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Chromolaena odorata is a medicinal herb with prominent pharmacological properties. The therapeutic efficiency of Chromolaena
odorata extracts and its ingredients have, however, been limited by various factors, including the lack of targeting capacity and poor
bioavailability. To approach this drawback, ethyl acetate fraction extract of Chromolaena odorata- (EA.ChO-) encapsulated
pluronic-based nanocarriers was disclosed herein. The most common pluronic triblock copolymer micelles (pluronic F127) was
used for the nanosized formulation of Chromolaena odorata extract. The obtained results show that EA.ChO-encapsulated
nanoparticles have a spherical morphology with a designed hydrodynamic size was about 183.7 nm and zeta potential -39.5mV.
The EA.ChO nanoparticles are stable in different aqueous solutions (water, PBS 2.8, and PBS 7.4). The lyophilized form of the
EA.ChO nanoparticles exhibited excellent stability for long-term storage. Notably, the EA.ChO nanoparticles were 1.3-1.4 fold
more effective in the growth of fibroblast than the free EA.ChO, verifying the potential of pluronic F127 nanoparticles to the
increased function of EA.ChO in the proliferation of fibroblast cell. In addition, bleeding stopped within 55 ± 6 s which was 20 s
faster than that of free EA.ChO and 38-44 s faster than that of negative control treatments. The EA.ChO nanoencapsulation
processed a rapid blood clot formation compared to control, free EA.ChO, pluronic F127, and water, suggesting the excellent
bioavailability of EA.ChO nanoencapsulation. The obtained results thus provided a promising prospect for raising the activity
Chromolaena odorata extract in wound healing application.

1. Introduction

Throughout the history, herbs have been used in healthcare
improvement. Currently, herbal medicine has gained more
attention due to their safety and promising pharmacothera-
peutics in the Western medicine [1]. However, most of the
natural compounds which are highly lipophilic are not ideal
for drug delivery because they do not dissolve well in the

body [2]. They have lower bioavailability and require
repeated administration or higher doses in order to achieve
the desired therapeutic effects, which can lead to acute toxic-
ity, adverse effects, and low patient compliance [2, 3].

Nanoencapsulation technology is one of the most effec-
tive strategies to overcome the abovementioned hinders of
herbal extract [3–6]. The use of nanoparticles as the herbal
carrier has received a lot of attention with enthusiasm
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because it can help enhance the stability and the absorption
of dug as well as the an effective permeability to the cell mem-
brane resulting in the maximum of the therapeutic properties
of herbal medicine [3]. As a matter of fact, various materials
such as liposome, hydrogel has already been developed over
the years for herbal medicine delivery purpose [2]. Amongst,
polymeric nanoparticles are the most common selection for
drug carriers because they are able to encapsulate drug inside
nanocarrier due to their excellent biocompatibility, nontoxic
to biological system, and biodegradation as well as high sta-
bility during storage [4, 7]. In recent times, block copolymers
have emerged as a potential agent for drug delivery and gene
therapy [5]. The small size, unique nanoscopic architecture,
stability, and ability of block copolymer micelles suitable for
good compatibility with the drug of choice are all highly
desirable characteristics for a drug delivery system [8]. One
such block copolymer proposed for controlled drug delivery
is pluronic (Poloxamer), which has a triblock PEO−PPO
−PEO structure (PEO: poly(ethylene oxide); PPO: poly(pro-
pylene oxide)). At high temperatures, the central PPO block
becomes hydrophobic, while the PEO blocks remain hydro-
philic. Because of this amphiphilic nature, pluronic mole-
cules, above a critical temperature and concentration, self-
aggregate in aqueous solutions to form spherical micelles
with hydrophobic PPO cores surrounded by hydrophilic
PEO coronas [5, 9]. Poloxamers generally regarded as non-
toxic and nonirritant materials are used in a variety of oral,
parenteral, and topical pharmaceutical formulations [10].
They are neither absorbed from the gastrointestinal tract
nor metabolized in the body [11]. Poloxamer 407 (pluronic
F127) is one of the most commonly used owing to its solubi-
lizing capacity, low toxicity (LD50 in mice between 1.7 g and
5.0 g/kg body weight), drug release characteristics, and com-
patibility with numerous biomolecules and excipients [12].
Poloxamer 407 is considered as an “inactive” ingredient for
different types of preparations (e.g., IV, inhalation, oral solu-
tion, suspension, ophthalmic, or topical formulations) by
FDA guide [11]. While there is an upsurge of reviews sum-
marizing the applications of pluronic F127 in the delivery
of synthetic drugs, the possible use of these materials in for-
mulating herbal medicines has rarely been put to formal dis-
cussions in the literature.

Chromolaena odorata (L.) is a medicinal herb widely dis-
tributed in the tropical and subtropical areas. The leaves of
the Chromolaena odorata (ChO) are used in the traditional
medicine for treatment of ailments such as cough, malaria
fever, diarrhea, hemostasis, and wound healing [13]. More-
over, various pharmacological properties of ChO leaf extracts
are reported such as antibacterial [14–17], anticancer [18,
19], anticonvulsant [20], antidiabetic [21–23], antidiarrheal
[24, 25], antifungal [26, 27], anti-inflammatory [28–30], anti-
oxidant [31–36], antiparasitic [37, 38], hemostatic and
wound healing [39–42], and hepatoprotective activities [43,
44]. Pharmacological effects are attributed to the rich pres-
ence of lipophilic flavonoids of the leaves such as quercetin,
sinensetin, sakuranetin, kaempferol, and salvigenin, which
were isolated and identified [13]. However, the biggest
dilemma allied with the use of these flavonoids is its low bio-
availability due to poor aqueous solubility, which prevents

them from clinical application. Therefore, improving solubil-
ity of the lipophilic flavonoids may improve the bioavailabil-
ity and the overall pharmacological activity of ChO extracts.

In the present study, the ChO nanoencapsulation systems
using pluronic F127 were first developed. This work
describes our findings in relation to the potential usage of
pluronic F127 as the carrier for the EA.ChO to promote the
biological activity of this fraction. The morphology and size
distribution of EA.ChO delivery system were characterized
by dynamic light scattering (DLS) and transmission electron
microscopy (TEM), respectively. The dynamic size of
nanoencapsulation was investigated under different media
as well as various storage times. Further, we reported some
promising wound healing properties of the herbal delivery
system, as evidenced by the proliferation of human fibroblast
cells and the ability of hemostasis in vivo model.

2. Materials and Methods

2.1. Materials. Pluronic® F127 was supplied by Merk (Singa-
pore). Folin and Ciocalteu’s phenol reagents and gallic acid
(standard reagent grade) were purchased at Sigma-Aldrich
(Singapore). The other chemical agents for extraction step
were ordered from Labscan (Thailand) or Chemsol VINA
(Vietnam).

In cell culture, Dulbecco’s modified Eagle’s medium
(DMEM), fetal bovine serum (FBS), penicillin-streptomycin
solution (10,000U/mL), and sodium bicarbonate originated
from Sigma-Aldrich (Singapore). Phosphate-buffered saline
(PBS) (pH7.4, 1X) was purchased from Gibco. Unless other-
wise specified, all other chemicals were acquired from RCI
Labscan and Alfa Aesar.

2.1.1. Plant Material. ChO leaves were collected from District
2, Ho Chi Minh City, Vietnam, in August 2018. The plant
samples were identified by Doctor Van Hong Thien, Depart-
ment of Biotechnology, Institute of Biotechnology and Food
Technology. The voucher specimen (No. ChO-01) was
deposited at School of Medicine—Vietnam National Univer-
sity at Ho Chi Minh City. The leaves were quickly rinsed,
dried under shade for 7 days, and then ground into powder
by a mechanic grinder and stored in the jugs until use.

2.1.2. Animal Material. Male Swiss albino mice (20 ± 2 g)
were obtained from the Institute of Vaccines and Medical
Biologicals, Nha Trang (Vietnam). The mice were kept for
at least 2 days before testing. All mice were fed with standard
food and water. Experiments on mice were complied with
International Guiding Principles for Biomedical Research
Involving Animals [45]. All of the procedures in this research
were approved by Scientific Council of School of Medici-
ne—VietnamNational University, Ho Chi Minh City (Proto-
col M03).

2.2. Preparation of Plant Extracts. Powder of the leaves was
extracted by ethanol 96% by using the percolation method.
Then, the supernatant was concentrated by evaporating the
solvent to collect the first crude extract. Next, it was dissolved
in methanol 20% and sequentially shaken with different sol-
vents such as petroleum ether, chloroform, and ethyl acetate
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(EA). The EA solution was collected. Finally, the EA solution
was concentrated by evaporation, and the residue was further
dried under vacuum at 40°C to obtain the EA crude fraction
extract. It was stored in air-tight containers and preserved in
the refrigerator for subsequent use.

2.3. Preparation of Nanoparticles. EA extract (1 g) was dis-
solved in ethanol. F127 (1 g) was prepared in deionized water
(20ml) and then let at 4°C to reach the homogenous state.
Extract solution was then dropwised into F127 which was
under sonication. The obtained solution was further soni-
cated for 5 minutes. Next, the solution was stirred at room
temperature overnight. The centrifugation at 21000 rpm
was applied to remove the nonencapsulated extract. The
supernatant was collected and then freeze-dried for further
study. The encapsulated efficacy was calculated via the ratio
of total phenolic content in nanoparticles.

2.4. Nanoparticle Characterization

2.4.1. Morphology. The shape and surface morphology of the
nanoparticles were analyzed by transmission electron
microscopy (TEM) (JEM-1400 JEOL).

2.4.2. Analysis of Particle Size and Particle Size Distribution.
The Z-average particle size and particle size distribution of
nanoparticles were analyzed using nanopartica SZ-100 series
instrument (Horiba). For size measurement, the lyophilized
form of the EA.ChO nanoparticles was redissolved into PBS
7.4 (1X, Gibco) to make 100 ppm. The solution was kept at
4°C for 24 h before examination. The hydrodynamic size of
nanoparticles was recorded under following condition: θ =
90°, temperature = 25°C, and gate time = 0 to 1024ms. The
size of nonencapsulated pluronic F127 was prepared with
similar protocol of EA.ChO nanoparticles.

2.4.3. Measurement of Zeta Potential. The zeta potential of
the nanoparticle was measured using nanopartica SZ-100
series instrument (Horiba). EA.ChO nanoparticles were pre-
pared in PBS 1X (pH7.4, Gibco) and then were let stable at
4°C before investigation. This obtain solution was loaded into
electrophoretic cell. The data was obtained at 25°C.

2.5. Stability Test of Nanoparticles. First, EA.ChO was dis-
solved in various aqueous conditions (water, PBS 2.8 and
PBS 7.4). Then, these solutions were stable at room tempera-
ture for 24 h before measuring size-based DLS techniques.
Second, EA.ChO (100ppm) in PBS 7.4 was put in the room
temperature for different time points. At the determined
time, the size of EA.ChO was detected under the same condi-
tion with previous DLS testing. Each experiment was
repeated at 3 independent times.

2.6. In Vitro Release Study. The in vitro drug release was stud-
ied by dialysis bag diffusion method [46]. 1ml sample (EA
extract or EA.ChO nanoparticles) was dispersed into dialysis
bag (3.5 kDa), and the dialysis bag was immersed in 20ml of
PBS 1X at 37 ± 0:5°C with continuous magnetic stirring at
60 rpm. Samples (1ml) were withdrawn at a defined time
intervals and replaced with equal amounts of fresh PBS 1X
to maintain a constant volume. After suitable dilutions, the

samples were determined the phenolic contents in the free
EA extract and EA.ChO nanoparticles and the cumulative
percentage of phenolics released was calculated by the follow-
ing formula: cumulative percentage of phenolics released ð%
Þ = ðcumulative amount of phenolics in dissolutionmedium
at the predetermined timeÞ/total amount of phenolics in EA:
ChOnanoencapsulationÞ× 100%.

2.7. Determination of Phenolic Contents. The total phenolic
content was determined for individual extracts using the
Folin-Ciocalteu method [47]. Briefly, 0.5mL of extract solu-
tion was mixed with 2.5mL of 0.5N Folin-Ciocalteu reagent
and incubated at 37°C. After 4 minutes, 2.2mL of Na2CO3
(10%) was subsequently added to the mixture and incubated
at 37°C for 2 hours with intermittent agitation. Afterwards,
the absorbance was measured utilizing a UV Spectrophotom-
eter (Shimazu, UV-1800) at 760nm against a blank without
extract. The outcome data were expressed as mg/g of gallic
acid equivalents in milligrams per gram (mg GAE/g) of dry
extract.

2.8. In Vitro Cytotoxicity and Cell Proliferation Study

2.8.1. Cytotoxicity Assay. The SRB assay [48] was used to
carry cytotoxicity in cell-based studies. Human fibroblast
cells (BJ (ATCC®CRL-2522™)) were seeded on 96-well plates
with the density of 2 × 103 cell/well and cultured in DMEM
supplemented with 10% FBS and 1% penicillin and strepto-
mycin at 37°C, 5% CO2, and 90% humidity for 24h before
incubated with testing samples. The EA.ChO nanoparticles
were prepared in water while the raw EA extract was pre-
pared in DMSO, and then diluted with fully supplement
DMEM to reach different concentration of the samples (from
0.025 to 1mg/ml). Water and DMSO were used as the con-
trols in this study. At the determined time points (48 h,
72 h, and 96h), Sulforhodamin B Assay Kit (ab235935) was
used to determine the cell viability following the guidance
of manufacturer.

2.8.2. Cell Proliferation. First, 2 × 104 cell/ml was placed in
the 35mm culture dishes, and the completed DMEM (sup-
plemented with 10% FBS and 1% penicillin and streptomy-
cin) was added. After 24h incubated at 5% CO2 and 90%
humidity, the media was discarded and the new media con-
taining various concentrations of samples was supplied.
These cells were then put in incubator at the same condition.
At the determine time, the media was removed and the cell
was washed 3 times with PBS 1X before adding 0.25%
Trypsin-EDTA (Gibco). The cells were then collected via
the centrifugation at 1200 rpm. Full DMEM was added in
the pellet cell. 10μl of this suspension was mixed with 10μl
trypan blue (0.4%) and then loaded into hemacytometer.
The results were reared by cell counter machine (Countess®
Automated Cell Counter-life technologies). The growth rate
was calculated via the below formula:

Growth rate = treated cell
nontreated cell

� �
× 100: ð1Þ
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The experiment was repeated 3 times for each indepen-
dent replication.

2.9. In Vivo Hemostatic Activity Test. The mice were divided
into 4 groups: group I (EA.ChO nanoparticle) and group II
(EA extract) were treated groups while group III (F127)
and group IV (water) were kept as control groups. After 21
consecutive days, the bleeding time and clotting time test
were done.

2.9.1. Bleeding Time. Bleeding time was based on the method
described by Rajasekaran [49]. Bleeding time was assessed by
cutting the tip of the tail of each mouse with a sharp pair of
scissors (5mm); then, the tail was placed in an isotonic saline
solution maintained at 37°C immediately. A stopwatch was
started simultaneously with the immersion of the tail in the
saline solution. Bleeding time was noted from appearance
of the first drop of blood to the bleeding stopped completely.

2.9.2. Clotting Time (Drop Method) [50]. First, place a drop of
blood (5mm in diameter) from the tail on a dry glass slide.
Then, start the stop watch and note the time. Next, draw a
pin through the drop every 30 seconds, and note the time
when fibrin threads adhere to the pin and move with it out
to the blood drop. The time interval between placing the
blood drop on the slide and the formation of fibrin threads
was taken as the clotting time.

2.10. Statistics. Results were expressed as mean ± SEM (stan-
dard error of the mean). Statistical difference between groups
was determined using Welch’s t-test. A p value of <0.05 was
considered statistically significant.

3. Results and Discussion

3.1. Characterization of Chromolaena odorata
Nanoencapsulation Systems. In the present study, ethyl ace-
tate fraction extract of the leaves of Chromolaena odorata
(EA.ChO) was encapsulated into pluronic F127 micelles by
a nanoprecipitation technique combining ultrasonic emulsi-
fication and solvent evaporation. The size distribution for
empty F127 micelles and EA.ChO loaded micelles are illus-
trated in Figure 1. The hydrodynamic size of empty F127
micelles when dissolved in PBS at pH7.4 during preparation
was 10.6 nm with polydispersity index (PDI) 0.499
(Figure 1(a)). The incorporation of EA.ChO increases the
radii of the micelles, which is parallel with previous experi-
ments involving the encapsulation of drug molecules in
pluronic block copolymer micelles [51, 52]. After incorporat-
ing EA.ChO, the average size of nanoparticles was 183.7 nm
(Figure 1(b)), suggesting the evidence for the successful load-
ing process. In addition, the time correlation function of
EA.ChO nanoparticles (inset in Figure 1(b)) exposed a single
exponential decay riding on top of a baseline, indicating that
EA.ChO nanoparticles are homogeneous size distribution
[53] and the interaction between these nanoparticle-like
aggregates are small. Nanoparticles of such sizes are known
to be easily uptaken by cells [54] rather than eliminated in
the blood stream [55], which constitutes a promising feature
of EA.ChO nanoparticles in the light of their biomedical

application. In agreement with this, the zeta potential was
determined to -39.5mV (Figure 1(c)), which was indicated
the high stability of nanoparticles [56]. The negative value
in zeta potential could be due to negative charge of phenolic
compounds at the surface of particles (F127 micelles) [57] or
a higher exposure of negative functional groups of EA.ChO
when interacting with incorporated phenolics [58]. Further,
the TEM images (Figure 1(d)) showed spherical particles
with uniform size and with homogenous structure, which is
consistent with the previous assumption about their time
correlation function. Regarding drug delivery systems
(DDSs), drug-loading efficacy is a critical parameter that
directly affects the therapeutic efficacy of the system. Herein,
taking total phenolic content (calculated by Folin-Ciocalteu
assay) as the evaluation index, the encapsulation efficiency
(EE) was established as 81:4 ± 1:26%, corresponding to
142:5 ± 1:24 GAE micrograms per milligram of EA.ChO
nanoparticles (1mg).

3.2. Stability of EA.ChO Nanoencapsulation Systems. The sta-
bility of polymeric nanostructured systems plays a critical
factor to identify the potential application of this system in
biomedical fields. First, the hydrodynamic size (Figure 2) of
EA.ChO nanoparticles was assessed to provide their physico-
chemical behavior in some aqueous solutions (water and PBS
1X with 2 pH values). The evolution of EA.ChO nanoparticle
size in water or PBS was almost similar and did not register
significant changes. The hydrodynamic size of EA.ChO was
around 180nm and small PDI value (PDI value < 0:25),
showing that EA.ChO nanoparticles were of the good dis-
persed quality in these aqueous solutions.

For additional study in stability, EA.ChO nanoparticles
were incubated in PBS 1X and pH7.4 to simulate physiolog-
ical conditions, and DLS was monitored over time. The DLS
data for EA.ChO nanoparticles at different storage time
points are presented in Figure 3. In agreement with zeta
potential value of EA.ChO nanoparticles, no statistically sig-
nificant differences were observed in the size distribution of
the aggregates as determined by DLS over a period of 35 days
(Welch’s t-test, p > 0:05). The size of EA.ChO nanoparticles
was 179.4 nm, 178.6 nm, 181.4 nm, and 182.2 nm with a nar-
row distribution at 2, 12, 22, and 35 days, respectively. More-
over, the good stability of EA.ChO nanoparticles was also
exposed through the behavior of their time correlation func-
tion (inset of Figures 3(a)–3(d)). All the autocorrelation
function profiles at each determined time points were in sig-
moidal behavior. In addition, EA.ChO nanoparticles’ corre-
lograms appeared to decay around the same time point,
indicating comparably sized particle populations for all time
points. Moreover, they also exhibited similar gradients, sug-
gesting comparably polydisperse particle populations.

3.3. In Vitro Drug Release. The release profiles of total pheno-
lic contents from EA.ChO extract and EA.ChO nanoparticles
were evaluated in vitro as a function of time in physiological
buffer PBS (1X, pH7.4) at 37°C (Figure 4). The release pro-
files of both raw EA.ChO extract and its nanoparticle-based
pluronic F127 followed a similar behavior with an initial
burst release in first 30 minutes; however, thereafter, there
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was remarkable discrepancy between the two variations. The
release of phenolic compounds from as-prepared EA.ChO
extract presented a more pronounced initial burst effect,
reaching approximately 54:99 ± 7:73% of phenolic com-
pounds released in 30 minutes, whereas only 21:29 ± 0:42%

of phenolic compound was released from nanoparticles.
The amount of phenolic compounds from raw extract sam-
ples accumulating in the medium was accelerated and then
reached nearly 100% by the end of 12 h. On the contrary,
after initial burst release, the percentage of phenolic
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Figure 1: (a) Hydrodynamic size of pluronic F127 nanoparticles (100 ppm, PBS) at 25°C. (b) The size, (c) potential change, and (d) TEM
image of nanoparticles after encapsulating EA extract (100 ppm, PBS). Time correlation function is inserted into sized distribution.
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compounds releasing in the medium was gradually increased
to 71:07 ± 2:93% over period of 96 h, exhibiting the slow and
sustained release of phenolic compound from EA.ChO
extract at physiological pH.

3.4. Effects of Chromolaena odorata Leaf Extract and Its
Nanoencapsulation on the Viability of Fibroblast Cells. The
concentration-dependent cytotoxicity of EA.ChO nanosys-

tem based on F127 micelles was examined with human fibro-
blast after difference in time of exposure (48 h, 72 h, and 96 h)
and compared to that of free EA.ChO extract. Blank-pluronic
F127 nanoparticles had no effects on the fibroblast cell viabil-
ity and showed a similar result to the nontreated cells. It can
be inferred that the pluronic F127 nanoparticles are biocom-
patible and suitable for usage in biological applications. As
shown in Figure 5, the cytotoxic effects of free EA.ChO were
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Figure 3: Time correlation function and the hydrodynamic diameter of EA.ChO nanoparticles after different storage times: (a) day 2, (b) day
12, (c) day 22, and (d) day 35. Time correlation function is inserted into sized distribution.
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remarkably higher than EA.ChO nanoparticles as the expec-
tation. While the very low toxicity percent (below 6%)
obtained in the first 48 h incubation with concentration in
range of 0.025 to 0.1mg/ml, at relatively high concentrations
of free EA.ChO extract (up to 1mg/ml), the mortality was
remarkably increased to 37:25 ± 1:27%. In the contrary,
despite the dose-dependent cytotoxicity of EA.ChO nanopar-
ticles, after 48 h incubation, the percentage of inhibition of
fibroblast cell growth was lower than that of free EA.ChO
extract even at the highest concentration 1mg/ml
(16:49 ± 6:41% cell dead). Further extension of the incuba-
tion time, the concentration of testing sample that induces
the diminishing of the growth of cells by 50% (IC50) was
identified for EA.ChO extract in the range of tested concen-
tration, 0:73 ± 0:07mg/ml (at 72 h) and 0:71 ± 0:05mg/ml
(96 h). Our results with free EA.ChO extract were totally

agreed with the previous reports [59, 60]. In a significant
reversal of free fractions, IC50 was indeterminate for EA.ChO
nanoparticles at 72 h and 96h, confirming the nontoxic
properties of EA.ChO nanoparticles. The obtained results
signified that EA.ChO extract encapsulated in pluronic
F127 micelles produces in a lower safety risk for the EA.ChO
therapy. This may be due to the control of release of phenolic
compound of EA.ChO extract leading to reduce the risk of
the quick increase of the cellular level of reactive oxygen spe-
cies (ROS), consequently, in the lower cytotoxicity of the
EA.ChO nanoencapsulation compared to the native
EA.ChO.

3.5. Effects of the EA.ChO Nanoencapsulation Systems on the
Proliferation of Fibroblast Cells. The proliferation of fibro-
blast cell is indispensable in wound repair, particularly in
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the early phase of healing process. Stimulation of their prolif-
eration is one mechanism by which an agent might enhance
the repair. To predict the potential application of EA.ChO
nanoparticles in wound healing, human fibroblast cells were
selected as the model for proliferation assay. Based on the
cytotoxic results, the concentration of EA.ChO extract as well
as EA.ChO nanoparticles selecting in this study were at
0.1mg/ml. As shown in Figure 6, the growth rate of fibroblast
cells incubating with bare F127 nanoparticles (1mg/ml) and
controls (untreated cells) was inconsequential different over

a period of 168 h (all p value >0.1). For EA.ChO extract, the
stimulation of fibroblast growth only reached significance
after 120 h and was 111:59 ± 16:68% of the growth of control
(p < 0:01). By 168h incubation with 0.1mg/ml EA.ChO
extract, the growth of fibroblast cells enhanced up to 125:13
± 6:04% of that of control cells (p < 0:01). A significant
enhancement (p < 0:01) of the growth of fibroblast cell incu-
bated with EA.ChO nanoparticles was evident as early as
48 h, about 137:95 ± 14:31% regarding untreated cells. In
addition, the proliferation rate of fibroblast cells stimulating
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by EA.ChO nanoparticles was strongly positive increase at all
subsequent time points. After 120 h stimulating with
EA.ChO nanoparticles, the growth rate of fibroblast was
144:22 ± 29:23% of that in DMEM media and was 1.3 times
as compared to EA.ChO extract (p < 0:01). The degree of
stimulation relative to fibroblast cell in nontreated cells
increased to 175:12 ± 38:47% by 168h culture. The density
of fibroblast in case of EA.ChO nanoparticles increased 3.35
times of that on first 4 h culture (p < 0:01) and was 1.4 times
higher than that in terms of free EA.ChO extract (p < 0:01).

Observation by fluorescent microscopy (Figure 7)
showed that the morphology of fibroblast cells incubating
with EA.ChO nanoparticles (0.1mg/ml) displays typical
spindle-like shape as similar to control cells. Although the
number of seeding cells was identical in all tested variables,
the density of cells was higher in EA.ChO nanoparticles than
in the control. Moreover, cell size is also bigger than control.
The fibroblast in EA.ChO nanoparticles was in large and well
spread. This indicates that the fibroblast cell was metaboli-
cally active in the presence of the proposed nanoformulation
of EA.ChO.

3.6. In Vivo Hemostatic Activity. In the wound healing pro-
cess, cessation of bleeding is the first step [61, 62]. Various
studies have been proved that ChO leaf extract promoted
the excellent hemostatic activity [42, 63]. In this study, our
objective was to investigate whether EA.ChO nanoparticles
can improve the effectiveness to stop bleeding, compared to
raw EA.ChO extract. Following the previous report [64],
the dose 150mg/kg body weight was selected. For the first
screening of acute toxicity, both EA.ChO extract and its
nanoformulation at this dose were nonlethal for mice, and
the behavior and activity were normal in treated mice even
after 21-day administration.

As demonstrated in Figure 8, there was no significant dif-
ference in both bleeding time (p = 0:556 > 0:05) and clotting
time (p = 0:554 > 0:05) between pluronic F127 and water-
treated mice. Under the identical condition, EA.ChO

nanoparticle-based pluronic F127 significantly reduced
bleeding time and clotting time compared to both control
samples (all p < 0:01) while EA extract just slightly reduced
the bleeding time compared to the water group (p < 0:05).
The hemorrhage in the mice treated with EA.ChO extract
had stopped after 74:83 ± 8:28 s, whereas the coagulant activ-
ity of EA.ChO nanoparticles was remarkably improved,
about 20:16 ± 2 s and 50:8 ± 4:93 s quicker than that of raw
extract in stopping blood and coagulation time, respectively.
These results further confirm that EA.ChO nanoparticles
have excellent hemostatic activity in vivo. The improvement
in controlling the bleeding and coagulation time of EA.ChO
nanoparticles may due to the enhancement of the absorption
of bioactive compounds in EA.ChO extract.

4. Conclusion

Considering the potential applications of Chromolaena odor-
ata leaf extracts in wound healing, this work developed and
demonstrated a strategy to improve their functionality, sta-
bility, and cytotoxicity as well as bioavailability of the
EA.ChO extract via pluronic F127 micelle-based nanoencap-
sulation. The EA.ChO extract-loading pluronic F127 has
spherical shape, and the dynamic size was below 200nm,
proposing the good absorption in the in vivo application.
The size of EA.ChO nanoparticles was also resistant with
the change of pH of aqueous solutions. Furthermore, the
EA.ChO nanoparticles were stable at prolonged duration of
storage time. The comparison of the release profiles of both
raw extract and its nanoformulation form revealed the more
suitable strategy of utilizing pluronic F127 to encapsulate
EA.ChO extract. In vitro cytotoxic assay using fibroblast cell
found that the toxicity of EA.ChO extract was significantly
reduced as encapsulated in pluronic F127 nanocarriers.
Notably, the nanoencapsulation of EA.ChO extract greatly
enhanced the proliferative activity of fibroblast cell. In addi-
tion, the EA.ChO extract nanoformulation showed an
improved blood clotting ability and a reduced blood bleeding
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in vivo assays as compared to raw extract. In summary,
results in this study showed that the polymeric
nanoparticle-based pluronic F127 could be used as a strategy
to enhance herbal extract bioactivities and present potential
for further investigations in food systems and pharmaceutical
applications.
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