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Hydrological hazards of various types present a myriad of
technical and public policy issues worldwide. Defined as
extreme events associated with water occurrence, movement,
and distribution, hydrological hazards include droughts and
flooding and related events (e.g., landslides and river scour
and deposition). Hydrological hazards and their impacts
are associated with climate variability, demographic trends,
land-cover change, and other causative factors and could
be exasperated by global climate change. The increase in
greenhouse gases in the atmosphere will continue leading
to global warming and an intensification of the hydrological
cycle, making hydrological extreme studies more complex
and challenging.

Because of the immense impacts of hydrological hazards
on society and its economies, it is important to consider
novel approaches, techniques, or methods for the prediction,
prevention, and mitigation of hydrological extremes. Given
the complexity of the nonstationary hydrometeorological
and hydroclimatological processes, it is critical to utilize
recent technological developments and scientific knowledge
to improve our understanding of hydrological hazards and
our ability to cope with droughts and floods.

In this special issue, ten papers are collected that cover
the hydrological hazards in a changing environment.This col-
lection includes the following topics: regional flood/drought
analysis, methodologies for the prediction and prevention of

hydrological extremes, early warning and forecasting systems
for hydrological extremes, case studies in different parts of the
world, emerging technologies in data analysis, hydroinfor-
matics, and climate informatics and effects of climate change
and land-use/land-cover changes.

Flood hazard mapping of the Mert River Basin, Samsun,
Turkey, was investigated using GIS and HEC-RAS in the
paper by V. Demir and O. Kisi (2016). 3D hazard maps were
obtained for the Q10, Q25, Q50, and Q100 floods. The flood
maps demonstrated that some areas are highly affected by
flooding resulting from a low return period (Q10) event.

B. S. Kim et al. (2016) identified drought characteristics
by applying the threshold level method and projecting the
drought risk of each administrative division in South Korea
in the 21st century.

W. Yu et al. (2016) investigated the uncertainty propa-
gation of a rainfall forecast into hydrological response with
catchment scale through distributed rainfall-runoffmodeling
based on the forecasted ensemble rainfall of a numerical
weather prediction (NWP) model. This study is carried out
and verified using the largest flood event by typhoon “Talas”
of 2011, Shingu River Basin, Japan.

N. Diodato et al. (2016) established thresholds in the
power of rainstorms to discern the spatial patterns of a
rainfall erosivity hazard in the Rhone region (eastern France).
Climate fluctuations of rainfall erosivity revealed possible
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signals of increased storminess hazards across the region in
recent times.

L. Tadić et al. (2016) analysed the small catchment area
in the Croatian lowland with its hydrological characteristics
in the period between 1981 and 2014 to define the significance
of change in hydrological andmeteorological parameters and
water balance components.

H. Jia and D. Pan (2016) used the wavelet transform tech-
nique to analyse precipitation data for nearly 60 years (1954–
2012) in the Yunnan Province of China. According to the
main cycle of summer and the annual rainfall, precipitation of
Yunnan is in the decreased oscillation period; local drought
may also occur in the future.

N. Ožanić et al. (2016) investigated the possibility of
implementing the early warning system (EWS) in a small-
scale catchment in Croatia and developed the methodology
for a hydrological prediction model based on an artificial
neural network (ANN).

F. Vemado and A. J. P. Filho (2016) analysed the
Metropolitan Area of São Paulo (MASP) heat island (HI)
effect and its interaction with the local sea breeze (SB) inflow
in rainfall amounts and deep convection.

M. Gocic et al. (2016) presented a spatial pattern of the
precipitation concentration index (PCI) in Serbia. For the
purpose of PCI prediction, three Support Vector Machine
(SVM) models were developed and used.

S. Kolaković et al. (2016) analysed the exploitation of
documented historical floods for achieving better flood
defense at the catchment of the Tisza River (Hungary and
Serbia).
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The monthly precipitation data from 29 stations in Serbia during the period of 1946–2012 were considered. Precipitation trends
were calculated using linear regression method. Three CLINO periods (1961–1990, 1971–2000, and 1981–2010) in three subregions
were analysed. The CLINO 1981–2010 period had a significant increasing trend. Spatial pattern of the precipitation concentration
index (PCI) was presented. For the purpose of PCI prediction, three Support VectorMachine (SVM)models, namely, SVM coupled
with the discrete wavelet transform (SVM-Wavelet), the firefly algorithm (SVM-FFA), and using the radial basis function (SVM-
RBF), were developed and used. The estimation and prediction results of these models were compared with each other using three
statistical indicators, that is, root mean square error, coefficient of determination, and coefficient of efficiency. The experimental
results showed that an improvement in predictive accuracy and capability of generalization can be achieved by the SVM-Wavelet
approach. Moreover, the results indicated the proposed SVM-Wavelet model can adequately predict the PCI.

1. Introduction

Precipitation is one of the important climatic variables due to
its changes in the intensity and the amount affecting appear-
ing of the hydrological hazards such as flood and drought [1].
Therefore, numerous studies on precipitation variability and
development of statistical indices to evaluate the changes of
precipitation have been undertaken [2–7]. In this study, the
precipitation concentration index (PCI) is analysed. The PCI
allows quantifying the relative distribution of precipitation
patterns. It also provides a good presentation to the spatial
variability of monthly precipitation [5, 8] and information on
long-term total variability in the precipitation amount record
[9, 10]. The PCI can be used as an indicator of hydrological
hazard risks such as floods and droughts.

In this study, the prediction model of PCI is introduced
using the soft computing method, namely, the Support
Vector Machine (SVM). The SVM, one of the novel soft
computing learning algorithms, has found wide application
in the field of computing, hydrology, and environmental
science [11–16]. Furthermore, it has been majorly applied in
pattern recognition, forecasting, classification, and regression
analysis [17–20]. The most commonly used kernels include
linear, polynomial, and radial basis function (RBF), whose
selection depends on the nature of the observed data [21].
Shamshirband et al. [22] used adaptive neurofuzzy inference
system (ANFIS) and support vector regression (SVR) for
precipitation estimation, while S. Chattopadhyay and G.
Chattopadhyay [23], Nastos et al. [24], andWu andChau [25]
applied artificial neural networks (ANNs). Chen et al. [26]
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Figure 1: (a) Spatial distribution of the 29 meteorological stations in Serbia map; (b) spatial distribution of the mean annual precipitation in
Serbia for the period of 1946–2012.

implemented SVM and multivariate analysis to project daily
precipitation.Meyer et al. [27] compared fourmachine learn-
ing algorithms for their applicability in rainfall retrievals.

Metaheuristic optimization algorithms such as ant colony
optimization (ACO), genetic algorithm (GA), particle swarm
optimization (PSO), and cuckoo search (CS) have been
applied in different fields of science [28–37].These algorithms
are based on the mechanism of selection of the fittest in
biological systems. A more recent approach in biological
inspiredmetaheuristic optimization algorithms is firefly algo-
rithm (FFA) developed by Yang [38]. The FFA has been
adjudged to be more efficient and robust in finding both
local and global optima compared to other biological inspired
optimization algorithms [39–43]. The prediction accuracy
of the SVM model highly relies on proper determination
of model parameters [44–47]. Although organized strategies
for selecting parameters are important, model parameter
alignment also needs to be made. In this study, the FFA is
used for determination of SVM parameters, while the SVM
was coupled with discrete wavelet transform.

Wavelet transform (WT) has a number of basis functions
for selection that depends on the analysed signal. Wavelet
analysis was used to decompose the time series of data into
its various components, after which the decomposed compo-
nents can be used as inputs for the SVMmodel. Over the past
few years, this technique has become of enormous interest
in engineering applications [48–51]. Nalley et al. [52] used
discrete wavelet transform (DWT) to analyse trends in pre-
cipitation in Canada, while Hsu and Li [53] clustered spatial-
temporal precipitation data using WT. Partal and Kucuk
[54] analysed long-term precipitation trend using DWT in
Turkey. Kisi and Cimen [55] applied wavelet-Support Vector

Machine conjunction model for daily precipitation forecast
and concluded the proposed model increases the forecast
accuracy.

The objectives of the current study are as follows: (1)
to provide presentation of the spatial variability of monthly
precipitation and information on long-term total variability
in the precipitation data using precipitation concentration
index and (2) to construct, develop, and evaluate the results of
SVM-Wavelet, SVM-FFA, and SVM-RBF for PCI prediction.

2. Materials and Methods

2.1. Study Area and Used Data. Monthly precipitation data
were chosen from 29 meteorological stations in Serbia (Fig-
ure 1(a)) over the period of 1946–2012. Data were obtained
from the Republic Hydro Meteorological Service of Serbia
(http://www.hidmet.gov.rs/). There are no missing values in
the data set.

According to Gocic and Trajkovic [56], precipitation in-
creases with the altitude; that is, dry areas in the northeast
part of Serbia have the precipitation below 600mm, and the
area along the valley of the South Morava to Vranje has the
precipitation to 650mm, while in the mountains precipita-
tion may rise up to 1000mm per year. The mean annual
precipitation for the observed period for the whole country
is 662.4mm. The spatial distribution of the mean annual
precipitation in Serbia for the analysed period is illustrated
in Figure 1(b).

2.2. Methodology for Precipitation Analysis. The spatial dis-
tribution of the number of wet and dry years can be obtained
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Table 1: Classification of PCI values.

PCI Description
<10 Uniform precipitation distribution
11 to 15 Moderate precipitation distribution
16 to 20 Irregular distribution
>20 Strong irregularity of precipitation distribution

using a transformed annual precipitation departure 𝑧 for each
station as

𝑧 =
𝑥 − 𝜇

𝜎
, (1)

where 𝑥 is the annual precipitation, 𝜇 is the annual mean
precipitation, and 𝜎 is the standard deviation of the annual
precipitation. The dry year existed, where 𝑧 ≤ −0.5, and wet
one existed if 𝑧 ≥ 0.5 [57].

Precipitation concentration index (PCI) [58] is calculated
as follows:

PCIannaul =
∑
12

𝑖=1
𝑝
𝑖

2

(∑
12

𝑖=1
𝑝
𝑖
)
2
⋅ 100, (2)

where𝑝
𝑖
is the precipitation amount inmonth 𝑖. Classification

of PCI values is shown in Table 1.

2.3. Soft Computing Methodologies

2.3.1. Support Vector Machine. Support Vector Machine
(SVM) [59, 60] is based onmachine learning theory to maxi-
mize predictive accuracy; that is,

Minimize 𝑅SVM (𝑤, 𝜉
∗
) =

1

2
‖𝑤‖
2
+ 𝐶

𝑛

∑
𝑖=1

(𝜉
𝑖
+ 𝜉
∗

𝑖
)

Subject to 𝑑
𝑖
− 𝑤𝜑 (𝑥

𝑖
) + 𝑏
𝑖
≤ 𝜀 + 𝜉

𝑖

𝑤𝜑 (𝑥
𝑖
) + 𝑏
𝑖
− 𝑑
𝑖
≤ 𝜀 + 𝜉

𝑖

𝜉
𝑖
, 𝜉
∗

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑙,

(3)

where 𝑤 is a normal vector, (1/2)‖𝑤‖2 is the regularization
term, 𝐶 is the error penalty factor, 𝑏 is a bias, 𝜀 is the loss
function, 𝑥

𝑖
is the input vector, 𝑑

𝑖
is the target value, 𝑙 is the

number of elements in the training data set, 𝜑(𝑥
𝑖
) is a feature

space, and 𝜉
𝑖
and 𝜉∗
𝑖
are upper and lower excess deviation.

The architecture of SVM is shown in Figure 2. The kernel
function, that is, radial basis function (RBF) is denoted as

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp (−𝛾 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗

󵄩󵄩󵄩󵄩󵄩

2

) , (4)

where variables 𝑥
𝑖
and 𝑥

𝑗
are vectors in the input space and

𝛾 is the regularization parameter. Lagrange multipliers are
presented as 𝛼

𝑖
= 𝛼
𝑖
− 𝛼∗
𝑖
.

The accuracy of prediction is based on the selection
of three parameters, that is, 𝛾, 𝜀 and 𝐶, whose values are
determined using firefly algorithm.

Bias

Input layer Hidden layer Output layer
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Figure 2: The network architecture of SVM.

2.3.2. Firefly Algorithm. The firefly algorithm (FFA) [38, 61,
62] is based on the behaviour of insect named firefly. The
major issues in FFA development are the formulation of the
objective function and the variation of the light intensity.

A firefly is a kind of insects that uses the principle of biolu-
minescence to attractmates or prey.The luminance produced
by a firefly enables other fireflies to trail its path in searching of
their prey.This concept of luminance production helps in the
development of algorithms that solve optimization problems.

For example, in the optimal design problem involving
maximization of objective function, the fitness function is
proportional to the brightness or the amount of light emitted
by the firefly. Therefore, decreasing in the light intensity due
to distance between the fireflies will lead to variations of
intensity and thereby lessen the attractiveness among them.
The light intensity with varying distance can be represented
as

𝐼 (𝑟) = 𝐼
0
exp (−𝛾𝑟2) , (5)

where 𝐼 is the light intensity at distance 𝑟 from a firefly, 𝐼
0

represents initial light intensity, that is, when 𝑟 = 0, and 𝛾

is the light absorption coefficient. As firefly’s attractiveness
is proportional to the light intensity observed by adjacent
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fireflies, the attractiveness 𝛽 at a distance 𝑟 from the firefly
can be represented as

𝛽 (𝑟) = 𝛽
0
exp (−𝛾𝑟2) , (6)

where 𝛽
0
represents the attractiveness at distance 𝑟 = 0.

The Cartesian distance between any two fireflies 𝑖 and 𝑗 is
given by

𝑟
𝑖𝑗
=
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
+ 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
= √
𝑑

∑
𝑘=1

(𝑥
𝑖,𝑘
− 𝑥
𝑗,𝑘
). (7)

The movement of firefly 𝑖 as attracted to another brighter
firefly 𝑗 and can be represented as

Δ𝑥
𝑖
= 𝛽
0
exp (−𝛾𝑟2) (𝑥

𝑗
− 𝑥
𝑖
) + 𝛼𝜀

𝑖
, (8)

where the first term in the equation is due to the attraction,
the second term represents the randomization with 𝛼 as ran-
domization coefficient, and 𝜀

𝑖
is the random number vector

derived from a Gaussian distribution. The next movement of
firefly 𝑖 is updated as

𝑥
𝑖+1

𝑖
= 𝑥
𝑖
+ Δ𝑥
𝑖
. (9)

Steps in FFA development are presented in Figure 3.

2.3.3. Discrete Wavelet Transform. The wavelet transform
(WT) represents amathematical expression for decomposing
a time series’ frequency signal into different components. In
this study, wavelet analysis was used to decompose the time
series of precipitation data into various components, after
which the decomposed components were used as inputs for
the SVMmodel. Flow chart of discretewavelet algorithm, that
is, used to determine SVM parameters, is shown in Figure 4.

Continuous wavelet transform (CWT) of a signal𝑓(𝑡) is a
time-scale technique of signal processing that can be defined
as the integral of all signals over the entire period multiplied
by the scaled, shifted versions of the wavelet function 𝜓(𝑡),
given mathematically as

𝑊
𝑥
(𝑎, 𝑏, 𝜓) =

1

√𝑎
∫
∞

−∞

𝑓 (𝑡) 𝜓
∗
(
𝑡 − 𝑎

𝑏
) 𝑑𝑡, (10)

where𝜓(𝑡) is themother wavelet function, 𝑎 is the scale index
parameter, that is, inverse of the frequency, and 𝑏 is the time
shifting parameter, also known as translation. The discrete
wavelet transform (DWT) can be derived by discretizing (10),
where the parameters 𝑎 and 𝑏 are given as follows:

𝑎 = 𝑎
𝑚

0
,

𝑏 = 𝑛𝑎
𝑚

0
𝑏
0
,

(11)

where the variables 𝑛 and 𝑚 are integers. Replacing 𝑎 and 𝑏
in (10) gives

𝑊
𝑥
(𝑚, 𝑛, 𝜓) = 𝑎

−𝑚/2

0
∫
∞

−∞

𝑓 (𝑡) 𝜓
∗
(𝑎
−𝑚

0
𝑡 − 𝑛𝑏

0
) 𝑑𝑡. (12)
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Postprocess results

No

No

Yes

Yes

Generate initial population of fireflies xi

Define light absorption coefficient 𝛾

t < Max Generation

j = 1, i

i = 1, n

Ij > Ii

Move fireflies i and j in d-dimension

Attractiveness varies with distance r via exp(−𝛾r)
Evaluate new solution and update light intensity

Determine light intensity li at xi from f(xi)

Define the objective function f(x)

Figure 3: Flow chart of firefly algorithm.

2.4. Evaluating Accuracy of Proposed Models. In this study,
the following statistical indicators were applied to compare
the developed SVMmodels:

(1) root mean square error (RMSE):

RMSE = √∑
𝑛

𝑖=1
(𝑃
𝑖
− 𝑂
𝑖
)
2

𝑛
, (13)

(2) coefficient of determination (𝑅2):

𝑅
2
=

[∑
𝑛

𝑖=1
(𝑂
𝑖
− 𝑂
𝑖
) ⋅ (𝑃
𝑖
− 𝑃
𝑖
)]
2

∑
𝑛

𝑖=1
(𝑂
𝑖
− 𝑂
𝑖
) ⋅ ∑
𝑛

𝑖=1
(𝑃
𝑖
− 𝑃
𝑖
)
, (14)



Advances in Meteorology 5

Input time 
series

Decompose 
input time 
series using 
DWT

Wave 
component

Add the output 
from each wave 
series to get 
final output

Figure 4: Flow chart of proposed discrete wavelet algorithm.

(3) coefficient of efficiency (EI):

EI = 1 −
∑
𝑛

𝑖=1
(𝑃
𝑖
− 𝑂
𝑖
)
2

∑
𝑛

𝑖=1
(𝑃
𝑖
− 𝑃
𝑖
)
2
, (15)

where 𝑃
𝑖
and𝑂

𝑖
are the experimental and predicted values of

PCI index, respectively, and 𝑛 is the size of test data.

3. Results and Discussion

3.1. Analysis of Precipitation Distribution. The number of dry
and wet years is tabulated in Table 2. The most frequented
number of dry years is in the north of Serbia, while the
number of wet years is greater than the number of dry years
in the west of country. The number of dry years is 20, while
the number of wet years is 19 for whole Serbia.

According to Gocic and Trajkovic [56], three precipita-
tion subregions were detected: (1) subregion R1 (12 stations)
is located in the north part of the country with the precip-
itation ranging from 223 to 1051mm and the average value
of precipitation of 608.2mm, (2) subregion R2 (7 stations) is
the wettest one and includes stations in the west of country
with the precipitation between 385 and 1282mm andwith the
mean value of precipitation of 784.5mm, and (3) subregion
R3 (10 stations) in the east and south part of Serbia with
precipitation between 302 and 1113mm and the mean of
precipitation of 623.3mm.

The annual precipitation shows an increasing trend in
Serbia during the period of 1946–2012 (stronger in R2 and
R1). Three CLINO periods (1961–1990, 1971–2000, and 1981–
2010) were illustrated in Figure 5. The CLINO period 1981–
2010 shows a significant increasing trend at all subregions.
The most precipitation falls in June and has the value of
80.8mm in Serbia (41.15% of total precipitation in summer),
which is directly connected with the intensive convection of
colder and humid, usually maritime, air masses.

Precipitation distribution is determined using the PCI.
Figure 6 illustrates the spatial distribution of PCI in Serbia.
The minimum PCI values were detected in Zlatibor (10.43)
and Pozega (10.83), while the maximum was in Negotin
(12.49). The majority of the stations had the values between
11.12 in Sjenica and 11.94 in Banatski Karlovac.

3.2. Performance Evaluation of Proposed SVM Models. Pre-
cipitation data was used to obtain six parameters such as
annual total precipitation,meanwinter precipitation amount,
mean spring precipitation amount, mean summer precipita-
tion amount, mean autumn precipitation amount, and mean
of precipitation for vegetable period (April–September). For

Table 2: Number of dry and wet years for the synoptic stations used
in the study.

Station name Number of
dry years

Number of
wet years

(1) Banatski Karlovac 22 20
(2) Becej 22 19
(3) Belgrade 23 20
(4) Crni Vrh 20 22
(5) Cuprija 23 20
(6) Dimitrovgrad 19 19
(7) Kikinda 19 18
(8) Kopaonik 20 18
(9) Kragujevac 21 19
(10) Kraljevo 17 19
(11) Krusevac 20 17
(12) Kursumlija 19 19
(13) Leskovac 20 20
(14) Loznica 17 20
(15) Negotin 18 21
(16) Nis 19 20
(17) Novi Sad 25 21
(18) Palic 21 18
(19) Pozega 21 23
(20) Sjenica 22 18
(21) Sombor 19 17
(22) Smederevska Palanka 24 20
(23) Sremska Mitrovica 20 18
(24) Valjevo 22 22
(25) Veliko Gradiste 23 24
(26) Vranje 20 22
(27) Zajecar 21 20
(28) Zlatibor 22 24
(29) Zrenjanin 25 21

the experiments, 38 years (57% of data) was used to train
samples and the subsequent 29 years (43% of data) served
to test samples. Table 3 illustrates six variables using the fol-
lowing statistical indicators, that is, theminimum,maximum,
median, mean, standard deviation, and skewness.

In this study, three SVM models, that is, SVM-Wavelet,
SVM-RBF, and SVM-FFA, were analysed to predict the PCI
index. The RBF was implemented as the kernel function
to obtain three parameters, 𝐶, 𝛾, and 𝜀, whose selection
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Table 3: Summary statistics for used data sets.

(a)

Variables
Training data set

Min (mm) Max (mm) Median
(mm) Mean (mm)

Standard
deviation
(mm)

Skewness

Annual total precipitation 503.2 914.6 648.8 659.7 90.2 0.56
Mean winter precipitation amount 36.4 248.1 130.5 141.0 43.5 0.07
Mean spring precipitation amount 99.9 247.1 169.0 166.9 38.8 0.01
Mean summer precipitation amount 80.6 335.3 203.9 198.0 59.1 −0.10

Mean autumn precipitation amount 63.9 266.1 148.3 153.8 50.1 0.58
Mean of precipitation for vegetable
period (April–September) 203.9 516.1 369.7 369.2 77.3 −0.26

(b)

Variables
Testing data set

Min (mm) Max (mm) Median
(mm) Mean (mm)

Standard
deviation
(mm)

Skewness

Annual total precipitation 414.8 872.0 678.3 663.9 116.9 −0.26

Mean winter precipitation amount 46.7 216.4 131.3 141.2 43.5 0.11
Mean spring precipitation amount 101.4 273.3 166.0 166.0 39.5 0.60
Mean summer precipitation amount 82.0 304.8 210.8 194.1 63.8 −0.12

Mean autumn precipitation amount 53.2 301.6 156.3 164.1 56.8 0.27
Mean of precipitation for vegetable
period (April–September) 233.6 572.1 366.7 371.6 87.5 0.38

directly influences prediction accuracy. Table 4 provides the
optimal values of parameters for the proposed SVM models.
Firefly algorithm founds optimal SVM parameters according
to searching algorithm. For the SVM-Wavelet and SVM-RBF
approaches the parameters are selectedmanually after several
trial and error iterations.

To evaluate SVMmodel performance, calculated PCI was
plotted against the predicted ones. Figure 7(a) presents the
accuracy of developed SVM-Wavelet PCI predictive model,
while Figures 7(b) and 7(c) present the accuracy of developed
SVM-RBF and SVM-FFA PCI predictive models, respec-
tively. The most of the points fall along the diagonal line for
the SVM-Wavelet prediction model. It means the prediction
results are in a very good agreement with themeasured values
for the SVM-Wavelet model. The confirmation of this is the
high value for 𝑅2 (𝑅2 = 0.86).

Figure 8 illustrates the spatial distribution of PCI in Serbia
using three SVMmethods, that is, SVM-Wavelet, SVM-FFA,
and SVM-RBF. According to the obtained results, it can
be concluded that the spatial distribution using values of
SVM-Wavelet method is similar to the spatial distribution in
Figure 6.

3.3. Performance Comparison of SVM Models. To illustrate
the performance characteristics of the developed SVMmod-
els for PCI prediction, three SVMmodels’ prediction accura-
cies were compared with each other.The statistical indicators

Table 4: User-defined parameters for SVMmodels.

SVMmodel Used parameters
𝐶 𝛾 𝜀

SVM-Wavelet 1.45 0.34 0.34
SVM-RBF 2.47 0.67 0.62
SVM-FFA 1.74 0.47 0.27

Table 5: Comparative performance statistics of the SVM-Wavelet,
SVM-RBF, and SVM-FFA models for PCI prediction.

SVMmodel Statistical indicator
RMSE 𝑅2 EI

SVM-Wavelet 0.14 0.86 0.86
SVM-RBF 0.19 0.74 0.74
SVM-FFA 0.15 0.84 0.84

such as RMSE, 𝑅2, and EI were used for comparison. Table 5
summarizes the prediction results for test data sets since
training error is not credible indicator for prediction potential
of particular model. Results in Table 5 are obtained for
the same number of runs and according to the multiple
runs average results are calculated for each method. The
same number of interactions is used in order to make the
comparison fair and accurate. SVM-Wavelet produced better
results than the other two approaches since wavelet algorithm
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Figure 5: The trend of annual precipitation by regions.

decomposes nonlinear series in multiple linearized series in
order to make it easier to regress.

The SVM-Wavelet model outperforms the SVM-RBF and
the SVM-FFA models according to the obtained results. The
predictions from the SVM models correlate highly with the
actual PCI data.

4. Conclusion

The study carried out a systematic approach to create the
SVM models for the PCI prediction such as SVM-Wavelet,

No available data 
10

12.5

12

11.5

11

10.5

Figure 6: Spatial pattern of the precipitation concentration index.

SVM-RBF, and SVM-FFA. The proposed SVM-Wavelet
model was obtained by combining two methods, that is, the
SVM and the wavelet transform. The RBF was selected as
the kernel function for the SVM, while the FFA was used to
obtain the SVM parameters.

Each of these SVM approaches has some advantages and
disadvantages. SVM-FFA has firefly searching algorithm in
order to find optimal SVM parameters. Wavelet approach
divides series into subgroups in order to make it more
linear and at the end all groups are merged. SVM-RBF
approach is the basic approach with manual estimation of
SVMparameters.Therefore SMV-RBF results are not as good
as the other two approaches as was presented.

A comparison of the SVM-Wavelet, the SVM-RBF, and
the SVM-FFAwas performed in order to assess the prediction
accuracy. Accuracy results, measured in terms of RMSE, 𝑅2,
and EI, indicate that SVM-Wavelet predictions are superior
to the SVM-RBF and the SVM-FFA.

The main advantages of the SVM schemes are as follows:
computationally efficient and well-adaptable with optimiza-
tion and adaptive techniques. The developed strategy is not
only simple, but also reliable andmay be easy to implement in
real time applications using some interfacing cards for control
of various parameters. This can be combined with expert
systems and rough sets for other applications.

The further researchwill test the proposed soft computing
methods in a different part of the world and different climate
types to confirm the results. Also, some hybrid soft comput-
ing models will be applied to compare with the developed
models presented in this study.
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Figure 7: Scatter plots of actual and predicted values of PCI using (a) SVM-Wavelet, (b) SVM-RBF, and (c) SVM-FFA method.
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Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach,
involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods
has been exploited in this study.The short presentation of the catchment of the Tisza River in this paper is followed by the overview
of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided
opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of
different extreme flood scenarios and to establish the Base Flood Elevation.The calibration has shown that the coefficient of friction
in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain
maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the
expected maximumwater levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again.
The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

1. Introduction

According to the concept of flood defense relying on the
Base Flood Elevation corresponding to the design flood of
a given recurrence interval, the expected maximum water
levels need to be determined all along the river. It is not a
clear task, since the BFE depends on many factors, among
others on the actual condition of the tributary network in the
considered catchment. Producing a suitable solution tool—
a flow analysis numerical model—requires interdisciplinary
approach exploiting statistical hydrology, river hydraulics,
and computer science. In case of large catchments the numer-
ical model may become complex due to the big number
of tributaries involved, all having specific flow conditions
[1–5]. High velocities and low discharges are characteristic
to the upstream tributaries [1] and low velocities and high
discharges are typical to the river sections in lowlands [4, 5].

A flow analysis software package known by acronym
HEC-RAS has been adopted in this study by the authors.
It is capable of accounting for a wide variety of conditions
and influences. However, it needs to be calibrated for the
conditions of extreme floods which are unique in many
aspects [6, 7]. Not any flood event is suitable for calibration
purposes, since all aspects of extreme floods need to be
revealed by the chosen floods [8].

Once the model is set up properly, it can be used to
simulate different possible flood scenarios having specific
chance of occurrence [2, 9], imposing certain level of threat to
the community. The model produces information regarding
maximum water levels along the reaches, corresponding to
the modeled extreme flood event. Exhaustive investigation
of scenarios corresponding to well-documented historical
floods finds out the expected highest peak water levels, in
consequence, the safest solution. This approach—applicable
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to any catchment—is presented in this paper through the
example of the Tisza River.

The catchment of the Tisza River is chosen by reason,
since due to its size and characteristics it exhibits a number of
special conditions which might influence the expected max-
imum water levels (inhomogeneous hydrological conditions
over the subcatchments, intensive change of the river bed due
to erosion/deposition, superposition of flood waves coming
from tributaries, and so on). The catchment of the Tisza
River having area of 157.200 km2 is considered to be the most
important tributary of the Danube River. Approximately
30% of the total catchment area of the Tisza River spreads
in the Hungarian lowlands, while the rest 70% is in the
territory of Slovakia, Ukraine, Romania, and Serbia. In terms
of elevations, 46% of the catchment is below 200MSL (related
to the Baltic Sea), 34% is between 200 and 500MSL, and the
remaining 20% is located between 500 and 1600MSL. The
annual drainage exceeds 1500mm in the highest parts of the
catchment, while it remains below 28mm in the lowlands,
producing discharge from 50 l/s to 0.8 l/s per square km of
the catchment.

The shape of the catchment is almost circular having
diameter of 460 km in the north–south direction and 520 km
in the east–west direction. Extreme climate conditions over
the catchment, the relative contribution of individual trib-
utaries (Upper-Tisza, Tur, Szamos, Kraszna, Lonyai Canal,
Bodrog, Sajo-Hernad, Eger-Creek, Lasko-Creek, Zagyva,
Koros,Maros, Aranka, and Bega) to the total flow of the Tisza
River, extremely low bed slope of the section stretching in the
Hungarian lowlands, significant amount of sediment carried
by the river, and the existing water training works altogether
make the Tisza River one of the most variegated rivers in
the region, producing extreme floods as well as extreme low
flow periods. As a result, 1919, 1941, 1970, 1980, and 1998 were
plentiful in water. Contrarily, 1921, 1943, 1961, 1973, 1990, and
1994 were short in water.

There is no other river in Europe which encountered
so radical reduction in length by regulation works (from
1398.9 km to 945.8 km). The flow is restricted by embank-
ments almost along its whole length, while three dams built
in the recent five decades radically changed the mid- and
low-flow regimes. On the one hand, the mentioned regu-
lation works along with the deforestation of the catchment
increased the runoff and the peak flood discharges. On the
other hand, the increased water demand of the industry and
of the agriculture further reduced the low discharges during
the dry periods.

For the ongoing radical anthropogenic impacts on the
flow regime of the river during the last century and due to the
risks involved, this study targets extreme flood events. Past
floods can be employed for calibration of a suitable numerical
model, used later as a tool for predicting the possible
outcome of extreme flood scenarios. This opportunity has
been investigated by this study.

2. Methods and Materials

2.1. Overview of Historical Floods in the Catchment of the Tisza
River. The basic parameters of a flood wave are its volume,

peak discharge, and duration. Actually, the hydrograph of
the flood wave provides the most information. The peak
water level caused by the floodwave—depending on the loca-
tion and time of interest—is rather consequence than basic
parameter of the flood. Table 1 shows the peak water levels
of the observed historical floods at four river stations along
the Tisza River together with the corresponding intermittent
periods.

The 1885 flood is of exceptional importance, not only for
its volume, but for the fact it was the last extreme flood before
regulationworks along the Tisza River commenced.Meander
cutoffs and restriction of the river by levees increased the
peaks of successive floods. The 1879 flood destroyed more
than 93% of buildings in Szeged and claimed 151 lives. The
flood peak in 1888 was the absolute maximum until 1919,
while it is still not overpassed at Dombrad. Following the
accomplishment of the regulation works, the 1895 flood—
even though moderate compared to the earlier ones—caused
significant damage. The 1919 flood was distinctive in sense of
threatening public security all along the river. Following the
1932 flood the practice of watercourse-restricting measures
in flood control was abandoned. The flood in 1940 was
associated with ice. In 1941 three floods occurred, one in
January-February, the second inMarch-April, and the third in
September-October. More moderate floods were characteris-
tics of 1942.The following significant flood happened in 1964.
The biggest flood ever—in terms of both peak discharge and
duration—happened in 1970. It lasted 125 days, 65 settlements
have been evacuated, and 43000 people have been engaged
in flood defense. The following flood in 1979 produced peak
level at Szolnok just 5 cm below the earlier maximum. In 1991
and in 2000 the earlier highest level (detected in 1970) was
exceeded by 1.5m, an increment not experienced for about a
century. Proceeded by an early spring flood significant flood
happened in fall 1998. The flood in 1999 was triggered by
snowmelt and by the changes in the river bed during the last
three decades. This flood was extraordinary in terms of peak
level, velocity, and duration, exceeding the corresponding
values of the 1970 flood. Leaking of dikes in 1100 locations
was discovered (and treated), intervention in cases of 127 boils
was needed, and creeping of embankment face in 26 cases
has been registered. 2001 was not easier at all. 2005 and 2006
produced a flood lasting through the winter to the spring,
supported by snowmelt and intensive rainfall in April. The
2010 flood was triggered by extraordinary rains, bringing six
times more precipitation than average to the watershed.

Not only are the main parameters of the flood events
informative; looking at the details of their genesis is even
more instructive. In case of the Tisza River, in general,
floods occur mostly at spring in the period of March–
May. Floods are least probable in September. In addition to
the extreme meteorological conditions, excessive floods are
triggered by late snowmelts accompanied with heavy spring
rainfalls, or by coincidence of tributary peak discharges, and
by restricting the flood plain by embankments.

2.2. The Modeled Stream Network of the Tisza River. The
modeled section of the Tisza River between Kiskore and
Titel is 403 km long, including 7 tributaries and 13 reaches.
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Figure 1: Stream network of the Tisza River.

The total length of the streams involved exceeds 762 km.
Bathymetry is defined by around 1200 cross sections. 62
bridges, 1 inline structure, 5 lateral structures, and 12 already
existing flood reducing detention ponds are incorporated
into the model, Figure 1. Eight out of twelve detention ponds
have gate controlled in/outlets, particularly:

(i) Five on the Tisza River: the Beregi, Cigandi, Na-
gykunsagi, Hanyi-Tiszasulyi, and Tiszaroffi.

(ii) One on the Szamos: the Szamos-Krasznai.

(iii) One on the Fekete-Koros: the Malyvadi.

(iv) One in the junction of the FeketeKoros and the Feher-
Koros: the Kisdelta detention pond.

2.3. The HEC-RAS Model. Computer aided analysis of well-
documented, reliable, historical flood data is the most
instructive and straightforward way of learning about floods
and predicting the most likely consequences [6]. The River
Analysis System software—known by acronym as HEC-
RAS—developed in the Hydrologic Engineering Center by
the US Army Corps of Engineers has been adopted for this
study by the authors [10, 11]. The HEC-RAS software is
capable of simulating 1D steady and unsteady flow in a system
of natural and constructed channels, producing as a result the
corresponding water surface profiles and the related data.

The general principles of modeling unsteady flow in
systems of open channels in the HEC-RAS environment are
given in [3, 5, 12, 13]. Unsteady flow routing using HEC-
RAS is provided by numerical solution of the continuity
and momentum equations. The derivation of the governing
equations is presented in [10] by Liggett. The most successful
and accepted procedure for solving the one-dimensional
unsteady flow equations is the four-point implicit scheme,
also known as the box scheme. The software package can
handle hydraulic structures like bridges, barrages, culverts,
overflow weirs, floodgates, bottom stages, bottom sills, side
overflows and gates, static reservoirs, pump stations, and
water intakes. Example of application in a complex flood
control project is given by [7]. Extended description of the
software is given in [11].

2.4. Calibration and Verification of the Model. Calibration is
feasible by adjusting the global parameters of the model—in
most of the cases Manning’s coefficient of friction, eventually
the loss coefficients of expansion/contraction [2, 8, 9]—
providing successful reproduction of a well-documented past
real flood event. Initial values of friction coefficient were esti-
mated by digital aerial orthophotography and in situ surveys,
while the final values—separately for the main channel and
for the flood plain—were determined by calibration using
historical flow data. Calibration is a straightforward proce-
dure in cases of rather frequent floods. However, detailed
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Table 2: Manning’s coefficient of friction.

Year Main channel Flood plain
1979 0,0286 0,0309
1998 0,0285 0,0420
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Figure 2: Variation of Manning’s coefficient of friction by water
level, main bed at Szolnok.

data for extreme floods are seldom available, making them
valued.

Flow measurements during flood recession in 1998 were
carried out from bridges and boats. Comparison of the 1998
measurement with an earlier one in 1979 produced results
shown in Table 2.

Thedata show almost unchanged characteristics in case of
the main channel; however, flow conditions in the flood plain
are significantly deteriorated during the corresponding two
decades causing reduction in flow capacity up to 300m3/s.

Successive measurements in 1998, 1999, 2000, and 2001
produced results shown in Figures 2 and 3 for the main bed
and for the flood plain, respectively.The graphs reveal change
in friction depending on the time of observation and on
the actual water level. Variation of friction coefficient from
0.026 to 0.032 is observed in the main bed and from 0.025
to 0.048 in the flood plain. Increase in friction is due to
the development of plant cover in the watercourse. Passing
a flood wave often triggers decrease in friction as cutting a
passage through an upsilted river section cleans thewaterway.

Calibration of the Tisza River model was achieved mak-
ing use of almost 50 time series comprising of hourly detected
water levels at standard measuring posts, and water level
readings of dam keepers. In the calibration process default
values, 0.3 and 0.1, have been adopted for the expansion and
contraction coefficients, respectively. Manning’s coefficients
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Figure 3: Variation of Manning’s coefficient of friction by water
level, flood plain at Szolnok.

for the main channel and for the flood plain were determined
separately in each cross section. Figures 2 and 3 demonstrate
an attempt to establish water level dependant Manning’s
coefficient; however, it could be achieved for short river
sections only.

The blue line in Figure 4 represents the calculated peak
water levels, while the red dots are the observed maximum
water levels corresponding to the 2006 flood. The maximum
difference between the calculated andobservedwater levels in
the river section between Tiszabecs and Titel was 5 cm, which
may be considered as very good agreement.

3. Application of the Model

Along the Hungarian section of the Tisza River, peak flow
levels have overpassed the Base Flood Elevation during the
2000 flood, at some locations even by 80 cm. Flood protection
by endless increasing in the height of the dikes is unfeasible.
Alternative solution is reaching the goal by flood plain
interventions and by employing detention storages along the
river to reduce the peak water levels. Six detention ponds—
the Szamos-Krasznakoz, Cigand, Hany-Tiszasuly, Nagykoru,
Nagykunsag, and Tiszaroff—have been assigned for this
purpose. The first case study is aimed at checking the
expected efficiency of flood plainmaintenance and activation
of detention storages in flood defense.

The second case study investigates if the 1888 extreme
flood applied to the current condition of the watercourse
could pass nowadays without causing disaster.

At last, flood superposition scenarios have been studied
in the third case study by the means of the calibrated model.

3.1. Flood Plain Maintenance, Detention Storages. The influ-
ence of flood plain maintenance and the impact of detention
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Figure 4: Verification of the calibrated parameters against the observed water levels of the 2006 flood.

ponds on flood mitigation have been investigated by the
calibrated model: Cases

(a) with flood plain maintenance, without detention
ponds activated,

(b) with detention ponds activated, without flood plain
maintenance,

(c) with flood plain maintenance, with detention ponds
activated

have been considered. The data of the 2000 flood have been
exploited in this study for good reason; it was record breaking
in terms of maximum water levels even at five locations,
Tokaj, Tiszafured, Tiszabo, Szolnok, and Csongrad, Table 3.

The results are shown in Figure 5, where Δ𝑧 (cm) denotes
water level difference due to a particular intervention, com-
pared to the peak water levels expected for the current
condition of the river bed; 𝑥 is river station (km). The light
green line represents case (a), the blue line corresponds
to case (b), and the dark green line shows the joint effect
of both interventions, case (c). The increase of peak water
levels in the downstream section (𝑥 < 220 km) caused
by flood plain maintenance is successfully compensated by
the effect of detention ponds. With both measures applied,
the maximum water levels could be reduced up to 160 cm.
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Figure 5: Calculated effects of flood plain maintenance and activa-
tion of detention ponds on the peak water levels in case of the 2000
flood.

Further improvement in terms of maximum water levels
might be achieved using more sophisticated techniques in
activation of the eight gate-controlled detention ponds [14].
Calculation results are similar for the 2006 flood as well.

3.2. Application of the 1888 Flood to the Current Condition
of the Watercourse. The 1888 flood was so severe that the
corresponding maximum water level detected at Dombrad
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Table 3: Overview of peak flood levels.

Year TIVA-
DAR

VASAROS-
NAMENY ZAHONY DOMBRAD TOKAJ TISZA-

FURED TISZABO SZOLNOK CSONG-
RAD SZEGED

1888 753 900 751 890 872 742 818 834 847
1895 866 827 867 884
1912 790
1919 919 882 929 916
1925
1932 750 921 894 923
1933
1947 848
1967 765
1970 865 912 773 935 909 935 961
1979 880 788 949
1998 964 923
1999 894 835 1023 974
2000 928 881 1080 1041 994
2001 1014 941 758
2006 1033 1009
Number of
record-
breaking
peaks
following the
1888 flood

6 4 2 1 4 7 7 7 6 6

is still not overpassed. In addition, it has occurred in case
of watercourse unrestricted by dikes. Even more, extreme
water levels over 800 cm lasted more than 14 days in the
Vasarosnameny region. For the sake of comparison it is
interesting to note that none of the recent floods (1998, 2001)
exhibited peak water levels lasting longer than 3.5 days.

This simulation is meant to check if the 1888 flood could
pass nowadays without causing trouble. The observed stage
hydrograph of the 1888 flood has been set as upstream
boundary condition. Stage hydrograph of the 2000 flood has
been applied to the outlets of the tributaries and to the most
downstream cross section of the Tisza River. The results of
simulation compared to the consequences of the 2000 flood
are shown in Figure 6. It clearly demonstrates that if the 1888
flood happened nowadays, it would have caused up to 80 cm
higher peak levels than the 2000 flood did. Between Tiszalok
and Tiszaug peak water levels would over pass the BFE up
to 180 cm and they would last over 25 days! It is interesting
to notice that, with flood plain maintenance carried out and
all planned detention storages accomplished, most of the
Hungarian section of the Tisza River could pass the 1888
extreme historical flood.

4. Superposition of Floods

A particular flood event on the Tisza River is significantly
influenced by the

(i) intensity and duration of floods corresponding to
each tributary,
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Figure 6: The expected maximum water levels of the 1888 flood
calculated with the current condition of the watercourse, compared
to the observed maximum water levels of the 2000 flood.

(ii) timing of flood waves of tributaries in relation to the
flood wave of the Tisza River.

Wide variety of flood wave superposition is possible pro-
ducing different outcome in terms of peak levels and peak
discharges. Of course, each of these specific combinations
has its own chance of occurrence. Some of them—having
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Figure 7: The calculated peak water levels for different flood
superposition scenarios.

higher practical significance in planning flood defense—are
investigated described as follows:

(a) Orange curve in Figure 7: the 2000 year flood is
applied to the Danube, the 2006 flood to the Tisza,
and the 1970 flood to the Maros.

(b) Purple curve in Figure 7: The 2006 year flood is
applied to the Danube and to the Tisza, and the 1970
flood to the Maros.

(c) Blue curve in Figure 7: The 2006 year flood is applied
to the Danube, the 2000 flood to the Tisza, and the
2006 flow hydrograph to the Maros.

In Figure 7 the envelope of peak water levels corresponding
to the 2006 flood is the reference to which the levels of the
investigated cases are compared.

Since the 2006 hydrograph of the Maros was not exces-
sive, peaking at Szeged did not happen, case (c). As the 1970
flood of the Maros was extreme if it happened again, it would
have caused excessive peak water levels, at Szeged, up to
130 cm higher than the reference peak level produced by the
2006 flood, cases (a) and (b).

This example highlights the need for stochastic approach
in flood analysis in order to get insight into the probability
of extreme flood scenarios. In combination with a well
calibrated, reliable model, powerful tool in search for the
most effective solutions in flood defense could be established.

5. Conclusions

Flood routing is a multidisciplinary complex task. In addi-
tion, conditions in a specific catchment are continuously
changing partly due to anthropological influences, partly due
to natural processes. Numerical models seem to be the only
tool which can tackle the problem. If they are to be used
for simulation of extreme floods, their calibration with well
documented, historical flood data is inevitable.This approach
ensures that all particular conditions specific to extreme

floods (stochastic character of the event, significant flood
plain flow, and inundation storage) reveal themselves.

Modeling different scenarios is currently the most suit-
able approach to investigate the effects of different flood
control approaches; in this paper the influence of flood plain
maintenance and exploitation of detention storages have
been investigated with good results. Possible superposition of
different flood-augmenting influences requires probabilistic
approach to flood analysis. Therefore, numerical models
combined with statistical hydrology seem to be the most
suitable tool for flood prognosis.

The Base Flood Elevation corresponding to the design
flood of a given recurrence interval may not be once and
forever established, since the bathymetry of the reaches is
continuously changing due to the erosion/deposition pro-
cesses. In addition, seasonal variations are caused by cyclical
changes in vegetation. Furthermore, hydrological events are
of stochastic character. For that, a design flood of a chosen
probability may come about in huge number of scenarios,
each producing particular BFE at the location of interest.
Therefore, BFE ensuring identical safety over thewhole catch-
ment is achievable by establishing the envelope of maximum
BFEs coming from different flood scenarios. The envelope
of BFEs is attainable by computer aided simulations only,
combined with statistical hydrology or by exploiting data of
extreme historical floods.
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In this study, flood hazardmaps were prepared for theMert River Basin, Samsun, Turkey, by using GIS andHydrologic Engineering
Centers River Analysis System (HEC-RAS). In this river basin, human life losses and a significant amount of property damages were
experienced in 2012 flood.The preparation of flood risk maps employed in the study includes the following steps: (1) digitization of
topographical data and preparation of digital elevationmodel using ArcGIS, (2) simulation of flood lows of different return periods
using a hydraulic model (HEC-RAS), and (3) preparation of flood risk maps by integrating the results of (1) and (2).

1. Introduction

Flooding, as a major natural disaster, affects many parts of
the world including developed countries. Due to this natural
disaster, billions of dollars in infrastructure and property
damages and hundreds of human lives are lost each year.
These hazards and losses can be prevented and reduced by
providing reliable information to the public about the flood
risk through flood inundation maps [1]. Flood inundation
maps are very essential for municipal planning, emergency
action plans, flood insurance rates, and ecological studies [2].
Samsun is the largest and densely populated in the north of
Turkey. This area is almost under threat of flooding in each
year. In this region, themain reason of devastating flood is the
influence of the Mert River especially during March, April,
and July and due to seasonal rainfall which eventually makes
the district vulnerable to flooding. In addition, the human
based constructions and the collapse of water retaining
structures are among the main causes of flooding.

Geographic Information Systems (GIS) are successfully
used to visualize the extent of flooding and also to analyze
the floodmaps to produce flood damage estimationmaps and
flood risk map [3–5]. The GIS must be used together with a
hydraulicmethod to estimate flood profile with a given return
period. After 1970, Hydrologic Engineering Centers River
Analysis System (HEC-RAS) software developed by United

States Army Corps of Engineers (USACE) is widely used
in Europe and America. In our country, it was first applied
on Bartin River in 1998 by Yazıcılar and Önder [6]. GIS
and HEC-RAS models were successfully used for obtaining
flood maps of Waller River in Texas [7], Ohio Swan River
Basin [3], Atrato River in Colombia [8], Vistula River in
Warsaw, Poland [4], Gordon River in France [9], northwest
of Colombia [8], mid-eastern Dhaka in Bangladesh [10], and
Onaville in Haiti [11]. Çelik et al. analysed the 2004 flood of
Kozdere Stream in Istanbul using HEC-RAS and GIS [12].
Sole et al. produced risk maps of Basilicata region (Italy)
by acquiring water surface profiles according to different
repetition flow in the main distributary (30, 200, and 500
years) [5]. Masood and Takeuchi used HEC-RAS and GIS for
assessing flood hazard, vulnerability, and risk of mid-eastern
Dhaka [10]. They obtained inundation map for flood of 100-
year return period. Sarhadi et al. obtained flood inundation
maps of ungauged rivers in southeastern Iran by using HEC-
RAS and GIS [13]. Heimhuber et al. used HEC-RAS and GIS
to perform one-dimensional, unsteady-flow simulations of
design floods in the Ravine Lan Couline, which is the major
drainage channel of the area [11]. To the knowledge of the
authors, the HEC-RAS and GIS methods were not previously
applied toMert River Basin.Due to its proximity to numerous
homes, businesses, and industrial area, the location of Mert
River’s flood plain is of great interest to city planners,

Hindawi Publishing Corporation
Advances in Meteorology
Volume 2016, Article ID 4891015, 9 pages
http://dx.doi.org/10.1155/2016/4891015

http://dx.doi.org/10.1155/2016/4891015


2 Advances in Meteorology

N
E

S

W

0 0.5 1 2

35∘0󳰀
0
󳰀󳰀E 36∘0󳰀

0
󳰀󳰀E 37∘0󳰀

0
󳰀󳰀E

35∘0󳰀
0
󳰀󳰀E 36∘0󳰀

0
󳰀󳰀E 37∘0󳰀

0
󳰀󳰀E

42∘0󳰀
0
󳰀󳰀N

41∘0󳰀
0
󳰀󳰀N

42∘0󳰀
0
󳰀󳰀N

41∘0󳰀
0
󳰀󳰀N

(km)

25∘0󳰀
0
󳰀󳰀E 30∘0󳰀

0
󳰀󳰀E 35∘0󳰀

0
󳰀󳰀E 40∘0󳰀

0
󳰀󳰀E 45∘0󳰀

0
󳰀󳰀E

30∘0󳰀
0
󳰀󳰀E 35∘0󳰀

0
󳰀󳰀E 40∘0󳰀

0
󳰀󳰀E 45∘0󳰀

0
󳰀󳰀E

40∘0󳰀
0
󳰀󳰀N

35∘0󳰀
0
󳰀󳰀N

40∘0󳰀
0
󳰀󳰀N

35∘0󳰀
0
󳰀󳰀N

211.4–238.13
184.66–211.4
157.93–184.66
131.2–157.93
104.46–131.2

77.73–104.46
51–77.73
24.27–51
−2.47–24.27

Figure 1: The location of the study area in Turkey.

developers, and property owners. To the knowledge of the
authors, the GIS and HEC-RAS were not previously applied
to this area where devastating floods happened.

The aim of this study is to obtain flood hazard maps of
the Mert River Basin using GIS and HEC-RAS for floods of
different return periods (10, 25, 50, 100, and 1000). First, topo-
graphical data were digitized and digital elevation model was
prepared using ArcGIS. Then, flood flows of different return
periods were simulated using a hydraulic model (HEC-RAS).
Finally, flood risk maps were obtained by integrating the
results of ArcGIS and HEC-RAS.The obtained flood map for
10-year return period was also tested by 2012 flood in which
12 people lost their lives.

2. Study Area

Mert River is located in the center of Samsun. Geographic
location of the study area is between Latitude 41.279 and
Longitude 36.352. Samsun is the largest city in the Central

Black Sea Region of Turkey. This district faces devastating
floods which have a destructive effect on humans, buildings,
and substructure systems. The Mert River which is about
8 kilometers long flows into the Black Sea. Mert River was
selected for this study because it had a great loss of life and
property in the recent floods (e.g., July 3, 2012).This river has
five highway bridges and one pedestrian bridge. First, second,
and third bridges of this river are located in the Black Sea
coastline and provide ease of transport between cities. The
study area is shown in Figure 1.

2.1. Methodology. In the present study, flood hazard maps
were obtained by using HEC-RAS, HEC-GeoRAS, and Arc-
GIS. The methodology for developing a flood hazard map
can be explained by the following three phases: (i) preparing
digital elevation model using ArcGIS, (ii) simulation of flood
flows of different return periods using HEC-RAS hydraulic
model, and (iii) preparing flood risk maps by integrating
phases (i) and (ii). The flow chart of the methodology is
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illustrated in Figure 2. Next, brief information is provided for
the HEC-RAS and HEC-GeoRAS. Detailed information for
thesemethods can be obtained from related literature [14, 15].

2.2. HEC-RAS Model. HEC-RAS, a hydraulic model devel-
oped by the USACE, is extensively applied in calculating the
hydraulic characteristics of rivers [16, 17]. It is an integrated
program and uses the following energy equation for calculat-
ing water surface profiles [14, 18]:

𝑌
2
+ 𝑍
2
+
𝛼
2
𝑉
2

2

2𝑔
= 𝑌
1
+ 𝑍
1
+
𝛼
1
𝑉
2

1

2𝑔
+ ℎ
𝑒
, (1)

where𝑌,𝑍,𝑉,𝛼, ℎ
𝑒
, and𝑔 represent water depth, channel ele-

vation, average velocity, velocity weighting coefficient, energy
head loss, and gravitational acceleration; and subscripts 1 and
2, respectively, show cross sections 1 and 2.

This programprovides user to input data, data correction,
to receive output display and analysis.HEC-RASmodel needs
details of river cross sections and upstream flow rate. The
water depth andmean velocity are calculated for a given cross
section using the energy conservation equation [14].

HEC-RAS calculates the water levels’ variation along the
channel and the water level values are overlaid on a digital
elevation model (DEM) of the area to get the extent and
flood depth using GIS [19]. Spatial data like cross section,
river reach, stream network, flow paths, and others have been
obtained using HEC-GeoRAS (Arc-GIS extension) and these
data then transferred to HEC-RAS [15].

2.3. HEC-GeoRAS Model (GIS). HEC-GeoRAS is developed
for the treatment of geographic data with the HEC-RAS and
is working on an extension to ArcGIS (module). Other sup-
plemental information with geometric data files is obtained
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from theDigital TerrainModels.Thismodule can convert the
format of HEC-RAS software and can read the obtained for-
mat. After analyzing the data with HEC-RAS, water surface
profiles, water level, and water velocity can be obtained. The
results obtained from hydraulic model can be converted to
GIS format by using HEC-GeoRAS and thus flood mapping
and flood depth map can be obtained [20].

Themixture of processing topographical information and
other GIS data in ArcMap utilizing GeoRAS provides us
with the capacity to create and export a geometry file to be
investigated by RAS. The created geometry document holds
information on river, catchment, and station cross section cut
lines, bank stations, flow path. It achieves lengths for left and
right overbanks and channel and roughness coefficients and
furthermore can contain blocked obstructions. The results
of RAS reproduction, for example, river profiles, can be
sent specifically to a GIS environment, where they can be
analyzed further by the assistance of the GeoRAS toolbar. A
particularly arranged GIS information exchange document
(∗. sdf) is utilized to perform the GIS data import and export
between RAS and ArcMap [21].

3. Application and Results

In this study, HEC-RAS 4.10 was utilized for hydraulic anal-
ysis and ArcGIS 10.2 was used for mapping. First, 3D model

of study area was prepared utilizingArcGIS. Digital Elevation
Model (DEM) was produced by 1/1000 scale topographical
contour lines. Then, topographic data obtained from ArcGIS
were transferred to HEC-RAS via Hec-GeoRAS module.
Flood values of different return periods (10, 25, 50, and 100
years) and Manning roughness coefficient values were also
entered into the HEC-RAS program for calculating water
level for each cross section. Finally, the hydraulic analysis
results were entered into the ArcGIS via Hec-GeoRAS mod-
ule and flood hazard maps were obtained for each return
period.

Manning roughness coefficients of 0.022, 0.026, and 0.045
were used for concrete, bush-wooded, and woodland river
banks and 0.03 was utilized for the river base. Flood values
of diverse return periods and annual instant maximum flows
were obtained from the Turkish General Directorate of State
Hydraulic Works. All these values are reported in Table 1.
Table 2 gives the annual instant maximum flows of Mert
River. As can be clearly seen from Table 2 a flood (near Q10,
flood of ten-year return period) was seen in the studied area
in 2012 and loss of life and property occurred.

Flood simulations were conducted using hydrodynamic
program for the floods of 10, 15, 50, and 100 return periods. As
an example, water surface profiles for the Q100 flood and the
location of the bridges on Mert River are shown in Figure 3.
Bridges were numbered according to their proximity to the
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Table 1: Flood values of different return periods of Mert River.

Return period 5 10 25 50 100 500 1000 10000
Flood (m3/s) 508 641.8 839.7 1011.6 1207.6 1709.5 2028.5 3139.5

Q10 Q25

Q50 Q100

Figure 4: 3D hazard maps of the Mert River obtained for the Q10, Q25, Q50, and Q100 floods.

Table 2: Annual instant maximum flows of Mert River.

Year 2007 2008 2009 2010 2011 2012 2013
Flow (m3/s) 158 102 66.3 87.1 73 570 66.1

Black Sea. Mert River flows into the sea after Mert River
Bridge 1. It is clear from the figure that the last three bridges
stay under water in the case of Q100 flood. 3D hazard maps
of the Mert River acquired for the Q10, Q25, Q50, and Q100
floods are illustrated in Figure 4. As obviously seen from the
figure, there are residential and industrial areas in the studied
region which are significantly affected by flood disaster.

Flood depths for each return period were illustrated in
Figure 5.Themaps clearly demonstrates that when Q10 flood
happens, the maximum depth is 6.2m and affected area
is approximately 30% (according to the urban area) in the
downstream of the Mert River and the maximum depth and
flooded area, respectively, increase to 7.6m and 60% in the
case of Q100 flood. This indicates the flatness of the study

area. Concerning the quantity of affected residential area, 650
housings were affected by the 10-year event. This increases to
780, 840, and 960 housings in the case of Q25, Q50, andQ100
floods, respectively.

2012 flood where loss of life and property occurred
was also simulated in the present study. Flood hazard map
and a photograph indicating a flood instant are outlined in
Figure 6. It is clear from the figure that the influenced area
is approximately 30% like the Q10 flood.The greatest hazards
occur on the right side of the river which is mostly covered by
industrial area. The flood magnitude alters a little on the left
side of the river and the water reaches just a small number
of houses near the river bank. It is clear from the hazard
map prepared according to the 2012 flood which appeared in
Figure 6 that the maximum depth is around 1 and 1.9m in
the residential area. A flooded building demonstrates that the
water level in this area increased to 1–1.5m when 2012 flood
occurred. 619 housings were affected by the 2012 flood. This
indicates that the simulation results obtained in this study
correspond to the real flood hazard.
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Figure 5: Water elevation maps of the studied area for the Q10, Q25, Q50, and Q100 floods.

Flood of July 3, 2012, demonstrated that some areas (traf-
fic roads and buildings surrounding the Mert River) are
highly affected even though they have a low recurrence
period (close to Q10). The flooded area is located in down-
stream of Mert River and includes industrial region and res-
idential buildings. It ought to be noticed that the buildings are
placed near watercourses. All these indicate a deficient urban
planning which results in occupation of river and/or natural
flooding areas [22].

The analyzed cross sections of Mert River and flooded
area in the case of 2012 flood are represented in Figure 7. The
flood impact additionally appeared for the selected section

(red line) in this figure (see Figure 7(a)). Figure 7(b) shows
the prevention of flood by adding levee and regulation of river
bottom. Dotted line in cross section indicates the swell height
of the flood.

For the duration of an intense storm, real-time analysis
includes using observed rainfall or gauged stage upstream as
input for hydrologic modeling, utilizing output flow rates to
hydraulic modeling, and finally mapping the output (flood
hazardmapping) by a GIS program.Then, this information is
utilized to manage flood warning activities such as voidances
and road closures. However, the stream velocities are usually
too great during a flood to make the flood hazard mapping
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Figure 6: Flood hazard map and a photograph indicating the flood instants in industrial and residential area for the flood of July 3, 2012
[1, 24–26].

practical. For solving this problem, the flood hazardmapping
procedures employed in this study may be utilized to prepare
a series of flood hazard maps taking into account diverse
return periods. In the duration of an intense storm, the flood
warning controller can choose the most appropriate digital
flood hazard map that corresponds most closely to the real-
time measured stream flow [23].

Numerous existing flood hazard maps require revision
since they are outdated. The flood hazard mapping outlined
in this study saves time and money versus traditional flood
hazard delineation on paper maps. By this way, flood hazard
maps can be regularly updated as variations in hydrologic and
hydraulic conditions warrant [23].

4. Conclusions

Flood hazard mapping of Mert River Basin, Samsun, Turkey,
was investigated using GIS and HEC-RAS in this study. 3D
hazard maps were obtained for the Q10, Q25, Q50, and Q100
floods. The flood maps demonstrated that some areas are
highly affected from flood for low return period (Q10) event.

Through Q10 flood, the maximum depth reached 6.2m and
affected area was approximately 30% in the downstream of
the Mert River. In addition, 650 housing were affected by this
flood. All these indicated an insufficient urban planning in
this area. Significant floods occurred for the 100-year return
period on the downstreamof theMert River and three bridges
out of five remained under flood. Flood hazard map of the
2012 flood where human life losses and a significant amount
of property damages were experienced was additionally pre-
pared utilizing GIS and HEC-RAS programs.The simulation
results of the Q10 and 2012 floods were compared with each
other and similarity was found between them. The studied
area generally covers industrial and residential areas. It was
seen that floods can be prevented in this region by adding
levee and regulation of river bottom. Otherwise, the majority
of this flooded area ought to be forested and/or kept as park
area.
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Figure 7: The analyzed cross sections of Mert River and flooded area in the case of 2012 flood: (a) flood effect for the selected section; (b)
prevention of flood by adding levee and regulation of river bottom.
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The Standardized Precipitation Evapotranspiration Index (SPEI) analysis was conducted using monthly precipitation data and
temperature data on a 12.5 km × 12.5 km resolution based on a Representative Concentration Pathways (RCP) 8.5 climate change
scenario, and the characteristics of drought were identified by the threshold. In addition, the changes in drought severity and
intensity were projected using the threshold based on the run-length concept and frequency analysis. As a result of the analysis,
the probability density function of the total drought and maximum drought intensity moved the upper tail for the upcoming years,
and the average drought intensity was also projected to become stronger in the future than in the present to the right side.Through
this, it could be projected that the drought scale and frequency and the drought intensity will become severer over South Korea
because of future climate change.

1. Introduction

Based on the recent research efforts on climate change, it
is projected that South Korea will be one of the countries
exposed to the risk of extreme natural disasters, such as
heavy rainfall and drought, because of climate change. Since
the announcement of the Fourth Assessment Report (AR4)
of the Intergovernmental Panel on Climate Change (IPCC),
climate change impact assessments have been carried out
in South Korea using climate projection data [1–4]. To
assess the extreme climate mostly represented by extreme
precipitation, drought, and flood, various analyses were
applied to a regional climate model or data using statistical
downscaling [5–7]. The application results generally project
that the probability distribution of extreme precipitation will
move to the upper tail and that the drought severity and
frequency will increase [8].

The drought starts from meteorological drought and
leads to agricultural drought, hydrological drought, and
socioeconomic drought; they are monitored or projected

using various drought indexes depending on each purpose
[9, 10]. Amongmeteorological drought indexes, Standardized
Precipitation Index (SPI) [11] is frequently used because of
its simple requirements [12]. The evaluation and projection
using SPI of meteorological drought indexes have been
actively conducted for South Korea [8, 13]. However, there are
some limitations in the assessment of droughts that employs
the meteorological drought index because of the multivariate
characteristics of droughts. Thus, to consider multivariate
drought, an integrated index dealing with various variables,
such as runoff, soil moisture, and evapotranspiration, as well
as precipitation, has been proposed and applied [14, 15].
Standardized Precipitation Evapotranspiration Index (SPEI)
[16], which considers the demand (evapotranspiration) as
well as the supply (precipitation), was suggested, and the
meteorological drought is assessed in amore physicalmanner
than SPI.

As it is difficult to define when the drought started and
ended, previous researches assessed the risk of drought in
an indirect way by conducting the frequency analysis of the
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Figure 1: Procedure of this study.
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Figure 2: Location map including RCM grid and administrative
division.

drought indexes [10, 17]. Mishra and Singh [18] calculated the
drought index for each nonexceedance probability by fitting
the SPI value to an EV-1 (Extreme Value Type-1) distribu-
tion. Lee and Kim [17] derived drought severity-duration-
frequency curves by fitting the annual minimum SPI to
probability distribution as a random variable. Mishra and
Singh [18] developed severity-area-frequency (SAF) curves
for annual droughts by climate change. Most researches in
the field considered only the annual minimum value and
temporary severity of the drought. However, as the drought
is multiscale, the analysis of important variables, such as the
magnitude, intensity, and duration of the drought, must be
conducted. This study aimed to project future SPEI using
RCP8.5 projection data. Since 2014, South Korea has been

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
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Duration
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Figure 3: Definition of total drought, maximum drought intensity,
and drought magnitude.

suffering from extreme drought; thus, this study projected
change in extreme droughts under extreme scenarios. In
addition, the drought characteristics by the threshold level to
the projected SPEI were identified. This study also projected
the drought risk of each administrative division of South
Korea in the 21st century by fitting the drought characteristics
to the Generalized Extreme Value (GEV) distribution.

2. Theoretical Background and Study Area

2.1. SPEI andThreshold Level. Because SPI does not consider
the variables related to temperature, it has a limitation of
being unable to consider the change in demand, such as the
change in water budget, like the precipitation and evapotran-
spiration by climate variation. However, SPEI is similar to
SPI but can reflect the effect of not only the variability in
precipitation but also the variability of evapotranspiration.
Thus, this study used SPEI. SPEI is the difference between the
randommonth 𝑖 and PET obtained by using the precipitation
and theThornthwaite equation [19, 20], as shown in

𝐷
𝑖
= 𝑃
𝑖
− PET

𝑖 (1)

which is synthesized in each time scale like

𝐷
𝑘

𝑛
=

𝑘−1

∑

𝑖=0

𝑃
𝑛−𝑖
− PET

𝑛−𝑖
. (2)

Here, 𝑘 is the time scale of synthesis, and 𝑛 is the month
used for calculation. The total drought, maximum drought
intensity, and drought magnitude were calculated using SPEI
(Figure 3). Negative SPEIs mean the dry condition; a drought
event is defined when the SPEI is continuously negative and
reaches a value of “−1.0” or less [16]. Thus, it is assumed
that “−1.0” is the threshold level and that the drought
starts in the level lower than “−1.0” in monthly SPEI. The
aggregate of SPEI while one drought event lasts was defined
as total drought, and the maximum SPEI during the drought
was defined as maximum drought intensity. The drought
magnitude was obtained by dividing the total drought by
drought duration. The aggregate of SPEI while one drought
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(b) Gyeonggi-do

0 5 10 15 20 25 30
SPEI

Current Future 1
Future 2 Future 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ili

ty
 d

en
sit

y 
fu

nc
tio

n

(c) Gyeongsangnam-do
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(d) Gyeongsangbuk-do
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(e) Jeollanam-do
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Figure 4: Continued.
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(h) Chungcheongbuk-do
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Figure 4: GEV PDF projection of total drought according to administrative division.

event lasts was defined as total drought, and the maximum
SPEI during the drought was defined as maximum drought
intensity. The drought magnitude was obtained by dividing
the total drought by drought duration.

2.2. Methodology. Figure 1 shows the research procedure in
this study. First, this study projected the SPEI of South Korea
in the future by collecting the grid data of the HadGEM3-
RA—the representative regional climate model provided
by the Korea Meteorological Administration (KMA). The
climate of South Korea is composed of four seasons: spring,
summer, autumn, and winter. South Korea’s winter is influ-
enced by the Siberian air mass, while its summer is hot
and humid because of the maritime Pacific high and mon-
soon. With this, South Korea has been suffering extreme
drought recently. By applying the threshold level to future

SPEI monthly time series, the drought characteristics were
calculated, and the changes of the risk for future drought
characteristics were projected using frequency analysis. The
HadGEM3-RA [21] used in this study is a regional climate
model produced from the global atmosphere-ocean combi-
nation model scenario (HadGEM2-AO, resolution: 135 km2)
based on Representative Concentration Pathways (RCP)
(Figure 2).

3. Results and Discussion

3.1. Results. Figures 4–6 show the projection of the Prob-
ability Density Function (PDF) of the GEV distribution
in current climate and future climate for total drought,
maximum drought intensity, and drought magnitude. This
study takes the absolute value of total drought, maximum
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(b) Gyeonggi-do
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(c) Gyeongsangnam-do

Current Future 1
Future 2 Future 3

2 4 6 8 100
SPEI

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40
Pr

ob
ab

ili
ty

 d
en

sit
y 

fu
nc

tio
n

(d) Gyeongsangbuk-do

Current Future 1
Future 2 Future 3

2 4 6 8 100
SPEI

0.00

0.50

1.00

1.50

2.00

2.50

Pr
ob

ab
ili

ty
 d

en
sit

y 
fu

nc
tio

n
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Figure 5: Continued.
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Figure 5: GEV PDF projection of maximum drought intensity according to administrative division.

drought intensity, and drought magnitude; these absolute
values follow GEV Type II (Frechet) having right tail. Thus,
we fitted drought statistics to GEV distribution regardless of
goodness-of-fit test.

In this study, the period from 1980 to 2005 is referred to
as current climate, from 2011 to 2040 as Future 1, from 2041
to 2070 as Future 2, and from 2071 to 2100 as Future 3. It was
projected that the PDF of total drought GEV distribution will
generally show a continuously increasing location and scale
parameters in the future. If the shape parameter becomes
smaller, the upper tail of theGEVdistribution at the upper tail
becomes thicker. This means the extreme event occurs more
frequently. In addition, the shape parameter of some regions
was smaller in the middle part of the 21st century than the
later part of the said century.Therefore, the frequency of total
drought occurrence on a larger scale was higher in themiddle

part of the 21st century. This phenomenon of reversal was
identified in Gyeonggi-do, Gyeongsangnam-do, Jeollanam-
do, and Jeju-do, and this phenomenon is considered to have
been caused by more average precipitation in the middle part
of the 21st century.

The maximum drought intensity relates to temporary
maximum intensity ormaximum severity during the drought
period; for example, the SPEI of the month when the
drought was the severest in a year, and it is the random
variable that was used most frequently so far in the risk
assessment using drought index. Figure 5 shows the PDF of
the maximum drought intensity in the current and future
climates, and according to this figure, the location and
scale parameters grew increasingly larger in the future. In
all regions, the drought of comparatively stronger intensity
than the maximum drought intensity in the current climate
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(b) Gyeonggi-do
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(d) Gyeongsangbuk-do
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(e) Jeollanam-do
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Figure 6: Continued.
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Figure 6: GEV PDF projection of drought magnitude according to administrative division.

was projected. This result corresponds with previous studies
[22–24]. According to the analysis result, the average and
variation of the maximum drought intensity are increasing,
which indicates that the average of the drought having strong
intensity will further increase in the future and that the
droughts of much stronger intensity will occur among the
droughts of strong intensity, and droughts of much weaker
intensity will occur among the droughts of weaker intensity.
The special trend of the shape parameter related to the
occurrence frequency was not identified, but the drought
intensity in Gyeonggi-do, Gyeongsangnam-do, and Jeju-do
was stronger in the middle part of the 21st century than the
later part of the said century. The total drought in Jeollanam-
do Province showed more reversal phenomena in the middle
part of the 21st century than in the later part of the said
century; however, themaximumdrought intensity showedno
significant difference between the middle and later parts of

the 21st century, which means that many total droughts will
occur in Jeollanam-do Province in the middle part of the 21st
century, but they will have no considerably strong intensity.

Similar to this, as the maximum drought intensity, the
location and scale parameters of the drought magnitude
(obtained by dividing the total drought by duration) were
becoming increasingly larger in the future, and the shape
parameter was projected to increase to more than its level
in the current climate in all locations except Jeju-do. The
drought magnitude (the same concept as precipitation inten-
sity) relates to the intensity for unit time. It is gener-
ally projected that the intensity of the precipitation will
become increasingly stronger in the future; the drought
intensity was also projected to become stronger in the
future. The magnitude of the total drought in Gangwon-
do, Gyeongsangbuk-do, Jeollabuk-do, Chungcheongnam-
do, and Chungcheongbuk-do was projected to become
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Figure 7: Continued.
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Figure 7: Ratio of total drought in the future climate to the current climate.

increasingly larger in the future, but the drought mag-
nitude in Gangwon-do, Gyeongsangbuk-do, Jeollabuk-do,
and Chungcheongnam-do was comparatively smaller in the
later part than the middle part of the 21st century, which
indicates that the number of dry days in the relevant regions
will increase or the under-anomaly of the precipitation will
continue for a longer period (Figure 6).

Figure 7 shows the rate of increase of total drought in
each administrative division in the future climate compared
to the current climate according to recurrence period. The
possibility of total drought of the later part of the 21st century
was projected to be high in Gyeonggi-do, Gyeongsangnam-
do, Jeollanam-do, Jeollabuk-do, and Chungcheongnam-do
and that of the first part of the 21st century in Gangwon-do
and Chungcheongbuk-do was projected to be high as well
but only in some recurrence periods. In general, however,

the total drought showed the trend of a higher increase
in the future climate than in the current climate. The rate
of increase became increasingly larger in the future, and it
was projected (based on a 100-year frequency) that the rate
will increase about three times from the current climate in
Gyeongsangnam-do, Jeollanam-do, and Jeollabuk-do.

Figure 8 shows the rate of increase of drought intensity
in the future climate compared with the current climate in
each administrative division according to recurrence period.
Because of its great randomness through the use of the
annual lowest SPEI, the rate of increase in future climate
compared with the current climate did not show a significant
trend other than the total drought; however, in Gyeonggi-
do, Gyeongsangnam-do, and Jeju-do, the maximum drought
intensity was projected to be stronger in the later part of the
21st century, and in Gangwon-do and Chungcheongnam-do,
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Figure 8: Continued.
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Figure 8: Ratio of maximum drought intensity in the future climate to the current climate.

the maximum drought intensity was projected to be stronger
in the middle part of the 21st century. In general, it was
projected that the maximum drought intensity will become
stronger in the future than the present, but the opposite trend
was identified in Chungcheongbuk-do Province.

Figure 9 shows the drought magnitude in the future
compared with the current in each administrative divi-
sion according to recurrence period. In Gangwon-do,
Gyeongsangnam-do, Jeollanam-do, Chungcheongnam-do,
and Chungcheongbuk-do, the drought magnitude was pro-
jected to be larger in the middle part than the later part of
the 21st century, and inGangwon-do and Jeju-do, the drought
magnitude was projected to be larger in the later part than the
middle part of the 21st century. Based on a 100-year frequency,
the drought magnitude was projected to increase about 1.8
times from the present in Jeollanam-do Province in the

middle part of the 21st century. The climate model is known
to have better estimation capability for the temperature than
the precipitation. In view of that, the variable that shows
an increasingly dramatic trend of increase in the future is
the temperature. SPEI is the drought index that considers
the difference between precipitation and evapotranspiration,
with evapotranspiration as the function of temperature. The
stronger drought magnitude in the middle part than the later
part of the 21st century indicates that there is a considerably
small level of precipitation in the middle part of the 21st
century regardless of the increase of evapotranspiration.

3.2. The Result of the Change in the Threshold Level. The
drought size in the current and future climates was calculated
while changing the drought standard, that is, the threshold
level, to “−1” and “−1.5” (Figure 10).The total drought in “−1”



Advances in Meteorology 13

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1000 yr

500 yr

250 yr

200 yr

100 yr

50 yr

20 yr

10 yr

5 yr

2.33 yr

Future 1/current
Future 2/current

Future 3/current

(a) Gangwon-do

0
0.2
0.4
0.6
0.8

1
1.2

1000 yr

500 yr

250 yr

200 yr

100 yr

50 yr

20 yr

10 yr

5 yr

2.33 yr

Future 1/current
Future 2/current

Future 3/current

(b) Gyeonggi-do

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1000 yr

500 yr

250 yr

200 yr

100 yr

50 yr

20 yr

10 yr

5 yr

2.33 yr

Future 1/current
Future 2/current

Future 3/current

(c) Gyeongsangnam-do

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1000 yr

500 yr

250 yr

200 yr

100 yr

50 yr

20 yr

10 yr

5 yr

2.33 yr

Future 1/current
Future 2/current

Future 3/current

(d) Gyeongsangbuk-do

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1000 yr

500 yr

250 yr

200 yr

100 yr

50 yr

20 yr

10 yr

5 yr

2.33 yr

Future 1/current
Future 2/current

Future 3/current

(e) Jeollanam-do

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1000 yr

500 yr

250 yr

200 yr

100 yr

50 yr

20 yr

10 yr

5 yr

2.33 yr

Future 1/current
Future 2/current

Future 3/current

(f) Jeollabuk-do

Figure 9: Continued.
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Figure 9: Ratio of drought magnitude in the future climate to the current climate.

was becoming increasingly larger in the future (Figure 10).
However, the total drought in Gangwon-do, Gyeonggi-do,
Jeollanam-do, Chungcheongbuk-do, and Jeju-do was larger
in the middle part than the later part of the 21st century. The
extreme total drought below “−1.5” also showed the trend
of becoming increasingly larger in the future; however, the
total drought in Gangwon-do, Gyeonggi-do, and Jeju-do was
larger in themiddle part than the later part of the 21st century,
and the total drought in Jeollanam-do Province remained in
a similar level from the first part to the later part of the 21st
century.

The maximum drought intensity below “−1” of the SPEI
was becoming stronger and stronger in the future (Figure 11).
However, the maximum drought intensity in Gangwon-
do, Gyeonggi-do, Gyeongsangnam-do, Jeollanam-do,

Jeollabuk-do, Chungcheongbuk-do, and Chungcheongnam-
do was stronger in the middle part than the later part of the
21st century. The maximum drought intensity below “−1.5”
also showed the trend of becoming increasingly stronger in
the future, but the maximum drought intensity in Gangwon-
do, Gyeonggi-do, Gyeongsangnam-do, Jeollanam-do, and
Jeju-do was projected to be stronger in the middle part than
the later part of the 21st century.

The drought magnitude below “−1” of the SPEI was
becoming increasingly larger in the future even though
the extent is comparatively less than the total drought and
maximum drought intensity (Figure 12). However, it was
projected that the drought magnitude of similar magni-
tude will continue from the current climate to the first
part of the 21st century in Gangwon-do, Gyeonggi-do,
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(b) Gyeonggi-do
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(c) Gyeongsangnam-do
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(d) Gyeongsangbuk-do
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(e) Jeollanam-do
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Figure 10: Continued.
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(g) Chungcheongnam-do
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(h) Chungcheongbuk-do
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Figure 10: Change in total drought in the current and future climates.

and Jeollanam-do and that the drought magnitude in
Gangwon-do, Gyeonggi-do, Gyeongsangnam-do, Jeollanam-
do, Jeollabuk-do, Chungcheongnam-do, Chungcheongbuk-
do, and Jeollabuk-do was projected to become larger in
the middle part than the later part of the 21st cen-
tury. The drought magnitude below “1.5” also showed the
trend of becoming increasingly larger in the future; how-
ever, the drought magnitude in Gangwon-do, Gyeonggi-do,
Gyeongsangnam-do, and Jeju-do was projected to become
larger in the middle part than the later part of the 21st
century.

The drought duration in each drought period was calcu-
lated (Figure 13). The drought duration below “−1” was 0.76
months/year in the current climate, but drought durationwas
projected to become increasingly longer in the future and
extreme drought to last for longer than 2.50 months/year
(Figure 12). The calculation of the drought duration below
“1.5” showed similar results. The drought duration was

0.13 months/year in the current climate, but the drought
duration was projected to become increasingly longer in
the future and extreme drought to last for longer than 1.10
months/year (Figure 12). In general, in Gyeongsangbuk-do
Province, the drought below “−1” is expected to last for
longer than three months in the later part of the 21st century
and the severer drought below “−1.5” is expected to last for
about two months. In Chungcheongbuk-do Province, it was
projected that the drought below “−1” will last for about three
months in the middle part of the 21st century, but with the
duration expected to decrease in the later part of the 21st
century.

4. Conclusions

This study aimed to identify the drought characteristics
by applying the threshold level method and projected
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(b) Gyeonggi-do
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(c) Gyeongsangnam-do
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(d) Gyeongsangbuk-do
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(e) Jeollanam-do
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Figure 11: Change in maximum drought intensity in the current and future climates.

the drought risk of each administrative division in South
Korea in the 21st century by fitting the identified drought
characteristics to GEV distribution.The result of the analysis
about the total drought, maximum drought intensity, and
drought magnitude showed that the PDF of the total drought
and maximum drought intensity was moving further and
further to the upper tail part, and the drought of stronger
intensity was also projected to occur more frequently in
the future than the current in the right side of the GEV
distribution.

The total volume of the mild drought was projected
to increase from the current 0.97/year to 3.72/year in the
later part of the 21st century, and the total volume of the
severe drought was projected to increase from the current
0.20/year to 1.55/year in the later part of the 21st century.
The maximum drought intensity of the mild drought was

projected to increase from the current 0.49/year to 1.02/year
in the later part of the 21st century, and the maximum
drought intensity of the severe drought was projected to
increase from the current 0.15/year to 0.76/year in the later
part of the 21st century. The average drought intensity of
the mild drought was projected to increase from the current
0.45/year to 0.87/year in the later part of the 21st century,
and the average drought intensity of the severe drought was
projected to increase from the current 0.14/year to 0.65/year
in the later part of the 21st century. As a result of drought
duration calculation, the duration of the mild drought was
0.76 months/year in the current climate, but it was projected
to become increasingly longer in the future and to last for
longer than 2.50 months/year in the future climate. As a
result of calculating severe drought duration, the drought
duration was 0.13 months/year in the current climate, but it
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Figure 12: Change in drought magnitude in the current and future climates.

was projected to become increasingly longer in the future
and to last for longer than 1.10 months/year in the future
climate.

Drought magnitude and duration are key variables.
With this, according to the extent of human needs, the
drought magnitude also needs to take into consideration
separately the maximum drought intensity, drought mag-
nitude, and total drought. In the health-welfare area, for
example, the maximum drought intensity among drought
features will be the most useful in preventing drought
damage (high temperature and dryness) to people belong-
ing to the vulnerable class, and the drought magnitude—
with the same concept as precipitation intensity—can pro-
vide useful information to the designers of water supply

facilities. Because the total drought includes the concept
of drought duration, it can provide useful information
during the process of drought transition from agricultural
to hydrological and socioeconomic drought. There is a
significance in projecting future drought on the basis of
the extreme climate. Because this study has a limitation
to employ a single scenario, future studies should attempt
to quantify uncertainties in the combination of multiple
scenarios.
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Figure 13: Change in drought duration in the current and future climates.
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The common approach to quantifying the precipitation forecast uncertainty is ensemble simulations where a numerical weather
prediction (NWP) model is run for a number of cases with slightly different initial conditions. In practice, the spread of ensemble
members in terms of flood discharge is used as a measure of forecast uncertainty due to uncertain precipitation forecasts. This
study presents the uncertainty propagation of rainfall forecast into hydrological response with catchment scale through distributed
rainfall-runoffmodeling based on the forecasted ensemble rainfall of NWPmodel. At first, forecast rainfall error based on the BIAS
is compared with flood forecast error to assess the error propagation. Second, the variability of flood forecast uncertainty according
to catchment scale is discussed using ensemble spread. Then we also assess the flood forecast uncertainty with catchment scale
using an estimation regression equation between ensemble rainfall BIAS and discharge BIAS. Finally, the flood forecast uncertainty
with RMSE using specific discharge in catchment scale is discussed. Our study is carried out and verified using the largest flood
event by typhoon “Talas” of 2011 over the 33 subcatchments of Shingu river basin (2,360 km2), which is located in the Kii Peninsula,
Japan.

1. Introduction

Recent advances in weather measurement and forecasting
have created opportunities to improve streamflow forecasts.
It is possible to combine high-resolution numerical weather
prediction (NWP) data directly into streamflow forecast sys-
tems in order to obtain an extended lead time. The accuracy
of weather forecasts has steadily improved over the years,
but recent researches represented that direct application of
outputs from the NWP model into the hydrological domain
can result in considerable bias and uncertainty that are
propagated into hydrological domains [1, 2].

One of the biggest sources of uncertainty in the applica-
tion of streamflow forecasting comes from forecasted rainfall.
The grid size in NWP models is often larger than the sub-
catchment size in hydrological models, which results in the
forecast rainfall data not being at the appropriate resolution
required for flood forecasting. In addition, even small errors
in the location of weather systems by NWP models may
result in forecast rainfall for the catchment concerned being

significantly wrong [3, 4]. These biases and uncertainties of
rainfall forecast may be amplified when cascaded through
the hydrological system, and small uncertainties in rainfall
forecast may translate into larger errors in flood forecasting.
As an example, Komma et al. [5] showed that an uncertainty
range of 70% in terms of NWP rainfall translated into an
uncertainty range of 200% in terms of runoff for a lead
time of 48 hours. They presented this to the nonlinearity of
the catchment responses, but uncertainties such as forecast
rainfall, parameter, and structure of a hydrologic model may
contribute to the amplification of the uncertainty in terms
of flood forecasting. Xuan et al. [6] also highlighted that
although the QPF from NWP model could generally catch
the rainfall pattern, the uncertainties of rainfall at the scale of
model grid to the catchment were always significant.

It is difficult to understand the full range and interaction
of uncertainties in flood forecasting. And the different types
of uncertainty will vary with lead time of the forecasts,
and with the magnitude of the event and catchment char-
acteristics. Vivoni et al. [7] addressed the propagation of
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radar rainfall nowcasting errors to flood forecasts in the
context of distributed hydrological simulations. However,
they used the radar rainfall measurements to quantify how
increases in nowcasting errors to flood forecast with lead
time, whereas our approach applies the ensemble NWP
rainfall into the flood forecasts to assess the error and
uncertainty propagation with the catchment scale. And the
variability of runoff predictions by rainfall uncertainty differs
for different case studies and thus no general trend is apparent
[8–10]. This study is carried out under the assumption that
model parameters and structure errors do not contribute to
uncertainty of flood forecasting to remove the focus from
forecast rainfall error. As a result, a distributed hydrologic
model is considered to be the appropriate tool to assess
rainfall forecast quality and to understand how uncertainty
in the rainfall forecasts field may propagate throughout the
watershed. Further, the integration of the rainfall forecast
into runoff simulation at multiple locations in a catchment
allows the investigation of the effects of catchment scale
on the propagation of rainfall forecast uncertainties in the
streamflow forecasting.

The main objective of this study is to assess the error
and uncertainty propagation due toNWP rainfall uncertainty
on hydrological response through a distributed hydrologic
model depending on catchment scale. In the context of
flood forecasts, it is important to assess the forecast rainfall
uncertainty in terms of the effect on runoff.And uncertainties
based on spatial scale are also important by means of the
information for real-time flood forecast and the possible
amount of flow to the reservoir and exceeding its capacity
to optimize the water volume to be released. Therefore, the
coupled use of NWP rainfall output and hydrologic flood
forecasting requires an assessment of uncertainty through
hydrological response.

The research question is as follows: How does ensemble
NWP rainfall error translate into flood forecasting, and how
does flood forecast uncertainty propagate as a function of
catchment scale dependency? To our knowledge, there exists
research about rainfall uncertainty’s direct propagation into
the hydrological domain, but the spatial scale dependency
of uncertainty propagation of ensemble NWP rainfall into
hydrological predictions has not been addressed. First, we
compared forecast rainfall error based on the BIAS, which
is used to measure error amplification, to flood forecast
error driven by ensemble NWP forecast outputs to assess
error propagation. Second, we discussed the variability of
flood forecast uncertainty according to catchment scale using
ensemble spread, which is driven by ensemble NWP rainfall
through a distributed hydrologic model. We also assessed
flood forecast uncertainty, which is under the condition
that ensemble NWP rainfall has not BIAS compared with
observed radar rainfall and catchment scale using an esti-
mation regression equation between ensemble NWP rainfall
and discharge based on the BIAS. Finally, we assessed flood
forecast uncertainty with RMSE using specific discharge in
catchment scale. Note that we focused not only on the
quantitative error propagation of rainfall forecast into flood
forecast but also the variability of flood forecast uncertainty
with catchment scale.

This paper has been organized in the following way.
After the Introduction, Section 2 introduces the design of
meteorological experiment for the Typhoon Talas event
and describes the target area and a hydrologic model, and
Section 3 addresses the results of uncertainty propagation
of NWP Rainfall Forecast to Flood Forecast with catch-
ment scale. Finally, we summarize our major conclusions in
Section 4.

2. Data and Methodology

2.1. Meteorological Data. In Japan, an operational one-week
ensemble prediction model from JMA was developed to pro-
vide probabilistic information of 51 ensemble members with
a horizontal resolution of 60 km, and it used to be applied for
hydrological applications (e.g., prior and optimized release
discharge for dam operation) [11]. However, operational
short-term (1-2 days) ensemble prediction with much finer
resolution has not yet been developed. For that reason,
studies on ensemble forecast systems that are composed of
11 members (1 unperturbed and 10 perturbed member) with
a horizontal resolution of 10 km and 2 km, the latter nested
inside the former with a 6-hour lag, have been conducted by
the Meteorological Research Institute (MRI) of JMA for the
2011 Typhoon Talas event.

Both 10 km and 2 km resolution systems used the JMA
Nonhydrostatic Model (NHM) as the forecast model [12, 13].
Whereas the 10 km resolution forecast adopted the cloud
microphysical process and Kain-Fritsch convective scheme,
the 2 km resolution forecast did not use a convective scheme
because of its cloud resolving resolutions. The coarse res-
olution system of 10 km had a domain of 361 × 289 grid
points with 50 vertical levels and forecasted up to 36 hours in
advance. For initial and lateral boundary conditions, 10 km
used the analysis from the JMA nonhydrostatic 4DVAR
(JNoVA) data assimilation system [14] and the forecasts
of JMA’s high-resolution (TL959L60) global spectral model
(GSM). The control run (cntl) is the forecast with a nonper-
turbed analysis, and the 10 perturbed forecastswere generated
from JMA’s 1-week global EPS (WEP) for the initial and
boundary perturbations.Thefine-resolution 2 km systemwas
conducted from the downscale forecast of 10 km resolution
systems. This system had a domain of 350 × 350 grid points
with 60 vertical levels and forecasted up to 30 hours in
advance.The domain of the two ensemble systemswith 10 km
and 2 km horizontal resolution are illustrated in Figure 1(a).
The initial and boundary conditions for eachmember at 2 km
were interpolated from the forecasts on the corresponding
member at 10 km resolution with a 6-hour lag. 10 km started
running at 21 JST every day, and 2 km began 6 hours later.
Figure 1(b) shows a schematic of forecast runs with 10 km and
2 km resolution.

In this study, we introduced the results of ensemble
prediction with a 2 km horizontal resolution due to the
viewpoints of high resolution and better predictability of
weather phenomena and used 4 sets of ensemble prediction
outputs with 30 hours forecast time to assess rainfall forecast
uncertainty and to understand howuncertainty in the rainfall
forecast may propagate throughout the watershed (Table 1).
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Figure 1: (a) Forecast domains of 10 km and 2 km horizontal resolution. (b) Schematic of forecast runs with 10 km and 2 km horizontal
resolution. The rectangle inside 2 km domain denotes the spatial verification area for Kinki region.

Table 1: Four forecast sets with 30 hours’ forecast time and 2 km
horizontal resolution used in the study. Each forecast is overlapped
with 6 hours.

Forecast
period

First forecast 2011/09/01 03:00–09/02 09:00 JST
Second forecast 2011/09/02 03:00–09/03 09:00 JST
Third forecast 2011/09/03 03:00–09/04 09:00 JST
Fourth forecast 2011/09/04 03:00–09/05 09:00 JST

And the ensemble NWP rainfall forecast in this study is
verified spatially against theMinistry of Land, Infrastructure,
Transport and Tourism (MLIT) C-band composite radar data
(radius of quantitative observation range: 120 km, 1 km mesh
and 5min resolution). Since the first installation of C-band
radar in Japan in 1976, the radars have installed all parts of
Japan gradually. Now 26 C-band radars cover and monitor
rainfall of all Japan. It is important to provide information
of river and basin rapidly to relevant authorities and people
in order to protect human life and property from disaster.
MLIT C-band radar provides wide observation range and is
useful for large river flood-management tool in observing the
seasonal rain front or typhoons.

2.2. Target Area and a Hydrologic Model. The Shingu river
basin was selected as the target area to assess rainfall forecast
uncertainty into streamflow forecast with spatial scale. The
Shingu river basin is located in the Kii Peninsula of the Kinki
area, Japan, and covers an area of 2,360 km2. The average
elevation of the study site is 644.6m, and the slope is steep;
this basin is a mountainous area. The five dams, Futatsuno,
Kazeya, Komori, Nanairo, and Ikehara, are located upstream.
The left and right sides of the Shing river basin exhibit
different characteristics. The left side is the Totsukawa basin,
and the right side is the Kitayamakawa basin. Their charac-
teristics are completely different. The elevation of Totsukawa
is higher than that of Kitayamakawa. And Kitayamakawa

Table 2: Subcatchment area at gauged and ungauged points.

Catchment Area (km2) Catchment Area (km2)
1 92.2 18 141.56
2 165.99 19 347.35
3 279.78 20 429.07
4 150.56 21 94.23
5 444.04 22 (Nanairo dam) 529.49
6 54.24 23 (Komori dam) 633.22
7 533.73 24 700.49
8 105.72 25 1090.92
9 (Kazeya dam) 656.08 26 56.68
10 65.97 27 65.20
11 766.19 28 1268.03
12 65.04 29 783.85
13 130.74 30 2091.38
14 (Futatsuno dam) 1012.15 31 110.92
15 112.13 32 2212.24
16 72.65 33 (Ouga station) 2245.56
17 (Ikehara dam) 203.27

has a lower level in the channel. We divided the Shingu
river basin into 33 subcatchments from 54.24 to 2245 km2
(Figure 2, Table 2), including 6 gauged (5 dams and 1 gauge
station) and 27 ungauged locations, for the assessment of
uncertainty of ensemble NWP rainfall into flood forecast
with catchment scale. At first, we divided the Shingu river
basin into 6 subcatchments including the 5 dams and 1 gauge
station, which have the observed discharge data. Then we
also divided the Shingu river basin into 33 subcatchments
from 54.24 to 2245 km2 by considering the channel junction
of tributaries using the drainage networks of digital elevation
model (DEM). Segond [9] specified the catchment into small
(<100 km2), medium (100–2000 km2), and large (>2000 km2)
catchments. However, the standard of catchment scale differs
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Figure 2: (a) 33 subcatchments including 6 gauged (5 dams and 1 gauge station) and 27 ungauged locations and (b) connections with flow
directions.

for different case studies, and the Shingu river basin covers
an area of 2,360 km2; thus, we specified 33 subcatchments
into 3 types, small catchment (<200 km2), medium catch-
ment (200∼1000 km2), and large catchment (>1000 km2)
to evaluate the variability with catchment scale. We also
divided catchment characteristics into 2 types, mountainous
area (>800m) and flat area (<800m) considering average
elevation (800m) of the 33 subcatchments.

We used a spatially distributed hydrologic model, based
on one-dimensional kinematic wave method for subsurface
and surface flow (hereafter, KWMSS) with a conceptual
stage-discharge relationship [15]. Figure 3 is a conceptu-
alization of spatial flow movement and flow process in
hillslope elements of KWMSS. The rainfall-runoff transfor-
mation conducted by KWMSS is based on the assump-
tion that each hillslope element is covered with a per-
meable soil layer. This soil layer consists of a capillary
layer and a noncapillary layer. In these conceptual soil
layers, slow and quick flow are simulated as unsaturated
Darcy flow and saturated Darcy flow, respectively, and over-
land flow occurs if water depth, ℎ [m], exceeds soil water
capacity:

𝑞 =

{{{{{

{{{{{

{

V
𝑐
𝑑
𝑐
(
ℎ

𝑑
𝑐

)

𝛽
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𝑐

V
𝑐
𝑑
𝑐
+ V
𝑎
(ℎ − 𝑑

𝑐
) , 𝑑

𝑐
≤ ℎ ≤ 𝑑

𝑠

V
𝑐
𝑑
𝑐
+ V
𝑎
(ℎ − 𝑑

𝑐
) + 𝛼 (ℎ − 𝑑

𝑠
)
𝑚

, 𝑑
𝑠
≤ ℎ,

(1)

𝜕ℎ

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 𝑟 (𝑥, 𝑡) , (2)

where V
𝑐
= 𝑘
𝑐
𝑖 [m/s], V

𝑎
= 𝑘
𝑎
𝑖 [m/s], 𝑘

𝑐
= 𝑘
𝑎
/𝛽 [m/s], 𝛼 =

𝑖
1/2
/𝑛 [m1/3s−1], 𝑚 = 5/3, 𝑖 is the slope gradient, 𝑘

𝑐
[m/s] is

the hydraulic conductivity of the capillary soil layer, 𝑘
𝑎
[m/s]

is the hydraulic conductivity of the noncapillary soil layer,
𝑛 [m−1/3s] is the roughness coefficient, 𝑑

𝑠
[m] is the water

depth corresponding to the water content, and 𝑑
𝑐
[m] is the

water depth corresponding to maximum water content in
the capillary pore. The flow rate of each hillslope element
𝑞 [m2/s] is calculated by (1) and combinedwith the continuity
equation for channel routing by (2). Many studies have
applied this hydrologic model in a variety of hydrologic
applications and have shown that this rainfall-runoff model
was effective, robust, and flexible [16–18].
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Table 3: Optimized parameter values from multicalibration using SCE-UA optimization method.

Parameter Description Optimal values
𝑛 Roughness coefficient [m−1/3s] 0.1284
𝑑
𝑐

Depth of the unsaturated soil layer [m] 0.2369
𝑑
𝑠

Depth of the saturated soil layer [m] 0.1442
𝑘
𝑎

Hydraulic conductivity of the saturated soil layer [m/s] 0.0150
𝛽 Nonlinear exponent constant for the unsaturated soil layer [−] 3.7898

D

ds

ds

dc

dc

Noncapillary pore
Saturated flow
Capillary pore

Unsaturated flow

Soil

q

h

q = �cdc + �a(h − dc) + 𝛼(h − ds)
m

q = �cdc + �a(h − dc)

q = �cdc(h/dc)
𝛽

Figure 3: Conceptualization of spatial flow movement and flow
process in hillslope elements; the arrows indicate element models
for calculating hydrological variables, such as water flux.

There was no observed discharge data in subcatchments,
except in 5 dams and 1 gauge station. For that reason, the
parameter optimization of the hydrologic model was con-
ducted using the Ministry of Land, Infrastructure, Transport
and Tourism (MLIT) C-band composite radar data, which
has high spatial-temporal resolution to capture the spatial
variability of rainfall. However, in spite of the high-resolution
accuracy of radar data, parameterization associated with soil
parameters of hydrological model remains uncertain due
to impossibility of direct observation and use of the soil
parameters (i.e., discordance between soil properties and
model parameters). Therefore, we assumed that parameters
of hydrologic model in Table 3 are spatially homogenous
over the 33 subcatchments. The Shuffled Complex Evolution
(SCE) global optimization method [19] was used for the
parameter optimization of the hydrologic model using MLIT
composite radar rainfall to acquire the reference data of the
33 subcatchments. The SCE-UA, one of the computer-based
automatic optimization algorithms, is a single-objective
optimization method designed to handle high parameter
dimensionality encountered in calibration of a nonlinear
hydrologic simulation model. Basically, this scheme is based

on the following three concepts: (1) combination of sim-
plex procedure using the concepts of a controlled random
search approach; (2) competitive evolution; and (3) complex
shuffling. The integration of these steps makes the SCE-
UA effective, robust, and flexible. In this study, the SCE-
UA optimization method was modified to minimize the
objective function between observed inflows and simulated
results for all 5 dams and 1 gauge station at the same time
(Equation (3)). The hydrologic model used here provides
output variable of the discharge at the outlet of interest that
our target is to find the near-optimal parameter values. We
selected objective function using the root mean square error
(RMSE). Table 3 summarizes the optimized parameter values
from multicalibration using SCE-UA optimization method,
and Figure 4 shows the results of multicalibration using the
SCE-UA optimization method and minimizing the objective
function of 6 observation points:

Minimize OF =
6

∑

Basin=1
RMSEBasin. (3)

Observed radar data and its simulated discharge were used
as reference data to compare the ensemble NWP rainfall
forecast and flood forecast for the assessment of uncertainty
propagation in 33 subcatchments. Although the simulated
discharge from observed radar rainfall does not specifically
represent the true discharge, the simulated discharge from
the observed radar data is nevertheless set as reference data
for comparison with the discharge from ensemble prediction
data.

2.3. Skill Score Descriptions. To evaluate the accuracy of the
ensemble forecast in terms of areal rainfall intensity, we
calculated two error indexes. The first is the normalized root
mean square error (RMSE), which is normalized by themean
value of the observations during the each forecast period
(30 hours). The second is the log ratio bias, which a relative
error and provides information about the total amount of
rainfall. A log ratio bias value of zero indicates a perfect
forecast; positive and negative values indicate underestimated
and overestimated forecasts, respectively:

Nor. RMSE =

√(1/𝑁)∑
𝑁

𝑡=1
(𝑂
𝑡
− 𝐹
𝑡
)
2

𝑂

,

log ratio BIAS = log
∑
𝑁

𝑡=1
𝑂
𝑡

∑
𝑁

𝑡=1
𝐹
𝑡

,

(4)
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Figure 4: Multicalibration using SCE optimization method and minimizing the objective function of 6 observation points.

where𝑁 is forecast time (30 hours) in each period and𝑂
𝑡
and

𝐹
𝑡
are the observed and forecasted rainfall at time 𝑡.
For the spatial verification of ensemble NWP rainfall,

the rainfall forecasts have been verified spatially against the
MLIT C-band composite radar data. The ensemble forecast

was expressed as probabilities of exceeding selected rainfall
thresholds (1.0 and 5.0mm/h). A contingency table can be
constructed with a spatial comparison, in which each area
with more than selected rainfall threshold is defined as “yes,”
and other areas are defined as “no” for both forecasted
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and observed rainfall fields. In this study, two indexes are
considered for spatial verification of ensemble forecast in the
Kinki region (Figure 1). First index is critical success index
(CSI), which is also called the “threat score” and its range is 0
to 1, with a value of 1 indicating a perfect forecast. It takes into
account both false alarms andmissed events. And second one
is BIAS, which has range with 0 to∞. CSI and BIAS are given
by

CSI = hits
hits +misses + false alarms

,

BIAS = hits + false alarms
hits +misses

,

(5)

where hits are the number of correct forecasts over the
threshold (i.e., rainfall is forecast and also observed), and
misses are the number of times rainfall is not forecast but
is observed. False alarms are the number of times rainfall is
forecast but is not observed.

Rainfall forecast error of ensemble outputs from theNWP
model is compared with the flood forecast error driven by
those rainfall forecasts to assess the uncertainty propagation.
It is important, however, to quantify uncertainty propagation
from rainfall forecast to flood forecast using statistical mea-
sures that appropriately capture forecast deviations. For this
reason, the BIAS was used to compare the mean conditions
in the forecast and observation in terms of rainfall and flood
forecast and to measure error amplification. Note that the
BIAS of the basin-mean rainfall is directly compared with the
discharge BIAS, and the BIAS is used for an average value
of 30 hours of forecast time of rainfall and flood forecast
results. Furthermore, the results are classified according to
the forecast period of ensemble rainfall from theNWPmodel:

BIAS
𝑖
=
∑
𝑁

𝑡=1
𝐹
𝑖,𝑡

∑
𝑁

𝑡=1
𝑂
𝑡

, (6)

where 𝑁 is the forecast time of each forecast period (30
hours); 𝑂

𝑡
and 𝐹

𝑡
are the observed and forecasted rainfall

and discharge at time 𝑡, respectively; and 𝑖 is each ensemble
forecast (11 ensemble members).

For the evaluation of the variability of flood forecast
uncertainty according to catchment scale, the mean value of
the coefficient of variation (CV), which is a normalized mea-
sure of dispersion of a probability distribution or frequency
distribution, was used (Equation (7)). It is defined as the ratio
of the standard deviation to the mean. The absolute value of
the CV is sometimes known as relative standard deviation
(RSD), which is expressed as a percentage. The coefficient of
variation determines the risk:

Ave. CV
𝑖
=
∑
𝑁

𝑡=1
(𝜎
𝑖,𝑡
/𝜇
𝑖,𝑡
)

𝑁
, (7)

where 𝑁 is the forecast time of each forecast period (30
hours), and 𝜎

𝑖,𝑡
and 𝜇
𝑖,𝑡
are the standard deviation to themean

value of the flood forecast at each ensemble 𝑖 and time 𝑡,
respectively.

3. Results and Discussion

3.1. Rainfall Verification. For the purpose of temporal verifi-
cation of QPF with ensemble NWP rainfall during the Talas
event, the areal rainfall intensity of ensemble forecasts is
compared with the Automated Meteorological Data Acqui-
sition System (AMeDAS) over the Shingu river basin. For
comparison, the observed rainfall of AMeDAS (18 stations,
10min step) is interpolated using theThiessen polygon spatial
distribution method.

Figure 5 shows areal rainfall of ensemble forecast over
the Shingu river basin in the form of box plots plotted from
0 to 24 hours forecast time of ensemble forecast excluding
overlapped forecast time (from 25 to 30 hours) compared
with the areal rainfall of AMeDAS. In the 1st and 2nd
forecast periods, the control run (unperturbed member) and
ensemble (perturbedmembers) forecasts produced a suitable
areal rainfall compared with the AMeDAS rainfall, but as
shown in the 3rd forecast result, the control run forecast
was not well matched and did not produce the rainfall
intensity because the spatial pattern of rain cells moved
to the north-eastern part of Kii peninsula quickly by that
the MSM failed to correctly forecast, as mentioned in the
Introduction. On the other hand, the upper range of the
ensemble forecast was able to produce considerable rainfall
intensity, and the amounts of maximum rainfall intensity
are also similar to AMeDAS rainfall. In 4th forecast period,
the reason why rainfall intensities are overestimated can be
explained by the fact that the last spatial rainfall pattern of
the 3rd forecast moved to the north-eastern part of the Kii
peninsula; however, it started the forecast again from the Kii
peninsula in the 4th forecast. For this reason, rainfall intensi-
ties were very high in the 4th forecast period compared with
AMeDAS.

In the index of normalized RMSE, the control run and
ensemble mean have similar values from 1st to 3rd forecast
period, but the best index of the ensemble spread could
provide good value as compared with the deterministic
control run. In the 4th forecast period, as mentioned above,
the index of the control run and ensemble spread is relatively
large, but the best index of the ensemble is estimated at
0.89 (the control run is 3.85). In the index of the log ratio
bias, the best index of ensemble spread could cover zero
value (perfect forecast), whereas the control run forecast
was underestimated for the 1st, 2nd, and 3rd forecasts and
overestimated for the 4th forecast period.

Figure 6 shows the results of Critical Success Index (CSI)
and BIAS in a comparison of radar data and ensemble
forecasts with selected rainfall thresholds (1.0 and 5.0mm/h)
during the 1st, 2nd, 3rd, and 4th forecast periods. In the 1st
forecast period of CSI with 1.0mm/h threshold value, ensem-
ble spread could provide better results than deterministic
control run after 17 hours’ forecast time, whereas the CSI of
control run is close to the ensemble mean value. In the 2nd
forecast period, although the CSI of control run are better
than ensemble mean, the best index of the ensemble spread
outperformed the control run. In the 3rd forecast period,
as stated above, the spatial pattern of rain cells moved to
the north-eastern part of Kii peninsula quickly, so the CSI
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Figure 5: (a) Ensemble areal rainfall forecast over the Shingu river basin in the form of box plots plotted from 0 to 24 hr forecast time,
excluding overlapped forecast time (from 25 to 30 hr) for the overall comparison for the Typhoon Talas. (b) Verification results of areal
rainfall with normalized RMSE and log ratio bias for Typhoon Talas. Red circles and black squares mean the indexes of the control run and
the mean value of ensemble forecast, respectively. The lower and upper bounds of the black lines correspond to the minimum and maximum
values, respectively.

of control run decreased as lead time increased, whereas
the best value of ensemble spread could provide the better
result than the control run. In the 4th forecast period, the
control run was close to the ensemble mean, and ensemble
spread could cover the control run. In the 3rd forecast period
with 1.0 and 5.0mm/h threshold value, the BIAS decreased
quickly as lead time increased. However, the best values of
the ensemble spread could maintain higher forecast accuracy
compared to the control run forecast. It showed that ensemble
forecasts have an advantage in terms of spatial accuracy,
although lower value of ensemble forecasts exists in each
forecast period as lead time increases.

3.2. Uncertainty Propagation of NWP Rainfall Forecast to
Flood Forecast. We conducted the ensemble flood forecasts
of 33 subcatchments in the Shingu river basin for an assess-
ment of the ensemble flood forecast driven by ensemble
NWP rainfall. Simulated discharges from the observed radar
rainfall were used as the initial condition for the ensemble
flood forecast in each forecast period. Figure 7 shows the
results of the 30 hours’ ensemble flood forecast from first
to fourth forecast periods over the 33 subcatchments for
Typhoon Talas event. Figure 5 illustrates a complete set of the
forecasted discharge for the ensemble range (grey curve), the
ensemble mean (red curve), and observed radar discharge
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Figure 6: Spatial rainfall verification using CSI and BIAS with threshold values in verification area of Figure 1.
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data of 33 subcatchment outlet points (bold black curve).
Through Figure 5, the ensemble rainfall from NWP model
from the first to the fourth forecasts produced a suitable
discharge, but average ensemble values were lower than the
observed radar discharge of the 2nd forecast period over
the 33 subcatchments, caused by the underestimation of the
rainfall forecast. In the 3rd forecast period of peak discharge,
the average ensemble rainfall was typically lower than the
observed discharge, caused by the spatial shift of ensemble
NWP rainfall from the correct spatial position. The majority
of ensemble members were also lower than the observed dis-
charge, but a few ensemble members exceeded the observed
radar discharge and were close to the observed discharge.
In the 4th forecast period, the ensemble forecasts were well
matched to observed radar discharge and were overestimated
because the overestimation in rainfall forecast triggered a
runoff overestimation. From the results of ensemble flood
forecast over the 33 subcatchments, flood forecasts driven
by ensemble outputs produced suitable results but showed
that in general it has a large proportion of under- and
overpredictions at low lead times and exhibit a negative bias
at longer lead times.

Figure 8 presents a comparison of rainfall and flood fore-
cast errors from the first to the fourth forecast periods with
linear regression equations based on a statistical measure,
the BIAS, for 33 subcatchments of the Shingu river basin
represented in Figure 2. Through Figure 8, rainfall forecast
errors lead to proportional flood forecast errors with linear
regression equations. The discharge BIAS varies based on
the same rainfall BIAS, so the discharge BIAS is different
based on catchment scale. For small catchments, rainfall
errors from forecast location error occur sensitively due to
rainfall pixels of NWP model, which does not cover the
small catchment exactly. For larger catchments, many rainfall
pixels contribute to the rainfall forecast error propagation
in the flood forecast. Therefore, the variability of flood
forecast uncertainty according to catchment scale should be
investigated.

3.3. Flood Forecast Uncertainty with Catchment Scale. As
mentioned above, the Shingu river basin is divided into 33
subcatchments from 54.24 to 2245 km2, including 6 gauged
and 27 ungauged locations, for the assessment of uncertainty
of ensemble NWP rainfall into flood forecast with catchment
scale.The Shingu river basin has 3 types (small, medium, and
large catchments) and 2 characteristics (mountainous and flat
area) for evaluation of the variability with catchment scale.

Figure 9 shows the flood forecast variability expressed
by coefficient of variation using ensemble spread of the
flood forecasting with catchment scale and characteristic.
Each CV value refers to the average value from the first
to the fourth forecast periods and shows CV values for
3 types of the small (red point), medium (blue point),
and large (grey point) catchments and 2 characteristics of
mountainous (large point) and flat (small point) area for
evaluation of the variability with catchment scale. It is evident
from Figure 9 that the coefficient of variation in medium
and large catchments is close to 0.25, and this is maintained
as the catchment increases. For small catchments, however,

there is a larger variability than for medium and large
catchments, and small catchments have a high coefficient
of variation (>0.3). This result suggests that uncertainty
variability occurs sensitively and diversely at the same time in
different catchments, and small catchments have more sensi-
tive variability in uncertainty. Therefore, flood forecasting in
small catchment requires care due to the large variability of
uncertainty. On the other hand, in medium and large catch-
ments, there is less uncertainty than with small catchments,
and the coefficient of variation converges into a uniform
value.

Flood forecast uncertainty focuses on the discharge
uncertainty with catchment scale and was assessed when
rainfall BIAS was 1, using an estimated linear regression
equation between each ensemble rainfall BIAS and discharge
BIAS of 33 subcatchments. Figure 10 compares the rainfall
BIAS of ensemble members and discharge BIAS driven by
those rainfall forecasts in each subcatchment and linear
regression equation. From Figure 8, the relationship between
rainfall forecast errors and flood forecast errors is propor-
tional in ensemble members to the linear regression equation
and is different with catchment scale. And as a result of
separation of the forecast BIAS by each subcatchment, we
obtain 132 linear regression equations for 33 subcatchments
and 4 forecast periods. Then we calculate the discharge BIAS
when rainfall BIAS is 1 using a linear regression equation
for each subcatchment to focus on the discharge BIAS with
catchment scale.

Figure 11 represents the discharge BIAS. It is assumed
that rainfall forecast has no error compared to observed
radar rainfall (rainfall BIAS is 1 using the linear regression
equation) with catchment scale and characteristic. Figure 11
shows that there is a discharge BIAS in all of small, medium,
and large catchments even though rainfall forecast has no
errors compared to observed radar rainfall. This is due to
the spatial variability of rainfall, even though basin-mean
rainfall is similar to the observed radar rainfall. As an
example, Lee et al. [20] showed that input uncertainty is
due to spatial variability of rainfall on catchment responses
in rainfall-runoff modeling. As stated above, however, we
focused not only on the quantitative error propagation of
rainfall forecast into flood forecast but also on the variability
of flood forecast uncertainty with catchment scale. The dis-
charge BIAS in medium and large catchments has properties
similar to those of the coefficient of variation in Figure 9.
The small catchments indicate large variability of discharge
BIAS.

Figure 12 represents the flood forecast uncertainty with
root mean square error (RMSE) using specific discharge
(discharge/catchment scale) of outlets with catchment scale.
Figure 12 demonstrates properties similar to those resulting
from the coefficient of variation and BIAS in Figures 9 and 11,
respectively. In medium catchments, however, there are two
types of characteristics in forecast uncertainty variability. In
mountainous areas, discharge RMSE is less than that in flat
areas, and this characteristic is also seen in Totsukawa and
Kitayamaka, the left and right sides of the Shingu river basin,
respectively.
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Figure 7: Continued.
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Figure 7: Flood forecast results in over 33 subcatchments. Grey line represents the each forecasted discharge driven by 11 ensemble NWP
rainfall. Red curve illustrates the ensemble average results. Black line represents the observed radar discharge of 33 subcatchments.

4. Concluding Remarks

Forecast uncertainty of NWP models is usually assumed to
represent the largest source of uncertainty on flood forecasts.
However, there are in fact many sources of uncertainties

in the flood forecasts which could also be significant, for
example, the corrections and downscaling mentioned above
and spatial and temporal uncertainties as input into the
hydrological simulations including data assimilation. And
the different types of uncertainty will vary with lead time
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Figure 8: Propagation of rainfall forecast errors to flood forecast errors from the first to the fourth forecast periods.
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Figure 10: Continued.
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Figure 10: Continued.
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Figure 10: Comparison of rainfall and discharge BIAS of ensemble members in each subcatchment and linear regression equation.
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Figure 11: Flood forecast variability expressed by BIAS with catch-
ment scale and characteristic. Red, blue, and gray points repre-
sent the small catchment (<200 km2), medium catchment (200∼
1000 km2), and large catchment (>1000 km2), respectively. And we
also divided catchment characteristics into 2 types, mountainous
area (>800m, big point) and flat area (<800m, small point)
considering average elevation (800m) of the 33 subcatchments.
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Figure 12: Flood forecast variability expressed by RMSE with
catchment scale and characteristic. Red, blue, and gray points
represent the small catchment (<200 km2), medium catchment
(200∼1000 km2), and large catchment (>1000 km2), respectively.
And we also divided catchment characteristics into 2 types, moun-
tainous area (>800m, big point) and flat area (<800m, small point)
considering average elevation (800m) of the 33 subcatchments.

of the forecasts and with the magnitude of the event and
catchment characteristics. Ensemble flood forecasting by
ensemble NWP rainfall is specifically designed to capture the
uncertainty, by representing a set of possible future states
of the atmosphere. This uncertainty can then be cascaded
through flood forecasting systems to produce an uncertain
or probabilistic prediction of flooding. In many cases, the
potential of flood forecasting is described alongside cautious
notes regarding variability, uncertainty, communication of
ensemble information, need for decision support, and prob-
lems of using short time series [9]. Therefore, it is important
to assess the forecast rainfall uncertainty in terms of the effect
on runoff, and uncertainties based on spatial scale are also
important for the information of real-time flood forecast.

The main objective of this study is to investigate the error
and uncertainty propagation due toNWP rainfall uncertainty
on hydrological response through a distributed hydrologic
model depending on catchment scale. First, we conducted the
ensemble flood forecasts of 33 subcatchments in the Shingu
river basin for an assessment of the ensemble flood forecast
driven by ensemble NWP rainfall and compared forecast
rainfall error based on the BIAS, which is used to measure
error amplification, to flood forecast error driven by ensemble
NWP forecast outputs to assess error propagation. Second,
we discussed the variability of flood forecast uncertainty
according to catchment scale using ensemble spread by
ensemble NWP rainfall through a distributed hydrologic
model. Finally, we assessed the flood forecast uncertainty
using an estimation regression equation between ensemble
NWP rainfall and discharge based on the BIAS and also
assessed the flood forecast uncertainty with RMSE using
specific discharge in catchment scale.

From the results, the ensemble flood forecast over the
33 subcatchments and flood forecasts driven by ensemble
outputs produced suitable results but showed that in general
it has a large proportion of under- and overpredictions
at low lead times and exhibit a negative bias at longer
lead times. And this study demonstrates that uncertainty
variability occurs sensitively and diversely at the same time
in different catchments, and small catchments have sensitive
variability of uncertainty. General findings from this study
are the fact that smaller catchments demonstrate a larger
uncertainty in the flood forecast. Therefore, flood forecasting
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in small catchment should be careful due to the large
variability of uncertainty. On the other hand, in medium
and large catchments, there is less uncertainty than in small
catchments as would be expected due to the smoothing
effects of modeling a larger catchment. The ensemble fore-
casts are specifically designed to capture the uncertainty
in NWPs, by representing a set of possible future states
of the atmosphere. This uncertainty can then be cascaded
through flood forecasting systems to produce an uncertain or
probabilistic prediction of flooding. In order to use ensemble
forecasts of NWP model for flood forecasts effectively, it is
important to establish methodologies to analyze ensemble
flood forecasts. To reduce the uncertainty of rainfall and flood
forecasts, the bias correction and/or hybrid products with
radar-based prediction are required to achieve more reliable
hydrologic predictions; bias correction and blending method
for accuracy improvement was addressed in Yu et al. [21]. In
further research, we need to verify the applicability through
a number of case studies, and we expect it to be used in
hydrological applications such as real-time flood forecasting
for warning system and optimized release discharge for dam
operation.
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Changes in the spatial and temporal patterns of extreme rainfall may have important effects on themagnitude and timing of rainfall
erosivity, which in turn lead to even severe soil degradation phenomena.TheMediterranean belt is characterized by strong climatic
variability and specific seasonal features, where dry periods are often interrupted by pulsing storms. Identifying the thresholds
associated with extreme rainfall events is among the most important challenges for this region. To discern the spatial patterns of
rainfall erosivity hazard in the Rhone region (eastern France), this study establishes thresholds in the power of rainstorms. An
indicator Kriging approach was employed for computing probability maps of the annual rainfall erosivity exceeding the threshold
of 1800MJmmha−1 h−1, the latter being twice greater than the standard deviation.The interdecadal spatial patterns of hazard were
assessed for recent decades (1991–2010) and the precedents ones (1961–1990). Climate fluctuations of rainfall erosivity revealed
possible signals of increased storminess hazard across the region in recent times. We also discussed changes in the rainfall erosivity
hazard forcing as related to climatic changes in daily rain rate, especially in autumn when the erosivity is likely affected by more
intense storminess occurring across the southern part of the Rhone region.

1. Introduction

Environmental systems are generally in a state of dynamic
equilibrium with external driving forces [1]. However, the
recurrence of extreme climate events such as storms and
floods can accelerate soil loss (sediment transport) in regional
catchments. In this context, the identification of enhanced
interdecadal climate signals may demonstrate the existence
and help understanding the role of abrupt environmental
changes over relatively long time periods [2–5]. Understand-
ing how climate forcing affects region-wide responses is
crucial for the purpose of erosion and sediment modelling
and the reconstruction of hydrogeomorphological hazards
[6, 7]. It also provides a new perspective to the study of

landscape conservation and climate change, especially in
highly dynamic systems (such as agricultural systems). Prac-
tical decision-making for protection from time-distributed
extreme events often involves using environmental process
models, also linked to temporal GIS (Geographical Informa-
tion System). This is particularly true in subregional basins
of Mediterranean Europe, which are characterised by hydro-
geomorphological processes often dominated by extreme
rainfall events and related rainfall erosivity, grouped in some
particularly stormy years according to climate variability [7–
11]. The maps of rainfall erosivity in Figure 1 give a spatial
overview of the erosion risk in the Northern Hemisphere
(Figure 1(a)), with focus on Europe (Figure 1(b)).The current
availability of rainfall erosivity data worldwide provides a first
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Figure 1: (a) Distribution of long-term mean of the rainfall erosivity (1961–1990) at five-arc-minute resolution (adapted from Naipal et al.
[56]) for theNorthernHemisphere, (b) with detailed focus (0.1-arc-minute resolution) on Europe as arranged fromEuropean erosivity dataset
for the period 2002–2011 [46].

and approximate basis for establishing which regions suffer
most from rainfall erosivity and storminess, which requires
further exploration and modelling at smaller spatial scales.

Societal infrastructures are becoming more sensitive to
weather and climate extremes, which would be exacer-
bated by climate variability [12–14]. This has triggered a
set of studies to determine the change in the probability
of heavy precipitations at both global [12, 15, 16], and
regional-subregional scales [17–20]. In spite of these efforts,
still isolated researches are available documenting to which
extent past storm-climatic variability has actually affected
the dynamics of rainfall erosivity and landscape responses.
Kundzewicz [21] prospected a greater variability of stormflow
throughout the globe, both at seasonal and daily scales,
coupled with an increase in the frequency of flash floods and
rainfall erosivity, especially at mid- to high-latitudes.

The focus of this study is the Rhone river basin (RRB),
in southeastern France [22].This basin is particularly injured
by erosivity and floods, which involve surface responses to
precipitation events such as the relationship between rainfall-
runoff responses and flood-routing mechanisms [23]. Heavy
precipitation in the Rhone basin can be attributed to either
convective or nonconvective processes or to a combination
of them both [24, 25]. Large amounts of precipitation can
accumulate over several day-long periodswhenone or several
frontal perturbations slow down and then are enhanced by
the relief of the Massif Central and the Alps. The occurrence
of exceptionally heavy rainfall events and associated floods
and sediment and organic carbon fluxes in many European
areas during recent decades [26, 27] motivated us to study
long-term changes in the forcing of storm erosivity in the
Rhone region. In mainland France, in particular, flash floods
and accelerated soil erosion represent the most destructive
natural hazards, having caused billions of Euros in damage
over the last two decades [26]. Severe flooding events between
1993 and 2003 in the Rhone catchments of Switzerland and
France also caused loss of life [28, 29]. In recent times,
damaging hydrological events occurred in the Rhone basin
showing a climatic shift towards more erratic spatial and
temporal distribution of extreme rainfalls, in the form of
large-scale pulsing storms [30]. The catastrophic flash flood

event of 8-9 September 2002 in the Gardon gorge of France
(Gardon river ends into the Rhone at Comps, 43.85 latitude
north and 4.61 longitude east) was particularly remarkable for
its spatial extent with rain amounts greater than 200mm in
24 h over 5500 km2 [31].

This paper explores the feasibility to quantify the relative
contribution of rainfall erosivity to the long-term annual and
seasonal precipitations falling across the RRB.Themajor aim
of the present study is to develop and evaluate an approach
to (i) explain the interdecadal variability of rainfall erosivity
and readily available climate data and (ii) recognize seasonal
precipitations associated with different seasonal storm types.
We hypothesized that the autumn rainfall pattern is an
important component of the annual erosivity amount.

2. Environmental Setting and Modelling

2.1. Study Area. The Rhone river watershed covers a surface
area of about 98000 km2, shared by France (92%) and
Switzerland. The Rhone river (813 km long) overpasses from
north to south the Rhone region originating in the Swiss Alps
(Rhone Glacier, 1765m a.s.l.) and runs through southeastern
France for 550 km before entering the Mediterranen Sea.
The river is bordered by about 16 million people (∼1.2
million in Switzerland). With ∼20% of France’s agriculture
and industry and ∼50% of France’s tourism activity (after the
Rhone-Mediterranean and Corsica Water Agency, through
http://www.eaurmc.fr/), the area is identified as of prominent
economic importance, the gross domestic product exceeding
US$ 52000 million in total [32]. Roughly 70% of the surface
water withdrawn in the basin is used for agricultural pur-
poses, while domestic use and industry both use about 15%.
Some other uses of the water are hydropower in the Alps,
cooling French thermal and nuclear reactors, recreation, and
navigation between Lyon (France) and the Mediterranen Sea
[33]. The Rhone river contributes 69% of the total sediment
export for France, whereas its drainage area represents only
23% of the total area [27]. The basin is placed in a core
area with the highest 95th percentiles of June–November
daily rainfalls in Europe [30]. The high yearly and seasonal
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Figure 2: (a) Setting of the study area crossed by annual precipitation rates (1948–2014) via NOAA-ESRL NCEO Reanalysis, (b) with relative
zoom of annual mean precipitation of Rhone region, as arranged from LocClim (http://www.fao.org/nr/climpag/pub/en0201 en.asp) via
Inverse Distance Weighting with rainfall-elevation extrapolation.

variability of precipitation is mainly the result of the syn-
optic circulation that advects air masses of different origins
(Mediterranean, maritime, polar maritime, and subtropical).
However, most dynamic effects are modulated with more
recurrence by theMediterranean andAtlantic Sea. Airmasses
allow high storage of humidity representing the main energy
supply for thunderstorms, which in turn are triggered by
outbreaks of warmMediterranean Sea and Atlantic maritime
air in the middle troposphere [34].

The eastern areas and the mountains receive the highest
annual precipitation amounts (1400–2000mm on average,
Figure 2). Eastern areas have summer storms of continental
influence, whereas cold winter temperatures occur in the
Savona valley. The southern part of the Rhone region has a
typical Mediterranean climate, with hot and dry summers
and rainfall mostly occurring in spring and autumn. The
total average annual precipitation has a value of approxi-
mately 600mmyr−1 in the north-south transect valley, but
rainfall can become intense in September and October in the
Cevennes Range (1600m a.s.l.), located in the southeast of the
basin. The maximum values of 600–700mm observed on 8-
9 September 2002 in the Gard gorge are among the highest
daily records in the region [31].

2.2. Precipitation Hazard Types. Cyclones build up in three
principal areas of the northernMediterranean Basin: theGulf
of Genoa, the Aegean Sea, and the Black Sea. Generally,
subsynoptic scale precipitation systems are produced and
triggered by the passage of remnant north Atlantic synoptic
fronts and their interaction with local topography [35].
However, the highest frequency on intense cyclones with
maximum circulation exceeding 7 × 107m2 s−1 and a liftime
of a least 24 h occurred in the Mediterranean area, with the
core across central Italy [36]. These circulation types are
characterized by warm and cold air sequences, with rainfall
conditions mainly depending on evolving air mass. Other

factors determining rainfall conditions are the wind direction
at 500 hPa, the trajectory of the low pressure system, the
orography, the distance from the sea of each specific area of
interest, and surface roughness [37]. Their impact on rainfall
is related to the intensity of the cold air intrusion, as well
as to the depth of the associated sub-low-pressure system.
Themost hazardous precipitation events can occur associated
with these subsynoptic scale systems. They include flash
floods and floods that may have, however, different seasonal
regimes (Figures 3(a) and 3(b)).

The period of occurrence of flood situations (especially
those driven by convective rainfalls) may serve to identify
periods duringwhich extreme rainfall amounts occur. For the
area of interest, the flash floods show a bimodal summer-late
autumn distribution (one peak is usually noted in July and
a second peak in October [38]), while floods have a typical
autumn regime. The interweaving of these hydrological
regimes is important because they are driven by the rainfall
erosivity types that play a fundamental role in determining
the intensity of these damaging floods phenomena. On the
other hand, they may be useful for reconstructing rainfall
erosivity in the past, when no detailed records of rainfall data
are available.

Floods are common in the RRB and are known as
“extraordinary flooding” or intermediate floods which, for
their disruption activity, are particularly hazardous events
[31]. Intermediate floods are events with duration of less than
24 hours and the maximum precipitation is usually recorded
in less than six hours, with accumulated rainfall usually
greater than 200mm [39].

2.3. Experimental Data in Rainfall Erosivity. In order to
evaluate storminess in both spatial and temporal domains
and to provide evidence of a likely correspondence between
trends in storminess and extreme rainfall, the rainfall erosiv-
ity factor is computed for decadal and longer periods, based



4 Advances in Meteorology

Ra
in

 ra
te
(m

m
d−

1
)

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

J F M A M J J A S O N D

(a)

Ra
in

 ra
te
(m

m
d−

1
)

8

7

6

5

4

3

2

1

0

J F M A M J J A S O N D

(b)

Figure 3: Meanmonthly rain rates (red line) with the 25th and the 95th percentile (green lines) for (a) lower and (b) upper Rhone river basin
(data arranged from NCEP Reanalysis provided via KNMI-Climate Explorer for the period 1961–2010 [57]).

on concepts by Diodato and Bellocchi [40], who derived the
following relation for France [41]:

𝑅DREMM = 𝛼 ⋅ √𝑃(max)Oct + (𝑃prc 95(M−O))
𝜂

, (1)

where 𝑅DREMM (MJmmha−1 h−1 y−1) is the estimated long-
terrm (10-year or longer periods) mean rainfall erosivity,
𝑃prc 95(M−O) (mm) is the 95th percentile of themonthly rainfall
from May (M) to October (O) over each decade, 𝑃

(max)Oct
(mm) is the maximum monthly rainfall in October over the
decade, 𝛼 is a scale parameter, and 𝜂 = 2.459 − 0.02266 ⋅
Lat − 0.004777 ⋅ Long (where Lat and Long are latitude and
longitude in degrees, taken at the centre of each grid point).

To estimate rainfall erosivity, 100 rainfall grid points
covering the studied area were generated (using Krig-
ing interpolation via ESRI—ArcGIS Geostatistical Analyst
Extension [42]) based on the GPCC V6 Monthly Land-
Surface Precipitation from Rain-Gauges, built on GTS-based
and Historic Data with resolution of 0.5∘ [33] and supplied
by Climate Research Unit at the University of East Anglia,
United Kingdom (http://badc.nerc.ac.uk/data/cru).

2.4. Exceedance Probability Maps of Rainfall Erosivity. The
nonparametric ordinary Kriging method known as indicator
Kriging [43] was used to compute the probability maps of
the annual rainfall erosivity being greater than a threshold.
Compared to parametric approaches, indicator Kriging has
the advantage of being less affected by the presence of
outliers. The ordinary indicator Kriging (OIK) estimator
for the rainfall erosivity is a linear combination of 𝑖(𝑠

𝛼

; 𝑧

𝑘

)
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where 𝜆
𝛼

are weighting factors calculated by solving the
Kriging simultaneous equation system [40]. In order to assess
changes in the rainfall forcing as related to climate changes,
the probability maps of mean annual rainfall erosivity dis-
cussed in this study were generated for the periods 1961–
1990 and 1991–2010 and assembled using ArcGIS platform 9.1
release of the ESRI (http://www.esri.com/software/arcgis).

3. Results and Discussion

3.1. Model Assumptions and Evaluation. In (1), monthly
rainfall quantiles and the geographical control are modelled
together to account for temporal and spatial dependencies of
rainfall erosivity. Equation (1) is subject to the assumption
that a large quantile value (95th percentile) of the monthly
precipitation distribution over one ormore decades is capable
of delivering high values of rainfall erosivity, causative of
extreme hydrological events. In this way, cumulated occur-
rence and magnitude of these events per decade(s) are
controlled by the combination of climatic and hydrologic
factors that the modelled 𝑅-factor helps to reveal. This is
in agreement with the results referred by Hydrate database
[26], which revealed the predominant role played by rainfall
erosivity in explaining extreme events (Figure 4(b)). Based
on this understanding, in (1) captures extreme rainfall events
by percentiles statistics across the months from May to
October, representing rainfall erosivity through a power-law
function with an exponent (𝜂) varying geographically. The
scale parameter 𝛼 = 24 is a conversion factor that can
be conveniently assumed constant over time and space. Its
value is the same as that estimated at continental scale [40],
which was used as initial value and did not change over the
calibration process.The varying exponent not only provides a
parsimonious description but also is a generic mechanism of
the process that serves to either attenuate or enhance rainfall
erosivity depending on site-specific climate conditions. In
general, geographic location is known to be an important
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Figure 4: (a) Scatterplot between modelled (equation (1)) and actual ((R)USLE)-based rainfall erosivity. The black line is the interpolating
line; the bold grey line denotes the 1 : 1 line; grey curves are 0.99 confidence limits of the interpolating line. (b) Monthly regime of severe
convective events frequency estimated over 1957–2002 in Europe [58].

input property for rainfall erosivity models because the
location, and then the climate zone, accommodates a broad
range of conditions related to the occurrence of abundant and
intense precipitation (e.g., [44]). We assumed that the expo-
nent 𝜂may continuously vary with latitude and longitude, as
a shape term to modulate the percentile statistic that pulls
out seasonal rainfall erosivity between May and October. In
the warm season, in fact, cumulonimbus can be accompanied
by high rain variability and intensity, thus releasing a large
amount of energy through sparse or localized short phenom-
ena, generally with duration of 0.5 to 3 hours [45]. Con-
sidering the relatively low temporal resolution of the model
(decadal and multidecadal timescales), adjusting the rainfall
erosivity response for changes in elevationwas not used in (1).

The performance of (1) was assessed against actual
((R)USLE)-based rainfall erosivity data from a set of sites
and periods in mainland France [41]: Bennwihr (48.15 N,
7.32 E), 1966–1994; Brive-la-Gaillarde (45.15 N, 1.53 E), 1951–
1970; Clermont-Ferrand (45.80 N, 3.10 E), 1951–1970; Dijon
(47.30 N, 5.10 E), 1951–1970; Gap (44.57 N, 6.07), 1951–
1970; Horbourg-Wihr (48.10 N, 7.40 E), 1951–1970; Hunspach
(48.95 N, 7.95 E), 1976–1994; Montpellier (43.60 N., 3.90 E),
1961–1990; Orléans (47.90 N, 1.90 E), 1951–1970; Paris (48.80
N, 2.50 E), 1951–1970; Rennes (48.10 N, 1.69 W), 1951–1970;
Rouen (49.40 N., 1.20 E), 1959–1988; Stenay (49.50 N, 5.20 E),
1950–2000; Toulouse (44.80 N, 0.70 W), 1951–1970; Valence
(44.95 N, 4.90 E), 1951–1970. Overall, the mean absolute
error was 91MJmmha−1 h−1 y−1, the modelling efficiency
was equal to 0.98, and the regression line was in close
proximity to the identity line (Figure 4(a)).

3.2. Temporal Analysis of Rainfall Erosivity with GIS. For
the southwestern part of the basin (between Lyon and
Montpellier) and for the period 1961–1990, Figure 5(a)

shows the map of rainfall erosivity exceeding the
threshold value of 1800MJmmh−1 ha−1 y−1. The threshold
1800MJmmh−1 ha−1 y−1 was based upon two standard
deviations added to the mean. This threshold does
not reflect the maximum values of the rainfall erosivity
found in some European stations (exceeding 2000 up to
>6000MJmmh−1 ha−1 y−1 [46]) but is above the threshold
values considered in previous studies (e.g., 1000 and
1500MJmmh−1 ha−1 y−1 [47]). When the period 1991–2010
was examined, erosivity exceeding 1800MJmmh−1 ha−1 y−1
extended until the eastern limits of the basin, the northern
part not being affected (Figure 5(b)).

These phases generated an erosivity band crossing large
southern lands of the Rhone region, plus main rainfall
aggressiveness cells, among Aosta (Italy), Sion, and Geneva
(Switzerland).

During the most recent phase of warming (1991–2010),
new hydrological processes kicked off further power north-
wards, from the Mediterranean coast towards the inland
areas. This suggests pulsing of extreme rainfall events that
occurred over parts of the region. As shown in the work
by Diodato et al. [48], an increase in extreme rainfall
events in the Mediterranean region drives changes in rainfall
erosivity and, in turn, an increased hazard in soil erosion
and flash flooding usually more often occurring in relatively
smaller catchments. These storminess and rainfall extremes
are common in the fall season when they produce floods and
flash floods, with the same regime as recorded by the FLASH
European database [27].

3.3. Seasonal Hazard and Extreme Rainfall Events. To detect
whether the rainfall power expands across the Rhone region
depending on a particular season, we analysed the 95th



6 Advances in Meteorology

4
∘
0
󳰀
0
󳰀󳰀E 5

∘
0
󳰀
0
󳰀󳰀E 6

∘
0
󳰀
0
󳰀󳰀E 7

∘
0
󳰀
0
󳰀󳰀E 8

∘
0
󳰀
0
󳰀󳰀E

4
∘
0
󳰀
0
󳰀󳰀E 5

∘
0
󳰀
0
󳰀󳰀E 6

∘
0
󳰀
0
󳰀󳰀E 7

∘
0
󳰀
0
󳰀󳰀E 8

∘
0
󳰀
0
󳰀󳰀E

44
∘
0
󳰀
0
󳰀󳰀N

45
∘
0
󳰀
0
󳰀󳰀N

46
∘
0
󳰀
0
󳰀󳰀N

47
∘
0
󳰀
0
󳰀󳰀N

48
∘
0
󳰀
0
󳰀󳰀N

44
∘
0
󳰀
0
󳰀󳰀N

45
∘
0
󳰀
0
󳰀󳰀N

46
∘
0
󳰀
0
󳰀󳰀N

47
∘
0
󳰀
0
󳰀󳰀N

48
∘
0
󳰀
0
󳰀󳰀N

0 0.25 0.5 0.75 1

Probability R > 1800MJ mm h−1 ha−1 year−1

(a)

4
∘
0
󳰀
0
󳰀󳰀E 5

∘
0
󳰀
0
󳰀󳰀E 6

∘
0
󳰀
0
󳰀󳰀E 7

∘
0
󳰀
0
󳰀󳰀E 8

∘
0
󳰀
0
󳰀󳰀E

4
∘
0
󳰀
0
󳰀󳰀E 5

∘
0
󳰀
0
󳰀󳰀E 6

∘
0
󳰀
0
󳰀󳰀E 7

∘
0
󳰀
0
󳰀󳰀E 8

∘
0
󳰀
0
󳰀󳰀E

44
∘
0
󳰀
0
󳰀󳰀N

45
∘
0
󳰀
0
󳰀󳰀N

46
∘
0
󳰀
0
󳰀󳰀N

47
∘
0
󳰀
0
󳰀󳰀N

48
∘
0
󳰀
0
󳰀󳰀N

44
∘
0
󳰀
0
󳰀󳰀N

45
∘
0
󳰀
0
󳰀󳰀N

46
∘
0
󳰀
0
󳰀󳰀N

47
∘
0
󳰀
0
󳰀󳰀N

48
∘
0
󳰀
0
󳰀󳰀N

0 0.25 0.5 0.75 1

Probability R > 1800MJ mm h−1 ha−1 year−1

(b)

Figure 5: Indicator Kriging maps with probability that rainfall erosivity (R) exceeds 1800MJmmh−1 ha−1 y−1, for the periods 1961–1990 (a)
and 1991–2010 (b).
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Figure 6: Spatial pattern of autumn daily rain rate 95th percentile across Rhone region for the periods 1951–1990 (a) and 1991–2013 (b). Data
were arranged from NCEP/NCAR Reanalysis via Climate Explorer [57].

percentile of daily rain rate data from NCEP Reanalysis. It
is therefore evident that autumn was the season with the
highest rate of increase in the daily rainfall percentiles. This
situation is clearly depicted in Figure 6 that compares the
recent decades (1991–2013, Figure 6(b)) with the baseline cli-
matology of the period 1951–1990 (Figure 6(a)). A remarkable
increase in extreme rain rates in the past decades across the
same area where rainfall erosivity was enhanced is worth
noting (see Figure 5(b)).

Typically, the erosivity associated with the intensification
of rain rates is the result of precipitations in the form of

localized rainstorms (yet torrential), which aremore frequent
in summer and autumn. However, wet spring also brings
additional runoff from rainfall but also provides antecedent
conditions for summer flooding. In this case, not only heavy
precipitation events but also moderate rain depths are of
interest, because they provide favourable conditions (typical
of local-scale storms) for floods occurring in heat period
(June–October). For instance, the Cévennes-Vivarais region
in the westernmost parts of the Rhone basin (on the border
with the beginning of the Massif Central) has been especially
affected by storms that caused floods on October 1995 [31].
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Figure 7: Temporal pattern of monthly storm erosivity at Lyon station for the months of September (a), October (b), and November (c) over
the period 1961–2010, estimated with the model of Diodato [59]. Power trend with orange lines is also overlapped.

In the Aude (between the Massif Central and the eastern
Pyrenees), during the flood event of 12-13 November 1999,
the area receiving more than 200mm in 48 hours extended
more than 150 km in length and about 50 km in width [49].
The Gard precipitation event (8-9 September 2002) was an
exceptional one due to the intensity of the event, with max-
imum precipitation around 600–700mm in 24 hours (from
1200 UTC on 8 September) near Alès [49, 50]. This event
released more than 7000MJmmh−1 ha−1 d−1 energy (i.e.,
three times more than in one mean year). These results show
that sediment exports depend not only on the water flows
but also on specific environmental factors [51, 52]: evidently,
the Mediterranean climate with severe but short storms in
summer and autumn leads to more significant peaks in
sediment flux compared with the temperate oceanic climate
basins where rainfall events are generally characterized by a
lower intensity and a longer duration.

It was also estimated that the material flood damage
recorded in the European continent in 2002 had been higher
than in any single year before [21]. At the beginning of
December 2003, one of the biggest floods over at least the
previous 150 yrs. was recorded in the Rhone river [53]. This
extreme rainfall event resulted in one of the century’s most

significant floods in the Aude region and produced remark-
able flash floods in some catchments. Amongst them, small
ungauged catchments are recognized as the most vulnerable
to storms driven by high daily rain intensity [54].

In the months of September, October, and November,
flash floods are expected to increase around Lyon, where
storm erosivity is rising (Figures 7(a), 7(b), and 7(c)). Septem-
ber and November, however, present an increase in peaks
too, whereas October is affected by a more complex temporal
pattern (for this month, only mean values are reported to
increase). From these results, it emerges that storminess has
been increasing in the recent warming period as caused by
more frequent intensive autumnal storms.This is in line with
the findings of Meusburger et al. [55] in Switzerland, where
in recent times the monthly rainfall erosivity has been signif-
icantly increasing in the months between May to October.

4. Conclusions

Hydrological forcing and climate processes are known to
lead to complex responses in river basins. For the Rhone
basin, characteristic of French Mediterranean and Alpine
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environments, this work has analyzed a rainfall erosivity sim-
ulation as obtained with mesoscale indicator geostatistics-
based empirical model. This was done in an attempt to
understand the sensitivity of the basin response (rainfall
erosivity) to storminess (disturbing force) and to detect its
temporal variability. The model allowed assessing erosivity
changes at interdecadal time scales and revealed that the long-
term trend is increasing. Since increased rainfall variability in
response to climate change is a possibility in many regions,
the effects of potential changes need to be addressed in
the perspective of adapting to climate change. This is of
considerable interest at present as the need to assess the
impact of real or perceived climate change is vital in order
to take correct environmental actions.
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Analysis of small catchment area in Croatian lowland with its hydrological characteristics in the period between 1981 and 2014 was
carried out in order to define significance of change in hydrological andmeteorological parameters (precipitation, air temperatures,
and discharges) and water balance components (deep percolation and potential evapotranspiration). There was no significant land
use change in the observed period, so all changes in hydrological processes can be considered to be without human impact in the
last 35 years. Application of RAPS (Rescaled Adjusted Partial Sums) on all data series distinguished two subperiods with different
length but the same behaviour.The first subperiodwas a period characterised by the decrease, starting in 1980 and finishing between
1991 and 1995, while the second one was a period characterised by the increase of parameters in all analyses, starting between 1991
and 1995 and finishing in 2001. In comparison to the analysis of climate change impacts per decade, this approach is much more
appropriate and gives insight into variations throughout the entire observed period.Themost variable but not significant parameters
are precipitation and discharges, especially in the second subperiodwhich has amajor impact on occurrence of hydrological hazards
such as droughts and floods and makes great pressure and responsibility on water management system.

1. Introduction

Climate and human induced changes on catchment hydro-
logical processes are major concerns for scientists, water
decision-makers, and politicians. Different scenarios of cli-
mate change and its impact on water balance directly and on
ecological, chemical, and geomorphological processes indi-
rectly are the main issues of many studies in the last ten years
all over the world. Most of them were dealing with different
climate scenarios and their impact on global ecosystem,water
management, or economy. Global modelling with simulating
global water cycle and in that context analysing hydrological
extremes andwater balance components is themost common
approach, as Corzo Perez et al. stated [1]. Droughts are global
hydrological phenomena found to increase in duration, area,
and severity, according to Lloyd-Hughes et al. [2]. But
validation of global models had to be done by observations
on smaller scale, on the number of catchment areas of
different characteristics, as it was studied by Stahl et al. [3],

Gudmundsson et al. [4], and Prudhomme et al. [5]. For
example, research of 44 catchments made by Van Loon and
Laaha [6] and based on long data series in Austria proved
that droughts are strongly governed by combination of
climate characteristics, increase of temperature and change of
precipitation pattern, and catchment control. One of themost
important climate elements is precipitation, strongly affecting
water balance and quality of water resources. There are many
uncertainties in prediction of precipitation amount, intensity,
and seasonal and spatial distribution in the future, presented
byDe Luis et al. [7], Orlowsky and Seneviratne [8], andNunes
and Lourenço [9]. In the report of IPCC-2007 [10], there is
an increase of precipitation in the period 1900–2005 north
of the 30∘ latitude, but it is also stressed that regional and
subregional variabilities are frequent and must be carefully
analysed. In Northern Germany, a significant precipitation
increase and consequently discharge are expected in the com-
ing decades, starting around 2030with the assumption that all
natural features remain stable, apart from climate [11]. There
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are several scenarioswhich predict climate change impacts on
water resources and water balance components over different
regions and throughout all seasons. Spatial distribution of
much affected areas is relatively well described, according
to authors Blöschl and Sivapalan [12] and Kundzewicz et al.
[13]. At the seasonal to interannual timescale, the influence
of climate variability on hydrological data (and the occur-
rence of extreme hydrological events such as floods and
droughts) is less recognized. These influences can generate
seasonal distortions in the statistical data of hydrological
variables, thus threatening the validity of the operational
rules applied to water management systems. There is also
increasing awareness that the strength of important fluctua-
tions in the global climate may vary at the decadal timescale.
Moreover, model studies suggest and observational evidence
confirms that an intensified hydrological cycle is likely to
be an important consequence of global climate change [14].
However, relationship between physical characteristics and
temporary trends of annual precipitation, potential evapo-
transpiration, and runoff is very important and unique for
each catchment area [15]. Future climate scenarios predict
higher evapotranspiration rates, lower discharge rates, and
groundwater levels. It means that, in the mostly agricultural
areas, irrigation rates will increase, but the water resources
could be questionable [16]. As a consequence, serious water
scarcity could be expected on the regional levels, meso and
macro scale [17]. Most researches are oriented to the large
river basins (macro scale), but small catchment areas (meso
and micro scale) seem to be more vulnerable. By definition
of Sivapalan et al. [14], these are fundamental landscape units
for the water cycle, sediment, and dissolved geochemical
and biogeochemical constituents. As such, they integrate all
aspects of the hydrological cycle (surface water, runoff, evap-
otranspiration, groundwater, etc.) within a defined area that
can be studied, quantified, and acted upon. The hydrological
processes develop faster; increasing of urbanization and other
land uses and land cover change have more significant
influence on the landscape and environment. Relationship
between soil moisture and temperature and soil moisture and
precipitation and their possible modification with climate
change can have a tremendous impact on water balance
[18]. Huntington [19] wrote that potential acceleration of
hydrological cycle under recent and future global warming
is of considerable interest in terms of changes and regional
variability and extremes. According to the analysis of small
catchmentsmade byTesaŕ et al. [20] andVaris et al. [21], small
catchments are very vulnerable from the hydrological point of
view. Their size is the main characteristic which defines their
hydrological features and water balance in general. Large
catchments with areas exceeding 1000 km2 have well defined
relationship between the actual discharge in the closing
profile and the total precipitation for a given antecedent
period.Gradually, it became evident thatmodels conceived in
this way are unable to describe the reality of runoff formation
from small catchments with areas up to 100 km2. Their
topographical characteristics, vegetation cover, shape and
slope of the catchment, and density of watercourse network
have a strong influence on hydrological and geochemical

processes. As a result, soil moisture and water balance
patterns are very patchy, leading to large spatial variations in
evapotranspiration and stream discharge as stated by Ruch
andHarum, [22].Human activities in the formof settlements,
infrastructure, and hydraulic structures also have significant
impacts on the small scale, even more pronounced than on
a large scale [23]. Besides, small catchments usually have
shorter series of data records and level of their certainty is
much lower, which also could be one of the reasons why
small catchments are less described from the hydrological
point of view [24]. Another problem is definition of small
catchment; generally, catchment areas smaller than 100 km2
are considered to be small, but there is another approach
which defines small catchment as an area with stable and
uniformhydrological characteristics and the actual area is not
important as much as uniformity of hydrological processes
over the catchment area [12].

Most of the previous investigations have been carried out
on a macro scale, on the national or regional level. Territory
of Croatia belongs to the transitional area between Northern
Europe with weak positive trend of annual precipitation
amounts in the continental part of the country and drying
Mediterranean with more pronounced seasonal trends [25].
Potentially, human induced changes and interaction with
natural characteristics of terrain, soil, land cover, and mete-
orological parameters yield specific and unique hydrological
characteristics which might have a great influence on water
management. In macro scale, it is very difficult to separate
influences induced by human activities from climate change
impacts, but in small catchment areas it could be possible.
This paper is going to present changes in hydrological
parameters on small catchment area inCroatian lowlandwith
no significant human interventions, so all potential changes
in hydrological processes must be related to climate change.

2. Materials and Methods

2.1. Study Area. Catchment area of Karašica and Vučica
Rivers is located in Danube River basin, part of the Drava
River catchment, and its location in the Croatian lowland
together with meteorological and hydrological stations and
groundwater observation wells relevant for the research area
is given in Figure 1. It is small catchment with two different
parts.The larger part is typical lowland with altitude between
85 and 125m a.s.l. (Figure 2(a)). The lowest point is at the
mouth of Vučica River into the Drava River. Most of the
terrain is higher than the maximum water level of the Drava
River, so the area is not affected by high Drava River water
levels. The vegetation cover mostly consists of agricultural
land, pastures, and forests. Hilly part of the catchment is
situated on the southern part, with the altitudes between
125 and 953m a.s.l. Hilly part is covered by forest, orchards,
and vineyards and takes about one-third of the total area.
There are many smaller brooks that during high water levels
contribute to the discharge of major rivers and cause floods.
The whole catchment area has very dense network of natural
and artificial watercourses constructed in the last 150 years.
Theirmain purposewas, and still is, flood protection and land
drainage studied by Tadić et al. [26].
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Table 1: Characteristics of meteorological and hydrological stations.

Meteorological stations
Name Elevation (m a.s.l.) Period of observations
Donji Miholjac 97.00 1981–2014
Valpovo 91.00 1981–2014
Našice 144.00 1981–2014
Slatina 144.00 1981–2014
Orahovica 180.00 1991–2014∗

Hydrological stations
River/station Location Distance from the mouth (km) Catchment area (km2) Period of observation
Karašica/Kapelna 45∘42󸀠35󸀠󸀠 33 + 010 388.8 1987–2012
Vučica/Orahovica 45∘32󸀠29󸀠󸀠 74 + 950 42.6 1987–2012
Vučica/Beničanci 45∘36󸀠47󸀠󸀠 48 + 500 750.5 1987–2012
∗Only precipitation data.

Met. station
Hyd. stat. Obs. wells

Catchment areaVu ̌cica River

Kara ̌sica River

Figure 1: Catchment area with meteorological and hydrological stations.

2.2. Hydrological and Meteorological Characteristics. Data
used in the analysis includes monthly and annual precipita-
tion, mean monthly and mean annual precipitation, monthly
groundwater levels, and monthly discharges of Karašica
and Vučica Rivers. In Table 1, the main characteristics of
meteorological and hydrological stations are given.

The catchment of Karašica and Vučica Rivers can be
considered as very stable area according to land use change
which is important for further analysis; therefore, all other
changes in hydrological parameters and processes in the
observed period are consequence of climate change. Changes
in land use on catchment area were analysed based on
Corine Land Cover data which is digital database including
changes in land cover and land use for the Republic of

Croatia in the period from 1981 to 2012 (Figure 2(b)). There
are five different datasets between 1980 and 2012. In this
period, change appeared on 13.000 ha but most of it was
from unirrigated arable land to irrigable land and from
areas of natural vegetation to forest. In total, about 16% of
the catchment area land cover has changed, but without
significance [27]. It is very important because land use
change has significant influence on hydrological processes.
For example, Wang et al. [28] and Amirabadizadeh et al.
[29] investigated a major influence of land use change,
urbanization, and industrialization on water balance change.
Data series of monthly and annual precipitation amounts and
the mean monthly and annual air temperature are observed
on the fivemeteorological stations in the period between 1981
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Met. station

Transitional hilly part
Hilly part

85–90
90–95
95–100
100–105

105–110
Altitude (m a.s.l.)

(a)

CLC clip

Green urban areas
Unirrigated arable land
Orchards
Grassland
The complex of cultivated plots

Predominantly agriculturalDeciduous forest

Coniferous forest
Combined forest
The transition area of forest
Inland wetlands
Watercourses
Water surfaces

Discrete urban areas

Location of exploitation of
mineral resource

land

(b)

Met. station
Temperature
11.10
11.14
11.18
11.22
11.26

11.30
11.33
11.37
11.40

(c)

Met. station
Precipitation
709.00
737.86
766.72
795.58
824.44

853.30
882.16
908.80
931.00

(d)

Met. station
PET (mm)
825.16
833.06
840.96

848.86
856.76

(e)

Met. station
Observation wells
Groundwater table (m a.s.l.)
86.16
90.93
95.70

100.46
105.23

(f)

Figure 2: (a) Altitude map of the catchment area, (b) land use map, (c) mean air temperature distribution, (d) annual precipitation
distribution, (e) annual potential evapotranspiration distribution, and (f) mean groundwater level.
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and 2014. Annual precipitation varies between 710mm in the
lower part and 816mm in the hilly part of the catchment
(Figure 2(d)). Mean annual groundwater level is presented
in Figure 2(f), and it is approximately 3.0m below soil
surface. Figures 2(c) and 2(e) present mean air temperature
distribution and mean annual potential evapotranspiration.
Potential evapotranspiration was calculated by Hargreaves
and Samani (HS) [30] equation:

ETo = 0.0135Rs (𝑇 + 17.8) , (1)

where Rs is expressed in units of water evaporation in
mm/day and𝑇 in ∘C. According to Trajković [31] who studied
the HS equation in seven locations in continental Europe,
including Croatia, with different altitudes (42–433m a.s.l.)
with RH ranging from 55 to 71%, it is considered to be
applicable for the study area.

2.3. Methodology with the Description of RAPS and SPI.
In order to demonstrate trends in hydrological parameters
and water balance components, RAPS (Rescaled Adjusted
Partial Sums)methodwas used. Randomchanges, errors, and
variability in the analysed time series were overcome with
thismethod.The observed periodwith thismethod is divided
into several subperiods, based on calculated 𝐹-test and 𝑡-test
at level 𝑝 < 0.05. RAPS are calculated by expression [32, 33]

RAPS
𝑘
=

𝑘

∑

𝑡=1

𝑌
𝑡
− 𝑌

𝑆
𝑦

, (2)

where 𝑌 is the mean value of observed time series; 𝑆 is the
standard deviation; 𝑌

𝑡
is the observed parameter (in this case

maximum annual discharge and water level in year 𝑡); 𝑘 is the
total number of observed years.

Variations of analysed parameters are calculated as a ratio
of standard deviation and average value for subject period.

Drought analysis wasmade by Standardised Precipitation
Index (SPI), the method most frequently used in all parts of
the world, regardless of climatic or topographical features.
The basic advantage of this method lies in the fact that it
necessitates only a set of precipitation data for a longer period
of time (30 or more years) and that it can be used at various
timescales, the most frequent ones being 1, 3, 6, 12, and 24
months. The SPI has defined limit values dependent on the
relative frequency; according to McKee et al. [34], a positive
SPI points to a greater quantity of precipitation with respect
to the mean multiyear value, while a negative SPI is an
indication of lower precipitation compared to mean value.

3. Results and Discussion

In Croatia, which is in the transitional zone, precipitation
increase can be expected in the future (Perčec Tadić et al.
[35]), but in the observed period (1981–2014) there is no
increasing trend in annual precipitation according to the
records from five meteorological stations (Figure 3). Annual
precipitation andmean air temperature were analysed on five
meteorological stations in the period between 1981 and 2014
which is presented in Figure 3.
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The study area is characterized by extreme hydrological
events, droughts, and floods which occur frequently causing
great damage. Previous research proved that the most severe
droughts have occurred in 2000, 2003, and 2011 in the
continental part of Croatia [36].

Annual SPI values did not show any trend (𝑅2 =
0.0004–0.0032) during the observed period which can be
seen in Figure 4, but greater variability can be recognized in
the beginning of the 21st century.

Hydrographs of characteristic annual discharges of
Karašica and Vučica Rivers are presented in Figure 5.There is
no significant trend inmaximum,minimum, ormean annual
discharges in the period 1981–2012 (𝑅2 = 0.0008–0.0115).

Floods are another type of extreme hydrological events
which are more frequent in the last decades. Similar to the
droughts, they also cause great damage towatermanagement,
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Figure 5: Characteristic discharges of the Karašica River (a) and the Vučica River (b).
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Figure 6: Flood events on the Karašica and Vučica Rivers in the
period 1981–2012.

agriculture, and ecosystems. In the observed period between
1981 and 2012, floods have occurred several times (Figure 6).

Spatial distribution of annual groundwater level is pre-
sented in Figure 2(b).

Previously described hydrological and meteorological
parameters and water balance components did not show any
specific trendduring the observed period, but there are visible
variations in the last decade. Those variations were analysed
in more detail in order to achieve a better understanding of
hydrological processes in the catchment.

3.1. Precipitation and Air Temperatures. As it was presented
previously, there is no increasing precipitation trend in the
study area.The application of RAPS on themonthly precipita-
tion data distinguished subperiods with various lengths. The
first subperiod, 11 years long, is characterized by decrease of
precipitation ending between April 1991 in lower part of the
catchment and September 1992 in the hilly part. In the second
subperiod, monthly precipitation is increasing (Figure 7(a)).
Only in Slatina station are there 3 subperiods; the third one
started in December 1999.

The variability of precipitation is one of the predictions
of climate change [37] and in the analysed area it is obvious
in the observed period even if it is relatively short. Large
precipitation variability is beside the amount, main cause

of vulnerability to droughts and floods, with a tremendous
impact on agriculture, ecosystem, and water management.
However, RAPS method applied on annual air temperatures
shows more significant change during the whole observed
period and subperiods aswell. In twometeorological stations,
the first subperiod lasted until 1997 and 1998, respectively,
with decreasing air temperature trend and the second sub-
period with an increasing trend. On the station Našice
the breaking point is year 2005, and on meteorological
station Slatina there are not any significant changes in the
air temperature (Figure 7(b)). These results prove previous
conclusions about an average increase of 0.84∘C in the period
of 50 years or longer obtained on 26 stations in Croatia
reached by Bonacci [38].

Calculation of coefficients of variation (CV) of precipita-
tion for these two subperiods and testing of their significance
show variations but without statistical significance (0.56–
0.62 in the second subperiod, while in the first period
significance was between 0.62 and 0.64). Difference of mean
air temperatures between the recognized two subperiods is
about 1∘C. Comparing to the precipitation variability, air
temperature coefficients of variation are much smaller and
their values are between 0.043 and 0.058.

The same procedure was applied on discharges, ground-
water levels, and potential evapotranspiration. RAPSmethod
distinguished two subperiods in each data series but with
different duration. Research of Rasouli et al. [39] proved high
sensitivity of stream flow to changes in the whole range of
hydrological processes in the basin, with particular regard
to precipitation. Besides, in relation to extreme fluctuations
in precipitation and impact of natural characteristics as far
as human activities, water management practice is becoming
complex and unreliable. Hydraulic structures are constructed
in order to fulfil their purposes including flood protection,
irrigation water uptake, and drainage, and their operation
in the different conditions makes them unreliable [13]. Their
possible adaptation to present and even more significant
changes in the future has a lot of uncertainties because there
is no accurate projection of future hydrological processes.
Most of the research obtained opposite trends of discharges,
strongly influenced by natural characteristics of the catch-
ment and their significant variability [40].
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Figure 7: (a) RAPS of monthly precipitation data and (b) RAPS of mean annual air temperature data.
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Figure 8: (a) RAPS of mean monthly groundwater levels and (b) RAPS of mean annual potential evapotranspiration.

Results obtained in this research confirm previous state-
ment, but subperiods of decreasing and increasing discharges
have a delay of 4-5 years comparing to the precipitation, and
the coefficients of variations are not significant.

Annual groundwater levels have also two subperiods,
the first period of decrease (1991–1993) and the second
subperiod of increase of groundwater level. The results of
previous Croatian researches on water balance components
of much larger areas and longer data series periods (1900–
1995) made by Zaninović and Gajić-Čapka [41] recognized
a significant increase in potential evapotranspiration and
decrease in runoff and soil water content and predicted
further development of the analysed processes in the next
century. The proposed analysis of small catchment water
balance did not completely prove the results. Changes in
potential evapotranspiration are present but not significant.

Figure 8 shows application of RAPS method on both,
groundwater level and potential evapotranspiration. The
first subperiod shows decreasing trend of groundwater level
(breaking year is between 1991 and 1995) and the second
subperiod of increasing groundwater level. Potential evap-
otranspiration has a similar behaviour with breaking year
between 1991 and 1994, and for one station it is 1998.

All data series show two subperiods with different dura-
tion. Decreasing subperiods finish between 1991 (for precipi-
tation and groundwater levels) and 1997 (for air temperature
and discharges). They are followed by increasing periods
(Figure 9(a)).Different durations of subperiods distinguished
by RAPS are partially related to characteristics of catchment
area itself. Particularly, trends in runoff processes show a
delay of few years. Usually, it is neglected in the trend analysis
of climate change impacts. Also, as a complex hydrological



8 Advances in Meteorology

Donji Miholjac

Donji Miholjac

Valpovo

Valpovo

Slatina

Slatina

Pr
ec

ip
ita

tio
n

G
W

PE
T

D
isc

ha
rg

es
Te

m
p.

DP-18
P-58
B-9
P-27
P-30

Donji Miholjac
Valpovo

Na ̌sice

Na ̌sice

Na ̌sice

Vu ̌cica, Qmin

Vu ̌cica, Qmax

Vu ̌cica, Qav

Kara ̌sica, Qmin

Kara ̌sica, Qmax

Kara ̌sica, Qav

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

19
81

(a)

CV

1st subperiod

GW GW
PET PET

Precipitation

2nd subperiod
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Qav,min,max

TemperatureTemperature

(b)

Figure 9: (a) Duration of subperiods distinguished by RAPS and (b) coefficients of variation (CV) of analysed parameters.

process, depending on many parameters, a large variability
of characteristic discharges is not surprising. The least vari-
able parameters are air temperatures, potential evapotran-
spiration, and groundwater levels. There are no statistical
differences in significance of CV in the two subperiods
(Figure 9(b)).

4. Conclusions

Knowledge of meteorological and hydrological parameters
as a driving force of water balance components and their
temporal and spatial distribution are essential for water man-
agement practice. There are many scenarios of precipitation
and air temperature change in the future, but all of them
have to be tested on a certain basin with specific geomorpho-
logical, hydrological, and vegetation characteristics, and so
forth. Each river basin is unique, and small catchment areas
especially show significant dependence on shape, slope, land
use, and other features, including human structures.

Catchment area of Karašica and Vučica Rivers in Croatia
had no significant change in land use since 1980 and all
obtained variabilities that occurred in the last period can
be considered as a consequence of change in hydrological
parameters and processes. Previous research in the areamuch
larger than this study area indicated increase of precipi-
tation, air temperatures, and potential evapotranspiration
and decrease of other water balance components, first of all
runoff. They are usually given per decade or longer period.
This analysis shows opposite results. All analysed parameters
in the period of 35 years have two subperiods of different
duration related to their hydrological development. The first
one is period of decrease, and the second one is period of
increase of all parameters, butwith time delay of several years,
especially in discharges. Also, variability of hydrological
parameters is increasing, but without significance. The most
variable are discharges and precipitation with consequent
occurrence of droughts and floods which make this area
and its water management system more vulnerable. Small
catchment areas are the basic and unique units of water
management, so it is very important to analyse their natural

characteristics and processes to be able to cope with water
scarcity or sufficiency in the best way.
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A wavelet transform technique was used to analyze the precipitation data for nearly 60 years (1954–2012) in Yunnan Province of
China. The wavelet coefficients and the variance yield of wavelet were calculated. The results showed that, in nearly 60 years, the
spring precipitation increased slightly; however, the linear trend of other seasonal and annual precipitations showed a reducing
trend. Seasonal and annual precipitation had the characteristics of multiple time scales. Different time scales showed the different
cyclic alternating patterns. Overall, in the next period of time, different seasons and the annual precipitation will be in the periods of
precipitation-reduced oscillation; high drought disaster risks may occur in Yunnan province. Particularly, by analyzing large area of
severe drought of Yunnan province in 2009–2012, the predicted results of wavelet were verified.The results may provide a scientific
basis for guiding agricultural production and the drought prevention work for Yunnan Province and other places of China.

1. Introduction

China is a typical monsoon climate country and is an agri-
cultural country. The instability of monsoon climate leads to
frequent flood and drought, causing 55% of total natural dis-
asters loss in China [1, 2]. Drought has become the key obsta-
cle factor constraining China’s agriculture and sustainable
development. During the last decade, the severe drought in
southwest China has resulted in tremendous losses, including
crop failure, a lack of drinking water, and ecosystem destruc-
tion [3]. From July 2009, Yunnan Province of China has been
hit with the worst droughts in a century. The drought has
affected about 2.1 million hectares of farmland or about 85
percent of wheat producing areas of Yunnan province until
March 2010 [4]. From 2009 to 2012, Yunnan province has
suffered a continuous severe drought. Most parts of China’s
Yunnan Province have been gripped by drought since early
December 2011 as rainfall has been 50%–80% less than the
long-term average [5]. Some attempts have been made to
explore the causes and variability of drought in southwest

China [6–10]. However, it is unclear and even disputable as
to what and how precipitations and circulation oscillation
patterns affect the drought risk.

Droughts are caused by a depletion of precipitation over
time [11]. It is well known that precipitation is one of themost
important aspects related to climate change and, in recent
years, droughts and also floods have been experienced with
higher peaks and severity levels [12].Thewavelet transform is
a mathematical tool that provides a time scale representation
of a signal in the time domain [13]. It could be applied to
meteorological data to bring up distinct patterns that might
be hiddenwithin the original data [14]. It also could be used to
identify the location of the mutation point in nonstationary
signals. Currently, wavelet analysis research mainly focused
on themultiple time scales characteristics of temperature and
precipitation [15–17]: connections’ definition between hydro-
meteorological variables [18–21], short-term climate predic-
tion [22–24], and so on. In China, based on statistical meth-
ods, some scholars have studied the relationship between
precipitation and drought in Yunnan Province [25–27].
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Figure 1: Study area and the distribution of meteorological stations in Yunnan Province.

The continuous wavelet analysis on Yunnanmeteorologi-
cal data is a new research for studying periodicities and long-
term variability. Different temporal levels of precipitation
(such as the seasonal and annual levels) in the structure
and characteristics of abnormal variation should be revealed.
In this study, based on Yunnan meteorological data, the
precipitation characteristics in long-term drought and inter-
decadal changes were analyzed. Decreasing trends found in
previous studies of precipitation were also clarified by using
wavelet transforms. The objective of this study is twofold:
(1) to explore the periodical fluctuations and the relationship
between precipitation and drought risk in Yunnan Province
and (2) to predict the seasonal precipitation in Yunnan Prov-
ince and the trend of the annual precipitation. The results
from this study will be of important reference value and
significance to understand the precipitations characteristics,
agricultural production, and the drought prevention work in
Yunnan Province.

2. Data and Methods

2.1. Study Area. Yunnan, located in the southwest China
(Figure 1), has a vast territory, magnificent mountains and
rivers, and abundant natural resources. With an area of
390,000 square kilometers, Yunnan is the eighth largest prov-
ince inChina. It is an inland province, withGuizhou Province
and Guangxi Zhuang Autonomous Region in the east, Tibet
Autonomous Region in the northwest, and the Qinghai-Tibet
Plateau in the southwest. The regional climate is classified
as subtropical monsoonal, with annual average precipitation

of 1100mm and mean annual temperature between 5∘C and
24∘C from north to south.

Daily precipitation records of 36 stations in Yunnan
Province from 1954 to 2012 were provided by the National
Climate Centre of China Meteorological Administration
(CMA). Based on the daily records, we calculated annual,
monthly, and seasonal data series to assess responses of pre-
cipitation to drought disaster. We use the wavelet transform
technique to analyze the precipitation data for nearly 60 years
in Yunnan Province.Thewavelet coefficients and the variance
yield of wavelet were calculated to study the characteristics
of abnormal variation. From the precipitation-reduced oscil-
lation information, we can judge the trend of precipitation
in different seasons and local drought disaster may occur in
some areas.

2.2.Methods. Thewavelet transform is a usefulmathematical
tool that can provide information about both time and fre-
quency simultaneously and enable a separation to be made
between features associated with different characteristic
length scales, so they have some advantages over traditional
Fourier transforms. At present, there are a large number of
wavelet transforms available for various applications. In this
study, we selected the Morlet wavelet [28] to analyze the
multiple time scales inherent in our data series; it is a complex
nonorthogonal continuous wavelet; the basis of a Morlet
wavelet (𝜓) consisting of a plane wave modulated by a Gaus-
sian function can be defined as

𝜓 (𝜂) = 𝜋
−1/4

𝑒
𝑖𝜔𝜂−𝜂

2
/2

, (1)
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Figure 2: (a) Spring precipitation interannual change of Yunnan. (b) Spring precipitation wavelet transform of Yunnan. (c) Spring precipita-
tion wavelet coefficients contour of Yunnan. (d) Spring precipitation wavelet variance of Yunnan.

where 𝜔 is the dimensionless frequency and 𝜂 is the dimen-
sionless time parameter. The continuous wavelet transform
(CWT) has an ability to detect significant cycles and their
occurrence time in the observation period. The CWT is
defined as

𝑊(𝑎, 𝑏) =
1

√𝑎
∫𝑓 (𝑡) ⋅ 𝜓

∗

(
𝑡 − 𝑏

𝑎
)𝑑𝑡, (2)

where 𝑎 and 𝑏 are scale and translation parameters, respec-
tively, and 𝜓∗ is the complex conjugate of 𝜓.

The wavelet variance (𝑊(𝑎)) used to detect the main
periods contributing to a signal can be expressed as

𝑊(𝑎) =
1

√𝑎
∫
󵄨󵄨󵄨󵄨𝑊𝑥 (𝑏, 𝑎)

󵄨󵄨󵄨󵄨
2

𝑑𝑏. (3)

Since the precipitation data sets used in this paper are of
finite length and the Morlet wavelet is not completely local-
ized in time, errors will occur at the beginning and at the end

of the wavelet power spectrum. To reduce the edge effects, we
carried out a symmetry extension at both ends of the precipi-
tation time series before undertaking the wavelet transform
and then removed them.

3. Results and Analysis

3.1. Analysis of Spring Precipitation Variation Characteristics.
As seen from Figure 2(a), the spring precipitation of Yunnan
Province presented an upward trend in recent 60 years. The
annual precipitation increased in the linear inclined rate
which was 9.117mm/10 years, but in recent five years it pre-
sented a downward trend. Figure 2(b) showed that a periodic
oscillation is obvious under the scale of 18 years. With the
increase of time scale, above the scale of 18 years, a gentle
periodic oscillationwas indicated for 7 cycles. Until year 2012,
the contours of decreased precipitation were still not closed,
indicating that spring drought may occur within the next
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Figure 3: (a) Summer precipitation interannual change of Yunnan. (b) Summer precipitation wavelet transform of Yunnan. (c) Summer
precipitation wavelet coefficients contour of Yunnan. (d) Summer precipitation wavelet variance of Yunnan.

few years. The fact of spring Yunnan drought event in 2009,
2011, and 2012 has proved the results of the analysis. From
Figure 2(c) we can see that a precipitation wavelet energy
spectrum is strong at time scale of 25∼32 years, but the cycle
changes have a localization characteristic (before 1980). The
wavelet energy spectrum is weaker at time scale of 10∼22
years, but more obvious cycle distribution occupies the entire
study time domain (1954∼2012). Figure 2(d) showed that
wavelet variance of spring rainfall has four peaks, correspond-
ing to time scales of 28 years, 18 years, 7 years, and 4 years
(correlation coefficient is 0.82 and coefficient is significant at
0.05 level). The largest peak value corresponds to the time
scale of 28 years indicating that the period oscillation of 28
years fluctuatedmost; it could be considered as the firstmajor
period in spring precipitation change.

3.2. Analysis of Summer Precipitation Variation Characteris-
tics. From Figure 3(a) we can see that the summer precip-
itation of Yunnan Province presented a downward trend in

recent 60 years.The annual precipitation decreased in the lin-
ear inclined rate which was −11.461mm/10 years. Figure 3(b)
showed that a periodic oscillation is gentle at the scale of
above 22 years; the regular pattern is obvious. Until 2012, the
contour of decreased precipitation has not closed, indicating
that summer drought may continue to occur. As seen from
Figure 3(c), we can see that a precipitation wavelet energy
spectrum is strong at time scale of 20∼32 years, but the cycle
changes have a localization characteristic (before 1970). The
wavelet energy spectrum is weaker at time scale of 6∼18 years,
but more obvious cycle distribution occupies the entire study
time domain (1954∼2012). Figure 3(d) showed that wavelet
variance of summer rainfall has two peaks, corresponding to
time scales of 22 years and 8 years (correlation coefficient is
0.85 and coefficient is significant at 0.05 level).

3.3. Analysis of Autumn Precipitation Variation Characteris-
tics. From Figure 4(a) we can see that the autumn precipita-
tion of Yunnan Province presented a nondistinct fluctuation
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Figure 4: (a) Autumn precipitation interannual change of Yunnan. (b) Autumn precipitationwavelet transform of Yunnan. (c) Autumn preci-
pitation wavelet coefficients contour of Yunnan. (d) Autumn precipitation wavelet variance of Yunnan.

in general. The linear inclined rate was 0.335mm/10 years.
Figure 4(b) showed that a periodic oscillation is obvious
under the scale of 15 years, performing no obvious law. With
the increase of time scale, above the scale of 15 years, a gentle
periodic oscillation was distinct and represented 7 cycles.
Precipitation was relatively more in the period of 1970–2000.
Autumn rainfall went into the dry season after 2003. The
year of 2012 located in the middle of reduction period of
oscillation; autumn drought may continue within the next
few years. From Figure 4(c) we can see that a precipitation
wavelet energy spectrum is strong at time scale of 15∼32
years, but the cycle changes have a localization characteristic
(before 1960 and after 2000). The wavelet energy spectrum is
weaker at time scale of 8∼13 years, but more obvious cycle
distribution occupies the entire study time domain (1954∼
2012). Figure 4(d) showed that wavelet variance of autumn
rainfall has three peaks, corresponding to time scales of 18

years, 10 years, and 3 years (correlation coefficient is 0.90 and
coefficient is significant at 0.05 level).

3.4. Analysis of Winter Precipitation Variation Characteristics.
Figure 5(a) showed that the winter precipitation of Yunnan
Province presented a little downward trend in recent 60 years.
The annual precipitation decreased in the linear inclined rate
which was −0.929mm/10 years. Figure 5(b) showed that a
periodic oscillation is obvious under the scale of 17 years.
With the increase of time scale, above the scale of 17 years,
a gentle periodic oscillation represented 10 cycles. Until 2012,
the contour of increased precipitation has not closed, indica-
ting that the trend of precipitation increase inwinter will con-
tinue within the next few years. From Figure 5(c) we can see
that a precipitation wavelet energy spectrum is strong at time
scale of 15∼20 years, but the cycle changes have a localization
characteristic (1985–1995). The wavelet energy spectrum is
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Figure 5: (a) Winter precipitation interannual change of Yunnan. (b) Winter precipitation wavelet transform of Yunnan. (c) Winter
precipitation wavelet coefficients contour of Yunnan. (d) Winter precipitation wavelet variance of Yunnan.

weaker at time scale of 10∼22 years, but more obvious cycle
distribution occupies the entire study time domain (1954∼
2012). Figure 5(d) showed that wavelet variance of winter
rainfall has three peaks, corresponding to time scales of 17
years, 9 years, and 4 years (correlation coefficient is 0.88 and
coefficient is significant at 0.05 level).

3.5. Analysis of Annual Precipitation Variation Characteristics.
Figure 6(a) showed that the annual precipitation of Yunnan
Province presented a little downward trend in recent 60 years.
The annual precipitation decreased in the linear inclined
rate which was −3.323mm/10 years. The descending trend of
recent 5 years is obvious. Figure 6(b) showed that a periodic
oscillation has a nondistinct law under the scale of 22 years.
With the increase of time scale, above the scale of 22 years,
a gentle periodic oscillation represented 7 cycles. The year of

2012 located in the middle of reduction period of oscillation;
annual precipitation reduction may continue within the next
few years. From Figure 6(c) we can see that a precipitation
wavelet energy spectrum is strong at time scale of 20∼32
years but mainly before 1960. The wavelet energy spectrum
is weaker at time scale of 7∼22 years, but more obvious
cycle distribution occupies the entire study time domain
(1954∼2012). Figure 6(d) showed that wavelet variance of
annual rainfall has two peaks, corresponding to time scales
of 22 years and 10 years (correlation coefficient is 0.76 and
coefficient is significant at 0.05 level).

3.6. Case Verification. Water scarcity and bad water quality
are the basic reasons which lead to drinking difficulties (here-
after referred to as “PDWDD”). Severe drought has led to
problems of difficulty in accessing drinking water. In China,
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Figure 6: (a) Annual precipitation interannual change of Yunnan. (b) Annual precipitation wavelet transform of Yunnan. (c) Annual
precipitation wavelet coefficients contour of Yunnan. (d) Annual precipitation wavelet variance of Yunnan.

PDWDD is an important indicator of drought disaster. The
reported drought disaster statistic data [29] in 2009–2013 of
Yunnan province was selected as basis for a case validation.

From the point of view of meteorological precipitation
statistics, since the year of 2009, drought has occurred four
times in Yunnan Province [30]: from September 2009 toMay
2010, across autumn, winter, and spring seasons; from June to
September 2011, lasting for 4 months, fromDecember 2011 to
May 2012, lasting for 6months, and fromOctober 2012 toMay
2013, lasting for 8months.The four processes have significant
correspondence with the four wavelet seasonal changes (Fig-
ures 7(a), 7(b), 7(c), and 7(d)).

From the perspective of disaster statistics, the four con-
secutive occurrences of drought, continuous heavy drought
across autumn, winter, and spring seasons in 2009-2010,
continuous drought from summer to autumn in 2011, contin-
uous drought from winter to spring in 2012, and continuous

drought from winter to spring in 2013, the cumulative effects
of the disaster were very obvious. Under a comparative anal-
ysis of PDWDD of the four processes of Yunnan Province,
the drought process in 2013 was a light drought, the counties’
(cities and districts) number of heavier drinking population
problems (>50,000) is 17. Respectively, it accounted for 10%
and 37% of the total heavier county numbers of the 2009-
2010 drought process and the 2012 drought process. Severely
affected counties of PDWDD (>100,000) were least for the
past four years. Currently Yunnan province is in a dry
period of precipitation wavelet analysis, with the likelihood
of frequent droughts occurrence being greater.

4. Conclusions

Based on the Morlet wavelet method, this paper used the
precipitation data for nearly 60 years (1954–2012) to study
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Figure 7: Distribution of populations in drinking water access difficulties because of drought of Yunnan province in 2009–2013.

the characteristics of the periodic variation of precipitation
in Yunnan Province. The results showed some conclusions
which are given as follows.

In the recent 60 years, all the seasons except for spring
and annual precipitation showed a decreasing trend. Seasonal
and annual precipitation had a characteristic of multiple time
scales. A periodic oscillation is significant at the scale of 17∼
28 years. Secondly, oscillations of time scale of 7∼10 years are

obvious. The periodic variation on a large scale contains the
periodic variation on a small scale.

Wavelet and energy spectrum in summer is the closest
to that of annual. It indicated that annual precipitation is
mainly affected by summer precipitation. From perspective
of multiple time scales, summer precipitation has a similar
trend and phase to annual precipitation; that is, when there is
more summer rainfall, annual precipitation is greater.
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According to the main cycle of summer and the annual
rainfall, precipitation of Yunnan is in the decreased oscilla-
tion period; local drought may also occur in the next future
times.

Time-frequency localization properties of wavelet analy-
sis can show the fine structure of precipitation time series not
only to dig out information hidden in the sequence of peri-
odic oscillations over time but also to determine the approxi-
mate location of themutation point of precipitation and qual-
itatively estimate the time sequence evolution trend. These
results can provide a newway for the analysis ofmultiple time
scale climate variations and short-term climate prediction.
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In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to
prevent consequences via an early warning system (EWS) to announce the possible occurrence of a hazard. The aim and objective
of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology
for developing a hydrological prediction model based on an artificial neural network (ANN) as an essential part of the EWS. The
methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area,
by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation,
and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common
calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the
observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well
as on the performance of the mean absolute error.

1. Introduction

Natural events, phenomena that occur in urban areas, with
consequences such as loss of human life and/or significant
material and infrastructure damage, are considered hazards.
The same events in uninhabited areas and areas of no interest
to people are not considered disasters, and they are rarely of
interest in terms of detailed research and the implementation
of hazardmitigation processes, such as early warning systems
(EWSs) [1]. In populated areas, it is difficult to separate events
as solely natural events in a manner that excludes the impact
of human activities. The occurrence of hazard phenomena
cannot be prevented by humans, but its consequences can
be minimized or even intensified depending on the human
activities in the hazard-prone area. Debris flow, expansive
soils, landslides, rock falls, drought, erosion, sedimentation,
river flooding, flash floods, and mud flows are all considered
hazard events.

This paper focuses on hazards that are caused by the
activity of water, such as flash floods, mud flows, and debris
flows.

Flash floods can be described as floods caused by a storm
event in a short period of time.The term “flash” reflects a fast
response, with water levels in the water bed reaching a peak
withinminutes to a few hours after the onset of the rain event,
leaving an extremely short time for warning [2]. Flash floods
can also become filled with small particles from terrestrial
deposits that were saturated with rain; in that case, they are
defined as mud flows [3]. A debris flow is a flow, typically
torrential, that is a mixture of mud flows and debris that
suddenly comes down the slope, preceded by huge boulders
that pose a severe hazard [4].

Prediction of flash floods, mud flows, and debris flows,
as a part of the EWS in areas where there is no possibility
of minimizing human activities or mitigating risk, becomes
a crucial tool for preventing the consequences caused by the
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Figure 1: ANN predictive model development flowchart for the small catchments (green direction: forward movement in procedure; red
direction: backward movement in procedure).

aforementioned hazards. As a result, there are currentlymany
projects aimed at the development and implementation of
EWSs. One such project is the bilateral Croatian-Japanese
project “Risk Identification and Land-Use Planning for Dis-
aster Mitigation of Landslides and Floods in Croatia,” in
which Japanese scientists transferred their knowledge of the
development of EWSs to Croatian researchers because EWSs
are still in the development stage in the Republic of Croatia.

As the aforementioned hazards are initiated by many
natural and anthropogenic factors, which can become trig-
gering factors when combined, it is critical to establish the
monitoring of areas that are known as existing or potentially
hazardous areas. Natural triggering factors can be extreme
meteorological events (e.g., rainfall, snow melt, or wind) or
hydrogeological conditions, such as high water levels and
poor soil.
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According to the United Nations International Strat-
egy for Disaster Reduction (UN/ISDR, 2009), a complete
and effective EWS includes four related elements: (i) risk
knowledge, (ii) a monitoring and warning system service,
(iii) dissemination and communication, and (iv) response
capability. The hazard prediction model is developed under
the monitoring and warning system service. It requires a
number of technologies and areas of expertise that consist of
several elements, such as long-term monitoring and collec-
tion of existing data on the potential hazard area, real-time
and remote monitoring of triggering factors, data analysis,
development, validation, and evaluation of the predictive
hydrological model, and development of a decision support
system that will assist public authorities and citizens in
choosing the appropriate protection measures [5].

In the last few decades, predictive hydrological models
for establishing EWSs have been developed with the growth
of computational capabilities. Most of the prediction models
are formed as rainfall-runoff models that can be assigned
to one of three broad categories: (i) deterministic (physical),
(ii) conceptual, or (iii) parametric (also known as analytic or
empirical). Deterministic models use physical laws of mass
and energy transfer to describe rainfall-runoff processes,
whereas conceptual models use perceived systems to simplify
the processes, and parametric models use mathematical
transfer functions to connect meteorological parameters to
runoff. Hydrological models can also be classified as lumped,
which means that the model treats a catchment as a single
unit or as distributed, where the catchment is divided into
connected subsystems [6].

Hydrological prediction models are typically extremely
complex, which inhibits their widespread implementation.
Furthermore, there is a lack of objectivity and consistency in
the way that models are assessed, evaluated, and compared
[7].Themodels are typically prepared for specific large catch-
ments, and they cannot be used anywhere else. Such models

Selection of the model
architecture

(MLP, RBF, SOP, SVMs)

MLP

Input layer
(10 steps delay)

Hidden layer
(10 neurons)

Output layer
(selection of prediction steps)

Selection of model training
algorithm

Levenberg-Marquardt
algorithm

Selection of ANN software

MATLAB Neural
Networks Toolbox

Training process
(for every prediction time

step conducted in MATLABs
built-in training process)

Training finished
(when MATLABs built-in tool

identifies optimally trained
ANN model)

Figure 3: ANN implementation procedure.
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Figure 4: Multilayer perceptron (MLP) model [8].
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Figure 5: Location of the investigated area according to the Republic of Croatia map, with an aerial photograph of the Slani Potok catchment
area [33].

cannot be applied to small catchments, whose resolution and
time of prediction are more sensitive.

Therefore, in this paper, the methodology for developing
data-driven predictive models, as well as its application and
predictive ability as a function of the time step, is based on an
artificial neural network (ANN) and is developed for small
catchments (less than 5 km2) as a basis for the establishment
of an EWS.

An ANN can be classified as a parametric model that
is generally lumped because rainfall-runoff processes are
treated as a “black box” with inputs and outputs [6, 8, 9].
Additionally, ANNs are often less expensive and simpler to
implement than other types of models [6, 8].

Recently, many studies have been conducted with the aim
of predicting hydrogeological parameters with the help of

an ANN, such as river discharge [6, 10, 11], flood prediction
[12], pore-water pressure [13], lake water levels [14], ground
water levels [15], water resources prediction [16], peak flow
estimates [17], evaporation estimation [18], river water tem-
perature [19], and water quality modelling [20].

All of these studies were prepared for large catchments,
whereas few studies consider small catchments, perhaps
because they do not represent an enormous hazard risk
compared to large ones or because it is widely accepted that
it is difficult to predict flash floods, mud flows, or debris
flows for catchments that are small and have short rainfall
response periods [21]. However, although hazards associated
with small catchments do not seem intimidating, they still
exist and can cause the same hazards as large areas.
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2. Methodology for the Development of Data-
Driven ANN Predictive Models for Small
Catchments

There are already many existing guidelines and method-
ologies for the development of rainfall-runoff data-driven
models [22, 23], and all of them are generally based on
three main steps: (i) monitoring, (ii) modelling, and (iii)
evaluation. Those steps can also be scaled for predictive

River springs
Meteorological station
Water level probe
Catchment area boundary
Slani Potok creek

0 200 400 600 800 1000

(m)

Figure 8: Location of the monitoring points in the Slani Potok
catchment.
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Figure 9: Schematized ANNmodel structure.

ANN modelling in small catchments, whose development
flowchart is shown in Figure 1.

2.1. Monitoring. As shown in Figure 1, before monitoring
points in the research area are established, it is important to
collect all of the available historical data, such as information
on constructed hydraulic structures (e.g., river network, river
regulation), geology (e.g., soil type, erosion, and landslide-
affected areas), land use (e.g., types of vegetation coverage,
areas used for agriculture), and anthropology (e.g., urban
areas, traffic infrastructures, and illegal waste disposals),
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Figure 10: Schematized ANN prediction model.

Table 1: Boundary scale for validation and evaluation criteria.

Validation/evaluation
boundary and scale criteria

CE 𝑟
2

⟨−∞, +1] [−1, +1]
Very good ⟨0.75, 1.00] ⟨—0.75—, —1—]

Good ⟨0.65, 0.75] /

Poor ⟨0.5, 0.65] ⟨—0.50—,
—0.75—]

Very poor ≤0.5 <—0.5—

as well as historical data (e.g., affected areas in the past,
implemented structural and nonstructural measures).

After the available data are collected, continuous moni-
toring of meteorological and hydrological parameters should
be set to recognize triggering factors that can lead to the
hazard events and to represent the basis of every model. The
establishment of monitoring with at least one metrological
station and water level monitoring point is highly recom-
mended.

Before developing themodel, small catchments should be
monitored for a sufficiently long period to have a range of
several heavy rain events in different periods of the year, with
a minimum period of two years. Additionally, the time step
ofmeteorological and hydrologicalmeasurements should not
be longer than five minutes.

2.2. Modelling. After collecting a sufficient amount of mea-
sured data, the model development can begin by identifying
model inputs and outputs. For the purpose of modelling the
small catchment using theANNmodel with a small time step,
the measured data must be processed to remove data noise
and to identify possible systematic errors because they can
lead to appreciablemodel prediction errors. If data processing
did not remove all errors, data collection procedure must be
verified until the problem is resolved.The entire procedure of
data processing is shown in Figure 1.

The ANN model is chosen to apply the predictive model
to the small catchment because it is a fast and efficient model
that can rapidly predict hazards caused by the activity of

water, thus leaving sufficient time to announce a hazard
notification.

An ANN is a massively parallel distributed processor that
has a natural propensity for storing experiential knowledge
and making it available for use. It resembles the brain in two
respects: (i) knowledge is acquired by the network through
a learning process and (ii) interneuron connection strengths,
known as synaptic weights, are used to store the knowledge
[24].

The main microstructural component of the ANN is the
artificial neuron node, whose model is shown in Figure 2.

An artificial neuron node can also be defined by the
following mathematical expressions:

𝑜
𝑘
= 𝜑 (V

𝑘
) ,

V
𝑘
=

𝑚

∑

𝑛=0

(𝑤
𝑘
× 𝑥
𝑘
)
𝑛
,

(1)

where 𝑜
𝑘
is the response of the neuron node in the 𝑘th epoch

of the calculation, V
𝑘
is the sum of products of the weight

coefficients 𝑤
𝑘
, 𝑥
𝑘
is the input data in the 𝑘th epoch of the

calculation, and 𝜑 is the activation function of the neuron
node.

As shown in Figure 1, ANN implementation consists of
(i) selection of the adequate ANN architecture and training
algorithm and (ii) ANN training procedure. ANN implemen-
tation procedure is shown in Figure 3.

ANN implementation in prediction model according to
Figure 3 starts with the selection of the ANN mesostructure,
which refer to the type of network (architecture) with which
themodel will be built.This structure can in turn be generally
divided into static and dynamic ones; this is followed by the
selection of the activation function [8, 9]. The most common
types of networks used in the development of rainfall-runoff
models are (i) multilayer perceptron (MLP), (ii) radial basis
function (RBF), (iii) self-organizingmap (SOP), and (iv) sup-
port vectormachines (SVMs) [9].TheMLP architecture is the
best choice for data-driven prediction model development
[8]. The MLP architecture can be described as a static feed
forward neuron network that consists of a minimum of three
layers: (i) input, (ii) hidden, and (iii) output, as shown in
Figure 4. Every layer consists of neurons that are connected
by activation functions. Activation functions can be (i) linear,
(ii) limited linear, (iii) unipolar sigmoid, (iv) bipolar sigmoid,
or (v) hyperbolic tangent, among others [9, 12].Their purpose
is to direct data through the layers of the network from the
input layer to the output layer.The numbers of neurons in the
input and output layers are defined by the number of selected
data, whereas the number of neurons in the hidden layer
should be optimized to avoid overfitting the model, defined
as the loss of predictive ability [9].

The MLP architecture was introduced by Werbos in
1974 in his Ph.D. thesis [25]. Its final form was introduced
by Rumelhart, Hinton, and Williams in 1986 [26], who
also presented applications of the MLP architecture and a
description of its success in prediction, classification, and
association related to real problems.
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Figure 11: Graphical presentation of the target water level data and response water level data for the ANN model during validation: (a) S15,
(b) S30, and (c) S60.
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Figure 13: Evaluation classes of the target water level data.

Table 2: Statistics of data used for training and evaluation of the ANN model.

Statistics∗
Input layer Output layer

Rain Rain rate Air temperature Humidity Air pressure Solar radiation Water level
[mm] [mm/h] [∘C] [%] [hPa] [W/m2] [cm]

Model training data
𝑛 92948 92948 92948 92948 92948 92948 92948
Max. 7.68 230.4 33.3 96 773 1092 156.7
Min. 0 0 5.8 32 750.2 0 8.1
𝜇 0.0066 0.20 16.78 68.68 762.42 113.25 64.90
𝜎 0.0955 2.86 4.58 14.88 3.86 214.69 7.79

Model validation data
𝑛 19912 19912 19912 19912 19912 19912 19912
Max. 2.85 85.4 27.5 96 772.1 860.0 104.0
Min. 0 0 6.20 47.0 753.7 0 63.3
𝜇 0.0053 0.158 12.78 76.03 762.43 60.20 70.88
𝜎 0.0558 1.6744 4.89 10.81 4.41 131.85 4.47

Model evaluation data
𝑛 19912 19912 19912 19912 19912 19912 19912
Max. 10.11 303.2 29.8 95 764.80 938 210.54
Min. 0 0 14.1 38 752.6 0 61.47
𝜇 0.0166 0.499 21.14 69.80 760.66 151.77 66.99
Σ 0.218 6.525 3.37 12.76 2.25 229.973 5.86
∗
𝑛: number of observation; Max.: maximum; Min.: minimum; 𝜇: sample mean; 𝜎: standard deviation.

For the purpose of predictive hydrological ANN model
development it is important that input layer consist of the
data with minimum ten delay steps and output layer with
prediction time step as presented in Figure 3. Delay steps can
be defined as input data from previous time steps.

Because the output data from the network in one epoch of
calculation will have errors, which are a function of the target
output and model response in the output layer, an algorithm

for determining the change Δ𝑤
𝑘
of the weight coefficient 𝑤

𝑘

is needed.These algorithms are known as training algorithms
because they optimize input data in each following epoch,
which reduces the error in the output layer with respect to
the target output. The optimization of the weight coefficient
can be defined as

𝑤
𝑘+1

= 𝑤
𝑘
+ Δ𝑤
𝑘
, (2)
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Table 3: Performance statistics of the ANN model during valida-
tion.

Validation prediction step MSE 𝑟
2

S15 (𝑡 + 30 minutes) 0.603 0.960
S30 (𝑡 + 60 minutes) 1.150 0.940
S60 (𝑡 + 120 minutes) 1.391 0.932

Table 4: Performance statistics of the ANN model during evalua-
tion.

Evaluation prediction step MSE MSRE CE 𝑟
2

S15 5.737 0.0003 0.833 0.902
S30 9.359 0.0005 0.728 0.849
S60 11.656 0.0007 0.661 0.809

where 𝑤
𝑘+1

is the weight coefficient in the 𝑘 + 1th epoch and
Δ𝑤
𝑘
is the change determined by the training algorithm.
Training algorithms can be divided into three groups: (i)

first-order local algorithms (error backpropagation, gener-
alized delta rule), (ii) second-order local algorithms (New-
ton algorithm, quasi-Newton algorithm, and Levenberg-
Marquardt (LM) algorithm), and (iii) global algorithms
(genetic algorithm, simulated annealing, and evolutionary
programming) [9, 27].

The LM algorithm is the fastest and most appropriate for
training simpler structures [28] under the MLP architecture,
and it was specially developed for the training of ANNs.
Because of those characteristics, this algorithm is proposed
for the development of data-driven ANN models for small
catchments as shown in ANN implementation procedure
flowchart (Figure 3).

Using the second-order local algorithms, the change
measure Δ𝑤

𝑘
is obtained from the squared approximation

of the error function, which is represented by the Hessian
matrix. Because the Hessian matrix typically cannot be used
in ANN training and because it is not in compliance with
appropriate conditions and is thus unsolvable, algorithms
that avoid solving the Hessian matrix, such as the LM
algorithm, are used.

The LM algorithm [29], which is a special combination
of the Gauss-Newton and error backpropagation algorithms,
uses a conjugate gradientmethod by introducing the Jacobian
matrix instead of the Hessian matrix. The change measure
Δ𝑤
𝑘
can be defined as

Δ𝑤
𝑘
= − (J𝑇 ∗ J + 𝜇 ∗ I)

−1

× J𝑇 ∗ e, (3)

where J is the Jacobian matrix of the error vector 𝑒 with
respect to the weight coefficients in the 𝑘th epoch of the
calculation, J𝑇 is the transpose of the Jacobian matrix, and
𝜇 is a scalar representing the learning rate.

The Jacobian matrix of networks errors can be written as

J = 𝜕e
𝜕𝑤
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where J is the Jacobian matrix of the network errors,
e
1
, e
2
, . . . , e

𝑛
are the errors, and 𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
are the weight

coefficients.
At the end of every calculating epoch, the sum squared

error 𝐸(𝑒) is calculated as follows:

𝐸 (𝑒) =

𝑛

∑

𝑘=1

(𝑒
𝑘
)
2

=

𝑛

∑

𝑘=1

(𝑑
𝑘
− 𝑜
𝑘
)
2

, (5)

where 𝑒
𝑘
is the error in 𝑘th epoch of the calculation, 𝑑

𝑘
is the

target value, and 𝑜
𝑘
is the response model value in 𝑘th epoch

of the calculation.
Depending on the increase or decrease in the sum

squared error𝐸(𝑒), the learning rate scalar 𝜇 changes through
every epoch of the calculation by dividing or multiplying
by a constant factor (e.g., 𝛽 in the range [0, 1]) to control
the LM algorithm to be more similar to the Gauss-Newton
error backpropagation algorithm and also to increase the
training speed. If the sum of squared errors increases, the
learning rate scalar 𝜇will be multiplied by a constant amount
𝛽, and the LM algorithm will be more similar to the Gauss-
Newton algorithm; otherwise, it will be more similar to the
backpropagation algorithm.

After the architecture of the ANN and the training algo-
rithm are determined, the software should be chosen in order
to conduct ANN training process as shown in Figure 3.There
is a variety of prepared software programs available for ANN
modelling, such as Brainmaker Professional, NeuralWorks
Professional II/Plus, Explorer fromNeuralWare Inc.,WEKA,
MATLAB Neural Network Toolbox, and Statistica [8, 9].
For the purpose of this study, MATLAB Neural Network
Toolbox is proposed because it provides built-in training
process that stops when the ANN is adequately trained. ANN
model should be trained for every time prediction step and,
after training process, validated and evaluated as presented in
model development flowchart (Figure 1).

2.3. Validation and Evaluation. Assessment of the model
during the training period is considered themodel validation,
and it cannot be used as criteria with which to evaluate
the predictive abilities of the ANN model. Validation is
defined as an assessment of the errors between the ANN
model response and the target training data, and it can be
represented by the same measures as the evaluation, the
most common being the mean square error (MSE) and the
coefficient of determination (𝑟2), which are defined by (6) and
(9), respectively.

Validation boundary and scale criteria according to vali-
dationmeasures are presented in Table 1. If validation process
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Table 5: Performance statistics of the ANN model during evaluation: mean absolute error (MAE) for the data classes.

Target data versus output data [cm] S15 S30 S60
Maximum absolute error [cm] 98.24 111.34 117.37

Class Percentage [%] Water level class limits [cm] MAE
1 [100, 75⟩ [210.5, 174.65⟩ 82.54 100.47 101.32
2 [75, 50⟩ [174.65, 138.76⟩ 38.7 53.30 59.80
3 [50, 25⟩ [138.76, 102.88⟩ 13.55 24.94 34.39
4 [25, 0⟩ [102.88, 66.99⟩ 0.56 0.74 0.84
5 [0, −25⟩ [66.99, 65.61⟩ 0.29 0.44 0.71
6 [−25, −50⟩ [65.61, 64.23⟩ 0.23 0.67 1.35
7 [−50, −75⟩ [64.23, 62.85⟩ 0.23 0.41 0.44
8 [−75, −100] [62.85, 61.47] 0.21 0.28 0.45

has indicated that the model is “poor” or “very poor,” the
model should be improved. Figure 1 shows four possible steps
for the model improvement: (i) reduction of the prediction
time step, (ii) increase of the data monitoring collection
period, (iii) selection of the different ANN architecture
and/or training algorithm, or (iv) identification of the error
in modelling process. If model improvement did not result in
problem solving, then ANN is not appropriate for predictive
purposes of small catchments.

The evaluation of the model, as shown in Figure 1, is
considered to be an assessment of the predictive ability of
the time step of the ANN model. As mentioned before,
evaluation of ANN models and of predictive models in
general is problematic.There are a large number of evaluative
measures that are widely used, and they can be divided into
visual and quantitative measures. Visual evaluationmeasures
are considered to be graphical representations of the ANN
model response and target data in the form of the graph,
which provides insight into errors in the model output. The
most commonly used calculation evaluation measures are
the MSE, the mean square relative error (MSRE), the Nash-
Sutcliffe coefficient (CE), and coefficient of determination
(𝑟2) [8, 30]. The MSE and MSRE are measures that indicate
error in the units (or squared units) of themodel, and CE and
𝑟
2 describe the degree of collinearity between modelled and
measured data [29]. The described measures can be defined
by the following equations:

MSE = 1

𝑛

𝑛

∑

𝑘=1

(𝑑
𝑘
− 𝑜
𝑘
)
2

, (6)
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𝑘
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𝑘
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2

, (7)
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∑
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where 𝑛 is the number of data points in the input layer, 𝑑
𝑘

is the target value, 𝑜
𝑘
is the model response value in the 𝑘th

epoch of the calculation,𝑑 is themean value of the target data,
and 𝑜 is the mean value of the network response data.

These measures provide insight into the global model
errors, but it is impossible to determine the distribution of
the errors from those measures. Many studies have been
published on classification approaches to model evaluation,
such as seasonal weather data classification [31], classification
of the predictions according to the percentage of observed
data, or measurement of the mean absolute error (MAE) and
root mean squared error (RMSE) for all predicted peak flood
events in a data set [32]. Thus, for ANN model evaluation in
small catchments, the classification of the errors is proposed
in this paper. This evaluation consists of separating the data
into evaluation classes considering themean value of the data
and the percentage classes above or below the mean value
in the range of −100% below the mean value to 100% above
the mean value, as well as performance of the MAE of every
class. This evaluation measure ensures the visibility of error
clustering. The mean absolute error can be defined as

MAE = 1

𝑛

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑑
𝑘
− 𝑜
𝑘

󵄨
󵄨
󵄨
󵄨
, (10)

where𝑑
𝑘
is the target value and 𝑜

𝑘
is themodel response value

in the 𝑘th epoch of calculation.
Themodel quality boundary criteria of the validation and

evaluation measures for the MSE, MSRE, and MAE are not
strictly defined, but it is preferred that they be as small as
possible, with a value of 0 indicating a perfect fit. Quality
boundaries of the CE and 𝑟2 measures are shown in Table 1
[7, 8].

BecauseANNmodels operate as universal optimizers and
are able to replicate any input data to output data, evaluations
must be performed with data that are not used during the
training process. In this manner, generalization properties
can be evaluated. In other words, it is possible to determine
whether the ANN model is able to produce good responses
according to learned similar events from the training process.

3. Implementation of the Model
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3.1. Location of the Research Area and Geological and Hydro-
logical Characteristics. The Slani Potok catchment is a part of
the Dubračina River catchment area, located in the central
part of the Vinodol valley, as shown in Figure 5. The Vinodol
valley is a separated geographical entity of the easternKvarner
area in the Republic of Croatia, and it is a unique spatial unit
between the Križišće village to the northwest, the city of Novi
Vinodolski to southeast, and the Vinodol channel.

The Slani Potok catchment area can be considered an
example of combined erosion. Excessive surface erosion
occurs in an area that is 600m in length and 250m in
width. Side effects around the erosion centre include local
landslides, which result from weathering of the flysch rock
mass. This affected area is approximately 3 km2 large, and
the surrounding settlements of Belgrade, Baretići, Grižane,
and Kamenjak, as well as the surrounding roads, are at risk.
Because of mentioned hazard risk, this area was chosen as the
case study area under the bilateral Croatian-Japanese project
“Risk Identification and Land-Use Planning for Disaster
Mitigation of Landslides and Floods in Croatia” coordinated
by the Research Centre for Natural Hazards and Disaster
Recovery of the Niigata University in Japan. Within this
project’s timeframe (from 2009 to 2014) monitoring of the
meteorological and hydrological parameters was established.
The same case study area research continued, financed by the
University of Rijeka in the Republic of Croatia, as part of
the scientific project “Water ResourcesHydrology and Floods
and Mud Flow Risks Identification in the Karstic Area.”
Results of aforementioned research became the foundation
for the hydrological model development based on ANN
methodology.

The Slani Potok catchment has an area of approximately
2 km2, and its altitude extends from 50 to 700m a.s.l. The
average slope of the catchment area is 22%, and the slopes
range from 5% to 100%, as shown in Figure 6. Therefore,
this catchment area is characterized as being very steep. The
lower part of the catchment area (0.9 km2) is formed in flysch
sediments (mainly siltstone), and it contributes the majority
of the surface runoff. The upper part of the catchment area
is a karstic plateau from which the runoff is insignificant. A
schematized geologic map of the area is shown in Figure 7. In
the karstic and flysch contact zone, several overflow springs
are placed, contributing the majority of the water balance in
the dry season.

As noted in Figure 7, the Slani Potok catchment area is
known as an example where erosion is combined with local
landslides. Together with water activity, these landslides have
resulted in an increasing occurrence of flash floods, mud
flows, and debris flows in the last 100 years.

The main problem with this surface erosion area is the
impossibility of reconstruction or mitigation of erosion pro-
cesses or human activity. Therefore, it is essential to establish
EWSs to notify residents about the possibility of occurrence
of a hazard in a timely manner.The study catchment is small,
with a large coefficient of runoff, distinct steep slopes, and
a short response time of the rain event, which means that
the time period from the beginning of the rain event until
the maximum hydrograph peak can be measured in minutes.

Therefore, it is essential to develop amodel with the capability
for fast response, such as a data-driven ANNmodel.

3.2. Data Collection. Continuous data monitoring points
of the hydrological and meteorological parameters have
been established since 2012. Water levels in the Slani Potok
creek waterbed are measured by a Mini Diver pressure
probe (manufactured by SchlumbergerWater Services) at the
mouth of the Slani Potok creek as it enters the Dubračina
River. Meteorological parameters were measured using a
Vantage Pro 2meteorological station (manufactured byDavis
InstrumentsCorporation) near Belgradewith ameasurement
frequency interval of two minutes. The position of the
installed equipment is presented in Figure 8. After three years
of data collection, rain events from 2013 were selected as the
representative data set.

3.3. Data Processing andModel Implementation. Because this
area is known as a hazard area, the impact of the rainfall
on the erosion base was recognized many years ago. An
immediate hazard is possible when the rainfall starts to erode
the surface, causing local landslides, which bring mud and
debris mixed with water downstream.

Selection of the input layer data and output layer data was
conducted to develop the ANNmodel. In this case study, the
following meteorological parameters were selected as input
data: (i) rain, (ii) rain rate, (iii) air temperature, (iv) humidity,
(v) air pressure, and (vi) solar radiation. River water levels
were used as output data (target data), as shown in Figure 9.
Those meteorological parameters were selected because they
directly or indirectly influence the prediction of the rain event
or because they define the hydrometeorological conditions of
the catchment.

Using the software MATLAB 2012a (MathWorks, Natick,
Massachusetts, US), selected data were processed to rec-
ognize errors and then locally smoothed by using locally
weighted polynomial regression (LOESS method) [34] to
eliminate data noise, and then the time between input and
output layers was synchronized. After data processing, data
were divided into training, validation, and evaluation data in
a proportion of 70% for training, 15% for validation, and 15%
for evaluation. Statistics of the data used for the model are
shown in Table 2.

The training data included 92,948 samples, with over
ten large rain events that caused a maximum water level of
156.7 cm. The validation data included 19,912 samples with
six rain events, with a maximum water level of 104.0 cm.
The evaluation data set included 19,912 samples with five rain
events, one of which resulted in a water level of 210.54 cm
and induced debris flow and infrastructure damage; thus, this
data set is excellent for evaluating the predictive ability of the
model.

As described in the methodology of this paper, an MLP
mesostructure is used to develop the data-drivenANNmodel
for small catchments, with sigmoid and linear activation
functions trained by the LM algorithm. The model is con-
ducted with the help of the software MATLAB 2012a Neural
Network Toolbox (MathWorks, Natick, Massachusetts, US).
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To test the predictive capability of the model, ten steps
of delay were used in the input layer. In other words, meteo-
rological parameters from the last ten measured parameters
(twenty minutes) were used in every step of the calculation.
In the output layer, future steps for prediction at the fifteenth
step (S15; 𝑡 + 30minutes), thirtieth step (S30; 𝑡 + 60minutes),
and sixtieth step (S60; 𝑡 + 120 minutes) were selected. The
schematized structure of the prediction model is shown in
Figure 10.

Furthermore, 10 neurons are chosen to provide calcula-
tion in the hidden layer.

Validation of the developed model, after the training
process and according to the proposedmeasures, is presented
visually by comparing the water level targets with the ANN
model response in Figure 11, as well as by calculations
according to (6) and (9) for all prediction steps, as shown in
Table 3.

The validation results have shown that each of three
prediction steps can be used, but their prediction qualitymust
be evaluated.The validationmeasures presented inTable 3 for
the MSE are small in all prediction steps, which means that
the models do not have many global errors. 𝑟2 indicates that
the models can be categorized as “very good” according to
the model quality criteria in Table 1. Additionally, by visual
comparison of the target data with the response of the ANN
model in Figure 11, a goodmatch with the data is visible, with
some deviations in the maximum water levels.

3.4. Water Level Prediction Capability: Model Results and
Discussion. The predictive ability of the model is tested by
visual and quantitative evaluation measures for prediction
steps S15, S30, and S60. A graphical presentation of the water
level target data and the ANN model response is shown in
Figure 12. The performance of the model is quantitatively
evaluated according to (6), (7), (8), and (9), as shown in
Table 4.

Because the model was evaluated using a data set that
consists of data that were not used in the training process
and the data set included one large rain event that caused a
hazard, it is visibly apparent in Figure 12 that errors in the
prediction of the maximum water levels increase at every
prediction step. Additionally, prediction of the other water
levels did not result in large errors at all of the prediction
steps. Although the visual evaluation indicates errors in the
high water level prediction, the models still have a good time
response to increases in water level.

The results of the quantitative evaluation measures (see
Table 4) indicate an increase in the errors at every step of
the prediction, as expected. The MSE and MSRE measures
indicate small global errors in the models. The evaluation
measure CE, according to the model quality criteria bound-
aries presented in Table 1, categorized prediction model S15
as “very good” and models S30 and S60 as “good,” whereas
evaluation measure 𝑟2 categorized all prediction steps in the
models as “very good.” The calculation evaluation measures
show that all prediction models are usable for the prediction
and do not reproduce large global model errors. Visual
evaluation errors are recognized in predictions of high water

levels. Therefore, to evaluate the predictive models using
target water level data, data must be categorized into classes
to recognize error clustering.

Error clustering of the prediction models was evaluated
by categorizing the target data into classes and solving (10)
on every class.The data classes are presented in Figure 13, and
the results of the class evaluation are presented in Table 5.

The error clustering evaluation performed by the MAE
shows that, for all prediction steps, the majority of the errors
are placed in classes 1, 2, and 3. In other words, the values
of evaluation measure MAE are larger if the predicted water
level is in the range above 25% of the mean water level. In the
data range between −100% and 25% of the data set, the MAE
value is small aside from model S60, which showed large
errors for all visual and quantitative evaluation measures.
Therefore, the S15 and S30 models can be used for prediction
purposes.

The conducted evaluation indicates that, for all prediction
steps, errors inmaximumwater levels occurred and increased
at each time prediction step. The majority of errors are
clustered near maximum water level predictions, which can
be explained by the use of a data set, for the training process,
that did not have a sufficient variety in water levels to predict
the maximumwater level, which was not used in the training
process.

For the development of the EWS, the main objective is to
obtain a model that is able to predict the time when the water
level will start to increase according tometeorological param-
eters; this objective has been fulfilled. After the evaluation
data set is implemented in the training process, the errors in
maximumwater level are expected to decrease, and, thus, the
models will have better water level prediction performance.

According to the visual and calculated evaluation mea-
sures, it is difficult to determine which prediction step is
optimal for use because all of themeasures (apart fromMAE)
categorizedmodel S15 as “very good” andmodels S30 and S60
as “good.” As noted above, there is a significant problem in
evaluation of the models. In this case, it is the best to exclude
model S60 because visual evaluation and the MAE indicated
large clustering errors.

4. Conclusions

In this paper, the methodology for a data-driven ANN
model for the prediction of river water levels conducted from
meteorological parameters as a basis for EWS development in
a small catchment is proposed.Themodel is implemented for
the case study of the Slani Potok catchment in the Republic
of Croatia, and its predictive ability is evaluated. An MLP
mesostructure, with sigmoid and linear activation functions
trained by the LM algorithm, is used in the ANN model
development. The developed model was trained, validated,
and evaluated on data set with 132,772 monitored meteoro-
logical and hydrological parameter samples that were divided
in the proportions of 70% for training, 15% for validation,
and 15% for verification. The predictive ability of the model
was tested for time steps of thirtyminutes (S15), sixtyminutes
(S30), and one hundred and twenty minutes (S60).
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The validation of the models resulted in their classifica-
tion as “very good” (with small global error) for all prediction
steps.

Common quantitative evaluationmeasures (MSE,MSRE,
CE, and 𝑟

2) of the developed models showed that the
predictive abilities of the models are classified as “very good”
for model S15 and as “good” for models S30 and S60. The
evaluation measure 𝑟2 categorized all model prediction steps
as “very good.” Visual evaluation indicated errors in the
prediction of high water levels. Thus, new measures for
evaluating prediction error clustering in the small catchment
were proposed. The error clustering evaluation was based on
the MAE for the target data set and divided into percentage
classes according to the mean data value. This showed
substantial clustering of the errors in the prediction of the
maximum water levels, which are 25% to 100% larger than
the mean value of the water level in the Slani Potok river bed
for the S30 and S60 models. Those models were developed
based on the observed data sets, implying that a data set with
larger variety in the training process will yield an improved
prediction performance.

Overall, the evaluation also showed that all models accu-
rately predict the time when the water level starts increasing.
Additionally, the evaluation showed that themodel’s response
is more important for the development of the EWS than
precise water level prediction when considering the short
time of the response of water level to rainfall in the small
catchments.

The conducted evaluation demonstrates that the models
S15 and S30 can be used for the prediction. For EWS
development, the prediction time for a small catchment does
not have to be long, so a prediction time based on amaximum
time step of sixtyminutes (S30) can be considered sufficiently
long to announce a hazard.

The proposed methodology for the development, valida-
tion, and evaluation of predictive models for a small catch-
ment can serve as the basis for the implementation of the EWS
if continuous meteorological and hydrological monitoring,
measured on a short time frequency, is established.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research for this paper was conducted within the bilateral
international Croatian-Japanese project “Risk Identification
and Land-Use Planning for Disaster Mitigation of Landslides
and Floods in Croatia,” as well as a part of the scientific
project “Water Resources Hydrology and Floods and Mud
Flow Risks Identification in the Karstic Area” financed by the
University of Rijeka.

References

[1] K. Smith, Environmental Hazards: Assessing Risk and Reducing
Disaster, Routledge, New York, NY, USA, 6th edition, 2013.

[2] D. Norbiato, M. Borga, S. Degli Esposti, E. Gaume, and S.
Anquetin, “Flash flood warning based on rainfall thresholds
and soil moisture conditions: an assessment for gauged and
ungauged basins,” Journal of Hydrology, vol. 362, no. 3-4, pp.
274–290, 2008.

[3] K. Yano and A. Daido, “Fundamental study on mud-flow,”
Bulletin of the Disaster Prevention Research Institute, vol. 14, no.
2, pp. 69–83, 1965.

[4] T. Takahashi, Debris Flow: Mechanics, Prediction and Counter-
measures, Taylor & Francis, London, UK, 2014.

[5] V. V. Krzhizhanovskaya, G. S. Shirshov, N. B. Melnikova et
al., “Flood early warning system: design, implementation and
computational modules,” Procedia Computer Science, vol. 4, pp.
106–115, 2011.

[6] C. W. Dawson and R. L. Wilby, “Hydrological modelling using
artificial neural networks,” Progress in Physical Geography, vol.
25, no. 1, pp. 80–108, 2001.

[7] D. R. Legates and G. J. McCabe Jr., “Evaluating the use of
‘goodness-of-fit’ measures in hydrologic and hydroclimatic
model validation,” Water Resources Research, vol. 35, no. 1, pp.
233–241, 1999.

[8] R. J. Abrahart, P. E. Kneale, and L. M. See, Neural Networks for
Hydrological Modelling, Taylor & Francis, London, UK, 2004.

[9] S. O. Haykin, Neural Networks and Learning Machines, Pearson
Education, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[10] M. Campolo, A. Soldati, and P. Andreussi, “Artificial neural
network approach to flood forecasting in the river Arno,”
Hydrological Sciences Journal, vol. 48, no. 3, pp. 381–398, 2003.

[11] R. J. Abrahart and L.M. See, “Neural networkmodelling of non-
linear hydrological relationships,” Hydrology and Earth System
Sciences, vol. 11, no. 5, pp. 1563–1579, 2007.

[12] N.DoHoai, K.Udo, andA.Mano, “Downscaling global weather
forecast outputs using ANN for flood prediction,” Journal of
AppliedMathematics, vol. 2011, Article ID 246286, 14 pages, 2011.

[13] M. R. Mustafa, R. B. Rezaur, H. Rahardjo, M. H. Isa, and A.
Arif, “Artificial neural network modeling for spatial and tem-
poral variations of pore-water pressure responses to rainfall,”
Advances in Meteorology, vol. 2015, Article ID 273730, 12 pages,
2015.

[14] C.-C. Young, W.-C. Liu, andW.-L. Hsieh, “Predicting the water
level fluctuation in an Alpine lake using physically based,
artificial neural network, and time series forecasting models,”
Mathematical Problems in Engineering, vol. 2015, Article ID
708204, 11 pages, 2015.

[15] I. N. Daliakopoulos, P. Coulibaly, and I. K. Tsanis, “Groundwa-
ter level forecasting using artificial neural networks,” Journal of
Hydrology, vol. 309, no. 1–4, pp. 229–240, 2005.

[16] H. R. Maier and G. C. Dandy, “Neural networks for the
prediction and forecasting of water resources variables: a review
of modelling issues and applications,” Environmental Modelling
and Software, vol. 15, no. 1, pp. 101–124, 2000.

[17] K. P. Sudheer, P. C. Nayak, and K. S. Ramasastri, “Improving
peak flow estimates in artificial neural network river flow
models,”Hydrological Processes, vol. 17, no. 3, pp. 677–686, 2003.

[18] S. Trajkovic, B. Todorović, and M. Stanković, “Forecasting
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The Metropolitan Area of São Paulo (MASP) is one of the most populated regions of the planet with one of the largest impervious
regions as well. This research work aims to characterize MASP heat island (HI) effect and its interaction with the local sea breeze
(SB) inflow in rainfall amounts and deep convection.The combined SB-HI produces direct circulation over theMASP and produces
severe weather and socioeconomic impacts. All SB-HI episodes between 2005 and 2008 are identified and analyzedwith surface and
upper air measurements, weather radar, and satellite data. The current work indicates that intense SB-HI episodes are related to air
and dew point temperatures above 30∘C and 20∘C, respectively, right after the passage of the SB front over MASP. Results indicate
that the precipitation related to SB-HI episodes is up to 600mm or about four times higher than that in rural or less urbanized
areas in its surroundings. Measurements indicate that 74% of SB-HI episodes are related to NW winds in earlier afternoon hours.
Moving cold fronts in southern Brazil tend to intensify the SB-HI circulation in MASP. A conceptual model of these patterns is
presented in this paper.

1. Introduction

The Metropolitan Area of São Paulo has 39 municipal-
ities with São Paulo city being the largest one with an
area of 8051 km2 with a 20 million population according
to Brazilian Geography Institute, 2010. Frequently, severe
weather systems cause major socioeconomic impacts in the
São Paulo megacity such as the ones related to cold fronts,
sea breeze circulation, mesoscale convective systems, and
isolated convection [1–3] with heavy rainfall, wind gusts,
hailstones, and lightning. SB circulation reaches MASP more
than half of the days throughout the year. Oliveira and Dias
[4] analyzed several instances of sea breeze (SB) and indicated
wind veering from NE to SE, backing from NW to SE,
and intensification of the SE wind. Pereira Filho et al. [5]
studied the SB and HI effects on rainfall accumulation in
the Metropolitan Area of São Paulo (MASP) and found that
weak synoptic conditions, air temperature, and dew point
above 30∘C, respectively, in the afternoon hours tended to
result in heavy precipitation. Oliveira and Dias [4] reported

many instances of summer convection in theMASP preceded
by changes in wind direction from NW to SE associated
with temperature drop and dew point temperature increase.
The SB intensifies as it moves across Serra do Mar ridge
and injects Atlantic Ocean moisture in the MASP. The SB
intensity and inland displacement are modulated by the HI
effect in the MASP [6, 7], and the distance propagated over
landmass [8], topography, and atmospheric stability [9]. The
differential heating in the Serra doMar ridge induces vertical
motion along its steep scarp (Figure 1) and intensifies the SB
circulation along the mountain range [10, 11]. Pereira Filho
et al. [1] analyzed 18 episodes of floods in MASP associated
with SB (Figure 2). Vertical mixing of relative warmer and
drier urban boundary layer air with relatively cooler and
moister SB air at its frontal region turns the air unstable
and updrafts develop to deep convection driven by latent
heat release. The effect of large urban areas on rainfall is
an issue of several research works. Shepherd et al. [12] used
the Tropical RainfallMeasurementMission (TRMM) satellite
to confirm the increase of rainfall downwind urban areas
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Figure 1: Topography of Eastern São Paulo State. Contours, geo-
graphic coordinates, and political boundaries are indicated. Color
bar indicates altitudes (m).
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Figure 2: Temporal evolution of air temperature (red), dew point
(pink), atmospheric pressure (orange), rainfall accumulated (blue),
wind direction (yellow), and wind intensity (green) of 18 floods
events. Font: Pereira Filho et al. [1].

of USA. Accumulated and rainfall rate increases with the
increase of the city area. Kusaka et al. [13] showed that
urbanization caused an increase in precipitation in Tokyo
metropolitan area and less precipitation in inland areas.

The SB circulation in Eastern São Paulo State is so
regular that it can be clearly seen in the numerical modeling
climatology of hourly winds between 2005 and 2007 as an
inertial circulation (Figure 3). Surface winds back NW to
SE between 1500UTC and 1600UTC over MASP similar to
those observed by Oliveira and Dias [4].

This work analyzes all SB events between 2005 and 2008
associated with thunderstorms in MASP as well as synoptic
conditions that enhance local circulation and intensity of
thunderstorms. SB and synoptic scale timing for maximizing

deep convection efficiency is also investigated in the present
work. Many studies have characterized the effect of urban
areas in precipitation and its spatial distribution but less
emphasize on temporal and spatial phase looking at different
systems scales. The results of this research can be a useful
nowcasting rule for MASP and other similar metropolitan
areas of the planet.

Urban Heat Island.The temperature gradient between urban
areas and their surrounding areas is called urban heat island
(UHI) [14]. The average annual temperature in the inner
city is higher than in the surroundings. In dry winter days,
the temperature gradient can reach 10∘C or more in the
late afternoon and early evening [15, 16]. The temperature
difference between urban and rural New York City is 5∘C
during nighttime in summer [17]. The UHI is characterized
by anthropic sources of heat within urban areas that absorbs
short wave irradiation and converts it into sensible heat
[18]. Under clear sky conditions and during the night, the
temperature is more dependent on microscale urban features
[19].

The UHI is a microclimate change of anthropic nature,
changing rural surfaces to urban ones altering energy fluxes
of latent heat (less) and sensible heat (more). The irradiance
is used for evapotranspiration in a rural area, but, in an urban
area, it is stored up and increases the sensible heat flux to the
atmospheric boundary layer [14, 20]. A thermal low forms
and induces convergence and vertical mixing of relatively
warmer and drier air near surface with cooler and drier air
aloft, so the boundary layer becomes deeper and even drier
as surface air temperature increases and dew point decreases
until the inflow of SB front. So, UHI environments are in
general warmer and drier in relation to rural ones [21].

TheMASP topography is complex and varies from 650m
to 1200m. It is 50 km from the coast of São Paulo State.
The SB circulation in MASP is intensified by the Serra do
Mar scarps resulting in higher precipitation over it. Since
MASP is at tropical latitudes, differential heating tends to
induce more intense and persistent direct circulations [22].
TheMASPUHI becomes evenmore intense under weak syn-
optic conditions [23] and amplifies rural-urban temperature
gradients resulting in stronger anddeeper thermal circulation
between morning and midafternoon when the advection of
moisture by the SB increases moist static instability and deep
convection develops with subsequent heavy rainfall [1, 2].
Moreover, Han et al. [24] showed that higher aerosol con-
centration in urban areas results in increased concentration
of smaller cloud drops and higher condensational heating
that yields stronger updrafts, larger liquid water content,
enhanced higher level riming andmelting, and, consequently,
enhancement of precipitation downwind of the urban area.

Freitas et al. [25] suggested that UHI accelerates the SB
front thus yielding longer and intense updrafts. Farias et al.
[26] observed higher frequency of negative cloud-to-ground
(CG) lightning flashes and lower for positive CG ones over
MASP. Their results are similar to other megacities where air
pollution and UHI are suggested as main factors [26].
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Figure 3: Hourly mean wind (m s−1) climatology between January 2007 and December 2009 obtained with ARPS simulations. Contours,
geographic coordinates, and political boundaries are indicated.

Storms. Storms develop in response to the convective avail-
able potential energy (CAPE) in the atmosphere. The storms
have been linked to radiative, thermodynamic, and dynamic
processes that regularly produce atmospheric instability.
These physical processes trigger new dynamic and thermo-
dynamic conditions in a well-defined cycle of events [27].
Convection ceases whenCAPE is dissipated orwhen heat and
moist fluxes are interrupted. Convective cells are produced
at the local scale under such thermodynamics conditions
and influenced by synoptic scale dynamics [28]. Convective
forecasting depends on complex thermodynamic, dynamic,
and microphysical processes at cloud scale. Thunderstorms
develop in a matter of minutes where near-the-surface warm

and most air is underlying cold and dry air aloft in asso-
ciation with a lifting mechanism [29]. Atmospheric model
performance is limited by unknown triggering mechanisms
of convection [30].

Figure 4 shows convective events associated with SB.
Vicente et al. [31] indicate that 36% of storms in East São
Paulo State between 1990 and 1995 occurred in the afternoon
hours. In general, model circulation and precipitation have
high and low performance, respectively [32]. Thunderstorms
simulated with the Advanced Regional Prediction System
(ARPS) [33–36] in MASP indicate that even little changes in
boundary and initial conditions can drastically displace the
convective cells.However, theARPS system is able to simulate
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Figure 4: GOES-12 enhanced IR images of cloudiness associated with sea breeze related deep convection events. Contours, geographic
coordinates, and political boundaries are indicated. Colors indicated the brightness temperatures. Source: INPE.

the strength of convective cells as well as the interaction
between the SB and gust fronts [37, 38] where horizontal
vorticity resulting from the SB front and thunderstorm gust
fronts result in stronger upward motion [39].

2. Materials and Methods

A total of 125 SB events related to heavy rainfall were
selected in three and half years of observations. GOES-8 and
GOES-12 Satellites infrared imageswith 4-km resolution have
been used in association with weather station measurements,
upper air soundings, the São Paulo weather radar (SPWR),
rainfall rate estimates at 3-km altitude, polarimetric variables
of the mobile X-POL weather [40], the Global Forecast

System (GFS) of National Centers for Environmental Pre-
diction (NCEP), and ARPS. These measurements are briefly
described below.

2.1. The São Paulo Weather Radar. The São Paulo S-band
weather radar is located at Ponte Nova City near a Serra
do Mar ridge at 916m altitude. It has been operational
since 1988. Volume scans are obtained every 5 minutes to
estimate rainfall rates [41] at a constant altitude with 2-km
× 2-km horizontal resolution. Figure 5 shows an instance of
thunderstorms caused by the SB within the surveillance area
of the SPWR. Episodes with rainfall rates above 30mmh−1
that lasted for more than 10 minutes related to SB were
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Figure 5: SPRW rainfall rate CAPPI showing thunderstorms at
1746UTC on February 18, 2007. Color bar indicates rainfall rates
(mmhr−1).

Figure 6: GOES-12 IR image over Eastern São Paulo State at
1800UTC on January 11, 2010.

selected. Figure 6 shows the respective GOES-12 IR image of
the SB episode.

2.2. Satellite GOES-12. GOES-12 IR images provided by
CPTEC-INPE were analyzed at 30-minute time intervals.
Cloud brightness temperatures below −30∘C were enhanced.
Figure 4 shows the inset of storms developed by the SB and
the UHI circulation.

2.3. SurfaceMeasurement. Temperature (∘C), relative humid-
ity (%), air pressure (hPa), wind speed (m s−1) and direction
(∘), precipitation (mm), and cloud cover fraction are regularly
measured at Congonhas and Campo de Marte Airports and

by the IAG-USP weather station. The datasets were used to
select SB episodes between January 2005 and April 2008,
using the identification method developed by Oliveira and
Dias [4]. These events were identified by changes in wind
direction and intensity, air temperature decrease, and dew
point temperature increase [4] for days with convective
activity in the MASP. Figure 5 shows the estimated rainfall
rate field by the SPWR at 1746UTC February 18, 2007,
associated with NW winds that backed to SE after 1500UTC
when the SB front moved into MASP (not shown). Constant
SSE winds after the SB front passage were used to select the
episodes. Satellite images were also used to verify cloudiness
and its depth along the coast of São Paulo State.

2.4. MXPOL Weather Radar. The mobile weather radar X-
band Doppler termed MXPOL is a multifunctional system
that provides polarimetric data with high spatial resolution
[40]. It measures raw and adjusted reflectivity (𝑍), radial
velocity (𝑉

𝑟
), spectral width (𝑊), differential reflectivity

(𝑍DR), propagation differential phase (𝜑DP), specific differ-
ential phase (𝐾DP), and correlation coefficient lag zero of the
signal co-pol and cross-pol H V (𝜌

0HV). Its software produces
constant elevation (PPI) and altitude (CAPPI) maps, vertical
cross-sections (RH), and echo tops (ECHOTOP) of the
above variables as well as fields of rainfall accumulation,
vertically integrated liquid water (VIL), and others. MXPOL
was positioned West of the MASP in Barueri City (Figure 7)
at 23∘ 29󸀠 59.6󸀠󸀠S and 46∘ 54󸀠 18.6󸀠󸀠W [40]. PPI products
at elevations 0.6∘ and 1.2∘ were used to identify moving
boundaries detected by targets such as shaft, insects, and
small cumulus droplets forming in the SB front. Figure 7
shows an episode of SB in late afternoon on January 11, 2010,
that produced deep thunderstorms with reflectivity above 55
dBZ (hail).

2.5. Soundings. Radiosounding measurements made at
Campo de Marte Airport at 0000UTC and 1200UTC were
used. The variables are air temperature (∘C), dew point (∘C),
wind speed (m s−1) and direction (∘), air pressure (hPa),
geopotential height (m), water vapour mixing ratio (g kg−1),
potential temperature (K), virtual potential temperature
(K) and equivalent potential temperature (K), convective
available potential energy (CAPE) (J kg−1), convective
inhibition (CINI) (J kg−1), and precipitable water (mm).
The CAPE (1) and IL index (2) obtained with the soundings
were compared to the ones simulated with ARPS system
(Section 2.6):

CAPE = 𝑔∫
NE

NCL
(

𝜃
𝑒𝑝(NCL) − 𝜃𝑒𝑠𝑎

𝜃
𝑒𝑠𝑎

)𝑑𝑍, (1)

where NCL is lifting condensation level (m); NE is equilib-
rium level (m); 𝜃

𝑒𝑝
is equivalent potential temperature of an

air parcel (K); and 𝜃
𝑒𝑠𝑎

is saturated equivalent environment
potential temperature (K);

IL = 𝑇
500
− 𝑇
󸀠

500

, (2)
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Figure 7: MXPOL PPI of reflectivities (dBZ) at 1800UTC (a) and 2030UTC (b) on January 11, 2010. Colors indicate reflectivities (dBZ).
Contours, geographic boundaries, radial and azimuthal distances, and political boundaries are indicated.

where 𝑇
500

is air temperature (∘C) at 500 hPa and 𝑇󸀠
500

is air
temperature (∘C) by lifting an air parcel with themeanmixing
ratio from 500 hPa.

2.6. The ARPS System. The ARPS system was described
by Xue et al. [35, 42]. It runs twice daily since 2005 at
the computing facility of Laboratório de Hidrometeorologia
(LABHIDRO) at IAG-USP. The domain has two nested grids
at 12 km and 2 km resolution. The latter is centered in the
MASP region but the former is used in the present work.The
boundary and initial conditions were provided by GFSmodel
outputs in the domain shown in Figure 10.

2.7. Global Forecast System (GFS). GFS is a spectral weather
forecast model with 64 vertical levels running four times a
day by the National Centers for Environmental Prediction
(NCEP). It covers the whole globe at a 28-km horizon-
tal resolution. GFS results at 1∘ resolution were input as
boundary and initial conditions to ARPS runs at 12-km
spatial resolution. The GFS predicts weather up to 16 days
in advance. Its complete documentation can be found at
http://www.emc.ncep.noaa.gov/GFS.

3. Results

All SB and UHI heavy rainfall episodes measured with the
SPWR were analyzed between 2005 and 2008.The respective
synoptic features were obtained with the GFS and the local
circulation and instability indexes with the ARPS simulations
at 12-km grid resolution.

3.1. Characteristics of SB Episodes. 125 SB episodes were
selected with deep thunderstorms in MASP. It was obtained
with weather stations that episodes of surface wind veering

from NW to SE made up 74% of all of them, 11% from NE
to SE, and 15% due to intensification of SE winds during the
day. The frequency of storms due to NW winds days agrees
with that obtained by Rodriguez et al. [43]. The average dew
point temperatures before and after the SB front inflow at
IAG’s weather station were 17.9∘C and 20.7∘C, respectively.
Similarly, average air temperatures before and after the SB
front inflow were 28.6∘C and 24.9∘C, respectively. At Campo
de Marte Airport average air temperatures were 29.7∘C and
25.8∘C. Noteworthily, the estimates were obtained with data
one hour before and one hour after the SB front passage at
both weather station locations.

The average SB front speed between bothweather stations
was 9m s−1. There have been just four episodes where the
SB front did not reach Campo de Marte Airport. Winds
were from N to W between 2 and 3m s−1. The maximum air
temperature was less than 27∘C and temperature gradients
between MASP and Serra do Mar scarp seemed to be
considerably lower, consequently the SB dissipated before
moving across MASP.

Episodes with dew point temperature less than 15∘C
before the SB front incoming yielded weak ordinary convec-
tive cells and friction quickly dissipates the SB front.However,
higher dew point temperatures yielded frequent deeper and
stronger convective cells. Downdrafts and gusts near the rear
flank induced its faster displacement by cooling downdrafts
resulting from higher temperature gradients near the surface
about the SB front. Under clear air condition and low dew
point, the UHI intensifies [19] and so to produce convective
cells over MASP the SB circulation needs to be deeper and
stronger.

Most episodes of heavy precipitation associated with
SB occur between October and April. Table 1 shows our
results about the mean time of SB front passage at IAG’s
weather station estimated with Oliveira and Dias [4] method.
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Table 1: Mean time of SB incoming in each weather station. LT
indicates local time.

Year
Campo de

Marte airport
(SBMT)

Congonhas
airport
(SBSP)

IAG-USP
(Cientec)

2005 1936 UTC
(17:36 LT)

1827 UTC
(16:27 LT)

1817 UTC
(16:17 LT)

2006 1912 UTC
(17:12 LT)

1815 UTC
(16:15 LT)

1809 UTC
(16:09 LT)

2007 1918 UTC
(17:18 LT)

1818 UTC
(16:18 LT)

1814 UTC
(16:17 LT)

The average SB displacement time between IAG and Campo
de Marte Airport was 1 hour. In general, heavy precipitation
cells over MASP have been triggered at 1800UTC. Note-
worthily, earlier or later times episodes were weaker, probably
due to near surface colder air temperatures and little or no
precipitation occurs [1].

The time of the SB front inset allows the nowcasting of
heavy rain. The SB front can be monitored by reflectivity
MXPOLmeasurements on clear air mode (Figure 7) together
with air and dew point temperatures at the weather stations
providing a good tool to predict storms over MASP.

3.2. Rainfall Analysis. Figure 8 shows the spatial distribution
of precipitation accumulation within the SPWR surveillance
area for all SB episodes. The maximum accumulation was
600mm downstream from the maximum urbanization in
MASP. It agrees with previous studies [12, 24] that indicate
downstream sensible heat advection associated with theUHI.
Similar rainfall distribution was obtained for all episodes in
a given year between 2005 and 2008. A secondary maximum
has been observed in Vale do Paraı́ba (West of MASP) due to
valley-mountain differential heating [44].

Figure 9 shows the spatial distribution of the normal-
ized difference vegetation index (NDVI). Lower NDVIs are
associated with urban areas [45] and are close to maximum
precipitation region over MASP. The current study indicated
that 74% of all SB episodes were related to NW winds
early afternoon and the maximum rainfall accumulation was
downwind of urbanization with lower NDVIs or SE of MASP
due to prevailing winds from NW. Baik and Chun [46] and
Shepherd et al. [12] found similar results about the advection
of HI in other cities. Other rainfall maxima in Figure 8 are
related to topography effects.

3.3. Synoptic Patterns and Instability. Hourly mean fields
of wind, temperature, and relative humidity at 1000 hPa,
850 hPa, 500 hPa, and 200 hPa pressure levels have been
obtained from ARPS runs at 12 km resolution for the 125
SB episodes. Figure 10 shows the 1000-hPa wind field. The
results of this research show that ARPS simulation of the time
in which the SB has reached IAG’s weather station perfectly
matches observations (1800UTC). The wind field direction
is from N to NE in early morning and from N to NW in
early afternoon and then shifts to SE after 1800UTC. Figure 11
shows the 1000-hPamean divergence field withmain positive

and negative lines of divergence along the coast of São
Paulo associated with updrafts (sea breeze) and downdrafts
(land breeze), respectively. Figure 14 shows our estimated
conceptual model for synoptic conditions for a typical SB
episode overMASP. In general, a cold front ismoving through
over South Brazil, which tends to intensify NW circulation
and convergence against the SB front midafternoon.

Vale do Ribeira region is to the SW of MASP about
50-km from the Coastline forming a valley with warmer
temperature that induces upward motion and the SB front
push earlier than in MASP region. Indeed, we noted that
CAPE is generally higher in Vale do Ribeira that accelerates
SB front (Figure 12). CAPE values simulated with the ARPS
model vary between 1750 J kg−1 and 2000 J kg−1 over MASP.
Results indicate that all SB episodes trigger thunderstorms
only under moist unstable environments over MASP. In
several SB episodes high CAPE with no CINI inhibit vig-
orous thunderstorms since CAPE is reduced by generalized
convection. Emanuel [47] suggested that under CINI only
some convective cells are formed and so updrafts are stronger
and induce stronger downdrafts in the nearby environment
of the thunderstorms. The mean CINI is −40 J kg−1 in MASP
so that it hinders convection and CAPE dissipation [47].
The local circulation induced by the UHI yields updrafts
over MASP added to the one by the SB front circulation.
Figure 15 shows a conceptual model of such circulation with
a 2-km deep SB circulation. Since CAPE is only one index
of thunderstorm potential, the lifting index, IL [48], was
also used. The ARPS mean IL varied between −1.5∘C to
−2.0∘C and −3.5∘C to −4.0∘C at 1200UTC and 1600UTC,
respectively. Higher IL has been observed in West and Vale
do Ribeira in São Paulo and Mato Grosso do Sul State. They
well agree with the warming observed in these regions. The
mean CAPE obtained from soundings at Campo de Marte
Airport at 1200UTC was 616 J kg−1 against ARPS 559 J kg−1
and IL −2.2∘C (observed) and −1.5∘C (ARPS), respectively. In
general, ARPS is in good agreementwith observation, though
it tends to underestimate IL and properly estimates CAPE.

Synoptic conditions associated with SB episodes show the
Bolivian High circulation over Brazil and the South Atlantic
subtropical high at low levels with Northerly winds over São
Paulo State in the morning.The SB circulation stretches itself
throughout the Coastline of Brazil in the afternoon with
an average depth of 2-km. In general, a moving cold front
in Southern South America is also present. The circulation
patterns at 500 hPa and 200 hPa levels are shown in Figure 13.
Anticyclonic circulation is over Mato Grosso do Sul and
zonal winds are over the São Paulo State (500 hPa) and the
circulation is due to Bolivia’s high at 200 hPa.

4. Conclusions

The MASP is prone to severe weather with major impacts
on society given its steady urban growth in the past decades
with microclimate changes induced by anthropic sources
that produced the urban heat island effect. It tends to
increase precipitation over MASP especially in summer. The
warmer urban environment intensifies thunderstorms and
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Figure 8: SPWR estimated rainfall accumulation (mm) within its surveillance area in Eastern São Paulo State of all sea breeze events in 2005
(a) and 2007 (b). Contours, geographic boundaries, and political boundaries are indicated.

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
3
5

0.
4

0.
4
5

0.
5

0.
5
5

0.
6

0.
6
5

0.
7

0.
7
5

0.
8

0.
9

22.2∘S

22.5∘S

22.8∘S

23.1∘S

23.4∘S

23.7∘S

24∘S

24.3∘S

24.6∘S

24.9∘S

4
8
∘ W

4
7
.5

∘ W

4
7
∘ W

4
6
.5

∘ W

4
6
∘ W

4
5
.5

∘ W

4
5
∘ W

NDVI
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indicate NDVI levels. Contours, geographic boundaries, and political boundaries are indicated.
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Figure 10: Hourly mean wind field at 1000-hPa between 2005 and 2008 associated with sea breeze and heat island episodes obtained with the
ARPS system. Hour, level, contours, and geographic boundaries are indicated.

given impervious urban soil conditions, flash floods, high
wind gusts, and other impacts are common. Thunderstorms
have been preceded by NW winds in 74% episodes. The SB
reaches MASP at about 1800UTC at IAG weather station
and at 1900UTC at Campo de Marte Airport. At that time,
SB circulation had produced very deep thunderstorms over
MASP.

The total rainfall field estimated with SPWR has a core
of 600mm over MASP slightly shifted to SE more heavily
urbanized.The total rainfall accumulation due to SB episodes
is close to half of the annual average at IAG weather station.
The Vale do Paráıba region shows a secondary maximum
rainfall accumulation aswell associatedwith greater warming
and temperature gradients between the mountains and the
valley.

The statistics obtained with ARPS simulations well
reproduced the diurnal cycle of all days of the year [49].
Maximum CAPE and IL estimated for the afternoon hours
were 1750 J kg−1 and −3.5∘C to −4.0∘C, respectively. They
are good indicators of conditions favorable to thunderstorm
development induced by SB fronts.

Noteworthily, the cold front over southern Brazil plays
an important part in intensifying vertical vorticity together
with the SB front circulation. In the upper levels under typical
summer conditions an anticyclonic circulation is observed
and associated with Bolivia’s high [50]. The SB circulation
interacts with UHI circulation to produce deep thunder-
storms. The MXPOL weather radar [40] has been used in
conjunction with the ARPS system to nowcasting thunder-
storms triggered by these mesoscale features inMASP. Under
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Figure 11: Similar to Figure 10 except for divergence (s−1) at 1000UTC, 1200UTC, and 1600UTC, respectively. Colors indicate divergence
(s−1).

certain instability levels and synoptic conditions observed
in this research, it is possible to forecast the inset of heavy
thunderstorms. These systems are mainly responsible for
human and material losses every year. The main findings of
this research are useful for nowcasting local and synoptic
conditions that will trigger very deep thunderstorms with
strong wind gusts, heavy rainfall rates, hail, lightening that

in turn will cause damage to urban structures, injuries
and casualties, economic losses, and social problems. So,
mitigating these anthropic related impacts can be achieved by
incorporating local and synoptic features and meteorological
variable thresholds such as air and dew point temperatures,
wind direction and intensity, and boundaries observed by
weather radar and satellite.
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Figure 12: Similar to Figure 10 except for CAPE. Colors indicate CAPE (J kg−1).
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Figure 13: Similar to Figure 10 except for mean wind streamlines at 500 hPa (a) and 200 hPa (b) at 1600UTC. Colors indicate wind speeds
(m s−1).
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