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In this paper, one unscented Kalman filter with adjustable scaling parameters is proposed to estimate the state of charge (SOC) for
lithium-ion batteries, as SOC is most important in monitoring the latter battery management system. After the equivalent circuit
model is applied to describe the lithium-ion battery charging and discharging properties, a state space equation is constructed to
regard SOC as its first state variable. Based on this state space model about SOC, one state estimation problem corresponding to
the nonlinear system is established. In implementing the unscented Kalman filter, state estimation is influenced by the scaling
parameter. +en, one criterion function is constructed to choose the scaling parameter adaptively by minimizing this criterion
function. To extend one single unscented Kalman filter with adjustable scaling parameters to multiple module estimation, one
improved unscented Kalman filter is advised based on iterative multiple models. Generally, the main contributions of this paper
consist in two folds: one is to introduce a selection strategy for the scaling parameter adaptively, and the other is to combine
iterative multiple models and a single unscented Kalman filter with adjustable scaling parameters. Finally, two simulation
examples confirm that our unscented Kalman filter with adjustable scaling parameters and its improved iterative form are better
than the classical Kalman filter; i.e., our obtained SOC estimation error converges to zero.

1. Introduction

Lithium-ion battery is the leading energy storage technology
for many research fields, such as electric vehicle, modern
electric grids, transformation, etc. +e main features of
lithium-ion batteries include energy density, a long time,
and a lower self-discharge rate, so many research studies on
these main features of lithium-ion batteries are carried out in
recent years from their own different points of view. One
interesting area of research is battery state estimation, es-
pecially named as state of charge (SOC) estimation, as SOC
can not only reflect the remaining capacity of lithium-ion
batteries but also embody the performance and endurance
mileage of electric vehicles. Furthermore, SOC is the most
important factor in the battery management system, which is
critical for the safety, efficiency, and life expectancy of
lithium-ion batteries. Generally, SOC indicates the
remaining battery capacity to show how long the battery will
last. It helps the battery management system to protect the

battery from overcharging and over-discharging and makes
the energy management system to determine an effective
dispatching strategy. But SOC cannot be directly measured
using physical sensors; it must be estimated using some
newly developedmethods with the aid of measurable signals,
such as the voltage and current of the battery. In this paper,
SOC estimation is our concerned problem for lithium-ion
batteries. SOC estimation has been widely studied in recent
years, and lots of estimation algorithms have been proposed
to acquire precise SOC estimation. As the number of ref-
erences on SOC estimation is vast, here we only list some
main references on this topic as follows. An improved ex-
tended Kalman filter method is presented to estimate SOC
for vanadium redox battery [1], using a gain factor. Some
unknown parameters from the state space model are
identified by the classical least squares method. +e square
root cubature Kalman filter algorithm has been developed to
estimate SOC of batteries [2], where 2n points are calculated
to give the same weight, according to cubature transform to
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approximate the mean of state variables. To improve the
accuracy and reliability of SOC estimation for battery, an
improved adaptive cubature Kalman filter is proposed in [3],
where the battery model parameters are online identified by
the forgetting factor recursive least squares algorithm. An
adaptive forgetting recursive least squares method is
exploited to optimize the estimation alertness and numerical
stability [4], so as to achieve online adaption of model
parameters. To reduce the iterative computational com-
plexity, a two-stage recursive least squares approach is de-
veloped to identify the model parameters [5]; then, the
measurement values of the open-circuit voltage at varying
relaxation periods and three temperatures are sampled to
establish the relationships between SOC and open-circuit
voltage. In [6], a multiscale parameter adaptive method
based on dual Kalman filters is applied to estimate multiple
parameters. Based on the battery circuit model and battery
model state equation, the real-time recursive least squares
method with forgetting factor is used to identify unknown
battery parameters [7]. After introducing the concept of state
of health, the average error of the obtained SOC estimation is
less than one given value. A novel state and parameter
coestimator is developed to concurrently estimate the state
and model parameters of a +evenin model for liquid metal
battery [8], where the adaptive unscented Kalman filter
(UKF) is employed for state estimation, including a battery
SOC. After performing lithium-ion battery modelling and
offline parameter identification, a sensitivity analysis ex-
periment is designed to verify which model parameter has
the greatest influence on SOC estimation [9]. To improve the
SOC estimation accuracy under uncertain measurement
noise statistics, a variational Bayesian approximation-based
adaptive dual extended Kalman filter is proposed in [10], and
the measurement noise variances are simultaneously esti-
mated in the SOC estimation process. To the best of our
knowledge, these SOC estimation methodologies can be
roughly divided into two kinds, i.e., data-driven methods
and model-based methods. In the model-based methods,
Kalman filter-based SOC estimation methods have some
advantages, such as self-correction, online computation, and
complexity reduction. Kalman filter was first proposed to
estimate the state of linear systems [12], and then, in order to
apply it into nonlinear systems, the extended Kalman filter
and unscented Kalman filter were developed [11]. Mean-
while, the date-driven methods typically include the lookup
table method, matching learning-based method, artificial
neural networks, and support vector machine [13].+e data-
driven method means that in estimating the state whatever
in linear system or nonlinear system, no mathematical
model is needed; i.e., the state is constructed only directly by
observed data [14], so a large number of training data
covering of all the operating conditions are collected to
improve the estimation accuracy of the considered SOC. In
this paper, based on above references on SOC estimation for
lithium-ion batteries, we also employ unscented Kalman
filter to estimate SOC for lithium-ion batteries. First, some
priori knowledge about Kalman filter is described to give a
detailed introduction. Kalman filter is based onmodern filter
theory. For the special linear system with Gaussian noise,

Kalman filter is proposed to obtain the minimum mean
square estimate about the system state, and this corre-
sponding estimate is named as the optimal filter value.
Furthermore, to extend Kalman filter algorithm, the state
space model is introduced in the optimal filter theory. +e
dynamic model and observation model correspond to the
state equation and observation equation, respectively; thus,
Kalman filter can be extended to deal with the time variant
system. Due to its recursive computation iteratively, Kalman
filter is easy to implement. However, Kalman filter is suitable
under one condition that the considered system is a linear
time invariant system with Gaussian white noise, which
corresponds to the classical Kalman filter. To relax this strict
assumption, unscented Kalman filter algorithm is proposed
to solve the state estimation problem for the nonlinear
stochastic systems. One core idea of unscented Kalman filter
is unscented transformation. +e unscented transformation
means that the probability density of the considered state
can be described by a finite number of sampled points, which
can be fully expressed as their means and covariances. After
these sampled points are mapped by using state or obser-
vation equation, the updated mean and covariance are given
through the weighted summation. Generally, the filtering
characteristic obtained by our studied unscented Kalman
filter is better than that of the classical Kalman filter.
+roughout this paper, as SOC of lithium-ion batteries can
be reformulated as a state variable in one state space
equation, the problem of estimating SOC is changed as a
problem of estimating the state variable in this constructed
state space equation. +us, we apply Kalman filter to esti-
mate SOC, corresponding to lithium-ion batteries. Because
the state space equation, constructed by physical principle of
the lithium-ion battery, coincides with a nonlinear system,
one unscented Kalman filter is proposed to study the
problem of SOC estimation for a nonlinear system at a series
of points, where this nonlinear system corresponds to our
state space equation about SOC. When implementing this
unscented Kalman filter, the accuracy of SOC estimation is
influenced by one designed scaling parameter. Because the
choice of scaling parameter may lead to the increased quality
of the state estimation, during implementation of unscented
Kalman filter, this scaling parameter is always set to be 0 or 1;
i.e., the scaling parameter is chosen as one fixed constant.
+is fixed constant cannot show the merit of the scaling
parameter. To give a selection on the scaling parameter, one
adjustable selection is proposed to choose the scaling pa-
rameter. After one different criterion function is con-
structed, then the scaling parameter is chosen adaptively by
minimizing this established criterion function. +e property
of this criterion function is shown from its own different
observed information and computational complexity. +is
selection strategy is named as unscented Kalman filter with
adjustment scaling parameter. Based on our proposed un-
scented Kalman filter with adjustment scaling parameter, it
is only one single Kalman filter and it is impossible to use
only one single filter to describe the state in the whole state
space equation. So after inspired by the idea of information
fusion theory, we apply our proposed unscented Kalman
filter with adjustment scaling parameter on multiple
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unscented Kalman filters to obtain their corresponding state
estimations.+en, we choose the weighted summation as the
final state estimation, whose weights are determined by
probability level. Considering these different models, one
improved unscented Kalman algorithm based on the iter-
ative multiple models is studied here. Generally, the main
contributions of this paper are formulated as follows. (1) For
the commonly used unscented Kalman filter, one selection
strategy is proposed to choose the scaling parameter
adaptively. +e optimal scaling parameter is identified
throughminimizing a maximum likelihood criterion. (2) On
the basis of information fusion theory, the idea of iterative
multiple models is applied to implement our proposed
unscented Kalman filter with adjustment scaling parameter,
then the weighted summation from these multiple models is
set as the final state estimation, and the weights are deter-
mined by probability level. As a consequence, we combine
the classical unscented Kalman filter, optimization theory,
and information fusion theory to improve the accuracy of
the state estimation; then, this state estimation is our con-
sidered SOC for the lithium-ion battery.

+e paper is organized as follows. In Section 2, the
battery modelling is addressed; furthermore, the definition
of SOC and the state space models for SOC estimation are
also described. Unscented Kalman filter is used to solve the
SOC estimation problem for the nonlinear system in Section
3, where the detailed process is also given. In Section 4, one
maximum likelihood criterion is constructed to update the
scaling parameter adaptively, and the computational com-
plexity of this adjustment is covered. One improved un-
scented Kalman filter based on iterative multiple models is
proposed to consider different models within different
sample points in Section 5. In Section 6, two numerical
examples illustrate the effectiveness of our proposed un-
scented Kalman filter with adjustment scaling parameters in
estimating the SOC for lithium-ion batteries. Section 7 ends
the paper with final conclusion and points out the next topic.
A flowchart of our proposed unscented Kalman filter with
the adjustment scaling parameter and its other improved
multiple models is given in Figure 1, where the yellow parts
are our main contributions.

2. Battery Modelling

Our considered lithium-ion battery has some merits in
energy density and life, and furthermore, it is the leading
development direction of power batteries for electric vehi-
cles in the future. To give a brief introduction on lithium-ion
batteries, the internal states of lithium-ion battery are always
divided into four parts, i.e., SOC, temperature, rate of
current, and state of health. +ese four states reflect the
internal relations of lithium-ion battery with time variable.
Here, our emphasis is on the internal structure of lithium-
ion battery, which is shown in Figure 2, whose cell generally
comprises four parts: a polymer positive electrode, a dia-
phragm, a negative electrode, and an electrolyte.+e positive
electrode of the lithium-ion battery is generally composed of
lithium-ion polymer. Common cathode lithium-ion poly-
mer materials include lithium phthalate, lithium-ion

phosphate, barium acid strontium, lithium-ion manganate,
nickel diamond, and nickel-nickel aluminum ternary lith-
ium. +e diaphragm is in the process of the first charge and
discharge of the liquid lithium-ion battery. +e electrode
material reacts with the electrolyte at the solid-liquid phase
interface to form a passivation layer covering the surface of
the electrode material to isolate the electrode and the
electrolyte, and the lithium ion can finish chemical reaction
with the diaphragm.

For convenience in the latter simulation example, the
lithium battery test needs to charge and discharge the lithium-
ion battery at different temperatures and different rates.
+erefore, the equipment required for the experimental bench
includes a thermostat, a battery charging and discharging
device, a ternary neon battery, and a host computer. Lithium
battery test platform is plotted in Figure 3, where the detailed
processes are described as follows:

Step 1. +e charging and discharging positive and
negative terminals of the battery are, respectively,
connected to the positive and negative electrodes of the
battery through the wire harness, and the wire harness
of the appropriate diameter is selected according to the
allowable charging and discharging ratio of the battery
to avoid burning of the wire harness. One end of the
voltage-sampling line to the other end of the battery is
connected to the voltage sampling and wiring port of
the battery charging and discharging device. Finally, the
temperature-measuring line of the thermistor is at-
tached to the surface of the battery, and the other side of
the temperature-detecting line is connected to the
temperature-detecting terminal of the battery charging
and discharging device.
Step 2. Set the lithium battery in the incubator, and set
the experimental ambient temperature.
Step 3. Start battery charging and discharging equip-
ment and incubator.
Step 4. In the online machine, we edit the charge and
discharge test step or import the edited current test file
into the host computer to automatically generate the
test step; then, set the sampling time and output file
save address and start the test.

Actually, in all references on SOC for lithium-ion bat-
tery, two commonly used battery models exist, i.e., equiv-
alent circuit model and electrochemical model. As the
electrochemical model is very complex, and it is very difficult
to design the latter Kalman filter in case of this electro-
chemical model, so here in modelling the lithium-ion bat-
tery, the equivalent circuit model is recently used. +e
equivalent circuit model regards the battery internal reac-
tions as a circuit, containing some electronic components, so
the equivalent circuit model consists of basic circuit com-
ponents such as resistors, capacitors, and voltage sources.
+ese four basic circuit components are widely explored,
due to their relatively simple mathematical structure and
reduced computational complexity. Equivalent circuit
model is shown in Figure 4, which is simple and clear in
physical meaning, and will be applied to describe the battery
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charging and discharging properties. +rough balancing the
tradeoff between model accuracy and computational com-
plexity, one +evenin equivalent circuit model is chosen for
a Li-ion battery, which is regarded as our battery model.

Using Kirchhoff law or some physical principles, define
variable Uload as follows:

Uload � UOC − IR0 − Up, (1)

I �
Up

Rp

+ Cp

dUp

dt
, (2)

where Uload is the terminal voltage, I is the load current, R0 is
the internal ohmic resistance, Rp and Cp are the polarization
resistance and polarization capacitance of the battery, Up is
the polarization voltage, and UOC is the open-circuit voltage,
which is monotonic with SOC. Furthermore, UOC can be
rewritten as the following polynomial form:

UOC(x) � d5 + d4x + d3x
2

+ d2x
3

+ d1x
4
, (3)

where di􏼈 􏼉
5
i�1 are the coefficients of polynomial form (3) and

x is the SOC of lithium-ion battery. SOC is defined as a ratio
of the remaining capacity over the rated capacity. Fur-
thermore, from equation (3), as the voltage is in polynomial
form, in order to simplify the later mathematical analysis, we
assume the charging and uncharging have the same be-
havior. Using the ampere hour counting principle, SOC can
be expressed as follows:

SOC(t) � SOC t0( 􏼁 − η􏽚
t

t0

Idt

QN

, (4)

where t is the sample time, SOC(t) is the SOC of lithium-ion
battery at time instant t, SOC(t0) is the initial SOC, I is the
load current, η is the coulombic efficiency, and QN is the

Equivalent circuit model 
for lithium-ion battery

Nonlinear state space 
equation about SOC

Unscented Kalman filter Adjustment with scaling 
parameter

Maximum likelihood 
criterion

Iterative multiple models Information fusionProbability theory

State estimation

Figure 1: A flowchart of our paper.

Positive electrode

Negative electrode

Electrolyte

Lithium

Diaphragm
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nominal capacity of battery. State space equation can be
obtained by discretization, and then, we obtain the following
discrete state space equation:

SOCk

Up,k

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

1 0

0 exp −
Ts

RpCp

􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SOCk− 1

Up,k− 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

+

− η

Rp 1 − exp −
Ts

RpCp

􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ik− 1,

(5)

Uload,k � UOC SOCk( 􏼁 − Up,k − IkR0, (6)

where k is the sample time, SOCk is the statue value at the
kth sample time, and Ts is the specified small sampling
period. UOC(SOCk) denotes a nonlinear function of SOCk.
+e parameters in above eachmatrix of state space equations
(5) and (6) can be identified by the classical least squares
method, but our goal in this paper is to estimate SOC
(SOCk) at time instant k by using Kalman filter.

3. Unscented Kalman Filter for SOC Estimation

In this section, we start to apply unscented Kalman filter
algorithm (UKF) to estimate SOC. By combining equations
(5) and (6), SOCk at time instant k is one state variable in that
state space equation. Furthermore, we want to testify which
parameter will influence SOC estimation; then, this pa-
rameter will be added as the new state variables in the ex-
tended state space equation.

3.1. Preliminary. As the main model parameter R0 is clas-
sified as a new state variable with Up and SOC; then, an
extended state space equation for UKF can be given as
follows:

SOCk

Up,k

R0,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 0 0

0 exp −
Ts

RpCp

􏼠 􏼡 0

0 0 1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SOCk− 1

Up,k− 1

R0,k− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

− η

Rp 1 − exp −
Ts

RpCp

􏼠 􏼡􏼠 􏼡

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ik− 1 +

w1,k− 1

w2,k− 1

w3,k− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

Uload,k � UOC SOCk( 􏼁 − Up,k − IkR0 + vk. (8)
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Figure 3: Lithium battery test platform.
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To apply UKF into the above state space equation to
estimate the first state variable, we rewrite equations (7) and
(8) as follows:

xk+1 � fk xk( 􏼁 + wk,

zk � hk xk( 􏼁 + vk, k � 0, 1, 2, . . . ,
􏼨 (9)

where

xk+1 �

SOCk+1

Up,k+1

R0,k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

fk xk( 􏼁 �

1 0 0

0 exp −
Ts

RpCp

􏼠 􏼡 0

0 0 1
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SOCk

Up,k

R0,k
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

− η

Rp 1 − exp −
Ts

RpCp

􏼠 􏼡􏼠 􏼡

0
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Ik,

wk �

w1,k

w2,k

w3,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

zk � Uload,k,

hk xk( 􏼁 � UOC SOCk( 􏼁 − Up,k − IkR0,

(10)

where in equation (9), xk ∈ Rnx and zk ∈ Rnz denote the state
vector and measurement vector at time instant k, respec-
tively. Two maps fk: Rnx⟶ Rnx and gk: Rnx⟶ Rnz de-
note two unknown nonlinear functions, and wk ∈ Rnx and
vk ∈ Rnz are two state and measurement noises with zero
mean. +ese white noises are independent and identically
distributed between each other, and their covariance ma-
trices are Σw and Σv. x0 is the initial state, and its mean and
covariance matrix are x0 and P0, respectively. +e initial
state x0 is independent of these two white noises wk and vk.

3.2. Unscented Kalman Filter Algorithm. After observing
equation (9), our goal is to infer the state estimation from
observed data; it corresponds to the filter process for that
nonlinear stochastic system. In the framework of Bayesian
theory, state estimation is equivalent to complete our ap-
proximation of the posterior probability distribution of the
state vector, in case of the observed data. It is well known
that this posterior probability distribution is named as the

conditional probability density function on the basis of the
observed data. Our unscented Kalman filter algorithm in
Bayesian nonlinear filtering is to obtain a series of points in
state space form and to match the Gaussian distribution in
each update step. State estimation depends on minimizing
one given criterion function, for example, the commonly
used minimum square error criterion:

Jk � E xk − 􏽢xk( 􏼁 xk − 􏽢xk( 􏼁
T

| Z
k

􏽨 􏽩, (11)

where E is the expectation and Zk is the set of all observed
data to time instant k, i.e.,

Z
k

� z0, z1, . . . , zk􏼂 􏼃
T
, (12)

In equation (11), 􏽢xk is the state estimation of state xk and 􏽢xk

is a function of Zk. After minimizing criterion function (11),
state estimation 􏽢xk is obtained as follows:

􏽢xk � 􏽢xk | k � E xk | Z
k

􏽨 􏽩, (13)

where equation (13) is the conditional mean and its ex-
pectation can be approximated by stochastic sample strategy.
For the linear system, this conditional mean is simplified to
the classical Kalman filter algorithm. But on the contrary, in
the nonlinear system, it is difficult to compute the expec-
tation operation. Unscented Kalman filter algorithm cal-
culates the mean and covariance matrix on the filtering and
prediction process iteratively. Set

x
a,b

� x
a
, x

a+1
, . . . , x

b
􏽨 􏽩

T
, (14)

and Ia×b and 0a×b are the diagonal matrix and zero matrix
with dimension a × b. Factorize the matrix P as follows:

P �
��
P

√ ��
P

√ T
. (15)

+en, the detailed unscented Kalman filter algorithm can
be formulated as follows:

Step 1 (initialization): set time instant k � 0 and define
the predictive mean and covariance matrix in case of
prior initial condition:

􏽢x0 | − 1 � E x0􏼂 􏼃 � x0,

Px
0 | − 1 � cov x0􏼂 􏼃 � Px

0 .

⎧⎨

⎩ (16)

Step 2 (filtering): compute a series of points σ as
xi

k | k− 1􏽮 􏽯
2nx

i�0 and their corresponding weights

wi
k | k− 1􏽮 􏽯

2nx

i�0 as follows:

x
0:2nx

k | k− 1 � 􏽢xk | k− 1I1×b + c 0nx×1

������
Px

k | k− 1

􏽱
−

������
Px

k | k− 1

􏽱
􏼔 􏼕,

w
0:2nx

k | k− 1 �
1

nx + μ μ
1
2

· · ·
1
2

􏼔 􏼕,

(17)

where b � 2nx + 1 is the total number of points σ and
c �

�����
nx + μ√

, μ is the scaling parameter. At each point σ,
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the transformation is obtained through nonlinear
function hk:

z
i
k | k− 1 � hk x

i
k | k− 1􏼐 􏼑, ∀i. (18)

Compute the following second-order moment for
approximating the prediction value as follows:

􏽢zk | k− 1 � 􏽘

2nx

i�0
w

i
k | k− 1z

i
k | k− 1,

P
z
k | k− 1 � 􏽘

2nx

i�0
w

i
k | k− 1 z

i
k | k− 1 − 􏽢zk | k− 1􏼐 􏼑 z

i
k | k− 1 − 􏽢zk | k− 1􏼐 􏼑

T
+ 􏽘

v

k

,

P
xz
k | k− 1 � 􏽘

2nx

i�0
w

i
k | k− 1 x

i
k | k− 1 − 􏽢xk | k− 1􏼐 􏼑 x

i
k | k− 1 − 􏽢xk | k− 1􏼐 􏼑

T
.

(19)

+e estimations for the mean and covariance matrix are
as follows:

􏽢xk | k � 􏽢xk | k− 1 + Kk zk − 􏽢zk | k− 1􏼐 􏼑,

P
x
k | k � P

x
k | k− 1 − KkP

z
k | kK

T
k ,

(20)

where the filtering gain Kk is defined as

Kk � P
xz
k | k− 1 P

z
k | k− 1􏼐 􏼑

− 1
. (21)

Step 3 (prediction): compute a series of points σ as
xi

k | k􏽮 􏽯
2nx

i�0 and their corresponding weights wi
k | k􏽮 􏽯

2nx

i�0
are

x
0:2nx

k | k � 􏽢xk | kI1×b + c 0nx×1P
x
k | k −

����
Px

k | k

􏽱
􏼔 􏼕,

w
0:2nx

k | k �
1

nx + μ μ
1
2

· · ·
1
2

􏼔 􏼕.

(22)

Furthermore, at each point σ , after nonlinear function
fk is applied to transform, we obtain

x
i
k+1 | k � fk x

i
k | k􏼐 􏼑, ∀i. (23)

Compute the following second-order moment for the
state as follows:

􏽢xk+1 | k � 􏽘

2nx

i�0
w

i
k | kx

i
k+1 | k,

P
x
k+1 | k � 􏽘

2nx

i�0
w

i
k | k x

i
k+1 | k − 􏽢xk+1 | k􏼐 􏼑 x

i
k+1 | k − 􏽢xk+1 | k􏼐 􏼑

T
+ 􏽘

w

k

.

(24)

Set k � k + 1, and continue to step 2.

After the unscented transformation, the position of point σ
is determined by the mean and covariance matrix of one
transformed variable.+en, the position of point σ will affect the
denominator of the covariance matrix and the scaling pa-
rameter. More specifically, in the predictive step, the position of
point σ is chosen in the control of one super ellipsoid, where
􏽢xk | k is one interior point. As the primary transformation di-
rection 􏽢xk | k is given by one feature vector of that covariance
matrix Px

k | k, in the filtering step, the primary transformation
direction at 􏽢xk | k− 1 is determined by one feature vector of that
covariance matrix Px

k | k− 1. +e size of super ellipsoid is judged
by the scaling parameter and the position of point σ simulta-
neously.+e scaling parameter μmay affect the accuracy, and it
is always set as μ � 3 − nx. +e choice of this scaling parameter
can be achieved by series expansion error, and this series ex-
pansion error represents the difference between the true mean
and its unscented transformation approximation.+e first three
terms of the series expansion will be zero through the ap-
proximate selection of the weights, and the fourth term can also
be guaranteed to be zero on the basis of the scaling parameter.
Moreover, the determination of the scaling parameter is related
with the criterion function. But in the unscented transformation
of our considered unscented Kalman filter algorithm, no fixed
scaling parameter is given to ensure high accuracy of the state
estimation. +e position of the working point or the expected
state of the target will changewith the time invariant system. For
this reason, one optimization strategy based on minimizing the
approximate maximum likelihood function is applied to adjust
the scaling parameter adaptively.

4. Adjustment of Scaling Parameter

+e choice of scaling parameter depends on one criterion
function with some estimation in unscented transforma-
tion. But in our above state estimation for unscented
Kalman filter algorithm, no true variables can be acquired.
+e only information available for state estimation is the
sequence of observations. +is limitation emphasizes the
importance of adjusting the scaling parameter adaptively.
In this section, the maximum likelihood criterion is pro-
posed to obtain one suitable scaling parameter. From the
theoretical perspectively, the maximum likelihood crite-
rion coincides with the probability density function within
the unscented Kalman filter algorithm, so the maximum
likelihood criterion requires a prior knowledge about the
state and two probability density functions p(wk) and
p(vk) of the observed noises. When the maximum likeli-
hood criterion is used to design the optimal scaling pa-
rameter μk

1, its explicit form is given as

μk
1 � argminμp zk | Z

k− 1
, μ􏼐 􏼑. (25)

If two probability density functions p(xk | Zk− 1) and
p(zk | xk) � pwk

(zk − hk(xk)) are all Gaussian distributions,
then we have

p zk | Z
k− 1

, μ􏼐 􏼑 � N 􏽢zk | k− 1(μ), P
z
k | k− 1(μ)􏼐 􏼑, (26)

where N(􏽢zk | k− 1(μ), Pz
k | k− 1(μ)) is one Gaussian normal

distribution with mean 􏽢zk | k− 1(μ) and covariance matrix
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Pz
k | k− 1(μ) and the mean and covariance matrix are all

functions of the scaling parameter μ. To obtain one closed
and analytic solution for equation (16), some numerical
optimization methods can be applied to achieve the goal, for
example, numerical grid method or global adaptive method.
+e numerical grid method covers a feasible optimization
area [μmin, μmax], and then, μ is obtained by equal space mesh
point. After the optimization function is calculated at the
equal space grid, the optimal scaling parameter μ∗ is chosen
by selecting the maximum or minimum grid point. In the
global adaptive random search algorithm, the minimum
value of the scaling parameter is set as the lower bound of the
adaptive interval, i.e.,μmin � 0. +is value guarantees that the
covariance matrix of the random variable in unscented
Kalman filter process is a positive form. +e upper bound
μmax of the adaptive interval can be set as one probability
level; it means that the probability level of the stochastic
variable x lies in one region as follows:

P
∗

�
21− nx/2( )

Γ nx/2( 􏼁
􏽚

�����
nx+μmax

√

0
e

− t2/2( )t
nx− 1dt, (27)

where P∗ is the designed parameter and Γ(nx/2) is the Gram
function. When dimension nx is a special case, nx � 2; then,
μmax is chosen as

μmax � − 2 log 1 − P
∗

( 􏼁 − 2. (28)

If we set P∗ � 0.999, then μmax � 11.8. But this global
adaptive process for choosing the optimal scaling parameter
will increase the computational complexity for unscented
Kalman filter algorithm. +is adaptive adjustment of scaling
parameter can be applied to all time instants, instead of
being limited to nonlinear function hk(xk) of state esti-
mation 􏽢xk | k− 1. And for the special case of linear function
hk(xk), the scaling parameter does not give any performance
improvement for the unscented transformation, but the
computational complexity can be greatly reduced. Generally,
the adjustment for the scaling parameter in the unscented
Kalman filter algorithm is formulated as follows, where the
maximum likelihood criterion is used here:

Step 1 (initialization): set μmin � 0 and compute μmax
from equation (20); define the nonlinear measurement
threshold asT and the initial time instant k � 0.+emean
and covariance matrix at initial condition are defined as

􏽢x0 | − 1 � E x0􏼂 􏼃 � x0,

Px
0 | − 1 � cov x0􏼂 􏼃 � Px

0 .

⎧⎨

⎩ (29)

Step 2 (adjustment): define the scaling parameter as
follows:

μk �
μ3k, if λmax zTPk | k− 1z􏼐 􏼑>T,

3 − nx, otherwise.

⎧⎨

⎩ (30)

Step 3 (filtering): implement the filtering step in the
unscented Kalman filter algorithm and substitute the
optimal scaling parameter μk into step 2.

Step 4 (prediction): implement the prediction step in
the unscented Kalman filter algorithm and substitute
the optimal scaling parameter μk into step 2.

+en, set k � k + 1, continue the above steps, and turn to
step 2.

5. One Improved Unscented Kalman Filter

To extend the abovementioned unscentedKalman filter, we find
that it is impossible to use only one model to describe the state
estimation in only one simple filter. In this section, different
models would be applied in different filters, and one improved
unscented Kalman filter is studied based on iterative multiple
models.+e basic idea of multiple models is explained first.+e
possible motion mode of the target is mapped into one model
set; then, eachmodel in thismodel set indicates differentmodes.
+rough some multiple filters based on different modes in
parallel, the final state estimation of the output will be chosen as
the fusion result, corresponding to the local state estimation
from each filter. Each filter corresponds to its own state space
model, while different state space models describe different
motion modes, so the state estimation, coming from each filter,
is also different. Roughly speaking, iterative multiple model
algorithm assigns different weights to different estimation, and
these different weights are determined by probability level. +e
improved unscented Kalman filter is plotted in Figure 5. +is
recursive algorithm includes four steps, i.e., initialization,
conditional filter, probability update, and combined output.

Let M
(t)
k signifies the effective event at the tth sampled

period for model M(t); then, M(j)

k− 1 is the effective event at the
k − 1th sampled period for model M(j). For the case of r

models, the improved unscented Kalman filter algorithm
based on iterative multiple models is formulated as follows:

(1) Apply the estimation 􏽢x(j)(k − 1 | k − 1) of model j and
covariance matrix P(j)(k − 1 | k − 1) to compute the
hybrid initialization, matching to model M(t). Assume
that the consideredmodels satisfy theMarkov property,
then

􏽢x
(t)

(k − 1 | k − 1) � 􏽘
r

j�1
􏽢x

(j)
(k − 1 | k − 1)μ(j | t)

(k − 1 | k − 1),

P
(t)

(k − 1 | k − 1) � 􏽘
r

j�1
P

(j)
(k − 1 | k − 1) + 􏽢x

(j)
(k − 1 | k􏼐􏼐

− 1))􏽢x
(t)

(k − 1 | k − 1)􏼑μ(j | t)

· (k − 1 | k − 1),

μ(j | t)
(k − 1 | k − 1) � p M

(j | t)
(k − 1) | M

(t)
(k), Zk− 1􏼐 􏼑

�
1
ct

πjtμ
(j)

(k − 1),

(31)

where μ(j)(k − 1) is the probability level for model
M(j), ct � 􏽐

r
j�1 πjtμ(j)(k − 1) is one constant, and
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μ(j) is the transition probability from model M(j) to
model M(t).

(2) Unscented Kalman filter on each model: unscented
Kalman filter is used in 􏽢x(t)(k − 1 | k − 1) and
P(t)(k − 1 | k − 1) for all models t � 1, 2, . . . , r.
Without loss of generality, the above adjustment of
scaling parameter is also used here.

(a) Initialization: apply 􏽢x(t)(k − 1 | k − 1) and P(t)

(k − 1 | k − 1) to solve many sigma points x
(t)
i􏽮 􏽯

and weights w
(t)
i􏽮 􏽯.

(b) Sigma points: use each state model to predict
state estimations x

(t)
i (k | k − 1)􏽮 􏽯 and sigma

points Z
(t)
i (k)􏽮 􏽯 and then compute some pre-

diction values 􏽢x(t)(k | k − 1)􏽮 􏽯 and Z(t)(k)􏼈 􏼉.
Covariance matrix: apply 􏽢x(t)(k | k − 1)􏽮 􏽯, Z(t)􏼈

(k)}, and w
(t)
i􏽮 􏽯 to compute the covariance

matrix P(t)(k | k − 1), cross covariance matrix
P(t)

xz (k), and information covariance matrix
S(t)(k).

(c) Updated strategy: the filtering gain is as follows:

K
(t)

�
P(t)

xz (k)

S(t)(k) + R(k)
. (32)

x
(t)

(k | k) � x
(t)

(k | k − 1) + K
(t)

z(k) − z
(t)

(k)􏼐 􏼑.

(33)

P
(t)

(k | k) � P
(t)

(k | k − 1) + K
(t)

S
(t)

(k) + R(k)􏽮 􏽯 K
(t)

􏼐 􏼑
T
.

(34)

(3) Model probability updated is

Λ(t)
(k) � p Z(k) | M

(t)
(k), Zk− 1􏼐 􏼑 � p 􏽥Z(k) | M

(t)
(k), Zk− 1􏼐 􏼑

� 2πS
(t)

(k)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− (1/2)

× exp −
1
2

􏽥Z
(t)

(k)􏼒 􏼓
T

S
(t)

(k)􏼐 􏼑
− 1

􏼨

· 􏽥Z
(t)

(k)􏼒 􏼓􏼛,

μ(t)
(k) � P M

(t)
(k) | Z

k
􏼐 􏼑 �

1
c
Λ(t)

(k)ct,

(35)

where Λ(t)(k) is the likelihood function for filter, and

􏽥Z
(t)

(k) � Z(k) − Z
(t)

(k),

ct � 􏽘
r

j�1
πjtμ

(j)
(k − 1),

c � 􏽘
r

j�1
Λ(t)

(k)cj.

(36)

(4) State estimation fusion is

􏽢X(k | k) 􏽘
r

i�1
X

(i)
(k | k)μ(i)

(k),

P(k | k) � 􏽘
r

i�1
P

(i)
(k | k) + 􏽢X(k | k) − 􏽢X

(i)
(k | k)􏼒 􏼓

× 􏽢X(k | k) − 􏽢X
(i)

(k | k)􏼒 􏼓
T

μ(i)
(k).

(37)

+e updated state is as follows:

+

+

+

+

Filter based on
model 1

Filter based on
model 2

Filter based on
model 3

X(1)

Λ(1)

xk/k
Pk/k

Initialization

Z–1

Z–1

Z–1

k/k k/kP(1)

X(2)
k/k k/kP(2)

X(3)
k/k k/kP(3)

X(3)
k–1/k–1 k–1/k–1P(3)

X(2)
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X(1)
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μ(1)
k

μ(3)
k

μ(2)
k

Λ(2)
k

Λ(3)
k

Figure 5: Improved Kalman filter.
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+e updated covariance matrix is as follows:

After introducing the adaptive adjustment process of the
scale parameter into unscented Kalman filter algorithm,
better tracking performance can be obtained than the
classical Kalman filter. +e mission of the improved un-
scented Kalman filter with iterative multiple models is to
extend the tracking problem for multiobjections.

6. Simulation Examples

Here, in this section, two simulation examples are given to
prove the efficiency of this unscented Kalman filter with
adjustment scaling parameter for tracking one ground target
and SOC estimation for lithium-ion battery, respectively.

6.1. First Simulation Example. In the first simulation ex-
ample, our goal is to track one continuous time acceleration
motion model with white noise. +e state of this ground
target is defined as follows:

xk � x1k, x2k, x3k, x4k􏼂 􏼃
T

� xk, yk, _xk, _yk􏼂 􏼃
T
, (38)

where the above target state contains the position and ve-
locity in the x direction and y direction, respectively, and the
dimension is nx � 4. +en, the motion equation is

xk+1 � Fxk + Gwk,

F �

1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G �

0.5T2 0
0 0.5T2

T 0
0 T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(39)

whereT � 1 s is the sampled interval,wk is the state noise with
Gaussian zero mean, and its covariance matrix is Σwk , i.e.,

P wk( 􏼁 � N 0, 􏽘

w

k

⎛⎝ ⎞⎠,

􏽘

w

k

� 9.9 × 10− 2
I2.

(40)

+e ground target is observed by using a radar detector,
and the observation zk at time instant k from the radar de-
tection is the angle between the ground target and the radar
detection. When the radar detector is on [x0

k, y0
k] at time

instant k, then the observation zk at time instant k is as follows:

zk � arc tan
xk − x0

k

yk − y0
k

+ vk,

􏽘

v

k

� 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(41)

+is ground target is 10km away from the radar detector
with angle − 135° and constant velocity 15m/s. Define the initial
position of the ground target is [7, 7], and the original position of

the radar detector is set to be the origin [0, 0]. In the whole
unscented Kalman filter algorithm with adjustable scaling pa-
rameter, the initial probability density of the filter is chosen as

P(r) � N
������
72 + 72

√
, 16􏼐 􏼑. (42)

+e probability density of the velocity is

P(s) � N(s, 16). (43)

+e largest scaling parameter is set as μmax � 14, and
then we obtain that P∗ � 0.999. +e number of grids used to
cover the entire interval is Nμ � 20. +en, the performance
corresponding to our considered filter is measured by one
mean square error root, which is defined as follows:

RMSμ �
1

M
􏽘

M

i�1
􏽢xk(i) − xk(i)( 􏼁

2
+ 􏽢yk(i) − yk(i)( 􏼁

2
􏽨 􏽩

1/2
.

(44)

To show the closed relations between mean square error
roots and different signal-to-noise ratios, we do some
simulations on model (39) and (41), where we take three
cases as follows: low signal-to-noise ratio Σvk � (5°)2; mean
signal-to-noise ratio Σvk � (2°)2; and high signal-to-noise
ratio Σvk � (0.07)°2. +e relationship between the perfor-
mance of the target state estimation and the threshold value
in the unscented Kalman filter algorithm is shown in Fig-
ure 6, where three curves are represented as the above three
cases. From Figure 6, we see that the adjustment of the
scaling parameter adaptably does not make any improve-
ment on high signal-to-noise ratio, but instead great im-
provements for low and medium signal-to-noise ratios.

In Figure 6, in case of the high signal-to-noise ratio, the effect
from the scaling parameter on the state estimation is less.+is is
the reason why the scaling parameter does not make any im-
provement on high signal-to-noise ratio. But on the contrary, for
low and medium signal-to-noise ratios, the scaling parameter is
one important factor, affecting the estimation accuracy.

6.2. Second Simulation Example. +e second simulation
example is concentrated on SOC estimation for lithium-ion
batteries. Here, we do not yet have the experimental plat-
form, so this second simulation example is based on ref-
erences in the open references. To acquire experimental data
such as current, voltage, and temperature from the battery, a
battery test bench was established. +e configuration of the
battery test bench is shown in Figure 3.

Based on the experimental platform, the open-circuit
voltage of the battery has a monotonic relationship with the
SOC. +e relation between open-circuit voltage and SOC is
established by running test on the considered lithium-ion
battery. Let all batteries be fully charged and rested for 3 hours,
such that the internal chemical reactions attain a desired
equilibrium state. Moreover, the discharge test includes a
sequence of pulse current of 1C with 6-min discharge and 10-
min rest; then, the discharge test can make the battery to
return back to its expected equilibrium state before running
the next cycle. As three parameters are incorporated into the
state variables simultaneously using the extended dimension
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method, so first we analyse the sensitivity analysis for the
model parameter R0, shown in Figure 7. +e test range for R0
must take abnormal range conditions into account. Taking the
existence of extreme conditions and all types of noise into
account, it is necessary to increase to 20%. After a complete
SOC estimation of the target sample, the average for the
absolute error is calculated. A complete SOC estimation
process is recorded as a step, recording the step with k. +e
sensitivity analysis process for Rp and Cp is similar to that of
R0.+e sensitivity analysis forRp andCp is shown in Figures 8
and 9, which show that the sensitivity of Rp and Cp and R0
decreases in turn. Also from these three figures, we see that the
response of the considered state space system depends more
on two parameters R0 and Rp, as their sensitivity curves are
growing with time or iterative step.

UOC is rewritten as the following polynomial form
UOC(x) � d5 + d4x + d3x

2 + d2x
3 + d1x

4. To identify these
unknown parameters in this polynomial form, the least
squares method is used to achieve this goal. +en, the
identification result for this polynomial form is given in
Figure 10, which shows the relation between the true data
point and its identified polynomial form.

In whole simulation process, the true parameters can be
identified by using some system identification strategies, for
example, least squares method, instrumental variable
method, and maximum likelihood method. +en, identified
parameters are obtained as follows:

R0 � 0.0994Ω,

Rp � 0.030Ω,

Cp � 2.773KF,

I � 1.10A,

Ts � 0.3 S.

(45)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1.0

1.2

0.4

Time (s)

M
ea

n 
sq

ua
re

 er
ro

r r
oo

t

Medium signal to noise ration
High signal to noise ratio

Low signal to noise ratio

Figure 6: Relations between mean square error root and signal-to-
noise ratio.

0 20 40 60 80 100
1

2

3

4

5

6

Figure 7: Sensitivity analysis of R0.

0 20 40 60 80 100
1

2

3

4

5

6

Figure 8: Sensitivity analysis of Rp.

1

2

3

4

5

6

0 20 40 60 80 100

Figure 9: Sensitivity analysis of Cp.

Mathematical Problems in Engineering 11



+en, these three matrices are obtained as follows:

A �

1 0 0
0 0.68 0
0 0 1

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦;

B �

− 0.5
0.0064

0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦;

C � 2.5 − 1 1.10􏼂 􏼃.

(46)

To show the identification accuracy of these above
identified parameters, we use the Matlab simulation tool to
simulate the output response of Bode plot in this state space
system, and the phase plot is obtained with amplitude plot
simultaneously. To verify the efficiency of the identified
mode and make sure that this identified model can be used
to replace the true model, we compare the Bode responses

through the true model and its identified model, respec-
tively, in Figure 11, where the red curve denotes the true
response and the black curve is the identified response. More
specifically, the true response is simulated using the true
matrices or parameters, and the black curve is given using
our identified matrices or parameters. From Figure 11, we
see that the black curve coincides with the red curve; this
means that these two Bode response curves coincide with
each other, and the model error will converge to zero with
increasing time.

As the choice of scaling parameter depends on one
criterion function about some estimation in unscented
transformation, the maximum likelihood criterion is pro-
posed to obtain one suitable scaling parameter. +e maxi-
mum likelihood criterion is used to design the optimal
scaling parameter, and we use four steps to adjust the op-
timal scaling parameter. +e adjusted result is shown in
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Figure 12, where we compare the optimal scaling parameter
and its corresponding estimated scaling parameter at every
time instant. From Figure 12, we see that at every time
instant, these two kinds of scaling parameters coincide with
each other.

In Figure 12, the reason why the two kinds of scaling
parameter coincide with each other is that the estimated
scaling parameter is obtained by solving one maximum
likelihood estimation problem. As this constructed maxi-
mum likelihood criterion is one global convex function, its
minimum value is unique; i.e., the estimated value is the
optimal value.

Now, we start to use our considered improved unscented
Kalman filter algorithm, plotted in Figure 4 to estimate SOC.
According to the four steps, i.e., initialization, conditional
filter, probability update, and combined output. +e SOC
estimation results are shown in Figure 13, where the black
curve is the estimated output and the blue curve is the

desired output for the whole state space system. From
Figure 13, it can be seen that the results of SOC estimation
using the proposed improved unscented Kalman filter al-
gorithm are close to the desired values. +e advantage of our
improved unscented Kalman filter algorithm is in intro-
ducing one adjustment scaling parameter. +is scaling pa-
rameter always changes with time instant increase, but not
be constant. More specifically, in case of large estimation
error, the scaling parameter adjusts adaptively to pull the
estimation value near its true value. SOC estimation errors
are shown using the red curve, which is also amplified in
Figure 14. SOC estimation error is defined as
error � max|SOCk − 􏽤SOCk|. From the fact that SOC esti-
mation error curve converges to zero, we see that the SOC
estimation can be used to replace the true SOC value; i.e.,
SOC estimations obtained by our improved unscented
Kalman filter algorithm are useful for later control or other
fields.
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7. Conclusion

In this paper, after the equivalent circuit model is used to
describe the battery charging and discharging properties,
one state space equation is constructed to regard SOC as one
state variable. Based on this state space model about SOC,
unscented Kalman filter algorithm is proposed to achieve the
goal of SOC estimation, and one adjustment strategy for the
scaling parameter adaptively is advised for this unscented
Kalman filter algorithm. Furthermore, to extend the single
SOC estimation to multiple modules, one improved un-
scented Kalman filter algorithm is studied based on iterative
multiple models. Based on our improved algorithms, the
sensitivity of model parameter decreases and SOC estima-
tion error converges to zero.
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,is paper proposed the SVD (singular value decomposition) clustering algorithm to cluster wind turbines into some group for a
large offshore wind farm, in order to reduce the high-dimensional problem in wind farm power control and numerical simulation.
Firstly, wind farmwake relationship matrixes are established considering the wake effect in an offshore wind farm, and the SVD of
wake relationship matrixes is used to cluster wind turbines into some groups by the fuzzy clustering algorithm. At last, the Horns
Rev offshore wind farm is analyzed to test the clustering algorithm, and the clustering result and the power simulation show the
effectiveness and feasibility of the proposed clustering strategy.

1. Introduction

Wind energy is renewable energy, and it can solve a shortage
of fossil fuel and an environmental pollution problem. All
wind turbines that will be installed by the end of 2020 can
cover close to 9% of the global electricity demand [1].
Offshore wind farm is a new trend because of less planning
restriction and better wind condition. Compared with the
onshore wind farm, the electrical power production of
offshore wind farms is higher and more stable.

,ere are tens or even hundreds of wind turbines in an
offshore wind farm, and they bring a “dimension cruise”
challenge [2] for a wind farm control [3–5], numerical
simulation [6], and so on. In order to reduce the compu-
tation complexity, the common method is to establish an
equivalent model for wind farm model reduction [7], and it
is a key to cluster the same-feature wind turbines into a
group and an equivalent single machine. In recent years,
several wind turbine clustering algorithms have been pro-
posed [8–14]. A model reduction method is proposed by a
set of orthogonal modes from CFD (computational fluid
dynamics) simulation [8]; however, the simulation time is
too long for several wind turbines. An aggregated wind farm
model is proposed by the average wind speed [9, 10]. A wind

turbine clustering algorithm is considered by Hankel sin-
gular values [11] or selective modal analysis [12]. However,
the wind speed at the downstream wind turbines is smaller
than that at the upstream wind turbines in wind farms; this
phenomenon is defined as wake effects, and these wind
turbine clustering algorithms [9–12] are not considered
wake effects of an offshore wind farm.

Coordinates of wind turbines are very regular in an
offshore wind farm, and the wind speed and direction are
stable, so wake effects of every wind turbine are very regular.
Based on the wind farm wake model, wind turbines can be
clustered into several groups [13, 14]. ,e support vector
clustering technique is used to cluster wind turbines based
on the wind farm layout and incoming wind direction [13].
,e k-means clustering algorithm divides wind turbines into
several groups [14]. However, the wind farm wake model is a
high-dimensional mathematical model, and the k-means
clustering and the support vector clustering algorithms are
inefficient and easily converted to a local minimum with
more dimensions; at the same time, the results of two
clustering algorithms are poor robustness [15]. To solve the
high-dimensional problem of wind turbine clustering, SVD
(singular value decomposition) is an effective clustering
algorithm for large datasets [15].
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In this paper, the SVD clustering algorithm is proposed
for an offshore wind farm to overcome the high-dimensional
problem. A wind farm model is firstly established based on
the Jensen wake model, layout of wind farm, and incoming
wind speed, a wake combination matrix of every wind
turbine is built from a wind farm wake model, and wind
turbines are clustered into some groups by an SVD of the
wake relationship matrix. At last, an order reduction wind
farm model is obtained for power maximizing, power bal-
ance control, and so on.

,is paper is organized as follows: Section 2 introduces the
wind turbine model and the wake model of an offshore wind
farm. ,en, the SVD clustering algorithm is discussed for the
wakemodel in Section 3.,eHorns Rev offshore wind farm is
tested in Section 4. Finally, conclusions are drawn in Section 5.

2. Wind Farm Wake Model

,ere are many wake-effect models, such as the Frandsen
analytical model [16], Jensen model [17], Larsen model, and
CFD (computational fluid dynamics) model [18]. In this
paper, the Jensen wake model [18] is adopted because it is
simple and suitable for engineering applications [18].

,e Jensen wake model is based on the global mo-
mentum conservation and assumption of a linear expansion
of the wake. Figure 1 shows the basic Jensen model, the
radius of the wind turbine is r0, the ambient wind speed is v0,
and the wake decay constant is k. If a wind turbine is not
affected by any upstream wind turbine, k� 0.04; otherwise,
k� 0.08 [19]. r is the radius of the expanding wake, and it can
be calculated by (1). And the wind speed v1 inside the wake
area at a distance x from the single wind turbine can be
calculated by (2), where CT is the wind turbine thrust
coefficient:

r � r0 + kx, (1)

v1 � v0 + v0
������
1 − CT

􏽰
− 1( 􏼁

r0

r
􏼒 􏼓

2
. (2)

In an offshore wind farm, a downstream wind turbine is
affected by multiple wind turbines, and multiple wake effects
can be combined into a single wake effect. And the com-
bining multiple wake effects consider the shadowed areas of
the upstream wind turbines. ,e shadow condition, between
an upstream wind turbine and a downstream wind turbine,
is complete shadowing, quasicomplete shadowing, partial
shadowing, and no shadowing. ,e partial shadowing is
shown in Figure 2, the wind turbines’ radius r0 is the same,
and the swept area of the wind turbine is A0. ,en, the
shadow area between the two wind turbines can be calcu-
lated by

Ashadow,ij � ri xij􏼐 􏼑􏽨 􏽩
2
cos− 1 Lij

ri xij􏼐 􏼑
⎛⎝ ⎞⎠

+ r
2
0 cos

− 1 dij − Lij

ri xij􏼐 􏼑
⎛⎝ ⎞⎠ − dijzij,

(3)

where xij is the distance between the upstream wind turbine
i and the downstream wind turbine j along the wind di-
rection and ri(xij) is the wake stream radius, which can be
calculated by (1).

Based on the law of momentum conservation, the
combining multiple wake model [19] of the jth wind turbine
is calculated by

vj � v0 1 − 􏽘
n

i�1
1 −

�������
1 − CT,i

􏽱
βij􏼒 􏼓􏼔 􏼕

2
⎡⎣ ⎤⎦, (4)

where βij � (r0/ri(xij))(Ashadow,ij/A0).

3. A Wind Turbine Clustering
Algorithm via SVD

,e layout of an offshore wind farm is regular, the distance
between turbines is the same, the wake effects of some
downstream wind turbines are the same, so the same-wake-
effect wind turbines can be clustered as a group and equate a

v0

u

r0
r = r0 + kx

v1

v0
v0

k

x
 

Figure 1: ,e Jensen wake model [18].
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Figure 2: Wind turbine wake shadow [18].
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rescaled single wind turbine. From (4), the wind speed of
downstream wind turbines is determined by the geo-
graphical location and the work condition of upstream wind
turbines, and the CT can be regulated by a wind turbine.
Hence, the geographical location is selected as a clustering
index [13, 14]. However, the clustering index is 1D data in
[13, 14], and the dimension is high as the number of wind
turbines increases. A 2D wake relationship matrix can be
established from 1D data by analyzing (2), and it is more
suitable than 1D data for an offshore wind farm and contains
the relative location of wind turbines [20] ,e 2D wake
relationship matrix is a sparse matrix. And the SVD clus-
tering method is effective to solve the high-dimensional
sparse matrix clustering problem [21].

3.1.Estimationof theWakeRelationshipMatrixofEveryWind
Turbine. An offshore wind farm has m rows with n wind
turbines, and the distance of wind turbines is regular. A wake
relationshipmatrix Aij ∈ Rm×n of the ith row and jth column
wind turbine is defined as

Aij � apq􏼐 􏼑 �

a11 . . . a1n

⋮ ⋱ ⋮

am1 . . . amn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

where apq is the element of a wake relationship.
From the wind direction and the wind turbine geo-

graphical location, the wake effect between two wind tur-
bines can be obtained. If there is a wake effect between the
ijth wind turbine and the pqth wind turbine, an element of a
wake relationship is βij; otherwise, the element is 0, if there is
not a wake effect, or itself. So the apq of a wake relationship
matrix is defined as

apq �

r0

ri xij􏼐 􏼑
⎛⎝ ⎞⎠

Ashadow,ij

A0
􏼠 􏼡, shadowing,

0, i � p, j � q,

0, no shadowing.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Generally, the shadowing condition of wind turbines can
be judged using the basic geometrical relationship.

3.2. A SVD Clustering Algorithm of Offshore Wind Farm.
,e SVD is an orthogonal matrix reduction, the nonzero
singular values contain the most information of the matrix,
and it has the advantages of dimension reduction, in-
sensitivity to matrix perturbation, scale invariance of sin-
gular values, rotation invariance of singular values, ability to
solving the best approximation matrix, and so on [19]. And
the proposed wind turbine clustering algorithm flow chart is
shown in Figure 3 and is implemented as follows:

Step 1: every wind turbine coordinate, wind direction,
and wind turbine parameters, such as the radius of the
wind turbine and distance between wind turbines, are
obtained.

Step 2: an original coordinate (X, Y) of every wind
turbine is transformed into another coordinate system
(x, y) in the wind direction as (7), where θ is the wind
direction with the positive X-axis:

x � X cos θ − Y sin θ,

y � X sin θ + Y cos θ.
􏼨 (7)

Step 3: the wake stream radius and shadow area of the
wind farm are calculated based on Section 2.
Step 4: the wake relationship matrix Aij is established
from (5) and (6).
Step 5: the singular value decomposition of Aij is
calculated as follows:

U, Sij, V􏽨 􏽩 � svd Aij􏼐 􏼑, (8)

where U and V are the left and right singular
orthogonal vectors, respectively, and Sij �

diag(σ1, . . . , σp), where σ1 ≥ σ2 ≥ . . . ≥ σp [18].
Step 6: the Sij values are clustered by the fuzzy clus-
tering method [15], and these wind turbines can be
clustered into k groups {g1, g2, . . ., gk}. And other
parameters of the wind turbine are aggregated by a
mechanical torque compensation factor method [9].
Finally, the simplified wind farm model is built.

4. Case Study

,e Horns Rev offshore wind farm in Denmark [22] is used
to test this clustering algorithm. It consists of eighty 2MW
wind turbines, and every wind turbine has a hub height
H= 70m and a rotor diameter D= 80m. And the wind farm
layout is parallelogram columns, the distance between two

Start

Obtain wind turbine coordinates, wind direction, and wind
turbine parameters

Transformation of wind turbine based on the wind direction

Calculate wake shadow area based on the Jensen wake model

Establish the wake relationship matrix

SVD of wake relationship matrix

�e fuzzy clustering algorithm based on the singular value

End

Figure 3: Flow chart of the wind turbine SVD clustering algorithm.
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columns is 7D, the distance between turbines is 7D, 9.4D,
and 10.4D for 0°, 48°, and 312°, respectively, and the angle
between the first column and y-axis is approximately 7°. Its
shape is shown in Figure 4, and it has 8 rows and 11 columns.
,e wake model of the wind farm is established under eight
wind directions which are 270°, 246°, 222°, 201°, 180°, 173°,
138°, and 90° based on the wind farm layout. ,e clustering
results are shown in Figure 5. When the wind direction is
270°, the first-columnwind turbines are not affected by other
wind turbines, their wind speeds are the ambient wind

speed, and wind speeds of other-column wind turbines
decrease in turn. And when wind directions are 222° and
312°, the clustering results are similar to the layout of the
wind farm. With the wind direction increases, the clustering
results are very regular, so a wind farm clustering lookup
table can be built for wind farm control and numerical
simulation.

In order to verify the clustering results, suppose that the
CT of all wind turbines is the same and CT � 0.865 and the
ambient wind speed is 12m/s. ,e wind speed of each wind

y (
m

)
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Figure 4: ,e Horns Rev wind farm layout.
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(d) (e) (f )
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Figure 5: Clustering results of the wind farm at different wind directions: (a) 270°; (b) 246°; (c) 222°; (d) 201°; (e) 180°; (f ) 173°; (g) 138°;
(h) 90°.
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turbine is shown in Figure 6. ,e wind speed of wind
turbines is the same if they are in the same group. From
Figure 6, it can be seen that the clustering results are effective
and feasible.

,e Horns Rev offshore wind farm power simulation is
tested by the SVD clustering algorithm and detailed model
in MATLAB, which considers every wind turbine powerout.
And the power simulations are run on a 3.6GHz Core i7-
4790 CPU with 8GB RAM using MATLAB version R2014a.

Suppose that the wind speed is 12m/s and all wind
turbines are maximizing power point tracking. And the
detailed and equivalent wind farm power curves are shown
in Figure 7 at the wind direction range of 180°∼270°. From
Figure 7, it can be seen that the error between the equivalent
model and the detailed model is negligible, and the maxi-
mum error is 0.108MW.

However, when the wind speed of wind farms is over the
rated speed, the results of the proposed clustering algorithm
may be imprecise. When the ambient wind speed is 17m/s, it
is over the rated wind speed, some wind turbines are power
limit controllers, and the CT of them is different with the

MPPT wind turbines. And the detailed and equivalent wind
farm power curves are shown in Figure 8. From Figure 8, it
can be seen that the maximum error is 9.98MW, and the
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Figure 6: Wind speed of each wind turbine: (a) 270°; (b) 246°; (c) 222°; (d) 201°; (e) 180°; (f ) 173°; (g) 138°; (h) 90°.

90 110 130 150 170 190 210 230 250 270
30

35

40

45

50

55

60

65

70

Wind direction (deg.)

W
in

d 
fa

rm
 p

ow
er

 (M
W

)

162 164 166 168
64

64.5
65

Equivalent WF model
Detailed WF model

Figure 7: Wind farm powerout at different wind directions under
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error may be large in some wind farm power simulation. So
the proposed algorithm can be used when the ambient wind
speed is less than the rated speed and the CT of the same-
group wind turbines is the same.

And the computational cost of two wind farm models is
shown in Table 1, and the computational efficiency of the
proposed wind farmmodel is higher than that of the detailed
model. Moreover, the SVD clustering algorithm is also used
for the wind farm power control and power grid simulation
considering wind farm, wind farm power-maximizing
control, etc.

5. Conclusion

,e main contribution of this paper is the proposed SVD-
based clustering method for large-scale offshore wind farms
to solve the high-dimensional problem. Wind turbines can
be clustered into several groups based on the location of each
wind turbine and wind direction, and the same-group wind
turbines, whose CT is the same, can be equivalent to a single
wind turbine, in order to solve the high-dimensional
problem in the wind farm control algorithm and numerical
simulation.

Based on the layout of wind farm and wind direction, a
wind farm wake model is established, a wake relationship
matrix is based on the wake model, a singular matrix is
calculated by SVD, and finally, wind turbines can be clus-
tered into groups by the fuzzy-means method from singular
values. SVD can reduce the high dimension of the wind farm
wake model, and the clustering results are relative wind
direction and are very regular. Moreover, the large wind
farm power control or power grid power simulation with
wind farms can reduce the computation time by clustering
wind turbines into some groups using this clustering
algorithm.
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cited at relevant places within the text as reference [22].
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