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Dynamical neural networks proved to be an important tool to
solve some practical engineering problems in the areas such
as optimization, image and signal processing, control sys-
tems, associative memories, and pattern recognition. When
employing neural networks to solve practical engineering
problems, it is crucial to be able to completely characterize
the dynamical properties of neural networks. There are
many various classes of neural network models that can be
described in the form of nonlinear systems.Therefore, neural
networksmay exhibit extremely different complex dynamical
behaviors depending on the model and network parameters.
Hence, the analysis of nonlinear dynamics of neural networks
still possesses new challenges to researchers.

The aim of this special issue is to solicit theoretical
and application research in the fields of neural networks
exploiting their nonlinear dynamics. We believe it provides
a good opportunity for reflection on current developments
in the nonlinear analysis of dynamical behaviors of neural
networks.The papers submitted to this special issue represent
a mixture of cross-cutting investigations and provide deep
insight into the current developments in the field. The
accepted papers in this special issue addressed the following
topics:

(i) stability analysis of dynamical neural networks,
(ii) almost periodic solution of of neutral-type neural

networks,
(iii) impulsive control of stochastic synchronization of

reaction-diffusion neural networks,

(iv) neural network model for predicting peak ground
acceleration,

(v) dynamical analysis of high-order neural networks,
(vi) synchronization of nonlinear coupled complex net-

works.

As we mentioned above, the special issue aimed to
reveal new ideas in the area of nonlinear dynamics of
neural networks, which would be helpful for the scientists
and researchers who share the common interest in neural
networks. We hope that the readers will agree with us that
the published papers reflect convincingly the issue’s objectives
with its variety of presented topics, investigated at both
theoretical and application levels.

Sabri Arik
Juhyun Park

Tingwen Huang
José J. Oliveira
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This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks
(FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential
inequality, M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the
periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is
estimated.The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and
effectiveness of the obtained results.

1. Introduction

The fuzzy cellular neural networks (FCNNs) model, which
combines fuzzy logic with the structure of traditional neural
networks (CNNs) [1–3], has been proposed by Yang et al.
[4, 5]. Unlike previous CNNs structures, the FCNNs model
has fuzzy logic between its template and input and/or output
besides the “sum of product” operation. Studies have shown
that the FCNNs model is a very useful paradigm for image
processing and pattern recognition [6–8]. These applications
heavily depend on not only the dynamical analysis of equi-
librium points but also on that of the periodic oscillatory
solutions. In fact, the human brain is naturally in periodic
oscillatory [9], and the dynamical analysis of periodic oscil-
latory solutions is very important in learning theory [10, 11],
because learning usually requires repetition. Moreover, an
equilibriumpoint can be viewed as a special periodic solution
of neural networks with arbitrary period. Stability analysis
problems for FCNNs with and without delays have recently
been probed; see [12–22] and the references therein. Yuan et
al. [13] have investigated stability of FCNNs by linear matrix
inequality approach, and several criteria have been provided

for checking the periodic solutions for FCNNs with time-
varying delays. Huang [14] has probed exponential stability of
fuzzy cellular neural networks with distributed delay, without
considering reaction-diffusion effects.

Strictly speaking, reaction-diffusion effects cannot be
neglected in both biological and man-made neural net-
works [19–32], especially when electrons are moving in
noneven electromagnetic field. In [19], stability is considered
for FCNNs with diffusion terms and time-varying delay.
Wang and Lu [20] have probed global exponential stability
of FCNNs with delays and reaction-diffusion terms. Song
and Wang [21] have studied dynamical behaviors of fuzzy
reaction-diffusion periodic cellular neural networks with
variable coefficients and delays without considering pulsing
effects. Wang et al. [22] have discussed exponential stabil-
ity of impulsive stochastic fuzzy reaction-diffusion Cohen-
Grossberg neural networks withmixed delays. Zhao andMao
[30] have investigated boundedness and stability of nonau-
tonomous cellular neural networks with reaction-diffusion
terms. Zhao and Wang [31] have considered existence of
periodic oscillatory solution of reaction-diffusion neural
networkswith delayswithout fuzzy logic and impulsive effect.



2 Abstract and Applied Analysis

As we all know, many practical systems in physics, biol-
ogy, engineering, and information science undergo abrupt
changes at certain moments of time because of impulsive
inputs [33]. Impulsive differential equations and impulsive
neural networks have been received much interest in recent
years; see, for example, [34–42] and the references therein.
Yang and Xu [36] have investigated existence and exponential
stability of periodic solution for impulsive delay differential
equations and applications. Li and Lu [38] have discussed
global exponential stability and existence of periodic solution
of Hopfield-type neural networks with impulses without
reaction-diffusion. To the best of our knowledge, few authors
have probed the existence and exponential stability of the
periodic solutions for the FIRDDCNN model with variable
coefficients, and time-varying delays. As a result of the
simultaneous presence of fuzziness, pulsing effects, reaction-
diffusion phenomena, periodicity, variable coefficients and
delays, the dynamical behaviors of this kind ofmodel become
much more complex and have not been properly addressed,
which still remain important and challenging.

Motivated by the above discussion, we will establish some
sufficient conditions for the existence and exponential stabil-
ity of periodic solutions of this kind of FIRDDCNN model,
applying delay differential inequality, 𝑀-matrix theory, and
analytic methods. An example is employed to demonstrate
the usefulness of the obtained results.

Notations. Throughout this paper, R𝑛 and R𝑛×𝑚 denote,
respectively, the 𝑛-dimensional Euclidean space and the set
of all 𝑛 ×𝑚 real matrices.The superscript “T” denotes matrix
transposition and the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌),
where 𝑋 and 𝑌 are symmetric matrices, means that 𝑋 − 𝑌

is positive semidefinite (resp., positive definite). Ω = {𝑥 =

(𝑥
1
, . . . , 𝑥

𝑚
)
T
, |𝑥
𝑖
| < 𝜇} is a bounded compact set in space

R𝑚 with smooth boundary 𝜕Ω and measure mesΩ > 0;
Neumann boundary condition 𝜕𝑢

𝑖
/𝜕𝑛 = 0 is the outer

normal to 𝜕Ω; 𝐿2(Ω) is the space of real functions Ω which
are 𝐿
2 for the Lebesgue measure. It is a Banach space with

the norm ‖𝑢(𝑡, 𝑥)‖
2

= (∑
𝑛

𝑖=1
‖𝑢
𝑖
(𝑡, 𝑥)‖

2

2
)
1/2, where 𝑢(𝑡, 𝑥) =

(𝑢
1
(𝑡, 𝑥), . . .,𝑢

𝑛
(𝑡, 𝑥))

T, ‖𝑢
𝑖
(𝑡, 𝑥)‖

2
= (∫

Ω

|𝑢
𝑖
(𝑡, 𝑥)|

2

𝑑𝑥)
1/2,

|𝑢(𝑡, 𝑥)| = (|𝑢
1
(𝑡, 𝑥)|, . . . , |𝑢

𝑛
(𝑡, 𝑥)|)

T. For function 𝑔(𝑥) with
positive period 𝜔, we denote 𝑔 = max

𝑡∈[0,𝜔]
𝑔(𝑡), 𝑔 =

min
𝑡∈[0,𝜔]

𝑔(𝑡). Sometimes, the arguments of a function or a
matrix will be omitted in the analysis when no confusion can
arise.

2. Preliminaries

Consider the impulsive fuzzy reaction-diffusion delayed cel-
lular neural networks (FIRDDCNN) model:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕
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𝑙

)
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𝑖
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𝑛

∑

𝑗=1

𝑎
𝑖𝑗
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𝑗
(𝑢
𝑗
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+

𝑛

∑
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𝑏
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𝑗
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𝑛

⋀
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𝛼
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𝑘
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𝑢
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+

𝑘
, 𝑥) − 𝑢

𝑖
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−
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𝑘
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+
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𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) , −𝜏

𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω,

(1)

where 𝑛 ≥ 2 is the number of neurons in the network and
𝑢
𝑖
(𝑡, 𝑥) corresponds to the state of the 𝑖th neuron at time 𝑡

and in space 𝑥; 𝐷 = diag(𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑛
) is the diffusion-

matrix and𝐷
𝑖
≥ 0;Δ = ∑

𝑚

𝑘=1
(𝜕
2

/𝜕𝑥
2

𝑘
) is the Laplace operator;

𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥)) denotes the activation function of the 𝑗th unit

and 𝑣
𝑗
(𝑡) the activation function of the 𝑗th unit; 𝐽

𝑖
(𝑡) is an

input at time 𝑡; 𝑐
𝑖
(𝑡) > 0 represents the rate with which the

𝑖th unit will reset its potential to the resting state in isolation
when disconnected from the networks and external inputs
at time 𝑡; 𝑎

𝑖𝑗
(𝑡) and 𝑏

𝑖𝑗
(𝑡) are elements of feedback template

and feed forward template at time 𝑡, respectively.Moreover, in
model (1),𝛼

𝑖𝑗
(𝑡), 𝛽
𝑖𝑗
(𝑡), 𝑇
𝑖𝑗
(𝑡), and𝐻

𝑖𝑗
(𝑡) are elements of fuzzy

feedbackMIN template, fuzzy feedbackMAX template, fuzzy
feed forward MIN template, and fuzzy feed forward MAX
template at time 𝑡, respectively; the symbols “⋀” and “⋁”
denote the fuzzy AND and fuzzy OR operation, respectively;
time-varying delay 𝜏

𝑗
(𝑡) is the transmission delay along the

axon of the 𝑗th unit and satisfies 0 ≤ 𝜏
𝑗
(𝑡) ≤ 𝜏

𝑗
(𝜏
𝑗
is

a constant); the initial condition 𝜙
𝑖
(𝑠, 𝑥) is bounded and
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1≤𝑗≤𝑛

𝜏
𝑗
. The fixed

moments 𝑡
𝑘
satisfy 0 = 𝑡

0
< 𝑡
1

< 𝑡
2
. . . , lim

𝑘→+∞
𝑡
𝑘

=

+∞, 𝑘 ∈ N. 𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) and 𝑢

𝑖
(𝑡
−

𝑘
, 𝑥) denote the right-hand

and left-hand limits at 𝑡
𝑘
, respectively. We always assume

𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) = 𝑢

𝑖
(𝑡
𝑘
, 𝑥), for all 𝑘 ∈ 𝑁. The initial value functions

𝜓(𝑠, 𝑥) belong to PC
Ω
([−𝜏, 0] × Ω; 𝑅

𝑛

). PC
Ω
(𝐽 × Ω, 𝐿

2

(Ω)) =

{𝜓 : 𝐽×Ω → 𝐿
2

(Ω) | for every 𝑡 ∈ 𝐽, 𝜓(𝑡, 𝑥) ∈ 𝐿
2

(Ω); for any
fixed 𝑥 ∈ Ω, 𝜓(𝑡, 𝑥) is continuous for all but atmost countable
points 𝑠 ∈ 𝐽 and at these points, 𝜓(𝑠+, 𝑥) and 𝜓(𝑠

−

, 𝑥) exist,
𝜓(𝑠
+

, 𝑥) = 𝜓(𝑠
−

, 𝑥)}, where 𝜓(𝑠
+

, 𝑥) and 𝜓(𝑠
−

, 𝑥) denote
the right-hand and left-hand limit of the function 𝜓(𝑠, 𝑥),
respectively. Especially, let PC

Ω
= PC([−𝜏, 0] × Ω, 𝐿

2

(Ω)).
For any 𝜓(𝑡, 𝑥) = (𝜓

1
(𝑡, 𝑥), . . . , 𝜓

𝑛
(𝑡, 𝑥)) ∈ PC

Ω
, suppose that

|𝜓
𝑖
(𝑡, 𝑥)|

𝜏
= sup

−𝜏<𝑠≤0
|𝜓
𝑖
(𝑡 + 𝑠, 𝑥)| exists as a finite number
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and introduce the norm ‖𝜓(𝑡)‖
2
= (∑
𝑛

𝑖=1
‖𝜓
𝑖
(𝑡)‖
2

2
)
1/2, where

‖𝜓
𝑖
(𝑡)‖
2
= (∫
Ω

|𝜓
𝑖
(𝑡, 𝑥)|

2

𝑑𝑥)
1/2.

Throughout the paper, we make the following assump-
tions.

(H1) There exists a positive diagonal matrix 𝐹 =

diag(𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
), and 𝐺 = diag(𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑛
)

such that

𝐹
𝑗
= sup
𝑥 ̸=𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑦)

𝑥 − 𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐺
𝑗
= sup
𝑥 ̸=𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑗
(𝑥) − 𝑔

𝑗
(𝑦)

𝑥 − 𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(2)

for all 𝑥 ̸=𝑦, 𝑗 = 1, 2, . . . , 𝑛.

(H2) 𝑐
𝑖
(𝑡) > 0, 𝑎

𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡), 𝛼
𝑖𝑗
(𝑡), 𝛽
𝑖𝑗
(𝑡), 𝑇
𝑖𝑗
(𝑡),𝐻
𝑖𝑗
(𝑡), 𝑣
𝑖
(𝑡),

𝐼
𝑖
(𝑡), and 𝜏

𝑗
(𝑡) ≥ 0 are periodic function with a

common positive period 𝜔 for all 𝑡 ≥ 𝑡
0
, 𝑖, 𝑗 = 1,

2, . . . , 𝑛.

(H3) For𝜔 > 0, 𝑖 = 1, 2, . . . , 𝑛, there exists 𝑞 ∈ 𝑍
+
such that

𝑡
𝑘
+ 𝜔 = 𝑡

𝑘+𝑞
, 𝐼
𝑖𝑘
(𝑢
𝑖
) = 𝐼
𝑖(𝑘+𝑞)

(𝑢
𝑖
) and 𝐼

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) are

Lipschitz continuous in R𝑛.

Definition 1. Themodel in (1) is said to be globally exponen-
tially periodic if (i) there exists one 𝜔-periodic solution and
(ii) all other solutions of the model converge exponentially to
it as 𝑡 → +∞.

Definition 2 (see [26]). Let C = ([𝑡 − 𝜏, 𝑡],R𝑛), where 𝜏 ≥

0 and 𝐹(𝑡, 𝑥, 𝑦) ∈ C(R+ × R𝑛 × C,R𝑛). Then the function
𝐹(𝑡, 𝑥, 𝑦) = (𝑓

1
(𝑡, 𝑥, 𝑦), 𝑓

2
(𝑡, 𝑥, 𝑦), . . . , 𝑓

𝑛
(𝑡, 𝑥, 𝑦))

T is called
an 𝑀-function, if (i) for every 𝑡 ∈ R+, 𝑥 ∈ R𝑛, 𝑦(1) ∈ C,
there holds 𝐹(𝑡, 𝑥, 𝑦(1)) ≤ 𝐹(𝑡, 𝑥, 𝑦

(2)

), for 𝑦
(1)

≤ 𝑦
(2), where

𝑦
(1)

= (𝑦
(1)

1
, . . . , 𝑦

(1)

𝑛
)
T and 𝑦

(2)

= (𝑦
(2)

1
, . . . , 𝑦

(2)

𝑛
)
T; (ii) every

𝑖th element of 𝐹 satisfies 𝑓
𝑖
(𝑡, 𝑥
(1)

, 𝑦) ≤ 𝑓
𝑖
(𝑡, 𝑥
(2)

, 𝑦) for any
𝑦 ∈ C, 𝑡 ≥ 𝑡

0
, where arbitrary 𝑥

(1) and 𝑥
(2)

(𝑥
(1)

≤ 𝑥
(2)

)

belong to R𝑛 and have the same 𝑖th component 𝑥(1)
𝑖

= 𝑥
(2)

𝑖
.

Here, 𝑥(1) = (𝑥
(1)

1
, . . . , 𝑥

(1)

𝑛
)
T
, 𝑥
(2)

= (𝑥
(2)

1
, . . . , 𝑥

(2)

𝑛
)
T.

Definition 3 (see [26]). A real matrix𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

is said to be
a nonsingular 𝑀-matrix if 𝑎

𝑖𝑗
≤ 0 (𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, . . . , 𝑛) and

all successive principal minors of 𝐴 are positive.

Lemma 4 (see [13]). Let 𝑢 and 𝑢
∗ be two states of the model

in (1), then we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
) −

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
∗

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑢
𝑗
) − 𝑓
𝑗
(𝑢
∗

𝑗
)
󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
) −

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
∗

𝑗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑢
𝑗
) − 𝑓
𝑗
(𝑢
∗

𝑗
)
󵄨󵄨󵄨󵄨󵄨
.

(3)

Lemma 5 (see [26]). Assume that 𝐹(𝑡, 𝑥, 𝑦) is an𝑀-function,
and (i) 𝑥(𝑡) < 𝑦(𝑡), 𝑡 ∈ [𝑡 − 𝜏, 𝑡

0
], (ii) 𝐷

+

𝑦(𝑡) >

𝐹(𝑡, 𝑦(𝑡), 𝑦
𝑠

(𝑡)), 𝐷+𝑥(𝑡) ≤ 𝐹(𝑡, 𝑥(𝑡), 𝑥
𝑠

(𝑡)), 𝑡 ≥ 𝑡
0
, where

𝑥
𝑠

(𝑡) = sup
−𝜏≤𝑠≤0

𝑥(𝑡 + 𝑠), 𝑦𝑠(𝑡) = sup
−𝜏≤𝑠≤0

𝑦(𝑡 + 𝑠). Then
𝑥(𝑡) < 𝑦(𝑡), 𝑡 ≥ 𝑡

0
.

3. Main Results and Proofs

We should first point out that, under assumptions (H1),
(H2), and (H3), the FIRDDCNN model (1) has at least one
𝜔-periodic solution of [26]. The proof of the existence of
the 𝜔-periodic solution of (1) can be carried out similar to
[26, 28] by the nonlinear functional analysis methods such as
topological degree andhere is omitted.Wewillmainly discuss
the uniqueness of the periodic solution and its exponential
stability.

Theorem 6. Assume that (H1)–(H3) holds. Furthermore,
assume that the following conditions hold

(H4) C − 𝐴F − (𝛼 + 𝛽)𝐺 is a nonsingular𝑀-matrix.

(H5) The impulsive operators ℎ
𝑘
(𝑢) = 𝑢 + 𝐼

𝑘
(𝑢) is Lipschitz

continuous in R𝑛; that is, there exists a nonnegative
diagnose matrix Γ

𝑘
= diag(𝛾1k, . . . , 𝛾nk) such that

|ℎ
𝑘
(𝑢) − ℎ

𝑘
(𝑢
∗

)| ≤ Γ
𝑘
|𝑢 − 𝑢

∗

| for all 𝑢, 𝑢∗ ∈ R𝑛,
𝑘 ∈ 𝑁

+, where |ℎ
𝑘
(𝑢)| = (|ℎ

1𝑘
(𝑢
1
)|, . . . , |ℎ

𝑛𝑘
(𝑢
𝑛
)|)

T,
𝐼
𝑘
(𝑢) = (𝐼

1𝑘
(𝑢
1
), . . .,𝐼

𝑛𝑘
(𝑢
𝑛
))
T.

(H6) 𝜂 = sup
𝑘∈𝑁
+{ln 𝜂
𝑘
/(𝑡
𝑘
− 𝑡
𝑘−1

)} < 𝜆, where 𝜂
𝑘

=

max
1≤𝑖≤𝑛

{1, 𝛾
𝑖𝑘
}, 𝑘 ∈ 𝑁

+.

Then the model (1) is global exponential periodic and
the exponential convergence rate index 𝜆 − 𝜂 and 𝜆 can be
estimated by

𝜉
𝑖
(𝜆 − 𝑐

𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝜆

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) < 0

𝑖 = 1, . . . , 𝑛,

(4)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝜉

𝑖
> 0, 𝐴 = (|𝑎

𝑖𝑗
|)
𝑛×𝑛

, 𝛼 =

(|𝛼
𝑖𝑗
|)
𝑛×𝑛

, 𝛽 = (|𝛽
𝑖𝑗
|)
𝑛×𝑛

, satisfies −𝜉
𝑖
𝑐
𝑖
+∑
𝑛

𝑗=1
𝜉
𝑖
(|𝑎
𝑖𝑗
|𝐹
𝑖
+

(|𝛼
𝑖𝑗
| + |𝛽
𝑖𝑗
|)𝐺
𝑖
) < 0.

Proof. For any 𝜙, 𝜓 ∈ PC
Ω
, let 𝑢(𝑡, 𝑥, 𝜙) = (𝑢

1
(𝑡, 𝑥, 𝜙), . . . ,

𝑢
𝑛
(𝑡, 𝑥, 𝜙))

T be a periodic solution of the system (1) starting
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from 𝜙 and 𝑢(𝑡, 𝑥, 𝜓) = (𝑢
1
(𝑡, 𝑥, 𝜓), . . . , 𝑢

𝑛
(𝑡, 𝑥, 𝜓))

T, a solu-
tion of the system (1) starting from 𝜓. Define

𝑢
𝑡
(𝜙, 𝑥) = 𝑢 (𝑡 + 𝑠, 𝑥, 𝜙) ,

𝑢
𝑡
(𝜓, 𝑥) = 𝑢 (𝑡 + 𝑠, 𝑥, 𝜓) , 𝑠 ∈ [−𝜏, 0] ,

(5)

and we can see that 𝑢
𝑡
(𝜙, 𝑥), 𝑢

𝑡
(𝜓, 𝑥) ∈ PC

Ω
for all 𝑡 > 0. Let

𝑈
𝑖
= 𝑢
𝑖
(𝑡, 𝑥, 𝜙) − 𝑢

𝑖
(𝑡, 𝑥, 𝜓), then from (1) we get

𝜕𝑈
𝑖

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑈
𝑖

𝜕𝑥
𝑙

) − 𝑐
𝑖
(𝑡) 𝑈
𝑖
+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡)

× [𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜙)) − 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜓))]

+ [

[

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

+ [

[

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

(6)

for all 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑖 = 1, . . . , 𝑛.

Multiplying both sides of (6) by 𝑈
𝑖
and integrating it in

Ω, we have
1

2

d
d𝑡

∫
Ω

𝑈
2

𝑖
d𝑥

= ∫
Ω

𝑈
𝑖

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑈
𝑖

𝜕𝑥
𝑙

) d𝑥

− 𝑐
𝑖
(𝑡) ∫
Ω

𝑈
2

𝑖
𝑑𝑥 +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) ∫
Ω

𝑈
𝑖

× [𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜙) − 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜓)))] d𝑥

+ ∫
Ω

𝑈
𝑖

[

[

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

d𝑥

+ ∫
Ω

𝑈
𝑖

[

[

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

d𝑥

(7)

for 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑖 = 1, . . . , 𝑛. By boundary condition and

Green Formula, we can get

∫
Ω

𝑈
𝑖

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑈
𝑖

𝜕𝑥
𝑙

)𝑑𝑥 ≤ −𝐷
𝑖
∫
Ω

(∇𝑈
𝑖
)
2d𝑥. (8)

Then, from (8), (9), (H1)-(H2), Lemma 4, and the Holder
inequality,

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩

2

2

≤ −2𝑐
𝑖

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩

2

2
+ 2

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗

󵄩󵄩󵄩󵄩󵄩2

+ 2

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

×
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙) − 𝑢

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓)

󵄩󵄩󵄩󵄩󵄩2
,

𝑡 ̸= 𝑡
𝑘
.

(9)

Thus,

𝐷
+󵄩󵄩󵄩󵄩𝑈𝑖

󵄩󵄩󵄩󵄩2

≤ −𝑐
𝑖

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗

󵄩󵄩󵄩󵄩󵄩2

+

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗

×
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙) − 𝑢

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓)

󵄩󵄩󵄩󵄩󵄩2
,

𝑡 ̸= 𝑡
𝑘

(10)

for 𝑖 = 1, . . . , 𝑛. Since 𝐶 − (𝐴𝐹 + (𝛼 + 𝛽)𝐺) is a nonsingular
𝑀-matrix, there exists a vector 𝜉 = (𝜉

1
, . . . , 𝜉

𝑛
)
T
> 0 such that

−𝜉
𝑖
𝑐
𝑖
+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ (

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) < 0. (11)

Considering functions

Ψ
𝑖
(𝑦) = 𝜉

𝑖
(𝑦 − 𝑐

𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝑦

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) ,

𝑖 = 1, . . . , 𝑛,

(12)

we know from (11) that Ψ
𝑖
(0) < 0 and Ψ

𝑖
(𝑦) is continuous.

Since dΨ
𝑖
(𝑦)/d𝑦 > 0, Ψ

𝑖
(𝑦) is strictly monotonically

increasing, there exists a scalar 𝜆
𝑖
> 0 such that

Ψ
𝑖
(𝜆
𝑖
) = 𝜉
𝑖
(𝜆
𝑖
− 𝑐
𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝜆
𝑖 (
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) = 0,

𝑖 = 1, . . . , 𝑛.

(13)
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Choosing 0 < 𝜆 < min{𝜆
1
, . . . , 𝜆

𝑛
}, we have

𝜉
𝑖
(𝜆
𝑖
− 𝑐
𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝜆
𝑖 (
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) < 0,

𝑖 = 1, . . . , 𝑛.

(14)

That is,

𝜆𝜉 − (𝐶 − 𝐴𝐹) 𝜉 + (𝛼 + 𝛽)𝐺𝜉𝑒
−𝜆𝑡

< 0. (15)

Furthermore, choose a positive scalar 𝑝 large enough such
that

𝑝𝑒
−𝜆𝑡

𝜉 > (1, 1, . . . , 1)
T
, 𝑡 ∈ [−𝜏, 0] . (16)

For any 𝜀 > 0, let

𝑟 (𝑡) = 𝑝𝑒
−𝜆𝑡

(
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
+ 𝜀) 𝜉, 𝑡

0
≤ 𝑡 < 𝑡

1
. (17)

From (15)–(17), we obtain

𝐷
+

𝑟 (𝑡) > − (𝐶 − 𝐴𝐹) 𝑟 (𝑡) + (𝛼 + 𝛽)𝐺𝑟
𝑠

(𝑡)

=: 𝑉 (𝑡, 𝑟 (𝑡) , 𝑟
𝑠

(𝑡)) , 𝑡
0
≤ 𝑡 < 𝑡

1
,

(18)

where 𝑟𝑠(𝑡) = (𝑟
𝑠

1
(𝑡), . . . , 𝑟

𝑠

𝑛
(𝑡))

T and 𝑟
𝑠

𝑖
(𝑡) = sup

−𝜏≤𝑠≤0
𝑝𝑒
−𝜆(𝑡+𝑠)

(‖𝜙 − 𝜑‖
2
+ 𝜀)𝜉
𝑖
. It is easy to verify that 𝑉(𝑡, 𝑟(𝑡), 𝑟

𝑠

(𝑡)) is an
𝑀-function. It follows also from (16) and (17) that

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

≤
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩2
< 𝑝𝑒
−𝜆𝑡

𝜉
𝑖

󵄩󵄩󵄩󵄩𝜙 − 𝜑
󵄩󵄩󵄩󵄩2

< 𝑟
𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑛.

(19)

Denote

𝑈
⬦

:= (
󵄩󵄩󵄩󵄩𝑢1 (𝑡, 𝑥, 𝜙) − 𝑢

1
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩2
, . . . ,

󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡, 𝑥, 𝜙) − 𝑢
𝑛
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩2
)
T
,

𝑈
⬦(𝑠)

:= (
󵄩󵄩󵄩󵄩𝑢1 (𝑡, 𝑥, 𝜙) − 𝑢

1
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩

(𝑠)

2
, . . . ,

󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡, 𝑥, 𝜙) − 𝑢
𝑛
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩

(𝑠)

2
)

T
,

(20)

where ‖𝑈
𝑖
‖
(𝑠)

2
= sup

−𝜏≤𝑠≤0
‖𝑢
𝑖
(𝑡 + 𝑠, 𝑥, 𝜙) − 𝑢

𝑖
(𝑡 + 𝑠, 𝑥, 𝜓)‖

2
,

then

𝑈
⬦

< 𝑟 (𝑡) , 𝑡 ∈ [−𝜏, 0] . (21)

From (10), we can obtain

𝐷
+

𝑈
⬦

≤ − (𝐶 − 𝐴𝐹)𝑈
⬦

+ (𝛼 + 𝛽)𝐺𝑈
⬦(𝑠)

= 𝑉 (𝑡, 𝑈
⬦

, 𝑈
⬦(𝑠)

) , 𝑡 ̸= 𝑡
𝑘
.

(22)

Now, it follows from (18)–(22) and Lemma 5 that

𝑈
⬦

< 𝑟 (𝑡) = 𝑝𝑒
−𝜆𝑡

(
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
+ 𝜀) 𝜉,

𝑡
0
≤ 𝑡 < 𝑡

1
.

(23)

Letting 𝜀 → 0, we have

𝑈
⬦

≤ 𝑝𝜉
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

, 𝑡
0
≤ 𝑡 < 𝑡

1
. (24)

And moreover, from (24), we get

(

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩

2

2
)

1/2

≤ 𝑝(

𝑛

∑

𝑖=1

𝜉
2

𝑖
)

1/2

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
0
≤ 𝑡 < 𝑡

1
.

(25)

Let 𝑀̃ = 𝑝(∑
𝑛

𝑖=1
𝜉
2

𝑖
)
1/2, then 𝑀̃ ≥ 1. Define𝑊(𝑡) = ‖𝑢

𝑡
(𝑥, 𝜙)−

𝑢
𝑡
(𝑥, 𝜓)‖

2
; it follows from (25) and the definitions of 𝑢

𝑡
(𝜙, 𝑥)

and 𝑢
𝑡
(𝜓, 𝑥) that

𝑊(𝑡) =
󵄩󵄩󵄩󵄩𝑢𝑡(𝑥, 𝜙) − 𝑢

𝑡
(𝑥, 𝜓)

󵄩󵄩󵄩󵄩2

≤ 𝑀̃
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

, 𝑡
0
≤ 𝑡 < 𝑡

1
.

(26)

It is easily observed that

𝑊(𝑡) ≤ 𝑀̃
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

, −𝜏 ≤ 𝑡 ≤ 𝑡
0
= 0. (27)

Because (26) holds, we can suppose that for 𝑙 ≤ 𝑘 inequality

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝑀̃
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑙−1

≤ 𝑡 < 𝑡
𝑙

(28)

holds, where 𝜂
0
= 1. When 𝑙 = 𝑘 + 1, we note (H5) that

𝑊(𝑡
𝑘
) =

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑡
𝑘

(𝑥, 𝜙) − 𝑢
𝑡
𝑘

(𝑥, 𝜓)
󵄩󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑘
(𝑢
−

𝑡
𝑘

(𝑥, 𝜙)) − ℎ
𝑘
(𝑢
−

𝑡
𝑘

(𝑥, 𝜓))
󵄩󵄩󵄩󵄩󵄩2

≤ 𝜌 (Γ
2

𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝑢
−

𝑡
𝑘

(𝑥, 𝜙) − 𝑢
−

𝑡
𝑘

(𝑥, 𝜓)
󵄩󵄩󵄩󵄩󵄩2

= 𝜌 (Γ
2

𝑘
)𝑊 (𝑡

−

𝑘
)

≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜌 (Γ
2

𝑘
) 𝑀̃

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡
𝑘

≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜂
𝑘
𝜌 (Γ
2

𝑘
) 𝑀̃

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡
𝑘 ,

(29)

where 𝜌(Γ
2

𝑘
) is the spectral radius of Γ

2

𝑘
. Let 𝑀 =

max{𝑀̃, 𝜌(Γ
2

𝑘
)𝑀̃}, by (28), (29), and 𝜂 ≥ 1, we obtain

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜂
𝑘
𝑀

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑘
− 𝜏 ≤ 𝑡 ≤ 𝑡

𝑘
.

(30)

Combining (10), (17), (30), and Lemma 5, we get

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜂
𝑘
𝑀

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
, 𝑘 ∈ 𝑁

+

.

(31)

Applying mathematical induction, we conclude that

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑘−1

≤ 𝑡 < 𝑡
𝑘
, 𝑘 ∈ 𝑁

+

.

(32)
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From (H6) and (32), we have

𝑊(𝑡) ≤ 𝑒
𝜂𝑡
1𝑒
𝜂(𝑡
2
−𝑡
1
)

⋅ ⋅ ⋅ 𝑒
𝜂(𝑡
𝑘−1
−𝑡
𝑘−2
)

×𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
𝜂𝑡

𝑒
−𝜆𝑡

= 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−(𝜆−𝜂)𝑡

,

𝑡
𝑘−1

≤ 𝑡 < 𝑡
𝑘
, 𝑘 ∈ 𝑁

+

.

(33)

This means that
󵄩󵄩󵄩󵄩𝑢𝑡(𝑥, 𝜙) − 𝑢

𝑡
(𝑥, 𝜓)

󵄩󵄩󵄩󵄩2

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−(𝜆−𝜂)𝑡

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−(𝜆−𝜂)(𝑡−𝜏)

, 𝑡 ≥ 𝑡
0
,

(34)

choosing a positive integer𝑁 such that

𝑀𝑒
−(𝜆−𝜂)(𝑁𝜔−𝜏)

≤
1

6
. (35)

Define a Poincare mappingD : Γ → Γ by

D (𝜙) = 𝑢
𝜔
(𝑥, 𝜙) , (36)

Then

D
𝑁

(𝜙) = 𝑢
𝑁𝜔

(𝑥, 𝜙) . (37)

Setting 𝑡 = 𝑁𝜔 in (34), from (35) and (37), we have

󵄩󵄩󵄩󵄩󵄩
D
𝑁

(𝜙) −D
𝑁

(𝜓)
󵄩󵄩󵄩󵄩󵄩2

≤
1

6

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
, (38)

which implies thatD𝑁 is a contraction mapping. Thus, there
exists a unique fixed point 𝜙∗ ∈ Γ such that

D
𝑁

(D (𝜙
∗

)) = D (D
𝑁

(𝜙
∗

)) = D (𝜙
∗

) . (39)

From (37), we know that D(𝜙
∗

) is also a fixed point of D𝑁,
and then it follows from the uniqueness of the fixed point that

D (𝜙
∗

) = 𝜙
∗

, that is, 𝑢
𝜔
(𝑥, 𝜙
∗

) = 𝜙
∗

. (40)

Let 𝑢(𝑡, 𝑥, 𝜙
∗

) be a solution of the model (1), then 𝑢(𝑡 +

𝜔, 𝑥, 𝜙
∗

) is also a solution of the model (1). Obviously,

𝑢
𝑡+𝜔

(𝑥, 𝜙
∗

) = 𝑢
𝑡
(𝑢
𝜔
(𝑥, 𝜙
∗

)) = 𝑢
𝑡
(𝑥, 𝜙
∗

) , (41)

for all 𝑡 ≥ 𝑡
0
. Hence, 𝑢(𝑡 + 𝜔, 𝑥, 𝜙

∗

) = 𝑢(𝑡, 𝑥, 𝜙
∗

), which
shows that 𝑢(𝑡, 𝑥, 𝜙∗) is exactly one 𝜔-periodic solution of
model (1). It is easy to see that all other solutions of model (1)
converge to this periodic solution exponentially as 𝑡 → +∞,
and the exponential convergence rate index is 𝜆−𝜂.The proof
is completed.

Remark 7. When 𝑐
𝑖
(𝑡) = 𝑐

𝑖
, 𝑎
𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
, 𝑏
𝑖𝑗
(𝑡) = 𝑏

𝑖𝑗
, 𝛼
𝑖𝑗
(𝑡) = 𝛼

𝑖𝑗
,

𝛽
𝑖𝑗
(𝑡) = 𝛽

𝑖𝑗
, 𝑇
𝑖𝑗
(𝑡) = 𝑇

𝑖𝑗
,𝐻
𝑖𝑗
(𝑡) = 𝐻

𝑖𝑗
, 𝑣
𝑖
(𝑡) = 𝑣

𝑖
, 𝐼
𝑖
(𝑡) = 𝐼

𝑖
, and

𝜏
𝑡
= 𝜏
𝑖
(𝑐
𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝛼
𝑖𝑗
, 𝛽
𝑖𝑗
, 𝑇
𝑖𝑗
, 𝐻
𝑖𝑗
, 𝑣
𝑖
, 𝐼
𝑖
, and 𝜏

𝑖
are constants),

then the model (1) is changed into

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

− 𝑐
𝑖
𝑢
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑣
𝑗
+ 𝐽
𝑖

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
𝑣
𝑗
+

𝑛

⋁

𝑗=1

𝐻
𝑖𝑗
𝑣
𝑗
, 𝑡 ̸= 𝑡

𝑘
, 𝑥 ∈ Ω,

𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) − 𝑢

𝑖
(𝑡
−

𝑘
, 𝑥) = 𝐼

𝑖𝑘
(𝑢
𝑖
(𝑡
−

𝑘
, 𝑥)) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ Z

+
, 𝑥 ∈ Ω,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) , −𝜏

𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω.

(42)

For any positive constant 𝜔 ≥ 0, we have 𝑐
𝑖
(𝑡 + 𝜔) = 𝑐

𝑖
(𝑡),

𝑎
𝑖𝑗
(𝑡 + 𝜔) = 𝑎

𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡 + 𝜔) = 𝑏

𝑖𝑗
(𝑡), 𝛼
𝑖𝑗
(𝑡 + 𝜔) = 𝛼

𝑖𝑗
(𝑡),

𝛽
𝑖𝑗
(𝑡 + 𝜔) = 𝛽

𝑖𝑗
(𝑡), 𝑇
𝑖𝑗
(𝑡 + 𝜔) = 𝑇

𝑖𝑗
(𝑡), 𝐻

𝑖𝑗
(𝑡 + 𝜔) = 𝐻

𝑖𝑗
(𝑡),

𝑣
𝑖
(𝑡+𝜔) = 𝑣

𝑖
(𝑡), 𝐼
𝑖
(𝑡+𝜔) = 𝐼

𝑖
(𝑡), and 𝜏

𝑖
(𝑡+𝜔) = 𝜏

𝑖
(𝑡) for 𝑡 ≥ 𝑡

0
.

Thus, the sufficient conditions inTheorem 6 are satisfied.

Remark 8. If 𝐼
𝑘
(⋅) = 0, the model (1) is changed into

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

− 𝑐
𝑖
(𝑡) 𝑢
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) + 𝐽

𝑖
(𝑡)

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))
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Figure 1: State response 𝑢1(𝑡, 𝑥) of model (44) without impulsive
effects.

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) +

𝑛

⋁

𝑗=1

𝐻
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) , −𝜏

𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω,

(43)

which has been discussed in [22]. As Song and Wang have
pointed out, the model (43) is more general than some well-
studied fuzzy neural networks. For example, when 𝑐

𝑖
(𝑡) >

0, 𝑎
𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡), 𝛼
𝑖𝑗
(𝑡), 𝛽
𝑖𝑗
(𝑡), 𝑇
𝑖𝑗
(𝑡),𝐻
𝑖𝑗
(𝑡), 𝑣
𝑖
(𝑡), and 𝐼

𝑖
(𝑡) are all

constants, the model in (43) reduces the model which has
been studied by Huang [19]. Moreover, if 𝐷

𝑖
= 0, 𝜏

𝑖
(𝑡) = 0,

𝑓
𝑖
(𝜃) = 𝑔

𝑖
(𝜃) = (1/2)(|𝜃 + 1| − |𝜃 − 1|), (𝑖 = 1, . . . , 𝑛), then

model (42) covers the model studied by Yang et al. [4, 5] as a
special case. If𝐷

𝑖
= 0 and 𝜏

𝑗
(𝑡) is assumed to be differentiable

for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, then model (43) can be specialized to
the model investigated in Liu and Tang [12] and Yuan et al.
[13]. Obviously, our results are less conservative than that of
the above-mentioned literature, because they do not consider
impulsive effects.

4. Numerical Examples

Example 9. Consider a two-neuron FIRDDCNNmodel:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

− 𝑐
𝑖
(𝑡) 𝑢
𝑖
(𝑡, 𝑥)
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Figure 2: State response 𝑢1(𝑡, 𝑥) of model (44) with impulsive
effects.

+

2

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

+

2

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) + 𝐽

𝑖
(𝑡)

+

2

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

2

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

2

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) +

2

⋁

𝑗=1

𝐻
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω,

𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) = (1 − 𝛾

𝑖𝑘
) 𝑢
𝑖
(𝑡
−

𝑘
, 𝑥) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ Z

+
, 𝑥 ∈ Ω,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) ,

− 𝜏
𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω,

(44)

where 𝑖 = 1, 2. 𝑐
1
(𝑡) = 26, 𝑐

2
(𝑡) = 20.8, 𝑎

11
(𝑡) = −1 − cos(𝑡),

𝑎
12
(𝑡) = 1 + cos(𝑡), 𝑎

21
(𝑡) = 1 + sin(𝑡), 𝑎

22
(𝑡) = −1 − sin(𝑡),

𝐷
1
= 8,𝐷

2
= 4, 𝜕𝑢

𝑖
(𝑡, 𝑥)/𝜕𝑛 = 0 (𝑡 ≥ 𝑡

0
, 𝑥 = 0, 2𝜋), 𝛾

1𝑘
= 0.4,

𝛾
2𝑘

= 0.2, 𝜓
1
(⋅) = 𝜓

1
(⋅) = 5, 𝑏

11
(𝑡) = 𝑏

21
(𝑡) = cos(𝑡), 𝑏

12
(𝑡) =

𝑏
22
(𝑡) = − cos(𝑡), 𝐽

1
(𝑡) = 𝐽

2
(𝑡) = 1, 𝐻

11
(𝑡) = 𝐻

21
(𝑡) = sin(𝑡),

𝐻
12
(𝑡) = 𝐻

22
(𝑡) = −1 + sin(𝑡), 𝑇

11
(𝑡) = 𝑇

21
(𝑡) = − sin(𝑡),

𝑇
12
(𝑡) = 𝑇

22
(𝑡) = 2 + sin(𝑡), 𝜏

1
(𝑡) = 𝜏

2
(𝑡) = 1, 𝑓

𝑗
(𝑢
𝑗
) =

𝑢
𝑗
(𝑡, 𝑥) (𝑗 = 1, 2), 𝑔

𝑗
(𝑢
𝑗
(𝑡 − 1, 𝑥)) = 𝑢

𝑗
(𝑡 − 1, 𝑥)𝑒

−𝑢
𝑗
(𝑡−1,𝑥)

(𝑗 =

1, 2), 𝛼
11
(𝑡) = −12.8, 𝛼

21
(𝑡) = 𝛼

12
(𝑡) = −1 + cos(𝑡), 𝛼

22
(𝑡) =

−10, 𝛽
11
(𝑡) = 12.8, 𝛽

12
(𝑡) = −1 + sin(𝑡) = 𝛽

21
(𝑡), 𝛽
22
(𝑡) =



8 Abstract and Applied Analysis

6

4

2

0
−5

0
5

10
15

20 7
6

5
4

3
2

1
0

𝑢2

𝑥

𝑡

5 4
3

2
1

𝑥

Figure 3: State response 𝑢2(𝑡, 𝑥) of model (44) without impulsive
effects.
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Figure 4: State response 𝑢2(𝑡, 𝑥) of model (44) with impulsive
effects.

10, 𝑣
𝑗
(𝑡) = sin(𝑡). We assume that there exists 𝑞 = 6 such

that 𝑡
𝑘
+ 2𝜋 = 𝑡

𝑘+𝑞
. Obviously, 𝑓

1
, 𝑓
2
, 𝑔
1
, and 𝑔

2
satisfy the

assumption (H1) with 𝐹
1
= 𝐹
2
= 𝐺
1
= 𝐺
2
= 1 and (H2) and

(H3) are satisfied with a common positive period 2𝜋

𝐶 − (𝐴 + 𝛼 + 𝛽)𝐹 =
[
[

[

2

5
0

0
4

5

]
]

]

(45)

is a nonsingular 𝑀-matrix. The conditions of Theorem 6 are
satisfied, hence there exists exactly one 2𝜔-periodic solution
of the model and all other solutions of the model converge
exponentially to it as 𝑡 → +∞. Furthermore, the exponential
converging index can be calculated as𝜆 = 0.021, because here
𝜂
𝑘
= 1 and 𝜂 = 0. The simulation results are shown in Figures

1, 2, 3, and 4, respectively.

5. Conclusions

In this paper, periodicity and global exponential stability of
a class of FIRDDCNN model with variable both coefficients

and delays have been investigated. By using Halanay’s delay
differential inequality, 𝑀-matrix theory, and analytic meth-
ods, some new sufficient conditions have been established to
guarantee the existence, uniqueness, and global exponential
stability of the periodic solution. Moreover, the exponential
convergence rate index can be estimated. An example and
its simulation have been given to show the effectiveness of
the obtained results. In particular, the differentiability of
the time-varying delays has been removed. The dynamic
behaviors of fuzzy neural networks with the property of
exponential periodicity are of great importance inmany areas
such as learning systems.
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A novel approach is presented to realize the optimal 𝐻∞ exponential synchronization of nonidentical multiple time-delay chaotic
(MTDC) systems via fuzzy control scheme. A neural-network (NN)model is first constructed for theMTDC system.Then, a linear
differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-
space representation, a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct
method is proposed to guarantee that the trajectories of the slave system can approach those of themaster system. Subsequently, the
stability condition of this criterion is reformulated into a linear matrix inequality (LMI). According to the LMI, a fuzzy controller
is synthesized not only to realize the exponential synchronization but also to achieve the optimal𝐻∞ performance by minimizing
the disturbance attenuation level at the same time. Finally, a numerical example with simulations is given to demonstrate the
effectiveness of our approach.

1. Introduction

The stability analysis and stabilization of time-delay systems
are problems of considerable theoretical and practical signif-
icance and have attracted the interest of many investigators
for several years. Furthermore, time delays often appear in
various engineering systems [1], such as the structure control
of tall buildings, hydraulics, or electronic networks. Notably,
the introduction of a time-delay factor tends to complicate the
analysis. Consequently, convenientmethods to check stability
have long been sought later. The stability criteria of time-
delay systems so far have been approached from two main
directions based on the dependence on the size of delay.
One method is to contrive stability conditions which do not
include information on the delay, while the other method
takes time delay into account. The former case is often
referred to as delay-independent criterion and generally gives
good algebraic conditions. Nevertheless, the abandonment of
information on the size of the time delay necessarily causes
conservativeness of the criteria, especially when the delay

is comparatively small. Hence, delay-dependent criteria are
derived to deal with the stability problem in this study.

Moreover, time delays have gained increasing interest in
chaotic systems, ever since chaotic phenomenon in time-
delay systems was first found by Mackey and Glass [2].
Chaotic phenomena have been observed in numerous phys-
ical systems, which can lead to irregular performance and
possibly catastrophic failures [3]. Chaos is a well-known non-
linear phenomenon, and it is the seemingly random behavior
of a deterministic system that is characterized by sensitive
dependence on initial conditions [4]. Besides, chaos is occa-
sionally preferable but usually intrinsically unpredictable as it
can restrict the operating range of many physical devices and
reduce performance.Therefore, the ability to control chaos is
of much practical importance. According to these properties,
chaos has received a great deal of interest among scientists
from various research fields [5, 6]. One of the research fields
for communication, chaotic synchronization, has been inves-
tigated extensively.
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The chaotic synchronization of identical systems with
different initial conditions was first introduced by Pecora and
Carroll in 1990 [7]. They are intended to control one chaotic
system to follow another. Since the introduction of this con-
cept, various synchronization approaches have been widely
developed in the past two decades. Chaotic synchronization
can be applied in the vast areas of physics and engineering sci-
ence, especially in secure communication [8]. Consequently,
chaotic synchronization has become a popular study [9, 10].
However, all of them are focused on synchronizing two
identical chaotic systems with different initial conditions [11].
In fact, experimental and evenmore real systems are often not
fully identical; in particular, there are mismatches in parame-
ters of the systems [11]. Also, in many real world applications,
there are no exactly two identical chaotic systems. As a result,
the problem of chaos synchronization between two different
uncertain chaotic systems is an important research issue [12].
For instance, He et al. [13] investigate synchronization of two
nonidentical chaotic systems with time-varying delay and
parameter mismatches via impulsive control. To synchronize
nonidentical chaotic systems with unknown parameters,
Li et al. [14] proposed an approach based on the invariance
principle of differential equations, and employing a combina-
tion of feedback control and adaptive control. Li and Ge [15]
presented a new fuzzymodel to simulate and synchronize two
totally different and complicated chaotic systems.

In general, some noise or disturbances always exist that
may cause instability. The influence of the external distur-
bance will worsen the performance of chaotic systems.There-
fore, how to reduce the effect of external disturbances in the
synchronization process for chaotic systems is an important
issue [16, 17].The𝐻∞ control has been conferred for synchro-
nization in chaotic systems over the last few years [16–20],
and the 𝐻

∞ synchronization problem has been investigated
extensively for time-delay chaotic systems (e.g., see [21–23]).
Accordingly, the purpose of this study is to realize the expo-
nential synchronization of nonidentical multiple time-delay
chaotic (MTDC) systems and attenuate the effect of external
disturbances on the control performance to a minimum level
at the same time.

Neural-network-(NN-) based modeling has become an
active research field in the past few years due to its unique
merits in solving complex nonlinear system identification
and control problems [24–29]. Neural networks consist of
simple elements operating in parallel; these elements are
inspired by biological nervous systems. As a result, we can
train an NN to represent a particular function by adjusting
the weights between elements. As in nature, the connections
between elements largely determine the network function.
Individuals can train a neural network to perform a particular
function by adjusting the values of the connections (weights)
between elements. Hence, the nonlinear systems can be
approximated as close as desired by theNNmodels via repeti-
tive training. Recently, numerous reports on the success of
NN applications in control systems have appeared in the liter-
ature (see [30–35]). For instance, Limanond et al. [30] applied
neural networks to the optimal etch time control design
for a reactive ion etching process. Enns and Si [32] advanced
an NN-based approximate dynamic programming control

mechanism to helicopter flight control. Despite several
promising empirical results and its nonlinear mapping
approximation properties, the rigorous closed-loop stability
results for systems using NN-based controllers are still diffi-
cult to establish.Therefore, an LDI state-space representation
was introduced to deal with the stability analysis of NN
models (see [36]).

In the past few years, significant research efforts have been
devoted to fuzzy control, which has attracted a great deal
of attention from both the academic and industrial com-
munities, and there have been many successful applications.
For example, Wang et al. [37] presented a new measurement
system that comprises a model-based fuzzy logic controller,
an arterial tonometer, and a micro syringe device for the
noninvasive monitoring of the continuous blood pressure
wave form in the radial artery. A good tracking performance
control scheme, a hybrid fuzzy neural-network control for
nonlinear motor-toggle servomechanisms, was given by Wai
[38]; Hwang et al. [39] developed the trajectory tracking of a
car-like mobile robot using network-based fuzzy decentral-
ized sliding-mode control; a hybrid fuzzy-PI speed controller
for permanent magnet synchronous motors was proposed
in Sant [40]; Spatti et al. [41] introduced a fuzzy control
strategy for voltage regulation in electric power distribution
systems—this real-time controller would act on power trans-
formers equipped with under-load tap changers.

In spite of the successes of fuzzy control,many basic prob-
lems remain to be solved. Stability analysis and systematic
design are certainly among the most important issues for
fuzzy control systems. Recently, significant research efforts
have been devoted to these issues (see [42–45] and the
references therein). However, all of them have neglected the
modeling errors between the fuzzy models and the nonlinear
systems. In fact, the existence of modeling errors may be a
potential source of instability for control designs based on
the assumption that the fuzzy model exactly matches the
nonlinear plant [46]. In recent years, novel approaches to
overcome the influence of modeling errors in the field of
model-based fuzzy control for nonlinear systems have been
proposed byKiriakidis [46], Chen et al. [47, 48], andCao et al.
[49, 50].

Almost all the existing research works of synchronization
methodmade use of fuzzymodels to approximate the chaotic
systems (see [3, 4, 28, 42] and the references therein).
Although using fuzzy models to approximate the chaotic
systems is more simple than the neural-networks (NNs), the
NN models will approach the chaotic systems by iterative
training and adjusting theweights. In otherwords, themodel-
ing errors of NNmodels will be much less than those of fuzzy
models.With a view to the abovementioned, a novel approach
is proposed via the neural-network-(NN-) based technique
to realize the optimal 𝐻

∞ exponential synchronization
of nonidentical multiple time-delay chaotic (MTDC) systems
such that the trajectories of the slave systems can approach
those of the master systems and the effect of external distur-
bances on the control performance can be attenuated to a
minimum level. First, the NN model is constructed for the
chaotic systems with multiple time delays. Then, a linear
differential inclusion (LDI) state-space representation is
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established for the dynamics of the NNmodel. Next, in terms
of Lyapunov’s direct method, a delay-dependent criterion is
derived to guarantee the exponential stability of the error
system between the master system and slave system. Subse-
quently, the stability condition of this criterion is reformu-
lated into a linear matrix inequality (LMI). According to the
LMI, a fuzzy controller is synthesized not only to realize the
exponential synchronization but also to achieve the optimal
𝐻
∞ performance by minimizing the disturbance attenuation

level at the same time.
The remainder of this paper is organized as follows. The

system description is arranged in Section 2. In Section 3, a
robustness design of fuzzy control and a delay-dependent sta-
bility criterion are proposed to realize the optimal𝐻∞ expon-
ential synchronization. The design algorithm is given in
Section 4. In Section 5, the effectiveness of the proposed
approach is illustrated by a numerical simulation. Finally, the
conclusions are drawn in Section 6.

2. Problem Formulation

Consider two different multiple time-delay chaotic (MTDC)
systems in master-slave configuration. The dynamics of the
master system (𝑁

𝑚
) and slave system (𝑁

𝑠
) are described as

follows:

𝑁
𝑚
:

.

𝑋 (𝑡) = 𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) , (1)

𝑁
𝑠
:

̂.

𝑋 (𝑡) = 𝑓̂ (𝑋̂ (𝑡)) +

𝑔

∑

𝑘=1

𝐻̂
𝑘
(𝑋̂ (𝑡 − 𝜏

𝑘
))

+ 𝐵𝑈 (𝑡) + 𝐷 (𝑡) ,

(2)

where 𝑓(⋅), 𝑓̂(⋅), 𝐻
𝑘
(⋅), and 𝐻̂

𝑘
(⋅) are the nonlinear vector-

valued functions, 𝜏
𝑘
(𝑘 = 1, 2, . . . , 𝑔) are the time delays, 𝑈(𝑡)

is the control input, and 𝐷(𝑡) denotes the external distur-
bance. Besides,𝑋(𝑡) and 𝑋̂(𝑡) are the state vectors of𝑁

𝑚
and

𝑁
𝑠
, respectively.
In this section, a neural-network (NN)model is first con-

structed for the MTDC system. The dynamics of the NN
model are then converted into a linear differential inclusion
(LDI) state-space representation. Finally, based on the LDI
state-space representation, a fuzzy controller is synthesized to
realize the synchronization of nonidentical MTDC systems.

2.1. Neural-Network (NN) Model. The MTDC system can be
approximated by an NNmodel, as shown in Figure 1, that has
𝑆 layers with 𝐽

𝜎

(𝜎 = 1, 2, . . . , 𝑆) neurons for each layer, in
which 𝑥

1
(𝑡) ∼ 𝑥

𝛿
(𝑡) are the state variables and 𝑥

1
(𝑡 − 𝜏

1
) ∼

𝑥
1
(𝑡 − 𝜏

𝑔
), 𝑥

2
(𝑡 − 𝜏

1
) ∼ 𝑥

𝛿
(𝑡 − 𝜏

𝑔
) are the state variables with

delays.
To distinguish among these layers, the superscripts are

used for identification. Specifically, the number of the layer
is appended as a superscript to the names for each of these
variables. Thus, the weight matrix for the 𝜎th layer is written
as 𝑊

𝜎. Furthermore, it is assumed that V𝜎
𝜍
(𝑡)(𝜍 = 1, 2, . . . ,

𝐽
𝜎

; 𝜎 = 1, 2, . . . , 𝑆) is the net input and𝑇(V
𝜎

𝜍
(𝑡)) is the transfer

∑
T(·)

...

...

...

...

ẋ1(t)

ẋδ(t)

x1(t)

xδ(t)
x1(t − τ1)

x1(t − τg)
x2(t − τ1)

xδ(t − τg)

Figure 1: An NN model for 𝑁
𝑑
.

function of the neuron. Subsequently, the transfer function
vector of the 𝜎th layer is defined as

Ψ
𝜎

(V
𝜎

𝜍
(𝑡)) ≡ [𝑇 (V

𝜎

1
(𝑡)) 𝑇 (V

𝜎

2
(𝑡)) ⋅ ⋅ ⋅ 𝑇 (V

𝜎

𝐽
𝜎 (𝑡))]

𝑇

,

𝜎 = 1, 2, . . . , 𝑆,

(3)

where 𝑇(V
𝜎

𝜍
(𝑡)) (𝜍 = 1, 2, . . . , 𝐽

𝜎

) is the transfer function of
the 𝜍th neuron. The final output of NN model can then be
inferred as follows:

.

𝑋 (𝑡)

= Ψ
𝑆

(𝑊
𝑆

Ψ
𝑆−1

(𝑊
𝑆−1

Ψ
𝑆−2

× (⋅ ⋅ ⋅ Ψ
2

(𝑊
2

Ψ
1

(𝑊
1

Λ (𝑡))) ⋅ ⋅ ⋅))) ,

(4)

where Λ
𝑇

(𝑡) = [𝑋
𝑇

(𝑡)𝑋
𝑇

(𝑡 − 𝜏
𝑘
)] with 𝑋(𝑡) = [𝑥

1
(𝑡)𝑥

2
(𝑡) ⋅ ⋅ ⋅

𝑥
𝛿
(𝑡)]

𝑇,

𝑋(𝑡 − 𝜏
𝑘
) = [𝑥

1
(𝑡 − 𝜏

1
) ⋅ ⋅ ⋅ 𝑥

1
(𝑡 − 𝜏

𝑔
)

𝑥
2
(𝑡 − 𝜏

1
) ⋅ ⋅ ⋅ 𝑥

𝛿
(𝑡 − 𝜏

𝑔
)]

𝑇

,

for 𝑘 = 1, 2 . . . , 𝑔.

(5)

2.2. Linear Differential Inclusion (LDI). To handle the syn-
chronization problem of MTDC systems, this study estab-
lishes the following LDI state-space representation for the
dynamics of the NN model, described as [36, 51]

.

𝑂 (𝑡) = 𝐴 (𝑎 (𝑡)) 𝑂 (𝑡) , 𝐴 (𝑎 (𝑡)) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑎 (𝑡)) 𝐴̃

𝑖
, (6)

where 𝜙 is a positive integer, 𝑎(𝑡) is a vector signifying the
dependence of ℎ

𝑖
(⋅) on its elements, 𝐴̃

𝑖
(𝑖 = 1, 2, . . . , 𝜙) are

constant matrices, and 𝑂(𝑡) = [𝑜
1
(𝑡)𝑜

2
(𝑡) ⋅ ⋅ ⋅ 𝑜

ℵ
(𝑡)]

𝑇. More-
over, it is assumed that ℎ

𝑖
(𝑎(𝑡)) ≥ 0 and ∑

𝜙

𝑖=1
ℎi(𝑎(𝑡)) = 1.

According to the properties of LDI, without loss of generality,
ℎ
𝑖
(𝑡) can be replaced by ℎ

𝑖
(𝑎(𝑡)). The following procedure

represents the dynamics of the NN model (4) using the LDI
state-space representation [36].
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To begin with, notice that the output 𝑇(V
𝜎

𝜍
(𝑡)) satisfies

𝑔
𝜎

𝜍0
V
𝜎

𝜍
(𝑡) ≤ 𝑇 (V

𝜎

𝜍
(𝑡)) ≤ 𝑔

𝜎

𝜍1
V
𝜎

𝜍
(𝑡) , V

𝜎

𝜍
(𝑡) ≥ 0,

𝑔
𝜎

𝜍1
V
𝜎

𝜍
(𝑡) ≤ 𝑇 (V

𝜎

𝜍
(𝑡)) ≤ 𝑔

𝜎

𝜍0
V
𝜎

𝜍
(𝑡) , V

𝜎

𝜍
(𝑡) < 0,

(7)

where 𝑔𝜎

𝜍0
and 𝑔

𝜎

𝜍1
denote the minimum andmaximum of the

derivative of 𝑇(V
𝜎

𝜍
(𝑡)), respectively, and are given in the fol-

lowing:

𝑔
𝜎

𝜍𝜑
=

{{{{{{

{{{{{{

{

min
V

𝑑𝑇 (V
𝜎

𝜍
(𝑡))

𝑑V𝜎
𝜍
(𝑡)

, when 𝜑 = 0,

max
V

𝑑𝑇 (V
𝜎

𝜍
(𝑡))

𝑑V𝜎
𝜍
(𝑡)

, when 𝜑 = 1.

(8)

Subsequently, the min-max matrix 𝐺
𝜎 of the 𝜎th layer is

defined as follows:

𝐺
𝜎

≡ diag [𝑔
𝜎

𝜍𝜑
𝜍

]

=

[
[
[
[
[
[
[
[
[

[

𝑔
𝜎

1𝜑
1

0 0 ⋅ ⋅ ⋅ 0

0 𝑔
𝜎

2𝜑
2

0
. . . 0

0 0 𝑔
𝜎

3𝜑
3

0
...

...
. . . 0

. . . 0

0 0 ⋅ ⋅ ⋅ 0 𝑔
𝜎

𝐽
𝜎
𝜑
𝐽

]
]
]
]
]
]
]
]
]

]

.

(9)

Besides, on the basis of the interpolationmethod, the transfer
function 𝑇(V

𝜎

𝜍
(𝑡)) can be represented as follows [36]:

𝑇 (V
𝜎

𝜍
(𝑡)) = (ℎ

𝜎

𝜍0
(𝑡) 𝑔

𝜎

𝜍0
+ ℎ

𝜎

𝜍1
(𝑡) 𝑔

𝜎

𝜍1
) V

𝜎

𝜍
(𝑡)

= (

1

∑

𝜑=0

ℎ
𝜎

𝜍𝜑
(𝑡) 𝑔

𝜎

𝜍𝜑
) V

𝜎

𝜍
(𝑡) ,

(10)

where the interpolation coefficients ℎ
𝜎

𝜍𝜑
(𝑡) ∈ [0, 1] and

∑
1

𝜑=0
ℎ
𝜎

𝜍𝜑
(𝑡) = 1. Equations (3) and (10) show that

Ψ
𝜎

(V
𝜎

𝜍
(𝑡))

≡ [𝑇 (V
𝜎

1
(𝑡)) 𝑇 (V

𝜎

2
(𝑡)) ⋅ ⋅ ⋅ 𝑇 (V

𝜎

𝐽
𝜎 (𝑡))]

𝑇

= [ (

1

∑

𝜑
1
=0

ℎ
𝜎

1𝜑
1

(𝑡) 𝑔
𝜎

1𝜑
1

) V
𝜎

1
(𝑡) (

1

∑

𝜑
2
=0

ℎ
𝜎

2𝜑
2

(𝑡) 𝑔
𝜎

2𝜑
2

) V
𝜎

2
(𝑡) ⋅ ⋅ ⋅ (

1

∑

𝜑
𝐽
=0

ℎ
𝜎

𝐽
𝜎
𝜑
𝐽

(𝑡) 𝑔
𝜎

𝐽
𝜎
𝜑
𝐽

) V
𝜎

𝐽
𝜎 (𝑡) ]

𝑇

.

(11)

Hence, the final output of the NNmodel (4) can be reformu-
lated as follows:
.

𝑋 (𝑡)

=

1

∑

𝑝=0

ℎ
𝑆

𝜍𝑝
(𝑡) 𝐺

𝑆

× (𝑊
𝑆

[⋅ ⋅ ⋅ [

1

∑

𝑛=0

ℎ
2

𝜍𝑛
(𝑡) 𝐺

2

× (𝑊
2

[

1

∑

𝑏=0

ℎ
1

𝜍𝑏
(𝑡) 𝐺

1

× (𝑊
1

Λ (𝑡)) ])] ⋅ ⋅ ⋅ ])

=

1

∑

𝑝=0

⋅ ⋅ ⋅

1

∑

𝑛=0

1

∑

𝑏=0

ℎ
𝑆

𝜍𝑝
(𝑡) ⋅ ⋅ ⋅ ℎ

2

𝜍𝑛
(𝑡) ℎ

1

𝜍𝑏
(𝑡) 𝐺

𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

Λ (𝑡)

= ∑

Ω

ℎ
𝜎

𝜍Ω
(𝑡) 𝐶

𝜎

Ω
Λ (𝑡) ,

(12)

where
1

∑

𝑏=0

ℎ
1

𝜍𝑏
(𝑡) ≡

1

∑

𝑏
1
=0

ℎ
1

1𝑏
1

(𝑡)

1

∑

𝑏
2
=0

ℎ
1

2𝑏
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑏
𝐽
=0

ℎ
1

𝐽
1
𝑏
𝐽

(𝑡) ,

1

∑

𝑛=0

ℎ
2

𝜍𝑛
(𝑡) ≡

1

∑

𝑛
1
=0

ℎ
2

1𝑛
1

(𝑡)

1

∑

𝑛
2
=0

ℎ
2

2𝑛
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑛
𝐽
=0

ℎ
2

𝐽
2
𝑛
𝐽

(𝑡) ,

...

1

∑

𝑝=0

ℎ
𝑆

𝜍𝑝
(𝑡) ≡

1

∑

𝑝
1
=0

ℎ
𝑆

1𝑝
1

(𝑡)

1

∑

𝑝
2
=0

ℎ
𝑆

2𝑝
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑝
𝐽
=0

ℎ
𝑆

𝐽
𝑆
𝑝
𝐽

(𝑡) ,

∑

Ω

ℎ
𝜎

𝜍Ω
(𝑡) ≡

1

∑

𝑝=0

⋅ ⋅ ⋅

1

∑

𝑛=0

1

∑

𝑏=0

ℎ
𝑆

𝜍𝑝
(𝑡) ⋅ ⋅ ⋅ ℎ

2

𝜍𝑛
(𝑡) ℎ

1

𝜍𝑏
(𝑡) ,

𝜍 = 1, 2, . . . , 𝐽
𝜎

,

𝐶
𝜎

Ω
≡ 𝐺

𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

,

(13)

and 𝑏
𝜍
, 𝑛

𝜍
, 𝑝

𝜍
(𝜍 = 1, 2, . . . , 𝐽) represent the variables 𝜑 of

the 𝜍th neuron of the first, second, and 𝑆th layer, respectively.
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Finally, based on (6), the dynamics of the NNmodel (12) can
be rewritten as the following LDI state-space representation:

.

𝑋(𝑡) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) 𝐶

𝑖
Λ (𝑡), (14)

where ℎ
𝑖
(𝑡) ≥ 0,∑𝜙

𝑖=1
ℎ
𝑖
(𝑡) = 1, 𝜙 is a positive integer and𝐶

𝑖
is

a constantmatrixwith appropriate dimension associatedwith
𝐶

𝜎

Ω
. Furthermore, the LDI state-space representation (14) can

be rearranged as follows:

.

𝑋 (𝑡) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} , (15)

where𝐴
𝑖
and𝐴

𝑖𝑘
are the partitions of𝐶

𝑖
corresponding to the

partitions of Λ𝑇

(𝑡).
From the abovementioned, the NN models of the master

and slave chaotic systems are described by the following LDI
state-space representations (16) and (17), respectively:

master :

.

𝑋 (𝑡) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} ,

(16)

slave :

.

𝑋̂ (𝑡) =

𝜙

∑

𝑗=1

ℎ̂
𝑗
(𝑡) [𝐴̂

𝑗
𝑋̂ (𝑡) +

𝑔

∑

𝑘=1

̂
𝐴

𝑗𝑘
𝑋̂ (𝑡 − 𝜏

𝑘
)]

+ 𝐵𝑈 (𝑡) .

(17)

2.3. Fuzzy Controller. On the basis of the state-feedback
control scheme, a fuzzy controller is utilized to make the
slave system synchronize with the master system. The fuzzy
controller is in the following form:

Control Rule 𝑙 : IF 𝑒
1
(𝑡) is 𝑀

𝑙1
and ⋅ ⋅ ⋅ and 𝑒

𝛿
(𝑡) is 𝑀

𝑙𝛿
,

THEN 𝑈 (𝑡) = −𝐾
𝑙
𝐸 (𝑡), (18)

where 𝑙 = 1, 2, . . . , 𝜌, and 𝜌 is the number of IF-THEN rules
of the fuzzy controller and𝑀

𝑙𝜂
(𝜂 = 1, 2, . . . , 𝛿) are the fuzzy

sets.Therefore, the final output of this fuzzy controller can be
inferred as follows:

𝑈 (𝑡) =
−∑

𝜌

𝑙=1
𝑤

𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡)

∑
𝜌

𝑙=1
𝑤

𝑙
(𝑡)

= −

𝜌

∑

𝑙=1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) , (19)

with𝑤
𝑙
(𝑡) ≡ ∏

𝛿

𝜂=1
𝑀

𝑙𝜂
(𝑒

𝜂
(𝑡)),𝑀

𝑙𝜂
(𝑒

𝜂
(𝑡)) is the grade of mem-

bership of 𝑒
𝜂
(𝑡) in𝑀

𝑙𝜂
.

3. Stability Analysis and Chaotic
Synchronization via Fuzzy Control

In this section, the synchronization of nonidentical multiple
time-delay chaotic (MTDC) systems is examined under the
influence ofmodeling error.The exponential synchronization
scheme of the multiple time-delay chaotic systems is describ-
ed as follows.

3.1. Error Systems. From (1) and (2), the synchronization
error is defined as 𝐸(𝑡) ≡ 𝑋̂(𝑡) − 𝑋(𝑡) = [𝑒

1
(𝑡), 𝑒

2
(𝑡), . . . ,

𝑒
𝛿
(𝑡)]

𝑇, and then the dynamics of the error system under the
fuzzy control (19) can be described as follows:

.

𝐸 (𝑡) = Ψ̂ + 𝐷 (𝑡) − Ψ

+

𝜙

∑

𝑖=1

𝜙

∑

𝑗=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ̂

𝑗
(𝑡) ℎ

𝑙
(𝑡)

× {𝐺
𝑖𝑙
𝐸 (𝑡) + (𝐴̂

𝑗
− 𝐴

𝑖
) 𝑋̂ (𝑡)

+

𝑔

∑

𝑘=1

(
̂
𝐴

𝑗𝑘
− 𝐴

𝑖𝑘
) 𝑋̂ (𝑡 − 𝜏

𝑘
)

+

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

−

𝜙

∑

𝑖=1

𝜙

∑

𝑗=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ̂

𝑗
(𝑡) ℎ

𝑙
(𝑡)

× {𝐺
𝑖𝑙
𝐸 (𝑡) + (𝐴̂

𝑗
− 𝐴

𝑖
) 𝑋̂ (𝑡)

+

𝑔

∑

𝑘=1

(
̂
𝐴

𝑗𝑘
− 𝐴

𝑖𝑘
) 𝑋̂ (𝑡 − 𝜏

𝑘
)

+

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

=

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) {𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

+ 𝐷 (𝑡) + Φ (𝑡) ,

(20)
where

𝐺
𝑖𝑙
≡ 𝐴

𝑖
− 𝐵𝐾

𝑙
,

Ψ̂ ≡ 𝑓̂ (𝑋̂ (𝑡)) +

𝑔

∑

𝑘=1

𝐻̂
𝑘
(𝑋̂ (𝑡 − 𝜏

𝑘
)) + 𝑈 (𝑡) ,

Ψ ≡ 𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) ,

(21)

with

𝑈 (𝑡) = −

𝜌

∑

𝑙=1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) ,

Φ (𝑡) ≡ Ψ̂ − Ψ

− {

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]} .

(22)
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Suppose that there exists a bounding matrix Θ𝑅
𝑖𝑙
such that

‖Φ (𝑡)‖ ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) Θ𝑅

𝑖ℓ
𝐸 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(23)

for the trajectory 𝐸(𝑡), and the bounding matrix Θ𝑅
𝑖𝑙
can be

described as follows:

Θ𝑅
𝑖𝑙
= 𝜀

𝑖𝑙
𝑅, (24)

where 𝑅 is the specified structured bounding matrix and
‖𝜀

𝑖𝑙
‖ ≤ 1, for 𝑖 = 1, 2, . . . , 𝜙; 𝑙 = 1, 2, . . . , 𝜌. Equations (23)

and (24) show that

Φ
𝑇

(𝑡) Φ (𝑡) ≤

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) ‖𝑅𝐸 (𝑡)‖

󵄩󵄩󵄩󵄩𝜀𝑖𝑙
󵄩󵄩󵄩󵄩

×

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

󵄩󵄩󵄩󵄩𝜀𝑖𝑙
󵄩󵄩󵄩󵄩 ‖𝑅𝐸 (𝑡)‖

≤ [𝑅𝐸 (𝑡)]
𝑇

[𝑅𝐸 (𝑡)] .

(25)

Namely, Φ(𝑡) is bounded by the specified structured bound-
ing matrix 𝑅.

Remark 1 (see [47]). The following simple example describes
the procedures for determining 𝜀

𝑖𝑙
and 𝑅. First, assume that

the possible bounds for all elements in Θ𝑅
𝑖𝑙
are

Θ𝑅
𝑖𝑙
=

[
[
[
[
[
[

[

Θ𝑟
11

𝑖𝑙
Θ𝑟

12

𝑖𝑙
Θ𝑟

13

𝑖𝑙

Θ𝑟
21

𝑖𝑙
Θ𝑟

22

𝑖𝑙
Θ𝑟

23

𝑖𝑙

Θ𝑟
31

𝑖𝑙
Θ𝑟

32

𝑖𝑙
Θ𝑟

33

𝑖𝑙

]
]
]
]
]
]

]

, (26)

where −𝑟
𝑞𝑠

≤ Δ𝑟
𝑞𝑠

𝑖𝑙
≤ 𝑟

𝑞𝑠 for some 𝑟
𝑞𝑠

𝑖𝑙
with 𝑞, 𝑠 = 1, 2, 3; 𝑖 =

1, 2, . . . , 𝜙, and 𝑙 = 1, 2, . . . , 𝜌.

A possible depiction for the bounding matrix Θ𝑅
𝑖𝑙
is

Θ𝑅
𝑖𝑙
= [

[

𝜀
11

𝑖𝑙
0 0

0 𝜀
22

𝑖𝑙
0

0 0 𝜀
33

𝑖𝑙

]

]

[

[

𝑟
11

𝑟
12

𝑟
13

𝑟
21

𝑟
22

𝑟
23

𝑟
31

𝑟
32

𝑟
33

]

]

= 𝜀
𝑖𝑙
𝑅, (27)

where −1 ≤ 𝜀
𝑞𝑞

𝑖𝑙
≤ 1 for 𝑞 = 1, 2, 3. Notice that 𝜀

𝑖𝑙
can be

chosen by other forms as long as ‖𝜀
𝑖𝑙
‖ ≤ 1. The validity of

(23) is then checked in the simulation. If it is not satisfied, we
can expand the bounds for all elements inΘ𝑅

𝑖𝑙
and repeat the

design procedure until (23) holds.

3.2. Delay-Dependent Stability Criterion for Exponential 𝐻∞

Synchronization. In this subsection, a delay-dependent crite-
rion is proposed to guarantee the exponential stability of the
error system described in (20). Moreover, in general, some
noises or disturbances always exist that may cause instability.
The influence of the external disturbance 𝐷(𝑡) will worsen
the performance of chaotic systems. To reduce the effect of
the external disturbance, an optimal 𝐻∞ scheme is used to

design the fuzzy control so that the effect of external distur-
bance on control performance can be attenuated to a mini-
mum level. In other words, the fuzzy controller (19) realizes
exponential synchronization and at the same time achieves
the optimal𝐻∞ control performance in this study.

Before examination of the stability of the error system,
some definitions and a lemma are given follows.

Lemma 2 (see [52]). For the real matrices 𝐴 and 𝐵 with
appropriate dimension,

𝐴
𝑇

𝐵 + 𝐵
𝑇

𝐴 ≤ 𝜆𝐴
𝑇

𝐴 + 𝜆
−1

𝐵
𝑇

𝐵, (28)

where 𝜆 is a positive constant.

Definition 3 (see [51]). The slave system (2) can exponentially
synchronize with the master system (1) (i.e., the error system
(20) is exponentially stable) if there exist two positive num-
bers 𝛼 and 𝛽 such that the synchronization error satisfies

‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡
0
)) , ∀𝑡 ≥ 0, (29)

where the positive number 𝛽 is called the exponential
convergence rate.

Definition 4 (see [19–23]). The master system (1) and slave
system (2) are said to be exponential 𝐻∞ synchronization if
the following conditions are satisfied:

(i) with zero disturbance (i.e.,𝐷(𝑡) = 0), the error system
(20) with the fuzzy controller (19) is exponentially
stable;

(ii) under the zero initial conditions (i.e., 𝐸(𝑡) = 0 for 𝑡 ∈

[−𝜏max, 0], in which 𝜏max is the maximal value of 𝜏
𝑘
’s)

and a given constant 𝜅 > 0, the following condition
holds:

Θ (𝐸 (𝑡) , 𝜕 (𝑡)) = ∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡 − 𝜅
2

∫

∞

0

𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡

≤ 0,

(30)

where the parameter 𝜅 is called the 𝐻
∞ norm bound

or the disturbance attenuation level. If the minimum
𝜅 is found (i.e., the error system can reject the
external disturbance as strong as possible) to satisfy
the previous conditions, the fuzzy controller (19) is an
optimal𝐻∞ synchronizer [18].

Theorem 5. For given positive constants 𝑎 and 𝑛, if there exist
two symmetric positive definite matrices 𝑃, 𝜓

𝑘
and positive

constants 𝜉, 𝜅 so that the following inequalities hold, then the
exponential 𝐻∞ synchronization with the disturbance attenu-
ation 𝜅 is guaranteed via the fuzzy controller (19) consider.

Δ
𝑖𝑙
≡

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1

𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 +

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑅

𝑇

𝑅 + 𝐼

+

𝑔

∑

𝑘=1

𝜏
2

𝑘
𝑃

2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) < 0,

(31a)



Abstract and Applied Analysis 7

∇
𝑖𝑘

≡ 𝑔𝑎𝐴
𝑇

𝑖𝑘
𝐴

𝑖𝑘
− 𝜓

𝑘
< 0, (31b)

𝜅 > √𝜉𝑔, (31c)

where 𝐺
𝑖𝑙
≡ 𝐴

𝑖
− 𝐵𝐾

𝑙
, for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, . . . , 𝑔, and

𝑙 = 1, 2, . . . , 𝜌.

Proof. Let the Lyapunov function for the error system (20) be
defined as

𝑉 (𝑡) =

𝑔

∑

𝑘=1

𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) +

𝑔

∑

𝑘=1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋,

(32)

where the weighting matrices 𝑃 = 𝑃
𝑇

> 0 and 𝜓
𝑘
= 𝜓

𝑇

𝑘
> 0.

We then evaluate the time derivative of 𝑉(𝑡) on the trajecto-
ries of (20) to obtain

.

𝑉 (𝑡) =

𝑔

∑

𝑘=1

𝜏
𝑘
[

.

𝐸
𝑇

(𝑡) 𝑃𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃

.

𝐸 (𝑡)]

+

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑔

∑

𝑘=1

𝜏
𝑘
{

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑑=1

𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)]

+𝐷(𝑡) + Φ (𝑡) }

𝑇

𝑃𝐸 (𝑡) +

𝑔

∑

𝑘=1

𝜏
𝑘
𝐸

𝑇

(𝑡) 𝑃

× {

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑑=1

𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+𝐷 (𝑡) + Φ (𝑡) ]}

+

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡) [𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝜏

𝑘
𝐴

𝑇

𝑖𝑑
𝑃𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)]

+

𝑔

∑

𝑘=1

𝜏
𝑘
[𝐷

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐷 (𝑡)

+Φ
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃Φ (𝑡)]

−

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)] .

(33)

According to Lemma 2 and (33), we have

.

𝑉 (𝑡) ≤

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡) [𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝑎𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝐴

𝑇

𝑖𝑑
𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)]

+

𝑔

∑

𝑘=1

[𝜉𝐷
𝑇

(𝑡) 𝐷 (𝑡) + 𝜉
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)

+𝑛Φ
𝑇

(𝑡) Φ (𝑡) + 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)]

−

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

(34)

≤

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝑎𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝐴

𝑇

𝑖𝑑
𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡) ]

+

𝑔

∑

𝑘=1

[𝜉𝐷
𝑇

(𝑡) 𝐷 (𝑡) + 𝜉
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)

+𝑛𝐸
𝑇

(𝑡) 𝑅
𝑇

𝑅𝐸 (𝑡) + 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)]

−

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)] (by (25))

(35)

=

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1

𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃

+

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑅

𝑇

𝑅

+

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃

2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

)]𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) [𝑔𝑎𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
− 𝜓

𝑘
]

× 𝐸 (𝑡 − 𝜏
𝑘
) + 𝜉𝑔𝐷

𝑇

(𝑡) 𝐷 (𝑡) .

(36)
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From (36), we have
.

𝑉 (𝑡) + 𝐸
𝑇

(𝑡) 𝐸 (𝑡) − 𝜅
2

𝐷
𝑇

(𝑡) 𝐷 (𝑡)

≤

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡) Δ
𝑖𝑙
𝐸 (𝑡)

+

𝜙

∑

𝑖=1

𝑔

∑

𝑘=1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) ∇

𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝜉𝑔 − 𝜅
2

)𝐷
𝑇

(𝑡) 𝐷 (𝑡)

≤

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝜆max (Δ 𝑖𝑙

) 𝐸
𝑇

(𝑡) 𝐸 (𝑡)

+

𝜙

∑

𝑖=1

𝑔

∑

𝑘=1

ℎ
𝑖
(𝑡) 𝜆max (∇𝑖𝑘

) 𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝜉𝑔 − 𝜅
2

)𝐷
𝑇

(𝑡) 𝐷 (𝑡) < 0,

(37)

where

Δ
𝑖𝑙
≡

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1

𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 +

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑅

𝑇

𝑅 + 𝐼

+

𝑔

∑

𝑘=1

𝜏
2

𝑘
𝑃

2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) (see (31a)) ,

∇
𝑖𝑘

≡ 𝑔𝑎𝐴
𝑇

𝑖𝑘
𝐴

𝑖𝑘
− 𝜓

𝑘
(see (31b)) .

(38)

Integrating (37) from 𝑡 = 0 to 𝑡 = ∞, the following
inequality is obtained as

𝑉 (∞)−𝑉 (0)+∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡−𝜅
2

∫

∞

0

𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡≤0.

(39)

With zero initial conditions (i.e., 𝐸(𝑡) ≡ 0 for 𝑡 ∈ [−𝜏max, 0]),
we have

∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡 ≤ 𝜅
2

∫

∞

0

𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡. (40)

That is, (30) and the 𝐻
∞ control performance are achieved

with a prescribed attenuation 𝜅.
Since
𝑔

∑

𝑘=1

𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡)

≤

𝑔

∑

𝑘=1

𝜏
𝑘
𝐸

𝑇

(𝑡) 𝑃𝐸 (𝑡)

= 𝑉 (𝑡) −

𝑔

∑

𝑘=1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋

< 𝑉 (𝑡)

(41)

(from (32)), we can get the following inequality from (37):
.

𝑉 (𝑡) + 𝐸
𝑇

(𝑡) 𝐸 (𝑡) − 𝜅
2

𝐷
𝑇

(𝑡) 𝐷 (𝑡)

<

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

𝜆max (Δ 𝑖𝑙
)

∑
𝑔

𝑘=1
𝜏
𝑘
𝜆min (𝑃)

𝑉 (𝑡) < 0.

(42)

Then, we can easily obtain

𝑉 (𝑡)|
𝜕(𝑡)=0

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
) , (43)

where 𝛽 = ∑
𝜙

𝑖=1
∑

𝜌

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)[𝜆max(Δ 𝑖𝑙

)/∑
𝑔

𝑘=1
𝜏
𝑘
𝜆min(𝑃)] <

0.
Equations (32) and (43) show that

𝑔

∑

𝑘=1

𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡)

≤

𝑔

∑

𝑘=1

𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡)

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
)

−

𝑔

∑

𝑘=1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
) .

(44)

That is, ‖𝐸(𝑡)‖2 ≤ (𝑉(𝑡
0
)/∑

𝑔

𝑘=1
𝜏
𝑘
𝜆min(𝑃)) exp𝛽(𝑡−𝑡

0
).There-

fore, we conclude that

‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡
0
)) ,

with 𝛼 ≡ √
𝑉 (𝑡

0
)

∑
𝑔

𝑘=1
𝜏
𝑘
𝜆min (𝑃)

> 0, 𝛽 ≡ −
1

2
𝛽 > 0.

(45)

Hence, on basis of theDefinition 3, the error system (20) with
the fuzzy controller (19) is exponentially stable for 𝐷(𝑡) = 0.

Corollary 6. Equations (31a) and (31b) can be reformulated
into LMIs via the following procedure.

By introducing the new variables 𝑄 = 𝑃
−1, 𝐹

𝑙
= 𝐾

𝑙
𝑄, and

𝜓
𝑘
= 𝑄𝜓

𝑘
𝑄, (31a) and (31b) can be rewritten as follows:
𝑔

∑

𝑘=1

𝜏
𝑘
{𝐴

𝑖
𝑄 − 𝐵𝐹

𝑙
+ 𝑄𝐴

𝑇

𝑖
− 𝐹

𝑇

𝑙
𝐵

𝑇

}

+

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑄𝑅

𝑇

𝑅𝑄 + 𝑄𝐼𝑄

+

𝑔

∑

𝑘=1

𝜏
2

𝑘
(𝜉

−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) 𝐼 < 0,

(46a)

𝑔𝑎𝑄𝐴
𝑇

𝑖𝑘
𝐴

𝑖𝑘
𝑄 − 𝜓

𝑘
< 0, (46b)

for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑔 and 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝜌. According
to Schur’s complement [36], it is easy to show that the linear
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matrix inequalities in (46a) and (46b) are equivalent to the
following LMIs in (47a) and (47b):

[

[

Ξ 𝑄𝑅
𝑇

𝑄

𝑅𝑄
𝑇

−(𝑛𝑔)
−1

𝐼 0

Q 0 −𝐼

]

]

< 0, (47a)

[
−𝜓

𝑘
𝑄𝐴

𝑇

𝑖𝑘

𝐴
𝑖𝑘
𝑄 −(𝑔𝑎)

−1

𝐼
] < 0, (47b)

where

Ξ ≡

𝑔

∑

𝑘=1

𝜏
𝑘
𝐴

𝑖
𝑄 −

𝑔

∑

𝑘=1

𝜏
𝑘
𝐵𝐹

𝑙

+

𝑔

∑

𝑘=1

𝜏
𝑘
𝑄𝐴

𝑇

𝑖
−

𝑔

∑

𝑘=1

𝜏
𝑘
𝐹

𝑇

𝑙
𝐵

𝑇

+

𝑔

∑

𝑘=1

𝜓
𝑘
+

𝑔

∑

𝑘=1

𝜏
2

𝑘
(𝜉

−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) 𝐼.

(48)

Hence, Theorem 5 can be transformed into an LMI
problem, and efficient interior-point algorithms are now
available in Matlab LMI Solver to solve this problem.

Corollary 7 (see [53]). In order to verify the feasibility of
solving the inequalities in (47a) and (47b) using LMI Solver
(Matlab), the interior-point optimization techniques are uti-
lized to compute feasible solutions. Such techniques require that
the system of LMI is constrained to be strictly feasible; that is,
the feasible set has a nonempty interior. For feasibility problems,
the LMI Solver by feasp (feasp is the syntax used to test
feasibility of a system of LMIs inMATLAB) is shown as follows:

find 𝑥 such that the LMI 𝐿 (𝑥) < 0, (49a)

(in this study, (49a) can be represented as (47a) and (47b)) and

minimize 𝑡 subject to 𝐿 (𝑥) < 𝑡 × 𝐼. (49b)

From the abovementioned, the LMI constraint is always
strictly feasible in 𝑥, 𝑡 and the original LMI (49a) is feasible
if and only if the global minimum 𝑡min (the global minimum
𝑡min is the scalar value returned as the output argument by
feasp) of (49b) satisfies 𝑡min < 0. In other words, if 𝑡min < 0

will satisfy (47a) and (47b) then the stability conditions (31a)
and (31b) inTheorem 5 can be met. Then, the obtained fuzzy
controller (19) can exponentially stabilize the error system,
and the 𝐻

∞ control performance is achieved at the same
time.

Corollary 8. In order to achieve optimal 𝐻
∞ exponential

synchronization, the fuzzy control design is formulated as the
following constrained optimization problem:

minimize 𝜅 > √𝜉g
subject to 𝑄 = 𝑄

𝑇

> 0,

𝜓
𝑘
= 𝜓

𝑇

𝑘
> 0, (47a) and (47b).

(50)

More details to search the minimum 𝜅 are given as
follows.

The positive constant 𝜉 is minimized by the mincx
function of Matlab LMI toolbox. Therefore, the minimum
disturbance attenuation level 𝜅min > √𝜉min𝑔 can be obtained.

Remark 9. In order to reduce the computational burden, this
study sets the positive constants 𝑎 and 𝑛 as unity.

Remark 10. It is an important issue to reduce the effect of
external disturbances in the synchronization process. The
𝐻

∞ norm bound 𝜅 is generally chosen as a positive small
value less than unity for attenuation of disturbance. A smaller
𝜅 is desirable as this yields better performance. However,
a smaller 𝜅 will result in a smaller 𝜉, making the stability
conditions (31a) more difficult to satisfy.

Remark 11. According to (25), the modeling error Φ(𝑡) is
assumed to be bounded by the specified structured bounding
matrix 𝑅, and then a larger Φ(𝑡) results in a larger 𝑅. Since
thematricesΔ

𝑖𝑙
must be negative definite tomeet the stability

condition (31a), a larger𝑅will makeTheorem 5more difficult
to satisfy.

4. Algorithm

The complete design procedure can be summarized as fol-
lows.

Problem 1. Given two different multiple time-delay chaotic
systems with different initial conditions, the problem is
centered on how to synthesize a fuzzy controller to realize the
optimal H ∞ exponential synchronization.

We can solve this problem based on the following steps.

Step 1. Construct the neural-network (NN) models of the
master system (1) and the slave system (2), respectively.
According to the interpolation method, the NN models are
then converted into LDI state-space representations.

Step 2. On the basis of the state-feedback control scheme, a
fuzzy controller (19) is synthesized to exponentially stabilize
the error system.

Step 3. Define the synchronization error 𝐸(𝑡) = 𝑋̂(𝑡) −

𝑋(𝑡), and then the dynamics of the error system (20) can be
obtained.

Step 4. Based on Corollary 8, the positive constant 𝜉 is
minimized by themincx function ofMatlab LMI toolbox, and
then we have the minimum disturbance attenuation level.

Step 5. The matrices 𝑄, 𝐹
𝑙
, and 𝜓

𝑘
can be obtained with the

minimum disturbance attenuation 𝜅min.

5. Numerical Example

The following example illustrates the effectiveness of the
previous algorithm.
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Problem 2. The purpose of this example is to synthesize a
fuzzy controller to achieve optimal𝐻∞ exponential synchro-
nization. Consider the modifiedmultiple time-delay Genesio
and Lorenz chaotic systems in master-slave configuration,
described as follows:

.

𝑥
1
(𝑡) = 𝑥

2
(𝑡) ,

.

𝑥
2
(𝑡) = 𝑥

3
(𝑡) ,

.

𝑥
3
(𝑡) = −6𝑥

1
(𝑡) − 2.92𝑥

2
(𝑡 − 0.015)

− 1.2𝑥
3
(𝑡) + 𝑥

2

1
(𝑡 − 0.13)

(51)

.

𝑥̂
1
(𝑡) = 10 (𝑥̂

2
(𝑡) − 𝑥̂

1
(𝑡)) + 𝐷 (𝑡) + 𝑢

1
(𝑡) ,

.

𝑥̂
2
(𝑡) = 28𝑥̂

1
(𝑡) − 𝑥̂

2
(𝑡 − 0.13)

− 𝑥̂
1
(𝑡) 𝑥̂

3
(𝑡) + 𝐷 (𝑡) + 𝑢

2
(𝑡) ,

.

𝑥̂
3
(𝑡) = 𝑥̂

1
(𝑡) 𝑥̂

2
(𝑡) − (

8

3
) 𝑥̂

3
(𝑡 − 0.015) + 𝐷 (𝑡) + 𝑢

3
(𝑡) ,

(52)

where [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇 and [𝑥̂
1
(𝑡) 𝑥̂

2
(𝑡) 𝑥̂

3
(𝑡)]

𝑇 are the
state vectors of master and slave systems, respectively. Let
the different initial conditions of master and slave systems be
[𝑥

1
(0) = −0.5𝑥

2
(0) = 2𝑥

3
(0) = 6] and [𝑥̂

1
(0) = 0.2𝑥̂

2
(0) =

−1.5𝑥̂
3
(0) = 5], and the external disturbance 𝐷(𝑡) =

0.5 sin(2.3𝑡).

Figures 2(a) and 2(b) show the chaotic behaviors of the
master (51) and slave (52) systems, respectively.

Solution 1. We can solve the previous problem based on the
following steps.

Step 1. Establish the NN models for master and slave sys-
tems via back propagation algorithm, respectively. First, the
NN model to approximate the master chaotic system is
constructed by 7–3, and the transfer functions of the hidden
layer are chosen as follows:

𝑇 (V
𝜎

𝜍
(𝑡)) = {

2

[1 + exp (−V𝜎
𝜍
(𝑡) /0.5)]

− 1} ,

for 𝜎 = 1.

(53)

On the other hand, the transfer functions of the output layer
are chosen as follows:

𝑇 (V
𝜎

𝜍
(𝑡)) = V

𝜎

𝜍
(𝑡) , for 𝜎 = 2. (54)

After training, we can obtain the following connection
weights (the indices in 𝑊

𝜎

𝜍𝜗
state that the weight of the 𝜎th

layer in the NN model represents the connection to the 𝜍th
neuron from the 𝜗th source):

𝑊
1

= [𝑊
1

𝜍𝜗
] = 10

−3

×

[
[
[
[
[
[
[

[

−1.03122 5.94314 −20.9809 0.13627 507.458 868.021 588.569 0.2062 651.633

8.37089 26.8407 21.6151 0.00088 −239.108 −740.187 −377.569 −0.01391 76.6848

501.958 −3.80717 132.938 0.80211 135.643 137.647 57.0662 0.06242 992.269

1963.99 −273.63 359.637 8.01727 −848.291 −61.2187 −668.702 5.75107 −843.648

−2.69396 −2.90578 −10.7761 0.02579 −892.099 −976.195 203.963 0.06003 −114.643

−770.561 146.747 −194.79 1.70179 61.5951 −325.754 −474.057 0.70796 −786.694

−495.801 7.53321 −127.132 −0.59639 558.334 −675.635 308.158 −0.00742 923.796

]
]
]
]
]
]
]

]

,

𝑊
2

= [𝑊
2

𝜍𝜗
] = 10

2

× [

0.22075 0.37482 −0.15363 −0.00174 0.2211 −0.00355 −0.14954

−0.12996 −0.05835 −0.00991 0.00027 −0.84887 −0.00075 −0.40655

11.2915 −7.58331 4.85989 −0.05542 −35.5864 −0.22732 5.1942

] .

(55)

Then, the net inputs of the 𝜎th (𝜎 = 1, 2) layer are as follows
(the symbol V𝜎

𝜍
denotes the net input of the 𝜍th neuron of the

𝜎th layer in the NN model, and the indices 𝜎 and 𝜍 shown in
ℎ
𝜎

𝜍𝜑
(𝜑 = 1, 2) indicate the same thing):

V
1

𝜍
(𝑡) = 𝑊

1

𝜍1
𝑥
1
(𝑡) + 𝑊

1

𝜍2
𝑥
2
(𝑡) + 𝑊

1

𝜍3
𝑥
3
(𝑡) + 𝑊

1

𝜍4
𝑥
1
(𝑡 − 0.13)

+ 𝑊
1

𝜍5
⋅ 0 + 𝑊

1

𝜍6
⋅ 0 + 𝑊

1

𝜍7
⋅ 0 + 𝑊

1

𝜍8
𝑥
2
(𝑡 − 0.015)

+ 𝑊
1

𝜍9
⋅ 0, 𝜍 = 1, 2, 3, 4, 5, 6, 7,

(56a)

V
2

𝜍
(𝑡) = 𝑊

2

𝜍1
𝑇 (V

1

1
(𝑡)) + 𝑊

2

𝜍2
𝑇 (V

1

2
(𝑡))

+ 𝑊
2

𝜍3
𝑇 (V

1

3
(𝑡)) + 𝑊

2

𝜍4
𝑇 (V

1

4
(𝑡)) + 𝑊

2

𝜍5
𝑇 (V

1

5
(𝑡))

+ 𝑊
2

𝜍6
𝑇 (V

1

6
(𝑡)) + 𝑊

2

𝜍7
𝑇 (V

1

7
(𝑡)) , 𝜍 = 1, 2, 3,

(56b)

.

𝑋 (𝑡) = [

[

.

𝑥
1
(𝑡)

.

𝑥
2
(𝑡)

.

𝑥
3
(𝑡)

]

]

=
[
[

[

𝑇 (V
2

1
(𝑡))

𝑇 (V
2

2
(𝑡))

𝑇 (V
2

3
(𝑡))

]
]

]

. (57)

Based on (8), theminimumandmaximumof the derivative of
each transfer function shown in (53) and (54) can be obtained
as follows:

𝑔
1

𝜍0
= 0, 𝑔

2

𝜍0
= 1,

𝑔
1

𝜍1
= 𝑔

2

𝜍1
= 1, for 𝜍 = 1, 2, . . . , 𝐽

𝜎

.

(58)

In order to simplify the notation, we let𝑔1

𝜍0
= 𝑔

1

0
,𝑔1

𝜍1
= 𝑔

1

1
,

𝑔
2

𝜍0
= 𝑔

2

0
and 𝑔

2

𝜍1
= 𝑔

2

1
. Then, according to the interpolation
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method, we have

.

𝑥
1
(𝑡) =

1

∑

𝑑=0

ℎ
2

1𝑑
(𝑡) 𝑔

2

𝑑

7

∑

𝜍=1

𝑊
2

1𝜍
𝑇 (V

1

𝜍
(𝑡))

=

1

∑

𝑑=0

ℎ
2

1𝑑
(𝑡) 𝑔

2

𝑑

7

∑

𝜍=1

𝑊
2

1𝜍
(ℎ

1

𝜍0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜍1
(𝑡) 𝑔

1

1
) V

1

𝜍
(𝑡)

=

1

∑

𝑑=0

ℎ
2

1𝑑
(𝑡) 𝑔

2

𝑑

×

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡)

× ℎ
1

4𝑜
(𝑡) ℎ

1

5𝑐
(𝑡) ℎ

1

6𝑙
(𝑡) ℎ

1

7𝑘
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡) + 𝑔

1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡)

+ 𝑔
1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡) + 𝑔

1

𝑐
𝑊

2

𝜍5
V
1

5
(𝑡) + 𝑔

1

𝑙
𝑊

2

𝜍6
V
1

6
(𝑡)

+𝑔
1

𝑘
𝑊

2

𝜍7
V
1

7
(𝑡)) ,

.

𝑥
2
(𝑡) =

1

∑

𝑒=0

ℎ
2

2𝑒
(𝑡) 𝑔

2

𝑒

7

∑

𝜍=1

𝑊
2

2𝜍
𝑇 (V

1

𝜍
(𝑡))

=

1

∑

𝑒=0

ℎ
2

2𝑒
(𝑡) 𝑔

2

𝑒

7

∑

𝜍=1

𝑊
2

1𝜍
(ℎ

1

𝜍0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜍1
(𝑡) 𝑔

1

1
) V

1

𝜍
(𝑡)

=

1

∑

𝑒=0

ℎ
2

2𝑒
(𝑡) 𝑔

2

𝑒

×

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡)

× ℎ
1

4𝑜
(𝑡) ℎ

1

5𝑐
(𝑡) ℎ

1

6𝑙
(𝑡) ℎ

1

7𝑘
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡) + 𝑔

1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡)

+ 𝑔
1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡) + 𝑔

1

𝑐
𝑊

2

𝜍5
V
1

5
(𝑡)

+𝑔
1

𝑙
𝑊

2

𝜍6
V
1

6
(𝑡) + 𝑔

1

𝑘
𝑊

2

𝜍7
V
1

7
(𝑡)) ,

.

𝑥
3
(𝑡) =

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

7

∑

𝜍=1

𝑊
2

2𝜍
𝑇 (V

1

𝜍
(𝑡))

=

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

7

∑

𝜍=1

𝑊
2

1𝜍
(ℎ

1

𝜍0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜍1
(𝑡) 𝑔

1

1
) V

1

𝜍
(𝑡)

=

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

×

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡)

× ℎ
1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡) ℎ

1

5𝑐
(𝑡) ℎ

1

6𝑙
(𝑡) ℎ

1

7𝑘
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡)

+ 𝑔
1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡) + 𝑔

1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡) + 𝑔

1

𝑐
𝑊

2

𝜍5
V
1

5
(𝑡)

+𝑔
1

𝑙
𝑊

2

𝜍6
V
1

6
(𝑡) + 𝑔

1

𝑘
𝑊

2

𝜍7
V
1

7
(𝑡)) .

(59)

On the basis of (9), let

𝐺
1

=

[
[
[
[
[
[
[
[
[
[

[

𝑔
1

𝑠
0 0 0 0 0 0

0 𝑔
1

𝑝
0 0 0 0 0

0 0 𝑔
1

𝑟
0 0 0 0

0 0 0 𝑔
1

𝑜
0 0 0

0 0 0 0 𝑔
1

𝑐
0 0

0 0 0 0 0 𝑔
1

𝑙
0

0 0 0 0 0 0 𝑔
1

𝑘

]
]
]
]
]
]
]
]
]
]

]

,

𝐺
2

=
[
[

[

𝑔
2

𝑑
0 0

0 𝑔
2

𝑒
0

0 0 g2
𝑓

]
]

]

,

(60)

then, 𝐸
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘

≡ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

= [ΥRℵ
]
3×9

, R = 1, 2, 3; ℵ =

1, 2 . . . , 9.
Plugging (56a) and (56b) into (59) leads to

.

𝑋(𝑡) =

1

∑

𝑑=0

1

∑

𝑒=0

1

∑

𝑓=0

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
2

1𝑑
(𝑡)

× ℎ
2

2𝑒
(𝑡) ℎ

2

3𝑓
(𝑡) ℎ

1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

× ℎ
1

5𝑐
(𝑡) ℎ

2

6𝑙
(𝑡) ℎ

2

7𝑘
(𝑡) {𝐴

𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘
𝑋(𝑡)

+ 𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘1

𝑋 (𝑡 − 0.13)

+𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘2

𝑋 (𝑡 − 0.015)} ,

(61)

where 𝑋(𝑡) = [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇, 𝑋(𝑡 − 0.13) = [𝑥
1
(𝑡 −

0.13) 0 0]
𝑇,𝑋(𝑡 − 0.015) = [0 𝑥

2
(𝑡 − 0.015) 0]

𝑇,

𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘

= [

[

Υ
11

Υ
12

Υ
13

Υ
21

Υ
22

Υ
23

Υ
31

Υ
32

Υ
33

]

]

,

𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘1

= [

[

Υ
14

Υ
15

Υ
16

Υ
24

Υ
25

Υ
26

Υ
34

Υ
35

Υ
36

]

]

,

𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘2

= [

[

Υ
17

Υ
18

Υ
19

Υ
27

Υ
28

Υ
29

Υ
37

Υ
38

Υ
39

]

]

.

(62)

Next, by renumbering thematrices shown in (61), the NN
model of master system can be rewritten as the following LDI
state-space representation:

.

𝑋(𝑡) =

1024

∑

𝑖=1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

2

∑

𝑘=1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} , (63)
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where 𝜏
1
= 0.13, 𝜏

2
= 0.015,

𝐴
1
= 𝐴

0000000000
, . . . , 𝐴

1023
= 𝐴

1111111110
,

𝐴
1024

= 𝐴
1111111111

,

𝐴
11

= 𝐴
0000000000 1

, . . . , 𝐴
1023 1

= 𝐴
1111111110 1

,

𝐴
1024 1

= 𝐴
1111111111 1

,

𝐴
12

= 𝐴
0000000000 2

, . . . , 𝐴
1023 2

= 𝐴
1111111110 2

,

𝐴
1024 2

= 𝐴
1111111111 2

.

(64)

Similarly, the connection weights of the NN model for the
slave system are obtained as follows:

𝑊̂
1

= [𝑊̂
1

𝜍𝜗
] = 10

−3

×

[
[
[
[
[
[
[

[

152.414 −108.845 5.89316

25.9179 −1.25408 0.23133

16.4571 −32.4571 −0.07041

185.863 −168.015 63.4102

30.1031 −6.65419 20.3791

−29.6884 2.93641 −19.0384

−30.3835 −2.8972 14.6662

−2.46010 141.365 −68.6751

−0.03779 143.659 −441.921

−0.03095 −427.963 350.75

0.77781 398.267 807.329

−0.18987 592.515 817.051

0.14757 −116.821 494.393

−0.05355 −107.568 −478.976

379.275 0.92354 −435.589

−736.338 0.04626 951.915

−752.998 0.05790 −927.148

−618.194 2.26166 −347.51

−708.535 0.22644 946.027

170.087 −0.19531 −269.934

−853.276 0.04245 −381.7

]
]
]
]
]
]
]

]

,

𝑊̂
2

= [𝑊̂
2

𝜍𝜗
] = 10

−2

× [

−0.02461 −2.39353 −2.95221 0.00325

0.36735 −35.2973 3.22363 −0.06269

−2.20513 8.93374 −5.80935 −1.25235

−0.54634 −0.78523 −0.23624

−32.8677 −48.5154 −16.6456

164.85 164.933 −10.6894

] .

(65)

Step 2. The procedures of constructing the NNmodel for the
slave system are similar to those for that of themaster system,
and thenwe have theNNmodel of the slave system as follows:

.

𝑋̂ (𝑡) =

1024

∑

𝑗=1

ℎ̂
𝑗
(𝑡) {𝐴̂

𝑗
𝑋̂ (𝑡) +

2

∑

𝑘=1

̂
𝐴

𝑗𝑘
𝑋̂ (𝑡 − 𝜏

𝑘
)} + 𝐵𝑈 (𝑡) ,

(66)

where 𝑋̂(𝑡) = [𝑥̂
1
(𝑡) 𝑥̂

2
(𝑡) 𝑥̂

3
(𝑡)]

𝑇, 𝑋̂(𝑡 − 0.13) = [0

𝑥̂
2
(𝑡−0.13) 0]

𝑇, 𝑋̂(𝑡−0.015) = [0 0 𝑥̂
3
(𝑡−0.015)]

𝑇 and𝐵

is identity matrix.The responses of
.

𝑋(𝑡) and
.

𝑋̂(𝑡) for original
systems and𝑁𝑁models are shown in Figures 3(a) and 3(b).

Step 3. In order to synchronize the master and slave systems,
a fuzzy controller is synthesized as follows:

Control Rule 1 : IF 𝑒
1
(𝑡) is 𝑀

1
, THEN 𝑈 (𝑡) = −𝐾

1
𝐸 (𝑡) ,

Control Rule 2 : IF 𝑒
1
(𝑡) is 𝑀

2
, THEN 𝑈 (𝑡) = −𝐾

2
𝐸 (𝑡) ,

(67)

where 𝑀
1
and 𝑀

2
are the membership functions for each 𝑒

1

(see Figure 4) as follows:

𝑀
1
(𝑒

1
(𝑡)) =

1

2
(1 +

𝑒
1
(𝑡)

𝑞
) , (68a)

𝑀
2
(𝑒

1
(𝑡)) =

1

2
(1 −

𝑒
1
(𝑡)

𝑞
) . (68b)

Based on (19), we have the overall fuzzy controller

𝑈 (𝑡) = −
∑

2

𝑙=1
𝑤

𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡)

∑
2

𝑙=1
𝑤

𝑙
(𝑡)

= −

2

∑

𝑙=1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) , (69)

with 𝑤
𝑙
(𝑡) ≡ 𝑀

𝑙
(𝑒

1
(𝑡)), ℎ

𝑙
(𝑡) ≡ 𝑤

𝑙
(𝑡)/∑

2

𝑙=1
𝑤

𝑙
(𝑡).

Based on (20), the dynamics of the error system are
obtained as follows:

.

𝐸 (𝑡) =

1024

∑

𝑖=1

2

∑

𝑘=1

2

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

× {𝐺
𝑖𝑙
𝐸 (𝑡) + 𝐴

𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)} + 𝐷 (𝑡) + Φ (𝑡) ,

(70)

where𝐺
𝑖𝑙
≡ 𝐴

𝑖
−𝐵𝐾

𝑙
, Ψ̂ ≡ 𝑓(𝑋̂(𝑡))+∑

2

𝑘=1
𝐻

𝑘
(𝑋̂(𝑡−𝜏

𝑘
))+𝑈(𝑡),

with𝑈(𝑡) = −∑
2

𝑙=1
ℎ
𝑙
(𝑡)𝐾

𝑙
𝐸(𝑡),Ψ ≡ 𝑓̂(𝑋(𝑡))+ ∑

2

𝑘=1
𝐻̂

𝑘
(𝑋(𝑡−

𝜏
𝑘
)), Φ(𝑡) ≡ Ψ̂ − Ψ − {∑

1024

𝑖=1
∑

2

𝑘=1
∑

2

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)[𝐺

𝑖𝑙
𝐸(𝑡) +

𝐴
𝑖𝑘
𝐸(𝑡 − 𝜏

𝑘
)}.

Step 4. According to (55) and (61)–(70), the LMIs in (47a)
and (47b) can be solved via the Matlab LMI toolbox. In
accordance with Remark 1, the specified structured bounding
matrix 𝑅 and 𝜀

𝑖𝑙
are set as

𝑅 = [

[

18000 0 0

0 18000 0

0 0 18000

]

]

, 𝜀
𝑖𝑙
= [

[

1 0 0

0 1 0

0 0 1

]

]

. (71)

Based on Corollary 8, the positive constant 𝜉 is mini-
mized by the mincx function of Matlab LMI toolbox 𝜉min =

0.0000125, and then we have the minimum disturbance
attenuation level 𝜌min = 0.006.

Step 5. The common solutions 𝑄, 𝐹
1
, 𝐹

2
, 𝜓

1
, and 𝜓

2
of the

stability conditions (31a) and (31b) can be obtained with the
best value 𝑡𝑚𝑖𝑛 of LMI Solver (Matlab) as −2.202477 × 10

−7

as follows:

𝑄 = 10
−6

× [

[

0.7456 0 0

0 0.7454 −0.0001

0 −0.0001 0.7452

]

]

, (72)
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Figure 2: (a) Chaotic behavior of themaster system (51). (b) Chaotic
behavior of the slave system (52) without control.

𝐹
1
= [

[

0.0071 0 0

0 0.0071 0

0 0 0.0071

]

]

, (73a)

𝐹
2
= [

[

0.0071 0 0

0 0.0071 0

0 0 0.0071

]

]

. (73b)

In addition, the resulting controller gains are

𝐾
1
= 10

3

× [

[

9.4701 −0.0004 −0.0055

0.0004 9.4701 0.0014

0.0055 −0.0014 9.4701

]

]

,

𝐾
2
= 10

3

× [

[

9.4701 0.0001 0.0013

−0.0001 9.4701 −0.0053

−0.0013 0.0053 9.4701

]

]

,

𝜓
1
= 𝜓

2
= [

[

1.0344 0 −0.0032

0 1.0345 0.0002

−0.0032 0.0002 1.0345

]

]

.

(74)
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Figure 3: (a) The responses of
.

𝑋(𝑡) for original system and NN
model. (b)The responses of

.

𝑋̂(𝑡) for original system andNNmodel.
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Figure 5: State responses of both master and slave systems.
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Figure 6: The chaotic behaviors of the master and slave systems.

Figure 5 displays the state responses of both master and
slave systems. The chaotic behaviors of the master and
slave systems are shown in Figure 6. Besides, Figure 7 illus-
trates the synchronization errors (𝑒

1
, 𝑒

2
, and 𝑒

3
) which

converge to zero. Moreover, the assumption of ‖Φ(𝑡)‖ ≤

‖∑
1024

𝑖=1
∑

2

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)Θ𝑅

𝑖𝑙
𝐸(𝑡)‖ is satisfied from the illustra-

tion shown in Figure 8.
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Figure 7: State responses of the error system.
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6. Conclusion

This study proposes a novel approach not only to realize
the exponential synchronization of nonidentical multiple
time-delay chaotic (MTDC) systems but also to achieve the
optimal 𝐻∞ performance at the same time. First, a neural-
network (NN)model is employed to approximate theMTDC
system.Then, a linear differential inclusion (LDI) state-space
representation is established for the dynamics of the NN
model. Next, in terms of Lyapunov’s direct method, a delay-
dependent stability criterion is derived to ensure that the
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slave system can exponentially synchronize with the master
system. Subsequently, the stability condition of this criterion
is reformulated into a linear matrix inequality (LMI). On the
basis of the Lyapunov stability theory and LMI approach,
a fuzzy controller is synthesized to realize the exponential
𝐻

∞ synchronization of the chaotic master-slave systems and
reduce the 𝐻

∞ norm from disturbance to synchronization
error at the lowest level. Finally, the simulation results
demonstrate that the exponential𝐻∞ synchronization of two
different MTDC systems can be achieved by the designed
fuzzy controller. algorithm, respectively. First, the NNmodel
to approximate the master chaotic
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The purpose of this paper is to investigate a delay-dependent robust synchronization analysis for coupled stochastic discrete-time
neural networks with interval time-varying delays in networks coupling, a time delay in leakage term, and parameter uncertainties.
Based on the Lyapunov method, a new delay-dependent criterion for the synchronization of the networks is derived in terms of
linear matrix inequalities (LMIs) by constructing a suitable Lyapunov-Krasovskii’s functional and utilizing Finsler’s lemma without
free-weighting matrices. Two numerical examples are given to illustrate the effectiveness of the proposed methods.

1. Introduction

In recent years, the problem of synchronization of coupled
neural networkswhich is one of hot research fields of complex
networks has been a challenging issue due to its potential
applications such as physics, information sciences, biological
systems, and so on. Here, complex networks, which are a set
of interconnected nodes with specific dynamics, have been
studied from various fields of science and engineering such
as the World Wide Web, social networks, electrical power
grids, global economic markets, and so on. Many mathe-
matical models were proposed to describe various complex
networks [1, 2]. Also, in the real applications of systems,
there exists naturally time delay due to the finite information
processing speed and the finite switching speed of amplifiers.
It is well known that time delay often causes undesirable
dynamic behaviors such as performance degradation and
instability of the systems. So, some sufficient conditions for
synchronization of coupled neural networks with time delay
have been proposed in [3–5]. Moreover, the synchronization

of delayed systems was applied in practical systems such as
secure communication [6]. Furthermore, these days, most
systems use digital computers (usually microprocessor or
microcontrollers) with the necessary input/output hardware
to implement the systems. The fundamental character of
the digital computer is that it takes compute answers at
discrete steps. Therefore, discrete-time modeling with time
delay plays an important role in many fields of science and
engineering applications. In this regard, various approaches
to synchronization stability criterion for discrete-time com-
plex networks with time delay have been investigated in the
literature [7–9].

On the other hand, in implementation of many practical
systems such as aircraft, chemical and biological systems,
and electric circuits, there exist occasionally stochastic per-
turbations. It is not less important than the time delay as a
considerable factor affecting dynamics in the fields of science
and engineering applications. Therefore, the study on the
problems for various forms of stochastic systems with time-
delay has been addressed. For more details, see the literature
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[10–13] and references therein. Furthermore, on the problem
of synchronization of coupled stochastic neural networks
with time delay, various researches have been conducted [14–
17]. Li and Yue [14] studied the synchronization stability
problem for a class of complex networks with Markovian
jumping parameters and mixed time delays. The model con-
sidered in [14] has stochastic coupling terms and stochastic
disturbances to reflect more realistic dynamical behaviors
of the complex networks that are affected by noisy envi-
ronment. In [15], by utilizing novel Lyapunov-Krasovskii’s
functional with both lower and upper delay bounds, the
synchronization criteria for coupled stochastic discrete-time
neural networks with mixed delays were presented. Tang and
Fang [16] derived several sufficient conditions for the syn-
chronization of delayed stochastically coupled fuzzy cellular
neural networks with mixed delays and uncertain hybrid
coupling based on adaptive control technique and some
stochastic analysis methods. In [17], by using Kronecker
product as an effective tool, robust synchronization problem
of coupled stochastic discrete-time neural networks with
time-varying delay was investigated. Moreover, Song [18–
20] addressed synchronization problem for the array of
asymmetric, chaotic, and coupled connected neural networks
with time-varying delay or nonlinear coupling. Also, in [21],
robust exponential stability analysis of uncertain delayed
neural networks with stochastic perturbation and impulse
effects was investigated.

Very recently, a time delay in leakage term of the systems
is being put to use in the problem of stability for neural
networks as a considerable factor affecting dynamics for
the worse in the systems [22, 23]. Li et al. [22] studied
the existence and uniqueness of the equilibrium point of
recurrent neural networks with time delays in the leak-
age term. By use of the topological degree theory, delay-
dependent stability conditions of neural networks of neutral
type with time delays in the leakage term were proposed in
[23]. Unfortunately, to the best of authors’ knowledge, delay-
dependent synchronization analysis of coupled stochastic
discrete-time neural networks with time-varying delay in
network coupling and leakage delay has not been investigated
yet. Thus, by attempting the synchronization analysis for the
model of coupled stochastic discrete-time neural networks
with time delay in the leakage term, the model for coupled
neural networks and its applications are closed to the practical
networks.Here, delay-dependent analysis has been paidmore
attention than delay-independent one because the sufficient
conditions for delay-dependent analysis make use of the
information on the size of time delay [24].That is, the former
is generally less conservative than the latter.

Motivated by the above discussions, the problem of
a new delay-dependent robust synchronization criterion
for coupled stochastic discrete-time neural networks with
interval time-varying delays in network coupling, the time
delay in leakage term, and parameter uncertainties is consid-
ered for the first time. The coupled stochastic discrete-time
neural networks are represented as a simple mathematical
model by the use of Kronecker product technique. Then, by
construction of a suitable Lyapunov-Krasovskii’s functional
and utilization of Finsler’s lemma without free-weighting

matrices, a new synchronization criterion is derived in terms
of LMIs.The LMIs can be formulated as convex optimization
algorithms which are amenable to computer solution [25].
In order to utilize Finsler’s lemma as a tool of getting
less conservative synchronization criteria on the number of
decision variables, it should be noted that a new zero equality
from the constructed mathematical model is devised. The
concept of scaling transformation matrix will be utilized in
deriving zero equality of themethod. In [26], the effectiveness
of Finsler’s lemma was illustrated by the improved passivity
criteria of uncertain neural networks with time-varying
delays. Finally, two numerical examples are included to show
the effectiveness of the proposed method.

Notation. R𝑛 is the 𝑛-dimensional Euclidean space, andR𝑚×𝑛
denotes the set of all 𝑚 × 𝑛 real matrices. For symmetric
matrices𝑋 and𝑌,𝑋 > 𝑌 (resp.,𝑋 ≥ 𝑌)means that thematrix
𝑋 − 𝑌 is positive definite (resp., nonnegative). 𝑋⊥ denotes a
basis for the null-space of𝑋. 𝐼

𝑛
and 0
𝑛
and 0
𝑚×𝑛

denote 𝑛 × 𝑛
identitymatrix and 𝑛×𝑛 and𝑚×𝑛 zeromatrices, respectively.
‖ ⋅ ‖ refers to the Euclidean vector norm or the induced
matrix norm. 𝜆max(⋅) means the maximum eigenvalue of a
given square matrix. diag{⋅ ⋅ ⋅} denotes the block diagonal
matrix. ⋆ represents the elements below the main diagonal
of a symmetric matrix. Let (Ω,F, {𝐹

𝑡
}
𝑡≥0
,P) be complete

probability space with a filtration {𝐹
𝑡
}
𝑡≥0

satisfying the usual
conditions (i.e., it is right continuous and F

0
contains all

P-pull sets). E{⋅} stands for the mathematical expectation
operator with respect to the given probability measureP.

2. Problem Statements

Consider the following discrete-time delayed neural net-
works:
𝑦 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦 (𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦 (𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦 (𝑘 − ℎ (𝑘))) + 𝑏,

(1)

where 𝑛 denotes the number of neurons in a neural network,
𝑦(⋅) = [𝑦

1
(⋅), . . . , 𝑦

𝑛
(⋅)]
𝑇

∈ R𝑛 is the neuron state vector,
𝑔(⋅) = [𝑔

1
(⋅), . . . , 𝑔

𝑛
(⋅)]
𝑇

∈ R𝑛 denotes the neuron activation
function vector, 𝑏 = [𝑏

1
, . . . , 𝑏

𝑛
]
𝑇

∈ R𝑛 means a constant
external input vector, 𝐴 = diag{𝑎

1
, . . . , 𝑎

𝑛
} ∈ R𝑛×𝑛 (0 <

𝑎
𝑞
< 1, 𝑞 = 1, . . . , 𝑛) is the state feedback matrix, 𝑊

𝑞
∈

R𝑛×𝑛 (𝑞 = 1, 2) are the connection weight matrices, and Δ𝐴
and Δ𝑊

𝑞
(𝑞 = 1, 2) are the parameter uncertainties of the

form

[Δ𝐴, Δ𝑊
1
, Δ𝑊
2
] = 𝐷𝐹 (𝑘) [𝐸

𝑎
, 𝐸
1
, 𝐸
2
] , (2)

where 𝐹(𝑘) is a real uncertain matrix function with Lebesgue
measurable elements satisfying

𝐹
𝑇

(𝑘) 𝐹 (𝑘) ≤ 𝐼. (3)

The delays ℎ(𝑘) and 𝜏 are interval time-varying delays and
leakage delay, respectively, satisfying

0 < ℎ
𝑚
≤ ℎ (𝑘) ≤ ℎ

𝑀
, 0 < 𝜏, (4)

where ℎ
𝑚
and ℎ
𝑀
are positive integers.
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Theneuron activation functions,𝑔
𝑝
(𝑦
𝑝
(⋅)) (𝑝 = 1, . . . , 𝑛),

are assumed to be nondecreasing, bounded, and globally
Lipschitz; that is,

𝑙
−

𝑝
≤

𝑔
𝑝
(𝜉
𝑝
) − 𝑔
𝑝
(𝜉
𝑞
)

𝜉
𝑝
− 𝜉
𝑞

≤ 𝑙
+

𝑝
, ∀𝜉

𝑝
, 𝜉
𝑞
∈ R, 𝜉

𝑝
̸= 𝜉
𝑞
, (5)

where 𝑙−
𝑝
and 𝑙+
𝑝
are constant values.

For simplicity, in stability analysis of the network (1), the
equilibrium point 𝑦∗ = [𝑦

∗

1
, . . . , 𝑦

∗

𝑛
]
𝑇 is shifted to the origin

by the utilization of the transformation𝑦(⋅) = 𝑦(⋅)−𝑦∗, which
leads the network (1) to the following form:

𝑦 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦 (𝑘 − 𝜏) + (𝑊
1
+ Δ𝑊

1
) 𝑔 (𝑦 (𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦 (𝑘 − ℎ (𝑘))) ,

(6)

where 𝑦(⋅) = [𝑦
1
(⋅), . . . , 𝑦

𝑛
(⋅)]
𝑇

∈ R𝑛 is the state vector
of the transformed network, and 𝑔(𝑦(⋅)) = [𝑔

1
(𝑦
1
(⋅)), . . . ,

𝑔
𝑛
(𝑦
𝑛
(⋅))]
𝑇 is the transformed neuron activation function

vector with 𝑔
𝑞
(𝑦
𝑞
(⋅)) = 𝑔

𝑞
(𝑦
𝑞
(⋅) + 𝑦

∗

𝑞
) − 𝑔
𝑞
(𝑦
∗

𝑞
) (𝑞 = 1, . . . , 𝑛)

satisfies, from (5), 𝑙−
𝑝
≤ 𝑔
𝑝
(𝜉
𝑝
)/𝜉
𝑝
≤ 𝑙
+

𝑝
, ∀𝜉
𝑝

̸= 0, which is
equivalent to

[𝑔
𝑝
(𝑦
𝑝
(𝑘)) − 𝑙

−

𝑝
𝑦
𝑝
(𝑘)] [𝑔

𝑝
(𝑦
𝑝
(𝑘)) − 𝑙

+

𝑝
𝑦
𝑝
(𝑘)] ≤ 0. (7)

In this paper, a model of coupled stochastic discrete-
time neural networks with interval time-varying delays in
network coupling, leakage delay, and parameter uncertainties
is considered as

𝑦
𝑖
(𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦

𝑖
(𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦
𝑖
(𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦
𝑖
(𝑘 − ℎ (𝑘)))

+

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑦
𝑗
(𝑘 − ℎ (𝑘)) (1 + 𝜔

1
(𝑘))

+ 𝜎
𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜔

2
(𝑘) ,

𝑖 = 1, 2, . . . , 𝑁,

(8)

where 𝑁 is the number of couple nodes, 𝑦
𝑖
(𝑘) = [𝑦

𝑖1
(𝑘),

. . . , 𝑦
𝑖𝑛
(𝑘)]
𝑇

∈ R𝑛 is the state vector of the 𝑖th node, Γ ∈

R𝑛×𝑛 is the constant inner-coupling matrix of nodes, which
describe the individual coupling between the subnetworks,
𝐺 = [𝑔

𝑖𝑗
]
𝑁×𝑁

is the outer-coupling matrix representing
the coupling strength and the topological structure of the
network satisfies the diffusive coupling connections

𝑔
𝑖𝑗
= 𝑔
𝑗𝑖
≥ 0 (𝑖 ̸= 𝑗) ,

𝑔
𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑖 ̸= 𝑗

𝑔
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑁) ,

(9)

and 𝜔
𝑞
(𝑘) (𝑞 = 1, 2) are 𝑚-dimensional Wiener processes

(Brownian Motion) on (Ω,F, {𝐹
𝑡
}
𝑡≥0
,P) which satisfy

E {𝜔
𝑞
(𝑘)} = 0,

E {𝜔
2

𝑞
(𝑘)} = 1,

E {𝜔
𝑞
(𝑖) 𝜔
𝑞
(𝑗)} = 0 (𝑖 ̸= 𝑗) .

(10)

Here, 𝜔
1
(𝑘) and 𝜔

2
(𝑘), which are mutually independent,

are the coupling strength disturbance and the system noise,
respectively. And the nonlinear uncertainties 𝜎

𝑖
(⋅, ⋅, ⋅) ∈

R𝑛×𝑚 (𝑖 = 1, . . . , 𝑁) are the noise intensity functions satis-
fying the Lipschitz condition and the following assumption:

𝜎
𝑇

𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜎

𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘)))

≤
󵄩󵄩󵄩󵄩𝐻1𝑦𝑖 (𝑘)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐻2𝑦𝑖 (𝑘 − ℎ (𝑘))

󵄩󵄩󵄩󵄩

2

,

(11)

where 𝐻
𝑞
(𝑞 = 1, 2) are constant matrices with appropriate

dimensions.

Remark 1. According to the graph theory [27], the outer-
coupling matrix 𝐺 is called the negative Laplacian matrix
of undirected graph. A physical meaning of the matrix 𝐺 is
the bilateral connection between node 𝑖 and 𝑗. If the matrix
𝐺 cannot satisfy symmetric, the unidirectional connection
between nodes 𝑖 and 𝑗 is expressed. At this time, the
matrix 𝐺 is called the negative Laplacian matrix of directed
graph. Therefore, new numerical model and strong sufficient
condition guaranteed to the stability for networks are needed.
Moreover, in order to analyze the consensus problem for
multiagent systems, the Laplacian matrix of directed graph
was used [28].
For the convenience of stability analysis for the network (8),
the following Kronecker product and its properties are used.

Lemma 2 (see [29]). Let ⊗ denote the notation of Kronecker
product. Then, the following properties of Kronecker product
are easily established:

(i) (𝛼𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝛼𝐵),
(ii) (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶,
(iii) (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷),
(iv) (𝐴 ⊗ 𝐵)

𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇.

Let us define
𝑥 (𝑘) = [𝑦

1
(𝑘) , . . . , 𝑦

𝑁
(𝑘)]
𝑇

,

𝑓 (𝑥 (𝑘)) = [𝑔 (𝑦
1
(𝑘)) , . . . , 𝑔 (𝑦

𝑁
(𝑘))]
𝑇

,

𝜎 (𝑡) = [𝜎
1
(⋅, ⋅, ⋅) , . . . , 𝜎

𝑁
(⋅, ⋅, ⋅)]

𝑇

.

(12)

Then, with Kronecker product in Lemma 2, the network (8)
can be represented as
𝑥 (𝑘 + 1) = (𝐼

𝑁
⊗ 𝐴 (𝑘)) 𝑥 (𝑘 − 𝜏) + (𝐼

𝑁
⊗𝑊
1
(𝑘)) 𝑓 (𝑥 (𝑘))

+ (𝐼
𝑁
⊗𝑊
2
(𝑘)) 𝑓 (𝑥 (𝑘 − ℎ (𝑘)))

+ (𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘)) (1 + 𝜔
1
(𝑘)) + 𝜎 (𝑡) 𝜔

2
(𝑡) ,

(13)
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where 𝐴(𝑘) = 𝐴 + 𝐷𝐹(𝑘)𝐸
𝑎
, 𝑊
1
(𝑘) = 𝑊

1
+ 𝐷𝐹(𝑘)𝐸

1
, and

𝑊
2
(𝑘) = 𝑊

2
+ 𝐷𝐹(𝑘)𝐸

2
.

In addition, for stability analysis, (13) can be rewritten as
follows:

𝑥 (𝑘 + 1) = 𝜂 (𝑘) + 󰜚 (𝑘) 𝜔 (𝑘) , (14)

where

𝜂 (𝑘) = (𝐼
𝑁
⊗ 𝐴) 𝑥 (𝑘 − 𝜏) + (𝐼

𝑁
⊗𝑊
1
) 𝑓 (𝑥 (𝑘))

+ (𝐼
𝑁
⊗𝑊
2
) 𝑓 (𝑥 (𝑘 − ℎ (𝑘))) + (𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘))

+ (𝐼
𝑁
⊗ 𝐷)𝑝 (𝑘) ,

𝑝 (𝑘) = (𝐼
𝑁
⊗ 𝐹 (𝑘)) 𝑞 (𝑘) ,

𝑞 (𝑘) = (𝐼
𝑁
⊗ 𝐸
𝑎
) 𝑥 (𝑘 − 𝜏) + (𝐼

𝑁
⊗ 𝐸
1
) 𝑓 (𝑥 (𝑘))

+ (𝐼
𝑁
⊗ 𝐸
2
) 𝑓 (𝑥 (𝑡 − ℎ (𝑘))) ,

󰜚 (𝑘) = [(𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘)) , 𝜎 (𝑘)] ,

𝜔
𝑇

(𝑘) = [𝜔
𝑇

1
(𝑘) , 𝜔

𝑇

2
(𝑘)] .

(15)

The aimof this paper is to investigate the delay-dependent
synchronization stability analysis of the network (14) with
interval time-varying delays in network coupling, leakage
delay, and parameter uncertainties. In order to do this, the
following definition and lemmas are needed.

Definition 3 (see [7]). The network (8) is said to be asymptot-
ically synchronized if the following condition holds:

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑁. (16)

Lemma 4 (see [3]). Let 𝑈 = [𝑢
𝑖𝑗
]
𝑁×𝑁

, 𝑃 ∈ R𝑛×𝑛, 𝑥𝑇 = [𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑛
]
𝑇, and 𝑦𝑇 = [𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇. If 𝑈 = 𝑈

𝑇 and each
row sum of 𝑈 is zero, then

𝑥
𝑇

(𝑈 ⊗ 𝑃) 𝑦 = − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
)
𝑇

𝑃 (𝑦
𝑖
− 𝑦
𝑗
) . (17)

Lemma 5 (see [30]). For any constant matrix 0 < 𝑀 = 𝑀
𝑇

∈

R𝑛×𝑛, integers ℎ
𝑚
and ℎ

𝑀
satisfying 1 ≤ ℎ

𝑚
≤ ℎ
𝑀
, and vector

function 𝑥(𝑘) ∈ R𝑛, the following inequality holds:

− (ℎ
𝑀
− ℎ
𝑚
+ 1)

ℎ
𝑀

∑

𝑘=ℎ
𝑚

𝑥
𝑇

(𝑘)𝑀𝑥 (𝑘)

≤ −(

ℎ
𝑀

∑

𝑘=ℎ
𝑚

𝑥(𝑘))

𝑇

𝑀(

ℎ
𝑀

∑

𝑘=ℎ
𝑚

𝑥 (𝑘)) .

(18)

Lemma 6 (see [31] (Finsler’s lemma)). Let 𝜁 ∈ R𝑛,Φ = Φ
𝑇

∈

R𝑛×𝑛, and Υ ∈ R𝑚×𝑛 such that 𝑟𝑎𝑛𝑘(Υ) < 𝑛. The following
statements are equivalent:

(i) 𝜁𝑇Φ𝜁 < 0, ∀Υ𝜁 = 0, 𝜁 ̸= 0,
(ii) Υ⊥𝑇ΦΥ⊥ < 0.

3. Main Results

In this section, a new synchronization criterion for the
network (14) will be proposed. For the sake of simplicity
on matrix representation, 𝑒

𝑖
(𝑖 = 1, . . . , 9) ∈ R9𝑛×𝑛 are

defined as block entry matrices (e.g., 𝑒
2
= [0
𝑛
, 𝐼
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
,

0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
]
𝑇). The notations of several matrices are defined

as follows:

𝜁
𝑇

(𝑘) = [𝑥
𝑇

(𝑘) , 𝑥
𝑇

(𝑘 − 𝜏) , 𝑥
𝑇

(𝑘 − ℎ
𝑚
) , 𝑥
𝑇

(𝑘 − ℎ (𝑘)) ,

𝑥
𝑇

(𝑘 − ℎ
𝑀
) , (𝜂 (𝑘) − 𝑥 (𝑘))

𝑇

, 𝑓
𝑇

(𝑥 (𝑘)) ,

𝑓
𝑇

(𝑥 (𝑘 − ℎ (𝑘))) , 𝑝
𝑇

(𝑘)] ,

𝑧
𝑖𝑗
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

𝑗
(𝑘) , 𝑓 (𝑧

𝑖𝑗
(𝑘)) = 𝑓 (𝑥

𝑖
(𝑘)) − 𝑓 (𝑥

𝑗
(𝑘)) ,

𝜂
𝑖𝑗
(𝑘) = 𝜂

𝑖
(𝑘) − 𝜂

𝑗
(𝑘) , 𝑝

𝑖𝑗
(𝑘) = 𝑝

𝑖
(𝑘) − 𝑝

𝑗
(𝑘) ,

𝜁
𝑇

𝑖𝑗
(𝑘) = [𝑧

𝑇

𝑖𝑗
(𝑘) , 𝑧

𝑇

𝑖𝑗
(𝑘 − 𝜏) , 𝑧

𝑇

𝑖𝑗
(𝑘 − ℎ

𝑚
) , 𝑧
𝑇

𝑖𝑗
(𝑘 − ℎ (𝑘)) ,

𝑧
𝑇

𝑖𝑗
(𝑘 − ℎ

𝑀
) , (𝜂
𝑖𝑗
(𝑘) − 𝑧

𝑖𝑗
(𝑘))
𝑇

, 𝑓
𝑇

(𝑧
𝑖𝑗
(𝑘)) ,

𝑓
𝑇

(𝑧
𝑖𝑗
(𝑘 − ℎ (𝑘))) , 𝑝

𝑇

𝑖𝑗
(𝑘)] ,

Υ
𝑖𝑗
= [−𝐼
𝑛
, 𝐴, 0
𝑛
, − (𝑁𝑔

𝑖𝑗
Γ) , 0
𝑛
, −𝐼
𝑛
,𝑊
1
,𝑊
2
, 𝐷] ,

Σ = 𝑃 + ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
+ 𝜏
2

𝑆
2
,

Ξ
1
= 𝑒
1
𝑃𝑒
𝑇

6
+ 𝑒
6
𝑃𝑒
𝑇

1
+ 𝑒
6
𝑃𝑒
𝑇

6
,

Ξ
2
= 𝑒
1
𝑄
1
𝑒
𝑇

1
− 𝑒
3
(𝑄
1
− 𝑄
2
) 𝑒
𝑇

3
− 𝑒
5
𝑄
2
𝑒
𝑇

5
,

Ξ
3
= 𝑒
6
(ℎ
2

𝑚
𝑅
1
+(ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
) 𝑒
𝑇

6
−(𝑒
1
− 𝑒
3
) 𝑅
1
(𝑒
1
−𝑒
3
)
𝑇

− (𝑒
3
− 𝑒
4
) 𝑅
2
(𝑒
3
− 𝑒
4
)
𝑇

− (𝑒
4
− 𝑒
5
) 𝑅
2
(𝑒
4
− 𝑒
5
)
𝑇

− (𝑒
3
− 𝑒
4
) 𝑇
𝑇

(𝑒
4
− 𝑒
5
)
𝑇

− (𝑒
4
− 𝑒
5
) 𝑇(𝑒
3
− 𝑒
4
)
𝑇

,

Ξ
4
= 𝑒
1
𝑆
1
𝑒
𝑇

1
−𝑒
2
𝑆
1
𝑒
𝑇

2
+𝑒
6
(𝜏
2

𝑆
2
) 𝑒
𝑇

6
−(𝑒
1
− 𝑒
2
) 𝑆
2
(𝑒
1
− 𝑒
2
)
𝑇

,

Ξ
5
= 𝑒
4
(𝑁

𝑁

∑

𝑙=1

𝑔
𝑖𝑙
𝑔
𝑙𝑗
Γ
𝑇

ΣΓ) 𝑒
𝑇

4
+ 𝑒
1
(𝜌𝐻
𝑇

1
𝐻
1
) 𝑒
𝑇

1

+ 𝑒
4
(𝜌𝐻
𝑇

2
𝐻
2
) 𝑒
𝑇

4
,

Ξ
6
= −𝑒
1
(2𝐿
𝑚
𝐷
1
𝐿
𝑝
) 𝑒
𝑇

1
+ 𝑒
1
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
1
𝑒
𝑇

7

+ (𝑒
1
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
1
𝑒
𝑇

7
)
𝑇

− 𝑒
7
(2𝐷
1
) 𝑒
𝑇

7

− 𝑒
4
(2𝐿
𝑚
𝐷
2
𝐿
𝑝
) 𝑒
𝑇

4
+ 𝑒
4
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
2
𝑒
𝑇

8

+ (𝑒
4
(𝐿
𝑚
+ 𝐿
𝑝
)𝐷
2
𝑒
𝑇

8
)
𝑇

− 𝑒
8
(2𝐷
2
) 𝑒
𝑇

8
,

Ξ
7
= −𝑒
9
(𝜖𝐼
𝑛
) 𝑒
𝑇

9
,

Ψ = [0
𝑛
, 𝐸
𝑎
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 0
𝑛
, 𝐸
1
, 𝐸
2
, 0
𝑛
] .

(19)

Then, themain result of this paper is presented as follows.
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Theorem 7. For given positive integers ℎ
𝑚
, ℎ
𝑀
and 𝜏, diagonal

matrices 𝐿
𝑚
= diag{𝑙−

1
, . . . , 𝑙

−

𝑛
} and 𝐿

𝑝
= diag{𝑙+

1
, . . . , 𝑙

+

𝑛
}, the

network (14) is asymptotically synchronized for ℎ
𝑚
≤ ℎ(𝑘) ≤

ℎ
𝑀
, if there exist positive scalars 𝜌, 𝜖, positive definite matrices

𝑃,𝑄
1
,𝑄
2
,𝑅
1
,𝑅
2
, 𝑆
1
, 𝑆
2
, positive diagonalmatrices𝐷

1
,𝐷
2
, and

any matrix 𝑇 satisfying the following LMIs for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁:

Σ − 𝜌𝐼
𝑛
≤ 0, (20)

[
𝑅
2

𝑇

⋆ 𝑅
2

] ≥ 0, (21)

[
[(𝑗 − 𝑖) Υ

𝑖𝑗
]
⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

]

𝑇

[
[

[

7

∑

𝑙=1

Ξ
𝑙
𝜖Ψ
𝑇

⋆ −𝜖𝐼
𝑛

]
]

]

× [
[(𝑗 − 𝑖) Υ

𝑖𝑗
]
⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

] < 0,

(22)

where Σ, Υ
𝑖𝑗
, Ξ
𝑙
(𝑙 = 1, . . . , 7), and Ψ are defined in (19).

Proof. Define a matrix 𝑈 as

𝑈 = [𝑢
𝑖𝑗
]
𝑁×𝑁

=

[
[
[
[
[

[

𝑁 − 1 −1 ⋅ ⋅ ⋅ −1

−1 𝑁 − 1 −1
...

... −1
. . . −1

−1 ⋅ ⋅ ⋅ −1 𝑁 − 1

]
]
]
]
]

]

(23)

and the forward difference of 𝑥(𝑘) and 𝑉(𝑘) as

Δ𝑥 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) = 𝜂 (𝑘) − 𝑥 (𝑘) + 󰜚 (𝑘) 𝜔 (𝑡) ,

Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘) .

(24)

Let us consider the following Lyapunov-Krasovskii’s func-
tional candidate as

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) , (25)

where

𝑉
1
(𝑘) = 𝑥

𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑠=𝑘−ℎ
𝑚

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑄
1
) 𝑥 (𝑠)

+

𝑘−ℎ
𝑚
−1

∑

𝑠=𝑘−ℎ
𝑀

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑄
2
) 𝑥 (𝑠) ,

𝑉
3
(𝑘) = ℎ

𝑚

−1

∑

𝑠=−ℎ
𝑚

𝑘−1

∑

𝑢=𝑘+𝑠

Δ𝑥
𝑇

(𝑢) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑢)

+ (ℎ
𝑀
− ℎ
𝑚
)

−ℎ
𝑚
−1

∑

𝑠=−ℎ
𝑀

𝑘−1

∑

𝑢=𝑘+𝑠

Δ𝑥
𝑇

(𝑢) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑢) ,

𝑉
4
(𝑘) =

𝑘−1

∑

𝑠=𝑘−𝜏

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑠)

+ 𝜏

−1

∑

𝑠=−𝜏

𝑘−1

∑

𝑢=𝑘+𝑠

Δ𝑥
𝑇

(𝑢) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑢) .

(26)

The mathematical expectation of Δ𝑉(𝑘) is calculated as
follows:

E {Δ𝑉
1
(𝑘)}

= E {𝑥
𝑇

(𝑘 + 1) (𝑈 ⊗ 𝑃) 𝑥 (𝑘 + 1)

−𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘)}

= E {(Δ𝑥 (𝑘) + 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) (Δ𝑥 (𝑘) + 𝑥 (𝑘))

−𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘) }

= E {Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) Δ𝑥 (𝑘)

+2Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝑥 (𝑘)}

= E {(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) (𝜂 (𝑘) − 𝑥 (𝑘))

+ (󰜚 (𝑘) 𝜔 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) (󰜚 (𝑘) 𝜔 (𝑘))

+2(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) 𝑥 (𝑘)}

= E {(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) (𝜂 (𝑘) − 𝑥 (𝑘))

+ 𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝐺 ⊗ Γ)
𝑇

(𝑈 ⊗ 𝑃) (𝐺 ⊗ Γ) 𝑥 (𝑡 − ℎ (𝑘))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ
1

+ 𝜎
𝑇

(𝑘) (𝑈 ⊗ 𝑃) 𝜎 (𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω
1

+2(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝑃) 𝑥 (𝑘)} ,

E {Δ𝑉
2
(𝑘)}

= E {𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑄
1
) 𝑥 (𝑘)

− 𝑥
𝑇

(𝑘 − ℎ
𝑚
) (𝑈 ⊗ (𝑄

1
− 𝑄
2
)) 𝑥 (𝑘 − ℎ

𝑚
)

−𝑥
𝑇

(𝑘 − ℎ
𝑀
) (𝑈 ⊗ 𝑄

2
) 𝑥 (𝑘 − ℎ

𝑀
) } ,

E {Δ𝑉
3
(𝑘)}

= E
{

{

{

Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
)) Δ𝑥 (𝑘)

− ℎ
𝑚

𝑘−1

∑

𝑠=𝑘−ℎ
𝑚

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑠)

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ
𝑚
−1

∑

𝑠=𝑘−ℎ
𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

}

}

}
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= E
{

{

{

(𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
))

× (𝜂 (𝑘) − 𝑥 (𝑘))

+ (

𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝐺 ⊗ Γ)
𝑇

× (𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
))

× (𝐺 ⊗ Γ) 𝑥 (𝑡 − ℎ (𝑘))

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ
2

+ 𝜎
𝑇

(𝑘) (𝑈 ⊗ (ℎ
2

𝑚
𝑅
1
+ (ℎ
𝑀
− ℎ
𝑚
)
2

𝑅
2
)) 𝜎 (𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω
2

− ℎ
𝑚

𝑘−1

∑

𝑠=𝑘−ℎ
𝑚

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑠)

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ
𝑚
−1

∑

𝑠=𝑘−ℎ
𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

}

}

}

,

E {Δ𝑉
4
(𝑘)}

= E{𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝜏) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘 − 𝜏)

+ Δ𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝜏
2

𝑆
2
) Δ𝑥 (𝑘)

−𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑠)}

= E{𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘) − 𝑥

𝑇

(𝑘 − 𝜏) (𝑈 ⊗ 𝑆
1
) 𝑥 (𝑘 − 𝜏)

+ (𝜂 (𝑘) − 𝑥 (𝑘))
𝑇

(𝑈 ⊗ 𝜏
2

𝑆
2
) (𝜂 (𝑘) − 𝑥 (𝑘))

+ 𝑥
𝑇

(𝑡−ℎ (𝑘)) (𝐺⊗Γ)
𝑇

(𝑈⊗𝜏
2

𝑆
2
) (𝐺⊗Γ) 𝑥 (𝑡 − ℎ (𝑘))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ
3

+ 𝜎
𝑇

(𝑘) (𝑈 ⊗ 𝜏
2

𝑆
2
) 𝜎 (𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ω
3

−𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑠)} .

(27)

By Lemmas 4 and 5, the sum terms ofE{Δ𝑉
3
(𝑘)} are bounded

as follows:

− ℎ
𝑚

𝑘−1

∑

𝑠=𝑘−ℎ
𝑚

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) Δ𝑥 (𝑠)

≤ −(

𝑘−1

∑

𝑠=𝑘−ℎ
𝑚

Δ𝑥 (𝑠))

𝑇

(𝑈 ⊗ 𝑅
1
)(

𝑘−1

∑

𝑠=𝑘−ℎ
𝑚

Δ𝑥 (𝑠))

= − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) (𝑒
𝑇

1
− 𝑒
𝑇

3
)
𝑇

𝑅
1
(𝑒
𝑇

1
− 𝑒
𝑇

3
) 𝜁
𝑖𝑗
(𝑘) ,

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ
𝑚
−1

∑

𝑠=𝑘−ℎ
𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

(28)

≤ −

[
[
[
[
[
[
[

[

𝑘−ℎ(𝑘)−1

∑

𝑠=𝑘−ℎ
𝑀

Δ𝑥 (𝑠)

𝑘−ℎ
𝑚
−1

∑

𝑠=𝑘−ℎ(𝑘)

Δ𝑥 (𝑠)

]
]
]
]
]
]
]

]

𝑇

[
[
[

[

1

𝛼
𝑘

(𝑈 ⊗ 𝑅
2
) 0

𝑁𝑛

0
𝑁𝑛

1

1 − 𝛼
𝑘

(𝑈 ⊗ 𝑅
2
)

]
]
]

]

×

[
[
[
[
[
[
[

[

𝑘−ℎ(𝑘)−1

∑

𝑠=𝑘−ℎ
𝑀

Δ𝑥 (𝑠)

𝑘−ℎ
𝑚
−1

∑

𝑠=𝑘−ℎ(𝑘)

Δ𝑥 (𝑠)

]
]
]
]
]
]
]

]

= − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) [

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝑇

×

[
[
[

[

1

𝛼
𝑘

𝑅
2

0
𝑛

0
𝑛

1

1 − 𝛼
𝑘

𝑅
2

]
]
]

]

[

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝜁
𝑖𝑗
(𝑘) ,

(29)

where𝛼
𝑘
= (ℎ
𝑀
−ℎ(𝑘))(ℎ

𝑀
−ℎ
𝑚
)
−1, which satisfies 0 < 𝛼

𝑘
< 1.

Also, by Theorem 7 in [32], the following inequality for
any matrix 𝑇 holds

[
[
[
[

[

√
1 − 𝛼
𝑘

𝛼
𝑘

𝐼
𝑛

0
𝑛

0
𝑛

−√
𝛼
𝑘

1 − 𝛼
𝑘

𝐼
𝑛

]
]
]
]

]

[
𝑅
2

𝑇

⋆ 𝑅
2

]

×

[
[
[
[

[

√
1 − 𝛼
𝑘

𝛼
𝑘

𝐼
𝑛

0
𝑛

0
𝑛

−√
𝛼
𝑘

1 − 𝛼
𝑘

𝐼
𝑛

]
]
]
]

]

≥ 0,

(30)

which implies

[
[
[

[

1

𝛼
𝑘

𝑅
2

0
𝑛

0
𝑛

1

1 − 𝛼
𝑘

𝑅
2

]
]
]

]

≥ [
𝑅
2

𝑇

⋆ 𝑅
2

] , (31)

then, an upper bound of the sum term (29) of E{Δ𝑉
3
(𝑘)} can

be rebounded as

− (ℎ
𝑀
− ℎ
𝑚
)

𝑘−ℎ
𝑚
−1

∑

𝑠=𝑘−ℎ
𝑀

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) Δ𝑥 (𝑠)

≤ − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) [

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝑇

[
𝑅
2

𝑇

⋆ 𝑅
2

]

× [

[

𝑒
𝑇

4
− 𝑒
𝑇

5

𝑒
𝑇

3
− 𝑒
𝑇

4

]

]

𝜁
𝑖𝑗
(𝑘) .

(32)
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Similarly, the sum term of E{Δ𝑉
4
(𝑘)} is bounded as

− 𝜏

𝑘−1

∑

𝑠=𝑘−𝜏

Δ𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑆
2
) Δ𝑥 (𝑠)

≤ − ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) (𝑒
1
− 𝑒
2
) 𝑆
2
(𝑒
1
− 𝑒
2
)
𝑇

𝜁
𝑖𝑗
(𝑘) .

(33)

Also, by properties of Kronecker product in Lemma 2 and
𝑈𝐺 = 𝐺𝑈 = 𝑁𝐺, the terms Θ

𝑞
(𝑞 = 1, 2, 3) in (27) are

calculated as follows:

3

∑

𝑙=1

Θ
𝑙
= 𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝐺 ⊗ Γ)
𝑇

(𝑈 ⊗ Σ) (𝐺 ⊗ Γ) 𝑥 (𝑡 − ℎ (𝑘))

= 𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝑁𝐺
𝑇

𝐺 ⊗ Γ
𝑇

ΣΓ) 𝑥 (𝑡 − ℎ (𝑘)) ,

(34)

where Σ is defined in (19), and, if Σ ≤ 𝜌𝐼
𝑛
, then, from (11), the

upper bound of terms Ω
𝑞
(𝑞 = 1, 2, 3) in (27) is calculated as

follows:

3

∑

𝑙=1

Ω
𝑙
= 𝜎
𝑇

(𝑘) (𝑈 ⊗ Σ) 𝜎 (𝑘)

≤ 𝜌 {𝑥
𝑇

(𝑘) (𝑈 ⊗ 𝐻
𝑇

1
𝐻
1
) 𝑥 (𝑘)

+𝑥
𝑇

(𝑡 − ℎ (𝑘)) (𝑈 ⊗ 𝐻
𝑇

2
𝐻
2
) 𝑥 (𝑡 − ℎ (𝑘))} .

(35)

Then, by utilizing Lemma 4, an upper bound of E{Δ𝑉(𝑘) =
∑
4

𝑙=1
Δ𝑉
𝑙
(𝑘)} can be written as follows:

E {Δ𝑉 (𝑘)} ≤ E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

5

∑

𝑙=1

Ξ
𝑙
)𝜁
𝑖𝑗
(𝑘)

}

}

}

. (36)

From (7), for any positive diagonal matrices 𝐷
𝑞
(𝑞 = 1, 2),

the following inequalities hold.

0 ≤ ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) Ξ
6
𝜁
𝑖𝑗
(𝑘) . (37)

Since the relational expression between 𝑝(𝑘) and 𝑞(𝑘),
𝑝
𝑇

(𝑘)𝑝(𝑘) ≤ 𝑞
𝑇

(𝑘)𝑞(𝑘), holds from the second equality of
the system (14), there exists a positive scalar 𝜖 satisfying the
following inequality:

0 ≤ ∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘) (𝜖Ψ

𝑇

Ψ + Ξ
7
) 𝜁
𝑖𝑗
(𝑘) . (38)

From (36)–(38), by S-procedure [25], theE{Δ𝑉(𝑘)} has a new
upper bound as follows:

E {Δ𝑉 (𝑘)} ≤ E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)𝜁
𝑖𝑗
(𝑘)

}

}

}

.

(39)

Also, the network (14) with the augmented matrix 𝜁
𝑖𝑗
(𝑘) can

be rewritten as follows:

E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑘)

}

}

}

= 0
𝑛×1

. (40)

Here, in order to illustrate the process of obtaining (40), let
us define the following:

Λ = [Λ
1
, Λ
2
, . . . , Λ

𝑁
] = [𝑁,𝑁 − 1, . . . , 1] ⊗ 𝐼

𝑛
∈ R
𝑛×𝑁𝑛

.

(41)

By (14), (23), and properties of Kronecker product in
Lemma 2, we have the following zero equality:

0
𝑛×1

= E {Λ (𝑈 ⊗ 𝐴) 𝑥 (𝑘 − 𝜏) + Λ (𝑁𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘))

− Λ (𝑈 ⊗ 𝐼
𝑛
) (𝜂 (𝑘) − 𝑥 (𝑘)) + Λ (𝑈 ⊗𝑊

1
) 𝑓 (𝑥 (𝑘))

+Λ (𝑈 ⊗𝑊
2
) 𝑓 (𝑥 (𝑘 − ℎ (𝑘))) + Λ (𝑈 ⊗ 𝐷) 𝑝 (𝑘)} .

(42)

By Lemma 4, the first term of (42) can be obtained as follows:

Λ (𝑈 ⊗ 𝐴) 𝑥 (𝑘 − 𝜏)

= [𝑁𝐼
𝑛
, . . . , 𝐼

𝑛
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛×𝑁𝑛

(𝑈 ⊗ 𝐴)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁𝑛×𝑁𝑛

[𝑥
1
(𝑘 − 𝜏) , . . . , 𝑥

𝑁
(𝑘 − 𝜏)]

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁𝑛×1

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝐴 (𝑥

𝑖
(𝑘 − 𝜏) − 𝑥

𝑗
(𝑘 − 𝜏))

= ∑

1≤𝑖<𝑗≤𝑁

(Λ
𝑖
− Λ
𝑗
)𝐴𝑧
𝑖𝑗
(𝑘 − 𝜏)

= ∑

1≤𝑖<𝑗≤𝑁

((𝑁 + 1 − 𝑖) 𝐼
𝑛
− (𝑁 + 1 − 𝑗) 𝐼

𝑛
) 𝐴𝑧
𝑖𝑗
(𝑘 − 𝜏)

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) 𝐴𝑧
𝑖𝑗
(𝑘 − 𝜏) .

(43)

Similarly, the other terms of (42) are calculated as follows:

Λ (𝑁𝐺 ⊗ Γ) 𝑥 (𝑘 − ℎ (𝑘))

= − ∑

1≤𝑖<𝑗≤𝑁

𝑁𝑔
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
) Γ

× (𝑥
𝑖
(𝑡 − ℎ (𝑘)) − 𝑥

𝑗
(𝑡 − ℎ (𝑘)))

= − ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) (𝑁𝑔
𝑖𝑗
Γ) 𝑧
𝑖𝑗
(𝑘 − ℎ (𝑘)) ,

− Λ (𝑈 ⊗ 𝐼
𝑛
) (𝜂 (𝑘) − 𝑥 (𝑘))

= ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
) 𝐼
𝑛

× ((𝜂
𝑖
(𝑘) − 𝑥

𝑖
(𝑘)) − (𝜂

𝑗
(𝑘) − 𝑥

𝑗
(𝑘)))

= − ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) (𝜂
𝑖𝑗
(𝑘) − 𝑧

𝑖𝑗
(𝑘)) ,
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Λ (𝑈 ⊗𝑊
1
) 𝑓 (𝑥 (𝑘))

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝑊
1
(𝑓 (𝑥
𝑖
(𝑘)) − 𝑓 (𝑥

𝑗
(𝑘)))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)𝑊
1
𝑓 (𝑧
𝑖𝑗
(𝑘)) ,

Λ (𝑈 ⊗𝑊
2
) 𝑓 (𝑥 (𝑘 − ℎ (𝑘)))

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝑊
2

× (𝑓 (𝑥
𝑖
(𝑡 − ℎ (𝑘))) − 𝑓 (𝑥

𝑗
(𝑡 − ℎ (𝑘))))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)𝑊
2
𝑓 (𝑧
𝑖𝑗
(𝑘 − ℎ (𝑘))) ,

Λ (𝑈 ⊗ 𝐷) 𝑝 (𝑘)

= − ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗
(Λ
𝑖
− Λ
𝑗
)𝐷 (𝑝

𝑖
(𝑘) − 𝑝

𝑗
(𝑘))

= ∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)𝐷𝑝
𝑖𝑗
(𝑘) .

(44)

Then, (42) can be rewritten as follows:

0
𝑛×1

= E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖)

× [−𝐼
𝑛
, 𝐴, 0
𝑛
, −(𝑁𝑔

𝑖𝑗
Γ) , 0
𝑛
, −𝐼
𝑛
,𝑊
1
,𝑊
2
, 𝐷]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Υ
𝑖𝑗

×𝜁
𝑖𝑗
(𝑘)

}

}

}

.

(45)

Therefore, if the zero equality (40) holds, then a synchroniza-
tion condition for the network (14) is

E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)𝜁
𝑖𝑗
(𝑘)

}

}

}

< 0 (46)

subject to

E
{

{

{

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑘)

}

}

}

= 0
𝑛×1

. (47)

Here, if inequality (47) holds, then there exists a positive
scalar 𝜀 such that ∑7

𝑙=1
Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ < −𝜀𝐼
9𝑛
. From (39) and

(47), we have E{Δ𝑉(𝑘)} ≤ E{−𝜀∑
1≤𝑖<𝑗≤𝑁

‖𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)‖
2

}.
Thus, by Lyapunov theorem and Definition 3, it can be
guaranteed that the subnetworks in the coupled discrete-time

neural networks (14) are asymptotically synchronized. Also,
condition (47) is equivalent to the following inequality:

∑

1≤𝑖<𝑗≤𝑁

𝜁
𝑇

𝑖𝑗
(𝑘)(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)𝜁
𝑖𝑗
(𝑘) < 0 (48)

subject to

∑

1≤𝑖<𝑗≤𝑁

(𝑗 − 𝑖) Υ
𝑖𝑗
𝜁
𝑖𝑗
(𝑘) = 0

𝑛×1
. (49)

Finally, by the use of Lemma 6, condition (49) is equivalent
to the following inequality:

∑

1≤𝑖<𝑗≤𝑁

[(𝑗 − 𝑖) Υ
𝑖𝑗
]
⊥𝑇

(

7

∑

𝑙=1

Ξ
𝑙
+ 𝜖Ψ
𝑇

Ψ)[(𝑗 − 𝑖) Υ
𝑖𝑗
]
⊥

< 0,

(50)

and applying Schur complement [25] leads to

∑

1≤𝑖<𝑗≤𝑁

[
[
[

[

[(𝑗 − 𝑖) Υ
𝑖𝑗
]
⊥𝑇

(

7

∑

𝑙=1

Ξ
𝑙
)[(𝑗 − 𝑖) Υ

𝑖𝑗
]
⊥

⋆

𝜖Ψ[(𝑗 − 𝑖) Υ
𝑖𝑗
]
⊥

−𝜖𝐼
𝑛

]
]
]

]

< 0,

(51)

which can be rewritten by

∑

1≤𝑖<𝑗≤𝑁

[
[(𝑗 − 𝑖) Υ

𝑖𝑗
]
⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

]

𝑇

[
[

[

7

∑

𝑙=1

Ξ
𝑙
𝜖Ψ
𝑇

⋆ −𝜖𝐼
𝑛

]
]

]

× [
[(𝑗 − 𝑖) Υ

𝑖𝑗
]
⊥

0
9𝑛×𝑛

0
𝑛×8𝑛

𝐼
𝑛

] < 0.

(52)

From inequality (52), if the LMIs (22) are satisfied, then
stability condition (47) holds. This completes our proof.

Remark 8. In order to induce a new zero equality (40), the
matrix Λ in (41) was defined. It is inspired by the concept
of scaling transformation matrix. To reduce the decision
variable, Finsler’s lemma (ii) Υ⊥𝑇ΦΥ⊥ < 0 without free-
weighting matrices was used. At this time, a zero equality is
required. If thematrixΛ is not considered, then the following
description (see only (43) as an example)

{ } (𝑈 ⊗ 𝐴) 𝑥 (𝑘 − 𝜏)

= { } (𝑈 ⊗ 𝐴) [𝑥
1
(𝑘 − 𝜏) , . . . , 𝑥

𝑁
(𝑘 − 𝜏)]

𝑇

= ∑

1≤𝑖<𝑗≤𝑁

{⋅} 𝐴 (𝑥
𝑖
(𝑘 − 𝜏) − 𝑥

𝑗
(𝑘 − 𝜏))

(53)

as shown in (53) does not hold. Thus, the derivation of
zero equality in (40) is impossible. Here, to use Lemma 4,
a suitable vector or matrix in the empty parentheses { } is
needed. Therefore, by defining the matrix Λ, the induction
of the zero equality (40) is possible.
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Figure 1: The structure of complex networks with 𝑁 = 5

(Example 10).

Table 1: Maximum allowable delay bounds, ℎ
𝑀
, with different ℎ

𝑚

and fixed 𝜏 = 3 (Example 10).

ℎ
𝑚

1 5 10 50 100
ℎ
𝑀

3 7 12 52 102

Table 2: The conditions of simulation in Example 10.

Number 𝜏 ℎ
𝑚

ℎ
𝑀

ℎ(𝑘)

3
C1-1 15 5 7 sin (𝑘𝜋/2) + 6

30

C1-2 3 50 52 sin (𝑘𝜋/2) + 51

Remark 9. In this paper, the problemof newdelay-dependent
synchronization for coupled stochastic discrete-time neural
networks with leakage delay and parameter uncertainties is
considered. By using Finsler’s lemma without free-weighting
matrices, the proposed robust synchronization criterion for
the network is established in terms of LMIs. Here, as men-
tioned in the Introduction, the leakage delay is the time
delay in leakage or forgetting term of the systems and a
considerable factor affecting dynamics for the worse in the
network. The effect of the leakage delay which cannot be
negligible is shown in Figure 2. Also, the stochastic discrete-
time systems with parameter uncertainties do not formulate
like as the network (14) in any other literature. To do this,
the vector (𝜂(𝑘) − 𝑥(𝑘)) is added in the augmented vector
𝜁(𝑘). It is just like as ̇𝑥(𝑡) in continuous-time systems. This
form for the systems may give more less conservative results
for stability analysis. As a case of stochastic continuous-
time systemswith parameter uncertainties, Kwon [13] derived
the delay-dependent stability criteria for uncertain stochastic
dynamic systems with time-varying delays via the Lyapunov-
Krasovskii’s functional approach with two delay fraction
numbers.

4. Numerical Examples

In this section, we provide two numerical examples to
illustrate the effectiveness of the proposed synchronization
criterion in this paper.

Example 10. Consider the following coupled neural networks
by complex model in Figure 1:

𝑦
𝑖
(𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦

𝑖
(𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦
𝑖
(𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦
𝑖
(𝑘 − ℎ (𝑘)))

+

5

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑦
𝑗
(𝑘 − ℎ (𝑘)) (1 + 𝜔

1
(𝑘))

+ 𝜎
𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜔

2
(𝑘) ,

(54)

with 𝑔(𝑥) = 0.5 tanh(𝑥), where

𝐴 = [
0.2 0

0 0.3
] ,

𝑊
1
= [

0.001 0

0 0.005
] , 𝑊

2
= [

−0.1 0.01

−0.2 −0.1
] ,

Γ = 0.01𝐼
2
,

𝐺 =

[
[
[
[
[

[

−2 1 0 0 1

1 −3 1 1 0

0 1 −2 1 0

0 1 1 −3 1

1 0 0 1 −2

]
]
]
]
]

]

,

𝐿
𝑚
= 0
2
, 𝐿

𝑝
= 0.5𝐼

2
, 𝐷 = 0.1𝐼

2
,

𝐸
𝑎
= [

0.3 0

0 −0.1
] , 𝐸

1
= [

−0.4 0

0.3 −0.7
] ,

𝐸
2
= 𝐸
1
, 𝐻

1
= 0.2𝐼

2
, 𝐻

2
= 𝐻
1
.

(55)

For the network above, the maximum allowable delay
bounds with different ℎ

𝑚
and fixed 𝜏 = 3 by Theorem 7

are listed in Table 1. In order to confirm the obtained results
with the conditions of the time delays as listed in Table 2,
the simulation results for the trajectories of state responses,
𝑥
𝑖
(𝑘) (𝑖 = 2, 3, 4, 5), and synchronization errors, 𝑧

𝑖1
(𝑘) =

𝑥
𝑖
(𝑘) − 𝑥

1
(𝑘), of the network (54) are shown in Figures 2, 3,

4, and 5. These figures show that the network with the errors
converge to zero for given initial values of the state by 𝑥𝑇

1
(0) =

[1, −3], 𝑥𝑇
2
(0) = [−1, 2], 𝑥𝑇

3
(0) = [4, −5], 𝑥𝑇

4
(0) = [3, −1], and

𝑥
𝑇

5
(0) = [4, 2]. Specially, the simulation results in Figure 2

show state response trajectories for the values of leakage delay,
𝜏, by 3, 15, and 30 with fixed values ℎ

𝑚
= 5 and ℎ

𝑀
= 7. It is

easy to illustrate that the larger value of leakage delay gives
the worse dynamic behaviors of the network (54).
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Figure 2: State responses with C1-1 (Example 10): (a) 𝜏 = 3, (b) 𝜏 = 15, and (c) 𝜏 = 30.
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Figure 3: Synchronization errors trajectories with C1-1 (𝜏 = 3) (Example 10).
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Figure 4: State responses with C1-2 (Example 10).
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Figure 5: Synchronization errors trajectories with C1-2 (Example 10).

Example 11. Consider the following coupled neural networks
by BA scale-free model [33] in Figure 6:

𝑦
𝑖
(𝑘 + 1) = (𝐴 + Δ𝐴) 𝑦

𝑖
(𝑘 − 𝜏) + (𝑊

1
+ Δ𝑊

1
) 𝑔 (𝑦
𝑖
(𝑘))

+ (𝑊
2
+ Δ𝑊

2
) 𝑔 (𝑦
𝑖
(𝑘 − ℎ (𝑘)))

+

50

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑦
𝑗
(𝑘 − ℎ (𝑘)) (1 + 𝜔

1
(𝑘))

+ 𝜎
𝑖
(𝑘, 𝑦
𝑖
(𝑘) , 𝑦

𝑖
(𝑘 − ℎ (𝑘))) 𝜔

2
(𝑘) ,

(56)
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Figure 6: The structure of BA scale-free networks with𝑁 = 50 (Example 11).
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Figure 7: State responses and time-delay ℎ(𝑘) with C2-1 (Example 11).

with 𝑔(𝑥) = 0.1 tanh(𝑥), where

𝐴 = [
0.01 0

0 0.02
] ,

𝑊
1
= [

0.2 −0.1

0.3 −0.2
] , 𝑊

2
= [

0.3 0.1

−0.3 0.2
] ,

Γ = 0.001𝐼
2
, 𝐿

𝑚
= 0
2
, 𝐿

𝑝
= 0.1𝐼

2
,

𝐷 = 0.1𝐼
2
,

𝐸
𝑎
= [

0.7 −0.2

0 0.4
] , 𝐸

1
= [

0.2 −0.5

0 0.3
] ,

𝐸
2
= 𝐸
1
, 𝐻
1
= 0.2𝐼

2
, 𝐻
2
= 𝐻
1
.

(57)

The results of maximum allowable delay bounds with
different ℎ

𝑚
andfixed 𝜏 = 3 byTheorem 7 are listed inTable 3.

For lack of space, the outer-coupling matrix 𝐺 is omitted.
It is easy that the matrix 𝐺 was expressed from Figure 6.
Figures 7 and 8 show the state response trajectories, 𝑥

𝑖
(𝑡) (𝑖 =

1, . . . , 50), of the network (56) with the condition of the time

Table 3: Maximum allowable delay bounds, ℎ
𝑀
, with different ℎ

𝑚

and fixed 𝜏 = 5 (Example 11).

ℎ
𝑚

1 5 10 25 30
ℎ
𝑀

5 9 14 29 34

Table 4: The conditions of simulation in Example 11.

Number ℎ
𝑚

ℎ
𝑀

ℎ(𝑘)

C2-1 5 9 Random integer variable with 5 ≤ ℎ(𝑘) ≤ 9
C2-2 30 34 Random integer variable with 30 ≤ ℎ(𝑘) ≤ 34

delays as listed in Table 4 for random initial values of the
state. These figures show that the network (56) with the state
responses converge to zero. This means the synchronization
stability of the network (56).

5. Conclusions

In this paper, the delay-dependent robust synchronization
criterion for the coupled stochastic discrete-time neural
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Figure 8: State responses and time-delay ℎ(𝑘) with C2-2 (Example 11).

networks with interval time-varying delays in network cou-
pling, leakage delay, and parameter uncertainties has been
proposed. To do this, the suitable Lyapunov-Krasovskii’s
functional was used to investigate the feasible region of
stability criterion. By utilization of Finsler’s lemma with a
new zero equality, a sufficient condition for guaranteeing
asymptotic synchronization for the concerned networks has
been derived in terms of LMIs. Two numerical examples have
been given to show the effectiveness and usefulness of the
presented criterion.
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A class of dynamical neural network models with time-varying delays is considered. By employing
the Lyapunov-Krasovskii functional method and linear matrix inequalities (LMIs) technique, some
new sufficient conditions ensuring the input-to-state stability (ISS) property of the nonlinear
network systems are obtained. Finally, numerical examples are provided to illustrate the efficiency
of the derived results.

1. Introduction

Recently, the dynamical neural networks (DNNs), which are firstly introduced by Hopfield
in [1], have been extensively studied due to its wide applications in various areas such
as associative memory, parallel computation, signal processing, optimization, and moving
object speed detection. Since time delay is inevitably encountered in implementation of
DNNs and is frequently a source of oscillation and instability, neural networks with
time delays have become a topic of great theoretical and practical importance, and many
interesting results have been derived (see, e.g., [2–5] and [6–9]). Furthermore, in practical
evolutionary processes of the networks, absolute constant delay may be scarce and is only
the poetic approximation of the time-varying delays. Delays are generally varied with time
because information transmission from one neuron to another neuron may make the response
of networks with time-varying delays. Accordingly, dynamical behaviors of neural networks
with time-varying delays have been discussed in the last decades (see, e.g., [3, 8–11],
etc.).

It is well known that neural networks are often influenced by external disturbances
and input errors. Thus many dissipative properties such as robustness [12], passivity
[13], and input-to-state stability [4, 10, 11, 14–19] are apparently significant to analyze its
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dynamical behaviors of the networks. For instance, Ahn incorporated robust training law
in switched Hopfield neural networks with external disturbances to study boundedness
and exponentially stability [12], and studied passivity in [13]. Especially, the ISS implies
not only that the unperturbed system is asymptotically stable in the Lyapunov sense but
also that its behavior remains bounded when its inputs are bounded. It is one of the
useful classes of dissipative properties for nonlinear systems, which is firstly introduced
in nonlinear control systems by Sontag in [20], and then extended by Praly and Jiang
[21] and Angeli et al. [19 and Ahn (see [17, 19], and references therein). Due to these
research background, the ISS properties of neural networks are investigated in recent years
(see, e.g., [16–19] and references therein). For example, by using the Lyapunov function
method, some nonlinear feedback matrix norm conditions for ISS have been developed
for recurrent neural networks ([16]). Moreover, Ahn utilized Lyapunov function method
to discuss robust stability problem for a class of recurrent neural networks, and also some
LMI sufficient conditions have been proposed to guarantee the ISS (see [17]). In [18], by
employing a suitable Lyapunov function, some results on boundedness, ISS, and convergence
are established. Also, in [19] a new sufficient condition is derived to guarantee ISS of
Takagi-Sugeno fuzzy Hopfield neural networks with time delay. However, there is few
results to deal with the ISS of dynamical neural networks (DNNs) with time-varying delays
([11]).

Motivated by the above discussions, we discuss the ISS properties of DNNs with
time-varying delays in this paper. By using Lyapunov-Krasovskii functional technique, ISS
conditions for the considered dynamical neural networks are given in terms of LMIs, which
can be easily calculated by certain standard numerical packages. We also provide two
illustrative examples to demonstrate the effectiveness of the proposed stability results.

The organization of this paper is as follows. In Section 2, our mathematical model of
dynamical neural networks is presented and some preliminaries are given. In Section 3, the
main results for both ISS and asymptotically stability of dynamical neural networks with
time-varying delays are proposed. In Section 4, two numerical examples are illustrated to
demonstrate the effectiveness of the theoretical results. Concluding remarks are collected in
Section 5. Proof of Lemma 2.4 is given in the appendix.

Notions

Let Rn denote the n-dimensional Euclidean space and | · | denote the usual Euclidean
norm. Denote C = C([−τ, 0], Rn) and designate the norm of an element in C by ‖φ‖τ =
sup−τ≤ϑ≤0‖φ(ϑ)‖. Rn×n is the set of all n × n real matrices. Let BT , B−1, λmax(B), λmin(B), and
‖B‖ =

√
λmax(BTB) denote the transpose, the inverse, the largest eigenvalue, the smallest

eigenvalue, and the Euclidean norm of a square matrix B, respectively. The notation P > 0 (≥
0) means that P is real symmetric and positive definite (positive semidefinite). The notion
X > Y (X ≥ Y ), where X and Y are symmetric matrices, means that X − Y is positive
definite (positive semidefinite). I denotes the element matrix. The set of all measurable locally
essentially bounded functions u : R+ → Rn, endowed with (essential) supremum norm
‖u‖∞ = sup{‖u(t)‖, t ≥ 0}, is denoted by Lm∞. In addition, denote ut the truncation of u at t;
that is, ut(s) = u(s) if s ≤ t, and u(s) = 0 if s > t. We recall that a function γ : R+ → R+ is a
K-function if it is continuous, strictly increasing, and γ(0) = 0; it will be a K∞-function if it is
a K-function and also γ(s) → ∞ as s → ∞. A function β : R+ × R+ → R+ is a KL-function if
for each fixed t ≥ 0 the function β(·, t) is aK-function, and, for each fixed s ≥ 0, it is decreasing
to zero as t → ∞.
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2. Mathematical Model and Preliminaries

Consider the following nonlinear time-delay system

ẋ = f(t, xt, u(t)), (2.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rn is the input function; xt ∈ C is the standard
function given by xt(τ) = x(t + τ). Without loss of generality, we suppose that f(0, 0, 0) = 0,
which ensuring that x(t) = 0 is the trivial solution for the unforced system ẋ(t) = f(t, xt, 0).
Define x(t) � x(t, t0, φ) is a solution of system with initial value φ at time t0.

Given a continuous functional V : R+ ×C → R+, the upper right-hand derivative V̇ of
the function V is given by

V̇
(
t, φ
)
= lim

h→ 0+
sup

1
h
[V (t + h, xt+h(t, xt)) − V (t, xt)]. (2.2)

For delayed dynamical system, we first give the input-to-state stable (ISS) definition
as usual case.

Definition 2.1. System (2.1) is ISS if there exist a KL-function β and a K-function γ such that,
for each input u ∈ Lm∞ and each ξt0 ∈ C, it satisfies

|x(t; ξ, u)| ≤ β(‖ξt0‖τ , t − t0
)
+ γ(‖ut‖∞), ∀t ≥ t0. (2.3)

Note that, by causality, the same definition would result if one could replace ‖ut‖∞ by ‖u‖∞.

Definition 2.2. A continuous differentiable functional V (t, φ) : R+ × C → R+ is called the ISS
Lyapunov-Krasovskii functional if there exist functions α1, α2 of class K∞, a function χ of
class K and a continuous positive definite function W such that

α1
(∣∣φ(0)

∣∣) ≤ V (t, φ) ≤ α2
(‖φ‖τ

)
, (2.4)

V̇
(
t, φ
) ≤ −W(∣∣φ(0)∣∣) if

∣∣φ(0)
∣∣ ≥ χ(‖u‖∞), ∀φ ∈ C, u ∈ Lm∞. (2.5)

Remark 2.3. A continuous differential functional V (t, φ) : R+ × C → R+ is an ISS Lyapunov-
Krasovskii functional if and only if there exist α3, α4 ∈ K∞ such that (2.4) holds and

V̇
(
t, φ
) ≤ −α3

(∣∣φ(0)
∣∣) + α4(‖u‖∞). (2.6)

The proof is similarly to one of Remark 2.4 in [23]. We omit it here.

Similarly to the case of ordinary differential equation (ODE), we will establish a link
between the ISS property and the ISS Lyapunov-Krasovskii functional for time-delay systems
in the following Lemma.

Lemma 2.4. The system (2.1) is ISS if it admits an ISS Lyapunov-Krasovskii functional.
For completeness, the proof is given in appendix.
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To obtain our results, we need the following two useful lemmas.

Lemma 2.5 (Schur Complement [24]). For given symmetric matrix S =
(
S11 S12
S21 S22

)
, where S11 ∈

Rr×r , S21 = ST12, the following three conditions are equivalent:

(i) S < 0;

(ii) S11 < 0, S22 − ST12S
−1
11S12;

(iii) S22 < 0, S11 − S12S
−1
22S

T
12.

Lemma 2.6 (see [25]). Given any matrixX,Y , andΛwith appropriate dimensions such thatΛ = ΛT

and any scalar ε > 0, then

XTY + YTX ≤ εXTΛX +
1
ε
YTΛ−1Y. (2.7)

In this paper, we consider the following dynamical neural networks with time-varying
delays

dxi(t)
dt

= −aixi(t) +
n∑

j=1

bijgj
(
xj(t)

)
+

n∑

j=1

cijgj
(
xj(t − τ(t))

)
+

n∑

i=1

ui(t), i = 1, 2, . . . , n, (2.8)

or equivalently

dx(t)
dt

= −Ax(t) +Wg(x(t)) +W1g(x(t − τ(t))) + u(t), (2.9)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T is the neuron state, u(t) = (u1(t), u2(t), . . . , un(t))

T is
the input, and g(x(t)) = (g1(x1(t)), g2(x2(t)), . . . , gn(xn(t)))

T denotes the nonlinear neuron
activation function. A = diag{a1, a2, . . . , an} is the positive diagonal matrix. W = (bij)n×n
and W1 = (cij)n×n are the interconnection matrices representing the weighting coefficients of
neurons. τ(t) is the time-varying delays.

Throughout this paper, we always suppose that

∣∣gi(xi(t))
∣∣ ≤ li|xi|, ∀i, ∀xi ∈ R, i = 1, 2, . . . , n, (A1)

0 ≤ τ(t) ≤ τ, 0 ≤ τ̇(t) ≤ 1. (A2)

From (A1), we easily see that x(t) = 0 is the solution of (2.9) with u(t) = 0.

3. ISS Analysis

In this section, we give two theorems on ISS in form of LMIs.
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Theorem 3.1. Let (A1) and (A2) hold. If there exist a positive definite matrix P and a positive
diagonal matrix D such that

⎛

⎜
⎜
⎝

−ATP − PA M I PW1

M D−2 +WTPW 0 0
I 0 P 0

WT
1 P 0 0 −D−2

⎞

⎟
⎟
⎠ < 0, (3.1)

whereM = diag{l1, l2, . . . , ln}, and then the system (2.9) is ISS.

Proof. We consider the following functional:

V (x(t)) = xT (t)Px(t) +
∫ t

t−τ(t)
gT (x(ζ))D−2g(x(ζ))dζ. (3.2)

Its derivative along the solution x(t) of (2.9) is given as

V̇ (x(t)) = 2xT (t)Pẋ(t) + gT (x(t))D−2g(x(t))

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t)))

= 2xT (t)P
[−Ax(t) +Wg(x(t)) +W1g(x(t − τ(t))) + u(t)

]

+ gT (x(t))D−2g(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t)))

= 2xT (t)
(
−ATP − PA

)
x(t) + 2xT (t)PWg(x(t))

+ 2xT (t)PW1g(x(t − τ(t))) + gT (x(t))D−2g(x(t))

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t))) + 2xT (t)Pu(t).

(3.3)

We have

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t))) + 2xT (t)PW1g(x(t − τ(t)))

= −
[√

(1 − τ̇(t))D−1g(x(t − τ(t))) −DWT
1 Px(t)

]T

·
[√

(1 − τ̇(t))D−1g(x(t − τ(t))) −DWT
1 Px(t)

]

+ xT (t)PW1D
2WT

1 Px(t).

(3.4)

Since the first term of the right-hand side of (3.4) is negative semidefinite, we obtain

− (1 − τ̇(t))gT (x(t − τ(t)))D−2g(x(t − τ(t)))

+ 2xT (t)PW1g(x(t − τ(t))) ≤ xT (t)PW1D
2WT

1 Px(t).
(3.5)
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From (A1), we obtain

gT (x(t))D−2g(x(t)) ≤ xT (t)MD−2Mx(t), (3.6)

where M = diag{l1, l2, . . . , ln}.
Then by Lemma 2.6, we have

2xT (t)PWg(x(t)) ≤ xT (t)Px(t) +
[
PWg(x(t))

]T
P−1PWg(x(t))

= xT (t)Px(t) + gT (x(t))WTPWg(x(t))

≤ xT (t)Px(t) + xT (t)MWTPWMx(t),

2xT (t)Pu(t) ≤ xT (t)Px(t) + [Pu(t)]TP−1Pu(t)

= xT (t)Px(t) + uT (t)Pu(t).

(3.7)

Substituting (3.5), (3.6), and (3.7) into (3.3), we finally obtain

V̇ (x(t)) ≤ xT (t)Gx(t) + uT (t)Pu(t)

≤ λmin(G)|x(t)|2 + λmax(P)|u(t)|2,
(3.8)

where G = −ATP − PA +M(D−2 +WTPW)M + PW1D
2WT

1 P + P .
Define α3(r) = −λmin(G) · r2, α4(r) = λmax(P) · r2, then we can obtain that

V̇ (x(t)) ≤ −α3(|x(t)|) + α4(‖u‖∞). (3.9)

Note that G < 0 is equivalent to (3.1) by Lemma 2.5. Then the defined V is an ISS
Lyapunov-Krasovskii functional. It follows from Lemma 2.4 and Remark 2.3 that the delayed
neural networks (2.9) are ISS. The proof is complete.

Remark 3.2. Theorem 3.1 reduces to asymptotically stability condition for dynamical neural
networks with time-varying delays when u(t) = 0.

Remark 3.3. Recently, some results on ISS or IOSS were obtained in [10, 17–19, 26]. However,
these results were restricted to nondelay or constant delay. In contrast to the results [10, 17–
19, 26], we consider dynamical neural networks with time-varying delays and propose a set
of delay-independent criteria for asymptotically convergent state estimation of these neural
networks in this paper.

In the following, we give a delay-dependent sufficient criterion.
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Theorem 3.4. Let (A1) and (A2) hold. The system (2.9) is ISS if there exist a symmetric positive
definite matrix P and a positive definite matrix Q such that

−ATP − PA + τQ = −μI, μ > 0, ∀u ∈ Lm∞, (3.10)
(

2‖M‖‖W1‖√
1 − τ̇(t)

+ ‖M‖2‖W‖2 + 2

)

< μ, (3.11)

whereM = diag{l1, l2, . . . , ln}.

Proof. We consider the following functional:

V (x(t)) = xT (t)Px(t) +
∫0

−τ(t)

∫ t

t+ζ
xT
(
η
)
Qx
(
η
)
dη dζ +

∫ t

t−τ(t)
gT (x(ζ))Rg(x(ζ))dζ, (3.12)

where R is a positive definite matrix.
The derivative of (3.12) along the trajectories of the system is obtained as follows:

V̇ (x(t)) = 2xT (t)P
[−Ax(t) +Wg(x(t)) +W1g(x(t − τ(t))) + u(t)

]

+ τ(t)xT (t)Qx(t) − (1 − τ̇(t))
∫ t

t−τ(t)
xT (ζ)Qx(ζ)dζ

+ gT (x(t))Rg(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t)))

≤ xT (t)
(
−ATP −AP + τQ

)
x(t) + 2xT (t)PWg(x(t)) + 2xT (t)Pu(t)

+ 2xT (t)PW1g(x(t − τ(t))) − (1 − τ̇(t))
∫ t

t−τ(t)
xT (ζ)Qx(ζ)dζ

+ gT (x(t))Rg(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t))).

(3.13)

From (3.10), which reduces to

V̇ (x(t)) ≤ − μxT (t)x(t) + 2xT (t)PWg(x(t)) + 2xT (t)Pu(t)

+ 2xT (t)PW1g(x(t − τ(t))) − (1 − τ̇(t))
∫ t

t−τ(t)
xT (ζ)Qx(ζ)dζ

+ gT (x(t))Rg(x(t)) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t))).

(3.14)

From (A1), we obtain that

gT (x(t))Rg(x(t)) ≤ xT (t)MRMx(t) ≤ ‖R‖‖M‖2|x(t)|2, (3.15)

where M = diag{l1, l2, . . . , ln}.
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From Lemma 2.6, we have

2xT (t)PWg(x(t)) ≤ xT (t)Px(t) + [PWg(x(t))]TP−1PWg(x(t))

= xT (t)Px(t) + gT (x(t))WTPWg(x(t))

≤ xT (t)Px(t) + xT (t)MWTPWMx(t)

≤
(

1 + ‖M‖2‖W‖2
)
‖P‖|x(t)|2,

2xT (t)PW1g(x(t − τ(t))) ≤ (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t)))

+
1

1 − τ̇(t)x
T (t)PW1R

−1WT
1 Px(t).

(3.16)

Then

2xT (t)PW1g(x(t − τ(t))) − (1 − τ̇(t))gT (x(t − τ(t)))Rg(x(t − τ(t)))

≤ 1
1 − τ̇(t)x

T (t)PW1R
−1WT

1 Px(t) ≤
1

1 − τ̇(t)‖R‖
−1‖W1‖2‖P‖2|x(t)|2.

(3.17)

For the third term of (3.14), we have

2xT (t)Pu(t) ≤ xT (t)Px(t) + [Pu(t)]TP−1Pu(t)

= xT (t)Px(t) + uT (t)Pu(t)

≤ ‖P‖|x(t)|2 + ‖P‖|u(t)|2.

(3.18)

Substituting (3.15), (3.16), (3.17), and (3.18) into (3.14), we can obtain the following
inequality:

V̇ (x(t)) ≤ λ|x(t)|2 + ‖P‖|u(t)|2, (3.19)

where we denote that

λ =
(
−μ + ‖R‖‖M‖2 + ‖P‖‖M‖2‖W‖2 + 2‖P‖ + 1

1 − τ̇(t)‖R‖
−1‖W1‖2‖P‖2

)
,

‖R‖ =
‖W1‖‖P‖√
1 − τ̇(t)‖M‖

.

(3.20)

From (3.11), we easily obtain that λ < 0.
Define K∞-functions α3(r) = −λr2, α4(r) = ‖P‖ · r2. Then we can obtain that

V̇ (x(t)) ≤ α3(|x(t)|) + α4(‖u‖∞). (3.21)

From Lemma 2.4 and Remark 2.3, the system (2.9) is ISS. The proof is complete.
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4. Illustrative Examples

In this section, we will give two examples to show the efficiency of the results derived in
Section 3.

Example 4.1. Consider a 3-dimension dynamical neural network (2.9) with parameters
defined as

A =

⎛

⎝
4 0 0
0 4 0
0 0 4

⎞

⎠, W =W1 =

⎛

⎝
1 −0.1 −0.2

−0.1 1 −0.3
−0.2 −0.3 1

⎞

⎠. (4.1)

Letting gi(xi) = 1/(1 + e−xi) and the time-varying delay is chosen as τ(t) = 0.6| sin t|.
They satisfy assumptions (A1) and (A2), respectively. Obviously, there exist l1 = l2 = l3 = 1

and τ = 0.5, 0 < τ̇(t) < 0.6 that satisfy the conditions. Then M =
( 1 0 0

0 1 0
0 0 1

)
.

By using MATLAB to solve the LMIs (3.1), we have

P =

⎛

⎜⎜⎜
⎝

1 0 0

0
1
2

0

0 0
1
3

⎞

⎟⎟⎟
⎠
, D =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠. (4.2)

From Theorem 3.1, we can see that delayed neural network (2.9) achieves ISS.

Example 4.2. Consider a 3-dimension dynamical neural network (2.9) with parameters
followed as

A =

⎛

⎝
7.6 0 0
0 9.5 0
0 0 8.8

⎞

⎠, W =W1 =

⎛

⎝
0.40 0.12 0.32
0.45 0.02 0.10
0.12 0.04 0.42

⎞

⎠. (4.3)

Letting gi(θ) = (|θ + 1| − |θ − 1|)/2, θ ∈ R and the time-varying delay is chosen as
τ(t) = 1/(t + 2). We can check the assumptions (A1) and (A2) with l1 = l2 = l3 = 1 and

0 ≤ τ(t) ≤ 1, 0 ≤ τ̇(t) ≤ 0.5 for any t > 0. Also we have M =
( 1 0 0

0 1 0
0 0 1

)
.

By solving (3.10) and (3.11), we get

P =

⎛

⎝
0.7 0.1 0.3
0.1 0.7 0.1
0.3 0.1 0.7

⎞

⎠, Q =

⎛

⎝
2.82 0.855 2.46

0.855 4.15 0.915
2.46 0.915 3.16

⎞

⎠, R =

⎛

⎝
0.927 −0.03 −0.02
−0.03 9.28 −0.08
−0.01 −0.02 9.25

⎞

⎠.

(4.4)

From Theorem 3.4, we can see that delayed neural network (2.9) obtains ISS.
However, the above results cannot be obtained by using criteria on ISS in existing

publications (e.g., [10, 11, 17–19, 26]).
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5. Conclusions

In this paper, dynamical neural networks with time-varying delays were considered. By using
Lyapunov-Krasovskii functional method and linear matrix inequalities (LMIs) techniques,
several theorems with regarding to judging the ISS property of DNNs with time-varying
delays have been obtained. It is shown that the ISS can be determined by solving a set of
LMIs, which can be checked by using some standard numerical packages in MATLAB. At
last, two numerical examples were given to illustrate the theoretical results.

Appendix

Proof of Lemma 2.4. We divided into four parts to prove this lemma.
Claim 1. (i) The solution x = 0 of the system (2.9) is uniformly asymptotically stable if and
only if there exists a function β of class KL and a positive number c independent of t0 such
that for for all t ≥ t0, for all ‖xt0‖τ ≤ c it satisfies that

|x(t)| ≤ β(‖xt0‖τ , t − t0
)
. (A.1)

Particularly, the system (2.9) is uniformly global asymptotically stable if and only if (A.1)
admits for any xt0 ∈ C.

The Claim is so trivial that we omit the proof here.

Claim 2. For each (t, φ) ∈ R+ ×C, if there exist a continuous functional V (t, φ) : R+ ×C → R+,
functions α1, α2 of class K∞, and a continuous positive definite function W such that

α1
(∣∣φ(0)

∣∣) ≤ V (t, φ) ≤ α2
(‖φ‖τ

)
, (A.2)

V̇
(
t, φ
) ≤ −W(∣∣φ(0)∣∣), (A.3)

then the solution x(t) = 0 is globally uniformly asymptotically stable, and there exist a β ∈ KL
such that

|x(t)| ≤ β(‖xt0‖τ , t − t0
)
, ∀(t0, xt0) ∈ R+ × C, t ≥ t0. (A.4)

Proof. From [27], the solution x(t) = 0 is globally uniformly asymptotically stable. Then by
Claim 1, we obtain (A.4). The proof is complete.

Claim 3. Let (A.3) in Claim 2 replaced by

V̇
(
t, φ
) ≤ −W(∣∣φ(0)∣∣), ∀∣∣φ(0)∣∣ ≥ μ > 0. (A.5)

Then for any xt0 ∈ C, there exist β ∈ KL, T � T(xt0 , μ), such that

|x(t)| ≤ β(‖xt0‖τ , t − t0
)
, ∀t ∈ [t0, t0 + T],

|x(t)| ≤ α−1
1

(
α2
(
μ
))
, ∀t ≥ t0 + T.

(A.6)
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Proof. Let Bμ � {x ∈ Rn | ‖xt0‖τ ≤ μ}, Bcμ � Rn − Bμ, Dμ � {x ∈ Rn | ‖xt0‖τ ≤ α−1(α2(μ))}
(no loss generality, we assume that α1(μ) ≤ α2(μ), then μ ≤ α−1

1 (α2(μ))). Then Bμ ⊆ Dμ. In the
following, we divided xt0 ∈ C into two parts.
Case 1. xt0 ∈ Bμ.

We make the claim that x(t) will be always remain in Bμ. Define t1 = inf{t ≥ t0 : |x(t)| =
μ}, if |x(t)| > μ, t > t1, then ‖x(t)‖ ≥ μ, t ≥ t1 and V̇ (t, φ) ≤ −α3(|φ(0)|) < 0, and we have
α1(|x(t)|) ≤ V (t, xt) ≤ V (t, xt1) ≤ α2(‖xt1‖τ), t ≥ t1. Then |x(t)| ≤ α−1

1 (α2(‖xt1‖τ)) = α−1
1 (α2(μ)).

If |x(t)| < μ, t > t1, let t2 = inf{t ≥ t1 : |x(t)| = μ}, we will analyze them as the above. Then we
obtain |x(t)| ≤ α−1

1 (α2(μ)), t ≥ t0.
Case 2. xt0 ∈ Bcμ, that is, ‖xt0‖τ > μ.

Let t0 + T(xt0 , μ) = inf{t ≥ t0 : |x(t)| = μ} and T = T(xt0 , μ). We prove that t0 + T is limit.
From |x(t)| ≥ μ, t ∈ [t0, t0 +T], (A.2), (A.5), and Case 2, we have |x(t)| ≤ β(‖xt0‖τ , t− t0), where
β ∈ KL. Since β(‖xt0‖τ , t − t0) is strictly decreasing, and β(‖xt0‖τ , ·) → 0 as t → ∞, t0 + T is
limit. Then from Case 1, x(t) will be always remain in Dμ if arrive the boundary of Bμ. Then
we obtain (A.6). The proof is complete.

Claim 4. Let (A.3) in Claim 2 replaced by

V̇
(
t, φ
) ≤ −W(∥∥φ(0)∥∥), if

∥∥φ(0)
∥∥ ≥ ρ(‖u‖∞), (A.7)

where ρ ∈ K. Then the system is ISS.

Proof. From Claim 3, we have

|x(t)| ≤ β(‖xt0‖τ , t − t0
)
+ α−1

1

(
α2
(
ρ(‖u‖∞)

))
, t ≥ t0. (A.8)

Since x(t) only depends on the u(s) defined on [t0, t], we obtain

|x(t)| ≤ β(‖xt0‖τ , t − t0
)
+ α−1

1

(
α2
(
ρ(‖ut‖∞)

))
, t ≥ t0. (A.9)

Then

|x(t)| ≤ β(‖xt0‖τ , t − t0
)
+ γ(‖ut‖∞), t ≥ t0, (A.10)

where γ � α−1
1 (α2(ρ)). This proves that the system is ISS.
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A class of BAM neural networks with variable coefficients and neutral delays are investigated. By
employing fixed-point theorem, the exponential dichotomy, and differential inequality techniques,
we obtain some sufficient conditions to insure the existence and globally exponential stability of
almost periodic solution. This is the first time to investigate the almost periodic solution of the
BAM neutral neural network and the results of this paper are new, and they extend previously
known results.

1. Introduction

Neural networks have been extensively investigated by experts of many areas such as pattern
recognition, associative memory, and combinatorial optimization, recently, see [1–10]. Up
to now, many results about stability of bidirectional associative memory (BAM) neural
networks have been derived. For these BAM systems, periodic oscillatory behavior, almost
periodic oscillatory properties, chaos, and bifurcation are their research contents; generally
speaking, almost periodic oscillatory property is a common phenomenon in the real world,
and in some aspects, it is more actual than other properties, see [11–21].

Time delays cannot be avoided in the hardware implementation of neural networks
because of the finite switching speed of amplifiers and the finite signal propagation time
in biological networks. The existence of time delay may lead to a system’s instability or
oscillation, so delay cannot be neglected in modeling. It is known to all that many practical
delay systems can be modelled as differential systems of neutral type, whose differential
expression concludes not only the derivative term of the current state, but also concludes
the derivative of the past state. It means that state’s changing at the past time may affect the
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current state. Practically, such phenomenon always appears in the study of automatic control,
population dynamics, and so forth, and it is natural and important that systems will contain
some information about the derivative of the past state to further describe and model the
dynamics for such complex neural reactions [22]. Authors in [18–29] added neutral delay
into the neural networks. In these papers, only [18–20] studied the almost periodic solution
of the neutral neural networks. For example, in [19] the following network was studied:

ẋi(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj

(
t − τij(t)

))
+

n∑

j=1

bij(t)gj
(
ẋj

(
t − σij(t)

))
+ Ii(t). (1.1)

Some sufficient conditions are obtained for the existence and globally exponential stability
of almost periodic solution by employing fixed-point theorem and differential inequality
techniques. References [21–26] studied the global asymptotic stability of equilibrium point,
where [22] investigated the equilibrium point of the following BAM neutral neural network
with constant coefficients:

u̇i(t) = −aiui(t) +
m∑

j=1

w1jigj
(
vj(t − d)

)
+

n∑

j=1

w2ij u̇j(t − h) + Ii,

v̇j(t) = −bjvj(t) +
n∑

i=1

r1ijgi(ui(t − h)) +
m∑

i=1

r2jiv̇i(t − d) + Ji.
(1.2)

By using the Lyapunov method and linear matrix inequality techniques, a new stability
criterion was derived. References [27–29] studied the exponential stability of equilibrium
point.

It is obviously that men always studied the stability of the equilibrium point of the
neutral neural networks, and there is little result for the almost periodic solution of neutral
neural networks, especially, for the BAM neutral type neural networks. Besides, in papers
[11, 23, 27, 28], time delay must be differentiable, and its derivative is bounded, which we
think is a strict condition.

Motivated by the above discussions, in this paper, we consider the almost periodic
solution of a class of BAM neural networks with variable coefficients and neutral delays.
By fixed-point theorem and differential inequality techniques, we obtain some sufficient
conditions to insure the existence and globally exponential stability of almost periodic
solution. To the best of the authors’ knowledge, this is the first time to investigate the almost
periodic solution of the BAM neutral neural network, and we can remove delay’s derivable
condition, so the results of this paper are new, and they extend previously known results.

2. Preliminaries

In this paper, we consider the following system:

ẋi(t) = −ci(t)xi(t) +
m∑

j=1

aij(t)f1j
(
yj

(
t − τij(t)

))
+

n∑

j=1

bji(t)f2j

(
ẋj

(
t − δji(t)

))
+ Ii(t),

ẏj(t) = −dj(t)yj(t) +
n∑

i=1

pji(t)g1i
(
xi
(
t − δji(t)

))
+

m∑

i=1

qij(t)g2i
(
ẏj

(
t − τij(t)

))
+ Jj(t),

(2.1)
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where i = 1, 2, . . . , n; j = 1, 2, . . . , m. xi(t), yj(t) are the states of the ith neuron of X layer and
the jth neuron of Y layer, respectively; aij(t), pji(t) and bji(t), qij(t) are the delayed strengths
of connectivity and the neutral delayed strengths of connectivity, respectively; f1j , f2j , g1i, g2i

are activation functions; Ii(t), Jj(t) stands for the external inputs; τij(t), τij(t), δji(t), and δji(t)
correspond to the delays, they are nonnegative; ci(t), dj(t) > 0 represent the rate with which
the ith neuron of X layer and the jth neuron of Y layer will reset its potential to the resting
state in isolation when disconnected from the networks.

Throughout this paper, we assume the following.

(H1) ci(t), dj(t), aij(t), pji(t), bji(t), qij(t), τij(t), τij(t), δji(t), δji(t), Ii(t), and Jj(t) are
continuous almost periodic functions. Moreover, we let

c+i = sup
t∈R

{ci(t)}, c−i = inf
t∈R

{ci(t)} > 0, d+
j = sup

t∈R

{
dj(t)

}
, d−

j = inf
t∈R

{
dj(t)

}
> 0,

aij = sup
t∈R

{∣∣aij(t)
∣∣} <∞, bji = sup

t∈R

{∣∣bji(t)
∣∣} <∞, pji = sup

t∈R

{∣∣pji(t)
∣∣} <∞,

qij = sup
t∈R

{∣∣qij(t)
∣∣} <∞, Ii = sup

t∈R
{|Ii(t)|} <∞, Jj = sup

t∈R

{∣∣Jj(t)
∣∣} <∞.

(2.2)

(H2) f1j , f2j , g1i, and g2i are Lipschitz continuous with the Lipschitz constants F1j , F2j ,
G1i, G2i, and f1j(0) = f2j(0) = g1i(0) = g2i(0) = 0.

(H3) Consider

α = max

⎧
⎨

⎩
max
1≤i≤n

max

{
1
c−i
, 1 +

c+i
c−i

}⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠,

max
1≤j≤m

max

{
1
d−
j

, 1 +
d+
j

d−
j

}(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)⎫
⎬

⎭
< 1.

(2.3)

The initial conditions of system (2.1) are of the following form:

xi(t) = ϕi(t), t ∈ [−δ, 0], δ = sup
t∈R

max
i,j

max
{
δji(t), δji(t)

}
,

yj(t) = φj(t), t ∈ [−τ, 0], τ = sup
t∈R

max
i,j

max
{
τij(t), τ ij(t)

}
,

(2.4)

where i = 1, 2, . . . , n; j = 1, 2, . . . , m; ϕi(t), φj(t) are continuous almost periodic functions.
Let X = {ψ|ψ = (ϕ1, ϕ2, . . . , ϕn, φ1, φ2, . . . , φm)

T , where ϕi, φj : R → R
are continuously differentiable almost periodic functions. For any ψ ∈ X, ψ(t) =
(ϕ1(t), ϕ2(t), . . . , ϕn(t), φ1(t), φ2(t), . . . , φm(t))

T . We define ‖ψ(t)‖1 = max{‖ψ(t)‖0, ‖ψ̇(t)‖0},
where ‖ψ(t)‖0 = max{max1≤i≤n{|ϕi(t)|},max1≤j≤m{|φi(t)|}}, and ψ̇(t) is the derivative of ψ at t.
Let ‖ψ‖ = supt∈R‖ψ(t)‖1, then X is a Banach space.

The following definitions and lemmas will be used in this paper.
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Definition 2.1 (see [11]). Let x(t) : R → Rn be continuous in t. x(t) is said to be almost
periodic on R, if for any ε > 0, the set T(x, ε) = {w|x(t + w) − x(t) < ε, for all t ∈ R} is
relatively dense, that is, for all ε > 0, it is possible to find a real number l = l(ε) > 0, for any
interval length l(ε), there exists a number τ = τ(ε) in this interval such that |x(t+τ)−x(t)| < ε,
for all t ∈ R.

Definition 2.2 (see [11]). Let x ∈ C(R,Rn) and Q(t) be n × n continuous matrix defined on R.
The following linear system:

ẋ(t) = Q(t)x(t) (2.5)

is said to admit an exponential dichotomy on R if there exist constants K, α, projection P , and
the fundamental solution X(t) of (2.5) satisfying

∣∣∣X(t)PX−1(s)
∣∣∣ ≤ Ke−α(t−s), t ≥ s,

∣∣∣X(t)(I − P)X−1(s)
∣∣∣ ≤ Ke−α(s−t), t ≤ s.

(2.6)

Definition 2.3. Let z∗(t) = (x∗(t), y∗(t))T = (x∗
1(t), . . . , x

∗
n(t), y

∗
1(t), . . . , y

∗
m(t))

T be a continu-
ously differentiable almost periodic solution of (2.1) with initial value ψ∗ = (ϕ∗, φ∗)T =
(ϕ∗

1, . . . , ϕ
∗
n, φ

∗
1, . . . , φ

∗
m)

T . If there exist constants λ > 0, M > 1 such that for every solution z(t)
= (x(t), y(t))T = (x1(t), . . . , xn(t), y1(t), . . . , ym(t))

T of (2.1) with any initial value ψ = (ϕ, φ)T =
(ϕ1, . . . , ϕn, φ1, . . . , φm)

T , if

‖z(t) − z∗(t)‖1 ≤Meλt
∥∥ψ − ψ∗∥∥, for t > 0, (2.7)

where ϕ∗
i (t), φ

∗
j (t), ϕi(t), and φj(t) are almost periodic functions. Then z∗(t) is said to be

globally exponentially stable.

Lemma 2.4 (see [11]). If the linear system (2.5) admits an exponential dichotomy, then the almost
periodic system

ẋ(t) = Q(t)x(t) + f(t) (2.8)

has a unique almost periodic solution

ψ(t) =
∫ t

−∞
X(t)PX−1(s)f(s)ds −

∫+∞

t

X(t)(I − P)X−1f(s)ds. (2.9)

Lemma 2.5 (see [11]). Let qi(t) be an almost periodic function on R and

M
[
qi
]
= lim

T→+∞
1
T

∫ t+T

t

qi(t)ds > 0, i = 1, 2, . . . , n, (2.10)

then the linear system ż(t) = diag{−q1(t), . . . ,−qn(t)}z(t) admits exponential dichotomy on R.
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3. Existence and Uniqueness of Almost Periodic Solutions

In this section, we consider the existence and uniqueness of almost periodic solutions by
fixed-point theorem.

Theorem 3.1. Under the assumptions (H1) − (H3), the system (2.1) has a unique almost periodic
solution in the region ‖ψ − ψ0‖ ≤ αβ/(1 − α).

(H4) If

M[ci] = lim
T→+∞

1
T

∫ t+T

t

ci(s)ds > 0, i = 1, 2, . . . , n,

M
[
dj

]
= lim

T→+∞
1
T

∫ t+T

t

dj(s)ds > 0, j = 1, 2, . . . , m

(3.1)

holds, where

β = max

{

max
1≤i≤n

max

{
Ii
c−i
, Ii +

Iic
+
i

c−i

}

, max
1≤j≤m

max

{
Jj

d−
j

, Jj +
Jjd

+
j

d−
j

}}

,

ψ0(t) =

(∫ t

−∞
e−

∫ t
s c1(u)duI1(s)ds, . . . ,

∫ t

−∞
e−

∫ t
s cn(u)duIn(s)ds,

∫ t

−∞
e−

∫ t
s d1(u)duJ1(s)ds, . . . ,

∫ t

−∞
e−

∫ t
s dm(u)duJm(s)ds

)T

.

(3.2)

Proof. For any (ϕ, φ)T = (ϕ1, . . . , ϕn, φ1, . . . , φm)
T ∈ X, we consider the the following system:

ẋi(t) = −ci(t)xi(t) +
m∑

j=1

aij(t)f1j
(
φj

(
t − τij(t)

))
+

n∑

j=1

bji(t)f2j

(
ϕ̇j

(
t − δji(t)

))
+ Ii(t),

ẏj(t) = −dj(t)yj(t) +
n∑

i=1

pji(t)g1i
(
ϕi

(
t − δji(t)

))
+

m∑

i=1

qij(t)g2i
(
φ̇i

(
t − τij(t)

))
+ Jj(t).

(3.3)

From (H4) and Lemma 2.5, we know the following linear system:

ẋi(t) = −ci(t)xi(t),
ẏj(t) = −dj(t)yj(t)

(3.4)
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admits an exponential dichotomy on R. By Lemma 2.4, System (3.3) has an almost periodic
solution z(ϕ,φ)T (t) which can be expressed as follows:

z(ϕ,φ)T (t) =

(∫ t

−∞
e−

∫ t
s c1(u)du(A1(s) + I1(s))ds, . . . ,

∫ t

−∞
e−

∫ t
s cn(u)du(An(s) + In(s))ds,

∫ t

−∞
e−

∫ t
s d1(u)du

(
A1(s) + J1(s)

)
ds, . . . ,

∫ t

−∞
e−

∫ t
s dm(u)du

(
Am(s) + Jm(s)

)
ds

)T

,

(3.5)

where

Ai(s) =
m∑

j=1

aij(s)f1j
(
φj

(
s − τij(s)

))
+

n∑

j=1

bji(s)f2j

(
ϕ̇j

(
s − δji(s)

))
, i = 1, 2, . . . , n,

Aj(s) =
n∑

i=1

pji(s)g1i
(
ϕi

(
s − δji(s)

))
+

m∑

i=1

qij(s)g2i
(
φ̇i

(
s − τij(s)

))
, j = 1, 2, . . . , m.

(3.6)

So, we can define a mapping T : X → X, by letting

T
(
ϕ, φ

)T (t) = z(ϕ,φ)T (t), ∀(ϕ, φ)T ∈ X. (3.7)

Set X0 = {ψ|ψ ∈ X, ‖ψ − ψ0‖ ≤ αβ/(1 − α)}; clearly, X0 is a closed convex subset of X, so we
have

∥∥ψ0
∥∥ = max

{

sup
t∈R

max
1≤i≤n

∣∣∣∣∣

∫ t

−∞
e−

∫ t
s ci(u)duIi(s)ds

∣∣∣∣∣
, sup
t∈R

max
1≤i≤n

∣∣∣∣∣

(∫ t

−∞
e−

∫ t
s ci(u)duIi(s)ds

)′∣∣∣∣∣
,

sup
t∈R

max
1≤j≤m

∣∣∣∣∣

∫ t

−∞
e−

∫ t
s dj (u)duJj(s)ds

∣∣∣∣∣
, sup
t∈R

max
1≤j≤m

∣∣∣∣∣

(∫ t

−∞
e−

∫ t
s dj (u)duJj(s)ds

)′∣∣∣∣∣

}

≤ max

{

max
1≤i≤n

max

{
Ii
c−i
, Ii +

Iic
+
i

c−i

}

,max
1≤j≤m

max

{
Jj

d−
j

, Jj +
Jjd

+
j

d−
j

}}

= β.

(3.8)

Therefore,

∥∥ψ
∥∥ ≤ ∥∥ψ − ψ0

∥∥ +
∥∥ψ0

∥∥ ≤ αβ

1 − α + β =
β

1 − α, ∀ψ ∈ X0. (3.9)
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First, we prove that the mapping T is a self-mapping from X0 to X0. In fact, for any
ψ = (ϕ1, . . . , ϕn, φ1, . . . , φm)

T ∈ X0, let

Bi(s) =
m∑

j=1

aij(s)f1j

(
φj

(
s − τij(s)

))
+

n∑

j=1

bji(s)f2j

(
ϕ̇j

(
s − δji(s)

))
, i = 1, 2, . . . , n,

Bj(s) =
n∑

i=1

pji(s)g1i
(
ϕi

(
s − δji(s)

))
+

m∑

i=1

qij(s)g2i

(
φ̇i

(
s − τij(s)

))
, j = 1, 2, . . . , m.

(3.10)

From (H2) and (H3), we have

∥
∥Tψ − ψ0

∥
∥ = max

{

sup
t∈R

max
1≤i≤n

{∣
∣
∣
∣
∣

∫ t

−∞
e−

∫ t
s ci(u)duBi(s)ds

∣
∣
∣
∣
∣

}

,

sup
t∈R

max
1≤i≤n

{∣∣∣∣∣
−ci(t)

∫ t

−∞
e−

∫ t
s ci(u)duBi(s)ds + Bi(t)

∣∣∣∣∣

}

,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣

∫ t

−∞
e−

∫ t
s dj (u)duBj(s)ds

∣∣∣∣∣

}

,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣
−dj(t)

∫ t

−∞
e−

∫ t
s dj (u)duBj(s)ds + Bj(t)

∣∣∣∣∣

}}

≤ max

{

sup
t∈R

max
1≤i≤n

{∫ t

−∞
ec

−
i (s−t)|Bi(s)|ds

}

,

sup
t∈R

max
1≤i≤n

{

c+i

∫ t

−∞
ec

−
i (s−t)|Bi(s)|ds + |Bi(t)|

}

,

sup
t∈R

max
1≤j≤m

{∫ t

−∞
ed

−
j (s−t)

∣∣∣Bj(s)
∣∣∣ds

}

,

sup
t∈R

max
1≤j≤m

{

d+
j

∫ t

−∞
ed

−
j (s−t)

∣∣∣Bj(s)
∣∣∣ds +

∣∣∣Bj(t)
∣∣∣

}}

≤ max

⎧
⎨

⎩
max
1≤i≤n

⎧
⎨

⎩
1
c−i

⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠

⎫
⎬

⎭
,

max
1≤i≤n

⎧
⎨

⎩

(

1 +
c+i
c−i

)⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠

⎫
⎬

⎭
,

max
1≤j≤m

{
1
d−
j

(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)}

,

max
1≤j≤m

{(

1 +
d+
j

d−
j

)(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)}}
∥∥ψ

∥∥
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= max

⎧
⎨

⎩
max
1≤i≤n

max

{
1
c−i
, 1 +

c+i
c−i

}⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠,

max
1≤j≤m

max

{
1
d−
j

, 1 +
d+
j

d−
j

}(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)⎫
⎬

⎭

∥
∥ψ

∥
∥

= α
∥∥ψ

∥∥ ≤ αβ

1 − α.
(3.11)

This implies that T(ψ) ∈ X0, so T is a self-mapping from X0 to X0.
Finally, we prove that T is a contraction mapping. In fact, for any ψ1 =

(α1, . . . , αn, β1, . . . , βm)
T , ψ2 = (α1, . . . , αn, β1, . . . , βm)

T ∈ X0. Let

Hi(s) =
m∑

j=1

aij(s)
[
f1j

(
βj

(
s − τij(s)

)) − f1j

(
βj

(
s − τij(s)

))]

+
n∑

j=1

bji(s)
[
f2j

(
α̇j

(
s − δji(s)

))
− f2j

(
α̇j

(
s − δji(s)

))]
, i = 1, 2, . . . , n,

Hj(s) =
n∑

i=1

pji(s)
[
g1i

(
αi
(
s − δji(s)

)) − g1i
(
αi
(
s − δji(s)

))]

+
m∑

i=1

qij(s)
[
g2i

(
β̇i
(
s − τij(s)

)) − g2i

(
β̇i
(
s − τij(s)

))]
, j = 1, 2, . . . , m.

(3.12)

We have

∥∥Tψ1 − Tψ2
∥∥ = max

{

sup
t∈R

max
1≤i≤n

{∣∣∣∣∣

∫ t

−∞
e−

∫ t
s ci(u)duHi(s)ds

∣∣∣∣∣

}

,

sup
t∈R

max
1≤i≤n

{∣∣∣∣∣
−ci(t)

∫ t

−∞
e−

∫ t
s ci(u)duHi(s)ds +Hi(t)

∣∣∣∣∣

}

,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣

∫ t

−∞
e−

∫ t
s dj (u)duHj(s)ds

∣∣∣∣∣

}

,

sup
t∈R

max
1≤j≤m

{∣∣∣∣∣
−dj(t)

∫ t

−∞
e−

∫ t
s dj (u)duHj(s)ds +Hj(t)

∣∣∣∣∣

}}

≤ max

⎧
⎨

⎩
max
1≤i≤n

max

{
1
c−i
, 1 +

c+i
c−i

}⎛

⎝
m∑

j=1

aijF1j +
n∑

j=1

bjiF2j

⎞

⎠,

max
1≤j≤m

max

{
1
d−
j

, 1 +
d+
j

d−
j

}(
n∑

i=1

pjiG1i +
m∑

i=1

qijG2i

)⎫
⎬

⎭

∥∥ψ1 − ψ2
∥∥

= α
∥∥ψ1 − ψ2

∥∥.

(3.13)
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Notice that α < 1, it means that the mapping T is a contraction mapping. By Banach fixed-
point theorem, there exists a unique fixed-point ψ∗ ∈ X0 such that Tψ∗ = ψ∗, which implies
system (2.1) has a unique almost periodic solution.

4. Global Exponential Stability of the Almost Periodic Solution

In this section, we consider the exponential stability of almost periodic solution, and we give
two corollaries.

Theorem 4.1. Under the assumptions (H1) − (H4), then system (2.1) has a unique almost periodic
solution which is global exponentially stable.

Proof. It follows from Theorem 3.1 that system (2.1) has a unique almost periodic solution
z∗(t) = (x∗(t), y∗(t))T = (x∗

1(t), . . . , x
∗
n(t), y

∗
1(t), . . . , y

∗
m(t))

T with the initial value ψ∗ = (ϕ∗, φ∗)T

= (ϕ∗
1, . . . , ϕ

∗
n, φ

∗
1, . . . , φ

∗
m)

T . Set z(t) = (x(t), y(t))T = (x1(t), . . . , xn(t), y1(t), . . . , ym(t))
T is an

arbitrary solution of system (2.1) with initial value ψ = (ϕ, φ)T = (ϕ1, . . . , ϕn, φ1, . . . , φm)
T .

Let ui(t) = xi(t) − x∗
i (t), vj(t) = yj(t) − y∗

j (t), Ψi = ϕi − ϕ∗
i , Φj = φj − φ∗

j . Then z(t) − z∗(t)
= (u1(t), . . . , un(t), v1(t), . . . , vm(t))

T , where i = 1, 2, . . . , n; j = 1, 2, . . . , m. Then system (2.1) is
equivalent to the following system:

u̇i(s) + ci(s)ui(s) = Fi(s), s > 0,

v̇j(s) + dj(s)vj(s) = Fj(s), s > 0,
(4.1)

with the initial value

Ψi(s) = ϕi(s) − ϕ∗
i (s), s ∈ [−δ, 0],

Φj(s) = φj(s) − φ∗
j (s), s ∈ [−τ, 0],

(4.2)

where

Fi(s) =
m∑

j=1

aij(s)
[
f1j

(
y∗
j

(
s − τij(s)

)
+ vj

(
s − τij(s)

)) − f1j

(
y∗
j

(
s − τij(s)

))]

+
n∑

j=1

bji(s)
[
f2j

(
ẋ∗
j

(
s − δji(s)

)
+ u̇j

(
s − δji(s)

))
− f2j

(
ẋ∗
j

(
s − δji(s)

))]
,

Fj(s) =
n∑

i=1

pji(s)
[
g1i

(
x∗
i

(
s − δji(s)

)
+ ui

(
s − δji(s)

)) − g1i
(
x∗
i

(
s − δji(s)

))]

+
m∑

i=1

qij(s)
[
g2i

(
ẏ∗
i

(
s − τij(s)

)
+ v̇i

(
s − τij(s)

)) − g2i
(
ẏ∗
i

(
s − τij(s)

))]
.

(4.3)
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Let

Γi(ξi) = c−i − ξi −
m∑

j=1

aijF1je
τξi −

n∑

j=1

bjiF2je
δξi ,

Γi
(
ξi

)
= c−i − ξi −

(
c+i + c

−
i

)
⎛

⎝
m∑

j=1

aijF1je
τξi +

n∑

j=1

bjiF2je
δξi

⎞

⎠,

(4.4)

where ξi, ξi ≥ 0, i = 1, 2, . . . , n. From (H3), we know Γi(0) > 0, Γi(0) > 0. Since Γi(·) and Γi(·)
are continuous on [0,∞] and Γi(ξi), Γi(ξi) → −∞ as ξi, ξi → +∞, so there exist ξ∗i , ξ

∗
i > 0 such

that Γi(ξ∗i ) = Γi(ξ
∗
i ) = 0 and Γi(ξi) > 0 for ξi ∈ (0, ξ∗i ), Γi(ξi) > 0 for ξi ∈ (0, ξ

∗
i ). By choosing

ξ = min{ξ∗1, . . . , ξ∗n, ξ
∗
1, . . . , ξ

∗
n}, we obtain Γi(ξ), Γi(ξ) ≥ 0. So we can choose a positive constant

λ1, 0 < λ1 < min{ξ, c−i , . . . , c−n} such that Γi(λ1), Γi(λ1) > 0. For the same reason, we define

Gj

(
ηj

)
= d−

j − ηj −
n∑

i=1

pjiG1ie
δηj −

m∑

i=1

qijG2ie
τηj ,

Gj

(
ηj

)
= d−

j − ηj −
(
d−
j + d

+
j

)( n∑

i=1

pjiG1ie
δηj +

m∑

i=1

qijG2ie
τηj

)

.

(4.5)

There exists λ2, 0 < λ2 < d−
j , j = 1, 2, . . . , m, such that Gj(λ2), Gj(λ2) > 0. Taking λ =

min{λ1, λ2}, since Γi(·), Γi(·), Gj(·), and Gj(·) are strictly monotonous decrease functions,
therefore, Γi(λ), Γi(λ), Gj(λ), Gj(λ) > 0, which implies

ri :=
1

c−i − λ

⎛

⎝
m∑

j=1

aijF1je
τλ +

n∑

j=1

bjiF2je
δλ

⎞

⎠ < 1,

ri :=

(

1 +
c+i

c−i − λ

)⎛

⎝
m∑

j=1

aijF1je
τλ +

n∑

j=1

bjiF2je
δλ

⎞

⎠ < 1, i = 1, 2, . . . , n;

1
d−
j − λ

(
n∑

i=1

pjiG1ie
δλ +

m∑

i=1

qijG2ie
τλ

)

< 1,

(

1 +
d+
j

d−
j − λ

)(
n∑

i=1

pjiG1ie
δλ +

m∑

i=1

qijG2ie
τλ

)

< 1, j = 1, 2, . . . , m.

(4.6)



Abstract and Applied Analysis 11

Multiplying the two equations of system (4.1) by e
∫s

0 ci(u)du and e
∫s

0 dj (u)du, respectively, and
integrating on [0, t], we get

ui(t) = ui(0)e−
∫ t

0 ci(u)du +
∫ t

0
e−

∫ t
s ci(u)duFi(s)ds,

vj(t) = vj(0)e−
∫ t

0 dj (u)du +
∫ t

0
e−

∫ t
s dj (u)duFj(s)ds.

(4.7)

Taking

M = max

{

max
1≤i≤n

c−i∑m
j=1 aijF1j +

∑n
j=1 bjiF2j

, max
1≤j≤m

d−
j

∑n
i=1 pjiG1i +

∑m
i=1 qijG2i

}

, (4.8)

then M > 1, thus

‖z(t) − z∗(t)‖1 =
∥∥ψ(t) − ψ∗(t)

∥∥
1 ≤ ∥∥ψ − ψ∗∥∥ ≤M∥∥ψ − ψ∗∥∥eλt, t ≤ 0, (4.9)

where λ > 0 as in (4.6). We claim that

‖z(t) − z∗(t)‖1 ≤M∥∥ψ − ψ∗∥∥eλt, t > 0. (4.10)

To prove (4.10), we first show for any p > 1, the following inequality holds:

‖z(t) − z∗(t)‖1 < pM
∥∥ψ − ψ∗∥∥eλt, t > 0. (4.11)

If (4.11) is false, then there must be some t1 > 0 and some i, l ∈ {1, 2, . . . , n}, j, k ∈ {1, 2, . . . , m},
such that

‖z(t1) − z∗(t1)‖1 = max
{|ui(t1)|, |u̇l(t1)|,

∣∣vj(t1)
∣∣, |v̇k(t1)|

}

= pM
∥∥ψ − ψ∗∥∥eλt1 ,

(4.12)

‖z(t) − z∗(t)‖1 < pM
∥∥ψ − ψ∗∥∥eλt, 0 < t < t1. (4.13)
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By (4.3)–(4.8), (4.12), and (4.13), we have

|ui(t1)| =
∣
∣
∣
∣
∣
ui(0)e−

∫ t1
0 ci(u)du +

∫ t1

0
e−

∫ t1
s ci(u)duFi(s)ds

∣
∣
∣
∣
∣

≤ e−c−i t1∥∥ψ − ψ∗∥∥ +
∫ t1

0
e−c

−
i (t1−s)|Fi(s)|ds

≤ e−c−i t1∥∥ψ − ψ∗∥∥ +
∫ t1

0
e−c

−
i (t1−s)

⎛

⎝
m∑

j=1

aijF1jpM
∥
∥ψ − ψ∗∥∥e−λ(s−τij(s))

+
n∑

j=1

bjiF2jpM
∥
∥ψ − ψ∗∥∥e−λ(s−δji(s))

⎞

⎠ds

< pM
∥∥ψ − ψ∗∥∥e−λt1

⎡

⎣e
t1(λ−c−i )

M
+

1 − et1(λ−c−i )
c−i − λ

⎛

⎝
m∑

j=1

aijF1je
λτ +

n∑

j=1

bjiF2je
λδ

⎞

⎠

⎤

⎦

= pM
∥∥ψ − ψ∗∥∥e−λt1

[(
1
M

− ri
)
et1(λ−c

−
i ) + ri

]

< pM
∥∥ψ − ψ∗∥∥e−λt1 ;

|u̇l(t1)| =
∣∣∣∣∣
−cl(t1)ul(0)e−

∫ t1
0 cl(u)du − cl(t1)

∫ t1

0
e−

∫ t1
s cl(u)duFl(s)ds + Fl(t1)

∣∣∣∣∣

≤ c+l e−c
−
l
t1
∥∥ψ − ψ∗∥∥ + c+l

∫ t1

0
e−c

−
l
(t1−s)|Fl(s)|ds + |Fl(t1)|

≤ c+l e−c
−
l
t1
∥∥ψ − ψ∗∥∥ + c+l

∫ t1

0
e−c

−
l
(t1−s)

⎛

⎝
m∑

j=1

aljF1jpM
∥∥ψ − ψ∗∥∥e−λ(s−τlj (s))

+
n∑

j=1

bjlF2jpM
∥∥ψ − ψ∗∥∥e−λ(s−δjl(s))

⎞

⎠ds

+
m∑

j=1

aljF1jpM
∥∥ψ − ψ∗∥∥e−λ(t1−τlj (t1)) +

n∑

j=1

bjlF2jpM
∥∥ψ − ψ∗∥∥e−λ(t1−δjl(t1))

< pM
∥∥ψ − ψ∗∥∥e−λt1

[(
1
M

− rl
)
et1(λ−c

−
l
) + rl

]

< pM
∥∥ψ − ψ∗∥∥e−λt1 .

(4.14)

We also can get

∣∣vj(t1)
∣∣ < pM

∥∥ψ − ψ∗∥∥e−λt1 ,

|v̇k(t1)| < pM
∥∥ψ − ψ∗∥∥e−λt1 .

(4.15)
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From (4.14)–(4.15), we have

‖z(t1) − z∗(t1)‖1 = max
{|ui(t1)|, |u̇l(t1)|,

∣
∣vj(t1)

∣
∣, |v̇k(t1)|

}
< pM

∥
∥ψ − ψ∗∥∥e−λt1 , (4.16)

which contradicts the equality (4.12), so (4.11) holds. Letting p → 1, then (4.10) holds. The
almost periodic solution of system (2.1) is globally exponentially stable.

Corollary 4.2. Let bji(t) = qij(t) = 0. Under assumptions (H1), (H2), and (H4), if, (H5)

α1 = max

⎧
⎨

⎩
max
1≤i≤n

⎧
⎨

⎩
1
c−i

m∑

j=1

aijF1j

⎫
⎬

⎭
, max

1≤j≤m

{
1
d−
j

n∑

i=1

pjiG1i

}⎫
⎬

⎭
< 1 (4.17)

holds, then system

ẋi(t) = −ci(t)xi(t) +
m∑

j=1

aij(t)f1j
(
yj

(
t − τij(t)

))
+ Ii(t),

ẏj(t) = −dj(t)yj(t) +
n∑

i=1

pji(t)g1i
(
xi
(
t − δji(t)

))
+ Jj(t)

(4.18)

has a unique almost periodic solution in the region ‖ψ − ψ0‖ ≤ α1β/(1 − α1), which is global
exponentially stable.

In fact, Zhang and Si [11, 16] and Chen et al. [17] studied system (4.18). This
Corollary 4.2 is the Theorem 3.1 in [11], Theorem 1.1 in [16], and Theorem 1 in [17].
Especially, in [17], authors let

(H′
5)

α1 = max
1≤i≤n

⎧
⎨

⎩
1
c−i

m∑

j=1

aijF1j

⎫
⎬

⎭
+ max

1≤j≤m

{
1
d−
j

n∑

i=1

pjiG1i

}

< 1. (4.19)

Therefore, we extend and improve previously known results.

Remark 4.3. Let ci(t) = dj(t), aij(t) = pji(t), bji = qij(t), Ii(t) = Jj(t), τij(t) = δji(t), τij(t) = δji(t),
n = m. Then system (2.1) is reduced to be system (1.1), hence we have the following.
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Corollary 4.4. Under assumptions (H1), (H2), and (H4), if (H6)

α2 = max
1≤i≤n

max

{

1 +
c+i
c−i

}
m∑

j=1

(
aijF1j + bjiF2j

)
< 1, (4.20)

holds, then system (1.1) has a unique almost periodic solution in the region ‖ψ −ψ0‖ ≤ α2β/(1− α2),
which is global exponentially stable.

This Corollary 4.4 is the result of [19].

5. An Example

In this section, we give an example to illustrate the effectiveness of our results.
Let n = m = 2, f1(y1) = y1/10, f2(y2) = siny2/10, g1(x1) = x1/12, g2(x2) = |x2|/8,

τij(t) = τij(t) = cos2t, δji(t) = δji(t) = 0.5, I1(t) = 1 + sin2(t), I2(t) = 1 + cos2t, J1(t) = 1 + | sin t|,
and J2(t) = sin 2t + 0.5, then we consider the following almost periodic system:

ẋ1(t) = −c1(t)x1(t) +
2∑

j=1

a1j(t)fj
(
yj

(
t − cos2t

))
+

2∑

j=1

bj1(t)ẋj(t − 0.5) + I1(t),

ẋ2(t) = −c2(t)x2(t) +
2∑

j=1

a2j(t)fj
(
yj

(
t − cos2t

))
+

2∑

j=1

bj2(t)ẋj(t − 0.5) + I2(t),

ẏ1(t) = −d1(t)y1(t) +
2∑

i=1

p1i(t)gi(xi(t − 0.5)) +
2∑

i=1

qi1(t)ẏi
(
t − cos2t

)
+ J1(t),

ẏ2(t) = −d2(t)y2(t) +
2∑

i=1

p2i(t)gi(xi(t − 0.5)) +
2∑

i=1

qi2(t)ẏi
(
t − cos2t

)
+ J2(t),

(5.1)

where c1(t) = 1 + cos2t, c2(t) = 1 + sin2t, d1(t) = 1 + | cos t|, d2(t) = 1 + | sin t|, a11(t) = | sin t|/4,
a12(t) = cos2t/8, a21(t) = cos2t/6, a22(t) = | sin t|/4, b11(t) = cos 2t/8, b12(t) = 0, b21(t) = 0,
b22(t) = sin 2t/10, p11(t) = cos 2t/4, p12(t) = sin 2t/9, p21(t) = sin2t/8, p22(t) = | cos t|/6,
q11(t) = cos t/8, q12(t) = 0, q21(t) = 0, and q22(t) = cos2t/10. By simple calculation, we
obtain α = max{39/80, 51/120, 69/144, 63/160} < 1, hence this system has a unique almost
periodic solution, which is global exponentially stable by Theorem 4.1. Figure 1 depicts the
time responses of state variables of x1(t), x2(t), y1(t), and y2(t) with step h = 0.005 and initial
states [−0.2, 0.2,−0.3, 0.4]T for t ∈ [−1, 0], and Figures 2, 3, and 4 depict the phase orbits of
x1(t) and y1(t), x1(t), and x2(t), y1(t) and y2(t). It confirms that our results are effective for
(5.1).

6. Conclusions

In this paper, a class of BAM neural networks with variable coefficients and neutral time-
varying delays are investigated. By employing Banach fixed-point theorem, the exponential
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dichotomy and differential inequality techniques, some sufficient conditions are obtained to
ensure the existence, uniqueness, and stability of the almost periodic solution. As is known
to all, neural networks with neutral delays are studied rarely, and most authors solve these
problems by linear matrix inequality techniques. In addition, BAM neural networks are much
more complicated than the one-layer neural network. In a word, this paper is original, and
novel. It also extends and improves other previously known results (see [11, 16, 17, 19]).
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This paper investigates drive-response synchronization of a class of reaction-diffusion neural
networks with time-varying discrete and distributed delays via general impulsive control method.
Stochastic perturbations in the response system are also considered. The impulsive controller is
assumed to be nonlinear and has multiple time-varying discrete and distributed delays. Compared
with existing nondelayed impulsive controller, this general impulsive controller is more practical
and essentially important since time delays are unavoidable in practical operation. Based on
a novel impulsive differential inequality, the properties of random variables and Lyapunov
functional method, sufficient conditions guaranteeing the global exponential synchronization in
mean square are derived through strict mathematical proof. In our synchronization criteria, the
distributed delays in both continuous equation and impulsive controller play important role.
Finally, numerical simulations are given to show the effectiveness of the theoretical results.

1. Introduction

Since the pioneering work of Pecora and Carroll [1], the issue of synchronization and chaos
control has been extensively studied [2] due to its potential engineering applications such
as secure communication, biological systems, and information processing (see [3–10]). It
is shown that neural networks exhibit chaotic behavior and provided that parameters and
delays are appropriately chosen (see [11, 12]). Therefore, in recent years, synchronization
and control of neural networks has been one of the hot research topics (see [13–15], etc.).

It is known that many pattern formation and wave propagation phenomena that
appear in nature can be described by systems of coupled nonlinear differential equations,
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generally known as reaction-diffusion equations. These wave propagation phenomena are
exhibited by systems belonging to very different scientific disciplines. The reaction-diffusion
effects, therefore, cannot be neglected in both biological and man-made neural networks,
especially when electrons are moving in noneven electromagnetic field [16]. So we must
consider that the activations vary in space as well as in time, and in this case the model
should be expressed by partial differential equations. There are some published papers
concerning stability or synchronization of neural networks with reaction-diffusion terms
and delays (see [17–25]). In [22], the authors investigated synchronization of reaction-diffu-
sion neural networks with discrete and unbounded distributed delays. In [24], the authors
investigated the boundedness and exponential stability for nonautonomous fuzzy cellular
neural networks with unbounded distributed delays and reaction-diffusion terms. The
authors of [25] studied exponential stability of reaction-diffusion Cohen-Grossberg neural
networks with time-varying discrete delays and stochastic perturbations.

Time delays usually exist in neural networks due to finite speeds of switching of
amplifiers and transmission of signals in hardware implementation. Ignoring them when
studying dynamics of neural networks may lead to impractical results. Moreover, delays are
commonly time varying and unknown [26]. Therefore, papers concerning synchronization or
stability of neural networks with or without reaction-diffusion terms have considered various
time delays. The authors in [11] studied exponential synchronization problem for coupled
neural networks with constant time delay. In [27], both constant and time-varying discrete
delays were considered for the synchronization of a class of delayed neural networks. In
[28–31] several types of synchronization for neural networks with discrete and bounded dis-
tributed delays were studied. However, the delay kernel of the bounded distributed delays in
[28–31] has to be 1 because the well-known Jensen’s inequality [32] is not applicable anymore
if the delay kernel is not 1. In the case of unbounded distributed delay, it is necessary to
consider the delay kernel, which satisfies the condition that its integral from zero to infinite
is bounded [22, 33, 34]. But the authors in [22, 33, 34] had to use algebraic approach instead
of matrix method to derive their main results which has more complex form and is more
conservative than those obtained by matrix method. In [21], Wang and Zhang studied global
asymptotic stability of reaction-diffusion Cohen-Grossberg neural networks with unbounded
distributed delays by using a matrix decomposition method, and the obtained results were
in terms of linear matrix inequality (LMI). But the Lyapunov functional and proof process
used in [21] are relatively complex. Recently, authors in [35] studied global asymptotic
synchronization in an array of coupled neural networks with probabilistic interval time-
varying coupling delays and unbounded distributed delays; a novel integral inequality
including the Jensen’s inequality as a special case was developed. By using the developed
integral inequality, one can use LMI method to solve the problem of distributed delays with
not-equal-to-1 delay kernel instead of the matrix decomposition method used in [21].

It should be noted that control method is of great significance to realize synchroniza-
tion. Specially, in [29], the output feedback controller which has time-varying discrete and
distributed delays was considered. On the other hand, impulsive control, as one of the
most effective and economic control methods, has recently attracted great interests of many
researchers in different fields, since it needs small control gains and acts only at discrete times,
thus control cost and the amount of transmitted information can be reduced drastically (see
[3, 9, 26, 36–40] and references cited therein). As for neural networks with reaction-diffusion
terms, there are several results on synchronization via control. For instance, state feedback
control technique is utilized in [20] to realize exponential synchronization of stochastic fuzzy
cellular neural networks with time delay in the leakage term and reaction diffusion. In [22],
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global exponential stability and synchronization of delayed reaction-diffusion neural
networks under hybrid state feedback control and impulsive control. However, to the
authors knowledge, impulsive control has not been considered in the literature to realize
synchronization of reaction-diffusion neural networks. Moreover, the impulsive controllers in
[3, 9, 36–40] were nondelayed. Recently, in [41], global exponential stability of fuzzy reaction-
diffusion cellular neural networks with time-varying discrete delays and unbounded
distributed delays and impulsive perturbations were studied. Nevertheless, to the best of our
knowledge, there are no results on stability or synchronization of reaction-diffusion neural
networks with time-varying discrete delays and distributed delays under impulsive con-
troller which has multiple time-varying delays, let alone impulsive controller with dis-
tributed delays. If these delays are considered in impulsive controller, the analysis methods
used in [3, 9, 26, 36–40] are not applicable anymore. Considering the fact that both discrete
delays and distributed delays are unavoidable in practice, it is of great importance to consider
delayed impulsive control to synchronize-delayed neural neural networks.

Being motivated by the above discussions, this paper aims to study the global expo-
nential derive-response synchronization of reaction-diffusion neural networks with multiple
time-varying discrete delays and unbounded distributed delays via general impulsive
control. The general impulsive controller is assumed to be nonlinear and has multiple time-
varying discrete and distributed delays. Since time delays are always vary and unavoidable
in practical operation, the general impulsive controller is essentially important and more
practical than existing nondelayed impulsive controller. Stochastic perturbations in the
response system are also considered. By using a novel integral inequality in [35], the problem
of distributed delays with not-equal-to-1 delay kernel can be solved by matrix method. By
utilizing the novel integral inequality, the properties of random variables and Lyapunov
functional method, sufficient conditions guaranteeing the considered drive-response systems
to realize synchronization in mean square are derived through strict mathematical proof. The
proof process and the results are very simple. Finally, numerical simulations are given to
show the effectiveness of the theoretical results.

The rest of this paper is organized as follows. In Section 2, the considered model of
coupled reaction-diffusion neural networks with delays is presented. Some necessary
assumptions, definitions, and lemmas are also given in this section. In Section 3, synchro-
nization for the proposed model is studied. Then, in Section 4, simulation examples are
presented to show the effectiveness of the theoretical results. Finally, Section 5 provides some
conclusions.

Notations. In the sequel, if not explicitly stated, matrices are assumed to have compatible
dimensions. N+ denotes the set of positive integers. In denotes the n × n identity matrix.
R
n denotes the Euclidean space, and R

n×m is the set of all n × m real matrix. λmax(A)
and λmin(A) mean the largest and smallest eigenvalues of matrix A, respectively, ‖A‖ =√
λmax(ATA), where T denotes transposition. C = diag(c1, c2, . . . , cn) means C is a diagonal

matrix. Moreover, let (S,F, {Ft}t≥0, P) be a complete probability space with filtration {Ft}t≥0
satisfying the usual conditions (i.e., the filtration contains all P -null sets and is right
continuous). Denote by LPF0

((−∞, 0]; Rn) the family of all F0-measurable C((−∞, 0]; Rn)-
valued random variables ξ = {ξ(s) : s ≤ 0} such that sups≤0E(‖ξ(s)‖p) < ∞, where E{·}
stands for mathematical expectation operator with respect to the given probability measure P .
Sometimes, the arguments of a function or a matrix will be omitted in the analysis when no
confusion can arise.
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2. Preliminaries

Consider a delayed neural network with reaction-diffusion terms which is described as fol-
lows:

∂yi(t, x)
∂t

=
m∑

l=1

∂

∂xl

(
ril
∂yi(t, x)
∂xl

)
− ciyi(t, x) +

n∑

j=1

aijfj
(
yj(t, x)

)

+
n∑

j=1

bijfj
(
yj(t − τ1(t), x)

)
+

n∑

j=1

dij

∫ t

−∞
K(t − s)fj

(
yj(s, x)

)
ds + Ii(t),

(2.1)

or in a compact form

∂y(t, x)
∂t

=
m∑

l=1

∂

∂xl

(
Rl
∂y(t, x)
∂xl

)
− Cy(t, x) +Af(y(t, x)) + Bf(y(t − τ1(t), x)

)

+D
∫ t

−∞
K(t − s)f(y(s, x))ds + I(t),

(2.2)

where i = 1, 2, . . . , n, Rl = diag(r1l, r2l, . . . , rnl), l = 1, 2, . . . , m, ril ≥ 0 means the transmission
diffusion coefficient along the ith neuron; x = (x1, x2, . . . , xm)

T ∈ Ω ⊂ R
m, Ω = {x |

|xk| ≤ zl, l = 1, 2, . . . , m}, and zl is a constant. y(t, x) = (y1(t, x), y2(t, x), . . . , yn(t, x))
T ∈ R

n

represents the state vector of the network at time t and in space x; n corresponds to the
number of neurons; f(y(t, x)) = (f1(y1(t, x)), . . . , fn(yn(t, x)))

T is the neuron activation
function at time t and in space x; C = diag(c1, c2, . . . , cn) with ci > 0; A = (aij)n×n, B = (bij)n×n
and D = (dij)n×n are the connection weight matrix; I(t) = (I1(t), I2(t), . . . , In(t))

T ∈ R
n is an

external input vector. The bounded function τ1(t) represents unknown time-varying discrete
delay of the system with 0 < τ1(t) ≤ τ1, in which τ1 is a constant, K(t) is a nonnegative
bounded scalar function defined on [0,+∞) describing the delay kernel of the unbounded
distributed delay.

We suppose that system (2.2) has an unique continuous solution for any initial condi-
tion of the following form: y(s, x) = φ(s, x) ∈ C([−∞, 0] × Ω,Rn), where C([−∞, 0] × Ω,Rn)
denotes the Banach space of all continuous functions from [−∞, 0] ×Ω to R

n with the norm

∥∥φ(s, x)
∥∥ =
[∫

Ω
φT (s, x)φ(s, x)dx

]1/2

. (2.3)

It is assumed that (2.2) satisfies the following Dirichlet boundary condition:

y(t, x) = 0, (t, x) ∈ [−∞,+∞] × ∂Ω. (2.4)
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Based on the concept of drive-response synchronization, we take (2.2) as the driver
system and design the following controlled response system:

du(t, x) =

[
m∑

l=1

∂

∂xl

(
Rl
∂u(t, x)
∂xl

)
− Cu(t, x) +Af(u(t, x)) + Bf(u(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)f(u(s, x))ds + I(t) +

+∞∑

k=1

δ(t − tk)Uk(t, x)

]

dt + σ(t, x)dω(t),

(2.5)

where e(t, x) = u(t, x)−y(t, x), δ(t) is the Dirac delta function, the time sequence {tk} satisfies
0 = t0 < t1 < t2 < · · · < tk−1 < tk < · · · , and limk→+∞tk = +∞. Uk(t, x) is the con-
trol input. ω(t) = (ω1(t), . . . , ωn(t))

T ∈ R
n is a n-dimensional Brown motion defined on

(S,F, {Ft}t≥0, P). Here, the white noise dωi(t) is independent of dωj(t) for i /= j, and σ(t, x) �
σ(t, e(t, x), e(t − τ2(t), x),

∫ t
t−τ3(t)

e(s, x)ds) is the noise intensity function matrix, in which the
bounded functions τ2(t) and τ3(t) represent unknown discrete and distributed delays of the
system in the stochastic perturbation with 0 < τi(t) ≤ τi, i = 2, 3. This type of stochastic per-
turbation can be regarded as a result from the occurrence of random uncertainties during the
process of transmission. We assume that the output signals of (2.2) can be received by (2.5).

In the present paper, the control input Uk(t, x) is assumed to be the following form:

Uk(t, x) = hk

(

e(t, x), e
(
t − η1(t), x

)
, . . . , e

(
t − ηq(t), x

)
,

∫ t

t−ηq+1(t)
e(s, x)ds

)

− e(t, x), (2.6)

where ηi(t) i = 1, 2, . . . , q + 1 are unknown time-varying delays with 0 < ηi(t) ≤ ηi.
Integrating from tk − ε to tk + ε (ε > 0 is a sufficient small constant) on both sides of

system (2.5) and letting ε → 0+, one gets from the property of the Dirac delta function that

u
(
t+k, x
) − u(t−k, x

)
= hk

(

e(tk, x), e
(
tk − η1(tk), x

)
, . . . , e

(
tk − ηq(tk), x

)
,

∫ tk

tk−ηq+1(tk)
e(s, x)ds

)

− e(tk, x),
(2.7)

where u(t+
k
, x) = limt→ t+

k
u(t, x), u(t−

k
, x) = limt→ t−

k
u(t, x). In the following, we use hk(tk, x) to

denote hk(e(tk, x), e(tk − η1(tk), x), . . . , e(tk − ηq(tk), x),
∫ tk
tk−ηq+1(tk)

e(s, x)ds) for short.

Remark 2.1. Equation (2.7) is actually the impulsive controller of response system (2.5). To the
best of our knowledge, result on synchronization of reaction-diffusion neural networks under
impulsive control is seldom. In [22], global exponential synchronization of delayed reaction-
diffusion neural networks was studied. However, the control scheme in [22] is hybrid non-
delayed state feedback control and nondelayed impulsive control, and the continuous state
feedback controller is indispensable. Moreover, the impulsive controller (2.7) is very general,
since it includes information of multiple time-varying discrete delays and time-varying
distributed delays. Nevertheless, most of published paper concerning impulsive control
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including [3, 9, 26, 36–40] did not consider time delay in the impulsive function, let alone
multiple time-varying discrete delays and time-varying distributed delays. It is known that
both discrete delays and distributed delays are unavoidable and often time-varying in neural
networks, hence considering impulsive control with time-varying discrete delays and time-
varying distributed delays is essentially important. However, when time-varying discrete
delays and time-varying distributed delays are considered in impulsive control, the results in
[3, 9, 26, 36–40] is not applicable anymore.

From (2.7), the controlled system (2.5) can be rewritten as

du(t, x) =

[
m∑

l=1

∂

∂xl

(
Rl
∂u(t, x)
∂xl

)
− Cu(t, x) +Af(u(t, x)) + Bf(u(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)f(u(s, x))ds + I(t)

]

dt + σ(t, x)dω(t), t /= tk,

u
(
t+k, x
)
= u
(
t−k, x
)
+ hk(tk, x) − e(tk, x), t = tk, k ∈ N+.

(2.8)

To maintain consistency with above definitions, the initial value and the boundary
condition of (2.8) are given in the following form:

u(s, x) = ϕ(s, x) ∈ C([−∞, 0] ×Ω,Rn), (2.9)

u(t, x) = 0, (t, x) ∈ [−∞,+∞] × ∂Ω. (2.10)

Throughout this paper, we always assume that u(t, x) is left continuous at tk, that
is, u(t−k, x) = u(tk, x). Then subtracting (2.2) from (2.8) gets the following error dynamical
system:

de(t, x) =

[
m∑

l=1

∂

∂xl

(
Rl
∂e(t, x)
∂xl

)
− Ce(t, x) +Ag(e(t, x)) + Bg(e(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)g(e(s, x))ds

]

dt + σ(t, x)dω(t), t /= tk,

e
(
t+k, x
)
= hk(tk, x), t = tk, k ∈ N+,

(2.11)

where g(e(t, x)) = f(u(t, x)) − f(y(t, x)).
It is obvious that system (2.11) satisfies the Dirichlet boundary condition, and its initial

condition is

e(s, x) = ϕ(s, x) − φ(s, x) = ϕ(s, x) ∈ C([−∞, 0] ×Ω,Rn), i = 1, 2, . . . ,N. (2.12)

It is easy to see that the error system (2.11) admits a zero solution. Clearly, if the zero
solution is globally exponentially stable, then the controlled system (2.8) is globally exponen-
tially synchronized with system (2.2).
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Throughout this paper, we assume that

(H1) for any u, v ∈ R, there exist constants μi (i = 1, 2, . . . , n) such that |fi(u) − fi(v)| ≤
μi|u − v|;

(H2) there is a positive constant k such that
∫+∞

0 K(u)du = k;

(H3) there exist positive constants ρ1, ρ2 and ρ3 such that

trace
[
σT (t, x)σ(t, x)

]
≤ ρ1e

T(t, x)e(t, x) + ρ2e
T (t − τ2(t), x)e(t − τ2(t), x)

+ ρ3

∫ t

t−τ3(t)
eT (s, x)e(s, x)ds;

(2.13)

(H4) there exist nonnegative constants αk, βjk, j = 1, 2, . . . , q + 1 such that

hTk(tk, x)hk(tk, x) ≤ αke
T (tk, x)e(tk, x) + β1

ke
T(tk − η1(tk), x

)
e
(
tk − η1(tk), x

)

+ · · · + βq
k
eT
(
tk − ηq(tk)

)
e
(
tk − ηq(tk)

)
+ βq+1

k

∫ tk

tk−ηq+1(tk)
eT (s, x)e(s, x)ds.

(2.14)

The following basic definitions and lemmas are needed in this paper to get main
results.

Definition 2.2 (see [9]). The dynamical network (2.9) is said to be globally exponentially
synchronized with system (2.2) in mean square if there exist constants M > 1 and θ > 0
such that for any initial values (2.12)

E

{
‖e(t, x)‖2

}
≤ max

s≤0
E

{∥∥ϕ(s, x)
∥∥2
}
Me−θt (2.15)

hold for t ≥ 0.

Lemma 2.3 (see [17]). Let Ω be a cube |xk| < lk (k = 1, 2, . . . , m), and let v(x) be a real-valued
function belonging to C1(Ω) which vanish on the boundary ∂Ω of Ω, that is, v(x)|∂Ω = 0. Then

∫

Ω
v2(x)dx ≤ l2k

∫

Ω

∣∣∣∣
∂v(x)
∂xk

∣∣∣∣

2

dx. (2.16)

Lemma 2.4 (see [42]). IfX,Y are real matrices with appropriate dimensions, then there exist number
ε > 0 such that

XTY + YTX ≤ εXTY +
1
ε
YTY. (2.17)
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Lemma 2.5 (see [35]). Suppose that K(t) is a nonnegative bounded scalar function defined on
[0,+∞), and there exists a positive constant k such that

∫+∞
0 K(u)du = k. For any constant matrix

D ∈ R
n×n, D > 0, and vector function x : (−∞, t] → R

n for t ≥ 0, one has

k

∫ t

−∞
K(t − s)xT (s)Dx(s)ds ≥

(∫ t

−∞
K(t − s)x(s)ds

)T

D

∫ t

−∞
K(t − s)x(s)ds (2.18)

provided the integrals are all well defined.

Remark 2.6. When there is a positive bounded function k(t) such that
∫θ(t)

0 K(u)du = k(t),
where 0 < θ(t) ≤ θ, then the inequality (2.18) becomes the following from:

k(t)
∫ t

t−θ(t)
K(t − s)xT (s)Dx(s)ds ≥

(∫ t

t−θ(t)
K(t − s)x(s)ds

)T

D

∫ t

t−θ(t)
K(t − s)x(s)ds.

(2.19)

Specially, when K(t) = 1 for t ≥ 0, then k(t) = θ(t) in (2.19). In this case, the inequality
(2.19) turns out to the well-known Jensen’s inequality [32]. In the literature, there were many
results concerning stability or synchronization of neural networks with bounded distributed
delays, for instance, see [28–31]. However, the delay kernels in [28–31] were all assumed to
be 1. Obviously, the unbounded distributed delays in this paper include those [28–31] as a
special case. It is easy to see from inequalities (2.18) and (2.19) that results of this paper are
also applicable to neural networks with bounded distributed delays, no matter whether K(t)
is equal to 1 or not. In this sense, models in this paper are more general than those those in
[28–31].

Lemma 2.7. Consider the following impulsive differential inequalities:

D+v(t) ≤ av(t) + b1[v(t)]τ1
+ b2[v(t)]τ2

+ · · · + bm[v(t)]τm , t /= tk, t ≥ t0,

v
(
t+k
) ≤ pkv

(
t−k
)
+ q1

k

[
v
(
t−k
)]

τ1
+ q2

k

[
v
(
t−k
)]

τ2
+ · · · + qmk

[
v
(
t−k
)]

τm
, k ∈ N+,

v(t) = φ(t), t ∈ [t0 − τ, t0],

(2.20)

where a, bi, pk, qik, and τi are constants, bi ≥ 0, pk ≥ 0, qik ≥ 0, τi ≥ 0, i = 1, 2, . . . , m, v(t) ≥ 0,
[v(t)]τi = supt−τi≤s≤tv(s), [v(t

−
k
)]τi = suptk−τi(tk)≤s<tkv(s), φ(t) is continuous on [t0 − τ, t0], and

v(t) is continuous except tk, k ∈ N+, where it has jump discontinuities. The consequence {tk} satisfies
0 = t0 < t1 < t2 < · · · < tk < tk+1 < · · · , and limk→+∞tk = +∞. Suppose that

pk +
m∑

i=1

qik < 1, (2.21)

a +
∑m

i=1 bi

pk +
∑m

j=1 q
j

k

+
ln
(
pk +
∑m

j=1 q
j

k

)

tk+1 − tk < 0. (2.22)
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Then there exist constants β > 1 and λ > 0 such that

v(t) ≤ ∥∥φ∥∥τβe−λ(t−t0), t ≥ t0, (2.23)

where ‖φ‖τ = supt0−τ≤s≤t0‖φ(s)‖, τ = max{τi, i = 1, 2, . . . , m}.

The proof of Lemma 2.7 is given in the appendix, which is partly similarly to that of
Lemma 1 in [43].

Remark 2.8. Lemma 2.7 actually provides stability criterion for impulsive differential
equations with multiple time-varying delays, and impulsive function is related to the same
multiple time-varying delays. Actually, Lemma 2.7 can be written in a more general form. Let
bi = 0, i = h + 1, . . . , m, qj

k
= 0, j = 1, . . . , h, 1 < h < m − 1, τh+1 = σ1, . . . , τh+m−h = σm−h = σr ,

qh+1
k

= q̃1
k
, . . . , qh+m−h

k
= q̃m−h

k
= q̃r

k
, the other parameters are the same as those in Lemma 2.7.

Then one can get the following Lemma 2.9.

Lemma 2.9. Consider the following impulsive differential inequality:

D+v(t) ≤ av(t) + b1[v(t)]τ1
+ b2[v(t)]τ2

+ · · · + bh[v(t)]τh , t /= tk, t ≥ t0,

v
(
t+k
) ≤ pkv

(
t−k
)
+ q̃1

k

[
v
(
t−k
)]

σ1
+ q̃2

k

[
v
(
t−k
)]

σ2
+ · · · + q̃rk

[
v
(
t−k
)]

σr
, k ∈ N+,

v(t) = φ(t), t ∈ [t0 − τ, t0].

(2.24)

Suppose that

pk +
r∑

i=1

q̃ik < 1, a +
∑h

i=1 bi

pk +
∑r

j=1 q̃
j

k

+
ln
(
pk +
∑r

j=1 q̃
j

k

)

tk+1 − tk < 0. (2.25)

Then there exist constants β > 1 and λ > 0 such that

v(t) ≤ ∥∥φ∥∥τβe−λ(t−t0), t ≥ t0, (2.26)

where ‖φ‖τ = supt0−τ≤s≤t0‖φ(s)‖, τ = max{τi, σj , i = 1, 2, . . . , h, j = 1, 2, . . . , r}.

Remark 2.10. Lemmas 2.7 and 2.9 are general. Specially, if q̃i
k
= 0, i = 1, 2, . . . , r, then the

inequalities in (2.25) becomes

pk < 1, a +
∑h

i=1 bi
pk

+
ln pk

tk+1 − tk < 0. (2.27)

Take p = max{pk, k ∈ N+}, ρ = supk∈N+{tk − tk−1}. Then p < 1 and

a +
∑h

i=1 bi
pk

+
ln pk

tk+1 − tk ≤ a +
∑h

i=1 bi
pk

+
ln p

tk+1 − tk ≤ a +
∑h

i=1 bi
pk

+
ln p
ρ
. (2.28)
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Therefore,

p < 1, a +
∑h

i=1 bi
p

+
ln p
ρ

< 0 (2.29)

implies (2.27); that is, the inequality (2.27) is less conservative than (2.29). In fact, the
inequality (2.29) is exactly the inequalities (5) and (6) in Theorem 3.1 of [26]. (In the
proof in Theorem 3.1 in [26], one can get from bi = (Li/α)

√
λmax(P)/λmin(P) that

(L2
i λmax(P))/(biλmin(P)) = αLi

√
λmax(P)/λmin(P). By comparing the coefficients in the first

two inequalities in the proof of Theorem 3.1 in [26] with those in the inequalities (5) and (6) in
[26], the conclusion can be easily achieved). Hence, Lemmas 2.7 and 2.9 improve and extend
the Theorem 3.1 in [26]. In the literature, many results including those in [3, 9, 38, 40] were
derived by using similar method used in [26]. Since Lemmas 2.7 and 2.9 include correspond-
ing results in [26] as a special case and are less conservative than them, Lemmas 2.7 and 2.9
are very useful for stabilization and synchronization of impulsive control system.

3. Main Results

In this section, the global exponential synchronization criteria for system (2.8) and (2.2) are
derived through strict mathematical reasoning.

Theorem 3.1. Suppose that conditions (H1)–(H4) hold. If there exists constants ε1 > 0, ε2 > 0 and
ε3 > 0 such that

0 < αk +
q∑

i=1

βik + β
q+1
k
ηq+1 < 1, k ∈ N+, (3.1)

a +
ε2μ + ρ2 + ε3k

2
μ + ρ3τ3

αk +
∑q

i=1 β
i
k
+ βq+1

k
ηq+1

+
ln
(
αk +
∑q

i=1 β
i
k

)
+ βq+1

k
ηq+1

tk+1 − tk < 0, (3.2)

where a = −2λmin(R̃ + C) + ε−1
1 ‖A‖2 + ε1μ + ε−1

2 ‖B‖2 + ε−1
3 ‖D‖2 + ρ1, R̃ = diag(

∑m
l=1(r1l/z

2
l
),∑m

l=1(r2l/z
2
l ), . . . ,

∑m
l=1(rnl/z

2
l )), μ = max{μ2

i , i = 1, 2, . . . , n}. Then, under the impulsive controller
(2.7), the controlled system (2.8) is globally exponentially synchronized with system (2.2) in mean
square.

Proof. Consider the following Lyapunov function:

V (t) =
∫

Ω

1
2
eT (t, x)e(t, x)dx. (3.3)

We use LV (t) to denote the infinitesimal operator of V (t) [44], which is defined as

LV (t) = lim
Δ→ 0+

Δ−1[E{V (t + Δ) | t} − V (t)]. (3.4)
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Based on the property of Wiener process [11], differentiating V (t) along the solution of
the error system (2.11) for t ∈ (tk−1, tk], k ∈ N+ obtains that

dV (t) = LV (t)dt + e(t, x)σ(t, x)dω(t), (3.5)

where

LV (t) =
∫

Ω

[

eT(t, x)
m∑

l=1

∂

∂xl

(
Rl
∂e(t, x)
∂xl

)
− eT (t, x)Ce(t, x) + eT (t, x)Ag(e(t, x))

+ eT (t, x)Bg(e(t − τ1(t), x)) + eT (t, x)D
∫ t

−∞
K(t − s)g(e(s, x))ds

+
1
2

trace
[
σT (t, x)σ(t, x)

]]

dx.

(3.6)

From the Green’s formula and the Dirichlet boundary condition, we have (see [17–19])

∫

Ω
eT (t, x)

m∑

l=1

∂

∂xl

(
Rl
∂e(t, x)
∂xl

)
dx =

∫

Ω

n∑

i=1

ei(t, x)
m∑

l=1

∂

∂xl

(
ril
∂ei(t, x)
∂xl

)
dx

=
n∑

i=1

∫

Ω
ei(t, x)∇

(
ril
∂ei(t, x)
∂xl

)m

l=1
dx

=
n∑

i=1

∫

Ω
∇
(
ei(t, x)ril

∂ei(t, x)
∂xl

)m

l=1
dx

−
n∑

j=1

∫

Ω

(
ril
∂ei(t, x)
∂xl

)m

l=1
∇ei(t, x)dx

=
n∑

i=1

∫

∂Ω

(
ei(t, x)ril

∂ei(t, x)
∂xl

)m

l=1
dx

−
n∑

i=1

∫

Ω

m∑

l=1

ril

(
∂ei(t, x)
∂xl

)2

dx

= −
n∑

i=1

∫

Ω

m∑

l=1

ril

(
∂ei(t, x)
∂xl

)2

dx,

(3.7)

in which ∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xm) is the gradient operator, and

(
ril
∂ei(t, x)
∂xl

)m

l=1
=
(
ri1
∂ei(t, x)
∂x1

, ri2
∂ei(t, x)
∂x2

, . . . , rim
∂ei(t, x)
∂xm

)T
. (3.8)
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In view of Lemma 2.3, it is derived that

−
n∑

i=1

∫

Ω

m∑

l=1

ril

(
∂ei(t, x)
∂xl

)2

dx ≤ −
n∑

i=1

∫

Ω

m∑

l=1

ril

z2
l

e2
i (t, x)dx = −

∫

Ω
eT (t, x)R̃e(t, x)dx. (3.9)

For any positive constants ε1, ε2, and ε3, it follows from (H1) and Lemma 2.4 that

eT(t, x)Ag(e(t, x)) ≤ 1
2
ε−1

1 eT(t, x)AATe(t, x) +
1
2
ε1g

T (e(t, x))g(e(t, x))

≤ 1
2

(
ε−1

1 ‖A‖2 + ε1μ
)
eT (t, x)e(t, x),

(3.10)

eT(t, x)Bg(e(t − τ1(t), x)) ≤ 1
2
ε−1

2 ‖B‖2eT(t, x)e(t, x) +
1
2
ε2μe

T(t − τ1(t), x)e(t − τ1(t), x),

(3.11)

eT (t, x)D
∫ t

−∞
K(t − s)g(e(s, x))ds ≤ 1

2
ε3

(∫ t

−∞
K(t − s)g(e(s, x))ds

)T

×
∫ t

−∞
K(t − s)g(e(s, x))ds + 1

2
ε−1

3 ‖D‖2eT (t, x)e(t, x).

(3.12)

By using condition (H2) and Lemma 2.5, one obtains from (3.12) that

eT(t, x)D
∫ t

−∞
K(t − s)g(e(s, x))ds ≤ 1

2
ε3k

∫ t

−∞
K(t − s)gT (e(s, x))g(e(s, x))ds

+
1
2
ε−1

3 ‖D‖2eT (t, x)e(t, x)

≤ 1
2
ε3kμ

∫ t

−∞
K(t − s)eT (s, x)e(s, x)ds

+
1
2
ε−1

3 ‖D‖2eT (t, x)e(t, x).

(3.13)

Considering condition (H3) and substituting (3.9)–(3.11) and (3.13) into (3.6) derive
that

LV (t) ≤
∫

Ω

[
a

2
eT (t, x)e(t, x) +

1
2
ε2μe

T (t − τ1(t), x)e(t − τ1(t), x)

+
ρ2

2
eT (t − τ2(t), x)e(t − τ2(t), x) +

1
2
ε3kμ

∫ t

−∞
K(t − s)eT(s, x)e(s, x)ds

+
ρ3

2

∫ t

t−τ3(t)
eT(s, x)e(s, x)ds

]

dx
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= aV (t) + ε2μV (t − τ1(t)) + ρ2V (t − τ2(t)) + ε3kμ

∫ t

−∞
K(t − s)V (s)ds

+ ρ3

∫ t

t−τ3(t)
V (s)ds. (3.14)

Taking mathematical expectations on both sides of (3.5), it can be derived from
inequations (3.14) and (H2) that

dE{V (t)}
dt

≤ aE{V (t)} + ε2μ[E{V (t)}]τ1
+ ρ2[E{V (s)}]τ2

+ ε3k
2
μ[E{V (s)}]−∞

+ ρ3τ3[E{V (s)}]τ3
, t ∈ (tk−1, tk], k ∈ N+,

(3.15)

where [E{V (s)}]−∞ = maxs≤tE{V (s)}.
On the other hand, it is obtained from (H4) and the second equation of (2.11) that

V
(
t+k
)
=
∫

Ω

1
2
eT
(
t+k, x
)
e
(
t+k, x
)
dx =

∫

Ω

1
2
hTk(tk, x)hk(tk, x)dx

≤ αkV (tk) + β1
kV
(
tk − η1(tk)

)
+ · · · + βqkV

(
tk − ηq(tk)

)
+ βq+1

k

∫ t

t−ηq+1(t)
V (s)ds,

(3.16)

which means that

E
{
V
(
t+k
)} ≤ αkE{V (tk)} + β1

k[E{V (tk)}]η1
+ · · · + βq

k[E{V (tk)}]ηq + β
q+1
k
ηq+1[V (s)]ηq+1

. (3.17)

By virtue of Lemma 2.7, if the inequalities (3.1) and (3.2) hold, then it follows from
(3.15) and (3.17) that there exist constants M > 1 and θ > 0 such that

E{V (t)} ≤ max
s≤0

E

{∥∥ϕ1(s, x)
∥∥2
}
Me−θt, t ≥ 0. (3.18)

By Definition 2.2, the controlled system (2.8) is globally exponentially synchronized
with system (2.2) in mean square. This completes the proof.

Note that there are three uncertain positive constants ε1, ε2, and ε3. Not making a good
choice of the three constants may lead to the conservativeness of Theorem 3.1 in practical
application. In order to hit off this fault, our next aim is to determine the constants ε1, ε2,
and ε3 such that the conservativeness of Theorem 3.1 can be reduced as much as possible. We
present the following Theorem 3.2.



14 Abstract and Applied Analysis

Theorem 3.2. Suppose that conditions (H1)–(H4). Then, under the impulsive controller (2.7), the
controlled system (2.8) is globally exponentially synchronized with system (2.2) in mean square if the
following inequalities hold

0 < bk < 1, k ∈ N+, (3.19)

ξk = − λmin

(
R̃ + C

)
+ ‖A‖√μ + ‖B‖

√
μ

bk
+ k‖D‖

√
μ

bk

+
1
2

(
ρ1 +

ρ2

bk
+
ρ3τ3

bk
+

ln bk
tk+1 − tk

)
< 0, k ∈ N+,

(3.20)

where bk = αk +
∑q

i=1 β
i
k
+ βq+1

k
ηq+1, the other parameters are defined as those in Theorem 3.1.

Proof. Define the function H(ε1, ε2, ε3) with positive variables ε1, ε2, and ε3 as follows:

H(ε1, ε2, ε3) = a +
ε2μ + ρ2 + ε3k

2
μ + ρ3τ3

αk +
∑q

i=1 β
i
k + β

q+1
k ηq+1

+
ln
(
αk +
∑q

i=1 β
i
k

)
+ βq+1

k ηq+1

tk+1 − tk . (3.21)

In order that the result of Theorem 3.1 is less conservative, we only need to find out
three constants ε0

1, ε0
2, and ε0

3 such that the inequality (3.2) is less conservative. To achieve
this goal, we will find a point (ε0

1, ε
0
2, ε

0
3) such that H(ε0

1, ε
0
2, ε

0
3) takes the minimum value

and H(ε0
1, ε

0
2, ε

0
3) < 0. By simple computation, one derives that ∂H/∂ε1 = μ − (‖A‖2/ε2

1),

∂H/∂ε2 = (μ/bk) − (‖B‖2/ε2
2), ∂H/∂ε3 = (k

2
μ/bk) − (‖D‖2/ε2

3). Let ∂H/∂ε1 = ∂H/∂ε2 =
∂H/∂ε3 = 0, one gets (ε0

1, ε
0
2, ε

0
3) = (‖A‖/√μ, ‖B‖√bk/μ, ‖D‖/k√bk/μ). It is obvious that the

Hesse matrix of H(ε1, ε2, ε3) at (ε0
1, ε

0
2, ε

0
3) is positive definite. Hence, H(ε1, ε2, ε3) takes the

minimum value at (ε0
1, ε

0
2, ε

0
3) according to the extreme value theory of multivariate function.

Taking H(ε0
1, ε

0
2, ε

0
3) < 0 arrives at the condition (3.20). This completes the proof.

Remark 3.3. Theorems 3.1 and 3.2 are not dependent on discrete delays of both continuous
equation and impulsive controller, which is consistent with results of [3, 9, 26, 38], though
they did not consider delays in impulses. It should be noted that the inequalities in Theorems

3.1 and 3.2 are related to k
2
, τ3, and ηq+1, which mean that distributed delays in both contin-

uous equation and impulsive controller have important effects on synchronization criteria in
our results. This new discovery is completely different from existing results including those
in [3, 9, 26, 37–40]. As was pointed out in Remark 2.8, results in [3, 9, 38, 40] were derived
by using similar method used in [26], hence results of this paper improve those in
[3, 9, 26, 38, 40] even whenD = 0, σ(t, x) = σ(t, e(t, x), e(t−τ2(t), x)) and hk(tk, x) = h(e(tk, x))
in (2.11). To sum up, results of this paper are new and improve and extend most of known
corresponding ones.

Remark 3.4. Lemma 2.5 is utilized in (3.13), which makes the proof process more simple than
those in [21, 22, 34]. In [21], matrix decomposition method was used to deal with not-equal-
to-1 delay kernel, hence the Lyapunov functional and proof process are relatively complex.
Authors in [22, 34] had to utilize algebraic approach instead of matrix method to derive their
main results. It is well known that results derived from algebraic approach have more
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complex form and is more conservative than those obtained by matrix method. Therefore,
results of this paper improve those in [21, 22, 34] to some extent.

Remark 3.5. Stochastic perturbations are unavoidable in real applications of neural networks.
In this paper, we synchronize a class of reaction-diffusion neural networks with stochastic
perturbations via impulsive control. Although there were several results on stability of
reaction-diffusion neural with stochastic perturbations [45, 46], seldom published papers
considered synchronization of this kind of neural networks under impulsive control.
Moreover, the stochastic perturbations of this paper are more general than those in [45, 46],
since they include information of distributed delays.

4. Examples and Simulations

As applications of the the theoretical results derived above, in this section, we give numerical
simulations to demonstrate that our synchronization criteria are effective.

Consider the following reaction-diffusion neural network with both discrete and
unbounded distributed delays

∂y(t, x)
∂t

=
∂

∂x

(
R
∂y(t, x)
∂x

)
− Cy(t, x) +Af(y(t, x)) + Bf(y(t − τ1(t), x)

)

+D
∫ t

−∞
K(t − s)f(y(s, x))ds + I(t),

(4.1)

where y(t, x) = (y1(t, x), y2(t, x))
T , x ∈ Ω = [−2, 2],

f(y(t, x)) = (tanh(x1(t, x)), tanh(x2(t, x)))
T , τ1(t) = 1, K(t) = e−0.5t, R = diag(0.1, 0.1), I(t) =

(1, 1.2)T ,

C =
(

1.2 0
0 1

)
, A =

(
3 −0.3
4 5

)
, B =

(−1.4 0.1
0.3 −8

)
, D =

(−1.2 0.1
−2.8 −1

)
. (4.2)

Take the boundary condition of (4.1) as y(t, x) = 0, (t, x) ∈ (−∞,+∞) × ∂Ω. In the case
that initial condition is chosen as y(s, x) = (0.4, 0.6)T , (s, x) ∈ [−3, 0] × Ω and y(s, x) = 0,
(s, x) ∈ (−∞,−3)×Ω, the chaotic-like trajectory of (4.1) is shown in Figures 1, 2, and 3. Taking
R = 0, then we get the chaotic-like trajectory of (4.1) without reaction-diffusion terms shown
in Figure 4.

Let system (4.1) be the driver network, we design a response system as

du(t, x) =

[
∂

∂x

(
R
∂u(t, x)
∂x

)
− Cu(t, x) +Af(u(t, x)) + Bf(u(t − τ1(t), x))

+D
∫ t

−∞
K(t − s)f(u(s, x))ds + I(t)

]

dt + σ(t, x)dω(t), t /= tk,

u
(
t+k, x
)
= u
(
t−k, x
)
+ hk(tk, x) − e(tk, x), t = tk, k ∈ N+,

(4.3)
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Figure 1: Chaotic behavior of the state y1(t, x) in system (4.1).
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Figure 2: Chaotic behavior of the state y2(t, x) in system (4.1).

where e(t, x) = u(t, x) − y(t, x), hk(tk, x) = ae(tk, x) + be(tk − 0.5| sin tk|, x) + c
∫ t
t−0.5 e(s, x)ds

with positive constants a, b, and c, the noise intensity function matrix is

σ(t, x) = 0.1

⎛

⎝
e1(t, x) e2(t − 1, x)∫ t

t−0.3
e1(s, x)ds e2(t, x)

⎞

⎠. (4.4)

By Jensen’s inequality (which is a special case of inequality (2.19)), one has

(∫ t

t−0.3
e1(s, x)ds

)2

≤ 0.3
∫ t

t−0.3
(e1(s, x))2ds ≤ 0.3

∫ t

t−0.3
eT (s, x)e(s, x)ds. (4.5)
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Figure 3: Chaotic behavior of system (4.1).
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Figure 4: Chaotic behavior of system (4.1) with R = 0.

From (4.5) one gets

trace
(
σT (t, x)σ(t, x)

)
≤ 0.01eT (t, x)e(t, x) + 0.01eT (t − 1, x)e(t − 1, x)

+ 0.003
∫ t

t−0.3
eT (s, x)e(s, x)ds.

(4.6)
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Figure 5: Dynamical behavior of synchronization errors e1(t, x) (a) and e2(t, x) (b).

Similarly, by using Jensen’s inequality one derives that

hTk(tk, x)hk(tk, x) ≤ (a + b + c)

[

aeT (tk, x)e(tk, x) + beT (tk − 0.5|sin tk|, x)e(tk − 0.5|sin tk|, x)

+c
∫ t

t−0.5
eT (s, x)e(s, x)ds

]

.

(4.7)

Obviously, μ1 = μ2 = 1, k = 2, ρ1 = ρ2 = 0.01, ρ3 = 0.003, αk = a(a+b+c), β1
k = b(a+b+c),

β2
k = c(a + b + c), q = 1, τ1 = τ2 = 1, τ3 = 0.3, and η1 = η2 = 0.5. Therefore, (H1)–(H4)

are satisfied. Choose a = 0.2, b = 0.15, c = 0.2, and tk − tk−1 = 0.02. Then the inequalities
(3.19) and (3.20) are satisfied with bk = 0.2475, ξk = −0.4086 < 0, respectively. According to
Theorem 3.2, the controlled system (4.3) is globally exponentially synchronized with system
(4.1) in mean square. Figure 5 presents the dynamical behavior of synchronization errors
e1(t, x) and e2(t, x), which close to zero quickly as time increases.

5. Conclusion

Delays are unavoidable in practical systems, and they are always unknown and time-varying.
This paper studies stochastic synchronization of reaction-diffusion neural networks with both
time-varying discrete and distributed delays via delayed impulsive control. The impulsive
controller has multiple time-varying discrete and distributed delays which is very general.
Based on a novel integral inequality, the problem of distributed delays with not-equal-to-
1 delay kernel is well handled with matrix method. Sufficient synchronization criteria are
given to guarantee the global exponential synchronization in mean square of the considered
system. The function extreme value theorem is utilized to get a less conservative result. It is
discovered that, in our synchronization criteria, the distributed delays in both continuous
equation and impulsive controller have important effects. At last, numerical simulations
show the validity of the obtained criteria.
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Appendix

Proof of Lemma 2.7. Without loss of generality, we assume that τ = τ1 ≥ τ2 ≥ · · · ≥ τm. Consider
the following scalar function:

gk(λ) = 2λ + a +
∑m

i=1 bie
λτi

pk +
∑m

j=1 q
j

ke
λτj

+
ln
(
pk +
∑m

j=1 q
j

k
eλτj
)

tk+1 − tk . (A.1)

It follows from inequality (2.22) that gk(0) = a + (
∑m

i=1 bi)/(pk +
∑m

j=1 q
j

k
) + (ln(pk+

∑m
j=1 q

j

k))/(tk+1 − tk) < 0. Since g ′
k(λ) = 2 +

∑m
i=1(pkbiλe

λτi/(pk +
∑m

j=1 q
j

ke
λτj )2) +

(λ
∑m

j=1 q
j

ke
λτj )/((tk+1 − tk)(pk +

∑m
j=1 q

j

ke
λτj )) > 0 for λ > 0 and gk(λ) is continuous on (0,+∞),

there exists a positive constant λ such that gk(λ) < 0 and pk +
∑m

j=1 q
j

k
eλτj ≤ 1 for all k ∈ N+.

Let γ = supk∈N+
{1/(pk +

∑m
j=1 q

j

k
eλτj )} ≥ 1. Then we can select a constant σ > 0 such

that for all k ∈ N+,

a +
m∑

i=1

γbie
λτi ≤ σ − λ, (A.2)

(σ + λ)(tk+1 − tk) < − ln

⎛

⎝pk +
m∑

j=1

q
j

k
eλτj

⎞

⎠ ≤ ln γ. (A.3)

From (A.3), we can choose β = β1 ≥ β2 ≥ · · · ≥ βm > 1 such that

1 < e(σ+λ)(t1−t0) ≤ βi ≤ γeλτi . (A.4)

It follows from the above inequality that

∥∥φ
∥∥
τ <
∥∥φ
∥∥
τe

σ(t1−t0) ≤ ∥∥φ∥∥τβ1e
−λ(t1−t0). (A.5)

Next we will prove that

v(t) ≤ ∥∥φ∥∥τβ1e
−λ(t−t0), t ∈ [tk−1, tk), k ∈ N+. (A.6)

We use mathematical induction to prove that (A.6) holds. Firstly, we prove that (A.6)
holds for k = 1. To do this, we only need to prove that

v(t) ≤ ∥∥φ∥∥τβ1e
−λ(t1−t0), t ∈ [t0, t1). (A.7)

If the inequality (A.7) is not true, then there exists some t ∈ (t0, t1) such that

v
(
t
)
>
∥∥φ
∥∥
τβ1e

−λ(t1−t0) ≥ ∥∥φ∥∥τβ2e
−λ(t1−t0) ≥ · · · ≥ ∥∥φ∥∥τβme−λ(t1−t0)

≥ ∥∥φ∥∥τeσ(t1−t0) >
∥∥φ
∥∥
τ ≥ v(t0 + s), s ∈ [−τ, 0],

(A.8)
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which implies that there exists t̃i ∈ (t0, t) such that t̃m ≤ t̃m−1 ≤ · · · ≤ t̃1 and

v
(
t̃i
)
=
∥
∥φ
∥
∥
τβie

−λ(t1−t0), v(t) ≤ v
(
t̃i
)
, t ∈

[
t0 − τ, t̃i

]
, (A.9)

and there exists t̂ ∈ [t0, t̃m) such that

v
(
t̂
)
=
∥
∥φ
∥
∥
τ , v

(
t̂
)
≤ v(t) ≤ v

(
t̃i
)
, t ∈

[
t̂, t̃i
]
. (A.10)

Therefore, one gets from (A.4), (A.9), and (A.10) that, for any s ∈ [−τi, 0],

v(t + s) ≤ ∥∥φ∥∥τβie−λ(t1−t0) ≤
∥∥φ
∥∥
τγe

λτie−λ(t1−t0) ≤ γeλτiv
(
t̂
)
≤ γeλτiv(t), t ∈

[
t̂, t̃i
]
. (A.11)

Thus, one has from (A.2) and (A.11) that

D+v(t) ≤ av(t) + b1[v(t)]τ1
+ b2[v(t)]τ2

+ · · · + bm[v(t)]τm

≤
(

a +
m∑

i=1

γbie
λτi

)

v(t) ≤ (σ − λ)v(t), t ∈
[
t̂, t̃1
]
.

(A.12)

It follows from (A.5), (A.9), (A.10), and (A.12) that

v
(
t̃1
)
≤ v
(
t̂
)
e(σ−λ)(t̃1−t̂) =

∥∥φ
∥∥
τe

(σ−λ)(t̃1−t̂) <
∥∥φ
∥∥
τe

σ(t1−t0)

≤ ∥∥φ∥∥τβ1e
−λ(t1−t0) = v

(
t̃1
)
,

(A.13)

which is a contradiction. Hence (A.6) holds for k = 1.
Now we assume that (A.6) holds for k = 1, 2, . . . , n, n ∈ N+, n ≥ 1, that is,

v(t) ≤ ∥∥φ∥∥τβ1e
−λ(t−t0), t ∈ [tk−1, tk), k = 1, 2, . . . , n. (A.14)

Next, we will show that (A.6) holds for k = n + 1, that is,

v(t) ≤ ∥∥φ∥∥τβ1e
−λ(t−t0), t ∈ [tn, tn+1). (A.15)
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For the sake of contradiction, suppose that (A.15) does not hold. Define t̆ = inf{t ∈
[tn, tn+1] | v(t) > ‖φ‖τβ1e

−λ(t−t0)}. Then one obtains from (A.3) and (A.14) that

v(t+n) ≤ pnv
(
t−n
)
+ q1

n

[
v
(
t−n
)]

τ1
+ q2

n

[
v
(
t−n
)]

τ2
+ · · · + qmn

[
v
(
t−n
)]

τm

≤ pn
∥
∥φ
∥
∥
τβ1e

−λ(tn−t0) + q1
n

∥
∥φ
∥
∥
τβ1e

−λ(tn−τ1−t0) + q2
n

∥
∥φ
∥
∥
τβ1e

−λ(tn−τ2−t0)

+ · · · + qmn
∥
∥φ
∥
∥
τβ1e

−λ(tn−τm−t0)

=

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠
∥
∥φ
∥
∥
τβ1e

λ(t̆−tn)e−λ(t̆−t0)

<

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠eλ(tn+1−tn)∥∥φ
∥
∥
τβ1e

−λ(t̆−t0)

< e−(σ+λ)(tn+1−tn)eλ(tn+1−tn)∥∥φ
∥∥
τβ1e

−λ(t̆−t0)

= e−σ(tn+1−tn)∥∥φ
∥∥
τβ1e

−λ(t̆−t0) <
∥∥φ
∥∥
τβ1e

−λ(t̆−t0),

(A.16)

which implies that t̆ /= tn. From the continuity of v(t) in the interval [tn, tn+1), one has

v
(
t̆
)
=
∥∥φ
∥∥
τβ1e

−λ(t̆−t0), v(t) ≤ v(t̆), t ∈ [tn, t̆
]
. (A.17)

On the other hand, one can deduce from (A.16) that there exists t∗ ∈ (tn, t̆) such that

v(t∗) =

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠eλ(tn+1−tn)∥∥φ
∥∥
τβ1e

−λ(t̆−t0), v(t∗) ≤ v(t) ≤ v(t̆), t ∈ [t∗, t̆]. (A.18)

For any t ∈ [t∗, t̆], s ∈ [−τi, 0], either t + s ∈ [t0 − τi, tn) or t + s ∈ [tn, t̆]. Two cases will
be discussed as follows.

Case 1. If t + s ∈ [t0 − τi, tn), then one obtains from (A.14) that

v(t + s) ≤ ∥∥φ∥∥τβ1e
−λ(t−t0)e−λs ≤ ∥∥φ∥∥τβ1e

−λ(t̆−t0)eλ(t̆−t)eλτi

≤ ∥∥φ∥∥τβ1e
−λ(t̆−t0)eλ(tn+1−tn)eλτi .

(A.19)

Case 2. If t + s ∈ [tn, t̆], then it follows from (A.17) that

v(t + s) ≤ ∥∥φ∥∥τβ1e
−λ(t̆−t0) ≤ ∥∥φ∥∥τβ1e

−λ(t̆−t0)eλ(tn+1−tn)eλτi . (A.20)
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In any case, one has from (A.18), (A.19), and (A.20) that, for any s ∈ [−τi, 0],

v(t + s) ≤ ∥∥φ∥∥τβ1e
−λ(t̆−t0)eλ(tn+1−tn)eλτi =

eλτi

pn +
∑m

j=1 q
j
ne

λτj
v(t∗)

≤ eλτi

pn +
∑m

j=1 q
j
ne

λτj
v(t) ≤ γeλτiv(t), t ∈ [t∗, t̆].

(A.21)

Hence, one obtains from (A.2) and (A.21) that

D+v(t) ≤ av(t) + b1[v(t)]τ1
+ b2[v(t)]τ2

+ · · · + bm[v(t)]τm

≤
(

a +
m∑

i=1

γbie
λτi

)

v(t) ≤ (σ − λ)v(t), t ∈ [t∗, t̆].
(A.22)

It follows from inequalities (A.3), (A.17), (A.18), and (A.19) that

v
(
t̆
) ≤ v(t∗)e(σ−λ)(t̆−t∗)

=

⎛

⎝pn +
m∑

j=1

q
j
ne

λτj

⎞

⎠eλ(tn+1−tn)∥∥φ
∥∥
τβ1e

−λ(t̆−t0)e(σ−λ)(t̆−t
∗)

< e−(σ+λ)(tn+1−tn)eλ(tn+1−tn)∥∥φ
∥∥
τβ1e

−λ(t̆−t0)e(σ−λ)(t̆−t
∗)

= e−σ(tn+1−tn)∥∥φ
∥∥
τβ1e

−λ(t̆−t0)e(σ−λ)(t̆−t
∗)

≤ ∥∥φ∥∥τβ1e
−λ(t̆−t0) = v

(
t̆
)
,

(A.23)

which is a contradiction. Therefore the assumption that the inequality (A.15) does not hold
is not true, and hence the inequality (A.6) holds for k = n + 1. According to the theory of
mathematical induction method, the inequality (A.6) holds for all k ∈ N+. This completes the
proof.
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This paper is concerned with the delay-dependent synchronization criterion for neutral-type
stochastic delayed complex networks. Firstly, expectations of stochastic crossterms containing the
Itô integral are investigated. In fact, for stochastic delay systems, if we want to obtain the delay-
dependent condition with less conservatism, how to deal with expectations of stochastic cross
terms properly is of vital importance, and many existing results did not deal with expectations
of these stochastic cross terms correctly. Then, based on this, this paper establishes a novel delay-
dependent synchronization criterion for neutral-type stochastic delayed complex networks. In the
derivation process, the mathematical development avoids bounding stochastic cross terms. Thus,
this method shows less conservatism. Finally, a numerical example is provided to demonstrate the
effectiveness of the proposed approach.

1. Introduction

In the real world, many systems can be described as complex networks such as Internet
networks, biological networks, epidemic spreading networks, collaborative networks, social
networks, neural networks, and so forth [1–4]. Thus, during the past years, the study of
complex networks has become a very active area, see, for example, [5, 6] and the references
therein. In particular, for complex networks, the major collective behavior is the synchro-
nization phenomena, because many problems in practice have close relationships with
synchronization [7]. Recently, growing research results, that focused on synchronization
problems for complex networks, have been reported in [8–12] and the references therein.
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Up to now, it has been well realized that in spreading information through complex
networks, there always exist time delays caused by the finite speed of information transmis-
sion and the limit of bandwidth, which often decrease the quality of the system and even lead
to oscillation, divergence, and instability. Accordingly, synchronization problems for many
delayed complex networks have been studied in [13–17]. It is worth mentioning that in the
above results for delayed complex networks, each dynamical node is modeled as a retarded
functional differential equation coupling with other nodes. However, in some cases, in order
to reflect dynamical behaviors for some realistic networks models, the information about
derivatives of the past state variables of the networks should be utilized. Therefore, the
dynamic of the complex networks should be described by a group of neutral-type functional
differential equations. This kind of delayed complex network is termed as the neutral-type
delayed complex network. As a matter of fact, neutral-type delays exist in many fields such
as the population ecology, distributed networks containing lossless transmission lines, and a
typical neutral-type delayed complex network example which is the stock transaction system
[18]. Consequently, synchronization problems of neutral-type delayed complex networks
were studied in [18–20]. For instance, a delay-dependent synchronization criterion for
complex networks with neutral-type coupling delay was presented in [18], and the robust
synchronization criterion for a class of uncertain neutral-type delayed complex networks was
given in [19]. And [20] discussed the synchronization problem for the neutral-type complex
networks with coupling time-varying delays.

On the other hand, in the real world, complex networks are often subject to stochastic
disturbances. For example, the signal transfer in a real complex network could be perturbed
randomly from the release of probabilistic causes such as neurotransmitters and packet
dropouts [21]. Hence, such a stochastic disturbance phenomenon that typically occurs in
complex networks has attracted considerable attention during the past years, and synchro-
nization problems for delayed complex networks with stochastic disturbances have been
investigated in [21–24]. For instance, the synchronization problems of discrete-time delayed
complex networks with stochastic disturbances were investigated in [21, 22]. Reference [24]
designed an adaptive feedback controller to solve the synchronization problem for an array of
linearly stochastically coupled networks with time delays. Although the above results have
discussed delayed complex networks under the influence of stochastic noises, it should be
pointed out that as to the neutral-type delayed complex networks, there is still no paper to
investigate the influence of stochastic disturbances on this kind of complex networks.

Moreover, for delay systems including delayed complex networks, a very active
research topic is to obtain the delay-dependent conditions. The reason is that the delay-
dependent condition makes use of the information on the size of time delays, and the delay-
dependent condition is generally less conservative than the delay-independent one [25–27].
However, when we used the existing effective methods, such as the model transformation
method [25, 26] and the free-weighting matrix method [27], to give the delay-dependent
condition for stochastic delay systems including stochastic delayed complex (or neural)
networks, the following stochastic cross terms containing the Itô integral will appear:

x(t)TJ

∫ t

t−h
μ(s, xs)dw(s), x(t − h)TK

∫ t

t−h
μ(s, xs)dw(s),

(∫ t

t−h
κ(s, xs)ds

)T

L

∫ t

t−h
μ(s, xs)dw(s).

(1.1)
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It is still very difficult to calculate expectations of these stochastic cross terms up to now.
The results in [28–31] resorted to bounding techniques, which obviously can bring the
conservatism. Some papers such as [32–34] considered that expectations of these stochastic
cross terms are all equal to zero. However, these results are not given by strict mathematical
proofs, and we can find examples to illustrate that expectations of some stochastic cross
terms are not equal to zero in Remark 3.3. Therefore, in order to obtain the delay-dependent
synchronization criterion with less conservatism for neutral-type stochastic delayed complex
networks, there is a strong need to investigate the expectations of stochastic cross terms
containing the Itô integral firstly.

Motivated by the discussion mentioned above, this paper investigates the delay-
dependent synchronization problem for neutral-type stochastic delayed complex networks.
The main contributions of this paper are summarized as follows. (1) Expectations of
stochastic cross terms containing the Itô integral are investigated by stochastic analysis
techniques in Lemma 3.1 and Corollary 3.2. We prove that the expectation of x(t −
h)TK

∫ t
t−h μ(s, xs)dw(s) is equal to zero and expectations of other stochastic cross terms are

not. (2) Based on this conclusion, this paper establishes a delay-dependent synchronization
criterion that guarantees the globally asymptotic synchronization of neural-type stochastic
delayed complex networks. In the derivation process, the mathematical development avoids
bounding stochastic cross terms. Thus, this method leads to a criterion with less conservatism.
Finally, a numerical example is provided to demonstrate the effectiveness of the proposed
approach.

Notation. Throughout the paper, unless otherwise specified, we will employ the following
notation. Let (Ω,F, {Ft}t≥0,P) be a complete probability space with a natural filtration {Ft}t≥0,
and let E(·) be the expectation operator with respect to the probability measure. If A is a
vector or matrix, its transpose is denoted by AT . If P is a square matrix, then P > 0 (P < 0)
means that it is a symmetric positive (negative) definite matrix of appropriate dimensions
while P ≥ 0 (P ≤ 0) is a symmetric positive (negative) semidefinite matrix. I stands for
the identity matrix of appropriate dimensions. Denote by λmin(·) the minimum eigenvalue
of a given matrix. Let | · | denote the Euclidean norm of a vector and its induced norm of a
matrix. Unless explicitly specified, matrices are assumed to have real entries and compatible
dimensions. L2(Ω) denotes the space of all random variables X with E|X|2 < ∞, it is a
Banach space with norm ‖X‖2 = (E|X|2)1/2. Let h > 0 and C([−h, 0];Rn) denote the family
of all continuous Rn-valued functions ϕ on [−h, 0] with the norm ‖ϕ‖ = sup{|ϕ(θ)| : −h ≤
θ ≤ 0}. Let L2

F0
([−h, 0];Rn) be the family of all F0-measurable C([−h, 0];Rn)-valued random

variables φ such that E(‖φ‖2) < ∞, and let L2([a, b];Rn) be the family of all Rn-valued Ft-
adapted processes {f(t)}a≤t≤b such that

∫b
a |f(t)|2dt < ∞ a.s. Let M2([a, b];Rn) be the family

of processes {f(t)}a≤t≤b in L2([a, b];Rn) such that E(∫ba |f(t)|2dt) < ∞, and M2([a, b]) is the
1-dimensional case of M2([a, b];Rn).

2. Problem Formulation and Preliminaries

In this paper, we consider the following neutral-type stochastic delayed complex networks
consisting of N identical nodes:
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d[xi(t) −Dxi(t − h)]

=

⎡

⎣Axi(t) + Bf(xi(t)) + Cf(xi(t − h)) +
N∑

j=1

gijΓxj(t) +
N∑

j=1

hijΥxj(t − h)
⎤

⎦dt

+ σi(t, xi(t), xi(t − h))dw(t), i = 1, 2, . . . ,N,

(2.1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]
T ∈ Rn represents the state vector of the ith node; the

scalar h > 0 is the time delay; A is a known connection matrix; B and C denote, respectively,
the connection weight matrix and the delayed connection weight matrix; Γ,Υ ∈ Rn×n

are matrices describing the inner coupling between the subsystems at time t and t − h,
respectively; G = (gij)N×N and H = (hij)N×N are called the outer-coupling configuration
matrices representing the coupling strength and the topological structure of the complex
networks; D is a known real matrix, and the spectrum radius of the matrix D, ρ(D), satisfies
ρ(D) < 1. σi(·, ·, ·) : R × Rn × Rn → Rn which is the noise intensity function vector; w(t) is
a scalar standard Brownian motion defined on a complete probability space (Ω,F, {Ft}t≥0,P)
with a natural filtration {Ft}t≥0. f(xi(t)) = (f1(xi1(t)), . . . , fn(xin(t)))

T , is an unknown but
sector-bounded nonlinear function.

The initial conditions associated with system (2.1) are given by

xi(s) = ϕi(s), −h ≤ s ≤ 0, i = 1, 2, . . . ,N, (2.2)

where ϕi(·) ∈ L2
F0
([−h, 0];Rn).

Let

x(t) =
(
x1(t)T , . . . , xN(t)T

)T
,

F(x(t)) =
(
f(x1(t))T , . . . , f(xN(t))T

)T
,

F(x(t − h)) =
(
f(x1(t − h))T , . . . , f(xN(t − h))T

)T
,

σ(t) =
(
σ1(t, x1(t), x1(t − h))T , . . . , σN(t, xN(t), xN(t − h))T

)T
,

D = diag

⎛

⎜
⎝

N
︷ ︸︸ ︷
D,D, . . . , D

⎞

⎟
⎠.

(2.3)

With the Kronecker product “⊗” for matrices, system (2.1) can be rearranged as

d
[
x(t) −Dx(t − h)

]
= [(IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h)

+(IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]dt + σ(t)dw(t).
(2.4)

Before stating our main results, we need the following definitions, assumptions, and
propositions.
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Definition 2.1. The neutral-type stochastic delayed complex network (2.1) is globally asymp-
totically synchronized in the mean square if, for all ϕi(·), ϕj(·) ∈ L2

F0
([−h, 0];Rn), the following

holds:

lim
t→∞

E
{∣
∣xi

(
t, ϕi

) − xj
(
t, ϕj

)∣∣2
}
= 0, 1 ≤ i < j ≤N. (2.5)

Definition 2.2 (see [35]). If a stochastic process {ν(t)}a≤t≤b belongs to M2([a, b]), then its Itô
integral (from a to b) is defined by

∫b

a

ν(t)dw(t) = lim
n→∞

∫b

a

νn(t)dw(t)
(

lim in L2(Ω)
)
, (2.6)

where {νn(t)}a≤t≤b (n = 1, 2, . . .) are the step stochastic processes and belong to M2([a, b])
such that

lim
n→∞

E
(∫b

a

|ν(t) − νn(t)|2dt
)

= 0. (2.7)

Definition 2.3 (see [36]). Let {Ft}t∈T be an increasing family of σ-algebras of subset of Ω. A
stochastic process {Xt}t∈T is said to be adapted to {Ft}t∈T if for each t, the random variable Xt

is Ft-measurable.

Assumption 2.4. The outer-coupling configuration matrices of the complex networks (2.1)
satisfy

gij = gji ≥ 0, hij = hji ≥ 0,
(
i /= j

)
,

gii = −
N∑

j=1,j /= i

gij , hii = −
N∑

j=1,j /= i

hij , i, j = 1, 2, . . . ,N.
(2.8)

Assumption 2.5. The noise intensity function vector σi : R × Rn × Rn → Rn satisfies the Lip-
schitz condition, that is, there exist constant matrices W1 and W2 of appropriate dimensions
such that

∣∣σi
(
t, x1, y1

) − σj
(
t, x2, y2

)∣∣2 ≤ |W1(x1 − x2)|2 +
∣∣W2

(
y1 − y2

)∣∣2
, (2.9)

for all i, j = 1, 2, . . . ,N and x1, y1, x2, y2 ∈ Rn.

Assumption 2.6. For all x, y ∈ Rn, the nonlinear function f(·) is assumed to satisfy the
following condition:

(
f(x) − f(y) −U(x − y))T(f(x) − f(y) − V (x − y)) ≤ 0, (2.10)

where U and V are real constant matrices with U-V being symmetric and positive definite.
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Proposition 2.7 (see [14]). The Kronecker product has the following properties:

(αA) ⊗ B = A ⊗ (αB),

(A + B) ⊗ C = A ⊗ C + B ⊗ C,
(A ⊗ B)(C ⊗D) = (AC) ⊗ (BD),

(A ⊗ B)T = AT ⊗ BT .

(2.11)

Proposition 2.8 (see [19]). Let U = (αij)n×n, P ∈ Rm×m, x = (xT1 , x
T
2 , . . . , x

T
n)

T , y = (yT1 , y
T
2 , . . .,

yTn )
T , where xi = (xi1, xi2, . . . , xim)

T ∈ Rm, yi = (yi1, yi2, . . . , yim)
T ∈ Rm (i = 1, 2, . . . , n). If

U = UT and each row sum of U is equal to zero, then

xT (U ⊗ P)y = −
∑

1≤i<j≤n
αij
(
xi − xj

)T
P
(
yi − yj

)
. (2.12)

Proposition 2.9 (see [35]). Let {ϑ(t)}a≤t≤b be a stochastic process and belong toM2([a, b]), then

E
(∫b

a

ϑ(t)dw(t)

)

= 0. (2.13)

3. Main Results

Then, we give the following lemma and corollary which will play a key role in the proof of
our main results.

Lemma 3.1. If a stochastic process {ν(t)}a≤t≤b ∈ M2([a, b]) and� is a bounded and Fa-measurable
random variable, then

E
(

�

∫b

a

ν(t)dw(t)

)

= 0. (3.1)

Proof. Firstly, in order to prove the above results, we will prove that if {ν(t)}a≤t≤b ∈ M2([a, b])
and � is a bounded and Fa-measurable random variable, then

�

∫b

a

ν(t)dw(t) =
∫b

a

�ν(t)dw(t). (3.2)

Most important of all, since � is a bounded and Fa-measurable random variable, it is easy to
verify {�ν(t)}a≤t≤b ∈ M2([a, b]). Then, we will prove (3.2) by the following two steps.

Step 1. If {ν(t)}a≤t≤b is a step stochastic process, then we let, without loss of generality,

ν(t) =
n∑

i=1

ςi−11[ti−1,ti)(t), (3.3)
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where t0 = a, tn = b, ςi−1 is Fti−1 -measurable and E(ς2
i−1) <∞. In this case,

∫b

a

�ν(t)dw(t) =
n∑

i=1

�ςi−1(w(ti) −w(ti−1)) = �
n∑

i=1

ςi−1(w(ti) −w(ti−1)) = �
∫b

a

ν(t)dw(t).

(3.4)

Step 2. If {ν(t)}a≤t≤b ∈ M2([a, b]) is not a step stochastic process, then by Definition 2.2, we
can find a sequence of step stochastic processes in M2([a, b]): {ν1(t)}a≤t≤b, {ν2(t)}a≤t≤b, . . .,
{νn(t)}a≤t≤b, . . . such that

∫b

a

ν(t)dw(t) = lim
n→∞

∫b

a

νn(t)dw(t)
(

lim in L2(Ω)
)
, (3.5)

where {ν(t)}a≤t≤b and {νn(t)}a≤t≤b satisfy

lim
n→∞

E
(∫b

a

|ν(t) − νn(t)|2dt
)

= 0. (3.6)

Because � is bounded, by Definition 2.2 and (3.5)-(3.6), it is easy to prove that

∫b

a

�ν(t)dw(t) = lim
n→∞

∫b

a

�νn(t)dw(t)
(

lim in L2(Ω)
)
,

�

∫b

a

ν(t)dw(t) = lim
n→∞

�

∫b

a

νn(t)dw(t)
(

lim in L2(Ω)
)
.

(3.7)

From Step 1, it follows that for each step stochastic process {νn(t)}a≤t≤b, we have

∫b

a

�νn(t)dw(t) = �
∫b

a

νn(t)dw(t). (3.8)

Therefore, it is easy to obtain

lim
n→∞

∫b

a

�νn(t)dw(t) = lim
n→∞

�

∫b

a

νn(t)dw(t)
(

lim in L2(Ω)
)
. (3.9)

Then, we can get by (3.7) and (3.9) that

∫b

a

�ν(t)dw(t) = �
∫b

a

ν(t)dw(t). (3.10)
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Due to {�ν(t)}a≤t≤b ∈ M2([a, b]), then by Proposition 2.9, we can know that

E
(

�

∫b

a

ν(t)dw(t)

)

= E
(∫b

a

�ν(t)dw(t)

)

= 0. (3.11)

This completes the proof.

Corollary 3.2. Let one consider the following neutral stochastic functional differential equation:

d[x(t) − Dx(t − h)] = κ(t, xt)dt + μ(t, xt)dw(t), (3.12)

on t ≥ 0 with the initial data x0 = ξ ∈ L2
F0
([−h, 0];Rn). κ(·, ·) and μ(·, ·) satisfy the local Lipschitz

condition and the linear growth condition. If x(t) is the solution of (3.12) and K is any compatible
dimensional matrix, then

E
(

x(t − h)TK

[∫ t

t−h
μ(s, xs)dw(s)

])

= 0, t ≥ h. (3.13)

Especially when D = 0 in (3.12), that is,

dx(t) = κ(t, xt)dt + μ(t, xt)dw(t). (3.14)

Equation (3.14) is a common stochastic functional equation. For this case, (3.13) is also tenable.

Proof. Since κ(·, ·) and μ(·, ·) satisfy the local Lipschitz condition and the linear growth con-
dition, we can know that, for all T > 0, (3.12) has a unique continuous solution on [−h, T]
denoted by {x(t)}−h≤t≤T that is adapted to {Ft}−h≤t≤T and {x(t)}−h≤t≤T ∈ M2([−h, T]) [37].
Therefore, it can be derived that for t ≥ h, x(t − h) is a bounded random variable and x(t − h)
is Ft−h-measurable. Then, by Lemma 3.1, it is easy to obtain (3.13). If D = 0 in (3.12) that is
a common stochastic functional equation, then we can easily prove that (3.13) is also tenable
for this case.

Remark 3.3. Lemma 3.1 has proved

E
(

x(t − h)TK

[∫ t

t−h
μ(s, xs)dw(s)

])

= 0, t ≥ h. (3.15)
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However, for any compatible dimensional matrix J or L, the following results are not correct:

E
(

x(t)TJ

[∫ t

t−h
μ(s, xs)dw(s)

])

= 0,

t ≥ h.

E
⎛

⎝
(∫ t

t−h
κ(s, xs)ds

)T

L

[∫ t

t−h
μ(s, xs)dw(s)

]⎞

⎠ = 0,

(3.16)

We will give two examples to illustrate it.

Example 3.4. Consider the following one-dimensional Langevin equation in [36] that can be
regarded as a special class of neutral stochastic delay systems as follows:

d[x(t) − 0x(t − h)] = κ(t, xt)dt + μ(t, xt)dw(t), x(0) = ξ, (3.17)

where κ(t, xt) = −βx(t), μ(t, xt) = α and α > 0, β > 0. This equation has a solution

x(t) = e−β(t−u)x(u) + α
∫ t

u

e−β(t−s)dw(s), u ≤ t. (3.18)

Then by (3.18), we can know that

E
(

x(t)J
∫ t

t−h
μ(s, xs)dw(s)

)

= E
((

e−βhx(t − h) + α
∫ t

t−h
e−β(t−s)dw(s)

)

×J

[∫ t

t−h
α dw(s)

])

= e−βhE
(

x(t − h)J
[∫ t

t−h
α dw(s)

])

+ E
(

α

∫ t

t−h
e−β(t−s)dw(s)J

∫ t

t−h
α dw(s)

)

= 0 + α2
Je−βt

∫ t

t−h
eβsds

=
α2

J

β

(
1 − e−βh

)
/= 0, ∀J/= 0,

E
(∫ t

t−h
κ(s, xs)dsL

[∫ t

t−h
μ(s, xs)dw(s)

])

= E
((

x(t) − x(t − h) −
∫ t

t−h
μ(s, xs)dw(s)

)

×L

[∫ t

t−h
μ(s, xs)dw(s)

])

= E
(

x(t)L
∫ t

t−h
μ(s, xs)dw(s)

)
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− E
(

x(t − h)L
∫ t

t−h
μ(s, xs)dw(s)

)

− E
(∫ t

t−h
μ(s, xs)dw(s)L

∫ t

t−h
μ(s, xs)dw(s)

)

=
α2

L

β

(
1 − e−βh

)
− 0 − L

∫ t

t−h
α2ds

=
α2

L

β

(
1 − e−βh − βh

)
/= 0, ∀L/= 0.

(3.19)

Example 3.5. Consider the following one-dimensional stochastic equation:

d[x(t) − 0x(t − h)] = dw(t), (3.20)

which has a one solution x(t) = w(t). However, we can easily verify that

E
(

x(t)TJ

∫ t

t−h
μ(s, xs)dw(s)

)

= E
(

w(t)J
∫ t

t−h
dw(s)

)

= Jh/= 0, ∀J/= 0. (3.21)

We should point out that in recent years, some papers such as [32–34] considered that the
expectations of these stochastic terms are all equal to zero. However, this is not the case.
From the above examples and Corollary 3.2, we can see that x(t − h)TK

∫ t
t−h μ(s, xs)dw(s) is

the only one whose expectation is equal to zero.
Then, we are in the position to present our main result for the synchronization criterion

of the neutral-type delayed complex networks with stochastic disturbances.

Theorem 3.6. Under the Assumptions 2.4–2.6, the dynamical system (2.1) is globally asymptotically
synchronized in the mean square if there exist matrices P > 0, Q1 > 0, Q2 > 0, R > 0, Z > 0, S and
scalars ε > 0, λ > 0 such that the following LMIs hold for all 1 ≤ i < j ≤N:

P < λI, (3.22)

Ξ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ξ11 Ξ12 0 Ξ14 PC Ξ16 0
∗ Ξ22 Ξ23 −DTPB −DTPC Ξ26 Ξ27

∗ ∗ −Q2 0 0 0 0
∗ ∗ ∗ R − 2εI 0 BTST 0
∗ ∗ ∗ ∗ −R CTST 0
∗ ∗ ∗ ∗ ∗ hZ − ST − S 0
∗ ∗ ∗ ∗ ∗ ∗ −hZ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, (3.23)
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where

Ξ11 = PA +ATP −NgijPΓ −NgijΓTP + λWT
1 W1 +Q1 +Q2 − εUTV − εV TU,

Ξ12 = −ATPD +NgijΓTPD, Ξ14 = PB + εUT + εV T , Ξ16 = ATST −NgijΓTST ,

Ξ22 = λWT
2 W2 −Q1 −NhijPΥ −NhijΥTP,

Ξ23 = NhijΥTPD, Ξ26 = −NhijΥTST , Ξ27 = −hNhijΥTP.

(3.24)

Proof. Firstly, set

y(t) = (IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h)),
(3.25)

then, (2.1) can be rewritten as

d
[
x(t) −Dx(t − h)

]
= y(t)dt + σ(t)dw(t). (3.26)

From (3.26), we can have

[
x(t) −Dx(t − h)

]
−
[
x(t − h) −Dx(t − 2h)

]
=
∫ t

t−h
y(s)ds +

∫ t

t−h
σ(s)dw(s). (3.27)

Consider the following Lyapunov functional for the system (3.26):

V (xt, t) =
[
x(t) −Dx(t − h)

]T
(U ⊗ P)

[
x(t) −Dx(t − h)

]
+
∫ t

t−h
x(s)T (U ⊗Q1)x(s)ds

+
∫ t

t−2h
x(s)T (U ⊗Q2)x(s)ds +

∫0

−h

∫ t

t+θ
y(s)T (U ⊗ Z)y(s)dsdθ

+
∫ t

t−h
F(x(s))T (U ⊗ R)F(x(s))ds, t ≥ h,

(3.28)

where

U =

⎛

⎜⎜
⎝

N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1

⎞

⎟⎟
⎠. (3.29)

Then, by the Itô’s formula, the stochastic differential dV (xt, t) can be obtained

dV (xt, t) = LV (xt, t)dt + 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)σ(t)dw(t), (3.30)
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where

LV (xt, t) = 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)y(t) + σ(t)T (U ⊗ P)σ(t) + x(t)T (U ⊗Q1)x(t)

− x(t − h)T (U ⊗Q1)x(t − h) + x(t)T (U ⊗Q2)x(t) − x(t − 2h)T (U ⊗Q2)x(t − 2h)

+ F(x(t))T (U ⊗ R)F(x(t)) − F(x(t − h))T (U ⊗ R)F(x(t − h)) + hy(t)T (U ⊗ Z)y(t)

−
∫ t

t−h

[
y(s)T (U ⊗ Z)y(s)

]
ds.

(3.31)

By (3.27), we have

2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)y(t)

= 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]

+ 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)(H ⊗ Υ)x(t − h)

= 2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]

+ 2

[

x(t − h) −Dx(t − 2h) +
∫ t

t−h
y(s)ds +

∫ t

t−h
σ(s)dw(s)

]T
(U ⊗ P)(H ⊗ Υ)x(t − h).

(3.32)

From Corollary 3.2, it follows that

E
(

2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)y(t)

)

= E
⎛

⎝2
[
x(t) −Dx(t − h)

]T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t)) + (IN ⊗ C)F(x(t − h))]

+2

[

x(t − h) −Dx(t − 2h) +
∫ t

t−h
y(s)ds

]T
(U ⊗ P)(H ⊗ Υ)x(t − h)

⎞

⎠.

(3.33)
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By (3.25), it is easy to know that for any matrix S, we have

2y(t)T (U ⊗ S)[(IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h) + (IN ⊗ B)F(x(t))

+(IN ⊗ C)F(x(t − h)) − y(t)] = 0.
(3.34)

From (3.31)–(3.34) and by the Propositions 2.7 and 2.8, it is easy to get

E(LV (xt, t)) = E
(

1
h

∫ t

t−h

[
2
(
x(t) −Dx(t − h)

)T
(U ⊗ P)

× [(IN ⊗A +G ⊗ Γ)x(t) + (IN ⊗ B)F(x(t))

+(IN ⊗ C)F(x(t − h))] + 2
(
x(t − h) −Dx(t − 2h) + hy(s)

)T

× (U ⊗ P)(H ⊗ Υ)x(t − h)

+ σ(t)T (U ⊗ P)σ(t) + x(t)T (U ⊗Q1)x(t) − x(t − h)T

× (U ⊗Q1)x(t − h) + x(t)T (U ⊗Q2)x(t)

− x(t − 2h)T (U ⊗Q2)x(t − 2h) + F(x(t))T (U ⊗ R)F(x(t))

− F(x(t − h))T (U ⊗ R)F(x(t − h))

+ hy(t)T (U ⊗ Z)y(t) − hy(s)T (U ⊗ Z)y(s) + 2y(t)T (U ⊗ S)
× ((IN ⊗A +G ⊗ Γ)x(t) + (H ⊗ Υ)x(t − h) + (IN ⊗ B)F(x(t))

+(IN ⊗ C)F(x(t − h)) − y(t))
]
ds

)

= E
⎛

⎝ 1
h

∫ t

t−h

⎡

⎣
∑

1≤i<j≤N

(
2
(
xi(t) − xj(t) −D

(
xi(t − h) − xj(t − h)

))T

× (PA −NgijPΓ
)(
xi(t) − xj(t)

)

+ 2
(
xi(t) − xj(t) −D

(
xi(t − h) − xj(t − h)

))T

× PB(f(xi(t)) − f
(
xj(t)

))

+ 2
(
xi(t) − xj(t) −D

(
xi(t − h) − xj(t − h)

))T

× PC(f(xi(t − h)) − f
(
xj(t − h)

))

− 2
(
xi(t − h) − xj(t − h) −D

(
xi(t − 2h) − xj(t − 2h)

))T

× (NhijPΥ
)(
xi(t − h) − xj(t − h)

)
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− 2h
(
yi(s) − yj(s)

)T
NhijPΥ

(
xi(t − h) − xj(t − h)

))

+
(
σi(t, xi(t), xi(t − h)) − σj

(
t, xj(t), xj(t − h)

))T

× P(σi(t, xi(t), xi(t − h)) − σj
(
t, xj(t), xj(t − h)

))

+
(
xi(t) − xj(t)

)T
Q1

(
xi(t) − xj(t)

) − (xi(t − h) − xj(t − h)
)T

×Q1
(
xi(t − h) − xj(t − h)

)

+
(
xi(t) − xj(t)

)T
Q2

(
xi(t) − xj(t)

)

− (xi(t − 2h) − xj(t − 2h)
)T
Q2

(
xi(t − 2h) − xj(t − 2h)

)

+
(
f(xi(t)) − f

(
xj(t)

))T
R
(
f(xi(t)) − f

(
xj(t)

))

− (f(xi(t − h)) − f
(
xj(t − h)

))T

× R(f(xi(t − h)) − f
(
xj(t − h)

))

+ h
(
yi(t) − yj(t)

)T
Z
(
yi(t) − yj(t)

)

− h
(
yi(s) − yj(s)

)T
Z
(
yi(s) − yj(s)

)

+ 2
(
yi(t) − yj(t)

)T(
SA −NgijSΓ

)(
xi(t) − xj(t)

)

− 2
(
yi(t) − yj(t)

)T(
NhijSΥ

)(
xi(t − h) − xj(t − h)

)

+ 2
(
yi(t) − yj(t)

)T
SB

(
f(xi(t)) − f

(
xj(t)

))

+ 2
(
yi(t) − yj(t)

)T
SC

(
f(xi(t − h)) − f

(
xj(t − h)

))

−2
(
yi(t) − yj(t)

)T
S
(
yi(t) − yj(t)

)
⎤

⎦ds

⎞

⎠.

(3.35)

According to Assumptions 2.5 and (3.22), it is clear that

(
σi(t, xi(t), xi(t − h)) − σj

(
t, xj(t), xj(t − h)

))T
P
(
σi(t, xi(t), xi(t − h)) − σj

(
t, xj(t), xj(t − h)

))

≤ λ(xi(t) − xj(t)
)T
WT

1 W1
(
xi(t) − xj(t)

)

+ λ
(
xi(t − h) − xj(t − h)

)T
WT

2 W2
(
xi(t − h) − xj(t − h)

)
.

(3.36)

By Assumption 2.6, we can obtain

0 ≤ 2ε
(
xi(t) − xj(t)

)T
UT(f(xi(t)) − f

(
xj(t)

))
+ 2ε

(
f(xi(t)) − f

(
xj(t)

))T
V
(
xi(t) − xj(t)

)

− 2ε
(
xi(t) − xj(t)

)T
UTV

(
xi(t) − xj(t)

) − 2ε
(
f(xi(t)) − f

(
xj(t)

))T(
f(xi(t)) − f

(
xj(t)

))
.

(3.37)
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Combining (3.35)–(3.37), we have

E(LV (xt, t)) ≤ E
⎡

⎣ 1
h

∫ t

t−h

∑

1≤i<j≤N
ξTijΞξijds

⎤

⎦, (3.38)

where

ξij =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

xi(t) − xj(t)
xi(t − h) − xj(t − h)
xi(t − 2h) − xj(t − 2h)
f(xi(t)) − f

(
xj(t)

)

f(xi(t − h)) − f
(
xj(t − h)

)

yi(t) − yj(t)
yi(s) − yj(s)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.39)

Since Ξ < 0, it is guaranteed that all the subsystems in (2.1) are globally asymptotically
synchronized in the mean square. The proof is completed.

Remark 3.7. We note here that if D = 0 in (2.1), then system (2.1) describes a kind of stochastic
delayed complex networks considered in [32]. Our result can be applied to this case, and we
have pointed out that [32] made a mistake when dealing with expectations of stochastic cross
terms in Remark 3.3. If we let A be a diagonal and negative matrix and let D = 0 in (2.1), the
system (2.1) will be an array of coupled neural networks consisting of N nodes, in which
each node is an n-dimensional stochastic delayed Hopfield neural network. As to stochastic
Hopfield neural networks with time delays, [30, 38] have investigated the stability problems,
respectively. Furthermore, if we don’t consider stochastic disturbances and time delays in
stochastic delayed Hopfield neural networks, then this kind of neural networks is the famous
Hopfield neural network.

Remark 3.8. If we do not consider the stochastic disturbances in (2.1), then the system will be
a kind of determinate neutral-type delayed complex networks, that have been considered in
the [18–20]. If we let A be a diagonal and negative matrix in this kind of determinate neutral-
type delayed complex networks, each node will be an n-dimensional neutral-type delayed
neural network. For neutral-type neural networks with time delays, [39, 40] have discussed
the stability problems and presented the new and effective stability conditions, respectively.

Remark 3.9. For neutral stochastic delay systems, a very active topic is to obtain the delay-
dependent condition. For example, [28, 29] considered delay-dependent stability problems
for neutral stochastic delay systems. However, these two papers used bounding techniques
including the Jensen inequality to deal with stochastic cross terms contain the Itô integral.
Obviously, bounding techniques will increase the conservatism. In the derivation process
of Theorem 3.6, we don’t use any bounding technique to deal with stochastic cross terms.
Therefore, this method can show less conservatism and can also be extended to solve delay-
dependent stability problems for neutral stochastic delay systems.

Remark 3.10. In Theorem 3.6, we give a delay-dependent synchronization criterion by the
linear matrix inequalities (LMIs), because LMIs can be easily solved by using the Matlab
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LMI toolbox and no tuning of parameters is required. Moreover, we can easily get the
maximum possible upper bound on the delay by the LMI toolbox. The maximum possible
upper bound on the delay is the main criterion for judging the conservatism of a delay-
dependent condition.

4. Numerical Example

In this section, we present a simulation example to illustrate the effectiveness of our approach.

Example 4.1. Consider the following complex network consisting of three identical nodes:

d[xi(t) −Dxi(t − h)]

=

⎡

⎣Axi(t) + Bf(xi(t)) + Cf(xi(t − h)) +
3∑

j=1

gijΓxj(t) +
3∑

j=1

hijΥxj(t − h)
⎤

⎦dt

+ σi(t, xi(t), xi(t − h))dw(t),

(4.1)

for all i = 1, 2, 3, where xi(t) = [xi1(t), xi2(t)]
T ∈ R2 is the state vector of the ith subsystem,

and

A =
(−3 0

0 −3

)
, B =

(
0.6 −0.1
−0.3 0.5

)
, C =

(−0.5 −0.1
0.2 −1.5

)
, D =

(−0.6 0
0 −0.6

)
,

G =

⎛

⎝
−3 1 2
1 −2 1
2 1 −3

⎞

⎠, H =

⎛

⎝
−2 1 1
1 −2 1
1 1 −2

⎞

⎠, Γ =
(

0.5 0
0.1 0.5

)
, Υ =

(
0.5 0.1
0 0.4

)
,

σ(t, x(t), x(t − h)) =
(√

0.15 0
√

0.2 0
0

√
0.15 0

√
0.2

)(
x(t)

x(t − h)
)
,

f(xi(t)) =
(
f1(xi1(t)), f2(xi2(t))

)T = (tanh(xi1(t)), tanh(xi2(t)))
T .

(4.2)

Thus, the matrices U,V,W1,W2, in the Assumptions 2.5 and 2.6 are

U =
(

0 0
0 0

)
, V =

(
1 0
0 1

)
, W1 =

(√
0.3 0
0

√
0.3

)

, W2 =

(√
0.4 0
0

√
0.4

)

. (4.3)

According to Theorem 3.6, the allowable maximum delay h, that can guarantee the globally
asymptotic mean-square synchronization of the neutral-type stochastic delayed complex
networks, is 0.33. When we randomly choose the the initial states in [0, 1] × [0, 1], the
synchronization errors are plotted in Figures 1 and 2, which can confirm that the neutral-
type stochastic delayed complex system is globally synchronized in the mean square.
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Figure 1: State error of x11(t) − xi1(t), i = 2, 3.
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Figure 2: State error of x12(t) − xi2(t), i = 2, 3.

5. Conclusions

This paper has investigated the problem of delay-dependent synchronization criterion for
neutral-type stochastic delayed complex networks. Most important of all, this paper is
concerned with expectations of stochastic cross terms containing the Itô integral. By sto-
chastic analysis techniques, we prove that among these stochastic cross terms, x(t −
h)TK

∫ t
t−h μ(s, xs)dw(s) is the only one whose expectation is equal to zero. Then, this paper
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has utilized this conclusion to give a delay-dependent synchronization criterion for neutral-
type stochastic delayed complex networks. In the derivation process, the mathematical
development avoids bounding stochastic cross terms. Thus, the method in our paper can lead
to a criterion with less conservatism, and a numerical example is provided to demonstrate the
effectiveness of the proposed approach.

Acknowledgments

The work of Y. Zhang and B. Song was supported by the National Natural Science Foundation
of China under Grants no. 61104221 and the Natural Science Foundation of the Jiangsu
Higher Education Institutions of China under Grant no. 10KJB120004. The work of J. H. Park
was supported by 2012 Yeungnam University Research Grant. The work of Z.-G. Wu was
supported by the National Natural Science Foundation of China under Grant no. 61174029.

References

[1] B. A. Huberman and L. A. Adamic, “Growth dynamics of the world-wide web,” Nature, vol. 401, no.
6749, p. 131, 1999.
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Cohen-Grossberg neural networks with discontinuous activation functions is considered. Using
the property of M-matrix and a generalized Lyapunov-like approach, the uniqueness is proved
for state solutions and corresponding output solutions, and equilibrium point and corresponding
output equilibrium point of considered neural networks. Meanwhile, global exponential stability
of equilibrium point is obtained. Furthermore, by contraction mapping principle, the uniqueness
and globally exponential stability of limit cycle are given. Finally, an example is given to illustrate
the effectiveness of the obtained results.

1. Introduction

Recently, different types of neural networks with or without time delays have been widely
investigated due to their wide applicability [1–32]. Obviously, considerable research interests
are focused on the studies of Cohen-Grossberg neural networks (CGNNs) with their various
generalizations due to their potential applications in classification, associative memory, and
parallel computation and their ability to solve optimization problems. This class of neural
networks is proposed by Cohen and Grossberg [1] in 1983, and can be modeled as

dui(t)
dt

= −ai(ui(t))
⎡

⎣bi(ui(t)) −
n∑

j=1

wijfj
(
uj(t)

) − Ii
⎤

⎦, i = 1, 2, . . . , n, (1.1)

where n ≥ 2 is the number of neurons in the network, ui denotes the state variable associated
with the ith neuron, ai represents an amplification function, and bi is an appropriately
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behaved function.wij represents the connection strengths between neurons, and if the output
from neuron j excites (resp., inhibits) neuron i, then wij ≥ 0 (resp., wij ≤ 0). The activation
function fj shows how neurons respond to each other. CGNNs include a lot of famous
ecological systems and neural networks as special cases such as the Lotka-Volterra system,
the Gilpia-Analg competition system, the Eingen-Schuster system, and the Hopfield neural
networks [1–3], where the Hopfield neural networks can be described as follows:

dui(t)
dt

= −bi(ui(t)) +
n∑

j=1

wijfj
(
uj(t)

)
+ Ii, i = 1, 2, . . . , n. (1.2)

For CGNNs, dynamics behavior have been studied in literature; we refer to [4–10, 27–
29] and the references cited therein. In [4], by using the concept of Lyapunov diagonally
stable (LDS) and linear matrix inequality approach, some criteria were given to ensure
global stability and global exponential stability. Yuan and Cao in [5] considered global
asymptotic stability of delayed Cohen-Grossberg neural networks via nonsmooth analysis.
Robust exponentially stability of delayed Cohen-Grossberg neural networks is discussed in
[10]. In [27], the authors studied the stochastic stability of a class of Cohen-Grossberg neural
networks, in which the interconnections and delays are time varying.

In the above papers, a common feature is that the activation functions are assumed to
be continuous and even Lipschitz continuous. However, in [11], Forti and Nistri pointed out
that neural networks modeled by differential equations with discontinuous right-hand side
are important and do frequently arise in practice. In order to model discrete-time cellular
neural networks, a conceptually analogous model based on hard comparators was used
[12]. The class of neural networks introduced in [13] to deal with linear and nonlinear
programming problems can be considered as another important example. Those networks
make use of constraint neurons with a diode-like input-output activations. Once again,
in order to ensure satisfaction of the constraints, the diodes are required to have a very
high slope in the conducting region; that is, they should approximate the discontinuous
characteristic of an ideal diode [14]. When treating with dynamical systems with high-slope
nonlinear elements, a system of differential equations with discontinuous right-hand side is
often used, rather than the model with high but finite slope [15]. The reason of analyzing the
ideal discontinuous case is that such analysis is able to reveal crucial features of the dynamics,
such as the possibility that trajectories be confined for some time intervals on discontinuity
surfaces. Another interesting phenomenon which is peculiar to discontinuous systems is the
possibility that trajectories converge toward an equilibrium point in finite time [16, 17], which
is of special interest for designing real-time neural optimization solvers.

In [11], Forti and Nistri discussed the global convergence of neural networks with
discontinuous neuron activations by means of the concepts and results of differential
equations with discontinuous right-hand side introduced by Filippov [21]. In [18], they
extended the results in [11] under the assumption that the interconnection matrix is an
M-matrix or H-matrix. In [19], without assuming the boundedness and the continuity of
the neuron activations, the authors presented sufficient conditions for the global stability of
neural networks with time delay based on linear matrix inequality. Also, in [20], they present
some sufficient conditions for the global stability and exponential stability of a class of the
CGNNs by using the LDS, and provided an estimate of the convergence rate. In [24–26], the
authors discussed the stability or multistability of the neural networks with discontinuous
activation functions. However, [11, 24–26] have shown that convergence of the state does
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not imply convergence of the outputs. In addition, in the practical applications, the result of
the neural computation is usually the steady-state neuron output, rather than the asymptotic
value of the state. Hence, in this paper, we will study global convergence of CGNNs with
discontinuous activation functions, where the interconnection matrix is assumed to be an M-
matrix or H-matrix. Firstly, using the property of M-matrix and a generalized Lyapunov-like
approach, we prove the uniqueness of state solutions and corresponding output solutions,
and equilibrium point and corresponding output equilibrium point for the considered neural
networks. Then, global exponential stability of unique equilibrium point is discussed and
exponential convergence rate is estimated. Also, by contraction mapping principle, the
globally exponential stability of limit cycle is given. Finally, we use a numerical example
to illustrate the effectiveness of the theoretical results. The rest of the paper is organized as
follows. In Section 2, model description and preliminaries are presented. The main results
are stated in Section 3. In Section 4, an example is given to show the validity of the obtained
results. Finally, in Section 5, the conclusions are drawn.

Notations. Throughout the paper, the transpose of and inverse of any square matrix A are
expressed as AT and A−1, respectively. For α = (α1, . . . , αn)

T ∈ R
n, α > 0 denotes αi > 0 for

i = 1, 2, . . . , n. For x, y ∈ R
n, 〈x, y〉 =

∑n
i=1 xiyi denotes the scalar product of x, y.

2. Model Description and Preliminaries

In this paper, we consider the CGNNs (1.1) with discontinuous right-hand side. The compact
form of model (1.1) is expressed as follows:

du(t)
dt

= −A(u(t))
[
Bu(t) −Wf(u(t)) − I], (2.1)

where u(t) = (u1(t), u2(t), . . . , un(t))
T ∈ R

n,A(u(t)) = diag (a1(u1(t)), a2(u2(t)), . . . ,
an(un(t))), B = diag (b1, b2, . . . , bn),W = (wij)n×n, I = (I1, I2, . . . , In)

T ∈ R
n, and f(u(t)) =

(f1(u1(t)), . . . , fn(un(t)))
T .

Throughout this paper, we make the following assumptions.

(A1) The function ai(r) is continuous, 0 < ǎi ≤ ai(r) ≤ âi for all r ∈ R, where ǎi and âi
are positive constants, i = 1, 2, . . . , n.

(A2) The matrix W = (wij)n×n is nonsingular, that is, detW /= 0.

Moreover, f = (f1, . . . , fn) is supposed to belong to the following class of discontinu-
ous functions.

Definition 2.1 (see [18] (Function Class FD)). f(x) ∈ FD if and only if for i = 1, 2, . . . , n, the
following conditions hold:

(i) fi is bounded on R;

(ii) fi is piecewise continuous on R; namely, fi is continuous on R except a countable set
of points of discontinuity pki, where there exist finite right and left limits fi(p+ki) and
fi(p−ki), respectively; moreover, fi has finite discontinuous points in any compact
interval of R;

(iii) fi is nondecreasing on R.
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Denote the set of discontinuous points of fi, i = 1, 2, . . . , n, by

Si =
{
pki ∈ R : fi

(
p+ki

)
> fi

(
p−ki

)}
. (2.2)

Sometimes, f = (f1, . . . , fn) is supposed to belong to the next class of discontinuous
functions, which is included in FD.

Definition 2.2 (see [18] (Function Class FDL)). f(x) ∈ FDL if and only if f(x) ∈ FD and for
i = 1, 2, . . . , n, fi is locally Lipschitz with Lipschitz constant li(xi) ≥ 0 for all xi ∈ R \ Si.
Furthermore, we have li(xi) ≥ Li < +∞ for all xi ∈ R \ Si.

For model (1.1) or model (2.1) with discontinuous right-hand side, a solution of
Cauchy problem need to be explained. In this paper, solutions in the sense of Filippov [21]
are considered whose definition will be given next.

Let K[f(u)] = (K[f1(u1), K[f2(u2)], . . . , K[fn(un)])
T , where K[fi(ui)] = [fi(u−i ),

fi(u+i )].

Definition 2.3. A function u(t), t ∈ [t1, t2], where t1 < t2 ≤ +∞ is a solution (in the sense
of Filippov) of (2.1) in the interval [t1, t2], with initial condition u(t1) = u0 ∈ R

n, if u(t) is
absolutely continuous on [t1, t2] and u(t1) = u0, and for almost all (a.a.) t ∈ [t1, t2] we have

du(t)
dt

∈ −A(u(t))
[
Bu(t) −WK

[
f(u(t))

] − I]. (2.3)

Let u(t), t ∈ [t1, t2], be a solution of model (2.1). For a.a. t ∈ [t1, t2], one can obtain

du(t)
dt

= −A(u(t))
[
Bu(t) −Wγ(t) − I], (2.4)

where

γ(t) =W−1
(
A−1(u)u̇(t) + Bu(t) − I

)
∈ K[

f(u(t))
]

(2.5)

is the output solution of model (2.1) corresponding to u(t). And γ(t) is a bounded measurable
function [11], which is uniquely defined by the state solution u(t) for a.a. t ∈ [t1, t2].

Definition 2.4 (equilibrium point). u∗ ∈ R
n is an equilibrium point of model (2.1) if and only

if the following algebraic inclusion is satisfied:

0 ∈ A(u∗)
(−Bu∗ +WK

[
f(u∗)

]
+ I

)
. (2.6)

Definition 2.5 (output equilibrium point). Let u∗ be an equilibrium point of model (1.1);

γ∗ =W−1(Bu∗ − I) ∈ K[
f(u∗)

]
(2.7)

is the output equilibrium point of model (2.1) corresponding to u∗.

In this paper, we also need the following definitions and lemma.
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Definition 2.6 (see [18]). Let Q ∈ R
n×n be a square matrix. Matrix Q is said to be an M-matrix

if and only if Qij ≤ 0 for each i /= j, and all successive principal minors of Q are positive.

Definition 2.7 (see [18]). Let Q ∈ R
n×n be a square matrix. Matrix Q is said to be an H-matrix

if and only if the comparison matrix of Q, which is defined by

[M(Q)]ij =

{
|Qii|, i = j,
−∣∣Qij

∣
∣, i /= j,

(2.8)

is an M-matrix.

Lemma 2.8 (see [18]). Suppose that Q is anM-matrix. Then, there exists a vector ξ > 0 such that
QTξ > 0.

All results of this paper are under one of the following assumptions:

(a) −W is an M-matrix;

(b) −W is an H-matrix such that Wii < 0.

(a) and (b) can be applied to cooperative neural networks [22] and cooperative-
competitive neural networks, respectively.

From [23], the result that −W is LDS under (a) or (b) can be obtained; hence, all results
in [20] hold. So, for any u0 ∈ R

n, model (2.1) has a bounded absolutely continuous solution
u(t) for t ≥ 0 which satisfies u(0) = u0. Meanwhile, there exists an equilibrium point u∗ ∈ R

n

of model (2.1).
If −W is an M-matrix, then, there exists ξ = (ξ1, . . . , ξn)

T > 0 such that

(−W)T ξ = β > 0. (2.9)

If −W is an H-matrix, then, there exists ξ = (ξ1, . . . , ξn)
T > 0 such that

[M(−W)]T ξ = β > 0. (2.10)

Using the positive vector ξ, we define the distance in R
n as follows: for any x, y ∈ R

n, define

∥∥x − y∥∥ξ =
n∑

i=1

ξi
∣∣xi − yi

∣∣. (2.11)

Definition 2.9. The equilibrium point u∗ of (2.1) is said to be globally exponentially stable, if
there exist constants α > 0 and M > 0 such that for any solution u(t) of model (2.1), we have

‖u(t) − u∗‖ξ ≤M‖u0 − u∗‖ξ exp{−αt}. (2.12)

Also, we can consider the CGNNs with periodic input:

du(t)
dt

= −A(u(t))
[
Bu(t) −Wf(u(t)) − I(t)], (2.13)

where I(t) = (I1(t), I2(t), . . . , In(t))
T is periodic input vectors with period ω.
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Definition 2.10. A periodic orbit u∗(t) of Cohen-Grossberg networks is said to be globally
exponentially stable, if there exist constants α > 0 and M > 0 such that such that for any
solution u(t) of model (2.13), we have

‖u(t) − u∗(t)‖ ≤M∥
∥u0 − u∗0

∥
∥
ξ exp{−αt}. (2.14)

3. Main Results

In this section, we shall establish some sufficient conditions to ensure the uniqueness of
solutions, equilibrium point, output equilibrium point, and limit cycle as well as the global
exponential stability of the state solutions.

Because Filippov solution includes set-valued function, in the general case, for a given
initial condition, a discontinuous differential equation has multiple solutions starting at it
[16]. Next, it will be shown that the uniqueness of solutions of model (2.1) can be obtained
under the assumptions (A1) and (A2).

Theorem 3.1. Under the assumptions (A1) and (A2), if f ∈ FD and −W is anM-matrix or −W is
an H-matrix such that Wii < 0, then, for any u0 there is a unique solution u(t) of model (2.1) with
initial condition u(0) = u0, which is defined and bounded for all t ≥ 0. Meanwhile, the corresponding
output solution γ(t) of model (2.1) is uniquely defined and bounded for a.a. t ≥ 0.

Proof. We only need to prove the uniqueness. Let u(t) and ũ(t), t ≥ 0 are two solutions of
model (2.1) with the initial condition u(0) = ũ(0) = u0.

Define

V (u − ũ) =
n∑

i=1

ξi

∣∣∣∣∣

∫ui

ũi

ds

ai(s)

∣∣∣∣∣
. (3.1)

Computing the time derivative of V along the solutions of (2.1) gives

dV (u − ũ)
dt

=
n∑

i=1

ξi sgn(ui(t) − ũi(t))
⎛

⎝−bi(ui(t) − ũi(t)) +
n∑

j=1

wij

(
γj(t) − γ̃j(t)

)
⎞

⎠, (3.2)

where

sgn(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1, s > 0,
0, s = 0,
−1, s < 0.

(3.3)

From f ∈ FD and γj(t) ∈ K[fj(uj(t))], γ̃j(t) ∈ K[fj(ũj(t))], one can have

sgn
(
uj(t) − ũj(t)

)(
γj(t) − γ̃j(t)

)
=
∣∣γj(t) − γ̃j(t)

∣∣. (3.4)
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Hence

dV (u − ũ)
dt

= −
n∑

i=1

ξibi|ui(t) − ũi(t)| +
n∑

i=1

ξiwii

∣
∣γi(t) − γ̃i(t)

∣
∣

+
n∑

i=1

ξi sgn(ui(t) − ũi(t))
n∑

j=1,j /= i

wij

(
γj(t) − γ̃j(t)

)

≤ −
n∑

i=1

ξibi|ui(t) − ũi(t)| −
n∑

i=1

ξi|wii|
∣
∣γi(t) − γ̃i(t)

∣
∣

+
n∑

i=1

ξi
n∑

j=1,j /= i

∣
∣wij

∣
∣
∣
∣γj(t) − γ̃j(t)

∣
∣

= −
n∑

i=1

ξibi|ui(t) − ũi(t)| −
n∑

i=1

ξi
[|wii|

∣∣γi(t) − γ̃i(t)
∣∣

+
n∑

j=1,j /= i

(−∣∣wij

∣∣)∣∣γj(t) − γ̃j(t)
∣∣]

= −
n∑

i=1

ξibi|ui(t) − ũi(t)| −
n∑

i=1

ξi
n∑

j=1

[M(−W)]ij
∣∣γj(t) − γ̃j(t)

∣∣

= −
n∑

i=1

ξibi|ui(t) − ũi(t)| − 〈ξ,M(−W)v(t)〉

= −
n∑

i=1

ξibi|ui(t) − ũi(t)| −
〈
[M(−W)]T ξ, v(t)

〉

= −
n∑

i=1

ξibi|ui(t) − ũi(t)| −
〈
β, v(t)

〉 ≤ 0,

(3.5)

where v(t) = (|γ1(t) − γ̃1(t)|, . . . , |γn(t) − γ̃n(t)|)T . Integrating (3.1) between 0 and t0 > 0, we
have

V (u(t0) − ũ(t0)) ≤ V (u(0) − ũ(0)) = V (u0 − u0) = 0, (3.6)

and hence, u(t0) = ũ(t0) for any t0 > 0; that is, the solution of model (2.1) with initial condition
u(0) = u0 is unique.

From (2.5), the output solution γ(t) corresponding to u(t) is uniquely defined and
bounded for a.a. t ≥ 0. The proof of Theorem 3.1 is completed.
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Remark 3.2. Under the assumptions (A1) and (A2), if f ∈ FD and −W is an M-matrix or −W
is an H-matrix such that Wii < 0, then, for any I ∈ R

n, model (2.1) has a unique equilibrium
point and a unique corresponding output equilibrium point. Because from the assumptions,
we have −W is LDS, hence, from Theorem 6 in [20], model (2.1) has a unique equilibrium
point. By Definition 2.5, it is easily obtained that corresponding output equilibrium point is
unique.

Next, global exponential stability of the equilibrium point of model (2.1) and the
uniqueness and global exponential stability of limit cycle of model (2.13) are addressed. The
results are given in following theorems.

Theorem 3.3. Under the assumptions (A1) and (A2), if f ∈ FD and −W is an M-matrix or −W
is an H-matrix such that Wii < 0, then, for any I ∈ R

n, model (2.1) has a unique equilibrium point
which is globally exponentially stable.

Proof. Let u(t), t ≥ 0, be the solution of model (2.1) such that u(0) = u0, and for a.a. t ≥ 0,
let γ(t) be the corresponding output solution. For equilibrium point u∗, γ∗ is corresponding
output equilibrium point.

Since bi > 0, we can choose a small ε > 0 such that

bi − ε

ǎi
> 0. (3.7)

Define

Ṽ (u(t) − u∗) = eεt
n∑

i=1

ξi

∣∣∣∣∣

∫ui(t)

u∗i

ds

ai(s)

∣∣∣∣∣
. (3.8)

Computing the time derivative of Ṽ along the solutions of (2.1), it follows that

dṼ (u(t) − u∗)
dt

≤ eεt
[

−
n∑

i=1

ξi

(
bi − ε

ǎi

)∣∣ui(t) − u∗i
∣∣ − 〈

β, ṽ(t)
〉
]

≤ 0, (3.9)

where ṽ(t) = (|γ1(t) − γ∗1 |, . . . , |γn(t) − γ∗n|)T .
Hence,

Ṽ (u(t) − u∗) ≤ Ṽ (u0 − u∗) ≤ 1
ǎ
‖u0 − u∗‖ξ, (3.10)

where ă = min{ǎ1, ǎ2, . . . , ǎn}.
On the other hand,

Ṽ (u(t) − u∗) ≥ eεt 1
â
‖u(t) − u∗‖ξ, (3.11)

where â = max{â1, â2, . . . , ân}.
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So, the following inequality holds:

‖u(t) − u∗‖ξ ≤
â

ǎ
‖u0 − u∗‖ξe−εt, (3.12)

that is, u∗ is globally exponentially stable.

Remark 3.4. Since bi − ε/ǎi > 0, the exponential convergence rate ε can be estimated by means
of the maximal allowable value by virtue of inequality ε < ǎibi, i = 1, 2, . . . , n. From this, one
can see that amplification functions have key effect on the convergence rate of the stability
for the considered model.

Next, the uniqueness and the exponentially stability of limit cycle for model (2.13) is
given.

Theorem 3.5. Under the assumptions (A1) and (A2), if f ∈ FD and −W is anM-matrix or −W is
an H-matrix such that Wii < 0, then model (2.13) has a unique globally exponentially stable limit
cycle.

Proof. Let u(t), ũ(t) are two solutions of model (2.13), such that u(0) = u0, ũ(0) = ũ0 respecti-
vely.

Define

V (u(t) − ũ(t)) = eεt
n∑

i=1

ξi

∣∣∣∣∣

∫ui(t)

ũi(t)

ds

ai(s)

∣∣∣∣∣
. (3.13)

Similar to the proof of Theorem 3.3, the following inequality holds:

‖u(t) − ũ(t)‖ξ ≤
â

ǎ
‖u0 − ũ0‖ξe−εt, (3.14)

Define u(t)(θ) = u(t + θ). Define a mapping L : Rn → Rn by L(u0) = u
(ω)
0 , then Lk(u0) = u

(kω)
0 .

We can choose a positive integer k, such that for a positive constant ρ < 1,

â

ǎ
exp{−εkω} ≤ ρ < 1. (3.15)

And, from (3.14), we have

∥∥∥Lk(u0) − Lk(ũ0)
∥∥∥
ξ
≤ â

ǎ
‖u0 − ũ0‖ξ exp{−ε(kω)} ≤ ρ‖u0 − ũ0‖ξ. (3.16)

By contraction mapping principle, there exists a unique fixed point u∗0 such that Lk(u∗0) = u∗0.
In addition, Lk(L(u∗0)) = L(Lk(u∗0)) = L(u∗0); that is, L(u∗0) is also a fixed point of Lk. By the
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uniqueness of the fixed point of the mapping Lk, L(u∗0) = u
∗
0; that is, u∗(ω)0 = u∗0. Let u∗(t) be a

state of model (1.1) with initial condition u∗0; we obtain for all i ∈ {1, 2, . . . , n},

du∗i (t)
dt

= −ai
(
u∗i (t)

)
⎡

⎣u∗i (t) −
n∑

j=1

wijfj
(
u∗j (t)

)
− Ii(t)

⎤

⎦. (3.17)

Then, for all i ∈ {1, 2, . . . , n},

du∗i (t +ω)
dt

= − ai
(
u∗i (t +ω)

)
⎡

⎣u∗i (t +ω) −
n∑

j=1

wijfj
(
u∗j (t +ω)

)
− Ii(t +ω)

⎤

⎦

= − ai
(
u∗i (t +ω)

)
⎡

⎣u∗i (t +ω) −
n∑

j=1

wijfj
(
u∗j (t +ω)

)
− Ii(t)

⎤

⎦,

(3.18)

That is, u∗(t+ω)T is also a state of the model (2.13) with initial condition u∗(ω)0 ; here, u∗(ω)0 = u∗0;
hence, for all t ≥ 0, from Theorem 3.1,

u∗(t +ω) = u∗(t). (3.19)

Hence, u∗(t) is an isolated periodic orbit of model (2.13) with period ω, that is, a limit cycle
of model (2.13). From (3.14), we can obtain that it is globally exponentially stable. The proof
of Theorem 3.5 is completed.

Remark 3.6. Similar to those that are given in [18], global convergence of the output solutions
in finite time also can be discussed, which can be embodied in the following example, and
the detailed results are omitted.

4. Illustrative Example

In this section, we shall give an example to illustrate the effectiveness of our results.

Example 4.1. Consider the following CGNN model:

du1(t)
dt

= (2 + 0.4 cos(u1(t)))
[−u1(t) − 4 sgn(u1(t)) − 2 sgn(u2(t)) + I1(t)

]
,

du2(t)
dt

= (2 + 0.4 cos(u2(t)))
[−u2(t) + 3 sgn(u1(t)) − 2 sgn(u2(t)) + I2(t)

]
,

(4.1)

where

sgn(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1, s > 0,
undefined, s = 0,
−1, s < 0.

(4.2)
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Figure 1: Transient behavior of (u1, u2) and (γ1, γ2) for I = (0, 0)T , u0 = (6,−6)T .

Obviously, −W is an H-matrix with wii < 0 and

ξ =

⎛

⎜⎜
⎝

1

5
4

⎞

⎟⎟
⎠, β =

⎛

⎜⎜
⎝

1
4
1
4

⎞

⎟⎟
⎠. (4.3)

Also, the subsets ΠC, ΠD, and ΠCD in this example are the same as those in example 1 in [18]
which are depicted in detail in Figure 3 in [18].

Firstly, we choose I = (0, 0)T ∈ ΠD, u0 = (6,−6)T . The equilibrium point u∗ of
model (4.1) is (0, 0)T , and the corresponding output equilibrium point γ∗ = (0, 0)T . Global
convergence of u(t) and γ(t) in finite time can be obtained. Figure 1 depicts the behavior of
state solution u(t) and output solution γ(t) with I = (0, 0)T , u0 = (6,−6)T .

Secondly, we choose I = (4,−6)T ∈ ΠC, u0 = (−6, 6)T . Model (4.1) has a unique
equilibrium point u∗ = (2,−1)T and a unique output equilibrium point γ∗ = (1,−1)T . Behavior
of state solution and output solution is depicted in Figure 2.
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Figure 2: Transient behavior of (u1, u2) and (γ1, γ2) for I = (0, 0)T , u0 = (6,−6)T .

Then, we choose I = (0, 5)T ∈ ΠCD, u0 = (4,−2)T . u∗ = (0, 1.5)T and γ∗ = (−0.5, 1)T

are equilibrium point and output equilibrium point of model (4.1), respectively. Simulation
results with I = (0, 5)T , u0 = (4,−2)T about global convergence in finite time of the state
solution u(t) and corresponding output solution γ(t) are depicted in Figure 3.

5. Conclusions

In this paper, by using the property of M-matrix and a generalized Lyapunov-like approach,
global convergence of CGNNs possessing discontinuous activation functions is investigated
under the condition that neuron interconnection matrix belongs to the class of M-matrices
or H-matrices. The uniqueness is proved for equilibrium point and corresponding output
equilibrium point of considered neural networks. It is also proved that for considered model,
the solution starting at a given initial condition is unique. Meanwhile, global exponential
stability of equilibrium point is obtained for any input. Furthermore, by contraction
mapping principle, the uniqueness and the globally exponential stability of limit cycle are
given.
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Figure 3: Transient behavior of (u1, u2) and (γ1, γ2) for I = (0, 0)T , u0 = (6,−6)T .
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The stability analysis of global asymptotic stability of neural networks of neutral type with
both discrete interval delays and general activation functions is discussed. New delay-dependent
conditions are obtained by using more general Lyapunov-Krasovskii functionals. Meanwhile,
these conditions are expressed in terms of a linear matrix inequality (LMI) and can be verified
using the MATLAB LMI toolbox. Numerical examples are used to illustrate the effectiveness of the
proposed approach.

1. Introduction

During the past decades, artificial neural networks have received considerable attention
due to their applicability in solving signal processing, pattern recognition, associative
memories, parallel computation, image processing, and optimization problems [1–6].
Research problems on dynamic behavior such as Chaos control, Hopf bifurcation analysis,
and Stability analysis have arisen in such applications and received attention in recent years.
In addition, time delays occur frequently in neural networks model [7, 8], which reduce the
rate of transmission, as well as cause instability and poor performance of neural networks.
Thus, the study of stability of neural networks with time delays is practically required for
an engineering system. In recent years, various methods have been proposed to deal with
the problem of global stability analysis for neural networks with time delays [9–13]. For
example, Singh, 2007 [12], proposed an LMI method for delayed neural networks. Liu et al.
2008 [13] developed a delayed bidirectional associative memory neural network based on
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Young’s inequality and Hölder’s inequality techniques, and several new sufficient criteria
are obtained by using a new Lyapunov functional and an-matrix.

In practice, in order to describe the dynamics of some complicated neural networks
more precisely, the information about derivatives of the past state has been introduced in
the state equations of a considered neural network model [14–16]. This new type of neural
networks is often called neural networks of neutral type [17]. In particular, the problem of
establishing stability for neural networks of neutral type with discrete time-varying delays
has received research attention recently [18–20]. But, unbounded distributed delays were
not taken into account in Park et al., 2008 [18]; Park and Kwon, 2009 [19]; Park and Kwon,
2009 [20]. In a real neural system, the presence of distributed delay affects the system
stability. More recently, some important results have been obtained on the stability analysis
issue for neural networks of neutral type with discrete and unbounded distributed [21, 22].
Nevertheless, in their works, the activation functions of neural networks of neutral type
with discrete and unbounded distributed delays have to be Lipschitz continuous to avoid
computational complexity. However, in a real system, the activation functions are neither
bounded nor monotonous; the functions are also discontinuous and nondifferentiable.
Despite important progress made in studies on stability of neutral-type neural networks with
discrete delays, due to the lack of the generality of the proposed neural networks model, how
to solve the global stability of the proposed model is a challenging and critical issue.

The objective of this paper is to further reduce the conservatism of the stability
conditions for neural networks of neutral type with mixed delays (discrete interval
delays and unbounded distributed delays) and general activation functions. Based on the
Lyapunov-Krasovskii stability theory and the LMI technique, a new sufficient condition is
proposed in terms of an LMI. Finally, a numerical example is presented to illustrate the
validity of the proposed approach. The rest of this paper is organized as follows. In Section 2,
the problem formulation is stated and two assumptions are presented. The proof of the main
result of stability analysis is given in Section 3. In Section 4, two numerical examples are
provided to demonstrate the effectiveness of the proposed method. The paper is concluded
in Section 5.

Throughout this paper, for real symmetric matricesX and Y , the notationX ≥ Y (resp.,
X > Y ) means that X−Y is positive semidefinite (respectively, positive definite); �n and �n×n

denote the n-dimensional Euclidean space and the set of all n × n real matrices, respectively.
The superscripts “T” and “−1” stand for matrix transposition and matrix inverse, respectively.
The shorthand diag{X1, . . . , Xn} denotes a block diagonal matrix with diagonal blocks being
the matrices X1, . . . , Xn. The symmetric terms in a symmetric matrix are denoted by (∗). I is
the identity matrix with appropriate dimensions.

2. Problem Description

Consider the following neural networks of neutral-type model:

ẏi(t) = − ciyi(t) +
n∑

j=1

wij1fj
(
yj(t)

)
+

n∑

j=1

wij2gj
(
yj(t − τ(t))

)
+

n∑

j=1

aij

∫ t

−∞
kj(t − s)vj

(
yj(s)

)
ds

+
n∑

j=1

bij ẏj(t − h(t)) + Ii, i = 1, . . . , n,

(2.1)
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where yi(t) is the state of the ith neuron at timet, ci > 0 denotes the passive decay rate, wij1,
wij2, aij , and bij are the interconnection matrices representing the weight coefficients of the
neurons, fj(·), gj(·), and vj(·) are activation functions, and Ii is an external constant input.
The delay kj is a real valued continuous nonnegative function defined on [0,+∞], which is
assumed to satisfy

∫∞
0 kj(s)ds = 1, j = 1, . . . , n.

For system (2.1), the following assumptions are given.

Assumption 2.1. For i ∈ {1, 2, . . . , n}, the neuron activation functions in (2.1) satisfy

l̃−i ≤ fi(x1) − fi(x2)
x1 − x2

≤ l̃+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l̂−i ≤ gi(x1) − gi(x2)
x1 − x2

≤ l̂+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l
−
i ≤ vi(x1) − vi(x2)

x1 − x2
≤ l +i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

(2.2)

where l̃−i , l̃
+
i , l̂

−
i , l̂

+
i , l

−
i , and l

+
i are some constants.

Assumption 2.2. The time-varying delays τ(t) and h(t) satisfy

0 ≤ τ1 ≤ τ(t) ≤ τ2, τ̇(t) ≤ τd < 1, 0 < h(t) ≤ h, ḣ(t) ≤ hd < 1, (2.3)

where τ1, τ2, τd, h, and hd are constants.

Assume y∗ = [y∗
1, y

∗
2, . . . , y

∗
n]
T is an equilibrium point of (2.1). Through xi = yi − y∗

i ,
system (2.1) can be transformed into the following system:

ẋ(t) = −Cx(t) +W1f(x(t)) +W2g(x(t − τ(t))) +A
∫ t

−∞
K(t − s)v(x(s))ds + Bẋ(t − h(t)),

(2.4)

where x(t) = [x1(t), . . . , xn(t)]
T ∈ �n is the neural state vector, f(x(t)) =

[f1(x1(t)), . . . , fn(xn(t))]
T ∈ �n is the neuron activation function vector with f(0) = 0,

g(x(t)) = [g1(x1(t)), . . . , gn(xn(t))]
T ∈ �n is the neuron activation function vector with

g(0) = 0, v(x(t)) = [v1(x1(t)), . . . , vn(xn(t))]
T ∈ �n is the neuron activation function vector

with v(0) = 0. C = diag{c1, . . . , cn} > 0, and W1 ∈ �n×n, W2 ∈ �n×n, A ∈ �n×n, and B ∈ �n×n

are the connection weight matrices.
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Note that since functions fi(·), gi(·), and vi(·) satisfy Assumption 2.1, fi(·), gi(·), and
vi(·) also satisfy

l̃−i ≤ fi(x1) − fi(x2)
x1 − x2

≤ l̃+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l̂−i ≤ gi(x1) − gi(x2)
x1 − x2

≤ l̂+i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

l
−
i ≤ vi(x1) − vi(x2)

x1 − x2
≤ l +i , i = 1, 2, . . . , n, x1, x2 ∈ �n, x1 /=x2,

(2.5)

where l̃−i , l̃
+
i , l̂

−
i , l̂

+
i , l

−
i , and l

+
i are some constants.

3. Stability Analysis

In order to obtain the main results of stability analysis, the following lemma is introduced.

Lemma 3.1. For any constant matrix M > 0, any scalars a and b such that a < b, and a vector
function x(t) : [a, b] → �n such that the integrals concerned are well defined, the following holds:

[∫b

a

x(s)ds

]T
M

[∫b

a

x(s)ds

]

≤ (b − a)
∫b

a

xT (s)Mx(s)ds. (3.1)

To simplify the proofs, the following notations are adopted:

L1 = diag
{
l̃−1 l̃

+
1 , l̃

−
2 l̃

+
2 , . . . , l̃

−
nl̃

+
n

}
, L2 = diag

{
l̃−1 + l̃+1 , l̃

−
2 + l̃+2 , . . . , l̃

−
n + l̃

+
n

}
,

L3 = diag
{
l̂−1 l̂

+
1 , l̂

−
2 l̂

+
2 , . . . , l̂

−
nl̂

+
n

}
, L4 = diag

{
l̂−1 + l̂+1 , l̂

−
2 + l̂+2 , . . . , l̂

−
n + l̂

+
n

}
,

L5 = diag
{
l
−
1 l

+
1 , l

−
2 l

+
2 , . . . , l

−
n l

+
n

}
, L6 = diag

{
l
−
1 + l

+
1 , l

−
2 + l

+
2 , . . . , l

−
n + l

+
n

}
.

(3.2)

Then, the following theorem is proposed.
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Theorem 3.2. Under Assumptions 2.1 and 2.2, the origin of system (2.4) is globally asymptotically
stable, if there exist matrices P > 0, Qi = QT

i > 0, i = 1, 2, 3, 4, Rj = RT
j > 0, j = 1, 2, 3, S = ST > 0,

diagonal matrices Z > 0, Tj > 0, j = 1, 2, . . . , 6, and E > 0, such that the following LMI holds:

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

Θ1,1 0 Θ1,3 Θ1,4 Θ1,5 0 0 0 Θ1,9 0 Θ1,11 Θ1,12

∗ Θ2,2 0 0 0 0 0 Θ2,8 Θ2,9 Θ2,10 0 0
∗ ∗ Θ3,3 0 0 0 0 0 Θ3,9 0 Θ3,11 Θ3,12

∗ ∗ ∗ Θ4,4 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Θ5,5 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ6,6 Θ6,7 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Θ7,7 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ8,8 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ9,9 0 Θ9,11 Θ9,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ10,10 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ11,11 Θ11,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ12,12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.3)

where

Θ1,1 = −PC − CTPT +Q1 + R2 + R3 − L1T1 − TT1 LT1 − L3T3 − TT3 LT3 − L5T5 − TT5 LT5 + CTΛC,

Θ1,3 = PW1 − CTZT + L2T1 − CΛW1, Θ1,4 = L4T3, Θ1,5 = L6T5,

Θ1,9 = PW2 − CΛW2, Θ1,11 = PA − CΛA, Θ1,12 = PB − CΛB,

Θ2,2 = −(1 − τd)Q1 − L1T2 − TT2 LT1 − L3T4 − TT4 LT3 − L5T6 − TT6 LT5 ,
Θ2,8 = L2T2, Θ2,9 = L4T4, Θ2,10 = L6T6,

Θ3,3 = ZW1 +WT
1 Z

T +Q2 − T1 − TT1 +WT
1 ΛW1,

Θ3,9 =WT
1 ΛW2 + ZW2, Θ3,11 = ZA +WT

1 ΛA, Θ3,12 = ZB +WT
1 ΛB,

Θ4,4 = Q3 − T3 − TT3 , Θ5,5 = Q4 + E − T5 − TT5 ,

Θ6,6 = −R2 − (τ2 − τ1)−1S, Θ6,7 = (τ2 − τ1)−1S, Θ7,7 = −R3 − (τ2 − τ1)−1S,

Θ8,8 = −(1 − τd)Q2 − T2 − TT2 , Θ9,9 = −T4 − TT4 − (1 − τd)Q3 +WT
2 ΛW2,

Θ9,11 =WT
2 ΛA, Θ9,12 =WT

2 ΛB, Θ10,10 = −T6 − TT6 − (1 − τd)Q4,

Θ11,11 = −E +ATΛA,

Θ11,12 = ATΛB, Θ12,12 = −(1 − hd)R1 + BTΛB, Λ = R1 + (τ2 − τ1)S.
(3.4)

Proof. Construct a Lyapunov-Krasovskili functional for system (2.4) as follows:

V (x(t), t) =
5∑

i=1

Vi(x(t), t), (3.5)
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where

V1(x(t), t) = xT (t)Px(t) + 2
n∑

i=1

zi

∫xi

0
fi(s)ds,

V2(x(t), t) =
∫ t

t−τ(t)
xT (s)Q1x(s)ds +

∫ t

t−τ(t)

[
fT (x(s))Q2f(x(s)) + gT (x(s))Q3g(x(s))

+ vT (x(s))Q4v(x(s))
]
ds,

V3(x(t), t) =
∫ t

t−h(t)
ẋT (s)R1ẋ(s)ds +

∫ t

t−τ1

xT (s)R2x(s)ds +
∫ t

t−τ2

xT (s)R3x(s)ds,

V4(x(t), t) =
n∑

j=1

ej

∫∞

0

∫ t

t−σ
kj(σ)v2

j

(
xj(s)

)
dsdσ, V5(x(t), t) =

∫−τ1

−τ2

∫ t

t+θ
ẋT (s)Sẋ(s)dsdθ.

(3.6)

The time derivative of V (x(t), t) along the trajectory of system (2.4) is calculated

V̇ (x(t), t) =
5∑

i=1

V̇i(x(t), t), (3.7)

where

V̇1(x(t), t) = 2xT (t)P

[

− Cx(t) +W1f(x(t)) +W2g(x(t − τ(t)))

+A
∫ t

−∞
K(t − s)v(x(s))ds + Bẋ(t − h(t))

]

+ 2fT (x(t))Z

[

− Cx(t) +W1f(x(t)) +W2g(x(t − τ(t)))

+A
∫ t

−∞
K(t − s)v(x(s))ds + Bẋ(t − h(t))

]

,

V̇2(x(t), t) = xT (t)Q1x(t) − (1 − τ̇(t))xT (t − τ(t))Q1x(t − τ(t))

+ fT (x(t))Q2f(x(t)) − (1 − τ̇(t))fT (x(t − τ(t)))

×Q2f(x(t − τ(t))) + gT (x(t))Q3g(x(t))

− (1 − τ̇(t))gT (x(t − τ(t)))Q3g(x(t − τ(t)))

+ vT (x(t))Q4v(x(t)) − (1 − τ̇(t))vT (x(t − τ(t)))Q4v(x(t − τ(t)))
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≤ xT (t)Q1x(t) − (1 − τd)xT (t − τ(t))Q1x(t − τ(t))

+ fT (x(t))Q2f(x(t)) − (1 − τd)fT (x(t − τ(t)))

×Q2f(x(t − τ(t))) + gT (x(t))Q3g(x(t))

− (1 − τd)gT (x(t − τ(t)))Q3g(x(t − τ(t)))

+ vT (x(t))Q4v(x(t)) − (1 − τd)vT (x(t − τ(t)))Q4v(x(t − τ(t))),

V̇3(x(t), t) = ẋT (t)R1ẋ(t) −
(
1 − ḣ(t))ẋT (t − h(t))R1ẋ(t − h(t))

+ xT (t)R2x(t) − xT (t − τ1)R2x(t − τ1)

+ xT (t)R3x(t) − xT (t − τ2)R3x(t − τ2)

≤ ẋT (t)R1ẋ(t) − (1 − hd)ẋT (t − h(t))R1ẋ(t − h(t))

+ xT (t)R2x(t) − xT (t − τ1)R2x(t − τ1)

+ xT (t)R3x(t) − xT (t − τ2)R3x(t − τ2),

V̇4(x(t), t) =
n∑

j=1

ej

∫∞

0
kj(δ)v2

j

(
xj(t)

)
dδ −

n∑

j=1

ej

∫∞

0
kj(δ)v2

j

(
xj(t − δ)

)
dδ

= vT (x(t))Ev(x(t)) −
n∑

j=1

ej

∫∞

0
kj(δ)dδ

∫∞

0
kj(δ)v2

j

(
xj(t − δ)

)
dδ

≤ vT (x(t))Ev(x(t)) −
n∑

j=1

ej

(∫∞

0
kj(δ)v

(
xj(t − δ)

)
dδ

)2

,

V̇5(x(t), t) = (τ2 − τ1)ẋT (t)Sẋ(t) −
∫ t−τ1

t−τ2

ẋT (s)Sẋ(s)ds.

(3.8)

By Lemma 3.1, the following inequalities are true:

−
n∑

j=1

ej

(∫∞

0
kj(δ)v

(
xj(t − δ)

)
dδ

)2

≤ −
(∫ t

−∞
K(t − s)v(x(s))ds

)T

E

(∫ t

−∞
K(t − s)v(x(s))ds

)

,

−
∫ t−τ1

t−τ2

ẋT (s)Sẋ(s)ds = −(τ2 − τ1)−1(τ2 − τ1)
∫ t−τ1

t−τ2

ẋT (s)Sẋ(s)ds
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≤ −(τ2 − τ1)−1

[∫ t−τ1

t−τ2

ẋ(s)ds

]T
S

[∫ t−τ1

t−τ2

ẋ(s)ds

]

≤ −(τ2 − τ1)−1[x(t − τ1) − x(t − τ2)]TS[x(t − τ1) − x(t − τ2)].

(3.9)

From (2.5), the following inequalities can be satisfied

[
fi(xi(t)) − l̃−i xi(t)

][
fi(xi(t)) − l̃+i xi(t)

]
≤ 0,

[
fi(xi(t − τ(t))) − l̃−i xi(t − τ(t))

][
fi(xi(t − τ(t))) − l̃+i xi(t − τ(t))

]
≤ 0,

[
gi(xi(t)) − l̂−i xi(t)

][
gi(xi(t)) − l̂+i xi(t)

]
≤ 0,

[
gi(xi(t − τ(t))) − l̂−i xi(t − τ(t))

][
gi(xi(t − τ(t))) − l̂+i xi(t − τ(t))

]
≤ 0,

[
vi(xi(t)) − l

−
i xi(t)

][
vi(xi(t)) − l

+
i xi(t)

]
≤ 0,

[
vi(xi(t − τ(t))) − l

−
i xi(t − τ(t))

][
vi(xi(t − τ(t))) − l

+
i xi(t − τ(t))

]
≤ 0.

(3.10)

Then, for any Tj = diag{tj1, tj2, . . . , tjn} ≥ 0, j = 1, 2, . . . , 6, it follows that

0 ≤ − 2
n∑

i=1

t1i
[
fi(xi(t)) − l̃−i xi(t)

][
fi(xi(t)) − l̃+i xi(t)

]

− 2
n∑

i=1

t2i
[
fi(xi(t − τ(t))) − l̃−i xi(t − τ(t))

]

×
[
fi(xi(t − τ(t))) − l̃+i xi(t − τ(t))

]

= − 2fT (x(t))T1f(x(t)) + 2xT (t)L2T1f(x(t))

− 2xT (t)L1T1x(t) − 2fT (x(t − τ(t)))T2f(x(t − τ(t)))

+ 2xT (t − τ(t))L2T2f(x(t − τ(t))) − 2xT (t − τ(t))L1T2x(t − τ(t)),

0 ≤ − 2
n∑

i=1

t3i
[
gi(xi(t)) − l̂−i xi(t)

][
gi(xi(t)) − l̂+i xi(t)

]

− 2
n∑

i=1

t4i
[
gi(xi(t − τ(t))) − l̂−i xi(t − τ(t))

]

×
[
gi(xi(t − τ(t))) − l̂+i xi(t − τ(t))

]
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= − 2gT (x(t))T3g(x(t)) + 2xT (t)L4T3g(x(t))

− 2xT (t)L3T3x(t) − 2gT (x(t − τ(t)))T4g(x(t − τ(t)))

+ 2xT (t − τ(t))L4T4g(x(t − τ(t))) − 2xT (t − τ(t))L3T4x(t − τ(t)),
(3.11)

0 ≤ − 2
n∑

i=1

t5i
[
vi(xi(t)) − l

−
i xi(t)

][
vi(xi(t)) − l

+
i xi(t)

]

− 2
n∑

i=1

t6i
[
vi(xi(t − τ(t))) − l

−
i xi(t − τ(t))

]

×
[
vi(xi(t − τ(t))) − l

+
i xi(t − τ(t))

]

= − 2vT (x(t))T5v(x(t)) + 2xT (t)L6T5v(x(t))

− 2xT (t)L5T5x(t) − 2vT (x(t − τ(t)))T6v(x(t − τ(t)))

+ 2xT (t − τ(t))L6T6v(x(t − τ(t))) − 2xT (t − τ(t))L5T6x(t − τ(t)).

(3.12)

Then, combining (3.7)–(3.12), it follows that

V̇ (x(t), t) ≤ ξT (t)Θξ(t), (3.13)

where Θ is given in (3.3) and

ξT (t)

=

⎡

⎢
⎣

xT (t), xT (t − τ(t)), fT (x(t)), gT (x(t)), vT (x(t)), xT (t − τ1), xT (t − τ2), fT (x(t − τ(t))),

gT (x(t − τ(t))), vT (x(t − τ(t))),
(∫ t

−∞
K(t − s)v(x(s))ds

)T

, ẋT (t − h(t))

⎤

⎥
⎦.

(3.14)

It is easy to see that V̇ (x(t), t) < 0 if Θ < 0 for any ξ(t)/= 0. Thus if the LMI given in (3.3) holds,
the system (2.4) is globally asymptotically stable; the proof is completed.

Remark 3.3. To the best of the authors’ knowledge, the problem of global stability for the
neural networks of neutral type with both mixed delays (discrete interval and unbounded
distributed delays) and general activation functions has not been investigated in the existing
literature.

Remark 3.4. In this paper, it is assumed that the resulting activation functions are non-
monotonic and more general than the usual Lipschitz functions. Thus, the advantage of the
proposed work lies in the less conservative assumptions of activation functions.
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Remark 3.5. It should be noted that when f(x(t)) = g(x(t)) = v(x(t)), the system (2.4) is
described as

ẋ(t) = −Cx(t) +W1f(x(t)) +W2f(x(t − τ(t))) +A
∫ t

−∞
K(t − s)f(x(s))ds + Bẋ(t − h(t)),

(3.15)

which has been intensively investigated in the literatures [21, 22]. Since the discrete delay
are time varying and various in an interval, our work extends and improves the results of
[21, 22].

Then the following corollary can be proved directly.

Corollary 3.6. Under Assumptions 2.1 and 2.2, the origin of system (3.15) is globally asymptotically
stable, if there exist matrices P > 0, Qi = QT

i > 0, i = 1, 2, Rj = RT
j > 0, j = 1, 2, 3, S = ST > 0,

diagonal matrices > 0, Tj > 0, j = 1, 2, and E > 0, such that the following LMI holds:

Θ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Θ1,1 0 Θ1,3 0 0 Θ1,6 Θ1,7 Θ1,8

∗ Θ2,2 0 0 0 Θ2,6 0 0
∗ ∗ Θ3,3 0 0 Θ3,6 Θ3,7 Θ3,8

∗ ∗ ∗ Θ4,4 Θ4,5 0 0 0
∗ ∗ ∗ ∗ Θ5,5 0 0 0
∗ ∗ ∗ ∗ ∗ Θ6,6 Θ6,7 Θ6,8

∗ ∗ ∗ ∗ ∗ ∗ Θ7,7 Θ7,8

∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ8,8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.16)

where

Θ1,1 = −PC − CTPT +Q1 + R2 + R3 − 2L1T1 + CTΛC,

Θ1,3 = PW1 − CTZT + L2T1 − CTΛW1,

Θ1,6 = PW2 − CTΛW2, Θ1,7 = PA − CTΛA,

Θ1,8 = PB − CTΛB, Θ2,2 = −(1 − τd)Q1 − 2L1T2,

Θ26 = L2T2, Θ3,3 = E +Q2 + ZW1 +WT
1 Z

T − 2T1 +WT
1 ΛW1,

Θ3,6 = ZW2 +WT
1 ΛW2,

Θ3,7 = ZA +WT
1 ΛB, Θ3,8 = ZB +WT

1 ΛA,

Θ4,4 = −R2 − (τ2 − τ1)−1S, Θ4,5 = (τ2 − τ1)−1S,
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Θ5,5 = −R3 − (τ2 − τ1)−1S,

Θ6,6 = −(1 − τd)Q2 − 2T2 +WT
2 ΛW2, Θ6,7 =WT

2 ΛB,

Θ6,8 =WT
2 ΛA, Θ7,7 = −E +ATΛA,

Θ7,8 = ATΛB, Θ8,8 = −(1 − hd)R1 + BTΛB,

Λ = R1 + (τ2 − τ1)S.

(3.17)

Proof. The proof is similar to that of Theorem 3.2.

4. Numerical Examples

Example 4.1. Consider the following three-neuron delayed neural networks of neutral type as
(2.4), where

C =

⎡

⎣
8 0 0
0 8 0
0 0 10

⎤

⎦, W1 =

⎡

⎣
1.2 −0.4 −0.3

−0.12 −0.81 −0.1
0.2 0.9 −0.3

⎤

⎦,

W2 =

⎡

⎣
1.7 0.1 −0.5
0.25 1.2 0.1
−0.1 0.65 1.2

⎤

⎦, A =

⎡

⎣
0.7 0.6 −0.8
−0.1 0.1 1.1
0.11 0.63 0.7

⎤

⎦,

B =

⎡

⎣
0.4 0 0
0 0.4 0
0 0 0.4

⎤

⎦,

τ(t) = h(t) = 0.3 + 0.3sin2(t).

(4.1)

Then, let τ1 = 0.3, τ2 = 0.6, τd = 0.3, hd = 0.3, L1 = 0.09I, L2 = I, L3 = 0.16I, L4 = I, L5 = 0.21I,
and L6 = I. Using MATLAB LMI Control toolbox, by Theorem 3.2, we can find that the system
(2.4) is globally asymptotically stable and the solutions of LMI (3.3) are as follows:

P =

⎡

⎣
41.9798 5.3585 1.4026
5.3585 74.9441 −13.7212
1.4026 −13.7212 60.0629

⎤

⎦, Q1 =

⎡

⎣
85.9041 7.5228 −3.9355
7.5228 123.3913 −11.8320
−3.9355 −11.8320 93.7664

⎤

⎦,

Q2 =

⎡

⎣
31.9192 3.9335 7.9742
3.9335 60.8900 −3.6718
7.9742 −3.6718 69.4215

⎤

⎦, Q3 =

⎡

⎣
49.3721 2.7949 −4.1159
2.7949 46.4749 1.3294
−4.1159 1.3294 45.9695

⎤

⎦,
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Q4 =

⎡

⎣
28.1041 1.0821 0.1583
1.0821 30.9955 0.1964
0.1583 0.1964 31.1201

⎤

⎦, R1 =

⎡

⎣
4.2784 0.8939 0.1355
0.8939 9.1183 −2.1952
0.1355 −2.1952 6.2238

⎤

⎦,

R2 =

⎡

⎣
55.2806 3.7360 0.1040
3.7360 62.7629 1.6388
0.1040 1.6388 64.7637

⎤

⎦, R3 =

⎡

⎣
55.2806 3.7360 0.1040
3.7360 62.7629 1.6388
0.1040 1.6388 64.7637

⎤

⎦,

S =

⎡

⎣
3.6864 0.0321 0.6263
0.0321 6.5233 −0.9199
0.6263 −0.9199 5.3944

⎤

⎦, Z = diag
{

8.8438 8.8438 8.8438
}
,

T1 = diag
{

83.9664 83.9664 83.9664
}
, T2 =

{
29.3656 29.3656 29.3656

}
,

T3 = diag
{

54.5299 54.5299 54.5299
}
, T4 =

{
40.0839 40.0839 40.0839

}
,

T5 = diag
{

76.6716 76.6716 76.6716
}
, T6 =

{
31.5403 30.5403 30.5403

}
,

E = diag
{

56.8538 56.8538 56.8538
}
.

(4.2)

Example 4.2. Consider the following two-neuron delayed neural networks of neutral type as
[21], where

C =
[

3 0
0 3

]
, W1 =

[
0 0
0 0

]
, W2 =

[
0.6 −0.12
−0.6 0.3

]
, A =

[
0.2 −0.1
−0.2 0.1

]
, B =

[
0.2 0
0 0.2

]
,

τ(t) ≡ τ, h(t) ≡ h.
(4.3)

Then, let τ1 = 0, τ2 = 1, τd = 0, hd = 0, L1 = 0, and L2 = I. Using MATLAB LMI Control
toolbox, by Corollary 3.6, we can find that the system (3.15) is globally asymptotically stable
and the solutions of LMI (3.16) are as follows:

P =
[

201.6082 26.2458
26.2458 198.3666

]
, Q1 =

[
103.6896 −2.7859
−2.7859 103.2839

]
,

Q2 =
[

93.8975 −2.3887
−2.3887 80.3975

]
, R1 =

[
59.2873 12.1295
12.1295 57.5817

]
,

R2 =
[

91.0821 −4.2548
−4.2548 91.4235

]
, R3 =

[
91.0821 −4.2548
−4.2548 91.4235

]
,

S =
[

31.0944 7.5926
7.5926 30.4795

]
, Z = diag

{
49.1190 49.1190

}
,

T1 = diag
{

174.5230 147.5230
}
, T2 =

{
53.5516 53.5516

}
,

E = diag
{

98.5255 98.5255
}
.

(4.4)
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If τ2 = 2, the conditions in Rakkiyappan and Balasubramaniam, 2008 [21], cannot be satisfied,
but by Corollary 3.6 in this paper, one can find that system (3.15) is globally asymptotically
stable. Therefore, the proposed result is less conservative than that in Rakkiyappan and
Balasubramaniam, 2008 [21].

5. Conclusions

The problem of stability for neural networks of neutral type with discrete interval delays
and general activation functions is investigated in this paper. An integrated approach
based on a Lyapunov-Krasovskii functional and linear matrix inequality is proposed. In
the proposed approach, a corresponding Lyapunov-Krasovskii functional is constructed for
neural networks of neutral-type model. Then, by using inequality analysis technique, a
reasonably general sufficient condition is obtained in terms of LMI, which can be tested
easily using the MATLB LMI toolbox. Moreover, the proposed stability conditions extend
and improve the exiting results. Two numerical examples show that the proposed stability
result is effective, which can be used to guide engineering design.

In many real world systems, stochastic perturbations often affect the stability of neural
networks. Therefore, considering the presence of stochastic perturbations is critical to the
stability analysis of networks systems, and some recent progress has been made. In this
paper, the proposed neural network of natural type with discrete model was studied by an
integrated approach. For future researches, more theoretical analysis should be performed on
stochastic neural networks of natural type with mixed delays.
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The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time
neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-
dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities
(LMIs) by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally
convex approach. Also, a new activation condition which has not been considered in the literature
is proposed and utilized for derivation of stability criteria. Two numerical examples are given to
illustrate the effectiveness of the proposed method.

1. Introduction

Neural networks have received increasing attention of researches from various fields of
science and engineering such as moving image reconstructing, signal processing, pattern
recognition, and fixed-point computation. In the hardware implementation of systems, there
exists naturally time delay due to the finite information processing speed and the finite
switching speed of amplifiers. It is well known that time delay often causes undesirable
dynamic behaviors such as performance degradation, oscillation, or even instability of the
systems. Since it is a prerequisite to ensure stability of neural networks before its application
to various fields such as information science and biological systems, the problem of stability
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of neural networks with time delay has been a challenging issue [1–10]. Also, these days,
most systems use digital computers (usually microprocessor or microcontrollers) with the
necessary input/output hardware to implement the systems. The fundamental character of
the digital computer is that it takes computed answers at discrete steps. Therefore, discrete-
time modeling with time delay plays an important role in many fields of science and
engineering applications. With this regard, various approaches to delay-dependent stability
criteria for discrete-time neural networks with time delay have been investigated in the
literature [11–16].

In the field of delay-dependent stability analysis, one of the hot issues attracting the
concern of the researchers is to increase the feasible region of stability criteria. The most
utilized index to check the conservatism of stability criteria is to get maximum delay bounds
for guaranteeing the globally exponential stability of the concerned networks. Thus, many
researchers put time and efforts into some new approaches to enhance the feasible region of
stability conditions. In this regard, Liu et al. [11] proposed a unified linear matrix inequality
approach to establish sufficient conditions for the discrete-time neural networks to be
globally exponentially stable by employing a Lyapunov-Krasovskii functional. In [12, 13], the
existence and stability of the periodic solution for discrete-time recurrent neural network with
time-varying delays were studied under more general description on activation functions
by utilizing free-weighting matrix method. Based on the idea of delay partitioning, a new
stability criterion for discrete-time recurrent neural networks with time-varying delays was
derived [14]. Recently, some novel delay-dependent sufficient conditions for guaranteeing
stability of discrete-time stochastic recurrent neural networks with time-varying delays were
presented in [15] by introducing the midpoint of the time delay’s variational interval. Very
recently, via a new Lyapunov functional, a novel stability criterion for discrete-time recurrent
neural networks with time-varying delays was proposed in [16] and its improvement on
the feasible region of stability criterion was shown through numerical examples. However,
there are rooms for further improvement in delay-dependent stability criteria of discrete-time
neural networks with time-varying delays.

Motivated by the above discussions, the problem of new delay-dependent stability
criteria for discrete-time neural networks with time-varying delays is considered in this
paper. It should be noted that the delay-dependent analysis has been paid more attention
than delay-independent one because the sufficient conditions for delay-dependent analysis
make use of the information on the size of time delay [17, 18]. That is, the former is generally
less conservative than the latter. By construction of a suitable Lyapunov-Krasovskii functional
and utilization of reciprocally convex approach [19], a new stability criterion is derived in
Theorem 3.1. Based on the results of Theorem 3.1 and motivated by the work of [20], a further
improved stability criterion will be introduced in Theorem 3.4 by applying zero equalities
to the results of Theorem 3.1. Finally, two numerical examples are included to show the
effectiveness of the proposed method.

Notation. R
n is the n-dimensional Euclidean space, and R

m×n denotes the set of all m × n real
matrices. For symmetric matrices X and Y , X > Y (resp., X ≥ Y ) means that the matrix X − Y
is positive definite (resp., nonnegative). X⊥ denotes a basis for the null space of X. I denotes
the identity matrix with appropriate dimensions. ‖ · ‖ refers to the Euclidean vector norm
or the induced matrix norm. diag{· · · } denotes the block diagonal matrix. � represents the
elements below the main diagonal of a symmetric matrix.
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2. Problem Statements

Consider the following discrete-time neural networks with interval time-varying delays:

y(k + 1) = Ay(k) +W0g
(
y(k)

)
+W1g

(
y(k − h(k))) + b, (2.1)

where n denotes the number of neurons in a neural network, y(k) = [y1(k), . . . , yn(k)]
T ∈ R

n

is the neuron state vector, g(k) = [g1(k), . . . , gn(k)]
T ∈ R

n denotes the neuron activation
function vector, b = [b1, . . . , bn]

T ∈ R
n means a constant external input vector, A =

diag{a1, . . . , an} ∈ R
n×n(0 ≤ ai < 1) is the state feedback matrix, Wi ∈ R

n×n(i = 0, 1) are
the connection weight matrices, and h(k) is interval time-varying delays satisfying

0 < hm ≤ h(k) ≤ hM, (2.2)

where hm and hM are known positive integers.
In this paper, it is assumed that the activation functions satisfy the following

assumption.

Assumption 2.1. The neurons activation functions, gi(·), are continuous and bounded, and for
any u, v ∈ R, u/=v,

k−i ≤ gi(u) − gi(v)
u − v ≤ k+i , i = 1, 2, . . . , n, (2.3)

where k−i and k+i are known constant scalars.

As usual, a vector y∗ = [y∗
1, . . . , y

∗
n]
T is said to be an equilibrium point of system (2.1)

if it satisfies y∗ = Ay∗ +W0g(y∗) +W1g(y∗) + b. From [10], under Assumption 2.1, it is not
difficult to ensure the existence of equilibrium point of the system (2.1) by using Brouwer’s
fixed-point theorem. In the sequel, we will establish a condition to ensure the equilibrium
point y∗ of system (2.1) is globally exponentially stable. That is, there exist two constants
α > 0 and 0 < β < 1 such that ‖y(k) − y∗‖ ≤ αβksup−hM≤s≤0‖y(s) − y∗‖. To confirm this,
refer to [16]. For simplicity, in stability analysis of the network (2.1), the equilibrium point
y∗ = [y∗

1, . . . , y
∗
n]
T is shifted to the origin by utilizing the transformation x(k) = y(k) − y∗,

which leads the network (2.1) to the following form:

x(k + 1) = Ax(k) +W0f(x(k)) +W1f(x(k − h(k))), (2.4)

where x(k) = [x1(k), . . . , xn(k)]
T ∈ R

n is the state vector of the transformed network, and
f(x(k)) = [f1(x1(k)), . . . , fn(xn(k))]

T ∈ R
n is the transformed neuron activation function

vector with fi(xi(k)) = gi(xi(k) + y∗
i ) − gi(y∗

i ) and fi(0) = 0. From Assumption 2.1, it should
be noted that the activation functions fi(·) (i = 1, . . . , n) satisfy the following condition [10]:

k−i ≤ fi(u) − fi(v)
u − v ≤ k+i , ∀u, v ∈ R, u /=v, (2.5)
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which is equivalent to

[
fi(u) − fi(v) − k−i (u − v)][fi(u) − fi(v) − k+i (u − v)] ≤ 0, (2.6)

and if v = 0, then the following inequality holds:

[
fi(u) − k−i (u)

][
fi(u) − k+i (u)

] ≤ 0. (2.7)

Here, the aim of this paper is to investigate the delay-dependent stability analysis
of the network (2.4) with interval time-varying delays. In order to do this, the following
definition and lemmas are needed.

Definition 2.2 (see [16]). The discrete-time neural network (2.4) is said to be globally
exponentially stable if there exist two constants α > 0 and 0 ≤ β ≤ 1 such that

‖x(k)‖ ≤ αβk sup
−hM≤s≤0

‖x(s)‖. (2.8)

Lemma 2.3 ((Jensen inequality) [21]). For any constant matrix 0 < M = MT ∈ R
n×n, integers

hm and hM satisfying 1 ≤ hm ≤ hM, and vector function x(k) ∈ R
n, the following inequality holds:

−(hM − hm + 1)
hM∑

k=hm

xT (k)Mx(k) ≤ −
(

hM∑

k=hm

x(k)

)T

M

(
hM∑

k=hm

x(k)

)

. (2.9)

Lemma 2.4 ((Finsler’s lemma) [22]). Let ζ ∈ R
n, Φ = ΦT ∈ R

n×n, and Γ ∈ R
m×n such that

rank(Γ) < n. The following statements are equivalent:

(i) ζTΦζ < 0, ∀Γζ = 0, ζ /= 0,

(ii) Γ⊥TΦΓ⊥ < 0,

(iii) Φ +XΥ + ΥTXT < 0, ∀X ∈ R
n×m.

3. Main Results

In this section, new stability criteria for the network (2.4) will be proposed. For the sake
of simplicity on matrix representation, ei ∈ R

10n×n(i = 1, . . . , 10) are defined as block entry
matrices (e.g., e2 = [0, I, 0, . . . , 0

︸ ︷︷ ︸
8

]T ). The notations of several matrices are defined as
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hd = hM − hm,

ζ(k) =

[

xT (k), xT (k − hm), xT (k − h(k)), xT (k − hM),ΔxT (k),ΔxT (k − hm),

ΔxT (k − hM), fT (x(k)), fT (x(k − h(k))), fT (x(k + 1))

]T
,

χ(k) =
[
xT (k), xT (k − hm), xT (k − hM), fT (x(k))

]T
,

ξ(k) =
[
xT (k),ΔxT (k)

]T
,

Γ = [(A − I), 0, 0, 0,−I, 0, 0,W0,W1, 0],

Π1 = [e1 + e5, e2 + e6, e4 + e7, e10], Π2 = [e1, e2, e4, e8],

Π3 = [e1, e5], Π4 = [e2, e6], Π5 = [e4, e7], Π6 = [e2 − e3, e3 − e4],

Π7 = [e1, e8], Π8 = [e3, e9], Π9 = [e1 + e5, e10],

Ξ1 = Π1RΠT
1 −Π2RΠT

2 ,

Ξ2 = Π3NΠT
3 + Π4(M −N)ΠT

4 −Π5MΠT
5 ,

Ξ3 = e5

(
h2
mQ1

)
eT5 + e5

(
h2
dQ2

)
eT5 + e1(hmP1)eT1 − e2(hmP1)eT2 + hd

3∑

i=2

(
eiPie

T
i − ei+1Pie

T
i+1

)
,

Ξ4 = − (e1 − e2)(Q1 + P1)(e1 − e2)T −Π6

[
Q2 + P2 S

� Q2 + P3

]
ΠT

6 ,

Ξ5 = Π3

(
h2
mQ3

)
ΠT

3 + Π3

(
h2
dQ4

)
ΠT

3 ,

Φ =
5∑

i=1

Ξi,

Θ =
3∑

i=1

Π6+i

[−2KmHiKp

(
Km +Kp

)
Hi

� −2Hi

]
ΠT

6+i.

(3.1)

Now, the first main result is given by the following theorem.

Theorem 3.1. For given positive integers hm and hM, diagonal matrices Km = diag{k−1 , . . . , k−n}
and Kp = diag{k+1 , . . . , k+n}, the network (2.4) is globally exponentially stable for hm ≤ h(k) ≤
hM, if there exist positive definite matrices R ∈ R

4n×4n, M ∈ R
2n×2n, N ∈ R

2n×2n, Qi ∈ R
n×n,
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Qi+2 ∈ R
2n×2n(i = 1, 2), positive diagonal matrices Hi ∈ R

n×n(i = 1, 2, 3), any symmetric matrices
Pi ∈ R

n×n(i = 1, 2, 3), and any matrix S ∈ R
n×n satisfying the following LMIs:

[
Γ⊥
]T
(Φ + Θ)

[
Γ⊥
]
< 0, (3.2)

[
Q2 + P2 S

� Q2 + P3

]
≥ 0, (3.3)

Q3 +
[

0 P1

� 0

]
> 0, Q4 +

[
0 P2

� 0

]
> 0, Q4 +

[
0 P3

� 0

]
> 0, (3.4)

where Φ, Θ, and Γ are defined in (3.1).

Proof. Define the forward difference of x(k) and V (k) as

Δx(k) = x(k + 1) − x(k),
ΔV (k) = V (k + 1) − V (k).

(3.5)

Let us consider the following Lyapunov-Krasovskii functional candidate as

V (k) = V1(k) + V2(k) + V3(k) + V4(k), (3.6)

where

V1(k) = χT (k)Rχ(k),

V2(k) =
k−1∑

s=k−hm
ξT (s)Nξ(s) +

k−hm−1∑

s=k−hM
ξT (s)Mξ(s),

V3(k) = hm
−1∑

s=−hm

k−1∑

u=k+s

ΔxT (u)Q1Δx(u) + hd
−hm−1∑

s=−hM

k−1∑

u=k+s

ΔxT (u)Q2Δx(u),

V4(k) = hm
−1∑

s=−hm

k−1∑

u=k+s

ξT (u)Q3ξ(u) + hd
−hm−1∑

s=−hM

k−1∑

u=k+s

ξT (u)Q4ξ(u).

(3.7)
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The forward differences of V1(k) and V2(k) are calculated as

ΔV1(k) = χT (k + 1)Rχ(k + 1) − χT (k)Rχ(k)

=

⎡

⎢
⎢
⎣

x(k) + Δx(k)
x(k − hm) + Δx(k − hm)
x(k − hM) + Δx(k − hM)

f(x(k + 1))

⎤

⎥
⎥
⎦

T

R

⎡

⎢
⎢
⎣

x(k) + Δx(k)
x(k − hm) + Δx(k − hm)
x(k − hM) + Δx(k − hM)

f(x(k + 1))

⎤

⎥
⎥
⎦ − χT (k)Rχ(k)

= ζT(k)
(
Π1RΠT

1 −Π2RΠT
2

)
ζ(k)

= ζT(k)Ξ1ζ(k),

(3.8)

ΔV2(k) = ξT (k)Nξ(k) − ξT (k − hm)Nξ(k − hm)

+ ξT (k − hm)Mξ(k − hm) − ξT (k − hM)Mξ(k − hM)

= ζT(k)
(
Π3NΠT

3 + Π4(M −N)ΠT
4 −Π5MΠT

5

)
ζ(k)

= ζT(k)Ξ2ζ(k).

(3.9)

By calculating the forward differences of V3(k) and V4(k), we get

ΔV3(k) = h2
mΔx

T (k)Q1Δx(k) − hm
k−1∑

s=k−hm
ΔxT (s)Q1Δx(s)

+ h2
dΔx

T (k)Q2Δx(k) − hd
k−hm−1∑

s=k−hM
ΔxT (s)Q2Δx(s),

(3.10)

ΔV4(k) = h2
mξ

T (k)Q3ξ(k) − hm
k−1∑

s=k−hm
ξT (s)Q3ξ(s)

+ h2
dξ

T (k)Q4ξ(k) − hd
k−hm−1∑

s=k−hM
ξT (s)Q4ξ(s).

(3.11)

For any matrix P , integers l1 and l2 satisfying l1 < l2, and a vector function x(s) : [k − l2, k −
l1 − 1] → R

n where k is the discrete time, the following equality holds:

xT (k − l1)Px(k − l1) − xT (k − l2)Px(k − l2)

=
k−11−1∑

s=k−l2

(
xT (s + 1)Px(s + 1) − xT (s)Px(s)

)
.

(3.12)
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It should be noted that

xT (s + 1)Px(s + 1) − xT (s)Px(s)

= (Δx(s) + x(s))TP(Δx(s) + x(s)) − xT (s)Px(s)

= ΔxT (s)PΔx(s) + 2xT (s)PΔx(s).

(3.13)

From the equalities (3.12) and (3.13), by choosing (l1, l2) as (0, hm), (hm, h(k)) and (h(k), hM),
the following three zero equations hold with any symmetric matrices P1, P2, and P3:

0 = xT (k)(hmP1)x(k) − xT (k − hm)(hmP1)x(k − hm)

− hm
k−1∑

s=k−hm

(
ΔxT (s)P1Δx(s) + 2xT (s)P1Δx(s)

)
,

(3.14)

0 = xT (k − hm)(hdP2)x(k − hm) − xT (k − h(k))(hdP2)x(k − h(k))

− hd
k−hm−1∑

s=k−h(k)

(
ΔxT (s)P2Δx(s) + 2xT (s)P2Δx(s)

)
,

(3.15)

0 = xT (k − h(k))(hdP3)x(k − h(k)) − xT (k − hM)(hdP3)x(k − hM)

− hd
k−h(k)−1∑

s=k−hM

(
ΔxT (s)P3Δx(s) + 2xT (s)P3Δx(s)

)
.

(3.16)

By adding three zero equalities into the results of ΔV3(k), we have

ΔV3(k) = ζT (k)

(

e5

(
h2
mQ1

)
eT5 + e5

(
h2
dQ2

)
eT5 + e1(hmP1)eT1 − e2(hmP1)eT2

+hd
3∑

i=2

(
eiPie

T
i − ei+1Pie

T
i+1

))

ζ(k) + Σ

= ζT (k)Ξ3ζ(k) + Σ + Υ,

(3.17)
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where

Σ = − hm
k−1∑

s=k−hm
ΔxT (s)(Q1 + P1)Δx(s) − hd

k−hm−1∑

s=k−h(k)
ΔxT (s)(Q2 + P2)Δx(s)

− hd
k−h(k)−1∑

s=k−hM
ΔxT (s)(Q2 + P3)Δx(s),

(3.18)

Υ = − hm
k−1∑

s=k−hm
2xT (s)P1Δx(s) − hd

k−hm−1∑

s=k−h(k)
2xT (s)P2Δx(s)

− hd
k−h(k)−1∑

s=k−hM
2xT (s)P3Δx(s).

(3.19)

By Lemma 2.3, when hm < h(k) < hM, the sum term Σ in (3.18) is bounded as

Σ ≤ −
(

k−1∑

s=k−hm
Δx(s)

)T

(Q1 + P1)

(
k−1∑

s=k−hm
Δx(s)

)

−
⎛

⎝
k−hm−1∑

s=k−h(k)
Δx(s)

⎞

⎠

T(
1

1 − α(k)
)
(Q2 + P2)

⎛

⎝
k−hm−1∑

s=k−h(k)
Δx(s)

⎞

⎠

−
(

k−h(k)−1∑

s=k−hM
Δx(s)

)T(
1

α(k)

)
(Q2 + P3)

(
k−h(k)−1∑

s=k−hM
Δx(s)

)

= − ζT (k)(e1 − e2)(Q1 + P1)(e1 − e2)Tζ(k)

− ζT (k)Π6

⎡

⎢⎢
⎣

1
1 − α(k) (Q2 + P2) 0

�
1

α(k)
(Q2 + P3)

⎤

⎥⎥
⎦Π

T
6 ζ(k),

(3.20)

where α(k) = (hM − h(k))/hd.
By reciprocally convex approach [19], if the inequality (3.3) holds, then the following

inequality for any matrix S satisfies

⎡

⎢⎢⎢⎢
⎣

−
√

α(k)
1 − α(k)I 0

�

√
1 − α(k)
α(k)

I

⎤

⎥⎥⎥⎥
⎦

[
Q2 + P2 S

� Q2 + P3

]

⎡

⎢⎢⎢⎢
⎣

−
√

α(k)
1 − α(k)I 0

�

√
1 − α(k)
α(k)

I

⎤

⎥⎥⎥⎥
⎦

≥ 0, (3.21)
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which implies

⎡

⎢
⎢
⎣

1
1 − α(k) (Q2 + P2) 0

�
1

α(k)
(Q2 + P3)

⎤

⎥
⎥
⎦ ≥

[
Q2 + P2 S

� Q2 + P3

]
. (3.22)

It should be pointed out that when h(k) = hm or h(k) = hM, we have
∑k−hm−1

s=k−h(k) Δx(s) =

x(k − hm) − x(k − h(k)) = 0 or
∑k−h(k)−1

s=k−hM Δx(s) = x(k − h(k)) − x(k − hM) = 0, respectively.
Thus, the following inequality still holds:

Σ ≤ ζT (k)
(
−(e1 − e2)(Q1 + P1)(e1 − e2)T −Π6

[
Q2 + P2 S

� Q2 + P3

]
ΠT

6

)
ζ(k)

= ζT (k)Ξ4ζ(k).

(3.23)

Then, ΔV3 + ΔV4 has an upper bound as follows:

ΔV3 + ΔV4 ≤ ζT (k)

⎛

⎜⎜
⎝Ξ3 + Ξ4 + Π3

(
h2
mQ3

)
ΠT

3 + Π3

(
h2
dQ4

)
ΠT

3
︸ ︷︷ ︸

Ξ5

⎞

⎟⎟
⎠ζ(k)

− hm
k−1∑

s=k−hm
ξT (s)

{
Q3 +

[
0 P1

� 0

]}
ξ(s)

− hd
k−hm−1∑

s=k−h(k)
ξT (s)

{
Q4 +

[
0 P2

� 0

]}
ξ(s)

− hd
k−h(k)−1∑

s=k−hM
ξT (s)

{
Q4 +

[
0 P3

� 0

]}
ξ(s).

(3.24)

Here, if the inequalities (3.4) hold, then ΔV3 + ΔV4 is bounded as

ΔV3 + ΔV4 ≤ ζT (k)(Ξ3 + Ξ4 + Ξ5)ζ(k). (3.25)
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From (2.7), for any positive diagonal matrices Hi = diag{hi1, . . . , hin} (i = 1, 2, 3), the
following inequality holds:

0 ≤ − 2
n∑

i=1

h1i
[
fi(xi(k)) − k−i xi(k)

][
fi(xi(k)) − k+i xi(k)

]

− 2
n∑

i=1

h2i
[
fi(xi(k − h(k))) − k−i xi(k − h(k))][fi(xi(k − h(k))) − k+i xi(k − h(k))]

− 2
n∑

i=1

h3i
[
fi(xi(k + 1)) − k−i xi(k + 1)

][
fi(xi(k + 1)) − k+i xi(k + 1)

]

= ζT (k)

(
3∑

i=1

Π6+i

[−2KmHiKp

(
Km +Kp

)
Hi

� −2Hi

]
ΠT

6+i

)

ζ(k)

= ζT (k)Θζ(k).

(3.26)

Therefore, from (3.8)–(3.16) and by application of the S-procedure [23], ΔV has a new upper
bound as

ΔV ≤ ζT (k)

⎛

⎜⎜⎜⎜
⎝

5∑

i=1

Ξi
︸︷︷︸

Φ

+ Θ

⎞

⎟⎟⎟⎟
⎠
ζ(k), (3.27)

where Φ and Θ are defined in (3.1).
Also, the system (2.4) with the augmented vector ζ(k) can be rewritten as

Γζ(k) = 0, (3.28)

where Γ is defined in (3.1).
Then, a delay-dependent stability condition for the system (2.4) is

ζT (k)(Φ + Θ)ζ(k) < 0 subject to Γζ(k) = 0. (3.29)

Finally, by utilizing Lemma 2.4, the condition (3.29) is equivalent to the following inequality

[
Γ⊥
]T
(Φ + Θ)

[
Γ⊥
]
< 0. (3.30)

From the inequality (3.30), if the LMIs (3.2)–(3.4) hold. From (ii) and (iii) of Lemma 2.4, if
the stability condition (3.29) holds, then for any free maxrix X with appropriate dimension,
the condition (3.29) is equivalent to

Φ +Θ +XΓ + ΓTXT

︸ ︷︷ ︸
Ψ

< 0. (3.31)
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Therefore, from (3.31), there exists a sufficient small scalar ρ > 0 such that

ΔV ≤ ζT (k)Ψζ(k) < −ρ‖x(k)‖2. (3.32)

By using the similar method of [11, 12], the system (2.4) is globally exponentially stable for
any time-varying delay hm ≤ h(k) ≤ hM from Definition 2.2. This completes our proof.

Remark 3.2. In Theorem 3.1, the stability condition is derived by utilizing a new augmented
vector ζ(k) including f(x(k + 1)). This state vector f(x(k + 1)) which may give more
information on dynamic behavior of the system (2.4) has not been utilized as an element of
augmented vector ζ(k) in any other literature. Correspondingly, the state vector f(x(k + 1))
is also included in (3.26).

Remark 3.3. As mentioned in [10], the activation functions of transformed system (2.4) also
satisfy the condition (2.6). In Theorem 3.4, by choosing (u, v) in (2.6) as (x(k), x(k − h(k)))
and (x(k − h(k)), f(x(k + 1)), more information on cross-terms among the states f(x(k)),
f(x(k − h(k))), f(x(k + 1)), x(k), and x(k − h(k)) will be utilized, which may lead to
less conservative stability criteria. In stability analysis for discrete-time neural networks
with time-varying delays, this consideration has not been proposed in any other literature.
Through two numerical examples, it will be shown that the newly proposed activation
condition may enhance the feasible region of stability criterion by comparing maximum delay
bounds with the results obtained by Theorem 3.1.

As mentioned in Remark 3.3, from (2.6), we add the following new inequality with
any positive diagonal matrices Hi = diag{hi1, . . . , hin} (i = 4, 5, 6) to be chosen as

0 ≤ − 2
n∑

i=1

h4i
[
fi(xi(k)) − fi(xi(k − h(k))) − k−i (xi(k) − xi(k − h(k)))]

× [fi(xi(k)) − fi(xi(k − h(k))) − k+i (xi(k) − xi(k − h(k)))]

− 2
n∑

i=1

h5i
[
fi(xi(k − h(k))) − fi(xi(k + 1)) − k−i (xi(k − h(k)) − xi(k) −Δxi(k))

]

× [fi(xi(k − h(k))) − fi(xi(k + 1)) − k+i (xi(k − h(k)) − xi(k) −Δxi(k))
]

− 2
n∑

i=1

h6i
[
fi(xi(k + 1)) − fi(xi(k)) − k−i Δxi(k)

]

× [fi(xi(k + 1)) − fi(xi(k)) − k+i Δxi(k)
]

− ζT (k)
(

3∑

i=1

Π9+i

[−2KmH3+iKp

(
Km +Kp

)
H3+i

� −2H3+i

]
ΠT

9+i

)

ζ(k)

= ζT(k)Ωζ(k),

(3.33)

where Π10 = [e1 − e3, e8 − e9], Π11 = [e3 − e1 − e5, e9 − e10], and Π12 = [e5, e10 − e8]. We will add
this inequality (3.33) in Theorem 3.4. Now, we have the following theorem.
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Theorem 3.4. For given positive integers hm and hM, diagonal matrices Km = diag{k−1 , . . . , k−n}
and Kp = diag{k+1 , . . . , k+n}, the network (2.4) is globally exponentially stable for hm ≤ h(k) ≤ hM,
if there exist positive definite matrices R ∈ R

4n×4n, M ∈ R
2n×2n, N ∈ R

2n×2n, Qi ∈ R
n×n, Qi+2 ∈

R
2n×2n (i = 1, 2), positive diagonal matrices Hi ∈ R

n×n (i = 1, . . . , 6), any symmetric matrices
Pi ∈ R

n×n (i = 1, 2, 3), and any matrix S ∈ R
n×n satisfying the following LMIs:

[
Γ⊥
]T
(Φ + Θ + Ω)

[
Γ⊥
]
< 0, (3.34)

[
Q2 + P2 S

� Q2 + P3

]
≥ 0, (3.35)

Q3 +
[

0 P1

� 0

]
> 0, Q4 +

[
0 P2

� 0

]
> 0, Q4 +

[
0 P3

� 0

]
> 0, (3.36)

where Φ, Γ, and Ω are defined in (3.1) and Θ is in (3.33).

Proof. With the same Lyapunov-Krasovskii functional candidate in (3.6), by using the similar
method in (3.8)–(3.16), and considering inequality (3.36), the procedure of deriving the
condition (3.34)–(3.36) is straightforward from the proof of Theorem 3.1, so it is omitted.

4. Numerical Examples

In this section, we provide two numerical examples to illustrate the effectiveness of the
proposed criteria in this paper.

Example 4.1. Consider the discrete-time neural networks (2.4) where

A =

⎡

⎣
0.4 0 0
0 0.3 0
0 0 0.3

⎤

⎦, W0 =

⎡

⎣
0.2 −0.2 0.1
0 −0.3 0.2

−0.2 −0.1 −0.2

⎤

⎦, W1 =

⎡

⎣
−0.2 0.1 0
−0.2 0.3 0.1
0.1 −0.2 0.3

⎤

⎦. (4.1)

The activation functions satisfy Assumption 2.1 with

Km = diag{0,−0.4,−0.2}, Kp = diag{0.6, 0, 0}. (4.2)

For various hm, the comparison of maximum delay bounds (hM) obtained by Theorems 3.1
and 3.4 with those of [12, 16] is conducted in Table 1. From Table 1, it can be confirmed that
the results of Theorem 3.1 give a larger delay bound than those of [12] and are equal to the
results of [16]. However, the results obtained by Theorem 3.4 are better than the results of
[16] and Theorem 3.1, which supports the effectiveness of the proposed idea mentioned in
Remark 3.3.
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Table 1: Maximum bounds hM with different hm (Example 4.1).

Methods 2 4 6 10
Song and Wang [12] 6 8 10 14
Wu et al. [16] 12 14 16 20
Theorem 3.1 12 14 16 20
Theorem 3.4 14 16 18 22

Table 2: Maximum bounds hM with different hm and a = 0.9 (Example 4.2).

Methods 2 4 6 8 10 15
Song and Wang [12] 11 11 12 13 14 17
Zhang et al. [13] 11 12 13 14 16 19
Song et al. [14] 15 16 17 18 19 22
Wu et al. [16] 16 18 18 20 20 22
Theorem 3.1 18 18 19 20 20 23
Theorem 3.4 18 18 19 20 21 23

Example 4.2. Consider the discrete-time neural networks (2.4) having the following
parameters:

A =
[

0.8 0
0 a

]
, W0 =

[
0.001 0

0 0.005

]
, W1 =

[−0.1 0.01
−0.2 −0.1

]
, Km = 0, Kp = I.

(4.3)

When a = 0.9, for different values of hm, maximum delay bounds obtained by [12–14, 16]
and our Theorems are listed in Table 2. From Table 2, it can be confirmed that all the results
of Theorems 3.1 and 3.4 provide larger delay bounds than those of [12–14]. Also, our results
are better than or equal to the results of [16]. For the case of a = 0.7, another comparison of
our results with those of [15, 16] is conducted in Table 3, which shows all the results obtained
by Theorems 3.1 and 3.4 give larger delay bounds than those of [15, 16].

5. Conclusions

In this paper, improved delay-dependent stability criteria were proposed for discrete-time
neural networks with time-varying delays. In Theorem 3.1, by constructing the suitable
Lyapunov-Krasovskii’s functional and utilizing some recent results introduced in [19, 20],
the sufficient condition for guaranteeing the global exponential stability of discrete-time
neural network having interval time-varying delays has been derived. Based on the
results of Theorem 3.1, by constructing new inequalities of activation functions, the further
improved stability criterion was presented in Theorem 3.4. Via two numerical examples, the
improvement of the proposed stability criteria has been successfully verified.
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Table 3: Maximum bounds hM with different hm and a = 0.7 (Example 4.2).

Methods 2 4 6 8 10 15 20 100 1000
Zhang et al. [15] 20 22 24 26 28 33 38 118 1018
Wu et al. [16] 24 26 28 30 32 37 42 122 1022
Theorem 3.1 29 31 32 34 36 41 46 126 1026
Theorem 3.4 29 31 32 34 36 41 46 126 1026

Acknowledgments

This paper was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(2012-0000479), and by a grant of the Korea Healthcare Technology R & D Project, Ministry
of Health & Welfare, Republic of Korea (A100054).

References

[1] O. Faydasicok and S. Arik, “Equilibrium and stability analysis of delayed neural networks under
parameter uncertainties,” Applied Mathematics and Computation, vol. 218, no. 12, pp. 6716–6726, 2012.

[2] O. Faydasicok and S. Arik, “Further analysis of global robust stability of neural networks with
multiple time delays,” Journal of the Franklin Institute, vol. 349, no. 3, pp. 813–825, 2012.

[3] T. Ensari and S. Arik, “New results for robust stability of dynamical neural networks with discrete
time delays,” Expert Systems with Applications, vol. 37, no. 8, pp. 5925–5930, 2010.

[4] C. Li, C. Li, and T. Huang, “Exponential stability of impulsive high-order Hopfield-type neural
networks with delays and reaction-diffusion,” International Journal of Computer Mathematics, vol. 88,
no. 15, pp. 3150–3162, 2011.

[5] C. J. Li, C. D. Li, T. Huang, and X. Liao, “Impulsive effects on stability of high-order BAM neural
networks with time delays,” Neurocomputing, vol. 74, no. 10, pp. 1541–1550, 2011.

[6] D. J. Lu and C. J. Li, “Exponential stability of stochastic high-order BAM neural networks with time
delays and impulsive effects,” Neural Computing and Applications. In press.

[7] C. D. Li, C. J. Li, and C. Liu, “Destabilizing effects of impulse in delayed bam neural networks,”
Modern Physics Letters B, vol. 23, no. 29, pp. 3503–3513, 2009.

[8] C. D. Li, S. Wu, G. G. Feng, and X. Liao, “Stabilizing effects of impulses in discrete-time delayed
neural networks,” IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 323–329, 2011.

[9] H. Wang and Q. Song, “Synchronization for an array of coupled stochastic discrete-time neural
networks with mixed delays,” Neurocomputing, vol. 74, no. 10, pp. 1572–1584, 2011.

[10] Y. Liu, Z. Wang, and X. Liu, “Global exponential stability of generalized recurrent neural networks
with discrete and distributed delays,” Neural Networks, vol. 19, no. 5, pp. 667–675, 2006.

[11] Y. Liu, Z. Wang, A. Serrano, and X. Liu, “Discrete-time recurrent neural networks with time-varying
delays: exponential stability analysis,” Physics Letters A, vol. 362, no. 5-6, pp. 480–488, 2007.

[12] Q. Song and Z. Wang, “A delay-dependent LMI approach to dynamics analysis of discrete-time
recurrent neural networks with time-varying delays,” Physics Letters A, vol. 368, no. 1-2, pp. 134–145,
2007.

[13] B. Zhang, S. Xu, and Y. Zou, “Improved delay-dependent exponential stability criteria for discrete-
time recurrent neural networks with time-varying delays,” Neurocomputing, vol. 72, no. 1–3, pp. 321–
330, 2008.

[14] C. Song, H. Gao, and W. Xing Zheng, “A new approach to stability analysis of discrete-time recurrent
neural networks with time-varying delay,” Neurocomputing, vol. 72, no. 10-12, pp. 2563–2568, 2009.

[15] Y. Zhang, S. Xu, and Z. Zeng, “Novel robust stability criteria of discrete-time stochastic recurrent
neural networks with time delay,” Neurocomputing, vol. 72, no. 13-15, pp. 3343–3351, 2009.

[16] Z. Wu, H. Su, J. Chu, and W. Zhou, “Improved delay-dependent stability condition of discrete
recurrent neural networks with time-varying delays,” IEEE Transactions on Neural Networks, vol. 21,
no. 4, pp. 692–697, 2010.



16 Abstract and Applied Analysis

[17] S. Xu and J. Lam, “A survey of linear matrix inequality techniques in stability analysis of delay
systems,” International Journal of Systems Science, vol. 39, no. 12, pp. 1095–1113, 2008.

[18] H. Y. Shao, “Improved delay-dependent stability criteria for systems with a delay varying in a range,”
Automatica, vol. 44, no. 12, pp. 3215–3218, 2008.

[19] P. Park, J. W. Ko, and C. Jeong, “Reciprocally convex approach to stability of systems with time-
varying delays,” Automatica, vol. 47, no. 1, pp. 235–238, 2011.

[20] S. H. Kim, “Improved approach to robust H∞ stabilization of discrete-time T–S fuzzy systems with
time-varying delays,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 1008–1015, 2010.

[21] X. L. Zhu and G. H. Yang, “Jensen inequality approach to stability analysis of discrete-time systems
with time-varying delay,” in Proceedings of the American Control Conference (ACC ’08), pp. 1644–1649,
Seattle, Wash, USA, June 2008.

[22] M. C. de Oliveira and R. E. Skelton, Stability Tests for Constrained Linear Systems, Springer, Berlin,
Germany, 2001.

[23] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control
Theory, vol. 15 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 394382, 13 pages
doi:10.1155/2012/394382

Research Article
Development of Neural Network Model for
Predicting Peak Ground Acceleration Based on
Microtremor Measurement and Soil Boring
Test Data

T. Kerh,1 J. S. Lin,1 and D. Gunaratnam2

1 Department of Civil Engineering, National Pingtung University of Science and Technology,
Pingtung 91207, Taiwan

2 Faculty of Architecture, Design and Planning, University of Sydney, Sydney, NSW 2006, Australia

Correspondence should be addressed to T. Kerh, tfkerh@gmail.com

Received 20 August 2012; Accepted 20 September 2012

Academic Editor: Ju H. Park

Copyright q 2012 T. Kerh et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

It may not be possible to collect adequate records of strong ground motions in a short period
of time; hence microtremor survey is frequently conducted to reveal the stratum structure
and earthquake characteristics at a specified construction site. This paper is therefore aimed at
developing a neural network model, based on available microtremor measurement and on-site
soil boring test data, for predicting peak ground acceleration at a site, in a science park of Taiwan.
The four key parameters used as inputs for the model are soil values of the standard penetration
test, the medium grain size, the safety factor against liquefaction, and the distance between soil
depth and measuring station. The results show that a neural network model with four neurons
in the hidden layer can achieve better performance than other models presently available. Also,
a weight-based neural network model is developed to provide reliable prediction of peak ground
acceleration at an unmeasured site based on data at three nearby measuring stations. The method
employed in this paper provides a new way to treat this type of seismic-related problem, and it
may be applicable to other areas of interest around the world.

1. Introduction

Earthquake problems are globally considered to be a research topic of importance since
many countries are subject to this natural disaster. For instances, the recent big one with
magnitude 9.0 on the Richter scale that occurred in Japan on 11 March 2011 and triggered
a significant tsunami, caused approximately $35 billion in damage. On 12 January 2010, a
devastating earthquake with magnitude 7.0 on the Richter scale struck Haiti in the Caribbean,
and claimed more than 200 thousand lives have lost in the capital and surrounding areas.
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Other major earthquakes experienced by Chile, China, Indonesia, New Zealand, and Taiwan
are listed in the archive of United States Geological Survey [1]. Without exception, all
these earthquakes have caused tremendous casualties and property losses, requiring urgent
attention to this calamitous problem.

Many seismic-related research issues have been investigated and published previ-
ously, with some focused on finding an early warning system, while others are based on
records of historical seismic data (e.g., [2–8]). It is quite obvious that strong ground motions
data cannot be collected in a short period of time, and also the records for a metropolitan
area or a place with high population density are not easy to obtain. Whereas, microtremor
surveys can be used to infer the stratum structure and earthquake characteristics at a
specified construction site without destroying its ground surface. Thus, this fast and low
cost measuring technique is often selected not only to provide useful information for an area
which lacks seismic records, but also to effectively analyze potential liquefaction index for
the construction site being investigated.

Further, it is worth mentioning that the microtremor measurements with appropriate
transformation, such as Fourier transform or Nakamura technique, can estimate the key
seismic parameter, that is, peak ground acceleration (PGA), which exhibits a tendency
similar to the characteristics of strong ground motion [9, 10]. Note that the above literatures
were focused on the development of neural network models based on actual seismic
records, and microtremor measurements were used for the sake of comparison. Regarding
the development of neural network model in accordance with microtremor measurement
and soil profile was not examined in these studies. Also, some important factors such as
dominant frequency, shear wave speed, and amplification can be explored by microtremor
surveys [11–18], and these can help to determine the distribution of soil layers, liquefaction
hazard mapping, and earthquake site response. Although microtremor measurements can
be easily carried out at a number of sites, the main limitation is the increase in cost with
increased number of measuring stations. Hence, the development of a model for predicting
microtremor information for other important but unmeasured sites is useful for economic
reasons.

From the references mentioned above and other reports previously published in the
field of earthquake engineering and soil dynamics, the microtremor measurements appear to
be a function of the soil conditions at a specified site. However, prediction of microtremor
information by using soil boring test result has rarely been reported up to now. Therefore, the
purpose of this study is to develop a model for mapping soil boring test data to microtremor
measurements by using a neural network approach. In particular, three key soil parameters;
the standard penetration test value (STP-N), the medium grain size (D50), and the safety
factor against liquefaction (FL), and one spatial factor, that is, the distance between soil
layer and measuring station (DS), are used to evaluate PGA resulting from microtremor
measurements. A weight-based neural network model is also developed to predict PGA at
unmeasured sites by using values at three nearby measuring stations. The method developed
in this study should provide a new approach for solving problems in the relevant engineering
field.

2. Context and Rationale for the Research

Science parks are mainly occupied by many high-tech companies including some world class
factories such as ACER, HTC, and TSMC, which play an important economic role in the
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island of Taiwan. In this study, the chosen Kaohsiung (Luchu) science park is one of the
major parks located in the southern part of Taiwan. This park has a total area of 571 hectares,
which started construction in the year of 2001 and was completed in 2010. Various high-
tech industries, such as integrated circuits, precision machines, optoelectronic components,
computer peripherals, communication and biotechnology products, were planned and
developed in this park. These types of industries can be affected significantly by strong
ground motions and are also sensitive to ambient vibrations. Therefore, it is necessary to
consider antiearthquake design and to examine microtremor in the park from time to time to
prevent different levels of damages.

Two crucial factors for evaluating the effect of ground motions in the science park
are fault distribution and geological condition in Kaohsiung area, which are based on the
information from Central Geological Survey shown in Figure 1 [19, 20]. It can be seen that
there exists seven faults in this region, which are (1) Chishan fault, (2) Liukuei fault, (3)
Tsaujou fault, (4) Hsiaokangshan fault, (5) Yuchang fault, (6) Jenwu fault, and (7) Fengshan
fault. These faults may create strong ground motions and endanger the high-tech buildings
and instruments. Also from this figure, it can be seen that alluvial soil occupies a large part of
Kaohsiung area, particularly at the science park, which can have an influence on microtremor
measurements.

The occurrence of strong ground motion is unpredictable, and it can cause serious
structural damage within a very short period of time. Thus, a proper antiearthquake
design is usually considered for high-tech factory constructions. In contrast, the existence
of microtremor is easy to neglect as it is very small, but due to microtremor occurring very
often on the earth surface, some precision instruments can be damaged during its operation
process due to the constant continuous vibration frequency or peak ground acceleration.
Consequently, microtremor can cause, for high-tech manufactures, an unexpected and
significant financial loss, and thus environmental ambient vibration survey is a very
important consideration for science parks.

Figure 2 shows the Kaohsiung science park, with four microtremor measuring
stations MS1, MS2, MS3, and MS4. Also, there are twenty-seven soil boring test sites in
the neighborhood of this park. As mentioned previously, this study is focused on the
development of a model for predicting peak ground acceleration based on microtremor
measurements and soil boring test data. Therefore, the records obtained from these
measuring stations and boring test sites can provide useful information for developing the
model by using neural network approach. In the next section, the processing of measured and
test data is discussed, and then the results obtained from the developed model are presented.

3. Ambient Vibration Measurement and Soil Boring Test Data

Ambient vibration with very low amplitude (about 10−6 m) and acceleration (0.8–2.5 gal or
cm2/s), which cannot in general be felt by humans [21, 22], is frequently found on the ground
surface of the earth. This vibration, however, can be recorded by using a precise measuring
instrument developed recently. In the present study, the results of ambient vibrations are
measured and calculated by a set of ultrasensitive seismic accelerometer-Model 731A-made
by Wilcoxon with other monitoring instrument and computer software [23–25]. The original
microtremor information is stored in the frequency and time domains, but only the data set in
time domain is considered for analysis as the characteristics of ground motion is the primary
concern in this study.
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Figure 1: Distribution of faults and geological conditions in the Kaohsiung area.

From microtremor data collected at the four measuring stations, it can be found that
the accelerations for measuring station MS1 are basically in the range 0.43 gal to 51.71 gal
in both the east-west (EW) and north-south (NS) directions, and the results in vertical (V)
direction are all smaller than 0.58 gal. For measuring station MS2, the results are 0.33 gal–
24.1 gal, 0.27 gal–47.49 gal, and 0.78 gal–80.19 gal, in EW, NS, and V directions, respectively.
For measuring station MS3, the results are 0.33 gal–5.03 gal, 0.27 gal–4.29 gal, and 0.31 gal–
6.13 gal, in EW, NS, and V directions, respectively. For measuring station MS4, the results
are 0.58 gal–45.85 gal, 0.34 gal–15.46 gal and 1.05 gal–49.52 gal, in EW, NS and V directions,
respectively.
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Figure 2: Sketch of research area in Kaohsiung science park.

The above numerical results show that the accelerations in the vertical direction are
all relatively higher than those of the other directions, except at the measuring station MS1.
As ambient vibrations may result from moving vehicles and construction work, some of the
measured data may exhibit much higher values particularly between 8:00 AM and 5.00 PM,
and these can affect the true microtremor response. Therefore, in this study, only ambient
vibration data collected between 8:00 PM and 7:00 AM are taken for analysis so as to
eliminate outside environmental factors as far as possible and increase the accuracy of natural
microtremor response measurements.

For soil test data in the boreholes, the samplings are by auger boring method for soils
above ground water level and by the method of wash boring for soils below ground water
level. The laboratory tests conducted were for general physical, triaxial compression, shear
strength, unconfined compressive strength, consolidation, compaction, California bearing
ratio, resilient modulus, and groundwater quality. The in-situ tests were for lateral load and
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Table 1: Typical values of soil parameters and random PGAs in the four directions.

Measuring station MS1
STP-N D50 (mm) FL DS (m) PGA (EW) PGA (NS) PGA (V) PGA (H)
7 0.022 2.20 412.19 1.82 1.69 4.44 2.48
2 0.006 1.75 412.21 2.09 2.02 4.53 2.90
14 0.030 2.00 412.23 1.23 2.38 7.40 2.67
10 0.062 1.27 412.26 1.89 1.74 4.45 2.56
6 0.006 1.57 412.31 8.38 12.6 5.35 15.13
34 0.150 1.17 412.36 1.89 3.61 5.67 4.07
37 0.160 1.17 412.42 1.44 1.96 4.33 2.43
43 0.160 1.22 412.50 0.61 0.84 4.25 1.03
27 0.160 1.01 412.58 0.58 1.29 4.43 1.41
13 0.026 1.79 412.67 2.50 4.84 8.43 5.44
· · · · · · · · · · · · · · · · · · · · · · · ·

Total data sets: 50; PGA unit: gal

permeability. All of these test results can provide soil characteristics in detail for each of the
drilling sites.

For a typical soil exploration and testing report in the research area, it can be seen
that there are many items such as soil depth, soil profile, USCS (unified soil classification
system) classification, standard penetration value, grain size analysis, water content, specific
gravity, density, void ratio, liquid limit, plasticity index, and safety factor against liquefaction
calculated from shear strength parameters [26]. Note that some of these soil test items may
have their own physical meaning and also have a relationship with each other. Previous
studies have found that the three important parameters relevant to the problem of actual
earthquake response are STP-N, D50, and FL [27–29]. Hence, these three parameters, with
ambient vibration surveys and distance between measuring station and test layer within bore
hole (DS), are considered for developing a PGA prediction model by the neural network
approach. Typical values for STP-N, D50, FL, DS, and PGA in the four directions are shown
in Table 1.

4. Neural Network Model and Analysis of Prediction Results

In the field of computational intelligence, neural network approach is widely applied in
various engineering applications as it has some attractive features such as easiness to
implement, strong pattern recognition capability, and good prediction performance [30–
32]. Basics of neural network modeling such as selecting a suitable architecture, learning
algorithms, preprocessing of data, training, and testing of models have been comprehensively
covered in many publications [33–35]. Thus, further discussions of this method and the use
of associated software tool are not included here, but only some of the key points for using
this computational technique that are relevant to the present research problem are addressed
below.

To develop a neural network model, it is essential to determine the number of neurons
in the input layer, the hidden layer, and the output layer. In this study, five soil boring test
data in the neighborhood of each microtremor measuring station are used in developing the
model. As mentioned in the previous section, the soil input parameters included are STP-N,
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Figure 3: Sketch of neural network models I3H4O1 (a) and I4H4O1 (b).

D50, and FL. Therefore, a total of 50 data sets are available for the five bore holes, as each bore
hole has a 20 m depth, and the soil profile is divided into 10 layers. If the distance parameter
DS defined previously is also included, then there are four neurons in the input layer. The
PGA in each of the different directions (EW, NS, V, and H) obtained from microtremor
measurements is used as the target, resulting in only one neuron in the output layer. The
number of neurons in the hidden layer needs to be selected to provide a relatively better
performing neural network model.

It is better to examine the input soil data sets in advance to find a suitable neural
network prediction model. Initially, we consider a neural network model without the distance
parameter as shown in Figure 3(a), and divide the normalized data sets into three groups,
where 70% is for training, 20% for verification, and 10% for testing. These three calculation
stages are performed in Matlab toolbox with the “train,” “adapt,” and “simulate” functions
[36, 37]. The computational experiments, with the use of correlation coefficient (R) as
evaluation index, showed that the training result can achieve high R2 values (from 0.656 to
0.900) with random data selection in the network calculation, but it has a poor performance
in the verification cases (from 0.004 to 0.235) and the testing cases (from 0.001 to 0.361), as
seen in Table 2. The poor performance of this model is due to random data selection with
no rational basis for the association of the PGA values that are collected over time with
the soil properties that are defined spatially within the bore holes. Thus, a rational basis
for associating the data values for the input and output variables is required, and available
domain knowledge is used as the basis for this association.

Because the STP-N value refers to soil hardness, it can play an important role in
influencing the degree of liquefaction during an earthquake. Hence, by taking the STP-N
as the primary factor and arranging its data set to increase from small to large values, with
corresponding adjustments to the other input parameters, the target PGA data set is then
arranged from large to small values. Again, without considering the distance parameter in
the input layer, the performances of the neural network models with different number of
neurons in the hidden layer were considered, and the model with four neurons in the hidden
layer has a relatively better performance than the other models for all three calculation stages.

Note that only 50 data sets were used for developing neural network model in this
study, so it is not suitable to choose too many layers or neurons in the hidden layer as it
may cause ineffective learning during the training stage. The neural network model with
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Table 2: Performance of neural network model (I3H4O1) in different calculation stages.

Station Training (R2) Verification (R2) Testing (R2)
EW NS V H EW NS V H EW NS V H

MS1 0.762 0.682 0.892 0.768 0.145 0.235 0.015 0.018 0.236 0.349 0.028 0.067
MS2 0.656 0.782 0.900 0.834 0.013 0.004 0.020 0.026 0.271 0.361 0.001 0.132
MS3 0.758 0.689 0.821 0.740 0.019 0.120 0.095 0.087 0.235 0.165 0.059 0.017

Table 3: Performance of neural network models (I4H4O1) for the three measuring stations.

Station Training (R2) Verification (R2) Testing (R2)
EW NS V H EW NS V H EW NS V H

MS1 0.996 0.999 0.999 0.999 0.820 0.766 0.897 0.926 0.847 0.760 0.706 0.847
MS2 0.997 0.992 0.995 0.997 0.918 0.656 0.726 0.761 0.815 0.728 0.737 0.601
MS3 0.996 0.999 1.000 0.999 0.877 0.878 0.736 0.893 0.774 0.755 0.697 0.762
Average 0.996 0.997 0.998 0.998 0.872 0.767 0.786 0.860 0.812 0.747 0.714 0.737

four neurons in the hidden layer is found to be more reliable and will also be used with the
distance parameter in the input layer.

Table 3 shows the performance of the preferred neural network model I4H4O1

(Figure 3(b) for the three microtremor measuring stations. It can be seen that the average
R2 values are quite high and up to 0.998 at the training stage. The average R2 values range
from 0.767 to 0.872 at the verification stage and from 0.714 to 0.812 at the testing stage, all
exhibiting reasonably high coefficient of correlation between measurement and estimation.
That is, the developed neural network model has a sufficient level of prediction capability
and can be used for further investigation.

The above results from the neural network models demonstrate that microtremor
measurements may have a relationship to the soil profile. It is crucial to check the capability
and apply the developed model for predicting PGA at an unmeasured site. To perform this
task, it can be assumed that microtremor measuring station MS4 is an unknown site, then
the known PGA values at this station can be used for verifying the ability of neural network
model. To estimate PGA in station MS4 from the three known stations MS1, MS2, and MS3,
the straightforward method is by distributing the results of these three known stations with
weighting factors based on the distances between stations and denoted here by “Model 1.”

Alternatively, a better way to estimate PGA at an unmeasured site is by taking a new
set of soil data from five drilling holes nearby, and insert the data set solely to the neural
network model developed for each of known measuring stations. Then by summing the
results with weighting factors in accordance with the distances between the unknown site
to the three known stations, the final estimation is obtained for the unknown site, and this
method is denoted here as “Model 2”.

The comparison of prediction results for the two models and microtremor measure-
ments in the different directions are shown in Figure 4. It can be seen that the neural network
estimations are not too different for both models, but the results of “Model 2” seem to be
slightly closer to the actual measurements. Because the total recorded ambient vibration
surveys for MS4 are 70 data sets, the chosen 50 data sets cover a wider range of time interval
compared to the other three stations. Therefore, some of the measurements exhibit higher
values (PGA > 0.005 g), particularly for the east-west and vertical directions, and these may
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Figure 4: Comparison of neural network estimations and actual measurements.

cause an error in the prediction. In general, the performances of both neural network methods
have reasonable accuracy and are acceptable for the problem considered. This comparison of
results provides confidence for using this method for prediction of PGA in an unmeasured
but important site.

Installation of ambient vibration survey instrument is usually at a place where
the density of high-tech buildings is not too high. Thus, this method is suitable for an
unmeasured site (UMS) shown in Figure 2, which is closer to several important industrial
buildings and is possibly sensitive to natural microtremor. The present approach of
developing neural network model is thus very useful for predicting PGA at this site with
the use of new soil data sets from nearby five bore holes. Figure 5 shows the prediction result
for the unmeasured site. It can be seen that both models exhibit similar predictions, but the
curve obtained from “Model 2” is not as smooth as for “Model 1.” The reason may be that
the soil bore holes used in one of the known measuring stations, MS3, are too far away from
the unmeasured site. Actually, this local instability problem is also found in the previous
comparison shown in Figure 4, but it is believed that the present neural network model
should still be sufficiently reliable. The sequential selection of the data sets for developing
the neural network models results in the networks predicting the results for the test data



10 Abstract and Applied Analysis

Model 1
Model 2

5 10 15 20 25 30 35 40 45 500

Data sets

0

0.005

0.01

0.015

0.02

0.025
PG

A
(g
)

UMS (N-S)

(a)

Model 1
Model 2

5 10 15 20 25 30 35 40 45 500

Data sets

0

0.005

0.01

0.015

0.02

0.025

PG
A

(g
)

UMS (V)

(b)

UMS (E-W)

Model 1
Model 2

5 10 15 20 25 30 35 40 45 500

Data sets

0

0.005

0.01

0.015

0.02

0.025

PG
A

(g
)

(c)

 
UMS (H)

Model 1
Model 2

5 10 15 20 25 30 35 40 45 500

Data sets

0

0.005

0.01

0.015

0.02

0.025

PG
A

(g
)

(d)

Figure 5: Predicted PGA at an unmeasured site in different directions.

sets by extrapolation. This accounts for the difference between the model predictions and
the measurements on the right hand side of the curves in Figure 4. The predictions could be
further improved by a random selection of data sets, for training, verification, and testing,
after the reordering of the data sets as described previously.

If the measured results in the closest station MS2 are taken as reference, then the
prediction result shows that PGA in vertical direction is larger than the other two directions,
which is consistent with the measured results, and this is also true for predicted PGA in the
horizontal direction. Since this science park is mostly alluvial soil, the prediction result is thus
reasonable as there is no significant change of soil conditions in the unmeasured site. Overall,
the neural network “Model 2” seems more preferable as the distance parameter and new soil
data set are used in the calculation process of this model and, hence, may represent a more
true response of the investigating site. In addition, it may be concluded that the model can be
applied to predict PGA in any site of interest around the Kaohsiung science park.

5. Conclusion

Without a doubt, the seismic-related problems are very important research topic in the field
of disaster prevention technology. This study presented a novel way of using neural network
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approach to develop a model for learning a relationship for linking two different types
of parameters, that is, the ambient vibration measurement and the on-site soil boring test
data. In addition, a weight-based neural network model is also developed for predicting
peak ground acceleration at an unmeasured site, and is extendable for predicting natural
microtremor on any other site of the science park investigated, as long as the soil conditions
are suitably distributed.

Due to the limitation of soil boring test data for each microtremor measuring station,
the present study picked up only fifty sets of peak ground acceleration from each of
microtremor measuring station, to match with soil profiles from five drilling holes nearby
for developing neural network model. More data sets might be required to develop a more
accurate model for performing the prediction. Nonetheless, the results obtained in this study
provide an insight into the seismic-related characteristics in the research area. One of the
significant aspects of the present research is that even though the data collected at MS1, MS2,
and MS3 are for different time periods, the three neural network models developed for these
sites can be combined to predict the PGA distribution at a fourth site (MS4) for a different
time period.

Further, it should be mentioned that the predicted results do prove the reliability of
the developed model, but the choice of microtremor measurements with commonly found
frequency or peak ground acceleration should be further investigated. This may occur
repeatedly and hence can affect the accuracy of precision instrument and damage products
such as semiconductors or biosensors during the manufacturing process within a high-tech
company. Nevertheless, the method used in this study did provide a new way to treat this
type of nonlinear problem, and may be applicable in other areas of interest around the world.
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This paper is concerned with the finite-time stabilization for a class of stochastic neural networks
(SNNs) with noise perturbations. The purpose of the addressed problem is to design a nonlinear
stabilizator which can stabilize the states of neural networks in finite time. Compared with the
previous references, a continuous stabilizator is designed to realize such stabilization objective.
Based on the recent finite-time stability theorem of stochastic nonlinear systems, sufficient condi-
tions are established for ensuring the finite-time stability of the dynamics of SNNs in probability.
Then, the gain parameters of the finite-time controller could be obtained by solving a linear
matrix inequality and the robust finite-time stabilization could also be guaranteed for SNNs with
uncertain parameters. Finally, two numerical examples are given to illustrate the effectiveness of
the proposed design method.

1. Introduction

Since the first paper of Ott et al. [1], a large number of monographs and papers studying
the stabilization of the nonlinear systems without or with delays have been published
[2–5]. These publications have developed many control techniques including continuous
feedback and discontinuous feedback. Take [4] for example, the authors studied the pinning
stabilization problem of linearly coupled stochastic neural networks, where a minimum
number of controllers are used to force the NNs to the desired equilibrium point by fully
utilizing the structure of the network.

On the other hand, the well-known Hopfield neural networks, Cohen-Grossberg
neural networks and cellular neural networks [6–18], and so forth have been extensively
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studied in the past decades and successfully applied in many areas such as signal processing,
combinatorial optimization, and pattern recognition. Specially, the stability of Hopfield
neural networks has received much research attention since, when applied, the neural net-
work is sometimes assumed to have only one globally stable equilibrium [7–9, 19, 20].

Until now, the stability analysis issues for many kinds of neural networks in the
presence of stochastic perturbations and/or parameter uncertainties have attracted a lot of
research attention. The reasons include twofold: (a) in real nervous systems, because of
random fluctuations from the release of neurotransmitters, and other probabilistic causes,
the synaptic transmission is indeed a noisy process; (b) the connection weights of the
neurons depend on certain resistance and capacitance values that always exist uncertainties.
Therefore, the robust stability has been studied for neural networks with parameter
uncertainties [21–24] or external stochastic perturbations [7, 19, 25, 26]. However, to the
best of the authors’ knowledge, most literature regarding the stability of neural networks is
based on the convergence time being large enough, even though we eagerly want the argued
network states to become stable as quickly as possible in practical applications. In order to
achieve faster stabilization speed and hope to complete stabilization in finite time rather than
merely asymptotically [27], an effective method is using finite-time stabilization techniques,
which have also demonstrated better robustness and disturbance rejection properties
[28].

In this paper, we will focus on the finite-time robust stabilization for neural networks
with both stochastic perturbations and parameter uncertainties. The difference of this paper
lies in three aspects. First, based on the finite-time stability theorem of stochastic nonlinear
systems [29], a new continuous finite-time stabilizator is proposed for a stochastic neural
network (SNN). Moreover, in contrast to [30–33], we prove finite-time stabilization by con-
structing a suitable Lyapunov function and obtain some criteria which are easy to be satisfied.
Second, the gain parameters in finite-time stabilizator are designed by solving a linear matrix
inequality. Finally, a robust finite-time stabilizator for SNNs with parameter uncertainties is
designed as well. Moreover, two illustrative examples are provided to show the effectiveness
of the proposed designing.

The notations in this paper are quite standard. R
n and R

n×m denote, respectively, the
n-dimensional Euclidean space and the set of all n × m real matrices. The superscript “T”
denotes the transpose and the notation X ≥ Y (resp., X > Y ), where X and Y are symmetric
matrices, meaning that X − Y is positive semidefinite (resp., positive definite). λmax(M) and
λmin(M) denote the maximal and minimal eigenvalues of real matrixM. Let (Ω,F, {Ft}t≥0,P)
be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.,
it is right continuous and contains all P-null sets). E{x} stands for the expectation of the
stochastic variable x with respect to the given probability measure P. I and 0 represent
the identity matrix and a zero matrix, respectively; diag(· · ·) stands for a block-diagonal
matrix. Matrices, if their dimensions are not explicitly stated, are assumed to be compatible
for algebraic operations.

2. Model Formulation and Preliminaries

Some preliminary knowledge is presented in this section for the derivation of our main
results. The deterministic NN can be described by the following differential equation:

ẋ(t) = −Ax(t) + Bf(x(t)) + J (2.1)
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or

ẋi(t) = −aixi(t) +
n∑

j=1

bijfj
(
xj(t)
)
+ Ji, i = 1, 2, . . . , n, (2.2)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ R

n is the vector of neuron states; n represents the
number of neurons in the network; A = diag(a1, a2, . . . , an) is an n × n constant diagonal
matrix with ai > 0, i = 1, 2, . . . , n; B = (bij)n×n is an n × n interconnection matrix; f(x) =
(f1(x1), f2(x2), . . . , fn(xn))

T : R
n → R

n is a diagonal mapping, where fi, i = 1, 2, . . . , n
represents the neuron input-output activation and J = (J1, J2, . . . , Jn)

T is a constant external
input vector.

To establish our main results, it is necessary to give the following assumption for
system (2.1) or (2.2).

Assumption 2.1. The neuron activation function f of the NN (2.1) satisfies the following
Lipschitz condition:

∥∥fi(x) − fi
(
y
)∥∥ ≤Mi

∥∥x − y∥∥, ∀x, y ∈ R, i = 1, 2, . . . , n, (2.3)

where Mi is a positive constant for i = 1, 2, . . . , n. For convenience, let M = diag{M1,
M2, . . . ,Mn}.

Because of the existence of environmental noise in real neural networks, the stochastic
disturbances should be taken into account in the recurrent NN. For this purpose, we modify
the system (2.1) as the following SNN:

dx(t) =
[−Ax(t) + Bf(x(t)) + J]dt + h(t, x(t))dω(t), (2.4)

where ω(t) = (ω1(t), ω2(t), . . . , ωn(t))
T ∈ R

n is an n-dimensional Brownian motion defined
on the probability space (Ω,F, {Ft}t≥0,P) satisfying the usual conditions (i.e., the filtration
contains all P-null sets and is right continuous). The white noise dωi(t) is independent of
dωj(t) for i /= j. The intensity function h is the noise intensity function matrix satisfying the
following condition:

trace
[
hT (t, x(t)) · h(t, x(t))

]
≤ ‖Mhx(t)‖2, (2.5)

where Mh is a known constant matrix with compatible dimensions.
In this paper, we want to control the SNN (2.4) to the desired state x∗, which is an

equilibrium point of NN (2.1). Based on the discussions in many other papers, the stochastic
perturbation will vanish at this equilibrium point x∗, that is, h(t, x∗) = 0. Without loss of
generality, one can shift the equilibrium point x∗ to the origin by using the translation y(t) =
x(t) − x∗, which derives the following stochastic dynamical system:

dy(t) =
[−Ay(t) + Bg(y(t))]dt + h(t, y(t))dω(t), (2.6)

where g(y(t)) = f(x(t) + x∗) − f(x(t)).
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Consider the SNN (2.6) with parameter uncertainties: the parameter matrices A and B
are unknown but bounded, which are assumed to satisfy

A ∈ AI, B ∈ BI, (2.7)

where AI = {A | 0 < ai ≤ ai ≤ ai}, BI = {B | bij ≤ bij ≤ bij}, and i, j = 1, 2, . . . , n.

We denote that A = diag(a1, a2, . . . , an), A = diag(a1, a2, . . . , an), B = (bij)n×n,

B = (bij)n×n, A0 = (1/2)(A + A), B0 = (1/2)(B + B), A1 = (1/2)(A − A):= diag(ã1,

ã2, . . . , ãn), B1 = (1/2)(B − B):= (b̃ij)n×n, EA = diag(
√
ã1,
√
ã2, . . . ,

√
ãn), EB =

[
√
b̃11e1, . . . ,

√
b̃1ne1, . . . ,

√
b̃n1en, . . . ,

√
b̃nnen]n×n2 , and FB = [

√
b̃11e1, . . . ,

√
b̃1nen, . . . ,

√
b̃n1e1,

. . . ,

√
b̃nnen]

T
n2×n, where ei ∈ R

n is the column vector with the ith element 1 and 0 elsewhere.
For i, j = 1, 2, . . . , n, let

Δ =
{
Δ ∈ R

n×n | Δ = diag(δ1, δ2, . . . , δn), |δi| ≤ 1
}
,

Ω =
{
Ω ∈ R

n2×n2 | Ω = diag(ω11, . . . , ω1n, . . . , ωn1, . . . , ωnn),
∣∣ωij

∣∣ ≤ 1
}
.

(2.8)

Then, through simple manipulations, one has

AI = {A = A0 + EAΔEA | Δ ∈ Δ}, BI = {B = B0 + EBΩFB | Ω ∈ Ω}. (2.9)

In order to stabilize the SNN (2.4) to the equilibrium point x∗, equivalently, one can
stabilize the SNN (2.6) to the origin due to the transformation. Hence, in the remainder of this
paper, a controller u(t) will be designed for the stabilization of SNN (2.6) in mean square. The
controlled SNN can be described by the following stochastic differential equation (SDE):

dy(t) =
[−Ay(t) + Bg(y(t)) + u(t)]dt + h(t, y(t))dω(t). (2.10)

Similar to [30–33], the controller is designed as follows:

u(t) = −k1y(t) − k2 sign
(
y(t)
)∣∣y(t)

∣∣α, (2.11)

where |y(t)|α = (|y1(t)|α, |y2(t)|α, . . . , |yn(t)|α)T , sign(y(t)) = diag(sign(y1(t)), sign(y2(t)), . . . ,
sign(yn(t))), constants k1, k2 are gain coefficients to be determined, and the real number α
satisfies 0 < α < 1. In fact, here the continuous function u(t) in the SNN (2.10) is the key point
for ensuring the finite-time stabilization.

Obviously, when 0 < α < 1, the controller u(t) is a continuous function with respect
to y, which leads to the continuity of controlled system (2.10) with respect to the state y(t)
[30–33]. If α = 0, u(t) turns to be a discontinuous one, which has been considered in [34–36].
If α = 1 in the controller (2.11), then it becomes the typical stabilization issues which only can
realize an asymptotical stabilization in infinite time [3–5].

Similar to the definition of finite-time stability in probability [29], the finite-time
stabilization in probability is given through the following definition.
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Definition 2.2. The system (2.6) is said to be finite-time stabilized at the original point by
the controller (2.11) in probability, that is, the controlled SNN (2.10) is finite-time stable in
probability [37] if, for any initial state x(0), there exists a finite-time function T0 such that

P
{∥∥y(t)

∥
∥ = 0

}
= 1, ∀t ≥ T0, (2.12)

where T0 = T0(y(0), ω) = inf{T ≥ 0 : y(t) = 0, ∀t ≥ T} is called the stochastic setting time
function satisfying E[T0] <∞.

The following lemmas are needed for the derivation of our main results in this paper.

Lemma 2.3 (see [38]. (Itô’s formula)). Let x(t) ba an n-dimensional Itô’s process on t ≥ 0 with the
stochastic differential

dx(t) = f(t)dt + g(t)dω(t). (2.13)

Let V (x(t), t) ∈ C2,1(Rn × R
+; R+). Then, V (x(t), t) is a real-valued Itô’s process with its stochastic

differential given by

dV (x(t), t) = LV (x(t), t)dt + Vx(x(t), t)g(t)dω(t),

LV (x(t), t) = Vt(x(t), t) + Vx(x(t), t)f(t) +
1
2

trace
(
gT (t)Vxx(x(t), t)g(t)

)
,

(2.14)

where C2,1(Rn × R
+) denotes the family of all real-valued functions V (x(t), t) such that they are

continuously twice differentiable in x and t.

Lemma 2.4 (see [29]). Consider the stochastic differential equation (2.13) with f(0) = 0 and g(0) =
0 and assume system (2.13) has a unique global solution. If there exist real numbers η > 0 and
0 < α < 1, such that for the function V (x) in Lemma 2.3,

LV (x) ≤ −η(V (x))α, (2.15)

then the origin of system (2.13) is globally stochastically finite-time stable, and E[T0] < (V (x0))
1−α/

η(1 − α).

Lemma 2.5 (see [39]). If a1, a2, . . . , an are positive number and 0 < r < p, then

(
n∑

i=1

a
p

i

)1/p

≤
(

n∑

i=1

ari

)1/r

. (2.16)

Lemma 2.6 (Boyd et al. [40]). IfU, V(t), andW are real matrices of appropriate dimension withN
satisfyingN = NT , then

N +UV(t)W +WTVT (t)UT < 0 (2.17)
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for all VT (t)V(t) ≤ I, if and only if there exists a positive constant λ, such that

N + λ−1UUT + λWTW < 0. (2.18)

3. Main Results

In this section, we first give some theorems in detail to guarantee that the original point of
SNN (2.6) is stabilized in finite time, that is, the controlled system (2.10) with (2.11) is finite-
time stable in probability. Then, for SNN (2.6) with parameter uncertainties, we provide a
sufficient condition under which the controlled system (2.10) is robust finite-time stable in
probability. Finally, the control gains k1 and k2 are designed by solving some linear matrix
inequalities.

Theorem 3.1. The controlled system (2.10) with (2.11) is finite-time stable in probability, if there
exist a constant ε and a positive-definite matrix P ∈ R

n×n such that

−2PA − 2k1P + ε−1PBBTP + εMTM + λmax(P)MT
hMh < 0. (3.1)

Moreover, the upper bound of the stochastic settling time for stabilization can be in terms of the initial
errors as (λmax(P)/λmin(P)) · (‖y(0)‖1−α/k2(1 − α)).

Proof. Consider the controlled system (2.10) with the controller (2.11), we have

dy(t) =
[−(A + k1I)y(t) + Bg

(
y(t)
) − k2 sign

(
y(t)
)∣∣y(t)

∣∣α]dt + h
(
t, y(t)

)
dω(t). (3.2)

Next, we will prove system (3.2) is finite-time stable in probability based on Definition 2.2.
To this end, choose the candidate Lyapunov function V (y(t)) = yT (t)Py(t) and calculate the
time derivative of V (y(t)) along the trajectories of the augmented system (3.2). By the Itô’s
formula, we obtain the stochastic differential as

dV
(
y(t)
)
= LV (y(t))dt + 2yT (t)Ph

(
t, y(t)

)
dω(t), (3.3)

where

LV (y(t)) = 2yT (t)P
[
(−A − k1I)y(t) + Bg(t) − k2 sign

(
y(t)
)∣∣y(t)

∣∣α] + trace
[
hT (t)Ph(t)

]

= 2yT (t)P(−A − k1I)y(t) + 2yT (t)PBg(t) + trace
[
hT (t)Ph(t)

]

− 2k2y
T (t)P sign

(
y(t)
)∣∣y(t)

∣∣α.
(3.4)
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From condition (2.3), using the inequality xTy + yTx ≤ εxTx + ε−1yTy, where ε > 0 is
an arbitrary constant, we have

2yT (t)PBg(t) ≤ ε−1yT (t)PBBTPy(t) + εgT (t)g(t)

≤ ε−1yT (t)PBBTPy(t) + εyT (t)MTMy(t).
(3.5)

Combining (2.5), (3.4)-(3.5) results in

LV (y(t)) ≤ yT (t)
[
−PA −ATP − 2k1P + ε−1PBBTP + εMTM + λmax(P)MT

hMh

]

× y(t) − 2k2λmin(P)
n∑

i=1

∣
∣yi(t)

∣
∣α+1

.
(3.6)

From 0 < α < 1 and Lemma 2.5, we get

( n∑

i=1

∣∣yi(t)
∣∣α+1
)1/(α+1)

≥
( n∑

i=1

∣∣yi(t)
∣∣2
)1/2

, (3.7)

then,

n∑

i=1

∣∣yi(t)
∣∣α+1 ≥

( n∑

i=1

∣∣yi(t)
∣∣2
)(α+1)/2

=
[
yT (t)y(t)

](α+1)/2
. (3.8)

Thus, based on condition (3.1), taking the expectations on both sides of (3.3), we have

E
{
dV
(
y(t)
)} ≤ −2k2λmin(P)E

{[
yT (t)y(t)

](α+1)/2
}

≤ −2k2 · λmin(P)[λmax(P)]
−(α+1)/2

E

{
V
(
y(t)
)(α+1)/2

}
,

and E

{
V (α+1)/2(y(0)

)}
=
(
E
{
V
(
y(0)
)})(α+1)/2

.

(3.9)

By Lemma 2.4, V (y(t)) stochastically converges to zero in a finite time, that is, the controlled
system (3.2) is finite-time stable in probability, and the settle time is upper bounded by

TP =
[λmax(P)]

(α+1)/2 · [V (y(0))](1−α)/2

2k2 · λmin(P) · ((1 − α)/2)

≤ [λmax(P)]
(α+1)/2[λmax(P)]

(1−α)/2∥∥y(0)
∥∥1−α

2

λmin(P) · k2(1 − α)

=
λmax(P)
λmin(P)

·
∥∥y(0)

∥∥1−α

k2(1 − α) .

(3.10)

This completes the proof.
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Remark 3.2. The two gain parameters k1 and k2 in the controller u(t) play different roles in
ensuring the finite-time stability of the controlled system (3.2). We can see from Theorem 3.1
that, whether or not the controlled system (3.2) could realize the finite-time stability mainly
depends on the value of k1 and satisfies condition (3.1) but nothing on k2. However, the size
of the settle time depends on the value of k2 but unrelated to k1, the only requirement for the
gain k1 is satisfying condition (3.1).

Remark 3.3. In [31, 32, 35, 41], the candidate Lyapunov function V (t) was chosen as a simple
form of V (t) = yT (t)y(t) and then the upper bound of settle time turns to be ‖y(0)‖1−α/k2(1−
α). In this paper, in order ro reduce some conservation of conditions in Theorem 3.1, a positive
definite matrix parameter P is introduced such that condition (3.1) is easier to be satisfied.
And the previous conclusions could be included by our results if the matrix P = pI is taken,
where p is a arbitrary constant, just as shown in the next corollary.

Corollary 3.4. The controlled system (3.2) is finite-time stable in probability, if there exist two con-
stants ε and p such that

−2pA − 2k1pI + ε−1p2BBT + εMTM + pMT
hMh < 0. (3.11)

Moreover, the upper bound of the settle time is

T =

∥∥y(0)
∥∥1−α

k2(1 − α) .
(3.12)

Our next goal is to deal with the design problem, that is, giving a practical design
procedure for the controller gains: k1 and k2, such that the inequalities in Theorem 3.1 or
Corollary 3.4 are satisfied. Obviously, those inequalities are difficult to solve, since they are
nonlinear and coupled. A meaningful approach to tackling such a problem is to convert
the nonlinearly coupled matrix inequalities into linear matrix inequalities (LMIs), while the
controller gains are designed simultaneously.

Based on the discussion in Remark 3.2, the parameter gain k2 is one of the primary
factors that affect the size of the settle time, which is unrelated to condition (3.11). Hence, in
the following discussion, we will fix the gain parameter k2 and mainly focus on the design of
control gain k1. We claim that the desired controller gain k1 can be designed if a linear matrix
inequality is feasible.

Theorem 3.5. For a fixed control gain k2, the finite-time stabilization problem is solvable for the SNN
(2.6), if there exist three positive scalars p, K, and ε such that

⎛

⎝
−2pA − 2KI + pMT

hMh pB εMT

� −εI 0
� � −εI

⎞

⎠ < 0. (3.13)

Moreover, the control gain coefficient k1 = p−1K.
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Proof. The result can be proved by pre- and post-multiplying the inequality (3.13) by
the block-diagonal matrix diag{I, ε−1/2I, ε−1/2I} and then following from the famous Schur
complement lemma and Corollary 3.4 and we omit it here.

Just as mentioned in Introduction, when modelling a dynamic system, one can hardly
obtain an exact model. Specially, in practical implementation of neural networks, the firing
rates and the weight coefficients of the neurons depend on certain resistance and capacitance
values, which are subject to uncertainties. It is thus necessary to take parameter uncertainties
into account in the considered neural network. In the following, we consider the robust finite-
time stabilization issue for SNN (2.6) under the parametric uncertainties (2.7).

Theorem 3.6. The interval SNN (3.2) with uncertain parameters (2.7) is robust finite-time stable in
probability, if there exist three constants ε, λ1, λ2 and a positive-definite matrix P ∈ R

n×n such that

⎛

⎜⎜⎜⎜⎜
⎝

Φ PB0 εMT PEA PEB
� −εI + λ2F

T
BFB 0 0 0

� � −εI 0 0
� � � −λ1I 0
� � � � −λ2I

⎞

⎟⎟⎟⎟⎟
⎠

< 0, (3.14)

where Φ = −2PA0 − 2k1I + PMT
h
Mh + λ1E

T
AEA and I = diag(I, I).

Proof. From Theorems 3.1 and 3.5, we know that the SNN (3.2) is finite-time stable in
probability, if there exist a constant ε and a positive-definite matrix P ∈ R

n×n such that the
following LMI holds:

⎛

⎝
−2PA − 2KI + PMT

hMh PB εMT

� −εI 0
� � −εI

⎞

⎠ < 0. (3.15)

Thus, for the uncertain parameters satisfying (2.7), we have

Ψ =

⎛

⎝
−2P(A0 + EAΔEA) − 2KI + PMT

hMh P(B0 + EBΩFB) εMT

� −εI 0
� � −εI

⎞

⎠

=

⎛

⎝
−2PA0 − 2KI + PMT

hMh PB0 εMT

� −εI 0
� � −εI

⎞

⎠ +

⎛

⎝
−2PEAΔEA PEBΩFB 0

� 0 0
� � 0

⎞

⎠ < 0.

(3.16)
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For the second term in the above equality, it is easy to have

⎛

⎝
−2PEAΔEA PEBΩFB 0

� 0 0
� � 0

⎞

⎠ =

⎛

⎝
PEA

0
0

⎞

⎠Δ
(
EA 0 0

)
+

⎛

⎝
EA
0
0

⎞

⎠Δ
(
EAP 0 0

)

+

⎛

⎝
PEB

0
0

⎞

⎠Ω
(
0 FB 0

)
+

⎛

⎝
0
FTB
0

⎞

⎠Ω
(
ETBP 0 0

)
.

(3.17)

Then, based on Lemma 2.6, (3.16) and (3.17), there exist two constants λ1 and λ2 such
that

Ψ =

⎛

⎝
−2PA0 − 2KI + PMT

hMh PB0 εMT

� −εI 0
� � −εI

⎞

⎠

+

⎛

⎝
λ−1

1 PEAEAP + λ1EAEA 0 0
0 0 0
0 0 0

⎞

⎠ +

⎛

⎝
λ−1

2 PEBE
T
BP 0 0

0 λ2F
T
BFB 0

0 0 0

⎞

⎠

< 0.

(3.18)

Then the result can be proved by the famous Schur complement lemma and condition (3.14).

Corollary 3.7. For a fixed control gain k2, the finite-time robust stabilization problem is solvable for
the SNN (2.6) with (2.7), if there exist five positive scalars p, K, ε, λ1, and λ2 such that

⎛

⎜⎜
⎜⎜⎜
⎝

Φ pB0 εMT pEA pEB
� −εI + λ2F

T
BFB 0 0 0

� � −εI 0 0
� � � −λ1I 0
� � � � −λ2I

⎞

⎟⎟
⎟⎟⎟
⎠

< 0, (3.19)

where Φ = −2pA0 − 2KI + pMT
hMh + λ1E

T
AEA. Moreover, the control gain coefficient k1 = p−1K.

Proof. Let P = pI and we can prove the result based on Theorem 3.6.

4. Two Numerical Examples

Example 4.1. Consider the following stochastic neural network:

dx(t) =
[−Ax(t) + Bf(x(t)) + J]dt + h(t, x(t))dω(t), (4.1)
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Figure 1: Trajectories of SNN (4.1) without any controller in Example 4.1.

where

A =

⎡

⎣
0.2 0 0
0 0.2 0
0 0 0.2

⎤

⎦, B =

⎡

⎣
1 −0.2 0.2

0.1 1 0.2
0.3 0.2 1

⎤

⎦, J =

⎡

⎣
0
0
0

⎤

⎦, (4.2)

h(t, x(t)) = diag(tanh(x1(t)), tanh(x2(t)), tanh(x3(t))), and the activation function is taken as
f(s) = tanh(s). Then, it is obvious that M = Mh = I3, where I3 is a 3 × 3 identity matrix.
The SNN (4.1) with the above-given parameters is depicted in Figure 1 with initial values
x(0) = [1,−1, 3]T .

The stabilization controller is designed as

u(t) = −k1x(t) − k2 sign(x(t))|x(t)|α, (4.3)

where the parameter α is chosen as 0.5 and the initial value x(0) = [1,−1, 3]T . Then, ||x(0)|| =
3.3166.

According to Theorem 3.5 and using Matlab LMI toolbox, we solve the LMI (3.13), and
obtain p = 2.8118, K = 10.8900, and ε = 10.1114. Then by Theorem 3.5, the desired controller
parameter can be designed as k1 = 3.8730.

By choosing an arbitrary fixed gain k2, SNN (4.1) can be stabilized in finite time in
probability. Taking k2 = 1, for example, we can obtain the upper bound of the settle time
T = ‖x(0)‖1−α/k2(1 − α) = 3.6423.

Simulation result is depicted in Figure 2, which shows the states x1(t), x2(t), and x3(t)
of the controlled SNN (4.1). The simulation result has confirmed the effectiveness of our main
results.
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Figure 2: Trajectories of SNN (4.1) under the controller (4.3) with k2 = 1 in Example 4.1.

Example 4.2. Still consider the SNN (4.1) with second-order parameter uncertainties:

A =
[

1 0
0 1

]
, A =

[
1.5 0
0 1.5

]
, B =

[
0.3 0.2
0.2 0.3

]
, B =

[
0.4 0.3
0.3 0.5

]
. (4.4)

The parameter α in the controller (4.3) is chosen as 0.5 and the initial value x(0) =
[1,−1]T . Then, ||x(0)|| = 1.414. According to Corollary 3.7 and using Matlab LMI toolbox,
we solve the LMI (3.19) and obtain p = 5.3906, K = 10.0457, ε = 12.5372, λ1 = 21.7115,
and λ2 = 20.9350. Then by Corollary 3.7, the desired controller parameter can be designed as
k1 = 1.8635.

By choosing an arbitrary fixed gain k2, SNN (4.1) can be robustly stabilized in finite
time in probability. Taking k2 = 1.5, for example, we can obtain the upper bound of the settle
time T = ‖x(0)‖1−α/k2(1 − α) = 1.5856.

Simulation result is depicted in Figure 3, which shows the states x1(t) and x2(t) of the
second-order controlled SNN (4.1). The simulation result has confirmed the effectiveness of
our main results.

5. Conclusions

In this paper, we have investigated the issue of finite-time stabilization for SNNs with noise
perturbations by constructing a continuous nonlinear stabilizator. Meanwhile, Based on the
Lyapunov-Krasovskii functional method combining with the LMI techniques, a sufficient
criterion is derived for the states of the augmented system to be global finite-time stable
in probability. Subsequently, for SNNs with parameter uncertainties, the robust finite-time
stabilizator could be designed well. Finally, two illustrative examples have been used to
demonstrate the usefulness of the main results. It is expected that the theory established in



Abstract and Applied Analysis 13

−1

−0.5

0

0.5

1

1.5

 

 

0 0.5 1 1.5 2 2.5 3

(t)
x1(t)

x2(t)

x
     (
t)

Figure 3: Trajectories of SNN (4.1) under the controller (4.3) with k2 = 1.5 in Example 4.2.

this paper can be widely applied in delayed systems, particularly in those discontinuous
cases. It will be an interesting topic in our future research.
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The global exponential stability and uniform stability of the equilibrium point for high-order
delayed Hopfield neural networks with impulses are studied. By utilizing Lyapunov functional
method, the quality of negative definite matrix, and the linear matrix inequality approach, some
new stability criteria for such system are derived. The results are related to the size of delays and
impulses. Two examples are also given to illustrate the effectiveness of our results.

1. Introduction

In the last several years, Hopfield neural networks (HNNs) have received especially
considerable attention due to their extensive applications in solving optimization problem,
traveling salesman problem, and many other subjects, see [1–17]. However such neural
networks are shown to have limitations such as limited capacity when used in pattern
recognition problems, see [2, 3]. This led many researchers to use neural networks with high
order connections. The high-order neural networks have stronger approximation property,
faster convergence rate, greater storage capacity, and higher fault tolerance than lower-
order neural networks. Recently, various results on stability of high-order delayed HNN
are obtained, see [11–15]. For example, Lou and Cui [13] studied the global asymptotic
stability of high-order HNN with time-varying delays by using Lyapunov method, linear
matrix inequality (LMI), and analytic technique as follows:

x′
i(t) = − cixi(t) +

n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijgj
(
xj
(
t − τj(t)

))

+
n∑

j=1

n∑

l=1

Tijlgl(xl(t − τl(t)))gj
(
xj
(
t − τj(t)

))
+ Ii, t ≥ t0, i = 1, 2, . . . , n.

(1.1)
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But the authors only obtained some global asymptotic stability criteria for the above high-
order HNN. Those results cannot ensure the global exponential stability of the equilibrium
point. It is well known that global exponential stability plays an important role in many
areas such as designs and applications of neural networks and synchronization in secure
communication [5, 17–23]. One purpose of this paper is to improve the results in [13]. We
obtain several new criteria on global exponential stability and uniform stability for the above
high-order HNN.

On the other hand, it is well known that the artificial electronic networks are subject
to instantaneous perturbations and experience change of the state abruptly, that is, do exhibit
impulsive effects. Such systems are described by impulsive differential systems which have
been used successfully in modeling many practical problems arisen in the fields of natural
sciences and technology, see [12, 24–30]. Hence, it is very important and, in fact, necessary to
investigate the issue of the stability of high-order delayed HNN with impulses. However, to
the best of the authors’ knowledge, there are few results on the stability of high-order delayed
HNN with impulses. In [12], Liu et al. obtained some sufficient conditions for ensuring global
exponential stability of impulsive high order HNN with time-varying delays by using the
method of Lyapunov functions.

The purpose of this paper is to present some new criteria concerning the global
exponential stability and uniform stability for a class of high-order delayed HNN with
impulses by utilizing Lyapunov functional method, the quality of negative definite matrix,
and the linear matrix inequality approach. The conditions on impulses are different from that
presented in [12]. The effects of impulses and delays on the solutions are stressed here. As a
special case, several new criteria on global exponential stability and uniform stability for the
corresponding high-order HNN without impulses (see [13]) are obtained. To illustrate the
validity of those results, two examples are given to illustrate the effectiveness of the results
obtained.

2. Preliminaries

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, Z+ the set of
positive integers, and R

n the n-dimensional real space equipped with the Euclidean norm
|| · ||.

Consider the following high-order delayed HNN model with impulses

x′
i(t) = − cixi(t) +

n∑

j=1

aijfj
(
xj(t)

)
+

n∑

j=1

bijgj
(
xj(t − τ(t))

)

+
n∑

j=1

n∑

l=1

Tijlgl(xl(t − τ(t)))gj
(
xj(t − τ(t))

)
+ Ii, t /= tk, t ≥ t0,

Δxi|t=tk = xi(tk) − xi
(
t−k
)
, i ∈ Λ, k ∈ Z+,

(2.1)

where Λ = {1, 2, . . . , n}, n ≥ 2 corresponds to the number of units in a neural network; the
impulse times tk satisfy 0 ≤ t0 < t1 < · · · < tk < · · · , limk→+∞tk = +∞; xi corresponds to the
membrane potential of the unit i at time t; ci is positive constant; fj , gj denote, respectively,
the measures of response or activation to its incoming potentials of the unit j at time t and
t − τ(t); Tijl is the second-order synaptic weights of the neural networks; constant aij denotes
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the synaptic connection weight of the unit j on the unit i at time t; constant bij denotes the
synaptic connection weight of the unit j on the unit i at time t − τ(t); Ii is the input of the
unit i; τ(t) is the transmission delay such that 0 < τ(t) ≤ τ and τ̇(t) ≤ ρ < 1, t ≥ t0; τ , ρ are
constants.

The initial conditions associated with system (2.1) are of the form

x(s) = φ(s), s ∈ [t0 − τ, t0], (2.2)

where x(s) = (x1(s), x2(s), . . . , xn(s))
T , φ(s) = (φ1(s), φ2(s), . . . , φn(s))

T ∈ PC([−τ, 0],Rn),
PC([−τ, 0],Rn) = {ψ : [−τ, 0] → R

n is continuous everywhere except at finite number of
points tk, at which ψ(t+k) and ψ(t−k) exist and ψ(t+k) = ψ(tk)}. For ψ ∈ PC([−τ, 0],Rn), the norm
of ψ is defined by ||ψ||τ = sup−τ≤θ≤0|ψ(θ)|. For any t0 ≥ 0, let PCδ(t0) = {ψ ∈ PC([−τ, 0],Rn) :
||ψ|| < δ}.

Assume that x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)
T is an equilibrium point of system (2.1). Impulsive

operator is viewed as perturbation of the equilibrium point x∗ of such system without
impulsive effects. We assume that

Δxi|t=tk = xi(tk) − xi
(
t−k
)
= d(i)

k

(
xi
(
t−k
) − x∗

i

)
, d

(i)
k ∈ R, i ∈ Λ, k ∈ Z+. (2.3)

Since x∗ is an equilibrium point of system (2.1), one can derive from system (2.1)-(2.2)
that the transformation yi = xi − x∗

i , i ∈ Λ transforms such system into the following system
(for more details, please see papers [12, 13]):

y′(t) = − Cy(t) +AF(y(t)) + BG(y(t − τ(t)))

+ ΓTT�G
(
y(t − τ(t))), t /= tk, t ≥ t0,

y(tk) = Dky
(
t−k
)
, k ∈ Z+,

y(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0],

(2.4)

where

ϕ(θ) = x(t0 + θ) − x∗, y(t) =
(
y1(t), y2(t), . . . , yn(t)

)T
,

y(t − τ(t)) = (y1(t − τ(t)), y2(t − τ(t)), . . . , yn(t − τ(t))
)T
,

F
(
y(t)
)
=
[
F1
(
y1(t)

)
, F2
(
y2(t)

)
, . . . , Fn

(
yn(t)

)]T
,

G
(
y(t − τ(t))) = [G1

(
y1(t − τ(t))

)
, G2
(
y2(t − τ(t))

)
, . . . , Gn

(
yn(t − τ(t))

)]T
,

Fj
(
yj(t)

)
= fj
(
x∗
j + yj(t)

)
− fj
(
x∗
j

)
, Gj

(
yj(t − τ(t))

)
= gj
(
x∗
j + yj(t − τ(t))

)
− gj
(
x∗
j

)
,

C = diag[c1, c2, . . . , cn], A =
(
aij
)
n×n, B =

(
bij
)
n×n, Ti =

(
Tijl
)
n×n,

T� =
(
T1 + TT1 , T2 + TT2 , . . . , Tn + T

T
n

)T
,
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Γ = diag[ς, ς, . . . , ς], ς = (ς1, ς2, . . . , ςn)T ,

Dk = diag
[
1 + d(1)

k
, 1 + d(2)

k
, . . . , 1 + d(n)

k

]
,

(2.5)

in which ςl is a real value between gl(xl(t − τ(t))) and gl(x∗
l
), l ∈ Λ.

Remark 2.1. Obviously, (0, 0, . . . , 0)T is an equilibrium point of (2.4). Therefore, there exists at
least one equilibrium point of system (2.1). So, the stability analysis of the equilibrium point
x∗ of (2.1) can now be transformed to the stability analysis of the trivial solution y = 0 of
(2.4).

In the following, the notations XT and X−1 mean the transpose of and the inverse of
a square matrix X. We will use the notation X > 0 (or X < 0, X ≥ 0, X ≤ 0) to denote that
the matrix X is a symmetric and positive definite (negative definite, positive semidefinite,
negative semidefinite) matrix. Let λmax(X), λmin(X), respectively, denote the largest and
smallest eigenvalue of matrix X.

Throughout this paper, we assume that there exist constants χi > 0,M,N ≥ 0 such that
|gi(xi)| ≤ χi, i ∈ Λ, FT (y)F(y) ≤MyTy, GT (y)G(y) ≤NyTy.

We introduce some definitions as follows.

Definition 2.2 (see [5]). Leting V : R+ × R
n → R+, for any (t, x) ∈ [tk−1, tk) × R

n, the upper
right-hand Dini derivative of V (t, x) along the solution of (2.4) is defined by

D+V (t, x) = lim sup
h→ 0+

1
h

{
V
[
t + h, x + h

(
− Cy(t) +AF(y(t)) + BG(y(t − τ(t)))

+ΓTT�G
(
y(t − τ(t)))

)]
− V (t, x)

}
.

(2.6)

Definition 2.3 (see [25]). Assume y(t) = y(t0, ϕ)(t) is the solution of (2.4) through (t0, ϕ). Then
the zero solution of (2.4) is said to be uniformly stable, if, for any ε > 0 and t0 ≥ 0, there exists
some δ = δ(ε) > 0 such that ϕ ∈ PCδ(t0) implies ||y(t)|| < ε, t ≥ t0.

Definition 2.4 (see [5]). The equilibrium point x∗ of the system (2.1) is globally exponentially
stable, if there exists constant μ > 0,M ≥ 1 such that, for any initial value φ,

∥∥x
(
t0, φ
)
(t) − x∗∥∥ < M

∥∥φ − x∗∥∥
τe

−μ(t−t0), t ≥ t0. (2.7)

Next, in order to obtain our results, we need to establish the following lemma.

Lemma 2.5 (see [13]). For any vectors a, b ∈ R
n, the inequality

±2aTb ≤ aTXa + bTX−1b (2.8)

holds, in which X is any n × n matrix with X > 0.
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Lemma 2.6 (see [31]). Let X ∈ Rn×n, then

λmin(X)aTa ≤ aTXa ≤ λmax(X)aTa (2.9)

for any a ∈ R
n if X is a symmetric matrix.

3. Main Results

In this section, some sufficient delay-dependent conditions of global exponential stability and
uniform stability for system (2.1) are obtained.

Theorem 3.1. Assume that there exist constants ε� > 0, δ� ∈ [0, ε�) and n×n symmetric and positive
definite matrices P , Q1, Q2 such that

(i)

ε�P − PC − CP + PAQ−1
1 ATP + λmax(Q1)ME +

Nλmax

(
Q2 + T�TT�

)

1 − ρ E

+ eτε
�

PBQ−1
2 BTP + eτε

�∥∥χ
∥∥2
P 2 ≤ 0,

(3.1)

where χ = (χ1, χ2, . . . , χn)
T ,

(ii) there exists constant W ≥ 0 such that

m∑

k=1

ln max
{
ηk, 1
} − δ�(tm − t0) ≤ W ∀m ∈ Z+ holds, (3.2)

where ηk is the largest eigenvalue of P−1DkPDk, k ∈ Z+.
Then the equilibrium point of the system (2.1) is globally exponentially stable and the

approximate exponential convergent rate is (ε� − δ�)/2.

Proof. We only need to prove that the zero solution of system (2.4) is globally exponentially
stable. For any t0 ≥ 0, let y(t) = y(t0, ϕ)(t) be a solution of (2.4) through (t0, ϕ).

Consider the Lyapunov functional as follows:

V (t) = eε
�tyT (t)Py(t) +

1
1 − ρ

∫ t

t−τ(t)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds, (3.3)
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then we have

λmin(P)eε
�t
∥
∥y(t)

∥
∥2

< V (t)

≤ λmax(P)eε
�t
∥
∥y(t)

∥
∥2 +

λmax

(
Q2 + T�TT�

)
Neε

�t
(
1 − e−ε�τ(t))

ε�
(
1 − ρ)

∥
∥y(t)

∥
∥2
τ

≤

⎛

⎜
⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)

⎞

⎟
⎠eε

�t
∥
∥y(t)

∥
∥2
τ .

(3.4)

By Lemma 2.5, we get

2yT (t)PAF
(
y(t)
)
= 2FT

(
y(t)
)
ATPy(t)

≤ FT(y(t))Q1F
(
y(t)
)
+ yT (t)PAQ−1

1 ATPy(t)

≤ λmax(Q1)FT
(
y(t)
)
F
(
y(t)
)
+ yT (t)PAQ−1

1 ATPy(t)

≤ yT (t)
[
PAQ−1

1 ATP + λmax(Q1)ME
]
y(t),

(3.5)

2yT (t)PBG
(
y(t − τ(t))) = 2GT(y(t − τ(t)))BTPy(t)

= 2
[
G
(
y(t − τ(t)))

√
e−τε�
]T(

BTPy(t)
√
eτε�
)

≤ e−τε
�

GT(y(t − τ(t)))Q2G
(
y(t − τ(t)))

+ eτε
�

yT (t)PBQ−1
2 BTPy(t).

(3.6)

On the other hand, since ΓTΓ = ||ς||2E and ||ς|| ≤ ||χ||, then we have

yT (t)PΓTΓPy(t) ≤ ∥∥χ∥∥2
yT (t)P 2y(t), (3.7)

where χ = (χ1, χ2, . . . , χn)
T .

Thus, we obtain

2yT (t)PΓTT�G
(
y(t − τ(t))) = 2GT(y(t − τ(t)))T�TΓPy(t)

= 2
[
T�G
(
y(t − τ(t)))

√
e−τε�
]T(

ΓPy(t)
√
eτε�
)

≤ e−τε�GT(y(t − τ(t)))T�TT�G(y(t − τ(t))) + eτε�yT (t)PΓTΓPy(t)

≤ e−τε�GT
(
y(t−τ(t)))T�TT�G(y(t−τ(t)))+eτε�∥∥χ∥∥2

yT(t)P 2y(t).
(3.8)



Abstract and Applied Analysis 7

Now we consider the derivation of V along the trajectories of system (2.4), for t ∈ [tk, tk+1),
k ∈ Z+,

D+V (t)|(2.3) = eε
�tε�yT (t)Py(t) + eε

�t
{
y′T (t)Py(t) + yT (t)Py′(t)

}

+
1

1 − ρe
ε�tGT(y(t)

)(
Q2 + T�

TT�
)
G
(
y(t)
)

− 1 − τ̇(t)
1 − ρ eε

�(t−τ(t))GT(y(t − τ(t)))
(
Q2 + T�

TT�
)
G
(
y(t − τ(t)))

≤ eε
�tε�yT (t)Py(t) + eε

�t
{
yT (t)(−CP − PC)y(t) + 2yT (t)PAF

(
y(t)
)

+ 2yT (t)PBG
(
y(t − τ(t)))

+2yT (t)PΓTT�G
(
y(t − τ(t)))

}

+
1

1 − ρe
ε�tGT(y(t)

)(
Q2 + T�

TT�
)
G
(
y(t)
)

− eε�(t−τ)GT(y(t − τ(t)))
(
Q2 + T�

TT�
)
G
(
y(t − τ(t)))

≤ eε
�tyT (t)

⎧
⎨

⎩
ε�P − PC − CP + PAQ−1

1 ATP + λmax(Q1)ME

+
Nλmax

(
Q2 + T�TT�

)

1 − ρ E + eτε
�

PBQ−1
2 BTP + eτε

�∥∥χ
∥∥2
P 2

⎫
⎬

⎭
y(t)

≤ 0.
(3.9)

Moreover, we note

V (tk) = eε
�tkyT (tk)Py(tk) +

1
1 − ρ

∫ tk

tk−τ(tk)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds

= eε
�tkyT

(
t−k
)
DkPDky

(
t−k
)
+

1
1 − ρ

∫ t−
k

t−
k
−τ(t−

k
)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds

≤ eε�tkηkyT
(
t−k
)
Py
(
t−k
)
+

1
1 − ρ

∫ t−
k

t−
k
−τ(t−

k
)
eε

�sGT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds

≤ max
{
ηk, 1
}
V
(
t−k
)
.

(3.10)
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By simple induction, considering (3.4)–(3.10), we get, for k ≥ 1,

λmin(P)eε
�t
∥
∥y(t)

∥
∥2 ≤ V (t) ≤ V (t0)

∏

t0<tk≤t
max
{
ηk, 1
}
. (3.11)

On the other hand, from (3.4), we get

V (t0) ≤

⎛

⎜
⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)

⎞

⎟
⎠eε

�t0
∥
∥ϕ
∥
∥2
τ . (3.12)

Substituting the above inequality into (3.11), we obtain

∥∥y(t)
∥∥2 ≤

⎛

⎜
⎝
λmax(P)
λmin(P)

+
λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)λmin(P)

⎞

⎟
⎠e−ε

�(t−t0)∥∥ϕ
∥∥2
τ

∏

t0<tk≤t
max
{
ηk, 1
}
.

(3.13)

In view of condition (ii), we furthermore have

∥∥y(t)
∥∥ ≤ Me−((ε

�−δ�)/2)(t−t0)∥∥ϕ
∥∥
τ , t ≥ t0, (3.14)

where

M =

√√√√√
√

⎛

⎜
⎝
λmax(P)
λmin(P)

+
λmax

(
Q2 + T�TT�

)
N
(
1 − e−ε�τ)

ε�
(
1 − ρ)λmin(P)

⎞

⎟
⎠eW ≥ 1. (3.15)

Hence, the zero solution of system (2.4) is globally exponentially stable; that is, the
equilibrium point of system (2.1) is globally exponentially stable and the approximate
exponential convergent rate is (ε�−δ�)/2. The proof of Theorem 3.1 is therefore complete.

Remark 3.2. In Theorem 3.1, we find that condition (i) can be replaced by

ε�P − PC − CP + PAQ−1
1 ATP + λmax(Q1)ME +

Nλmax(Q2)
1 − ρ E +

Nλmax

(
T�TT�

)

1 − ρ E

+ eτε
�

PBQ−1
2 BTP + eτε

�∥∥χ
∥∥2
P 2 ≤ 0.

(3.16)

Leting P = Q1 = Q2 = E in Theorem 3.1, then we have the following.
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Corollary 3.3. Assume that there exist constants ε� > 0, δ� ∈ [0, ε�) such that

(i)

λ�max ≤ −ε� −M − N

1 − ρ −
Nλmax

(
T�TT�

)

1 − ρ − eτε�∥∥χ∥∥2
, (3.17)

where λ�max is the largest eigenvalue of −2C +AAT + eτε
�
BBT ;

(ii) there exists constant W ≥ 0 such that

m∑

k=1

ln max
{

max
i∈Λ

(
1 + d(i)

k

)2
, 1
}
− δ�(tm − t0) < W ∀m ∈ Z+ holds. (3.18)

The equilibrium point of the system (2.1) is globally exponentially stable and the approximate
exponential convergent rate is (ε� − δ�)/2.

Furthermore, if d(i)
k ∈ [−2, 0] in Corollary 3.3, then we have the following result.

Corollary 3.4. The equilibrium point of the system (2.1) is globally exponentially stable, if d(i)
k ∈

[−2, 0], and there exists constant ε� > 0 such that

−2C +AAT + eτε
�
BBT +

⎡

⎢
⎣ε� +M +

N
(

1 + λmax

(
T�TT�

))

1 − ρ + eτε
�∥∥χ
∥∥2

⎤

⎥
⎦E ≤ 0. (3.19)

Remark 3.5. In fact, Theorem 3.1 implies that if supk∈Z+

∏k
s=1(1 + β

(i)
s )2 < ∞, then one may

choose δ� = 0. On the other hand, Luo an Cui [13] obtained some results on global asymptotic
stability. However, those results cannot ensure the global exponential stability. Let d(i)

k
= 0

(i.e., Dk = E) in Corollary 3.4, then we can obtain the desirable result as follows.

Corollary 3.6. The equilibrium point of the system (2.1) without impulses is globally exponentially
stable, if there exist n × n symmetric and positive definite matrices P , Q1, Q2 such that

− PC − CP + PAQ−1
1 ATP + λmax(Q1)ME +

Nλmax

(
Q2 + T�TT�

)

1 − ρ E

+ PBQ−1
2 BTP +

∥∥χ
∥∥2
P 2 < 0.

(3.20)

Furthermore, if P = Q1 = Q2 = E in Corollary 3.6, then it becomes as follows.
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Corollary 3.7. The equilibrium point of the system (2.1) without impulses is globally exponentially
stable, if the following condition holds:

−2C +AAT + BBT +
Nλmax

(
T�TT�

)

1 − ρ +
(

N

1 − ρ +M +
∥
∥χ
∥
∥2
)
E < 0. (3.21)

Remark 3.8. Corollaries 3.6 and 3.7 imply that if the above inequality holds, then there
exists enough small ε� > 0 such that all conditions in Corollary 3.4 are satisfied. Hence,
Corollaries 3.6 and 3.7 supplied a new criteria for global exponential stability of equilibrium
point of the system (2.1) without impulses.

Next we can establish a theorem which provide sufficient conditions for uniform
stability of system (2.1) by constructing another Lyapunov functional. Here we shall
emphasize the effects of impulses.

Theorem 3.9. Assume that there exist n×n symmetric and positive definite matrices P ,Q1,Q2 such
that the following condition

−PC − CP + PAQ−1
1 ATP + λmax(Q1)ME +

Nλmax

(
Q2 + T�TT�

)

1 − ρ

(
k∏

s=1

ηs

)

E

+

(
k∏

s=1

ηs

)−1

PBQ−1
2 BTP +

(
k∏

s=1

ηs

)−1
∥∥χ
∥∥2
P 2 ≤ 0 ∀k ∈ Z+ holds,

(3.22)

where supk∈Z+

∏k
s=1ηs <∞, ηk is the largest eigenvalue of P−1DkPDk.

Then the equilibrium point of the system (2.1) is uniformly stable.

Proof. We only prove the zero solution of system (2.4) is uniformly stable. For any ε > 0,
t0 ≥ 0, ϕ ∈ PCδ(t0), let y(t) = y(t0, ϕ)(t) be a solution of (2.4) through (t0, ϕ), t0 ≥ 0, then we
can prove that ||y(t)|| < ε, t ≥ t0,

where

δ =
ε
√
λmin(P)

√
η

√
λmax(P) +

(
λmax

(
Q2 + T�TT�

)
Nητ/

(
1 − ρ)

) , η=̇sup
k∈Z+

k∏

s=1

ηs. (3.23)

Consider the following Lyapunov functional

V (t) = yT (t)Py(t) +
1

1 − ρ
∫ t

t−τ(t)

(
∏

ts≤t
ηs

)

GT(y(s)
)(
Q2 + T�

TT�
)
G
(
y(s)
)
ds, (3.24)
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then we have

λmin(P)
∥
∥y(t)

∥
∥2

< V (t)

≤ λmax(P)
∥
∥y(t)

∥
∥2 +

λmax

(
Q2 + T�TT�

)
Nητ

1 − ρ
∥
∥y(t)

∥
∥2
τ

≤

⎛

⎜
⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
Nητ

1 − ρ

⎞

⎟
⎠
∥
∥y(t)

∥
∥2
τ .

(3.25)

Applying the same argument as Theorem 3.1, we get

2yT (t)PAF
(
y(t)
) ≤ yT (t)

[
PAQ−1

1 ATP + λmax(Q1)ME
]
y(t),

2yT (t)PBG
(
y(t − τ(t))) ≤

(
k∏

s=1

ηs

)

GT(y(t − τ(t)))Q2G
(
y(t − τ(t)))

+

(
k∏

s=1

ηs

)−1

yT (t)PBQ−1
2 BTPy(t),

2yT (t)PΓTT�G
(
y(t − τ(t))) ≤

(
k∏

s=1

ηs

)

GT(y(t − τ(t)))T�TT�G(y(t − τ(t)))

+

(
k∏

s=1

ηs

)−1
∥∥χ
∥∥2
yT (t)P 2y(t).

(3.26)

By simple calculation, we can obtain, for t ∈ [tk, tk+1), k ∈ Z+,

D+V (t)|(2.3) = yT (t)(−CP − PC)y(t) + 2yT (t)PAF
(
y(t)
)
+ 2yT (t)PBG

(
y(t − τ(t)))

+ 2yT (t)PΓTT�G
(
y(t − τ(t))) + 1

1 − ρ

(
k∏

s=1

ηs

)

GT(y(t)
)(
Q2 + T�

TT�
)
G
(
y(t)
)

− 1 − τ̇(t)
1 − ρ

(
k∏

s=1

ηs

)

GT(y(t − τ(t)))
(
Q2 + T�

TT�
)
G
(
y(t − τ(t)))
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≤ yT (t)

⎧
⎨

⎩
− PC − CP + PAQ−1

1 ATP + λmax(Q1)ME

+
Nλmax

(
Q2 + T�TT�

)

1 − ρ

(
k∏

s=1

ηs

)

E +

(
k∏

s=1

ηs

)−1

PBQ−1
2 BTP

+

(
k∏

s=1

ηs

)−1
∥
∥χ
∥
∥2
P 2

⎫
⎬

⎭
y(t).

≤ 0.

(3.27)

Moreover, we know

V (tk) = yT (tk)Py(tk) +
1

1 − ρ
∫ tk

tk−τ(tk)

(
∏

ts≤tk
ηs

)

ΓT
(
y(s)
)(
Q2 + T�

TT�
)
Γ
(
y(s)
)
ds

= yT
(
t−k
)
DkPDky

(
t−k
)
+

1
1 − ρ

∫ t−
k

t−
k
−τ(tk)

(
∏

ts≤tk
ηs

)

ΓT
(
y(s)
)(
Q2 + T�

TT�
)
Γ
(
y(s)
)
ds

≤ ηkyT
(
t−k
)
Py
(
t−k
)
+

1
1 − ρηk

∫ t−
k

t−
k
−τ(tk)

(
∏

ts≤tk−1

ηs

)

ΓT
(
y(s)
)(
Q2 + T�

TT�
)
Γ
(
y(s)
)
ds

= ηkV
(
t−k
)
.

(3.28)

By simple induction, from (3.27) and (3.28) we may prove that, for k ≥ 1,

λmin(P)
∥∥y(t)

∥∥2 ≤ V (t) ≤ V (t0)
∏

t0<tk≤t
ηk. (3.29)

Employing the fact (3.25), we obtain

λmin(P)
∥∥y(t)

∥∥2 ≤

⎛

⎜
⎝λmax(P) +

λmax

(
Q2 + T�TT�

)
Nητ

1 − ρ

⎞

⎟
⎠
∥∥ϕ
∥∥2
τη, t ≥ t0, (3.30)

which implies that

∥∥y(t)
∥∥ < ε, t ≥ t0. (3.31)

Therefore, the zero solution of system (2.4) is uniformly stable, that is, the equilibrium point
of system (2.1) is uniformly stable. The proof of Theorem 3.9 is complete.
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Corollary 3.10. The equilibrium point of the system (2.1) is uniformly stable, if there exist n × n
symmetric and positive definite matrices P , Q1, Q2 such that the following condition holds:

Ξk ≤ −λmax(Q1)M −
Nλmax

(
Q2 + T�TT�

)

1 − ρ

(
k∏

s=1

ηs

)

, (3.32)

where Ξk is the largest eigenvalue of −PC−CP +PAQ−1
1 ATP + (

∏k
s=1ηs)

−1[PBQ−1
2 BTP + ||χ||2P 2].

If P = Q1 = Q2 = E in Theorem 3.9, then we have the following.

Corollary 3.11. The equilibrium point of the system (2.1) is uniformly stable, if the following
condition

−2C +AAT +

⎡

⎢
⎣M +

Nλmax

(
E + T�TT�

)

1 − ρ

(
k∏

s=1
max
i∈Λ

(
1 + d(i)

s

)2
)
⎤

⎥
⎦E

+

[
k∏

s=1

max
i∈Λ

(
1 + d(i)

s

)2
]−1[

BBT +
∥∥χ
∥∥2
E
]
≤ 0 ∀k ∈ Z+ holds,

(3.33)

where supk∈Z+

∏k
s=1maxi∈Λ(1 + d(i)

s )2 <∞.

4. Examples

In this section we give two examples to demonstrate our results.

Example 4.1. Consider the following high-order delayed Hopfield-type neural network with
impulses

x′
i(t) = − cixi(t) +

3∑

j=1

aijfj
(
xj(t)

)
+

3∑

j=1

bijgj
(
xj(t − τ(t))

)

+
3∑

j=1

3∑

l=1

Tijlgl(xl(t − τ(t)))gj
(
xj(t − τ(t))

)
, t /= tk, t ≥ t0,

Δxi|t=tk = xi(tk) − xi
(
t−k
)
= β(i)

k
xi
(
t−k
)
, i = 1, 2, 3, k ∈ Z+,

(4.1)
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where β
(i)
k =

√
1 + (i/k2) − 1, τ(t) = sin t/2, f1(x1) = tanh(0.5x1), f2(x2) = tanh(0.48x2),

f3(x3) = tanh(0.6x3), g1(x1) = tanh(0.3x1), g2(x2) = tanh(0.8x2), g3(x3) = tanh(0.73x3),

C = diag[c1, c2, c3]
T =

⎡

⎣
3.2 0 0
0 2.5 0
0 0 2.0

⎤

⎦, A =
(
aij
)

3×3 =

⎡

⎣
0.58 0.12 0.23
−0.08 0.36 −0.05
−0.04 0.04 −0.37

⎤

⎦,

B =
(
bij
)

3×3 =

⎡

⎣
0.06 0 0.04
0.19 −0.17 −0.02
−0.03 0.13 0.44

⎤

⎦, T1 =
(
T1jl
)

3×3 =

⎡

⎣
0.03 −0.20 −0.05
−0.06 −0.14 0.23
0.27 0.03 −0.20

⎤

⎦,

T2 =
(
T2jl
)

3×3 =

⎡

⎣
0.01 −0.05 0.08
−0.06 −0.03 −0.09
0.15 −0.04 0.11

⎤

⎦, T3 =
(
T3jl
)

3×3 =

⎡

⎣
−0.02 −0.12 −0.05
0.24 0.04 0.07
−0.02 0.08 0.01

⎤

⎦.

(4.2)

In this case, we easily observe that τ = ρ = 0.5, M = 0.36, N = 0.64, ||χ||2 = 0.64.
For Theorem 3.1, choosing P = Q1 = Q2 = E, then from

∞∏

k=1

(
1 + β(i)

k

)2
=

∞∏

k=1

(
1 +

i

k2

)
<∞, i = 1, 2, 3, (4.3)

we may choose ε� = 0.0976, δ� = 0, W =
∏∞

k=1(1 + 3/k2) <∞.
On the other hand, we can compute

−2C +AAT + eτε
�

BBT =

⎡

⎣
−5.9908 −0.0036 −0.0869
−0.0036 −4.7928 −0.0023
−0.0869 −0.0023 −3.6379

⎤

⎦ = Θ (4.4)

which implies that λmax(Θ) = −3.6347.
Also, we note that

T�TT� =
[
T1 + TT1 , T2 + TT2 , T3 + TT3

]T =

⎡

⎣
0.2059 0.0832 −0.0535
0.0832 0.2895 −0.2735
−0.0535 −0.2735 0.4220

⎤

⎦ (4.5)

implies that

−ε� −M − N

1 − ρ −
Nλmax

(
T�TT�

)

1 − ρ − eτε�∥∥χ∥∥2 ≈ −3.2501 > −3.6347. (4.6)

By Corollary 3.3, the equilibrium point of (4.1) (0, 0, 0)T is global exponential stable with the
approximate convergence rate 0.0488.

However, the criteria in [12] are invalid here.
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Example 4.2. Consider the high-order delayed Hopfield-type neural network with impulses
[13]

x′
i(t) = − cixi(t) +

2∑

j=1

aijfj
(
xj(t)

)
+

2∑

j=1

bijgj
(
xj(t − τ(t))

)

+
2∑

j=1

2∑

l=1

Tijlgl(xl(t − τ(t)))gj
(
xj(t − τ(t))

)
+ Ii, t /= tk, t ≥ t0,

(4.7)

and with impulses

Δxi|t=tk = xi(tk) − xi
(
t−k
)
= β(i)k

(
xi
(
t−k
) − x∗), i = 1, 2, k ∈ Z+, (4.8)

where tk = k, t0 = 0, k ∈ Z+, f1(x1) = g1(x1) = tanh(0.53x1), f2(x2) = g2(x2) = tanh(0.67x2),
ρ = 0.6, J1 = 1.5, J2 = 2,

C = diag[c1, c2]
T =
[

1.9 0
0 1.89

]
, A =

(
aij
)

2×2 =
[

0.05 0.14
0.20 0.31

]
,

B =
(
bij
)

2×2 =
[

0.09 0.25
0.21 0.45

]
, T1 =

(
T1jl
)

2×2 =
[

0.05 0.14
−0.06 0.05

]
,

T2 =
(
T2jl
)

2×2 =
[

0.29 0.10
0.23 −0.14

]
,

β
(i)
k

= e0.0625 − 1, k ∈ Z+.

(4.9)

It is obvious that M = N = L2 = 0.4489, ||χ||2 = 0.4489. Here we consider τ = 1. Choose
P = Q1 = Q2 = E, ε� = 0.25, δ� = 0.128.

Note that

m∑

k=1

ln max
{

max
i∈Λ

(
1 + d(i)

k

)2
, 1
}
− δ�(tm − t0) = 0.125m − 0.128m

= −0.003m < 0 ∀m ∈ Z+ holds.

(4.10)

On the other hand, we can compute

−2C +AAT + eτε
�

BBT =
[−3.7073 0.1848

0.1848 −3.3973

]
= Δ (4.11)

which implies that λmax(Δ) = −3.3111.
One can check that

−ε� −M − N

1 − ρ −
Nλmax

(
T�TT�

)

1 − ρ − eτε�∥∥χ∥∥2 ≈ −2.9649 > −3.3111. (4.12)
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By Corollary 3.3, the equilibrium point of (4.1)–(4.7) x∗ is global exponential stable with the
approximate convergence rate 0.061.

In fact, for above-given impulsive condition, we only need time-delay τ which satisfies
the following condition:

λmax

(
−2C +AAT + e0.125τBBT

)
< −0.4489e0.125τ − 2.2635. (4.13)

Remark 4.3. In [13], the author obtained that the equilibrium point of (4.7) without impulses
is globally asymptotically stable. From the example, we obtain that the equilibrium point of
(4.7) without impulses is global exponential stability. In fact, if β(i)

k
= 0 in (4.7), then we can

choose δ� = 0, which implies that, for any given τ > 0, there exists corresponding ε� > 0 such
that all conditions in Corollary 3.6 are satisfied.

5. Conclusions

In this paper, a class of high-order delayed HNN with impulses is considered. We obtain some
new criteria ensuring global exponential stability and uniform stability of the equilibrium
point for such system by using Lyapunov functional method, the quality of negative definite
matrix, and the linear matrix inequality. Our results show delays and impulsive effects on the
stability of HNN. Two examples are given to illustrate the feasibility of the results.

Acknowledgments

This work was jointly supported by the Project of Shandong Province Higher Educational
Science and Technology Program (no. J12LN23), Research Fund for Excellent Young
and Middle-Aged Scientists of Shandong Province (no. BS2012DX038), National Science
Foundation for Postdoctoral Scientists of China (no. 2012M511538), and National Natural
Science Foundation of China (no. 61201441).

References

[1] J. J. Hopfield, “Neurons with graded response have collective computational properties like those of
two-state neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol.
81, no. 10, pp. 3088–3092, 1984.

[2] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational
abilities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no.
8, pp. 2554–2558, 1982.

[3] Y. Kamp and M. Hasler, Recursive Neural Networks for Associative Memory, John Wiley & Sons, New
York, NY, USA, 1990.

[4] R. L. Wang, Z. Tang, and Q. P. Cao, “A learning method in Hopfield neural network for combinatorial
optimization problem,” Neurocomputing, vol. 48, pp. 1021–1024, 2002.

[5] H. Zhang and G. Wang, “New criteria of global exponential stability for a class of generalized neural
networks with time-varying delays,” Neurocomputing, vol. 70, no. 13–15, pp. 2486–2494, 2007.

[6] Q. Zhang, X. Wei, and J. Xu, “Global asymptotic stability of Hopfield neural networks with transmis-
sion delays,” Physics Letters A, vol. 318, no. 4-5, pp. 399–405, 2003.

[7] H. Zhao, “Global asymptotic stability of Hopfield neural network involving distributed delays,”
Neural Networks, vol. 17, no. 1, pp. 47–53, 2004.

[8] Z. H. Guan and G. R. Chen, “On delayed impulsive Hopfield neural networks,” Neural Networks, vol.
12, no. 2, pp. 273–280, 1999.



Abstract and Applied Analysis 17

[9] H. Akça, R. Alassar, V. Covachev, Z. Covacheva, and E. Al-Zahrani, “Continuous-time additive Hop-
field-type neural networks with impulses,” Journal of Mathematical Analysis and Applications, vol. 290,
no. 2, pp. 436–451, 2004.

[10] L. Wang and D. Xu, “Stability for Hopfield neural networks with time delay,” Journal of Vibration and
Control, vol. 8, no. 1, pp. 13–18, 2002.

[11] F. Ren and J. Cao, “Periodic solutions for a class of higher-order Cohen-Grossberg type neural
networks with delays,” Computers & Mathematics with Applications, vol. 54, no. 6, pp. 826–839, 2007.

[12] X. Liu, K. L. Teo, and B. Xu, “Exponential stability of impulsive high-order Hopfield-type neural net-
works with time-varying delays,” IEEE Transactions on Neural Networks, vol. 16, no. 6, pp. 1329–1339,
2005.

[13] X.-Y. Lou and B.-T. Cui, “Novel global stability criteria for high-order Hopfield-type neural networks
with time-varying delays,” Journal of Mathematical Analysis and Applications, vol. 330, no. 1, pp. 144–
158, 2007.

[14] F. Ren and J. Cao, “LMI-based criteria for stability of high-order neural networks with time-varying
delay,” Nonlinear Analysis. Real World Applications, vol. 7, no. 5, pp. 967–979, 2006.

[15] B. Xu, X. Liu, and X. Liao, “Global asymptotic stability of high-order Hopfield type neural networks
with time delays,” Computers & Mathematics with Applications, vol. 45, no. 10-11, pp. 1729–1737, 2003.

[16] Z. Guan, D. Sun, and J. Shen, “Qualitative analysis of high-order hopfield neural networks,” Acta
Electronica Sinica, vol. 28, no. 3, pp. 77–80, 2000.

[17] J. Cao, “Global exponential stability of Hopfield neural networks,” International Journal of Systems
Science. Principles and Applications of Systems and Integration, vol. 32, no. 2, pp. 233–236, 2001.

[18] S. Xu and J. Lam, “A new approach to exponential stability analysis of neural networks with time-
varying delays,” Neural Networks, vol. 19, no. 1, pp. 76–83, 2006.

[19] F. Ren and J. Cao, “Periodic oscillation of higher-order bidirectional associative memory neural
networks with periodic coefficients and delays,” Nonlinearity, vol. 20, no. 3, pp. 605–629, 2007.

[20] J. Cao, J. Liang, and J. Lam, “Exponential stability of high-order bidirectional associative memory
neural networks with time delays,” Physica D, vol. 199, no. 3-4, pp. 425–436, 2004.

[21] R. Rakkiyappan and P. Balasubramaniam, “On exponential stability results for fuzzy impulsive
neural networks,” Fuzzy Sets and Systems, vol. 161, no. 13, pp. 1823–1835, 2010.

[22] P. Balasubramaniam and V. Vembarasan, “Robust stability of uncertain fuzzy BAM neural networks
of neutral-type with Markovian jumping parameters and impulses,” Computers & Mathematics with
Applications, vol. 62, no. 4, pp. 1838–1861, 2011.

[23] P. Balasubramaniam and V. Vembarasan, “Asymptotic stability of BAM neural networks of neutral-
type with impulsive effects and time delay in the leakage term,” International Journal of Computer
Mathematics, vol. 88, no. 15, pp. 3271–3291, 2011.

[24] D. D. Baı̆nov and P. S. Simeonov, Systems with Impulse Effect Stability, Theory and Applications, Ellis
Horwood, New York, NY, USA, 1989.

[25] X. L. Fu, B. Q. Yan, and Y. S. Liu, Introduction of Impulsive Differential Systems, Science Press, Beijing,
China, 2005.

[26] C. Li, W. Hu, and S. Wu, “Stochastic stability of impulsive BAM neural networks with time delays,”
Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2313–2316, 2011.

[27] Y. Xia, Z. Huang, and M. Han, “Existence and globally exponential stability of equilibrium for BAM
neural networks with impulses,” Chaos, Solitons & Fractals, vol. 37, no. 2, pp. 588–597, 2008.

[28] V. Lakshmikantham, D. D. Baı̆nov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6,
World Scientific, Singapore, 1989.

[29] X. Li and J. Shen, “LMI approach for stationary oscillation of interval neural networks with discrete
and distributed time-varying delays under impulsive perturbations,” IEEE Transactions on Neural
Networks, vol. 21, no. 10, pp. 1555–1563, 2010.

[30] Y. Zhang and J. Sun, “Stability of impulsive neural networks with time delays,” Physics Letters, Section
A, vol. 348, no. 1-2, pp. 44–50, 2005.

[31] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press,
New York, NY, USA, 1979.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 731453, 21 pages
doi:10.1155/2012/731453

Research Article
Event-Triggered State Estimation for
a Class of Delayed Recurrent Neural Networks
with Sampled-Data Information

Hongjie Li

College of Mathematics, Physics and Information Engineering, Jiaxing University, Zhejiang 314001, China

Correspondence should be addressed to Hongjie Li, lhjymlly@163.com

Received 9 June 2012; Accepted 31 July 2012

Academic Editor: Sabri Arik

Copyright q 2012 Hongjie Li. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The paper investigates the state estimation problem for a class of recurrent neural networks with
sampled-data information and time-varying delays. The main purpose is to estimate the neuron
states through output sampled measurement; a novel event-triggered scheme is proposed, which
can lead to a significant reduction of the information communication burden in the network;
the feature of this scheme is that whether or not the sampled data should be transmitted is
determined by the current sampled data and the error between the current sampled data and the
latest transmitted data. By using a delayed-input approach, the error dynamic system is equivalent
to a dynamic system with two different time-varying delays. Based on the Lyapunov-krasovskii
functional approach, a state estimator of the considered neural networks can be achieved by
solving some linear matrix inequalities, which can be easily facilitated by using the standard
numerical software. Finally, a numerical example is provided to show the effectiveness of the
proposed event-triggered scheme.

1. Introduction

The research of neural networks has been paid much attention during the past few years, due
to its potential application in various fields, such as image processing, pattern recognition,
and associative memory [1–5]. As a special class of nonlinear dynamical systems, the
dynamic behavior of recurrent neural networks has been one of the most important issues.
In particular, the analysis problems of stability and synchronization of recurrent neural
networks have received great attention and a number of profound results have been proposed
[6–12].

In many application, such as signal processing and control engineering, for large-scale
neural networks, it is quite common that only partial information can be accessible from the
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network outputs. Therefore, it is of great significance to estimate the neuron states through
available output measurements of the networks and then utilizes the estimated neuron states
to achieve certain design objectives; note that state estimation problem for neural networks
has been hot reach topics that have drawn considerable attention, and many profound results
have been available in the literature [13–25]. The authors in [13] studied the problem of
state estimation for a class of delayed neural networks; the traditional monotonicity and
smoothness assumption on the activation function had been removed. The design problem
of state estimator for a class of neural networks with constant delays was investigated in
[14], where a delay-dependent criterion for existence of the estimator was proposed. As
an extension, The authors in [14, 15] further discussed state estimation for neural networks
with time-varying delays. In practice, sometimes a neural network has finite state modes and
modes may switch from one to another at different times. On the other hand, discrete-time
neural networks could be more suitable to model digitally transmitted signals in dynamical
way; based on the above reason, The authors in [16] investigated state estimation problem
for a new class of discrete-time neural networks with Markovian jumping parameters and
mode dependent mixed time-delays, where he discrete and distributed delays were mode-
dependent. Different from the stuelies in [16, 17] which considered state estimation for
Markovian jumping delayed continuous-time recurrent neural networks, where only matrix
parameters were mode-dependent. Similar to [16], for continuous-time recurrent neural
networks with discrete and distributed delays, state estimation was also investigated in [18].
In [19, 20], synchronization and state estimation had been studied for discrete-time complex
networks with distributed delays; it was noticed that in [20], a novel notion of bounded
H∞ synchronization had been first defined to characterize the transient performance of
synchronization. Some robust state estimation problems for uncertain neural networks with
time-varying delays had been investigated in [21–23], where the parameter uncertainties are
assumed to be norm bounded; some sufficient conditions were presented to guarantee the
existence of the desired state estimator. Taking into account the stochastic properties of time-
varying delays, the authors in [24] discussed state estimation problem for a class of discrete-
time stochastic neural networks with random delays; sufficient delay-distribution-dependent
conditions were established in terms of linear matrix inequalities (LMIs) that guarantee the
existence of the state estimator.

The sampled-data control theory had attracted much attention due to its effectiveness
in engineering applications. Especially, a new approach to deal with the sampled-data control
problems had been proposed in [26], where the sampling period had been converted into
time-varying delay. As its extension, the authors in [27] investigated the sampled-data state
estimation problem for a class of recurrent neural networks with time-varying delays, where
the sampled measurements had been used to estimate the neuron states. Using a similar
approach, where the sampled-data synchronization control problem was investigated in [28]
for a class of general delayed complex networks, the sampled-data feedback controllers were
designed in terms of the solution to certain linear matrix inequalities. But in the above
references, the sampling rate for each signal is the same; but in the actual system, it may
be varying from sample to sample owing to unpredictable perturbations; this factor was
considered in [29], the problem of robust H∞ control was investigated for sampled-data
systems with probabilistic sampling, where two different sampling periods were considered
whose occurrence probabilities were given constants and satisfied Bernoulli distribution. In
[30], stochastic sampled-data approach was used for studying the problem of distributed H∞
filtering in sensor networks, by converting the sampling periods into bounded time-delays,
the design problem of H∞ filters amounted to solving the H∞ filtering problem for a class
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of stochastic nonlinear systems with multiple bounded time delays. In [31], the sampled-
data synchronization control problem was addressed, where the sampling period was time
varying and switched between two different values in a random way. It is worth noting
that most of the above results were involved the traditional approach of sampling at pre-
specified time instances, which was called time-triggered sampling; this sampling method
may lead to an inherently periodic transmission and produce many useless messages if the
current sampled signal had not significantly changed in contrast to the previous sampled
signal, which led to a conservative usage of the communication resources. Recently, event-
triggered scheme provided an effective approach of determining; its main property was that
the signal was sampled and only some functions of the system state or output measurement
exceeded threshold. Compared with periodic sampling method, the event-triggered scheme
could reduce the burden of the communication and also preserve the desired properties of
the ideal continuous state feedback system, such as stability and convergence. The utilization
on event-triggered scheme could be found in many literatures such as [32–37]. The event-
triggered H∞ control design was investigated in [32] for networked control systems with
uncertainties and transmission delays, and a novel event-triggered scheme was proposed.
The study in [33] was concerned with the control problem of event-triggered networked
systems with both state and control input quantizations. In [34], the problems of exponential
stability and L2-gain analysis of event-triggered networked control systems were studied,
where the event-triggered conditions were proposed in the sensor side and controller side. In
[35–37], the consensus problems for multiagent systems were investigated by event-triggered
control, where different trigger functions were proposed. Unfortunately, as far as we know,
up to now, no theoretical results are given for state estimation of recurrent neural networks
with time-varying delays based on event-triggered scheme. The purpose of our study is to
fill the gap.

Motivated by the above discussion, the paper is concerned with the sampled-data state
estimation problem for a class of recurrent neural networks with time-varying delays. The
main purpose is to estimate the neuron states through output sampled measurement, and a
novel event-triggered scheme is proposed, which can lead to a significant reduction of the
information communication burden in the network. By using a delayed-input approach, the
error dynamics system is equivalent to a dynamic system with two different time-varying
delays. Based on constructing a Lyapunov-Krasovskii functional and employing some
analysis techniques, a state estimator of the considered neural networks can be achieved by
solving some linear matrix inequalities, which can be easily facilitated by using the standard
numerical software. Finally, a numerical example is given to illustrate the effectiveness of the
proposed method.

The main contributions of this paper are highlighted as follows.

(1) The novel event-triggered scheme is proposed, compared with a time-triggered
periodic communication scheme, since the proposed communication scheme only
depends on the state at the sampled instant and the state error between the current
sampled instant and the latest transmitted state. Therefore, the number of the
transmitted state signals through the network could be reduced apparently.

(2) Sufficient conditions obtained are in the form of linear matrix inequalities which can
be readily solved by using the LMI toolbox in Matlab, and the solvability of derived
conditions dependents on not only trigger parameters and sampling period but also
the size of the delay.
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Notation 1. The notation used here is fair standard except where otherwise stated. R
n denotes

the n-dimensional Euclidean space and R
n×m is the set of real n×mmatrices. The superscript T

represents the transpose of the matrix (or vector). I denotes the identity matrix of compatible
dimensions. The asterisk represents the symmetric block in one symmetric matrix. diag{· · · }
stands for a block-diagonal matrix. The notation X ≥ 0 (X > 0) means that X is positive semi-
definite (positive definite). ‖·‖ is the Euclidean norm in R

n. If they are not explicitly specified,
arguments of a function or a matrix will be omitted in the analysis when no confusion can
arise.

2. Preliminaries

Consider a class of recurrent neural networks with time-varying delays as follows:

ẋ(t) = −Ax(t) +W0g(x(t)) +W1g(x(t − τ(t)))
y(t) = Cx(t),

(2.1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ R

n is the state vector associated with n neurons; A =
diag{a1, a2, . . . , an} is a positive diagonal matrix;W0 ∈ R

n×n andW1 ∈ R
n×n are the connection

weight matrix and the delayed connection weight matrix, respectively; τ(t) ∈ [0, τ] is the
time-varying bound delay; C ∈ R

m×n is a constant matrix; y(t) = (y1(t), y2(t), . . . , ym(t))
T ∈

R
m denotes the output vector; g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]

T ∈ R
n represents

the neuron activation function with g(0) = 0.
In this paper, the measurement output is sampled before it enters the estimator; based

on the sampling technique and zero-order hold, the actual output can be described as

y(t) = y(tk) = Cx(tk), t ∈ [tk, tk+1), (2.2)

where y(t) ∈ R
m is the actual output of the estimator, and tk denotes the sampling instant

satisfying limk→∞tk = ∞.

Remark 2.1. In practical systems, periodic sampling mechanism may often lead to sending
many unnecessary signals through the networks, which will increase the load of network
transmission and waste the network bandwidth; therefore, it is significant to introduce a
mechanism to determine which sampled signal should be sent out or not. As stated in [32, 33],
the event-trigger sampling scheme is effective way because they can reduce the traffic and the
power consumption.

The sampled data y(tk+j) is transmitted (or released) by the event generator only
when the current sampled value y(tk+j) and the previously transmitted one y(tk) satisfy the
following judgement algorithm:

[
y
(
tk+j
) − y(tk)

]T
W
[
y
(
tk+j
) − y(tk)

]
< σyT

(
tk+j
)
Wy
(
tk+j
)
, (2.3)

where W ∈ R
m×m is a positive matrix, and σ ∈ [0, 1) is a positive scalar. The sampled state

y(tk+j) satisfying the inequality (2.3) will not be transmitted; only the one that exceeds the
threshold in (2.3) will be sent to the estimator. Specially, when σ = 0, the inequality (2.3) is
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not satisfied for almost all the sampled state y(tk+j), and the event-triggered scheme reduces
to a periodic release scheme.

Remark 2.2. From event-triggered algorithm (2.3), it is easily seen that all the released signals
are subsequences of the sampled data, that is, the set of the release instants {t0, t1, t2 . . .} ⊆
{0, 1, 2, . . .}. The amount of {t0, t1, t2 . . .} depends on not only the value of σ but also the
variation of the system output.

Suppose that the time-varying delay in network communication is dk ∈ [0, d] (k =
1, 2, . . . ,+∞), the output y(t) in (2.2) can be rewritten as

y(t) = y(tk) = Cx(tk), t ∈ [tk + dk, tk+1 + dk+1). (2.4)

Substituting the output (2.4) into the judgement algorithm (2.3), we can obtain

[
x
(
tk+j
) − x(tk)

]T
CTWC

[
x
(
tk+j
) − x(tk)

]
< σxT

(
tk+j
)
CTWCx

(
tk+j
)
. (2.5)

For technical convenience, similar to [32, 33], consider the following two intervals:

[tk + dk, tk + h + d), [tk + lh + d, tk + lh + h + d), (2.6)

where l is a positive integer and h is a sampling period.

(1) if tk + h + d > tk+1 + dk+1, define a function d(t) as follows:

d(t) = t − tk, t ∈ [tk + dk, tk+1 + dk+1). (2.7)

It can easily be obtained that the following inequality holds:

dk ≤ d(t) ≤ tk+1 − tk + dk+1 ≤ h + d. (2.8)

(2) if tk + h + d < tk+1 + dk+1, there exists a positive integer m, such that

tk +mh + d < tk+1 + dk+1 < tk +mh + h + d. (2.9)

It can be easily shown that

[tk + dk, tk+1 + dk+1) = I1 ∪ I2 ∪ I3, (2.10)
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where

I1 = [tk + dk, tk + h + d)

I2 =
l−1⋃

m=1

{
Im2
}

Im2 = [tk +mh + d, tk +mh + h + d)

I3 = [tk + lh + d, tk+1 + dk+1).

(2.11)

Define a function d(t) as

d(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t − tk t ∈ I1

t − tk −mh t ∈ Im2 (m = 1, 2, . . . , l − 1)
t − tk − lh t ∈ I3.

(2.12)

From the definition of d(t) defined in (2.12), we can derive

0 ≤ dk ≤ d(t) < h + d, t ∈ I1

0 ≤ dk ≤ d ≤ d(t) < h + d, t ∈ Im2 (m = 1, 2, . . . , l − 1)

0 ≤ dk ≤ d ≤ d(t) < h + d, t ∈ I3.

(2.13)

From (2.13), it can be derived that 0 ≤ d(t) < dM, where dM = h+d. For t ∈ [tk+dk, tk+1+dk+1),
we define

ek(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t ∈ I1

x(tk +mh) − x(tk) t ∈ Im2 (m = 1, 2, . . . , l − 1)
x(tk + lh) − x(tk) t ∈ I3.

(2.14)

Combining the above definitions of d(t) and ek(t), the algorithm (2.5) can be rewritten
as

eTk (t)C
TWCek(t) < σxT (t − d(t))CTWCx(t − d(t)). (2.15)

Based on the available sampled measurement y(t), the following state estimator is
adopted:

˙̂x(t) = −Ax̂(t) +K(y(t) − Cx̂(t)), (2.16)

where K is feedback gain matrix to be designed, and x̂(t) = (x̂1(t), x̂2(t), . . . , x̂n(t))
T ∈ R

n is
estimator state vector.
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Setting e(t) = x(t)− x̂(t), the estimation error dynamics can be obtained from (2.1) and
(2.16), and it follows that

ė(t) = −(A +KC)e(t) +KCx(t) −KCx(t − d(t)) +KCek(t) +W0g(x(t)) +W1g(x(t − τ(t))).
(2.17)

Let x(t) = (xT (t), eT (t))T , we can get the following augmented system from (2.1) and
(2.17)

ẋ(t) = Ax(t) + Bx(t − d(t)) +W0g(Hx(t)) +W1g(Hx(t − τ(t))) + Cek(t), (2.18)

where

A =
[−A 0
KC −A −KC

]
B =

[
0 0

−KC 0

]
W0 =

[
W0

W0

]

W1 =
[
W1

W1

]
HT =

[
I
0

]
C =

[
0
KC

]
.

(2.19)

Before giving the main results, the following assumption, definition, and lemma are
essential in establishing our main results.

Assumption 2.3 (see, [27]). The activation function g(·) satisfies the following sector-bounded
condition:

[
g(x) −U1x

]T[
g(x) −U2x

] ≤ 0, (2.20)

where U1 and U2 are two real constant matrices with U2 −U1 ≥ 0.

Definition 2.4 (see, [27]). The augmented system (2.18) is exponentially stable, if there exist
two constants α > 0 and β > 0, such that

‖x(t)‖2 ≤ αe−βt sup
−r≤θ≤0

∥∥φ(θ)
∥∥2
, (2.21)

where φ(·) is in the initial function system (2.18) as φ(t) = x(t), t ∈ [−r, 0].
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Lemma 2.5 (see, [38, 39]). Suppose τ(t) ∈ [τm, τM], Qi (i = 1, 2, 3) are some constant matrices
with appropriate dimensions, then

Q1 + (τM − τ(t))Q2 + (τ(t) − τm)Q3 < 0, (2.22)

if the following inequalities hold

Q1 + (τM − τm)Q2 < 0

Q1 + (τM − τm)Q3 < 0.
(2.23)

Lemma 2.6 (see, [40]). For any constant positive matrix T ∈ R
n×n, scalar τ1 ≤ τ(t) < τ2 and vector

function ẋ(t) : [−τ2, τ1] → R
n such that the following integration is well defined, then it holds that

−(τ2 − τ1)
∫ t−τ1

t−τ2

ẋT (v)Tẋ(v)dv ≤
⎡

⎣
x(t − τ1)
x(t − τ(t))
x(t − τ2)

⎤

⎦

T⎡

⎣
−T T 0
∗ −2T T
∗ ∗ −T

⎤

⎦

⎡

⎣
x(t − τ1)
x(t − τ(t))
x(t − τ2)

⎤

⎦. (2.24)

3. Main Results

In this section, we design a sampled-date estimator with form (2.18) for recurrent neural
networks with time-varying delay based event-triggered control.

The system (2.18) can be rewritten as

ẋ(t) = Aξ(t), (3.1)

where

ξ(t)=
[
xT (t), xT (t−d(t)), xT (t−dM), xT (t−τ(t)), xT (t−τ), gT (Hx(t)), gT (Hx(t−τ(t))), eTk (t)

]T

A =
[
A,B, 0, 0, 0,W0,W1, C

]
.

(3.2)

Theorem 3.1. Suppose that Assumption 2.3 holds, for given estimator gain matrixK, the augmented
system (3.1) is exponentially stable, if there exist some positive definite matrices P > 0,Qi > 0, Ri > 0
and Si, Ti (i = 1, 2) with appropriate dimension, and two positive scalars α > 0, β > 0, such that the
following linear matrix inequalities hold:

Πi =

⎡

⎢⎢⎢
⎣

Π Φ1 Φ2 Φ(i)
3

∗ −dMR1 0 0
∗ ∗ −τR2 0
∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦
< 0 (i = 1, 2), (3.3)



Abstract and Applied Analysis 9

where

Π =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

Π11 Π12 0 Π13 0 Π14 PW1 PC

∗ Π22
1
dM

R1 0 0 0 0 0

∗ ∗ Π33 0 0 0 0 0

∗ ∗ ∗ Π44 Π45 0 −βU2 0
∗ ∗ ∗ ∗ Π55 0 0 0
∗ ∗ ∗ ∗ ∗ −αI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −βI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −CTWC

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

Φ1 =
[
dMR1A dMR1B 0 0 0 dMR1W0 dMR1W1 dMR1C

]T

Φ2 =
[
τR2A τR2B 0 0 0 τR2W0 τR2W1 τR2C

]T

Φ(1)
3 =

[
τST1 0 0 τST2 0 0 0 0

]T

Φ(2)
3 =

[
0 0 0 τTT1 τTT2 0 0 0

]T

Π11 = PA +A
T
P +Q1 +Q2 − 1

dM
R1 + S1 + ST1 − αU1

Π12 = PB +
1
dM

R1

Π13 = ST2 − S1

Π14 = PW0 − αU2

Π22 = − 2
dM

R1 + σΩ

Π33 = −Q1 − 1
dM

R1

Π44 = −S2 − ST2 + T1 + TT1 − βU1

Π45 = −T1 + TT2

Π55 = −Q2 − T2 − TT2

Ω =
[
CTWC 0

0 0

]
.

(3.4)

Proof. Construct the following Lyapunov-Krasovskii functional candidate:

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)), (3.5)
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where

V1(t, x(t)) = x
T (t)Px(t)

V2(t, x(t)) =
∫ t

t−dM
xT (s)Q1x(s)ds +

∫ t

t−τ
xT (s)Q2x(s)ds

V3(t, x(t)) =
∫ t

t−dM

∫ t

θ

ẋ
T
(s)R1ẋ(s)dsdθ

V4(t, x(t)) =
∫ t

t−τ

∫ t

θ

ẋ
T
(s)R2ẋ(s)dsdθ,

(3.6)

and P > 0, Qi > 0 and Ri > 0 (i = 1, 2) are matrices to be determined.
The derivative of Vi(t, x(t)) (i = 1, 2, 3, 4) along the trajectory of system (3.1) can be

shown as follows:

V̇1(t, x(t)) = 2xT (t)PAξ(t) (3.7)

V̇2(t, x(t)) = x
T (t)(Q1 +Q2)x(t) − xT (t − dM)Q1x(t − dM) − xT (t − τ)Q2x(t − τ) (3.8)

V̇3(t, x(t)) = dMẋ
T
(t)R1ẋ(t) −

∫ t

t−dM
ẋ
T
(s)R1ẋ(s)ds

= dMξT (t)ATR1Aξ(t) −
∫ t

t−dM
ẋ
T
(s)R1ẋ(s)ds

(3.9)

V̇4(t, x(t)) = τẋ
T
(t)R2ẋ(t) −

∫ t

t−τ
ẋ
T
(s)R2ẋ(s)ds

= τξT (t)ATR2Aξ(t) −
∫ t

t−τ
ẋ
T
(s)R2ẋ(s)ds.

(3.10)

Noting that (3.9), it follows from Lemma 2.6 that

−
∫ t

t−dM
ẋ
T
(s)R1ẋ(s)ds ≤ 1

dM

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦

T⎡

⎣
−R1 R1 0
∗ −2R1 R1

∗ ∗ −R1

⎤

⎦

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦. (3.11)

Employing the free matrix method [38, 39], it is easily derived that

2ξT (t)S

[

x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
ẋ(s)ds

]

= 0,

2ξT (t)T

[

x(t − τ(t)) − x(t − τ) −
∫ t−τ(t)

t−τ
ẋ(s)ds

]

= 0,

(3.12)
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where

S =
[
ST1 0 0 ST2 0 0 0 0

]T
,

T =
[
0 0 0 TT1 TT2 0 0 0

]T
.

(3.13)

It follows that from (3.12) that

−2ξT (t)S
∫ t

t−τ(t)
ẋ(s)ds ≤ τ(t)ξT (t)SR−1

2 STξ(t) +
∫ t

t−τ(t)
ẋ
T
(s)R2ẋ(s)ds

−2ξT (t)T
∫ t−τ(t)

t−τ
ẋ(s)ds ≤ (τ − τ(t))ξT (t)TR−1

2 TTξ(t) +
∫ t−τ(t)

t−τ
ẋ
T
(s)R2ẋ(s)ds.

(3.14)

By Assumption 2.3, the following inequality holds:

[
x(t)

g(Hx(t))

]T[U1 U2

U
T

2 I

][
x(t)

g(Hx(t))

]
≤ 0, (3.15)

where

U1 = HTÛ1H, U2 = HTÛ2

Û1 =
UT

1U2 +UT
2U1

2
, Û2 =

UT
1 +UT

2

2
.

(3.16)

For all α, β > 0, it can be derived from (3.15) that

−α
[

x(t)
g(Hx(t))

]T[U1 U2

U
T

2 I

][
x(t)

g(Hx(t))

]
≥ 0

−β
[

x(t − τ(t))
g(Hx(t − τ(t)))

]T[U1 U2

U
T

2 I

][
x(t − τ(t))

g(Hx(t − τ(t)))
]
≥ 0.

(3.17)

Then, (2.15) can be rewritten as

σxT (t − d(t))Ωx(t − d(t)) −
[
eT
k (t)C

TWCek(t) 0
0 0

]
> 0, (3.18)

where

Ω =
[
CTWC 0

0 0

]
. (3.19)
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It follows from (3.7)–(3.18) that

V̇ (t, x(t)) ≤ 2xT (t)PAξ(t) + xT (t)(Q1 +Q2)x(t) − xT (t − dM)Q1x(t − dM)

− xT (t − τ)Q2x(t − τ) + dMξT (t)ATR1Aξ(t) + τξT (t)ATR2Aξ(t)

+ 2ξT (t)S(x(t) − x(t − τ(t))) + 2ξT (t)T(x(t − τ(t)) − x(t − τ))

+
1
dM

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦

T⎡

⎣
−R1 R1 0
∗ −2R1 R1

∗ ∗ −R1

⎤

⎦

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦

− α
[

x(t)
g(Hx(t))

]T[U1 U2

U
T

2 I

][
x(t)

g(Hx(t))

]

− β
[

x(t − τ(t))
g(Hx(t − τ(t)))

]T[U1 U2

U
T

2 I

][
x(t − τ(t))

g(Hx(t − τ(t)))
]

+ σxT (t − d(t))Ωx(t − d(t)) −
[
eT
k (t)C

TWCek(t) 0
0 0

]

+ τ(t)ξT (t)SR−1
2 STξ(t) + (τ − τ(t))ξT (t)TR−1

2 TTξ(t)

= ξT (t)
(
Π + dMATR1A + τATR2A

)
ξ(t) + τ(t)ξT (t)SR−1

2 STξ(t)

+ (τ − τ(t))ξT (t)TR−1
2 TTξ(t).

(3.20)

By using Schur complement and Lemma 2.5, it can be seen that (3.3) is equivalent to

Π + dMATR1A + τATR2A + τ(t)SR−1
2 ST + (τ − τ(t))TR−1

2 TT < 0 (3.21)

which implies V̇ (t, x(t)) < −ε‖x(t)‖2; then similar to [41], we can obtain the exponential
stability of system (3.1). The proof is completed.

Remark 3.2. From Theorem 3.1, it can be seen that the trigger parameters σ, W and the upper
bound of time delay τ are involved in (3.3); for given σ, the corresponding trigger parameter
W and the upper bound of τ can be obtained by using LMI toolbox in Matlab. From the
simulation example, it can be derived that the larger the σ, the small the τ ; the larger average
release period, which means the load of network transmission will be reduced.

Remark 3.3. When the estimator gain matrix K is given, the conditions (3.3) are in the form
of linear matrix inequalities, which can be readily solved by using the standard numerical
software. The conditions (3.3) are not linear matrix inequalities when the estimator gain
matrix K is a matrix variable to be designed, and thus Theorem 3.1 cannot be used to design
K directly, a design method will be provided in the following Theorem.
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After establishing analysis results in Theorem 3.1, the design problem of state
estimator is to be considered and the following results can be readily derived from
Theorem 3.1.

Theorem 3.4. Suppose that Assumption 2.3 holds, the augmented system (3.1) is exponentially
stable, if there exist P = diag{P1,P2} > 0, Qi = diag{Qi,Qi} > 0, Ri = diag{Ri,Ri} > 0 and
Si = diag{Si,Si}, Ti = diag{Ti,Ti} (i = 1, 2) and V with appropriate dimension, and two positive
scalars α > 0, β > 0, such that the following linear matrix inequalities hold:

Πi =

⎡

⎢
⎢
⎢
⎣

Π Φ1 Φ2 Φ
(i)
3

∗ Φ4 0 0
∗ ∗ Φ5 0
∗ ∗ ∗ −τR2

⎤

⎥
⎥
⎥
⎦
< 0 (i = 1, 2), (3.22)

where

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π11 Π12 0 Π13 0 Π14 Π15 Π16

∗ Π22 Π23 0 0 0 0 0
∗ ∗ Π33 0 0 0 0 0
∗ ∗ ∗ Π44 Π45 0 Π46 0
∗ ∗ ∗ ∗ Π55 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Φ1 =
[
Π
T

17 Π
T

24 0 0 0 Π
T

67 Π
T

78 Π
T

89

]T

Φ2 =
[
Π
T

18 Π
T

25 0 0 0 Π
T

68 Π
T

79 Π
T

8,10

]T

Φ
(1)
3 =

[
Π
T

19 0 0 Π
T

47 0 0 0 0
]T

Φ(2)
3 =

[
0 0 0 Π̂T

19 Π̂T
47 0 0 0

]T

Φ4 =
[

2dMP1 + dMR1 0
0 2dMP2 + dMR1

]

Φ5 =
[

2τP1 + τR2 0
0 2τP2 + τR2

]

Π11 =

[
−P1A −ATP1 − αÛ1 CTV T

VC −P2A −ATP2 − VC − CTV T

]

+

⎡

⎢
⎣
Q1 +Q2 − 1

dM
R1 + S1 + ST1 0

0 Q1 +Q2 − 1
dM

R1 + S1 + ST1

⎤

⎥
⎦

(3.23)
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Π12 =

⎡

⎢
⎣

1
dM

R1 0

VC
1
dM

R1

⎤

⎥
⎦, Π13 =

[
ST2 − S1 0

0 ST2 − S1

]

Π14 =

[
P1W0 − αÛ2

P2W0

]

, Π15 =
[
P1W1

P2W1

]

Π16 =
[

0
VC

]
, Π17 =

[−dMATP1 dMC
TV T

0 −dMATP2 − dMCTV T

]

Π18 =
[−τATP1 τCTV T

0 −τATP2 − τCTV T

]
, Π19 =

[
τS1 0

0 τS1

]

Π̂19 =
[
τT1 0

0 τT1

]
, Π22 =

⎡

⎢
⎣
− 2
dM

R1 + σCTWC 0

0 − 2
dM

R1

⎤

⎥
⎦

Π23 =

⎡

⎢
⎣

1
dM

R1 0

0
1
dM

R1

⎤

⎥
⎦, Π24 =

[
0 −dMCTV T

0 0

]

Π25 =
[

0 τCTV T

0 0

]
, Π33 =

⎡

⎢
⎣
−Q1 − 1

dM
R1 0

0 −Q1 − 1
dM

R1

⎤

⎥
⎦

Π44 =

[
−S2 − ST2 + T1 + TT1 − βÛ1 0

0 −S2 − ST2 + T1 + TT1

]

, Π45 =
[
TT2 − T1 0

0 TT2 − T1

]

Π46 =

[
−βÛ2

0

]

, Π47 =
[
τS2 0

0 τS2

]
, Π̂47 =

[
τT2 0

0 τT2

]

Π55 =
[−Q2 − T2 − TT2 0

0 −Q2 − T2 − TT2

]
, Π66 = −αI

Π67 =
[
dMW

T
0 P1 dMW

T
0 P2
]
, Π68 =

[
τWT

0 P1 τWT
0 P2
]
, Π77 = −βI

Π78 =
[
dMW

T
1 P1 dMW

T
1 P2
]
, Π79 =

[
τWT

1 P1 τWT
1 P2
]
, Π88 = −CTWC

Π89 =
[
0 −dMCTV T

]
, Π8,10 =

[
0 −τCTV T

]
,

(3.24)

then the desired estimator gain matrix is given as K = P−1
2 V .

Proof. By using Schur complement in Theorem 3.1, Πi < 0 (i = 1, 2) can be rewritten as

Π + dMATR1A + τATR2A + τSR−1
2 ST < 0

Π + dMATR1A + τATR2A + τTR−1
2 TT < 0.

(3.25)
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By using Lemma 2.5, (3.25) are equivalent to the following matrix inequalities

⎡

⎢
⎢
⎢
⎣

Π Φ̂1 Φ̂2 Φ(i)
3

∗ −dMR−1
1 0 0

∗ ∗ −τR−1
2 0

∗ ∗ ∗ −τR2

⎤

⎥
⎥
⎥
⎦
< 0 (i = 1, 2), (3.26)

where

Π =

⎡

⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π11 Π12 0 Π13 0 Π14 Π15 Π16

∗ Π22 Π23 0 0 0 0 0
∗ ∗ Π33 0 0 0 0 0
∗ ∗ ∗ Π44 Π45 0 Π46 0
∗ ∗ ∗ ∗ Π55 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88

⎤

⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Φ̂1 =
[
dMA dMB 0 0 0 dMW0 dMW1 dMC

]T

Φ̂2 =
[
τA τB 0 0 0 τW0 τW1 τC

]T
.

(3.27)

Then performing a congruence transformation of diag{I, P, P, I} to (3.26), it can be
derived that

⎡

⎢⎢⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −dMPR−1
1 P 0 0

∗ ∗ −τPR−1
2 P 0

∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦
< 0 (i = 1, 2), (3.28)

where

Φ̃1 =
[
dMPA dMPB 0 0 0 dMPW0 dMPW1 dMPC

]T

Φ̃2 =
[
τPA τPB 0 0 0 τPW0 τPW1 τPC

]T
.

(3.29)

Setting P2K = V in (3.28) and considering the following inequality:

−PR−1
i P ≤ −2P + Ri (i = 1, 2). (3.30)
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By using (3.30), we can obtain

⎡

⎢
⎢
⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −dMPR−1
1 P 0 0

∗ ∗ −τPR−1
2 P 0

∗ ∗ ∗ −τR2

⎤

⎥
⎥
⎥
⎦
<

⎡

⎢
⎢
⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −2dMP + dMR1 0 0
∗ ∗ −2τP + τR2 0
∗ ∗ ∗ −τR2

⎤

⎥
⎥
⎥
⎦
. (3.31)

Substitute A, B, W0, H,W1, C, P , Qi, Ri, Si, Ti (i = 1, 2) into the right of (3.31),
combining (3.22), we can obtain

⎡

⎢
⎢
⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −2dMP + dMR1 0 0
∗ ∗ −2τP + τR2 0
∗ ∗ ∗ −τR2

⎤

⎥
⎥
⎥
⎦
< 0 (i = 1, 2). (3.32)

The rest of the proof follows directly from Theorem 3.1.

Remark 3.5. When the estimator gain matrix K is a matrix variable to be designed, in order
to transform the conditions (3.3) to linear matrix inequalities, and meanwhile reduce the
computational complexity (i.e., reduce the number of matrix variables), in Theorem 3.4,
matrix variables in Theorem 3.1 are replaced by some diagonal matrices. Then setting P2K =
V , we can obtain (3.22), which is in the form of linear matrix inequalities, which are easy to
be verified by LMI toolbox.

Remark 3.6. It is noticed that dM = h + d, if dM is solved, we can select a sampling period
h < dM. For given d, the maximal allowable sampling period hmax can be obtained by the
following two-step procedure.

(1) For given τ and d, setting hmax = h0 and step size STEP = STEP0, where h0 and
STEP0 are two specified positive constants.

(2) If LMIs (3.22) are feasible, set hmax = h0 + STEP0 and return to step (2): otherwise, h
is the maximal allowable sampling period.

4. Numerical Results

In this section, a numerical example is given to verify the effectiveness of the proposed control
techniques for estimation of recurrent neural networks with time-varying delays.

Example 4.1. Consider recurrent neural networks (2.1) with the following parameters

A =
[

1.5 0
0 2

]
, W0 =

[
0.3 −0.4
−0.4 0.3

]
, W1 =

[
0.3 0.3
0.3 0.3

]
, C =

[
0.9 0.8
0.7 0.5

]
. (4.1)

The neuron activation function is described as follows:

g(x) =
[

0.5x1(t) − tanh(0.2x1(t)) + 0.2x2(t)
0.95x2(t) − tanh(0.75x2(t))

]
. (4.2)
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Table 1: dM = 0.01.

σ 0 0.01 0.1 0.2 0.3 0.4 0.5
τ 1.2134 1.1966 1.1572 1.1570 1.1569 1.1569 1.1569

Table 2: τ = 1, d = 0.01.

σ 0 0.01 0.1 0.15 0.2 0.3 0.99
hmax 0.2244 0.2106 0.1998 0.1998 0.1998 0.1998 0.1998

It is easy to verify that the nonlinear function f(·) satisfies Assumption 2.3; by some
simple calculations, we can obtain

U1 =
[

0.3 0.2
0 0.2

]
U2 =

[
0.5 0.2
0 0.95

]
. (4.3)

Setting dM = 0.01 and σ = 0.1, by applying Theorem 3.4, it can be obtained the
maximum allowable delay τ = 1.1572. More detailed calculation results for different values
of σ are given in Table 1. It can be shown that the larger σ, the smaller τ . For given τ = 1 and
d = 0.01, based on Remark 3.6, we can obtain the maximal allowable sampling period hmax,
which are shown in Table 2. For given τ = 1, σ = 0.1 and dM = 0.01, by using LMI Toolbox in
LMIs (3.22), the feasible solution can be obtained as follows:

P1 =
[

5.4676 −0.1329
−0.1329 5.4000

]
, P2 =

[
5.0204 −0.1155
−0.1155 4.2212

]
, Q1 =

[
2.7863 −0.0955
−0.0955 2.0982

]

Q2 =
[

3.2539 −0.0133
−0.0133 2.8910

]
, R1 =

[
0.0222 0.0010
0.0010 0.0234

]
, R2 =

[
2.2237 −0.0246
−0.0246 1.4752

]

S1 =
[−0.5503 0.0195

0.0478 −0.4156

]
, S2 =

[
1.0185 0.0674
0.1378 1.1920

]
, T1 =

[−1.0844 −0.0634
−0.0902 −1.2378

]

T2 =
[

0.3511 −0.0221
−0.0195 0.3384

]
, V =

[−0.0792 −0.1282
−0.1755 −0.0863

]
, α = 6.4604, β = 5.7723.

(4.4)

Then the triggered matrix and the desired estimator can be obtained as follows:

W =
[

4.6153 −2.7354
−2.7354 6.5131

]
, K =

[−0.0165 −0.0308
−0.0354 −0.0214

]
. (4.5)

For giving the sampling period h = 0.005, Table 3 gives the relation of the
trigger parameter σ, trigger times, the average release period, and the percentage of data
transmissions; it can be seen that the larger the σ, the smaller trigger times; the larger average
release period, the smaller percentage of data transmission, which are reasonable results. In
the following, we provide some simulation results: when σ = 0, the time varying delay τ(t)
obeys uniform distribution over [0, 1], and the curves of the error dynamics of the neural
networks ei(t) (i = 1, 2) are depicted in Figure 1, from which we can see the errors converge
to zero asymptotically. If setting σ = 0.1, The response of the error dynamics for the delayed
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Figure 1: The error curves ei(t) (i = 1, 2) with trigger parameter σ = 0 (time-triggered scheme).

Table 3: h = 0.005, dM = 0.01, τ = 0.1, t = 10.

σ 0 0.01 0.1

Trigger times 2000 188 74

Trigger matrix W

⎡

⎣ 0.7582 −0.2843

−0.2843 0.9490

⎤

⎦

⎡

⎣ 0.7504 −0.2881

−0.2881 0.9444

⎤

⎦

⎡

⎣ 4.6153 −2.7354

−2.7354 6.5131

⎤

⎦

Estimator matrix K

⎡

⎣−0.0070 −0.0553

−0.0398 −0.0257

⎤

⎦

⎡

⎣−0.0068 −0.0552

−0.0394 −0.0255

⎤

⎦

⎡

⎣−0.0165 −0.0308

−0.0354 −0.0214

⎤

⎦

Average release period 0.0050 0.0531 0.1348

Data transmission 100% 9.42% 3.71%

neural networks (2.17) which converge to zero asymptotically in the mean square is given in
Figure 2. Figure 3 shows the event-triggered release instants and intervals. It can be seen from
Figures 1 and 2 that the simulation results are almost the same, but the percentage of data
transmission under even-triggered scheme used much small number than time-triggering
scheme. To make this clear, seen the computation results lists in Table 2, from which we can
see that data transmission rate with even-triggered scheme (σ = 0.1) is only 3.71% of sampled
measurement output with time-triggered scheme (σ = 0); from these results, we can draw
a conclusion that event-triggered scheme has advantage over the time-triggered scheme in
improving the resource utilization.

5. Conclusions

This paper has provided a novel event-triggered scheme to investigate the sampled-data state
estimation problem for a class of recurrent neural networks with time-varying delays. This
scheme can lead to a significant reduction of the information communication burden in the
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Figure 2: The error curves ei(t) (i = 1, 2) with trigger parameter σ = 0.1 (event-triggered scheme).
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Figure 3: Release instants and release interval by event-triggered scheme.

network. By using a delayed-input approach, the error dynamics system is equivalently to a
dynamic system with two different time-varying delays. Based on the Lyapunov-krasovskii
functional approach, a state estimator of the considered neural networks can be achieved by
solving some linear matrix inequalities, which can be readily solved by using the standard
numerical software. Finally, an illustrative example is exploited to show the effectiveness of
the event-triggered scheme.
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We discuss the dynamical behaviors of impulsive stochastic reaction-diffusion neural networks
(ISRDNNs) with mixed time delays. By using a well-known L-operator differential inequality
with mixed time delays and combining with the Lyapunov-Krasovkii functional approach, as
well as linear matrix inequality (LMI) technique, some novel sufficient conditions are derived
to ensure the existence, uniqueness, and global exponential stability of the periodic solutions for
ISRDNNs with mixed time delays in the mean square sense. The obtained sufficient conditions
depend on the reaction-diffusion terms. The results of this paper are new and improve some of
the previously known results. The proposed model is quite general since many factors such as
noise perturbations, impulsive phenomena, and mixed time delays are considered. Finally, two
numerical examples are provided to verify the usefulness of the obtained results.

1. Introduction

In recent years, neural networks (NNs) with time delays have received considerable attention
due to their extensive applications in solving some optimization problems, associative
memory, classification of patterns, and other areas. In implementation of NNs, however, time
delays are unavoidably encountered. It has been found that the existence of time delays may
lead to instability and oscillation in a neural network. Therefore, the analysis of the dynamical
behaviors such as stability, periodic oscillation, and chaotic behavior are necessary work for
practical design of delayed NNs [1–12]. Zheng and Chen [1] studied the exponential stability
for delayed periodic dynamical systems. In [2], the global exponential stability and periodic-
ity of a class of recurrent NNs with time delays are addressed by using Lyapunov functional
method and inequality techniques. In the factual operations, however, the diffusion phenom-
ena could not be ignored in NNs when electrons are moving in asymmetric electromagnetic
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fields. So we must consider that the activations vary in space as well as in time. The NNs
with diffusion terms can commonly be expressed by partial differential equations [13–33].
The authors in [13, 19, 20] have dealt with obtaining sufficient conditions for the global expo-
nential stability and periodicity of delayed reaction-diffusion neural networks (RDNNs).

As is well known, besides delays and diffusion effects, impulsive phenomena can
be found in a wide variety of evolutionary process, particularly in some biological systems
such as biological NNs and bursting rhythm models in pathology, as well as optimal control
models in economics, frequency-modulated signal processing systems, and flying object
motions, in which many sudden and sharp changes occur instantaneously, in the form of
impulse. For example, in implementation of electronic networks, the state of the networks
is subject to instantaneous perturbations and experiences abrupt change at certain instants,
which may be caused by switching phenomenon, frequency change, or other sudden noise,
that is, it exhibits impulsive effects. As artificial electronic system, neural networks are often
subject to impulsive perturbations that in turn affect dynamical behaviors of the systems
[17, 18, 25–27]. In [17, 26, 27], the global exponential stability for the equilibrium point of
impulsive RDNNs with delays was investigated.

However, the models studied in the above mentioned papers have been largely
restricted to deterministic RDNNs. In the real world, a real system is usually affected by
external perturbations which in many cases are of great uncertainty and hence may be treated
as random. As pointed out by Haykin [34] that in real nervous systems synaptic transmission
is a noisy process brought on by random fluctuations from the release of neurotransmitters
and other probabilistic causes. Hence, it is of significant importance to study stochastic effects
for the neural networks. In recent years, the dynamic behavior of stochastic NNs, especially
the stability of stochastic NNs, has become a hot study topic. Very recently, several kinds
of NNs with delays and stochastic effects have been investigated [22, 28–30]. Lv et al. [22]
and Xu et al. [29] have obtained some criteria to guarantee the almost sure exponential
stability and mean square exponential stability of an equilibrium solution for RDNNs with
continuously distributed delays and stochastic influence, respectively. It is noticed that the
authors do not take impulsive phenomena and diffusion effects into account on the dynamic
behaviors of RDNNs.

It is well known that not only diffusion effects and delays cannot be avoided but also
the existence of impulsive and stochastic effects is extensive in the NNs. Moreover, the inter-
connection weights bij , b̃ij , bij , self-inhibition ai and inputs Ji in the NNs may be variable with
time, often periodically. Therefore, it is necessary to consider impulsive and stochastic effects
to the stability of RDNNs with mixed time delays and their periodic limits. Unfortunately, to
the best of our knowledge, the existence and global exponential stability of periodic solutions
have been seldom considered for ISRDNNs with variable coefficients and mixed time delays.
Due to the simultaneous presence of impulsive stochastic effects, reaction-diffusion phe-
nomena, periodicity, variable coefficients, and mixed time delays, the dynamical behaviors
become much more complex and therefore pose significant difficulties in the analysis.

Based on the above discussions, in this paper, we aim to challenge the analysis problem
on dynamical behaviors of ISRDNNs with mixed time delays. By applying a well-known L-
operator differential inequality with mixed time delays and combining with the Lyapunov-
Krasovkii functional approach, as well as linear matrix inequality (LMI) technique, we have
derived some easy-to-test sufficient conditions for the existence and exponential stability
of the periodic solutions for ISRDNNs with variable coefficients and mixed time delays.
The obtained criteria depend on the reaction-diffusion terms. The results of this paper are
new and they complement previously known results. Furthermore, we do not need the
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differentiability of the time-varying delays. Two examples are employed to demonstrate the
effectiveness of the obtained results that are less restrictive than recently known criteria.

Notation. Throughout this paper, the following notations will be used. R
n and R

n×n

denote the n-dimensional Euclidean real space equipped with the norm | · | and the set of
all n × n real matrices, respectively. Trace(·) denotes the trace of the corresponding matrix
and I denotes the identity matrix with appropriate dimensions. For square matrices A and B,
the notation A > (≥, <,≤)B denotes A−B is positive-definite (positive-semidefinite, negative,
negative-semidefinite) matrix. L denotes the well-known L-operator given by the Ito formula.
Let w(t) = (w1(t), . . . , wn(t))

T is an n-dimensional standard Brownian motion defined on
a complete probability space (Ω, F, {Ft}t≥0, P) with a natural filtration {Ft}t≥0 generated by
{w(s) : 0 ≤ s ≤ t}. E(·) stands for the mathematical expectation operator. Z+ is the set of
nonnegative integral numbers.

PC[(−∞, 0] × Ω,Rn] = {ψ : (−∞, 0] × Ω → R
n | ψ(s+, x) = ψ(s, x) for s ∈ (−∞, 0],

ψ(s−, x) exists for s ∈ (−∞, 0], ψ(s−, x) = ψ(s, x) for all but at most countable points s ∈
(−∞, 0]}, where ψ(t−, x) and ψ(t+, x) denote the left-hand limit and the right-hand limit of
ψ(t, x) at time t, respectively. Especially, let PC = PC[(−∞, 0]×Ω,Rn]. For ψ ∈ PC, we always
assume that ψ is bounded and introduce the norm ‖ψ‖ = sup−∞≤s≤0(

∑n
i=1 ψ

2
i (s))

1/2.
Let PC

b
F0
[(−∞, 0] × Ω,Rn] denote the family of all bounded F0-measurable, PC[(−∞,

0] × Ω,Rn]-valued random variables ψ, such that ‖ψ‖τ = sup−∞≤s≤0E|ψ(s)|2 < ∞. Especially,
let PC

b
F0

= PC
b
F0
[(−∞, 0] × Ω,Rn]. Let u = (u1, . . . , un)

T ∈ R
n and L2(Ω) is the space of scalar

value Lebesgue measurable functions on Ω which is a Banach space for the L2-norm:

‖u‖2 =
(∫

Ω
|u(x)|2dx

)1/2

, u ∈ L2(Ω), (1.1)

where | · | is Euclid norm of a vector u ∈ R
n.

2. Model Description and Preliminaries

Consider the following ISRDNNs with mixed time delays system:

dui(t, x) =
m∑

l=1

∂

∂xl

(
Dil

∂ui(t, x)
∂xl

)
dt

+

⎡

⎣−ai(t)ui(t, x) +
n∑

j=1

bij(t)fj
(
uj(t, x)

)
+

n∑

j=1

b̃ij(t)f̃j
(
uj(t − τ(t), x)

)

+
n∑

j=1

bij(t)
∫ t

−∞
kij(t − s)fj

(
uj(s, x)

)
ds + Ji(t)

⎤

⎦dt

+
n∑

j=1

σij

(
t, x, u(t, x), u(t − τ(t), x)

)
dwj(t), t ≥ 0, t /= tk, x ∈ Ω, k ∈ Z+,

ui(t, x) = ui
(
t−, x

) − θikui
(
t−, x

)
, t = tk, x ∈ Ω, k ∈ Z+,

(2.1)

where i ∈ N = {1, 2, . . . , n}, n ≥ 2, corresponds to the number of units in an NN; the time
sequence tk is called impulsive moment and satisfies 0 < t0 < t1 < · · · < tk < tk+1 < · · · ,
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limk→∞tk+1 = ∞; θik are some real constants; x = (x1, . . . , xm)
T ∈ Ω, Ω is a compact set with

smooth boundary ∂Ω and mesΩ > 0 in space R
m, where mesΩ is the measure of the set

Ω; ui(t, x) represents the state of the ith neuron at time t and in space x; bij(t), b̃ij(t), and bij(t)
denote the strength of the jth neuron on the ith neuron, respectively; fj , f̃j , and fj denote the
activation functions of the jth neuron at time t and in space x; Ji denotes the external inputs
on the ith neurons; ai(t) is the rate with which the ith unit will reset its potential to the resting
state in isolation when disconnected from the network and external inputs at time t and in
space x; τ(t) represents the transmission delay with 0 ≤ τ(t) ≤ τ , τ is a constant; smooth
functionsDil > 0 (i = 1, 2, . . . , n, l = 1, 2, . . . , m) stand for the transmission diffusion operators
along the ith neuron; the delay kernel kij(·) is the real value nonnegative continuous function
defined on (0,+∞); ui(t−, x) and ui(t+, x) denote the left-hand limit and the right-hand limit
of ui(t, x) at time t, respectively. We assume ui(tk, x) = ui(t+k, x).

σij(t, x, u(t, x), u(t − τ(t), x)) (i, j = 1, 2, . . . , n) denotes the weight function of random
perturbation.

The boundary conditions and initial conditions are given by

ui(t, x) = 0, (t, x) ∈ [0,+∞) × ∂Ω,
ui(t0 + s, x) = ψi(s, x), (s, x) ∈ (−∞, 0] ×Ω,

(2.2)

where ψ = (ψ1, . . . , ψn)
T ∈ PC

b
F0

.
In fact, some famous NNs models became a special case of system (2.1). For example,

when σij = 0, i, j ∈ N, the special case of system (2.1) is the model which has been
investigated [25, 27, 32]. When θik = 0, i = 1, 2, . . . , n, k ∈ Z+, then system (2.1) becomes
stochastic RDNNs with mixed delays, which has been considered in [22, 29]. If θik = 0 and
σij = 0, i, j ∈ N, k ∈ Z+, system (2.1) reduces to the deterministic system with mixed time
delays:

dui(t)
dt

=
m∑

l=1

∂

∂xl

(
Dil

∂ui(t)
∂xl

)
− ai(t)ui(t) +

n∑

j=1

bij(t)fj
(
uj(t, x)

)

+
n∑

j=1

b̃ij(t)f̃j
(
uj(t − τ(t), x)

)
+

n∑

j=1

bij(t)
∫ t

−∞
kij(t − s)fj

(
uj(s, x)

)
ds + Ji,

(2.3)

the dynamical behaviors of the special case for model (2.3) have been discussed by many
authors [19, 20]. Therefore, the model (2.1) is new and more general than those discussed in
the previous literature.

Throughout this paper, we assume that the following conditions are made.

(A1) Suppose that ai(t) > 0, bij(t), b̃ij(t), bij(t), τ(t) ≥ 0 and Ji(t) are all continuously
periodic functions defined on [0,+∞) with common period ω > 0. Moreover,

âi = min
t∈[0,ω]

{ai(t)}, b̂ij = max
t∈[0,ω]

{∣∣bij(t)
∣∣}, ̂̃

bij = max
t∈[0,ω]

{∣∣∣b̃ij(t)
∣∣∣
}
, b̂ij = max

t∈[0,ω]

{∣∣∣bij(t)
∣∣∣
}
,

i, j ∈N.

(2.4)
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(A2) There exist positive diagonal matrices Lf = diag(Lf1 , . . . , L
f
n), Lf̃ = diag(Lf̃1 , . . . , L

f̃
n),

Lf = diag(Lf1 , . . . , L
f
n), such that for all η1, η2 ∈ R

∣
∣fj

(
η1

) − fj
(
η2

)∣∣ ≤ Lfj
∣
∣η1 − η2

∣
∣,

∣
∣
∣f̃j

(
η1

) − f̃j
(
η2

)∣∣
∣ ≤ Lf̃j

∣
∣η1 − η2

∣
∣,

∣
∣
∣fj

(
η1

) − fj
(
η2

)∣∣
∣ ≤ Lfj

∣
∣η1 − η2

∣
∣, j = 1, 2, . . . , n.

(2.5)

(A3) The delay kernel kij(·) : [0,+∞) → [0,+∞), (i, j ∈ N) are real-valued nonnegative
continuous functions that satisfy the following conditions:

(i)
∫+∞

0 kij(s)ds = 1,
(ii) kij(s) ≤ κ(s) for all s ∈ [0,+∞), in which κ(s) : [0,+∞) → R+ is continuous

and integral and satisfies
∫+∞

0 κ(s)eηsds < +∞, where the constant η denotes
some positive number.

(A4) For ω > 0, there exists q ∈ Z+ such that tk +ω = tk+q and θik +ω = θi(k+q), k ∈ Z+, i ∈
N.

(A5) There exist nonnegative constants δi and γi such that

(
σi
(
t, x, ξ′i, ς

′
i

) − σi(t, x, ξi, ςi)
)(
σi
(
t, x, ξ′i, ς

′
i

) − σi(t, x, ξi, ςi)
)T ≤ δi

∣∣ξ′i − ξi
∣∣2 + γi

∣∣ς′i − ςi
∣∣2
, (2.6)

for all ξi, ςi, ξ′i, ς
′
i ∈ R, σi(t, x, ξ, ς) = (σi1(t, x, ξ, ς), . . . , σin(t, x, ξ, ς)) is the ith row

vector of σ(t, x, ξ, ς), i ∈N.

For convenience, ui(t, x), ψi(s, x) are denoted as ui(t)or ui, ψi(s) or ψi, respectively, if
no confusion should occur.

Definition 2.1. An equilibrium point u∗ = (u∗1, u
∗
2, . . . , u

∗
n) of system (2.1)-(2.2) is said to be

globally exponentially stable in the mean square sense if there exist positive constants ε and
M ≥ 1 such that

E‖u(t, x) − u∗‖2 ≤M∥∥ψ − u∗∥∥τe−ε(t−t0), t ≥ t0 ≥ 0. (2.7)

Definition 2.2. The system (2.1)-(2.2) is said to be globally exponentially periodic in the mean
square sense if (i) there exist one ω-periodic solutions; (ii) all other solutions of the system
converge exponentially to it in the mean square sense as t → +∞.

Lemma 2.3 (see [24]). LetΩ be a cube |xi| < dl (l = 1, . . . , m) and let h(x) be a real-valued function
belonging to C1(Ω) which vanish on the boundary ∂Ω of Ω, that is, h(x)|∂Ω = 0. Then

∫

Ω
h2(x)dx ≤ d2

l

∫

Ω

∣∣∣∣
∂h

∂xi

∣∣∣∣dx. (2.8)
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Remark 2.4. The boundary conditions of the investigated RDNNs in [22, 24, 26–28, 35] are
all the Neumann boundary conditions. The obtained global exponential stability criteria are
independent of diffusion term. In other words, these criteria are same whether the diffusion
terms exist or not. However, it is also common to consider the diffusion effects in biological
systems (such as immigration [36]). In this paper, we investigate dynamical behaviors
of ISRDNNs with Dirichlet boundary conditions and mixed delays. The obtained criteria
depend on the reaction-diffusion terms. The Lemma 2.3 plays a key role in the reported
criteria which are dependent of diffusion terms.

Lemma 2.5 (see [4]). Let p, q, r, and βk, (k ∈ Z+) be nonnegative constants, and function V (x) ∈
PC

2(Rn,R+), LV associated with system (2.1), satisfy the following inequalities:

LV (x(t)) ≤ −pV (x(t)) + q sup
t−τ≤s≤t

V (x(s)) + r
∫+∞

0
κ(s)V (x(t − s))ds, t /= tk, t ≥ 0,

V (x(tk)) ≤ βkV
(
x
(
t−k
))
, k ∈ Z+,

(2.9)

where κ(s) is the same as (A3). Assume that

(i) p > q + r
∫+∞

0 κ(s)ds;

(ii) there exist constantsM > 0, α > 0 such that

n∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+. (2.10)

Then

EV (x(t)) ≤MEV0e
−(λ−α)t, t ≥ t0, (2.11)

where EV0 = sup−∞<s≤0EV (x(s)), λ ∈ (0, η) satisfies λ < p − qeλτ − r ∫+∞0 κ(s)eλsds.

Remark 2.6. The above result (2.11) on the impulsive delay differential inequality is an exten-
sion of continuous case in [37] and will play an important role in the following qualitative
analysis of ISRDNNs with mixed time delays.

Lemma 2.7 (see [38]). Let a, b ∈ R
n and X be an n × n positive definite matrix, then

2aTb ≤ aTXa + bTX−1b. (2.12)

3. Main Results

This section deals with obtaining sufficient conditions that guarantee the existence and global
exponential stability of periodic solution for the system (2.1)-(2.2).

Theorem 3.1. In addition to (A1)–(A5) and further assume that

(A6) p > q + r
∫+∞

0 κ(s)ds,
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(A7) there exist constantsM ≥ 1, λ ∈ (0, η) and α ∈ [0, λ) such that
n∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+,

λ < p − qeλτ − r
∫+∞

0
κ(s)eλsds,

(3.1)

where

p = 2
m∑

l=1

mini∈N(Di)
d2
l

+ 2 min
i∈N

(âi)

−
⎡

⎣max
i∈N

⎛

⎝
n∑

j=1

∣
∣
∣b̂ij

∣
∣
∣L

f

j

⎞

⎠ +
n∑

i=1

max
j∈N

(∣∣
∣b̂ij

∣
∣
∣L

f

j

)

+max
i∈N

⎛

⎝
n∑

j=1

∣∣∣∣b̂ij

∣∣∣∣L
f

j

⎞

⎠+ max
i∈N

⎛

⎝
n∑

j=1

∣∣∣∣b̂ij

∣∣∣∣L
f

j

⎞

⎠ + max
i∈N

{δi}
⎤

⎦,

q =

[
n∑

i=1

max
j∈N

(∣∣∣b̂ij
∣∣∣L

f

j

)
+ max

i∈N
{
γi
}
]

,

r =
n∑

i=1

max
j∈N

(∣∣∣∣b̂ij

∣∣∣∣L
f

j

)
, βk = max

i∈N

{
(1 − θik)2

}
,

Di = min
1≤l≤m

{Dil},

(3.2)

then system (2.1)-(2.2) is globally exponentially periodic in the mean square sense.

Proof. For any ψ = (ψ1, . . . , ψn)
T , ϕ = (ϕ1, . . . , ϕn)

T ∈ PC
b
F0

, let u(t) = (u1(t), . . . , un(t))
Tand

u(t) = (u1(t), . . . , un(t))
T be the solutions of system (2.1)-(2.2) starting from ψ and ϕ, respec-

tively.
Let zi(t) = ui(t) − ui(t), from (2.1), we get

dzi(t) =
m∑

l=1

∂

∂xl

(
Dil

∂zi(t)
∂xl

)
dt +

⎡

⎣−ai(t)zi(t) +
n∑

j=1

bij(t)
(
fj

(
uj(t)

) − fj
(
uj(t)

))

+
n∑

j=1

b̃ij(t)
(
f̃j

(
uj(t − τ(t))

) − f̃j
(
uj(t − τ(t))

))

+
n∑

j=1

bij(t)
∫ t

−∞
kij(t − s)

(
fj

(
uj(s)

) − fj
(
uj(s)

))
ds

⎤

⎦dt

+
n∑

j=1

[
σij(t, x, ui(t), ui(t − τ(t))) − σij

(
t, x, ui(t), ui(t − τ(t))

)]
dwj(t).

(3.3)

Construct the Lyapunov functional V (t) =
∫
Ω

∑n
i=1 z

2
i (t)dx, i ∈N,



8 Abstract and Applied Analysis

for t = tk, from (2.1) and (A4), we have

V (tk) =
∫

Ω

n∑

i=1

z2
i (tk)dx =

∫

Ω

n∑

i=1

[
ui(tk) − ui(tk)

]2
dx

=
∫

Ω

n∑

i=1

[
ui(tk +ω) − ui(tk)

]2
dx =

∫

Ω

n∑

i=1

(1 − θik)2
[
ui

(
t−k+q

)
− ui

(
t−k
)]2

dx

≤ max
i∈N

(1 − θik)2
∫

Ω

n∑

i=1

[
ui

(
t−k +ω

) − ui
(
t−k
)]2

dx = max
i∈N

(1 − θik)2V
(
t−k
)
,

(3.4)

when t ∈ (tk−1, tk], the infinitesimal operator of LV (t) along with system (3.3) is

LV (t) =
∫

Ω
2

n∑

i=1

zi(t)

×
⎧
⎨

⎩

m∑

l=1

∂

∂xl

(
Dil

∂zi(t)
∂xl

)
− ai(t)zi(t)

+
n∑

j=1

bij(t)
[
fj

(
uj(t)

)−fj
(
uj(t)

)]
+

n∑

j=1

b̃ij(t)
(
f̃j

(
uj(t−τ(t))

) − f̃j
(
uj(t−τ(t))

))

+
n∑

j=1

bij(t)
∫ t

−∞
kij(t − s)

[
fj

(
uj(s)

) − fj
(
uj(s)

)]
ds

⎫
⎬

⎭
dx

+
∫

Ω

n∑

i=1

[
σi(t, x, ui(t), ui(t − τ(t))) − σi

(
t, x, ui(t), ui(t − τ(t))

)]

× [
σi(t, x, ui(t), ui(t − τ(t))) − σi

(
t, x, ui(t), ui(t − τ(t))

)]T
dx.

(3.5)

Combining Cauchy inequality with (A2) yields
∫

Ω
zi(t)

∫ t

−∞
Kij(t − s)

[
fj

(
uj(t)

) − fj
(
uj(t)

)]
dsdx

≤
∫

Ω
|zi(t)|

∫+∞

0
Kij(s)L

f

j

∣∣zj(t − s)
∣∣dsdx =

∫+∞

0
Kij(s)L

f

j

∫

Ω
|zi(t)|

∣∣zj(t − s)
∣∣dx ds

≤ Lfj ‖zi(t)‖2

∫+∞

0
Kij(s)L

f

j

∥∥zj(t−s)
∥∥

2ds ≤
1
2
L
f

j

[

‖zi(t)‖2
2 +

(∫+∞

0
Kij(s)

∥∥zj(t−s)
∥∥

2ds

)2]

=
1
2
L
f

j ‖zi(t)‖2
2 +

1
2
L
f

j

(∫+∞

0

(
Kij(s)

)1/2(
Kij(s)

)1/2∥∥zj(t − s)
∥∥

2ds

)2

≤ 1
2
L
f

j ‖zi(t)‖2
2 +

1
2
L
f

j

(∫+∞

0
Kij(s)

∥∥zj(t − s)
∥∥2

2ds

)
.

(3.6)
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According to Green’s formula [37] and the Dirichlet boundary condition, we get

∫

Ω

m∑

l=1

zi(t)
∂

∂xl

(
Dil

∂zi(t)
∂xl

)
dx = −

m∑

l=1

∫

Ω
Dil

(
∂zi(t)
∂xl

)2

dx. (3.7)

Moreover, from Lemma 2.3, we have

−
m∑

l=1

∫

Ω
Dil

(
∂zi(t)
∂xl

)2

dx ≤ −
∫

Ω

m∑

l=1

Dil

d2
l

(zi(t))2dx ≤ −
∫

Ω

m∑

l=1

mini∈N(Di)
d2
l

(zi(t))2dx. (3.8)

From (A1)–(A3), (A5) and (3.5)–(3.8), we have

LV (t) ≤ − 2
m∑

l=1

n∑

i=1

(
Dil

d2
l

‖zi(t)‖2
2

)

+ 2
n∑

i=1

⎧
⎨

⎩
−âi‖zi(t)‖2

2 +
n∑

j=1

(∣∣∣b̂ij
∣∣∣L

f

j ‖zi(t)‖2

∥∥zj(t)
∥∥

2

)
+

1
2

n∑

j=1

∣∣∣∣b̂ij

∣∣∣∣L
f

j

×
(
‖zi(t)‖2

2 +
(∫+∞

0
Kij(s)

∥∥zj(t − s)
∥∥2

2ds

))

+
n∑

j=1

(∣∣∣∣
̂̃
bij

∣∣∣∣L
f̃

j ‖zi(t)‖2

∥∥zj(t − τ(t))
∥∥

2

)
⎫
⎬

⎭
+

n∑

i=1

(
δi‖zi(t)‖2

2 + γi‖zi(t − τ(t))‖2
2

)

≤ −
m∑

l=1

n∑

i=1

(
2Dil

d2
l

‖zi(t)‖2
2

)

+
n∑

i=1

⎧
⎨

⎩
−2âi‖zi(t)‖2

2 +
n∑

j=1

∣∣∣b̂ij
∣∣∣L

f

j

(
‖zi(t)‖2

2 +
∥∥zj(t)

∥∥2
2

)

+
n∑

j=1

∣∣∣∣b̂ij

∣∣∣∣L
f

j

(
‖zi(t)‖2

2 +
(∫+∞

0
Kij(s)

∥∥zj(t − s)
∥∥2

2ds

))

+
n∑

j=1

[∣∣∣∣
̂̃
bij

∣∣∣∣L
f̃

j

(
‖zi(t)‖2

2 +
∥∥zj(t − τ(t))

∥∥2
2

)]
⎫
⎬

⎭
+

n∑

i=1

(
δi‖zi(t)‖2

2 + γi‖zi(t − τ(t))‖2
2

)
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≤
⎧
⎨

⎩
− 2

m∑

l=1

mini∈N(Di)
d2
l

− 2min
i∈N

(âi)

+

⎡

⎣max
i∈N

⎛

⎝
n∑

j=1

∣
∣
∣b̂ij

∣
∣
∣L

f

j

⎞

⎠ +
n∑

i=1

max
j∈N

(∣∣
∣b̂ij

∣
∣
∣L

f

j

)
+ max

i∈N

⎛

⎝
n∑

j=1

∣
∣
∣∣
̂̃
bij

∣
∣
∣∣L

f̃

j

⎞

⎠

+max
i∈N

⎛

⎝
n∑

j=1

∣
∣
∣
∣b̂ij

∣
∣
∣
∣L

f

j

⎞

⎠+max
i∈N

{δi}
⎤

⎦

⎫
⎬

⎭

n∑

i=1

‖zi(t)‖2
2 +

[
n∑

i=1

max
j∈N

(∣
∣
∣
∣
̂̃
bij

∣
∣
∣
∣L

f̃

j

)
+ max

i∈N
{
γi
}
]

×
n∑

i=1

‖zi(t − τ(t))‖2
2 +

n∑

i=1

max
j∈N

(∣
∣
∣
∣b̂ij

∣
∣
∣
∣L

f

j

)∫+∞

0
κ(s)

n∑

i=1

‖zi(t − s)‖2
2ds. (3.9)

From (3.4), (3.9), (A6), (A7) and Lemma 2.5, we know

EV (t) ≤MEV0e
−(α−β)t, t ≥ t0, (3.10)

which means that

∫

Ω

n∑

i=1

E
[
ui(t) − ui(t)

]2
dx ≤M∥∥ϕ − ψ∥∥2

τe
−(α−β)t, t ≥ t0. (3.11)

By the integral property of measurable functions, we can derive

∫

Ω

n∑

i=1

[ui(t +ω) − ui(t)]2dx ≤M∥∥ϕ − ψ∥∥2
e−(α−β)t, t ≥ t0 a.e. (3.12)

In the light of (
∑n

i=1 |zi|)2 ≤ n∑n
i=1 |zi|2, for any zi ∈ R

+, we obtain

∫

Ω

n∑

i=1

|ui(t +ω) − ui(t)|dx ≤
√
nM

∥∥ϕ − ψ∥∥e−0.5(α−β)t, t ≥ t0 a.e. (3.13)

Noticing that

ui(t + kω) = ui(t) +
k∑

r=1

[ui(t + rω) − ui(t + (r − 1)ω)], i ∈N. (3.14)
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For any given t ≥ t0, by (3.12), we can see that

∫

Ω

∞∑

r=1

[ui(t + rω) − ui(t + (r − 1)ω)]dx

=
∫

Ω
lim
k→∞

k∑

r=1

[(ui(t + rω) − ui(t + (r − 1)ω))]dx ≤
√
nM

∥
∥ϕ − ψ∥∥ lim

k→∞

k∑

r=1

e−0.5(α−β)(t+(r−1)ω)

≤
√
nM

∥
∥ϕ − ψ∥∥e−0.5(α−β)t lim

k→∞

k∑

r=1

e−0.5(α−β)(r−1)ω,

(3.15)

therefore, limk→∞ui(t + kω) exists a.e.
Let û(t) = (û1(t), . . . , ûn(t))

T be the solution of system (2.1)-(2.2) starting from φ, by
ûi(t) = limk→∞ui(t + kω), then û(t) is well defined and is a periodic function with period ω.
Supposing that v̂(t) = (v̂1(t), . . . , v̂n(t))

T is another ω-periodic solution of system (2.1)-(2.2)
starting from φ∗, by similar method used before, it is easy to prove

∫

Ω

n∑

i=1

[ûi(t) − v̂i(t)]2dx =
∫

Ω

n∑

i=1

[ûi(t + kω) − v̂i(t + kω)]2dx

≤M∥∥φ − φ∗∥∥2
e−(α−β)(t+kω), t ≥ t0, a.e.

(3.16)

Therefore, we can conclude that the system (2.1)-(2.2) is globally exponentially periodic in
the mean square sense. This completes the proof of Theorem 3.1.

Next, omitting condition (A4) and using LMI technique, another sufficient condition
ensuring the global exponential stability of periodic solution for the system (2.1)-(2.2) in the
mean square sense is derived.

Theorem 3.2. Suppose that (A1)–(A3) and (A5) hold. If there exists a positive definite diagonal
matrix P , positive definite matrices Ξ1, Ξ2, nonnegative constants p, q, r, and βk, (k ∈ Z+), such
that

(i) p > q + r
∫+∞

0 κ(s)ds,

(ii) there exist constantsM ≥ 1, λ ∈ (0, η) and α ∈ [0, λ) such that

n∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+, (3.17)

and λ < p − qeλτ − r ∫+∞0 κ(s)eλsds,
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(iii)

− PD∗ −D∗TP − PA −ATP + PBLf + LfBTP + R1 + PB̃Lf̃Ξ1L
f̃ B̃TP

+
∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P + pP < 0, Ξ−1

1 + R2 − qP < 0, Ξ−1
2 − rP < 0, CT

kPCk − βkP < 0,

(3.18)

then the system (2.1)-(2.2) is global exponential periodic in the mean square sense. Where

A = diag(a1, . . . , an), B =
(
bij

)
n×n, B̃ =

(
b̃ij

)

n×n
, B =

(
bij

)

n×n
,

βk = max
i∈N

{
(1 − θik)2

}
, R1 = diag(δ1, . . . , δn), R2 = diag

(
γ1, . . . , γn

)
,

D∗ = diag

(
m∑

l=1

D1l

d2
l

, . . . ,
m∑

l=1

Dnl

d2
l

)

, Ck = diag(1 − θ1k, . . . , 1 − θnk).

(3.19)

Proof. Define the following Lyapunov functional:

V (t) =
∫

Ω
zT (t)Pz(t)dx, (3.20)

when t = tk, we have

V (tk) − βkV
(
t−k
)
=

∫

Ω
zT

(
t−k
)
CT
kPCkz

(
t−k
) − zT(t−k

)
βkPz

(
t−k
)
dx

=
∫

Ω
zT

(
t−k
)(
CT
kPCk − βkP

)
z
(
t−k
)
dx < 0.

(3.21)

For t ≥ t0, t /= tk, the infinitesimal operator of LV (t) along with (3.16) is

LV (t) =
∫

Ω

(
∂

∂t
zTPz + zTP

∂z

∂t

)
dx +

∫

Ω
trace

(
σTPσ

)
dx

≤ 2
∫

Ω
zTP

(
m∑

l=1

∂

∂xl

(
Dil

∂z

∂xl

)
−Az(t) + Bg(z(t)) + B̃g̃(z(t − τ(t)))

+ B
∫ t

−∞
κ(t − s)Lfz(s)ds

)

dx +
∫

Ω
trace

(
σ̃TPσ̃

)
dx,

(3.22)
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where

g(z(t)) =
(
g1(z1(t)), . . . , gn(zn(t))

)T
, σ̃ =

(
σij

(
t, x, ξ′i, ς

′
i

) − σij(t, x, ξi, ςi)
)
n×n

g̃(z(t)) =
(
g̃1(z1(t − τ(t))), . . . , g̃n(zn(t − τ(t)))

)T
,

g(z(s)) =
(
g1(z1(s)), . . . , gn(zn(s))

)T
, gj

(
zj(t)

)
= fj

(
uj(t)

) − fj
(
uj(t)

)
,

g̃j
(
zj(t − τ(t))

)
= f̃j

(
uj(t − τ(t))

) − f̃j
(
uj(t − τ(t))

)
,

gj
(
zj(s)

)
= fj

(
uj(s)

) − fj
(
uj(s)

)
, j = 1, 2, . . . , n.

(3.23)

By employing (3.8), (A5) and Lemma 2.7, we have

LV ≤ 2
∫

Ω

(
− zT (t)PD∗z(t) − zT (t)PAz(t) + zT (t)PBLfz(t)

+zT (t)PB̃Lf̃z(t − τ(t)) + zT (t)PB
∫+∞

0
κ(s)Lfz(t − s)ds

)
dx

+
∫

Ω

(
zT (t)R1z(t) + zT (t − τ(t))R2z(t − τ(t))

)
dx

≤
∫

Ω

[
zT (t)

(
−PD∗ −D∗TP − PA −ATP + PBLf + LfBTP + R1

)
z(t)

+ zT (t)PB̃Lf̃Ξ1L
f̃ B̃TPz(t) + zT (t − τ(t))Ξ−1

1 z(t − τ(t))

+
∫+∞

0
κ(s)zT (t)PBLfΞ2L

fB
T
Pz(t)ds

]
dx

+
∫

Ω

(
zT (t − τ(t))R2z(t − τ(t)) +

∫+∞

0
κ(s)zT (t − s)Ξ−1

2 z(t − s)ds
)
dx

≤
∫

Ω

[
zT (t)

(
− PD∗ −D∗TP − PA −ATP + PBLf

+LfBTP + R1 + PB̃Lf̃Ξ1L
f̃ B̃TP +

∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P

)
z(t)

+zT (t − τ(t))
(
Ξ−1

1 + R2

)
z(t − τ(t)) +

∫+∞

0
κ(s)zT (t − s)Ξ−1

2 z(t − s)ds
]
dx

≤
∫

Ω

[
zT (t)

(
− PD∗ −D∗TP − PA −ATP + PBLf + LfBTP

+R1 + PB̃Lf̃Ξ1L
f̃ B̃TP +

∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P + pP

)
z(t)
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+zT (t − τ(t))
(
Ξ−1

1 + R2 − qP
)
z(t − τ(t)) +

∫+∞

0
κ(s)zT (t−s)

(
Ξ−1

2 −rP
)
z(t−s)ds

]
dx

− pV (t) + q sup
−∞≤s≤t

V (s) + r
∫+∞

0
κ(s)V (t − s)ds.

(3.24)

It follows from the condition (iii) and (3.24) that we have

LV (t) ≤ −pV (t) + q sup
−∞≤s≤t

V (t) + r
∫+∞

0
κ(s)V (t − s)ds. (3.25)

By Lemma 2.5, we obtain

λmin(P)E‖z(t)‖2
2 ≤ EV (t) ≤ λmax(P)

∥∥ψ − ϕ∥∥2
τe

−(λ−α)t. (3.26)

We know that

E‖z(t)‖2 ≤
√
λmax(P)
λmin(P)

∥∥ψ − ϕ∥∥τe−((λ−α)t)/2, (3.27)

that is,

E
∥∥ui(t) − ui(t)

∥∥
2 ≤

√
λmax(P)
λmin(P)

∥∥ψ − ϕ∥∥τe−((λ−α)t)/2, ∀t ≥ t0 ≥ 0, (3.28)

where

M =

√
λmax(P)
λmin(P)

≥ 1. (3.29)

Similar to the proof of Theorem 3.1, we know that the system (2.1)-(2.2) is globally
exponentially periodic in the mean square sense. This completes the proof.

Remark 3.3. In [23], the authors have considered the stability problems of RDNNs, however,
they have not considered impulsive stochastic effect and reaction-diffusion terms. To the
best of our knowledge, no LMI-based stability results have been reported for ISRDNNs with
mixed time delays in the literature.

Since an equilibrium point can be viewed as a special periodic solution of RDNNs
with arbitrary period, we can consider ISRDNNs in system (2.1) with parameters ai(t) = ai,
bij(t) = bij , b̃ij(t) = b̃ij , bij(t) = bij , Ji(t) = Ji, τ(t) = τ, σij(t, x, u∗, u∗) = 0, where ai, bij , b̃ij ,
bij , Ji are constants. Then, according to the results obtained so far, if the sufficient conditions
in Theorems 3.1 or 3.2 are satisfied, a unique periodic solution becomes a periodic solution
with arbitrary positive constants as its period. So, the periodic solution reduces to a constant
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solution, that is, an equilibrium point. Moreover, all other solutions globally exponentially
converge to this equilibrium point in the mean square sense as t → +∞. To this end, by
applying Theorems 3.1 or 3.2, we can easily get the following results.

Corollary 3.4. Suppose that (A1)–(A5) hold for ISRDNNs in (2.1)-(2.2) with parameters ai(t) =
ai, bij(t) = bij , b̃ij(t) = b̃ij , bij(t) = bij , Ji(t) = Ji, τ(t) = τ, σij(t, x, u∗, u∗) = 0, where ai, bij ,
b̃ij , bij , Ji are constants, if θik ∈ [0, 2], i ∈ N, k ∈ Z+, then there exists a unique equilibrium point
of system (2.1)-(2.2), which is globally exponentially stable in the mean square sense.

Corollary 3.5. Suppose that (A2)-(A3), (A5) for system (2.1)-(2.2) with ai, bij , b̃ij , bij , Ji being
constants and θik ∈ [0, 2], i ∈ N,k ∈ Z+ hold. If there exist a positive definite diagonal matrix
P , positive definite matrices Ξ1, Ξ2, nonnegative constants p, q, r, and βk, (k ∈ Z+), such that
(i) p > q + r

∫+∞
0 κ(s)ds,

(ii) there exist constantsM ≥ 1, λ ∈ (0, η) and α ∈ [0, λ) such that

n∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+, (3.30)

and λ < p − qeλτ − r ∫+∞0 κ(s)eλsds,
(iii)

− PD∗ −D∗TP − PA −ATP + PBLf + LfBTP + R1 + PB̃Lf̃Ξ1L
f̃ B̃TP

+
∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P + pP < 0, Ξ−1

1 + R2 − qP < 0, Ξ−1
2 − rP < 0,

CT
kPCk − βkP < 0,

(3.31)

then the system (2.1)-(2.2) has a unique equilibrium point, which is globally exponentially stable in
the mean square sense.

4. Illustrative Examples

Example 4.1. Consider the system (2.1) with two neurons on Ω = {(x1, x2)
T | 0 < xl < 1, l =

1, 2} ⊂ R
2, the boundary conditions and initial conditions are given by

ui(t, x) = 0, (t, x) ∈ [0,+∞) × ∂Ω,

ui(s, x) = 2 sinπx1x
2
2, i = 1, 2, (s, x) ∈ (−∞, 0] ×Ω,

(4.1)

where tk = k, k ∈ Z+, κ(s) = kij(s) = se−s, fj(η) = f̃j(η) = fj(η) = (1/30)(|η+1|+ |η−1|), n =

m = 2, Lfj = L
f̃

j = L
f

j = 1, dl = εi = 1, j, l = 1, 2. D11 = D12 = 0.5, D21 = 0.3, D22 = 0.7, τ(t) =
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0.02 − 0.01 sin 2πt, τ = ln 2, a1(t) = 10.9 − 4 cos 2πt, a2(t) = 11 − sin 2πt, θik = −1 + k, k ∈
Z+, δi = γi = 1.

σij(t, x, ui(t, x), ui(t − τ(t), x)) =
√

2
2

(tanh(ui(t, x)) + tanh(ui(t − τ(t), x))),

b11(t) = 0.3 + 0.1 sin 2πt, b12(t) = 0.4 + 0.1 sin 2πt, b21(t) = 0.2 + 0.1 cos 2πt,

b22(t) = 0.3 − 0.1 cos 2πt, b̃11(t) = 0.2 + 0.1 sin 2πt, b̃12(t) = 0.3 − 0.2 cos 2πt,

b̃21(t) = 0.5 + 0.1 cos 2πt, b̃22(t) = 0.4 − 0.1 sin 2πt, b11(t) = 0.1 − 0.2 sin 2πt,

b12(t) = 0.25 − 0.1 sin 2πt, b21(t) = 0.2 − 0.1 cos 2πt, b22(t) = 0.1 − 0.1 cos 2πt,

J1(t) = 1 + sin 2πt, J2(t) = 2 + cos 2πt.

(4.2)

Direct computation shows that p = 5.65, q + r
∫+∞

0 κ(s)ds = 4.45. Let λ = 0.2, α = 0,M = 1,
and τ = ln 2 satisfying λ < p − qeλτ − r ∫+∞0 κ(s)eλsds. The simulation results are shown in
Figures 1–6. When x2 = 0.1, the states surfaces of u(t, x1, 0.1) are shown in Figures 1 and
2, while x1 = 0.1, the states surfaces of u(t, 0.1, x2) are shown in Figures 3 and 4, they are
illustrated that the system states in (2.1) and (2.2) converge to periodic solutions. In order to
see it clearly, we also draw the curves of the states when x1 = 0.1, x2 = 0.1 in Figures 5 and 6.
Hence, it follows from both Theorem 3.1 and the simulation study that system (2.1)-(2.2) is
globally exponentially periodic stable in the mean square sense.

Example 4.2. Consider an ISRDNNs in (2.1) with parameters on Ω = {(x1, x2)
T | 0 < xl <

1/2, l = 1, 2},

tk = 0.5k, κ(s) = kij(s) = se−s, Dil =
1
8

(
i, j, l = 1, 2

)
, J1(t) = sin t, J2(t) = cos t,

A =
[

2 0
0 2

]
, B =

[
0.5 −0.5
0.5 0.5

]
, B = B̃ =

[
0.25 0.25
0.25 0.25

]
, R1 = R2 = D∗ =

[
1 0
0 1

]
,

fj
(
η
)
= f̃j

(
η
)
= fj

(
η
)
= sin

η

2
+
η

2
, j = 1, 2, τ(t) = 0.1 − 0.1 sin t.

(4.3)

Clearly, fj(η), f̃j(η), f j(η), (j = 1, 2) satisfy the (A2) with Lf = Lf̃ = Lf = I2, and
τ(t), J1(t), J2(t) are continuously periodic functions with a common positive period 2π .

Taking p = 1, q = 0.2, r = 0.1, λ = 0.1, α = 0, βk = 1, P = 2I2, Ck = 0.5I2, Ξ1 = Ξ2 =
I2. By simple calculation, we can easily check (i), (ii), (iii), and (iv) in Theorem 3.2.

To this end, the conditions of Theorem 3.2 are satisfied, therefore, there exists exactly
one 2π-periodic solution, and all other solutions converge exponentially to it in the mean
square sense as t → +∞.

Remark 4.3. In Examples 4.1 and 4.2, many factors such as noise perturbations, mixed time
delays, and impulsive effects are considered. Therefore, the results reported in [13, 14, 18–20]
do not hold in our examples.
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Figure 1: The surface of u1(t, x1, 0.1) when x2 = 0.1.
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Figure 2: The surface of u2(t, x1, 0.1) when x2 = 0.1.
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Figure 3: The surface of u1(t, 0.1, x2) when x1 = 0.1.
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Figure 4: The surface of u2(t, 0.1, x2) when x1 = 0.1.
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Figure 5: The curve of u1(t, 0.1, 0.1) when x1 = 0.1, x2 = 0.1.

5. Conclusions

In this paper, the dynamical behaviors for ISRDNNs with mixed time delays have been
studied. By using an L-operator differential inequality with impulses and mixed time delays,
as well as linear matrix inequality technique, some novel sufficient conditions are derived
to guarantee the existence, uniqueness, global exponential stability of the periodic solutions,
and the global exponential stability of the equilibrium point in the mean square sense. To
the best of our knowledge, the results presented here have been not appeared in the related
literature. The obtained sufficient conditions depend on the reaction-diffusion terms. The
obtained results generalize and comprise those results with/without reaction-diffusion term,
impulsive operators, or noise disturbances in the previous literature. Finally, two numerical
examples are also provided in the end of the paper to show the effectiveness of our results.
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Figure 6: The curve of u2(t, 0.1, 0.1) when x1 = 0.1, x2 = 0.1.
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This paper mainly investigates the lag synchronization of nonlinear coupled complex networks
using methods that are based on pinning control, where the weight configuration matrix is not
necessarily symmetric or irreducible. We change the control strength into a parameter concerning
time t, by using the Lyapunov direct method, some sufficient conditions of lag synchronization are
obtained. To validate the proposed method, numerical simulation examples are provided to verify
the correctness and effectiveness of the proposed scheme.

1. Introduction

In recent years, a great deal of attention has been paid to the investigation of complex
networks in various fields. In fact, complex networks are shown to widely exist in our life.
Common examples of complex networks include the Internet, the World Wide Web (WWW),
food webs, scientific citation webs, as well as many other systems that are made up of a large
number of intricately connected parts. Indeed, complex networks are an important part of
our daily lives.

Synchronization of complex networks has been one of the focal points in many
research and application fields. Synchronization has been studied from various angles and
a variety of different synchronization phenomena have been discovered, such as complete
synchronization (CS), phase synchronization (PS), lag synchronization (LS), generalized
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synchronization (GS), anticipatory synchronization, antiphase synchronization, clustering
synchronization, projective synchronization, and others [1–15]. It is worth mentioning that, in
many practical situations, a propagation delay will appear in the electronic implementation
of dynamical systems. Therefore, it is very important to investigate the lag synchronizationa
few results have been reported. Guo [16] investigated the lag synchronization of complex
networks via pinning control. Without assuming the symmetry and irreducibility of the
coupling matrix, sufficient conditions of lag synchronization are obtained by adding
controllers to a part of nodes. Particularly, the following two questions are solved: (1)
How many controllers are needed to pin a coupled complex network to a homogeneous
solution? (2) how should we distribute these controllers? Shahverdiev et al. [17] investigated
lag synchronization between unidirectionally coupled Ikeda systems with time delay via
feedback control techniques; Yang and Cao [18] studied the exponential lag synchronization
of a class of chaotic delayed neural networks with impulsive effects. Some sufficient
conditions are established by the stability analysis of impulsive differential equations. Li
et al. [19] considered the lag synchronization issue of coupled time-delayed systems with
chaos, applied proposed lag synchronization strategies towards the secure communication.
Wang and Shi [20] investigated the chaotic bursting lag synchronization of Hindmarsh-Rose
system via a single controller. Zhou et al. [21] investigated lag synchronization of coupled
chaotic delayed neural networks without noise perturbation by using adaptive feedback
control techniques. Wang et al. [22] investigated lag synchronization of chaotic systems with
parameter mismatches. Sun and Cao [23] and Yu and Cao [24] researched the adaptive lag
synchronization of unknown chaotic delayed neural networks.

It is noticed that almost all the regimes of lag synchronization mentioned above
used the method of adding controllers to all the nodes to make complex networks get
synchronized. As we know now, the real-world complex networks normally have a large
number of nodes. Therefore, for the complexity of the dynamical network, it is difficult to
realize the synchronization by adding controllers to all nodes. To reduce the number of the
controllers, a natural way is using pinning control method [25–29].

Motivated by the above discussions, in this paper, we work on the lag synchronization
of nonlinear coupled complex networks via pinning control method. The main contributions
of this paper are three fold. (1) This paper deals with the lay synchronization problem
for nonlinear coupled complex networks. We change the control strength into a parameter
concerning time t, some sufficient conditions for the synchronization are derived by
constructing an effective control scheme. Particularly, the weight configuration matrix is not
necessarily symmetric or irreducible. (2) Compared with some similar designs, our pinning
controllers are very simple. (3) Generally, previous works require the coupling strength
c to be large so that the synchronization of complex networks can be realized. However,
there exists a drawback as c becomes larger. This equivalently makes all weights larger
simultaneously. This must raise the synchronization cost. In this paper, we show that, as a
parameter, ε(t) > 0 can be used to complete the task with a lower cost. Numerical examples
are also provided to demonstrate the effectiveness of the theory. This work improves the
current results that we have.

The rest of this paper is organized as follows. The network model is introduced
and some necessary definitions, lemmas, and hypotheses are given in Section 2. The lag
synchronization of the coupled complex networks is discussed in Section 3. Examples and
their simulations are obtained in Section 4. Finally, conclusions are drawn in Section 5.
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2. Model and Preliminaries

Now we consider the nonlinear coupled complex networks consisting of m identical nodes
that are n-dimensional dynamical units. The model is described as

ẋi(t) = f(t, xi(t)) + c
m∑

j=1

aijg
(
xj(t)

)
, i = 1, . . . , m, (2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of node i; f : Rn → Rn

standing for the activity of an individual subsystem is a vector value function. g(•) is
some nonlinear function reflecting the nonlinear coupling relationship between those nodes.
A = (aij)m×m is the corresponding coupling matrix that satisfies aij ≥ 0(i /= j), denoting the
coupling coefficients, and aii = −∑m

j=1,j /= i aji, for i, j = 1, 2, . . . , m and c is the coupling strength
and will be fixed in this paper.

Based on the system above, we construct a response system whose state variables are
denoted by yi(i = 1, 2, . . . , m), whereas (2.1) is considered as the drive system with state
variables denoted by xi(i = 1, 2, . . . , m). In the response network, we add controllers to a
part of the nodes which will be much more practical. Without loss of generality, we add the
controllers to the first m1 nodes (1 ≤ m1 ≤ m). Therefore, the response system with delay
feedback can be described as

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

) − cε(t)(g(yi(t)
) − g(xi(t − τ))

)
, i = 1, . . . , m1

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

)
, i = m1 + 1, . . . , m,

(2.2)

where τ > 0 is the time delay, ε(t) > 0 and ε̇(t) =
∑m1

i=1 δx
T
i (t)Pδxi(t). Define δxi(t) = yi(t) −

xi(t − τ) and δg(xi(t)) = g(yi(t)) − g(xi(t − τ)); then we have the error system as

δẋi(t) = f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

j=1

ãijδg
(
xj(t)

)
, i = 1, . . . , m, (2.3)

where ãii = aii − ε(t), i = 1, . . . , m1 and ãij = aij otherwise.
Now, we introduce some definitions, assumptions, and lemmas that will be required

throughout the paper.

Definition 2.1 (see [30]). The drive system (2.1) is said to lag synchronize with the response
system (2.2) at time τ if yi(t) − xi(t − τ) → 0, t → ∞, i = 1, . . . , m, where τ is a given positive
time delay.

Lemma 2.2 (see [31]). Assuming that A = (aij)n×n satisfies the following conditions.

(1) aij ≥ 0, (i /= j), aii = −Σn
j=1,i /= j aij , i, j = 1, 2, . . . , n.
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(2) A is irreducible. Then, one has

(i) real parts of the eigenvalues of A are all negative except an eigenvalue 0 with
multiplicity 1,

(ii)A has the right eigenvector (1, 1, . . . , 1)T corresponding to the eigenvalue 0,
(iii) let ξ = (ξ1, ξ2, . . . , ξn)

T be the left eigenvector of A corresponding to the eigenvalue
0, ξi > 0, i = 1, . . . n for convenience, one writes Ξ = diag{ξ1, . . . , ξn}.

Lemma 2.3 (see [32]). If A = (aij)n×n is an irreducible matrix and satisfies aij = aji ≥ 0,
for i /= j, and aii = −Σn

j=1,i /= j aij , i, j = 1, 2, . . . , n then, all eigenvalues of the matrix Ã = A −
diag(k1, k2, . . . , km1 , 0, . . . , 0) are negative, where k1, k2, . . . , km1 are positive constants.

Assumption 2.4 (see [33]). The function f(•) ∈ QUAD(P,Δ, η) if there exists a positive
definite diagonal matrix P = diag(p1, . . . , pn), a diagonal matrix Δ = diag(Δ1, . . . ,Δn), and
a scalar η > 0 such that (x − y)TP(f(x) − f(y) −Δx + Δy) ≤ −η(x − y)T (x − y) holds for any
x, y ∈ Rn, t > 0.

Assumption 2.5 (see [34] (Global Lipschitz Condition)). Suppose that there exist nonnegative
constants γ , for all ∀t ∈ R+, such that for any time-varying vectors x(t), y(t) ∈ Rn

∥∥g(x) − g(y)∥∥ ≤ γ∥∥x − y∥∥, (2.4)

where ‖‖ denotes the 2-norm throughout the paper.
For the convenience of later use, we introduce some notations:

δx(t) =
[
δx1(t)T , . . . , δxm(t)T

]T
, δx̃k(t) =

[
δxk1 (t), . . . , δx

k
m(t)
]T
, k = 1, . . . , n,

δg
(
x̃k(t)

)
=
[
δg
(
xk1 (t)

)
, . . . , δg

(
xkm(t)

)]
, k = 1, . . . , n.

(2.5)

3. Main Results

According to proposition in [16], we can get that the matrix ΞA is zero row sum. Moreover,
due to A being an irreducible coupling matrix and Ξ a positive diagonal matrix, it is easy to
verify that ΞA is also irreducible and the matrix ΞA is negative definite.

Theorem 3.1. Suppose that Assumptions 2.4 and 2.5 hold and the coupling matrix A is irreducible.
If one has

ΔkΞ + cγ
(
ΞÃ
)
≤ 0, k = 1, . . . , n (3.1)

then, the drive system (2.1) lag synchronization with the response system (2.2) at time τ .

Proof. Choose the following Lyapunov functional candidate:

V (t) =
1
2

m∑

i=1

ξiδx
T
i (t)Pδxi(t). (3.2)
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Differentiating V (t) with respect to time along the solution of (2.3) yields

V̇ (t) =
m∑

i=1

ξiδx
T
i (t)Pδẋ

T
i (t)

=
m∑

i=1

ξiδx
T
i (t)P

⎡

⎣f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

j=1

ãijδg
(
xj(t)

)
⎤

⎦.

(3.3)

By the Assumption 2.4 and Lemmas 2.2 and 2.3, we obtain

V̇ (t) ≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

m∑

i=1

ξiδx
T
i (t)PΔδxi(t) + c

m∑

i=1

ξiδx
T
i (t)P

m∑

j=1

ãijδg
(
xj(t)

)

≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pkΔk

(
δx̃k(t)

)T
Ξδx̃k(t) + c

n∑

k=1

pk
(
δx̃k(t)

)T
ΞÃδg

(
x̃k(t)

)
.

(3.4)

By the Assumption 2.5, we obtain

V̇ (t) ≤ −η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T[
ΔkΞ + cγ

(
ΞÃ
)]
δx̃k(t). (3.5)

Therefore, if we have ΔkΞ + cγ(ΞÃ) ≤ 0, k = 1, . . . , n then

V̇ (t) ≤ 0. (3.6)

Theorem 3.1 is proved completely.

Theorem 3.2. Suppose that Assumptions 2.4 and 2.5 hold and the coupling matrix A is reducible. If
one has when

ΔkΞ + cγΞA − cqΛ < 0 k = 1, . . . , n, (3.7)

whereΛ =
(
Im1×m1 0

0 0

)

m×m
, then, the drive system (2.1) lag synchronize with the response system (2.2)

at time τ .

Proof. We consider the following system:

δxi(t) = f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

j=1
aijδg

(
xj(t)

)

−cε(t)(g(yi(t)
) − g(xi(t − τ))

)
, i = 1, . . . , m1

δxi(t) = f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

j=1

aijδg
(
xj(t)

)
, i = m1 + 1, . . . , m.

(3.8)
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Choose the following Lyapunov functional candidate:

V (t) =
1
2

m∑

i=1

ξiδx
T
i (t)Pδxi(t) +

c

2

m1∑

i=1

(
γξiε(t) − q

)2

γξi
, (3.9)

where q > 0.

Differentiating V1(t) with respect to time along the solution of (3.8) yields

V̇ (t) =
m∑

i=1

ξiδx
T
i (t)Pδẋ

T
i (t) + c

m1∑

i=1

(
γξiε(t) − q

)
ε̇(t)

=
m∑

i=1

ξiδx
T
i (t)P

[

f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

i=1

aijδg
(
xj(t)

)

−cε(t)(g(yi(t)
) − g(xi(t − τ))

)
]

+ c
m1∑

i=1

(
γξiε(t) − q

)
ε̇(t)

=
m∑

i=1

ξiδx
T
i (t)P

[
f
(
t, yi(t)

) − f(t, xi(t − τ)) −Δδxi(t)
]
+

m∑

i=1

ξiδx
T
i (t)PΔδxi(t)

+ c
m∑

i=1

ξiδx
T
i (t)P

m∑

i=1

aijδg
(
xj(t)

)
+ c

m1∑

i=1

(
γξiε(t) − q

)
ε̇(t)

− c
m1∑

i=1

ξiδx
T
i (t)Pε(t)

(
g
(
yi(t)

) − g(xi(t − τ))
)
.

(3.10)

By the Assumption 2.4, we obtain

V̇ (t) ≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T
(ΔkΞ)δx̃k(t) + c

m∑

i=1

ξiδx
T
i (t)P

m∑

i=1

aijδg
(
xj(t)

)

− cγ
m1∑

i=1

ξiδx
T
i (t)Pε(t)δxi(t) + cγ

m1∑

i=1

ξiε(t)ε̇(t) − c
m1∑

i=1

qε̇(t)

≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T
(ΔkΞ)δx̃k(t)

+ c
n∑

k=1

pk
(
δx̃k(t)

)T
(ΞA)δg

(
x̃k(t)

)
− cq

n∑

k=1

pk
(
δx̃k(t)

)T
Λ
(
δx̃k(t)

)
.

(3.11)
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By the Assumption 2.5, we obtain

V̇ (t) ≤ −η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T(
ΔkΞ + cγΞA − cqΛ)

(
δx̃k(t)

)
. (3.12)

Therefore, if we have ΔkΞ + cγΞA − cqΛ < 0, k = 1, . . . , n then

V̇ (t) ≤ 0, (3.13)

Theorem 3.2 is proved completely.

Remark 3.3. Compared with the control methods in the literature [16], the work requires
the coupling strength c and ki(ui(t) = ki(xi(t − τ) − yi(t)), where ki are positive constants)
to be large so that the lag synchronization of complex networks can be realized. However,
there exists a drawback as c becomes larger. This equivalently makes all weights larger
simultaneously. This must raise the synchronization cost. In this paper, we show that, as a
parameter, ε(t) > 0 can be used to complete the task with a lower cost.

4. Illustrative Examples

In this section, a numerical example will be given to demonstrate the validity of the
lag synchronization criteria obtained in the previous sections. Considering the following
network:

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

) − cε(t)(g(yi(t)
) − g(xi(t − τ))

)
, i = 1, . . . , m1

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

)
, i = m1 + 1, . . . , m,

(4.1)

where i = 1, 2, . . . , m, f(t, yi(t)) = Dyi(t) + h(yi(t)) + B, yi(t) = (yi1(t), yi2(t), yi3(t))
T , Here

B = [0, 0, 0.1]T , h(xi) = (0, 0, yi1yi3)
T , m1 = 1, c = 0.5, τ = 0.01, g(y) = cosy + 3y. And

D =

⎡

⎣
0 −1 −1
1 0.1 0
1 0 −10

⎤

⎦, A =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−6 1 2 1 1 1
1 −5 2 1 0 1
2 2 −7 0 1 2
1 1 0 −7 2 3
1 0 1 2 −5 1
1 1 2 3 1 −8

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.2)
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Figure 1: The chaotic behavior of time-delayed Rossler system.

Figure 2: Time evolution of the lag synchronization errors E(t).

The following quantities are utilized to measure the process of lag synchronization

E(t) =
N∑

i=1

∥∥yi(t) − xi(t − τ)
∥∥

e1(t) =
∥∥y1(t) − x1(t − τ)

∥∥,

(4.3)

where E(t) is the error of lag synchronization for this controlled network (2.2); e1(t) is used
to display the synchronization process of the first pinned node. The simulation results are
given in Figures 1, 2, 3, and 4. From Figure 4, we see the time evolution of control strength.
The numerical results show that the theoretical results are effective.

Remark 4.1. In this paper we designed controllers to ensure that the special networks could
get lag synchronization. It indeed provides some new insights for the future practical
engineering design.
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Figure 3: Time evolution of the lag synchronization errors e1(t).
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Figure 4: Time evolution of control strength ε(t).

5. Conclusions

The problems of lag synchronization and pinning control for the nonlinear coupled complex
networks are investigated. It is shown that lag synchronization can be realized via pinning
controller. The study showed that the use of simple control law helps to derive sufficient
criteria which ensure that the lag synchronization of the network model is derived. In
addition, numerical simulations were performed to verify the effectiveness of the theoretical
results.
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