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Sparse arrays, such as coprime array and nested array, can
provide enlarged aperture, enhanced spatial resolution,
increased degrees of freedom (DOFs), and reduced mutual
coupling, which has been considerably attractive to improve
active and passive sensing in radar, navigation, underwater
acoustics, and wireless communications. However, the
emerging applications of sparse array also bring a series of
potential problems.

�e special issue focuses on recent advances in appli-
cation to radar and direction position determination, array
geometry optimization for high accuracy DOA estimation,
o�-grid solutions to super-resolution, and multidimensional
sparse array signal processing joint estimation. It contains
six papers, the contents of which are summarized as follows.

In the study of application to radar and direction po-
sition determination, Y. Qian et al. utilize augmented
coprime array for increased degree of freedom and extended
array aperture and propose optimal weighting subspace data
fusion (OW- SDF) algorithm and SNR weighting subspace
data fusion (SW- SDF) algorithm to improve the accuracy of
direct position determination in “Direct Position Deter-
mination for Augmented Coprime Arrays via Weighted
Subspace Data Fusion Method.”

B. Liu et al. propose a low complexity unitary estimating
signal parameter via rotational invariance techniques (ES-
PRIT) algorithm for angle estimation in bistatic multiple-
input-multiple-output (MIMO) radar in “Computationally
E�cient Unitary ESPRIT Algorithm in Bistatic MIMO
Radar.”

In the area of array geometry optimization for high
accuracy DOA estimation and o�-grid solutions to super-
resolution, Y. Zhang et al. propose a novel generalized
nested MIMO radar by utilizing extended two-level nested
array (ENA) as transmitter and receiver and adjust the
interelement spacing of the receiver with an expanding
factor in “DOA Estimation of a Novel Generalized Nested
MIMO Radar with High Degrees of Freedom and Hole-Free
Di�erence Coarray.” B. Zhu et al. present a sparse nested
array (SNA) for electromagnetic vector sensor with extended
array aperture and reduced mutual coupling e�ect and
obtain joint direction of arrival (DOA) and polarization
estimates by an improved o�-grid orthogonal matching
pursuit method in “Electromagnetic Vector Sparse Nested
Array: Array Structure Design, O�-Grid Parameter Esti-
mation Algorithm.”

Regarding multi-dimensional sparse array signal pro-
cessing, S. Chen et al. propose a joint angle and frequency
estimation method based on covariance reconstruction and
obtain the estimation of signal parameters via rotational
invariance techniques (CR-ESPRIT) in “Joint Angle and
Frequency Estimation in Linear Arrays Based on Covariance
Reconstruction and ESPRIT.” L. Gong et al. use two an-
tennas to receive impinging signals and utilize the conjugate
symmetry characteristic of the delay matrices to extend the
sample points as well as the number of clusters and obtain
TOA estimates with low computational complexity by
transforming the two-dimensional (2D) spectral search to
one-dimensional (1D) searches in “Joint TOA and DOA
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Estimation for UWB Systems with Antenna Array via
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Direct position determination (DPD) for augmented coprime arrays is investigated in this paper. Augmented coprime array
expands degree of freedom and array aperture and improves positioning accuracy. Because of poor stability and noise sensitivity
of the subspace data fusion (SDF) method, we propose two weighted subspace data fusion (W-SDF) algorithms for direct position
determination. Simulation results show that two W-SDF algorithms have a prominent promotion in positioning accuracy than
SDF, Capon, and propagator method (PM) algorithm for augmented coprime arrays. SDF based on optimal weighting (OW-SDF)
is slightly better than SDF based on SNR weighting (SW-SDF) in positioning accuracy. &e performance for DPD of the W-SDF
method with augmented coprime arrays is better than that of the W-SDF method with uniform arrays.

1. Introduction

Wireless location technology is a prominent research area in
present positioning. Two-step positioning is the most
commonly used in passive positioning. By utilizing the
arrival time, arrival angle, and arrival frequency difference,
two-step positioning constructs a mathematical model to
realize positioning [1, 2]. However, there are many short-
comings in traditional two-step positioning methods. In the
process of positioning, because two-step positioning expe-
rienced more intermediate processing steps, the corre-
sponding positioning accuracy is affected [3]. In order to
avoid the problem of intermediate processing steps in the
two-step positioning method, in recent years, many scholars
have proposed new positioning method—direct position
determination [4]. Weiss proposed direct position deter-
mination in 2004 firstly [5]. Direct position determination
(DPD) estimates the target position without any location
intermediate parameters [6]. Because of the direct use of the
original observation data, DPD makes use of the target

information and effectively avoids the steps of the location
intermediate parameters [7].

For reducing the computational complexity, Demmissie
proposed a subspace data fusion (SDF) with higher com-
putational efficiency in 2008 [8], which extends the ultrahigh
resolution multiple signal classification angle estimation
algorithm in the field of array signal processing to direct
positioning. Multiple arrays receive signals from multiple
different positions through fusing the received signals of
multiple arrays based on the spatial spectrum estimation
theory [9, 10]. &en, the SDF algorithm constructs the loss
function and obtains the position estimation of emitter.
Although the SDF algorithm also needs grid search, it only
needs one 2D or 3D grid search in the effective space to get
the position estimation of all emitters [11]. &e traditional
SDF algorithm based on the direct position determination
algorithm does not consider the heteroscedasticity of the
observation error [12–15]. So, the proposed weighted SDF
method for DPD makes most of the eigenvalues and ei-
genvectors of the covariance matrix eigenvalue
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decomposition and combines with the augmented coprime
array to obtain the asymptotic accuracy. &e optimal po-
sition estimation performance is achieved, and the source
resolution is improved [16–21].

For the problem of limited degree of freedom of uniform
array, there are many research studies in traditional coprime
array for direction of arrival (DOA) estimation
[3, 17, 22–25]. Compared with traditional coprime arrays,
augmented coprime array can use the same number of real
array elements to generate more virtual arrays in the same
range. And, it has a longer continuous virtual element part.
Based on the existing research foundation of array signal
processing introduced above, direct position determination
extends from uniform array to sparse array. Now, aug-
mented coprime array for DPD is worth studying. Single
augmented coprime array or multiple augmented coprime
arrays is constructed for the DPD model, and then a con-
tinuous virtual array model is constructed by spatially
smoothing [14, 26–28]. So, the location loss function is
constructed based on subspace data fusion for augmented
arrays.&is paper mainly studies the weighted subspace data
fusion method based on multiple augmented coprime
arrays.

We summarize the main contributions as follows:

(1) We propose two weighted subspace data fusion (W-
SDF) algorithms for direct position determination to
solve poor stability and noise sensitivity of the SDF
algorithm. We assign a weight to the projection
result at each observation position. We balance the
orthogonal projection to obtain small error and high
robustness loss function.

(2) We introduce multiple augmented coprime arrays
into the direct position determination model and
then combine with spatial smoothing subspace data
fusion. We use augmented coprime arrays to in-
crease spatial freedom and recognize more sources.

(3) We use the weighted subspace data fusion method
for DPD. &e proposed algorithm does not need
estimation steps of intermediate parameters and
avoids second loss of information.

&e structure of this paper is as follows. In Section 2, we
introduce some basic concepts of augmented coprime array
and scene of direct position determination. Section 3 depicts
the proposed W-SDF method. Section 4 depicts perfor-
mance analysis about W-SDF algorithms with augmented
coprime array for DPD. In Section 5, we simulate the
proposed W-SDF algorithms for multiple coprime arrays
and compare it with other algorithms under different arrays
and different elements. And, Section 6 summarizes this
paper.

Notations. (·)∗ represents the conjugate, (·)T represents the
transposition, and (·)H represents the conjugate transpose.
&e symbol vec(·) represents the received covariance matrix
virtualization, and symbol ⊗ represents the Kronecker
product. In represents an n × n identity matrix, and E(·)

represents the mathematical expectation.

2. Preliminaries

In this chapter, we introduce some basic concepts of aug-
mented coprime array and scene of direct position
determination.

2.1. Array Model. In order to use virtual array for direct
position determination, augmented coprime linear array is
introduced. Figure 1 shows augmented coprime linear array
and the number of elements of two subarrays is 2M and N.
&e augmented coprime array element spacing is N d and
M d, M and N are coprime, and M<N.

2.2.MultipleArrays CombinationPositioningModel. We use
the positioning scene in Figure 2. Assume that there are Q
uncorrelated far-field narrow-band sources in the known
two-dimensional X-Y plane.&ere are L observation stations
with L augmented coprime arrays placed along the X-axis.
&e target sources are pq � [xq, yq]T(q � 1, 2, . . . , Q). &ere
are L observation stations expressed as
ul � [xul, yul]

T(l � 1, 2, . . . , L). &ere are D(D � 2M + N −

1) array elements on every observation station.
Assume that all the Q emitter signals are far-field nar-

row-band signals with wavelength of λ. In practice,
according to the free space propagation loss model, when the
signals from the same source are incident on the array at
different positions, the received signal strength of the array is
often different. Assuming that the power of all emitter
signals is Wq and the power of the signal from the qth
emitter received at the observation position
ul � [xul, yul]

T(l � 1, 2, . . . , L) is Wl,q, the path propagation
loss coefficient can be expressed as follows:

bl,q �

����
Wl,q

Wq

􏽳

, (1)

sl,q(k) is recorded as the qth radiation source, and the array
output signal of the l th observation station at the kth(k �

1, 2, 3, . . . , K) fast beat time is obtained as follows [7]:

rl(k) � 􏽘

Q

q�1
bl,qal pq􏼐 􏼑sl,q(k) + nl(k), (2)

where nl(k) denotes the noise vector of the l th observation
station and al(pq) is the direction vector, which is deter-
mined by the angle of arrival θl(pq) [7] as follows:

θl pq􏼐 􏼑 � arctan
xul(1) − pq(1)

yul(2) − pq(2)
. (3)

Equation (2) can be expressed as

rl(k) � Al(p)sl(k) + nl(k), (4)

where
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Al(p) � a1 p1( 􏼁, a2 p2( 􏼁, . . . , a2 pQ􏼐 􏼑􏽨 􏽩
T
,

Al pq􏼐 􏼑 � aT
l,1 pq􏼐 􏼑, aT

l,2 pq􏼐 􏼑􏽨 􏽩
T
,

al,1 pq􏼐 􏼑 � 1, e
− j2πN d sin θl pq( 􏼁

, . . . , e
− j2π(2M− 1)N d sin θl pq( 􏼁

􏼔 􏼕
T

,

al,2 pq􏼐 􏼑 � 1, e
− j2πM d sin θl pq( 􏼁

, . . . , e
− j2π(N− 1)M d sin θl pq( 􏼁

􏼔 􏼕
T

,

sl(k) � sl,1(k), sl,2(k), . . . , sl,Q(k)􏽨 􏽩
T
,

p � pT
1 , pT

2 , . . . , pT
Q􏽨 􏽩

T
,

nl(k) � nl,1(k),nl,2(k), . . . ,nl,D(k)􏽨 􏽩
T
.

(5)

3. The Proposed Algorithm

3.1. SDF Direct Position Determination Algorithm Based on
Augmented Coprime Array. We can obtain the covariance
matrix of array output signal from equation (4).

Rl � E rl(k)rH
l (k)􏽨 􏽩. (6)

We vectorize Rl as follows:

􏽥z � vec Rl( 􏼁 � Hl(p)μ + σ2nIn, (7)

where Hl(p) � A∗ ⊙A � [a(p1)⊗ a(p2), a(p2)⊗ a(p2),
. . . , a(p2)⊗ a(pq)] is the direction matrix of the virtual
array, μ � [σ21, σ22, . . . , σ2q]T is a single snapshot signal vector,
and In � vec(I), in which I is the identity matrix. In order to
facilitate processing, we need use 􏽥z to sort by phase and the
remove redundancy and then get the vector z; vector z is the
receiving signal of the augmented matrix virtual array.

Because the spatial smoothing algorithm needs the
continuity of the array elements, therefore, the vector z1 can
be obtained by intercepting the continuous virtual elements
of z.

&e intercepted virtual array is a virtual array in range
[− (MN + M − 1), MN + M − 1] and long uniform linear
array with element spacing of d. &e number of array ele-
ments is 2MN + 2M − 1.

&e basic idea of the spatial smoothing algorithm is to
divide the equidistant linear array into several overlapping
subarrays. If the subarrays have the same structure, their
covariance matrices are added to replace the original co-
variance matrix.

As shown in Figure 3, we divide the intercepted virtual
array into MN + M overlapping subarrays. Each subarray

contains MN + M elements. &e element position of the i th
subarray is

(i + 1 + n)d, n � 0, 1, . . . , MN + M − 1{ }. (8)

&e received signal matrix is from line MN + M + 1 − i

to line 2MN + 2M + 1 − i of z1, which is denoted as zhi, and
the covariance matrix is constructed [27].

Ri � zhiz
H
hi . (9)

&e covariance matrix of all MN + M submatrices is
summed, and the mean value is calculated to obtain the
spatial smooth covariance matrix:

Rl �
1

MN + M
􏽘

MN+M

i�1
Ri. (10)

Because signal and noise are independent of each other,
matrix Rl eigenvalue decomposition can be divided into
signal space and noise subspace as follows:

Rl � Us
l Un

l􏼂 􏼃􏽘
l

Us
l Un

l􏼂 􏼃
H

. (11)

According to the orthogonal property of signal subspace
and noise subspace, the projection of steering vector to noise
subspace is zero only when the steering vector of array al(p)

is composed of real emitter position parameters pq. Using
this property, the noise subspace projection results of the
steering vector to the Lth observation positions are added to
construct the following loss function:

fSDF(p) � 􏽘
L

l�1
aH

l (p)Un
l Un

l( 􏼁
Hal(p). (12)

Obviously, the loss function processes the projection
results at all observation positions equally. When one of the
L spectral functions has poor performance, the loss function
is vulnerable to interference; that is, the performance of the
traditional SDF based on the direct localization algorithm is
affected by the heteroscedasticity of orthogonal projection
errors from different observation positions.

For another, SDF only uses the noise subspace
resulting in vulnerable to the external factor, such as few
snapshots and low SNR. Because of these factors, posi-
tioning performance is restricted. Aiming at the problem
of poor stability and noise sensitivity of the SDF method,
this chapter considers to obtain the loss function with
small error and high robustness by balancing the or-
thogonal projection error. &e W-SDF method makes
most of all the data to improve the positioning accuracy.
So, we assign a weight to the projection result at each
observation position, and we construct the following loss
function:

fW− SDF(p) � 􏽘
L

l�1
wla

H
l (p)Un

l Un
l( 􏼁

Hal(p), (13)

where wl is the weight of the l th observation position.

0

0

...
2M – 1

N – 1

1 2

1 2

Nd

Md

Subarray 1

Subarray 2

Figure 1: Augmented coprime array model.

Mathematical Problems in Engineering 3



3.2. Direct Position Determination Based on SNR Weighted
SDF. According to the principle of power allocation based
on water injection principle, we allocate more power into the
channel with good quality and we allocate less power into the
channel with poor quality. So, we can obtain the maximum
channel capacity. Similarly, in order to reduce the total
projection error, we need to design a weight that makes it
increase when error decreases. Because high SNR leads to
small positioning error and low SNR results in large posi-
tioning error. So, in this section, we propose SNR weighted
subspace data fusion (SW-SDF) for DPD.

Under the assumption that the noises are uncorrelated
and the signals and noises are independent each other, the
form of the covariance matrix can be rewritten by
substituting equation (4) into (11):

􏽢Rl �
1
K

􏽘

K

k�1
􏽘

Q

q�1
b
2
l,qWqal(p)aH

l (p) + σ2nIV×V
⎛⎝ ⎞⎠, (14)

where IV×V is identity matrix of V × V, in which
V � MN + M. &e same array receives different power of
different radiation sources. And, different arrays receive
different power from the same array.&ese all depend on the
signal power Wq and unknown parameters bl,q. We assumed
that the noise power is constant in the whole observation
process, so the SNR of different observation positions is
proportional to b2l,qWq, that is, Wl,q; this value is unknown in
practical application.

&e received signal covariance matrix can be decom-
posed into two parts:

􏽢Rl � Rs + Rn � Al(p)diag Wl,1, . . . , Wl,Q􏽨 􏽩􏼐 􏼑AH
l (p) + σ2nIV×V.

(15)

Under the same assumption, the eigenvalue can be
expressed as

λl,i �
σ2yi

+ σ2n, 1≤ i≤Q,

σ2n, Q + 1≤ i≤V,

⎧⎪⎨

⎪⎩
(16)

is large nonzero eigenvalues of Rs, σ2yi
denotes the power

Wl,q of the received signal. It is assumed that the noise
power is constant in the observation process, and its specific
value is unknown in practice. According to equation (16),
the estimated value of noise power can be calculated by V −

Q smaller eigenvalue as follows:

􏽢σ2nl �
1

V − Q
􏽘

V

i�Q+1
λl,i. (17)

Due to the small deviation between the estimated value
and the real value, the estimated values of the noise power at
different observation positions are approximately equal.
According to the estimated value of the noise power, the l th
observation station can obtain the power as follows:

􏽢Wl � 􏽘

Q

i�1
λl,i − 􏽢σ2nl􏼐 􏼑. (18)

According to the previous analysis, the position with
large SNR of the received signal will produce smaller error.
So, we give larger weight to the position, that is, the SNR of

Targets

Pq 

Δx

D

O X

Y

Observation
stations 

D

ul

u2

u1

(pq)

u3

Δyθl

Figure 2: Multiple arrays combination positioning scene.
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Figure 3: Spatial smoothing diagram.
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the received signal for this position. &erefore, the loss
function of the direct position determination algorithm
based on SNR weighting can be constructed as follows:

fSW− SDF(p) � 􏽘
L

l�1

Wl

􏽢σ2nl

Un
l( 􏼁

Hal(p)
�����

�����
2
. (19)

By searching the front Q minimum values of equation
(19), the high precision emitter position estimation results
can be obtained.

3.3. Direct Position Determination Based on Optimal
Weighting. In the previous chapter, we introduce the SW-
SDF algorithm for DPD that can effectively reduce the total
projection error of L observation positions, but the SW-SDF
algorithm does not achieve the minimum of the total
projection error. So, it is not optimal. In this section, the
optimal weighted subspace data fusion (OW-SDF) algo-
rithm for DPD is proposed.&e projection error between the
steering vector and the noise subspace obtained from the
first observation position is defined as

ξl � Un
l( 􏼁

Hal(p). (20)

&en, the optimal weighted direct position determina-
tion problem can be expressed as finding an optimal weight
T∗ and emitter position estimation 􏽢p to minimize the total
projection error, that is, the optimal weighted direct position
determination problem:

􏽢p, T
∗

� argmin
p,W

T
1/2ξ

����
����
2
, (21)

where ξ � [ξH
1 , ξH

2 , . . . , ξH
L ]H is projection error of all ob-

servation positions.
According to reference [15], the projection error vector

ξl is a variable of zero mean Gaussian distribution, and its
covariance matrix has the following form:

E ξiξ
H
j􏼐 􏼑 � aH

l (p)Λlal(p)δi,jI(V− Q)×(V− Q),

E ξiξ
T
j􏼐 􏼑 � 0(V− Q)×(V− Q), for∀i, j,

(22)

where I(V− Q)×(V− Q) and I(V− Q)×(V− Q) are V × V identity
matrix and (V − Q) × (V − Q) zero matrix, δi,j is an impulse
variable, if and only if i � j, δi,j � 1, the other cases δi,j are
zero, and the matrix Λl has the following form:

Λl �
1
K
Us

ldiag
λl,1

σ2n
+
σ2n
λl,1

− 2, . . . ,
λl,Q

σ2n
+

σ2n
λl,Q

− 2􏼢 􏼣􏼠 􏼡 Us
l( 􏼁

H
.

(23)

It can be seen from equation (22) that the subvectors ξl

of the error vector ξ are independent of each other, so we can
get that the covariance matrix of the error vector ξ is a (V −

Q)L × (V − Q)L matrix, and each matrix
E(ξlξ

H
l ), l � 1, 2, . . . , L is expressed as

cov(ξ) � E ξξH
􏼐 􏼑 � diagblk E ξ1ξ

H
1􏼐 􏼑, . . . , E ξLξ

H
L􏼐 􏼑􏽨 􏽩􏼐 􏼑.

(24)

By substituting equations (22) and (23) into equation
(24), the solution of the optimal weight can be obtained

T
∗

� diag t
∗
1 , . . . , t

∗
L􏼂 􏼃( 􏼁⊗ I(V− Q)×(V− Q), (25)

where

t
∗
l (p) �

1

􏽐
Q
q�1 gl,q Us

l( 􏼁
Hal(p)

�����

�����
2, (26)

where gl,q is the weight of the signal from the radiation
source Q in the received signal of l th array and gl,q is related
to SNR and can be expressed as

gl,q � ρl,q +
1
ρl,q

− 2􏼠 􏼡

− 1

, (27)

where ρl,q � 1 + SNRl,q � λl,q/σ2n. According to equation
(27), the optimal weight not only considers the difference
between the received signal SNR but also considers the noise
subspace and search grid points.

According to equation (25), the loss function of the
direct position determination algorithm based on optimal
weight can be constructed as follows:

fOW− SDF(p) � 􏽘
L

l�1

Un
l( 􏼁

Hal(p)
�����

�����
2

diag g
1/2
l,1 , . . . , g

1/2
l,Q􏽨 􏽩􏼐 􏼑 Us

l( 􏼁
Hal(p)

�����

�����
2.

(28)

By searching the front Q minimum values of equation
(28), the high precision emitter position estimation results
can be obtained.

3.4.>eProcedure of theProposedAlgorithm. We summarize
several steps about W-SDF algorithms as follows:

Step 1. Construct the sources model and augmented
coprime array positioning model for DPD.
Step 2. Adopt the vector and spatial smoothing method
for receiving signals.
Step 3. Calculate the covariance matrix to get noise
subspace Un

l . Assign a weight to the projection result at
each observation position.
Step 4. Construct the cost function fW− SDF(p). &e
coordinate corresponding to the peak value is the
position estimation value (􏽢xq, 􏽢yq).

4. Performance Analysis

4.1. Achievable DOFs. In this paper, we use augmented
coprime array which increases spatial degree of freedom
than uniform linear array. &e DOFs of the augmented
coprime array are 2MN + 2M − 1, and the DOFs of the
uniform linear array are 2M + N − 1. It can be obviously
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seen that the degree of freedom of augmented coprime array
is higher than freedom of uniform linear array.

4.2. Computational Complexity. &e computational com-
plexity of the proposed two weighted direct position de-
termination algorithms is compared with SDF direct
position determination for augmented coprime array, which
only considers the number of complex multiplication. &e
computational complexity of W-SDF and SDF algorithms is
related to the following parameters: L denotes the number of
observation positions, Q denotes the number of targets, D

denotes the number of array elements, and K denotes the
number of snapshots; we divide X direction into Lx equal
parts in global search and divide Y direction into Ly equal
parts.

For the direct position determination algorithm SW-
SDF and OW-SDF, the complexity of the algorithm includes
the following aspects: the calculation of the covariance
matrix of dimension receiving signal O(KD2), the de-
composition of eigenvalue of the covariance matrix of the
dimension receiving signal O(V3), and the calculation of
spectral peak value of each searching grid point
O(V2(V − Q) + V2 + V). In addition, the weight calculation
in the SW-SDF algorithm does not need to increase the
additional computational complexity. &e OW-SDF algo-
rithm computational complexity is O(LKD2+ LV3+

LLxLy(V2(V − Q) + 2V2 + 2V)). In summary, the compu-
tational complexity of the three direct positioning algo-
rithms is shown in Table 1.

Figure 4 shows the comparison of the complexity of
several algorithms with the number of search points in
X(orY) direction under specific parameters. &e simulation
parameters are set as follows: the number of observation
positions L � 5, the number of radiation sources Q � 3, two
subarrays are M � 3 andN � 5, the number of augmented
array elements D � 10, the number of snapshots K � 100,
the number of array elements after smoothing is V � 18, and
the number of search points along X and Y directions, with
the range of 100 to 1000. &e computational complexity of
the PM algorithm is slightly lower than that of SDF and SW-
SDF algorithms. &e computational complexity of the Ca-
pon algorithm is higher than that of other algorithms.
Compared with the SDF method, SW-SDF can improve the
positioning performance without increasing the complexity.
&e complexity of the OW-SDF algorithm is slightly higher
than that of the SW-SDF algorithm, but the positioning
performance is greatly improved. We will explain this in
detail in the subsequent simulation analysis.

4.3. Advantage. Based on the above research, we make a list
of advantages about W-SDF algorithms for coprime array:

(1) &e proposed W-SDF algorithms do not need any
parameter estimation step, avoid the secondary loss
of information, and effectively improve the posi-
tioning accuracy.

(2) &e proposed W-SDF algorithms use augmented
coprime array characteristics. Compared with the

algorithm of uniform array, there is a significant
improvement in DOF. &e spatial freedom of the
array can be expanded, and the number of identified
sources is increased.

(3) We assign a weight to the projection result at each
observation position and construct the loss function.
Aiming at the problem of poor stability and noise
sensitivity of the SDFmethod, this paper considers to
obtain the loss function with small error and high
robustness by balancing the orthogonal projection
error and makes most of the data to improve the
positioning accuracy.

5. Simulation Results

5.1. SimulationsResults versus ProposedAlgorithm. &ere are
5 augmented coprime arrays located at 5 observation sta-
tions. Each station has an augmented coprime array. &e
locations of observations are U1 � [− 1000m, − 500m],
U1 � [− 500m, − 500m], U3 � [0m, − 500m], U4 � [500m,

− 500m], and U5 � [1000m, − 500m]. Multiple targets are
P1 � [100m, 100m], P2 � [300m, 300m], and P3 � [700m,

700m], and Figure 5 denotes direct position determina-
tion cost function with the SNR weighting algorithm.
Figure 6 denotes the direct position determination scatter
diagram with the SNR weighting algorithm. Figure 7
denotes direct position determination with the optimal
weighting algorithm. Figure 8 denotes the direct position
determination scatter diagram with the optimal weighting
algorithm.

In these simulation experiments, the performance of the
proposed W-SDF method is analyzed by calculating the root
mean square error (RMSE), and it can be expressed as

RMSE �
1
Q

��������������������

1
MC

􏽘

MC

mc�1
􏽘

Q

q�1
pq − 􏽢pq,mc

�����

�����
2

􏽶
􏽴

, (29)

where MC is the number of the Monte Carlo (MC) simu-
lation test, Q is the number of target sources, 􏽢pq,mc denotes
the mc th Monte Carlo estimated value of the location of the
qth target, and pq is the real value of the qth target.

5.2. RMSE Results versus Comparison of W-SDF Algorithms
withOtherAlgorithms. &is paper simulates the comparison
of different algorithms with augmented coprime array. &e
number of augmented coprime array elements is
(M, N) � (3, 5), and there are multiple targets
P1 � [100m, 100m], P2 � [300m, 300m], and P3 � [700m,

700m]. &e snapshot number is 100. Each station has an
augmented coprime array. Figure 9 shows that the perfor-
mance for DPD of the W-SDF algorithm is better than that
of the SDF and PM algorithm for augmented coprime array.
OW-SDF is slightly better than SW-SDF in positioning
accuracy. CRB for augmented coprime array is simulated in
Figure 9.
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5.3. RMSE Results versus Comparison of W-SDF Algorithms
under Different Snapshot Numbers for Augmented Coprime
Array. &is paper simulates the comparison of different al-
gorithms with different snapshot numbers for augmented
coprime array. &e number of augmented coprime array ele-
ments is (M, N) � (3, 5), and there are multiple targets
P1 � [100m, 100m], P2 � [300m, 300m], and P3 � [700m,

700m]. Each station has an augmented coprime array. Figure 10
shows that as the number of snapshots increases, the
performance for DPD with augmented coprime array of
W-SDF algorithms is better than that of SDF, Capon, and
PM algorithms.

5.4. RMSE Results versus Comparison of W-SDF Algorithms
under Different Arrays. &is paper simulates the com-
parison of different algorithms with augmented coprime
array and uniform array. &e number of augmented
coprime array elements is (M, N) � (3, 5), and there are
multiple targets P1 � [100m, 100m], P2 � [300m, 300m],
and P3 � [700m, 700m]. Each station has an augmented
coprime array. &e snapshot number is 100. Figure 11
shows that as SNR increases, the performance of W-SDF
algorithms for DPD with augmented coprime array is
better than that of W-SDF and SDF algorithms with
uniform array.

Table 1: Computational complexity of different algorithms.

Algorithms Computational complexity Running time (s)
SDF O(LKD2 + LV3 + LLxLy(V2(V − Q) + V2 + V)) 32.867873
SW-SDF O(LKD2 + LV3 + LLxLy(V2(V − Q) + V2 + V)) 32.180425
OW-SDF O(LKD2 + LV3 + LLxLy(V2(V − Q) + 2V2 + 2V)) 36.953023
Capon O(LKD2 + LLxLy(V3 + V2 + V)) 101.878995
PM O(LKD2 + L(2Q2V + QV(V − Q) + Q3) + LLxLy(V2(V − Q) + V2 + V)) 23.165267
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Figure 4: Comparison of different algorithms in computational complexity.
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5.5. RMSE Results versus Comparison of W-SDF Algorithms
under Different Elements. &is paper simulates the com-
parison of different algorithms with different elements.
&ere are multiple targets P1 � [100m, 100m],
P2 � [300m, 300m], and P3 � [700m, 700m]. Each station
has an augmented coprime array. Set the number of ele-
ments (M1, N1) � (3, 5), (M2, N2) � (3, 7), and
(M3, N3) � (5, 7). &e snapshot number is 100. In Fig-
ure 12, simulation results show that performance of the
proposed W-SDF algorithms is better with increment of
elements.
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6. Conclusion

We introduce multiple augmented coprime arrays into the
direct position determination model, which increases spatial
freedom and position accuracy. We assign a weight to the
projection result at each observation position to obtain
better positioning accuracy. Simulation results show that
two W-SDF algorithms have a prominent promotion in
positioning accuracy than SDF, Capon, and PM algorithms
for augmented coprime arrays. OW-SDF is slightly better
than SW-SDF in positioning accuracy. &e performance for

DPD of the W-SDF method with augmented coprime arrays
is better than that of the W-SDF method with uniform
arrays.
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Joint angle and frequency estimation, one of the key technologies in wireless communication and radar science, has been
extensively studied by scholars. For linear arrays, this paper proposes a joint angle and frequency estimation method based on
covariance reconstruction and the estimation of signal parameters via rotational invariance techniques (CR-ESPRIT). We first use
the received conjugate signal to reconstruct a covariance matrix.&en, we use the least squares-ESPRIT (LS-ESPRIT) algorithm to
estimate the desired frequencies. Finally, we estimate the angles according to the reconstructed matrix. &e proposed method can
estimate signal parameters via automatic pairing and without an additional parameter pairing process under the condition of a
uniform or a nonuniform array. Moreover, this method has high estimation accuracy, excellent and stable anti-noise performance,
and strong algorithmic robustness. &rough a computer simulation analysis, we can confirm the reliability and validity of the
proposed parameter estimation method. A comparison with other methods further proves the performance advantages of the
developed method. &e method in this paper can be easily applied to many signal processing contexts, such as electronic re-
connaissance and wireless communication.

1. Introduction

&e joint angle and frequency estimation of received signals
submerged in Gaussian white noise has important appli-
cations in wireless communication [1], audio and speech
signal processing [2], and other fields [3, 4]. For example, in
a wireless communication system, accurate and robust joint
angle and frequency estimation can help provide better
channel information, thereby improving the link quality and
anti-interference ability of the system [1]. Especially in
electronic reconnaissance [5–8], we often use the operating
frequencies and directions of arrival (DOAs) [9–13] of
noncooperative radar radiation source signals to describe
the main parameters of radar signal characteristics [14–16].
&erefore, to effectively obtain the parameters of

noncooperative radar source signals, it is necessary to study
a joint DOA and frequency estimation method for such
signals submerged in Gaussian white noise.

Regarding the joint DOA and frequency estimation of
noisy signals, researchers worldwide have proposed various
methods [16–22]. In 1986, Schmidt [17] proposed the
multiple signal classification (MUSIC) algorithm for pa-
rameter estimation. Although the algorithm has good es-
timation performance, it has high computational complexity
since it needs to search for spectral peaks to obtain the
estimated values. Lemma et al. [18] presented a joint angle
and frequency estimation method based on the multidi-
mensional estimation of signal parameters via rotational
invariance techniques (ESPRIT). Nevertheless, this algo-
rithm has low parameter estimation accuracy under low
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signal-to-noise ratios (SNRs). To effectively improve the
accuracy of estimated DOA and frequency results, in 2010,
Wang proposed a joint angle and frequency estimation
technique using multiple-delay outputs (MDJAFE) [16]
based on the ESPRIT algorithm. However, this method
cannot realize automatic parameter pairing when per-
forming the joint estimation of signal parameters. Since the
propagator method (PM) shows good performance in pa-
rameter estimation, it has attracted the attention of scholars.
Sun et al. [19] proposed a joint DOA and frequency esti-
mation based on the improved PM. Although the complexity
of the algorithm is low and it can realize the automatic
pairing of DOA and frequency parameter estimations, its
parameter estimation accuracy is not high. Wang et al. [20]
proposed an improved ESPRIT algorithm using the multi-
delay output of a uniform linear antenna (ULA). Although
the algorithm’s complexity is greatly reduced, this method is
greatly affected by noise, and the estimation accuracy of this
method is still very limited when the SNR is low. Based on
the extended orthogonal matching pursuit (EOMP) algo-
rithm, Gao et al. [21] proposed an approach to jointly es-
timate DOAs and frequency, whereas this method has high
computational complexity. Xu et al. [22] proposed a joint
DOA and narrowband source carrier frequency estimation
method based on parallel factor (PARAFAC) analysis. &e
computational complexity of this method is relatively high,
and the hardware cost is also high.

Due to the wide range of possible SNRs, frequency and
DOA estimation algorithms have unstable anti-noise per-
formance and limited estimation accuracy. We propose a
method for the joint DOA and frequency estimation of
signals submerged in Gaussian white noise. &e algorithm
involves a three-step estimation procedure. First, we pre-
process the received signal. Second, we use the least squares-
ESPRIT (LS-ESPRIT) algorithm to estimate the frequency
parameters of the signal. Finally, according to the unique
relationship between the signal angle and its frequency, we
estimate the DOAs. Computer simulations and comparisons
with other methods prove the excellent performance of the
proposed method.

&e main contributions of our work can be summarized
as follows:

(1) We improve upon the estimation process in [20].
Under the condition of a uniform or a nonuniform
array, the method proposed in this paper can esti-
mate the required parameters by performing auto-
matic pairing without an additional parameter
pairing process. Moreover, this method has good
estimation accuracy, stable anti-noise performance,
and robustness. &erefore, the method proposed in
this paper is more suitable than other approaches for
the parameter estimation of noncooperative radar
radiation sources in an external field, which usually
contains a complex electromagnetic environment.

(2) &is paper proposes a joint angle and frequency
estimation method based on covariance recon-
struction and ESPRIT (CR-ESPRIT). Within the
SNR range from -15 dB to 15 dB (step: 2 dB), its
performance is better than that of the PM, the co-
variance reconstruction and propagator method
(CR-PM), the ESPRIT method [16], and the im-
proved ESPRIT method [20].

&e remainder of this paper is structured as follows. &e
materials and methods are presented in Section 2; Section 3
contains the results and a discussion, and Section 4 is the
summary of the paper.

Notations.(•)H, (•)∗, (•)− 1, and (•)+ denote the conju-
gate transpose, complex conjugation, inverse, and Moor-
e–Penrose inverse (pseudoinverse) operations, respectively.
Matrices and vectors are represented by boldfaced capital
letters and lowercase letters, respectively.

2. Materials and Methods

2.1. SignalModel. Consider an antenna array that consists of
M array elements arranged in a straight line at equal dis-
tances, where the distance between each pair of array ele-
ments is d [23]. We suppose that there exist K (K<M) far-
field source narrowband signals (the center frequency is fk),
which are incident on the antenna array. &erefore, we can
regard the signals as plane waves when they reach the array.
&en, we can express the received signal of the mth antenna
as follows [24]:

ym(t) � 􏽘
K

k�1
exp −j2π(m − 1)dfk

sin θk( 􏼁

c
􏼠 􏼡􏼠 􏼡sk(t) + nm(t), m � 1, 2, . . . , M, (1)

where sk(t) is the kth incident far-field source signal, c is the
speed of light (m/s), θk and fk are the DOA and frequency of
the kth signal, respectively, and nm(t) is the zero-mean
additive white Gaussian noise on the mth antenna. We can
express the output signal of the linear array as

Y0 � y1(n)y2(n), . . . , yM(n)􏼂 􏼃
T
, n � 1, 2, . . . , N. (2)

We assume that the signal is uniformly sampled by a
period that conforms to the Nyquist sampling rate and that

the number of snapshots is N. &erefore, we can transform
the signal model studied in this paper into a joint DOA and
frequency estimation model for multiple source signals,
whereN sampling points are obtained for each source signal.

We assume that the number of signal sources K is
known; thus, we can rewrite output state vector (2) in the
following matrix form:

Y0 � AS + N0, (3)

2 Mathematical Problems in Engineering



where S � [s1, s2, . . . , sK]T ∈ CK×N, N0 � [n1,n2, . . . ,nM]T

∈ CM×N, and

A �

1 1 . . . 1

exp −jα1( 􏼁 exp −jα2( 􏼁 . . . exp −jαK( 􏼁

. . . . . . . . . . . .

exp −j(M − 1)α1( 􏼁 exp −j(M − 1)α2( 􏼁 . . . exp −j(M − 1)αK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

In equation (4), αk � 2πdfk sin(θk)/c, k � 1, . . . , K. To
realize the joint DOA and frequency estimation model, we
take (P-1) delays [25, 26] for the signal received from the

antenna arrays shown in Figure 1. In addition, we set
0< (P − 1)τ < 1/max(fk). &erefore, we can obtain the
delay signal with the delay value τ as

ym(t − τ) � 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t − τ) + nm

′ (t)

� 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t)exp −j2πfkτ( 􏼁 + nm

′ (t).

(5)

We can transform equation (5) into the following form:

Y1 � AΦS + N1, (6)

where βk � 2πfkτ, (k � 1, 2, . . . , K) and Φ � diag[exp
(−jβ1), exp(−jβ2), . . . , exp(−jβK)].

When the delay value is pτ, we can express the delay
signal as

ym(t − pτ) � 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t − pτ) + nm

′ (t)

� 􏽘
K

k�1
exp

−j2π(m − 1)dfk sin θk( 􏼁

c
􏼠 􏼡sk(t)exp −j2πfkτp( 􏼁 + nm

′ (t).

(7)

&en, we can also express equation (7) as

Yp � AΦpS + Np, p � 0, 1, 2, . . . , P − 1. (8)

After reorganizing the equations, we can obtain the
following expression:

Y �

Y0
Y1
. . .

YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

A
AΦ
. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S +

N0
N1
. . .

NP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

2.2. 5e Proposed Method. In this paper, inspired by the
improved ESPRITmethod [20], we propose a joint angle and
frequency estimationmethod based on CR-ESPRIT. In a real
space, the improved ESPRIT method is not suitable for
complex electromagnetic environments. Due to the

noncooperative characteristics of radiation sources, we
generally believe that there is no prior information available
regarding the parameters. Moreover, in a complex and harsh
electromagnetic environment, the detected radiation source
signals are very weak. &erefore, in a situation with a low
SNR, the developed method not only needs to distinguish
useful signals and noise effectively but also needs to have
good estimation performance, noise immunity and ro-
bustness. Additionally, it also needs to have the ability to
automatically pair the relevant parameters without an ad-
ditional parameter pairing process under the condition of a
uniform or a nonuniform array.

We first preprocess the received signal in Section 2.2.1.
Second, we use the LS-ESPRIT algorithm to estimate the
frequency parameters of the received signal in Section 2.2.2.
&ird, according to the relationship between the DOA and
frequency in the signal model, we reconstruct the received
signal, and then we estimate the DOAs in Section 2.2.3. In
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Section 2.2.4, we provide the detailed steps of the proposed
method. Finally, we provide the detailed steps of the pro-
posed method under the condition of a nonuniform array in
Section 2.2.5.

2.2.1. 5e Preprocessing Procedure. First, we obtain the
covariance matrix RY � YYH of the received signal. To make
full use of the conjugate information contained in the re-
ceived signal, we define the permutation matrix J [27]:

J �

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PM×PM

. (10)

&erefore, we can construct the following matrix:

RJ � J Y∗( 􏼁 Y∗( 􏼁
HJH

. (11)

We add the covariance matrix RY and RJ from equation
(11), and then we average them. &e form of the obtained
covariance matrix is shown as follows:

R �
RY + RJ

2
. (12)

&rough analysis, we can obtain that the new total co-
variance matrix R is a Hermitian matrix (PM×PM) [28].
&erefore, we can apply eigenvalue decomposition, and then
we can reconstruct the signal subspace Ess. In a no-noise
situation, Ess can be approximately expressed as

Ess �

A

AΦ

. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F, (13)

where F is a full-rank matrix with K×K dimensions.

Remark 1. As mentioned earlier, the new total covariance
matrix R is already a Hermitian matrix. According to
Hermitian matrix characteristics, we assume that the di-
agonal matrix of the eigenvalues of R is G. &en, there
exists a unitary matrix U, which assures RU =UG.
&erefore, we can treat R as the unitary matrix U by using
this correlation feature to further reduce the complexity of
the proposed method and then propose a much lower
complexity method.

2.2.2. Frequency Estimation. We define the following
parameters:

E1 �

A

AΦ

. . .

AΦP− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F, (14)

E2 �

AΦ
AΦ2

. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F. (15)

&erefore, equations (14) and (15) have the following
relationship:

E2 �

AΦ

AΦ2

. . .

AΦP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F �

A

AΦ1

. . .

AΦP− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FF− 1ΦF � E1F
− 1ΦF. (16)

Let Ψ � F− 1ΦF and Ψ � E+
1E2. According to the LS-

ESPRIT algorithm, we can estimate Φ by the eigenvalue
decomposition ofΨ, and we can also estimate the matrix F−1

by the eigenvector of Φ. In a no-noise situation, we define

􏽢F− 1
� F− 1Θ,

􏽢Φ � Θ− 1ΦΘ,
(17)

where Θ is a fuzzy column matrix. Since Ψ and Φ have the
same eigenvalues, we can obtain the eigenvalues
λk(k � 1, 2, . . . , K) frommatrixΨ. As shown in equation (6)
(βk � 2πfkτ, k � 1, 2, . . . , K), it is obvious that we can es-
timate the frequency parameter 􏽢fk, k � 1, 2, . . . , K:

􏽢fk �
1

2πτ
angle λk( 􏼁. (18)

τ1

Y1

Y0

τ2

τP–1

YP–1

τ1

τ2

τP–1

τ1

τ2

τP–1

Antenna MAntenna 2Antenna 1

Figure 1: Received signals with multilevel delays.
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2.2.3. DOA Estimation. AΦP−1 has the following expression:

AΦP− 1
�

exp −j(P − 1)β1( 􏼁 exp −j(P − 1)β2( 􏼁 . . . exp −j(P − 1)βK( 􏼁

exp −jα1( 􏼁exp −j(P − 1)β1( 􏼁 exp −jα2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −jαK( 􏼁exp −j(P − 1)βK( 􏼁

. . . . . . . . . . . .

exp −j(M − 1)α1( 􏼁exp −j(P − 1)β1( 􏼁 exp −j(M − 1)α2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −j(M − 1)αK( 􏼁exp −j(P − 1)βK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

According to the above estimation 􏽢F− 1, we can define the
following expression by reconstructing equation (13):

EQ �

B

BΤ

. . .

BTM− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ, (20)

where

B �

1 1 . . . 1

exp −jβ1( 􏼁 exp −jβ2( 􏼁 . . . exp −jβK( 􏼁

. . . . . . . . . . . .

exp −j(P − 1)β1( 􏼁 exp −j(P − 1)β2( 􏼁 . . . exp −j(P − 1)βK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Τ � diag exp −jα1( 􏼁, exp −jα2( 􏼁, . . . , exp −jαK( 􏼁􏼂 􏼃 ∈ C
K×K

,

αk �
2πdfk sin θk( 􏼁

c
, k � 1, 2, . . . , K.

(21)

According to reconstructed equation (20), we can use the
method described below to estimate the DOA.

We define the following matrices:

EQ1 �

B

BΤ

. . .

BΤM− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ,

EQ2 �

BT

BT2

. . .

BTM− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ.

(22)

We can also define a matrix D since D � E+
Q1EQ2. &en,

according to the definitions of EQ1 and EQ2, we can express
D in a no-noise situation:

D � Θ− 1TΘ. (23)

&erefore, we can take the diagonal elements of D, and
then, we can obtain ϖk(k � 1, 2, . . . , K), where

αk � 2πdfk sin(θk)/c((k � 1, 2, . . . , K), to obtain the esti-
mation of the DOA:

􏽢θk � arcsin
c

2π􏽢fkd
angle ϖk( 􏼁􏼠 􏼡, k � 1, 2, . . . , K. (24)

2.2.4. 5e Steps of the Proposed Method. &us far, we have
given the complete process for automatically pairing DOA
and frequency estimations in a linear array. &e main steps
required to implement the method proposed in this paper
are as follows:

(i) Step 1: according to permutation matrix J and
equation (12), we reconstruct the covariance matrix
R.

(ii) Step 2: we apply eigenvalue decomposition toR, and
then we reconstruct the signal subspace Ess.
According to equations (14) and (15), we construct
matrices E1 and E2, respectively.

(iii) Step 3: we use equation (Ψ � E+
1E2) for eigenvalue

decomposition to obtain F−1 and 􏽢Φ. Finally, we
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estimate the frequency parameter 􏽢fk according to
equation (18).

(iv) Step 4: we can obtain matrix EQ according to the
reconstruction of Ess in equation (13). &en, we can
also construct matrices EQ1 and EQ2.

(v) Step 5: we calculateD � E+
Q1EQ2 to obtain matrixD.

Finally, we estimate the DOA parameter 􏽢θk

according to equation (24).

2.2.5. 5e Condition of a Nonuniform Array. In this section,
we first present the method proposed in this paper when the
distances between the array elements are not equal.&en, we
present the main steps for implementing the method in the
case of a nonuniform array.

We assume that the first element d1 = 0 and that the
distance between themth element and the first element is dm.
&en, we can transform equation (4) into the following form:

A1 �

1 1 . . . 1

exp −jd2η1( 􏼁 exp −jd2η2( 􏼁 . . . exp −jd2ηK( 􏼁

. . . . . . . . . . . .

exp −jdMη1( 􏼁 exp −jdMη2( 􏼁 . . . exp −jdMηK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where ηk � 2πfk sin(θk)/c(k � 1, 2, . . . , K). At the same
time, equation (19) undergoes the following transformation:

A1Φ
P− 1

�

exp −j(P − 1)β1( 􏼁 exp −j(P − 1)β2( 􏼁 . . . exp −j(P − 1)βK( 􏼁

exp −jd2η1( 􏼁exp −j(P − 1)β1( 􏼁 exp −jd2η2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −jd2ηK( 􏼁exp −j(P − 1)βK( 􏼁

. . . . . . . . . . . .

exp −jdMη1( 􏼁exp −j(P − 1)β1( 􏼁 exp −jdMη2( 􏼁exp −j(P − 1)β2( 􏼁 . . . exp −jdMηK( 􏼁exp −j(P − 1)βK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

Similarly, we can reconstruct equation (13) and define
the following expression:

EQQ �

BJ1
BJ2
. . .

BJM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Θ, (27)

where Jm � diag[exp(−jdmη1), exp(−jdmη2),
. . . , exp(−jdmηK)] ∈ CK×K, m � 1, 2, . . . , M.

We define the following matrix:

EQQ1 �

BJ1
BJ2
. . .

BJM−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Θ �

EQQ11
EQQ12

. . .

EQQ1(M−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

EQQ2 �

BJ2
BJ3
. . .

BJM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Θ �

EQQ22
EQQ23

. . .

EQQ2M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(28)

We also define the matrix Qm, where
Qm � (EQQ1(m− 1))

+(EQQ2m), m � 2, . . . , M. &erefore, we
can take the diagonal elements of Qm and then obtain

νm � diag exp −j dm − dm−1( 􏼁η1( 􏼁, exp −j dm − dm−1( 􏼁η2( 􏼁, . . . , exp −j dm − dm−1( 􏼁ηK( 􏼁􏼂 􏼃 ∈ C
K×K

, m � 2, . . . , M. (29)

We sort the diagonal elements and then define the
following matrix:

V �

1 1 . . . 1

exp −j d2 − d1( 􏼁η1( 􏼁 exp −j d2 − d1( 􏼁η2( 􏼁 . . . exp −j d2 − d1( 􏼁ηK( 􏼁

. . . . . . . . . . . .

exp −j dm − dm−1( 􏼁η1( 􏼁 exp −j dm − dm−1( 􏼁η2( 􏼁 . . . exp −j dm − dm−1( 􏼁ηK( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

According to equation (30), we can obtain the estimation
of the DOA:
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􏽢θk �
1

M − 1
􏽘

M

m�2
arcsin

c

2π􏽢fk dm − dm−1( 􏼁
angle Vmk( 􏼁􏼠 􏼡, (k � 1, 2, . . . , K). (31)

&e main steps for implementing the method in this
paper under the condition of a nonuniform array are as
follows:

(i) Step 1: according to equations (10), (12), and (25),
we reconstruct the new covariance matrix.

(ii) Step 2: we apply eigenvalue decomposition to the
new covariance matrix, and then we reconstruct the
signal subspace Ess. According to equations (14) and
(15), we construct matrices E1 and E2, respectively.

(iii) Step 3: we use equation (Ψ � E+
1E2) to perform

eigenvalue decomposition and obtain F−1 and 􏽢Φ.
Finally, we estimate the frequency parameter 􏽢fk

according to equation (18).
(iv) Step 4: we can obtain the matrix EQQ according to

equation (27). &en, we can also construct matrices
EQQ1 and EQQ2.

(v) Step 5: we can obtain matrix V according to
equation (30). Finally, we estimate the DOA pa-
rameter 􏽢θk according to equation (31).

3. Results and Discussion

3.1. Performance Analysis of the Proposed Method

3.1.1. Method Complexity. In this section, we focus on the
performance analysis with respect to complexity.

Complexity is mainly measured by the number of complex
multiplications and the running time required by a given
method. For the ESPRIT method in [16], the complexity is
O(M2P2N + M3P3 + 2K2M(P − 1) + 8K3 + 2K2(M − 1)).
For the improved ESPRIT method in [20], the complexity
required to calculate the covariance matrix RY is
O(M2P2N). &e complexity required for eigenvalue de-
composition is O(M3P3). &e complexity of calculatingΨ �

E+
1E2 is O(2K2M(P − 1) + 2K3). &en, the eigenvalue de-

composition complexity of Ψ � E+
1E2 is O(K3). When es-

timating the DOA, the complexity is O(2K3 + 2K2

(M − 1)P). &erefore, the complexity of the improved ES-
PRIT method is O(M2P2N + M3P3 + 2K2M(P − 1)+

5K3 + 2K2(M − 1)P).
For the proposed method, the preprocessing complexity

is O(M2P2N + M3P3). &e complexity of frequency esti-
mation is O(2K2M(P − 1) + 3K3). In addition, the com-
plexity of DOA estimation is O(2K3 + 2K2(M − 1)P).
&erefore, the complexity of the proposed method is
O(M2P2N + M3P3 + 2K2M(P − 1)

+5K3 + 2K2(M − 1)P + 1). It should be noted that in the
preprocessing of this paper, we only need to calculate the
covariance matrix RY and the eigenvalue decomposition,
which means that we do not require additional calculations
to construct the matrix RJ.

&e reason is that, according to equation (11), RJ has the
following expression:

RJ � JY∗Y∗HJH
�

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y0

Y1

. . .

YP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗ Y0

Y1

. . .

YP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗H 0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Y∗P−1

. . .

Y∗1
Y∗0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y0 Y1 . . . YP−1􏼂 􏼃

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�

Y∗P−1Y0 Y∗P−1Y1 . . . Y∗P−1YP−1

. . . . . . . . . . . .

Y∗1Y0 Y∗1Y1 . . . Y∗1YP−1

Y∗0Y0 Y∗0Y1 .. . . . . Y∗0YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 . . . 0 1

. . . 0 1 0

0 . . . . . . . . .

1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Y∗P−1YP−1 . . . Y∗P−1Y1 Y∗P−1Y0

. . . . . . . . . . . .

Y∗1YP−1 . . . Y∗1Y1 Y∗1Y0

Y∗0YP−1 . . . Y∗0Y1 Y∗0Y0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(32)

while the covariance matrix RY

RY � YYH
�

Y0

Y1

. . .

YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y0

Y1

. . .

YP− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H

�

Y0

Y1

. . .

YP−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y∗0 Y∗1 . . . Y∗P−1􏼂 􏼃 �

Y0Y
∗
0 Y0Y

∗
1 . . . Y0Y

∗
P−1

Y1Y
∗
0 Y1Y

∗
1 . . . Y1Y

∗
P−1

. . . . . . . . .

YP−1Y
∗
0 YP−1Y

∗
1 . . . YP−1Y

∗
P−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Mathematical Problems in Engineering 7



By observing equations (32) and (33), we find that
through simple moment transformation, we can transform
the matrix RY into the matrix RJ. &erefore, when pre-
processing, we do not need additional complex multipli-
cations to reconstruct the matrix RJ.

For the PM, the complexity of frequency estimation is
O(M2P2N + 4K3 + M2P2K + PMK2 + 2K2(M − K)). In
addition, the complexity of DOA estimation is O(K2(M−

K) + 2K3 + 2K2(M − 1)). &erefore, the complexity of the
PM is O(M2P2N + 6K3 + M2P2K + PMK2 + 3K2(M − K)

+2K2(M − 1)). &e CR method is also applicable to the PM.
&erefore, the complexity of the CR-PM is O(M2P2N +

6K3 + M2P2K + PMK2 + 3K2 (M − K) + 2K2(M − 1)).
Figures 2 and 3 present the complexity comparison of

these algorithms versus the number of signal sourcesK and the
number of snapshots N with M=12 and P=3, respectively.
Table 1 compares the running time of these algorithms under
the condition of an i7-8550U CPU with K=3, N=200, and
2000 Monte Carlo simulations. Figures 2 and 3 show that the
complexity of the method proposed in this paper is almost the
same as that of the ESPRIT method in [16] and that of the
improved ESPRIT method in [20] and is much higher than
that of the PM and that of the CR-PM. In addition, the
running time of the proposedmethod does not increase much.
Moreover, through subsequent analysis, within the SNR range
from −15 dB to −1 dB, the advantages of the proposed method
are more obvious. In particular, when SNR=−15 dB, com-
pared with the improved ESPRIT method, the frequency es-
timation accuracy of the method proposed in this paper is an
approximately 25.50% improvement; the DOA estimation
accuracy of the method proposed in this paper is an ap-
proximately 31.95% improvement. &erefore, we can confirm
that by increasing the utilization of the originally received data,
we can improve the parameter estimation accuracy and the
noise robustness of the proposed method.

3.1.2. 5e Advantages of the Proposed Method. In this sec-
tion, we summarize the advantages of the proposed method
in this paper as follows:

(1) Under the condition of a uniform or a nonuniform
array, the method can effectively estimate the DOAs
and frequencies of source signals. It can also realize
automatic pairing without an additional parameter
pairing process since the method has the same fuzzy
column matrix for both parameters.

(2) For incoherent signal sources whose angles are close
together, this method can perform effective identi-
fication and parameter estimation.

(3) Compared with those of the PM, the CR-PM, the
ESPRIT method [16], and the improved ESPRIT
method [20], the frequency and DOA estimation
accuracies of the proposed method are greatly im-
proved, and this method has superior estimation
performance. Moreover, the proposed method has
better anti-noise performance and stronger
robustness.

3.2. Numerical Simulation. In the simulation, we assume
that the array receives signals emitted by K incoherent far-
field sources. We also use the root mean square error
(RMSE) metric to evaluate the DOA and frequency esti-
mation performances of the proposed method; we define the
RMSEs as

RMSEDOA �
1
K

􏽘

K

k�1

�������������

1
L

􏽘

L

l

􏽢θk,l − θk􏼐 􏼑
2

􏽶
􏽴

,

RMSEfrequency �
1
K

􏽘

K

k�1

��������������

1
L

􏽘

L

l

􏽢fk,l − fk􏼐 􏼑
2

􏽶
􏽴

,

(34)

where 􏽢θk,l and 􏽢fk,l are the estimated values of θk and fk,
respectively, in the lth Monte Carlo simulation and L is the
number of Monte Carlo simulations. In this paper, we set
L= 2000.

3.2.1. Performance Analysis of the Proposed Method in a
Uniform Array. In this section, we assume that the array
receives signals emitted by three incoherent far-field sources.
&e DOAs and operating frequencies of the signals are (θ1,
f1) = (15°, 1MHz), (θ2, f2) = (40°, 2.1MHz), and (θ3, f3) = (50°,
3.1MHz). SNR= 0 dB, M= 12 is the number of array ele-
ments, P= 3 is the number of delay values, d= 50 denotes the
distances between the array elements, and N= 400 and K= 3
are the numbers of snapshots and signal sources, respec-
tively. &e scatter diagram of the joint frequency and DOA
estimation of the proposed method in this paper is shown in
Figure 4. Figure 4 shows that the proposed method is ef-
ficient in estimating the frequency and DOA results for a
uniform array.

3.2.2. Performance Analysis under Different Numbers of
Array Elements M. We set d= 50m, K= 3, P= 3, and
N= 400. We also set different numbers of array elements
(M= 8, 12, and 16). &e SNR range is from −15 dB to 15 dB
(step: 2 dB), and the RMSEs of the frequency and DOA
estimates of the method proposed in this paper are shown in
Figures 5 and 6, respectively.

We can see from Figures 5 and 6 that the method
proposed in this paper can achieve high estimation per-
formance within the SNR range of −15 dB to 15 dB (step:
2 dB) under different numbers of array elements. &e esti-
mation performance is stable under the condition of a low
SNR. Moreover, we can see that the SNR has a great impact
on the estimation accuracies of the frequency and DOA.&e
higher the SNR is, the higher the parameter estimation
accuracies of the method for these two parameters. With the
increase in the number of array elements, the DOA and
frequency estimation accuracies of the method proposed in
this paper improve. Furthermore, the RMSEs of the pro-
posed method are greatly reduced. &is is because as the
number of array elements increases, the space diversity gain
increases [29].
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3.2.3. Performance Analysis under Different Numbers of
Snapshots N. We set d= 50m, K= 3, P= 3, and M= 12. We
also set different numbers of snapshots (N= 100, 400, and
800). &e SNR range is from −15 dB to 15 dB (step: 2 dB),

and the RMSEs of the frequency and DOA estimations of the
method proposed in this paper are shown in Figure 7 and 8,
respectively. We can see from Figure 7 and 8 that when the
SNR is within the range of −15 dB to 15 dB (with steps of
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Figure 2: Comparison of algorithm complexity under different
snapshots N.

Table 1: Running time of these methods.

Methods Running time (s)
PM 2.3291
CR-PM 2.6634
ESPRIT 2.8223
Improved ESPRIT 2.8454
CR-ESPRIT 3.1177
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2 dB), the RMSEs of the proposed method demonstrate that
with different snapshots, the algorithm can still maintain
high estimation performance. Even in a situation with a low
SNR, the estimation performance is still stable. As the
number of snapshots increases, the estimation accuracy of
the method proposed in this paper is enhanced, the per-
formance is more precise, and the RMSEs of the frequency
and DOA estimations of the proposed method decrease.

3.2.4. Performance Analysis under Different Delay Values P.
We set d= 50m, K= 3, N= 400, and M= 12. We also set
different delay values (P= 2, 3, and 4). &e range of the SNR
is from −15 dB to 15 dB (step: 2 dB), and the RMSEs of the
frequency and DOA estimations of the method proposed in
this paper are shown in Figures 9 and 10, respectively. In
Figures 9 and 10, under different delay values, the proposed
method maintains high DOA and frequency estimation
performance when the SNR ranges from −15 dB to 15 dB.
&e estimation performance is stable even in a situation with
a low SNR. As the delay value increases, the estimation
accuracy of the method proposed in this paper is enhanced,
the performance is more precise, and the RMSEs of the DOA
and frequency estimations of the method decrease.

3.2.5. Performance Analysis under Different Numbers of
Signal Sources K. We set d= 50m, P= 3, N= 400, and
M= 12. We also set different numbers of signal sources
(K= 2, 3, and 4). &e range of the SNR is from −15 dB to
15 dB (step: 2 dB), and the RMSEs of the frequency and DOA
estimations of the method proposed in this paper are shown
in Figures 11 and 12, respectively. In Figures 11 and 12,
under different numbers of signal sources, the proposed
method maintains high DOA and frequency estimation
performance when the SNR ranges from −15 dB to 15 dB.
&e estimation performance is stable even in a situation with
a low SNR. As the number of signal sources increases, the
estimation accuracy of the method proposed in this paper
makes the performance more imprecise, and the RMSEs of
the DOA and frequency estimations of the proposed method
increase. As the number of signal sources increases, the
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interference between sources increases, and the frequency
and DOA estimation performances deteriorate [30].

3.2.6. Identification Performance Analysis for Signal Sources
with Close Angles. We set d= 50m, K= 2, P= 4,N= 200, and
M= 12. In this section, we focus on exploring the recog-
nition and identification abilities of the proposed method
when the signal sources are at relatively close angles. &e
DOAs and operating frequencies of the signals are (θ1, f1)
= (15°, 1MHz) and (θ2, f2) = (17°, 2.1MHz). We also set

SNR= 5 dB. As shown in Figure 13, for signal sources with
close angles, the proposed method can also perform effective
identification and parameter estimation.

3.2.7. Performance Analysis of the Proposed Method in a
Nonuniform Array. In an actual field receiving system, the
assumed reception model is different from the true model
even after a calibration procedure [31]. &erefore, in this
section, we mainly discuss the performance analysis under
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the condition of a nonuniform array, such as array element
position deviation [32] and uneven distance between array
elements.

In this section, we assume that the array receives signals
emitted by three incoherent far-field sources.&e DOAs and
operating frequencies of the signals are (θ1, f1) = (15°,
1MHz), (θ2, f2) = (20°, 1.9MHz), and (θ3, f3) = (30°,
2.8MHz). SNR= 0 dB,M= 12, P= 5, N= 300, and K= 3. For
analyzing array element position deviation, we set d= [0; 50;
101; 149; 200; 251; 300; 352; 401; 449; 501; 548] m. For
uneven distance between array elements, we set d= [0; 40;
100; 150; 195; 235; 310; 365; 395; 450; 500; 540]m.&e scatter
diagram of the joint frequency and DOA estimation of the
proposed method in this paper is shown in Figures 14 and
15. Figures 14 and 15 show that the proposed method is
efficient in estimating the frequency and DOA results for
both nonuniform array conditions.

3.2.8. Analysis of the Performances of Different Methods.
In this section, we focus on analyzing the performances of
different methods. We assume that the array receives signals
emitted by two incoherent far-field sources. &e DOAs and
operating frequencies of the signals are (θ1, f1) = (15°, 1MHz)
and (θ2, f2) = (40°, 2.1MHz). We set d= 50m, K= 2, P= 2,
N= 400, andM= 12. &e range of the SNR is from −15 dB to
15 dB (step: 2 dB), and the RMSEs of the Cramer–Rao lower
bound (CRLB), the PM, the CR-PM, the ESPRIT method
[16], the improved ESPRIT method [20], and the method
proposed in this paper with respect to the frequency and
DOA estimations are shown in Figures 16 and 17,
respectively.

To quantitatively illustrate, under the condition of a low
SNR, compared with the improved ESPRITmethod [20], the
estimate improvement of themethod proposed in this paper,
we define the relative improvement ratio as

ratiofrequency � 1 −
RMSEfrequency(CR − ESPRIT)

RMSEfrequency(Improved ESPRIT)
× 100%, (35)

ratioDOA � 1 −
RMSEDOA(CR − ESPRIT)

RMSEDOA(Improved ESPRIT)
× 100%. (36)

According to the definitions of equations (35) and (36),
we show the relative improvement ratio in Figures 18
and 19.

As shown in Figures 16 and 17, when the SNR is within
the range of −15 dB to 15 dB (in steps of 2 dB), the estimation
accuracy of the proposed method is better than that of the
PM, the CR-PM, the ESPRITmethod [16], and the improved
ESPRIT method [20] in terms of both the DOA and fre-
quency. Among them, the ESPRIT method has extremely

poor angle estimation accuracy since it cannot automatically
pair parameters.

As shown in Figures 18 and 19, when SNR=−15 dB to
−1 dB, compared with the improved ESPRIT method, the
estimation accuracy of the proposed method is greatly
improved. In particular, when SNR=−15 dB, compared
with the improved ESPRIT method, the frequency estima-
tion accuracy of the method proposed in this paper is an
approximately 25.50% improvement; the DOA estimation
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Figure 13: &e identification ability of the proposed method.
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accuracy of the method proposed in this paper is an ap-
proximately 31.95% improvement. However, when
SNR=−1 dB to 15 dB, the relative improvement ratio
fluctuates around zero. &is result illustrates that the esti-
mation accuracy of the proposed method is almost the same
as that of the improved ESPRITmethod. For fluctuation, we
surmise that the reason for this phenomenon may be the
result of too few simulations in this paper.

In summary, a comprehensive analysis of Figures 16–19
shows that the estimation accuracy of the proposed method
is improved over that of the PM, the CR-PM, the ESPRIT

method, and the improved ESPRIT method. &e results
further verify that the method proposed in this paper has
good anti-noise performance and stability under different
SNRs. &erefore, compared to the PM, the CR-PM, the
ESPRIT method, and the improved ESPRIT method, the
method proposed in this paper is more suitable for use in a
complex electromagnetic environment.
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Figure 14: Parameter estimation for array element position
deviation.
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4. Conclusions

For linear arrays, this paper proposes a joint angle and
frequency estimation method based on CR-ESPRIT.We first
preprocess the received signal by taking full advantage of the
conjugate information contained in the originally received
data, and we reconstruct a new total covariance matrix.
&en, we use the LS-ESPRIT algorithm to estimate the
frequency parameter. According to the unique relationship
between angles and frequencies, we estimate the DOAs
based on the reconstructed received signal. &e complexity
of the method proposed in this paper is almost the same as
that of the ESPRIT and the improved ESPRIT. Numerical
simulations and comparisons with the PM, the CR-PM, the
ESPRIT method, and the improved ESPRIT method prove
the superiority of the proposed method. In a real space
environment, under the condition of a uniform or a

nonuniform array, this method can realize the automatic
pairing of the estimated DOAs and frequencies of radiation
source signals without an additional parameter pairing
process. Moreover, this method has high accuracy and
strong anti-noise performance when conducting parameter
estimation.
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A low complexity unitary estimating signal parameter via rotational invariance techniques (ESPRIT) algorithm is presented for
angle estimation in bistatic multiple-input-multiple-output (MIMO) radar. 'e devised algorithm only requires calculating two
submatrices covariance matrix, which reduces the computation cost in comparison with subspace methods. Moreover, the signal
subspace can be efficiently acquired by exploiting the NystrÖm method, which only needs O(MNK2) flops. 'us, the presented
algorithm has an essentially diminished computational effort, especially useful when K≪MN, while it can achieve efficient angle
estimation accuracy as well as the existing algorithms. Several theoretical analysis and simulation results are provided to
demonstrate the usefulness of the proposed scheme.

1. Introduction

Target estimation has been a significant problem in radar
systems, which has been applied in widespread in sonar,
guidance systems, speech processing, communication, med-
ical signal processing, and other fields [1–3]. In recent years,
considerable research interests have been drawn to MIMO
radar [4–13], which exploits multiple antennas to emit diverse
waveforms and utilizes multiple antennas to receive the echo
signals [14]. 'is leads to its more underlying benefits over
phased-array radar [15–17] (e.g., enhancing the spatial res-
olution, fading effect overcoming, and enhancing the pa-
rameter identifiability). MIMO radar can be regarded as an
expansion of the phased-array radar, where the exploited
waveforms are effectively independent [18]. Generally,MIMO
radars can be divided into two types, the collocated MIMO
radar and the statistical MIMO radar, based on the different
array antenna configurations [19]. Furthermore, the collo-
cated MIMO radars are categorised into two types, namely,
themonostaticMIMO radar and themultistaticMIMO radar.
Due to the fact that the emitting and receiving antennas are
not in the identical location, the DOD and DOA estimation

has become a considerable research matter [4, 18–21]. In our
work, we mainly focus on the DOD and DOA estimation
issue in the bistatic MIMO radar.

According to the recent researches, several algorithms
[4–10] have been proposed for estimation angle in the
bistatic MIMO radar. In [4], the reduced-dimension mul-
tiple signal classification (MUSIC) algorithm that uses one-
dimensional search is presented to angle estimation, which
achieves high angle estimation accuracy in comparison with
Capon algorithm [20]. In [5], the Capon algorithm is ex-
tended to DOD and DOA estimation, which has heavy
computational complexity for requiring two-dimensional
angle search. Moreover, the technique is subjected to some
performance degradations for the proximate receiving
steering vector. Besides, the estimation of angles needs peak
searching with computational intensive. 'e root-MUSIC
algorithm [6] without peak searching is presented by uti-
lizing polynomial rooting technique to reduce the compu-
tational cost. In [7], the ESPRIT technique that uses the
invariance technique of both the transmitting array and the
receiving array is presented to estimate angle in the bistatic
MIMO radar. However, the algorithm requires the pairing
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operation. In [8], to address the problem of automatic
pairing, a combination ESPRIT-MUSIC algorithm is de-
veloped, which provides beneficial angle accuracy. In [9], a
unitary ESRPIT technique that exploits the real-valued
processing is devised for estimating angle in the bistatic
MIMO radar, which has high estimation precision. In [10],
the maximum likelihood algorithm is presented for direc-
tion finding estimation in MIMO radar. In [22], the novel
joint angle estimation method is proposed by using tensor
decomposition in the nested bistatic MIMO radar. More-
over, various methods are introduced for bistatic MIMO
radar in [23–25]. However, the abovementioned algorithms
have a large amount of computation since they require the
calculation of sample covariance matrix (SCM) and its ei-
genvalue decomposition (EVD) to obtain the noise subspace
or signal noise, especially for large MIMO radar array and a
great deal of snapshots scenarios. In order to tackle this
serious problem, a computationally efficient algorithm is
devised for direction estimation in this work. Unlike the
existing algorithms [4–10], the presented algorithm only
requires to compute two submatrices of the SCM, which
avoids calculating of SCM and its EVD by exploiting the
NystrÖm technique. 'e proposed method can be also
applied in the nonuniform linear array, L-shape array, and
uniform circular array for angle estimation. 'e NystrÖm
method has been extensively applied in speed up methods
[26, 27] and is first utilized by Williams and Seeger [27] for
sparsifying kernel matrices. By exploiting the NystrÖm
method [28, 29], we extend the previous work [30] and
develop a low complexity unitary ESPRIT algorithm which
not only has high angle estimation precision but also obtains
light computational cost, especially in large MIMO radar
array scenario. In this paper, we derive a new powerful
unitary ESPRIT approach, which exhibits many benefits as
follows: (a) it has much lower computational cost than that
of the ESRPIT and unitary ESPRIT methods; (b) it enjoys
higher angle estimation precision than the ESPRIT algo-
rithm; (c) it is suitable for direction finding estimation of
large MIMO radar array. 'e benefits of the presented al-
gorithm are shown by some simulation experiments.

2. Data Model

In this paper, we think about a bistatic MIMO radar system
(Figure 1) constituted of M-transmitting antenna array and
N-receiving antenna array, both of which are half-wave-
length spaced uniform linear arrays [7–9]. Assume that there
exist P noncoherent targets located in the same range bin.
'e DOD and DOA of the pth target relative to the
transmitting array normal and the receiving array normal
are denoted by θp and ϕp (p � 1, 2, . . . , P), respectively.
'us, the signal model can be given as [7, 8]

y(t) � As(t) + n(t), (1)

where A � [a1, a2, . . . , aP] denotes an MN × P matrix
consisting of the P steering vectors and ap � ar(ϕp)⊗ at(θp)

illustrates the Kronecker product of the receiving array
steering vector and the transmitting array steering vector for

the pth source. ar(ϕp) and at(θp) are respectively rewritten
as

ar ϕp􏼐 􏼑 � 1, exp jπvp􏼐 􏼑, . . . , exp jπ(N − 1)vp􏼐 􏼑􏽨 􏽩
T

,

at θp􏼐 􏼑 � 1, exp jπup􏼐 􏼑, . . . , exp jπ(M − 1)up􏼐 􏼑􏽨 􏽩
T
,

(2)

and up � sin θp, vp � sinϕp, where ϕp and θp represent the
DOA and DOD, respectively.
s(t) � [s1(t), s2(t), . . . , sP(t)]T is a column vector, in which
sp(t) � αpej2πfdpt denotes the envelope of the reflected signal
with αp being the amplitude containing the reflection co-
efficients and path losses and so on [7–9]. n(t) denotes an
MN × 1 complex Gaussian white noise vector with zero
mean and covariance matrix σ2IMN.

3. NystrÖm Method-Based Unitary ESPRIT for
Angle Estimation

3.1. Real-Valued Processing. In order to reduce computa-
tional complexity, we have to transform the complex data to
real data by matrix method since the array, the received data,
is complex data. Let Y be represented as the data matrix
consisting of L snapshots y(tl), 1≤ l≤ L.'e augmented data
matrix is defined as Z � [YΠMNY∗ΠL], where ΠMN rep-
resents the exchange matrix including J ones on its anti-
diagonal and zeros elsewhere.'en, the real-valuedmatrix is
expressed as [9, 11]

Γ � QH
MNZQ2L, (3)

where QJ signifies sparse unitary matrix, expressed as

Q2J �
1
�
2

√
IJ jIJ

ΠJ −jΠJ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

Q2J+1 �
1
�
2

√

IJ 0 jIJ

0T
�
2

√
0T

ΠJ 0 −jΠJ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4)

3.2. Signal Subspace Estimation. To use the NystrÖm
technique [27, 28] for estimating angle, we disintegrate the
matrix Γ as follows [30]:

1 2
Transmitter arrays Receiver arrays

M

Target

θ
ϕ

1 2 N

Figure 1: Radar configuration.
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Γ �
Γ1
Γ2

􏼢 􏼣, (5)

where Γ1 ∈ RK×L and Γ2 ∈ R(MN− K)×L are the real-valued
submatrices received by the first K antenna and the rest of
the (MN − K) antennas, respectively. We define

R11 � E Γ1Γ
H
1􏽨 􏽩,

R21 � E Γ2Γ
H
1􏽨 􏽩.

(6)

Moreover, we must ensure that R11 denotes full rank
matrix where K satisfies K | P≤K≤min(MN, L){ },
K � 1, 2, . . . , MN. It is noted that K has not been required to
ascend substantially with MN. For instance, when MN

grows from 10 to 30, a relatively little K, such as K � 12, is
sufficient to insure estimating precision, which also reduces
the computational complexity.

Suppose that the EVD of R11 is U11Λ11UH
11, where

U11 ∈ CK×K denotes the eigenvector matrix and Λ11 rep-
resents the diagonal matrix. Defining U21 ≜R21U11Λ−1

11 , we
can constitute a new matrix as follows [30]:

U≜
U11

U21
􏼢 􏼣. (7)

'en, according to the results from the remark, we can
obtain the signal subspace without the computation of SCM
and its EVD.

Remark 1 (see [30]). Suppose that the EVD of GHG is
UGΛGUH

G and G � UΛ1/211 , where ΛG � diag [λG1, . . . , λGK]

denotes the eigenvaluematrix with λG1 ≥ · · · ≥ λGK andUG �

[uG1, . . . , uGK] represents the corresponding eigenvector
matrix with uGi(i � 1, . . . , K) being the ith eigenvector.
'en, the signal subspace is constructed by the first P

column vectors of Π as follows:

span Es􏼈 􏼉 � span A{ }, (8)

where Es ≜Π(: , 1: P) andΠ � GUG.

3.3. Angle Estimation. 'en, according to the unitary ES-
PRITalgorithm [9, 11], the real-valued invariance relation is
described as follows:

Fθ2dp � tan
πup

2
􏼒 􏼓Fθ1dp, (9)

where Fθ1 � Re QH
(M−1)N diagN Jθ2􏽮 􏽯QMN􏽮 􏽯 and Fθ2 � Im

QH
(M−1)Ndiag

N Jθ2􏽮 􏽯QMN􏽮 􏽯 denote real-valued matrix, re-
spectively, and Jθ2 is defined in [9, 11]. dp � QH

MNap denotes a

steering vector that is real-valued. 'us, Fθ2Es � Fθ1EsΨθ
represents the real-valued invariance equation for the
transmitter array where Ψθ � T−1ΦθT and
Φθ � diag[tan(πu1/2), tan(πu1/2), . . . , tan(πup/2)] sig-
nifies a real-valued diagonal matrix whose diagonal elements
include information of estimating DOD [9, 11]. In the re-
ceiving array, similarly, the real-valued invariance equation
is constructed by

Fϕ2Es � Fϕ1EsΨϕ, (10)

where Fϕ1 � Re QH
(M−1)NJ

ϕ
2QMN􏽮 􏽯 and Fϕ2 � Im QH

(M−1)N􏽮

Jϕ2QMN}, Jϕ1 � [IM(N−1)×M(N−1)0M(N−1)×M] and Jϕ2 � [0M

(N − 1) × MIM(N−1)×M(N−1)], Ψϕ � T−1ΦϕT, Φϕ � diag[tan
(πv1/2), tan(πv2/2), . . . , tan(πvp/2)], and T stands for a
nonsingular matrix. Φθ represents a real-valued diagonal
matrix whose diagonal elements include information of
estimating DOA. 'en, Ψθ + jΨφ is described as [9, 11]

Ψθ + jΨφ � T−1 Ψθ + jΨ􏼈 􏼉T. (11)

'en, the DODs and DOAs can be estimated by

􏽢θp � arcsin 2 arctan
Φθ􏼂 􏼃pp􏼐 􏼑

π
⎧⎨

⎩

⎫⎬

⎭, p � 1, . . . , P,

􏽢ϕp � arcsin 2 arctan
Φϕ􏽨 􏽩

pp
􏼒 􏼓

π

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, p � 1, . . . , P.

(12)

4. Computational Complexity and Cramér-Rao
Bound (CRB)

'e presented technique does not need utilizing the whole
SCM. Instead, it requires calculating R11 and R21 which need
O(LK2) and O(MNLK − LK2) flops, respectively. Mean-
while, the signal subspace is constructed by exploiting the
NystrÖm approach, where the computational complexity is
O(MNK2). 'us, the presented method requires
O(MNLK + MNK2). However, the classical unitary ES-
PRITand ESPRITalgorithms need O((M2N2L + M3N3)/4)

and O(M2N2L + M3N3) flops, respectively, which are much
higher than O(MNLK + MNK2) flops on condition that
K≪ min(MN, L). Furthermore, referring to [11], we use
CRB in simulation as follows:

CRB �
σ2

2L
Re DHΠ⊥A ⊙ 􏽢PT

w􏼔 􏼕􏼚 􏼛
−1

, (13)

where
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D �
za1
zθ1

,
za2
zθ2

, . . . ,
zak

zθk

,
za1
zϕ1

,
za2
zϕ2

, . . . ,
zak

zϕk

􏼢 􏼣,

Π⊥A � IMN − A AHA􏼐 􏼑
−1
AH

,

􏽢Pw �

􏽢Ps
􏽢Ps

􏽢Ps
􏽢Ps

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

􏽢Ps �
1
L

􏽘

L

t�1
s(t)sH

(t).

(14)

5. Simulation Results

In this installment, a vast number of computer simulations
are demonstrated to prove the effectiveness of the proposed
technique. We compare performance of the estimating angle
of the presented method with the ESPRITalgorithms [7] and
unitary ESPRIT [9] and present their computational com-
plexity analysis. In the following simulation experiments,
200 Monte-Carlo iterations are adopted for the bistatic
MIMO radar in the experiments.We suppose that there exist
three noncoherent targets and their location is at angles
(θ1,ϕ1) � (10°, 20°), (θ2, ϕ2) � (−8°, 30°), and
(θ3,ϕ3) � (0°, 45°), respectively. 'e root mean squared
error (RMSE) of over angle [9] is exploited in the simulation
experiments.

Figures 2 and 3 describe the angle estimation paired
results of the presented scheme with SNR� 10 dB and
SNR� 10 dB, respectively. It can be shown that the transmit
angles (DODs) and receive angles (DOAs) can be clearly
seen. Figure 3 also implies that the presented scheme can
efficiently estimate angle of the targets in low SNR scenario.

Figures 4 and 5 demonstrate performance comparison of
the estimating angle with M � 8, N � 6 and M � 6, N � 6,
respectively. We compare the presented technique with the
ESPRIT and the unitary ESPRIT methods. Figures 4 and 5
demonstrate that the proposed algorithm has much better
estimation precision than the ESPRIT method and enjoys
high estimation precision that is almost the same as the
unitary ESPRIT scheme at high SNR range. However, the
presented algorithm is somewhat inferior to the unitary
ESPRIT scheme at the low SNR scenario.

Figures 6–9 show performance comparison of estima-
tion of the presented technique with L � 50 and L � 100 for
different M/N, respectively. From Figures 6–9, we can find
that the angle estimation precision of the presented scheme
is significantly enhanced with the number of transmitting
array elements/receiving array elements increasing. Multiple
receiving/transmitting array elements enhance estimation
precision owing to diversity gain.

Figures 10 and 11 illustrate estimation precision
comparison of the presented technique with M � 6 and
N � 6 for different values of L, respectively. As shown in
Figures 10 and 11, the estimation precision of the presented
technique is boosted with L increasing. Meanwhile, Fig-
ure 10 also indicates that the presented method has
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Figure 2: Paired results with SNR� 10 dB, M � 8, N � 6, and
L � 200.
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Figure 3: Paired results with SNR� 5 dB, M � 8, N � 6, and
L � 200.
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Figure 4: RMSE with M � 8, N � 6, and L � 50.
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Figure 6: RMSE with L � 50 and different M.
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Figure 5: RMSE with M � 6, N � 6, and L � 50.
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Figure 8: RMSE with L � 50 and different N.
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Figure 7: RMSE with L � 100 and different M.
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Figure 9: RMSE with L � 100 and different N.
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Figure 10: RMSE with M � 6, N � 6, and different L.
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Figure 11: RMSE with M � 6, N � 6, and different L.
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Figure 12: Complexity comparison with L � 200.
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Figure 13: Complexity comparison with L � 400.
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beneficial estimation precision at small number of snap-
shots scenario.

Figures 12–14 illustrate the complexity comparison with
K � 5, 10, 15, where we can find the proposed algorithm has
much less computational cost in comparison with the ES-
PRIT and the unitary ESPRIT schemes, particularly when
M � N becomes larger.

Figure 15 and Table 1 describe the runtime of the three
ESPRITschemes.'ey depict the average CPU time required
to calculate each ESPRIT approach on the personal com-
puter with Intel(R) core(TM) 2 Duo CPU T3700 processor.
We can clearly observe that the presented approach is much
more computationally effective than the existing schemes,
especially when M � N becomes bigger.

6. Conclusion

In this paper, we have developed a low complexity unitary
ESPRIT method for estimating angle in the bistatic MIMO
radar. Compared with the existing unitary ESPRIT and
ESPRIT algorithms which require O((M2N2L + M3N3)/4)

and O(M2N2L + M3N3) flops, respectively, our approach
only needs O(2MNLK + MNK2) flops, thereby beingmuch
more computationally effective, especially for the case of a
large MIMO radar array. Moreover, extensive simulation
results demonstrate that the estimation precision of the
presented scheme is much higher by comparison with the
ESPRIT method and very similar to the unitary ESPRIT
algorithm. In the future research, the presented technique
can be extended to a different application such as estimating
angle in the monostatic MIMO radar.
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approximating a gram matrix for improved kernel-based
learning,” Journal of Machine Learning Research, vol. 6,
pp. 2153–2175, 2005.

[27] C. K. I. Williams and M. Seeger, “Using the NystrÖm method
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(e ultra-wideband (UWB) system, which transmits information using nanosecond or even sub-nanosecond pulses, has been
widely applied in precise positioning. In this paper, we investigate the problem of the time of arrival (TOA) estimation and the
direction of arrival (DOA) estimation in the UWB systems with antenna array and propose a joint TOA and DOA estimation
algorithm with doubled frequency sample points and extended number of clusters. Specifically, the proposed algorithm uses two
antennas to receive impinging signals and utilizes the conjugate symmetry characteristic of the delaymatrices to extend the sample
points as well as the number of clusters. Moreover, in order to obtain TOA estimates with low computational complexity, the
proposed algorithm transforms the two-dimensional (2D) spectral search to one-dimensional (1D) searches. (e DOA estimates
can then be achieved by using the TOA estimation results and the geometric information. Simulation results are given to testify the
performance of the proposed algorithm.

1. Introduction

(e ultra-wideband (UWB) technique is a kind of wireless
communication technology which uses nanosecond or even
sub-nanosecond pulses as carrier to transmit information.
Benefiting from the high transmission rate, low power
consumption, and the anti-multipath characteristics, the
UWB system has been widely applied in various fields such
as radar, imaging, and positioning [1–3]. Due to the ex-
tremely narrow pulse, the positioning precision of the UWB
system can reach centimeter level or even millimeter level.
Even under complex multipath conditions such as indoor
environment, the UWB system can still achieve accurate
positioning due to its strong anti-multipath and penetration
ability [4–6]. At present, IEEE 802.15.4a standard has taken
UWB as the preferred technology for positioning application
[7].

One of the basic problems in the UWB positioning
system is the time of arrival (TOA) estimation. TOA

estimation algorithms can be divided into two categories:
one is the traditional algorithms based on the time domain,
and the other is the high-resolution algorithms based on the
frequency domain. (e former mainly includes the coherent
detection method using pulse template matched filter [8]
and the incoherent TOA estimation algorithm based on
threshold or energy detection [9–11]. (e coherent algo-
rithm based on matched filter can obtain TOA estimates
with high accuracy but at the same time with high sampling
rate, complex receiver structure, and expensive equipment
cost. (e incoherent TOA estimation algorithm has the
advantages of low sampling rate, fast convergence speed, and
low hardware resource occupation rate. However, the low
sampling rate leads to low time resolution, which reduces the
accuracy of the TOA estimation. (e traditional time-do-
main-based algorithms obtain TOA estimates by estimating
the arrival time of the direct path (DP) component in the
received signal. However, due to the multipath effect and the
nonline-of-sight (NLOS) condition, DP may not be the
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strongest path; thus the algorithm resolution declines.
(erefore, super-resolution estimation algorithms based on
frequency-domain processing are proposed [12–18]. (ese
algorithms, such as the multiple signal classification (MUSIC)
algorithm [12, 13], the propagator method (PM) [14], the
estimation of signal parameters via rotational invariance
techniques (ESPRIT) algorithm [15, 16], and thematrix pencil
algorithm [17, 18], model the channel impulse response in
frequency domain and realize the TOA estimation using the
orthogonality between the signal subspace and the noise
subspace, which can achieve high estimation resolution.

Researches on DOA estimation in UWB systems were
also done. Since the UWB system has high time resolution,
some joint TOA and DOA estimation algorithms were
proposed. (e matrix pencil algorithm was applied to the
joint estimation in [19]. In [20], the rough TOA estimates
were obtained via energy estimation and the minimum
distance criterion, the accurate estimates were then achieved
by a low-complexity and high-resolution method based on
the signal power delay spectrum, and the DOA estimates
were finally obtained by the minimum-variance unbiased
estimation using the TOA estimation results. Besides, the
electromagnetic vector sensor (EMVS) with multiple-input
multiple-output (MIMO) radar [21] also has the potential to
be exploited in the UWB systems.

In this paper, we investigate the problem of joint TOA
and DOA estimation in UWB systems and propose a
computationally efficient algorithm. Specifically, the pro-
posed algorithm uses two antennas to receive impinging
signals and utilizes the conjugate symmetry characteristic of
the delay matrices to double the equivalent frequency sample
points and extend the number of clusters. Moreover, to
obtain TOA estimates with low computational complexity,
the proposed algorithm transforms the two-dimensional
(2D) spectral search to one-dimensional (1D) searches. (e
DOA estimates can then be achieved by using the TOA
estimation results and the geometric information. (e main
contributions of this paper are summarized as follows:

(1) We propose an effective algorithm for UWB systems
to jointly obtain the DOA and TOA estimation
results.

(2) We transform the time-consuming 2D spectral
search to twice 1D searches in order to release the
computational burden.

(3) (e proposed algorithm can obtain high estimation
accuracy due to the doubled sample points and the
extended number of clusters.

(e rest of this paper is organized as follows: Section 2
introduces the data model of the UWB system.(e proposed
joint TOA and DOA estimation algorithm is derived in
Section 3. Section 4 then analyses the estimation perfor-
mance of the proposed algorithm and Section 5 gives the
simulation results to testify the algorithm effectiveness.
Finally, Section 6 concludes this paper.

Notation 1. In this paper, we use upper (lower) bold char-
acters to represent matrices (vectors). (·)∗, (·)T, and (·)H,

respectively, denote the operation of conjugate, transpose,
and conjugate transpose. ∗ denotes the convolution oper-
ation, and ⊗ denotes the Kronecker product. A(:, m: n)

generates a new matrix consisted by the m-th to the n-th
columns of the matrix A. E ·{ } represents the expectation
operation. IM stands for an M × M identity matrix.

2. Data Model

2.1. Transmit Signals of UWB Systems. In this paper, we
utilize the second derivation of the Gaussian pulse as the
UWB transmit signal and modulate it with the direct se-
quence binary phase shift keying (DS-BPSK). (e transmit
signal of the UWB system can then be expressed as [22]

s(t) � 􏽘
+∞

c�−∞
􏽘

Nc−1

n�0
bccnp t − cTs − nTc( 􏼁, (1)

where bc ∈ −1, +1{ } is the modulated binary data symbol
sequence, cn ∈ −1, +1{ } is the pseudorandom sequence used
to realize the multiple access communication, Tc denotes the
repeat period of the pulse, Ts represents the period of the
binary data symbol, and Nc is the pulse repetition times of a
single binary data symbol. (e term p(t) is the second
derivation of the Gaussian pulse and can be further
expressed as

p(t) � e
− 2πt2/Γ2( ) 1 − 4πt

2/Γ2􏼐 􏼑􏼐 􏼑, (2)

where Γ is the pulse forming factor related to the pulse width.

2.2. Channel Model of UWB Systems. According to the
Saleh–Valenzuela (SV) model [23], we consider that the
transmit signal produces multiple multipath components
after passing through the channel, and these multipath
components arrive at the receiver in the form of clusters.
Specifically, we assume there are K clusters and L multipath
per cluster in the UWB channel, then the channel impulse
response of the kth cluster is given by

h
(k)

(t) � 􏽘
L

l�1
α(k)

l e
jθ(k)

l δ t − τ(k)
l􏼐 􏼑, (3)

where α(k)
l is the channel fading factor of the lth path in the

kth cluster, which obeys the Rayleigh distribution. θ(k)
l

distributes uniformly in the range [0, 2π], δ(·) is the Dirac
function, and τ(k)

l is the channel delay of the lth path in the kth
cluster. Normally, the change rate of the channel is slow
compared with the pulse speed of the transmit signal; hence we
have τ(k)

l � τl. Define β(k)
l � α(k)

l ejθ(k)

l to denote the random
complex fading amplitude, then (3) can be rewritten as

h
(k)

(t) � 􏽘
L

l�1
β(k)

l δ t − τl( 􏼁. (4)

2.3. Received Signals ofUWBSystems. According to the basic
theory of the digital signal processing, the received signal of
the kth cluster in the time domain can be expressed as [23]
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y
(k)

(t) � s(t)∗ h
(k)

(t) + w
(k)

(t)

� 􏽘
L

l�1
􏽘

+∞

c�−∞
􏽘

Nc−1

n�1
β(k)

l bccnp t − cTs − nTc − τl( 􏼁 + w
(k)

(t),

(5)

where w(k)(t) is the additive Gaussian white noise of the kth
cluster. Transform (5) into frequency domain, i.e.,

Y
(k)

(ω) � S(ω)H
(k)

(ω) + W
(k)

(ω)

� 􏽘
L

l�1
β(k)

l S(ω)e
− jωτl + W

(k)
(ω),

(6)

where Y(k)(ω), S(ω), H(k)(ω), and W(k)(ω), respectively,
represent the Fourier transformation of y(k)(t), s(t), h(k)(t),
and w(k)(t). Subsequently, by sampling N (N> L) points
with interval Δω � (2π/N) in the frequency domain, we can
obtain the measurement data vector as [23]

yk � SE(τ)βk + wk, (7)

where vector yk � [Y(k)(ω0), . . . , Y(k)(ωN− 1)]
T with ωn �

nΔω (n � 0, 1, . . . , N − 1). S � diag S(ω0), . . . , S(ωN−1)􏼈 􏼉 is
an N × N diagonal matrix. E(τ) � [e(τ1), e(τ2), . . . , , e(τL)]

is the delay matrix which contains the information of the
signal multipath delay, where e(τi) � [1, e− jΔωτi , . . . ,

e− j(N− 1)Δωτi ]T. Moreover, βk � [β(k)
1 , β(k)

2 , . . . , β(k)
L ]T con-

tains the complex channel fading factor of the kth cluster
and wk � [W(k)(ω0), W(k)(ω1), . . . , W(k)(ωN− 1)]

T is the
observe vector of the noise.

In this paper, we use two array antennas to receive the
impinging signals. As shown in Figure 1, we assume there
are L far-field signals from direction θ1, θ2, . . . , θL􏼈 􏼉. (e
TOA of the two antennas is τ � [τ1, τ2, . . . , τL] and
ς � [ς1, ς2, . . . , ςL], respectively. (e distance between the
two antennas is d, and c denotes the light speed. According
to (7), the received signal of the two antennas in the fre-
quency domain can be expressed as [23]

Y1 � SE1(τ)B + W1,

Y2 � SE2(ς)B + W2,
(8)

where B � β1 β2 . . . βK􏼂 􏼃, W1 � w(1)
1 w(1)

2 . . . w(1)
K

􏽨 􏽩,
and W2 � w(2)

1 w(2)
2 . . . w(2)

K
􏽨 􏽩. E1(τ) and E2(ς) are the

delay matrices of the two antennas, respectively, which can
be expressed as

E1(τ) � e1 τ1( 􏼁 e1 τ2( 􏼁 . . . e1 τL( 􏼁􏼂 􏼃

�

1 1 · · · 1

e
− jΔωτ1 e

− jΔωτ2 · · · e
− jΔωτL

⋮ ⋮ ⋱ ⋮

e
− j(N− 1)Δωτ1 e

− j(N− 1)Δωτ2 · · · e
− j(N− 1)ΔωτL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(9)

E2(ς) � e2 ς1( 􏼁 e2 ς2( 􏼁 . . . e2 ςL( 􏼁􏼂 􏼃

�

1 1 · · · 1
e

− jΔως1 e
− jΔως2 · · · e

− jΔωςL

⋮ ⋮ ⋱ ⋮
e

− j(N− 1)Δως1 e
− j(N− 1)Δως2 · · · e

− j(N− 1)ΔωςL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10)

(e estimation of the two channel impulse responses in
the frequency domain can be achieved by

􏽢H1 �
Y1

S
� E1(τ)B + V1,

􏽢H2 �
Y2

S
� E2(ς)B + V2,

(11)

where V1 � (W1/S) and V2 � (W2/S). In the next section,
we propose a joint TOA and DOA estimation algorithm
utilizing the channel impulse response 􏽢H1 and 􏽢H2.

3. Proposed Algorithm

3.1. Sample Points and Clusters Extension. (e cross-corre-
lation matrix of the channel impulse response can be
constructed as

RH � E H1H
H
2􏽮 􏽯 ≈ E1(τ)RBE

H
2 (ς), (12)

where RB � E BBH􏼈 􏼉 ∈ CL×L is a diagonal matrix. We divide
the cross-correlation matrix RH ∈ CN×N into two N × (N −

1) matrices, i.e.,

X1 � RH(:, 1: N − 1) � E1(τ)RBE
H
2a(ς), (13)

X2 � RH(:, 2: N) � E1(τ)RBE
H
2b(ς), (14)

where X1 and X2 consist of the first and the last N − 1
columns of RH and E2a(ς) and E2b(ς) consist of the first and
the last N − 1 rows of E2(ς). According to the form of the
delay matrix, we have

E2b(ς) � E2a(ς)Ψ(ς), (15)

where Ψ(ς) is an L × L diagonal matrix given by

Ψ(ς) �

e
− jΔως1

e
− jΔως2

⋱

e
− jΔωςL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

According to (9) and (10), the two delay matrices of the
two antennas are Vandermonde matrices and have the
characteristic of conjugate symmetry, i.e.,

c (τ – ϛ)

θ

d

Antenna 1 Antenna 2

θ

Figure 1: Array model.
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JNE
∗
1(τ) � E1(τ) 􏽥Φ(τ),

JNE
∗
2(ς) � E2(ς) 􏽥Φ(ς),

(17)

where JN ∈ CN×N is the antidiagonal matrix, and the ro-
tation matrices 􏽥Φ(τ) and 􏽥Φ(ς) are, respectively, given by

􏽥Φ(τ) �

e
− jΔωτ1

e
− jΔωτ2

e
− jΔωτL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽥Φ(ς) �

e
− jΔως1

e
− jΔως2

e
− jΔωςL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)

By utilizing the above properties of the delay matrices,
we can construct a new matrix using X1 and X2 as

X �
X1, JNX

∗
2

X2, JNX
∗
1

⎡⎣ ⎤⎦ � Ee(τ, ς)Be(τ, ς), (19)

where

Ee(τ, ς) �
E1(τ)

E1(τ)Ψ∗(ς)
􏼢 􏼣 ∈ C2N×L

,

Be(τ, ς) � RBE
H
2a(ς) 􏽥Φ(τ)RBΨ(ς)ET

2a(ς)􏽨 􏽩 ∈ CL×2(N− 1)
.

(20)

Equation (19) can be seen as the equivalent channel
impulse response with doubled sample points and increased
number of clusters, which can improve the maximum
number of detectable signals as well as the estimation
performance.

3.2. Reduced-Dimension TOA Estimation. (e correlation
matrix of the extended observation matrix X can be con-
structed as RX � XXH. By applying the eigenvalue de-
composition, the correlation matrix can be decomposed as

RX � UsΛsU
H
s + UvΛvU

H
v , (21)

where Us and Uv are the signal subspace and the noise
subspace, respectively, and Λs � diag λ1 λ2 . . . λL􏼈 􏼉 and
Λv � diag λL+1 λL+2 . . . λ2N􏼈 􏼉 are diagonal matrices con-
sisting of the largest L eigenvalues and the smallest 2N − L

eigenvalues of RX.
Similar to the classical MUSIC algorithm, we can con-

struct the 2D-MUSIC spectrum as

f2 D(τ, ς) �
1

eH
e (τ, ς)UvU

H
v ee(τ, ς)

, (22)

where

ee(τ, ς) �
e1(τ)

e1(τ)e
jΔως􏼢 􏼣. (23)

Apparently, (22) needs time-consuming 2D spectral
search to obtain TOA estimates. Aiming to reduce the
computational complexity, we split ee(τ, ς) as

ee(τ, ς) �
1

e
jΔως􏼢 􏼣⊗ e1(τ) � I2 ⊗ e1(τ)( 􏼁q(ς), (24)

where q(ς) � [1, ejΔως]T. Substituting (24) into (23), the
spectrum function can be rewritten as

f2 D(τ, ς) �
1

qH
(ς)F(τ)q(ς)

, (25)

where F(τ) � (I2 ⊗ e1(τ))HUvUH
v (I2 ⊗ e1(τ)) and the vector

q(ς) satisfies uHq(ς) � 1 with u � [1, 0]T. Equation (25) can
be regarded as the following optimization problem:

min
τ,ς

qH
(ς)F(τ)q(ς)

s.t.uHq(ς) � 1.

(26)

According to (26), we can construct the cost function as

L(τ, ς) � qH
(ς)F(τ)q(ς) − ρ uHq(ς) − 1􏼐 􏼑, (27)

where ρ is a constant value. In order to get the extremum, we
can construct the partial derivation of L(τ, ς) with respect to
q(ς), i.e.,

zL(τ, ς)
zq(ς)

� 2F(τ)q(ς) + ρu � 0. (28)

(us, we have q(ς) � μF−1(τ)u with μ � −0.5ρ. Con-
sidering uHq(ς) � 1, the constant μ can be further expressed
as

μ �
1

uHF−1
(τ)u

. (29)

(erefore, the vector q(ς) can be further transformed
into

q(ς) �
F−1

(τ)u
uHF−1

(τ)u
. (30)

Substituting (30) into (26), then the TOA estimation
result of the first antenna is given by

􏽢τ � argmin
τ

1
uHF− 1

(τ)u
� argmax

τ
uHF−1

(τ)u, (31)

which means we can get the TOA estimation of the
first antenna by a 1D spectral search with the spectral
function

f(τ) � uH I2 ⊗ e1(τ)( 􏼁
HUvU

H
v I2 ⊗ e1(τ)( 􏼁􏼐 􏼑

−1
u. (32)

Similarly, in order to obtain the TOA estimates of
the second antenna, we can exchange the order of H1
and H2 when constructing the cross-correlation matrix,
i.e.,

RH � E H2H
H
1􏽮 􏽯 ≈ E2(ς)RBE

H
1 (τ). (33)
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(en, by following the same procedures described above,
the 1D spectral function with respect to the TOA of the
second antenna is given by

f(ς) � uH I2 ⊗ e2(ς)( 􏼁
HUvU

H
v I2 ⊗ e2(ς)( 􏼁􏼐 􏼑

−1
u. (34)

After obtaining the TOA estimates of both antennas,
we can estimate the DOA of the impinging signals by
using the TOA estimates as well as the geometric infor-
mation, i.e.,

􏽢θl � arcsin
c 􏽢τl − 􏽢ςl( 􏼁

d
􏼠 􏼡, l � 1, 2, . . . , L. (35)

(e main steps of the proposed algorithm are summa-
rized as follows:

(1) Construct the cross-correlation matrix RH according
to (12).

(2) Divide RH into X1 and X2 according to (13) and (14),
and construct the extended observation matrix X as
(19).

(3) Compute the correlation matrix of X, and perform
the eigenvalue decomposition to obtain the noise
subspace Uv.

(4) Construct the spectral function according to (32) and
perform the 1D spectral search to obtain the TOA
estimates 􏽢τ.

(5) ReconstructRH using (33) and repeat Step 2 and Step
3. (e TOA estimates 􏽢ς can be obtained by per-
forming 1D spectral search on (34).

(6) Calculate the DOA estimates according to (35).

4. Performance Analysis

4.1. Complexity. According to Section 3, when estimating
the TOA of the first antenna τ, constructing RH needs
O N2K􏼈 􏼉, computing RX needs O 8N2(N − 1)􏼈 􏼉, and per-
forming eigenvalue decomposition on it requires O 8N3􏼈 􏼉.
Constructing the spectral function and conducting 1D
spectral search needs O 4N2(2N − L) + 8ns(N2 + N + 1)􏼈 􏼉,
where ns denotes the search times. (erefore, the total
complexity of the proposed algorithm is
O 2N2K + 48N3 − 8N2(L + 2) + 16ns(N2 + N + 1)􏼈 􏼉. If we
perform 2D spectral search on equation (22), then the
complexity is increased to O N2K + 24N3−􏼈

4N2(L + 2) + 2n2
s N(2N + 1)}. (e computational com-

plexity of the proposed algorithm and some other algorithms
are concluded in Table 1. Besides, the complexity com-
parison versus the number of frequency sample points of
different algorithms is depicted in Figure 2, where K � 100,
L � 3, and ns � 100. As shown in Figure 2, the complexity of
the proposed algorithm is remarkably reduced compared

with the algorithms with 2D spectral search and is close to
the complexity of the 2D-PM.

4.2. Algorithm Advantages. We conclude the advantages of
the proposed algorithm as follows:

(1) (e proposed algorithm reduces the computational
complexity by transforming the 2D spectral search to
twice 1D spectral search.

(2) (e proposed algorithm doubles the equivalent
frequency sample points and increases the equivalent
number of clusters, which can improve the maxi-
mum number of detectable signals as well as the
estimation accuracy.

(3) (e proposed algorithm can obtain higher estimation
accuracy compared with some existed algorithms.

5. Simulation Results

In this section, we perform large number of Monte Carlo
trials to examine the effectiveness as well as the superiority of
the proposed algorithm.(e root mean square error (RMSE)
of the trials is used to measure the estimation accuracy,
which is given by

RMSETOA �
1
L

􏽘

L

l�1

�������������������������

1
Q

􏽘

Q

q�1
τl − 􏽢τl,q􏼐 􏼑

2
+ ςl − 􏽢ςl,q􏼐 􏼑

2
􏼒 􏼓

􏽶
􏽴

,

RMSEDOA �
1
L

􏽘

L

l�1

��������������

1
Q

􏽘

Q

q�1
θl − 􏽢θl,q􏼐 􏼑

2

􏽶
􏽴

,

(36)

where Q is the number ofMonte Carlo trials and 􏽢τl,q, 􏽢ςl,q, and
􏽢θl,q are the estimation result of τl, ςl, and θl in the qth trial,
respectively. In the following simulations, we set Q � 500,
d � 0.09m, and L � 3 with τ � [0.2 ns, 0.3 ns, 0.4 ns].

Figures 3 and 4 show the TOA estimation results of the
proposed algorithm, where each point represents a trial,
K � 100, N � 64, and the signal-to-noise ratio (SNR) is
−10 dB and 10 dB, respectively. As shown in the two figures,
the proposed algorithm can successfully obtain the paired
TOA estimation results and the estimation accuracy is
improved with higher SNR.

Figures 5 and 6, respectively, compare the TOA and
DOA estimation accuracy with different number of clusters,
where N � 64. (e simulation results show that the esti-
mation accuracy of both TOA and DOA improves with
increased number of clusters.

Figures 7 and 8, respectively, depict the TOA and the
DOA estimation performance comparison versus SNR of
different algorithms, where K � 100 and N � 64. It is il-
lustrated clearly that the proposed algorithm can achieve
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Table 1: Complexity comparison of different algorithms.

Algorithm Complexity
Proposed O 2N2K + 48N3 − 8N2(L + 2) + 16ns(N2 + N + 1)􏼈 􏼉

2D proposed O N2K + 24N3 − 4N2(L + 2) + 2n2
s N(2N + 1)􏼈 􏼉

Successive PM [24] (6K + 4L + 1)N
2

+ 3L
2
N + (3L

3
+ 4L + 2)(N − 1) + 3L

3

+2(2N − L)
3

+ 4N(2N − L)
2

+ 2ns(2N + 1)(2N − L)

2D-PM [14] (6K + 4L + 1)N
2

+ 2L
2
N + L

3
+ 2(2N − L)

3

+4N(2N − L)
2

+ n
2
s (2N + 1)(2N − L)

Matrix pencil [19] (2K + 1)N2 + (6KL2 + 2K)N − 2KL3
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Figure 2: Complexity comparison of different algorithms, where
K � 100, L � 3, and ns � 100.
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Figure 3: Estimation results of the proposed algorithm, where
SNR � −10 dB, K � 100, and N � 64.
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Figure 4: Estimation results of the proposed algorithm, where
SNR � 10 dB, K � 100, and N � 64.
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Figure 5: TOA estimation performance of the proposed algorithm
in different number of clusters, where N � 64.

6 Mathematical Problems in Engineering



better estimation performance in both TOA and DOA
domains compared with the ESPRIT algorithm [16], the
successive PM [24], the matrix pencil algorithm [19], and the
2D-PM [14].

6. Conclusion

In this paper, we investigate the problem of joint TOA and
DOA estimation in UWB systems and propose a compu-
tationally efficient algorithm with doubled frequency
sample points and extended number of clusters. (e
proposed algorithm utilizes the conjugate symmetry
characteristic of the delay matrices to extend the sample
points as well as the number of clusters and then trans-
forms the 2D spectral search into twice 1D search in order
to reduce the computational complexity. Simulations tes-
tify that the proposed algorithm can obtain high estimation
accuracy and large number of identifiable signals with low
complexity.
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In this paper, a new array structure of sparse nested array (SNA) for electromagnetic vector sensor is designed. An
electromagnetic vector sensor is composed of six spatially colocated, orthogonally oriented, diversely polarized antennas,
which can measure three-dimensional electric and magnetic field components. By introducing sparse factor (SF) between
every adjacent sensor, the proposed SNA has flexibility of extending the array aperture and reducing the mutual coupling
effect. Meanwhile, a low-complexity multiparameter estimation algorithm is proposed for SNA. First, the vectorization
operation for array manifold ensures the large degrees of freedom for multiparameter estimation, where the initial coarse
estimates decrease search range. In addition, the improved off-grid orthogonal matching pursuit method obtains joint
direction of arrival (DOA) and polarization estimates with a relatively small overcomplete dictionary because this off-grid
method achieves high performance even if the estimates do not fall on the grid of the dictionary. +eoretical analysis and
simulation results verify the superiority of the proposed array structure and the algorithm.

1. Introduction

Vector sensors, which are able to detect multiple physical
components of the signals, have been widely used in array
signal processing [1–3]. Compared with scalar sensor arrays,
vector sensor arrays show their advantages in estimation
accuracy, recognition accuracy, and antijamming capability
[4–6]. Moreover, vector sensor arrays can obtain joint es-
timates of multiple parameters, such as electromagnetic
vector sensor array (EVSA). EVSA can measure DOA and
polarization information at the same time because vector
sensor structure has the reception access of vector signals.

Resultantly, various DOA and polarization estimation
algorithms are proposed for EVSAs, where most of them are
inspired by the algorithms for scalar arrays. For example,
ESPRIT- (Estimating Signal Parameter via Rotational In-
variance Techniques-) based algorithm is proposed in [7, 8],
estimating both the arrival angles and the polarizations of

incoming narrow-band signals with invariance properties of
the EVSA.MUSIC (Multiple Signal Classification) algorithm
is also transformed for EVSA in [9], where the joint DOA
and polarization estimates are measured by peak search. For
alleviating the high computational burden in peak search, a
reduced-dimensional MUSIC algorithm is put forward [10],
where only two-dimensional peak search is necessary for 4
unknown parameters. In addition, [11] proposes a novel
rank reduction method for DOA, range, and polarization
estimation, but near-field signal hypothesis is limited.

Meanwhile, some other studies concentrate on the im-
provement of array structures for EVSAs. +e researched
algorithms are mainly based on half-wavelength interval
arrays, where the array aperture is restricted by the number
of sensors and mutual coupling effect has an adverse impact
on array performance. Moreover, this kind of array struc-
tures has the number of degrees of freedom (DOFs) less than
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the number of physical sensors, which means that algo-
rithms cannot work when signal numbers are more than
sensor numbers. To track the problems, sparse arrays are
presented in polarization environment to avoid compact
placement and increase the number of DOFs [12–18]. A
series of vector cross-product-based algorithms are intro-
duced in [12–14]. +is kind of algorithms extracts DOA
parameters by performing cross-product to Poynting vector
in received signal, which first breaks the limitation of half-
wavelength intervals for EVSA. Variable separation MUSIC/
MODE algorithm [15] achieves the unambiguous search
results for direction of arrivals, which is capable for sparse
uniform array structures, but polarization estimation is
ignored. +e study in [16] applies coprime array in polar-
ization sensors, obtaining joint DOA and polarization es-
timates with compressed sensing reconstruction algorithm.
Due to the vectorization operation for array manifold, the
number of DOFs is tremendously increased. In [18], sparse
representation (SR) idea is taken for three-parallel coprime
EVSA. However, all aforementioned papers focus on the
specific array structures and computational burden is rel-
atively high, which is not flexible for different actual engi-
neering requirements.

In this paper, we propose a flexible array structure
called sparse nested array (SNA), which can be considered
as an improvement of traditional nested array (NA). To be
specific, every sensor is equipped with six spatially colo-
cated, orthogonally oriented, diversely polarized antennas,
where three cocentered orthogonal electric dipoles and
magnetic loops are included. +e proposed SNA enjoys
flexible sensor interval benefitting from sparse factor (SF)
δ ≥ 1. +e subarrays 1 and 2 in SNA are both uniform
linear arrays composed of M and N sensors with intervals
δλ/2 (M + 1)δλ/2, where λ is the wavelength. +e interval
between the two subarrays is also (M + 1)δλ/2. SF is a
positive integer to adjust spacing between sensors overall.
By the enlargement of the array aperture, estimation
performance is improved and mutual coupling effect is
alleviated.

Meanwhile, from the perspective of algorithm,
cross-product of the Poynting vector is employed as the
coarse DOA initialization. In addition, after using the
properties of the covariance matrix to eliminate the po-
larization parameters, vectorization operation is taken to
construct virtual uniform array, which brings about large
DOFs of O(MN) with M + N sensors. +en we apply the
off-grid orthogonal matching pursuit (OGOMP) algorithm
to obtain high-precision multiparameter estimation.
Computational complexity is tremendously alleviated be-
cause the one-dimensional overcomplete dictionary in
OGOMP algorithm is established only around initial DOA
estimates. Traditional OMP algorithm [19] requires that all
target signals must fall on a preset grid. However, in actual
engineering applications, no matter how the grid is divided,
it is impossible to ensure that all target signals fall exactly
on the grid. When the target signal is off-grid, the esti-
mation performance of the system will be greatly reduced.
On the other hand, if the grid is divided too finely, it will
cause the system to have too much calculation burden.

Moreover, there is not any ambiguous or pairing problem
disturbing true values because OGOMP is an ambiguity-
free autopaired algorithm.

In short, we summarize the innovations of this paper as
follows:

(1) We design a new structure of nested array in EVSA,
where six-component electromagnetic vector sen-
sors are equipped, extending array aperture as well as
reducing mutual coupling effect. By the vectorization
operation of the manifold, high DOFs can be
obtained.

(2) We add sparse factor (SF) in every interval of NA,
constructing a new array structure called sparse
nested array (SNA), which enjoys scaled array ap-
erture and adjustable mutual coupling effect.
Meanwhile, the proposed array can maintain the
uniqueness of parameter estimates, which aims to be
suitable for different engineering scenarios.

(3) We propose a low-complexity off-grid OMP
(OGOMP) algorithm to measure joint DOA and
polarization estimates. Combined with the off-grid
idea that the target signals do not need to just fall on
the grid, OGOMP algorithm can use much smaller
one-dimensional overcomplete dictionary around
initial DOA estimates, tremendously alleviating
computational burden as well as performing good
estimation performance.

Notations. We use lower-case (upper-case) bold char-
acter to denote vector (matrix). (·)∗, (·)T, and (·)H are the
conjugate, transpose, and conjugate transpose of a matrix or
vector, respectively. (·)− 1 denotes matrix inverse and (·)+

denotes matrix pseudoinverse. ⊕ represents Hadamard
product. ⊗ denotes the Kronecker product and ⊙ represents
the Khatri-Rao product. diag(·) symbolizes a diagonal
matrix that uses the elements of the matrix as its diagonal
element. abs(·) is absolute value operator and angle(·) is
phase operator. | · ||1 denotes 1 norm and || · ||F denotes
Frobenius norm.

2. Preliminaries

2.1.DataModel. Consider an array with a certain amount of
electromagnetic vector sensors and every sensor herein is
equipped with three cocentered orthogonal electric dipoles
and magnetic loops, which is shown in Figure 1 [20].

Assume that there are K far-field narrow-band signals
impinging on the array with P electromagnetic vector
sensors distributed at y-axis with Dp � d0dp , p � 1, 2,

. . . , P, which is demonstrated in Figure 2.
d0 � λ/2 is the unit spacing between adjacent sensors,

dp ∈ Z, and λ symbolizes the wavelength. +e K signals
are all completely polarized from yoz plane with incidence
angles θk, k � 1, 2, . . . , K. +e three electric components
and magnetic components of the k-th signal at x, y, z-axes
are received by the loops and dipoles, which can be
represented as [21]

2 Mathematical Problems in Engineering



sk �

sex,k

sey,k

sez,k

shx,k

shy,k

shz,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0 − 1

cos θk 0

− sin θk 0

− 1 0

0 − cos θk

0 sin θk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sin cke
jηk

cos ck
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(1)

where sex,k, sey,k, sez,k denote the electric components and
shx,k, shy,k, shz,k denote the magnetic components of the loops
and dipoles. se,k � [sex,k, sey,k, sez,k] and sh,k � [shx,k, shy,k,

shz,k] are orthogonal to each other and also to the k-th
source’s direction of propagation. ck ∈ [0, π/2] is the aux-
iliary polarization angle and ηk ∈ [− π, π) represents the
polarization phase difference, respectively. Resultantly, the
data model of the received signal at t time can be expressed
as [17]

x(t) � (A⊙ S)b(t) + n(t) � Asb(t) + n(t), (2)

where A � [a1, a2, . . . , aK] is the directional matrix and ak �

[ejD12π sin θk/λ, . . . , ejDP2π sin θk/λ] denotes the directional
vector for k − th signal containing DOA information. Sk �

[s1, s2, . . . , sK] is the polarization vector matrix, b(t) ∈ CJ×1

symbolizes the signal vector, and n(t) denotes the additive
white Gaussian noise complex vector. ⊙ represents the
Khatri–Rao product.

Construct the covariance matrix:

Rs � E x(t)xH
(t)􏽨 􏽩 � A⊙ S diag σ21, σ

2
2, . . . , σ2K􏼐 􏼑􏽨 􏽩(A⊙ S)

H
,

(3)

where E[·] denotes the expectation operation. In practice,
snapshots J received are finite and they can be approximately
calculated by

Rs ≈
1
J

􏽘

J

j�1
x(t)xH

(t). (4)

Meanwhile, it is also recognized that we can recon-
struct the covariance matrix separately according to the
six-component received electric and magnetic signals.

Rex � Adiag σ21sex,1s
∗
ex,1, σ

2
2sex,2s

∗
ex,2, . . . , σ2Ksex,Ks

∗
ex,K􏼐 􏼑AH

Rey � Adiag σ21sey,1s
∗
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2
2sey,2s
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∗
ey,K􏼐 􏼑AH

Rez � Adiag σ21sez,1s
∗
ez,1, σ

2
2sez,2s

∗
ez,2, . . . , σ2Ksez,Ks

∗
ez,K􏼐 􏼑AH
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,

Rhx � Adiag σ21shx,1s
∗
hx,1, σ

2
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∗
hx,2, . . . , σ2Kshx,Ks

∗
hx,K􏼐 􏼑AH

Rhy � Adiag σ21shy,1s
∗
hy,1, σ

2
2shy,2s

∗
hy,2, . . . , σ2Kshy,Ks

∗
hy,K􏼐 􏼑AH

Rhz � Adiag σ21shz,1s
∗
hz,1, σ

2
2shz,2s

∗
hz,2, . . . , σ2Kshz,Ks

∗
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,

⎧⎪⎪⎪⎪⎨
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(5)

where σ2k, k � 1, 2, . . . , K denotes the power of the k-th
signal. By splitting S and calculating the covariance matrix
individually for the six components, we put the polarization
information into diag function. Note that

sex,ks
∗
ex,k + sey,ks

∗
ey,k + sez,ks

∗
ez,k � 1, (6)

shx,ks
∗
hx,k + shy,ks

∗
hy,k + shz,ks

∗
hz,k � 1. (7)

Consequently, the covariance matrix without polariza-
tion information can be obtained.

R � Rex + Rey + Rez � Rhx + Rhy + Rhz,

� Adiag σ21, · · · , σ2K􏼐 􏼑AH
.

(8)

2.2.Mutual Coupling. +e data model established in Section
2.1 is in the case of free mutual coupling. In actual engi-
neering, there might be serious mutual coupling effect be-
tween sensors, especially in adjacent sensors close to each
other. +e data model considering the influence of mutual
coupling is expressed as [22]

Y � [(CA)⊙ S]BT
+ N, (9)

where C is a P × P matrix reflecting interelement coupling
(IEC), which is determined by the array manifold. C can be
established according to different criteria. In this paper,
B-banded mutual coupling model is employed based on
Toeplitz property. Resultantly, mutual coupling matrix C is
defined as

... y

z

d0d1 d0d2 d0d3 d0dP

θ

Figure 2: Array model.

y

x

z

Figure 1: Internal structure of sensor element.
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C(i, j) �
0

c
di− dj

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

di − dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>B

di − dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤B
, (10)

where cn � c1e
− j(n− 1)π/8/n, (2≤ n≤B) and c1 is the basic

mutual coupling strength with sensor intervals d0 � λ/2.
di, dj, (1≤ i≤P, 1≤ j≤P) denote the position of the sensor
elements. B represents the maximum distance in which
mutual coupling takes effect among sensors. Due to the
introduction of mutual coupling matrix, a standard of
coupling leakage (Γ) can be set for judging the strength of
mutual coupling.

Γ �
‖C − diag(C)‖F

‖C‖F

, (11)

where | · ||F denotes Frobenius norm.

Remark 1. Because three orthogonal electric dipoles and
magnetic loops in an electromagnetic sensor are designed as
a whole part, the interpolarization coupling (IPC) can be
measured in application. In this case, we eliminate the in-
fluence of IPC in received signal model and only consider the
effect of IEC.

3. Array Structure Design

3.1. SparseNestedArray. +e structure of sparse nested array
(SNA) is presented in Figure 3. +e first subarray, which is
marked by black circles, is a uniform linear array with M

sensors. +e internal spacing between adjacent sensors is
δd0, where δ ∈ N+ is named as sparse factor. +e second
subarray marked with white squares contains N sensors,
which is also a uniform linear array whose interval between
sensors is (M + 1)δd0. +e total numbers of sensors are
M + N � P. Both subarray 1 and subarray 2 lie on y-axis and
theM-th sensor in subarray 1 and the first sensor in subarray
2 have the δd0 interval.

Compared with traditional NA [23], the proposed SNA
is developed by the sparse factor δ to unfold sensor interval.
It is indicated in Figure 3 that when δ � 1, NA is a special
case of SNA.

3.2. Interpolation for Virtual Array. According to the basic
knowledge of array signal processing, P sensors can achieve
P − 1 degrees of freedom (DOFs). Nevertheless, some sparse
arrays can further enlarge DOFs by their equivalent virtual
arrays and perform estimation algorithm with the recon-
structed virtual signals. In this paper, difference coarray is
employed to obtain virtual array of SNA. According to (8),
reconstructed covariance matrix R is a P × P matrix with
DOA information received by the array. By vectorizing the
covariance matrix, the equivalent virtual array signals are
expressed as [24]

z � vec(R) � A∗ ⊙A( 􏼁bT
s , (12)

where A∗ ⊙A � [a∗1 ⊗ a1, a∗2 ⊗ a2, . . . , a∗K ⊗ aK] ∈ CP2×K de-
notes the virtual directional matrix. bs � [σ21, . . . , σ2K] is the

equivalent one-snapshot signal vector. We can find that the
position of virtual sensor element is located at Dδ, where

D � d0 di − dj􏼐 􏼑| i, j � 1, 2, . . . , P􏽮 􏽯. (13)

Obviously, there exist repeated elements in set D. By
removing these elements, a unique subset Du is established.
+e virtual location of the received signal after vectorization
is modeled as

Du � d0du| − [N ×(M + 1) − 1]≤du ≤ [N ×(M + 1) − 1], du ∈ Z􏼈 􏼉.

(14)

Consequently, only the data of |Du| � 2(N × (M + 1) −

1) + 1 rows is necessary for DOA estimation. By selecting the
corresponding rows in z, the reconstructed virtual received
signals are built using the full DOFs.

zu � Aub
T
s , (15)

where Au � [au(θ1), au(θ2), . . . au(θK)] ∈ C|Du|×K is the
equivalent virtual array located at Duδ, which is a uniform
linear array, and every adjacent virtual sensor has the in-
terval of δd0.

3.3. Discussion

3.3.1. Virtual Array Configuration. Compared with
coprime array, nested array is a kind of completely aug-
mented array whose virtual array is continuous without
holes. Define unit length as half wavelength λ/2. In order to
give an intuitive understanding, we demonstrate the virtual
sensor elements of typical coprime array M � 5, N � 4 and
nested array M � N � 4, where δ � 1.Both NA and CA
have 8 physical sensors because there is a shared sensor for
CA. Black circles and white squares denote the physical
sensors belonging to the first and second subarrays, re-
spectively. +e black crosses represent the virtual sensor
elements. From the comparison of Figures 4 and 5, NA has
39 virtual sensor elements and all of them are continuous
without holes. Meanwhile, CA only has 27 virtual sensor
elements and there are 6 missing elements in
− 14, − 13, − 9, 9, 13, 14{ }, which are marked by red crosses.
As a result, CA is unable to make full use of information on
the whole virtual array, acquiring fewer DOFs and smaller
array aperture than NA.

1 2 M... y

z

2 N...1

δd0 δd0

θ

(M + 1)δd0

Figure 3: Structure of sparse nested array.
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Definition 1 (array aperture). Array aperture is defined as
the length of the total linear array, which is one of the criteria
evaluating array performance.

3.3.2. Engineering Problems of Sparse Array. According to
Section 2, mutual coupling effect decreases exponentially
along with the sensor interval. Resultantly, small intervals
should be prevented possibly. Sparse arrays, due to the
inherent merits of loose array structure, have much lower
mutual coupling effect than traditional arrays with half-
wavelength intervals. +e proposed SNA in this paper solves
the problems of compact array structure of NA in the first
subarray, as well as providing a relatively flexible array
configuration. Moreover, with the increase of sparse factor δ,
mutual coupling effect can be further alleviated.

Notation. Although sparse factor provides many gains in
array performance, it is not an unlimited number in practice.
+e three main factors limiting sparse factor are array
decorrelation, far-field hypothesis, and grid misidentifica-
tion. +e first two factors are due to actual engineering and
the third is due to algorithm limitation. We discuss the
factors, respectively, in the following part.

Array decorrelation: suppose that a narrow-band signal
is expressed as

s(t) � a(t)e
j ω0t+ϕ(t)[ ], (16)

where a(t) denotes the slowly varying amplitude modula-
tion function, which is considered abiding during signal
reception time, ω0 � 2πf0 is the carrier frequency, and ϕ(t)

represents the phase modulation function. Mark the re-
ceived signal on the array as [s(t1), s(t2), . . . , s(tP)]. +e
amplitude modulation function must guarantee

[max|a(t)| − min|a(t)|]/max|a(t)|< q, (17)

where t ∈ [t1, t2, . . . , tP] and 0< q< 1 depends on actual
needs. With the increase of sparse factor, array decorrelation
occurs, which will tremendously affect estimation
performance.

Far-field hypothesis: we assume that all signals are all
from the far field, which satisfy the condition that

Z≥
2ς2

λ
, (18)

where Z denotes the minimum distance from any signal to
the array. ς represents the array aperture.

Grid misidentification: this problem often occurs in low
signal-to-noise ratio (SNR) environments because the noise

generates a much larger phase shift in directional matrix,
which may undermine the orthogonality of search algo-
rithms [25]. On the other hand, ESPRIT-based algorithms
need ambiguity elimination operations. Arrays with large
sparse factor have small grids, which leads to closer am-
biguous values. In low SNR, it is easy to mismatch with
wrong estimates.

3.4. PerformanceAnalysis. For intuitive comparison, Table 1
lists the DOFs after vectorization operation, array aperture,
and mutual coupling effect for SNA, SCA, and traditional
uniform linear array (TULA) [26] with all 8 physical sensors.
For simplicity, label ⌊a, b, c, d, e⌋ is utilized to indicate that
subarray 1 has a sensors with bδd0 intervals and subarray 2
has c sensors with dδ d0 intervals and e denotes the number
of sparse factors δ.

It is revealed in Table 1 that both nested array and coprime
array outperform traditional uniform linear array. By en-
larging sparse factor or increasing the number of physical
sensors, SNA and SCA achieve larger array aperture and lower
mutual coupling. Meanwhile, NA has more DOFs and ex-
tended array aperture than CAwith the same physical sensors.

4. DOA and Polarization Estimation Algorithm

Orthogonal matching pursuit (OMP) algorithm is consid-
ered as a typical compressed sensing method to obtain DOA
estimates. However, an overcomplete dictionary is necessary
for orthogonal verification, which takes relatively high
computational complexity. Moreover, orthogonal verifica-
tion is essentially a searching process, where grid density
affects both estimation accuracy and computational burden.
+e two indexes check and balance with each other. Off-grid
orthogonal matching pursuit (OGOMP) solves off-grid
problem and guarantees good performance. Based on the
scalar OGOMP algorithm [27], we propose a low-
complexity DOA and polarization estimation algorithm for
SNA, which mainly includes DOA initialization and accu-
rate DOA and polarization estimation.

4.1. Initial DOA Estimation. According to the covariance
matrix Rs, eigendecomposition can be performed to obtain
signal subspaceEs ∈ C6(M+N)×K. On the other hand, the first to
(M − 1)-th sensors have rotation invariance with the second
to M-th sensors in subarray 1 and the first to (N − 1)-th
sensors have rotation invariance with the second to N-th
sensors in subarray 2. +erefore, we can decompose the signal
subspace Es.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19–1–2–3–4–5–6–7–8–9–1
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Figure 4: Virtual sensor elements of NA. M � N � 4.
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Figure 5: Virtual sensor elements of CA. M � 5, N � 4.
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Es1 � Es[1: 6(M − 1)],

Es2 � Es[7: 6M],

Es3 � Es[6M + 1: 6(M + N − 1)],

Es4 � Es[6M + 7: 6(M + N)],

(19)

where Es[a: b] represents the line a to b of Es. By eigen-
decomposition of Es1

+Es2 and Es3
+Es4, eigenvectors T12,T34

and eigenvalues v12 � [ejδd02π sin θ1/λ, . . . , ejδd02π sin θK/λ] and
v34 � [ej(M+1)δd02π sin θ1/λ, . . . , ej(M+1)δd02π sin θK/λ] can be
calculated, where the eigenvectors are nonsingular K × K

matrices with full rank. We employ a vital characteristic in
array signal processing [7].

Es � AsT. (20)

+us, the estimate As is measured by

As �
Es[1: 6M]T− 1

12

Es[6M + 1: 6(M + N)]Τ− 1
34

⎧⎨

⎩

⎫⎬

⎭. (21)

+e next step is extracting the DOA parameters from
As � [a1 ⊗ s1, a2 ⊗ s2, . . . , aK ⊗ K] as the initial estimation
results. Here, we eliminate the directional matrix
A � [a1, a2, . . . , aK] by v12, v34 to estimate the polarization
vector matrix 􏽢S � [s1, s2, . . . , sK], which is expressed as

sk �
1
2M

􏽘

M

i�1

As,k[6(i − 1) + 1: 6i]

||As,k[6(i − 1) + 1: 6i||1
v[k]
12􏼐 􏼑

− j(i− 1)

+
1
2N

􏽘

N

i�1

As,k[6M + 6(i − 1) + 1: 6M + 6i]

||As,k[6M + 6(i − 1) + 1: 6M + 6i||1
v[k]
34􏼐 􏼑

− j(i− 1)
,

(22)

where As,k denotes the k − th row of As,k and v[k] is the k-th
element of v. As is revealed in (22), each term on the right
side of the equation is an estimate of sk, which uses up the
full information of As to get more precise results.

According to (1), the normalized Poynting vector Pk can
be estimated with vector cross-product estimator, which is
expressed as [15]

Pk �

Px,k

Py,k

Pz,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � se,k × sh,k �

0

sin θ

cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (23)

where only DOA information is involved in Pk. Based on the
analysis above, we can obtain the coarse initial DOA
estimates.

􏽢θk,ini �
1
2

arcsin P[2]
k + arccos P[3]

k􏽨 􏽩, (24)

where P[i] denotes the i-th element of P.

4.2. Precise DOA Estimation with Low Complexity. In this
part, we propose an off-grid OMP (OGOMP) algorithm,
which can obtain accurate joint DOA and polarization
estimates.

First, we can establish an overcomplete dictionary partly
taken from Au:

Q(θ) � au θ1( 􏼁, au θ2( 􏼁, . . . , au θQ􏼐 􏼑􏽨 􏽩 ∈ C Du| |×Q
, Q≫K,

(25)

where the angular interval is r � θi+1 − θi, 1≤ i≤Q − 1 and θi

is near the initial DOA estimates. Define a deviation vector
ξ ∈ RQ×1 and every element − r/2≤ ξq ≤ r/2, q � 1, 2, . . . , Q

refers to the deviation with grid. +e directional vector after
grid division will be close to the directional vector of the
actual target signal with the first-order Taylor expansion
principle, which can be expressed as

aut θi + ξi( 􏼁 ≈ au θi( 􏼁 +
zau θi( 􏼁

zθi

ξi, i � 1, 2, . . . , Q, (26)

where au(θi) denotes the directional vector of θi in over-
complete dictionary corresponding to virtual array manifold
after vectorization and z(·) represents the partial derivative.
+erefore,
Qt � [aut(θ1 + ξ1), aut(θ2 + ξ2), . . . , aut(θQ + ξQ)] can be
regarded as the sum of two matrices.

Qt � Q + ΘΛ, (27)

where Θ(θ) � [zau(θ1)/zθ1, zau(θ2)/zθ2, . . . , zau(θQ)/zθQ]

and Λ � diag(ξ).
Since the vectorized received signal zu is only associated

with DOA information, we construct the following function
to verify the orthogonality:

P � max
�������������������

Q θi( 􏼁zu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ Θ θi( 􏼁zu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽱

, i � 1, 2, . . . , Q.

(28)

When θi + ξi approaches the true incident angle, (28)
achieves a peak value. Compared with (27), (28) still has
orthogonality without Λ because the vectorized received
signal can also be represented as

zu � (Q + Θdiag(ξ))HT
s � QHT

s + Θ ξ⊕HT
s􏼐 􏼑, (29)

where HT
s denotes sparse signal vector with k nonzero

values. It can be indicated from (29) that ifΘ is orthogonal to
the q − th element HT

s
[q], it is also orthogonal to (ΛHT

s )[q],
q � 1, 2, . . . , Q.

After the first search around initial DOA estimates, we
construct 􏽥A � [au(θm1

), zau(θm1
)/zθm1

] from Q and Θ
corresponding to max(P). +us, according to (29), least-
squares criterion is employed to estimate HT

s
[m1] and

(ΛHT
s )[m1], which is expressed as

HT
s

m1[ ]

ΛHT
s􏼐 􏼑

m1[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ � 􏽥A􏽥A

H 􏽥A􏽥A􏼒 􏼓
− 1

􏽥A􏽥A
Hzu. (30)

+e other K − 1 signals are also measured by (28). In
particular, the rows in zu corresponding to θm1

, θm2
, · · · , θmk

which have been estimated should be removed. Hence, the
virtual received signal zu is updated:
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zu � zu − 􏽘
k

i�1
au θmi

􏼐 􏼑,
zau θmi

􏼐 􏼑

zθmi

⎡⎣ ⎤⎦
HT

s
mi[ ]

ΛHT
s􏼐 􏼑

mi[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (31)

+e maximum value in each search corresponds to an
incident angle. Eliminating sparse signal vector HT

s
[mk],

ξmk
, k � 1, 2, . . . , K can be computed by (30). +e accurate

and ambiguity-free DOA estimates are obtained with K

iterations.
􏽢θk,est � θmk + ξmk

, k � 1, 2, . . . , K. (32)

4.3. Polarization Estimation. Inspired from (5), we can also
construct a cross-correlation covariance matrix among the 6
electric and magnetic components. We focus on two
combinations: electric components of the x-axis and z-axis
and magnetic components of the x-axis and z-axis.

Rex,ez � Adiag σ21sex,1s
∗
ez,1, σ

2
2sex,2s

∗
ez,2, . . . , σ2Ksex,Ks

∗
ez,K􏼐 􏼑AH

,

(33)

Rhx,ez � Adiag σ21shx,1s
∗
ez,1, σ

2
2shx,2s

∗
ez,2, . . . , σ2Kshx,Ks

∗
ez,K􏼐 􏼑AH

.

(34)

Performing vectorization operation similar to Section
3.2, (33) and (34) are transformed to

rex,ez � A∗ ⊙A σ21sex,1s
∗
ez,1, σ

2
2sex,2s

∗
ez,2, . . . , σ2Ksex,Ks

∗
ez,K􏽨 􏽩

T

� A∗ ⊙ASex,ez,

rhx,ez � A∗ ⊙A σ21shx,1s
∗
ez,1, σ

2
2shx,2s

∗
ez,2, . . . , σ2Kshx,Ks

∗
ez,K􏽨 􏽩

T

� A∗ ⊙AShx,ez,

(35)

where A can be computed by DOA estimates.
Sex,ez � [σ21sex,1s∗ez,1, σ

2
2sex,2s∗ez,2, . . . , σ2Ksex,Ks∗ez,K]T and Shx,ez

� [σ21shx,1s∗ez,1, σ
2
2shx,2s∗ez,2, . . . , σ2Kshx,Ks∗ez,K]T. +e cross-

correlation covariance matrices after vectorization operation
still contain polarization information, which provides a basis
for polarization estimation. Least-squares criterion is uti-
lized as

Sex,ez � AHA􏼐 􏼑
+
AHrex,ez,

Shx,ez � AHA􏼐 􏼑
+
AHrhx,ez.

(36)

According to the definition in (1), auxiliary polarization
angle and polarization phase difference estimates are ob-
tained by eliminating the power of signals.

􏽢ck,est � arctan abs
S[k]

hx,ez

S[k]
ex,ez

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

􏽢ηk,est � − angle
S[k]

ex,ez

S[k]
hx,ez

⎛⎝ ⎞⎠,

(37)

where k � 1, 2, . . . , K.

4.4. Discussion. +e proposed algorithm aims to jointly
estimate DOA and polarization parameters with low com-
plexity. +ere are mainly two steps where computational
burden is effectively reduced. +e first is the DOA initial-
ization during which only eigendecomposition approach is
used. +us, coarse initial DOA estimates are obtained.
Benefitting from that, we require no global overcomplete
dictionary for orthogonal verification. +e second step is
reducing the dimensions of overcomplete dictionary from
three to one because the two polarization parameters are
both eliminated by the construction of the new covariance
matrix R and the process of OGOMP algorithm is only
related to DOA. In addition, benefitting from OGOMP
algorithm, not only is the accuracy guaranteed but also the
search interval is not strictly required. When the incident
angle is not involved in the dictionary, estimation perfor-
mance can also be guaranteed.

+e process of the DOA and polarization estimation is
summarized as follows:

Step 1: compute the estimates of As by eigende-
composition of Rs

Step 2: eliminate polarization information fromAs with
vector cross-product estimator
Step 3: obtain coarse DOA initial estimates in nor-
malized Poynting vector
Step 4: search in partly overcomplete dictionary with
OGOMP algorithm for accurate DOA estimates
Step 5: construct cross-correlation covariance matrix,
perform vectorization operation, and obtain polariza-
tion estimates by least-square criterion

+e main complexity of the proposed algorithm is
discussed as follows.

Constructing the covariance matrix requires
O J(6P)2 + 8JP2􏽮 􏽯. +e computational burden of DOA
initialization involves the eigendecomposition which takes
O (6P)3 + 2K3􏽮 􏽯. OGOMP algorithm is composed of the
search over the one-dimensional dictionary for K iterations,
which mainly requires O K2Q|Du|􏼈 􏼉. In summary, the
proposed algorithm approximately needs the complexity of
only O J(6P)2 + 8JP2 + (6P)3 + 2K3 + K2Q|Du|􏽮 􏽯. How-
ever, the traditional search-based algorithms cannot avoid
three-dimensional search for three unknown parameters
and the search range is relatively large compared with the
proposed algorithm, which is exhaustive and infeasible.

5. Simulation Results

We perform some simulations in order to confirm the su-
perior performance of the proposed SNA and the OGOMP-
based algorithm. +is section is divided into 4 parts. Part A
verifies the large DOFs of SNA by scatter plot. Part B
demonstrates the effectiveness of SF versus SNR and
snapshots. We also compare the proposed algorithm with
OMP, ESPRIT, and PM algorithms to outstand the prom-
inent performance of the proposed algorithm in part
C. Moreover, considering the different coupling leakage in
different arrays, part D simulates the performance for
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Figure 7: Scatter plot of c and η estimation results.
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Figure 8: DOA estimation performance versus SF (SNR).
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different array structures with mutual coupling effect.
During the above simulations, root mean square error
(RMSE) is employed to evaluate the performance, which is
defined as

RMSEa �
1
K

􏽘

K

k�1

����

1
I

􏽘

I

i�1

􏽶
􏽴

􏽢θk,i − θk􏼐 􏼑
2

􏼔 􏼕 ,

RMSEc �
1
K

􏽘

K

k�1

���������������

1
I

􏽘

I

i�1
􏽢ck,i − ck􏼐 􏼑
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􏽶
􏽴
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􏽶
􏽴
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􏼔 􏼕,

(38)

where 􏽢θk,i, 􏽢ck,i, and 􏽢ηk,i are the estimated values of θk, ck, and
ηk during the i − th simulation, and I is the number of
independent simulations. In this paper, we assume that
signal number K has been estimated and there are 3 signals
impinging on the array in simulation parts B, C, and D with
DOA and polarization parameters (θ1, c1, η1) � (20∘,
27∘, 25∘), (θ2, c2, η2) � (30∘, 37∘, 35∘), and (θ3, c3, η3) �

(40∘, 57∘, 55∘).

5.1. Independent DOA and Polarization Estimation. As is
analyzed in Section 3, the proposed algorithm can estimate
signals equal to or more than physical sensor elements
benefitting from the SNA array structure and the vectorization
operation. Figures 6 and 7 exhibit the scatter plot of the es-
timate pairs with 100 independent experiments. +e physical
sensor elements are 5 with array structure SNA ⌊2, 1, 3, 3, 2⌋,
whereas there are 6 signals with DOA and polarization pa-
rameters (θ1, c1, η1) � (20∘, 27∘, 25∘), (θ2, c2, η2) � (30∘, 37∘,
35∘), (θ3, c3, η3) � (40∘, 47∘, 45∘), (θ4, c4, η4) � (50∘, 57∘,

55∘), (θ5, c5, η5) � (60∘, 67∘, 65∘), and (θ6, c6, η6) � (60∘, 77∘,
75∘), where J � 1000 and SNR � 20 dB. As is depicted in the
figures, all 6 signals are estimated accurately without any
missing or error signal, which verifies advantages of large
DOFs. Besides, the DOA and the two polarization parameters
are autopaired, indicating that no extra pairing operation is
needed.

5.2. Parameter Estimation Performance Comparison versus
SF. In this part, we perform the SF simulation for
SNA ⌊3, 1, 3, 4, δ⌋ with the proposed algorithm. Figures 8–10
demonstrate the RMSE performance for DOA and polari-
zation parameters along with SNR, where J � 200, and
Figures 11–13 depict the RMSE performance based on
different snapshots, where SNR � 0 dB. As is revealed in the
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Figure 9: c estimation performance versus SF (SNR).
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Figure 10: η estimation performance versus SF (SNR).
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figures, RMSE decreases not only with the improvement of
SNR and snapshots but also accompanied by the enlarge-
ment of SF. From the overall perspective, the RMSE of DOA
is much lower than the two polarization parameters.

5.3. Parameter Estimation Performance Comparison for
Algorithms. Figures 14–16 compare the proposed algorithm
with OMP, Propagator Method (PM) [28], and Estimating
Signal Parameter via Rotational Invariance Techniques
(ESPRIT), where snapshots J � 200 and SNR � [− 10, 11]dB.
In addition, Cramér-Rao Bound (CRB) [29] is presented as
the standard.

+e array structure is SNA ⌊3, 1, 3, 4, 2⌋. +e dictionary
intervals are all 0.1∘ for OGOMP, OMP, and PM algorithms.

As revealed in the figures, the proposed algorithm outper-
forms the other three algorithms. Specifically, OMP algo-
rithm ignores any possible incident angle outside the
dictionary, which degrades the performance. PM requires no
eigendecomposition but employs the search function with
poor orthogonality. ESPRIT performs the worst because
there are not enough sensors so that signal subspace matrix
has insufficient information for DOA estimates. Simulta-
neously, the polarization estimates are also affected.

5.4. Parameter EstimationPerformanceComparison forArray
Structures. Since mutual coupling effect is varying for dif-
ferent array structures, we consider the coupling leakage in
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Figure 14: DOA estimation performance under different
algorithms.
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the simulation of array structure performance.+e proposed
algorithm is tested where J � 200 and SNR � [− 10, 11]dB.
+e 4 array structures all have 6 sensors: SNA ⌊3, 1, 3, 4, 1⌋,
SNA ⌊3, 1, 3, 4, 2⌋, ULA(d � λ/2), and SCA ⌊4, 3, 3, 4, 2⌋.

As Figures 17–19 reveal, SNA ⌊3, 1, 3, 4, 2⌋ acts best due
to its large DOFs and array aperture. Although
SCA ⌊4, 3, 3, 4, 2⌋ is a sparse array, the missing elements in
virtual array are the main cause of performance
deterioration.

6. Conclusion

In this paper, a new array structure of sparse nested array is
constructed, and a low-complexity off-grid orthogonal
matching pursuit (OGOMP) algorithm is designed based on
the proposed array structure to obtain DOA and polariza-
tion estimates. By introducing the sparse factor in EVSA, the
proposed array structure has low mutual coupling, flexible
array aperture, and high achievable degrees of freedom.

Benefitting from the DOA initialization and polarization
parameter elimination, the overcomplete dictionary is
compact to tremendously reduce computational complexity.
Meanwhile, the proposed OGOMP algorithm searches for
the unambiguous high-precise DOA estimates and solves the
problem of poor performance for off-grid signals in OMP
algorithm. Finally, polarization estimates are measured by
cross-correlation covariance matrix and estimated direc-
tional matrix based on least-square criterion.
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A novel generalized nested multiple-input multiple-output (MIMO) radar for direction of arrival (DOA) estimation is proposed
in this paper.+e proposed structure utilizes the extended two-level nested array (ENA) as transmitter and receiver and adjusts the
interelement spacing of the receiver with an expanding factor. By optimizing the array element configuration, we can obtain the
best number of elements of the transmitter and receiver and the attainable degrees of freedom (DOF). Compared with the existing
nested MIMO radar, the proposedMIMO array configuration not only has closed-form expressions for sensors’ positions and the
number of maximum DOF, but also significantly improves the array aperture. It is verified that the sum-difference coarray
(SDCA) of the proposed nested MIMO radar can get higher DOF without holes. MUSIC algorithm based on Toeplitz matrix
reconstruction is employed to prove the rationality and superiority of the proposed MIMO structure.

1. Introduction

Multiple-input multiple-output (MIMO) radar [1–3], with
good space, frequency, and waveform diversity character-
istics, is widely used in array signal processing [4–6] in the
last few years. Compared with phased array radar, it has
significant advantages in signal detection, parameter esti-
mation [7], direction finding accuracy, spatial resolution [6],
and antijamming capabilities, etc. However, the traditional
MIMO radar usually adopts a uniform linear array (ULA) as
transmitter and receiver, whose interelement spacing is
equal to and no more than half wavelength. Hence, there are
some problems in the direction of arrival (DOA) estimation
for MIMO radar, such as mutual coupling of array elements
[8] and limited aperture of virtual array elements [9].

In order to enhance the upper limit of degrees of
freedom (DOF) and the flexibility of layout as well as re-
ducing mutual coupling of physical sensors, sparse arrays
such as the minimum redundancy array (MRA) [10, 11],
coprime array (CPA) [12], and nested array (NA) [13–17]
have been explored for DOA estimation and joint

multiparameter estimation. In addition, sparse arrays
combined with MIMO radar can further increase DOF
through the sum-difference coarray (SDCA) [18], so as to
improve the accuracy of direction finding and angle reso-
lution ability.

For the purpose of improving sensor utilization, the
minimum redundancy MIMO radar [19] designs the opti-
mal array spacing by optimizing the number of virtual array
elements, whereas it requires complex computational search
and lacks closed-form expressions of DOF. +e coprime
MIMO radar generally uses part [20] or whole CPA [21] as
the transmitting array and the receiving array. Li et al. [20]
combined it with the real-value ESPRIT algorithm to DOA
estimation, but did not consider the virtual array expansion
of the echo signal model. +erefore, its DOF is limited by the
number of physical sensors. Shi et al. [22] defined the
generalized sum-difference coarray (GSDC) and simulta-
neously derived the closed-form expressions of the total
number of virtual array elements of the generalized two-level
coprime MIMO radar, which can obtain O(M2N2) DOF by
O(M + N) physical sensors. +e obtained DOF are much
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higher than that in [20, 21] with O(MN) DOF. Unfortu-
nately, there are holes in the SDCA of the abovementioned
coprime MIMO radars, so multiple signal classification
(MUSIC) [23] and estimation of signal parameters via ro-
tational invariance technique (ESPRIT) algorithms [24]
cannot be firsthand applied to these array structures.

Nested MIMO radar [25, 26] has closed-form expres-
sions of positions and the number of virtual array elements
and overcomes the defects of the minimum redundancy
MIMO radar and coprime MIMO radar. Qin et al. [25]
exploited nested subarrays as transmitting and receiving
arrays to DOA estimation of mixed coherent and uncor-
related targets. Zheng et al. [26] adopted traditional two-
level nested MIMO array to joint direction of departure
(DOD) and direction of arrival (DOA) estimation with
closed-form DOF. +ey can provide O(M2) DOF with
O(M) sensors. Yang et al. [27, 28] designed a hole-free
generalized nested MIMO configuration on the concept of
the conventional two-level nested array, which improves
DOF and angle estimation performance while effectively
reducing the mutual coupling between the transmitting
sensors. Specifically, it can provide O(M4) DOF with O(M)

elements.
To further enhance DOF, this paper adopts the extended

two-level nested array (ENA) [15] to construct a new
generalized nested MIMO radar. Firstly, the whole ENA is
used as the transmitting array and receiving array of MIMO
radar. Next, an expanding factor is employed to increase the
receiving array spacing, and closed-form expressions of
DOF and the best physical array element configuration are
derived. Afterwards, Toeplitz matrix reconstruction [29]
based on the MUSIC algorithm is employed to exploit the
superiority of the proposed array configuration.

To be more specific, the main contributions of this paper
are as follows:

(a) +e optimal array element configuration structure of
ENA is deduced and higher degrees of freedom are
obtained. Besides, the difference coarray (DCA) is a
ULA without holes.

(b) A new generalized nested MIMO radar based on
ENA is constructed, and the optimal sensors’ posi-
tions and the maximum DOF are derived, which can
obtain O(G4) DOF with O(G) sensors. Meanwhile,
the SDCA is a ULA without holes. Its DOF is much
higher than the existing nested MIMO radars in
[25–28].

2. Echo Signal Model

A monostatic sparse array MIMO radar consists of a
transmitter with M � M1 + M2 arrays and a receiver with
N � N1 + N2 arrays. +e positions of the transmitting array
are located at Pt � ptm|m � 1, 2, . . . , M􏼈 􏼉 and the positions
of the receiving array are located at
Pr � prn|n � 1, 2, . . . , N􏼈 􏼉, respectively. +e unit array ele-
ment spacing d of the sensor is equal to λ/2, where λ stands

for the signal wavelength. Suppose that there are K far-field
uncorrelated narrowband sources from angles
θ � θk|k � 1, 2, . . . , K􏼈 􏼉, and the reflection coefficient of the
k-th source is βk. +en, the echo signal model can be
expressed as follows:

x(t) � 􏽘

K

k�1
αr θk( 􏼁βkα

T
t θk( 􏼁b(t) + w(t), (1)

where b(t) � [b0(t), b1(t), . . . , bM− 1(t)]T denotes the
transmit signal; w(t) is an additive white Gaussian noise;
and αt(θk) and αr(θk) are the transmit steering vectors and
receive steering vectors of the k-th source, respectively,
which can be expressed as

αt θk( 􏼁 � 1, e
− j2πpt2sinθk/λ( ), . . . , e

− j2πptMsinθk/λ( )􏼔 􏼕
T

,

αr θk( 􏼁 � 1, e
− j2πpr2sinθk/λ( ), . . . , e

− j2πprNsinθk/λ( )􏼔 􏼕
T

,

(2)

where ptm ∈ Pt and prn ∈ Pr represent the sensor positions
in the transmitter and receiver, respectively, and
pt1 � pr1 � 0.

Since the transmitting waveforms of MIMO radar are
orthogonal to each other, i.e., Rb � E[b(t)b(t)H] � IM×N,
the output of the generalized matched filters for the echo
signal can be expressed as follows:

x(t) � 􏽘
K

k�1
βk αt θk( 􏼁⊗ αr θk( 􏼁( 􏼁 + n(t)

� αt θ1( 􏼁⊗ αr θ1( 􏼁, . . . , αt θK( 􏼁⊗ αr θK( 􏼁􏼂 􏼃s(t) + n(t)

� At ⊙Ar( 􏼁s(t) + n(t).

(3)

whereAt � [at(θ1), at(θ2), . . . , at(θK)]; Ar � [ar(θ1), ar

(θ2), . . . , ar(θK)]; n(t) is an additive white Gaussian noise
vector; s(t) � [β1, β2, . . . , βK]T; ⊗ and ⊙ denote Kronecker
product and Khatri–Rao product, respectively.

+e covariance matrix of the echo signal can be obtained
by

R � E x(t)x(t)
H

􏽨 􏽩 � At ⊙Ar( 􏼁Rs At ⊙Ar( 􏼁
H

+ σ2nIMtNr

� ARsA
H

+ σ2nIMtNr
,

(4)

where Rs � E[s(t)s(t)H] � diag[σ21, σ22, . . . , σ2k] is the target
covariance matrix, σ2k denotes the signal energy of the k-th
target, A� At ⊙Ar, and σ2n is the noise variance.

+e observing vector can be obtained by vectorizing R:

r � vec(R)� A∗ ⊙A( 􏼁p + σ2nvec IMtNr
􏼐 􏼑

� A∗ ⊙A( 􏼁p + σ2nvec IMtNr
􏼐 􏼑 � Bp + σ2nvec IMtNr

􏼐 􏼑,
(5)

where vec(·) represents vectorized operation;
p � [σ21, σ

2
2, . . . , σ2k]T; (·) implies the complex conjugation of

the matrix.
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B� A∗ ⊙A� a∗t θ1( 􏼁⊗ a∗r θ1( 􏼁⊗ at θ1( 􏼁⊗ ar θ1( 􏼁, . . . , a∗t θk( 􏼁􏼂

⊗ a∗r θk( 􏼁⊗ at θk( 􏼁⊗ ar θk( 􏼁􏼃.

(6)

3. Extended Two-level Nested Array

In this section, the configuration of the extended two-level
nested array (ENA) is formulated first. +en the optimal
configuration structure of the physical array elements and
the closed-form expressions of its DOF are derived.

3.1. ENA Configuration. As shown in Figure 1, the ENA
configuration maintains the basic structure of the nested
array, except for increasing the first two sensors of the sparse
ULA by d intervals. And the total number of sensors is equal
to M � M1 + M2.

+erefore, the extended two-level nested array sensor
location can be expressed as

PENA � 0, 1, . . . , M1 − 1, M, 2 M1 + 1( 􏼁, 3 M1 + 1( 􏼁,􏼈

. . . , M2 M1 + 1( 􏼁􏼉.
(7)

+en, the difference coarray of ENA can be defined as

SENA � s − 􏽥s, s,􏽥s ∈ PENA􏼈 􏼉 � −M2 M1 + 1( 􏼁,􏼈

. . . , 0, . . . , M2 M1 + 1( 􏼁􏼉.
(8)

3.2. Attainable DOF of ENA. According to equation (8), the
DOF of ENA is

DOF � 2M2 M1 + 1( 􏼁 + 1. (9)

When the total number of sensors is fixed to
M � M1 + M2, the array element optimal configuration
structure can be optimized to have attainable DOF, as shown
in Table 1.

4. Proposed Generalized Nested MIMO Radar

In this section, the entire ENA is adopted as the transmitter
and receiver to construct an extended nested MIMO radar
(ENA-TR). Furthermore, a generalized extended two-level
nested MIMO radar (GENA-TR) based on ENA-TR is
proposed and the closed-form expressions for attainable
DOF are deduced.

4.1. ENA-TR. From equation (7), the position of the
transmitter with M sensors and receiver with N sensors is
given by

PT � 0, 1, . . . , M1 − 1, M1, 2 M1 + 1( 􏼁, 3 M1 + 1( 􏼁,􏼈

. . . , M2 M1 + 1( 􏼁􏼉,
(10)

PR � 0, 1, . . . , N1 − 1, N1, 2 N1 + 1( 􏼁, 3 N1 + 1( 􏼁,􏼈

. . . , N2 N1 + 1( 􏼁􏼉.
(11)

According to equation (8), the difference coarray of the
transmitter and receiver are both consecutive ULAs with
2M2(M1 + 1) + 1 and 2N2(N1 + 1) + 1 virtual array ele-
ments, which are located at

ST � st − s􏽥t, st, s􏽥t ∈ PT􏽮 􏽯 � −M2 M1 + 1( 􏼁,􏼈

. . . , 0, . . . M2 M1 + 1( 􏼁􏼉,
(12)

SR � sr − s􏽥r, sr, s􏽥r ∈ PR􏼈 􏼉 � −N2 N1 + 1( 􏼁,􏼈

. . . , 0, . . . N2 N1 + 1( 􏼁􏼉.
(13)

It can be known from equation (6) that the virtual el-
ement positions of B� A∗ ⊙A are composed of sum-dif-
ference coarray of physical sensor positions.

SENA−TR
SDCA � st + sr( 􏼁 − s􏽥t + s􏽥r􏼐 􏼑|st, s􏽥t ∈ PT, sr, s􏽥r ∈ PR􏽮 􏽯

� st + s􏽥t􏼐 􏼑 − sr + s􏽥r( 􏼁|st, s􏽥t ∈ PT, sr, s􏽥r ∈ PR􏽮 􏽯

� lt + lr|lt ∈ ST, lr ∈ SR􏼈 􏼉.

(14)

+erefore, the sum-difference coarray of ENA-TR is
essentially the sum coarray of two difference coarrays.

4.2.GENA-TR. +eENA-TR configuration fails to make full
use of the virtual aperture expansion effect of the sum-
difference coarray. By introducing the interelement spacing
expansion factor, a generalized ENA-TR （GENA-TR） is
established to increase DOF, as shown in Figure 2.

+e interelement spacing of the receiver is enlarged with
an expansion factor α, so the receiver sensor positions are
located at

Pα
R � αPR � α 0, 1, . . . , N1 − 1, N1, 2 N1 + 1( 􏼁, 3 N1 + 1( 􏼁,􏼈

. . . , N2 N1 + 1( 􏼁􏼉.

(15)

It can be seen from set (15) that the difference coarray of
the receiver is a filled ULA with interelement spacing en-
larged by factor α. And the difference coarray set is given by

SαR � s
α
r − s

α
􏽥r , s

α
r , s

α
􏽥r ∈ P

α
r􏽮 􏽯 � α −N2 N1 + 1( 􏼁, . . . , 0,􏼈

. . . , N2 N1 + 1( 􏼁􏼉.
(16)

According to equations (10) and (15), we can get the
sum-difference coarray set of GENA-TR:

SGENA−TR
SDCA � st + s

α
r( 􏼁 − s􏽥t + s

α
􏽥r􏼐 􏼑, st, s􏽥t ∈ PT, s

α
r , s

α
􏽥r ∈ P

α
R􏽮 􏽯

� st + s􏽥t􏼐 􏼑 − s
α
r + s

α
􏽥r􏼐 􏼑, st, s􏽥t ∈ PT, s

α
r , s

α
􏽥r ∈ P

α
R􏽮 􏽯

� lt + l
α
r , lt ∈ ST, l

α
r , ∈ SαR􏼈 􏼉.

(17)

Proposition 1. 2e sum-difference coarray of GENA-TR has
the following properties:

(a) 2e range of the expansion factor α is
1≤ α≤ 2M2(M1 + 1) + 1
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(b) SGENA−TR
SDCA contains all the consecutive integers in the

range [−V, V], where V � M2(M1 + 1)+

αN2(N1 + 1)

(c) 2e sum-difference coarray of GENA-TR contains
2[M2(M1 + 1) + 2αN2(N1 + 1)] + 1 unique lags of
virtual array elements without holes

Proof.

(a) It can be known from equations (12) and (16) that ST

and SαR are symmetrical sets, so lt + lαr � lt − lαr .
+erefore, the sum-difference coarray of GENA-TR
is essentially a difference coarray of two subarrays.
When 1≤ α≤ 2M2(M1 + 1) + 1, SGENA−TR

SDCA can get
consecutive virtual array elements with certain po-
sitions [13].

(b) According to equations (12) and (16), the margins of
SGENA−TR
SDCA can be obtained.

For the left margin,

−V � −M2 M1 + 1( 􏼁 + −αN2 N1 + 1( 􏼁􏼂 􏼃. (18)

For the right margin,

V � M2 M1 + 1( 􏼁 + αN2 N1 + 1( 􏼁􏼂 􏼃. (19)

In addition, ST and SαR are both consecutive integers,
so SGENA−TR

SDCA is a hole-free ULA.
(c) According to proposition (b), the maximum number

of SGENA−TR
SDCA is 2V + 1 � 2[M2(M1 + 1)+

2αN2(N1 + 1) + 1].
+e sum-difference coarray of GENA-TR can attain
the maximum number of DOF, where
α � 2M2(M1 + 1) + 1. When the total number of
physical array elements is determined to be G, the
array construction problem turns to an optimization
problem about the maximum number of DOF

max 2M2 M1 + 1( 􏼁 + 1􏼂 􏼃 2N2 N1 + 1( 􏼁 + 1􏼂 􏼃

s.t. G � M1 + M2 + N1 + N2.
(20)

+e Lagrange function of equation (20) can be
expressed as

f � 2M2 M1 + 1( 􏼁 + 1􏼂 􏼃 2N2 N1 + 1( 􏼁􏼂 􏼃

+ η M1 + M2 + N1 + N2 − G( 􏼁.
(21)

where η represents the Lagrange multiplier.
Taking the partial of f with respect to
M1, M2, N1, N2, η, the following system of equations
can be expressed:

(M1 + 1)d(M1 + 2)d

M1d

Dense ULA, M1 sensors Sparse ULA, M2 sensors

d

Figure 1: ENA configuration.

Table 1: Optimal configuration structure for ENA.

M Optimal M1, M2 DOF

Odd M1 � (M − 1)/2, M2 � (M + 1)/2 (M2 + 3)/2 + M

Even M1 � M2 � M/2 (M2 + 2)/2 + M

(M1 + 1)d
Transmit

array

Receive
array

(M1 + 2)d
M1d

Dense ULA, M1 sensors Sparse ULA, M2 sensors

d

(N1 + 1)αd(N1 + 2)αd
N1αd

Dense ULA, N1 sensors Sparse ULA, N2 sensors

αd

Figure 2: GENA-TR structure.
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2M2 2N2 N1 + 1( 􏼁 + 1􏼂 􏼃 + β � 0,

2 M1 + 1( 􏼁 2N2 N1 + 1( 􏼁 + 1􏼂 􏼃 + β � 0,

2N2 2M2 M1 + 1( 􏼁 + 1􏼂 􏼃 + β � 0,

2 N1 + 1( 􏼁 2M2 M1 + 1( 􏼁 + 1􏼂 􏼃 + β � 0,

M1 + M2 + N1 + N2 G � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (22)

By solving equation (22), the optimization results can
be obtained, including the total number of physical
sensors, the specific situation of the optimal array
element configuration, and maximum DOF with the
sum-difference coarray of generalized extended two-
level nested MIMO radar, as shown in Table 2.

To illustrate the distribution characteristics of the virtual
array elements given by the proposition clearly, an example
is shown in Figure 3, where M1 � N1 � 2, M2 � N2 � 3,
α � 2M2(M1 + 1) + 1 � 19, and only the positive part is
demonstrated due to the symmetry of SDCA. Moreover,
nested MIMO [25] and Yang nested MIMO [27] are also
given for comparison. It can be found that the consecutive
lags of GENA-TR are [0, 180] in this example, which is

higher than nested MIMO and Yang nested MIMO, and
SDCA does not have holes.

Table 3 shows the consecutive lags and DOF of different
MIMO geometries with a given total number of physical
elements. It can be clearly seen that the GENA-TR not only
retains the original advantages of the existing sparse array
MIMO radar, whose sum-difference coarray is a hole-free
ULA, but also significantly enhances DOF. Next, the re-
dundant virtual array elements formed by sum-difference
coarray can be averaged [30] and combined with the MUSIC
algorithm based on Toeplitz matrix reconstruction for DOA
estimation. □

5. Simulation Results

In this section, several numerical simulations are presented
to verify the rationality and superiority of the proposed
nested MIMO radar (GENA-TR) and compare with other
sparse array MIMO radars, including nested MIMO [25],
NA-TR [26], Yang nested MIMO [27], Zheng nested MIMO
[28], and ENA-TR. +e total number of physical sensors is
set as G � 10.

Table 2: Optimal configuration structure for GENA-TR.

G Optimal M1, M2, N1, N2 DOF

G � 4k M1 � M2 � N1 � N2 � G/4 (G4 + 8G3 + 32G2 + 64G + 64)/64

G � 4k + 1
M1 � N1 � N2 � (G − 1)/4,

M2 � (G + 3)/4 orM1 � M2
� N1 � (G − 1)/4, N2 � (G + 3)/4

(G4 + 8G3 + 34G2 + 64G + 85)/64

G � 4k + 2 M1 � N1 � (G − 2)/4,

M2 � N2 � (G + 2)/4 (G4 + 8G3 + 40G2 + 96G + 114)/64

G � 4k + 3
M1 � M2 � N2 � (G + 1)/4,

N2 � (G − 3)/4 orM1 � (G − 3)/4,

M2 � N1 � N2 � (G + 1)/4
(G4 + 8G3 + 34G2 + 80G + 117)/64

Nested MIMO
0 20 40

0 20 40 60 80 100 120 140
Yang nested MIMO

0 20 40 60 80 100 120 140 160 180
GENA-TR

Transmitter
Receiver

Sum coarray
Sum-difference coarray

Figure 3: An example of different MIMO radars with fiver transmitter and fiver receiver.
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5.1. DOF Comparison. In this numerical simulation, we
compare themaximumDOF of GENA-TRwith other nested
MIMO geometries, where we change the total number of
physical sensors from 10 to 20. It can be seen from Figure 4
that the maximum DOF of various nested MIMO radars
increase with the number of physical array elements, and the
proposed nested MIMO radar has the most obvious growth
trend. In addition, it should be noted that when the number
of physical elements is the same, the DOF of ENA-TR is only
4 higher than that of NA-TR, whereas GENA-TR can obtain
a higher DOF than other MIMO radars.

5.2. Spatial Spectrum. In this numerical simulation, the
Toeplitz matrix reconstruction based on the MUSIC algo-
rithm is adopted to validate the spatial spectrum perfor-
mance of GENA-TR and Yang nested MIMO radar [27], as
shown in Figures 5 and 6. Suppose that there are K � 101
far-field uncorrelated narrowband targets uniformly dis-
tributed from −60° to 60° at an angular interval of 1.2°, where
the signal-to-noise ratio (SNR) is equal to 10 dB, the number
of snapshots L � 1000 and the search angel range is
[−90°: 0.01°: 90°]. It is obvious that GENA-TR can obtain
better peaks and accurately estimate the DOA of all targets,
whereas Yang nested MIMO radar has false peaks. More-
over, it is worth noting that the reason why NA-TR,
ENA-TR, nested MIMO, and Zheng nested MIMO cannot
estimate 101 targets is that MUSIC algorithm based on
Toeplitz matrix reconstruction causes their DOF to be re-
duced by half, becoming 17, 19, 41, and 81, respectively.

5.3. Root Mean Square Error. In this numerical simulation,
the root mean square error (RMSE) of DOA estimation for
GENA-TR and other nested MIMO radars is compared via
Monte Carlo experiments. It is assumed that there are K �

13 far-field uncorrelated narrowband targets evenly dis-
tributed in [−60°: 10°: 60°]. Figure 7 depicts the RMSE of
different nested MIMO radars versus SNR, where the
number of snapshots is L � 500. Figure 8 shows the RMSE of
different nested MIMO radars versus the number of
snapshots, where SNR� 0 dB.+e RMSE of DOA estimation
can be calculated as

RMSE �

������

1
TK

􏽘

T

i�1

􏽶
􏽴

􏽘

k

k�1
θ
⌢i

k − θk􏼒 􏼓
2

, (23)

where T � 200 represents the number of total Monte Carlo
simulations, θk denotes the true DOA, and θ

⌢i

k implies the
estimated DOA of the i-th trials.

It can be clearly seen from Figures 7 and 8 that as SNR
and the number of snapshots increase, the DOA estimation
accuracy of each MIMO radar has been improved, and si-
multaneously the DOA estimation performance of GENA-

Table 3: Consecutive lags and DOF of different MIMO radars.

Nested MIMO Yang nested MIMO GENA-TR
Number of sensors Consecutive lags DOF Consecutive lags DOF Consecutive lags DOF
10 [−40, 40] 81 [−144, 144] 289 [−180, 180] 361
13 [−71, 71] 143 [−356, 356] 713 [−412, 412] 825
17 [−127, 127] 255 [−955, 955] 1911 [−1045, 1045] 2091
22 [−220, 220] 441 [−2520, 2520] 5041 [−2664, 2664] 5329
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Figure 4:+emaximumDOF of different nestedMIMO versus the
number of physical sensors.
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Figure 5: Spatial spectrum of GENA-TR.
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TR is better than that of other MIMO radars. +is is because
the proposed GENA-TR can obtain a lager virtual element
aperture when the number of physical sensors is the same.

5.4. Probability of Detection. In this numerical simulation,
the probability of detection (PD) performance of DOA
estimation with GENA-TR and other nested MIMO radars
are compared via 200 Monte Carlo experiments. It is as-
sumed that there are K � 13 far-field uncorrelated nar-
rowband targets evenly distributed in [−60°: 10°: 60°].
Figure 9 shows the PD of different nested MIMO radars
versus SNR, where the number of snapshots is L � 200.
Figure 10 shows the PD of different nested MIMO radars
versus the number of snapshots, where SNR� −10 dB. Here,
PD is defined as the ratio of the number of numerical

simulations with the DOA estimation error within ±0.01° in
the total experiments.

As shown in Figures 9 and 10, the PD of each nested
MIMO radar has been improved as SNR and the number of
snapshots increase. In addition, under the same SNR or the
same number of snapshots, GENA-TR has a higher PD.
Especially under the conditions of low SNR and low
snapshots, the PD of the proposed nested MIMO radar is
significantly better than that of other nested MIMO radars.

5.5. Resolution Performance. In this numerical simulation,
the resolution performance of DOA estimation with GENA-
TR and other nested MIMO radars is compared. Here,
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Figure 6: Spatial spectrum of Yang nested MIMO.
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resolution is defined as both the deviation between the true
DOA and the estimated DOA of two closely targets which
are less than one-half of the difference between the true
angles of them [28]. Assume that there are K � 2 far-field
uncorrelated narrowband targets located at [5

°
, 5.5°]. Fig-

ure 11 demonstrates the spatial spectrum of the different
nested MIMO radars, where SNR� −10 dB and the number
of snapshots L � 200.

It can be clearly seen from Figure 11 that NA-TR and
ENA-TR cannot distinguish the above two targets, while
other nested MIMO radars can distinguish the above two
targets. Furthermore, GENA-TR has higher resolution and
sharper peaks due to its higher degrees of freedom.

6. Conclusions

In this paper, a generalized extended two-level nested
MIMO radar array configuration using extended two-level
nested array is proposed, which can significantly improve
the virtual array apertures and degrees of freedom, and the
sum-difference coarray is a ULA without holes. In addition,
the closed-form expressions of the maximum DOF are
derived for a given number of physical sensors. At last, some
numerical simulations are conducted to illustrate the ad-
vantages of the proposed GENA-TR in DOF, the estimation
accuracy and the angle resolution.
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