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Computed tomography (CT) has been regarded as the most efective modality for characterizing and quantifying chronic obstructive
pulmonary disease (COPD). Terefore, chest CT images should provide more information for COPD diagnosis, such as COPD stage
classifcation. Tis paper proposes a features combination strategy by concatenating three-dimension (3D) CNN features and lung
radiomics features for COPD stage classifcation based on the multi-layer perceptron (MLP) classifer. First, 465 sets of chest HRCT
images are automatically segmented by a trained ResU-Net, obtaining the lung images with the Hounsfeld unit. Second, the 3D CNN
features are extracted from the lung region images based on a truncated transfer learning strategy.Ten, the lung radiomics features are
extracted from the lung region images by PyRadiomics.Tird, theMLP classifer with the best classifcation performance is determined
by the 3D CNN features and the lung radiomics features. Finally, the proposed combined feature vector is used to improve the MLP
classifer’s performance. Te results show that compared with CNN models and other ML classifers, the MLP classifer with the best
classifcation performance is determined.TeMLP classifer with the proposed combined feature vector has achieved accuracy, mean
precision, mean recall, mean F1-score, and AUC of 0.879, 0.879, 0.879, 0.875, and 0.971, respectively. Compared to the MLP classifer
with the 3D CNN features selected by Lasso, our method based on the MLP classifer has improved the classifcation performance by
5.8% (accuracy), 5.3% (mean precision), 5.8% (mean recall), 5.4% (mean F1-score), and 2.5% (AUC). Compared to the MLP classifer
with lung radiomics features selected by Lasso, ourmethod based on theMLP classifer has improved the classifcation performance by
5.0% (accuracy), 5.1% (mean precision), 5.0% (mean recall), 5.1% (mean F1-score), and 2.1% (AUC).Terefore, it is concluded that our
method is efective in improving the classifcation performance for COPD stage classifcation.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a com-
mon and non-infectious lung disease characterized by
persistent airfow limitation [1–3]. Because of this charac-
terization, the COPD stage is diagnosed from stage 0 to IV

according to Global Initiative for Chronic Obstructive Lung
Disease (GOLD) criteria accepted by the AmericanToracic
Society and the European Respiratory Society [4]. GOLD is
examined by the pulmonary function test (PFT) and di-
agnosed by the forced expiratory volume in 1 second/forced
vital capacity (FEV1/FVC) and FEV1% predicted [1, 2]. PFT
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can explain the impact on symptoms and life quality of
COPD patients [5, 6], but it cannot refect the change of the
lung tissue in COPD patients with the COPD stage evolu-
tion. PFT changes from normal to abnormal occur when
lung tissue is destroyed to a certain extent. Terefore, the
PFTmakes it challenging to identify the etiology of COPD.

Compared with the GOLD criteria and other imaging
equipment, computed tomography (CT) has been regarded
as the most efective modality for characterizing and
quantifying COPD [7]. Compared with PFT, chest CT
images can indicate that the patients have sufered frommild
lobular central emphysema and decreased exercise tolerance
in smokers without airfow limitation [8]. In addition, the
chest CT images are also used to quantitatively analyze the
bronchial, airway disease, emphysema, and vascular for
COPD patients [7]. However, automatic multi-classifcation
based on convolutional neural networks (CNNs) using chest
CT images remains a challenging task for the COPD stage.
One main reason is that the number of medical images is
limited compared to natural images. In particular, few
people seek medical treatment in the early stage of COPD
and undergo CT scans simultaneously. Transfer learning [9]
may solve the above problems. Since radiomics was pro-
posed to mine more information frommedical images using
advanced feature analysis in 2007 [10], it has been widely
used to analyze lung disease imaging [11–15]. However,
radiomics features are extracted from medical images by
specifc calculation equations, preset types of images, and
preset classes, limiting the forms of radiomics features. Some
deep features from CNN (CNN features) are also needed to
improve the classifer’s performance in multi-classifcation.
CNN features extracted from medical images will make up
for the limitations of radiomics features.

Radiomics features in COPD develop slower than those
in other lung diseases, such as lung cancer and pulmonary
nodules. Until 2020, reference [16] points out that radiomics
features in COPD have not been extensively investigated yet.
Nevertheless, there are potential applications of radiomics
features in COPD for the diagnosis, treatment, and follow-
up of COPD and future directions [16]. A critical reason
limiting the development of radiomics features in COPD is
its difuse distribution in the lung. At the same time,
radiomics features need to be extracted from the region of
interest (ROI) of the chest CT images. However, the difuse
distribution of COPD makes it difcult to determine ROI.
COPD results from the joint action of the peripheral airway,
pulmonary parenchyma, and pulmonary vessels [17–19].
Tus, the peripheral airway, pulmonary parenchyma, and
pulmonary vessels as ROI to extracting lung radiomics
features are reasonable for COPD stage classifcation.

Currently, radiomics features also have been used in
COPD for survival prediction [20, 21], COPD presence
prediction [22], COPD exacerbations [23], COPD early
decision [4], and analysis of COPD and resting heart rate
[3]. However, as mentioned above, lung radiomics fea-
tures have not been applied in the COPD stage classif-
cation. On the other hand, radiomics based on machine
learning (ML) and chest CT images based on CNN have
been widely and respectively used in COPD and its

evaluation. However, the advantages of radiomics based
on machine learning and medical images based on CNN
need to be further integrated to improve the performance
of COPD stage classifcation. Terefore, this paper pro-
poses a feature combination strategy by concatenating
three-dimension (3D) CNN features and lung radiomics
features for COPD stage classifcation based on the multi-
layer perceptron (MLP) classifer. Our contributions in
this paper are briefy described as follows. (1) MLP
classifer with the best classifcation performances is de-
termined in the ML classifer for 3D CNN features or lung
radiomics features. (2) Truncated transfer learning is
proposed from the excellent segmentation model for
generating nonlinear 3D CNN features. (3) Te proposed
feature combination strategy by concatenating 3D CNN
features and lung radiomics features efectively improves
the MLP classifer’s performance.

2. Materials and Methods

2.1. Materials. Te participants are enrolled by the na-
tional clinical research center of respiratory diseases,
China, from May 25, 2009, to January 11, 2011. Finally,
465 Chinese subjects participated in the study after being
strictly selected by the inclusion and exclusion criteria
[24]. Te 465 subjects underwent chest HRCTscans at the
full inspiration state. In addition, the 465 subjects also
underwent the PFT, and the COPD stage of each subject is
diagnosed by PFT in Global Initiative for Chronic Ob-
structive Lung Disease (GOLD) criteria 2008 accepted by
the American Toracic Society and the European Re-
spiratory Society.

Figure 1 shows the COPD stage distribution of the
subjects in this study. Tere are 129, 108, 121, and 107
subjects in each COPD stage (GOLD 0, GOLD I, GOLD II,
GOLD III, and GOLD IV). Tis study was approved by the
ethics committee of the national clinical research center for
respiratory diseases in China. In addition, all 465 subjects
have been provided written informed consent to the frst
afliated hospital of Guangzhou medical university before
chest HRCT scans and PFT. Refer to our previous study [4]
for a more detailed description of the materials.

2.2. Methods. Figure 2 shows the proposed method in this
study. Te main idea of the proposed method proposed in
this paper is to combine 3D CNN features and lung
radiomics features for COPD stage classifcation. When
generating the 3D CNN features, we adopt a truncated
transfer learning strategy that only intercepts the encoder
backbone of the pretrained Med3d [25].

2.2.1. Lung Radiomics Features Extraction. First, 465 sets of
chest HRCT images are automatically segmented by
a trained ResU-Net [26], obtaining 465 sets of lung images
with the Hounsfeld unit (Hu) [27]. Te lung images include
the peripheral airway, pulmonary parenchyma, and pul-
monary vessels. Te architecture of the ResU-Net has been
described in detail in our previous study [28]. Ten, lung
radiomics features of 465 subjects are extracted from the
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Figure 2: Te proposed method in this study. (a) A constructed model of 3D CNN and MLP classifer for COPD stage classifcation. (b)
CNN feature vector is generated by transfer learning fromMed3D. (c)Te combined feature vector is generated by concatenating the CNN
feature vector and the radiomics feature vector. (d) Te combined feature vector is used to classify the COPD stage based on MLP classifer.

Stage 0

Stage I

Stage III & IV

Stage II

107

121

108

129

500 150100
Number of subjects

Figure 1: COPD stage distribution of the subjects in this study.
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lung images by PyRadiomics [29]. Refer to our previous
study [4] for a more detailed description of the lung
radiomics feature extraction.

2.2.2. 3D CNN Feature Extraction. A truncated transfer
learning strategy is proposed to extract the 3D CNN features
based on the pretrained Med3d [25]. Med3d, a heteroge-
neous 3D network, is used to extract general medical 3D
features by building a 3DSeg-8 dataset with diverse mo-
dalities, target organs, and pathologies. Tus, we only
transfer the encoder backbone of the pretrained Med3d (3D
ResNet10) for generating the 3D CNN features, as shown in
Figure 2(a).

Figure 2(b) shows that the 465 sets of lung images with
Hu are input to the transferring encoder backbone, gen-
erating CNN feature vectors in detail. First, the lung images
(512× 512×N) are cropped into the size 280× 400×N′,
retaining the lung region. Te non-lung images are also
deleted, so N changes into N′ (N′ <N). Second, the cropped
lung images are preprocessed by the method in reference
[25], normalizing the lung region and generating random
values outside the lung region in accordance with Gaussian
distribution. Equation (1) shows the mathematical form of
normalization:

x
′

�
x − x

σ
, (1)

where x is the value of the lung region, x is the mean value of
the lung region, and σ is the mean square deviation of the
lung region.

Tird, the CNN feature maps (512× 35× 50× 75) are
generated by the cropped and preprocessed lung images
(1× 280× 400×N′) and the pretrained Med3d. Last, higher-
order CNN feature maps (512× 3× 3× 3) need to be
extracted from the CNN feature maps (512× 35× 50× 75) by
3D average pooling. Ten, the higher-order CNN feature
maps (512× 3× 3× 3) are fattened into the CNN feature
vector. Finally, each CNN feature vector (per subject) in-
cludes 13824 3D CNN features (512× 3× 3× 3�13824).

2.2.3. Combined Feature Vector for COPD Classifcation.
Figure 2(c) shows that the combined feature vector is
generated by concatenating the CNN feature vector and the
radiomics feature vector. First, the CNN feature vector
(13824) and the radiomics feature vector (1316) are selected
by the least absolute shrinkage and selection operator
(Lasso) [30], respectively. After Lasso, the number of the
selected CNN feature vector and the selected radiomics
feature vector is 60 and 106, respectively. A standard python
package LassoCV, with tenfold cross-validation, is per-
formed in this paper. Equation (2) shows the mathematical
form of Lasso [4]:

A← arg min 
n

i�1
yi − β0 − 

p

j�1
βjxij

⎛⎝ ⎞⎠

2

+ λ

p

j�0
βj





⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(2)

where matrix A denotes the selected lung radiomics feature.
xij denotes the lung radiomics features (the independent
variable). yi denotes the COPD stage (the independent
variable). λ denotes the penalty parameter (λ≥ 0). βj denotes
the regression coefcient, i ∈ [1, n], and j ∈ [0, p].

Second, the combined feature vector is generated by
concatenating the selected CNN feature vector and the se-
lected radiomics feature vector. Finally, the combined fea-
ture vector is the size 1× 166 per subject. Figure 2(d) shows
thatMLP [31, 32] with the combined feature vector is used to
classify the COPD stage in this paper.

2.2.4. Experiments and Evaluation Metrics. Our proposed
method uses the combined feature vector of 3D CNN fea-
tures and lung radiomics features for COPD stage classif-
cation based on the MLP classifer. Our experiment includes
fve experiments in this section to verify the efectiveness of
our proposed method.

Figure 3 shows the experimental design in this paper.
End-to-end CNN models based on parenchyma images are
used for COPD stage classifcation in experiments 1-2.
Specifcally, two classic CNN models, DenseNet and Goo-
gLeNet, based on parenchyma images, are adopted to
compare the classifcation performance of the six diferent
ML classifers. Te classifcation performance of DenseNet
and GoogleNet has been evaluated by our previous study
[33], which achieved the best classifcation performance for
image classifcation. Furthermore, compared with experi-
ment 1, multiple-instance learning (MIL) [34], a form of
weakly supervised learning, is applied in experiment 2.
Meanwhile, diferent ML classifers based on diferent fea-
ture vectors are also used for COPD stage classifcation in
experiments 3–5.

Specifcally, the training parameters of 2D DenseNet and
3D DenseNet are set: 20/2 (batch size (2D/3D)), 512× 512/
512× 512× 20∗ (input size (2D/3D)), 50/50 (epoch (2D/
3D)), and 0.5/0.2 (drop rate (2D/3D)) in experiment 1. Te
training parameters of 2D GoogleNet and 3D GoogleNet are
set: 16/2 (batch size (2D/3D)), 512 × 512/512× 512× 20∗
(input size (2D/3D)), 50/50 (epoch (2D/3D)), and 0.2/0.2
(drop rate (2D/3D)) in experiment 1. ∗MIL: each case (a set
of chest HRCT images) was equally divided into 20 seg-
ments, with one slice taken equidistantly to obtain 20 slices
in each case. Te training parameters of 2D DenseNet with
MIL (2D DenseNet_MIL) and 3D DenseNet with MIL (3D
DenseNet_MIL) are set: 16/2 (batch size (2D/3D)),
512× 512∗∗/512× 512× × 512×16∗∗∗ (input size (2D/3D)),
50/50 (epoch (2D/3D)), and 0.5/0.2 (drop rate (2D/3D)) in
experiment 2. Te training parameters of 2D GoogleNet
with MIL (2D GoogleNet_MIL) and 3D GoogleNet with
MIL (3D GoogleNet_MIL) are set: 16/2 (batch size (2D/
3D)), 512 × 512∗∗/512× 512×16∗∗∗ (input size (2D/3D)),
50/50 (epoch (2D/3D)), and 0.2/0.2 (drop rate (2D/3D)) in
experiment 2. ∗∗MIL: each case was equally divided into 10
bags, with one slice taken randomly to obtain 10 slices in
each case. ∗∗∗MIL: each case was equally divided into 16
bags, with one slice taken equidistantly to obtain 16 slices in
each case.
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Specifcally, experiments 3–5 are designed to compare
the classifcation performance of the six diferent classifers
based on the CNN feature vector (13824), radiomics feature
vector (1316), their selected feature vector by Lasso, and the
proposed combined feature vector (166), respectively. First,
based on 3D ResNet10, we use six classic classifers (SVM
[35], MLP, RF [36], LR [37], GB [38], and LDA [39]) to
determine the best COPD classifcation classifer by diferent
feature vectors. Table 1 reports the six diferent classifers
with their defnitions in this paper. Te diferent feature
vectors include the CNN feature vector (13824), CNN
feature vector selected by Lasso (60), radiomics feature
vector (1316), and radiomics feature vector selected by Lasso
(106). Te MLP classifer with the best classifcation per-
formance is determined. Second, we further verify the
proposed combined feature vector (166) to improve theMLP
classifer’s performance. Tird, 3D ResNet18 and 3D
ResNet34 are also transferred to generate the CNN feature
vector, and the 3D ResNet10 is determined as the encoder
backbone with the best performance on the MLP classifer.
Te 465 subjects are divided into the train set (70%) and the
test set (30%). Figure 4 shows the detailed dataset division
for training and test set in each COPD stage.

Standard evaluation metrics of the CNN and ML
models include the accuracy, precision, recall, F1-score,
and area under the curve (AUC). Te above standard
evaluation metrics are defned as in equations (3)–(6).
Te evaluation metric AUC for multi-classifcation is
calculated by the receiver operating characteristic curve
(ROC) [40].

Accuracy �
TP + TN

TP + TN + FP + FN
, (3)

Precision �
TP

TP + FP
, (4)

Recall �
TP

TP + FN
, (5)

F1 − score �
2 × Precision × Recall
Precision + Recall

, (6)

where the true positive (TP) and false positive (FP), re-
spectively, represent the positive and negative samples
classifed to be positive by the CNN and ML models and the
true negative (TN) and false negative (FN), respectively,
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Figure 3: Experimental design in this paper.
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represent the positive and negative samples classifed to be
negative by the CNN and ML models.

3. Results

Tis section reports the experimental results, including (1)
the classifcation performance of the parenchyma images
based on the DenseNet and GoogleNet; (2) the classifcation
performance of the CNN feature vector and lung radiomics
vector based on diferent classifers; (3) the MLP classifer’s
performance with the combined feature vector; and (4) the
MLP classifer’s performance with combined feature vector
based on diferent 3D ResNet.

3.1. Te DenseNet and GoogleNet’s Performance with Pa-
renchyma Images. Tis section shows the classifcation
performance of 2D/3D DenseNet, 2D/3D GoogleNet, 2D/
3D DenseNet_MIL, and 2D/3D GoogleNet_MIL based on
the parenchyma images, respectively.

Figure 5 intuitively shows the AUC of the CNNmodels by
drawing the ROC curves. Tables 2 and 3 report the classif-
cation performance of CNNmodels. Specifcally, Table 2 shows
that 2D GoogleNet with parenchyma images performs the best
in 2D CNN models, achieving 0.550 (accuracy), 0.562 (mean
precision), 0.550 (mean recall), 0.553 (mean F1-score), and
0.809 (AUC). In addition, Table 3 shows that 3D DenseNet
with parenchyma images performs the best in 3D CNN
models, achieving 0.579 (accuracy), 0.614(mean precision),
0.579 (mean recall), 0.579 (mean F1-score), and 0.787 (AUC).

3.2. Te Classifcation Performance of CNN Feature Vector
and Lung Radiomics Vector Based on Diferent Classifers.
Tis section shows the classifcation performance of the
CNN feature vector (13824), the CNN feature vector selected
by Lasso (60), the lung radiomics vector (1316), and the lung
radiomics vector selected by Lasso (106) based on diferent
classifers, respectively.

Figure 6 intuitively shows the AUC of the diferent
classifers by drawing the ROC curves. Tables 4–7 show
that the MLP classifer is the best classifer for COPD
stage classifcation. Specifcally, Table 4 reports the
classifcation performance of the diferent classifers with
the CNN feature vector (13824), respectively. Te best
classifer is the MLP classifer with 0.793 (accuracy), 0.798
(mean precision), 0.793 (mean recall), 0.790 (mean F1-
score), and 0.790 (AUC), respectively. Table 5 reports that
the classifcation performance of the MLP classifer with
the CNN feature vector selected by Lasso has improved
with 0.821 (accuracy), 0.826 (mean precision), 0.821
(mean recall), 0.821 (mean F1-score), and 0.946 (AUC),
respectively. Table 6 reports that the classifcation per-
formance of the MLP classifer with the radiomics feature
vector selected by Lasso has improved with 0.786 (ac-
curacy), 0.784 (mean precision), 0.784 (mean recall),
0.784 (mean F1-score), and 0.919 (AUC), respectively.
Table 7 reports that the classifcation performance of the
MLP classifer with the radiomics feature vector selected
by Lasso has improved with 0.829 (accuracy), 0.828
(mean precision), 0.829 (mean recall), 0.824 (mean F1-
score), and 0.950 (AUC), respectively.

Table 1: Te diferent classifers with their defnitions.

Classifer Model defnition in Python 3.6
SVM SVM sklearn.svm.SVC(kernel� “rbf”,probability� true)

MLP sklearn.neural_network. MLPClassifer (hidden_layer_sizes� (400, 100),
alpha� 0.01, max_iter� 10000)

RF sklearn.ensemble.RandomForestClassifer(n_estimators� 200)
LR sklearn.linear_model.logisticRegressionCV(max_iter� 100000, solver� “liblinear”)
GB sklearn.ensemble.GradientBoostingClassifer()
LDA sklearn.discriminant_analysis.()
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Figure 4: Dataset division in this paper. (a) Training set. (b) Test set.
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Table 5 also reports that Lasso only plays a role in
improving the classifcation performance of the MLP clas-
sifer with the CNN feature vector. It does not improve the
classifcation performance of other classifers with the CNN
feature vector. However, Table 7 reports that Lasso does play
a role in improving the classifcation performance of all
classifers with the radiomics feature vector.

3.3. Te MLP Classifer’s Performance with Combined
Feature Vectors. Te best MLP classifer is determined
with the CNN feature vector selected by Lasso (60) or
the lung radiomics vector selected by Lasso (106) by
Section 3.1. Tis section shows the classifcation per-
formance of the MLP classifer with combined feature
vectors.
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Figure 5:Te ROC curves of the CNNmodel’s performance with parenchyma images. (a)Te ROC curves of the 2D/3DDenseNet and 2D/
3D GoogleNet. (b) Te ROC curves of the 2D/3D DenseNet_MIL and 2D/3D GoogleNet_MIL.

Table 2: Te 2D DenseNet and 2D GoogleNet’s performance with parenchyma images in experiments 1 and 2.

CNN model Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

2D DenseNet 0.471 0.800/0.311/0.000/0.720/
(0.466)

0.500/0.848/0.000/0.562/
(0.471)

0.615/0.455/0.000/0.632/
(0.428) 0.730

2D GoogleNet 0.550 0.788/0.419/0.385/0.622/
(0.562)

0.650/0.394/0.429/0.719/
(0.550)

0.712/0.406/0.405/0.667/
(0.553) 0.809

2D DenseNet_MIL 0.493 0.538/0.318/0.333/0.720/
(0.477)

0.875/0.424/0.057/0.562/
(0.493)

0.667/0.364/0.098/0.632/
(0.445) 0.770

2D GoogleNet_MIL 0.414 0.418/0.444/0.368/1.000/
(0.545)

0.950/0.121/0.400/0.062/
(0.414)

0.580/0.190/0.384/0.118/
(0.333) 0.648

Table 3: Te 3D DenseNet and 3D GoogleNet’s performance with parenchyma images in experiments 1 and 2.

CNN model Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

3D DenseNet 0.579 0.571/0.429/0.533/0.947/
(0.614)

0.800/0.455 0.457/0.562/
(0.579)

0.667/0.441/0.492/0.706/
(0.579) 0.787

3D GoogleNet 0.393 0.463/0.333/0.279/0.833/
(0.471)

0.775/0.061/0.486/0.156/
(0.393)

0.579/0.103/0.354/0.263/
(0.338) 0.674

3D DenseNet_MIL 0.500 0.500/0.600/0.408/0.900/
(0.592)

0.950/0.091/0.571/0.281/
(0.500)

0.655/0.158/0.476/0.429/
(0.441) 0.741

3D GoogleNet_MIL 0.486 0.471/0.413/0.200/0.789/
(0.463)

0.825/0.576/0.029/0.469/
(0.486)

0.600/0.481/0.050/0.588/
(0.432) 0.746
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Figure 7 intuitively shows the confusion matrix and
ROC curves of the MLP classifer with diferent feature
vectors based on 3D ResNet10. Te MLP classifer’s

performance with diferent feature vectors reported in
Table 8 can be calculated from the confusion matrix.
Table 8 reports that the proposed combined feature
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Figure 6: Te ROC curves of the CNN feature vector and lung radiomics vector are based on diferent classifers. (a) Te ROC curves of the
CNN feature vector (13824). (b)Te ROC curves of the CNN feature vector selected by Lasso (60). (c)Te ROC curves of the lung radiomics
vector (1316). (d) Te ROC curves of the lung radiomics vector selected by Lasso (106).

Table 4: Te diferent classifers’ performances based on CNN feature vector (13824) in experiment 3.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.629 0.763/0.556/0.514/0.690/(0.635) 0.725/0.606/0.543/0.625/(0.629) 0.744/0.580/0.528/0.656/(0.631) 0.863
MLP 0.793 0.829/0.815/0.806/0.732/(0.798) 0.850/0.667/0.714/0.938/(0.793) 0.840/0.733/0.758/0.822/(0.790) 0.938
RF 0.657 0.711/0.621/0.600/0.667/(0.652) 0.800/0.545/0.514/0.750/(0.657) 0.753/0.581/0.554/0.706/(0.652) 0.858
LR 0.650 0.689/0.621/0.630/0.641/(0.647) 0.775/0.545/0.486/0.781/(0.650) 0.729/0.581/0.548/0.704/(0.643) 0.835
GB 0.643 0.750/0.500/0.548/0.767/(0.644) 0.750/0.424/0.657/0.719/(0.643) 0.750/0.459/0.597/0.742/(0.641) 0.869
LDA 0.721 0.857/0.625/0.632/0.771/(0.726) 0.750/0.606/0.686/0.844/(0.721) 0.800/0.615/0.658/0.806/(0.722) 0.913
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Table 5: Te diferent classifers’ performances based on CNN feature vector selected by Lasso (60) in experiment 3.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.629 0.811/0.450/0.552/0.706/(0.637) 0.750/0.545/0.457/0.750/(0.629) 0.779/0.493/0.500/0.727/(0.630) 0.880
MLP 0.821 0.919/0.722/0.833/0.811/(0.826) 0.850/0.788/0.714/0.938/(0.821) 0.883/0.754/0.769/0.870/(0.821) 0.946
RF 0.600 0.638/0.480/0.594/0.639/(0.590) 0.750/0.364/0.543/0.719/(0.600) 0.690/0.414/0.567/0.676/(0.591) 0.858
LR 0.650 0.714/0.500/0.538/0.771/(0.633) 0.875/0.455/0.400/0.844/(0.650) 0.787/0.476/0.459/0.806/(0.636) 0.866
GB 0.600 0.714/0.395/0.538/0.793/(0.613) 0.750/0.515/0.400/0.719/(0.600) 0.732/0.447/0.459/0.754/(0.602) 0.869
LDA 0.657 0.771/0.526/0.541/0.833/(0.670) 0.675/0.606/0.571/0.781/(0.657) 0.720/0.563/0.556/0.806/(0.662) 0.898

Table 6: Te diferent classifers’ performances based on radiomics feature vector (1316) in experiment 4.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.643 0.784/0.514/0.514/0.793/(0.655) 0.725/0.576/0.543/0.719/(0.643) 0.753/0.543/0.528/0.754/(0.647) 0.863
MLP 0.786 0.857/0.731/0.692/0.848/(0.784) 0.900/0.576/0.771/0.875/(0.786) 0.878/0.644/0.730/0.862/(0.782) 0.919
RF 0.664 0.762/0.586/0.561/0.750/(0.668) 0.800/0.515/0.657/0.656/(0.664) 0.780/0.548/0.605/0.700/(0.664) 0.886
LR 0.679 0.850/0.567/0.564/0.710/(0.680) 0.850/0.515/0.629/0.688/(0.679) 0.850/0.540/0.595/0.698/(0.678) 0.863
GB 0.729 0.795/0.724/0.690/0.684/(0.727) 0.875/0.636/0.571/0.812/(0.729) 0.833/0.677/0.625/0.743/(0.724) 0.906
LDA 0.379 0.357/0.278/0.407/0.548/(0.395) 0.250/0.455/0.314/0.531/(0.379) 0.294/0.345/0.355/0.540/(0.377) 0.639

Table 7: Te diferent classifers’ performances based on the radiomics feature vector selected by Lasso (106) in experiment 4.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.736 0.816/0.606/0.694/0.818/(0.737) 0.775/0.606/0.714/0.844/(0.736) 0.795/0.606/0.704/0.831/(0.736) 0.915
MLP 0.829 0.864/0.840/0.750/0.857/(0.828) 0.950/0.636/0.771/0.938/(0.829) 0.905/0.724/0.761/0.896/(0.824) 0.950
RF 0.786 0.809/0.750/0.774/0.794/(0.783) 0.950/0.636/0.686/0.844/(0.786) 0.874/0.689/0.727/0.818/(0.781) 0.928
LR 0.693 0.800/0.667/0.630/0.636/(0.689) 0.900/0.485/0.486/0.875/(0.693) 0.847/0.561/0.548/0.737/(0.680) 0.886
GB 0.736 0.766/0.708/0.686/0.765/(0.732) 0.900/0.515/0.686/0.812/(0.736) 0.828/0.596/0.686/0.788/(0.729) 0.928
LDA 0.786 0.829/0.706/0.774/0.824/(0.785) 0.850/0.727/0.686/0.875/(0.786) 0.840/0.716/0.727/0.848/(0.784) 0.920
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Figure 7: Continued.
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vectors improve the MLP classifer’s performance,
achieving 0.879 (accuracy), 0.879 (mean precision), 0.879
(mean recall), 0.875 (mean F1-score), and 0.971 (AUC),
respectively.

3.4.TeMLPClassifer’s Performance with Combined Feature
Vector Based onDiferent 3DResNet. Te best MLP classifer
is determined with the CNN feature vector selected by Lasso
(60) or the lung radiomics vector selected by Lasso (106) by
Section 3.1. Tis section shows the classifcation perfor-
mance of the MLP classifer with combined feature vectors.

Figure 8 intuitively shows the confusionmatrix and ROC
curves of the MLP classifer with combined feature vectors
based on diferent 3D ResNet. Te MLP classifer’s per-
formance with combined feature vectors based on diferent
3D ResNet reported in Table 7 can be calculated from the
confusion matrix. Table 9 reports that the MLP classifer
with combined feature vectors based on 3D ResNet10
achieves the best classifcation performance.

4. Discussion

Tis paper proposes a features combination strategy by
concatenating 3D CNN features and lung radiomics features
for COPD stage classifcation based on the MLP classifer.
Tree sections are discussed in this section, and we also point
out the limitations in this study and the future direction.

First, 2D GoogleNet with parenchyma images performs
the best in 2D CNN models. Te main reason is that 2D

GoogleNet is designed for 2D natural image classifcation
(RGB images). Terefore, it achieves the best classifcation
performance in 2D parenchyma images. Meanwhile, because
of the ability to extract interlayer information, 3D DenseNet
with parenchyma images performs the best classifcation in
3D CNN models. However, CNN models with parenchyma
images fail to classify the COPD stage. One main reason is
that the chest HRCT image cannot fully refect COPD’s
characteristics for the CNN models. Specifcally, the gold
standard of COPD classifcation is characterized by airfow
restriction with a slight diference in the chest HRCT image.
Te slight diference in COPD is mainly caused by small
airway disease with an airway diameter<2mm [17]. Because
of the limitation of HRCT resolution, the above diferential
features of the small airway will be further blurred in the
chest HRCT image. Another reason is that chest HRCT
images can refect the COPD anatomical characteristics, but
COPD patients are with high heterogeneity and diferent
phenotypes [1]. Te heterogeneity and diferent phenotypes
often result in diferent features of the chest HRCT images in
the same stage.Terefore, it is hard for CNNmodels to learn
specifc COPD characteristics, resulting in bad classifcation
performance. At the same time, a set of standard medical
images is not as easy to obtain as natural images, and the
number of chest HRCT images also restricts CNN models
for COPD stage classifcation. Terefore, compared with
CNN models, the ML classifer can realize the COPD stage
classifcation with a small number of samples. Tis paper
determines the MLP classifer with 3D CNN features or lung
radiomics features, which performs the best for COPD stage
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classifcation. In addition, compared with the convolution
layer in the CNN models, the MLP classifer is composed of
three full connection layers, which is more efcient and
more suitable for modeling long-range dependencies. Te
MLP classifer also can handle complex nonlinear features
and discover dependencies between diferent input features
compared with other classifers [31, 32]. Meanwhile, the

objective evaluation of the COPD stage is only the degree of
airfow limitation tested by GOLD criteria [1, 2, 4]. COPD is
a heterogeneous disease [41], resulting in diferences in
features (3D CNN features or lung radiomics features
extracted from chest HRCT images) with the same degree of
airfow limitation. Terefore, a nonlinear relationship exists
between 3D CNN features or lung radiomics features and
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Figure 8: Te confusion matrix and ROC curves of the MLP classifer with combined feature vectors based on diferent 3D ResNet. (a) Te
confusion matrix of the MLP classifer with combined feature vector based on 3D ResNet10. (b) Te confusion matrix of the MLP classifer
with combined feature vector based on 3D ResNet18. (c) Te confusion matrix of the MLP classifer with combined feature vector based on
3D ResNet34. (d) Te ROC curves of the MLP classifer with combined feature vectors based on 3D ResNet.

Table 9: 3D ResNet’s performance based on MLP classifer with the combined feature vector (166).

3D ResNet Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

3D ResNet10 0.879 0.905/0.885/0.861/0.861/(0.879) 0.950/0.697/0.886/0.969/(0.879) 0.927/0.780/0.873/0.912/(0.875) 0.971
3D ResNet18 0.871 0.907/0.923/0.875/0.795/(0.877) 0.975/0.727/0.800/0.969/(0.871) 0.940/0.814/0.836/0.873/(0.869) 0.950
3D ResNet34 0.864 0.884/0.828/0.853/0.882/(0.862) 0.950/0.727/0.829/0.938/(0.864) 0.916/0.774/0.841/0.909/(0.862) 0.960
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the COPD stage. Because of this, the MLP classifer is
suitable for classifying the COPD stage and has achieved an
excellent result in COPD stage classifcation.

Second, Lasso can improve the classifcation perfor-
mance of the MLP classifer with the 3D CNN features and
the lung radiomics features. Lasso is often used with survival
analysis models to determine variables and eliminate the
collinearity problem between variables [30, 42]. Te results
show that Lasso also can improve the MLP classifer’s
classifcation performance by establishing the relationship
between the independent variables (3D CNN features or
lung radiomics features extracted from chest HRCT images)
and dependent variables (the COPD stages). Furthermore,
Lasso selects 3D CNN features or lung radiomics features
related to COPD stages to reduce the complexity of the MLP
classifers and avoid overftting [43]. While reducing the
complexity of the MLP classifers, the MLP classifers can
focus on the selected lung radiomics features (the radiomics
feature vector selected by Lasso) or the selected 3D CNN
features (the CNN feature vector selected by Lasso) and
improve the classifcation performance. From the results of
the Lasso, the number of the CNN feature vector selected by
Lasso is 60, and that of the radiomics feature vector selected
by Lasso is 106. We are surprised that the number of col-
linearity features in the CNN feature vector is more than that
in the radiomics feature vector. Tis further shows that
feature selection of 3D CNN features or the radiomics
features is necessary for the COPD stage classifcation, es-
pecially in clinical applications.

Tird, the proposed feature combination strategy can
further improve the classifcation performance of the MLP
classifer. Tis paper does not improve the existing classic
classifers and starts with the classifcation features to en-
hance the classifer’s performance. Many nonlinear classi-
fcation features, the 3D CNN features, are obtained by
a truncated transfer learning strategy. We concatenate the
CNN feature vector and the radiomics feature vector for the
COPD stage classifcation, which improves the MLP clas-
sifer’s performance. Te MLP classifer is good at handling
complex nonlinear features by itself [31, 32]. Terefore,
based on the radiomics feature vector, we add the nonlinear
CNN feature vector to the radiomics feature vector, gen-
erating a combined feature vector. Te combined feature
vector with the nonlinear CNN feature vector enhances the
MLP classifer’s performance. Terefore, this fts the essence
of the MLP classifer and is interpretable [44]. Te selected
encoder backbone of the pretrained Med3D is also directly
related to the classifcation performance. Compared with the
MLP classifer with 3D ResNet18 or 3D ResNet34, the MLP
classifer with 3D ResNet10 performs the best, consistent
with the results of multi-class segmentation task (left lung,
right lung, and background) in reference [25].

Finally, this study has some limitations, and we point out
the future direction. First, from the materials used in this
study, there are not enough cases at the COPD stages III and
IV. Second, the existing classic classifers are not improved.
Tird, the classifcation performance of the ML classifer
with the 3D CNN features is also limited by the encoder
backbone of the pretrained Med3d. In our future work, the

recent networks, an auto-metric graph neural network [45],
will be further attempted and modifed for COPD stage
classifcation based on the 3D CNN features and/or the lung
radiomics features.

5. Conclusions

Tis paper proposes a feature combination strategy by
concatenating 3D CNN features and lung radiomics features
for COPD stage classifcation based on the MLP classifer.
First, the 3D CNN features are extracted from the lung
region images based on a truncated transfer learning
strategy. Ten, the lung radiomics features are extracted
from the lung region images by PyRadiomics. Compared
with CNN models and other ML classifers, the MLP clas-
sifer with the best classifcation performance is determined
by the 3D CNN features and the lung radiomics features.
Lasso plays a role in improving the classifcation perfor-
mance of theMLP classifer with the CNN feature vector and
the radiomics feature vector. Te proposed combined fea-
ture vector also improves the MLP classifer’s performance.
Te MLP classifer with the proposed combined feature
vector has accuracy, mean precision, mean recall, mean F1-
score, and AUC of 0.879, 0.879, 0.879, 0.875, and 0.971,
respectively. Tis shows that our method efectively im-
proves the classifcation performance for COPD stage
classifcation.
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Objective. To explore a centralized approach to build test sets and assess the performance of an artifcial intelligence medical device
(AIMD) which is intended for computer-aided diagnosis of diabetic retinopathy (DR). Method. A framework was proposed to
conduct data collection, data curation, and annotation. Deidentifed colour fundus photographs were collected from 11 partner
hospitals with raw labels. Photographs with sensitive information or authenticity issues were excluded during vetting. A team of
annotators was recruited through qualifcation examinations and trained. Te annotation process included three steps: initial
annotation, review, and arbitration. Te annotated data then composed a standardized test set, which was further imported to
algorithms under test (AUT) from diferent developers. Te algorithm outputs were compared with the fnal annotation results
(reference standard). Result. Te test set consists of 6327 digital colour fundus photographs.Te fnal labels include 5 stages of DR
and non-DR, as well as other ocular diseases and photographs with unacceptable quality. Te Fleiss Kappa was 0.75 among the
annotators. Te Cohen’s kappa between raw labels and fnal labels is 0.5. Using this test set, fve AUTs were tested and compared
quantitatively. Te metrics include accuracy, sensitivity, and specifcity. Te AUTs showed inhomogeneous capabilities to classify
diferent types of fundus photographs. Conclusions. Tis article demonstrated a workfow to build standardized test sets and
conduct algorithm testing of the AIMD for computer-aided diagnosis of diabetic retinopathy. It may provide a reference to
develop technical standards that promote product verifcation and quality control, improving the comparability of products.

1. Introduction

As an emerging branch of the medical device, the AIMD,
along with increasing applications of deep learning [1, 2], has
demonstrated signifcant potential in medical imaging, image
reconstruction, and postprocessing [3–16]. While hundreds
of AIMDs have been approved [17, 18], the verifcation and
validation of such devices are mainly conducted by manu-
facturers spontaneously, leading to variation in evaluation
metrics and data sets [19]. Stakeholders show rising concern
on the quality of the AIMD, such as its comparability [20] and
transparency [21], which poses considerable challenges to

regulation compared to a conventional medical device. In the
past several years, special guidelines for the AIMD have been
published [22, 23]. Tere are increasing eforts to establish
standards for the AIMD [24–27]. Te topics include termi-
nology, performance testing, dataset quality management,
and quality systems.

To support standard development, it would be helpful to
explore the approach to build and apply standardized test
sets. While the literature reports existing public datasets for
medical AI [28, 29], they are more appropriate for model
training or competition [5, 8] rather than testing. On the one
hand, the design of public datasets usually occurs before the
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research and development of the AIMD, and they may not
match the application scenario of the AIMD. On the other
hand, test sets have special requirements. Tey should be
independent from manufacturers or developers in order to
verify the generalizability of AI.Te capacity and diversity of
data samples should be similar to the intended patient
population. Standard operation protocols should be fol-
lowed during the lifecycle. A systematic annotation process
is needed to provide the reference standard.

Tis article demonstrates a case study to build test sets
for computer-assisted diagnosis of DR, which is a common
application of the AIMD. It is reported that deep learning
algorithms can diferentiate referrable DR patients from
nonreferrable DR patients by reading colour fundus pho-
tographs [5, 7, 9, 10, 12]. Indeed, annual DR screening using
digital photographs of the retina has long been recom-
mended by several major governmental or professional
organizations, including the UK National Health Service
[10, 30], the American Diabetes Association [31], and other
international societies [32].

In this article, a standardized approach is proposed to
compose test sets for DR. Te major procedure is described,
including data collection, curation, and annotation.Te test set
is applied in the testing of AUTs. Te advantages and practical
issues of this approach are discussed, which may provide
a reference for the development of technical standards.

2. Materials and Methods

2.1. Framework for Dataset Construction. Te framework to
build the test set is illustrated in Figure 1. It depicts
a workfow, including design input, requirement specifca-
tion, data collection, data curation, data annotation, and
quality inspection. Risk management and personnel man-
agement are also considered and integrated into the workfow.

2.2. Design Input and Requirement Specifcation. To initiate
dataset construction, the design input is frstly clarifed. Te
intended use of this test set is to verify algorithm perfor-
mance on classifcation of diabetic retinopathy by com-
paring algorithm outputs with the reference standard. Te
test set represents colored fundus photographs of diabetic
patients from hospitals. Common image formats such as
JPEG and BMP are accepted.

Requirement specifcation of this test set further de-
scribes dataset composition, classifcation, and data in-
clusion/exclusion criteria. Tis study uses colored
photographs taken by fundus cameras that are ofcially
approved to enter the market with a feld of view no less than
45°. Photographs taken under near-infrared illumination are
not included. According to the common intended use of
AIMD products and the clinical guidelines for DR [33, 34],
the images in the test set should include 7 categories (shown
in Table 1): no apparent DR, mild nonproliferative DR
(NPDR), moderate NPDR, severe NPDR, proliferative DR
(PDR), other fundus diseases, and ungradable images (low
image quality). No apparent DR and mile NPDR are con-
sidered nonreferrable. Moderate NPDR, severe NPDR, and

PDR are considered referrable. Te proportion of referrable
DR in the test set should be similar to the prevalence in the
patient population.

Notably, the above categorization method is a result of
justifcation since many AI products in China were designed
according to the Guidelines for Diabetic Retinopathy Di-
agnosis and Treatment in China [33], which has referenced
a previous version of the guidelines published in 1985 and
ICO guidelines for diabetic eye care. Te current guideline
[33] divides DR based on severity into 6 stages as shown in
Table 2. DR phases 0–III in Table 2 are equivalent to Classes
0–3 in Table 1. Since the treatment scheme of DR phases
IV–VI is similar and the referral strategy is identical, the test
set consolidates these stages into Class 4, which is compatible
with ICO guidelines and practical in a clinical scenario.

Fundus diseases other than DR are classifed as Class 5,
which include but are not limited to hypertensive retinopathy
[35], age-related macular degeneration [36], suspect glau-
coma [37, 38], retinal vein occlusion [39], pathologic myopia
[40], and optic nerve diseases [41]. Although these ocular
diseases are not necessarily claimed by AIMD products, they
may be imported into AIMDs in the real world. Terefore,
they serve as negative controls in the test set.

Ungradable images are classifed as Class 6. Image
quality is given special attention in the development of the
test set. DR screening is often performed in out-patients,
sometimes on patients with undilated pupils. Te colour
retinal photographs are obtained using low levels of illu-
mination. Also, human factors such as movement and
positioning in addition to ocular factors such as cataracts
and refections from retinal tissues can produce defects.
Especially, without pupillary dilatation, artifacts are ob-
served in 3–30% of retinal images to the extent that they
impede annotation [42]. Terefore, in this test set,
ungradable images are also included, with conditions
ranging from over darkness/saturation, out of focus, wrong
positioning, lens contamination, to anterior segment images.

If an image only has minor quality problems that do not
disturb annotation, it will be annotated and assigned to
category 0–5. Images with photocoagulation marks and

Dataset construction

Design
input

Requirement
specification

Data
curation

Data
annotation

Risk management

Quality
inspection

Resource management

Data
collection

Figure 1: standardized framework for dataset construction.

Table 1: Te categorization of the test set.

Class Meaning
0 No apparent DR
1 Mild NPDR
2 Moderate NPDR
3 Severe NPDR
4 PDR
5 Other fundus diseases
6 Ungradable images
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other treatment marks are annotated according to their
posttreatment features. Te comparison between pre-
treatment and posttreatment images is not within the scope
of the test set.

2.3. Risk Management. Data security, patient privacy, and
data bias are the major risks considered in this study. To
ensure data security, all activities are conducted on the local
area network with controlled user access. Data are stored in
servers independent from algorithms under testing. Data
annotation tools are not allowed to export images. To protect
patient privacy, only deidentifed images with ethical ap-
proval are accepted in this test set. To minimize data biases
such as selection bias and coverage bias, the diversity of
positive and negative samples is highlighted in the re-
quirement specifcation.

2.4. Data Collection. During data acquisition, deidentifed
fundus photographs are collected retrospectively from
partner hospitals with ethical approval from local in-
stitutional review boards. Te raw images are submitted in
JPEG formats. No modifcation or processing, such as fl-
tering, smoothing, clipping, and contrast enhancing, is
allowed. Additional information on image sources, in-
cluding data collection sites, manufacturers of fundus
cameras, and models of fundus cameras, is recommended
and submitted.

2.5. Data Curation. Data curation is the process to ensure
data safety and quality. First, the status of deidentifcation
and ethical approval proof are manually confrmed. Second,
data vetting is conducted to exclude problematic images,
including unreadable fles, incomplete images, and images

that compromise privacy information. After curation, the
images are stored, indexed, and submitted to the image
annotation process. Additional data preprocessing is not
implemented in this study.

2.6. Resource Management. Dataset construction relies on
resource management, especially personnel management
and tool management.

Personnel management focuses on annotator re-
cruitment, qualifcation, and management. Te annota-
tion task needs both junior annotators and senior
annotators. All junior annotator candidates are publicly
recruited. Te basic qualifcation is a board-certifed
ophthalmologist with at least 5 years of clinical experi-
ence. All candidates receive annotation instructions in
advance to clarify the classifcation rule according to the
literature on DR [33, 34] and other fundus diseases
[35–41]. After the training, the candidates attend an exam
to classify 100 fundus photographs (18% nonreferrable
DR, 45% referable DR, 32% other ocular diseases, and 6%
ungradable images). Tose who achieve greater than 80%
accuracy pass the exam. Tey are given an additional
training session.

Senior annotators should have professional certifcation
as image readers and receive special training to promote
consistency. In this article, senior annotators all have NHS
(UK National Health Service) certifcation.

Tool management focuses on software tools that facili-
tate data processing and annotation. In this study, a custom-
built annotation software is used. Te main functions in-
clude image preview, contrast adjustment, image magnif-
cation, flter selection, task assignment, and progress
monitoring. Annotators can add, edit, and submit anno-
tation results. Reviewers and arbitrators can visit their

Table 2: Defnition of DR phases.

DR phases and
fndings observable on
fundus photos [33]

Classes in ICO
guidelines [32]

0: no abnormalities No apparent DR
I: microaneurysms only Mild NPDR
II: microaneurysms and other signs (e.g., dot and blot hemorrhages, hard exudates,
and cotton wool spots), but less than severe nonproliferative DR Moderate NPDR

III: moderate nonproliferative DR with any of the following:

Severe NPDR
(1) Intraretinal hemorrhages (≥20 in each quadrant)
(2) De nite venous beading (in 2 quadrants)
(3) Intraretinal microvascular abnormalities (in 1 quadrant)
(4) No signs of proliferative retinopathy
IV: neovascularization of the optic disc or elsewhere. When accompanied by
vitreous/preretinal hemorrhage, it is defned as high risk PDR

Proliferative DR (PDR)
V: fbrous membrane could be accompanied by preretinal hemorrhage or vitreous
hemorrhage
VI: traction retinal detachment, combined with fbrous membrane, combined with/
without vitreous hemorrhage, and neovascularization of the iris and the anterior
chamber angle
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results and make corrections or justifcations. Te software
only exports annotation results. No modifcations are made
to images.

2.7.DataAnnotation. Te reference standard is based on the
combined decisions of junior annotators and arbitration
experts. Te image annotation is conducted in a laboratory
environment. Te annotation workfow is summarized in
Figure 2. Te annotation process includes two rounds:

2.7.1. First Round (Initial Annotation). Each batch of images
is assigned to a team of 3 annotators. Te annotators in-
dependently annotate images in a blinded way. If their
classifcation result on an image is fully in agreement, such
images are categorized as the prequalifed pool. Images with
discordant classifcations are categorized as the arbitration
pool. 10% of the prequalifed pool is randomly sampled and
submitted to the second round. Te annotations of the rest
of the prequalifed pool are accepted conditionally. Te
arbitration candidate group are also submitted to the
second round.

2.7.2. Second Round (Review and Arbitration). Tis step is
carried out by a team of three senior annotators, one of
whom acts as the team leader. Te team leader has served as
the director of an image reading center in a top ophthal-
mological hospital. Tey review all images submitted to this
round so as to resolve the fnal annotation in the arbitration
pool and review the samples from the prequalifed pool. If
sampled annotation results in the prequalifed pool cannot
pass the review, more samples will be submitted to the
arbitration pool. Feedback may be given to annotators in the
frst round. Senior experts can justify the number of samples
in the prequalifed pool for inspection.

All images are stored, accessed, previewed, and manually
classifed using a custom-built annotation software.

2.8. Quality Inspection. After data annotation, quality in-
spection is conducted to examine the dataset’s quality. Te
annotation records, including initial annotation, review, and
arbitration, are reviewed and compared on each image to
avoid inconsistencies and mistakes. Images that pass quality
inspection are enrolled in the test set. Te percentage of
diabetic retinopathy subtypes is calculated. Usability and
validity of each image are also examined manually.

2.9. Algorithm Testing. Five algorithm models intended to
classify fundus photographs are enrolled as AUTs. Tey are
trained by diferent manufacturers or developers. Tey all
claim to use deep learning, but details such as the neural
network structure, weights, and training sets are beyond the
scope of this article. Te test set is imported into each AUT.
Te output of AUTs is compared with the fnal annotation
results. Te overall accuracy, sensitivity, and specifcity used
to diferentiate referable DR from nonreferrable images are

reported. Te performance of AUTs is further compared
across the 7 subtypes separately.

3. Results

3.1.Diversity of theTest Set. Te test set contains 6327 images
from 11 hospitals in 10 provinces. Among them, 9 hospitals
are tertiary hospitals and contribute 71.2% of the images,
while the rest are secondary hospitals and contribute 28.8%.
No primary hospitals or community clinics are involved.
Since the images are deidentifed, the location of the hospital
is used to indicate geological distribution of patients. Te
provincial distribution of images is shown in Table 3, which
demonstrates that representative provinces in Northeast
China, North China, Central China, East China, Southeast
China, and South China are involved.

Te images are acquired by more than 13 types of fundus
cameras made by 9 manufacturers, all in compliance with an
ISO standard on fundus cameras [43].Te feld of view is 45°.
Te optical resolution is between 80 and 120 pairs s/mm. All
images are larger than 1000 pixel by 1000 pixel. Te dif-
ference in image size, detector, light source, and embedded
software may add more diversity to image quality and
features.

In this test set, all fundus photographs are rectangular
images with a pure background (either dark or white pixels)
enveloping the round-shaped images of interest. Te ratio
between the pure background area and the whole area of
each photograph is also considered an important source of
image variation.

3.2. Performance of Annotators. During the recruitment of
annotators, 47 ophthalmologists registered and attended the
exam to classify 120 fundus images, including 63 DR images.
15 candidates fnally passed and joined the annotation.Teir
average professional experience is above ten years. Tey are
from 15 diferent hospitals in 7 provinces.Teir accuracies in
the exam range from 80% to 87%. Te interannotator
agreement is evaluated by calculating Fleiss’ kappa. Te
result is 0.75, which is considered substantial given the fact
that annotators come from diferent hospitals and regions.
Te intraannotator agreement is evaluated by calculating
intraclass correlation, which is >85% for all qualifed oph-
thalmologists. Additional training is given before the cen-
tralized annotation to reinforce the guidelines and minimize
misunderstandings.

3.3. AnnotationResults. In the frst round, 15 annotators are
evenly divided into 5 groups randomly. Individual workload
is between 1000 and 1500 images. 3694 images yield con-
cordant results, and 369 images are submitted to the second
round as samples for inspection. 2356 images are graded
with a majority opinion reached within each grading group
and submitted to the second round for arbitration. 277
images yield totally diverse results within each group and are
sent for arbitration too.

In the second round, the images are read by two NHS
certifed retinal experts and a senior expert with an NHS
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certifcate independently in a blinded way. Ten, they dis-
cuss all results and reach consensus on the fnal annotation
results. According to the fnal results, 55.41% of images are
directlydetermined by the consensus within each group in
the frst round. 16.02% of the images are graded according to
the major opinion within each group in the frst round.
26.81% of the images are graded with a reference to the
minor opinion in each group in the frst round. Only 1.76%
of the images are graded only by the arbitrators.

Using the fnal annotation results as the reference stan-
dard, the accuracy of each annotator is calculated.Te average
accuracy is 83%.Teminimum is 75%, while the maximum is
90%. 13 out of 15 annotators have accuracy higher than 80%.
Te performance of the 15 annotators comports with their
qualifcation exam results and is considered satisfactory in
comparison with the commonly accepted diagnostic accuracy
by single-feld fundus photography [42].

Te composition of the annotated images is described in
Table 4. Te overall proportion of DR is 39.51%, comparable
with the prevalence of DR in the Chinese DM population
(24.7%–37.5%) [33].Te prevalence of other fundus diseases
is 41.08%. Tis test set balances the proportion between DR
and other fundus diseases that may be assessed by future
AIMD products.

Te classifcation of the current test set can be expressed
in a simplifed manner. Class 0 and Class 1 in Table 1 are
consolidated into nonreferrable DR. Class 2 to Class 4 in
Table 1 are consolidated into referrable DR. Class 5 and Class
6 may remain independent or be consolidated into a certain
type. In the following algorithm testing, they are considered
nonreferrable.

3.4. Comparison with Raw Labels. During data collection,
partner hospitals submitted raw labels, which were anno-
tated by local annotators without centralized examination or
training. Te number of annotators deployed in each hos-
pital varied from 1 to 3. Te requirement for annotator
qualifcation was diferent among partner hospitals. Te
minimum requirement was graduate student level, and the
maximum requirement was associate professor level. Using
the fnal annotation results as the reference standard, the
overall accuracy of raw labels is 61.64%, and Cohen’s Kappa
is 0.5173, indicating the quality problems with raw labels.

3.5. Algorithm Testing Results. Te overall accuracy, sensi-
tivity, and specifcity to diferentiate referable DR from
nonreferrable images are calculated and compared among
the 5 AUTs. Table 5 shows the results of the 5 AUTs. Te
accuracy ranges from 0.77 to 0.88. Te sensitivity ranges

Table 3: Geological distribution of image sources.

Region Province Percentage
North China Beijing 16

Northeast China Heilongjiang 13
Liaoning 22

Central China Henan 2
Hubei 2

East China
Shanghai 9
Zhejiang 4
Anhui 3

Southeast China Fujian 15
South China Guangdong 14

Total 100

Initiate annotation task

Annotator 1 Annotator 2 Annotator 3

Compare classification results of 
the same images

All in
agreement?

Compose pre-qualified pool
Compose arbitration

pool
Submit 10%

Yes

No

Review and arbitration
by senior experts

Feedback and justification

Completion

Figure 2: Te annotation workfow.
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from 0.80 to 0.86. Te specifcity ranges from 0.73 to 0.89.
AUT1 shows the highest accuracy and sensitivity among the
5 AUTs.

Te capability of the algorithm to correctly classify
images of a specifc class as referable or nonreferrable is also
calculated. For class 2–class 4, it is represented as the number
of true positives over the total number of samples in this
category, which is equivalent to sensitivity. For other classes,
the specifcity of each category is calculated instead. Table 6
compares the performance of 5 AUTs on each specifc class.
It provides more details to demonstrate the variation in
algorithm performance. For class 0, class 3, and class 4, the
capability of all AUTs is above 95% on average. For class 1,
the capability of AUT1 is signifcantly lower than the rest (on
average above 90%). For class 2, the capability ranges from
0.64 to 0.75, indicating a common weakness among all 5
AUTs. For class 5, the capabilities of AUT1 and AUT3
signifcantly outweigh the rest of the AUTs. For class 6,
AUT1 shows the top capability among the 5 AUTs. No AUTs
in this experiment shows homogeneous capability to classify
all 7 classes.

4. Discussion

Tis article demonstrates a centralized pathway to build test
sets and conduct third party testing of AIMD products. Te
test set is composed of 6327 images, which are annotated
into 7 classes covering all stages of DR according to ICO
guidelines, as well as “other fundus diseases” and
“ungradable images.” Te diversity of the test set considers
data sources (11 hospitals from 10 provinces), fundus
cameras (>13 models from 9 manufacturers), and image
parameters (image sizes, detectors, and light sources).

Te pathway for test set construction in this article is
diferent from that in algorithm challenges, where test sets
and training sets are usually constructed under the same
protocol or as subsets of a larger dataset. Tis pathway relies
on independent data collection, curation, annotation, and
storage, which decreases the possible similarity between this
test set and training sets owned by developers of AUTs and

promotes the verifcation of AI algorithm generalizability. It
may be suitable for third party testing laboratories to
conduct conformity assessment.

According to the literature [5, 9, 10, 44], the pathway to
form the reference standard in other studies is based on
various combinations of annotators and reviewers. In this
study, a combination of prequalifed annotators and arbi-
trators conducted data annotation. Under this scheme, the
annotators’ performance is estimated quantitatively (Fleiss
Kappa� 0.75, individual accuracy>80%, and intra-class
correlation>85%). During the annotation process, each
image in the test set is reviewed by 3–6 experienced pro-
fessionals, and 98.2% are determined by the major decision
(3 votes out of 3 annotators or >4 votes out of 6). Only 1.76%
are determined by the arbitration experts. Te results show
that the annotation scheme helps enhance consensus among
annotators.

On the other hand, the raw labels from partner hospitals
show signifcantly lower accuracy and consistency compared
to the fnal annotation results. According to information
provided by partner hospitals, the raw labels are annotated
by an inconstant number of annotators, ranging from 1 to
3, including graduate students, residents, and junior and
senior ophthalmologists. It suggests the importance to
organize annotation task systematically and the necessity to
establish consistent annotation rules among diferent
hospitals. Otherwise, the discrepancy in data annotation
may impact dataset quality and further inhibit the quality
of the AIMD.

Using the annotated test set, the performance of 5 AUTs
is tested quantitatively as technical demonstration. It is
straightforward to compare the overall accuracy, sensitivity,
and specifcity in the scenario of DR classifcation. Algo-
rithm performance can be further observed on subgroups of
the test set. However, no AUT in this experiment shows
homogeneous capability to classify diferent categories of
images. While public stakeholders pay attention to algo-
rithm fairness and generalizability, this study shows the
necessity to reveal and understand how the AI algorithm
performs diferently on subtypes of diabetic retinopathy
images. It also indicates that algorithm performance may
change with the proportion of these categories. A strategy to
tune the composition of test sets in a fexible manner is
needed to guide future testing.

Tis work explores practical approach and issue in
advancing the standardized testing of the AIMD. But due to
time and resource constraints, it has limitations in the
following aspects:

Table 5: Comparison of overall performance metrics.

Metrics AUT1 AUT2 AUT3 AUT4 AUT5
Sensitivity 0.861422 0.814484 0.831024 0.802861 0.851587
Specifcity 0.884597 0.820782 0.890465 0.799267 0.728851
Accuracy 0.876403 0.818555 0.869448 0.800537 0.772246

Table 6: Comparison of decision capability among 5 AUTs.

Class AUT1 AUT2 AUT3 AUT4 AUT5
0 0.983963 0.989691 0.988545 0.988545 0.934708
1 0.557252 0.958015 0.912214 0.885496 0.889313
2 0.752236 0.645796 0.677102 0.639534 0.746869
3 0.982729 0.991364 0.993092 0.984455 0.977547
4 0.957407 0.974074 0.975926 0.946296 0.933333
5 0.893846 0.801923 0.889231 0.761153 0.642308
6 0.814085 0.442254 0.642254 0.549295 0.738028

Table 4: Te distribution of annotated images.

Class Number Percentage
0: no apparent DR 873 13.798
1: mild NPDR 262 4.141
2: moderate NPDR 1118 17.670
3: severe NPDR 579 9.151
4: PDR 540 8.535
5: other fundus diseases 2600 41.094
6: ungradable 355 5.611

Total 6327 100
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First, the test set is based on retrospective data collection.
Although data are randomly sampled by partner hospitals,
control measures should be taken to limit bias. Continuous
sampling of data within a period may help.

Second, the proportion of mild NPDR is much smaller
than that of other DR subtypes. One possible reason is that
without compulsory DR screening, patients with mild
NPDR are unlikely to take fundus photographs, which re-
sults in the relative scarcity of mild NPDR photographs.
Increment of mild NPDR not only decreases the sampling
errors of SE and SP but also improves the balance between
diferent stages of DR. In fact, from the annotator’s per-
spective, it is important to diferentiate microaneurysm in
mild NPDR from blot hemorrhages in moderate NPDR.
Terefore, more cases of mile NPDR should be added to the
current test set.

Tird, as a colour fundus photograph dataset, it is dif-
fcult to use the test set alone to annotate important diseases
among the 41.09% “other diseases” that may be assessed by
AI in the near future. Colour fundus photographs are in-
capable of thickness measurement, which inhibits detection
of certain diseases such as AMD and glaucoma. Images from
additional imaging modalities such as OCTshould be added
to the test, but the cost will increase signifcantly.

Fourth, the diversity of this test set still needs im-
provement. Partner hospitals in this study are mostly
tertiary hospitals, without community-level hospitals. As
a result, most photographs are acquired by high-end
fundus cameras. Handheld fundus cameras, which may
be more popular in community-level clinics and rural
areas, have minor contribution to data collection. More
data should be added to compensate for this scenario and
enrich data diversity.

To promote standardization of AIMD testing, reliability
and comparability of test sets need to be addressed in the
future research. Test sets built by diferent organizations may
have diferent data sources, data inclusion/exclusion criteria,
annotation resources, and procedures, which would cause
inconsistent dataset quality. Transparent description of data
sets should be normalized. Consensus standards on dataset
construction and annotation are needed to guide the pro-
cedure. It would be necessary to conduct sample inspection
and comparison among test sets, similar to profciency
testing [45] by interlaboratory comparison.

5. Conclusions

Tis article proposes a practical approach to build test sets
for third-party testing of the AIMD. It takes quality
control measure during data collection, curation, and
annotation. It demonstrates the beneft of centralized data
annotation in comparison with individual annotators and
spontaneous annotation from single hospitals. Te ap-
plication of such a test set reveals algorithm performance
and weakness in a comparative and straightforward
manner, providing helpful information for regulation of
such medical devices.
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With the development of radiology and computer technology, diagnosis by medical imaging is heading toward precision and
automation. Due to complex anatomy around the pancreatic tissue and high demands for clinical experience, the assisted pancreas
segmentation system will greatly promote clinical efciency. However, the existing segmentation model sufers from poor
generalization among images from multiple hospitals. In this paper, we propose an end-to-end data-adaptive pancreas seg-
mentation system to tackle the problems of lack of annotations and model generalizability. Te system employs adversarial
learning to transfer features from labeled domains to unlabeled domains, seeking a dynamic balance between domain dis-
crimination and unsupervised segmentation. Te image quality control toolbox is embedded in the system, which standardizes
image quality in terms of intensity, feld of view, and so on, to decrease heterogeneity among image domains. In addition, the
system implements a data-adaptive process end-to-end without complex operations by doctors. Te experiments are conducted
on an annotated public dataset and an unannotated in-hospital dataset. Te results indicate that after data adaptation, the
segmentation performance measured by the dice similarity coefcient on unlabeled images improves from 58.79% to 75.43%, with
a gain of 16.64%. Furthermore, the system preserves quantitatively structured information such as the pancreas’ size and volume,
as well as objective and accurate visualized images, which assists clinicians in diagnosing and formulating treatment plans in a
timely and accurate manner.

1. Introduction

Pancreatic cancer is a malignant tumor and is recognized
with a low survival rate, and pancreatic diseases are
characterized by rapid occurrence and continuous pro-
gression [1, 2]. Even among all types of cancer, it is one of
the most dangerous and deadly. It is estimated that, in 2021,
statistically, about 60,430 new cases of pancreatic cancer
would be diagnosed in the US, and 48,220 people would die
from this disease [3]. Because pancreatic cancer is difcult
to diagnose in its early stage, the rate of diagnosis is almost

as high as the mortality rate. If not treated timely, a sig-
nifcant portion of patients with pancreas disease would be
diagnosed with metastatic symptoms [4]. For pancreatic
cancer, the common treatment options are surgical re-
section, neoadjuvant radiotherapy, radiotherapy, and
chemotherapy [5, 6], of which surgery is acknowledged to
achieve a better prognosis but with somewhat invasiveness.
Regardless of the chosen treatment option, precise local-
ization and segmentation of the pancreas are crucial for
physicians to diagnose and assess the patient’s condition
early in the treatment phase [7].
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Computed tomography (CT) and magnetic resonance
imaging (MRI) are particularly important examination
procedures and tools in diagnosing pancreatic diseases [8].
CT, especially contrast-enhanced CT, is the frst choice for
pancreatic examinations in hospitals and has the advantages
of more rapid imaging and clearer strips than MRI. How-
ever, the irregularity and variability of the pancreas in
morphology and low contrast in its surrounding tissues lead
to a high demand for experience and prior knowledge of
radiologists in the early diagnosis of pancreatic diseases
[9–12]. Nowadays, precision medicine requires the clinical
process upgrading from qualitative observation to quanti-
tative analysis and diagnosis [13, 14]. Terefore, accurate
automatic segmentation of pancreatic tissues in CT images
can greatly accelerate the early diagnosis process for phy-
sicians and assist in the appropriate treatment process.

In recent years, with technological breakthroughs in
deep learning, computer-aided pancreas segmentation has
yielded a series of promising methodological studies
[15–26]. Limited by the small object characteristics of the
pancreas, several studies have employed the two-stage
cascade approach for semantic segmentation [7, 26]. Tese
methods frst locate the pancreas in the entire CT sequence
with bounding boxes and then perform pixel-level seg-
mentation of the pancreas on the basis of box localization.
nnU-Net adopts a two-stage strategy to perform segmen-
tation on pancreatic healthy tissues and lesion tissues au-
tonomously by confguring itself and achieves the best
accuracy in the Medical Segmentation Decathlon challenge
[27]. Zhu et al. [15], Fu et al. [17], and Oktay and Chen [18]
introduced attention modules and spatial information to a
three-dimensional (3D) segmentation structure to capture
the consistency information of pancreatic tissue in CT
images. More recently, a series of AI-based semantic seg-
mentation or object detection methods has been applied to
clinical practice for quantitative data measurement and
morphometric analysis [28–30]. For example, pancreatic
fstula prediction after pancreaticoduodenal surgery is based
on quantitative pancreatic volume measurements in CT
images, and gallbladder resection is guided by fat pairs from
quantitative measurements of the pancreas in CT images.

However, the more challenging issue in the clinical
application of computer-aided pancreas segmentation is that
the heterogeneity of across domain images leads to poor
generalization of models [31]. Tis is manifested by the fact
that supervised models trained on a single dataset, even if
trained with accurate expert manual annotations, are subject
to signifcant model inference errors once they are deployed
to other medical centers [32–38]. Normalized images are
essential for good performance of deep learning models. Te
variation in medical images in terms of populations, scan-
ning devices, scanning parameters, or imaging protocols will
lead to varying quality [33, 39, 40]. Tis heterogeneity exists
in both CT and MRI images [33, 34, 36]. Besides, pancreatic
disease and pancreatic cancer dramatically change the
morphology of the pancreatic tissue, specifcally demon-
strated by difuse enlargement, inhomogeneous density, and

ambiguous boundaries, which make the data quality in-
consistent among medical centers [41]. Liu et al. [33] and
Wang et al. [36] illustrated the heterogeneity across medical
sites in terms of the patient cohort and image quality. Several
research studies on medical image segmentation have pre-
viously demonstrated signifcant performance degradation
of single-site models when deployed to other sites. Ler-
ousseau and Xiao [42] proposed a new weakly supervised
multi-instance learning method as a tool for pancreas tumor
segmentation which achieved promising performance by
taking full advantage of less annotated data at the pixel level.
However, this method yielded about 15–26% performance
degradation when it was tested for other publicly available
datasets. Obviously, interdomain generalization greatly
limits the clinical application of automatic pancreas seg-
mentation models. In the feld of natural images, several
studies have addressed this issue by using transfer learning
or federation learning algorithms [43–47]. However, the
efectiveness of approaches based on natural images is un-
satisfactory or even worse for CT images due to the gap
between the two types of images [48]. Tere is one research
study on semisupervised segmentation pancreas tasks on the
NIH-TCIA dataset and achieved a dice similarity coefcient
score of 78.27% by using a portion of annotated images [49].
Moreover, to date, few research studies related to unsu-
pervised segmentation or domain adaptation of the pancreas
have been conducted.

Terefore, to tackle this serious real-clinical problem, we
propose an end-to-end data-adaptive pancreas segmentation
system with an image quality control toolbox in this paper.
Te system focuses on the pancreas segmentation model
construction with heterogeneous cross-domain CT images
in the presence of insufcient annotations in medical cen-
ters.Temain contributions of this paper are summarized as
follows: (1) Te system utilizes adversarial learning to
construct data-adaptive segmentation models with the as-
sistance of domain discriminators. Besides, we employ a
collaboration center to perform feature-level transfer
learning without data sharing across domains. (2) A mul-
tifunctional image quality control toolbox is designed to
standardize the quality of images from various medical
centers in terms of the intensity range, feld of view, region of
interest, etc. (3) Te system works in an end-to-end mode,
which only requires physicians to select images, set up
personalized parameters, and then wait for automatic model
construction and inferences on unlabeled data. (4) Te
system ofers a variety of pancreas-related features including
textual information and imaging results, which can assist
physicians in quantitative and precise clinical diagnosis of
the pancreas.

We experimentally demonstrate the efectiveness of the
system on a public dataset and an in-hospital dataset and
validate the robustness of the system on a small dataset. Te
data-adaptive pancreas segmentation systemwe developed is
able to diagnose a larger number of people quickly and
efectively in the clinical practice and to obtain meaningful
pancreas segmentation results.
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2. Methods

Accurate segmentation of pancreatic tissue is an essential
stage in clinical diagnosis of pancreatic diseases. Te vari-
ability of CT images from diferent medical centers afects
the generalizability of automatic pancreatic segmentation
tools. Subtle diferences in image features result in sudden
decreases in segmentation accuracy for deep learning
models. To address such a problem, improvements can be
carried out in terms of both data alignment and segmen-
tation model construction methods, respectively. On the one
hand, some image quality control approaches for pancreas
CT images are used to process diferent source images. On
the other hand, the automatic pancreatic segmentation
model should have the ability to adapt to variations in the
data domain in terms of themethodology and system design.
To address these issues, a novel end-to-end data-adaptive
segmentation system for the pancreas with an image control
toolbox is proposed for pancreatic data quality normaliza-
tion and assisting in pancreas segmentation model gener-
alization. In this chapter, the overall framework of the
system and the construction and functions of each module
are shown.

2.1. Framework. Te overall framework of the proposed
data-adaptive pancreas segmentation system embedded with
a data quality control toolbox is shown in Figure 1. Te
system consists of two parts: the local clients of medical
centers and a collaborative center on the cloud server. Te
primary tasks of the local client are integrating and pro-
cessing data, constructing segmentation models, and visu-
alizing segmentation results. Te collaborative center is
mainly responsible for transfer learning of image features
among multiple medical centers.

Te medical center client consists of four modules,
namely, data organization module, image quality control
module, segmentation module, and visualization module.
Te data organizationmodule is mainly operated by imaging
physicians to establish the patients’ cohort to study and
extract the pancreas CT images from the in-hospital data-
base. Te image quality control module performs stan-
dardized preprocessing on the previously selected pancreas
CT images in order to normalize the data and reduce the
variation of images from diferent sources.Te segmentation
module is mainly equipped with the predefned semantic
segmentation model in the system to train annotated data
and cooperates with the collaborative center to assist in the
construction of the data-adaptive segmentation model for
unannotated data. Besides, the segmentation module uses
the well-trained model to predict the mask of pancreas
tissues in input images. Te visualization module presents
multidimensional results of the segmented pancreas tissues
in terms of visualized images and structured text.

Te collaborative center mainly contains feature dis-
criminators. Te feature transmission and learning process
between the medical center and the collaborative center is
encapsulated as the transfer learning module. Te transfer
learning module mainly accomplishes adversarial learning

between image features from multiple centers. Te feature
discriminator optimizes the segmentation network of un-
labeled images by balancing the Nash equilibrium of the
domain classifcation loss and the segmentation loss. Tus,
the segmentation network is adaptive to the new images
without the need of annotation.

2.2. Image Quality Control Toolbox. Te image quality
control toolset provides a variety of image processing means
to standardize various qualities of images from multiple
sources, mainly including the intensity value cutof, rotation
augmentation, and superresolution reconstruction. Te CT
intensity of abdominal organs is in the range of (−160, 240)
HU, and the range for the pancreas is kept in (−100, 240) HU.
Tis scale preserves pancreatic tissue features and removes
background information. Rotational augmentation refers to
amplify CT images by rotating them at the axial plane with
degrees in the range of ( ±5°, ± 10°). Tis operation is not
performed in the ordinary sense of augmenting data to
improve model performance but rather to attenuate the
angle bias introduced by the feld of view or body position
during scanning so as to eliminate heterogeneity. Super-
resolution reconstruction could efectively improve the
image quality, thus reducing the quality inconsistency
caused by scanning devices, imaging protocols, slice
thickness, and so on. In this study, it is concerned that the
efective abdominal region in CT images fuctuates because
of diferent scanning felds of view, so the frst step in
superpixel reconstruction is framing out the region of in-
terest. Pancreatic CT images were binarized to measure
image region properties. Ten, the maximum connected
region containing the region of interest was found by the
region-growing algorithm. Te rectangular area bounded by
the diagonal vertices of the maximum connected region in
the image is considered the valid abdominal area. Ten, the
truncated 3D volume is interpolated in 3D cubic interpo-
lation (system default settings) and reconstructed to the
same resolution to feed into the network. Te default size is
512× 512 resolution in an axial plane and 1mm thickness in
a sagittal direction. Furthermore, the system provides var-
ious image interpolation methods to system users. Te re-
construction algorithm library includes nearest neighbor
interpolation, bilinear interpolation, Lanczos interpolation,
and bicubic interpolation to support multiple requirements
for medical studies.

2.3. Segmentation Module. Te segmentation module is
embedded with a deep learning semantic segmentation
network applicable to the pancreas segmentation task. Tis
module is mainly responsible for the training of labeled data
models, the construction of adaptive unlabeled data models
in cooperation with discriminators, and the prediction of
pancreas masks for input samples.

In this paper, a 3D ResUnet structure integrated with an
attention mechanism is designed as the backbone model of
the segmentation module. U-Net [50] is a widely used se-
mantic segmentation network, which has the advantages of
the small amount of data needed, high data utilization, and
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short training periods. On the basis of U-Net, the ResUnet
model designed in this research introduces a deep residual
structure which enables weighted interactions of image
features at diferent scales, thus improving the segmentation
performance of small targets like pancreatic tissue. Te
residual connection simplifes training and eliminates the
degradation of the transmission of information among low
and high scales, resulting in fewer parameters in networks.
Besides, an attention mechanism is introduced into 3D
spatial channels to enlarge the model capacity and enhance
the network feature representation capability. Te attention
structure is inspired by the design paradigm of the squeeze
and excitation (SE) network [50] and extended to 3D to
handle 3D image representations. Te specifc structure is
represented as follows: the input 3D feature map is squeezed
based on pooling operations to obtain the feature vector in
channels and feature activation is performed by the mul-
tilayer perception (MLP) operation of fully connected layers.
After obtaining the weighting coefcients of the important
channels in the feature map, the obtained coefcients are
then linearly weighted into the input 3D feature map in a
dot-product manner.

Te feature maps at four scales (32 × 32, 64 × 64, 128 ×

128, and 256 × 256) of the decoder are transmitted to the
collaborative center for adversarial learning. Te feature
maps at various scales contain not only the shallow
boundary information but also the precise pancreas target
information so as to ensure the efectiveness of domain
adaptation. Moreover, to more strictly constrain the seg-
mentation task on small object tasks, the model employs a
linear combination of the dice loss and cross-entropy loss
function as optimization criteria. Te loss function is for-
mulated as

Lossall � αLossCE + λLossdice, (1)

where α and λ are the linear coefcients that range from 0 to
1. Tese parameters can be customized by system users
according to the needs of practical research purposes. In the
experiments of this paper, α� 0.8 and λ� 0.5.

2.4. Feature TransferModule. Te feature transfer module is
mainly responsible for adversarial learning of image features
among centers. Adversarial learning is performed by the
discriminator in the collaborative center. Te multiscale
image features generated by the segmentation module of the
medical center are transferred to the collaborative center as
the four inputs of the discriminator. Each of the input
feature maps sequentially undergoes a 3D convolutional
layer and an activation function, where the step size of the
3D convolutional layer is set to 2. Terefore, the spatial scale
of image features is decreased by half and thus concatenated
with the next-scale feature map and fed to the next layer.
Upon weighted feature fusion of multiple scales, the features
are fed into the average pooling layer and the fully connected
layer in turn to obtain the fnal domain classifcation results.

Te workfow of feature transfer is shown in Figure 2.
Te labeled source-domain data are denoted as x, and the
labeled dataset is defned as S(x); the unlabeled target-do-
main data are denoted as z, and the unlabeled dataset is
defned as T(z). At frst, the labeled dataset is trained with
annotated images by the segmentation module to obtain an
initial pancreas segmentation model. Ten, x and z are fed
into the segmentation model in pairs to generate multiscale
feature mapsFS(x) andFT(z), respectively, which are then
transmitted to the collaborative center. In the collaborative
center, the feature maps from the two branches are trained
by the discriminator H(·) for domain identifcation. Given
feature maps from the source domain with label 1 and
target-domain feature maps with label 0, then the optimi-
zation condition of the discriminator is to seek the weights
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Figure 1: Overall framework of the data-adaptive pancreas segmentation system. Te system consists of two parts: the local clients of
medical centers and the collaborative center on the cloud server.
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that maximize the diference of domain features, and the loss
function is defned as

L FT(·),H(·)(  � Ex∼S(x) log H FS(x)( (  

+ Ez∼T(z) log 1 − H FT(z)( (  ,
(2)

where Ex∼S(x) and Ez∼T(z) denote the mathematical expec-
tations for the two parts.

Meanwhile, the feature maps from the target-domain
images are labeled with a change to 1 and are fed into the
discriminator in a single branch. Te discriminator back-
propagates the source-domain features with respect to the
labels, thus amplifying such common image features and
updating the pancreas segmentation model for the target
domain. In the subsequent feature transfer process, the
discriminator and the target domain segmentation model
are continuously updated and frozen alternately as in the
above step, thus searching for the Nash equilibrium of the
two optimization functions in the adversarial process. Te
fnal optimization purpose of adversarial learning is to
discover general image features between domains and utilize
them to guide the segmentation of the pancreas.

2.5.VisualizationModule. When the pancreas segmentation
model for unannotated images is constructed by the feature
transfer module, doctors could select CT images to study
from the hospital local database and perform standardized
preprocessing for images with custom parameters in the
image quality control toolbox. Subsequently, the visualiza-
tion module performs postprocessing on the pancreas mask
output by the segmentation module and displays CT images
and corresponding segmentation results. Te presentation
includes visualized images and structured text information.

Segmentation is essentially the prediction of whether
each pixel in the image is a target foreground or background,
so there are usually a number of isolated and noisy points in
the segmentation mask. In this study, a conditional random
feld (CRF) model and a hole-flling algorithm are used as
postprocessing operations in visualization modules to fur-
ther optimize the segmentation mask to eliminate the
anomalous structure and smooth the boundaries. In addi-
tion, the module ofers a parallel visualization comparison
between segmentation results and physician annotations in
each slice-of-interest so that the physician can check an-
notations. Te visualized image results include original CT
images and segmented pancreas masks in the form of 2D
slices and 3D volumes.Besides, the 3D reconstruction of
surface distances between masks and annotations are also
displayed. Te module with visualized images also provides
support for window dragging, rotating, zooming, and other
operations to display images more comprehensively.
Structured text information covers volume, size, and oc-
cupancy depth of pancreas tissues, surface distances between
masks and annotations, etc.

2.6. Experimental Results

2.6.1. Datasets. Te NIH-TCIA dataset [23] is employed as
the labeled source-domain dataset in this study. Te NIH-
TCIA dataset is collected by the National Institutes of Health
Clinical Center, which is currently the authoritative and
commonly adopted public dataset for pancreas segmenta-
tion. We employed 70 cases of in-hospital CT images,
collected from the First Afliated Hospital of the Zhejiang
University School of Medicine, as the unlabeled target do-
main dataset, noted as the Zheyi dataset. Te annotations of
Zheyi images were all manually outlined and cross-validated

Source
Medical Center Without Data Sharing

Dataset with Annotations

Optimized supervised learning segmentation
model with labels ys of source institute.

Raw Data without Annotations

Adversarial Training

Nash Equilibrium 

Segmentation Model MTI for specifc Target Medical Center without data annotations

arд min max L (FT (.), H (.))L (FT(.), H(.)) =Ex~s(x) [logH(x)] + Ez~T(z) [log(1-H (FT (z))] FTi H

Unsupervised Training for
segmentation Model MTi

DS & YS

MS ~ GS = FS ( xs, θs)

Feature encoding vectors extracted from deep
layers are detached for adversarial training.

ρS∈ FS (xs, θs)
Feature encoding vectors extracted from deep

layers are detached for adversarial training.

Training Discriminator for classifcation of
feature encoding vectors from institutes with

pseudo label y ~ {y true|ρsi : y false |ρt:}

ρTi ∈ FTi (xTi, θTi)

D = H (ρ,y)

Optimized Weight of source institute is used to
initialize target model.

MT ~ GTi = FTi ( xTi, θTi)
MTi = Ms ≤ MS

DT1

FT1 (.) FT2 (.) FTi (.)

DT2

Target Medical
Center

DTi

D vs. MTi

Gradient
update

Update weights of MTi While freezing D

Update weights of D While freezing MTi 

Supervised Training for
Discriminator Model D

Online Domain Adaptive Learning

⌃

Figure 2: Workfow for the construction of a data-adaptive pancreas segmentation model for unlabeled data.
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by professional physicians. Notably, the annotations of the
Zheyi dataset are not only used for the training process of the
system but are also used for evaluation. Te NIH-TCIA
dataset contains 82 enhanced CT sequences, and the Zheyi
dataset includes 70 instances. Te axial resolution of CT
images in the two datasets is 512× 512. Slice thickness of CT
images in the NIH-TCIA dataset ranges from 0.5mm to
1mm, and the number of slices is in the range of 181 to 466,
which are relatively high-resolution CT images. In contrast,
the CT images of the Zheyi dataset range from 2.5mm to
3mm in layer thickness, and the slice number varies from 76
to 107.

2.6.2. Experimental Details. Te system previously pre-
sented is expected to be able to cope with new sources of
unlabeled CT images to construct an efective segmentation
network. Taking NIH-TCIA as the labeled data center and
Zheyi as the unlabeled data center, we validated the data
adaptability and pancreas segmentation performance of the
designed system for Zheyi images. We utilized PyTorch [51]
in the Python environment to implement models and al-
gorithms. Te experiments were carried out with an NVI-
DIA TITAN V GPU with 12GB memory and 2 Intel Xeon
E5-2630 v4 CPUs. To guarantee the stability and reliability of
the system, all trials are performed with a 5-fold cross-
validation approach.

Te execution time for necessary steps in the data-
adaptive chain is listed in Table 1. Tese time data are
statistically derived from the mean time of all sequences of
the NIH-TCIA dataset. As can be seen in the table, the time
for the data quality control module is mainly distributed
over superresolution reconstruction. Te duration of the
complete data processing is about 16 seconds. Te inference
time of the segmentation model is only 2.37 seconds, and the
postprocessing time consumes an average of 6.77 seconds.
While 3D reconstruction takes up the majority of the time
cost of the visualizationmodule, text analysis is relatively less
time consuming.

Te experiments are conducted in the following steps: (1)
Te predefned model in the segmentation module performs
supervised learning on the NIH-TCIA center to obtain the
original baseline model. (2) Te optimized baseline models

are derived as in the frst step from NIH-TCIA images with
various image quality control measures. (3) Te original and
optimized baseline models are tested on Zheyi images, which
undergo the same quality control measures as NIH-TCIA
images corresponding to themodel, respectively. In this way,
the segmentation performance without the proposed data-
adaptive system can be observed. (4) Data adaptation
training is carried out on NIH-TCIA and Zheyi images to get
the segmentation model applicable to unannotated Zheyi
data, so as to investigate the segmentation efectiveness after
data adaptation. Te same data adaptation trainings are also
performed on images on which various processing means in
the quality control toolbox have been taken.

Te results are mainly evaluated by the dice similarity
coefcient (DSC) andmean intersection over union (mIoU),
which indicate the similarity between the pancreas mask
generated by the segmentation model and ground truth. Te
Hausdorf distance measures the deviation between the
predicted mask and ground truth mask and is calculated as
the distance of points in the two masks to each other’s
surfaces. Te DSC and mIoU are defned as follows:

DSC(X, Y) �
2 ×|X∩Y|

|X| +|Y|
,

mIoU(X, Y) �
|X∩Y|

|X∪Y|
,

(3)

where X represents the pancreas mask generated by the
segmentation model and Y is the ground truth.

Te Hausdorf distance is computed as

DH(X, Y) � max (min x ∈ S(X) d(x, S(Y))), max (miny ∈ S(Y) d(y, S(X))) , (4)

where S(X) is the point set of the predicted pancreas mask
and x represents the points in it. Similarly, S(Y) is the point
set of the ground truth mask and y represents the points in
it. In the formula, d(x, S(Y)) indicates the distance from the
point x to the surface formed by the point set S(Y).

We display the average DSC, mIoU, and the Hausdorf
distance on the test samples to demonstrate the average
performance of the proposed pancreas segmentation system.
In addition, considering the comprehensive presentation of
segmentation masks, the visualization module will present
the textual information and multidimensional images of the

pancreas segmentation results. Te textual information
contains the volume diference, Hausdorf distance, center-
of-mass distance, and average symmetric surface distance
(ASSD) to evaluate the segmentation results from multiple
perspectives.

2.6.3. Baseline Performance. Figure 3 displays CT images
from NIH and Zheyi datasets processed with multiple
quality control methods. As can be observed, the raw data
from the two datasets exhibit diferences in various aspects

Table 1: Execution time for processing steps in the system.

Processing phase Execution time (s)
CT format conversion 0.34
Intensity rescale 0.05
Rotation in angle ranges 2.18
ROI location 0.24
Superpixel reconstruction 13.44
Segmentation interference 2.37
Postprocessing 6.77
Visualization reconstruction 5.91
Textural metric analysis 0.025
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like the intensity distribution and scanning feld of view
(FOV) upon observation by a human. Moreover, it is also
evident from the statistics shown in Table 2 that CT images
of the two datasets difer signifcantly in terms of layer
thickness. Te range of intensity preserves most of infor-
mation of abdominal organs and decreases the noise in-
terference. Te rotation augmentation with minor angles
increases the diversity of FOV. Te superresolution re-
construction algorithm frames out valid abdominal regions
and eliminates redundant background information, so as to
diminish heterogeneity caused by the clinical imaging
process. It is observed from Figure 3 that, with the data
quality control means, the visualized CT sequences nar-
rowed the variation within and between datasets.

We frst train the supervised baseline models on the
NIH-TCIA dataset using raw and processed images and
compare segmentation performance with existing pancreas
segmentation methods. It is observed that the models
trained with quality-controlled images outperform those
trained on raw images, demonstrating that the image quality
control toolbox designed in this paper is efective in de-
creasing intradomain heterogeneity. As summarized in
Table 3, our model achieves a DSC of 85.45% after corre-
sponding quality control means, which is superior to the
performance of existing methods.Te results show the mean
value and standard deviation of the 5-fold cross-validation,
which more reliably refect the model’s performance on the
whole dataset.Te results indicate that the designed network
in segmentation modules is of sufcient confdence to serve
as the baseline models for subsequent adaptation
experiments.

2.6.4. Data-Adaptive Performance. Table 4 lists the results of
the unlabeled Zheyi dataset of directly tested and with data
adaptation by the proposed system. When the NIH-TCIA
baseline model is tested directly on the Zheyi dataset, only a
DSC of 58.79% is obtained, indicating that almost half of the
tissues are segmented incorrectly. Figure 4 presents the

segmentation masks for three CT slices selected from the
Zheyi dataset. As can be clearly observed, the model trained
on the NIH-TCIA dataset exhibits signifcant degradation in
pancreas segmentation on unseen images with heteroge-
neity. Te masks in such cases do not efectively capture the
pancreatic tissue information without data adaptation.

After data-adaptive training, the DSC score increases to
72.73% (a gain of 13.94%). Notably, the models trained with
quality-controlled data demonstrate better performance
when oriented to images from new sources. With rotation
augmentation and superpixel reconstruction, the perfor-
mance increases from 61.95% to 75.43% (a gain of 16.64%).
To ensure the reliability of the experimental results, paired t-
tests were performed on segmentation results of both the
models with and without data adaptation. As listed in Ta-
ble 4, the segmentation performance is signifcantly im-
proved as observed, by the p value less than 0.01. Moreover,

Raw Image Intensity Adjustment Rotation Super-Pixel

NIH-TCIA

Zheyi

Figure 3: CT slice presentation with various image quality control means from two domains.

Table 2: Datasets in the experiment.

Categories Numbers Axial
resolution

Slice
numbers

Slice
thickness

NIH-
TCIA 82 512× 512 [181, 466] [0.5, 1]

Zheyi 70 512× 512 [76, 107] [2.5, 3]

Table 3: Baselines segmentation performance on the NIH-TCIA
dataset, where “sup-pixel” refers to superpixel reconstruction.

Model Image options Mean DSC (%)
Li et al. [19] Raw images 83.06± 5.57
Cai et al. [20] Raw images 82.40± 6.70
Yu et al. [16] Raw images 84.50± 4.97

Ours

Raw images 83.13± 6.93
Rotation 84.99± 4.86
Sup-pixel 84.35± 6.10

Rotation + sup-pixel 85. 5±  .51
Te best performance value is presented in bold.
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after the image quality control, the diference in segmen-
tation performance is more signifcant between before and
after data adaptation. As can be observed in Figure 4, the
pancreatic tissue can be correctly segmented out after the
designed system. As expected, the model with data adap-
tation constructed by the system is capable of efcient
segmentation for pancreas tissues and is of great signifcance
in clinical decision-making.

2.6.5. Visualization. Te visualization module provides
structured textual information about the segmentation re-
sults and visualized images to assist physicians.We selected a
CT sequence from the Zheyi dataset and allowed the phy-
sician to make corrections to annotations. In the designed
system, the visualization results of this sample are shown in
Figure 5. For the segmentation mask, statistics such as
pancreas volume and size are calculated and displayed, and
pancreas images in multiple dimensions are reconstructed.
For physician manual corrections, the system then indicates
the deviation between manual and system corrections in
metrics such as the volume diference, mass distance, av-
erage symmetric surface distance (ASSD), Hausdorf

distance, and dice similarity coefcient. In addition, we
calculate the 3D surface distances between two masks and
reconstruct them as images.

3. Discussion

3.1. System Functionalities. In this research, a multifunc-
tional image quality control toolbox was developed to
standardize CT images from various aspects. Te general
rotation augmentation is employed to enhance the abun-
dance of samples. However, the pancreas as a segmentation
target is relatively small in volume in comparison with the
whole abdomen. Terefore, the ordinary rotation aug-
mentation operation is of little signifcance for the task. In
this paper, an augmentation approach with minor rotation
angles is designed to solve this problem. First, the statistical
analysis of images is performed frst to obtain the angle bias
range of the abdomen, and then, we set a reasonable range of
rotation angles with regard to data distribution character-
istics. Tis operation reduces the discrepancy in images
caused by various scanning felds of view and patient body
positions with precise angle settings and enriches the
samples in quantity. Furthermore, superresolution

Table 4: Adaptation performance of the system on the Zheyi dataset, where “sup-pixel” refers to superpixel reconstruction and “w/o”
indicates without. Te maximum value is presented in bold.

Labeled
dataset

Unlabeled
dataset

Image process
options

Test w/o adaptation Test with adaptation
p value
of DSCMean DSC

(%)
mIoU
(%) DH(mm)

Mean DSC
(%)

mIoU
(%) DH(mm)

NIH-TCIA Zheyi

Raw images 58.79 41.63 12.93 72.73 57.15 7.26 3.13e-4
Rotation 62.73  5.70 9.37 74.91 60.00 5.57 3.26e-7
Sup-pixel 61.58 44.49 11.44 73.64 58.28 6.89 4.55e-3

Rotation + sup-pixel 61.95 44.88 10.16 75. 3 60.55 6.34 7.85e-6

Case1 Case2 Case3

(a)

(b)

(c)

(d)

Figure 4: Qualitative segmentation results with diferent methods on several axial slices from the Zheyi dataset: manual label (red),
prediction label (yellow), and overlap (green). (a) Ground truth. (b) Without adaptation. (c) With adaptation without the image quality
control. (d) With adaptation with the image quality control.
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reconstruction serves two functions. On the one hand, it
standardizes the images in terms of resolution, layer
thickness, feld of view, etc., to minimize the heterogeneity
among data domains. On the other hand, more fne-grained
CT images are provided in the visualization module by
improving the spatial resolution of the image, which is
convenient for radiologists to review and diagnose.

As can be seen in Tables 3 and 4, the images with the
quality control show less heterogeneity not only in intra-
domains but also in interdomains. Te normalization of the
images in terms of the angle, intensity scale, and region of
interest lays the foundation for the subsequent transfer of the
segmentation model. We performed paired t-tests for the
ablation study in the image quality control module, and the
statistical results are presented in Table 5. Te results are
statistically signifcantly improved by rotation and rotation
plus superpixel reconstruction with a p value less than 0.01.
Te superpixel reconstruction only yields obviously im-
proved results with a p value less than 0.05.

Moreover, in the visualizationmodule, the reconstructed
pancreas tissue displayed in Figure 5 of the visualization
module demonstrates better spatial continuity, which fa-
cilitates the radiologist’s diagnosis.

3.2. System Robustness. With the development of technol-
ogy, the standardization and industrialization of deep
learning are becoming more and more mature. As stated in
the introduction, deep learning models have excellent
performance in real-world applications but still face many
challenges. Tis research improves the generalization of the
segmentation model in the presence of new datasets, which
addresses the potential problems of automatic pancreas

segmentation systems in practical deployment and appli-
cations. However, the robustness of the deep learning model
is also an issue that needs to be focused.

Robustness typically denotes the property of a system to
maintain its primary performance in the presence of fuc-
tuations in some parameters [52, 53]. Normally, robustness
is used to evaluate how stable a system is against uncertain
utilization environments. It is widely known that deep
learning systems are driven by big data, and thus, more data
lead to richer feature extraction and higher quality model
construction [54–56]. Terefore, when attention is paid to
the small amount of data, we investigate whether the system
is afected by performance degradation.

We adopted an external dataset for the robustness ex-
periments. Te dataset was collected by Vanderbilt Uni-
versity and contained 30 sequences, which was marked as
the BTCV dataset [57, 58]. Te resolution of CT images in
this dataset is 512× 512 pixels, the slice number ranges in
[85, 198], and the layer thickness is in the interval of [2.5, 5]
mm. Te experiments were performed with the NIH dataset
as a labeled center and the BTCV dataset as an unlabeled
center. As can be seen in Table 6, after the proposed data-
adaptive pancreas segmentation system with the image
quality control, the performance on the BTCV dataset
reached a DSC of 74.97%, which is 14.83% improvement

Figure 5: System interface display: visualization of multidimensional segmentation results in multiple dimensions and comparison with
manual annotations.

Table 5: Paired t-test results for the ablation study of raw images
and images with the quality control, where “sup-pixel” refers to
superpixel reconstruction.

Image options Rotation Sup-pixel Rotation + sup-pixel
p value 1.95e− 3 3.41e− 2 7.28e− 4
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compared to a DSC of 60.14%, with directly testing original
images with the model trained on the NIH dataset. Te
paired t-test indicates the statistically signifcant improve-
ment with a p value less than 0.01. It is obvious that this
result is consistent with that when the Zheyi dataset served as
an unlabeled dataset, which means that the system still
achieves a superior data adaptation performance. Tis result
indicates that the designed system maintains a robust per-
formance with respect to small datasets.

3.3. System Efectiveness. In clinical diagnosis, there is a
demand for modern data analysis technology to mine CT
image information and assist clinicians in improving di-
agnosis efciency, thus refning the medical treatment
process. Te data-adaptive pancreas segmentation system
proposed in this study utilizes the domain-invariant features
from source-domain images with annotations for transfer
learning to adapt the model to CT data features from dif-
ferent domains, thus implementing data-adaptive pancreatic
segmentation. We developed a comprehensive image quality
control toolbox to rectify data quality diferences among
diferent data domains. Te image quality is controlled in
several dimensions, including the image intensity range,
scanning feld of view, CT layer thickness, and valid region
of interest. In addition, the image quality control toolbox
provides physicians with more discriminative CT images. In
terms of system architecture, we employ an adversarial
learning scheme to implement feature distribution acqui-
sition and feature adaptation among domains. In addition,
this system fully takes into consideration the diference in
the contribution of semantic information at diferent scales
for domain adaptation and adopts weighted connections to
realize the stitching of multiscale information to achieve a
more stable and smooth adversarial learning structure. Te
efectiveness of the system has been validated with public
datasets and real in-hospital data, and the robustness of the
system has been demonstrated on a small dataset.

In summary, the system enables the establishment of the
data-adaptive segmentation model by transfer learning, both
interhospital and intrahospital across time lengths. Te
system eliminates the need for time-consuming and tedious
annotation work by radiologists, which is of signifcant
relevance to the automation of hospital treatment processes
in real-time medical scenarios. In addition, it is a meaningful
research area to combine image semantic segmentation
techniques with other text analysis tasks to design an au-
tomatic pancreatic disease diagnosis system applicable to
richer medical scenarios. In the subsequent research, we will

combine natural language processing and image interpret-
ability to further improve the system, optimize the pan-
creatic disease diagnosis process, and promote the efciency
of physicians.

4. Conclusions

In this paper, we designed an end-to-end data-adaptive
pancreas segmentation system with an image quality control
toolbox. Te system aims to address the problem of poor
generalization capability exhibited by existing pancreas seg-
mentation networks when oriented to data from diferent
medical centers. For the visual task of label-free semantic
segmentation, this research utilizes an adversarial learning
method to obtain domain-invariant supervised information
and construct the data-adaptive pancreas segmentation
model. In addition, a functional image quality control toolbox
was designed to provide multiple image preprocessing
methods. Te system works in an end-to-end manner and is
easy to operate by physicians. Te experimental results of
public datasets and in-hospital datasets demonstrated that the
end-to-end data-adaptive pancreas segmentation tool pro-
posed in this paper can efectively assist in pancreas seg-
mentation, and the generalization of segmentation networks
was enhanced when facing images from diferent sources.
Tis system is of considerable relevance in medical diagnosis
and treatment and greatly promotes the development of
precision and automated medical processes.
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A two-category model and a segmentation model of pterygium were proposed to assist ophthalmologists in establishing the
diagnosis of ophthalmic diseases. A total of 367 normal anterior segment images and 367 pterygium anterior segment images were
collected at the Afliated Eye Hospital of Nanjing Medical University. AlexNet, VGG16, ResNet18, and ResNet50 models were
used to train the two-category pterygium models. A total of 150 normal and 150 pterygium anterior segment images were used to
test the models, and the results were compared. Te main evaluation indicators, including sensitivity, specifcity, area under the
curve, kappa value, and receiver operator characteristic curves of the four models, were compared. Simultaneously, 367 pterygium
anterior segment images were used to train two improved pterygium segmentation models based on PSPNet. A total of 150
pterygium images were used to test the models, and the results were compared with those of the other four segmentation models.
Te main evaluation indicators included mean intersection over union (MIOU), IOU, mean average precision (MPA), and PA.
Among the two-category models of pterygium, the best diagnostic result was obtained using the VGG16 model. Te diagnostic
accuracy, kappa value, diagnostic sensitivity of pterygium, diagnostic specifcity of pterygium, and F1-score were 99%, 98%,
98.67%, 99.33%, and 99%, respectively. Among the pterygium segmentation models, the double phase-fusion PSPNet model had
the best results, with MIOU, IOU, MPA, and PA of 86.57%, 78.1%, 92.3%, and 86.96%, respectively. Tis study designed a
pterygium two-categorymodel and a pterygium segmentationmodel for the images of the normal anterior and pterygium anterior
segments, which could help patients self-screen easily and assist ophthalmologists in establishing the diagnosis of ophthalmic
diseases and marking the actual scope of surgery.

1. Introduction

Pterygium is a common and frequently occurring disease in
ophthalmology that afects the fbrovascular tissue on the
ocular surface, resulting in eye irritation and infammation
[1, 2]. It can cause visual impairment or even blindness when
the lesion covers most of the cornea [3, 4]. Corresponding
treatment methods can be used to control pterygium de-
velopment in the early stage. However, in the later stage,
only surgery can be used to respect the lesion area for

treatment [5–7]. Te diagnosis and surgery of pterygium
require the localization of the lesion area. Currently, the
most commonly used method is manual positioning by
ophthalmologists based on anterior segment images. Manual
positioning is slow and not precise, and diferent doctors
may position diferent lesion ranges. Simultaneously, the
early detection, diagnosis, and treatment of pterygium can
better control or treat the disease. Terefore, a pterygium
two-category model and a pterygium lesion area segmen-
tation model were designed, which could initially screen the
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pterygium and segment the lesion area accurately. Tese
models can assist ophthalmologists in establishing the di-
agnosis of ophthalmic diseases and marking the scope of
surgical resection.

With the close integration of artifcial intelligence and
ophthalmology, many studies have used deep learning
models to assist in the diagnosis of ophthalmic diseases
[8–13]. In terms of lesion segmentation, most studies have
diagnosed glaucoma by segmenting the optic disc [14–16],
and there have also been some studies on segmenting the
blood vessels of fundus images to screen for related diseases
[17–19]. Regarding the studies conducted on pterygium,
some researchers used traditional machine learning [20] and
deep learning methods to classify [21, 22] pterygium as
normal and pterygium disease. A three-category pterygium
model on normal, pterygium observation, and pterygium
surgery periods was studied by some researchers [23]. Re-
lated studies have also been conducted on the localization
and segmentation of pterygium lesions [24]. Te above
studies on pterygium classifcation and segmentation were
conducted separately. In this study, the two studies were
combined. Te two-category model of pterygium was used
on the anterior segment image, and the lesion area was
segmented according to the pterygium image.

In this study, four deep-learning models were used to
realize the two categories of pterygium for preliminary
screening. Simultaneously, the team’s improved models
were used to segment the pterygium lesion area accurately,
which could not only help patients understand the pro-
gression of pterygium but could also assist ophthalmologists
in establishing the diagnosis of ophthalmic diseases and
marking accurate lesion localization before surgery.

2. Materials and Methods

2.1. Data Source. Te Afliated Eye Hospital of Nanjing
Medical University provided 1034 anterior segment images
for this study. Te data were obtained using two diferent
brands of slit-lamp digital microscopes, and the quality of
the images was high. Relevant personal information of the
patient was removed from the image data provided.
Terefore, it did not violate the patient’s privacy. Tis study
had no restrictions on the sex and age of patients, and the
data provided did not contain related information of pa-
tients. Hence, this study had no relevant statistics.

Te anterior segment images provided by the hospital in
this study were of a single type of pterygium, which can only
be diagnosed as normal or pterygium. Te corresponding
label (normal or pterygium) of each anterior segment image
and lesion area annotation map of the pterygium anterior
segment image along with the image were provided by the
hospital. Te marking standard for pterygium was as follows
[25]: the normal anterior segment was characterized by the
absence of evident hyperemia or proliferative bulge in the
conjunctiva, with a transparent cornea. Figure 1 shows the
images of the normal anterior segment Figure 1(a), the
anterior segment of the pterygium Figure 1(b), and the
labeling map of the lesion area Figure 1(c). Two professional
ophthalmologists independently diagnosed the same

anterior segment. If the diagnosis results were consistent, it
was the fnal diagnosis result. If the diagnosis results were
inconsistent, the fnal diagnosis result was decided by an
expert ophthalmologist. Labeling of the pterygium lesion
area was performed by a trained professional ophthalmol-
ogist and confrmed by an expert ophthalmologist. If the
lesion area was marked incorrectly, it was revised and
reconfrmed until it was correct.

Te pterygium two-category models were trained using
734 anterior segment images and were tested using 300
anterior segment images. Te normal anterior segment and
pterygium images in the training and test image data were
equally divided. Te pterygium lesion area segmentation
models were trained using 367 pterygium images and tested
using 150 pterygium images.

2.2. Classifcation Model Training. Deep learning classical
classifcation models mainly include AlexNet [26], VGG16
[27], ResNet18 [28], and ResNet50 [28]. Tis study used the
above four classical models to design two-category models
on normal and anterior pterygium segment images. Te
network structures of these classical models are similar. Te
backbone networks of AlexNet and VGG16 include con-
volutional, pooling, and fully connected layers. ResNet adds
a residual network structure.Temodel network structure is
shown in Figure 2.

Te aforementioned classical models require an input
image size of 224× 224 pixels. In this study, the adaptive
average pooling method was added before the fully con-
nected layer of the classical models. Terefore, the input size
could be adjusted to the required size. Te input image size
was set to 336× 224 pixels to adapt to the size of the original
anterior segment image.

Normal and pterygium anterior segment images were
divided into the training and validation sets in a 9 :1 ratio.
When training the pterygium two-category model, the
original image was resized to 336× 224. Te preprocessing
method adopted a random rotation of −3° − 3°. Te pa-
rameters trained by several models in the ImageNet [29]
dataset were used as the initial parameters for the corre-
sponding models. Te loss function was the cross-entropy
loss function. Te learning rate of AlexNet and VGG16 was
0.001, the epoch was 30, the learning rate of ResNet18 and
ResNet50 was 0.01, and the epoch was 100. Te training
parameters of the four models were iteratively updated to
obtain the best model for the validation set as the fnal
pterygium two-category model for each model.

2.3. Segmentation Model Training. Classical semantic seg-
mentation models include U-Net [30], DeepLabv3+ [31],
and PSPNet [32] models. Te PSPNet and its improved
models were used to segment the pterygium lesion areas in
the anterior segment images of the pterygium. Te results
were compared with those of other segmentation models.

MobileNet [33] was used as the backbone network of
PSPNet to extract features and obtain the feature map of the
input image. Average pooling was used on the feature map at
four diferent scales: 1× 1, 2× 2, 3× 3, and 6× 6. Subsequently,
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the maps after average pooling with the same size as the
feature map were obtained through bilinear interpolation.
Te feature map and maps after average pooling were spliced;
fnally, the segmented prediction map was obtained. As
shown in Figure 3, PSPNet consists of Figures 3(a)–3(d) and
3(f), excluding Figure 3(g) and the stage upsampling module
in PPM+.

Te backbone network MobileNet was replaced by
ResNet50 in the PSPNet, which can obtain better mean
intersection over union (MIOU) and IOU results. Two
improvements were made to the PSPNet model using
ResNet50 as the backbone network. Te frst improvement
was to increase the stage upsampling module, which frst
upsampled the feature map (1) to ×2 through bilinear in-
terpolation and then added the sampled feature map and
feature map (2). Te added feature map was upsampled and
then added to the feature map (3) element by element. Te
added feature map was upsampled and then added to the
feature map (4) element by element. Te fnal added feature
map was upsampled to 30× 30 pixels. Te feature map
obtained after the stage upsampling module continued to be
stacked to Figure 3(e) to obtain a new feature map.
Terefore, a new pyramid pooling module (PPM+) was
obtained, and the fnal prediction map through convolution
was obtained. Te frst improvement model, called phase-
fusion PSPNet, and the structure of this model are shown in
Figure 3.

Te second improvement was mainly aimed at the
feature extraction of the ResNet50 network. Te shallow
feature maps of the ResNet50 third-layer input were input
into the PPM+module, and the results obtained after
convolution were the same as those obtained after PPM+
and convolution in the phase-fusion PSPNet. Feature maps
were added, and the fnal prediction map was obtained after
upsampling. As shown in Figure 4, box A in the fgure
represents the newly added feature extraction and fusion
module in the phase-fusion PSPNet.

A total of 367 pterygium anterior segment images were
selected to train the segmentation models, of which 330 and
37 were used as the training and validation sets, respectively.
Both sides of the short side of the input image were
lengthened so that the length of the short side was the same
as the length of the long side. Ten, the image became a
square, and the increased part was flled with gray (R, G, B
are all 128), and the square image size was resized to

473× 473 as the input image for training. Te number of
training epochs was 80, and the model with the best vali-
dation result was selected as the fnal segmentation model.

2.4. StatisticalAnalyses. Te Statistical Package for the Social
Sciences version 22.0 software was used for statistical ana-
lyses of the two-category models. Te count data are
expressed as the number and percentage of images. Te
sensitivity, specifcity, F1-score, area under the curve (AUC),
kappa value, and other indicators were used to evaluate the
diagnosis results of the expert diagnosis and model groups.
A receiver operating characteristic (ROC) curve was drawn
to compare the results of the models. Segmentation of
pterygium lesions was evaluated using four indicators: IOU,
MIOU, PA, and MPA.

2.5. Calculation Methods. Te calculation methods of IOU,
MIOU, PA, and MPA are as follows:

IOU �
pi ∩gi

pi ∪gi

,

MIOU �
1

k + 1


k
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,
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pii
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,

(1)

where pi is the segmented area, gi is the real area, k is the
number of classes (excluding background classes), pii is the
number of correctly predicted pixels, and pij and pji are the
numbers of incorrectly predicted pixels.

3. Results

3.1. Results of Classifcation. In this study, four models were
tested with 150 images of normal and pterygium anterior
segments, and the VGG16 model had the best results, with
an accuracy of 99% and a kappa value of 98%. Te sensi-
tivities of diagnosing normal and pterygium were 99.33%

(a) (b) (c)

Figure 1: Images of normal anterior segment, pterygium anterior segment, and the labeling map of the lesion area.
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and 98.67%, respectively, the specifcities were 98.67% and
99.33%, and the AUCs were 98.67% and 99.33%, respec-
tively.Te diagnostic results and evaluation indicators of the
four models are shown in Tables 1 and 2, respectively, and
the ROC curve is shown in Figure 5.

3.2.Results of SegmentationModels. A total of 150 pterygium
anterior segment images were used to test U-Net, Deep-
Labv3+, PSPNet (based on MobileNet and ResNet50), and
the two improved models based on PSPNet. Te pterygium
segmentation results for the six models are presented in
Table 3.

As shown in Table 3, the PSPNet model based on
ResNet50 performed better than the U-Net, DeepLabv3+,
and MobileNet-based PSPNet models for the MIOU, IOU,
and MPA indicators. Te double phase-fusion PSPNet was
obtained after two improvements on the ResNet50-based
PSPNet; its MIOU, IOU, MPA, and PA were 86.57%, 78.1%,
92.3%, and 86.96%, respectively. Te result of the PA was
slightly worse than that of the PSPNet model based on
MobileNet, but other indicators yielded the best results. Te
segmentation results of the phase-fusion and double phase-
fusion PSPNets are shown in Figure 6.

4. Discussion

Most patients with pterygium are outdoor workers, such as
fshermen and farmers [34]. In the early stage of the disease,
there will be no signifcant efect on the patient, and the
symptoms are similar to ordinary infammation, which will not
attract the attention of the patient. Tus, the disease gradually
develops to the stage where surgical treatment is necessary.Te
pterygium two-category and lesion segmentation model can
help patients screen for the disease by themselves and pay
attention to the progress of the lesion area. Terefore, the
patient has an intuitive understanding of the disease’s progress
and then immediately visits a hospital for diagnosis and
treatment, fnally obtaining a good therapeutic efect.

Four classical classifcation models were selected to di-
agnose whether the anterior segment images were normal or
pterygium images. Te normal anterior segment was clearly
distinguished from the anterior segment of the pterygium.
Subsequently, the features can be extracted better without a
complex network structure. Terefore, the VGG16 model
yielded the best results. ResNet18 and ResNet50 have more
complex network structures, whereas the AlexNet network
structure is slightly simpler; therefore, the diagnosis results
of these models were both worse than those of VGG16.
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Figure 2: Te model network structures of AlexNet, VGG16, and ResNet.
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In 2018, Wan Zaki et al. [20] used support vector ma-
chine (SVM) and artifcial neural network methods to study
the two categories of pterygium. Te data used in the study
were obtained from four datasets, including 2692 and 325

images of the normal anterior and pterygium anterior
segments, respectively. Te result obtained using the SVM
method was better, with sensitivity, specifcity, and AUC
values of 88.7%, 88.3%, and 0.956, respectively. In 2019,

Table 1: Diagnostic results of the four models.

Clinical
AlexNet diagnosis VGG diagnosis ResNet18 diagnosis ResNet50 diagnosis

Total
Normal Pterygium Normal Pterygium Normal Pterygium Normal Pterygium

Normal 147 3 149 1 143 7 140 10 150
Pterygium 6 144 2 148 12 138 11 139 150
Total 153 147 151 149 155 145 151 149 300
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Figure 3: Te structures of PSPNet and phase-fusion PSPNet. (a) represents the input image; (b) represents the feature extraction network,
the feature extraction part of MobileNet or ResNet50; (c) represents the feature map extracted by the feature extraction network; (d)
represents the pyramid pooling module; (e) represents the feature map output by the pyramid pooling module; (f ) represents the output
module; (g) represents the feature map formed by stage upsampling module; (h) represents the output image.
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Zulkifey et al. [21] used the convolutional neural network
method to diagnose pterygium based on 60 normal and
anterior pterygium segment images, with diagnostic sensi-
tivity and specifcity of 95% and 98.3%, respectively. In this
study, the sensitivity, specifcity, and AUC of the VGG16
model for the diagnosis of pterygium were 98.67%, 99.33%,
and 0.99, respectively, which are higher than those reported
by other researchers. Te VGG16 model can better extract
image features. Te training data were balanced, and the

number of training images was greater than that in the
literature [21]; thus, better results were obtained.

Classical (U-Net, DeepLabv3, PSPNet) and improved
models based on PSPNet (phase-fusion PSPNet and double
phase-fusion PSPNet) were used to segment pterygium.
According to Table 3, the improved model had better seg-
mentation results. Te improved model extracted more
features from the pterygium image, which can fully combine
local features, global features, and features at diferent levels

Table 2: Evaluation index results of the four models.

Model AlexNet VGG16 ResNet18 ResNet50
Evaluation indicators Normal Pterygium Normal Pterygium Normal Pterygium Normal Pterygium
Sensitivity 98.00% 96.00% 99.33% 98.67% 95.33% 92.00% 93.33% 92.67%
Specifcity 96.00% 98.00% 98.67% 99.33% 92.00% 95.33% 92.67% 93.33%
F1-score 97.03% 96.97% 99.00% 99.00% 93.77% 93.56% 93.02% 92.98%
AUC 0.97 0.99 0.94 0.93
95%CI 0.95–0.99 0.98–1 0.91–0.97 0.90–0.96
Kappa 94.00% 98.00% 87.33% 86.00%
Accuracy 97.00% 99.00% 93.67% 93.00%
AUC: area under the curve; CI: confdence interval.

Table 3: Evaluation index results of the six models.

Model MIOU (%) IOU (%) MPA (%) PA (%)
U-Net 83.33 72.77 89.5 81.5
DeepLabv3+ 83.91 73.98 91.45 86.39
PSPNet (MobileNet) 74.25 60.38 89.52 88.89
PSPNet (ResNet50) 85.4 76.27 91.92 86.7
Phase-fusion PSPNet 86.31 77.64 91.91 86.1
Double phase-fusion PSPNet 8 .57 78.1 92.3 86.96
MIOU: mean intersection over union; IOU: intersection over union; MPA: mean average precision; PA: average precision.
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Figure 5: Receiver operating characteristic curve of the four models.
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in the feature extraction network. Teir structures can lose
less feature information and obtain better segmentation
results.

Abdani et al. [24] used Dense Deeplabv2 to segment
pterygium in 2020. Compared with the Deeplabv1, Dense
Deeplabv1, and Deeplabv2 models, the best MIOU result

was 83.81%. Te same team designed Group-PPM-Net to
segment pterygium in 2021, and the best MIOU result was
86.32% [35]. Cai et al. [36] used DRUNet and SegNet to
segment pterygium, and the best IOU was 60.8%.TeMIOU
and IOU results obtained using the double phase-fusion
PSPNet in this study were 86.57% and 78.1%, respectively.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6: Te segmentation results of the phase-fusion PSPNet and double phase-fusion PSPNet. Figures (a)–(c) show the original
pterygium images; fgures (d)–(f) show the real label of the pterygium lesion area of fgures (a)–(c); fgures (g)–(i) show the segmentation
results of the PSPNet (ResNet50) model; fgures (j)–(l) show the segmentation results of the phase-fusion PSPNet model; fgures (m)–(o)
show the segmentation results of the double phase-fusion PSPNet model.
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Te study in [24, 35] had 328 pterygium images, which are
less than this study in terms of the number of training
images. Simultaneously, the improved model can better
extract image features and obtain better results.

Figure 6 shows that there is a certain gap between the
segmentation and real results. Te models can only assist
physicians in determining the position before the surgery.
Physicians also need to calibrate and confrm its boundary
and range. More labeled data are required to further train the
models, or a more sensitive and efcient model is expected.
Terefore, the predicted segmentation results are closer to
the real segmentation results.

5. Conclusions

A pterygium two-category model and a pterygium seg-
mentation model for the images of the normal anterior and
pterygium anterior segments were designed in this study,
which could help patients self-screen easily and assist
ophthalmologists in establishing the diagnosis of ophthalmic
diseases and marking the actual scope of surgery. Te
VGG16 model can obtain the best diagnostic result among
the four two-category models, and the double phase-fusion
PSPNet model had the best results among the pterygium
segmentation models. Te two models could help patients
self-screen easily and assist ophthalmologists in marking the
actual scope of surgery.
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Diabetic retinopathy is an eye-related pathology creating abnormalities and causing visual impairment, proper treatment of which
requires identifying irregularities. Tis research uses a hemorrhage detection method and compares the classifcation of con-
ventional and deep features. Especially, the method identifes hemorrhage connected with blood vessels or residing at the retinal
border and was reported challenging. Initially, adaptive brightness adjustment and contrast enhancement rectify degraded images.
Prospective locations of hemorrhages are estimated by a Gaussian matched flter, entropy thresholding, and morphological
operation. Hemorrhages are segmented by a novel technique based on the regional variance of intensities. Features are then
extracted by conventional methods and deep models for training support vector machines and the results are evaluated.
Evaluation metrics for each model are promising, but fndings suggest that comparatively, deep models are more efective than
conventional features.

1. Introduction

Diabetic retinopathy (DR) is a prevalent cause of vision loss
among working-age adults.Te statistics of DR patients have
been projected to be 191 million by the year 2030 [1]. Ini-
tially, its diagnosis is almost impossible due to the absence of
distinct symptoms. DR identifcation is crucial in the early
phase because its timely treatment and medication may
reduce the progression rate by 57% [2], approximately.
Terefore, an annual examination is recommended for di-
abetes patients. Several surveys were conducted which
highlighted that diabetes patients refused to have regular
checkups because of lack of symptoms, time-consuming
diagnostic process, and limited access to ophthalmologists
[3]. DR falls into two main categories: nonproliferative
diabetic retinopathy (NPDR) and proliferative diabetic
retinopathy (PDR). NPDRweakens capillary walls and yields
leakage of blood from vessels that compile microaneurysms
(MAs). Later, ruptures turn MAs into hemorrhages (HEs).
MAs andHEs are often term as red lesions.When the disease

progresses, the NPDR turns into PDR and angiogenic factors
originate from new blood vessels, called neovascularization.

Eye experts use fuorescein angiography (FA), optical
coherence tomography (OCT), and fundus photography for
the screening of DR [4]. FA is used to identify locations
where blood vessels are closed or ruptured. OCT screening
method provides a cross-sectional overview to determine the
amount of fuid in retinal tissue and is used to evaluate the
efectiveness of the adopted treatment. Next, fundus pho-
tography is an easy and immediate screening technique for
documentation of DR progression and its improvement over
time. Laser treatment, eye injections, or eye surgery can be
recommended by an ophthalmologist in a case when DR is
intimidating to the eyesight [5]. Laser treatment helps to
cure the neovascularization of blood vessels at the back of the
eye. It stabilizes the changes that occur because of diabetes.
Eye injection is used in the case of PDR to stop the
emergence of new blood vessels. Te beneft of this method
is the improvement in eyesight. However, steroid injection
produces excessive pressure inside the eye that may cause
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blood clots. Eye surgery is performed on an eye when a
massive amount of blood accumulates in the vitreous hu-
mour. Te eye specialist removes some jelly-like substance
that flls the space back of the eye.

Retinal fundus imaging is preferred for the initial
screening phase because of its easy assessment and it is less
expensive. Ophthalmologists capture retinal images using a
fundus camera with an appropriate feld of view (FOV).
Early signs of DR are observed to determine its stage for
medical prescription. Contrary to benefts, HEs detection is
challenging due to certain impediments. Factors like blur-
riness and poor illumination may reduce diagnostic accu-
racy. Uneven lighting conditions may produce dark shades
in retinal images, which misleads detection. Blood vessels
share intensity characteristics with HEs because of their
similar appearance. Sometimes, HEs can be adjoined with
blood vessels because they originate from them. Detection of
those HEs is imperative for early screening of DR. HEs that
reside at the retinal periphery are blended with the black
background and are problematic to identify for computer-
aided automatic detection. Appropriate selection of a deep
network for classifying HEs is crucial to obtain promising
results. Hence, these constraints cause HEs detection to be a
challenging task. Figure 1 shows the characteristics of fundus
images.

Te risk of human interpretation necessitates an efcient
algorithm that can segment and classify hemorrhages ef-
fectively. Te computer-based second interpreter expedites
the diagnostic process and assists ophthalmologists in as-
sessment. Te proposed methodology addresses the prob-
lems of fundus images. A novel gradient-based adaptive
gamma correction adjusts the brightness of fundus images
adaptively. An automatic detection scheme is proposed by
image calibration. Te proposed smart-window-based
adaptive thresholding (SWAT) segments the objects while
isolating hemorrhages from blood vessels and the retinal
periphery. Objects are classifed based on the intuitive se-
lection of conventional features by manipulating the visual
appearance of hemorrhage in retinal fundus images. Te
statistical comparison of features for HEs classifcation using
conventional and deep models is provided. Tis research
study uses various architectures of deep models to analyze
which is suitable for HEs classifcation. Identifcation and
detection of hemorrhages that resided at the retinal pe-
riphery and connected with blood vessels are the hallmarks
of the proposed algorithm.

2. Related Work

N. Figueiredo et al. [6] proposed an algorithm to detect
retinal abnormalities at the early stage of DR.Tis technique
uses three classifers for detection, including HEs. Novel
features based on the inherent properties of lesions are used
for classifcation. Tese features are extracted from wavelet
bands, Hessian multiscale analysis, variational segmenta-
tion, and texture decomposition. Te sensitivity and spec-
ifcity of HEs detection are 86% and 90%, respectively. Tang
et al. [7] propounded a splat feature classifcationmethod for
HEs detection. Te retinal image is partitioned into

nonintersected segments called splats.Te formation of each
splat is based on similar color and spatial information.
Shape, texture, the intersection of neighboring splats, and
flter bank information are used. Later, optimum features are
selected using the flter approach. Tis method achieves a
0.96 receiver operating characteristic curve (ROC). Detec-
tion of early signs of DR was proposed by Junior and Welfer
[8]. Te technique is based on mathematical morphology to
remove fovea and blood vessels because they share the in-
tensity characteristics with HEs. Tis approach achieves
87.69% sensitivity and 92.44% specifcity. Te gradual
elimination of blood vessel-based HEs detection technique is
presented by Zhou et al. [9]. Tis technique deals with the
HEs that are attached to the blood vessels by segmenting the
dark regions, retinal vasculature, and HEs candidates. A
binary image is manipulated further for providing good
vascular connectivity and then removed gradually. A sup-
port vector machine (SVM) is trained using 49 features to
classify candidates into non-HEs and HEs. Te technique
benchmarks promising results for two datasets. Karkuzhali
and Manimegalai detect retinal abnormalities to classify
fundus images into various DR stages [10]. Median flter,
shade correction, Gaussian, and modifed Kirsch flter are
used to suppress noise and quality enhancement in the
preprocessing stage. Te image is divided into nonover-
lapping patches of similar gray information.Te Super-pixel
method is applied to obtain the uneven grids. Te gradient
magnitude with toboggan segmentation is used for HEs
segmentation. Feature vector and classifer mark images into
various stages of DR.

Te automatic segmentation of retinal lesions is pre-
sented by Tan et al. [11] using a novel single convolutional
neural network (CNN). Te proposed CNN model consists
of 10 layers that classify retinal lesions simultaneously. Te
technique normalizes input images before network training.
Te proposed CNN model marks 0.6257 sensitivity on a
large dataset. Another automatic detection of retinal lesions
is proposed by Lam et al. [12]. Te technique uses 1,324
image patches for the training of the deep network. Te
sliding window method considers all the patches from the
testing image to generate the probability map. Tis CNN
model provides promising results for each type of lesion. A
deep learning approach was propounded by Islam et al. [13]
for the detection and grading of DR. Te technique focuses
on early DR detection using a novel CNN network. Te
method is tested on a publicly available Kaggle dataset and
reports a 0.851 quadratic weighted kappa score and 0.844
area under the curve. Te technique for the detection of red
lesions using the You Look Only Once (YOLO-V3) algo-
rithm is proposed by Pal et al. [14]. Te contrast of the green
channel is enhanced and then the bounding boxes of red
lesions are obtained using the YOLO algorithm. Detection is
performed using Darknet53, and logistic regression provides
the confdence level of an object. Te model is trained using
Adam optimization and tested for red lesion detection.
Objectness threshold is employed to reduce the false pre-
dictions. Tis technique scores 83.33% of the average pre-
cision. A synergy deep learning model is presented by
Shankar et al. [15] to classify fundus images into DR stages.
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Tis technique removes noise from the edges in the pre-
processing stage. Ten, histogram-based segmentation ob-
tains regions for the classifcation. Synergy deep learning
model classifes images into severity levels. Te algorithm is
benchmarked on the Messidor dataset which shows
promising results.

3. Method

Tis section provides a detailed explanation of the detection
scheme. Figure 2 shows the steps of the propounded HEs
detection scheme. First, the image is preprocessed to en-
hance the quality. Ten the prospective hemorrhage can-
didates are estimated.Te objects are segmented using smart
window-based adaptive thresholding. Finally, the objects are
classifed into hemorrhage and nonhemorrhage classes using
features.

3.1. Dataset Description. Te algorithm is trained and tested
on the DIARETDB1 dataset [16]. Te dataset contains 89
fundus images, of which fve images are normal and the rest
have various DR pathological symptoms. Tese images are
captured by the 50-degree feld of view using a fundus
camera under diferent illumination conditions.

3.2. Preprocessing. Few images of the DIARETDB1 dataset
have good brightness levels and contrast, while the majority
of them are dark with low contrast. Te quality of fundus
images is enhanced using contrast limited adaptive his-
togram equalization (CLAHE) [17], gradient-based adap-
tive brightness adjustment (GAGC) [18], and nonlinear
unsharp masking [19]. CLAHE enhances contrast and
reduces the efects of over-saturation by clipping intensity
peaks. Our GAGC utilizes Sobel gradient information.
Gamma correction [20] is applied using the adjusted
threshold value of the Sobel operator. HEs can be attached
to blood vessels and can only be separated when their
regions are clearly defned. Terefore, fuzzy logic-based
image sharpening using a nonlinear flter is employed to
sharpen the image. Tis method determines a fuzzy rela-
tionship between central and adjacent pixels in a 3 × 3
window. Sharpening flters work efciently, but they

introduce the noise in the image. Te nonlinear property
sharpens images and produces less noise than linear flters.
Te result of the preprocessing stage is provided in
Figure 3(b).

3.3. Seed Points Extraction. Te detection process can be
time-consuming if the entire image is considered for the
search operation during detection. A good approach is to
obtain prospective locations of objects to be detected and
eliminate redundant information. Tis approach expedites
detection with high accuracy. A similar technique manip-
ulates the intensity profle of HEs in our work. HEs are dark
objects surrounded by bright regions and share intensity
characteristics with blood vessels and dark shades. Tis
property suggests an inverted Gaussian matched flter [21],
whose intensity values are low at the center and grow
gradually beyond the center. Tis flter enhances HEs and
blood vessels due to high correlation and yields low response
wherever applied to the rest of the image, and is depicted in
Figure 4(a).

Te redundant information is further reduced using the
thresholding method. It depicted from the matched-fltered
image that low and high responses are close to each other.
Terefore, entropy thresholding is employed [22] that
eliminates unrequired information efciently. Tis thresh-
olding method fnds cross entropies between quadrants of
gray level co-occurrence matric (GLCM). Te optimum
threshold value from the gray range is selected successively,
which minimizes the objective function. Figure 4(b) is a
sample image of cross-entropy thresholding.

Elimination of blood vessels may also remove some of
the HEs attached to them. Terefore, consideration of ob-
jects that correspond to blood vessels is imperative. Te
morphological opening is applied to break the vasculature
structure.Tis maneuver provides seed points for all types of
HEs, including those that are attached to the blood vessels.
Conversely, it increases the number of seed points for
subsequent segmentation and classifcation stages and can
be depicted in Figure 4(c).

3.4. ImageCalibration. TeHEs can be present at a jelly-like
surface called the vitreous humour, and the black

(a) (b)

Figure 1: Degraded retinal fundus images: (a) uneven illumination; (b) the dark image because of low lighting condition.
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background does not contribute to the detection phase. A
black background is darker than HEs and misleads the
detection process. Terefore, it impedes the automatic de-
tection of those HEs that reside at the retinal border. Te
black background is illuminated for efective and automatic
detection. First, a median flter is applied on a green channel
to suppress intensity variation in the background and then
binarized. Te resultant image is called the retinal mask that
highlights the retinal area. Later, an eroded mask is sub-
tracted from the retinal mask to get the retinal boundary.
Calibrated image is obtained by adding an enhanced green
channel, complemented retinal mask, and retinal border. A
sample of the calibrated image is depicted in Figure 5 and is
used for segmenting HEs.

3.5. SmartWindow-BasedAdaptiveTresholding Segmentation.
A segmentation method is sensitive to the dissimilarity of
objects and their surroundings, and dissimilarity can be in
terms of intensities or textures.Tere are two challenges for
segmenting HEs. First is a segmentation of HEs blended
with the black background and located at the retinal rim.
Tis background has been illuminated using image cali-
bration. Te second is a segmentation of HEs that are
attached to blood vessels. Blood vessels and HEs share
intensity characteristics and they are known as dark
smooth regions. Terefore, a novel smart window-based
adaptive thresholding (SWAT) is proposed that isolates
HEs from blood vessels. Tis method is adaptive and
segments HEs encompassed by various bright regions. A

(a) (b)

Figure 3: Preprocessing of the retinal fundus image: (a) input fundus image; (b) enhanced fundus image.

(a) (b) (c)

Figure 4: Seed points extraction: (a) response of matched flter; (b) cross-entropy thresholding; (c) morphological opened image.
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Figure 2: Illustration of the proposed detection technique.
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search space is defned for automatic detection to constrain
segmentation within image range. Complemented binary
mask, obtained in the previous section, is expanded 80
pixels wide to provide sufcient space for HEs residing at
the retinal border.

Segmentation using a threshold value is obtained by
maximizing inter-region variance from image histogram
[23]. Tis method determines the weighted variance σ2B(j)

between regions for a given threshold value j as

σ2B(j) � 
R

z�1
ωz μz − μT( 

2
, (1)

where μT is mean value of an original image, ωz is the total
probability of individual region z, and μz is the mean value
of individual regions in R � 2, 3, . . . , 19, 20{ } after thresh-
olding. An optimum threshold value is taken successively by
maximizing the inter-region variance as

σ2B τ∗(  � max
1≤j≤L

σ2B(j),

j � 0, 1, 2, . . . , L − 1{ }.

(2)

Te efectiveness η of an optimum threshold τ∗ depends
upon a selection of an appropriate number of regions from
R. An appropriate number of regions provides maximum
efectiveness. η is a ratio of weighted variance σ2B(τ∗) to the
total variance σ2T of an image that can be calculated as

η �
σ2B τ∗( 

σ2T
. (3)

SWAT initiates from seed points to segment retinal
structures from the calibrated image, Figure 5. Te search
process starts from the bounding box of a seed point. Te
calibrated image is cropped using the vertices V � v1, v2,

v3, andv4} of a seed point. Te cropped window W1(x, y) is
thresholded iteratively until the appropriate number of
regions from R is selected as

ϑ �
R⟶ R + 1, ifη< 0.8, andR≤ 20,

stop, otherwise,
 (4)

where ϑ is a vector that contains R − 1 threshold values. (4)
provides robustness in accordance with the regional di-
versity of HEs and foregrounds. In the case of bright

foreground, fewer iterations are required to approach the
stopping criteria that yield few numbers of regions. For the
dark foreground, more iterations are required to reach
η≥ 0.8, which requires more numbers of regions to perform
efective segmentation. HEs are dark objects surrounded by
various bright regions. Te window is thresholded as

W2(x, y) �
0, if W1(x, y)>min(ϑ),

1, else,
 (5)

where min(ϑ) is the minimum threshold value of the vector
ϑ.Tere is a possibility that a windowmay havemanyHEs or
dark objects after thresholding, so priority is given to the
biggest ones because they are more dangerous for eyesight
than the smaller HEs. Terefore, two large objects are kept
and the rest are removed based on their area. Tis maneuver
is applied such dark shades, often bigger sizes than HEs,
cannot mislead the segmentation and actual HEs can be
retained within the window. Furthermore, an object closer to
the center of the window is more likely a HE than the other
one. Tis probability criterion is proposed because seed
points are extracted using the matched flter that models the
intensity characteristic of HEs. Terefore, the object is
eliminated using distance transform except one with min-
imum distance from the center of the window. Te distance
di of the ith object from the center W2(xc, yc) of the window
is calculated using

di � min
��������������������������������

W2 xc(  − Ii(x) 
2

+ W2 yc(  − Ii(y) 
2



, (6)

where Ii(x) and Ii(y) denote the x and y spatial locations of
ith object, respectively, and i � 1, 2{ }. Te sizes of the HEs are
bigger than the size of the window because they initiated
from a seed point. Te window must be expanded to capture
the complete HEs using

V �

v1⟶ v1 − 5, ifq1 � 1ANDv1 ∩

S,

v2⟶ v2 − 5, ifq2 � 1ANDv2 ∩

S,

v3⟶ v3 + 10, ifq3 � 1ANDv3 ∩

S,

v4⟶ v4 + 10, ifq4 � 1ANDv4 ∩

S.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

Q � [q1, q2, q3, q4] contains information of border
pixels. Binary variables q1, q2, q3, andq4 correspond to left,
top, right, and bottom border pixels, respectively. If all these
variables are 0, then no further iteration is required because
it shows the complete segmentation of the object. If any
variable in Q has a value of 1, it guarantees that the size of an
object is bigger than the size of the window towards a
particular direction.Te window is expanded using equation
(7) and the calibrated image is cropped by the updated
vector V.

Te search space assists in performing segmentation
automatically. Some of the seed points are redundant and
belong to blood vessels and dark shades. A window may go
beyond image range when segmenting blood vessels or dark
shades. Te condition on vector S in (7) determines whether
vertices of vector V lie within search space. Windows
containing HEs and non-HEs objects are classifed using
features in the next section.

Figure 5: Image calibration for feature extraction.
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3.6. Features Extraction and Classifcation Stage. Support
vector machine (SVM) is a statistical learningmodel used for
classifcation by placing a hyperplane between positive and
negative examples. Tree sets of deep features were obtained
from the hidden layers of VGG16 [24], ResNet50 [25], and
AlexNet [26]. Four SVMs trained using conventional fea-
tures and deep features to classify objects into HEs and non-
HEs categories. Conventional features manipulate the visual
appearance of HEs. For instance, HEs have sharp edges than
macula, known as central vision. So, Laplacian-gradient
features diferentiate HEs from the macula. Blood vessels are
line-shaped objects and HEs are comparatively circular
objects. Terefore, connected component descriptors are
useful to classify them. Color features help to distinguish
dark shades from HEs. Opened or closed object’s contour,
number of corner points, and the spatial distance from the
corners to the object’s center are hand-crafted features.
Hence, connected component [27], texture [28], color [29],
and hand-crafted features are extracted to train SVM. While
the VGG16, ResNet50, and AlexNet CNN models provide
deep features for SVMs training.

4. Results, Comparison, and Discussion

Te fndings of the propounded detection scheme are re-
ported in this section. Illustrations of performance metrics
and the statistical comparison of various deep models are
presented. Te results can be pictorially be depicted in
Figure 6.

4.1. Data Preparation and Evaluation Metrics. Te DIA-
RETDB1 dataset is employed to detect HEs and compare
various feature extraction models. Tis dataset is divided into
training and testing subsets. Te training subset is further
separated into training and validation subsets. Windows
obtained by the SWAT segmentation were annotated using
ground truths. Twenty images are used to benchmark the
performances of classifers. Te classifcation results are
compared using sensitivity (SE) and specifcity (SP) [30].

SE �
TP

TP + FN
,

SP �
TN

TN + FP
,

(8)

where true-positive (TP) and true-negative (TN) are the
truly predicted measurements by the classifer. TP is the rate
of truly classifed hemorrhage, while TN is the correct
prediction rate of the negative class. Conversely, false-
positive (FP) and false-negative (FN) are the measurements
of the false predictions of the classifer. FP wrongly indicates
that an object belongs to a hemorrhage, but actually, it does
not. FN shows that hemorrhage is not present while the
window contains a hemorrhage.

4.2. Results. Results represent that the false-negative (FN)
rate of conventional features is higher than deep features. It
states that conventional methods cannot identify some of the

HEs. Conversely, deep models are more capable of HEs
identifcation. Te classifcation results of deep and con-
ventional models are provided in Table 1, while visually they
are depicted in Figure 6.

5. Discussion

Te SE and SP observe the performances of the classifcation
models. All the features’ extraction models show promising
results and are applicable for the detection of DR. However,
the FN rate of the SVM trained by the conventional features is
the highest, resulting in a minimum SE than the other
methods.Te reason is obvious, the small arteries of the blood
vessels. Blood vessels are classifed using connected compo-
nents, but the small arteries also share these properties.
Terefore, their similar appearance concerning the intensity
and connected component characteristics misleads the clas-
sifer because they are labeled as a negative class. Te con-
ventional features of HEs and the arteries overlap, therefore,
the highest misdetection rate. It marks 88.98% SE and 97.67%
SP. VGG16 CNN model has better SE that can detect more
HEs than the conventional method. It marks the highest SE
but low SP, which states that its false-positive (FP) rate is the
highest compared to the other methods. Te worst perfor-
mance of VGG16 might be its high convergence rate toward
the solution.Te increased convergence rate has the drawback
of oscillatory behavior around the optimum solution.
Terefore, the network cannot converge to the optimum
point for useful features.Te SE and SP of this deepmodel are
95.88% and 94.87%, respectively. Te performances of the
ResNet50 and AlexNet are mediocre. Tey provide better SE
than the convention method and better SP than the other two
models. Evaluation metrics output 92.24% SE and 97.81% SP
by the ResNet50. While the AlexNet also has a similar be-
havior for SE, the SP is considerably higher than ResNet50.
Efectively, it yields the highest SP among all themethods.Te
statistics of AlexNet for SE and SP are 92.21% and 98.24%,
respectively. Furthermore, the assessment of ResNet50 and
AlexNet architectures reveals that the ResNet50 is unneces-
sarily deep. ResNet50 contains ffty layers, while AlexNet is
eight layers deep.Terefore, AlexNet can be a good choice for
HEs classifcation because it marks competitive results.

Te assessment of the deep feature extraction models
reveals that the arrangement of layers in deep models is
crucial for a particular application.Te increasing number of
deep layers may not yield good results, instead, it increases
the training time. For instance, AlexNet is shallower than
VGG16 and ResNet50 but provides the highest SP of 98.24
and competitive SE of 92.21. While VGG16 is deeper than
AlexNet and shallower than ResNet50, it yields the highest
SE of 95.88 and lowest SP of 94.87. ResNet50 is the deepest
and marks mediocre results.

Furthermore, It is observed from the architectures of the
predefned networks that the flter sizes of the frst convo-
lution layers of VGG16, ResNet50, and AlexNet are 3 × 3,
7 × 7, and 11 × 11, respectively. Te small flter’s size is
appropriate for HEs classifcation because of its homoge-
neous property. HEs are regarded as dark smooth regions.
VGG16 has the smallest flter size and identifes more HEs
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because its FN rate is the lowest among other deep models.
Conversely, dark shades and small blood vessels mislead
VGG16, resulting in the highest FP rate.

Te analysis of the classifcation results recommends the
deep model for the HEs classifcation. Te reason could be
that some conventional features may not be efective and
mislead the classifer. Te deep networks provide relevant
features because they learn incrementally from the data.
Terefore, no feature can mislead the classifcation stage. On
the contrary, the CNN models take more time to learn from
the windows and recognize them. Tey often need large
numbers of training examples, depending upon the com-
plexity of the data, for better performance. Te conventional
method needs comparatively less time and training examples
to obtain the statistical features.

Table 1: Comparison of the classifcation stage using various
models on the DIARETDB1 dataset.

Methods SE (%) SP (%)
SVM 88.98 97.67
VGG16 95.88 94.87
ResNet50 92.24 97.81
AlexNet 92.21 98.24

Methods Results

Original Images

Conventional Features

VGG16

ResNet50

AlexNet

(a)

(b)

(c)

(d)

(e)

Figure 6: Classifcation results: (a) original images, (b) classifcation using conventional features, (c) classifcation using VGG16, (d)
classifcation using ResNet50, and (e) classifcation using AlexNet.
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6. Conclusion

Tis research presents an automatic detection technique to
compare various deep-learning-based models with the
conventional features extraction approach. Te method frst
enhances the quality of the fundus images for a better ap-
pearance of pathological symptoms in the preprocessing
stage. Ten, the locations of the hemorrhages are estimated
using seed points extraction that expedites the detection
process. Deep and conventional features classify the objects
into hemorrhages and nonhemorrhages. Te research
concept emerged from the problem highlighted by the re-
search community that two types of hemorrhages are
challenging to detect. First, the hemorrhages that are as-
sociated with the blood vessels. Second, the hemorrhages
that are located at the retinal border. Our detection scheme
is suitable for all types, including those hemorrhages that
reside in the vitreous humour.Tis study also prescribes that
the deep features can better classify hemorrhages than the
conventional methods; hence they are more efcient and
suitable for the hemorrhages classifcation.

Te assessment of performance metrics of deep mo-
dalities reveals that a shallow network produces competitive
results compared to deep models. An intense deep network
may not yield signifcant improvements but increases
training time. In this study, AlexNet shows promising results
despite the shallowest network.Terefore, a suitable network
with its appropriate parameters is critical.

Te research work’s intuition is to present a fully-au-
tomated scheme for reducing the misdetection rate of
hemorrhages by ophthalmologists interpreting fundus
photographs. Te method identifes hemorrhages in an
interactive way that is easy to interpret for diabetic reti-
nopathy diagnosis. Furthermore, the locations of hemor-
rhages are highlighted, which might help the clinicians
conclude the severity levels of the disease.
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Objective. Preterm birth (PTB) was one of the leading causes of neonatal death. Predicting PTB in the first trimester and second
trimester will help improve pregnancy outcomes. 3e aim of this study is to propose a prediction model based on machine
learning algorithms for PTB.Method. Data for this study were reviewed from 2008 to 2018, and all the participants included were
selected from a hospital in China. Six algorisms, including Naive Bayesian (NBM), support vector machine (SVM), random forest
tree (RF), artificial neural networks (ANN), K-means, and logistic regression, were used to predict PTB. 3e receiver operating
characteristic curve (ROC), accuracy, sensitivity, and specificity were used to assess the performance of the model. Results. A total
of 9550 pregnant women were included in the study, of which 4775 women had PTB. A total of 4775 people were randomly
selected as controls. Based on 27weeks of gestation, the area under the curve (AUC) and the accuracy of the RF model were the
highest compared with other algorithms (accuracy: 0.816; AUC� 0.885, 95% confidence interval (CI): 0.873–0.897). Meanwhile,
there was positive association between the accuracy and AUC of the RFmodel and gestational age. Age, magnesium, fundal height,
serum inorganic phosphorus, mean platelet volume, waist size, total cholesterol, triglycerides, globulins, and total bilirubin were
the main influence factors of PTB. Conclusion. 3e results indicated that the prediction model based on the RF algorithm had a
potential value to predict preterm birth in the early stage of pregnancy. 3e important analysis of the RF model suggested that
intervention for main factors of PTB in the early stages of pregnancy would reduce the risk of PTB.

1. Introduction

Preterm birth (PTB) is defined as births before 37 completed
weeks of gestation [1]. 3e PTB studied in this study was for
28–37 weeks of gestational age. Based on gestational age at
delivery, PTB can be subdivided into very early preterm (<28
weeks), early preterm (28–31weeks), moderate preterm
(31–33 weeks), and late preterm (33–37 weeks) [2]. 3e
global estimated prevalence of PTB was 11.1% (95% con-
fidence interval [CI]: 9.1%–13.4%) [3]. 3e majority of PTB
occurred in low- and middle-income countries [2], and the
incidence of PTB in China was 6.9% in 2014 [4]. Although

the incidence of premature birth was relatively low in China,
PTB had a considerable impact on the health of pregnant
women and children. Evidence shows that PTB was the most
common cause of neonatal death and the second most
frequent cause of death in children aged <5 years [5]. Further
studies found that gestational age at delivery was inversely
associated with the risk of neonatal morbidity and mortality
[6], and about 35.00% of deaths among newborns were
caused by complications of PTB [7]. Preterm neonates who
survived were vulnerable to diseases, including pulmonary
hypertension [8], retinopathy [9], visual and hearing im-
pairments [10], and mental health problem [11]. Moreover,
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PTB not only caused death and diseases in the newborn, but
also caused anxiety and depression in postpartum women
[12]. Previous study showed that early screening of preterm
birth pregnant women could reduce the incidence of pre-
term birth [13]. 3erefore, a prediction model was needed to
predict PTB.

Currently, numerous studies have attempted to predict
preterm birth in pregnant women. Several studies supported
that sonographic measurement of cervical length (CL) could
be used for the prediction of PTB in the first trimester of
pregnancy [14, 15], but other studies did not demonstrate
the capability of CL in the screening of PTB [16, 17]. Fetal
fibronectin had extensively used to predict PTB, but the
sensitivity and positive predictive value of fetal fibronectin
were low [18, 19]. In recent years, machine learning algo-
rithms have been widely used in medicine with a better
performance [20]. Compared with the logistic regression
algorithm, the advantages of the machine learning were the
ability to process higher-dimensional data and self-learn
capacity [21]. Studies have shown that the use of machine
learning algorithms improved the predictive accuracy of the
prediction model for PTB [22, 23]. 3ere are also some
prediction models based on machine learning algorithms
that have poor prediction accuracy. Weber et al. established
a machine learning prediction model for preterm birth using
demographic, maternal, and residency characteristics, but
the predictive performance of the model was poor [24],
which may be caused by inaccurate geographic information.

Inconsistent predictive power of machine learning in
preterm birth. In this study, we try to use a new method to
preprocess predictors. At the same time, we compared the
predictive power of 6 machine learning algorithms in PTB.

2. Materials and Methods

2.1. Participants. Data for this study were reviewed from
2008 to 2018. All the participants included in this study were
collected from Haidian Maternal & Child Health Hospital.
3e inclusion criteria of the PTB group were as follows: (1)
signed informed consent; (2) gestational age between 28 and
37 weeks; and (3) maternal age older than 18 years. 3e
exclusion criteria of the PTB group are as follows: (1) missing
maternal age; (2) missing gestational age; and (3) chronic
diseases such as diabetes, hypertension, and heart disease.
Controls were selected from hospitals in the same period in a
1 :1 ratio. 3e inclusion criteria of controls were as follows:
(1) signed informed consent; (2) gestational age ≥37 weeks;
and (3) maternal age ≥18 years. Exclusion criteria are as
follows: (1) missingmaternal age; (2) missing gestational age;
(3) and chronic diseases such as diabetes, hypertension, and
heart disease.3e flowchart of the study is shown in Figure 1.

2.2. Feature Processing. Demographic factors (i.e., age),
physical examination, blood test (red blood cells (RBC),
white blood cell count (WBC), and plateletcrit (PCT)), urine
test strip (urine pH, urine WBC, and glycosuria), and gy-
necological examination (bacterial vaginosis (BV), cleaning
degree of vagina (CDV), and vaginal yeast infection (VYI))

were collected in our study. All participants had at least five
antenatal check-ups before 27 weeks of gestation. For
avoiding the overfitting of the model, variables that were
measured multiple times were represented using the mean
and mode, depending on the type of variable. With the
increase in the gestational age, variables were more influence
on the outcome. 3erefore, we gave more weight to the later
data. 3e equation is defined as

var20mean � average varweek1, varweek2, . . . , varweek20 , (1)

vari
mean � average vari−2

mean, varweeki−1
, varweeki

 ,

i � 22, 24, 26, 27weeks of gestation.
(2)

As shown in Figure 2, the variable processing process at
each time point is determined by the values of the previous
time point and the current time point. 3e dataset was
divided into five datasets (20 weeks, 22 weeks, 24 weeks, 26
weeks, and 27 weeks of gestation dataset), according to the
time of prenatal examination.

2.3. Machine Learning Algorithms. In this study, six algor-
isms, including Naive Bayesian (NBM), support vector
machine (SVM), random forest tree (RF), artificial neural
networks (ANN), K-means, and logistic regression, were
used to predict PTB (Figure 3).

2.4. OutcomeMeasure. In this study, 4 metrics were used to
measure the predictive performance of the model: accuracy,
area under the receiver operating characteristic curve
(AUC), sensitivity, and specificity. 3e accuracy is the
proportion of correct predictions among the total number of
cases examined (1). Sensitivity refers to the test’s ability to
correctly detect true positive (2). Specificity relates to the
test’s ability to correctly detect true negative (4). AUC is a
comprehensive measure of the sensitivity and specificity of
the model:

accuracy �
TP + TN

TP + TN + FP + FN
, (3)

sensitivity �
TP

TP + FN
, (4)

specificity �
TN

TN + FP
. (5)

TP� true positive; FP � false positive; TN� true negative;
FN � false negative.

2.5. Statistical Analysis. 3e Kolmogorov–Smirnov test was
used to test the normality of continuous variable. If the
variable satisfies normal distribution, the mean± standard
deviation was used to describe the continuous variable.
Categorical variables were shown as numbers and per-
centages. Because our data were collected from electronic
medical records, there were missing values in the dataset.
3erefore, we excluded cases and variables that were missing
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more than 10%. For categorical variables, mode was used to
fill, and for continuous variables, mean was used to fill.
Comparison between the outcome groups was made by the
chi-square test or Fisher’s exact test for categorical variables
and by the t-test or Wilcoxon test for continuous variables.

3e dataset was randomly divided into a training set
(70%) and a test set (30%). 3e training set was used to train
the model, and the test set was used to evaluate the model.
Four indicators, the area under the curve (AUC), accuracy,
sensitivity, and specificity, were used to measure the

performance of the model. 3e importance of a variable was
assessed by the decreased accuracy of the model after re-
moving the variable. 3e higher the decreased accuracy of
the model, the more important the variable. All statistical
analyses were performed in R software (version 3.5.1) using
the “e1071” (Naive Bayesian algorithm and support vector
machine), “randomForest” (random forest tree), and
“kknn” (K-means) packages. For all analyses, if the two-
tailed P value <0.05, the result was considered statistically
significant.

weeks of gestation

20 22 24 26 27

var20
mean = average (varweek1,varweek2, . . .,varweek20)

var22
mean = average (var20

mean,varweek21, varweek22)

var24
mean = average (var22

mean,varweek23, varweek24)

var26
mean = average (var24

mean,varweek25, varweek26)

var27
mean = average (var26

mean,varweek27)

Figure 2: Preprocessing of variables. varweeki
is the measurement result of the variable in week i; var20mean is the composite indicator

representing the variable 20 weeks ago.

Haidian Maternal & Child Health Hospital (2008-2018)

4775 PTB4775 controls

Inclusion criteria
signed informed consent
37 weeks > gestational age 
≥ 28 weeks 
Maternal age >= 18 years 
old

Exclusion criteria
Missing maternal age
Missing gestational age
Chronic diseases such as 
diabetes, hypertension and 
heart disease

A total of 9550 pregnant women were 
included in the final analysis

Training dataset (70%) Testing dataset (30%)

Inclusion criteria
signed informed consent
gestational age ≥ 37 weeks 
Maternal age >= 18 years 
old

Exclusion criteria
Missing maternal age
Missing gestational age
Chronic diseases such as 
diabetes, hypertension and 
heart disease

Model evaluation
Accuracy
AUC 
Sensitivity
Specificity

Feature processing

1 : 1

Models
NBM
SVM
RF
ANN
K-means
Logistic 
regression

Figure 1: Workflow of this study.
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P (Y =1) = 1
1 + e–xβ

P (B|A ) = P (A|B) P (B)
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Figure 3: Classifiers used in this study. (1) Naive Bayesian (NBM): Naive Bayes calculates the posterior probability P(B|A) from P(A), P(B)

and P(B|A); P(B|A) is the posterior probability of class B and P(A) is the prior probability of predictor A and P(B) is the prior probability
of class, and P(B|A) is the probability of the predictor for the particular class. (2) Support Vector Machine (SVM); SVM outputs a
hyperplane (wTx + b � 0) that best separates the classes and has the largest separation of geometrical separations. (3) Logistic regression:
3e principle of logistic regression is to use a logistic function to map the results of linear regression between 0 and 1; X is the input features,
and β is the weight of the features. P(Y � 1) is the predicted probability of class 1. (4) Artificial Neural Networks (ANN): An artificial neural
network consists of an input layer, a hidden layer, and an output layer, and its core component is an artificial neuron. Each neuron is
summed by several other neurons multiplied by weights; xi is the input features. (5) K-means: 3e K-Means algorithm minimizes the
squared error for cluster Ci; x is the unclassified sample, and Ci is the clusters, and ui is the mean vector of clusters Ci. (6) Random Forest
Tree (RF): Random forest is an algorithm that integrates multiple decision trees through the Bagging idea of ensemble learning. 3e
principle of random forest bagging is to vote the classification results of several weak classifiers to form a strong classifier.
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2.6. Statement of Ethics. Ethics approval of this research was
approved by the Institutional Research Review Board at
National Research Institute for Family Planning and per-
formed in accordance with the ethical standards laid down in
the 1964 Declaration of Helsinki and its later amendments.

3. Results

3.1. Characteristics of Pregnant Women and Newborns. A
total 9550 of pregnant women (PTB: 4775, control: 4775)
were included in our study. 3e mean ages of the PTB group
were lower than those of the control group (PTB:
29.94± 5.39), control: 30.72± 4.00, P< 0.001). 3e gestation
of pregnant women was 251.19± 11.51 days in the case group
and 274.66± 7.15 days in the control group (P< 0.001). 3e
gravidity and parity of pregnant women in the PTB group
were lower than those in the control group (all P< 0.001).
3e weight and height of newborns in the control group
were higher than those in the PTB group (all P< 0.001). 3e
Apgar scores (1, 5, and 10 minutes) of newborns in the
control group were higher than those in the case group (all
P< 0.001). 3e characteristics of pregnant women and
newborns were summarized in Table 1.

3.2. Prenatal Testing of Pregnant Women before 27 Weeks of
Gestation. In the biochemical analysis, albumin, aspartate
transaminase (AST), total serum iron (TSI), magnesium
(Mg), and triglycerides (TG) levels were higher in the PTB
group than those in the control group (all P< 0.05).
Meanwhile, the plasma glucose (fasting) is lower in the
PTB group than that in the control group (all P< 0.05).
Total biliary acid (TBA) and urea levels were higher in the
PTB group than those in the control group (all P< 0.05).
Platelet, intermediate cell, lymphocyte (LY), monocytes
(MO), neutrophil granulocytes (NE), red blood cell dis-
tribution width-SD (RDW-SD), and WBC levels were
higher in the PTB group than those in the control group.

Mean cell hemoglobin (MCH), mean corpuscular he-
moglobin concentration (MCHC), and platelet distribu-
tion width (PDW) were lower in the PTB group than those
in the control group. Waist size, fundal height, SBP, and
DBP were higher in the PTB group than those in the
control group. Fetal heart rate (FHR) in the PTB group
was slower than that in the control group. Urine PH was
higher in the PTB group than those in the control group.
Pregnant women with blood type B were found to be more
common in the case group than in the control group
(Table 2). 3e results of prenatal testing at several other
time points (20, 22, 24, and 26 weeks of gestation) were
described in Supplementary Tables S1–S4.

3.3. Performance ofPredictionModels. Six algorithms (NBM,
SVM, RF, ANN, K-means, and logistic regression) were used
to build the model based on five datasets (20, 22, 24, 26, and
27 weeks of gestation).

Table 3 depicts the performance of the six types of
models. 3e results showed that the AUC and the accuracy
of the RF model based on 27 weeks of gestation were the
highest compared with other algorithms (accuracy: 0.816;
AUC � 0.885, 95% (confidence interval) CI: 0.873–0.897).
3e sensitivity and specificity of the RF model based on
27weeks of gestation were 0.751 and 0.882. Meanwhile,
there was positive association between the accuracy and
AUC of the RF model and gestational age (Figure 4). 3e
sensitivity of the NBM model based on 24weeks of ges-
tation was 0.837, but the specificity was only 0.515. 3e
specificity of the NBM model based on 26weeks of ges-
tation was 0.946, but the sensitivity was only 0.328. 3e
receiver operating characteristic (ROC) curve of the models
is shown in Figure 5.

3e importance analysis of the RF model found that the
top 10 most important variables were age, magnesium,
fundal height, serum inorganic phosphorus, mean platelet
volume, waist size, total cholesterol (TC), TG, globulins, and

Table 1: Characteristics of mother and newborn between PTB and control group.

Variables Control (4775) Case (4775) t/chi P

Age, years 30.72± 4.00 29.94± 5.39 8.00 <0.001
Gestation, days 274.66± 7.15 251.19± 11.51 119.70 <0.001

Gravidity
1 3437 (0.72) 3644 (0.76) 25.08 <0.001
2–3 1240 (0.26) 1063 (0.22) 25.08 <0.001
>3 98 (0.02) 68 (0.01) 25.08 <0.001

Parity 1 4006 (0.84) 4176 (0.87) 24.37 <0.001
>2 769 (0.16) 599 (0.13) 24.37 <0.001

Multiple birth No 4763 (1.00) 4284 (0.90) 479.50 <0.001
Yes 12 (0.00) 491 (0.10) 479.50 <0.001

Birth gender Male 2464 (0.52) 2659 (0.56) 15.85 <0.001
Female 2311 (0.48) 2116 (0.44) 15.85 <0.001

Birth weight, g 3410.68± 402.05 2691.13± 544.90 73.43 <0.001
Birth height, cm 50.38± 1.25 47.85± 2.82 56.81 <0.001
Apgar scores (1min) 9.95± 0.71 9.70± 1.37 11.19 <0.001
Apgar scores (5min) 10.00± 0.66 9.82± 1.20 8.97 <0.001
Apgar scores (10min) 9.95± 0.54 9.77± 1.32 8.68 <0.001
PTB: preterm birth.
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Table 2: Prenatal testing of pregnant women before 27 weeks of gestation between PTB and control group.

Variables Control (4775) Case (4775) t/chi P

Physical examination

Waist size, cm 82.68± 14.19 83.30± 13.74 −2.17 0.030
Fundal height, cm 20.57± 3.62 20.90± 3.84 −4.33 <0.001

SBP, mmHg 112.09± 10.26 113.34± 10.44 −5.86 <0.001
DBP, mmHg 69.47± 7.72 70.71± 16.09 −4.82 <0.001

FHR, times/min 145.50± 3.05 146.46± 17.27 −3.78 <0.001
Weight, kg 63.16± 9.15 63.04± 9.39 0.60 0.549

Edema No 4759 (1.00) 4747 (0.99) 2.76 0.096
Yes 16 (0.00) 28 (0.01)

Blood test

BG

A 1238 (0.26) 1063 (0.22) 128.27 <0.001
B 1571 (0.33) 2106 (0.44)
AB 484 (0.10) 417 (0.09)
O 1482 (0.31) 1189 (0.25)

Blood RH Ne 24 (0.01) 15 (0.00) 1.65 0.199
Po 4751 (0.99) 4760 (1.00)

ALB, g/L 41.24± 3.46 41.45± 2.75 −3.20 0.001
ALT, U/L 20.65± 14.05 21.02± 13.69 −1.28 0.199
AST, U/L 20.91± 7.81 22.14± 7.72 −7.74 <0.001

Glu, mmol/L 4.57 [4.25, 4.93] 4.56 [4.23, 4.72] <0.001
Ca, mmol/L 2.30± 0.14 2.31± 0.12 −1.36 0.174
Cr, umol/L 50.86± 7.61 51.17± 8.25 −1.92 0.055
DB, umol/L 1.72 [1.10, 2.30] 1.74 [1.43, 1.90] 0.594
TSI, umol/L 17.44± 3.33 17.60± 2.63 −2.61 0.009
GLOB, g/L 27.28± 3.32 27.24± 2.43 0.73 0.466
Mg, mmol/L 0.87± 0.13 0.88± 0.09 −4.43 <0.001
IP, mmol/L 1.25± 0.15 1.25± 0.12 −1.61 0.108
TBA, umol/L 3.83 [2.90, 5.10] 4.90 [3.32, 5.01] <0.001
TB, umol/L 11.28± 3.53 11.18± 2.64 1.67 0.095

CHOL, mmol/L 4.78± 0.73 4.80± 0.38 −1.66 0.096
TP, g/L 68.76± 4.84 68.78± 3.55 −0.22 0.829

TG, mmol/L 1.52± 0.54 1.58± 0.41 −6.57 <0.001
Urea, mmol/L 2.80 [2.38, 3.28] 2.84 [2.40, 3.10] 0.002
UA, umol/L 199.75± 40.26 198.22± 39.37 1.88 0.060
BA, 10e9/L 0.01± 0.03 0.01± 0.05 −1.01 0.314
Plt, 10e9/L 220.31± 48.25 224.52± 48.60 −4.25 <0.001
EOS, 10e9/L 0.09± 0.09 0.09± 0.07 0.43 0.665
Hb, g/L 117.98± 8.56 117.69± 8.59 1.62 0.105

MID, 10e9/L 0.55± 0.10 0.56± 0.12 −4.51 <0.001
LY, 10e9/L 1.72± 0.40 1.75± 0.41 −2.92 0.004
MCH, pg 31.49± 1.91 31.33± 1.85 4.15 <0.001

MCHC, g/L 344.87± 10.25 343.39± 10.52 6.95 <0.001
MCV, fL 91.31± 4.72 91.24± 4.50 0.76 0.445

MO, 10e9/L 0.53± 0.14 0.54± 0.14 −4.33 <0.001
MPV, fL 8.58± 1.10 8.60± 1.09 −1.07 0.283

NE, 10e9/L 7.23± 1.69 7.36± 1.72 −3.60 <0.001
P-LCR, % 0.23± 0.05 0.23± 0.05 5.83 <0.001
HCT, % 0.34± 0.02 0.35± 0.25 −1.18 0.238
PCT, % 0.19± 0.04 0.19± 0.03 −0.23 0.819
PDW, % 15.16± 2.25 14.83± 2.51 6.75 <0.001

RDW-CV, % 0.16± 0.51 0.16± 0.35 0.81 0.416
RDW-SD, fL 42.84± 2.46 43.45± 2.12 −13.07 <0.001
RBC, 10e12L 3.76± 0.31 3.77± 0.32 −1.51 0.131
WBC, 10e9/L 9.58± 1.93 9.74± 1.97 −3.93 <0.001
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Table 2: Continued.

Variables Control (4775) Case (4775) t/chi P

Urine test strip

Urine pH 6.67± 0.46 6.73± 0.46 −6.77 <0.001
USG 1.02± 0.01 1.02± 0.01 4.96 <0.001

BIL Ne 4737 (0.99) 4749 (0.99) 1.90 0.168
Po 38 (0.01) 26 (0.01)

Glycosuria Ne 3780 (0.79) 3820 (0.80) 0.98 0.322
Po 995 (0.21) 955 (0.20)

KET Ne 4593 (0.96) 4589 (0.96) 0.03 0.873
Po 182 (0.04) 186 (0.04)

Nitrituria Ne 4728 (0.99) 4740 (0.99) 1.49 0.222
Po 47 (0.01) 35 (0.01)

Blood Ne 4322 (0.91) 4397 (0.92) 7.22 0.007
Po 453 (0.09) 378 (0.08)

Proteinuria Ne 4729 (0.99) 4698 (0.98) 7.41 0.006
Po 46 (0.01) 77 (0.02)

Bilirubinuria Ne 4758 (1.00) 4755 (1.00) 0.11 0.742
Po 17 (0.00) 20 (0.00)

Urine WBC Ne 3490 (0.73) 3475 (0.73) 0.10 0.747
Po 1285 (0.27) 1300 (0.27)

Gynecological examination

BV Ne 4678 (0.98) 4719 (0.99) 10.63 0.001
Po 97 (0.02) 56 (0.01)

CDV

1 854 (0.18) 975 (0.20) 60.20 <0.001
2 2904 (0.61) 3066 (0.64)
3 845 (0.18) 590 (0.12)
4 172 (0.04) 144 (0.03)

VYI Ne 4499 (0.94) 4549 (0.95) 5.05 0.025
Po 276 (0.06) 226 (0.05)

ALB: serum albumin; ALT: alanine transaminase; AST: aspartate transaminase; BA: basophil granulocytes; BG: blood group; BIL: urine bilirubin; Blood RH:
blood RH; BV: bacterial vaginosis; Ca: total calcium; CDV: cleaning degree of vagina,3e higher the value, the worse the cleanliness; CHOL: total cholesterol;
Cr: creatinine; DB: direct bilirubin; DBP: diastolic blood pressure; EOS: eosinophil granulocytes; FHR: fetal heart rate; GLOB: globulins; Glu: plasma glucose
(fasting); Hb: hemoglobin; HCT: hematocrit; IP: serum inorganic phosphorus; KET: urine ketone bodies; LY: lymphocytes; MCH: mean cell hemoglobin;
MCHC: mean corpuscular hemoglobin concentration; MCV: mean cell volume; Mg: magnesium; MID: intermediate cell; MO: monocytes; MPV: mean
platelet volume; NE: neutrophil granulocytes; PCT: plateletcrit; PDW: platelet distribution width; P-LCR: mean platelet volume; Plt: platelet count; RBC: red
blood cells; RDW-CV: red blood cell distribution width-CV; RDW-SD: red blood cell distribution width-CV; SBP: systolic blood pressure; TB: total bilirubin;
TBA: total biliary acid; TG: triglycerides; TP: total protein; TSI: total serum iron; UA: uric acid; Urea: urea; Urine WBC: urine white blood cell; USG: urine
specific gravity; VYI: vaginal yeast infection; WBC: white blood cell count; PTB: preterm birth. Variables that are not normally distributed were expressed as
p50 [p25, p75].

Table 3: 3e performance of models in the test set.

Models Accuracy AUC (95% CI) Sensitivity Specificity

Dataset 1

SVM 0.720 0.791 (0.771–0.811) 0.710 0.731
RF 0.777 0.861 (0.841–0.871) 0.720 0.840

NBM 0.677 0.741 (0.721–0.761) 0.705 0.646
ANN 0.634 0.691 (0.671–0.711) 0.687 0.576

K-means 0.611 0.681 (0.661–0.701) 0.794 0.412
Log 0.610 0.701 (0.681–0.721) 0.378 0.861

Dataset 2

SVM 0.721 0.791 (0.781–0.811) 0.722 0.721
RF 0.794 0.871 (0.851–0.881) 0.756 0.832

NBM 0.682 0.771 (0.751–0.791) 0.785 0.581
ANN 0.666 0.731 (0.711–0.751) 0.595 0.738

K-means 0.602 0.681 (0.671–0.701) 0.811 0.393
Log 0.606 0.701 (0.681–0.721) 0.364 0.847

Dataset 3

SVM 0.719 0.801 (0.781–0.811) 0.695 0.743
RF 0.806 0.881 (0.871–0.901) 0.765 0.846

NBM 0.674 0.791 (0.771–0.811) 0.837 0.515
ANN 0.733 0.801 (0.791–0.821) 0.741 0.726

K-means 0.612 0.711 (0.691–0.731) 0.824 0.405
Log 0.633 0.701 (0.681–0.721) 0.421 0.839
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Table 3: Continued.

Models Accuracy AUC (95% CI) Sensitivity Specificity

Dataset 4

SVM 0.719 0.791 (0.781–0.811) 0.678 0.763
RF 0.807 0.881 (0.871–0.891) 0.743 0.875

NBM 0.626 0.741 (0.721–0.761) 0.328 0.946
ANN 0.732 0.811 (0.801–0.831) 0.730 0.734

K-means 0.626 0.721 (0.701–0.741) 0.801 0.436
Log 0.611 0.701 (0.691–0.721) 0.361 0.880

Dataset 5

SVM 0.729 0.801 (0.781–0.811) 0.685 0.773
RF 0.816 0.891 (0.871–0.901) 0.751 0.882

NBM 0.622 0.741 (0.721–0.761) 0.315 0.937
ANN 0.747 0.811 (0.801–0.831) 0.730 0.763

K-means 0.609 0.701 (0.681–0.721) 0.780 0.434
Log 0.623 0.691 (0.671–0.711) 0.391 0.861

NBM: Naive Bayesian; SVM: Support Vector Machine; RF: Random Forest Tree; ANN: Artificial Neural Networks; Log: Logistic regression; Dataset 1:
20weeks gestation; Dataset 2: 22weeks gestation; Dataset 3: 24 weeks gestation; Dataset 4: 26 weeks gestation; Dataset 5: 27 weeks gestation. AUC: the area
under the curve; CI: confidence interval.
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Figure 4: AUC (a) and accuracy (b) of models in different gestation times. (NBM: Naive Bayesian; SVM: Support Vector Machine; RF:
Random Forest Tree; ANN: Artificial Neural Networks; Log: logistic regression; AUC: the area under the curve).

8 Journal of Healthcare Engineering



total bilirubin (TB) (Table 4). According to the importance
of variables, we gradually increase the number of predictors,
and the results show that the AUC of the model also in-
creases gradually. 3e AUC of the model is stable when the
number of predictors increases to 15 (Figure 6).

4. Discussion

In this study, six algorithms were used to establish the
prediction model of premature birth in the early stage of
gestation. 3e overall prediction effect of the RF model was
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Figure 5: 3e ROC curve of the models. (a) Based on 20 weeks of gestation. (b) Based on 22 weeks of gestation. (c) Based on 24weeks of
gestation. (d) Based on 26 weeks of gestation. (e) Based on 27 weeks of gestation.
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better than that of other models. We also found that the
predictive power of the RFmodel increased with the increase
of gestational age. Age, magnesium, fundal height, serum
inorganic phosphorus, mean platelet volume, waist size, TC,
TG, globulins, and TB were found to be the main influencing
factors of preterm birth.

In our study, we used the data from the production
inspection to build the model based on the machine
learning algorithm. 3e prediction performance of the
model was relatively good, and the cost of the model was
low. Ramkumar et al. using multivariate adaptive re-
gression splines established a prediction model based on
biomarkers (including IL-1RA, TNF-α, angiopoietin 2,
TNFRI, IL-5, MIP1α, IL-1β, and TGF-α), resulting in a
high AUC (train set: 0.82–0.98, test set: 0.66–0.86) [25].
Teresa et al. used cervical length at admission, gesta-
tional age, amniotic fluid glucose, and interleukin-6 to
establish a prediction model, resulting in a high AUC
(0.86, 95% CI: 0.77–0.95) [26]. 3uy et al. found that
nine cell-free RNA could be used to predict gestational
age and preterm delivery, and the AUCs of preterm
delivery were 0.86 in the discovery cohort and 0.81 in the
validation cohort [27]. In these studies, the prediction
performance of the preterm birth model was better, but
another clinical test was needed and expensive. Kamala
et al. used a combination of neighborhood socioeco-
nomic status and individual status to predict preterm
birth, but the AUC (0.75) of the model was relatively low
[28]. Liu et al. found that cervical elastography could be
used as a predictive indicator, and the AUC of the model
was 0.73 [29]. 3e above studies used a traditional bi-
ological algorithm, such as logistic regression, to build
the model, but the predictive power of the model is
relatively low.

In this study, the results of the numerical experiments
show that the AUC of SVM, RF, and ANN models were
higher than logistic, NBM, and k-means. 3e possible reason
for the low AUC of the NBM model is that the NBM model
assumes that features are independent of each other, which is
often not true in practice. For logistic regression and k-means
algorithms, they were susceptible to outliers and noise that
reduce prediction accuracy. For the other 3 machine algo-
rithms, the AUC value of the RF model was the highest. 3e
RFmodel is an ensemble learningmethod, which constructs a
multitude of decision trees at training time and then sets up
the trees to give the classification [30]. 3is ensemble strategy
makes several weak classifiers form a strong classifier to
improve the predictive ability of the model. In a recent study,
the RF algorithm had also achieved a good predictive effect in
fatty liver disease [31], suggesting that the RF algorithm had
advantages in the processing of clinical electronic medical
records. Moreover, we found that the prediction performance
of RF was the best at 27 weeks of gestation.3is may be due to
alternation of biochemical indexes in pregnant women as
delivery approached. 3e AUC of the model based on ran-
dom forest in 20 weeks of gestation was 0.855 (95% CI:
0.841–0.869), suggesting that interventions could be per-
formed before these biochemical indicators change.

In the importance analysis of the RF model, we found that
age was the greatest effect on preterm birth. A case-control
study showed that premature delivery was associated with
greater maternal age [32]. We also found that serum mag-
nesium had a great influence on the results of the model. A

Table 4: 3e top 20 importance variables of RF model.

Variables Decreased
accuracy

Age (physical examination) 0.0251
Magnesium (blood test) 0.0098
Fundal height (physical examination) 0.0077
Serum inorganic phosphorus (blood test) 0.0038
Mean platelet volume (blood test) 0.0038
Waist size (physical examination) 0.0038
Total cholesterol (blood test) 0.0035
Triglycerides (blood test) 0.0031
Globulins (blood test) 0.0024
Total bilirubin (blood test) 0.0024
Neutrophil granulocytes (blood test) 0.0024
Red blood cell distribution width-SD (blood test) 0.0024
Bacterial vaginosis (gynecological examination) 0.0021
Urine bilirubin (urine test strip) 0.0021
Urine white blood cell (urine test strip) 0.0021
Diastolic blood pressure (physical examination) 0.0014
Blood group (blood test) 0.0014
Parity (physical examination) 0.0014
Eosinophil granulocytes (blood test) 0.0010
White blood cell count (blood test) 0.0010
RF: Random Forest tree.
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Figure 6: 3e AUC of the model increases with the number of
predictors. (NBM: Naive Bayesian; SVM: Support Vector Machine;
RF: Random Forest Tree; ANN: Artificial Neural Networks; Log:
logistic regression; AUC: the area under the curve).
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double-blind study suggested that magnesium supplementa-
tion during pregnancy is associatedwith a reduction in preterm
delivery [33].Maternal fundal height was found to be a valuable
predictor for PTB in our study. Previous study used maternal
fundal height to predict fetal weight [34], suggesting that fundal
height was a good predictor for PTB. 3e measurement of
fundal height is susceptible to measurement personnel, which
may limit its clinical use. Della Rosa et al. used 9 most in-
formative predictors to build a preterm birth predictionmodel,
and theAUCof themodel reached 0.812 [35]. Our results show
that using only 15 predictions can achieve better model pre-
dictions. Considering the cost effect, this result has important
implications for guiding clinical practice.

3ere were some limitations in our study. First, our
dataset, collection from electronic medical records, and lack
of some data such as smoking, drinking, family income,
method of conception, medication, and fetal fibronectin. 3e
absence of these factors may underperform our model.
Second, previous studies found that the conception method
has an important effect on preterm birth [36, 37], but it was
not included in our model, which may affect the prediction
accuracy of our model. 3ird, controls of the study were
matched 1 :1 from contemporaneous hospitals, which may
overestimate the performance of the model and may limit the
use of the model to a normal proportion of the population.

5. Conclusions

Our results indicated that the prediction model based on the
RF algorithm had a potential value to predict preterm birth
early stage of pregnancy. 3e RF model also found the main
influence factors of PTB, suggesting that intervention in the
early stages of pregnancy could decrease the risk of preterm
birth.
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Background. Precise and comprehensive characterizations from anterior segment optical coherence tomography (AS-OCT) are of
great importance in facilitating the diagnosis of angle-closure glaucoma. Existing automated analysis methods focus on analyzing
structural properties identified from the single AS-OCT image, which is limited to comprehensively representing the status of the
anterior chamber angle (ACA). Dynamic iris changes are evidenced as a risk factor in primary angle-closure glaucoma.Method. In
this work, we focus on detecting the ACA status from AS-OCT videos, which are captured in a dark-bright-dark changing
environment. We first propose a multiview volume and temporal difference network (MT-net). Our method integrates the spatial
structural information frommultiple views of AS-OCTvideos and utilizes temporal dynamics of iris regions simultaneously based
on image difference. Moreover, to reduce the video jitter caused by eye movement, we employ preprocessing to align the corneal
part between video frames.)e regions of interest (ROIs) in appearance and dynamics are also automatically detected to intensify
the related informative features. Results. In this work, we employ two AS-OCTvideo datasets captured by two different devices to
evaluate the performance, which includes a total of 342 AS-OCT videos. For the Casia dataset, the classification accuracy for our
MT-net is 0.866 with a sensitivity of 0.857 and a specificity of 0.875, which achieves superior performance compared with the
results of the algorithms based on AS-OCT images with an obvious gap. For the Zeiss AS-OCTvideo dataset, our method also gets
better performance against the methods based on AS-OCTimages with a classification accuracy of 0.833, a sensitivity of 0.860, and
a specificity of 0.800. Conclusions. )e AS-OCTvideos captured under changing environments can be a comprehended means for
angle-closure classification. )e effectiveness of our proposed MT-net is proved by two datasets from different manufacturers

1. Introduction

Glaucoma is an eye disease with extremely complex etiology,
ranking second among the four major blinding eye diseases. By
2040, it is estimated that 112million people in the world will be
affected by this disease [1, 2]. Globally, glaucoma (40–80 years
old) is estimated to increase to 66–80million people worldwide
by 2020, and 11million of these patients will eventually become
blind [1]. With the ageing of the population, the number of
glaucoma patients is increasing year by year. In China, primary

angle-closure glaucoma (PACG) is more prevalent. But for-
tunately, it is preventable after early treatment of anterior
chamber angle (ACA), such as laser peripheral iridotomy (LPI).
)erefore, early screening and treatment are critical. Recently,
anterior segment optical coherence tomography (AS-OCT) is
widely accepted by ophthalmologists in glaucoma examination
because of its efficient and noncontact imaging anterior
chamber with depth information [3].

)e shallow anterior chamber is an important risk factor
for PACG [4–6], so ophthalmologists often judge the open
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or closure status of ACA from AS-OCT. Some computer-
aided angle-closure classification algorithms based on ACA
are proposed to reduce the doctors’ burdens based on
machine learning [7–10] or convolutional neural network
(CNN) [4, 11, 12]. Most of the present algorithms give out
the classification results based on several statically captured
AS-OCT images. However, static anatomical factors alone
cannot fully explain the relatively high prevalence of PACG
and dynamic changes of the anterior chamber structure are
more convincing for the diagnosis [13]. For example, as
shown in Figure 1, we randomly selected two video samples
with PACG and normal ACA. Figure 1(a) is a PACG video
sample with the angle status in dark (3rd frame) and bright
conditions (55th frame), while Figure 1(b) shows a normal
sample with the angle status in dark (4th frame) and bright
conditions (34th frame). )e video frames under light
conditions in Figure 1 are compared when the pupil con-
tracts to the maximum. For the two samples, it is noted that
the ACA status is almost closed in dark environments, but
after light illumination, it is changed to open. It will lead to
inconsistent results for the same sample if only based on a
single image.

)us, it is difficult to distinguish the patients’ types only
by statically captured AS-OCT images, and most of the
present angle-closure classification methods, only based on
the angle status of a certain state, have certain limitations
[14–16]. But it is correctly classified by the iris motion state
(such as the iris motion information as shown in Figure 1,
which also can better reflect the complete angle state of the
eyes at different times). )ere is some research explaining
this phenomenon.)e iris is spongy and compressible in the
eyes of healthy and PACG subjects, but it is incompressible
in the eyes of PACG and suspected angle-closure [17].
Moreover, the movement features of angle-closure eyes and
angle-opening eyes are researched, and the angle-closure
group has a slower iris contraction speed in the reflection of
light, which is faster after receiving effective treatment [18].
Iris elastic acceleration and pupil block acceleration are
correlated with PACG [19]. )erefore, in this article, the
angle-closure detection is based on the AS-OCT videos,
which are captured in the dark-bright-dark changing en-
vironments. As far as we know, there is no research on angle-
closure detection concerning the movement of iris based on
AS-OCT videos.

In this article, a deep learning-based framework is
proposed for angle-closure detection that makes use of AS-
OCT videos. )e contributions are summarized as follows:
(1) we first propose to detect the chamber angle status based
on AS-OCT videos in changing environments, which are
proven to be more complete representation of the patients’
anterior chamber. (2) We propose a multiview volume and

temporal difference network (MT-net) for ACA status de-
tection, which integrates the spatial structural information
from multiple views of AS-OCT videos and simultaneously
utilizes temporal dynamics based on image difference. (3)
We propose an automated AS-OCT video alignment algo-
rithm based on the corneal part in video frames, to reduce
the impacts of video jitter. Regions of interest (ROIs) in 3D
appearance and dynamics are also detected based on the
position of the scleral spur (SS) and image difference to
enlarge the informative features. (4) We carry out com-
parison and ablation study experiments to demonstrate the
effectiveness of our proposed algorithm by seven evaluation
metrics based on two AS-OCT video datasets.

2. The Proposed Method

Figure 2 illustrates the framework of our proposed MT-net
(short of multiview volume and temporal difference net-
work). First, the AS-OCT video jitter is removed by the
automated image registration method, and the ACA is lo-
cated by extracting the position of the SS, while motion
information is obtained by image difference. )en, the
proposed MT-net is introduced that multiple views of ACA
volumes are fed to extract spatial features, while the motion
feature is input to study temporal information of iris dy-
namic. Finally, the prediction scores based on spatial and
temporal information are integrated to further enhance the
performance of angle-closure detection.

2.1. AS-OCT Video Alignment and ROIs Extraction

2.1.1. AS-OCT Video Alignment. Due to the impacts of
involuntary eye movement and improper placement of the
optical axis of the eye, misalignment exists between adjacent
video frames. As shown in Figure 3, the corneal in the 1st
and 38th frame cannot overlap, which may lead to the
resulting video frame sequence being unreliable [20].

Assume a video contains N frames, and the frames are
denoted by fi(i ∈ [1, N]). To ensure the consistency of the
placement of the anterior chamber structure in the video
frames, we transform the frames fi(i ∈ [2, N]) into the
coordinate system of frame f1 and crop the transformed
frames to be the same dimension as f1. First, the multiscale
face point features pf and corner-like features pc are
extracted from the frames. Rotation, translation, and scale
are considered the main changes between video frames; thus,
the affine transformation parameters θ are estimated based
on the similarity metrics, and an iterative optimization
process is further used to refine the transformation, defined
as follows:
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where df(·) is the normal distances of pair face points,
dc(·) is the Euclidean distances of pair corner points, and
ρ(·) is the Beaton–Tukey [21]. )e face point feature
matching sets and corner feature matching sets are
denoted as (p

f
i , q

f
i ) ∈ ζf and (pc

i , qc
i ) ∈ ζc, respectively.

)e ωf and ωc are the distance-based robust weight
factors.

Besides, to speed up the alignment procedure, median
filter and frame resize are adopted before alignment. As
shown in Figure 3(b), the corneal is overlapped between
frames after alignment.

2.1.2. ROIs Extraction. )e ACA and iris region are the
ROIs during ophthalmologists diagnosing PACG [22]. In
this study, ROI extraction includes ACA extraction and
image difference, which can reinforce ACA spatial and iris
temporal representation.

(1) ACA Extraction. Locating local regions can retain more
useful information at the last feature map of the backbone
network [11, 23–25]. )e SS is the key point of the ACA;
thus, we obtain the ACA for angle status detection by SS
localization in the article. We propose to use a UNet-like
architecture based on nested and dense skip connections
(UNet++) [26] to get accurate SS localization. )en, the
ACAs are cropped directly from aligned videos and resized
to one fixed resolution. In this way, the network can focus on
visual contents by cropped bounding boxes. Moreover, the
scenes of frame inputs are enlarged to capture more useful
visual content.

(2) Image Difference. To better extract long-term temporal
information, a motion representation is carried on to obtain
iris motion first. For motion modelling, the optical flow has
been used extensively as a motion representation [27, 28].
However, the extraction of optical flow is expensive in both
time and space, which is often calculated in advance and
then stored in hard drives. Motivated by this, efforts have
been made to find good alternatives. Researchers [29, 30]
found that the difference between adjacent frames, namely,
image difference, can be useful instead of optical flow.

In this study, image difference, also known as the Eulerian
motion, is used to represent the motion of images [31]. Instead
of calculating themotion between consecutive frames in a video,
this article puts the focus on the iris change compared to the first
frame. As shown in Figure 2, the image difference of two images
is defined asV � It − I1, where It is a framewithin the scope of
[2, N], while I1 is the first frame in a video. Image differences
can capture the short-term motion information to effectively
facilitate to model longer-range temporal relations in videos.

2.2. MT-net Framework. )e proposed MT-net framework is
composed of two subnetworks, multiview volume subnetwork
for spatial information (as shown in Figure 2(a)) and temporal
difference subnetwork (as shown in Figure 2(b)) for temporal
information.

2.2.1. Multiview Volume Subnetwork. )e ACAs contain
spatial information in the video frame sequence. In this
work, the ACAs are composed as a volume with size H ×

W × T as Figure 2(a)(a1), which provides context

3rd frame (dark) 55th frame (bright)

(a)

4th frame (dark) 34th frame (bright)

(b)

Figure 1: )e example of (a) angle-closure and (b) open angle (normal) video.
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information of ACAs in the time dimension T. During the
volume analysis, we find that when the volume is rotated
with size H × T × W as Figure 2(a)(a2), it reveals the fluc-
tuation characteristics of ACAs. )us, to adopt more useful

information for angle status classification, we propose a
multiview volume subnetwork by integrating the above
different-view volumes. )e 3D ResNet is adopted as the
backbone since it makes full use of the 3D context

W
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H

CNN

CNN

LSTM

LSTM

LSTM

3D ResNet

Angle-closure

Normal

AS-OCT Videos
Image Difference

Ensemble
Learning

Multi-view ACA

ACA Extraction

Video Scores

Video Scores

W
H

T
(a)

(b)

Video Alignment

(a1)

(a2)
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CNN

CNN
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ACA Extraction
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(
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(a2)
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I1
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It

In

CNN
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-

-

Figure 2:)e pipeline of ourMT-net architecture.)e input AS-OCTvideos are aligned to reduce the video jitter.)en, the ACA extraction
and image difference are carried on for the two subnetworks: (a) multiview volume network and (b) temporal difference network. Finally, a
soft voting-based ensemble model is adopted to incorporate the two subnetworks to output the final classification results.

(1) 1st frame (2) 38th frame

(a)

(1) Before alignment (2) After alignment

(b)

Figure 3: )e example of an angle-closure video alignment. (a) Origin angle-closure video. (b) Alignment effect.
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information and is easier to optimize with high accuracy
from considerably increased depth [32]. )e sizes of con-
volutional kernels in 3D ResNets are 3 × 3 × 3, and both the
temporal and spatial stride are 2.)e 16-frameACA clips are
input into the subnetwork with the size of
3 × 16 × 224 × 224. Since the small scale of the medical
image dataset is the main reason for low classification ac-
curacy, fine-tuning pretrained mode on large-scale datasets
becomes an effective way [33]. We also fine-tune the pre-
trained 3D ResNets model on Kinetics [34]. Also, identity
connections and zero paddings for the shortcuts of the
ResNet block are utilized to avoid the increasing number of
parameters [35].

2.2.2. Temporal Difference Subnetwork. As the feature of iris
dynamic movement under the dark-light-dark environment
is helpful for the angle-closure state classification, temporal
information of the AS-OCT videos is adopted in the article.
To reduce the computation complexity of the subnetwork,
we propose to apply a ResNet model to extract features of
image difference. )en, the extracted features are input into
the long short-term memory (LSTM) layer with batch
normalization [36], which encodes the states and models the
long-term dependencies between the feature map along the
time axis. Finally, a fully connected layer on the top of LSTM
output is adopted for multiway classification [34].

2.2.3. Angle-Closure Detection. Temporal information plays
an important role in understanding the iris motion, while
ACA volume provides anatomical features of the anterior
segment at different times. We take into account two kinds
of context information in our model: scene volume context
and temporal changing information over the entire span of
videos. Finally, we adopt themodel ensemble, specifically the
soft voting ensemble method [37], to integrate multifaceted
contents and obtain a more comprehensive and accurate
classification result. )e soft voting ensemble method is a
soft variant of a voting scheme that takes into account the
class probabilities of each algorithm and combines these
decisions through the averaging process, instead of hard
voting through on-off decisions [37]. In this article, we
independently train each subnetwork, get the probability
distribution of the test set (As shown in Figure 2), and finally
synthesize the performance of different classifiers of each
subject to get the final classification results.

3. Experimental Results

3.1. Clinical AS-OCT Video Dataset. Our AS-OCT video
datasets are collected by two devices: Swept-source OCT [38]
(Casia Swept-source-1000 OCT, Tomey, Nagoya, Japan) and
Visante OCT [39] (Visante OCT, Model 1000, software
version 2.1; Carl Zeiss Meditec). We collect the AS-OCT
videos of normal people and patients with PACG under a
dark-light-dark environment. Subjects are recruited from
the outpatient and inpatient departments of the Singapore
National Eye Centre (SNEC) and joint Shantou Interna-
tional Eye Centre of Shantou University and the Chinese

University of Hong Kong, which include patients and vol-
unteers aged over 40 years. In particular, the recording of the
AS-OCT videos is started one minute after dark adaption
using a standard protocol, and the light intensity is ap-
proximately 20 lux. )e iris and anterior chamber changes
between the dark and light environments are recorded. A
single ophthalmologist performs all AS-OCT testing for data
consistence. For each video, the ground-truth label of
normal or angle-closure is determined from the majority
diagnosis of senior ophthalmologists.

For the Casia dataset, it includes 148 videos, including 68
videos of normal eyes and 80 videos of eyes with PACG.)e
resolution of video frames is 1644×1000. )e Zeiss dataset
consists of 194 videos, including 116 videos of normal eyes
and 78 videos of eyes with PACG. )e resolution of video
frames is 600× 300. For the two datasets, Table 1 lists the
maximum, minimum, and median of video frames. We
equally and randomly divide 30 videos as the testing set,
while the remaining videos are divided into the validation set
and training set. )e size of all input video frames for the
deep learning network is fixed at 224× 224.

3.2. Implementation Details. )e proposed architecture is
implemented using the publicly available PyTorch Library.
In the training phase, for the multiview volume subnetwork,
we utilize stochastic gradient descent to optimize the model
(200 epochs), with a gradually decreasing learning rate
starting from 0.1, a momentum of 0.9, and a batch size of
128. For the temporal difference subnetwork, we employ an
Adam optimizer to optimize the model (180 epochs), with a
learning rate of 0.0001, a momentum of 0.01, and a batch size
of 128. For all the processes of training and testing, we
conduct them on one NVIDIA TITAN V GPU.

3.3. Experimental Criterion and Baseline. To measure the
performance of our network, we employ seven evaluation
criteria: balanced accuracy (B-Acc), precision (Pre), recall,
F1 score, sensitivity (Sen), specificity (Spe), and Kappa
analysis. Kappa analysis and F1 score are used to reflect the
trade-offs between Sen and Spe.

As shown in Table 2, we use the basic subnetwork
backbones of 3D CNN and CNN-LSTM to conduct training
and testing on our private Casia dataset. For a small-scale
medical image dataset, different proportions of validation set
and training set affect the anterior chamber status classifi-
cation. We conduct experiments for the two subnetworks
with the proportion of validation set and training set to 5%,
10%, and 20%, and the results are shown in Table 2.

For 3D CNN, it can be seen from Table 2 that 3D
ResNet18 has the highest B-Acc and F1 score of the three
dataset splits. In the training process, the relatively shallow
network is easier to converge than the deeper network. For
the experiment of CNN-LSTM, the ResNets are fine-tuned
from initialization with the pretrained deep model. As
shown in Table 2, based on the same testing set, the B-Acc
and F1 scores of this network are basically higher than that of
3D CNN.)e possible reason is that CNN-LSTMmodels the
global movement of the iris better, which also further proves
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that iris motion features are important to predict the binary
classification (angle status) result. )e testing accuracy of
CNN-LSTM shows the best performance at the 50th layer
with the increase in depth. )e performance of both 3D
CNN and CNN-LSTM on the data splits of 5 % and 10 % is
much better than those of 20 % . )erefore, in the follow-up
experiments, we conduct training on the two dataset splits
and take the average testing values as final results.

3.4. Ablation Study. To evaluate the effectiveness of four
modules in our framework, including alignment, ACA ex-
traction, image difference, 3D CNN, and CNN-LSTM, we
provide an ablation study. Based on the baseline experi-
ments, we employ 3D ResNet18 and ResNet50-LSTM as
baselines in the following experiments, and the results are
reported in Table 3.

)e scleral spur localization is very important for the
classification, )us, in the article, we adopt UNet++ to get
accurate SS localization.)emodel is trained based on the public
AGE dataset [6], which is similar to our dataset. For very few
video frames that cannot locate SS, we get it from the SS position
of the frame preceding the current frame of the aligned video.

(i) For the volume spatial information, video alignment
and ACA region extraction improve the classifica-
tion results of 3D CNN to a certain extent compared
with the baselines. When the two preprocesses are
combined, all the evaluation metrics increase. It is
noted that the results combined with the multiviews
are better than those from only one general view.

(ii) For temporal information, it illustrates the impor-
tance of global change in the iris regions for

improving classification performance. For CNN-
LSTM, although its testing performance is not
promoted much after extracting the iris motion
information (image difference), it significantly
improves after the video is aligned. When image
difference is combined with video alignment, the
evaluation metrics further increase, which indicates
the negative effect of video jitter on the extraction of
iris dynamic features. )e temporal information is
helpful for the classification.

(iii) For volume spatial and temporal information, the
alignment, ACA extraction, and image difference
improve the results, as shown in Table 3. )e results
in the last line achieve optimal performance by
integrating the multiview spatial, temporal, and
preprocessing, which is our proposed framework,
MT-net.

3.5. Performance on the Two Private AS-OCT Video Datasets.
To prove the superiority of classification based on the AS-
OCT videos, we compare our framework with the present
algorithm based on single AS-OCT images. We select frames
from the beginning and end of our videos taken under a dark
environment, which is the same as the datasets of most of the
present classification algorithms [4, 11, 12]. For the Casia
dataset, the selected images are combined into a training set
with a total of 2160 AS-OCT images (1230 angle-closure and
930 normal images) and a testing set with 520 AS-OCT
images (250 angle-closure and 270 normal images) with the
same distribution as the video dataset. For the Zeiss dataset,
the extracted image dataset contains a training set with 3380
AS-OCT images (1360 angle-closure and 2020 normal im-
ages) and a testing set with 500 AS-OCT images (200 angle-
closure and 300 normal images) with the same distribution
as the video dataset.

We use 2D ResNet50, which has the best performance in
the baseline experiments, as the comparison algorithm based
on the AS-OCT image datasets. )e ACA extraction is also
combined with 2D ResNet50, and the results are shown in
Table 4. To ensure the fairness of comparison, for AS-OCT
image datasets, we get final classification results based on
each video in the test stage; that is, if the number of correctly
classified images accounts for more than 50 % of the total
frames of the video, we will give the correct judgment.

As shown in Table 4, for the two datasets, the ACA
extraction is helpful for the ACA status classification for all
two datasets. But our proposed MT-net based on AS-OCT
videos gives the best evaluation metrics. For the Casia
dataset, the classification accuracy for our MT-net is 0.866
with a sensitivity of 0.857 and a specificity of 0.875, which
achieves superior performance compared with the results of
the algorithms based on AS-OCT images with an obvious
gap. For the Zeiss dataset, our method based on AS-OCT
videos also gets better performance against those based on
AS-OCT images with a classification accuracy of 0.833, a
sensitivity of 0.860 and a specificity of 0.800. Although the
values of sensitivity and specificity are not the highest in
Table 4 for the Zeiss dataset, we achieve the highest Kappa

Table 1:)emaximum, minimum, andmedian of video frames for
the two datasets.

Maximum Minimum Median
Casia dataset 121 21 53
Zeiss dataset 135 20 48

Table 2: Performance of different subnetworks on the private Casia
video dataset.

3D CNN (B-Acc/F1 score)
Splits 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

5% 0.638/
0.632

0.464/
0.282

0.625/
0.627

0.562/
0.430

0.558/
0.463

10% 0.692/
0.695

0.518/
0.463

0.612/
0.589

0.594/
0.487

0.562/
0.430

20% 0.589/
0.589

0.482/
0.437

0.509/
0.492

0.589/
0.514

0.562/
0.430

CNN-LSTM (B-Acc/F1 score)
Splits 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

5% 0.531/
0.367

0.643/
0.614

0.777/
0.763

0.607/
0.562

0.719/
0.678

10% 0.500/
0.371

0.679/
0.662

0.781/
0.789

0.714/
0.707

0.656/
0.589

20% 0.500/
0.297

0.754/
0.757

0.710/
0.695

0.714/
0.707

0.571/
0.505

)e bold values indicate the optimal results.
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value and F1 score, which are used to reflect the trade-offs
between sensitivity and specificity.

4. Discussion

In this study, after extracting multiview spatial information
and modelling motion, we develop the MT-net to learn to
discriminate 3D spatial and temporal features from AS-OCT
videos. Our proposed method is shown to be a promising
technology for serving clinicians in faithfully identifying
angle-closure in AS-OCT videos with a high classification
accuracy.)e proposed framework opens the door to further
enhance the screening ability of angle-closure-related dis-
ease from a brand new perspective. More research is needed
to explore the employment of deep learning algorithms
deployed in diverse population settings, with the use of
multiple devices and larger AS-OCT datasets.

)e effectiveness of our proposed MT-net is proved in
the above experimental parts. )e AS-OCTvideos can be a
more comprehensive means for angle-closure diagnosis.
But the study still has two limitations. One limitation of
this study is that it assesses two specific Asian populations
(Chinese and Singaporeans) due to the high prevalence of
primary glaucoma in Asia, so the results may not be
applicable to other ethnic groups. But this effect can be
mitigated by increasing the diversity of ethnic data.
Another potential limitation is that the AS-OCT videos
are captured from Casia and Zeiss, the two famous
manufacturers in the world. Because of the difference

between the capturing machines, this may adversely affect
the quality and performance when our network is applied
to videos from other AS-OCT acquisition devices, which
did not happen in our present two datasets. If more data
can be acquired from other devices in the future, the
performance of our model may become more stable and
more powerful.

5. Conclusions

We first proposed to detect the ACA status based on light-
changing AS-OCTvideos in this article. A multiview volume
and temporal difference framework (MT-net) is proposed to
learn to discriminate spatial and temporal features on the
ROIs of AS-OCT videos, which include ACA and iris dy-
namic changes in the dark-light-dark environment. )e
ablation experiments prove the effectiveness of our MT-net.
)e evaluation metrics based on videos are better than those
based on 2D AS-OCT images, manifesting that the chamber
angle status analysis in a changing environment could
improve the ability of angle-closure related disease
screening.

Data Availability

)e datasets generated and analyzed during the current
study are not publicly available due to restrictions in the
ethical permit but are partly available from the corre-
sponding author on reasonable request.

Table 3: Classification performance of the angle-closure glaucoma by different module combinations on private Casia video dataset.

AL1 ACA Diff2 C3D3 ConvL4 B-Acc Pre Recall F1 score Sen Spe Kappa
✓ 0.692 0.704 0.697 0.695 0.718 0.673 0.370

✓ ✓ 0.712 0.735 0.703 0.701 0.848 0.576 0.493
✓ ✓ 0.719 0.720 0.720 0.720 0.706 0.733 0.518

✓ ✓ ✓ 0.755 0.756 0.753 0.754 0.777 0.732 0.587
✓ ✓ ✓5 0.763 0.767 0.767 0.766 0.714 0.813 0.529

✓ 0.781 0.823 0.777 0.789 0.821 0.625 0.545
✓ ✓ 0.813 0.819 0.816 0.817 0.750 0.860 0.629

✓ ✓ 0.607 0.615 0.600 0.596 0.714 0.500 0.210
✓ ✓ ✓ 0.830 0.834 0.833 0.833 0.786 0.875 0.664

✓ ✓ 0.777 0.804 0.767 0.763 0.728 0.625 0.542
✓ ✓ ✓ ✓ ✓ 0.820 0.838 0.817 0.814 0.857 0.780 0.636
✓ ✓ ✓ ✓5 ✓ 0.866 0.867 0.867 0.867 0.857 0.875 0.732
1AL: Alignment; 2Diff: Difference; 3C3D: 3D CNN; 4ConvL: CNN-LSTM; 53D CNN (multiview). )e bold values indicate the optimal results.

Table 4: Comparison of the classification performance on private two AS-OCT video datasets and image datasets.

Casia B-Acc Pre Recall F1 Score Sen Spe Kappa
ResNet50 (images) 0.767 0.768 0.767 0.766 0.800 0.733 0.533
ACA+ResNet50 (images) 0.774 0.830 0.759 0.748 0.810 0.547 0.530
Our MT-net 0.866 0.867 0.867 0.867 0.857 0.875 0.732
Zeiss B-Acc Pre Recall F1 score Sen Spe Kappa
ResNet50 (images) 0.750 0.775 0.750 0.744 0.900 0.600 0.500
ACA+ResNet50 (images) 0.795 0.804 0.800 0.798 0.714 0.875 0.594
Our MT-net 0.833 0.840 0.840 0.840 0.860 0.800 0.600
)e bold values indicate the optimal results.
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Diabetic retinopathy (DR) is currently one of the severe complications leading to blindness, and computer-aided, diagnosis
technology-assisted DR grading has become a popular research trend especially for the development of deep learning methods.
However, most deep learning-based DR grading models require a large number of annotations to provide data guidance, and it is
laborious for experts to find subtle lesion areas from fundus images, making accurate annotationmore expensive than other vision
tasks. In contrast, large-scale unlabeled data are easily accessible, becoming a potential solution to reduce the annotating workload
in DR grading.-us, this paper explores the internal correlations from unknown fundus images assisted by limited labeled fundus
images to solve the semisupervised DR grading problem and proposes an augmentation-consistent clustering network (ACCN) to
address the above-mentioned challenges. Specifically, the augmentation provides an efficient cue for the similarity information of
unlabeled fundus images, assisting the supervision from the labeled data. By mining the consistent correlations from aug-
mentation and raw images, the ACCN can discover subtle lesion features by clustering with fewer annotations. Experiments on
Messidor and APTOS 2019 datasets show that the ACCN surpasses many state-of-the-art methods in a semisupervised manner.

1. Introduction

Diabetic retinopathy (DR) is one of the most prevalent
complications caused by diabetes, which may cause inter-
mittent or even permanent blindness [1–3]. Ophthalmolo-
gists often judge the severity of DR based on the features of
the disease and the number of lesions, such as observing the
characteristics of microaneurysms, hemorrhages, soft exu-
dates, and hard exudates [4, 5]. Recognized by international
authorities [6, 7], the severity of DR can be categorized into
the following five levels: normal, mild, moderate, severe
nonproliferative, and proliferative; these can be summarized
into two main categories: normal and abnormal or

nonreferable and referable symptoms [7–9]. If the retina is in
the pathological state of DR for a long time, the blood vessels
in the eye will eventually become blocked, eventually leading
to decreased vision and even blindness. -erefore, it is es-
sential to detect DR early and grade the DR severity in
patients because early correct and timely treatment can
largely avoid the deterioration of the disease.

In clinical diagnosis, DR detection mainly relies on the
careful comparison of colorful fundus images by ophthal-
mologists. Recently, as the number of diabetic patients has
increased yearly, the number of subjects to be tested has
become vast, bringing a significant burden on ophthal-
mologists and DR experts who waste much time observing
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fundus images. -erefore, it is necessary to develop com-
puter-aided diagnosing models to efficiently reduce the
workload and inspection time for ophthalmologists and
experts, achieving real-time DR diagnosis for patients.

To solve the automatic DR grading, early attempts
[10–13] are inclined toward exploiting traditional machine
learning methods on manual features, limited by specific
feature extraction skills and experience. Aiming at this
weakness, deep learning has become a popular solution for
DR grading with many successful applications [14, 15] be-
cause it can automatically learn critical features from fundus
images, supervised by accurate annotations. However, these
models often depend on a large number of labeled fundus
images, whose discriminant information only occurs in
subtle blood vessels.-eDR grading annotators must master
the professional medical knowledge to support them,
manually finding key features to decide on actual DR se-
verity, which is a highly time-consuming workload. -us,
high-quality labeled data are scarce, making the supervised
DR grading model hard to accomplish.

To save the expensive annotating work in real applications,
this paper attempts to solve automatic DR grading in a
semisupervised manner to integrate unlabeled data into the
training stage because clinical inspection can produce many
unlabeled fundus images containing important potential in-
formation.-us, the most crucial task of this paper is to train a
robust DR-gradingmodel frommassive unlabeled data assisted
by fewer annotations, as shown in Figure 1. Extracting more
identical information from unlabeled fundus images becomes a
top priority, and the data consistency of unlabeled data is vital
for feature learning in our work [16–19]. Inspired by previous
works, we make more efforts to mine consistent correlations
between raw fundus images and their augmentations, which
preserve the consistent discriminative information but suffer
from image transformations, such as geometric transforma-
tion, color space augmentation, random erasing, generative
adversarial networks, and neural style transfer.

In this paper, we propose an augmentation-consistent
clustering network (ACCN) to alleviate the laborious an-
notating workload in clinical application, which straight-
forwardly mines the consistent inner correlations among
fundus image augmentations and dynamically conducts
weight clustering to utilize the sufficient unlabeled data,
absorbing fewer annotated fundus images. As the dis-
criminant cues indicating DR grades are subtle in fundus
images, the augmentations from raw images can help the
ACCN spread the information from annotated data to
unlabeled images. Besides, an online memory unit is in-
troduced to dynamically update the clustering centroids,
guaranteeing the global consistency between labeled and
unlabeled fundus images in exploring critical information.

-e main contributions of this article are summarized as
follows:

(1) We propose a brand-new, highly robust semi-
supervised framework (ACCN) to solve the DR
grading problem, inspired by the consistent discrimi-
native correlations between labeled and unlabeled
fundus images with different augmentations.

(2) We design a reasonable weight-clustering algorithm
that benefits from an online memory unit to dy-
namically update the clustering centroids with global
consistency, generating high-quality pseudolabels
for unlabeled images and integrating annotated
fundus images to explore discriminative information
for DR grading.

(3) We conducted experiments on the public data sets
Messidor and APTOS 2019, and the results show that
the ACCN is superior to many state-of-the-art DR
grading methods.

2. Related Work

-is section summarizes recent works on the diabetic ret-
inopathy grading problem and introduces the successful
computer-aided diagnosing applications of semisupervised
learning.

2.1. Diabetic Retinopathy Grading. With the continuous
development of deep learning, its application to retinal
images has also achieved great success. Recently, some new
research has been proposed [20–23]. For example, Sambyal
et al. [20] proposed an aggregated residual transformation-
based model for automatic multistage classification of dia-
betic retinopathy. Bhardwaj et al. [21] developed a hierar-
chical severity-level grading system to detect and classify DR
ailments. Bodapati et al. [22] presented a hybrid deep neural
network architecture with a gated attention mechanism for
automated diagnosis of diabetic retinopathy. Math et al. [23]
designed a segment-based learning approach for diabetic
retinopathy detection, which mutually learns classifiers and
features from the data and achieves significant development
in diabetic retinopathy recognition.

However, the methods mentioned above require a large
amount of labeling information. Medical labeling is well
known to be expensive and time-consuming, which many
institutions cannot afford. -is significantly constrains the
transferability of these developed DR grading systems.

2.2. Semisupervised Learning inMedical Image Classification.
In recent years, medical imaging technology has been fully
developed for clinical applications [24–26]. In medical
image analysis, annotation is often difficult to obtain because
it is expensive and labor-intensive. Semisupervised learning
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Figure 1: Analysis diagram of our semisupervised DR-grading
solution.
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to relieve the pressure of labeling has provided great help to a
certain extent. In recent years, some studies have successfully
applied the semisupervised framework to medical image
analysis [27–31]. Wang et al. [27] incorporated virtual
adversarial training on both labeled and unlabeled data into
the course of training, self-training, and consistency regu-
larization to effectively exploit useful information from
unlabeled data. Calderon et al. [28] explored the impact of
using unlabeled data through the implementation of a recent
approach known as MixMatch for mammogram images.
Pang et al. [29] developed a radionics model based on a
semisupervised GANmethod to perform data augmentation
in breast ultrasound images. Liu et al. [30] proposed a self-
supervised mean teacher for chest X-ray classification that
combines self-supervised mean-teacher pretraining with
semisupervised fine-tuning. Bakalo et al. [31] designed a
deep learning architecture for multiclass classification and
localization of abnormalities in medical imaging illustrated
through experiments on mammograms.

In this paper, we propose a novel augmentation-con-
sistent clustering network (ACCN) for semisupervised di-
abetic retinopathy grading on fundus images, exploring the
discriminative information learned from plentiful unlabeled
data and fewer annotated fundus images.

3. Method

Aiming to explore the discriminant information from
massive unlabeled fundus images, we design a novel sem-
isupervised DR grading approach, the augmentation-con-
sistent clustering network (ACCN), to assist the supervised
model trained by fewer annotated data. -e ACCN utilizes
consistent learning and weight clustering on easily accessible
unlabeled data with the help of fewer annotations to achieve
the semisupervised diabetic retinopathy grading task. In
detail, the ACCN first considers the category correlations
among unlabeled fundus images, maintaining consistency
with different augmentations. -en the trained model from
annotated fundus images is utilized as the baseline network,
and the ACCN deploys a clustering algorithm to weight their
CNN features to calculate the pseudolabels for unlabeled
images. Finally, we utilize the real annotations and pseu-
doannotations to train the network parameters. -e whole
workflow for the ACCN is illustrated in Figure 2, and the
symbols are summarized in Table 1.

3.1. Augmentation-Consistent Learning. In semisupervised
DR grading work, the most crucial task is the exploration of
unlabeled retinal images. At the same time, the augmen-
tation in deep learning is a popular and easily conducted
process to produce various transformations for unlabeled
raw fundus images, containing consistent identity infor-
mation but close to realistic scenarios [19, 32]. -us, the
ACCN first conducts reasonable augmentations for raw
retinal images to generate diverse data with the same cat-
egory and then employs a convolutional neural network to
learn appearance feature representations for the augmented
images.

In the ACCN, we adopt augmentation anchoring
technology [19, 32] that utilizes the pseudolabels that come
from weakly augmented samples as the “anchor” and align
the strongly augmented samples to the “anchor.” Notably,
the weak augmentation Aweak in our method contains a
random cropping followed by a random horizontal flip, and
the strong augmentation sequence Astrong � A1

strong,A
2
strong,

· · · ,Ak
strong} is achieved by RandAugment and a fixed aug-

mentation strategy that contains a sequence of image
transformations.

Because the labeled images contain sufficient grading
information to find samples in the same category, with no
need to generate much more augmented images, we only
process the annotated retinal image xl

i by weak augmen-
tation to produce an “anchor” xl

i,

x
l
i � Aweak x

l
i , (1)

while the unlabeled fundus image xl
u should be transformed

into an image sequence by strong augmentations to produce
more strongly augmented samples to form sufficient training
data in the same category. -us, we utilize the strong
augmentation series to generate their augmentations:

X
u

j � A
k
strong x

u
j  

K

k�1
, (2)

where xu denotes K strongly augmented unlabeled fundus
images from Astrong.

-rough the above-mentioned augmentations, we can
obtain the weak augmented annotated image xl

i and strong
augmented unlabeled fundus images Xu

j , which are intended
to supervise the model training to analyze the images from
multiple angles and extract more critical features.

As for feature learning, the ACCN employs the ResNet-
50 architecture [33] as the feature extractor for fundus
images and their augmentations due to its excellent per-
formance in medical imaging. Particularly, the feature ex-
tractor is defined by G for annotated and unlabeled retinal
images, and the feature vector G(·) is transformed into a
probability vector by a classifier F. Taking a retinal image x

as an example, its prediction can be mathematically rep-
resented by

P(x) � F(G(x)). (3)

Essentially, the weak augmented images enlarge the scale
of labeled data to compose a labeled set
Xl � xl

1, xl
2, · · · , xl

Nl
 ∪ xl

1, xl
2, · · · , xl

Nl
 , training the fea-

ture extractor and classifier by labeled cross-entropy (lce)
loss:

Llce � − 

xi∈Xl

y
l
ilog F G xi; WG( ; WF( ,

(4)

where WG and WF represent the network parameters of the
feature extractor and the classifier, respectively.

Similarly, the strong augmentations for unlabeled im-
ages produce the transformed samples with the same cat-
egory as raw images. -us, we also introduce an
augmentation-consistent (ac) loss to enforce that the
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classifier predicts the consistent probability vectors for the
correlated augmentation and raw fundus images:

Lac � 

xj∈Xu,xj∈X
u

j

P xj  − P xj 
�����

�����,
(5)

where Xu � xu
1 , xu

2 , · · · , xu
Nu

  denotes the set of unlabeled
retinal images.

Benefiting from the labeled cross-entropy loss Llce and
augmentation-consistent loss Lac, the feature extractor G
and classifier F can learn a lot from the discriminative
consistency between augmentations and raw images, espe-
cially from the unlabeled retinal images. Hence, the back-
bone network in the ACCN possesses quite an inferential
capability for unknown retinal images.

3.2. Weight Clustering Unit. Even though the consistency
information has been extracted from unlabeled images,
accurate diabetic retinopathy grading cues are implied in the

annotations. In recent years, pseudolabels have become an
essential research topic in unlabeled image analysis [34–36].
However, simply introducing a pretrained fully connected
classifier F by the limited labeled data does not contain
robust identification ability; thus, it cannot effectively extract
the internal association between the unlabeled feature
representations because the augmentation consistent loss is
short of the annotations. To address this weakness, the
ACCN designs a weight clustering unit to mine the mutual
relationships between unknown samples and their
pseudolabels.

Specifically, we calculate the estimated centroid ck for
each class according to the primary outputs from the trained
classifier F:

ck �
xu

i
∈Xuδk F G x

u
i( ( ( G x

u
i( 

xu
i
∈Xuδk F G x

u
i( ( ( 

, (6)

where δk corresponds to the k-th element output by softmax.
-en, we calculate the distance between each unlabeled
feature and each centroid to generate pseudolabels
according to the nearest neighbor principle:

y
u
j � argmin

k
d G x

u
j , ck , (7)

where d(·, ·) denotes the Euclidean distance measure. In this
way, we induce the prediction model focus on some samples
around the decision boundary and explore more discrimi-
native information by the weight clustering unit.

It should be noted that weight clustering is supported by
iterative epochs to update the centroids. -is means that
multiple clustering is required in each batch, producing
different local centroids. -is may cause much more cen-
troid deviation with wrong pseudolabeled annotations. To
avoid this problem in our ACCN model, we design a dy-
namic centroid memory Mk 

Nc

k�1 to store the temporary
global centroids in each batch, where Mk is the k-th class
center and Nc represents the number of image categories.

Labeled images

Class 0 Class 1

Weak Feature Extractor Classifier

F

Store

CNN

Strong

Unlabeled images

?? ??

P3

Pair LossSemi-supervised Loss & Consistent LossSupervised Loss

P1 P2

Figure 2: Scheme of the augmentation-consistent clustering network. First, different augmentations for annotated and unlabeled fundus
images are generated in a weak and a strong manner, respectively, and consistent feature learning is conducted to train a robust feature
extractor.-en, the unlabeled feature representations are fed into a weight-clustering unit to assign pseudolabels with dynamically updating
memory in model training. Finally, the pseudolabels and corresponding unlabeled retinal images are utilized to optimize the whole network
for solving the DR grading task with fewer annotations.

Table 1: -e symbol summary.

Symbol Meaning
xl

i -e i-th annotated retinal image
xu

j -e j-th unlabeled retinal image
Aweak -e weak augmentation
Astrong -e collection of strong augmentations
xl

i -e weak augmented image for xl
i

X
u

j -e collection of strong augmentations for xu
j

G -e feature extractor
F -e classifier
Xl -e labeled raw images and their augmentations
Xu -e set of unlabeled raw images
Xu -e unlabeled raw images and their augmentations
ck -e local centroid for k-th class
yu

j -e generated pseudolabel
Mk -e global centroid
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Besides, the updated strategy for the global centroid is as
follows:

Mk � 1 − ηtk
 Mk + ηtk

ck, (8)

where ηtk
� e− tk represents the updating rate of grade k and

tk denotes the number of categories k that appeared in the
previous batch.

Finally, we minimize the distance between the local and
global centroids in each batch by a global consistent (gc) loss:

Lgc �
1

Nc



Nc

k�1
Mk − ck

����
����2. (9)

By advancing the above-mentioned relationship, we can
alleviate the problem that wrong pseudolabeled samples
cannot be correctly distinguished, which also improves the
effect of diabetic retinopathy grading.

By the weight clustering unit, we can obtain reasonable
pseudoannotation for the unlabeled retinal images. -is
supports us to conduct the annotation level supervised
training from unlabeled fundus data and their strong aug-
mentations Xu � xu

1 , xu
2 , · · · , xu

Nu
 ∪ X

u

1 , X
u

2 , · · · , X
u

Nu
 

corresponding to their pseudolabels yu
1 , yu

2 , · · · , yu
Nu

 ,
according to a pseudo-cross-entropy (pce) loss:

Lpce � − 
xj∈Xu

y
u
j log F G xj; WG ; WF .

(10)

3.3. Final Loss for ACCN Model. As described above, our
semisupervised diabetic retinopathy grading approach
ACCN is composed of two crucial modules, namely, an
augmentation-consistent learning and a weight clustering
unit, attached with labeled cross-entropy loss Llce, aug-
mentation-consistent loss Lac, global-consistent loss Lgc, and
pseudo-cross-entropy loss Lpce.

To update all trainable parameters in the ACCN, we
integrate the final loss into the network with balance
parameters:

min
WG,WF

L � Llce + c1Lac + c2Lgc + c3Lpce, (11)

where c1, c2, and c3 are parameters to balance different loss
functions.

4. Experiments

4.1. Database Description. In this section, we evaluate the
proposed augmentation-consistent clustering network by
training on the publicly available dataset Messidor [37]. In
detail, Messidor [37] contains approximately 1200 digital
fundus images obtained by using a Topcon TRC NW6
nonmydriatic camera. -e sizes of fundus images are
440× 960, 2240×1488, or 2304×1536 in, and ophthal-
mologists labeled each image. According to the DR severity,
Messidor classifies the fundus images into one of the four
grades, namely, normal and no lesion (R0), mild (R1), severe
nonproliferative (R2), and proliferative (R3) retinal images.

-e data distribution of Messidor in each grade is described
in Table 2, and the popular DR grading task of normal/
abnormal classification is summarized in Table 3. -e dis-
tribution shows that the common challenging problem is the
data imbalance, which may influence the model training.

4.2. Experimental Settings. -is paper conducts normal/
abnormal DR grading experiments, dividing the dataset into
600 training images and 600 testing samples. In detail, la-
beled retinal images in the training data contain 400 labeled
fundus images, including 200 positive cases and 200 negative
images. As for the unlabeled training data, they contain 46
positive cases and 154 negative images. In addition, we chose
the left 600 retinal images as testing data, which contain 300
positive and 300 negative cases. -e entire experimental
process is completed using the PyTorch framework under
GeForce 2080TI GPU. Precisely, each retinal image is ad-
justed to 512 ∗ 512 pixels before inputting it to the network,
and the batch size is set to 8. Besides, we use ResNet-50 as the
backbone, and the classifier is composed of linear layers. For
parameter settings, the learning rate is set to 0.001, and
balance parameters [λ1, λ2, and λ3] are [0.6, 0.3, and 0.8,
respectively] to perform the best DR grading results. In
addition, the training process spends around 2.5minutes per
epoch, and the evaluation for testing images takes 5 milli-
seconds per fundus image.

To measure the experimental performance, we adopt the
popular indicators to compare and evaluate our models:
specificity (SPE), sensitivity (SEN), accuracy (ACC), and the
area under the ROC curve (AUC).

4.3. Comparison with Other Methods

4.3.1. Performance on Messidor. In order to demonstrate the
performance of the ACCN on DR grading, we compare with
different baseline methods for the normal/abnormal DR
grading task. As to the compared methods, we choose the
manual grading results from two experts [38] and introduce
two experimental methods used in [39], which emphasize
the role of multiple filter sizes in learning fine-grained
discriminant features and proposes two deep convolutional
neural networks, combining kernels with a multiple loss
network and a Vgg network. -e normal/abnormal fundus
image classification results on Messidor are reported in
Table 4, and our ACCN framework achieves the highest
accuracy of 89.8%, sensitivity of 93.0%, specificity of 86.7%,
and AUC of 93.6%, outperforming the supervised DR
grading model and experts. What needs to be emphasized is
that our ACCN model only utilizes 400 annotated retinal
images and other training data is unlabeled while the
compared models require fully annotated retinal images and
experts require long-term professional training. -erefore,
the excellent performance of our ACCN in a semisupervised
manner proves that it can save us from depending on ex-
pensive annotating networks in significant applications for
DR grading.

Besides, we choose two existing semisupervised medical
image classification methods [30, 41] to compare with our
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ACCN model. S2MTS2 [30] combines self-supervised mean-
teacher pretraining with a semisupervised fine-tuning method
to solve the multilabel chest X-ray classification; SRC-MT [41]
proposes a sample relation data consistency paradigm to ef-
fectively extract unlabeled data by modeling the relationship
information among different medical image samples. To
compare the ACCN with them, we implement their public
available code on the Messidor dataset with the same settings.
-e results are summarized in Table 4, proving that our ACCN
approach is superior to those semisupervised medical image
classification methods, with considerable improvements in
each metric. Although our method outperforms some super-
vised methods, there is still a gap with advanced supervised
methods, and the ACCN still has the potential to be explored to
reach the supervised performance.

4.4. Visual Analysis for ACCN. -is article outlines two
popular visualizations for the ACCN to make it generally
available for the diabetic retinopathy grading task. First, the
ROC curve is shown in Figure 3, and our approach achieves
an AUC of 0.96 on the Messidor dataset. Besides, we utilize
600 testing fundus images and illustrate the classification
results in the confusion matrix (Figure 4). -e confusion
matrix can quickly visualize the proportion of various
misclassified categories into other classes. From the results,
the ACCN model correctly classifies the 279 abnormal and
261 normal fundus images, with 89.9% accuracy. Summa-
rizing the above-mentioned visualization results, we can see
that our ACCN model effectively utilizes a large amount of
unlabeled data with fewer annotations to solve the semi-
supervised DR grading task well.

At the same time, we calculate the loss reduction during
model training, illustrated in Figure 5. -e overall loss re-
veals a downward trend, and the regeneration of pseudo-
labels causes the ups and downs in the first half by clustering
within the batch. After adding the global-consistent loss, the
clustering centroids are dynamically updated more rea-
sonably, with stable loss convergence. -is demonstrates
that our ACCN can rapidly train a semisupervised DR
grading model and the global-consistent loss significantly
improves the convergence.

4.5. Performance on Other DR Grading Datasets. -is article
also chooses another publicly available DR grading dataset,

Table 2: -e class distribution of datasets.

Label Messidor
DR 0 546
DR 1 153
DR 2 247
DR 3 254

Table 3: -e popular classification task on DR grades.

Label Description
DR grading DR 0/DR 1/DR 2/DR 3
Normal/abnormal DR DR 0/DR 1, DR 2, DR 3

Table 4: Compared performance on Messidor.

Methods Accuracy Sensitivity Specificity AUC
Expert A [38] 87.8 — — 92.2
Expert B [38] 76.4 — — 86.5
Holly et al. [39] 87.1 88.2 85.7 87.0
Holly et al. [39] 85.8 91.6 80.3 86.2
Odena et al. [40] 94.7 95.4 95.1 96.7
S2MTS2 [30] 86.7 88.7 84.8 86.3
SRC-MT [41] 85.8 86.4 85.2 84.8
ACCN 89.8 93.0 86.7 96.0
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Figure 3: ROC curve of the proposed ACCN model for normal/
abnormal DR grading on the Messidor dataset.
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Figure 4: Normal/abnormal DR classification on the Messidor
dataset.
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APTOS 2019, in the normal/abnormal DR experiments to
provide the transferability of the proposed ACCN ap-
proach. APTOS 2019 [42] was proposed in the APTOS 2019
diabetic retinopathy classification contest, which was or-
ganized by the Asia Pacific Tele-Ophthalmology Society. It
comprises 3662 retinal images from fundus photography
with available annotations captured from multiclinics with
different imaging conditions at Aravind Eye Hospital in
India. Concretely, this dataset contains five classes for
training the ACCN, and the data are highly imbalanced, as
summarized in Table 5. Compared to Messidor, APTOS
2019 is more challenging because it contains five grades on
DR and it can prove the effectiveness of our ACCN model
more sufficiently on normal and abnormal DR classifica-
tion, and the detailed division of different DR grades can be
found in Table 4.

From Table 6, it can be found that the ACCN has
reached a high accuracy of 93.4%, sensitivity of 91.0%,
specificity of 95.7, and AUC of 0.984. -ese results mean
that the ACCN can effectively extract the internal con-
nections among unlabeled retinal images in different
datasets and it can successfully solve the DR grading
problem with fewer annotations when transferred to other
application scenarios.

5. Further Analysis

-is section further discusses the impacts of major com-
ponents and parameters on the ACCN approach to the
semisupervised DR grading task, including the labeled data,
augmentation-consistent learning, and the weight clustering
unit.

5.1.  e Impact of Labeled Fundus Images. -is paper at-
tempts to solve the DR-grading task with fewer annotations.
-us there are very few high-quality samples with accurate
labels for DR diagnosis. To measure the impacts of labeled
data, we use accuracy to test how the number of labeled
retinal images influences the ACCN performance on the

Messidor dataset. From the results in Figure 6, it can be
observed that the DR grading accuracy rapidly increases
from 68.7% to 75.2% as the number of labeled fundus images
increases from 50 to 100 and it mildly increases from 75.2%
to 89.8% when the number of labeled data is between 100
and 400. Finally, the ACCN model achieves an accuracy of
93.4% when it is fully supervised.

-e above-mentioned experimental results show that
the proposed semisupervised model can work well using a
relatively small number of labeled samples, with fewer
annotating costs than existing supervised DR grading
models. However, using the proposed ACCN approach still
requires a certain amount of labeled samples to obtain a
higher classification accuracy. A similar trend and con-
clusion can also be observed from sensitivity, specificity,
and AUC.
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Figure 5: Loss curve of the ACCN for model training on the
Messidor dataset.

Table 5: -e class distribution of APTOS 2019.

Label APTOS Division
DR 0 1805 Normal
DR 1 370 Abnormal
DR 2 999 Abnormal
DR 3 193 Abnormal
DR 4 295 Abnormal

Table 6: Experimental results on APTOS 2019.

Methods Accuracy Sensitivity Specificity AUC
ACCN 93.4 91.0 95.7 98.4
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Figure 6: DR classification performance with different numbers of
labeled data.
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5.2.  e Impact of Augmentation-Consistent Learning.
-e first dominating method in the ACCN is the aug-
mentation-consistent learning module, which generates
weak and strong augmentations for annotated and unlabeled
training images, respectively, and conducts consistent fea-
ture learning for the raw images and their augmentations. To
weigh the impact of this module, we only employ raw images
to conduct the weight clustering network and assign
pseudolabels. -e results are reported in Table 7 (ACL).
Concretely, the ACL module improves the DR grading
performance with an accuracy of +13.5%, sensitivity of
+14.7%, specificity of +12.4%, and AUC of +14.6%. -is
further certifies that the novelties of our proposed aug-
mentation-consistent learning mechanism are beneficial to
the semisupervised DR grading task.

5.3.  e Impact of Weight Clustering. We then analyze the
influence of the weight clustering module. We remove the
entire clustering module and directly use the prediction
vector of the high-confidence sample after the softmax
output as the pseudolabel for training. -e effect of normal/
abnormal DR classification on the Messidor dataset is that
the accuracy has dropped by 8.1%, which demonstrates that
the ACCN employing a weight clustering unit to explore the
internal relationship between unknown samples is effective
in semisupervised DR grading task. Compared to the su-
pervised models in the study by Holly et al. [39], our model
achieves a competitive AUC of 86.2% when removing the
WLU. It benefits from the proposed augmentation-consis-
tent learning module and further proves the effectiveness of
our semisupervised learning approach.

5.4.  e Impact of Positive Cases in Unlabeled Data. -e
positive proportion of unlabeled data is an important factor
affecting the final performance for the semisupervised di-
abetic retinopathy grading problem. We finally discuss the
influence of the positive proportion of unlabeled training
data by changing the proportion of positive cases in unla-
beled data. -e results on the Messidor dataset are sum-
marized in Figure 7, revealing that the accuracy of
performance decreases with increasing positive proportion
in unlabeled training. -is demonstrates that the positive
cases in labeled training data provide more discriminative
information than the ones in unlabeled data. -us, the
balanced distribution of negative and positive cases both in
labeled and unlabeled data is important for the semi-
supervised diabetic retinopathy grading task. In addition,
under the premise that the number of labeled samples re-
mains unchanged, we record experimental results employ-
ing different proportions of positive samples (unlabeled).
-e result is shown in Figure 8.

6. Discussion and Conclusion

For the real application of diabetic retinopathy grading, the
lack of labeled data is the main challenge that limits the
application of deep learning. -is is probably due to the
following reasons. First, the lesion indicating DR is always
subtle in digital fundus images, so labeling retinal images
require expertise in long-term training, and hiring experts to
annotate is very expensive and time-consuming. Second,
medical data, especially images for human diseases, become
difficult to collect due to rigorous privacy issues. Finally, the
diseases that require the aid of computer vision are often
complex, and the model training must use sufficient data,
making the fundus image annotation more complicated.

To address the above-mentioned challenges, we propose
an augmentation-consistent clustering network (ACCN)
approach for semisupervised diabetic retinopathy grading,
which can mine internal correlations among unknown
samples assisted by fewer annotations. -e proposed model
can compensate for the lack of labeled data in the following

Table 7: -e contributions of the major steps in ACCN (%).

Target Accuracy Sensitivity Specificity AUC
ACL +13.5 +14.7 +12.4 +14.6
WLU +8.1 +9.3 +7 +9.8
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Figure 7: -e accuracy results of different positive proportions in
unlabeled training data.
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Figure 8: -e accuracy results with different ratios of positive
samples in unlabeled data.
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ways. (1) -e augmentation-consistent learning generates
weak and strong augmentations for annotated and unlabeled
fundus images and provides inherent consistent information
by labeled cross-entropy and augmentation-consistent los-
ses. (2) A weight clustering unit is designed to calculate the
pseudolabels for unknown retinal images with a dynamically
clustering algorithm, which utilizes weight centroids to
cluster in a global-consistent manner. (3) -e DR classifi-
cation model is further trained by combining annotated and
pseudolabeled retinal images to achieve the semisupervised
diabetic retinopathy grading task. Adequate experiments on
the Messidor dataset prove that the ACCN can perform
effective DR classification with limited labeled data, and the
extensive experiments on APTOS 2019 demonstrate the
scalability of our ACCN network to different domains.

In future, we will work on the unsupervised learning
approach to conduct fundus image classification without any
annotations. Besides, we will focus on diabetic retinopathy
grading in multiple stages to provide a more accurate di-
agnosis for ophthalmologists.
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