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Jose L. López, Spain
Shiping Lu, China
Hongbing Lu, China
Li Ma, China
Ruyun Ma, China
Nazim I. Mahmudov, Turkey
Oluwole Daniel Makinde, South Africa
Francisco J. Marcellán, Spain
Guiomar Mart́ın-Herrán, Spain
Nicola Mastronardi, Italy
Panayotis Takis Mathiopouloss, Greece
Michael McAleer, The Netherlands
Stephane Metens, France



Michael Meylan, Australia
Alain Miranville, France
Ram N. Mohapatra, USA
Cristinel Mortici, Romania
Jaime E. Munoz Rivera, Brazil
Javier Murillo, Spain
Roberto Natalini, Italy
Srinivasan Natesan, India
Roger Ohayon, France
Javier Oliver, Spain
Donal O’Regan, Ireland
M. Ostoja-Starzewski, USA
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Computational mechanics has suffered significant develop-
ments in the last decades. Novel numerical models have
been proposed to model solid and fluid problems, as well as
to deal with solid-fluid interaction. Many of these methods
are based in a spatial description of the model by points
(such as in Meshless methods) or in enrichment strategies
of the classic finite element method (such as in the GFEM,
XFEM, or EFEM). In many cases, these methods became
more efficient and accurate than classical formulations and
are very competitive in applied mechanics. All contributions
included in this special issue address this challenging and
broad topic that we, as editors, have the pleasure to share with
the readers. We would like to thank all the authors for their
commitment in this issue, as well as the reviewers for their
critical and detailed assessment.

This special issue is composed of eight research papers
and one review paper. The covered subjects are very broad,
including topics such as fluid mechanics, solid mechanics,
and optimization problems. Below, a very brief overview of
the featured works is given.

The “Numerical study on the charge transport in a space
between concentric circular cylinders,” by Y. K. Suh and K.
H. Baek, addresses what the authors call essential elements
of numerical solution methods for the charge transport
equations.The authors argue on the uttermost importance of
maintaining the conservation property in convective terms
because of the numerical accuracy, in particular at low
reaction rates.

In the work entitled “A numerical scheme based on an
immersed boundary method for compressible turbulent flows
with shocks: application to two-dimensional flows around

cylinders,” S. Takahashi et al. develop a computational code
adopting immersed boundarymethods for compressible gas-
particle multiphase turbulent flows. A second-order pseudo
skew-symmetric form with minimum dissipationmodels the
turbulent flow region, while the monotone upstream-centred
scheme for conservation laws scheme is employed in the
shock region.

The paper by N. Pochai, entitled “Numerical treatment of
a modified MacCormack scheme in a nondimensional form of
the water quality models in a nonuniform flow stream,” makes
use of two mathematical models to simulate water quality in
a nonuniform flow stream.The author proposes an alteration
to the MacCormack method that is more accurate than the
classic method, without a significant loss of computational
efficiency.

The work by J. Eĺıasson, entitled “Eddy heat conduction
and nonlinear stability of a Darcy Lapwood system analysed by
the finite spectral method,” proposes a finite Fourier transform
to perform linear and nonlinear stability analyses of a Darcy-
Lapwood system of convective rolls. The author shows how
many modes are unstable, the wave number instability band
within each mode, the maximum growth rate (most critical)
wave numbers on each mode, and the nonlinear growth rates
for each amplitude as a function of the porous Rayleigh
number.

In the paper “Experiment and application of market-
based control for engineering structures,” by G. Li et al., an
experimental study on the vibration control of a single-
degree-of-freedom model is carried out to verify market-
based control (MBC) strategy effect. The authors’ results
reveal that the MBC strategy can reduce both displacement
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and acceleration responses. Additionally, the authors apply
the MBC strategy to a long-span bridge considering the
travelling wave effect.

M. Li et al. propose a quartic B-spline method for solving
linear sixth order boundary value problems in the paper
entitled “The numerical solution of linear sixth order bound-
ary value Problems with quartic B-splines.” Their method
converts the boundary problem to solve a system of linear
equations and obtains coefficients of the corresponding B-
spline functions. Two numerical examples are used to verify
the theoretical framework and validate the method.

The paper “A conjugate gradient method with global con-
vergence for large-scale unconstrained optimization problems,”
by S. Yao et al, proposes a conjugate gradient method that
is similar to Dai-Liao conjugate gradient method, but with
better convergence properties. This is shown using different
test problems.

B. Zhi and Z. Ma, in the paper “Path transmissibility anal-
ysis considering two types of correlations in hydropower sta-
tions,” present their research on disturbance- and parameter-
related transfer paths in a practical situation related to
hydropower station units and powerhouses.The authors state
that their results indicate that the proposed methods can effi-
ciently reduce the disturbance range and accurately analyse
the transfer paths of hydraulic-source vertical vibration in
hydropower stations.

Finally, a review paper by D. Soares Jr. and L. Godinho,
entitled “An overview of recent advances in the iterative
analysis of coupled models for wave propagation,” presents
an overview of the application of iterative procedures for
coupling between different methods in wave propagation
analysis. Both frequency- and time-domain analyses are
addressed in acoustic, mechanical, and electromagnetic wave
propagation problems.

Luı́s Godinho
Daniel Dias-da-Costa

António Tadeu
Delfim Soares Jr.
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Electrification is one of the key factors to be considered in the design of power transformers utilizing dielectric liquid as a coolant.
Compared with enormous quantity of experimental and analytical studies on electrification, numerical simulations are very few.
This paper describes essential elements of numerical solution methods for the charge transport equations in a space between
concentric cylinders. It is found that maintaining the conservation property of the convective terms in the governing equations
is of the uttermost importance for numerical accuracy, in particular at low reaction rates. Parametric study on the charge transport
on the axial plane of the annular space with a predetermined velocity shows that when the convection effect is weak the solutions
tend to a one-dimensional nature, where diffusion is simply balanced by conduction. As the convection effect is increased the
contours of charge distribution approach the fluid streamlines.Thus, when the conduction effect is weak, charge distribution tends
to be uniform and the role of the convection effect becomes insignificant. At an increased conduction effect, on the other hand, the
fluid motion transports the charge within the electric double layers toward the top and bottom boundaries leading to an increased
amount of total charge in the domain.

1. Introduction

When a dielectric liquid containing impurities is in contact
with a solid surface, a certain physicochemical process occurs
at the interface yielding free ions near the surface of the liquid.
Usually negative ions are adsorbed to the solid surface and the
positive ions are diffused away forming the electric double
layer (to be referred to as EDL). Since the positive ions are
mobile, they are convected by the fluid flow giving rise to
the streaming current, which is called flow electrification.
Problem occurs when they are accumulated in a certain
location downstream resulting in locally high electric-field
intensity which can cause electrical discharge, breakdown,
and local failure of the device employing the liquid transport.

Electrification becomes one of the key factors to be con-
sidered in the design of electrical devices utilizing dielectric
liquid (mineral or ester oil) as a coolant, such as power
transformers. Demand for increased capacity from the users
of power transformers tempts designers to increase the oil
flow rate for increased cooling capacity, which, however,

brings increased electrification and makes the device more
susceptible to the electrical failure.

Studies on electrification and discharge with full-scale
transformers were carried out by Higaki et al. [1, 2] and
Tamura et al. [3].They inserted numerous sensors tomeasure
the charge distribution within transformers and measured
the local leakage current through the solid surfaces. Higaki
et al. [1, 2] demonstrated that the point of maximum electric
field on the solid surface, calculated by solving the potential
equation with the leakage currents being used as the bound-
ary conditions, was consistent with the point of discharge
actually observed from the experiment. Tamura et al. [3]
presented a diagram in the parameter space where high flow
rate was shown to lead to electrical discharge.

In order to perform more fundamental studies,
researchers have considered simple experimental apparatus
other than actual transformers, which is easier to build
and easier to measure data with, such as electrical charge
tendency (ECT). In addition, how to interpret the measured
data in relation to the actual transformers is also an important
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issue in selecting suitable geometries for study. Most of the
initial studies focused on the flow between parallel plates
and circular pipes [4–7]. A spinning disk system was
used by Kedzia and Willner [8] and Gibbings [9] in their
experimental and theoretical studies on electrification.
In order to attain a fully developed flow in a compact
space Washabaugh [10] and Washabaugh and Zahn [11, 12]
used a circular Couette system. Moreau and Touchard
[13] conducted an experimental study to show that an
impinging jet can result in a surface current with an order
of magnitude larger than that with the parallel flow. The
swing cylinder system, where the inner cylinder shows
back-and-forth rotation, was also used in [14] to study
ECT.

With the simple flow apparatus in hand, researchers
can perform investigations on the effect of various factors
on the electrification independently. There are many factors
influencing electrification or ECT. They can be categorized
into two kinds, fluid/flow properties and electrical properties.
Included in the former are flow rate, geometrical features
determined by the fluid path, and fluid viscosity, while
in the latter electrical conductivity and permittivity are
the key elements; the operating temperature and material
degradation may influence many of these properties, such
as viscosity, conductivity and permittivity. Properties of the
pressboard such as chemical composition of the material
and surface roughness may also influence the ECT. General
understanding of the effect of various parameters on ECT
and design aspect for avoiding discharge in transformers was
given in [15, 16].

Touchard [17] and Touchard [18] included detailed kinet-
ics of wall surface reaction in the formulation of the charge
flux through planar and circular duct to attain a reason-
able matching with experimental data. Moreau et al. [19]
measured ECT for a flow passing through a filter made
of degraded pressboard to show that a degraded surface
enhances the charge accumulation and that small amount of
additive (i.e., BTA) can reduce ECT. The effect of additive
was further studied in [20, 21], and by using a flow-loop
apparatus, Bourgeois et al. [21] addressed the mechanism of
the enhancement of ECT in terms of the carboxyl group.
Aksamit and Zmarzly [22] also studied the inhibition of flow
electrification with the additive 𝐶

60
. Developing advanced

models for the wall reaction that can well fit the experimental
data is one of the most important issues in the study of
electrification. Cabaleiro et al. [23] and El-Adawy et al. [24]
for instance demonstrated that the wall-reaction constant
must be varied depending on the other parameters such as
flow rate in order to fit the experimental data. Cabaleiro et al.
[25] performed analysis on ECT within a shallow rectangular
duct with a more complex model for the wall reaction. Paillat
et al. [26] showed that inclusion of the effect of the fluid
shear stress in the physicochemical process at the interface
provides a much better agreement with experimental data
at high laminar Reynolds numbers. El-Adawy et al. [27]
conducted numerical simulation for the foundation of EDL
without the convection effect and calculated ECT in the
presence of fluid flow with source terms representing the
ion dissociation and recombination in the bulk. Kobayashi

et al. [28] paid attention to the competitive role of oil and
pressboard in the electrification process. Okabe et al. [29]
investigated the effect of the compounds in oil on ECT
and showed that increase of ECT was mostly caused by
the oxidation of sulfides. In [30], both the transient and
steady-state data of the electrification experiment could be
matched with the one-dimensional model for ion transport
by using a hybrid boundary condition, where a constant flux
as well as the flux proportional to the local ionic concen-
tration was employed. Due to environmental problems, the
electrical power industry considers using substitutive oils in
transformers. Paillat et al. [31] investigated experimentally
the electrification property of ester oil compared with con-
ventional mineral oil, in particular in terms of ECT. They
confirmed that charge accumulation with ester oil is one
or two orders of magnitude larger than that with mineral
oil.

Most studies on electrification evenwith simple geometry
have been performed experimentally and/or analytically, and
numerical studies, at least in a two-dimensional space, are
very few. In [13], numerical simulation was performed for the
impinging jet configuration by using the authors’ in-house
code. In [27], two-dimensional numerical simulation was
performed to investigate the transient development of EDL
and surface current by using comprehensivemodels incorpo-
rating ion dissociation and recombination of molecules not
only in liquid but also in solid. The authors also included
in their simulation the wall reaction model representing
the combination of cation in the solid and anion in the
fluid. In the second stage in their simulation they considered
a fully developed parabolic velocity profile to investigate
the time-dependent flow electrification. Their numerical
results are qualitatively in line with experimental results and
knowledge.

The main purpose of the present study is to develop a
two-dimensional numerical code and perform simulations
for charge transport in a confined space under a various range
of parameters. In particular, we select as the computational
domain the annulus between concentric cylinders, following
[10–12]. We are concerned with the axisymmetric secondary
flow developed on the axial plane at supercritical Reynolds
numbers. One of the most important issues to be addressed
in this study is the effect of nondimensional parameters on
the numerical solutions as well as their accuracy. Aside from
the one- and two-dimensional in-house codes, we also use the
commercial software COMSOL and exact and approximate
analytical solutions of the one-dimensional problem for
verification of the numerical solutions. The present in-depth
analysis of the characteristics of the equations governing the
charge transport in relation to the numerical solutions may
play an important role in the development of more practical
simulation codes and in interpretation of the numerical
results obtained either by an in-house or a commercial code.

2. Mathematical Formulation

We consider transport of a space charge density distributed in
an annulus space between two concentric circular cylinders
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of radii 𝑅
1
and 𝑅

2
, respectively, caused by diffusion, convec-

tion, and electrical conduction. The governing equations for
the problem can be written as follows:

𝜕𝑞
∗

𝜕𝑡∗
+ ∇
∗
⋅ J∗ = 0, (1a)

∇
∗
⋅ 𝜀E∗ = 𝑞

∗
, (1b)

𝜕u∗

𝜕𝑡∗
+ (u∗ ⋅ ∇

∗
) u∗ = −

1

𝜌
∇
∗
𝑝
∗

+ ]∇2
∗
u∗ + 𝑞

∗E∗,
(1c)

∇
∗
⋅ u∗ = 0, (1d)

where 𝑡
∗ is the time, 𝑞∗ the charge density, u∗ the fluid

velocity, 𝑝∗ the pressure, E∗ the electric field related to the
electric potential 𝜙∗ as E∗ = −∇

∗
𝜙
∗,∇
∗
the gradient operator,

and

J∗ = −𝐷∇
∗
𝑞
∗
+ 𝑞
∗u∗ + 𝜎E∗ (2)

the current density (or charge flux). Further,𝜌 is the fluid den-
sity, ] the kinematic viscosity of the fluid,𝐷 the diffusivity of
the species (i.e., charge carriers), 𝜎 the electrical conductivity,
and 𝜀 the electrical permittivity, all of which are assumed to
be constant in this study.

It is assumed that metals or pressboards in contact with
dielectric liquid create charges (or they may be adsorbed)
by certain chemical reaction, and we simply employ the
model used in [10–12] dictating that the charge flux from the
electrode surface to the liquid is proportional to the local
space charge density, reading

𝐽
∗

𝑟
= − 𝑘

∗

1
(𝑞
∗
− 𝑞
∗

1𝑤
) at 𝑟∗ = 𝑅

1
, (3a)

𝐽
∗

𝑟
= 𝑘
∗

2
(𝑞
∗
− 𝑞
∗

2𝑤
) at 𝑟∗ = 𝑅

2
, (3b)

where 𝐽∗
𝑟
denotes the radial component of J∗, 𝑞∗

𝑖𝑤
the wall

charge density at 𝑟∗ = 𝑅
𝑖
(𝑖 = 1 for the inner and 𝑖 = 2

for the outer cylinder surface, resp.), and 𝑘∗
𝑖
the reaction rate

at the surface 𝑖. Between the two cylinder surfaces, we could
connect a resistor and/or apply a potential difference, but in
this study we only consider a short circuit. So, the boundary
conditions for the potential read

𝜙
∗
= 0 at 𝑟∗ = 𝑅

1
, 𝑟
∗
= 𝑅
2
. (4)

We may apply no-slip and impermeable conditions on the
solidwalls surrounding the fluid. Boundary conditions on the
upper and lower ends of the domain will be addressed after
dimensionless equations are presented.

The fluid flow within the annulus can be assumed to be
created by two kinds of forcing; one is by the rotation of the
inner cylinder and the other by the so-called induced charge
electroosmotic effect. While the former is driven by the
boundary condition for the Navier-Stokes equation (1c), the
latter comes from the last term in (1c), that is, the Coulomb-
force term, which couples the fluid flow and the charge

transport problem. Apparently, the fluid velocity created by
the two effects contributes to the convection of the charge,
that is, the second term in (2).

As a first step in our series of studies on the charge
transport within an annulus, we in this paper focus on steady
and axisymmetric solutions. Then the azimuthal component
of the fluid velocity does not contribute to the charge
transport. Thus, even the circular Couette flow driven by the
inner cylinder’s rotation has no effect on the charge transport
when it is stable, which is relevant at low Reynolds numbers
exhibiting only the primary azimuthal flow (referred to as
steady circular Couette flow; see, e.g., Liao et al. [32]); here,
the Reynolds numbermay be based on the tangential velocity
of the inner cylinder and the gap between the two cylinders,
𝑑 ≡ 𝑅

2
− 𝑅
1
. As the Reynolds number is increased, the

primary flow becomes unstable and creates a secondary flow
in the axial plane (referred to as “steady axisymmetric Taylor
vortex flow”; Liao et al. [32]), which now plays an important
role in the convective transport of charge. It is this type of
flow that is used in the calculation of the convective terms
in the charge transport equation (1a); for more complex
supercritical flow regimes in the circular Couette flow system,
such as nonaxisymmetric flow and travelling waves, one can
refer to Koschmieder [33].

In the present study, convection due to the induced
charge electroosmotic flow effect is assumed to be negligible
compared with the effect of the secondary flow caused by
the flow instability mentioned above following El-Adawy et
al. [27]. This is valid in particular at low diffusivity of the
charge carriers,𝐷. Thus, we can decouple the fluid flow from
the charge transport problem and are allowed to impose
an arbitrary velocity field (but without losing the physical
relevance, of course).

Based on the above reasoning, we canwrite the governing
equations for the dimensionless charge density 𝑞 and the
dimensionless potential 𝜙 in dimensionless form as follows:

− [
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑞

𝜕𝑟
) +

𝜕
2
𝑞

𝜕𝑧2
] + 𝑃[

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑞) +

𝜕

𝜕𝑧
(𝑤𝑞)] + 𝑄𝑞

= 0,

(5a)

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜙

𝜕𝑟
) +

𝜕
2
𝜙

𝜕𝑧2
= −𝑞. (5b)

Here, (𝑟, 𝑧) = (𝑟
∗
, 𝑧
∗
)/𝑑, (𝑢, 𝑤) = (𝑢

∗
, 𝑤
∗
)/𝑈, 𝑞 = 𝑞

∗
/𝑞
∗

1𝑤
,

𝜙 = 𝜙
∗
/[𝑑
2
𝑞
∗

1𝑤
/𝜀], and E = −∇𝜙 = E∗/[𝑑𝑞∗

1𝑤
/𝜀] are

dimensionless variables. Further, we define J = J∗/(𝐷𝑞∗
1𝑤
/𝑑).

The dimensionless parameters 𝑃 = 𝑈𝑑/𝐷 and 𝑄 = 𝜎𝑑
2
/(𝜀𝐷)

may be considered as the ratio of time scales; 𝑃 = 𝜏dif/𝜏conv
and 𝑄 = 𝜏dif/𝜏cond, where 𝜏dif ≡ 𝑑

2
/𝐷 is the diffusion time

scale, 𝜏conv ≡ 𝑑/𝑈 the convection time scale, and 𝜏conv ≡ 𝜀/𝜎

the conduction time scale.
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Boundary conditions for 𝑞 can be written in terms of
the dimensionless radial component of the charge flux, 𝐽

𝑟
≡

−𝜕𝑞/𝜕𝑟 − 𝑄𝜕𝜙/𝜕𝑟, as follows:

𝐽
𝑟
= −𝑘
1
(𝑞 − 1) at 𝑟 = 𝑟

1
, (6a)

𝐽
𝑟
= 𝑘
2
(𝑞 − 𝑞

2𝑤
) at 𝑟 = 𝑟

2
, (6b)

where 𝑘
𝑖
= 𝑘
∗

𝑖
/(𝐷/𝑑), 𝑟

𝑖
= 𝑅
𝑖
/𝑑, and 𝑞

2𝑤
= 𝑞
∗

2𝑤
/𝑞
∗

1𝑤
; note that

𝑞
1𝑤

= 1. Boundary conditions for 𝜙 are simply

𝜙 = 0 at 𝑟 = 𝑟
1
, 𝑟 = 𝑟

2
. (7)

As for the conditions on the upper and lower boundaries
we apply zero gradient for 𝑞 and 𝜙:

𝜕𝑞

𝜕𝑧
=
𝜕𝜙

𝜕𝑧
= 0 at 𝑧 = 0, 𝑧 = ℎ, (8)

where ℎ corresponds to the dimensionless height of the
domain, that is, the recirculating flow cell, whose dimensional
quantity is defined as 𝐻; that is, ℎ = 𝐻/𝑑. In this study ℎ is
set as𝐻 = 𝑑 or ℎ = 1.

The fact that 𝜙 does not explicitly appear in (5a) maymis-
lead to the conclusion that (5a) is decoupled from (5b), but it
is not the case because it appears in boundary conditions (6a)
and (6b).

3. Analytic Solutions of 1D Transport
Equation

When the convection effect is neglected, wemay well assume,
in view of the boundary conditions, that solutions are
independent of 𝑧. Then the system of equations reduces to a
one-dimensional transport problem,where only the diffusion
and conduction effects are present:

𝑑
2
𝑞

𝑑𝑟2
+
1

𝑟

𝑑𝑞

𝑑𝑟
− 𝑄𝑞 = 0, (9a)

𝑑
2
𝜙

𝑑𝑟2
+
1

𝑟

𝑑𝜙

𝑑𝑟
+ 𝑞 = 0. (9b)

The general solution to (9a) takes the following form:

𝑞 = 𝐶
1
𝐼
0
(
𝑟

𝜆
) + 𝐶

2
𝐾
0
(
𝑟

𝜆
) , (10)

where 𝐼
0
and 𝐾

0
denote the modified Bessel function of

the first and second kind, respectively, of order zero, and
𝜆 = 1/√𝑄 corresponds to the dimensionless thickness of
EDL adjacent to the cylinder surfaces where charge is mainly
distributed. Eliminating the third terms on the left-hand side
of (9a) and (9b) and integrating the result twice with respect
to 𝑟 yield

𝜙 = −𝜆
2
𝑞 − 𝐶
3
ln 𝑟 + 𝐶

4
. (11)

Four constants, 𝐶
1
through 𝐶

4
, in (10) and (11) can be

obtained from the boundary conditions (6a), (6b), and (7) as
follows:

𝐶
1
=

−𝐾
02
+ 𝐾
01
𝑞
2𝑤

+ [(𝐾
02
/𝑠
1
+ 𝐾
01
/𝑠
2
) /𝜆
2
] 𝐶
3

𝐼
02
𝐾
01
− 𝐼
01
𝐾
02

,

𝐶
2
=

𝐼
02
− 𝐼
01
𝑞
2𝑤

− [(𝐼
02
/𝑠
1
+ 𝐼
01
/𝑠
2
) /𝜆
2
] 𝐶
3

𝐼
02
𝐾
01
− 𝐼
01
𝐾
02

,

𝐶
3
=

𝑠
1
𝑠
2
𝜆
2
(1 − 𝑞

2𝑤
)

𝑠
1
𝑠
2
ln (𝑟
2
/𝑟
1
) + 𝑠
1
+ 𝑠
2

,

𝐶
4
=
𝜆
2
[𝑠
1
𝑠
2
ln (𝑟
2
/𝑟
1
) + 𝑠
1
+ 𝑠
2
𝑞
2𝑤
]

𝑠
1
𝑠
2
ln (𝑟
2
/𝑟
1
) + 𝑠
1
+ 𝑠
2

,

(12)

where 𝑠
𝑖
= 𝑘
𝑖
𝑟
𝑖
, 𝐼
0𝑖

= 𝐼
0
(𝑟
𝑖
/𝜆), and 𝐾

0𝑖
= 𝐾
0
(𝑟
𝑖
/𝜆) are

constants.
For the case with 𝜆 ≪ 1, we are allowed to approximate

the governing equations and obtain the solutions in terms of
more familiar functions. We let 𝑞 = 𝑓(𝑟)/√𝑟 and then (9a)
becomes

𝑑
2
𝑓

𝑑𝑟2
− (

1

𝜆2
−

1

4𝑟2
)𝑓 = 0. (13)

Under the assumption of 𝜆 ≪ 𝑟 (thin-layer approximation),
we can ignore the second term in the bracket. Solving the
resultant equation is straight forward, and we arrive at

𝑞 =
1

√𝑟
{
𝑞
1√𝑟1 sinh [(𝑟2 − 𝑟) /𝜆]

sinh (1/𝜆)

+
𝑞
2√𝑟2 sinh [(𝑟 − 𝑟

1
) /𝜆]

sinh (1/𝜆)
} ,

(14)

where the unknown constant 𝑞
𝑖
stands for the value of 𝑞 at

𝑟 = 𝑟
𝑖
. Solution (14) is shown to be the same as that provided

in [10]. In fact, the solution form (14) can also be derived
from the leading order terms in the asymptotic expansion of
𝐼
0
and𝐾

0
in (10) for large argument [34]. Equation (11) is still

used for obtaining 𝜙 after 𝑞 is obtained from (14). Applying
boundary conditions (6a), (6b), and (7), we get

𝑞
1
= 1 −

(1 − 𝑞
2𝑤
)

𝑠
1
𝐵

, (15a)

𝑞
2
= 𝑞
2𝑤

+
(1 − 𝑞

2𝑤
)

𝑠
2
𝐵

, (15b)

where 𝐵 = (𝑠
1
+ 𝑠
2
)/(𝑠
1
𝑠
2
) + ln(𝑟

2
/𝑟
1
).

4. Numerical Solutions of Full 2D
Transport Equations

When the velocity field is arbitrarily imposed, we must use
numerical methods to solve the 2D charge transport problem
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governed by (5a) and (5b) under the boundary conditions
(6a)–(8). We performed two kinds of numerical simulation,
one using a self-developed (in-house) code and the other
using the commercial code COMSOL.

We briefly address first the numerical method employed
in the in-house code. Although the steady-state solutions are
our primary concern, we add the transient term to the left-
hand side of (5a) in order to facilitate the relaxation method.
There are two key factors in developing the numerical
schemes which must be borne in mind for the successful
run of the simulation, numerical instability and accuracy.
When convection is dominant, as is common in engineering
applications, the convection terms themselves become the
primary cause of the numerical instability when the central
difference schemes are used. For this reason, in this study
we employed the second-order upwind method to discretize
the convection terms. Secondly, numerical accuracy can be
maintained by constructing a variable grid system. Another
key factor affecting numerical accuracy turns out to be the
conservation property of the numerical schemes employed
for discretization of the equations. Using the conservative
formof the convection terms and employing the finite volume
method in discretization turns out to be of the uttermost
importance for maintaining the numerical accuracy.

Since 𝜆 usually remains very small, we expect thin layers,
that is, EDLs, near the surfaces 𝑟 = 𝑟

1
and 𝑟 = 𝑟

2
. To resolve

such thin layers, we construct fine grids there. Along the
radial direction, for instance, we use the algebraic function

𝑟 = 𝑟
1
+
[3 + 2𝑎

𝑟
𝜉 (3 − 2𝜉)] 𝜉

3 + 2𝑎
𝑟

(16)

for the range 0 ≤ 𝜉 ≤ 1, where 𝑎
𝑟
is a control parameter for the

variable grid along the radial direction; the case with 𝑎
𝑟
= 0

corresponds to no grid refinement and a larger value of 𝑎
𝑟

means finer grids near the surfaces. Usually we take 𝑎
𝑟
= 3 or

larger. We use a similar function for the variable grids along
the 𝑧 direction, where the refinement of the grids is controlled
by 𝑎
𝑧
, which is usually taken as 3.

Both 𝑞 and 𝜙 are defined at the point “0” (to be referred
to as 𝑞

𝑖,𝑗
and 𝜙

𝑖,𝑗
), the center of the grid cell being of the

size Δ𝑟0
𝑖
× Δ𝑧
0

𝑗
as shown in Figure 1. Before discretizing the

governing equation (5a), we first integrate it over the grid cell.
Then we use the central difference scheme in discretization
of the first-order derivatives for the diffusion terms at the
surrounding four points denoted as “𝑒,” “𝑛,” “𝑤,” and “𝑠” in
Figure 1. We then need to evaluate the values of 𝑞 at those
four points arising from the convection terms. As mentioned
before, choosing upwind methods in that evaluation is very
important in establishing numerical stability. In this work,
we employ the second-order upwind algorithm. For instance,
when the radial component of the velocity at the point “𝑒,”
𝑢
𝑒
, is positive, we construct the second-order polynomial in

𝑟with 𝑞
𝑖−1,𝑗

, 𝑞
𝑖,𝑗
, and 𝑞

𝑖+1,𝑗
and evaluate the result at the point

“𝑒” to get

w

r = r0i

n

0

s

r = rbi

z = zbj

z = z0j
e Δz0j

Δzbj

Δr0i

Δrbi

Figure 1: Notation for grid sizes, coordinates, and points in the
variable grid system.

𝑞
𝑒
=

−(Δ𝑟
𝑏

𝑖
)
2

𝑞
𝑖−1,𝑗

4Δ𝑟
𝑏

𝑖−1
(Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
)
+

(2Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
) 𝑞
𝑖,𝑗

4Δ𝑟
𝑏

𝑖−1

+

(2Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
) 𝑞
𝑖+1,𝑗

4 (Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
)

.

(17)

Similarly, when 𝑢
𝑒
is negative, the polynomial is constructed

with 𝑞
𝑖,𝑗
, 𝑞
𝑖+1,𝑗

, 𝑞
𝑖+2,𝑗

, and so on. The Poisson equation (5b)
for 𝜙 is treated in the same way as for the diffusion terms
in (5a). We use the backward Euler method to discretize the
transient term in (5a), which corresponds to the simplest
stable algorithm. Since the accuracy of the solutions is
independent of the time step Δ𝑡 chosen so as to make the
solutions converged, we take the larger time step if possible
to speed up the calculation.

The two algebraic systems of equations constructed in this
way are solved by using the SOR (successive-over relaxation)
method in a coupled manner. Relaxation parameter for (5a)
is usually taken as smaller than that for (5b) due to the
convection terms.

In the use of the commercial software COMSOL, we
employ two models, “transport of a diluted species” and
“electrostatics.”The original form of the model however leads
to numerical instability due to the fact that the conductivity
is set to be proportional to the charge density in the original
model, whereas in this study the conductivity is set to be
constant. So, we modified the model in such a way that the
conduction term is excluded from the charge flux J but treated
as a source. Boundary conditions (3a) and (3b), written in
terms of the flux, must also be modified for the same reason.
On the other hand, COMSOL allows us to use not only
the conservative but also the nonconservative form for the
convection terms. We will see that the nonconservative form
leads to significant errors compared with the conservative
form. The grid system is constructed on the same principle
as applied in developing the in-house code; that is, fine grids
are built near the cylinder surfaces to resolve thin EDLs.
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The velocity field we are interested in is the secondary
Taylor-vortex flow observed in the axial plane caused by
hydrodynamic instability. Instead of using the exact solution
of the secondary flow given from the numerical simulation
of the Navier-Stokes equations or the experimental measure-
ment, we set the flow in an arbitrarymanner but with physical
relevance if possible. For this, we assume that the axial plane
between the coaxial cylinders is occupied by the series of
spatially periodic flow cells. The velocity components 𝑢 and
𝑤 then can be written in a separation-of-variable form like

𝑢 =
𝜋𝜓 (𝑟)

ℎ𝑟
cos(𝜋𝑧

ℎ
) , 𝑤 = −

1

𝑟

𝑑𝜓 (𝑟)

𝑑𝑟
sin(𝜋𝑧

ℎ
) , (18)

where 𝜓 is a kind of stream function for the axisymmetric
velocity field. To determine the functional form of 𝜓(𝑟), we
assume that 𝜓(𝑟) is a quadratic function (or 𝑟𝑤 is a linear
function) of 𝑟 in the bulk, while 𝑟𝑤 exponentially approaches
zero as 𝑟 → 𝑟

1
or 𝑟 → 𝑟

2
. Then we let

𝜓 (𝑟) = 𝑐
0
+ 𝑐
1
𝑟 + 𝑐
2
𝑟
2
+ 𝑐
3
exp [−𝛽

1
(𝑟 − 𝑟
1
)]

+ 𝑐
4
exp [−𝛽

2
(𝑟
2
− 𝑟)] ,

(19)

where five unknown constants 𝑐
0
–𝑐
4
are determined from the

four restrictions

𝜓 (𝑟
1
) = 𝜓 (𝑟

2
) = 0,

𝑑𝜓

𝑑𝑟
(𝑟
1
) =

𝑑𝜓

𝑑𝑟
(𝑟
2
) = 0, (20)

and the normalization condition for 𝑤 on 𝑧 = ℎ/2,

𝜓 (𝑟
𝑚
) = −

𝑟
2

𝑚
− 𝑟
2

1

2
. (21)

Here 𝑟
𝑚
denotes the radial coordinate of the point in the bulk

on 𝑧 = ℎ/2 where 𝑤 vanishes; that is,

𝑑𝜓

𝑑𝑟
(𝑟
𝑚
) = 0. (22)

Note that the spatially averaged vertical velocity component
at 𝑧 = ℎ/2 (averaged over 𝑟

1
≤ 𝑟 ≤ 𝑟

𝑚
) is now 1. The two

parameters 𝛽
1
and 𝛽

2
control the boundary-layer thickness

near the cylinder walls, where the steep distribution of 𝑤
along the normal to the wall is expected; larger 𝛽

𝑖
means

a thinner layer. Figure 2 illustrates typical profiles of the
velocity component 𝑤(𝑟, ℎ/2) for different sets of 𝛽

1
and 𝛽

2
.

It clearly shows that larger 𝛽
𝑖
yields a thinner layer and each

wall-layer thickness can be controlled separately.
We have also prepared 1D code applicable to the

case where no fluid motion exists so that the convection
terms vanish. The numerical schemes are identical to those
employed in the 2D code except that the variables’ depen-
dence on 𝑧 has been removed in the 1D code.
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Figure 2: Typical profiles of the velocity component 𝑤 on 𝑧 = ℎ/2

given with three different sets of 𝛽
1
and 𝛽

2
.

5. Results and Discussion

The standard parameter set is given as follows [10]:

𝑅
1
= 76.2 [mm] , 𝑅

1
= 101.6 [mm] ,

𝜀 = 2 × 8.85 × 10
−12

[s ⋅ S/m] ,

𝑘
∗

1
≡ 𝑘
∗

10
= 2.84 × 10

−6
[m/s] ,

𝑘
∗

2
≡ 𝑘
∗

20
= 3.12 × 10

−6
[m/s] ,

𝜎 = 𝜎
0
≡ 20 × 10

−12
[S/m] ,

𝑞
∗

1𝑤
= 7.71 × 10

−3
[C/m3] ,

𝑞
∗

2𝑤
= 1.84 × 10

−3
[C/m3] .

(23)

The diffusivity is set at 𝐷 = 8.86 × 10
−11 [m2/s] in

Washabaugh [10]. However, in laminar flow with such a very
low diffusivity, numerical simulation in general requires a
very long time and the EDLs near the cylinder surfaces are
too thin to be effectively resolved by a reasonably fine grid
system. It also turned out that the conservation property
cannot be established with such low diffusivity. Since we
are concerned with laminar flow in this study, we assume
much higher diffusivity than the original value, usually in
the range 𝑂(10−5) ∼ 𝑂(10−6) [m2/s]. So, in this study we set
𝐷
0
≡ 10
−6 [m2/s] as the standard diffusivity. Increasing the

diffusivity is equivalent to decreasing the geometric scale as
can be seen from the definition of the twomain dimensionless
parameters, 𝑃 and 𝑄 appearing in (5a). Other parameters to
be varied here are 𝑘∗

𝑖
and 𝜎. So, we set the following: 𝐷 =

𝛼
𝐷
𝐷
0
, 𝑘∗
𝑖
= 𝛼
𝑘𝑖
𝑘
∗

𝑖0
, and 𝜎 = 𝛼

𝜎
𝜎
0
, where 𝛼

𝐷
, 𝛼
𝑘𝑖
, and 𝛼

𝜎

are multiplying factors.The reference velocity will vary in the
range 𝑈 = 10

−6
∼1 [m/s], and the control parameters for the
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Figure 3: Dependence of 𝑞
1𝑐
, the value of 𝑞

1
at 𝑧 = ℎ/2, on

the conservation property of the convection terms and the specific
form of the source terms in the charge transport equation given
from COMSOL simulation with the number of grid elements being
12,000. The diffusivity factor is set at 𝛼

𝐷
= 88.6 and the reference

velocity at𝑈 = 1 [m/s]. Solid lines with square symbols are given by
CN-SC (convection terms in a nonconservative form and the source
term written in terms of the charge), solid lines with circles by CN-
SE (convection terms in a nonconservative form and the source term
written in terms of the electric field), solid line with deltas by CC-
SC (convection terms in a conservative form and the source term
written in terms of the charge), and solid line with diamond symbols
by CC-SE (convection terms in a conservative form and the source
term written in terms of the electric field). The solid line without
symbols, 𝑞

1𝑐
= 0.534, denotes the numerical solution obtained by

the 2D in-house code.

velocity profiles will be set at 𝛽
1
= 𝛽
2
= 20, except where

otherwise mentioned.
Figure 3 shows the sensitive dependence of the numerical

solutions given by the COMSOL simulations on the con-
servation property of the convection terms and the form
of the source term. The diffusivity factor is set at 𝛼

𝐷
=

88.6 in the simulations; then, we get 𝑃 = 287 and 𝑄 =

8.23. Here CC means that the convection terms are treated
with the conservative form, that is, with the form shown
in (5a) (second term). CN means that the convection terms
are treated with the nonconservative form, that is, with
𝑃[𝑢𝜕𝑞/𝜕𝑟+𝑤𝜕𝑞/𝜕𝑧]. Further, SCmeans that the source term
is written as 𝑄𝑞 (like the third term in (5a)), whereas SE
means that it is written as 𝑄∇ ⋅ E. When the nonconservative
form for the convection terms (CN) is used, the results vary
enormously with 𝛼

𝑘
(≡ 𝛼
𝑘1

= 𝛼
𝑘2
), and at low values of 𝛼

𝑘
it

can even be negative, which is physically irrelevant. We also
conducted the grid-dependence test with different grids. At
𝛼
𝑘
= 0.1, the in-house code gives 𝑞

1𝑐
= 0.534with grids 51 ×

51, whereas it gives 𝑞
1𝑐

= 0.536 with 101 × 101, showing
a very small change. The scheme CC-SE in COMSOL on
the other hand gives 𝑞

1𝑐
= 0.399 with the number of grid

elements 12,000, but it gives 𝑞
1𝑐
= 0.502with 33,000 elements

and 𝑞
1𝑐
= 0.524 with 61,000 elements, indicating that as the

grids are refined the data approaches the value given by the in-
house code.We also confirm that the in-house code yields the
same result regardless of 𝛼

𝑘
. We also developed an in-house

code which uses the nonconservative convection terms. For
the same parameter set given above and for 𝛼

𝑘
= 1, we get

𝑞
1𝑐
= 0.025 with the grids 51 × 51 and 𝑞

1𝑐
= 0.113 with the

grids 101 × 101, both being much smaller than the correct
value 𝑞

1𝑐
= 0.534. This implies that the conservative property

of the convection terms is one of the most important factors
regarding numerical accuracy.

The fact that the numerical solutions are sensitively
dependent on the form of the convection or conduction
(source) term in the governing equations implies that a
small error in the equations can yield a significantly different
solution. In order to explore the reason, we perform a
simple analysis with the one-dimensional equation without
convection effect:

𝑞
󸀠󸀠
− 𝜆
2
𝑞 = 𝛿, (24a)

𝜙
󸀠󸀠
+ 𝑞 = 0, (24b)

where the prime denotes differentiation with respect to the
new variable 𝑥 = 𝑟 − 𝑟

1
and 𝛿 is an arbitrary small error

which is supposed to be contained in the charge transport
equation due to the use of different forms of each term. In fact,
the above equations can be derived from (9a) and (9b) under
the limit of very large cylinders, 𝑟 → ∞. The boundary
conditions to be satisfied are

𝐽
𝑟
≡ − (𝑞

󸀠
+ 𝜆
2
𝜙
󸀠
) = −𝑘

1
(𝑞 − 1) at 𝑥 = 0, (25a)

− (𝑞
󸀠
+ 𝜆
2
𝜙
󸀠
) = 𝜅𝑘

1
(𝑞 − 𝑞

2𝑤
) at 𝑥 = 1, (25b)

𝜙 = 0 at 𝑥 = 0, 1. (25c)

Here, 𝑘
1
is taken to be very small, and 𝜅 ≡ 𝑘

2
/𝑘
1
= 𝑂(1);

we calculate 𝑘
1
= 8.1 × 10

−4 with the standard parameter
set and 𝐷 = 8.86 × 10

−5 [m2/s]. Then, after some algebraic
work we derive

𝑞
1
= 𝑞
2
=
1 + 𝜅𝑞

2𝑤
− 𝛿/𝑘
1

1 + 𝜅
. (26)

This gives 𝑞
1
= 𝑞
2
= 0.601 for 𝛿 = 0 (no error), which is

not so much different from 𝑞
1𝑐
= 0.534 given from the two-

dimensional simulation (see Figure 3). More importantly,
we see from (26) that even a small value of 𝛿 can bring a
significantly different value of 𝑞

1
as long as 𝑘

1
remains small.

It can even produce a negative value of 𝑞
1
when 𝛿 > 𝑘

1
(1 +

𝜅𝑞
2𝑤
).
On the other hand, the numerical data of 𝑞

1𝑐
given from

the 2D in-house code with the conservative convection terms
are almost invariant of the parameter 𝑘

1
as shown in Figure 3.

This can be understood from the expansion of (15a) for small
𝑘
1
reading

𝑞
1
= 1 − (1 − 𝑞

2𝑤
)
𝜅𝑟
2
ln (𝑟
2
/𝑟
1
)

𝑟
1
+ 𝜅𝑟
2

+ 𝑂 (𝑘
1
) . (27)
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Equation (27) clearly indicates that 𝑞
1
, which can also be

shown to be the same as 𝑞
2
for small 𝑘

1
, is independent of 𝑘

1

to the leading order. In passing, evaluation of (27) gives 𝑞
1
=

0.547, which differs only 2% from the 2D result 𝑞
1𝑐

= 0.534

(see Figure 3).This agreement is remarkable considering that
in 2D simulations 𝑞

1
is also a function of 𝑧.

Figure 4(a) shows the distribution of 𝑞(𝑟) and 𝑄𝜙(𝑟)

obtained numerically from the 1D code for the case without
convection effect; the graph is almost indistinguishable from
the one given by the analytical solutions (11) and (14). We
confirm an almost linear relationship between 𝑞 and 𝜙 as
described in (11); 𝐶

3
is small because 𝑘

1
is small. Since the

charge is positive everywhere, the second derivative of the
potential is negative, as can be seen from (24b), being con-
sistent with Figure 4(a). Figure 4(b) shows the distribution of
the total amount of the charge flux times the radius, (𝑟𝐽

𝑟
)tot,

and the two contributions, (𝑟𝐽
𝑟
)dif and (𝑟𝐽𝑟)cond obtained from

the 1D code. Since the charge is large near both walls and
small in between the two, the diffusion must occur from
the walls to the central region so that (𝑟𝐽

𝑟
)dif > 0 on the

left-hand side and (𝑟𝐽
𝑟
)dif < 0 on the right-hand side as

shown in Figure 4(b). On the other hand, since the electric
field is directed from the central region toward the walls, the
charge receives Coulomb force in the same direction as the
field vector, and so the sign of (𝑟𝐽

𝑟
)cond is the reverse of that

of (𝑟𝐽
𝑟
)dif as shown in Figure 4(b). We will see below that

those two can make balance with each other independently
of the charge input or output through the walls. First, we
note from Figure 4(b) that (𝑟𝐽

𝑟
)tot is much smaller than the

other two contributions. As addressed before, this is caused
by the smallness of 𝑘

𝑖
. Since (𝑟𝐽

𝑟
)tot is positive, the charge is

transmitted from the inner to the outer cylinder side, which
is physically correct because 𝑞

1𝑤
= 1 is higher than 𝑞

2𝑤
. This

implies that for a small value of 𝑘
𝑖
the diffusive charge flux

is balanced by the conductive flux. We confirm from the 1D
simulation that setting 𝑞

2𝑤
= 𝑞
1𝑤

= 1 produces (𝑟𝐽
𝑟
)tot = 0

although the distributions of (𝑟𝐽
𝑟
)dif and (𝑟𝐽𝑟)cond are similar

to those of Figure 4(b). This means that the nonzero charge
distribution can be established as long as the wall charge is
assigned with a nonzero value.

Two important dimensionless parameters explicitly
appearing in the governing equations (5a) and (5b) are 𝑃

and 𝑄, and exploring the influence of these parameters on
the solutions’ behavior is the main purpose of this study.
The former represents the importance of the convection
terms compared with the diffusion terms, whereas the latter
is related to the thickness of EDL as 𝜆 = 1/√𝑄. Under
the standard parameter set and 𝑈 = 1 [m/s], we calculate
𝑃 = 2.54 × 10

4 and 𝑄 = 729. In the following parametric
study, we will start with small values of 𝑃 and 𝑄, and see
how the solution structures vary with increase of these
parameters.

Figure 5 shows the numerical results of the 2D code given
at 𝛼
𝜎
= 0.001 and 𝑈 = 10

−5 [m/s] at which 𝑃 = 0.254 and
𝑄 = 0.729. 𝑃 remains small enough that the distributions of 𝑞
(Figure 5(a)) and 𝜙 (Figure 5(b)) are almost one-dimensional
being invariant of 𝑧. The diffusive charge-flux vector, Jdif ≡
−∇𝑞 (Figure 5(c)), and the conductive charge-flux vector,
Jcond ≡ −𝑄∇𝜙 (Figure 5(d)), also reveal a one-dimensional
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Figure 4: Numerical results of 1D simulation with 𝛼
𝐷
= 88.6; (a)

distribution of 𝑞(𝑟) (solid line) and 𝑄𝜙(𝑟) (dashed line) and (b)
distribution of (𝑟𝐽

𝑟
)dif (dashed line), (𝑟𝐽

𝑟
)cond (dash-dot line), and

1000(𝑟𝐽
𝑟
)tot (solid line).

nature; they are almost heading for the radial direction and
are balanced by each other. On the other hand, the convective
charge-flux vector, Jconv ≡ 𝑃u𝑞 (Figure 5(e)), is almost in
the same pattern as the velocity vector, u, because the charge
distribution is nearly uniform as shown in Figure 5(a). The
total charge-flux vector, Jtot ≡ Jdif + Jconv + Jcond (Figure 5(f)),
then looks not somuch different from Jconv, because although
Jdif and Jcond are in the same order of magnitude as Jconv, they
combine to becomemuch smaller than each one, as discussed
above. The stream traces of the total charge flux (Figure 5(f))
show that thewall charge at 𝑟 = 𝑟

1
is diffused into the domain,

convected along the streamlines, and finally diffused into the
wall at 𝑟 = 𝑟

2
. In the bulk, the total charge-flux vector plot

shows a recirculating pattern like the fluid velocity vector.
Figure 6 shows a sketch of the passage through which the
charge is transmitted from the inner wall at 𝑟 = 𝑟

1
to the outer
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Figure 5: Numerical results of 2D simulation at 𝛼
𝜎
= 10
−3 and 𝑈 = 10

−5 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e) Jconv,
and (f) Jtot.
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z = h

𝛿Lc

z = 0
r = r1 r = r2

𝛿Tc

Figure 6: Passage of the charge transmission from the inner
cylindrical wall at 𝑟 = 𝑟

1
to the outer cylindrical wall at 𝑟 = 𝑟

2
. Also

shown are the thickness of the passage at 𝑧 = ℎ/2 on the inner wall,
𝛿
𝐿𝑐
, and that at 𝑟 = 𝑟

𝑐
on the top wall, 𝛿

𝑇𝑐
.

wall at 𝑟 = 𝑟
2
together with the definition of the thicknesses

of the passage, 𝛿
𝐿𝑐
and 𝛿
𝑇𝑐
at particular places.

At a reference velocity 10 times higher,𝑈 = 10
−4 [m/s], we

get 𝑃 = 2.54 and 𝑄 = 0.729. Distribution of 𝑞 (Figure 7(a))
shows deviation from the one-dimensional structure, while 𝜙
(Figure 7(b)) still keeps its one-dimensional nature. Accord-
ingly, Jdif is somewhat deteriorated (Figure 7(c)), but Jcond is
still heading for the radial direction (Figure 7(d)). The sum
of the two flux vectors, Jdif + Jcond (Figure 7(e)), now shows
much decreased level caused by their mutual balance but
with complex stream-trace structure. The total flux vector,
Jtot (Figure 7(f)), then shows that most of the bulk region
is composed of the recirculating pattern and simultaneously
the passage near the walls responsible for the wall-to-wall
charge transmission is more narrowed than in Figure 5(f)
with smaller 𝑈.

Further increase of 𝑈 (at 𝑈 = 10
−3 [m/s]; 𝑃 = 25.4,

𝑄 = 0.729) tends to make the contours of 𝑞 the closed-
curve style in particular in the bulk (Figure 8(a)). Thus the
diffusive flux vectors (Figure 8(c)) focus on the center of the
contours of 𝑞, where 𝑞 is minimized. However variation of
𝑞 is not so significant that the contours of 𝜙 still show the
one-dimensional nature (Figure 8(b)). Thus, the conductive
flux vectors (Figure 8(d)) are heading for the radial direction.
The pattern of Jdif + Jcond (Figure 8(e)) is now more complex
than Figure 7(e) but its magnitude still remains at low value.
The charge transmission passages near the walls at 𝑟 = 𝑟

1

and 𝑟 = 𝑟
2
become thinner than Figure 7(f) because the

convective effect is more pronounced.
When𝑈 is further increased, the contour plot of 𝑞 tends to

the streamline pattern of the fluid flow and the diffusive flux
vector plot shows the radial inward pattern more clearly than

Figure 8(c), but the distribution of 𝜙 and the conductive flux
vector plot are qualitatively the same as Figures 8(b) and 8(d).
The total charge-flux vector plot also tends more closely to
the convective flux vector plot, because the convective effect
is more dominant at higher values of 𝑈 (or equivalently at
larger values of 𝑃). The thickness of the transmission passage
becomes smaller at larger 𝑈. We measure the dimensionless
thickness 𝛿

𝐿𝑐
as 0.094 at 𝑈 = 10

−5 [m/s] (from Figure 5(f)),
0.024 at 𝑈 = 10

−4 [m/s] (from Figure 7(f)), 0.0070 at 𝑈 =

10
−3 [m/s] (from Figure 8(f)), 0.0016 at 𝑈 = 10

−2 [m/s], and
so forth. We also measure 𝛿

𝑇𝑐
as 0.127 at 𝑈 = 10

−5 [m/s],
0.014 at 𝑈 = 10

−4 [m/s], 0.0014 at 𝑈 = 10
−3 [m/s], 0.00014 at

𝑈 = 10
−2 [m/s], and so forth. This indicates that the amount

of charge transmitted through the walls per unit area and unit
time is almost independent of 𝑈 at high values of 𝑈.

As 𝑈 is increased at a fixed 𝜎, the contour of 𝑞 tends to
follow the fluid streamline pattern because, when the fluid
circulates along its closed path with high velocity, the fluid
circulation time, that is, 𝜏conv, becomes so short compared
with 𝜏dif and 𝜏cond that the diffusive or conductive action
does not have enough time to modify the value of 𝑞 but
must leave it to remain at a constant value specific to the
circulation path. That is, we can estimate for large value of 𝑈
the relation 𝑞 = 𝑞(Ψ), whereΨ is the stream function reading
Ψ = 𝜓(𝑟) sin(𝜋𝑧/ℎ) in this study. This can be also proved
from (5a). At the limit 𝑃 → ∞, (5a) becomes ∇ ⋅ (u𝑞) ≈ 0

or equivalently (u∇)𝑞 ≈ 0 (from the continuity equation).
In terms of the material derivative, this can be written as
𝐷𝑞/𝐷𝑡 = 0, indicating that 𝑞 = constant along the streamline,
on which Ψ is set as constant.

In order to confirm the above reasoning, we calculate the
Lagrangian variation of 𝑞 of a fluid particle while it flows
along the given streamline. Figure 9 shows the numerical
results obtained at various reference velocities and at fixed
𝛼
𝜎
= 10
−3. The abscissa 𝑠 indicates the distance travelled by

the fluid particle along the closed streamline specified by the
initial point, normalized by the total length of the streamline.
So, 𝑠 = 0 means the starting point and 𝑠 = 1 the final point,
which is set to be the same as the initial point. The figure
clearly demonstrates that as the reference velocity increases,
the charge density variation ismore uniformbecause the time
taken for one complete circulation is decreased accordingly.
It also reveals that the inner streamline starting at (𝑟, 𝑧) =

(𝑟
𝑐
, 0.2) (Figure 9(b)) shows smaller variation of 𝑞 than the

outer one starting at (𝑟, 𝑧) = (𝑟
𝑐
, 0.02) (Figure 9(a)) for the

same parameter set; this is also consistent with the above
reasoning because the former requires a smaller circulation
time than the latter. The overall level of 𝑞 is observed to
increase as 𝑈 is increased in particular near 𝑠 = 0.5, because
the contour of 𝑞 tends to the plume structure when 𝑈 is
increased (partly shown in Figure 8(a) near 𝑧 = 0 and 1).

Nowwe investigate the effect of 𝜎 on the charge-transport
behavior at fixed 𝑈 = 10

−4 [m/s]. Figure 10 shows the
numerical results given at 𝛼

𝜎
= 0.1 (𝑃 = 2.54, 𝑄 = 72.9).

Compared with Figure 7(a) for 𝜎 being 100 times smaller, the
level of 𝑞 is significantly decreased in the bulk, because 𝜆 is
decreased by the factor 0.1. As a result, the level of 𝜙 is also
decreased (Figure 10(b)).The vector plots of Jdif (Figure 10(c))
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Figure 7: Numerical results of 2D simulation at 𝛼
𝜎
= 10
−3 and 𝑈 = 10

−4 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e)
Jdif + Jcond, and (f) Jtot.
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Figure 8: Numerical results of 2D simulation at 𝛼
𝜎
= 10
−3 and 𝑈 = 10

−3 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e)
Jdif + Jcond, and (f) Jtot.
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Figure 9: Lagrangian variation of the charge density versus the
normalized distance travelling from the initial point of a fluid
particle while flowing along the streamline, numerically given at the
four reference velocities indicated and at 𝛼

𝜎
= 10
−3. Initial points

are (a) (𝑟, 𝑧) = (rc, 0.02) and (b) (𝑟, 𝑧) = (rc, 0.2).

and Jcond (Figure 10(d)) show the one-dimensional nature and
they are not qualitatively so much different from Figures 7(c)
and 7(d), respectively. However, their magnitude is increased
significantly, in particular near the walls, of course. The
level of their sum, Jdif + Jcond (Figure 10(e)), is accordingly
increased but not somuch as Jdif and Jcond. On the other hand,
Jtot (Figure 10(f)) differs from Figure 7(f) significantly. Its
magnitude is about 3 times smaller than Figure 7(f), because
at 𝛼
𝜎

= 0.1 the charge density 𝑞 decreases sharply with
the normal distance from the walls, which causes Jconv to be
reduced; note that in this parameter set, too, the contribution
of Jconv to Jtot is dominant over the other fluxes. On the other
hand, in the central region near 𝑟 = 𝑟

𝑐
, the level of 𝑞 is much

lowered so that the levels of Jconv and Jtot must also be low

there. Thus, in order to satisfy the charge conservation, the
passage of the charge transmission near the top wall must be
wider than that near the side walls, 𝛿

𝑇𝑐
> 𝛿
𝐿𝑐
. In other words,

at a high enough value of 𝜎, the central region is dominated
by the diffusive and conductive flux but not by the convective
flux, whereas the EDLs are dominated by the convective flux,
except for the very thin EDLs closer to the walls where the
diffusion terms should be more effective because the fluid
velocity remains very small.

As 𝛼
𝜎
is further increased, the EDLs are clearly distin-

guished from the bulk as shown in Figure 11(a) for the radial
distribution of 𝑞 and 𝜙 at 𝑧 = ℎ/2. Since 𝑞 ≈ 0 in the
bulk (to be referred to as “charge depletion zone”), 𝜙 must
be a logarithmic function of 𝑟 as indicated in (11) and shown
in Figure 11(a). Thus the electric field is nonzero in the bulk
causing Jcond ≡ 𝑄𝜎E to be finite there. The diffusive flux and
convective flux must vanish in the bulk, because 𝑞 ≈ 0 there.
Then, the total flux must be dominated by the conductive
flux, which can be confirmed from Figures 11(b), 11(c), and
11(f), where the patterns of stream trace of the fluxes look
similar to each other near the central region, 𝑟 = 𝑟

𝑐
. On

the other hand, the EDLs are dominated by the convective
flux. At this parameter set, the level of Jtot shown in Figures
11(e) and 11(f) is further decreased from Figure 10(f) because
of the decreased EDL thickness. We also observe that 𝛿

𝑇𝑐
is

increased significantlywith increase of𝜎.Measurement of 𝛿
𝑇𝑐

from the simulation results gives 𝛿
𝑇𝑐

= 0.021 at 𝛼
𝜎
= 0.01,

0.079 at 𝛼
𝜎
= 0.1, and 0.386 at 𝛼

𝜎
= 1, while 𝛿

𝐿𝑐
is not so

much changed upon 𝜎; we measure 𝛿
𝐿𝑐
= 0.028 at 𝛼

𝜎
= 0.01,

0.034 at 𝛼
𝜎
= 0.1, and 0.038 at 𝛼

𝜎
= 1.

We can estimate the dependence of the charge density
distribution on 𝜎 from the Lagrangian variation of 𝑞 for
various values of 𝛼

𝜎
as shown in Figure 12. On the streamline

having the initial point at (0.5, 0.02), the overall level of
𝑞 decreases with 𝛼

𝜎
, but the range of variation is rather

increased up to 𝛼
𝜎

= 0.1 (Figure 12(a)). The latter result
can be understood from the fact that as 𝛼

𝜎
is increased the

wall charge 𝑞
𝑖
remains almost constant (we measure only

4% change for the range 10
−3

≤ 𝛼
𝜎

≤ 1) but the charge
depletion zone begins to appear near 𝛼

𝜎
= 0.1. As 𝛼

𝜎
is

further increased, EDLs become thinner while the charge
depletion zone becomes wider, which causes the variation
of 𝑞 to be smaller as shown in Figure 12(a). We can also
give a qualitatively similar description as to the Lagrangian
variation of 𝑞 of the fluid particle on the streamline with the
initial point at (𝑟

𝑐
, 0.2) (Figure 12(b)). In particular, the level

of 𝑞 vanishes all the way through the streamline at 𝛼
𝜎
= 1

implying that charge depletion zone should encompass the
region surrounded by the streamline.

A typical solution structure of the charge transport equa-
tions with 𝛼

𝜎
and 𝑈 sufficiently high is shown in Figure 13.

We can say that the given value of 𝛼
𝜎
is high enough in that

the EDLs are thin and the charge depletion zone is wide. We
can also say that the given value of 𝑈 is high enough in that
contours of 𝑞 in the regions near 𝑧 = 0 and 𝑧 = 1 show the
plume structure, which then causes the charge to accumulate
there and makes the contour of 𝜙 to be of a saddle type near
the center point at (𝑟

𝑐
, ℎ/2).
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Figure 10: Numerical results of 2D simulation at 𝛼
𝜎
= 0.1 and 𝑈 = 10

−4 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e)
Jdif + Jcond, and (f) Jtot.
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Figure 11: Numerical results of 2D simulation at 𝛼
𝜎
= 1 and 𝑈 = 10

−4 [m/s]; (a) radial distributions of 𝑞 and 𝜙 on 𝑧 = ℎ/2, (b) Jcond, (c)
Jdif + Jcond, (d) Jconv, (e) Jtot showing its 𝑟-profile, and (f) Jtot showing its 𝑧-profile.
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Figure 12: Lagrangian variation of the charge density versus the normalized distance travelling from the initial point of a fluid particle while
flowing along the streamline, numerically given at the three indicated values of 𝛼

𝜎
and at 𝑈 = 10

−4 [m/s]. Initial points are (a) (𝑟, 𝑧) = () =

(rc, 0.02) and (b) (𝑟, 𝑧) = () = (rc, 0.2).

Electrification is known to be directly related to the
amount of charge accumulated in the bulk, which in this
study is quantified by the averaged charge density

𝑞av =
2

ℎ (𝑟
2

2
− 𝑟
2

1
)
∫
𝐴

𝑟𝑞 𝑑𝑟 𝑑𝑧. (28)

Figure 14 shows variation of 𝑞av obtained from the 2D code
for various 𝑈 values. In the limit 𝑈 → 0, 𝑞av asymptotes
to a constant value, because the charge distribution tends to
the 1D structure (see, e.g., Figure 5(a)). As 𝑈 increases, 𝑞av
also increases, because the fluid conveys the charge within
the EDLs to the top (𝑧 = 1) and bottom (𝑧 = 0) boundaries
of the domain, leading to the plume structure there (see,
e.g., Figures 8(a) and 13(a)). The amount of increase however
depends on the value of 𝜎. At low values of 𝛼

𝜎
, the level of 𝑞

is high but its spatial variation is small (Figures 7(a) and 8(a))
so that even the plume structure brings a slight increase of 𝑞av
upon 𝑈 as shown in Figure 14(a). On the other hand, at high
values of 𝛼

𝜎
, thin EDLs appear distinctively and a nonzero

value of 𝑞 is detected only within the EDLs. In this case,
existence of the convection effect would sweep the charge
carriers within EDLs toward the top and bottom boundaries,
giving rise to additional thin layers of nonzero charge (i.e.,
plume structure) there. Since increase of𝑈 tends to make the
overall level of 𝑞 higher in those additional layers, we expect
more increase of 𝑞av upon 𝑈, as shown in Figure 14(a), than
is the case with lower 𝛼

𝜎
(Figure 14(b)).

6. Conclusions

We studied the physics of charge transport in an annulus
between concentric circular cylinders from theoretical and

numerical analysis by using a commercial software COMSOL
and 2D in-house code.

We have found that the conservation property of the
convective terms in the charge transport equation affects
numerical accuracy significantly. In both the COMSOL and
in-house code simulations, keeping the convective terms in
conservative form is essential in maintaining the numerical
accuracy. In COMSOL, the conductive terms being treated as
sourcesmust also bewritten in the gradient-of-field form, not
in the form of charge so as not to deteriorate the numerical
accuracy. Such sensitive dependence of the numerical solu-
tions’ accuracy on a small error in the governing equations
can be explained in terms of 1D simplified equations.

In the absence of the convection effect, the analytical
and numerical solutions of the 1D equations show that the
diffusive charge flux is balanced by the conductive flux and
the sum of the two fluxes yields the total flux which remains
much smaller than the two fluxes for small values of 𝑘

𝑖
.

The effect of two dimensionless parameters, 𝑃 and 𝑄, on
the solution structure is then studied from the simulation
with 2D in-house code. At low values of 𝑃, the solutions tend
to a one-dimensional nature being independent of 𝑧. Increase
of 𝑃 caused by increase of 𝑈 tends to make the convective
effect dominate over the diffusive or conductive effect and
the contour of 𝑞 tends to follow the fluid’s streamline
pattern, because the time taken by the fluid particle for one
complete circulation along the streamline becomes so short
that the diffusive or conductive action is ineffective. At low
values of 𝑄, on the other hand, 𝑞 tends to be uniformly
distributed, because the diffusion effect is strong compared
with conduction. Accordingly, 𝑃 is less effective at low values
of 𝑄; spatially averaged value of 𝑞 increases only 2.2% when
𝑈 increases from 10

−5 [m/s] to 0.1 [m/s] at 𝛼
𝜎
= 10
−3 fixed,
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Figure 13: Typical solution structure of the system of charge
transport equations given numerically at 𝛼

𝜎
= 0.2 and 𝑈 =

0.01 [m/s]; contours of (a) 𝑞 and (b) 𝜙.

whereas it increases 42% at 𝛼
𝜎
= 0.2 for the same increase of

𝑈.
Increase of 𝑄 caused by increase of 𝜎 makes the EDLs

thinner and the charge depletion zone wider. Thickness of
the passage near the inner and outer walls through which the
charge is transmitted fromonewall to the other also decreases
as 𝑄 is increased.
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A computational code adopting immersed boundarymethods for compressible gas-particlemultiphase turbulent flows is developed
and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo
skew-symmetric formwithminimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL)
scheme is employed in the shock region.The present scheme is applied to the flow around a two-dimensional cylinder under various
freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-
symmetric form significantly improves the resolution of the vortex generated in thewakewhile retaining the shock capturing ability.
In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving
two-cylinder problems.

1. Introduction

The acoustic waves from rocket plumes are sufficiently strong
to damage the satellites inside the fairing of a rocket. These
waves are widely assessed by empirical prediction methods
[1], but the low accuracy of these methods renders them
unsuitable for new rocket launch sites. To improve the predic-
tion accuracy of acoustic waves from rocket plumes, a sophis-
ticated model based on the underlying physics is required.
Numerical simulations are an essential component of new
model development [2–5]. The behavior of acoustic waves
from rocket plumes is difficult to predict, because actual
plumes are very hot, with very high speed, and of themultiple
phase conditions. In real rocket systems, acoustic waves are
suppressed by a water injection system installed at the rocket
launch site. Fukuda et al. [6] showed that rarefaction or
absorption of acoustic waves by particles exerts no significant
effect and that acoustic waves might be primarily attenuated

by interactions between particles and turbulence. However,
this scenario is not well modeled in their study. To more
accurately evaluate acoustic wave suppression by particle-
turbulence interactions, further fundamental analyses are
necessary.Therefore, we consider amultiscale analysis of gas-
particle multiphase high-speed compressible flows. Because
the target is a rocket plume, we propose a simultaneous
treatment of the turbulence and the shock waves. Figure 1
shows an overview of the proposed numerical approach.
The simultaneous high-resolution simulation of the particles
and turbulence is conducted on the microscale, the large
eddy simulation (LES) modeling only the particle behavior
is conducted on the intermediate scale, and the complex flow
fields are modeled by the Reynolds-averaged Navier-Stokes
(RANS) simulation.

Speeds of these scattering particles cover a wide range of
Mach numbers from subsonic to supersonic, while Reynolds
numbers are quite low since the sizes of the particles are small.
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Figure 1: Overview of the proposed gas-particle simulation.

Therefore, flowfields around the small particles can be solved
by flow simulation without any turbulence models though
the flowfield is macroscopically turbulent. There are several
kinds of numerical methods to solve the problem treating a
number of moving objects, such as dynamic mesh method
[7] or overset method [8]. However, simple implementation
and rapid computation are difficult to achieve in using
these methods because additional numerical processes are
included in the flow simulation like mesh regeneration or
interpolation between computational grids. We select level
set method [9] to track a number of moving particles in this
study. There are some other options to trace many moving
objects with high accuracy like phase field method or front
trackingmethod. However, our main focus is investigation of
the acoustic wave characteristics under interference between
turbulence and particles. Therefore, level set method is
selected based on computational efficiency. The represented
boundaries by level set method are imposed by immersed
boundary method [10] in equally spaced Cartesian mesh
in this study. Immersed boundary method (IBM) is widely
used in the community of Cartesian mesh method from
the simplicity and applicability. The methodology of IBM
can be classified into several categories such as continuous
forcing method [11], direct forcing method, and ghost-cell
method [10]. Although IBM was originally proposed and
used for incompressible flow simulations, it is also applied
to compressible flow simulations [12–15], recently. Takahashi
et al. have been developing several Cartesian flow solvers
[15–21] and investigating the performance of this kind of
numerical method. Based on the background, we adopted
ghost-cell method [10, 15] with equally spaced Cartesian
mesh by the points of simple implementation, robustness, and
extensibility.

Here, we should recall our flow features that consist of
both turbulence and shocks. In general, an upwind scheme
is often employed to evaluate inviscid fluxes in IBM flow

solver to stabilize a flow with numerical dissipation. The
dissipation is not preferable to solve our flows of turbulence
part clearly, while it should be added appropriately to capture
the shocks in a part of our flows. In other words, we should
minimize numerical dissipation in the turbulent region,
while the dissipation must be added to prevent spurious
oscillations around shocks. In resolving both the turbulence
and shock waves, dissipation switching scheme can play a
major role. In this study, a switching procedure for numerical
dissipation is introduced and examined through the two-
dimensional test cases. This study overviews the computa-
tional code and demonstrates its efficacy in simulations of
two-dimensional static cylinder flows under various Mach
number conditions. The present numerical method is devel-
oped to three-dimensional problem of interference among
turbulence, shocks, and particles with high-performance
parallel computing based on the previous studies [16, 17, 20,
21].

2. Computational Methods

2.1. Governing Equations and Numerical Method. In the
present study, flows are governed by two-dimensional com-
pressible Navier-Stokes equations. No averaging or filtering
process is involved and the flows are solved without any
turbulence models:

𝜕𝑄

𝜕𝑡
+
𝜕𝐸

𝜕𝑥
+
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=
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+
𝜕𝐹V

𝜕𝑦

𝑄 =
[
[
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[

𝜌
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𝜌V
𝜌𝑒

]
]
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]
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[
[
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[
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𝜌𝑢
2
+ 𝑝

𝜌𝑢V
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]
]
]

]

, 𝐹 =
[
[
[

[

𝜌V
𝜌V𝑢

𝜌V2 + 𝑝
(𝜌𝑒 + 𝑝) V

]
]
]

]

,
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𝐸V =
[
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0
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[
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]
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]

,

(1)

where 𝐸 and 𝐹 are the inviscid fluxes in the 𝑥- and 𝑦-
directions, respectively, 𝐸V and 𝐹V are the corresponding
viscous fluxes, and 𝑄 contains the conservative variables.
Here the stress tensor components are given as

𝜏
𝑥𝑥
=
2

3
𝜇 (2𝑢
𝑥
− V
𝑦
) , 𝜏

𝑥𝑦
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𝑦
+ V
𝑥
) ,

𝜏
𝑦𝑦
=
2

3
𝜇 (2V
𝑦
− 𝑢
𝑥
) .

(2)

The pressure 𝑝 is related to the total energy 𝑒 per unit mass
by the equation of state:

𝜌𝑒 =
𝑝

𝛾 − 1
+
1

2
𝜌 (𝑢
2
+ V2) . (3)

The heat flux term in the equation of total energy is computed
by

𝜅𝑇
𝑥
=

𝜇

Pr
𝛾

𝛾 − 1
(
𝑝

𝜌
)

𝑥

, 𝜅𝑇
𝑦
=

𝜇

Pr
𝛾

𝛾 − 1
(
𝑝

𝜌
)

𝑦

, (4)

where the equation is transformed by the ideal gas equation
and Prandtl number as follows:

𝐶
𝑝
𝑇 = 𝑒 +

𝑝

𝜌
−
1

2
(𝑢
2
+ V2) , Pr =

𝐶
𝑝
𝜇

𝜅
. (5)

All variables are nondimensionalized by the freestream
conditions of density, sound speed, and unit length. The
above equations are discretized on an equally spaced Carte-
sian mesh with a cell-centered arrangement. To eliminate
additional numerical dissipation everywhere, except in the
vicinities of shock waves and potential flows, the inviscid
terms are computed by a hybrid scheme that combines the
pseudo skew-symmetric central difference scheme [22] with
the monotone upstream-centered scheme for conservation
laws (MUSCL)-Roe scheme [23, 24].The flux in the turbulent
region ismodeled by a pseudo skew-symmetric central differ-
ence scheme with a minimum dissipation term as follows:

𝐸
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(6)

Here the subscript 𝑖 denotes the quantity on the 𝑖th grid point
and subscripts 𝐿 and 𝑅 denote the left- and right-side states,
respectively, interpolated by the third-order MUSCL scheme
[24] with van Albada’s limiter [25].

On the other hand, the flux in the shock andpotential flow
region, computed by the second-order MUSCL-Roe scheme,
is written as follows:

𝐸
𝑖+1/2,shock =

1

2
(𝐸
𝑖
+ 𝐸
𝑖+1

+
󵄨󵄨󵄨󵄨𝐴 𝑖+1/2,Roe

󵄨󵄨󵄨󵄨 (𝑄𝑖+1/2,𝑅 − 𝑄𝑖+1/2,𝐿)) ,

(7)

where 𝐴 is the flux Jacobian and the subscript Roe denotes
the Roe-averaged quantity of the left and right states. Here

|𝐴| = 𝑅 |Λ| 𝐿, (8)

where 𝑅 and 𝐿 are the right and left eigenmatrices of 𝐴,
respectively, and Λ = 𝐿𝐴𝑅 is a diagonal matrix.

The symmetric central difference part of (8) can be
replaced by that of the pseudo skew-symmetric form without
losing the formal order of accuracy of the equation. The
proposed scheme adopts the following new form of (7):

𝐸
𝑖+1/2,shock=𝐸𝑖+1/2,cent +

1

2
(
󵄨󵄨󵄨󵄨𝐴 𝑖+1/2,Roe

󵄨󵄨󵄨󵄨 (𝑄𝑖+1/2,𝑅 − 𝑄𝑖+1/2,𝐿)) .

(9)

Combining this with the digital switching function, we obtain
the following hybrid scheme:

𝐸
𝑖+1/2

= (1 − 𝛽
𝑖+1/2

) 𝐸
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󵄨󵄨󵄨󵄨 (𝑄𝑖+1/2,𝑅 − 𝑄𝑖+1/2,𝐿)) .

(10)

Excessive dissipation is added to the shock or potential flow
region when beta is unity, whereas dissipation is minimized
when beta is zero. 𝛽

𝑖+1/2
is defined in terms of the Ducros-

type sensor [26] as follows:

𝛽
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= min (1, 𝜙
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≥ 𝜃.

(11)

Here 𝜀 = 10
−15 is a small value that prevents division by

zero and 𝜃 = 0.6 is the switching threshold. The divergence
and rotation in (11) are computed by a second-order finite
difference scheme. In the present study, the Ducros-type
sensor [26] alone is used in both the shock and potential flow
regions, although previous studies have combined this sensor
with the Jameson sensor [27] in the shock region [26, 28].
Furthermore, in one of our proposed schemes, 𝛽

𝑖+1/2
is set

to unity in cells close to the body. Finally, the flux derivative
is approximated as follows:

𝜕𝐸

𝜕𝑥
=
𝐸
𝑖+1/2

− 𝐸
𝑖−1/2

Δ𝑥
. (12)
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Figure 2: Cell construction and classification in the present level set
method.

The derivative 𝜕𝐹/𝜕𝑦 is obtained similarly.
The diffusive terms are treated by a second-order, cen-

tral difference scheme using the mid-point flux. The time
marching is conducted by the three-stage total variation
diminishing Runge-Kutta scheme [29]. In this study, time
increment is determined as follows:

Δ𝑡 = 𝑐
Δ𝑥

𝑎
∞
+
󵄨󵄨󵄨󵄨𝑢∞

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨V∞

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑢obj

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Vobj

󵄨󵄨󵄨󵄨󵄨

. (13)

2.2. Boundary Representation. The boundary is defined by
the level set method [9, 14]. The level set function is deter-
mined in whole cells as a signed distance from the object
boundary. A schematic of the cells around a boundary is
shown in Figure 2. The level set method effectively computes
the normal vector from the object surface on the basis of
a gradient operation. In the present study, flows around
multiple moving objects are solved by extending the level
set method to multiple level set functions based on simple
minimum distance approach [8].

On the basis of the level set function (14), all cells are
classified into three categories: fluid cell, ghost cell, and object
cell, as shown in Figure 2.The ghost cells behave as guard cells
between the fluid and object regions and are assigned in two
layers under the present definition as follows:

𝑑FC > 0, 𝑑GC ≤ 0, 𝑑GC ≥ −2√2Δ𝑥,

𝑑OC < −2√2Δ𝑥.
(14)

Ghost cells are used for imposing boundary condition
in the present method [10, 15]. An image point set in the
region of fluid cells is used to collect flow information for
a ghost cell. A primary advantage of the present ghost-cell

Image point

x

y

Ghost cell

Object cell

Fluid cell

dGC

dIP

Boundary

Δx
Δx

VIP

VIB

VGC

Figure 3: Schematic of the present ghost cell approach with image
point.

Image point’

x

y

Ghost cell
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Fluid cell
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ΔS

Δx

Boundary

dIP’

Figure 4: Image point projected from a fluid cell to compute the
fluid force on the surface.

method adopting the image point approach is its robustness.
A schematic of the present immersed boundary method is
shown in Figure 3. The image point is located at the edge
of a probe that extends from a ghost cell through the object
boundary in the direction normal to the surface. The length
of the probe, denoted as 𝑑IP in Figure 3, is an important
parameter that eliminates recursive interpolation. Here we
fix the length of 𝑑IP as 1.75 times the mesh size, considering
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Figure 5: Flowchart of the present numerical method.

the extension to the three-dimensional problem. Because
the probe is longer than √3 times the mesh size, the nodes
enclosed by the orange dotted square in Figure 3 are classified
only as fluid cells. The primitive variables on the image
point are interpolated by the bilinear function based on the
surrounding cells. Finally, the value of the ghost cell is defined
by the value of the image point. The flow velocity, computed
by (15), is assumed to be linearly distributed along the probe
from the boundary point to image point. For the pressure and
density, a Neumann condition is assumed on the boundary
and the ghost cell is assigned the value of its corresponding
image point:

VGC = VIP −
𝑑IP + 𝑑GC

𝑑IP
(VIP − VIB) . (15)

2.3. Estimation of Friction Force. The fluid force acting on an
object is estimated by surface integration. Fluid forces must
be evaluated at both ghost and fluid cells because the object
boundary can straddle both cells, as shown in Figure 4. For
the ghost cells, the image point for the immersed boundary
method is directly available for calculating the fluid force
on the surface. In the case of fluid cells, on the other hand,
the small distance between the surface and fluid cell can
magnify the friction force wrongly. Therefore, the friction
force on the fluid cell is estimated by using the image point
method with changed probe length to √2/2 times the mesh

size. This value √2/2 is determined to adopt only fluid cells
as interpolation cells for the image point. In this case, the
viscous force is estimated by (16). The velocity component in
the following equation corresponds to the component parallel
to the boundary:

𝑓IB = 𝜇
𝑉IP󸀠 − 𝑉IB
𝑑IP󸀠 + 𝑑FC

Δ𝑆. (16)

Our code supports a simpler but accurate force estimation
method without the information of a level set function [30],
but this option is not considered here.

2.4. Outer Boundary Conditions. While supersonic flows can
be solved by applying Neumann conditions at the outer
boundary, this approach can induce instabilities in subsonic
flow simulations. Therefore, we apply a sponge region [31]
near the outer boundary to suppress sound reflections with
imposing a Dirichlet condition on the density at the outflow
boundary.This boundary condition ensures numerical stabil-
ity of flows with vortical wakes.

2.5. Coding Flowchart. Figure 5 shows a flowchart of the
computational procedures. The loop of the three-stage
Runge-Kutta time integration is iterated three times in the
blue box. Immediately before flux computation, the ghost
cells that specify the inner boundary condition of the fluid-
cell neighboring boundary are updated. If the flows contain
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Figure 6: Schematic of the computational domain.

Figure 7: Computational meshes around a cylinder (𝑑𝑥 = 0.2𝐷, 0.1𝐷, 0.05𝐷, 0.025𝐷).

moving objects, the level set function, cell classification,
and image point identification are reexecuted before the
Runge-Kutta loop as shown in the red box. Prior to comput-
ing the viscous forces using the ghost cell values, the ghost
cells are again updated.

3. Computational Result of Flow around
a Two-Dimensional Circular Cylinder

3.1. Computational Condition. The proposed scheme is eval-
uated through a series of numerical tests. The proposed
schemes are compared with the conventional MUSCL-Roe
scheme at different grid resolutions. Three methods for esti-
mating the inviscid flux as shown inTable 1 are compared: (A)
the present scheme (10) over the whole region, (B) enforcing
the MUSCL-Roe scheme for nearby objects and the present
scheme for other regions, and (C) the MUSCL-Roe scheme
over the whole region. In the present implementation, there
is no difference about the computational cost to calculate the
fluxes based on (A), (B), and (C). The characteristics of the
schemes are investigated on subsonic and supersonic flows
around a two-dimensional circular cylinder. The Reynolds
number, based on the cylinder diameter and freestream val-
ues (including viscosity), is fixed at 300, while the freestream
Mach numbers are varied as Mach 0.3, 1.2, and 2.0. Four

mesh sizes are compared: 0.200𝐷, 0.100𝐷, 0.050𝐷, and
0.025𝐷, where the diameter 𝐷 of the circular cylinder is
fixed at 1. The parameters in all trials are summarized in
Table 2. The computational domain is shown in Figure 6. We
investigated the validity to employ the size of computational
domain with comparing square domain of 40𝐷. The flow
simulations are conducted with a Courant number of 0.4.
It was confirmed that there was no significant effect about
the Courant number with comparing results from Courant
number 0.2. Dirichlet conditions are imposed on all flow
variables at the inflow boundary and on density alone at the
outflow boundary. Other variables are assigned Neumann
conditions at the outflow boundary. Neumann conditions are
imposed at the top and bottom boundaries for all variables.
The circular cylinders represented by the four mesh sizes are
illustrated in Figure 7. The black solid lines are grid lines
connecting cell centers. The bold red line is the boundary
of the circular cylinder immersed in the Cartesian mesh.
The blue, white, and red regions show fluid, ghost, and
object cells, respectively. The boundary layer thickness is
roughly estimated as 1/√Re, that is, 0.058𝐷. Consequently,
the boundary layer is discretized by two or three cells in using
0.025𝐷mesh size at Reynolds number 300.

In addition, the present results are compared with the
recent “state-of-the-art”WENO body-fitted coordinate com-
putational code. This code is based on the sixth-order
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Figure 8: Density contours in Mach 0.3.

WENO-CU developed by Hu et al. [32] and extended to the
body-fitted coordinate system by Nonomura et al. [33]. The
number of grid points is 208 × 177. The result obtained by
this code is used as a reference solution. We confirmed that
the 208 × 177 mesh is sufficiently fine to generate a reference
solution by comparing the results with those obtained on a
finer grid (410 × 268). The results output by this code are
presented in the Appendix.

3.2. Comparison of Computational Results at M 0.3. Figure 8
shows the density distribution at Mach 0.3. The top, central,
and bottom columns show the results from schemes A, B,
and C, respectively. The left and right panels were computed
on mesh sizes of 0.200𝐷 and 0.050𝐷, respectively. Clearly,
the vortices are collapsed when the MUSCL-Roe scheme is
implemented on the coarse mesh (M03-C-0200D; bottom
left of Figure 8). On the other hand, the present scheme

A preserves the flow features at all mesh resolutions. All
schemes yield similar results on the fine mesh.

The differences among the three schemes are confirmed
from pressure distributions and the time history of aerody-
namic coefficients at mesh size 0.050𝐷.The results are shown
in Figure 9. In scheme A, although high vortex resolution is
achieved in the pressure contours, pressure oscillation is also
observed near the cylinder. The oscillation is not preferable
for stable computation. On the other hand, scheme C yields
smooth pressure distribution and history of aerodynamic
coefficients. The vortices in scheme C are more dissipative
than those of schemeA.The strong features of schemes A and
C, vortex conservation and pressure oscillation suppression,
are realized in scheme B.

Figure 10 plots the distributions of the switching param-
eter 𝛽 in (11). Schemes A and B are adopted at mesh
sizes 0.100𝐷 and 0.025𝐷. The black and white regions are
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Table 1: Numerical schemes for estimating inviscid flux.

Scheme type Scheme A Scheme B Scheme C
Present scheme for all

regions Present scheme + MUSCL-Roe scheme for nearby objects MUSCL-Roe scheme

Table 2: Test cases.

Re Mach Scheme Mesh size Case

300 0.3

A (10)

0.2D M03-A-0200D
0.1D M03-A-0100D
0.05D M03-A-0050D
0.025D M03-A-0025D

B ((10) and MUSCL-Roe [22, 23] for nearby body)

0.2D M03-B-0200D
0.1D M03-B-0100D
0.05D M03-B-0050D
0.025D M03-B-0025D

C (MUSCL-Roe [22, 23])

0.2D M03-C-0200D
0.1D M03-C-0100D
0.05D M03-C-0050D
0.025D M03-C-0025D

300 1.2

A (10)

0.2D M12-A-0200D
0.1D M12-A-0100D
0.05D M12-A-0050D
0.025D M12-A-0025D

B ((10) and MUSCL-Roe [22, 23] for nearby body)

0.2D M12-B-0200D
0.1D M12-B-0100D
0.05D M12-B-0050D
0.025D M12-B-0025D

C (MUSCL-Roe [22, 23])

0.2D M12-C-0200D
0.1D M12-C-0100D
0.05D M12-C-0050D
0.025D M12-C-0025D

300 2.0

A (10)

0.2D M20-A-0200D
0.1D M20-A-0100D
0.05D M20-A-0050D
0.025D M20-A-0025D

B ((10) and MUSCL-Roe [22, 23] for nearby body)

0.2D M20-B-0200D
0.1D M20-B-0100D
0.05D M20-B-0050D
0.025D M20-B-0025D

C (MUSCL-Roe [22, 23])

0.2D M20-C-0200D
0.1D M20-C-0100D
0.05D M20-C-0050D
0.025D M20-C-0025D

solved by the present scheme (10) and MUSCL-Roe [22,
23] scheme, respectively. On the coarse mesh, the switching
function is rendered ineffective by numerical error and small
perturbation. In scheme B, however, where the MUSCL-
Roe scheme is applied only near the object, the performance
of the switching function is superior to that of scheme A.

While the switching scheme improves at finer mesh resolu-
tion in both cases, scheme B shows good performance at all
mesh resolutions.

Figure 11 summarizes the results at Mach 0.3. The refer-
ence values were obtained from a boundary-fitted mesh sim-
ulation shown in the Appendix. Although grid convergence
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Figure 9: Pressure contours (left) and time variation of aerodynamic coefficient (right).

is almost obtained for the lift coefficient amplitudes, Strouhal
number, and average drag coefficient, the convergence is
not monotonic. One of the reasons of the inflected con-
vergence that can occur is interference between the present
switching scheme of different spatial accuracy (third-order

MUSCL-Roe and second-order pseudo skew-symmetric)
and immersed boundary method. The lift and drag coef-
ficients are overestimated and underestimated, respectively,
in schemes A and C. In the case of scheme B, the lift and
drag coefficients are intermediate between schemes A and C.
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Figure 10: Visualization of switching parameter 𝛽 (white: 𝛽 = 1, black: 𝛽 = 0).
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Figure 11: Effect of mesh size on aerodynamic coefficients at Mach 0.3. The red lines are reference values.
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Figure 12: Density contours in Mach 1.2.

The friction drag coefficient follows the same trend in all
schemes and never completely converges. The boundary
layer, which is discretized by several grid points even in
the finest grid resolution 0.025𝐷, is not sufficiently resolved
to show grid convergence since the thickness is roughly
estimated by𝐷/√Re as 0.058𝐷.

3.3. Comparison of Computational Results at M 1.2. Figure 12
plots the density contours over the whole computational
region and in the near field of the object at mesh size
0.100𝐷. Obtained flowfield becomes almost symmetrically
different from the previous subsonic case. The trend of the
flow resolution is similar to the previously discussed subsonic
case. SchemeA captures a sharper distribution than schemeC
but develops weak numerical oscillation. Reasonable results
are obtained by scheme B, in which regions far and near the
object are evolved under schemes A and C, respectively.

The distribution of𝛽 atmesh size 0.100𝐷 is similar among
the three schemes (Figure 13). At Mach 1.2, the white region
(solved by schemeC) enlarges relative to that atMach 0.3.The
dependency of drag coefficient on grid resolution is similar
to that of Mach 0.3 (Figure 14), although the drag coefficients
are more similar among the three schemes. A likely reason
for this trend is that the region solved by scheme C becomes
wider in Mach 1.2 than in Mach 0.3.

3.4. Comparison of Computational Results at M 2.0. At
Mach 2.0, the flows computed by scheme A destabilize even
under various restart conditions probably because the present
scheme consists of little numerical dissipation. Figure 15 plots
the density distribution calculated by schemes B and C at
mesh size 0.100𝐷. While the distributions yielded by both
schemes are very similar, those of scheme B are slightly
sharper than those of scheme C.
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Figure 13: Visualization of switching parameter 𝛽 (white: 𝛽 = 1, black: 𝛽 = 0).
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Figure 14: Effect of mesh size on aerodynamic coefficients at Mach 1.2. The red lines are reference values.

The distributions of the switching parameter 𝛽 at mesh
sizes 0.100𝐷 and 0.025𝐷 are displayed in Figure 16. Both dis-
tributions are obtained from scheme B because computations
by scheme A blow up.The black regions solved by the central
difference scheme appear both upstream and downstream of
the cylinder. Thus, the present switching scheme adequately
captures nondissipative flows. However, the drag coefficients
calculated by schemes B and C are very similar, a likely
consequence of the wide MUSCL-Roe region (see Figure 17).
Thus, while the wake resolution is unambiguously clarified,
the drag coefficients are not affected.

3.5. Comparison of Surface Pressure Coefficient at M 1.2 and
M 2.0. Here, surface pressure coefficients in supersonic cases
are compared with BFC results to investigate resolution
near the boundary. Figure 18 shows the pressure coefficient
distributions obtained from all schemes with fine (0.025𝐷)
and coarse (0.100𝐷) mesh resolutions. The present results
from fine and coarse meshes are drawn by circles and other
symbols, respectively. Discrepancies are observed between
BFC and results from coarse meshes, while almost agree-
ments are obtained in the cases of fine mesh resolution.
In the case of M 1.2, however, the stagnation pressure is
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Figure 15: Density contours in Mach 2.0.
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Figure 16: Visualization of switching parameter 𝛽 (white: 𝛽 = 1, black: 𝛽 = 0).

overestimated rather than BFC even in all cases of fine mesh.
It can be affected from the size of upstream region from the
cylinder and the location of the shockwave. Although scheme
A shows oscillatory distributions due to the characteristic of
the central difference scheme, schemes B and C show almost

same distributions without the feature. In the case of coarse
meshes, the beginning of the adverse pressure gradient is not
captured clearly; that is, the resolution of the present IBM
should be investigated precisely in addition to the effect of
the mesh resolution.
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Figure 17: Effect of mesh size on drag coefficients at Mach 2.0. The red lines are reference values.
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Figure 18: Surface pressure coefficient distributions at M 1.2 and M 2.0.

4. Flow Simulation around Relatively
Moving Cylinders

Thepresent study aims to solve flows aroundmultiplemoving
objects. To this end, we simulate the flows induced by two
moving cylinders at Mach 1.2. Schematics of the applications
are shown in Figure 19. All cylinders in this section are
forced to move with fixed velocities and directions. All
computations are performed by scheme B, and the diameters
𝐷 of all cylinders are 1. The Reynolds number, based on

the moving velocity, flow viscosity, and cylinder diameter,
is fixed at 300. For comparison, the simulations are con-
ducted on two mesh sizes: 0.050𝐷 and 0.025𝐷. In flow
simulations with moving objects, the flow simulations are
conducted with a Courant number of 0.4. Cartesian meshes
can cause the so-called “fresh cell” problem because the
cell properties alter with the moving boundary [34]. In this
study, although we do not employ any special treatment for
the fresh cell problem, the computations are accurate and
stable.
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Figure 19: Computational configurations of the applications discussed in the text.

4.1. Application 1: Passing Cylinders over Each Other. In
the first application, flow is simulated around cylinders
passing each other along the 𝑥-axis. Figure 20 plots the
distributions of density and vorticity magnitude at nondi-
mensional times 𝑡 = 8.2, 13.6, 19.1, and 23.2. The shock wave
generated by a moving cylinder interacts with the wake
of the partner cylinder. Vortices are generated from the
interaction between the shock wave and shear layer of the
wake.

Figure 21 displays the distribution of the switching
parameter 𝛽 at 𝑡 = 23.2. The distribution of 𝛽 around a
moving cylinder is similar to that around a fixed cylinder.
The black region, solved by the central difference scheme,
spreads in the wake and vortical regions. The nondissipative
scheme encourages instabilities to develop in the shear
layer.

The fluid force, estimated by surface integration on each
object, is normalized identically to the usual aerodynamic
coefficient based on the velocity of moving objects. Figure 22
plots the axial force coefficient calculated in this manner, as
a function of nondimensional time. The red and blue lines
represent the coefficients of cylinders𝐶

1
and𝐶

2
, respectively.

The solid and dotted lines represent coarse and fine meshes,
respectively. The coefficients are almost independent of grid
resolution. Apart from the initial impulse, most of the varia-
tion is caused by the shockwave intercepting from the partner
cylinder. Along the 𝑥-axis, the force coefficient jumps at 𝑡 =
11.1 as the shock wave strikes and then decreases nonlinearly
under interference between the shock wave from the partner
cylinder and shear layer in the cylinder’s own wake. Finally,
the coefficient returns to its initial value, having been reduced
by half following the nonlinear variation. Along the 𝑦-axis,

on the other hand, the force coefficient peaks around 0.7 as
the shock wave arrives. Thus, the numerical method allows
quantitative evaluation of the fluid force around the moving
cylinders.

4.2. Application 2: Crossing Cylinders. The second application
is flow simulation around crossing cylinders. In this flow-
field, the shock wave, wake, and objects mutually interact.
Figure 23 shows the distributions of density and vorticity
magnitude at 𝑡 = 7.8, 12.9, 18.1, and 22.0. The shock waves
propagated from the cylinders diagonally interfere ahead of
the cylinders at 𝑡 = 7.8. The shear flow in the wake is
disordered following the crossing at 𝑡 = 18.1. The flows
formed by the interaction of wake and shocks are resolved
well by the present switching scheme (see Figure 24).

As in application 1, we now evaluate the axial force
coefficients around a pair of crossing cylinders.The temporal
changes are plotted in Figure 25. Initially, the axial force
on 𝐶
1
is enlarged by the shock wave and shear flow from

𝐶
2
, similar to application 1. However, the force coefficient

falls to zero, negated by the shear flow of 𝐶
2
. Along the 𝑥-

axis, the mesh size introduces a 10% variation in the peak
coefficient of 𝐶

2
(occurring around 𝑡 = 10). At the peak,

the flows are highly compressed by the shock waves from 𝐶
1

and 𝐶
2
. Moreover, the shock wave is damped by the shear

flow around the cylinder.While the grid resolution affects the
sharpness of both shock wave and shear flow, the decreased
peak value at the higher grid resolution may be attributable
to excitation of the shear flow around 𝐶

2
. Along the 𝑦-axis,

the force coefficient of 𝐶
2
enhances around 𝑡= 10, as the cir-

culation around𝐶
2
is diminished by𝐶

1
intercepting the shear

flow.
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Figure 20: Density and vorticity contours at nondimensional times = 8.2, 13.6, 19.1, and 23.2 with 𝑑𝑥 = 0.025𝐷.
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Figure 21: Visualization of switching parameter 𝛽 at 𝑡 = 23.2 with 𝑑𝑥 = 0.025𝐷.
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Figure 22: Temporal variation of axial force coefficient.

5. Conclusions

To enable simulation of high-speed gas-particle multiphase
flows, we developed a high-resolution computational code
that captures shock behavior and applied it to the compress-
ible Navier-Stokes equations on an equally spaced Carte-
sian mesh. The second-order pseudo skew-symmetric and
MUSCL-Roe schemes, togetherwith the immersed boundary
method, were combined into a hybrid scheme. The hybrid
scheme yielded much higher vortex resolution than the
MUSCL-Roe scheme while capturing the shock waves with
the same effectiveness. The scheme was evaluated on Mach
0.3 subsonic flows and Mach 1.2 and 2.0 supersonic flows

around a two-dimensional circular cylinder at Re = 300. The
high resolution enabled accurate estimation of the aerody-
namic forces. The modified hybrid scheme, which enforces
theMUSCL-Roe scheme only around nearby objects, showed
more accurate and stable characteristics than the original
hybrid scheme because it dampens oscillations near the
body. These oscillations are induced by the insufficient grid
resolution near the object. The effectiveness of the scheme
was emphasized in the flow simulations on coarse meshes.

Moreover, flows were simulated around two moving
cylinders atMach 1.2.The results of these simulations verified
the applicability and robustness of the proposed method.
Grid convergence results were obtained and the flow features,



18 Journal of Applied Mathematics

0.2

1.6

𝜌

0.2

1.6

𝜌

0.2

1.6

𝜌

0.2

1.6

𝜌

(a) Density

Vo
rt

ic
ity

 m
ag

ni
tu

de

0.0

1.0

Vo
rt

ic
ity

 m
ag

ni
tu

de

0.0

1.0

Vo
rt

ic
ity

 m
ag

ni
tu

de

0.0

1.0

Vo
rt

ic
ity

 m
ag

ni
tu

de

0.0

1.0

(b) Vorticity

Figure 23: Density and vorticity contours around two crossing cylinders at nondimensional times = 7.8, 12.9, 18.1, and 22.0 with 𝑑𝑥 = 0.025𝐷.
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Figure 24: Visualization of switching parameter 𝛽 at t = 23.2 with 𝑑𝑥 = 0.025𝐷 (white: 𝛽 = 1, black: 𝛽 = 0).
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Figure 25: Temporal variation of axial force coefficient.

including interference among shock waves, shear flows, and
objects, were well captured by the code developed in this
study.

Our main focus is characteristics of acoustic wave in
flow involving turbulence, shocks, and particles. Now we
develop the present numerical method to three-dimensional
simulation with investigating the applicability to turbulence
and computational performance carefully to achieve high
performance parallel computing. In near future, detailed
phenomenon of this problem is going to be clarified from
large-scale gas-particle flow simulation by using over billion
computational cells.

Appendix

Theflowfields obtained by the body-fitted coordinate code are
shown in Figure 26.

Nomenclature

𝑎 : Speed of sound
𝑐: Courant number
𝐶
𝑝
: Specific heat at constant pressure

𝑑: Distance from object boundary (= value of
level set function)

𝐷: Cylinder diameter
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Figure 26: Density distribution computed by body-fitted coordinate code [24], simulating flow around a two-dimensional cylinder.

𝑒: Total energy per unit mass
𝐸: Conservative variable vector
𝐸: Inviscid flux vector along the 𝑥-axis
𝐸V: Viscous flux vector along the 𝑥-axis
𝐹: Inviscid flux vector along the 𝑦-axis
𝐹V: Viscous flux vector along the 𝑦-axis
𝑝: Pressure
Pr: Prandtl number
𝑄: Conservative variable vector (used as a

solution vector in this study)
Re: Reynolds number
𝑡: Time
𝑢: Horizontal (𝑥-axis) velocity component
V: Vertical (𝑦-axis) velocity component
V: Velocity vector
𝑥: Horizontal Cartesian coordinate
𝑦: Vertical Cartesian coordinate
𝜌: Density
𝛾: Specific heat ratio
𝛽: Switching function of inviscid scheme
𝜇: Viscosity
𝜏
𝑖𝑗
: Viscous stress tensor

𝜅: Thermal conductance.

Subscripts

∞: Freestream value
IP: Image point
FC: Fluid cell
GC: Ghost cell
OC: Object cell
obj: Object value.
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Two mathematical models are used to simulate water quality in a nonuniform flow stream. The first model is the hydrodynamic
model that provides the velocity field and the elevation of water. The second model is the dispersion model that provides the
pollutant concentration field. Both models are formulated in one-dimensional equations. The traditional Crank-Nicolson method
is also used in the hydrodynamic model. At each step, the flow velocity fields calculated from the first model are the input into
the second model as the field data. A modified MacCormack method is subsequently employed in the second model. This paper
proposes a simply remarkable alteration to the MacCormack method so as to make it more accurate without any significant loss
of computational efficiency. The results obtained indicate that the proposed modified MacCormack scheme does improve the
prediction accuracy compared to that of the traditional MacCormack method.

1. Introduction

In general, the amount of pollution levels in a stream can be
measured via data collection from a real of field data site.
It is somehow rather difficult and complex, and the results
obtained tentatively deviate in the measurement from one
point in each time/place to another when the water flow in
the stream is not uniform. In water quality modelling for
nonuniform flow stream, the general governing equations
used are the hydrodynamic model and the dispersion model.
The one-dimensional shallow water equation and advection-
dispersion-reaction equation is govern the first and the
second models, respectively.

Numerous numerical techniques for solving such models
are available. In [1], the finite element method for solving
a steady water pollution control to achieve a minimum
cost is presented. The numerical techniques for solving
the uniform flow of stream water quality model, especially
the one-dimensional advection-dispersion-reaction equa-
tion, are presented in [2–6].

The nonuniform flow model requires data concerned
with the velocity of the current at any point and any time
in the domain. The hydrodynamics model provides the
velocity field and tidal elevation of the water. In [7–10], they
used the hydrodynamicsmodel and the advection-dispersion
equation to approximate the velocity of the water current
in bay, uniform reservoir, and stream, respectively. Among
these numerical techniques, the finite difference methods,
including both explicit and implicit schemes, are mostly used
for one-dimensional domain such as in longitudinal stream
systems [11, 12].

There are two mathematical models used to simulate
water quality in a nonuniform water flow systems.The first is
the hydrodynamic model that provides the velocity field and
the elevation ofwater.The second is the dispersionmodel that
gives the pollutant concentration field. A couple of models
are formulated in one-dimensional equations.The traditional
Crank-Nicolsonmethod is used in the hydrodynamic model.
At each step, the calculated flow velocity fields of the first
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model are input into the second model as the field data
[9, 10, 13].

The numerical techniques to solve the nonuniform flow
of stream water quality model containing one-dimensional
advection-dispersion-reaction equation have been presented
in [10] using the fully implicit scheme: Crank-Nicolson
method is used to solve the hydrodynamic model and
backward time central space (BTCS) for dispersion model,
respectively. In [13], the Crank-Nicolson method is also used
to solve the hydrodynamic model, while the explicit Saulyev
scheme is used to solve the dispersion model.

Their research on finite difference techniques for the
dispersion model has concentrated on computation accu-
racy and numerical stability. Many complicated numerical
techniques, such as the QUICK scheme, the Lax-Wendroff
scheme, and the Crandall scheme, have been studied to
increase performances. These techniques have focused on
advantages in terms of stability and higher order accuracy [3].

The simple finite difference schemes becomemore attrac-
tive for model use. The simple explicit methods include
the forward time-central space (FTCS) scheme, the Mac-
Cormack scheme, and the Saulyev scheme, and the implicit
schemes include the backward time-central space (BTCS)
scheme, and the Crank-Nicolson scheme [12].These schemes
are either first-order or second-order accurate and have the
advantages in programming and computing without losing
much accuracy and thus they are used for many model
applications [3].

A third-order upwind scheme for the advection-diffusion
equation using a simple spreadsheets simulation is proposed
in [14]. In [15], a new flux splitting scheme is proposed.
The scheme is robust and converges as fast as the Roe Split-
ting. The Godunov-mixed methods for advection-dispersion
equations are introduced in [16]. A time-splitting approach
for advection-dispersion equations is also considered. In
addition, [17] proposes a time-splitting method for multi-
dimensional advection-diffusion equations that advection is
approximated by a Godunov-type procedure, and diffusion is
approximated by a low-order mixed finite element method.
In [18], the flux-limiting solution techniques for simulation
of reaction diffusion convection system are proposed. A
composite scheme to solves the scalar transport equation in a
two-dimensional space that accurately resolve sharp profiles
in the flow is introduced. The total variation diminishing
implicit Runge-Kutta methods for dissipative advection-
diffusion problems in astrophysics is proposed in [19]. They
derive dissipative space discretizations and demonstrate that
together with specially adapted total-variation-diminishing
(TVD) or strongly stable Runge-Kutta time discretizations
with adaptive step-size control this yields reliable and efficient
integrators for the underlying high-dimensional nonlinear
evolution equations.

In this research, we propose simple revisions to the Mac-
Cormack scheme that improve its accuracy for the problem
of water quality measurement in a nonuniform water flow
in a stream. In the following sections, the formulation of the
traditional MacCormack scheme is reviewed.The revision of
the modified MacCormack scheme is proposed.

h(x)

z

x

𝜁(x, t)

u(x, t)

z = 𝜁

z = 0

Figure 1: The shallow water system.

The results from the hydrodynamic model are the data of
the water flow velocity for the advection-dispersion-reaction
equation which provides the pollutant concentration field.
The term of friction forces, due to the drag of sides of the
stream, is considered. The theoretical solution of the model
at the end point of the domain that guarantees the accuracy
of the approximate solution is presented in [9, 10, 13].

The streamhas a simple one-space dimension as shown in
Figure 1. By averaging the equation over the depth, discarding
the term due to the Coriolis force, it follows that the one-
dimensional shallow water and the advection-dispersion-
reaction equations are applicable.We use the Crank-Nicolson
scheme, the traditional MacCormack scheme, and the Mod-
ified MacCormack scheme to approximate the velocity, the
elevation, and the pollutant concentration from the first and
the second models, respectively.

2. Model Formulation

2.1. The Hydrodynamic Model. In this section, we derive a
simple hydrodynamicmodel for describingwater current and
elevation by one-dimensional shallow water equation. We
make the usual assumption in the continuity andmomentum
balance; that is, we assume that the Coriolis, shearing stresses,
and the surface wind are small [7, 9, 10, 20]; we obtain the
one-dimensional shallow water equations:

𝜕𝜁

𝜕𝑡
+
𝜕

𝜕𝑥
[(ℎ + 𝜁) 𝑢] = 0,

𝜕𝑢

𝜕𝑡
+ 𝑔
𝜕𝜁

𝜕𝑥
= 0,

(1)

where 𝑥 is the longitudinal distance along the stream (m), 𝑡
is time (s), ℎ(𝑥) is the depth measured from the mean water
level to the stream bed (m), 𝜁(𝑥, 𝑡) is the elevation from the
mean water level to the temporary water surface or the tidal
elevation (m/s), and 𝑢(𝑥, 𝑡) is the velocity components (m/s),
for all 𝑥 ∈ [0, 𝑙].

Assume that ℎ is a constant and 𝜁 ≪ ℎ. Then (1) lead to

𝜕𝜁

𝜕𝑡
+ ℎ
𝜕𝑢

𝜕𝑥
≐ 0,

𝜕𝑢

𝜕𝑡
+ 𝑔
𝜕𝜁

𝜕𝑥
= 0.

(2)
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We will consider the equation in the dimensionless
problem by letting 𝑈 = 𝑢/√𝑔ℎ, 𝑋 = 𝑥/𝑙, 𝑍 = 𝜁/ℎ, and
𝑇 = 𝑡√𝑔ℎ/𝑙. Substituting them into (2) leads to

𝜕𝑍

𝜕𝑇
+
𝜕𝑈

𝜕𝑋
= 0,

𝜕𝑈

𝜕𝑇
+
𝜕𝑍

𝜕𝑋
= 0.

(3)

In [9, 10, 13], they introduce a damping term into (3) to
represent the frictional forces due to the drag of sides of the
stream,

𝜕𝑍

𝜕𝑇
+
𝜕𝑈

𝜕𝑋
= 0,

𝜕𝑈

𝜕𝑇
+
𝜕𝑍

𝜕𝑋
= −𝑈,

(4)

with the initial conditions at 𝑡 = 0 and 0 ≤ 𝑋 ≤ 1 are 𝑍 = 0
and 𝑈 = 0. The boundary conditions for 𝑡 > 0 are specified:
𝑍 = 𝑒

𝑖𝑡 at 𝑋 = 0 and 𝜕𝑍/𝜕𝑋 = 0 at 𝑋 = 1. The system
of (4) is called the damped equation. We solve the damped
equation by using the finite difference method. In order to
solve (4) in [0, 1] × [0, 𝑇], it is convenient to use 𝑢, 𝑑 for 𝑈
and 𝑍, respectively:

𝜕𝑢

𝜕𝑡
+
𝜕𝑑

𝜕𝑥
= −𝑢,

𝜕𝑑

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
= 0,

(5)

with the initial conditions 𝑢 = 0, 𝑑 = 0, at 𝑡 = 0, and the
boundary conditions 𝑑(0, 𝑡) = 𝑓(𝑡) and 𝜕𝑑/𝜕𝑥 = 0 at 𝑥 = 1.

2.2. Dispersion Model. In a stream water quality model,
the governing equations are the dynamic one-dimensional
advection-dispersion-reaction equations (ADREs). A simpli-
fied representation by averaging the equation over the depth
is shown in [2–4, 6, 10] as follows:

𝜕𝐶

𝜕𝑡
+ 𝑢
𝜕𝐶

𝜕𝑥
= 𝐷
𝜕
2
𝐶

𝜕𝑥2
− 𝐾𝐶, (6)

where 𝐶(𝑥, 𝑡) is the concentration averaged in depth at the
point 𝑥 and at time 𝑡, 𝐷 is the diffusion coefficient, 𝐾 is the
mass decay rate, and 𝑢(𝑥, 𝑡) is the velocity component for all
𝑥 ∈ [0, 1]. We will consider the model with the following
conditions. The initial condition 𝐶(𝑥, 0) = 0 at 𝑡 = 0 for all
𝑥 > 0. The boundary conditions 𝐶(0, 𝑡) = 𝐶

0
at 𝑥 = 0 and

𝜕𝐶/𝜕𝑥 = 0 at 𝑥 = 1 where 𝐶
0
is a constant.

3. Crank-Nicolson Method for
the Hydrodynamic Model

The hydrodynamic model provides the velocity field and
elevation of the water. Then the calculated results of the
model will be the input into the dispersion model which
provides the pollutant concentration field. We will follow the

numerical techniques of [9]. To find the water velocity and
water elevation from (5), we make the following change to
variables V = 𝑒𝑡𝑢 and substitute it into (5). Therefore,

𝜕V
𝜕𝑡
+ 𝑒
𝑡 𝜕𝑑

𝜕𝑥
= 0,

𝜕𝑑

𝜕𝑡
+ 𝑒
−𝑡 𝜕V
𝜕𝑥
= 0.

(7)

Equations (7) can be written in the matrix form

(
V
𝑑
)

𝑡

+ [
0 𝑒
𝑡

𝑒
−𝑡
0
](

V
𝑑
)

𝑥

= (
0

0
) . (8)

That is

𝑈
𝑡
+ 𝐴𝑈
𝑥
= 0, (9)

where

𝐴 = [
0 𝑒
𝑡

𝑒
−𝑡
0
] ,

𝑈 = (
V
𝑑
) , (

V
𝑑
)

𝑡

= (

𝜕V
𝜕𝑡

𝜕𝑑

𝜕𝑡

) ,

(10)

with the initial condition𝑑 = V = 0 at 𝑡 = 0.The left boundary
condition for 𝑥 = 0, 𝑡 > 0 is specified: 𝑑(0, 𝑡) = sin 𝑡 and
𝜕V/𝜕𝑥 = −𝑒𝑡 cos 𝑡, and the right boundary condition for 𝑥 =
1, 𝑡 > 0 is specified: 𝜕𝑑/𝜕𝑥 = 0 and V(0, 𝑡) = 0.

We now discretize (9) by dividing the interval [0, 1] into
𝑀 subintervals such that𝑀Δ𝑥 = 1 and the interval [0, 𝑇] into
𝑁 subintervals such that𝑁Δ𝑡 = 𝑇. We can then approximate
𝑑(𝑥
𝑖
, 𝑡
𝑛
) by𝑑𝑛
𝑖
, value of the difference approximation of𝑑(𝑥, 𝑡)

at point 𝑥 = 𝑖Δ𝑥 and 𝑡 = 𝑛Δ𝑡, where 0 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑛 ≤
𝑁, and similarly defined for V𝑛

𝑖
and𝑈𝑛

𝑖
.The grid point (𝑥

𝑛
, 𝑡
𝑛
)

is defined by𝑥
𝑖
= 𝑖Δ𝑥 for all 𝑖 = 0, 1, 2, . . . ,𝑀 and 𝑡

𝑛
= 𝑛Δ𝑡 for

all 𝑛 = 0, 1, 2, . . . , 𝑁 in which𝑀 and𝑁 are positive integers.
Using the Crank-Nicolson method [21] to (9), the following
finite difference equation can be obtained:

[𝐼 −
1

4
𝜆𝐴 (Δ

𝑥
+ ∇
𝑥
)]𝑈
𝑛+1

𝑖
= [𝐼 +

1

4
𝜆𝐴 (Δ

𝑥
+ ∇
𝑥
)]𝑈
𝑛

𝑖
,

(11)

where

𝑈
𝑛

𝑖
= (

V𝑛
𝑖

𝑑
𝑛

𝑖

) , Δ
𝑥
𝑈
𝑛

𝑖
= 𝑈
𝑛

𝑖+1
− 𝑈
𝑛

𝑖
,

∇
𝑥
𝑈
𝑛

𝑖
= 𝑈
𝑛

𝑖
− 𝑈
𝑛

𝑖−1
,

(12)

𝐼 is the unit matrix of order 2, and 𝜆 = Δ𝑡/Δ𝑥. Applying
the initial and boundary conditions given in (7), it can be
obtained the general form

𝐺
𝑛+1
𝑈
𝑛+1

= 𝐸
𝑛
𝑈
𝑛

+ 𝐹
𝑛
, (13)
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where
𝐺
𝑛+1

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 −
𝜆

4
𝑎
𝑛+1

1
0 0

𝜆

4
𝑎
𝑛+1

2
1 −
𝜆

4
𝑎
𝑛+1

2
0 0 0

0
𝜆

4
𝑎
𝑛+1

1
1 0 0 −

𝜆

4
𝑎
𝑛+1

1

𝜆

4
𝑎
𝑛+1

2
0 0 1 −

𝜆

4
𝑎
𝑛+1

2
0

d d d d d d

0 0 0
𝜆

4
𝑎
𝑛+1

1
1 −

𝜆

4
𝑎
𝑛+1

1

0 0
𝜆

4
𝑎
𝑛+1

2
0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐸
𝑛
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 −
𝜆

4
𝑎
𝑛

1
0 0

−
𝜆

4
𝑎
𝑛

2
1
𝜆

4
𝑎
𝑛

2
0 0 0

0 −
𝜆

4
𝑎
𝑛

1
1 0 0

𝜆

4
𝑎
𝑛

1

−
𝜆

4
𝑎
𝑛

2
0 0 1

𝜆

4
𝑎
𝑛

2
0

d d d d d d

0 0 0 −
𝜆

4
𝑎
𝑛

1
1
𝜆

4
𝑎
𝑛

1

0 0 −
𝜆

4
𝑎
𝑛

2
0 0 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑈
𝑛

=(

(

𝑈
𝑛

1

𝑈
𝑛

2

...

𝑈
𝑛

𝑀−1

)

)

,

𝐹
𝑛
=

(
(
(
(
(
(
(
(
(

(

−
𝜆

4
𝑎
𝑛+1

1
sin (𝑡𝑛+1) −

𝜆

4
𝑎
𝑛

1
sin (𝑡𝑛)

−
𝜆

4
𝑎
𝑛+1

2
Δ𝑥𝑒
−𝑡𝑛+1 cos (𝑡𝑛+1) −

𝜆

4
𝑎
𝑛

2
Δ𝑥𝑒
−𝑡𝑛 cos (𝑡𝑛)

0

0

...
0

0

)
)
)
)
)
)
)
)
)

)

,

(14)

where 𝑎𝑛
1
= 𝑒
𝑡
𝑛 , 𝑎
𝑛

2
= 𝑒
−𝑡
𝑛 , and 𝑡

𝑛
= 𝑛Δ𝑡 for all 𝑛 = 0

, 1, 2, . . . , 𝑁. The Crank-Nicolson scheme is unconditionally
stable [12, 21].

4. A Modified MacCormack Scheme for the
Advection-Dispersion-Reaction Equation

4.1. The Traditional MacCormack Scheme. First of all, we
consider the traditional MacCormack scheme.The scheme is
an explicit finite difference scheme with predictor-corrector
two-step method. The first step is a modification of forward
time central space (FTCS) by changing the central space
evaluation at time 𝑛 to a forward space evaluation. This step
is a forward time forward space (FTFS) scheme. The FTFS
scheme approximates the temporal and spacial derivatives
and the decay in (6) with the following discretization.

We can then approximate 𝐶(𝑥
𝑖
, 𝑡
𝑛
) by 𝐶𝑛

𝑖
, the value of the

difference approximation of 𝐶(𝑥, 𝑡) at point 𝑥 = 𝑖Δ𝑥 and 𝑡 =
𝑛Δ𝑡, where 0 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑛 ≤ 𝑁.The grid point (𝑥

𝑛
, 𝑡
𝑛
) is

defined by 𝑥
𝑖
= 𝑖Δ𝑥 for all 𝑖 = 0, 1, 2, . . . ,𝑀 and 𝑡

𝑛
= 𝑛Δ𝑡 for

all 𝑛 = 0, 1, 2, . . . , 𝑁 in which𝑀 and𝑁 are positive integers.
Taking the forward time forward space technique [3, 21] into
(6), we get the following discretization:

𝐶 ≅ 𝐶
𝑛

𝑖
,

𝜕𝐶

𝜕𝑡
≅
𝐶
𝑛+1

𝑖
− 𝐶
𝑛

𝑖

Δ𝑡
,

𝜕𝐶

𝜕𝑥
≅
𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖

Δ𝑥
,

𝜕
2
𝐶

𝜕𝑥2
≅
𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

i + 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

,

𝑢 ≅ 𝑈̂
𝑛

𝑖
.

(15)

Note that 𝑈̂𝑛
𝑖
are obtained by the Crank-Nicolsonmethod

with the hydrodynamic model of (5) that are presented in [9,
10, 13].

Substituting (15) into (6), we get

𝐶
𝑛+1

𝑖
− 𝐶
𝑛

𝑖

Δ𝑡
+ 𝑈̂
𝑛

𝑖
(
𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖

Δ𝑥
)

= 𝐷(
𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

) − 𝐾𝐶
𝑛

𝑖
,

(16)

for 1 ≤ 𝑖 ≤ 𝑀 and 0 ≤ 𝑛 ≤ 𝑁 − 1. Substitute the difference
equation into (16), and then define slope 𝑆

𝑖
1

as

𝑆
𝑖
1

= −𝑈̂
𝑛

𝑖
(
𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖

Δ𝑥
) + 𝐷(

𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

) − 𝐾𝐶
𝑛

𝑖
.

(17)

Let 𝜆 = 𝐷Δ𝑡/(Δ𝑥)2 and 𝛾𝑛+1
𝑖
= (Δ𝑡/Δ𝑥)𝑈̂

𝑛+1

𝑖
, and then define

́𝛾
𝑛

𝑖
= 𝛾
𝑛

𝑖
/Δ𝑡 = 𝑈̂

𝑛

𝑖
/Δ𝑥 and ́𝜆 = 𝐷/(Δ𝑥)2 = 𝜆/Δ𝑡. Equation (17)

takes a simplified form:

𝑆
𝑖
1

= − ́𝛾
𝑛

𝑖
(𝐶
𝑛

𝑖+1
− 𝐶
𝑛

𝑖
) + ́𝜆 (𝐶

𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1
) − 𝐾𝐶

𝑛

𝑖
, (18)

or

𝑆
𝑖
1

= ( ́𝜆 − ́𝛾
𝑛

𝑖
) 𝐶
𝑛

𝑖+1
− (2 ́𝜆 − ́𝛾

𝑛

𝑖
+ 𝐾)𝐶

𝑛

𝑖
+ ́𝜆𝐶
𝑛

𝑖−1
. (19)

For upper boundary, where 𝑖 = 1, plug the known value
of the left boundary𝐶𝑛

0
= 𝐶
0
to (19) in the right hand side; we

obtain

𝑆
1
1

= ( ́𝜆 − ́𝛾
𝑛

1
) 𝐶
𝑛

2
− (2 ́𝜆 − ́𝛾

𝑛

1
+ 𝐾)𝐶

𝑛

1
+ ́𝜆𝐶
0
. (20)

For the lower boundary, where 𝑖 = 𝑀, substitute the
approximate unknown value of the right boundary by the
forward difference approximation to 𝜕𝐶/𝜕𝑥 = 0. Let 𝐶

𝑀
=

𝐶
𝑀−1

and rearrange; we obtain

𝑆
𝑀
1

= − ( ́𝜆 + 𝐾)𝐶
𝑛

𝑀−1
+ ́𝜆𝐶
𝑛

𝑀−2
. (21)
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Taking the Euler formula, we obtain the MacCormack
predictor step formulation:

𝐶
𝑛+1

𝑖
= 𝐶
𝑛

𝑖
+ 𝑆
𝑖
1

Δ𝑡. (22)

The second step is amodified backward time central space
(BTCS) scheme by changing the central space evaluation
time 𝑛 with a backward space evaluation. It is essentially a
backward time backward space (BTBS) scheme. The BTBS
scheme approximates the temporal and spacial derivatives
and the decay in (6) with the following discretization:

𝐶 ≅
1

2
(𝐶
𝑛

𝑖
+ 𝐶
𝑛+1

𝑖
) ,

𝜕𝐶

𝜕𝑡
≅
𝐶
𝑛+1

i − 𝐶
𝑛

𝑖

Δ𝑡
,

𝜕𝐶

𝜕𝑥
≅
𝐶
𝑛+1

𝑖
− 𝐶
𝑛+1

𝑖−1

Δ𝑥
,

𝜕
2
𝐶

𝜕𝑥2
≅
1

2
(
𝐶
𝑛

𝑖+1
− 2𝐶
𝑛

𝑖
+ 𝐶
𝑛

𝑖−1

(Δ𝑥)
2

+
𝐶
𝑛+1

𝑖+1
− 2𝐶
𝑛+1

𝑖
+ 𝐶
𝑛+1

𝑖−1

(Δ𝑥)
2

) .

(23)

Because the values at time level 𝑛+1 have been calculated
in predictor step, the second step is also explicit. It follows
that the slope base on their predictor points can be calculated
as follows:

𝑆
𝑖
2

= ́𝜆𝐶
𝑛+1

𝑖+1
− (2 ́𝜆 + ́𝛾

𝑛+1

𝑖
+ 𝐾)𝐶

𝑛+1

𝑖
+ ( ́𝜆 + ́𝛾

𝑛+1

𝑖
) 𝐶
𝑛+1

𝑖−1
.

(24)

For upper boundary, where 𝑖 = 1, plug the known value
of the left boundary 𝐶𝑛+1

0
= 𝐶
0
to (24) in the right hand side.

We obtain

𝑆
1
2

= ́𝜆𝐶
𝑛+1

2
− (2 ́𝜆 + ́𝛾

𝑛+1

1
+ 𝐾)𝐶

𝑛+1

1
+ ( ́𝜆 + ́𝛾

𝑛+1

1
) 𝐶
0
. (25)

For the lower boundary, where 𝑖 = 𝑀, substitute the
approximate unknown value of the right boundary by the
backward difference approximation to 𝜕𝐶/𝜕𝑥 = 0. Let
𝐶
𝑀+1
= 𝐶
𝑀
and rearrange; then, we obtain

𝑆
𝑀
2

= ́𝜆𝐶
𝑛+1

𝑀
− (2 ́𝜆 + ́𝛾

𝑛+1

𝑀
+ 𝐾)𝐶

𝑛+1

𝑀

+ ( ́𝜆 + ́𝛾
𝑛+1

𝑀
) 𝐶
𝑛+1

𝑀−1
.

(26)

From both of the steps, the MacCormack scheme takes
the following form:

𝐶
𝑛+1

𝑖
= 𝐶
𝑛

𝑖
+
Δ𝑡

2
(𝑆
𝑖
1

+ 𝑆
𝑖
2

) . (27)

The MacCormack scheme is conditionally stable subject
to constraints in (16). The stability requirements for the
scheme are [22]

𝜆 =
𝐷Δ𝑡

(Δ𝑥)
2
<
1

2
,

𝛾
𝑛

𝑖
=
𝑈̂
𝑛

𝑖
Δ𝑡

Δ𝑥
< 0.9,

(28)

where 𝜆 is the diffusion number (dimensionless) and 𝛾𝑛
𝑖
is the

advection number or Courant number (dimensionless).

4.2. The Modified MacCormack Scheme. Since the derivative
approximation during discretization is not centered, numeri-
cal dispersion will be introduced. The dispersion coefficients
used in the dispersion model would take the value obtained
by subtracting the numerical dispersion from the real data
of the stream. The amounts of the numerical dispersion
introduced by backward space denoted by 𝐷𝑛

1
and forward

time denoted by𝐷𝑛
2
schemes as follow [3, 12]:

𝐷𝑛
1

𝑛

𝑖
=
Δ𝑥

2
𝑈̂
𝑛

𝑖
,

𝐷𝑛
2

𝑛

𝑖
= −
Δ𝑥

2
(𝑈̂
𝑛

𝑖
)
2

.

(29)

There are temporal and spacial numerical dispersion in
both predictor and corrector steps since the scheme uses
forward time forward space difference for prediction and
backward time backward space difference for correction.
From (29), the numerical dispersion for forward time for-
ward space prediction step and backward time backward
space correction step are

𝐷
𝑛prd

𝑛

𝑖
= −
Δ𝑥

2
𝑈̂
𝑛

𝑖
−
Δ𝑡

2
(𝑈̂
𝑛

𝑖
)
2

,

𝐷
𝑛crc

𝑛

𝑖
=
Δ𝑥

2
𝑈̂
𝑛

𝑖
+
Δ𝑡

2
(𝑈̂
𝑛

𝑖
)
2

.

(30)

The modified MacCormack scheme uses the following
corrected dispersion, rather than the real dispersion coeffi-
cients for calculation in both prediction and correction steps:

𝐷
1

𝑛

𝑖
= 𝐷real − 𝐷𝑛prd

𝑛

𝑖
,

𝐷
2

𝑛

𝑖
= 𝐷real − 𝐷𝑛crc

𝑛

𝑖
,

(31)

where𝐷
1

𝑛

𝑖
is the dispersion coefficient used in the prediction

step and 𝐷
2

𝑛

𝑖
is the dispersion coefficient used in the correc-

tion step.
The modified MacCormack scheme is conditionally sta-

ble subject to the constraint in (16).The stability requirements
for the scheme:

𝜆 =
𝐷maxΔ𝑡

(Δ𝑥)
2
<
1

2
,

𝛾
𝑛

𝑖
=
𝑈̂
𝑛

𝑖
Δ𝑡

Δ𝑥
< 0.9,

(32)

where the maximum of numerical dispersion coefficients is
𝐷max =max{𝐷

1

𝑛

𝑖
, 𝐷
2

𝑛

𝑖
: 0 ≤ 𝑖 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑁}.

5. The Accuracy of the Hydrodynamic
Approximation

It is not hard to find the analytical solution 𝑑(𝑥, 𝑡) in (5) with
𝑓(𝑡) = sin 𝑡. By changing of variables, 𝑑(𝑥, 𝑡) = 𝑒𝑖𝑡D(𝑥)
and 𝑢(𝑥, 𝑡) = 𝑒𝑖𝑡U(𝑥) for some D(𝑥),U(𝑥) ∈ 𝐶2

0
[0, 1] by

substituting it in (5). Using a separable variables technique,
we can obtain 𝑑(1, 𝑡) a solution [10]:

𝑑 (1, 𝑡) =
sin 𝑡 cos𝛽 cosh𝛼 − cos 𝑡 sin𝛽 sinh𝛼

cos2𝛽 cosh2𝛼 + sin2𝛽 sinh2𝛼
, (33)



6 Journal of Applied Mathematics

Table 1: The velocity of water flow 𝑢(𝑥, 𝑡).

𝑡 𝑥 = 0 𝑥 = 0.1 𝑥 = 0.2 𝑥 = 0.3 𝑥 = 0.4 𝑥 = 0.5 𝑥 = 0.6 𝑥 = 0.7 𝑥 = 0.8 𝑥 = 0.9 𝑥 = 1.0

10 1.3125 1.2187 1.1125 0.9960 0.8704 0.7372 0.5977 0.4530 0.3041 0.1525 0.0000
20 −1.0899 −1.0355 −0.9644 −0.8782 −0.7784 −0.6670 −0.5456 −0.4162 −0.2808 −0.1414 0.0000
30 0.5200 0.5224 0.5088 0.4801 0.4380 0.3839 0.3196 0.2471 0.1683 0.0852 0.0000
40 0.2172 0.1586 0.1105 0.0723 0.0433 0.0226 0.0091 0.0014 −0.0015 −0.0015 0.0000

Table 2: The pollutant concentration 𝐶(𝑥, 𝑡) of traditional MacCormack scheme, Δ𝑥 = 0.025 and Δ𝑡 = 0.00125.

𝑡 𝑥 = 0 𝑥 = 0.1 𝑥 = 0.2 𝑥 = 0.3 𝑥 = 0.4 𝑥 = 0.5 𝑥 = 0.6 𝑥 = 0.7 𝑥 = 0.8 𝑥 = 0.9 𝑥 = 1.0

10 1.000000 0.174513 0.029152 0.004634 0.000697 0.000099 0.000013 0.000002 0.000000 0.000000 0.000000
20 1.000000 0.054532 0.003068 0.000180 0.000011 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000
30 1.000000 0.125937 0.015943 0.002012 0.000251 0.000031 0.000004 0.000000 0.000000 0.000000 0.000000
40 1.000000 0.105911 0.010827 0.001074 0.000104 0.000010 0.000001 0.000000 0.000000 0.000000 0.000000
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Figure 2: Comparison of analytical solution for height of water
elevation with results obtained by numerical technique at the end
point of the domain.

Figure 3: The water velocity 𝑢(𝑥, 𝑡)m/s.

where 𝛼 = 21/4 cos(3𝜋/8) and 𝛽 = 21/4 sin(3𝜋/8). However, it
is not easy to find the analytical solution 𝑢(𝑥, 𝑡) of (5).We use
the solution 𝑑(1, 𝑡) obtained in (33) to verify our approximate
solution obtained by the Crank-Nicolson method equation
(13). Actually when the Crank-Nicolson method is used, we
get the approximate solution both 𝑑(𝑥, 𝑡) and 𝑢(𝑥, 𝑡). We

Figure 4: The pollutant concentration 𝐶(𝑥, 𝑡) (mg/L) using tradi-
tional MacCormack scheme.

Figure 5: The pollutant concentration 𝐶(𝑥, 𝑡) (mg/L) using modi-
fied MacCormack scheme.

assume that when we get a good approximation for 𝑑(𝑥, 𝑡),
this implies that the method gives a good approximation for
𝑢(𝑥, 𝑡). The verification of the approximate solution 𝑑(1, 𝑡) is
shown in Figure 2.
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Table 3: The pollutant concentration 𝐶(𝑥, 𝑡) of modified MacCormack scheme, Δ𝑥 = 0.025 and Δ𝑡 = 0.00125.

𝑡 𝑥 = 0 𝑥 = 0.1 𝑥 = 0.2 𝑥 = 0.3 𝑥 = 0.4 𝑥 = 0.5 𝑥 = 0.6 𝑥 = 0.7 𝑥 = 0.8 𝑥 = 0.9 𝑥 = 1.0

10 1.000000 0.146939 0.021001 0.002907 0.000388 0.000050 0.000006 0.000001 0.000000 0.000000 0.000000
20 1.000000 0.059627 0.003656 0.000233 0.000015 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000
30 1.000000 0.117948 0.013959 0.001648 0.000193 0.000022 0.000003 0.000000 0.000000 0.000000 0.000000
40 1.000000 0.103863 0.010501 0.001038 0.000101 0.000010 0.000001 0.000000 0.000000 0.000000 0.000000
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Figure 6: The comparison of concentration at 4 different time instants of Modified MacCormack and Traditional MacCormack methods.

Figure 2 shows the comparison between the analytical
solutions 𝑑(1, 𝑡) and the approximate solutions 𝑑(1, 𝑡) only at
the end of the domain.

Unfortunately, the analytical solutions of the hydrody-
namic model could not be found over the entire domain [10].
This implied that the analytical solutions of the dispersion
model could not be computed at any points in the domain
as well.

6. Application to the Stream Water Quality
Assessment Problem

Suppose that the measurement of pollutant concentration
𝐶 in a nonuniform flow stream is considered. A stream
is aligned with longitudinal distance, 1.0 (km) total length
and 1.0 (m) depth. There is a plant which discharges waste
water into the stream and the pollutant concentration at the
discharge point is 𝐶(0, 𝑡) = 𝐶

0
= 1 (mg/L) at 𝑥 = 0

for all 𝑡 > 0 and 𝐶(𝑥, 0) = 0 (mg/L) at 𝑡 = 0. The
elevation of water at the discharge point can be described
as a function 𝑑(0, 𝑡) = 𝑓(𝑡) = sin 𝑡 (m) for all 𝑡 > 0, and
the elevation does not change at 𝑥 = 1.0 (km) The physical
parameters of the stream system are diffusion coefficient𝐷 =
0.0125 (m2/s) and a first-order reaction rate 10−5 s−1. In the
analysis conducted in this study, meshing the stream into 40
elements with Δ𝑥 = 0.025, and the time increment is 0.4 (s)
with Δ𝑡 = 0.00125, characterizing a one-dimensional flow.
Using the Crank-Nicolson method of [9, 10, 13], it can be

obtained the water velocity 𝑢(𝑥, 𝑡) in Table 1 and Figure 3.
Next, the approximate water velocity can be plugged into the
traditional MacCormack scheme in (27). We also plug the
approximate water velocity into the modified MacCormack
scheme (27) with numerical dispersion coefficients (31).
The approximation of pollutant concentrations 𝐶 of both
schemes is shown in Tables 2 and 3 and Figures 4 and 5.
The comparison of traditional MacCormack and modified
MacCormack is shown in Figure 6.

7. Discussion and Conclusions

The approximation of the pollutant concentrations of the
traditional and modified MacCormack schemes is shown
in Tables 2 and 3. The real-world problems require a small
amount of time interval in obtaining accurate solutions.
Unfortunately, the analytical solutions of the hydrodynamic
model could not be found over the entire domain. This
also implies that the analytical solutions of dispersion model
could not work out at any point on the entire domain as well
[13].

In [13], it is revealed that the diffusion coefficients of
the pollutant matter can reduce the concentration of the
nonuniform stream. If sewage effluent with a low diffusion
coefficient has discharged into a nonuniform flow stream,
then the water quality will be lower than a discharging of high
diffusion coefficients of other pollutant matters.



8 Journal of Applied Mathematics

We propose a modified MacCormack scheme by adding
a simple revision to the traditional MacCormack scheme.
The numerical dispersion has been introduced because the
derivative approximation during discretization is not cen-
tered. The traditional MacCormack scheme shows excessive
dispersion effects for large time and space step lengths,
significantly decreasing the efficiency of the traditional Mac-
Cormack scheme [3]. To eliminate the numerical dispersion
effect, themodifiedMacCormack scheme for the nonuniform
flow is proposed. Though revision shows a good agreement
in accuracy with the original one, the modifiedMacCormack
scheme becomes less efficient than the traditional MacCor-
mack scheme.

In this paper, the hydrodynamic model and the
convection-diffusion-reaction equation can be combined to
approximate the pollutant concentration in a stream when
the current reflecting water in the stream is not uniform.
The technique developed in this paper, the response of the
stream to the two different external inputs: the elevation of
water and the pollutant concentration at the discharge point,
can be obtained. Both of the traditional and the modified
MacCormack schemes can be used in the dispersion model
since the scheme is very simple to implement. By both of the
traditional and the modified MacCormack finite difference
formulations, we obtain that the proposed technique is
applicable and economical to be used in the real-world
problem due to its simplicity to program and the straight
forwardness of the implementation. It is also possible to find
tentative better locations and better periods of time of the
different discharge points to a stream.
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A finite Fourier transform is used to perform both linear and nonlinear stability analyses of a Darcy-Lapwood system of convective
rolls.Themethod shows howmanymodes are unstable, the wave number instability band within eachmode, the maximum growth
rate (most critical) wave numbers on each mode, and the nonlinear growth rates for each amplitude as a function of the porous
Rayleigh number. Single amplitude controls the nonlinear growth rates and thereby the physical flow rate and fluid velocity, on
each mode.They are called the flak amplitudes. A discrete Fourier transform is used for numerical simulations and here frequency
combinations appear that the traditional cut-off infinite transforms do not have.The discrete show a stationary solution in the weak
instability phase, but when carried past 2 unstable modes they show fluctuating motion where all amplitudes except the flak may
be zero on the average. This leads to a flak amplitude scaling process of the heat conduction, producing an eddy heat conduction
coefficient where a Nu-RaL relationship is found. It fits better to experiments than previously found solutions but is lower than
experiments.

1. Introduction

Convection in porous media is intensively studied because of
itsmany applications in science and industry. Free convection
in porous media (i.e., convection without the forcing of
horizontal temperature gradients) has been studied from
1948, [1–3] made the first experiments, and [4] treated the
stability of 2-dimensional cellular flow (rolls). Others are
investigating stability problems with increasing complexity,
for example, [5]. Modal flow and the spectral method were
used to simulate unsteady motion by [6].

The spectralmethod is used in [7] and it gives an excellent
review of approximate solutions, sometimes based on earlier
findings [8, 9]. In the review paper [7] the most general
case, the DLFB (Darcy-Lapwood-Forchheimer-Brinkman)
equation, is studied, sometimes with Coriolis force and
magnetic forces being included.

In thick natural aquifers the viscous dissipation, not
already included in Darcy-Lapwood (DL) systems, is unim-
portant in most cases and so is turbulent dissipation except

in local irregularities in the porous matrix. Porous media
flows on low Reynolds numbers are therefore mostly treated
without the terms of Forchheimer and Brinkman; they serve
as a bridge between the turbulent and viscous and Darcy
regimes. This paper is devoted to the case of simple DL
systems and it is shown that turbulent-like phenomena can be
encountered in such flow even though dissipation is strictly
Darcy-laminar. The effect of this turbulence is on the heat
flow, amplitude growth rates, and the wave length spectrum
and this is studied further.

The heat flow through a porous convective layer is
controlled by Nusselt’s number Nu. Finding it is therefore
very important in industrial applications. In [10] flow in a box
with open surface is investigated numerically for Rayleigh
numbers up to 300 and it is found that there may be more
than one flow cell. The author finds Nusselt’s numbers (Nu)
in the range of 3(Ra 70)−5(Ra 200) for this flow and in some
cases for eddy flow. He also finds single-cell flow for Ra < 60

but two cells for 100 < Ra. Multicellular flow and modal flow
are also encountered in other papers on the subject [11, 12].
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Stability analyses of the no-flow situation and the onset of
convection give important information on the structure of the
resulting flow through the composition of the eigenfunctions.
They depend upon the boundary conditions; therefore a great
variety of eigenfunctions have been found for the rolls of
the DL equation system covering different sets of boundary
conditions [12–15].

The eigenfunctions of the DL system in an infinite hori-
zontal aquifer of constant thickness and constant temperature
difference are particularly simple as they are the ordinary
trigonometric functions. This makes the Fourier transform
of the spectral method be an expansion of the temperature
function in a series of the eigenfunctions of the Sturm-
Liouville problem underlying the stability analysis [6]. This
makes the identification of the different modes and their
stability limits particularly easy and in this paper it is shown
to give rise to a new kind of non-linear stability analysis
with the starting point in an arbitrary stationary solution.
From this process the Fourier amplitudes emerge that make
up the average vertical temperature gradient, here called the
flak amplitudes. They alone control the exponential growth
rate of all amplitudes and make it possible to construct by
scaling an eddy coefficient of heat conduction, very similar to
eddy viscosity in ordinary turbulence.This eddy coefficient of
heat conduction allows the approximated solutions described
by [7] to produce realistic relationship between the porous
Rayleigh number and Nusselt’s number for DL systems and
thus give better estimates for the heat flow through the porous
layer. As the flak amplitudes appear also in DLFB systems,
it may be suggested to use the scaling procedure for them
also, but it is much more complicated and is not attempted
in this paper. Simulation grids NI × NJ = 7 × 5 up to 𝑡 = 1.5.
𝑅aL = 180.

2. The Darcy-Lapwood System

Two-dimensional nonlinear thermal convection in a homo-
geneous horizontal aquifer, uniformly heated from below and
cooled from above, is described by a differential system orig-
inally presented in [16]. In [15] it is presented in cylindrical
coordinates. Here we use the notations in [10]:

−
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2
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𝜕𝑧2
= 𝑅aL ⋅

𝜕𝜃

𝜕𝑥
, (2)

𝜃 = 𝑇/𝑇
0
, dimensionless temperature. 𝑇

0
is the differ-

ence of the constant temperatures of top and bottom.𝜓 is
dimensionless stream function. 𝑥 and 𝑧 are dimensionless
coordinates in horizontal and vertical direction. Lapwood
(porous) Rayleigh number, where 𝑐 is heat capacity of the
porous layer (cal/(kg∘K)), 𝑘 is coefficient of permeability
(m/s), Δ𝜌 is fluid density difference (kg/m3) corresponding
to 𝑇
0
, 𝐻 is thickness of aquifer (m), and 𝜆 is coefficient of

heat conduction (cal/(ms∘K) for the porous layer.

3. The Spectral Method Using Infinite
Spectrum

3.1. Equations. The boundary conditions are 𝜓 = 𝜃 = 0 at
𝑧 = 1, 𝜃 = 1, and 𝜓 = 0 at 𝑧 = 0; then the temperature
distribution in a cellular flow is given by the following Fourier
series:

𝜃 = 1 − 𝑧 +

∞,∞

∑

𝑖,𝑗=0,1

𝑃
𝑖𝑗
cos (𝑖𝑚𝑥) sin (𝑗𝜋𝑧) , (3)

𝑚 is the basic horizontal wave number, 𝑖 is horizontal wave
number, and 𝑗 is called themode. Individual amplitudesmust
satisfy the following equations:

𝑑𝑃 (𝑖, 𝑗)

𝑑𝑡
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(4)
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𝑚2𝑖2 + 𝜋2𝑗2
. (5)

Equation (4) indicates exponential growth in the first term;
(5) shows the growth rate.The last term in (4) is a sum, that is,
a quadratic form in all the temperature amplitudes in (3).This
simple form emerges because the trigonometric functions in
(3) are the eigenfunctions of the Sturm-Liouville problem
encountered in stability analysis of the Lapwood system [6].
The quadratic form in (4) may be compared to the sums
presented in [7] developed for the DLB (Darcy-Lapwood-
Brinkman) system. They include the same amplitude com-
bination in the quadratic form and the later introduced flak
(𝑃(0, 2𝑗)) amplitudes may be found in [7, Equation (86)],
even though their system is very different.

3.2. Linear Stability Analysis. In linear stability analysis we
assume no flow to be present; this means linear temperature
gradient or that all amplitudes in (3) are zero. Using the
regular perturbation theory, we then assume a perturbation
introduced in the form of infinitesimal amplitudes. The
quadratic form in (4) will now drop out and we are left
with the exponential growth terms, that is, (4) without the
quadratic form. Stability requires all growth rates to be
negative or zero:

all 𝜔 (𝑖, 𝑗) < 0 󳨐⇒ 𝑅aL < 4𝜋
2
𝑗
2
= 𝑅aL0𝑗. (6)

𝑅aL0𝑗 is the critical Rayleigh number for the mode 𝑗 (the 𝑗th
eigenfunction). The classical value 𝑅aL,crit = 𝑅aL01 = 4𝜋

2. If
Ra > 𝑅aL01 and 𝐽 is a whole number defined by

4𝜋
2
𝐽
2
< 𝑅aL0𝑗 < 4𝜋

2
(𝐽 + 1)

2
, (7)

𝐽modes are unstable and all unstable wave numbers belong-
ing to these modes will grow exponentially in a flow started



Journal of Applied Mathematics 3

from rest. The unstable wave numbers are within the wave
number instability band, between 𝑖

01
and 𝑖
02
in the following

equation, they are the zeros of (5)

𝑖
02

− 𝑖
01

=
1

𝑚
√𝑅aL − 𝑅aL0𝑗. (8)

Maximum growth rate wave number, sometimes called the
most critical wave number, is

𝑚𝑖max = √ 𝜋𝑗√𝑅aL −
𝑅aL0𝑗

4
,

and then 𝜔max = 𝑅aL − √𝑅aL𝑅aL0𝑗.

(9)

For 𝑅aL = 𝑅aL01 (ca. 40) we find 𝑚𝑖max = 𝜋 and it does not
become 2𝜋 until 𝑅aL = 25𝜋

2 so, in a Fourier transform with
𝑚 = 𝜋, the 𝑖 = 1 will be the fastest growing wave number in
flows between the first and second critical Rayleigh numbers.
This sets the width of the flow cell.

3.3. Nonlinear Stability Analysis. The elements in the coef-
ficient tensor in (4) can be calculated from the following
algorithm:

𝐷(𝑖, 𝑗, 𝑝, 𝑞)

=
1 + 𝛿 (𝑝, 0)

1 + 𝛿 (𝑖, 0)

(𝑝 − 𝑖) (𝑞𝑖 − 𝑝𝑗)

𝑚2(𝑝 − 𝑖)
2
+ 𝜋2(𝑞 − 𝑗)

2

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

𝑞

󵄨󵄨󵄨󵄨𝑞 − 1
󵄨󵄨󵄨󵄨

𝑞 − 𝑗
,

(10)

𝛿(𝑖, 𝑗) = 1 for 𝑖 = 𝑗; otherwise 𝛿 = 0.
We now assume that a stationary solution to the system

equations (4)–(10) exists. It has to fulfil the system equations
with the term 𝑑𝑃/𝑑𝑡 = 0. No matter what the value of
individual amplitudes is, this system must be stable against
all perturbations Δ𝑃(𝑖, 𝑗) also if a perturbation is placed on
only one amplitude but the others are unperturbed.This leads
to the following equation for the perturbation of the stable
amplitude 𝑃(𝑖, 𝑗):

𝑑Δ𝑃 (𝑖, 𝑗)

𝑑𝑡
= Ω (𝑖, 𝑗) Δ𝑃 (𝑖, 𝑗) . (11)

This is the same equation as the linear counterpart, only with
a different growth rate, which from (10) is found to be

Ω(𝑖, 𝑗) =

𝑚
2
𝑖
2
𝑅aL (1 + 𝜋𝑗𝑃 (0, 2𝑗)) − (𝑚

2
𝑖
2
+ 𝜋
2
𝑗
2
)
2

𝑚2𝑖2 + 𝜋2𝑗2
. (12)

This is the non-linear growth rate Ω instead of the linear one
𝜔. The only difference between the nonlinear and the linear
growth rate is that we must insert in (5) a new 𝑅aL:

𝑅̃aL = 𝑅aL (1 + 𝜋𝑗𝑃 (0, 2𝑗)) . (13)

As in the linear case stability requires

all Ω(𝑖, 𝑗) ≤ 0 󳨐⇒ 𝑅̃aL ≤ 𝑅aL0𝑗

󳨐⇒ 𝑃 (0, 2𝑗) ≤ −
1

𝜋𝑗

𝑅aL − 𝑅aL0𝑗

𝑅aL
,

(14)

where the = signmeans neutral stability. It must be noted that
this is a necessary condition for any solution to be stable, but
it is not sufficient as all amplitudes are not perturbed.

If a stable solution turns unstable (e.g., from increasing
𝑇
0
) the disturbance of one amplitude may eventually spread

to all the others. Taking 𝑃(0, 2𝑗) themselves they have this
equation

𝑑𝑃 (0, 2𝑗)

𝑑𝑡
= −4𝜋

2
𝑗
2
𝑃 (0, 2𝑗)

− 𝑅aL𝜋𝑗
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2
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1

2
𝑃
2
(𝑝, 𝑗) + ⋅ ⋅ ⋅ .

(15)

Here there are two opposing forces, the strong curbing effect
of the negative linear growth rate and the negative sum that
carries in it the total spectral energy on the 𝑗th mode. There
is infinity of other quadratic terms, not shown, but these have
a good chance of cancelling each other out in a time average,
as they would contain the correlation coefficient between the
respective amplitudes. If any amplitude on any mode gets
very big the 𝑃(0, 2𝑗) will grow strongly negative with it and
then pull it down as the nonlinear growth rate turns negative.
Such action may clearly be seen in the following simulations
and therefore we call the 𝑃(0, 2𝑗)’s flak amplitudes. The
amplitude combinations in the quadratic form of (4) reflect
the fundamental property of the trigonometric functions that
𝑒
𝜄𝑚𝑥

𝑒
𝜄𝑛𝑥

= 𝑒
𝜄(𝑚+𝑛)𝑥. They are the same for all two-dimensional

systems having the nonlinearities in quadratic terms only.
The flak amplitudes govern the flow pattern. They grow

and diminish with the energy on the corresponding unstable
mode by controlling the nonlinear growth rates Ω of all flow
amplitudes. Later we see that they make up the horizontal
average temperature distribution and with it the Nu. They
are always negative and must not be above a certain stability
value in any stationary flow that might exist. There is a single
infinity of critical Rayleigh numbers; each time one is passed
while the fluid is heating up, the corresponding flak amplitude
has to grow to a significant value.

It may be shown that (1) and (2) have a symmetrical
solution that is even; that is, all amplitudes in (4) where
𝑖 + 𝑗 is an uneven number are zero. In [4, 7] this is used;
the consequence is that, when only one stable solution exists
for each 𝑅aL, it is even. The physical difference of uneven
and even solutions is that uneven solutions have uneven flak
amplitudes 𝑃(0, 𝑗) with 𝑗 being an uneven number. Then the
average heat flow at top and bottom is not the same and the
porous layer may be heating up or cooling down as a whole.
An even Fourier transform is more stable than the one where
uneven amplitudes are allowed. But it seems inevitable that
uneven amplitudes can participate in unsteady flow. Stability
analysis of the even solution [6] indicate that this solution
may be stable in the 𝑅aL number range 40 < 𝐴 < 160 or
between the two first critical 𝑅aL numbers.

Equation (14) does not have to hold for fluctuatingmotion
when many modes are unstable. It is however difficult to see
how fluctuating motion (Figure 4) can be maintained unless
the flak amplitudes do fluctuate around (14) value.
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3.4. The Spectral Method Using Discrete Fourier Transform.
In numerical calculations (4) cannot be truncated without
introducing systematic errors. Finite Fourier transforms will
be used instead and then new amplitude combinations appear
in the quadratic form in (4).Thenewquadratic formbecomes

NI,NJ−1
∑

−NI,−NJ+1
𝐷(𝑖, 𝑗, 𝑝, 𝑞) 𝑃 (
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.

(17)

NI and NJ are the horizontal and vertical maximum wave
numbers; 𝛿 is Kronecker’s delta; 𝑠

1
and 𝑠
2
are sign control

functions that are to be taken from Table 1 as plus or minus
one.

As may be seen by comparing (10) and (17), truncation of
(3) may introduce a significant error. The discrete quadratic
equation (16) is evaluated for discrete values of 𝑥 and 𝑧

only, so it contains amplitude combinations that are not at
all present in the infinite quadratic equations (4) and (10),
as explained in [6]. If the truncation is done as a cutoff at
constant 𝑖+𝑗 these amplitude combinations are totally absent.

When an infinite transform is truncated, all the ampli-
tudes above the cut-off frequency are considered to be zero,
but discrete forms may be cut off anywhere, discrete forms
may be cut off anywhere. A discrete Fourier transform is a
process where any number of points is transformed into an
equal number of Fourier coefficients, so the transform creates
a function that goes through the entire original points exactly.
Therefore, for all situations, stable or unstable, there exists a
finite Fourier transform for any number of NI and NJ. It may
be noted that FFT algorithm is a discrete transformation so
turbulence simulations using this technique have the extra
frequency combinations included.

4. Simulations Using the Discrete Fourier
Transform

4.1. General Remarks. To simulate, 𝑚 as well as NI and
NJ has to be selected. When fluctuating motion like this
is simulated using (4) with a constant value of 𝑚, one is
actually simulating convection in a box. Simulations using
(16) and (17) may be fired up by putting a small constant on
all amplitudes (spatially distributed random noise). For low
Rayleigh numbers this leads to a stable solution where all
the uneven amplitudes disappear. In order to give a realistic
picture of the flow, simulations need to include sufficiently
manymodes, so all unstablemodes are controlled.NJ−1must
therefore be not less than two times the number of unstable
modes, at least in theory. Intuitively, onewould expect too low
NJ simulations to be unstable for high Rayleigh numbers, but

on the contrary they aremore stable.Thephysical explanation
of this is that using a discrete transform with low NI × NJ
means that we only have NI × NJ many values for the Ψ and
𝜃 and each of these values must represent the average in the
corresponding rectangle. But averaging the equations means
that a new coefficient of heat conduction, similar to the eddy
viscosity, appears on the scene (21). This is explained in the
section on scaling.

In the very weak instability phase (𝑅aL little higher than
40), only onemode is unstable and𝑚 = 𝜋 gives themaximum
growth rate of the instabilities, so in (14) the period 𝑃(1, 1)

will grow fastest when we use 𝑚 = 𝜋. This is therefore used
in all the simulations; it makes the results better comparable.

4.2. Simulations with NI × NJ Grid 2 × 3. Possible number
of amplitudes is 6, ((NJ − 1) × (NI + 1)), making 3 even
amplitudes but one of them, 𝑃(2, 2), turns out to be zero.The
two remaining are the 𝑃(1, 1) and its flak amplitude 𝑃(0, 2).

This approximation has been studied by [4], who use a
series expansion to find it, and [6] that uses (16) and (17).This
rather crude approximation can take all 𝑅aL’s and is always
stable.

The formula for this solution is

𝜃 (𝑥, 𝑧) = 1 + 𝑧 + 𝑃
11
cos𝑚𝑥 sin𝜋𝑧 − 𝑃

02
sin 2𝜋𝑧, (18)

𝑃
11

= 4√
𝑅aL − 𝑅aL01

𝑅
2

aL
, 𝑃

02
= −

1

𝜋

𝑅aL − 𝑅aL01
𝑅aL

,

Nu = 1 + 2
𝑅aL − 𝑅aL01

𝑅aL
.

(19)

Figure 1 shows the simulation for Rayleigh numbers 50–250.
All simulations with NJ = 3 produce the same stable result
as (18) and the flak is the same as (14) with the equal sign.
The maximum value of Nu that (18) can give is 3; this low
value of Nu shows better than the value of the amplitudes
how crude the approximation (18) is. There are in reality 5
unstable modes, but only two are in the simulation and of
their amplitudes only 𝑃

11
and 𝑃

02
are nonzero. Increasing NI

to 4 but keeping NJ = 3 changes very little. More unstable
modes are needed, Figure 2. But a stable solution is obtained
for 𝑅aL = 1000, that is, 5 unstable modes.

4.3. Simulations withNI×NJGrid 7×5. Figure 3 showsNI =
7 and NJ = 5 simulation. This grid is slightly more accurate
than the 2 × 3. It contains 2 flak amplitudes and should
therefore be able to give a realistic picture of stable stationary
flows thatmight exist up to the third critical Rayleigh number.
The possible number of amplitudes is 32 ((NJ− 1) × (NI + 1))

making 16 even amplitudes. Of them9 end upwith significant
values to the second digit in Table 2.

In Table 2 uneven amplitudes are in lighter shade. Runs
with uneven amplitudes in the spectrum show that all uneven
amplitudes diminish with time and drop out. Simulated
𝑃(0, 2) is −0.31 and Nu = 2.9; this includes some aliasing
effects from the finite transform. Equations (14) and (21)
give that 𝑃(0, 2) is −0.25 and Nu = 2.8. The results
compare favourably and show how the flak amplitudes turn
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Table 1: Sign control functions.

Range 𝑞 < 𝑗 −NJ 𝑗 − NJ < 𝑞 < 0 0 < 𝑞 < 𝑗 𝑞 > 𝑗

𝑝 < 𝑖 − NI −+ ++ +− −−

𝑖 − NI > 𝑝 > 0 −− +− ++ −+
0 > 𝑝 > 0 −− ++ +− −−

𝑝 > 𝑖 − − +− ++ −+
Name 𝑠

1
𝑠
2

𝑠
1
𝑠
2

𝑠
1
𝑠
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Figure 1: Simulations using NI = 2 and NJ = 3 showing oscillating
approach to the stable asymptotes of Nu and 𝑃(0, 2).
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Figure 2: Simulation using NI = 4 and NJ = 3. 𝑅aL = 1000.

the unstable modes into stationary motion. Figure 3 shows
the time history of the simulation.

The slight increase in A from 180 to 190 changes this
completely. Now we have a stable periodically fluctuating
solution, Figure 4. The 7 × 5 grid approximation does not
render stable solutions for higher Rayleigh numbers.

4.4. Simulations with NI × NJ Grid 9 × 7. Here we look for
how the solutions in the 7 × 5 grid look in a slightly more
accurate grid that contains 3 flak amplitudes and examine
the fluctuating motion more closely. The possible number of
amplitudes is 60 making 30 even amplitudes.

Table 2: Amplitude array grid 7 × 5,𝑅aL = 180 to 𝑡 = 1.5.

𝑖/𝑗 1 2 3 4
0 0.00 −0.31 0.00 0.03
1 −0.29 0.00 0.06 0.00
2 0.00 −0.16 0.00 −0.06
3 0.05 0.00 0.02 0.00
4 0.00 0.01 0.00 0.00
5 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00
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Figure 3: Simulation grids NI×NJ = 7× 5 up to 𝑡 = 1.5. 𝑅aL = 180.

Simulations in a 9×7 grid are a littlemore unstable than in
the 7×5 grid. Fluctuating periodic flow is reached at𝑅aL = 165

and can be maintained until 𝑅aL = 180; see Figure 5. The
average amplitude array of 𝑅aL = 165 is shown in Table 3,
and the much larger standard deviations are in Table 4. Here
we have the interesting result that the average flak amplitude
is 𝑃(0, 2) = −0.2 while all others are practically zero; this
gives Nu = 2.3. Equation (14) stability limit for 𝑃(0, 2) is
−0.2411 below the simulation value. This is to be expected as
this solution is not stationary. Noting the standard deviation
in Table 4 (0.08), it corresponds to a fluctuation of about 0.1
around the mean value. The value of this flak amplitude will
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Figure 4: Simulation grids NI × NJ = 7 × 5. 𝑅aL = 190, stable,
periodic motion to 𝑡 = 1.5.

Table 3: Average of amplitudes, 𝑅aL = 165 grid 9 × 7.

𝑖/𝑗 1 2 3 4 5 6
0 0.00 −0.20 0.00 0.01 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 −0.02 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.02 0.00 −0.01 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Standard deviation of amplitudes, in Table 2 and Figure 5.

𝑖/𝑗 1 2 3 4 5 6
0 0.00 0.11 0.00 0.03 0.00 0.01
1 0.18 0.00 0.06 0.00 0.02 0.00
2 0.00 0.08 0.00 0.03 0.00 0.01
3 0.08 0.00 0.04 0.00 0.01 0.00
4 0.00 0.04 0.00 0.02 0.00 0.00
5 0.01 0.00 0.01 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00

therefore be between ca. −0.1 and −0.3, with these values
being on the unstable and stable side, respectively, of the
stability limit (14). Figures 4 and 5 show this flak amplitude
fluctuation clearly. Equation (21) gives Nu = 2.5 and we
see that flak amplitudes and Nu are diminished from the
stationary level but still up and active.

The simulations in the 5×7 and 9×7 grids show that stable
solutions can bemaintained only up to the second critical𝑅aL
where periodic motion begins. Similar behaviour is observed
in fluid turbulence; when the Reynolds number is increased,
fluctuatingmotion sets in.Many vortex flow fields of this type
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Figure 5: Simulation 9 × 7. 𝑅aL = 180, stable, periodic motion to
𝑡 = 5.

are very well known in fluid mechanics (Reynolds, Taylor,
Karman, and Kelvin-Helmholtz). With increasing instability
these regular flows disappear and chaotic turbulence appears
instead. This seems to happen here between the second and
the third critical Reynolds numbers. This is in accordance
with the findings in [4, 6]; stablemotion is concluded to cease
at the second critical Rayleigh number. Chaotic motion is
found in [7] for that system at high fluid Ra numbers.

5. Scaling

Theamplitudes in Tables 2 and 3 have average amplitudes and
high standard deviation. The effect of this is to create a flow
with “eddy heat conduction,” a phenomenon similar to eddy
momentum transport in fluid turbulence.

It has been shown [17] that, when a running average is
taken in the convection box (Figure 6) covering a grid area of
(𝑙 × 𝑠), the nonlinear terms in (1) will produce a net transport
of heat into the 𝑙 × 𝑠 element when the second derivative of
the average temperature distribution does not vanish. This
net heat flow may be represented as the divergence of an
eddy heat flow vector equal to 𝜆

𝑒
(𝑥, 𝑧)⋅grad𝜃. This is the heat

transported by fluctuations in excess of the molecular heat
conduction and the convection by means of the average flow
velocity. To model the flow in a coarse grid (Figure 6(a)) it
is therefore necessary to include in the simulations a subgrid
model that represents this heat flow, just as it is necessary to
include a subgrid model to take care of the Reynolds stress
tensor in macroscale models of turbulent flow.

The widely popular 2 × 3 grid solution is one flow cell in
one single block, so the underlying assumption is 𝜆𝑒(𝑥, 𝑧) =
constant. This is a crude simplification, similar to Prandtl’s
mixing length theory. It is not quite correct, as 𝜆𝑒 wouldmost
likely take the highest values in the zone shown in Figure 6(b).
We must conclude that in this solution there is active eddy
heat conduction coefficient 𝜆𝑒 acting in excess of the normal
heat conduction coefficient 𝜆 so the 𝑅aL which we must use
in (16) is scaled down in the following manner:

𝑅
𝑒

aL =
𝜆

𝜆 + 𝜆𝑒
𝑅aL. (20)
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Figure 6: Averaging the flow in a net of dimensions 𝑙 and 𝑠.

In finding 𝜆𝑒 we have a closure problem just as in turbulence;
principally it must be found in experiments. From the sim-
ulations we learn that in stable and oscillatory solutions the
flak amplitudes always have significant values. By averaging
the temperature gradient given by (3) at either top or bottom
and calculating the heat flow and using the equal sign in (14)
for the flak we get

Nu = 1 + 2

𝐽

∑

1

𝑅aL − 𝑅aL0𝑗

𝑅aL

󳨐⇒
𝑅aL
𝑅
𝑒

aL
= 2

√𝑅aL/𝜋 − 𝜋/√𝑅aL

3
= 1 +

𝜆
𝑒

𝜆
.

(21)

This result is an approximation valid for 𝑅aL numbers larger
than the second critical Rayleigh number, If 𝑅

𝑒

aL is used
instead of 𝑅aL then the 2 × 3 grid solution (18) approximates
the flowfield in this region.One has to remember that the𝜆𝑒+
𝜆 has to be used instead of 𝜆 when calculating the heat flow
fromNu in (18); otherwise this approximationwill render too
low heat flow. The Nu numbers can be estimated directly by
(21); for high 𝑅aL, Nu = 2√𝑅aL/3𝜋 is a good approximation.
It should be noted that (21)means that stationary average flow
can be approximated up to 𝑅aL = 27000.

Bifurcations are known to occur in porousmedia [17].The
first bifurcation happens in DL systems at the first critical 𝑅aL
number. According to (14), the physical process in fluctuating
flow is that the flak amplitudes maintain significant values
to keep the nonlinear growth rates down and hinder the
amplitudes they control from increasing without limit. Then
theremust be a new bifurcation each time𝑅aL passes a critical
𝑅aL number. Equation (21) is the result of repeated bifurcation
each time the Rayleigh number passes a critical value and one
more mode is rendered unstable in the free convection. The
result may be seen in Figure 7.
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Figure 7: Nusselt number based on stability limits for 𝑃(0, 2𝑗) for 𝐽
unstablemodes.The triangle shows approximate location of Nu–𝑅aL
test results reported by [1–3, 7, 18, 19].

6. Laboratory Scales

To make laboratory tests of convection in porous media
one has to scale natural convection (e.g., geothermal fields)
down to laboratory dimensions; in doing this, dynamic
similarity may be a problem. One dimensionless parameter,
for example, the Rayleigh number, can be kept constant in
the model and the prototype but not more than that. Aquifer
thickness,𝐻, is typically 1000m in geothermal reservoirs but
∼1m in the laboratory. To get a flow going the aquifer rock
matrix has to be replaced by glass or plastic pearls with up to
1000-fold permeability and this brings the test from the DL
regime of the aquifer into the DLFB regime. Acknowledging
this fact [7] consequently uses Ra, not 𝑅aL. This brings up
the question of dispersion. This seems to be overlooked, but
dispersion must play a role in laboratory experiments with a
porous matrix of relatively large glass pearls. The scale effects



8 Journal of Applied Mathematics

in the dispersion term may be estimated from the dispersion
equation:

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
𝑖

(𝐴
𝑖𝑗

𝜕𝐶

𝜕𝑥
𝑗

+ 𝜆
𝜕𝐶

𝜕𝑥
𝑖

− 𝐶V
𝑖
) ;

[
V
𝑖
= (V, 0, 0)
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2
, 𝑥
3
)
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2
V

}

}

}

.

(22)

This assumes the 𝑥
1
axis in the direction of the flow. 𝐴

𝑖𝑗
is

the dispersion tensor.𝐶 denotes the concentration of a solute,
in our case the mixing ration of hot water into cold, or the
dimensionless temperature 𝜃. The 𝜆 term is the molecular
diffusion, in our case the coefficient of heat conduction as
before. In natural low permeability aquifers, V is very small
and the dispersion term is negligible compared to the 𝜆 term
and generally left out. Estimating the dispersion/conduction
ratioDCR,with respect to dynamic similitude, we see that the
DCR will not be the same dimensionless number in model
and prototype regardless if DL scaling (𝑅aL constant), or
DLFB scaling (Ra constant) is used, the following equation
shows this,

DCR = D̂CR 𝑎

𝐻
𝑅aL

= D̂CR 𝑎

𝐻𝜎2
Ra; D̂CR is dimensionless DCR.

(23)

Here 𝑉
𝑠

= 𝑘Δ𝜌/𝜌 is used for the velocity scale in the
dispersion term, 𝜎 is the porosity parameter 𝐻/√𝑘 [7], 𝜎−2
is called the Darcy number by some, and Ra is the fluid
Rayleigh number (Ra = 𝑅aL𝜎

2
). The parameter a is called

the dispersivity and is usually taken as proportional to length
scale; [20] suggests the order of magnitude 0.01–0.1. To use
this value, both the aquifers in nature and the laboratory
would have to be glass pearls which of course is not the
case, but if that is overlooked, 𝑅aL scaling (𝑅aL is the same in
model and prototype) would give dynamic similarity. When
Ra scaling is applied, the ratio 𝜎prototype/𝜎model can easily
be in the range 103–106; this makes the 𝑅aL values much
higher in the model than in the prototype as Ra = 𝑅aL𝜎

2.
Then heat dispersion ismore important than heat conduction
resulting in higher Nusselt’s number in the laboratory tests
than in natural aquifers of large dimensions. DLFB systems
can accordingly not be scaled to DL systems when the FB
terms have a significant effect.

6.1. Nusselt Number Compared To Experiments. Trying to
rescale laboratory results and compare computed and mea-
sured Nusselt’s numbers is impossible, except possibly for the
two-amplitude (one block) solution, where dispersion effects
may be included in the 𝜆𝑒. The 2 × 3 grid procedure can only
produce Nu numbers up to 3 in the Lapwood system. [7]
bring it up to approximately 4 in their system using a cutoff
frequency of 𝑖 + 𝑗 = 12, which corresponds to the 5 × 7

grid solution. Nusselt’s numbers in natural aquifers of large
dimensions tend to be higher.

Figure 7 showsNusselt’s number based on the assumption
that repeated bifurcation brings into the picture new flak

amplitudes for each newmode.The formula Nu = 2√𝑅aL/3𝜋
(blue line, Figure 7) is a good approximation for 𝐽 ≥ 5. Nu
values from laboratory tests are higher, but effects of eventual
scaling or forcing (see next chapter) are unknown so the
triangle for the results location is only approximate for pure
DL systems.

6.2. Effect of Forcing. Due to (2), all horizontal temperature
gradients from outside force the DL system. Forcing creates
some flow, no matter how low the 𝑅aL number is. Forced
convection is an interesting topic with many applications; in
[21] there is a review of the results in this field. When heating
and cooling are between two vertical walls, stability does not
have to be a problem and elegant solutions can be found both
analytically and numerically [22]. The work in [23] is very
interesting, showing an analytical solution of a forced system
with variable permeability.

In [24] there is a treatment of the heat transfer through
a box with heated sides using the DLFB system with added
turbulence by a 𝜅–𝜀 subgrid model and a dispersion term
included. The turbulence increases Nu significantly but the
effect of changing 𝜎

2 from 107 to 108 is even greater. They use
𝑅aL but if their Figure 4 in [24] is rescaled to Ra, the lower 𝜎2
curve (higher Darcy number, Da in their notation) produces
higher Nu numbers for the same Ra, which illustrates the
scaling difficulty mentioned above and could point to the
influence of dispersion. [25] studies the same problem and
the conclusion is that dispersion has a significant effect.

Forcing thus makes it possible to analyze numerically
and analytically situations with high heat transfers counted
in Nu numbers, situations where numerical simulations of
free convection with similar Nu numbers become unstable
because the flow fluctuates. The effect of basic processes
such as dispersion must generally have the same effect on
the magnitude of heat flow in forced and free convection
problems.

7. Discussion

The physical process of free convection flow in porous media
suggests itself to be the following. For Rayleigh 𝑅aL01 <

𝑅aL < 𝑅aL02 convection sets in as a result of a bifurcation
process when small disturbances of the spatial wave number
𝑚 = 𝜋 become unstable and start to grow exponentially
with time. For wave numbers below the second critical wave
number only one mode (the first) is unstable. The entire
energy spectrum of unstable wave numbers in that mode
participates in making the first flak amplitude 𝑃(0, 2) highly
negative. Then the nonlinear growth rates of all first mode
wave numbers turn negative and all the flow amplitudes
on the first mode start decaying. This process repeats itself
until stationary cellular flow of convective rolls is achieved
(Figure 2).

If the Rayleigh number is increased slightly above the
second critical Rayleigh number, a fluctuating flow sets in,
but the 2 × 3 grid approximation does not show fluctuations
at any Rayleigh number. In contrast hereto, the 5 × 7 and
9×7 grid discrete Fourier transforms (16) and (17) show stable
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periodic motion for 𝑅aL numbers just above the 𝑅aL02, but it
changes to fluctuating motion that resembles eddy motion
in turbulent flow when the 𝑅aL is slightly increased. In this
fluctuating flow, the flow amplitudes shift from positive to
negative indicating reversal of the flow direction in a periodic
manner, but the flak amplitude stays high and fluctuates
around the stability value (14). In this flow the average
amplitudes are less important than the standard deviations
and the correlation between amplitudes. The flak amplitudes
are the only exception.

For higher Rayleigh numbers the flow becomes chaotic.
Forcing will delay this considerably, so in laboratory experi-
ments it is very important to exclude all forcing.

This flow resembles fluid turbulence in many ways.
In spatially averaged equations the average amplitudes of
fluctuations smaller than the grid size drop out leaving an
eddy heat conduction effect.This leads to the scaling rule that
makes it possible to use the 2 × 3 grid solution and still get
realistic Nu numbers.

Turbulent fluid flow is governed by the eddy momentum
transport due to the fluctuation that results from quadratic
forms of the velocities in the Reynolds stress tensor. In
a Darcy-Lapwood system there is eddy heat flow due to
the fluctuation that results from quadratic forms of the
velocities and the temperature. The flow is very slow, the
nondimensional time interval from 0 to 1 can mean 30.000
years, [6] and heat conduction is faster than heat dispersion.

Systems governed by the fluid Rayleigh number Ra do not
in principle scale to Lapwood systems, and there are strong
indications that Ra systems (DLFB, DLB, and DL systems
with added effects of turbulence or dispersion) scaled down
to laboratorymodel size with𝑅aL = Ra/𝜎2 run on higher heat
flow due to dispersion in the pore matrix than the prototype.

As fluctuations dominate the flow at high 𝑅aL number
flows and contribute to the heat flow, stable nonfluctuating
solutions, analytical as the 2× 3 approximation or numerical,
do need something like the eddy heat flow coefficient 𝜆𝑒 to
render correct heat flow when the convection is free.

This investigation covers convective rolls. When strong
fluctuations set in, the rolls become unstable and the flow
becomes three-dimensional. The rolls are still there as a
background motion, but when 𝑅aL passes 3000–4000 they
have probably disappeared. In [26] a scaling approximation
with a boundary layer at top and bottom ∼ 𝑅

−1

aL is used for
𝑅aL > 1300; it gives Nu ∼ 𝑅aL, but there is fair agreement
with the results here, up to that point. To investigate three-
dimensional flow, it would be interesting to perform an
analysis with the finite Fourier transform of a two- or three-
roll system intersecting each other. But this would still
produce a quadratic form similar to what we have, so it does
not have to change much. Here it is judged unlikely that it
would suddenly change the Nu ∼ 𝑅

1/2

aL to Nu ∼ 𝑅aL, ([26],
Figure 2).

8. Conclusions

In the Darcy-Lapwood system there are 𝐽 = √𝑅aL/2𝜋
unstable modes (𝐽 nearest lower integer).

Associated with all amplitudes, 𝑃(𝑖, 𝑗) on a fixed mode
(constant 𝑗), there is a flak amplitude. It is the amplitude on
the zero frequency of themodewith the doublemodenumber
𝑃(0, 2𝑗) being the same for all horizontal wave numbers (𝑖).
The flak amplitude is always negative, independent of the sign
of the amplitudes.

Theflak amplitudes have a neutral stability value as shown
by (14). If a stationary solution exists, it is symmetrical with
all flak amplitudes not higher (less negative) than this value.

The Fourier transforms of the spectral method do have to
include active modes up to double the number of unstable
modes. Using discrete Fourier transform includes several
frequency combinations generated by the nonlinear terms of
the system (included in the Jacobian of (1)) that the truncated
infinite form does not have.

Using the discrete Fourier transform makes it possible to
use very coarse grids in numerical simulations, such as the
2 × 3 approximation, but then the flows on unstable modes
not represented in the grid are aliased on the existing modes.
For high𝑅aL coarse grids give too lowNusselt’s numbers even
though the fluid flow picture seems realistic.

Simulations above the second critical 𝑅aL result in fluc-
tuating flow. Even though the average fluctuations may have
zero average amplitude and thus do not participate in the
average fluid motion, they are active in transporting heat.

The assumption that all the flak amplitudes fluctuate
around the stability value results in the scaling rule (17)
that makes it possible to use the 2 × 3 solution to obtain
realistic heat flow (Nu) by defining an eddy heat conduction
coefficient 𝜆

𝑒 that makes up for the missing effect of the
fluctuations not present in the 2 × 3 approximate solution.

Assuming the flak amplitudes to stay on the neutral
stability value on the average results in the approximate
formula Nu = 2√𝑅aL/3𝜋 for 𝐽 > 5. Then the 2 × 3

approximation renders realistic Nu, when 𝜆
𝑒 is used.Without

this scaling, Nu = 3 is maximum in the 2 × 3 approximation.
It gives a stable flow for all 𝑅aL.

With 2 unstable modes (𝑅aL > 160) fluctuating motion
sets in with the fluctuationsmore dominating in the finer grid
transforms, as finer grids bring higher growth rates into the
simulation.

Today’s research focuses on DLFB systems as this equa-
tion system ismore accurate for high permeability small scale
flow systems. Studies of these systems do not automatically
include the mathematically simpler DL system because of
scaling problems associated with the great difference in the
porosity value 𝜎 that follows the higher permeability and
smaller linear scale.

Strong forcing stabilizes flows that would be otherwise
unstable. But flow on the first mode does not stabilize the
flow in DL systems as flak amplitudes have no effect outside
their own mode. A DL system will pick up disturbances
from outside that fall into the wave number instability band
window, when the corresponding flak is in a downswing.
Natural disturbances from outside, for example, tidal and
barometric effects, will therefore start new fluctuations and
the system will by time become independent of the initial
condition thus forgetting its past and becoming chaotic.
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Wave propagation problems can be solved using a variety of methods. However, in many cases, the joint use of different numerical
procedures to model different parts of the problem may be advisable and strategies to perform the coupling between them must
be developed. Many works have been published on this subject, addressing the case of electromagnetic, acoustic, or elastic waves
and making use of different strategies to perform this coupling. Both direct and iterative approaches can be used, and they may
exhibit specific advantages and disadvantages. This work focuses on the use of iterative coupling schemes for the analysis of
wave propagation problems, presenting an overview of the application of iterative procedures to perform the coupling between
different methods. Both frequency- and time-domain analyses are addressed, and problems involving acoustic, mechanical, and
electromagnetic wave propagation problems are illustrated.

1. Introduction

The analysis of wave propagation, either involving electro-
magnetic, acoustic, or elastic waves, has been widely studied
by researchers using different strategies and methodologies,
as can be seen, for example, in [1–10], among many others. In
many cases, the interaction between different types of media,
such as fluid-solid or soil-structure interaction problems,
poses significant challenges that can hardly be tackled by
means of a single numericalmethod, requiring the joint use of
different procedures to model different parts of the problem.
Indeed, taking into consideration the specificities and partic-
ular features of distinct numerical methods, their combined
use, as coupled or hybridmodels, has been proposed bymany
authors, in order to explore the individual advantages of each
technique.

In acoustic and elastodynamic problems, coupledmodels,
including, for example, the joint use of the boundary element
method (BEM) and the method of fundamental solutions
(MFS) [11] or of the BEM and the meshless Kansa’s method
[12], have been successfully applied. Similarly, when mod-
elling dynamic fluid-structure and soil-structure interac-
tions, wave propagation in elasticmedia with heterogeneities,

or the transmission of ground-borne vibration, coupled
models using the finite element method (FEM) and the
BEM have been extensively documented in the literature
[13–19], mostly using the FEM to model the structure and
the BEM to model the hosting infinite or semiinfinite
medium. Although these approaches can be quite useful in
addressing many engineering problems, they mostly corre-
spond to standard direct coupling methodologies and thus
exhibit well-known limitations. Indeed, directly coupling
distinct methods involves assembling a single system matrix,
accounting for the contributions of each method and for
the required coupling interface conditions, which frequently
becomes poorly conditioned due to the different nature of the
methods. Since this system is formed from the contributions
of distinct methods, it is also usually not possible to make use
of their individual advantages in terms of optimized solvers
or memory storage (e.g., in BEM-FEM the final system will
no longer be banded and symmetric, etc.). In addition to
this limitation, by forming a single system of equations,
a very large problem usually arises, leading to increased
computational efforts and thus to a loss of performance.

All these limitations have justified the appearance of itera-
tive algorithms to obtain accurate solutions in amore efficient
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manner. Perhaps one of the first iterative techniques to be
developed for general problems is the well-known Schwarz
alternating strategy [20, 21], in which the domain of analysis
is partitioned in overlapping subdomains, and the solution is
found by successively iterating along these subdomains until
convergence is reached. This classical and simple to imple-
ment algorithm has been applied to many problem types,
including potential problems [22] or electromagnetic wave
propagation problems [23]. However, for the case of acoustic
problems or elastic wave propagation problems, formulated
in the frequency domain, the special oscillatory structure of
the solution leads to severe convergence problemswhenusing
such classic approaches, and more sophisticated and difficult
to implement strategies must be defined.

In recent years, more elaborate iterative domain decom-
position techniques have been proposed and discussed in
order to analyze a wide range of problems, providing good
results especially in terms of flexibility and efficiency. Mostly,
these techniques have been applied to nontransient applica-
tions, and they usually consider the analysis of coupled mod-
els, taking into account the interaction of different discretiza-
tion methods, physical phenomena, and so forth. In fact, for
complex models, iterative domain decomposition techniques
are recommended, usually providing a better approach for
the analysis. Indeed, a proper numerical simulation is hardly
achieved by a single numerical technique in those cases,
mostly because complex and quite different phenomena
interact, requiring particularized advanced expertise, and/or
large scale problems are involved, demanding high computa-
tional efforts.

Nowadays, several works are available discussing iterative
nonoverlapping partitioned analysis. Taking into account
elliptic problems, Rice et al. [24] presented a quite complete
discussion, considering several interface relaxation proce-
dures and comparing formulations and performances. As
a matter of fact, most of the publications on the topic are
focused on elliptic models, few being devoted to hyperbolic
problems. Taking into account computationalmechanics, one
of the first publications on the topicwas presented by Lin et al.
[25], which discussed a relaxed iterative procedure to couple
the FEM and the BEM, considering linear static analyses.
Similar approaches have been presented later on, considering
potential andmechanical static linear analyses [26, 27]. In the
works of Elleithy et al. [28, 29], concerning mechanical static
and potential problems, the authors propose that the domain
of the original problem is subdivided into subdomains, each
of them modeled by the finite element or boundary element
methods; the coupling between the different subdomains is
performed using smoothing operators on the interdomain
boundaries. Their strategy allows separate computations for
the BEM and FEM subdomains, with successive update of
the boundary conditions at the interfaces being performed
until convergence is achieved. In [30–32], similar approaches
for the analysis of different linear problems using domain
decomposition techniques were also presented. Further
developments of these strategies to nonlinear analysis in solid
mechanics can also be found in the works of Elleithy et al.
[33], using an interface relaxation finite element-boundary

element coupling method (FEM-BEM coupling) for elasto-
plastic analysis, or Jahromi et al. [34], who established a
coupling procedure based on a sequential iterative Dirichlet-
Neumann coupling algorithm for nonlinear soil-structure
interaction. It must be noted that the described works refer
to nontransient problems, either linear or nonlinear, and no
application to wave propagation analysis is focused on in
these works.

Taking into account time-domain wave propagation
models, the first work on the topic seems to have been
presented by Soares et al. [35], who described a relaxed
FEM-BEM iterative coupling procedure to analyze dynamic
nonlinear problems, considering different time discretiza-
tions within each sub-domain of the model. Later on, this
technique has been further developed to analyze other wave
propagation models, including acoustic, elastic, and electro-
magnetic wave propagation or solid-fluid interaction, taking
into account several different numerical procedures using the
FEM and the BEM [36–45] or the meshless local Petrov-
Galerkin method [46]. Most of these works are focused on
the iterative coupling of different numerical discretization
techniques, and a review considering the iterative coupling
of the FEM and the BEM, taking into account some wave
propagation models in computational mechanics, has been
presented in [47]. The coupling of acoustic and mechanic
wave propagation models, on the other hand, has been
reviewed in [48], taking into account different domain
decomposition techniques and considering several numerical
discretization techniques.

In the analysis of wave propagation using frequency-
domain formulations, iterative coupling procedures can be
found in the literature, mostly considering acoustic-acoustic
and acoustic-elastodynamic coupling [49–54]. As it has
been reported, frequency-domain wave propagation analyses
usually give rise to ill-posed problems and, in these cases, the
convergence of the iterative coupling algorithm can be either
too slow or unachievable.This is the case in acoustic-acoustic,
acoustic-elastodynamic, and elastodynamic-elastodynamic
interacting models and, as discussed in this work, conver-
gence can be hardly achieved if no special procedure is
considered, especially if higher frequencies are focused on. As
referred in the literature, in order to deal with this ill-posed
problem and ensure convergence of the iterative coupling
algorithm, special techniques, such as the adoption of optimal
relaxation parameters, must be considered.

In this work, time- and frequency-domain analyses of
wave propagation models are reviewed, taking into account
relaxed iterative coupling procedures. In this context, several
wave propagation models (such as electromagnetic, acoustic,
mechanic) are considered, and several numerical procedures
(such as the finite element method, the boundary element
method, and meshless methods) are employed to discretize
the model. In the iterative coupling approach, each sub-
domain of the global model is analyzed independently (as an
uncoupled model) and a successive renewal of the variables
at the common interfaces is performed, until convergence
is achieved. These iterative methodologies exhibit several
advantages when compared to standard coupling schemes,
for instance,
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(i) different subdomains can be analysed separately,
leading to smaller and better-conditioned systems of
equations (different solvers, suitable for each sub-
domain, may be employed);

(ii) only interface routines are required when one wishes
to use existing codes to build coupling algorithms
(thus, coupled systems may be solved by separate
programmodules, taking full advantage of specialized
features and disciplinary expertise);

(iii) matching nodes at common interfaces are not
required, greatly improving the flexibility and versa-
tility of the coupled analyses, especiallywhendifferent
discretization methods are considered;

(iv) matching time steps at common interfaces are not
required (in time-domain analysis), allowing optimal
temporal discretizations within each sub-domain,
improving accuracy and stability aspects;

(v) nonlinear analyses (as well as other iterative-based
analyses)may be carried out in the same iterative loop
of the iterative coupling, not introducing a relevant
extra computational effort for the model;

(vi) more efficient analyses can be obtained, once the
global model can be reduced to several subdomains
with reduced size matrices.

As a matter of fact, Gauzellino et al. [55] compared the
iterative domain decomposition and global solution taking
into account three-dimensional Helmholtz problems. Their
numerical results show that iterative domain decomposition
methods perform far better than globalmethods. In addition,
they observed that iterative domain decomposition methods
involving small subdomains work better than those with
subdomains involving a large number of elements. Similar
results have been obtained by Soares et al. [51], taking into
account two-dimensional Helmholtz problems.

To give a detailed overview of the recent developments
found in many of the referred works, the remainder of
this paper will address a number of application examples
concerning different phenomena and methods. First, the
governing equations related to wave propagation models are
generically and briefly presented. In the sequence, an effi-
cient iterative coupling technique is described, including the
mathematical derivation of the optimized relaxationmethod-
ology. Some numerical applications are finally presented,
illustrating the accuracy, performance, and potentialities of
the discussed procedures, taking into account different wave
propagation models and discretization techniques.

2. Governing Equations

Wave propagation phenomena may be generically described
by the following time/frequency-domain governing equa-
tions:

𝑐
0 (𝑥, 𝑡) + 𝑐1 (𝑥) ̈𝑢 (𝑥, 𝑡) + 𝑐2 (𝑥) ̇𝑢 (𝑥, 𝑡)

+ 𝑐
3 (𝑥) 𝜕𝑓 (𝑢 (𝑥, 𝑡)) = 0,

(1a)

𝑐
0 (𝑥, 𝜔) − 𝜔

2
𝑐
1 (𝑥) 𝑢 (𝑥, 𝜔) + 𝑖𝜔𝑐2 (𝑥) 𝑢 (𝑥, 𝜔)

+ 𝑐
3 (𝑥) 𝜕𝑓 (𝑢 (𝑥, 𝜔)) = 0

(1b)

which can be further generalized in order to consider more
complex behavior, such as time varying coefficients (𝑐

𝑙
(𝑥, 𝑡),

𝑙 = 1, 2, 3), nonlinearities (𝑐
𝑙
(𝑥, 𝑢(𝑥, 𝑡)), 𝑙 = 0, 1, 2, 3; etc.)

Equation (1a) stands for the time domain governing equation,
whereas (1b) stands for its frequency-domain counterpart
(overbars indicate frequency-domain values). In these equa-
tions, 𝑢 represents the incognita field, which can be scalar,
vectorial, and so forth, according to the physical model in
focus. 𝑐

𝑖
stands for a general coefficient representation, which

can as well be a scalar, a tensor, and so forth. Overdots stand
for time derivatives, whereas 𝜕𝑓 indicates a spatial derivative
operator. The complex number is denoted by 𝑖 and the time,
frequency, and space domains are represented by 𝑡, 𝜔, and
𝑥, respectively (in this case, 𝑥 ∈ Ω, where Ω is the spatial
domain of the model).

The boundary conditions (𝑥 ∈ Γ, where Γ is the
boundary of the model) may be generically described as (for
simplicity, from this point onwards, overbars are no longer
used to indicate frequency-domain values and 𝜍 stands for 𝑡
or 𝜔, according to the case of analysis)

𝑓 (𝑢 (𝑥, 𝜍) , V (𝑥, 𝜍)) = 𝑐 (𝑥, 𝜍) , (2)

where, once again, 𝑐 stands for known terms. In (2), 𝑓
stands for a generic function, representing the combination
of its arguments. The variable V, which may be considered
prescribed at the boundary of the model, is a function
of 𝑢, and it is usually expressed considering some normal
projection (normal to the boundary) of the spatial derivatives
of 𝑢 (i.e., V = 𝜕𝑓

𝑛
(𝑢)).

To completely define the model, initial conditions (which
are usually adopted null in frequency-domain analyses) must
also be defined. In this case, a generic representation can be
given by 𝑓(𝑢(𝑥, 𝑡 = 0), ̇𝑢(𝑥, 𝑡 = 0)) = 𝑐(𝑥), where notation
analogous to that of (2) is considered.

Taking into account coupled models in which different
domains interact by a common interface, interface conditions
must be stated, indicating how the domains interact.This can
be generically expressed as

𝑓
1
(𝑢 (𝑥
−
, 𝜍) , V (𝑥−, 𝜍)) = 𝑓

2
(𝑢 (𝑥
+
, 𝜍) , V (𝑥+, 𝜍)) , (3)

where 𝑥 ∈ Γ
𝐼
, 𝑥− ∈ Γ

𝐼
∪ Ω
1
, 𝑥+ ∈ Γ

𝐼
∪ Ω
2
, and Γ

𝐼
is

the common interface between domains Ω
1
and Ω

2
. In (3),

functions 𝑓
1
and 𝑓

2
describe how the interaction between

the coupled domains takes place by relating their boundary
values on the common interface.

3. Iterative Coupling Analysis

In order to enable the coupling between sectioned domains
of a global model, an iterative procedure is employed here,
which performs a successive renewal of the relevant vari-
ables at the common interfaces. This approach is based on
the imposition of prescribed boundary conditions, properly
evaluated, at the interfaces of the sectioned domains, allowing
each domain of the global model to be analyzed separately.
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Since the sectioned domains are analyzed separately, the rele-
vant systems of equations are formed independently, before
the iterative process starts (in the case of linear analyses),
and are kept constant along the iterative process, rendering
a very efficient procedure. The separate treatment of the
sectioned domains allows independent discretizations to be
considered on each domain, without any special requirement
of matching nodes along the common interfaces. Moreover,
in the case of time-domain analysis, different time-steps
may also be considered for each domain. Thus, the coupling
algorithm can be presented for a generic case, in which
the interface nodes may not match, and the interface time
instants are disconnected, allowing exploiting the benefits of
the iterative coupling formulation.

To ensure and/or to speed up convergence, a relaxation
parameter 𝜆 is introduced in the iterative coupling algorithm.
The effectiveness of the iterative process is strongly related to
the selection of this relaxation parameter, since an inappro-
priate selection for 𝜆 can significantly increase the number of
iterations in the analysis or, even worse, make convergence
unfeasible. As it has been reported [49, 51], frequency-
domain analyses usually give rise to ill-posed problems and,
in these cases, the convergence of simple iterative coupling
algorithms can either be too slow or unachievable. In order to
deal with ill-posed problems and ensure convergence of the
iterative coupling algorithm, an optimal iterative procedure
is adopted here, with optimal relaxation parameters being
computed at each iterative step. As it is illustrated in the
next section, the introduction of these optimal relaxation
parameters allows the iterative coupling technique to be
very effective, especially in the frequency domain, ensuring
convergence at a low number of iterative steps.

3.1. Iterative Algorithm. Initially, in the kth iterative step of
the coupled analysis of domains 1 and 2, the so-called domain
1 is analyzed and the variables 𝑢 or V at the common interfaces
of the domain are computed, taking into account prescribed
values of V or 𝑢 at these common interfaces.These prescribed
values of V or 𝑢 are provided from the previous iterative step
(in the first iterative step, null or previous time-step values
may be considered). Once the variables 𝑢 or V are computed,
they are applied to evaluate the boundary conditions that
are prescribed at the common interfaces of domain 2, as
described by (3). Taking into account these prescribed 𝑢 or V
boundary conditions, the so-called domain 2 is analyzed and
the variables V or 𝑢 at the common interfaces of the domain
are computed. Then, the computed V or 𝑢 values are applied
to evaluate the boundary conditions that are prescribed at
the common interfaces of domain 1, reinitiating the iterative
cycle. A sketch of this cycle is depicted in Figure 1.

As previously discussed, relaxation parameters must be
considered in order to ensure and/or to speed up the
convergence of the iterative process. Thus, the values that
are computed after the analysis of the sectioned domain may
be combined with its previous iterative step counterpart,
relaxing the computation of the actual iterative step value.
Mathematically, this can be represented as follows:

𝑦
(𝑘+1)

= (𝜆) 𝑦
(𝑘+𝜆)

+ (1 − 𝜆) 𝑦
(𝑘)
, (4)

where 𝜆 is the adopted relaxation parameter and 𝑦 stands for
𝑢 or V, according to the case of analysis; one should note that
𝑦
(𝑘+𝜆) is the value computed at the end of the iterative step,

before the application of the relaxation parameter.
A proper selection for 𝜆 at each iterative step is extremely

important for the effectiveness of the iterative coupling
procedure. In order to obtain an easy to implement, efficient,
and effective expression for the relaxation parameter compu-
tation, optimal 𝜆 values are deduced in Section 3.2.

3.2. Optimal Relaxation Parameter. In order to evaluate an
optimal relaxation parameter, the following square error
functional is minimized here:

𝜀 (𝜆) =
󵄩󵄩󵄩󵄩󵄩
Y(𝑘+1) (𝜆) − Y(𝑘) (𝜆)󵄩󵄩󵄩󵄩󵄩

2

, (5)

where Y stands for a vector whose entries are 𝑢 or V values,
computed at the common interfaces.

Taking into account the relaxation of the field values for
the (𝑘 + 1) and (𝑘) iterations, (6a) and (6b) may be written,
based on the definition in (4):

Y(𝑘+1) = (𝜆)Y(𝑘+𝜆) + (1 − 𝜆)Y(𝑘), (6a)

Y(𝑘) = (𝜆)Y(𝑘+𝜆−1) + (1 − 𝜆)Y(𝑘−1). (6b)
Substituting (6a) and (6b) into (5) yields

𝜀 (𝜆) =
󵄩󵄩󵄩󵄩󵄩
(𝜆)W(𝑘+𝜆) + (1 − 𝜆)W(𝑘)󵄩󵄩󵄩󵄩󵄩

2

= (𝜆
2
)
󵄩󵄩󵄩󵄩󵄩
W(𝑘+𝜆)󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆 (1 − 𝜆) (W(𝑘+𝜆),W(𝑘))

+ (1 − 𝜆)
2󵄩󵄩󵄩󵄩󵄩
W(𝑘)󵄩󵄩󵄩󵄩󵄩

2

,

(7)

where the inner product definition is employed (e.g.,
(W,W) = ‖W‖

2) and new variables, as defined in the
following, are considered:

W (𝑘+𝜆) = Y(𝑘+𝜆) − Y(𝑘+𝜆−1) (8)
To find the optimal 𝜆 that minimizes the functional 𝜀(𝜆),

(7) is differentiated with respect to 𝜆 and the result is set to
zero, described as follows:

(𝜆)
󵄩󵄩󵄩󵄩󵄩
W(𝑘+𝜆)󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 2𝜆) (W(𝑘+𝜆),W(𝑘))

+ (𝜆 − 1)
󵄩󵄩󵄩󵄩󵄩
W(𝑘)󵄩󵄩󵄩󵄩󵄩

2

= 0.

(9)

Rearranging the terms in (9) yields

𝜆 =

(W(𝑘),W(𝑘) −W(𝑘+𝜆))
󵄩󵄩󵄩󵄩W(𝑘) −W(𝑘+𝜆)󵄩󵄩󵄩󵄩

2
(10)

which is an easy to implement expression that provides an
optimal value for the relaxation parameter 𝜆, at each iterative
step.This expression requires a low computational cost, when
compared to other alternatives that can be found in the
literature (see, e.g., [28, 29]) and it provides very good results,
as it has been reported taking into account different physical
models and domain analyses [43, 44, 51–54]. The iterative
process is relatively insensitive to the value of the relaxation
parameter adopted for the first iterative step and 𝜆 = 0.5 can
be considered in this case, for instance.
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Figure 1: Sketch of the iterative coupling algorithm.
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Figure 2: (a) Sketch for a spatial interpolation of nodal values on the interface: 𝑦+
1
= 𝐼(𝑦
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−

2
), 𝑦+
3
= 𝐼(𝑦

−

2
, 𝑦
−

3
), and so forth;

(b) sketch for a temporal interpolation of time-step values on the interface: 𝑦+(𝑡+) = 𝐼(𝑦−(𝑡−), 𝑦−(𝑡− − Δ𝑡−)), and so forth, where 𝐼 stands for
a linear interpolation function.

3.3. Interface Compatibility. As previously discussed, inde-
pendent spatial (and temporal, in time-domain analysis)
discretizations may be considered for each domain of the
model, not requiring matching nodes (or equal time steps)
at the common interfaces. Thus, special procedures must be
employed to ensure the interface spatial (and temporal) com-
patibility. In order to do so, interpolation and extrapolation
procedures are considered here. These procedures can be
generically described by

𝑦 (𝑥
𝑖
, 𝜍) =

𝐽

∑

𝑗=1

𝛼
𝑗
𝑦 (𝑥
𝑗
, 𝜍) , (11a)

𝑦 (𝑥, 𝑡
𝑛
) = 𝛽
0
𝑦 (𝑥, 𝑡

𝑚
) +

𝐽

∑

𝑗=1

𝛽
𝑗
𝑦 (𝑥, (𝑡 − 𝑗Δ𝑡)

𝑚/𝑛
) , (11b)

where (11a) stands for spatial interpolations and (11b) stands
for time interpolations/extrapolations (𝛼

𝑗
and 𝛽

𝑗
stand

for spatial interpolation coefficients and time interpola-
tion/extrapolation coefficients, respectively, where Δ𝑡 rep-
resents the time step). In Figure 2, simple sketches for the
spatial and temporal interpolation procedures are depicted,
taking into account linear interpolations.

Although time interpolations usually can be carried out
without further difficulties, time extrapolations may give rise
to instabilities if not properly elaborated.Thus, extrapolations
should be performed in consonancewith the field approxima-
tions being adopted within each time step and with the time
discretization procedures being considered in the analysis, in
order to formulate a consistent procedure. Once a consistent
methodology is elaborated, time interpolation/extrapolation
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procedures can be employed with confidence, as referred in
the literature [47, 48] and illustrated in the next section.
One should notice that usually different optimal (optimal
in terms of accuracy, stability and efficiency) time steps
are required when taking into account different numerical
methods, spatial discretizations, material properties, physical
phenomena, and so forth. Thus, in some cases, considering
different time steps within each domain of a coupled model
is of maximal importance to allow the effectiveness of the
analysis.

Using space(/time) interpolation(/extrapolation) proce-
dures, optimal modeling of each sectioned domain may be
achieved, which is very important inwhat concerns flexibility,
efficiency, accuracy, and stability aspects.

4. Numerical Applications

In this section, the general procedures previously discussed
are particularized and briefly detailed, taking into account
different physicalmodels anddiscretization techniques.Thus,
the discussed iterative coupling methodology is applied
considering a wide range of wave propagation models and
numerical methods, richly illustrating its performance and
potentialities.

In this context, time- and frequency-domain analyses
are carried out here, and electromagnetic, acoustic, and
mechanical wave propagation phenomena (as well as their
interactions) are discussed in the applications that follow.
Moreover, different numerical techniques (such as the finite
element method, the boundary element method, and mesh-
less methods) are applied to discretize the different domains
of the model, illustrating the versatility and generality of the
discussed iterative method.

4.1. Electromagnetic Waves. In electromagnetic models, vec-
torial wave equations describe the electric and the magnetic
field evolution [56, 57]. In this case, (1a) can be rewritten as
(in this subsection, time-domain analyses are focused on):

∇ × (𝜇(𝑥)
−1
∇ × E (𝑥, 𝑡)) + 𝜀 (𝑥) ̈E (𝑥, 𝑡) = − ̇J (𝑥, 𝑡) , (12a)

∇ × (𝜀(𝑥)
−1
∇ ×H (𝑥, 𝑡)) + 𝜇 (𝑥) Ḧ (𝑥, 𝑡)

= ∇ × (𝜀(𝑥)
−1J (𝑥, 𝑡)) ,

(12b)

and (3) can be rewritten as

n (𝑥) × (E (𝑥+, 𝑡) − E (𝑥−, 𝑡)) = 0, (13a)

(D (𝑥
+
, 𝑡) −D (𝑥

−
, 𝑡)) ⋅ n (𝑥) = 𝜌 (𝑥, 𝑡) , (13b)

(B (𝑥+, 𝑡) − B (𝑥−, 𝑡)) ⋅ n (𝑥) = 0, (13c)

n (𝑥) × (H (𝑥
+
, 𝑡) −H (𝑥

−
, 𝑡)) = J (𝑥, 𝑡) , (13d)

where E and H are the electric and magnetic field intensity
vectors, respectively; D and B represent the electric and
magnetic flux densities, respectively; and J and 𝜌 stand for the
electric current and electric charge density, respectively. The
parameters 𝜀 and 𝜇 denote, respectively, the permittivity and

permeability of themediumand itswave propagation velocity
is specified as 𝑐 = (𝜀𝜇)

−1/2. n is the normal vector, from
domain 1 to domain 2. Equations (13a) and (13b) state that the
tangential component of E is continuous across the interface
and that the normal component of D has a step of surface
charge on the interface surface, respectively. Equations (13c)
and (13d) state that the normal component ofB is continuous
across the interface and that the tangential component ofH is
continuous across the interface if there is no surface current
present, respectively.

In the present application, the electromagnetic fields
surrounding infinitely long wires are studied [41]. Two cases
of analysis are focused here, namely, (a) case 1, where onewire
is considered; (b) case 2, where two wires are employed. For
both cases, the wires are carrying time-dependent currents
(i.e., 𝐼(𝑡) = 𝑡 or 𝐼(𝑡) = 𝑡

2) and they are located along the
adopted 𝑧-axis. A sketch of the model is depicted in Figure 3.

The spatial and temporal evolution of the electric field
intensity vector is analyzed here taking into account a finite
element method (FEM)—boundary element method (BEM)
coupled formulation. In this context, the FEM is applied
to model the region close to the wires, whereas the BEM
simulates the remaining infinity domain. As it is well known,
the BEM employs fundamental solutions which fulfill the
radiation condition.Thus, this formulation is very suitable to
perform infinite domain analysis, once reflected waves from
infinity are avoided [58].

The adopted spatial discretization is also described in
Figure 3. In this case, 2344 linear triangular finite elements
and 80 linear boundary elements are employed in the analyses
(see references [57, 58] for more details regarding the FEM
and the BEMapplied to electromagnetic analyses).The radius
of the FEM-BEM interface is defined by 𝑅 = 1m and
matching nodes are considered at the interface. For temporal
discretization, the selected time step is given byΔ𝑡 = 5⋅10−11s
for both domains.Thephysical properties of themedium (air)
are 𝜇 = 1.2566 ⋅ 10−6H/m and 𝜀 = 8.8544 ⋅ 10−12 F/m.

Figure 4 shows the modulus of the electric field intensity
obtained at points A and B (see Figure 3) considering the
iterative couplingmethodology. Analytical time histories [58]
are also depicted in Figure 4, highlighting the good accuracy
of the numerical results. In Figure 5, charts are displayed,
indicating the percentage of occurrence of different relax-
ation parameter values (evaluated according to expression
(10)), in each analysis. As can be observed, for all considered
cases, optimal relaxation parameters aremostly in the interval
0.7 ≤ 𝜆 ≤ 0.8. In fact, an optimal relaxation parameter
selection is extremely case dependent. It is function of the
physical properties of the model, geometric aspects, adopted
spatial and temporal discretizations, and so forth. Equation
(10) provides a simple expression to evaluate this complex
parameter.

In order to illustrate the effectiveness of the methodology
when considering different time discretizations for different
domains, Figure 6 depicts results that are computed consider-
ing Δ𝑡 = 2.5 ⋅ 10−11 s for the FEM and Δ𝑡 = 2.0 ⋅ 10−10 s for the
BEM (i.e., a difference of 8 times between the time steps). For
simplicity, results are presented considering just the first case
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Figure 3: Sketch of the electromagnetic models and adopted FEM/BEM spatial discretizations: (a) case 1, one wire; (b) case 2, two wires.
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Figure 4: Time history results for the electric field intensity at points A and B considering 𝐼(𝑡) = 𝑡 and (a) case 1 and (b) case 2; 𝐼(𝑡) = 𝑡2 and
(c) case 1 and (d) case 2.
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Figure 5: Percentage of occurrence of different relaxation parameter values during the analysis, considering 𝐼(𝑡) = 𝑡 and (a) case 1 and (b)
case 2; 𝐼(𝑡) = 𝑡2 and (c) case 1 and (d) case 2.

of analysis, that is, case 1 and 𝐼(𝑡) = 𝑡. As one can observe
in Figure 6(a), good results are still obtained taking into
account the iterative formulation, in spite of the existing time
disconnections at the interface. In Figure 6(b), the evolution
of the relaxation parameter is depicted, taking into account
this last configuration. As one can observe, in this case,
optimal relaxation parameter values are between 0.7 and 1.0
and mostly concentrate on the interval (0.9, 1.0). In fact, it
is expected that these values get closer to 1.0 when smaller
time steps are considered. In the present analysis, an average
number of 4.92 iterations per time step is obtained (taking
into account 800 FEM time steps), which is a relatively low
number, illustrating the good performance of the technique
(it must be remarked that a tight tolerance criterion was
adopted for the convergence of the iterative analysis).

4.2. Acoustic Waves. In acoustic models, a scalar wave equa-
tion describes the acoustic pressure field evolution [1]. In this
case, (1b) can be rewritten as (in this subsection, frequency-
domain analyses are focused)

∇ ⋅ (𝜅 (𝑥) ∇𝑝 (𝑥, 𝜔)) + 𝜔
2
𝜌 (𝑥) 𝑝 (𝑥, 𝜔) = 𝛾 (𝑥, 𝜔) (14)

and (3) can be rewritten as

(𝑝 (𝑥
+
, 𝜔) − 𝑝 (𝑥

−
, 𝜔)) = 0, (15a)

(𝑞 (𝑥
+
, 𝜔) − 𝑞 (𝑥

−
, 𝜔)) = 𝑔 (𝑥, 𝜔) , (15b)

where 𝑝 is the hydrodynamic pressure and 𝛾 and 𝑔 stand
for domain and surface sources, respectively. The parameters
𝜌 and 𝜅 denote, respectively, the mass density and com-
pressibility of the medium and its wave propagation velocity
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Figure 6: Results considering different time steps for each domain: (a) electric field intensity at points A and B; (b) optimal relaxation
parameters for each iterative step.
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Figure 7: (a) Sketch for the heterogeneous medium with multiple subregions; (b) boundary and domain point distribution, considering the
spatial discretization of an inclusion and adjacent fluid.

is specified as 𝜐 = (𝜅/𝜌)
1/2. The hydrodynamic fluxes on

the interfaces are represented by 𝑞, and they are defined by
𝑞 = 𝜅 ∇𝑝 ⋅ n, where n is the normal vector, from domain
1 to domain 2. Equation (15a) states that the pressure is
continuous across the interface, whereas (15b) states that the
flux is continuous across the interface if there is no surface
source.

The advantages of using iterative coupling procedures are
revealed when more complex configurations are analyzed.
In this subsection, the case of a heterogeneous domain,
composed of a homogeneous fluid incorporating multiple
circular inclusions with different properties, is analyzed.

For this purpose, consider the host medium to allow the
propagation of sound with a velocity of 1500m/s, and this
medium is excited by a line source located at 𝑥

𝑠
= −5.0m

and 𝑦
𝑠
= 0.0m. Within this fluid, consider the presence of

8 circular inclusions; all of them are with unit radius and
filled with a different fluid, allowing sound waves to travel at
3000m/s, as depicted in Figure 7.

The above-described system has been analyzed taking
into account the proposed iterative coupling procedure
making use of the Kansa’s method (KM) to model all the
inclusions and of the method of fundamental solutions
(MFS) to model the host fluid (see references [12, 59–61]
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Figure 8:Hydrodynamic pressures along the common interface of the 8th inclusion for (a)𝜔 = 400Hz and (b)𝜔 = 1000Hz (—, real-iterative;
- - - -, Imag-iterative; I, Real-direct; ◻, Imag-direct).

for more details regarding the KM and the MFS applied
to acoustic analyses). One should note that, since the real
source is positioned at the outer region, the iterative process
is initialized with the analysis of the MFS model, considering
prescribed Neumann boundary conditions at the common
interfaces. Once the boundary pressures for the outer region
are computed, these values are transferred to the closed
regions by imposing Dirichlet boundary conditions, incor-
porating information about the influence of each inclusion
on the remaining heterogeneities. Then, each KM subregion
is analysed independently and the internal boundary values
(normal fluxes) are evaluated autonomously for each inclu-
sion. The iterative procedure then goes further, including
the calculation of the relaxation parameter at each iterative
step, as well as the correction of boundary variables, until
convergence is achieved.

To model the system, each MFS boundary is discretized
by 55 points. 331 KM domain points are equally distributed
within each inclusion, and 66 KM boundary points (around
31 points per wavelength) are used (see Figure 7(b)). The
complexity of the model hinders the definition of a closed
form solution; thus, the results are checked against a numer-
ical model which performs the direct (i.e., noniterative)
coupling between both methods. In that model, 66 boundary
points are used in the MFS to define the boundary of
each inclusion, and 66 and 331 KM boundary and domain
points, respectively, are adopted for the discretization of each
inclusion (analogously to the iterative coupling procedure).
Figure 8 compares the responses computed by the iterative
and the direct coupling methodologies. Results are depicted
along the boundary of the 8th inclusion, for excitation fre-
quencies of 400Hz (Figure 8(a)) and 1000Hz (Figure 8(b)).
As can be observed in the figure, there is a perfect match
between both approaches, with the iterative procedure clearly
converging to the correct solution.

It is important, at this point, to highlight the differences
in the computational times of the direct and of the iterative

coupling approaches. For the present model configuration,
the direct coupling approach had to deal simultaneously with
528 boundary points and a total of 2648 internal points (i.e.,
considering a coupled matrix of dimension 3704), which is
implied in 373.89 s of CPU time in a Matlab implementation
(being this CPU time independent of the frequency in focus).
For the iterative coupling approach, using 55 boundary points
for the MFS and 66 boundary points for the KM, it was
possible to obtain analogous results considering 12.06 s of
CPU time for the frequency of 200Hz and 32.32 s for the
frequency of 1000Hz (i.e., 3.23% and 8.64% of the com-
putational cost of the direct coupling methodology, resp.).
Even if the same number of boundary points is used in the
iterative coupling approach for the MFS (i.e., 66 points), the
final CPU time would just increase up to 35.71 s (9.55% of
the computational cost of the direct coupling methodology).
These results are summarized in Table 1, where the number
of iterations and the CPU time are presented for the first
scenarios (i.e., 55 boundary points for the MFS) and for
frequencies between 50Hz and 1000Hz.The values described
in Table 1 further confirm that the difference in calculation
times between the iterative and the direct coupling approach
is striking and reveal an excellent gain in performance
favouring the iterative coupling technique. It is important
to understand that this gain is strongly related to the pos-
sibility of dealing with smaller-sized matrices when using
the iterative coupling procedure. Moreover, it is possible to
invert (or triangularize, etc.) the relevant matrices only at
the first iterative step and then proceed with the calculations
using the inverted matrices (or forward/back substituting,
etc.). As a consequence, after the first iteration, only matrix
vector multiplication operations are required, and very high
savings in what concerns computational time are achieved. In
fact, considering that the number of operations required for
matrix inversion can be assumed to be of the order of𝑁3 (𝑁
being thematrix size), a simple calculation allows concluding
that, for the current model, the relative cost of inverting the
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Table 1: Total number of iterations and relative CPU time (itera-
tive/direct coupling) for the acoustic model.

Frequency (Hz) Iterations Relative CPU time (%)
50 14 2.09
100 18 2.43
150 29 3.19
200 31 3.23
250 26 2.78
300 40 3.86
350 31 3.13
400 32 3.20
450 30 3.02
500 49 4.49
550 48 4.40
600 45 4.18
650 68 5.94
700 34 3.28
750 39 3.66
800 110 9.20
850 98 8.28
900 78 6.75
950 104 8.83
1000 100 8.64

eight KM matrices (each one being a square matrix with
397 × 397 entries) and the MFS matrix (with 440 × 440
entries) is less than 2% of the cost of inverting a larger 3704
× 3704 matrix, as required for the direct coupling strategy.
Similar conclusions can be obtained considering other solver
procedures, such as matrix triangularizations, demonstrating
that a considerably less expensive methodology is obtained
if the different subdomains are analysed separately (even
considering an eventual high number of iterative steps in the
iterative analysis).

Analyzing the difference in computational times between
the two analyzed frequencies (i.e., 200Hz and 1000Hz) also
reveals a significant difference between them.This difference
is related to the number of iterations required for conver-
gence, which was higher when the excitation frequency of
1000Hz was considered. The plot in Figure 9 indicates the
number of iterations required for convergence along a range
of frequencies between 10Hz and 1000Hz, using a constant
number of boundary (55 for theMFS and 66 for the KM) and
internal points (331 for the KM). As expected, the number of
iterations increases with the frequency. It is interesting to note
that the maximum necessary number of iterations occurred
for a frequency of 990Hz, requiring 170 iterations and a CPU
time of 54.80 s to converge, which is less than 15% of the CPU
time required by the direct coupling for the same frequency.

In Figure 10, the wavefield produced within and around
the inclusions is illustrated for excitation frequencies of
600Hz and 1000Hz. As expected, as the frequency increases,
the multiple inclusions generate progressively more complex
wave fields, with the interaction between them becoming
very significant for the higher frequency. Observation of
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Figure 9: Total number of iterations considering different frequen-
cies and 55 collocation points for the MFS and 66 boundary points
for the KM, at each circular inclusion.

these results also reveals a strong shadow effect produced by
the inclusions, with much lower amplitudes being registered
in the region behind the inclusions placed further away
from the source. This effect is even more pronounced for
the higher frequency. Interestingly, for both frequencies,
the space between the two lines of inclusions works as a
guiding path, along which the sound energy travels with less
attenuation.

4.3. Mechanical Waves. In dynamic models, a vectorial wave
equation describes the displacement field evolution [1]. In this
case, considering linear behaviour, (1a) can be rewritten as (in
this subsection, time-domain analyses are focused)

∇ × (𝜇 (𝑥) ∇ × u (𝑥, 𝑡))

− ∇ ((𝜂 (𝑥) + 2𝜇 (𝑥)) ∇ ⋅ u (𝑥, 𝑡)) + 𝜌 (𝑥) ̈u (𝑥, 𝑡)

= f (𝑥, 𝑡) ,

(16)

and (3) can be rewritten as:

(u (𝑥+, 𝑡) − u (𝑥−, 𝑡)) = 0, (17a)

(𝜎 (𝑥
+
, 𝑡) − 𝜎 (𝑥

−
, 𝑡))n (𝑥) = 𝜏 (𝑥, 𝑡) , (17b)

where u is the displacement vector and f and 𝜏 stand for
domain and surface forces, respectively. The terms 𝜂 and 𝜇
denote the so-called Lamé parameters, and 𝜌 is the mass
density of the medium. In this case, the wave propagation
velocities are specified as 𝑐

𝑠
= (𝜇/𝜌)

1/2 (shear wave) and
𝑐
𝑑
= ((𝜂 + 2𝜇)/𝜌)

1/2 (dilatational wave). The stress tensor
is denoted by 𝜎 and n is the normal vector, from domain 1
to domain 2. Equation (17a) states that the displacements are
continuous across the interface, whereas (17b) states that the
tractions are continuous across the interface if there are no
surface forces on it.

One main advantage of the discussed coupling algorithm
is that other iterative processes can be carried out in the same
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Figure 10: 3D plots of the sound field for frequencies of (a) 600Hz and (b) 1000Hz.
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Figure 11: (a) Sketch of the circular cavity; (b) FEM-BEM discretization; (c) BEM-BEM discretization.

iterative loop needed for the coupling.Thus, consideration of
coupled nonlinear models, as for example, may not demand
a superior amount of computational effort, which is very
beneficial.

In the present application, a nonlinear model is consid-
ered and elastoplastic analyses are carried out (for details
about elastoplastic analyses, one is referred to [33–35, 62–
64]). Moreover, two discretization approaches are employed
here, one taking into account FEM-BEM coupling proce-
dures, and another considering BEM-BEM coupled tech-
niques (for more details about these coupled models, one
is referred to [37, 43]). In this context, a nonlinear infinity
domain is analyzed here, in which a circular cavity is loaded.
The region expected to develop plastic strains is discretized by
the finite element method, in the case of the FEM-BEM cou-
pled analysis, or by the domain boundary element method
(D-BEM), in the case of the BEM-BEM coupled analysis.The
remainder of the infinity domain is discretized by the time-
domain boundary element method (TD-BEM). A sketch of
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results at point A.
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Figure 13: TD-BEM/FEM analyses: (a) number of iterations per time step considering optimal relaxation parameters; (b) optimal relaxation
parameters for each iterative step.

the model is depicted in Figure 11, as well as the adopted
discretizations. The FEM-BEM discretization is depicted
in Figure 11(b). In this case, 1944 linear triangular finite ele-
ments and 80 linear boundary elements are employed in the
coupled analysis. The BEM-BEM discretization is depicted
in Figure 11(c). In this case, 46 linear boundary elements
are employed in the BEM-BEM coupled analysis (20 linear
boundary elements for the TD-BEM and 26 linear boundary
elements for the D-BEM), as well as 270 linear triangular cells
(D-BEM formulation). In the BEM-BEM coupled analysis,
the double symmetry of the problem is taken into account.
An interesting feature of the boundary element formulation
is that symmetric bodies under symmetric loads can be
analysed without discretization of the symmetry axes. This
can be accomplished by an automatic condensation process,
which integrates over reflected elements and performs the
assemblage of the finalmatrices in reduced size [64].The time
discretization adopted is given byΔ𝑡 = 0.04 s for the FEMand
Δ𝑡 = 0.20 s for the D-BEM and the TD-BEM.

The physical properties of the model are 𝜇 = 2.652 ⋅

10
8N/m2, 𝜂 = 2.274 ⋅ 10

8N/m2, and 𝜌 = 1.804 ⋅ 10
3 kg/m3.

A perfectly plastic material obeying theMohr-Coulomb yield
criterion is assumed, where 𝑐

𝑜
= 4.8263⋅10

6N/m2 (cohesion)
and 𝜙 = 30

∘ (internal friction angle). The geometry of the
problem is defined by 𝑅 = 3.048m (the radius of the TD-
BEM circular mesh is given by 5𝑅).

In Figure 12, the displacement time history at point A is
depicted, considering linear and nonlinear analyses. As one
can notice, good agreement is observed between the FEM-
BEM and BEM-BEM results. It is important to highlight that,
for the FEM-BEM analyses, a difference of 5 times between
the FEM and BEM time steps is considered, illustrating the
effectiveness of the time interpolation/extrapolation proce-
dures adopted in the analyses.

The number of iterations per time step and the optimal
relaxation parameters, evaluated at each iterative step, are
depicted in Figure 13, taking into account the FEM-BEM
coupled analyses. As one may observe, basically the same

Table 2: Total number of iterations (considering all time steps) for
the dynamic model.

Relaxation parameter Elastic analysis Elastoplastic analysis
1.00 3730 3740
0.90 3392 3443
0.80 3973 3993
0.70 4772 4777
Optimal 3287 3346

computational effort (i.e., number of iterative steps) is nec-
essary for both linear and nonlinear analyses, highlighting
the efficiency of the proposed methodology for complex
phenomena modeling. It is also important to remark the
low number of iterative steps necessary for convergence,
with a maximum of 7 iterations being necessary, within a
time step, taking into account the entire linear and non-
linear analyses. For the focused configurations, the optimal
relaxation parameters are intricately distributed within the
interval (0.75; 1.00), as depicted in Figure 13(b).

In Table 2, the total number of iterations is presented,
considering analyses with optimal relaxation parameters and
with some constant preselected 𝜆 values. As onemay observe,
an inappropriate selection for the relaxation parameter can
considerably increase the associated computational effort.
Thus, the optimization technique is extremely important in
order to provide a robust and efficient iterative coupling
formulation. In Figure 14, the computed 𝜎

𝑥𝑦
stresses are

depicted, considering the BEM-BEM elastoplastic analysis.
An advantage of the D-BEM is that it employs nodal stress
equations [37], allowing computing continuous stress fields,
in counterpart to the FEM, which computes stresses based
on displacement derivatives, obtaining discontinuous stress
fields at element interfaces.

4.4. Coupled Acoustic-Mechanical Waves. In this case, differ-
ent wave equations, as indicated in Sections 4.2 and 4.3 (see
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(14) and (16)), describe different domains of the globalmodel.
The interface conditions for the acoustic-dynamic coupling
(3) can then be written as (in this subsection, frequency-
domain analyses are focused)

(n (𝑥) ⋅ 𝜎 (𝑥+, 𝜔)n (𝑥) − 𝑝 (𝑥−, 𝜔)) = 0, (18a)

(−𝜔
2n (𝑥) ⋅ u (𝑥+, 𝜔) − 𝜐(𝑥−)2𝑞 (𝑥−, 𝜔)) = 0, (18b)

where u is the displacement vector and 𝜎 is the stress tensor
of the dynamic model (domain 1). 𝑝 is the hydrodynamic
pressure and 𝑞 is the hydrodynamic flux of the acoustic
model (domain 2). n is the normal vector, from domain 1 to
domain 2. The acoustic wave propagation velocity is denoted
by 𝜐. Equation (18a) states that the normal components of
the dynamic tractions are equal to the acoustic pressures
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Figure 16: (a) Reference pressure result; absolute error considering (b) 20 and (c) 40 boundary nodes in the solid, along the solid-fluid
interface.

and (18b) relates the normal components of the dynamic
accelerations to the acoustic fluxes.

In the present application, a model in which a concrete
wall of 10.0 m high is coupled to a fluid waveguide, filled
with water, is analyzed. A sketch of the model is depicted in
Figure 15(a). For this case, a pressure source is positioned in
the waveguide, at (−10.0; 0.5), illuminating the system. The
concrete structure corresponds to a wall with variable cross-
section, exhibiting thicknesses of 4.0m at its basis and of
2.0m at its top.

To simulate this coupled system, several approaches
are employed. For the fluid medium, the MFS is used in
all cases, allowing the use of the Green’s function for a
waveguide (see [61] for details concerning this function).This
Green’s function is written as a summation of modes, and its
convergence is very difficult when the source and the receiver

are positioned along the same vertical line, thus posing severe
difficulties for its use together with a BEM formulation. The
structure is modelled using three different methods, namely,
the FEM, a local collocation method (CM) (see [65] for
details about this procedure), and a meshless local Petrov-
Galerking technique (MLPG) (see [65, 66] for details about
this procedure). Representations of the node distribution for
each one of the methods can be found in Figures 15(b)–15(d).

Since no analytical solution can be found in the literature
for the present case, a numerical solutionmaking use of a full
BEM model ensuring the correct coupling between the solid
and the fluid is used. For this case, the rigid bottom of the
waveguide is accounted for using an image-source Green’s
function, while the free surface is fully discretized up to a
distance of 60.0m from the concrete wall; after this, an ane-
choic termination is considered, imposing adequate Robin
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Figure 17: Number of iterations required for convergence: (a) MFS-FEM; (b) MFS-CM; (c) MFS-MLPG.

boundary conditions. For the solid, full-space Green’s
functions are adopted, and 60 nodal points are used along
the solid-fluid interface, ensuring that accurate results can be
obtained. A total of 796 boundary elements are used to build
this model. Details on the mathematical formulation of this
technique can be found in the works of Tadeu and Godinho
[7].

Figure 16(a) illustrates the reference response in terms
of real and imaginary components of the acoustic pressure
at a receiver located at (−1.0; 3.0), for frequencies between
1Hz and 150Hz. This position is chosen so that the effect
of the vibration of the concrete wall and thus of the solid-
fluid coupling can be evident in the responses. As can be
seen in the figure, two peaks with significant amplitude
can be observed, corresponding to vibration modes of the
wall coupled to the fluid; after these peaks, the response
exhibits a smoother form. Figures 16(b) and 16(c) illustrate

the absolute difference, to the reference solution, calculated
for the three different approaches, namely, theMFS-FEM, the
MFS-CM, and the MFS-MLPG. For the fluid, 10 nodes are
positioned along the interface, while for the solid, results are
presented for 20 (Figure 16(b)) and 40 nodes (Figure 16(c)).
When 20 nodes are used, the responses provided by the three
approaches are very similar, with the two meshless methods
exhibiting a lower error level at the lower frequencies, and
with a worse behaviour of the CM being observable in the
higher frequencies. Observing the figure, it is apparent that
the MLPG is providing a more accurate response throughout
the analysed frequency range, exhibiting a lower error than
the FEM even at high frequencies. When more nodes are
used (Figure 16(c)), the error levels provided by all methods
improve, although the MLPG still exhibits a better overall
behaviour than the remaining methods.
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Figure 18: Real ((a) and (b)) and imaginary ((c) and (d)) parts of the deformation of the solid structure (amplified) when the excitation
frequency is 125Hz. Results are shown for 20 ((a) and (c)) and 40 ((b) and (d)) boundary nodes in the solid, along the fluid-solid interface,
when using the FEM (×), CM (∘), and MLPG (∙).

It is important to notice that, although different error
levels are observed for each method, the iterative coupling
algorithm always quickly converges even for frequencies in
the vicinity of the response peaks referred to before. Figure 17
illustrates the number of iterations required for convergence,
for the three approaches, considering 40 nodes along the
interface to model the solid. Clearly, all three approaches
exhibit very similar curves, requiring similar numbers of
iterations for the iterative process to reach convergence at
each frequency. It is also very clear that, for this case, the

number of iterations is always small, slightly exceeding 20
iterations only at a few specific frequencies. For the remaining
frequencies, only about 10 to 15 iterations are necessary
to attain convergence. In the same figure, the number of
iterations required, when a fixed relaxation parameter is used
(i.e., 𝜆 = 0.5), is also depicted. Comparison between the
curves calculated with optimal and fixed parameters reveals
a striking difference, with the optimal parameter always lead-
ing to significantly less iterations and ensuring convergence
for all frequencies. When the relaxation parameter is fixed,
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Figure 19: Variation of the complex relaxation parameter throughout the iterative process: (a) MFS-FEM; (b) MFS-CM; (c) MFS-MLPG.

convergence cannot be reached at two sets of frequencies,
associated with specific dynamic behaviours of the system.
These results once again illustrate the importance of using
a well-chosen relaxation parameter to ensure that effective
analyses are obtained.

The set of plots shown in Figure 18 illustrates the defor-
mation of the structure at frequency 125Hz. In the plotted
results, a grey patch is used to identify the reference response,
while marks are used to depict the (amplified) deformed
shape of the structure when analysed by the three iteratively
coupled approaches. The left column reveals the response for
20 nodes positioned in the solid along the interface, whereas
the right column shows the equivalent result computed for
40 nodes. It can be observed that, for all approaches, the
response improves significantly when more nodes are used,
indicating that the convergent behaviour of the methods can
be observed. The computed responses reveal very similar
shape and displacement amplitudes when compared to the
reference solution, with the response provided by the MFS-
CM approach being somewhat worse than the remaining
two. In fact, the MFS-MLPG and the MFS-FEM exhibit very
similar behaviours, with lower discrepancies being registered
for the meshless method. Finally, Figure 19 illustrates the
variation of the complex relaxation parameter throughout the
iterative process, showing its real and imaginary components,
together with its absolute value. Those plots reveal a very
similar evolution of the parameter for all combinations of
methods; again, this indicates that the discussed iterative
procedure is quite independent of the discretizationmethods
involved in the analyses.

5. Conclusions

This paper presents an overview of the application of itera-
tive coupling strategies to the analysis of wave propagation
problems. Different methods were considered, including

mesh-based and meshless methods, ranging from the more
classic BEM and FEM to the less usual MLPG, collocation
methods, or MFS. Several examples of the iterative cou-
pling technique were presented in Section 4, including the
application of the scheme to electromagnetic, acoustic, elas-
tic/elastoplastic, and acoustic-elastic interaction problems.
The generality and flexibility of the iterative scheme allowed
an efficient analysis of these problems, either using time or
frequency domainmodels.Theuse of an optimized relaxation
parameter (which is the basis of this scheme) proved to
be quite important, clearly accelerating (or in some cases
ensuring) convergence; for all tested cases, this parameterwas
shown to unpredictably vary throughout the iterative process,
and thus its appropriate recalculation at each iterative step
becomes important.The illustrated analyses clearly indicated
that the strategy can be effectively used for different methods
and that the performance of the iterative technique is quite
insensitive to the discretization methods employed in the
analyses.

It should be highlighted that the coupling technique
presented here is based on previous experience and works of
the authors and, although the paper is focused in wave prop-
agation problems, the iterative strategy presently discussed
can be regarded as a quite generic framework to perform
the coupling between different methods in many types of
applications.
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An experimental study on the vibration control of a single-degree-of-freedom model is carried out to verify market-based control
(MBC) strategy effect. Results show that the MBC strategy can reduce both displacement and acceleration responses. Additionally,
the MBC strategy is applied to a long-span bridge considering the travelling wave effect. Numerical simulations indicate that the
displacement and acceleration responses of the long-span bridge with the travelling wave effect are smaller than those without, and
the larger the velocity of travelling wave is, the better the control effect of MBC is. Based on the MBC theory and multimarket-
based control (MMBC) presented here it is further applied to a large-space structure considering multiple dimensional features of
structuralmodel and groundmotions. It is concluded that theMMBC strategy reduces the displacement response of the large-space
structure, especially on vertical displacements, but has limited control effects on accelerations.

1. Introduction

The concept of structural control in civil engineering was first
proposed in 1970s [1]. Since then, this technology has been
developed greatly. According to the energy source (external
or internal), structural control systems can be classified
as passive, active, semiactive, or mixed control strategies.
For active and semiactive control techniques, the control
force is often determined by the control laws. Some typical
control laws, that is, linear quadratic regulator (LQR), modal
control, smart control, H

2
and H∞, and so forth, have

become hot research topics rapidly in recent years [2–5] For
general structures, these control laws usually use a central
computer responsible for the control of the entire system, but
they exhibit limitation for large complex structures due to
numerous degrees of freedom of the large complex structure.
The market-based control (MBC) as a special control theory
introduces the price mechanism of free market economy into
the field of structural control in civil engineering. The MBC
is developed based on an analogy between the relations of

control force-energy sources and those of supply-demand in
the market economy. The optimal problem of control force
from actuator is transformed to that of allocation resources
in the market.

TheMBC concept was proposed by Clearwater [6]. It was
applied to solve the optimal decentralized control problem
of complex dynamic systems, allocate and coordinate the
actions of different mechatronic systems, and develop a
multi-agent system for realizing the traffic intelligent con-
trol [7–9]. In addition, some prior research works about
MBC used in various fields were carried out, such as the
telecommunication, mechanism, and mission plan [10–12].
Application of the MBC in civil engineering to reduce the
structural response under environmental loads has been
carried out after the twenty first century [13–17].

However, previous researches mainly focused on ordi-
nary structures, and few emphasized on applications of MBC
in long-span and large-space structures. There are still exist-
ing problems in applications for these kinds of structures,
such as travelling wave effect and multiple dimensions of
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ground motion. The structural control technology in long-
span structure have drawn many researchers’ attention [18–
21]. Because an earthquake excitation consists of superposi-
tion of a large number of waves carrying different charac-
teristics, the different positions along a long-span structure
are generally with different motions. Bridges as typical long-
span structures; their control techniques considering multi-
support and travelling seismic wave effects have been carried
out by various researchers [22, 23]. These research results
showed that control effect had an obvious distinction between
uniform ground motion and differential ground motions.
Large-space structures generally have thousands of degrees
of freedoms and outstanding spatial characteristics; hence,
multiple dimensional features, such as the spatial model
and inputted ground motions, should be taken into account
together. Additionally, theoretical researches have verified
that theMBC is an effective control strategy, but experiments
with the approach formodel or actual structure have not been
reported till now. Based on the above reason, a model test
is carried out to validate the effectiveness of MBC in this
paper, and the MBC strategy is applied to a long-span bridge
considering the travelling wave effect and to a large-space
structure considering multiple dimensional ground motion
inputs, respectively.

2. Fundamental and Experiment

2.1. Basic Theory. The main objective of this study is to
solve problems in structural control by the usage of MBC.
In the MBC, power sources and controlled devices in a
control system are abstracted to sellers and buyers in a free
market. The relationship between the energy demand and
supply in a control system corresponds to the supply-demand
relation in the free market. The supply-demand relation is
influenced by the equilibrium price, and the equilibrium
price is certainly affected by the supply-demand relation
in return. Take a virtual free market and single-degree-of-
freedom system as an illustration to show the application of
the MBC in structural control area.

The governing equation of motion for a SDOF system
with controller can be expressed as

𝑚 ̈𝑥 (𝑡) + 𝑐 ̇𝑥(𝑡) + 𝑘𝑥 (𝑡) = −𝐹 (𝑡) + 𝑈 (𝑡) , (1)

where 𝑥(𝑡), ̇𝑥(𝑡), and ̈𝑥(𝑡) represent the displacement, veloc-
ity, and acceleration of the SDOF system, respectively; 𝑚 and
𝑘 are the systemmass and stiffness, respectively; 𝑐 denotes the
viscous damping coefficient;𝑈(𝑡) is the controlling force from
the actuator; 𝐹(𝑡) is the environmental load.

The demand function 𝐽
𝐷
is determined by its energy con-

sumption 𝑄
𝐷
, energy price 𝑝, and responses of the dynamic

system 𝑌(𝑡); the sellers’ supply function 𝐽
𝑆
is determined by

its own original energy 𝑄
𝑆
and energy price 𝑝. Buyers and

sellers both pursue their maximum interests at any time.This
process has to be restricted by commodity quantities 𝑄max
and virtual wealth𝑊max. The relation is shown as follows:

max 𝐽
𝑆
(𝑄
𝑆
, 𝑝) 𝑄

𝑆
≤ 𝑄max,

max 𝐽
𝐷
(𝑄
𝐷1
, 𝑝, 𝑌 (𝑡)) 𝑝 ⋅ 𝑄

𝐷
≤ 𝑊max.

(2)

In the free market, there is a general equilibrium rule
between the supply and demand. The rule can be expressed
as

𝑄
𝑆
= 𝑄
𝐷
. (3)

Actually, the supply-demand relation is a core of the
overall MBC theory. There have been several mathematical
models reflecting the supply-demand relation by now, such
as linear-supply and linear-demandmodel [14], linear-supply
and power-demand model [16], advanced linear-supply and
power-demand model, and linear-supply and exponential-
demand model [16]. Detailed introductions of these supply-
demandmodels can be found in corresponding references. A
simple relation of the supply function and price, linearmodel,
is used here as

𝑄
𝑆
= 𝜂 ⋅ 𝑝 (𝑡) . (4)

And the advanced linear-supply and power-demand model
(ALPM) demand function is chosen to depict the relation of
the demand and price as

𝑄
𝐷
=
𝑊(𝑡)

󵄨󵄨󵄨󵄨𝛼𝑥 (𝑡) + 𝛽 ̇𝑥(𝑡)
󵄨󵄨󵄨󵄨

𝑝 (𝑡)
, (5)

where 𝜂 is the parameter that reflects the energy supply, 𝑥
and ̇𝑥 are the story-displacement and story-velocity of the
structural system and 𝛼 and 𝛽 are the weighting coefficients.

Substituting (4) and (5) into (3), an equilibrium price is
obtained through solving (3) at any time step. The distribu-
tion of scarce resources reaches maximized benefits under
the equilibrium price. The solution of (3) is called the Pareto
optimal solution in economics [13]. Then, the control force is
written as

𝑈 (𝑡) = −𝐾 ⋅
𝑊 (𝑡) ⋅ (𝛼𝑥 (𝑡) + 𝛽 ̇𝑥(𝑡))

𝑝 (𝑡)
, (6)

where𝐾 is the gain coefficient related to the actuator.
Substitute (6) into (1); the MBC is implemented in the

structural vibration control.

2.2. Experiment. A single-degree-of-freedom of structural
model is made of steel and organic glass plates. The organic
glass plate is chosen to model the floor of structure, and
steel plates are as structural elements for resisting lateral
force. Two piezoelectric ceramic thin plates are affixed on
the surface of steel plates, one of which named the PZT-1
is an exciting device at the beginning of experiment, and it
becomes an actuator to control the structural response after
the excitation and another of which named the PZT-2 is a
collecting sensor for the structural response. The structural
model and piezoelectric ceramic thin plates are shown in
Figure 1 and their parameters are listed in Tables 1 and 2.

The model vibrates under the excitation by the PZT-1 at
the beginning and the vibration makes the PZT-2 deformed
and results in electric signals change. The response of struc-
tural model is obtained from collecting and processing the
electric signals. The PZT-1 is an actuator during structural
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Table 1: Parameters of the structural model.

Component Mass (kg) Size (mm) Elastic modulus (Pa) Number
Organic glass 0.496 350 × 120 × 10 — 2
Steel 0.471 500 × 120 × 1 2.06 × 10

11 2

Table 2: Parameters of the piezoelectric.

Piezoelectric ceramic Size (mm) Relative freedom dielectric constant Piezoelectric constant (10−12C/N)
𝜀Tr3 𝜀Tr1 𝐷

31
𝐷
33

𝐷
15

PZT-1 30 × 40 × 0.4 1400 1550 160 350 500
PZT-2 15 × 15 × 0.4

(a) Model

(b) PZT-1

(c) PZT-2

Figure 1: Structural model in test.

model vibration. The value of control force from the PZT-
1 is calculated by the MBC strategy based on the structural
response status from the PZT-2.The whole control process is
shown in Figure 2.

Experimental devices include a PC with the MBC strat-
egy, input and out control board, and piezoelectric driving
device. All these devices are shown in Figures 3, 4, and 5.

The natural vibration frequency of model is 18.1 Hz
through the swept-frequency method. When the frequency
of the environmental load equals natural frequency of the
model, the vibration response of the structural model reaches
maximum value. Thereby, the exciting load is defined as

𝑃 (𝑡) = sin (18.1𝑡) . (7)

Figures 6 and 7 show proportional acceleration and
displacement responses of the structural model, respectively.
The proportional acceleration is a signal measured directly
from the PZT-2. It can be transferred to an absolute accel-
eration through multipling a parameter related to the piezo-
electric. In this study, the main objective of this experiment
is focused on comparing the effectiveness of the MBC.
Therefore, the proportional response is used here directly.
It can be seen that the response of model controlled by the
MBC has an obvious reduction than that of model with free
vibration (FRE).

Figure 8 shows the relation of theoretical control force
and time, which is equal to the ratio of actual force to gain
coefficient. Figure 9 illustrates that the price has the same

Electrical signal-1

Electrical signal-2

MBC strategy

PZT-1 (as actuator)

Structural vibration

PZT-2

PZT-1
(as exciter)

Figure 2: Experimental program.

Figure 3: Computer of control system.

changing trend as the theoretical control force in time history.
The change regularity of price in themarket is consistent with
that of control force from actuator illustrated efficiency of the
MBC algorithm.

3. Application of the MBC in
Long-Span Bridges

3.1. Governing Equation considering theMultiple Support. The
equation of motion for the bridge considering multi-support
is written as

[
Mss Msb
Mbs Mbb

]{
Ẍs
Ẍb
}+[

Css Csb
Cbs Cbb

]{
Ẋs
Ẋb
}

+[
Kss Ksb
Kbs Kbb

]{
Xs
Xb
}+{

Us
Ub
}={

Ps
Pb
} ,

(8)
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Figure 4: I/O interface board.

Figure 5: Piezoelectric driving power.
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Figure 6: Acceleration time-history response curve.
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Figure 7: Displacement time-history response curve.
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Figure 8: Control force time-history response curve.
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where M, C, and K are the mass, damping, and stiffness
matrices, respectively; U and P are the control force vectors
from actuator and environmental force; Ẍ, Ẋ, and X are
the absolute acceleration, velocity, and displacement response
vectors, respectively. Subscripts s andb stand for the structure
and the support. Equation (8) can be rearranged as

MssẌs +CssẊs +KssXs =Ps−Us−MsbẌb −CsbẊb −KsbXb.

(9)

The displacement Xs is expressed by

Xs = Xds + Xss, (10)

whereXds andXss are the dynamic response and the pseudo-
static response. Additionally, for the pseudostatic response of
the structure, there is the following relation:

Xss = −KssKsbXb = −RXb, (11)

where R=−Kss
−1Ksb. Substituting (10) and (11) to (9), there

is

MssẌds +CssẊds +KssXds

=Ps−Us− (MssR+Msb) Ẍb− (CssR+Csb) Ẋb.
(12)

The damping item (CssR+Csb)Ẋb has little influence on
structural responses and can be neglected. Equation (12) is
then simplified to

MssẌds +CssẊds +KssXds =Ps −Us− (MssRs+Msb) Ẍb.

(13)
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1 2 3 4 5

I II III IV
65 m 160 m

20
 m

40
 m

210 m 160 m 65 m

Figure 10: Schematic diagram of the long-span bridge.

1 6 16 23 30 40 45

Figure 11: Finite element model of bridge.

Table 3: Parameters of MRD.

𝐷 (mm) 𝐿 (mm) 𝑑 (mm) ℎ (mm) 𝛾 (Pa⋅s) 𝜏max (Pa)
250 500 100 2 1 50

3.2. Supply-Demand Relation Model. In this section, linear-
supply and exponentmodel [16] was used as control function.

The supply function is written as

𝑄
𝑆,𝑖
= 𝜂
𝑖
⋅ 𝑝. (14)

The demand function is expressed by

𝑄
𝐷,𝑖

= 𝑊
𝑖

󵄨󵄨󵄨󵄨𝛼𝑖 𝑥𝑑,𝑖 + 𝛽𝑖 ̇𝑥𝑑,𝑖
󵄨󵄨󵄨󵄨 ⋅ 𝑒
−𝑐𝑝
, (15)

where 𝜂
𝑖
is the parameter that reflects the energy supply

of 𝑖th actuator, ̇𝑥 and ̈𝑥 are the relative displacement and
velocity at ends of the 𝑖th actuator, 𝛼

𝑖
and 𝛽

𝑖
are the weighting

coefficients,𝑊
𝑖
is the initial wealth of the 𝑖th buyer, and 𝑝

𝑗
is

the equivalent price of the 𝑖th actuator.
The equilibrium price 𝑝 is solved through defining (14)

and (15) equal. Then, control force of the 𝑖th actuator is
expressed based on the price as follows:

𝑈
𝑖
= 𝜂
𝑖
⋅ 𝑝. (16)

3.3. Numerical Example. A long-span bridge shown in
Figure 10 has 660 meters length. Bidirectional sliding bear-
ings are set on the abutments and continuous piers. In order
to analyze the control effect of the long-span bridge under
the earthquake using the MBC strategy, The Taft earthquake
record (July 21, 1951, the acceleration peak value is adjusted to
400 gal) is selected as an environmental load.

Planar beam elements are used to simulate piers and
beams of the bridge. The long-span bridge is modeled
with 70 finite elements and 197 freedoms. Figure 11 shows
finite element divisions and some typical nodes numbers for
convenient expression.

32 Magnetorheological dampers (MRDs) are installed
on the abutments, I and IV piers. The modified boundary
Hrovat algorithm [21] is used here for numerical simula-
tions. The maximum force from a MRD is 2000 kN. Table 3
shows parameters of these MRDs, where 𝐷 is the cylinder
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Figure 12: Displacement and price time history of no. 6 node.

diameter, 𝐿 is the effective length of the piston, 𝑑 is the
diameter of the piston, ℎ is the gap spacing, 𝛾 is the apparent
viscosity of the liquid, and 𝜏max is the maximum yield stress
of the liquid.

The traveling wave speed as the known parameter is given
during the dynamical time history analysis of the long-span
bridge consideringmultiple supports. In order to find the rule
of the response influenced by traveling wave, the velocities of
traveling wave V

𝑎
are set at 400ms−1, 1000ms−1, 3000ms−1,

and infinity.
Figure 12 shows the price and displacement time history

of the no. 6 node with the travelling wave speed at 3000ms−1.
It can be seen from these figures that (a) the MBC strategy
reduces displacement responses; (b) the displacement chang-
ing trend is consistent with the price response in whole time
phase. The phenomena of the energy demand increasing by
the displacement and velocity are also inflected from (4).
It also means that the energy supply also increases by the
displacement because of energy demand equaling to energy
supply. In addition, it can be drawn from (6) that energy
supply is proportional to the equivalent price. Therefore,
both the displacement and equivalent price have the same
changing trend.

Figures 13 and 14 indicate that forces of MRDs are
dependent on not only the displacement but also velocity.
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In order to validate the effectiveness of the MBC with
various travelling wave speed, the reduction rate is defined
as

𝛾 =
𝑥
0
− 𝑥

𝑥
0

× 100%, (17)

where 𝑥
0
and 𝑥 are responses of the bridge without and with

actuators, respectively.
Figures 15 and 16 illustrate maximum displacement and

acceleration comparisons of typical nodes with various trav-
eling wave speeds. It is found that there are significantly
differences of the responses of bridge among these travelling
wave speeds. For the bridgewithout control, the displacement
and acceleration responses at these nodes grow with the
increase of travelling waves speeds. The greater the travelling
wave speed is, the larger the reduction rate becomes. There-
fore, effectiveness of the structural control using the MBC
without considering the travelling wave effect is superior to
that with consideration.

4. Application of the MBC in
Large Space Structures

4.1. Basic Theory. A free market, which is a large unity,
usually consists of many submarkets. The equilibrium price
of commodity in each submarket is formed depending on its
own supply-demand relation. However, the price tendency
of each submarket is toward the whole equilibrium price.
Thus, the price of wholemarket is a dynamic “cobweb”model,
and price of each submarket has more or less influence
on the price of the whole market. This theory based on
multiple submarkets is called the multiple market-based
control (MMBC). The advantage of MMBC can realize
the decentralized vibration control in the structural control
area through the similarity between the submarket and
substructure. In each substructure, the controlling force only
depends on its own supply-demand relation. Only the supply
and demand functions for the MMBC are introduced here,
because the framework of MMBC is similar to that of the
MBC.

The supply function of the 𝑘th seller in the 𝑗th submarket
is expressed by

𝑄
𝑆,𝑘,𝑗

= 𝜂
𝑘,𝑗
𝑝
𝑗
. (18)

The demand function of the 𝑖th buyer in the 𝑗th submar-
ket can be written as

𝑄
𝐷,𝑖,𝑗

=

𝑊
𝑖,𝑗
𝑐
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖,𝑗
𝑥
𝑑,𝑖,𝑗

+ 𝛽
𝑖,𝑗

̇𝑥
𝑑,𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

, (19)

where 𝑥
𝑑,𝑖,𝑗

and ̇𝑥
𝑑,𝑖,𝑗

are relative displacement and velocity
of the 𝑖th seller in the 𝑗th substructure, respectively;𝑊

𝑖,𝑗
, 𝑐
𝑗
,

𝛼
𝑖,𝑗
, and 𝛽

𝑖,𝑗
are the initial wealth, demand coefficient, and

weighting coefficients of the 𝑖th buyer in the 𝑗th submarket;
𝑝
𝑗
is the price in the 𝑗th submarket; 𝜂

𝑘,𝑗
is the parameter that

reflects the 𝑘th seller in the 𝑗th submarket.
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Figure 14: Control force versus velocity.

Then, supply-demand relationship of whole market can
be written as

𝑤

∑

𝑗=1

𝑟

∑

𝑖=1

𝑄
𝐷,𝑖,𝑗

=

𝑤

∑

𝑗=1

𝑛

∑

𝑘=1

𝑄
𝑆,𝑘,𝑗

, (20)

where 𝑟 is the number of the actuators, 𝑛 is the number of
energy demand sources, and 𝑤 is the number of submarkets.
The equilibrium price 𝑝

𝑗
is solved from (20) through itera-

tions. The controlling force 𝑈
𝑖
is proportional to the energy
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Figure 15: Displacement response with and without control at various velocities of travelling waves.

supply at the price 𝑝
𝑗
. The force from actuator can be drawn

as

𝑈
𝑖
= −𝐾
𝑖,𝑗

𝑊
𝑖,𝑗
𝑐
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖,𝑗
𝑥
𝑑,𝑖,𝑗

+ 𝛽
𝑖,𝑗

̇𝑥
𝑑,𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

, (21)

where𝐾
𝑖,𝑗
means the gain coefficient of controlling force from

the 𝑖th actuator of 𝑗th substructure. Substituting (21) into
the structure dynamic equation, application of the MMBC to
structure may be realized.

4.2. Numerical Example. A reticulated shell structure (RSS)
with 40m span, 8m high and 5 span-height ratio is shown in
Figure 17. It has four support positions at node Number 127,
140, 151, and 163. The RSS consists of two kinds of circular
4mm thick steel tubes: one is 133mm in diameter; another
is 140mm in diameter. The first one is used for string bar
elements of RSS and the second is adopted for support bars.
In order to validate the effectiveness of MMBC for the large-
space structure in three dimensions, a 3-dimensional finite

element model is established and the El Centro earthquake
record (NS, May 18, 1940, the acceleration peak value is
adjusted to 400 gal) is inputted in the RSS along 𝑋, 𝑌, and 𝑍
directions. The MRDs are installed at node Number 133, 145,
157, and 169 shown in Figure 17. There are three MRDs, each
is aligned with𝑋, 𝑌, and 𝑍 directions at each nodal position.
The RSS is distributed into three substructures named as
the substructure-X, substructure-Y, and substructure-Z for the
MMBC strategy application.

Figures 18 and 19 illustrate displacement and acceleration
time history responses of the RSS with and without control.
Tables 4 and 5 show the maximum response and reduction
rate of typical nodes. It is obviously found from the above
figures and tables that the displacement response can be
controlled effectively, especially on the displacement in 𝑍

direction. However, the effectiveness of the acceleration
controlling is limited. The reason is that the deformation
of the RSS in 𝑍 direction is larger than that in 𝑋 and 𝑌

directions, and the acceleration response is not sensitive to
such flexible RSS.
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Figure 16: Acceleration response with and without control at various velocities of travelling waves.

Table 4: Maximum displacement response and reduction of typical nodes.

Nodes Displacement (mm) Reduction 𝛾
𝑑
(%)

𝑋 𝑌 𝑍 𝑋 𝑌 𝑍

1 2.16/1.88 1.53/1.28 5.50/3.72 12.9 15.9 32.3
9 2.14/1.86 1.41/1.19 5.94/4.15 12.9 15.8 30.1
25 2.01/1.77 1.22/1.04 7.68/5.91 12.1 15.2 23.1
27 2.03/1.86 1.45/1.19 5.67/4.42 8.8 18.3 22.1
52 2.98/2.36 2.26/1.84 4.26/3.67 20.9 18.5 13.9
85 4.39/3.74 4.95/3.71 7.59/7.11 14.8 25.1 6.4
127 6.61/6.07 6.36/5.96 10.3/9.53 8.2 6.4 7.7

Figures 20 and 21 show the price and control force time
history of three various substructures. Since the price 𝑝 is
a function of supply-demand model and responses of the
RSS, it varies from different submarkets. In addition, the
same regularity and changing trend between displacement
and price in each substructure also is observed from these
figures.

5. Concluding Remarks

In this paper, a vibration control experiment is carried out
to validate the MBC effectiveness. The MBC is then applied
to a long-span bridge considering the travelling wave effect.
On the basis of MBC theory, the MMBC is presented here
and applied to a large-space structure, taking into account
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Figure 18: Displacement time history.

Table 5: Maximum acceleration response and reduction of typical nodes.

Nodes Displacement (ms−2) Reduction 𝛾
𝑎
(%)

𝑋 𝑌 𝑍 𝑋 𝑌 𝑍

1 4.95/4.90 5.19/5.21 4.56/4.38 0.9 −0.3 3.9
9 4.99/4.30 5.23/5.26 5.09/4.89 1.1 −0.4 3.8
25 5.11/5.06 5.17/5.18 5.95/5.71 1.1 −0.3 4.0
27 5.29/5.23 5.09/5.11 5.03/4.84 1.0 −0.2 3.6
52 5.46/5.46 4.95/4.90 5.65/5.56 0.0 0.9 1.5
85 5.26/5.20 4.92/4.97 9.42/6.97 1.2 −1.1 4.8
127 6.31/5.86 7.08/6.61 10.2/9.32 7.1 6.6 8.3
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Figure 19: Acceleration time history.
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Figure 20: Price time history of substructure.

the multiple dimensions of ground motions. The following
conclusions are drawn in this study.

(1) The experiment validates that the MBC is an effective
control strategy offering significant controlling force
and value to be applied in actual structures.

(2) The travelling wave effect has a distinct influence on
responses of the long-span bridge. The MBC strategy
can reduce displacement and acceleration responses
of the bridge both with and without the travelling
wave effects. The greater the velocity of travelling
wave of ground motion is, the larger the response of

bridge is and the better the control effect is.Therefore,
it is necessary to take the travelling wave effect into
consideration during the analysis of vibration control
of long-span structure using the MBC.

(3) As the large-space structure is commonly flexible,
especially in the vertical direction, the multiple
dimensional responses and control effect of this kind
of structure have to be considered. Numerical results
have indicated that the displacement response of the
large-space structure in the vertical direction are
usually larger than those in horizontal directions, and
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Figure 21: Control force time history of substructures.

the MMBC has better control effect on the displace-
ment response than the acceleration response.
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A quartic B-spline method is proposed for solving the linear sixth order boundary value problems. The method converts the
boundary problem to solve a system of linear equations and obtains coefficients of the corresponding B-spline functions. The
method has the convergence of two order. It develops not only the quartic spline approximate solution but also the higher
order approximate derivatives. Two numerical examples are presented to verify the theoretical analysis and show the validity and
applicability of the method. Compared with other existing recent methods, the quartic B-spline method is a more efficient and
effective tool.

1. Introduction

In the paper, we consider the linear sixth order boundary
value problems (6BVP) of the form:

𝑦
(6)

(𝑥) + 𝑓 (𝑥) 𝑦 (𝑥) = 𝑔 (𝑥) , (1)

subject to the conditions

𝑦 (𝑎) = 𝐴
0
, 𝑦

󸀠
(𝑎) = 𝐴

1
, 𝑦

󸀠󸀠
(𝑎) = 𝐴

2
,

𝑦 (𝑏) = 𝐵
0
, 𝑦

󸀠
(𝑏) = 𝐵

1
, 𝑦

󸀠󸀠
(𝑏) = 𝐵

2
,

(2)

where 𝑓(𝑥) and 𝑔(𝑥) are continuous functions on [𝑎, 𝑏],
and[? ] 𝐴

𝑖
(𝑖 = 0, 1, 2) and 𝐵

𝑖
(𝑖 = 0, 1, 2) are given finite

real constants. Many mathematical models arising in various
applications can be written as boundary value problems.
One such problem is the sixth boundary value problem
which plays an important role in astrophysics and the narrow
convecting layers bounded by stable layers [1–4]. Further
discussion of sixth order boundary value problems is given
in [5, 6] and in a book by Chandrasekhar [7]. Theorems
that list conditions for the existence and uniqueness of
solution of such type of boundary value problems can be
found in the book written by Agarwal [8]. However, it is

difficult to obtain the analytic solutions of (1)-(2). Therefore,
the availability of numerical method for this problem is of
practical importance.

Over the years, there are several authors who worked
on this type of boundary value problems by using different
methods. For example, finite difference method was devel-
oped by Boutayeb and Twizell [2, 3, 9]. A modified form of
the decomposition method was established by Wazwaz [10]
and used to solve such BVPs [11]. Sinc-Galerkin method,
variational iteration method, and homotopy perturbation
method were developed to study the same problem [12–14].
Spline functions have been also used to construct efficient
and accurate numerical methods for solving boundary value
problems. For example, Siddiqi and Akram solved the same
boundary value problems by using different splines such as
quintic splines, septic splines, and nonpolynomial splines
[15–17]. Loghmani and Viswanadham used sixth and septic
B-spline functions to solve sixth order boundary value prob-
lems [18, 19]. Instead of the above two ways, other differential
spline collocation methods can also be used [20–22].

It is well known that the quartic B-spline has been widely
applied for the approximation solution of boundary value
problems. Caglar used quartic B-spline to solve the linear
cubic order boundary value problem [23]. Besides, quartic
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B-spline was also used to solve fifth order boundary value
problems and the obstacle problems [24, 25]. Our method
is based on quartic B-spline interpolation. It is second order
convergent and with lower computational cost. Moreover, we
also can get the approximate derivative values of 𝑦(𝑘)(𝑥) (𝑘 =

1, 2, 3, 4, 5) at the knots. This is another advantage of our
method, since some methods cannot obtain those results.

This paper is arranged as follows. In Section 2, the
definition of quintic B-splines has been described and some
preliminary results of quartic B-spline interpolation have
been presented. In Section 3, we mainly give the quartic B-
spline solution of linear sixth-order boundary value problems
based on the results. In Section 4, the convergence of the
method has been demonstrated. In Section 5, numerical
examples of linear boundary value problems are presented,
which illustrate the performance of this method.

2. Quartic B-Spline

2.1. Definition of Quartic B-Spline. For an interval [𝑎, 𝑏] ⊂ 𝑅,
we introduce a set of equally spaced knots of partition Ω =

{𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
}, and we assume that 𝑛 ≥ 5, 𝑥

𝑖
= 𝑎 + 𝑖ℎ (𝑖 =

0, 1, . . . , 𝑛), 𝑥
0
= 𝑎, 𝑥

𝑛
= 𝑏.

Let 𝑆
4
[𝜋] be the space of continuously differentiable,

piecewise, quartic-degree polynomials on 𝜋. Consider the
B-splines basis in 𝑆

4
[𝜋]. A detailed description of B-spline

functions generated by subdivision can be founded in [26].
The zero degree B-spline is defined as

𝑁
𝑖,0 (𝑥) = {

1, 𝑥 ∈ [𝑥
𝑖
, 𝑥
𝑖+1

] ,

0, otherwise,
(3)

and for positive constant 𝑝, it is defined in the following
recursive form:

𝑁
𝑖,𝑝 (𝑥) =

𝑥 − 𝑥
𝑖

𝑥
𝑖+𝑝

− 𝑥
𝑖

𝑁
𝑖,𝑝−1 (𝑥) +

𝑥
𝑖+𝑝+1

− 𝑥

𝑥
𝑖+𝑝+1

− 𝑥
𝑖+1

𝑁
𝑖+1,𝑝−1

,

𝑝 ≥ 2.

(4)

We apply this recursion to get the quartic B-spline
𝑁
𝑖,4
(𝑥) (𝑖 = −2, −1, . . . , 𝑛+1); it is defined in 𝑆

4
[𝜋] as follows:

𝑁
𝑖,4 (𝑥)

=
1

24ℎ4

{{{{{{{{{{{{

{{{{{{{{{{{{

{

(𝑥 − 𝑥
𝑖−2

)
4
, 𝑥 ∈ [𝑥

𝑖−2
, 𝑥
𝑖−1

] ,

(𝑥 − 𝑥
𝑖−2

)
4
− 5 (𝑥 − 𝑥

4

𝑖−1
) , 𝑥 ∈ [𝑥

𝑖−1
, 𝑥
𝑖
] ,

(𝑥 − 𝑥
𝑖−2

)
4
− 5(𝑥 − 𝑥

𝑖−1
)
4

+10(𝑥 − 𝑥
𝑖
)
4
, 𝑥 ∈ [𝑥

𝑖
, 𝑥
𝑖+1

] ,

(𝑥 − 𝑥
𝑖+3

)
4
− 5(𝑥 − 𝑥

𝑖+2
)
4
, 𝑥 ∈ [𝑥

𝑖+1
, 𝑥
𝑖+2

] ,

(𝑥 − 𝑥
𝑖+3

)
4
, 𝑥 ∈ [𝑥

𝑖+2
, 𝑥
𝑖+3

] ,

0, otherwise.
(5)

The properties of quartic B-spline functions:
(1) compact supported:

𝑁
𝑖,4 (𝑥) = {

≥ 0, 𝑥 ∈ [𝑥
𝑖−2

, 𝑥
𝑖+3

] ,

= 0, otherwise.
(6)

Table 1: The values of𝑁(𝑘)
𝑖,4

(𝑥) at the knots.

𝑥
𝑖−1

𝑥
𝑖

𝑥
𝑖+1

𝑥
𝑖+2

Otherwise
𝑁
𝑖,4
(𝑥) 1/24 11/24 11/24 1/24 0

𝑁
󸀠

𝑖,4
(𝑥) 1/6ℎ 3/6ℎ −3/6ℎ −1/6ℎ 0

𝑁
󸀠󸀠

𝑖,4
(𝑥) 1/2ℎ

2
−1/2ℎ

2
−1/2ℎ

2
1/2ℎ
2 0

𝑁
󸀠󸀠󸀠

𝑖,4
(𝑥) 1/ℎ

3
−3/ℎ
3

3/ℎ
3

−1/ℎ
3 0

(2) Normalization:∑𝑛+1
𝑖=−2

𝑁
𝑖,4
(𝑥) = 1.

(3) Translation invariance:𝑁
𝑖,4
(𝑥) = 𝑁

0,4
(𝑥−(𝑖−1)ℎ) (𝑖 =

−2, −1, . . . , 𝑛 + 1).
(4) Derivation formula: 𝑁

(𝑘)

𝑖,4
(𝑥) = (4!/(4 −

𝑘)!) ∑
𝑛

𝑗=1
𝛼
𝑘,𝑗
𝑁
𝑖+𝑗,4−𝑘

, where

𝛼
0,0

= 1,

𝛼
𝑘,0

=
𝛼
𝑘−1,0

𝑥
𝑖+3−𝑘

− 𝑥
𝑖

,

𝛼
𝑘,𝑘

=
−𝛼
𝑘−1,𝑘−1

𝑥
𝑖+5

− 𝑥
𝑖+𝑘

,

𝛼
𝑘,𝑗

=
𝛼
𝑘−𝑗,𝑗

− 𝛼
𝑘−1,𝑗−1

𝑥
𝑖+𝑗+5−𝑘

− 𝑥
𝑖+𝑗

.

(7)

By some trivial computations, we can obtain the value of
𝑁
(𝑘)

𝑖,4
(𝑥) (𝑖 = −2, −1, . . . , 𝑛 + 1, 𝑘 = 0, 1, 2, 3) at the knots,

which are listed in Table 1.

2.2. Quartic B-Spline Interpolation. For a given function
𝑦(𝑥) (assuming to be sufficiently smooth), there exists a
unique quartic B-spline 𝑠(𝑥) = ∑

𝑖=𝑛+1

𝑖=−2
𝑐
𝑖
𝑁
𝑖,4
(𝑥) satisfying the

interpolation conditions

𝑠 (𝑥
𝑖
) = 𝑦 (𝑥

𝑖
) , (𝑖 = 0, 1, . . . , 𝑛) ,

𝑠
󸀠
(𝑎) = 𝑦

󸀠
(𝑎) , 𝑠

󸀠󸀠
(𝑎) = 𝑦

󸀠󸀠
(𝑎) ,

𝑠
󸀠
(𝑏) = 𝑦

󸀠
(𝑏) , 𝑠

󸀠󸀠
(𝑏) = 𝑦

󸀠󸀠
(𝑏) .

(8)

For 𝑗 = 0, 1, . . . , 𝑛, let 𝑦
𝑗

= 𝑠(𝑥
𝑗
) = 𝑦(𝑥

𝑗
), 𝑃
𝑗

= 𝑠
󸀠
(𝑥
𝑗
),

𝑄
𝑗
= 𝑠
󸀠󸀠
(𝑥
𝑗
), and 𝑅

𝑗
= 𝑠
(3)

(𝑥
𝑗
) for short. Through a simple

calculation by Table 1, we have

𝑦
𝑗
=

𝑛+1

∑

𝑖=−2

𝑐
𝑖
𝑁
𝑖,4

(𝑥
𝑗
) =

1

24
(𝑐
𝑗−2

+ 11𝑐
𝑗−1

+ 11𝑐
𝑗
+ 𝑐
𝑗+1

) , (9)

𝑃
𝑗
=

𝑛+1

∑

𝑖=−2

𝑐
𝑖
𝑁
󸀠

𝑖,4
(𝑥
𝑗
) =

1

6ℎ
(−𝑐
𝑗−2

− 3𝑐
𝑗−1

+ 3𝑐
𝑗
+ 𝑐
𝑗+1

) , (10)

𝑄
𝑗
=

𝑛+1

∑

𝑖=−2

𝑐
𝑖
𝑁
󸀠󸀠

𝑖,4
(𝑥
𝑗
) =

1

2ℎ2
(𝑐
𝑗−2

− 𝑐
𝑗−1

− 𝑐
𝑗
+ 𝑐
𝑗+1

) , (11)

𝑅
𝑗
=

𝑛+1

∑

𝑖=−2

𝑐
𝑖
𝑁
󸀠󸀠󸀠

𝑖,4
(𝑥
𝑗
) =

1

ℎ3
(−𝑐
𝑗−2

+ 3𝑐
𝑗−1

− 3𝑐
𝑗
+ 𝑐
𝑗+1

) . (12)
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So, we get

ℎ

4
(𝑃
𝑗−2

+ 11𝑃
𝑗−1

+ 11𝑃
𝑗
+ 𝑃
𝑗+1

)

= −𝑦
𝑗−2

− 3𝑦
𝑗−1

+ 3𝑦
𝑗
+ 𝑦
𝑗+1

,

ℎ
2

12
(𝑄
𝑗−1

+ 10𝑄
𝑗
+ 𝑄
𝑗+1

) = 𝑦
𝑗−1

− 2𝑦
𝑗
+ 𝑦
𝑗+1

,

ℎ
3

24
(𝑅
𝑗−2

+ 11𝑅
𝑗−1

+ 11𝑅
𝑗
+ 𝑅
𝑗+1

)

= −𝑦
𝑗−2

+ 3𝑦
𝑗−1

− 3𝑦
𝑗
+ 𝑦
𝑗+1

.

(13)

Using operator notation in [27, 28], we obtain

𝑃
𝑗
=

4

ℎ
(

−𝐸
−2

− 3𝐸
−1

+ 3𝐼 + 𝐸

𝐸−2 + 11𝐸−1 + 11𝐼 + 𝐸
)𝑦
𝑗
,

𝑄
𝑗
=

12

ℎ2
(

𝐸
−1

− 2𝐼 + 𝐸

𝐸−1 + 10𝐼 + 𝐸
)𝑦
𝑗
,

𝑅
𝑗
=

24

ℎ3
(

−𝐸
−2

+ 3𝐸
−1

− 3𝐼 + 𝐸

𝐸−2 + 11𝐸−1 + 11𝐼 + 𝐸
)𝑦
𝑗
,

(14)

where the operators are defined 𝐸𝑦(𝑥) = 𝑦(𝑥 + ℎ), 𝐷𝑦(𝑥) =

𝑦
󸀠
(𝑥), and 𝐼𝑦(𝑥) = 𝑦(𝑥). Let 𝐸 = exp(ℎ𝐷) and expand them

in powers of ℎ𝐷; we get

𝑦
󸀠
(𝑥
𝑗
) = 𝑃
𝑗
−

1

720
ℎ
4
𝑦
(5)

(𝑥
𝑗
) + 𝑂 (ℎ

6
) ,

𝑦
󸀠󸀠
(𝑥
𝑗
) = 𝑄

𝑗
+

1

240
ℎ
4
𝑦
(6)

(𝑥
𝑗
) + 𝑂 (ℎ

6
) ,

𝑦
󸀠󸀠󸀠

(𝑥
𝑗
) = 𝑅
𝑗
−

1

12
ℎ
2
𝑦
(5)

(𝑥
𝑗
) +

1

240
ℎ
4
𝑦
(7)

(𝑥
𝑗
) + 𝑂 (ℎ

6
) .

(15)

We can use 𝑅
𝑗
to construct numerical difference formula

for 𝑦(4)(𝑥
𝑗
), 𝑦(5)(𝑥

𝑗
), and 𝑦

(6)
(𝑥
𝑗
) (𝑗 = 1, 2, . . . , 𝑛 − 1) by the

Taylor series expansion as follows:

𝑦
(4)

(𝑥
𝑗
) =

𝑅
𝑗+1

− 𝑅
𝑗−1

2ℎ
+ 𝑂 (ℎ

2
) , (16)

𝑦
(5)

(𝑥
𝑗
) =

𝑅
𝑗+1

− 2𝑅
𝑗
+ 𝑅
𝑗−1

ℎ2
+ 𝑂 (ℎ

2
) , (17)

𝑦
(6)

(𝑥
𝑗
) = ((

𝑅
𝑗+2

− 𝑅
𝑗

2ℎ
− 2

𝑅
𝑗+1

− 𝑅
𝑗−1

2ℎ

+
𝑅
𝑗
− 𝑅
𝑗−2

2ℎ
) × (ℎ

2
)
−1

) + 𝑂 (ℎ
2
) ,

=
𝑅
𝑗+2

− 2𝑅
𝑗+1

+ 2𝑅
𝑗−1

− 𝑅
𝑗−2

2ℎ3
+ 𝑂 (ℎ

2
) .

(18)

Substituting (9)–(12) into (15)–(18) yields

𝑦
󸀠
(𝑥
𝑗
) =

1

6ℎ
(−𝑐
𝑗−2

− 3𝑐
𝑗−1

+ 3𝑐
𝑗
+ 𝑐
𝑗+1

) + 𝑂 (ℎ
4
) ,

𝑦
󸀠󸀠
(𝑥
𝑗
) =

1

2ℎ2
(𝑐
𝑗−2

− 𝑐
𝑗−1

− 𝑐
𝑗
+ 𝑐
𝑗+1

) + 𝑂 (ℎ
4
) ,

𝑦
󸀠󸀠󸀠

(𝑥
𝑗
) =

1

ℎ3
(−𝑐
𝑗−2

+ 3𝑐
𝑗−1

− 3𝑐
𝑗
+ 𝑐
𝑗+1

) + 𝑂 (ℎ
2
) ,

𝑦
(4)

(𝑥
𝑗
) =

1

2ℎ4
(𝑐
𝑗−3

− 3𝑐
𝑗−2

+ 2𝑐
𝑗−1

+ 2𝑐
𝑗

− 3𝑐
𝑗+1

+ 𝑐
𝑗+2

) + 𝑂 (ℎ
2
) ,

𝑦
(5)

(𝑥
𝑗
) =

1

ℎ5
(−𝑐
𝑗−3

+ 5𝑐
𝑗−2

− 10𝑐
𝑗−1

+ 10𝑐
𝑗

− 5𝑐
𝑗+1

+ 𝑐
𝑗+2

) + 𝑂 (ℎ
4
) ,

𝑦
(6)

(𝑥
𝑗
) =

1

2ℎ6
(𝑐
𝑗−4

− 5𝑐
𝑗−3

+ 9𝑐
𝑗−2

− 5𝑐
𝑗−1

− 5𝑐
𝑗

+ 9𝑐
𝑗+1

− 5𝑐
𝑗+2

+ 𝑐
𝑗+3

) + 𝑂 (ℎ
2
) .

(19)

3. Description of Numerical Method

In the section, we give the quartic B-spline method for
the linear sixth order boundary value problem. Let 𝑠(𝑥) =

∑
𝑛+1

𝑖=−2
𝑐
𝑖
𝑁
𝑖,4
(𝑥) be the approximate solution of 6BVP (1)-(2)

and 𝑠(𝑥) = ∑
𝑛+1

𝑖=−2
𝑐
𝑖
𝑁
𝑖,4
(𝑥) the approximate spline of 𝑠(𝑥).

Discretize (1) at the knots 𝑥
𝑖
(𝑖 = 2, 3, . . . , 𝑛 − 2), we get

𝑦
(6)

(𝑥
𝑖
) + 𝑓 (𝑥

𝑖
) 𝑦 (𝑥
𝑖
) = 𝑔 (𝑥

𝑖
) . (20)

By (9) and (18), we turn (20) into

1

2ℎ6
(𝑐
𝑖−4

− 5𝑐
𝑖−3

+ 9𝑐
𝑖−2

− 5𝑐
𝑖−1

−5𝑐
𝑖
+ 9𝑐
𝑖+1

− 5𝑐
𝑖+2

+ 𝑐
𝑖+3

) +
𝑓 (𝑥
𝑖
)

24

× (𝑐
𝑖−2

+ 11𝑐
𝑖−1

+ 11𝑐
𝑖
+ 𝑐
𝑖+1

) = 𝑔 (𝑥
𝑖
) + 𝑂 (ℎ

2
) ,

(21)

where 𝑓(𝑥
𝑖
) and 𝑔(𝑥

𝑖
) are the value of 𝑓(𝑥) and 𝑔(𝑥) at

the knots 𝑥
𝑖
(𝑖 = 2, 3, . . . , 𝑛 − 2) for short. Change (21)

equivalently, we yield

12 (𝑐
𝑖−4

− 5𝑐
𝑖−3

+ 9𝑐
𝑖−2

− 5𝑐
𝑖−1

− 5𝑐
𝑖

+9𝑐
𝑖+1

− 5𝑐
𝑖+2

+ 𝑐
𝑖+3

) + 𝑓 (𝑥
𝑖
)

× (𝑐
𝑖−2

+ 11𝑐
𝑖−1

+ 11𝑐
𝑖
+ 𝑐
𝑖+1

) ℎ
6

= 24ℎ
6
𝑔 (𝑥
𝑖
) + 𝑂 (ℎ

8
) .

(22)
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Dropping the term𝑂(ℎ
8
) from (22), we get a linear system

with 𝑛 − 3 linear equations in 𝑛 + 4 unknowns 𝑐
𝑖
(𝑖 =

−2, −1, . . . , 𝑛 + 1)

12 (𝑐
𝑖−4

− 5𝑐
𝑖−3

+ 9𝑐
𝑖−2

− 5𝑐
𝑖−1

− 5𝑐
𝑖

+9𝑐
𝑖+1

− 5𝑐
𝑖+2

+ 𝑐
𝑖+3

) + 𝑓 (𝑥
𝑖
)

× (𝑐
𝑖−2

+ 11𝑐
𝑖−1

+ 11𝑐
𝑖
+ 𝑐
𝑖+1

) ℎ
6

= 24ℎ
6
𝑔 (𝑥
𝑖
) (𝑖 = 2, 3, . . . , 𝑛 − 2) ,

(23)

so seven more equations are needed.
By the boundary conditions at 𝑥 = 𝑎

𝑦 (𝑎) = 𝐴
0
,

𝑦
󸀠
(𝑎) = 𝐴

1
,

𝑦
󸀠󸀠
(𝑎) = 𝐴

2
,

(24)

we have

𝑐
−2

+ 11𝑐
−1

+ 11𝑐
0
+ 𝑐
1
= 24𝐴

0
,

−𝑐
−2

− 3𝑐
−1

+ 3𝑐
0
+ 𝑐
1
= 6ℎ𝐴

1
,

𝑐
−2

− 𝑐
−1

− 𝑐
0
+ 𝑐
1
= 2ℎ
2
𝐴
2
.

(25)

By the boundary conditions at 𝑥 = 𝑏

𝑦 (𝑏) = 𝐵
0
,

𝑦
󸀠
(𝑏) = 𝐵

1
,

𝑦
󸀠󸀠
(𝑏) = 𝐵

2
,

(26)

we get

𝑐
𝑛−2

+ 11𝑐
𝑛−1

+ 11𝑐
𝑛
+ 𝑐
𝑛+1

= 24𝐵
0
,

−𝑐
𝑛−2

− 3𝑐
𝑛−1

+ 3𝑐
𝑛
+ 𝑐
𝑛+1

= 6ℎ𝐵
1
,

𝑐
𝑛−2

− 𝑐
𝑛−1

− 𝑐
𝑛
+ 𝑐
𝑛+1

= 2ℎ
2
𝐵
2
.

(27)

We can construct an approximate formula as follows:

𝑦
(6)

(𝑎) =
−5𝑅
0
+ 18𝑅

1
− 24𝑅

2
+ 14𝑅

3
− 3𝑅
4

24ℎ3
+ 𝑂 (ℎ

2
) ,

(28)

where the coefficients are determined by maximizing the
error order.

Substituting (12) into (28), we have

5𝑐
−2

− 33𝑐
−1

+ 93𝑐
0
− 145𝑐

1
+ 135𝑐

2

− 75𝑐
3
+ 23𝑐
4
− 3𝑐
5
= 24ℎ

6
𝑦
(6)

(𝑎) + 𝑂 (ℎ
5
) .

(29)

Dropping the term 𝑂(ℎ
5
) from (29), we can get

5𝑐
−2

− 33𝑐
−1

+ 93𝑐
0
− 145𝑐

1
+ 135𝑐

2
− 75𝑐
3

+ 23𝑐
4
− 3𝑐
5
= 24ℎ

6
𝑦
(6)

(𝑎) .

(30)

Take (22), (25), (27), and (29) together, we get 𝑛+ 4 linear
equation with 𝑐

𝑖
(𝑖 = −2, −1, . . . , 𝑛 + 1) as unknowns. The

linear system can be written in matrix notations

(𝐴 + ℎ
6
𝐹𝐵)𝐶 = 𝐷 + 𝐸. (31)

Take (23), (25), (27), and (30) together, we get 𝑛+ 4 linear
equation with 𝑐

𝑖
(𝑖 = −2, −1, . . . , 𝑛 + 1) as unknowns. The

linear system can be written in matrix notations

(𝐴 + ℎ
6
𝐹𝐵)𝐶 = 𝐷, (32)

where

𝐶 = (𝑐
−2
, 𝑐
−1
, 𝑐
0
, . . . , 𝑐

𝑛+1
)
𝑇
,

𝐶 = (𝑐
−2
, 𝑐
−1
, 𝑐
0
, . . . , 𝑐

𝑛+1
)
𝑇
,

𝐷 = (24ℎ
6
𝑦
(6)

(𝑎) , 24𝐴0, 6ℎ𝐴1, 2ℎ
2
𝐴
2
, 24ℎ
6
𝑔 (𝑥
2
) , . . . ,

24ℎ
6
𝑔 (𝑥
𝑛−1

) , 24𝐵
0
, 6ℎ𝐵
1
, 2ℎ
2
𝐵
2
)
𝑇

,

𝐸 = (𝑒
−2
, 𝑒
−1
, . . . , 𝑒

𝑛+1
)
𝑇
,

𝑒
−1

= 𝑒
0
= 𝑒
1
= 𝑒
𝑛−1

= 𝑒
𝑛
= 𝑒
𝑛+1

= 0,

𝑒
−2

= 𝑂 (ℎ
5
) , 𝑒

𝑖
= 𝑂 (ℎ

8
) (𝑖 = 2, . . . , 𝑛 − 2) ,

𝐴

=

(
(
(
(
(
(

(

5 −33 93 −145 135 −75 23 −3

1 11 11 1

−1 −3 3 1

1 −1 −1 1

12 −60 108 −60 −60 108 −60 12

d d d d d d d d

12 −60 108 −60 −60 108 −60 12

1 11 11 1

−1 −3 3 1

1 −1 −1 1

)
)
)
)
)
)

)

,

𝐹

=

(
(
(
(
(
(

(

0

0

0

𝑓 (𝑥
2
)

d
𝑓 (𝑥
𝑛−1

)

0

0

0

)
)
)
)
)
)

)

,



Journal of Applied Mathematics 5

Table 2: Max [𝑦(])(𝑥
𝑖
)] of quartic B-spline method for Example 1.

𝑛 max[𝑦(𝑥
𝑖
)] max[𝑦󸀠(𝑥

𝑖
)] max[𝑦󸀠󸀠(𝑥

𝑖
)] max[𝑦󸀠󸀠󸀠(𝑥

𝑖
)] max[𝑦(4)(𝑥

𝑖
)] max[𝑦(5)(𝑥

𝑖
)]

10 3.2599𝑒 − 6 1.3642𝑒 − 5 1.9072𝑒 − 4 6.1038𝑒 − 3 1.1021𝑒 − 2 8.444𝑒 − 1

20 1.3846𝑒 − 7 5.1383𝑒 − 7 6.7388𝑒 − 6 1.2107𝑒 − 5 2.1304𝑒 − 4 4.2045𝑒 − 2

40 2.8847𝑒 − 8 1.5453𝑒 − 7 1.3402𝑒 − 6 2.8482𝑒 − 5 7.4701𝑒 − 4 2.1074𝑒 − 2

80 1.3493𝑒 − 8 7.8389𝑒 − 8 6.657𝑒 − 7 7.5303𝑒 − 5 3.1822𝑒 − 4 1.602𝑒 − 2

𝐵

=

(
(
(
(
(
(

(

0 0 0

0 0 0

0 0 0

1 11 11 1 0 0 0

d d d d d d d
0 0 0 1 11 11 1

0 0 0

0 0 0

0 0 0

)
)
)
)
)
)

)

.

(33)

After solving the linear system (32), we obtain the quartic
spline approximate solution 𝑦(𝑥) ≈ 𝑠(𝑥) = ∑

𝑛+1

𝑖=−2
𝑐
𝑖
𝑁
𝑖,4
(𝑥).

Furthermore, we can take 𝑠
(𝑘)

(𝑥) (𝑘 = 1, 2, 3, 4, 5) as the
approximation of 𝑦(𝑘)(𝑥) (𝑘 = 1, 2, 3, 4, 5).

4. Convergence Analysis

By (31) and (32), we have

(𝐴 + ℎ
6
𝐹𝐵) (𝐶 − 𝐶) = 𝐸. (34)

𝐴 is invertible, and if we assume that

ℎ
6󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

‖𝐹‖∞‖𝐵‖∞ < 1, (35)

then (𝐼 + ℎ
8
𝐴
−1
𝐹𝐵) is also invertible.

Hence, we get

𝐶 − 𝐶 = (𝐼 + ℎ
6
𝐴
−1
𝐹𝐵)
−1

𝐴
−1
𝐸. (36)

By (35) and (36) and note ‖𝐸‖
∞

≤ 𝑘ℎ
8, we have

󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐶

󵄩󵄩󵄩󵄩󵄩∞
≤

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

‖𝐸‖∞

1 − ℎ6
󵄩󵄩󵄩󵄩𝐴
−1󵄩󵄩󵄩󵄩∞‖𝐹‖∞‖𝐵‖∞

≤

𝑘ℎ
6󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩∞

1 − ℎ6
󵄩󵄩󵄩󵄩𝐴
−1󵄩󵄩󵄩󵄩∞‖𝐵‖∞‖𝐹‖∞

ℎ
2

≤
𝑘

‖𝐵‖∞‖𝐹‖∞

ℎ
2
= 𝑂 (ℎ

2
) .

(37)

Hence,

‖𝑠 − 𝑠‖∞ ≤
󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐶

󵄩󵄩󵄩󵄩󵄩∞

𝑛

∑

𝑖=1

𝑁
𝑖,4 (𝑥)

=
󵄩󵄩󵄩󵄩󵄩
𝐶 − 𝐶

󵄩󵄩󵄩󵄩󵄩∞
= 𝑂 (ℎ

2
) .

(38)

Generally, we get

󵄩󵄩󵄩󵄩𝑦 − 𝑠
󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩𝑦 − 𝑠
󵄩󵄩󵄩󵄩∞ + ‖𝑠 − 𝑠‖∞

= 𝑂 (ℎ
2
) + 𝑂 (ℎ

2
) = 𝑂 (ℎ

2
) .

(39)

5. Numerical Results

In the section, we give some computational results of numer-
ical experiments with method based on previous sections to
support our theoretical discussion. We use double precision
arithmetic in order to reduce the round-off errors to a
minimum.

Example 1. We consider the following equation:

𝑦
(6)

(𝑥) + 𝑦 (𝑥) = 6 cos𝑥, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 0, 𝑦
󸀠
(0) = −1, 𝑦

󸀠󸀠
(0) = 2,

𝑦 (1) = 0, 𝑦
󸀠
(1) = sin 1, 𝑦

󸀠󸀠
(1) = 2 cos 1.

(40)

The exact solution is given by 𝑦(𝑥) = (𝑥 − 1) sin𝑥.

The results of maximum absolute errors max[𝑦(])(𝑥
𝑖
)] =

max
1⩽𝑖⩽𝑛

|𝑦
(])
(𝑥
𝑖
) − 𝑠

(])
(𝑥
𝑖
)| (] = 0, 1, 2, 3, 4, 5) for this

problem are tabulated in Table 2.
Next, we compare our method with the other spline

method. Consider another sixth order boundary value prob-
lem.

Example 2. Consider the boundary value problem

𝑦
(6)

(𝑥) − 𝑦 (𝑥) = −6𝑒
𝑥
, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 1, 𝑦
󸀠
(0) = 0, 𝑦

󸀠󸀠
(0) = −1,

𝑦 (1) = 0, 𝑦
󸀠
(1) = −𝑒, 𝑦

󸀠󸀠
(1) = −2𝑒,

(41)

which has the exact solution 𝑦(𝑥) = (1 − 𝑥)𝑒
𝑥.

The example has been solved by the collocation method
based on the sixth B-spline [18], and the numerical results
are stated in Table 3. Also, the system of differential equation
along with the given boundary conditions was solved by
Wazwaz using Adomian decomposition method [10] and
Noor using variational iteration method [13]. The respective
maximum absolute errors are given in Table 3. Obviously, the
results of our method are very encouraging.
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Table 3: Max[𝑦(𝑥
𝑖
)] of different methods for Example 2.

𝑥 Exact solution [18] [13] [10] Our method
0.1 0.99465383 1.2159𝑒 − 5 4.0933𝑒 − 4 4.0933𝑒 − 4 4.5092𝑒 − 6

0.2 0.97712221 2.7418𝑒 − 5 7.7820𝑒 − 4 7.7820𝑒 − 4 1.2619𝑒 − 5

0.3 0.94490117 2.2053𝑒 − 6 1.0704𝑒 − 3 1.0704𝑒 − 3 1.9154𝑒 − 5

0.4 0.89509482 2.5033𝑒 − 6 1.2578𝑒 − 3 1.2578𝑒 − 3 2.1632𝑒 − 5

0.5 0.82436064 5.4836𝑒 − 6 1.3223𝑒 − 3 1.3223𝑒 − 3 1.9704𝑒 − 5

0.6 0.72884752 1.6212𝑒 − 5 1.2578𝑒 − 3 1.2578𝑒 − 3 1.4548𝑒 − 5

0.7 0.60412581 2.0682𝑒 − 5 1.0704𝑒 − 3 1.0704𝑒 − 3 8.2238𝑒 − 6

0.8 0.44510819 2.2619𝑒 − 5 7.7820𝑒 − 4 7.7820𝑒 − 4 2.9420𝑒 − 6

0.9 0.24596031 1.9460𝑒 − 5 4.0933𝑒 − 4 4.0933𝑒 − 4 2.3610𝑒 − 7

6. Conclusion

In the section, we employ the quartic B-spline for solving
the sixth order boundary value problems. Properties of the
B-spline function are utilized to reduce the computation of
this problem to some algebraic equations. The method is
computationally attractive and applications are demonstrated
through illustrative examples. The obtained results showed
that this approach can solve the problem effectively, and the
comparison shows that the proposed technique is in good
agreement with the existing results in the literature.
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The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to the
simplicity of their very low memory requirements. This paper proposes a conjugate gradient method which is similar to Dai-Liao
conjugate gradient method (Dai and Liao, 2001) but has stronger convergence properties.The givenmethod possesses the sufficient
descent condition, and is globally convergent under strong Wolfe-Powell (SWP) line search for general function. Our numerical
results show that the proposed method is very efficient for the test problems.

1. Introduction

The conjugate gradient (CG) method has played a special
role in solving large-scale nonlinear optimization due to the
simplicity of their iterations and their very low memory
requirements. In fact, the CG method is not among the
fastest or most robust optimization algorithms for nonlinear
problems available today, but it remains very popular for
engineers and mathematicians who are interested in solving
large problems.The conjugate gradientmethod is designed to
solve the following unconstrained optimization problem:

min {𝑓 (𝑥) | 𝑥 ∈ 𝑅𝑛} , (1)

where𝑓(𝑥) : 𝑅𝑛 → 𝑅 is a smooth, nonlinear function whose
gradient will be denoted by 𝑔(𝑥). The iterative formula of the
conjugate gradient method is given by

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑠
𝑘
, 𝑠

𝑘
= 𝛼
𝑘
𝑑
𝑘
, (2)

where 𝛼
𝑘
is a step length which is computed by carrying out

a line search, and 𝑑
𝑘
is the search direction defined by

𝑑
𝑘
= {

−𝑔
𝑘

if 𝑘 = 1,

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

if 𝑘 ≥ 2,
(3)

where 𝛽
𝑘
is a scalar and 𝑔

𝑘
denotes the gradient ∇𝑓(𝑥

𝑘
). If 𝑓

is a strictly convex quadratic function, namely,

𝑓 (𝑥) =
1

2
𝑥
𝑇
𝐻𝑥 + 𝑏

𝑇
𝑥,

(4)

where 𝐻 is a positive definite matrix and if 𝛼
𝑘
is the exact

one-dimensional minimizer along the direction 𝑑
𝑘
, then the

method with (2) and (3) are called the linear conjugate gra-
dient method. Otherwise, (2) and (3) is called the nonlinear
conjugate gradient method. The most important feature of
linear conjugate gradient method is that the search directions
satisfy the following conjugacy condition:

𝑑
𝑇

𝑖
𝐻𝑑
𝑗
= 0, 𝑖 ̸= 𝑗.

(5)

For nonlinear conjugate gradient methods, for general objec-
tive functions, (5) does not hold, since the Hessian ∇

2
𝑓(𝑥)

changes at different points.
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Somewell-known formulas for𝛽
𝑘
are the Fletcher-Reeves

(FR), Polak-Ribière (PR), Hestense-Stiefel (HS), and Dai-
Yuan (DY) methods which are given, respectively, by

𝛽
FR
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

2
, (6)

𝛽
PR
𝑘

=
𝑔
𝑇

𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

2
, (7)

𝛽
HS
𝑘

=
𝑔
𝑇

𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

)

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇
𝑑
𝑘−1

, (8)

𝛽
DY
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

(𝑔
𝑘
− 𝑔
𝑘−1

)
𝑇
𝑑
𝑘−1

, (9)

where ‖ ‖ denotes the Euclidean norm. Their corresponding
conjugate methods are abbreviated as FR, PR, HS, and DY
methods. Although all these method are equivalent in the
linear case, namely, when 𝑓 is a strictly convex quadratic
function and 𝛼

𝑘
are determined by exact line search, their

behaviors for general objective functionsmay be far different.
For general functions, Zoutendijk [1] proved the global

convergence of FR methods with exact line search (here and
throughout this paper, for global convergence, we mean that
the sequence generated by the corresponding methods will
either terminate after finite steps or contain a subsequence
such that it converges to a stationary point of the objective
function from a given initial point). Although one would
be satisfied with its global convergence properties, the FR
method performs much worse than the PR (HS) method in
real computations. Powell [2] analyzed a major numerical
drawback of the FR method; namely, if a small step is
generated away from the solution point, the subsequent steps
may be also very short. On the other hand, in practical
computation, the HS method resembles the PR method, and
both methods are generally believed to be the most efficient
conjugate gradient methods since these two methods essen-
tially perform a restart if a bad direction occurs. However,
Powell [3] constructed a counterexample and showed that
the PR method and HS method can cycle infinitely without
approaching the solution. This example suggests that these
two methods have a drawback that they are not globally
convergent for general functions. Therefore, in the past two
decades, much effort has been exceterd to find out new
formulas for conjugate methods such that not only they are
globally convergent for general functions but also they have
good numerical performance.

Recently, using a new conjugacy condition, Dai and Liao
[4] proposed two new methods. Interestingly, one of their
methods is not only globally convergent for general functions
but also performs better than HS and PR methods. In this
paper, similar to Dai and Liao’s approach, we propose another
formula for 𝛽

𝑘
, analyze the convergence properties for the

given method, and also carry the numerical experiment
which shows that the given method is robust and efficient.

The remainder of this paper is organized as follows. In
Section 2, we firstly state the corresponding formula which

is proposed by Dai and Liao [4] and the motivations of this
paper, and then we propose the new nonlinear conjugate
gradient method. In Section 3, convergence analysis for the
given method is presented. Numerical results are reported in
Section 4. Finally, some conclusions are given in Section 5.

2. Motivations and New Nonlinear
Conjugate Gradient Method

2.1. Dai-Liao’s Methods. It is well known that the linear
conjugate gradient methods generate a sequence of search
directions 𝑑

𝑘
such that the conjugacy condition (5) holds.

Denote 𝑦
𝑘−1

to be the gradient change, which means that

𝑦
𝑘−1

= 𝑔
𝑘
− 𝑔
𝑘−1

. (10)

For a general nonlinear function 𝑓, we know by the mean
value theorem that there exists some 𝑡 ∈ (0, 1) such that

𝑦
𝑇

𝑘−1
𝑑
𝑘
= 𝛼
𝑘−1

𝑑
𝑇

𝑘
∇
2
𝑓 (𝑥
𝑘−1

+ 𝑡𝛼
𝑘−1

𝑑
𝑘−1

) 𝑑
𝑘−1

. (11)

Therefore, it is reasonable to replace (5) with the following
conjugacy condition:

𝑦
𝑇

𝑘−1
𝑑
𝑘
= 0. (12)

Recently, extension of (12) has been studied by Dai and
Liao in [4]. Their approach is based on the Quasi-Newton
techniques. Recall that, in the Quasi-Newton method, an
approximation matrix 𝐻

𝑘−1
of the Hessian ∇

2
𝑓(𝑥
𝑘−1

) is
updated such that the new matrix 𝐻

𝑘
satisfies the following

Quasi-Newton equation:

𝐻
𝑘
𝑠
𝑘−1

= 𝑦
𝑘−1

. (13)

The search direction 𝑑
𝑘
in Quasi-Newton method is calcu-

lated by

𝑑
𝑘
= −𝐻

−1

𝑘
𝑔
𝑘
. (14)

Combining these two equations, we obtain

𝑑
𝑇

𝑘
𝑦
𝑘−1

= 𝑑
𝑇

𝑘
(𝐻
𝑘
𝑠
𝑘−1

) = −𝑔
𝑇

𝑘
𝑠
𝑘−1

. (15)

The previous relation implies that (12) holds if the line search
is exact since in this case 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0. However, practical
numerical algorithms normally adopt inexact line searches
instead of exact line searches. For this reason, it seems more
reasonable to replace the conjugacy condition (12) with the
condition

𝑑
𝑇

𝑘
𝑦
𝑘−1

= −𝑡𝑔
𝑇

𝑘
𝑠
𝑘−1

, 𝑡 ≥ 0, (16)

where 𝑡 ≥ 0 is a scalar.
To ensure that the search direction 𝑑

𝑘
satisfies the

conjugate condition (16), one only needs to multiply (3) with
𝑦
𝑘−1

and use (16), yielding

𝛽
DL1
𝑘

=
𝑔
𝑇

𝑘
(𝑦
𝑘−1

− 𝑡𝑠
𝑘−1

)

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (17)
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It is obvious that

𝛽
DL1
𝑘

= 𝛽
HS
𝑘

− 𝑡
𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (18)

For simplicity, we call the method with (2), (3), and (17)
as DL1 method. Dai and Liao also prove that the conju-
gate gradient method with DL1 is globally convergent for
uniformly convex functions. For general functions, Powell
[3] constructed an example showing that the PR method
may cycle without approaching any solution point if the step
length 𝛼

𝑘
is chosen to be the first local minimizer along 𝑑

𝑘
.

Since the DL1method reduces to the PR method in the case
that 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0 holds, this implies that the method with (17)
need not converge for general functions. To get the global
convergence, like Gilbert and Nocedal [5], who have proved
the global convergence of the PRmethod with the restriction
that 𝛽PR

𝑘
≥ 0, Dai and Liao replaced (17) by

𝛽
DL
𝑘

= max{
𝑔
𝑇

𝑘
𝑦
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, 0} − 𝑡
𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

= max {𝛽HS
𝑘
, 0} − 𝑡

𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

.

(19)

We also call the method with (2), (3), and (19) as DL method,
Dai and Liao show that DL method is globally convergent
for general functions under the sufficient descent condition
(21) and some suitable conditions. Besides, some numerical
experiments in [4] indicate the efficiency of this method.

Similar to Dai and Liao’s approach, Li et al. [6] proposed
another conjugate condition and related conjugate gradient
methods, and they also prove that the proposed methods are
globally convergent under some assumptions.

2.2. Motivations. From the above discussions, Dai and Liao’s
approach is effective; the main reason is that the search
directions 𝑑

𝑘
generated by DL1 method or DL method not

only contain the gradient information but also contain some
Hessian ∇

2
𝑓(𝑥) information. From (18) and (19), 𝛽DL1

𝑘
and

𝛽
DL
𝑘

are formed by two parts; the first part is 𝛽HS
𝑘
, and the

second part is −𝑡(𝑔𝑇
𝑘
𝑠
𝑘−1

/𝑑
𝑇

𝑘−1
𝑦
𝑘−1

). So, we also can consider
DL1 and DL methods as some modified forms of the HS
method by adding some information of Hessian ∇

2
𝑓(𝑥)

which is contained in the second part. The convergence
properties of the HS method are similar to PR method;
it does not converge for general functions even if the line
search is exact. In order to get the convergence, one also
needs the nonnegative restriction 𝛽

𝑘
= max{𝛽HS

𝑘
, 0} and the

sufficient descent assumption (21). From the above discus-
sion, the descent condition or sufficient descent condition
and nonnegative property of 𝛽

𝑘
play important roles in the

convergence analysis.We say that the descent condition holds
if for each search directions 𝑑

𝑘

𝑔
𝑇

𝑘
𝑑
𝑘
< 0, ∀𝑘 ≥ 1. (20)

In addition, we say that the sufficient descent condition holds
if there exists a constant 𝑐 > 0 such that for each search
direction 𝑑

𝑘
, we have

𝑔
𝑇

𝑘
𝑑
𝑘
≤ −𝑐

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2
, ∀𝑘 ≥ 1. (21)

Motivated by the above ideal, in this paper, we focus on
finding the new conjugate gradient method which possesses
the following properties:

(1) nonnegative property 𝛽
𝑘
≥ 0;

(2) the new formula contains not only the gradient
information but also some Hessian information;

(3) the search directions 𝑑
𝑘
generated by the proposed

method satisfy the sufficient descent conditions (21).

2.3.TheNewConjugate GradientMethod. From the structure
of (6), (7), (8), and (9), the PR and HS methods have the
common numerator 𝑔𝑇

𝑘
𝑦
𝑘−1

, and the FR and DY methods
have the common numerator ‖𝑔

𝑘
‖
2; and this different choice

makes themhave different properties. Generally speaking, FR
and DYmethods have better convergence properties, and PR
and HS methods have better numerical experiments. Powell
[3] pointed out that the FR method, with exact line search,
was susceptible to jamming.That is, the algorithm could take
many short steps without making significant progress to the
minimum. If the line search is exact, that means 𝑔𝑇

𝑘
𝑑
𝑘−1

= 0,
in this case, DY method will turn out to be FR method.
So, these two methods have the same disadvantage. The
PR and HS methods which share the common numerator
𝑔
𝑇

𝑘
𝑦
𝑘−1

possess a built-in restart feature to avoid the jamming
problem: when the step 𝑥

𝑘
− 𝑥
𝑘−1

is small, the factor 𝑦
𝑘−1

in
the numerator of 𝛽

𝑘
tends to zero. Hence, the next search

direction 𝑑
𝑘
is essentially the steepest descent direction

−𝑔
𝑘
. So, the numerical performance of these methods is

better than the performance of the methods with ‖𝑔
𝑘
‖
2 in

numerator of 𝛽
𝑘
.

Just as above discussions, great attentions were given to
find the methods which not only have global convergent
properties but also have nice numerical experiments.

Recently, Wei et al. [7] proposed a new formula

𝛽
WYL
𝑘

=
𝑔
𝑇

𝑘
𝑦
∗

𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

2
, 𝑦

∗

𝑘−1
= 𝑔
𝑘
−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

𝑔
𝑘−1

. (22)

Themethod with formula 𝛽WYL
𝑘

not only has nice numer-
ical results but also possesses the sufficient descent condition
and global convergence properties under the strong Wolfe-
Powell line search. From the structure of 𝛽WYL

𝑘
, we know

that the method with 𝛽
WYL
𝑘

can also avoid jamming: when
the step 𝑥

𝑘
− 𝑥
𝑘−1

is small, ‖𝑔
𝑘
‖/‖𝑔
𝑘−1

‖ tends to 1 and the
next search direction tends to the steepest descent direction
which is similar to PR method. But WYL method has some
advantages, such as under strong Wolfe-Powell line search,
𝛽
WYL
𝑘

≥ 0, and if the parameter 𝜎 ≤ 1/4 in SWP, WYL
method possesses the sufficient descent condition which
deduces the global convergence of the WYL method.
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In [8, 9], Shengwei et al. extended such modification to
HS method as follows:

𝛽
MHS
𝑘

=
𝑔
𝑇

𝑘
𝑦
∗

𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, 𝑦
∗

𝑘−1
= 𝑔
𝑘
−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

𝑔
𝑘−1

. (23)

The previous formulae 𝛽WYL
𝑘

and 𝛽
MHS
𝑘

can be considered
as the modification forms of 𝛽PR

𝑘
and 𝛽

HS
𝑘

by using 𝑦
∗

𝑘−1

to replace 𝑦
𝑘−1

, respectively. In [8, 9], the corresponding
methods are proved to be globally convergent for general
functions under the strong Wolfe-Powell line search and
Grippo-Lucidi line search. Based on the same approach, some
authors give other discussions and modifications in [10–12].
In fact, 𝑦∗

𝑘−1
is not our point at the beginning, our purpose is

involving the information of the angle between 𝑔
𝑘
and 𝑔

𝑘−1
.

From this point of view, 𝛽WYL
𝑘

has the following form:

𝛽
WYL
𝑘

= 𝛽
FR
𝑘
(1 − cos (𝜃

𝑘
)) , (24)

where 𝜃
𝑘
is the angle between 𝑔

𝑘
and 𝑔
𝑘−1

. Bymultiplying𝛽FR
𝑘

with 1 − cos 𝜃
𝑘
, the method not only has similar convergence

properties with FR method, but also avoids jamming which
is similar to PR method.

The above analysis motivates us to propose the following
formula to compute 𝛽

𝑘
:

𝛽
MDL1
𝑘

= max{
𝑔
𝑇

𝑘
𝑦
∗

𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, 0} − 𝑡
𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, (25)

where 𝑦∗
𝑘−1

= 𝑔
𝑘
− (‖𝑔

𝑘
‖/‖𝑔
𝑘−1

‖)𝑔
𝑘−1

. Since the 𝛽MHS
𝑘

are
nonnegative under the strong Wolfe-Powell line search, we
omit the nonnegative restriction and propose the following
formula:

𝛽
MDL
𝑘

=
𝑔
𝑇

𝑘
𝑦
∗

𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

− 𝑡
𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

= 𝛽
MHS
𝑘

− 𝑡
𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

. (26)

From (25) and (26), we know that we only substitute 𝑦
𝑘−1

in the first part of the numerator of 𝛽DL1
𝑘

𝑜𝑟 𝛽
DL
𝑘

by 𝑦∗
𝑘
. The

reason is that we hope the formulae (25) and (26) contain the
angle information between 𝑔

𝑘
and 𝑔

𝑘−1
. In fact, 𝛽MDL

𝑘
can be

expressed as

𝛽
MDL
𝑘

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

(1 − cos 𝜃
𝑘
) − 𝑡

𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

= 𝛽
DY
𝑘

(1 − cos 𝜃
𝑘
) − 𝑡

𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

.

(27)

For simplicity, we call the method generated by (2), (3), and
(26) as MDL method and give the algorithm as follows.

Algorithm 1 (MDL).
Step 1. Given 𝑥

1
∈ 𝑅
𝑛, 𝜀 ≥ 0, set 𝑑

1
= −𝑔
1
, 𝑘 = 1; if ‖𝑔

1
‖ ≤ 𝜀,

then stop.

Step 2. Compute 𝑡
𝑘
by some line searches.

Step 3. Let 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, and let 𝑔

𝑘+1
= 𝑔(𝑥

𝑘+1
); if ‖𝑔

𝑘
‖ ≤

𝜀, then stop.

Step 4. Compute 𝛽
𝑘
by (26) and generate 𝑑

𝑘+1
by (3).

Step 5. Set 𝑘 := 𝑘 + 1 and go to Step 2.

Wemake the following basic assumptions on the objective
functions.

Assumption A. (i) The level set Γ = {𝑥 ∈ 𝑅
𝑛
: 𝑓(𝑥) ≤ 𝑓(𝑥

1
)}

is bounded; namely, there exists a constant 𝐵 > 0 such that

‖𝑥‖ ≤ 𝐵, ∀𝑥 ∈ Γ. (28)

(ii) In some neighborhood𝑁 of Γ, 𝑓 is continuously dif-
ferentiable, and its gradient is Lipschitz continuous; namely,
there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑁. (29)

Under the above assumptions of 𝑓, there exists a constant
𝛾 ≥ 0 such that

󵄩󵄩󵄩󵄩∇𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑥 ∈ Γ. (30)

The step length 𝛼
𝑘
in Algorithm 1 (MDL) is obtained by

some line search scheme. In conjugate gradient methods, the
strong Wolfe-Powell conditions; namely,

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) − 𝑓 (𝑥

𝑘
) ≤ 𝛿𝛼

𝑘
𝑔
𝑇

𝑘
𝑑
𝑘
, (31)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑔(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)
𝑇
𝑑
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
≤ −𝜎𝑔

𝑇

𝑘
𝑑
𝑘
, (32)

where 0 < 𝛿 < 𝜎 < 1, are often imposed on the line search
(SWP).

3. Convergence Analysis

Under Assumption A, based on the Zoutendijk condition in
[1], for any conjugate gradient method with the strongWolfe-
Powell line search, Dai et al. in [13] proved the following
general result.

Lemma 2. Suppose that Assumption A holds. Consider any
conjugate gradient method in the form (2)-(3), where 𝑑

𝑘
is a

descent direction and 𝛼
𝑘
is obtained by the strongWolfe-Powell

line search. If

∑

𝑘≥1

1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
= ∞. (33)

One has that

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (34)
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If the objective functions are uniformly convex, we can prove
that the norm of 𝑑

𝑘
generated by Algorithm 1 (MDL) is

bounded previously. Thus, by Lemma 2 one immediately has
the following result.

Theorem 3. Suppose that Assumption A holds. ConsiderMDL
method, where 𝑑

𝑘
is a descent direction and 𝛼

𝑘
is obtained by

the strong Wolfe-Powell line search. If the objective functions
are uniformly convex, namely, there exists a constant 𝜇 > 0

such that

(∇𝑓 (𝑥) − ∇𝑓 (𝑦))
𝑇
(𝑥 − 𝑦) ≥ 𝜇

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ Γ. (35)

One has that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (36)

Proof. It follows from (35) that

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

≥ 𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2
. (37)

By (3), (26), (29), (30), and (37), we have

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨󵄨
𝛽
MDL
𝑘

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
𝑔
𝑇

𝑘
(𝑔
𝑘
− (

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 /

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩) 𝑔𝑘−1 − 𝑡𝑠𝑘−1)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩

+
𝑔
𝑇

𝑘
(𝑔
𝑘
− 𝑔
𝑘−1

+ 𝑔
𝑘−1

− (
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 /
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩) 𝑔𝑘−1 − 𝑡𝑠𝑘−1)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑔𝑘− 𝑔𝑘−1

󵄩󵄩󵄩󵄩+
󵄩󵄩󵄩󵄩𝑔𝑘−1 (1−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 /

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩+ 𝑡

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑑𝑘−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨 + 𝑡

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 (2𝐿

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 + 𝑡

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩)

𝜇𝛼
𝑘−1

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾(1 +
2𝐿 + 𝑡

𝜇
) = 𝛾𝜇

−1
(𝜇 + 2𝐿 + 𝑡) ,

(38)

which implies the truth of (33). Therefore, by Lemma 2 we
have (34), which is equivalent to (36) for uniformly convex
functions. The proof is completed.

In order to prove the convergence of the MDL method,
we need to state some properties of 𝛽MHS

𝑘
.

Lemma4. In any conjugate gradientmethods, if the parameter
𝛽
𝑘
is computed by (23), namely, 𝛽

𝑘
= 𝛽

MHS
𝑘

, and 𝛼
𝑘
is

determined by strongWolfe-Powell line search of (31) and (32),
then

𝛽
MHS
𝑘

≥ 0. (39)

Proof. By SWP condition (32), we have 𝑑𝑇
𝑘−1

𝑦
𝑘−1

≥ 𝜎𝑔
𝑇

𝑘−1

𝑑
𝑘−1

− 𝑔
𝑇

𝑘−1
𝑑
𝑘−1

≥ 0, since 𝜎 < 1 and 𝑔𝑇
1
𝑑
1
= −‖𝑔

1
‖
2
< 0.

So we have

𝛽
MHS
𝑘

=
𝑔
𝑇

𝑘
(𝑔
𝑘
− (

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 /

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩) 𝑔𝑘−1)

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

(1 − cos 𝜃
𝑘
) ≥ 0.

(40)

The proof is completed.

In addition, we can also prove that, in conjugate gradient
method of forms (2)-(3), if 𝛽

𝑘
is computed by 𝛽MDL

𝑘
(26) and

𝛼
𝑘
is determined by strongWolfe-Powell line search, then the

search direction 𝑑
𝑘
satisfies the sufficient descent condition

(21).

Theorem 5. In any conjugate gradient methods, in which the
parameter 𝛽

𝑘
is computed by (26), namely, 𝛽

𝑘
= 𝛽

MDL
𝑘

, and 𝛼
𝑘

is determined by strong Wolfe-Powell line search of (31) and
(32), if 𝜎 < 1/3, then the search direction 𝑑

𝑘
satisfied the

sufficient descent condition (21).

Proof. We prove this theorem by induction. Firstly, we prove
the descent condition 𝑑𝑇

𝑘
𝑔
𝑘
< 0 as follow.

Since 𝑔𝑇
1
𝑑
1
= −‖𝑔

1
‖
2
< 0, supposing that 𝑔𝑇

𝑖
𝑑
𝑖
< 0 holds

for 𝑖 ≤ 𝑘 − 1, we deduce that the descent condition holds by
proving that 𝑔𝑇

𝑖
𝑑
𝑖
< 0 holds for 𝑖 = 𝑘 as follow.

By SWP condition (32), we have 𝑑
𝑇

𝑘−1
𝑦
𝑘−1

≥ (𝜎 −

1)𝑔
𝑇

𝑘−1
𝑑
𝑘−1

> 0. Combining (3) and (26), we have

𝑔
𝑇

𝑘
𝑑
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩

2
= − 1 +

(1 − cos 𝜃
𝑘
)

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

𝑔
𝑇

𝑘
𝑑
𝑘−1

− 𝑡 ∗

(𝑔
𝑇

𝑘
𝑑
𝑘−1

)
2

𝛼
𝑘−1

(𝑑
𝑇

𝑘−1
𝑦
𝑘−1

)
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩

2

≤ − 1 + 2
−𝜎𝑔
𝑇

𝑘−1
𝑑
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

≤ − 1 + 2
−𝜎𝑔
𝑇

𝑘−1
𝑑
𝑘−1

(𝜎 − 1) 𝑔
𝑇

𝑘−1
𝑑
𝑘−1

≤
−1 + 3𝜎

1 − 𝜎
< 0.

(41)

Equation (41) means that descent condition holds.
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Secondly, we prove the following sufficient descent con-
dition.

Set 𝑐 = 1 − 2𝜎/(1 − 𝜎); since the restriction 𝜎 < 1/3, we
have 0 < 𝑐 < 1. Combining 𝑔𝑇

1
𝑑
1
= −‖𝑔

1
‖
2 and (41), the

sufficient descent condition (21) holds immediately.

ByTheorem 5, we can prove the following Lemma 6.

Lemma 6. Suppose that Assumption A holds. Consider MDL
method, where𝛼

𝑘
is obtained by strongWolfe-Powell lien search

with 𝜎 < 1/3. If there exists a constant 𝛾 > 0 such that

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 ≥ 𝛾, ∀𝑘 ≥ 1, (42)

then 𝑑
𝑘

̸= 0 and

∑

𝑘≥2

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩

2
< ∞, (43)

where 𝑢
𝑘
= 𝑑
𝑘
/‖𝑑
𝑘
‖.

Proof. Firstly, note that 𝑑
𝑘

̸= 0; otherwise, (21) is false. There-
fore, 𝑢

𝑘
is well defined. In addition, by relation (42) and

Lemma 2, we have

∑

𝑘≥1

1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2
< ∞. (44)

Now, we divide formula 𝛽MDL
𝑘

into two parts as follows:

𝛽
1

𝑘
=

𝑔
𝑇

𝑘
𝑦
∗

𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, 𝛽
2

𝑘
= −𝑡

𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

, (45)

and define

𝑟
𝑘
:=

𝜗
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

, 𝛿
𝑘
:= 𝛽
1

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

, (46)

where 𝜗
𝑘
= −𝑔
𝑘
+ 𝛽
2

𝑘
𝑑
𝑘−1

.
Then by (3) we have for all 𝑘 ≥ 2,

𝑢
𝑘
= 𝑟
𝑘
+ 𝛿
𝑘
𝑢
𝑘−1

. (47)

Using the identity ‖𝑢
𝑘
‖ = ‖𝑢

𝑘−1
‖ = 1 and (47) we can obtain

󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿𝑘𝑢𝑘−1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩 , (48)

using the condition 𝛿
𝑘
= 𝛽

MHS
𝑘

(‖𝑑
𝑘−1

‖/‖𝑑
𝑘
‖) ≥ 0, the triangle

inequality, and (48), it follows that

󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩(1 + 𝛿) 𝑢𝑘 − (1 + 𝛿) 𝑢𝑘−1
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝛿𝑘𝑢𝑘−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝛿𝑘𝑢𝑘 − 𝑢𝑘−1

󵄩󵄩󵄩󵄩

= 2
󵄩󵄩󵄩󵄩𝑟𝑘

󵄩󵄩󵄩󵄩 .

(49)

On the other hand, the line search condition (32) gives

𝑦
𝑇

𝑘−1
𝑑
𝑘−1

≥ (𝜎 − 1) 𝑔
𝑇

𝑘−1
𝑑
𝑘−1

. (50)

Equations (50), (32), and (21) imply that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘
𝑑
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜎

1 − 𝜎
. (51)

It follows from the definition of 𝜗
𝑘
, (51), (28), and (30) that

󵄩󵄩󵄩󵄩𝜗𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝛿𝑘
󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘
𝑠
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑑𝑘−1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛿𝑘

󵄩󵄩󵄩󵄩 + 𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔
𝑇

𝑘
𝑑
𝑘−1

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩

≤ 𝛾 + 𝑡
𝜎

1 − 𝜎
2𝐵.

(52)

So, we have

∑
󵄩󵄩󵄩󵄩𝑢𝑘 − 𝑢𝑘−1

󵄩󵄩󵄩󵄩

2
≤ 4∑

󵄩󵄩󵄩󵄩𝑟𝑘
󵄩󵄩󵄩󵄩

2
≤ 4∑

𝜗
2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

≤ 4(𝛾 + 𝑡
𝜎

1 − 𝜎
2𝐵)

2

∑
1

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩

2

< ∞.

(53)

The proof is completed.

Gilbert and Nocedal [5] introduced property (∗) which
is very important for the convergence properties of the con-
jugate gradient methods. We are going to show that method
with 𝛽MDL

𝑘
possesses such property (∗).

Property (∗). Consider a method of forms (2) and (3).
Suppose that

0 < 𝛾 ≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 ≤ 𝛾, ∀𝑘 ≥ 1. (54)

We say that themethodhas property (∗), if for all 𝑘, there exist
constants 𝑏 > 1, 𝜆 > 0 such that |𝛽

𝑘
| ≤ 𝑏 and if ‖𝑠

𝑘−1
‖ ≤ 𝜆 we

have |𝛽
𝑘
| ≤ 1/2𝑏.

In fact, by (50), (21), and (42), we have

𝑑
𝑇

𝑘−1
𝑦
𝑘−1

≥ (𝜎 − 1) 𝑔
𝑇

𝑘−1
𝑑
𝑘−1

≥ 𝑐 (1 − 𝜎)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩

2

≥ (1 − 𝜎) 𝑐𝛾
2
.

(55)

Using this, (28), (29), and (30) we obtain

󵄨󵄨󵄨󵄨󵄨
𝛽
MDL
𝑘

󵄨󵄨󵄨󵄨󵄨
≤
(2𝐿 + 𝑡)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑠𝑘−1

󵄩󵄩󵄩󵄩

(1 − 𝜎) 𝑐𝛾2
≤
2 (2𝐿 + 𝑡) 𝛾𝐵

(1 − 𝜎) 𝑐𝛾2
=: 𝑏. (56)

Note that 𝑏 can be defined such that 𝑏 > 1. Therefore, we can
say 𝑏 > 1. As a result, we define

𝜆 :=
(1 − 𝜎) 𝑐𝛾

2

2𝑏 (2𝐿 + 𝑡) 𝛾
, (57)

we get from the first inequality in (56) that if ‖𝑠
𝑘−1

‖ ≤ 𝜆, then

󵄨󵄨󵄨󵄨󵄨
𝛽
MDL
𝑘

󵄨󵄨󵄨󵄨󵄨
≤

(2𝐿 + 𝑡) 𝜆

(1 − 𝜎) 𝑐𝜆2
=

1

2𝑏
. (58)
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Let𝑁∗ denote the set of positive integers. For 𝜆 > 0 and
a positive integer Δ, denote

𝐾
𝜆

𝑘,Δ
:= {𝑖 ∈ 𝑁

∗
: 𝑘 ≤ 𝑖 ≤ 𝑘 + Δ − 1,

󵄩󵄩󵄩󵄩𝑠𝑘−1
󵄩󵄩󵄩󵄩 > 𝜆} . (59)

Let |𝐾𝜆
𝑘,Δ
| denote the number of elements in 𝐾𝜆

𝑘,Δ
. From the

previous property (∗), we can prove the following lemma.

Lemma 7. Suppose that Assumption A holds. Consider MDL
method, where 𝛼

𝑘
is obtained by the strong Wolfe-Powell line

search in which 𝜎 < 1/3. Then if (42) holds, there exists 𝜆 > 0

such that, for any Δ ∈ 𝑁
∗ and any index 𝑘

0
, there is an index

𝑘 ≥ 𝑘
0
such that

󵄨󵄨󵄨󵄨󵄨
𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨
>
Δ

2
. (60)

The proof of this lemma is similar to the proof of Lemma
3.5 in [4]. In [4], authors proved that method with (19)
has this property, if the search direction 𝑑

𝑘
satisfies the

sufficient descent condition (21). In our paper, we do not
need this assumption, since the directions generated byMDL
method with strong Wolfe-Powell line search always possess
the sufficient descent condition (21). So, we omit the proof of
this lemma.

According to the previous lemmas and theorems, we can
prove the following convergence theorem for the MDL.

Theorem8. Suppose that Assumption A holds. ConsiderMDL
method, if 𝛼

𝑘
is obtained by strong Wolfe-Powell line search

with 𝜎 < 1/3. Then we have lim inf
𝑘→∞

‖𝑔
𝑘
‖ = 0.

Proof. We proceed by contradiction. If lim inf
𝑘→∞

‖𝑔
𝑘
‖ > 0,

then (42) must hold. Then the conditions of Lemmas 6 and 7
hold. Defining 𝑢

𝑖
= 𝑑
𝑖
/‖𝑑
𝑖
‖, we have for any indices 𝑙, 𝑘, with

𝑙 ≥ 𝑘,

𝑥
𝑙
− 𝑥
𝑘−1

=

𝑙

∑

𝑖=𝑘

𝑥
𝑖
− 𝑥
𝑖−1

=

𝑙

∑

𝑖=𝑘

𝛼
𝑖−1
𝑑
𝑖−1

=

𝑙

∑

𝑖=𝑘

𝑢
𝑖−1

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩

=

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 𝑢𝑘−1 +

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 (𝑢𝑖−1 − 𝑢𝑘−1) .

(61)

Equation (61), ‖𝑢
𝑖
‖ = 1, and (28) give

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑙 − 𝑥𝑘−1
󵄩󵄩󵄩󵄩 +

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢𝑘−1

󵄩󵄩󵄩󵄩

≤ 2𝐵 +

𝑙

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢𝑘−1

󵄩󵄩󵄩󵄩 .

(62)

Let 𝜆 > 0 be given by Lemma 7, and define Δ := ⌈8𝐵/𝜆⌉

to be the smallest integer not less than 8𝐵/𝜆. By Lemma 6, we
can find an index 𝑘

0
≥ 1 such that

∑

𝑖≥𝑘
0

󵄩󵄩󵄩󵄩𝑢𝑖−1 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩

2
≤

1

4Δ
. (63)

With this Δ and 𝑘
0
, Lemma 7 gives an index 𝑘 ≥ 𝑘

0
such that

󵄨󵄨󵄨󵄨󵄨
𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨
>
Δ

2
. (64)

For any index 𝑖 ∈ [𝑘, 𝑘+Δ−1], by Cauchy-Schwartz inequality
and (63),

󵄩󵄩󵄩󵄩𝑢𝑖 − 𝑢𝑘−1
󵄩󵄩󵄩󵄩 ≤

𝑖

∑

𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩

≤ (𝑖 − 𝑘 + 1)
1/2
(

𝑖

∑

𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
− 𝑢
𝑗−1

󵄩󵄩󵄩󵄩󵄩

2

)

1/2

≤ Δ
1/2
(
1

4Δ
)

1/2

=
1

2
.

(65)

From these relations (65) and (64) and taking 𝑙 = 𝑘 +Δ− 1 in
(62), we get

2𝐵 ≥
1

2

𝑘+Δ−1

∑

𝑖=𝑘

󵄩󵄩󵄩󵄩𝑠𝑖−1
󵄩󵄩󵄩󵄩 >

𝜆

2

󵄨󵄨󵄨󵄨󵄨
𝐾
𝜆

𝑘,Δ

󵄨󵄨󵄨󵄨󵄨
>
𝜆Δ

4
. (66)

Thus, Δ < 8𝐵/𝜆, which contradicts the definition of Δ. The
proof is completed.

4. Numerical Results

From (26) and (27), the MDL method can be considered as

(i) form 1: a modification form of DL method;
(ii) form 2: a modification form of MHS method;
(iii) form 3: a modification form of DY method.

In form 1, the 𝛽HS
𝑘

in 𝛽DL
𝑘

is replaced by 𝛽MHS
𝑘

. By this mod-
ification, we can guarantee the nonnegativity restrictions in
DL method. In form 2, 𝛽MDL

𝑘
is obtained by 𝛽

MHS
𝑘

adding
an adjusting term −𝑡(𝑔

𝑇

𝑘
𝑠
𝑘−1

/𝑦
𝑇

𝑘−1
𝑑
𝑘−1

) which contains some
Hessian information of the objective function. In form 3,
𝛽
MDL
𝑘

= 𝛽
DY
𝑘
(1−cos 𝜃

𝑘
)−𝑡(𝑔

𝑇

𝑘
𝑠
𝑘−1

/𝑑
𝑇

𝑘−1
𝑦
𝑘−1

) shows that 𝛽MDL
𝑘

is obtained by multiplying 𝛽DY
𝑘

with (1 − cos 𝜃
𝑘
) and adding

the second term −𝑡(𝑔
𝑇

𝑘
𝑠
𝑘−1

/𝑦
𝑇

𝑘−1
𝑑
𝑘−1

).
From the above convergence analysis, we know thatMDL

method has stronger convergent properties than DLmethod,
and similar convergent properties withMHSmethod andDY
method. So, in this section, we test the following four CG
methods:

(i) MDL method: method of the forms (2) and (3), in
which 𝛽

𝑘
is computed by 𝛽MDL

𝑘
(26);

(ii) DLmethod:method of the forms (2) and (3), in which
𝛽
𝑘
is computed by 𝛽DL

𝑘
(19);

(iii) MHS method: method of the forms (2) and (3), in
which 𝛽

𝑘
is computed by 𝛽MHS

𝑘
(23);

(iv) DYmethod:method of the forms (2) and (3), inwhich
𝛽
𝑘
is computed by 𝛽DY

𝑘
(9).
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Table 1: Numerical results.

Problem Dim MDL DL MHS DY
ROSE 2 35/349/83 F 38/267/91 63/800/106
FROTH 2 18/88/29 9/25/18 15/84/26 16/38/26
BADSCP 2 28/275/64 36/510/96 42/362/96 F
BADSCB 2 26/446/48 F 28/452/50 F
BEALE 3 16/87/27 11/81/22 14/83/25 47/193/74
JENSAM 2 11/31/21 F 11/31/21 11/31/21
HELIX 3 49/347/81 28/164/54 47/390/73 80/406/126
BARD 3 18/38/26 24/145/37 18/86/26 48/148/77
GAUSS 3 4/9/5 3/7/4 4/9/5 4/9/5
SING 4 134/501/209 78/396/124 111/411/172 650/3254/1104
WOOD 4 102/613/182 179/865/306 207/1352/365 F
KOWOSB 4 39/178/66 46/383/72 53/259/88 462/1760/796
BIGGS 6 18/279/25 85/564/14 20/286/31 210/644/342
OSB2 11 268/1001/445 185/888/293 186/701/310 F
WATSON 20 1455/3587/2274 1426/4240/2255 1922/4843/3018 548/1480/864
ROSEX 8 36/446/90 26/421/62 38/362/93 63/764/100

50 46/548/101 32/469/84 44/412/101 86/707/146
100 45/459/99 23/445/57 46/414/102 71/856/112

SINGX 4 134/501/209 78/396/124 111/411/172 650/3254/1104
PEN1 2 5/18/12 12/182/34 5/18/12 5/18/12
PEN2 4 10/82/26 12/89/27 11/133/29 32/167/57

50 131/764/254 405/1453/683 136/1056/256 121/724/242
VARDIM 2 3/9/7 3/9/7 3/9/7 3/9/7

50 10/52/36 10/52/36 10/52/36 10/52/36
TRIG 3 13/129/27 11/82/25 15/225/27 162/974/267

50 38/320/70 38/222/68 38/225/71 206/1662/290
100 48/340/90 43/425/76 48/294/90 225/3077/286

BV 3 9/17/11 12/25/16 11/20/13 13/27/18
10 64/171/97 50/148/81 64/172/99 59/163/93

IE 200 5/59/7 6/13/8 5/59/7 6/61/8
500 5/11/7 6/13/8 6/13/8 6/13/8

TRID 3 14/33/18 10/26/17 14/33/18 15/84/21
200 31/68/39 30/66/37 31/68/39 36/78/42

BAND 3 7/64/12 9/20/13 7/64/12 7/64/12
50 19/670/26 15/278/23 19/670/26 F
100 18/712/27 16/373/26 18/712/27 F
500 18/677/26 16/339/27 18/677/26 F

LIN 1000 1/3/3 1/3/3 1/3/3 1/3/3
LIN1 10 1/3/3 1/3/3 1/3/3 1/3/3

The step length 𝛼
𝑘
in all methods is determined such that the

strong Wolfe-Powell conditions (31) and (32) hold with 𝛿 =

0.01 and 𝜎 = 0.1.
The test problems are drawn from [14]. The numerical

results of our tests are reported in Table 1.
The column problem represents the problem name in

[14], Dim represents the dimension of the problems. The
numerical results are given in the form of 𝐼/𝐹/𝐺, where 𝐼,
𝐹, and 𝐺 denote the numbers of iterations, function eval-
uations and gradient evaluations, respectively. The stopping
condition is ‖𝑔

𝑘
‖ ≤ 10

−6. Since we want to compare the

performance of the different methods, in the numerical
results, we omit the problems if all the four methods perform
equally. The notation 𝐹 means that, for this problem, the
corresponding method fails.

5. Conclusions

In this paper, based on 𝛽
DY
𝑘

and 𝛽
DL
𝑘
, a new formula is

proposed to compute the parameter 𝛽
𝑘
of the conjugate

gradient methods.Themainmotivations are to improve both
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the convergence properties and numerical behavior of the
conjugate gradient method. For general conjugate gradient
methods, in order to get the global convergence results,
the methods are required to possess the following major
properties:

(1) the generated directions 𝑑
𝑘
are descent directions;

(2) the parameters 𝛽
𝑘
are nonnegative.

In addition, to ensure that the methods have robust and
efficient numerical behavior, the parameter 𝛽

𝑘
needs to

approach zero, when the small step 𝑠
𝑘
occurs.

From the convergence analysis of this paper, we known
that the directions 𝑑

𝑘
generated by MDL method are descent

directions, which is not true for DY or DL methods, and
the proposedMDLmethod is globally convergent for general
functions. In the previous section, we compare the numerical
performance of the MDL method with the DY, MHS, and
DL methods. From the convergence analysis and numerical
results, comparing with the DL, DY, and MHS method, we
can have the following.

(a) MDL method versus DL method: from the compu-
tational point of view, for most of the test prob-
lems, MDL method performs quite similarly with
DL method. There are 15 problems in which MDL
method outperforms the DLmethod and 18 problems
in which DL method outperforms the MDL method.
But, from the convergent point of view, the MDL
method outperforms the DL method.

(b) MDL method versus DY method: the convergence
properties ofMDLmethod are similar to DYmethod.
By comparing the numerical results of MDL method
with DY method, there are 27 test problems in which
MDL method outperforms the DY method and only
4 test problems in which DY method outperforms
the MDL method. Therefore, we could say that MDL
method is much better than the DY method in
numerical behavior.

(c) MDL method versus MHS method: they possess
similar convergence properties; the numerical results
show thatMDLmethod performs little better than the
MHS method.
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A new vibration model is built by introducing the head-cover vibration transfer path based on a previous analysis of the vertical
vibration model for hydropower station units and powerhouses. This research focuses on disturbance- and parameter-related
transfer paths in a practical situation. In a complex situation, the application of the stochastic perturbation method is expanded
using an algebra synthesis method the Hadamard product, and theoretical analyses, and numerical simulations of transfer
paths in the new vibration model are carried out through the expanded perturbation method. The path transfer force, the path
transmissibility, and the path disturbance ranges in the frequency domain are provided. The results indicate that the methods
proposed in this study can efficiently reduce the disturbance range and can accurately analyze the transfer paths of hydraulic-source
vertical vibration in hydropower stations.

1. Introduction

Hydraulic vibration is the main vibration source in hydro-
power station units and powerhouses. The vertical vibration
in units is usually caused by hydraulic pressure fluctuations or
other loads on the water turbine’s flow passage components.
Field and model tests have shown that there are three main
vibration transfer paths running from thewater turbine to the
powerhouse [1]: (1) runner-shaft-bearing-fixed components
(machine frame, head-cover-powerhouse;) (2) flow pressure-
spiral case-powerhouse; and (3) runner-runner negative
pressure region-head cover-powerhouse. Previous studies
concerning the vertical vibration produced by a hydraulic
source mainly focus on path (1), while the effects of paths
(2) and (3) are usually ignored [2]. However, as the scale and
capacity of hydropower stations increase, the flow passage
area of the head-cover system continually increases, with
corresponding increases in the vibration of the head-cover
system. Therefore, the influence of the head-cover system
becomes more important in the hydraulic vibration transfer
path, and ignoring path (3) will produce a larger error.
Therefore, it is imperative that the contribution of path (3)

should be analyzed; more specifically, the contribution of the

vibration of the head-cover system of the hydropower station
vertical vibration transfer should be analyzed. However, due
to the presence of randomness, it is difficult to clearly and
accurately describe the contribution of this transfer path to
the structural vibration.

Theoretical analyses of the vibration transfer path can
be classified as a stochastic structural system problem.
At present, the Monte-Carlo numerical simulation method
(MCSM) [3, 4] and the perturbation method [5–7] are the
most popular analysismethods.MCSM is used less frequently
because of the large amount of computation required when
dealing with a large-scale structure. Conversely, the pertur-
bation method is applied by many researchers in various
fields. Collins and Thompson [8] initially employed the per-
turbation method to analyze stochastic dynamical systematic
characteristics in 1969; the perturbation method was later
employed in a static analysis by Hisada and Nakagiri [9] and
in a dynamic analysis by Liu et al. [10]. Kronecker algebra
was introduced to the expansion of the perturbation method
by Vetter [11]. After several decades of development, relevant
studies on perturbation theory were quite abundant. The
primary methods included the L-P method [12], the multiple
scale method [13, 14], the average method [15], the KBM



2 Journal of Applied Mathematics

(Krylov-Bogoliubov-Mitropolsky) method [15, 16] and the
singular perturbation method [17, 18]. Recent developments
include the homotopy perturbation method [19]. In the
analysis of transfer paths combined with the perturbation
method, Zhang et al. built a theoretical model for vibration
transfer path analysis by implementing the perturbation
method with Kronecker algebra in the static analysis [20],
the dynamic analysis [21] and the reliability analysis [22, 23].
This model has been used for the analysis and design of
mechanical components. Computations of the transfer path
considering multi-vibration sources have been carried out by
Zhao andZhang [24] based onZhang’s research.These results
have been used for isolation vibration analysis. The above
research studies focus on additive disturbance analysis. Using
multiplicative disturbance analysis, Gao et al. separately
analyzed the dynamical characteristics of a truss structure
by using the interval factor method [25], the random factor
method [26], and nonstationary random excitation [27]. Ma
et al. conducted a dynamical characteristic analysis of a linear
[28] and nonlinear [29] truss structure using fuzzy variables.
In 2010, a two-factor method was proposed by Ma et al. [30],
which considers two multiplicative disturbances. However,
because of the limitations of these methods, they have not
been applied to transfer path analysis with respect to a multi-
plicative disturbance. Furthermore, previous studies have not
jointly analyzed these two types of disturbances. In practice,
the two types of disturbances always exist together, and
there are some correlations between these two disturbances.
There are some correlations among the parameters of the
structure as well. Thus, the previous studies were not based
on an accurate analysis because they only considered a single
disturbance, neglected the correlations betweendisturbances,
or neglected the correlations among parameters.Therefore, it
is necessary to jointly analyze the problem of the vibration
transfer path of time-invariable parameters for the two types
of disturbances and their related parameters. Only a few
studies have reported on the two types of correlations in
perturbation theory. Previous studies on correlations ignored
the two types of correlation or converted relevant variables
into irrelevant variables. These analyses did not consider the
effects of correlations and thus were not rigorous. At present,
only a few researchers have attempted to explore this aspect.
Some examples include studies on molecular chemistry [31],
nuclear physics [32], and vocal vibration [33, 34]. Of these
studies, only the study on vocal vibration considered the
correlation parameters, but it did not involve the perturbation
method. At present, there are few available studies on struc-
tural analysis. Pirrotta [35] conducted a perturbation analysis
of delta-correlated processes, but he did not study the correla-
tion between parameters; Ambrogio [36] described the cor-
relations by considering the correlation coefficient between
additive and multiplicative disturbances for one parameter,
but he also did not refer to the correlation between param-
eters. Husain et al. [37] solved the problem of parameter
correlation, but they only considered computational results
and did not extend their results to improve the perturbation
method. Khodaparast et al. [38] corrected the structure
variation model, but they ignored the correlation between
modified parameters and measurement values. This study

focuses on the application of perturbation theory with two
types of correlation from the perspective of structure analysis.

Hydropower station units and powerhouses are large-
scale structures. Most of the parameters’ disturbances should
be less than 10% of theirmean values in such a large structure.
Therefore, problems regarding hydropower stations can be
solved by the perturbation method. First, the head-cover
system is introduced, which has the same vibration source
as a path (1); the elastic foundation constraint is selected;
and a new vibration model is built on the basis of the
previous vertical vibration model. Furthermore, a method
for solving the path transfer force is proposed using the
general method of dynamic analysis. Second, for the test
signal, correlations between the two types of disturbances and
correlations between the parameters are considered based
on the single disturbance vibration path analysis. By using
the coefficient of variation algebra synthesis method [39],
Kronecker algebra [11], and the Hadamard product [40],
gradient-sorting estimations of the transfer paths in the fre-
quency domain are carried out, andmethods for determining
the transfer force and transmissibility and their disturbances
are proposed. Finally, the method described in this paper is
verified using the model of a large hydropower station.

2. Analysis Model with the Introduction of
a Head-Cover System

For a hydroelectric generating unit, regardless of whether
it has a suspension or umbrella structure, the weight of its
rotating parts is successively transferred to the reinforced
concrete machine foundation through the thrust bearing,
frame (suspension units containing the stator frame), and
sole screw.The head-cover system is always fixed on the base
ring strengthening plate, and the head-cover system and the
strengthening plate are considered to be one part. Taking a
vertical vibration characteristic analysis of the umbrella unit
as an example, the model contains a shaft system, thrust
bearing, and lower bracket (see Figure 1).The heave shaft can
be simplified as a massless elastic continuous beam, and then
itsmass can be regarded as amass attached to three nodes,𝑚

1
,

𝑚
2
, and 𝑚

3
. 𝑚
1
can be defined as the mass of the excitation

rotor and the shaft, the half shafting mass, which is measured
from the heavy shaft top to the rotor frame, and anothermass
added on top of the heavy shaft; 𝑚

2
can be defined as themass

of the central body of the rotor frame, the half mass of the
whole gate arm, and the half mass of the whole shaft; and𝑚

3

can be defined as the mass of the water, turbine runner, the
additional mass of water and the half shafting mass, which
is measured from the rotor frame to the hydraulic turbine.
The rotor gate arm can be simplified as a massless elastic
continuous rod, and then its mass can be assigned to the
runner margin and the central body of the rotor frame. 𝑘

4

can be defined as the sum of the vertical stiffness of the whole
gate arm, and 𝑚

4
can be defined as the lumped mass of the

runner margin. The outer end of the lower bracket is fixed to
the concrete foundation.The lower bracket gate arm can then
be simplified as a gravity-free beam if the coupling effect of
the foundation is ignored. 𝑘

52
can be defined as the vertical
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Figure 1: Simplified model of the coupling system between the
umbrella unit and the powerhouse.

stiffness of the lower bracket gate arm. 𝑚
5
can be defined as

the lumped mass of one end of the lower bracket, which is
close to the heavy shaft, and the half mass of the gate arm;
𝑚
5
can be connected to 𝑚

2
by the thrust bearing, which is

simplified by an equivalent stiffness 𝑘
51
.

With the introduction of the head-cover system, the
vibration transfer path is as follows: first, the hydraulic
vertical vibration is transferred to the head cover by the heavy
shaft seal and guide bearing in the water turbine runner
chamber; next, the vibration is transferred from the head
cover to the spiral case base ring strengthening plate, which
is connected to the outer end of the head cover; and finally,
the vibration is transferred to the machine foundation by
the wrapped concrete outside the spiral case. Ignoring the
coupling effect, the control parts and other additional parts

on the head cover can be regarded as the attachedmass of the
head-cover system. As the lumped mass is close to the heavy
shaft, 𝑚

6
can be defined as the mass of the central body and

the halfmass of thewhole head-cover system.Thehead-cover
systemcan be simplified as a gravity-free beam, and 𝑘

62
can be

defined as the vertical stiffness.𝑚
6
can be connected to𝑚

3
by

the sealing spring, which lies between the head-cover struc-
ture and the water turbine runner.The vertical stiffness of the
connection can be simplified by an equivalent stiffness 𝑘

61
.

𝑘
51

is the series stiffness of the elastic oil tank stiffness
(thrust bearing support system) and the oil film stiffness. 𝑘

61

is the series stiffness of the sealing structure stiffness and
the clearance water stiffness. These two parameters exhibit a
linear relationship because the unit’s axial water thrust varies
with the unit’s conditions. However, 𝑘

51
and 𝑘
61
are simplified

as a single stochastic variable in this study.
In the process of examining the unit’s vertical vibration,

the machine foundation pier can be regarded as an elastic
foundation.The structure can be treated as a single node,𝑚

7
,

which ranges from the machine foundation pier to the con-
crete floor in the turbine layer. The structure can be treated
as a single node, 𝑚

8
, which ranges from the turbine layer to

the foundation. The stiffness of this structure is replaced by
the equivalent stiffness, which is based on the strengthening
plate, spiral structure, and concrete structure. Thus, the
hydropower station base is treated by dividing it into two
nodes at the connection of the head-cover system and the
hydropower station base, where 𝑘

62
is only connected to 𝑚

8
.

For the entire model, the form and meaning of the
dampness matrix are similar to those of the stiffness matrix.
Assuming that the system is linear, the differential equation
of the vibration is found from the Lagrange equation:

M ̈u + C ̇u + Ku = F (𝑡) . (1)

By merging these dynamical balance equations for the
shaft, the rotor, the lower bracket, the head-cover system, and
the machine foundation pier, an equation with 8 degrees of
freedom and 26 parameters can be obtained, and the total
stiffness matrix can be written as

K =

(
(
(
(
(

(

𝑘
1

−𝑘
1

0 0 0 0 0 0

−𝑘
1

𝑘
1
+ 𝑘
3
+ 𝑘
4
+ 𝑘
51

−𝑘
3

−𝑘
4

−𝑘
51

0 0 0

0 −𝑘
3

𝑘
3
+ 𝑘
61

0 0 −𝑘
61

0 0

0 −𝑘
4

0 𝑘
4

0 0 0 0

0 −𝑘
51

0 0 𝑘
51

+ 𝑘
52

0 −𝑘
52

0

0 0 −𝑘
61

0 0 𝑘
61

+ 𝑘
62

0 −𝑘
62

0 0 0 0 −𝑘
52

0 𝑘
52

+ 𝑘
7

−𝑘
7

0 0 0 0 0 −𝑘
62

−𝑘
7

𝑘
62

+ 𝑘
7
+ 𝑘
8

)
)
)
)
)

)

. (2)

The total mass matrix is obtained from the lumped mass:

M = diag {𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
, 𝑚
5
, 𝑚
6
, 𝑚
7
, 𝑚
8
} . (3)

Generally, the characteristics of the vertical vibration
source in the hydropower station are unique position, simple

contact surface with structure, and few ingredients. Con-
versely, the characteristics of the lateral (radial) vibration
are multipositions, strong nonlinear contact surface, and
complex excitation. For simplifying the model and the cal-
culation, the total structure of the unit’s powerhouse is con-
sidered as suffering vertical harmonic excitation.The vertical
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harmonic excitation is located on the water turbine runner,
and the response of the total structure is in a steady state. In
addition, the initial phase remains constant throughout the
whole process. Setting the steady-state response as 𝑢

𝑖
(𝑡) =

𝑈
𝑖
𝑒
𝑖(𝜔𝑡+𝜑

𝑖
) and 𝑈

𝑖
= 𝑈
𝑖
𝑒
𝑖𝜑
𝑖 yields

𝑢
𝑖 (𝑡) = 𝑈

𝑖
𝑒
𝑖𝜔𝑡

, ̇𝑢
𝑖 (𝑡) = 𝑖𝜔𝑈

𝑖
𝑒
𝑖𝜔𝑡

,

̈𝑢
𝑖 (𝑡) = −𝜔

2
𝑈
𝑖
𝑒
𝑖𝜔𝑡

,

(4a)

U = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
, 𝑢
7
, 𝑢
8
}
𝑇
, (4b)

F (𝑡) = {0, 0, 𝐹
0
𝑒
𝑖𝜔𝑡

, 0, 0, 0, 0, 0}
𝑇

. (4c)

Substituting (4a)–(4c) into (1) gives the dynamical bal-
ance equation of the hydropower station’s vertical vibration
with the head-cover system in the frequency domain:

(−𝜔
2M + 𝑖𝜔C + K)U = F (𝑡) . (5)

The response vector U at each node of the structure was
obtained by numerical calculations. 𝐹zhou and 𝐹ding denote
the forces that are transferred to the machine foundation pier
from thewater turbine by the shaft system and the head-cover
system, respectively, and can be written as

𝐹zhou = 𝑘zhou (𝑢3 − 𝑢
7
) + 𝑐zhou ( ̇𝑢

3
− ̇𝑢
7
)

= (𝑘zhou + 𝑖𝜔𝑐zhou) (𝑈3 − 𝑈
7
) 𝑒
𝑖𝜔𝑡

,

(6a)

𝐹ding = 𝑘ding (𝑢3 − 𝑢
7
) + 𝑐ding ( ̇𝑢

3
− ̇𝑢
7
)

= (𝑘ding + 𝑖𝜔𝑐ding) (𝑈3 − 𝑈
7
) 𝑒
𝑖𝜔𝑡

.

(6b)

In (6a)–(6b), 𝑘zhou and 𝑐zhou denote the path stiffness
and the path dampness of the vibration path through the
shaft system, respectively. Similarly, 𝑘ding and 𝑐ding denote the
path stiffness and the path dampness through the head-cover
system, respectively. When calculating the path stiffness and
dampness of the shaft system, 𝑚

1
and 𝑚

4
are treated as

dynamic vibration absorbers with dampness.

3. Vibration Path Sorting Considering Two
Types of Correlations

In the analysis of a hydropower station, parameters such
as the stiffness, mass, and dampness are attributed to the
multiplicative disturbances arising from the material prop-
erties, manufacturing technology, and other factors. These
parameters, obtained by measurement, are attributed to the
additive disturbances due to the testing noise and envi-
ronmental noise. Furthermore, because the testing method
and environment are the same for every parameter, the
two disturbances of each parameter are interrelated. These
parameters are also interrelated by means of continuous
structure discretization.

Given the factors mentioned above, the mass, stiffness,
and dampness are described as a random vector a with 𝑛

random variables, where every random variable involves two

types of disturbances.When the variable disturbance is lower
than 15% of the mean value, the stochastic variable can be
expressed as

𝑎
𝑖
= 𝑎
1

𝑖
𝑎
𝑑

𝑖
+ 𝑎
2

𝑖
. (7)

In (7), 𝑎
𝑖
denotes the 𝑖th element in the random vector a.

𝑎
1

𝑖
and 𝑎

2

𝑖
denote the multiplicative and additive disturbance

of the random variable 𝑎
𝑖
, respectively. Assuming that their

mean values are 1 and 0, respectively, 𝑎𝑑
𝑖
denotes the deter-

ministic component of 𝑎
𝑖
, which represents the mean value

after multiple samplings.
According to the coefficient of variation algebra synthesis

method [40], calculating the mathematical expectation and
variance of (7) yields

𝐸
𝑎
𝑖

= 𝐸 [𝑎
1

𝑖
𝑎
𝑑

𝑖
+ 𝑎
2

𝑖
] = 𝐸 (𝑎

1

𝑖
𝑎
𝑑

𝑖
) + 𝐸 (𝑎

2

𝑖
) = 𝑎
𝑑

𝑖
,

𝜎
2

𝑎
𝑖

= Var (𝑎
𝑖
) = 𝐸 [(𝑎

𝑖
− 𝐸
𝑎
𝑖

)
2

]

= 𝐸 [((𝑎
1

𝑖
− 𝑎
𝑖
) 𝑎
𝑑

𝑖
+ 𝑎
2

𝑖
)
2

]

= (𝑎
𝑑

𝑖
)
2

𝜎
2

𝑎
1

𝑖

+ 𝜎
2

𝑎
2

𝑖

+ 2𝑎
𝑑

𝑖
Cov (𝑎1

𝑖
, 𝑎
2

𝑖
) ,

(8)

where

Cov (𝑎1
𝑖
, 𝑎
2

𝑖
) = 𝜌
𝑎
1

𝑖
,𝑎
2

𝑖

𝜎
𝑎
1

𝑖

𝜎
𝑎
2

𝑖

, (9)

where 𝜌
𝑎
1
,𝑎
2 is the correlation coefficient of the multiplicative

and additive disturbances contained in the parameter 𝑎. If
these parameters are interrelated, then

Cov (𝑎
𝑖
, 𝑎
𝑗
) = 𝜌
𝑎
𝑖
,𝑎
𝑗

𝜎
𝑎
𝑖

𝜎
𝑎
𝑗

, (10)

where 𝜌
𝑎
𝑖
,𝑎
𝑗

is the correlation coefficient of the random var-
iables 𝑎

𝑖
and 𝑎

𝑗
. Generally, if the random variables follow a

normal distribution, their linear transformations and multi-
plication will also follow a normal distribution. For example,
if the vector a follows a normal distribution, then the function
𝐹
𝑖
(a) will follow a normal distribution. Using the Taylor

expansion, expanding the transfer force 𝐹
𝑖
at the mean value

𝐹
𝑑

𝑖
yields

𝐹
𝑖
= 𝐹
𝑑

𝑖
+

𝜕𝐹
𝑑

𝑖

𝜕a𝑇
(a − a𝑑) + 𝑂 (a𝑝)

= 𝐹
𝑑

𝑖
+

𝜕𝐹
𝑑

𝑖

𝜕a𝑇
a𝑝 + 𝑂 (a𝑝) ,

(11)

where

a𝑝 = a − a𝑑 = (a1 − 1) a𝑑 + a2. (12)

Neglecting components of the second order and above,
the disturbance of the transfer force is

𝐹
𝑝

𝑖
=

𝑚

∑

𝑘=1

𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑘

𝑎
𝑝

𝑘
. (13)
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In (13), 𝜕𝐹𝑑
𝑖
/𝜕𝑎
𝑘
is the partial derivative of 𝐹

𝑖
with respect

to the random variable 𝑎
𝑘
, which is also the first-order

sensitivity of 𝑎
𝑘
. The covariance of 𝐹𝑝

𝑖
and 𝐹

𝑝

𝑗
is

Cov (𝐹
𝑖
, 𝐹
𝑗
) = 𝐸 [𝐹

𝑝

𝑖
𝐹
𝑝

𝑗
]

= 𝐸[

[

(

𝑚

∑

𝑘=1

𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑘

𝑎
𝑝

𝑘
)(

𝑚

∑

𝑙=1

𝜕𝐹
𝑑

𝑗

𝜕𝑎
𝑙

𝑎
𝑝

𝑙
)]

]

.

(14)

That is,

Cov (𝐹
𝑖
, 𝐹
𝑗
) =

𝑚

∑

𝑘=1

𝑚

∑

𝑙=1

𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑘

𝜕𝐹
𝑑

𝑗

𝜕𝑎
𝑙

𝐸 (𝑎
𝑝

𝑘
𝑎
𝑝

𝑙
)

=

𝑚

∑

𝑘=1

𝑚

∑

𝑙=1

𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑘

𝜕𝐹
𝑑

𝑗

𝜕𝑎
𝑙

Cov (𝑎
𝑘
, 𝑎
𝑙
) .

(15)

Equation (16) shows that Cov(𝐹
𝑖
, 𝐹
𝑗
) of the transfer force

𝐹
𝑖
and 𝐹

𝑗
can be expressed by Cov(𝑎

𝑘
, 𝑎
𝑙
) of the random

structure parameter:

Cov (𝐹
𝑖
, 𝐹
𝑗
) =

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑘

𝜕𝐹
𝑑

𝑗

𝜕𝑎
𝑙

𝜌
𝑎
𝑘
,𝑎
𝑙

𝜎
𝑎
𝑘

𝜎
𝑎
𝑙

. (16)

If 𝑖 = 𝑗,

𝜎
2

𝐹
𝑖

= Cov (𝐹
𝑖
, 𝐹
𝑖
) =

𝑚

∑

𝑘=1

𝑚

∑

𝑙=1

𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑘

𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑙

𝜌
𝑎
𝑘
,𝑎
𝑙

𝜎
𝑎
𝑘

𝜎
𝑎
𝑙

. (17)

According to Kronecker algebra [11], the corresponding
stochastic analysis theory and Hadamard product [41] yield

𝜎
2

𝐹
𝑖

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹
𝑑

𝑖

𝜕a𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[2]

(
󳨀⇀
𝜌 ∘ (𝜎a)

[2]
) , (18)

where the subscript [2] denotes the Kronecker power; that is,
𝑎
[2]

= 𝑎⊗𝑎; if 𝑎 is of order 𝑛×1, then 𝑎
[2] is of order 𝑛2 ×1. 󳨀⇀𝜌

is the stacking vector of the matrix of correlation coefficients,
which is also of order 𝑛

2
× 1. The symbol ∘ denotes the

Hadamard product. Therefore, 𝜎2
𝐹
𝑖

is of order 1 × 1.
The sensitivity matrix |𝜕𝐹

𝑑

𝑖
(𝑎)/𝜕a𝑇| of the transfer force

of each parameter is
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹
𝑑

𝑖

𝜕a𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐹
𝑑

𝑖

𝜕𝑎
1

⋅ ⋅ ⋅
𝜕𝐹
𝑑

𝑖

𝜕𝑎
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (19)

Substituting (19) into (18), the variance of the transfer
force 𝐹

𝑖
for each path can be calculated. Equation (11) only

involves the first-order Taylor expansion. A higher-order
Taylor expansion will improve the accuracy, but it involves
complicated mathematical calculations. Equation (18) shows
that the transfer force variance can be directly obtained
from the random variables’ numerical characteristics. The
calculations can thus be simplified because the sample is not
included in the mathematical operations. The correlations
between parameters are merely modified in (18) and do not

increase the number of calculations required. The transmis-
sibility is defined as the ratio of the amplitudes between the
transfer force and the vibration source excitation force:

𝛽
𝑖
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐹
𝑖

𝐹
0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (20)

Neglecting the disturbance of the excitation force 𝐹
0
,

based on the random variable algebra synthesis method, the
expectation, variance, and transfer coefficient of the trans-
missibility can be written as

𝐸
𝛽
= 𝐸 [𝛽 (𝑎)] =

𝐸 (𝐹
𝑡
)

𝐸 (𝐹
0
)
, (21a)

𝜎
2

𝛽
=

𝐸[𝐹
𝑖
]
2

𝐸[𝐹
0
]
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Var [𝐹
𝑖
]

[𝐸 (𝐹
𝑖
)]
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (21b)

𝜃 =
𝐸
𝛽

𝜎
𝛽

. (21c)

The result of a random variable that follows a normal
distribution divided by a constant also follows a normal
distribution. 𝐸[𝐹

0
] and 𝐸[𝐹

𝑖
] are known in the deterministic

system, so the variance of the transmissibility will follow a
normal distribution. The transfer coefficient is the transfer
efficiency of the excitation force. The gradient sorting of the
vibration path transmissibility in the frequency domain can
be obtained by changing the frequency of the excitation force.

A solution of the vibration transfer path for the two types
of disturbances and correlations is proposed based on the
abovemethods.The path transmissibility and its probabilistic
characteristic are provided. In this study, the solution only
involves the first-order sensitivity of the random parameter
and the probabilistic characteristic of the random variable.
Additionally, the introduction of the two types of correlations
does not involve excessive calculations. Therefore, the calcu-
lation accuracy is improved for practical problems.

4. Example Analysis

Themain structure of the umbrella unit in a large hydropower
station is shown in Figure 2, and the simplified model of
transfer path is shown in Figure 1. In this example, the effect
of the spiral case and substructure is ignored [41, 42] because
their effect is far less than that of the upper structure. The
excitation is assumed to be a simple harmonic excitation.The
mean values of the random parameters can be obtained from
the hydropower station design diagrams. These mean values
are 𝑚

1
= 8.28 × 10

4, 𝑚
2

= 1.042 × 10
6, 𝑚
3

= 3.29 × 10
5,

𝑚
4

= 9 × 10
5, 𝑚
5

= 1.2 × 10
5, 𝑚
6

= 1.15 × 10
5, 𝑚
7

=

1.39 ×10
5 and𝑚

8
= 8.92×10

5, in units of kg; 𝑘
1
= 7.26×10

10,
𝑘
3

= 5.72 × 10
10, 𝑘
4

= 2.32 × 10
10, 𝑘
51

= 2.20 × 10
12,

𝑘
52

= 9.41 × 10
9, 𝑘
61

= 1.73 × 10
8, 𝑘
62

= 1.73 × 10
10,

𝑘
7
= 7.70 × 10

9, and 𝑘
8
= 4.26 × 10

8, where the unit of the
stiffness 𝑘 is N/m; and 𝑐

1
= 5.48 × 10

6, 𝑐
3
= 4.11 × 10

6, 𝑐
4
=

1.02 × 10
7, 𝑐
51

= 2.57× 10
7, 𝑐
52

= 7.51× 10
5, 𝑐
61

= 2.23 × 10
5,

𝑐
62

= 9.99×10
4, 𝑐
7
= 1.64 ×10

6, and 𝑐
8
= 9.74×10

5, where the
unit of the dampness 𝑐 is N ⋅ s/m. Each parameter comprises
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Figure 2: Cutaway view of the main structure of hydropower.

two disturbances that follow a normal distribution. The mul-
tiplicative disturbance is related to the difficulty of obtaining
the parameters.Themultiplicative variance coefficients of 𝑘

51

(including the vertical stiffness of the thrust bearing) and
𝑘
61
(the sealing equivalent vertical stiffness between the head

cover and runner) are set to 0.10. The equivalent bending
rigidity of 𝑘

62
s multiplicative variance coefficient is set to

0.075 because there are many uncertain factors in the control
components and other attached components on the head
cover. The multiplicative random variance coefficients of the
other parameters are set at 0.05. The additive disturbance is
related to the measurement range. The standard deviations
of the additive random variable with respect to mass and
stiffness are set at 104 and 108, respectively, according to each
parameter’s mean value. The variance coefficient of damping
is similar to that of the mass and stiffness. In this example,
the parameters’ disturbances are generated by a function
in the MATLAB software, and the sample size is 10000 for
each disturbance. All errors are determined to be smaller
than 0.1% by comparing the variances and mean values of
the generated samples with the corresponding set values.
Therefore, the generated sample variances and mean values
are used in the study. The correlation function is determined
by the generated function.The partial derivative is calculated
by the software Mathematica. The coefficient correlation of
the generated sample is 0.0329.
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Figure 3: Head-cover transmissibility variances in the frequency
domain as predicted by the four methods.

Figure 3 displays the transmissibility variances of the
head-cover transfer path obtained using different methods.
Method 1 does not involve the two types of correlations. The
Monte-Carlo simulation is not used in method 1 (due to the
inclusion of 26 random variables and because the calculation
time is too long, this method only focuses on how each
group of variables changes with time, that is, the number of
calculations is equal to the sample size). Method 2 (following
the method developed by W. J. Vetter in 1973) only involves
the correlation with respect to one parameter, which involves
the correlations between the disturbances of the parameters.
Method 3 (similar to method 2) involves the correlations
between parameters instead of the correlations between the
disturbances of the parameters. Method 4 involves both types
of correlations. The results for method 4 are obtained from
(18). Figure 3 displays the characteristic curve of the head-
cover system transmissibility variances in the frequency band
of 0–1000 rad/s. Figure 4 presents the optimal curve of the
two types of correlations for the transmissibility variance
range as the correlation coefficient changes. This figure
contains two curves: the disturbance curve, which describes
the mean values of the results of method 2 subtracted from
method 1 and the results of method 4 subtracted from
method 3, and the parameter curve, which is similar to the
disturbance curve.

Figures 3 and 4 show the following results: (1) compared
to the other methods, the variance range for the method
that contains two types of correlations is the smallest. This
finding indicates that this method significantly decreases
the disturbance range under theoretical calculations. The
path transmissibility variance decreases by 72.51%. (2) In
optimizing the method considering correlations between the
disturbances and variances, the range merely decreases by
0.644%. This small decrease may have arisen because the
difference between the additive and multiplicative distur-
bances is large, and the optimizing function is weak. (3) The
optimization effect is significant for the method considering
the correlations between parameters. The variance range
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Figure 5: Path transmissibility of the excitation frequency curve.

decreases by 75.71%when the correlation coefficient is 0.0085.
Thus, neglecting this type of correlation leads to an inaccurate
analysis. (4) As the correlation coefficient increases, the
optimization of the transmissibility variance is more efficient,
and the effect on the disturbance range is more significant.
This result demonstrates that the relationship between the
optimization range and the correlation coefficients for the
parameters is linear and that the relationship between the
optimization range and the correlation coefficients for the
disturbances is proportional. However, the latter relationship
does exhibit some fluctuations.

Figure 5 compares the characteristic curve for each path
transmissibility, 𝛽

𝑖
, to the excitation frequency. This curve

shows the ratio between the forces that are transmitted to the
machine pier by the corresponding paths and the excitation
force of the water turbine hydraulic source. This ratio is
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Figure 6: Variance of the path transmissibility of the excitation
frequency characteristic curve.

equivalent to the amplification coefficient. The curve indi-
cates two results: (1) resonance occurs when the frequency
of the excitation force is the same as the natural frequency.
The transmissibility reaches its maximum value for each path
at this frequency.This result indicates that the path has a large
effect on the structural vibration at this frequency. (2) Con-
sidering the whole process of vertical vibration transfer, the
transmissibility of the head cover is significantly smaller than
that of the shafting system. Throughout the entire frequency
range, the mean value of the path transmissibility ratio is
32.37.This value indicates that the vibration effect of the head-
cover system can be neglected in accurate calculations.

Figure 6 shows that the characteristic curve of the trans-
missibility variance varies with the excitation frequency for
the two types of correlations.This curve reflects the diversion
of the transmissibility and indicates the following findings.
(1) The path transmissibility variance of the shaft system
is greater than that of the head-cover system due to the
large number of components and the randomness of these
components’ parameters. Thus, the variance of a structure
with a high level of parameter randomness is large in the
transfer path. (2)The variance maximum occurs at the natu-
ral frequency. This frequency is determined by the structural
parameter, which accounts for the parameter contribution of
every transfer path, enabling the transfer force to be obtained
from the expectation and variance of the transmissibility.

Figure 7 shows that the characteristic curve of the transfer
coefficients varies with the excitation frequency for the two
types of correlations.This curve reflects the transfer efficiency
of the excitation force. The figure shows that the transfer
efficiency of the head-cover system is more efficient than that
of the shafting system. Therefore, more attention should be
given to the assigned vibration proportion of the shaft and
head-cover system in a design.
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Figure 7: Transfer coefficient of the paths of the excitation fre-
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5. Conclusions

(1) The multivibration source, multipath vibration
model, is improved with respect to the coupling effect
between hydropower station units and powerhouses
by the introduction of a head-cover system. The
scalar expression of each vibration transfer path is
provided in this study.

(2) A perturbation analysis of the transfer path is carried
out by using a test signal. A complex situation with
two types of correlations is considered. Kronecker
algebra, the Hadamard product, and probabilistic
statistics are employed to develop an analysis method
for the transfer path. In the solution process, excessive
additional computations are not required because
only the numerical characteristics of the randomvari-
ables are used. The application of the stochastic per-
turbationmethod is expanded, and amethod for ana-
lyzing the vibration transfer path is developed. The
analysis method efficiently decreases the disturbance
range of the path’s contribution. The disturbance
ranges of the path transmissibility and the contribu-
tion rate are efficiently reduced by considering the two
types of correlations. This reduction is significant for
the optimization function with respect to the results.

(3) The simulation results indicate that when the effect
of the spiral case and substructure is ignored, the
influence on the disturbance range continually
increases as the correlation coefficient increases in
the hydropower station model. The optimization
function of the correlations between parameters is
too important to be neglected when calculating the
disturbance range.

(4) In conclusion, the analysis of the proposed model
shows that the effect of the water turbine head cover

is not evident in the vertical vibration transfer, but its
transfer efficiency is significant.

The analysis of vibration transfer paths of hydropower
station units and powerhouses is complicated. Based on
the complex disturbances and parameters, the contribution
of each transfer path can be calculated by analyzing the
sensitivity of the transfer force and the transmissibility of the
vibrationmodel in the frequency domain.This study provides
a reference for future comprehensive research on the transfer
paths of hydropower station units and powerhouses.
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