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It is well known that the electroencephalography (EEG)
and magnetoencephalography (MEG) are useful techniques
for the study of brain dynamics, due to their high tem-
poral resolution. However, it is known that the spatial
resolution of the standard EEG is rather low, due to
the different electrical conductivities of brain, skull, and
scalp that markedly blur the EEG potential distributions,
making the localization of the underlying cortical generators
problematic. In the last ten years, a body of mathematical
techniques, known as high-resolution EEG, was developed
to estimate more precisely the cortical activity from non-
invasive EEG measurements. Such techniques include the use
of a large number of scalp electrodes, realistic models of the
head derived from magnetic resonance images (MRIs), and
advanced processing methodologies related to the solution
of the so-called “inverse problem,” that is, the estimation
of the brain activity (i.e., electromagnetic generators) from
the EEG/MEG measurements. The approach implies both
the use of thousands of equivalent current dipoles as a
source model and the realistic head models, reconstructed
from magnetic resonance images, as the volume conductor
medium. The use of geometrical constraints on the position
of the neural source or sources within the head model
generally reduces the solution space (i.e., the set of all
possible combinations of the cortical dipoles strengths).
An additional constraint is to force the dipoles to explain
the recorded data with a minimum or a low amount
of energy (minimum-norm solutions). The solution space
can be further reduced by using information derived from
hemodynamic measures (i.e., fMRI-BOLD phenomena)

recorded during the same task. The rationale of a multimodal
approach is that neural activity, modulating neuronal firing
and generating EEG/MEG potentials, increases glucose and
oxygen demands. This results in an increase in the local
hemodynamic response that can be measured by functional
magnetic resonance images (fMRIs). Hence, fMRI responses
and cortical sources of EEG/MEG data can be spatially
related, and the fMRI information can be used as a priori
in the solution of the inverse problem. As a result of all
these computational approaches, it is possible to estimate the
cortical activity with a spatial resolution of few millimeters
and with a temporal resolution of milliseconds from non-
invasive EEG measurements.

However, static images of brain regions activated during
particular tasks do not convey the information of how these
regions communicate to each other. The concept of brain
connectivity is viewed as central for the understanding of
the organized behavior of cortical regions beyond the simple
mapping of their activity. This organization is thought to be
based on the interaction between different and differently
specialized cortical sites. Cortical connectivity estimation
aims at describing these interactions as connectivity patterns
which hold the direction and strength of the information
flow between cortical areas. To achieve this, several compu-
tational methods have been already applied on data gathered
from both hemodynamic and electromagnetic techniques.
By using such methods, it is possible to infer the information
flows between the cortical areas in human during particular
motor and cognitive tasks. Possible applications of this
promising technology are in the fields of the study of human
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behavior and cognition and in the brain computer interface
area. Methods for the estimation of brain connectivity have
been scattered proposed in literature related to the fMRI,
NIRS, and EEG or MEG technologies.

Hence, the main objective of this special issue is to
increase the knowledge on the mathematical methods able
to estimate the cortical activity and connectivity in the
human brain from non-invasive neuroelectric and hemo-
dynamic measurements. Such special issue includes both
the state-of-technique review articles on the EEG and MEG
methodologies written by world-class scientists, as well as the
description of particular cortical models that can be used to
generate cortico-cortical connectivity.

Several papers of this special issue are devoted to the
theme of brain-machine interfaces, treating the collection
and the analysis of brain signals related to the imagination
of motor acts, in the context of brain-computer interface.
Applications of the techniques of source estimations were
provided also in the field of neuroeconomics, with an
example of the track of the brain activity with the EEG
during the observation of TV clips, or even during the car
driving, by using NIRS device, or in the study of emotional
processing with the ERD/ERS techniques. Other papers in
this special issue are related to the use of different advanced
methodologies for the analysis of brain signals in psychiatric
patients, and one is devoted to the description of a possible
WEB structure for data sharing in the field of neuroscience.

In summary, this special issue conveys interesting infor-
mation about the state-of-the-art methodologies able to
track the brain activity and connectivity during different
tasks in the healthy subjects as well as in the psychi-
atric patients. We hope that the readership of CIN could
appreciate this special issue as we appreciated it during its
composition.

Laura Astolfi
Andrzej Cichocki

Fabio Babiloni
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We present the four key areas of research—preprocessing, the volume conductor, the forward problem, and the inverse problem—
that affect the performance of EEG and MEG source imaging. In each key area we identify prominent approaches and
methodologies that have open issues warranting further investigation within the community, challenges associated with certain
techniques, and algorithms necessitating clarification of their implications. More than providing definitive answers we aim to
identify important open issues in the quest of source localization.
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cited.

1. Introduction

Electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) represent two noninvasive functional brain
imaging methods, whose extracranial recordings measure
electric potential differences and extremely weak magnetic
fields generated by the electric activity of the neural
cells, respectively. These recordings offer direct, real time,
monitoring of spontaneous and evoked brain activity and
allow for spatiotemporal localization of underlying neuronal
generators. EEG and MEG share the following character-
istics: (1) they have a millisecond temporal resolution; (2)
potential differences and magnetic fields are linear functions
of source strengths and nonlinear functions of the source

support (e.g., dipole locations); (3) they are caused by
the same neurophysiological events, that is, currents from
synchronously activated neuronal tissue often referred to as
the primary or impressed current source density, and thus
both can be used equivalently for the localization of neuronal
generators.

The three-dimensional reconstruction of neural activity
is commonly misconstrued as tomography, which is defined
[1] as “any technique that makes detailed predetermined
plane sections of an object while blurring out the images of
other planes.” The physics governing the propagation of the
electromagnetic fields depends on the composition of the
volume conductor, which means that the source activity
outside the predetermined plane also influences the readings
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of the sensors lying in the plane. So, actually the procedures
applied in tomography and inverse solutions are somehow
reversed: in tomography we reconstruct a 3D image by
combining separately obtained slices, whereas, inverse solu-
tions calculate the whole 3D distribution, which can be later
presented as slices. While tomographic techniques (e.g., CT,
PET, MRI, etc.) are associated with well-posed mathematical
problems, the noninvasive estimation of the brain activity is
essentially an ill-posed problem due to the infinite number
of solutions.

In the subsequent sections we remark about some
important issues for the understanding, selection, and
evaluation of source imaging methods; hence our emphasis
is on general approaches rather than particular solutions.
These sections reflect upon our group discussion held at
a NeuroMath workshop. As a group we acknowledge that
we have differences of opinion regarding the selection of
methods, we face various challenges as separate research
centers, and we differ on what are the key open issues due to
our different interests. Therefore, we have attempted to write
an article that benefits the novice, aligns disparate parts of
the source imaging community, and focuses much needed
attention to several open issues.

1.1. Theory. The relationship between the sources inside the
head and the external measurements d is described as

d = L j, (1)

where L is the linear operator representing the lead field
(also known as the gain model or the direct model), and j
represents the sources. The two mathematical properties of
(1) reflect the attributes of the physical magnitudes involved.
Firstly, the homogeneity property states that the image of an
amplified source k ∗ j is an amplified measurement k ∗ d,
and secondly, the additive property states that the sum of the
two sources j = j1 + j2 produces a measurement equal to
the sum of each measurement alone d = d1 + d2. Together
these two properties follow the superposition principle, that
is, L(k1 ∗ j1 + k2 ∗ j2) = k1 ∗ d1 + k2 ∗ d2, where d1 = L j1
and d2 = L j2.

The ill-posed nature of this problem arises from the fact
that two different sources j1 and j2 might produce the same
measurement d, that is, d = L j1 = L j2, which is trivially
equivalent to say that there exists a “silent” source h such that
Lh = 0. In order to see the equivalence, note that if d = L j1 =
L j2, therefore, the silent source h = j1 − j2 fulfils Lh = L j1 −
L j2 = d − d = 0. In the other direction, if we assume that
Lh = 0 and the existence of source j1 such that L j1 = d, we
can always build a new source j2 = j1 +h that yields the same
data, that is, L j2 = L( j1 + h) = L j1 + Lh = L j1 = d.

That being said, we can establish one of the main
properties of EEG/MEG scalp distributions (maps). While
similar scalp maps cannot rule out the possibility of different
subjacent source distributions, different maps are necessarily
due to different source distributions. Importantly, we do not
need to resort to any inverse method to conclude that.

Building on linearity and in the absence of a priori
information to justify otherwise, we can represent the

solution of (1) with a linear operator G that “estimates” j
as follows:

jest = G∗ d. (2)

Substituting d by its value defined in (1) yields a fundamental
equation of linear operators relating to the estimated and the
original source distribution

jest = G∗ L∗ j = R∗ j, (3)

where R = G ∗ L is the resolution operator [2, 3]. In
practice both the sensors and the geometry are made of
discrete measurements, and thus it can be assumed that L, G,
and R are finite dimensional matrices approximating the
continuous (integral) operators.

2. Preprocessing

In this section, we discuss some relevant issues related
to the preparation of the data identifying some useful
preprocessing and things to avoid. In general, the philosophy
of preprocessing is to prepare the signal for solving. Typically,
these steps decompose complex signals and reduce the noise
from the sensors as well as other undesirable sources.

The EEG and MEG inverse problems (Figure 1, green
arrow) start with the time series (Figure 1) recorded at
the scalp sensors. Therefore, the localizations based on
the distribution of scalp amplitudes in single time instants
might be improved by the application of signal processing
techniques to the measured time series (Figure 1, blue
arrow). In particular the input noise can be reduced by
selective and sensitive extraction of relevant activities from
the EEG/MEG data. This can be achieved by localizing signal
components extracted by a blind source separation (e.g.,
ICA [4]). Other approaches rely on the information derived
from the time-frequency representations, corresponding to
the relevant phenomena we want to localize (e.g., sleep
spindles [5]). A similar but more sensitive and selective
preprocessing was proposed in [6] using the multichannel
matching pursuit algorithm. Overall, most preprocessing
algorithms are expected to benefit the quality and accuracy
of the inverse solution.

2.1. Epochs. We should weigh the advantages and disadvan-
tages of the role epochs play in the recordings of event-
related potentials. So far there has been no standard on
the number of trials, jitter, averaging amplitudes, or the
appropriateness of single trial analysis. For instance, the
signal-to-noise ratio (SNR) increases with the number of
trials, that is, the number of epochs; however, habituation
can affect the results of some studies. We propose that a
document outlining these categories would benefit future
studies in terms of comparison and regularization.

The neuroelectric signals are buried in spontaneous
EEGs with signal-to-noise ratios as low as 5 dB. In order to
decrease the noise level and find a template Evoked Potential
(EP) signal, an ensemble-average (EA) is obtained using a
large number of repetitive measurements [7]. This approach
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Figure 1: Key parts of source imaging. Preprocessing prepares the recorded signals for solving the inverse problem. The inverse problem
attempts to locate the sources from recorded measurements, whereas the forward problem assumes a source definition in order to calculate
a potential distribution map.

[8] treats the background EEG as additive noise and the
EP as an uncorrelated signal. The magnitudes and latencies
of EP waveforms display large interindividual differences
and changes depending on the psychophysiological factors
for a given individual [9]. Consequently, one goal in the
methodological EP research is to develop techniques to
extract the true EP waveform from a single sweep.

For clinical evaluations, either the template EP signal
or possible amplitude and/or latency variations on single
sweeps are used [9]. To observe such variations, the specific
features are identified from a reference/template EP based
on various estimation approaches. Since there are relatively
tight constraints related to the available recording time
or cooperativeness of the subject, the use of EA (as a
reference EP signal) is usually impractical. This has led to the
development of the alternative SNR improvement methods
based on the additive model. Some of these algorithms are
the weighted averaging approach, the subspace averaging
method, the parametric filtering, the adaptive filtering, and
Wiener filtering. In all these methods, it is assumed that
the EP (i.e., signal) is stationary throughout the experiment.
However, such assumptions are also questioned in some
reports describing the event related potentials as superposi-
tion of some phase modulated rhythmic activities which may
be related to different cognitive processes of the brain [10].

2.2. Things to Avoid. Contrary to the benefits of most
preprocessing algorithms, there are certain algorithms that
we should avoid before the application of source localization
algorithms. In particular, the following choices threaten the
integrity of the inverse solution.

(1) Baseline correction. Varying the values of individual
electrodes either by “arbitrary” baseline shifting or by scaling
factors changes the surface maps and thus the estimated

sources. Although linear inverse solutions are rather stable
(continuity with respect to the data), the application of base
line correction to two conditions (that will be compared on
the basis of their sources) can produce artificial differences
induced by the correction and not by the real sources.

(2) Artificial maps produced by grand mean data or
segmentation algorithms. Statistical averages (e.g., mean)
yield values that are usually not present in the original data.
It would not be surprising if the average maps are not present
in any of the subject averages. Furthermore, this effect can be
amplified by the differences in latencies of the subjects.

(3) The use of very high density of sensors might also
jeopardize the source analysis due to different kinds of noise
at different sensors. Moreover, no significant information is
added after approximately 128 electrodes due to the noise
levels. Lastly, some sensors might measure more artifacts
than others due to their location near active muscles.

3. Volume Conductor

The head model as a volume conductor is a key element
in source localization. The configuration of the volume
conductor directly affects the solutions to the forward
and inverse solutions. The three nearly equally important
areas are head geometry, tissue conductivities, and electrode
placement.

3.1. Geometry and Segmentation. The seminal study by
Rush and Driscoll [11] used three concentric spheres,
whereas, contemporary studies implement realistic models.
We find that the differing models within the community
are necessary, but how does each type of geometrical model
contribute to the goal of source localization? The spherical
models answer general questions of theory providing EEG
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localization accuracy of a few centimeters, while the realistic
models attempt to pinpoint exact locations but actually
improve dipole localization by a few centimeters [12–14]. On
the other hand, the spherical geometry is sufficient for most
MEG-based numerical simulations. Only the localization
of the deep sources near the bottom of the skull in the
frontotemporal and the frontal areas requires a realistically-
shaped-head-volume conductor model for MEG-based sim-
ulations [15].

The geometry is directly related to the imaging modality,
computed tomography (CT) or magnetic resonance imaging
(MRI), and the quality of the segmentation. Naturally,
we will question which modality to segment—CT, MRI,
or fused CT-MRI images [16]. We are encouraging the
modelers to understand the significance of the boundaries
defined by a particular modality and are not in any way
suggesting the medical community to provide any unsafe and
unnecessary radiation to any patient. We must remember
that the modality we select influences the segmentation
due to its sensitivity to hard or soft tissues accordingly.
Furthermore, how many tissues, which tissues, and which
cavities should the models include? We foresee that we
are nearing a plateau to the improvement in localization
accuracy as our segmentation resolution increases along
with the inclusion of too many small tissue regions. One
avenue of research that could plausibly benefit from the
development of the head-model geometry is the integration
of anthropometric and craniometric data [17]. This path
could justify individual models that claim to represent
a subpopulation and repudiate studies that misrepresent
an identified subpopulation beyond statistical significance.
Moreover, it could lead us to establishing the statistical
significance of the shape and size of the geometrical features
within individual and groups of models.

3.2. Conductivity Values. The electrical characteristics of
many biological tissues are inhomogeneous, anisotropic,
dispersive, and nonlinear. Head tissues such as the skull,
scalp, muscles, cerebrospinal fluid, and gray and white matter
have different conductivities σ , permittivities ε, and magnetic
permeabilities μ (in most cases it is considered equal to
the permeability of water, which is in turn close to the
permeability of free space μo). The skull as well as the scalp
has a multilayer structure, with each layer possessing differ-
ent electrical properties. This fact leads either to multilayer
modeling of the geometry of the tissue [18] or to attributing
inhomogeneous properties to the tissue, that is, assigning
tensors for σ = σ(x, y, z) and ε = ε(x, y, z). The values
and distributions of inhomogeneities are an even more
acute problem in patient populations where pathological
processes are likely to significantly influence conductivities
in affected brain regions. Could there exist an equivalent
hybrid isotropic model that represents multiple anisotropy
layers? How significantly would such approximations affect
source localization within healthy individuals compared with
patients with head pathologies?

The conductivity values of any model influence the lead
fields of forward problems and the solutions of the inverse

problems. Consequently, it is critical that we must assign
as accurate conductivity values as reported from previous
literature studies and extrapolate and interpolate the rest.
As a community we have established electrical-property
ranges for most head tissues in terms of conductivity σ
and permittivity ε; however, we have to determine the
actual electrical-conductivity distribution of an individual’s
head. As a result of these ranges, many historical studies
assign average values to their tissues [15, 18–26]. Using an
average value may not be appropriate for individualized
models since those models may result in inaccurate solutions
due to a function of position [27] or of age [28, 29].
Nevertheless, studies with patients [30, 31] have shown that
using approximate conductivities ratios with an accurate
geometrical description of the head (i.e., based on a subject’s
MRI) might yield reasonable, verifiable results for both
cortical and deep EEG sources. Still, future models could
benefit from using age-specific conductivities. We speculate
that the application of age-based conductivity values applied
to the skull tissues—most especially the trilayer skull tissue—
would mostly benefit the models of youth, whose ossification
centers change rapidly in the first two years and plateau in
conductivity value around 18 to 20 years of age when the
calvarial ossification process is completed [32].

In order to solidify our motivation for highlighting the
significance of the skull conductivity, we must briefly delve
into its history. The pioneering work [11] introduced a
standard conductivity ratio for the brain-to-skull-to-scalp
of 1:80:1, which is a historical value still used by some
researchers over four decades later. In [33] are reported
measurements on postmortem cadavers yielding a ratio
of brain-to-skull conductivity values of 15:1. Three years
later [28] presented conductivity values on live tissue as
low as a ratio of 4:1. Subsequently, Wendel and Malmivuo
[29] correlated postmortem to live tissue measurements as
a way to incorporate and evaluate past data due to the
lack in live tissue measurements. Their previous work used
a scaling ratio of 0.33 to 0.4 to accommodate the change
in conductivity from living to postmortem tissue based
upon the conductivity recordings of dying tissue samples
[34, 35]. In that previous paper they presented an open
issue to the community to make more measurements on
live tissue samples—most especially live skull samples—at
normal body temperature and moisture, which still remains
as an open issue today. Therefore, it is pertinent that we
discriminate the conditions under which tissue conductivity
and permittivity values were and will be acquired. Values
obtained by in vivo or living in vitro measurements should
be preferred over postmortem measurements. In the case
of postmortem measurements, the time and temperature of
acquisition should be specified since tissue properties change
rapidly after cellular death.

3.3. Acquisition of Conductivity Values. In the last two
decades, a number of approaches have been proposed to
image the electrical conductivity of the human body. In con-
ventional Applied Current Electrical Impedance Tomogra-
phy (ACEIT) low-frequency-sinusoidal currents are applied
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via electrodes attached to the body surface [36]. In Induced
Current Electrical Impedance Tomography (ICEIT), time-
varying magnetic fields with different spatial-field patterns
are applied to induce current in the body. In both cases,
surface electrodes are used to make voltage measurements.

Recently, two new approaches were proposed that utilize
magnetic measurements in determining the conductivity
distribution. In Magnetic Induction Imaging (MII), a trans-
mitter coil is driven by a sinusoidal current to provide time
varying magnetic fields [37, 38]. When a body is brought
nearby these coils, eddy currents are induced in the body.
The distribution of these currents is a function of the body’s
conductivity distribution. These currents create secondary
magnetic fields, and the electromotive force induced in a
receiver coil is measured. In Magnetic Resonance Electrical
Impedance Tomography (MR EIT), low-frequency currents
are applied from the body surface, and the resulting magnetic
fields are measured using an MR system [39, 40]. Since mag-
netic fields are measured inside the body, high-resolution
images can be measured. Note that all methods are still in
the investigation phase, and none of them can provide the
requirements of high-resolution conductivity information
required for source localization.

3.4. Electrode Montages. EEG has been traditionally mea-
sured using the standard 10–20 electrode system including
only 21 measurement electrodes. It has been widely acknowl-
edged that the spatial resolution of the 10–20 system is not
sufficient for modern brain research [41–44]. The first step
in improving the spatial resolution of EEG is to increase the
number of EEG electrodes, which the market has responded
to with commercially available systems including up to 256
electrodes.

During the last two decades several studies have inves-
tigated the benefits of increasing the number of EEG
electrodes. The effect on the accuracy of both the forward
solutions and inverse solutions has been evaluated. In several
articles, an increase in the number of electrodes to at least
128 has been shown to improve the accuracy of the results
[45–50].

Different factors affect the appropriate number of elec-
trodes. These include, for example, the widely debated value
of the skull’s relative conductivity, which has a great impact
on the accuracy of inverse solutions. Additionally, the spatial
resolution of especially the dense EEG systems (128–512
electrodes) is extremely sensitive to measurement noise.
Thus, for different EEG measurements conducted in different
environments, the appropriate number of electrodes may
vary considerably [48]. Using active electrodes will reduce
the noise.

4. Forward Problem

The 1969 study by Rush and Driscoll [11] on EEG electrode
sensitivity ushered in the new era of source localization.
Their work analytically solved Maxwell’s equations to map
the lead field, which is only possible with at least elliptical
symmetry. Contemporary models consist of a combination

of complex geometry and/or electrical parameters, thus
necessitating numerical solutions such as the boundary
element method (BEM), finite element method (FEM), and
the finite difference method (FDM) (Table 1). In this section
we aim to identify some of the complications, advantages,
and disadvantages of these numerical methods. Through
the following explanations we hope the reader gains an
understanding of the differences presented, adopts one or
more appropriate methods specific to his/her requirements,
and refers to the references for specific information.

Most models are unable to obtain the direct solution so
they rely upon iterative solvers such as the successive over-
relaxation (SOR), conjugate gradients (CG), preconditioned
conjugate gradient method (PCG), and algebraic multigrid
(AMG) solvers. While these methods have been developed
for regular linear systems, they can also be applied in our
semidefinite case. In the case of a consistent right-hand side,
semiconvergence can be guaranteed for SOR and (P)CG,
while the AMG theoretical results are more complicated [51].
A summary of each method is given based on [52] for the first
three methods and [53, 54] for the last method.

A first difference between BEM and FEM or FDM is the
domain in which the solutions are calculated. In the BEM
the solutions are calculated on the boundaries between the
homogeneous isotropic compartments while in the FEM and
FDM the solution of the forward problem is calculated in
the entire volume. Subsequently, the FEM and FDM lead
to a larger number of computational points than the BEM.
On the other hand, the potential at an arbitrary point can
be determined with FEM and FDM by interpolation of
computational points in its vicinity, while for the BEM it is
necessary to reapply the Barnard formula [55] and numerical
integration.

Another important aspect is the computational effi-
ciency. In the BEM, a full matrix (I− C), represented in

V = CV + V0, (4)

needs to be inverted. When the scalp potentials need to be
known for another dipole, V0 in (4) needs to be recalculated
and multiplied with the already available (I− C)−1. Hence
once the matrix is inverted, only a matrix multiplication is
needed to obtain the scalp potentials. This limited computa-
tional load is an attractive feature when solving the inverse
problem, where a large number of forward evaluations need
to be performed. Alternatively, an accelerated BEM approach
increases the speed considerably by calculating only m (i.e.,
the number of electrodes) rows of the corresponding inverse,
whereas, the normal inversion process requires a lot more
time due to the dimensionality of the matrix as n × n (i.e.,
n equals the number of nodes) [56, 57]. Projective methods
[58] based on the parametric representation of the surfaces
also allow for a drastic reduction of the computational load.

For the FEM and the FDM, a direct inversion of the
large sparse matrices is not possible due to the dimension
of the matrices. Typically at least 500 000 computational
points are considered thus leading to system matrices of
500 000 equations with 500 000 unknowns, which cannot
be solved in a direct manner with the computers currently
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Table 1: A comparison of the four methods for solving Poisson’s equation in a realistic head model is presented: boundary element method
(BEM), finite element method (FEM), isotropic finite difference method (iFDM), and anisotropic finite difference method (aFDM).

BEM FEM iFDM aFDM

Position of computational points Surface Volume Volume Volume

Free choice of computational points Yes Yes No No

System matrix Full Sparse Sparse Sparse

Solvers Direct/iterative Iterative Iterative Iterative

Number of compartments Small Large Large Large

Requires tessellation Yes Yes No No

Handles anisotropy No Yes No Yes

available. However, matrices found in FEM and FDM can be
inverted for a given source configuration or right-hand side
term, utilizing iterative solvers such as the successive over-
relaxation method (SSOR), the conjugate gradient (CG)
method [59], or algebraic multigrid (AMG) methods [60,
61]. A disadvantage of the iterative solvers is that for each
source configuration the solver has to be reapplied. The FEM
and FDM would be computationally inefficient when an
iterative solver would need to be used for each dipole. To
overcome this inefficiency the reciprocity theorem is used
[62].

When a large number of conducting compartments
are introduced, a large number of boundaries need to be
sampled for the BEM. This leads to a large full system
matrix, thus lower numerical efficiency. In FEM and FDM
modeling, the heterogeneous nature of realistic head mod-
els will make the stiffness matrix less sparse and badly
conditioned. Moreover, the incorporation of anisotropic
conductivities will decrease the sparseness of the stiffness
matrix. This can lead to an unstable system or very slow
convergence if iterative methods are used. To obtain a fast
convergence or a stable system, preconditioning should be
used. Preconditioning transforms the system of equations
Ax = b into a preconditioned system M−1Ax = M−1b,
which has the same solution as the orignal system. M is
a preconditioning matrix or a preconditioner, and its goal
is to reduce the condition number (ratio of the largest
eigenvalue to the smallest eigenvalue) of the stiffness matrix
toward the optimal value of 1. Basic preconditioning can
be used in the form of Jacobi, Gauss-Seidel, Successive
Over-Relaxation (SOR), and Symmetric Successive Over-
Relaxation (SSOR). These are easily implemented [63]. More
advanced methods use incomplete LU factorization and
polynomial preconditioning [63, 64].

For the FDM in contrast with the BEM and FEM,
the computational points lie fixed in the cube centers for
the isotropic approach and at the cube corners for the
anisotropic approach. In the FEM and BEM, the computa-
tional points, the vertices of the tetrahedrons and triangles,
respectively, can be chosen more freely. Therefore, the FEM
can better represent the irregular interfaces between the
different compartments than the FDM, for the same amount
of nodes. However, the segmented medical images used to
obtain the realistic volume conductor model are constructed
out of cubic voxels. It is straightforward to generate a

structured grid used in FDM from these segmented images.
In the FEM and the BEM, additional tessellation algorithms
[65] need to be used to obtain the tetrahedron elements
and the surface triangles, respectively, although cubic and
rectangular prism elements are possible in FEM like FDM.

Finally, it is known that the conductivities of some tissues
in the human head are anisotropic such as the skull and
the white matter tissue. Anisotropy can be introduced in the
FEM [66] and in the FDM [67], but not in the BEM.

5. Inverse Problem

While previous sections focused on the different steps
preceding the application of inverse procedures, that is, head
geometry approximations, conductivity, geometry profile,
accuracy of conductivity values, and so forth, this section
discusses some open issues including the selection of the
recording modality, the source model, and possible post
processing to improve the robustness of the inverse solution
estimates.

5.1. Recording Modality: MEG versus EEG. The introduc-
tion of the Superconducting Quantum Interference Device
(SQUID) made it possible to measure the very low magnetic
fields induced by the electric activity of the brain, called
magnetoencephalography, MEG.

In the beginning of biomagnetic research, there was a lot
of hope that biomagnetic signals would include information
independent on the bioelectric signals. As described by
Plonsey [68], the fact that according to the Helmholtz
theorem the scalar and the vector potential fields could be
selected independently was considered as evidence for the
independence of the electric and magnetic measurements.
On the other side, considering the origin of the bioelectric
currents it is concluded that the divergence and the curl of
the primary current could not be really arbitrarily assigned.
Further experiments described in [68] pointed to the relevant
contribution of the secondary sources to both electric and
magnetic fields. Thus, while we cannot claim that measures
of bioelectric or biomagnetic fields alone are enough to
define the other [69], we should not expect important
differences on the information recorded by them.

The conclusion that electric and magnetic measurements
provide comparable information has been confirmed on
theoretical and simulation grounds. Using the novel concept
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Figure 2: The Sensitivity Distributions of EEG. (Left) An EEG setup measuring the tangential components of neuroelectrical activity, where
each bipolar lead is located relatively close to each other. (Right) An EEG setup measuring the radial components of neuroelectric activity,
where the measuring electrode is located far from the reference electrode. The arrows in both figures represent macrocolumns of cellular
architecture not dipolar sources.
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Figure 3: The Sensitivity Distributions of MEG. (Left) An MEG setup measuring the tangential components of neuroelectrical activity, using
an axial gradiometer. (Right) An MEG setup measuring the tangential components of neuroelectric activity, using a planar gradiometer. The
arrows in both figures represent macrocolumns of cellular architecture not dipolar sources.

of the half sensitivity volume, Malmivuo et al. [70] demon-
strated that EEG and MEG record the electric activity in a
very similar way, that is, the differences between the EEG and
the MEG in the size of the half sensitivity volumes and the
form of the sensitivity distributions are very small. Further
evaluations of the spatial resolution for cortical sources in
the spherical model led to better results for the EEG [71].
Using simulations [72] confirmed also a slight advantage
of the EEG over many source locations and orientations
with best results for the combined EEG/MEG measurements.
More recently [73] applied pattern recognition techniques
to decode hand movement directions from simultaneous
EEG/MEG measurements, concluding that the inference of
movement direction works equally well for both techniques.

Therefore, it may be beneficial to consider also the cost
effect of the recording modality. The MEG instrumentation
costs about 20 times more than the EEG instrumentation
with the same number of channels. Thus, for improving
the accuracy of the inverse solution it might be beneficial
to first improve all aspects of the EEG technology, that
is, number of channels, electrode location accuracy, head
model geometry, and tissue resistivity accuracy, and so forth,
because improving all these cost much less than the MEG
instrumentation.

In summary we can confirm to the reader that besides
the cost differences, these two techniques offer similar
information about brain sources in what concerns accu-
racy of source localization, spatiotemporal resolution, and
decoding or predictive power. We would like to highlight
that although similar information is detected, the EEG and
MEG measurement sensitivities are orthogonal. The EEG
primarily detects electric sources that are radial to the scalp
surface with sufficiently distant electrodes and tangential
components when the leads are located near to each other
(Figure 2); however, the MEG primarily senses magnetic
currents generated by electric sources in the radial direction
(Figure 3).

5.2. Source Models. There is vast literature reviewing the
arsenal of methods available for the solution of the so-
called bioelectromagnetic-inverse problem dealing with the
estimation of the electrical activity (i.e., the distribution
of sources) inside the head given external measurements
of the electric and magnetic fields, for example, [44, 74,
75]. Nevertheless, before applying an inverse solution we
must decide about the type of sources and their possible
distribution (i.e., locations) inside the head.
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The inverse solution estimators differ in source modeling
assumptions. By comparing the number of unknowns of the
source model with the amount of data, we can differentiate
two main type of problems (i.e., of solutions). Firstly, over-
determined problems (e.g., dipolar solutions) with more
data than unknowns can differ in minimization algorithms
and their efficiency to escape local minima, measures of
goodness of fit as well as the use of physiological and/or
mathematical constraints often required in the solution
estimation/selection process. These models require assump-
tions regarding the number and location of the brain
sources modeled as point-current dipoles giving a unique
solution provided that the global minimum is identified.
Such approaches require a model order search in addition to
a source parameter optimization [76]. Numerical simulation
studies have demonstrated that an accurate estimation of the
temporal dynamics of dipolar models is critically dependent
on the ability to resolve and accurately localize all active
brain regions [77]. While there is a range of physiological
and anatomical reasons, animal studies as well as already
converging evidence from the human hemodynamic and/or
metabolic fMRI and PET studies suggest that the sensory
and cognitive process can be considered as a network of
distributed focal activity; possibility of extended activations
of neuronal tissue in some conditions cannot be disregarded.
In-depth electrode recordings used to be the primary evi-
dence for the latter assumption, demonstrating activity over
wide brain regions. However, even with such recordings, the
summed contributions of the primary source contributions
and volume currents are to be expected, and inverse models
should be considered instead of taking such measures as
strong evidence for extended brain activations.

On the other hand, we have the underdetermined
problems (e.g., distributed inverse solutions) with more
unknowns than data associated with the linear-minimum-
norm approaches that is suggested [75, 78, 79] for cases
when focal source assumptions are not justified. Such an
approach is challenging as it might require further weighting
and regularization to compensate for depth bias, selected by
imposing mathematical criteria or physiological ones.

In order to help the reader make the correct choice, we
describe four primary source models obtained by restriction
on the source type and/or their location together with their
main assumptions.

(1) The equivalent-current dipole model. It assumes that
measurements are due to a single concentrated source. It
is primarily valid for strong and spatially limited sources
(e.g., some focal epilepsy) or sources observed from a far
away measurement surface. It is probably more useful to
summarize the measured field than the source itself, which
is a particular case of the following source model.

(2) Dipolar models as used in overdetermined problems. These
models consider that the measured fields are due to a small
number of sources with unknown locations and orientations.
They are very well suited for low-rank data as produced by
filtered and averaged-evoked responses [80, 81].

(3) Cortical model. Under the extreme assumption that deep
sources do not contribute to the external fields of the head,
it assumes that the primary sources are located only in the
cortical mantel with a direction constraint. It is probably very
well suited for the analysis of measurements associated with
the activation of some primary cortical areas [82].

Previous models can be considered as data driven in
the sense that they can be only used under very specific
and restrictive experimental conditions that will not be
acceptable as a general model for the EEG and MEG
sources. Furthermore, there is scarce experimental evidence
in favor of the dipole. In fact a dipole would imply
an indefinitely increasing potential when we approach its
location. Hopefully, this has never been reported because
that would correspond to an undefined potential at that
location. Nevertheless, a more complete source model must
contain, as a particular case, previous source models while
incorporating those elements that are out of discussion so
far, that is as follows.

(4) Potential distribution inside the head. The electromag-
netic measurements at/near the scalp are due to the potential
distribution inside the brain. These (intracranial) potentials
that represent the primary source are generated in at, at
least, the entire gray matter and not only at the cortex. This
source model is compatible with all previous geometrical
constraints while including the dipoles as a particular case.
Importantly, this source model implies significant theoretical
and numerical simplifications, solving also the issue of focal
versus extended sources, since the potential is always a
continuous function defined at all points of the head.

After defining the adequate preprocessing and source
model for our data, we face the problem of the inverse
procedure selection. The following issues might be relevant
at this stage.

5.3. The Dipole Localization Error. The evaluation of the
overdetermined-dipolar models seems to have a straightfor-
ward solution by comparing target and estimated sources
with measures as the dipole localization error. Unfortunately,
these measures cannot be directly extrapolated to under-
determined distributed solutions. This is probably why the
evaluation of the distributed solutions remains as an open
issue in this field. Obviously, this might influence the
selection of the inverse solution. While we do not want to
tell the reader what he/she should do/use, we would like to
discuss some things to avoid.

It has been suggested that the zero dipole localization
might be the way to select the inverse solution. This is
likely motivated by genuine applications where the data
is dominated by single focal sources (e.g., epilepsy focus
localization) as well as by the long experience accumulated
from overdetermined (dipolar) models. It is probably an
abuse of language, which brings people to believe that “if
we correctly localize each single source alone, then by the
principle of superposition we should correctly localize any
combination of sources”. There are two clear inaccuracies
with this statement.
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(1) In this case, correct localization only means that
the maximum of the modulus of the current source
density coincides with the target site. This ignores
that the amplitude will be, as is almost always
the case for linear methods and multiple sources,
misestimated due to the unavoidable off-diagonal
elements on the resolution matrix (3).

(2) As the definition clearly states, the dipole localization
error (DLE) is estimated from the modulus of
the current source density, which means that the
DLE is not a linear function of the data d, and
thus the principle of superposition does not hold.
Consequently, linear system theory, that characterizes
the system by their response to (Delta like) input
impulses, cannot be invocated.

Given previous theoretical flaws, it is not surprising
that the DLE fails to predict the performance of an inverse
solution in the presence of multiple sources. In fact it can be
proved that correct localization of single sources is a trivial
property of simple yet robust methods (see the work by
Grave de Peralta et al. for this issue) that, we insist, are only
applicable if the concentrated single source hypothesis holds.

5.4. Inverse Solutions and Spatial Filters. A sound approach
for the inverse-problem solution in physical volumes is
the estimation of spatial filters, which “filters out” the
activity that arises from one special location, while trying to
suppress the activity from all others. These methods that have
reappeared nowadays under the name “beamformers” are
very appreciated, among other things, because the solution
can be computed independently for each solution point.
Continuing with the original descriptions of these methods
[83, 84], it was clear that minimizing crosstalk (i.e., distance
to the ideal resolution matrix) between sources does not
necessarily imply an optimal resolution kernel. Nevertheless,
current applications suggest that the solution provided by
these methods is not affected by the crosstalk.

There are very good reasons to select a Backus-Gilbert
(i.e., beamformer) method such as its adaptive properties
to deal with specific noise structures [85]. However, we
cannot emphasize enough that the only way to assess the
estimates provided by a linear inversion procedure is to
look at the resolution kernels [2, 3, 86]. The fact that we
build an independent estimate for each point alone does not
mean that this estimate is not contaminated by the effect of
simultaneously active sources.

In order to conclude the issue of the inverse procedure
selection on a positive note, we mention that there is a sound
theoretical way to select, and more importantly, to build an
inverse solution. It is enough to note that infinitely-many-
linear-inverse methods can be described by the equation G =
C ∗ L′ ∗ (L∗ C ∗ L′)+. The source jest estimated with this
method will belong to the space spanned by the columns
of C ∗ L′ for both the noiseless and the noisy case. On
the other hand, it is clear from (3) that the only way to
change the rows of the resolution matrix (i.e., the resolution
kernels) is by right transformations of the lead field. These
two procedures together yield meaningful source estimates,

when C is selected according to sound a priori information
and when an appropriate right-hand transformation of the
lead field is made [87].

5.5. Robust Methods for the Analysis of EEG/MEG Sources.
The problem with the estimation of the EEG/MEG sources
can be interpreted as follows. The measured data provides
precise (up to the noise level) but local information. In order
to know more about the whole system (i.e., the brain), we
need to ascend to qualitatively higher levels corresponding
to the surface maps and the 3D distribution of sources. By
doing this we obtain a more complete global descriptor but
probably also with a higher incertitude (if compared with the
sensor data).

As it is also the case for the fMRI signal [88], in general
we cannot rely on the amplitudes provided by the inverse
solution to compare the neural activity at two different
locations. For the same reason, ghost and lost sources appear
in every reconstruction mixed with real sources. Thus, dif-
ferentiating true sources from artifacts is almost impossible
unless we know the real distribution. Consequently, we can
say that the source distribution obtained from a single map
is probably the most imprecise picture that we can have of
brain activation.

What can we do to increase the reliability of these
functional images? As for a partial answer, we suggest the
following points.

(1) Select your inverse solution keeping in mind the
previously discussed points about the spatial filters
and the zero dipole localization error and consider
with caution source distributions estimated from
a single map (as produced, e.g., by segmentation
algorithms).

(2) Use source models that reduce the underdetermi-
nation of the inverse problem. Give preference to
physically sound transformations that reduce the
problem to the estimation of scalar fields improving
the resolution kernels.

(3) Compute magnitudes or figures of merit based on
the temporal course of brain sources instead of the
instantaneous local amplitudes and use measures that
are independent of the scale factor of the intracranial
signals like correlation coefficients.

(4) Evaluate contrasts between experimental conditions
or prestimulus versus poststimulus conditions to
reduce systematic ghost and lost source effects [31,
89].

(5) Compute correlations between magnitudes derived
from the time course of the brain activity and
behavioral measurements as reaction times [90].

6. Conclusion

There are many key areas that critically affect the accuracy
and precision of source localization. In this paper we
discussed the four key areas of EEG/MEG source imaging,
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namely, preprocessing, the volume conductor, and the
forward and inverse problems. Notwithstanding these wide-
ranging components, we emphatically direct the community
to allocate attention to these key open issues. Firstly,
the conductivity equally affects the forward and inverse
solution thus warranting the need for actual conductivity
measurements on live tissue to fill the void of these critical
parameters. These future studies should accurately docu-
ment their measurement setups—most especially in terms
of moisture and temperature. Secondly, future modeling
studies should incorporate how pathologies alter a normal,
healthy head model. Lastly, it is critical to select the source
model and the inverse procedure based on sound theoretical
and experimental basis.

Ultimately, we should make wise decisions to optimize
elements of the model that gain the most precision and
accuracy in source imaging and suppress those that con-
tribute minimal gains in source localization. After such
optimizations, how well do these future models represent
their physiological counterpart, that is, the human head? As
we proceed forward as a community, we should remember
to highlight the shortcomings of future studies reflecting
new conductivities, pathologies, source models, and so forth,
to prevent any further misinterpretations of those models,
while collectively building upon the contributions of past
models.
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1. Introduction

Since the mid 1990s there has been an increase in interest in
synchronous multi-modal imaging, whereby two modalities
or more are used simultaneously, which has arisen in large
part from investigators interested in the study of spontaneous
brain activity and in particular epilepsy. Although the
electroencephalogram (EEG) was previously combined with
PET, the advent of simultaneous EEG-fMRI (and optical
imaging techniques, such as NIRS) with temporal resolutions
of the order a second or less has lead to multiple applications
in and outside the field of epilepsy.

The overarching motivation for integrating data from
multiple modalities is to gain a more complete picture
of the brain activity of interest. Implicit in the multi-
modal integration or multi-modal imaging is the notion
that all measurements relate to the same activity in space
and time. Therefore at the most basic level, multi-modal
integration can mean spatial coregistration of the observa-

tions. Coregistration in time can mean two things: either
measurements are performed simultaneously (same time
of day), simultaneous EEG-fMRI of randomly occurring
epileptic discharges being an example; or monomodality
measurements made at the same time relative to an event
but not simultaneously, that is, serially. Examples include
separate ERP and fMRI studies in relation to the same
stimulus subsequently brought together through correlation
of the responses (as a function of some externally controlled
factor) or the spatial coregistration of independently derived
source localisation estimates. Serial multi-modal integration
implies a degree of predictability and more importantly
reproducibility of the events: the retrospective integration
of serially acquired datasets is actually restricted to the
reproducible aspects of the activity of interest, such as effects
averaged across repeated events.

The integration of electrophysiological and haemody-
namic signals (BOLD, CBF, CBV) is particularly important in
the context of this discussion for two reasons: their intrinsic



2 Computational Intelligence and Neuroscience

importance and complementarity, and data availability.
Electrophysiological signals are particularly important given
the direct link between EEG/MEG and neuronal synchrony.
On the other hand localisation based on EEG/MEG is
fundamentally limited. The more indirect link between
haemodynamic signals and neuronal activity is partly com-
pensated by our capacity to obtain 3D maps covering
almost the entire brain and with good spatial resolution
particularly for fMRI. While numerous observations have
shown that BOLD changes can be related with various forms
of brain activity, such as the haemodynamic response to
external stimuli recently, which makes fMRI possible and
useful, much remains to be learnt. Recently, experiments
have focused more specifically on the relationship between
neuronal activity measured at the microscopic level and the
BOLD effect.

2. Basic Studies of the Relationship between
the BOLD Signal and Brain Activity

2.1. The Neuronal Correlates of the BOLD Signal. The chain
of events and factors that links neuronal activity to BOLD
signal change is long (Figure 1), and the transitions between
them are far from simple. Neural activity through neurovas-
cular coupling influences the metabolic demand. Metabolic
changes impact on haemodynamic response which is depen-
dent on physiological factors such as local cerebral blood
flow, deoxyhaemoglobin/oxyhaemoglobin ratio, blood vol-
ume, and vascular geometry. Therefore, inferences in fMRI
concerning neural activity rely on the accuracy, validity, and
efficiency of prespecified models and hypotheses.

A model elucidating the basis of BOLD signal was
formulated by Friston et al. [1], furthering the Balloon model
of Buxton et al. [2], which described how evoked changes
in blood flow were transformed into fluctuations in blood
oxygenation level. The Balloon model was embedded in
a haemodynamic input-state-output model that included
the dynamic of perfusion changes that are contingent on
underlying synaptic activation. In the model of Friston et al.
it was assumed that neural activity is linearly coupled to
the metabolic demand, but the relationship between blood
flows and BOLD is non-linear. The model provides a level
of explanation for the biphasic shape of the haemodynamic
response function, with a positive peak around 6 seconds
following event or stimulus onset, followed by a negative
undershoot at around 15 seconds (first to second peak
amplitude ration ∼6) and gradual recovery to baseline.

However, a general assumption is of a linear relationship
between certain measures of neural activity and BOLD
signal, which finds confirmation in some experimental
studies for example: [3, 4]. Nevertheless it was demonstrated
that nonlinear refractoriness of BOLD responses can occur
at very short interstimulus intervals [5]. It was also reported
in another study that BOLD signal increases linearly with
positive stimulus amplitude, but for negative amplitude of
stimulus highly nonlinear behaviour ensues and that the
response to a second stimulus was compromised by first,
evidencing a nonlinear refractoriness of the BOLD response,

possibly of haemodynamic origin [6]. These studies point
out that the results of the fMRI studies of evoked activity
depend strongly on the choice of the interstimulus interval.

Several factors in the chain of events from neuronal
activity to vascular changes are difficult to account for in
models of the BOLD effect. For example, the details of
the vascular architecture and the presence of large veins in
the vicinity of the activated neurons. Microvascular density,
which is lower than that of neurons and is affected by large
vessel contribution, may influence the results and may be
a limiting factor of spatial resolution of BOLD signal [7].
Which aspect, or expression, of neuronal activity is best
reflected in the BOLD signal namely potential firing versus
synaptic activity remains unclear. This problem was reviewed
in [8, 9], where the contradictory opinions were discussed.
Namely the empirical evidence was quoted suggesting that
the spikes generated by cortical cells contribute little to
the metabolic demand of brain, accounting for only 3% of
the resting cortical energy consumption; also experiments
performed on rates show that up to 95% of regional cerebral
blood flow increases might be dependent on postsynaptic
activity. However another contribution reported a correla-
tion between spiking activity and BOLD signal [10]. In fact,
spiking activity and synaptic potentials are related to each
other. Nevertheless the comparative studies indicated that
the BOLD signal matched (Local Field Potentials) LFPs better
than multiunit spiking activity [4].The findings of the same
study suggest that the BOLD contrast mechanism reflects the
input and intracortical processing of a given area rather than
its spiking output.

BOLD decreases (sustained decreases, in contrast to the
transient negative undershoot of “positive” haemodynamic
response function) have been reported in relation to some
stimuli and events, such as epileptic spikes. Simultaneous
fMRI measurements and electrophysiological recordings
revealed a negative BOLD response beyond the stimulated
regions of visual cortex, associated with local decreases in
neural activity as expressed in terms of LFP power below the
level of spontaneous (background) activity [11].

The relationship between neuronal inhibition and BOLD
is currently under debate. Since the inhibitory activity
similarly to excitatory processes requires energy, inhibition
can be associated with increased metabolic demand which
may be reflected as BOLD increase. On the other hand
most connections in the brain are excitatory and decrease of
excitatory activity caused by inhibition may lead to a decrease
of blood flow. Experimental results point out that both argu-
ments may be valid. Mathiesen et al. [12] found comparable
cerebral blood flow increases during stimulation of excitatory
and inhibitory pathways in cerebellum. However, studies
using agonists of inhibitory transmitters have generally
shown decreases in measured energy metabolism for exam-
ple: [13, 14]. Modelling studies [15] have demonstrated that
there are several factors that may play the role in the impact
of inhibition on imaging results: local connectivity, type
of inhibitory connection, and the kind of task. Depending
on these factors neuronal inhibition may result in BOLD
increases if the region is not driven by excitation or there
is low local excitatory recurrence. Alternatively for active
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Figure 1: From neural activity to fMRI image.

excitation or high recurrence, inhibition may lead to BOLD
decreases.

Another interesting and still unresolved problem is
whether fMRI can differentiate between small activity
changes in large cellular populations, and large changes in
small populations. The resolution in typical fMRI scanner is
∼8–50 mm3, which corresponds to at least 106 neurons. The
highest resolution corresponds to one cortical column which
contains 105 neurons. Therefore in the case of an apparatus

of typical resolution several neural populations of different
activity patterns may be scanned.

2.2. BOLD versus Brain Oscillations. At the macroscopic
level, while BOLD reflects the number of active neurons,
EEG/MEG amplitude depends primarily on the number
of neurons acting synchronously. As was pointed out by
Nunez [16] the activity of synchronously acting neurons
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is proportional to their number and for asynchronously
acting neurons it is proportional to the square root of
their number. There are about 108 neurons located within
range of a standard EEG electrode; supposedly all of
them are continuously active, but only 1% of them acting
synchronously. The latter’s contribution to the scalp signal
will be 106/sqrt (108–106), that is, 100 times greater than
the 99% nonsynchronised neurons. Therefore asynchronous
neural activity will be hardly reflected in EEG, in contrast to
fMRI.

The synchronous action of neural populations gives rise
to the characteristic EEG rhythms, which have specific roles
in the information processing by brain. Specific tasks such as
movements or perceptions are connected with the synchro-
nization and desynchronization of EEG in specific frequency
bands. It is therefore of importance to establish the relations
between the electroencephalographic rhythmical activity and
fMRI results. A heuristic model relating haemodynamic
changes to the spectral profile of ongoing EEG activity was
elaborated by Kilner et al. [17]. The assumptions of the
model were that the BOLD signal is proportional to the
rate of energy dissipation, where dissipation was expressed
as a product of trans-membrane potential and current. The
authors found that the metabolic response is proportional
to the “effective connectivity” and temporal covariance of
the trans-membrane potentials. “Effective connectivity” in
the sense of synaptic efficacies was expressed as a Jacobian
J , with diagonal elements reflecting effective membrane
conductance. The measure of change of effective connectivity
is expressed by parameter α, defined by,

J(α) = J(0) +
α∂J

∂α
, (1)

where J(α) = J(0) corresponds to the resting state.
This model of activation postulates that an increase of α
caused an acceleration of dynamics of the neural system
and consequent increase of the system’s energy dissipation.
Next the authors connected the acceleration with the spectral
properties of the system. Namely they have shown that
the activation modulates the EEG spectral density g(ω)
according to

g̃(ω) = g((1 + α)ω)
1 + α

, (2)

where ω is the circular frequency and g̃ is the modulated
spectral density.

From (1) and (2) it follows that activation causes a
shift of EEG spectral profile towards higher frequencies with
amplitude decrease. This means that as neuronal activation
increases there is a concomitant increase in BOLD signal and
shift in the spectral power towards higher frequencies.

Indeed, the relative decrease of BOLD signal for low
frequency EEG rhythms and an increase in high frequen-
cies found experimental confirmation. The simultaneous
EEG/fMRI studies have shown that alpha rhythm is nega-
tively correlated with BOLD signal, for example: [18, 19],
also in the experiment involving low-frequency entrainment
the reduction of BOLD was reported [20]. In the same

publication predominantly positive correlations between
EEG and fMRI were found in the higher frequency bands:
17–23 Hz and 24–30 Hz.

These findings support the model; however it does not
account for some low frequency phenomena in brain, as
the authors of [17] admit themselves. Namely it has been
reported that very slow EEG activity fluctuations in the
monkey visual cortex were reflected in the BOLD signal [21].
It seems that the further studies concerning simultaneous
EEG-fMRI studies as well as improvement of models are
needed to unravel the mechanisms underlying manifestation
of rhythmic brain activity in the imaging studies.

Finally, the relationship between electrophysiological sig-
nals and BOLD will be greatly affected by the fluctuations of
the background activity which may influence the evaluation
of evoked activity hampering the estimation of stimulus-
related responses. On the other hand the fMRI investigation
of spontaneous activity offers the new possibilities in the
investigations of brain rhythms, sleep patterns, and epilepsy
[8].

3. Modes of Multimodal Fusion at
the Macroscopic Level

3.1. EEG versus FMRI: Illustration in Motor Imagery. The
purpose of even more advanced fusion of multi-modal data
in relation to a specific type of brain activity is to overcome
some of the limitations of individual measurements. In
this section we will consider examples of single-modality
studies of a specific cognitive, namely, motor imagery.
More specifically, we will review and contrast investigations
of motor execution, passive movements, and movement
imagination in spinal cord injured (SCI) using EEG and
fMRI separately.

In an EEG study by Müller-Putz et al. [22] event-related
desynchronization/synchronization (ERD/ERS) patterns in
paraplegic patients (suffering from a complete spinal cord
injury) are compared with able-bodied controls during
attempted (active) and passive foot movements. The aim
was to address the question, whether patients do have the
same focal beta ERD/ERS pattern during attempted foot
movement as normal subjects. For this purpose EEG was
recorded from sixteen sintered standard scalp electrodes. The
results showed a mid-central focus of beta ERD/ERS patterns
during passive, active, and imagined foot movements in
normal subjects. This is in contrast to a diffuse and broad
ERD/ERS pattern during attempted foot movements in
patients. Only one patient showed an ERD/ERS pattern
similar to able-bodied subjects. Furthermore, no significant
ERD/ERS patterns during passive foot movement in the
group of the paraplegics were found. In a further EEG study
[23] a 3-class Brain-Computer Interface motor imagery
screening (left hand, right hand, feet) was performed in a
group of able-bodied and spinal cord injured participants.
EEG was recorded from 15 scalp electrodes. Comparing
Brain-Computer Interface classification accuracy we found
a significantly lower classification rate in the patients com-
pared to the healthy subjects. In conformity with the results
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discussed above, ERD/ERS patterns are diffuse and scattered
in the patients group.

Using fMRI Alkadhi et al. [24] measured imagination of
foot movements in able-bodied and SCI participants (lesion
height from Th3 to L1, range of age was 22–43 years). They
found that the degree of BOLD activation (contra-lateral M1
and S1 foot representation; bilaterally SMA, pre-SMA, CMA,
and further) was significantly higher in the SCI patients as
compared to the able-bodied participants. It is of interest to
note that the SCI patients showed a strong correlation with
their vividness scores for motor imagery. One explanation for
the enhanced activation in SCI patients could be that they
were engaged in the task and displayed a higher mental effort
as compared to the able-bodied subjects. In a further fMRI
study Enzinger et al. [25] compared BOLD patterns of motor
imagery patterns in a remarkable SCI patient, who was well
trained in motor imagery (extensive training for a period
of several years), to a group of able-bodied controls. In
the patient significant activation of sensorimotor networks
(sensorimotor cortex contralateral to side of movement
imagination, SMA, pre-SMA, and further) occurred during
imagery of repetitive hand and foot movements (versus
rest); whereas in able-bodied subjects significant activation
only occurred in relation to hand motor imagery and only
in premotor areas (pre-SMA). No significant activation
could be demonstrated within the sensorimotor cortex in
the control group. The pattern of activation found in the
patient during motor imagery corresponded to the pattern
of activation found in controls during motor execution.

The possible explanations for the contrasting results of
the EEG and fMRI studies include: experimental factors
(such as intersubject variability and differences in experi-
mental conditions) or biological factors. Using simultane-
ous EEG and fMRI acquisitions would eliminate interses-
sion (and therefore intermodality) experimental confounds
opening the way for greater biological insights. For example,
one could assess whether the results reflect a mismatch
between the BOLD effect, and whichever aspect of the EEG
was used. Such studies have already been performed for ERD.
For example Formaggio et al. [26] used combined EEG-
fMRI over motor areas during finger movements and found a
negative correlation between EEG power changes and BOLD
activity contra-lateral to the movement. Significant ERD
in alpha and beta frequency bands were associated with
activation of the anterior and posterior central sulcus in both
sensorimotor areas.

3.2. FMRI-Informed EEG: Haemodynamic Priors for Cortical
Activity and Conectivity Estimation . In this section, we will
review some examples of how information obtained from
fMRI recordings can be used to improve the accuracy of the
estimation of the cortical activity and connectivity from EEG
recordings. There is experimental evidence suggesting that
the estimation of the cortical activity performed with the use
of neuroelectromagnetic recordings improves with the use of
the haemodynamic information recording during the same
task [27–30]. This was also demonstrated during simulation
studies [27, 29, 31].

In [32] the impact of the use of a priori information from
fMRI recordings in the EEG-based estimation of the cortical
activity and connectivity was reported. The data used were
related to high resolution EEG and fMRI signals collected
during visually triggered finger tapping movements in four
healthy subjects. The methods include the use of subjects’
multicompartment head models (scalp, skull, dura mater,
cortex) constructed from MRI, multidipole source model,
and regularized linear inverse source estimates of cortical
current density [33, 34]. The priors in the resolution of the
linear inverse problem were derived from the haemodynamic
responses of the cortical areas as revealed by block-designed
(strength of activated voxels) and event-related (coupling
of activated voxels) fMRI. The multimodal integration of
EEG and fMRI data was performed using a metric which
takes into account the haemodynamic information offered
by the recorded fMRI data as a norm in the source space.
As described in [31] the contribution of the fMRI priors
in the estimation of the cortical current density is given by
the statistically significant percentage increase of the fMRI
signal during the task, compared to the rest state. The
statistical significance of the cortical activity obtained was
assessed by computing the z-score with respect to the rest
period. Cortical activity was significantly increased in the
left ROIs representing parietal (BA 5), premotor (BA 6A),
sensorimotor (BA 3, 2, 1, BA 4), and prefrontal (BA 8 and
BA 9) cortical areas, and similarly for the ROIs located in the
right hemisphere in premotor (BA 6A) and prefrontal (BA 8)
cortical areas.

Connectivity estimations on the cortical waveforms
obtained by the multimodal integration of EEG and fMRI
recordings were performed. The connectivity was estimated
by means of the Directed Transfer Function [35], a method
to determine the directed influences between any given pair
of signals in a multivariate data set. The approach is based
on the concept of Granger causality and uses a multivariate
autoregressive model (MVAR) simultaneously modelling the
entire set of signals [36]. The application of DTF to linear
inverse estimate of the cortical activity was described in [37–
39].

The main results obtained with the multimodal integra-
tion of ERP and fMRI data were related to the activity of a
network involving the right frontoparietal cortical structures.
The flow of the connections moved from the parietal and
premotor areas towards the right and left prefrontal ones.
The ROIs located at the parietal (B.A.5 ) and premotor areas
(B.As 6) revealed as the source of an activity that spreads
and reaches virtually all the other ROIs considered, from the
occipital (B.A. 19) to the prefrontal (B.A. 9, 46) areas of both
hemispheres.

These results were compared to those obtained on the
same data set in [38] with the use of the EEG data without
fMRI priors. A substantial agreement between the two sets
of connectivity patterns (with and without fMRI priors)
can be appreciated, although differences are present in some
cortical areas, in the intensity of the cortical connections.
While the parietal and frontal connections are revealed in
both the estimations, a shift of the intensity is observed in
the connectivity patterns computed by using EEG and fMRI
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information when compared to those obtained using only
the EEG data.

Similar results were obtained by estimating the cortical
connectivity patterns in the beta band from the high
resolution EEG recordings obtained during the execution
of the Stroop task, with and without fMRI priors [40, 41].
In this case it can be noted that a substantial agreement
exists for the connectivity patterns obtained, that show
an involvement of the parietal and the frontal areas. This
finding is similar to that already observed in the finger
tapping experiment, as in this case the intensity of the
DTF estimated by the cortical waveforms obtained with
the multimodal integration was significantly higher than
that obtained by using only the EEG information. Slight
differences in the cortical pattern in different cortical areas
were noted.

We conclude that the inclusion of fMRI priors in the
estimation of cortical activity and connectivity from high
resolution EEG can add information to the estimation and
help to define the role of some specific cortical areas in the
flow of information necessary to the execution of a specific
task.

3.3. Simultaneous EEG-FMRI of Spontaneous Brain Activity:
Epilepsy. Simultaneous multi-modal acquisitions make it
possible to acquire signals in identical experimental condi-
tions. Assuming that data quality is preserved continuous
acquisition synchrony means that the same events are
captured and can be studied across modalities. Therefore
synchronous multi-modal acquisitions make it possible to
study signals related to events over which one has no
experimental control, that is, spontaneous brain activity in
the resting state. An important example of this is epileptic
activity which can be captured on EEG, an important
investigative and clinical tool in the field of epilepsy (And
visually of course, in the case of seizures; there have been
a number of (single-modality) fMRI studies of seizures, for
example, [42–44].).

Due to its potential clinical impact in cases with drug-
resistant epilepsy considered for surgical resection, local-
isation of the generators of epileptic activity is a central
issue in the field of epilepsy imaging. Although EEG
provides important clinical information its ability to localise
generators is fundamentally limited by the nonunicity of
the inverse electromagnetic problem [45]. However, tomo-
graphic modalities such as fMRI do not suffer from this
limitation. Therefore, as early as 1993, only a few years
following the demonstration of BOLD fMRI, investigators
in Boston started working on combined EEG and fMRI
acquisitions [46–48]. The key driver for this methodological
development is the lack of overt manifestation during or
following an interictal spike (in contrast to seizures, which
are rarer and generally more difficult to study using fMRI
due to motion and safety considerations). In the context
of fMRI this means that the only way of tagging scans
according to brain state (e.g., IED versus. background)
necessary for modelling the BOLD changes is to record the
EEG simultaneously.

Studies using EEG-fMRI applied to epilepsy generally
follow the asymmetric, EEG -> fMRI, mode of integration:
the EEG’s sole purpose is as a basis for fMRI modelling, that
is, to answer the question, what are the BOLD correlates of
the EEG events? For example, early applications used a spike-
triggered acquisition mode whereby each fMRI scan (or burst
of scans) was acquired following the visualisation of a spike,
and a corresponding number of scans acquired following
periods of background activity [49–54]. It is important
to remark that this (nonperiodic) interleaved acquisition
scheme was also motivated by one of the key issues in
synchronous multi-modal data acquisition: data quality
degradation due to interaction between each modality’s
hardware. In the case of EEG recording inside MR scanners,
the problem of pulse-related and image acquisition artefacts
arises. By implementing a pulse-artefact reduction scheme,
the authors were able to increase the reliability of spike
detection; by limiting scanning to short bursts following
events of interest, they limited the impact of the image
acquisition artefact [50, 51]. Subsequently, the development
of software techniques to allow recording of good quality
EEG during continuous scanning gave rise to the more
flexible technique of continuous and simultaneous EEG-
fMRI [55].

In the spike-triggered approach spike-related activation
was determined by applying voxel-wise t-tests across the two
scan sets. For datasets acquired using the analytical frame-
work of event-related designs is employed, whereby EEG
events of interest are identified, marked, and represented
mathematically to form the basis of a general linear model
of the entire BOLD time course and conforms to the EEG
-> fMRI, mode of integration [55, 56]. In an extension
of the straightforward EEG -> fMRI mode of integration
Liston et al. tested the significance and localisation of
BOLD changes linked to EEG epochs below the threshold
of visual spike detection, but marked as possible spikes by
an automated algorithm, and were able to demonstrate the
epochs’ probable epileptiform nature [57]. In the not so
distant future, we envisage that the availability of biophysical
models linking neuronal activity to EEG and BOLD signals
that can be inverted should result in more symmetrical
improved estimation of neuronal generators.

3.4. Simultaneous ERP-FMRI: Single Trials. Event-related
potentials (ERPs) are EEG responses to specific sensory,
cognitive and motor events [58]. Despite the rich temporal
information provided by ERPs, they suffer from the same
spatial resolution limitations as other scalp EEG patterns.
The integration of ERP and fMRI may provide a more com-
plete spatiotemporal characterisation of evoked responses
through the study of individual trials.

To this end a major breakthrough was achieved when
simultaneous EEG and fMRI recordings became feasible
[59], safe [60], and of sufficient quality [61–63]. As men-
tioned above, synchronous acquisitions remove intermodal-
ity bias relative to experimental conditions [64]; for example,
Novitski et al. [65] showed, that the loud noise of the
scanner can influence how the brain reacts to certain stimuli.
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In addition, simultaneous recordings allow the investigation
of relationships between event-related potentials and BOLD
responses across individual events.

In the following, we illustrate four approaches to the
analysis of simultaneously acquired ERP-fMRI, namely, ERP-
informed fMRI analysis, the use of constrained source
localisation, parallel independent component analysis (ICA),
and joint ICA.

The general idea behind ERP-informed fMRI analysis
is to identify brain regions with fMRI responses that
reflect paradigm-related amplitude modulations in individ-
ual ERPs. In [66], for instance, EEG data were acquired
during an auditory target detection (oddball) paradigm and
both ICA and wavelets were applied to denoise the data.
Subsequently single-trial N1, P2 and P3 amplitudes [67] were
extracted from the data. The resulting vectors were convolved
with the haemodynamic response function (HRF) and used
as regressors in a general linear model (GLM) for the BOLD
time course. The findings confirmed that the combination
of ERP and fMRI enables identification of regional responses
in the fMRI, reflecting a specific aspect of varying potentials.
Similarly, Debener et al. [68, 69] applied ICA to isolate task-
related activity from a typical EEG mixture of overlapping
brain and nonbrain sources. These single-trial amplitudes
from selected independent components preserve event-
related trial-by-trial fluctuations within each condition and
can thus be correlated with the BOLD response. This research
showed that ICA is a practical solution to minimise artefacts
and identify functionally meaningful EEG activity on a trial-
by-trial basis. Another example of this approach can be
found in [63] where subjects performed an auditory oddball
task during simultaneous EEG-fMRI measurements. They
showed significant BOLD effects related to ERP latency and
amplitude.

In a further refinement, regions of interest (ROIs) were
extracted from the fMRI maps [70] and used as con-
straints in source localisation analysis. The cortical generators
thus found, corresponded highly to findings by means
of intracranial measurements and the different timing of
activations associated with the task paradigm could also be
appreciated. As such, this method improved the solution
of the inverse EEG problem and enabled the study of the
dynamic behaviour of ROIs.

The abovementioned methods rely on the assumption
that scalp EEG data from both a selected channel and latency
can predict BOLD changes in single voxels [71]. However,
this is not physiologically plausible, because event-related
processes might be spatially and temporally mixed across the
brain. Therefore, Eichele et al. [71] propose “parallel ICA”
to unmix EEG and fMRI separately and to match temporal
sources from the EEG with spatial sources from the fMRI.

The above approaches are asymmetric in the use of
data, namely, EEG for analysis of fMRI data or vice versa.
Moosmann et al. [72] propose a symmetric approach by
not only combining EEG and fMRI in one common data
space but also by applying a joint ICA model to these
data. Therefore features of neural sources whose trial-to-trial
dynamics are jointly reflected in both modalities can now be
studied.

ERP-informed fMRI is so far the most widely vali-
dated method; it has already been studied in numerous
applications. Since it allows tracking and correlating the
trial-to-trial variability of both EEG and fMRI, it provides
detailed information about regional fMRI responses with
the temporal accuracy typical of EEG. Furthermore, the
second proposed method, constrained source localisation,
is based on the same principles but additionally uses the
ERP-informed fMRI regions as constraints for further source
localisation. Unfortunately, both these methods suffer from
several important drawbacks. First of all they leave room
for improvement concerning the proportion of EEG data
used for integration [72]. The reason for this is that all
these studies take into account only certain features of the
data and therefore possibly disregard important temporal or
spatial information. In addition, the observed data from both
modalities often represent a mixture of signals coming from
multiple neural sources. A voxel-by-voxel prediction of the
fMRI signals based on the ERP data (even after application of
ICA on these ERPs) may therefore become unreliable when
multiple sources contribute to either the predictor or the
response variables. The parallel ICA approach tries to address
both these issues, but still shares a disadvantage with the
above methods, namely, the asymmetry of the procedure.
In the joint ICA approach both modalities are therefore
assembled and decomposed in one common data space. As
such an asymmetric information flow is no longer present. A
limitation of joint ICA is however that it cannot reflect the
time domain of event related oscillations that are not time
locked within one component [72].

ICA is clearly emerging as an important analytical tool,
reflecting the exploratory nature of work on EEG and
fMRI data fusion at the level of single events. However, the
relevance of the assumptions on which ICA is based with
regard to the separation of the source activity into electrical
and haemodynamic components requires further testing.
Furthermore, not enough validation has yet been performed
to conclude whether one of the above methods performs
much better than the others. So far the performance of
the methods seems highly dependent on the application of
interest.

4. Conclusion

The relationship between the BOLD signal and neural activ-
ity is complex, and depending on the experimental paradigm
it can be linear or nonlinear. The relative contributions of
slow wave activity versus spiking activity and the dependence
of BOLD on spectral properties of neural activity also
remain to be fully characterised but increasing evidence
indicates that Local Field Potentials and the higher frequency
components of brain rhythms are good correlates of the
metabolic response. Experimentally, various modes of multi-
modal image integration are available to the investigator.
The inclusion of fMRI priors in the linear inverse estimation
of the cortical activity can be used to increase the spatial
resolution of the EEG and improved estimation of cortical
connectivity, which is one of the most challenging and
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important objectives of neuroimaging. Synchronous acquisi-
tions represent the most flexible solution in terms of analysis,
allowing full exploitation of the data at the available temporal
and spatial resolution, down to individual events and free
of intersession bias. In the field of motor imagery, this
approach has demonstrated a negative correlation between
event-related desynchronization and the BOLD signal. In the
field of epilepsy, simultaneous EEG-fMRI is necessary for the
study of the haemodynamic correlates of interictal patholog-
ical discharges due to their subclinical nature. Such studies
have demonstrated BOLD increases and decreases in relation
to sharp waves and sharp- and slow-wave complexes. In the
field of evoked response studies we envisage the extension of
the connectivity estimators in the time-frequency domain,
which would return more detailed information about the
functional links established between different cortical sites
during the evolution of the task. The proposed fusion
procedures for single trial ERPs and fMRI enable us to study
the temporal dynamics the spatial behaviour of information
processing and cognitive functioning in greater detail. Future
developments in biophysical modelling will permit more
precise and complete estimations of neuronal activity using
noninvasive means. This may lead to more symmetric data
analysis approaches better capable of identifying salient
spatiotemporal patterns and assist in the design of efficient
experimental strategies.
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EU COST Neuromath (BM0601). L. Lemieux acknowledges
funding received from the Medical Research Council (UK),
Action Medical Research and the support of UCLH/UCL
who received a proportion of funding from the UK Depart-
ment of Health’s NIHR Biomedical Research Centres funding
scheme.

References

[1] K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, “Nonlinear
responses in fMRI: the balloon model, Volterra kernels, and
other hemodynamics,” NeuroImage, vol. 12, no. 4, pp. 466–
477, 2000.

[2] R. B. Buxton and L. R. Frank, “A model for the coupling
between cerebral blood flow and oxygen metabolism during
neural stimulation,” Journal of Cerebral Blood Flow and
Metabolism, vol. 17, no. 1, pp. 64–72, 1997.

[3] O. J. Arthurs, E. J. Williams, T. A. Carpenter, J. D. Pickard, and
S. J. Boniface, “Linear coupling between functional magnetic
resonance imaging and evoked potential amplitude in human
somatosensory cortex,” Neuroscience, vol. 101, no. 4, pp. 803–
806, 2000.

[4] N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A.
Oeltermann, “Neurophysiological investigation of the basis of
the fMRI signal,” Nature, vol. 412, no. 6843, pp. 150–157, 2001.

[5] K. J. Friston, O. Josephs, G. Rees, and R. Turner, “Nonlinear
event-related responses in fMRI,” Magnetic Resonance in
Medicine, vol. 39, no. 1, pp. 41–52, 1998.

[6] A. Mechelli, C. J. Price, and K. J. Friston, “Nonlinear coupling
between evoked rCBF and BOLD signals: a simulation study
of hemodynamic responses,” NeuroImage, vol. 14, no. 4, pp.
862–872, 2001.

[7] R. Turner, “How much codex can a vein drain? Downstream
dilution of activation-related cerebral blood oxygenation
changes,” NeuroImage, vol. 16, no. 4, pp. 1062–1067, 2002.

[8] N. K. Logothetis, “What we can do and what we cannot do
with fMRI,” Nature, vol. 453, no. 7197, pp. 869–878, 2008.

[9] O. J. Arthurs and S. Boniface, “How well do we understand
the neural origins of the fMRI BOLD signal?” Trends in
Neurosciences, vol. 25, no. 1, pp. 27–31, 2002.

[10] G. Rees, K. Friston, and C. Koch, “A direct quantitative
relationship between the functional properties of human and
macaque V5,” Nature Neuroscience, vol. 3, no. 7, pp. 716–723,
2000.

[11] A. Shmuel, M. Augath, A. Oeltermann, and N. K. Logothetis,
“Negative functional MRI response correlates with decreases
in neuronal activity in monkey visual area V1,” Nature
Neuroscience, vol. 9, no. 4, pp. 569–577, 2006.

[12] C. Mathiesen, K. Caesar, N. Akgören, and M. Lauritzen,
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1. Introduction

Determining the neural origin and strength of sources
producing scalp maps of electric or magnetic fields requires
the solution of an inverse problem. This so-called neuroelec-
tromagnetic inverse problem (NIP) lacks a unique solution.
In spite of this serious difficulty, there is an active past and
ongoing research on this field (see [1] for a recent review)
because of the extreme clinical and research importance of
the problem. A reliable optimal solution to the NIP is thus
far the only possible alternative to study a direct reflection of
neuronal activity in normal human subjects with the high
temporal resolution required to trace the highly dynamic
behavior of the human brain.

Several linear and nonlinear solutions based on a
diversity of approaches have been proposed. However,

independently of the approach used, we need to evaluate the
reliability of the estimates provided by the inverse procedure
selected. While there is interesting ongoing research on this
topic [2–5], no definitive or general answer to this problem
hitherto exists. One alternative to evaluate the localization
features of linear inverse solutions is the so-called model
resolution matrix (MRM) [6, 7], although the way to use
it in the evaluations remains as a highly controversial point
because of the following reasons.

Some authors center their attention on the columns of
the MRM, also called point spread functions (PSFs), that
allow inferring how the solutions behave for single punctual
sources. These authors consider the PSF as an adequate
measure of the “goodness” of a linear inverse [8, 9]. An aspect
to consider here is the existence in literature of two parallel
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definitions of the single (punctual) source localization error
[10].

(1) The bias in Dipole localization (BDL) defined in
terms of the accuracy in estimating the location of
each Cartesian component of the dipole. As such, it
is a linear measure fully compliant with the linearity
involved in the definition of the Model Resolution
Matrix and can be directly estimated from the PSF.

(2) The Dipole Localization Error (DLE) defined as
the error attained in localizing the modulus of the
current density vector. This definition conceptually
disagrees with the use of MRM and PSF since
the modulus is a nonlinear transformation of the
individual dipole components not directly reflected
by the PSF. Besides, linking the dipole localization
error with the superposition principle is a blatant
error since the basis of superposition is linearity.
Although it certainly holds that the PSF of two
simultaneously active dipoles is the sum of their
individual PSFs, this is not the case for the DLEs.
The widespread use of the dipole localization error
concept obeys to historical and practical reasons since
the modulus is the magnitude currently displayed in
brain imaging.

All along this paper we will use the term single source to
denote each of the three orthonormal (i.e., orthogonal with
unitary norm) dipoles associated with a solution point. This
is in agreement with the structure of the model resolution
matrix where each solution point is represented by three
columns. Consequently, each column corresponds to one
and only one of three Cartesian components of a dipole. As
typically used in this field, the term perfect localization will
be used whenever the DLE or the BDL of a single source
is zero independently of the off-diagonal elements of that
column.

Two linear inverse solutions have been reported in the
NIP literature to explicitly optimize the localization of single
sources. The EPIFOCUS solution [11] aims to minimize DLE
and BDL for both noisy and noiseless data for all sources in
the solution space. In contrast, the sLORETA inverse solution
[9] minimizes DLE and BDL only for noiseless data.

Authors advocating the use of PSF employ the appealing
argument of the superposition principle [12] as the basis to
infer the capabilities of the solution for multiple source local-
ization from results obtained on single source localization.
They consequently concentrate their efforts in optimizing
the columns of the MRM and will likely consider the zero
dipole localization error as the ultimate goal to reach in
the construction of inverse estimators. Another group of
authors diverge from this point of view and insist that the
performance of a linear inverse solution in the presence of
multiple sources can only be inferred from the resolution
kernels (the rows of the MRM). They consider the analysis
of the PSF only valid for single source localization but not
sufficient to describe the performance of distributed source
models satisfactorily [3, 13]. They will therefore consider
essential the incorporation of as much a priori information

as possible into the solution to deal with the nonuniqueness,
that is, they will aim to characterize the space where actual
sources are contained [14, 15].

In this paper we introduce a “trivial” and easy-to-
compute linear inverse solution coined Adjoint Normalized
Approximation (ANA) that transforms the original inverse
problem into a space in which the model resolution matrix
shows optimal properties for single source localization. We
demonstrate that in the transformed space, ANA inverse
solution is able to correctly localize single sources in full
extent, that is, with zero dipole localization bias and perfectly
accurate strength. These properties are shown to be satisfied
for arbitrary lead field models independently of the amount
of scalp sensors. ANA solution is used to build a simple
didactical example illustrating that perfect localization of
single sources in position and strength has no implications
for simultaneous source localization. The presented example
serves to understand the emergence of spurious sources and
how they totally distort the reconstruction when multiple
sources are active. We further demonstrate that ANA can
be applied to retrieve sources in the space of the original
current density vector. Even if in this space the bias in
dipole localization error is not zero everywhere, ANA
solution is highly robust to noise outperforming the best
methods presented so far for single source localization.
Its robustness to noise and computational simplicity make
of ANA a reasonable alternative for data generated by a
single dominant source plus noise as can be the case in
epilepsy. Still, ANA is more likely to contribute to further
developments in this field, by providing the simplest possible
evidence that optimizing single source localization is both
trivial and useless. Therefore the only reasonable way to deal
with the nonuniqueness of NIP is to add plausible physical
and physiological constraints into the source space.

2. Methods

2.1. The Theoretical Basis of the Problem. The neuroelectro-
magnetic inverse problem (NIP), that is, the reconstruction
of the current density vector inside the brain responsible
for the electric and magnetic fields measured near/over the
scalp, can be represented by a (first kind) Fredholm linear
integral equation, denoting the relationship between the data
measured at the external point, d(s), and the superposition
of the contribution of the unknown current source density
distribution at locations r inside the brain [16]:

d(s) =
∫

Brain
L(s, r)∗ j(r)dr. (1)

The (vector) lead field function L(s, r) contains all the
information about the boundary conditions as well as the
media conductivities or permittivities for the electric and
magnetic cases, respectively. The 3D vector j(r) denotes the
unknown current density vector, and r is the 3D position
variable running over the volume of the brain.

Under experimental conditions, neither the measure-
ments nor the lead field function is known for arbitrary
surface/brain locations. However, assuming that the integral
equation can be approximated by a discrete sum, (1) can
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be represented by an underdetermined system of linear
equations:

d = Lj. (2)

Vectors d and j and matrix L represent the discretization
of the continuous functions, that is, dk = d(sk), jm = j(rm),
and Lkm = wkmL(sk, rm), andwkm are the quadrature weights.

All linear solutions of (2) can be obtained solving a
variational problem [7]. This yields the inverse matrix G that,
when applied to the measured data, produces the estimated
current density vector, that is,

̂j = Gd. (3)

Substitution of the measured data, as described in (2),
into (3) yields the following fundamental equation for
underdetermined linear systems:

̂j = Gd = GLj = Rj. (4)

Here, R = GL denotes the model resolution matrix
(MRM) describing the relationship between the estimate and
the original magnitudes of the current density. In simpler
terms, (4) tells us that our estimates separate from the
original values by the transformation R. The nearer this
matrix is to the identity matrix, the better the estimated
solution resembles the original sources.

For the noisy case where d = Lj + Noise, we can always
rewrite it as d = Lj + Ljn where jn is the minimum norm
solution of the equation Noise = Ljn, and thus

̂j = Gd = GL
(

j + jn
) = R

(

j + jn
)

. (5)

For the particular example discussed here, the unknown
current density vector contains the three Cartesian compo-
nents at each solution point. Correspondingly, each solution
point will be represented by 3 columns and 3 rows of the
MRM. The rows of R are known as the resolution kernels
[17]. Each resolution kernel provides information on how
simultaneously active sources affect the estimates of j at the
component associated to the row. The columns of R are the
point spread functions (PSFs) and reflect the quality of single
source reconstruction. That is, each column corresponds to
the current source density estimated by the inverse solution
when the associated unitary single source is active alone.
Based on the linearity of matrix products, to compute the
current source estimated for simultaneously active sources it
is enough to add the associated columns. For further details
about how to compute the bias in dipole localization and the
dipole localization errors from the PSF, see [7, 10].

2.2. The Adjoint Normalized Approximation (ANA) of the
Inverse. It is evident that for every invertible matrix W, the
following change of variable can be applied to (2):

d = LW−1Wj = LZ, (6)

where L = LW−1 and Z = Wj. Let us define W as the
diagonal matrix containing the norm of each column of L. It

follows from the definition of W that it is a diagonal square
matrix and thus invertible. Therefore (6) is identical to the
original problem formulation in (2); what has been done
is a simple change of variable where the model matrix is
the column normalized lead field, and the unknown is the
variable Z.

To obtain a unique solution to (6) in the space of the
transformed variable Z, we need to invert the model matrix
L. Since we are dealing with an underdetermined inverse
problem, matrix L is noninvertible. A typical choice for
inverse problems is to use the Moore-Penrose pseudoinverse.
We rather propose to use a particularly simple approxima-
tion of the inverse of a matrix, the adjoint or transpose (not
to be confused with the adjugate matrix composed by the
cofactors). This simple choice satisfies the third and fourth
Moore-Penrose conditions, while violating the first two [18],
that is, if A is a matrix (or vector) and G is its generalized
inverse, then it must hold that (1) AGA = A. (2) GAG =
G. (3) (AG)t = AG, and (4) (GA)t = GA. It also follows
that the pseudoinverse of G is A. Therefore the proposed
Adjoint Normalized Approximation (ANA) inverse is given
by

G = Lt = (LW−1)
t = W−1Lt . (7)

There is a close relationship between ANA and EPIFOCUS.
While EPIFOCUS computes the pseudoinverse of three lead
field columns (i.e., three single sources) associated with one
solution point, ANA corresponds to the computation of the
pseudoinverse of each column (i.e., single source) separately.
This is straightforward since the Moore-Penrose inverse of a
normalized (unitary norm) vector is the transposed vector
which fulfills all the four conditions of the pseudoinverse
mentioned before. We would also note that the adjoint
corresponds to the simpler initial approximation of the
inverse for iterative processes. The normalized adjoint is a
step forward fulfilling one property of the inverse, that is, the
product with the original matrix yields one at the diagonal.
As it was the case for EPIFOCUS [11], the simulations of
the next section confirm that ANA properties are not a
consequence of the weighting or the transposition alone but
a combined effect.

3. Results

3.1. Theoretical Properties of ANA’s Resolution Matrix.
According to (4), the resolution matrix associated with the
transformed variable z is given by

R = LtL = W−1LtLW−1. (8)

From this, it follows that the resolution matrix of ANA
inverse solution is the product of the transposed normalized
lead field times the normalized lead field. Therefore the
resolution matrix is symmetric.

Further properties of the resolution matrix R (8) can be
derived by noting that the elements of the ith column of R
are given by the scalar product of the potential map produced
by the ith source with the potential map of all other sources.
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This derives from the fact that each column of L represents
the electric potential or magnetic field pattern measured
at/near the head surface when only the ith dipolar source is
active with unitary strength (“forward solutions”). Since each
dipole produces a different activation map, it is then clear
that each pair of columns of L is noncollinear. The resolution
matrix of ANA in the transformed space L necessarily
inherits the property of noncollinearity from L since the
only change is a normalization factor. Consequently, the ith
column of R contains the correlation coefficients between the
ith potential pattern and the potential patterns of all other
sources. Since the correlation coefficient between a given
potential map with itself is necessarily one, then the elements
at the main diagonal of R (the map autocorrelations)
are inevitably equal to one. The nondiagonal elements,
representing the correlations between one given map and all
other maps, are necessarily lower than one since different
unitary dipoles are unable to produce identical scalp maps.
Since these properties hold for all sources, that is, all columns
of R, then, the maximum of each column, defining the bias
in dipole localization, is reached at the main diagonal and
is exactly one. Thus, the following properties hold for the
resolution matrix of this inverse independently of the lead
field model considered.

(1) The point-spread functions (columns of R) reach
their maxima at the diagonal elements trivially
leading to perfect reconstruction of the positions of
all single sources (all Cartesian components of the
dipole at each solution point).

(2) Because the diagonal of the resolution matrix is one
(due to normalization), the intensity of the estimated
source is exactly the intensity activity of the original
source.

(3) Since R is symmetric, then the resolution kernels
shapes are close to the ideals attaining the maximum
value at the correct places.

3.2. Does Perfect Localization of Single Sources Imply Correct
Localization of Multiple Active Sources? The ideal properties
of ANA’s resolution matrix described in the previous section
are independent from the lead field model. This implies that
they will hold even for arbitrarily small sensor configurations
and very large solution spaces provided that there are no
collinear columns in the lead field. We have exploited this
fact to construct a simple numerical example that might help
to shed light on several aspects influencing the behavior of
linear inverse solutions in the presence of multiple active
sources. The computational simplicity of ANA will facilitate
the task to readers interested in further simulating its
behavior with simultaneous sources.

The example given here considers the case of two EEG
sensors and four solution points as depicted in Figure 1.
The four solution points lie in a coronal plane below the
arc at which the two sensors are placed. Sensors are placed
at the approximate positions of electrodes C3 and C4 of
the international 10/20 placement system. The lead field
was computed using a semirealistic head model derived

1

3
4

2

Figure 1: Electrodes and solution points used for the analysis of
ANA resolution matrix. The two electrodes are located at the
approximated positions of C3 and C4.

from the Montreal Neurological Institute (MNI) average
brain using the SYSMAC procedure described in [19]. It
is noteworthy that the selection of the lead field matrix
parameters (conductivities, electrode positions, and solution
points) will have little effect on the main results described
below. This argument justifies our selection of a very small
problem to allow portraying the full model resolution matrix
and its subsequent understanding.

In the case of this simple example, the current density
vector is a 12 component vector of the form

j =
[

j1
x j1

y j1
z j2

x j2
y j2

z j3
x j3

y j3
z j4

x j4
y j4

z

]

. (9)

This vector is formed by the three Cartesian components
of the dipoles (subscripts x, y, z) linked to each solution
point (superscripts 1, 2, 3, 4). The spatial distribution of the
modulus of the current density vector can be computed using

ji =
√

(ji
x)2 + (ji

y)2 + (ji
z)2 for i = 1, 2, 3, 4, (10)

resulting in the vector of the modulus given by

jm =
[

j1 j2 j3 j4
]

. (11)

Table 1 shows the model resolution matrix R associated
with ANA inverse solution for this problem. This is a 12 ×
12 matrix where each group of three rows (or columns)
represents the resolution kernels (or impulse responses)
linked to the three Cartesian components of a dipole at the
corresponding solution point.

The theoretical properties derived in the previous section
obviously hold for the problem presented. The main diagonal
is filled by ones that are the dominant elements within
their respective rows (and columns since the matrix is
symmetric). A first aspect to note is that while the recovery
of each Cartesian component of the dipole (if alone) is
perfect, the recovery of the modulus is not. Perfect recovery
of the modulus can be obtained with ANA inverse by
stating the original problem for the modulus rather than
for the individual dipolar components. This can be done by
determining a priori the orientation as in SAM beamformer
[20] or by reformulating the problem as proposed in [21].
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Table 1: The resolution matrix for ANA and the configuration presented in Figure 1. The 12-by 12-model resolution matrix for the
configuration of Figure 1 is composed by two electrodes and 4 solutions points. The 12-dimensional unknown current density vector (9) is
composed by the 3 Cartesian components of the dipolar moment for each solution point.

1 0.48 0.94 0.48 −0.84 −0.75 −0.67 −0.86 −0.93 −0.10 −0.93 0.16

0.48 1 0.74 0.99 −0.87 −0.94 −0.97 −0.85 −0.13 0.81 −0.14 0.94

0.94 0.74 1 0.75 −0.97 −0.92 −0.88 −0.98 −0.75 0.23 −0.76 0.48

0.48 0.99 0.75 1 −0.87 −0.94 −0.97 −0.85 −0.14 0.81 −0.15 0.94

−0.84 −0.87 −0.97 −0.87 1 0.98 0.96 0.99 0.60 −0.43 0.61 −0.66

−0.75 −0.94 −0.92 −0.94 0.98 1 0.99 0.98 0.46 −0.57 0.47 −0.77

−0.67 −0.97 −0.88 −0.97 0.96 0.99 1 0.95 0.36 −0.66 0.37 −0.83

−0.86 −0.85 −0.98 −0.85 0.99 0.98 0.95 1 0.62 −0.40 0.63 −0.63

−0.93 −0.13 −0.75 −0.14 0.60 0.46 0.36 0.62 1 0.45 0.99 0.20

−0.10 0.81 0.23 0.81 −0.43 −0.57 −0.66 −0.40 0.45 1 0.44 0.96

−0.93 −0.14 −0.76 −0.15 0.61 0.47 0.37 0.63 0.99 0.44 1 0.19

0.16 0.94 0.48 0.94 −0.66 −0.77 −0.83 −0.63 0.20 0.96 0.19 1

Here we stick, for the sake of simplicity and compliance
with the MRM linearity, to the case of the component-by-
component estimation.

The following two simple examples illustrate how the
model resolution matrix is used to derive the inverse
solution estimates for a single active source and for two
simultaneously active sources.

According to (4), if the “true” current density vector has
the form (9), then the ANA inverse solution estimate is given
by the product of the MRM and the “true” vector. Let us
imagine that the true source distribution is formed by a
single active source, which is the z-component of the first
solution point with strength k. In this case, the true vector
is according to (9) given by [0, 0, k, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The
current density vector estimated by ANA is the product
of R by this column vector that yields precisely the third
column of R multiplied by k. Therefore, ANA solution leads
to a maximum at the third component of the first point
(third element of the third column), and the estimated
strength is exactly k. Note that all the other elements in
the reconstruction, although smaller than the third one, are
different from zero. All the nonzero elements are spurious
sources.

In the same way, the reconstruction of each single active
source of unitary strength is given by the PSF (column
of MRM) linked to this source component. While the
maximum always occurs at the right position and the source
strength is correctly estimated, the reconstruction is rather
noisy and contains spurious activity (ghost sources). This
spurious activity appears at sites where the true source
strength is zero and is a consequence of nonzero off-diagonal
elements of the resolution matrix. To better understand
the origin of nonzero off-diagonal elements in the MRM,
we should remember that its ith column contains the
correlation coefficients between the ith potential pattern and
the potential patterns of all other sources. Nonzero off-
diagonal elements of the resolution matrix appear there-
fore at the position of sources leading to correlated scalp
patterns. For the particular case of ANA inverse solution,

the value at the off-diagonal elements will be identical to
the correlation coefficient between the respective potential
patterns. Different sources might produce highly similar
scalp potential patterns (highly correlated patterns) inducing
large off-diagonal elements and therefore spurious sources.

Not only will off-diagonal elements lead to noisy single
source reconstruction but also, even worse, they will totally
mislead multiple source reconstruction. To see how, let us
return to our example of Table 1 and assume that sources 1
and 12 are active (both with unitary strength). In practical
terms, this means that the x-component of a dipole is active
at the first solution point and the z-component of a dipole
is active at the fourth solution point. The reconstruction
provided in this case will be equal to the sum of columns 1
and 12 of the resolution matrix, and its numerical values are
given in Table 2.

The largest positive value of the reconstruction appears
at source component number four and therefore at the
second solution point. The largest absolute value appears
at the source component number six which also belongs
to the second solution point. The modulus of the vector,
given in Table 3, shows similar results. This means that
neither the component-by-component reconstruction nor
the modulus shows maxima at the actual source locations
at solution points one and four. In fact the fourth solution
point has the smallest modulus, and its active component
the third smallest estimated strength. The failure of the
solution to retrieve the two simultaneously active sources
is once again due to the existence of large off-diagonal
elements in the MRM. Hopefully, this numerical example
helps to understand that the naı̈ve intuitive application of the
superposition principle to this problem is erroneous since
exclusively based on the diagonal elements of the MRM.

As for a comparison, we depict on Table 4 the resolution
matrix for the Minimum Norm (i.e., Moore Penrose pseudo
inverse) solution. Note that while it is symmetric, the
maxima for each row (or column) are not necessarily at the
main diagonal. Note also that several elements are zero for
the numerical precision (3 decimal digits) used.
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Table 2: The reconstruction provided by ANA when multiple sources are active is erroneous despite the perfect reconstruction of both sources
alone. Current density vector reconstruction for EEG data generated when the first and the last single sources are simultaneously active with
unitary amplitude.

1.16 1.42 1.42 1.43 −1.50 −1.52 −1.51 −1.50 −0.72 0.86 −0.74 1.16

Table 3: Modulus of the current density vector of Table 2. Each value
corresponds to the strength of the source at each solution point as
computed using (10).

2.32 2.57 2.25 1.62

3.3. Single Source Localization with ANA in the Original
Source Space of j and Synthetic Noisy Data. We have shown
so far that ANA solution is capable to provide perfect
localization of single sources within the space of the trans-
formed variable Z. However, it is clear that on the original
source space the symmetry of the resolution matrix will
not hold and that we cannot insure that MRM elements
are bounded. However, based on the rationale behind ANA
and EPIFOCUS, there is no reason to believe that this
will prevent ANA to correctly localize single sources in the
original source space. To shed some light on this issue, we
can resort to simulations with single sources. This issue is
of concern because the problem of single dipole localization
under the assumption of a dominant generator remains of
interest in several practical neurophysiological applications
such as epilepsy [22–25]. Linear inverse solutions constitute
an appealing alternative to nonlinear dipole localizations
because of their higher computational simplicity and their
possibilities to be applied to irregular solution spaces
required for modeling patient’s brains [11]. We might
therefore wonder if the good features of ANA for single
source localization hold within the original source space j.
For practical applications in clinical and research routine,
we expect a solution which guarantees accurate localization
but which is also robust, that is, capable to deal with
experimental noise and modeling errors (sensor location,
approximate head conductivities, etc.) and particularly with
changes in the pattern/map of the dominant source induced
by other weaker sources that are simultaneously active.

In this section we present some simulation results to
study how much the theoretical performance degrades with
noise in the original source space j. We compare the
localization results for four linear solutions including three
that are highly efficient for single source localization: (1)
ANA, (2) EPIFOCUS [11, 26], and (3) sLORETA [9]. The
fourth solution, that is, (4) the Moore-Penrose inverse of the
normalized lead field was also included to confirm that the
results of ANA are not simply due to the weighting strategy
introduced in its design.

For reproducibility and compatibility with previous
publications, we use in this section a lead field model
corresponding to the sensor configuration and solution space
described in ISBET NEWSLETTER number 6, December
1995, Grave and Gonzalez, 2000, Grave et al. 2001. Namely, a
unit radius 3-shell spherical head model (Ary et al., 1981),
with solution points confined to a maximum radius of

0.8. The sensor configuration comprises 148 electrodes. The
solution space consists of 817 points on a regular grid with an
intergrid distance of 0.133 cm, corresponding to 2451 focal
sources. To simulate noisy data, we added to each electrode
uncorrelated random noise in the range ±15% of the
amplitude of the noiseless data. DLE and BDL are divided by
the size of the grid unit (0.133) and are evaluated for x values
in the set [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7]. For
each value xi, we compute

(1) the empirical Probability Distribution Function,
defined as follows: Probability(xi) = {Number of
sources with errors � xi}/2451;

(2) the empirical density function defined for xi < 7
as follows: Density(xi) = {Number of sources with
errors in [xi, xi+1]}/2451.

Note that while the empirical density function describes
the performance for each eccentricity range, the probability
function provides a global assessment about how fast the
maximum asymptotic value is attained.

Figure 2 presents the dipole localization error for ANA,
EPIFOCUS, sLORETA, and MPNL inverse in the localization
of the 2451 single sources when the data is contaminated with
15% of noise. While the results for sLORETA and MPNL are
equally erratic for noisy data (Figure 2), they clearly differ
for noiseless data (not shown here) where sLORETA attains
zero DLE whereas MPNL remains unreliable. In contrast
ANA and EPIFOCUS have very similar behavior for noiseless
(not shown) and noisy data (Figure 2). All regularization
parameters tested for sLORETA (namely, λ = 0, 1e-6, 0.1,
1, 10) yield similar erratic results for noisy data. Figure 2
depicts the results for sLORETA for just one of the values
tested (λ = 0).

Figure 3 presents the bias in dipole localization for ANA,
EPIFOCUS, sLORETA, and MPNL inverse in the localization
of the 2451 single sources when the data is contaminated with
15% of noise. For the noiseless (not shown) data sLORETA
and ANA attain zero BDL for all the sources, while for the
noisy data (Figure 3) only ANA remains at zero BDL followed
by EPIFOCUS. MPNL and sLORETA produce errors as large
as 6.5 grid units. All regularization parameters tested for
sLORETA (namely, λ = 0, 1e-6, 0.1, 1, 10) yield similar
erratic results. The results shown in Figure 3 for sLORETA
correspond to a regularization parameter of λ = 1.

4. Discussion

The ANA inverse solution described in this paper is, to
the best of our knowledge, the first linear solution to the
NIP simultaneously fulfilling (in the transformed space)
the three following properties: (1) symmetric resolution
matrix; (2) perfect single source localization, and (3) perfect
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Table 4: Resolution matrix for the minimum norm solution and the configuration presented in Figure 1. Even though it is symmetric, the
maxima are not always located at the main diagonal.

0.00 −0.02 −0.02 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00

−0.02 0.5 0.45 0.00 0.15 0.02 0.00 0.09 0.01 0.00 0.09 0.11

−0.02 0.45 0.45 −0.01 −0.01 0.16 0.00 0.06 0.05 0.00 0.06 0.11

0.00 0.00 −0.01 0.00 0.02 −0.02 0.00 0.00 −0.01 0.00 0.00 0.00

0.00 0.15 −0.01 0.02 0.5 −0.44 0.00 0.08 −0.13 0.00 0.08 −0.01

−0.01 0.02 0.16 −0.02 −0.44 0.45 0.00 −0.05 0.13 0.00 −0.06 0.04

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.09 0.06 0 0.08 −0.05 0.00 0.02 −0.02 0.00 0.02 0.01

0.00 0.01 0.05 −0.01 −0.13 0.13 0.00 −0.02 0.04 0.00 −0.02 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.09 0.06 0.00 0.08 −0.06 0.00 0.02 −0.02 0.00 0.02 0.01

0.00 0.11 0.11 0.00 −0.01 0.04 0.00 0.01 0.01 0.00 0.01 0.03
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Figure 2: Dipole Localization Error (DLE) results with synthetic data with 15% noise. The model is composed of 148 electrodes and 2451 single
dipoles at 817 solution points. Probability and Density functions (vertical axis) are plotted versus error sizes (horizontal axis) measured in
grid units. Despite the noise in the data, DLE for EPIFOCUS and ANA are never bigger than two grid units while sLORETA and MPNL
errors can be higher than 6 grid units.
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Figure 3: Bias in dipole localization results for noisy data with 15% noise. Model includes 148 electrodes and 2451 single dipoles placed at
817 solution points. Probability and Density functions (vertical axis) are plotted versus error sizes (horizontal axis). Despite the noise in the
data, BDL for EPIFOCUS and ANA are never bigger than two grid units while sLORETA and MPNL errors can be higher than 6 grid units.

estimation of single source strength. Probably this is also the
simplest (in the sense of numerical complexity) solution with
these properties. Importantly, such properties stem from the
theoretical resolution matrix and therefore hold for arbitrary
(with noncollinear columns) lead field models.

In case we accept that perfect single source localization,
that is, correct estimation of the location and the source
strength as in ANA or correct estimation of the location
as in sLORETA, suffices to insure perfect multiple source
reconstruction, we must conclude that ANA or sLORETA
is the solution to the NIP. This statement is in flagrant
contradiction to any rationale. The mistake resides in the
assumption that perfect single source localization, defined
as zero DLE or zero BDL, implies accurate multiple source
localization. This implication is true only for the ideal
resolution matrix with zero off-diagonal elements, which

is impossible for an underdetermined problem. As demon-
strated here, ANA solution is theoretically perfect for single
source reconstruction but failed in the simplest case of two
simultaneously active sources. As shown in the example,
the reason for such failure is the existence of nonzero off-
diagonal elements within the model resolution matrix that
are ignored by the DLE or BDL. As we saw, nonzero off-
diagonal elements appear as a consequence of the correlation
between scalp potential (magnetic fields) patterns associated
with different punctual sources. Such off-diagonal elements
are inherent to the problem statement (the lead field
model) and will appear for all linear inverse solutions (e.g.,
sLORETA, MPNL, EPIFOCUS, etc.), although to different
extent. Note that while noiseless data imply the selection
of a single MRM column, noisy data can be interpreted as
an additional source (generating the noise) implying that
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multiple columns of the MRM should be added to get the
final current density estimator. As shown before, off-diagonal
elements might dominate such reconstruction even in the
noiseless case. However, as long as the components of the
additional source are lower than the correlation between
patterns of neighboring dipoles, ANA (and the closely related
EPIFOCUS) should yield low BDLs. Simulations suggest that
this is not the case for sLORETA or MPNL with errors up to
6.5 grid units.

Importantly, it is widely accepted that localization accu-
racy will indefinitely improve by increasing the number of
scalp recording sensors. While increasing the number of
sensors augments the amount of information about the
underlying sources, it does also enhance the correlation
(redundancy) between the rows of the lead field matrix, that
is, the way that one sensor sees all the sources. The increase
in correlation between rows results in unstable (sensitive to
noise) problems that need special regularization strategies to
avoid noise amplification. This trade-off between the inde-
pendent information conveyed by the new measurements
and their redundancy will define a practical superior bound
to the amount of electrodes to be used for source localization
purposes.

We have seen that neither the perfect single source
localization nor the unlimited increase in the amount of
recording sensors will definitively solve the NIP. Obviously,
the only remaining choice is to incorporate as much a
priori information as possible about the generators into
the problem. Such information should be independent of
the information already contained in the measurements. A
priori information can be incorporated within the discrete
formalism by a right-side transformation of the lead field
matrix, which in turn can be interpreted as a change of
variable. Only this procedure, illustrated here for ANA
solution (see (6)), will allow to effectively modify the shapes
of resolution kernels. Nevertheless the question remains
open which of these right-side modifications of the lead
field will result in correctly centered resolution kernels.
Examples of right-side transformations of the lead field
already employed in the NIP literature are the irrotational
source model of ELECTRA [15, 27] or the transformed lead
field based on predefined directions of the sources used in
SAM [8, 20].

The value of ANA solution is not only didactical. As
shown by our simulation results, ANA can be applied to
retrieve sources in the space of the original variable j.
Although in this space the dipole localization error is not
zero everywhere, the bias in dipole localization remains zero
and the results are very robust to noise. In this sense ANA
solution compares to the more robust methods presented
so far. Its computational simplicity, easiness of application
to irregularly distributed solution spaces, and localization
capabilities make of ANA a reasonable alternative for the
analysis of data generated by a single dominant source
plus noise. Such assumptions are not rare in one of the
most important clinical applications of source localization,
namely, the determination of the site of onset of epileptic
activity [22, 25].

It is worth mentioning that the limitations described here
are not specific to linear inverse solutions, and they will
certainly appear under a different mask for nonlinear inverse
procedures. While these difficulties are easily analyzed within
the linear framework because of the possibilities offered
by the model resolution matrix formalism, they actually
reflect the ill-posed nature of the original inverse problem.
Therefore, unless useful a priori information is found that
cannot be incorporated within linear inverses, we see no
good reasons to replace the comfortable linear framework
with its inherent computational and interpretational sim-
plicity.

The evaluation and design of linear inverse solutions
over last decade have been misguided by the idea that only
solutions able to accurately localize a large proportion of
single sources will succeed in the quest for constructing
a tomography of neural generators [9, 12]. Hopefully,
the examples and arguments in this paper will help to
reorient research within this field to the characterization
of properties of neural generators as the sole way to
overcome the nonuniqueness of the NIP inverse problem.
Research in this direction is not doomed to failure, and
existing inverse solutions can lead to relevant and novel
findings within neuroscience when correctly exploited and
interpreted. While often overlooked, some of the limitations
of linear inverse solutions to the NIP are shared by the
fMRI. For instance, the absolute size of the fMRI contrast
signal cannot be relied upon to measure the amplitude of the
neural responses at two different cortical locations [28]. In
a similar manner we should be cautious comparing current
source density estimates at two different solution points since
amplitude estimates vary as a function of the actual current
distribution as well as the diagonal and off-diagonal elements
of the MRM. However, we can rely either on experimental
contrasts as done with fMRI or on measures invariant to
scale transformations such as spectral measures derived from
temporal information of the estimated sources [29–31] to
improve the reliability of the information retrieved from the
inverses.

5. Conclusions

Here we introduced a linear inverse solution coined ANA
which fulfills several optimal properties for the localization
of single sources. We demonstrated by means of the model
resolution matrix formalism that ANA localizes correctly
the location and the amplitudes of all single sources. These
properties hold for arbitrary lead fields and for arbitrarily
small sensor configurations. This fact was exploited to
introduce simple examples that clarify how spurious sources
are formed and their large relevance for simultaneous source
reconstruction. We further showed that ANA solution is
highly robust to noise, outperforming established methods
for single source localization (sLORETA and EPIFOCUS).
Its robustness to noise and computational simplicity make
ANA a reasonable alternative for data generated by a
single dominant source plus noise, as can be the case in
epilepsy.
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The most important contribution of this manuscript is
to provide definitive evidence that the apparently reasonable
(although naı̈ve) idea of inferring the behavior of linear
solutions from their single source localization properties
proves false. It is thus concluded that zero localization
error alone is a trivial and useless property unable to
predict the performance of an inverse solution in presence
of simultaneously active sources. We expect that these
results will help researchers to guide their choices of inverse
methods, in methods development as well as for clinical
and neuroscientific applications. We also hope that it will
stimulate further interest in finding neurophysiologically
plausible constraints that can be used as a priori information
in the NIP, which should be the ultimate goal in this
endeavour.
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Lütkenhöner, “Figures of merit to compare distributed linear
inverse solutions,” Brain Topography, vol. 9, no. 2, pp. 117–124,
1996.

[11] R. Grave de Peralta Menendez, S. L. Gonzalez Andino, G.
Lantz, C. M. Michel, and T. Landis, “Noninvasive localization
of electromagnetic epileptic activity. I. Method descriptions
and simulations,” Brain Topography, vol. 14, no. 2, pp. 131–
137, 2001.

[12] R. D. Pascual-Marqui and C. M. Michel, “LORETA: new
authentic 3D functional images of the brain,” ISBET Newslet-
ter, no. 5, pp. 4–8, November 1994, Edited by W. Skrandies.

[13] R. Grave de Peralta Menendez and S. L. Gonzalez Andino,
“Discussing the capabilities of Laplacian minimization,” Brain
Topography, vol. 13, no. 2, pp. 97–104, 2000.

[14] C. Phillips, M. D. Rugg, and K. J. Friston, “Systematic
regularization of linear inverse solutions of the EEG source
localization problem,” NeuroImage, vol. 17, no. 1, pp. 287–301,
2002.

[15] R. Grave de Peralta Menendez, S. L. Gonzalez Andino, S.
Morand, C. M. Michel, and T. Landis, “Imaging the electrical
activity of the brain: ELECTRA,” Human Brain Mapping, vol.
9, no. 1, pp. 1–12, 2000.
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EEG-based discrimination between different motor imagery states has been subject of a number of studies in healthy subjects. We
investigated the EEG of 15 patients with complete spinal cord injury during imagined right hand, left hand, and feet movements. In
detail we studied pair-wise discrimination functions between the 3 types of motor imagery. The following classification accuracies
(mean ± SD) were obtained: left versus right hand 65.03% ± 8.52, left hand versus feet 68.19% ± 11.08, and right hand versus
feet 65.05% ± 9.25. In 5 out of 8 paralegic patients, the discrimination accuracy was greater than 70% but in only 1 out of 7
tetraplagic patients. The present findings provide evidence that in the majority of paraplegic patients an EEG-based BCI could
achieve satisfied results. In tetraplegic patients, however, it is expected that extensive training-sessions are necessary to achieve a
good BCI performance at least in some subjects.

Copyright © 2009 G. Pfurtscheller et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Functional magnetic resonance imaging (fMRI) and EEG
studies have shown that executed and imagined movement
activates overlapping and/or similar neural networks in
primary motor and related areas [1–3]. This equivalence of
motor execution and motor imagery in relation to cortical
activation is one prerequisite for the restoration of motor
functions in para- and/or tetraplegic patients using a brain-
computer interface (BCI; [4, 5]). Whether patients with
complete spinal cord injury (SCI) are able to control their
brain oscillations reliable and safe through imagined limb
movements and operate herewith a BCI is however still an
open question.

Sensorimotor rhythms such as mu and central beta
oscillations can be modified by executed and imagined
movement [6–10]. By using multichannel EEG recordings
and applying pair-wise discrimination functions to the EEG
signals it is possible to discriminate between 3 different types
of motor imagery (right or left hand or foot) [11, 12]. In this
study we addressed the following questions: (i) is it possible
to discriminate pair-wise between 3 motor imagery-related

EEG patterns (right hand, left hand, and feet) in patients with
complete spinal cord injury and (ii) is this discrimination
different for paraplegic and tetraplegic patients. When a
reliable detection of imagery-related brain states in ongoing
EEG is possible the BCI output signal can be used to control,
for example, a neuroprosthesis [5].

2. Methods

2.1. Subjects and Experimental Task. The patient group
consisted of 15 patients (four females and eleven males) aged
from 16 to 64 years (M = 41 years, SD = 14.50). All patients
suffered from a complete sensor and motor paralysis at ASIA
level C5 to T12 after a traumatic SCI between 1.6 months and
32.9 years prior to the measurements. Seven patients were
tetraplegic, and eight patients were paraplegic. Information
on the patients is summarized in Table 1.

Measurements were carried out at the Rehabilitation Cli-
nic Tobelbad (Austria). The experiment was divided into 6–
8 runs (depending on the physical condition of the patient),
each consisting of 30 trials of three different motor imagery
tasks (10 trials each). Between those runs participants could
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Table 1: Patients characteristics.

Patient Date of birth (year) Date injury (year) Duration (months) ASIA level Number of trials (artifact-free/total)

P01 1987 2007 3.9 C5 (Tetra) 207/240

P02 1981 2007 5.3 C6 (Tetra) 220/240

P03 1957 1991 192 Th12 (Para) 222/240

P04 1972 1989 226.5 C6 (Tetra) 163/240

P05 1956 2007 2.5 C5 (Tetra) 186/210

P06 1960 1982 38.9 Th5 (Para) 223/240

P07 1949 2007 4.2 C6 (Tetra) 155/180

P08 1959 1979 341.7 Th11 (Para) 199/240

P09 1943 2007 11.9 Th6 (Para) 149/210

P010 1949 1975 394.6 Th8 (Para) 113/210

P011 1966 2007 5.5 Th4 (Para) 161/180

P012 1992 2008 1.6 Th12 (Para) 165/210

P013 1963 2005 33.2 C7 (Tetra) 157/210

P014 1965 2007 6.8 C6 (Tetra) 159/240

P015 1984 2006 22.1 L1 (Para) 190/210

Mean 1965.53 1998.93 86.05

Median 1963 2007 11.9

SD 14.83 12.08 134.42
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Figure 1: (a) Electrode positions. (b) Timing and experimental paradigm.

(and were encouraged to) take short breaks for recovery and
in order to avoid fatigue.

Each trial began with the presentation of a fixation cross
at the centre of the monitor, followed by a short warning
tone at second 2. At second 3, an arrow pointing randomly
left, right, or down, representing one of three different motor
imagery tasks (left hand (L), right hand (R) and both feet (F),
resp.), appeared on the screen for 1.25 seconds, additionally
to the fixation cross. The fixation cross remained displayed
on the screen until the end of the trial at second 8, indicating
that the imagination still had to be performed. This implies a
motor imagery lasting for 5 seconds was required. After that,
a blank screen was presented until the beginning of the next

trial. This intertrial period varied randomly between 0.5 and
2.5 seconds.

Timing and experimental paradigm are displayed in
Figure 1(b).

2.2. EEG Recording. Continuous EEG signals were recorded
from a grid of fifteen sintered Ag/AgCl ring electrodes
(Easycap, Germany) that were mounted orthogonally in
both, horizontal and vertical directions, over the electrode
positions C3, Cz, and C4 (according to the international
10–20 electrode system, cf. Figure 1(a)). The closely spaced
interelectrode distance was 2.5 cm. All electrodes were refer-
enced to the left mastoid. The ground electrode was mounted
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Table 2: Classification accuracy (%) of the maximal peak and its latency (delay) after cue onset for all 15 patients and all combinations.
Accuracies in bold differ significantly from chance level according to the number of trials (cf. [13]).

Patient
Left versus right hand Left hand versus feet Right hand versus feet

Accuracy (%) Delay (s) Accuracy (%) Delay (s) Accuracy (%) Delay (s)

P01 56.2 3.5 54.8 4.5 56.9 1.0

P02 78.1 2.0 86.8 2.0 83.1 3.0

P03 63.5 1.0 62 1.5 63.3 1.5

P04 63.5 1.5 62.3 2.0 67.7 1.5

P05 58.7 2.5 56.2 1.5 51.4 4.5

P06 57.9 1.5 65.0 2.5 58.5 2.5

P07 57.2 2.0 64.3 1.5 55.9 2.0

P08 60.4 1.5 63.6 2.0 62.0 1.5

P09 83 1.5 86.3 1.5 71.1 2.5

P010 68.1 2.0 85.7 2.0 78.8 2.0

P011 76 1.5 77.7 1.5 75.2 1.5

P012 59.8 2.0 70.6 1.5 63.1 0.5

P013 57.1 2.5 54.4 4.0 56.8 0.5

P014 64 0.0 65.2 3.0 60.1 3.5

P015 71.8 2.0 67.9 2.5 71.8 2.5

Mean 65.02 1.8 68.19 2.23 65.05 2.03

Median 63.5 2 65 2 63.1 2

SD 8.52 0.77 11.08 0.94 9.24 1.09
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Figure 2: Discrimination time courses for a length of 5 s after cue onset. The onset of cue presentation is at second 3. Data from all 15
patients and all 3 brain states are displayed: right versus left hand MI (left panel), left hand versus feet MI (middle panel), and right hand
versus feet MI (right panel).

at the right mastoid. Impedances were kept below 5 kOhm.
For monopolar EEG derivation a portable amplifier (g.tec,
Graz, Austria) was used. Signals were digitized at 256 Hz and
bandpass filtered between 0.5 and 100 Hz. Sensitivity was set
to 100 μV and a notch filter at 50 Hz was used.

2.3. Data Analysis. The method of Common Spatial Patterns
(CSP) and Fischer’s linear discriminant analysis (LDA)
classifier were used to discriminate between any 2 classes.
The CSP-method projects multichannel EEG data into a low-
dimensional spatial subspace in such a way that the variances

of the filtered time series are optimal for discrimination.
The projection matrix, consisting of the weights of the EEG
channels, is sorted in descending order of the eigenvalues.
Before applying CSP and LDA, a fully automated method for
reducing EOG artifacts was applied on the data. Then, the
EEG recordings were visually inspected for remaining EOG
and EMG artifacts and filtered between 8–30 Hz. To get a
good generalization of the classifier a 10×10 cross-validation
procedure was adopted. The EEG data from each trial was
divided into time segments of 1 s overlapping by half of their
length. For further details see [11, 14].
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Figure 3: Two-class classification accuracy for paraplegic and
tetraplegic patients.

2.4. Calculation of Time-Frequency Maps. To enhance local
oscillations, orthogonal source derivations (Laplacian) were
calculated [15]. After triggering the data, trials of 10 s
duration were obtained including 3 seconds before the cue.
The quantification of ERD/ERS was carried out in four steps:
band pass filtering of each trial, squaring of samples (with
smoothing) and subsequent averaging over trials and over
sample points. The ERD/ERS is defined as the percentage
power decrease (ERD) or power increase (ERS) in relation
to a one-second reference interval (0.5–1.5 seconds ) before
the warning tone [3]. ERD/ERS values corresponding to 2-
Hz frequency bands ranging from 6–18 Hz (with an overlap
of 1 Hz) and 4-Hz frequency bands ranging from 18–38 Hz
(with an overlap of 2 Hz) were calculated. All values for
one EEG channel were subsequently used to construct time-
frequency maps (ERD/ERS maps). The statistical significance
of the ERD/ERS values was verified by applying a t-percentile
bootstrap statistic to calculate confidence intervals with
α = 0.05.

2.5. Statistical Analysis. An ANOVA was computed in order
to examine whether paraplegic versus tetraplegic patients
differ regarding reached classification accuracy. This ANOVA
consisted of the between-subject variable SCI (2 levels:
paraplegics and tetraplegics) and the within-subject variable
ACCURACY (3 levels: left hand versus right hand, left hand
versus feet and right hand versus feet).

3. Results

The power of discrimination between two different brain
states is indicated by the classification accuracy of single EEG
trials analysed within 1-second time windows. The discrimi-
nation time courses for epochs of 6 seconds (with 1 second

Table 3: Mean classification accuracy for tetraplegic and paraplegic
patients.

Motor imagery
Spinal cord injury

Paraplegic Tetraplegic

Mean SD Mean SD

L versus R (%) 67.56 8.86 62.13 7.7

L versus F (%) 72.35 9.72 63.43 11.25

R versus F (%) 67.99 7.23 61.70 10.67

prior to cue-onset) for all task combinations (right versus
left hand, left hand versus feet, and right hand versus feet)
are shown in Figure 2. The maximal classification accuracies
of the first peak together with the corresponding latencies,
measured from cue onset are summarized in Table 2. The
mean accuracy of all subjects (±SD) was 65.03% ± 8.51 (left
versus right hand MI), 68.18% ± 11.08 (left hand versus
feet MI) , and 65.05% ± 9.25 (right hand versus feet MI),
respectively. (See Table 3 for the mean accuracy of paraplegic
versus tetraplegic patients.)

In the tetraplegic patient group only one out of seven
tetraplegics had an accuracy >70% while from the para-
plegics five out of 8 reached a classification accuracy >70%.
An accuracy of 70% is the border, where control can be
possible [16]. In the majority of participants, feet motor
imagery was involved in the best discrimination between two
brain states (see Figure 2 and Table 2).

The results of the ANOVA show that the main effect
ACCURACY is insignificant. Paraplegic patients (M =
69.3%) do not differ from tetraplegic patients (M = 62.41%),
F(1,13) = 530.292, p = .151. Furthermore, no significant
effect emerges for the three classification accuracies, left (L)
hand versus right (R) hand (M = 64.85%), left (L) hand
versus feet (F) (M = 67.89%), and right (R) hand versus feet
(F) (M = 64.84%), but a tendency can be seen, F(2,26) =
2.877, p =.074 (cf. Figure 3).

Although the discriminations of any two different brain
states were based on the analysis of 15 EEG channels recorded
over premotor, motor, and parietal areas, different patterns
were found in spatially filtered (Laplacian) recordings over
the primary motor areas (electrode positions C3, Cz, and
C4). For illustration, time-frequency maps (ERD-maps) of
two representative subjects are displayed in Figure 4. In
subject P02 (Figure 4(a)) clearly visible is the beta increase
(ERS) at Cz during hand MI and the beta decrease (ERD)
at Cz during feet MI. No clear EEG reactivity patterns
can be recognized in subject P01 (Figure 4(b)). In P02
a high classification accuracy was obtained while in P01
no discrimination between the motor imagery states was
possible.

4. Discussion

In our study, we applied a classification procedure to
multichannel, single-trial EEG data recorded during classical
brain-computer interface training sessions with 3-motor
imagery tasks: right-hand, left-hand, and feet movement [17,
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Figure 4: Time-frequency-maps for the three types of motor imagery (left hand, right hand, and feet) computed at electrode positions C3,
CZ , C4 (Laplacian) exemplarily for (a) a patient with good performance (p02) and (b) a patient with bad performance (p01).

18]. One method suitable for studying temporal aspects of
brain activation using multichannel EEG recordings consists
in computing common spatial patterns (CSPs) [14]. This
CSP-method leads to spatial filters that are optimal in the
sense that they extract signals which maximally discriminate
between any 2 conditions. A subsequent linear classification
of these extracted signals results in a good recognition rate.
With the CSP-method it is possible to study the separability
of EEG patterns associated with 2-motor imagery states with
a high time resolution.

The discrimination time courses in the patients with
complete spinal cord injury studied were highly variable in its
shape and magnitude and started in generally with an initial
peak about 1.5 seconds after cue-onset, with a fast increase
before and a slow decline thereafter (Figure 2). The great
intersubject-variability may be explained by the used mental
strategy (e.g., visual versus kinaesthetic motor imagery,
[19]), the vividness of the imagery process, the mental effort
and other psychological factors as, for example, motivation
and attention. Even in one and the same subject the same
mental motor imagery strategy can result in completely
different EEG reactivity patterns dependent on the degree of
imagined effort [20].

The main finding of the present study is that there
are distinct EEG patterns in the majority of patients with
complete spinal cord injury when they imagine different
movements of hands and feet the first time. These patterns
are however not very pronounced and the mean classification
rate was relatively low around 67%. In contrast, motor
imagery in healthy subjects results in clearly discriminable
EEG patterns, when 2-motor imagery tasks are compared.
Blankertz et al. [17] reported a mean classification accuracy

of 88.4% in a so-called calibration session with 3 types of
motor imagery (right hand, left hand, and right foot) in
untrained healthy subjects. This data are based on 128 EEG
channels and CSP analysis. Also with CSP analysis applied
to 32 EEG channels mean classification accuracies between
80.0% and 83.3% are reported for left versus right hand MI
and hand versus feet MI [12]. In both studies in the majority
of subjects the best classification results were achieved when
foot MI was involved. One major difference between healthy
subjects and patients is very often that patients have very
often cramps and/or spasms and therefore a number of
muscle artefacts in the EEG (see e.g., Table 1 artefact-free
versus total trials).

Of interest is a recently published fMRI study where
control subjects and patients had to kinaesthetically imagine
movements of their feet [21]. In the paraplegic patient group
the primary motor cortex was consistently activated, even
to the same degree as during movement execution in the
healthy controls. In contrast to this one other study [22]
reported inconsistent fMRI activation in the primary motor
cortex during self-paced foot motor imagery in complete SCI
patients. Of interest is that in the study of Alkadhi et al. [21],
a strong positive correlation was found between the vividness
scores of motor imagery in paraplegics and the activation
(fMRI BOLD signal) in cortical areas including the primary
motor cortex and the supplementary motor area (SMA).
This can be interpreted that vividness of motor imagery
and/or their mental effort plays an important role in cortical
activation and is perhaps more intensive in SCI patients than
in healthy controls.

One point needs discussion, namely, the slightly higher
(but not significant) classification accuracy of hand versus
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feet MI as compared to right versus left hand MI found
in patients but also reported in healthy subjects. This can
be interpreted to mean that the EEG patterns induced by
feet or foot MI are better discriminable from the brain state
associated with either left or right hand MI. One reason
for this could be the antagonistic behaviour of the upper
mu ERD and ERS during motor imagery known as “focal
ERD/surround ERS” [3]. Feet MI results not only in a
midcentrally focused mu and/or beta ERD but very often
also in a bilateral mu ERS over the hand representation area
[23]. These authors reported on a much larger difference in
band power changes in the 10–12 Hz frequency band when
different (hand versus foot MI) and not homologous limbs
(right versus left hand MI) are compared.

In conclusion, we demonstrated that in the majority of
paraplegic patients motor imagery induced EEG patterns can
be discriminated. From this follows that with a small number
of feedback training sessions the separability between motor
imagery-related brain states can be reinforced and a good
BCI performance can be expected. In tetraplegic patients the
situation is less clear. Only in one patient motor imagery-
related EEG patterns could be discriminated in the initial
training session. Here extensive trainings sessions without
and with feedback are necessary to achieve a satisfied BCI
performance at least in some patients.
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1. Introduction

The aim of brain-computer interfaces (BCIs) [1–5] is to
create control signals by utilizing brain patterns generated by
thoughts without the aid of peripheral nerves and muscles.
There is a variety of invasive and noninvasive methods
available to record signals from the brain. Among the
noninvasive methods, the electroencephalogram (EEG) [6] is
probably the most practical method available for BCI systems
due to its fine temporal resolution and inexpensive recording
equipment. However, due to volume conduction through
the scalp, skull, and other layers of the brain, the spatial
resolution of EEG signals needs to be improved. Moreover,
EEG signals are usually recorded in a high-dimensional
space, and it is a well-known fact that classification rules are
difficult to learn and time consuming in a high-dimensional
space.

To address these issues, several techniques of spatial filter-
ing are used such as Laplacian derivations, common spatial
patterns (CSPs) [7, 8], and various independent component
analysis (ICA) algorithms, for example Infomax, FastICA,
and SOBI [9–11]. An important attribute of a spatial filtering
method is to reduce the number of dimensions and at

the same time to retain all the information necessary for
classification. In this regard, CSP has an internal mecha-
nism of reducing the dimensionality of the data and was
successfully used for the classification of EEG-based motor
imagery data. On the other hand, ICA has an inherent
indeterminacy to order and scaling, which means that the
importance of the components cannot be determined on
this basis. However, spatial filtering algorithms based on
ICA can reduce the dimensionality of the data by visual
selection of the components [12] on the basis of time-
frequency maps [13] and scalp maps [14] or by applying
principal component analysis (PCA) [15] as a preprocessing
step before ICA.

The response of a command-related activity, depending
upon the neurophysiological signal used in a BCI appli-
cation, can be mapped to distinct areas of the brain. For
example, ERD/ERS (event-related desynchronization/event-
related synchronization) is dominant over the motor cortex,
and visually evoked potentials (VEPs) are dominant over the
occipital lobe. Since the approximate location of the activity
associated with the control attempt is known a priori, an
optimization of recording sites can also be done in advance.
A reduced number of channels results in a low-dimensional
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feature vector which is advantageous in terms of better
generalization and also reduces processing requirements.
Clearly, channel selection is a dimensionality reduction
technique motivated by physiological considerations and can
be considered, like component selection methods, similar to
feature selection. The advantage of utilizing these techniques
lies in the fact that they propose to go a step further and
also remove redundancy and noise in the reduced set of
dimensions.

The goal of this study is to find the optimum number
of dimensions of 22-channel EEG data which represents all
the information without redundancy for the classification of
four class motor imagery tasks. For this purpose, first, the
dimensions were reduced by employing PCA preprocessing
before ICA and then the classification accuracies were
calculated. Similarly, classification accuracies were also cal-
culated on 6 visually selected ICA components. Further, an
automated selection of ICA components (Infomax) based on
a variance criterion was also carried out. In addition, a subset
of electrodes was manually selected, and the classification
results were obtained by employing ICA as well as CSP
and these results were compared with Laplacian derivations
[16]. The data analysis was performed without removing any
artifacts.

2. Methods

2.1. Experimental Data. The EEG data of 4-class motor
imagery was recorded with 22 electrodes placed according
to the scheme in Figure 1. Monopolar derivations were
used throughout all recordings (the left mastoid served as
reference and the right mastoid as ground). The signals were
sampled with 250 Hz and prefiltered in the range of 0.5 and
100 Hz. Furthermore, a 50 Hz notch filter was enabled to
suppress line noise. The data sets were recorded from eight
healthy subjects, all inexperienced in BCI training. They were
sitting in a comfortable armchair in front of a computer
monitor. Two sessions of each subject were recorded on
different days. There were 288 trials (72 per motor imagery
class) in each session distributed in a randomized order.

The experimental paradigm consisted of the imagination
of left hand, right hand, foot, and tongue movement. A short
beep (at t = 0 s) along with the display of a fixation cross in
the middle of the screen indicated the beginning of the trial.
A visual cue (at t = 2 s) in the form of an arrow pointing
either left, right, up, or down appeared for 1.25 seconds on
the screen. Each position of the arrow required the subject to
perform the corresponding imaginary movement task. The
disappearance of the fixation cross (at t = 6 s) indicated the
subject to relax. Finally, 1.5–2.5 seconds of resting period
with a blank screen followed before the next trial started. The
experimental paradigm is illustrated in Figure 2.

2.2. Dimensionality Reduction and Channel Selection

2.2.1. PCA-Based ICA Components. PCA works on the
premise of uncorrelatedness and sorts the components in
decreasing order of variances. That is, it accumulates as much

C3 Cz C4

Fz

Pz

Figure 1: EEG electrode setup, some labels corresponding to
positions in the international 10-20 system are marked. Electrodes
are numbered from 1 to 22 in ascending order from top to bottom
and left to right. The three subsets of electrodes used for channel
selection are (1) 2–21, (2) 2–18, and (3) 2, 4, 6–14, 16, 18.

0 1 2 3 4 5 6 7 8

t(s)

Beep

Fixation
cross Cue Motor imagery Pause

4.5–5.5

Figure 2: Timing of a trial of the training paradigm. The time slice
between seconds 4.5 and 5.5 was used to train the classifiers. In the
case of CSP the same time slice was also employed to calculate the
spatial filters. However, for calculating ICA spatial filters the entire
time period (0–7.5 seconds) was used.

activity as possible in the first (and then in the second, third,
etc.) component, constrained by the quite unreasonable
assumption that the scalp maps are orthogonal. One can
immediately see two consequences of this procedure: first,
the constraint of orthogonality ensures the minimization
of redundancy among the components. Second, a large
variance is often translated as important in the field of signal
processing. Therefore, the first few components are expected
to contain most of the interesting dynamics, and removing
the remaining components simply implies enhancing the
signal-to-noise ratio. This is in contrast to ICA, which is
blind to order and scaling and hence the importance of
components cannot be determined automatically.

To overcome this shortcoming, PCA is often used as a
preprocessing step before ICA decomposition [17, 18]. This
procedure seeks to extract independent components (ICs)
from the first few principal components (PCs), implicitly
assuming that the relevant brain dynamics are contained
in those few components. This assumption, however, has
never been verified quantitatively, at least in the cases of
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neuroimaging data sets. By discarding many small principal
components, the risk of removing potentially interesting
information cannot be neglected.

The low-variance components may not necessarily be
unimportant ones, therefore choosing a certain number
of PCA components for subsequent ICA decomposition
is always an open question. To address this issue, the
dimensions of the data sets were reduced in steps of one
by applying PCA preprocessing. More specifically, each 22-
channel EEG data set was first decomposed into 21, 20, . . . ,
and 6 PCA components data sets (yielding 16 data sets),
respectively, before ICA decomposition. The ICA algorithms
chosen for this study were Infomax, FastICA, and SOBI [9–
11]. Infomax seeks to find maximally independent com-
ponents, whereas FastICA maximizes the nongaussianity
between the output components. SOBI (second-order blind
identification), on the other hand, achieves source resolution
by a simultaneous diagonalization of covariance matrices. In
the case of FastICA, a tangent hyperbolic was used instead
of the default nonlinearity of a third-order polynomial.
Moreover, the deflationary approach was employed instead
of a symmetric decomposition. In contrast, all the default
parameters were used in Infomax. Similarly, SOBI was
implemented by utilizing a default value of 50 time delays
[12].

2.2.2. Visual Selection of ICA Components. The discrimi-
nation between important (task-related) and unnecessary
(noisy) components in this analysis was ascertained by
inspecting time-frequency maps [13] and topographic maps
[14] (see Figures 3 and 4). For example, important hand
imagery components were the ones focused on contralateral
regions over the motor cortex area containing mu or beta
ERD. The ipsilateral components containing ERS activity
were also important. In the case of foot or tongue imagery,
midcentral or parietal components containing localized
activity were considered. The components chosen to depict
tongue imagery contained dominant ERS activity, whereas
for foot imagery both ERD and ERS patterns were more
significant [19]. In contrast, the components that showed
scattered activity over the whole surface on a topographic
map (which is merely a projection of the components
[w1, . . . , wn] on a two-dimensional head surface) were not
chosen [12].

Summarizing, a priori knowledge of the physiological
processes underlying motor imagery helped in selecting the
most important components. The idea was to choose a
minimum number of components to depict the suitability
of ICA itself for dimensional reduction. In the selection
process, care was taken to include at least one component
representing each task. However, in many subjects more
than one significant component corresponding to a specific
task were present. This was mostly true for contralateral
components and rarely for central components. Therefore,
two additional components were selected, somewhat heuris-
tically but also based on analysis [13, 14]. It should be
mentioned that this selection of six components may not be
so adequate for all the subjects, as each can have an individual

“best-number-of-components” that represent the sources
of interest. However, a fixed number of components was
needed to assess the relative performances of the three ICA
algorithms. Finally, the preliminary results on the average
(across the subjects) were comparable with those of the full
range of 22 components.

2.2.3. An Automated Selection of ICA Components. As men-
tioned in the introduction ICA is ambiguous to scaling
as well as order. Therefore, unlike PCA importance of
components cannot be determined on the basis of variance of
the components. However, a mechanism of pseudo-order is
available in Infomax: the components are arranged according
to their mean projected variance. This implies that the first
component contributes most to the power of EEG signal,
the second contributes the second most, and so forth. As a
consequence of this order frontal and temporal components
usually find their way in the top order. Additionally, non-
specific and nonlocalized components sometimes can also be
found in the upper order. This makes automatic selection of
motor imagination components difficult if not impossible.

A way to tackle this issue is to employ prior information
in automatic selection of components. It is a well known
fact that oscillatory patterns (ERD/ERS) are pronounced
in 8–14 Hz (alpha rhythm) and 14–30 Hz (beta rhythm).
Due to this reason, features of data sets belonging to motor
imagination experiments are usually (as is the case in this
paper) extracted in 8–30 Hz. Utilizing this prior information,
components were first filtered in the range of 8–30 Hz and
then their variances estimated. Sorting the components in
the descending order would therefore depict the potential
importance of the components. This way, first six, eight,
and then ten components were selected. This analysis is
performed only with Infomax.

2.2.4. Channel Selection. Similarly, prior information about
task-related activity was used in the manual selection of a
subset of the total number of 22 electrodes. For this analysis,
3 subsets of 22 electrodes were chosen (see Figure 1). The
first subset consisted of electrode numbers 2 to 21, that is, the
entire scalp except frontal and occipital regions. The second
subset included electrode numbers 2 to 18, comprising mid-
central and centro-parietal regions. Similarly, the third subset
contained electrodes C3, C4, Cz, and electrodes surrounding
them (in total 13 electrodes). With each of these three subsets
of electrodes, spatial filters were calculated by employing
three ICA methods as well as CSP.

2.3. Feature Extraction and Classification. The next para-
graph describes the cross-validation, feature extraction, and
classification procedures for the ICA components with or
without dimensionality reduction and channel selection. In
each instance of a reduced number of ICA components
or a subset of channels selected, the number of band
power features were also different. Other than that, identical
procedures were employed for 6 visually selected ICA
components, automatic selection of ICA components (6, 8,
and 10) and also 6 Laplacian components. The same holds
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Figure 3: Time-frequency maps (Infomax-subject s5 session 1): components are numbered in order of mean projected variance. The six
visually selected components are 5, 8, 12, 14, 16, and 18.

for the ICA components based on manual selection of the
subset of electrodes and also for components extracted after
dimensionality reduction with PCA.

First, the ICA unmixing matrix was multiplied to the
raw signals to extract independent components. In the next
step, logarithmic band power features in the range of 8–30
Hz were calculated. For example, 22 features were computed
when utilizing all the 22 ICA components. Next, a 10 × 10-
fold cross-validation procedure [20] was performed. In other
words, 100 different combinations of trials were created.
For each of this combination, 90% of the trials were used
for training four linear statistical classifiers (Fisher’s linear
discriminant analysis, LDA) combined in a one-versus-the-
rest classification scheme [20]. Within each trial, samples
between seconds 4.5–5.5 were used to train the classifiers.
These classifiers were then applied to the remaining 10%
of the data, and the classification accuracy was calculated

by choosing the class corresponding to the maximum value
of the four LDAs. The whole process mentioned above was
repeated for all the 100 combinations, and the classification
accuracy was calculated. The overall performance of the sys-
tem was evaluated by taking an average of the classification
accuracy of each combination.

Similarly, classification results of the CSP-preprocessed
data (manual selection of subsets of electrodes as well as the
complete set) are also presented. First, signals were bandpass
filtered in the range of 8–30 Hz and then a 10×10-fold cross-
validation procedure [20] was performed by creating 100
different combinations of trials. Each of this combination
was divided into 90% and 10% portions. The (four) spatial
filters were calculated on the basis of the 90% portion
and were then multiplied to this data. In the next step, 6
components (the first and last three) were chosen and log-
transformed normalized variances were calculated for each
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Figure 4: Topographic maps (Infomax-subject s5 session 1):
components are numbered in order of mean projected variance.
The six components (from left to right, top to bottom) selected are
5, 8, 12, 14, 16, and 18.

of the components. Next, these features were forwarded to
four linear statistical classifiers (again using a one-versus-
the-rest scheme). It should be noted that each classifier
received the same 24 features. The classifier weights were
calculated and these classifiers plus the four spatial filters
were then applied to the remaining 10% of the data and the
classification accuracy was calculated by choosing the class
corresponding to the maximum value of the four LDAs. The
whole process mentioned above was repeated for all the 100
combinations and the classification accuracy was calculated.
Finally, the mean of these accuracy values was estimated. The
same time slice (between seconds 4.5–5.5) was used to train
the classifiers as in the case of ICA. In the case of CSP, this
interval was also used to calculate the spatial filters.

3. Results

The mean accuracy values showed an almost linear increase
with an increasing number of PCA-preprocessed compo-
nents. This is true, in general, for all the ICA algorithms, as
depicted in Figure 5. The maximum values obtained for Info-
max and SOBI were 63.9% and 58.6%, respectively. In both
cases, spatial filters were calculated without PCA decomposi-
tion. However, in the case of FastICA, the maximum value of
62.5% was achieved with 21 PCA-preprocessed components,
which was only marginally better than the one obtained
without PCA decomposition. Moreover, Infomax showed
better results for each and every choice of PCA-preprocessed
components in comparison to the corresponding choice with
respect to FastICA and SOBI. The same is true for FastICA
in comparison to SOBI. In fact, the performance of SOBI
was generally poor and did not improve as markedly as
Infomax and FastICA with an increasing number of PCA-
preprocessed components (see Figure 5).

One immediate conclusion that can be drawn in the
analysis with manual selection of electrodes is that the spatial
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Figure 5: Comparison of three ICA algorithms with reduced
dimensionality by PCA preprocessing in the step of one, that is,
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Figure 6: Comparison of three ICA algorithms (reduced number
of electrodes) with CSP.

filters built from 20 channels (2–21) performed more or
less similarly with the ones built from 22 channels (see
Figure 6). More specifically, Infomax performed marginally
better (64.2%) with 20 channels reduced data sets, whereas
the other methods (FastICA, SOBI, and CSP) performed
marginally worse with the same number of channels.
Similarly, results with 17 channel data sets showed only a
slight decrease in performance in comparison with either 22
channel or 20 channel data sets. In fact, the only exception
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Figure 7: Comparison of three ICA algorithms (6 components
selected by visual inspection) with Laplacian (6 components) and
CSP.

Table 1: Infomax: mean accuracy values of automatically selected
components, visually selected components, and the full range of
components.

Components 6 (auto) 8 (auto) 10 (auto) 6 (visual) 22 (full)

Mean accuracy 61.4 63.1 63.8 61.9 63.9

was FastICA, where the performance was noticeably down
by about (2.5%). However, in general, the 13 channel subset
showed a pronounced deterioration for all the methods. For
this analysis, CSP performed better than the rest but Infomax
was only slightly worse, in comparison with CSP, for each
subset of total number of electrodes considered.

For the visual selection of components with the ICA
methods, Infomax (with 61.9%) performed much better
than FastICA (58.3%) and SOBI (56.2%) (see Figure 7).
However, CSP performed better than all methods and
surprisingly, Laplacian derivations (with 6 components)
performed almost as good as Infomax. In addition, the
performance of Infomax with visual selection of components
was better than the corresponding performance with 19
PCA-preprocessed components and only slightly worse than
21 components. Similarly, the performance of Infomax with
the reduced set of 17 electrodes was only slightly better
than the visually selected components by the same method.
On the other hand, the result with visual selection of
components of FastICA (58.3%) was comparable with 16
PCA-preprocessed components and also with the reduced set
of 13 electrodes. In the case of SOBI, 19 PCA-preprocessed
components performed comparably with 6 visually selected
components by the same algorithm. However, the perfor-
mance was comparatively lower than the reduced set of 13
electrodes.

The components in Figures 3 and 4 are arranged in the
following order by the automatic selection procedure: 8, 12,

11, 17, 3, 13, 5, 10, 6, 16, 9, 22, 20, 18, 21, 1, 14, 7, 2,
19, 15, 4. That is, two contra-lateral components can be
found among the first in this list. The frontal component
(4) can be seen in the last position, whereas the temporal
component (10) is at place 8. In fact, one of the temporal
components was usually found to be present in the first 8 to
10 components. In few instances, components with scattered
topography were also found among the first few. However,
these components usually represented task-related activity.
This is amply demonstrated in Table 1. The mean accuracy
for 6 automatically selected components is comparable with
the one for 6 visually selected components. The performance
of 8 automatically selected components is even better and
that of 10 components is almost equivalent to the full range
of 22 components.

4. Conclusions

As the spatial filters built with ICA methods and CSP on
the reduced set of 20 electrodes performed more or less
comparably with the ones built with the total number of
22 electrodes, it can be concluded that frontal and occipital
regions of the brain do not capture significant motor imagery
patterns. Therefore, data recorded from these areas of the
brain can safely be excluded before building spatial filters.
Similarly, results with the reduced set of 17 electrodes showed
that especially CSP and also Infomax were able to focus
motor imagery activity in mid-central and centro-parietal
regions. The exception of FastICA in this regard could be
due to the algorithmic choice of the deflationary approach
instead of a symmetric decomposition employed for source
resolution.

The results presented for PCA-preprocessed ICA algo-
rithms lead to the conclusion that at least 20 PCA compo-
nents out of the 22 electrodes are necessary for preserving
relevant information. For the 22 channels data sets con-
sidered in this analysis, PCA preprocessing was not found
to be a suitable preprocessing method that could retain
motor imagery information in a smaller set of components.
It should also be mentioned that dimensional reduction
even up to 6 PCA components still preserves about 98%–
99% of the total variance in general. This fact simply
implies that reducing the dimension by throwing away low-
variance components more often than not results in a loss of
important and relevant information.

The selection of ICA components on the basis of visual
inspection of time-frequency maps and scalp maps has a
subjective bias. Even this heuristic measure presented in this
work outperforms the PCA-based method of dimensional
reduction. Infomax in particular performed much better
than the other ICA variants considered. The overall result of
Infomax with 6 visually selected components was only 2.0%
less than the corresponding result with all the components
and about 14% higher than 6 PCA-preprocessed Infomax
components. This implies that Infomax was able to incor-
porate most of the task-related activity in few components.

However, visual selection of components is a manual
and subjective procedure. In order to automatically select
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these few important components, a simple variance-based
criterion was employed. This procedure proved to be a
success as only 8 to 10 components were needed to capture
relevant motor imagination activity. Based on the relative
performances, especially with reference to the PCA-based
method, this procedure can be recommended as a dimen-
sional reduction technique for motor imagery data sets.

5. Discussion

The variance-based procedure is applicable to motor imagery
data sets. Moreover, the number of required components can
further be reduced if some of the unwanted components
can be located a priori. Further, a very small set of
correctly selected clean components has the potential of
enhancing the performance of ICA algorithms. Therefore, an
improved general purpose automated method needs to be
developed for the determination of important components.
This objective can be achieved for example by employing
some of the new ideas such as constrained ICA. Various
ways to incorporate prior information in ICA algorithms
have already been suggested [21, 22]. For example, reference
signals of different classes can be employed as constraints in
ICA algorithms. Similarly, probability distribution functions
of reference signals can be incorporated directly as models
in ICA algorithms. Independent components can thus be
extracted under the constraint of being similar to the
reference signals or their probability distribution functions.
Moreover, this method is oblivious to the square mixing
assumption of standard ICA [21]. Therefore, in addition to
enhancing the signal-to-noise ratio of neuroimaging data,
constrained ICA can also deal effectively with the issue of
dimensional reduction.

The standard PCA method cannot be recommended, at
least for the data sets considered in this study. This leads
to the interesting question whether there are other PCA-
based strategies for the selection of the components to
retain the most important information. A recent paper [18]
proposed an alternative signal representation that is based
on PCA for dimensionality reduction and ICA conducted
across all subjects and conditions simultaneously. The results
based on partial least squares (PLSs) analysis showed an
enhancement of the task-related activity under compression.
Another approach worth implementing is nonlinear PCA
[23, 24]. Nonlinear PCA can be considered as a type of ICA
under special conditions [23]. The nonlinearity is introduced
in the objective function, but the output variables are still a
linear combination of the input variables. It can therefore be
seen as an ICA with an additional advantage of PCA.

A novel method in a very recent paper [25] utilized
ICA for source localization. The method then found the
optimal positions of two bipolar electrodes with the purpose
of reducing the number of electrodes to four. The goal was to
optimize the number of electrodes for practical BCI systems.
The results showed promise for two-class motor imagery
data. The extension to the four-class problem, such as the
data analyzed in this paper, is also possible and could be
carried out in future analyses.
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An important field of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is the investigation
of effective connectivity, that is, the actions that a given set of regions exert on one another. We recently proposed a data-driven
method based on the partial correlation matrix that could provide some insight regarding the pattern of functional interaction
between brain regions as represented by structural equation modeling (SEM). So far, the efficiency of this approach was mostly
based on empirical evidence. In this paper, we provide theoretical fundaments explaining why and in what measure structural
equation modeling and partial correlations are related. This gives better insight regarding what parts of SEM can be retrieved by
partial correlation analysis and what remains inaccessible. We illustrate the different results with real data.
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1. Introduction

Blood oxygen level dependent (BOLD) functional magnetic
resonance imaging (fMRI) is an imaging technique that
allows to dynamically and noninvasively follow metabolic
and hemodynamic consequences of brain activity [1, 2].
Since Biswal et al. [3], an increasing number of studies have
suggested that fMRI data could be used to explore how brain
regions interact to perform functional tasks. A key concept
in investigation of functional brain interactions is effective
connectivity, which has been defined as the influence that
regions exert on one another [4].

Path analysis, or structural equation modeling (SEM),
has been the major way to examine effective connectivity in
fMRI [5–7]. Starting from a set of D regions, a model is set a
priori that expresses the time course zi(t) of each region as a
linear function of the time course of other regions

zi(t) =
∑

j /= i
λi jz j(t) + ei(t), (1)

with some coefficients λi j being constrained to 0, the others
are free to vary. λi j quantifies the strength that region j

exerts on region i. Setting an SEM is equivalent to defining a
directed graph, where each node stands for a region, a given
arrow j → i is present if and only if the corresponding
coefficient λi j is not constrained to zero, and, finally, λi j
represents the intensity of arrow j → i. Once the structural
model is completely set, the unconstrained coefficients λi j
are estimated. To this aim, the model covariance matrix Σ,
which is a function of the parameters, is compared to the
sample covariance matrix S using a discrepancy function that
is minimized [8, 9]. In fMRI data analysis, the following
maximum likelihood function is often used [7]:

l(Σ) = tr
(

SΣ−1
)

− ln
∣

∣

∣Σ−1S
∣

∣

∣−D, (2)

where tr(·) stands for the standard matrix trace function.
The major flaw of this approach is that it requires the prior
definition of a structural model, that is, of regions and
arrows, each arrow requiring itself information regarding
connection and direction. By contrast, information regard-
ing the functional interactions present within the network
of interest is likely to be scarce, since it is often the very
reason why an fMRI study of effective connectivity is carried
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out. This is all the more problematic that the approach does
not really provide any clear way to challenge the model or
to provide information relative to where or how the model
under investigation could be improved.

We recently proposed a novel approach to gain insight
on effective connectivity. We first showed that, unlike
marginal (i.e., regular) correlation, conditional correlation
could account for many patterns of interaction as modeled
by SEM [10, 11]. We then proposed to focus on a specific set
of conditional correlations, namely partial correlations [12].
Given a set of D regions, denoted by R, and a variable yi
associated to each region i (of which zi(t) mentioned in (1) is
a realization), the method estimates the partial correlation of
any region pair (i, j) given the set ofD−2 remaining regions,

Corr
[

yi, yj | yR\{i, j}
]

. (3)

On both real [13] and synthetic data [14], it was observed
that a large partial correlation value between two regions
was often associated with the presence of an effective
connectivity between these regions. However, the reason for
such a behavior remained unclear. In the present paper,
we further delve into the relationship between SEM and
partial correlation in order to better understand why and
in what measure partial correlation can extract information
that is relevant for effective connectivity analysis. To this
aim, we provide a theoretical relationship between SEM and
partial correlation through the computation of the inverse
covariance matrix (also-called concentration or precision
matrix). To illustrate the results so obtained, we use a dataset
on which SEM analysis has already been performed and
published [7].

2. From SEM to Partial Correlation

2.1. Bullmore et al. [7] SEM Study. We here quickly recall
the essentials of a previous study on which our investigation
of partial correlation relies. For more detail, we refer the
reader to Bullmore et al. [7]. The study focused on D =
5 left hemispheric cortical regions of interest: the ventral
extrastriate cortex (VEC), the prefrontal cortex (PFC), the
supplementary motor area (SMA), the inferior frontal gyrus
(IFG), and the inferior parietal lobule (IPL). Each region was
associated to a time course for a total of five time courses of
lengthT = 96 time samples. The sample marginal and partial
correlation matrices corresponding to these time courses are
reported in Table 1. The time courses were a group average
over the subjects, and the correlation matrix corresponds to
the correlations of the averaged time series.

A plausible structural model, henceforth referred to as
the “theoretically preferred model” (or “TP”), was proposed
and is represented in Figure 1(a). Using the correlation
matrix of Table 1, a procedure implemented in the LISREL
proprietary software package (http://www.ssicentral.com/
lisrel/) computed a so-called “best fit” model from the data,
henceforth referred to as such (or “BF”) and represented in
Figure 1(b). While similar in some ways, the two models had
different features:

Table 1: Sample marginal correlation coefficients of the real data
set examined in Bullmore et al. [7].

(1) (2) (3) (4) (5)

VEC PFC SMA IFG IPL

(1) VEC 1

(2) PFC 0.661 1

(3) SMA 0.525 0.660 1

(4) IFG 0.486 0.507 0.437 1

(5) IPL 0.731 0.630 0.558 0.517 1

(i) VEC→ IPL and SMA→ IFG were present in the
theoretically preferred model but were not selected in
the best fit model;

(ii) PFC→ IFG and SMA→ IPL were absent in the theo-
retically preferred model but appeared in the best fit
model.

We now go back to a different perspective. Indeed, the
structure of any SEM entails specific constraints on the
covariance matrix, as well as other matrices characteristic
of the process, such as the concentration matrix and the
marginal and partial correlation matrices.

2.2. SEM Modeling. Generally speaking, a structural model
can be defined in matrix form as

y = Ky + e, (4)

where y is the D-dimensional variable characterizing the
state of each region and e is a temporally independent and
identically distributed (i.i.d.) Gaussian noise with diagonal
covariance matrix. K = (Kij)i, j=1,...,D contains the path
coefficients. The N time samples (z(tn))n=1,...,N , where z(tn)
is the signal measured in each of the D regions at time tn,
are supposed to be N i.i.d. realizations of y. The matrices
corresponding to the theoretically preferred and the best fit
models are, respectively, given by (see also Figure 1)

KTP =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 λ15

λ21 0 0 0 0 0

0 λ32 0 0 0 0

0 0 λ43 0 0 0

λ51 0 0 λ54 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

KBF =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 μ15

μ21 0 0 0 0 0

0 μ32 0 0 0 0

0 μ42 0 0 0 0

0 0 μ53 μ54 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(5)

2.3. SEM and Covariance. Classically, we further assume that
the noise e of (4) is composed of spatially and temporally
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Figure 1: Structural models and path coefficients corresponding to the theoretically preferred (a) and best fit (b) models (from [7]).

independent Gaussian variables with diagonal covariance
matrix:

Var[e] = V =

⎛

⎜

⎜

⎜

⎜

⎝

V1 0

. . .

0 VD

⎞

⎟

⎟

⎟

⎟

⎠

. (6)

Since (4) rereads y = (I−K)−1e, where I stands for the D-
dimensional unit matrix, it is straightforward to show that y
is also Gaussian distributed with covariance matrix [15]

Σ = (I−K)−1V
[

(I−K)−1
]t

, (7)

where “t” stands for matrix transposition. Since K is a
function of the path coefficients, so is Σ. This relationship is
central to SEM analysis, for most methods rely on comparing
the covariance matrix Σ implied by a structural model to
the data sample covariance matrix using normal theory
maximum likelihood—leading to the discrepancy function
of (2)—, generalized least squares, or ordinary least squares
[8, 9]. Note that, in (2), Σ only appears through its inverse
Υ = Σ−1. Υ is called the concentration, or precision, matrix
and it is on this matrix that we will focus to get a better
understanding of the data structure.

2.4. SEM and Concentration. Indeed, Υ has intriguing struc-
tural properties when related to a structural model. Using
(7), this matrix is given by

Υ = (I−K)tV−1(I−K). (8)

V being a diagonal matrix, the expression for each element
Υi j of the concentration matrix can easily be expanded as

Υi j =
∑

l

(δli − Kli)
(

δl j − Kl j
)

Vl
. (9)

Given that Kii = 0, the previous equation yields

Υii = 1
Vi

+
∑

l /= i

K2
li

Vl
, (10)

and, for i /= j,

Υi j = −
Kij
Vi
− Kji

Vj
+

∑

l /∈{i, j}

KliKl j
Vl

. (11)

Equation (11) can be used to compute the concentration
coefficients corresponding to the TP and BF structural
models. For instance, we have for the TP model

Υ12 = −λ21

V2
,

Υ13 = 0,

Υ14 = λ51λ54

V5
.

(12)

From this example, we see that two cases can arise. In the
first case (e.g., Υ13), the value of the concentration coefficient
is equal to zero, not because of the specific numerical values
that have been assigned to the path coefficients, but because
of the structure of the SEM itself. In the second case (e.g., Υ12

or Υ14), the concentration coefficient is equal to zero only if
the path coefficients are set to certain values (e.g, λ21 = 0 for
Υ12; λ51 = 0 or λ54 = 0 for Υ15). For our purpose, the exact
values taken by the nonzero Υi j are of minor importance; we
rather focus on the elements that, such asΥ13, are structurally
equal to zero, that is, that are equal to zero independently of
the values taken by the path coefficients. More generally, it
can be shown using (11) that Υi j is identically equal to zero
regardless of the numerical values of the path coefficients if
and only if the three terms of the right-hand side of (11) are
equal to zero, that is,

(C1) Kij = 0 and Kji = 0: neither region i nor region j has
an effect on each other;

(C2) KliKl j = 0: regions i and j do not jointly influence
region l, for all l /= i, j.

In other words, Υi j = 0 if and only if there are no such
structures as i → j, i ← j, or i → l ← j for any l in
the structural graph: according to (C1), there is no structural
connection between i and j and, according to (C2), regions i
and j do not jointly influence a third region l. When a pair of
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Figure 2: Structures that render either constraint (C1) or (C2)
invalid for the pair i- j, thereby leading to Υi j /= 0 or, equivalently,
Πi j /= 0.

regions is not directly connected in the structural model or
both regions do not jointly point to any common region, the
coefficient of partial correlation between these two regions
is expected to be structurally equal to zero. On the other
hand, if either condition is not satisfied, the corresponding
coefficient of partial correlation is not structurally equal to
zero (see Figure 2). Turning our attention back to the TP
model, we see that, while regions VEC and SMA satisfy both
(C1) and (C2) (implying Π13 = 0), regions VEC and PFC do
not satisfy (C1) (since we have VEC→PFC) and regions VEC
and IFG do not satisfy (C2) (since we have VEC→ IPL←IFG).
As a matter of fact, all cases can be found in both the TP
and the BF models, as shown in Tables 2 and 3. Using the
aforementioned rule, we are able to retrieve the following
structural constraints for partial correlation:

(i) for the TP model: Υ13 = Υ24 = Υ25 = Υ35 = 0;

(ii) for the BF model: Υ13 = Υ14 = Υ25 = 0.

2.5. SEM and Partial Correlation. As correlation matrices are
often easier to interpret than covariance matrices, we can
decide to examine partial correlation matrices rather than
concentration matrices. The partial correlation coefficient
between two regions i and j, denoted by Πi j , is here defined
as a particular conditional correlation coefficient; it is the
correlation between these two regions conditioned on the set
of remaining regions, that is,

Πi j = Corr
[

yi, yj | yR\{i, j}
]

. (13)

There are hence D(D − 1)/2 partial correlation coefficients
(10 in our example) that form theD-by-D partial correlation
matrix Π = (Πi j). Π can readily be calculated from Υ
through the following relationship [17]:

Πi j = −
Υi j

√

Υii · Υ j j

(14)

for two distinct regions i and j, and Πii = 1. Consequently,
we have

Υi j = 0 ⇐⇒ Πi j = 0, (15)

and what has been said about the relationship between the
structural model and the structural zeros of the concentra-
tion matrix, namely conditions (C1) and (C2), also holds for

the partial correlation matrix. Furthermore, since the partial
correlation coefficients are correlation coefficients, they are
not influenced by any scale effect and remain between −1
and 1; for this reason, they are much easier to analyze and
interpret than elements of the concentration matrix.

3. Validating Partial Correlation Structures

As we saw, a structural model has unique implications in
terms of the structural pattern of partial correlation that
can be expected from the data. Since the partial correlation
matrix is a quantity that can be inferred from the data, we
can use partial correlation analysis as a way to validate a
structural model by comparing what is expected and what
is observed.

3.1. Local Hypotheses. The approach consists of translating
the structural hypotheses in terms of partial correlation.
Indeed, according to Tables 2 and 3, the two structural mod-
els entail different hypotheses in term of partial correlation.
For the theoretically preferred model, we have

Π13 = 0 (HTP1),

Π24 = 0 (HTP2),

Π25 = 0 (HTP3),

Π35 = 0 (HTP4),

(16)

and, for the best fit model,

Π13 = 0 (HBF1),

Π14 = 0 (HBF2),

Π25 = 0 (HBF3).

(17)

While some hypotheses are identical for both models,
(HTP1) = (HBF1) and (HTP3) = (HBF3), others have no
equivalent in the other model, such as (HTP1), (HTP4), and
(HBF2). The objective is then to infer the validity of these
hypotheses with regard to the data.

3.2. Inference. Assessing the validity of the various hypothe-
ses can be done by first estimating the partial correlation
matrix. Inference of Π can be performed in a Bayesian
framework using a numerical sampling scheme ([11, 13],
see also the appendix). While direct computation of p(Π |
z) is rather complex, this technique provides a simple
approximation by sampling L (e.g., L = 5000) matrices

(Π[l])l=1,...,L from p(Π | z). We then quantify the relevance of
all hypotheses as follows. First, the probability of a coefficient
Πi j to be higher than 0 can be approximated by

p+
i j = Pr

(

Πi j > 0
)

≈ 1
L

#
{

l : Π[l]
i j > 0

}

, (18)

where “#” stands for the cardinal of a set (i.e., its size). The
probability p−i j of a coefficient to be lower than 0 could be
approximated in a similar way, but only one of these two
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Table 2: Partial correlation constraints in the TP and BF models (1/2). For each link between regions and each model, examination of
whether (C1) and (C2) are satisfied.

Link i- j
TP model BF model

(C1) satisfied (C2) satisfied Υi j (C1) satisfied (C2) satisfied Υi j

VEC-PFC no:
SMA

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

yes ≠ 0

VEC-SMA yes yes = 0 yes yes = 0

VEC-IFG yes no:

VEC

IFG

IPLPFC

≠ 0 yes yes = 0

VEC-IPL no: SMA

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

yes ≠ 0

PFC-SMA no:

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

yes ≠ 0

SMA

SMA

SMA

SMA SMA

quantities need to be computed, since we have p+
i j + p−i j = 1.

From there, the bearing of having Πi j > 0 can be quantified
by the log-odd ratio

ei j = 10 log10

p+
i j

p−i j
= 10 log10

p+
i j

1− p+
i j
. (19)

If ei j is large and positive, we are more inclined to accept
Πi j > 0, while, if it is large and negative, we are more inclined
to accept Πi j < 0. Usually, a value of 10 dB can be considered
as good evidence in favor of the hypothesis (see Table 4 for
some relationships between p+

i j and ei j). We finally take |ei j|
as a measure of howΠi j differs from zero and, hence, as a way
to quantify the deviation of the data from hypothesisΠi j = 0:
values close to zero indicate a coefficient close to zero, while
large values suggest a large coefficient value.

Since we here focus on the partial correlation constraints
entailed by the structural models, (16) and (17), we only need
the corresponding log odd ratios, summarized in Table 5.
If all these hypotheses were true, then we would expect the
absolute values of all log odd ratios to be lower than 10 dB.
While this is the case for the three hypotheses related to the
BF model, it is not the case for two of the four hypotheses
related to the TP model: according to these results, (HTP2)
and (HTP4) are rather unlikely to be true.

4. Discussion and Perspectives

In this paper, we further examined how partial correlation
could be used to investigate effective connectivity in fMRI.
We introduced theoretical fundaments explaining why and in
what measure the structure of the partial correlation matrix
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Table 3: Partial correlation constraints in the TP and BF models (2/2). For each link between regions and each model, examination of
whether (C1) and (C2) are satisfied.

Link i- j
TP model BF model

(C1) satisfied (C2) satisfied Υi j (C1) satisfied (C2) satisfied Υi j

PFC-IFG yes yes = 0 no:

VEC

IFG

IPLPFC

SMA yes ≠ 0

PFC-IPL yes yes = 0 yes yes = 0

SMA-IFG no:

VEC

IFG

IPLPFC

yes ≠ 0 yes no:

VEC

IFG

IPLPFC

≠ 0

SMA-IPL yes yes = 0 no:

VEC

IFG

IPLPFC

SMA yes ≠ 0

IFG-IPL no:

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

SMA yes ≠ 0

SMA

SMA

SMA

Table 4: Evidence ei j and probability p+
i j (from [16]). For evidences

of 3 and 6, p+
i j is only approximately equal to the fraction.

ei j (dB) p+
i j

0 1/2 = 0.50

3 2/3 ≈ 0.67

6 4/5 = 0.80

10 10/11 ≈ 0.91

20 100/101 ≈ 0.99

30 1000/1001 ≈ 0.999

40 10000/10001 ≈ 0.9999

can be related to a structural model. More precisely, we
showed that, given a structural model, the partial correlation
Πi j between i and j is structurally equal to zero if and only
if (C1) neither region i nor region j has an effect on each

other, and (C2) regions i and j do not jointly influence a
third region l; in other words, if and only if none of the
following patterns are observed: i ← j, i → j, or i → l ← j
for any l. From there, the definition of a structural model
entails a unique set of constraints that can be tested from
the data, supporting or invalidating the plausibility of the
corresponding structural model.

When examining the global relevance of partial corre-
lation analysis to the investigation of effective connectivity,
we must jointly consider two complementary effects, namely,
the theoretical relationship between structural models and
partial correlation matrices on the one hand and, on the
other hand, the quality of the inference process. From a
purely theoretical standpoint, this result shows that partial
correlation analysis comes up as a combination of two effects.
First, constraints (C1) and (C2) imply that

Πi j = 0 =⇒ ¬(i← j
)

, ¬(i → j
)

, (20)
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Table 5: Real data. Relevance of hypotheses related to the TP and the BF models, respectively. Log odd ratios above a threshold of 10 dB are
represented in bold.

Structural model Constituting hypotheses Structural constraints |ei j|
TP (HTP1) Π13 = 0 1.6 dB

(HTP2) Π24 = 0 12.4 dB

(HTP3) Π25 = 0 9.7 dB

(HTP4) Π35 = 0 13.1 dB

BF (HBF1) Π13 = 0 1.6 dB

(HBF2) Π14 = 0 6.4 dB

(HBF3) Π25 = 0 9.7 dB

where ¬ stands for the negation. In other words, a zero
partial correlation between i and j implies the absence of a
direct link between these two regions. Were there only (C1),
this implication would be an equivalence and having Πi j /= 0
would imply a direct link between i and j. However, this
is not true in general and, more specifically, for any pair of
regions for which constraint (C2) is satisfied. Such pairs are
not connected but still have a nonzero partial correlation
coefficient. As a consequence, all that can be said is that the
set of set of pairs of regions with a zero partial correlations
is a subset of the sets of pairs not directly connected in the
structural model or, equivalently, that the set of pairs of
regions connected in the structural model is a subset of the
set of pairs of regions with a nonzero partial correlations.
These features can easily be related to basic graph theoretic
concepts. Condition (C1) states that regions i and j are
not neighbors; condition (C2) states that i and j satisfy the
so-called Wermuth condition [17]. As a consequence, the
partial correlation constraints imposed by a structural model
can be read off the graph obtained by adding undirected
edges to eliminate all Wermuth configurations (for condition
(C2)) and transforming all arrows into undirected edges (for
condition (C1)). Such a graph is called the moral graph
associated with the structural model. Depending on how
many variables share common parents, the moral graph can
be more or less close to the structural graph. For instance,
in each of the two models used in this paper, condition (C2)
was only met once. Whether this is a general feature of fMRI
data or only a characteristic induced by the structure selected
remains to be cleared.

Another theoretical issue that needs to be tackled is the
fact that having a partial correlation that is not constrained
to 0 (e.g., Π14 for the theoretically preferred model) does not
preclude its value to be equal to zero, due to a numerical
coincidence. Indeed, (11) shows that specific values of K and
V could be selected to induce Υi j = 0 and, consequently,
also Πi j = 0. Even though this event is possible, it should be
considered as rather unlikely, unless there is an underlying
constraint at stake that forces the coefficient values to respect
a certain relationship.

Another, more important issue deals with inference and
how confident we can be in the partial correlation estimates
and, critically, in the tests that their values are different
from zero. The major difference between partial correlation
and marginal correlation is that the former is obtained

by removing the effect of D − 2 regions as evidenced by
(14). Importantly, the partialization process tends to decrease
the value of correlation regardless of the exact relationship
between the two variables and the conditioning set. Conse-
quently, the values of partial correlation coefficients usually
tend to be lower than their marginal counterparts; this is
an observation that we have made consistently, and with
only few exceptions. Also, as a rule of thumb, the posterior
variance associated with a (marginal or partial) correlation
coefficient (e.g., Var[Πi j | y] for partial correlation) is
roughly a decreasing function of the absolute value of its
posterior mean (e.g., E[Πi j | y] for partial correlation). For
instance, it is asymptotically (1 − Π2

i j)
2/(N − 1) (which is

indeed a decreasing function of Πi j) for partial correlation
and a similar result hold for marginal correlation [15]. A
lower mean value therefore also implies a higher variance
and, essentially, a bigger difficulty to discriminate a nonzero
value from zero.

Altogether, these various factors, both theoretical and
inferential, have different consequences on the relationship
between the inferred pattern of partial correlation and the
underlying structural model. Although we have observed a
rather good agreement between expected and inferred pat-
terns so far, in the lack of gold standard, these consequences
must be further investigated.

Still, one of the main reasons why partial correlation
analysis might become an important tool for the investiga-
tion of effective connectivity is that it is, to our knowledge,
the only fully exploratory approach. Its key feature is its
ability to retrieve local patterns of interaction. Indeed,
while the method developed for the estimation of structural
parameters, for example, (2), globally assesses the goodness
of fit of the whole model and accordingly provides a general
measure of it, partial correlation analysis provides a rather
local assessment of effective connectivity, since the fact that
two regions have a nonzero partial correlation depends
on their connection with each other and of a potential
connection with a common third region. For instance, in
our example, while Bullmore et al. [7] concluded that the
data did not contain enough evidence to prefer the BF
model over the TP model (global statement), we showed
that the TP model entails two partial correlation constraints
(Π24 = 0 and Π35 = 0) that are rather unlikely to be true
in the data (local statements). According to this result, we
should discard the BF model or, at least, exert great caution
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when using it. Furthermore, if one only had the theoretically
preferred model and were testing it, the large log odd ratios
corresponding to hypotheses Π24 = 0 and Π35 = 0 would
hint that the corresponding constraints might not hold and
that there might be a direct connection between regions PFC
and IFG on the one hand and, on the other hand, between
regions SMA and IPL.

In this paper, we determined whether certain coeffi-
cients could be considered as different from zero or not
in a Bayesian framework. This led us to the use of the
evidence ei j of (19). While increasingly used, evidence
admittedly remains rather uncommon in the brain imaging
literature, where significance is often asserted with respect
to a significance threshold, or P-value. It would therefore
be tempting to propose a direct connection between P-
values and evidence or, at least, interpret results of our
Bayesian approach in terms of significance and P-value
(see, e.g., [12]). Unfortunately, doing so is both inaccurate
and misleading, because of the strong difference between
Bayesian probability intervals and their frequentist counter-
parts, confidence intervals. Under the null hypothesis (H0):
Πi j = 0, thresholding a statistic ̂Πi j at 10% in a frequentist
framework (corresponding to a statistic of P10%) implies that,
assuming that (H0) is true, there is only 10% to obtain data
with a statistic above the threshold, that is,

p
(

̂Πi j > P10% | H0

)

= 0.10. (21)

In this case, there is no mention whatsoever of any alternative
hypothesis: we only assess how typical the data under
consideration are. By contrast, thresholding a Bayesian
probability at 10% means that we only consider cases where
the alternative hypothesis (H1) of (H0): Πi j ≤ 0 has a
probability of more that 0.9, that is,

p
(

H1 | Pi j
)

> 0.90. (22)

While a frequentist threshold of 10% might appear permis-
sive, a Bayesian threshold of 10% is already conservative,
since it implies that (H1) is about 10 times more probable
than (H0). For more details on this topic, the reader can refer
to Jaynes [18].

A last question is the possibility to apply partial correla-
tion to other imaging modalities, such as electroencephalog-
raphy (EEG) and magnetoencephalography (MEG). While
the issue of removing the effect of other regions when
considering the interactions between two regions remains
relevant, whether partial correlation as defined here can
provide a cogent solution remains to be investigated. One of
the major properties of the fMRI signal is that, due to the
convolution with the hemodynamic response, the temporal
information that it conveys is usually considered as less
relevant than in EEG or MEG. This is one of the major
reasons why most EEG or MEG analyses are performed in
the frequency domain. Of interest would therefore be to use
partial correlation in this frequency domain. This analysis
could be performed over time windows that are narrow
enough to assume stationarity of the signal. How such an
approach could be related to partial coherence [19, 20]
remains to be clarified.

Appendix

Numerical Sampling Scheme

Using standard Bayesian theory, it can be shown that the
covariance matrix Σ given the data z follows an inverse
Wishart distribution with T−1 degrees of freedom and scale
matrix U = S−1, where

S =
T
∑

t=1

(zt − zt)(zt − zt)t (A.1)

is proportional to the sample covariance matrix, and zt
is the temporal mean [21]. Calculation of the posterior
probability density function (pdf) of the partial correlation
matrix, p(Π | z) cannot be performed in close form from
this distribution. To approximate this distribution, we can
nevertheless resort to the following sampling scheme [11,
13]. For sample l,

(1) sample Σ[l] according to its inverse Wishart distribu-
tion ([21], Appendix A);

(2) calculate Υ[l] = (Σ[l])
−1

, and Π[l] from Υ[l] according
to (14).

Once a large number L of samples have been drawn following
this process, the marginal pdf of a given quantity can be
approximated by the frequency histogram obtained from
the sample. Likewise, all statistics and estimators can be
approximated by their sample counterparts. For instance,

E
[

Πi j | z
]

≈Mij = 1
L

L
∑

l=1

Π[l]
i j ,

Var
[

Πi j | z
]

≈ Xij = 1
L

L
∑

l=1

(

Π[l]
i j −Mij

)2
.

(A.2)

One can also compute evidence as explained in the main text.
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1. Introduction

In recent years, various driving assistance systems have been
developed to ensure safety by reducing driver workloads.
Examples include the Adaptive Cruise Control (ACC) sys-
tem, which maintains a safe distance between the driver’s
vehicle and the vehicle ahead of it and the lane-keeping
assistance system, which keeps the car in a lane through
steering support.

However, it is also possible that while driver workload is
reduced, the driver’s attention is also reduced, resulting in
unexpected accidents. Therefore, it is necessary to examine
driver workload from the viewpoints of cognitive engineer-
ing and human physiology. It is necessary to clarify the rela-
tionship between driver workload and brain activity, which
includes recognition and judgment. It is then necessary to
evaluate the driver’s attention and to clarify the relationship
between brain activity and driving performance.

A small number of neuroimaging studies using driving
simulator examine brain activity in car driving. In these stud-
ies [1, 2], functional magnetic resonance imaging (fMRI)

has been used. However, fMRI has many shortcomings
in evaluating driving performance, because it requires the
subject to lie in a narrow cylinder during evaluation and does
not permit movement of the body, particularly the head. This
situation makes the driving task unrealistic and unnatural.

Near-Infrared Spectroscopy (NIRS) has gained attention
in recent years [3, 4]. This noninvasive technique uses
near-infrared light to evaluate an increase or decrease in
oxygenated hemoglobin or deoxygenated hemoglobin in the
tissue from the body surface.

NIRS can detect the hemodynamic of the brain in real
time while the subject is moving. Therefore, brain activity
can be measured in various environments. Recent research
has used functional Near-Infrared Spectroscopy (fNIRS) to
measure brain activity of train driver [5, 6]. Shimizu et al.
used fNIRS to evaluate the mental activity of car driver using
a driving simulator [7].

Various arguments have focused on interpretation of sig-
nals obtained from fNIRS, and no uniform signal-processing
method has yet been established. Averaging and base-line
correction are conventional signal-processing methods used
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for the fNIRS signal. These methods require block design,
an experimental technique that involves repeating the same
stimuli (tasks) and resting multiple times in order to detect
brain activation during a task. However, it has been pointed
out that brain activation gradually declines when one subject
repeats the same task multiple times [8].

Fourier analysis, which is frequently used for signal
analysis, transforms information in the time domain into the
frequency domain through the Fourier transform. However,
time information is lost in the course of transform. As the
fNIRS signal has unsteady nature, time-frequency analysis is
suitable for the fNIRS signal.

The wavelet transform is an efficient method of time-
frequency analysis [9]. It adapts the window width in time
and frequency so that the window width in frequency
becomes smaller when the window width in time is large,
or the window width in frequency becomes larger when
the window width in time is small. Multiresolution analysis
(MRA) [10] decomposes the signal into different scales
of resolution. The MRA with orthonormal wavelet base
facilitates complete decomposition and reconstruction of the
signal effectively without losing original information of the
signal.

In addition to this, oxygenated hemoglobin and deoxy-
genated hemoglobin measured in fNIRS are relative value
from the beginning of measurement, which is changeable
for subject and part of the brain. Thus, simple averaging of
fNIRS signal should not be applied for statistical analysis.
To solve this problem, we propose Z-scored fNIRS signal for
statistical analysis.

The aim of the study is to propose the signal processing
method suitable for fNIRS signal which is applicable for
neuroimaging studies for car drivers using fNIRS. In this
paper, we first describe the principle of measurement of
brain activity with fNIRS. Then, we propose the discrete
wavelet-based MRA to extract the task-related signal from
the original fNIRS recordings. We conducted simultaneous
measurement experiments with fNIRS and fMRI using
mental calculation tasks to confirm the validity of the
proposed method. The Z-scored fNIRS signal is proposed for
statistical analysis. We show the possibility of the proposed
method for evaluating driver’s brain activity in realistic
driving environment.

2. Principle of fNIRS

Using near-infrared rays, fNIRS noninvasively measures
changes in cerebral blood flow. Its principle of measurement,
which was developed by Jöbsis [11], is based on measure-
ment of oxygenation of hemoglobin in the cerebral blood
flow.

In uniformly distributed tissue, incident light is attenu-
ated by absorption and scattering. Therefore, the following
expression, a modified Lambert-Beer law, was used:

Abs = − log
(

Iout

Iin

)

= εdC + S. (1)

Here, Iin is the irradiated quantity of light; Iout is the
detected quantity of light; ε is the absorption coefficient; C

is the concentration; d is the averaged path length; S is the
scattering term.

If it is assumed that no scattering changes in brain
tissue occur during activation of the brain, the change in
absorption across the activation can be expressed by the
following expression:

ΔAbs = − log
(

ΔIout

ΔIin

)

= εdΔC
(

ΔoxyHb,ΔdeoxyHb
)

.

(2)

Furthermore, if it is assumed that the change in concen-
tration (ΔC) is proportional to the changes in oxygenated
hemoglobin (ΔoxyHb) and deoxygenated hemoglobin
(ΔdeoxyHb), the following relational expression can be
obtained:

ΔAbs(λi) = d
[

εoxy(λi)ΔoxyHb + εdeoxy(λi)ΔdeoxyHb
]

.

(3)

The absorption coefficients of oxygenated hemoglobin and
deoxygenated hemoglobin at each wavelength, εoxy(λi) and
εdeoxy(λi), are known; therefore, dΔoxyHb and dΔdeoxyHb
can be obtained by performing measurements with near-
infrared rays of two different wavelengths and solving
simultaneous equations (3). However, the physical quantity
obtained here is the product of the change in concentration
and the averaged path length; so care should be taken.

In general, the averaged path length d varies largely
from one individual to another and from one part to
another. Therefore, caution must be exercised in evaluating
the results.

3. Signal Processing Methods for fNIRS

3.1. Recording of fNIRS Signal. Mental calculation tasks, low-
level task: simple one-digit addition (e.g., 3 + 5), high-level
task: subtraction and division with decimal fraction (e.g.,
234/(0.61 − 0.35)), were set to obtain fNIRS signal. The
brain activity in the prefrontal lobe was measured using
fNIRS. The measuring instrument was the multichannel
fNIRS instrument, OMM-3000, Shimadzu Corporation,
Japan [12].

Figure 1 illustrates the arrangement of optical-fiber units
and the location of each channel (3× 7 matrix, 32 channels).
Figure 2 shows the recorded time history of oxygenated
hemoglobin (red line, indicated as oxy-Hb) and deoxy-
genated hemoglobin (blue line, indicated as deoxy-Hb) of
channel number 20.

3.2. Analysis of fNIRS Signals. In fNIRS analysis, it is
necessary to separate noise that is related to a task from that
which is not, since fNIRS measures not only the signals of
brain activity during a task but also other signals, including
measurement noise.

In general, changes in oxygenated hemoglobin and
deoxygenated hemoglobin when the brain is activated and
restored to the original state exhibit the trend illustrated in
Figure 1 [13]. Therefore, if these signals can be extracted
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Figure 1: Position of optical fibers and channels in recoding fNIRS
signal (Mental calculation task: 3× 7 matrix, 32 channels).
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Figure 2: Time history of fNIRS signal in mental calculation
(channel number 20).

from the measured signals, it is obvious that the brain has
been activated.

Averaging and base-line correction are conventional
signal processing methods. These methods require block
design, an experimental technique that involves repeating the
same stimuli (tasks) and resting multiple times in order to
detect brain activation during a task.
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Figure 3: Schematic hemoglobin concentration change due to
neural activity.

Averaging is the method by which data is averaged
for each task. Randomly generated noises approach zero
by averaging, and only periodical data is left. Averaging is
effective when similar reactions are generated repeatedly.
However, for cerebral blood flow that has large scattering
of reactions to the same stimuli, the reliability of averaged
signals is low, and false signals may be created. Furthermore,
it is possible that even significant signals may become
undetectable after averaging.

Base-line correction corrects the start point and end
point of a block to zero to remove gentle trends, based on the
assumption that blood flow is restored to its original state
during a task block. However, because blood flow involves
irregular fluctuations, the reference points are unstable.
Therefore, if the whole block is corrected based on those two
points alone, signals may be distorted.

Figure 4 shows the result of base-line correction applied
for fNIRS signal (Figure 2) after removing high-frequency
noise by moving average of 25 data. Figure 5 indicates the
functional brain imaging of frontal. It should be noted that
the brain activation gradually declines when one subject
repeats the same task multiple times.

3.3. Decomposition and Reconstruction of fNIRS

Signals Using Wavelet Transform

3.3.1. Wavelet Transform. Fourier analysis, which is fre-
quently used for waveform analysis, transforms information
in the time domain into information in the frequency
domain through the Fourier transform. However, time
information is lost in the course of transform.

Short-time Fourier transform, or windowed Fourier
transform, can be used for time-frequency analysis of signals.
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Figure 4: Results of signal processing with base-line correction and
denoising.

However, the detecting capacity varies largely, depending on
the setting of the window.

In contrast, wavelet transform is an efficient method
of time-frequency analysis. It adapts the window width in
time and frequency so that the window width in frequency
becomes smaller when the window width in time is large,
or the window width in frequency becomes larger when the
window width in time is small.

Wavelet transform expresses the local shape of the
waveform to be analyzed, S(t), by shifting and dilating the
waveform called the mother wavelet, ψ(t), and then analyzes
the waveform.

Continuous wavelet transform is given by

(

WψS
)

(a, b) =
∫∞

−∞
1
√|a|ψ

(

t − b
a

)

S(t)dt. (4)

In the continuous wavelet transform, information is dupli-
cated, requiring many calculations. Therefore, the method
that is expressed by (5), where a and b are discretized, is called
discrete wavelet transform:

Dm =
∫∞

−∞
S(t)ψm,n(t)dt, (5)

where

ψm,n(t) = 2−m/2ψ(2−mt − n). (6)

Discrete wavelet transform handles a smaller volume of
information than continuous wavelet transform does, but it
is able to transform signals more efficiently. Furthermore, its
use of an orthonormal base facilitates complete reconstruc-
tion of original signals without redundancy. The following
section describes decomposition and reconstruction of sig-
nals using multiresolution analysis (MRA).

3.3.2. Multiresolution Analysis (MRA). MRA decomposes
signals into a tree structure using the discrete wavelet
transform. MRA decomposes the object time-series signals,
S(t), into an approximated component (low-frequency com-
ponent) and multiple detailed components (high-frequency
components).

Signal S(t) can be expressed as follows by discrete wavelet
transform using an orthonormal base:

S(t) =
∞
∑

n=−∞
Am0,nφm0,n(t) +

m0
∑

m=−∞

∞
∑

n=−∞
Dm,nψm,n(t). (7)

Here, φm,n(t) is the scaling function as defined by the
following equation.

The coefficient of the approximated component is calcu-
lated by

Am,n =
∫∞

−∞
S(t)φm,n(t). (8)

The detailed components of the signals on level m can be
expressed by

dm =
∞
∑

n=−∞
Dm,nψm,n(t). (9)

Thus, the original signal, S(t), can be expressed as

S(t) = am0 +
m0
∑

m=−∞
dm. (10)

Therefore, it is possible to reconstruct task-related compo-
nents from multiple detailed components.

In the wavelet transform, the choice of a mother wavelet
ψm,n(t) is important. We employed Daubechies wavelet
[14], which is orthonormal base and compactly supported
wavelet. The vanishing moments of Daubechies wavelet can
be changed by index N . We decided to use a relatively high-
order generating index, N = 7.

Figure 5 presents the MRA results for oxygenated
hemoglobin in channel number 20, where task-related
changes were remarkable. Here the measured signal is
decomposed into ten levels. The trend of the whole experi-
ment was extracted on the approximated component (a10),
lowest-frequency range. Here, d1 and d2, highest-frequency
range, had a relatively large amplitude. It is possible that these
were measurement noises. Because the interval of repetition
of tasks and rests was 64 seconds, the d8 component was the
central component of task-related changes. Therefore, signals
were reconstructed by adding the d7, d8, and d9 components.

Reconstructed signals are illustrated in Figure 6. It
should be noted that the activation pattern of oxy-
genated hemoglobin and deoxygenated hemoglobin, shown
in Figure 3, is observed very clearly. Comparison between
Figure 4 (conventional method) and Figure 6 (proposed
method) shows the better performanceof the proposed
method. Results revealed that oxygenated hemoglobin
increased, and the brain was activated during mental calcu-
lation tasks.
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Figure 5: Decomposition of fNIRS signal using MRA.

4. Measurement of Brain Functions under
Workload Using Mental Calculation Tasks

To confirm the validity of the signal processing method
explained in the previous section, we measured brain
functions through simultaneous use of fNIRS and fMRI.

4.1. Setting of Workload. To measure brain activity under
workload, we used the workload of mental calculation.

Mental calculation tasks were set to low, medium, and high
levels as follows:

(i) Low-level task: simple one-digit addition (e.g., 3 + 5);

(ii) Medium-level task: one-digit addition of three num-
bers (e.g., 6 + 5 + 9);

(iii) High-level task: subtraction and division with deci-
mal fraction (e.g., 234/(0.61− 0.35)).
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Figure 6: Results of signal processing using MRA.
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Figure 7: Design of experiment.

The design of the experiment is presented in Figure 7.
Each set was composed of 28 seconds of task and 36 seconds
of rest in that order. By arranging three sets for each level
in random order, a total of nine sets of experiment were
conducted over 592 seconds.

A 28 seconds-task consisted of 14 questions at 2 seconds-
intervals for the low level, 10 questions at 2.8 seconds-
intervals for the intermediate level, or two questions at
14 seconds-intervals for the high level. The subject answered
the questions displayed on the PC screen without speaking.
During the 36 seconds-rest time, the subject rested while
steadily gazing at the cross mark displayed on the PC
screen.

4.2. fNIRS and fMRI Recording. The brain activity in
the prefrontal lobe was measured using fNIRS and fMRI
simultaneously. fNIRS data were collected on OMM-3000,
Shimadzu Corporation, Japan, in MRI scanner.

fMRI data (3 mm thickness, 40 slices) were collected
on Siemens Symphony 1.5 T (T2∗-weighted gradient-echo
sequence, TR = 4000 milliseconds, TE = 50 milliseconds,
FA = 90 deg, 64 × 64 pixel, FOV = 192 mm). Whole
brain image is obtained as T1-weighted image (TR = 2200
milliseconds, TE = 3.93 milliseconds, FA = 15 deg, TI =
1100 milliseconds, 1 mm3 voxel , FOV = 256 mm).

fMRI data were preprocessed using Statistical Parametric
Mapping (SPM99, Welcome Department of Imaging Neu-
roscience, UK) Normalized contrast images were smoothed
with an isotropic Gaussian kernel (FWHM = 12 mm).
Regions of interests (ROIs) were defined as clusters of 10
or more voxels in which parameter estimate values differed
significantly from zero (P < .01).

The subjects were nine healthy men and women. The
arrangement of optical fiber units and measurement posi-
tions is shown in Figure 1.

4.3. Decomposition and Reconstruction of fNIRS Signals.
Figure 8 presents the measurement results through all chan-
nels for Subject A during the first three tasks. During
the mental calculation task at the high level (i.e., the
third task), oxygenated hemoglobin increased deoxygenated
hemoglobin decreased on both outer sides of the frontal lobe.

Figure 9 presents the MRA results for oxygenated
hemoglobin in channel number 26, where task-related
changes were remarkable. The trend of the whole experi-
ment was extracted on the approximated component (a10).
Because the interval of repetition of tasks and rests was
64 seconds, the d8 component was the central component of
task-related changes. Therefore, signals were reconstructed
by adding the d7, d8, and d9 components

Reconstructed signals of channel number 26 are illus-
trated in Figure 10. Results revealed that oxygenated
hemoglobin increased, and the brain was activated during
mental calculation tasks. Furthermore, such changes became
larger as the level of mental calculation task became higher.

Figure 11 shows the comparison of the functional brain
imaging by fMRI and fNIRS with proposed method. The
rectangular in fMRI image indicate the region of mea-
surement with fNIRS. The fNIRS images agree to that of
fMRI in different workload levels. This results support the
effectiveness of MRA with discrete wavelet transform.

4.4. Statistical Analysis. The fNIRS signal expresses the quan-
tity of relative changes using the start point as the reference;
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however, comparisons of measurements between subjects
or statistical processing of measurements of all subjects
cannot be implemented using this signal as it is. Therefore,
we propose a method for converting data of oxygenated
hemoglobin and deoxygenated hemoglobin reconstructed by
MRA into Z-scores using the following expression, so that
the mean value is 0 and standard deviation is 1:

Z = X − μ
σ

. (11)

Here, X is the signal of oxygenated hemoglobin or deoxy-
genated hemoglobin reconstructed using MRA; μ is their
mean value; σ is the standard deviation.

Figure 12 shows the averaged fNIRS signals using Z-score
for nine subjects. It should be noted that the difference of
the workload level is reflected on the gradient of oxygenated
hemoglobin concentration. Figure 13 shows the results of
group analysis for nine subjects. The rectangular in fMRI

image indicates the region of measurement with fNIRS. The
fNIRS images agree to that of fMRI in different workload
levels. This results support the effectiveness of the proposed
method.

4.5. Subjective and Objective Evaluation of Workload. In this
experiment, the workload of each subject was measured
using the Japanese version of NASA-TLX to evaluate the
correlations between the workload of mental calculation
tasks and the objective evaluation with fNIRS. NASA-
TLX is composed of six measures: mental requirements,
physical requirements, temporal demand, work perfor-
mance, effort, and frustration. Before workload evalua-
tion, the subject performed one-to-one comparisons of the
importance of elements of the workload involved in task
performance.

The weight of each measure was based on the number
of times an element was selected as more important during
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Figure 9: Decomposition of fNIRS signal using MRA (channel number 26).

15 one-to-one comparisons. When evaluating the workload
of each task, the subject placed a mark at the appropriate
position on the segment drawn between both extremes for
each of the six measures.

A Weighted Workload (WWL) score was obtained by
reading the position of each evaluation mark on a scale of
0 to 100 and multiplying it by the weight for each measure
determined by one-to-one comparison, and then averaging
all the products.

Figure 14 presents the WWL score of Subject A as
determined by NASA-TLX. The workload became higher
when the task level was higher.

Figure 15 shows the results of 9 subject evaluated using
the maximum gradient of oxygenated hemoglobin in the
task with different workload level. Multivariate test using
Ryan method is used. Significant difference between high-
level task and low-level task or between high-level task and
medium-level task can be observed (P < .05). It exhibited
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Figure 11: Functional brain imaging by fMRI and fNIRS.

good correlation with subjective evaluation with NASA-TLX.
This result confirmed the feasibility of evaluating workload
using the signal of cerebral blood flow obtained from fNIRS.

5. Measurement of Brain Functions of
Car Driver

Drivers of motor vehicles obtain visual information on the
surrounding environment, recognize and judge that infor-
mation suitably, and then control their vehicle through steer-
ing wheel, accelerator, and brake pedal operations. Human
brain activity functions to control all of these processes.
In situations where it is necessary to predict unexpected
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Figure 12: Results of group analysis of fNIRS signals for nine
subjects.
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Figure 13: Functional brain imaging by fMRI and fNIRS (Group
analysis for nine subjects).

danger, it is thought that a driver’s brain activity strengthens
the cognition function by spontaneously raising the level of
attention. In the course of developing driver support systems,
it is important to have a clear understanding of human brain
activity in such driving situations.

5.1. Contents of the Task. To verify that the driving workload
reduction of Adaptive Cruise Control (ACC) could be
evaluated from brain activity, we conducted an experiment
that involved the use of a driving simulator to follow a vehicle
(Figure 16).
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Main specification of the driving simulator is as follows:
Dimension: 2440 mm (W)∗ 2280 mm (H)∗1850 mm (D),
front view: wide filed (138 degrees) screen projection, DLP
projector with total pixel count of 780000 (XGA), rear view:
3 mirror independent LCD display 640∗480 pixel (VGA),
computer graphics: redraw speed: 30 to 60 flame/s, and
simulation system: 6 axis motion base system using 6 electric
screw cylinders.

Driving tests were conducted under two conditions: one
involved following a vehicle by utilizing ACC, and the other
involved following a vehicle while driving without ACC. The
subject performed practice runs to become somewhat skillful
in handling the driving simulator and then drove two times
under each condition. Brain activity during one condition
was compared with that during the other condition.

5.2. Measurement Method. Brain activity in the frontal lobe
was measured using fNIRS. Figure 17 depicts a scene of

40 s45 s40 s45 s40 s

Keeping speed
40 km/h

Sp
ee

d
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m
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)

Figure 16: Speed pattern of leading car.

(a)

(b)

Figure 17: Experiment with driving simulator (driver follows the
proceeding vehicle with and without ACC).

the experiment. The measuring instrument was a near-
infrared imaging device, OMM-300, Shimadzu Corporation,
Japan. Figure 18 illustrates the arrangement of optical-fiber
units (3 × 9 matrix, 42 channels). The numbers between
the light-emitting fiber unit and the light-receiving fiber
unit denote the measurement channels; measurements were
performed through a total 42 channels. Furthermore, driving
performance was also recorded on the driving simulator
while measuring brain activity. The four male subjects, who
were in their 20 s in healthy condition and who had ordinary
driving licenses, participated.

5.3. Decomposition and Reconstruction of fNIRS Signals.
The fNIRS signals include signals that are not related to
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Figure 19: Result of group analysis for four drivers without ACC
system.

brain activity (e.g., noise of the measurement instrument,
influences of breathing, and changes in blood pressure).
It was necessary to remove these unrelated signals to
evaluate brain activity in detail. Therefore, the measured
fNIRS signals were decomposed through MRA using discrete
wavelet transform, and the components related to the driving
task were reconstructed. Then, group analysis using Z-score
was conducted for all subjects.

5.4. Results. Figures 19 and 20 depict the relationships
between brain activity when the subject followed the fore-
running vehicle manually without using ACC and that when
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Figure 20: Result of group analysis for four drivers with ACC
system.

the subject used ACC (26 channels at the outer right portion
of the frontal lobe) and vehicle speed.

Figure 19 presents the result of group analysis for four
drivers without ACC, and Figure 20 presents the result with
ACC. Figure 19(a) confirms that oxygenated hemoglobin
increased when the subject drove without ACC and exhibited
a high value in the latter half of the task. The brain function
imaged in Figure 19(b) confirms that, as common brain
activity, both outer portions of the frontal lobe became active
during the driving task.

Figure 20(a) indicates that oxygenated hemoglobin did
not increase while driving with the use of ACC. Also,
the brain function image in Figure 20(b) reveals that the
frontal lobe was less active than when the subject drove
without ACC. This result may reflect the reduction of driving
workload by ACC.

6. Conclusions

Signal processing method to extract the task-related com-
ponents with multiresolution analysis (MRA) based on
discrete wavelet transform is proposed for fNIRS. Then the
integration of data of multiple subjects using Z-scores is
developed for statistical group analysis.

The brain activity of the subject who was given workload
by different levels of mental calculation tasks was measured
with fNIRS and fMRI. The fNIRS images constructed with
the proposed method agree to fMRI images in different
workload levels. Those results show that the proposed
method is effective for evaluation brain activity measured by
fNIRS.

The changes in brain activity in connection with work-
load were compared with the subjective evaluation of work-
load by NASA-TLX. Good correlation was observed between
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the brain activity detected by fNIRS and the workload scores
obtained from NASA-TLX. This result indicates that it is
possible to evaluate workload from the cerebral blood flow
signals obtained from fNIRS.

Whether the reduction of driving workload by ACC
can be evaluated from brain activity was evaluated through
experiments using a driving simulator. The results revealed
that while the outer portions of the frontal lobe were active
in connection with driving performance when the subject
drove without ACC, it indicated no activity related to driving
performance with the use of ACC. These results suggest the
possibility of evaluating driving assistance systems through
evaluation of the driving workload from measurement of
brain activity using fNIRS.

Neuroimaging studies of car drivers using fNIRS should
be conducted with increased number of subjects. We cannot
conclude that lowering brain activity by reducing driving
workload leads to safe driving; thus, in the future, we will
design and evaluate driving assistance systems that require
an appropriate level of brain activity.
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1. Introduction

In the recent years, researchers have begun to use neu-
roimaging tools to examine human behaviour in economic
games and decision making between different commercial
advertisements. This field is known as Neuromarketing.
Principal issue of this branch is to understand mechanisms
underlying customer’s engagement with brand or company
advertised [1–3]. In particular, the question is to explain how
the exposure of a message, made up of images, text, and
audio, is able to trigger in the consumer mind persisting
stimuli leading to an interest, preference, purchase, and
repurchase of a given product. In the same way they try to
explain how video’s emotional contents work after observing
a humanitarian TV spot. Since marketers need to be
reassured that a new advertising campaign will work before
airing it, they trust an advertising test made on small groups
of people which allows them to decide whether promoting
the campaign or not. This test consists in an interview asking

about the likeability, emotional involvement, persuasion, and
intention to purchase.

In the last decades, several authors have investigated
the capability of subjects to memorize and retrieve sensible
“commercial” information observed during a TV spot [4–9].
The most used neuroimaging tool to track the brain response
to the commercial advertisements is the functional Magnetic
Resonance Imaging (fMRI) technique, able to return the
profile of brain areas that elicited increased blood flow during
the task when compared to a resting state. However, there
are precise limitations in the actual state of the art of this
technique. Essentially, the main limitation is linked to the
insufficient temporal resolution of fMRI. In fact, temporal
resolution of hundred of milliseconds or less is necessary
to track the shifts of brain activity closely related to the
processing of visual and acoustic stimuli provided by the fast
moving of visual commercial spots.

For this reason other authors also adopt different tools
such as magnetoencephalography (MEG). This technique is

mailto:laura.astolfi@uniroma1.it
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Figure 1: Tracking of the mean cortical activity of the group of “drinkers” in the theta frequency band spot. The statistical significant
activity in this population is shown in seven panels (A–G), each representing subsequent film segments of a TV spot with corresponding
brain activity. Temporal axes beat the spot time every 5 seconds: in this way panel A represents the first frame of the commercial while
panel G shows the last one. This example illustrates how it is possible to track human cortical activity by means of the highresolution EEG
technique.

sensitive to changes of magnetic fields that are induced by the
electrical brain activity, and it is able to detect rapid changes
of the neural activity on a temporal scale of milliseconds and
on a spatial scale of centimetres.

It is worth noticing that the past several studies also
used electroencephalography (EEG) as brain imaging tool
for the analysis of brain activity during the observation
of TV commercials. However, at that time, EEG limita-
tions in spatial resolution due to an insufficient number
of electrodes used as well as to the limited processing
capabilities were responsible for a series of inconclusive and
fragmented observations of these phenomena. Nowadays,
high-resolution EEG technology has been developed to
enhance the poor spatial information content of the EEG
activity in order to detect the brain activity with a spatial

resolution of a squared centimetre and the unsurpassed time
resolution of milliseconds [10–14].

The purpose of this paper is to illustrate the potential
of the high-resolution EEG techniques when applied to the
analysis of brain activity related to the observation of TV
commercials. In particular, we would like to describe how by
using appropriate statistical analysis it could be possible to
recover significant information about cortical areas engaged
by particular scenes inserted within the TV commercial
analyzed.

In order to do that, we recorded a series of normal
subjects with high resolution EEG techniques during the
observation of a documentary in which an interruption was
generated. The subjects were not aware of the aim of the
study. The brain activity was evaluated in both time and
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frequency domains by solving the associate inverse problem
of EEG with the use of realistic head models.

Cortical activity estimated during the observation of the
TV commercial was then compared with the brain activity
computed in the analyzed population during the observation
of the documentary.

2. Materials and Methods

2.1. Experimental Design. The whole dataset is composed by
EEG registrations of 13 healthy subjects (mean age 30 ± 4
years) watching a documentary of 30 minutes intermingled
by a TV commercial (see [15]). Each subject is exposed to
the observation of a same documentary. The subjects were
not aware of the aim of the recording, and they only knew
to pay attention to the material showed on the screen during
the entire 30 minutes. The TV commercial, whose length was
30 seconds, was inserted at the middle of the documentary.
Such commercial was realized for a popular brand of beer
in Italy, that was on-air on the national TV channels on the
days in which the experiment was realized. After the EEG
registration each subject was recalled in laboratory, where an
interview was performed. In such interview, the subjects were
asked if they usually drink beer or light alcohol at least once
per week. If yes, subjects were considered within the dataset
of “drinkers” in opposition to the dataset of “no drinkers.”
In order to increase the sensitivity of the analysis performed,
only the EEG spectral analysis for the “drinkers” was analyzed
and presented here.

The hypothesis was that the TV commercial could be
better followed by a class of subjects who usually drink beer
instead that from other “nondrinkers” subjects.

2.2. High-Resolution EEG: Recordings and Processing Tech-
niques. High-resolution EEG technologies have been devel-
oped to enhance the poor spatial information content of the
EEG activity [10, 16, 17]. Basically, these techniques involve
the use of a large number (64–256) of scalp electrodes. In
addition, high-resolution EEG techniques rely on realistic
MRI-constructed head models [18, 19] and spatial decon-
volution estimations, which are usually computed by solv-
ing a linear-inverse problem based on Boundary-Element
Mathematics [13, 20]. Subjects were comfortably seated on
a reclining chair, in an electrically shielded, dimly lit room. A
64-channel EEG system (BrainAmp, Brainproducts GmbH,
Germany) was used to record electrical potentials by means
of an electrode cap, accordingly to an extension of the 10–
20 international system. In the present paper, the cortical
activity was estimated from scalp EEG recordings by using
realistic head models whose cortical surface consisted of
about 5000 triangles uniformly disposed. The current density
estimation of each one of the triangle, which represents the
electrical dipole of the underlying neuronal population, was
computed by solving the linear-inverse problem according to
the techniques described in the previous papers [14, 15, 21].

Thus, a time-varying waveform relative to the estimated
current density activity at each single triangle of the modeled
cortical surface was obtained. Such waveform was then
subjected to the time-varying spectral analysis by computing
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Figure 2: Tracking of the mean cortical activity of the group
of “drinkers” in the theta frequency band spot. The statistical
significant activity in this population is shown in 3 panels (A–
C), each representing subsequent film segments of a TV spot
with corresponding brain activity. Temporal axes beat the spot in
correspondence of the beginning (A), the middle (B), and the end
(C) of the entire film sequence.

the spectral power in the different frequency bands usually
employed in EEG analysis, that is, theta (4–7 Hz), alpha (8–
12 Hz), beta (13–24 Hz), and gamma (24–45 Hz).

Although we estimated brain activity in all the described
frequency bands, in the following we presented those related
to theta and alpha frequency bands. In fact, in the EEG
literature, these frequency bands have been suggested to
be maximally responsive during the observation and the
memorization tasks when compared to the beta and gamma
bands [22].

In each subject recorded, the statistical significance of the
spectral values during the observation of the TV commercials
was then measured against the activity evaluated during the
observation of the documentary for the same subject. This
was obtained by computing a time-varying z-score variable
for each subject and for each dipole placed on the cortical
mantle in the analyzed frequency band. The mean and the
standard deviation for such z-score variable was estimated
in the documentary period, while the time-varying values of
the spectral power in the theta band during the observation
of the TV commercial for each dipole were employed.

In order to present these results relative to the exper-
imental conditions for the entire population, we needed
a common cortical representation to map the different
activated areas of each subject. For this purpose we used the
average brain model available from the McGill University
website. In this way we were able to display the cortical areas
that are statistically significant activated during different
experimental conditions in all subjects analyzed. In fact, we
highlighted in yellow a voxel of the average brain model if it
was a cortical site in which a statistical significant variation of
the spectral power between the experimental conditions was
found in all the subjects; if such brain voxel was statistically
significant in all but one of the subjects analyzed, we depicted
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Figure 3: Tracking of the mean cortical activity in the theta frequency band of the first 5 seconds of the commercial spot. The statistical
significant activity in this population is shown in six panels (A–F), each representing subsequent film segments of a TV spot with
corresponding brain activity. Temporal axes beat the spot time every second: in this way panel A represents the first frame of the commercial
while panel F shows the film segment shown after 5 seconds from the beginning.

it in red. In all the other cases the voxel was represented with
a gray colour.

By construction, the analyzed maps are then relative to
the evolution of the time-cortical activity of the spectral
power in the theta band. However, only the statistical
significant variation of such spectral power when compared
to the documentary period was highlighted in colour. The
use of z-score will allow us to have a variable that can be
averaged and can be used to synthesize the results of the
entire population investigated.

3. Results

Of the 13 subjects recorded, only seven are “drinkers.” Hence,
the successive analysis and results are presented for seven of
such subjects.

We summarized all results for the “drinkers” group
in a series of figures showing the statistically significant
differences of cortical activation concerning this dataset in
the theta frequency band (4–7 Hz). Data regarding the alpha
frequency band (8–12 Hz) were equivalent to the theta band
and for this reason not shown here. Our figures are formed
by a series of subsequent panels each containing two images:
the upper one represents a frame of the TV commercial while
the lower one displays the corresponding mean brain activity.
In particular, the image at the bottom of the panel shows four
different views of the average brain model organized in two
rows: the upper row comprises the front and left perspective
while the lower one the rear and right brain perspective. The
temporal axes beat the time of the commercial.

In Figure 1 we present a first series of 7 film segments
spanning the whole length of a certain TV spot. Frames are
taken each 5 seconds from the beginning of the clip. In such
a way panel A represents the first frame of the commercial
while panel G shows the last one. By examining this strip

it results evident how the temporal evolution of the mean
cortical activity changes according to the images viewed
by the subjects. In particular, an enhancement of cerebral
activity is suggested by the result of the application of the
statistic tests at the beginning and at the end of the videoclip
presented. In fact, from the lower row of the figures, it is
possible to observe how in the middle film segments very
restricted areas provide statistically significant differences
when compared to the ones watched at the beginning and
at the end of the commercial. This drastic change of activity
is more evident in Figure 2. The present figure is composed
by 3 panels representing the first (panel A), the middle (B),
and the last (C) frame of the TV spot, respectively. The
corresponding mean cortical activity completes each panel of
the figure. By observing these three images it is clear how the
middle part of the commercial is characterized by cerebral
zones displaying no statistical differences across ROIs, while
there are two peaks of activity at the beginning and at the end
of the clip.

The analysis of the temporal evolution of the brain activ-
ity has been performed even on shorter intervals in order
to track its variations in closer time instants. Subsequent
Figures 3, 4, and 5 follow the cerebral activity with a higher
temporal resolution. Time intervals spanned in the following
figures correspond to the first 5 seconds (Figure 3), middle
5 seconds (Figure 4), and last 5 seconds of the commercial
(Figure 5), respectively. These examples show how it is
possible to catch statistically significant differences in the
activation of cortical areas even reducing the time interval
of interest.

4. Discussion

Thanks to the high resolution EEG techniques we tracked
subjects’ brain activity during visualization of the commer-
cials: in such manner it is possible to obtain a global measure
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Figure 4: Tracking of the mean cortical activity of seven drinkers in the theta frequency band of the central 5 seconds of the commercial
spot. The statistical significant activity in this population is shown in six panels (A–F), each representing subsequent film segments of a TV
spot with corresponding brain activity. Temporal axes beat the spot time every second: in this way panel A represents the film segment after
12 seconds from the beginning of the commercial; panel F shows the film segment after 17 seconds.
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Figure 5: Tracking of the mean cortical activity of the last 5 seconds of the commercial spot. The statistical significant activity in this
population is shown in six panels (A–F), each representing subsequent film segments of a TV spot with corresponding brain activity.
Temporal axes beat the spot time every second: in this way panel F represents the last film segment of the commercial; panel A shows
the film segment after 25 seconds from the beginning.

of the reconstructed cortical signals by means of a simple
graphic tool which allows us to distinguish the activity of
different cortical areas. The above-mentioned results allow
us to comment temporal and spatial events observed.

In fact, the observed phenomena suggest an active role
of the prefrontal and parietal areas in the coding of the
information possibly retained by the users from the TV
commercials. A statistical increase of EEG spectral power
in the prefrontal (namely, BA 8, 9) and parietal areas is in
agreement with the suggested role of these regions during
the transfer of sensory percepts from short-term memory
to long-term memory storage. The results suggest a strong
prevalence of a ‘common’ prefrontal bilateral (involving

BA 8 and 9) activity in all the subjects analyzed during
the observation of the TV commercials. In addition a
stronger engagement of the left frontal areas has been noted,
in agreement with the HERA model [23] in which such
hemisphere plays a decisive role during the encoding phase
of information from the short-term memory to the long-
term memory, whereas the right hemisphere plays a role in
the retrieval of such information. It must be noted, however,
that the role of the right cortices in storing images has been
also recognized for many years in neuroscience [2, 24].

As presented in the previous works performed both with
EEG analysis and MEG recordings [5, 15], the observed
phenomena suggest an active role of the prefrontal and
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parietal areas in coding of the information that will be
retained by users from the TV commercials. In particular,
activations of these cortical areas can be associated with
attentional and memorization processes. As shown in the
previous figures, peaks of activity emerge at the beginning
and at the end of clip (Figures 1, 2). In these periods subjects’
attention is more focused on what he/she sees, in particular
when they watch scenes showing meeting moments (such as
panels A, B in Figure 3) and the advertised product (panels D
and F of Figure 5). Instead, in the middle of the TV clip, we
observed a peak of activity only when subjects watch a person
utilizing the advertised product (such as a beer in panel A
of Figure 4). These processes could reflect memorization of
significant frames’ sequence which would help the subject
to understand the whole video clip and messages provided.
Climax of this elaboration will be achieved in the last
film segments of the sequence when the meaning of the
commercial will be completely understood (last panel of
Figure 5).

The present paper intends to stress the useful properties
of the high-resolution EEG technologies. In particular this
tool is able to help us in observing and analysing the
temporal trend of the cortical activities thanks to a high
temporal and spatial resolution. These features allow us
to distinguish a certain precision changes of activation of
ROIs corresponding to different cortical areas, by means
of a graphical representation on an average brain model.
Our analysis focused the attention on tracking human brain
activity with different time resolution, all offering the same
spatial resolution able to discriminate activation’s intensity
of Brodmann areas.

The reconstruction of the cortical activity by means
of the high resolution EEG technique [25–30] and by
combining the above statistic treatment of our data allowed
us to track subjects’ brain activity during visualization of
the commercials. In such a way for each film segment of
a clip it was possible to distinguish cortical areas that were
significantly activated when compared to the observation
of the documentary. This could be useful in the evaluation
of the cortical responses to particularly type of visual
solicitations, performed by film or commercial clips, that at
the moment is a largely unexplored field by neuroscience.
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1. Introduction

It is well known that the execution of even simple motor
and/or cognitive tasks by the brain requires the participation
of multiple cortical regions, which are mutually intercon-
nected and exchange their information via plastic long-range
synapses. Consequently, knowledge of brain connectivity
is becoming an essential aspect of modern neuroscience,
especially useful to understand how the brain realizes its
basic functions and what the role of the different regions
is. Connectivity, however, is an elusive concept, which can
have different definitions depending on the emphasis of the
investigators [1]. In particular, the definition of connectivity
is strictly related to the mathematical method used to
extract connectivity parameters from data, that is, it is
“model dependent” and should always be used together
with the particular method adopted. For instance, most
methods presently used to derive connectivity graphs (such
as the Direct Transfer Function or the Partial Directed
Coherence [2–8]) are based on the assumption of linearity,

whereas neurons are intrinsically nonlinear. Moreover, these
methods use empirical equations (i.e., they are based on
black box models), which do not provide a description of
the underpinning physiological mechanisms (e.g., they do
not explicitly consider the time constant and strength of
synapses, the role of inhibitory interneurons, etc.). On the
other hand, the main advantage of these methods is that they
provide analytical solutions to the problem, which are not
“modeler driven.”

As an alternative method to study effective connectivity,
a few authors in recent years have employed the so-
called “neural mass models.” These models were originally
proposed in the mid seventies [9, 10] and subsequently
improved in the late nineties [11, 12]. They mimic the
activity of entire neural populations via the feedback
arrangement of excitatory and inhibitory groups, which
are assumed to share a similar membrane potential and
work in synchronism. The interaction between excitatory
and inhibitory groups can produce oscillatory rhythms,
either via an intrinsic instability of the model (like a limit
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cycle) or by a resonance amplification of an external noise.
In particular, similar models have been used to simulate
alpha rhythms [11], dynamics in the olphactory cortex [13],
or paradoxical epileptic discharges [12, 14]. A few recent
studies used these models to study effective connectivity
among different regions of interest (ROIs), to analyze the
dependence of cortical EEG on connectivity patterns [15,
16] and to evaluate the EEG power spectral density [17].
Recently, we also used neural mass models, including fast
inhibitory dynamics, to simulate the power spectral density
of cortical EEG [18–20] during simple motor tasks. The
main indication of these studies is that neural populations
with different dynamics (e.g., different time constants of
excitatory and inhibitory synapses) suitably interconnected,
can produce EEG rhythms similar to those measured in
human subjects via high-resolution EEG methods.

Application of neural mass models to estimate effective
connectivity is, however, a very hard task, due to the elevated
number of parameters involved and the presence of nonlin-
ear terms, which preclude the use of analytical solutions. For
instance, in a recent paper [21] we derived some connectivity
patterns between three cortical regions (the cyngulate and
the primary and supplementary motor cortices) during a
simple foot-movement task, by minimizing a least-square
criterion function of the difference between model and
data spectral densities. However, just a few exemplary cases
could be analyzed, since the minimization algorithm often
converges to a suboptimal solution (i.e., a local minimum)
which may exhibit just a poor fitting and, moreover,
may be characterized by unphysiological parameter values.
Furthermore, also the metrics used to compare model and
patient spectral densities may be questionable and affect the
final minimisation results.

For this reason, in the present paper we designed a
new method, based on a genetic algorithm, to provide
an automatic fitting between model and real data. The
method tries to find absolute minima of alternative cost
functions within the same procedure. Genetic algorithms
have already been used to estimate the parameters of a neural
mass model in order to fit real data (see, e.g., [22]). The
algorithm has been applied to high-resolution scalp EEG data
measured during a simple foot-movement task; scalp EEG
was preliminarily propagated to the cortex via a propagation
model, to infer cortical electrical activity in three Regions of
Interest (ROIs). The model [20] assumes that each ROI is
characterized by an intrinsic rhythm (established by the time
constants of synapses) and can receive additional rhythms
from other connected ROIs. Results have been applied to a
group of normal subjects and a group of tetraplegic patients
to establish simple patterns of connectivity between the
cyngulate, motor, and premotor cortices, and to look for
possible differences in the two populations.

2. Method

2.1. Model of a Single Population. The model of a single
population was obtained by modifying equations proposed
by Wendling et al. [12]. It consists of four neural groups

which communicate via excitatory and inhibitory synapses:
pyramidal cells, excitatory interneurons, inhibitory interneu-
rons with slow synaptic kinetics, and inhibitory interneurons
with faster synaptic kinetics. Each neural group simulates a
pool of neurons which are lumped together and which are
assumed to receive similar input and to behave in a similar
manner. One lumped circuit communicates with another
through the average firing rate corresponding to what that
given population of cells is firing on average.

Each neural group receives an average postsynaptic
membrane potential from the other groups, and converts the
average membrane potential into an average density of spikes
fired by the neurons. This conversion is simulated via a static
sigmoidal relationship. The effect of the synapses is described
via second-order linear transfer functions, which convert the
presynaptic spike density into the postsynaptic membrane
potential. Three different kinds of synapses, with impulse
response he, hi, and hg , are used to describe the synaptic effect
of excitatory neurons (both pyramidal cells and excitatory
interneurons), of slow inhibitory interneurons and of fast
inhibitory interneurons, respectively. Model equations can
be written as follows.

Pyramidal Neurons:

dy0(t)
dt

= y5(t), (1)

dy5(t)
dt

= A · a1 · z0(t)− 2 · a1 · y5(t)− a2
1 · y0(t), (2)

z0(t) = (2 · e0)
1 + er·(s0−v0)

, (3)

v0(t) = C2 · y1(t)− C4 · y2(t)− C7 · y3(t). (4)

Excitatory Interneurons:

dy1(t)
dt

= y6(t), (5)

dy6(t)
dt

= A· a1·
(

z1(t) +
p(t)
C2

)

− 2 · a1· y6(t)− a2
1· y1(t),

(6)

z1(t) = (2 · e0)
1 + er·(s0−v1)

, (7)

v1(t) = C1 · y0(t). (8)

Slow Inhibitory Interneurons:

dy2(t)
dt

= y7(t), (9)

dy7(t)
dt

= B · b1 · z2(t)− 2 · b1 · y7(t)− b2
1 · y2(t), (10)

z2(t) = (2 · e0)
1 + er·(s0−v2)

, (11)

v2(t) = C3 · y0(t). (12)
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Fast Inhibitory Interneurons:

dy3(t)
dt

= y8(t), (13)

dy8(t)
dt

= G · g1 · z3(t)− 2 · g1 · y8(t)− g2
1 · y3(t), (14)

z3(t) = (2 · e0)
1 + er·(s0−v3)

, (15)

v3(t) = C5 · y0(t)− C6 · y2(t). (16)

In these equations, the symbols vi represent the average
membrane potentials (i = 0, 1, 2, 3 for the four groups).
These are the input for the sigmoid function which converts
them into the average density of spikes (zi, i = 0, 1, 2, 3) fired
by the neurons. Then, these outputs enter into the synapses
(excitatory, slow inhibitory, or fast inhibitory), represented
via the second-order linear functions. Each synapse is
described by an average gain (A,B,G for the excitatory, slow
inhibitory, and fast inhibitory synapses, resp.) and a time
constant (the reciprocal of a1, b1, and g1, resp.). The outputs
of these equations, which can be excitatory, slow inhibitory,
or fast inhibitory, represent the postsynaptic membrane
potentials (yi, i = 0, 1, 2, 3). Interactions among neurons
are represented via seven connectivity constants (Ci). Finally,
p(t) represents all exogenous contributions, both excitation
coming from external sources and the density of action
potentials coming from other connected regions.

2.2. Model of Connectivity Among ROIs. The previous
model was used to simulate a single ROI, the dynamic of
which ensues from the interactions among the four neural
subgroups. In order to study how the ROIs interact, we
consider N ROIs which are interconnected through long-
range excitatory connections. To simulate this connectivity
we assumed that the average spike density of pyramidal
neurons (z0) affects the input p(t) in (6) via a weight factor,
W , and a time delay, T . Hence, the input pi(t) in the ith ROI
can be computed as follows:

pi(t) = ni(t) +
∑

j

Wijz0, j(t − T), (17)

where Wij is the weight of the synaptic link from the jth
(presynaptic) ROI to ith (postsynaptic) ROI, T is the time
delay (assumed equal for all synapses), ni(t) represents a
gaussian white noise with mean value mi and standard
deviation σi, and the sum in the right hand member of (17)
is extended to all ROIs, j, which target into the ROI i.

2.3. Acquisition and Processing of EEG Data. The experiment
took place in the laboratories of the Santa Lucia Foundation,
Rome, after the informed consent was obtained. The subject
was comfortably seated in an armchair with both arms
relaxed, in an electrically shielded, dimly lit room. He
was asked to perform a brisk protrusion of the lips (lip
pursing) while he was performing a right foot movement. A
58-channel EEG system (BrainAmp, Brainproducts GmbH,
Germany) was used to record electrical potentials by means

of an electrode cap, accordingly to an extension of the 10–
20 international system. A/D sampling rate was 200 Hz.
During motor task, subject was instructed to avoid eye
blinks, swallowing, or any movement other than the required
foot movements. Bipolar EMG was recorded from control
and spinal cord injury (SCI) subjects, with surface electrodes
from the right tibialis anterior muscle and orbicularis oris
muscle to detect the onset of foot and lip movements,
respectively. The electro-oculograms (EOGs) were recorded
to avoid trials with artifacts due to eye-blink movements. The
EMG was monitored throughout recordings from electrodes
placed as described above to avoid poor quality of the
recordings due to muscular artifacts. Artifact rejection was
performed on a wide segmentation of the trials (from −4.0 s
to +4.0 s) while a narrow segmentation (from −2.5 s to
+0.5 s) was used as analysis period.

A 3-shell Boundary Element Model (BEM) of the head
was used to estimate the cortical current density (CCD)
distribution in some regions of interest (ROI) of the cortex
(the cingulate cortex (CMA L), the primary motor area
(M1F L), and the supplementary motor area (SMAp L))
starting from activity measured on the scalp. The procedure
used is described in previous works [18, 19, 23]. From the
CCD, the average estimated cortical activity in the region
has then been evaluated. The latter has been successively
subjected to spectral analysis in order to produce the spectra
used for the estimation of the model parameters.

Power spectra have been computed by using the Welch’s
average modified periodogram method [24]. In particular,
the model Power Spectral Density (PSD) was computed
using simulated signal with duration 100 seconds, and
averaging 50% overlapping sections each with duration
1 second. The use of a 100 seconds simulated signal is
justified by the necessity to reduce the variance of the
estimated spectrum to an acceptable level. We verified, using
a random repetition of the same simulation by changing
the input noise, that these spectra are only scarcely affected
by the single noise realization. All power spectra have been
preliminary normalized to have unitary area in the same
frequency range (6–50 Hz). Since the signal beyond 40 Hz
may be corrupted, the limit of our investigated gamma range
was 30–40 Hz. In particular, we did not investigate the so-
called high-gamma range (above 50 Hz).

We examined 5 subjects with spinal cord injury (SCI; 4
males, 1 female, mean age 26.4 ± 2.8 years) and 5 healthy
subjects (4 males, 1 female, mean age 25.1 ± 1.5 years).
Informed consent was obtained from all the subjects. The
study was approved by the local ethics committee. The
SCIs were all of traumatic aetiology and were located at
the cervical level (C6 in 3 SCI subjects; C5 and C7 in the
remaining 2 subjects); at the time of the study, all the patients
had a stabilized lesion (mean time since trauma 19.4 ± 7.2
months). Neurological status was assessed according to the
American Spinal Injury Association (ASIA) standards on the
basis of the patients’ motor and sensory scores, neurological
level, and neurological impairment. The completeness of
the lesion was defined according to the concept of sacral
sparing: sensory preservation of the peri-anal zone and/or
motor function of the external anal sphincter (preservation
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of the lower sacral segments). The lesion was complete in all
5 patients (ASIA-A: complete motor and sensory loss below
the lesion level). None of the SCI patients had suffered a
head or brain lesion in concomitance with the spinal injury.
Neither uncontrollable spasticity-induced body movements
nor dysaesthetic pain syndrome were reported by any of the
patients. All subjects were right-handed as assessed by the
Edinburgh inventory [25].

In order to perform a subsequent fitting, we chose only
those EEG tracings for which alpha and gamma rhythms
were located at approximately the same frequencies in the
three ROIs. This corresponds to model hypothesis (see in
what follows) that each of these rhythms is generated by
a single external source (limitations of this choice will be
discussed at the end). 102 tracings satisfied this criterion. The
algorithm was able to fit 59 of these trials: 36 trials on healthy
subjects and 23 trials on tetraplegic ones.

2.4. The Model of the Motor Task. Analysis of real EEGs
(see also [20, 21]) demonstrates that power spectral density
during the task may exhibit three simultaneous rhythms, in
the alpha, beta, and gamma ranges, respectively. In order to
simulate this behavior, we assumed that the cortical ROIs
involved in the movement (i.e., the M1F L, the CMA L,
and the SMAp L), when activated, oscillate with an intrinsic
rhythm in the beta range. This hypothesis reflects the fre-
quent idea that, during behavioral activation, beta rhythms
are generated locally, perhaps by a recurrent feedback loop
involving pyramidal cells and inhibitory interneurons [26].
These waves represent excitement of the cortex to a higher
state of alertness or tension. Moreover, we assumed that
the alpha rhythm is sent to the cortex by an external area
(probably located in the thalamus and reticular nucleus).
This hypothesis corresponds to the idea [32, page 201]
that alpha rhythms arise from the endogenous rhythmicity
of thalamic populations, which are then transmitted to
other thalamocortical populations even in the absence of an
external stimulus. Finally, an important problem is how to
produce gamma rhythms in the model. A first possibility
is that all ROIs can generate not only their intrinsic beta
rhythm, but also a gamma oscillation, via a second group
of populations with faster kinetics, and that these gamma
rhythms are then synchronized via long-range synapses. The
idea of multiple rhythms in the same ROI was proposed by
David and Friston [15], and was used by us in a previous
model for connectivity estimation [17]. A second possibility,
which allows PSD to be mimicked with a smaller number of
parameters, is that gamma oscillation is generated by a single
far region of the cortex, and then transmitted to the other
ROIs via long-range synapses.

In the present study we adopted the second hypothesis.
First, we assumed that the thalamus receives an external
input (simulated as a significant white noise term) and drives
the other populations but does not receive any connectivity
from them (i.e., any possible feedback from the cortex to
the thalamus is neglected). Hence, the motor command
originates from the low-frequency region (LF), and spreads
toward the cortex. Moreover, the three ROIs in the cortex
(CMA L, M1F L, and SMAp L) can recruit a gamma or
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HF (prefrontal 
cortex)

             (primary
motor area)

(supplementary
motor area)
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Wsl
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WhlWcl Wch

Whc

Wsh
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Wsp
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Wpc

SMAp L

CMA L (cingulated
cortex)

Figure 1: Model of interconnected ROIs used in the present work
to simulate power spectral densities in prefrontal regions during a
foot-movement task. Wij are connectivity weights, estimated from
real data using the genetic algorithm described in the text. The
regions CMA L, M1F L and SMAp L oscillate in the beta range
when stimulated with white noise. The LF region oscillates in the
alpha range, whereas the HF region generates a rhythm in the
gamma band (see Table 1 for parameter numerical values within the
regions).

high-frequency rhythm from another region (named HF),
which may be located in the prefrontal cortex. This rhythm
should reflect the cognitive or conscious aspects of the
task. Finally, the cingulate cortex can also modulate the HF
region and drives the other two ROIs (i.e., the primary
and supplementary motor areas). The latter are linked via a
feedback loop. A sketch of the overall model is illustrated in
Figure 1.

2.5. The Model Parameters. The model has a relatively large
number of parameters, but only a few of them were used
as variables for the fitting procedure. It appears that letting
the fitting algorithm modulate all of the model parameters
leads to incoherent solutions: the same simulated power
spectra can be obtained with different sets of parameters.
So the parameters estimated by the fitting algorithm were
only the reciprocal of time constants of excitatory synapses
(to tune power peaks frequencies) and connectivity strengths
(to adjust power peaks relative amplitudes). The other
parameters have constant values, given in Table 1. Most of
these values are biologically plausible [11] and let the model
oscillate in the alpha (8–12 Hz), beta (12–30 Hz), and gamma
band (>30 Hz) [18, 19]. Still the input mean m and variance
σ2 have been estimated via the fitting procedure, since no
plausible values for these parameters have been found yet. In
fact, as usual in neural mass models [12, 15, 20], this noise
simulates all random contributions coming from external
sources not included in the model and also accounts for
internal neural variability. To do this we run a preliminary set
of fittings in which m and σ2 were used as fitting variables in
order to find their optimum values for each trial. The values
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Table 1: Model parameters.

Parameters LF CMA L, M1F L, SMAp L HF

A(mV) 2.67 5.17 5.55

B(mV) 3.15 4.45 3.8

G(mV) 22.3 57.1 173

b1(s−1) 20 30 40

g1(s−1) 300 350 790

m(mV) −103.3011 −130.4829 −16.1439

σ2(mV 2) 27807 10028 23642

All Regions

C 135

C1 C

C2 0.8 C

C3 0.25 C

C4 0.25 C

C5 0.3 C

C6 0.1 C

C7 0.8 C

r(mV−1) 0.56

s0(mV) 6

e0(s−1) 2.5

found were averaged and used as constants (Table 1) in the
following fitting procedures.

2.6. Genetic Algorithm and Fitting Procedure. A Genetic
Algorithm (GA) is a search technique that solves opti-
mization problems by simulating the Darwinian natural
selection [27]. We used the GA to find the set of model
parameters for which the model output fits a given real EEG
signal. Parameters used for the fitting procedures are the
reciprocal of time constants of excitatory synapses (a1), and
connectivity strengths.

The GA is divided into generations. Each generation con-
sists of a lot of individuals that are candidate solutions (sets
of model parameters) for the fitting. The first generation is
typically random. Parameters are represented as bit arrays
(chromosomes). Each individual is ranked with a fitting
coefficient (FC) in the range [0, 1] by calculating the model
output and comparing it to the real EEG signal: the better
the fitting between the simulated signal and the real one,
the higher the FC of the individual. Best-ranked individuals
(higher FC) have higher probability to reproduce. During
reproduction couples of parents are randomly selected
according to their FCs. Each couple generates two new
individuals whose chromosomes are obtained from applying
genetic operators to the parents’ ones. Typical genetic
operators are crossover and mutation (Figure 2). Crossover is
the exchange of genetic material between parents to generate
the sons’ chromosomes. Mutation simply switches the values
of a low percentage of bits (mutation rate). The worst
individuals of the previous generation are replaced with
the best newborn individuals. In this way, each generation
tends to preserve the best genetic material. The algorithm
converges to a population composed of sets of parameters
that fit the real EEG signal well.

43

11
11

1
11

11

0
0
0

0
0

0

0
0

0
00

0 1 1

1

1

1

1
1

0

0

591347212 3425 28

1

1
1

1

1

11 1

0
0

0

0

0
0

0
0

0

0

0 0
0

1

1

1

0
00

0

0
0

11
11

1
11

11

0
0
0

0
0

0

0
0

1
10

0 1 0

1
1

1

1
0

0

0

11
11

1
11

01

0
0
0

0
0

0

0
0

1
10

0 1 0

1
1

1

0
0

0

0

47509620

Parents’ parameters

Son’s parameters

Son’s chromosomes

(before mutation)

Son’s chromosomes

(after mutation)

Parents’ chromosomes

Figure 2: An exemplum of the mechanism for son generation
implemented in the genetic algorithm.

The major challenge in implementing a GA is to find an
efficient fitting function for determining the FCs and rank
the individuals, so that the algorithm is able to converge
in reasonable time. To compare the simulated signal to the
real one, we used their PSD. Actually, analysis of the peak
frequencies and amplitudes in the PSD allows evaluations of
the rhythms characterizing the signal, their frequencies, and
the relative power associated to each frequency band.

We introduced some changes to the original GA to
improve its speed of convergence.

(i) The global population was divided in 4 tribes. Each
tribe has its own fitting function. The algorithm
allows migration between tribes, so that each indi-
vidual may choose the tribe that consent its offspring
to converge to the solution in the fastest way. In
order to compute the FCs of each tribe, we first
calculated three alternative cost functions. The first
is the classic mean square error. The second aims at
quantifying the similarity in the ratios between the
local maxima and the local minima (i.e., it gives more
emphasis to the maxima and minima of the PSD
than to other values of the PSD). The third focuses
the attention especially to the position of the peaks
(i.e., the frequencies of the three rhythms). These
three functions were then combined with different
weights, in order to obtain four alternative FCs to be
used in the four tribes. The fourth tribe (also named
melting pot) is the one characterized by the strictest
requirements.
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(ii) The algorithm uses a dynamic mutation rate. The
probability of a bit to switch is related to the similarity
between the parents’ chromosomes: the more similar
the chromosomes, the higher the mutation rate.
A high similarity between parents means that the
population converged to a local maximum; in this
condition, an increase in the mutation rate would
favour the escape from the maximum attraction field.

(iii) An aging factor was introduced. This means that
members of the previous generation can still generate
sons and daughters, but starting with a decreased FC.
Otherwise, the creation of new populations would
erase all good old individuals, and if they had poor
sons and daughters their legacy would be lost. On
the other hand, if old individuals are not weakened,
evolution may be too slow.

(iv) The order of bits inside chromosomes can be
shuffled. Commonly each parameter is encoded in
a single chromosome, but such a coding system
is inefficient when combined with the dynamic
mutation rate described above. When one of the
parameters approaches its best value, it tends to
be inherited by all the members of the population.
This means that all the individuals have an almost
identical chromosome, thus the mutation rate for the
bits encoding this parameter grows rapidly and the
partial information reached may be wasted in the
successive generation. This problem can be avoided
by spreading the information of each parameter
among all the chromosomes. Figure 2 illustrates a
more standard coding system.

The algorithm stops either when individuals finish
improving their FCs, or after 400 generations. At the end of
the simulation the best individual belonging to the melting
pot is taken as the best solution.

We noticed that the most beneficial changes are those
which best resemble the natural selection.

3. Results

Exempla of model fitting in four exemplary cases are shown
in Figure 3. The left panels refer to two healthy subjects, while
the right panels refer to two tetraplegic patients. It is worth
noting that the model is able to simulate the position and the
relative amplitude of the three peaks in all three ROIs quite
well. The other fitted PSDs are similar to those presented
here, both for what concerns the shape and the quality of
fitting.

The average values of estimated synaptic weights in the
healthy population and in the tetraplegic patients are shown
in the histogram of Figure 4. Two main aspects of this figure
deserve attention.

First, by considering the overall fitting parameters, with-
out distinguishing between healthy and tetraplegic subjects,
one can observe that some weights are predominant com-
pared with others. In particular, the stronger connections are
those from the cyngulate cortex to the primary motor cortex,
and from the cyngulate cortex to the supplementary motor

cortex. A visual summary of the synaptic strengths, com-
puted by using the average parameters in both populations,
is shown in the bottom panel of Figure 4.

Second, from a separate parameter estimates, one can
detect statistically significant differences in the synaptic
strength between healthy and tetraplegic subjects. In partic-
ular, connectivity in tetraplegic patients is about 12% higher
(on average) compared with that of healthy volunteers.
Differences in connection weights between the two classes are
very significant (p < .01 evaluated with an untailed t-test)
from the thalamus to the primary motor cortex and from the
thalamus to the supplementary motor cortex. The differences
in the connection weights are also significant (p < .05) from
the high frequency region to some cortical ROIs.

Finally, we used the average values of the synaptic
strengths in the two populations to compute paradigmatic
PSDs (one for a typical healthy subject using the average
parameters of that class and the other for a typical tetraplegic
subject). The results are illustrated in Figure 5. As it is evident
from this figure, the paradigmatic tetraplegic subject exhibits
a stronger peak in the gamma band compared with that
evident in the paradigmatic healthy volunteer and a smaller
peak in the beta range. This difference is a consequence of the
higher connectivity weights from the HF region and from the
LF region.

4. Discussion

The aim of this work was to derive patterns of connectivity
among the main regions of interest (the cingulate cortex
and the primary and supplementary motor areas) involved
in simple motor tasks. To this end, we used neural mass
models and electrophysiological data obtained with scalp
EEG, propagated to the cortex. Moreover, we analyzed dif-
ferences between normal and tetraplegic subjects. Although
various attempts to derive connectivity from EEG, and to
characterize EEG in pathological conditions are present in
the literature, most works make use of empirical model (e.g.,
based on coherence and correlation among time series). Just
a few attempts to elucidate existing data via interpretative
models can be found in the literature [15–17].

In an interpretative model, parameters have a clear bio-
physical significance, and the model allows the formulation
of hypotheses on the physiological mechanisms, the neural
architecture, and the parameter changes responsible for
data generation. Promising models assume the presence of
interacting neural masses, which are reciprocally connected
and generate the neural signals responsible for the measured
electrical activity. Similar models integrated with Bayesian
inference (a framework named “Dynamic causal models” by
the authors) were used by Friston and coauthors to estimate
effective connectivity from neuroimaging data [15, 28], to
analyze event-related potentials [29] or to predict the spectral
profile of local field potentials in the rat [17]. Neural mass
models were used to study the transition to seizures and to
model epileptic activity [12, 30], to analyze the effect of drugs
on EEG spectra [31], or to simulate the effect of the overall
brain connectivity on individual EEG rhythms measured on
the scalp [16].
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Figure 3: Comparison between real (dashed line) and simulated (continuous line) power spectral densities in the three regions M1F L
(primary motor cortex), SMAP L (supplementary motor cortex), and CMA L (cingulate cortex) of the left hemisphere during execution of
the foot imagery motor task. The left panels refer to two healthy subjects, while the right panels refer to two tetraplegic patients. All spectra
are normalized to have unitary area in the range 6–50 Hz. The value of the fitting coefficient (ranging between 0 and 1) is shown above each
panel.

Our work goes in the same direction as previous papers.
However, three main innovative methodological aspects
deserve a critical discussion: the kind of information used to
validate the model, the structure adopted for the model, and
the fitting procedure for parameter estimation.

The first important issue concerns what kind of data the
model is intended to reproduce, and so, which measurement
is compared to model output. This is a crucial point, since the
type and structure of a model are strictly dependent on the
problem under study. In this work, as in previous ones [18–
21], we focused attention on the frequency content of cortical
EEG, in particular on the peaks of power spectral density.
Indeed, spectral measures are commonly used to summarize
cortical dynamics and to assess changes in cortical activity
during cognitive and/or motor tasks. It is generally believed
that the alpha rhythm originates from the thalamus and is

distinctive of a relaxed state. The beta rhythm is associated
with normal waking activity, as it occurs during natural
human motor behavior or after proprioceptive stimulation.
A shift from alpha to beta rhythms is considered a marker
of alerting. Gamma rhythms appear to be involved in higher
mental activity, including perception and consciousness.
Although these rhythms are currently described and analyzed
in the neurophysiological literature [32, 33], the problem of
how to link their changes to the underlying neural processes,
the neural architecture and connectivity strength is still
largely unsolved.

An important aspect is that we focused attention just on
three ROIs, and we never tried a fitting to other ones. The
ROIs were selected according to widely accepted considera-
tions on their involvement in the preparation and execution
of simple self-generated movements. In fact, there is a general
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Figure 4: Connectivity weights (mean value + SD) estimated on
5 healthy subjects and on 5 tetraplegic patients with the genetic
algorithm described in the text. A qualitative exemplum of the
resulting connectivity, based on the average values on the entire
population, is depicted in the bottom panel, where line thickness
is proportional to the connectivity weight. It is worth noting in the
upper panel the presence of very significant statistical differences
(p < .01, columns with ∗∗) between healthy subjects and
tetraplegic patients for what concerns the connections from the
LF region to the primary motor and supplementary motor areas.
Significant statistical differences (p < .05, columns with ∗) are also
evident in the connections which link the HF region to the primary
motor and supplementary motor areas.

consensus that the M1F and the medial aspect of the SMAp

are amongst the main generator sources of the early and
late components of the motor-related cortical potentials
(reviewed by [34]) which, in turn, reflect the physiological
excitation of the cortical areas involved in preparing and
producing movements. Anatomical and physiological studies
on nonhuman primates have demonstrated that among the
distinct cingulate motor areas buried in the cingulate sulcus,
those roughly located at the same rostrocaudal level as the
SMAp proper (caudal CMA, dorsal, and ventral parts) are

primarily implicated in movement execution itself rather
than in higher cognitive control of voluntary movements (for
review see [35, 36]).

In order to simulate EEG spectral patterns in these areas,
including both alpha and beta as well as gamma rhythms,
we adopted a simple model structure based on a few a
priori assumptions. First we assumed that the cingulate
cortex drives the primary motor area and the supplementary
motor area during execution of the task, but it receives
only negligible feedback from them. This assumption seemed
justified by the attention that the cingulate cortex has
received in the neuroscientific literature recently [37]. In
these contributions the cingulate cortex is seen as a part of
the cortex, that is, mainly involved in the promotion of action
and movements of decisions. By contrast, the two motor
areas may be connected by a reciprocal feedback. These areas
are important in our model since the primary motor area
is responsible for the execution of all voluntary movements,
while the supplementary motor area implements internally
generated or well-learned actions, that is, actions which do
not require monitoring the external environment.

A further assumption is that the three ROIs under
analysis, if stimulated, can oscillate with an intrinsic beta
rhythm. This assumption agrees with present knowledge.
Indeed, as traditionally described in the literature, a motor
related activity in the beta range is frequently located close to
the sensory motor area following finger movements [38] and
is reflected to the premotor area [39]. As suggested by [40]
beta oscillations may be “indicative of a resonant behavior
of the connected networks in the sensorimotor areas.” This
reflects our basic model assumption.

Beyond this fundamental aspect, the model incorporates
two other important assumptions, which are used to generate
alpha and gamma rhythms, but have a less evident physiolog-
ical and neural counterpart.

First, model assumes that a low frequency alpha rhythm
originates from an external area (that we named “thalamic
area”) and then propagates to the other regions of interest.
Indeed, a classic idea on the genesis of alpha rhythms [32,
page 201] is that this rhythm arises from the endogenous
activity of thalamic neurons, or from thalamocortical con-
nections, especially involving the occipital region. Recent
works on the cat, support the critical role of the thalamus for
the generation of occipital oscillations [41]. A recent study on
the location of EEG rhythms in humans confirms that alpha
rhythms are especially evident in the occipital or occipito-
temporal regions, that is, they mainly arise from posterior
neural sources [39]. Hence, although we cannot exclude
that a source of alpha rhythms may also be present in the
examined frontoparietal regions, the most likely hypothesis
is that this rhythm originates in thalamic and/or occipital
regions, and is then transmitted toward the other regions of
interest.

An important simplification, which deserves a brief
comment, is that we neglected any feedback synapse from
cortical regions to the “thalamic area.” Of course, cortico-
thalamic feedbacks exist in the brain and may have a role
in the modulation of the alpha spectral content. Our choice
has been adopted just to reduce the number of parameters
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Figure 5: Example of paradigmatic power spectral densities simulated with the model using the average connection weights estimated on
healthy volunteers (left panel) and on tetraplegic patients (right panel). All spectra are normalized to have unitary area in the range 6–50 Hz.
It is worth noting the higher peak in the gamma range, and the lower peak in the beta range in tetraplegic patients compared with the healthy
subjects.

in the fitting procedure, in order to avoid the problem of
“overfitting.” In fact, increasing the number of unknown
parameters improves the quality of fitting, but worsens the
reliability of parameter estimates.

A further important assumption is that also the gamma
rhythm originates from an external area, that we supposed
to be located in the frontal cortex. This hypothesis is
corroborated by the observation that neurons in the frontal
cortex shows the intrinsic capacity to oscillate at 40 Hz
[42, 43]. However, alternative hypotheses on the origin of
gamma rhythms can be found in the literature (see [44] for
an excellent review) and we cannot exclude that this rhythm
originates internally in the considered ROIs due to recurrent
excitation and inhibition mechanisms (especially involving
fast inhibitory interneurons). Hence, the gamma region in
the model should be considered as a “latent source,” that
has not necessarily a physiological counterpart. This problem
requires further theoretical and experimental work.

Once this model structure has been designed, a funda-
mental point concerns what aspects of the spectra should be
used to perform a best fitting between model predictions and
real data. In previous works we used a least-square criterion
function of the difference between model and measured
spectra [18–21]. Assuming a Gaussian distribution of the
measurement error, a least square criterion corresponds to a
maximal likelihood estimation, that is, maximization of the
a priori conditioned probability. A more complex Bayesian
procedure has been adopted by Moran et al., recently [17]
under the framework of dynamic causal models [28, 45].
A Bayesian procedure involves also the inclusion of some
a priori knowledge on the probability distribution of the
estimated parameters.

In the present work we tried an innovative strategy, based
on the idea that not all aspects of the PSD are of equal

interest. In particular, we focused attention especially on the
position and relative amplitude of the main peaks in the
power spectra, thinking that these summarize the underlying
mechanisms generating EEG rhythms. Moreover we tried
different complementary “cost functions” in the implemen-
tation of the genetic algorithm (GA). Although GA are time
consuming compared with other minimization techniques,
they offer the possibility to try different alternative solutions
for the problem (implementing different tribes) and to
overcome the problem of local minima (which often makes
the result of fitting procedures untenable) by generating
different sons through mutations in the parameter space.

Two main objectives have been pursued with this tech-
nique: to discover possible simple circuits, connecting the
three aforementioned ROIs, able to explain the observed
PSDs, and to detect possible differences in connectivity
circuits between healthy subjects and tetraplegic patients.
Results point out the existence of significant differences
between the two classes, especially for what concerns the
weights which link the LF (thalamic) and HF regions to the
primary and the supplementary motor cortices. In particular,
these weights are stronger in tetraplegic patients compared
with healthy individuals and these differences are statistically
significant. Differences in connectivity weights might reflect
a higher awareness (related with the gamma component)
and a greater attention (related with thalamic inputs) in the
tetraplegic patient than in the normal individuals, that is,
greater concentration toward the task. The existence of larger
and stronger connectivity weights in the cortical connectivity
networks estimated in tetraplegic patients compared with
those estimated in healthy volunteers has been previously
observed by several authors [46, 47].

A further interesting result of our work is that the
greatest weights in the neural circuit are those which link the



10 Computational Intelligence and Neuroscience

cingulate cortex to motor areas. This result underlines the
importance of a feedforward signals from the frontal cortex
in the initiation and planning of the voluntary movement.

In the present work we performed 12 statistical tests,
hence a possible objection is that the significance level
should be corrected to account for multiple hypotheses.
The problem of whether correction is appropriate or not
is quite complex and depends on the objective of the
work. As clearly stated in recent publications [48] if the
main goal is generation hypothesis or initial screening for
potential solutions, it may be appropriate to use the standard
significance level without corrections to avoid Type II errors
(not detecting real differences or trends). Conversely, if
the main goal is rigorous testing of a hypothesis, then an
adjustment for multiple tests (like Bonferroni or Holm’s
methods) is needed. The objective of the present work is
certainly “hypothesis generation,” hence we preferred to
use classical t test to avoid type II error. Of course, in
order to “test the hypotheses” generated with our procedure,
one needs to repeat the experiment with new “fresh” data,
considering only the individual hypotheses to be verified,
and using a correction. This may be the subject of future
works.

Finally, it is important to discuss the main limitations of
the present preliminary work, and possible lines for future
changes.

A first aspect concerns the variability of parameter
estimates within the same subject. Although this variability is
less accentuate compared with that between the two classes,
and between different subjects in the same class, it is still
quite elevated. Analysis of how the connectivity pattern may
vary in the same subject from one trial to the next still
requires a deeper future analysis.

In the present model we assumed that connectivity
originates from pyramidal neurons, and reaches the input
of excitatory interneurons, that is, we did not consider
possible lateral connections from pyramidal neurons to
inhibitory interneurons. Inhibitory interarea connections,
however, may be important to reduce neural activity, to
avoid instability, and to improve synchronization among
rhythms. Lateral inhibitory synapses were considered by
David et al. [29], and Stephan et al. [28], in their DCM
schema of neural populations for the analysis of event related
responses. In particular, these authors assumed that lateral
connections originating from pyramidal neurons target to
all other populations (both excitatory and inhibitory) in the
lateral ROIs, although they did not consider the presence
of inhibitory interneurons with fast kinetics. Inclusion of
lateral connections toward inhibitory interneurons may be
of value in future works, to improve two aspects of results.
First, it may help to maintain the activity of the motor and
premotor ROIs far from saturation. Indeed, with the present
values of parameters, these two populations are strongly
activated and often work close to the upper saturation
region of their sigmoid. Second, activation of fast inhibitory
interneurons might help to explain the presence of gamma
rhythms, even without introducing an ad hoc rhythm from
an external population. The idea that gamma rhythms may
originate from stimulation of fast inhibitory interneurons

(or alternatively from gap junctions) has been proposed
by various authors recently [32, 49]. Of course, a flaw of
introducing lateral synapses to inhibitory interneurons is the
increase in the number of free parameters, which may further
complicate the convergence of the fitting procedure and the
interpretation of results.

Another important limitation of the present work is
that the model is able to simulate PSD spectra only if
the rhythms in the three ROIs (in the alpha and gamma
bands) have almost the same frequency. In view of that,
we excluded all trials which present different frequencies in
the spectra from the best fitting procedure. The reason for
this limitation is that the three ROIs receive the alpha and
gamma oscillations from the same external ROIs (i.e., the
alpha rhythm from the LF region or thalamus; the gamma
rhythms from the HF ROI, prefrontal, see Figure 1). In order
to generate rhythms with different frequencies in the alpha
and gamma bands, one should hypothesize the presence of
more LF and HF regions. However, this aspect would further
complicate parameter estimation and would make the model
less parsimonious. It is possible that introduction of lateral
interregion synapses directed to inhibitory interneurons may
allow a more flexible positioning of rhythms in individual
ROIs.

Finally, we are aware that use of the genetic algorithm,
although very flexible in finding a good solution avoiding
local minima, is time consuming. Alternative more efficient
fitting methods (maybe introducing some prior probability
for the estimate, according to a Bayesian approach [50]) may
be attempted in future studies.

In conclusion, the present work represents a first attempt
to explain the presence of multiple rhythms in three ROIs
involved in motor tasks, and their variability, using a simple
model of interconnected populations. Encouraging results
concern the capacity to obtain reliable PSD spectra, by acting
on a few parameters representing the connection weights,
and to detect significant differences between the two classes.
However, important limitations are still evident: they are
especially concerned with a lack of inhibitory interactions
among ROIs, with the dispersion of individual parameter
estimates, and with the difficulty to generate more flexible
peaks in the spectra. Overcoming these limitations deserve
much future work.

Nevertheless, despite their present limitations, we claim
models of interacting neural mass may be of great value
to gain a deeper insight into the mechanisms of rhythms
generation in EEG, and to start the formulation of more
quantitative hypotheses on the neural architecture and
connectivity changes underlying motor/cognitive tasks.
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1. Introduction

The recent impressive developments of brain computer inter-
faces, BCI, after initial great success, especially, by the group
of Babiloni [1–5], and earlier biofeedback achievements [6],
open room for optimism in diverse directions. Work on BCI
has been concentrated on motor imagery; here an alternative
direction is proposed, musical imagery [7, 8].

Just like an imagination of hand or finger movement
is related to changes in activity of the brain somehow
resembling those connected with the real movement, so
the process of mental hearing and comprehending music
is related to changes in brain activity somehow resembling
those occurring in the brain when listening to real physical
sounds of music. Such a cognitive process of auditory
imagery, of singing in the mind, is also called audiation;
audiation of music is analogous to thinking in a language.
We propose that it is possible to construct a BCI based on
the Inner Tones and Inner Music, that is, the BCI in which
discrimination of the imagined or inner tones is used as
the basic brain signal for the formation of the BCI set of
commands—musical language.

After partial success in the identification of inner tones,
as reported in [7, 9–13], in spite of encountering serious dif-
ficulties, we propose that more attention should be given to
the BCI based on the Inner Tones and Inner Music. We have
developed systems for the real-time acquisition and analysis
of unlimited number of EEG and other neural signals (in
banks of up to 64), in the acoustic and higher ranges, that is,
with diverse rates starting from 2 KHz, using mainly Inno-
vative Integration (http://www.innovative-dsp.com) DSP-
embedded systems (ADC64, M62/7, multiprocessor QUA-
TRO, Chico ). We experimented with recognition of inner
tones and have hundreds of recordings with 8-channel EEG,
with sampling rates 4–11 KHz. We concentrated mainly on
simple experiments. A subject was listening to a calibration
tone shortly, then started imagining the same tone, then
we had EEG registration for short time, 5–10 seconds. We
performed also experiments with simple melodies of external
or imagined origin. Our basic tool is Fourier real-time
analysis. Examples of the power spectra and spectrograms
of EEG recordings of externally played tones, exhibiting the
spectral lines corresponding to the played tones, are shown
in Figures 1 and 2.
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Figure 1: A part of a power spectrum of EEG recording of sequentially played tones d and a, marked the spectral line corresponding to the
tone a.

Figure 2: A power spectrum of EEG signal recording with simultaneously played tones c2 and g2, top left; its part containing c2 and g2
lines, left center; the spectrogram of the extracted portion of the spectrum, with prominent c2 and g2 lines, low left; the major part of the
spectrogram exhibiting some artifacts and other high-frequency features, right side. Low frequency—bottom; intensity—brightness coded;
time—recent at the right edge.
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With the inner tones, power spectra and spectrograms
are similar to the examples with external tones, but the
spectral lines corresponding to the individual tones and their
harmonics in the spectrograms are often less prominent or
closer to the noise level, hence harder to detect. The complete
spectra exhibit a number of features in the HF part of the
spectra, not corresponding to the produced inner tones.
However, we have positive evidence: in a significant number
of experiments (123 out of 147), spectral lines corresponding
to imagined inner tones were detected, while the lines
corresponding to the tones which were not imagined were
not detectable. The experiments with subjects lacking music
ability were negative: the tones they imagined were not
detectable as the presence of the spectral lines corresponding
to the calibration frequencies. We will present some examples
with successful extraction of inner tones; more details are
available in the mentioned reports. Our signal library and
software are available at http://www.matf.bg.ac.yu/∼aljosha
and http://www.gisss.matf.bg.ac.yu.

2. Method

The problem of detection of the inner tones can be seen
from two sides. One is when we know which the generated
inner tones are, whose traces we are detecting. More difficult
is the inverse problem: in the given spectra determine the
present inner tones. The complete solution of the former
will facilitate solution of the other, which is of importance
in the BCI as we propose it. More precisely, we will consider
simple tones, that is, those with constant frequency and
constant intensity, with a beginning and an end in time.
At the beginning all tones could be of the same (similar)
length. We call tonal sequence a sequence of simple tones.
In this way we omit some of common melodious patterns. A
spectrogram of a tonal sequence is a tonal spectrogram. Let
us consider a correspondence:

f : Ts −→ Sπ , (1)

that is, f is a correspondence between the space of tonal
sequences and the space of tonal spectrograms. For our
needs, let Sπ be the space of spectrograms of EEG recordings
with tonal stimuli of external origin or imagined. We know
that f cannot be a bijection (hence, the f −1 is not a func-
tion). However, if we make some restrictions/simplifications
on Ts, that will have the same effect as introducing an equiv-
alence relation in Ts, some sort of glue, identifying certain
spectra, which are similar with respect to some properties.
Instead of Ts, we will be dealing with its homomorphic
image. Then, after a reduction of nontonal spectral lines in
our EEG spectrograms, we might be able to determine the
inverse.

Our initial space Sπ consists of the spectrograms of
EEG recordings of acoustic stimuli, the tonal sequences, and
our basic task is to determine the original tonal sequences
from the corresponding spectrograms of EEG recordings.
Obviously, the recovery of a tonal sequence is reducible
to the sequence of the identifications of individual tones,
which simplifies the basic task. Precision constraints are well

known in techniques for long time; in the low part, the
tonal difference perception, that is, minimum the quarter
semitone, determines minimal spectral resolution of 1/4 Hz,
while the tonal coloring aliquots have to reach 16 to 20 KHz.
Thus, in standard acoustics we need vectors in our simplified
spectrograms of up to 80 K coordinates (e.g., the higher
quality acoustic standard in broad use is 96 KHz/24bit),
adding the number of recording inputs, which is here the
number of EEG/MEG electrodes. Hence, we are working in
the space whose dimension is beyond 80 000.

For the inner music-based BCI needs, when a subject
generates an inner tone, it should be detected and recognized
by the BCI. We will introduce simplifications which will
reduce this dimension substantially, downscale problem
complexity, and bring it closer to be feasible. The composi-
tion of all simplifications/restrictions on tonal sequences will
define the target homomorphic image of the space Ts. But
because the nature of music this dimension can hardly go
under 4 K. Hopefully, we can neglect a large number of these
coordinates at each moment, focusing our attention on the
very short subsequences. These are harmonic sequences of
individual tones, with <10 aliquots, which have the following
form:

〈λkkν | λkεR, kεN ∩ 10〉, for a basic frequency ν, (2)

or with fuzzification:

〈[λkkν− δ, λkkν + δ] | λkεR, kεN ∩ 10, δεR〉 (3)

and all have the same length in time. They would form very
simple manifolds in those large dimension spaces. Our task is
to detect and identify them. Recognition of individual tones
of a tonal sequence in the (acoustic) registration of loud
singing is simple. The similar task of recognition of an inner
(simple) tonal sequence is not so simple and has not been
achieved satisfactorily yet.

This approach has some attractive features and leads to
some difficulties that may limit its applicability for some
time. Generally, we can imagine whatever we can hear.
Especially musical contents consisting of consecutive tone
series and synchronous tones—intervals and accords. It is
simpler to imagine tones to sing mute what can be sung
aloud. Our initial restriction to (simple) tonal sequences will
be extended by restricting the frequency range to that of a
human voice. We have about two and half octaves available as
easily controllable (mute) inner tones, that is, the set of about
24 to 32 states. Talented singers control up to 4 octaves, or
48 states, while imaginable tonal interval expands to nearly
100. This gives an opportunity for generation of imagined
musical sequences—words, using alphabet of about 30 or
more elements.

Tonal sequences can be produced with similar speed
of spoken words. The constraints present in certain tonal
sequences roughly correspond to the set of unused sequences
in the spoken language. Roughly, with serial tones BCI we are
in the range of the verbal communication transfer rates and
information flow capacity. Using brain states corresponding
to intervals and accords would expand this capacity largely.
There are other living species communicating musically and
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Figure 3: An example of spectrogram feature profiles, magnification of details in the Figure 2, the local neighborhood of c2 and g2 (shown
up-787 Hz)—externally played on little organ; both tone profiles show the tonal time stability, but both have spectral width of 15 Hz, while
the frequency structure top is stable and reasonably narrow.

(a)

550

500(Hz)

5

0

(s)

(b)

Figure 4: Left side: spectrograms with 800 power spectra parts (frequency interval 500–550 Hz) of two EEG channels with the inner tone
c2, lower and middle; their dot product-left top-top view and the side view on the right side-giving the enhanced c2 in the composite
spectrogram, well discernible. Time duration 5 seconds.

there are natural languages with serious musical compo-
nents. In either case the development of richer musical
languages should follow and would be a nice challenge per se.

3. Computational Aspects

Computational aspects will be discussed further with a
simple example. Suppose we have two individuals, one
producing inner tones in the range c–c2, the other in the
range c1–c3 interval. Thus, each is using two octaves. With
the tuning fork a at 440 Hz, this gives frequency range 132–
1056 Hz for both individuals. Suppose that the shortest event
time duration corresponds to 1/16th in tempo moderato

(ornaments are performed at double and triple speed), which
is around 0.2 second.

The above values set the sampling rate at 2.2 K samples
or higher, just to record the first harmonics of the involved
tones. Actually the double rate would be necessary. A half
quarter tone resolution is needed, which at the lower end
of frequency interval gives required spectral resolution of
about 2 Hz. The FFT on the input 2 K time series should
then provide the desired spectral resolution. The 2 K input
FFT covers the time interval of nearly 0.5 second, usually
denoted as uncertainty time (because in that time interval
the time order is not directly observable from the spectra,
which is clear from basic calculations). That means that
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Figure 5: Top: Recording of Inner tone—a tuning fork a at 440 Hz, 8 EEG channels, spectral parts from 207 to 2078 Hz, marked 440–443 Hz
feature in the dot product of best responding 6 channel spectra with overall well extracted 440–443 Hz line. Lower: (accumulated) time
composite spectra—the dot product from the top part of the figure; time horizontal, frequency vertical, intensity coded by brightness.

approximately tone rhythmical values of 1/8th and longer
can be located precisely in time. Their amplitudes will be
presented correctly.

In order to resolve shorter rhythmic values and to
determine their proper amplitudes, which are essential in the
involved inner tones, we would need a recalculation of spec-

tra toward the recalibrated spectra, which can be done easily
for the restricted sorts of input tonal sequences, from the
obtained spectrograms—time spectra. However, it involves
time delay, which is hardly smaller than the time atom.

Suppose further that we have to deal only with the tonal
values from semitonal tempered (classical tonal) system.
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Figure 6: 1000 consecutive composite spectra—the dot products of the 6 best responding channels (as in the previous figure top view), the
side view, prominent a 440–443 Hz feature-spectral profile, time duration 5 seconds.

Figure 7: The comb-like tonal representation and its fuzzification are used for the design of the corresponding comb like filters, one for each
tone, which support the automatic spectrogram and composite spectrogram analysis using combing operators and subsequent matching
measurements within the strategy for the detection of inner tones.

At the beginning of BCI use, and at any moment after, a
calibrating scale can be played. Figure 3 shows how wide in
the spectrum could be the externally played tone in an EEG
spectrogram. A lot of usual songs satisfy these constrains and
simplify further our starting space of tonal sequences Ts for
BCI needs.

Extraction of inner tones may be done in two ways.
The first one is to train a neural network to recognize the
fingerprints of the inner tones. It can hardly avoid (some

sort of) spectrograms as initial objects. This approach is
fruitful and can provide easier way to recognize the inner
tones. We are experimenting with adaptations of neural
networks for speech recognition, developed with the Institute
for Applied Mathematics and Electronics (Yugoslav national
army/Serbian armed forces), [14].

Independently, we have developed a system with com-
ponents of the extractor that include open calculator, with
a number of operations on signals and spectra. The inner
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Figure 8: A power spectrum of the externally generated tone c1 on the left; right: the result of its combing with the c1 fuzzy-comb filter in
the procedure of measurement of linear dependence between the spectrograms with tonal patterns and the tonal fuzzy comb like filters. The
higher the linear dependence, the higher the volume, consequently, the better the matching of spectrogram with a tonal pattern.

Figure 9: Left: A (part of a) power spectrum of externally
sequentially played tones (d, a) (overlapped in the FFT epoch),
prominent line corresponding to the tone a; in the middle: the
same spectrum combed with the fuzzy comb for c1; right: the same
spectrum combed with the fuzzy comb for minor a. This illustrates
the response of combing with the wrong and proper matching
comb-like filter.

tone harmonics are present in the signals from different
electrodes. Activity recorded with an electrode is partly
local. The inner tones harmonics are of smaller magnitude
compared to the low frequency (LF) part of the EEG
spectra activity, but they are in the HF area. Often, they
are hardly discernible in their spectral neighborhood. The
spectra are locally linearly dependent in the coordinates with
harmonics of inner tones and locally linearly independent
in the frequency intervals where the local activity prevails.
This means that the composite spectrograms obtained with
the dot products of combinations of spectra from different
electrodes would enhance the everywhere present spectral
lines, which includes the inner tone harmonics, while the
spectral zones with prevailing local activity would be zeroed.
Some examples with nice spectral localization of inner tones
using these properties are presented in Figures 4, 5, and 6.

We have implemented comb-like filters and their fuzzi-
fications, corresponding to the tonal structures in (3), at
calibrating scale frequencies. These provide a way for an
automatic analysis of spectra and composite spectra based
on the combing operations and the afterward comparisons
with the tonal system-calibrated values, with measurement
of best matching, as illustrated with the examples in Figures
7, 8, and 9. This offers a simple strategy and algorithm
for the identification of inner tones. The comb-like filters

corresponding to the set of tones used for inner singing are
coordinate vise multiplied with the spectrograms or com-
posite spectrograms, ordering the outcomes by the maximal
volume. We have developed algorithms for the automatic
detection of spectrogram feature contours complementing
the combing operations.

Next needs are the parallel multiple resolution FFT
(which we have in fragments) for short event precise location
in time and separation of adjacent tones, feature frequency
instability compensation, and separation of tones and their
aliquots.

The tuning system should include a scanning of all
channels and a selection of those with better response, a
reduction of other HF features not related to external and
internal tones, based on the time length discrimination and
separation from the calibrating scale tones.

This approach could lead to the intelligent extractor
which would be aware of the detected inner tone. In order
to improve performance, both approaches can be combined
concurrently in parallel. For the further convergence, more
experimentation with higher resolution EEG would be
necessary. In this way, with proposed steps (some of which
are realized), reaching a number of simplifications and
partially answering the list of encountered problems, the BCI
based on inner tones and inner music would be cured of
some deficiencies and instability and will become closer to
real applications.

4. Discussion

Current BCIs are based on a discrimination of a few
commands only. The application of high-resolution EEG
in research on inner tones should strongly support further
developments of a multicommand system, at least for
musically gifted people. It could provide a tool to study
causes of musical perception deficiencies, determine and
locate problems shared by a large population. It could
provide better insight in the difference of musical processing
by music professionals and nontrained people, which is
highly interesting for cognitive and brain development
studies. A number of researchers are successfully involved
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in inner tones and music [8]. Especially interesting is the
recent success of Mick Grierson of Goldsmiths, University
of London, who demonstrated high-rate guessing of inner
tones with his BCI (reports with real-time show, BBC June
2008, forthcoming [15]). Precise positioning of electrodes
will reduce the current complexity of inner tone detection
problems with simplified automatic extraction of inner tones
and support evolution of the BCI based on inner music
[16]. We plan to expand our open system soon with a
spatiotemporal analysis and analysis of global trajectories in
the transformed space [17]. Other researchers are developing
the BCI based on HF EEG [18–20] and further proceeding
from biofeedback and with motor imagery-based BCI [20–
23].

The exciting MEG experiments with musical stimuli
presented by Andreas Ioannidis in his lecture at the NEU-
ROMATH’2007 workshop in Rome, December 2007, (system
and methods presented in [24]), with one millisecond
time resolution, demonstrated that a large number of very
fast switching interconnected centers are engaged in music
processing. This establishes serious hopes that inner music
could be subjected to much more sophisticated and sensitive
investigation. When we learn more details on mechanisms
of this interconnectivity, revealing delays and modulations
involved, we might get complementary powerful methods
applicable for the study of inner tones, which would result
in the improvement of certainty of inner tone detection and
representation of details.
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[21] N. Birbaumer, A. Kübler, N. Ghanayim, et al., “The thought
translation device (TTD) for completely paralyzed patients,”



Computational Intelligence and Neuroscience 9

IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2,
pp. 190–193, 2000.

[22] A. Materka and M. Byczuk, “Alternate half-field stimulation
technique for SSVEP-based brain-computer interfaces,” Elec-
tronics Letters, vol. 42, no. 6, pp. 321–322, 2006.

[23] L. Astolfi, F. Cincotti, C. Babiloni, et al., “Estimation of the
cortical connectivity by high-resolution EEG and structural
equation modeling: simulations and application to finger
tapping data,” IEEE Transactions on Biomedical Engineering,
vol. 52, no. 5, pp. 757–768, 2005.

[24] L. Liu, K. Arfanakis, and A. Ioannides, “Visual field influences
functional connectivity pattern in a face affect recognition
task,” International Journal of Bioelectromagnetism, vol. 9, no.
4, pp. 245–248, 2007.



Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2009, Article ID 549419, 16 pages
doi:10.1155/2009/549419

Research Article

A Framework Combining Delta Event-Related
Oscillations (EROs) and Synchronisation Effects (ERD/ERS)
to Study Emotional Processing

Manousos A. Klados,1 Christos Frantzidis,1 Ana B. Vivas,2 Christos Papadelis,1

Chrysa Lithari,1 Costas Pappas,1 and Panagiotis D. Bamidis1

1 Laboratory of Medical Informatics, School of Medicine, Aristotle University of Thessaloniki, P.O. Box 323,
54124 Thessaloniki, Greece

2 Department of Psychology, City College, Affiliated Institution of the University of Sheffield,
54624 Thessaloniki, Greece

Correspondence should be addressed to Panagiotis D. Bamidis, bamidis@med.auth.gr

Received 21 March 2009; Revised 21 March 2009; Accepted 29 April 2009

Recommended by Laura Astolfi

Event-Related Potentials (ERPs) or Event-Related Oscillations (EROs) have been widely used to study emotional processing, mainly
on the theta and gamma frequency bands. However, the role of the slow (delta) waves has been largely ignored. The aim of this
study is to provide a framework that combines EROs with Event-Related Desynchronization (ERD)/Event-Related Synchronization
(ERS), and peak amplitude analysis of delta activity, evoked by the passive viewing of emotionally evocative pictures. Results
showed that this kind of approach is sensitive to the effects of gender, valence, and arousal, as well as, the study of interhemispherical
disparity, as the two-brain hemispheres interplay roles in the detailed discrimination of gender. Valence effects are recovered in both
the central electrodes as well as in the hemisphere interactions. These findings suggest that the temporal patterns of delta activity
and the alterations of delta energy may contribute to the study of emotional processing. Finally the results depict the improved
sensitivity of the proposed framework in comparison to the traditional ERP techniques, thereby delineating the need for further
development of new methodologies to study slow brain frequencies.

Copyright © 2009 Manousos A. Klados et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

During the past few years many studies have attempted
to investigate the role of neuronal mechanisms involved in
emotional processing [1]. Most of those studies employed
Event-Related Potentials (ERPs) and focused on the detec-
tion of time-locked changes in the activity of large pools
of neurons [2]. This approach has been mostly preferred
because induced cerebral activity demonstrates an almost
fixed time-delay to the stimulus onset, and it superimposes
to the normal ongoing brain signals, which are regarded
as additive noise. In these studies, typically a sufficiently
large number of epochs with the same stimulus type are
averaged in order to enhance the signal-to-noise (SNR)
ratio. Consequently, this type of analysis aims at enhancing

certain ERP components. However, this model can only
roughly approximate reality, since it cannot deal with robust
dynamical changes that occur in the human brain [3].

It is known that EEG activity is generated by sets of cir-
cuits [4]. The neuronal cells involved in these circuits are syn-
chronized upon the appearance of a novel stimulus. There-
fore, their activity is coupled and overall EEG coherency is
enhanced. Thus, the system’s complexity is reduced since
it becomes more ordered. This results in the generation of
rhythmic oscillations in various frequency bands which are
superimposed on each other to form the compound event-
related potential [5]. So, the analysis of ERP waves and their
oscillations may promote our biophysical understanding of
the brain functional networks and the investigation of both
the global and the local characteristics of human brain
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activity. For instance, it is known [6], that there are particular
events, which are time-locked to the event, but not phase-
locked, and have an inhibitory effect to the alpha rhythm
[7]. Consequently, the underlying cognitive processes cannot
be thoroughly revealed using linear methods. Due to this
limitation, frequency analyses are more appropriate, as long
as, we assume that certain events affect specific bands
of the ongoing EEG activity. This would result on the
synchronization or desynchronization of underlying neurons
exactly after the event (Event-Related Synchronization (ERS)
or Desynchronization (ERD)) [7, 8]. The aforementioned
reactions are time-locked to the event and concern specific
brain waves. This type of spectral analysis is employed since
selectively distributed oscillatory networks in the various fre-
quency ranges control in an integrative way brain functions
at every sensory and cognitive level. Cognitive processing of
emotional visual stimuli involves several complex functions
such as sensory processing, attention, decision making,
and memory. Despite the potential interest of using such
methodologies to emotionally evocative stimuli, research
with these types of analyses employing the International
Affective Picture System (IAPS) [9] is scarce.

A few such studies have indeed shown that brain rhythms
are associated with several cognitive processes. For instance,
an increase in theta activity has been associated with initial
learning improvement, which is typically followed by a
decrease that reflects habituation processes [10]. A more
relevant study, it has been shown that the amygdala produces
theta activity in response to emotionally evocative stimuli
[11]; whereas detection of unpleasant stimuli has been
associated with theta synchronization in the hippocampus,
which appears to be lateralized to the right hemisphere [12].
Moreover, slow waves, contribute to the detection of salient-
infrequent-stimuli, and consequently, they contribute to the
P300 response [13, 14]. Taken all together, these findings
suggest that slow cerebral oscillations are suitable to study
the cognitive processes related to emotions.

Moreover, in the last few years, there is growing interest
in investigating the neuronal mechanisms involved in the
processing of emotionally evocative pictures [15, 16] using
IAPS. IAPS pictures are rated in terms of valence and arousal.
According to [17] emotional processing is mediated by two
brain systems; the appetitive and the defensive. These two
systems have evolved in order to assure the physical survival.
The property “valence” refers to the direction of behavioral
activation according to the motivational system induced
by the stimulus. The property “arousal” represents the
activation level elicited by the emotionally evocative stimulus
[18]. The defense system is mainly active in unpleasant
situations ranging from threat to melancholy and it is
associated with “fight-or-flight” responses. On the other
hand, the presence of pleasant situations like sustenance,
procreation and nurturance activates the appetitive system.
Therefore, the valence dimension refers to the system that is
activated, while the arousal dimension refers to the intensity
of this activation [19].

A few studies have investigated oscillatory modulation
with visual emotional stimuli from the IAPS. In one of
these studies [20], they investigated spectral responses in the

gamma range by means of wavelet transforms, and found
early effects (80 ms after stimulus onset) of the activity
around 30 Hz which discriminated unpleasant stimuli from
pleasant ones. Moreover, there was a later increase (480–
550 ms poststimulus) in higher frequencies which appeared
to be a reliable indicator of arousal. Theta activity has also
been related to emotional stimuli, as early synchronization of
theta activity has been reported, together with an interaction
between valence and hemisphere for the anterior temporal
regions [21]. In another study, it was found that theta
ERS covaried with the stimulus intensity. Furthermore, the
increase in theta activity was most pronounced over left
anterior regions, and bilaterally over posterior regions [22].
Finally, the same study also reported that desynchronization
of the medium alpha range was associated with attentional
resources. The synchronization of the upper alpha in anterior
cortical areas was also attributed to a greater cognitive
involvement during processing of emotionally arousing
stimuli [22]. To sum up, gamma, theta and alpha activities
seem to be related with different aspects of the processing of
emotional stimuli.

However, to our knowledge, there is limited literature
about delta wave activity and whether it is modulated during
the emotional processing of complex visual scenes, like IAPS
pictures, or not. This is in fact surprising, since there is some
evidence which suggests that this wave may also play a role
in processing of emotional stimuli. For instance, a research
has reported a relationship between the P300 component
and the delta frequency component [23]. Also, it is generally
agreed, that the P300 is associated with unexpected or
motivationally relevant stimuli [10]. For instance, emotional
stimuli elicit a more pronounced P300 response than neutral
ones [16]. Furthermore, studies have shown an increase of
the activity in the delta frequency band during sexual arousal
[24]. Another study [25] has indicated higher coherence
of slow waves in central and posterior regions of the right
hemisphere during sexual arousal induced by imagery. A
summary of the studies that have been conducted with delta
wave activity to investigate cognitive and emotional processes
in healthy adults, and brain abnormalities in neurological
disorders is shown in Table 1. It is important to notice that
most of these studies used the linked earlobes montage, and
the number of electrodes varied from 7 to 62.

The aim of the present study is to investigate the
feasibility of using event-related delta oscillations to study
brain processing triggered by visually complex emotional
stimuli. Based on previous research, we hypothesize that
delta wave activity, particularly in posterior brain areas,
is mainly associated with arousal, whereas valence effects
on delta activity will be mostly observed in anterior brain
areas. Furthermore, and since our ERP studies have reported
gender differences with the same stimuli [17], we also aim to
check the replication of such findings in delta wave activity.
That is, we suspect increased delta activity for females
as compared to males, particularly for unpleasant stimuli.
Furthermore, this piece of work aims at the investigation
of laterality differences by extending the delta oscillations
framework with the inclusion of delta synchronization
analysis in terms of ERS/ERD. In addition, as the studying
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Table 1: Summary of studies conducted with delta wave activity in healthy adults and patients with neurological disorders, which includes
the montage method and the number of electrodes as well.

Authors Journal Aim of the study Montage
Number of
electrodes

Yener et al. [26] European Journal of
Neurology (2008)

Detection of subtle abnormalities
of cognitive processes

Linked
earlobes

13

Başar et al. [27] Brain Research (2008)
Brain oscillations evoked by the
face of a loved person

Linked
earlobes

14

Harmony et al. [28] International Journal
of Physiology (1996)

EEG delta activity during
difficult mental tasks and
analysis of short term memory

Linked
earlobes

19

Aftanas et al. [29]
Neuroscience and
Behavioral Physiology
(2006)

Analysis of evoked EEG
synchronization and
desynchronization in all
frequencies bands in response to
sequential presentation of IAPS
pictures

Nose 62

Schürmann et al. [30] Neuroscience Letters
(1995)

A new metric for analyzing single
trials ERPs based on visual P300
delta responses

Linked
earlobes

7

Moretti et al. [31]
Clinical
Neurophysiology
(2004)

Individual analysis of EEG
frequency and band power in
mild Alzheimer disease

Linked
earlobes

19

of delta wave activity was found to be more sensitive to
arousal modulations of emotional stimuli than classic ERP
peak studies [32], and it is linked with decision-making and
salience feature detection properties [27], it is important
to examine whether we obtain stronger valence effects of
delta wave activity than with the classic ERP approach.
In other words, we aim to compare herein effect sizes for
both ERP [17] and delta wave analyses (the present study).
Finally, a side methodological aim is to compare the different
montage methods for spatial filtering. Although, most of
the studies summarized above (Table 1) have employed the
linked earlobes montage, only a few studies have actually
compared the effectiveness of this method in relation to other
methods such as the Common Average Reference (CAR) and
(large) Laplacian (LAP).

So, in the remaining of this paper, necessary background
knowledge regarding the EROS extraction methodology, the
artifact rejection approach and the ERD/ERS computation
scheme are provided in Section 2. The results derived from
the statistical analysis, which was performed on the average
signals of each subject and for each emotional category
are presented in Section 3. Finally, the contribution of
the proposed framework to the estimation of the slow
wave activity during emotional processing is discussed in
Section 4.

2. Materials and Methods

2.1. Subjects. Twenty eight healthy adults (14 males and
14 females) participated in the experiment (mean age of
males 28.2 ± 7.5, mean age of females 27.1 ± 5.2). All
subjects had normal or corrected to normal vision. Each
participant signed an informed consent form prior to his/her

participation and completed a short questionnaire. All
participants were paid for their participation. An approval
from the Ethical Committee of the Medical School of the
Aristotle University of Thessaloniki, Greece, was granted for
this study.

2.2. Stimuli. The participants passively viewed 160 emo-
tional pictures, selected from the IAPS. The pictures were
grouped in 4 conditions based on their valence and arousal
ratings. The conditions were pleasant pictures with high
arousal ratings (HVHA), pleasant pictures with low arousal
ratings (HVLA), unpleasant pictures (Low Valence) with
high arousal ratings (LVHA), and unpleasant pictures with
low arousal ratings (LVLA). More details about valence
and arousal ratings for each condition specific to gender
are shown in Table 2. The experimental conditions were
manipulated between blocks, thus there were four blocks of
40 photographs each.

2.3. Electrophysiological Recordings. During the presentation
of each emotional block multichannel, Electroenchaphalo-
gram (EEG) and Electrooculogram (EOG) were recorded
with 500 Hz sampling frequency. Nineteen EEG electrodes
were placed according to the 10–20 International System at
sites Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, T5,
T6, P3, P4, Pz, O1, O2 with electrode resistance lower than
20 kΩ. Two EOG electrodes were placed above and below the
left eye and another two were placed at the outer canthi of
each eye. Two bipolar signals were calculated from these four
electrodes, namely vertical EOG (VEOG) and horizontal
EOG (HEOG) and used for effective EOG artifact rejection.

Three different montages (Linked Mastoids, Common
Average Reference and large Laplacian montage) (Figure 1)
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Table 2: Mean and standard deviation as a function of valence and arousal for the pictures used in the study.

Males Females

Picture group
Valence Arousal Valence Arousal

mean SD mean SD mean SD mean SD

HVHA 7.41 1.51 6.59 1.98 7.1 1.7 6.0. 2.26

HVLA 6.65 1.54 3.91 2.15 6.94 1.55 3.85 2.26

LVHA 3.12 1.58 5.93 2.15 2.0 1.37 6.64 2.15

LVLA 3.9 1.53 3.91 2.04 3.6 1.54 4.16 2.1

have been compared for optimal representation of cerebral
responses. According to the linked mastoids montage, elec-
trodes with odd indices were referenced to left mastoid and
electrodes with even indices were referenced to right mastoid.
Central electrodes (Fz, Cz, Pz) were referenced to the half of
the sum of left and right mastoids. The Common Average
Reference (CAR) which was computed according to the next
formula:

VCAR
i = Vi −

∑n
j=1Vj

n
, (1)

where j is the number of electrodes and Vi is the potential of
ith electrode. As for the third montage, the large Laplacian
reference (LAP) has been employed, since the number of
electrodes is restrictive for the small Laplacian reference. The
following formula has been used for the calculation of the
LAP:

VLAP
i = Vi −

n
∑

j∈Si
gi jVj , (2)

where

gi j =
1/di j

∑

j∈Si
(

1/di j
) , (3)

Si is the set of electrodes surrounding the ith electrode, and
di j is the distance between electrodes i and j (where j is
a member of Si). The aforementioned distance is 3 cm for
the small Laplacian montage, in contrast to large one, where
the distance of two neighbor electrodes is 6 cm [33]. Linked
mastoids were more effective in normalizing the data (see
Section 3.1) as compared to the other methods, so it was
further used for the purposes of this study. More detailed
results are mentioned in Section 3.

2.4. Experimental Procedure. Participants were asked to sit
on a comfortable armchair in front of a computer screen
placed at 80 cm distance from their eye horizontal level.
The experiment started with a 30-second recording, during
which, participants were asked to keep their eyes open
and look at the blank screen. This recording was followed
by another one where participants were asked to keep
their eyes closed. These recordings were taken to serve as
baseline values. The experimental protocol was comprised
of stimuli in the form of IAPS pictures, forming blocks of
forty randomly selected pictures according to their arousal

and valence ratings (Table 2). The order of the blocks was
counterbalanced across participants. Each single epoch had
0.5 seconds prestimulus showing a white cross in the center
of the screen and 2 seconds poststimulus period (1 second
picture duration followed by 1 second of the white cross).
At the end of the procedure the initial 30-second recordings,
with eyes open and then closed, were repeated.

2.5. Event-Related Desynchronizations (ERD)/Event-Related
Synchronization (ERS). Sensory, motor, cognitive and emo-
tional processing can affect the ongoing EEG by decreasing
(ERD) or increasing (ERS) the synchrony of underlying
neurons, so cerebral activity can be quantified using the
ERD/ERS method which is described in [7]. ERD/ERS depict
the percentage of band power changes during a test interval
compared to a reference interval in a specific frequency
band. There are a lot of different methods used today for
quantification of ERD/ERS, which are summarized in [7].
The band power method [8] has been selected for the
purpose of this study. According to this method each EEG
signal for each channel was band-pass filtered in the delta
frequency band (0.5–4 Hz), squared in order to calculate the
delta band power, epoched and averaged over trials for each
subject and for each emotion block. Finally in order to obtain
the percentage of event-related changes in delta band power
the following formula was used:

ERD(or ERS)% = R− A
R

· 100%, (4)

where R is the power of delta band in the reference interval
(here 500 ms prestimulus) and A is the delta band power
for the test intervals after the event (here 0–500 ms, 500–
1000 ms, 1000–1500 ms, 1500–2000 ms after picture onset).
For a more detailed description of this method see [10].
According to the aforementioned formula positive values
(R > A) indicate that the test interval’s band power is
lower compared to the reference, which means that delta
oscillations decrease their synchrony (desynchronize), and,
therefore, ERD is obtained for positive values. Negative
values (A > R) indicate neuronal synchrony in a similar way
and they are obtained for ERS.

2.6. Artifact Rejection. We have used the Least Mean Square
(LMS) method, as it was proved to have better a performance
among other widely used techniques for artifact rejection,
based on Blind Source Separation (BSS) or regression
methodology [34]. According to the LMS adaptive filtering
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Figure 1: Illustration of the three different montage electrodes referencing methods. (a) Linked Mastoids Montage; left sites are referenced
to the A1 while right site are referenced to A2, and the central sites are referenced to the half of the sum of A1 and A2. (b) C.A.R.; each site is
referenced to the average of all electrode sites. (c) Large Laplacian; each site is referenced to the weighted average of their one-step neighbors.

procedure, the goal is to adjust the filter coefficients ŵ(n) and
make them approach the optimal filter coefficients w(n) as
close as possible (Figure 2). The underlying idea of the LMS
algorithm is to use a steepest descent algorithm to find the
coefficients ŵ(n) which minimize the objective function,

F(n) = E
{

|e(n)|2
}

, (5)

where e(n) is the error from the block diagram (Figure 2) and
E{· · · } denotes the expected value. After the application of
the steepest descent algorithm we have

∇F(n) = 2E{∇e(n)e(n)}, (6)

where∇ denotes the gradient operator. For

EOG(n) = [EOG(n), EOG(n− 1), . . . , EOG(n− p + 1)
]T ,
(7)

where p is the order of the adaptive filter, and ∇e(n) =
−EOG(n) we have

∇F(n) = −2E{EOG(n)e(n)}. (8)

∇F(n) is a vector orientated to the steepest ascent of the
objective function, so we have to take the opposite direction
of ∇F(n) for the minimization of ∇F(n). Thus we have the
following equation:

ŵ(n + 1) = ŵ(n)− μ∇F(n)

= ŵ(n) + 2μE{EOG(n)e(n)},
(9)

where μ is the step size. Note that in most systems the expec-
tation function E{EOG(n)e(n)} has to be approximated, and
this can be achieved with the following estimator:

̂E{EOG(n)e(n)} = 1
N

N−1
∑

i=0

EOG(n− i)e(n− i), (10)

where N is the number of samples used for the estimation.
For N = 1 we have

̂E{EOG(n)e(n)} = EOG(n)e(n), (11)

so the update algorithm is

ŵ(n + 1) = ŵ(n) + 2μEOG(n)e(n). (12)

2.7. EEG Processing. A band pass filter (0.5–40 Hz) and
a notch filter at 50 Hz were applied to raw EEG signals.
EOG signals were also notch filtered at 50 Hz for main line
noise extraction but were band pass filtered in a different
frequency band at 0.5–13 Hz. The artifacts originated from
ocular activity were rejected offline with the use of the LMS
adaptive filter algorithm. To obtain delta oscillations the EEG
data were band-pass filtered in delta band (0.5–4 Hz) using
Kaiser filter. After that, each EEG signal was epoched into
40 trials with duration of 2.5 seconds each (fixed length
of 500 ms prestimulus and 2 seconds after picture onset)
and averaged over these epochs to perform Event-Related
Oscillation (ERO) analysis. Finally for each average signal,
the ERD/ERS was calculated.

2.8. ERD/ERS Data Reduction. ERD/ERS values were aver-
aged into 2-electrode clusters according to their hemisphere
(Left Hemisphere: Fp1, F3, F7, C3, T3, P3, T5, O1; Right
Hemisphere Fp2, F4, F8, C4, T4, P4, T6, O2) thereby
facilitating the investigation of possible brain asymmetries.

2.9. Statistical Analysis. In order to investigate the evoked
differences of delta oscillations to emotional stimuli,
ERD/ERS mean values were submitted to a mixed 2 × 2 ×
4 × 2 × 2 ANOVA with gender (male and female) as the
between subject factor, and hemisphere (left and right), time
intervals (0–500 ms, 500–1000 ms, 1000–1500 ms, and 1500–
2000 ms), valence (pleasant and unpleasant) and arousal
(high and low) as the within subject factors. Also 2 ×
2 × 2 ANOVAs with gender as the between subject factor
and valence and arousal as the within subject factors were
conducted on the delta activity EROs of the six characteristic
peaks (200–300, 300–400, 400–500, 600–800, 1100–1250,
1200–1500 ms after picture onset).
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Figure 2: A block diagram of an adaptive filter. It is obvious that EEG(n) = w(n)EOG(n) + CEEG(n). Adaption filtering is trying to adjust
ŵ(n) as close as possible to w(n), so our goal is to approach clean EEG as much as possible. e(n) = EEG(n) − ŵ(n)EOG(n). It stands that
e(n) → 0 when ŵ(n) → w(n).

3. Results

As we mentioned above, the linked mastoids reference was
more effective in normalizing the data as compared to the
other two methods. In general, results showed that females
had a stronger response to emotional stimuli as compared
to males, in addition high arousal pictures provoke greater
delta responses than the trials with low arousal pictures.
Also delta responses provoked by unpleasant pictures were
greater compared to the pleasant pictures. Finally, significant
differences concerning the valence dimension were observed
in the greater centro-frontal area, while the arousal was more
discernible in the centro-parietal region.

3.1. Montage. As mentioned earlier, three different montages
have been compared with regards to their effect in the
ERD/ERS indices. Figure 3 illustrates delta waveform exam-
ples of the three montage methods. All reference techniques
have similar overall features in terms of main peak responses.
Otherwise the great scaling difference among the Large
Laplacian montage and the rest methods is noticeable.

The results pointed out that the CAR and LAP
approaches were not effective in normalizing the data;
actually both montages increased greatly the mean square
error (MSE) relative to the linked mastoids reference. For
instance, the main effect of time interval was significant for
all three methods, but the MSE was considerably increased
for the CAR (F(3, 78) = 22.70, MSE = 2467660, P <
.0001) and LAP (F(3, 78) = 43.78, MSE = 442632.50, P <
.0001) methods in contrast to Linked Mastoids (F(3, 78) =
19.57, MSE = 1800.80, P < .0001). We also conducted
the Kolmogorov-Smirnov test to check for normality, and
found that data were not normalised with the CAR and LAP
methods for many of the experimental conditions. This was
not the case for the linked mastoid method, where all P > .05.

3.2. EROs. The averaged delta oscillatory activity from all the
epoch segments was extracted for all the participants. The
grand average waveform corresponding to the mean activity

of all participants is visualized for each central electrode
(Figure 4). The analysis presented herein is focused on the
three central electrodes in order to study the differences
among the four emotional categories and possible gender
effects. Laterality issues are beyond the scope of the current
EROs analysis.

The average delta activity contains six major peaks which
are identified in the same temporal window for each block
category. The selection of these windows was made in order
to analyze early, late and very late cortical effects. The analysis
is structured in a way to report only the significant results for
each temporal window.

3.2.1. Positive Peak 200–300 ms. There was a significant
arousal by gender interaction (F(1, 26) = 5.824, P =
.023) on the central electrode (Cz). Planned t-test revealed
significant differences between the low arousal (1.0766 μV)
and the high arousal (−0.0938 μV) conditions only for the
female group (t(13) = −2.643, P = .020). No other effect
reached statistical significance, P > .05.

3.2.2. Negative Peak 300–400 ms. Results revealed significant
main effects of valence (F(1, 26) = 4.378, P = .046) and
gender (F(1, 26) = 7.136, P = .013) on the centro-frontal
area. More specifically, unpleasant stimuli elicited greater
responses than pleasant ones (−7.588 and −8.177 μV, resp.),
and females produced greater responses relative to males
(−6.469 and−9.297 μV, resp.). On the central electrode (Cz),
there was a marginally significant main effect of gender
(F(1, 26) = 4.01, P = .056), that is, females showed stronger
responses (−6.495 μV) than males (−4.212 μV).

3.2.3. Positive Peak 400–500 ms. Results on the central elec-
trode exhibited a highly significant main effect of arousal
(F(1, 26) = 17.209, P < .001); the delta activity was stronger
for the high arousal condition (0.686 μV) relative to the
low arousal (−0.455 μV) condition during this temporal
window. Similarly, for the parietal electrode only the main
effect of arousal reached statistical significance (F(1, 26) =
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Figure 3: Comparison of different montage methods (Linked Mastoids-top-, Common Average Reference-middle- and Large Laplacian-
bottom-) on the basis of delta activity waveform. Left: averaged delta oscillation waveform across all subjects and over all trials for Fz
electrodes for all emotional stages separately. Right: delta oscillations in Pz, respectively.

68.511, P < .0001), with high arousal condition eliciting
much stronger responses than the low arousal condition
(2.0043 and 0.8763 μV, resp.).

3.2.4. Positive Peak 600–800 ms. Only the valence by gen-
der interaction reached statistical significance (F(1, 26) =
5.398, P = .028) on the frontal electrode. Planned t-
tests showed significant differences between males (1.59)
and females (2.69) (t(26) = −3.069, P = .005) only for
the unpleasant pictures, however there were no differences
between male and female groups for the pleasant pictures,
P > .05. In addition, there were significant differences
between pleasant and unpleasant pictures (2.0742 and

1.5091 μV, resp.) (t(13) = 2.641, P = .02) only for the male
group.

Table 3 summarizes the statistical analysis for both ERP
[17] and delta wave methodologies, which were performed
on the same data. As it can be seen the proposed framework
appears to be more sensitive to arousal effects of the emo-
tional stimuli. The proposed framework revealed Gender and
Arousal by Gender effects in Fz with higher F-values, which
means better sensitivity/specificity. Also the valence and the
arousal effects in Cz and Pz respectively are superimposed by
the use of the proposed framework analysis. At the current
delta activity framework revealed more statistical significant
effects in contrast to traditional ERP analysis (see Table 3).
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Figure 4: Illustration of delta oscillation over central electrodes (Fz-
top-, Cz-middle- and Pz-bottom-). Averaged waveform across all
the subjects for all emotional are used.

3.3. ERD/ERS. All ERD/ERS mean values for delta oscilla-
tions are negative, so it can safely be deduced that delta
oscillations are synchronized after emotional stimuli. It has
to be noted that lower ERS values (from an algebraic point of
view) denote higher increases of delta band powers.

Results showed a significant main effect of time
(F(3, 78) = 19.57, P < .0001). Scheffe posthoc comparisons
showed significant differences between the first interval
(−40.083) and the three remaining intervals (mean ERS
value equal to −19.9565, −18.98 and −10.4989, resp., all
P-values <.0001). No other comparisons reached statistical

significance, P > .05. That is, delta oscillations increased
their band power after the stimulus onset (0–500 ms),
dropped significantly in the second interval (500–1000 ms)
and remained almost stable in the next two intervals (1000–
1500, 1500–2000). Also, the main effect of arousal was
significant (F(1, 26) = 4.99, P = 0.034). High arousal
stimuli (−25,474) produced greater synchronization of delta
wave than low arousal pictures (−19,285). In addition, the
following 2-way interactions were significant: gender by
time interaction (F(3, 78) = 3.74, P = .014), and valence
by arousal (F(1.26) = 4.55, P = .043). The gender by
time interaction, evident only right after stimulus onset (0–
500 ms interval), was due to a stronger response for female
participants (−50%) than for male participants (−30%).
Most importantly, these interactions were further modulated
by a significant 5-way interaction, gender by hemisphere by
time by valence by arousal interaction, (F(3, 78) = 3.01, P =
.035).

In order to analyze further the 5-way interaction, we
conducted two separate ANOVAs for each gender group with
hemisphere, time, valence and arousal as the within subject
factors (Figures 8–11).

3.4. Males. For the male group, results showed a significant
main effect of time intervals (F(3, 39) = 4.83, P =
.006). Scheffe posthoc comparisons exhibited significant
differences only between the first (−30.3349) and the last
interval (−12.3907), P = .008. Also, the main effect of
arousal was highly significant (F(1, 13) = 5.63, P = .034).
That is, trials with high arousal pictures (−25.1821) provoke
greater synchronization of delta rhythm as compared to trials
with low arousal (−15.8206) pictures.

Also, the following interactions were significant in the
male group: hemisphere by valence, (F(1, 13) = 4.62, P =
.05) (Figure 9), and hemisphere by time by valence by
arousal, (F(3, 39) = 2.61, P = .065) (marginal). The
hemisphere by valence interaction was due to significant
differences between the left (−15.25) and right (−23.31)
hemisphere for the unpleasant pictures, (t(13) = 2.11, P =
.05); whereas no differences were found between the two
hemisphere conditions for the pleasant pictures, P > .05.

Finally, in order to analyze the 4-way interaction, we
conducted four separate ANOVAs for each time interval with
hemisphere, valence and arousal as the within subject factors.

3.4.1. Interval 1 (0–500 ms). The analyses for the time
interval of 0–500 ms revealed a significant main effect of
hemisphere, (F(1, 13) = 5.53, P = .035). Mean ERS value
for left hemisphere was −26.6563, whereas right hemi-
sphere’s ERS was −34.0134. No other effect or interaction
reached statistical significance, P > .05.

3.4.2. Interval 2 (500–1000 ms). In the second interval, 500–
1000 ms, there was a significant main effect of arousal,
(F(1, 13) = 4.98, P = .043). That is, there was a greater
synchronization of delta activity for the high arousal pictures
(−27.4742) than for the low arousal pictures (−16.1314).
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Figure 5: ERPs versus EROs findings for Fz electrode during the P300 response. Averaged waveforms across all subjects (males (left) females
(right)) for all emotional stages. Top are depict ERPs while EROs are depicted in two bottom subfigures. All are in the Fz site between
250–450 ms.

3.4.3. Interval 3 (1000–1500 ms). In the third interval, 1000–
1500 ms, there was a significant main effect of arousal as well,
(F(1, 13) = 9.07, P = .01). As it was observed before, there
was a greater synchronization of delta activity for the high
arousal pictures (−23.2588) than for low arousal pictures
(−11.6904). In this third interval there was also a significant
hemisphere by valence interaction (F(1, 13) = 8.31, P =
.013) (Figure 10). That is, whereas synchronization of delta
rhythm was greater for the pleasant picture (−18.34) than
for the unpleasant pictures (−14.38) in the left hemisphere,

the opposite pattern was observed for the right hemisphere
(−14.57 versus −22.61).

3.4.4. Interval 4 (1500–2000 ms). Finally, in the analyses of
the fourth interval, 1500–2000 ms, none of the main effects
or their interaction reached statistical significance, P > .05.

3.5. Females. The analyses for the female group revealed a
significant main effect of time interval as well (F(3, 39) =
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Figure 6: ERPs versus EROs findings for Pz electrode in the 300–750 ms time interval. Averaged waveforms across all the subjects for all
emotional stages. ERPs are depicted in (a) while EROS are illustrated in (b).
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Figure 7: ERPs versus EROs findings for Fz electrode in the 600–800 ms time interval. Averaged waveforms over the gender (solid line:
Males, dashed line: Females) for the low valence category. ERPs are depicted in (a) while EROS are illustrated in (b).

15.69, P < .0001). Scheffe posthoc comparisons showed
significant differences in the mean ERS value between the
first interval (−49.8315) and other three intervals (−18.1076,
−20.4854, −8.6071, resp.; P < .0001). Furthermore, the
interaction time by valence reached statistical significance
(F(3, 39) = 4.27, P = .012). To analyze this interaction we
conducted two separate ANOVAs for each valence condition
with time as the within subject factors. Results showed
a significant main effect of time for both pleasant and
unpleasant conditions ((F(3, 81) = 14.683, P < .0001) and
(F(3, 81) = 15.829, P < .0001), resp.). Scheffe posthoc
comparisons revealed significant differences between the
first and the other three intervals for both the pleasant,
(−37.501, −19.094, −21.668, and −11.442; P < .0001), and
the unpleasant condition, (−42.665, −19.094, −21.668 and
−9.555, resp.; P < .0001). However the interaction was
due to a greater difference between the first and the second
interval for the unpleasant pictures relative to the pleasant
ones.

4. Discussion

The major methodological aim of this paper was to
investigate the feasibility of using a combination of event-
related delta oscillations and delta synchronization analysis
in terms of ERS/ERD in order to study emotional brain
processing triggered by visually complex emotional stimuli.
We have provided evidence herein that this kind of analysis
is probably more sensitive to study not only arousal but also
valence modulations of emotional stimuli than classic ERP
peak studies. To provide such evidence, we compared effect
sizes for both ERP and delta wave analyses. The resulted
improved sensitivity of the proposed framework is given
in both quantitative and qualitative terms, that is, on one
hand, by the statistical analysis for both ERP and delta
wave methodologies as depicted in Table 3; moreover, the
differences between the two methodologies are qualitatively
illustrated by Figures 5–7. According to Figure 6, the arousal
modulation of the posterior areas is more intense when
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Table 3: Summary of F values for significant effects with the ERP methodology (reported in [17]) and the delta wave methodology. Notice
that both methodologies were performed on the same data, but the EROs methodology has a better sensitivity/specificity.

EROs ERPs

Fz Cz Pz Fz Cz Pz

Valence by gender
(F = 5.398)

Valence
(F = 4.378)

Arousal
(F = 68.51)

Valence
(F = 9.18)

Valence
(F = 4.23)

Arousal
(F = 13.4)

Valence by arousal
by gender
(F = 5.439)

Arousal by
gender
(F = 5.824)

Arousal by
gender
(F = 4.96)

Gender (F = 7.136)
Gender
(F = 6.64)

Arousal by gender
(F = 13.519)
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Figure 8: Five-way interactions of ERS index according to valence and arousal dimensions for males in (a) left and (b) right hemisphere.

adopting delta oscillatory methodology in contrast to tra-
ditional ERP analysis. Similarly, the proposed framework is
more sensitive in revealing the gender effect and valence
modulation of the anterior areas as depicted in Figure 7.
Finally, Figures 5 and 6 highlights the gender by valence and

the gender by arousal interactions which also occur in the
frontal lobe.

4.1. ERD/ERS. Delta oscillations are categorized among the
brain’s natural oscillations, which generally provide basic
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Figure 9: ERS dependence on the stimuli’s valence. Note the
laterality differences for males.
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Figure 10: Valence by hemisphere interactions for males in third
test interval.

links to cognitive functions by integrative control at all levels
[4]. According to [35], delta responses are evoked in the
entire scalp of the human brain by sensory stimulation.
The activity in this frequency band is related to signal
matching, decision making and surprise [36]. Our results
concerning this type of analysis indicate the important role
of the delta activity as a marker of emotional processing.
As already commented above, this type of analysis is more
sensitive than the classic ERP peak approach; this is also
supported by the fact that interactions like the valence
by arousal interaction according to the subject’s gender
are revealed by the framework proposed here. Specifically,
female participants exhibited stronger responses than males,
particularly right after stimulus onset. Also, in general,
high arousing and unpleasant pictures provoked stronger
responses. In addition, the effects of valence and arousal in
delta oscillations were modulated by gender. As expected,
when an ERD/ERS analysis has been conducted, hemispheric
differences have been found for the aforementioned effects
in the male group. In a previous study [37] authors remark
the contribution of delta waves in emotional modulation by
visual inspection of emotional face expressions. The results
presented in this paper demonstrate the participation of delta
oscillations in emotional processing, in agreement with what
has been shown in that study [37].

The main findings for the ERD/ERS analyses were
the following: high arousal pictures provoked greater ERS
responses of delta oscillations than low arousal pictures,
which is in line with previous literature [10, 22], and this
was mostly the case for the males participants. Moreover,
females showed a greater ERS response as compared to
males not only right after stimulus onset (0–500 ms interval),
but also during the whole trial. Both males and females
showed an effect of valence on ERD/ERS responses. Though,
this effect interacted with hemisphere in males. On the
other hand, in females, regardless of hemisphere, unpleasant
pictures provoked a greater ERS values relative to pleasant
pictures, whereas in males this was the case only for the right
hemisphere. In the left hemisphere of the male group, ERS
exhibited greater values for the pleasant pictures relative to
the unpleasant. The prevalence of the right hemisphere in the
emotional processing was also supported by a stronger initial
(0–500 ms interval) synchronization in the right hemisphere
relative to the left hemisphere.

Finally, results showed that the time course of these
effects differed for males and females. Females showed a
significant effect of the emotional valence of the stimulus
only right after onset, whereas the effect of valence on ERS
appeared much later (in the 1000–1500 ms interval) in males.
The effect of arousal on ERS response was observed relatively
soon (500–1000 ms after stimulus onset) in males. These
findings suggest that there is a slower synchronization of
delta oscillations in response to emotional stimuli for males
as compared to females.

The initial stronger and faster response of females to
emotional stimuli, as shown in the ERS analyses, replicate
previous findings [38, 39], that have shown gender differ-
ences in cognitive tasks. Thus, it is generally agreed that
male’s performance is better on spatial tasks, whereas females
perform better on emotion-related tasks [40–42]. These
results suggest that this difference may not only be due to
cultural influences but may also reflect gender differences
concerning information processing in the brain. There were
also gender differences in arousal. While males showed
greater ERS values for HA pictures relative to LA pictures,
there was not a significant effect of arousal for females.

As it is expected, ERS analyses were sensitive to brain
asymmetry in emotional processing as well. Clearly, the
results summarized above, support the dominance of the
right hemisphere in emotional processing but only for males.
In females, the emotional response was not lateralized. It
is known that specific cognitive processes are lateralized
either to the left or right hemisphere in males [43]. In
contrast, cognitive processes are not so strongly lateralized
in females, possibly because of the anatomical differences
in the corpus callosum; it has been reported that women
have a larger callosal size, which would enhance inter-
hemispheric transfer, and would result in stronger bilateral
processing as compared to males [43]. This may explain
why we found brain asymmetry effects on ERS responses
in males but not in females. Our finding regarding right
hemisphere prevalence in emotional processing, particularly
for unpleasant-threatening stimuli, is also in line with already
published literature (see [44] for a review). On the other
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Figure 11: Modulation of ERS index according to valence and arousal dimensions for females in (a) left and (b) right hemisphere.

hand, our results show that the left hemisphere appears to
be dominant for the processing of pleasant-positive-stimuli.
As Davidson has shown [45–47], the LH is associated with
more positive emotions in contrast to the RH, which is more
involved in negative stimuli [48].

4.2. EROs. The most consistent finding was that female
participants exhibited in general greater responses than
male participants, and this finding was true for early and
late components. The literature about gender differences
in emotional processing is limited and focuses mainly
on brain asymmetries employing event-related potentials.
For instance, a recent study [49] investigated memory
processing of faces that were classified as neutral, friendly
and unfriendly. The ERP analysis demonstrated larger
amplitudes in female participants relative to male partic-
ipants. These differences were present during both early
processing, as indicated by N300 and N400 components
and late processing which lasted until the P600. Thus, the

present study generalizes this finding to complex emotional
stimuli, using a different measure of brain activity. In the
present study, gender differences were stronger at the early
negative peaks (N300, N400). Also, in agreement with this
study [49], we observed later gender effects by positive
deflections approximately 600–800 ms and 1200–1500 after
stimulus onset. A more recent study [50] used simple light
stimulation in order to investigate gender differences during
the various frequency bands of the human EEG. The results
showed that the delta response amplitudes for women were
significantly higher than for men over occipital, parietal,
central and temporal electrode locations. Consequently, the
specific frequency band has a key role in the investigation of
gender differences in the processing of emotionally stimuli.
At last, gender differences in emotional processing can be
explained in terms of differences in phyletic memory [51].
This memory has genetic origin and is based on the evolution
theory.

The second main finding was that event-related delta
oscillations were also modulated by the valence of the
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stimulus. In general, unpleasant pictures provoked greater
responses than pleasant pictures did, although this effect
was sometimes modulated by gender. Also, these effects
were stronger and most consistent at the frontal electrodes
(e.g., N300–400, P600–800, and N1100–1200 components).
This finding agrees with previous work [52] that has shown
that areas in the frontal cortex are activated by the valence
dimension of the emotional stimuli. There is also converging
evidence from neuropsychological studies, which supports
a deficit in the processing of pleasant stimuli after damage
to the left dorsolateral area [53], whereas bilateral lesions
of the ventromedial prefrontal cortex are associated with
inability to anticipate the rewarding consequences of an
action [54]. Neuroimaging studies with healthy adults have
also reported [55] activation in the right frontal region
during withdrawal-related negative affective states. However,
despite the great amount of studies investigating the laterality
of emotional processing in the frontal cortex, the function
of the medial frontal cortical structure has not been studied
so thoroughly. The present study suggests that the analysis
of temporal changes occurring in this area reveals an effect
of the emotional valence of the stimulus during the early
processing (N300–400 component), since the activation of
the defense system (unpleasant pictures) elicits greater delta
activity in comparison to the activation of the appetitive
system (pleasant pictures).

Finally, the results suggested that the positive peak that
occurred almost 350 ms after stimulus onset mainly on
parietal locations resulted in a strong arousal effect. Arousal
effects on delta oscillations were also found for later positive
(P400–500 and P1200–1500) and negative components
(N1100–N1200). A substantial portion of P300 variation
appears to be caused by fluctuations in the arousal state of the
participants [56]. A more recent study using IAPS pictures,
demonstrated that the emotional stimuli elicit a more
positive wave in the P300 area than neutral stimuli. Further
evidence is provided by studies that showed enhanced P300
responses to alcohol and smoking-related cues in alcoholics
and smokers respectively [57, 58]. On the other hand, time-
frequency analysis of task-related and rare stimuli yielded
a later delta coefficient with a parietal predominance [59].
These findings are further supported by findings that suggest
the contribution of delta activity to P3b expression [60].
Furthermore, a more technical study [61] demonstrated that
P3b components have a more centro-parietal distribution.
Indeed the results reported above mention a main effect of
arousal 450 ms after stimulus onset. However, the latency of
this response is delayed in comparison to the ERP occurrence
and it also follows the parietal delta response.

The results of this piece of work provide some evidence
towards the confirmation of the authors’ hypothesis, that
human emotional state and its associated brain processing
related to and affects delta frequency activity. However, the
relatively small number of electrodes used in the experimen-
tal recordings pertains to certain limitations [4, 37], since the
spreading effect of the low conductivity skull cannot convey
on detailed information of the scalp distributed potentials.
So, there is a need for further research in this field with
more accurate recordings, which will disclose effectively the

scalp distributed phenomena occurred by emotional visual
stimuli. It is also expected that the full intraband compar-
ison will delineate the human brain emotional processing
characteristics in a more comprehensive way. Nevertheless,
the results presented here regarding the affection of delta
oscillations by emotional stimuli cannot be overlooked.

In conclusion, to the best of our knowledge, this is
the first study concerning the relation of delta oscillations
(in terms of peak amplitude analysis and synchronization
effects) and emotional processing triggered by visual stimuli
from the IAPS collection. The results obtained here denote
the important role of emotional processing in delta wave
modulation. However, further research is needed in order to
extend the interaction of two emotional dimensions (valence
and arousal) with the subject’s gender and their effect on
other bands and characteristic oscillations.
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1. Introduction

Nowadays, publications alone are not enough to coher-
ently increase our knowledge of the mathematical methods
applied in neuroscience. To foster the progress on that
field, the efficient mechanisms of sharing the experience of
scientific teams are needed. The NEUROMATH is an action
in which the scientists are called to harmonize their efforts in
order to offer a comprehensive approach to the problem of
the estimation of brain activity and connectivity for sensory
and cognitive behavioral tasks. For solving this problem, the
optimal mathematical methods has to be designed and tested
on the large databases, which require efficient mechanisms
for sharing resources. The problem of an efficient application
of internet databases for sharing computational resources
was approached, for example, in [1] where the practical
barriers to progress on that field were identified.

This paper proposes working solutions to these issues,
implemented and working for several years in the EEG.pl
portal with the semantic-aware search scheme for intercon-
necting portals. The structure and layout of EEG.pl (except
for the interportal search), at least of the part dedicated to
sharing software, can be found in the recently started Soft-
ware Center of the International Neuroinformatics Coor-
dination Facility (http://software.incf.org/). When adopted
within the NEUROMATH framework, these solutions will
foster the cooperation between the groups and consolidate

their efforts to the aim of designing the optimal methods for
estimation of brain activity and connectivity.

2. EEG.pl Open Repository

EEG.pl is a portal dedicated to sharing software, models,
and data related to EEG and local field potentials. It is
open to anybody interested in making relevant items freely
available or downloading resources shared by others. Only
submission of material requires free registration; browsing
and downloading is available to anybody. The invitation on
the first page states:

EEG.pl is an open repository for software, pub-
lications and datasets related to the analysis
of brain potentials: electroencephalogram (EEG),
local field potentials (LFPs) and event related
potentials (ERP), created to foster and facilitate
Reproducible Research in these fields.

You can freely search the content of this and
other thematic vortals linked via the Interneuro
initiative. As a registered user you can submit
your article, data or model. Registration and
submissions are free. You can also comment and
respond to comments on any of the published
items.
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User enters 
the query 

(2) Query is translated 
into universal 
format (SOAP) 
and sent to all 
participating sites  

(3) Each site executes 
local query 

(4) Each site 
returns 
results 

(5) Results are 
aggregated 
and displayed 

(3) Each site executes 
local query 

(4) Each site 
returns 
results 

(1) 

Figure 1: Information flow during the distributed search according to the InterNeuro scheme.

There are also Disclaimers: none of the organizations or
individuals supporting or maintaining this site is responsible
for the content provided by users and any damage which may
result from its application. In particular, we do not provide
any virus scanning for the binaries available as “software”. We
do not peer-review submitted material, just retain the right
to reject irrelevant or low quality submissions. We believe in
opinions of the Neuroscience Community, expressed hereby in
the comments which users can attach to any of the published
items. We believe that these comments provide most objective
evaluation.

During over five years of experience in running this
service, we learned two major lessons.

(1) The software framework and chosen solutions are
stable and caused no problems while retaining large
amount of flexibility to both the administrator and
the users.

(2) EEG.pl is not the only resource of this kind, and the
response of the community was not as widespread as
expected.

The latter issue calls into attention the issue of
interoperability with other portals. This can be achieved
within the “Interneuro” framework, described in
http://www.eeg.pl/documents/about connections. Below we
briefly recall the ideas underlying the semantic-aware search,
which is the key feature in this scheme.

3. Semantic Aware Search

Semantic-aware search—contrary to the search provided by
typical Internet-wide search engines like Google—indexes
not only simple keyword data but also the meaning of

the data. In case of books, that metainformation would
include the author, creator, title, major keywords, and
references. In general, the choice of metainformation is not
trivial. Fortunately standards exist which regulate naming
and scope of metainformation attributes. One of the most
popular standards in this field is the Dublin Core (DC)
standard. The DC specification is developed and maintained
by “The Dublin Core Metadata Initiative” (DCMI), an “open
forum engaged in the development of interoperable online
metadata standards that support a broad range of purposes
and business models.” The full specification of the DC
standard may be found in [2]. Here we will summarize only
the most important elements of the DC metadata.

Type “The nature or genre of the content of the resource”—
this may be a text (paper, article, preprint); a software
item (i.e., a description of a freeware or commercial
software piece); a dataset (i.e., an experiment collected
time series in a well know format).

Title “A name given to the resource”, for example, in case of
a paper—its title.

Identifier “An unambiguous reference to the resource
within a given context”; the identifier does not have to
have a sensible meaning to a human being; “it is simply
a unique token identifying the resource”, for example,
a URL.

Creator “An entity primarily responsible for making the
content of the resource”—that is, a person, an orga-
nization, or a service.

Description “An account of the content of the resource”—
abstract, table of contents, reference, and so forth.
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<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP- 
ENV="http://schemas.xmlsoap.org/soap/envelope/" ...> 

<SOAP-ENV:Body>
<NeuroQuery>

<QueryTypexsi:type="xsd:string">Software </QueryType> 
<FullTextQuery xsi:type="xsd:string">

        some pattern here
</FullTextQuery>
<search xsi:type="SOAP-ENC:Array" 
SOAP-ENC:arrayType="ns1:searchcrit[3]">

        <item>
          <pname>DC:creator</pname>
          <pvalue>regexp</pvalue>

     </item>
        <item>
          <pname>DC:title</pname>
          <pvalue>regexp</pvalue>
        </item>
        <item>...</item>
      </search>

<searchlogic xsi:type="xsd:string"> AND </searchlogic>  

<datebeg xsi:type="xsd:string"> 2002-01-01</datebeg>
<dateend xsi:type="xsd:string"> 2002-01-01</dateend>

    </NeuroQuery>
  </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Indicates the DC object 
type: Software ; Dataset ; 
etc.
This  component is for  

"full-text" search 
The third  component 

specifies   universal "by-
DC-attribute" search 

and so on for other DC 

attributes 

either AND or OR

Date conditions further 

limit the search scope

Figure 2: SOAP query.

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"

...>

<SOAP-ENV:Body>
<NeuroQueryResponse> 

<statusxsi:type="xsd:int">0 
</status>

<resultsxsi:type="SOAP-ENC:Array"
 SOAP-ENC:arrayType="ns1:res[3]">

<item
rdf:about="http://www.eeg.pl/somepaper">

 <title>A fine paper 
   on EEG</title>
  <dc:date>2003-06-23</dc:date>
  <dc:title>Analysis of EEG
   signas</dc:title>
  <dc:description>some info
   here</dc:description>
...
</item>

 ...
</results>

</NeuroQueryResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

General status, e.g. 0 - OK, <0  -   
error 
because  more than one record 
may be returned an SOAP array 
is used here
First result tuple

 More attributes here 

More  result tuples

Figure 3: RDF response to the query from Figure 2.

Subject “The topic of the content of the resource”—
keywords, key phrases, and classification codes that
describe the resource.

DC defines also a handful of other attributes, like time and
date information, information about the publisher, more
data about the content itself, and so forth. Sophisticated

distributed search mechanism is around it. With metainfor-
mation standardized, there is no longer an issue of“what to
search for?”, only an issue of “how to search?” (technically)
remains.

For the low-level implementation of queries we have
adopted the SOAP/RDF XML [3] based standards for
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describing queries, and results. As a consequence, the HTTP
protocol [4] is used for transporting the query and the
response over the network.

The search service is build around the distributed P2P
paradigm: each portal is both a client and a server, that is,
is able to formulate and send the queries as well as listen for
search requests and to answer them. The rationale for using
SOAP/RDF/XML is the following.

(i) SOAP/XML is portable and both platform, and
system independent.

(ii) SOAP/XML and SOAP over http are defacto standards
for building distributed applications.

(iii) SOAP is simple—there is no heavyweight software
required to generate and parse it.

(iv) There is a multitude of XML parsers and tools
available (both commercial and open-source), so
building software compatible with our format should
not be a technical problem.

The process of executing a distributed query, illustrated
also on Figure 1, is executed as follows.

(1) User enters the query: he/she connects to one of
the cooperating sites (e.g., http://eeg.pl), chooses
“advanced search”, enters the search phrase(s), marks
the “external search” check box, and clicks the search
button.

(2) Query is translated into universal format (SOAP/
XML) and sent to all participating sites.

(3) Each site executes local query.

(4) Each site returns results.

(5) Results are aggregated and displayed to the user.

The format of queries and returned results is based upon
(Simple Object Access Protocol SOAP) [3]—a stateless,
message exchange paradigm based on XML. In simpler
terms, SOAP is a mechanism similar to (Remote Procedure
Call RPC) based on open standards: the remote object access
(or a “procedure call”) is express purely in XML notation; the
same applies to returned results. A SOAP message consists
of an outermost envelope, an optional header, and body.
From the logical point of view the body consists of a
remote objects’ (or procedures’) identifier and parameters.
The SOAP standard describes how parameters should be
represented, serialized, and encoded. SOAP defines both a
method for encoding simple types (strings, integers, etc.) as
well as complex types such as arrays and structures. In case of
the remote search employed in Interneuro a relatively simple
query is used: only string type parameters representing DC
attributes are passed—see Figure 2.

The result is generated and recorded as an RDF serialized
(encoded) in SOAP response—see Figure 3. RDF stands
for Resource Description Framework [3], a language for
representing information about resources in the World
Wide Web. RDF, similarly to SOAP, is based on XML. It
is particularly intended for representing metadata about
web resources, such as the title, author, and modification

date of a web page. RDF is intended for situations in
which information needs to be processed by applications,
rather than being only displayed for people. RDF provides a
common framework for expressing this information so it can
be exchanged between applications without loss of meaning.

Implementation of the EEG.pl portal is based on the
Zope/CMS/Plone (http://plone.org/) free application ser-
ver/content management/portal engine. Although Zope/
Plone provides some mechanisms for distributed communi-
cation between different sites (RPC-over-XML) it currently
lacks SOAP/RDF support as such. We have used ZOPE’s tem-
plate mechanisms and programming capabilities to develop
a distributed search component. The software is written in
Python (a default development language for ZOPE, in which
the whole system is actually written) and freely available as
ZOPE package (technically ZOPE “product”). These software
components are freely available from http://eeg.pl.

4. Conclusion

We presented a working solution to some of the problems
encountered in the integration of the efforts of scientific
teams, such as the participants of the NEUROMATH action.
Proposed approach answers the need of a computational
platform for sharing resources.

EEG.pl portal and the semantic-aware search scheme
provide a solution to the major problem of information
noise, which sometimes overweight advantages of the Inter-
net in scientific communication. Our solution lies in between
the two extrema of the absolute centralization and a complete
decentralization. Disadvantages of one central repository of
information are obvious, but, on the other hand, Semantic
Web and superintelligent software agents, creating structure
from the chaos, are still more of buzzwords than reality.
We propose a humble compromise. As presented, relevant
information can be gathered in specialized repositories of
possibly well-defined scope. Owing to this specialization,
these relatively small services can assure the quality and
proper annotation of resources. Seamless integration of these
small repositories into a significant knowledge base can
be effectuated by the connection paradigm presented in
this paper. More technical details and a complete software
implementation of this solution are freely available from
http://eeg.pl.
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1. Introduction

When studying mental disorders researchers have primarily
focused on gathering data, that is, the approach is basically
empirical. In recent years, this has often been performed with
advanced technical equipment. On the other hand, analysis
of data often consists of rather elementary statistics, where
comparisons are performed through testing hypotheses.
There is also a growing literature on dynamics and non-
linear modelling, in particular for EEG data, but very rarely
it is distinguished between individual and within individual
variation. To some extent, technology is far ahead of analytic
tools and explanatory theories. The research mainly relies on
the following well known paradigm: (i) make a model of the
phenomenon under study; (ii) collect data by an experiment
or sample survey; (iii) test the model using data; (iv) refine

the model and restart. The weak point is of course the
knowledge about the model. Einstein once rather drastically
pointed out: “A theory can be proved by an experiment but
no path leads from the experiment to the birth of a theory.”

This paper is unique in so far that many researcher
from many disciplines have met and discussed depression
from different perspectives. The paper delivers a lot of
bricks, but no house is built. In fact, an architect is missing.
The aim of the paper is to share our experiences of a
multidisciplinary view where hopefully empirically oriented
researchers, as well as those who are more deductive can
find new perspectives in modelling depression. Indeed, the
project is a novel approach to help to uncover a serious
mental decease, which would be hard to carry out within
commonly structured academic institutions.
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Problems in Classifying and Modelling Major Depression. The
use of the current classification schemas, including DSM-
IV, undoubtedly contributes to the difficulties in finding
genes and biological variables for psychiatric disorders. They
are based on clusters of symptoms and characteristics of
clinical courses that do not necessarily describe homogenous
disorders, and rather reflect common final pathways of
different pathophysiological processes [1].

Moreover, biological variables and behaviours may not
be associated on a simplistic, one-to-one basis; the true
relationship between, for example, a gene and a behaviour,
is probably more akin to the sensitive dependence on initial
conditions in chaos theory. For example, there is presumably
no gene for ’language’. Instead, there is a number of genes
that pattern the embryonic brain in such a way as to facilitate
and allow the physiological processes necessary for language
acquisition. In a similar manner, no gene has been found
to singularly code for a human psychiatric condition. To
understand the pathogenesis and neurobiology of depression
multidisciplinary research is necessary.

A strategy to overcome the methodological difficulties
mentioned above is the proposal of putative endopheno-
types. The term “endophenotype” was described as an
internal phenotype (i.e., not obvious to the unaided eye) that
fills the gap between available descriptors and between the
gene and the elusive disease process [2], and therefore may
help to resolve questions about etiological models. Modelling
Major Depression must be based on the state of art of
knowledge of which psychopathological characteristics that
are biologically and clinically meaningful and can be assessed
quantitatively.

The endophenotypes may be defined at two levels, (a)
the key components of major depression, that is, kern
symptoms and stress sensitivity and (b) biological endophe-
notypes Not surprisingly, studies on the biological basis of
depression have found stronger associations between specific
biological dysfunctions and certain components of major
depression symptoms, such as cognitive deficits, rumination,
psychomotor retardation, anhedonia, and lowered mood
have been associated with specific focal abnormalities of
regional cerebral blood flow (CBF; [3, 4]). Thus, biological
variables strongly related to key components are defined as
biological endophenotypes.

The key components of major depression are: (1) Depressed
Mood (Mood Bias Toward Negative Emotions), (2) Anhedonia
(Impaired Reward Function), (3) Impaired Learning and
Memory, (4) Neurovegetative Signs, (5) Diurnal Variation, (6)
Impaired Executive Cognitive Function (Response Speed), (7)
Psychomotor Change (Retardation, Agitation), (8) Increased
Stress Sensitivity (Gender Specific).

The biological endophenotypes are: (1) REM Sleep, (2)
Abnormalities in Brain Structure and Function (Functional
imaging, Structural imaging, Receptor pharmacology, Sero-
tonin, Dopamine, and Norepinephrine), (3) HPA Axis and
CRH, (4) Intracellular Signalling Molecules (Neurotrophic
factors, Ubiquitous signalling cascades).

In this paper we describe some potential biological
endophenotypes, such as circadian rhythms, EEG findings
and animal models. It is obvious that there is no simple

model for depression, rather many complex models based on
various scales from a micro-, meso- and macro perspective.

Finding appropriate models for mental disorders is
the ultimate goal and we believe that for this purpose
relevant inter-/multi-disciplinary knowledge is necessary. In
this paper, we will briefly mention some advanced linear
statistical models, which are useful when studying circadian
rhythms (Sections 2 and 3), some ideas about complexity
in signals (EEG data, Sections 4 and 5), and we also
consider animal models (Section 7), which are important
in generating models for humans. Moreover, four different
examples which comprise EEG data are presented (Sections
6, 8, and 9).

2. Circadian Rhythms, Melatonin,
and Bright Light Therapy

Circadian rhythms control, among other things, appetite,
energy, mood and sleep. The study of these rhythms dates
back to the 19th century. From about 1980 one began to
study changes in physical strength, aerobic capacity, blood
pressure, mental alertness, and secretion of neurotrans-
mitters and hormones. Depression was then studied in
relation to the disruption of biological clocks. In Seasonal
Affective Disorder (SAD) the mood is closely connected
with circadian rhythm disorder. Moreover, it seems that the
Suprachiasmatic Nucleus (SCN), which may be viewed as a
master clock of the body, has difficulties to follow the changes
in the day and night cycle. A support for this hypothesis is
the production of the hormone melatonin and its relation
so SAD. Melatonin is produced by pinealocytes in the pineal
gland, which is under the influence of SCN and is suppressed
by daylight.

More than 20 years ago, depression was studied in
relation to various hormones, in particular melatonin. Mela-
tonin peak level was found lowered in acutely ill depressed
patients, who also had hypercortisolemia and an abnormal
dexamethasone suppression test in comparison to healthy
subjects. The melatonin peak levels remained low when these
patients were re-examined during remission, whereas the
changes in the hypothalamatic-pictiutary-adrent-cortex axis
disappeared (see Wetterberg et al. [5], Beck-Friis et al. [6]).
Therefore, melatonin levels may be viewed as biomarkers for
depression.

During the 1980s, Bright Light Therapy (BLT) was
introduced with a clear therapeutic effect on approximately
85% of the patients with SAD, as well as on patients with
bipolar disorder. Most studies support that BLT normalizes
circadian rhythms, that is, the phase and the melatonin level
(amplitude) may vary between individuals, as well as states
of physiological conditions and disorders (cf. [7, 8]).

It is important to have appropriate designs of experi-
ments, strong statistical/mathematical tools, and specialized
knowledge concerning the hormones under investigation.
For example, the effect of age, gender, body weight/height
on the melatonin level is important to take into account.
Initially, circadian melatonin rhythms were analysed with
ordinary regression analysis and trigonometric functions.
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Studies were often designed so that around 10 serum
measurements per individual were taken over the day and
night cycle. Usually between 10 and 50 individuals from
different diagnostic groups, including a control group, were
studied with an aim to compare the treatment groups with
respect to the hormone profile over the day and night
cycle. The main problem is that melatonin is not stable
in serum, since it is rhythmically released within relatively
short time intervals. With a sampling strategy of about 10
measurements over 24 hours the release of melatonin is
impossible to capture and the variation will be built in as a
measurement error.

3. Statistical Repeated Measurements Models
for the Analysis of Circadian Rhythms:
An Example of Linear Models Analysis

Since there are often repeated measurements on individuals
in depression studies one has to apply some of the repeated
measurements tools that nowadays are available, and not
use standard regression methods. The difficulty lays in
finding an appropriate model for the covariance structure
within individuals. A conservative approach is to assume an
arbitrary covariance matrix and if melatonin sampling has
taken place at the same time points for all individuals we
may apply the classical Growth Curve model due to Potthoff
and Roy [9] or generalized Growth Curve models (cf. Kollo
and von Rosen [10, Chapter 4]). Otherwise, we may rely
on mixed linear models analysis (cf. Fitzmaurice et al. [11])
with random parameters, which is suitable for analyzing
short time series. However, this approach usually gives only
asymptotic correct results.

Nowadays, for example, melatonin is often sampled via
an inserted indwelling intravenous catheter and samples
are collected every, say, 15 minutes. This calls for more
advanced methods than the suggested analyses above, which
are extensions of classical multivariate variance analysis. New
methods have to be developed in order to estimate melatonin
profiles and to perform rigorous significance tests. Of course,
one can always create summary statistics, but it is challenging
to make use of the full sampling resolution. In the future,
we will probably see more of high-dimensional statistical
analysis or stochastic process approaches.

4. Techniques for Identifying
Depression from EEG

An even more advanced method than to model high-
resolution hormone samples is to study bio-signals, such
as EEG and sometimes EEG in addition to hormones, in
particular when assessing BLT. The information from EEG
is of a completely different type than, for example, serum
melatonin concentration, and it is important to study these
often nonstationary time series.

As behavioural alterations are based on neurophysiology,
behaviour should be studied in association with brain
activity correlates—single neuronal discharges, local field
potentials and EEG/ECoG. In other words, the behavioural

changes in food intake, sleep patterns, work habits and
general motor activity are quite conspicuous in depression,
in humans as well as in animals, and may be quantified
with changes in EEG. Moreover, antidepressant treatments
(drug therapy, moderate physical exercise, electroconvulsive
shock) reverse more or less the EEG changes found in
human depression, or in certain animal models of depres-
sion. In this way, brain lateralization effects of depression
are electrophysiologically evident. The brain-rate param-
eter may serve as an effective integral indicator of these
changes (Pop-Jordanova and Pop-Jordanov, [12]). Neuronal
models and other approaches for electroencephalograph-
ically identifying/quantifying depression may act comple-
mentarily. In order to refine the treatment procedure,
we may suggest more specified electrocortical stimulations
in an animal model, and various analyses in complex-
ity of acquired electrical brain signals by multichannel
chronic recording techniques with telemetry technology
(Culic, [13]).

5. EEG Signals and Complexity Measures:
An Example of Non-Linear Analysis

In EEG signals, the classical statistical approach of inter-
preting measurement errors as generators of uncertainty
is not valid. For EEG, most of the noise seems due to
model error, which cannot be considered to be random.
We have not seen any EEG model where residuals are
completely randomly distributed around a fitted model.
This may be due to dependence structures but it is not
clear how to estimate this dependency in non-stationary
series. Therefore, it is reasonable that when studying EEG
completely different tools than classical statistical ones are
advantageous. For example, non-linear dynamic models
may play an important role. Moreover, the number of
used electrodes is important. With many electrodes we can
analyze spatio-temporal models, that is, brain-maps. Below,
a non-linear method of complexity analysis is presented. For
references to other non-linear methods for studying complex
EEG signals, see Freeman [14] and Perlovsky and Kozma,
[15].

Methods that assess signal complexity, like fractal and
symbolic methods, may be suitable. For example EEG-signal
complexity measured by Higuchi’s fractal dimension in time
domain, Df (t), is proposed in assessing BLT for treatment
of SAD (cf. Klonowski [16]). Df (t) is calculated for EEG-
signal on each electrode on the scalp and then a spatio-
temporal map of complexity measured by fractal dimension
can be made. The term ‘fractal dimension’ may have different
meanings, so it is necessary to emphasize thatDf (t) measures
local complexity of the curve representing the given signal—
a simple curve has always a dimension equal to 1, while a
plane has a dimension equal to 2, so local complexity of a
curve on a plane may be characterized by a number between
1 and 2, with 2 corresponding to pure noise (the curve “filling
up” the whole plane). For assessing signal complexity using
Higuchi’s Df in time domain it is not important if the signal
is “really” chaotic (which makes the curve that represents the



4 Computational Intelligence and Neuroscience

signal showing fractal properties), and neither deterministic
nor random.

6. Example 1: An Example Where
Complexity is Studied

To illustrate a non-linear analysis technique, the EEG from 10
patients suffering of SAD and treated with BLT, was analyzed.
The data were collected before and 2 weeks after BLT was
applied. It was demonstrated that in patients suffering of
SAD, the mean Df of the EEG-signal was smaller than in
healthy subjects—BLT increased the mean value of Df in
those suffering of SAD (cf. Klonowski et al. [17]). For every
patient epochs with a duration of approximate 20 seconds
length, starting about 5 seconds before eyes-opening and
ending about 5 seconds after eyes-closing were analyzed.
When an eyes-opening event occurred, the fractal dimension
of the EEG-signal (based on windows of 100 observations)
increased from 1.1–1.3 to 1.5-1.6 in the occipital channels
and even to 1.8 in the frontal channels. This increase is
denoted by Δo. When the eyes remained open, the fractal
dimension diminished, and rose again when an eyes-closing
event occurred; when the eyes remained closed, it diminished
again. This decrease is denoted by Δc.

The open-/closed-eyes fractal dimension ratio (FD-
ratio), that is, Δo/Δc was investigated. For a clinical assess-
ment of the patients the Hamilton Depression Rating Scale
(HDRS), [18] was used It was observed that in EEG of
healthy subjects the FD-ratio was close to 1, while for patients
with high HDRS the FD-ratio differed from 1.0. For SAD
patients the FD-ratio was compared with HDRS before and
after BLT. For those patients for whom HDRS diminished
after BLT the FD-ratio “normalized”—it became closer to
1.0.

In the material mentioned above, there was a focus on
possible BLT effects on the EEG. One of the main problems
of studying depression is that patient groups are very inho-
mogeneous with a strong individual component of response.
Besides this, there are covariables such as age, gender and
body height/weight which influence the measured response.
Moreover, patients may have used medicines which even after
wash-out periods may have an effect on the results.

As a complement, one can consider ADHD children.
They constitute an interesting group, since they usually have
not undergone pharmacological treatment, and therefore
could be used as a control group (Zorcec et al. [19]).
However, in order to propose initial theories, the best is
probably to start with animal models.

7. Animal Models for Developing
Antidepressive Treatment:
A Short Introduction

The overall goal is to understand the interplay between
structural, chemical, and electrical signals in the brain,
which gives rise to a depressed behaviour in humans. In
particular, studies of animal models of depression may be

important for performing screening tests to discover and
develop new antidepressant drugs. Moreover, animal models
are used to simulate and elucidate neurobiological aspects of
depressive illness—to induce anhedonia as a core symptom
of depression, or to a particular subtype of depression, and to
examine mechanisms of depressive syndromes and of various
acute and chronic antidepressive treatments (Mitchell and
Redfern [20]; Harro [21]; Sarbadhikari and Sankar [22];
Willner [23, 24]; Porsolt et al. [25]). For instance, disruption
of neurochemistry of the noradrenergic locus coeruleus (LC)
is at least one aspect of the pathophysiology of major
depression (Klimek et al. [26]). The mutual role of LC and
cerebellum is also bringing new information about motor
and non-motor cerebellar processing (Culic et al. [27]).
The fitness of an animal model depends on the similarity
with the human disorder with respect to symptomatology,
etiology, biochemistry, electrophysiology and response to
antidepressive treatment. It is of vital importance to fully
recognize the limitations of such models.

Certain behavioural or physiological responses, which
are supposed to be important for depression, are measured
in animal assay models. Examples of assay models are: muri-
cide, potentiation of yohimbine lethality or amphetamine-
induced hyperactivity, antagonism of apomorphine-induced
hypothermia, preferential reduction of kindled seizures initi-
ated from the amygdale, and facilitation of circadian rhythm
readjustment. Such models focus on the predictive value
for screening of new drugs and other treatments, without
trying to create a human disorder in the animal. On the
other hand, homologous animal models place less emphasis
on correlative approaches and rely more on construct and
face validity. They are based on resemblance to symptoms
of human depression although some symptoms can never
be mimicked in animals. Homologous examples include:
forced swim test, tail suspension test, electrolytic lesioning
of the dorsomedial amygdala, exhaustion stress, and chronic
mild/variable stress-induced anhedonia.

8. Example 2: An Example with
Experimental Neurosis in Cats

That EEG correlates of motivation and short term mem-
ory (STM) in cats during an approach-avoidance delayed
differentiation task were studied several decades ago (Psatta
[28, 29]). The preparatory (cue) stimuli were tone and
intermittent light stimulation (ILS), the delay of ten seconds,
and reinforcement was either food or pain. Under these con-
ditions, motivation changed from one trial to another. EEG
activity varying with motivation during the delayed period
was statistically confirmed. Changes occurred only in the
amygdaloidal and the hypothalamic nuclei. Changes signif-
icantly related to STM (either prolonged desynchronization
or ILS memory traces during the delay period) occurred
only in the cortical cognitive areas (Ectosylvius medius or
Marginalis posterior in cats). The electrical activity in the
Hippocampus had complex relationships. A prolonged theta
activity in the Dorsal Hippocampus (DH) accompanied by
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fast activity in the Ventral Hippocampus (VH) occurred
when STM was successful, attention sustained and the
motor response delayed. Occurrence of theta activity in
VH systematically accompanied the motor response. It was
concluded that hippocampus exerts a complex sensory-
motor integration. DH intervenes in the sensory processing
of information, by closing the thalamic gates. Any fast
activity (even short) in DH was accompanied by the loss of
STM correlates (weak, fast stimulations of DH also blocked
STM). VH exerts an inhibitory motor control on the frontal
cortex (by uncial fibers).

Depression occurred in five out of 13 investigated
animals, when the approach-avoidance conflict induced
manifestations of experimental neurosis (Psatta [30, 31]).
The most characteristic electrical change in these animals was
the constant occurrence of a mid-amplitude very fast rhythm
in both DH and VH. Thus depression was attributed to the
exaggerated inhibitory control of hippocampus induced by
the emotional conflict imposed. The experiment permitted
an exploration of the adrenergic/cholinergic ratio contri-
bution to the deviated behaviour. Administration of small
doses of Reserpine, reducing the cerebral amount of free
catecholamines, induced a reoccurrence of the theta rhythm
in the hippocampus and of the coordinated motor responses.
Further administration resulted in change in the appearance
of higher amplitude fast rhythms in the hippocampus and of
exhaustion type of depression.

It was concluded that there is an optimal monoamine
level (a narrow window) for which hippocampus acts nor-
mally. Administration of Nialamide after Reserpine restored
first theta activity and eventually the original aspect of mid
amplitude fast rhythms in the hippocampus (the anxious
type of depression). A choline-estherase inhibitor (eserine)
in small doses restored in the depressed animals both
the DH theta activity and the EEG correlates of STM
(the memory traces). In higher doses, Eserine induced
instead an extreme agitation of those animals (on a high
level cholinergic/adrenergic equilibrium). Atropine after
Reserpine induced a release of motor behaviour, but no
signs of performing STM. These experiments reveal the
difficulty of controlling depression by psychotropic drugs
administration. It is also outlined the difficult extrapo-
lation of these results in animals to experimentation in
humans in whom subcortical EEG investigation is not
possible.

In order to replicate the described experiment, the
authors tried the effects of Go-NoGo STM performances
in humans (using auditory click cue stimuli and slightly
delayed motor finger responses). They considered that
the rolandic reaction evidenced by EEG Spectral Reaction
Mapping was the equivalent of the cognitive cortical areas
response encountered in animals, whereas the N220/P300
components of the Auditory Reponses evoked by the click
stimuli, are the equivalent of the fast and slow rhytms
occuring in the Hippocampus in animals. N220 is larger
in NoGo, P300 is deeper in Go situations. Both these EEG
manifestations disappear in case of Temporal Lobe Epilepsy
(and Neurosis), and are enhanced in case of Frontal Lobe
Epilepsy (Psatta and Matei, [32, 33]).

9. Example 3: Exposure Experiments

Finally, we mention two different exposure treatment/
experiments which also indicate that EEG is appropriate to
study when investigating mental disorders.

Electroconvulsive therapy (ECT) is a treatment in which
seizures are electrically induced in anesthetized patients for
therapeutic purposes. ECT is most often used as a treat-
ment for severe major depression, where patients have not
responded to other treatments. Seizures may be monitored
by EEG, electrocardiogram (ECG) and electromyogram
(EMG). The course can be summarized as three events
of distinct and sequential phase patterns. The first event
contains high-voltage “sharp waves and spikes,” the second
rhythmical “slow-waves” and the third event an abrupt and
well-defined ending.

Most ECT studies have investigated the physiological
mechanism of action in relation to clinical response [34]. A
typical study runs as follows: subjects with unilateral elec-
trode placement according to the d’Elia method [35] receive
bi-directional pulse ECT; ECT is routinely administrated
three times a week for a period of 2–4 weeks; each time EEG is
recorded it covers the above mentioned three distinct phases.
Studies consist often of about 30 patients who are followed
5–9 times. This results in a huge data set with a possibility
to test several interesting hypothesis, for example “can one
subgroup depressive disorder with the aid of seizure data?”
Moreover, one problem with ECT is that it is not known
what happens in the brain during or after treatment. In order
to test various hypotheses of ECT effects (e.g., on neural
network connectivity by stimulation of nerve sprouting or
nerve deletion), computational models of cortical neural
networks may be useful (Gu et al. [36–38]).

Microwave exposure is a method in which the elec-
tromagnetic radiation at field power densities is much
lower than used in ECT is applied for treatment of mental
disorders. For example, mood improvement in patients with
bipolar depressive disorder has been reported at the field
power density within clinical magnetic resonance system
limits [39]. Exposure to 450 MHz microwave radiation
modulated at 1000 Hz frequency at the field power density
0.9 mW/cm2 has been shown to cause short-term alteration
in mood of major depressive disorder [40]. The experiments
were carried out on a group of depressive patients (18
females) and a control group of healthy volunteers (18
females) exposed by microwave radiation during 30 minutes.
Subjects with nonpsychotic major depressive disorder are
defined by ICD-10 criteria and determined by the 17-item
HDRS score (as in Example 1). The average HDRS score
for the group was 21 (s.d. 3.3). All the subjects passed two
experimental procedures—with exposure and sham. As a
subjective criteria of microwave effect, the Brief Affect Scale
(BAS) and Visual Analogue Scale (VAS) before and after
each exposure and sham procedure were used. The resting
9 channel EEG was recorded during the experiment.

As a measure for evaluation of the mood improvement
the spectral asymmetry index (SASI) as a combination of
the EEG beta and theta power was selected [41]. The BAS
revealed a minor improvement (11 subjects) in subjective
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mood score after exposure and VAS test revealed significant
change between scores before (average 33.3) and after (aver-
age 40.2) treatment for exposed subjects and no significant
change for sham exposed subjects.

The EEG analysis detected objective effects of the
treatment. The calculated SASI values were positive for
depressive and negative for healthy subjects. Correlation
between HDRS score and SASI values was 0.67. Exposure
to microwave during 30 minutes reduced SASI values for
depressive patients: average SASI value was 0.16 for exposed
and 0.19 for sham exposed recordings. The analysis revealed
statistically significant differences between exposed and sham
exposed patients. These preliminary results are promising
and the SASI method of EEG analysis for mood evaluation
as well as microwave exposure for treatment of mental
disorders need further investigations. Variations between
individuals and within individuals should be investigated
and experiments on different groups should be performed.

10. Concluding Remarks

In this paper we have focused on the neural understanding
of depression. The aim is to find a link between physiology
and mental disorders. There are several indications for such
links, for example between hormone levels and SAD. Also
EEG analysis reveals connections with SAD. In the future, we
hope to have found models that would manifest connections
between depression and bio-markers, bio-signals, and bio-
maps, such as hormone levels, EEG, fMRI, and so forth. To
achieve this goal statistical/mathematical theory has to be
developed together with experimental designs. In particular,
we have to learn how to take into account between and within
subject variations in spatio-temporal, parametric or semi-
parametric models.
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