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(a) 10 iteration times (b) 1000 iteration times

Figure 2: Multitarget image segmentation with target controllable model.

where the homotopy parameter 𝑝 ∈ [1, 𝑘], 𝑘 is determined by
the final 𝑐

1
and 𝑐
2
based on the priori knowledge in advance

and 𝜈 is a weight parameter. 𝛼 is an auxiliary parameter,
which can be identified by eliminating the secular term in the
perturbation analytical solution.

Equation (11) is the target controllable image segmen-
tation model. It should be pointed out that the auxiliary
parameter 𝛼 appearing in this model is set to zero, as there
is no any secular term in the perturbation analytical solution.

3. HPM on Nonlinear System Based on the
Multilevel Wavelet Analysis

3.1. Wavelet Numerical Discretization Schemes on C-V Model.
Thedefinition domain of the image is defined as (𝑥min, 𝑥max)×

(𝑦min, 𝑦max), which should be divided evenly into 2
𝑗
× 2
𝑗 (𝑗

is the level number) subdomains according to the wavelet
collocation method. The connection nodes between two
adjoining subdomains are the discretization points defined as
(𝑥
𝑗

𝑘
1

, 𝑦
𝑗

𝑘
2

), where

𝑥
𝑗

𝑘
1

= 𝑥min + 𝑘
1

𝑥max − 𝑥min
2𝑗

,

𝑦
𝑗

𝑘
1

= 𝑦min + 𝑘
2

𝑦max − 𝑦min
2𝑗

.

(12)

In addition, 𝑤𝑗(𝑚,𝑛)
𝑘1,𝑘2

(𝑥, 𝑦) denotes the multiscale wavelet
function and the corresponding 𝑚th and 𝑛th derivatives
with respect to 𝑥 and 𝑦, respectively. The level set function
𝜙(𝑥, 𝑦, 𝑡) and the corresponding derivative function can be
descretized as follows:

𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦, 𝑡)

=

1

∑

𝑘
01
=0

1

∑

𝑘
02
=0

𝜙 (𝑥
0

𝑘
01

, 𝑦
0

𝑘
02

)𝑤
0(𝑚,𝑛)

𝑘
01
,𝑘
02

(𝑥, 𝑦)

+

𝐽−1

∑

𝑗=0

2
𝑗
−1

∑

𝑘
11
=0

2
𝑗
−1

∑

𝑘
12
=0

[𝛼
1

𝑗,𝑘
11
,𝑘
12

(𝑡) 𝑤
𝑗+1(𝑚,𝑛)

2𝑘
11
+1,2𝑘

12

(𝑥, 𝑦)

+ 𝛼
2

𝑗,𝑘
11
,𝑘
12

(𝑡) 𝑤
𝑗+1(𝑚,𝑛)

2𝑘
11
,2𝑘
12
+1
(𝑥, 𝑦)

+𝛼
3

𝑗,𝑘
11
,𝑘
12

(𝑡) 𝑤
𝑗+1(𝑚,𝑛)

2𝑘
11
+1,2𝑘

12
+1
(𝑥, 𝑦)] ,

(13)

where 𝑗 and 𝐽 are constants, which denote the wavelet scale
number and the maximum of the scale number, respectively.
𝛼
1

𝑗,𝑘
11
,𝑘
12

, 𝛼2
𝑗,𝑘
11
,𝑘
12

, and 𝛼
3

𝑗,𝑘
11
,𝑘
12

are the wavelet coefficients at
the discretization point (𝑥𝑗

𝑘
1

, 𝑦
𝑗

𝑘
2

).
According to above definitions, the curvature of the level

set 𝜙(𝑥, 𝑦, 𝑡) can be expressed approximately as

div(
∇𝜙

󵄨󵄨󵄨󵄨∇𝜙
󵄨󵄨󵄨󵄨

) ≈ div(
∇𝜙
𝐽

󵄨󵄨󵄨󵄨∇𝜙
𝐽󵄨󵄨󵄨󵄨

) 𝜙
𝐽(2,0)

(𝑥, 𝑦, 𝑡) (𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡))
2

+ 𝜙
𝐽(0,2)

(𝑥, 𝑦, 𝑡) (𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡))
2

= (−2𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡) 𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡) 𝜙
𝐽(1,1)

× (𝑥, 𝑦, 𝑡) )

× ((𝜙
𝐽(0,1)

(𝑥, 𝑦, 𝑡))
2

+(𝜙
𝐽(1,0)

(𝑥, 𝑦, 𝑡))
2

)

−3/2

.

(14)

Substituting (14) and (13) into (11), we obtain

𝜕𝜙
𝐽
(𝑥, 𝑦, 𝑡)

𝜕𝑡
− 𝛿
𝜀
(𝜙
𝐽
(𝑥, 𝑦, 𝑡))

× [𝜈div(
∇𝜙
𝐽
(𝑥, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨∇𝜙
𝐽 (𝑥, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨

) −
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

1

󵄨󵄨󵄨󵄨

2

]

+ 𝑝𝛿
𝜀
(𝜙
𝐽
(𝑥, 𝑦, 𝑡))

󵄨󵄨󵄨󵄨𝐼0 − 𝑐
2

󵄨󵄨󵄨󵄨

2

= 0.

(15)

Obviously, (15) is a nonlinear ordinary differential equa-
tion.
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(a) C-V model (b) Target controllable model

Figure 3: Special object segmentation.

Figure 4: Locust’s coelom image segmentation results by the target
controllable model.

3.2. HPM on Discretization Format of C-V Model. There are
various ways to construct a homotopy function. For (15), a
linear homotopy function can be constructed as

𝑑𝜙
𝐽
(𝑥, 𝑦, 𝑡)

𝑑𝑡
= (1 − 𝜀) 𝐹

𝑛
+ 𝜀𝐹
𝑛+1

, 𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] , (16)

where

𝐹
𝑛
= 𝛿
𝜀
(𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛
)) [𝜈div(

∇𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛
)

󵄨󵄨󵄨󵄨󵄨
∇𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛
)
󵄨󵄨󵄨󵄨󵄨

) −
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

1

󵄨󵄨󵄨󵄨

2

+𝑝
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

2

󵄨󵄨󵄨󵄨

2

] , 𝑛 ∈ Z,

(17)

where 𝜈 is the weight parameter. According to the perturba-
tion theory, the solution of (16) can be expressed as the power
series expansion of 𝑝

𝜙
𝐽
(𝑥, 𝑦, 𝑡) = 𝜙

𝐽

0
(𝑥, 𝑦, 𝑡) + 𝜀𝜙

𝐽

1
(𝑥, 𝑦, 𝑡) + 𝜀

2
𝜙
𝐽

2
(𝑥, 𝑦, 𝑡) + ⋅ ⋅ ⋅ .

(18)

Substituting (18) into (16) and rearranging based on powers
of 𝜀-terms, we have

𝜀
0
:
𝑑𝜙
𝐽

0
(𝑥, 𝑦, 𝑡)

𝑑𝑡
= 𝐹
𝑛

𝜀
1
:
𝑑𝜙
𝐽

1
(𝑥, 𝑦, 𝑡)

𝑑𝑡
= 𝑓
1

𝜀
2
:
𝑑𝜙
𝐽

2
(𝑥, 𝑦, 𝑡)

𝑑𝑡
= 𝑓
2

...,

(19)

where 𝑓
1
and 𝑓

2
are functions with respect to 𝜀

1 and 𝜀
2,

respectively. It is easy to identify the homotopy parameter as

𝜀 (𝑡) =
𝑡 − 𝑡
𝑛

𝑡
𝑛+1

− 𝑡
𝑛

, 𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] . (20)

Thus, based on the definition of the Taylor series, 𝜙𝐽
1
(𝑥, 𝑦, 𝑡)

can be identified as (𝑡
𝑛+1

− 𝑡
𝑛
)𝐹
𝑛
, and 𝑓

1
can be identified as

𝑓
1
= (𝑡
𝑛+1

− 𝑡
𝑛
)

×
𝑑

𝑑𝑡
{𝛿
𝜀
(𝜙
𝐽
(𝑥, 𝑦, 𝑡)) [𝜈div(

∇𝜙
𝐽
(𝑥, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨󵄨
∇𝜙
𝐽
(𝑥, 𝑦, 𝑡)

󵄨󵄨󵄨󵄨󵄨

)

−
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

1

󵄨󵄨󵄨󵄨

2

+ 𝑝
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

2

󵄨󵄨󵄨󵄨

2

]} .

(21)
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Substituting 𝜙𝐽
0
(𝑥, 𝑦, 𝑡) and 𝜙

𝐽

1
(𝑥, 𝑦, 𝑡) into (18) and assuming

𝜀 = 1, the numerical solution of (16) can be obtained
subsequently:

𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
) = 𝜙
𝐽

0
(𝑥, 𝑦, 𝑡

𝑛
) + 𝜙
𝐽

1
(𝑥, 𝑦, 𝑡

𝑛
) . (22)

Then, the wavelet coefficient can be obtained as follows:

𝛼
1

𝑗,𝑘1,𝑘2
(𝑡
𝑛+1

) = 𝜙
𝐽
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
, 𝑡
𝑛+1

)

− [

1

∑

𝑘01=0

1

∑

𝑘02=0

𝜙
𝐽
(𝑥
0

𝑘01
, 𝑦
0

𝑘02
, 𝑡
𝑛+1

)

× 𝑤
0

𝑘01,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+

𝑗−1

∑

𝑗1=0

2
𝑗1

∑

𝑘11=0

2
𝑗2

∑

𝑘12=0

(𝛼
1

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
2

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)

+ 𝛼
3

𝑗1,𝑘11,𝑘12

× 𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2
)) ] ,

𝛼
2

𝑗,𝑘1,𝑘2
(𝑡
𝑛+1

) = 𝜙
𝐽
(𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
, 𝑡
𝑛+1

)

− [

1

∑

𝑘01=0

1

∑

𝑘02=0

𝜙
𝐽
(𝑥
0

𝑘01
, 𝑦
0

𝑘02
, 𝑡
𝑛+1

)

× 𝑤
0

𝑘01,𝑘02
(𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑

𝑗1=0

2
𝑗1

∑

𝑘11=0

2
𝑗2

∑

𝑘12=0

(𝛼
1

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1,𝑘11,𝑘12

× 𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1
, 𝑦
𝑗+1

2𝑘2+1
)) ] ,

𝛼
3

𝑗,𝑘1,𝑘2
(𝑡
𝑛+1

) = 𝜙
𝐽
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
, 𝑡
𝑛+1

)

− [

1

∑

𝑘01=0

1

∑

𝑘02=0

𝜙
𝐽
(𝑥
0

𝑘01
, 𝑦
0

𝑘02
, 𝑡
𝑛+1

)

× 𝑤
0

𝑘01,𝑘02
(𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+

𝑗−1

∑

𝑗1=0

2
𝑗1

∑

𝑘11=0

2
𝑗2

∑

𝑘12=0

(𝛼
1

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11+1,2𝑘12

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
2

𝑗1,𝑘11,𝑘12
𝑤
𝑗1+1

2𝑘11,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)

+ 𝛼
3

𝑗1,𝑘11,𝑘12

× 𝑤
𝑗1+1

2𝑘11+1,2𝑘12+1

× (𝑥
𝑗+1

2𝑘1+1
, 𝑦
𝑗+1

2𝑘2+1
)) ] ,

(23)

where

𝑥
𝑗

𝑘
= 𝑥min +

𝑥max − 𝑥min
2𝑗

, 𝑦
𝑗

𝑘
= 𝑦min +

𝑦max − 𝑦min
2𝑗

.

(24)

𝑤
𝑗

𝑘1,𝑘2
(𝑥, 𝑦) is the quasi-Shannon wavelet function; that is,

𝑤
𝑗

𝑘1,𝑘2
(𝑥, 𝑦) =

sin [(𝜋/Δ𝑗
1
) (𝑥 − 𝑥

𝑗

𝑘1
)]

(𝜋/ΔΔ𝑗
1
) (𝑥 − 𝑥

𝑗

𝑘1
)

×

sin [(𝜋/Δ𝑗
2
) (𝑦 − 𝑦

𝑗

𝑘2
)]

(𝜋/Δ𝑗
2
) (𝑦 − 𝑦

𝑗

𝑘2
)

× exp(−
1

2𝑟2

(𝑥 − 𝑥
𝑗

𝑘1
)
2

(Δ𝑗
1
)
2

)

× exp(−
1

2𝑟2

(𝑦 − 𝑦
𝑗

𝑘2
)
2

(Δ𝑗
2
)
2

) ,

Δ𝑗
1
=
𝑥max − 𝑥min

2𝑗
, Δ𝑗

2
=
𝑦max − 𝑦min

2𝑗
.

(25)
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Substituting the three wavelet coefficients into (16),
𝜙
𝐽(𝑚,𝑛)

(𝑥, 𝑦, 𝑡
𝑛+1

) can be obtained; then we can obtain
𝐹
𝑛+1

as follows:

𝐹
𝑛+1

= 𝛿
𝜀
(𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
))

× [𝜈div(
∇𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
)

󵄨󵄨󵄨󵄨󵄨
∇𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
)
󵄨󵄨󵄨󵄨󵄨

) −
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

1

󵄨󵄨󵄨󵄨

2

+𝑝
󵄨󵄨󵄨󵄨𝐼0 − 𝑐

2

󵄨󵄨󵄨󵄨

2

] , 𝑛 ∈ Z.

(26)

At last, we can obtain the image segmentation result ex-
pressed in the level set as follows:

𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛+1
) = 𝜙
𝐽
(𝑥, 𝑦, 𝑡

𝑛
) +

𝑡
𝑛+1

− 𝑡
𝑛

2
(𝐹
𝑛
+ 𝐹
𝑛+1

) . (27)

4. Numerical Experiences and Discussion

In this section, we take some multiobject images as examples
to illustrate the efficiency of the target controllable image seg-
mentationmodel comparedwith the C-Vmodel.The original
image showed in Figure 1 consisted of three geometrical solid
objects. The color of the background is white, and whole area
is 1.The gray level values and the areas of the three objects are
showed in Table 1. The image segmentation aims to get the
circular and the rectangular objects. In other words, we want
to take the black elliptical object as the background.

The segmentation results of C-V model are showed in
Figure 1. With the increasing of the iteration times, the rect-
angular object becomes a part of the background gradually
instead of the elliptical object, which does not meet our
requirement obviously.

The segmentation results with the target controllable
model are showed in Figure 2. The final 𝑐

1
= 255 × 0.7976/

(0.7976 + 0.0568) = 238.05, and 𝑐
2

= (163 × 0.0723 + 7 ×

0.0733)/(0.0723 + 0.0733) = 86.464. It should be pointed out
that the final 𝑐

1
and 𝑐
2
can be obtained by priori knowledge in

most cases. At the beginning of the segmentation, all the three
objects are obtained as the foreground.With the increasing of
the iteration times, the black object is gradually pushed into
the background and out of the object region.

Figure 3 is an enlarged local image of the locust body
cavity. The objects have an irregular shape with a slightly
serrated border which can introduce over an insufficient
segmentation. So it is difficult to segmentwith othermethods.
Using the target controllable model, we can get the right
object easily. This example shows that the novel model and
the corresponding numerical method are practical. Indeed,
the novel model has been used to segment the locust’s coelom
images (Figure 4).

5. Conclusions

C-V model is a kind of the modified Mumford-Shah model
which has been widely used in medical images, and its

Table 1: The gray level values and areas of all objects.

Ellipse Circle Squareness Background
Gray level value 0 163 7 255
Area 0.0568 0.0723 0.0733 0.7976

mathematical properties are well analyzed. But the segmen-
tation result is usually uncontrollable. The target controllable
image segmentation model proposed in this paper is based
on the idea of HPM. The numerical experiences show that
the novel model and the corresponding numerical algorithm
are effective and practical. It meets the requirement of the
medical images segmentation.
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We propose a reproducing kernel method for solving the KdV equation with initial condition based on the reproducing kernel
theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples
have also been studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented
method is effective.

1. Introduction

In this paper, we consider theKorteweg-deVries (KdV) equa-
tion of the form

𝑢
𝑡
(𝑥, 𝑡) + 𝜀𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡) + 𝑢

𝑥𝑥𝑥
(𝑥, 𝑡) = 0,

− ∞ < 𝑥 < ∞, 𝑡 > 0,

(1)

with initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) . (2)

The constant factor 𝜀 is just a scaling factor to make solutions
easier to describe.Most of the authors chose 𝜀 to be one or six.
Some mathematicians and physicians investigated the exact
solution of the KdV equation without having either initial
conditions or boundary conditions [1], while others studied
its numerical solution [2, 3].

The numerical solution of KdV equation is of great
importance because it is used in the study of nonlinear
dispersive waves. This equation is used to describe many
important physical phenomena. Some of these studies are the
shallow water waves and the ion acoustic plasma waves [4].

It represents the long time evolution of wave phenomena, in
which the effect of nonlinear terms 𝑢𝑢

𝑥
is counterbalanced

by the dispersion 𝑢
𝑥𝑥𝑥

. Thus it has been found to model
manywave phenomena such aswaves in enharmonic crystals,
bubble liquid mixtures, ion acoustic wave, and magnetohy-
drodynamic waves in a warm plasma as well as shallow water
waves [5, 6].

The KdV equation exhibits solutions such as solitary
waves, solitons and recurrence [7]. Goda [8] and Vliengen-
thart [9] used the finite difference method to obtain the
numerical solution of KdV equation. Soliman [2] used the
collocation solution with septic splines to obtain the solution
of the KdV equation. Numerical solutions of KdV equation
were obtained by the variational iteration method, finite
difference method [3, 10], and by using the meshless based
on the collocation with radial basis functions [11]. Wazwaz
presented the Adomian decomposition method for KdV
equation with different initial conditions [12]. Syam [13]
worked the ADM for solving the nonlinear KdV equation
with appropriate initial conditions.

In present work, we use the following equation:

V (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 0) , (3)
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by transformation for homogeneous initial condition of (1)
and (2), we get the following:

V
𝑡
(𝑥, 𝑡) + 𝐴 (𝑥, 𝑡) V (𝑥, 𝑡) + 𝐵 (𝑥, 𝑡) V

𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡)

= 𝑓 (𝑥, 𝑡, V (𝑥, 𝑡) , V
𝑥
(𝑥, 𝑡)) ,

V (𝑥, 0) = 0,

(4)

where

𝐴 (𝑥, 𝑡) = 𝜀𝑓
󸀠
(𝑥) ,

𝐵 (𝑥, 𝑡) = 𝜀𝑓 (𝑥) ,

𝑓 (𝑥, 𝑡, V (𝑥, 𝑡) , V
𝑥
(𝑥, 𝑡)) = − 𝜀V (𝑥, 𝑡) V

𝑥
(𝑥, 𝑡)

− 𝜀𝑓 (𝑥) 𝑓
󸀠
(𝑥) − 𝑓

󸀠󸀠󸀠
(𝑥) .

(5)

In this paper, we solve (1) and (2) by using reproducing
kernel method. The nonlinear problem is solved easily and
elegantly without linearizing the problem by using RKM.The
technique has many advantages over the classical techniques;
mainly, it avoids linearization to find analytic and approxi-
mate solutions of (1) and (2). It also avoids discretization and
provides an efficient numerical solution with high accuracy,
minimal calculation, and avoidance of physically unrealistic
assumptions. In the next section, we will describe the proce-
dure of this method.

The theory of reproducing kernels was used for the first
time at the beginning of the 20th century by Zaremba in his
work on boundary value problems for harmonic and bihar-
monic functions [14]. Reproducing kernel theory has impor-
tant application in numerical analysis, differential equations,
probability and statistics [14, 15]. Recently, using the RKM,
some authors discussed fractional differential equation, non-
linear oscillator with discontinuity, singular nonlinear two-
point periodic boundary value problems, integral equations,
and nonlinear partial differential equations [14, 15].

The efficiency of themethodwas used bymany authors to
investigate several scientific applications. Geng and Cui [16]
applied the RKHSM to handle the second-order boundary
value problems. Yao and Cui [17] and Wang et al. [18]
investigated a class of singular boundary value problems by
this method and the obtained results were good. Zhou et
al. [19] used the RKHSM effectively to solve second-order
boundary value problems. In [20], the method was used to
solve nonlinear infinite-delay-differential equations. Wang
and Chao [21], Li and Cui [22], and Zhou and Cui [23]
independently employed the RKHSM to variable-coefficient
partial differential equations. Geng and Cui [24] and Du
and Cui [25] investigated to the approximate solution of the
forced Duffing equation with integral boundary conditions
by combining the homotopy perturbation method and the
RKHSM. Lv and Cui [26] presented a new algorithm to
solve linear fifth-order boundary value problems. In [27, 28],
authors developed a new existence proof of solutions for non-
linear boundary value problems. Cui and Du [29] obtained
the representation of the exact solution for the nonlinear
Volterra-Fredholm integral equations by using the reproduc-
ing kernel space.Wu and Li [30] applied iterative reproducing

kernel method to obtain the analytical approximate solution
of a nonlinear oscillator with discontinuities. Inc et al. [15]
used this method for solving Telegraph equation.

The paper is organized as follows. Section 2 introduces
several reproducing kernel spaces and a linear operator. The
representation in 𝑊(Ω) is presented in Section 3. Section 4
provides the main results. The exact and approximate solu-
tions of (1) and (2) and an iterative method are developed
for the kind of problems in the reproducing kernel space.
We have proved that the approximate solution uniformly
converges to the exact solution. Some numerical experiments
are illustrated in Section 5. We give some conclusions in
Section 6.

2. Preliminaries

2.1. Reproducing Kernel Spaces. In this section, we define
some useful reproducing kernel spaces.

Definition 1 (reproducing kernel). Let 𝐸 be a nonempty ab-
stract set. A function𝐾 : 𝐸 × 𝐸 → 𝐶 is a reproducing kernel
of the Hilbert space𝐻 if and only if

(a) for all 𝑡 ∈ 𝐸, 𝐾(⋅, 𝑡) ∈ 𝐻,
(b) for all 𝑡 ∈ 𝐸, 𝜑 ∈ 𝐻, ⟨𝜑(⋅), 𝐾(⋅, 𝑡)⟩ = 𝜑(𝑡). This is also

called “the reproducing property”: the value of the
function 𝜑 at the point 𝑡 is reproduced by the inner
product of 𝜑 with 𝐾(⋅, 𝑡).

Then we need some notation that we use in the development
of the paper. In the next we define several spaces with inner
product over those spaces. Thus the space is defined as

𝑊
4

2
[0, 1] =

{{{

{{{

{

V (𝑥) | V (𝑥) , V󸀠 (𝑥) , V󸀠󸀠 (𝑥) , V󸀠󸀠󸀠 (𝑥)

are absolutely continuous in [0, 1] ,

V(4) (𝑥) ∈ 𝐿2 [0, 1] , 𝑥 ∈ [0, 1]

}}}

}}}

}

.

(6)

The inner product and the norm in 𝑊4
2
[0, 1] are defined,

respectively, by

⟨V (𝑥) , 𝑔 (𝑥)⟩
𝑊
4

2

=

3

∑

𝑖=0

V
(𝑖)
(0) 𝑔
(𝑖)
(0)

+ ∫

1

0

V
(4)
(𝑥) 𝑔
(4)
(𝑥) 𝑑𝑥, V (𝑥) , 𝑔 (𝑥) ∈ 𝑊

4

2
[0, 1] ,

‖V‖𝑊4
2

= √⟨V, V⟩𝑊4
2

, V ∈ 𝑊
4

2
[0, 1] .

(7)

The space𝑊4
2
[0, 1] is a reproducing kernel space, that is, for

each fixed 𝑦 ∈ [0, 1] and any V(𝑥) ∈ 𝑊4
2
[0, 1], there exists a

function 𝑅
𝑦
(𝑥) such that

V (𝑦) = ⟨V(𝑥), 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

. (8)
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Similarly, we define the space

𝑊
2

2
[0, 𝑇] =

{{{

{{{

{

V (𝑡) | V (𝑡) , V󸀠 (𝑡)

are absolutely continuous in [0, 𝑇] ,

V󸀠󸀠 (𝑡) ∈ 𝐿2 [0, 𝑇] , 𝑡 ∈ [0, 𝑇] , V (0) = 0

}}}

}}}

}

.

(9)

The inner product and the norm in 𝑊2
2
[0, 𝑇] are defined,

respectively, by

⟨V (𝑡) , 𝑔 (𝑡)⟩
𝑊
2

2

=

1

∑

𝑖=0

V
(𝑖)
(0) 𝑔
(𝑖)
(0)

+ ∫

𝑇

0

V
󸀠󸀠
(𝑡) 𝑔
󸀠󸀠
(𝑡) 𝑑𝑡, V (𝑡) , 𝑔 (𝑡) ∈ 𝑊

2

2
[0, 𝑇] ,

‖V‖𝑊
1

= √⟨V, V⟩𝑊2
2

, V ∈ 𝑊
2

2
[0, 𝑇] .

(10)

Thus the space 𝑊2
2
[0, 𝑇] is also a reproducing kernel space

and its reproducing kernel function 𝑟
𝑠
(𝑡) can be given by

𝑟
𝑠
(𝑡) =

{{{

{{{

{

𝑠𝑡 +
𝑠

2
𝑡
2
−
1

6
𝑡
3
, 𝑡 ≤ 𝑠,

𝑠𝑡 +
𝑡

2
𝑠
2
−
1

6
𝑠
3
, 𝑡 > 𝑠,

(11)

and the space

𝑊
2

2
[0, 1] =

{{{

{{{

{

V (𝑥) | V (𝑥) , V󸀠 (𝑥)

are absolutely continuous in [0, 1] ,

V󸀠󸀠 (𝑥) ∈ 𝐿2 [0, 1] , 𝑥 ∈ [0, 1]

}}}

}}}

}

, (12)

where the inner product and and the norm in 𝑊2
2
[0, 1] are

defined, respectively, by

⟨V (𝑡) , 𝑔 (𝑡)⟩
𝑊
2

2

=

1

∑

𝑖=0

V
(𝑖)
(0) 𝑔
(𝑖)
(0) + ∫

𝑇

0

V
󸀠󸀠
(𝑡) 𝑔
󸀠󸀠
(𝑡) 𝑑𝑡,

V (𝑡) , 𝑔 (𝑡) ∈ 𝑊
2

2
[0, 1] ,

‖V‖
𝑊
2

= √⟨V, V⟩𝑊2
2

, V ∈ 𝑊
2

2
[0, 1] .

(13)

The space 𝑊2
2
[0, 1] is a reproducing kernel space, and its

reproducing kernel function 𝑄
𝑦
(𝑥) is given by

𝑄
𝑦
(𝑥) =

{{{

{{{

{

1 + 𝑥𝑦 +
𝑦

2
𝑥
2
−
1

6
𝑥
3
, 𝑥 ≤ 𝑦,

1 + 𝑥𝑦 +
𝑥

2
𝑦
2
−
1

6
𝑦
3
, 𝑥 > 𝑦.

(14)

Similarly, the space𝑊1
2
[0, 𝑇] is defined by

𝑊
1

2
[0, 𝑇]

= {

V (𝑡) | V (𝑡) is absolutely continuous in [0, 𝑇] ,

V (𝑡) ∈ 𝐿2 [0, 𝑇] , 𝑡 ∈ [0, 𝑇]
} .

(15)

The inner product and the norm in 𝑊1
2
[0, 𝑇] are defined,

respectively, by

⟨V (𝑡) , 𝑔 (𝑡)⟩
𝑊
1

2

= V (0) 𝑔 (0) + ∫
𝑇

0

V
󸀠
(𝑡) 𝑔
󸀠
(𝑡) 𝑑𝑡,

V (𝑡) , 𝑔 (𝑡) ∈ 𝑊
1

2
[0, 𝑇] ,

‖V‖𝑊1
2

= √⟨V, V⟩𝑊1
2

, V ∈ 𝑊
1

2
[0, 𝑇] .

(16)

The space 𝑊1
2
[0, 𝑇] is a reproducing kernel space and its

reproducing kernel function 𝑞
𝑠
(𝑡) is given by

𝑞
𝑠
(𝑡) =

{

{

{

1 + 𝑡, 𝑡 ≤ 𝑠,

1 + 𝑠, 𝑡 > 𝑠.

(17)

Further we define the space𝑊(Ω) as

𝑊(Ω) =

{{{{{{{

{{{{{{{

{

V (𝑥, 𝑡) |
𝜕
4V

𝜕𝑥3𝜕𝑡
, is completely continuous,

inΩ = [0, 1] × [0, 𝑇] ,

𝜕
6V

𝜕𝑥4𝜕𝑡2
∈ 𝐿
2
(Ω) , V (𝑥, 0) = 0

}}}}}}}

}}}}}}}

}

,

(18)

and the inner product and the norm in 𝑊(Ω) are defined,
respectively, by

⟨V (𝑥, 𝑡) , 𝑔 (𝑥, 𝑡)⟩
𝑊

=

3

∑

𝑖=0

∫

𝑇

0

[
𝜕
2

𝜕𝑡2

𝜕
𝑖

𝜕𝑥𝑖
V (0, 𝑡)

𝜕
2

𝜕𝑡2

𝜕
𝑖

𝜕𝑥𝑖
𝑔 (0, 𝑡)] 𝑑𝑡

+

1

∑

𝑗=0

⟨
𝜕
𝑗

𝜕𝑡𝑗
V(𝑥, 0),

𝜕
𝑗

𝜕𝑡𝑗
𝑔(𝑥, 0)⟩

𝑊
4

2

+ ∫

𝑇

0

∫

1

0

[
𝜕
4

𝜕𝑥4

𝜕
2

𝜕𝑡2
V (𝑥, 𝑡)

𝜕
4

𝜕𝑥4

𝜕
2

𝜕𝑡2
𝑔 (𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡,

‖V‖𝑊 = √⟨V, V⟩𝑊, V ∈ 𝑊 (Ω) .

(19)

Now we have the following theorem.

Theorem 2. The space 𝑊4
2
[0, 1] is a complete reproducing

kernel space and, its reproducing kernel function 𝑅
𝑦
(𝑥) can be

denoted by

𝑅
𝑦
(𝑥) =

{{{{{{

{{{{{{

{

8

∑

𝑖=1

𝑐
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 ≤ 𝑦,

8

∑

𝑖=1

𝑑
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 > 𝑦,

(20)
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where

𝑐
1
(𝑦) = 1, 𝑐

2
(𝑦) = 𝑦, 𝑐

3
(𝑦) =

1

4
𝑦
2
,

𝑐
4
(𝑦) =

1

36
𝑦
3
, 𝑐

5
(𝑦) =

1

144
𝑦
3
, 𝑐

6
(𝑦) = −

1

240
𝑦
2
,

𝑐
7
(𝑦) =

1

720
𝑦, 𝑐

8
(𝑦) = −

1

5040
,

𝑑
1
(𝑦) = 1 −

1

5040
𝑦
7
, 𝑑

2
(𝑦) = 𝑦 +

1

720
𝑦
6
,

𝑑
3
(𝑦) =

1

4
𝑦
2
−
1

240
𝑦
5
, 𝑑

4
(𝑦) =

1

36
𝑦
3
+
1

144
𝑦
4
,

𝑑
5
(𝑦) = 0, 𝑑

6
(𝑦) = 0, 𝑑

7
(𝑦) = 0, 𝑑

8
(𝑦) = 0.

(21)

Proof. Since

⟨V (𝑥) , 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

=

3

∑

𝑖=0

V
(𝑖)
(0) 𝑅
(𝑖)

𝑦
(0) + ∫

1

0

V
(4)
(𝑥) 𝑅
(4)

𝑦
(𝑥) 𝑑𝑥,

(V (𝑥) , 𝑅
𝑦
(𝑥) ∈ 𝑊

4

2
[0, 1])

(22)

through iterative integrations by parts for (22) we have

⟨V (𝑥) , 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

=

3

∑

𝑖=0

V
(𝑖)
(0) [𝑅

(𝑖)

𝑦
(0) − (−1)

(3−𝑖)
𝑅
(7−𝑖)

𝑦
(0)]

+

3

∑

𝑖=0

(−1)
(3−𝑖)

V
(𝑖)
(1) 𝑅
(7−𝑖)

𝑦
(1)

+ ∫

1

0

V (𝑥) 𝑅
(8)

𝑦
(𝑥) 𝑑𝑥.

(23)

Note that property of the reproducing kernel

⟨V(𝑥), 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

= V (𝑦) . (24)

If
𝑅
𝑦
(0) + 𝑅

(7)

𝑦
(0) = 0,

𝑅
󸀠

𝑦
(0) − 𝑅

(6)

𝑦
(0) = 0,

𝑅
󸀠󸀠

𝑦
(0) + 𝑅

(5)

𝑦
(0) = 0,

𝑅
󸀠󸀠󸀠

𝑦
(0) − 𝑅

(4)

𝑦
(0) = 0,

𝑅
(4)

𝑦
(1) = 0,

𝑅
(5)

𝑦
(1) = 0,

𝑅
(6)

𝑦
(1) = 0,

𝑅
(7)

𝑦
(1) = 0,

(25)

then by (23) we obtain the following equation:

𝑅
(8)

𝑦
(𝑥) = 𝛿 (𝑥 − 𝑦) , (26)

when 𝑥 ̸=𝑦,

𝑅
(8)

𝑦
(𝑥) = 0; (27)

therefore

𝑅
𝑦
(𝑥) =

{{{{{

{{{{{

{

8

∑

𝑖=1

𝑐
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 ≤ 𝑦,

8

∑

𝑖=1

𝑑
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 > 𝑦.

(28)

Since

𝑅
(8)

𝑦
(𝑥) = 𝛿 (𝑥 − 𝑦) , (29)

we have

𝜕
𝑘
𝑅
𝑦
+ (𝑦) = 𝜕

𝑘
𝑅
𝑦
− (𝑦) , 𝑘 = 0, 1, 2, 3, 4, 5, 6, (30)

𝜕
7
𝑅
𝑦
+ (𝑦) − 𝜕

7
𝑅
𝑦
− (𝑦) = 1. (31)

From (25)–(31), the unknown coefficients 𝑐
𝑖
(𝑦) ve 𝑑

𝑖
(𝑦) (𝑖 =

1, 2, . . . , 8) can be obtained. Thus 𝑅
𝑦
(𝑥) is given by

𝑅
𝑦
(𝑥) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

1 + 𝑦𝑥 +
1

4
𝑦
2
𝑥
2
+
1

36
𝑦
3
𝑥
3
+
1

144
𝑦
3
𝑥
4

−
1

240
𝑦
2
𝑥
5
+
1

720
𝑦𝑥
6
−

1

5040
𝑥
7
, 𝑥 ≤ 𝑦,

1 + 𝑥𝑦 +
1

4
𝑥
2
𝑦
2
+
1

36
𝑥
3
𝑦
3
+
1

144
𝑥
3
𝑦
4

−
1

240
𝑥
2
𝑦
5
+
1

720
𝑥𝑦
6
−

1

5040
𝑦
7
, 𝑥 > 𝑦.

(32)

Theorem 3. The𝑊(Ω) is a reproducing kernel space, and its
reproducing kernel function is

𝐾
(𝑦,𝑠)
(𝑥, 𝑡) = 𝑅

𝑦
(𝑥) 𝑟
𝑠
(𝑡) , (33)

such that for any V(𝑥, 𝑡) ∈ 𝑊(Ω),

V (𝑦, 𝑠) = ⟨V(𝑥, 𝑡), 𝐾
(𝑦,𝑠)
(𝑥, 𝑡)⟩

𝑊
,

𝐾
(𝑦,𝑠)
(𝑥, 𝑡) = 𝐾

(𝑥,𝑡)
(𝑦, 𝑠) ,

(34)

where 𝑅
𝑦
(𝑥), 𝑟
𝑠
(𝑡) are the reproducing kernel functions

of 𝑊4
2
[0, 1] and𝑊2

2
[0, 𝑇], respectively.

Similarly, the space 𝑊̂(Ω) is defined as

𝑊̂ (Ω) =

{{{{{

{{{{{

{

V (𝑥, 𝑡) |
𝜕V

𝜕𝑥
is completely continuous

in Ω = [0, 1] × [0, 𝑇] ,
𝜕
3V

𝜕𝑥2𝜕𝑡
∈ 𝐿
2
(Ω)

}}}}}

}}}}}

}

.

(35)
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The inner product and the norm in 𝑊̂(Ω) are defined, res-
pectively, by

⟨V (𝑥, 𝑡) , 𝑔 (𝑥, 𝑡)⟩
𝑊̂

=

1

∑

𝑖=0

∫

𝑇

0

[
𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥𝑖
V (0, 𝑡)

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥𝑖
𝑔 (0, 𝑡)] 𝑑𝑡

+ ⟨V(𝑥, 0), 𝑔 (𝑥, 0)⟩
𝑊
2

2

+ ∫

𝑇

0

∫

1

0

[
𝜕
2

𝜕𝑥2

𝜕

𝜕𝑡
V (𝑥, 𝑡)

𝜕
2

𝜕𝑥2

𝜕

𝜕𝑡
𝑔 (𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡,

‖V‖
𝑊̂
= √⟨V, V⟩

𝑊̂
, V ∈ 𝑊̂ (Ω) .

(36)

Then the space 𝑊̂(Ω) is a reproducing kernel space and its
reproducing kernel function 𝐺

(𝑦,𝑠)
(𝑥, 𝑡) is

𝐺
(𝑦,𝑠)
(𝑥, 𝑡) = 𝑄

𝑦
(𝑥)𝑄
𝑠
(𝑡) . (37)

3. Solution Representation in𝑊(Ω)

On defining the linear operator 𝐿 : 𝑊(Ω) → 𝑊̂(Ω) as

𝐿V = V
𝑡
(𝑥, 𝑡) − 24 (sech3𝑥) (sinh𝑥) V (𝑥, 𝑡)

+ 12 (sech2𝑥) V
𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡) ,

(38)

model problem (1) changes to the following problem:

𝐿V (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡, V, V
𝑥
) , (𝑥, 𝑡) ∈ [0, 1] × [0, 𝑇] ⊂ R

2
,

V (𝑥, 0) = 0.

(39)

Lemma 4. The operator 𝐿 is a bounded linear operator.

Proof. We have

‖𝐿V‖
2

𝑊̂
=

1

∑

𝑖=0

∫

𝑇

0

[
𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥𝑖
𝐿V (0, 𝑡)]

2

𝑑𝑡

+ ⟨𝐿V (𝑥, 0) , 𝐿V (𝑥, 0)⟩𝑊
2

+ ∫

𝑇

0

∫

1

0

[
𝜕
2

𝜕𝑥2

𝜕

𝜕𝑡
𝐿V(𝑥, 𝑡)]

2

𝑑𝑥 𝑑𝑡

=

1

∑

𝑖=0

∫

𝑇

0

[
𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥𝑖
𝐿V (0, 𝑡)]

2

𝑑𝑡

+

1

∑

𝑖=0

[
𝜕
𝑖

𝜕𝑥𝑖
𝐿V(0, 0)]

2

+ ∫

1

0

[
𝜕
2

𝜕𝑥2
𝐿V (𝑥, 0)]

2

+ ∫

𝑇

0

∫

1

0

[
𝜕
2

𝜕𝑥2

𝜕

𝜕𝑡
𝐿V(𝑥, 𝑡)]

2

𝑑𝑥 𝑑𝑡,

(40)

since
V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂), 𝐾

(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊
,

𝐿V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂), 𝐿𝐾
(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊
,

(41)

on using the the continuity of𝐾
(𝑥,𝑡)
(𝜉, 𝜂), we have

|𝐿V (𝑥, 𝑡)| ≤ ‖V‖𝑊
󵄩󵄩󵄩󵄩𝐿𝐾(𝑥,𝑡) (𝜉, 𝜂)

󵄩󵄩󵄩󵄩𝑊
≤ 𝑎
0‖V‖𝑊. (42)

Similarly for 𝑖 = 0, 1,

𝜕
𝑖

𝜕𝑥𝑖
𝐿V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂),

𝜕
𝑖

𝜕𝑥𝑖
𝐿𝐾
(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊

,

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥𝑖
𝐿V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂),

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥𝑖
𝐿𝐾
(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊

,

(43)

and then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑖

𝜕𝑥𝑖
𝐿V (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑒
𝑖‖V‖𝑊,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥𝑖
𝐿V (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑓
𝑖‖V‖𝑊.

(44)

Therefore

‖𝐿V (𝑥, 𝑡)‖
2

𝑊̂
≤

1

∑

𝑖=0

(𝑒
2

𝑖
+ 𝑓
2

𝑖
) ‖V‖
2

𝑊
≤ 𝑎
2
‖V‖
2

𝑊
. (45)

Now, choose a countable dense subset {(𝑥
1
, 𝑡
1
), (𝑥
2
, 𝑡
2
), . . .} in

Ω = [0, 1] × [0, 𝑇] and define

Φ
𝑖
(𝑥, 𝑡) = 𝐺

(𝑥
𝑖
,𝑡
𝑖
)
(𝑥, 𝑡) , Ψ

𝑖
(𝑥, 𝑡) = 𝐿

∗
Φ
𝑖
(𝑥, 𝑡) , (46)

where𝐿∗ is the adjoint operator of𝐿.Theorthonormal system
{Ψ̂
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
of 𝑊(Ω) can be derived from the process of

Gram-Schmidt orthogonalization of {Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
as

Ψ̂
𝑖
(𝑥, 𝑡) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
Ψ
𝑘
(𝑥, 𝑡) . (47)

Theorem 5. Suppose that {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω; then

{Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
is complete system in𝑊(Ω) and

Ψ
𝑖
(𝑥, 𝑡) = 𝐿

(𝑦,𝑠)
𝐾
(𝑦,𝑠)
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨(𝑦,𝑠)=(𝑥
𝑖
,𝑡
𝑖
)
. (48)

Proof. We have

Ψ
𝑖
(𝑥, 𝑡) = (𝐿

∗
Φ
𝑖
) (𝑥, 𝑡) = ⟨(𝐿

∗
Φ
𝑖
) (𝑦, 𝑠) , 𝐾

(𝑥,𝑡)
(𝑦, 𝑠)⟩

𝑊

= ⟨Φ
𝑖
(𝑦, 𝑠) , 𝐿

(𝑦,𝑠)
𝐾
(𝑥,𝑡)
(𝑦, 𝑠)⟩

𝑊̂

= 𝐿
(𝑦,𝑠)
𝐾
(𝑥,𝑡)
(𝑦, 𝑠)

󵄨󵄨󵄨󵄨󵄨(𝑦,𝑠)=(𝑥
𝑖
,𝑡
𝑖
)

= 𝐿
(𝑦,𝑠)
𝐾
(𝑦,𝑠)
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨(𝑦,𝑠)=(𝑥
𝑖
,𝑡
𝑖
)
.

(49)

Clearly Ψ
𝑖
(𝑥, 𝑡) ∈ 𝑊(Ω). For each fixed V(𝑥, 𝑡) ∈ 𝑊(Ω), if

⟨V(𝑥, 𝑡), Ψ
𝑖
(𝑥, 𝑡)⟩

𝑊
= 0, 𝑖 = 1, 2, . . . (50)
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then

⟨V (𝑥, 𝑡) , (𝐿
∗
Φ
𝑖
) (𝑥, 𝑡)⟩

𝑊

= ⟨𝐿V (𝑥, 𝑡) , Φ
𝑖
(𝑥, 𝑡)⟩

𝑊̂

= (𝐿V) (𝑥
𝑖
, 𝑡
𝑖
) = 0, 𝑖 = 1, 2, . . . .

(51)

Note that {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in𝑊(Ω), hence, (𝐿V)(𝑥, 𝑡) = 0.

It follows that V = 0 from the existence of 𝐿−1. So the proof is
complete.

Theorem 6. If {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω, then the solution of

(39) is

V (𝑥, 𝑡) =
∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) Ψ̂
𝑖
(𝑥, 𝑡) .

(52)

Proof. Since {Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
is complete system in𝑊(Ω), we have

V (𝑥, 𝑡) =
∞

∑

𝑖=1

⟨V (𝑥, 𝑡) , Ψ̂
𝑖
(𝑥, 𝑡)⟩

𝑊
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨V(𝑥, 𝑡), Ψ

𝑘
(𝑥, 𝑡)⟩

𝑊
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨V(𝑥, 𝑡), 𝐿

∗
Φ
𝑘
(𝑥, 𝑡)⟩

𝑊
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿V (𝑥, 𝑡) , Φ

𝑘
(𝑥, 𝑡)⟩

𝑊̂
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿V(𝑥, 𝑡), 𝐺

(𝑥
𝑘
,𝑡
𝑘
)
(𝑥, 𝑡)⟩

𝑊̂
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐿𝑢 (𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) Ψ̂
𝑖
(𝑥, 𝑡) .

(53)

Now the approximate solution V
𝑛
(𝑥, 𝑡) can be obtained from

the 𝑛-term intercept of the exact solution V(𝑥, 𝑡) and

V
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) Ψ̂
𝑖
(𝑥, 𝑡) .

(54)

Obviously

󵄩󵄩󵄩󵄩V𝑛 (𝑥, 𝑡) − V (𝑥, 𝑡)
󵄩󵄩󵄩󵄩 󳨀→ 0, (𝑛 󳨀→ ∞) . (55)

4. The Method Implementation

If we write

𝐴
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) , (56)

then (52) can be written as

V (𝑥, 𝑡) =
∞

∑

𝑖=1

𝐴
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) . (57)

Now let (𝑥
1
, 𝑡
1
) = 0; then from the initial conditions of (39),

V(𝑥
1
, 𝑡
1
) is known.We put V

0
(𝑥
1
, 𝑡
1
) = V(𝑥

1
, 𝑡
1
) and define the

𝑛-term approximation to V(𝑥, 𝑡) by

V
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑖=1

𝐵
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) , (58)

where

𝐵
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V
𝑘−1
(𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V
𝑘−1
(𝑥
𝑘
, 𝑡
𝑘
)) . (59)

In the sequel, we verify that the approximate solution V
𝑛
(𝑥, 𝑡)

converges to the exact solution, uniformly. First the following
lemma is given.

Lemma 7. If V
𝑛

‖⋅‖

󳨀󳨀→ V̂, (𝑥
𝑛
, 𝑡
𝑛
) → (𝑦, 𝑠), and 𝑓(𝑥, 𝑡, V(𝑥, 𝑡),

V
𝑥
(𝑥, 𝑡)) is continuous, then

𝑓 (𝑥
𝑛
, 𝑡
𝑛
, V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) , 𝜕
𝑥
V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
))

󳨀→ 𝑓 (𝑦, 𝑠, V̂ (𝑦, 𝑠) , 𝜕
𝑥
V̂ (𝑦, 𝑠)) .

(60)

Proof. Since
󵄨󵄨󵄨󵄨V𝑛−1 (𝑥𝑛, 𝑡𝑛) − V̂ (𝑦, 𝑠)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨V𝑛−1 (𝑥𝑛, 𝑡𝑛) − V𝑛−1 (𝑦, 𝑠) + V𝑛−1 (𝑦, 𝑠) − V̂ (𝑦, 𝑠)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨V𝑛−1 (𝑥𝑛, 𝑡𝑛) − V𝑛−1 (𝑦, 𝑠)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V𝑛−1 (𝑦, 𝑠) − V̂ (𝑦, 𝑠)

󵄨󵄨󵄨󵄨 .

(61)

From the definition of the reproducing kernel, we have

V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) = ⟨V

𝑛−1
(𝑥, 𝑡), 𝐾

(𝑥
𝑛
,𝑡
𝑛
)
(𝑥, 𝑡)⟩

𝑊
,

V
𝑛−1
(𝑦, 𝑠) = ⟨V

𝑛−1
(𝑥, 𝑡) , 𝐾

(𝑦,𝑠)
(𝑥, 𝑡)⟩

𝑊
.

(62)

It follows that
󵄨󵄨󵄨󵄨V𝑛−1 (𝑥𝑛, 𝑡𝑛) − V𝑛−1 (𝑦, 𝑠)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
⟨V
𝑛−1
(𝑥, 𝑡) , 𝐾

(𝑥
𝑛
,𝑡
𝑛
)
(𝑥, 𝑡) − 𝐾

(𝑦,𝑠)
(𝑥, 𝑡)⟩

󵄨󵄨󵄨󵄨󵄨
.

(63)

From the convergence of V
𝑛−1
(𝑥, 𝑡), there exists a constant𝑀,

such that
󵄩󵄩󵄩󵄩V𝑛−1(𝑥, 𝑡)

󵄩󵄩󵄩󵄩𝑊
≤ 𝑁

󵄩󵄩󵄩󵄩V̂ (𝑦, 𝑠)
󵄩󵄩󵄩󵄩𝑊
, as 𝑛 ≥ 𝑀. (64)



Abstract and Applied Analysis 7

At the same time, we can prove
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝑥
𝑛
,𝑡
𝑛
)
(𝑥, 𝑡) − 𝐾

(𝑦,𝑠)
(𝑥, 𝑡)

󵄩󵄩󵄩󵄩󵄩𝑊
󳨀→ 0, as 𝑛 󳨀→ ∞ (65)

usingTheorem 3. Hence

V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) 󳨀→ V̂ (𝑦, 𝑠) , as (𝑥

𝑛
, 𝑡
𝑛
) 󳨀→ (𝑦, 𝑠) . (66)

In a similiar way it can be shown that

𝜕
𝑥
V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) 󳨀→ 𝜕

𝑥
V̂ (𝑦, 𝑠) , as (𝑥

𝑛
, 𝑡
𝑛
) 󳨀→ (𝑦, 𝑠) .

(67)

So

𝑓 (𝑥
𝑛
, 𝑡
𝑛
, V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) , 𝜕
𝑥
V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
))

󳨀→ 𝑓 (𝑦, 𝑠, V̂ (𝑦, 𝑠) , 𝜕
𝑥
V̂ (𝑦, 𝑠)) .

(68)

This completes the proof.

Theorem 8. Suppose that ‖V
𝑛
‖ is a bounded in (58) and (39)

has a unique solution. If {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω, then the

𝑛-term approximate solution V
𝑛
(𝑥, 𝑡) derived from the above

method converges to the analytical solution V(𝑥, 𝑡) of (39) and

V (𝑥, 𝑡) =
∞

∑

𝑖=1

𝐵
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) , (69)

where 𝐵
𝑖
is given by (59).

Proof. First, we prove the convergence of V
𝑛
(𝑥, 𝑡). From (58),

we infer that

V
𝑛+1
(𝑥, 𝑡) = V

𝑛
(𝑥, 𝑡) + 𝐵

𝑛+1
Ψ̂
𝑛+1
(𝑥, 𝑡) . (70)

The orthonormality of {Ψ̂
𝑖
}
∞

𝑖=1
yields that

󵄩󵄩󵄩󵄩V𝑛+1
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩

2

+ 𝐵
2

𝑛+1
=

𝑛+1

∑

𝑖=1

𝐵
2

𝑖
. (71)

In terms of (71), it holds that ‖V
𝑛+1
‖ > ‖V

𝑛
‖. Due to the

condition that ‖V
𝑛
‖ is bounded, ‖V

𝑛
‖ is convergent and there

exists a constant 𝑐 such that
∞

∑

𝑖=1

𝐵
2

𝑖
= 𝑐. (72)

This implies that

{𝐵
𝑖
}
∞

𝑖=1
∈ 𝑙
2
. (73)

If𝑚 > 𝑛, then

󵄩󵄩󵄩󵄩V𝑚 − V𝑛
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩V𝑚 − V𝑚−1 + V𝑚−1 − V𝑚−2 + ⋅ ⋅ ⋅ + V𝑛+1 − V𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩V𝑚 − V𝑚−1

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩V𝑚−1 − V𝑚−2

󵄩󵄩󵄩󵄩

2

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩V𝑛+1 − V𝑛

󵄩󵄩󵄩󵄩

2

.

(74)

On account of
󵄩󵄩󵄩󵄩V𝑚 − V𝑚−1

󵄩󵄩󵄩󵄩

2

= 𝐵
2

𝑚
, (75)

consequently

󵄩󵄩󵄩󵄩V𝑚 − V𝑛
󵄩󵄩󵄩󵄩

2

=

𝑚

∑

𝑙=𝑛+1

𝐵
2

𝑙
󳨀→ 0, as 𝑛 󳨀→ ∞. (76)

The completeness of𝑊(Ω) shows that V
𝑛
→ V̂ as 𝑛 → ∞.

Now, let we prove that V̂ is the solution of (39). Taking limits
in (58) we get

V̂ (𝑥, 𝑡) =
∞

∑

𝑖=1

𝐵
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) . (77)

Note that

(𝐿V̂) (𝑥, 𝑡) =
∞

∑

𝑖=1

𝐵
𝑖
𝐿Ψ̂
𝑖
(𝑥, 𝑡) ,

(𝐿V̂) (𝑥
𝑙
, 𝑡
𝑙
) =

∞

∑

𝑖=1

𝐵
𝑖
𝐿Ψ̂
𝑖
(𝑥
𝑙
, 𝑡
𝑙
)

=

∞

∑

𝑖=1

𝐵
𝑖
⟨𝐿Ψ̂
𝑖
(𝑥, 𝑡), Φ

𝑙
(𝑥, 𝑡)⟩

𝑊̂

=

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡), 𝐿

∗
Φ
𝑙
(𝑥, 𝑡)⟩

𝑊

=

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡), Ψ

𝑙
(𝑥, 𝑡)⟩

𝑊
.

(78)

Therefore
𝑖

∑

𝑙=1

𝛽
𝑖𝑙
(𝐿V̂) (𝑥

𝑙
, 𝑡
𝑙
) =

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡) ,

𝑖

∑

𝑙=1

𝛽
𝑖𝑙
Ψ
𝑙
(𝑥, 𝑡)⟩

𝑊

=

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡), Ψ̂

𝑙
(𝑥, 𝑡)⟩

𝑊
= 𝐵
𝑙
.

(79)

In view of (71), we have

𝐿V̂ (𝑥
𝑙
, 𝑡
𝑙
) = 𝑓 (𝑥

𝑙
, 𝑡
𝑙
, 𝑢
𝑙−1
(𝑥
𝑙
, 𝑡
𝑙
) , 𝜕
𝑥
𝑢
𝑙−1
(𝑥
𝑙
, 𝑡
𝑙
)) . (80)

Since {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω, for each (𝑦, 𝑠) ∈ Ω, there

exists a subsequence {(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

)}
∞

𝑗=1

such that

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) 󳨀→ (𝑦, 𝑠) , 𝑗 󳨀→ ∞. (81)

We know that

𝐿V̂ (𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) = 𝑓 (𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

, 𝑢
𝑛
𝑗−1

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) , 𝜕
𝑥
𝑢
𝑛
𝑗−1

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

)) .

(82)

Let 𝑗 → ∞; by Lemma 7 and the continuity of 𝑓, we have

(𝐿V̂) (𝑦, 𝑠) = 𝑓 (𝑦, 𝑠, V̂ (𝑦, 𝑠) , 𝜕
𝑥
V̂ (𝑦, 𝑠)) , (83)

which indicates that V̂(𝑥, 𝑡) satisfy (39). This completes the
proof.
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Figure 1: The absolute error for Example 10 at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

Remark 9. In a same manner, it can be proved that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕V
𝑛
(𝑥, 𝑡)

𝜕𝑥
−
𝜕V (𝑥, 𝑡)

𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0, as 𝑛 󳨀→ ∞, (84)

where

𝜕V (𝑥, 𝑡)

𝜕𝑥
=

∞

∑

𝑖=1

𝐵
𝑖

𝜕Ψ̂
𝑖
(𝑥, 𝑡)

𝜕𝑥
,

𝜕V
𝑛
(𝑥, 𝑡)

𝜕𝑥
=

𝑛

∑

𝑖=1

𝐵
𝑖

𝜕Ψ̂
𝑖
(𝑥, 𝑡)

𝜕𝑥
,

(85)

where 𝐵
𝑖
is given by (59).

5. Numerical Results

In this section, two numerical examples are provided to show
the accuracy of the present method. All computations are
performed by Maple 16. Results obtained by the method are
compared with exact solution and the ADM [13] of each
example are found to be in good agreement with each others.
TheRKMdoes not require discretization of the variables, that
is, time and space, it is not effected by computation round off
errors and one is not faced with necessity of large computer
memory and time. The accuracy of the RKM for the KdV
equation is controllable and absolute errors are very small
with present choice of 𝑥 and 𝑡 (see Tables 1, 2, 3, and 4 and
Figures 1, 2, and 3). The numerical results that we obtained
justify the advantage of this methodology.

Example 10 (see [13]). Consider the following KdV equation
with initial condition

𝑢
𝑡
(𝑥, 𝑡) + 𝜀𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡)

+ 𝑢
𝑥𝑥𝑥
(𝑥, 𝑡) = 0, −∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = 2sech2𝑥, −∞ < 𝑥 < ∞

(86)
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Figure 2: The absolute error for Example 11 at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.
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Figure 3: The relative error for Example 11 at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

with 𝜀 = 6. The exact solution is 𝑢(𝑥, 𝑡) = 2sech2(𝑥 − 4𝑡). If
we apply (3) to (86), then the following (87) is obtained

V
𝑡
(𝑥, 𝑡) − 24sech3𝑥 sinh𝑥V (𝑥, 𝑡)

+ 12sech2𝑥V
𝑥𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡)

= −6V (𝑥, 𝑡) V
𝑥
(𝑥, 𝑡) − 32

sinh𝑥
cosh3𝑥

+ 48
sinh3𝑥
cosh5𝑥

+ 48sech5𝑥 sinh𝑥,

V (𝑥, 0) = 0.

(87)

Example 11 (see [13]). We now consider the KdV equation
with initial condition

𝑢
𝑡
(𝑥, 𝑡) + 𝜀𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡)

+ 𝑢
𝑥𝑥𝑥
(𝑥, 𝑡) = 0, −∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = 6sech2𝑥, −∞ < 𝑥 < ∞.

(88)
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Table 1: The exact solution of Example 10 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 1.830273924 1.269479180 0.718402632 0.36141327 0.17121984 0.07882210
0.2 1.922085966 1.423155525 0.839948683 0.43230491 0.20711674 0.09585068
0.3 1.980132581 1.572895466 0.973834722 0.51486639 0.25001974 0.11644607
0.4 2 1.711277572 1.118110335 0.61003999 0.30105415 0.14130164
0.5 1.980132581 1.830273924 1.269479180 0.71840263 0.36141327 0.17121984
0.6 1.922085966 1.922085966 1.423155525 0.83994868 0.43230491 0.20711674

Table 2: The approximate solution of Example 10 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 1.830273864 1.269478141 0.718402628 0.36141327 0.17128272 0.07883011
0.2 1.922085928 1.423155537 0.839948629 0.43230491 0.20711710 0.09585155
0.3 1.980132606 1.572896076 0.973834717 0.51486633 0.25001974 0.11644677
0.4 2.000000027 1.711278098 1.118110380 0.61004008 0.30105468 0.14130128
0.5 1.980133013 1.830274266 1.269479288 0.71840299 0.36141338 0.17122050
0.6 1.922086667 1.922086057 1.423155510 0.83994874 0.43230465 0.20711669

Table 3: The absolute error of Example 11 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 1.78 × 10−6 3.01 × 10−9 8.55 × 10−7 3.49 × 10−7 2.85 × 10−7 6.28 × 10−7

0.2 6.38 × 10−7 6.98 × 10−7 6.52 × 10−7 4.51 × 10−7 8.33 × 10−6 2.42 × 10−7

0.3 2.2 × 10−8 9.09 × 10−7 6.88 × 10−6 1.35 × 10−7 2.97 × 10−6 1.69 × 10−7

0.4 1.70 × 10−7 1.03 × 10−7 5.38 × 10−7 1.20 × 10−6 3.98 × 10−7 1.68 × 10−7

0.5 2.26 × 10−7 1.29 × 10−7 8.74 × 10−7 3.13 × 10−7 4.02 × 10−7 9.63 × 10−7

0.6 8.94 × 10−7 7.83 × 10−7 4.34 × 10−7 9.79 × 10−7 2.77 × 10−7 1.45 × 10−8

Table 4: The relative error of Example 11 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 9.201 × 10−7 5.113 × 10−10 5.707 × 10−7 3.868 × 10−7 6.06 × 10−7 2.76 × 10−6

0.2 3.441 × 10−7 3.498 × 10−7 3.968 × 10−7 4.320 × 10−7 1.48 × 10−6 8.84 × 10−7

0.3 1.255 × 10−8 4.555 × 10−7 3.881 × 10−6 1.132 × 10−7 4.49 × 10−6 5.13 × 10−7

0.4 1.032 × 10−7 5.264 × 10−8 2.862 × 10−7 8.964 × 10−7 5.13 × 10−7 4.27 × 10−7

0.5 1.460 × 10−7 6.857 × 10−8 4.469 × 10−7 2.089 × 10−7 4.44 × 10−7 2.04 × 10−6

0.6 6.079 × 10−7 4.410 × 10−7 2.175 × 10−7 5.958 × 10−7 2.65 × 10−7 2.58 × 10−8

The exact solution is 𝑢(𝑥, 𝑡) = 12((3 + 4 cosh(2𝑥 − 8𝑡) +
cosh(4𝑥 − 64𝑡))/[3 cosh(𝑥 − 28𝑡) + cosh(3𝑥 − 36𝑡)]2). If we
apply (3) to (88), then the following (89) is obtained:

V
𝑡
(𝑥, 𝑡) − 72sech3𝑥 sinh𝑥V (𝑥, 𝑡)

+ 36sech2𝑥V
𝑥𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡)

= −6V (𝑥, 𝑡) V
𝑥
(𝑥, 𝑡) − 96

sinh𝑥
cosh3𝑥

+ 144
sinh3𝑥
cosh5𝑥

+ 432sech5𝑥 sinh𝑥,

V (𝑥, 0) = 0.

(89)

Using our method we choose 36 points on [0, 1]. We replace
V with 𝑢 for simplicity. In Tables 3 and 4, we compute the
absolute errors |𝑢(𝑥, 𝑡) − 𝑢

𝑛
(𝑥, 𝑡)| and the relative errors

|𝑢(𝑥, 𝑡) − 𝑢
𝑛
(𝑥, 𝑡)|/|𝑢(𝑥, 𝑡)| at the points {(𝑥

𝑖
, 𝑡
𝑖
) : 𝑥
𝑖
= 𝑡
𝑖
=

𝑖, 𝑖 = 0.1, . . . , 0.6}.

Remark 12. The problem discussed in this paper has been
solved with Adomian method [13] and Homotopy analysis
method [31]. In these studies, even though the numerical
results give good results for large values of 𝑥, these methods
give away values from the analytical solution for small values
of 𝑥 and 𝑡. However, the method is used in our study for
large and small values of 𝑥 and 𝑡, results are very close to the
analytical solutions can be obtained. In doing so, it is possible
to refine the result by increasing the intensive points.
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6. Conclusion

In this paper, we introduce an algorithm for solving the KdV
equation with initial condition. For illustration purposes,
we chose two examples which were selected to show the
computational accuracy. It may be concluded that the RKM is
very powerful and efficient in finding exact solution for wide
classes of problem.The approximate solution obtained by the
present method is uniformly convergent.

Clearly, the series solutionmethodology can be applied to
much more complicated nonlinear differential equations and
boundary value problems. However, if the problem becomes
nonlinear, then the RKM does not require discretization or
perturbation and it does not make closure approximation.
Results of numerical examples show that the present method
is an accurate and reliable analytical method for the KdV
equation with initial or boundary conditions.
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Wehave undertaken the fact that the periodic solution of (2+1)DKdV-Burgers equation does not exist.TheSaddle-node heteroclinic
orbit has been obtained. Using the Lie groupmethod, we get two-(1+1)-dimensional PDE, through symmetric reduction; and by the
direct integral method, spread F-expansion method, and (𝐺󸀠/𝐺)-expansion method, we obtain exact nontraveling wave solutions,
for the (2+1)D KdV Burgers equation, and find out some new strange phenomenons of sympathetic vibration to evolution of
nontraveling wave.

1. Introduction

We consider the (2+1)-dimensional Korteweg-de Vries Burg-
ers ((2+1)D KdV Burgers) equation

(𝑢
𝑡
+ 𝑢𝑢
𝑥
− 𝛽𝑢
𝑥𝑥
+ 𝛼𝑢
𝑥𝑥𝑥
)
𝑥
+ 𝛾𝑢
𝑦𝑦
= 0, (1)

where 𝑢 : 𝑅
𝑥
×𝑅
𝑦
×𝑅
+

𝑡
→ 𝑅, 𝛼, 𝛽, and 𝛾 are real parameters.

Equation (1) is model equation for wide class of nonlinear
wave models in an elastic tube, liquid with small bubbles,
and turbulence [1–3]. Much attention has been put on the
study of their exact solutions by some methods [4], such
as, a complex line soliton by extended tanh method with
symbolic computation [5], exact traveling wave solutions
including solitary wave solutions, periodic wave and shock
wave solutions by extended mapping method, and homotopy
perturbation method [6, 7].

It is well known that the investigation of exact solutions
of nonlinear evolution equations plays an important role in
the study of nonlinear physical phenomena. Many effective
methods have been presented [7–22], such as functional
variable separation method [8, 9], homotopy perturbation
method [12], F-expansion method [7, 13], Lie group method
[14, 15], variational iteration method [16], homoclinic test
method [17–19], Exp-function method [20, 21], and homo-
geneous balance method [22]. Practically, there is no unified
method that can be used to handle all types of nonlinearity.

In this paper, we will discuss the existence of periodic
traveling wave solution and seek the Saddle-Node hetero-
clinic orbit, and further use the Lie group method with the
aid of the symbolic computation system Maple to construct
the non-traveling wave solutions for (1).

2. Existence of Periodic Traveling
Wave Solution of (1)

Introducing traveling wave transformation in this form
𝑢 (𝑥, 𝑦, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑝𝑥 + 𝑞𝑦 − 𝑐𝑡 (2)

permits us to convert (1) into an ODE for 𝑢 = 𝑢(𝜉)
𝑝(𝑝𝑢𝑢

𝜉
− 𝛽𝑝
2
𝑢
𝜉𝜉
+ 𝛼𝑝
3
𝑢
𝜉𝜉𝜉
)
𝜉
− 𝑟𝑢
𝜉𝜉
= 0, (3)

where 𝑟 = 𝑝𝑐−𝑞2𝛾, Integrating (3) with respect to 𝜉 twice and
taking integration constant to 𝐴 yields

2𝛼𝑝
4
𝑢
𝜉𝜉
− 2𝛽𝑝

3
𝑢
𝜉
+ 𝑝
2
𝑢
2
− 2𝑟𝑢 = 𝐴. (4)

Letting 𝑢
𝜉
= 𝑣, thus nonlinear ordinary differential equation

(4) is equivalent to the autonomous dynamic system as fol-
lows:

𝑑𝑢

𝑑𝜉
= 𝑣, (5)

𝑑𝑣

𝑑𝜉
=

1

2𝛼𝑝4
(2𝛽𝑝
3
𝑣 − 𝑝
2
𝑢
2
+ 2𝑟𝑢 + 𝐴) . (6)
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The dynamic system (5) has two balance points:

𝑃
1
(𝑢
1
, 𝑣
1
) = (

𝑟 + √𝑟2 + 𝑝2𝐴

𝑝2
, 0) ,

𝑃
2
(𝑢
2
, 𝑣
2
) = (

𝑟 − √𝑟2 + 𝑝2𝐴

𝑝2
, 0) .

(7)

The Jacobi matrixes at the balance points for the right-hand
side of (5) are obtained as follows, respectively:

𝐽
1
= (

0 1

−

√𝑟2 + 𝑝2𝐴

𝑝4𝛼

𝛽

𝑝𝛼

) ,

𝐽
2
= (

0 1

√𝑟2 + 𝑝2𝐴

𝑝4𝛼

𝛽

𝑝𝛼

) .

(8)

Their latent equations are expressed, respectively, as,

𝑝
3
𝜆 (𝑝𝛼𝜆 − 𝛽) + √𝑟2 + 𝑝2𝐴 = 0,

𝑝
3
𝜆 (𝑝𝛼𝜆 − 𝛽) − √𝑟2 + 𝑝2𝐴 = 0.

(9)

Relevant latent roots are as follows respectively:

𝜆
1
=

𝑝𝛽 ± √𝑝2𝛽2 − 4𝛼√𝑟2 + 𝑝2𝐴

2𝑝2𝛼
,

𝜆
2
=

𝑝𝛽 ± √𝑝2𝛽2 + 4𝛼√𝑟2 + 𝑝2𝐴

2𝑝2𝛼
.

(10)

Obviously, if 𝑝2𝛽2 > 4𝛼√𝑟2 + 𝑝2𝐴, then 𝜆
1
are two positive

real roots, therefore 𝑃
1
is a nonsteady node point. If 0 <

𝑝
2
𝛽
2
< 4𝛼√𝑟2 + 𝑝2𝐴, then 𝜆

1
are conjugate complex roots

and real part is positive, so 𝑃
1
is a nonsteady focus point. And

𝜆
2
is a positive and minus real root, thus 𝑃

2
is a saddle point.

From (5), we know the phase trajectory on the phase plane
satisfies

𝑑𝑣

𝑑𝑢
=
2𝛽𝑝
3
𝑣 − 𝑝
2
𝑢
2
+ 2𝑟𝑢 + 𝐴

2𝛼𝑝4𝑣
. (11)

Integrating (11), we can obtain

𝐻(𝑢, 𝑣) = 𝐴𝑢 + 𝑟𝑢
2
−
1

3
𝑝
2
𝑢
3
+ 2𝛽𝑝

3
𝑢𝑣 − 𝛼𝑝

4
𝑣
2
, (12)

where𝐻(𝑢, 𝑣) is a total energy or Hamiliton function of sys-
tem (4). Apparently

𝑢
𝜉
̸= −
𝜕𝐻

𝜕𝑣
, 𝑣

𝜉
̸=
𝜕𝐻

𝜕𝑢
. (13)

Consequently, the system expressed in (12) is not a conserva-
tive one, then periodic traveling wave solution of (1) does not
exist.

We conclude the above analysis in the following theorem.

Theorem 1. Under the traveling wave transformation, the
periodic solution of (2+1)-dimensional KdV-Burgers equation
does not exist.

But, saddle-node heteroclinic orbits and nontraveling peri-
odic solution do exist, whichwill be discussed later in this paper.

3. Saddle-Node Heteroclinic Orbits of
KdV-Burgers Equation

First, we assume the solutions of (4) in the form

𝑢 (𝜉) =

𝑟 + √𝑟2 + 𝑝2𝐴

𝑝2
+

𝑏

(1 + 𝑒𝑎𝜉)
2
. (14)

Substituting (14) into (4) yields

2 (4𝛼𝑝
4
𝑎
2
+ √𝑟2 + 𝑝2𝐴 + 2𝛽𝑝

3
𝑎) 𝑒
2𝑎𝜉

− 4 (𝛼𝑝
4
𝑎
2
− √𝑟2 + 𝑝2𝐴 − 𝛽𝑝

3
𝑎) 𝑒
𝑎𝜉

+ 2√𝑟2 + 𝑝2𝐴 + 𝑝
2
𝑏 = 0.

(15)

Then we get

4𝛼𝑝
4
𝑎
2
+ √𝑟2 + 𝑝2𝐴 + 2𝛽𝑝

3
𝑎 = 0,

𝛼𝑝
4
𝑎
2
− √𝑟2 + 𝑝2𝐴 − 𝛽𝑝

3
𝑎 = 0,

2√𝑟2 + 𝑝2𝐴 + 𝑝
2
𝑏 = 0.

(16)

Solving the system (16) gets

𝑎 = −
𝛽

5𝛼𝑝
, 𝑏 = −

12𝛽
2

25𝛼
, √𝑟2 + 𝑝2𝐴 =

6𝑝
2
𝛽
2

25𝛼
.

(17)

Substituting (17) into (14) obtains

𝑢 (𝜉) =

𝑟 + √𝑟2 + 𝑝2𝐴

𝑝2
−
12𝛽
2

25𝛼

1

(1 + 𝑒−(𝛽/5𝛼𝑝)𝜉)
2

= 𝑢
1
−
3𝛽
2

25𝛼
(1 + tanh

𝛽

20𝛼
𝜉)

2

.

(18)

Evidently, 𝜉 → −∞ ⇒ 𝑢(𝜉) → 𝑢
1
, 𝜉 → +∞ ⇒ 𝑢(𝜉) →

𝑢
1
− (6𝛽
2
/25𝛼) = 𝑢

2
. Thus (18) is a saddle-node heteroclinic

orbit through nonsteady node point 𝑃
1
and saddle point 𝑃

2

[23].
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Ecumenic, taking theHamiliton function𝐻(𝑢, 𝑣) = 𝐵, we
obtain
𝑑𝑢

𝑑𝜉
= 𝑣

=

3𝑝𝛽𝑢 ± √3𝑢 [3𝐴𝛼 + 3 (𝑝2𝛽2 + 𝑟𝛼) 𝑢 − 𝑝2𝛼𝑢2] − 9𝐵𝛼

3𝛼𝑝2
,

(19)
where 𝐵 is an arbitrary constant. Integrating (19) with respect
to 𝜉 we have

∫

𝑢(𝜉)
3𝛼𝑝
2

3𝑝𝛽𝑠 ± √3𝑠 [3𝐴𝛼 + 3 (𝑝2𝛽2 + 𝑟𝛼) 𝑠 − 𝑝2𝛼𝑠2] − 9𝐵𝛼

𝑑𝑠

= 𝜉 + 𝜉
0
,

(20)

where 𝜉
0
is an arbitrary constant. We can see that (4) has

the general solution (20) and all partial cases as include
above result can be found from the general solution of (20).
Example, take 𝛼√𝑟2 + 𝑝2𝐴 − 𝑝2𝛽2 = 0, 3𝐵𝛼 + 𝐴𝛽2 = 0,
𝑟𝛼 + 𝑝

2
𝛽
2
= 0 in (20), we find a solution of (4) as follows:

𝑢 (𝜉) = −
3𝛽
2

4𝛼
[1 + tanh(

𝛽

4𝑝𝛼
𝜉 + 𝜉
0
)]

2

. (21)

It is a heteroclinic orbit too.

4. Li Symmetry of (1)
This section devotes to Li symmetry of (1) [14, 15]. Let

𝜎 = 𝜎 (𝑥, 𝑦, 𝑡, 𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑦
, . . .) . (22)

be the Li symmetry of (1). From Lie group theory, 𝜎 satisfies
the following equation
𝜎
𝑥𝑡
+ 2𝑢
𝑥
𝜎
𝑥
+ 𝑢𝜎
𝑥𝑥
+ 𝜎𝑢
𝑥𝑥
− 𝛽𝜎
𝑥
3 + 𝛼𝜎

𝑥
4 + 𝛾𝜎

𝑦𝑦
= 0.

(23)
We take the function 𝜎 in the form

𝜎 = 𝑎
1
𝑢
𝑥
+ 𝑎
2
𝑢
𝑦
+ 𝑎
3
𝑢
𝑡
+ 𝑎
4
𝑢 + 𝑎
5
, (24)

where 𝑎
𝑖
= 𝑎
𝑖
(𝑥, 𝑦, 𝑡) : 𝑅

𝑥
× 𝑅
𝑦
× 𝑅
+

𝑡
→ 𝑅 (𝑖 = 1, . . . , 5)

are functions to be determined later. Substituting (3) into (2)
yields

𝑎
1
= −

1

2𝛾
𝑘
󸀠

2
(𝑡) 𝑦 + 𝑘

1
(𝑡) , 𝑎

2
= 𝑘
2
(𝑡) ,

𝑎
3
= 𝑐, 𝑎

4
= 0, 𝑎

5
=
1

2𝛾
𝑘
󸀠󸀠

2
(𝑡) 𝑦 − 𝑘

󸀠

1
(𝑡) ,

(25)

where 𝑘
𝑗
(𝑡) (𝑗 = 1, 2) are arbitrary functions of 𝑡, 𝑐 is an

arbitrary constant. Substituting (25) into (24), we obtain the
Li symmetries of (1) as follows:

𝜎 = [−
1

2𝛾
𝑘
󸀠

2
(𝑡) 𝑦 + 𝑘

1
(𝑡)] 𝑢

𝑥
+ 𝑘
2
(𝑡) 𝑢
𝑦

+ 𝑐𝑢
𝑡
+
1

2𝛾
𝑘
󸀠󸀠

2
(𝑡) 𝑦 − 𝑘

󸀠

1
(𝑡) .

(26)
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Figure 1:The strange phenomenonwhich is a sympathetic vibration
of periodicity on the 𝑡-axis and paraboloid on 𝑦-axis for 𝑢

1
(𝑥, 𝑦, 𝑡)

as 𝑥 = 1.

5. Symmetry Reduction and Solutions of (1)
Based on the integrability of reduced equation of symmetry
(26), we are to consider the following three cases.

Case 1. Taking 𝑘
2
(𝑡) = 0 and 𝑐 = 0 in (26) yields

𝜎 = 𝑘
1
(𝑡) 𝑢
𝑥
− 𝑘
󸀠

1
(𝑡) . (27)

The solution of the differential equation 𝜎 = 0 is

𝑢 =
𝑘
󸀠

1
(𝑡)

𝑘
1
(𝑡)
𝑥 + 𝐹 (𝑦, 𝑡) , 𝐹 (𝑦, 𝑡) : 𝑅

𝑦
× 𝑅
+

𝑡
→ 𝑅. (28)

Substituting (28) into (1) yields the function 𝐹(𝑦, 𝑡) which
satisfies the following linear PDE:

𝑘
󸀠󸀠

1

𝑘
1

+ 𝛾
𝜕
2
𝐹

𝜕𝑦2
= 0. (29)

By integrating both sides, we find out the following result:

𝐹 (𝑦, 𝑡) = −
𝑘
󸀠󸀠

1

2𝛾𝑘
1

𝑦
2
+ 𝑘
3
(𝑡) 𝑦 + 𝑘

4
(𝑡) , (30)

where 𝑘
3
(𝑡), 𝑘
4
(𝑡) are new arbitrary functions of 𝑡. Substitut-

ing (30) into (28), we can get the solutions of (1) as follows:

𝑢
1
(𝑥, 𝑦, 𝑡) =

𝑘
󸀠

1
(𝑡)

𝑘
1
(𝑡)
𝑥 −

𝑘
󸀠󸀠

1

2𝛾𝑘
1

𝑦
2
+ 𝑘
3
(𝑡) 𝑦 + 𝑘

4
(𝑡) . (31)

(1) Given 𝑘
𝑖
(𝑡) = cn(𝑡, 0.95) (𝑖 = 1, 3, 4), 𝑥 = 1, 𝛾 = 0.6 in

(31), the local structure of 𝑢
1
is obtained (Figure 1). Where

cn(𝑡, 0.95) is an Jacobian elliptic cosine function.
(2) Given 𝑘

1
(𝑡) = sech(𝑡), 𝑘

3
(𝑡) = sin(𝑡), 𝑘

4
(𝑡) = cn(𝑡,

0.1), 𝑦 = 1, 𝛾 = 0.6 in (31), the local structure of 𝑢
1
is obtained

(Figure 2).

Case 2. Take 𝑘
1
(𝑡) = 𝑡, 𝑘

2
(𝑡) = 1 and 𝑐 = 0 in (26), then

𝜎 = 𝑡𝑢
𝑥
+ 𝑢
𝑦
− 1. (32)
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Figure 2: The periodic solution which is a periodic nontraveling
wave traveling on the 𝑡-axis for 𝑢

1
(𝑥, 𝑦, 𝑡) as 𝑦 = 1.

Solving the differential equation 𝜎 = 0, we can get

𝑢 = 𝑦 + 𝐹 (𝑡, 𝜉) , 𝜉 = 𝑥 − 𝑡𝑦. (33)

Substituting (33) into (1) and integrating once with respect to
𝜉 yield

𝐹
𝑡
+ 𝐹𝐹
𝜉
+ 𝛾𝑡
2
𝐹
𝜉
− 𝛽𝐹
𝜉𝜉
+ 𝛼𝐹
𝜉𝜉𝜉
= 0. (34)

Again, further using the transformation of dependent vari-
able to (34),

𝐹 (𝑡, 𝜉) = 𝐹 (𝜃) , 𝜃 = 𝑘 (𝑡 −
1

3
𝛾𝑡
3
+ 𝜉) . (35)

Substituting (35) into (34) and integrating once with respect
to 𝜃 yield

2𝑘
2
𝛼𝐹
󸀠󸀠
− 2𝑘𝛽𝐹

󸀠
+ 𝐹
2
+ 2𝐹 + 𝐴 = 0, (36)

where 𝐴 is an integration constant, 𝐹󸀠 = 𝑑𝐹(𝜃)/𝑑𝜃. We
assume that the solution of (36) can be expressed in the form

𝐹 (𝜃) = 𝑎
0
+ 𝑎
1
𝑤 (𝜃) + 𝑎

2
𝑤(𝜃)
2
, (37)

where 𝑎
𝑖
(𝑖 = 0, 1, 2) are constants to be determined later,

𝑤(𝜃) satisfies the following auxiliary equation

𝑤
󸀠
= 𝑝 + 𝑞𝑤

2
. (38)

Substituting (37) and (38) into (36) and equating the coeffi-
cients of all powers of𝑤 to zero yield a set of algebra equations
for 𝑎
0
, 𝑎
1
, 𝑎
2
, and 𝐴 as follows.

𝑤
4: 𝑎
2
(𝑎
2
+ 12𝛼𝑘

2
𝑞
2
) = 0,

𝑤
3: − 4𝛽𝑘𝑎

2
𝑞 + 2𝑎

1
𝑎
2
+ 4𝛼𝑘

2
𝑎
1
𝑞
2
= 0,

𝑤
2: 𝑎2
1
+ 16𝛼𝑘

2
𝑎
2
𝑞𝑝 − 2𝛽𝑘𝑎

1
𝑞 + 2𝑎

2
+ 2𝑎
2
𝑎
0
= 0,

𝑤
1: 2𝑎
1
𝑎
0
− 4𝛽𝑘𝑎

2
𝑝 + 2𝑎

1
+ 4𝛼𝑘

2
𝑎
1
𝑞𝑝 = 0,

𝑤
0: 2𝑎
0
+ 𝐴 + 4𝛼𝑘

2
𝑎
2
𝑝
2
+ 𝑎
2

0
− 2𝛽𝑘𝑎

1
𝑝 = 0.

(39)

Solving the system of function equations with the aid of
Maple, we obtain

𝑎
0
=
3𝛽
2
− 25𝛼

25𝛼
, 𝑎

1
=
6𝛽
2
𝑞

25𝑠𝛼
, 𝑎

2
=
3𝛽
2
𝑞

25𝛼𝑝
.

(40)

when 𝑘 = 𝛽/10𝑠𝛼, 𝑝𝑞 < 0, 𝐴 = (625𝛼2 − 36𝛽4)/625𝛼2, where
𝑠 = √−𝑝𝑞.

It is known that solutions of (38) are as follows [24]:

𝑤 (𝜃) = −𝑠 tanh (𝑠𝜃) , 𝑤 (𝜃) = −𝑠 coth (𝑠𝜃) . (41)

Substituting (41), (40), (37), and (35) into (33), we obtain solu-
tions of (1) as follows:

𝑢
2
(𝑥, 𝑦, 𝑡)

=
1

25𝛼
{3𝛽
2
− 25𝛼 − 3𝑞𝛽

2

× [ tanh(
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡
3
))

− 2𝑝𝑞tanh2 (
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡
3
))]}

+ 𝑦,

𝑢
3
(𝑥, 𝑦, 𝑡)

=
1

25𝛼
{3𝛽
2
− 25𝛼 − 3𝑞𝛽

2

× [coth(
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡
3
))

− 2𝑝𝑞 coth2 (
𝛽

10𝑠𝛼
(𝑥 − 𝑡𝑦 + 𝑡 −

𝛾

3
𝑡
3
))]}

+ 𝑦.

(42)

(see Figures 3 and 4).

Remark 2. If we direct assume that the solution of (34) can
be expressed in the form

𝐹 (𝑡, 𝜉) = 𝑎
0
(𝑡) + 𝑎

1
(𝑡) 𝑤 (𝜃) + 𝑎

2
(𝑡) 𝑤(𝜃)

2
, (43)

where 𝜃 = 𝑓(𝑡)𝜉 + 𝑔(𝑡), 𝑓(𝑡), and 𝑔(𝑡) are continuous func-
tions of 𝑡 to be determined later. 𝑤(𝜃) satisfies the auxiliary
equation (38). Substituting (43) and (38) into (34), equating
the coefficients of all powers of 𝑤 to zero yields a set of
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Figure 3: Local structure of 𝑢
2
(𝑥, 𝑦, 𝑡) is shown as 𝑥 = 1, 𝛼 = 1, 𝛽 =

10, 𝑝 = −1, 𝑞 = 1, and 𝛾 = 6.
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Figure 4: Local structure of 𝑢
3
(𝑥, 𝑦, 𝑡) is shown as 𝑥 = 1, 𝛼 = 1, 𝛽 =

10, 𝑝 = −1, 𝑞 = 1, 𝛾 = 6.

function equations for 𝑎
0
(𝑡), 𝑎
1
(𝑡), 𝑎
2
(𝑡), 𝑓(𝑡), and 𝑔(𝑡) as

follows:

𝑤
5: 2𝑓𝑎

2
𝑞 (12𝑓

2
𝑞
2
𝛼 + 𝑎
2
) = 0,

𝑤
4: − 3𝑓𝑞 (−2𝑎

1
𝑞
2
𝑓
2
𝛼 + 2𝑞𝑓𝑎

2
𝛽 − 𝑎
1
𝑎
2
) = 0,

𝑤
3: − 2𝛽𝑎

1
𝑓
2
𝑞
2
+ 2𝑎
2

2
𝑓𝑝 + 40𝛼𝑎

2
𝑓
3
𝑞
2
𝑝 + 2𝑎

2
𝑔
󸀠
𝑞

+ 2𝑎
0
𝑎
2
𝑓𝑞 + 𝑎

2

1
𝑓𝑞 + 2𝑎

2
𝑓
󸀠
𝜉𝑞 + 2𝛾𝑡

2
𝑎
2
𝑓𝑞 = 0,

𝑤
2: − 8𝛽𝑎

2
𝑓
2
𝑝𝑞 + 𝑎

1
𝑔
󸀠
𝑞 + 𝑎
󸀠

2
+ 𝑎
0
𝑎
1
𝑓𝑞 + 𝛾𝑡

2
𝑎
1
𝑓𝑞

+ 8𝛼𝑎
1
𝑓
3
𝑝𝑞
2
+ 𝑎
1
𝑓
󸀠
𝜉𝑞 + 3𝑎

1
𝑎
2
𝑓𝑞 = 0,

𝑤
1: 𝑎2
1
𝑓𝑝 + 16𝛼𝑎

2
𝑓
3
𝑝
2
𝑞 + 𝑎
󸀠

1
+ 2𝛾𝑡
2
𝑎
2
𝑓𝑝 + 2𝑎

0
𝑎
2
𝑓𝑝

+ 2𝑎
2
𝑔
󸀠
𝑝 + 2𝑎

2
𝑓
󸀠
𝜉𝑝 − 2𝛽𝑎

1
𝑓
2
𝑝𝑞 = 0,

𝑤
0: 𝑎
1
𝑔
󸀠
𝑝 + 𝑎
1
𝑓
󸀠
𝜉𝑝 + 𝑎

0
𝑎
1
𝑓𝑝 − 2𝛽𝑎

2
𝑓
2
𝑝
2
+ 𝑎
󸀠

0

+ 2𝛼𝑎
1
𝑓
3
𝑝
2
𝑞 + 𝛾𝑡

2
𝑎
1
𝑓𝑝 = 0.

(44)

Solving the system of function equations, we obtain

𝑎
0
(𝑡) =

3𝛽
2

25𝛼
, 𝑎

1
(𝑡) = ±

6𝛽
2
𝑞

25𝑠𝛼
,

𝑎
2
(𝑡) =

3𝛽
2
𝑞

25𝛼𝑝
, 𝑓 (𝑡) = ±

𝛽

10𝑠𝛼
, 𝑔 (𝑡) = ∓

𝛽𝛾

30𝑠𝛼
𝑡
3
.

(45)

This result indicate the idea is equivalent to idea of Case 2
above.

Case 3. Take 𝑘
2
(𝑡) = 0 and 𝑐 = 1 in (26), then

𝜎 = 𝑘
1
(𝑡) 𝑢
𝑥
+ 𝑢
𝑡
− 𝑘
1
(𝑡) . (46)

Solving the differential equation 𝜎 = 0, we obtain

𝑢 = 𝑘
1
(𝑡) + 𝐹 (𝜉, 𝑦) , 𝜉 = 𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡. (47)

Substituting (47) into (1) yield

𝛼𝐹
𝜉𝜉𝜉𝜉

− 𝛽𝐹
𝜉𝜉𝜉
+ 𝐹𝐹
𝜉𝜉
+ 𝐹
2

𝜉
+ 𝛾𝐹
𝑦𝑦
= 0. (48)

Using the transformation 𝐹(𝜉, 𝑦) = 𝐹(𝜂), 𝜂 = 𝑘𝜉 − 𝑐𝑦 and
integrating the resulting equation with respect to 𝜂 we have

𝑘
2
𝐹
2
+ 2𝛾𝑐
2
𝐹 + 2𝑘

4
𝛼𝐹
󸀠󸀠
− 2𝑘
3
𝛽𝐹
󸀠
+ 𝐴 = 0, (49)

where 𝐴 is an arbitrary constant, 𝐹󸀠 = 𝑑𝐹/𝑑𝜂. Suppose that
the solution of ODE (49) can be expressed by a polynomial in
(𝐺
󸀠
/𝐺) as follows:

𝐹 (𝜂) = 𝑏
𝑛
(
𝐺
󸀠

𝐺
)

𝑛

+ ⋅ ⋅ ⋅ , (50)

where 𝐺 = 𝐺(𝜂) satisfies the second-order LODE in the form
[25]

𝐺
󸀠󸀠
+ 𝜆𝐺
󸀠
+ 𝜇𝐺 = 0. (51)

Balancing 𝐹󸀠󸀠 with 𝐹2 in (49) gives 𝑛 = 2. So that

𝐹 (𝜂) = 𝑏
2
(
𝐺
󸀠

𝐺
)

2

+ 𝑏
1
(
𝐺
󸀠

𝐺
) + 𝑏
0
, 𝑏
2
̸=0, (52)

where 𝑏
𝑖
(𝑖 = 0, 1, 2) and 𝜇 are constants to be determined

later. Substituting (52) and (51) into (49). Setting these coeffi-
cients of the 𝐺󸀠/𝐺 to zero, yields a set of algebraic equations
as follows:
𝑘
2
𝑏
2
(12𝛼𝑘

2
+ 𝑏
2
) = 0,

2𝑘
2
(10𝛼𝑘

2
𝑏
2
𝜆 + 𝑏
1
𝑏
2
+ 2𝛼𝑘

2
𝑏
1
+ 2𝛽𝑘𝑏

2
) = 0,

8𝛼𝑘
4
𝑏
2
𝜆
2
+ 2𝛽𝑘

3
𝑏
1
+ 𝑘
2
𝑏
2

1
+ 16𝛼𝑘

4
𝑏
2
𝜇 + 2𝑘

2
𝑏
2
𝑏
0

+ 6𝛼𝑘
4
𝑏
1
𝜆 + 4𝛽𝑘

3
𝑏
2
𝜆 + 2𝛾𝑐

2
𝑏
2
= 0,

2𝑘
2
𝑏
1
𝑏
0
+ 4𝛽𝑘

3
𝑏
2
𝜇 + 4𝛼𝑘

4
𝑏
1
𝜇 + 2𝛾𝑐

2
𝑏
1
+ 2𝛼𝑘

4
𝑏
1
𝜆
2

+ 2𝛽𝑘
3
𝑏
1
𝜆 + 12𝛼𝑘

4
𝑏
2
𝜆𝜇 = 0,

2𝛾𝑐
2
𝑏
0
+ 2𝛼𝑘

4
𝑏
1
𝜆𝜇 + 𝐴 + 2𝛽𝑘

3
𝑏
1
𝜇 + 4𝛼𝑘

4
𝑏
2
𝜇
2
+ 𝑘
2
𝑏
2

0
= 0.

(53)
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Solving the algebraic equations above yields

𝑏
0
=
15𝑘
3
𝜆𝛼 (5𝑘𝜆𝛼 + 2𝛽) − 3𝑘

2
𝛽
2
+ 25𝑐
2
𝛼𝛾

25𝑘2𝛼
,

𝑏
1
= −

12𝑘 (5𝑘𝛼𝜆 + 𝛽)

5
, 𝑏

2
= −12𝑘

2
𝛼.

(54)

when 25𝑘2𝛼2(4𝜇 − 𝜆2) + 𝛽2 = 0 and 625𝛼2(𝐴𝑘2 − 𝑐2𝛾2) +
36𝑘
4
𝛽
4
= 0. Consequently, we obtain the following solution

of (1) for 𝜆2 − 4𝜇 > 0:

𝑢
4
(𝑥, 𝑦, 𝑡) = −12𝑘

2
𝛼𝜏
2

× [(𝐶
1
sinh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+𝐶
2
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

× (𝐶
1
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+ 𝐶
2
sinh 𝜏

× (𝑘 (𝑥 − ∫𝑘
1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

−1

]

2

+ (12𝑘
2
𝜆𝛼𝜏 −

12𝑘 (5𝑘𝛼𝜆 + 𝛽)

5
)

× [(𝐶
1
sinh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+𝐶
2
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

× (𝐶
1
cosh 𝜏 (𝑘 (𝑥 − ∫𝑘

1
(𝑡) 𝑑𝑡) − 𝑐𝑦)

+ 𝐶
2
sinh 𝜏

× (𝑘 (𝑥 − ∫𝑘
1
(𝑡) 𝑑𝑡) − 𝑐𝑦))

−1

]

2

+
15𝑘
3
𝜆𝛼 (5𝑘𝜆𝛼 + 2𝛽) − 3𝑘

2
𝛽
2
+ 25𝑐
2
𝛼𝛾

25𝑘2𝛼

+
𝜆
2

4
,

(55)

where 𝜏 = (1/2)√𝜆2 − 4𝜇.

6. Conclusions

Based on the fact that the periodic solution of (2+1)D KdV-
Burgers equation does not exist, we have obtained Saddle-
node Heteroclinic Orbits. By applying the Lie group method,
we reduce the (2+1)D KdV Burgers equation to (1+1)-dimen-
sional equations including the (1+1)-dimensional linear par-
tial differential equation with constants coefficients (29), (48)

and (1+1)-dimensional nonlinear partial differential equation
with variable coefficients (34). By solving the equations (29),
(34), and (48), we obtain some new exact solutions and
discover the strange phenomenon of sympathetic vibration
to evolution of nontraveling wave soliton for the (2+1)D KdV
Burgers equation. Our results show that the unite of Lie group
methodwith others is effective to search simultaneously exact
solutions for nonlinear evolution equations. Other structures
of solutions with symmetry (26) are to be further studied.
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A user friendly algorithm based on new homotopy perturbation Sumudu transform method (HPSTM) is proposed to solve
nonlinear fractional gas dynamics equation.The fractional derivative is considered in the Caputo sense. Further, the same problem
is solved by Adomian decomposition method (ADM). The results obtained by the two methods are in agreement and hence this
technique may be considered an alternative and efficient method for finding approximate solutions of both linear and nonlinear
fractional differential equations. The HPSTM is a combined form of Sumudu transform, homotopy perturbation method, and He’s
polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. The numerical solutions obtained by the
proposed method show that the approach is easy to implement and computationally very attractive.

1. Introduction

Fractional calculus is a field of appliedmathematics that deals
with derivatives and integrals of arbitrary orders. During
the last decade, fractional calculus has found applications in
numerous seemingly diverse fields of science and engineer-
ing. Fractional differential equations are increasingly used
to model problems in fluid mechanics, acoustics, biology,
electromagnetism, diffusion, signal processing, and many
other physical processes [1–19].

There exists a wide class of literature dealing with the
problems of approximate solutions to fractional differential
equations with various different methodologies, called per-
turbation methods. The perturbation methods have some
limitations; for example, the approximate solution involves
series of small parameters which poses difficulty since the
majority of nonlinear problems have no small parameters at
all. Although appropriate choices of small parameters some-
times lead to ideal solution, in most of the cases unsuitable
choices lead to serious effects in the solutions. Therefore, an
analytical method is welcome which does not require a small
parameter in the equation modeling the phenomenon.

Recently, there is a very comprehensive literature review
in some new asymptotic methods for the search for the
solitary solutions of nonlinear differential equations, nonlin-
ear differential-difference equations, and nonlinear fractional
differential equations; see [20]. The homotopy perturbation
method (HPM)was first introduced byHe [21].TheHPMwas
also studied by many authors to handle linear and nonlinear
equations arising in various scientific and technological fields
[22–32]. The Adomian decomposition method (ADM) [33]
and variational iteration method (VIM) [34] have also been
applied to study the various physical problems.

In a recent paper, Singh et al. [35] have paid attention to
study the solutions of linear and nonlinear partial differential
equations by using the homotopy perturbation Sumudu
transform method (HPSTM). The HPSTM is a combination
of Sumudu transform, HPM, and He’s polynomials and
is mainly due to Ghorbani and Saberi-Nadjafi [36] and
Ghorbani [37].

In this paper, we consider the following nonlinear time-
fractional gas dynamics equation of the form

𝐷
𝛼

𝑡
𝑈 +

1

2
(𝑈
2
)
𝑥
− 𝑈 (1 − 𝑈) = 0, 𝑡 > 0, 0 < 𝛼 ≤ 1, (1)
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with the initial condition

𝑈 (𝑥, 0) = 𝑒
−𝑥
, (2)

where 𝛼 is a parameter describing the order of the fractional
derivative. The function 𝑈(𝑥, 𝑡) is the probability density
function, 𝑡 is the time, and 𝑥 is the spatial coordinate. The
derivative is understood in the Caputo sense. The general
response expression contains a parameter describing the
order of the fractional derivative that can be varied to obtain
various responses. In the case of 𝛼 = 1 the fractional gas
dynamics equation reduces to the classical gas dynamics
equation.The gas dynamics equations are based on the phys-
ical laws of conservation, namely, the laws of conservation
of mass, conservation of momentum, conservation of energy,
and so forth.The nonlinear fractional gas dynamics has been
studied previously by Das and Kumar [38].

Further, we apply the HPSTM and ADM to solve the
nonlinear time-fractional gas dynamics equation. The objec-
tive of the present paper is to extend the application of the
HPSTM to obtain analytic and approximate solutions to the
time-fractional gas dynamics equation. The advantage of the
HPSTM is its capability of combining two powerful methods
for obtaining exact and approximate analytical solutions for
nonlinear equations. It provides the solutions in terms of con-
vergent series with easily computable components in a direct
way without using linearization, perturbation, or restrictive
assumptions. It is worth mentioning that the HPSTM is
capable of reducing the volume of the computational work
as compared to the classical methods while still maintaining
the high accuracy of the numerical result; the size reduction
amounts to an improvement of the performance of the
approach.

2. Sumudu Transform

In the early 90’s, Watugala [39] introduced a new integral
transform, named the Sumudu transform and applied it
to the solution of ordinary differential equation in control
engineering problems. The Sumudu transform, is defined
over the set of functions

𝐴 = {𝑓 (𝑡) | ∃ 𝑀, 𝜏
1
, 𝜏
2
> 0,

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨

< 𝑀𝑒
|𝑡|/𝜏
𝑗 , if 𝑡 ∈ (−1)𝑗 × [0,∞)}

(3)

by the following formula:

𝑓 (𝑢) = 𝑆 [𝑓 (𝑡)]

= ∫

∞

0

𝑓 (𝑢𝑡) 𝑒
−𝑡
𝑑𝑡, 𝑢 ∈ (−𝜏

1
, 𝜏
2
) .

(4)

Some of the properties were established by Weerakoon
in [40, 41]. In [42], by Aşiru, further fundamental properties
of this transform were also established. Similarly, this trans-
form was applied to the one-dimensional neutron transport
equation in [43] by Kadem. In fact it was shown that there
is a strong relationship between Sumudu and other integral
transforms; see Kılıçman et al. [44]. In particular the relation

between Sumudu transform and Laplace transforms was
proved in Kılıçman and Gadain [45].

Further, in Eltayeb et al. [46], the Sumudu transform was
extended to the distributions and some of their properties
were also studied in Kılıçman and Eltayeb [47]. Recently,
this transform is applied to solve the system of differential
equations; see Kılıçman et al. in [48].

Note that a very interesting fact about Sumudu transform
is that the original function and its Sumudu transform have
the same Taylor coefficients except the factor 𝑛; see Zhang
[49]. Thus if 𝑓(𝑡) = ∑

∞

𝑛=0
𝑎
𝑛
𝑡
𝑛 then 𝐹(𝑢) = ∑

∞

𝑛=0
𝑛!𝑎
𝑛
𝑢
𝑛;

see Kılıçman et al. [44]. Similarly, the Sumudu transform
sends combinations,𝐶(𝑚, 𝑛), into permutations,𝑃(𝑚, 𝑛), and
hence it will be useful in the discrete systems.

3. Basic Definitions of Fractional Calculus

In this section, we mention the following basic definitions
of fractional calculus which are used further in the present
paper.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 > 0, of a function 𝑓(𝑡) ∈ 𝐶

𝜇
, and 𝜇 ≥ −1 is

defined as [5]

𝐽
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, (𝛼 > 0) , (5)

𝐽
0
𝑓 (𝑡) = 𝑓 (𝑡) . (6)

For the Riemann-Liouville fractional integral, we have

𝐽
𝛼
𝑡
𝛾
=

Γ (𝛾 + 1)

Γ (𝛾 + 𝛼 + 1)
𝑡
𝛼+𝛾

. (7)

Definition 2. The fractional derivative of 𝑓(𝑡) in the Caputo
sense is defined as [10]

𝐷
𝛼

𝑡
𝑓 (𝑡) = 𝐽

𝑚−𝛼
𝐷
𝑛
𝑓 (𝑡)

=
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑓
(𝑚)

(𝜏) 𝑑𝜏,

(8)

for𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁, 𝑡 > 0.
For the Riemann-Liouville fractional integral and the

Caputo fractional derivative, we have the following relation:

𝐽
𝛼

𝑡
𝐷
𝛼

𝑡
𝑓 (𝑡) = 𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)
(0+)

𝑡
𝑘

𝑘!
. (9)

Definition 3. TheSumudu transform of the Caputo fractional
derivative is defined as follows [50]:

𝑆 [𝐷
𝛼

𝑡
𝑓 (𝑡)] = 𝑢

−𝛼
𝑆 [𝑓 (𝑡)]

−

𝑚−1

∑

𝑘=0

𝑢
−𝛼+𝑘

𝑓
(𝑘)
(0+) , (𝑚 − 1 < 𝛼 ≤ 𝑚) .

(10)
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4. Solution by Homotopy Perturbation
Sumudu Transform Method (HPSTM)

4.1. Basic Idea of HPSTM. To illustrate the basic idea of
this method, we consider a general fractional nonlinear
nonhomogeneous partial differential equationwith the initial
condition of the form

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) + 𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (11)

𝑈 (𝑥, 0) = 𝑓 (𝑥) , (12)

where 𝐷𝛼
𝑡
𝑈(𝑥, 𝑡) is the Caputo fractional derivative of the

function 𝑈(𝑥, 𝑡), 𝑅 is the linear differential operator, 𝑁
represents the general nonlinear differential operator, and
𝑔(𝑥, 𝑡) is the source term.

Applying the Sumudu transform (denoted in this paper
by 𝑆) on both sides of (11), we get

𝑆 [𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡)] + 𝑆 [𝑅𝑈 (𝑥, 𝑡)] + 𝑆 [𝑁𝑈 (𝑥, 𝑡)] = 𝑆 [𝑔 (𝑥, 𝑡)] .

(13)

Using the property of the Sumudu transform, we have

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑓 (𝑥) + 𝑢
𝛼
𝑆 [𝑔 (𝑥, 𝑡)]

− 𝑢
𝛼
𝑆 [𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡)] .

(14)

Operatingwith the Sumudu inverse on both sides of (14) gives

𝑈 (𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) − 𝑆
−1
[𝑢
𝛼
𝑆 [𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡)]] , (15)

where 𝐺(𝑥, 𝑡) represents the term arising from the source
term and the prescribed initial conditions. Now we apply the
HPM:

𝑈 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡) , (16)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑥, 𝑡) =

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(𝑈) , (17)

for some He’s polynomials𝐻
𝑛
(𝑈) [37] that are given by

𝐻
𝑛
(𝑈
0
, 𝑈
1
, . . . , 𝑈

𝑛
)

=
1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[𝑁(

∞

∑

𝑖=0

𝑝
𝑖
𝑈
𝑖
)]

𝑝=0

, 𝑛 = 0, 1, 2, . . . .

(18)

Substituting (16) and (17) in (15), we get
∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡)

= 𝐺 (𝑥, 𝑡)

− 𝑝(𝑆
−1
[𝑢
𝛼
𝑆 [𝑅

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡) +

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(𝑈)]]) ,

(19)

which is the coupling of the Sumudu transform and the HPM
using He’s polynomials. Comparing the coefficients of like
powers of 𝑝, the following approximations are obtained:

𝑝
0
: 𝑈
0
(𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) ,

𝑝
1
: 𝑈
1
(𝑥, 𝑡) = −𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

0
(𝑥, 𝑡) + 𝐻

0
(𝑈)]] ,

𝑝
2
: 𝑈
2
(𝑥, 𝑡) = −𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

1
(𝑥, 𝑡) + 𝐻

1
(𝑈)]] ,

𝑝
3
: 𝑈
3
(𝑥, 𝑡) = −𝑆

−1
[𝑢
𝛼
𝑆 [𝑅𝑈

2
(𝑥, 𝑡) + 𝐻

2
(𝑈)]] ,

...

(20)

Proceeding in this same manner, the rest of the components
𝑈
𝑛
(𝑥, 𝑡) can be completely obtained and the series solution

is thus entirely determined. Finally, we approximate the
analytical solution 𝑈(𝑥, 𝑡) by truncated series:

𝑈 (𝑥, 𝑡) = lim
𝑁→∞

𝑁

∑

𝑛=0

𝑈
𝑛
(𝑥, 𝑡) . (21)

The above series solutions generally converge very rapidly.

4.2. Solution of the Problem. Consider the following nonlin-
ear time-fractional gas dynamics equation:

𝐷
𝛼

𝑡
𝑈 +

1

2
(𝑈
2
)
𝑥
− 𝑈 (1 − 𝑈) = 0, 0 < 𝛼 ≤ 1, (22)

with the initial condition

𝑈 (𝑥, 0) = 𝑒
−𝑥
. (23)

Applying the Sumudu transformonboth sides of (22), subject
to the initial condition (23), we have

𝑆 [𝑈 (𝑥, 𝑡)] = 𝑒
−𝑥
− 𝑢
𝛼
𝑆 [

1

2
(𝑈
2
)
𝑥
− 𝑈 (1 − 𝑈)] . (24)

The inverse Sumudu transform implies that

𝑈 (𝑥, 𝑡) = 𝑒
−𝑥
− 𝑆
−1
[𝑢
𝛼
𝑆 [

1

2
(𝑈
2
)
𝑥
− 𝑈 (1 − 𝑈)]] . (25)

Now applying the HPM, we get

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡)

= 𝑒
−𝑥

− 𝑝(𝑆
−1
[𝑢
𝛼
𝑆 [

1

2
(

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(𝑈))

− (

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡))

+ (

∞

∑

𝑛=0

𝑝
𝑛
𝐻
󸀠

𝑛
(𝑈))]]) ,

(26)
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where 𝐻
𝑛
(𝑈) and 𝐻

󸀠

𝑛
(𝑈) are He’s polynomials [37] that

represent the nonlinear terms. So, the He’s polynomials are
given by

∞

∑

𝑛=0

𝑝
𝑛
𝐻
𝑛
(𝑈) = (𝑈

2
)
𝑥
. (27)

The first few components of He’s polynomials are given by

𝐻
0
(𝑈) = (𝑈

2

0
)
𝑥
,

𝐻
1
(𝑈) = 2(𝑈

0
𝑈
1
)
𝑥
,

𝐻
1
(𝑈) = (𝑈

2

1
+ 2𝑈
0
𝑈
2
)
𝑥
,

...

(28)

and for𝐻󸀠
𝑛
(𝑈), we find that

∞

∑

𝑛=0

𝑝
𝑛
𝐻
󸀠

𝑛
(𝑈) = 𝑈

2
,

𝐻
󸀠

0
(𝑈) = 𝑈

2

0
,

𝐻
󸀠

1
(𝑈) = 2𝑈

0
𝑈
1
,

𝐻
󸀠

2
(𝑈) = 𝑈

2

1
+ 2𝑈
0
𝑈
2
,

...

(29)

Comparing the coefficients of like powers of 𝑝, we have

𝑝
0
: 𝑈
0
(𝑥, 𝑡) = 𝑒

−𝑥
,

𝑝
1
: 𝑈
1
(𝑥, 𝑡) = −𝑆

−1
[𝑢
𝛼
𝑆 [

1

2
𝐻
0
(𝑈) − 𝑈

0
+ 𝐻
󸀠

0
(𝑈)]]

= 𝑒
−𝑥 𝑡

𝛼

Γ (𝛼 + 1)
,

𝑝
2
: 𝑈
2
(𝑥, 𝑡) = −𝑆

−1
[𝑢
𝛼
𝑆 [

1

2
𝐻
1
(𝑈) − 𝑈

1
+ 𝐻
󸀠

1
(𝑈)]]

= 𝑒
−𝑥 𝑡

2𝛼

Γ (2𝛼 + 1)
,

𝑝
3
: 𝑈
3
(𝑥, 𝑡) = −𝑆

−1
[𝑢
𝛼
𝑆 [

1

2
𝐻
2
(𝑈) − 𝑈

2
+ 𝐻
󸀠

2
(𝑈)]]

= 𝑒
−𝑥 𝑡

3𝛼

Γ (3𝛼 + 1)
,

...

(30)

Therefore, the series solution is

𝑈 (𝑥, 𝑡)

= 𝑒
−𝑥
[1 +

𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)
+

𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅] .

(31)

Setting 𝛼 = 1 in (31), we reproduce the solution of the
problem as follows:

𝑈 (𝑥, 𝑡) = 𝑒
−𝑥
(1 + 𝑡 +

𝑡
2

2!
+
𝑡
3

3!
+ ⋅ ⋅ ⋅) . (32)

This solution is equivalent to the exact solution in closed
form:

𝑈 (𝑥, 𝑡) = 𝑒
𝑡−𝑥
. (33)

Now, we calculate numerical results of the probability den-
sity function 𝑈(𝑥, 𝑡) for different time-fractional Brownian
motions 𝛼 = 1/3, 2/3, 1 and for various values of 𝑡 and 𝑥. The
numerical results for the approximate solution (31) obtained
by using HPSTM and the exact solution (33) for various
values of 𝑡, 𝑥, and 𝛼 are shown in Figures 1(a)–1(d) and those
for different values of 𝑡 and𝛼 at 𝑥 = 1 are depicted in Figure 2.

It is observed from Figures 1 and 2 that 𝑈(𝑥, 𝑡) increases
with the increase in 𝑡 and decreases with the increase in 𝛼.
Figures 1(c) and 1(d) clearly show that, when 𝛼 = 1, the
approximate solution (31) obtained by the present method
is very near to the exact solution. It is to be noted that only
the third-order term of the HPSTM was used in evaluating
the approximate solutions for Figures 1 and 2. It is evident
that the efficiency of the present method can be dramatically
enhanced by computing further terms of 𝑈(𝑥, 𝑡) when the
HPSTM is used.

5. Solution by Adomian Decomposition
Method (ADM)

5.1. Basic Idea of ADM. To illustrate the basic idea of
ADM [51, 52], we consider a general fractional nonlinear
nonhomogeneous partial differential equationwith the initial
condition of the form

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) + 𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡) = 𝑔 (𝑥, 𝑡) , (34)

where 𝐷𝛼
𝑡
𝑈(𝑥, 𝑡) is the Caputo fractional derivative of the

function 𝑈(𝑥, 𝑡), 𝑅 is the linear differential operator, 𝑁
represents the general nonlinear differential operator, and
𝑔(𝑥, 𝑡) is the source term.

Applying the operator 𝐽𝛼
𝑡
on both sides of (34) and using

result (9), we have

𝑈 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

(
𝜕
𝑘
𝑈

𝜕𝑡𝑘
)

𝑡=0

𝑡
𝑘

𝑘!

+ 𝐽
𝛼

𝑡
𝑔 (𝑥, 𝑡) − 𝐽

𝛼

𝑡
[𝑅𝑈 (𝑥, 𝑡) + 𝑁𝑈 (𝑥, 𝑡)] .

(35)

Next, we decompose the unknown function 𝑈(𝑥, 𝑡) into
sum of an infinite number of components given by the
decomposition series

𝑈 =

∞

∑

𝑛=0

𝑈
𝑛
, (36)

and the nonlinear term can be decomposed as

𝑁𝑈 =

∞

∑

𝑛=0

𝐴
𝑛
, (37)
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Figure 1: The behaviour of the 𝑈(𝑥, 𝑡) w.r.t. 𝑥 and 𝑡 are obtained when (a) 𝛼 = 1/3, (b) 𝛼 = 2/3, (c) 𝛼 = 1, and (d) exact solution.

where 𝐴
𝑛
are Adomian polynomials that are given by

𝐴
𝑛
=
1

𝑛!
[
𝑑
𝑛

𝑑𝜆𝑛
𝑁(

𝑛

∑

𝑖=0

𝜆
𝑖
𝑈
𝑖
)]

𝜆=0

, 𝑛 = 0, 1, 2, . . . (38)

The components𝑈
0
, 𝑈
1
, 𝑈
2
, . . . are determined recursively by

substituting (36) and (37) into (34) leading to
∞

∑

𝑛=0

𝑈
𝑛
=

𝑚−1

∑

𝑘=0

(
𝜕
𝑘
𝑈

𝜕𝑡𝑘
)

𝑡=0

𝑡
𝑘

𝑘!

+ 𝐽
𝛼

𝑡
𝑔 (𝑥, 𝑡) − 𝐽

𝛼

𝑡
[𝑅(

∞

∑

𝑛=0

𝑈
𝑛
) +

∞

∑

𝑛=0

𝐴
𝑛
] .

(39)

This can be written as

𝑈
0
+ 𝑈
1
+ 𝑈
2
+ ⋅ ⋅ ⋅ =

𝑚−1

∑

𝑘=0

(
𝜕
𝑘
𝑈

𝜕𝑡𝑘
)

𝑡=0

𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑡
𝑔 (𝑥, 𝑡)

− 𝐽
𝛼

𝑡
[𝑅 (𝑈
0
+ 𝑈
1
+ 𝑈
2
+ ⋅ ⋅ ⋅)

+ (𝐴
0
+ 𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅)] .

(40)

Adomian method uses the formal recursive relations as

𝑈
0
=

𝑚−1

∑

𝑘=0

(
𝜕
𝑘
𝑈

𝜕𝑡𝑘
)

𝑡=0

𝑡
𝑘

𝑘!
+ 𝐽
𝛼

𝑡
𝑔 (𝑥, 𝑡) ,

𝑈
𝑛+1

= −𝐽
𝛼

𝑡
[𝑅 (𝑈
𝑛
) + 𝐴
𝑛
] , 𝑛 ≥ 0.

(41)
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Table 1: Comparison study between HPSTM, ADM, and the exact solution when 𝛼 = 1.

x t HPSTM ADM Exact solution
0 0.1 1.221333333 1.221333333 1.221402758
0.2 0.1 0.9999431595 0.9999431595 1.000000000
0.4 0.1 0.8186842160 0.8186842160 0.8187307531
0.6 0.1 0.6702819447 0.6702819447 0.6703200460
0.8 0.1 0.5487804413 0.5487804413 0.5488116361
1.0 0.1 0.4493037263 0.4493037263 0.4493289641
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Figure 2: Plots of 𝑈(𝑥, 𝑡) versus 𝑡 at 𝑥 = 1 for different values of 𝛼.

5.2. Solution of the Problem. Consider the following nonlin-
ear time-fractional gas dynamics equation:

𝐷
𝛼

𝑡
𝑈 +

1

2
(𝑈
2
)
𝑥
− 𝑈 (1 − 𝑈) = 0, 0 < 𝛼 ≤ 1, (42)

with the initial condition

𝑈 (𝑥, 0) = 𝑒
−𝑥
. (43)

Applying the operator 𝐽𝛼
𝑡
on both sides of (42) and using

result (9), we have

𝑈 =

1−1

∑

𝑘=0

𝑡
𝑘

𝑘!
[𝐷
𝑘

𝑡
𝑈]
𝑡=0

− 𝐽
𝛼

𝑡
[
1

2
(𝑈
2
)
𝑥
− 𝑈 + 𝑈

2
] . (44)

This gives the following recursive relations using (41):

𝑈
0
=

0

∑

𝑘=0

𝑡
𝑘

𝑘!
[𝐷
𝑘

𝑡
𝑈]
𝑡=0
,

𝑈
𝑛+1

= −𝐽
𝛼

𝑡
[𝐴
𝑛
− 𝑈
𝑛
] , 𝑛 = 0, 1, 2, . . . ,

(45)

where

𝐴
𝑛
=
1

𝑛!

[

[

(
1

2

𝜕

𝜕𝑥
+ 1)

𝑑
𝑛

𝑑𝜆𝑛
(

𝑛

∑

𝑖=0

𝜆
𝑖
𝑈
𝑖
)

2

]

]𝜆=0

,

𝑛 = 0, 1, 2, . . .

(46)

which using the results (7), (5), and (43) gives

𝑈
0
(𝑥, 𝑡) = 𝑒

−𝑥
,

𝐴
0
= 0,

𝑈
1
(𝑥, 𝑡) = 𝑒

−𝑥 𝑡
𝛼

Γ (𝛼 + 1)
,

𝐴
1
= 0,

𝑈
2
(𝑥, 𝑡) = 𝑒

−𝑥 𝑡
2𝛼

Γ (2𝛼 + 1)
,

𝐴
2
= 0,

𝑈
3
(𝑥, 𝑡) = 𝑒

−𝑥 𝑡
3𝛼

Γ (3𝛼 + 1)
,

...

(47)

Therefore, the decomposition series solution is

𝑈 (𝑥, 𝑡)

= 𝑒
−𝑥
[1 +

𝑡
𝛼

Γ (𝛼 + 1)
+

𝑡
2𝛼

Γ (2𝛼 + 1)
+

𝑡
3𝛼

Γ (3𝛼 + 1)
+ ⋅ ⋅ ⋅] ,

(48)

which is the same solution as obtained by using HPSTM.
From Table 1, it is observed that the values of the

approximate solution at different grid points obtained by the
HPSTMandADMare close to the values of the exact solution
with high accuracy at the third-term approximation. It can
also be noted that the accuracy increases as the order of
approximation increases.

The comparison between the third iteration solution of
the HPSTM and the second iteration solution of the ADM is
given in Figure 3.

It is observed that for 𝑥 = 1 and 𝛼 = 1, there is a good
agreement between the two methods.
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Figure 3: Comparison of the HPSTM and the ADM when 𝑥 = 1

and 𝛼 = 1.

6. Conclusions

In this paper, the homotopy perturbation Sumudu transform
method (HPSTM) and the Adomian decomposition method
(ADM) are successfully applied for solving nonlinear time-
fractional gas dynamics equation. The numerical solutions
show that there is a good agreement between the two
methods.Therefore, these twomethods are very powerful and
efficient techniques for solving different kinds of linear and
nonlinear fractional differential equations arising in different
fields of science and engineering. However, the HPSTM has
an advantage over the ADM which is that it solves the
nonlinear problems without using Adomian polynomials. In
conclusion, the HPSTM and the ADMmay be considered as
a nice refinement in existing numerical techniques andmight
find the wide applications.
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We investigate the complex dynamics of a diffusive Holling-Tanner predation model with the Allee effect on prey analytically and
numerically.We examine the existence of the positive equilibria and the related dynamical behaviors of themodel andfind thatwhen
the model is with weak Allee effect, the solutions are local and global stability for some conditions around the positive equilibrium.
In contrast, when the model is with strong Allee effect, this may lead to the phenomenon of bistability; that is to say, there is a
separatrix curve that separates the behavior of trajectories of the system, implying that the model is highly sensitive to the initial
conditions. Furthermore, we give the conditions of Turing instability and determine the Turing space in the parameters space. Based
on these results, we perform a series of numerical simulations and find that the model exhibits complex pattern replication: spots,
spots-stripes mixtures, and stripes patterns. The results show that the impact of the Allee effect essentially increases the models
spatiotemporal complexity.

1. Introduction

Recently, there has been a great interest in studying nonlinear
difference/differential equations and systems [1–6]. One of
the reasons for this is a necessity for some techniques which
can be used in investigating equations arising in mathe-
matical models describing real-life situations in population
biology, economy, probability theory, genetics, psychology,
sociology, and so forth. And the bases for analyzing the
dynamics of complex ecological systems are the interactions
between two species, particularly the dynamical relationship
between predators and their preys [7]. From the Lotka-
Volterra model [8, 9], several alternatives for modeling
continuous time consumer-resource interactions have been
proposed. In recent years, one of the important predator-
prey models is Holling-Tanner model, which was described
by May [10]. This model reads as follows:

𝑑𝐻

𝑑𝑡
= 𝑟
1
𝐻(1 −

𝐻

𝐾
) −

𝑐
1
𝐻𝑃

𝑘
1
+ 𝐻

,

𝑑𝑃

𝑑𝑡
= 𝑠
1
𝑃(1 −

𝑃

𝛿𝐻
) ,

(1)

where 𝐻 and 𝑃 represent prey and predator population
densities at time 𝑡, respectively. 𝑟, 𝐾, 𝑐

1
, 𝑘
1
, 𝑠
1
, and 𝛿 are

positive constants. 𝑟
1
and 𝑠
1
are the intrinsic growth rate of

prey and predator, respectively. 𝐾 is the carrying capacity
of the prey, and 𝛿 takes on the role of the prey-dependent
carrying capacity for the predator. The rate at which the
predator consumes the prey, 𝑐

1
𝐻𝑃/(𝑘

1
+ 𝐻), is known as

the Holling type-II functional response [11]. The parameter
𝑐
1
is the maximum number of the prey that can be eaten

per predator per time, and 𝑘
1
is the saturation value that

corresponds to the number of the preys necessary to achieve
one half of the maximum rate 𝑐

1
.

The dynamics of model (1) has been considered in many
articles. For example, Hsu and Huang [12] obtained some
results on the global stability of the positive equilibrium.
More precise, under the conditions which local stability of
the positive equilibrium implies its global stability. Gasull and
coworkers [13] investigated the conditions of the asymptotic
stability of the positive equilibrium which does not imply
global stability. Sáez and González-Olivares [14] showed the
asymptotic stability of a positive equilibrium and gave a
qualitative description of the bifurcation curve.
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On the other hand, in population dynamics, any mecha-
nism that can lead to a positive relationship between a com-
ponent of individual fitness and either the number or density
of conspecifics constitutes what is usually called an Allee
effect [15–24], starting with the pioneer work of Allee [25].
The outflux of prey to constant rate can be considered as Allee
effect because a change on interaction dynamics is provoked,
for instance, due to difficulty of encountering mates [17].
Nowadays, it is widely accepted that the Allee effect greatly
increases the likelihood of local and global extinction [18] and
can lead to a rich variety of dynamical effects.

From an ecological point of view, the Allee effect has been
denominated in different ways [19–22] and modeled into
strong and weak ones [15, 16, 19], depending on the degree
of positive density dependence. Mathematically speaking, if
𝐻 = 𝐻(𝑡) indicates the population size, we assume that the
growth function 𝐺(𝐻) satisfies the following:

(i) if 𝐺(0) = 0, 𝐺󸀠(0) > 0, 𝐺(𝐻) is called weak Allee
effect;

(ii) if 𝐺(0) = 0, 𝐺󸀠(0) < 0, 𝐺(𝐻) is called strong Allee
effect.

The most common mathematical form describing this
phenomenon for a single species is given by

𝐺 (𝐻) = 𝐻 (1 − 𝐻) (𝐻 − 𝑚) , (2)

where 0 < 𝑚 < 1 or −1 < 𝑚 ≤ 0, which is named
the multiplicative Allee effect; here, a threshold value 𝑚 is
incorporated such that population growth is negative below
𝑚. When𝑚 < 𝐻 < 1, the per capita growth rate is positive.

Furthermore, Boukal et al. [22] proposed that the prey
exhibits a demographic Allee effect at low population densi-
ties due to reasons other than predation by the focal predator
as follows:

𝐺 (𝐻) = 𝐴𝐻 (1 − 𝐻)(1 −
𝑏 + 𝑐

𝐻 + 𝑐
) , (3)

where 𝑏 is the Allee threshold, and 𝑐 is an auxiliary parameter
(𝑐 > 0 and 𝑏 ≥ −𝑐). The auxiliary parameter 𝑐 affects the
overall shape of the per capita growth curve of the prey.
When 𝑐 is fixed, the unit growth rate of the species is only
in connection with the Allee threshold.

For model (1), we make a change of variables as follows:

(𝐻, 𝑃, 𝑡) = (𝐾𝐻̃,𝐾𝑃̃,
𝑡̃

𝑟
1

) . (4)

For the sake of convenience, we still use variables 𝐻 and 𝑃

instead of 𝐻̃ and 𝑃̃.
(H1)Thebasicmodel is a Holling-Tanner type as the form

𝑑𝐻

𝑑𝑡
= 𝐻 (1 − 𝐻) −

𝑎𝐻𝑃

1 + 𝐻
,

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝛿𝐻
) ,

(5)

where 𝑎 = 𝑐
1
/𝐾, 𝑘
1
= 𝐾, and 𝑟 = 𝑠

1
/𝑟.

(H2) Following Boukal et al. [22], in Allee effect equation
(3), we choose the auxiliary parameter 𝑐 = 1, and 𝑏+1 ≡ 𝑚 is
theAllee threshold.That is, prey𝐻 has the population growth
function

𝐺 (𝐻) = 𝐻 (1 − 𝐻) (1 −
𝑚

𝐻 + 1
) . (6)

Obviously, we have the following:

(i) if 0 < 𝑚 ≤ 1, 𝐺(0) = 0, 𝐺󸀠(0) > 0, the Allee effect (6)
is the weak one;

(ii) if 𝑚 > 1, 𝐺(0) = 0, 𝐺󸀠(0) < 0, the Allee effect (6) is
the strong one;

(iii) if𝑚 = 0, the Allee effect will disappear.

And we can get the following model with the Allee effect
on prey:

𝑑𝐻

𝑑𝑡
= 𝐻 (1 − 𝐻) (1 −

𝑚

𝐻 + 1
) −

𝑎𝐻𝑃

1 + 𝐻
,

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝛿𝐻
) .

(7)

(H3)Assume that the individuals in populations𝐻 and 𝑃
move randomly described as Brownian randommotion [26].
We can get a simple spatialmodel corresponding tomodel (7)
as follows:

𝜕𝐻

𝜕𝑡
= 𝐻 (1 − 𝐻) (1 −

𝑚

𝐻 + 1
) −

𝑎𝐻𝑃

1 + 𝐻
+ 𝑑
1
∇
2
𝐻,

𝜕𝑃

𝜕𝑡
= 𝑟𝑃 (1 −

𝑃

𝛿𝐻
) + 𝑑
2
∇
2
𝑃,

𝐻 (𝑥, 𝑦, 0) = 𝐻
0
> 0, 𝑃 (𝑥, 𝑦, 0) = 𝑃

0
> 0,

(𝑥, 𝑦) ∈ Ω = (0, 𝐿) × (0, 𝐿) .

(8)

Here, the nonnegative constants 𝑑
1
and 𝑑

2
are the diffusion

coefficients of 𝐻(𝑡) and 𝑃(𝑡), respectively. ∇2 = 𝜕
2
/𝜕𝑥
2
+

𝜕
2
/𝜕𝑦
2 is the Laplacian operator in two-dimensional space,

which describes the random moving. The initial distribution
of species 𝑁

0
and 𝑃

0
are continuous functions. And the

boundary condition is assumed to be zero-flux one as follows:

𝜕𝐻

𝜕𝑛
=
𝜕𝑃

𝜕𝑛
= 0, (𝑥, 𝑦) ∈ 𝜕Ω. (9)

𝐿 indicates the size of the model in the directions of 𝑥 and 𝑦,
respectively, and 𝑛 is the outward unit normal vector of the
boundary 𝜕Ω. The main reason for choosing such boundary
conditions is that we are interested in the self-organization of
pattern, and the zero-flux boundary conditions imply that no
external input is imposed form exterior [27].

There are some excellent works on a Holling-Tanner
model considering the diffusion [28–33] and the references
therein. In [28], Guan and co-workers studied the spatiotem-
poral dynamics of a modified version of the Leslie-Gower
predator-preymodel incorporating a prey refuge and showed
that the model dynamics exhibits complex Turing pattern
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replication: stripes, cold/hot spots-stripes coexistence, and
cold/hot spots patterns. Without the Allee effect, Peng and
Wang [29, 30] analyzed the global stability of the unique
positive constant steady state and established some results
for the existence and nonexistence of positive nonconstant
steady states. Wang et al. [31] considered the Turing and
Hopf bifurcations of the equilibrium solutions. Liu and Xue
[32] investigated the pattern formation and found that spots,
black-eye, and labyrinthine patterns can be observed in the
model. Chen and Shi [33] proved global stability of the unique
constant equilibrium.

However, the research about the influence of Allee effect
on pattern formation of diffusive Holling-Tanner model
seems rare.Themain purpose of this paper is to study dynam-
ical behaviors of a Holling-Tanner predator-prey model with
the Allee effect.We will determine how the Allee effect affects
the dynamics of the model and focus on the stability of the
positive steady state and bifurcationmechanism and patterns
formation analysis of the model.

The rest of the paper is organized as follows. In Sections
2 and 3, we present our main results about the stability
and bifurcation analysis of the nonspatial model (7) and the
spatial model (8), respectively. Especially, in regards to the
spatial model (8) in Section 3, we will give the conditions of
the Turing instability and determine the Turing space, and by
performing a series of numerical simulations, we illustrate the
emergence of different patterns. Finally, in Section 4, some
conclusions and remarks are given.

2. Dynamics Analysis of
the Nonspatial Model (7)

2.1. Boundedness. Now, we prove that all solutions are even-
tually bounded.

Theorem 1. All the solutions of model (7) which are initiated
in R2
+
are uniformly bounded.

Proof. Let 𝐻(𝑡) and 𝑃(𝑡) be any solution of model (7) with
initial conditions (𝐻(0), 𝑃(0)) = (𝐻

0
, 𝑃
0
) such that 𝐻

0
> 0,

𝑃
0
> 0. From the first equation of model (7), we have

𝑑𝐻

𝑑𝑡
≤ 𝐻 (1 − 𝐻) ; (10)

a standard comparison theorem shows that
lim sup
𝑡→∞

𝐻(𝑡) ≤ 1. (11)

Then, from the second equation of model (7), we get 𝑑𝑃/𝑑𝑡 ≤
𝑟𝑃(1 − (𝑃/𝛿)), which implies that

lim sup
𝑡→∞

𝑃 (𝑡) ≤ 𝛿. (12)

Define the function 𝑊(𝑡) = 𝐻(𝑡) + 𝑃(𝑡), differentiating
both sides with respect to 𝑡; we get

𝑑𝑊

𝑑𝑡
=
𝑑𝐻

𝑑𝑡
+
𝑑𝑃

𝑑𝑡
≤ 𝐻 (1 − 𝐻) + 𝑟𝑃 (1 −

𝑃

𝛿
)

≤
1

4
+ 𝑟𝑃 (1 −

𝑃

𝛿
) .

(13)

Then,

𝑑𝑊

𝑑𝑡
+𝑊 ≤

1

4
+ 𝑟𝑃 (1 −

𝑃

𝛿
) + 𝐻 + 𝑃

≤
5

4
+ 𝑃(1 + 𝑟 −

𝑟𝑃

𝛿
) ≤

5

4
+
𝛿(𝑟 + 1)

2

4𝑟
≜ 𝑀.

(14)

Using the theory of differential inequality, for all 𝑡 ≥ 𝑇 ≥

0, we have

0 ≤ 𝑊 (𝑡) ≤ 𝑀 − (𝑀 −𝑊(𝑇)) 𝑒
−(𝑡−𝑇)

. (15)

Hence, lim sup
𝑡→∞

(𝐻(𝑡) + 𝑃(𝑡)) ≤ 𝑀. This completes the
proof.

Remark 2. In fact, if 𝑚 ≥ 2, 𝑑𝐻/𝑑𝑡 < 0 always holds, which
means that the prey and predator will extinct. Hence, we will
later only focus on the case of 0 ≤ 𝑚 < 2.

Next, we will investigate the existence of equilibria and
their local and global stability with respect to model (7).

2.2. Equilibria Analysis in the Case of the Strong Allee Effect
(i.e., 1 < 𝑚 < 2). In this subsection, we consider the
existence and stability of the equilibrium of model (7) with
strong Allee effect; that is, 1 < 𝑚 < 2.

We note that model (7) is not defined at the 𝑃-axis,
particularly at the point (0, 0), but both isoclines pass through
this point, and in this case, it is a point of particular interest
[34].The character of (0, 0) can be obtained after rescaling the
time in model (7) by 𝑡 = 𝜏𝐻(1 + 𝐻) as follows:

𝑑𝐻

𝑑𝜏
= 𝐻
2
(1 − 𝐻) (1 + 𝐻 − 𝑚) − 𝑎𝐻

2
𝑃,

𝑑𝑃

𝑑𝜏
= 𝑟 (1 + 𝐻)𝑃(𝐻 −

𝑃

𝛿
) .

(16)

Lemma 3. The point (0, 0) of model (16) has a hyperbolic and
a parabolic sector [20, 35] determined for the line 𝑃 = (𝛿(𝑚 −

1 + 𝑟)/𝑟)𝐻. That is, there exists a separatrix curve in the phase
plane that divides the behavior of trajectories; the point (0, 0)
is then an attractor point for certain trajectories and a saddle
point for others.

Proof. As the Jacobianmatrix of the point (0, 0) formodel (16)
is the zeromatrix, we follow themethodology used in [20, 35]
given by the function 𝜑(𝑢, 𝑣) = (𝑢𝑣, 𝑣) = (𝐻, 𝑃). Then, we
have that

𝑑𝑢

𝑑𝜏
=
1

𝑣
(
𝑑𝐻

𝑑𝜏
− 𝑢

𝑑𝑃

𝑑𝜏
) ,

𝑑𝑣

𝑑𝜏
=
𝑑𝑃

𝑑𝜏
, (17)

and rescaling the time by 𝑇 = 𝑣𝜏, it becomes

𝑑𝑢

𝑑𝑇
= 𝑢( ((1 − 𝑢𝑣) (𝑢𝑣 + 1 − 𝑚) − 𝑎𝑣) 𝑢

−𝑟 (1 + 𝑢𝑣) (𝑢 −
1

𝛿
)) ,

𝑑𝑣

𝑑𝑇
= 𝑟 (1 + 𝑢𝑣) 𝑣 (𝑢 −

1

𝛿
) .

(18)
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Clearly, if 𝑣 = 0, then 𝑑𝑣/𝑑𝑇 = 0. Moreover, 𝑑𝑢/𝑑𝑇 =

𝑢((1 − 𝑚)𝑢 − 𝑟(𝑢 − (1/𝛿))).
The singularities of model (18) are (0, 0) and (𝑟/(𝛿(𝑚−1+

𝑟)), 0); that is, a separatrix straight exists in the phase plane𝑢𝑣,
given by 𝑢 = 𝑟/(𝛿(𝑚 − 1 + 𝑟)). The Jacobian matrixes of (0, 0)
and (𝑟/(𝛿(𝑚 − 1 + 𝑟)), 0) for model (18) are

𝐽
(0,0)

= (

𝑟

𝛿
0

0 −
𝑟

𝛿

) ,

𝐽
(𝑟/(𝛿(𝑚−1+𝑟)),0)

= (

−
𝑟

𝛿
−
𝑟
2
(−2𝑟𝑚 + 𝑎𝛿 (𝑚 − 1 + 𝑟) + 𝑟)

𝛿3(𝑚 − 1 + 𝑟)
3

0 −
𝑟 (𝑚 − 1)

𝛿 (𝑚 − 1 + 𝑟)

) .

(19)

Then, (0, 0) is a hyperbolic saddle point, and (𝑟/(𝛿(𝑚 −

1 + 𝑟)), 0) is an attractor point. Using the blowing down, the
point (0, 0) is a saddle node in model (16), and the line 𝑃 =

((𝛿(𝑚−1+𝑟))/𝑟)𝐻 divides the behavior of trajectories on the
phase plane. The proof is completed.

Moreover, it is easy to verify thatmodel (7) always has two
boundary equilibria 𝐸

0
= (𝑚 − 1, 0) and 𝐸

1
= (1, 0). And the

behavior of model (7) around 𝐸
0
and 𝐸

1
is found as follows.

The Jacobian matrix of model (7) at the equilibrium 𝐸
0
=

(𝑚 − 1, 0) takes the form

𝐽
𝐸
1

= (

(𝑚 − 1) (2 − 𝑚)

𝑚

𝑎 (𝑚 − 1)

𝑚

0 𝑟

) . (20)

Hence, the equilibrium 𝐸
0
= (𝑚 − 1, 0) is an unstable node

point (nodal source).
The Jacobian matrix of model (7) at the equilibrium 𝐸

0
=

(1, 0) takes the form

𝐽
𝐸
0

= (

𝑚

2
− 1 −

𝑎

2

0 𝑟

) . (21)

Hence, the equilibrium 𝐸
1
= (1, 0) is a saddle point.

And model (7) has a positive equilibrium 𝐸 = (𝐻, 𝛿𝐻),
where𝐻 satisfies

𝐻
2
− (𝑚 − 𝑎𝛿)𝐻 − (1 − 𝑚) = 0. (22)

For simplicity, we consider 𝐴 = 𝑚 − 𝑎𝛿 and 𝐵 =

√(𝑚 − 𝑎𝛿)
2
+ 4(1 − 𝑚); then, the two roots of (22) are given

by

𝐻
+
=
1

2
(𝐴 + 𝐵) , 𝐻

−
=
1

2
(𝐴 − 𝐵) . (23)

Lemma 4.

(i) Suppose that𝑚 − 𝑎𝛿 > 0 and 1 < 𝑚 < 2.

(a) If 𝐵2 > 0 holds, model (7) has two positive
equilibria 𝐸

+
= (𝐻
+
, 𝛿𝐻
+
) and 𝐸

−
= (𝐻
−
, 𝛿𝐻
−
).

(b) If 𝐵2 = 0 holds, model (7) has a unique positive
equilibrium𝐸

𝑒
= (𝐻
𝑒
, 𝛿𝐻
𝑒
). Note that in this case

𝐻
𝑒
= 𝐻
+
= 𝐻
−
= 𝐴/2 = √𝑚 − 1.

(c) If 𝐵2 < 0, model (7) has no positive equilibrium.

(ii) If𝑚 − 𝑎𝛿 ≤ 0, model (7) has no positive equilibrium.

Let 𝐸 = (𝑁, 𝑃) be an arbitrary positive equilibrium. The
Jacobian matrix of model (7) at the positive equilibrium 𝐸 =

(𝐻, 𝛿𝐻) takes the form

𝐽
𝐸
= (

𝐻(𝑎𝛿𝐻 + 2𝑚 − (1 + 𝐻)
2
)

(1 + 𝐻)
2

−
𝑎𝐻

1 + 𝐻

𝑟𝛿 −𝑟

) . (24)

Then, we can get

det (𝐽
𝐸
) =

𝑟𝐻 (𝐻
2
+ 2𝐻 + 1 + 𝑎𝛿 − 2𝑚)

(𝐻 + 1)
2

,

tr (𝐽
𝐸
) =

𝐻 (𝑎𝛿𝐻 + 2𝑚 − (1 + 𝐻)
2
)

(1 + 𝐻)
2

− 𝑟.

(25)

We can see that the sign of det(𝐽
𝐸
) is determined by

𝐹 (𝐻) ≜ 𝐻
2
+ 2𝐻 + 1 + 𝑎𝛿 − 2𝑚 = 𝐻

2
+ 2𝐻 + 1 − 𝐴 − 𝑚.

(26)

Thus, we can obtain

𝐹 (𝐻
+
) =

(𝐴 + 𝐵)
2

4
+ 𝐵 − 𝑚 + 1 = 𝐵(1 +

𝐴

2
) +

1

2
𝐵
2
> 0;

𝐹 (𝐻
−
) =

(𝐴 − 𝐵)
2

4
− 𝐵 − 𝑚 + 1 = −

1

2
𝐵 (𝐴 − 𝐵) − 𝐵 < 0;

𝐹 (𝐻
𝑒
) =

𝐴

4
+ 1 − 𝑚 = 0.

(27)

Hence, we obtain det(𝐽
𝐸
+

) > 0, det(𝐽
𝐸
−

) < 0, and
det(𝐽
𝐸
𝑒

) = 0. And the positive equilibrium 𝐸
−
= (𝐻
−
, 𝛿𝐻
−
)

is a saddle point. The nature of the equilibrium point 𝐸
+
is

dependent on the sign of the trace of the Jacobian matrix
evaluated in this point. Whether 𝐸

+
is a node or a focus

depends on the sign of (tr(𝐽
𝐸
+

))
2
− 4 det(𝐽

𝐸
+

).
In the following results, we study the stability of the

positive equilibrium𝐸
+
and the unique positive equilibria𝐸

𝑒
.

Theorem 5. Define

𝑟
+
=

𝐻
+

(1 + 𝐻
+
)
2
(𝑎𝛿𝐻
+
+ 2𝑚 − (1 + 𝐻

+
)
2

) . (28)
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Figure 1: The phase portrait of model (7) with the strong Allee
effect. The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8, 𝑚 = 1.3

and 𝑟 = 0.15. In this case, 𝐸
0
= (0.3, 0) is an unstable node point,

𝐸
1

= (1, 0) and 𝐸
−

= (0.5, 0.4) are saddle points; the positive
equilibrium 𝐸

+
= (0.6, 0.48) is local asymptotically stable. There

exists a separatrix curve determined by the stable manifold of the
equilibrium point 𝐸

−
. The dotted curves are the nullclines.

(a) If 𝑟 > 𝑟
+
, the positive equilibrium 𝐸

+
= (𝐻
+
, 𝛿𝐻
+
) is a

locally asymptotically stable point;

(a1) if (𝑟
+
− 𝑟)
2
< 4 det(𝐽

𝐸
+

), then 𝐸
+
is a stable focus,

(a2) if (𝑟
+
− 𝑟)
2
> 4 det(𝐽

𝐸
+

), then 𝐸
+
is a stable node

point.

(b) If 𝑟 < 𝑟
+
, the positive equilibrium 𝐸

+
= (𝐻
+
, 𝛿𝐻
+
) is

an unstable point;

(b1) if (𝑟
+
− 𝑟)
2
< 4 det(𝐽

𝐸
+

), then 𝐸
+
is an unstable

focus surrounded by a stable limit cycle,
(b2) if (𝑟

+
− 𝑟)
2
> 4 det(𝐽

𝐸
+

), then 𝐸
+
is an unstable

node and the limit cycle disappears.

(c) AHopf bifurcation occurs at 𝑟 = 𝑟
+
around the positive

equilibrium 𝐸
+
= (𝐻
+
, 𝛿𝐻
+
). That is to say, model (7)

has at least one positive periodic orbit.

Proof. Here, we only give the proof of the existence of Hopf
bifurcation. It is easy to see that

(i) tr(𝐽(𝐸
+
))|
𝑟=𝑟
+

= 0 holds,

(ii) the characteristic equation is 𝜆2 +det(𝐽(𝐸
+
))|
𝑟=𝑟
+

= 0,
whose roots are purely imaginary,

(iii) (𝑑/𝑑𝑟)[tr(𝐽(𝐸
+
))]
𝑟=𝑟
+

= −1 ̸=0.

From the Poincaré-Andronov-Hopf BifurcationTheorem
[36], we know that model (7) undergoes a Hopf bifurcation at
𝐸
+
as 𝑟 passes through the value 𝑟

+
. The proof is completed.
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Figure 2: The phase portrait of model (7) with the strong Allee
effect. The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8, 𝑚 = 1.3,
and 𝑟 = 0.0375. The model enters into a Hopf bifurcation around
𝐸
+
= (0.6, 0.48) at 𝑟 = 𝑟

+
.

Figure 1 illustrates the local stability of the positive
equilibrium 𝐸

+
and the separatrix curve generated by the

stable manifold of the positive equilibrium 𝐸
−
. The orbits

initiating the right of the separatrix curve tend to 𝐸
+
, while

the orbits initiating the left of the separatrix curve tend
to (0, 0) that represents the extinction of the population.
Figure 2 illustrates a Hopf bifurcation situation of the model
around 𝐸

+
. The parameter values are given in the figures.

Theorem 6. The unique equilibrium point 𝐸
𝑒
= (√𝑚 − 1,

(1/𝛿)√𝑚 − 1) is

(i) a nonhyperbolic attractor node, if and only if 𝑟 >

√𝑚 − 1(1 − √𝑚 − 1)
2
/(1 + √𝑚 − 1);

(ii) a nonhyperbolic repellor node, if and only if 𝑟 >

√𝑚 − 1(1 − √𝑚 − 1)
2
/(1 + √𝑚 − 1);

(iii) a cusp point, if and only if 𝑟 = √𝑚 − 1(1 − √𝑚 − 1)
2
/

(1 + √𝑚 − 1), and in this case, there exists a unique
trajectory which attains the point 𝐸

𝑒
. And in this case,

the point (0, 0) is a global attractor.

Proof. We have

tr (𝐽
𝐸
𝑒

) =

√𝑚 − 1(1 − √𝑚 − 1)
2

1 + √𝑚 − 1
− 𝑟. (29)

Hence (i) and (ii) hold.
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Figure 3: The phase portrait of model (7) with the strong Allee
effect. The parameters are taken as 𝑎 = 0.2556936062, 𝛿 = 0.8,
𝑚 = 1.3, and 𝑟 = 0.07238979895. 𝐸

0
= (0.3, 0) is an unstable

node point; 𝐸
1
= (1, 0) is saddle point; the positive equilibrium

𝐸
2
= (0.2, 0.4) is a cusp point. In this case, the point (0, 0) is globally

asymptotically stable. The dotted curves are the nullclines.

Moreover, tr(𝐽
𝐸
𝑒

) = 0, if and only if 𝑟 = √𝑚 − 1(1 −

√𝑚 − 1)
2
/(1 − √𝑚 + 1). In this case, we obtain the Jacobian

matrix of (16) as follows:

𝐽 (√𝑚 − 1,
1

𝛿

√𝑚 − 1)

= (
(𝑚 − 1) (1 − √𝑚 − 1)

2

− (𝑚 − 1) (1 − √𝑚 − 1)
2

(𝑚 − 1) (1 − √𝑚 − 1)
2

− (𝑚 − 1) (1 − √𝑚 − 1)
2)

= (𝑚 − 1) (1 − √𝑚 − 1)
2

(
1 −1

1 −1
) ;

(30)

and the associate Jordan matrix is

(

0 − (𝑚 − 1) (1 − √𝑚 − 1)
2

0 0

) . (31)

Then, the singularity (√𝑚 − 1, (1/𝛿)√𝑚 − 1) is a cusp point,
since it is a point of codimension 2, and we have a Bogdanov-
Takens bifurcation [37].

The cusp point is shown in Figure 3.

2.3. EquilibriaAnalysis in the Case of theWeakAllee Effect (i.e.,
0 < 𝑚 ≤ 1). In this subsection, we consider the stability of
the equilibrium of model (7) with weak Allee effect (0 < 𝑚 ≤

1).
It is easy to verify thatmodel (7) always has one boundary

equilibrium 𝐸
0
= (1, 0) which is a saddle point and a positive

equilibrium 𝐸
∗
= (𝐻
∗
, 𝛿𝐻
∗
), where

𝐻
∗
=

𝑚 − 𝑎𝛿 + √(𝑚 − 𝑎𝛿)
2
+ 4 (1 − 𝑚)

2
.

(32)

From (24), we have

det (𝐽
𝐸
∗) =

𝑟𝐻
∗
(𝐻
∗2

+ 2𝐻
∗
+ 1 + 𝑎𝛿 − 2𝑚)

(𝐻
∗ + 1)

2
> 0,

tr (𝐽
𝐸
∗) =

𝐻
∗
(𝑎𝛿𝐻

∗
+ 2𝑚 − (1 + 𝐻

∗
)
2

)

(1 + 𝐻∗)
2

− 𝑟.

(33)

Hence, we have the following results on the stability of the
positive equilibrium 𝐸

∗
= (𝐻
∗
, 𝛿𝐻
∗
).

Theorem 7. Define

𝑟
∗
=

𝐻
∗
(𝑎𝛿𝐻

∗
+ 2𝑚 − (1 + 𝐻

∗
)
2

)

(1 + 𝐻∗)
2

. (34)

(a) If 𝑟 > 𝑟
∗, the positive equilibrium 𝐸

∗
= (𝐻
∗
, 𝛿𝐻
∗
) is a

locally asymptotically stable point, and

(a1) if (𝑟∗ − 𝑟)2 < 4 det(𝐽
𝐸
∗), then 𝐸∗ is a stable focus;

(a2) if (𝑟∗ − 𝑟)
2
> 4 det(𝐽

𝐸
∗), then 𝐸∗ is a stable node

point.

(b) If 𝑟 < 𝑟
∗, the positive equilibrium 𝐸

∗
= (𝐻
∗
, 𝛿𝐻
∗
) is

an unstable point, and

(b1) if (𝑟∗ − 𝑟)
2
< 4 det(𝐽

𝐸
∗), then 𝐸

∗ is an unstable
focus surrounded by a stable limit cycle;

(b2) if (𝑟∗ − 𝑟)
2
> 4 det(𝐽

𝐸
∗), then 𝐸

∗ is an unstable
node and the limit cycle disappears.

(c) AHopf bifurcation occurs at 𝑟 = 𝑟
∗ around the positive

equilibrium 𝐸
∗
= (𝐻
∗
, 𝛿𝐻
∗
). That is to say, model (7)

has at least one positive periodic orbit.

In the following theorem, we study the global behavior of
the positive equilibrium 𝐸

∗.

Theorem 8. If 0 < 𝑚 < 1/(1 + 𝑎𝛿), the positive equilibrium
𝐸
∗
= (𝐻
∗
, 𝛿𝐻
∗
) is globally asymptotically stable.

Proof. Construct the following Lyapunov function:

𝑉 (𝐻, 𝑃) = ∫

𝐻

𝐻
∗

𝜉 − 𝐻
+

𝜉𝜙 (𝜉)
𝑑𝜉 +

1

𝑟
∫

𝑃

𝛿𝐻
∗

𝜂 − 𝛿𝐻
∗

𝜂
𝑑𝜂, (35)

where

𝜙 (𝐻) =
𝑎𝐻

𝐻 + 1
. (36)

Then,

𝑑𝑉

𝑑𝑡
=
𝐻 − 𝐻

∗

𝐻𝜙 (𝐻)

𝑑𝐻

𝑑𝑡
+
𝑃 − 𝛿𝐻

∗

𝑟𝑃

𝑑𝑃

𝑑𝑡
. (37)
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Figure 4:The phase portrait of model (7) with the weak Allee effect.
The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8,𝑚 = 1.3, and 𝑟 = 0.1.
In this case,𝐸

0
= (1, 0) is saddle point; the positive equilibrium𝐸

∗
=

(0.3232928050, 0.4849392075) is globally asymptotically stable. The
dotted curves are the nullclines.
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Figure 5:The phase portrait of model (7) with the weak Allee effect.
The parameters are taken as 𝑎 = 0.25, 𝛿 = 0.8, 𝑚 = 1.3, and 𝑟 =

0.025265. The model enters into a Hopf bifurcation around 𝐸
∗
=

(0.3232928050, 0.4849392075) at 𝑟 = 𝑟
∗.

Substituting the value of 𝑑𝐻/𝑑𝑡 and 𝑑𝑃/𝑑𝑡 from the
model of (7), we obtained

𝑑𝑉

𝑑𝑡
=
𝐻 − 𝐻

∗

𝑎𝐻
[(1 − 𝐻) (1 + 𝐻 − 𝑚) − 𝑎𝛿𝐻

∗
]

−
𝛿

𝐻
(𝑃 − 𝛿𝐻

∗
)
2

.

(38)

Note that 𝑎𝛿𝐻∗ = 𝐻
∗
(1 − 𝐻

∗
)(1 + 𝐻

∗
− 𝑚); we obtain

𝑑𝑉

𝑑𝑡
= −

(𝐻 − 𝐻
∗
)
2

𝑎𝐻
(𝐻 + 𝐻

∗
− 𝑚) −

𝛿

𝐻
(𝑃 − 𝛿𝐻

∗
)
2

. (39)
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Figure 6:The phase portrait of model (7) with the weak Allee effect.
The parameters are taken as 𝑎 = 0.8, 𝛿 = 1.5, 𝑚 = 0.75, and 𝑟 =

0.025.The positive equilibrium𝐸
∗
= (0.3232928050, 0.4849392075)

is an unstable focus surrounded by a stable limit cycle.

Hence, if 0 < 𝑚 < 1/(1+𝑎𝛿),𝐻∗ −𝑚 > 0which is equivalent
to 𝑑𝑉/𝑑𝑡 < 0.

Hence, the positive equilibrium 𝐸
∗

= (𝐻
∗
, 𝛿𝐻
∗
) is

globally asymptotically stable. This completes the proof.

Figure 4 demonstrates the global stability situation of
model (7) around 𝐸

∗. Figure 5 illustrates a Hopf bifurcation
situation of the model around 𝐸

∗. Figure 6 shows a stable
limit cycle around 𝐸

∗ which is an unstable focus. The
parameter values are given in the figures.

3. Dynamics of the Spatial Model (8)
In this section, we will investigate the dynamics of the spatial
model (8). As an example, we only focus on the positive
equilibrium point 𝐸∗ = (𝐻

∗
, 𝛿𝐻
∗
) in the case of weak Allee

effect (0 < 𝑚 < 1).

3.1. Turing Instability. Mathematically speaking, an equilib-
rium is Turing instability (diffusion-driven instability) means
that it is an asymptotically stable equilibrium 𝐸

∗ of model
(7) but is unstable with respect to the solutions of reaction-
diffusion model (8).

In the presence of diffusion, we will introduce small
perturbations𝑈

1
= 𝐻−𝐻

∗,𝑈
2
= 𝑃−𝛿𝐻

∗, where |𝑈
1
|, |𝑈
2
| ≪

1. To study the effect of diffusion on the model, we have
considered the linearized form of model as follows:

𝜕𝑈
1

𝜕𝑡
= 𝑟
∗
𝑈
1
−

𝑎𝐻
∗

1 + 𝐻∗
𝑈
2
+ 𝑑
1
∇
2
𝑈
1
,

𝜕𝑈
2

𝜕𝑡
= 𝑟𝛿𝑈

1
− 𝑟𝑈
2
+ 𝑑
2
∇
2
𝑈
2
,

(40)

where 𝑟∗ is defined as (34).
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Following Malchow et al. [38], we can know that any
solution of model (40) can be expanded into a Fourier series
so that

𝑈
1
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝑢
𝑛𝑚

(r, 𝑡) =
∞

∑

𝑛,𝑚=0

𝛼
𝑛𝑚

(𝑡) sin kr,

𝑈
2
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝑣
𝑛𝑚

(r, 𝑡) =
∞

∑

𝑛,𝑚=0

𝛽
𝑛𝑚

(𝑡) sin kr,

(41)

where r = (𝑥, 𝑦), and 0 < 𝑥 < 𝐿 and 0 < 𝑦 < 𝐿. k = (𝑘
𝑛
, 𝑘
𝑚
),

and 𝑘
𝑛

= 𝑛𝜋/𝐿 and 𝑘
𝑚

= 𝑚𝜋/𝐿 are the corresponding
wavenumbers.

Having substituted 𝑢
𝑛𝑚

and 𝑣
𝑛𝑚

into (40), we obtain

𝑑𝛼
𝑛𝑚

𝑑𝑡
= (𝑟
∗
− 𝑑
1
𝑘
2
) 𝛼
𝑛𝑚

−
𝑎𝐻
∗

1 + 𝐻∗
𝛽
𝑛𝑚
,

𝑑𝛽
𝑛𝑚

𝑑𝑡
= 𝑟𝛿𝛼

𝑛𝑚
− (𝑟 + 𝑑

2
𝑘
2
) 𝛽
𝑛𝑚
,

(42)

where 𝑘2 = 𝑘
2

𝑛
+ 𝑘
2

𝑚
.

A general solution of (42) has the form 𝐶
1
exp(𝜆

1
𝑡) +

𝐶
2
exp(𝜆

2
𝑡), where the constants 𝐶

1
and 𝐶

2
are determined

by the initial conditions (3), and the exponents 𝜆
1
and 𝜆

2
are

the eigenvalues of the following matrix:

𝐷 = (
𝑟
∗
− 𝑑
1
𝑘
2

−
𝑎𝐻
∗

1 + 𝐻∗

𝑟𝛿 −𝑟 − 𝑑
2
𝑘
2

). (43)

Correspondingly, 𝜆
1
and 𝜆

2
are the solutions of the

following equation:

𝜆
2
− tr (𝐷) 𝜆 + det (𝐷) = 0, (44)

where

tr (𝐷) = 𝑟
∗
− 𝑟 − (𝑑

1
+ 𝑑
2
) 𝑘
2
,

det (𝐷) = 𝑑
1
𝑑
2
𝑘
4
+ (𝑟𝑑
1
− 𝑟
∗
𝑑
2
) 𝑘
2
+ det (𝐽 (𝐸∗)) .

(45)

Summarizing the previous discussions, we can get the
following theorem immediately.

Theorem 9. (i) The positive equilibrium 𝐸
∗ of model (8) is

locally asymptotically stable if 𝑟 > max{𝑟∗, 𝑟∗𝑑
2
/𝑑
1
} holds.

(ii) If the positive equilibrium 𝐸
∗ of model (7) is globally

asymptotically stable, then the corresponding steady state 𝐸∗ of
model (8) is also globally asymptotically stable.

Proof. (i) Using Routh-Hurwitz criteria, we can know that
the positive equilibrium 𝐸

∗ is locally asymptotically stable,
if and only if tr(𝐷) < 0 and det(𝐷) > 0. So, we obtain
𝑟 > max{𝑟∗, 𝑟∗𝑑

2
/𝑑
1
}.

(ii) We select the Lyapunov function for model (8) as
follows:

𝑉
2
(𝑡) = ∬

Ω

𝑉 (𝐻, 𝑃) 𝑑𝑥 𝑑𝑦, (46)

where 𝑉(𝐻, 𝑃) is the same as defined in (35). So,
𝑑𝑉
2

𝑑𝑡
= ∬
Ω

𝑑𝑉

𝑑𝑡
𝑑𝑥 𝑑𝑦

+∬
Ω

{
𝜕𝑉

𝜕𝐻
𝑑
1
∇
2
𝐻 +

𝜕𝑉

𝜕𝑃
𝑑
2
∇
2
𝑃}𝑑𝑥𝑑𝑦.

(47)

Using Green’s first identity in the plane,

∬
Ω

𝐹∇
2
𝐺𝑑𝑥𝑑𝑦 = ∫

𝜕Ω

𝐹
𝜕𝐺

𝜕𝑛
𝑑𝑠 −∬

Ω

(∇𝐹 ⋅ ∇𝐺) 𝑑𝑥 𝑑𝑦.

(48)

Considering the zero-flux boundary conditions, one can
show that

∬
Ω

𝜕𝑉

𝜕𝐻
𝑑
1
∇
2
𝐻𝑑𝑥𝑑𝑦

= −𝑑
1
∬
Ω

𝜕
2
𝑉

𝜕𝐻2
[(

𝜕𝐻

𝜕𝑥
)

2

+ (
𝜕𝐻

𝜕𝑦
)

2

]𝑑𝑥𝑑𝑦 ≤ 0,

∬
Ω

𝜕𝑉

𝜕𝑃
𝑑
2
∇
2
𝑃𝑑𝑥𝑑𝑦

= −𝑑
2
∬
Ω

𝜕
2
𝑉

𝜕𝑃2
[(

𝜕𝑃

𝜕𝑥
)

2

+ (
𝜕𝑃

𝜕𝑦
)

2

]𝑑𝑥𝑑𝑦 ≤ 0.

(49)

From the previous analysis, we note that 𝑑𝑉
2
/𝑑𝑡 < 0 is

valid if 𝑑𝑉/𝑑𝑡 < 0 is true. This implies that the equilibrium
𝐸
∗ of bothmodel (7) andmodel (8) is globally asymptotically

stable if 0 < 𝑚 < 1/(1 + 𝑎𝛿) holds. This ends the proof.

On the other hand, Turing instability sets in when at least
one of the conditions is either tr(𝐷) < 0 or det(𝐷) > 0. It is
evident that the condition tr(𝐷) < 0 is not violated when the
requirement 𝑟∗ − 𝑟 < 0 is met [39]. Hence, only violation of
condition det(𝐷) > 0 gives rise to diffusion instability. Then,
the condition for diffusive instability is given by

𝐺(𝑘
2
) ≡ 𝑑
1
𝑑
2
𝑘
4
+ (𝑟𝑑
1
− 𝑟
∗
𝑑
2
) 𝑘
2
+ det (𝐽 (𝐸∗)) < 0. (50)

𝐺(⋅) is quadratic in 𝑘
2, and the graph of 𝐺(𝑘2) = 0 is a

parabola. The minimum of 𝐺(𝑘2) occurs at 𝑘2 = 𝑘
2

𝑚
, where

𝑘
2

𝑚
=
𝑟
∗
𝑑
2
− 𝑟𝑑
1

2𝑑
1
𝑑
2

> 0. (51)

The critical wave number 𝑘
𝑐
of the first perturbations to grow

is found by evaluating 𝑘
𝑚
from (51).

Thus, a sufficient condition for Turing instability is that
𝐺(𝑘
2

𝑚
) is negative. Therefore,

𝐺(𝑘
2

𝑚
) = det (𝐽 (𝐸∗)) −

(𝑟𝑑
1
− 𝑟
∗
𝑑
2
)
2

4𝑑
1
𝑑
2

< 0. (52)

Combination of (51) and (52) leads to the following final
criterion for diffusive instability:

(𝑟𝑑
1
− 𝑟
∗
𝑑
2
)
2

> 4𝑑
1
𝑑
2
det (𝐽 (𝐸∗)) . (53)

Summarizing the previous discussions, we can obtain the
following theorem.
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Theorem 10. If 𝑟𝑑
1
/𝑑
2

< 𝑟
∗

< 𝑟 and 𝑟
∗
𝑑
2
− 𝑟𝑑
1

>

2√𝑑
1
𝑑
2
det(𝐽(𝐸∗)) hold, the criterion for Turing instability

for model (8) emerges, and the critical wave number 𝑘
𝑐
=

√(𝑟∗𝑑
2
− 𝑟𝑑
1
)/2𝑑
1
𝑑
2
.

The Turing instability (or bifurcation) breaks spatial
symmetry, leading to the formation of patterns that are
stationary in time and oscillatory in space [40, 41]. We adopt
the intrinsic growth rates of predator 𝑟 as the bifurcation
parameter, and the linear stability analysis yields the bifurca-
tion diagram shown in Figure 7.TheTuring bifurcation curve
separates the parametric space into two domains. Above the
curve, the solutions of model (8) are stable for all pairs of
(𝑚, 𝑟); that is, there is no Turing instability. While below the
curve, the solutions of model (8) are unstable for (𝑚, 𝑟) and
diffusive instability emerges; that is, Turing patterns emerge.
This domain is called the Turing space.

3.2. Pattern Formation. In this subsection, we performed
extensive numerical simulations of the spatially extended
model (8) in two-dimension spaces, and the qualitative
results are shown here. All our numerical simulations employ
the zero-flux boundary conditions with a model size of 𝐿×𝐿,
with 𝐿 = 100 discretized through 𝑥 → (𝑥

0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

and𝑦 → (𝑦
0
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
), with 𝑛 = 200. Other parameters

are fixed as 𝑎 = 0.8, 𝛿 = 1.75, 𝑟 = 0.15, 𝑑
1
= 0.01, and 𝑑

2
= 1.

The numerical integration of model (8) is performed by
using a finite difference approximation for the spatial deriva-
tives and an explicit Euler method for the time integration
[42] with a time stepsize of 𝜏 = 1/100. The initial condition
is always a small amplitude random perturbation around the
positive constant steady state solution 𝐸

∗. After the initial
period during which the perturbation spread, either the
model goes into a time-dependent state or to an essentially
steady state solution (time independent).

More precisely, the concentrations (𝐻
𝑛+1

𝑖,𝑗
, 𝑃
𝑛+1

𝑖,𝑗
) at the

moment (𝑛 + 1)𝜏 at the mesh position (𝑖, 𝑗) are given by

𝐻
𝑛+1

𝑖,𝑗
= 𝐻
𝑛

𝑖,𝑗
+ 𝜏𝑑
1
Δ
ℎ
𝐻
𝑛

𝑖,𝑗
+ 𝜏𝑓 (𝐻

𝑛

𝑖,𝑗
, 𝑃
𝑛

𝑖,𝑗
) ,

𝑃
𝑛+1

𝑖,𝑗
= 𝑃
𝑛

𝑖,𝑗
+ 𝜏𝑑
2
Δ
ℎ
𝑃
𝑛

𝑖,𝑗
+ 𝜏𝑔 (𝐻

𝑛

𝑖,𝑗
, 𝑃
𝑛

𝑖,𝑗
) ,

(54)

with the Laplacian defined by

Δ
ℎ
𝐻
𝑛

𝑖,𝑗
=

𝐻
𝑛

𝑖+1,𝑗
+ 𝐻
𝑛

𝑖−1,𝑗
+ 𝐻
𝑛

𝑖,𝑗+1
+ 𝐻
𝑛

𝑖,𝑗−1
− 4𝐻
𝑛

𝑖,𝑗

ℎ2
, (55)

where 𝑓(𝐻, 𝑃) = 𝐻(1 − 𝐻)(1 − 𝑚/(𝐻 + 1)) − 𝑎𝐻𝑃/(1 + 𝐻),
𝑔(𝐻, 𝑃) = 𝑟𝑃(1 − 𝑃/𝛿𝐻), and the space stepsize ℎ = 1/3.

In the numerical simulations, different types of dynamics
are observed, and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝐻, for
instance.

Figure 8 shows the evolution of the spatial pattern of
prey 𝐻 at 𝑡 = 0, 500, 1000, 2000, with small random
perturbation of the stationary solution 𝐸

∗ of the spatially
homogeneous systems when 𝑚 is located in “Turing space.”

1.2

0.8

1

0.6

0.4

0.2

0
0.7 0.8 0.9 1

r

m

Turing space

Figure 7: Turing bifurcation diagram for model (8) using 𝑚 and 𝑟

as parameters. Other parameters are taken as 𝑎 = 0.8, 𝛿 = 1.75,
𝑑
1
= 0.01, and 𝑑

2
= 1. Above the curve, the positive equilibrium

𝐸
∗ is the only stable solution of model (3). Below the curve, the

positive equilibrium 𝐸
∗ loses its stability with respect to model (3),

and Turing instability occurs; this domain is called the Turing space.

In this case, one can see that for model (8), the random initial
distribution leads to the formation of a strongly irregular
transient pattern in the domain. After the irregular pattern
is formed (c.f., Figures 8(b) and 8(c)), it grows slightly and
jumps alternately for a certain time, and finally spots patterns,
which are isolated zones with low prey densities, prevail over
the whole domain, and the dynamics of the model does not
undergo any further changes (c.f., Figure 8(d)).

Figure 9 shows stripe patterns are interlaced stripes of
high and lowpopulation densities of prey𝐻 for the parameter
𝑚 = 0.78 at 𝑡 = 1000. In Figure 10, with the parameter 𝑚 =

0.85, the spot-stripe mixtures pattern is time independent
with low prey densities.

4. Concluding Remarks

In this paper, we are concerned with the complex dynamics
in a diffusive Holling-Tanner predator-prey model with the
Allee effect on prey. The value of this study lies in two
folds. First, the local asymptotic stability conditions for
coexisting equilibrium and conditions for Hopf bifurcation
are described briefly for the model with the weak and strong
Allee effects. Second, it gives the analysis of Turing instability
which determines the Turing space in the spatial domain
and meanwhile illustrates the Turing pattern formation close
to the onset Turing bifurcation via numerical simulations,
which shows that the model dynamics exhibits complex
pattern replication.

We note that in the analyzed models, a big difference
between the dynamics of model with strong or weak Allee
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Figure 8: Spots pattern of𝐻 in model (8) for𝑚 = 0.75. Times: (a) 0, (b) 500, (c) 1000, and (d) 2000.
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Figure 9: Stripes pattern of𝐻 inmodel (8) for𝑚 = 0.78 at 𝑡 = 1000.

effect exists. In the case of strong Allee effect, two positive
equilibria can coexist for a subset of parameters with a var-
ied dynamics but different to other Holling-Tanner models
analyzed earlier [12–14]. We have shown that one of these
equilibria is always a saddle point and proved the existence
of a separatrix curve. And there is no global asymptotically

0.4

0.35

0.3

0.25

0.2

0.15

0.1

Figure 10: Spot-stripe mixtures pattern of 𝐻 in model (8) for 𝑚 =

0.85 at 𝑡 = 1000.

stable positive equilibrium. In this case, the point (0, 0) is
an attractor in addition to locally stable positive equilibrium
𝐸
+
for determined parameter values, which leads to the

existence of a bistability phenomenon. The dynamics of the
model is determined by the initial conditions; the predator
and prey may be extinction or coexistence. This means
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that the strong Allee effect could easily lead to the risk
of population extinction. Nevertheless, in the case of weak
Allee effect, model (7) can only have one unique positive
equilibrium, which is globally asymptotically stable under
some conditions. Therefore, the predators and preys can
coexist in stable conditions.

Furthermore, we have investigated the conditions for
the predator-prey model which experiences spatial patterns
through diffusion-driven instability. We have derived the
conditions of Turing instability in terms of our model
parameters analytically. In addition, to get a deeper insight
into the model’s dynamics behaviour, we select the different
values of parameter𝑚. An increase of𝑚, from the numerical
results, one can see that our model has rich and complex
spatiotemporal behavior. We find three typical Turing pat-
terns, that is, spots pattern, stripes pattern, and spots-stripes
mixtures pattern. To the best of our knowledge, the Turing
pattern we illustrate here is the first reported case to our
model. And our complete analysis of the spatial model will
give new suggestion to the models with the Allee effect.

Acknowledgments

The authors would like to thank the anonymous referee
for very helpful suggestions and comments which led to
improvements of their original paper. And this work is
supported by the Cooperative Project of Yulin City (2011).

References

[1] J. D. Murray, Mathematical Biology. II: Spatial Models and
Biomedical Applications, vol. 18 of Interdisciplinary Applied
Mathematics, Springer, New York, NY, USA, 3rd edition, 2003.
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A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the
nonlinear free vibration of the system is derived by applying He’s variational iteration method, and conditions for resonance are
obtained, which should be avoided in the cushioning design.

1. Introduction

Packaged products can be potentially damaged by dropping.
In order to prevent any damage, a product and a cushioning
packaging are always included in a packaging system [1, 2],
and it is very important to investigate the condition for
resonance. However, the oscillation in the packaging system
is of inherent nonlinearity [3–5], and it remains a problem to
obtain the resonance condition for nonlinear packaging sys-
tem. Polymer foams, especially EPS (expanded polystyrene),
are widely used for cushion or protective packaging, and the
governing equations can be expressed as

𝑚 ̈𝑥+ 𝛽
3
𝑡ℎ (𝛽
1
𝑥) + 𝛽

4
tan (𝛽

2
𝑥)

+ 𝛽
5
tan3 (𝛽

2
𝑥) = 0,

𝑥 (0) = 0,

̇𝑥 (0) = √2𝑔ℎ.

(1)

Here, the coefficient 𝑚 denotes the mass of the packaged
product, while 𝛽

𝑖
denote, respectively, the characteristic

constants of polymer foams which could be obtained by
compression test, and ℎ is the dropping height.

By introducing these parameters: 𝑇
0

= √𝑚/𝛽
1
𝛽
3
, 𝐿 =

1/𝛽
1
and let𝑋 = 𝑥/𝐿, 𝑇 = 𝑡/𝑇

0
, 𝜆
1
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2
/𝛽
1
, 𝜆
2
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4
/𝛽
3
, and

𝜆
3
= 𝛽
5
/𝛽
3
, (1) can be written in the following forms
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(2)

By using Taylor series for sin 𝑋 and tan𝑋, (2) can be
equivalently written as
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(3)
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where

𝜔
01

= √1 + 𝜆
1
𝜆
2
. (4)

2. Variational Iteration Method

The variational iteration method [6–13] has been widely
applied in solving many different kinds of nonlinear equa-
tions [6–16], and is especially effective in solving nonlinear
vibration problems with approximations [17–20]. Applying
the variational iteration method [6–13], the following itera-
tion formulae can be constructed:
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(5)

Beginning with the initial solutions,

𝑋
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3. Resonance

The resonance can be expected when one of the following
conditions is met:

Ω = 𝜔
01
,

Ω =
1

3
𝜔
01
,

Ω =
1

5
𝜔
01
,
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1

7
𝜔
01
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(9)

These conditions should be avoided during the cushion-
ing packaging design procedure.

4. Conclusion

The conditions for resonance, which should be avoided in
the cushioning packaging design procedure, can be easily
obtained using the variational iteration method.
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This paper obtains the exact solutions of the φ4 equation. The Lie symmetry approach along with
the simplest equation method and the Exp-function method are used to obtain these solutions. As
a simplest equation we have used the equation of Riccati in the simplest equation method. Exact
solutions obtained are travelling wave solutions.

1. Introduction

The research area of nonlinear equations has been very active for the past few decades.
There are several kinds of nonlinear equations that appear in various areas of physics and
mathematical sciences. Much effort has been made on the construction of exact solutions
of nonlinear equations as they play an important role in many scientific areas, such as, in
the study of nonlinear physical phenomena [1, 2]. Nonlinear wave phenomena appear in
various scientific and engineering fields, such as fluid mechanics, plasma physics, optical
fiber, biology, oceanology [3], solid state physics, chemical physics, and geometry. In recent
years, many powerful and efficient methods to find analytic solutions of nonlinear equation
have drawn a lot of interest by a diverse group of scientists. These methods include, the tanh-
function method, the extended tanh-function method [2, 4, 5], the sine-cosine method [6],
and the (G′/G)-expansion method [7, 8].
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In this paper, we study the ϕ4 equation, namely,

φtt − φxx − φ + φ3 = 0. (1.1)

The purpose of this paper is to use the Lie symmetry method along with the simplest equation
method (SEM) and the Exp-function method to obtain exact solutions of the ϕ4 equation. The
simplest equation method was developed by Kudryashov [9–12] on the basis of a procedure
analogous to the first step of the test for the Painlevé property. The Exp-function method is a
very powerful method for solving nonlinear equations. This method was introduced by He
and Wu [13] and since its appearance in the literature it has been applied by many researchers
for solving nonlinear partial differential equations. See for example, [14, 15].

The outline of this paper is as follows. In Section 2 we discuss the methodology of Lie
symmetry analysis and obtain the Lie point symmetries of the ϕ4 equation. We then use the
translation symmetries to reduce this equation to an ordinary differential equation (ODE). In
Section 3 we describe the SEM and then we obtain the exact solutions of the reduced ODE
using SEM. In Section 4 we explain the basic idea of the Exp-function method and obtain
exact solutions of the reduced ODE using the Exp-function method. Concluding remarks are
summarized in Section 5.

2. Lie Symmetry Analysis

We recall that a Lie point symmetry of a partial differential equation (PDE) is an invertible
transformation of the independent and dependent variables that keep the equation invariant.
In general determining all the symmetries of a partial differential equation is a daunting task.
However, Sophus Lie (1842–1899) noticed that if we confine ourselves to symmetries that
depend continuously on a small parameter and that form a group (continuous one-parameter
group of transformations), one can linearize the symmetry condition and end up with an
algorithm for calculating continuous symmetries [16–19].

The symmetry group of (1.1) will be generated by the vector field of the form

X = τ
(
t, x, φ

) ∂
∂t

+ ξ
(
t, x, φ

) ∂

∂x
+ η
(
t, x, φ

) ∂

∂φ
. (2.1)

Applying the second prolongation X[2] to (1.1) we obtain

X[2]
(
φtt − φxx − φ + φ3

)∣∣∣
(1.1)

= 0, (2.2)

where

X[2] = X + ζ1
∂

∂φt
+ ζ2

∂

∂φx
+ ζ11

∂

∂φtt
+ ζ12

∂

∂φtx
+ ζ22

∂

∂φxx
,

ζ1 = Dt

(
η
) − φtDt(τ) − φxDt(ξ),

ζ2 = Dx

(
η
) − φtDx(τ) − φxDx(ξ),

ζ11 = Dt(ζ1) − φttDt(τ) − φtxDt(ξ),



Abstract and Applied Analysis 3

ζ12 = Dx(ζ1) − φttDx(τ) − φtxDx(ξ),

ζ22 = Dx(ζ2) − φtxDt(τ) − φxxDt(ξ),

Dt =
∂

∂t
+ φt

∂

∂φ
+ φtx

∂

∂φx
+ φtt

∂

∂φt
+ · · · ,

Dx =
∂

∂x
+ φx

∂

∂φ
+ φxx

∂

∂φx
+ φtx

∂

∂φt
+ · · · .

(2.3)

Expanding the (2.2) we obtain the following overdetermined system of linear partial differ-
ential equations:

η − ηtt + ηxx = 0, ηu − 2τt = 0, 2ηtu − τtt + τxx = 0, τt − ξx = 0,

ηuu − 2τtu = 0, τu = 0, ξtt + 2ηxu − ξxx = 0, τuu = 0, ξt − τx = 0,

ξtu − τxu = 0,

ξuu = 0,

ξu = 0,

ηuu − 2ξxu = 0.

(2.4)

Solving the above system we obtain the following infinitesimal generators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = x

∂

∂t
+ t

∂

∂x
. (2.5)

We now use a linear combination of the translation symmetries X1 and X2, namely, X = X1 +
cX2 and reduce (1.1) to an ordinary differential equation. The symmetry X yields the
following two invariants:

χ = x − ct, u = φ, (2.6)

which gives a group invariant solution u = u(χ) and consequently using these invariants
(1.1) is transformed into the second-order nonlinear ODE

(
c2 − 1

)
u′′ − u + u3 = 0. (2.7)

3. Solution of (2.7) Using the Simplest Equation Method

We now use the simplest equation method to solve (2.7). The simplest equation that will be
used is the Ricatti equation

G′(χ
)
= bG

(
χ
)
+ dG

(
χ
)2
, (3.1)
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where b and d are arbitrary constants. This equation is a well-known nonlinear ordinary dif-
ferential equation which possess exact solutions given by elementary functions. The solutions
can be expressed as

G
(
χ
)
=

b exp
[
b
(
χ + C

)]

1 − d exp
[
b
(
χ + C

)] , (3.2)

for the case when d < 0, b > 0, and

G
(
χ
)
= − b exp

[
b
(
χ + C

)]

1 + d exp
[
b
(
χ + C

)] , (3.3)

for d > 0, b < 0. Here C is a constant of integration.
Let us consider the solution of (2.7) of the form

u
(
χ
)
=

M∑

i=0

Ai

(
G
(
χ
))i

, (3.4)

where G(χ) satisfies the Riccati equation (3.1), M is a positive integer that can be determined
by balancing procedure, and A0, A1, A2, . . . , AM are parameters to be determined.

The balancing procedure yields M = 1, so the solution of (2.7) is of form

u
(
χ
)
= A0 +A1G

(
χ
)
. (3.5)

3.1. Solution of (2.7) When d < 0 and b > 0

Substituting (3.5) into (2.7) and making use of the Ricatti equation (3.1) and then equating all
coefficients of the functions Gi to zero, we obtain an algebraic system of equations in terms
of A0 and A1. Solving these algebraic equations, with the aid of Mathematica, we obtain the
following values of A0 and A1.

Case 1. A0 = −1, A1 = −bd + bc2d, b = ±√2/
√

1 − c2, 1 − c2 /= 0.

Case 2. A0 = 1, A1 = bd − bc2d, b = ±√2/
√

1 − c2, 1 − c2 /= 0.
Therefore, when d < 0, b > 0 the solution of (2.7) and hence the solution of (1.1) for

Case 1 is given by

φ1(x, t) = −1 +
b2d
(
c2 − 1

)
exp[b(x − ct + C)]

1 − d exp[b(x − ct + C)]
, (3.6)

and the solution of (1.1) for Case 2 is given by

φ2(x, t) = 1 − b2d
(
c2 − 1

)
exp[b(x − ct + C)]

1 − d exp[b(x − ct + C)]
. (3.7)
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3.2. Solution of (2.7) When d > 0 and b < 0

If d > 0, b < 0, substituting (3.5) into (2.7) and making use of (3.1) and then proceeding as
above, we obtain the following values of A0 and A1.

Case 3. A0 = −1, A1 = −bd + bc2d, b = ±√2/
√

1 − c2, 1 − c2 /= 0.

Case 4. A0 = 1, A1 = bd − bc2d, b = ±√2/
√

1 − c2, 1 − c2 /= 0.
Therefore, when d > 0, c < 0 the solution of (2.7) and hence the solution of (1.1) for

Case 3 is given by

φ3(x, t) = −1 − b2d
(
c2 − 1

)
exp[b(x − ct + C)]

1 + d exp[b(x − ct + C)]
, (3.8)

and the solution of (1.1) for Case 4 is given by

φ4(x, t) = 1 +
b2d
(
c2 − 1

)
exp[b(x − ct + C)]

1 + d exp[b(x − ct + C)]
. (3.9)

4. Solution of (2.7) Using the Exp-Function Method

In this section we use the Exp-function method for solving (2.7). According to the Exp-func-
tion method [13–15], we consider solutions of (2.7) in the form

u
(
χ
)
=
∑d

n=−b an exp
(
nχ
)

∑q
m=−p bm exp

(
mχ
) , (4.1)

where b, d, p, and q are positive integers which are unknown to be further determined, an

and bm are unknown constants. By the balancing procedure of the Exp-function method, we
obtain p = b and q = d. Furthermore, for simplicity, we set p = b = 1 and q = d = 1, so (4.1)
reduces to

u
(
χ
)
=

a−1 exp
(−χ) + a0 + a1 exp

(
χ
)

b−1 exp
(−χ) + b0 + b1 exp

(
χ
) . (4.2)

Substituting (4.2) into (2.7) and by the help of Mathematica, we obtain

c = ±
√

2, a−1 = 0, a1 = 0,

b−1 =
a2

0

8
, b0 = 0, b1 = 1,

(4.3)

where a0 is a free parameter. Substituting these results into (4.2), we obtain the exact solution

u
(
χ
)
=

a0 exp
(
χ
)

(
a2

0/8
)
+ exp

(
2χ
) , (4.4)
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of (2.7). Consequently, if we choose that a0 =
√

8 then this solution, in terms of the variables
x and t becomes

φ(x, t) =
√

2sech

⎛

⎝

√
1

c2 − 1
(x − ct)

⎞

⎠, (4.5)

which is a soliton solution of our ϕ4 equation (1.1).

5. Conclusion

In this paper, Lie symmetry analysis in conjunction with the simplest equation method and
the Exp-function method have been successfully used to obtain exact solutions of the ϕ4

equation. As a simplest equation, we have used the Riccati equation. The solutions obtained
were travelling wave solutions. In particular, a soliton solution was also obtained.

References

[1] M. Duranda and D. Langevin, “Physicochemical approach to the theory of foam drainage,” The
European Physical Journal E, vol. 7, pp. 35–44, 2002.

[2] E. Fan, “Extended tanh-function method and its applications to nonlinear equations,” Physics Letters
A, vol. 277, no. 4-5, pp. 212–218, 2000.

[3] L. A. Ostrovsky, “Nonlinear internal waves in a rotating ocean,” Oceanology, vol. 18, pp. 119–125, 1978.
[4] A.-M. Wazwaz, “The tanh-coth method for solitons and kink solutions for nonlinear parabolic

equations,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1467–1475, 2007.
[5] A.-M. Wazwaz, “The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov

and the Tzitzeica-Dodd-Bullough equations,” Chaos, Solitons & Fractals, vol. 25, no. 1, pp. 55–63, 2005.
[6] A.-M. Wazwaz, “The sine-cosine method for obtaining solutions with compact and noncompact

structures,” Applied Mathematics and Computation, vol. 159, no. 2, pp. 559–576, 2004.
[7] R. Abazari, “Application of (G′/G)-expansion method to travelling wave solutions of three nonlinear

evolution equation,” Computers & Fluids, vol. 39, no. 10, pp. 1957–1963, 2010.
[8] E. Salehpour, H. Jafari, and N. Kadkhoda, “Application of, (G′/G)-expansion method to nonlinear

Lienard equation,” Indian Journal of Science and Technology, vol. 5, pp. 2554–2556, 2012.
[9] H. Jafari, N. Kadkhoda, and C. M. Khalique, “Travelling wave solutions of nonlinear evolution equa-

tions using the simplest equation method,” Computers & Mathematics with Applications, vol. 64, no. 6,
pp. 2084–2088, 2012.

[10] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential
equations,” Chaos, Solitons & Fractals, vol. 24, no. 5, pp. 1217–1231, 2005.

[11] N. A. Kudryashov and N. B. Loguinova, “Extended simplest equation method for nonlinear differen-
tial equations,” Applied Mathematics and Computation, vol. 205, no. 1, pp. 396–402, 2008.

[12] N. K. Vitanov, “Application of simplest equations of Bernoulli and Riccati kind for obtaining exact
traveling-wave solutions for a class of PDEs with polynomial nonlinearity,” Communications in
Nonlinear Science and Numerical Simulation, vol. 15, no. 8, pp. 2050–2060, 2010.

[13] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons &
Fractals, vol. 30, no. 3, pp. 700–708, 2006.

[14] X.-H. Wu and J.-H. He, “EXP-function method and its application to nonlinear equations,” Chaos,
Solitons & Fractals, vol. 38, no. 3, pp. 903–910, 2008.

[15] X. W. Zhou, Y. X. Wen, and J. H. He, “Exp-function method to solve the non-linear dispersive K(m,n)
equations,” International Journal of Nonlinear Science and Numerical Simulation, vol. 9, pp. 301–306, 2008.

[16] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, vol. 81 of Applied Mathematical
Sciences, Springer, New York, NY, USA, 1989.

[17] N. H. Ibragimov, CRCHandbook of Lie Group Analysis of Differential Equations, vol. 1–3, CRC Press, Boca
Raton, Fla, USA, 19941996.



Abstract and Applied Analysis 7

[18] A. G. Johnpillai and C. M. Khalique, “Lie group classification and invariant solutions of mKdV
equation with time-dependent coefficients,” Communications in Nonlinear Science and Numerical
Simulation, vol. 16, no. 3, pp. 1207–1215, 2011.

[19] P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics,
Springer, Berlin, Germany, 2nd edition, 1993.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 567401, 15 pages
doi:10.1155/2012/567401

Research Article
Local Fractional Fourier Series with Application to
Wave Equation in Fractal Vibrating String

Ming-Sheng Hu,1 Ravi P. Agarwal,2 and Xiao-Jun Yang3

1 Institute of Software Science, Zhengzhou Normal University, Zhengzhou 450044, China
2 Department of Mathematics, Texas A and M University, Kingsville, TX 78363-8202, USA
3 Department of Mathematics and Mechanics, China University of Mining and Technology, Jiangsu,
Xuzhou 221008, China

Correspondence should be addressed to Xiao-Jun Yang, dyangxiaojun@163.com

Received 14 August 2012; Revised 25 October 2012; Accepted 8 November 2012

Academic Editor: Lan Xu

Copyright q 2012 Ming-Sheng Hu et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We introduce the wave equation in fractal vibrating string in the framework of the local fractional
calculus. Our particular attention is devoted to the technique of the local fractional Fourier series
for processing these local fractional differential operators in a way accessible to applied scientists.
By applying this technique we derive the local fractional Fourier series solution of the local
fractional wave equation in fractal vibrating string and show the fundamental role of the Mittag-
Leffler function.

1. Introduction

Fractional calculus arises in many problems of physics, continuum mechanics, visco-
elasticity, and quantum mechanics, and other branches of applied mathematics and nonlinear
dynamics have been studied [1–7]. In general, the fractional analogues are obtained by
changing the classical time derivative by a fractional one, which can be Riemann-Liouville,
Caputo, or another one. Many classical partial differential equations possess a fractional
analogue, like the fractional diffusion-wave equation [8–12], the fractional diffusion equation
[13–16], the fractional wave equation [17, 18], the fractional Schrödinger equation [19, 20],
the fractional heat equation [21], the fractional KdV equation [22], the fractional Fokker-
Planck equations [23], the fractional Fick’s law [24], the fractional evolution equation [25],
the Fractional Heisenberg equation [26], the fractional Ginzburg-Landau equation [27],
Fractional hydrodynamic equation [28], the fractional seepage flow equation [29], and the
fractional KdV-Burgers equation [30].
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There also are other methods for solving fractional differential equations, for example,
the fractional variational iteration method [31, 32] and the fractional complex transform
[33–37]. In all of the methods mentioned above, the solutions of the fractional differential
equations should be analytical if the fractional derivative is in the Caputo or Riemann-
Liouville sense. However, some solutions to ordinary and partial differential equations are
fractal curves. As a result, we cannot employ the classical Fourier series, which requires
that the defined functions should be differentiable, to describe some solutions to ordinary
and partial differential equations in fractal space. However, based on the modified Riemann-
Liouville derivative, Jumarie structured a Jumurie’s calculus of fractional order [38] (which is
one of useful tools to deal with everywhere continuous but nowhere differentiable functions)
and its applications were taken into account in Probability calculus of fractional order [39],
Laplace transform of fractional order via the Mittag-Leffler function (in convenient Hilbert
space) [40], and adomian decomposition method for nonsmooth initial value problems
[41]. Local fractional calculus is revealed as one of useful tools to deal with everywhere
continuous but nowhere differentiable functions in areas ranging from fundamental science
to engineering [42–57]. For these merits, local fractional calculus was successfully applied in
the local fractional Laplace problems [53, 54], local fractional Fourier analysis [53, 54], local
fractional short time transform [53, 54], local fractional wavelet transform [53–55], fractal
signal [55, 56], and local fractional variational calculus [57].

In this paper we introduce a local fractional wave equation in fractal vibrating string
which is described as

∂2αu(x, t)
∂t2α

+ a2α ∂
2αu(x, t)
∂x2α

= 0, (1.1)

with fractal boundary conditions

u(0, t) = u(l, t) = 0,

u(0, t) =
∂αu(l, t)
∂xα

= 0,

u(x, 0) = f(x),

∂αu(l, 0)
∂xα

= g(x),

(1.2)

where ∂2αu(x, t)/∂t2α, ∂2αu(x, t)/∂x2α, ∂αu(l, 0)/∂xα, and ∂αu(l, t)/∂xα are local fractional
partial differential operator, and where u(x, t) is local fractional continuous (for more details,
see [53, 54]). We study the technique of the local fractional Fourier series for treating the
local fractional wave equation in fractal vibrating string. This paper is organized as follows.
In Section 2, we specify and investigate the concepts of local fractional calculus and local
fractional Fourier series. In Section 3, we present the solving process for local fractional wave
equation with local fractional derivative. In Section 4, we study the expression solution with
Mittag-Leffler functions in fractal space. Finally, Section 5 is conclusions.
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2. Preliminaries

In this section we start with local fractional continuity of functions, and we introduce the
notions of local fractional calculus and local fractional Fourier series.

2.1. Local Fractional Continuity of Functions

In order to discuss the local fractional continuity of nondifferential functions on fractal sets,
we first consider the following results.

Lemma 2.1 (see [57]). Let F be a subset of the real line and be a fractal. If f : (F, d) → (Ω′, d′) is a
bi-Lipschitz mapping, then there are for constants ρ, τ > 0, and F ⊂ R,

ρsHs(F) ≤ Hs(f(F)
) ≤ τsHs(F), (2.1)

such that for all x1, x2 ∈ F,

ρα|x1 − x2|α ≤ ∣∣f(x1) − f(x2)
∣∣ ≤ τα|x1 − x2|α. (2.2)

As a direct result of Lemma 2.1, we have, [57],

∣∣f(x1) − f(x2)
∣∣ ≤ τα|x1 − x2|α, (2.3)

such that

∣∣f(x1) − f(x2)
∣∣ < εα, (2.4)

where α is fractal dimension of F. The result that is directly deduced from fractal geometry is
related to fractal coarse-grained mass function γα[F, a, b], which reads, [57],

γα[F, a, b] =
Hα(F ∩ (a, b))

Γ(1 + α)
, (2.5)

with

Hα(F ∩ (a, b)) = (b − a)α, (2.6)

where Hα is α dimensional Hausdorff measure.
Notice that we consider the dimensions of any fractal spaces (e.g., Cantor spaces or

like-Cantor spaces) as a positive number. It looks like Euclidean space because its dimension
is also a positive number. The detailed results had been considered in [53, 54, 57].

Definition 2.2. If there exists, [53, 57],

∣∣f(x) − f(x0)
∣∣ < εα, (2.7)
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with |x − x0| < δ, for ε, δ > 0 and ε, δ ∈ R, then f(x) is called local fractional continuous
at x = x0, denoted by limx→x0f(x) = f(x0). f(x) is called local fractional continuous on the
interval (a, b), denoted by

f(x) ∈ Cα(a, b), (2.8)

if (2.7) is valid for x ∈ (a, b).

Definition 2.3. If a function f(x) is called a nondifferentiable function of exponent α, 0 < α ≤ 1,
which satisfies Hölder function of exponent α, then for x, y ∈ X such that, [54, 57],

∣
∣f(x) − f

(
y
)∣∣ ≤ C

∣
∣x − y

∣
∣α. (2.9)

Definition 2.4. A function f(x) is called to be continuous of order α, 0 < α ≤ 1, or shortly α
continuous, when we have that, [54, 57],

f(x) − f(x0) = o
(
(x − x0)α

)
. (2.10)

Remark 2.5. Compared with (2.10), (2.7) is standard definition of local fractional continuity.
Here (2.9) is unified local fractional continuity [57].

2.2. Local Fractional Derivatives and Integrals

Definition 2.6 (let f(x) ∈ Cα(a, b)). Local fractional derivative of f(x) of order α at x = x0 is
given, [53–57],

f (α)(x0) =
dαf(x)
dxα

∣∣∣∣
x=x0

= lim
x→x0

Δα
(
f(x) − f(x0)

)

(x − x0)α
, (2.11)

where Δα(f(x) − f(x0)) ∼= Γ(1 + α)Δ(f(x) − f(x0)).

For any x ∈ (a, b), there exists, [53–57],

f (α)(x) = D
(α)
x f(x), (2.12)

denoted by

f(x) ∈ D
(α)
x (a, b). (2.13)

Local fractional derivative of high order is derived as, [57],

f (kα)(x) =

k times
︷ ︸︸ ︷
D

(α)
x · · ·D(α)

x f(x),
(2.14)
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and local fractional partial derivative of high order, [57],

∂kαf(x)
∂xkα

=

k times
︷ ︸︸ ︷
∂α

∂xα
· · · ∂α

∂xα
f(x).

(2.15)

Definition 2.7 (let f(x) ∈ Cα(a, b)). Local fractional integral of f(x) of order α in the interval
[a, b] is given by, [53–57],

aI
(α)
b f(x) =

1
Γ(1 + α)

∫b

a

f(t)(dt)α =
1

Γ(1 + α)
lim
Δt→ 0

j=N−1∑

j=0

f
(
tj
)(
Δtj

)α
, (2.16)

where Δtj = tj+1 − tj , Δt = max{Δt1,Δt2,Δtj , . . .}, and [tj , tj+1], j = 0, . . . ,N − 1, t0 = a, tN = b,
is a partition of the interval [a, b].

For convenience, we assume that

aI
(α)
a f(x) = 0 if a = b, aI

(α)
b f(x) = −bI

(α)
a f(x) if a < b. (2.17)

For any x ∈ (a, b), we get, [53, 54, 57],

aIx
(α)f(x), (2.18)

denoted by

f(x) ∈ I
(α)
x (a, b). (2.19)

Remark 2.8. If f(x) ∈ D
(α)
x (a, b), or I(α)x (a, b), we have that, [46, 47, 50],

f(x) ∈ Cα(a, b). (2.20)

2.3. Special Functions in Fractal Space

Definition 2.9. The Mittag-Leffler function in fractal space is defined by, [53, 57],

Eα(xα) :=
∞∑

k=0

xαk

Γ(1 + kα)
, x ∈ R, 0 < α ≤ 1. (2.21)

Definition 2.10. The sine function in fractal space is given by the expression, [54, 57],

sinαx
a :=

∞∑

k=0

(−1)k
xα(2k+1)

Γ[1 + α(2k + 1)]
, x ∈ R, 0 < α ≤ 1. (2.22)
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Definition 2.11. The cosine function in fractal space is given, [54, 57],

cosαxa :=
∞∑

k=0

(−1)k
x2αk

Γ(1 + 2αk)
, x ∈ R, 0 < α ≤ 1. (2.23)

The following rules hold [54, 57]:

Eα(xα)Eα

(
yα) = Eα

((
x + y

)α)
, Eα(xα)Eα

(−yα) = Eα

((
x − y

)α)
,

Eα(iαxα)Eα

(
iαyα) = Eα

(
iα
(
x + y

)α)
, Eα(iαxα) = cosαxα + iαsinαx

α,

sinαx
α =

Eα(iαxα) − Eα(−iαxα)
2iα

, cosαxα =
Eα(iαxα) + Eα(−iαxα)

2
,

cosα(−x)α = cosαxα, sinα(−x)α = −sinαx
α,

cos2
αx

α + sin2
αx

α = 1, sin2
αx

α =
1 − cosα(2x)α

2
,

cos2
αx

α =
1 + cosα(2x)α

2
, tanαx

α =
sinα(2x)α

1 + cosα(2x)α
=

1 − cosα(2x)α

sinα(2x)α
,

sinα(2x)α = 2sinαx
αcosαxα, cosα(2x)α = cos2

αx
α − sin2

αx
α,

tanα

(
2y

)α =
2tanαy

α

1 + tan2
αx

α
, sinα(2x)α =

2tanαx
α

1 + tan2
αx

α
,

cosα(2x)α =
1 − tan2

αx
α

1 + tan2
αx

α
, tanα

(
x + y

)α =
tanαx

α + tanαy
α

1 + tanαxαtanαyα
,

cosαxα + cosαyα = 2cosα
(
x + y

2

)α

cosα
(
x − y

2

)α

,

cosαxα − cosαyα = −2sinα

(
x + y

2

)α

sinα

(
x − y

2

)α

,

sinαx
α + sinαy

α = 2sinα

(
x + y

2

)α

cosα
(
x − y

2

)α

,

sinαx
α − sinαy

α = 2cosα
(
x + y

2

)α

sinα

(
x − y

2

)α

,

cosα
(
x + y

)α = cosαxαcosαyα − sinαx
αsinαy

α,

cosα
(
x − y

)α = cosαxαcosαyα + sinαx
αsinαy

α,

sinα

(
x + y

)α = sinαx
αcosαyα + cosαxαsinαy

α,

cosαxαcosαyα =
cosα

(
x + y

)α + cosα
(
x − y

)α

2
,
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sinαx
αsinαy

α = −cosα
(
x + y

)α − cosα
(
x − y

)α

2
,

sinαx
αcosαyα =

sinα

(
x + y

)α + sinα

(
x − y

)α

2
,

sinα(mx)αsinα(nx)α =
cosα((m − n)x)α − cosα((m + n)x)α

2
,

cosα(nx)αsinα(mx)α =
sinα((m + n)x)α − sinα((m − n)x)α

2
,

Eα

(
iα(nx)α

)
=
(
cosα(nx)α + iαsinα(nx)α

)n
,

n∑

k=1

sinα(nx)α =
sinα(nx/2)α

sinα(x/2)α
sinα

(
(n + 1)x

2

)α

, sinα

(x
2

)α

/= 0,

n∑

k=1

cosα(nx)α =
sinα(nx/2)α

sinα(x/2)α
cosα

(
(n + 1)x

2

)α

, sinα

(x
2

)α

/= 0,

1
2
+

n∑

k=1

cosα(nx)α =
sinα((2n + 1)x/2)α

2sinα(x/2)α
, sinα

(x
2

)α

/= 0.

(2.24)

Remark 2.12. iα is fractal imaginary unit, for more details, see [53–57].

2.4. Local Fractional Fourier Series

Definition 2.13. Suppose that f(x) ∈ Cα(−∞,∞) and f(x) be 2l-periodic. For k ∈ Z, local
fractional Fourier series of f(x) is defined as, [53–55],

f(x) =
a0

2
+

∞∑

k=1

(
ancosα

πα(kx)α

lα
+ bnsinα

πα(kx)α

lα

)
, (2.25)

where

ak =
1
lα

∫ l

−l
f(x)cosα

πα(kx)α

lα
(dx)α,

bk =
1
lα

∫ l

−l
f(x)sinα

πα(kx)α

lα
(dx)α

(2.26)

are the local fractional Fourier coefficients.
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For local fractional Fourier series (2.25), the weights of the fractional trigonometric
functions are calculated as

ak =

∫ l+t0
−l+t0 f(x)cosα

(
πα(kx)α/lα

)
(dx)α

∫ l+t0
−l+t0 cos2

α

(
πα(kx)α/lα

)
(dx)α

,

ak =

∫ l+t0
−l+t0 f(x)sinα

(
πα(kx)α/lα

)
(dx)α

∫ l+t0
−l+t0 sin2

α

(
πα(kx)α/lα

)
(dx)α

.

(2.27)

Definition 2.14. Suppose that f(x) ∈ Cα(−∞,∞) and f(x) be 2l-periodic. For k ∈ Z, complex
generalized Mittag-Leffler form of local fractional Fourier series of f(x) is defined as, [53, 54],

f(x) =
∞∑

k=−∞
CkEα

(
παiα(kx)α

lα

)
, (2.28)

where the local fractional Fourier coefficients is

Ck =
1

(2l)α

∫ l

−l
f(x)Eα

(−παiα(kx)α

lα

)
(dx)α with k ∈ Z. (2.29)

The above generalized forms of local fractional series are valid and are also derived from the
generalized Hilbert space [53, 54].

For local fractional Fourier series (2.28), the weights of the Mittag-Leffler functions are
written in the form

Ck =

(
1/(2l)α

) ∫ l+t0
−l+t0 f(x)Eα

(−παiα(kx)α/lα
)
(dx)α

(
1/(2l)α

) ∫ l+t0
−l+t0 Eα

(−παiα(kx)α/lα
)
Eα

(−παiα(kx)α/lα
)
(dx)α

. (2.30)

Above is generalized to calculate local fractional Fourier series.

3. Solutions to Wave Equation with Fractal Vibrating String

Now we look for particular solutions of the form

u(x, t) = φ(x)T(t), (3.1)

and arrive at the equations

φ(2α) + λ2αφ = 0, (3.2)

T (2α) + a2αλ2αT = 0, (3.3)
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with the boundary conditions

φ(0) = φ(α)(l) = 0. (3.4)

Equation has the solution

φ(x) = C1cosαλαxα + C2sinαλ
αxα (C1 = cos t, C2 = cos t). (3.5)

According to (3.4), for x = 0 and x = l we derive as

φ(0) = C1 = 0,

φ(l) = φ(x)
∣∣
x=l = C2sinαλ

αlα = 0.
(3.6)

Assuming that C2 /= 0, since otherwise φ(x) is identically zero, we find that

λαnl
α = nαπα, (3.7)

where n is an integer; we write

λαn =
(nπ

l

)α
(n = 0, 1, 2, . . .),

φn(x) = sinαλ
α
nx

α = sinαn
α
(πx

l

)α
= 0 (n = 0, 1, 2, . . .).

(3.8)

For λα = λαn equation (3.3) leads to

Tn(t) = Ancosαaαλαnt
α + Bnsinαa

αλαnt
α (n = 0, 1, 2, . . .), (3.9)

and therefore

un(x, t) = (Ancosαaαλαnt
α + Bnsinαa

αλαnt
α)sinαn

α
(πx

l

)α
(n = 0, 1, 2, . . .). (3.10)

To solve our problem, we form the local fractional Fourier series

u(x, t) =
∞∑

n=1

un(x, t)

=
∞∑

n=1

(Ancosαaαλαnt
α + Bnsinαa

αλαnt
α)sinαn

α
(πx

l

)α
,

(3.11)
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and require that

u(x, 0) =
∞∑

n=1

un(x, 0) =
∞∑

n=1

Ansinαn
(πx

l

)α
= f(x),

∂αu(l, 0)
∂xα

=
∞∑

n=1

(−Ana
αλαnsinαa

αλαnt
α + Bna

αλαncosαaαλαnt
α)sinαn

(πx
l

)α
∣
∣
∣
∣
t=0

=
∞∑

n=1

Bna
αλαnsinαn

(πx
l

)α

= g(x).

(3.12)

A calculation of local fractional Fourier coefficients of f(x) and g(x) with respect to the
system {sinαn

α(πx/l)α} is given by

An =

∫ l
0 f(x)sinαn

α(πx/l)α(dx)α
∫ l

0 sin2
αn

α(πx/l)α(dx)α
(n = 0, 1, 2, . . .), (3.13)

Bna
αλαn =

∫ l
0 g(x)sinαn

α(πx/l)α(dx)α
∫ l

0 sin2
αn

α(πx/l)α(dx)α
(n = 0, 1, 2, . . .). (3.14)

But
∫ l

0 sin2
αn

α(πx/l)α(dx)α = lα/2 and therefore

An =
2
lα

∫ l

0
f(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .), (3.15)

Bn =
2

aαλαnlα

∫ l

0
g(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .). (3.16)

Thus, the solution of our problem is given by formula (3.11), where local fractional
Fourier coefficients are determined. From (3.14) and (3.16), we get the harmonic vibrations

un(x, t) = (Ancosαaαλαnt
α + Bnsinαa

αλαnt
α)sinαλ

α
nx

α, (3.17)

where

An =
2
lα

∫ l

0
f(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .),

Bn =
1

2/aαλαnlα

∫ l

0
g(x)sinαλ

α
nx

α(dx)α (n = 0, 1, 2, . . .).

(3.18)



Abstract and Applied Analysis 11

4. Expression Solutions with Mittag-Leffler Functions in Fractal Space

Taking into account the relations, [57],

sinαx
α =

Eα(iαxα) − Eα(−iαxα)
2iα

,

cosαxα =
Eα(iαxα) + Eα(−iαxα)

2
,

(4.1)

we obtain the harmonic vibration with the Mittag-Leffler functions in fractal space

un(x, t) =
(
An

Eα(iαaαλαnt
α) + Eα(−iαaαλαnt

α)
2

+ Bn
Eα(iαaαλαnt

α) − Eα(−iαaαλαnt
α)

2iα

)

× Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα

=
[
An + Bn

2
Eα(iαaαλαnt

α) +
An − Bn

2
Eα(−iαaαλαnt

α)
]

× Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα

=
An + Bn

4iα
{
Eα

[
iαλαn(at + x)α

] − Eα

[
iαλαn(at − x)α

]}

+
An − Bn

4iα
{
Eα

[
iαλαn(x − at)α

] − Eα

[−iαλαn(at + x)α
]}
,

(4.2)

where its coefficients are

An =
2
lα

∫ l

0
f(x)sinαλ

α
nx

α(dx)α

=
2
lα

∫ l

0
f(x)

Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα
(dx)α

=
1

iαlα

∫ l

0
f(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .),

Bn =
2

aαλαnlα

∫ l

0
g(x)sinαλ

α
nx

α(dx)α

=
2

aαλαnlα

∫ l

0
g(x)

Eα(iαλαnx
α) − Eα(−iαλαnxα)

2iα
(dx)α

=
1

aαλαnlαiα

∫ l

0
g(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .).

(4.3)
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Hereby, we always find that

∣∣f(x) − f(x0)
∣∣ < εα,

∣∣g(x) − g(x0)
∣∣ < εα (4.4)

with |x − x0| < δ, for ε, δ > 0 and ε, δ ∈ R.
Hence the boundary conditions are fractal and solution with Mittag-Leffler functions

in fractal space is given by

u(x, t) =
∞∑

n=1

un(x, t)

=
∞∑

n=1

An + Bn

4iα
{
Eα

[
iαλαn(at + x)α

] − Eα

[
iαλαn(at − x)α

]}

+
∞∑

n=1

An − Bn

4iα
{
Eα

[
iαλαn(x − at)α

] − Eα

[−iαλαn(at + x)α
]}
,

(4.5)

where its coefficients are derived as

An =
1

iαlα

∫ l

0
f(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .),

Bn =
1

aαλαnlαiα

∫ l

0
g(x)(Eα(iαλαnx

α) − Eα(−iαλαnxα))(dx)α (n = 0, 1, 2, . . .).

(4.6)

5. Conclusions

We applied the technique of the local fractional Fourier series to treat with the local fractional
wave equation in fractal vibrating string. When contrasted with other analytical methods,
such as the heat-balance integral method, the homotopy perturbation method [11], the
variational iteration method [29], the exp-function method [58], the fractional variational
iteration method [31, 32], the fractional complex method [33–37], and others [59–61],
the present method combines the following two advantages. The boundary conditions to
the governing equations are local fractional continuous (the functions are nondifferential
functions in fractal space) because we employ the local fractional Fourier series, derived from
local fractional calculus, to deal with them. The governing equations with fractal behaviors
in media are structured based on the local fractional calculus. The way plays a crucial role
in local fractional calculus. This technique is efficient for the applied scientists to process
these differential equations with the local fractional differential operators in fractal space.
This paper that is an outstanding example of application of local fractional Fourier series
to the local fractional differential operators is given to elucidate the solution processes and
reliable results.
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The Wick-type stochastic KP equation is researched. The stochastic single-soliton solutions
and stochastic multisoliton solutions are shown by using the Hermite transform and Darboux
transformation.

1. Introduction

In recent decades, there has been an increasing interest in taking random effects into account
in modeling, analyzing, simulating, and predicting complex phenomena, which have been
widely recognized in geophysical and climate dynamics, materials science, chemistry biology,
and other areas, see [1, 2]. If the problem is considered in random environment, the stochastic
partial differential equations (SPDEs) are appropriate mathematical models for complex
systems under random influences or noise. So far, we know that the random wave is an
important subject of stochastic partial differential equations.

In 1970, while studying the stability of the KdV soliton-like solutions with small
transverse perturbations, Kadomtsev and Petviashvili [3] arrived at the two-dimensional
version of the KdV equation:

utx = (uxxx + 6uux)x + 3α2uyy, (1.1)

which is known as Kadomtsev-Petviashvili (KP) equation. The KP equation appears in physical
applications in two different forms with α = 1 and α = i, usually referred to as the KP-I and the
KP-II equations. The number of physical applications for the KP equation is even larger than
the number of physical applications for the KdV equation. It is well known that homogeneous
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balance method [4, 5] has been widely applied to derive the nonlinear transformations and
exact solutions (especially the solitary waves) and Darboux transformation [6], as well as
the similar reductions of nonlinear PDEs in mathematical physics. These subjects have been
researched by many authors.

For SPDEs, in [7], Holden et al. gave white noise functional approach to research
stochastic partial differential equations in Wick versions, in which the random effects are
taken into account. In this paper, we will use their theory and method to investigate the
stochastic soliton solutions of Wick-type stochastic KP equation, which can be obtained in
the influence of the random factors.

The Wick-type stochastic KP equation in white noise environment is considered as the
following form:

Utx =
(
f(t)♦Uxxx + 6g(t)♦U♦Ux

)♦
x + 3α2f(t)♦Uyy +W(t)♦R♦(U,Ux,Uxx,Uxxxx,Uyy

)
,

(1.2)

which is the perturbation of the KP equation with variable coefficients:

utx =
(
f(t)uxxx + 6g(t)uux

)
x + 3α2f(t)uyy, (1.3)

by random force W(t)♦R♦(U,Ux,Uxx,Uxxxx,Uyy), where ♦ is the Wick product on the
Hida distribution space (S(Rd))∗ which is defined in Section 2, f(t) and g(t) are functions
of t, W(t) is Gaussian white noise, that is, W(t) = Ḃ(t) and B(t) is a Brownian motion,
R(u, ux, uxx, uxxxx, uyy) = βuxxxx+6γu2

x+6γuuxx+3α2βuyy is a function of u, ux, uxx, uxxxx, uyy

for some constants β, γ , and R♦ is the Wick version of the function R.
This paper is organized as follows. In Section 2, the work function spaces are given. In

Section 3, we present the single-soliton solutions of stochastic KP equation (1.2). Section 4 is
devoted to investigate the multisoliton solutions of stochastic KP equation (1.2).

2. SPDEs Driven by White Noise

Let (S(Rd)) and (S(Rd))∗ be the Hida test function and the Hida distribution space on R
d,

respectively. The collection ξn = e(−x
2/2)hn(

√
2x)/(π(n−1)!)1/2

, n ≥ 1 constitutes an orthogonal basis
for L2(R), where hn(x) is the d-order Hermite polynomials. The family of tensor products ξα =
ξα1,...,αd = ξα1 ⊗ · · · ⊗ ξα1 (α ∈ N

d) forms an orthogonal basis for L2(Rd), where α = (α1, . . . , αd)
is d-dimensional multi-indices with α1, . . . , αd ∈ N. The multi-indices α = (α1, . . . , αd) are
defined as elements of the space J = (NN

0 )c of all sequences α = (α1, α2, . . .) with elements
αi ∈ N0 and with compact support, that is, with only finite many αi /= 0. For α = (α1, α2, . . .),
we define

Hα(ω) =
∞∏

i=1

hαi

(〈
ω, ηi

〉)
, ω ∈

(
S
(
R

d
))∗

. (2.1)

If n ∈ N is fixed, let (S)n1 consist of those x =
∑

α cαHα ∈ ⊕n
k=1L

2(μ) with cα ∈ R
n

such that ‖x‖2
1,k =

∑
α c

2
α(α!)2(2N)kα < ∞ for all k ∈ N with c2

α = |cα|2 =
∑n

k=1(c
(k)
α )2 if cα =

(c(1)α , . . . , c
(n)
α ) ∈ R

n, where μ is the white noise measure on (S∗(R),B(S∗(R))), α! =
∏∞

k=1αk!
and (2N)α =

∏
j(2j)

αj

for α = (α1, α2, . . .) ∈ J. The space (S)n−1 can be regarded as the dual of
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(S)n1 . (S)n−1 consisting of all formal expansion X =
∑

α bαHα with bα ∈ R
n such that ‖X‖−1,−q =∑

α b
2
α(2N)−qα < ∞ for some q ∈ N, by the action 〈X, x〉 =

∑
α(bα, cα)α! and (bα, cα) is the usual

inner product in R
n.

X♦Y =
∑

α,β(aα, bβ)Hα+β is called the Wick product of X and Y , for X =
∑

α aαHα, Y =
∑

α bαHα ∈ (S)n−1 with aα, bα ∈ R
n. We can prove that the spaces (S(Rd)), (S(Rd))∗(S)n1 , and

(S)n−1 are closed under Wick products.
For X =

∑
α aαHα ∈ (S)n−1 with aα ∈ R

n, H(X) or X̃ is defined as the Hermite transform
of X by H(X)(z) = X̃(z) =

∑
α aαz

α ∈ C
n (when convergent), where z = (z1, z2, . . .) ∈ C

N (the
set of all sequences of complex numbers) and zα = zα1

1 zα2
2 · · · zαn

n · · · for α = (α1, α2, . . .) ∈ J.
For X,Y ∈ (S)N−1, by this definition we have X̃♦Y (z) = X̃(z) · Ỹ (z) for all z such that X̃(z) and
Ỹ (z) exist. The product on the right-hand side of the above formula is the complex bilinear
product between two elements of C

N defined by (z1
1, . . . , z

1
n) · (z2

1, . . . , z
2
n) =

∑n
k=1 z

1
kz

2
k, where

zik ∈ C. Let X =
∑

α aαHα ∈ (S)n−1. Then the vector c0 = X̃(0) ∈ R
n is called the generalized

expectation of X denoted by E(X). Suppose that f : V → C
n is an analytic function, where

V is a neighborhood of E(X). Assume that the Taylor series of f around E(X) has coefficients
in R

n. Then the Wick version f♦(X) = H−1(f ◦ X̃) ∈ (S)n−1.
Suppose that modeling considerations lead us to consider the SPDE expressed

formally as A(t, x, ∂t,∇x,U,ω) = 0, where A is some given function, U = U(t, x, ω)
is the unknown generalized stochastic process, and the operators ∂t = ∂/∂t, ∇x =
(∂/∂x1 , . . . , ∂/∂xd) when x = (x1, . . . , cd) ∈ R

d. If we interpret all products as wick products
and all functions as their Wick versions, we have

A♦(t, x, ∂t,∇x,U,ω) = 0. (2.2)

Taking the Hermite transform of (2.2), the Wick product is turned into ordinary products
(between complex numbers), and the equation takes the form

Ã
(
t, x, ∂t,∇x, Ũ, z1, z2, . . .

)
= 0, (2.3)

where Ũ = H(U) is the Hermite transform of U and z1, z2, . . . are complex numbers. Suppose
that we can find a solution u = u(t, x, z) of (2.3) for each z = (z1, z2, . . .) ∈ Kq(r) for some q, r,
where Kq(r) = z = (z1, z2, . . .) ∈ C

N and
∑

α/= 0 |zα|2(2N)qα < r2. Then under certain conditions,
we can take the inverse Hermite transform U = H−1u ∈ (S)−1 and thereby obtain a solution
U of the original Wick equation (2.2). We have the following theorem, which was proved by
Holden et al. in [7].

Theorem 2.1. Suppose that u(t, x, z) is a solution (in the usual strong, pointwise sense) of (2.3)
for (t, x) in some bounded open set G ⊂ R × R

d and z ∈ Kq(r) for some q, r. Moreover, suppose
that u(t, x, z) and all its partial derivatives, which are involved in (2.3), are bounded for (t, x, z) ∈
G × Kq(r), continuous with respect to (t, x) ∈ G for all z ∈ Kq(r), and analytic with respect to
z ∈ Kq(r) for all (t, x) ∈ G. Then there exists U(t, x) ∈ (S)−1 such that u(t, x, z) = (Ũ(t, x))(z) for
all (t, x, z) ∈ G × Kq(r) and U(t, x) solves (in the strong sense in (S)−1) (2.2) in (S)−1.
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3. Single-Soliton Solution of Stochastic KP Equation

In this section, we investigate the single-soliton solutions of the Wick-type stochastic KP
equation (1.2). Using the similar idea of the Darboux transformation about the determinant
nonlinear partial differential equations, we can obtain the soliton solutions of (1.2), which
can be seen in the following theorem.

Theorem 3.1. For the Wick-type stochastic KP equation (1.2) in white noise environment, one has
the single-soliton solution U[1] ∈ (S)−1 for KP-I:

U[1] =
λ2

2k

(

sech

(
Φ
2

))2

, when α = 1 (3.1)

and for KP-II:

U[1] =
2a2

k
sech2

(
Φ1

(
t, x, y

))
, when α = i, (3.2)

where Φ(t, x, y) = λx + λ2y + 4λ3
∫ t

0 f(s)ds + 4λ3βB(t) − 2λ3βt2 and

Φ1
(
t, x, y

)
= ax − 2aby + 4

(
a3 − 3ab2

)∫ t

0
f(s)ds + 4β

(
a3 − 3ab2

)(
B(t) − 1

2
t2
)
. (3.3)

Proof. Taking the Hermite transform of (1.2), the equation (1.2) can be changed into

Ũtx =
[
f(t) + βW̃(t, z)

]
Ũxxxx + 6

[
g(t) + γW̃(t, z)

](
ŨŨx

)

x
+ 3α2

[
f(t) + βW̃(t, z)

]
Ũyy,

(3.4)

where Ũ is the Hermite transform of U; the Hermite transform of W(t) is defined by W̃(t, z) =∑∞
k=1 ηk(t)zk where z = (z1, z2, . . .) ∈ (CN)c is parameter.

Suppose that g(t)+γW̃(t, z) = k[f(t)+βW̃(t, z)]. Let u = kŨ. From (3.4), we can obtain

utx =
[
f(t) + βW̃(t, z)

]
(uxxx + 6uux)x + 3α2

[
f(t) + βW̃(t, z)

]
uyy. (3.5)

Let F(t, z) = f(t) + βW̃(t, z); then (3.5) can be changed into

utx = F(t, z)(uxxx + 6uux)x + 3α2F(t, z)uyy. (3.6)

Now we consider the soliton solutions of (3.6) using Darboux transform. It is more
convenient to consider the compatibility condition of the following linear system of partial
differential equations, that is, Lax pair of (3.6):

φy = α−1φxx + α−1uφ,

φt = 4F(t, z)φxxx + 6F(t, z)uφx + 3F(t, z)
(
αvy + ux

)
φ.

(3.7)
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Then we can obtain the Wick-type Lax pair of (1.2):

φy = α−1φxx + α−1u♦φ,

φt = 4
(
f(t) + βW(t)

)
♦φxxx + 6

(
f(t) + βW(t)

)
♦u♦φx

+ 3
(
f(t) + βW(t)

)
♦
(
αvy + ux

)
♦φ.

(3.8)

Let φ1 be a given solution of (3.8). Using the idea of the Darboux transformation about
the determinant nonlinear partial differential equations, by direct computation, it is easy to
know that if supposing that φ[1] = φx − (φ1x♦φ1

♦(−1))♦φ, where φ is an arbitrary solution of
(3.8), then φ[1] satisfies the following equations:

φy[1] = α−1φxx[1] + α−1u[1]♦φ[1],

φt[1] = 4
(
f(t) + βW(t)

)
♦φxxx[1] + 6

(
f(t) + βW(t)

)
♦u[1]φx[1]

+ 3
(
f(t) + βW(t)

)
♦
(
αvy[1] + ux[1]

)
♦φ[1],

(3.9)

where u[1] = u + 2(φ1x♦φ1
♦(−1))

♦
x , v[1] = v + 2(φ1x♦φ1

♦(−1)).
Since (3.6) is nonlinear, it is difficult to solve it in general. In particular, taking u = 0

and v = 0, then from (3.8), we have

φy = α−1φxx,

φt = 4
(
f(t) + βW(t)

)
♦φxxx.

(3.10)

If α = 1, (3.10) have the exponential function solution

φ1
(
t, x, y, z

)
= exp♦{ϕ

(
t, x, y, z

)}
+ 1, (3.11)

where

ϕ = λx + λ2y + 4λ3

(∫ t

0
f(s)ds + βB(t)

)

, (3.12)

and λ is an arbitrary real parameter. Then we can obtain the single-soliton solution of (3.6).
By (3.11) and (3.12) there exists a stochastic single-solitary solution of (1.2) as following:

U[1] =
2
k

(
φ1x♦φ1

♦(−1)
)
♦φ =

λ2

2k

(
sech♦

(
Φ
2

))2

, (3.13)

where

Φ
(
t, x, y

)
= λx + λ2y + 4λ3

∫ t

0
f(s)ds + 4λ3βB(t). (3.14)
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Since exp♦{B(t)} = exp{B(t) − (1/2)t2} (see Lemma 2.6.16 in [7]), (1.2) has the single-soliton
solution

U[1] =
λ2

2k

(

sech

(
Φ
2

))2

, (3.15)

where

Φ
(
t, x, y

)
= λx + λ2y + 4λ3

∫ t

0
f(s)ds + 4λ3βB(t) − 2λ3βt2. (3.16)

In particular, when f(s) = 1 we can obtain the solution of (2.2), respectively, as follows:

U[1] =
λ2

2k
sech2

(
1
2

(
λx + λ2y + 4λ3t + 4λ3βB(t) − 2λ3βt2

))
. (3.17)

If α = i, (3.10) have the exponential function solution

φ1
(
t, x, y, z

)
= exp♦{ϕ1

(
t, x, y, z

)}
+ exp♦{−ϕ1

(
t, x, y, z

)}
, (3.18)

where

ϕ1
(
t, x, y, z

)
= λx + iλ2y + 4λ3

(∫ t

0
f(s)ds + βB(t)

)

, (3.19)

ϕ1 is the conjugation of ϕ1 and λ is an arbitrary complex parameter. Let λ = a+ib, according to
(3.9), from (3.18) and (3.19) there exists a stochastic single-solitary solution of (1.2) as follows:

U[1] =
2
k

(
φ1x♦φ1

♦(−1)
)
♦φ =

2a2

k

(
sech♦(Φ1

(
t, x, y

)))2
, (3.20)

where

Φ1
(
t, x, y

)
= ax − 2aby + 4

(
a3 − 3ab2

)∫ t

0
f(s)ds + 4

(
a3 − 3ab2

)
βB(t). (3.21)

Same as the former case, since exp♦{B(t)} = exp{B(t) − (1/2)t2}, (1.2) has the single-soliton
solution

U[1] =
2a2

k
sech2

(
Φ1

(
t, x, y

))
, (3.22)

where

Φ1
(
t, x, y

)
= ax − 2aby + 4

(
a3 − 3ab2

)∫ t

0
f(s)ds + 4β

(
a3 − 3ab2

)(
B(t) − 1

2
t2
)
. (3.23)
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In particular, when f(s) = 1 we can obtain the solution of (2.2) as follows:

U[1] =
2a2

k
sech2

(
ax − 2aby + 4

(
a3 − 3ab2

)(
t − β

2
t2 + βB(t)

))
. (3.24)

4. Multisoliton Solutions of Stochastic KP Equation

At the same time, the multisoliton solutions of stochastic KP equation can be also considered.
It is evident that the Darboux transformation can be applied to (3.9) again. This operation can
be repeated arbitrarily. For the second step of this procedure we have

φ[2] =
(

∂

∂x
− φ2x[1]

φ2[1]

)(
∂

∂x
− φ1x

φ1

)
φ, (4.1)

where φ2[1] is the fixed solution of (3.9), which is generated by some fixed solution φ2 of
(3.8) and independent of φ1. We know that

φ2[1] = φ2x −
φ1x

φ1
φ2, (4.2)

u[2] = u + 2
∂2

∂x2
lnW

(
φ1, φ2

)
. (4.3)

By using N-times Darboux transformation, the formula (4.3) can be generalized to obtain
the solutions of the initial equations (3.8) without any use of the solutions related to the
intermediate iterations of the process.

Let φ1, φ2, . . . , φN be different and independent solutions of (3.8). We define the
Wronski determinant W of functions f1, . . . , fm as

W
(
f1, . . . , fm

)
= detA, Aij =

di−1fj

dxi−1
, i, j = 1, 2, . . . , m. (4.4)

Theorem 4.1. For the Wick-type stochastic KP equation (1.2) in white noise environment, one has
theN-soliton solution U[N] ∈ (S)−1 satisfying

U[N] =
2
k

∂2

∂x2
ln♦W♦(φ1, . . . , φN

)
. (4.5)

Proof. From [6], it is easy to see that the function

φ[N] =
W

(
φ1, . . . , φN, φ

)

W
(
φ1, . . . , φN

) (4.6)
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satisfies the following equations:

φy[N] = α−1φxx[N] + α−1u[N]φ[N],

φt[N] = 4F(t, z)φxxx[N] + 6F(t, z)u[N]φx[N]

+ 3F(t, z)
(
αvy[N] + ux[N]

)
φ[N],

(4.7)

where u[N] = u + 2(∂2/∂x2) lnW(φ1, . . . , φN) and v[N] = v + 2(∂/∂x) lnW(φ1, . . . , φN).
Then we have the Wick-type form

φ[N] =
W♦(φ1, . . . , φN, φ

)

W♦(φ1, . . . , φN

) (4.8)

satisfying the following equations:

φy[N] = α−1φxx[N] + α−1u[N]♦φ[N],

φt[N] = 4
(
f(t) +W(t)

)
♦φxxx[N] + 6

(
f(t) +W(t)

)
♦u[N]♦φx[N]

+ 3
(
f(t) +W(t)

)
♦
(
αvy[N] + ux[N]

)
♦φ[N],

(4.9)

where u[N] = u + 2(∂2/∂x2)ln♦W♦(φ1, . . . , φN).
In particular, taking u = 0, v = 0, we can obtain the N-soliton solution of (1.2):

U[N] =
2
k

∂2

∂x2
ln♦W♦(φ1, . . . , φN

)
. (4.10)

When α = 1 and α = i, φ1, . . . , φN are represented by the corresponding forms (3.11) and
(3.18), where λ, a, b take the different constants.

Remark 4.2. However, in generally, in the view of the modeling point, one can consider the
situations where the noise has a different nature. It turns out that there is a close mathematical
connection between SPDEs driven by Gaussian and Poissonian noise at least for Wick-type
equations. It is well known that there is a unitary map to the solution of the corresponding
Gaussian SPDE, see [7]. Hence, if the coefficient f(t) is perturbed by Poissonian white noise
in (1.2), the stochastic single-soliton solution and stochastic multisoliton solutions also can be
obtained by the same discussion.
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Recently Liu applied the variational homotopy perturbation method for fractional initial boundary
value problems. This note concludes that the method is a modified variational iteration method
using He’s polynomials. A standard variational iteration algorithm for fractional differential
equations is suggested.

1. Introduction

The variational iteration method [1, 2] has been shown to solve a large class of nonlinear
differential problems effectively, easily, and accurately with the approximations converging
rapidly to accurate solutions. In 1998, the method was first adopted to solve fractional dif-
ferential equations [2]. Recently Liu applied the variational homotopy perturbation method
for fractional initial boundary value problems [3]; however, the method is nothing but a
modified variational iteration method.

2. Liu’s Work

Liu used the following example to elucidate the solution process [3]:

∂αu

∂tα
− 1

2
x2 ∂

2u

∂x2
= 0. (2.1)
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The classical variational iteration algorithm reads [4]

un+1(x, t) = un(x, t) −
∫ t

0

{
∂αun(x, s)

∂sα
− 1

2
x2 ∂

2un(x, s)
∂x2

}

ds, (2.2)

which is exactly the same as that in Liu’s work [3], where the nonlinear term is expanded
into He’s polynomials [5]. So what Liu used is exactly the variational iteration method using
He’s polynomials, which has been widely used for solving various nonlinear problems [6–8].

3. Conclusion

The so-called variational homotopy perturbation method is nothing but the variational
iteration method using He’s polynomials. A standard variational iteration algorithm using
He’s polynomials is suggested to follow Guo and Mei’s work [9], and the variational iteration
algorithm using Adomian’s polynomials was given in [10].

Acknowledgment

The work is supported by PAPD (a project funded by the Priority Academic Program
Development of Jiangsu Higher Education Institutions).

References

[1] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern
Physics B, vol. 20, no. 10, pp. 1141–1199, 2006.

[2] J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous
media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68, 1998.

[3] Y. Liu, “Variational homotopy perturbation method for solving fractional initial boundary value
problems,” Abstract and Applied Analysis, vol. 2012, Article ID 727031, 10 pages, 2012.

[4] J. H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis,
vol. 2012, Article ID 916793, 130 pages, 2012.

[5] A. Ghorbani, “Beyond Adomian polynomials: He polynomials,” Chaos, Solitons and Fractals, vol. 39,
no. 3, pp. 1486–1492, 2009.

[6] M. A. Noor and S. T. Mohyud-Din, “Variational iteration method for solving higher-order nonlinear
boundary value problems using He’s polynomials,” The International Journal of Nonlinear Sciences and
Numerical Simulation, vol. 9, pp. 141–156, 2008.

[7] S. T. Mohyud-Din, “Solving heat and wave-like equations using He’s polynomials,” Mathematical
Problems in Engineering, vol. 2009, Article ID 427516, 12 pages, 2009.

[8] M. A. Noor and S. T. Mohyud-Din, “Variational iteration method for fifth-order boundary value
problems using He’s polynomials,” Mathematical Problems in Engineering, vol. 2008, Article ID 954794,
12 pages, 2008.

[9] S. Guo and L. Mei, “The fractional variational iteration method using He’s polynomials,” Physics
Letters A, vol. 375, no. 3, pp. 309–313, 2011.

[10] J. Ji, J. Zhang, and Y. Dong, “The fractional variational iteration method improved with the Adomian
series,” Applied Mathematics Letters, vol. 25, no. 12, pp. 2223–2226, 2012.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 962789, 11 pages
doi:10.1155/2012/962789

Research Article
Exact Travelling Wave Solutions for
Isothermal Magnetostatic Atmospheres by Fan
Subequation Method

Hossein Jafari,1, 2 Maryam Ghorbani,1
and Chaudry Masood Khalique2

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran,
P.O. Box 47416-95447, Babolsar, Iran

2 International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical
Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

Correspondence should be addressed to Hossein Jafari, jafari h@math.com

Received 1 September 2012; Revised 14 November 2012; Accepted 15 November 2012

Academic Editor: Lan Xu

Copyright q 2012 Hossein Jafari et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are inves-
tigated analytically. An investigation of a family of isothermal magnetostatic atmospheres with
one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry is
carried out. These equations transform to a single nonlinear elliptic equation for the magnetic
vector potential u. This equation depends on an arbitrary function of u that must be specified.
With choices of the different arbitrary functions, we obtain analytical solutions of elliptic equation
using the Fan subequation method.

1. Introduction

The equations of magnetostatic equilibria have been used extensively to model the
solar magnetic structure [1–4]. An investigation of a family of isothermal magnetostatic
atmospheres with one ignorable coordinate corresponding to a uniform gravitational field in
a plane geometry is carried out. The force balance consists of the J∧B force (B is the magnetic
field induction and J is the electric current density), the gravitational force, and gas pressure
gradient force. However, in many models, the temperature distribution is specified a priori
and direct reference to the energy equations is eliminated. In solar physics, the equations of
magnetostatic have been used to model diverse phenomena, such as the slow evolution stage
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of solar flares, or the magnetostatic support of prominences [5, 6]. The nonlinear equilibrium
problem has been solved in several cases [7–9].

Recently, Fan and Hon [10] developed an algebraic method, belonging to the sub-
equation method to seek more new solutions of nonlinear partial differential equations
(NLPDEs) that can be expressed as polynomial in an elementary function which satisfies
a more general sub-equation, called Fan sub-equation, than other sub-equations like Riccati
equation, auxiliary ordinary equation, elliptic equation, and generalized Riccati equation. As
we know, the more general analytical exact solutions of the sub-equation are proposed, the
more general corresponding exact solutions of NLPDEs will be obtained. Thus, it is very
important how to obtain more new solutions to the sub-equation. Fortunately, the Fan sub-
equation method can construct more general exact solutions to the sub-equation that can
capture all the solutions of the Riccati equation, auxiliary ordinary equation, elliptic equation,
and generalized Riccati equation. Some works using the Fan’s technique are presented in
[1, 11–16].

In this paper, we obtain the exact travelling wave solutions for the Liouville and
sinh-Poisson equations using the Fan sub-equation method. These two models are special
cases of magnetostatic atmospheres model. Also in these cases there is force balance between
differents forces.

2. The Basic Idea of Fan Subequation Method

In this section, we outline the main steps of Fan sub-equation method [11].

Step 1. For a given nonlinear partial differential equation

N(u, ut, ux, utt, uxx, . . .) = 0 (2.1)

we consider its travelling wave solutions u(x, t) = u(ξ), ξ = x − ct, then (2.1) is reduced to a
nonlinear ordinary differential equation

N
(
u(ξ),−cu′(ξ), u′(ξ), c2u′′(ξ), u′′(ξ), . . .

)
= 0, (2.2)

where a prime denotes the derivative with respect to the variable ξ.

Step 2. Expand the solution of (2.2) in the form

u(ξ) =
n∑

i=0

Aiφ
i, An /= 0, (2.3)
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where Ai (i = 0, 1, . . . , n) are constants to be determined later and the new variable φ satisfies
the Fan sub-equation

φ′(ξ) = ε

√√
√
√

4∑

j=0

wjφj , (2.4)

where ε = ±1 and wj (j = 0, . . . , 4) are constants.

Thus, the derivatives with respect to the variable ξ become the derivatives with respect
to the variable φ as follows:

du

dξ
= ε

√√
√
√

4∑

j=0

wjφj
du

dφ
,

d2u

dξ2
=

1
2

√√
√
√

4∑

j=1

jwjφj−1 du

dφ
+

4∑

j=0

wjφ
j d

2u

dφ2
. (2.5)

Step 3. Determine n by substituting (2.3) with (2.4) into (2.2) and balancing the linear term
of the highest order with the nonlinear term in (2.2).

Step 4. Substituting (2.3) and (2.4) into (2.2) again and collecting all coefficients of φi (i =
0, 1, 2, . . . , n), then setting these coefficients to zero will give a set of algebraic equations with
respect to Ai (i = 0, 1, . . . , n).

Step 5. Solve these algebraic equations to obtain Ai (i = 0, 1, 2, . . . , n). Substituting these
results into (2.3) yields the general form of travelling wave solutions.

Step 6. For each solution to (2.4) which depends on the special conditions chosen for
the w0, w1, w2, w3, and w4, it follows from (2.3) obtained from the above steps that the
corresponding exact solution of (2.2) can be constructed.

3. Basic Equations

The relevant magnetohydrostatic equations consist of the equilibrium equation

J ∧ B − ρ∇Φ − ∇P = 0, (3.1)

which is coupled with Maxwells equations

J =
∇ ∧ B

μ
, ∇ · B = 0, (3.2)

where P , ρ, μ, and Φ are the gas pressure, the mass density, the magnetic permeability, and
the gravitational potential, respectively. It is assumed that the temperature is uniform in space
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and that the plasma is an ideal gas with equation of state p = ρR0T0, where R0 is the gas
constant and T0 is the temperature. Then the magnetic field B can be written as

B = ∇u ∧ ex + Bxex =
(
Bx,

∂u

∂z
,
−∂u
∂y

)
. (3.3)

The form of (3.3) for B ensures that ∇ · B = 0 and there is no mono pole or defect structure.
Equation (3.1) requires the pressure and density to be of the form [4]

P
(
y, z

)
= P(u)e−z/h, ρ

(
y, z

)
=

1
(
gh

)P(u)e−z/h, (3.4)

where h = R0T0/g is the scale height. Substituting (3.2)–(3.4) into (3.1), we obtain

∇2u + f(u)e−z/h = 0, (3.5)

where

f(u) = μ
dP

du
. (3.6)

Equation (3.6) gives

P(u) = P0 +
1
μ

∫
f(u)du, (3.7)

where P0 is constant. Substituting (3.7) into (3.4), we obtain

P
(
y, z

)
=
(
P0 +

1
μ

∫
f(u)du

)
e−z/h,

ρ
(
y, z

)
=

1
gh

(
P0 +

1
μ

∫
f(u)du

)
e−z/h.

(3.8)

Using transformation x1 + ix2 = e−z/leiy/l, (3.5) reduces to

∂2u

∂x2
1

+
∂2u

∂x2
2

+ l2f(u)e(2/l−1/h)z = 0. (3.9)

These equations have been given in [2].

4. Applications of the Fan Subequation Method

In this section, we will employ the Fan sub-equation method for solving (3.9) for specific
forms of the function f(u).
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4.1. Liouville Equation

We first consider Liouville equation, which is a special case of (3.9), namely,

uxx + utt − α2l2e−2u = 0. (4.1)

In order to apply the Fan sub-equation method, we use the wave transformation u(x, t) =
u(ξ), ξ = x − ct and transform (4.1) into the form

(
1 + c2

)
u′′ = α2l2e−2u. (4.2)

We next use the transformation v = e−2u and obtain the nonlinear ordinary differential
equation

(
1 + c2

)
vv′′ −

(
1 + c2

)
v′2 + 2α2l2v3 = 0. (4.3)

Using Step 3 given above, we get n = 2, therefore the solution of (4.3) can be expressed as

v(ξ) = A0 +A1φ +A2φ
2. (4.4)

Following Step 4, we obtain a system of nonlinear algebraic equations for A0, A1, and A2:

2α2l2A0
3 − ε2A1

2w0 − c2ε2A1
2w0 + 2ε2A0w0 + 2c2ε2A0A2w0

+
1
2
ε2A0A1w1 +

1
2
c2ε2A0A1w1 = 0,

6αl2A0
2A1 − 2ε2A1A2w0 − 2c2ε2A1A2w0 − 1

2
ε2A1

2w1 + 3ε2A0A2w1

+ 3c2ε2A0A1
2 + ε2A0A1w2 + c2ε2A0A1w2 = 0,

6α2l2A0A1
2 + 6α2l2A0

2A2 − 2ε2A2
2w0 − 1

2
ε2A1A2w1 − 1

2
c2ε2A1A2w1

+ 4ε2A0A2w2 + 4c2ε2A0A2w2 +
3
2
ε2A0A1w3 +

3
2
c2ε2A0A1w3 = 0,

2α2l2A1
3 + 12α2l2A0A1A2 − ε2A2

2w1 − c2ε2A2
2w1 + ε2A1A2w2 + c2ε2A1A2w2

+
1
2
ε2A1

2w3 +
1
2
c2ε2A1

2w3 + 5ε2A0A2w3 + 5c2ε2A0A2w3

+ 2ε2A0A1w4 + 2c2ε2A0A1w4 = 0,
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6α2l2A1
2A2 + 6α2l2A0A2

2 +
5
2
ε2A1A2w3 +

5
2
ε2c2A1A2w3 + ε2A1

2w4

+ c2ε2A1
2w4 + 6ε2A0A2w4 + 6c2ε2A0A2w4 = 0,

6α2l2A1A2
2 + ε2A2

2w3 + c2ε2A2
2w1 + ε2A1A2w2 + c2ε2A2

2w3

+ 4ε2A1A2w4 + 4c2ε2A1A2w4 = 0,

2α2l2A2
3 + 2ε2A2

2w4 + 2c2ε2A2
2w4 = 0.

(4.5)

Case 1. When w0 = w1 = w3 = 0, w2 > 0, w4 < 0, (2.4) admits a hyperbolic function solution

φ =
√
−w2

w4
sech

(√
w2 ξ

)
. (4.6)

Thus (4.4) yields the following new solitary wave solution of (2.1) of bell-type

v1(ξ) =

(
1 + c2)w2

α2l2
sech2(√w2 ξ

)
, (4.7)

where w2 > 0, w4 < 0, α/= 0, l /= 0, and c are arbitrary constants. Reverting back to the original
variables x and t, we obtain the solution of (4.1) in the form

u1(x, t) = −1
2

ln

[(
1 + c2)w2

α2l2
sech2{√w2 (x − ct)

}
]

. (4.8)

Case 2. When w1 = w3 = 0, w0 = w2
2/4w4, w2 < 0, w4 > 0, (2.4) admits two hyperbolic

function solutions

φ = ±
√
− w2

2w4
tanh

(√−w2

2
ξ

)

, (4.9)

and so (4.4) yields one family of solitary travelling wave solutions of (4.1) given by

u2(x, t) = −1
2

ln

[

−
(
1 + c2)w2

2α2l2
+

(
1 + c2)w2

α2l2
tanh2

(√

−w2

2
(x − ct)

)]

, (4.10)

where w2 < 0, w4 > 0, α/= 0, l /= 0, and c are arbitrary constants.

Case 3. When w0 = w1 = 0, w3 = ±2
√
w2w4, w2 > 0, w4 > 0, (2.4) has two kinds of exact

solutions:

φ = −
√
w2w4

2w4
sign(w3)

[
1 + tanh

(√
w2

2
ξ

)]
, (4.11)
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and (4.4) yields one family of solitary travelling wave solutions of (4.1) given by

u3(x, t) = − 1
2

ln

[

±
(
1 + c2)w2

α2l2
sign(w3)

[
1 + tanh

(√
w2

2
(x − ct)

)]

−
(
1 + c2)w2

4α2l2

[
1 + tanh

(√
w2

2
(x − ct)

)]2
]

,

(4.12)

where w2 > 0, w4 > 0, α/= 0, l /= 0, and c are arbitrary constants.

Case 4. When w1 = w3 = 0, (2.4) admits three Jacobian elliptic doubly periodic solutions

φ =

√
−w2k

2

w4(2k2 − 1)
cn

(√
w2

2k2 − 1
ξ, k

)
, for w0 =

w2
2k2(k2 − 1

)

w4(2k2 − 1)2
, w2 > 0, w4 < 0,

φ =

√
−w2

w4(2 − k2)
dn

(√
w2

2 − k2
ξ, k

)
, for w0 =

w2
2(1 − k2)

w4(k2 − 2)2
, w2 > 0, w4 < 0,

φ = ±
√

−w2k
2

w4(k2 + 1)
sn

(√ −w2

k2 + 1
ξ, k

)

, for w0 =
w2

2k2

w4(k2 + 1)2
, w2 < 0, w4 > 0,

(4.13)

and (4.4), respectively, yields two families of Jacobian elliptic doubly periodic wave solutions

u4(x, t) = −1
2

ln

[

−
(
1 + c2)w2

2α2l2
+

(
1 + c2)w2

(
2k2 − 1

)

4α2l2(k2 − 1)
cn2

(√
w2

2k2 − 1
(x − ct), k

)]

, (4.14)

with w2 > 0, w4 < 0, α/= 0, l /= 0, k ∈ (
√

2/2, 1), and c being arbitrary constants. Similarly,
from (4.4), respectively, we can obtain two families of Jacobian elliptic doubly periodic wave
solutions

u5(x, t) = −1
2

ln

[

−
(
1 + c2)w2

2α2β2
+

(
1 + c2)w2

(
k2 − 2

)

4α2l2(1 − k2)
dn2

(√
w2

2 − k2 (x − ct), k
)]

, (4.15)

with w2 > 0, w4 < 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants. Similarly,
from (4.4), respectively, we can obtain two families of Jacobian elliptic doubly periodic wave
solutions

u6(x, t) = −1
2

ln

[

−
(
1 + c2)w2

2α2l2
+

(
1 + c2)w2

(
k2 + 1

)

4α2l2
sn2

(√
− w2

k2 + 1
(x − ct), k

)]

(4.16)

with w2 < 0, w4 > 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants.
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4.2. The sinh-Poisson Equation

Secondly, we consider sinh-Poisson equation which plays an important role in soliton model
with BPS Bound. Also, this equation is a special case of (3.9) and is given by

uxx + utt = β2 sinh(u). (4.17)

In order to apply the Fan sub-equation method, we use the wave transformation ξ = x − ct
and convert (4.17) into the form

(
1 + c2

)
u′′ = β2 sinh(u). (4.18)

We next use the transformation v = eu and obtain the equation

2
(

1 + c2
)
vv′′ − 2

(
1 + c2

)
v′2 − β2

(
v3 − v

)
= 0. (4.19)

Applying Step 3, we get n = 2, therefore the solution of (4.19) can be expressed as

v(ξ) = A0 +A1φ +A2φ
2. (4.20)

Then using Step 4, we obtain a system of nonlinear algebraic equations for A0, A1, and A2:

− l2A0
3 − 2ε2A1

2w0 − 2c2ε2A1
2w0 + 4ε2A0A2w0 + 4c2ε2A0A2w0

+ ε2A0A1w1 + c2ε2A0A1w1 = 0,

− 3l2A0
2A1 − 4ε2A1A2w0 − 4c2ε2A1A2w0 − ε2A1

2w1 − c2ε2A1
2w1 + 6ε2A0A2w1

+ 6c2ε2A0A2w1 + 2ε2A0A1w2 + 2c2ε2A0A1w2 = 0,

− 3l2A0A1
2 − 3l2A0

2A2 − 4ε2A2
2w0 − 4c2ε2A2

2w0 − ε2A1A2w1 − c2ε2A1A2w1

+ 8ε2A0A2w2 + 8c2ε2A0A2w2 + 3ε2A0A1w3 + 3c2ε2A0A1w3 = 0,

− l2A1
3 − 6l2A0A1A2 − 2ε2A2

2w1 − 2c2ε2A2
2w1 + 2ε2A1A2w2 + 2c2ε2A1A2w2

+ ε2A1
2w3 + c2ε2A1

2w3 + 10ε2A0A2w3 + 10c2ε2A0A2w3

+ 4ε2A0A1w4 + 4c2ε2A0A1w4 = 0,

− 3l2A1
2A2 − 3l2A0A2

2 + 5ε2A1A2w3 + 5c2ε2A1A2w3 + 2ε2A1
2w4 + 2c2ε2A1

2w4

+ 12ε2A0A2w4 + 12c2ε2A0A2w4 = 0,

− 3l2A1A2
2 + 2ε2A2

2w3 + 2c2ε2A2
2w3 + 8ε2A1A2w4 + 8c2ε2A1A2w4 = 0,

− l2A2
3 + 4ε2A2

2w4 + 4c2ε2A2
2w4 = 0.

(4.21)
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Case 1. When w0 = w1 = w3 = 0, w2 > 0, w4 < 0, (2.4) admits a hyperbolic function solution

φ =
√
−w2

w4
sech

(√
w2 ξ

)
(4.22)

and (4.20) yields the following new solitary wave solution of (4.17) of bell-type

u1(x, t) = ln

[

−4
(
1 + c2)w2

l2
sech2(√w2 (x − ct)

)
]

, (4.23)

where w2 > 0, w4 < 0, l /= 0, and c are arbitrary constants.

Case 2. When w1 = w3 = 0, w0 = w2
2/4w4, w2 < 0, w4 > 0, (2.4) admits two hyperbolic

function solutions

φ = ±
√
− w2

2w4
tanh

(√−w2

2
ξ

)

, (4.24)

and (4.20) yields one family of solitary travelling wave solutions of (4.17) given by

u2(x, t) = ln

[
2
(
1 + c2)w2

l2
− 2

(
1 + c2)w2

l2
tanh2

(√

−w2

2
(x − ct)

)]

, (4.25)

where w2 < 0, w4 > 0, l /= 0, and c are arbitrary constants.

Case 3. When w0 = w1 = 0, w3 = ±2
√
w2w4, w2 > 0, w4 > 0, (2.4) has two kinds of exact

solutions

φ = −
√
w2w4

2w4
sign(w3)

[
1 + tanh

(√
w2

2
ξ

)]
, (4.26)

and (4.20) yields one family of solitary travelling wave solutions solitary travelling wave
solutions of (4.17) given by

u3(x, t) = ln

[

±2
(
1 + c2)w2

l2
sign(w3)

[
1 + tanh

(√
w2

2
(x − ct)

)]

−
(
1 + c2)w2

l2

[
1 + tanh

(√
w2

2
(x − ct)

)]2
]

,

(4.27)

where w2 > 0,w4 > 0, l /= 0 and c are arbitrary constants.
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Case 4. When w1 = w3 = 0, (2.4) admits three Jacobian elliptic doubly periodic solutions

φ =

√
−w2k

2

w4(2k2 − 1)
cn

(√
w2

2k2 − 1
ξ, k

)
, for w0 =

w2
2k2(k2 − 1

)

w4(2k2 − 1)2
, w2 > 0, w4 < 0,

φ =

√
−w2

w4(2 − k2)
dn

(√
w2

2 − k2
ξ, k

)
, for w0 =

w2
2(1 − k2)

w4(k2 − 2)2
, w2 > 0, w4 < 0,

φ = ±
√

−w2k
2

w4(k2 + 1)
sn

(√ −w2

k2 + 1
ξ, k

)

, for w0 =
w2

2k2

w4(k2 + 1)2
, w2 < 0, w4 > 0,

(4.28)

and (4.20), respectively, yields two families of Jacobian elliptic doubly periodic wave
solutions

u4(x, t) = ln

[
2
(
1 + c2)w2

l2
+

2
(
1 + c2)(2k2 − 1

)
w2

l2(k2 − 1)
cn2

(√
w2

2k2 − 1
(x − ct), k

)]

, (4.29)

with w2 > 0, w4 < 0, l /= 0, k ∈ (
√

2/2, 1), and c being arbitrary constants. Similarly, from
(4.20), respectively, we can obtain two families of Jacobian elliptic doubly periodic wave
solutions

u5(x, t) = ln

[
2
(
1 + c2)w2

l2
− 2

(
1 + c2)w2

(
2 − k2)

l2(1 − k2)
dn2

(√
w2

2 − k2 (x − ct), k
)]

, (4.30)

with w2 > 0, w4 < 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants. Likewise,
from (4.20), respectively, we can get two families of Jacobian elliptic doubly periodic wave
solutions

u6(x, t) = ln

[
2
(
1 + c2)w2

l2
− 2

(
1 + c2)w2

(
k2 + 1

)

l2
sn2

(√
− w2

k2 + 1
(x − ct), k

)]

, (4.31)

with w2 < 0, w4 > 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants.

5. Concluding Remarks

In this paper, the Fan sub-equation method has been successfully used to obtain some
exact travelling wave solutions for the Liouville and sinh-Poisson equations. These exact
solutions include the hyperbolic function solutions, trigonometric function solutions. When
the parameters are taken as special values, the solitary wave solutions are derived from the
hyperbolic function solutions. Thus, this study shows that the Fan sub-equation method is
quite efficient and practically well suited for use in finding exact solutions for nonlinear
partial differential equations. The reliability of the method and the reduction in the size of
computational domain give this method a wider applicability.
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