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Evolutionary computation is a powerful problem solver
inspired from natural evolution. It models the essential ele-
ments of biological evolution and explores the solution space
by gene inheritance, mutation, and selection of the fittest
candidate solutions. The dialects of evolutionary algorithms
include genetic algorithms, evolutionary strategies, genetic
programming, particle swarm optimization, ant colony
optimization, artificial immune systems, estimation of dis-
tribution algorithms, differential evolution, and memetic
algorithms. These evolutionary methods have proven their
success on various hard and complex optimization problems.

This special issue on Theory and Applications of Evo-
lutionary Computation is dedicated to latest developments
in the area of evolutionary computation. Eight articles from
researchers around the world contribute to further steps
into the understanding and application of evolutionary
computation. The special issue covers a broad bandwidth
of research, from theoretical investigations to real-world
applications, and comprises articles in active research areas
like multiobjective and constrained optimization.

Toward improving evolutionary algorithms based on
theoretical finding, the paper by Pepper investigates the
selection efficiency of threshold selection, stochastic propor-
tionate selection, and deterministic proportionate selection.
The next paper, by Browne and dos Santos, introduces
flexible adaptive genome representations for gene expression
programming that allow parallelization and maintenance
of population diversity. The ability of parallelization is the

most important advantage of evolutionary approaches in
comparison to many other optimization heuristics.

In the applications of evolutionary computation, the
paper by Kawabe presents an evolutionary controller for the
receding horizon control problem—an advanced method of
process control that has been used in the process industries
such as chemical plants. The simulation results prove that
stochastic optimizers are strong problem solvers for complex
practical problems. The paper by Shi et al. devises a twin-
screw coded evolutionary algorithm for the multilevel pro-
duction scheduling problem. The comparative study shows
that the proposed method outperforms genetic algorithm
and tabu search in solution quality. The paper by De Falco
et al. proposes a distributed differential evolution algorithm
to address the multisite grip mapping problem. According
to the experimental results, this method can minimize the
consumption of grid resources.

This special issue includes two review papers. The article
by Kramer gives a survey of constraint handling techniques
that have developed in the field of evolution strategies in the
last years, in particular concentrating on the prevention of
premature step size stagnation that can often be observed at
the boundary of the infeasible solution space. In addition,
the work by Gong et al. gives a comprehensive overview of
evolutionary gait optimization. The authors reviewed several
success stories of evolutionary methods in evolving programs
for legged robots and concluded that the domain is still a
fruitful field of research.



We thank all the authors and reviewers for their great
contributions to this special issue. We would also like to
thank Professor Hsien-Chung Wu, the editor-in-chief, for his
full support.
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Evolutionary algorithms face a fundamental trade-off between exploration and exploitation. Rapid performance improvement
tends to be accompanied by a rapid loss of diversity from the population of potential solutions, causing premature convergence
on local rather than global optima. However, the rate at which diversity is lost from a population is not simply a function of the
strength of selection but also its efficiency, or rate of performance improvement relative to loss of variation. Selection efficiency
can be quantified as the linear correlation between objective performance and reproduction. Commonly used selection algorithms
contain several sources of inefficiency, some of which are easily avoided and others of which are not. Selection algorithms based
on continuously varying generation time instead of discretely varying number of offspring can approach the theoretical limit on

the efficient use of population diversity.

1. Introduction

“Premature convergence”, or the loss of diversity before a
satisfactory solution is found, is a persistent problem in
evolutionary optimization [1]. This reflects the fundamental
trade-off between exploration and exploitation, or between
thoroughness and speed in evolutionary search [2]. If
selection is too weak, progress is slow and many generations
are required to find a solution. On the other hand, if selection
is too strong, the population rapidly loses diversity and may
become stranded on a local fitness peak. A wide variety of
techniques have been proposed to address this problem, but
it has generally been approached on an ad hoc empirical
basis, and little theory has been available to guide the design
of selection algorithms.

While the trade-off between improving performance and
preserving diversity cannot be avoided, it can be ameliorated
through the efficient use of variation. Diversity within a
population acts as the fuel of the selection process: it is
required for selection to act, but is itself consumed in the pro-
cess. However, selection algorithms differ not only in speed,
but also in “fuel efficiency”, or rate of improvement relative
to loss of variation. In the following sections, I develop a
method for quantifying the efficiency of fitness functions,
defined here as mappings from objective performance to
reproduction. (Such mappings are sometimes referred to

as “selection methods”) The approach is based on the
powerful formalism from evolutionary biology known as the
“Price equation”, which is increasingly used in evolutionary
genetics [3]. I next compare several widely-used selection
methods to characterize their sources of inefficiency, and to
illustrate the advantages of more efficient selection. I also
consider whether less efficient algorithms have any offsetting
advantages that justify their use. Finally, I discuss the design
of fast and efficient fitness functions, and propose a new kind
of algorithm, based on varying generation time instead of
number of offspring, which can approach perfect efficiency
in the use of genetic variation.

2. Quantifying Selection Efficiency

The ultimate goal of evolutionary optimization is to maxi-
mize some objective measure of performance on a given task.
Here I measure progress toward optimization in terms of the
mean performance level of the population (In evolutionary
computation applications, the ultimate interest may be in
the highest performance level in a population of candidate
solutions, rather than the mean. However, mathematical
theory is only available to quantify change in population
mean through selection rather than change in popula-
tion maximum. As a practical matter, maximizing mean



performance will also maximize best performance, all else
being equal). The goal of improving performance conflicts
partially with a subsidiary goal: maintaining the diverse
population of candidate solutions or “individuals” needed to
thoroughly explore search spaces and find the best possible
solutions. The conflict arises because the unequal repro-
duction that drives improvement in average performance
also reduce population diversity. Unequal contributions to
the next generation’s gene pool by different individuals
always reduces diversity except in the special case of negative
frequency-dependent selection (which increases diversity).
If selection is frequency-independent, unequal reproduction
reduces diversity, in direct proportion to the reproductive
variance among individuals (see the appendix).

Although selection cannot improve a population’s aver-
age performance in the next generation without unequal
reproduction, the converse is not true. Unequal reproduction
and resulting loss of diversity need not improve average
performance. Variance in reproduction that is uncorrelated
with performance can reduce genetic diversity (though
genetic drift) just as quickly as can effective selection, but
without increasing mean performance. Because correlation
between performance and reproduction is what makes
selection effective at optimization, I focus on the strength of
this correlation to quantify the efficiency of fitness functions.

In addition to selection, genetic operators such as
mutation and recombination can also change a population’s
mean performance (although in an unpredictable direction).
Here I focus exclusively on the effects of selection, or
differential reproduction, because this is the source of
premature convergence in evolutionary optimization. Let
each individual in the population (indexed by i) have a
measured performance level p;. The average population
performance before selection is p = > pi/N, where N =
population size. After one generation of selection, average
population performance will be the average of the parent
performances weighted by the contribution of each parent
to the next generation: p° = > pwi/ > wi, where w; =
the number of offspring produced by the 7’th individual.
(Note that this assumes perfect heritability of performance
from parent to offspring.) To simplify the notation, it is
convenient to replace absolute reproduction w; with relative
reproduction, w; = w;/w, so that mean performance in the
offspring generation is p* = ave(p;w;). The change in average
performance caused by one round of selection is then Ap =

P —Dpor
Ap = ave(pw) — ave(p). (1)

As aresult of selection, performance improvement across one
generation is exactly Ap above. We can rewrite (1) in a useful
form by using two identities: firstly, ave(pw) = ave(p) -
ave(w) + cov(pw), where “cov” represents covariance. Sec-
ondly, ave(w) = 1 by definition. With these substitutions,
the improvement in performance from parent to offspring
generation is

Ap = cov(p,w) (2)
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FiGUre 1: Three fitness functions illustrated using the same set of
100 simulated individuals with performance values drawn from a
normal distribution with mean = 10 and standard deviation = 1.
(a) threshold selection (b) stochastic proportionate selection (SPS),
(c) deterministic proportionate selection (using (8)). Each mark
represents one individual.

(see [4]). To highlight the factors affecting optimization rate,
it is useful to use another identity to rewrite this covariance
as a product of its three factors:

ApP = 0p - 03 * Ppiv» 3)

where o is a standard deviation among individuals in
performance (p) or relative reproduction (#), and p, is the
linear correlation coefficient between the two [4].

Equation (3) provides insight into how to maximize
selection efficiency, or the ratio of performance improvement
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FIGURE 2: The three factors contributing to performance improve-
ment compared over 1 round of selection across three fitness func-
tions using numerical simulations: threshold selection, stochastic
proportionate selection (SPS), and deterministic proportionate
selection (DPS). Each sample consisted of 100 simulated individuals
with performance values drawn from a normal distribution with
mean = 100, SD = 1. Markers show means, and bars show =+
standard error over 100 samples. (Note that error bars are too small
to extend beyond marker symbols.)
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FiGure 3: The same three fitness functions shown in Figure 2
compared for the one-generation change produced in mean
performance, and in population diversity. Bars show standard
errors. (Note that error bars are too small to extend beyond marker
symbols).

to loss of diversity. Deviation in individual performance (o})
is fixed for a given population, but o and p, depend on
the selection method. Deviation in reproduction (o3) varies
with the strength of selection. Increasing o can increase
performance improvement, but at the cost of faster loss of
diversity. The linear correlation between performance and
reproduction (p,y) corresponds to the efficiency of selection,
in the sense that increasing this term increases performance
improvement without increasing loss of diversity and per-
formance variation. When p, = 0, selection is completely
inefficient: it consumes variation without improving average
performance. In the language of evolutionary theory, this is
termed “drift” instead of “selection”. At the other extreme
of pp = 1, the ratio of performance increase to variance
reduction is maximized. Thus the rate at which variation is
lost from a population is not simply a function of selection
strength (o3), as is sometimes assumed, but also of selection
efficiency (p,w).

3. Sources of Inefficiency in Fitness Functions

The perfectly linear fitness function (p,y = 1) is an ideal of
efficiency that is not realized by any algorithm in general
use. All standard fitness functions depart from linear correla-
tion either through deterministic nonlinearities, fluctuating
stochastic nonlinearities, or both. An example of a deter-
ministically nonlinear fitness function is threshold selection,
in which reproduction is an all-or-nothing step function
of performance (Figure 1(a)). Any such highly nonlinear
fitness function will necessarily have a linear correlation
well below 1. Fitness functions without any deterministic
nonlinearity are termed “fitness-proportionate selection”
because expected reproduction is directly proportional to
performance [1]. However, these functions introduce fluctu-
ating stochastic nonlinearity in converting expected to actual
reproduction, so that expected reproduction has perfect
linear correlation with performance, but actual reproduction
does not. This is hard to avoid because unlike the expected
number of offspring, the actual number of offspring is con-
strained to whole numbers and so must vary stochastically
around the expected number. For example, the commonly
used “stochastic universal sampling” algorithm [5] works as
follows: an expected reproduction of w is partitioned into
a fractional portion (w%]1) and a whole-number portion
[w—(w%]1)], where % is the modulo operator. The algorithm
produces the whole number of offspring, plus one additional
offspring with a fractional probability of (w%]1). Despite its
lack of deterministic nonlinearity, the correlation between
performance and actual number of offspring is less than 1
because of stochastic fluctuations (e.g., Figure 1(b), where
w = 1 for each individual, but w varies stochastically). I will
refer to this algorithm as “stochastic proportionate selection”
(SPS).

Such stochastic fluctuations in actual reproduction are
larger in other implementations of fitness-proportionate
selection, such as “roulette wheel” sampling [2]. Still other
algorithms, such as tournament selection [1], include both
deterministic and stochastic sources of nonlinearity. Here the



selection of a pair of individuals to compare is stochastic,
while the choice of which of the two reproduces depends
on their relative performance rank, which is a deterministic
nonlinear function of performance. Both deterministic and
stochastic nonlinearities in fitness functions reduce the
correlation between performance and actual reproduction,
and thereby reduce selection efficiency.

To examine the effect of selection efficiency on diversity,
I used a numerical simulation consisting of a population
of 100 individuals (candidate solutions) with performance
values drawn from a normal distribution with mean =
10 and standard deviation = 1. I compared the effects
of a single round of selection using threshold selec-
tion (Figure 1(a)), stochastic proportionate selection (SPS)
(Figure 1(b)), and deterministic proportionate selection
(DPS) ((8), Figure 1(c)). The numerical simulation allowed
fractional offspring, but the problem of how deterministic
proportionate selection can be implemented with whole
numbers of individuals is deferred to Section 6 below.
To tune the threshold fitness function to give the same
performance improvement as the other two functions, I
allowed reproduction only by the best-performing 76%
of the population. Deterministic proportionate selection
generated less variance in reproduction than the other
two, but reproduction was more highly correlated with
performance (Figure 2). These two differences resulted in an
equal performance increase in the offspring generation for
all three fitness functions (Figure 3). Thus the deterministic
proportionate selection function consumed less performance
variation while producing the same performance improve-
ment. I next investigated whether DPS also preserved more
genotype diversity while producing the same performance
improvement.

To quantify diversity, I used the Shannon-Weiner diver-
sity index from evolutionary biology, which is equivalent to
the entropy of the genotypes in the population:

H == flogfe, (4)
g

where g indexes the genotypes in the population, and f; is the
population frequency of genotype g. Entropy is maximized
when each individual is unique, and minimized when all
individuals share the same genotype. To simplify calculations
I assumed that each individual in the population was unique
prior to selection, but violating this assumption would not
change the outcome qualitatively. Selection reduced diver-
sity several-fold less under the deterministic proportionate
function than under either the stochastic proportionate or
threshold functions, while improving performance at the
same rate (Figure 3).

4. Is Inefficient Selection Ever Useful?

I have focused here on the advantages of linear fitness
functions for conserving genetic diversity. However, both
deterministic nonlinearities and stochastic effects have some
potential advantages. Might these justify the use of nonlinear
fitness functions despite their lower efficiency?

Applied Computational Intelligence and Soft Computing

Deterministically nonlinear fitness functions permit
stronger selection (higher o) than linear functions. At
the extreme, reproduction by only the individual(s) with
the highest performance increases average performance by
AP = pmax — p. More generally, larger one-generation
improvements are possible with nonlinear than with linear
fitness functions. However, this rapid short-term improve-
ment comes at the cost of the variation required for longer-
term improvement. Genetic variation could be created anew
in each generation, but this is computationally expensive and
reduces evolutionary search algorithms to inefficient hill-
climbers. For this reason, deterministic nonlinearity in fit-
ness functions is unlikely to be helpful in most applications.

Stochastic fitness functions offer a different potential
advantage by helping populations escape from local per-
formance peaks. Slightly deleterious mutations can persist
or spread under stochastic selection, making it possible
for populations to cross low-performance fitness valleys
requiring multiple mutations. Stochastic effects also allow
the population to drift among different genotypes with equal
performance. This may facilitate the exploration of “neutral
networks” in genotype space, leading to the discovery of
higher performance peaks [6]. However, stochastic effects
on reproduction also have drawbacks. They can push
populations away from global as well as local peaks. In
some algorithms, they may also slow the discovery of higher-
performance peaks by allowing beneficial new mutations to
be lost. It remains an open question how often stochastic
fitness functions improve evolutionary optimization, and
how much stochasticity is desirable. To investigate these
questions, it will help to have algorithms in which stochastic
effects can be directly controlled by the experimenter rather
than being a by-product of the particular algorithm used.
This is easily achieved by adding a stochastic term to a
deterministic linear fitness function. This approach has the
additional advantage that stochastic effects can be reduced to
any desired magnitude without incurring a computational
cost. In contrast, intrinsically stochastic algorithms require
very large population sizes to drive stochastic effects to low
levels.

5. Fast and Efficient Fitness Functions

How can a fitness function be designed to maximize the rate
of performance increase while also optimizing efficiency?
Efficiency defined as the linear correlation p, is maximized
when reproduction is a linear function of performance. It is
convenient to represent such fitness functions in the standard
linear form:

wi = a(p,-+b), (5)

where p; and w; are individual performance and reproduc-
tion, respectively, and a and b are system parameters. With
discrete generations, it is usually desirable to maintain a
stable population size across generations, which constrains
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the average number of offspring per individual (w) to 1. This
constrains the value of a to

1
ave(pi+b) p+b

(6)

Substituting (6) into (5) gives us a linear fitness function
yielding a stable population size:

Wi — (pit+b)
bo(p+b)’

What value of b will maximize the rate of performance
improvement? Recall from (3) that the one-generation
improvement in average performance due to selection is a
product of three quantities: 0, pyw, and 0. The first of these
is a fixed property of the population. The second is already
maximized at 1 under linear fitness functions. This leaves
only variance in individual reproductionoy; to be maximized
in order to maximize the performance improvement Ap.
When w; is a linear function of p;, its variance o, is
maximized by maximizing the slope of the fitness function,
which is defined in (5) as a. Equation (6) shows that a
increases as b approaches —p, so that b should be as close
as possible to —p to maximize improvement. However, there
is a constraint that individual reproduction (w;) cannot be
negative, which means that b > —p; for all i (5). If the
worst performance in the population is denoted as pmin, then
the lowest possible value for b is — pmin, which results in
the individual(s) with the lowest performance having exactly
zero offspring. Substituting this value for b into (7) yields
the stable linear fitness function with the maximum rate of
performance increase:

(7)

(pi = prin)
(ﬁ - pmin) ' (8)

w; =

6. A Variable-Generation Algorithm for
Efficient Selection

If a deterministic linear fitness function is the theoretical
ideal, how can it be implemented in practice? As discussed
above, inefficiency in commonly used fitness functions
arises in part from easily avoidable sources of nonlinearity.
However, all standard algorithms also contain nonlinearities
arising from the fact that performance is a continuous vari-
able, while the number of offspring is discrete. Stochastically
converting real numbers of expected offspring to whole
numbers of actual offspring reduces the linear correlation
between performance and actual reproduction.

We can overcome this problem by recognizing that selec-
tion on genotypes acts through their rate of reproduction
per unit time. Instead of varying the number of offspring,
one can independently vary the generation time for each
individual [7]. This requires an algorithm incorporating
overlapping generations and a continuous representation of
time. Individual reproductive rates can then vary continu-
ously rather than discretely, and can correlate perfectly with
individual performance.

To implement this idea, individual reproduction is
treated as a growth rate, by analogy with population
growth rates. A population growth rate tells us how large a
population will be after a given time:

st = sow', 9)

where sy is initial population size, s; is population size after
t time units, and w is growth rate. Rearranging (9) tells us
how long it will take the population size to change by a given
factor s¢/sp under a given growth rate w:

. ln(st/so). (10)
In(w)

Our current problem concerns individuals rather than
populations, but we can use the same reasoning to ask
how long it will take an individual to die (equivalent to
shrinking to size zero) or reproduce (equivalent to doubling
in size) as a function of its individual growth rate w;. Because
individuals are discrete, we round off individual “size” to
the nearest whole number. Thus for w; < 1, we can ask
how long it will take for the individual to fall below half
its initial size, given its negative growth rate. At this point,
the individual’s size is closer to zero than one, and we
recognize this by removing it from the population. Similarly,
if an individual’s growth rate is greater than one, we ask
how long it will take for its size to rise above 1.5. At this
point it is closer to being two individuals than one, and we
recognize this by doubling it via reproduction. (Note that
unlike rounding the number of offspring under stochastic
fitness-proportionate algorithms, rounding individual size
to whole numbers is not stochastic and does not introduce
stochastic nonlinearity into the fitness function. Because
waiting times vary continuously, genotype growth rates
also vary continuously as a deterministic linear function of
performance.)

For w < 1, waiting time to death is found by substituting 0.5
for s;/so in (10), giving

_—0.693
7 n(w)

(11)
For w > 1, waiting time to reproduction is found by
substituting 1.5 for s;/so, giving:

0.405
In(w)

t = . (12)

When an individual’s reproductive rate is evaluated, its
future death or reproduction is scheduled for a time point
in the future designated as a real number on a time line.
These events will be scheduled in the distant future when the
reproductive rate is close to 1, and in the near future when it
is far from 1 (Figure 4).

At the beginning of a run, each individual’s performance
is evaluated and its reproduction or death is scheduled.
After this, the algorithm simply consists of repeatedly cycling
through the following steps: (1) carry out the first event on
the schedule. (2) If the event was a birth, evaluate the new
individual’s performance. (3) recalculate all waiting times
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FIGURE 4: Waiting time to death (dotted line) or reproduction (solid
line) as a function of individual growth rate. (From (11) and (12).)

to reflect the new average performance, and update the
schedule. In practice, it might be useful to recalculate waiting
times less often in order to reduce the computational load.
For example, each individual’s waiting time could be calcu-
lated at birth and then not recalculated until its scheduled
event was within some specified time horizon.

7. Conclusions

In these results, truly linear fitness functions, in the form
of deterministic proportionate selection, reduced population
diversity and performance variation less than other fitness
functions that improve performance the same amount in one
round of selection. This strongly suggests that over multiple
generations, the same rate of performance improvement
would be sustained with less loss of diversity. Consequently,
DPS should yield better solutions, particularly for tasks
where premature convergence is otherwise a problem. The
variable-generation algorithm outlined above allows actual
reproductive rates to be exactly proportional to performance,
providing one way to implement DPS. Although stochastic
fitness functions may eventually prove useful on some fitness
landscapes, intrinsically linear fitness functions provide the
best foundation for designing them because they allow
stochastic terms to be added in a controlled fashion.

One important caveat is that these conclusions are
based on consideration of a single round of selection in
isolation. Longer-term selection is also affected by the
genetic operators that create variation, such as mutation
and recombination, and by their interactions with selection.
In particular, this paper does not address the issue of
how selection interacts with recombination among epistatic
loci (e.g., [8]). While I am not aware of any reason the
conclusions reached here would not hold in the broader
context of long-term evolution with recombination; this
remains to be investigated.

Appendix

The purpose of this appendix is to quantify the extent
to which unequal reproduction reduces diversity in a
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population. It will show that when selection is frequency-
independent, unequal reproduction reduces diversity in
direct proportion to the reproductive variance among indi-
viduals. I follow Section 3 above in quantifying diversity with
the Shannon-Wiener diversity index, which is equivalent to
the entropy of genotypes.

Before selection, variance in the frequencies of alternative
genotypes is

var(f) = E(f2) - E(f)%, (A1)
and after one round of selection it is
var(#f) = E(# f2) — E(Wf)7, (A2)

where variance (var) and expectation (E) operate across
genotypes, f is the frequency of each genotype, and w is
the reproduction of each genotype relative to the population
mean. If selection is frequency-independent, then w and f
are independent, so that (A.2) can be rewritten as

var(Wf) = [E(#) - E(f)] - (B - E(f)?).  (A3)
Because E(w)= 1 by definition, (A.3) simplified to
var(Wf) = EG?) -E(f) —E(f)>.  (A4)

Let Avar(f) represent the change in var(f) caused by one
round of selection. Subtracting (A.1) from (A.4) gives

Avar(f) = E(f?) - [E(#*) - 1].

Because E(#)= 1, the second term on the right, E(W?) — 1 =
E(#?) — [E(W)]* = var(W). Substituting var(w) for E(w?) — 1
gives

(A.5)

Avar(f) = E(f?) - var(w). (A.6)

Thus the decrease in the variance of genotype frequencies
is proportional to the variance in reproduction. Thus
minimizing variance in reproduction also minimizes loss of
diversity (H).
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Gene Expression Programming (GEP) is a genetic algorithm that evolves linear chromosomes encoding nonlinear (tree-like)
structures. In the original GEP algorithm, the genome size is problem specific and is determined through trial and error. In
this work, a method for adaptive control of the genome size is presented. The approach introduces mutation, transposition,
and recombination operators that enable a population of heterogeneously structured chromosomes, something the original
GEP algorithm does not support. This permits crossbreeding between normally incompatible individuals, speciation within a
population, increases the evolvability of the representations, and enhances parallel GEP. To test our approach, an assortment of
problems were used, including symbolic regression, classification, and parameter optimization. Our experimental results show
that our approach provides a solution for the problem of self-adaptive control of the genome size of GEP’s representation.

1. Introduction

Evolutionary computation (EC) is a machine learning
technique that uses processes often inspired by biological
mechanisms to obtain a solution to a given problem.
Applying an EC algorithm to a problem begins by defining
how potential solutions are represented, which is known
as the problem representation. A problem representation
is defined by the type of input data (the Terminal Set)
used to generate a solution, the desired number, and types
of outputs and the operations (the Function Set) used to
transform the inputs into the output values. An important
step in applying an EC methodology to a particular problem
is the specification of parameters that define the problem
representation and control the algorithm. Finding appropri-
ate parameter values that yield satisfactory results usually
requires carefully developed heuristics or expert knowledge.
In EC algorithms, the concept of a population of candidate
solutions, or individuals, is used to represent a pool of
possible solutions to a particular problem. The encodings, or
genomes, used to represent a solution vary depending on the
EC methodology. It can be as simple as binary code, or as
complex as a full fledged programming language. The Gene

Expression Programming (GEP) algorithm [1], developed by
Candida Ferreira, is an EC algorithm which uses separate
encodings for the genotype and phenotype.

This work introduces novel enhancements to the Gene
Expression Programming (GEP) algorithm that enable flexi-
ble genome representations, endow self-adaptive characteris-
tics, increase the diversity within a population, and enhances
the parallelization of the algorithm. The following issues are
particularly relevant to the work presented here.

(1) Evolvability. The structure of the problem represen-
tation does not vary during a run, as it is restricted
to the initial values for the head domain length and
number of genes. This constrains the algorithm to
narrow bands of exploration and reduces its ability
to produce meaningful change or a paradigm shift
within a population.

(2) Crossbreeding and Speciation. In GEP, genetic opera-
tions and transformation are restricted to identically
structured genomes, preventing different species, or
disparately structured genomes, from evolving and
competing within a population.



(3) Distributed Evolution. Parallelization is restricted by
the inability for disparate populations to interact,
slowing the exploration of the search space.

(4) Parameter Tuning and Self-Adaptation. The GEP
algorithm lacks a self-adaptation mechanism and
thus requires additional time and resources to sys-
tematically evaluate different control parameter sets
and subjecting the algorithm to operator biases.

To address the evolvability of the problem representation,
we developed two new operators to permit the structure
of the GEP genome to be changed during a run. We call
these new operators the Adaptive Chromosome Size (ACS)
Mutation operator and the Head Insertion Sequence (HIS)
Transposition operator.

The problems of speciation and genome interactions
between disparately structured individuals were solved by
replacing the canonical GEP recombination operators with
modified versions that permit dissimilarly structured indi-
viduals to interact.

From the beginning of our explorations we wanted
to improve the performance of the GEP algorithm when
distributed. We quickly realized that transferring individuals
between separate GEP populations was severely limited
by the inability for structurally different individuals to
recombine. This issue was eliminated by the introduction of
our modified recombination operators.

Finally, to enable parameter tuning in the GEP algorithm,
we designed our HIS and ACS mutation operators to
eliminate the two critical parameters of the GEP algorithm:
the head size and the number of genes. Additionally, the HIS
and ACS mutation operators were designed to permit the
algorithm to self-adaptively tune the optimal chromosome
structure.

Our proposed methodology was empirically evaluated
using an assortment of problem classes and complex-
ity levels. Symbolic regressions evaluated were kinematics
problems, a series of polynomial regressions, and the
“Sunspot Problem”. The classification problem tested was
the LiveDescribe dataset from the The Center for Learning
Technology at Ryerson University. Finally, the effectiveness of
the proposed methodology for optimizing parameters was
evaluated using the De Jong test functions [2].

The effectiveness of the proposed changes were evaluated
by comparing the performance of the enhanced GEP algo-
rithm against the original GEP algorithm. Additionally, the
symbolic regression results were compared to the adaptive
distributed GEP algorithm developed by Park et al. [3]. The
results obtained using an application developed during the
course of this work, known as Syrah, and the results were
validated using the K-Fold method with 10 folds.

The specific contributions of this work are as follows:

(1) development of the Head Insertion Sequence (HIS)
operator to self-adaptively tune the head size param-
eter in the GEP algorithm and to enable the structure
of the individual to evolve during a run,

(2) creation of the Adaptive Chromosome Size (ACS)
Mutation operator that self-adaptively tunes the
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number of genes of an individual in a GEP popula-
tion, Therefore allows the genome structure to evolve.

(3) addition of new recombination operators to the GEP
algorithm to enable structurally dissimilar genomes
to interact, therefore enabling individuals to be trans-
ferred between separate GEP populations without
any genomic structural constraints. This feature is
particularly important to parallel GEP systems, as it
permits unrestricted migration.

Following this introduction, we present the background
material related to this work in Section 2, our methodology
in Section 3, the results and discussions of our experiments
in Section 4, and finally, in Section 5, the conclusion and
potential future work.

2. Background

In this section we present the relevant existing research
that pertains to the key issues addressed by this work,
including: the canonical Gene Expression Programming
algorithm, the evolvability of the problem representation,
genome crossbreeding and speciation, distributed evolution,
parameter control and, self-adaptation.

2.1. Canonical GEP Algorithm. The Gene Expression Pro-
gramming (GEP) algorithm was first published by Ferreira
in 2001 [1]. Like other EC methodologies, GEP derives
its inspiration from biological processes and has been
successfully applied to a variety of problems [4-9].

A significant difference in GEP is the separation of
the phenotype and genotype. Many existing methodologies,
such as Genetic Programming [10] and Genetic Algorithms
[11], use a single representation for both the genotype and
the phenotype. By separating the representation, the GEP
algorithm is able to benefit from the speed of operating on a
linear genotype and the flexibility offered by the tree-based
phenotype. It also permits the physical representation to
affect the genetic code of the individual, as is found in nature.

In the GEP algorithm, each individual or candidate
program is referred to as a chromosome. Every chromosome
in the population represents a syntactically correct program,
because of the underlying nature of the chromosome’s
encoding and representation.

2.1.1. Chromosome Encoding. In GEP the genome or chro-
mosome consists of a linear, symbolic string of one or more
genes, with each gene coding for an expression tree (ET).
A gene has two well-defined, adjacent regions called head,
containing symbols that code for internal or leaf nodes of the
encoded ET, and tail, containing terminal symbols (the leaf
nodes) of the encoded ET. In canonic GEP, both the number
of genes and the head size of a gene are input parameters for
the algorithm. The tail size ¢ is a function of the head size h,
and is determined as follows:

t=h(nmax — 1)+ 1, (1)
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where nm,¢ denotes the maximum arity found in the function
set (Like in genetic programming, the function set is also a
parameter to the GEP algorithm.).

In the case of multigenic chromosomes, all ETs are
connected by their root node using a linking function. In
the GEP system presented in this work we used the addition
operator as the linking function. To illustrate, Figure 1 shows
an example of a chromosome and the respective tree it
encodes.

2.2. Evolvability. Evolvability refers to the ability of a genome
to change over time and to occasionally produce offspring
that are more effective at a particular problem (and thus
perform an effective search) [12, 13]. For evolutionary
computation, this becomes significant for representations,
such as GEP, that separate the phenotype from the genotype.
In the case of this work, we focus on the evolvability of the
structure of the genotype (the encoding of the genome). This
is particularly important in the case of GEP, since the genome
structure of the canonical algorithm is fixed throughout a
run and controlled by two problem-specific parameters.

Lopes and Weinert [14] proposed an enhanced GEP
algorithm called EGIPSYS that varied the length of the head
domain on a genome-level basis. The individuals, however,
were composed of a fixed number of equal-length genes.
This contrasts with the approach presented here, where each
individual may have any number of genes and each gene may
have a unique head length. Additionally, EGIPSYS neither
implemented the one-point recombination operator nor
introduced operators to vary a chromosome’s length. It also
restricted the operation of the gene recombination operator
to like-sized individuals. All of these issues are resolved in the
method presented here.

In an attempt to improve the evolvability of the individu-
als in GEP, Yue et al. [15] proposed a crossover strategy called
Valid Crossover Strategy which would crossover all individ-
uals in a population and create the subsequent population
from the n-best valid chromosomes. This approach seemed
to help the evolution of the solution, but not the evolution of
the structure itself.

Several different strategies for improving the GEP algo-
rithm were presented by Tang et al. in [16]. A feature of
interest that they developed was an adaptive mutation mech-
anism, which was essentially a fitness proportional mutation
rate. On an individual basis, the mutation rate applied
to a chromosome was inversely proportional to its fitness.
Thus, highly fit individuals would have a lower mutation
rate applied to them, reducing the number of potentially
disruptive changes to chromosome. Conversely, poorly fit
individuals were more likely to have significant mutation
performed on their chromosomes. The implementation
of the Adaptive Chromosome Sizing Mutation Operator
introduced in this work uses the idea of a fitness proportional
mutation rate to preferentially mutate the number of genes in
poorly fit individuals.

In this work we introduce new operators to improve
the evolvability of GEP genomes. The new operators are
the HIS transposition and ACS mutation operators, which
allow the structure of a GEP genotype to change over
time. The evolution of the genotype occurs in parallel, but
fundamentally linked, to the exploration of the search space
for a particular problem. The two evolutionary processes are
interconnected because changes in the genotype can permit
the algorithm to explore regions of the search space that may
be inaccessible to other genome structures.

2.3. Crossbreeding and Speciation. The concept of cross-
breeding and speciation embraced in this work is that
of interactions between disparately structured, but funda-
mentally compatible, genomes. The idea of crossbreeding
specifically refers to the ability for any individual, regardless
of structure (or species), to reproduce and create viable
offspring. The ability to crossbreed any individual permits a
more genetically diverse population and enabled unrestricted
exploration of the search space by the algorithm.

Speciation, on the other hand, can have several different
interpretations. In particular, it can refer to the ability for
“subpopulations” to exist within a single main population
for the purpose of “niching” [17]. Speciation and niching
has been used to promote diversity within a population,
prevent (or limit) convergence, and address multimodal
problems where different areas of the solution space require
different individuals [13]. Two methods for using speciation,
or niching, are Crowding [2] and Fitness Sharing [18].

The EGIPSYS algorithm [14] permitted different-sized
chromosomes within a population, which other systems,
such as canonical GEP, AdaGep [19], and PGEP-O [3], do
not support. However, unlike our proposed methodology, all
individuals in an EGIPSYS population were required to have
the same number of genes. This contrasts with our proposed
methodology, which supports (and, in fact, encourages)
populations consisting of individuals that have both differing
head domain lengths and gene counts.

Park et al. introduced a parallel system, PGEP-O [3],
which attempted to dynamically tune specific parameters
of the GEP algorithm. In the work, the individuals were
constrained by the genome restrictions of canonical GEP;
that is, only identically structured individuals were able



to interact and exist within a single population or island.
This methodology was limited because the transfer of
individuals between islands, or migration, could only occur
between islands with identical gene counts and head domain
sizes. The methodology presented in this work eliminates
these constraints by creating operators that do not restrict
the interaction of genomes with fundamentally different
structures.

The contributions presented in this work enable cross-
breeding between disparately structured individuals in a GEP
population, a feature unavailable in canonical GEP. This
enables evolution of different species within a population,
and while specifically implementing niching is beyond the
scope of this work, it could be examined in the future.

2.4. Distributed Evolution. The intrinsic parallel nature of
EC can often be further exploited by distributing a given
EC algorithm. Parallelization techniques can generally be
classified by their granularity, defined as either fine grained
or coarse-grained models. Fine-grained techniques com-
monly have low computational requirements, but higher
communication needs, and are well suited for multiprocessor
systems. Coarse-grained models, on the other hand, tend to
be computational intensive but have lower communication
requirements and are better suited to discrete computational
nodes. The Island Model is a coarse-grained technique
that was introduced in [20] and has been shown to be
fault tolerant [21]. The distributed system implemented to
validate our methodology uses the Island Model.

The exchange of genetic material between islands, or
demes, is referred to as migration. The structure of the
connections between islands, or the topology, is bounded
by the cases of isolated islands (no migration) and fully-
connected (migration to all other demes) [22]. Additionally,
dynamic topologies have been suggested [23]. In addition to
the topology, the rate of migration, number of migrants, and
the migration policy control the flow of individuals between
islands [24]. One aspect of a migration policy is whether
the migration occurs synchronously (migrations occur in
specific intervals with specific partners) or asynchronously
(migrations occurred whenever a deme has a migrant to
exchange) [25]. Interested readers are directed to [23, 24, 26—
30] for more detailed information regarding migration.

The PGEP-O system [3] is another example of a parallel
GEP algorithm which used two island groups. The first island
group was a standard Island Model implementation, in
which a single population of individuals was evolved on each
island. The second island group used the first group’s island
as their “individuals” in an attempt to use a GA to optimize
the parameter settings of the island populations. Since the
two island groups were needed, PGEP-O could only operate
in a distribute mode. Additionally, since Park et al. did
not address the interaction of differing genome structures,
migration between the islands could only occur between like-
structured populations. This limited the algorithm’s ability to
explore the search space.

Lin et al. proposed a fine-grained parallel GEP system
[31] which exploited niching to improve the performance of
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the GEP algorithm. Based on their reported algorithm and
data, they used a shared pool of like-structured individuals
and empirically determined the GEP algorithm’s parameter
values.

A multiobjective parallel GEP system, PGEP-AP [32],
also used the Island Model with migration. In addition to
the standard migration mechanism PGEP-AP used a separate
elitist population to store the best individuals from the
various subpopulations.

The PED-GEP algorithm introduced in [33] used a
measure of diversity to guide evolution among parallel
clients; however, the details of their parallelization lacked
further specifics.

Du et al,, in [34], demonstrated a parallel GEP imple-
mentation that used Estimation of Distribution to improve
the performance of the GEP algorithm. This system used
asynchronous migration with a fully connected Island
Model; that is, each island (population) could potentially
interact with any other island.

Our approach to the distribution of the GEP algorithm
was to use a fullyconnected coarse-grained model with
random migration and to remove the restrictions placed
on the migration mechanism by canonical GEP’s inability
to support dissimilarly structured chromosomes in a single
population. By permitting unrestrained migration, popula-
tions in a parallel setting are now able to freely exchange
candidate solutions to enhance the solution quality and
diversity.

2.5. Parameter Control and Self-Adaptation. Most Evolu-
tionary Computation algorithms require a set of control
parameters, which influence the process evolution to be
configured based on the particular problem being explored.
The process of setting these parameters often requires
complex heuristics, “rules of thumb”, or specific knowledge
from a domain expert. Thus, it is desirable to automatically
tune the parameter values prior to executing the algorithm
or to self-adaptively tune the parameters during the run.

In problem solving and optimization, the impossibility
theory of “No Free Lunch” [35] has been postulated and
roughly states that without a priori knowledge of a problem
(to tailor the methodology to it) no single problem-solving
method is inherently better for all problem classes [36].
This has implications for any evolutionary algorithm and
parameter control method, especially those with attempt to
optimize the parameters prior to executing an evolutionary
run and then use static values throughout the run [37].
Additionally, it has been shown [38] that optimal parameter
values can vary throughout a single run. This implies that,
while it may be impossible to determine optimal values for
all problems and situations, it should be possible to evolve
values that are “good enough”. Additionally, it implies that
methodologies that are able to optimize their parameter
values dynamically have an inherent advantage over those
that do not.

The PGEP-O system presented in [3] approached the
issue of parameter control as a separate optimization prob-
lem that ran in parallel to the main evolutionary algorithm.
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This system used a parallel GEP implementation, using the
Island Model, to evolve solutions to the target problem
and a genetic algorithm (GA) running on a separate client
to optimize the two GEP parameters. The head size and
gene count parameters were optimized by using trial values
on each GEP island and then reporting back to the GA
parameter optimizer. This approach, while successful, suf-
fered from several issues that are remedied by our proposed
methodology. The PGEP-O algorithm required additional
resources, since the parameter optimization was a separate
calculation. Additionally, the GA optimizer had to wait for
an entire run to complete before it was able to execute
a new generation, which is problematic for long-running
evolutions.

The DM-GEP algorithm [33] introduced a dynamic
mutation rate operator in an attempt guide evolution. DM-
GEP divided the execution of a run into three stages, the
initial stage; the metaphase stage, and the anaphase stage.
Each stage was then assigned a specific mutation rate and
the mutation rate used in each generation was progressively
scaled, by a fixed amount, from one value to the next. In this
manner, the number of generations executed in a run was
directly related to the mutation rates. This approach did not,
strictly speaking, tune the mutation parameter and was not
self-adaptive, but did dynamically alter the rate and showed
improvement over the standard GEP implementation.

Bautu et al. introduced in [19] an algorithm, called
AdaGEDP, for automatically controlling the number of genes
of a GEP representation. The approach involved adding to
the genome a bit array that maps each bit to a gene in the
chromosome. The bit in each position of the array indicates
if whether gene would be included in the translation to
an expression tree during the fitness evaluation. Specific
genetic operators were designed to operate on this bit array,
thus evolving an optimal mask. The AdaGEP algorithm
was limited by the fact that the total number of genes in
any chromosome could never change. Thus, there was little
benefit to using that method versus using automatically
defined functions, or homeotic genes, in GEP’s jargon, to
evolve the execution order of the genes. Additionally, the
size of individuals in the algorithm’s population could never
change, so that, even if fewer genes were required, the genetic
operators would still be performed on the full chromosome.

The work presented in [15] included a method to vary
the mutation and crossover rates during a run, based on
the Cloud Model [39]. This methodology improved the
performance of the GEP algorithm, but was only applied to
like-structured genomes.

Eiben et al. stated in their “Parameter Control in Evolu-
tionary Algorithms” survey [37] that determining successful
values for algorithm parameters in EC is a “grand challenge”
problem.

The approach to parameter control and self-adaptation
presented in this work was accomplished using multiple
techniques which work together to self-adaptively tune GEP
parameters. To tune the head domain length and number of
genes, we developed the HIS transposition and ACS muta-
tion operators. In addition to these operators, we created
new recombination operators which allowed structurally

disparate (and normally incompatible) genomes to be able
to crossbreed and create viable offspring, which permits
individuals with different head domain length and gene
count parameters to compete within a single population.

3. Methodology

This section introduces the proposed enhancements to the
GEP algorithm to address the issues identified in Section 1,
to wit the evolvability of the problem representation, genome
speciation and crossbreeding, distributed evolution, and
parameter control and self-adaptation in the canonical
GEP algorithm. The section will introduce our proposed
enhancements, the details of the implementation of the
framework used for evaluation, and the experiments used to
validate our hypothesis.

3.1. Proposed GEP Algorithm Enhancements. To address the
issues of evolvability, crossbreeding, distributed evolution,
and parameter control found in canonical GEP, our proposed
modifications to GEP include several new operators and
also modifications to the existing recombination operators.
The new operators introduced in the following section offer
solutions to the problems of evolvability and the control of
two critical parameters in GEP. The modified recombination
operators were developed to permit speciation within a GEP
population and to enhance distributed GEP populations.

The original version of the GEP algorithm required that
two critical parameters, the length of the head domain and
the number of genes in the chromosome, to be set to fixed
values prior to the execution of a run. These parameters
are generally domain and problem specific, which further
exacerbates the problem of finding “good” values (not even
particularly optimal ones) for the parameters. By developing
new operators which permit genome structure changes, we
enabled the head domain length and number of genes to be
implicitly tuned during a run. Our algorithm enhancements
also permit each gene in a chromosome to have a unique
head domain length. This extra feature enables the length of
the gene to vary, and thus the length of the function encoded
by that gene.

In addition to parameter control, our approach improves
the evolvability, or the ability of the structure of the
genome to evolve, by removing the fixed-length chromosome
restrictions in canonical GEP and allowing the number
of genes to vary during a run. Chromosome evolvability
was specifically addressed by designing the new operators
to increase the capacity of the genome for extracting and
exploiting the underlying structure of the fitness function
under consideration.

The new operators for parameter control and enhancing
evolvability are presented in Sections 3.1.1 and 3.1.2.

3.1.1. Adaptive Chromosome Size Mutation Operator. In
Algorithm 1 we present the pseudocode for the Adaptive
Chromosome Size (ACS) mutation operator used in our
enhanced GEP algorithm. The ACS operator mutates the
number of genes in a chromosome, potentially increasing or



Data: Chromosome

Result: Mutated chromosome

begin
/*Calculate the decay rate */
decayRate = 1—(gen+maxGensfactor)/maxGen

/*Calculate the mutation rate,
inverse to the fitness */
muP = (1-chr.Ftn/bestFtn)
/*Adjust the mutation rate if it is
below the minimum */
if muP < minRate then
muP = minRate
end
/*Apply the decay to the mutation
rate */
muP = muP * decayRate
/*Determine if mutation will occur
*/
if RandProbability() < to muP then
/* Randomly decide to grow or
shrink */
growChromosome = DoCoinToss()
if growChromosome then
/*Grow the chromosome by
adding a new gene */
insertionPoint = GetRnd(0, chr.NGenes)
InsertGeneAt(insertionPoint)

else
/*Shrink the chromosome by
deleting a gene, but only
if we have at least two
genes */
if chr.NGene > 1 then
deletionGene = GetRnd(1,
chr.NGenes)
DeleteGeneAt(deletionGene)
end
end
end

end

ArgoriTHM 1: ACS mutation operator pseudocode.

decreasing the total number of genes when it is applied. The
ACS operator is applied to the entire population during each
generation.

The AcsGeneMutation(- - -) method takes a chromo-
some (chr) as a parameter and mutates it according to the
following procedure. Initially, it calculates the decayRate,
which is used to decrease the operator’s application as the
run progresses. In the decayRate calculation the factor is a
user-defined value that scales the decayRate and is set to 0.2
for all experiments. This scales the decayRate to zero for the
final 20 percent of the run.

Next, the algorithm calculates the probability of muta-
tion muP. The probability of mutation is inversely propor-
tional to the individuals fitness when compared to the best
fitness in the current generation. If the muP is less than the

Applied Computational Intelligence and Soft Computing

user-defined minimum mutation rate, minRate, then muP is
set equal to minRate. The mutation rate, muP, is then scaled
by decayRate to arrive at the final muP value. The operator
then generates a random probability using RandProbability
() and compares it to muP to determine whether the
AcsGeneMutation will be applied to the chromosome. Next,
the operator performs a coin toss using DoCoinToss () to
determine whether a gene should be added or removed.
When a gene is added, the operator selects an insertion point,
insertionPoint, at a random position in the sequence of genes
of the chromosome.

It then calls the worker method, InsertGeneAt(- - -),
to insert a randomly created gene at the insertion point.
When a gene is removed, the operator first verifies that there
is more than one gene (chr.NGenes) in the chromosome.
It then randomly selects a gene in the chromosome using
the GetRnd(- - - ) method and calls the DeleteGeneAt(- - +)
method to remove the gene from the chromosome.

The mutation operator always uses a step size equal to
one. Thus, it modifies a single gene in the chromosome
during each application of the operator. Alternative step sizes
were not investigated, but will be examined in future work.

3.1.2. HIS Transposition Operator. To dynamically tune
the size of a gene, we introduced a new transposition
operator called head insertion sequence transposition, HIS
transposition, for short. The transposable elements (also
called transposons) in this case are fragments of the genome,
located in the head of a gene, that can be activated and
jump to (possibly) another gene head in the chromosome.
Two features make this operator different from the canonic
transposition operators used in GEP, to wit that

(i) the transposable element is necessarily located in the
head of a gene,

(ii) during transposition the transposon is cut from the
place of origin (instead of copied, like in canonic
transposition in GEP), thus shortening the length of
the respective gene, and then inserted in the place
of destination located necessarily in the head of
(possibly) another gene, thus elongating the gene
length at the target site.

Specifically, the HIS transposition operator works as follows.
Initially the operator randomly chooses the chromosome, the
start and end sites of the transposon, and the target site.
As mentioned above, these start and end sites are located
in the head of a gene. Moreover, transposons contain at
most three elements. Next, the operator cuts the transposon
from the site of origin, making the necessary arrangements
to maintain the structural integrity of the gene. That is,
if the transposon locates in the middle of the head of a
gene, then the left and right remaining segments of the head
are concatenated, thus forming the new gene head. Next,
the operator inserts the transposon at the target site, thus
elongating the head of the gene. Notice that the gene heads
at the place of origin and at the target site have now changed;
the latter is now longer by, say, k elements, and the former
is k elements shorter. Finally, using (1), the operator adjusts
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the respective new tail sizes of those genes. If the tail requires
extra material, it is taken from the remaining genetic material
in the source gene’s tail.

3.1.3. Recombination Operators for Nonuniform Chromo-
somes. The notion of species is not present in canonic GEP,
as all chromosomes have the same structure; that is, all
individuals in a population have the same gene head size,
same gene tail size, and the same number of genes. The
possibility of different species within a single GEP population
is highly desirable feature for the parallelization of the
algorithm, particularly when using a migration mechanism
in a distributed setting. By modifying the existing GEP
recombination operators to handle genomes with different
structures, our enhanced GEP algorithm now supports
crossbreeding and speciation within both a single population
and distributed islands.

To support different-sized chromosomes created by ACS
mutation and HIS transposition operations, we created
modified versions for the one-point and two-point recombi-
nation operators used in GEP. These operators also facilitate
integrating individuals with differing genome structures (i.e.,
a differing number of genes and head domain lengths) into
a target population during migration, when distributed.
Recombination via these operators works as follows: initially
the first positions for the head and tail sections of the
two-parent chromosomes are paired (see Figure 2). Then
the crossover point (or points, in the case of two-point
recombination) is randomly chosen from the overlapping
sections of the chromosome. Then the crossover point
locates either in the head of a gene or in the tail. If it falls in
the head, then the genetic material is exchanged (the strands
swapped) at the crossover point (see Figure 2(a)). For this
case, there is no need to adjust the structure (tail size) of
the gene containing the crossover point. If it locates in the
tail of a gene, then we use the following process to exchange
the genetic material of the genes where the crossover point is
located. First we exchange the genetic material at the point of
crossover. Then, we verify that the tail sizes of the resulting
genes comply with the respective resulting head sizes. If the
tail size of a recombined gene is s elements shorter than the
allowed size, then we append to it s elements from the tail
of the other parent gene, thus making the final tail size of
the recombined gene compliant with its head size (notice the
strand added to O, in Figure 2(b)). On the other hand, if the
tail size of the recombined gene is s symbols longer than the
allowed size, then we cut its s last symbols out (notice the
strand removed from O, in Figure 2(b)).

The rest of genetic material is exchanged as in normal
crossover, with a caveat: for the case of GEP-RNC (GEP with
real number constants [7]), if the crossover point locates
in the tail of a gene, the genetic material in the domain of
constants (Dc) is exchanged as normal and the lengths of
the Dc domains are adjusted. If the crossover point falls in
the Dc domain, then recombination proceeds via the same
procedure used for the tails, as illustrated in Figure 2(b).
The arrays containing the gene’s real number constants are
exchanged in their entirety [40].
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FIGURE 2: One-point recombination of two chromosomes, P, and
P,, containing 3 and 2 genes, respectively; i and ¢ denote the
head and tail portions of each gene, respectively. In Figure 2(a) the
crossover point locates in the head of a gene. In Figure 2(b) the
crossover point locates in the tail of a gene.

Analogous to GEP, our recombination operators also
produce two children from the parents, with one child having
the same length as one of the parents, and the other child
having the same length as that of the other parent.

3.2. Syrah Implementation. In this study, a parallel capable
GEP system called Syrah, which dynamically tunes the
number of genes and gene size, was developed. To test this
system, a suite of nontrivial symbolic regressions was used
and the quality of the models was benchmarked against
models obtained via a canonic GEP system and competing
methodologies.

Syral’s system requirements differ from GEP-RNC (GEP
with real number constants [7]) in regards to the genetic
operators it uses, which are detailed in Sections 3.1.1, 3.1.2,
and 3.1.3.

In Syrak’s implementation, tournament selection with
elitism was used. Many GEP implementations use Roulette
Wheel selection, but as long as elitism is used, various
selection methods will produce equally good results [7].

When the Syrah system is operating in parallel, it uses
a coarse-grained model (or Island Model [20]) to distribute
the populations. Syrah uses the proposed genetic operators
to permit disparate genome structures to be integrated into a
given population during a migration event.



3.2.1. Development and Runtime Environments. All com-
ponents of the research system Syrah were written in
C# using the Microsoft.Net Framework version 3.5 and
developed using Microsoft Visual Studio 2008. Data storage
and management was accomplished using Microsoft SQL
Server 2005 running on Microsoft Windows XP Professional.
The client computers also used the Microsoft Windows XP
Professional operating system.

3.2.2. Parallelization. Different methods and techniques exist
for operating an EC algorithm in parallel. Generally parallel
techniques can be divided into two categories: fine grained
and coarse grained [24]. Fine-grained techniques involve
parallelizing the evaluation of the test cases and usually have
more intensive communication requirements. Alternatively,
coarse-grained techniques distribute populations and have
lower communication requirements, but higher computa-
tional needs. Our experimental system uses a common
coarse-grained technique known as the Island Model [20]
to distribute populations to discrete computational nodes.
The Island Model implemented in Syrah is a fullyconnected
topology that supports random-random migrations, mean-
ing that a migration event can (randomly) involve any node
in the system. Details regarding migration can be found in
(22-24, 26,27, 29, 41].

The network communication between nodes was imple-
mented using the HTTP v1.1 protocol over an SSL connec-
tion. The server node is designed to listen for client requests
on port 443, the standard port used by SSL web servers.
Additionally, the communication between the client and the
server is always initiated by the client. This combination of
techniques was selected so that the communication would
be relatively secure and to facilitate communication between
the client and server, when the client was located behind a
firewall. This was done to circumvent firewall issues in the
original network used for testing.

Finally, based on [21], the nodes do not implement
any special handling for detecting and preventing network
topology faults. When a client is unable to complete a run
(i.e., the host was restarted, network failure, etc.), the client is
simply to starts a new run when it rejoins the Syrah topology.

3.2.3. Population Initialization. With the use of our recom-
bination operators, the population is able to support indi-
viduals with different chromosome sizes. To take advantage
of this feature, the population is seeded with randomly
sized chromosomes. Both the number of genes and the head
domain length of each gene are varied during this phase.
The number of genes in each individual is randomly selected
between 1 and 10. During the creation of the chromosome,
each gene selects a random head domain length between 5
and 15. These values were empirically determined during
initial testing and were found to provide good genetic
diversity. Additionally, we selected the random initialization
method over a “ramped half-and-half” method [10] as a
result of early experimentation.

The elements of the head are selected from a weighted
bag. If the function set is smaller than that of the terminals,
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then the probability of selecting a function is 1/2; otherwise
they are equally weighted.

3.3. Experimental Design. An assortment of problems, of
varying types and difficulty, were selected to evaluate the
performance of our approach. The problems were selected
from three areas to which Evolutionary Computation is
commonly applied:

(i) symbolic regression, or the automatic synthesis of
functions,

(ii) classification, or generating boolean results (or
labels) from a set of input values,

(iii) parameter optimization, or the automatic discovery
of parameter values which produce a maximum
and/or minimum for a given function.

3.3.1. Validation of Results. Each experiment was performed
using K-Fold validation with 10 folds and 30 runs per fold.
Each experiment consisted of two sets: a baseline set and
an adaptive set. The baseline runs were executed using the
standard GEP-RNC algorithm implemented as a part of the
Syrah system with parameter control disabled. The adaptive
runs were then executed in the same manner, but using the
methodologies outlined previously.

Each experiment was executed using the Syrah frame-
work’s parallel mode, which uses the Island Model to
distribute the populations to separate computational nodes.
The experiments used 32 islands that were executed on
16 dual-core Intel computers, running the Windows XP
Professional operating system. The Syrah system supports
migration between the islands But to facilitate the statistical
analysis of the results, these experiments were run without
this feature.

The baseline experiments were performed repeatedly
using the values presented in Table 1. During the adaptive
evolution runs, the number of genes and the size of the head
domain were tuned using our new operators. The details of
the initial chromosome lengths can be found in Section 3.2.3.

3.3.2. Symbolic Regression Experiments. The first three prob-
lems selected were the same problems used by Park et
al. in [3]. These were selected so that the performance
of this methodology could be compared to an existing
(parallel) GEP-based self-adaptive approach. The fourth
experiment was a regression of a sawtooth wave, while the
fifth experiment was a more difficult time series analysis
problem. The baseline experiments all produced poor results
for gene counts of 1 through 3, which required 900 (3 x 10
folds x 30 runs per fold) runs to determine.

Experiment 1. The first problem evaluated was a kinematics
symbolic regression that modeled the movement of a verti-
cally fired object. The kinematic equation for the position of
the object at time ¢ is defined by the following equation:

at?
S(t) =8y + Vot + 7 (2)
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TasLE 1: Common experiment run parameters.

Parameter

Symbolic Regression & Parameter Optimization

Problem
Classification

Selection method

Elitist Tournament

Elitist Tournament

Number of generations 100 175
Population size 100 75
Initial head size 5-15 5-15
Initial number of genes 1-10 1-10
One point recombination rate 0.5 0.5
Two point recombination rate 0.1 0.1
Gene recombination rate 0.1 0.1
Mutation rate 0.07 0.07
Minimum ACS mutation rate 0.05 0.05
IS transposition rate 0.1 0.1
RIS transposition rate 0.1 0.1
HIS transposition rate 0.1 0.1
Gene transposition rate 0.1 0.1
Function set F, F,
Linking function + +
K-Fold validation 10 folds 10 folds
Evolutionary Clients (Syrah) 31 31
Fi = {+,—,%,/}, F, = {+, —, %,/,sqrt, exp, sin, cos, tan, floor, ceiling, OR, AND, <, >, <, >, ==, =}.

If we use an initial velocity, Vo = 25m/s, and an initial
position of §y = 0 and assume that the acceleration is equal
to earth’s gravity, a = —9.8 m/s?, then we can simplify the
equation as

_ 2
S(t) = 25t + % = 25t — 4.9¢%. (3)

For this experiment, fifty data points were sampled from the
interval t = 0.1 to t = 5 and used as the test cases.

Experiment 2. Our second experiment extended the first,
using two independent variables instead of one. Modifying
(2) with the same assumptions as in Experiment 1, but with
an independent initial velocity, gives:

S(t) = vt — 4.9¢%. (4)

The test cases for this experiment were generated using Vg
values of 20, 25, and 30. The values of t were the same as in
the first experiment.

Experiment 3. The third symbolic regression experiment
used a fourth-order polynomial that was used in [3] and
similar to the ones used in [1, 7]:

y = —-2.5x" +4.6x> +3x% + 2x + 1. (5)

The algorithm attempted to evolve the function from 10
equally spaced samples taken from values of the Polynomial
(5), in the interval x = [1, 10].

Experiment 4. The fourth experiment was a regression of a
sawtooth wave, which has been used as a benchmark in other
works [42]. The function is defined by

n

F(x) = Z(%sin(i x)) : n=1,...,9. (6)

i=0

The dataset consisted of 250 equally spaced data points in
the range x = [—8, 8]. This range was selected instead of the
40 points in [—1,1] used in [42] after discovering that the
algorithm required a more challenging set of inputs.

Experiment 5 (Wolfer Sunspot Time Series Prediction). The
final experiment attempted to create a predictive model using
100 observations from the well-known Wolfer Sunspot Series
[43]. The data were formatted for time series analysis, using
a delay time of 1 and an embedding dimension of 10. This
dataset has also been used to evaluate other GEP systems,
including those in [7] and [14].

3.3.3. Classification Experiment. Classification is a common
and important task for evolutionary computation algo-
rithms. The classification experiment performed in this work
used a large, real-world classification problem from the The
Centre for Learning Technology (CLT) at Ryerson University.

The evaluation of the classification experiments was
accomplished using the “Hits with Penalty” method, as
described in [7].

The LiveDescribe project [44] is a software application
developed by the Center for Learning Technology (CLT) at
Ryerson University to added video descriptions (for the deaf)
to video content. The project had originally used a manual
process to select regions of dialog versus nondialog, so that
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descriptive video captions could be programmatically added
to the non-dialog sections. Since the process of selecting the
nondialog regions was a manual and user-intensive process,
the CLT modified their application using a human-designed
classifier system. This system was, on average, 70% effective.

The dataset consists of six real-value inputs and a single
boolean output. Part of what makes this dataset a challenge is
its size. The initial dataset consisted of approximately 90,000
records. The input variables are audio metrics and include
RMS standard deviation, RMS average, a measure of audio
entropy, zero crossing above to below, zero crossing left skew,
and a zero crossing low-energy measurement. These inputs
were sampled once for every 1 second of audio.

3.3.4. Parameter Optimization Experiments. The five param-
eter optimization test functions were selected from the the
well-known De Jong test functions [2]. These test functions
were originally selected by De Jong to test the effectiveness of
a given EC algorithm over a broad class of problems. While
attempts have been made to improve the test set, it remains
the de facto standard for parameter optimization validation.
The five functions are presented here in their original form,
but were modified (where necessary) to change them all to
maximization functions, which allows for simpler evaluation
with the GEP algorithm.

De Jong F1: Sphere Model. The first function in the De
Jong test set is a three-dimensional parabola that is convex,
unimodal, and continuous. The function has a maximum of
78.6 at (x1,x2,x3) = (£5.12,+5.12, £5.12):

3
flx)=D>x}: =512 <x <5.12. (7)
i=1

De Jong F2: Rosenbrock’s Function. The second function in
the De Jong test set was first proposed by Rosenbrock [45]
and is commonly referenced in optimization literature. This
function is nonconvex, unimodal, and continuous, with a
maximum of 3905.93 at (x1,x,) = (—2.048, —2.048):

F(x) =100 % (2 = x)” + (1 — x1)% : —2.048 < x < 2.048
(8)

De Jong F3: Step Function. The third De Jong test function
is a five-dimension step function that is discontinuous, non-
convex, unimodal and, piecewise constant. De Jong original
selected this function to test the ability for algorithms to
handle discontinuities [2]. This function is restricted to
—5.12 < x < 5.12 for testing. This function has a known
maximum of 25 when the inputs are held at 5.12:

5
flx)=>xi:-512<x <512 9)

i=1

De Jong F4: Quadratic Function with Noise. The fourth test
function in the De Jong collection is a noisy quadratic
function that is continuous, unimodal, convex, and haing a

Applied Computational Intelligence and Soft Computing

TaBLE 2: Summary of symbolic regression experimental results.

Exper. Ours Comparison
Number Length Fitness Length Fitness
1! 254 99.984% 266 99.496%
2! 87 99.983% 282 99.907%
3! 155 99.735% 470 96.187%
42 62 99.987% 185 99.966%
52 55 99.179% 186 98.936%

1: Compared to PGEP-O.
2: Compared to canonical distributed GEP.

high dimensionality. The function uses a Gaussian function
to add noise. The function was limited to —1.28 < x < 1.28.
This experiment used alternative values for the number of
generations and the population size of 350 generations and
500 individuals in the population.

The maximum of this function is approximately 1248.2
and occurs when all inputs are equal to +1.28:

30
flx) = Zi x x{ + Gauss(0,1) : —1.28 < x < 1.28.  (10)
i=1

De Jong F5: Shekel’s Foxholes. This is a two-dimension
function that is continuous, nonquadratic, and non-convex,
with 25 local maximums and was originally suggested by
Shekel [46]. This version [47] of the function has maximum
of approximately 499.002:

f(x, y) =500
B 1
0.002+ 37 1/[ 1+i+(x—a()*+(y—b())°]’
(11)
where
a(i) = 16 X (i mod 5 — 2),
; (12)

b(i) =16 x <ng - 2) —65.523 < x < 65.523.

4. Results and Discussion

This section presents the results of the experiments outlined
in Section 3 that were used to validate our enhancements
to the GEP algorithm that address the issues identified in
Section 1.

4.1. Symbolic Regression Results. Table 2 shows a summary of
the experiment results, including the best individual’s fitness
and chromosome size (Note that the size of a chromosome
(i.e., the length of the chromosome string) depends on its
number of genes and the head size of each gene). The best
fitness is expressed as a percentage of the number of fitness
cases solved. The visualized results and performance of the
experiments are shown by Figures 3, 2,4, 5,6, 7, 8,9, 10, 11
and 12.
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FIGURE 3: Symbolic regression Experiment 1: chromosome sizes
and best fitness.
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FIGURE 4: Symbolic regression Experiment 2: chromosome sizes
and best fitness.

4.1.1. Discussion of Symbolic Regression Experiments. There
are two figures for the first four experiments performed.
The first figure of each pair shows the minimum, maximum,
and average chromosome lengths in the population for each
generation with respect to the generation number in the
run. The other figures display a surface visualization of the
distribution of the chromosome lengths in the population,
with respect to the generation number in the run. For the
final experiment, the surface plot was omitted because of the
rapid convergence to a narrow range of chromosome lengths.
Figure 11 compares the evolved model’s performance to
the target data. Since K-Fold validation was used, every
tenth data point in Figure 11 was previously unseen by the
model.
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FIGURE 5: Symbolic regression Experiment 3: chromosome sizes.
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FIGURE 6: Symbolic regression Experiment 1: chromosome size in
the population.

The figures show that while the algorithm was optimizing
the chromosome length it would initially explore a wide
search space, then focus on a band of neighboring chromo-
some sizes.

A significant result was that the best solutions found
using our new operators evolved better individuals with
smaller representations than the PGEP-O system presented
in [3] and the canonical GEP algorithm. It is interesting
to note that the best chromosomes evolved for the two
most difficult problems were significantly smaller than those
evolved by the PGEP-O. Specifically, during the second
and third experiments, the best evolved individuals were
approximately 30% to 33% of the size of the individuals
evolved using the PGEP-O methodology. Similarly, in Exper-
iments 4 and 5, where our methodology was compared to a
distributed canonical GEP algorithm (based on Syrah), our
methodology produced results 33% and 30% the size of the
alternative’s results.

The results of the experiments, as shown in Table 2, show
that our new operators are significantly more efficient and
produced better results for symbolic regression problems.
This may have been because our populations were evolving
smaller solutions and were able to explore the search space
more effectively.
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FIGURE 7: Symbolic regression Experiment 2: chromosome size in
the population.
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FiGgure 8: Symbolic regression Experiment 3: chromosome size in
the population.

4.2. Classification Results. Table 3 shows the results of the
classification experiments. These include the chromosome
size and the best fitness found, expressed as a percentage
of the number of fitness cases solved. The visualized results
and performance of the experiments are shown by Figures 13
and 14.

4.2.1. Discussion of Classification Experiments. As stated in
Section 3, the full LiveDescribe dataset consisted of approx-
imately 90,000 entries, each with 6 real number variables
and grouped into two classes. One of the challenges of this
experiment was the computational resources required to
evolve candidate solutions.

The two methods both evolved individuals with similar
performance, with both systems evolving a classifier capable
of successfully identifying 80%-81% of the fitness cases.
This is a substantial improvement over the original, human-
written classifier (developed by the CLT at Ryerson [44]),
which was able to correctly classify approximately 70% of
the fitness cases. After discussions with the CLT lab, it is
believed that 85% may be the practical limit for identifying
non-dialog sections of video using the current variable set.
The CLT is currently working to modify its data acquisition
software to collect additional parameters.

Examining the solutions evolved by our enhanced algo-
rithm and canonical GEP, it is important to note that our
methodology evolved a solution 32.1% the size of the one
evolved by the standard algorithm. Since the size of the
candidate solution’s genome has a direct impact on the eval-
uation of the fitness cases (and live data, once implemented
in the real world), the reduction in representation size may
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FiGure 9: Symbolic regression Experiment 4: chromosome sizes
and best fitness.
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FiGure 10: Symbolic regression Experiment 5: chromosome sizes
and best fitness.

improve the overall performance of the system, even after
considering the additional computation requirements of our
new operators.

The small number of classes in this experiment may
have been possible limitation. With only two possible classes,
the evolutionary process may not have been significantly
challenged. However, it is felt that the number of test
cases may have offset this. In the future, more complex
classification problems should be investigated.

What the summary of results do not show is the number
of additional epochs (and thus processing time) required to
evaluate different values for the head domain length and
number of genes for the canonical GEP algorithm that was
used for comparison.
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TABLE 3: Summary of classification experimental results.
Ours Canonical GEP
Total Len. Genes Avg. Gene Len. Fitness Total Len. Genes Gene Len. Fitness
247 8 30.9 81.08% 770 10 77 80.31%
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FIGURE 11: Symbolic regression Experiment 5: Target versus Model.
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4.3. Parameter Optimization Results. Table 4 shows a sum-
mary of the results of parameter optimization experiments.
Included in the summary are the maximum value found, the
number of genes used by the best solution, the average gene
length (static for canonical GEP), and the total genome size.
The visualized results and performance of the experiments
are shown by Figures 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.

4.3.1. Discussion of Parameter Optimization Experiments.
The results of the parameter optimization experiments show
that both our methodology and canonical GEP are effective
at evolving either optimal or near-optimal solutions to the
problems in the De Jong test suite. As seen in previous
experiment series, our enhancements enabled the algorithm
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Figure 13: LiveDescribe experiment: chromosome sizes and best
fitness.

30
5% 30
o 25
—E £ 20
53w 2
0
15
0
400 [ 10
5

FiGure 14: LiveDescribe experiment: chromosome size in the
population.

to consistently evolve solutions which were significantly
smaller than those evolved by canonical GEP.

The solutions evolved by our enhanced algorithm in
Experiments 2 and 3 were remarkably smaller than those
found by canonical GEP. Specifically, they were 5.4% and
6.5% the size of those found by standard GEP.

Both methodologies had difficulty with the high-
dimension problem found in parameter optimization
Experiment 4. However, our enhanced GEP algorithm
evolved a slightly better result and had a representation
size 54.6% the size of the one evolved by the standard
algorithm. It is believed that the difficultly of this problem
and the inability of the algorithm to locate the optimal
parameter values contributed to the evolved size of the
genome. Similarly, the numerical results of Experiment 1
were comparable, but the solutions evolved using the HIS
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TABLE 4: Summary of parameter optimization experimental results.
Exper. Ours Canonical GEP
Number Total Len. Avg. Gene Len. Maximum Total Len. Gene Len. Maximum
1 105 35 78.30 231 77 78.51
2 10 5 3904.62 184 92 3902.40
3 25 5 385 77 25
4 426 14.2 1233.87 780 26 1125.61
5 22 11 499.002 94 47 499.002
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FIGURE 15: Parameter optimization Experiment 1: chromosome
sizes and best fitness.
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FIGURE 16: Parameter optimization Experiment 2: chromosome
sizes and best fitness.

operator and our other enhancements were 45.5% the size
of standard GEP’s solutions.

The results of the final parameter optimization exper-
iment were closer to what we had observed during the
Symbolic Regression and Classification experiments, with
our evolved solutions being approximately 23.4% the size

—e— Maximum size --- Best fitness

FIGURE 17: Parameter optimization Experiment 3: chromosome
sizes and best fitness.
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FiGUure 18: Parameter optimization Experiment 4: chromosome
sizes and best fitness.

of those evolved by canonical GEP. In this case, both
methodologies successfully found the maximum value of
Shekel’s foxholes.

All of the parameter optimization experiments have
shown that our enhancements retained GEP’s problem
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FIGURE 19: Parameter optimization Experiment 5: chromosome
sizes and best fitness.
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FIGURE 20: Parameter optimization Experiment 1: chromosome
size in the population.

solving ability while allowing it to evolve smaller genomes.
While the De Jong functions have been reported [48] to not
be an effective test set, they have been repeatedly shown to
provide a good metric of the effectiveness of algorithms for a
broad range of optimization problems.

A possible limitation is that it is not currently possible
to use the ACS mutation operator with our current experi-
mental setup. Since we have not used Automatically Defined
Functions (ADFs) [1], we must use a fixed number of genes,
one per parameter requiring optimization. While we were
still able to obtain good results, we can only speculate that
using ADFs and allowing the number of “normal” genes to
evolve (similarly to our symbolic regression and classification
experiments) would enhance the solutions of more difficult
parameter optimization problems.

4.4. General Discussions. Reviewing the results of our exper-
iments, we see that our enhancements to the GEP algo-
rithm consistently produced smaller solutions (sometimes
significantly so) than canonical GEP. Since the representation
size of a genome has a direct impact on the evaluation
of the fitness cases, the reduction in representation size
may improve the overall performance of the system, even
after considering the additional computation requirements
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FIGURE 21: Parameter optimization Experiment 2: chromosome
size in the population.
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of our new operators. This was indirectly observed during
the classification experiments while waiting for the two
methodologies to complete their evolutionary runs. When
our enhanced algorithm was running, it was noticeably faster
than when the standard GEP algorithm was processing the
same problem.

The control of the number of genes and the head size
of each gene was an implicit part of our GEP run and,
thus, we did not require separate clients for optimization.
This reduced the overall computational resources required to
evolve solutions.

For all of the parameter optimization experiments the
ACS mutation operator was disabled and, thus, we were
unable to evaluate its potential effectiveness for this class
of problems. The operator was disabled because of the
evaluation method used. Since our GEP implementation
did not use ADFs, it required one gene per parameter to
optimize. It is possible that, if we implemented automatically
defined functions and used the ACS mutation operator to
evolve the number of “normal” genes, we would see different
results.

The decision to randomly initialize the genes that were
inserted during the ACS mutation phase appears successful.
However, it would be interesting to investigate the use of gene
cloning, or other methods, in the future.

We observed that the insertion point in the ACS mutation
operator for classification and symbolic regression problems
was not important because we used a commutative linking
function during testing. The insertion point, however, may
have been significant because of the way the gene would mix
within the population during recombination. Additionally,
since the Gene Transposition operator was used, good genes
could be reordered within the chromosome. Had we used a
noncommutative linking function or homeotic (ADF) genes,
the insertion location could have had a greater impact.

Based on the results of our experiments, our new
operators were able to successfully self-adaptively tune the
two critical parameters of the GEP algorithm, the head
domain length, and the number of genes. While our new
operators have additional computational costs associated
with them, it is hoped that they are offset by the shorter
time required to evaluate the fitness functions, because of the
smaller representations it evolved.

Our new recombination operators have also been empir-
ically shown to permit crossbreeding and speciation within
a single GEP population. They have also been shown to be
effective in a distributed environment. However, additional
research into the effects of our operators on migration is
required.

5. Conclusion

This work presented enhancements to the Gene Expression
Programming algorithm that enabled flexible genome
representations, endowed self-adaptive characteristics,
assisted with maintaining diversity within a population
and enhanced the parallelization of the algorithm. In
particular, the enhancements addressed issues of evolvability,

Applied Computational Intelligence and Soft Computing

crossbreeding and speciation, parameter control, and
parallelization in canonical GEP.

Through a series of experiments that used an assortment
of problem classes, including symbolic regression, classifi-
cation, and parameter optimization, we have shown that
our proposed methodology produced better results and,
generally, smaller genome representations than the canonical
GEP algorithm and the PGEP-O system [3] (for symbolic
regression).

Specifically, the contributions presented in this work
were

(1) creation of a new transposition operator, the Head
Insertion Sequence (HIS), which self-adaptively tunes
the head domain length of a gene,

(2) development of a new mutation operator, the
Adaptive Chromosome Size (ACS) mutation, which
mutates the number of genes in an individual to tune
the-gene count parameter,

(3) addition of new GEP recombination operators to
permit structurally dissimilar individuals to interact.
which removed the structural constraints imposed
when transferring an individual from one population
to another and permitted both crossbreeding and
speciation.

Our enhancements to the GEP algorithm also simplified
its use, by implicitly controlling the head domain length
and number of genes throughout an evolutionary run. By
removing the need to set these two critical GEP parameters
prior to executing a run, the level of “expert knowledge”
required to use GEP is reduced and allows EC novices to use
the algorithm more effectively.

The simplification of the algorithm’s configuration and
the implicit parameter control of the two critical parameters
are still subject to the concept of “No Free Lunch” [35].
The “No Free Lunch” theorem states that without a priori
knowledge of a problem all potential solution methods are
equal. While the values of the parameters evolved during
a run may not be optimal for all problem types, they are
frequently “good enough” and “No Free Lunch” is partially
offset by the ease of using the new algorithm. This was seen
during our experimental verification of the algorithm and
when comparing our methodology to canonical GEP. To
determine the GEP experimental baselines, several runs with
different head domain length and number of gene parameter
values were required, to obtain usable results. Comparatively,
with our enhanced algorithm we only needed to start a run
sequence and let the algorithm evolve the parameters.

While our enhancements to the GEP algorithm have
proven to be successful, they are not without costs and
limitations. Since we have added extra operators to enable
our metaevolution of the parameters, we also have added
additional computational overhead. In particular, the ACS
mutation operator has significant overhead when it generates
a new gene from random elements. The overhead associated
with the new operators may be partially offset by the reduced
size of the solution representations (as experienced during
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our trials), but further experimentation and analysis are
required to confirm this.

Another side effect of our self-adaptive method is that we
have increased the search space available to the algorithm.
This is both a benefit and a liability, since the algorithm
can traverse the entire space defined by any combination
of head domain length and number of genes. This allows
the algorithm to find novel solutions, but also increases
the number of potential solutions dramatically, possibly
increasing the search time and allowing the algorithm to get
stuck in at a nonoptimal solution.

When developing the enhancements to the GEP algo-
rithm, the possibility of introducing bloat, or the excessive
creation of introns to protect a genome’s functionality, was
a major concern. By eliminating the fixed chromosome
size (which was necessary to remedy the issues we saw
with GEP), the potential for the genome representation
and size to grow unchecked became a possibility; even
with the parameter control inherent in the new operators.
One conjecture for not observing bloat is that the HIS
Transposition operator, which is responsible for controling
the head size, restructures the genome by adding sections
from one domain to another, instead of simply inserting or
deleting material. This does not account for the effect of the
ACS mutation operator, which mutates the number of genes
in a chromosome. However, the selection pressure from the
Tournament Selection with Elitism selection method may
have provided resistance to unnecessary gene additions. It is
possible that in more difficult problems (that require longer
runs or larger datasets) we may begin to observe bloat and
need to take steps to measure and constrain it.

Related to the previous topic of bloat and introns is the
matter of genetic diversity within a population. Our current
research did not include any specific mechanisms to measure
the diversity of individuals within a population (either in
a single population or distributed multipopulation setting),
but the genome length statistics, recorded during the experi-
ments, can be used as a simple metric. Using the surface plots
of the chromosome lengths (found in Section 4), we can
suppose that our methodology maintains a level of genetic
diversity throughout a run. While the populations were
initially very diverse and chaotic, as the runs progressed, the
outliers were reduced and a narrower band of chromosome
sizes (and thus diversity) was maintained.

Overall, our enhancements have been shown to be
effective at addressing the issues of evolvability, crossbreeding
and speciation, parameter control, and parallelization in the
canonical GEP algorithm.

5.1. Future Work. Though our enhancements have been
effective, there is still work that can be done to further our
understanding of them, their relationship and application to
Evolutionary Computation in general, and the workings of
the GEP algorithm itself.

A detailed study of the effects of our enhancements on
the levels of genetic diversity in a population would aid
in understanding the mechanisms that make the operators
effective. Additionally, applying the “Nonsynonymous to
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Synonymous Substitution Ratio (Ka/Ks)” [49] to study the
rate of evolution, in conjunction with a diversity study, could
show where further improvements could be made in the GEP
algorithm.

Applying our enhancements to Automatically Defined
Functions (ADFs) in GEP could potentially provide inter-
esting results and bears further investigation. This could be
particularly useful for difficult or complex parameter opti-
mization problems, since, when using GEP-PO, the number
of genes must always equal the number of parameters
being optimized. Using ADFs would allow the number of
normal genes to be adaptively tuned using the ACS mutation
operator.

Further research into the potential of unrestrained
chromosome growth, or bloat, and selection pressure in our
enhanced GEP algorithm would be interesting, as we did not
observe significant bloat during our experiments. In evolu-
tionary computation, any algorithm or representation that
allows unrestrained growth and yet demonstrates resistance
to bloat warrants further investigation.

The impact of our operators on migration and the
exchange of genetic material in distributed setting requires
further study. In particular, a thorough examination of
our system when running in a distributed, multi-island
settings with different connection topologies and migration
strategies would be useful for determining the optimal
configuration (if possible).

While the enhancements presented in this work enabled
crossbreeding and the evolution of different species within a
population, we did not specifically implement any niching
methods. This could prove to be an interesting avenue of
exploration in the future, as it could enhance the algorithm’s
performance with multimodal problems.

Finally, adapting our enhancements to neuroevolution,
or the evolution of neural networks, using GEP (such as the
GEP-nets algorithm [7]) has great potential. This is because
our enhancements could permit size and structure changes
to the evolved neural networks, allowing a more dynamic and
complicated structure to be evolved.
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A new robust Receding Horizon Control (RHC) design approach for the sampled-data systems is proposed. The approach is based
on a dividing genetic computation of minimax optimization for a robust finite receding horizon control problem. Numerical
example is given to show the effectiveness of the proposed method.

1. Introduction

In last few decades, the Receding Horizon Control (RHC) has
been widely accepted in the industries [1]. RHC is an online
powerful control method which solves a control problem
with respect to each sampling frequency [2]. A significant
merit of RHC is easy handling of constraints during the
design and implementation of the controller [2, 3].

In the standard RHC formulation, the current control
action is derived by solving a finite or infinite horizon
quadratic cost problem at every sample time using the
current state of the plant as the initial state [1]. It is an online
optimization with big calculation amount. Then, the RHC
has been applied conventionally to systems with relatively
slow-moving dynamics such as petrochemical plants and so
on. However, recent advance of computer performance has
made it possible to use it for systems with relatively fast-
moving dynamics, for example, the mechatronics and so on.
Therefore, it is important to develop a practical RHC method
for such systems.

Incidentally, a drawback of the standard RHC is explicitly
lack of robust property with respect to model uncertainties
or disturbances since the online minimized cost function is
defined in terms of the nominal systems. A possible strategy
for realizing the robust RHC is solving the so-called minimax
optimization problem, namely, minimization problem over
the control input of the performance measure maximized
by plant uncertainties or disturbances. An earliest work was

proposed by Campo and Morari [4] and Zheng and Morari
[5]. Kothare et al. solve minimax RHC problems with state-
space uncertainties through LMIs [6]. Cuzzola et al. improve
Kothare’s method [6] to reduce conservativeness in [7].
Other methods of minimax RHC for systems with model
uncertainty can be found in [8-12]. However, the number of
available work of the robust RHC is still limited compared
with many methods of robust control synthesis for linear
systems being proposed. Main reason of this fact is that the
robust (minimax) RHC problem is hard to solve in real-time
due to the trade-off with an objective function and constraint
conditions in the problem generally. The issue of robust
RHC therefore still deserves further attention [2, 3] and
the effective approach for the robust RHC is still required,
especially in the optimization technique.

Optimization techniques by using evolutionary compu-
tation such as Genetic algorithms (GAs) [13, 14] have been
recognized to be well suited to many kinds of engineering
optimization problem. Multiple individuals can search for
multiple solutions in parallel, eventually taking advantage of
any similarities available in the family of possible solutions
to the problem. Extensions of GAs to many kinds of
optimization problems were proposed in several manners
[15-17]. For example, Schaffer [15] proposed an extension
of the simple GA to accommodate vector-valued fitness
measures, which he called the Vector Evaluated Genetic Algo-
rithm (VEGA). Moreover, Goldberg [13] firstly proposed
the Pareto-based approach as a means of assigning equal



probability of reproduction to all nondominated individuals
in the population. Fonseca and Fleming [16] proposed a
multiobjective ranking method with the Pareto-based fitness
assignment. However, it is uncertain whether to be able
to apply these methods effectively to the minimax RHC
problem.

Therefore, in this paper, a new minimax robust finite
RHC design approach based on a new dividing genetic
computation for constrained sampled-data systems with
structured uncertainties and disturbance is proposed. This
approach is one of the general and practical framework of the
minimax robust finite RHC problem of bounded constrained
systems. Since the dividing genetic computation uniformly
controls the convergence of solutions of optimization prob-
lems with some trade-off conditions, it can be effectivefor the
minimax RHC problem. Using this approach, we can expect
to reduce the conservativeness of control performance and
to improve the control performance. Numerical example is
given to show these facts.

2. Problem Formulation

The target system in this paper is the sampled-data control
system. Hence, the control object with uncertainties is a
continuous-time system and the controller is designed in
discrete-time. Then, let us consider the following discrete-
time LTI (Linear Time-Invariant) state-space model with
structured uncertainties and disturbances:

x(k+1) = (A+LARA)x(k) + (B+ LARg)u(k),
y(k) = Cx(k) + n(k),

(1)

where LAR4 and LARg denote the structured uncertainties
expressed by perturbation of elements in A and B, respec-
tively. A, B,C, L, R4, and Rp are constant matrices. A (A =
diag{d;,d7,...}) is a structured uncertainties parameters
matrix satisfied ATA < r. (r is a given constant) And
x(k), u(k), y(k), and n(k) denote the state, input, measured
output, and disturbance vector, respectively. All these vectors
and matrices have appropriate dimensions.
Then, we can transform this system as

x(k+1) = Ax(k) + Bu(k) + Lw(k), 2)
z(k) = Rax(k) + Rpu(k), (3)
y(k) = Cx(k) + n(k), (4)

where w(k) = Az(k). We assumed that the system is
constrained with following conditions with N — 1 steps:

wl(k+j)P,w(k+j) <1,

n'(k+j)Pyn(k+j) <1, -

ul (k+ j)Puu(k+j) <1,
(j=0,...,N—1),

where P, P,, P, (Py,P,, P, > 0) are positive symmetric
matrices for weights of constraints.
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For this systems, to use the RHC, a quadratic perfor-
mance measure with finite horizon with positive weighting
constant matrices Q and R (Q,R > 0) as

N-1

J) = > lylk+j+ 110G+ luk+j 1K)z (6)

j=0

isused. x(k+j | k), y(k+j | k), and u(k + j | k) are the
predicted state of the plant, the predicted output of the plant
and the future control input at time k + j, respectively.
Then, the robust RHC is need to solve the following
minimax optimization problem at each step k:
min max J(
u(k+jlk) 9w(k+jlk)n(k+jlk)

subject to  w! (k+ j)Pyw(k+j) <1,
ul(k+ j)Pau(k+j) <1 (7)
A7kt )Pkt ) <1
(j=0,...,N-1).

Generally, the following state feedback schema is
employed:

u(k + jk) = =Fryjx(k+ jk) (j =0,1,...N—=1), (8)

where Fy4 is a feedback gain matrix.

Finally, the procedure of robust RHC is summarized as
follows. At the current step k, future state values x(k + j |
k) (j = 0,...,N — 1) are predicted by using the state space
model (2)—(4), and future feedback gain matrix candidates
Fiij(j = 0,...,N — 1) are calculated by solving (7) under
(8). Only first gain matrix F(k + 1) is employed for an actual
control input and the others are discarded. Then, go to next
step k + 1 and repeat same operations.

Namely, the robust RHC requires an online minimax
optimization. However, it is difficult to solve this problem
as it is at each step, generally. Therefore, the method to
eliminate the maximization procedure and transform this
problem to simple minimization problem is shown in the
next section.

3. Transformation of Minimax Finite
RHC Problem

Firstly, introducing the following vectors

X = [x(k+1k) x(k+21k) - xk+N1K)],

Yi= [yk+11K) yk+21K) - yk+N1R],

Ui [ulk 16) uk+11K) - u(k+N-110)]",
Wim [wk 16 wik+11K) - wk+N-110)]",

A= [nk 1K) gk 411k -« qk+N-110)]"
(9)
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and using state space equations (2)—(4) recursively, we can
derive

X = Ax(k) + BU + LW,

N N (10)
Y = CAx(k) + CLW + A,
where
~ T
A=A a2 ... a1,
N AB B
B:: >
: . .0
| AN-2B AN-3B ... B (11)
N AL L
L:=
: . .0
[ AN=2L ANSL ... L

Hence, we can transform the minimax problem (7) to
min
uny
max II <y,
WA

subjectto wl(k+j) P, w(k+j)<1

(12)

ul(k+j) P, u(k+j)<1

n"(k+j) Py nlk+j)<1
(j=0,...,N-1),

where y > 0 (scalar parameter) and Pi is defined as follows:

~ ~ ~ 2
I:= {HAx(k) +BU+LW +Al|, + IIUIIIZQ},
Q 0 R 0 (13)
é:: > ﬁ =
0 Q 0 R

To eliminate the maximization procedure, we have to
remove W and A terms in the first constraint. For this,
in the first place, following basis for all variables and
transformation matrices are defined,

¢ =[xy WT AT 1], (14)
U= Hy, (15)
Y = Hy(, (16)
A= H,y, (17)

1= (H,Q) (H,0), (18)

3
where
H,:=[FA FL F o,
H,:=[CA cL I o,
(19)
H, := [0 01 o],
H1:=[0 e 0 1],
and where
I := (identity matrix with appropriate dimension),
- 0
0 ~Fep --- 0 (20)
F:= .
0 -+ 0 —Frna

By using these, we can express the first constraint condition
of problem (12):

max [Fdlfs + IHGIR| < 000, @

Please take notice that both the left side and the right side of
this inequality are expressed by the quadratic forms and they
have positive scalar values. Hence, if the inequality is held
by maximum values of W and A in left side, this inequality
must be held by any other values of them. This fact means
that we can eliminate the maximization procedure in the
first constraint. We can only check the following condition
instead of the first constraint of problem (12):

flesd

In the second place, H,,(j) is defined. This matrix picks
out the suitable block from W and satisfies the relation of
w(k+j) = HV(V])(. Then, we can derive

SHIEAR < OO e2)

(B70) Py (HV0) < O (j=0,...,N = 1),
(23)

For the constraints of #, u and z, we can derive the following
relations in the same way:

(H¢)" P, (H¢) = (0,0 (110,

(H70) Pu(HPC) = EHOTED (= 0,...,N - 1).

(24)



Furthermore, by using (14)—(21), all constraints in
minimax problem (12) can be transformed into

subject to V{#0;  (T(HIAH, —H! QH,~HIRH,){>0

T .
CT<H1TH1 - (1) PWHEJ)>( >0

T .
{T<H1TH - (1) P,,Hﬁ”)(zo

T .
(T<H1TH1 - (1) P,1H,$J)>( >0

>N -—1).
(25)

Then, we can transform the original minimax problem
(7) to the following one by using S-procedure [18]:

min
uny

subject to H{yH; — HyTQHy - HMTIA(HM

: (26)
Z[ vy + TSt + 78! = 0
(j=0,....N-1),
where
(HlTHl (1) P Hfd)>,
T .
- (HlTHl ,E“) Pqu/)), (27)

(H1 Hy -

and where 7V, T}‘, 1;7, and 77 are positive semidefinite scalars.
It must be noted that this transformation satisfies only a
sufficient condition of S-procedure, since S-procedure is not
the so-called “lossless” in this case. We cannot therefore avoid
that the design results are slightly conservative. Nevertheless,
we can expect the reduction of conservativeness in design
result by this technique in contrast with the results by
preexisting methods, because the conservativeness caused
by S-procedure is too small to put a matter for practical
purposes.

Finally, using “Schur-complement” [19], we can trans-
form the minimax optimization problem (7) into the
following problem:

miny
H{yH,-% H] H[
subject to H, Q' o[>0, (28)
H, 0 R
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FIGURE 1: Dividing strategy.
where

N-1
Si= > sy oisi+ s, (29)
j=0

It is known that this problem has trade-off with the
objective function and the constraint condition. Therefore,
the fast method of finding nondominated solutions with
respect to the trade-off as a lot as possible is needed. Then,
the method using dividing genetic computation is shown in
the next section.

4. RHC Method with Adaptive DA Converter
Using Dividing Genetic Computation

4.1. Dividing Genetic Computation. To find the best possible
nondominated solutions for the RHC problem (28), a partial
convergence of nondominated solutions must be avoided.
Therefore, a dividing method which uniformly controls the
distribution of solutions is proposed. The proposed method
assigns all nondominated individuals to prespecified regions.
An example of the dividing strategy in two objective mini-
mizing problem is shown in Figure 1. The dividing genetic
computing method consists of following procedure. First, the
objective space is divided into prespecified regions. The edge
points of the whole region corresponds to the best solutions
for each objective function. In Figure 1, the individuals p,
and p; match them. Then, the fitness f; of the individual p;
is defined as f; = 1/n;. The value of n; denotes the number
of nondominated solutions in the identical region with the
individual p;. In the example, the fitness of the individuals
illustrated in the figure corresponds to the following values
(fi> fos f3s fas [ foo f7) = (1/3,1/3,1/3,1,1,1/2,1/2). In the
proposed evolutionary computing method, let us define a
neighborhood to every individual as follows: two objective
functions of a multiobjective problem are selected by using
prespecified selective probabilities. Individuals are arranged
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on the two-dimensional coordinates, and the neighborhood
of an individual is calculated by using the relative distance
between all individuals.

The crossover operator is made locally in each neigh-
borhood in parallel. Even if the fitness of an individual
is relatively very high in a population, it can spread over
the succeeding populations only through an overlap of the
neighborhood. This prohibits a rapid increase of an relatively
high-performance individual, and then, the population
diversity is favorably maintained. The evolutionary operators
are defined as follows.

(a) The selection is done by considering the number
of individuals in the 2-dimensional objective space.
That is, the fitness I'; of the individual p; is defined
as I'; = 1/n;. The value of n; denotes the number of
individuals in the identical region with the individual
pi. The proportional fitness method is employed in
the selection process.

(b) BLX-a method is employed for crossover. The mate
of crossover is chosen randomly in the neighbor-
hood.

(c) The real-code string representation is employed for
candidate solution.

(d) Mutation is designed to perform random exchange;
that is, it selects some bits randomly in an individual
and exchanges their values. Boundary mutation
and nonuniform mutation are used to avoid the
premature convergence of the solutions.

The procedure of dividing genetic computation approach
consists of the following steps.

Step 1. Set a generation number f = 0. Randomly generate
an initial population P(t) of M individuals.

Step 2. Calculate the fitness of each individual in the current
population according to the distribution of the objective
space.

Step 3. Select M individuals according to above fitness;
then the mate of the individuals is chosen randomly in the
neighborhood.

Step 4. Generate a new population P’(¢) from P(t) by using
a crossover operator.

Step 5. Apply a mutation operator to the newly generated
population P’ (t).

Step 6. Calculate the fitness both of P(¢) and P’(t).

Step 7. Select M individuals from all population members on
the basis of the fitness.

Step 8. If a terminal condition is satisfied, stop and return the
best individuals. Otherwise set t = ¢ + 1 and go to Step 2.

In this procedure, update of the current population size is
always constant M. Here, to avoid the rapid loss of genetic

5
Past Now Future
|
!
“tu(klk) (= u(k
k- 2) Eu(\)( u(k)) .
: u(k + 11k)
u(k—1) '/*"\
(k—2)t (k—1)t (k)t (k+1)t

Time (t)

FIGURe 2: Interpolation based on a 2nd-order spline sampling
function using predictive future control inputs.

diversity, multiple equivalent individuals are eliminated from
the current population.

As a result of exploratory experiments using the multiob-
jective ranking [16], the following facts have been obtained
by comparison with the standard genetic algorithm (GA).

(i) By using the proposed method, the solutions are
widely distributed in the trade-off surface, and the
search performance does not deteriorate significantly.

(ii) The standard GA approaches cause the partial con-
vergence of the solutions because of stochastic errors
in the iterative process.

(iii) It is clear that the proposed method can seek for the
widely distributed solutions in comparison with the
standard GA.

Therefore, it is judged that the proposed dividing genetic
computation method is expected to be effective for the
minimax RHC problem.

4.2. Interpolation Using Predictive Control Inputs. Generally,
the interpolation of samples in the DA conversion is executed
by a convolution of samples by using sampling function.
In the case of sampled-data control system, to interpolate
the current interval, the future sample is need. But, the
information about future sample is unable to be obtained in
the present time. Hence, we need to wait to obtain this future
sample information. As a result, the time-delay is occurred.
However, in the case of controlling systems with relatively
fast-moving dynamics, such as robots or vehicles, the method
with long time-delay is unable to be applied. That is the
point. Therefore, a new idea to use the predictive control
inputs obtained by RHC for interpolation is proposed.

In RHC, the optimal control inputs {zi(k | k), z(k + 1 |
k),...,u(k+N —1] k)} are calculated in each step, and only
the first control input zi(k | k) is used as a real control input.
Therefore, we consider to use the other optimal control
inputs {#(k+1 | k), u(k+2 | k),...} as virtual future sampling



6
m Sampling function Interpolated signal
1
0
—t/2 01 t/2 -
Time (t) ".1"1m.e (t.)
1
1
-t 0 t -
Time (£) Time (1)
1
2
NS N o o
-2t —t 0 t 2t Time (1)

Time (t)

FIGURE 3: Sampling functions ¥ and their interpolations (m =
1,2,3) (7: sampling interval).

points. Actually, it is only necessary to use the optimal
control inputs which are need for interpolation according to
the sampling function. Figure 2 shows an example of this way
by using the 2nd-order spline function for interpolations.
Only #i(k +1 | k) is used as a virtual future sampling point in
this case.

Hence, by using the predictive control inputs for inter-
polation, it becomes possible to reduce the time-delay in
the DA conversion, and the total waiting-time is just only
computation time of optimization in current step.

Of course, one needs to take account that there is a
difference between virtual future sampling points and real
sampling points like #(k + 1 | k)#u(k + 1) in future
step. However, we consider that this point is not a critical
problem because the influence on interpolated waveform
due to prediction error is not so big compared to the scale
of prediction error. Although the differentiability of each
sampling function is lost at sampling points, this also does
not become a critical problem compared to the zero-order
hold, and it is possible to keep a certain level of smoothness.

4.3. Adaptive DA Converter. The spline functions provide
various sampling functions with all kinds of orders. There-
fore, we consider switching the spline functions optimally
according to the system status in the adaptive DA converter.
In this paper, we use the spline functions with the order m =
0,1,2 as sampling functions. Namely, in the case of m = 0,
the sampling function is equivalent to the staircase function.
In the case of m = 1, it is the 1st-order piecewise polynomial
function, and in m = 2, 2nd-order one as shown in Figure 3.
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Appropriate selecting the values of m according to the object
enables to deal with DA conversion flexibly and precisely in
the interpolation operation. Although the interpolation is
more precisely in the case of using the spline function with
m = 3 or more, it is difficult to apply to fast-moving dynamic
systems due to the bigger amount of calculation. Therefore
we use only the spline functions with the order m = 0, 1, 2.

The interpolated signals in the closed-open interval
[kT,(k + 1)7) using these sampling functions are obtained
as follows:

k+1

u(t) = > {u()-2¥(t - 1)} (m=0,1),
o (30)
k+2

u(t) = 3 fu)-iee =0} (m=2),

I=k-1

where ¥(-) is sampling function as shown in Figure 3, and
where u(t) and u(l) are analog signal and digital signal,
respectively.

Figure 4 shows the entire controlled system with the
proposed RHC and the adaptive DA converter. As shown
in Figure 4, the adaptive DA converter has internal model
with sampling interval 7/d. Please take notice that this
internal model 2 is different from interval model 1 in which
sampling interval is just 7. The interval to be interpolated
is also partitioned to d sections, and the partitioning points
um(jsk),(j = 1,2,...,d — 1) on interpolated waveforms are
used for the selection of parameter m, that indicates the
degree of spling sampling functions:

The partition points u,,(j; k) are calculated as follows,

k+¢—1

(k) = S {u(l)-mw((k—l)‘r-i-g-j—l‘r)}

1=k—¢

(G=12,...,d-1),
(31)

where ¢ is the number of samples which the sampling
function needs for interpolation, and it is adjusted according
to the sampling function.

Figure 5 shows the difference of the interpolation and
partition points according to the sampling function with
m = 0,1,2 in the case of d = 5. How to select the values
of m in each interval is summarized as follows. Each value of
sample on the partition point is calculated from the state-
space equation (2) in the current interval. The evaluation
values using J(k) in (6) are calculated in each m. Then, the
parameter m whose evaluation value is the smallest is selected
for this interval.

From several test simulation results, it has been obtained
that the partition number d = 5 is most appropriate by the
trade-off between computation time and precision.

5. Numerical Example

In this section, an example that illustrates the effectiveness of
the proposed method is given. The example is adopted from
the benchmark problem in [20] as shown in Figure 6.
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Kothare’s method [6] 45.36
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FIGURE 5: Interpolation ways (d = 5).
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F1GUrE 6: Coupled spring-mass system.

Although the original system consists of a two-mass-
spring system without noise for output, the bounded noise is
added to demonstrate the proposed method. The state-space
equations are obtained as follows:

x(k+1) 1 0 0.1 0
d | xk+1) 0 1 0 0.1
dt | x;(k+1) | | =0.1K/m; 01K/m; 1 0
.X'4(k+l) 0.1K/m, 0.1K/m, 0 1
(32)
x (k) 0
x (k) 0
X + u(k),
X3(k) 0.1/11’11
x4 (k) 0

where m; and m;, are the two masses and K is the spring
constant. State variables x; and x, are the positions of the
two masses, respectively, and x3 and x4 are their velocities.
Now we assume the following perturbations of m, and K:

T’H2E{H12|1Sm2§10},
(33)
K € {K0.5 < K < Kpay}s

and m, is constant equaled to 1. The weighting matrices are
fixed as Q = I and R = 0.5. The constraint condition of input
lu(k)| < 1 must be satisfied. This means that P, = 1. And
the constraints of external disturbance, #, are set P, = 36.0.
A prediction horizon of the RHC is set N = 10.

Furthermore, the following GA parameter specifications
are used in the simulation. These values have been selected
from several tests(see Table 1).

The results as follows are the best ones in having repeated
20 times.

Figure 7 shows the closed-loop response of the output.
From this figure, we can say that the proposed method has
good robust performance.

Figure 8 shows the change of the parameter m of the
adaptive DA converter. From this figure, we can see that the
spline function with m = 0 (staircase function) is likely
to be selected when the control input stays flat, and the
function with m = 1 (piecewise linear function) is selected
when the control input changes rapidly. The function with
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the interpolation.

m = 2 (piecewise quadratic function) is also likely to be
selected when the control input changes smoothly. These are
natural results, but please take notice that the tiny difference
of control input causes a big influence on the result, in the
case of the systems with fast-moving dynamics. Therefore,
it is important to select the appropriate value of m in each
interval flexibly for better control performance. Moreover,
longer the sampling interval, the improvement of control
performance is expected to be more conspicuous using the
proposed method.

To show the fact that the proposed method can reduce
the conservativeness, the maximum values of Ky, by the
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TABLE 3
CPU Intel Core2 Duo U7700 1.33 GHz
Memory 2GB RAM
oS Windows Vista Business

proposed method, the technique in [6], and the one in [7]
are searched, respectively, within the limits of holding the
feasibility of the robust RHC problem. Then results obtained
are indicated in Table 2.

From Table 2, we can see that the result by proposed
method is much better than the one in [6] and slightly
better than the one in [7]. We can see therefore that the
proposed method with the dividing genetic computation can
realize the less conservative control performance than the
preexisting methods in [6, 7].

To examine the performance of the dividing genetic
computation method, comparisons of computation time
with NSGA-II [21] and SPEA-II [22] are done.

Computation environment using a software, “MATLAB
7.8.0%, is asshown in Table 3.

Then, maximum computation time of the feedback gain
matrix F per each step in the robust RHC by using the
dividing genetic computation method is 0.04 second. On
the other hand, the times by NSGA-II and by SPEA-II
are indicated by the same value 0.02 second. Although the
proposed method takes twice time compared with NSGA-II
and SPEA-IL, it can be said that the proposed method can be
practicable in such a time.

Moreover, the upper bound values of Kmax by the
proposed method, by NSGA-II [21], and by SPEA-II [22] are
calculated, respectively. As a result, values are obtained: 79.47
by proposed method as above mentioned, 78.98 by NSGA-II,
and 79.28 by SPEA-II, respectively. Judging from this, we can
say that the proposed method might be somewhat excellent
for the reducing the conservativeness of control performance
compared with them.

6. Conclusion

The new approach of minimax robust finite RHC method
based on dividing genetic computation for constrained
sampled-data control systems with structured uncertainties
and disturbance has been proposed. At the same time,
a numerical example is given to show that the proposed
method improves the control performance.

Although the dividing genetic computation method is
able to uniformly control the convergence of solutions of
the minimax RHC design problems, more performance
investigation of this method is compared with other GA
methods, for example, NSGA-II, SPEA-II, and so on, or other
heuristic optimization methods, for example, Particle Swarm
Optimization [23], Ant Colony Optimization [24], and so
on, as future works.

Moreover, I also need to develop the selection method of
the best sampling function according to the control object,
and need to make sure the effectiveness of the proposed
method in various control objects as future works.
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Appendix

The proposed minimax approach is easily extended to sys-
tems with other constraints which are specified by ellipsoidal
bounds, for example, state estimation errors, and so on as
follows.

In the case that x(k) is not full measured, we need to
estimate x(k), where the bound of estimation error e(k) =
x(k) — x(k) is guaranteed as an ellipsoidal set as

el (k)Pee(k) < 1, (A1)

where P, is a positive symmetric matrix for weight. This
specification of estimation error is standard one. Now we
introduce H, as

H,:= [1 0-+-0 ffc(k)], (A2)

and then the relation of e(k)
condition below is also held:

H.( is hold. And the

(T(HIHy - HIP.H,){ = 0. (A3)

Since this condition has same form as other constraints in
(7), we can include this condition into the condition of
problem (26) by using a new variable .. Furthermore, in this
case, a new output equation with measurement noise y (k) is
needed as follows instead of (4):

y(k) = Cx(k) +y(k)  (yT(OPy(k) <1).  (A4)

We can also include this constraint into the condition of
problem (26) by using a new variable 7.
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Multilevel production scheduling problem is a typical combinatorial optimization problem in a manufacturing system, which is
traditionally modeled as several hierarchical sublevel problems and optimized at each level, respectively. An integrated model,
which can cope with the whole multilevel scheduling information simultaneously, is proposed in this paper, and a specific
evolutionary algorithm is designed to solve the integrated model with a twin-screw coding strategy. In order to evaluate the
performance of the new algorithm, a real 3-level production scheduling problem is employed for case study, and two typical
metaheuristic algorithms, a genetic algorithm (GA) and a simulated annealing (SA), are also employed for comparison study.
Experimental simulation results show that our proposed modeling and optimization method has outperformed the other ones.

1. Introduction

Multi-level production scheduling problem is a typical
combinatorial optimization problem in manufacturing sys-
tem, which is traditionally modeled as several hierarchical
sublevel problems, and solved by single-level scheduling
methods level by level [1-4]. As we know, the trends of
manufacturing system development are increasing the com-
petitivity of the company, promoting the customers’ service
level, integrating the global manufacturing information, and
processing flexible task flows in a more efficient way [5, 6].
In order to cope with these trends, researchers need to
optimize plant operations and total activities from suppliers
to customers and help manufacturers to find their ways in
global optimization and support the needs of manufacturing
at the same time. Along with all these scenarios, problem
modeling and its optimization techniques play important
roles in achieving these goals [7-10].

Generally speaking, multi-level production scheduling
problem (MLPS) is one kind of hierarchical production
planning problem, which considers a set of jobs on given
machines with predefined sequence, while discarding to
cope with a lot size problem [11-13]. Jobs in an MLPS

problem belong to different product levels, and the higher
level product cannot begin its process operation until all
its subproducts in the lower level are finished. The general
way to solve an MLPS problem is decomposing the entire
problem into several sublevel problems according to its
product level structure and optimize these subproblems
within each level [14]. The product level structure of a typical
MLPS problem can be illustrated as in Figure 1, in which
job 1 belongs to level 1; jobs 2, 3 belong to level 2; jobs 4,
5, 6, 7, 8 belong to level 3. Besides, the process operation
precedence between adjacent levels is as follows: job 2 (level
2) cannot begin its process operation, until all its sub-jobs 4,
5 (level 3) are finished; job 1 (level 1) cannot begin its process
operation, until all its subjobs 2, 3 (level 2) are finished.

2. Related Works

During the past decades, some researches have tried their
efforts to demonstrate that a hierarchical production plan-
ning technique is the most efficient way in solving a
multistage, multilevel production planning problem [15-
17], while other researchers believed in that a mono-
lithic/integrated method is better than a hierarchical one.



These researchers proposed many integrated multi-level
production planning models for various problems and
obtained some exciting conclusions. But most of them are
focused on coping a scheduling problem with a lot sizing
problem simultaneously; few attention is taken on the MLPS
described as in Figure 1. The reason may lied in the fact
that a batch production module plays a major role in most
manufacturing companies during the past decades, but a
small batch, multiclass production module becomes more
and more popular in current factories, especially in some
high technological industries. This leads researchers to find
more efficient models and optimization techniques to solve
the MLPS in recent years [18-20].

Since the occurrence of modern heuristic optimization
algorithms, like evolutionary algorithm (EA), simulated
annealing (SA), coevolutionary algorithm (COEA), ant
colony (AC), and particle swarm optimization (PSO), and
so forth, solving a large scale MLPS with an integrated
model becomes possible within an acceptable computational
cost. More and more attentions are attracted to solve this
NP complete (or NP-Hard) problem with an integrated
model, and various problem-dependent heuristic algorithms
are proposed to enhance the efficiency of the algorithms,
among which evolutionary algorithm is the most attrac-
tive/preferred one [21-23].

Usually, an evolutionary algorithm is designed to solve
a single-level scheduling problem, and an MLPS integrated
model can be solved with a hierarchical looped EA, in
which precedence prerequisite information can be satisfied
with transferring the ready time and release time between
adjacent levels. The result is greatly improved by contrast to a
hierarchical technique. But the computational cost with this
scheme may grow rapidly as the problem scale is increasing.
Besides, the optimality of the final result is doubted by many
classical optimization mathematicians. This leads researchers
turning to new gene expression and evolving strategies to
overcome those drawbacks.

In the following sections, Section 3 builds up a general
integrate 3-level production scheduling optimization model.
Section 4 proposes a twin-screw-coded hybrid evolutionary
algorithm to solve the integrated model. Section 5 employs
a real 3-level production scheduling case study to evaluate
the performance of the proposed modeling and optimization
technique, and Section 6 gives the conclusion of this study
and highlights some perspectives for future study.

3. Mathematical Integrated Model for a Typical
Three-level Production Scheduling Problem

In general, a multi-level production scheduling problem
(Figure 1) can be described as follows: a final product con-
sists of several (n) assemblies, each assembly consists of some
(nij(i = 1,2,...,n)) subassemblies, and each subassembly
consists of several (ngj) (i = 1,2,...,nm5j = 1,2,...,n3j)))
parts,.... All the jobs, including assemblies, subassemblies,
and parts, should be processed through m;), m;j), and m;j
operational sequences with given orders, where m; (i =
1,2,...,n) represents the maximum operation number of
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FIGURE 1: An example of hierarchical structure of MLPS problem.

assembly (i), muj) (i = 1,2,...,mj = 12,...,n0)
represents the maximum operation number of subassembly
(ij), and Mijk) (i = 1,2,...,m j = 1,2,...,n4, k =
1,2,...,n(j)) represents the maximum operation number of
part (ijk). Besides, one assembly cannot begin its process
operation until all of its subassemblies are finished and
assembled into the assembly. The final product is assembled
by the assemblies. Generally, min{makespan} is considered
as the optimization objective. In this section, an integrated 3-
level MLPS model is built up, which can be stated as (1)—(24):

min  f = min{Cpa} = min{max{C;}} (D

S S .
St i) = Haj) T Plal(iis
a=12,....mu; i=12,...,m (2)

j=1L2,...,n6;

s S )
i) = Hayje T Plaltjns
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J=L2,..,n0; k=12,...,nu);

S S .
i) T Pl <ty +M - (1= qaiwii)s
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S s .
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The definition of the parameters in the model is as
follows.

FS represents the feasible solution set; of4)(;) represents
the ath operation of job assembly (i), o0[4)(;j) represents the
ath operation of job subassembly (ij); o(a)(ijk) represents
the ath operation of job part (ijk); pia) represents the
operation time of 0(4)(;); P[a)(ij) Tepresents the operation time
of 0[a)(ij); Plal(ijk) represents the operation time of o[a)(ijk); M
is an infinite positive multiply factor:

q(al[b]())
(1, if the operation of assembly (i) on machine [b]
=4 is exactly after its operation on machine [a],

|0, otherwise,

qlal[b](ij)

1, if the operation of subassembly (ij) on
machine [b] is exactly after its operation
on machine [a],

L0 otherwise,

qal[b](ijk)

(1, if the operation of part (ijk) on machine [b]

=1 is exactly after its operation on machine [a],

0, otherwise.
(25)

The definition of the decision variables in the model is as
follows.

t},);) represents the start time of operation o(a)), t[sa](ij)
represents the start time of operation o[4(ij), tfa](ijk) repre-

sents the start time of operation o(4)(;jx) and C; represents
the end time of assembly (i); thus we have

Ci = max )(tfa](i)+p[ﬂ](i))’ (26)

a€l,2,..,m

and the 0-1 programming variables are defined as

X[gl(i)(j)

(1, if the immediate successive operation of
= A assembly (i) on machine [g] is (j),
|0, otherwise,

X(g)(ij)(ik)

(1, if the immediate successive operation of

= - subassembly (ij) on machine [g] is (ik),

|0, otherwise,
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X[l (ijk) (ijl)

(1, if the immediate successive operation of

= part (ijk) on machine [g] is (ijl),

0, otherwise,

X[g](i)(jk)

1, if the immediate successive operation of
assembly (i) on machine [g] is
subassembly (jk),

0, otherwise,

X[gl(jk)(i)

1, if the immediate successive operation of
subassembly (jk) on machine [g] is
assembly (i),

0, otherwise,

L

Xl (kD

(1, if the immediate successive operation of
assembly (i) on machine [g] is
part (jki),

0, otherwise,

X[l (kD)

1, if the immediate successive operation of

= 1 part (ijk) on machine [g] is assembly (i),

|0, otherwise,

X(g(ij)(kls)

(1, if the immediate successive operation of

= subassembly (ij) on machine [g] is part (kis),
|0, otherwise,

X[g)(KIs)(ij)

1, if the immediate successive operation of part

= (kls) on machine [g] is subassembly (ij),

|0, otherwise.
(27)

The physical explanation for the model (shown as (1)-
(24)) is as follows.

Equation (1) gives the optimization objective as
makespan; (2) constrains that the start time of an assembly
must be later than the completion time of all its subassem-
blies; (3) constrains that the start time of a subassembly
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FiGURE 2: Example of a 3-level production scheduling problem.
must be later than the completion time of all its parts; |15 1|5(7|7]12(4|16|3]5]2|3]|14|11] 8 [12]13] 6|59 |10

(4) defines the precedence relationship of assembly (i)’s
two successive operations o4y and opp)(); that is, the start
time of operation o[p);y must be later than the end time of
operation o) if gajp1i) = 1, and vice versa; (5) defines
the precedence relationship between subassembly (ij)’s two
successive operation o0(q)(;j) and o[p)ij); (6) defines the
precedence relationship between part (ijk)’s two successive
operation o(a)(ijk) and op)ijr); (7)—(15) define that there
can only process at most one job on machine [g] at one
time; (16)—(18) constrain the start time of each operation
as a non-negative variable; (19)—(21) define the constraints
between each related-pair of decision variables in each level
to guarantee the feasibility of the solution; (22)—(24) define
the constraints between each pair of decision variables in
different levels.

4. Twin-Screw-Coded Evolutionary Algorithm
for Multilevel Production Scheduling
Optimization

Since the computational complexity of the multi-level
production scheduling problem is very high, it is hard
to solve it with current existing optimization methods
efficiently (either the precise methods or the problem-
dependent heuristic algorithms). In order to overcome the
drawbacks of current existing methods, a twin-screw-coded
evolutionary algorithm is proposed in this paper, which
encodes a possible multi-level scheduling scheme in a twin-
screw chromosome, and a metaheuristic-based population
gap for elitist exchange and local search is employed to
enhance the convergence of the algorithm.

A typical 3-level MLPS example is shown in Figure 2,
which includes two assembles (1,7), five subassemblies (1’s
subassemblies include 2, 3; 7’s subassemblies include 8, 9, 10)
and nine parts (2’s parts are 4, 5; 3’s part is 6; 8’s parts are 11,
12, 13; 9’s part is 14; 10’s parts are 15, 16). The hierarchical
process precedence relationship between the jobs can be
easily told from the figure, in which the process scheduling
optimization covers all 3-levels’ jobs at the same time.

4.1. Gene Expression: Twin-Screw Coding. Current existing
evolutionary coding can only express one single level’s
scheduling information; it is hard to employ them to express
a multi-level production scheduling information with one

‘313113332322 332333322

FiGUure 3: The feasible gene expression for a three-level shop
scheduling solution.

chromosome. Hence, we propose an operation-based twin-
screw coding strategy to solve this problem: we define each
job number with an implicit subsidiary coding (subcoding)
to label its level information and construct a twin-screw
module to express the hierarchy of the scheduling scheme.
Assume that, in the example of Figure 2, each job in {3,7,12}
has two operations, respectively, job 5 has three operations,
and all the other jobs have only one operation, which is a
typical mixed flexible job shop problem. A feasible solution
for this problem can be coded as a twin-screw gene (shown
as Figure 3), in which the italic gene in the second row shows
the level of the job above it. Thus, we can construct a feasible
chromosome for the 3-level job process scheduling problem
with the twin-screwed gene expression.

In order to guarantee the feasibility of a twin-screw-
coded chromosome, a specifically designed decoding strategy
(shown as Figure 4) is employed to cope with this issue.
We employ the example mentioned above to illustrate the
process of our proposed decoding method, in which process
scheduling information is obtained from lower level to
the higher one. The genotype codes of a chromosome are
scanned from the beginning to the end; those operations
that labeled with a “3” as its implicit twin-code (in the
second line) are Recognized as part level’s jobs and labeled to
phenotype; after a round-robin scan, all the jobs belonging to
the part level are kicked off from the original chromosome,
a second round scan is taken to label the subassembly level,
and then the assembly level, until all the levels” operations are
labeled and the whole chromosome is decoded to a complete
3-level job scheduling solution with phenotype status.

In the decoding process (Figure 4), & represents the first
operation of job 5; 04 represents the operation of job 4. The
final decoded solution of the above example is as follows:

(i) partlevel: 015, %, 012, 04, 016, %4, 014, 011, 012, 013,
006, %;
(i) subassembly level: %, 02, %}, 08, 09, 010;

(iii) assembly level: o1, 7, <.
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FiGURre 5: The data structure for decoding process.

In order to promote the decoding efficiency, an object-
oriented data structure is designed to fulfill this task
(Figure 5). The principle of designing the data structure and
some variable abbreviations are noted as the follows.

(1) A chromosome composes three parts: twin-screw
codes for sequence and “level” information, job-related
information, and machine-related information.

(2) “GENE_i” represents the twin-screw coding structure
of a chromosome; “JobNr” represents the job number (the
number of each job is equal to its operation number); The
initial “Flag” of job “i” indicates the production level, which
job “1” belongs to.

During the decoding process, when all the operations
of one subjob of job “i” are finished, we add “Job_i”’s
“FinishedSubJobs” by (1): when the value is equal to “i”’s
“TotalSubJobs”, that means all the subjobs of “i” have been
finished we turn the “Flag” of “1” from 1 to 0 under this
circumstance, and return the scan pointer into the beginning
of the twin-screw, and rescan the left operations.

(3) “OperationInfo” records the start time and end time
of each job.

(4) “TotalOperNr”, “TotalSubJobs”, and “SubJobNr” are
the initial status of the jobs; these information can be

obtained from the configuration document.
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F1GURE 7: The mutation operator: an example.

@,

(5) “Mach_i” records the job sequences at machine “i;
these pieces of information are employed to verify the
validity of a solution, and to make preparation data for Gantt
graph, while not participating the decoding process.

4.2. Evolutionary Operators: Crossover and Mutation. In
order to guarantee the feasibility and validity of the chromo-
some during the population evolution, we propose improved
crossover and mutation operators for the twin-screw-
coded chromosome based on previous work in permutation
scheduling problem studies (see [22]). The principle of
designing the evolutionary operators is similar to that of
PMX crossover and swap mutation operators (see [22]),
which can be illustrated by examples shown in Figures 6
and 7.

Crossover operator for a twin-screw-coded chromosome
is as follows.

Step 1. Randomly generate two cutting points cj, ¢; (assume
c1 < ¢z) on the two parents chromosome chromy, chroms;.

Step 2. Exchange the partial chromosome between ¢, and
¢, (not only the process sequence information but also the
“level” information) to get the two proto-children, shown as
P; and P; in Figure 6.

Step 3. Scan and eliminate the existing elements of P from
parent 1 and P, from parent 2 to determine the map-
ping relationship between two mapping sections. After the
mapping operation, we get two subsidiary partial mapping
information as the P;’, P}’ shown in Figure 6.
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F1Gurk 8: Flowchart of the Twin-screw Coded Evolutionary Algorithm (TCEA) for MLPS.

Step 4. Legalize the offspring with the mapping relationship
information, and obtain two feasible offspring children
(offspringl and offspring2 in Figure 6).

Please note that the whole crossover process is guided
and dominated by the sequence information, but not the
“level” information. Because in our proposed twin-screw-
coded chromosome, each bit of “level” information is bound
strength with a corresponding operation information, it does
not make any sense except in the decoding process.

Mutation operator for twin-screw-coded chromosome is
as follows.

Step 1. Randomly generate two mutate points m;, m; on the
parent chromosome to be mutated.

Step 2. Swap the two position’s sequence and “level” infor-
mation to generate a legal offspring child (as shown in
Figure 7).

4.3. Population Reconstruction with Elitism Strategy. In our
previous work, we have proposed an escalating evolutionary
structure (shown in Figure 8), which has outperformed
several other modern heuristic algorithms with applications
to flow shop scheduling problems under the similar compu-
tational cost. In order to solve the integrated MLPS model
efficiently, we introduce the escalating strategy into the twin-
screw-coded EA to enhance its convergence performance.

The brief idea of escalating strategy can be explained as
follows.

A population evolves from a random beginning status,
the probability of an individual to bring its offspring lies on
its fitness. After some generations’ evolution, the population
may keep in evolving with no progress further more in some
successive generations; then the elitist individual (the best
one in the population from the beginning to current genera-
tion) is kept and introduced into a new population directly,
and all the other individuals of the new population are
generated randomly (reconstruction/reinitialization). Thus,
the new population continues the evolution process until the
stop criterion is satisfied.

The escalation process implies two meanings: (1), the
elitist individual will be introduced into the new population
directly; (2), other individuals of the new population will be
generated randomly, where (1) makes it possible to utilize
the previous level’s search information, and (2) is designed
to keep the population diversity, which helps the algorithm
escaping from premature.

5. Case Study

5.1. Problem Description. In order to evaluate the perfor-
mance of our proposed modeling and optimization tech-
nique, a 3-level production scheduling problem from one
of Chinese famous satellite production factory is employed
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FIGURE 9: Problem description.

for case study. All the processing information has been
necessarily deposed with pre-declassification need before-
hand.

The hierarchical product structure of the problem is
similar to the model described as (1)—(24): product 0-0
consists of 3 assemblies, each assembly consists of 4, 3, 2
subassemblies, respectively, and each subassembly consists

of some given number of parts. The job of a higher level
could begin its process operation only if all its sub-products
are finished and are assembled. The process information
includes technical constraints within levels and between
levels, process time, and predefined operational sequence
between jobs. The hierarchical logic relationship of the
problem can be highlighted as shown in Figure 9.
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TABLE 1: The raw data of case study problem.

Oper.1 Oper.2 Oper.3 Oper.4
JobNr machine time machine time machine time machine time
11-1 01 16 04 7.1 01 16 DM 38
11-2 01 8 RM 5.3 03 7 PM 10
11-3 02 20 DM 44.8 02 11.2 PM 80
11-4 RM 3.3 03 0.4 PM 4.6 01 8
11-5 02 10.4 DM 44.2 01 16 02 12
11-6 02 5 DM 14 RM 2 o1 8
11-7 02 20 DM 56 RM 33.2 03
11-0 RM 31 o7 20.3 01 16 PM 12
12-1 RM 29 DM 20 01 8 RM 22
12-5 o7 7 RM 11 01 8 06 12
12-0 RM 27 02 12
13-1 01 8 04 19.5 RM 21.2 04 2
13-8 o7 21 RM 33 01 8 06 22
13-0 RM 36 oM 54 PM 21 05 8
14-1 RM 9 09 60 05 6
14-9 02 2.4 01 8 DM 12.4 03
14-0 02 9 02 5 01 8 02
1-0 03 82 02 14 RM 61 03 24
21-1 o7 27.2 o7 10.4 01 64 06 144
21-9 RM 1152 oM 768 PM 768 05 384
21-0 03 208 RM 136 DM 84 05 32
22-1 RM 61.5 DM 170 01 40 DM 720
22-2 RM 19 DM 60 01 16 DM 248
220 03 23 RM 54
23-1 Ol11 8.5 DM 5.2 01 8 09 7
23-8 011 8.5 DM 5.2 01 8 09 7
23-0 03 43 DM 44 03
2-0 03 84 DM 20 09 32 DM 88
31-1 02 4.6 RM 4 DM 6.4 03 3
31-2 02 8 01 8 02 3.3 DM 16
31-3 02 8 oM 4.4 05 8 03 0.5
31-0 02 32 oM 58 01 8 02 28
32-1 02 20 oM 12 03 9.3
32-5 04 4 DM 1 03 1
32-0 02 5.2 02 5.2 RM 116 013 6
3-0 013 40 DM 52 03 8
0-0 03 32 oM 81 03 23 OM 68

Table 1 gives the detail process information of the  increased with a bit costs and the workloads on them can
problem. There are some complementary comments to the  be considered as light as possible. So the capability of these
problem. machines can be considered as infinite. These machines

(1) The O1-013 in Table 1 represent the process opera- include common low-precise manufacturing machines, like
tions on those machines, whose process ability can be greatly ~ lathe, planer, grinder, and so forth.
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While the workloads on the other kind of machines are
obviously heavy, not only the fixed expensive purchasing
costs but also the expensive unit time process costs on them
are much higher than the common ones. There are 4 units
of such machines in the factory that we investigated, whose
name can be listed as Rough Milling machine (RM), Precise
Milling machine (PM), Digital Milling machine (DM), and
Other Milling machine (OM), respectively.

(2) The definition of job numbers (JobNr) in Table 1 is
as follows.

(i) 11-01 represents the 01 part of subassembly 11;
(ii) 11-0 is the label for subassembly 11;
(iii) 1-0 is the label for assembly 1;
(iv) 0-0 is the label of the final product.

After analyzing the process information, we make two
assumptions to deduce the computational complexity of
the raw problem, in which only the most “expensive”
and “crowed” machines are specifically treated, while we
neglect the scheduling planing on those “cheap” or “loosely
required” machines.

Assumption 1 (Machine Scarce/Nonscarce Assumption). As
we know, a satellite product requires more precision than a
civil product; its large size and highly precision quality leads
to the need of high-performance milling machines in many
operations. We discriminately treat the operations that need
to be operated on milling machines with those operations
that need to be operated on other machines and call the
operations on these two kind of machines as Scarce machine
operations and nonscarce machine operations. Consecutive
operations on nonscarce tmachines can be combined into
“Dummy Operations”.

The adjacent operations on nonscarce machines can be
combined as one operation time, and the new combined
operation can be considered as operations that have no
constraints on machine availability; we only take its opera-
tion time into account but neglect the operation’s machine
information.

Assumption 2 (Machine Specification Assumption). As dif-
ferent machines for the same type of task in the satellite
factory take different costs, the milling operations are
allocated to different machines according to its precision
requirements, which aims at strengthening the economic
profit of the whole. After the hypothesis of dummy operation
and machine operation specialization, we focus our effort on
the scheduling of scarce machines, which can help us avoid
to waste time on insignificant operations or wasting costly
machines on simple or nonprecise operations; thus can we
possibly obtain a better solution in a given time.

5.2. Data Preprocessing. There are 4 milling machines
(RM/PM/DM/OM) in the factory. Since the operations
on these milling machines are the bottle neck of the
scheduling problem, we allocate the milling operations to
these machines with regard to each machine’s operational
precision and cost.
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FiGure 10: Statistical results of 3-level MLPS with TCEA, GA, and
SA.

Gantt chart for 3-level MLPS problem (69 jobs
*4 milling machines) with TCEA
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FIGURE 11: A typical solution of 3-level MLPS with TCEA.

(i) Rough milling operations are allocated to the ma-
chine “RM”.

(ii) Precise milling operations are allocated to the ma-
chine “PM”.

(iii) Digital milling operations are allocated to the ma-
chine “DM”.

(iv) Other milling operations are allocated to the machine
“OM”.

All the other nonmilling operations are considered as
“dummy operations” (as mentioned in Section 5.1). After we
combined the “dummy operations”, we get the new modified
process data of the problem (shown in Table 2).

5.3. Comparison Study Algorithms and Parameters Setting.
In order to evaluate the performance of our proposed
TCEA with its application to MLPS, we employ two basic
metaheuristic algorithms, GA (Genetic Algorithm), and SA
(Simulated Annealing) as comparison algorithms for case
study.

In order to obtain the best performance of TCEA,
parameters experiment has been taken to search the best
parameters combination. The experiment is designed with
the following guidance rules [21].
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TaBLE 2: The modified data of case study problem.
Level 1: the part level

JobNr dum mach time dum mach time dum mach time
11-01 32.1 DM 38 26 NS 0
11-02 8 RM 5.3 7 PM 10 8 DM 80
11-03 20 DM 44.8 11.2 PM 80 4.8 NS 0
11-04 0 RM 3.3 0.4 PM 4.6 8 PM 23
11-05 10.4 DM 44.2 28 PM 80 4.4 NS
11-06 5 DM 14 RM 2 11.5 DM
11-07 20 DM 56 RM 33.2 14 DM 32
12-01 0 RM 29 DM 20 8 RM 22
12-05 7 RM 11 20 PM 52 1 DM 19
13-01 27.5 RM 21.2 2 PM 11 18.4 NS 0
13-08 21 RM 33 30 PM 52 13 DM 19
14-01 0 RM 9 66 NS 0
14-09 10.4 DM 12.4 2 NS 0
21-01 245.6 PM 416 10.4 DM 152
21-09 RM 1152 0 OM 768 0 PM 768
22-01 RM 61.5 0 DM 170 40 DM 720
22-02 RM 19 0 DM 60 16 DM 248
23-01 8.5 DM 5.2 19.5 DM 13 8 DM 32
23-08 8.5 DM 5.2 19.5 DM 13 8 DM 32
31-01 4.6 RM 4 0 DM 6.4 3 NS 0
31-02 19.3 DM 16 2.5 NS
31-03 8 DM 4.4 8.5 NS
32-01 20 oM 12 9.3 NS
32-05 4 DM 1 1 NS 0

Level 2: the subassembly level
JobNr dum mach time dum mach time dum mach time
11-0 RM 31 36.3 PM 12 16 NS 0
12-0 RM 27 12 NS 0
13-0 RM 36 0 OM 54 0 PM 21
14-0 29 DM 29
21-0 208 RM 136 0 DM 84 32 NS 0
22-0 23 RM 54
23-0 43 DM 44 4 NS 0
31-0 32 oM 58 36 OM 60 8 oM 12
32-0 10.4 RM 116 23 NS 0

Level 3: the assembly level (including the final product)

JobNr dum mach time dum mach time dum mach time
1-0 96 RM 61 24 NS 0
2—0 84 DM 20 32 DM 88 16 NS 0
3-0 40 DM 52 8 NS 0
0-0 32 oM 81 23 oM 68
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TABLE 3: Parameters setting for 3-level MLPS study case.
pop-size max_gens P, P, n,
TCEA 200 200 x 5 0.9 0.1 20
GA 200 1000 0.9 0.1
Ty Thnal B n,
SA 1000 0.1 0.999 50
TaBLE 4: Statistical optimization results of the 3-level MLPS with TCEA, GA and SA.
Algorithms avg.Makespan max.Makespan min.Makespan dev.Makespan
TCEA 5612.4 5632 5598 3.86
GA 5691.2 5704 5668 8.61
SA 5788.5 5814 5768 11.26
Gantt chart for 3-level MLPS problem (69 jobs parameters set in Table 3, we get the optimization results as
*4 milling machines) with GA in Table 4 and figure 10, in which the average result of TCEA
Other milling mi I outperforms that of GA and SA:
machine The average makespan of product 0-0 obtained by our
pel e g || I TCEA is 5612.4, and the results of GA and SA are 5691.2
Precision ailing and 5788.5, respectively; all these metaheuristic algorithms
machine mu | I outperformed current technique in the factory (6580).
Rough millin |1y ————— However, the computational cost of TCEA (about 270s) is
machine | i a bitlonger than that of GA (about 250s) and SA (about 190s)

0 1000 2000 3000 4000 5000 6000

FIGURE 12: A typical solution of 3-level MLPS with GA.

(i) Population size (POP_SIZE) varies from 100 to 500,
skip rule 100.

(ii) Evolutionary generation varies from 100 to 500, skip
rule 100.

(iii) Crossover probability varies from 0.3 to 0.9, skip rule
0.1.

(iv) Mutation probability varies from 0.01 to 0.1, skip rule
0.01.

(v) Population escalation gap varies from 10 to 1, skip
rule 1.

(vi) Elitist local search step varies from 10 to 50, skip rule
10.

After the parameters experiment, we set the parameters
of TCEA as in Table 3. In order to compare the performance
of TCEA with that of GA and SA in a fair circumstance, we
make the similar parameters experiments for GA and SA,
respectively, in which the total CPU time consumption is
kept in the same level as TCEAs. After the experiments, we
can set the parameters of TCEA, GA, and SA as in Table 3.
Since the twin-screw coding strategy is a general encoding
strategy designed for MLPS problems, we employ the coding
strategy in all the three algorithms.

5.4. Results Analysis. Since all the algorithms that we study
are metaheuristic algorithms, we run each algorithm for 20
independent times to collect their statistical results. With

in the same experiment environment (all the experiments are
taken in a CPU Pentium IV-3.2 G, 1 G Ram PC platform).
In general, the statistical results show the outstanding
performance of our TCEA by contrast to that of GA and SA
to cope with an MLPS problem.
Figures 11 and 12 show two typical solutions derived
from TCEA and GA, respectively.

6. Conclusion

A twin-screw-coded evolutionary algorithm (TCEA), which
is motivated by solving a typical multi-level production
scheduling problem (MLPS), is put forward in this paper.
The principle of the new algorithm is introduced; besides,
a real 3-level satellite part’s case study has revealed the
superiority of TCEA by contrast to GA and SA, which
further demonstrates the effectiveness and practicability of
our integrated model and optimization technique in solving
such complex production scheduling problems. As we know,
MLPS is a complex NP-hard problem; this work just shows
the preliminary result of our project. Further research
has been taken, in which multiobjective MLPS problem
modeling and optimization technique has been taken into
consideration.
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Computational grids assemble multisite and multiowner resources and represent the most promising solutions for processing
distributed computationally intensive applications, each composed by a collection of communicating tasks. The execution of an
application on a grid presumes three successive steps: the localization of the available resources together with their characteristics
and status; the mapping which selects the resources that, during the estimated running time, better support this execution and, at
last, the scheduling of the tasks. These operations are very difficult both because the availability and workload of grid resources
change dynamically and because, in many cases, multisite mapping must be adopted to exploit all the possible benefits. As
the mapping problem in parallel systems, already known as NP-complete, becomes even harder in distributed heterogeneous
environments as in grids, evolutionary techniques can be adopted to find near-optimal solutions. In this paper an effective and
efficient multisite mapping, based on a distributed Differential Evolution algorithm, is proposed. The aim is to minimize the time
required to complete the execution of the application, selecting from among all the potential ones the solution which reduces the

use of the grid resources. The proposed mapper is tested on different scenarios.

1. Introduction

A grid [1] is a decentralized heterogeneous multisite system
which aggregates geographically dispersed and multiowner
resources (CPUs, storage system, network bandwidth, etc.).
From user’s perspective, a grid is a collaborative compu-
tationally intensive problem-solving environment in which
users execute their distributed jobs. Each job, made up of a
collection of separate cooperating and communicating tasks,
can be processed on the available grid resources without
user’s knowledge on where they are or even who owns them.

It is noted that the execution times of distributed appli-
cations and the throughput of parallel multicomputer sys-
tems are heavily influenced by the task mapping and sche-
duling which, in case of large and disparate set of grid
resources, become still more impractical even for experi-
enced users. In fact, grid resources have a limited capacity
and their characteristics vary dynamically as jobs change and
randomly arrive. Since, in many cases, single-site resources
could be inefficient for meeting job requirements, multisite
mapping must be adopted to provide all the possible bene-

fits. Obviously, this latter concern further complicates the
mapping operation.

On the basis of these considerations, it is clear that an
efficient mapping is possible only if it is supported by a fully
automated grid task scheduler [2].

Naturally when a new job is submitted for execution on a
grid, the dynamical availability and the pertaining workload
of grid resources imply that, to select the appropriate
resources, the grid task scheduler has to know number and
status of the resources available in that moment. Hence
such a scheduler, hereinafter referred to as Metascheduler,
is not simply limited to the mapping operation, but must
act in three successive phases: resource discovery, mapping
or task/node allocation and job scheduling [3].

The resource discovery phase, which has to determine
the amount, type, and status of the available resources, can
obtain this information either by specific tables based on
statistical estimations in a particular time span or gathered
tracking periodically and forecasting dynamically resource
conditions [4, 5]. For example, in Globus Toolkit [6], which
is the middleware used for building grids, global information



gathering is performed by the Grid Index Information Ser-
vice which contacts the Grid Resource Information Service
to acquire local information [7].

In the mapping phase, the Metascheduler has to select, in
accordance with possible user requirements, the nodes which
opportunely match the application needs with the available
grid resources.

Finally, in the last phase the Metascheduler establishes the
schedule timing of the tasks on the nodes. To have that all
the tasks will be promptly coscheduled, our Metascheduler
selects, in line with job requirements, resources conditions
and knowledge of the different local scheduling policies, only
the nodes, even belonging to different sites, which in that
moment are able to coschedule the tasks assigned to them.
This last assumption avoids to perform the job scheduling
phase. It is noted that, if locally supported, an alternative
to attain the coscheduling could be to make advance
reservations. However, this approach, which requires that
resource owners have a good planning on their own tasks,
presents difficulties to be employed in a shared environment.

As concerns the resource discovery phase, the Metasched-
uler here implemented determines the available nodes con-
sidering historical information pertaining the workload as
a function of time, and the characteristics of each node by
using specific tables.

In this paper, the attention is focused only on the map-
ping phase. Since mapping algorithms for traditional parallel
and distributed systems, which usually run on homogeneous
and dedicated resources, for example, computer clusters,
cannot work adequately in heterogeneous environments [1],
other approaches have been proposed to cope with different
issues of the problem [8-12].

Generally the allocation of jobs to resources is performed
respecting one or more optimization criteria like minimal
makespan, minimal cost of assigned resources, or maximal
throughput and so on. Here, in contrast to the classical
approach [13-15] which takes into account the grid user’s
point of view and aims at minimizing the completion time
of the application task, we deal with the multisite mapping
problem from the grid manager’s point of view. Thus, our
aim is to find the solution which minimizes execution
time and communication delays, and optimizes resource
utilization using at the minimum the grid resources it has
to exploit at the most.

Unfortunately, the mapping problem, already known as
NP-complete for parallel systems [16, 17], becomes even
more difficult in a distributed heterogeneous environment
as in grid systems. Moreover, in the future, grids will be
characterized by an increasing number of sites and nodes per
site, so as to meet the ever growing computational demands
of large and diverse groups of tasks. Hence, it has seemed
natural to devote attention to the development of mapping
tools based on heuristic optimization techniques, as, for
example, evolutionary algorithms. Several evolutionary-
based techniques have been used to face the task allocation
in a heterogeneous or grid environment [10, 13-15, 18-22].

Within this paper, a distributed version of Differential
Evolution (DE) [23, 24] approach is proposed. This tech-
nique is attractive because it requires few control parameters,
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it is relatively easy to implement, effective and efficient in
solving practical engineering problems. Unlike all the other
existing evolutionary approaches which simply search for
mapping the job onto just one site [21], we deal with a
multisite approach.

Then, differently from other methods which face the
problem of mapping in a heterogeneous environment for
applications developed according to a specific paradigm, as,
for example, the master/slave model in [25, 26], we do not
make hypotheses about the application graph. Moreover, as
a further distinctive issue with respect to other approaches in
literature [12], we consider the nodes making up the sites as
the lowest computational unit taking into account its actual
load.

Paper structure is as follows: Section 2 illustrates our
evolutionary approach to the mapping problem. Section 3
describes the distributed DE algorithm, while Section 4
reports on the test problems faced and outlines the results
achieved. Lastly, Section 5 contains conclusions and future
works.

2. Differential Evolution for Mapping

2.1. The Technique. Differential Evolution is a stochastic and
reliable evolutionary optimization strategy which presents
noticeable performance in optimizing a wide variety of
multidimensional and multimodal objective functions in
terms of final accuracy and robustness, and overcomes many
of the already existing stochastic and direct search global
optimization techniques [27-29]. In particular, given a mini-
mization problem with g real parameters, DE faces it starting
with a population of M randomly chosen solution vectors
each made up by q real values. At each generation, new
vectors are generated by a combination of vectors randomly
chosen from the current population. The outcoming vectors
are then mixed with a predetermined target vector. This
operation is called recombination and produces the trial
vector. Many different transformation schemes have been
defined by the inventors to produce the candidate trial vector
[23, 24]. To explicit the strategy they established a sensible
naming-convention for each DE technique with a string like
DE/x/y/z. In it, DE stands for Differential Evolution, x is a
string which denotes the vector to be perturbed (best = the
best individual in current population, rand = a randomly
chosen one, rand-to-best = a random one, but the current
best participates in the perturbation too), y is the number
of difference vectors taken for perturbation of x (either 1
or 2), while z is the crossover method (exp = exponential,
bin = binomial). We have chosen the DE/rand/1/bin strategy
throughout our investigation. In this model, a random
individual is perturbed by using one difference vector and
by applying binomial crossover. More specifically, for the
generic ith individual in the current population three integer
numbers 7y, 13, and 73 in {1,..., M} differing one another
and different from i are randomly generated. Furthermore,
another integer number s in the set {1,...,q} is randomly
chosen. Then, starting from the ith individual a new trial one
i’ is generated whose generic jth component is given by

Xi; = Xp; +F - (x,lj —x,zj) (1)
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provided that either a randomly generated real number p in
[0.0,1.0] is lower than a value CR (parameter of the DE,
in the same range as p) or the position j under account is
exactly s. If neither is verified, then a simple copy takes place:
xr; = xi;. Fisa real and constant factor which controls the
magnitude of the differential variation (x,lj - x,zj), and is a
parameter of the algorithm.

This new trial individual x; is compared against the ith
individual in the current population and is inserted in the
next population if fitter. This basic scheme is repeated for a
maximum number of generations g.

2.2. Definitions and Assumptions. In this work, we refer to
a grid as a system constituted by one or more sites, each
containing a set of nodes, while to a job as a set of distributed
tasks, each with various requirements [8, 30-33]. In absence
of virtual or dedicated links, sites generally communicate by
means of internet infrastructure.

In each site, single node and multinode systems are
present. With single node we intend a standalone compu-
tational system provided by one or more processors and
one or more links, while with multinode we refer to a
parallel system. Moreover, we assume that the node is
the elementary computation unit and that the proposed
mapping is task/node. Each node executes the tasks arranged
in two distinct queues: the local queue (L;) for the locally
submitted tasks and the remote queue (R;) for those
presented via grid. The tasks in R, can be executed only if
there are not ready tasks in L,. While the tasks in L, will
be scheduled on the basis of the locally established policy, a
First-Come-First-Served (FCFS) strategy with priority must
be adopted for those in R;. According to this scheduling
policy, to perform the mapping process both the currentlocal
and grid workloads are taken into account.

To focus the mapping problem in the premised grid
we need information on the number and on the status of
both accessible and demanded resources. Consequently, we
assume to have a grid application subdivided into P tasks
(demanded resources) to be mapped on n nodes (accessible
resources) with n € {1,...,N}, where P is fixed a priori and
N is the number of grid nodes.

We have to know node capacities (the number of instruc-
tions computed per time unit), network bandwidth and load
of each grid node in a given time span. In fact, the available
power of each node varies over time due to the load by the
original users in shared-resource computing. In particular,
we need to know a priori the number of instructions «;
computed per time unit on node i. Furthermore, we assume
to have cognition of the communication bandwidth f;;
between any couple of nodes i and j. It should be noted that
Bij is the generic element of an N X N symmetric matrix
B with very high values on the main diagonal, that is, 8;
is the bandwidth between two tasks on the same node. We
suppose that this information is contained in tables based on
statistical estimations in a particular time span.

In general, grids address nondedicated resources since
they have their own local workloads. This affects the
availability of local performance. Thus we must consider
these load conditions to evaluate the expected computation

time. There exist several prediction models to face the
challenge of nondedicated resources [34, 35]. For example,
as attains the computational power, we suppose to know the
average load ¢;(At) of the node i at a given time span At
with ¢;(At) € [0.0,1.0], where 0.0 means a node completely
discharged and 1.0 a node locally loaded at 100%. Hence
(1 — ¢;(At)) - a; represents the fraction of power at node i
available for executing grid tasks.

As an example, if the resource is a computational node,
the conditions collected could be the fraction of CPU
which can be destined to the execution of the newly started
processes, and the fraction of bandwidths which could be
different in conformity with the remote hosts involved in the
communication.

As regards the resources requested by the job, we assume
to know for each task k the respective number of instructions
yk to be executed and the number of communications Y,
between the kth and the mth task for all m # k. Obviously,
Yim 1s the generic element of a P X P symmetric matrix v
with all null elements on the main diagonal.

All this information can be obtained either by a static
program analysis, or by using smart compilers or by
other emerging tools which automatically generate them.
For example, the Globus Toolkit includes the Resource
Specification Language which constitutes an XML format to
define application requirements [7].

2.3. Encoding. In general, any mapping solution should be
represented by a vector p of P integers in the set {1,...,N}.
To obtain g, the real values provided by DE in the range
[I,N + 1[ are truncated before evaluation. The truncated
value | y; | denotes the node onto which the task 7 is mapped.
As long as the mapping is considered by characterizing
the tasks by means of their computational needs yx only,
this is an NP-complete optimization problem, in which the
allocation of a task does not affect that of the other ones,
unless one attempts to load more tasks on the same node.
If, instead, also communications Y., are taken into account,
the mapping problem becomes by far more complicate. In
fact, the allocation of a task on a given node can cause that
the optimal mapping needs that also other tasks must be allo-
cated on the same node or in the same site, so as to decrease
their communication times and thus their execution times,
taking advantage of the higher communication bandwidths
existing within any site compared to those between sites.
Such a problem is a typical example of epistasis, that is, a
situation in which the value taken on by a variable influences
those of other variables. This situation is also deceptive, since
a solution g, can be transformed into another with better
fitness p, only by passing through intermediate solutions,
worse than both g, and u,, which would be discarded. To
overcome this problem we have introduced a new operator,
named site mutation, applied with a probability p,, any time
a new individual must be generated. When this mutation
is to be carried out, a position in the current solution g is
randomly chosen. Let us suppose its value refers to a node
belonging to a site C;. This value is equiprobabilistically
modified into another one which is related to a node of
another cluster, say C;. Then, any other task assigned to C; in



the current solution is let randomly migrate to a node of C;
by inserting into the related position a random value within
the bounds for C;. If site mutation does not take place, the
classical transformations typical of DE must be applied.

2.4. Fitness. The two major parties in grid computing,
namely, resource consumers who submit various applica-
tions, and resources providers who share their resources,
usually have different motivations when they join the grid.
Currently, most of objective functions in grid computing are
inherited from traditional parallel and distributed systems.
As attains applications, grid users and providers of resources
can have different demands to satisfy. As an example users
could be interested in the total cost to run their application,
while providers could pay more attention to the throughput
of their resources in a particular time interval. Thus objective
functions can meet different goals.

In our case, the fitness function calculates the summation
of the execution times of the set of all the tasks on the basis
of the specific mapping solution.

Use of Resources. Denoting Tfjomp and 7;7™", respectively,

the computation and the communication times requested to
execute the task i on the node j it is assigned to the generic
element of the execution time matrix 7 is computed as
Tj=1 ¢+ T (2)
In other words, 7;; is the total time needed to execute
task i on node j and is evaluated on the basis of the
computation power and of the bandwidth which remain
available once deducted the local workload. Let 73 be the
summation on all the tasks assigned to the jth node for the
current mapping. This value is the time spent by node j in
executing computations and communications of all the tasks
assigned to it by the proposed solution. Of course, it does
not consider the time intervals in which these tasks are idle
waiting for communicating, so that tasks dependency does
not influence the results of the mapping proposed. Clearly, 7;
is equal to zero for all the nodes j not included in the vector
U, that is, all the nodes which do not have assigned tasks.
Considering that all the tasks are coscheduled, the time
required to complete the application execution is given by the
maximum value among all the 7;. Then, the fitness function
is
— S
() = max_{ri}. 3)
The goal of the evolutionary algorithm is to search for the
smallest fitness value among these maxima, that is, to find the
mapping which uses at the minimum, in terms of time, the
grid resource it has to exploit at the most.
If during the DE generation of new individuals the
offspring has the same fitness value as its parent, then it is
selected the individual for which

N
O*(u) = D75 (4)
j=1
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is smaller. This quantity represents the total amount of time
dedicated by the grid to the execution of the job. Obviously,
such a mechanism takes place also for the selection of the best
individual in the population. This choice aims at meeting
the requirements of resource providers, favouring mappings
which exploit best the shared resources.

It should be noted that, though the fitness values of the
proposed mapping are not related to the completion time of
the application, ® and ®* can be seen, respectively, as the
lower and the upper bound of the job execution time.

The pseudocode of our DE for mapping is shown in the
following Algorithm 1.

3. The Distributed Algorithm

Our Distributed DE (DDE) algorithm is based on the clas-
sical coarse-grained approach to Evolutionary Algorithms,
widely known in literature [36]. It consists in a locally linked
strategy, the stepping stone-model [37], in which each DE
instance is connected to d instances only. If, for example,
we arrange them as a folded torus, then each DE instance
has exactly four neighbouring subpopulations as shown
in Figure 1, where the generic DE algorithm is shown in
black, and its neighbouring subpopulations are indicated
in grey. The subpopulation under examination is, thus,
“isolated” from all the other ones, shown in white, and it
can communicate with them in an indirect way only, through
the grey ones. Moreover every M; generations (Migra-
tion Interval), neighbouring subpopulations are allowed to
exchange individuals. The percentage of individuals each
subpopulation sends to its neighbours is called Migration
Rate (Mp).

A design decision is the quality of the elements to be
sent; they might be the best ones or randomly chosen
ones. Another decision must be taken about the received
individuals; they might anyway replace the worst individuals
in the population or substitute them only if better, or
they might finally replace any individual (apart from the
very best ones, of course). It is known from literature that
the number of individuals sent should not be high, nor
should the exchange frequency, otherwise the subsearch in
a processor might be very disturbed by these continuously
entering elements which could even be seen as noise [36].
This mechanism allows to achieve both exploitation and
exploration, which are basic features for a good search.
Exploration means to wander through the search space so
as to consider also very different situations, looking for the
most hopeful (favourable) areas to be intensively sampled.
Exploitation means that one area is thoroughly examined,
so that we can be confident in being able to state whether
this area is promising. By making use of this approach, good
solutions will spread within the network with successive
diffusions, so more and more processors will try to sample
that area (exploitation), and, on the other hand, there will
exist at the same time clusters of processors which will
investigate different subareas of the search space.

Within this general framework, we have implemented a
distributed version for DE, which consists of a set of classical
DE schemes, running in parallel, assigned to different
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begin

begin
fori=1to M do
begin

if (pom < pm)

apply site mutation
else

begin

for j = 1togdo
begin

else
x,"j = x,‘J
end
if O(xy) < O(x;)

else

end
end
end
end

randomly initialize population X = (x1,..
evaluate fitness @ for all the individuals x;
while (maximal number of generations g is not reached) do

choose a random real number p,,, € [0.0,1.0]

choose three integers r1, 7, and r; € {1,..., M}, withr #r #rs#i
choose an integer number sin {1,...,q}

choose a random real number p € [0.0,1.0]
if ((p < CR)OR (j = 5))
Xiry =Xy +F - (%0 = X))

insert x; in the new population

insert x; in the new population

~>x-M)

ALGORITHM 1

FiGuUrE 1: The folded torus topology.

processing elements arranged in a folded torus topology, plus
a master. The master process acts as an interface to the user: it
simply collects the current local best solutions of the “slave”
processes and saves the best among them at each generation.

Besides, this latter is compared with the overall best found so
far and, if fitter, becomes the new overall best and is shown
to the user.

4. Experiments and Findings

Before effecting any kind of experiment the structure of
the available resources and the features of the machines
belonging to each site must be known. Generally, sites of a
grid architecture have different number of systems (parallel
machines, clusters, supercomputers, dedicated systems, etc.)
with various characteristics and performance. To perform a
simulation, we assume to have a grid composed of N = 58
nodes subdivided into five sites denoted with A, B, C, D,
and E with 16, 8, 8, 10, and 16 nodes, respectively. This grid
structure is outlined in Figure 2 while an example of the site
B, made up by four single nodes and a four-node cluster, is
shown in Figure 3.

Hereinafter, we will denote the nodes by means of the
numbers shown in Figure 2, so that, for example, 20 is the
fourth node in site B, while 37 is the fifth node in site D.

Without loss of generality, we suppose that all the nodes
belonging to the same site have the same power « expressed
in terms of millions of instructions per second (MIPS) as
shown in Table 1.
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FiGure 2: The grid architecture.
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FIGURE 3: An example of site B.

TaBLE 1: Power of nodes for each site expressed in MIPS.

Sites A B C D E
o 500 900 2000 1700 700

For the sake of simplicity, we have hypothesized for each
node three communication bands. The first is the bandwidth
Bii available when tasks are mapped on the same node
(intranode communication), the second is the bandwidth
Bij between the nodes i and j belonging to the same site
(intrasite communication), and the third is the bandwidth ;;
when the nodes i and j belong to different sites (intersite
communication). Besides, we presume that all the S;s have
the same very high value (10 Gbit/s) so as to yield the related
communication time negligible with respect to intrasite and
intersite communications.

For each site, the bandwidth of the output link is
supposed equal to that of the input link. In our case, the
intersite bandwidths are reported, with the addition of the
intrasite bandwidths, in Table 2.

Moreover we assume to know the average load of
available grid resources for the time span of interest.

A generally accepted set of heterogenous computing
benchmarks does not exist and the detection of a representa-
tive set of such benchmarks remains a current and unresolved
challenge. To evaluate the effectiveness of our DDE-based
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TaBLE 2: Intersite and intrasite bandwidths expressed in Mbit/s.

A B C D E
A 10
B 2 100
C 6 3 1000
D 5 10 7 800
E 2 5 6 1 100

approach we have decided to investigate different application
tasks with particular attention to both computation-bound
and communication-bound tasks as the load of grid nodes
varies.

After a very preliminary tuning phase, the parameters of
each DDE have been set as follows: M = 30, g = 1000, CR =
0.3, F = 2.0, py = 0.2, My = 50, and My = 1. This set of
parameters is left unchanged for all the experiments carried
on.

Our DDE can be profitably used for mapping of message
passing applications. Here we have used the Message Passing
Interface (MPI) [38] which is a widely used standard library
which makes the development of grid applications more
accessible to programmers with parallel computing skills.
Actually, many MPI library implementations, as MPICH-
G2 [39], MagPle [40], MPI_Connect [41], MetaMPICH [42]
and so on, allow the execution of MPI programs on groups
of multiple machines potentially based on heterogeneous
architectures. However, all these libraries require that users
must explicitly specify the resources to be used and they
may have enormous difficulties to select, at the best, the
appropriate resources for their works in grid environments.

The DDE algorithm has been implemented in C language
and all the experiments have been effected on a cluster of 17
(1 master and 16 slaves) 1.5 GHz Pentium 4 interconnected
by a FastEthernet switch.

For each test problem 20 DDE executions have been
carried out, so as to investigate the dependence of the results
on the random seed. Each execution has required 13s for a
total of 260s for each set of experiments. It should be noted
that if the situation described at the end of Section 2.4 takes
place when comparing the results of the different runs, the
same tie-break mechanism is adopted.

Once defined the evolutionary parameters and the grid
characteristics, different scenarios must be designed to
demonstrate the effectiveness of the approach over a broad
range of realistic conditions. To ascertain the degree of
optimality, different tests are conceived to allow a simple
comparison between a manual calculation and the solution
provided by the mapping tool. Note that, for the sake of
simplicity, in the experiments reported, we suppose that the
local load of a node is constant during all the execution time
of the application task allocated to it. Obviously, a variable
load would require only a different calculation but it would
not invalidate the approach proposed. In the following, we
show the mapping results attained for these experiments.

The first experiment has regarded an application of P =
12 tasks with yx = 90 Giga Instructions (GI), Yk, = 0 for
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TaBLE 3: Findings for each experiment.

Exp. no. 1 2 3 4 5 6 7 8

[ 52.94 52.94 128.57 139.19 180.00 271.73 484.77 128.57
o* 571.76 587.64 2571.42 2744.59 5387.14 8693.28 5817.29 1781.22
ny 20 15 20 15 3 4 3 20
O, 52.94 62.20 128.57 156.64 218.25 298.50 939.97 128.57
o 0.00 16.46 0.00 31.01 16.48 13.73 255.29 0.00

all k,m € {1,...,P}, and ¢;(At) = 0 for all the nodes. The
mapping solution found by our DDE is:

u = 1{25,26,27,28,29,30,31,32,41,42,35,36}.  (5)

As expected, the mapping procedure has allocated all the
tasks on the most powerful available nodes, eight belonging
to the site C and four to site D.

In the second experiment, all the parameters remain
unchanged except the load. In particular, we have supposed
£(At) = 0.7 on the two nodes 31 and 32 and £(At) = 0.5
on the three nodes 40, 41, and 42. In this hypothesis, the
mapping solution found is

u = {25,34,27,28,37,30,39,38,33,29,36,26}.  (6)

As it can be observed the solution again involves the most
powerful nodes (six belonging to C and six to D), discarding
correctly the loaded nodes in those sites.

In the third experiment, we have P = 20 with y; = 90 GI,
Yim = O forall k,m € {1,...,P} and €(At) = 0.9 for all the
nodes of the sites B and D, while for the site C we assume
¢i(At) = 0.8 for i € {25,...,28} and ¢;(At) = 0.6 fori €
{29,...,32}. The mapping solution discovered by our DDE
is

p =143, 44, 45, 46,47,29,49,50,51, 52,53, 54, 55, 56,

(7)
57,58,48,30,31,32}.

It is worth noticing that in this load conditions the
mapping procedure has chosen once again the most powerful
nodes: 4 of C with ¢;(At) = 0.6 which are those with a minor
load and 16 of E.

The same solution has been obtained in the fourth exper-
iment where we have just introduced the communications
Yim = 10 Mbit for all k, m € {1,...,P}.

In the fifth experiment, we have left unchanged both the
load conditions and the number of instructions that each
task k has to effect (yx = 90 GI). Simply we have considered
P = 36 and removed all the communications among the
tasks. The allocation is outlined in the following

p=11,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16,
47,50,44,57,46, 31,29, 54,49, 51, 55, 53, 30, (8)
32,45,52,43,58,56,48}.

This solution, according to the load conditions, has
mapped 16 tasks on the 16 nodes of A, 16 on all the nodes

of E, and 4 on the 4 nodes of C which present the lowest load
(0.6).

In the sixth experiment, we have merely added a
communication Yk, = 10 Mbit for all k,m € {1,...,P}. The
result is:

u=11,2,3,4,5,6,7,8,9,10,11,12,13,14, 15, 16, 43,
45,51,28,58,49,46,52,47,48,56,27,57,50,30, (9)

29,25,32,31,26}.

Such a solution provides 16 tasks on the 16 nodes of site
A, 12 on the site E, and 8 on all the nodes of C. It can be
noted that the mapping proposed has selected four nodes
of C which are loaded at 0.8, and therefore less powerful
than the other discharged nodes of E, to exploit the major
bandwidth among nodes allocated on the site C with respect
to the intersite bandwidth between C and E.

The influence of the communications is highly evidenced
in the successive experiment where, leaving unchanged all
the other conditions, the communication ¥, has been set
to 100 Mbit for all k,m € {1,..., P}. The mapping proposed
has allocated all the 36 tasks on the 16 nodes of site E. In fact,
the time requested to perform the communications becomes
relevant compared to the computation time and thus it is
advantageous to allocate more tasks on each node of site E
rather than to subdivide them on nodes of different sites. The
solution is

u =153,47,43,44, 47,48, 45,49, 50, 46, 46, 48, 49, 50, 43,
44,53,51,51,45,52,52, 54, 54, 56, 57,57, 55, 55, 56,

58,58,43,47,53,55}.
(10)

As an example of the behavior shown by our tool,
Figure 4 reports the evolution of the best run achieved
for this last test. Namely, we depict the best, average and
worst fitness values among those sent to the master by the
16 slaves at each generation. Since the initial generation
the average, the best and the worst fitness values decrease
over generations, and this continues until the end of the
run. Every now and then several successive generations take
place in which no improving solutions are found, and this
results in best, average and worst values becoming more and
more similar. Then, a new better solution is found and the
three values become quite different. The described behavior
implies that good solutions spread only locally among linked
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FIGURE 4: Behavior of fitness as a function of the number of
generations for the best run of experiment 7.

subpopulations without causing premature convergence to
the same suboptimal solution on all the slaves, which is a
positive feature of the system.

The final experiment has attained a job with P = 36, yx =
90 GI for k € {1,...,12}, yx = 9 Gl for k € {13,...,36},
Vim = 0 forall k,m € {1,...,24} and yi,, = 10 Mbit for all
k,m € {25,...,36}, while the load conditions are the same
of the previous experiment. The mapping found is

u =143,44,45,46,47,48,31,32,51,52, 53, 30, 55, 56, 57,
58,29,57,58,31,58,57,58,57,29,29, 29, 29,29, 29,

29,30,29,29,29,32}.
(11)

From the mapping proposed, it can be observed that 17
tasks are placed on C and 19 are allocated on E. In particular,
three of the tasks with y, = 90 GI have been mapped on three
nodes of C with £(At) = 0.6 (nodes 30, 31 and 32) and the
remaining 9 with the same computational requirements on 9
nodes of site E, while the fourth node of C with £(At) = 0.6
(node 29) has been used to allocate 10 tasks each with y; =
9GI and i, = 10 Mbit for all (k, m) € {25,...,36}.

In Table 3, for each experiment (Exp. no) the best fitness
values for ® and ®* are outlined and, for all the 20 runs,
the number of occurrences (1) of the best result, the average
fitness values (@, ), and the standard deviations o are shown.

The tests performed have evidenced a high degree of
efficiency of the proposed model in terms of both goodness
of the solutions provided and convergence times. In fact,
efficient solutions have been quickly provided independently
of work conditions (heterogenous nodes diverse in terms of
number, type, and load) and kind of jobs (computation or
communication bound).
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5. Conclusions and Future Works

This paper faces the multisite mapping problem in a
grid environment by means of Differential Evolution. In
particular, the goal is the minimization of the degree of use
of the grid resources by the proposed mapping. The results
show that a Distributed Differential Evolution algorithm is a
viable approach to the important problem of grid resource
allocation. A comparison with other methods is impossible
at the moment due to the lack of approaches dealing with
this problem in the same operating conditions as ours. In
fact, some of these algorithms, such as Min-min, Max-min,
and XSuffrage [12], are related to independent tasks and their
performances are affected in heterogenous environments. In
case of dependent tasks, the classical approaches apply the
popular model of Direct Acyclic Graph (DAG) differently
from our approach in which no assumptions are made about
the communications among the processes since we have
hypothesized tasks coscheduling.

Future works will include an investigation of the different
DE schemes, together with a wide tuning phase for parameter
sets, to experiment their effectiveness in facing the problem
under exam.

A dynamic measure of the load of grid nodes will be
examined. Furthermore, we have supposed that the cost
per MIPS and Mbit/s is the same for all the grid nodes.
Since nodes with different features have different costs, in
the future these costs will be added to the other parameters
considered in the mapping strategy.

Finally, since Quality of Service (QoS) assumes an impor-
tant role for many grid applications, we intend to enrich
our tool so it will be able to manage multiple QoS require-
ments as those on performance, reliability, bandwidth, cost,
response time, and so on.
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Evolution strategies are successful global optimization methods. In many practical numerical problems constraints are not
explicitly given. Evolution strategies have to incorporate techniques to optimize in restricted solution spaces. Famous constraint-
handling techniques are penalty and multiobjective approaches. Past work has shown that in particular an ill-conditioned
alignment between the coordinate system of Gaussian mutation and the constraint boundaries leads to premature convergence.
Covariance matrix adaptation evolution strategies offer a solution to this alignment problem. Last, metamodeling of the constraint
boundary leads to significant savings of constraint function calls and to a speedup by repairing infeasible solutions. This work gives
a brief overview over constraint-handling methods for evolution strategies by demonstrating the approaches experimentally on

two exemplary constrained problems.

1. Introduction

Many continuous optimization problems in practical appli-
cations are subject to constraints [1]. Constraints can make
an easy problem hard and hard problems even harder.
Surprisingly, in the past only little research efforts have
been devoted to the development of efficient and effective
constraint-handling techniques—in contrast to the energy
invested in the development of new methods for uncon-
strained optimization. This observation also holds true in
the field of evolutionary computation. This paper is devoted
to constraint-handling techniques that have been developed,
in particular for evolution strategies. It summarizes our
line of research of the last years in the field of constraint-
handling and premature step-size reduction [2-7]. In real-
valued solution spaces a constrained problem can be hard
to solve due to a coordinate system alignment problem
that leads to premature fitness stagnation. We review not
only various general approaches like penalty functions, but
also specialized approaches that have been developed to
solve coordinate alignment problems, by summarizing each
constraint-handling method, stating experimental results on
two exemplary test functions and discussing advantages and
disadvantages.

The remainder of this section gives a brief introduc-
tion to evolution strategies, constrained problems, and
a taxonomy of constraint-handling techniques. Section 2
introduces three examples from the famous family of penalty
functions. A bioinspired multiobjective approach is reviewed
in Section 3. The methods that concentrate on coordinate
system alignment are presented in Section 4, while Section 5
is devoted to metamodeling of the constraint boundary.

1.1. Evolution Strategies. Evolution strategies (ES) are a
family of strong stochastic methods for global optimization.
Developed by Rechenberg [8] and Schwefel [9], they have
become famous for global numerical optimization, that is,
nonconvex optimization in RN. In each iteration A offspring
solutions are produced and the u best are selected as parents
for the following generation. An important basis of ES is
the self-adaptive Gaussian mutation operator that we briefly
repeat in this context. An individual a of a (y%1)-ES with the
N-dimensional objective variable vector x € RY is mutated
in the following way:

x :=x+1z,

(1)

Z:= (UleNl(O, 1))---)UN=NN(O) 1)))



while N;(0, 1) delivers a Gaussian distributed number. The
strategy parameter vector undergoes mutation—a typical
variation of c—with log-normal mutation:

’

o = e(MMO1)

(ale(nwl(o,l)’ o UNe(nNNw,l))) (2)

as crossover operator arithmetic recombination is applied in
most cases. For a detailed introduction to ES we recommend
the introduction by Beyer and Schwefel [10] or the introduc-
tory chapter to ES in Eiben’s book [11].

1.2. Constrained Problems. In the field of evolutionary
computation the constraints typically are not considered
available in their explicit formal form. Rather, the constraints
are assumed to be black boxes: a vector x fed to the black
box just returns a numerical or boolean value. If there
is a numerical response, then the information about a
positive value can be used to assess the distance to feasible
solutions. A number of constraint-handling methods exploit
this information. In general, the constrained continuous
nonlinear programming problem is defined as follows: find a
solution x = (x1,x2,... ,xN)T in the N-dimensional solution
space RN that minimizes the objective function f(x), in
symbols as:

f(x) — min!, xe RN subject to
inequalities gi(x) <0, i=1,...,m, (3)
equalities hix)=0, j=1,...,n.

A feasible solution x € RN satisfies all #; inequality and
ny equality constraints. A feasible solution that minimizes
f(-) is termed as an optimal solution. If g;(x*) = 0 for
some inequality constraint at an optimal solution x*, then
the constraint is said to be active. We assume that the
evaluations of the constraint functions are computationally
expensive and that the return values are boolean and provide
the information of whether the solution is feasible or not.
In order to be able to develop more advanced constraint-
handling techniques, for example, repair or feasibility check
approaches, metamodels of the constraint function can be
built with certain assumptions, that is, to be linear, quadratic,
and so forth.

The two following test functions excellently demonstrate
the phenomenon of premature fitness stagnation that will be
discussed in the following sections and that is a challenge for
most constraint-handling techniques. The two functions will
be used for the discussion of the methods reviewed in the
current paper. Problem 2.40—taken from Schwefel’s artificial
test problems [10]— exhibits a linear objective function and
an optimum with five active linear constraints. The problem
is to minimize

5
Sfoao(x) = *in, (4)
i=1
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subject to

xj =0, forj=1,...,5,

D.a0(x) = >
=>(9+i)x; + 50000 = 0, for j =6

i=1

(5)

with minimum x* = (5000, 0,0, 0, O)T and f(x*) = —5000.
The second problem is called tangent problem (TR). It is
based on the sphere model subject to one linear constraint:

N
fir(x) =D x; withgm®x) =>x-N>0  (6)

i=1

with x* = (1,...,1)T and f(x*) = N. The success rates
on TR get worse when approximating the optimum. In
this paper we will focus on the TR problem with N = 2
dimensions, denoted as TR2.

1.3. A Brief Taxonomy of Constraint-Handling Methods. A
variety of constraint-handling methods for evolutionary
algorithms have been developed in the last decades. Most of
them can be classified into five main types of concepts.

(i) Penalty functions decrease the fitness of infeasible
solutions by taking the number of infeasible constraints or
the distance to feasibility into account [12-16]. The history
of penalty functions began with the sequential unconstrained
minimization technique by Fiacco and McCormick [13] in
which the constrained problem is solved by a sequence
of unconstrained optimizations. The penalty factors are
stepwise intensified. In similar approaches penalty factors
can be defined statically [14] or depending on the number
of satisfied constraints [16]. They can dynamically depend
on the number of generations as Joines and Houck propose
[15]:

fx) = fx) +(C-1)* - Gx), (7)

at generation t, parameters C and « are user defined; typical
settings are C = 0.5, « = 1, or 2. G(x) is a measure for
the constraint violation. A frequent definition is G(x) =
> max[O,gi(x)]ﬂ + Z]'?il |hj(x)|” with factors § > 1 and
y = 1. Penalties can be adapted according to an external
cooling scheme [15] or by adaptive heuristics [12]. In the
death penalty approach [5] infeasible solutions are rejected
and new solutions are created until enough feasible ones
exist. In the segregated genetic algorithm by Riche et al.
[17] two penalty functions, a weak one and an intense
one, are calculated in order to surround the optimum. In
the coevolutionary penalty function approach by Coello
Coello [18] the penalty factors of an inner evolutionary
algorithm are adapted by an outer evolutionary algorithm.
Some methods are based on the assumption that any feasible
solution is better than any infeasible one [19, 20]. Examples
are the metric penalty functions by Hoffmeister and Sprave
[21]. Feasible solutions are compared using the objective
function while infeasible solutions are compared considering
the satisfaction of constraints. Similar is the approach by
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Oyman et al. [22]. Their fitness function depends on the
parent and children population at every generation and,
therefore, becomes a dynamic approach.

In his approach called stochastic-ranking Runarsson [23] he
uses metamodels to predict both fitness functions values and
penalties based on constraint violations. From this point of
view the approach is related to methods that are based on
metamodeling the constraint boundary.

(ii) Repair algorithms either replace infeasible solutions
or only use the repaired solutions for evaluation of their
infeasible pendants [24, 25]. This class of algorithms can also
be seen as local search methods that reduce the constraint
violation. The repair algorithm generates a feasible solution
from an infeasible one. In the Baldwinian case, the fitness
of the repaired solution replaces the fitness of the original
solution. In the Lamarckian case, the feasible solution
overwrites the infeasible one. In general, defining a repair
algorithm can be as complex as solving the problem itself.

(iii) Decoder functions map genotypes to phenotypes
which are guaranteed to be feasible. Decoders build up a
relationship between the constrained solution space and an
artificial solution space easier to handle [25-27]. They map
a genotype into a feasible phenotype. By this means even
quite different genotypes may be mapped onto the same
phenotype. Eiben and Smith [11] define decoders as a class of
mappings from the genotype space 4’ to the feasible regions
F of the solution space § with the following properties:
every z € 4’ must map to a single solution s € ¥,
every solution s € ¥ must have at least one representation
s’ € &', and every s € F must have the same number of
representations in 4’ (this need not be one).

(iv) Feasibility preserving representations and operators
force candidate solutions to be feasible [28, 29]. A famous
example is the GENOCOP algorithm [27] that reduces the
problem to convex search spaces and linear constraints. A
predator-prey approach to handle constraints is proposed by
Paredis [28] using two separate populations. Schoenauer and
Michalewicz [29] propose special operators that are designed
to search regions in the vicinity of active constraints.
A comprehensive overview to decoder-based constraint-
handling techniques is given by Coello [25] and also by
Michalewicz and Fogel [27].

(v) Multiobjective optimization techniques are based on
the idea of handling each constraint as an objective [30-35].
Under this assumption many multiobjective optimization
methods can be applied. Such approaches were used by
Parmee and Purchase [34], Jimenez and Verdegay [32],
Coello Coello [31], and Surry et al. [36]. In the behavioral
memory-method by Schoenauer and Xanthakis [35] the EA
concentrates on minimizing the constraint violation of each
constraint in a certain order and optimizing the objective
function in the last step.

Of course, constraint-handling methods exist that do
not fit into the taxonomy. Montes and Coello Coello [37]
introduced a technique based on a multimembered ES
with a feasibility comparison mechanism. The €-constrained
differential evolution approach by Takahama and Sakai [38]
combines the usage of an € for equality constraints with
differential evolution. The dynamic multiswarm particle

TaBLE 1: Experimental results of the death penalty method.

mean dev ffe cfe
31-107% 3.8-107* 11,720 20,447
227.6 65.2 50,624 96,817

Death penalty  best
TR2 4.1-1077
2.40 51.9

optimizer by Liang and Suganthan [39] makes use of a set
of subswarms concentrating on different constraints. It is
combined with sequential quadratic programming as a local
search method. The approach of Mezura-Montes et al. [40]
combines differential evolution, different mutation operators
to increase the probability of producing better offspring,
three selection criteria, and a diversity mechanism. Mezura-
Montes [41] approach gives a survey of constraint-handling
methods for evolutionary algorithms.

In the following section we will compare various appro-
aches from different fields and compare them, in particular
with regard to the mentioned premature step-size problem.
The next section shows this problem experimentally.

2. Penalty Methods

Evolutionary search is guided by the quality of its candidate
solutions. Consequently, an obvious solution to constraint-
handling is to deteriorate the fitness of infeasible methods
[11, 25]. Here we review three penalty functions exemplarily.
Death penalty is the simplest way, but wastes comparably
many constraint function calls. Paragraph 2.2 is a typical
penalty technique where the solutions are penalized with
regard to the progress of the search. The death penalty
step control approach that prevents premature step-size
reduction is reviewed in Section 2.3.

2.1. Death Penalty. First of all, we will analyze the behav-
ior of death penalty, that is, simply discarding infeasible
offspring solutions [42, 43]. This is the first time we can
observe premature fitness stagnation. Table 1 shows the
corresponding results of a (15,100)-ES with the following
settings on problems 2.40 and TR2. We use the mutation
introduced in Section 1.1 with settings 7, = (~/2N)~' and
71 = (V2o/N)™!' and arithmetic recombination with p =
2 randomly chosen parents. All experiments in this article
make use of the same experimental settings unless stated
explicitly. The termination condition is fitness stagnation:
the algorithms terminate if the fitness win from generation
t to generation ¢ + 1 falls below 6 = 107'2. In this case
the magnitude of the step sizes is too small to effect further
improvements. Parameters best, mean, and dev describe the
achieved fitness (difference between the optimal fitness and
the fitness of the best solution |f(x*) — f(x**!)|) of 25
experimental runs while ffe counts the average number of
fitness function evaluations and cfe of constraint function
evaluations, respectively. The results show that death penalty
is not able to approximate the optimum of the problem
satisfactorily. The relatively high-standard deviations dev
show that the algorithms produce unsatisfactorily different
results.



TaBLE 2: Experimental results of the dynamic penalty function by
Joines and Houck [15] on problems TR2 and 2.40.

best mean dev ffe cfe
TR2 1.2-10°° 1.2-1073 1.5-1073 13,100 13,100
2.40 219.4 440.8 85.0 31,878 31,878

We can summarize the behavior of death penalty menti-
oning the advantage that death penalty is easy to implement.
The disadvantages are that death penalty is inefficient as
many infeasible tries are wasted, and it suffers from prema-
ture convergence. The following methods aim at preventing
premature convergence.

2.2. Dynamic Penalty Functions. The question arises whether
dynamic penalty functions also suffer from premature
convergence. To answer this question we tested the penalty
function by Joines and Houck [15] that is based on adding a
penalty on infeasible solutions

f® = fx+C-n*->6 (8)

i=1

with parameters C, «,  and the constraint violation Gj(x) =
>, max]0, g,-(x)]ﬁ . The penalty depends on the number
of iterations t and decreases in the course of time. Table 2
shows the experimental analysis of the penalty function on
2.40 and TR2 with « = 1.0 and § = 1.0. Again, the
algorithm is based on a (15,100)-ES with the same settings
like in the last paragraph 2.1. The algorithm stops earlier,
but the results are even worse and show that premature
fitness stagnation occurs, too. The reason is quite obvious:
the success rate in the vicinity of the infeasible search space
remains small because of the penalty—no matter whether
caused by discarding or penalizing. Consequently, we can
summarize as follows: dynamic penalty functions are easy to
implement, and no feasible starting point is required. But the
disadvantages are that dynamic penalty functions suffer from
premature convergence. Related work on penalty functions
can be found in [12-16].

2.3. Death Penalty Step Control. The most obvious mod-
ification to prevent premature step-size reduction is the
introduction of a minimum step-size € for the mutation
strengths o; with 1 <i < N:

0; = €. 9)

This is exactly what the death penalty step control evolution
strategy (DSES) is aiming at [5]. Nevertheless, a lower
bound on the step sizes will also prevent an unlimited
approximation of the optimum when reaching the range of €.
Consequently, the DSES makes use of a control mechanism
to reduce € during convergence to the optimal solution.
The reduction process depends on the number of infeasible
mutations produced when reaching the area of the optimum
at the boundary of the feasible solution space. The reduction
process of € depends on the number z of rejected infeasible
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solutions: in every @ infeasible trial, € is reduced by a factor
0 < 9 < 1 according to the equation

€ :=€e-9 (10)

The DSES is denoted by [@; 9]-DSES. Again, we show the
behavior of the constraint-handling method on problem TR2
and 2.40; see Table 3. The method is able to approximate
the optimum of problem 2.40 with comparably few fitness
function evaluations, but a waste of constraint function
evaluations. Intuitively, the five active linear constraints of
problem 2.40 cause many infeasible samples, so does the
step-sizes reduction mechanism. On harder problems like
TR2 the low success rates still prevent an arbitrarily exact
approximation of the optimal solution. The success of the
DSES depends on a proper reduction speed, that is, proper
parameter settings for € and 9. Too fast reduction results
in premature convergence; too slow reduction is inefficient.
Further experiments on other test functions confirm this
picture.

Again, we summarize the following results: death penalty
step control is easy to implement, and shows an improvement
of the approximation of optima with active constraints.
But the disadvantages are that death penalty step control
consumes many constraint function evaluations, its success
depends on proper parameter settings, and on some prob-
lems it may still suffer from low success rates. A more detailed
experimental analysis of the DSES can be found in [4, 5].

3. A Multiobjective Bioinspired Approach

A familiar variant to handle constraints is to treat each
constraint—or an aggregated sum of all constraints—and the
objective function as separate objectives in a multiobjective
formulation. Similar approaches have been introduced in the
past [30-35]. Here we review a similar constraint-handling
technique that treats the fulfillment of constraints and the
optimization of the objective function as separate objectives
that are optimized using a population specific selection
scheme. The bioinspired concept offers an answer to the
problem of low success rates: our two-sex evolution strategy
(Kramer and Schwefel [5]) allows candidate solutions to
cross the constraint boundary. The mechanism to enforce
the approach of the optimum stems from nature. Individuals
of different sex are selected by different criteria and nature
allows pairing only between individuals of different sex.
Transferring this principle to constraint-handling means:
Every individual of the two sexes evolution strategy (TSES) is
assigned to a feature called sex. Similar to nature, individuals
with different sexes are selected according to different
criteria. Individuals with sex o are selected by the objective
function. Individuals with sex ¢ are selected by the fulfillment
of constraints. The intermediary recombination operator
plays a key role. Recombination is only allowed between
parents of different sex. A few modifications are necessary
to prevent an explosion of the step size, that is, a two-step
selection operator for individuals of sex ¢ similar to the
operator by Hoffmeister and Sprave [21]. For a list of TSES
variants and modifications we refer to [5]. The populations
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TaBLE 3: Experimental results of the death penalty step control evolution strategy.

DSES Type best Mean dev ffe cfe

TR2 [15;0.5] 3.7-107 85-10° 25-10°° 1,253,394 2,315,574

2.40 [100;0.7] 1.9-107" 2.7-10710 7.9 - 10710 89,832 1,118,490

TaBLE 4: Experimental results of the two-sex evolution strategy on
TR2 and 2.40.

TSES  Type K best mean dev ffe/cfe
TR2 (8+8,10+90) 200 5.4-10"% 2.9-1077 4.7-10"% 521,523

2.40 (8+8,13+87) 50 0.0 0.0 3.7 - 10711 498,594

are noted as (4o + ¢, Ao + Ac)—the index determines the sex,
that is, o for objective function and ¢ for constraints.

Table 4 shows the experimental results of the TSES on
problems TR2 and 2.40. While death penalty completely
fails on problem 2.40, the (8 + 8, 13 + 87)-TSES reaches
the optimum in every run. Now, a better approximation
of the harder problem TR2 is possible. Nevertheless, the
approximation quality may still be improved and an analysis
on further test problems—that can be found in [4]—shows
that the TSES is successful on many constrained problems,
but not on all. Fortunately, the TSES is quite robust to the
chosen population ratios.

We can summarize that the two-sex evolution strategy
improves the approximation of optima with active con-
straints, allows infeasible starting points, saves constraint
function evaluations, for example, in comparison to the
DSES, and is quite robust to parameter changes. But the
disadvantages are that the two-sex evolution strategy still con-
sumes many fitness function evaluations; on some problems
it may still suffer from low success rates, for example, on TR2.

4. Coordinate Alignment Techniques

In real-valued optimization the coordinate system plays an
important role. If the coordinate system of the mutation
operators, for example, of Gaussian mutation, is not aligned
to the coordinate system of the objective function—and
this is frequently the case in black-box optimization—
undesirable effects may occur like premature step-size reduc-
tion.

4.1. Premature Step-Size Reduction. The phenomenon of
premature step-size reduction at the constraint boundary has
been analyzed in [2]—in particular for the condition that the
optimum lies on the constraint boundary or even in a vertex
of the feasible search space. In such cases the evolutionary
algorithm frequently suffers from low success probabilities
near the constraint boundaries. Under simple conditions,
that is, a linear objective function, linear constraints, and
a comparably simple mutation operator, the occurrence of
premature convergence due to a premature decrease of step
sizes was proven. Figure 1 illustrates the reason for premature
step size reduction. We assume the simplified case in which
mutations are produced on the boundary of the circles.

Infeasible solution space

Direction to
optimum

Feasible
solution space

FiGgure 1: [llustration of the success probabilities at the constraint
boundary. In this simplified model we assume that mutations are
produced uniformly on the boundary of the circles. Both solutions
x; and x; lie close to the constraint boundary with distance d. In
case of small step sizes 0 < d, the success probability (s;/(270)) is
higher than in the case of ¢ > d.

in case of large mutation strengths (x;) with ¢ > d the
region of success, that is, the marked part s; of the circles,
is smaller in comparison to the whole circle than in the
case that the circle is not cut by the constraint boundary
(x2). Consequently, the probability to produce successful
mutations is higher for small step sizes and these mutations
are favored during optimization. This is a coordinate system
alignment problem: In case of N independent step sizes
and coordinate rotation the mutation circle can adapt to a
mutation ellipsoid whose region of success is not restricted
by the constraint boundary.

Arnold and Brauer [44] analyzed the behavior at the
boundary of linear constraints and models the distance
between the search point and the constraint plane with
a Markov chain. Furthermore, they discuss the working
of step length adaptation mechanisms based on success
probabilities.

4.2. Biased Mutation. The shape of the standard mutation
ellipsoid is Gaussian. The best modification to improve the
success rate situation would be a more flexible mutation
distribution function. Later, we will see that a rotation of
the mutation ellipsoid is a reasonable undertaking. But is a
deformation also an adequate solution to low success rates?
Biased mutation aims at biasing the mean of the Gaussian
distribution into beneficial directions self-adaptively [7].
A self-adaptive bias coefficient vector & determines the
direction of this bias and augments the degree of freedom
of the mutation operator. This additional degree of freedom
improves the success rate of reproducing superior offspring.



The mutation operator adapts the bias direction within the
interval —1 (for left) and 1 (for right) in each of the N
dimensions:

E:(El,...,EN) With—leiSI. (11)

This relative direction must be translated into an absolute
bias vector. For this sake the step sizes 0; can be used. For
everyi € 1,...,N the bias vector b = (by,...,by) is defined
by

bi =& - o (12)

Since the absolute value of bias coefficient &; is less than
or equal to 1, the bias will be bound to the step sizes o;.
This restriction prevents the search from being biased too far
away from the parent. Hence, the biased mutation works as

follows:
x =x+ (01N1(0, 1) +by,...,on Ny (0, 1) + bN)

;on My (En, 1)).

(13)
=X+ (014/\/1(51,1),...

To allow self-adaptation, the bias coefficients are mutated in
the following meta-EP way:

&E=&+y-N(O,1), i=1...,N, (14)
with parameter y determining the mutation strength on
the bias. The biased mutation operator (BMO) biases the
mean of mutation and enables the ES to reproduce offspring
outside the standard mutation ellipsoid. To direct the search,
the biased mutation enables the center of the ellipsoid
to move within the bounds of the regular step sizes o.
An adaptive variant of the originally self-adaptive biased
mutation is the descent mutation operator. It estimates the
descent direction of two population’s centers x; and y:41 of
successive generations. Let y; be the center of the population
at generation £:

u
X =D Xi. (15)
i=1

The normalized descent direction & of two successive popu-
lation centers y; and y;4; is

= Xt+1 — Xt .

‘Xz+1 *Xt‘ (16)

Similar to the BMO, the descent mutation operator (DMO)
now becomes

X =x+ (a1 M(&,1),..., 08Ny (€N, 1)) (17)

The DMO is reasonable as long as the assumption of locality
is true: the estimated direction of the global optimum can be
derived from local information, that is, the descent direction
of two successive populations’ centers. Again, we analyze
both biased mutation operators on the test problems 2.40
and TR2 and show the results in Table 5. For the sake of
adaptation of the bias an increase of offspring individuals
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TasBLE 5: Experimental results of the biased mutation variants BMO
and DMO.

BMO best mean dev ffe cfe
TR2 1.6-10° 9.0-10* 29-107* 26,832 25,479
240 82-1072 22-1077 24-10"% 459,774 508,387
DMO best mean dev ffe cfe
TR2 88-10° 46-10* 1.4-107* 31,506 29,196
2.40 1.6-107'"" 1.2-107° 2.8-10710 358,954 359,545
to A = 300 is necessary. The bias mutation parameter is

set to the standard setting y = 0.1. Our experiments show
that the BMO and the DMO are both able to improve
the results on problem 2.40. The experiments reveal that
the mutation distribution deformation improves the success
rate—intuitively by shifting the center of the mutation
ellipsoid so that the latter is not cut off by the infeasible
solution space. But the results show that the harder problem
TR2 is still not easy to approximate.

We can conclude that biased mutation improves the
approximation of optima with active constraints. Descent
biased mutation is comparatively efficient, in particular more
efficient than the BMO. But the disadvantages are that biased
mutation consumes many fitness and constraint function
evaluations, and on some problems it may still suffer from
low success rates.

4.3. Mutation Ellipsoid Rotation. Correlated mutation by
Schwefel [45] rotates the axes of the hyperellipsoid to adapt
to local properties of the fitness landscape. Three ways are
possible to rotate the mutation ellipsoid with the help of
Ny = N(N — 1)/2 possible rotation angles:

(1) a self-adaptive rotation—in this case the N, rotation
angles become strategy parameters and the algorithm
has to tune itself,

(2) a rotation with the help of a coevolutionary
approach,

(3) with a metamodel of the constraint boundary that
delivers the orientation of the constraint boundary.

Table 6 shows the experimental results of self-adaptive
correlated mutation (SA-ES), a metaevolutionary approach
((3,15(3,15))-MA-ES) [5], and correlated mutation using
the metamodel estimator (MM-ES) with 10 and 30 binary
search steps. Correlated mutations make use of N, additional
strategy parameters, that is, angles for the rotation of
the hyperellipsoid. The self-adaptation process of the SA-
ES fails to adapt the angles automatically. The parameter
space of N step sizes and N, angles is too large to adapt
successfully by means of self-adaptation. The MA-ES is a
nested ES, that is, an outer ES evolves the angles of an
inner ES that optimizes the problem itself. Of course, this
approach is rather inefficient—as one fitness evaluation
of the outer ES causes a whole run of the inner ES on
the original problem—but the results demonstrate that
the rotation of the hyperellipsoid has a strong impact on
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TaBLE 6: A comparison of correlated mutation, metaevolution, and
the metamodel-based ellipsoid rotation on TR2.

SA-ES MA-ES MM-ES (10)  MM-ES (30)
Best 1.6-1078 0 2.9-1071 0.0
Mean 2.4-10* 0 1.6 -10°° 0.0
Dev 35-107%  3.1-1071¢ 5.9-107° 0.0
Ffe 22,445 927,372 18,736 11,998
Cfe 39,921 1,394,023 32,960 20,183

TaBLE 7: Experimental analysis of the CMA-ES with death penalty.

CMA-ES (DP) best mean dev ffe cfe
TR2 0.0 0.0 5.8 -10716 6,754 12,019
2.40 0.0 0.0 1.3-10718 19,019 71,241

the approximation capabilities on problem TR2. The MM-
ES approach is capable of estimating the proper rotation
angle and controlling the mutation ellipsoid to approximate
the optimum. We use the linear metamodel that will be
introduced in Section 5. The N, rotation angles can be
computed estimating the normal vector ny, of the estimated
hyperplane h and the axes of the mutation ellipsoid. This
is an easy undertaking in two dimensions. A comparison
between the MM-ES approach with 10 and with 30 binary
search steps shows that it is advantageous to invest search
for a precise metamodel estimation: a higher accuracy of the
metamodel delivers better approximation results.

Obviously, the coordinate system alignment problem is
solved with the mutation ellipsoid rotation. But the self-
adaptive rotation does not lead to satisfying results, while
the metaevolutionary approach is inefficient. In the following
paragraph we will investigate whether the covariance matrix
adaptation techniques, which are designed to align coordi-
nate systems, are able to adapt their covariance matrix to
constrained problems automatically without a metamodel.

4.4. Covariance Matrix Techniques. Past research on cons-
traint-handling missed to concentrate on covariance matrix
adaptation techniques. It is an astonishing fact that no
sophisticated constraint-handling techniques for these algo-
rithms have been introduced so far. Nevertheless, we will now
analyze whether the coordinate system alignment problem
can be solved with covariance matrix adaptation using death
penalty. The idea of covariance matrix adaptation techniques
is to adapt the distribution of the mutation operator such
that the probability to reproduce steps that led to the actual
population increases. This idea is similar to the estimation of
distributions approaches. The covariance matrix adaptation
evolution strategy (CMA-ES) was introduced by Hansen [46]
and Ostermeier [47]. The results of the CMA-ES on problems
TR2 and 2.40 can be found in Table 7. Amazingly, the CMA-
ES is able to cope with the low success rates around the
optimum of the TR problem. We observed that the average
number of infeasible solutions during the approximation
is 44%. This indicates that a reasonable adaptation of the
mutation ellipsoid takes place. An analysis of the angle

between the main axis of the mutation ellipsoid and the
constraint function shows that it converges to zero, the same
do the step sizes during approximation of the optimum.
Hence, the coordinate system alignment is successful.

We can conclude that the CMA-ES is able to align
the coordinate system automatically without a metamodel.
Recent results have shown that an acceleration can be
achieved if the covariance matrix is rotated with the help of a
metamodel exactly at the time when the constraint boundary
is reached [3].

5. Metamodeling of Constraints

In black-box scenarios the constraint boundaries are not
explicitly given. Metamodeling of constraints allows advan-
ced constraint-handling methods. Metamodels can be used
for various purposes, for example, for checking the feasibility
and for repair of infeasible mutations, and—Iike we have seen
in the previous section—for control of mutation ellipsoids
and covariance matrices. Metamodeling of objective func-
tions has developed to a successful standard in evolutionary
optimization [48-50].

5.1. Linear Constraint Estimation. For constraint metamod-
eling various classification and regression methods can be
applied. For the case of linear constraints a metamodel that
is based on sampling N infeasible points and binary search
on the segments to the last feasible point has been developed
[3]. The approach works as follows: first, the center point of
the model estimator is determined. When the first infeasible
offspring individual gq; is produced, the feasible parent x is
the center of the corresponding metamodel estimator and
the distance becomes radius r of the model estimator. Then,
random points are generated on the surface of a hypersphere.
Point x; is the center of a hypersphere with radius r, such
that the constraint boundary is cut. In N dimensions N — 1
additional infeasible points g;, 1 < i < N — 1 have to
be produced. The model estimator produces the infeasible
points by sampling on the surface of a hypersphere with
radius r until a sufficient number of infeasible points are
produced. The points on the surface are sampled randomly
with uniform distribution using the method of Marsaglia
[51]. In the first step the algorithm produces N — 1 Gaussian
distributed points and scales the numbers to length 1.
Further scaling and shifting yields N randomly distributed
point on the hypersphere surface.

In a next step the binary search procedure is applied
to identify N points si,...,sy on the constraint boundary:
the line between the feasible point x; and the ith infeasible
point g; cuts the real constraint hyperplane #* in point s;".
We approximate s; with binary search on this segment. The
center s; of the last interval defined by the last points of the
binary search is an estimation of point s on hy. Figure 2
illustrates the situation. With regard to the estimated angle
error ¢, the real hyperplane lies between hf and h5.

In the last step we calculate the normal vector ny of
hy using the N points on the constraint boundary. We
assume that the points s;, 1 < i < N, represent linearly
independent vectors as the endpoints of the lines they lie on



have been generated in a random procedure. A successive
Gram-Schmidt orthogonalization of the (i + 1)th vector
on the ith previously produced vectors delivers the normal
vector ng of hy. Note that we estimate the normal vector ng
of the linear constraint model /g only one time, that is, when
the first infeasible solutions have been detected. Later update
steps only concern the local support point p; of the hyper-
plane (hence, in iteration ¢ the linear model A, is specified
by normal vector ny and current support point p;). At the
beginning, any of the points s; may be the support point py.
For later update steps two cases have to be distinguished. Let
dy, be the distance between the mutation ellipsoid center ¢,
and the constraint boundary hy, at time fy and let k be the
number of binary search steps to achieve the angle accuracy
of § < 0.25°.

(1) The search (i.e., the center of the mutation ellipsoid)
¢; approaches hy: if distance d; between h; and ¢,
becomes smaller than dto/Zk, a reestimation of the
support point p; is reasonable.

(2) The search ¢, moves parallel to h;: an exceeding of
distance

1
Cty — Ct = m*"l'dto (18)

with ¢ = 0.25 - (0.57)3k causes a reestimation of h;.

We use 4k binary steps on the line between the current
infeasible solutions and ¢; to find the new support point p;.

For nonlinear constraints other regression or classifi-
cation techniques may be taken into account like support
vector regression or support vector machines [52].

5.2. Feasibility Check. A metamodel can be used to check
the feasibility of new solutions in order to reduce constraint
function evaluations [3]. For this purpose an exact esti-
mation of the constraint boundary is necessary. Potentially
feasible solutions are checked for feasibility with a real
evaluation of the constraint function. Two errors for the
feasibility prediction of individual x; are possible.

(1) The model predicts that x; is feasible, but it is not.
Points of this category are examined for feasibility.
This will cause an unnecessary constraint function
evaluation.

(2) The model predicts that x; is infeasible, but it is
feasible. The individual will be discarded, but may be
a very good approximation of the optimum.

Exemplarily, we take the linear constraint metamodel of
the previous paragraph into account and test the feasibility
check approach. A safety margin § can reduce the number
of errors of type 2. We set § to the distance d of the
mutation ellipsoid center ¢ and the estimated constraint
boundary h;. Hence, the distance between ¢ and the shifted
constraint boundary h; becomes 2d. A regular update of
the constraint boundary support point p; is necessary; see
previous Section 5.1. Table 8 shows the results of the CMA-
ES with feasibility check using the constraint metamodel.
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Feasible search space hf h

Infeasible search space

FIGURE 2: Procedure to estimate the constraint boundary kg in two
dimensions: the method performs binary search on the segments
between a feasible point x; and each two infeasible points gy, g, to
estimate two points s, s, on the metamodel.

TABLE 8: Results of the CMA-ES with feasibility check based on the
linear metamodel.

CMA-ES (check) best mean dev ffe cfe
TR2 0.0 0.0 6.9-1071 6,780 7,781
2.40 0.0 0.0 1.8-1071 19,386 34,254

TaBLE 9: Results of the CMA-ES with repair mechanism based on
the linear metamodel.

CMA-ES (repair) best mean dev ffe cfe
TR2 0.0 0.0 5.5-1071° 3,432 5,326
2.40 0.0 0.0 9.1-107" 16,067 75,705

We can observe a significant saving of fitness and constraint
evaluations with a high approximation capability.

5.3. Solution Repair. The repair approach projects infeasible
mutations onto the constraint boundary h;. We assume
the angle error ¢ that can be estimated by the number of
binary search steps k. In the solution repair approach the
projection vector is elongated by length 6. Figure 3 illustrates
the situation. Let p; be the support point of the hyperplane
h; at time t and let x; be the infeasible solution. It holds that
a? + b?* = d* and 6/b = tan ¢. We get

6 =+a*>—d?-tan¢. (19)

The elongation of the projection into the potentially fea-
sible region guarantees feasibility of the repaired individuals.
Nevertheless, it might prevent fast convergence, in particular
in regions far away from the hyperplane support point p;
as § grows with increasing length of d. The center of the
hyperplane is updated every 10 generations. The results of
the CMA-ES repair algorithm can be found in Table 9. We
observe a significant decrease of fitness function evaluations,
in particular on problem TR2. The search concentrates on
the boundary of the infeasible search space, in particular on
the feasible site.

6. Summary

Many constraint-handling methods exist for evolution
strategies, at the head penalty functions. Due to low success
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Feasible search space

Infeasible search space

F1GURE 3: The elongation of the projection of infeasible solution x;
onto the estimated constraint boundary A, by length & ensures that
the repaired point x, is feasible.

TaBLE 10: Results of the CMA-ES with covariance matrix rotation,
feasibility check, and repair mechanism [3].

CMA-ES (all) best  mean dev ffe cfe
TR2 0.0 0.0 5.1-10716 3,249 3,650
2.40 0.0 0.0 9.1-10714 11,216 30,069

rates at the constraint boundary, ES without coordinate
alignment techniques often fail to find the optima in the
vertex of the feasible solution space. The death penalty step
control approach and the multiobjective biologically inspired
two-sex ES prevent a premature step-size reduction on some
problems, but its success depends on proper parameter
settings. Low success rates at the constraint boundary can
be increased with coordinate system alignment techniques.
A first step into this direction is biased mutation techniques,
that is, biased mutation and descent biased mutation.
Much better results can be achieved with metamodel-based
mutation ellipsoid rotation. This rotation cannot be achieved
self-adaptively, but automatically with covariance matrix
adaptation mechanisms. The latter shows excellent results,
even on hard problems like TR2. Further improvements of
the CMA-ES can be achieved with metamodeling: constraint
boundary surrogates can be used for prediction of feasibility
of mutations and for repair of infeasible solutions. At
last, Table 10 summarizes the best results that could be
achieved on the two problems combining the CMA-ES with
covariance matrix rotation, feasibility check, and repair of
infeasible solutions.

Metamodeling of constraints will probably become more
and more important for future research. Nonlinear models
will increase the accuracy of feasibility prediction. Advanced
regression methods will improve the accuracy of repaired
infeasible solutions. Further constraint-handling methods
are imaginable like adaptation of mutation probability
distributions and covariance matrices—also with non-linear
metamodels.
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Gait generation is very important as it directly affects the quality of locomotion of legged robots. As this is an optimization problem
with constraints, it readily lends itself to Evolutionary Computation methods and solutions. This paper reviews the techniques used
in evolution-based gait optimization, including why Evolutionary Computation techniques should be used, how fitness functions
should be composed, and the selection of genetic operators and control parameters. This paper also addresses further possible
improvements in the efficiency and quality of evolutionary gait optimization, some problems that have not yet been resolved and

the perspectives for related future research.

1. Introduction

Compared to wheeled robots, legged robots usually possess
superior mobility in uneven and unstructured environments.
This is because they can use discrete footholds to overcome
obstacles, climb stairs, and so forth, instead of relying on a
continuous support surface.

A gait is a cyclic, periodic motion of the joints of a
legged robot, requiring the sequencing or coordination of
the legs to obtain reliable locomotion. In other words, gait
is the temporal and spatial relationship between all the
moving parts of a legged robot [1]. Gait optimization is
very important for legged robots, because it determines the
optimal position, velocity and acceleration for each Degree
of Freedom (DOF) at any moment in time, and the gait
pattern will directly affect the robot’s dynamic stabilization,
harmony, energy dissipation and so on. Gait optimization
determines a legged robot’s quality of movement.

2. Why Evolutionary Computation Is Suitable
for Gait Optimization

2.1. Gait Generation Is a Multiconstrained, Multiobjective
Optimization Problem. Gait generation, which incorporates

mobility and stability, is a very challenging task for legged
robots, because their system of locomotion has multiple
DOFs and a variable mechanical structure during locomo-
tion. As a result a large number of parameters have to be
established. For example, 54 motion parameters have to be
considered for the walk gait of the Sony AIBO robot [2].
To obtain a natural and efficient gait for a legged robot, two
kinds of strategies for sequencing or coordination of the leg
movements can be followed.

The first strategy assumes that the gaits of humans or
animals are optimal, as otherwise they would not have
been able to survive the competition and natural selection
proposed by Darwin’s Theory of Evolution. This assumption
has been proved accurate [3]. The constrained optimization
hypothesis suggests that gait parameters are selected to
optimize (minimize) the objective function of the cost of
transport (metabolic cost/distance) within the limitations of
imposed constraints [4]. A lot of research has shown that
humans and animals move in a way that minimizes the
metabolic cost of locomotion and validates the idea that the
gait synthesis of legged robot is a constrained optimization
problem [5-12].

Robots simulate human or animal behavior [13]. There-
fore, it is quite natural to use biological locomotion data



to control the gait of robots. For example, Human Motion
Captured Data has been adopted to drive a humanoid
robot [14]. However, some research indicates that biological
locomotion data cannot be used directly for a legged robot
due to kinematic and dynamic inconsistencies between
humans/animals and the legged robot. This implies the
need for kinematic corrections when calculating joint angle
trajectories [14].

The second strategy formulates the gait generation
problem of the legged robot as an optimization problem with
constraints. It generates the optimal gait cycle by minimizing
some performance indexes, for example, velocity of motion,
stability criteria, actuating forces, energy consumption, and
so forth. The gait generation problem of legged robots often
has several objectives, and some of these objectives may
be contradictory to each other (for example, speed and
stability). Thus the gait generation problem can be stated
as a multi-constrained and multi-objective optimization
problem [15].

These two gait generation strategies may reach the same
goal by different routes because both of them actually
solve the gait synthesis problem as a multi-constrained
multi-objective optimization problem. Once a database of
precomputed optimal gaits has been created, the robot can
cover the entire interval of precomputed optimal gaits by
interpolation and thus realize smooth real time locomotion.

2.2. Evolutionary Computation Is Suitable for the Gait Opti-
mization Problem. The dynamic equations of legged robot
locomotion are high order highly coupled and nonlinear, and
gait optimization for legged robots requires searching a set
of parameters in a highly irregular, multidimensional space.
As a result, the standard gradient search-based optimization
methods are not useful for legged systems with high DOF
(2, 16, 17].

Evolutionary Computation (EC), including the Genetic
Algorithm (GA), Genetic Programming (GP), Evolutionary
Programming (EP), and Evolutionary Strategy (ES), is a
natural choice for the gait optimization of legged robots.

First, EC uses optimization methods based on Darwin’s
Natural Evolution Theory. According to this theory, the
locomotion mechanisms of life forms resulted from natural
selection and the interaction between individuals and the
natural environment. This makes the use of EC a natural
choice, as it is biologically inspired and can generate
biologically plausible solutions [18].

Second, from the computational point of view, EC also
fits well with the gait optimization of legged robots [2, 18,
19], because of the following:

(a) Gait optimization problems can have multiple crite-
ria, multiple constraints, as well as multiple design
variables, and EC has been shown effective for these
kinds of large-dimension, multi-objective, multi-
constraint optimization problems.

(b) EC has been seen to be robust for search and
optimization problems and has been used to solve
difficult problems with objective functions where
local information such as continuity, differentiability,
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and so on is not available, even though it is very
important for gait optimization, as the objective
functions of gait optimization may be very complex
and it is very difficult to obtain this local information.

(c) Because of the complexity and high DOF of the
mechanical structure, it is difficult to obtain a precise
dynamic model of a legged robot [20]. EC will be
efficient as this method is resistant to noise in the
evaluation function and offers a model-free approach
to optimization, only requiring feedback from the
environment to improve performance when online
evolution is deployed with a real robot.

(d) EC has strong global search capability and is also
insensitive to the initial population. Therefore EC
decreases the risk of being trapped in a local mini-
mum for finding a true optimum solution.

(e) EC can easily be parallelized. Since gait optimization
of legged robots is often a large-scale problem and the
objective function and constraints are often complex,
the process of evolutionary optimization may be very
time-consuming because of the high computational
cost of EC due to iterative evaluations of candi-
date solutions. Therefore it is advantageous to use
parallel implementations of EC to gain efficiency
and improve the solution quality of EC-based gait
optimization.

3. How to Evolve the Optimal Gait

3.1. The Multiform EC Models Adopted in Gait Optimization.
Gait optimization based on EC is actually a combination of
EC procedures and gait optimization problems. A general
block diagram of EC-based gait optimization is given in
Figure 1. This offers a first glance at the application of EC
technique for gait optimization of legged robots.

A lot of EC models have been adopted to solve gait
optimization problems. The gaits most often studied include
the gaits of biped, quadruped, and hexapod robots engaged
in walking, running, negotiating sloping surfaces, and going
up and down stairs [21-26].

The Genetic Algorithm (GA) is the gait optimization tool
which is most often used, and some modifications can be
introduced to fit the specific problems of gait optimization
[25, 27, 28]. For example, interpolating and extrapolating
operators [29], two-point crossover, Gaussian mutation,
overlapping populations [2], and Elitism strategy have been
adopted. The explicit fitness sharing mechanism [30] has
also been adopted to prevent premature convergence to
suboptimal extremes. This speciation technique divides the
population into a fixed number of species, where each species
contains individuals that are similar to each other, and can
force similar members of the same species to “share” one
representative score, thereby penalizing species with a large
number of individuals and allowing new species to form even
if they do not perform as well as other, larger, species [30].

Adaptability that can adaptively change the probabilities
of crossover and mutation is introduced in GA to balance
global and local exploitation and exploration towards the
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FIGURE 1: A general block diagram for EC-based gait optimization.

progress of evolutionary optimization. For instance, Adap-
tive GA is used to optimize the gait of a humanoid robot
ascending and descending a staircase by searching optimal
trajectory parameters in blending polynomials [31].

Adaptive mechanisms may also be applied to control
mutation rate [2]. This method places radiation (the level of
radiation decreases over time) into the middle of a region
where a large group of individuals is clustered within the
same locality to dramatically increase the mutation rate in
this area, causing all the individuals to mutate in the next
generation and to disperse to other areas of the space. It is
reported that this mechanism can be useful in controlling
the learning behavior of GA and makes GA more robust
with respect to noise in parameter evaluations preventing
premature convergence to suboptimal extremes.

Genetic Programming (GP) [32] and Grammatical Evo-
lution (GE) are often used to evolve the gait of robots.

Simulation results obtained using GP on an AIBO
quadruped in the Webots environment are reported
much better than those obtained using simple GA-based
approaches [17]. In this approach, the gait is defined using
joint angle trajectories instead of locus of paw to reduce the
search space of optimization. An elite archive mechanism
(EAM) is used to prevent premature convergence and
improve the search capability of GP. EAM can preserve elite
individuals at an early stage and flow them into in later stage.
In this way, genetic material from elite individuals at an early
stage is used to refresh an evolutionary convergent state and
to create a role for preserving diversity as long as possible.

GE is one of the most popular forms of grammar-
based GP. The advantage of GE lies in that it allows the
user to conveniently specify and modify the grammar,
whilst ignoring the task of designing specific genetic search
operators. Thus GE can be used to optimize pre-existing



motion data or generate novel motions. Using a Fourier
gait representation to encode the chromosome and the
dynamic similarity principles as a constraint, GE is employed
to optimize the gait retargeting problem in animation. It
successfully modified one animal’s gait cycle data into a
different animal’s gait cycle data in computer simulations
of animal locomotion [33]. The same method can also
be used to optimize the gait of a walking horse from a
veterinary publication into a physics-based horse model
[34].

ES is also employed to solve the gait optimization
problem [35, 36], and some encouraging results have been
obtained.

Using a hand-tuned gait as a seed, the bipedal gait is
directly evolved on a physical robot by an ES approach
with parametric mutation and structural mutation. After
hundreds of evaluations significant improvements were
obtained for a functioning but nonoptimized bipedal gait
that improved the walking speed by around 65% compared
to the hand-tuned gait [37].

A hybrid approach of space-time optimization and
covariance matrix adaptation evolution strategy (CMA-ES)
has been proposed to generate gaits and morphologies
for legged animal locomotion [38]. It effectively generated
dynamic locomotion gait of bipeds, a quadruped, as well as
an imaginary five-legged creature by simulation. The gaits
and morphologies produced are reported lifelike and exhibit
many qualitative traits seen in real animals. This hybrid
approach may combine the efficiency in high-dimensional
spaces and the ability to handle general constraints of space-
time optimization with the ability to handle nondifferen-
tiable variables and to avoid many local minima from CMA.

Apart from traditional EC and its variations, some
relatively new types of EC have also been applied to gait
optimization research.

Estimation of Distribution Algorithms (EDAs) are evolu-
tionary algorithms based on probabilistic models that replace
the operators of mutation and crossover used in GAs. The
main advantage of EDA lies in the fact that the knowledge
about the problem acquired previously can be used to
set the initial probability model, and the global statistical
information about the search space can be extracted directly
by EDA to modify the probability model with promising
solutions. This can reduce the search space and obtain good
solutions in a shorter time interval. For this reason EDA
has been used to study the gait optimization problem [15,
39, 40]. For example, EDA has been applied to optimize
the gait of the AIBO robot. A fitness function based on
direct evaluation of the robots was adopted, and significant
improvement of the previous gait was achieved over a short
training period [41].

In some cases of gait optimization, the performance of
a gait cannot be directly measured or calculated based on
certain functions. In this case human preferences, intuition,
emotions, and other psychological aspects can be introduced
into the target system. Interactive evolutionary computation
(IEC) is a form of evolutionary computation where the
fitness function can be replaced by the user. A prominent
advantage of IEC is that it can reflect user preference and
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allow optimization of the solution with a minimum of
required knowledge in the problem domain [42].

Staged Evolution, which evolves the result in a number
of stages, has also been proposed for gait optimization
[20, 42, 43]. This approach employs a strategy of divide
and conquer. By introducing a staged set of manageable
challenges, it decreases the search space and thus improves
the convergence rate of EC and obtains rapid evolution of
behavior towards a given goal.

The multiobjective multiconstraint problem is often
solved by combining the multiple objectives and constraints
into a single scalar objective problem using weighting
coefficients. To do this, some problem-specific information
is needed, and the relative importance of the objectives and
constraints should be decided. In the complex problem of
gait optimization, it is difficult to know this information
in advance. In addition, there is no rational basis for
determining adequate weights for these competitive or
conflicting criteria, and the objective function that will be
formed may lose significance due to the combination of non-
commensurable objectives [44]. Therefore, more and more
gait optimization problems are parameterized and optimized
using tailored Multiple Objective EC procedures [45], for
example, the Strength Pareto Evolutionary Algorithm [46]
and Nondominated Sorting Genetic Algorithm with Fitness
Sharing method [44], and the obtained Pareto-optimal gaits,
which is a set of nondominated or noninferior gaits that
satisfies different objective functions. These methods have
shown good performance [44, 46-48].

3.2. Gait Representation and Chromosome Encoding. The gait
of a legged robot may be represented in three-dimensional
space [30, 49] or in joint space [17, 20, 50].

In order to control a legged robot’s movement, it is nec-
essary to generate the trajectories of all the joints. Therefore,
gait is usually represented by a sequence of key poses (states)
extracted from one complete gait cycle [51], and phases
between these key poses are approximated by a polynomial
function, for example, 3rd, 4th, or 5th order polynomials.
These polynomial functions are adopted because they can
insure that the joint trajectories are smoothly connected
with first-order and second-order derivative continuity. First
order derivative continuity guarantees the smoothness of
velocity, while the second order guarantees the smoothness
requirements of acceleration or the torque in the joints [20].
As a result, the gait of robot will look natural.

If only the foot placement point of these key poses is
specified, once the foot trajectories are generated, inverse
kinematics should then be used to convert the locus of foot
into the joint angles required to generate the foot placement
curves for a particular gait [17, 20, 30, 47, 52-54].

To make the robot optimally move from its current
position/stance to a goal position/stance, other parameters
apart from those of the leg joint trajectories should also be
considered [47, 55], for example, parameters describing the
position and orientation of the body, how the robot’s weight
shifts during walking, whether or how much the arms swing,
and so forth.
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The joint angles in these states, the coefficients of the
polynomials, and some of the other parameters mentioned
above are the design variables to be optimized by EC [18, 39,
56, 57]. These design variables, when treated as genes and
arranged in an array, make up a chromosome of EC [16].

A variety of chromosome encoding methods, including
the gray code representation [43], real number coding
[57], mixed encoding of floating point number, and binary
number [1], have been adopted, but the most often used
encoding is the real coded method. This is due to difficulties
associated with binary representation when dealing with a
continuous search space with large dimension [44].

3.3. Composing the Fitness Functions. EC are a family of
objective function driven optimization algorithms. The
objective/fitness functions represent the problem environ-
ment and decide how well the individual solves the problem.
Therefore, the construction of a fitness function is very
important for the correct functioning of EC, and researchers
should define these objective functions appropriately accord-
ing to the task to be accomplished so that each individual’s
actual behavior can be evaluated correctly and efficiently.

A lot of criteria can be used to construct the fitness
functions of EC for gait optimization, and at present most
studies mainly emphasize only one or a part of the following
aspects [1].

(a) Maximum Velocity. The gait should help the robot
attain maximum velocity, so the robot’s speed of
locomotion is a basic performance index [47, 51, 55,
58].

(b) Minimum Consumed Energy. The criterion most
often used for gait optimization is the minimum
consumed energy (MCE) [1, 20, 39, 40, 44, 46, 56,
57, 59-66] as an energy-efficient locomotion pattern
results in a more natural walking motion. In fact,
the MCE gait of a biped robot is similar to that of
human. Another advantage of MCE criteria is that
the consumed energy should be reduced so as to
maximize battery operation time.

(¢) Minimum Torque Change. The criterion of minimum
torque change (MTC) is based on smoothness at the
torque level [44, 46, 57, 59, 60]. This may result in a
more stable motion due to a smoother change in link
acceleration.

(d) Stability. In order to make the robot move in an
environment and avoid falling down, it has to have a
stable gait. Stability is the most important constraint
and is most often used in gait optimization. Stability
can be static or dynamic. Static stability can be
verified via the center-of-gravity index [18, 59], while
the dynamic stability is often verified via the zero-
moment-point (ZMP) [1, 14, 16, 20, 39, 40, 46, 47,
57, 60, 67], which has an important role in gait
optimization, especially for the biped gait. If the
robot has to focus on how to restore balance rather
than constantly trying to maintain dynamic balance,

the foot placement estimator (FPE) can be adopted
[68].

(e) Geometric Constraint. This ensures the feasibility of
robot gaits from the point of physical structure [1,
14, 40, 58, 67, 69]. When the robot is passing through
obstacles or climbing stairs, the gait should not lead
to a collision between the robot and its environment.
When the robot walks, the swing limb has to be lifted
off the ground at the beginning of the step cycle and
has to be landed back at the end of it.

(f) Smooth Transition Constraint. To have a continuous
periodic motion, the initial posture and velocities
should be identical to those at the end of the step
[44, 56, 62, 69]. For a humanoid robot, the horizontal
displacements of the hip during the single and double
support phases must also be continuous. When a
walking robot’s swing limb makes contact with the
ground (heel strike), the effect of impact should be
minimized so that it does not influence the motion
stability of the robot [1, 14, 40, 57, 58].

More criteria can be added to achieve other practical
requirements in gait generation and optimization, and the
constraints can be formulated as equalities and inequal-
ities. These criteria will serve as objective functions for
evolutionary-based gait optimization.

There are two ways to evolve gait for a robot, namely
on-line evolution and off-line evolution. On-line evolution
evolves gait directly on a real robot [32, 43, 47, 49, 51, 70, 71],
while the off-line method evolves gait on a simulator [18, 59,
72]. In the case of off-line evolution, solutions are evaluated
using the objective functions mentioned above. In the case of
on-line evolution, the fitness may not be directly calculated,
instead it will be determined based on measurements, that is,
the solutions have to be tested by letting the robot actually
walk with the parameters encoded by the chromosome, and
the fitness for each individual is evaluated using the robot’s
sensors (digital camera, infrared sensor, and gyro-sensor) or
directly evaluated by the user [30, 42].

3.4. The Genetic Operators and Control Parameters of EC. In
order to make EC work properly, a set of control param-
eters and some genetic operators, for example, selection,
crossover, and mutation should be predefined.

(a) Selection. Selection is performed so that better indi-
viduals are chosen for breeding and surviving. There
are quite a lot of methods for selecting individuals
for genetic operations. The mostly commonly used
method is the roulette wheel procedure [16, 47],
which assigns a higher probability of selection to an
individual if its fitness is determined to be better.
Tournament selection is another commonly used
selection procedure. Binary tournament randomly
selects two individuals from the population at each
time and chooses the fitter one [42]. Other tourna-
ment algorithms simultaneously select individuals as
parents and other specific individuals to be replaced
[32, 49]. The parent(s) is the individual(s) with



higher fitness, and the individual with the lowest
fitness is replaced by the offspring of the parent(s).
Elitism strategy is commonly adopted. This guaran-
tees that the fittest individuals will always be retained
into the next generation.

(b) Crossover. Crossover combines the genes of two indi-

viduals into a new one. A parameter P, is used to con-
trol how often the crossover operator can be applied,
and it can be encouraged by increasing the proba-
bility. Usually, P, € [0.6 ~ 0.9]. All commonly used
crossover operators, for example, Simple Crossover,
Two-point crossover, Multipoint crossover, Arith-
metic crossover, Heuristic Crossover and Uniform
crossover, can be used for gait optimization [2, 16,
18, 20, 30, 32, 4244, 56, 67, 69, 73]. Other methods
for crossover may also be used. For example, the
interpolation and the extrapolation operators [29],
as well as the quaternion recombination techniques
of Guaranteed-Uniform-Crossover, and Guaranteed-
Average, Guaranteed-Big-Creep, Guaranteed-Little-
Creep have been employed [47].

(c) Mutation. Mutation introduces perturbation to the

genes of an individual and thereby creating a new
one. Parameter P,, affects the number of individuals
mutated, as well as the number of mutated genes
per chromosome. Mutation is performed with a very
low probability, usually, P. € [0.005 ~ 0.1]. All com-
monly used mutation operators, for example, Uni-
form Mutation, Nonuniform Mutation, Boundary
Mutation, and Gaussian Mutation, can be used for
gait optimization [2, 16, 18, 20, 29, 32, 42-44, 67, 69,
73].

(d) Population Size. The number of genetic strings main-

tained at one time may vary from 10 to 800 according
to the literature [2, 16, 18, 20, 32, 42-44, 47, 51,
56, 67, 69, 71, 73]. A larger population increases
the evaluation time for each epoch, while a smaller
population size may not provide enough variation,
causing the algorithm to converge to local extremes
more often than necessary. Therefore, the population
size should be carefully decided according to the
size or difficulty of the problem, and a compromise
between efficiency of computation and diversity of
solution should be made. This is why Chernova
suggested that a population size of 30 is a good choice
[2]; however Eperjesi reported that a population of
the same size lost most of the genetic material quite
quickly and converged to local minima [42].

(e) Initial Population. The initial population can be

randomly created in two ways. One generates the
initial population by mutation using a hand-tuned
gait as a seed [29, 51], and the other generates the
initial population with a uniform distribution over
the given search range [32, 49, 50, 71].

(f) Maximum Generation Criterion. EC will iteratively

apply the genetic operations until a certain termi-
nation criterion is met. Typical termination criteria
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employed in EC include: the realization of a pre-
defined total number of iterations, having reached
a maximum number of iterations without improve-
ment, and even more complex mechanisms based
on estimating the probability of being at a local
optimum. Maximum generation is the most often
adopted termination criterion in gait optimization.
The value of the maximum generation may vary
between 30 to 5000 iterations [16, 18, 20, 44, 47,
51, 56, 58, 67, 69, 73]. This should also be carefully
determined according to the complexity or difficulty
of the problem. Due to the stochastic nature of EC,
each evolutionary optimization experiment may have
to be repeated a number of times to ascertain the
global optima [18].

3.5. The Effect and Efficiency of Evolutionary Gait Optimiza-
tion. Almost all research, whether it is simulation or physical
experiment, has shown that EC achieves good results. The
advantages of evolutionary gait optimization include the
following.

(i) As the joint torques and link accelerations change
smoothly, the final motion of the robot is very
smooth, and the impact of the foot with ground
is minimal. Therefore, the best-evolved gaits deter-
mined by this method outperform the best manually
developed gaits in their ability to move straighter and
faster, while at the same time being more flexible and
reliable [2, 18, 32, 44, 49-51, 57, 71, 74].

(ii) The energy consumption of the optimal motion
was dramatically reduced [44, 56, 57]. The optimal
gait pattern was natural and very similar to that of
humans [44, 59, 73], and battery actuated robots can
thus prolong their operation time.

(iii) EC can autonomously and more efficiently search
for high performance gait parameters for various
surface conditions and different robot platforms
compared to using a manual approach [2, 50].
Furthermore, the EC-based approach was able to
match the best previously known AIBO gait within
a matter of hours even starting from a random
population [2]. Multi-objective evolution was able to
find optimal humanoid robot gaits with completely
different characteristics efficiently in one simulation
run [44].

4. Comparing EC with Other Global
Optimization Approaches

Besides evolution-based optimization techniques, other
global optimization approaches that adopt a non-
evolutionary metaphor have also been employed in gait
optimization. These also search for the global optimum of
the cost function without using the differential information
of a given cost function.

Particle Swarm Optimization (PSO) can be used to
optimize the stable and straight movement patterns (gaits)
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of a humanoid robot with the control signals of the joint
angles produced by a Truncated Fourier Series (TES) [75,
76]. It is reported that PSO optimized TFS significantly
faster and better than GA to generate straighter and faster
humanoid locomotion because PSO bypassed a local min-
imum that GA was caught in [76]. The authors therefore
concluded that PSO is better than GA as a learning method
for the gait optimization problem in a non-deterministic
environment.

We argue that GA may not necessarily be inferior to PSO
in gait optimization, even in a non-deterministic environ-
ment such as the one in this experiment. This is because
the PSO employed in this experiment was Adaptive PSO,
which has a dynamically adjustable nonlinear parameter of
inertia weight w to control the balance between global and
local exploration. A larger inertia weight facilitates a global
search, while a smaller inertia weight facilitates a local search
[77]. The GA employed in this experiment is just a canonical
paradigm with roulette wheel selection and a fixed rate of
crossover and mutation. This may be the reason why PSO
can speed up the search and perform better than GA in this
experiment.

EC of course can employ the same mechanism to
improve its efficiency. For example, Adaptive GA can adap-
tively change the probabilities of crossover and mutation
during the process of evolution. In ES, the step size or
mutation strength is often governed by self-adaptation
(evolution window), and the individual step sizes for each
coordinate or correlations between coordinates are either
governed by self-adaptation or also by covariance matrix
adaptation (CMA-ES) [38].

Adaptive PSO is used to optimize the fastest forward
gaits of the quadruped robot AIBO with the whole learning
process running automatically on the physical robot [78].
Starting with randomly generated parameters instead of
hand-tuned parameters, several high-performance sets of
gait parameters are obtained, and these gaits were reported
as being among the fastest forward gaits ever developed for
the same robot platform.

Parallel PSO was applied to large-scale human movement
problems, and experimental results show that PSO was
outperformed by the gradient-based algorithm [19]. It is
reported that a single run with a gradient-based nonlinear
least squares algorithm produced a significantly better solu-
tion than did 10 runs using global PSO. Thus the authors do
not recommend using the PSO algorithm for solving large-
scale human movement optimization problems possessing
constraints or competing terms in the cost function.

The results of this experiment may be a fortunate excep-
tion. The objective functions of large-scale gait optimization
problems with hundreds of design variables will no doubt
be massively multimodal and the landscape must be very
rugged. Therefore a gradient-based algorithm will certainly
be trapped in a local minimum, and the global search ability
of EC is absolutely necessary for decreasing this risk. We
agree with the suggestion of the authors that a global local
hybrid algorithm may be necessary for PSO and other global
optimizers to solve large-scale human movement problems
efficiently.

As far as we have seen from the literature, Ant Colony
Optimization (ACO) has not yet been used in the field of gait
optimization though this too is a famous metaheuristic of
Swarm Intelligence (SI) similar to PSO and has been widely
used to solve a lot of kinds of optimization problems.

The univariate dynamic encoding algorithm for searches
(uDEAS) has also been applied to the gait optimization
problem of a biped model walking up and down a staircase.
The simulation results show that uDEAS outperforms adap-
tive GA with a 17s versus 126 run time on average and
a slightly smaller minimum for best cost values [79]. The
authors attribute this result to the effectiveness of describing
trajectories with the blending polynomial of uDEAS.

The problem representation method and the genotype
encoding method directly determine the size and the char-
acteristic of the search space and as a result directly affect
the efficiency of EC optimization. Therefore, we suggest
that researchers should pay attention to both the problem
representation method and the genotype encoding method
when studying the EC-based gait optimization problem. For
example, TFS is reported to be a good gait representation
approach that can generate suitable angular trajectories for
controlling bipedal locomotion. This is because it does not
require inverse kinematics, and stable gaits with different step
lengths and stride frequencies can be readily generated by
changing the value of only one parameter in the TFS [76].

Though some comparison of performance between EC
and other non-evolutionary global optimization approaches
has been reported, no systematic comparative study has been
carried out. Such a systematic comparative study may be not
necessary or not feasible because we often search for a set of
satisfactory solutions instead of an absolutely global optimal
solution. Both the robot platform and the objective functions
of gait optimization will be different in each case, and thus it
is difficult to find a benchmark robot and a set of benchmark
objective functions to optimize.

Both EC and SI approaches are population-based itera-
tive algorithms, even though they adopt different metaphors.
Thus they share the same advantages and disadvantages in
gait optimization, for example, a similar global and high-
dimensional search capability, multi-objective optimization
capability, as well as a lot of control parameters which require
tuning. One thing that can be said for sure is that EC, and
SI approaches are proven good tools for gait optimization
for legged robots, and further research should be done to
improve their performance in the field of gait optimization.

5. Conclusions and Perspectives for
Future Research

The most important conclusion that can be drawn from the
literature mentioned above is that EC is indeed capable of
achieving good performance in gait optimization and that
this direction of research is very encouraging. However, it is
obvious that we have not yet taken full advantage of EC, and
some questions still need to be resolved for EC-based gait
optimization.



To solve these problems, we suggest that future research
should focus on the following issues.

5.1. Studying EC Approaches That Are Gait Optimization
Niches. One of the most obvious problems in EC-based
gait optimization is that of computational efficiency. Evo-
lutionary methods generally require the maintenance of a
population of candidate solutions and an iteration of a
large number of generations. Thus it can be very time-
consuming to evaluate every candidate gait especially when
the experiment is carried out on a physical robot over several
days while requiring constant manual supervision [32].

Though many researchers have optimized the gait of
legged robots using EC, they mainly just transplanted
the EC from other optimization applications with a few
modifications. In order to solve gait optimization problems
properly, it is necessary to study EC-based algorithms that
are especially suitable for solving gait optimization problems,
that is, study EC that can evolve the gait of robots with a high
level of efficiency and quality.

Some researchers have noticed the necessity of studying
the gait optimization niching EC paradigm, operators, and
parameters and have done some work in this area. For
example, using interpolation and extrapolating operators
instead of a crossover has been found to reduce the size of
the population [29], which is an essential element for robotic
applications because the time required for optimization may
be considerably reduced. The ideas of parameter tuning and
the use of a global-local hybrid algorithm for the global
optimizers to solve large-scale gait optimization problems
have also been suggested in [19, 38]. Some fragmentary
information has also been established on the characteristics
of the design space of the gait optimization problem, for
example, the penalty terms of the constraints could result in
the minimum of the objective function being located within
a narrow ‘“channel”, and the shape of the design space could
made it difficult to locate the global minimum without the
use of gradient information, and so forth [19]. This may be
helpful for designing EC approaches.

The problem representation method and the genotype
encoding method should also be studied as they can lead
to different efficiency of EC. For instance, two different gait
definition methods, a finite state machine based on the joint
angles of the robot legs, and an Elman’s recurrent neural
network were studied [80], and the performance of the
neural controller was reported superior (more stable, better
displacement) for a simulated legged robot navigating on an
irregular surface. TFS has also been reported to be a good
gait representation approach and has been mentioned above
[76].

Yet another method that could dramatically improve the
gait optimization efficiency of EC has been proposed [81].
This method harnesses the general purpose computing on
graphics processing units (GPGPU) to produce hardware-
accelerated simulations without significant loss in fidelity,
and it has achieved results that are orders of magnitude
faster than software-only simulation (a 10-50-fold increase
in speed has been reported).
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We believe that EC-based gait optimization research
should continue in this direction. The characteristics of the
search space of gait optimization should be studied. This is
determined by objective functions and constraints. Different
applications of legged robot can have different objective
functions and constraints, and different combinations of
objective functions and constraints can have different search
space characteristics. Based on the characteristic information
of a search space, some benchmark test functions should
be designed and classified to reflect to a certain extent the
characteristics of the gait optimization objective functions.
These benchmark test functions will facilitate the study of
the corresponding EC paradigms, the genetic operators and
control parameter sets of EC, providing researchers of legged
robot gait optimization with a suite of high-performance
optimization tools that can work well “out of the box”
[19]. In particular, we suggest that both the EC hybrid
with local search and the GAs that can learn linkage may
play an important role in gait optimization. The former
can integrate the global search ability of EC with the local
optimization ability of local search operators, and the latter
can evolve optimal code sequencing by learning the linkage
among the genes and therefore enhancing the search ability
of EC in tackling complicated, large scale problems of gait
optimization.

5.2. Investigating the Objective Functions of EC. The objective
function plays a critical role in EC. It serves as the envi-
ronment for judging whether a solution represented by a
chromosome in the simulated evolution is good or bad. It
thus directs the search direction. The fitness functions in
the research mentioned above were all different from one
another. These were dependent on each researcher’s insight
into the nature of the problem, the different nature of each
robot model or platform, and the performance requirements
of each robot.

When constructing the objective functions for gait
optimization, one has to compromise between the quality of
solution and the velocity of evolution. A complex objective
function including more performance indexes will, of course,
lead to good solutions, but it can also greatly increase the
size of the search space, and hence the computation cost of
evaluation as well as the duration of the evolution. A lot
of experience and techniques are needed to compose the
objective functions (and the penalty weight set) properly.
Therefore, it would be beneficial to construct a set of general
guidelines for selecting the evaluation functions, especially
for a typical application scenario or for a special robot
platform [43].

5.3. Bridging the Reality Gap. Another important problem
in EC-based gait optimization is that the gait evolved by
simulation usually does not yield the same behavior once it is
transferred to a real robot, since simulation always includes
some simplifications when modeling the real world. This is
called the reality gap problem in the field of evolutionary
robotics. It is a branch of artificial intelligence concerned
with the automatic generation of autonomous robots [74]
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and of course includes the gait generation of legged robots.
Though evolving gait directly in real robots is an attractive
goal with certain advantages, it is also very time-consuming
requiring heavy user-intervention.

A possible scheme for tackling the problem of the reality
gap in gait optimization nowadays is to integrate off-line and
on-line evolution with respect to the reality gap.

Staged evolution may be a good method for this purpose
(32, 42, 43, 82, 83]. This method evolves the gait by
simulation first so that the gait may get a preliminary eval-
uation faster, and then the simulation results are transferred
to the physical robot where the process of evolution is
continued on the real robot. In this way, both the efficiency
of EC and the quality of the solution may be significantly
improved. A general multistage process, which minimizes
the reality gap between real and simulated robots with
respect to the behavior of actuators and their interaction
with the environment, has been reported to be transferable
to different kinds of legged robots [83].

Another method worth considering is the back to reality
algorithm [74]. This method employs a coevolutionary con-
struction that allows continuous robot behavior adaptation
interleaved with simulator adaptation. It was able to solve
the gait optimization problem in real robots using fewer
evaluations than most of the currently existing approaches. It
was used for the gait optimization of AIBO and is claimed to
be the first work in which the simulated gait been successful
and constantly transferred to reality [74].

In conclusion, a lot of work still remains to be done.
Evolutionary gait optimization for legged robots is a promis-
ing field of research, and future encouraging and interesting
results can be expected.
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