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Innovation in radiology is a constant, thanks to technology
evolution. Spread research and the daily request of the mar-
ketplace and of the other specializations necessitate always
new possibilities not only in diagnostic but also in therapeutic
fields [1].

Breast cancer represents the first oncological disease for
the women and despite the efforts to promote early diagnosis,
also with screening programs, advanced disease is already
diagnosed.

Estrogen/Progestinic therapies, aesthetic surgery, and the
greater life expectancy must be followed by a multimodality
approach with a clinical exam and an advanced technology
set of exams.

A personalized approach is gradually replacing the “one
size fits all” of the previous prevention programs [2]; a breast
radiology should answer not only on the diagnosis, but also
on follow-up, response to therapy prediction, and therapeutic
procedure as alternative to surgery [3].

In this issue we deal with 2D and tomosynthesis evolu-
tion, to US/MR coregistration and to features for radiomic
approach and laser therapy in nonsurgical old patients.

In detail, Q. Ling et al. in the study “Patch Based Grid
Artifact Suppressing in Digital Mammography” present a
solution for fast suppressing grid artifacts and consequently
high quality digital mammography.

This is a valid possibility of improving imaging quality
also in hospitals and clinics that do not have tomosynthesis
or in screening programs.

To date, in some countries there is already a dispute on
dose problem in tomosynthesis exams; however, the increase

is really minimal and some authors (T. Gomi and Y. Koibuchi
in “Use of a Total Variation Minimization Iterative Recon-
struction Algorithm to Evaluate Reduced Projections during
Digital Breast Tomosynthesis”) have evaluated the efficacies
of the iterative reconstruction algorithm that allows reducing
number of projections and reduce radiation doses [4].

Mammography is only the first step, especially in over
forty women and in screening programs; however more
studies have been conducted to optimize breast MRI results
that is to date a very sensible but low specific exam.

R. Fusco et al. in the manuscript “Use of Quantitative
Morphological and Functional Features for Assessment of
Axillary LymphNode in Breast Dynamic Contrast-Enhanced
Magnetic Resonance Imaging” evaluated morphologic fea-
tures and dynamic behavior to predictmetastatic disease with
a good diagnostic accuracy.

One of the long-standing problems is the US second look
to identify additional breast lesions detected on MRI.

The different position of the patient, breast size, and the
small size of some lesions on MRI do not allow concluding
the diagnosis on second look and in some cases, aMRI guided
biopsy could be necessary.

A. Mazzei et al. in the study “Efficacy of Second-
Look Ultrasound with MR Coregistration for Evaluating
Additional Enhancing Lesions of the Breast: Review of the
Literature” present that the coregistration of US and MRI
allows reducing these problems also thanks to multiplanar
reconstructions.

Therapeutic possibilities have been addressed in the study
“The Evolving Role of Ultrasound Guided Percutaneous
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Laser Ablation in Elderly Unresectable Breast Cancer
Patients: A Feasibility Pilot Study” by J. Nori et al.

Interventional procedures are not always and only diag-
nostic [5]; laser ablation is a really alternative to surgery in
old patients with high anesthesiological risk and not eligible
to surgery with a good compliance of the patients, less
complications, and shorter hospitalization in comorbidity
patients.

In the future the radiologist should predict the therapy
response to breast cancer and orient geneticists [6, 7], oncol-
ogist, radiotherapist, and surgeons on the best personalized
approach to breast cancer in specific patients. It would
be possible thanks to radiomics features and multidisci-
plinary approach including biomedical engineers and physics
(P. Crivelli et al. in “A New Challenge for Radiologists:
Radiomics in Breast Cancer”) [8].
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Contrast enhanced magnetic resonance imaging (CE-MRI) has acquired a central role in the field of diagnosis and evaluation
of breast cancer due to its high sensitivity; on the other hand, MRI has shown a variable specificity because of the wide overlap
between the imaging features of benign andmalignant lesions. Therefore, when an additional breast lesion is identified at CE-MRI,
a second look with targeted US is generally performed because it provides additional information to further characterise the target
lesion and makes it possible to perform US-guided biopsies which are costless and more comfortable for patients compared with
MRI-guided ones. Nevertheless, there is not always a correspondence between CE-MR findings and targeted US due to several
factors including different operator’s experience and position of patients. A new technique has recently been developed in order
to overcome these limitations: US with MR coregistration, which can synchronise a sonography image and the MR image with
multiplanar reconstruction (MPR) of the same section in real time. The aim of our study is to review the literature concerning the
second look performed with this emerging and promising technique, showing both advantages and limitations in comparison with
conventional targeted US.

1. Introduction

Contrast-enhanced magnetic resonance imaging (CE-MRI)
of the breast has progressively acquired a central role in
the field of detection and evaluation of breast cancer due to
its high sensitivity, ranging from 94% to 100% for invasive
carcinoma and from 40% to 100% for ductal carcinoma in
situ (DCIS) [1–5]. On the other hand, MRI still shows low to
moderate specificity (72%) and moderate positive predictive
values (PVVs) for lesion characterisation [6] due to a wide
overlap between the imaging features of benign and malig-
nant lesions [7–15]. Therefore, when abnormalities detected
on MRI are occult on mammograms or are not identified
with previously performed breast ultrasonography (US), a
targeted second-look US is commonly prescribed [16]. The
use of targeted US has several advantages: first it can provide

additional information for a further characterisation of the
additional lesion when correlated with MRI findings [17, 18];
second, it makes it possible to practise US-guided biopsies
which are preferable to the MR-guided ones because they are
superior in terms of accessibility, efficacy, and comfort for
patients [19].However, it has been observed that the detection
rate of the additional lesions with second-look US is variable,
with a reported range between 23% and 82,1%; thiswide range
of variability can be attributed to different factors which may
include technical differences and different reader experience
[20]. Anew innovative technique has recently beendeveloped
in order to overcome this problembyusingMR coregistration
during live US examination. Different vendors have used var-
ious names for this revolutionary technology which enables
coregistration of a previously acquired MR volume during
US examination with magnetic sensors on the US probe and
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Figure 1: US-MR coregistration equipment composition: a pair of
freehand sensors (S) and a fixed transmitter (T) connected to a
position-sensing unit embedded in the US equipment.

a transmitter connected to US equipment [21, 22]. Several
studies have shown that MR navigated US is an accurate
method which increases US detection rate of MR-detected
additional lesions [21–32].The aim of our study was to give an
update of the literature concerning the utility of second-look
US coregistered with breast MR showing both the advantages
and disadvantages of this emerging and promising technique.

2. Materials and Methods

We performed computerised research on PubMed database,
Google, and ResearchGate by using the following search
terms: “Breast volume navigation”, “second-look breast
lesions” and “second-look real time-ultrasonography”. Full
texts where then retrieved, including those of reviews con-
cerning various coregistration techniques; nevertheless, in
three cases it was not possible to obtain either the full
text or the abstract because they were available only in
Japanese language. Finally, in order to make our research
more complete, a systematic review of the references of each
article was performed. After carefully reading the articles,
we analysed the methods and the systematic errors of each
system if reported, and compared the clinical value of each
reported technology.

2.1. Technical Principles of Ultrasound withMRCoregistration.
Theequipment consists of two electromagnetic sensorswhich
are attached to the US probe, a portable electromagnetic
transmitter that is positioned near the patient under exami-
nation, and a position-sensing unit that connects the electro-
magnetic sensors and the transmitter enabling the tracking
probe position and orientation within the electromagnetic
field embedded in US equipment. After uploading the preac-
quired MR volume in the US equipment, coregistration
can be obtained by matching skin and MR markers. The
matching can be obtained coupling at least three pairs of
points, one point and a plane, or automatically, according
to different vendors. The coregistration is usually displayed
on a US monitor showing US and MR images side by
side or overlaying both images, the so-called fusion images
(Figure 1). According to a recent review of Young Park et

al. the following ultrasound navigation systems are com-
mercially available: Real-time Virtual Sonography (Hitachi
Medical Corporation); Volume Navigation (GE Healthcare);
eSie Fusion (SiemensHealthcare); Virtual Navigator (Esaote);
PercuNav (Philips Healthcare); and Smart Fusion (Toshiba
Medical Systems Corporation). These systems operate on the
basis of similar equipment components and technical princi-
ples as described above [33].The possibility of synchronising
MR and US images by using multiplanar reconstruction
(MPR) of the same section in real time is a great advantage,
as it makes the exam more objective and less operator-
dependent.

Nevertheless, an important limitation which has to be
taken into account is that this new technique requires
images information obtained from two differentmodalities at
different times; breast tissues are soft and easily deformable,
so that the position of the different structures may undergo
significant variations from one exam to another, causing
spatial displacement andmisalignment. In order to overcome
this problem, it is necessary to perform a nonrigid registra-
tion which requires application of the best transformation
algorithm, making it possible to obtain an alignment with
the least error between two breast images [34, 35]. Different
coregistration methods have been developed with the aim of
obtaining the best result. At one extreme, patient position and
algorithms have been developed to reduce deformations due
to themechanical properties of the breast asmuch as possible;
at the other extreme, algorithms have been developed to
model the deformations imposed on the images using simple
functions. In this case, landmarks are identified between the
two images to be registered and a transformation is computed
to coregister these landmarks. With regard to the breast,
anatomic features can be either at the surface or internal
[36].

2.2. Additional Supine MRI for Volume Navigation System:
Technical Limits and Advantages. Breast MRI is commonly
performed in the prone position because it minimises breast
motion due to respiration and reduces the potential interfer-
ence with the beating heart. In addition, the coil coupling is
improved. [37]

Nevertheless, breast tissue is highly mobile and
deformable and composition may vary with the individual
hormonal status such as menstrual cycle. These factors
may cause difficulties in coregistration due to the different
position between ultrasound and MR examination (supine
versus prone) that may lead to a misdiagnosis of breast
lesions on second-look ultrasound [33]. In an attempt to
minimise spatial displacement, various solutions have then
been adopted.

Piron et al. developed a hybrid biopsy system based on
the standard closed-bore MRmagnet configuration, merging
prebiopsy MR and real-time US information in one pro-
cedure, and proposed to perform both US and MR image
acquisition in the prone position, obtaining encouraging
results. [38].

In a pilot study, Causer et al. evaluated the accuracy of
the same MR-US coregistration system in vivo; both MR
and US examinations were performed with the patient in the
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prone position using a system designed at their institution
that featured a redesign of the MR bed and coil system
with added computer software assistance for calculating
ultrasound transducer placement; the mean x, y, and z
plane errors for displaying MR additional lesion with US
were 2.5mm (range, 0.9-6.3mm), 1.1mm (range, 0-4mm),
and –2.6mm (range -0.9 to 5.3mm), respectively, with no
significant clinical difference. Moreover, after applying the
correction value to the initially calculated errormeasurement
on the z-plane, the error decreased to −1.7mm (range, −0.04
to 4.2mm) [39]. However, in these cases the position of the
radiologist was below the patient during the US examination
and interventional procedures and it seems to be less practical
in clinical routine or during a biopsy procedure [25]. In a
recent study, Young DK et al. reported a median difference
in lesion-to-nipple distance on supine and prone MRI of
8mm (0-34mm) in the horizontal direction and 5mm (0-
39,5mm) in the vertical direction; in addition, thirteen
lesions had a difference greater than 1 cm in both horizontal
and vertical directions. No significant differences were found
in both directions with respect to upper and lower locations
[29].

Fausto and coworkers found good accuracy and repro-
ducibility of volume navigation by combining US and MR
images which had been both acquired in the supine position;
in particular, MR was acquired in the supine position, with
upper extremities extended over the head using a double
synergy body coil with sensitivity encoding, covering both
breasts. Breast compression wasminimised using a dedicated
mattress and two straps. Live US exams were performed in
healthy volunteers in the supine position using a platform
configured with volume navigation technique (LOGIQ E9,
GE Healthcare) and a 6–15MHz transducer with a geometry,
which allows the visualisation of a wide field-of-view in
both conventional and trapezoid imaging [25, 26]. The
latter findings have subsequently been confirmed in another
study, again conducted by Fausto and coworkers using the
same technique described above, which showed that the use
of second-look ultrasound with volume navigation makes
it possible to objectively correlate MRI additional lesions
with ultrasound appearances, showing a significant higher
detection rate in comparison with conventional targeted US
but without differences in the number of false positive or true
positive lesions [24]. Moreover, Nakano and coworkers, who
were the first to quantify the positioning error of a magnetic
navigation system in breast imaging by performing MRI in
the supine position, reported an overall 3Dmean positioning
error of approximately 12mm, which is clinically acceptable
[22].Therefore, in light of these considerations, we can affirm
that although an additional supine MR examination can be
time-consuming [33], requires the use of more contrast, and
reduces image quality, it has the major advantage of better
correspondence with standard US and surgical position that
is very helpful for both targeting and biopsy [23, 36] (Figures
2 and 3).

2.3. Accuracy and Feasibility of Second-Look with MR Coreg-
istration: A Comparison with Conventional Targeted US.
Different breast-imaging modalities offer complementary

Figure 2: Ultrasound image (left side) with the corresponding
multiplanar reconstructed MR image (right side) of a 55-year-old
woman who underwent a previous surgery of the left breast for
invasive ductal carcinoma (IDC, pT2N0). After 6 months, a follow-
up MR was performed showing a rounded enhancing lesion in the
left internal mammary chain (green cross). Second-look ultrasound
with coregistration revealed a pathological lymph node.

Figure 3: A 48-year-old woman with a previous left breast quad-
rantectomy (lower outer quadrant) for an invasive ductal carcinoma
(IDC, pT1N0) underwent a MR follow-up 5 months after surgery
that showed an additional enhancing lesion at the confluence of
the inner quadrants near the nipple. Second-look ultrasound with
MR coregistration confirmed the lesion which was biopsied by fine
needle aspiration; the histological finding revealed an IDC.

information that can help to establish a diagnosis or assist the
clinician for a therapeutic gesture [34].

In particular, the advantages of incorporating ultrasound
in image fusion consist in the real-time images (which enable
image-guided intervention), the lack of radiation to both
patient and staff, and the possibility of comparing findings
between different modalities [40].

In our research, we found 11 original papers evaluating the
diagnostic performance of US-MR coregistration, published
from October 2008 to October 2017, which showed that this
technique may identify additional enhancing lesions with
high accuracy. The first of these was a pilot study by Causer
and coworkers, which was carried out to determine the
accuracy ofMR-US coregistration system in vivo for showing
breast lesions visible on MRI and US. Both techniques
were performed in the prone position, lesion pathology
was determined on the basis of imaging features for cysts
or histopathology for masses, and targeted lesions were
displayed on the US monitor on the basis of transducer
coordinates calculated from MR images. By using these
methods, they found that mean lesion size correlated well (R
=0.99) onMR (11.4mm; range, 6–28mm) compared with US
(10.3mm; range, 6–28mm) and mean error measurement on
the three planes was clinically acceptable. Although results
were encouraging, the small number of lesions included in
the study (13) was an important limitation [39].
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Table 1: Studies in which both conventional US and US with MR coregistration have been perfomed.

Authors
Number of patients
with MR additional

lesions

Number of MR
additional lesions US-correlate US with MR

coregistration correlate

S.Nakano 2009 17 23 7/23 (30%) 19/23 (83%)
S.Nakano 2012 51 63 42/63 (67%) 63/63 (100%)
S.Nakano 2012 55 67 18/67 (30%) 60/67 (90%)
E.P Pons 2014 148 28 3/28 (11%) 21/28 (75%)
A.Y.Park 2017 70 67 41/67(61,2%) 64/67 (95,5%)

Table 2: Studies in which US with MR coregistration has been only performed in order to identify US-missed MR additional lesions.

Authors
Number of patients
with MR additional

lesions

Number of MR
additional lesions US correlate

US- missed additional
lesions detected with

US with MR
coregistration

A. Fausto 2012 129 207 83/207 (40%) 124/124 (100%)
T. Uematsu 2016 70 78 50/78 (64%) 24/28 (85,7%)
D.K. Kang 2017 101 119 79/119 (66,4%) 31/40 (78%)
R. Watanabe 2017 53 59 20/59 (34%) 33/39 (85%)
E. Aribal 2017 73 77 51/77 (66%) 26/26 (100%)

With regard to the other 10 more recent studies, the
number of patients enrolled ranged from a minimum of 51
[22] to amaximum of 831 [29] andMRIwas performed either
for staging a known breast cancer only or for both staging
and solving diagnostic problems. MR for coregistration was
always performed in the supine position and in 6 out of 10
cases was obtained on 1.5 T equipment [21–23, 27, 29, 32]
while in the other 4 on 3 T equipment [24, 28, 30, 31]. In 5 out
of 10 studies all the detected additional lesions were studied
with second-look US with and without MR coregistration
and in one case [21] it was specified that patients had been
studied with mammography, US, and MR in addition to
coregistration (Table 1).

The reported detection rates of second-look with con-
ventional US were highly variable, ranging from 30% to
61.2%, while those concerning MR coregistration were much
higher, ranging from 83% to 95,5%; moreover, all enhancing
lesions that were detected at second look with conventional
US could be identified by using the coregistration system.
ShogoNakano et al. also showed that the overall sensitivity for
detecting index tumours was 85% formammography, 91% for
US, 97% forMR, and 98% for the coregistration system (100%
invasive ductal carcinomas, 100% mucinous carcinoma, and
88% ductal carcinomas in situ); notably, in one instance in
which the cancer was not seen on MR, US-MR coregis-
tration detected it with the supplementation of sonography
[21].

In the other 5 studies, US andMR coregistration was only
performed with the aim of identifying the MR-additional
lesions not found at second look with conventional US; the
reported values concerning the detection rate of US alone
were in line with the previous ones and coregistration was
successful in detecting US-missed additional lesions in a

high percentage of cases (detection rate from 78% to 100%)
(Table 2).

Accordingly with previous studies, Elena Pastor Pons
found that diagnostic performance of US-MR coregistra-
tion for identifying malignant nodules, considering overall
lesions and the subgroup of ILSM, was sensitivity 96.3%
and 100%, specificity 18.8% and 30.7%, positive predictive
value 66.7% and 43.7%, and negative predictive value 75%
and 100%, respectively; in addition, US-MR coregistration
enabled biopsy of 2 metastatic lymph nodes [27].

All authors reported high rates of histological confirma-
tion of target lesions obtained under sonography guidance,
showing that US-MR coregistration is a feasible alternative to
MR-guided biopsy which is time-consuming, expensive, and
not widely available [17]. In particular, an important result
which emerged in a recent study of Aribal et al. was that
pathologic diagnoses of all malignant and high risk lesions
were achieved by ultrasound guided biopsy using US-MR
coregistration technique [30].

Moreover, 2 studies reported that the few added lesions
with no Real-time Virtual Sonography (RVS) correlate were
more benign than malignant [23, 32] and Kang DK et
al. found that 2 out of 4 lesions not detected on US-MR
coregistration examination disappeared, while the remaining
2 did not exhibit any change on follow-upMR [29]. Although
these results require further confirmation, they suggest that
US-MR coregistration could help to reduce the number of
false positives thus avoiding useless biopsies.

Some authors analysed the association between US, MR
and histological characteristics of target lesions and US-MR
coregistration results.

In only 2 out of 10 articles it was found that US-
detected lesion size during US-MR coregistration alone was
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significantly smaller than that detected by conventional B-
mode [22, 24]. Shogo Nakano et al. also reported that the
mean tumour size provided by RVS and MRI-Multiplanar
Reformation was 12.3mm and 14.1mm, respectively (r =
0.848, p < 0.001) [22]. Nevertheless, the results obtained
in another 3 out of 10 articles regarding this parameter
showed no statistically significant association [21, 23, 31].
Furthermore, an analysis again conducted by Shogo Nakano
and coworkers, showed that, compared with the use of
US alone, US-MR coregistration was useful in identifying
lesions in patients whose diagnostic images exhibited smaller
differences in echogenicity between the interior and exterior
parts of the tumours, and which exhibited non-tumoral low-
echo regions in the background [21].

In 2 out of 10 studies, statistically significant differences
were found between some MR characteristics of US-MR
coregistration detected lesions and those of undetected ones;
in particular, Shogo Nakano found that identification by US-
MR coregistration was more likely when the MR-detected
lesions appeared as one ormore foci (94%) or as amass (89%)
(p = 0.001, p < 0.001, respectively) than when lesions were
described as showing non-mass-like enhancement (80%).
Moreover he found that US-MR coregistration had a higher
detection rate for lesions of 5mm and those of 5-10mm at
MRI (p = 0.001, p <0.001, respectively) and observed that
lesions detected by coregistration technique alone were more
likely to be found around mammary fascia (71%), whereas
those identified by conventional US were more frequently
found within the mammary gland (61%) (p = 0.023) [23].The
latter findings were in line with a recent study conducted by
Park et al. which found a statistically significant difference
in lesion depth between the group of US-MR coregistration
detected lesions and that ofUSdetected ones; in fact lesions of
the first group tended to be located in the middle or posterior
portion of breast parenchyma (78.3% [18 out of 23] for coreg-
istration vs. 46.3% [19 out of 41] for US), whereas those of the
second group tended to be located in the anterior portion of
parenchyma (53.7% [22 out of 41] forUS vs. 21.7% [5 out of 23]
for coregistration). No significant difference in detection with
conventional US and coregistration techniques was found
on the basis of lesion size, distance between the nipple
and the lesion, lesion shape, orientation, margin, posterior
features, association with calcification or duct changes, lesion
type (mass-like vs. non-mass-like lesions), and kinetic curve
assessment [31]. In contrast Uematsu T et al., Kang DK et
al., and Watanabe R et al. found no significant correlation
betweenMRcharacteristics and lesion detectionwithUS-MR
coregistration or US alone [28, 29, 32].

Interestingly, Park AY et al. also observed that lesions
detected during the coregistration technique are at increased
risk of malignancy compared to conventional US (McNemar
test 21 vs. 11, P < .001) and after second-look US, the optimal
treatment plan changed in 16 of 55 (29.1%) patients; in
particular, in 9 out of 16 patients (60%) the treatment plan
changed because of additionally found lesions by coregistra-
tion technique [31]. Similarly, Watanabe R et al. reported that
in 7 out of 53 patients (13%) surgical management was altered
by US-guided biopsy of the lesions detected by coregistration
technique [32].

3. Discussion

As previously discussed, the sensitivity of breast MRI for
the detection of breast cancer is high, but its specificity
is only moderate, ranging from 37% to 100% [16]. It is
then essential to biopsy suspicious MR-detected lesions to
make a definitive diagnosis [22]; MR-guided breast biopsy
is gradually increasing, especially when lesions are visible on
MRI but not on conventional imaging [41–43]. Nevertheless,
these techniques are not widely available and require the use
of expensive MRmagnets, time, and personnel [21]. Further-
more, the positive predictive value of MR-guided biopsy has
been reported as relatively low due to the high benignancy
rate found at pathology, thus leading to a high number of
unnecessary biopsy procedures even in experienced settings
[25].

For these reasons, second-look targeted US has become
the tool of first choice to further characterise additional MR-
detected lesions.

A recentmeta-analysis by Spick et al., including seventeen
studies, found that lesion detection rate at second-look US
was very heterogeneous ranging between 22.6% and 82.1%
(pooled rate, 57.5% [1266 of 2201]; 95% confidence interval
[CI]: 50.0%, 64.1% [random-effects model]; I2 = 90.9%;
P < .0001). The highest second-look US detection rates
were observed for mass lesions (as opposed to non-mass
lesions) and for malignant (vs. benign) lesions (P < .001 for
both). However, they also observed that if a lesion is not
visualised at second-look US, malignancy might occur in a
pooled estimate of 12.2%, and therefore a negative second-
look US cannot exclude malignancy [20]. Similarly, a recent
review of literature which analysed sixteen original papers
evaluating the diagnostic performance of breast second-look
ultrasound reported that this technique makes it possible to
find a correlation to MR additional lesions in 64% of cases
(weighted average; SD 18%), ranging from 23% to 89%, with
a probability of cancer detection at second-look ultrasound
ranging from 8% to 56% (weighted average of 36%) compared
with an MR-guided biopsy weighted average of 21% [24].The
success of US examination depends on several factors such
as the operator’s experience, breast size, findings, and lesion
depth;moreover, because the operator has to perform theUS-
guided biopsy based only on mentally visualised positional
information from theMR, there is no direct evidence that the
lesion has been accurately detected and biopsied [22].

In order to overcome these problems, a new coregistra-
tion technique carrying different names depending on its
vendors has recently been developed, which can synchronise
the sonographic and MR images during live US [21].

Our analysis showed that the US-MR coregistration tech-
nique increases the overall accuracy of second-look US due
to its higher sensitivity for additional MR-detected lesions
compared with conventional US; in particular, the authors
reported detection rate values ranging from 83% to 100% and
some of them found that RVS was successful in detecting
additional lesions blinded at US in an high percentage of
cases (detection rate from 60% to 100%). Another important
advantage is that US-MR coregistration is an easy-to-use tool
that is well-integrated in US equipment and could be a way to
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reduce operator-dependency of USwhen lesion displacement
due to different position of the patient has a fundamental
impact on detection [24].

In addition, although further confirmation is needed, the
results obtained by some authors suggested that the US-MR
coregistration technique could improve the identification of
high risk and malignant lesions and could also be helpful in
detecting suspicious lymph nodes [33]; this means that this
techniquemay significantly reduce the number ofMR-guided
biopsies enabling operators to select cases that really require
it and to choose the most appropriate treatment plan for each
patient. Nevertheless, there are some technical limitations
which have to be taken into account: first of all, pressure
applied to the probemay alter the depth of lesions and distort
anatomic landmarks depicted by MRI, especially during
interventional procedures; it is thus necessary to conduct
the operation gently, avoiding the application of excessive
pressure on breast tissue [30]; secondly, although the US-MR
coregistration technique enables the identification of deep
lesions which are often missed on conventional US [23, 31],
the patient has to maintain the supine position that may hide
the lesions localised in the lateral portions of the breast and
hinders US-guided biopsy of peripheral lesions [30].

Accurate localisation is also essential for adequate surgi-
cal removal of breast tumours, in which an optimal balance
between good cosmetic results and preservation of resection
margins is the primary goal [44]. Some studies have been
conducted in order to investigate the feasibility of the US-
MR coregistration to demarcate breast cancer. Anderliesten
et al. reported that image-guided coregistration to demarcate
breast cancer, on the basis of preacquired MR images, in
a supine orientation, appears feasible if patient's breath is
tracked during the navigation procedure, positional uncer-
tainty is visualised, and pressure on the location instrument
is released after the verification of its position [45]. Moreover,
Chang et al. found that the tumour size, estimated by US-MR
coregistration technique, was more strongly correlated with
the histological one than with US alone; measurement of the
lesions by US-MR coregistration technique was significantly
more accurate for mass type lesions detected on MRI. In
addition, accuratemeasurement ofmass extent was improved
with the US-MR coregistration technique, compared with US
alone, in patients who had non-mass type lesions on MRI
andwho had undergone neoadjuvant systemic chemotherapy
[44]. In light of these considerations, we could assume
that if these findings will be further confirmed, US-MR
coregistration technique may become an important tool not
only for second-look US, but also for surgical planning.

Limitations of volume navigation technique are associ-
ated with errors in coregistration of MR dataset and live
US because it is primarily based on the assumption that the
structures within the data volume (i.e., the body part studied)
have fixed positions, relative to each other, in the two different
imaging modalities [46].

Nevertheless, as previously noted, breast tissues are soft
and easily deformable so that they can undergo relevant
modifications from prone to supine position, thus causing
discrepancies and misalignment in coregistration. Compen-
sation algorithms for such causes of misalignment have been

proposed, but they are still limited in medical applications
because of the complex physical properties of tissues [46].
Another important factor whichmay reduce the effectiveness
of US-MR coregistration is breast hypertrophy. In patients
with high breast volume, the transition from the prone
to the supine position determines a large variability of
tissue placement and possibility of dislocation. Using two
anthropomorphic measurements as suggested by Sigurdson,
a good selection of subjects can be made [47]. Actually, this
method enables a precise determination of breast volume,
thus helping operators to select patients who need MR-
guided biopsy, especially if the additional lesion is localised
at the external quadrants and far from the skin. Eventually an
additional supineMRImay be used to obtain a better MR-US
match of the lesion since US is performed with the patient in
the supine position too [28]. Moreover the supine position
allows an accurate preoperative planning since the patient
is analysed in the same position adopted on the operating
table [23]. However this approach has several disadvantages:
first of all, image quality is lower compared with prone MRI
due to respiratory or heartbeats artefacts and to the use
of nondedicated coils [22, 25, 30]; secondly, an additional
MRI examination in the supine position is time-consuming,
requires additional administration of contrast agent, or may
be unavailable [33].

On the other hand several authors did not find significant
misalignment of the lesions on the three axes using standard
US-MR coregistration, demonstrating that this technique is
accurate and feasible even to locate lesions within a limited
volume [22, 25, 29, 46].

4. Conclusions

In light of these considerations, we can affirm that US-MR
coregistration technique is an accurate and feasible imaging
technique which can significantly increase both the detection
rate of additional enhancing lesions of the breast and the
number of US-guided interventional procedures, which are
preferable to MR-guided ones. Moreover, it is easier to per-
form, much less operator-dependent, and also comfortable
for the patient because it does not require radiation and
additional preparation. Although further studies are needed
in order to confirm these findings and to overcome technical
limitations, results are encouraging and suggest that US-MR
coregistration technique may become an important tool for
second look which could also help operators to choose the
most adequate treatment plan and patient management.
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Introduction. Over the last decade, the field of medical imaging experienced an exponential growth, leading to the development
of radiomics, with which innumerable quantitative features are obtained from digital medical images, providing a comprehensive
characterization of the tumor. This review aims to assess the role of this emerging diagnostic tool in breast cancer, focusing on the
ability of radiomics to predict malignancy, response to neoadjuvant chemotherapy, prognostic factors,molecular subtypes, and risk
of recurrence. Evidence Acquisition. A literature search on PubMed and on Cochrane database websites to retrieve English-written
systematic reviews, review articles, meta-analyses, and randomized clinical trials published from August 2013 up to July 2018 was
carried out. Results. Twenty papers (19 retrospective and 1 prospective studies) conducted with different conventional imaging
modalities were included. Discussion. The integration of quantitative information with clinical, histological, and genomic data
could enable clinicians to provide personalized treatments for breast cancer patients. Current limitations of a routinely application
of radiomics are represented by the limited knowledge of its basics concepts among radiologists and by the lack of efficient and
standardized systems of feature extraction and data sharing.

1. Introduction

Breast cancer is the most commonly diagnosed cancer and
the second leading cause of death for cancer among women
worldwide [1]. The prediction of response to treatment and
of prognosis is essential in clinical practice in the era of
precision medicine [2]. In the past decade, oncologists and
radiologists have been showing an increasing interest for the
clinical utility of quantitative imaging, encouraged by the
significant advancements within the field of medical images
analysis. This exponential growth led to the development of
radiomics, with which innumerable quantitative features are
extracted from digital medical images, usually tomographic,
through a high-throughput computing. These features, relat-
ing to tumor size, shape, intensity, and texture, provide
a comprehensive tumor characterization, defining what it
has been called the radiomics signature of the tumor [3].
Radiomics is based on the central hypothesis that extracted
quantitative data reflectmechanisms occurring at genetic and
molecular levels [4]. Radiomics is a complex process that

involves several steps. It begins with acquisition of high-
quality images, from which a region of interest (ROI) is
identified and segmented either manually or automatically.
The ROI can include the whole tumor or some parts of it.
Once the segmentation is completed, the selected regions are
rendered in three dimensions, becoming volumes. Dedicated
software [5–7] then extract quantitative features from the
obtained volumes to produce a report, which is inserted into a
database and integrated with other data (clinical information,
genomic profiles, serummarkers, and/or histology data) to be
shared across different centers or institutions [3, 8] (Figure 1).
A radiomics methodology was first applied to neck and lung
cancer imaging [9–11] and more recently to breast imaging
[12]. Radiomics seems able to offer imaging biomarkers
useful not just to diagnose breast cancer but also to predict
treatment response and risk of recurrence. With regard to
breast cancer, a radiomics approach has been investigated
mainly with Magnetic Resonance Imaging (MRI). However,
some studies appearing more recently have explored the
potential of radiomics with different imaging modalities:
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Figure 1

Figure 2

standardmammography, digital breast tomosynthesis (DBT),
and ultrasound (US). Aim of this review is to explore the
current and potential role of radiomics in breast cancer,
focusing on the ability of radiomics to predict malignancy,
response to neoadjuvant chemotherapy (NAC), prognostic
factors, molecular subtypes, and risk of recurrence.

2. Methods and Materials

We referred to PubMed and the Cochrane review database
websites to retrieve English-written relevant articles (abstract
and/or full-text). Systematic reviews, review articles, meta-
analyses, and randomized clinical trials (published from
August 2013 up to July 2018) were considered. Keywords
typed for our search were as the following: breast cancer and
radiomics, breast MRI and radiomics, breast mammography
and radiomics, breast tomosynthesis and radiomics, breast
ultrasound and radiomics, breast neoplasia and radiomics,
breast lesion and radiomics, breast eteroplasia and radiomics,
breast MRI and texture analysis, breast MRI and quantitative
analysis, breast mammography and texture analysis, breast

mammography and quantitative analysis, breast tomosynthe-
sis and texture analysis, breast tomosynthesis and quantitative
analysis, breast ultrasound and texture analysis, and breast
ultrasound and quantitative analysis. To increase the inclu-
siveness of our search strategy, we also referred to texts to find
other relevant cited manuscripts not retrieved in our initial
search. Given the narrative nature of this review, no formal
quality assessment was done.

3. Results

The search on PubMed and on Cochrane databases produced
a total of 476 articles; non-English papers, duplicates, case
reports, comments, letters, articles that did not considered
breast cancer specifically, irrelevant studies, inappropriate
data, and comparisons were excluded. All articles presenting
quantitative studies but not purely radiomics were excluded
as well as those on nuclear medicine imaging. All retro- and
prospective original articles that investigated the application
of radiomics to breast cancer were included. Twenty papers,
19 retrospective and 1 prospective studies, were selected
(Figure 2; Table 1).
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4. Radiomics and Malignancy

Several studies have investigated the usefulness and reliability
of radiomics to discriminate benign breast lesions from
cancers, demonstrating that its applicationmight improve the
radiologist confidence in the challenging diagnostic task.

4.1. MRI. Parekh and Jacobs [13], aiming to find a correlation
between radiomics features and different breast tissues of
interest, generated radiomics feature maps (RFMs) for visual-
ization and evaluation of radiological images. The radiomics
features were then correlated to different breast tissues and
compared with quantitative values of radiological parame-
ters. Malignant lesions showed higher values of entropy and
the entropy RFM was the most reliable to distinguish malig-
nant from benign lesions, reflecting the tumor heterogeneity
and its vascular status. Whitney et al. proposed a radiomics
method to investigate whether a set of quantitative features
extracted fromMR images might help to distinguish luminal
A breast cancers from benign breast lesions, compared to
using maximum linear size alone [14]. They retrospectively
analyzed dynamic contrast-enhanced- (DCE-) MRI of 508
breast lesions and extracted 38 features, which were used
to design three different classification protocols. The area
under the curve (AUC) for maximum linear size alone
was 0.797 in comparison to 0.846 and 0.848 for feature
selection protocols including and excluding size features,
respectively. Thus, the protocol excluding features related to
size was statistically equivalent to that including all features
in the ability to distinguish the two pathological entities.
The radiomics feature of irregularity was found to play an
important role in the feature selection process. In 2017, a
retrospective study aimed to establish a potential ability of
radiomics to determine the malignant nature of suspicious
breast lesions detected on screening X-ray mammography
[15]. Supported by emerging evidences on the accuracy
of contrast-free breast MRI protocols in the detection of
malignant breast lesions [32–34], they employed a radiomics
methodology on two contrast-free MRI sequences: Diffusion
Weighted Imaging (DWI) and T2-weighted sequences. Two
radiomics classifiers allowed distinguishing benign from
malignant lesions more accurately (AUC of 0.842-0.851) than
the mean apparent diffusion coefficient (ADC) parameter
alone (AUC of 0.774), proposed by Bogner et al. with the
same scope [35]. However, the inclusion of the mean ADC
parameter increased the accuracy of the model, demon-
strating the advantages of taking into account previous
results and, implicitly, of data sharing. Nevertheless, the
performance of the proposed model was lower than that of
expert breast radiologists (AUC of 0.959), suggesting that
the potential of radiomics in prediction of malignant lesions
has to be better assessed. Unenhanced sequences were also
used by Bickelhaupt et al., who conducted a multicentric and
prospective study to evaluate a radiomics model of suspicious
breast lesions (BI-RADS 4 and 5) extracted from breast-
tissue-optimized kurtosis MRI by two different vendors to
differentiate benign from malignant lesions. The proposed
model, evaluated in an independent test set, showed reliable
results [16].

4.2. US and DBT. A radiomics approach on US imaging
and specifically on sonoelastograms was proposed by Zhang
in 2017, showing that some sonoelastomic features might
help to discriminate between benign and malignant breast
tumors [17]. A multicentric and prospective study applied
a radiomics approach to DBT for the first time in order
to differentiate normal breast tissue from malignant breast
tissue in patients with dense breasts [18]. Twenty patients
with negative standard mammography who had had a DBT-
detected and histology-proven breast cancer were enrolled.
Further 20 patients of similar age and breast density with
negative DBT and US served as a control group. From 104
radiomics features extracted, 3 (skewness, entropy, and 90
percentile) were found to differ significantly between the two
groups. Results also revealed that energy, entropy, and dissim-
ilarity correlated significantly with tumor size and entropy
with receptor status too. Despite the small patient sample and
the biased selection of features, almost inevitably based on
MRI, these preliminary results are encouraging, suggesting
that a radiomics analysis of DBT images can be used to
facilitate cancer detection and for a better characterization of
the detected lesion.

5. Radiomics and Neoadjuvant Chemotherapy

NAC, administered before surgery to reduce tumor size
and the risk of distant metastases, is often the first line
treatment for those patients diagnosed with locally advanced
breast cancer [36]. However, less than 50% of patients
achieve a pathological complete response (pCR) [37, 38]. A
retrospective study published by Braman et al. explored the
ability of radiomics to predict pCR to NAC [19], analyzing
99 textural features extracted from the intratumoral and
peritumoral regions of T1-weighted contrast-enhanced MRI
scans. Authors concluded that radiomics might successfully
be employed for the purpose, even more effectively if peritu-
moral regions are included into the analysis and the receptor
status considered.

6. Radiomics and Prognostic Factors

6.1. Lymph NodeMetastases. Determining the axillary lymph
node status remains a mandatory requirement of the diag-
nostic process. In 2017, Dong et al. proposed an optimal
multivariable radiomics model able to predict sentinel lymph
node (SLN) metastases [20], finding that radiomics features
extracted from DWI sequences showed higher correlation
with SLN metastases than those extracted from ADC map-
ping. These results, which certainly need further valida-
tion, might help in clinical decision-making with respect to
axillary surgery, potentially avoiding invasive procedures in
patients at a low risk of SLN metastases.

6.2. Peritumoral Fat. Over the decades, numerous studies
have demonstrated that obesity is associated with increased
incidence and mortality from different forms of cancer,
including breast cancer [39, 40]. A retrospective study con-
ducted by Obeid et al. investigated the prognostic impact of
peritumoral fat in early breast cancers (T1 and T2 stages)
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[21]. Authors found a significant linking between a specific
peritumoral fat feature, extracted from preoperative MRI
sequences and axillary node metastases in patients with
body mass index greater than 30. Despite the small sample
size of patients, results suggest that a radiomics evaluation
of the peritumoral fat might provide valuable noninvasive
prognostic data.

6.3. Ki67. Ki67 labeling index is routinely used as a
prognostic marker in breast cancer patients, to estimate
both cell proliferation and therapeutic response [41, 42].
A retrospective study including 377 women diagnosed
with invasive breast cancer investigated the possibility of
predicting the proliferation marker Ki67 expression through
a radiomics approach [22]. Three machine learning schemes
were employed to classify cancers in to low- and high-Ki67
expression lesions. Following a semiautomatic segmentation
on DCE-MRI, 56 radiomics features (morphological,
greyscale statistic, and texture ones) were extracted. Results
showed that some of the morphologic features such as
perimeter, values of area, and diameter tend to have low
values in low-Ki67 tumors, being the high expression of
Ki67 associated with a high proliferation rate. Overall, 3
texture features (contrast, entropy, and line likeness) were
significantly associated with the Ki67 expression. Liang
et al. proposed a new, noninvasive Ki-67 predictor status
based on breast MRI [23]. They retrospectively analyzed
318 MRI of breast cancer patients (200 for the training
dataset and 118 for the validation dataset), whose Ki67 status
was known. Authors selected 30 features and composed
a Rad-score for each patient following the analysis of
the unenhanced T2-weighted fat suppression sequences
and the enhanced T1-weighted. Rad-score calculated on
T2-weighted images was significantly associated with
Ki67 status, in both training and validation datasets,
whereas Rad-score on enhanced T1-weighted did not show
correlation with Ki67 expression in the validation cases.
These results suggest that a new radiomics marker, obtained
with routinely performed unenhanced MRI sequence,
might preoperatively predict Ki67 expression in breast
cancer.

7. Radiomics and Molecular Subtypes

Numerous studies have proposed a radiomics approach to
predict breast cancers molecular profile, whose definition is
essential to establish the best patient management [43]. Fur-
thermore, the integration between radiomics and genomic
features, known as radiogenomics, has revealed promising
results in oncology, providing opportunities to better under-
stand tumors behavior and thus to improve diagnosis and
prognosis [9, 44].

7.1. MRI. In 2015, Guo et al. explored the relationship
between radiogenomics features and clinical variables such
tumor stage, lymph node metastases and molecular recep-
tor status (estrogen receptor, ER, status; progesterone
receptor, PR, status; and human epidermal growth factor
receptor-2, HER2, status) [24]. Ninety-one cases of invasive

breast carcinomas were included into the analysis. Thirty-
eight radiomics features (related to size, shape, morphol-
ogy, enhancement texture, kinetics, and variance kinetics),
extracted from DCE-MRI, were correlated to 144 genomic
features for 70 genes (70 gene expression features, 70 copy
number features and 4 methylation features). Results showed
a significant positive association between all tumor size fea-
tures and tumor stage, as well as between tumor irregularity
and tumor stage, meaning that high-stage tumors tend to
be larger and more irregular. Several genomic features were
found to be significantly associated with molecular receptor
status, whereas no single radiomics feature showed a signifi-
cant association with ER, PR and/or HER status. Conversely,
no isolated genomic features showed a positive correlation
with tumor stage and lymph node status. The radiomics
feature that correlated the most with the tumor stage was the
effective diameter, while the Aurora kinase B gene, AURKB
(GE), represented the most useful genomic feature to predict
the ER status. However, the model combining radiomics
and genomic features showed no higher accuracy in the
prediction of invasive breast carcinomas clinical phenotypes
in comparison to those considering radiomics and genomic
features independently, likely due to the small number of
patients enrolled. A retrospective study published in 2016
explored the correlation between quantitative features and
cancer receptors status (ER+, ER-, PR+, PR-, HER2+, HER2-
, and triple negative, TN) [4]. It was demonstrated that MR
image-based tumor phenotypes are significantly associated
with receptor status and that heterogeneity is an important
feature to discriminate different subtypes, of which, in the
near feature, it might be possible to define a radiomics
predictive signature that will serve as a virtual biopsy. A set of
radiomics features extracted from DCE-MRI was proposed
by Wang et al. to distinguish TN breast cancers from other
subtypes [25]. Both tumor and its surrounding parenchyma
were included in the segmentation for each of the 84 women
enrolled. Eighty-five features were extracted and combined
with machine learning tools. Five different classification
models were designed to differentiate TN cancers against
non-TN, ER+, ER-, luminal A, and luminal B cancers.
Both accuracy and sensitivity of the proposed models were
improved by the inclusion of the background parenchyma
quantitative features, whose heterogeneity was found to
strongly correlate with TN status. In 2017, Fan et al. investi-
gated the possibility of predicting breast cancers molecular
subtypes by using radiomics features extracted from DCE-
MRI and integrated with clinical information [26]. They
retrospectively analyzed pretreatment breast DCE-MRI of 60
breast cancer patients, where 34 were diagnosed with luminal
A breast cancers, 8 with luminal B, 7 with HER2, and 11 with
basal-like. Age and menopausal status accounted for the clin-
ical data considered. It was observed that features related to
tumor heterogeneity tend to have low values in cancers with
best prognosis such as luminal A cancers. Moreover, the clin-
ically aggressive HER2 subtype showed the highest enhance-
ment values, likely due to its raised angiogenesis growth
rate.
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7.2. US and Digital Mammography. In 2018, a radiomics
approach based on the extraction of quantitative feature from
US images was proposed by Guo et al. to better define the
biologic characteristics of invasive ductal carcinoma (IDC)
[27]. The analysis included patients with best prognosis
IDC (HR+, HER2-) and worst prognosis IDC (TN). Tumor
grade was also considered. Radiomics features were sorted
into six different categories: shape, margin, boundary, echo
pattern, posterior acoustic pattern, and calcification. Low
grade HR+, HER- tumors were found to be more irregular
in shape, with ill-defined margins, posterior shadowing and
hyper- or complex echo. Conversely, high grade TN showed
regular shape, a hypo- or complex posterior shadowing and
posterior enhancement, similarly to other studies [45, 46].
The echo pattern features were the most effective in the
prediction of molecular subtypes. A radiomics approach to
be applied on digital mammography with the same aim has
been recently proposed byMa et al. [28].Thirty-nine features,
including morphologic, gray scale statistic, and texture ones,
were extracted from the manually segmented area on digital
mammography images of 331 invasive breast cancers. A
machine learning scheme was employed for the molecular
subtypes classifications: triple negative versus nontriple-
negative; HER2-enriched versus non-HER2-enriched and
luminal versus nonluminal cancers. Four features were signif-
icantly associated with tumor subtype, revealing that digital
mammography, largely available examination, could provide
clinicians with quantitative as well as qualitative information.

8. Radiomics and Cancer Recurrence

Li et al. investigated a potential linking between breast
cancer MRI phenotypes and multigene assays to pre-
dict the risk of recurrence [29]. This retrospective study
enrolled 84 patients diagnosed with invasive breast cancers:
ductal, lobular, and mixed forms. Thirty-eight computer-
extracted images phenotypes were automatic obtained from
MRI sequences, describing size, shape, margin morphologic
appearance, enhancement texture, kinetic curve assessment,
and enhancement-variance kinetics of the cancers. These
38 MRI imaging phenotypes were then correlated with the
risk of recurrence scores, calculated for each of the three
multigene assays considered: MammaPrint, Oncotype DX,
and PAM50, previously developed to predict breast cancer
recurrence the former two and the molecular subtypes
the latter one. The analysis showed promising results and,
accordingly to other studies presented in this review, a
combined evaluation of both phenotypic and genomic data
might be successfully used to assess the risk of cancer
recurrence. A more recent retrospective study proposed a
radiomics approach based on preoperative MRI to develop a
radiomics signature associated with breast cancer recurrence
[30]. They enrolled 294 patients affected by invasive breast
cancer appearing as a mass on contrast-enhanced MRI. One
hundred and fifty-six features were extracted and grouped
into three categories: morphological, histogram-based, and
higher-order texture features. A radiomics signature, named
Rad-score, was calculated for each patient, whowas classified
at a high-risk or low risk based on the Rad-score itself.

Then, a nomogram including the radiomics signature, MRI,
and clinicopathological findings was designed to predict
individual cancer recurrence, estimating the disease-free
survival (DFS). Results showed higher Rad-scores corre-
lation with worse DFS and that the DFS estimation was
more accurate when clinicopathological data were included
in the evaluation. Drukker et al. proposed a single new
radiomics feature, named most enhancing tumor volume
(METV), to be used instead of the functional tumor volume,
FTV (a semiautomatically biomarker previously employed
for the same purpose) for the prediction of recurrence-
free survival [31]. They retrospectively included the same
141 women, affected by invasive breast cancer and treated
with NAC, enrolled in the FTV validation dataset. METV,
obtained on unenhanced and enhanced MR sequences,
performed before and after the first cycle of NAC, was
found reliable in the prediction of earlier cancer recurrence,
with the advantage of being real-time and automatically
calculated.

9. Discussion

Radiomics is a relatively new discipline with potentially
limitless applications in clinical practice and research [2, 3].
The strengths of this postprocessing tool, however, have been
mainly demonstrated in oncology imaging, where radiomics
provides a comprehensive noninvasive characterization of
the whole tumor, defining what it has been named the
radiomics signature of the tumor [3]. Biopsy, which certainly
remains central in breast cancer management, cannot be
representative of the tumor entirety, whose characterization
is mandatory for a thorough understanding of the tumor
behavior with respect to treatment response particularly.
The studies presented in our narrative review have shown
that radiomics is promising in the prediction of malignancy,
response to NAC, prognostic factors, molecular subtypes,
and risk of recurrence. Results have also suggested that
the integration of quantitative information with clinical,
histological, and genomic data is key in the era of per-
sonalized treatments [3]. However, the application of the
proposed radiomics approaches in clinical practice is ham-
pered by the lack of knowledge of its basic concepts among
radiologists and by the limited availability of efficient and
standardized systems of feature extraction and data sharing.
Furthermore, given that the majority of radiomics studies is
retrospective and with a relatively small simple size, larger
prospective studies are needed to validate these preliminary
results.

In conclusion, we believe that the definition of a breast
cancer radiomics signature could support clinicians to choose
the best treatment option, assigning radiologist a central role
in breast cancer management.
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The mammography is the first choice of breast cancer screening, which has proven to be the most effective screening method.
An antiscatter grid is usually employed to enhance the contrast of image by absorbing unexpected scattered signals. However,
the grid pattern casts shadows and grid artifacts, which severely degrade the image quality. To solve the problem, we propose the
patch based frequency signal filtering for fast grid artifacts suppressing. As opposed to whole image processing synchronously, the
proposed method divides image into a number of blocks for tuning filter simultaneously, which reduces the frequency interference
among image blocks and saves computation time by multithread processing. Moreover, for mitigating grid artifacts more precisely,
characteristic peak detection is employed in each block automatically, which can accurately identify the location of the antiscatter
grid and its motion pattern. Qualitative and quantitative studies were performed on simulation and real machine data to validate
the proposed method. The results show great potential for fast suppressing grid artifacts and generating high quality of digital
mammography.

1. Introduction

Breast cancer ranks as the first leading cancer in women
all over the world [1]. According to the Global Burden of
Disease Report [2, 3], the newly increased incidence and
death tolls of breast cancer are on the rise around the world,
which has accounted for one-quarter of the total new cases of
women. The early screening and diagnosis of breast cancer
are helpful to improve the survival fraction and quality of
life [4]. Imaging examination is one of the most significant
measurements in the breast cancer screening [5], which
includes B-ultrasound, CT, MRI, and X-ray mammography
[6–10]. The X-ray mammography is the first choice of
breast cancer screening, which has proven to be the most
effective screening method by World Health Organization
[1]. When X-rays pass through the breast tissue, the irregular
direction scattered signals are generated because of the
Compton effect and Rayleigh scattering [11]. An antiscatter
grid between the patient and the image detector is usually
employed to enhance the contrast of image by absorbing
unexpected scattered signals [12], and the grid consists of

alternating transmitting material and absorbing material of
X-ray. However, the grid pattern casts shadows on the image
detector and produces grid artifacts in the acquired X-ray
image due to the existence of absorbing material [13, 14].
The artifacts severely degrade the image quality. Hence, grid
artifact suppressing is the prerequisite and foundation in
digital mammography.

To address the issue, various approaches have been pro-
posed. The grid artifacts suppressing methods are classified
as hardware methods and image processing methods. The
first category utilizes grid techniques to depress artifacts. For
instance, moving grids is frequently used to mitigate grid
artifacts [12] with oscillating and reciprocating as basic mov-
ing mechanism. However, this technique is employed with
extra complexity. By analyzing grid movements, Bednarek
et al. [15] found that small grid movements could reduce
artifacts under the conditions of the synchronization between
linear grid motion and exposure time. Gauntt and Barnes
introduced a comprehensive theory on the antiscatter grids
[16] and also proposed an artifact suppression technique
[17], and in this technique the grid moved at a modest
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Figure 1: Workflow of the integrated method.

velocity when the X-ray exposure waveform had a soft start
and stop. Those algorithms may be complicated due to the
dependence of gird movement. Moreover, a high line density
of the grid is necessary for obtaining more perfect image
quality.

Image processing methods mainly depend on digital
image processing techniques [18] rather than grid movement.
For example, Wang and Huang [19] proposed a mathematical
method to remove aliasing artifacts based on studying the
amplitudes and the frequencies of artifacts and converted
a film into digital form. Barski and Wang [20] proposed a
method for grid artifacts reducing based on one-dimensional
discrete Fourier transform and one-dimension frequency
filtering by structuring blur kernels. Moreover, the one-
dimension notch filter was also used by Belykh and Cornelius
[21]. Unfortunately, the ripple artifacts were produced in the
image. Different from the one-dimensional method based
on frequency domain, Sasada et al. [22] proposed two-
dimensional filtering based on thewavelet domain to alleviate
grid artifacts. In another study by Lin et al. [23], Gaussian
band-stop filters were conducted to reduce artifacts by
determining the artifacts frequency. In addition, Zhang et al.
[24] constructed an adaptive frequency filter by determining
stripe frequency band and frequency distribution function
to remove the artifacts. This method is easy to implement,
but it was only tested on the infrared image. In order to
minimize the damage from grid artifact reduction, Kim and
Lee first analyzed grid artifacts withmultiplicative model and
rotated stationary grids and then removed grid artifacts by
constructing the homomorphic filtering consisting of band-
stop filters and one-dimensional low-pass filters for searching
the optimal grid frequencies and angles [25–28]. Tang et

al. decomposed the image into several subimages using a
multiscale two-dimensional discrete wavelet transform and
the remove gridline signals by an automatic Gaussian band-
stop filter [29]. There is higher accuracy of recognizing
grid frequency in the method; however, this algorithm
may involve fairly long computation time for searching the
accurate grid frequencies and angles.

To address the above issues, we propose a patch based
method for fast frequency signal filtering and grid arti-
facts suppressing in digital mammography. As opposed to
whole image processing synchronously, the proposedmethod
divides the image into a number of blocks processing simul-
taneously, which reduces the frequency interference among
image blocks as well as saving computation time because of
using multithread processing. Moreover, in order to alleviate
grid artifacts more precisely, characteristic peak detection is
employed in each block automatically, which can accurately
identify the position of the antiscatter grid and its motion
pattern.

The remaining part of this paper is organized as follows.
Section 2 describes the workflow and each key step in
detail. Section 3 focuses on the implementations to validate
the proposed method. Experimental results are shown by
simulation study and real digital mammography machine. In
Section 4, a few related issues are discussed. Conclusions are
given in Section 5.

2. Materials and Methods

Figure 1 shows a workflow of the proposed method, which
consists of six steps. In step 1, the original mammogram
is divided into several blocks. In step 2, in spatial domain,
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Figure 2: (a) Internal structure of antiscatter grid; (b) block image in the frequency domain; (c) 3D description of frequency components.

two-dimensional FFT is utilized to acquire frequency data of
each block. In step 3, in frequency domain, the characteristic
frequency detection of grid artifacts is implemented automat-
ically in each frequency block. In step 4, the frequency fil-
tering of characteristic peak is realized by using an improved
mean filter. In step 5, the spatial image blocks are obtained
by IFFT. Finally, we integrate the spatial image blocks by the
inverse operation in step 1. By the above-mentioned steps, the
corrected image of the grid artifacts suppressing is realized.
The core of the proposed method is in step 1, step 3, and step
4. These steps in the workflow will be detailed and presented
in the rest of the section.

2.1. Patch Based Deconstruction and Transformation. In this
section, image block processing is introduced in detail, which
is one of key steps of the proposed method. For a given image
f (x, y), block processing can be expressed as

𝑓𝑏 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)𝑥∈[𝑥𝑏,𝑥𝑏+𝑋],𝑦∈[𝑦𝑏,𝑦𝑏+𝑌] (1)

where (𝑥𝑏, 𝑦𝑏) is the top left pixel coordinate of the image
block, and X×Y is size of the image block.

There are a few points we would like to mention when the
patch is applied in image deconstruction. First, image patch
processing can decrease the frequency interference between
different blocks. In addition, multithread parallel processing
can reduce time overload and improve the efficiency of
Central Processing Unit (CPU).

The image block is decomposed into sine and cosine
components by the FFT. For an image block 𝑓𝑏(x, y) with
size of X×Y, its expression of the two-dimensional FFT is as
follows:

𝐹 (𝑢, V) = 1𝑋𝑌
𝑋−1∑
𝑥=0

𝑌−1∑
𝑦=0

𝑓𝑏 (𝑥, 𝑦) 𝑒−2𝜋𝑗(𝑢𝑥/𝑋+V𝑦/𝑌) (2)

whereF(u, v) is the frequency domain data,u=0,1⋅ ⋅ ⋅ ,X-1, and
v= 0,1,⋅ ⋅ ⋅ , Y-1.
2.2. Characteristic Peak Detection. In the spatial domain,
the grid artifacts can be considered as periodic streak arti-
facts. So they are expressed as symmetrical signals in the

frequency domain [30] as shown in Figures 2(b) and 2(c).
The frequency signals of grid artifacts are mainly in the red
circles.

Asmentioned previously, in order to remove grid artifacts
precisely, the characteristic frequency detection of grid sig-
nals is conducted without manual intervention. According to
sampling theorem and the FFT [31], the characteristic peak
range of periodic signals in the frequency domain is defined
as

𝑁𝑓 = [𝜍, (1/𝑆𝑅𝑝) × 𝑙𝑑 × 𝐷𝑖𝑚
10 + 𝜎] (3)

where 𝜍 and 𝜎 are length and width of detection range,Dim is
the image resolution, SRp is the image block resolution, and
ld is the grid density. SRp and ld are defined as

𝑆𝑅𝑝 = 1𝑝𝑠 (4)

where ps is the pixel size depending on image detector.

𝑙𝑑 = 10𝐷 + 𝑑 (5)

where 𝐷 is the distance between two grids filled with
interspacer such as aluminum oxide or plastic fiber in the
antiscatter grid, d is the width of each grid made by lead
[32]. The internal structure of antiscatter grid is shown in
Figure 2(a).

After obtaining the range of characteristic peak fre-
quency,we chose themaximumvalue ofNf as filter frequency
by the experience and experiments. And Fmax is expressed as

𝐹max = max (𝐹 (𝑢, V))|(𝑢,V)∈𝑁𝑓 (6)

From (3), Nf is proportional to image resolution Dim
and grid density ld, so the values of Dim and ld are lowered
while the value of Nf is synchronously decreased. The
relationship among the three variables indicates that we can
obtain high precision of characteristic frequency even with
the lower image resolution and common accuracy of grid
density.
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Figure 3: (a) Shepp-Logan phantom image; (b) the grid pattern of 3.5 lp/mm in spatial domain; (c) simulated image integrated with grid
artifacts of 3.5 lp/mm; (d) simulated image integrated with grid artifacts of 3.49 lp/mm.

2.3. Frequency Signal Filtering and Reconstruction. For global
filtering, the peak attenuation of characteristic frequency
happened, which could lead to some loss of image infor-
mation. Hence, global processing may produce filtering
error and have a poor robustness. On the contrary, the
block filtering could determine a proper filter size according
to the block size and it could reduce the corresponding
frequency interference between different blocks. Moreover,
if an image block has a filter error, the impact of the
error on the whole process could be ignored. Besides,
considering that the computational complexities for the
global filtering are so serious for the current detector
products, we combined block blocking and local filters to
improve computation efficiency by using GPU multithread
processing. For minimizing the influence of artifacts fre-
quency filtering, we propose an improved filter based on
the conventional mean filter [18] to reduce characteristic
frequency signals. The expression of filtering procedure is as
follows:

𝐺 (𝑢, V) = 𝑚𝑒𝑎𝑛 (𝐹 (𝑢, V) ∗ 𝐻 (𝑢, V))(𝑢,V)∈𝐷 (7)

𝐻(𝑢, V) =

1 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ 0 0
... ... 1 ... ...
0 0 ⋅ ⋅ ⋅ 1 0
0 0 ⋅ ⋅ ⋅ 0 1

𝑀×𝑀

(8)

where M×M is the size of mean filter, D is the frequency
domain with the size of M×M, and its center coordi-
nate is (𝑢1, V1) calculated from (6). The fundamental grid
frequency indeed contains some harmonic components.
Comparing with fundamental components, the harmon-
ics have a higher frequency but a much lower magni-
tude [23]. And removing harmonics is not significant for
grid artifacts suppressing and may introduce a new arti-
fact. Hence, we ignored the effect of harmonic compo-
nents.

Finally, the two-dimensional IFFT is utilized to convert
the frequency domain data into spatial domain data, and
then we integrate the processed image blocks to reconstruct

the image without grid artifacts. For a frequency block G(u,
v) with size of X×Y, its two-dimensional IFFT is calculated
as

𝑓 (𝑥, 𝑦) = 𝑋−1∑
𝑢=0

𝑌−1∑
V=0

𝐺 (𝑢, V) 𝑒2𝜋𝑗(𝑢𝑥/𝑋+V𝑦/𝑌) (9)

where 𝑓(x, y) is the spatial domain data.

2.4. Data Acquisition. To verify the efficacy and efficiency of
the proposed method, the proposed method is tested by a
simulation study of the classic Shepp-Logan phantom and a
real phantom study. For simulation data with grid artifacts
acquisition, the simulated grid pattern is added to the Shepp-
Logan phantom image. The Shepp-Logan phantom image
with the size of 2048 × 2048 is shown in Figure 3(a) and the
simulated grid pattern imagewith 3.5-line pair permillimeter
(lp/mm) is shown in Figure 3(b). Figures 3(c) and 3(d) show
the Shepp-Logan phantom images integrated with simulated
grid artifacts of 3.49 lp/mm and 3.5 lp/mm, respectively.

Furthermore, we performed a real phantom experiment
with the digital mammography system as shown in Fig-
ure 4(a). The breast quality control phantom (CIRS, Inc.,
USA) [33] is used in this paper and its external and internal
system structures are shown in Figures 4(b) and 4(c). In
addition, the quality control phantomconsists of 50% adipose
material with 4.5cm thickness, 50% glands simulation mate-
rial, and a removable 0.5cm equivalent layer of adipose tissue.
In the study, an a-Se direct detector (AXS-2430, analogic Inc.,
Québec, Canada) with a pixel size of 0.085mm and the 2816× 3584 resolution is employed.

For qualitative evaluation in detail, we select four ROIs
with central coordinates at (443, 487), (923, 1015), (1023, 1655),
and (1627, 1523) in the simulation experiment, respectively.
Figure 5(a) shows ROI#1, ROI#2, ROI#3, and ROI#4 with size
of 256 × 256 in the red rectangles, respectively. Concerning
real image observation, we also select four ROIs with central
coordinates at (1763, 1301), (2017, 1805), (1669, 2160), and
(2257, 2584), respectively. Figure 5(b) shows ROI#1, ROI#2,
ROI#3, andROI#4with size of 256× 256 in the red rectangles,
respectively.
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Figure 4: (a) Digital mammography system; (b) shape of CIRS 011A; (c) internal structure of CIRS 011A.

For the quantitative measurement, we utilize the normal-
ized mean absolute distance (NMAB) to measure the dif-
ference between the conventional method and the proposed
method. The NMAB of ROI is calculated:

𝑁𝑀𝐴𝐵 = ∑𝑀𝑖 ∑𝑁𝑗 𝑓𝑟𝑜𝑐 (𝑖, 𝑗) − 𝑓𝑡𝑟𝑢𝑒 (𝑖, 𝑗)
∑𝑀𝑖 ∑𝑁𝑗 𝑓𝑡𝑟𝑢𝑒 (𝑖, 𝑗) (10)

where f roc(i, j) denotes pixel value at (i, j) in the corrected
ROI, f true(i, j) represents pixel value at (i, j) in the reference
ROI, and M×N is the size of ROI. Note that the smaller the
NMAB, the closer the results between the original image and
the corrected image.

For quality control phantom image, we propose an
evaluation term named as mean value of specific direc-
tion (MVSD) to compare the difference between the con-
ventional method and the proposed method. The MVSD
of a pixel with the coordinate at (i, j) is shown as
follows:

𝑀𝑉𝑆𝐷(𝑖, 𝑗) = 1𝑁
𝑁∑
𝑗

𝑓𝑟𝑜𝑖 (𝑖, 𝑗) (11)

where f roi(i, j) represents the pixel value at (i, j) in the ROI
and𝑁 represents the width of ROI.
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Figure 5: (a) Simulation image containing ROI#1, ROI #2, ROI #3, and ROI #4 in the red rectangles; (b) real image containing ROI#1, ROI
#2, ROI #3, and ROI #4 in the red rectangles.
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Figure 6: (a) Global image; (b)-(d) image without correction and images corrected by the global filter method and the proposed method of
ROI#2, respectively; (g)-(i) image without correction and images corrected by the global filter method and the proposed method of ROI#4,
respectively; ((e) and (j)) the spatial images of the difference between the images in (c), (h) and (d), (i) respectively; (f) global image.

3. Results

3.1. Simulation Experiment. In the simulated phantom exper-
iment, we applied block processing with size 256 × 256 of
image block, and the sizes of block and global filters are 15× 15
and 51 × 51, respectively. Figure 6 shows the simulated images
with the grid artifacts of 3.49 lp/mm. Figures 6(b)–6(d)
show the uncorrected image and the corrected images by
the global filter method and the proposed method of ROI#2,
respectively. Figures 6(g)–6(i) show the uncorrected image
and the corrected images by the global filter method and the
proposed method of ROI#4, respectively. As shown in the
Figures 6(c) and 6(h), the global filter method can remove the
grid artifacts to some extent. However, several grid artifacts

are still present, which are indicated by the red arrows.
Compared with global filter method, images corrected by the
proposedmethod are visually better, as shown in Figures 6(d)
and 6(i). Those grid artifacts indicated by the red arrows
almost disappear in the corrected images by the proposed
method. Figures 6(e) and 6(j) show the difference images by
subtracting Figures 6(c) and 6(h) from Figures 6(d) and 6(i),
respectively. Figures 6(e) and 6(j) show that the proposed
method can suppress more grid artifacts than global filter
method.

Figure 7 plots the horizontal profiles of blue lines in
ROI#1, ROI#2, ROI#3, and ROI#4 in Figure 5(a), respectively.
The profiles of the results obtained by the proposed method
are much closer to the results of reference image than the
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Figure 7: Image profiles indicated by the blue lines in ROI#1, ROI#2, ROI#3, and ROI#4 in Figure 5(a) with grid artifacts of the 3.49 lp/mm,
respectively.

results by the global filter method. As shown in the blue
line, the image without any correction could not match
the reference well because of the grid artifacts. This result
partially proves that grid artifacts seriously degrade the
quality of images. As shown in the red line, the global
filter method could improve image quality to some extent.
However, the fluctuation in the profile demands for further
improvement. By contrast, the proposed method achieves
high image quality, as shown in the green line profile.

The difference between the reference image and the
corrected images by the global method and the proposed
method is quantitatively evaluated by NMAB. The NMAB of
ROI#1, ROI#2, ROI#3, and ROI#4 with the two grid modes
are shown in Tables 1 and 2, respectively. Compared with the
global filter method, the results of proposed method achieve

Table 1: NMAB comparison of image with grid artifacts 3.49 lp/mm
in different methods.

NMAB ROI#1 ROI#2 ROI#3 ROI#4
Uncorrected 0.0630 0.1799 0.0738 0.0880
Global Filter 0.0290 0.0824 0.0344 0.0405
Proposed Method 0.0047 0.0098 0.0040 0.0063

an appreciable improvement, as shown in the last row of
Tables 1 and 2.

3.2. Real Phantom Experiment. In the real phantom exper-
iment, we applied block processing with size 256 × 256
of image block, and the sizes of block and global filters
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Figure 8: (a) Global image; (b)-(d) image without correction and images corrected by the global filter method and the proposed method of
ROI#2, respectively; (g)-(i) image without correction and images corrected by the global filter method and the proposed method of ROI#3,
respectively; ((e) and (j)) the spatial images of the difference between the images in (c), (h) and (d), (i) respectively; (f) global image.

Table 2: NMAB comparison of image with grid artifacts 3.5 lp/mm
in different methods.

NMAB ROI#1 ROI#2 ROI#3 ROI#4
Uncorrected 0.0630 0.1799 0.0738 0.0880
Global Filter 0.013 0.027 0.008 0.025
Proposed Method 0.0047 0.0095 0.0040 0.0062

are 11 × 11 and 61 × 61, respectively. Figure 8 shows the
images corrected with different methods in the real phan-
tom experiment. Figures 8(b)–8(d) show the uncorrected
image and the corrected images by the global filter method
and the proposed method of ROI#2, respectively. Figures
8(g)–8(i) show the uncorrected image and the corrected
images by the global filter method and the proposed method
of ROI#3, respectively. As shown in Figures 8(c) and 8(h),
the global filter method can remove the grid artifacts well.
However, several grid artifacts are still present, which are
indicated by the red arrows. Compared with the global filter
method, the images corrected with the proposed method
appear with fewer artifacts, as shown in Figures 8(d) and
8(i). The grid artifacts indicated by the red arrows almost
entirely disappeared in the corrected images by the proposed
method. Figures 8(e) and 8(j) display the difference images
by subtracting Figures 8(c) and 8(h) from Figures 8(d) and
8(i), respectively. Figures 8(e) and 8(j) show that the proposed
method can suppress more grid artifacts than the global filter
method.

Figure 9 shows the vertical profiles of blue lines in ROI#1,
ROI#2, ROI#3, and ROI#4 in Figure 5(b), respectively. The
profiles of the results by the proposed method are much
smoother than the results by the global filter method. As
shown in the green line, the profile of the image without any

correction shows a vibration with large amplitude because of
the grid artifacts.This result partially proves that grid artifacts
seriously degrade the quality of images. As shown in the red
line, the utilization of the global filter method achieves the
improvement of image quality. However, the fluctuation in
the profile demands for further improvement. By contrast,
the proposed method achieves high image quality and the
fluctuation is relatively weak, as shown in the black line.

4. Discussion

In this paper, we propose a fast frequency signal filtering
method based on image block processing. In the proposed
method, image block processing is utilized to reduce the
frequency interference between image blocks. Besides, we can
employ multithread processing to decrease the computing
time of CPU. In addition, characteristic frequency detection
is employed in each block automatically to improve the
fault-tolerance property of the grid accuracy. For optimal
filtering, an improvement filter is constructed to minimize
the influence of the artifacts filtering processing on the signif-
icant signals. The efficiency and applicability of the proposed
algorithm are achieved by using simulated phantom data as
well as real phantom data.

There are several issues that we would like to dis-
cuss. Considering that the computational complexities for
the global filtering are so serious for the current detector
products, we combined block blocking and local filters to
improve computation efficiency by using GPU multithread
processing. In the real phantom experiment, the computation
time is 2.278 s on a PC with i7(3.60GHz) CPU and the time
is 0.675 s by multithread processing on GPU (GTX 680)
whose calculation efficiency has been increased by 3.4 times.
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Figure 9: Image profiles indicated by the blue lines in ROI#1, ROI#2, ROI#3, and ROI#4 in Figure 5(b), respectively.

For image block processing, Figure 10 shows the corrected
images with different block size such as 128 × 128, 256 ×
256, and 512 × 512. As shown in Figures 10(a) and 10(b),
the block processing with sizes of 128 × 128 and 256 × 256
shows similar results, better than the result with size of 512× 512 visually. And the time consuming is 0.680 s, 0.670
s, and 0.675 s, respectively. According to above-mentioned
comparison, the optimal size of image block is 256 × 256.
Additionally, we would also like to discuss the parameters𝜍 and 𝜎, which are closely related to detection range of
characteristic frequency. By studying the frequency image,𝜍 and 𝜎 can be determined at the appropriate frequency
offset by experience and experiment. In the paper, the size of
detection range is 7 × 7 at a 0.2Hz frequency offset according
to our needs.

The image quality may suffer damage more or less by
filtering processing. As shown in formulas (7) and (8), the
users can select the optimal filter size according to their
needs. In our experiments, the filter size is 15 × 15 in the
Shepp-Logan phantom experiment, and in the real phantom
(CIRS. Inc., USA) experiment the filter size is 11 × 11. In
frequency domain filtering, grid artifacts were removed by
limiting the frequency components of grid. However, the loss
of high frequency information could lead to ringing artifacts
in most methods of grid artifacts suppressing. And ringing
artifacts mainly exist near the contour edges of reconstructed
images. Figure 11 shows the corrected images by the mean
filter. Figures 11(a) and 11(b) are global simulation image by
mean filter and the corresponding magnified ROI of yellow
squares in Figure 11(a). As shown in Figure 11(b), there are still



10 BioMed Research International

(a) (b) (c)

Figure 10: Images by block processing with the sizes of 128 × 128, 256 × 256 and 512 × 512, respectively.
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Figure 11: (a) Global simulation image by mean filter; (b) the corresponding magnified ROI of yellow squares in (a); (c) the real phantom
image by mean filter; (d) the corresponding magnified ROI of yellow squares in (c).

a few ringing artifacts in simulated image due to the sharpness
of gray value on the outline. However, in the real phantom
experiment, these ringing artifacts almost disappeared visu-
ally as shown in Figure 11(d), which is the magnified ROI of
yellow squares in Figure 11(c) by mean filter. And the filter
results could basically be applied for clinical diagnosis. In the
future, finding a better method to suppress ringing artifacts
and grid artifacts will be the focus of our work.

5. Conclusion

In this study, the proposed integrated method, which has
been tested in simulation system and the realistic systems,
shows great potential for fast suppressing grid artifacts and
generates high quality of digital mammography.
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Purpose. The prevalence of invasive lobular carcinoma (ILC), the second most common type of breast cancer, accounts for 5%–15%
of all invasive breast cancer cases. Its histological feature to spread in rows of single cell layers explains why it often fails to form
a palpable lesion and the lack of sensitivity of mammography and ultrasound (US) to detect it. It also has a higher incidence of
multifocal, multicentric, and contralateral disease when compared to the other histological subtypes.The clinicopathologic features
and outcomes of Invasive Ductolobular Carcinoma (IDLC) are very similar to the ILC. The purpose of our study is to assess the
importance of MRI in the preoperative management and staging of patients affected by ILC or IDLC.Materials and Methods. We
identified women diagnosed with ILC or IDLC. We selected the patients who had preoperative breast MRI. For each patient we
identified the areas of multifocal, multicentric, or contralateral disease not visible to standard exams and detected by preoperative
MRI. We analyzed the potential correlation between additional cancer areas and histological cancer markers. Results. Of the 155
women who met our inclusion criteria, 93 (60%) had additional cancer areas detected by MRI. In 61 women, 39,4% of the overall
population, the additional cancer areas were confirmed by US/tomosynthesis second look and biopsy. Presurgical MRI staging
changed surgical management in the 37,4% of the patients. Only six patients of the overall population needed a reoperation after
the initial surgery. No statistically significant correlation was found between MRI overestimation and the presence of histological
peritumoral vascular/linfatic invasion. No statistically significant correlation was found between additional cancer areas and
histological cancer markers. Conclusions. Our study suggests that MRI is an important tool in the preoperative management and
staging of patients affected by lobular or ductolobular invasive carcinoma.

1. Introduction

Breast cancer is the most frequent cancer in USA, with
an estimated incidence of 296.980 new cases in 2013. The
lifetime risk of developing a breast cancer is about 12%; yearly

screening mammograms are proposed in asymptomatic
women with age > 40 [1, 2].

Invasive lobular carcinoma (ILC) is the secondmost com-
mon type of breast cancer. Its prevalence accounts for 5–15%
of all invasive breast cancers, with a maximum incidence in
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postmenopausal women. It has been found that the mean age
of incidence is three years older than that of women affected
by invasive ductal carcinoma (IDC) [3].

ILC has a typical histological growth behaviour. It arises
from lobular epithelium and spreads as a single row of
malignant cells along the breast ducts (Indian file manner),
with weak desmoplastic reaction in surrounding connective
stroma [3].

Due to these histological features, ILC often fails to
present as a clinically palpable lesion, and it is often seen
to spread diffusely through the breast stroma on mam-
mography. Moreover, ILC spreading diffusely through the
breast stroma leads to lower tendency to form round and
circumscribed masses, only seen in 1%–3% of cases of ILC.
Thus, ultrasound is more sensitive in detecting ILC [4, 5],
with a reported sensitivity ranging from 68 to 98% [6].

On mammography, ILC is commonly characterized by
the presence of asymmetry and architectural distortions with
absence of calcifications [3]. Moreover ILC also tends to be
isodense to normal adjacent breast parenchyma [5].

In view of these factors, mammography and ultrasound
resulted in decreased diagnostic accuracy for ILC, with
reported sensitivity ranging between 57 and 81% [4, 5].

MRI has a high sensitivity in the detection of breast cancer
(over 90%) and it is well known for its increased diagnostic
value in detecting multifocal, multicentric, or contralateral
disease unrecognized on conventional exams [4]. Schelfout et
al. reported thatMRI detected 96%ofmultifocal/multicentric
disease, while mammography and ultrasound only detected
28.6% and 26.5% respectively [7].

However, MRI also has a low specificity in detecting
breast cancer [4], which can result in overtreatment (i.e.,
extensive surgery procedures), with no added advantages in
terms of clinical outcome [8]. Furthermore, due to its limited
availability and high cost [9], MRI is therefore best reserved
only to a selected subgroup of patients.

MRI is a suitable diagnostic examination in the preoper-
ative work-up and staging of ILC patients, due to the higher
incidence of multifocal, multicentric, and contralateral dis-
ease, if compared to other histological subtypes [4]. However,
the existing literature about this topic is rather sparse [10].
Ductolobular invasive carcinoma (IDLC) has similar clinic-
pathologic features to ILC, with comparable outcomes [11].

For this reason, both ILC and IDLC were included in this
analysis.

The aim of the current study is to assess the role of MRI
in the preoperative staging and work-up of patients affected
by ILC or IDLC.

2. Materials and Methods

The current study was a retrospective review of 163 patients.
We included in the study all the patients with breast ILC
or IDLC who had MRI studies prior to undergoing surgical
therapy between January 2010 and July 2015, at the Breast
Unit of CareggiHospital, in Florence. Exclusions criteria were
preoperative chemotherapy/radiotherapy administration or
missing data.

Results of mammography (MRX), ultrasound (US), and
MRI examinations of each patient were retrospectively
reviewed, identifying areas of multifocal, multicentric, or
contralateral disease detected only with MRI and not with
standard exams (MRX or US). The results of MRX, US,
and MRI examinations were scored according to the Breast
Imaging Reporting and Data System (BIRADS) [12].

Patients underwent bilateral MRX and US before the
MRI; size and position of the index lesion on both examina-
tions were recorded.

Mammographic images were obtained in two standard
planes: mediolateral oblique and craniocaudal using a dedi-
cated equipment (Mammomat 2000, Siemens, Erlangen,Ger-
many;Mammomat 3000Nova, Siemens, Erlangen,Germany;
Selenia Dimensions Hologic Inc., Bedford, USA).

Sonographic examination was performed using a broad-
band 10–13 Mhz linear transducer (Technos Mylab 70 XS;
Esaote; Genoa, Italy).

All the MRI examinations were performed in prone
position, with dedicated breast coils; A 1.5-Tesla equipment
was used (Symphony�, Siemens Medical System, Erlangen,
Germany; Philips Medical Systems, DA Best,The Nederland;
Magnetom Avanto�, Siemens Medical System, Erlangen,
Germany).

The size and position of the index lesion as well as any
additional cancer areas detected on MRI were recorded.
Regarding the size, the average diameter was chosen as
the sizing reference for each lesion. The rate of change in
the surgical management in view of the preoperative MRI
findings was also recorded. Furthermore, reexcision rate after
surgery was evaluated.

Histological diagnosis on surgical specimen performed at
the local pathology department was reviewed; the data on the
size of the index lesion and its histopathological features were
assessed. The presence of peritumoral vascular/lymphatic
invasion, ER, PGR and C-erb-2 status, and Ki67 were also
collected.

3. Statistical Analysis

t-test was used to evaluate the significance of the differences
observed using different diagnostic methods.

4. Results

Eight out of 163 women were excluded from the analysis (3
due to preoperative chemotherapy administration, 5 because
of missing data). Thus the population of our study was
composed of 155 patients.

Baseline characteristics of the population are summarized
in Table 1.

When compared to MRX and US, MRI detected addi-
tional cancer areas in 93 out of 155 patients (60% of the
overall population). Of these, additional cancer areas were
confirmed with both US/tomosynthesis on second look and
biopsy in only 61 patients (39,4% of the overall population;
multifocal/multicentric and contralateral disease were found
in 29,7% and 9,7% of patients, respectively). Presurgical
MRI staging changed surgical management in the 37,4% of
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Figure 1: Index lesion (red circle; left SEQ, 28 mm), already documented with mammography and ultrasound. MRI leads to the detection of
multicentric disease, confirmed to US second look and biopsy (yellow circle: left IIQ, 9 mm) (SEQ: Superior External Quadrant; IIQ: Inferior
Internal Quadrant).

Table 1: Population description.

Number of patients 155
Median age (range) 53 (31–82)
Histology ILC: 55%

IDLC: 45%
Site of index lesion SEQ: 49,3%

SIQ: 14,6%
IEQ: 13,2%
IIQ: 6,8%
CQ: 16,1%

ILC: Invasive Lobular Carcinoma; IDLC: Invasive Ductolobular Carcinoma;
SEQ: Superior External Quadrant; SIQ: Superior Internal Quadrant; IEQ:
Inferior External Quadrant; IIQ: Inferior Internal Quadrant; CQ: Central
Quadrant; MRI: Magnetic Resonance Imaging.

the patients; 27,4% underwent a wider exeresis/mastectomy
instead of initially planned breast-conservative surgery, and
9,7% required also contralateral surgery. Only six patients
of the overall population needed a reoperation after the
initial surgery: mastectomy was performed in 5 patients
because of positive margins after breast-conservative surgery,
while one patient required bilateral mastectomy after breast-
conservative surgery, due to the presence of BRCA1mutation.
Among the patients who needed to be reoperated on because
of positive margins, three patients have had diagnosis of
additional cancer area with the MRI performed before the
initial surgery, later confirmed with US/tomosynthesis on
second look and biopsy. Instead the other two presented
the index lesion only and MRI had not added any further
diagnostic information to MRX and US. Regarding the
false positive patients, in whom the additional cancer areas
detected by MRI were not confirmed on US/tomosynthesis
second look, none of them presented a local recurrence. MRI
performances are summarized in Table 2; in the Appendix
there is the MRI documentation of three of the patients
studied (Figures 1–3).

Average size of index lesion was 18mm (range 2–40mm),
14 mm (range 4–60 mm), and 22 mm (range 6–85 mm) on
preoperative MRX, US, and MRI, respectively

The average size of the index lesion measured on surgical
specimen was 17 mm (range 2,3–75mm). Difference of lesion
size was significantly lower for mammography when com-
pared to US andMRI; US showed a size underestimation rate
of 18% while the MRI demonstrated an overestimation rate
of 26% andmammography an overestimation rate of only 5%
(p<0,001) (Table 3).

Overall sensitivity and specificity of MRI in this setting
were 91,04% and 92,4%, respectively. No correlation was
found between MRI overestimation and the presence of
histological peritumoral vascular/linfatic invasion. No corre-
lation was found in the presence of additional areas detected
by MRI and ER status (p=0,103), PGR status (p=0,218), Ki67
(0,668), or C-erb-2 status (p=0,955) (Table 4).

5. Discussion

Results from the current analysis showed that if compared
to MRX and US, preoperative MRI detected additional
disease in 39,4% of patients, with 29,7% and 9,7% of the
patients showing ipsilateral or contralateral undetected areas,
respectively. Preoperative MRI had an overall sensitivity of
91,04%, confirming data from literature demonstrating the
good performance of this examination in the preoperative
setting of ILC and IDLC. Indeed previous series reported a
sensitivity of 95% for MRI. [9, 13, 14].

These results therefore support the previous literature
data on the superiority of MRI in detecting multifocal,
multicentric, and contralateral disease, when compared to
MRX and US [9, 15].

Due to the typical growth pattern of ILC/IDLC, with
increased likelihood of multifocal, multicentric, and con-
tralateral disease [10], MRI could have a key role in preop-
erative staging of these patients. In the 37,4% of our patients
a change in surgical management was documented. Thus,
targeted use ofMRI in patients with ILC/IDLC could improve
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Figure 2: Index lesion (red circle; right SIQ, 27 mm), already documented with ultrasound. MRI leads to the detection of multifocal and
multicentric disease, confirmed to US second look and biopsy (yellow circles: right SIQ, 6mm; right SEQ, 11mm; right CEQ, 10 mm; right
CEQ dx, 11 mm; right CEQ dx, 5mm). Subcentimetric mass enhancement in the left breast resulted as negative to US second look. SEQ:
Superior External Quadrant; SIQ: Superior Internal Quadrant; CEQ: Central External Quadrant.

Figure 3: Index lesion (red circle; right IEQ, 30mm), already documented withmammography and ultrasound.MRI leads to the detection of
contralateral disease, confirmed to US second look and biopsy (yellow circle: left CEQ, 40mm; left CEQ, 13mm) (Inferior External Quadrant;
IEQ: CEQ: Central External Quadrant).
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Table 2: Summary of MRI performances.

Patients (%)
Additional areas of disease found on MRI (%) 93 (60%)
Multifocal/multicentric disease (%) 46 (29,7%)
Additional cancer areas confirmed on second look exams and biopsy 61 (39,4%)
Contralateral disease 15 (9,6%)
Change in surgical management 58 (37,4%)
Reoperation rate 6 (3,9%)

Table 3: Comparison in lesion size.

Average size (mm) Range (mm) Comparison with surgical specimen p
MRX 18 2-40 +5%
US 14 4-60 -18% <0,001
MRI 21,25 6-70 +26%
Surgical specimen 16,95 2,3-75 0

Table 4: Relationship between additional cancer areas on MRI and Tumor histopathologic features.

Additional cancer areas Presence of additional cancer areas Absence of additional cancer areas P
ER+ % n of patients % n of patients %
≥ 80 98,1 98,7
<80 1,9 1,3
TOTAL 100 100 0,103
PgR+ % n of patients % n of patients %
≥ 80 71,2 72,8
<80 28,8 27,2
TOTAL 100 100 0,218
HER2 n of patients % n of patients %
Positive 3+ 3,6 6,3
Negative 0/1+ 52,7 53,2
Doubt 2+ 43,6 40,5
Total 100 100 0,668

surgical planning, leading a lower rate of reoperation. Other
authors achieved similar results too. A population based
study conducted on the SEER database showed that preop-
erative MRI in this setting yielded a better surgical planning
[8]. A meta-analysis of 18 studies reported that MRI detected
additional disease in 32% of patients, with a subsequent
change in surgical management in 28% of women [13]. More
recent retrospective reports on ILC patients confirmed that
high sensitivity of preoperativeMRI in detectingmulticentric
and contralateral disease yielded a more appropriate surgical
management plan [10].

Summarizing, the main aim of our analysis was testing
the hypothesis that certain ILC/IDLC histological features
could lead to a particular growth pattern, in whichMRI could
have an increased diagnostic sensitivity. The current study
confirms our starting hypothesis.

Data from previous reports have confirmed the advan-
tages of MRI in the preoperative assessment of patients with
ILC [5, 6, 8, 10, 11, 15–20].

Furthermore, not all the authors agree thatMRI improved
sensitivity translated into short-term surgical outcome or
long-term patient benefit [21].

This has also been reflected in the disagreements seen
between the different guidelines in recent years; European
Society of Breast Imaging [22] and EUSOMA working group
[23] guidelines suggest a strong recommendation for the
use of preoperative MRI for ILC. However, the American
College of Radiology guidelines [24], later updated in 2013
[25], do not provide any recommendation about the use
of preoperative MRI in patients affected by ILC, reporting
insufficient evidence about this topic.

We evaluated also the size of the lesions and the difference
between diagnostic imaging.

In the current study, the size of the lesion is significantly
overestimated and underestimated withMRI andUS, respec-
tively, when compared to average size measured on surgical
specimen; instead lesion size measured on MRX and the
surgical specimen were relatively similar.
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In the previous literature reviews, other authors have
emphasised the trend for MRI overestimation of lesion size
[3, 11, 26]. Conversely, some reports suggested that MRI
could have a higher accuracy in determining tumour size if
compared to MRX and US [7, 27].

We hypothesized the MRI overestimation we
detected,could be explained by the presence of histological
peritumoral vascular/lymphatic invasion. However, no
correlation was found between MRI overestimation and
this histological feature. To our knowledge, this is the first
study testing the correlation between MRI overestimation
of the size and histological features of the index lesion. We
hypothesized also that the presence of additional cancer
areas detected by MRI could be correlated to the presence of
certain histological cancer markers. To our knowledge, this
is the first study testing this topic; anyway no correlation was
documented.

6. Conclusion

Results from this study show that MRI is a useful tool in
the preoperative staging and surgical planning of patients
affected by ILC/IDLC. MRI is very sensitive in the detec-
tion of multifocal, multicentric, and contralateral disease;
it provides additional diagnostic information that is missed
with the standard imaging modalities (MRX, US). Thus the
targeted use of preoperative breast MRI in patients with a
proven biopsy diagnosis of ILC or IDLC could significantly
improve the surgical approach, allowing a more appropriate
oncologic resection.

The retrospective nature of this study could anyway
weaken these results. Prospective data on a larger study
population are needed to better evaluate MRI performance
in this setting; a randomized controlled trial is aimed to
be organized in order to confirm the results that our study
suggest.
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Purpose. We evaluated the efficacies of the adaptive steepest descent projection onto convex sets (ASD-POCS), simultaneous
algebraic reconstruction technique (SART), filtered back projection (FBP), and maximum likelihood expectation maximization
(MLEM) total variation minimization iterative algorithms for reducing exposure doses during digital breast tomosynthesis
for reduced projections. Methods. Reconstructions were evaluated using normal (15 projections) and half (i.e., thinned-out
normal) projections (seven projections). The algorithms were assessed by determining the full width at half-maximum (FWHM),
and the BR3D Phantom was used to evaluate the contrast-to-noise ratio (CNR) for the in-focus plane. A mean similarity
measure of structural similarity (MSSIM) was also used to identify the preservation of contrast in clinical cases. Results. Spatial
resolution tended to deteriorate in ASD-POCS algorithm reconstructions involving a reduced number of projections. However,
the microcalcification size did not affect the rate of FWHM change. The ASD-POCS algorithm yielded a high CNR independently
of the simulated mass lesion size and projection number. The ASD-POCS algorithm yielded a high MSSIM in reconstructions
from reduced numbers of projections. Conclusions. The ASD-POCS algorithm can preserve contrast despite a reduced number of
projections and could therefore be used to reduce radiation doses.

1. Introduction

Digital tomosynthesis combines the benefits of digital imag-
ing [1, 2] with the tomographic benefits of computed tomog-
raphy to provide three-dimensional (3D) structural informa-
tion. This technique can easily be performed in conjunction
with radiography to reduce both the radiation doses and
associated costs. Digital breast tomosynthesis (DBT) thus
provides 3D structural information by reconstructing an
entire image volume from a sequence of projection-view
mammograms acquired within a small number of projection
angles over a limited angular range. As DBT reduces the
camouflaging effects of overlapping fibroglandular breast
tissue, thereby improving the conspicuity of subtle lesions, its
use could potentially improve the rate of early breast cancer
detection [2–4]. Several digital mammography-based DBT

systems have been developed [5], and this technology is the
focus of currently ongoing preliminary clinical studies [2, 6].

In previous studies of DBP, Wu et al. evaluated the con-
ventional reconstruction algorithm (filtered back projection;
FBP [7]), statistical iterative reconstruction (IR) algorithms
(maximum likelihood expectation maximization; MLEM
[3]), and simultaneous IR algorithms (the simultaneous
iterative reconstruction technique; SIRT [8]). The results led
Wu and colleagues to conclude that the MLEM algorithm
provides a good balance of image quality between low- and
high-frequency features [3]. Other reports have explored
various DBT reconstruction methods [7, 9, 10] or have pro-
posed options for suppressing irrelevant plane information
and enhancing DBT image quality [11, 12]. Specifically, DBT
reconstruction involves inconsistent images limited by a
low signal-to-noise ratio consequent to the superposition of
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𝑖th data element. �̃�0 is the optimization problem specified by the projection. 𝜀 is the data-inconsistency-tolerance parameter (reference: Sidky
EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total variation minimization. Phys Med Biol,
2008; 53: p.4788).
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Figure 3: Areas where the full width at half-maximum and contrast-to-noise ratio were measured in a reconstructed image of the BR3D
Phantom (in-focus plane).

several low-exposure projection images. The concurrent loss
of plane-relevant details yields reconstructed images with
poor contrast.

Two research objectives have been identified as a con-
sequence of the increasing spread of DBT in clinical prac-
tice: estimation of the risk of radiation-induced cancer and
characterization of the image qualities of DBT systems to
understand the similarities and differences with respect to
standard two-dimensional (2D) full-field digital mammogra-
phy (FFDM). Although both objectives remain under debate
[13], Ferreira et al. [14] demonstrated an increase in the risk
of induced lung cancer with the DBT scan relative to FFDM,
especially if the beam energy has not been optimized in terms
of the image quality and absorbed dose [15].

Regarding image quality, a factor called quantum mot-
tle causes spatial incident photon fluctuations and, conse-
quently, radiographic image degradation. As quantummottle
increases at lower levels of exposure, reductions in the doses
to patients would be restricted by the degree of quantum
mottle even in a perfect detector. Noise also affects the
visibility and detectability of subtlemicrocalcifications (MCs)
and masses in reconstructed DBT images. Therefore, a new
algorithm that improves image quality via suitable processing
would further reduce patient doses and improve detection.

To overcome the above-described limitations, several
noise suppression techniques for DBT reconstruction have
been proposed [16–19]. Recently, an iterative algorithm based
on total variation- (TV-) based compressive sensing was
developed for volume image reconstruction from tomo-
graphic scans [20–24]. TV is defined as the sum of the first-
order derivative magnitudes for all pixels in the image, and
TV image has been used as a penalty term in iterative image

reconstruction algorithms [24]. TV-minimization is an image
domain optimization method associated with compressed
sensing theory [22, 24]. Adaptive steepest descent projection
onto convex sets (ASD-POCS), a TV-minimization iterative
reconstruction (IR) algorithm for image reconstruction, pro-
vides a partial solution to the problem of constrained TV-
minimization [22]. In TV-minimization IR, the addition of a
penalty to the data-fidelity-objective function smooths noise
in the image while preserving the internal edges [20–25].
Therefore, TV-minimization IR can preserve contrast while
reducing both projection data and radiation doses.

In this study, we evaluated the abilities of four recon-
struction algorithms to reduce radiation dose from normal
and half projections (i.e., thinned-out normal): a novel TV-
minimization IR algorithm (ASD-POCS) and three conven-
tional reconstruction algorithms (FBP, statistical IR-MLEM,
and SIRT algorithm algebraic IR-simultaneous algebraic
reconstruction technique; SART) [23]). Specifically, we com-
pared the level of contrast preservation when reconstructing
a reduced number of projections of both breast phantoms and
clinical cases.

2. Materials and Methods

2.1. Digital Breast Tomosynthesis. This study used a DBT
system (Selenia Dimensions; Hologic Inc., Bedford, MA,
USA) comprising an X-ray tube with a 0.3-mm focal
spot (tube target: W, filtration: 0.7-mm aluminum equiva-
lent) and a digital flat-panel amorphous selenium detector.
A total acquisition time of 3.7 s and acquisition angle
of 15∘ were set for DBT procedures. Normal projection
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Figure 4: At right, the full width at half-maximum (FWHM) and contrast-to-noise ratio (CNR) characteristics caused by differences in
parameters [TV hyperparameter (𝛼), iteration number for TV-steepest descent (𝑛𝑔)] in the ASD-POCS algorithm (error bar represents the
standard error). At left, the root-mean-square error (RMSE) and universal image quality index (QI) characteristics caused by differences in
the numbers of iterations in each reconstruction algorithm.

images were sampled during a single tomographic pass (15
projections), while half projection images (seven projec-
tions) were generated by thinning out normal projection
data.

2.2. Phantom Specifications. TheBR3DPhantom (Model 020;
Computerized Imaging Reference Systems, Inc., Norfolk,
VA, USA), which comprises multiple heterogeneous slabs, is
intended to mimic the composition of glandular and adipose
tissues and parenchymal patterns in the human breast. The
slabs are composed of epoxy resins with X-ray attenuation
properties corresponding to 50% glandular or 50% adipose

breast tissue. The target slab was surrounded by nontarget
slabs (top, 30 mm and bottom, 10 mm).

2.3. Radiation Dose Measurement. The following settings
were implemented during each radiation dose setup: a ref-
erence radiation dose [automatic exposure control (AEC) =
exposure condition at 40-mm thickness and predetermined
tube voltage and current] at 28 kVp and 50 mA (15 pro-
jections). The average glandular dose (AGD) was calculated
using the method proposed by Dance et al. [26] and a
Piranha dosimeter (RTI Electronics AB,Mölndal, Sweden) to
measure radiation exposure. Measured radiation doses were
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Figure 5: Comparisons between different projection number (normal: 15, half: seven) images obtained using each tomosynthesis recon-
struction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images: microcalcifications,
spheroidal masses. For corresponding images, the IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and
level, whereas the FBP images have a larger windowwidths because the backgrounds are less flattened and the gray levels in larger areas would
be out of scale in narrower windows.

used to convert the established exposure condition into the
AGD; the latter value was 1.51 mGy.

2.4. Reconstruction Algorithm. In this study, we used MAT-
LAB (Mathworks; Natick, MA, USA) to perform the FBP,
SART, MLEM, and ASD-POCS image reconstruction calcu-
lations [27]. The reconstruction data comprised real projec-
tion data acquired on a DBT system.

Two-dimensional (2D) image filtering, which multiplies
the Fourier transform by a Ramp or SL filter kernel, was used
to restore the impulse shape of the reconstructed image. A
conventional Ramp or SL filter kernel and the FBP algorithm,
which generally produces precise 3D reconstruction images
[7], were used to yield FBP images in this study. In contrast
to the single-step back projection and FBP algorithms, IR

algorithms perform a recursive reconstruction [9]. Specifi-
cally, IR iteratively updates the unknown linear attenuation
coefficients by minimizing errors between the measured and
calculated projection data.

Previous studies have investigated algebraic reconstruc-
tion technique (ART) methodologies [8]. An ART rapidly
converges by updating the linear attenuation coefficients
from a single projection value at each time point. However,
the least-squares solution can yield considerable noise if the
inverse problem is very poorly posed (e.g., limited angle
reconstruction). Several improvements to ART have been
proposed to address this issue. For instance, modifications
of ART may be compatible with other methods, such as
SIRT [8], depending on the projection data volume and the
method used to update the given estimation. Notably, SART
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in the in-focus plane images obtained via tomosynthesis under different projection numbers and generated using different reconstruction
algorithms. The error bar represents the standard error.

represents a compromise between ART and SIRT that yields
acceptable algorithm stability and convergence in the same
process. MLEM methods comprising two steps per iteration
(e.g., a forward step for DT acquisition process modeling and
backward step for reconstructed object updating) have also
been proposed. These methods are applied iteratively, such
that the reconstructed volume projections computed from
an image formation model will resemble the experimental
projections.

Another ART is the ASD-POCS algorithm step that
improves data consistency, in which basic projection enforces
positivity. ASD-POCS minimizes the TV norm separately in
each iteration; in otherwords, the image is first reconstructed,
followed by a reduction in the TV norm at each iteration.
To nudge the image toward a minimum-TV solution, POCS
steps are alternated with the TV-steepest descent [22]. If the
TV-minimization step alone was run during the rest of the
algorithms, the result would be a flat image. Alternatively,
the ROF model ensures that the image is not significantly

altered. The importance of these optimal parameters with
respect to image quality has been demonstrated in previous
studies [22, 24]. Here, we used optimal parameters for the
ASD-POCS algorithms to preserve the edges. Figures 1 and 2
depict the ASD-POCS algorithm in the form of a pseudocode
and overview, respectively.

2.5. Phantom Evaluation. We calculated the full width at
half-maximum (FWHM) and contrast-to-noise ratio (CNR)
to evaluate the effects of contrast preservation on each
phantom image featured in the in-focus plane. The spatial
resolution derived from the FWHM in the in-focus plane
(0.29 and 0.40mm 𝜑; CaCO3) was evaluated as a quantitative
measure of the reconstructed image quality, after which the
FWHM of the selected intensity profiles intersecting the
three MCs on reconstructed DBT slices were measured. To
obtain the intensity profile, three neighboring vertical lines
intersecting the MCs (perpendicular to the X-ray sweep
direction) were arranged.



BioMed Research International 7

0

2

4

6

FBP-ramp FBP-SL MLEM SART ASD-POCS

CN
R

Spheroidal Mass Diameter: 3.9mm

15 projections
7 projections

−0.2

−0.1

0
FBP-ramp FBP-SL MLEM SART ASD-POCS

CN
R 

ra
te

 o
f c

ha
ng

e: 
15

 p
ro

j t
o 

7 
pr

oj

Spheroidal Mass Diameter: 3.9mm

0

1

2

3

4

5

CN
R

−0.2

−0.1

0

0.1

0.2

FBP-ramp FBP-SL MLEM SART ASD-POCS

CN
R 

ch
an

ge
 o

f r
at

e: 
15

 p
ro

j t
o 

7 
pr

oj

Spheroidal Mass Diameter: 4.7mm

Spheroidal Mass Diameter: 4.7mm

FBP-ramp FBP-SL MLEM SART ASD-POCS

15 projections
7 projections

Figure 7: Comparisons of the contrast-to-noise ratio (CNR) and rate of change between the normal (15) and half (seven) projections in
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The contrast derived from the CNR in the in-focus plane
[3.9 and 4.7 mm 𝜑; spheroidal masses (epoxy resin)] was
also evaluated as a quantitative measure of the reconstructed
image quality. In tomosynthesis, the CNR is frequently used
to estimate low-contrast detectability and was defined in this
study as follows:

𝐶𝑁𝑅 =
𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒 − 𝜇𝐵𝐺

𝜎𝐵𝐺
(1)

where 𝜇𝐹𝑒𝑎𝑡𝑢𝑟𝑒 is the mean object pixel value, 𝜇𝐵𝐺 is the
mean background area pixel value, and 𝜎𝐵𝐺 is the standard
deviation of the backgroundpixel values.The latter parameter
includes the photon statistics and electronic noise from the
results, as well as structural noise that could obscure the
object. The sizes of all regions of interest (ROIs) used to
measure theCNRwere adjusted to an internal signal as shown
in Figure 3 (3.9 mm; 21 × 21 pixels, 4.7 mm; 33 × 25 pixels).

2.6. Optimization Parameters. A range of optional parame-
ters have been identified forASD-POCS [TVhyperparameter
(𝛼), iteration number for TV-steepest descent (𝑛𝑔)]; of these,
some are crucial for determining the algorithmic behavior.

In this study, we used the FWHM and CNR to verify the
optimization of these parameters. To maintain a quality
balance between FWHM and CNR performance, a TV
hyperparameter (𝛼) of 0.002 and iteration number for TV-
steepest descent (𝑛𝑔) of 25 were selected (Figure 4). We
compared the root-mean-square error (RMSE) and universal
image quality index (QI) [reconstructed volume image (15
projections) from the previous iteration between the current
iteration] to optimize the iteration numbers (i) [28]. The QI
is mathematically defined by modeling the image distortion
relative to the reference image as a combination of three
factors: loss of correlation, luminance distortion, and contrast
distortion. Because the QI does not explicitly use a human
visual system model, it performs significantly better than
the widely used distortion metric mean squared error for
various types of image distortion. A feasibility is to keep
the convergence of SART and ASD-POCS reconstruction
for 5 iterations and MLEM reconstruction for 2 iterations
(Figure 4).

The amplification of noise is a characteristic of non-
regularized algorithms, such as MLEM. As high-frequency
noise in the data is amplified by each iteration of the MLEM
algorithm, few iterations may be optimum for the detection
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Figure 8: Comparisons among clinical case images (in-focus plane) obtained via actual filtered back projection reconstructions from a digital
breast tomosynthesis scanner (Selenia Dimensions, 15 projections). The scanner FBP images for the corresponding image are displayed with
the same window width and window level (top: case 1, middle: case 2, and bottom: case 3).

of low-contrast objects, such as small masses [3]. In the
SART algorithm, the linear attenuation coefficient of each
voxel is simultaneously updated using all rays in a single
projection (regularized algorithm). The number of imaged
volume updates in a single iteration is equal to the number
of projections [23]. Considering these factors, we believe that
the difference between RMSE and QI is associated with the
difference between SART and MLEM algorithms.

2.7. Case Evaluation. In this study, AEC exposure was used to
compare different DBT reconstruction methods in a clinical
case evaluation. The cases were evaluated using structural
similarity (SSIM) [29], where local patterns of luminance-
and contrast-normalized pixel intensity were compared to
determine the SSIM index of contrast preservation. This
image quality metric is based on the assumed suitability
of the human visual system for extracting structure-based
information.

The SSIM index between pixel values 𝑥 and 𝑦 was
calculated as follows:

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) = [𝑙 (𝑥, 𝑦)]𝛼 ⋅ [𝑐 (𝑥, 𝑦)]𝛽 ⋅ [𝑠 (𝑥, 𝑦)]𝛾 (2)

where 𝑙 is the luminance, 𝑐 is the contrast, and 𝑠 is the
structure. Subsequently,

𝛼 = 𝛽 = 𝛾 = 1.0. (3)

The mean SSIM (MSSIM) was then used to evaluate the
overall image quality:

𝑀𝑆𝑆𝐼𝑀 (𝑋, 𝑌) = 1
𝑀

𝑀

∑
𝑗=1

𝑆𝑆𝐼𝑀(𝑥𝑖, 𝑦𝑗) (4)

where 𝑋 and 𝑌 are the reference [reconstructed image
(in-focus plane) from 15 projections] and objective [recon-
structed image (in-focus plane) from seven projections]
images, respectively; 𝑥𝑖 and 𝑦𝑗 are the image contents at the
𝑗th pixel; and 𝑀 is the number of pixels in the image.
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Figure 9: Case 1. Comparisons between images obtained at different projection numbers (normal: 15, half: seven) using each tomosynthesis
reconstruction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images depict the lesion
areas. For each corresponding set, IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and level, whereas the
FBP images have a larger window widths because the backgrounds are less flattened and the gray levels in larger areas would be out of scale
in narrower windows.

Details of each case are listed below.

Case 1. In a 56-year-old woman with diagnosed ductal
carcinoma in situ, the following imaging parameters were
used: voltage, 30 kV; tube current, 61; thickness, 46mm;AGD,
1.75 (15 projections).

Case 2. In a 62-year-old woman with a diagnosis of scirrhous,
the following parameters were used: voltage, 29 kV; tube
current, 47; thickness, 39 mm; AGD, 1.32 (15 projections).

Case 3. In an 81-year-old woman with a diagnosis of solid
tubular carcinoma, the following parameters were set: volt-
age, 29 kV; tube current, 48; thickness, 41 mm; AGD 1.29 (15
projections).

3. Results

Figure 5 presents images of the BR3D Phantom obtained
using each reconstruction algorithm.Comparedwith the FBP
algorithm, the IR algorithms tended to yield slightly higher

noise levels as the projection number decreased, although
image quality deterioration was not observed. The FBP algo-
rithm exhibited goodMC detection ability but also generated
remarkable false images from the peripheries of the MCs.

We also compared the FWHM of each reconstructed
image obtained using different projection numbers for the
in-focus plane (Figure 6). Here, the FBP algorithm yielded
the best spatial resolution, whereas this parameter tended
to deteriorate while using the ASD-POCS algorithm to
reconstruct a reduced number of projections. Furthermore,
the number of projections but not the MC size affected the
FWHM rate of change.

We further compared the CNR of each reconstructed
image obtained using different projection numbers for the
in-focus plane (Figure 7). Notably, the ASD-POCS algorithm
yielded high-contrast images, regardless of the simulated
mass lesion size and projection number. With the FBP algo-
rithm, the contrast degradation increased at reduced projec-
tion numbers when generating images of 3.9-mm spheroidal
masses. With the MLEM and ASD-POCS algorithms,
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Figure 10: Case 2. Comparisons between images obtained at different projection numbers (normal: 15, half: seven) using each tomosynthesis
reconstruction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images depict the lesion
areas. For each corresponding set, IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and level, whereas the
FBP images have a larger window widths because the backgrounds are less flattened and the gray levels in larger areas would be out of scale
in narrower windows.

contrast deterioration associated with a decreased projection
number had only a small effect. For 4.7-mm spheroidal
masses, the CNR tended to increase as the projection number
decreased when using the FBP(SL), SART, and ASD-POCS
algorithms and tended to decrease when using the FBP
(ramp) and MLEM algorithms.

Reconstructed images of three clinical cases, which were
obtained using actual FBP reconstructed images (in-focus
plane) from the scanner (Selenia Dimensions), are presented
as reference data in Figure 8. Reconstructed clinical case
images obtained using each reconstruction algorithm are
presented in Figures 9–11, while Figure 12 compares the SSIM
images obtained with each reconstruction algorithm using
either 15 or seven projections for the in-focus plane. Figure 13
compares the MSSIM of each reconstructed clinical case
image obtained in the in-focus plane. Images reconstructed
using the ASD-POCS and MLEM algorithms and a reduced
number of projections were highly structurally similar, sug-
gesting that the former could potentially be used in dose
reduction initiatives while preserving contrast.

4. Discussion

Our empirical results obtained using various reconstruction
algorithms demonstrate that the ASD-POCS algorithm can
preserve image contrast even when using reduced projection
data. Accordingly, the ASD-POCS algorithm could poten-
tially be used to reduce radiation doses to patients.

The outermost repeat-until loop instruction of the ASD-
POCS algorithm contains two main components: an adjust-
ment toward data consistency via the POCS step loop and
the steepest descent toward lower-TV images. The algorithm
is effective when each POCS step involves multiple small
descent substeps, particularly during the early iterations [20].
TV-minimization assumes that the true image is piecewise
and relatively uniform, whereas noise and artifacts appear
as fluctuations, or peaks and valleys; accordingly, noise and
artifact-corrupted images would have relatively larger TV
values because TV is defined as the sum of first-order
derivative magnitudes [22]. In contrast, compared with the
SART algorithm MSSIM results similar to the ASD-POCS
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Figure 11: Case 3. Comparisons between images obtained at different projection numbers (normal: 15, half: seven) using each tomosynthesis
reconstruction algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Zoomed images depict the lesion
areas. For each corresponding set, IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and level, whereas the
FBP images have a larger window widths because the backgrounds are less flattened and the gray levels in larger areas would be out of scale
in narrower windows.

algorithm have shown preserved contrast, but a large change
rate from the FWHM and low-contrast detection compared
with the ASD-POCS algorithm. We suggest that these results
are attributable to the inability of the SART algorithm to
correct increases in noise. Moreover, incorrect assumptions
in the reconstruction models lead to the active introduction
of artifacts, whereas TV suppresses the high-frequency com-
ponents of artifacts introduced by data consistency.

In general, image artifacts are caused by a loss of the
largest normal contributions from artifact-free voxels. As
these voxels normally produce original contributions, their
values decrease slightly after the largest normal contribution
has been omitted. Accordingly, a single abnormal contribu-
tion within a voxel is resolved while all other contributions
are retained, including the largest normal contribution; vox-
els containing such abnormalities therefore tend to exhibit
higher values than their neighboring artifact-free voxels,
leading to the appearance of objects in which artifact-free
voxels are more noticeable against the background. This

phenomenon is a drawback of the FBP algorithm, and
consequent artifacts are conspicuous when compared with
artifact-free images.

DT image quality depends on several factors, including
size, shape, density, atomic number, and the size and shape
of the object cross-section. Highly attenuating objects yield
streak artifacts (dark-band artifacts) on DBT acquisitions,
which adversely affect image quality. Additionally, beam
hardening and scattering have significant effects, particularly
on highly attenuating objects from MCs. Accordingly, noise-
induced streak artifacts primarily affect image quality. In
such cases, the IR reconstruction algorithm, which is thought
to adequately address quantum noise [30], appears to be a
promising approach to the reduction of artifacts stemming
fromMCs with relatively high atomic numbers.

SART does not imply an even distribution of noise
across an image. Rather, SART uses an algebraic matrix
to selectively identify and subtract noise from an image
according to a mathematical model. However, each iteration
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Figure 12: Comparisons of structural similarity among images obtained from each case and using each tomosynthesis reconstruction
algorithm in the in-focus plane. The X-ray source was moved horizontally along the image. Images are in grayscale; white and black indicate
high and low structural similarity, respectively. The window width and level in each display are varied to allow a visual comparison of the
contrast and background gray level. Corresponding IR (MLEM, SART, and ASD-POCS) images are displayed at the same window width and
level.

of the reconstruction algorithm amplifies high-frequency
noise within the data. Therefore, the MLEM algorithm may
be optimal for detecting low-contrast objects [3].

We further found that images generated using the ASD-
POCS algorithm with a reduced projection number exhib-
ited deteriorated spatial resolution. TV-based approaches
uniformly penalize the image gradient, regardless of the
image structure. Therefore, oversmoothing of the recon-
structed image remains a major concern, despite the advan-
tages of using a TV norm as the regularization term

[31]. Frequent oversmoothing of the edges of the recon-
structed image causes the loss of low-contrast information
[32].

Most studies have evaluated breast imaging at different
radiation doses [33]. We believe that investigations of the
relationship between normal and half projections and con-
trast preservation are useful for determining the feasibility
of radiation dose reduction and hope that our study results
serve as a guideline for image reconstruction under reduced
projection data conditions. However, our study had several
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Figure 13: Comparisons of mean structural similarity among in-
focus plane images obtained via tomosynthesis data from clinical
cases under normal (15) and half projections (seven) and using each
tomosynthesis reconstruction algorithm.

limitations. First, we did not test actual mammary gland
tissues. However, we believe that the BR3D Phantom is an
accurate representation of actual mammary gland tissues.
Second, we did not perform an observational study. In
future, we plan to conduct such a study to investigate
the correlations among physical evaluation parameters (e.g.,
spatial resolution and contrast).Third, the phantom thickness
was fixed at 4 cm. In future evaluations, other phantom
thicknesses will be needed to confirm the utility of the
algorithm. Despite these limitations, we believe that our
results can serve as reference data and thus assist physicians
with contrast preservation while reducing radiation expo-
sure.

5. Conclusion

This study evaluated the ASD-POCS algorithm as a novel
technique for contrast preservation in DBT images obtained
under a reduced projection number. Our findings suggest
that the ASD-POCS algorithm could be used to reconstruct
dose-reduced images. As this approach exploits a priori
knowledge about contrast preservation and noise reduction,
we presume that the ASD-POCS algorithm will enhance the
clinical application ofDBT inmedical imaging, wherein these
parameters are a major focus of interest.
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Background and Objectives. Breast-conserving surgery represents the standard of care for the treatment of small breast cancers.
However, there is a population of patients who cannot undergo the standard surgical procedures due to several reasons such as age,
performance status, or comorbidity. Our aim was to investigate the feasibility and safety of percutaneous US-guided laser ablation
for unresectable unifocal breast cancer (BC).Methods. Between December 2012 andMarch 2017, 12 consecutive patients underwent
percutaneous US-guided laser ablation as radical treatment of primary inoperable unifocal BC. Results. At median follow-up of
28.5 months (range 6-51), no residual disease or progression occurred; the overall success rate for complete tumor ablation was
therefore 100%. No significant operative side effects were observed, with only 2 (13.3%) experiencing slight to mild pain during
the procedure, and all patients complained of a mild dull aching pain in the first week after procedure. Conclusions. Laser ablation
promises to be a safe and feasible approach in those patients who are not eligible to the standard surgical approach. However, longer
follow-up results and larger studies are strongly needed.

1. Introduction

Breast cancer (BC) is the most frequently occurring cancer in
women (28.8% of all cancer diagnosis) and the second most
common in the world, with an estimated lifetime risk of 1/10
women [1].

Despite the steady increase of the number of BC
newly diagnosed worldwide, its mortality has shown a
slight decrease in western countries. This might be due to
widespread screening programs, resulting in an increased

diagnosis of small tumors, and itmight be secondary to better
therapeutic strategies [2, 3]. Over 40% of women with newly
diagnosed BC are aged 65 years or older, and the median age
at diagnosis is around 60 years [4].

Although breast-conserving surgery (BCS) represents the
treatment of choice for small BC [5], elderly women often
receive less than this standard therapy. In a large study, which
involved over 120,000 women, decreased surgical rates were
associated with higher age due to several reasons such as
performance status or comorbidity [4, 6, 7].
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Therefore, in the last decade, in parallel to the increasing
age of patients with a diagnosis of breast cancer, there has
been a progressive demand forminimally invasive treatments
specifically aimed at BC [8–10].These treatments are not sub-
stitutes for breast surgery, which is still the primary treatment
of choice, but they could represent a radical treatment for
the nonoperable group of patients or for those who refuse
surgery. The approaches available include cryoablation [11–
15], radiofrequency [16, 17], microwave ablation [18], focused
ultrasound (US) [19, 20], and laser ablation [21, 22].

The purpose of our single-center retrospective study is to
assess the feasibility of ultrasound guided percutaneous laser
ablation (LA), as the treatment of small unifocal breast cancer
in nonoperable elderly patients and in patients who refuse
surgery.

2. Methods

We achieved the Internal Review Board (IRB) approval for
this trial, performed in a large university referral hospital
for breast disease. Written informed consent of patients was
required for the inclusion in this study. All procedures were
in accordance with the ethical standards of the institutional
and/or national research committee and with the 1964
HelsinkiDeclaration and its later amendments or comparable
ethical standards.

The primary objectives of our study are to (i) describe the
results of laser ablation in nonoperable patients with unifocal
BC and (ii) assess the effectiveness and safety of LA to treat
BC.

The secondary objectives would be to (i) evaluate the
breast cosmesis, (ii) determine regional and distant breast
tumor recurrence rate up to 5 years, and (iii) determine the
overall survival rate among the period of the study.

2.1. Patient Selection and Period of Study. We retrospectively
reviewed 12 breast cancer patients who underwent percuta-
neous procedures in our Department of Breast Diagnostic
SenologyUnit of the Careggi Hospital, Italy, betweenDecem-
ber 2012 and March 2017. The multidisciplinary team of our
department carefully selected elderly patients (>75 years),
with inoperable breast cancer, due to comorbidities and/or to
high anesthetic risks, or who refuse surgery.

The inclusion criteria were as follows:

(1) unresectable unifocal BC due to comorbidity (e.g.,
severe cardiovascular or respiratory comorbidities,
age, performance status),

(2) tumor size ≤ 20 mm in the greatest diameter,
(3) the necessity of lesion being US visible at the time of

treatment,
(4) tumor located at least 1.0 cm from the chest wall as

well as the skin and nipple at USG,
(5) a biopsy proving invasive ductal unifocal, mucinous,

or tubular carcinoma.

The exclusion criteria were as follows:

(1) patients suitable for surgery or radiation approach,

(2) patients with multifocal or multicentric tumors,
(3) absence of written informed consent.

2.2. Procedure Planning. All patients underwent clinical and
radiological assessments prior to the laser ablation. Clinical
assessment included physical breast examination to exclude
skin or nipple involvement.

2.3. Breast Mammogram and Ultrasound. Radiological as-
sessment included a bilateral two-projection 2D-3D mam-
mography (MMG) (Selenia� Dimensions�, Hologic�, Bed-
ford, USA) and ultrasonographic (US) examinations were
performed using a 10–13 MHz transducer and a US unit
(ESAOTE, MyLab 70 XVG, Genoa, Italy).

2.4. UltrasoundGuided Biopsy. All lesions were sampledwith
US-guided core-needle biopsy (CNB) using a 10 cm 14-gauge
cutting needle with a 22 mm throw (Precisa�, HS� Hospital
Service, Rome, Italy). A mean of 4 samples (range 3-5 sam-
ples) was taken in each case to evaluate the histological and
biological parameters of the tumor. Specimens underwent a
standard histological evaluation.

2.5. Laser Ablation Procedure. The procedure needed an
ultrasound interventional suite. Procedures were performed
by using a commercially available US system with an inte-
grated laser source with a 1064 nm wavelength (EchoLaser;
Elesta, Calenzano, Italy).

In each case, procedure needed the presence of an
anesthesiologist in the ultrasound interventional room and
available venous access. Generally, patients underwent local
anesthesia; we used conscious sedation only if indicated.

The operator inserts the 21G spinal needle in the most
suitable direction to reach the lesion following the shortest
possible path. Then the operator introduces and advances
a 300 𝜇m flat-tip laser fiber to the tip of the needle. The
introducer-needle was designed to expose the fiber tip of 5
mm. The procedure must provide a safe distance of 1.0 cm
from the skin and 1.0 cm from the chest wall. The operator
must progressively move the device LA (introducer-needle
and fiber) towards the target, choosing the best path to
correctly position the tip of the fiber. It is necessary to make
sure that the path of the applicator is as parallel as possible
to the chest wall. The tip of the device must always be in the
center of the lesion and its positionmust always be controlled
with two-plane ultrasound images (Figure 1).

According to previous experiences of other authors in
other applications of the thin needle laser methodology,
each treatment was performed with a fixed power protocol
(3W), modifying the lighting time according to the size of
the tumor. Depending on the size of the tumor at baseline,
the operator performs one or two consecutive illuminations
with a “pull-back” technique during the same treatment
session.The treatment ends when the gas, formed during the
ablation, covers the entire desired area or up to 1800 J for
illumination. Each ablation time varies from a minimum of
600 seconds (for tumor size up to 1.0 cm) to a maximum
of 1200 seconds (for tumor size between 1.0 and 2.0 cm), in
order to maintain the total energy applied between 1800 and
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Figure 1: The device LA (introducer-needle and fiber) must be
progressively inserted towards the target, choosing the best path to
correctly position the tip of the fiber. It is necessary to ensure that
the path of the applicator is as parallel as possible to the chest wall.
The tip of the device should always be inserted at the center of the
lesion and its position must always be controlled with two-plane
ultrasound images.

3600 J, respectively [23–26]. Patient vital signs monitoring
was continuous during all of the procedure.

In all cases, the laser fiber was active during the retraction
of the needle, in order to prevent a possible seeding of tumor
cells along the needle tract. Patient monitoring continued
up to 2–4 hours, in order to exclude unexpected acute
complications, and patient discharge occurred subsequently,
during the same day.

2.6. Follow-Up of Patients. Clinical follow-up began after
1 week, then at 3 months, and every 6 months until the
fifth year. Clinical examination assessed the skin and nipple
conditions and it evaluated the clinical size of the treated
lesion, if palpable. Radiological follow-up included a weekly
US examination from the 1st and 4th week after the ablation
procedure. Follow-up also included bilateral mammography
and ultrasound after 6 months from the laser procedure and
every 12 months thereafter up to 5 years.

The radiologist who performed the LA procedure was
the same that performed the ultrasound and mammographic
image evaluation. We have observed modifications of treated
site after the procedure, and we have considered as sugges-
tive of ablation/recurrence the radiologic aspects observed.
Complete ablation corresponded to awell-demarcated area of
coagulation zone at the previously ablated site on ultrasound.
Definition of recurrences were as follows:

(1) Local

(i) The previously ablated area had an ill-definedmargin,
and a soft tissue echogenicity within 10 mm of the
ablated margin was seen.

(ii) The previously ablated region increased in size.

(2) Distant

(i) New lesion was at >10 mm from the ablated margin.

Table 1: Data of patients and diagnostic findings prior to treatment.

Characteristic Value
Median age (range) 79.25 (75-92)
Postmenopausal, % (𝑛) 100 (12/12)
Right breast, % (𝑛) 41.7%, 5/12
Left breast, % (𝑛) 58.3%, 7/12
Median ultrasound tumor size (mm) (range) 12.72 (range 0.7-20)
Histology, % (𝑛)
(i) Ductal carcinoma 83.3% (10/12)
(ii) Mucinous carcinoma 8.3% (1/12)
(iii) Tubular carcinoma 8.3% (1/12)

2.7. Complications. Major complications were related to
admission to the hospital for therapy, an unplanned increase
in the level of care, prolonged hospitalization (more than
3 days), permanent adverse sequelae, or death. Any other
complication was considered minor.

We have recorded complications of treatment according
to the Society of Interventional Radiology (SIR) guidelines
[27, 28].

2.8. Survival. Overall survival was defined as the time from
the initial laser ablation session until death or the last patient
contact. The follow-up for this study ended in March 2017.

3. Results

3.1. Demographic Analysis of Study Population. Data of 12
patients with invasive breast cancers are summarized in
Table 1. Their mean age was 79.2 years (range 75-92). All
patients were postmenopausal.

They have completed preliminary diagnostic phase in a
mean of 11 days before the laser treatment (range 1-60), and
they underwent laser ablation in the US-dedicated room,
through local and conscious anesthesia. Mean US-based
ablated lesion size was 12.72 mm (range 0.7-20).

Five (41.7%, 5/12) tumors were located in the right breast
while seven (58.3%, 7/12) tumors were in the left breast.
The pathological diagnoses of the carcinomas were 10 ductal
infiltrating (83.3%, 10/12), 1 mucinous (8.3%, 1/12), and 1
tubular (8.3%, 1/12). Table 2 reported the clinical and US
assessment prior to ablation.

3.2. Laser Ablation Analysis. The fibers were placed into the
center of the lesion of each tumor, and LA was completed
according to a planned protocol in all sessions with a
technical success rate of 100 %. The overall treatment time
ranged from 20 to 35 minutes.

Response to the treatment was evaluated using US after 1
to 4 weeks, with US and mammogram at 6 months, and then
annually up to 5 years.

At the site of ablation, all lesions showed a well-
demarcated cystic lesion, visible at the 6-month US and
compatible with coagulative necrosis.The overall success rate
for complete tumor ablation (CTA) was 100% (Figures 2-3).
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Table 2: Patients characteristics.

Patient Number Reason for non-operability Age (Years) USG tumor size (Pre-biopsy) (mm)
01 Hypertension (HTN) and diabetes mellitus (DM) 80 15 mm
02 Congestive heart failure with DM 88 15 mm
03 CVS co-morbidity and HTN 83 10 mm
04 Ischemic heart disease 84 15 mm
05 DM with end stage renal disease 87 12 mm
06 Cardiomyopathy 86 10 mm
07 Patient refused operation 90 7 mm
08 CVS co-morbidity and pacemaker 85 15 mm
09 Patient refused operation 75 11 mm
10 Age factor with diabetes and hypertension 92 12 mm
11 Parkinson’s 90 20 mm
12 Congestive heart failure 88 15 mm

(a) (b)

Figure 2: Representative case of successful LA ablation in a patient with invasive ductal unifocal breast carcinoma of 18 mm of max diameter
in the upper outer quadrant of the right breast. (a) The US image before treatment shows the hypoechoic lesion with ill-defined margins and
the fine needle and the tip of the fiber in the outer third of the tumor mass. (b) The US image at the end of the treatment shows an evident
shadow cone due to the presence of gas bubbles that completely cover the ablated area.

At mammography, the necrotic lesion appeared as a typical
area of steatonecrosis (Figure 4).

Follow-up lasted a mean time of 28.5 months (range 6-
51). None of the patients demonstrated evidence of local or
distant recurrence during follow-up. No breast cancer related
deaths occurred in any of the patients.

3.3. Complications. During the procedure, 2 (16.6%, 2/12)
patients complained of mild pain and required conscious
sedation.The remaining patients well tolerated the procedure
with local anesthesia. However, all the patients experienced
a minimal aching sensation at the ablation site during the
first week after the procedure (SIR class A) [27, 28]. There
were no complications of skin burns in the posttreatment
clinical follow-up. The overall treatment time ranged from
20 to 35 minutes. Patients did not need hospitalization;
they underwent procedure and they discharged the same
day.

None of the patients sustained any systemic adverse
effects and there was no evidence of postablation hematoma,
infection, or skin burns.

4. Discussion

The main advantages of minimally percutaneous therapies
included the non-invasiveness, the good cosmesis, the lower
painfulness, the short recovery time, and the possibility
of a daycare procedure. These factors reduce the cost of
hospital stay and they potentially lower risks ofmorbidity and
mortality, in this group of elderly patients.

Our study showed that percutaneous laser ablation is
a feasible and effective option for selected unresectable BC
patients. Wemanaged to obtain complete ablation in patients
with small lesions (T1 lesions≤ 20mm).We excluded invasive
lobular carcinoma and ductal carcinoma in situ, due to the
unfavorable results with otherminimally invasive techniques,
as shown by previous reports [22].

In line with the above-mentioned studies, we chose US
to guide the treatment, since it was effective in showing the
real-time correct positioning of the needle at the center of the
lesion and the change in echogenicity during treatment. In
all cases, the increased echogenicity had an effect of partial
hiding of the treatment area (fog-effect). This is due to high
temperatures close to the fiber tip when it reaches over 100∘C
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(a) (b)

(c) (d)

Figure 3: Another example of successful LA ablation in a patient with invasive ductal carcinoma of 15 mm of max diameter in the upper
outer quadrant of the right breast. (a) The US image before treatment shows the hypoechoic lesion with blurred margins. (b) The US image
shows the laser applicator (21G needle and fiber) which, with a course parallel to the chest wall, reaches the outer edge of the lesion. (c) Finally,
the lesion is no longer appreciable, and in the treated area, there is an echogenic line with an evident shadow cone. (d) The US image of the
ablated area in the first hours after treatment appears in the form of a heterogeneous predominantly hyperechoic zone (gas bubbles) with
blurred margins.

and the secondary formation of air bubbles [22]. The choice
of the amount of energy administered to ablate the treated
lesions accorded with previous reports [23–26].

The choice of lesions up to 20mm in the greatest diameter
is due to the waited association between the success rate
of laser ablation and tumor size. The fine needle approach
offered the maximum flexibility and it allowed a tailored
approach to the characteristics and location of the tumor.
Increased experience of the radiologist could lead to the
ablation of larger lesions. None of our patients demonstrated
a radiological disease progression.

A breast MRI would have been an ideal contrasted
baseline examination in addition to the mammogram and
ultrasound, since it represents one of the most sensitive
techniques to assess the real extention of the lesion [29,
30]. However, in our group of patients, considering the
age factor and associated comorbidities of renal failure and
pacemakers in situ, we could not perform an MRI as a
baseline examination to all patients. This can represent a
limitation of our study.

Other limitation is related to the type of evaluation
after treatment, depending only on the imaging, without
histological confirmation of the response to the treatment. A

future prospective study is going to need a longer follow-up
and an evaluation of efficacy, proved through a biopsy after
treatment.

Moreover, in other case reports about small lesions (up
to 15 mm), authors have reported response rates to ablative
technique through mammography and US [21].

Less than 15% of our patients showed complications as
mild pain during procedure,while all the patients complained
of a mild dull aching pain after procedure. Long-term
cosmetic result was also satisfactory. Among the limitations
of the study, there is the small number of patients, highly
selected in the group of elderly patients affected by unifocal
tumors who are nonsurgical candidates. However, through
our pilot study, we can state that laser ablation can be usefull
and feasible in the treatment of single small breast cancers
with complete necrosis of the lesion, good cosmetic outcome,
and cost effectiveness.

5. Conclusion

Laser ablation is a feasible, minimally invasive, and cost-
effective alternative for a subset of patients affected by small
lesions, who are not eligible to the standard surgical approach,
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(a) (b)

Figure 4: Sequential mammograms showing the cystic oil formation by steatonecrosis over a period of 24 months. (a) Before LA (white
arrow) and (b) 24 month after a single laser treatment (white arrow).

as well as for patients who refuse surgery. However, further
larger prospective studies are strongly needed in order to
confirm our preliminary results.
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Background. Axillary lymph-node assessment is considered one of the most important prognostic factors concerning breast cancer
survival. Objective. We investigated the discriminative power of morphological and functional features in assessing the axillary
lymphnode.Methods.We retrospectively analyseddata from52 consecutive patientswhoundergoneDCE-MRI andwere diagnosed
with primary breast carcinoma: 94 lymph nodes were identified. Per each lymph node, we extracted morphological features:
circularity, compactness, convexity, curvature, elongation, diameter, eccentricity, irregularity, radial length, entropy, rectangularity,
roughness, smoothness, sphericity, spiculation, surface, and volume. Moreover, we extracted functional features: time to peak
(TTP), maximum signal difference (MSD), wash-in intercept (WII), wash-out intercept (WOI), wash-in slope (WIS), wash-
out slope (WOS), area under gadolinium curve (AUGC), area under wash-in (AUWI), and area under wash-out (AUWO).
Selection of important features in predicting metastasis has been done by means of receiver operating characteristic (ROC)
analysis. Performance of linear discriminant analysis was analysed. Results. All morphological features but circularity showed a
significant difference betweenmedian values of metastatic lymph nodes group and nonmetastatic lymph nodes group. All dynamic
parameters except forMSD andWOS showed a statistically significant difference betweenmedian values ofmetastatic lymph nodes
group and nonmetastatic lymph nodes group. Best results for discrimination of metastatic and nonmetastatic lymph nodes were
obtained by AUGC (accuracy 75.8%), WIS (accuracy 71.0%), WOS (accuracy 71.0%), and AUCWO (accuracy 72.6%) for dynamic
features and by compactness (accuracy 82.3%), curvature (accuracy 71.0%), radial length (accuracy 71.0%), roughness (accuracy
74.2%), smoothness (accuracy 77.2%), and speculation (accuracy 72.6%) for morphological features. Linear combination of all
morphological and/or of all dynamic features did not increase accuracy in metastatic lymph nodes discrimination. Conclusions.
Compactness as morphological feature and area under time-intensity curve as dynamic feature were the best parameters in
identifying metastatic lymph nodes on breast MRI.

1. Background

In 2017, breast cancer had the highest incidence among
female cancers and is still the second (after lung) leading
cause of death from cancer in the US [1]. The transition

from nonmetastatic to metastatic state of breast cancer is
characterised by the diffusion of the primary lesion towards
lymphatic sites. Therefore, accurate evaluation of metastasis
in axillaries lymphatic nodes is a crucial factor affecting
medical management, surgery, and prognosis [2–4].
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Sentinel lymph-node biopsy (SLNB) has been effectively
used for identifying, via radiotracer and/or blue dye, the
nodes draining the breast which are possibly the first to be
encountered during tumor spreading [5]. SLNB is commonly
executed after surgical removal of the primary lesion and
has shown an accuracy of 93.5 to 97.5% [6, 7]. However, it
has been noticed that SLNB can have long-term morbidity
that potentially can affect the quality of life despite being
less significant than axillary lymph-node dissection [8, 9].
In addition, preoperative evaluation of axillary lymph nodes
might improve patient-based treatment: in fact, options
might include neoadjuvant chemotherapy, intraoperative
breast radiotherapy, and reconstruction planning. Moreover,
when metastatic axillary disease is diagnosed before surgery,
the surgeon can discuss specific aspects of axillary lymph-
node dissection with the patient.

Despite being not very accurate, imaging techniques
such as ultrasound (US), computed tomography (CT), and
positron emission tomography (PET)/CT are often used in
clinical practice [10–13]. Breast magnetic resonance imaging
(MRI), because of its versatility, has gained a large consensus
over the past two decades and many technological improve-
ments have contributed to its diffusion [12]. In particular,
dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has been shown to be able to distinguish benign
from malignant breast lesions by means of simultaneous
evaluation of morphological and functional information. At
the time ofwriting, axillary lymph nodes evaluation viaDCE-
MRI has not yet been introduced in clinical practice. Mainly,
diagnostic criteria for malignancy of axillary lymph nodes
are based exclusively on morphology; however, these are still
controversial [11, 14, 15].

In this study, we investigated the discriminative power
of MRI in both morphological and functional features
derived by dynamic contrast-enhanced MRI (DCE-MRI) for
axillary lymph-node evaluation. We attempted to identify
the best quantitative feature to discriminate metastatic from
nonmetastatic lymph nodes among 26 morphological and
functional parameters and their linear combinations.

2. Methods

2.1. Patients Inclusion Criteria. A prospectively collected
database has been reviewed after Institutional Review Board
approval. We identified 268 consecutive patients from Febru-
ary 2009 to December 2013 for newly diagnosed breast
carcinoma. All these subjects had undergone DCE-MRI in
a single cancer centre. The study population comprised 52
patients with breast cancer who also underwent pathological
evaluation of axillary lymph nodes. Age ranged from 31
to 58 years. Patients included in the study (1) had breast
cancer with clinical evaluation (TNM score) T1-T2 and (2)
underwent SLNB or/and axillary lymphadenectomy. Patients
who carried an implanted device, were pregnant, or had
any contraindication for MRI were not included in the
study. In addition, we excluded patients having undergone
radiation therapy or chemotherapy within 12 months before
the MRI. All patients provided informed consent to the use
of their data for research purposes. This retrospective study

was performed according to regulations issued by our local
Institutional Review Board.

2.2. MRI Methodology. DCE-MRI has been executed using
1.5 T breast-dedicated equipment (Aurora; Aurora Imaging
Technology, North Andover, USA), embodying an in-table
coil [14]. Exams were arranged from the 7th to 14th day of
the menstrual cycle in premenopausal women; no scheduling
limitations were applied in postmenopausal women.

The sequence used for precontrast imaging was a three-
dimensional (3D) nonspoiled SPIRAL-RODEO fat-sat (TR
29ms, TE 4.8ms, flip angle 45∘, matrix 512 × 512, thickness
1.13mm, and gap 1.13mm); after contrast injection, four
dynamic 3D spoiled SPIRAL-RODEO fat-sat acquisitions
(TR 29ms, TE 4.8ms, flip angle 45∘, matrix 512 × 512, thick-
ness 1.13mm, and gap 1.13mm) were used. The time interval
between acquisitions was 90 s. A bolus of gadobenate dimeg-
lumine (Multihance, Gd-BOPTA Bracco; Atlanta Pharma,
Konstanz, Germany) has been intravenously injected using
a dose of 0.1mmol/kg body weight at a flow rate of 2ml/s,
followed by 20ml of saline solution at the same rate. An
automatic contrast delivery system was employed (Optistar
Elite, Covidien Imaging Solution, Hazelwood, USA).

2.3. Histopathological Evaluation and Operation of Axillary
Lymph Nodes. Samples of SLNB were assessed by immediate
frozen section and hematoxylin and eosin staining. The
nodeswere subsequently submitted for permanent sectioning
and immunohistochemical assay. According to the American
Joint Committee on Cancer guidelines for breast cancer stag-
ing [16], a patient with isolated tumor cells was considered
node-negative and did not undergo any additional lymph-
node surgery.

2.4. Images Analysis. Two radiologists having more than
15 years of experience (AP) and more than 10 years of
experience (SF), respectively, reviewed images. For each
lymph node having a lower diameter ≥ 10mm, the manual
segmentation was made using OsiriX v.3.8.1, on the data
acquired after contrast injection using a pulse sequence for
three-dimensional fat-saturated axial nonspoiled SPIRAL-
RODEO images (Figure 1). Per each lymph node, on each
slice, a region of interest (ROI) was drawn: the set of all ROIs
corresponding to a single lymph node formed a Volume of
Interest (VOI). ROI border has been placed in the lymph-
node periphery close to the margin. Lymph nodes were eval-
uated using quantitative descriptors involving morphological
and dynamic parameters.

2.5. Dynamic Parameters. Nine dynamic features emerged
from the literature [17–20], which were extracted using the
approach previously reported in a previous publication from
our group [19] (Figure 2):maximum signal difference (MSD),
the time to peak (TTP) between the wash-in (WI) and wash-
out (WO) segments, the WI slope (WIS), the WO slope
(WOS), theWI intercept (WII), theWO intercept (WOI), the
area under curve (AUC), the area under WI tract (AUCWI),
and the area under WO tract (AUCWO).
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Figure 1: Lymph-node illustration on contrast-enhanced MR imaging and their segmentation for a single slice: (a)–(c) grey level; (b)–(d)
RGB values.

Figure 2: Dynamic parameters illustration.

2.6. Feature Extraction. Per each VOI, 17 morphological
features were calculated [21–23]. Before feature computation,
all lymph-node binary masks have been reinterpolated on a
common grid of equal size (1×1×1mm3) in three orthogonal
directions. A brief description of all morphological features
has been provided in Table 1. Detailed mathematical defini-
tions might slightly vary among studies; therefore, we report
the specific definitions we used:

(1) Circularity = (volume of the sphere with average
lymph-node radius)/(lymph-node volume).

(2) Compactness = (lymph-node surface area)/(lymph-
node volume).

(3) Irregularity = 1 – (surface area of the sphere with aver-
age lymph-node radius)/(lymph-node surface area).

(4) Diameter = diameter of the sphere corresponding to
the lymph-node volume.

(5) Rectangularity = (lymph-node volume)/(volume of
the smallest parallelepiped containing the lymph
node).

(6) Radial length = average distance between boundary
points and lymph-node barycentre.

(7) Volume = number of voxels of the lymph node times
the volume of a single voxel.

(8) Smoothness = (1/𝑁)∑𝑛 𝑅𝑛 − (𝑅𝑛−1 + 𝑅𝑛+1)/2, where
𝑅𝑛 is the 𝑛th boundary point distance from the
barycentre along a lymph-node slice.

(9) Curvature = average(abs(𝑥𝑦–𝑦𝑥)/(x2 + y2)(3/2)),
where 𝑥,𝑦 are the coordinate parametric represen-
tation of the boundary points along a lymph-node
slice, xy are the first derivative with respect to the
parameter, and xy are the second derivative.

(10) Roughness: ([(1/𝑁)∑𝑁𝑛=1(𝑅𝑛 − 𝜇)
4]1/4 − [(1/

𝑁)∑𝑁𝑛=1(𝑅𝑛 − 𝜇)
2]1/2)/𝜇, where 𝑁 is the number of

points of the boundary, 𝑅𝑛 is the radial distance of
the 𝑛th point, and 𝜇 is the average radial distance.

(11) Sphericity = (average radial length)/(standard devia-
tion radial length).
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Table 1: List of features used in analysis with definitions.

Feature category Feature Description

Dynamic

TTP Time to peak
MSD Maximum signal difference
AUGC Area under gadolinium curve
AUCWI Area under gadolinium curve in the wash-in phase
AUCWO Area under gadolinium curve in the wash-out phase
WIS Wash-in slope
WII Wash-in intercept
WOS Wash-out slope
WOI Wash-out intercept

Morphological

circularity Similarity of the lesion shape to a sphere
compactness Ratio between surface and volume

convexity Ratio between the smallest volume with convex
curvature that contains the lymph node and its volume

curvature Measure of curvature of lymph node contour

elongation Parameter that estimates how much the ROI is
pronounced along one direction than along the other

diameter Diameter of the sphere having the same ROI volume

eccentricity Ratio of the larger rope and the largest among the
orthogonal ropes

irregularity Deviation of the lesion surface from the surface of a
sphere

radial length Average distance between points on the border and the
center of the lymph node

entropy Entropy of radial length
rectangularity Similarity of the lesion shape to a rectangle

roughness Distances of each point of the center than the radial
length average

smoothness Measurement of lymph node contour irregularities

sphericity Ratio between the average radial length and the
standard deviation of the rays

spiculation Standard deviation of the radial lengths with respect to
the radial length average

surface Sum of lymph nodes contour pixels
volume Volume of the entire lymph node

(12) Eccentricity = (lymph-node largest diameter)/(the
largest diameter orthogonal to the previous one).

(13) Surface = number of voxels belonging to the lymph-
node boundary.

(14) Spiculation = standard deviation of radial length.
(15) Convexity = (convex-hull volume)/(lymph-node vol-

ume);
(16) Entropy: −∑𝑛 𝑃(𝑅𝑛 = 𝑟𝑛) log𝑃(𝑅𝑛 = 𝑟𝑛), where
𝑃(𝑅 = 𝑟𝑛) is the distribution of radial length.

(17) Elongation = (length)/(width) of the smallest rectan-
gle containing the lymph node averaged per each slice
in three orthogonal directions.

2.7. Statistical Analysis. Histopathological results after sur-
gical intervention served as a reference standard for 𝑁

staging. For each parameter, median and standard deviation
(SD) were calculated as representative values of segmented
VOI. Interobserver agreement was calculated to assess the
variability between two readers in the manual lymph-nodes
segmentation. As is commonly reported, an interobserver
correlation coefficient of 0–0.20 reflected a poor agreement,
of 0.21–0.40 reflected a fair agreement, of 0.41–0.60 reflected
a moderate agreement, of 0.61–0.80 reflected a good agree-
ment, and of 0.81–1.00 reflected an excellent agreement. The
nonparametric Mann–Whitney test was used to emphasize
statistically significant difference between median values of
morphological and dynamic parameters inmetastatic lymph-
nodes group versus nonmetastatic lymph-nodes group. A 𝑃
value of <0.05 was considered significant for all tests.

Receiver operating characteristic (ROC) analysis in addi-
tion to sensitivity, specificity, misclassification error (number
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Table 2: Morphological features median and standard deviation values for each parameter.𝑃 value was calculated usingMann–Whitney test.

Morphological Features
Metastatic Non Metastatic

𝑃 valueLymph-nodes Lymph-nodes
Median SD Median SD

circularity 0,001 0,002 0,002 0,003 0,829
compactness 0,339 0,125 0,453 0,076 0,021
Convexity 0,824 0,133 0,857 0,159 0,005
curvature 0,091 0,038 0,133 0,052 0,001
Elongation 1,133 0,307 1,281 0,430 0,000
diameter 17,812 7,891 14,392 3,278 0,000
eccentricity 1,658 0,584 1,679 0,678 0,000
Irregularity −3,487 0,562 −3,425 0,760 0,000
radial length 0,929 0,031 0,960 0,020 0,000
Entropy 4,763 0,214 4,664 0,241 0,000
rectangularity 0,358 0,071 0,332 0,092 0,000
Roughness 0,353 0,232 0,102 0,078 0,000
smoothness 4,283 1,914 3,320 0,539 0,000
sphericity/roundness 26,372 15,870 41,890 27,259 0,000
Spiculation 6,602 2,656 4,323 1,369 0,000
Surface 1094,000 1207,675 698,000 540,839 0,000
volume 2959,000 7956,682 1561,000 1114,509 0,000

Table 3: Dynamic features median and standard deviation values for each parameter. 𝑃 value was calculated using Mann–Whitney test.

Features Metastatic Lymph-nodes Non Metastatic Lymph-nodes
𝑃 value

Median SD Median SD
MSD 1079,000 641,773 597,500 474,324 1,000
TTP 372,261 169,279 459,888 179,981 0,021
AUC 3,000 1,193 3,000 0,994 0,003
WII 1,453 0,215 1,521 0,198 0,001
WOI 11475,000 3002,216 8871,375 2198,225 0,000
WIS 1924,637 819,422 2005,110 668,567 0,037
WOS 1384,000 535,408 1442,450 486,190 0,214
AUCWI 395,952 174,820 468,695 179,586 0,002
AUCWO 2951,250 1549,637 3654,000 1280,761 0,000

of false negatives and false positives over the total), and accu-
racy (number of true negatives and true positives over the
total) has been performed with respect to histopathological
results.

Moreover, we applied a linear discriminant analysis
(LDA) [24] to identify the best weighted linear combination
of features producing the best results considering, respec-
tively, morphological features only, dynamic features only,
and both kinds of features together (sensibility and specificity
were reported andwere considered significant for the features
with an accuracy of >70% at ROC analysis). 10-fold cross-
validation has been performed in order to have robust result
[24].

Statistical processing and classification have been per-
formed by means of the Statistics Toolbox within Matlab
R2007a (MathWorks Inc., Natick, USA).

3. Results

In the present study, 94 dominant lymph nodes were eval-
uated in 52 patients with primary breast carcinoma: 48
metastatic lymph nodes and 46 not pathological lymph
nodes.

Table 2 reports median and standard deviation for each
morphological parameter in the metastatic lymph-nodes
group versus the nonmetastatic lymph-nodes group. The
median of all the parameters, except circularity, showed a
statistically significant difference between the two groups.

Table 3 reports median and standard deviation for each
dynamic parameter in the metastatic lymph-nodes group
versus the nonmetastatic lymph-nodes group.Themedian of
all parameters, except MSD and WOS, showed a statistically
significant difference between the two groups.
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Table 4: ROC analysis findings for eachmorphological and dynamic parameter in terms of sensitivity, specificity, misclassification error, and
accuracy.

Features Sensitivity [%] Specificity [%] Misclassification Error [%] Accuracy [%] AUC
MSD 73,910 64,100 32,260 67,740 0.668
TTP 38,890 34,620 62,900 37,100 0.516
AUC 80,770 72,220 24,190 75,810 0.769
WII 40,000 43,240 58,060 41,940 0.501
WOI 44,830 45,450 54,840 45,160 0.437
WIS 78,260 66,670 29,030 70,970 0.717
WOS 70,970 70,970 29,030 70,970 0.657
AUCWI 28,570 39,020 64,520 35,480 0.459
AUCWO 81,820 67,500 27,420 72,580 0.766
Circularity 60,980 71,430 35,480 64,520 0.762
Compactness 83,330 81,250 17,740 82,260 0.824
Convexity 42,420 41,380 58,060 41,940 0.469
Curvature 68,570 74,070 29,030 70,970 0.770
Elongation 57,890 62,500 40,320 59,680 0.680
Diameter 69,230 63,890 33,870 66,130 0.738
Eccentricity 52,630 54,170 46,770 53,230 0.453
Irregularity 54,550 55,170 45,160 54,840 0.448
Radial Length 76,000 67,570 29,030 70,970 0.811
Entropy 62,500 72,730 33,870 66,130 0.699
Rectangularity 56,670 56,250 43,550 56,450 0.564
Roughness 85,710 68,290 25,810 74,190 0.834
Smoothness 90,480 70,730 22,580 77,420 0.810
Sphericity/roundness 62,790 78,950 32,260 67,740 0.710
Spiculation 81,820 67,500 27,420 72,580 0.742
Surface 68,180 60,000 37,100 62,900 0.713
Volume 92,860 62,500 30,650 69,350 0.738

Table 5: LDA analysis findingswhen allmorphological and dynamic featureswere considered andwhen the linear combinations of significant
morphological and dynamic features were considered.

Sensitivity [%] Specificity [%] AUC
All dynamic features 77,420 70,970 0.778
All morphological features 70,970 80,650 0.803
All features 64,520 77,400 0.754
All significant dynamic features 85,000 66,700 0.794
All significant morphologic features 88,500 77,800 0.812
All significant features 81,000 65,900 0.789

Interobserver correlation coefficient calculated on VOI
for each segmented lymph node was of 0.864 (95% CI:
0.835–0.884) indicating an excellent agreement between the
two manual segmentations; in addition, this indicates the
robustness of morphological and dynamic parameters calcu-
lated on segmented lymph nodes.

Table 4 reports findings of ROC analysis for each
morphological and dynamic parameter in terms of sensi-
tivity, specificity, misclassification error, and accuracy. The
best discrimination between metastatic lymph nodes and
nonmetastatic lymph nodes has been obtained by AUC,
WIS, WOS, and AUCWO of the dynamic features and by

compactness, curvature, radial length, roughness, smooth-
ness, and speculation of the morphological features.

Table 5 reports the finding of LDA analysis when all
morphological and dynamic features were considered and
when the linear combination of significant morphological
and dynamic features was considered.

4. Discussion

Histopathologic staging of axillary lymph node is one of
the most commonly used predictors of breast cancer sur-
vival. Currently, diagnosis of metastatic involvement requires
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invasive procedures such as pathologic assessment of biopsy
tissue or postsurgery dissection. Conventional MRI with
double breast coils can noninvasively evaluate both breasts
and simultaneously assess axillary lymph nodes; moreover,
new techniques, such as DCE-MRI, are now achieving a
sufficient degree of maturity for breast cancer evaluation. The
verification of MRI-based diagnoses of a specific node with
histopathologic analysis of the same node is still a challenge.
Moreover, the use of DCE-MRI for assessment of metastatic
axillary lymphnodes has not yet been sufficiently investigated
and conflicting results until now have been published [25–
32]. In this study, we used several morphological features
and several dynamic MRI characteristics of axillary lymph
nodes. We investigated whether and how malignant nodes
could be assessed preoperatively and noninvasively by means
of MRI using both morphologic and dynamic criteria. The
sensitivity of these features ranged from 28.6% to 92.9%,
and the specificity ranged from 34.6% to 81.3%. The best
results for discrimination of nonmetastatic lymph nodes
by metastatic lymph nodes have been achieved by AUC,
WIS, WOS, and AUCWO, among the dynamic features,
and by compactness, curvature, radial length, roughness,
smoothness, and speculation, amongmorphological features.
The best dynamic parameter was AUC reporting a sensitivity,
specificity, misclassification error, and accuracy of 81%, 72%,
24%, and 76%, respectively. The best morphological param-
eter was compactness reporting a sensitivity, specificity,
misclassification error, and accuracy of 83%, 81%, 18%, and
82%, respectively.

Our results are similar to those of other researchers [25–
29]. Choi et al. [25] performed a meta-analysis reporting the
diagnostic performance of CT, MRI, and PET/CT for detec-
tion of metastatic lymph nodes in cervical cancer patients:
for region- and node-based data analysis, MRI sensitivity and
specificity were 38% and 97%, respectively. He et al. [26] and
Baltzer et al. [27] investigated diagnostic performance of spe-
cific morphological and/or dynamic features obtained byMR
imaging. He et al. reported the area under ROC (AUROC) for
short and long lymph-node axis of 0.89 and 0.74, respectively
(sensitivity of 93.3% and specificity of 72.6% for short axis,
sensitivity of 88.1% and specificity of 64.1% for long axis) and
the AUROC of early stage enhancement rate as a dynamic
feature (sensitivity of 97.0% and specificity of 73.5%). Baltzer
et al. [27] investigated only the margin of lymph nodes as a
morphological parameter reporting a sensitivity of 41.2% and
a specificity of 95.2%. Schacht et al. [28] reported the results
of a quantitative breast MR image analysis for classification
of axillary lymph nodes. The best features in that study were
the circularity as a morphological parameter with AUROC of
0.67 and the wash-out rate with AUROC of 0.62. Harada et
al. [29] evaluated the diagnostic performance of morphologic
features computable from MR images using a contrast agent
actually not commercialized (ultrasmall superparamagnetic
iron oxide): sensitivity, specificity, and overall accuracy were
36.5%, 94.1%, and 81%, respectively.

On the basis of our results, a linear combination of
morphological and dynamic feature does not increase the
accuracy in lymph-nodes discrimination. LDA results of each
group and combination of groups (morphological and/or

dynamic parameters) were comparable to results of dynamic
and morphological parameters considered separately. A
future endpoint could be to perform multivariate analysis
of functional parameters including other modalities such as
PET/CT examination or quantitative parameters derived by
hybrid system like PET/MRI [33].

A limit of our study consists of the manual segmenta-
tion of lymph nodes. However, an expert breast radiologist
performed this procedure. A second limitation is the level
of complexity in the “gold standard” due to the difficult task
of identifying which lymph nodes were biopsied or dissected
and of matching the pathologic results to the imaged nodes.
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