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The purpose of this special issue was to present new devel-
opments in the theory of function spaces, along with the
deep interconnections with approximation theory and the
applications in various fields of pure and applied mathemat-
ics. The reaction of the mathematical community was very
satisfactory. We collected thirty-five submissions, covering
a wide range of mathematical topics, ten of which were
found to be suitable for publications in this issue. The
major part of the accepted papers treats function spaces
and their applications. In this respect, in the article by X
Yang et al. a new class of function spaces, named “multi-𝛽-
normed spaces”, is introduced, in connection with stability
properties of certain type of functional equations, while, in
the paper by A. A. Bakery, sequential spaces of Orlicz type are
studied and connected with the theory of summability. In the
review paper by L. Angeloni and G. Vinti, the approximation
theory in the space of functions with bounded variation
is developed, in view of applications to signal processing.
Different notions of variation are considered and several
approximation theorems for families of integral or discrete
type operators are given. In the more theoretical article by S.
Wulede et al., a new class of Banach spaces which generalizes
the class of uniformly extremely convex Banach spaces is
introduced, and some characterizations of these spaces are
given. Another paper by N. Khan treats the convergence of
new type of double sequences, here introduced, in 𝑛-normed
spaces. An interesting abstract approach to the theory of
filter convergence is given in the article by A. Boccuto and
X. Dimitriou, in which the links with function spaces and
approximation theory are also dealt with. Other aspects of
the theory of function spaces and their interconnections with

calculus of variations, numerical analysis, complex variables,
and stochastic processes are discussed, respectively, in the
articles by T. Ma and Y. Feng, H. Wang et al., S. Wang and
T. Zhan, and finally P. Duan.These four papers point out how
certain methods of general approximation theory in function
spaces can be employed in order to solve problems coming
from a large variety of mathematical fields. We think that
these contributions may represent starting points for new
researches in the field of function spaces and approximation
theory.
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We present a review on recent approximation results in the space of functions of bounded variation for some classes of integral
operators in the multidimensional setting. In particular, we present estimates and convergence in variation results for both
convolution andMellin integral operators with respect to the Tonelli variation. Results with respect to a multidimensional concept
of 𝜑-variation in the sense of Tonelli are also presented.

1. Introduction

The aim of the present paper is to give a review on recent
results about convergence of integral operators of convolu-
tion type with respect to some concepts of multidimensional
variation. We will consider the case of classical convolution
integral operators of the form

(𝑇
𝑤
𝑓) (s) = ∫

R𝑁
𝐾
𝑤
(t) 𝑓 (s − t) 𝑑t,

s ∈ R
𝑁

, 𝑤 > 0,

(I)

where 𝑓 ∈ 𝐿
1

(R𝑁) and {𝐾
𝑤
}
𝑤>0

is a family of approximate
identities, as well as the case of Mellin integral operators of
the form

(𝑀
𝑤
𝑓) (s) = ∫

R𝑁
+

𝐾
𝑤
(t) 𝑓 (st) ⟨t⟩

−1

𝑑t,

s ∈ R
𝑁

+
, 𝑤 > 0,

(II)

where st fl (𝑠
1
𝑡
1
, . . . , 𝑠

𝑁
𝑡
𝑁
), s, t ∈ R𝑁

+
, and ⟨t⟩ fl

∏
𝑁

𝑖=1
𝑡
𝑖
. The above operators (II) are of convolution type

with respect to the homothetic operator and the measure
𝜇(𝐴) = ∫

𝐴

(𝑑x/⟨x⟩), where 𝐴 is a Borel subset of R𝑁
+
(which

is an invariant measure with respect to the multiplicative
operation).

An important tool in order to frame the results of the
paper is the setting of the functional spaces we deal with.The
BV-spaces, apart from the well-known importance from the
mathematical point of view, also play an important role in
problems of Image Reconstruction where some of the various
approaches make use of integral operators of convolution
type (see, e.g., sampling-type operators).

The working space will be the space of functions of
bounded multidimensional variation in the sense of Tonelli
(defined in Section 2) and, as further extension, in order to
deal with a larger class of functions, we will consider the
space BV𝜑, where 𝜑 is a 𝜑-function (see Section 2). We point
out that, due to the necessary assumptions on the 𝜑-function
𝜑 (Assumption ii), the case of BV cannot be obtained as
particular case of BV𝜑.This is the reason why the two settings
have to be treated independently.

For the above classes of operators we will provide esti-
mates, convergence results, and also a characterization of
the absolutely (𝜑-absolutely) continuous functions in terms
of the respective convergence in variation. Moreover, the
rate of approximation has been considered and examples of
kernel functions to which the results can be applied are also
furnished. Finally, also the nonlinear case for both the con-
volution and the Mellin-type operators has been considered.

Apart from the well-known importance of the classical
convolution integral operators, the Mellin operators are very
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interesting and widely studied in approximation theory (for
the basic theory see [1, 2] while, for results about similar
homothetic-type operators, see, e.g., [3–16]), also because of
their important applications in several fields. Among them,
for example, we recall thatMellin analysis is deeply connected
with some problems of Signal Processing, in particular with
the so-called Exponential Sampling, which have applications
in various problems of engineering and optical physics (see,
e.g., [17–20]).

Concerning now the multidimensional concept of 𝜑-
variation introduced in [21], we point out that, due to the
lack of an integral representation of the 𝜑-variation for 𝜑-
absolutely continuous functions as happens for the classical
variation, the major results about convergence require a
different approach and suitable techniques. In particular, this
holds for the convergence of the 𝜑-modulus of continuity.
Again, a similar problem occurs in case of Mellin integral
operators on BV(R𝑁

+
), where the Tonelli integrals are defined

via the log-measure. Moreover, in the latter case, in order
to prove that the operators are absolutely continuous, in
case of regular kernels (this is a crucial point to obtain
the characterization of absolute continuity), one has to pass
through an equivalent notion of absolute continuity (for the
log-absolute continuity, see Section 4) compatible with the
setting of R𝑁

+
equipped with the log-measure.

We finally remark that, of course, all the results of the
paper contain, in particular, the one-dimensional case (see
[22–27]).

2. Preliminaries and Some
Concepts of Variation

Wewill now recall the multidimensional concept of variation
in the sense of Tonelli. Such definition was introduced by
Tonelli [28] for functions of two variables and then extended
to dimension𝑁 > 2 by Radó [29] and Vinti [30].

Let us introduce some notations. If we are interested in
the 𝑗th coordinate of a vector x = (𝑥

1
, . . . , 𝑥

𝑁
) ∈ R𝑁, we will

write

x


𝑗
= (𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑥
𝑗+1

, . . . , 𝑥
𝑁
) ∈ R𝑁−1,

x = (x


𝑗
, 𝑥
𝑗
) ,

(1)

so that, for a function 𝑓 : R𝑁 → R, there holds

𝑓 (x) = 𝑓 (x


𝑗
, 𝑥
𝑗
) . (2)

Given an 𝑁-dimensional interval 𝐼 = ∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
], by 𝐼



𝑗
=

[a
𝑗
, b
𝑗
] we will denote the (𝑁 − 1)-dimensional interval

obtained by deleting the 𝑗th coordinate from 𝐼; namely,

𝐼 = [a


𝑗
, b


𝑗
] × [𝑎

𝑗
, 𝑏
𝑗
] , 𝑗 = 1, . . . , 𝑁. (3)

Definition 1. A function𝑓 : R𝑁 → R is said to be of bounded
variation if the sections of 𝑓 are a.e. of bounded variation on
R and their variation is summable; that is, 𝑉R[𝑓(x

𝑗
, ⋅)] (the

usual Jordan one-dimensional variation of the 𝑗th section of

𝑓) is finite a.e. x
𝑗
∈ R𝑁−1 and ∫

R𝑁−1
𝑉R[𝑓(x

𝑗
, ⋅)]𝑑x

𝑗
< +∞,

for every 𝑗 = 1, . . . , 𝑁.

In order to compute the variation of 𝑓 on an interval 𝐼,
the first step is to define the (𝑁 − 1)-dimensional integrals
(the so-called Tonelli integrals)

Φ
𝑗
(𝑓, 𝐼) fl ∫

b
𝑗

a
𝑗

𝑉
[𝑎𝑗 ,𝑏𝑗]

[𝑓 (x


𝑗
,⋅)] 𝑑x



𝑗
, 𝑗 = 1, . . . , 𝑁. (4)

Let now Φ(𝑓, 𝐼) be the Euclidean norm of the vector
(Φ
1
(𝑓, 𝐼), . . . , Φ

𝑁
(𝑓, 𝐼)); that is,

Φ(𝑓, 𝐼) fl
{

{

{

𝑁

∑

𝑗=1

Φ
2

𝑗
(𝑓, 𝐼)

}

}

}

1/2

, (5)

where we put Φ(𝑓, 𝐼) = ∞ if Φ
𝑗
(𝑓, 𝐼) = ∞ for some 𝑗 =

1, . . . , 𝑁.
The variation of 𝑓 on an interval 𝐼 ⊂ R𝑁 is defined as

𝑉
𝐼
[𝑓] fl sup

𝑚

∑

𝑘=1

Φ(𝑓, 𝐽
𝑘
) , (6)

where the supremum is taken over all the families of 𝑁-
dimensional intervals {𝐽

1
, . . . , 𝐽

𝑚
} which form partitions of 𝐼.

Finally, the variation of 𝑓 over the wholeR𝑁 is defined as

𝑉R𝑁 [𝑓] fl sup
𝐼⊂R𝑁

𝑉
𝐼
[𝑓] , (7)

where the supremum is taken over all the intervals 𝐼 ⊂ R𝑁.
By

BV (R
𝑁

) fl {𝑓 ∈ 𝐿
1

(R
𝑁

) : 𝑉R𝑁 [𝑓] < +∞} (8)

we will denote the space of functions of bounded variation on
R𝑁.

We recall that it can be proved that if 𝑓 ∈ BV(R𝑁) then
∇𝑓 exists a.e. in R𝑁 and ∇𝑓 ∈ 𝐿

1

(R𝑁) (see, e.g., [29, 30]).
We point out that, in the multidimensional setting, it is

natural to consider functions of bounded variation within
the Lebesgue space 𝐿

1

(R𝑁): indeed this is analogous to the
distributional concept of variation given byCesari [31] and, in
equivalent forms, by Krickeberg [32], De Giorgi [33], Giusti
[34], and Serrin [35].Wenotice that the definition of variation
in the sense of Tonelli is equivalent to the distributional one
in the class of functions which satisfy some approximate
continuity properties (see, e.g., [30]).

We will now recall the concept of absolute continuity in
sense of Tonelli.

Definition 2. A function 𝑓 : R𝑁 → R is locally absolutely
continuous (𝑓 ∈ ACloc(R

𝑁

)) if, for every interval 𝐼 =

∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] and for every 𝑗 = 1, 2, . . . , 𝑁, the 𝑗th section

𝑓(x
𝑗
, ⋅) : [𝑎

𝑗
, 𝑏
𝑗
] → R is (uniformly) absolutely continuous

for almost every x
𝑗
∈ [a
𝑗
, b
𝑗
].
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Similarly to the one-dimensional case, it is possible to
prove that if 𝑓 ∈ BV(R𝑁) ∩ ACloc(R

𝑁

), then

𝑉R𝑁 [𝑓] = ∫
R𝑁

∇𝑓 (x)
 𝑑x (9)

(see, e.g., [29, 30]).
We will denote by AC(R𝑁) the space of all the functions

𝑓 ∈ BV(R𝑁) ∩ ACloc(R
𝑁

).
In the following we will present also results about con-

vergence for a family of Mellin integral operators. In order
to study such kind of operators the most natural way is to
considerR𝑁

+
fl ]0, +∞)

𝑁 (the domain of the functionswhere
Mellin operators act), as a group with themultiplicative oper-
ation (instead of the additive operation onR𝑁) and equipped
with the logarithmic Haar-measure 𝜇(𝐴) = ∫

𝐴

(𝑑x/⟨x⟩) (𝐴 is
a Borel subset of R𝑁

+
and ⟨x⟩ fl ∏

𝑁

𝑖=1
𝑥
𝑖
, x = (𝑥

1
, . . . , 𝑥

𝑁
) ∈

R𝑁
+
), instead of the usual Lebesgue measure. For this reason,

in order to obtain results in BV-spaces for such kind of
operators, it seems natural to adapt the definition of the
Tonelli variation to this frame: we therefore introduced in
[36] a new concept of multidimensional variation in which,
in the Tonelli integrals, the Lebesgue measure is replaced by
the logarithmic measure 𝜇.

Definition 3. One will say that 𝑓 ∈ �̃�
1

(R𝑁
+
) is of bounded

variation on R𝑁
+

if the sections 𝑓(x
𝑗
, ⋅) are of bounded

variation onR
+
a.e. x
𝑗
∈ R𝑁−1
+

and𝑉R+
[𝑓(x
𝑗
, ⋅)] ∈ �̃�

1

(R𝑁−1
+

),
where �̃�1(R𝑁

+
) denotes the space of the functions𝑓 : R𝑁

+
→ R

such that ∫
R𝑁
+

|𝑓(t)|⟨t⟩−1 𝑑t < +∞.

In order to define the multidimensional variation onR𝑁
+
,

for a fixed interval 𝐼 fl ∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] ⊂ R𝑁

+
we consider the

(𝑁 − 1)-dimensional integrals

Φ
𝑗
(𝑓, 𝐼) fl ∫

b
𝑗

a
𝑗

𝑉
[𝑎𝑗 ,𝑏𝑗]

[𝑓 (x


𝑗
, ⋅)]

𝑑x
𝑗

⟨x
𝑗
⟩
, (10)

where ⟨x
𝑗
⟩ denotes the product ∏

𝑁

𝑖=1,𝑖 ̸=𝑗
𝑥
𝑖
. The remaining

steps for the definition of the variation follow as before.
For the sake of simplicity, we will use the same notations

for the variation in both the cases of R𝑁 and R𝑁
+
: as it

is natural, when one works on R𝑁
+
, it is intended that the

measure used is the logarithmic one.
The classical definition of Jordan variation [37] was

extended in the literature in several directions: one of the
first generalizations was the quadratic variation introduced
by Wiener [38], extended to the 𝑝-variation, 𝑝 ≥ 1 [39, 40],
and later to the concept of 𝜑-variation. The 𝜑-variation was
first introduced by Young [41] and then extensively studied by
Musielak and Orlicz and their school (see, e.g., [22, 42–49]).

From now on we will assume that 𝜑 : R+
0

→ R+
0
is as

follows.

Assumption i. 𝜑 is a convex 𝜑-function, where a 𝜑-function
is a continuous, nondecreasing function on R+

0
, such that

𝜑(0) = 0, 𝜑(𝑢) > 0 for 𝑢 > 0, and lim
𝑢→+∞

𝜑(𝑢) = +∞.

Assumption ii. 𝑢
−1

𝜑(𝑢) → 0 as 𝑢 → 0
+

.

We recall that (see [22]) the 𝜑-variation of 𝑓 : R → R on
[𝑎, 𝑏] ⊂ R is defined as

𝑉
𝜑

[𝑎,𝑏]
[𝑓] fl sup

𝐷

𝑛

∑

𝑖=1

𝜑 (
𝑓 (𝑠
𝑖
) − 𝑓 (𝑠

𝑖−1
)
) , (11)

where the supremum is taken over all the partitions𝐷 = {𝑠
0
=

𝑎, 𝑠
1
, . . . , 𝑠

𝑛
= 𝑏} of the interval [𝑎, 𝑏], and

𝑉
𝜑

R [𝑓] fl sup
[𝑎,𝑏]⊂R

𝑉
𝜑

[𝑎,𝑏]
[𝑓] . (12)

Definition 4. A function 𝑓 : R → R is said to be of bounded
𝜑-variation (𝑓 ∈ BV𝜑(R)) if 𝑉𝜑R[𝜆𝑓] < +∞, for some 𝜆 > 0.

The Musielak-Orlicz 𝜑-variation was generalized to the
multidimensional frame in [50] following the approach of
Vitali. However, in order to study approximation problems,
the approach of the Tonelli variation seems to be the most
natural in this context. For such reason in [21] we introduced
a concept of multidimensional 𝜑-variation inspired by the
Tonelli and C. Vinti approach.

Again, the crucial point is to define, for 𝑗 = 1, . . . , 𝑁, the
Tonelli integrals: in this case we put

Φ
𝜑

𝑗
(𝑓, 𝐼) fl ∫

b
𝑗

a
𝑗

𝑉
𝜑

[𝑎𝑗 ,𝑏𝑗]
[𝑓 (x


𝑗
, ⋅)] 𝑑x



𝑗
, (13)

where 𝑉
𝜑

[𝑎𝑗 ,𝑏𝑗]
[𝑓(x
𝑗
, ⋅)] is the (one-dimensional) Musielak-

Orlicz 𝜑-variation of the jth section of 𝑓.
Putting now

Φ
𝜑

(𝑓, 𝐼) fl
{

{

{

𝑁

∑

𝑗=1

[Φ
𝜑

𝑗
(𝑓, 𝐼)]

2}

}

}

1/2

, (14)

the multidimensional 𝜑-variation of 𝑓 : R𝑁 → R on an
interval 𝐼 ⊂ R𝑁 is defined as

𝑉
𝜑

𝐼
[𝑓] fl sup

𝑚

∑

𝑘=1

Φ
𝜑

(𝑓, 𝐽
𝑘
) , (15)

(the supremum is taken over all the partitions {𝐽
1
, . . . , 𝐽

𝑚
} of

𝐼) and, finally,

𝑉
𝜑

R𝑁
[𝑓] fl sup

𝐼⊂R𝑁
𝑉
𝜑

𝐼
[𝑓] . (16)

By

BV𝜑 (R𝑁)

= {𝑓 ∈ 𝐿
1

(R
𝑁

) : ∃𝜆 > 0 s.t. 𝑉𝜑 [𝜆𝑓] < +∞}

(17)

we will denote the space of functions of bounded 𝜑-variation
over R𝑁.

Similarly to the classical variation, it is natural to intro-
duce a concept of multidimensional 𝜑-absolute continuity.
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Definition 5. One says that 𝑓 : R𝑁 → R is locally 𝜑-
absolutely continuous (AC𝜑loc(R

𝑁

)) if it is 𝜑-absolutely con-
tinuous in the sense of Tonelli; that is, for every 𝐼 =

∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] ⊂ R𝑁 and 𝑗 = 1, 2, . . . , 𝑁, the section 𝑓(x

𝑗
, ⋅) :

[𝑎
𝑗
, 𝑏
𝑗
] → R is (uniformly) 𝜑-absolutely continuous for

almost every x
𝑗
∈ [a
𝑗
, b
𝑗
].

Here (see [22]) a function 𝑔 : [𝑎, 𝑏] ⊂ R → R is 𝜑-
absolutely continuous if there exists 𝜆 > 0 such that the
following property holds:

for every 𝜀 > 0, there exists 𝛿 > 0 for which

𝑛

∑

]=1
𝜑 (𝜆

𝑔 (𝛽
]
) − 𝑔 (𝛼

]
)
) < 𝜀, (18)

for all the finite collections of nonoverlapping inter-
vals [𝛼

]
, 𝛽

]
] ⊂ [𝑎, 𝑏], ] = 1, . . . , 𝑛, such that

𝑛

∑

]=1
𝜑 (𝛽

]
− 𝛼

]
) < 𝛿. (19)

By AC𝜑(R𝑁) we will denote the space of all the functions
𝑓 ∈ BV𝜑(R𝑁) ∩ AC𝜑loc(R

𝑁

).
As before, in order to obtain results for Mellin integral

operators in BV𝜑-spaces in the multidimensional frame, we
adapted the previous definition of 𝜑-variation in the sense of
Tonelli to the case of functions defined onR𝑁

+
equipped with

the logarithmic measure 𝜇. In such concept of multidimen-
sional 𝜑-variation, introduced in [51], the Tonelli integrals
(13) are replaced by

Φ
𝜑

𝑗
(𝑓, 𝐼) fl ∫

b
𝑗

a
𝑗

𝑉
𝜑

[𝑎𝑗 ,𝑏𝑗]
[𝑓 (x


𝑗
, ⋅)]

𝑑x
𝑗

⟨x
𝑗
⟩
. (20)

Again, we will use the same notations, as in the case of the
variation, for functions defined on both R𝑁 and R𝑁

+
.

3. Approximation Results for Convolution
Integral Operators

In this section we will present results about approximation
in variation by means of the convolution integral operators,
namely, (I), for 𝑓 ∈ 𝐿

1

(R𝑁). Here {𝐾
𝑤
}
𝑤>0

is a family of
approximate identities (see, e.g., [52]); that is,

(𝐾
𝑤
.1) 𝐾
𝑤

: R𝑁 → R is a measurable essentially
bounded function such that 𝐾

𝑤
∈ 𝐿
1

(R𝑁), ‖𝐾
𝑤
‖
1
≤

𝐴 for an absolute constant 𝐴 > 0 and ∫
R𝑁

𝐾
𝑤
(t)𝑑t =

1, for every 𝑤 > 0;

(𝐾
𝑤
.2) for any fixed 𝛿 > 0, ∫

|t|>𝛿
|𝐾
𝑤
(t)|𝑑t → 0, as

𝑤 → +∞.

In the following we will say that {𝐾
𝑤
}
𝑤>0

⊂ K
𝑤
if (𝐾
𝑤
.1)

and (𝐾
𝑤
.2) are satisfied.

Of course the operators (I) are well-defined for every 𝑓 ∈

𝐿
1

(R𝑁) and therefore in particular for every function 𝑓 ∈

BV(R𝑁), since

(𝑇𝑤𝑓) (x)
 ≤

𝑓
1

𝐾𝑤
∞ , ∀x ∈ R

𝑁

. (21)

We first recall that the family of operators (I) map
BV(R𝑁) into itself. Indeed, the following estimate holds.

Proposition6 (see [25]). Let𝑓 ∈ BV(R𝑁). If {𝐾
𝑤
}
𝑤>0

satisfies
(𝐾
𝑤
.1), then

𝑉R𝑁 [𝑇𝑤𝑓] ≤ 𝐴𝑉R𝑁 [𝑓] , (22)

𝑤 > 0, where 𝐴 is the constant of Assumption (𝐾
𝑤
.1).

Remark 7. In the case of nonnegative kernels {𝐾
𝑤
}
𝑤>0

, Propo-
sition 6 gives the “variation diminishing property” for the
operators 𝑇

𝑤
𝑓: indeed in this case 𝐴 = ‖𝐾

𝑤
‖
1
= 1, 𝑤 > 0.

In order to obtain the main result about convergence in
variation, the following estimate of the error of approxima-
tion is essential.

Proposition 8 (see [25]). If 𝑓 ∈ BV(R𝑁) then, for every 𝑤 >

0,

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓]

≤ ∫
R𝑁

𝑉R𝑁 [𝑓 (⋅ − t) − 𝑓 (⋅)]
𝐾𝑤 (t)

 𝑑t.
(23)

Another important tool is a characterization of the
convergence for themodulus of smoothness of 𝑓, defined as

𝜔 (𝑓, 𝛿) fl sup
|t|≤𝛿

𝑉R𝑁 [𝜏t𝑓 − 𝑓] , (24)

where (𝜏t𝑓)(s) fl 𝑓(s − t), for every s, t ∈ R𝑁, is the
translation operator (see, e.g., [6, 53]).

Theorem 9 (see [25]). Let 𝑓 ∈ BV(R𝑁). Then 𝑓 ∈ 𝐴𝐶(R𝑁) if
and only if

lim
𝛿→0

𝜔 (𝑓, 𝛿) = 0. (25)

The proof of the sufficient part of this result is a con-
sequence of integral representation (9) of the variation for
absolutely continuous functions and of the continuity in 𝐿

1

of the translation operator. For the necessary part, in [25]
it is proved that if the kernel functions 𝐾

𝑤
are absolutely

continuous (as it happens in the most common cases), then
also the integral operators 𝑇

𝑤
𝑓 belong to AC(R𝑁). Then,

since AC(R𝑁) is a closed subspace of BV(R𝑁) with respect
to the convergence in variation [25] and by estimate (23), in
case of regular kernels, the convergence of the modulus of
smoothness implies that 𝑓 ∈ AC(R𝑁).

By means of Proposition 8 and Theorem 9 it is possible
to obtain the main result about convergence for absolutely
continuous functions.
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Theorem 10 (see [25]). If 𝑓 ∈ 𝐴𝐶(R𝑁) and {𝐾
𝑤
}
𝑤>0

⊂ K
𝑤
,

then

lim
𝑤→+∞

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 0. (26)

Remark 11. We point out that the assumption of absolute
continuity of the function is crucial to obtain the main
convergence theorem and such result does not hold, in
general, if, for example, 𝑓 ∈ BV(R𝑁) \AC(R𝑁). For example,
in the case𝑁 = 1, let us consider 𝑓 : R → R defined by

𝑓 (𝑥) =
{

{

{

1, |𝑥| ≤ 1,

0, |𝑥| > 1.

(27)

First of all we point out that 𝑉[𝜏
𝑡
𝑓 − 𝑓]  0 as 𝑡 → 0. Let us

now consider the Poisson-Cauchy kernel defined as

𝐾
𝑤
(𝑡) = √

2

𝜋

𝑤

1 + 𝑤2𝑡2
, 𝑤 > 0, 𝑡 ∈ R. (28)

Then

(𝑇
𝑤
𝑓) (𝑠)

= √
2

𝜋
[arctan (𝑤 (𝑠 + 1)) − arctan (𝑤 (𝑠 − 1))] ,

𝑠 ∈ R,

(29)

and therefore

𝑉R [𝑇
𝑤
𝑓 − 𝑓] ≥ 𝑉

(−∞,−1]
[𝑇
𝑤
𝑓 − 𝑓]

=


(𝑇
𝑤
𝑓) (−1) − lim

𝑠→−∞

(𝑇
𝑤
𝑓) (𝑠)



= −√
2

𝜋
arctan (−2𝑤) .

(30)

This implies that

lim inf
𝑤→+∞

𝑉R [𝑇
𝑤
𝑓 − 𝑓] ≥ √

𝜋

2
, (31)

and hence 𝑉R[𝑇𝑤𝑓 − 𝑓]  0 as 𝑤 → +∞.

In case of regular kernels, by the closure of AC(R𝑁) in
BV(R𝑁), the converse of Theorem 10 is also true. Hence
we obtain the following characterization of the space of the
absolutely continuous functions, similarly to what happens
in the one-dimensional case for the Jordan variation.

Theorem 12 (see [25]). Assume that 𝑓 ∈ BV(R𝑁) and
{𝐾
𝑤
}
𝑤>0

⊂ K
𝑤

∩ 𝐴𝐶(R𝑁). Then 𝑓 ∈ 𝐴𝐶(R𝑁) if and only
if

lim
𝑤→+∞

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 0. (32)

The previous results were generalized to the case of the
multidimensional 𝜑-variation in [21]. In particular, besides a
kind of variation diminishing property, in [21] the following
estimate for the error of approximation is obtained.

Proposition 13 (see [21]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁) and let {𝐾
𝑤
}
𝑤>0

be such that (𝐾
𝑤
.1) is satisfied.Then, for every 𝜆, 𝛿 > 0 and for

every 𝑤 > 0,

𝑉
𝜑

R𝑁
[𝜆 (𝑇
𝑤
𝑓 − 𝑓)]

≤ 𝐴
−1

{𝜔
𝜑

(𝜆𝐴𝑓, 𝛿) ∫
|t|≤𝛿

𝐾𝑤 (t)
 𝑑t

+ 𝑉
𝜑

R𝑁
[2𝜆𝐴𝑓]∫

|t|>𝛿

𝐾𝑤 (t)
 𝑑t} ,

(33)

where 𝜔
𝜑

(𝑓, 𝛿) fl sup
|t|≤𝛿𝑉

𝜑

R𝑁
[𝜏t𝑓 − 𝑓] is the 𝜑-modulus of

smoothness of 𝑓.

Using the previous estimate, the main convergence result
follows by the singularity assumption on the kernel functions
(𝐾
𝑤
.2) and by the convergence for the 𝜑-modulus of smooth-

ness.

Theorem 14 (see [54]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁). Then there exists
𝜆 > 0 such that

lim
𝛿→0
+

𝜔
𝜑

(𝜆𝑓, 𝛿) = 0, (34)

if and only if 𝑓 ∈ 𝐴𝐶
𝜑

loc(R
𝑁

).

The convergence for the modulus of smoothness, in case
of the Tonelli variation, is a direct consequence of the integral
representation of the variation for absolutely continuous
functions (9). On the contrary, for the 𝜑-variation there are
no results of this kind and, in order to get the convergence in
𝜑-variation of the 𝜑-modulus of smoothness, it is necessary
to use a different technique. In particular (see [54]), the
crucial point is to construct a kind of “step” functions that
approximate the function 𝑓 and for which a convergence
result can be proved.

UsingTheorem 14, it is possible to obtain the main result
of convergence in 𝜑-variation for the convolution integral
operators (I).

Theorem 15 (see [21]). If 𝑓 ∈ 𝐴𝐶
𝜑

(R𝑁) and {𝐾
𝑤
}
𝑤>0

⊂ K
𝑤
,

then there exists 𝜆 > 0 such that
lim
𝑤→+∞

𝑉
𝜑

R𝑁
[𝜆 (𝑇
𝑤
𝑓 − 𝑓)] = 0. (35)

To give a sketch of the proof, the starting point is the
estimate of Proposition 13 for the error of approximation
𝑉
𝜑

R𝑁
[𝜆(𝑇
𝑤
𝑓−𝑓)]. ByTheorem 14, we have that𝜔𝜑(𝜆𝑓, 𝛿) tends

to 0, for sufficiently small 𝛿 > 0, while, by Assumption (𝐾
𝑤
.2)

on the kernel functions, in correspondence with such small
𝛿, ∫
|t|>𝛿

|𝐾
𝑤
(t)|𝑑t converges to 0 for 𝑤 large enough; hence

the result follows, taking into account (𝐾
𝑤
.1) and the fact that

𝑓 ∈ BV𝜑(R𝑁).
As before, in case of regular kernels the converse of

Theorem 15 is also true.

Theorem 16 (see [21]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁) and let {𝐾
𝑤
}
𝑤>0

⊂

K
𝑤
∩𝐴𝐶
𝜑

(R𝑁). Then 𝑓 ∈ 𝐴𝐶
𝜑

(R𝑁) if and only if there exists
𝜆 > 0 such that

lim
𝑤→+∞

𝑉
𝜑

R𝑁
[𝜆 (𝑇
𝑤
𝑓 − 𝑓)] = 0. (36)
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Remark 17. We point out that it is easy to find examples of
kernel functions to which the previous results can be applied.
Among them, for example, the Gauss-Weierstrass kernel is
defined as

𝐺
𝑤
(t) =

𝑤
𝑁

𝜋𝑁/2
𝑒
−𝑤
2
|t|2

, t ∈ R
𝑁

, 𝑤 > 0, (37)

or the Picard kernel

𝑃
𝑤
(t) =

𝑤
𝑁

Γ (𝑁/2)

2𝜋𝑁/2Γ (𝑁)
𝑒
−𝑤|t|

, t ∈ R
𝑁

, 𝑤 > 0, (38)

where Γ is the Gamma Euler function (see Figure 1).

4. Approximation Results for Mellin
Integral Operators

We now turn our attention to Mellin integral operators,
defined as (II), where st fl (𝑠

1
𝑡
1
, . . . , 𝑠

𝑁
𝑡
𝑁
), s, t ∈ R𝑁

+
. On

the kernel functions {𝐾
𝑤
}
𝑤>0

we assume that

(�̃�
𝑤
.1) 𝐾
𝑤

: R𝑁
+

→ R is a measurable essen-
tially bounded function such that 𝐾

𝑤
∈ �̃�
1

(R𝑁
+
),

‖𝐾
𝑤
‖
�̃�

1 ≤ 𝐴 for an absolute constant 𝐴 > 0 and
∫
R𝑁
+

𝐾
𝑤
(t)⟨t⟩−1𝑑t = 1, for every 𝑤 > 0;

(�̃�
𝑤
.2) for every fixed 0 < 𝛿 < 1,

∫
|1−t|>𝛿 |𝐾𝑤(t)|⟨t⟩

−1

𝑑t → 0, as 𝑤 → +∞,

that is, the assumptions of approximate identities, adapted
to the present setting of R𝑁

+
. If {𝐾

𝑤
}
𝑤>0

satisfy (�̃�
𝑤
.1) and

(�̃�
𝑤
.2), we will write {𝐾

𝑤
}
𝑤>0

⊂ K̃
𝑤
.

For Mellin integral operators it is possible to develop an
“approximation theory” similar to the case of the convolution
integral operators; however, one of themain differences is the
homothetic structure of R𝑁

+
which leads to the choice of the

logarithmicmeasure 𝜇 and also to the necessity to adapt some
definitions. For example, the modulus of smoothness of 𝑓 ∈

BV(R𝑁
+
) has to be now defined as

𝜔 (𝑓, 𝛿) fl sup
|1−t|≤𝛿

𝑉R𝑁
+

[𝜎t𝑓 − 𝑓] , (39)

0 < 𝛿 < 1, where (𝜎t𝑓)(s) fl 𝑓(st), for every s, t ∈ R𝑁
+
,

is the homothetic operator and 1 = (1, . . . , 1) is the unit
vector of R𝑁

+
. Such notion of modulus of smoothness is the

natural generalization, in the present frame of BV(R𝑁
+
), of the

classical modulus of continuity (see, e.g., [6, 21, 25]).
Of course, due to the presence of the logarithmicmeasure,

we cannot use the integral representation of the Tonelli
variation; nevertheless, it is possible to directly prove a result
of convergence in variation for themodulus of smoothness in
case of AC-functions, using a kind of “separated” variations
(𝑉𝑗[𝑓], 𝑗 = 1, . . . , 𝑁) which take into account just a single
direction instead of all the𝑁 directions.

Theorem 18 (see [36]). If 𝑓 ∈ 𝐴𝐶(R𝑁
+
), then

lim
𝛿→0
+

𝜔 (𝑓, 𝛿) = 0. (40)

By means of the previous result and an estimate for the
error of approximation (𝑀

𝑤
𝑓 − 𝑓) analogous to Proposi-

tion 13, it is possible to prove the following convergence result.

Theorem 19. Let 𝑓 ∈ 𝐴𝐶(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂ K̃
𝑤
. Then

lim
𝑤→+∞

𝑉R𝑁
+

[𝑀
𝑤
𝑓 − 𝑓] = 0. (41)

A natural question now is whether, at least in case of AC-
kernels, the converse of the previous result holds, as in the
case of convolution operators. Actually, due to the form of the
operators𝑀

𝑤
𝑓, such question is nowmuchmore delicate and

direct approach cannot be used. In order to solve the problem,
it is necessary to use another concept of absolute continuity
(the log-absolute continuity), equivalent to the classical one,
which takes into account the logarithmic measure 𝜇. We first
present the definition in the one-dimensional case.

Definition 20 (see [55]). One says that 𝑓 : R
+

→ R is log-
absolutely continuous on [𝑎, 𝑏] ⊂ R

+
(𝑓 ∈ AClog([𝑎, 𝑏])) if for

every 𝜀 > 0 there exists 𝛿 > 0 such that, for every collection
of nonoverlapping intervals [𝛼]

, 𝛽
]
]
𝑛

]=1 in [𝑎, 𝑏] such that
𝑛

∑

]=1

log (𝛽
]
) − log (𝛼]

)
 < 𝛿, (42)

then
𝑛

∑

]=1

𝑓 (𝛽
]
) − 𝑓 (𝛼

]
)
 < 𝜀. (43)

By AClog(R+)we will denote the space of functions which are
of bounded variation on R

+
and log-absolutely continuous

on [𝑎, 𝑏], for every [𝑎, 𝑏] ⊂ R
+
.

Now, in the general multidimensional frame, 𝑓 : R𝑁
+

→

R is log-absolutely continuous on 𝐼 = ∏
𝑁

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] ⊂ R𝑁

+
if, for

every 𝑗 = 1, 2, . . . , 𝑁, the 𝑗th sections of𝑓,𝑓(x
𝑗
, ⋅) : [𝑎

𝑗
, 𝑏
𝑗
] →

R, are (uniformly) log-absolutely continuous for almost every
x
𝑗
∈ R𝑁−1
+

.
By means of the definition of the log-absolute continuity,

in [55] it is proved that Mellin integral operators, as the
classical convolution operators, preserve absolute continuity:
this, together with the fact that the set of the absolutely
continuous functions is a closed subspace of the set of the BV-
functions, allows us to obtain the following characterization.

Theorem21 (see [55]). Let𝑓 ∈ BV(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂ K̃
𝑤
∩

𝐴𝐶(R𝑁
+
).Then𝑓 ∈ 𝐴𝐶(R𝑁

+
) if and only if lim

𝑤→+∞
𝑉R𝑁
+

[𝑀
𝑤
𝑓

−𝑓] = 0.

In [56] approximation properties for Mellin integral
operators were studied in the frame of BV𝜑-spaces, using the
multidimensional version of the 𝜑-variation on R𝑁

+
intro-

duced in [51]. In particular the following theorem is obtained.

Theorem 22 (see [56]). Let 𝑓 ∈ 𝐴𝐶
𝜑

(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂

K̃
𝑤
. Then there exists a constant 𝜇 > 0 such that

lim
𝑤→+∞

𝑉
𝜑

R𝑁
+

[𝜇 (𝑀
𝑤
𝑓 − 𝑓)] = 0. (44)
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Figure 1: Examples of Gauss-Weierstrass kernel 𝐺
𝑤
(𝑥, 𝑦) and Picard kernel 𝑃

𝑤
(𝑥, 𝑦) with 𝑤 = 10.

The proof of Theorem 22 is based on the estimate of the
error of approximation [56],

𝑉
𝜑

[𝜆 (𝑀
𝑤
𝑓 − 𝑓)]

≤ 𝜔
𝜑

(𝜆𝐴𝑓, 𝛿)

+ 𝐴
−1

𝑉
𝜑

[2𝜆𝐴𝑓]∫
|1−t|>𝛿

𝐾𝑤 (t)
 ⟨t⟩
−1

𝑑t,

(45)

and on a convergence result for the𝜑-modulus of smoothness

𝜔
𝜑

(𝑓, 𝛿) fl sup
|1−t|≤𝛿

𝑉
𝜑

R𝑁
+

[𝜎t𝑓 − 𝑓] , (46)

𝛿 > 0.This last result was obtained in [51] bymeans of a direct
approach: the function 𝑓 is approximated in 𝜑-variation by
two auxiliary functions, constructed on a grid on which their
sections are piecewise constant.

In order to prove the converse of Theorem 22, it is
again necessary to use a concept of logarithmic 𝜑-absolute
continuity, which takes into account the homothetic structure
ofR𝑁
+
.We report below the definition in the one-dimensional

case, while for the multidimensional case it is sufficient to
proceed as for the log-absolute continuity.

Definition 23 (see [57]). One says that 𝑓 : [𝑎, 𝑏] → R is log-
𝜑-absolutely continuous on [𝑎, 𝑏] ⊂ R

+
if there exists 𝜆 > 0

such that, for every 𝜀 > 0, there exists 𝛿 > 0 for which

𝑛

∑

]=1
𝜑 (𝜆

𝑓 (𝛽
]
) − 𝑓 (𝛼

]
)
) < 𝜀, (47)

for all finite collections of nonoverlapping intervals [𝛼]
, 𝛽

]
] ⊂

[𝑎, 𝑏], ] = 1, . . . , 𝑛, such that

𝑛

∑

]=1
𝜑 (log (𝛽]

) − log (𝛼]
)) < 𝛿. (48)

The log-𝜑-absolute continuity is equivalent to the 𝜑-
absolute continuity and allows obtaining the characterization
of AC𝜑(R𝑁

+
) in terms of convergence in 𝜑-variation of Mellin

integral operators.

Theorem 24 (see [57]). Let 𝑓 ∈ 𝐵𝑉
𝜑

(R𝑁
+
) and {𝐾

𝑤
}
𝑤>0

⊂

K̃
𝑤
∩𝐴𝐶
𝜑

(R𝑁
+
). Then 𝑓 ∈ 𝐴𝐶

𝜑

(R𝑁
+
) if and only if there exists

𝜆 > 0 such that lim
𝑤→+∞

𝑉
𝜑

R𝑁
+

[𝜆(𝑀
𝑤
𝑓 − 𝑓)] = 0.

Remark 25. We point out that taking 𝑁 = 1 as particular
case of Theorem 24 we obtain the characterization of 𝜑-
absolute continuity in the one-dimensional case, namely, for
the classical Musielak-Orlicz 𝜑-variation.

Remark 26. It is not difficult to find examples of kernel
functions which fulfill Assumptions (�̃�

𝑤
.1) and (�̃�

𝑤
.2).

Among them, for example, themoment-type kernels (or aver-
age kernels) are defined as

𝐴
𝑤
(t) fl 𝑤

𝑁

⟨t⟩
𝑤

𝜒
]0,1[
𝑁 (t) , t ∈ R

𝑁

+
, 𝑤 > 0. (49)

It is easy to see that they fulfill Assumption (�̃�
𝑤
.1). Moreover,

for every 𝛿 ∈]0, 1[, |1 − t| > 𝛿 implies that there exists an
index 𝑗 = 1, . . . , 𝑁 such that |1 − 𝑡

𝑗
| > 𝛿/√𝑁; hence {t ∈

]0, 1[
𝑁

: |1 − t| > 𝛿} ⊂ ⋃
𝑁

𝑗=1
{t ∈ R𝑁

+
: 0 < 𝑡

𝑗
< 1 − 𝛿/√𝑁, 0 <

𝑡
𝑖
< 1, ∀𝑖 ̸= 𝑗}.Therefore

∫
|1−t|>𝛿

𝐴𝑤 (t)
 ⟨t⟩
−1

𝑑t

≤

𝑁

∑

𝑗=1

{

{

{

(∏

𝑖 ̸=𝑗

∫

1

0

𝑤𝑡
𝑤−1

𝑖
𝑑𝑡
𝑖
)∫

1−𝛿/√𝑁

0

𝑤𝑡
𝑤−1

𝑗
𝑑𝑡
𝑗

}

}

}

= 𝑁(1 −
𝛿

√𝑁
)

𝑤

→ 0,

(50)

as 𝑤 → +∞; that is, also (�̃�
𝑤
.2) is satisfied.
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Other families of kernel functions to which the previous
results can be applied are the Mellin-Gauss-Weierstrass ker-
nels, defined as

�̃�
𝑤
(t) fl

𝑤
𝑁

𝜋𝑁/2
𝑒
−𝑤
2
| log t|2

, t ∈ R
𝑁

+
, 𝑤 > 0, (51)

or the Mellin-Picard kernels, which are defined as

�̃�
𝑤
(t) fl

𝑤
𝑁

2𝜋𝑁/2

Γ (𝑁/2)

Γ (𝑁)
𝑒
−𝑤| log t|

, t ∈ R
𝑁

+
, 𝑤 > 0. (52)

We point out that these definitions are the natural refor-
mulations, in the present multiplicative setting of R𝑁

+
, of

the classical Gauss-Weierstrass kernels and Picard kernels,
respectively (see Remark 17).

5. Further Results

We will now give some hints about further approximation
results that were obtained in BV-spaces.

First of all, an interesting problem is to study the nonlin-
ear versions of operators (I) and (II). We point out that the
nonlinear case is much more delicate than the linear one and
requires some ad hoc assumptions; on the other side, it not
only is interesting from amathematical point of view, being of
coursemore general than the linear one, but also is important
from the point of view of the applications. Indeed, there are
several applicative problems that cannot be faced bymeans of
linear processes; an example is furnished by some problems
of Signal Processing.

The nonlinear version of the convolution integral opera-
tors (II) is

(𝑇
𝑤
𝑓) (s) = ∫

R𝑁
𝐾
𝑤
(t, 𝑓 (s − t)) 𝑑t,

𝑤 > 0, s ∈ R
𝑁

,

(III)

where {𝐾
𝑤
}
𝑤>0

is a family of measurable functions𝐾
𝑤

: R𝑁×

R → R of the form

𝐾
𝑤
(t, 𝑢) = 𝐿

𝑤
(t)𝐻
𝑤
(𝑢) (53)

for every t ∈ R𝑁, 𝑢 ∈ R. Here 𝐿
𝑤

: R𝑁 → R and 𝐻
𝑤

: R →

R with 𝐻
𝑤
(0) = 0 is a Lipschitz kernel for every 𝑤 > 0; that

is, there exists 𝐾 > 0 such that
𝐻𝑤 (𝑢) − 𝐻

𝑤
(V) ≤ 𝐾 |𝑢 − V| , ∀𝑢, V ∈ R. (54)

Moreover we assume that

(𝐾
𝑤
.1) 𝐿
𝑤

: R𝑁 → R is a measurable function such
that 𝐿

𝑤
∈ 𝐿
1

(R𝑁), ‖𝐿
𝑤
‖
1
≤ 𝐴, for some𝐴 > 0 and for

every 𝑤 > 0, and ∫
R𝑁

𝐿
𝑤
(t)𝑑t = 1, for every 𝑤 > 0;

(𝐾
𝑤
.2) for any fixed 𝛿 > 0, ∫

|t|>𝛿
|𝐿
𝑤
(t)|𝑑t → 0, as

𝑤 → +∞;
(𝐾
𝑤
.3) denoted by𝐺

𝑤
(𝑢) fl 𝐻

𝑤
(𝑢) − 𝑢, 𝑢 ∈ R,𝑤 > 0,

𝑉
𝐽
[𝐺
𝑤
]

𝑚 (𝐽)
→ 0, as 𝑤 → +∞, (55)
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Figure 2: Example of kernels 𝐻
𝑤
(𝑢), 𝑤 = 3, 5, 7, 9.

uniformly with respect to every (not trivial) bounded
interval 𝐽 ⊂ R; that is, for every 𝜀 > 0 there exists
𝑤 > 0 such that 𝑉

𝐽
[𝐺
𝑤
]/𝑚(𝐽) < 𝜀, for every 𝑤 ≥ 𝑤

and for every bounded interval 𝐽 ⊂ R.

Remark 27. We point out that Assumption (𝐾
𝑤
.3) is due to

the nonlinear frame and of course it is obviously satisfied
in the linear case (𝐻

𝑤
(𝑢) = 𝑢, 𝑢 ∈ R). Moreover it is

not difficult to provide examples of kernels which fulfill all
the previous assumptions. For example, we can consider the
kernel functions 𝐾

𝑤
(𝑡, 𝑢) = 𝐿

𝑤
(𝑡)𝐻
𝑤
(𝑢), 𝑡 ∈ R+

0
, 𝑢 ∈ R, 𝑤 >

0, where {𝐿
𝑤
}
𝑤>0

are approximate identities,

𝐻
𝑤
(𝑢) =

{{

{{

{

𝑢 + log(1 +
𝑢

𝑤
) , 0 ≤ 𝑢 < 1,

𝑢 + log(1 +
1

𝑤𝑢
) , 𝑢 ≥ 1,

(56)

and the definition of𝐻
𝑤
(𝑢) is extended in odd way for 𝑢 < 0

(see Figure 2).

The problem of the convergence in variation for the
nonlinear integral operators (III) was faced in [58, 59]; in
particular, the main convergence result reads as follows.

Theorem 28 (see [58]). If 𝑓 ∈ 𝐴𝐶(R𝑁) and {𝐾
𝑤
}
𝑤>0

satisfy
(𝐾
𝑤
.𝑖), 𝑖 = 1, 2, 3, then

lim
𝑤→+∞

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 0. (57)

Similar approximation results were obtained in [60] for
the nonlinear convolution integral operators (III) in the
frame of BV𝜑(R𝑁) and in [61] for the nonlinear version of
the Mellin integral operators (II) in BV(R𝑁

+
).

We finally point out that, besides the problem of con-
vergence, the rate of approximation has been also studied in
all the previously mentioned settings. In order to do it, as
it is natural, one has to introduce suitable Lipschitz classes
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which take into account the variation functional. We point
out that, in order to approach the mentioned problem, the
assumptions on kernels have to be slightly modified.

For example, let us consider the case of the convolution
integral operators (I) in the setting of BV(R𝑁). In this frame
the Lipschitz class is defined as

𝑉Lip𝑁 (𝛼) fl {𝑓 ∈ BV (R
𝑁

) : 𝑉R𝑁 [𝜏t𝑓 − 𝑓]

= 𝑂 (|t|
𝛼

) , as |t| → 0} ,

(58)

𝛼 > 0, and Assumption (𝐾
𝑤
.2) has to be replaced by the

following:

(𝐾


𝑤
.2) for any fixed 𝛿 > 0, ∫

|t|>𝛿
|𝐿
𝑤
(t)|𝑑t = 𝑂(𝑤

−𝛼

),
as 𝑤 → +∞.

Moreover we will say that {𝐾
𝑤
}
𝑤>0

is an 𝛼-singular kernel,
for 0 < 𝛼 ≤ 1, if

∫
|t|>𝛿

𝐾𝑤 (t)
 𝑑t = 𝑂 (𝑤

−𝛼

) , as 𝑤 → +∞, (59)

for every 𝛿 > 0. Then it is possible to obtain the following
result about the order of approximation for the convolution
integral operators (I).

Theorem 29 (see [25]). Let 𝑓 ∈ 𝑉𝐿𝑖𝑝
𝑁

(𝛼) and let {𝐾
𝑤
}
𝑤>0

⊂

K
𝑤
be an 𝛼-singular kernel satisfying (𝐾

𝑤
.1) and (𝐾



𝑤
.2).

Moreover assume that there exists 0 < �̃� < 1 such that

∫
|t|≤̃𝛿

𝐾𝑤 (t)
 |t|
𝛼

𝑑t = 𝑂 (𝑤
−𝛼

) , as 𝑤 → +∞. (60)

Then

𝑉R𝑁 [𝑇𝑤𝑓 − 𝑓] = 𝑂 (𝑤
−𝛼

) , (61)

as 𝑤 → +∞.

Similar results in the nonlinear casewere obtained in [58],
while, for results about the rate of approximation for convolu-
tion integral operators with respect to the multidimensional
𝜑-variation, see [21] and [60] (nonlinear case).

The case of Mellin integral operators was studied in [36]
and in [61] (nonlinear case) with respect to the Tonelli varia-
tion, while the case of the multidimensional 𝜑-variation was
studied in [56]. We finally refer to [62, 63] for approximation
results in the slightly different setting of BV𝜑((R+

0
)
𝑁

).
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We give sufficient conditions on a special space of sequences defined by Mohamed and Bakery (2013) such that the finite rank
operators are dense in the complete space of operators whose approximation numbers belong to this sequence space. Hence, under
a few conditions, every compact operator would be approximated by finite rank operators.We apply it on the sequence space defined
by Tripathy and Mahanta (2003). Our results match those known for 𝑝-absolutely summable sequences of reals.

1. Introduction and Basic Definitions

By 𝜔 and 𝐿(𝑉,𝑊), we will denote the spaces of all real
sequences and all bounded linear operators between two
Banach spaces𝑉 into𝑊, respectively. In [1], Pietsch, by using
the approximation numbers and p-absolutely summable
sequences of real numbers, formed the operator ideals. In [2],
Mohamed and Bakery have considered the space ℓ

𝑀
, when

𝑀(𝑡) = 𝑡
𝑝
(0 < 𝑝 < ∞), which matches especially ℓ

𝑝.
A subclass 𝑈 of 𝐿 = {𝐿(𝑉,𝑊)} is an operator ideal if its
components verify the following conditions:

(i) The space 𝐹(𝑉,𝑊) of all finite rank operators is a
subset of 𝑈(𝑉,𝑊).

(ii) The space 𝑈(𝑉,𝑊) is linear.

(iii) For two Banach spaces𝑉
0
and𝑊

0
, if𝑇 ∈ 𝐿(𝑉

0
, 𝑉), 𝑆 ∈

𝑈(𝑉,𝑊), and 𝑅 ∈ 𝐿(𝑊,𝑊
0
), then 𝑅𝑆𝑇 ∈ 𝑈(𝑉

0
,𝑊
0
).

See [3, 4].

An Orlicz function is a function 𝑀 : [0,∞) → [0,∞)

which is convex, positive, nondecreasing, and continuous,
where𝑀(0) = 0 and lim

𝑥→∞
𝑀(𝑥) = ∞. An Orlicz function

𝑀 is said to satisfy Δ
2
-condition for all values of 𝑥 ≥ 0 if

there exists a constant 𝑘 > 0, such that 𝑀(2𝑥) ≤ 𝑘𝑀(𝑥).

Lindenstrauss and Tzafriri [5] used the idea of an Orlicz
function to define Orlicz sequence spaces as follows:

ℓ
𝑀
= {𝑥 ∈ 𝜔 : ∃𝜆 > 0 with 𝜌 (𝜆𝑥) =

∞

∑

𝑘=1

𝑀(|𝜆𝑥 (𝑘)|)

< ∞} .

(1)

(ℓ
𝑀
, ‖𝑥‖) is a Banach space, where ‖𝑥‖ = inf {𝜆 > 0 :

𝜌(𝑥/𝜆) ≤ 1}. The space ℓ𝑝 is an Orlicz sequence space with
𝑀(𝑥) = 𝑥

𝑝 for 1 ≤ 𝑝 < ∞.

Remark 1. For any Orlicz function 𝑀, we have 𝑀(𝜆𝑥) ≤

𝜆𝑀(𝑥), for all 𝜆 with 0 < 𝜆 < 1.

Let 𝑃
𝑠
be the class of all subsets ofN = {0, 1, 2, . . .} that do

not contain more than 𝑠 number of elements and let {𝜙
𝑛
} be

a nondecreasing sequence of positive reals such that 𝑛𝜙
𝑛+1

≤

(𝑛+1)𝜙
𝑛
, for all 𝑛 ∈ N. Tripathy andMahanta [6] defined and

studied the following sequence space:

𝑚(𝜙,𝑀) = {𝑥 = (𝑥
𝑘
) ∈ 𝜔 : ∃𝜁

> 0 with sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
) < ∞} ,

(2)
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with the norm

𝜌 (𝑥) = inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
) ≤ 1} . (3)

Lemma 2. (i) ℓ
𝑀
⊆ 𝑚(𝜙,𝑀).

(ii) ℓ
𝑀
= 𝑚(𝜙,𝑀) if and only if sup

𝑠
𝜙
𝑠
< ∞.

As of late, different classes of sequences have been pre-
sented using Orlicz functions by Braha [7], Raj and Sharma
Sunil [8], Raj et al. [9], and many others ([10–13]).

Definition 3 (see [14, 15]). A special space of sequences (sss)
is a linear space 𝐸 with the following:

(1) 𝑒
𝑛
∈ 𝐸 for all 𝑛 ∈ N, where 𝑒

𝑛
= {0, 0, . . . , 1, 0, 0, . . .}

with 1 appearing at 𝑛th place for all 𝑛 ∈ N.

(2) 𝐸 is solid.

(3) (𝑥
0
, 𝑥
0
, 𝑥
1
, 𝑥
1
, . . .) ∈ 𝐸, if (𝑥

𝑛
)
𝑛∈N ∈ 𝐸.

A premodular (sss) 𝐸
𝜌
is a (sss) and there is a function 𝜌 :

𝐸 → [0,∞[ with the following:

(i) 𝜌(𝑥) ≥ 0, for each 𝑥 ∈ 𝐸 and 𝜌(𝑥) = 0 ⇔ 𝑥 = 𝜃,
where 𝜃 is the zero element of 𝐸.

(ii) 𝜌 satisfies Δ
2
-condition.

(iii) For each 𝑥, 𝑦 ∈ 𝐸, 𝜌(𝑥+𝑦) ≤ 𝑘(𝜌(𝑥) +𝜌(𝑦)) holds for
some 𝑘 ≥ 1.

(iv) The space 𝐸 is 𝜌-solid; that is, 𝜌((𝑥
𝑛
)) ≤ 𝜌((𝑦

𝑛
)),

whenever |𝑥
𝑛
| ≤ |𝑦
𝑛
|, for all 𝑛 ∈ N.

(v) For some numbers 𝑘
0
≥ 1, the inequality 𝜌((𝑥

𝑛
)
𝑛∈N) ≤

𝜌((𝑥
0
, 𝑥
0
, 𝑥
1
, 𝑥
1
, . . .)) ≤ 𝑘

0
𝜌((𝑥
𝑛
)
𝑛∈N) holds.

(vi) 𝐹 = 𝐸
𝜌
; that is, the set of all finite sequences 𝐹 is 𝜌-

dense in 𝐸.

(vii) For each 𝜆 > 0, there is a constant 𝜉 > 0 such that
𝜌(𝜆, 0, 0, 0, . . .) ≥ 𝜉𝜆𝜌(1, 0, 0, 0, . . .).

Condition (ii) says that 𝜌 is continuous at 𝜃. The function
𝜌 defines a metrizable topology in 𝐸 and the linear space 𝐸
enriched with this topology is denoted by 𝐸

𝜌
.

Definition 4 (see [16]). Consider the following:

𝑈
app
𝐸

fl {𝑈
app
𝐸

(𝑉,𝑊)} , (4)

where

𝑈
app
𝐸

(𝑉,𝑊) fl {𝑇 ∈ 𝐿 (𝑉,𝑊) : (𝛼𝑛 (𝑇))𝑛∈N ∈ 𝐸} . (5)

Theorem 5 (see [2]). If 𝐸 is a (sss), then 𝑈𝑎𝑝𝑝
𝐸

is an operator
ideal.

We explain some results related to the operator spaces.

2. Main Results

In this part, we give sufficient conditions on 𝐸 such that
the finite rank operators are dense in the complete space of
operators 𝑈app

𝐸
(𝑉,𝑊).

Lemma 6. If 𝐸
𝜌
is a premodular (sss) and (𝑥

𝑛
) ∈ 𝐸

𝜌
is a

decreasing sequence of positive reals, then

𝜌(

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝑥

𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

, . . .)

≤ 𝑘
0
𝜌(

𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝑥

𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

, . . .) .

(6)

Proof. By using Definition 3, conditions (iv) and (v), and
since the elements of 𝐸 are decreasing, we get

𝜌(

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝑥

𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

, . . .)

≤ 𝜌(

2𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝑥

𝑛
, 𝑥
𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+1

, . . .)

≤ 𝑘
0
𝜌(

𝑛
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝑥

𝑛
, 𝑥
𝑛+1

, 𝑥
𝑛+2

, . . .) .

(7)

Theorem 7. Let 𝐸
𝜌
be a premodular (sss); then 𝐹(𝑉,𝑊)

𝑔
=

𝑈
𝑎𝑝𝑝

𝐸
𝜌

(𝑉,𝑊), where 𝑔(𝑇) = 𝜌(𝛼
𝑛
(𝑇)
𝑛∈N).

Proof. To prove that 𝐹(𝑉,𝑊) ⊆ 𝑈
app
𝐸

(𝑉,𝑊), since 𝑒
𝑚
∈ 𝐸 for

each 𝑚 ∈ N, from the linearity of 𝐸 and 𝑇 ∈ 𝐹(𝑉,𝑊), then
finitely many elements of (𝛼

𝑛
(𝑇))
𝑛∈N are different from zero.

Hence,𝑇 ∈ 𝑈
app
𝐸

(𝑉,𝑊). For the other inclusion𝑈app
𝐸

(𝑉,𝑊) ⊆

𝐹(𝑉,𝑊), let 𝑇 ∈ 𝑈
app
𝐸

(𝑉,𝑊) and, from the definition of
approximation numbers, there is 𝑁 ∈ N, 𝑁 > 0, 𝐴

𝑁
with

rank(𝐴
𝑁
) ≤ 𝑁 and also

𝑇 − 𝐴
𝑁

 ≤ 2𝛼
𝑁 (𝑇) . (8)

Since 𝛼
𝑁
(𝑇) → 0 as 𝑁 → ∞, then ‖𝑇 − 𝐴

𝑁
‖ → 0 as

𝑁 → ∞; we have to prove that 𝜌((𝛼
𝑛
(𝑇 − 𝐴

𝑁
))
𝑛∈N) → 0 as
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𝑁 → ∞, by taking 𝑁 = 8𝜂, where 𝜂 is a natural number.
From Definition 3, condition (iii), we have

𝑑 (𝑇, 𝐴
𝑁
) = 𝜌 ((𝛼

𝑛
(𝑇 − 𝐴

𝑁
))
𝑛∈N

)

= 𝜌[(𝛼
0
(𝑇 − 𝐴

𝑁
) , 𝛼
1
(𝑇 − 𝐴

𝑁
) , . . . ,

𝛼
8𝜂−1

(𝑇 − 𝐴
𝑁
) , 0, 0, 0, . . .) + (

8𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0,

𝛼
8𝜂
(𝑇 − 𝐴

𝑁
) , 𝛼
8𝜂+1

(𝑇 − 𝐴
𝑁
) , . . . , 𝛼

12𝜂−1
(𝑇 − 𝐴

𝑁
) ,

0, 0, 0, . . .) + (

12𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

12𝜂
(𝑇 − 𝐴

𝑁
) ,

𝛼
12𝜂+1

(𝑇 − 𝐴
𝑁
) , . . .)] ≤ 𝑘

2
[𝜌 (𝛼

0
(𝑇 − 𝐴

𝑁
) ,

𝛼
1
(𝑇 − 𝐴

𝑁
) , . . . , 𝛼

8𝜂−1
(𝑇 − 𝐴

𝑁
) , 0, 0, 0, . . .)

+ 𝜌(

8𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

8𝜂
(𝑇 − 𝐴

𝑁
) , 𝛼
8𝜂+1

(𝑇 − 𝐴
𝑁
) ,

. . . , 𝛼
12𝜂−1

(𝑇 − 𝐴
𝑁
) , 0, 0, 0, . . .) + 𝜌(

12𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0,

𝛼
12𝜂

(𝑇 − 𝐴
𝑁
) , 𝛼
12𝜂+1

(𝑇 − 𝐴
𝑁
) , . . .)] = 𝑘

2
[𝐼
1 (𝑁)

+ 𝐼
2
(𝜂) + 𝐼

3
(𝜂)] .

(9)

Since 𝛼
𝑛
(𝐴
𝑁
) = 0 for 𝑛 ≥ 𝑁, then

𝛼
𝑛
(𝑇 − 𝐴

𝑁
) ≤ 𝛼
𝑛−𝑁 (𝑇) . (10)

By using Lemma 6, inequality (10), and Definition 3, condi-
tion (v), we get

𝐼
3
(𝜂) = 𝜌(

12𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

12𝜂
(𝑇 − 𝐴

𝑁
) ,

𝛼
12𝜂+1

(𝑇 − 𝐴
𝑁
) , . . .) ≤ 𝜌(

12𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

4𝜂 (𝑇) ,

𝛼
4𝜂+1 (𝑇) , . . .) ≤ 𝑘

0
𝜌(

6𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

4𝜂 (𝑇) ,

𝛼
4𝜂+1 (𝑇) , . . .) ≤ 𝑘

2

0
𝜌(

3𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

4𝜂 (𝑇) ,

𝛼
4𝜂+1 (𝑇) , . . .) ≤ 𝑘

2

0
𝜌(

3𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

3𝜂 (𝑇) ,

𝛼
3𝜂+1 (𝑇) , . . .) = 𝑘

2

0
𝜌 ((𝛼
𝑛 (𝑇))

∞

𝑛=3𝜂
) → 0

as 𝜂 → ∞.

(11)

Now, using Lemma 6 andDefinition 3, condition (v), we have

𝐼
2
(𝜂) = 𝜌(

8𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

8𝜂
(𝑇 − 𝐴

𝑁
) ,

𝛼
8𝜂+1

(𝑇 − 𝐴
𝑁
) , . . . , 𝛼

12𝜂−1
(𝑇 − 𝐴

𝑁
) , 0, 0, 0, . . .)

≤ 𝑘
0
𝜌(

4𝜂

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

8𝜂
(𝑇 − 𝐴

𝑁
) ,

𝛼
8𝜂+1

(𝑇 − 𝐴
𝑁
) , . . . , 𝛼

12𝜂−1
(𝑇 − 𝐴

𝑁
) , 0, 0, 0, . . .)

≤ 𝑘
0
𝜌 (𝛼
0
(𝑇 − 𝐴

𝑁
) , 𝛼
1
(𝑇 − 𝐴

𝑁
) , . . . ,

𝛼
8𝜂−1

(𝑇 − 𝐴
𝑁
) , 0, 0, 0, . . .) = 𝑘

0
𝐼
1 (𝑁) .

(12)

Finally, we have to show that 𝐼
1
(𝑁) → 0 as𝑁 →∞. Since𝑇 ∈

𝑈
app
𝐸

(𝑉,𝑊) and𝜌 is continuous at 𝜃, we have𝜌(𝛼
𝑘
(𝑇))
∞

𝑘=𝑛
→ 0

as 𝑛 → ∞. Then, for each 𝜀 > 0, there exists𝑁
0
(𝜀) such that

for all 𝑛 ≥ 𝑁
0
(𝜀) we have

𝜌 ((𝛼
𝑘 (𝑇))

∞

𝑘=𝑛
) < 𝜀. (13)

By taking 𝜀
1
= 𝜀/3𝑙𝑘 for each 𝑛 ≥ 𝑁

0
(𝜀
1
) and using inequality

(13) and Definition 3, conditions (ii) and (iii), then we have

𝐼
1 (𝑁) = 𝜌 (𝛼

0
(𝑇 − 𝐴

𝑁
) , 𝛼
1
(𝑇 − 𝐴

𝑁
) , . . . , 𝛼

𝑁−1
(𝑇

− 𝐴
𝑁
) , 0, 0, 0, . . .) ≤ 𝑘 [𝜌 (𝛼

0
(𝑇 − 𝐴

𝑁
) ,

𝛼
1
(𝑇 − 𝐴

𝑁
) , . . . , 𝛼

𝑁
0
−1
(𝑇 − 𝐴

𝑁
) , 0, 0, 0, . . .)

+ 𝜌(

𝑁
0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

𝑁
0

(𝑇 − 𝐴
𝑁
) , 𝛼
𝑁
0
+1
(𝑇 − 𝐴

𝑁
) ,

. . . , 𝛼
𝑁−1

(𝑇 − 𝐴
𝑁
) , 0, 0, 0, . . .)] ≤ 𝑘[𝜌 (

𝑇 − 𝐴
𝑁

 ,

𝑇 − 𝐴
𝑁

 , . . . ,
𝑇 − 𝐴

𝑁

 , 0, 0, 0, . . .)

+ 𝜌(

𝑁
0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 2𝛼

𝑁 (𝑇) , 2𝛼𝑁 (𝑇) , . . . , 2𝛼𝑁 (𝑇) ,

0, 0, 0, . . .)] ≤ 𝑘[
𝑇 − 𝐴

𝑁

 𝑙𝜌(

𝑁
0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, 1, 1, . . . , 1, 0, 0, 0,

. . .) + 2𝑙𝜌(

𝑁
0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, 0, . . . , 0, 𝛼

𝑁
0

(𝑇) , 𝛼𝑁
0
+1 (𝑇) , . . . ,

𝛼
𝑁 (𝑇) , 0, 0, 0, . . .)] ≤ 𝑘 [

𝑇 − 𝐴
𝑁

 𝑙𝑘1 (𝜀) + 2𝑙𝜀1] ,

(14)

where 𝑘
1
(𝜀) = 𝜌(

𝑁
0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1, 1, 1, . . . , 1, 0, 0, 0, . . .), and since ‖𝑇 −

𝐴
𝑁
‖ → 0 as 𝑁 → ∞, then for each 𝜀 > 0 there exists 𝑁
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such that ‖𝑇 − 𝐴
𝑁
‖𝑘
1
(𝜀) ≤ 𝜀

1
, for that we have 𝐼

1
(𝑁) ≤

𝑘[𝑙𝜀
1
+ 2𝑙𝜀
1
] = 3𝑘𝑙𝜀

1
= 𝜀.This completes the proof.

We give here the sufficient conditions on the sequence
spaces𝑚(𝜙,𝑀) such that the class of all bounded linear oper-
ators between any arbitrary Banach spaces with (𝛼

𝑛
(𝑇))
𝑛∈N in

these sequence spaces form an ideal operator; the ideal of the
finite rank operators in the class of Banach spaces is dense in
𝑈

app
𝑚(𝜙,𝑀)

(𝑉,𝑊).

Theorem 8. Let 𝑀 be an Orlicz function satisfying Δ
2
-

condition. Then,

(a) 𝑈𝑎𝑝𝑝
𝑚(𝜙,𝑀)

is an operator ideal,

(b) 𝐹(𝑉,𝑊) = 𝑈
𝑎𝑝𝑝

𝑚(𝜙,𝑀)
(𝑉,𝑊).

Proof. We first prove that the space𝑚(𝜙,𝑀) is a (sss).
(1) Let 𝜆

1
, 𝜆
2
∈ R and 𝑥, 𝑦 ∈ 𝑚(𝜙,𝑀); then there exist

𝜁
1
> 0 and 𝜁

2
> 0 such that

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
1

) < ∞,

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
2

) < ∞.

(15)

Let 𝜁
3
= max (2|𝜆

1
|𝜁
1
, 2|𝜆
2
|𝜁
2
). Since 𝑀 is nondecreasing

convex function with Δ
2
-condition, we have

∑

𝑘∈𝜎

𝑀(

𝜆1𝑥𝑘 + 𝜆2𝑦𝑘


𝜁
3

)

≤
1

2
[∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
1

) + ∑

𝑘∈𝜎

𝑀(

𝑦𝑘


𝜁
2

)] .

(16)

So, we get

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝜆1𝑥𝑘 + 𝜆2𝑦𝑘


𝜁
3

)

≤
1

2
[ sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
1

)

+ sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑦𝑘


𝜁
2

)] .

(17)

Thus, 𝜆
1
𝑥+𝜆
2
𝑦 ∈ 𝑚(𝜙,𝑀). Hence,𝑚(𝜙,𝑀) is a linear space

over the field of real numbers. Also, since 𝑒
𝑛
∈ ℓ
𝑀
and ℓ
𝑀
⊆

𝑚(𝜙,𝑀), we have 𝑒
𝑛
∈ 𝑚(𝜙,𝑀) for all 𝑛 ∈ N.

(2) Let 𝑥 ∈ 𝜔 and 𝑦 = (𝑦
𝑘
)
∞

𝑘=0
∈ 𝑚(𝜙,𝑀) with |𝑥

𝑘
| ≤ |𝑦
𝑘
|

for each 𝑘 ∈ N; since𝑀 is nondecreasing, then we get

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
) ≤ sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑦𝑘


𝜁
)

< ∞;

(18)

then 𝑥 = (𝑥
𝑘
)
∞

𝑘=0
∈ 𝑚(𝜙,𝑀).

(3) Let 𝑥 = (𝑥
𝑘
)
∞

𝑘=0
∈ 𝑚(𝜙,𝑀); then we have

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥[𝑘/2]


𝜁
)

≤ 2 sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
) < ∞;

(19)

then 𝑥 = (𝑥
[𝑘/2]

)
∞

𝑘=0
∈ 𝑚(𝜙,𝑀).

Finally, we have proved that the space𝑚(𝜙,𝑀) with 𝜌(𝑥)
is a premodular (sss).

(i) Clearly, 𝜌(𝑥) ≥ 0 for all 𝑥 ∈ 𝑚(𝜙,𝑀) and 𝜌(𝑥) = 0 ⇔

𝑥 = 𝜃.
(ii) Let 𝜆 ∈ R and 𝑥 ∈ 𝑚(𝜙,𝑀); then for 𝜆 ̸= 0 we have

𝜌 (𝜆𝑥)

= inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝜆𝑥𝑘


𝜁
) ≤ 1}

= inf {|𝜆| 𝜇 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜇
) ≤ 1} ,

(20)

where 𝜇 = 𝜁/|𝜆|. Thus, 𝜌(𝜆𝑥) = |𝜆| inf {𝜇 > 0 :

sup
𝑠≥1,𝜎∈𝑃

𝑠

(1/𝜙
𝑠
) ∑
𝑘∈𝜎

𝑀(|𝑥
𝑘
|/𝜇) ≤ 1} = |𝜆|𝜌(𝑥).

Also, for 𝜆 = 0, we have 𝜌(𝜆𝑥) = 𝜆𝜌(𝑥) = 0.

(iii) Let 𝑥, 𝑦 ∈ 𝑚(𝜙,𝑀); then there exist 𝜁
1
> 0 and 𝜁

2
> 0

such that

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
1

) ≤ 1,

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
2

) ≤ 1.

(21)

Let 𝜁 = 𝜁
1
+ 𝜁
2
, and since 𝑀 is nondecreasing and convex,

then we have

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘 + 𝑦𝑘


𝜁
) ≤ sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

⋅ ∑

𝑘∈𝜎

𝑀(

𝑥𝑘
 +

𝑦𝑘


𝜁
1
+ 𝜁
2

) ≤ sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

⋅ ∑

𝑘∈𝜎

[(
𝜁
1

𝜁
1
+ 𝜁
2

)𝑀(

𝑥𝑘


𝜁
1

)

+ (
𝜁
2

𝜁
1
+ 𝜁
2

)𝑀(

𝑦𝑘


𝜁
2

)] ≤ (
𝜁
1

𝜁
1
+ 𝜁
2

) sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

⋅ ∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
1

) + (
𝜁
2

𝜁
1
+ 𝜁
2

) ∑

𝑘∈𝜎

𝑀(

𝑦𝑘


𝜁
2

) ≤ 1.

(22)



Journal of Function Spaces 5

Since 𝜁’s are nonnegative, we have

𝜌 (𝑥 + 𝑦)

= inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘 + 𝑦𝑘


𝜁
) ≤ 1}

≤ inf {𝜁
1
> 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
1

) ≤ 1}

+ inf {𝜁
2
> 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑦𝑘


𝜁
2

) ≤ 1}

= 𝜌 (𝑥) + 𝜌 (𝑦) .

(23)

(iv) Let |𝑥
𝑘
| ≤ |𝑦

𝑘
| for each 𝑘 ∈ N, and since 𝑀 is

nondecreasing, then we get

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
) ≤ sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑦𝑘


𝜁
) ; (24)

thus,

inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
)}

≤ inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑦𝑘


𝜁
)} .

(25)

So, 𝜌(𝑥) ≤ 𝜌(𝑦).
(v) Since

sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥[𝑘/2]


𝜁
)

≤ 2 sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
) ,

(26)

we have

inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥[𝑘/2]


𝜁
)}

≤ 2 inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥𝑘


𝜁
)} .

(27)

So, 𝜌((𝑥
𝑘
)) ≤ 𝜌((𝑥

[𝑘/2]
)) ≤ 2𝜌((𝑥

𝑘
)).

(vi) For each 𝑥 = (𝑥
𝑘
)
∞

𝑘=0
∈ 𝑚(𝜙,𝑀), then

𝜌 ((𝑥
𝑘
)
∞

𝑘=0
)

= inf {𝜁 > 0 : sup
𝑠≥1,𝜎∈𝑃

𝑠

1

𝜙
𝑠

∑

𝑘∈𝜎

𝑀(

𝑥[𝑘/2]


𝜁
) < ∞} ;

(28)

we can find 𝑡 ∈ N such that 𝜌((𝑥
𝑘
)
∞

𝑘=𝑡
) < ∞. This means the

set of all finite sequences is 𝜌-dense in𝑚(𝜙,𝑀).

(vii) For any 𝜆 > 0, there exists a constant 𝜁 ∈ ]0, 1] such
that

𝜌 (𝜆, 0, 0, 0, . . .) ≥ 𝜁𝜆𝜌 (1, 0, 0, 0, . . .) . (29)

By usingTheorems 5 and 7, the proof follows.

As special cases of the above theorem, we obtain the
following corollaries.

Corollary 9. If sup
𝑠
𝜙
𝑠
< ∞, one gets that

(a) 𝑈𝑎𝑝𝑝
ℓ
𝑀

is an operator ideal,

(b) 𝐹(𝑉,𝑊) = 𝑈
𝑎𝑝𝑝

ℓ
𝑀

(𝑉,𝑊).

Corollary 10. If sup
𝑠
𝜙
𝑠
< ∞ and𝑀(𝑡) = 𝑡

𝑝 with 0 < 𝑝 < ∞,
one gets that

(a) 𝑈𝑎𝑝𝑝
ℓ
𝑝 is an operator ideal,

(b) 𝐹(𝑉,𝑊) = 𝑈
𝑎𝑝𝑝

ℓ
𝑝 (𝑉,𝑊). See [1].

Theorem 11. If 𝐸
𝜌
is a premodular (sss), then 𝑈

𝑎𝑝𝑝

𝐸
𝜌

(𝑉,𝑊) is
complete.

Proof. Let (𝑇
𝑚
) be a Cauchy sequence in 𝑈

app
𝐸
𝜌

(𝑉,𝑊); then,
by using Definition 3, condition (vii), and since𝑈app

𝐸
𝜌

(𝑉,𝑊) ⊆

𝐿(𝑉,𝑊), we get

𝜌 ((𝛼
𝑛
(𝑇
𝑖
− 𝑇
𝑗
))
𝑛∈N

) ≥ 𝜌 (𝛼
0
(𝑇
𝑖
− 𝑇
𝑗
) , 0, 0, 0, . . .)

= 𝜌 (

𝑇
𝑖
− 𝑇
𝑗


, 0, 0, 0, . . .)

≥ 𝜉

𝑇
𝑖
− 𝑇
𝑗


𝜌 (1, 0, 0, 0, . . .) ;

(30)

then (𝑇
𝑚
) is also a Cauchy sequence in 𝐿(𝑉,𝑊). Since the

space 𝐿(𝑉,𝑊) is a Banach space, then there exists 𝑇 ∈

𝐿(𝑉,𝑊) such that ‖𝑇
𝑚
− 𝑇‖ → 0, as 𝑚 → ∞, and since

(𝛼
𝑛
(𝑇
𝑚
))
𝑛∈N ∈ 𝐸, for each 𝑚 ∈ N, then from Definition 3,

conditions (iii) and (v), and since𝜌 is continuous at 𝜃, we have

𝜌 ((𝛼
𝑛 (𝑇))𝑛∈N) = 𝜌 (𝛼

𝑛
(𝑇 − 𝑇

𝑚
+ 𝑇
𝑚
))
𝑛∈N

≤ 𝑘𝜌 (𝛼
[𝑛/2]

(𝑇 − 𝑇
𝑚
))
𝑛∈N

+ 𝑘𝜌 (𝛼
[𝑛/2]

(𝑇
𝑚
))
𝑛∈N

≤ 𝑘𝜌 (
𝑇𝑚 − 𝑇

)𝑛∈N

+ 𝑘𝜌 (𝛼
𝑛
(𝑇
𝑚
))
𝑛∈N

< 𝜀;

(31)

we get (𝛼
𝑛
(𝑇))
𝑛∈N ∈ 𝐸, and then𝑇 ∈ 𝑈

app
𝐸
𝜌

(𝑉,𝑊).This finishes
the proof.

By applying Theorem 11 on 𝑚(𝜙,𝑀), we can easily
conclude the next corollaries.

Corollary 12. Pick up an Orlicz function 𝑀 which satisfies
Δ
2
-condition. Then, 𝑀 is continuous from the right at 0 and

𝑈
𝑎𝑝𝑝

𝑚(𝜙,𝑀)
(𝑉,𝑊) is complete.
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Corollary 13. Pick up anOrlicz function𝑀which satisfiesΔ
2
-

condition with sup
𝑠
𝜙
𝑠
< ∞. Then, 𝑀 is continuous from the

right at 0 and 𝑈𝑎𝑝𝑝
𝑙
𝑀

(𝑋, 𝑌) is complete.

Corollary 14. 𝑈𝑎𝑝𝑝
ℓ
𝑝 (𝑉,𝑊) is complete if 𝑀(𝑡) = 𝑡

𝑝 and 𝑝 ∈

(0,∞).
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We introduce the notion of multi-𝛽-normed space (0 < 𝛽 ≤ 1) and study the stability of the alternative additive functional equation
of two forms in this type of space.

1. Introduction

In 1940, Ulam [1] proposed the following stability problem:
given a metric group 𝐺(⋅, 𝜌), a number 𝜀 > 0, and mapping
𝑓 : 𝐺 → 𝐺 which satisfies the inequality 𝜌(𝑓(𝑥 ⋅ 𝑦), 𝑓(𝑥) ⋅
𝑓(𝑦)) < 𝜀 for all 𝑥, 𝑦 in 𝐺, does there exist an automorphism
𝑎 of 𝐺 and a constant 𝑘 > 0, depending only on 𝐺, such that
𝜌(𝑎(𝑥), 𝑓(𝑥)) ≤ 𝑘𝜀 for all 𝑥 in 𝐺? If the answer is affirmative,
we call the equation 𝑎(𝑥 ⋅ 𝑦) = 𝑎(𝑥) ⋅ 𝑎(𝑦) of automorphism
stable. One year later, Hyers [2] provided a positive partial
answer to Ulam’s problem. In 1978, a generalized version
of Hyers’ result was proved by Rassias in [3]. Since then,
the stability problems of several functional equations have
been extensively investigated by a number of authors [4–12].
In particular, we also refer the readers to the survey paper
[13] for recent developments in Ulam’s type stability, [14]
for recent developments of the conditional stability of the
homomorphism equation, and books [15–18] for the general
understanding of the stability theory.

The notion of multinormed space was introduced by
Dales and Polyakov [19]. This concept is somewhat similar
to operator sequence space and has some connections with
operator spaces. Because of its applications in and outside of
mathematics, the study on the stability of various functional
equations has become one of the most important research
subjects in the field of functional equations and attractsmuch
attention from many researchers worldwide. Many examples
of multinormed spaces can be found in [19], and further

development of the stability in multinormed spaces can be
found in papers [20–24].

In order to study the stability problem in more general
setting, in this paper we introduce the notion of multi-𝛽-
normed spaces which are the combination of multinormed
spaces and 𝛽-normed spaces, and the definition is given as
follows.

In this paper we will use the following notations. Let
(𝐸, ‖ ⋅ ‖) be a complex 𝛽-normed space with 0 < 𝛽 ≤ 1,
and let 𝑘 ∈ 𝑁. We denote by 𝐸𝑘 the linear space 𝐸 ⊕ ⋅ ⋅ ⋅ ⊕ 𝐸
consisting of 𝑘-tuples (𝑥1, . . . , 𝑥𝑘), where 𝑥1, . . . , 𝑥𝑘 ∈ 𝐸. The
linear operations on 𝐸𝑘 are defined coordinatewise. The zero
element of either 𝐸 or 𝐸𝑘 is denoted by 0. We denote the set
𝑁𝑘 = {1, 2, . . . , 𝑘} and denote by 𝑆𝑘 the group of permutation
on𝑁𝑘.

Definition 1. A multi-𝛽-norm on {𝐸𝑘 : 𝑘 ∈ 𝑁} is a sequence
(‖ ⋅ ‖𝑘) = (‖ ⋅ ‖𝑘 : 𝑘 ∈ 𝑁) such that ‖ ⋅ ‖𝑘 is 𝛽-norm on 𝐸𝑘

for each 𝑘 ∈ 𝑁, ‖𝑥‖1 = ‖𝑥‖ for each 𝑥 ∈ 𝐸, and the following
axioms are satisfied for each 𝑘 ∈ 𝑁 with 𝑘 ≥ 2:

(𝐴1) ‖(𝑥𝜎(1), . . . , 𝑥𝜎(𝑘))‖𝑘 = ‖(𝑥1, . . . , 𝑥𝑘)‖𝑘, (𝜎 ∈ 𝑆𝑘, 𝑥1,
. . . , 𝑥𝑘 ∈ 𝐸);

(𝐴2) ‖(𝛼1𝑥1, . . . , 𝛼𝑘𝑥𝑘)‖𝑘 ≤ (max𝑖∈𝑁𝑘 |𝛼𝑖|
𝛽)‖(𝑥1, . . . , 𝑥𝑘)‖𝑘,

(𝛼1, . . . , 𝛼𝑘 ∈ 𝐶, 𝑥1, . . . , 𝑥𝑘 ∈ 𝐸);
(𝐴3) ‖(𝑥1, . . . , 𝑥𝑘−1, 0)‖𝑘 = ‖(𝑥1, . . . , 𝑥𝑘−1)‖𝑘−1, (𝑥1, . . . ,

𝑥𝑘 ∈ 𝐸);
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(𝐴4) ‖(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘−1)‖𝑘 = ‖(𝑥1, . . . , 𝑥𝑘−1)‖𝑘−1, (𝑥1, . . . ,
𝑥𝑘 ∈ 𝐸).

In this case, we say that ((𝐸𝑘, ‖ ⋅ ‖𝑘) : 𝑘 ∈ 𝑁) is a multi-𝛽-
normed space.

The following two properties of multi-𝛽-normed spaces
are easily obtained:

‖(𝑥, . . . , 𝑥)‖𝑘 = ‖𝑥‖ , (𝑥 ∈ 𝐸) ; (1)

max
𝑖∈𝑁𝑘

𝑥𝑖
 ≤

(𝑥1, . . . , 𝑥𝑘)
𝑘 ≤

𝑘

∑
𝑖=1

𝑥𝑖


≤ 𝑘max
𝑖∈𝑁𝑘

𝑥𝑖
 , (𝑥1, . . . , 𝑥𝑘 ∈ 𝐸) .

(2)

It follows from (2) that if (𝐸, ‖ ⋅ ‖) is a complete 𝛽-normed
space, then (𝐸𝑘, ‖ ⋅ ‖𝑘) is complete 𝛽-normed space for each
𝑘 ∈ 𝑁; in this case ((𝐸𝑘, ‖ ⋅ ‖𝑘) : 𝑘 ∈ 𝑁) is a complete multi-
𝛽-normed space. In particular, if 𝛽 = 1 (𝐸, ‖ ⋅ ‖) is Banach
space, then the space ((𝐸𝑘, ‖ ⋅ ‖𝑘) : 𝑘 ∈ 𝑁) is multi-Banach
space. Now we give one example of multi-𝛽-normed space.

Example 2. Let 𝐸 be an arbitrary 𝛽-normed space. The
sequence (‖ ⋅ ‖𝑘, 𝑘 ∈ 𝑁) on 𝐸𝑘 : 𝑘 ∈ 𝑁 defined by

(𝑥1, . . . , 𝑥𝑘)
𝑘 = max
𝑖∈𝑁𝑘

𝑥𝑖
 , (𝑥1, . . . , 𝑥𝑘 ∈ 𝐸) , (3)

is a multi-𝛽-norm.

Lemma 3. Let 𝑘 ∈ 𝑁 and (𝑥1, . . . , 𝑥𝑘) ∈ 𝐸𝑘. For each
𝑗 ∈ {1, . . . , 𝑘}, let (𝑥𝑗

𝑛
)𝑛=1,2,... be a sequence in 𝐸 such that

lim𝑛→∞𝑥
𝑗

𝑛
= 𝑥𝑗. Then for each (𝑦1, . . . , 𝑦𝑘) ∈ 𝐸𝑘 one has

lim
𝑛→∞

(𝑥1
𝑛
− 𝑦1, . . . , 𝑥

𝑘

𝑛
− 𝑦𝑘) = (𝑥1 − 𝑦1, . . . , 𝑥𝑘 − 𝑦𝑘) . (4)

Definition 4. Let ((𝐸𝑘, ‖ ⋅ ‖𝑘) : 𝑘 ∈ 𝑁) be a multi-𝛽-normed
space. A sequence (𝑥𝑛) in𝐸 is amultinull sequence if, for each
𝜀 > 0, there exists 𝑛0 ∈ 𝑁 such that

sup
𝑘∈𝑁

(𝑥𝑛, . . . , 𝑥𝑛+𝑘−1)
𝑘 < 𝜀 (5)

for all 𝑛 ≥ 𝑛0. Let 𝑥 ∈ 𝐸; we say that the sequence (𝑥𝑛) is
multiconvergent to 𝑥 in 𝐸 if (𝑥𝑛 − 𝑥) is a multinull sequence.
In this case, 𝑥 is called the limit of the sequence (𝑥𝑛) and we
denote it by lim𝑛→∞𝑥𝑛 = 𝑥.

In this paper we will study the stability in the multi-
𝛽-normed space of alternative additive equation of the two
forms, which were further studied in the normed spaces in
paper [25], and their definitions are presented as follows.

Definition 5 (see [25]). Let 𝑋, 𝑌 be linear spaces and let 𝐴
be mapping from 𝑋 to 𝑌. The equation is called alternative
additive of the first form if𝐴 satisfies the functional equation

𝐴 (𝑥1 + 𝑥2) + 𝐴 (𝑥1 − 𝑥2) = −2𝐴 (−𝑥1) . (6)

Obviously (6) is equivalent to the alternative Jensen equation

𝐴(−
𝑥 + 𝑦

2
) = −

1

2
[𝐴 (𝑥) + 𝐴 (𝑦)] . (7)

Definition 6 (see [25]). Let 𝑋, 𝑌 be linear spaces and let 𝐴
be mapping from 𝑋 to 𝑌. The equation is called alternative
additive of the second form if 𝐴 satisfies the functional
equation

𝐴 (𝑥1 + 𝑥2) + 𝐴 (𝑥1 − 𝑥2) = −2𝐴 (−𝑥2) . (8)

Obviously (6) is equivalent to the alternative Jensen equation

𝐴(−
𝑥 − 𝑦

2
) = −

1

2
[𝐴 (𝑥) − 𝐴 (𝑦)] . (9)

2. Stability of Alternative Additive
Equation of the First Form

In this section we will study the stability of the alternative
additive equation of the first form in multi-𝛽-normed space
and on the restricted domain. First, we investigate the general
case where the domain of themapping is the whole space.The
following theorem is obtained.

Theorem 7. Let𝑋 be a real normed space, and let ((𝑌𝑛, ‖ ⋅ ‖) :
𝑛 ∈ 𝑁) be a complete real multi-𝛽-normed space. Suppose that
𝛿 ≥ 0; mapping 𝑓 : 𝑋 → 𝑌 satisfies

sup
𝑘∈𝑁

(𝑓 (𝑥1 + 𝑦1) + 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑥1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) + 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑥𝑘))
𝑘 ≤ 𝛿;

(10)

sup
𝑘∈𝑁

(𝑓 (−𝑧1) + 𝑓 (𝑧1) , . . . , 𝑓 (−𝑧𝑘) + 𝑓 (𝑧𝑘))
𝑘 ≤

𝛿

2𝛽
(11)

for all 𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑘, 𝑧1, . . . , 𝑧𝑘 ∈ 𝑋. Then there exists
unique alternative additive mapping of the first form 𝐴 : 𝑋 →
𝑌 satisfying

sup
𝑘∈𝑁

(𝑓 (𝑧1) − 𝐴 (𝑧1) , . . . , 𝑓 (𝑧𝑘) − 𝐴 (𝑧𝑘))
𝑘

≤ (2𝛿 +
𝛿

4𝛽
) ⋅

1

2𝛽 − 1

(12)

for all 𝑧1, . . . , 𝑧𝑘 ∈ 𝑋.

Proof. Letting 𝑥𝑖 = 𝑦𝑖 = 0 (𝑖 = 1, . . . , 𝑘) in (10) yields

sup
𝑘∈𝑁

(𝑓 (0) , . . . , 𝑓 (0))
𝑘 ≤

𝛿

4𝛽
. (13)

Setting 𝑥𝑖 = 𝑦𝑖 = 𝑧𝑖 (𝑖 = 1, . . . , 𝑘) yields

sup
𝑘∈𝑁

(𝑓 (2𝑧1) + 𝑓 (0) + 2𝑓 (−𝑧1) , . . . , 𝑓 (2𝑧𝑘) + 𝑓 (0)

+ 2𝑓 (−𝑧𝑘))
𝑘 ≤ 𝛿.

(14)
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It follows from (11), (13), and (14) that

sup
𝑘∈𝑁

(𝑓 (2𝑧1) − 2𝑓 (𝑧1) , . . . , 𝑓 (2𝑧𝑘) − 2𝑓 (𝑧𝑘))
𝑘

≤ sup
𝑘∈𝑁

(𝑓 (2𝑧1) + 𝑓 (0) + 2𝑓 (−𝑧1) , . . . , 𝑓 (2𝑧𝑘)

+ 𝑓 (0) + 2𝑓 (−𝑧𝑘))
𝑘

+ sup
𝑘∈𝑁

(−2 (𝑓 (−𝑧1) + 𝑓 (𝑧1)) , . . . ,

− 2 (𝑓 (−𝑧𝑘) + 𝑓 (𝑧𝑘)))
𝑘 + sup
𝑘∈𝑁

(−𝑓 (0) , . . . ,

− 𝑓 (0))
𝑘 ≤ 2𝛿 +

𝛿

4𝛽
.

(15)

Therefore, we have

sup
𝑘∈𝑁


(
1

2𝑛
𝑓 (2𝑛𝑧1) − 𝑓 (𝑧1) , . . . ,

1

2𝑛
𝑓 (2𝑛𝑧𝑘)

− 𝑓 (𝑧𝑘))
𝑘

≤ (2𝛿 +
𝛿

4𝛽
)
𝑛

∑
𝑘=1

1

2𝑘𝛽
,

(16)

sup
𝑘∈𝑁


(

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚𝑧1)

−
1

2𝑛
𝑓 (2𝑛𝑧1) , . . . ,

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚𝑧𝑘)

−
1

2𝑛
𝑓 (2𝑛𝑧𝑘))

𝑘
≤ (2𝛿 +

𝛿

4𝛽
)
𝑛+𝑚

∑
𝑘=𝑛+1

1

2𝑘𝛽

(17)

for all𝑚, 𝑛 ∈ 𝑁,𝑚 ≥ 1.
It follows from (𝐴2) and (17) that

sup
𝑘∈𝑁


(

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚𝑥) −

1

2𝑛
𝑓 (2𝑛𝑥) , . . . ,

1

2𝑛+𝑚+𝑘−1

⋅ 𝑓 (2𝑛+𝑚+𝑘−1𝑥) −
1

2𝑛+𝑘−1
𝑓 (2𝑛+𝑘−1𝑥))

𝑘

= sup
𝑘∈𝑁


(

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚𝑥) −

1

2𝑛
𝑓 (2𝑛𝑥) , . . . ,

1

2𝑘−1
(

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚 (2𝑘−1𝑥))

−
1

2𝑛
𝑓 (2𝑛 (2𝑘−1𝑥))))

𝑘
≤ sup
𝑘∈𝑁


(

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚𝑥)

−
1

2𝑛
𝑓 (2𝑛𝑥) , . . . ,

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚 (2𝑘−1𝑥)) −

1

2𝑛

⋅ 𝑓 (2𝑛 (2𝑘−1𝑥)))
𝑘

≤ (2𝛿 +
𝛿

4𝛽
)
𝑛+𝑚

∑
𝑘=𝑛+1

1

2𝑘𝛽
.

(18)

Hence {(1/2𝑛)𝑓(2𝑛𝑥)} is Cauchy sequence, which must be
convergent in complete real multi-𝛽-normed space; that is,
there exists mapping 𝐴 : 𝑋 → 𝑌 such that 𝐴(𝑥) fl

lim𝑛→∞(1/2
𝑛)𝑓(2𝑛𝑥). Hence, for arbitrary 𝜀 > 0, there exists

𝑛0 ∈ 𝑁; if 𝑛 ≥ 𝑛0, then we have

sup
𝑘∈𝑁


(
1

2𝑛
𝑓 (2𝑛𝑥) − 𝐴 (𝑥) , . . . ,

1

2𝑛+𝑘−1
𝑓 (2𝑛+𝑘−1𝑥)

− 𝐴 (𝑥))
𝑘

< 𝜀.

(19)

Considering (2), we obtain

lim
𝑛→∞



1

2𝑛
𝑓 (2𝑛𝑥) − 𝐴 (𝑥)


= 0, 𝑥 ∈ 𝑋. (20)

If we let 𝑛 = 0 in (17), then we have

sup
𝑘∈𝑁


(
1

2𝑚
𝑓 (2𝑚𝑧1) − 𝑓 (𝑧1) , . . . ,

1

2𝑚
𝑓 (2𝑚𝑧𝑘)

− 𝑓 (𝑧𝑘))
𝑘

≤ (2𝛿 +
𝛿

4𝛽
)
𝑚

∑
𝑘=1

1

2𝑘𝛽
.

(21)

Letting 𝑚 → ∞ and making use of Lemma 3 and (20), we
know that mapping 𝐴 satisfies (12).

Let 𝑥, 𝑦 ∈ 𝑋. Setting 𝑥1 = ⋅ ⋅ ⋅ = 𝑥𝑘 = 2𝑛𝑥, 𝑦1 = ⋅ ⋅ ⋅ = 𝑦𝑘 =

2𝑛𝑦 in (10) and dividing both sides by 2𝑛𝛽 yield

sup
𝑘∈𝑁


(
1

2𝑛
𝑓 (2𝑛 (𝑥 + 𝑦)) +

1

2𝑛
𝑓 (2𝑛 (𝑥 − 𝑦)) + 2

⋅
1

2𝑛
𝑓 (−2𝑛𝑥) , . . . ,

1

2𝑛
𝑓 (2𝑛 (𝑥 + 𝑦))

+
1

2𝑛
𝑓 (2𝑛 (𝑥 − 𝑦)) + 2 ⋅

1

2𝑛
𝑓 (−2𝑛𝑥))

𝑘
≤

𝛿

2𝑛𝛽
,

(22)

which together with (1) implies



1

2𝑛
𝑓 (2𝑛 (𝑥 + 𝑦)) +

1

2𝑛
𝑓 (2𝑛 (𝑥 − 𝑦)) + 2

⋅
1

2𝑛
𝑓 (−2𝑛𝑥)


≤

𝛿

2𝑛𝛽
.

(23)

Taking limit as 𝑛 → ∞, we have

𝐴 (𝑥 + 𝑦) + 𝐴 (𝑥 − 𝑦) + 2𝐴 (−𝑥) = 0, (𝑥, 𝑦 ∈ 𝑋) . (24)

So 𝐴 is the alternative additive mapping of the first form. It
remains to show that𝐴 is uniquely determined. Let𝐴 : 𝑋 →
𝑌 be another alternative additive mapping of the first form
that satisfies (12). It follows from (24) that some properties of
mapping 𝐴 are obtained:

(1) If we let 𝑦 = 0, we get 𝐴(𝑥) = −𝐴(𝑥), so 𝐴 is odd
mapping.

(2) If we let 𝑥 = 𝑦 = 0, we have 𝐴(0) = 0.
(3) Putting 𝑦 = 𝑥 yields 𝐴(2𝑥) = 2𝐴(𝑥); that is, 𝐴(𝑥) =

(1/2)𝐴(2𝑥).
(4) Replacing 𝑥, 𝑦 with 2𝑥, respectively, yields 𝐴(22𝑥) =

22𝐴(𝑥); hence 𝐴(𝑥) = (1/22)𝐴(22𝑥).
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(5) Replacing 𝑥, 𝑦 with 22𝑥, respectively, yields 𝐴(23𝑥) =
23𝐴(𝑥); that is, 𝐴(𝑥) = (1/23)𝐴(23𝑥).

Proceeding in an obvious fashion yields 𝐴(𝑥) =
(1/2𝑛)𝐴(2𝑛𝑥). Similarly, we have 𝐴(𝑥) = (1/2𝑛)𝐴(2𝑛𝑥).
Letting 𝑧1 = ⋅ ⋅ ⋅ = 𝑧𝑘 = 𝑥 in (12) and in view of (1) we obtain

𝑓 (𝑥) − 𝐴 (𝑥)
 ≤ (2𝛿 +

𝛿

4𝛽
) ⋅

1

2𝛽 − 1
. (25)

Similarly we have

𝑓 (𝑥) − 𝐴 (𝑥)
 ≤ (2𝛿 +

𝛿

4𝛽
) ⋅

1

2𝛽 − 1
. (26)

Therefore,

𝐴 (𝑥) − 𝐴 (𝑥)
 =



1

2𝑛
𝐴 (2𝑛𝑥) −

1

2𝑛
𝐴 (2𝑛𝑥)



≤
1

2𝑛𝛽
𝐴 (2𝑛𝑥) − 𝐴 (2𝑛𝑥)



≤
1

2𝑛𝛽
𝐴 (2𝑛𝑥) − 𝑓 (2𝑛𝑥)



+
1

2𝑛𝛽
𝑓 (2𝑛𝑥) − 𝐴 (2𝑛𝑥)



≤
1

2𝑛𝛽
(2𝛿 +

𝛿

4𝛽
) ⋅

2

2𝛽 − 1
.

(27)

Taking limit as 𝑛 → ∞, we have 𝐴 = 𝐴.

It is a time to study the stability of this type mapping
on the local domain. We only prove the stability result when
the target spaces are real multi-Banach spaces, that is, the
special case of real multi-𝛽-normed space when 𝛽 = 1. For
0 < 𝛽 < 1, it is an interesting open problem. The following
are our results.

Theorem 8. Let𝑋 be a real normed space, let ((𝑌𝑛, ‖ ⋅ ‖) : 𝑛 ∈
𝑁) be a real multi-Banach space, and let 𝑑 > 0, 𝛿 ≥ 0. Suppose
that mapping 𝑓 : 𝑋 → 𝑌 satisfies

(𝑓 (𝑥1 + 𝑦1) + 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑥1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) + 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑥𝑘))
𝑘 ≤ 𝛿,

(𝑓 (𝑧1) + 𝑓 (−𝑧1) , . . . , 𝑓 (𝑧𝑘) + 𝑓 (−𝑧𝑘))
𝑘 ≤

𝛿

2

(28)

for all 𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑘, 𝑧1, . . . , 𝑧𝑘 ∈ 𝑋 that satisfy
‖(𝑥1, . . . , 𝑥𝑘)‖𝑘 + ‖(𝑦1, . . . , 𝑦𝑘)‖𝑘 ≥ 𝑑 and ‖(𝑧1, . . . , 𝑧𝑘)‖𝑘 ≥ 𝑑.
Then there exists unique alternative additive mapping of the
first form 𝐴 : 𝑋 → 𝑌 such that

sup
𝑘∈𝑁

(𝑓 (𝑧1) − 𝐴 (𝑧1) , . . . , 𝑓 (𝑧𝑘) − 𝐴 (𝑧𝑘))
𝑘 ≤

95

4
𝛿 (29)

for all 𝑧1, . . . , 𝑧𝑘 ∈ 𝑋.

Proof. Fix 𝑘 ∈ 𝑁. Let X = (𝑥1, . . . , 𝑥𝑘) and Y = (𝑦1, . . . , 𝑦𝑘)
satisfy ‖(𝑥1, . . . , 𝑥𝑘)‖𝑘 + ‖(𝑦1, . . . , 𝑦𝑘)‖𝑘 < 𝑑. If X = Y = 0,
then let T = (𝑡1, . . . , 𝑡𝑘) ∈ 𝑋𝑘 and ‖T‖𝑘 = 𝑑. If X ̸= 0 or
Y ̸= 0, let

T =

{{{{
{{{{
{

(1 +
𝑑

‖X‖𝑘
)X, ‖X‖𝑘 ≥ ‖Y‖𝑘 ;

(1 +
𝑑

‖Y‖𝑘
)Y, ‖X‖𝑘 < ‖Y‖𝑘 .

(30)

If ‖X‖𝑘 ≥ ‖Y‖𝑘, we get ‖T‖𝑘 = ‖X‖𝑘 + 𝑑 > 𝑑. If ‖X‖𝑘 < ‖Y‖𝑘,
we have ‖T‖𝑘 = ‖Y‖𝑘 + 𝑑 > 𝑑. Therefore,

‖X − T‖𝑘 + ‖Y + T‖𝑘 ≥ 2 ‖T‖𝑘 − (‖X‖𝑘 + ‖Y‖𝑘) ≥ 𝑑;

‖X − T‖𝑘 + ‖Y − T‖𝑘 ≥ 2 ‖T‖𝑘 − (‖X‖𝑘 + ‖Y‖𝑘) ≥ 𝑑;

‖X − 2T‖𝑘 + ‖Y‖𝑘 ≥ 2 ‖T‖𝑘 − (‖X‖𝑘 + ‖Y‖𝑘) ≥ 𝑑;

‖X ± T‖𝑘 ≥ ‖T‖𝑘 − ‖X‖𝑘

= (‖X‖𝑘 + 𝑑) − ‖X‖𝑘 = 𝑑,

for ‖X‖𝑘 ≥ ‖Y‖𝑘 ;

‖X ± T‖𝑘 ≥ ‖T‖𝑘 − ‖X‖𝑘

= (‖Y‖𝑘 + 𝑑) − ‖X‖𝑘 = 𝑑,

for ‖Y‖𝑘 ≥ ‖X‖𝑘 ;

‖T − X‖𝑘 + ‖T‖𝑘 ≥ 𝑑.

(31)

It follows from (28) that
(𝑓 (𝑥1 + 𝑦1) + 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑥1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) + 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑥𝑘))
𝑘 ≤

(𝑓 (𝑥1 + 𝑦1)

+ 𝑓 (𝑥1 − 𝑦1 − 2𝑡1)

+ 2𝑓 (− (𝑥1 − 𝑡1)) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘)

+ 𝑓 (𝑥𝑘 − 𝑦𝑘 − 2𝑡𝑘) + 2𝑓 (− (𝑥𝑘 − 𝑡𝑘)))
𝑘

+
(𝑓 (𝑥1 + 𝑦1 − 2𝑡1) + 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (− (𝑥1 − 𝑡1)) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘 − 2𝑡𝑘)

− 𝑓 (𝑥𝑘 − 𝑦𝑘) + 2𝑓 (− (𝑥𝑘 − 𝑡𝑘)))
𝑘

+
(𝑓 (𝑥1 + 𝑦1 − 2𝑡1) + 𝑓 (𝑥1 − 𝑦1 − 2𝑡1)

+ 2𝑓 (− (𝑥1 − 2𝑡1)) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘 − 2𝑡𝑘)

+ 𝑓 (𝑥𝑘 − 𝑦𝑘 − 2𝑡𝑘) + 2𝑓 (− (𝑥𝑘 − 2𝑡𝑘)))
𝑘

+
(2𝑓 ((𝑡1 − 𝑥1) + 𝑡1) + 2𝑓 (−𝑥1)

+ 4𝑓 (𝑥1 − 𝑡1) , . . . , 2𝑓 ((𝑡𝑘 − 𝑥𝑘) + 𝑡𝑘) + 2𝑓 (−𝑥𝑘)

+ 4𝑓 (𝑥𝑘 − 𝑡𝑘))
𝑘 +

(4𝑓 (𝑥1 − 𝑡1)
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+ 4𝑓 (− (𝑥1 − 𝑡1)) , . . . , 4𝑓 (𝑥𝑘 − 𝑡𝑘)

+ 4𝑓 (− (𝑥𝑘 − 𝑡𝑘)))
𝑘 ≤ 7𝛿,

(2𝑓 (𝑧1) + 2𝑓 (−𝑧1) , . . . , 2𝑓 (𝑧𝑘) + 2𝑓 (−𝑧𝑘))
𝑘

≤
(2𝑓 (𝑧1) + 𝑓 (−𝑧1 + 𝑡1)

+ 𝑓 (−𝑧1 − 𝑡1) , . . . , 2𝑓 (𝑧𝑘) + 𝑓 (−𝑧𝑘 + 𝑡𝑘)

+ 𝑓 (−𝑧𝑘 − 𝑡𝑘))
𝑘 +

(−𝑓 (−𝑧1 − 𝑡1)

− 𝑓 (𝑧1 + 𝑡1) , . . . , −𝑓 (−𝑧𝑘 − 𝑡𝑘) − 𝑓 (𝑧𝑘 + 𝑡𝑘))
𝑘

+
(−𝑓 (𝑧1 − 𝑡1) − 𝑓 (−𝑧1 + 𝑡1) , . . . , −𝑓 (𝑧𝑘 − 𝑡𝑘)

− 𝑓 (−𝑧𝑘 + 𝑡𝑘))
𝑘 +

(2𝑓 (−𝑧1) + 𝑓 (𝑧1 − 𝑡1)

+ 𝑓 (𝑧1 + 𝑡1) , . . . , 2𝑓 (−𝑧𝑘) + 𝑓 (𝑧𝑘 − 𝑡𝑘)

+ 𝑓 (𝑧𝑘 + 𝑡𝑘))
𝑘 ≤ 15𝛿.

(32)

It follows fromTheorem 7 that there exists unique alternative
additive mapping of the first form 𝐴 : 𝑋 → 𝑌 satisfying (29)
for all 𝑧1, . . . , 𝑧𝑘 ∈ 𝑋.

Corollary 9. Let ((𝑋𝑛, ‖ ⋅ ‖) : 𝑛 ∈ 𝑁) be a real multinormed
space, and let ((𝑌𝑛, ‖ ⋅ ‖) : 𝑛 ∈ 𝑁) be a multi-Banach space.
Mapping 𝑓 : 𝑋 → 𝑌 satisfies alternative additive equation of
the first form if and only if, for each 𝑘 ∈ 𝑁, if ‖(𝑥1, . . . , 𝑥𝑘)‖𝑘 +
‖(𝑦1, . . . , 𝑦𝑘)‖𝑘 → ∞ and ‖(𝑧1, . . . , 𝑧𝑘)‖𝑘 → ∞, one has

(𝑓 (𝑥1 + 𝑦1) + 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑥1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) + 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑥𝑘))
𝑘 → 0;

(𝑓 (𝑧1) + 𝑓 (−𝑧1) , . . . , 𝑓 (𝑧𝑘) + 𝑓 (−𝑧𝑘))
𝑘 → 0.

(33)

3. Stability of Alternative Additive Equation of
the Second Form

In this section we will study the stability of the alternative
additive equation of the second form in multi-𝛽-normed
space and on the restricted domain. First, we investigate the
general case where the domain of the mapping is the whole
space. The following theorem is obtained.

Theorem 10. Let𝑋 be a real normed space, and let ((𝑌𝑛, ‖ ⋅‖) :
𝑛 ∈ 𝑁) be a complete real multi-𝛽-normed space. Suppose that
𝛿 ≥ 0; mapping 𝑓 : 𝑋 → 𝑌 satisfies

sup
𝑘∈𝑁

(𝑓 (𝑥1 + 𝑦1) − 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑦1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) − 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑦𝑘))
𝑘 ≤ 𝛿

(34)

for all 𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑘 ∈ 𝑋. Then there exists unique
alternative additive mapping of the second form 𝐴 : 𝑋 → 𝑌
such that

sup
𝑘∈𝑁

(𝑓 (𝑥1) − 𝐴 (𝑥1) , . . . , 𝑓 (𝑥𝑘) − 𝐴 (𝑥𝑘))
𝑘

≤
22𝛽 + 2𝛽 + 1

2𝛽 (2𝛽 − 1)
𝛿

(35)

for all 𝑥1, . . . , 𝑥𝑘 ∈ 𝑋.

Proof. Let 𝑥𝑖 = 𝑦𝑖 = 0 (𝑖 = 1, . . . , 𝑘) in (34); we get

sup
𝑘∈𝑁

(𝑓 (0) , . . . , 𝑓 (0))
𝑘 ≤

𝛿

2𝛽
. (36)

Replacing 𝑦𝑖 (𝑖 = 1, . . . , 𝑘) with 𝑥𝑖, we obtain

sup
𝑘∈𝑁

(𝑓 (2𝑥1) − 𝑓 (0) + 2𝑓 (−𝑥1) , . . . , 𝑓 (2𝑥𝑘)

− 𝑓 (0) + 2𝑓 (−𝑥𝑘))
𝑘 ≤ 𝛿.

(37)

Let 𝑥1 = ⋅ ⋅ ⋅ = 𝑥𝑘 = 0 and replace 𝑦𝑖 (𝑖 = 1, . . . , 𝑘) with 𝑥𝑖; we
obtain
sup
𝑘∈𝑁

(𝑓 (𝑥1) + 𝑓 (−𝑥1) , . . . , 𝑓 (𝑥𝑘) + 𝑓 (−𝑥𝑘))
𝑘 ≤ 𝛿. (38)

Hence for all 𝑥1, . . . , 𝑥𝑘 ∈ 𝑋 we have

sup
𝑘∈𝑁

(𝑓 (2𝑥1) − 2𝑓 (𝑥1) , . . . , 𝑓 (2𝑥𝑘) − 2𝑓 (𝑥𝑘))
𝑘

≤ sup
𝑘∈𝑁

(𝑓 (2𝑥1) − 𝑓 (0) + 2𝑓 (−𝑥1) , . . . , 𝑓 (2𝑥𝑘)

− 𝑓 (0) + 2𝑓 (−𝑥𝑘))
𝑘

+ sup
𝑘∈𝑁

(2 (𝑓 (𝑥1) + 𝑓 (−𝑥1)) , . . . ,

2 (𝑓 (𝑥𝑘) + 𝑓 (−𝑥𝑘)))
𝑘 + sup
𝑘∈𝑁

(𝑓 (0) , . . . , 𝑓 (0))
𝑘

≤
22𝛽 + 2𝛽 + 1

2𝛽
𝛿.

(39)

Therefore, for all𝑚, 𝑛 ∈ 𝑁,𝑚 ≥ 1, we have

sup
𝑘∈𝑁


(
1

2𝑛
𝑓 (2𝑛𝑥1) − 𝑓 (𝑥1) , . . . ,

1

2𝑛
𝑓 (2𝑛𝑥𝑘)

− 𝑓 (𝑥𝑘))
𝑘

≤ (
22𝛽 + 2𝛽 + 1

2𝛽
𝛿)
𝑛

∑
𝑘=1

1

2𝑘𝛽
,

sup
𝑘∈𝑁


(

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚𝑥1)

−
1

2𝑛
𝑓 (2𝑛𝑥1) , . . . ,

1

2𝑛+𝑚
𝑓 (2𝑛+𝑚𝑥𝑘)

−
1

2𝑛
𝑓 (2𝑛𝑥𝑘))

𝑘
≤ (

22𝛽 + 2𝛽 + 1

2𝛽
𝛿)
𝑛+𝑚

∑
𝑘=𝑛+1

1

2𝑘𝛽
.

(40)

We omit the following arguments because they are similar to
that of Theorem 7.
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Theorem 11. Let𝑋 be a real normed space, let ((𝑌𝑛, ‖ ⋅ ‖) : 𝑛 ∈
𝑁) be a complete real multi-Banach space, and let 𝑑 > 0, 𝛿 ≥ 0.
Suppose that 𝑓 : 𝑋 → 𝑌 satisfies

(𝑓 (𝑥1 + 𝑦1) − 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑦1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) − 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑦𝑘))
𝑘 ≤ 𝛿,

(𝑓 (𝑧1) + 𝑓 (−𝑧1) , . . . , 𝑓 (𝑧𝑘) + 𝑓 (−𝑧𝑘))
𝑘 ≤

𝛿

2

(41)

for 𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑘, 𝑧1, . . . , 𝑧𝑘 ∈ 𝑋 that satisfy ‖(𝑥1,
. . . , 𝑥𝑘)‖𝑘 + ‖(𝑦1, . . . , 𝑦𝑘)‖𝑘 ≥ 𝑑 and ‖(𝑧1, . . . , 𝑧𝑘)‖𝑘 ≥ 𝑑. Then
there exists unique alternative additive mapping of the second
form 𝐴 : 𝑋 → 𝑌 such that

sup
𝑘∈𝑁

(𝑓 (𝑥1) − 𝐴 (𝑥1) , . . . , 𝑓 (𝑥𝑘) − 𝐴 (𝑥𝑘))
𝑘 ≤

49

2
𝛿 (42)

for all 𝑥1, . . . , 𝑥𝑘 ∈ 𝑋.

Proof. Fix 𝑘 ∈ 𝑁; choose X = (𝑥1, . . . , 𝑥𝑘) and Y = (𝑦1,
. . . , 𝑦𝑘) with ‖(𝑥1, . . . , 𝑥𝑘)‖𝑘 + ‖(𝑦1, . . . , 𝑦𝑘)‖𝑘 < 𝑑. If X = Y =

0, then let T = (𝑡1, . . . , 𝑡𝑘) ∈ 𝑋𝑘 and ‖T‖𝑘 = 𝑑. If X ̸= 0 or
Y ̸= 0, then let

T =

{{{{
{{{{
{

(1 +
𝑑

‖X‖𝑘
)X, ‖X‖𝑘 ≥ ‖Y‖𝑘 ;

(1 +
𝑑

‖Y‖𝑘
)Y, ‖X‖𝑘 < ‖Y‖𝑘 .

(43)

If ‖X‖𝑘 ≥ ‖Y‖𝑘, then ‖T‖𝑘 = ‖X‖𝑘 + 𝑑 > 𝑑. If ‖X‖𝑘 < ‖Y‖𝑘,
then ‖T‖𝑘 = ‖Y‖𝑘 + 𝑑 > 𝑑. Therefore,

‖X − T‖𝑘 + ‖Y + T‖𝑘 ≥ 2 ‖T‖𝑘 − (‖X‖𝑘 + ‖Y‖𝑘) ≥ 𝑑;

‖X − T‖𝑘 + ‖Y − T‖𝑘 ≥ 2 ‖T‖𝑘 − (‖X‖𝑘 + ‖Y‖𝑘) ≥ 𝑑;

‖X − 2T‖𝑘 + ‖Y‖𝑘 ≥ 2 ‖T‖𝑘 − (‖X‖𝑘 + ‖Y‖𝑘) ≥ 𝑑;

‖T‖𝑘 + ‖Y‖𝑘 ≥ 𝑑;

‖T − Y‖𝑘 ≥ 𝑑;

‖T + Y‖𝑘 ≥ 𝑑.

(44)

It follows from (41) that
(𝑓 (𝑥1 + 𝑦1) − 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑦1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) − 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑦𝑘))
𝑘 ≤

(𝑓 (𝑥1 + 𝑦1)

− 𝑓 (𝑥1 − 𝑦1 − 2𝑡1)

+ 2𝑓 (− (𝑦1 + 𝑡1)) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘)

− 𝑓 (𝑥𝑘 − 𝑦𝑘 − 2𝑡𝑘) + 2𝑓 (− (𝑦𝑘 + 𝑡𝑘)))
𝑘

+
(𝑓 (𝑥1 + 𝑦1 − 2𝑡1) − 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (− (𝑦1 − 𝑡1)) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘 − 2𝑡𝑘)

− 𝑓 (𝑥𝑘 − 𝑦𝑘) + 2𝑓 (− (𝑦𝑘 − 𝑡𝑘)))
𝑘

+
(𝑓 (𝑥1 + 𝑦1 − 2𝑡1) − 𝑓 (𝑥1 − 𝑦1 − 2𝑡1)

+ 2𝑓 (−𝑦1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘 − 2𝑡𝑘)

− 𝑓 (𝑥𝑘 − 𝑦𝑘 − 2𝑡𝑘) + 2𝑓 (−𝑦𝑘))
𝑘

+
(2𝑓 (𝑡1 + 𝑦1) − 2𝑓 (𝑡1 − 𝑦1)

+ 4𝑓 (−𝑦1) , . . . , 2𝑓 (𝑡𝑘 + 𝑦𝑘) − 2𝑓 (𝑡𝑘 − 𝑦𝑘)

+ 4𝑓 (−𝑦𝑘))
𝑘 +

(2𝑓 (𝑡1 + 𝑦1)

− 2𝑓 (− (𝑡1 + 𝑦1)) , . . . , 2𝑓 (𝑡𝑘 + 𝑦𝑘)

+ 2𝑓 (− (𝑡𝑘 − 𝑦𝑘)))
𝑘 ≤ 7𝛿,

(2𝑓 (𝑧1) + 2𝑓 (−𝑧1) , . . . , 2𝑓 (𝑧𝑘) + 2𝑓 (−𝑧𝑘))
𝑘

≤
(2𝑓 (𝑧1) + 𝑓 (−𝑧1 + 𝑡1)

− 𝑓 (𝑧1 + 𝑡1) , . . . , 2𝑓 (𝑧𝑘) + 𝑓 (−𝑧𝑘 + 𝑡𝑘)

− 𝑓 (𝑧𝑘 + 𝑡𝑘))
𝑘 +

(2𝑓 (−𝑧1) + 𝑓 (𝑧1 + 𝑡1)

− 𝑓 (−𝑧1 + 𝑡1) , . . . , 2𝑓 (−𝑧𝑘) + 𝑓 (𝑧𝑘 + 𝑡𝑘)

− 𝑓 (−𝑧𝑘 + 𝑡𝑘))
𝑘 ≤ 14𝛿.

(45)

According to Theorem 10, there exists unique alternative
additive mapping of the second form 𝐴 : 𝑋 → 𝑌 such that
(42) holds true.

Corollary 12. Let ((𝑋𝑛, ‖ ⋅ ‖) : 𝑛 ∈ 𝑁) be a real
multinormed space and let ((𝑌𝑛, ‖ ⋅ ‖) : 𝑛 ∈ 𝑁) be a multi-
Banach space. Mapping 𝑓 : 𝑋 → 𝑌 satisfies alternative
additive equation of the second form if and only if, for each
𝑘 ∈ 𝑁 if ‖(𝑥1, . . . , 𝑥𝑘)‖𝑘 + ‖(𝑦1, . . . , 𝑦𝑘)‖𝑘 → ∞ and
‖(𝑧1, . . . , 𝑧𝑘)‖𝑘 → ∞, one has

(𝑓 (𝑥1 + 𝑦1) − 𝑓 (𝑥1 − 𝑦1)

+ 2𝑓 (−𝑦1) , . . . , 𝑓 (𝑥𝑘 + 𝑦𝑘) − 𝑓 (𝑥𝑘 − 𝑦𝑘)

+ 2𝑓 (−𝑦𝑘))
𝑘 → 0;

(𝑓 (𝑧1) + 𝑓 (−𝑧1) , . . . , 𝑓 (𝑧𝑘) + 𝑓 (−𝑧𝑘))
𝑘 → 0.

(46)
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The paper is devoted to solving a new class of backward stochastic differential equations driven by Lévy process and countable
Brownian motions. We prove the existence and uniqueness of the solutions to the backward stochastic differential equations by
constructing Cauchy sequence and fixed point theorem. Moreover, we give a probabilistic solution of stochastic partial differential
integral equations by means of the solution of backward stochastic differential equations. Finally, we give an example to illustrate.

1. Introduction

The backward stochastic differential equations (BSDEs for
short), in the nonlinear cases, were firstly introduced by
Pardoux and Peng [1] in order to give a probabilistic inter-
pretation for the solution of semilinear parabolic partial
differential equations. In the past decades, the equations have
been extensively considered because of the applications in
mathematic finance [2, 3], stochastic games [4–6], and partial
differential equations (PDEs for short) [7–10].

As the applications developed, different settings of BSDEs
have been introduced. Pardoux and Peng [11] proposed a
new class of BSDEs driven by two Brownian motions, which
are called backward doubly stochastic differential equations
(BDSDEs for short), in order to give a probabilistic inter-
pretation for the solution of quasi-linear stochastic partial
differential equations (SPDEs for short). Since then, many
authors discussed various settings of BDSDEs, for example,
Bally andMatoussi [12], Matoussi and Scheutzow [13], Zhang
and Zhao [14, 15], and the references therein.

In 2000, Nualart and Schoutens [16] gave a martingale
representation of Lévy process. Furthermore, they [17] dis-
cussed the BSDEs driven by Lévy process and the application
in finance. Following it, many authors were devoted to the
BSDEs driven by Lévy process. Bahlali et al. [18] generalized
the results [17] to the BSDEs driven by Teugels martingales
associated with Lévy process and a Brownian motion. Also,

they gave the application in partial differential integral
equations (PDIEs for short). Ren et al. [19] introduced a class
of BDSDEs driven by Teugels martingales associated with
Lévy process and two Brownian motions. They obtained the
existence and uniqueness of solution and gave the probabilis-
tic interpretation for solutions of stochastic partial differential
integral equations (SPDIEs for short). Later, Hu and Ren [20]
discussed BDSDEs driven by Teugels martingales associated
with Lévy process and an adapted continuous increasing
process. Recently, Duan et al. [21] made further discussion
of reflected backward stochastic differential equations driven
by countable Brownian motions under Lipschitz conditions.
Owo [22] studied the equations with continuous coeffi-
cients.

To the best of our knowledge, there are no works on the
BSDEs driven by Teugels martingales associated with Lévy
processes and countably many Brownian motions. Thus, we
will make the first attempt to study such problem in this
paper.

The structure of this paper is organized as follows. In
Section 2, we present some basic notions and assumptions.
Section 3 is devoted to the existence and uniqueness of
solutions for BSDEs driven by Teugels martingales associated
with Lévy processes and countably many Brownian motions
by means of martingale representation theorem, fixed point
theorem, and constructing Cauchy sequence. In Section 4, we
discuss the connection between the BSDEs and SPDIEs.
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2. Notations

Let𝑇 > 0 be a fixed terminal time. Let (Ω,F, {F
𝑡
}
0≤𝑡≤𝑇

, 𝑃) be
a complete probability space, let {𝛽

𝑗
(𝑡), 𝑡 ∈ [0, 𝑇], 𝑗 = 1, 2, . . .}

and {𝐿
𝑡
, 𝑡 ∈ [0, 𝑇]} bemutually independent processes, where

{𝛽
𝑗
(𝑡)} is a sequence of R-valued standard Brownian motion

andmutually independent, and {𝐿
𝑡
} isR-valued Lévy process

corresponding to a standard Lévy measure ] such that ∫
R
(1 ∧

𝑦)](𝑑𝑦) < ∞.
Let N denote the totality of 𝑃-null sets of F. For each

𝑡 ∈ [0, 𝑇], we define

F
𝑡
= (

∞

⋁

𝑗=1

F
𝛽𝑗

𝑡,𝑇
) ∨F

𝐿

𝑡
, (1)

where for any process 𝜂
𝑡
,F
𝜂

𝑠,𝑡
= 𝜎{𝜂

𝑟
−𝜂
𝑠
, 𝑠 ≤ 𝑟 ≤ 𝑡}∨N,F

𝜂

𝑡
=

F
𝜂

0,𝑡
.
Let us introduce some spaces which will be carried out in

the following parts.

(i) 𝐿2(Ω,F
𝑇
, 𝑃) denotes the set of all F

𝑇
-measurable

random variables 𝜉 such that 𝐸|𝜉|2 < ∞.
(ii) H2 denotes the space of R-valued, square integrable,

andF
𝑡
- progressively measurable processes {𝜑

𝑡
: 𝑡 ∈

[0, 𝑇]} such that

𝜑


2

= 𝐸∫

𝑇

0

𝜑𝑡


2

𝑑𝑡 < ∞. (2)

And we denote byP2 the subspace ofH2 formed by
the predictable processes.

(iii) S2 denotes the set of R-valued, F
𝑡
-measurable pro-

cesses {𝜑
𝑡
: 𝑡 ∈ [0, 𝑇]} such that

𝐸( sup
0≤𝑡≤𝑇

𝜑𝑡


2

) < ∞. (3)

Let 𝑙2 be the space of R-valued sequences {𝑥
𝑛
}
∞

𝑛=1
such

that∑∞
𝑛=1

𝑥
2

𝑖
< ∞.H2(𝑙2) andP2(𝑙2) denote the correspond-

ing space of 𝑙2-valued processes endowed with the norm

𝜑


2

=

∞

∑

𝑖=1

𝐸∫

𝑇

0


𝜑
(𝑖)

𝑡



2

𝑑𝑡. (4)

Now, we give the definition of the Teugels martingales
denoted by {𝐻(𝑖)

𝑡
}, associated with the Lévy processes {𝐿

𝑡
, 𝑡 ∈

[0, 𝑇]}, which is given by

𝐻
(𝑖)

𝑡
= 𝑐
𝑖,𝑖
𝑌
(𝑖)

𝑡
+ 𝑐
𝑖,𝑖−1

𝑌
(𝑖−1)

𝑡
+ ⋅ ⋅ ⋅ + 𝑐

𝑖,1
𝑌
(1)

𝑡
, (5)

where 𝑌(𝑖)
𝑡

= 𝐿
(𝑖)

𝑡
− 𝐸[𝐿

(𝑖)

𝑡
] = 𝐿

(𝑖)

𝑡
− 𝑡𝐸[𝐿

(𝑖)

1
] for all 𝑖 ≥ 1

and 𝐿
(𝑖)

𝑡
are power-jump processes. That is, 𝐿(1)

𝑡
= 𝐿
𝑡
and

𝐿
(𝑖)

𝑡
= ∑
0<𝑠≤𝑡

(Δ𝐿
𝑠
)
𝑖 for 𝑖 ≥ 2, where Δ𝐿

𝑡
= 𝐿
𝑡
− 𝐿
𝑡
− and 𝐿

𝑡
− =

lim
𝑠↑𝑡
𝐿
𝑠
.The coefficients 𝑐

𝑖,𝑘
correspond to the orthonormali-

zation of the polynomials 1, 𝑥, 𝑥
2
, . . . with respect to the

measure 𝜇(𝑑𝑥) = 𝑥
2](𝑑𝑥) + 𝜎2𝛿

0
(𝑑𝑥):

𝑞
𝑖−1

= 𝑐
𝑖,𝑖
𝑥
𝑖−1

+ 𝑐
𝑖,𝑖−1

𝑥
𝑖−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑖,1
. (6)

We set

𝑝
𝑖
(𝑥) = 𝑥𝑞

𝑖−1
(𝑥) = 𝑐

𝑖,𝑖
𝑥
𝑖
+ 𝑐
𝑖,𝑖−1

𝑥
𝑖−1

+ ⋅ ⋅ ⋅ + 𝑐
𝑖,1
𝑥. (7)

For more details on Teugels martingales associated with
the Lévy process {𝐿

𝑡
, 𝑡 ∈ [0, 𝑇]}, we can refer to [16, 17].

In this paper, we will discuss the following backward
stochastic differential equations driven by Lévy process and
countably many Brownian motions:

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝛽
𝑗
(𝑠) −

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
,

𝑡 ∈ [0, 𝑇] ,

(8)

where the integral with respect to 𝛽
𝑗
(𝑠) is the classical

backward Itô integral and the integral with respect to 𝐻(𝑖)
𝑡

is
standard forward Itô integral.

With the above preparation, we introduce the definition
of solution of (8).

Definition 1. A pair of processes (𝑌
𝑡
, 𝑍
𝑡
)
𝑡∈[0,𝑇]

∈ S2 ×P2(𝑙2)
is a solution to (8), if it satisfies (8).

In order to get the solution of (8), we propose the
following assumptions:

(H1) 𝜉 ∈ 𝐿2(Ω,F
𝑇
, 𝑃).

(H2) The functions 𝑓 : [0, 𝑇] × Ω × R × 𝑙
2
→ R and 𝑔 :

[0, 𝑇] ×Ω ×R × 𝑙
2
→ R are progressively measurable

such that

𝐸∫

𝑇

0

𝑓 (𝑡, 0, 0)


2

𝑑𝑡 < ∞,

∞

∑

𝑗=1

𝐸∫

𝑇

0


𝑔
𝑗
(𝑡, 0, 0)



2

𝑑𝑡 < ∞.

(9)

(H3) There exist some nonnegative constants𝐶, 𝐶
𝑗
, 𝛼
𝑗
with

∑
∞

𝑗=1
𝐶
𝑗
< ∞ and 𝛼 = ∑

∞

𝑗=1
𝛼
𝑗
< 1 such that, for any

𝑡 ∈ [0, 𝑇], 𝑦
1
, 𝑦
2
∈ R, 𝑧

1
, 𝑧
2
∈ 𝑙
2,

𝑓 (𝑡, 𝑦1, 𝑧1) − 𝑓 (𝑡, 𝑦2, 𝑧2)


2

≤ 𝐶 (
𝑦1 − 𝑦2



2

+
𝑧1 − 𝑧2



2

) ,


𝑔
𝑗
(𝑡, 𝑦
1
, 𝑧
1
) − 𝑔
𝑗
(𝑡, 𝑦
2
, 𝑧
2
)


2

≤ 𝐶
𝑗

𝑦1 − 𝑦2


2

+ 𝛼
𝑗

𝑧1 − 𝑧2


2

.

(10)

Our conclusions depend on the extensive Itô formula in
[19].
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Lemma 2. Let 𝛼 ∈ S2, 𝛽, 𝛾, 𝜂 and 𝜁(𝑖) ∈ H2 such that

𝛼
𝑡
= 𝛼
0
+ ∫

𝑡

0

𝛽
𝑠
𝑑𝑠 + ∫

𝑡

0

𝛾
𝑠
𝑑𝐵
𝑠
+ ∫

𝑡

0

𝜂
𝑠
𝑑𝑊
𝑠

+

∞

∑

𝑖=1

∫

𝑡

0

𝜁
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
, 0 ≤ 𝑡 ≤ 𝑇.

(11)

Then

𝛼𝑡


2

=
𝛼0



2

+ 2∫

𝑡

0

𝛼
𝑠
𝛽
𝑠
𝑑𝑠 + 2∫

𝑡

0

𝛼
𝑠
𝛾
𝑠
𝑑𝐵
𝑠

+ 2∫

𝑡

0

𝛼
𝑠
𝜂
𝑠
𝑑𝑊
𝑠
+ 2

∞

∑

𝑖=1

∫

𝑡

0

𝛼
𝑠
𝜁
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠

− ∫

𝑡

0

𝛾𝑠


2

𝑑𝑠 + ∫

𝑡

0

𝜂𝑠


2

𝑑𝑠

+

∞

∑

𝑖=1

∞

∑

𝑗=1

∫

𝑡

0

𝜁
(𝑖)

𝑠
𝜁
(𝑗)

𝑠
𝑑 [𝐻
(𝑖)
, 𝐻
(𝑗)
]
𝑠
.

(12)

Noting that ⟨𝐻(𝑖), 𝐻(𝑗)⟩
𝑡
= 𝛿
𝑖𝑗
𝑡, we have

𝐸
𝛼𝑡


2

=
𝛼0



2

+ 2𝐸∫

𝑡

0

𝛼
𝑠
𝛽
𝑠
𝑑𝑠 − 𝐸∫

𝑡

0

𝛾𝑠


2

𝑑𝑠

+ 𝐸∫

𝑡

0

𝜂𝑠


2

𝑑𝑠 +

∞

∑

𝑖=1

𝐸∫

𝑡

0

(𝜁
(𝑖)

𝑠
)
2

𝑑𝑠.

(13)

3. Existence and Uniqueness

In this section, we begin with establishing the existence and
uniqueness of (8) in the case that 𝑓 and 𝑔 do not depend on
𝑌 and 𝑍 with finite noise; that is,

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠) 𝑑𝛽

𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
, 𝑡 ∈ [0, 𝑇] .

(14)

Theorem 3. Assume that (H1)–(H3) hold. Then, there exists a
unique solution (𝑌

𝑡
, 𝑍
𝑡
) ∈ S2 ×P2(𝑙2) satisfying (14).

Proof. For 𝐸∫𝑇
0
|𝑓(𝑠)|
2
𝑑𝑠 < ∞, ∑∞

𝑗=1
∫
𝑇

0
|𝑔
𝑗
(𝑠)|
2
𝑑𝑠 < ∞, we

set the filtration {C
𝑡
: 𝑡 ∈ [0, 𝑇]} as follows:

C
𝑡
= F
𝐿

𝑡
∨ (

𝑛

⋁

𝑗=1

F
𝛽𝑗

𝑡
) (15)

and theC
𝑡
-square integrable martingale is as follows:

𝑀
𝑡

= 𝐸[

[

𝜉 + ∫

𝑇

0

𝑓 (𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

∫

𝑇

0

𝑔
𝑗
(𝑠) 𝑑𝛽

𝑗
(𝑠) | C

𝑡
]

]

.

(16)

By the predictable representation property, there exists 𝑍 ∈

P2(𝑙2) such that

𝑀
𝑡
= 𝑀
0
+

∞

∑

𝑖=1

∫

𝑡

0

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
. (17)

So, we have

𝑀
𝑇
= 𝑀
𝑡
+

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
. (18)

Let

𝑌
𝑡
= 𝑀
𝑡
− ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 −

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗
(𝑠) 𝑑𝛽

𝑗
(𝑠)

= 𝑀
𝑇
− ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 −

𝑛

∑

𝑗=1

∫

𝑡

0

𝑔
𝑗
(𝑠) 𝑑𝛽

𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
.

(19)

Hence, we have

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠) 𝑑𝛽

𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
.

(20)

From the above equality, we can deduce the existence
of solution of (14). The proof of uniqueness is a procedure
similar to that in [11]; we omit it.

With the preparation of above, we consider the following
BSDEs with finite noise:

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝛽
𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
, 𝑡 ∈ [0, 𝑇] .

(21)

Theorem 4. Assume that (H1)–(H3) hold. Then, there exists a
unique solution (𝑌

𝑡
, 𝑍
𝑡
) ∈ S2 ×P2(𝑙2) satisfying (21).

Proof. FromTheorem 3, for each (𝑌
𝑡
, 𝑍
𝑡
), there exists (𝑌

𝑡
, 𝑍
𝑡
)

satisfying

𝑌
𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝛽
𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
, 𝑡 ∈ [0, 𝑇] .

(22)
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Following it, we define amapΦ fromS2×P2(𝑙2) to itself; that
is, Φ(𝑌

𝑡
, 𝑍
𝑡
) = (𝑌

𝑡
, 𝑍
𝑡
). In the following parts, we will show

thatΦ is a strict contraction with the norm

‖(𝑌, 𝑍)‖
2

𝛽
= 𝐸∫

𝑇

0

𝑒
𝛽𝑠
[
𝑌𝑠−



2

+
𝑍𝑠



2

] 𝑑𝑠, (23)

for suitable constant 𝛽 > 0. In addition, S2 × P2(𝑙2) is a
Banach space.

Set (𝑌, 𝑍) = Φ(�̃�, �̃�), (𝑌, 𝑍) = Φ(�̃�


, �̃�


), where
(𝑌, 𝑍) and (𝑌


, 𝑍

) are the solutions of (22) associated with

(𝜉, 𝑓(𝑡, �̃�, �̃�), 𝑔
𝑗
(𝑡, �̃�, �̃�)) and (𝜉, 𝑓(𝑡, �̃�



, �̃�


), 𝑔
𝑗
(𝑡, �̃�


, �̃�


)),
respectively. Let (𝑌

𝑡
, 𝑍
𝑡
) = (𝑌

𝑡
− 𝑌


𝑡
, 𝑍
𝑡
− 𝑍


𝑡
). Applying Itô

formula to 𝑒𝛽𝑡|𝑌
𝑡
− 𝑌


𝑡
|
2, we have

𝑒
𝛽𝑡
(𝑌
𝑡
− 𝑌


𝑡
)
2

= 2∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
) [𝑓 (𝑠, �̃�

𝑠−
, �̃�
𝑠
)

− 𝑓 (𝑠, �̃�


𝑠−
, �̃�


𝑠
)] 𝑑𝑠 + 2

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
)

⋅ [𝑔
𝑗
(𝑠, �̃�
𝑠−
, �̃�
𝑠
) − 𝑔
𝑗
(𝑠, �̃�


𝑠−
, �̃�


𝑠
)] 𝑑𝛽
𝑗
(𝑠)

− 2

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
) (𝑍
(𝑖)

𝑠
− 𝑍
(𝑖)

𝑠
) 𝑑𝐻
(𝑖)

𝑠

− 𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
)
2

𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠

𝑔
𝑗
(𝑠, �̃�
𝑠−
, �̃�
𝑠
) − 𝑔
𝑗
(𝑠, �̃�


𝑠−
, �̃�


𝑠
)


2

𝑑𝑠

−

∞

∑

𝑖=1

∞

∑

𝑘=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑍
(𝑖)

𝑠
− 𝑍
(𝑖)

𝑠
)

⋅ (𝑍
(𝑘)

𝑠
− 𝑍
(𝑘)

𝑠
) 𝑑 [𝐻

(𝑖)
, 𝐻
(𝑖)
]
𝑠
.

(24)

Taking mathematical expectation on both sides, we obtain

𝐸𝑒
𝛽𝑡
(𝑌
𝑡
− 𝑌


𝑡
)
2

+

∞

∑

𝑖=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑍
(𝑖)

𝑠
− 𝑍
(𝑖)

𝑠
)
2

𝑑𝑠

+ 𝛽𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
)
2

𝑑𝑠 = 2𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−

− 𝑌


𝑠−
) [𝑓 (𝑠, �̃�

𝑠−
, �̃�
𝑠
) − 𝑓 (𝑠, �̃�



𝑠−
, �̃�


𝑠
)] 𝑑𝑠

+

𝑛

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠

𝑔
𝑗
(𝑠, �̃�
𝑠−
, �̃�
𝑠
) − 𝑔
𝑗
(𝑠, �̃�


𝑠−
, �̃�


𝑠
)


2

𝑑𝑠.

(25)

With the conditions of (H1)–(H3), it follows that

𝐸𝑒
𝛽𝑡
(𝑌
𝑡
− 𝑌


𝑡
)
2

+

∞

∑

𝑖=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑍
(𝑖)

𝑠
− 𝑍
(𝑖)

𝑠



2

𝑑𝑠

+ 𝛽𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
)
2

𝑑𝑠 ≤
2𝐶

1 − ∑
∞

𝑗=1
𝛼
𝑗

⋅ 𝐸 ∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑌
𝑠−
− 𝑌


𝑠−



2

𝑑𝑠 +

1 − ∑
∞

𝑗=1
𝛼
𝑗

2

⋅ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(

�̃�
𝑠−
− �̃�


𝑠−



2

+

�̃�
𝑠
− �̃�


𝑠



2

)𝑑𝑠

+ (

𝑛

∑

𝑗=1

𝐶
𝑗
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠

�̃�
𝑠−
− �̃�


𝑠−



2

𝑑𝑠 + (

𝑛

∑

𝑗=1

𝛼
𝑗
)

⋅ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠

�̃�
𝑠
− �̃�


𝑠



2

𝑑𝑠 ≤
2𝐶

1 − 𝛼

⋅ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑌
𝑠−
− 𝑌


𝑠−



2

𝑑𝑠 + (

∞

∑

𝑗=1

𝐶
𝑗
+
1 − 𝛼

2
)

⋅ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠

�̃�
𝑠−
− �̃�


𝑠−



2

𝑑𝑠 +
1 + 𝛼

2

⋅ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠

�̃�
𝑠
− �̃�


𝑠



2

𝑑𝑠.

(26)

Furthermore, we have

𝐸𝑒
𝛽𝑡
(𝑌
𝑡
− 𝑌


𝑡
)
2

+ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑍
𝑠
− 𝑍


𝑠



2

𝑑𝑠

+ (𝛽 −
2𝐶

1 − 𝛼
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
)
2

𝑑𝑠

≤ (

∞

∑

𝑗=1

𝐶
𝑗
+
1 − 𝛼

2
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠

�̃�
𝑠−
− �̃�


𝑠−



2

𝑑𝑠

+
1 + 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠

�̃�
𝑠
− �̃�


𝑠



2

𝑑𝑠.

(27)

Let 𝛾 = 2𝐶/(1 − 𝛼), 𝐶 = 2(∑
∞

𝑗=1
𝐶
𝑗
+ (1 − 𝛼)/2)/(1 + 𝛼), and

𝛽 = 𝛾 + 𝐶, and we have

𝐸𝑒
𝛽𝑡 

𝑌
𝑡
− 𝑌


𝑡



2

+ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑍
𝑠
− 𝑍


𝑠



2

𝑑𝑠

+ 𝐶𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑌
𝑠−
− 𝑌


𝑠−
)
2

𝑑𝑠

≤
1 + 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝐶


�̃�
𝑠−
− �̃�


𝑠−



2

+

�̃�
𝑠
− �̃�


𝑠



2

)𝑑𝑠.

(28)



Journal of Function Spaces 5

Moreover,

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
𝐶

𝑌
𝑠−
− 𝑌


𝑠−



2

𝑑𝑠 + 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑍
𝑠
− 𝑍


𝑠



2

𝑑𝑠

≤
1 + 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝐶


�̃�
𝑠−
− �̃�


𝑠−



2

+

�̃�
𝑠
− �̃�


𝑠



2

)𝑑𝑠.

(29)

That is,

(𝑌𝑡, 𝑍𝑡)


2

𝛽
≤
1 + 𝛼

2


(𝑌
𝑡
, 𝑍
𝑡
)


2

𝛽
. (30)

It follows that Φ is a strict contraction with the norm ‖ ⋅ ‖
𝛽
.

Then, from B-D-G inequality, Φ has a unique fixed point
(𝑌
𝑡
, 𝑍
𝑡
) ∈ S2 × P2(𝑙2), which is the unique solution of

(21).

Theorem 5. Under the conditions (H1)–(H3), there exists a
unique solution (𝑌

𝑡
, 𝑍
𝑡
) ∈ S2 ×P2(𝑙2) satisfying (8).

Proof (existence). From Theorem 4, for each 𝑛, there exists
a unique solution of (21) under the conditions (H1)–(H3)
denoted by (𝑌𝑛

𝑡
, 𝑍
𝑛

𝑡
):

𝑌
𝑛

𝑡
= 𝜉 + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑌
𝑛

𝑠−
, 𝑍
𝑛

𝑠
) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠−
, 𝑍
𝑛

𝑠
) 𝑑𝛽
𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
𝑛(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
, 𝑡 ∈ [0, 𝑇] .

(31)

In the following part, we claim that (𝑌𝑛
𝑡
, 𝑍
𝑛

𝑡
) is Cauchy

sequence inS2 ×P2(𝑙2). Applying Itô formula to |𝑌𝑛
𝑡
−𝑌
𝑚

𝑡
|
2,

without loss of generality, we let 𝑛 < 𝑚; then

𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡



2

+ ∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2

𝑑𝑠 = 2∫

𝑇

𝑡

(𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−
)

⋅ (𝑓 (𝑠, 𝑌
𝑛

𝑠−
, 𝑍
𝑛

𝑠
) − 𝑓 (𝑠, 𝑌

𝑚

𝑠−
, 𝑍
𝑚

𝑠
)) 𝑑𝑠

+ 2

𝑚

∑

𝑗=𝑛+1

∫

𝑇

𝑡


𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠−
, 𝑍
𝑛

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠−
, 𝑍
𝑚

𝑠
)


2

𝑑𝑠

+ 2

𝑚

∑

𝑗=𝑛+1

∫

𝑇

𝑡

(𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−
) (𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠−
, 𝑍
𝑛

𝑠
)

− 𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠−
, 𝑍
𝑚

𝑠
)) 𝑑𝛽
𝑗
(𝑠)

− 2

∞

∑

𝑖=1

∫

𝑇

𝑡

(𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−
) (𝑍
𝑛(𝑖)

𝑠
− 𝑍
𝑚(𝑖)

𝑠
) 𝑑𝐻
(𝑖)

𝑠

− ∫

𝑇

𝑡

∞

∑

𝑖=1

∞

∑

𝑗=1

(𝑍
𝑛(𝑖)

𝑠
− 𝑍
𝑚(𝑖)

𝑠
)

⋅ (𝑍
𝑛(𝑗)

𝑠
− 𝑍
𝑚(𝑗)

𝑠
) 𝑑 [𝐻

(𝑖)
, 𝐻
(𝑗)
]
𝑠
.

(32)

Taking mathematical expectation on both sides, we have

𝐸
𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡



2

+ 𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2

𝑑𝑠

= 2𝐸∫

𝑇

𝑡

(𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−
)

⋅ (𝑓 (𝑠, 𝑌
𝑛

𝑠−
, 𝑍
𝑛

𝑠
) − 𝑓 (𝑠, 𝑌

𝑚

𝑠−
, 𝑍
𝑚

𝑠
)) 𝑑𝑠

+ 2

𝑚

∑

𝑗=𝑛+1

𝐸∫

𝑇

𝑡


𝑔
𝑗
(𝑠, 𝑌
𝑛

𝑠−
, 𝑍
𝑛

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
𝑚

𝑠−
, 𝑍
𝑚

𝑠
)


2

𝑑𝑠

≤
2𝐶

1 − 𝛼
𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−



2

𝑑𝑠 +
1 − 𝛼

2

⋅ 𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−



2

𝑑𝑠 +
1 + 𝛼

2

⋅ 𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2

𝑑𝑠 + (

𝑚

∑

𝑗=𝑛+1

𝛼
𝑗
)

⋅ 𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2

𝑑𝑠 + (

𝑚

∑

𝑗=𝑛+1

𝐶
𝑗
)

⋅ 𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−



2

𝑑𝑠 ≤ (
2𝐶

1 − 𝛼
+
1 − 𝛼

2

+

𝑚

∑

𝑗=1

𝐶
𝑗
)𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−



2

𝑑𝑠 +
1 + 𝛼

2

⋅ 𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2

𝑑𝑠.

(33)

Therefore, we obtain

𝐸
𝑌
𝑛

𝑡
− 𝑌
𝑚

𝑡



2

+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

𝑍
𝑛

𝑠
− 𝑍
𝑚

𝑠



2

𝑑𝑠

≤ (
2𝐶

1 − 𝛼
+
1 − 𝛼

2
+

𝑚

∑

𝑗=1

𝐶
𝑗
)𝐸∫

𝑇

𝑡

𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−



2

𝑑𝑠.

(34)

By theGronwall inequality andB-D-G inequality, we have

𝐸[ sup
0≤𝑡≤𝑇

∫

𝑇

𝑡

𝑌
𝑛

𝑠−
− 𝑌
𝑚

𝑠−



2

𝑑𝑠] → 0. (35)

Denote its limit by (𝑌
𝑡
, 𝑍
𝑡
); from the continuity of𝑓 and𝑔 and

Lebesgue dominated convergence theorem,we can imply that
it is the solution of (8).

Uniqueness.We set

Ψ
𝑀
(𝑥) = 𝑥

2
1
{−𝑀≤𝑥≤𝑀}

+𝑀(2𝑥 −𝑀) 1
{𝑥>𝑀}

−𝑀(2𝑥 +𝑀) 1
{𝑥<−𝑀}

.

(36)

If we define Ψ
𝑀
(𝑥)/𝑥 = 2, when 𝑥 = 0, then, 0 ≤ Ψ



𝑀
(𝑥)/𝑥 ≤

2. Let (𝑌𝑖
𝑡
, 𝑍
𝑖

𝑡
) (𝑖 = 1, 2) be two solutions of (8); we apply Itô
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formula to 𝑒𝛽𝑡Ψ
𝑀
(𝑌
𝑡
), where (𝑌

𝑡
, 𝑍
𝑡
) = (𝑌

1

𝑡
− 𝑌
2

𝑡
, 𝑍
1

𝑡
− 𝑍
2

𝑡
),

and 𝛽 is constant:

𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠−
) 𝑑𝑠

+ ∫

𝑇

𝑡

𝑒
𝛽𝑠
1
{−𝑀≤𝑌𝑠≤𝑀}


𝑍
𝑠



2

𝑑𝑠 = ∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠−
)

⋅ (𝑓 (𝑠, 𝑌
1

𝑠−
, 𝑍
1

𝑠
) − 𝑓 (𝑠, 𝑌

2

𝑠−
, 𝑍
2

𝑠
)) 𝑑𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
1
{−𝑀≤𝑌𝑠≤𝑀}


𝑔
𝑗
(𝑠, 𝑌
1

𝑠−
, 𝑍
1

𝑠
)

− 𝑔
𝑗
(𝑠, 𝑌
2

𝑠−
, 𝑍
2

𝑠
)


2

𝑑𝑠 −

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠−
)

⋅ (𝑔
𝑗
(𝑠, 𝑌
1

𝑠−
, 𝑍
1

𝑠
) − 𝑔
𝑗
(𝑠, 𝑌
2

𝑠−
, 𝑍
2

𝑠
)) 𝑑𝛽
𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑒
𝛽𝑠
(𝑍
1(𝑖)

𝑠
− 𝑍
2(𝑖)

𝑠
) 𝑑𝐻
(𝑖)

𝑠

− ∫

𝑇

𝑡

∞

∑

𝑖=1

∞

∑

𝑗=1

𝑒
𝛽𝑠
(𝑍
1(𝑖)

𝑠
− 𝑍
1(𝑗)

𝑠
)

⋅ (𝑍
2(𝑖)

𝑠
− 𝑍
2(𝑗)

𝑠
) 𝑑 [𝐻

(𝑖)
, 𝐻
(𝑗)
]
𝑠
.

(37)

Taking expectation on both sides,

𝐸𝑒
𝛽𝑡
Ψ
𝑀
(𝑌
𝑡
) + 𝛽𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ
𝑀
(𝑌
𝑠−
) 𝑑𝑠

+ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
1
{−𝑀≤𝑌𝑠≤𝑀}


𝑍
𝑠



2

𝑑𝑠

= 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
Ψ


𝑀
(𝑌
𝑠−
) (𝑓 (𝑠, 𝑌

1

𝑠−
, 𝑍
1

𝑠
)

− 𝑓 (𝑠, 𝑌
2

𝑠−
, 𝑍
2

𝑠
)) 𝑑𝑠

+

∞

∑

𝑗=1

𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠
1
{−𝑀≤𝑌𝑠≤𝑀}


𝑔
𝑗
(𝑠, 𝑌
1

𝑠−
, 𝑍
1

𝑠
)

− 𝑔
𝑗
(𝑠, 𝑌
2

𝑠−
, 𝑍
2

𝑠
)


2

𝑑𝑠 ≤ (
2𝐶

1 − 𝛼
+

∞

∑

𝑗=1

𝐶
𝑗

+
1 − 𝛼

2
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑌
𝑠−



2

𝑑𝑠 +
1 + 𝛼

2

⋅ 𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑍
𝑠



2

𝑑𝑠.

(38)

Let𝑀→∞, 𝛽 is large enough, and we have

𝐸𝑒
𝛽𝑡 

𝑌
𝑡



2

+ (𝛽 −
2𝐶

1 − 𝛼
−

∞

∑

𝑗=1

𝐶
𝑗
−
1 − 𝛼

2
)𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑌
𝑠−



2

𝑑𝑠

+
1 − 𝛼

2
𝐸∫

𝑇

𝑡

𝑒
𝛽𝑠 

𝑍
𝑠



2

𝑑𝑠 ≤ 0.

(39)

So, we complete the proof of uniqueness.

4. Application to SPDIEs

In this section, we consider the application of BSDEs driven
by Lévy processes and countably many Brownian motions
to the solution of a class of SPDIEs. Suppose that our Lévy
processes have the form of 𝐿

𝑡
= 𝑏𝑡 + ∫

|𝑧|<1
(𝑧(𝑁
𝑡
(⋅, 𝑑𝑧)) −

𝑡](𝑑𝑧)), where 𝑁
𝑡
(𝜔, 𝑑𝑧) denotes the random measure such

that ∫
Λ
𝑁
𝑡
(⋅, 𝑑𝑧) is a Poisson process with parameter ](Λ) for

all the set Λ where 0 ∉ Λ.
Consider the following SDE:

𝑋
𝑡
= 𝑥 + ∫

𝑡

0

𝜎 (𝑋
𝑠−
) 𝑑𝐿
𝑠
, 𝑡 ∈ [0, 𝑇] . (40)

Under adequate conditions, there exists a unique solution of
(40).

In order to get the main result, we give a technical lemma
that appears in [17].

Lemma6. Let 𝑐 : Ω×[0, 𝑇]×R → R be ameasurable function
such that

𝑐 (𝑠, 𝑦) ≤ 𝑎
𝑠
(𝑦
2
∧
𝑦
) , a.s., (41)

where {𝑎
𝑠
: 𝑠 ∈ [0, 𝑇]} is a nonnegative predictable process such

that 𝐸∫𝑇
0
𝑎
2

𝑠
𝑑𝑠 < ∞. Then, for each 0 ≤ 𝑡 ≤ 𝑇, we have

∑

𝑡≤𝑠≤𝑇

𝑐 (𝑠, Δ𝐿
𝑠
) =

∞

∑

𝑖=1

∫

𝑇

𝑡

⟨𝑐 (𝑠, ⋅) , 𝑝
𝑖
⟩
𝐿
2
(]) 𝑑𝐻

(𝑖)

𝑠

+ ∫

𝑇

𝑡

∫
R

𝑐 (𝑠, 𝑦) ] (𝑑𝑦) 𝑑𝑠.

(42)

Consider the following BSDEs driven by Lévy processes
and countably many Brownian motions:

𝑌
𝑡
= ℎ (𝐿

𝑇
) + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑋
𝑠−
, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑋
𝑠−
, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝛽
𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑𝐻
(𝑖)

𝑠
, 𝑡 ∈ [0, 𝑇] ,

(43)

where 𝐸|ℎ(𝐿
𝑇
)|
2
< ∞.

Define

𝑢
1
(𝑡, 𝑥, 𝑦) = 𝑢 (𝑡, 𝑥 + 𝑦) − 𝑢 (𝑡, 𝑥) −

𝜕𝑢

𝜕𝑥
(𝑡, 𝑥) 𝑦, (44)

where 𝑢 is the solution of the following SPDIEs:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) +

1

2
𝜎
2
(𝑥)

𝜕
2
𝑢

𝜕𝑥2
(𝑡, 𝑥) + 𝑎

 𝜕𝑢

𝜕𝑥
(𝑡, 𝑥)

+ ∫
R

𝑢
1
(𝑡, 𝑥, 𝑦) ] (𝑑𝑦)

+ 𝑓 [𝑡, 𝑢 (𝑡, 𝑥) ,
𝜕𝑢

𝜕𝑥
(𝑡, 𝑥) , {𝑢

(𝑖)
(𝑡, 𝑥)}

∞

𝑖=1
]

+

∞

∑

𝑗=1

𝑔
𝑗
[𝑡, 𝑢 (𝑡, 𝑥) ,

𝜕𝑢

𝜕𝑥
(𝑡, 𝑥) , {𝑢

(𝑖)
(𝑡, 𝑥)}

∞

𝑖=1
] �̇�
𝑗
(𝑡) 𝑑𝑡

= 0,

(45)
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with 𝑢(𝑇, 𝑥) = ℎ(𝑥), 𝑎 = 𝑎 + ∫
|𝑦|≤1

𝑦](𝑑𝑦), and

𝑢
1
(𝑡, 𝑥) = ∫

R

𝑢
1
(𝑡, 𝑥, 𝑦) 𝑝

1
(𝑦) ] (𝑑𝑦)

+
𝜕𝑢

𝜕𝑥
(𝑡, 𝑥) (∫

R

𝑦
2] (𝑑𝑦))

1/2

,

(46)

and for 𝑖 ≥ 2

𝑢
(𝑖)
(𝑡, 𝑥) = ∫

R

𝑢
1
(𝑡, 𝑥, 𝑦) 𝑝

𝑖
(𝑦) ] (𝑑𝑦) . (47)

In order to give themeaning of �̇�
𝑗
(𝑡)𝑑𝑡, wewrite the above

SPDIEs in the following integral form:

𝑢 (𝑡, 𝑥) = ℎ (𝑥) + ∫

𝑇

𝑡

[
1

2
𝜎
2
(𝑥)

𝜕
2
𝑢

𝜕𝑥2
(𝑠, 𝑥)

+ ∫
R

𝑢
1
(𝑠, 𝑥, 𝑦) ] (𝑑𝑦) + 𝑎

𝜕𝑢

𝜕𝑥
(𝑠, 𝑥)] 𝑑𝑠

+ ∫

𝑇

𝑡

𝑓[𝑠, 𝑢 (𝑠, 𝑥) ,
𝜕𝑢

𝜕𝑥
(𝑠, 𝑥) , {𝑢

(𝑖)
(𝑠, 𝑥)}

∞

𝑖=1
] 𝑑𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
[𝑠, 𝑢 (𝑠, 𝑥) ,

𝜕𝑢

𝜕𝑥
(𝑠, 𝑥) ,

{𝑢
(𝑖)
(𝑠, 𝑥)}

∞

𝑖=1
] 𝑑𝛽
𝑗
(𝑠) .

(48)

Suppose that 𝑢 is C1,2 function that 𝜕𝑢/𝜕𝑡 and 𝜕
2
𝑢/𝜕𝑥
2 are

bounded by a polynomial function of 𝑥, uniformly in 𝑡. Next,
we give the main result of this section.

Theorem 7. The unique adapted solution of (43) is given by

𝑌
𝑡
= 𝑢 (𝑡, 𝐿

𝑡
) ,

𝑍
(𝑖)

𝑡
= ∫

R

𝑢
1
(𝑡, 𝐿
𝑡−
, 𝑦) 𝑝
𝑖
(𝑦) ] (𝑑𝑦) , 𝑖 ≥ 2,

𝑍
(1)

𝑡
= ∫

R

𝑢
1
(𝑡, 𝐿
𝑡−
, 𝑦) 𝑝
1
(𝑦) ] (𝑑𝑦)

+
𝜕𝑢

𝜕𝑥
(𝑡, 𝐿
𝑡−
) (∫

R

𝑦
2] (𝑑𝑦))

1/2

.

(49)

Proof. Applying Itô formula to 𝑢(𝑠, 𝐿
𝑠
), we obtain

𝑢 (𝑇, 𝐿
𝑇
) − 𝑢 (𝑡, 𝐿

𝑡
)

= ∫

𝑇

𝑡

𝜕𝑢

𝜕𝑠
(𝑠, 𝐿
𝑠
) 𝑑𝑠 +

1

2
∫

𝑇

𝑡

𝜎
2
(𝐿
𝑠
)
𝜕
2
𝑢

𝜕𝑥2
(𝑠, 𝐿
𝑠
) 𝑑𝑠

+ ∫

𝑇

𝑡

𝜕𝑢

𝜕𝑥
(𝑠, 𝐿
𝑠−
) 𝑑𝐿
𝑠

+ ∑

𝑡≤𝑠≤𝑇

[𝑢 (𝑠, 𝐿
𝑠
) − 𝑢 (𝑠, 𝐿

𝑠−
) −

𝜕𝑢

𝜕𝑥
(𝑠, 𝐿
𝑠−
) Δ𝐿
𝑠
] .

(50)

We apply Lemma 6 to 𝑢(𝑠, 𝐿
𝑠−

+ 𝑦) − 𝑢(𝑠, 𝐿
𝑠−
) −

(𝜕𝑢/𝜕𝑥)(𝑠, 𝐿
𝑠−
)𝑦, and then

∑

𝑡≤𝑠≤𝑇

[𝑢 (𝑠, 𝐿
𝑠
) − 𝑢 (𝑠, 𝐿

𝑠−
) −

𝜕𝑢

𝜕𝑥
(𝑠, 𝐿
𝑠−
) Δ𝐿
𝑠
]

=

∞

∑

𝑖=1

∫

𝑇

𝑡

(∫
R

𝑢
1
(𝑠, 𝐿
𝑠−
, 𝑦) 𝑝
𝑖
(𝑦) ] (𝑑𝑦)) 𝑑𝐻(𝑖)

𝑠

+ ∫

𝑇

𝑡

∫
R

𝑢
1
(𝑠, 𝐿
𝑠−
, 𝑦) ] (𝑑𝑦) 𝑑𝑠.

(51)

Note that

𝐿
𝑡
= 𝑌
(1)

𝑡
+ 𝑡𝐸𝐿

1
= (∫

R

𝑦
2] (𝑑𝑦))

1/2

𝐻
(1)

𝑡
+ 𝑡𝐸𝐿

1
, (52)

where 𝐸𝐿
1
= 𝑎 + ∫

{|𝑦|≥1}
𝑦](𝑑𝑦).

Substituting (51) and (52) into (50), we obtain

ℎ (𝐿
𝑇
) − 𝑢 (𝑡, 𝐿

𝑡
) = ∫

𝑇

𝑡

𝜕𝑢

𝜕𝑠
(𝑠, 𝐿
𝑠−
) 𝑑𝑠 +

1

2

⋅ ∫

𝑇

𝑡

𝜎
2
(𝐿
𝑠
)
𝜕
2
𝑢

𝜕𝑥2
(𝑠, 𝐿
𝑠
) 𝑑𝑠

+

∞

∑

𝑖=1

∫

𝑇

𝑡

(∫
R

𝑢
1
(𝑠, 𝐿
𝑠−
, 𝑦) 𝑝
𝑖
(𝑦) ] (𝑑𝑦)) 𝑑𝐻(𝑖)

𝑠

+ ∫

𝑇

𝑡

∫
R

𝑢
1
(𝑠, 𝐿
𝑠−
, 𝑦) ] (𝑑𝑦) 𝑑𝑠 + ∫

𝑇

𝑡

𝜕𝑢

𝜕𝑠
(𝑠, 𝐿
𝑠−
)

⋅ [(∫
R

𝑦
2] (𝑑𝑦))

1/2

𝑑𝐻
(1)

𝑠
+ 𝑎

𝑑𝑠]

(53)

ℎ (𝐿
𝑇
) − 𝑢 (𝑡, 𝐿

𝑡
) = ∫

𝑇

𝑡

[
𝜕𝑢

𝜕𝑠
(𝑠, 𝐿
𝑠−
) +

1

2

⋅ 𝜎
2
(𝐿
𝑠
)
𝜕
2
𝑢

𝜕𝑥2
(𝑠, 𝐿
𝑠
) + 𝑎
 𝜕𝑢

𝜕𝑠
(𝑠, 𝐿
𝑠−
)] 𝑑𝑠

+ ∫

𝑇

𝑡

∫
R

𝑢
1
(𝑠, 𝐿
𝑠−
, 𝑦) ] (𝑑𝑦) 𝑑𝑠 + ∫

𝑇

𝑡

[
𝜕𝑢

𝜕𝑠
(𝑠, 𝐿
𝑠−
)

⋅ ∫
R

𝑦
2] (𝑑𝑦)1/2

+ ∫
R

𝑢
1
(𝑠, 𝐿
𝑠−
, 𝑦) 𝑝
1
(𝑦) ] (𝑑𝑦)] 𝑑𝐻(1)

𝑠

+

∞

∑

𝑖=2

∫
R

𝑢
1
(𝑠, 𝐿
𝑠−
, 𝑦) 𝑝
𝑖
(𝑦) ] (𝑑𝑦) 𝑑𝐻(𝑖)

𝑠
.

(54)

From (54), we can derive the result.

In the following, we give an example of SPDIEs.

Example 8. Suppose that the Lévy process 𝐿 has the form of
𝐿
𝑡
= 𝑎𝑡+∑

∞

𝑖=1
(𝑁
(𝑖)

𝑡
−𝛼
𝑖
𝑡), where {𝑁(𝑖)}∞

𝑖=1
is a sequence of inde-

pendent Poisson processes with parameters {𝛼
𝑖
}
∞

𝑖=1
(𝛼
𝑖
> 0).
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Its Lévy measure is ](𝑑𝑥) = ∑
∞

𝑖=1
𝛼
𝑖
𝛿
𝛽𝑖
(𝑑𝑥), where 𝛿

𝛽𝑖
(𝑑𝑥)

denotes the positive mass measure at 𝛽
𝑖
∈ R of size 1.

Moreover, we assume that∑∞
𝑖=1

𝛼
𝑖
|𝛽
𝑖
|
2
< ∞. Note that𝐻(1)

𝑡
=

∑
∞

𝑖=1
(𝛽
1
/√𝛼𝑖)(𝑁

(𝑖)

𝑡
− 𝛼
1
𝑡) and 𝐻(𝑖)

𝑡
= 0, 𝑖 ≥ 2 (see [17]). Let

(𝑌, 𝑍) be the solution of the following equation:

𝑌
𝑡
= ℎ (𝐿

𝑇
) + ∫

𝑇

𝑡

𝑓 (𝑠, 𝑋
𝑠−
, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝑠

+

∞

∑

𝑗=1

∫

𝑇

𝑡

𝑔
𝑗
(𝑠, 𝑋
𝑠−
, 𝑌
𝑠−
, 𝑍
𝑠
) 𝑑𝛽
𝑗
(𝑠)

−

∞

∑

𝑖=1

∫

𝑇

𝑡

𝑍
(𝑖)

𝑠
𝑑 (𝑁
(𝑖)

𝑠
− 𝛼
𝑖
𝑠) .

(55)

Then

𝑌
𝑡
= 𝑢 (𝑡, 𝐿

𝑡
) ,

𝑍
(1)

𝑡
= 𝛼
1
𝑢
1
(𝑡, 𝐿
𝑡−
, 𝛽
1
) 𝑝
1
(𝛽
1
)

+ (

∞

∑

𝑖=1

𝛼
𝑖

𝛽𝑖


2

)

1/2

𝜕𝑢

𝜕𝑥
(𝑡, 𝐿
𝑡−
) ,

𝑍
(1)

𝑡
= 𝛼
𝑖
𝑢
1
(𝑡, 𝐿
𝑡−
, 𝛽
1
) 𝑝
𝑖
(𝛽
𝑖
) , 𝑖 ≥ 2,

(56)

where 𝑢 is the solution of the following SPDIEs:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) +

1

2
𝜎
2
(𝑥)

𝜕
2
𝑢

𝜕𝑥2
(𝑡, 𝑥) + 𝑎

 𝜕𝑢

𝜕𝑥
(𝑡, 𝑥)

+ ∫
R

𝑢
1
(𝑡, 𝑥, 𝑦) ] (𝑑𝑦)

+ 𝑓 [𝑡, 𝑢 (𝑡, 𝑥) ,
𝜕𝑢

𝜕𝑥
(𝑡, 𝑥) , {𝑢

(𝑖)
(𝑡, 𝑥)}

∞

𝑖=1
]

+

∞

∑

𝑗=1

𝑔
𝑗
[𝑡, 𝑢 (𝑡, 𝑥) ,

𝜕𝑢

𝜕𝑥
(𝑡, 𝑥) , {𝑢

(𝑖)
(𝑡, 𝑥)}

∞

𝑖=1
]

⋅ �̇�
𝑗
(𝑡) 𝑑𝑡 = 0,

𝑢 (𝑇, 𝑥) = ℎ (𝑥) .

(57)
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We present the best possible parameters 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
∈ R and 𝛼

3
, 𝛽
3
∈ (1/2, 1) such that the double inequalities 𝑄𝛼1 (𝑎, 𝑏)𝐴1−𝛼1 (𝑎,

𝑏) < 𝐴𝐺[𝐴(𝑎, 𝑏), 𝑄(𝑎, 𝑏)] < 𝑄
𝛽1
(𝑎, 𝑏)𝐴

1−𝛽1
(𝑎, 𝑏), 𝛼

2
𝑄(𝑎, 𝑏) + (1 − 𝛼

2
)𝐴(𝑎, 𝑏) < 𝐴𝐺[𝐴(𝑎, 𝑏), 𝑄(𝑎, 𝑏)] < 𝛽

2
𝑄(𝑎, 𝑏) + (1 − 𝛽

2
)𝐴(𝑎, 𝑏),

𝑄[𝛼
3
𝑎 + (1 − 𝛼

3
)𝑏, 𝛼
3
𝑏 + (1 − 𝛼

3
)𝑎] < 𝐴𝐺[𝐴(𝑎, 𝑏), 𝑄(𝑎, 𝑏)] < 𝑄[𝛽

3
𝑎 + (1 − 𝛽

3
)𝑏, 𝛽
3
𝑏 + (1 − 𝛽

3
)𝑎] hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏,

where 𝐴(𝑎, 𝑏), 𝑄(𝑎, 𝑏), and 𝐴𝐺(𝑎, 𝑏) are the arithmetic, quadratic, and Gauss arithmetic-geometric means of 𝑎 and 𝑏, respectively.
As applications, we find several new bounds for the complete elliptic integrals of the first and second kind.

1. Introduction

Let 𝑟 ∈ (0, 1) and 𝑎, 𝑏 > 0. Then the elliptic elliptic
integral of the first kind K(𝑟) and second kind E(𝑟), Gaus-
sian arithmetic-geometric mean 𝐴𝐺(𝑎, 𝑏), arithmetic mean
𝐴(𝑎, 𝑏), and quadratic mean 𝑄(𝑎, 𝑏) are, respectively, given
by

K (𝑟) = ∫

𝜋/2

0

1

√1 − 𝑟
2sin2𝑡

𝑑𝑡,

E (𝑟) = ∫

𝜋/2

0

√
1 − 𝑟
2sin2𝑡 𝑑𝑡,

(1)

𝐴𝐺 (𝑎, 𝑏) =

𝜋

2 ∫

𝜋/2

0
(𝑑𝑡/√𝑎

2cos2𝑡 + 𝑏
2sin2𝑡)

,

𝐴 (𝑎, 𝑏) =

𝑎 + 𝑏

2

,

𝑄 (𝑎, 𝑏) =
√
𝑎
2
+ 𝑏
2

2

.

(2)

The Gauss identity [1–3] shows that

𝐴𝐺(1, 𝑟

) =

𝜋

2K (𝑟)
(3)

for all 𝑟 ∈ (0, 1), where and in what follows 𝑟 = √1 − 𝑟
2.

It is well known that the elliptic elliptic integralsK(𝑟) and
E(𝑟) and the Gaussian arithmetic-geometric mean 𝐴𝐺(𝑎, 𝑏)

have many applications in mathematics, physics, mechanics,
and engineering [4–9]. Recently, the bounds for the Gaussian
arithmetic-geometricmean𝐴𝐺(𝑎, 𝑏) have attracted the atten-
tion of many researchers.

The inequalities

1 + √𝑟

2

𝐴𝐺 (1,√𝑟) < 𝐴𝐺 (1, 𝑟) <

𝜋

2 log (4/𝑟)
, (4)

𝐿 (𝑎, 𝑏) < 𝐴𝐺 (𝑎, 𝑏) < 𝐿
3/2

(𝑎, 𝑏) (5)

for all 𝑟 ∈ (0, 1) and 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 can be found in
the literature [10–12], where 𝐿(𝑎, 𝑏) = (𝑎 − 𝑏)/(log 𝑎 − log 𝑏)
and 𝐿

𝑝
(𝑎, 𝑏) = 𝐿

1/𝑝
(𝑎
𝑝
, 𝑏
𝑝
) are, respectively, the logarithmic

and 𝑝th generalized logarithmic means of 𝑎 and 𝑏. The first
inequality of (5) is due to Carlson and Vuorinen [13].
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By using a variant of L’Hospital’s rule and representation
theorems with elliptic integrals, Vamanamurthy and Vuori-
nen [14] proved, among other results, the inequalities

𝐴𝐺 (𝑎, 𝑏) < √𝐴 (𝑎, 𝑏) 𝐿 (𝑎, 𝑏), (6)

𝐿 (𝑎, 𝑏) < 𝐴𝐺 (𝑎, 𝑏) <

𝜋

2

𝐿 (𝑎, 𝑏) , (7)

𝐴𝐺 (𝑎, 𝑏) < 𝐼 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏) , (8)

𝐴𝐺 (𝑎, 𝑏) <

𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2

, (9)

𝐴 (𝑎, 𝑏) <

𝐴𝐺 (𝑎
2
, 𝑏
2
)

𝐴𝐺 (𝑎, 𝑏)

< 𝑄 (𝑎, 𝑏) , (10)

𝐴𝐺 (𝑎, 𝑏) > 𝐿
1/𝜆

(𝑎
𝜆
, 𝑏
𝜆
) (11)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝜆 ∈ (0, 1], where 𝐼(𝑎, 𝑏) =

(𝑏
𝑏
/𝑎
𝑎
)
1/(𝑏−𝑎)

/𝑒 is the identric mean of 𝑎 and 𝑏.
By use of the homogeneity of the above means and a

series representation of 𝐴𝐺(𝑎, 𝑏) due to Gauss, Sándor [15]
obtained, among other results, newproofs for inequalities (7),
(8) and a counterpart of inequality (9):

𝐴𝐺 (𝑎, 𝑏) > √𝐴 (𝑎, 𝑏) 𝐺 (𝑎, 𝑏), (12)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where 𝐺(𝑎, 𝑏) = √𝑎𝑏 is the
geometricmean of 𝑎 and 𝑏. Inequalities (9) and (12) show that
𝐴𝐺 lies between the arithmetic and geometricmeans of𝐴 and
𝐺. In [16], Sándor provided new proofs for inequalities (6)
and (8), (9), (10), and (12) by using only elementary methods
for recurrent sequences and found much stronger forms of
these results.

Neuman and Sándor [17] gave the comparison of the
Gaussian arithmetic-geometric mean and the Schwab-Bor-
chardt mean.

The upper bounds 𝜋/[2 log(4/𝑟)] for 𝐴𝐺(1, 𝑟) in (4) were
replaced by 𝜋(1 − 𝑟

2
/9)/[2 log(4/𝑟)] due to Kühnau [18].

Qiu and Vamanamurthy [19] presented that 4𝜋/[(9 −

𝑟
2
)(2 log 2 − log 𝑟)] and (9 − 𝑟

2
)𝜋/[18.192 × (2 log 2 − log 𝑟)]

are, respectively, the lower and upper bounds for 𝐴𝐺(1, 𝑟)

with 𝑟 ∈ (0, 1). Alzer and Qiu [20] proved that 𝜆 = 3/4 and
𝜇 = 2/𝜋 are the best possible parameters such that the double
inequality

1

𝜆/𝐿 (𝑎, 𝑏) + (1 − 𝜆) /𝐴 (𝑎, 𝑏)

< 𝐴𝐺 (𝑎, 𝑏)

<

1

𝜇/𝐿 (𝑎, 𝑏) + (1 − 𝜇) /𝐴 (𝑎, 𝑏)

(13)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Chu and Wang [21] proved that the double inequality

𝑆
𝑝
(𝑎, 𝑏) < 𝐴𝐺 (𝑎, 𝑏) < 𝑆

𝑞
(𝑎, 𝑏) (14)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 1/2 and
𝑞 ≥ 1, where 𝑆

𝑝
(𝑎, 𝑏) = [(𝑎

𝑝−1
+ 𝑏
𝑝−1

)/(𝑎 + 𝑏)]
1/(𝑝−2)

(𝑝 ̸= 2)

and 𝑆
2
(𝑎, 𝑏) = (𝑎

𝑎
𝑏
𝑏
)
1/(𝑎+𝑏) is the 𝑝th Gini mean of 𝑎 and 𝑏.

In [22], Yang et al. proved that the inequalities

𝑆
7/4,−1/4

(𝑎, 𝑏) < 𝐴𝐺 (𝑎, 𝑏) < 𝐴
1/4

(𝑎, 𝑏) 𝐿
3/4

(𝑎, 𝑏) ,

𝐴𝐺 (𝑎, 𝑏) < √𝑆
𝑝,1

(𝑎, 𝑏) 𝑆
1−𝑝,1

(𝑎, 𝑏)

(15)

hold for all 𝑝 ∈ (1/2, 1) and 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where
𝑆
𝑝,𝑞

(𝑎, 𝑏) = [𝑞(𝑎
𝑝
− 𝑏
𝑝
)/(𝑝(𝑎

𝑞
− 𝑏
𝑞
))]
1/(𝑝−𝑞) is the Stolarsky

mean [23] of 𝑎 and 𝑏.
Let 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝑥 ∈ [1/2, 1]. Then it is not

difficult to verify that the function𝑓(𝑥) = 𝑄[𝑥𝑎+(1−𝑥)𝑏, 𝑥𝑏+

(1 − 𝑥)𝑎] is continuous and strictly increasing on the interval
[1/2, 1]. Note that

𝑓(

1

2

) = 𝐴 (𝑎, 𝑏) = min {𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)}

< 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)] ,

(16)

𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)] < max {𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)}

= 𝑄 (𝑎, 𝑏) = 𝑓 (1) .

(17)

Inequalities (16) give us the motivation to deal with the
best possible parameters 𝛼

1
, 𝛽
1
, 𝛼
2
, 𝛽
2

∈ R and 𝛼
3
, 𝛽
3

∈

(1/2, 1) such that the double inequalities

𝑄
𝛼
1
(𝑎, 𝑏) 𝐴

1−𝛼
1
(𝑎, 𝑏) < 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

< 𝑄
𝛽
1
(𝑎, 𝑏) 𝐴

1−𝛽
1
(𝑎, 𝑏) ,

𝛼
2
𝑄 (𝑎, 𝑏) + (1 − 𝛼

2
) 𝐴 (𝑎, 𝑏) < 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

< 𝛽
2
𝑄 (𝑎, 𝑏) + (1 − 𝛽

2
) 𝐴 (𝑎, 𝑏) ,

𝑄 [𝛼
3
𝑎 + (1 − 𝛼

3
) 𝑏, 𝛼
3
𝑏 + (1 − 𝛼

3
) 𝑎]

< 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

< 𝑄 [𝛽
3
𝑎 + (1 − 𝛽

3
) 𝑏, 𝛽
3
𝑏 + (1 − 𝛽

3
) 𝑎]

(18)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

2. Lemmas

In order to prove our main results we need several derivative
formulas and particular values forK(𝑟) and E(𝑟), which we
present in this section.

K(𝑟) and E(𝑟) satisfy the formulas (see [24])

𝑑K (𝑟)

𝑑𝑟

=

E (𝑟) − 𝑟
2K (𝑟)

𝑟𝑟
2

,

𝑑E (𝑟)

𝑑𝑟

=

E (𝑟) −K (𝑟)

𝑟

,

K (0
+
) = E (0

+
) =

𝜋

2

,

K (1
−
) = ∞,

E (1
−
) = 1,
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K(

√2

2

) =

Γ
2
(1/4)

4√𝜋

= 1.85407467 . . . ,

E(

√2

2

) =

4Γ
2
(3/4) + Γ

2
(1/4)

8√𝜋

= 1.35064388 . . . ,

(19)

where Γ(𝑥) = ∫

∞

0
𝑡
𝑥−1

𝑒
−𝑡
𝑑𝑡 (𝑥 > 0) is the classical Euler

gamma function.

Lemma 1 (see [24, Theorem 1.25]). Let −∞ < 𝑎 < 𝑏 < ∞,
𝑓, 𝑔 : [𝑎, 𝑏] → R be continuous on [𝑎, 𝑏] and differentiable on
(𝑎, 𝑏) and 𝑔


(𝑥) ̸= 0 on (𝑎, 𝑏). Then both functions

𝑓 (𝑥) − 𝑓 (𝑎)

𝑔 (𝑥) − 𝑔 (𝑎)

,

𝑓 (𝑥) − 𝑓 (𝑏)

𝑔 (𝑥) − 𝑔 (𝑏)

(20)

are increasing (decreasing) on (𝑎, 𝑏) if𝑓(𝑥)/𝑔(𝑥) is increasing
(decreasing) on (𝑎, 𝑏). If 𝑓(𝑥)/𝑔(𝑥) is strictly monotone, then
the monotonicity in the conclusion is also strict.

Lemma 2 (see [24, Theorem 3.21(1), Theorem 3.21(7), and
Exercises 3.43(32)]). The following statements are true:

(1) The function 𝑟 → [E(𝑟) − 𝑟
2K(𝑟)]/𝑟

2 is strictly
increasing from (0, 1) onto (𝜋/4, 1).

(2) The function 𝑟 → 𝑟
𝜆K(𝑟) is strictly decreasing from

(0, 1) onto (0, 𝜋/2) if 𝜆 ≥ 1/2.

(3) The function 𝑟 → [K(𝑟) − E(𝑟)]/[𝑟
2K(𝑟)] is strictly

increasing from (0, 1) onto (1/2, 1).

Lemma 3. Let 𝑝 = 1/2 + √2√𝜋
2
− 2K2(√2/2)/[4K(√2/

2)] = 0.8299 . . . and ℎ(𝑟) be defined by

ℎ (𝑟) =

E (𝑟) − 𝑟
2K (𝑟)

𝑟
2
𝑟
2K3 (𝑟)

−

16𝑝 (1 − 𝑝)

𝜋
2

. (21)

Then there exists 𝑟
0
∈ (0, √2/2) such that ℎ(𝑟) < 0 for 𝑟 ∈

(0, 𝑟
0
) and ℎ(𝑟) > 0 for 𝑟 ∈ (𝑟

0
, √2/2).

Proof. From (21) we clearly see that ℎ(𝑟) can be rewritten as

ℎ (𝑟) =

E (𝑟) − 𝑟
2K (𝑟)

𝑟
2

[𝑟
2/3

K (𝑟)]

−3

−

16𝑝 (1 − 𝑝)

𝜋
2

.

(22)

It follows from Lemma 2(1) and (2) together with (22)
that ℎ(𝑟) is strictly increasing on (0, √2/2).

Numerical computations show that

ℎ (0
+
) =

2 [𝜋
2
− 3K2 (√2/2)]

𝜋
2K2 (√2/2)

= −0.02612 . . .

< 0,

ℎ(

√2

2

−

) =

4 [𝜋
2E (√2/2) − 2K3 (√2/2)]

𝜋
2K3 (√2/2)

= 0.03708 . . . > 0.

(23)

Therefore, Lemma 3 follows easily from (23) and the
monotonicity of ℎ(𝑟) on the interval (0, √2/2).

3. Main Results

Theorem 4. The double inequality

𝑄
𝛼
1
(𝑎, 𝑏) 𝐴

1−𝛼
1
(𝑎, 𝑏) < 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

< 𝑄
𝛽
1
(𝑎, 𝑏) 𝐴

1−𝛽
1
(𝑎, 𝑏)

(24)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
1
≤ 1/2 and

𝛽
1
≥ 2[log𝜋 − logK(√2/2)]/ log 2 − 1 = 0.5215 . . ..

Proof. Since𝐴(𝑎, 𝑏),𝑄(𝑎, 𝑏), and𝐴𝐺(𝑎, 𝑏) are symmetric and
homogenous of degree 1, without loss of generality, we assume
that 𝑎 > 𝑏 > 0. Let 𝑟 = (𝑎 − 𝑏)/√2(𝑎

2
+ 𝑏
2
) ∈ (0, √2/2). Then

(2) and (3) lead to

𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)] =

𝜋𝐴 (𝑎, 𝑏)

2𝑟
K (𝑟)

,

𝑄 (𝑎, 𝑏) =

𝐴 (𝑎, 𝑏)

𝑟


,

(25)

log𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)] − log𝐴 (𝑎, 𝑏)

log𝑄 (𝑎, 𝑏) − log𝐴 (𝑎, 𝑏)

=

logK (𝑟) + log 𝑟 + log 2 − log𝜋
log 𝑟

.

(26)

Let
𝑓
1
(𝑟) = logK (𝑟) + log 𝑟 + log 2 − log𝜋,

𝑓
2
(𝑟) = log 𝑟,

𝑓 (𝑟) =

𝑓
1
(𝑟)

𝑓
2
(𝑟)

.

(27)

Then simple computations give

𝑓
1
(0
+
) = 𝑓
2
(0
+
) = 0,

𝑓


1
(𝑟)

𝑓


2
(𝑟)

=

K (𝑟) −E (𝑟)

𝑟
2K (𝑟)

.

(28)

It follows from Lemmas 1, 2(3) and (27) and (28) that

𝑓 (0
+
) =

1

2

(29)

and 𝑓(𝑟) is strictly increasing on the interval (0, √2/2).
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Note that

𝑓(

√2

2

−

) =

2 [log𝜋 − logK (√2/2)]

log 2
− 1. (30)

Therefore, Theorem 4 follows easily from (26), (27),
(29), and (30) and the monotonicity of 𝑓(𝑟) on the interval
(0, √2/2).

Remark 5. The left side inequality of Theorem 4 for 𝛼
1
≤ 1/2

can be derived directly from the fact that𝐴𝐺(𝑎, 𝑏) > 𝐺(𝑎, 𝑏) =

√𝑎𝑏 and 𝑄(𝑎, 𝑏) > 𝐴(𝑎, 𝑏) for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

Theorem 6. The double inequality

𝛼
2
𝑄 (𝑎, 𝑏) + (1 − 𝛼

2
) 𝐴 (𝑎, 𝑏) < 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

< 𝛽
2
𝑄 (𝑎, 𝑏) + (1 − 𝛽

2
) 𝐴 (𝑎, 𝑏)

(31)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
2
≤ [𝜋 −

√2K(√2/2)]/[(2−√2)K(√2/2)] = 0.4783 . . . and𝛽
2
≥ 1/2.

Proof. Without loss of generality, we assume that 𝑎 > 𝑏 > 0.
Let 𝑟 = (𝑎 − 𝑏)/√2(𝑎

2
+ 𝑏
2
) ∈ (0, √2/2). Then it follows from

(2) and (3) that

𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)] − 𝐴 (𝑎, 𝑏)

𝑄 (𝑎, 𝑏) − 𝐴 (𝑎, 𝑏)

=

𝜋/2K (𝑟) − 𝑟


1 − 𝑟


. (32)

Let

𝑔
1
(𝑟) =

𝜋

2K (𝑟)

− 𝑟

,

𝑔
2
(𝑟) = 1 − 𝑟


,

𝑔 (𝑟) =

𝑔
1
(𝑟)

𝑔
2
(𝑟)

.

(33)

Then simple computations lead to

𝑔
1
(0
+
) = 𝑔
2
(0
+
) = 0,

𝑔


1
(𝑟)

𝑔


2
(𝑟)

= 1 −

𝜋

2

E (𝑟) − 𝑟
2K (𝑟)

𝑟
2

[𝑟
1/2

K (𝑟)]

−2

.

(34)

It follows from Lemmas 1, 2(1) and (2) together with (33)
and (34) that

𝑔 (0
+
) =

1

2

(35)

and 𝑔(𝑟) is strictly decreasing on the interval (0, √2/2).
Note that

𝑔(

√2

2

−

) =

𝜋 − √2K (√2/2)

(2 − √2)K (√2/2)

. (36)

Therefore, Theorem 6 follows easily from (32), (33),
(35), and (36) and the monotonicity of 𝑔(𝑟) on the interval
(0, √2/2).

Remark 7. Theright side inequality ofTheorem6 for𝛽
2
≥ 1/2

can be derived directly from the fact that𝐴𝐺(𝑎, 𝑏) < 𝐴(𝑎, 𝑏) =

(𝑎 + 𝑏)/2 and 𝑄(𝑎, 𝑏) > 𝐴(𝑎, 𝑏) for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

Theorem 8. Let 𝛼
3
, 𝛽
3
∈ (1/2, 1). Then the double inequality

𝑄 [𝛼
3
𝑎 + (1 − 𝛼

3
) 𝑏, 𝛼
3
𝑏 + (1 − 𝛼

3
) 𝑎]

< 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

< 𝑄 [𝛽
3
𝑎 + (1 − 𝛽

3
) 𝑏, 𝛽
3
𝑏 + (1 − 𝛽

3
) 𝑎]

(37)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
3
≤ 1/2 +

√2√𝜋
2
− 2K2(√2/2)/[4K(√2/2)] = 0.8299 . . . and 𝛽

3
≥

1/2 + √2/4 = 0.8535 . . ..

Proof. Without loss of generality, we assume that 𝑎 > 𝑏 > 0.
Let 𝑟 = (𝑎 − 𝑏)/√2(𝑎

2
+ 𝑏
2
) ∈ (0, √2/2) and 𝑝 ∈ (1/2, 1).

Then (2) and (3) lead to

𝑄 [𝑝𝑎 + (1 − 𝑝) 𝑏, 𝑝𝑏 + (1 − 𝑝) 𝑎]

=

√1 − 4𝑝 (1 − 𝑝) 𝑟
2

𝑟


𝐴 (𝑎, 𝑏) ,

(38)

𝑄 [𝑝𝑎 + (1 − 𝑝) 𝑏, 𝑝𝑏 + (1 − 𝑝) 𝑎]

− 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

=

𝐴 (𝑎, 𝑏)

[√1 − 4𝑝 (1 − 𝑝) 𝑟
2
+ 𝜋/ [2K (𝑟)]] 𝑟



𝐻(𝑟) ,

(39)

where

𝐻(𝑟) = 1 − 4𝑝 (1 − 𝑝) 𝑟
2
−

𝜋
2

4K2 (𝑟)
, (40)

𝐻(0
+
) = 0, (41)

𝐻(

√2

2

−

) = 1 − 2𝑝 (1 − 𝑝) −

𝜋
2

4K2 (√2/2)

, (42)

𝐻

(𝑟) =

𝜋
2
𝑟

2

ℎ (𝑟) , (43)

where ℎ(𝑟) is defined by (21).
We divide the proof into four cases.

Case 1 (𝑝 = 𝑝
0
= 1/2 + √2√𝜋

2
− 2K2(√2/2)/[4K(√2/2)]).

Then (42) becomes

𝐻(

√2

2

−

) = 0. (44)

It follows from Lemma 3 and (43) that there exists 𝑟
0
∈

(0, √2/2) such that 𝐻(𝑟) is strictly decreasing on (0, 𝑟
0
] and

strictly increasing on [𝑟
0
, √2/2). Therefore,

𝑄 [𝑝
0
𝑎 + (1 − 𝑝

0
) 𝑏, 𝑝
0
𝑏 + (1 − 𝑝

0
) 𝑎]

< 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

(45)
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follows from (39), (41), and (44) together with the piecewise
monotonicity of𝐻(𝑟) on the interval (0, √2/2).

Case 2 (𝑝 = 𝑝
∗

0
= 1/2 + √2/4). Then we clearly see that

𝑄 [𝑝
∗

0
𝑎 + (1 − 𝑝

∗

0
) 𝑏, 𝑝
∗

0
𝑏 + (1 − 𝑝

∗

0
) 𝑎]

=
√
𝐴
2
(𝑎, 𝑏) + 𝑄

2
(𝑎, 𝑏)

2

= 𝑄 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

> 𝐴 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)] > 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)] .

(46)

Case 3 (1/2 + √2√𝜋
2
− 2K2(√2/2)/[4K(√2/2)] < 𝑝 < 1).

Then (42) leads to

𝐻(

√2

2

−

) > 0. (47)

Equation (39) and inequality (47) imply that there exists
small enough 0 < 𝛿

1
< √2/2 such that

𝑄 [𝑝𝑎 + (1 − 𝑝) 𝑏, 𝑝𝑏 + (1 − 𝑝) 𝑎]

> 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

(48)

for all 𝑎, 𝑏 > 0 with |𝑎 − 𝑏|/√2(𝑎
2
+ 𝑏
2
) ∈ (√2/2 − 𝛿

1
, √2/2).

Case 4 (1/2 < 𝑝 < 1/2 + √2/4). Then (40) leads to

𝐻(𝑟) = [4 (𝑝 −

1

2

)

2

−

1

2

] 𝑟
2
+ 𝑜 (𝑟

2
) . (49)

Note that

[4 (𝑝 −

1

2

)

2

−

1

2

] 𝑟
2
< 0. (50)

Equations (39) and (49) together with inequality (50)
imply that there exists small enough 0 < 𝛿

2
< √2/2 such

that

𝑄 [𝑝𝑎 + (1 − 𝑝) 𝑏, 𝑝𝑏 + (1 − 𝑝) 𝑎]

< 𝐴𝐺 [𝐴 (𝑎, 𝑏) , 𝑄 (𝑎, 𝑏)]

(51)

for all 𝑎, 𝑏 > 0 with |𝑎 − 𝑏|/√2(𝑎
2
+ 𝑏
2
) ∈ (0, 𝛿

2
).

4. Applications

In this section, we useTheorems 4, 6, and 8 to present several
bounds for the complete elliptic integralsK(𝑟) and E(𝑟).

FromTheorems 4, 6, and 8we getTheorem9 immediately.

Theorem 9. Let 𝜆
1
= 2[log𝜋 − logK(√2/2)]/ log 2 − 1 =

0.5215 . . ., 𝜆
2
= [𝜋 − √2K(√2/2)]/[(2 − √2)K(√2/2)] =

0.4783 . . ., and 𝜆
3
= 2 − 𝜋

2
/[2K2(√2/2)] = 0.5644 . . .. Then

the double inequalities
𝜋

2 (1 − 𝑟
2
)
(1−𝜆
1
)/2

< K (𝑟)

<

𝜋

2 [𝜆
2
+ (1 − 𝜆

2
)√1 − 𝑟

2
]

,

𝜋

2√1 − (1/2) 𝑟
2
< K (𝑟) <

𝜋

2√1 − 𝜆
3
𝑟
2

(52)

hold for all 𝑟 ∈ (0, √2/2).

It follows from the inequality

𝜋
2

4

< E (𝑟)K (𝑟) <

𝜋
2

4√𝑟


(53)

given in [24] that

𝜋
2

4K (𝑟)

< E (𝑟) <

𝜋
2

4√𝑟
K (𝑟)

. (54)

Theorem 9 and (54) lead to the following.

Theorem 10. Let 𝜆
1
= 2[log𝜋 − logK(√2/2)]/ log 2 − 1 =

0.5215 . . ., 𝜆
2
= [𝜋 − √2K(√2/2)]/[(2 − √2)K(√2/2)] =

0.4783 . . ., and 𝜆
3
= 2 − 𝜋

2
/[2K2(√2/2)] = 0.5644 . . .. Then

the double inequalities
𝜋

2

[𝜆
2
+ (1 − 𝜆

2
) 𝑟

] < E (𝑟) <

𝜋

2

𝑟
(1/2)−𝜆

1
,

𝜋

2

√1 − 𝜆
3
𝑟
2
< E (𝑟) <

𝜋

2

√
2 − 𝑟
2

2𝑟


(55)

hold for all 𝑟 ∈ (0, √2/2).
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We give necessary and sufficient conditions for exchange of limits of double-indexed families, taking values in sets endowed with
an abstract structure of convergence, and for preservation of continuity or semicontinuity of the limit family, with respect to filter
convergence. As a consequence, we give some filter limit theorems and some characterization of continuity and semicontinuity of
the limit of a pointwise convergent family of set functions. Furthermore, we pose some open problems.

1. Introduction

A widely investigated problem in convergence theory and
topology is to find necessary and/or sufficient conditions for
continuity and/or semicontinuity of the limit of a pointwise
convergent net of functions or measures. There have been
many recent related studies in abstract structures, like topo-
logical spaces, lattice groups, metric semigroups, and cone
metric spaces, with respect to usual, statistical, or filter/ideal
convergence and associated with the notions of equicontinu-
ity, filter exhaustiveness, and filter continuous convergence
(see also [1–9]). The study of semicontinuous functions is
associated with quasimetric spaces, that is, spaces endowed
with an asymmetric distance function (for a related literature,
see, e.g., [3–5, 10–13]).

A concept associated with these topics is that of strong
uniform continuity, which is used to study the problem of
finding a topology with respect to which the set of the contin-
uous functions is closed, and pointwise convergence of con-
tinuous functions implies convergence in this topology (see
also [1, 14, 15]).

Another related field is the study of convergence theorems
for measures taking values in abstract structures. When
dealing with the classical convergence, it is possible to prove
𝜎-additivity, (𝑠)-boundedness, and absolute continuity of the

limit measure directly from pointwise convergence (with
respect to a single order sequence of regulator) of the involved
measures, without requiring additional hypotheses. This is
not always true in the setting of filter convergence. A histor-
ical comprehensive overview, together with a survey on the
most recent results and developments, can be found in [16]
(see also its bibliography).

In this paper we present a unified axiomatic approach and
extend results of this kind to double-indexed families, taking
values in abstract structures, whose particular cases are lattice
groups, topological groups, (quasi)metric semigroups, and
cone (quasi)metric spaces. To include both continuity and
semicontinuity, we assume the existence of a “generalized dis-
tance” function, which is assumed to satisfy only the triangu-
lar property and takes values in a group endowed with a suit-
able system of “intervals” or “half lines” containing its neutral
element 0. Thus, both topological groups and lattice groups
endowed with (𝑟)-, (𝐷)-, or order convergence are particular
cases of these abstract structures. We prove some results on
exchange of limits in the setting of filter convergence.Observe
that the involved “distance” can be symmetric or asymmetric
(for a literature, see also [3, 5, 10] and their bibliographies).
Furthermore, in our setting, both sequences and nets of
functions/measures are included, and note that it is possible
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to consider them as families endowed with filters (see also
[17–19]).

As applications, we give some necessary and sufficient
conditions for continuity from above/below and absolute
continuity and semicontinuity of the limit measure in the
context of filter convergence, which include the cases of 𝜎-
additivity and (𝑠)-boundedness, showing, bymeans of related
examples, that they are not always satisfied, differently from
the classical case. For a literature on measures satisfying
upper/lower semicontinuity conditions or similar properties
and related applications, see, for instance, [20] and the biblio-
graphy therein. Finally, we pose some open problems.

2. Assumptions and Examples

We begin with giving our axiomatic approach, which deals
with abstract convergence with respect to filters, without
using necessarily nets. For a literature about these topics, see,
for instance, [16, 17, 19, 21–24] and their bibliographies.

Definition 1. (a) Let Λ be any nonempty set, and letP(Λ) be
the class of all subsets of Λ. A family of sets F ⊂ P(Λ) is
called a filter of Λ iffF ̸= 0, 0 ∉ F, and 𝐴 ∩ 𝐵 ∈ F for each
𝐴, 𝐵 ∈ F, and 𝐵 ∈ F whenever 𝐵 ⊃ 𝐴 and 𝐴 ∈ F.

Some examples are the filter Fcofin of all subsets of N
whose complement is finite and the filterFst of all subsets of
N having asymptotic density one. Some other classes of filters
can be found in [16].

(b) Let 𝑅 be a nonempty set, and let 𝑌 = (𝑌, +) be an
abelian group with neutral element 0. Given 𝑘 ∈ N and 𝑈

1
,

𝑈
2
, . . . , 𝑈

𝑘
⊂ 𝑌, put 𝑈

1
+ 𝑈

2
+ ⋅ ⋅ ⋅ + 𝑈

𝑘
fl {𝑢

1
+ 𝑢

2
+ ⋅ ⋅ ⋅ + 𝑢

𝑘
:

𝑢
𝑗
∈ 𝑈

𝑗
, 𝑗 = 1, 2, . . . , 𝑘}, and 𝑘𝑈 fl 𝑈 + ⋅ ⋅ ⋅ + 𝑈 (𝑘 times).

(c) Let Π be a nonempty set. A Π-system U is a class of
families U = (𝑈

𝜋
)
𝜋∈Π

of subsets of 𝑌, with 0 ∈ ⋂
𝜋∈Π

𝑈
𝜋
for

each U = (𝑈
𝜋
)
𝜋∈Π

, such that for every U = (𝑈
𝜋
)
𝜋∈Π

and V =

(𝑉
𝜋
)
𝜋∈Π

∈ U there isW = (𝑊
𝜋
)
𝜋∈Π

∈ U such that 𝑈
𝜋
+ 𝑉

𝜋
⊂

𝑊
𝜋
for every 𝜋 ∈ Π. Let 𝜌 : 𝑅 × 𝑅 → 𝑌 be a function, and

suppose that

(H1) for every U = (𝑈
𝜋
)
𝜋
, V = (𝑉

𝜋
)
𝜋

∈ U and for each
𝜋 ∈ Π and 𝑎, 𝑏, 𝑐 ∈ 𝑅, if 𝜌(𝑎, 𝑏) ∈ 𝑈

𝜋
and 𝜌(𝑏, 𝑐) ∈ 𝑉

𝜋
,

then 𝜌(𝑎, 𝑐) ∈ 𝑈
𝜋
+ 𝑉

𝜋
.

(d) Fix a Π-system U on 𝑌 and a filter F of Λ. A family
𝑏
𝜆
, 𝜆 ∈ Λ, of elements of 𝑅 is said to (UF)-backward

(resp., (UF)-forward) converge to 𝑏 ∈ 𝑅 iff there is a family
(𝑈

𝜋
)
𝜋∈Π

∈ U, such that for every 𝜋 ∈ Π there is a set 𝐹 ∈ F
with 𝜌(𝑏

𝜆
, 𝑏) ∈ 𝑈

𝜋
(resp., 𝜌(𝑏, 𝑏

𝜆
) ∈ 𝑈

𝜋
) for any 𝜆 ∈ 𝐹. We

say that (𝑏
𝜆
)
𝜆
(UF)-converges to 𝑏 ∈ 𝑅 iff it (UF)-converges

both backward and forward to 𝑏, and in this case we write
(UF)lim

𝜆∈Λ
𝑏
𝜆
= 𝑏.

(e) Let Ξ be a nonempty set. Given two families
(𝑎

𝜆,𝜉
)
𝜆∈Λ,𝜉∈Ξ

and (𝑎
𝜉
)
𝜉∈Ξ

of elements of 𝑅, we say that
(𝑎

𝜆,𝜉
)
𝜆,𝜉

(ΞUF)-backward (resp., (ΞUF)-forward) con-
verges to (𝑎

𝜉
)
𝜉
iff there is a family (𝑈

𝜋
)
𝜋∈Π

∈ U, such that for
each 𝜋 ∈ Π and 𝜉 ∈ Ξ there is 𝐹 ∈ F with 𝜌(𝑎

𝜆,𝜉
, 𝑎

𝜉
) ∈ 𝑈

𝜋

(resp., 𝜌(𝑎
𝜉
, 𝑎

𝜆,𝜉
) ∈ 𝑈

𝜋
) for any 𝜆 ∈ 𝐹. Analogously as above

it is possible to formulate the notions of (ΞUF)-convergence
and (ΞUF)-limit.

Remark 2. Observe that, in our context, we will consider
filters without dealing explicitly with nets, and this is not a
restriction. A net on 𝑅 is a function N : Λ → 𝑅, where
Λ = (Λ, ≥) is a directed set, namely, a partially ordered set
such that for any 𝜆

1
, 𝜆

2
∈ Λ there exists 𝜆

0
∈ Λ with 𝜆

0
≥ 𝜆

𝑗
,

𝑗 = 1, 2. Given a directed set (Λ, ≥), it is possible to associate
the filter F

Λ
generated by the family C fl {{𝜆


∈ Λ : 𝜆


≥

𝜆} : 𝜆 ∈ Λ}. Note thatC is a filter base of Λ; that is, for every
𝐴, 𝐵 ∈ C there is an element𝐶 ∈ C with𝐶 ⊂ 𝐴∩𝐵.Thefilter
generated by a filter baseC is the family {𝐴 ⊂ Λ : there is 𝐵 ∈

C with 𝐵 ⊂ 𝐴}. Conversely, given a filter baseC fl {𝐶
𝜆
: 𝜆 ∈

Λ}, it is possible to associate a directed partial order≥ onΛ, by
setting 𝜆

1
≥ 𝜆

2
if and only if 𝐶

𝜆
1

⊂ 𝐶
𝜆
2

, 𝜆
1
, 𝜆

2
∈ Λ (see also

[18, 19]).

Example 3. We now present some kinds of abstract space in
which our approach can be applied, including both symmet-
ric and asymmetric distance functions (for a literature, see
also [3, 5, 10–13]).

(a) Let 𝑅 be a Dedekind complete lattice group, 𝑌 = 𝑅,
and let 𝜌(𝑎, 𝑏) fl |𝑎−𝑏|, 𝑎, 𝑏 ∈ 𝑅, be the absolute value of 𝑎−𝑏.
It is possible to define different kinds of convergences, as
follows (see also [16]).

Let Π
1

fl R+ be endowed with the usual order,
U

1
fl {([−𝜀𝑢, 𝜀𝑢])

𝜀∈R+ : 𝑢 ∈ 𝑅, 𝑢 > 0} ((𝑟)-
convergence); let Π

2
fl N be with the usual order, U

2
fl

{([−𝜎
𝑝
, 𝜎

𝑝
])
𝑝∈N : (𝜎

𝑝
)
𝑝
is an (𝑂)-sequence}, where an (𝑂)-

sequence is a decreasing sequence in 𝑅 whose infimum
is equal to 0 (order convergence of (𝑂)-convergence); let
Π

3
fl NN be directed with the pointwise order, U

3
fl

{([−⋁
∞

𝑡=1
𝑎
𝑡,𝜑(𝑡)

, ⋁
∞

𝑡=1
𝑎
𝑡,𝜑(𝑡)

])
𝜑∈NN : (𝑎

𝑡,𝑙
)
𝑡,𝑙
is a (𝐷)-sequence},

where a (𝐷)-sequence or regulator is a bounded double
sequence in 𝑅 such that (𝑎

𝑡,𝑙
)
𝑙
is an (𝑂)-sequence for each

𝑡 ∈ N ((𝐷)-convergence).The (𝐷)-convergence was presented
in [25] to give direct proofs of extension theorems for vector
lattice-valued functionals and replaces the 𝜀-technique in
dealing with suprema and infima of lattice group- or vector
lattice-valued families. For technical reasons, sometimes the
(𝐷)-convergence is easier to handle than (𝑂)-convergence,
and in particular it is very useful when one replaces a
sequence of regulators with a single (𝐷)-sequence (for a
literature about these topics, see also [16, 23, 26, 27]).

It is not difficult to check that U
𝑗
, 𝑗 = 1, 2, 3, are Π

𝑗
-

systems, satisfying (H1).
(b)We can extend the examples given in (a) to the case in

which𝑅 is a conemetric space (with respect to𝑌); that is,𝑅 is a
nonempty set and (𝑌, +) is a Dedekind complete lattice group
endowed with a distance function 𝜌 : 𝑅 × 𝑅 → 𝑌, satisfying
the following axioms:

(i) 𝜌(𝑎, 𝑏) ≥ 0 and 𝜌(𝑎, 𝑏) = 0 if and only if 𝑎 = 𝑏.
(ii) 𝜌(𝑎, 𝑏) = 𝜌(𝑏, 𝑎) (symmetric property).
(iii) 𝜌(𝑎, 𝑐) ≤ 𝜌(𝑎, 𝑏) + 𝜌(𝑏, 𝑐) (triangular property) for

every 𝑎, 𝑏, 𝑐 ∈ 𝑅.

(See also [6, 28].)When a conemetric space𝑅 is a semigroup,
we say that 𝑅 is a cone metric semigroup, a cone metric
semigroup in which 𝑌 = R is said to be a metric semigroup.
Note that the set of fuzzy numbers is a metric semigroup, but
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not a group (see also [20]). If 𝜌 satisfies the first and the third
of the above axioms, but not the symmetric property, then
we say that 𝜌 is an asymmetric distance function and that 𝑅
is a cone asymmetric metric space or cone quasimetric space
(see also [3, 5, 10]). For example, let T be a nonempty set,
𝑅 = {𝑓 : T → R, 𝑓 is bounded}, and let 𝑎

0
̸= 1 be a fixed

positive real number and let 𝑢 be a fixed element of 𝑅 with
𝑢 > 0. For each 𝑓

1
, 𝑓

2
∈ 𝑅 and 𝑡 ∈ T, set

𝑑
(𝑢)

𝑎
0
,𝑡
(𝑓

1
(𝑡) , 𝑓

2
(𝑡))

=

{

{

{

(𝑓
2
(𝑡) − 𝑓

1
(𝑡)) 𝑢, if 𝑓

1
(𝑡) ≤ 𝑓

2
(𝑡) ,

𝑎
0
(𝑓

1
(𝑡) − 𝑓

2
(𝑡)) 𝑢, if 𝑓

1
(𝑡) > 𝑓

2
(𝑡) ,

(1)

and let 𝜌(𝑢)
𝑎
0

(𝑓
1
, 𝑓

2
) = ⋁

𝑡∈T𝑑
(𝑢)

𝑎
0
,𝑡
(𝑓

1
(𝑡), 𝑓

2
(𝑡)). It is not difficult

to see that 𝜌
𝑎
0

is an asymmetric distance function (see also
[3, 10]).

(c) When 𝑅 is a lattice group and 𝑌 = 𝑅, it is advisable
to deal not only with continuity, but also with upper or lower
semicontinuity (see also [4]). In this setting we take 𝜌(𝑎, 𝑏) fl
𝑏 − 𝑎, 𝑎, 𝑏 ∈ 𝑅, Π

𝑗
, 𝑗 = 1, 2, 3, as in (a), and U

(0)

1
fl {({𝑟 ∈

𝑅 : 𝑟 ≤ 𝜀𝑢})
𝜀∈R+ : 𝑢 ∈ 𝑅, 𝑢 > 0}; U(0)

2
fl {({𝑟 ∈ 𝑅 : 𝑟 ≤

𝜎
𝑝
})
𝑝∈N : (𝜎

𝑝
)
𝑝
is an (𝑂)-sequence}; U(0)

3
fl {({𝑟 ∈ 𝑅 : 𝑟 ≤

∨
∞

𝑡=1
𝑎
𝑡,𝜑(𝑡)

})
𝜑∈NN : (𝑎

𝑡,𝑙
)
𝑡,𝑙
is a (𝐷)-sequence}.

(d) Let 𝑅 be a Hausdorff topological group with neutral
element 0 satisfying the first axiom of countability, 𝑌 = 𝑅,
Π

∗
= N, U∗ fl {(𝑈

𝑝
)
𝑝∈N : (𝑈

𝑝
)
𝑝∈N is a base of closed

symmetric neighborhoods of 0}, and 𝜌(𝑎, 𝑏) = 𝑏 − 𝑎. It is
not difficult to see thatU∗ is a Π

∗-system (see also [16, 29]).
(e) Let F be a filter of Λ. When we consider (𝑟)-

convergence and 𝑅 is a cone quasimetric space, a family (𝑏
𝜆
)
𝜆

of elements of 𝑅 is said to (𝑟F)-backward converge to 𝑏 iff
there is 𝑢 ∈ 𝑌, 𝑢 > 0, with {𝜆 ∈ Λ : 𝜌(𝑏

𝜆
, 𝑏) ≤ 𝜀𝑢} ∈ F

for all 𝜀 > 0. When we deal with (𝑂)-sequences, we say that
(𝑏

𝜆
)
𝜆
(𝑂F)-backward converges to 𝑏 iff there exists an (𝑂)-

sequence (𝜎
𝑝
)
𝑝
in 𝑌 with {𝜆 ∈ Λ : 𝜌(𝑏

𝜆
, 𝑏) ≤ 𝜎

𝑝
} ∈ F for

every 𝑝 ∈ N. When we consider (𝐷)-sequences, we say that
the net (𝑏

𝜆
)
𝜆
(𝐷F)-backward converges to 𝑏 iff there exists a

regulator (𝑎
𝑡,𝑙
)
𝑡,𝑙
in 𝑌 with

{𝜆 ∈ Λ : 𝜌 (𝑏
𝜆
, 𝑏) ≤

∞

⋁

𝑡=1

𝑎
𝑡,𝜑(𝑡)

} ∈ F

for each 𝜑 ∈ N
N
.

(2)

WhenΛ = N andF = Fcofin, we have the classical (𝑟)-, (𝑂)-,
and (𝐷)-(backward, forward) convergence (see also [3, 16]).
If (𝑅, +) is a Hausdorff topological group and 𝑌 = 𝑅, then
we say that a net 𝑏

𝜆
, 𝜆 ∈ Λ, in 𝑅, F-backward converges to

𝑏 ∈ 𝑅 iff {𝜆 ∈ Λ : 𝑏
𝜆
− 𝑏 ∈ 𝑈} ∈ F for each neighbor-

hood 𝑈 of 0. Similarly as above it is possible to formulate
the corresponding notions of (𝑟F)-, (𝑂F)-, and (𝐷F)-
(forward) convergences and limits.

(f) When 𝑅 is a Dedekind complete lattice group,
(𝑎

𝜆,𝜉
)
𝜆∈Λ,𝜉∈Ξ

and (𝑎
𝜉
)
𝜉∈Ξ

are two families in 𝑅 and
U is the Π-system associated with (𝑟)-convergence
(resp., (𝑂)-convergence, (𝐷)-convergence); we say that

(Ξ𝑟F)lim
𝜆∈Λ

𝑎
𝜆,𝜉

= 𝑎
𝜉
(resp., (Ξ𝑂F)lim

𝜆∈Λ
𝑎
𝜆,𝜉

= 𝑎
𝜉
,

(Ξ𝐷F)lim
𝜆∈Λ

𝑎
𝜆,𝜉

= 𝑎
𝜉
) iff (ΞUF)lim

𝜆∈Λ
𝑎
𝜆,𝜉

= 𝑎
𝜉
. Analo-

gously it is possible to formulate the corresponding concepts
of backward and forward convergences (see also [3, 5, 10]). In
particular, when𝑅 = R endowed with the usual convergence,
since it coincideswith (𝑟)- (𝑂)-, and (𝐷)-convergence, wewill
denote by (F)- and (ΞF)-(backward, forward) convergence
the usual filter (backward, forward) convergence and the
ordinary pointwise filter (backward, forward) convergence.
When 𝑅 is a Hausdorff topological group, U∗, Π∗ are as in
(d), and we get that the (ΞU∗F)-convergence is equivalent
to the pointwise (F)-convergence, and hence we write
(F)lim

𝜆∈Λ
𝑎
𝜆,𝜉

= 𝑎
𝜉
for every 𝜉 ∈ Ξ, or (ΞF)lim

𝜆∈Λ
𝑎
𝜆,𝜉

= 𝑎
𝜉
.

(g) Observe that, in general, a family (𝑏
𝜆
)
𝜆
can be back-

ward (resp., forward) convergent to more than one element.
For example, if 𝑅 is a Dedekind complete lattice group, Λ is a
nonempty set, F is any filter of Λ, 𝜌(𝑎, 𝑏) = 𝑏 − 𝑎 for every
𝑎, 𝑏 ∈ 𝑅, 𝑏

𝜆
= 0 for every 𝜆 ∈ Λ, and 𝑏 is any element of 𝑅

with 𝑏 ≤ 0 (resp., 𝑏 ≥ 0), then it is not difficult to see that
(𝑏

𝜆
)
𝜆
(𝑟F)-backward (resp., (𝑟F)-forward) converges to 𝑏.

(h) In general, backward and forward convergence are
not equivalent. For example, similarly as in (1), let T be a
nonempty set, let Λ fl [1, +∞[ be endowed with the usual
order, let F be a filter of Λ containing all half lines [𝑐, +∞[

with 𝑐 ≥ 1, pick 𝑅 = {𝑓 : T → R, 𝑓 is bounded}, and let
0, 1 be those functions which associate with every element of
T the real constants 0, 1, respectively. For any 𝑓

1
, 𝑓

2
∈ 𝑅 and

𝑡 ∈ T, set

𝑑


𝑡
(𝑓

1
(𝑡) , 𝑓

2
(𝑡))

=

{

{

{

(𝑓
2
(𝑡) − 𝑓

1
(𝑡)) ⋅ 1, if 𝑓

1
(𝑡) ≤ 𝑓

2
(𝑡) ,

1, if 𝑓
1
(𝑡) > 𝑓

2
(𝑡) ,

(3)

and put 𝜌(𝑓
1
, 𝑓

2
) fl ⋁

𝑡∈T𝑑


𝑡
(𝑓

1
(𝑡), 𝑓

2
(𝑡)). It is not difficult

to check that 𝜌 is an asymmetric distance function (see also
[3, 10]). For each 𝜆 ∈ Λ, set 𝑓

𝜆
fl 1/𝜆 ⋅ 1 and ℎ

𝜆
fl

−𝑓
𝜆

= −1/𝜆 ⋅ 1. Note that 𝑑(0, 𝑓
𝜆
) = 𝑓

𝜆
, 𝑑(𝑓

𝜆
, 0) = 1,

𝑑(ℎ
𝜆
, 0) = 𝑓

𝜆
, and 𝑑(0, ℎ

𝜆
) = 1. From this it is not difficult

to deduce that the family (𝑓
𝜆
)
𝜆
(𝑟F)-forward converges to 0

and (ℎ
𝜆
)
𝜆
(𝑟F)-backward converges to 0, while (𝑓

𝜆
)
𝜆
does

not (𝑟F)-backward converge to 0 and (ℎ
𝜆
)
𝜆
does not (𝑟F)-

forward converge to 0.
However, ifΛ is any nonempty set,F is any filter ofΛ,𝜌(𝑢)

𝑎
0

is as in (1), and 𝐶
𝑎
0

= max{𝑎
0
, 1/𝑎

0
}, then it is not difficult

to see that 𝜌(𝑢)
𝑎
0

(𝑓
1
, 𝑓

2
) ≤ 𝐶

𝑎
0

𝜌
(𝑢)

𝑎
0

(𝑓
2
, 𝑓

1
) whenever 𝑓

1
, 𝑓

2
∈

𝑅. From this it follows that a family (𝑓
𝜆
)
𝜆∈Λ

in 𝑅 is (𝑟F)-
backward convergent if and only if it is (𝑟F)-forward conver-
gent. We claim that, in this case, the involved limit coincides.
Indeed, if (𝑓

𝜆
)
𝜆
(𝑟F)-backward converges to 𝑓

0
and (𝑟F)-

forward converges to ℎ
0
with respect to 𝜌

(𝑢)

𝑎
0

, then there exist
V, 𝑤 ∈ 𝑅, such that for every 𝜀 > 0 there are 𝐹

1
, 𝐹

2
∈ F with

𝜌
(𝑢)

𝑎
0

(ℎ
0
, 𝑓

𝜆
) ≤ 𝜀V for every 𝜆 ∈ 𝐹

1
, 𝜌(𝑢)

𝑎
0

(𝑓
𝜆
, 𝑓

0
) ≤ 𝜀𝑤whenever

𝜆 ∈ 𝐹
2
. Note that 𝐹

1
∩ 𝐹

2
∈ F. If 𝜆

0
is any fixed element of
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𝐹
1
∩ 𝐹

2
, then from the triangular property of 𝜌(𝑢)

𝑎
0

we deduce
that

𝜌
(𝑢)

𝑎
0

(ℎ
0
, 𝑓

0
) ≤ 𝜌

(𝑢)

𝑎
0

(ℎ
0
, 𝑓

𝜆
0

) + 𝜌
(𝑢)

𝑎
0

(𝑓
𝜆
0

, 𝑓
0
)

≤ 𝜀 (V + 𝑤) .

(4)

Thus, by arbitrariness of 𝜀, we get 𝜌(𝑢)
𝑎
0

(ℎ
0
, 𝑓

0
) = 0, and hence

ℎ
0
= 𝑓

0
, getting the claim.

3. The Main Results

In this section we give the fundamental results of the paper in
our unified setting, which includes lattice groups, conemetric
spaces, metric groups and topological groups, symmetric
and asymmetric distances, continuity and semicontinuity of
the limit, and families of functions and of measures. We
first present the notion of weak filter backward and forward
exhaustiveness in our abstract context, which extends the
corresponding ones given in the literature and the classical
concept of equicontinuity (see also [4, 8, 16, 30]).

Definition 4. (a) Let Ξ be a nonempty set; fix 𝜉 ∈ Ξ and
let S

𝜉
be a filter of Ξ. One says that the family (𝑎

𝜆,𝜉
)
𝜆,𝜉

is
weakly (UF)-backward (resp., forward) exhaustive at 𝜉 iff
there exists a family (𝑈

𝜋
)
𝜋∈Π

∈ U such that for each 𝜋 ∈ Π

there is a set 𝑆 ∈ S
𝜉
such that for every 𝜁 ∈ 𝑆 there is a set𝐹

𝜁
∈

Fwith 𝜌(𝑎
𝜆,𝜁

, 𝑎
𝜆,𝜉

) ∈ 𝑈
𝜋
(resp., 𝜌(𝑎

𝜆,𝜉
, 𝑎

𝜆,𝜁
) ∈ 𝑈

𝜋
) for any 𝜆 ∈

𝐹
𝜁
. The family (𝑎

𝜆,𝜉
)
𝜆,𝜉

is said to be weakly (UF)-exhaustive
at 𝜉 iff it is both weakly (UF)-backward and weakly
(UF)-forward exhaustive at 𝜉.

(b) Let S
𝜉
, 𝜉 ∈ Ξ, be a family of filters of Ξ. One says that

(𝑎
𝜆,𝜉

)
𝜆,𝜉

isweakly (UF)- (backward, forward) exhaustive on Ξ

iff it is weakly (UF)- (backward, forward) exhaustive at every
𝜉 ∈ Ξ with respect to a single family U ∈ U, independent of
𝜉.

Example 5. We now show that, in general, weak (UF)-
backward and forward exhaustiveness do not coincide. Let
Λ = 𝑅 = Ξ = R, 𝑌 = R, be equipped with the usual
convergence; that is, let Π fl R+ be endowed with the usual
order, and U fl {([−𝜀𝑢, 𝜀𝑢])

𝜀∈R+ : 𝑢 ∈ R+
}. Let us define

𝜌 : R ×R → R by

𝜌 (𝜉, 𝜁) fl
{

{

{

𝜁 − 𝜉, if 𝜉 ≤ 𝜁,

1, if 𝜉 > 𝜁,

𝜉, 𝜁 ∈ R. (5)

It is not difficult to see that 𝜌 is an asymmetric distance
function (see also [10, Example 5.3]). LetF be any filter ofΛ,
and, for every 𝜉 ∈ Ξ, let S

𝜉
be the filter of all neighborhoods

of 𝜉 with respect to the topology generated by 𝜌. Set 𝑎
𝜆,𝜉

fl
𝜉 + 𝜆, 𝜉, 𝜆 ∈ R. We claim that the family (𝑎

𝜆,𝜉
)
𝜆,𝜉

is weakly
(UF)-forward exhaustive at 𝜉. Indeed, in correspondence
with 𝜀 > 0, take 𝜂 fl min{𝜀, 1/2}, and set 𝐹

𝜁
fl Λ for any

𝜁 ∈ [𝜉, 𝜉 + 𝜂] = 𝑆
𝜌
(𝜉, 𝜂), where 𝑆

𝜌
(𝜉, 𝜂) denotes the ball of

center 𝜉 and radius 𝜂 with respect to 𝜌. For every 𝜆 ∈ Λ and
𝜁 ∈ [𝜉, 𝜉+𝜂]we get𝜌(𝑎

𝜆,𝜉
, 𝑎

𝜆,𝜁
) = 𝜁+𝜆−(𝜉+𝜆) = 𝜁−𝜉 ∈ [−𝜂, 𝜂],

getting the claim.

Now, in correspondence with every 𝜉 ∈ R and 𝜃 > 0,
let 𝜂 = min{𝜃, 1} and take 𝜁 = 𝜉 + 𝜂. Note that 𝜁 ∈

𝑆
𝜌
(𝜉, 𝜃). Choose arbitrarily 𝐹 ∈ F. It is not hard to see that

𝜌(𝑎
𝜆,𝜁

, 𝑎
𝜆,𝜉

) = 𝜌(𝑎
𝜆,𝜉+𝜂

, 𝑎
𝜆,𝜉

) = 1 for every 𝜆 ∈ 𝐹. Hence, the
family (𝑎

𝜆,𝜉
)
𝜆,𝜉

is not weakly (UF)-backward exhaustive at 𝜉.
Furthermore note that, analogously as in (3), it is not difficult
to check that (UF)-forward (resp., backward) convergence
does not imply (UF)-backward (resp., forward) convergence
with respect to 𝜌.

The following result deals with characterizations and
properties of the limit family and extends [3, Theorem 3.1],
[4, Theorems 2.5, 2.6], and [6, Theorem 3.1] to the abstract
context.

Theorem 6. Assume that (𝑎
𝜆,𝜉

)
𝜆,𝜉

(ΞUF)-converges to (𝑎
𝜉
)
𝜉
,

fix 𝜉 ∈ Ξ, and let S
𝜉
be a filter of Ξ. Then the following are

equivalent:

(i) (𝑎
𝜆,𝜉

)
𝜆,𝜉

is weakly (UF)-backward (resp., forward)
exhaustive at 𝜉.

(ii) (𝑎
𝜁
)
𝜁
(US

𝜉
)-backward (resp., forward) converges to 𝑎

𝜉

as 𝜁 → 𝜉.

Proof. We give the proof only in the “backward” case, since
the other case is analogous.

(i) ⇒ (ii) Let (𝑈
𝜋
)
𝜋∈Π

∈ U be a family related to (UF)-
backward exhaustiveness of (𝑎

𝜆,𝜉
)
𝜆,𝜉

at 𝜉. By hypothesis, for
each 𝜋 ∈ Π, there exists a set 𝑆 ∈ S

𝜉
, associated with weak

(UF)-backward exhaustiveness. Pick arbitrarily 𝜁 ∈ 𝑆. There
is a set 𝐹

1
∈ F with 𝜌(𝑎

𝜆,𝜁
, 𝑎

𝜆,𝜉
) ∈ 𝑈

𝜋
for any 𝜆 ∈ 𝐹

1
.

Moreover, thanks to (ΞUF)-convergence, there is a family
(𝑈

∗

𝜋
)
𝜋
∈ U such that for every 𝜋 ∈ Π there exists 𝐹

2
∈ Fwith

𝜌(𝑎
𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑈

∗

𝜋
and 𝜌(𝑎

𝜆,𝜉
, 𝑎

𝜉
) ∈ 𝑈

∗

𝜋
whenever 𝜆 ∈ 𝐹

2
. From

this and (H1) it follows that 𝜌(𝑎
𝜁
, 𝑎

𝜉
) ∈ 2𝑈

∗

𝜋
+𝑈

𝜋
, getting (ii).

(ii) ⇒ (i) By hypothesis, there exists a family (𝑈
𝜋
)
𝜋
∈ U

such that for each 𝜋 ∈ Π there is a set 𝑆 ∈ S
𝜉
with

𝜌 (𝑎
𝜁
, 𝑎

𝜉
) ∈ 𝑈

𝜋
whenever 𝜁 ∈ 𝑆. (6)

Choose 𝜁 ∈ 𝑆. By (ΞUF)-convergence of (𝑎
𝜆,𝜉

)
𝜆,𝜉

to (𝑎
𝜉
)
𝜉
,

there is a family (𝑈
∗

𝜋
)
𝜋
∈ U such that for every 𝜋 ∈ Π there is

a set 𝐹∗
∈ F with

𝜌 (𝑎
𝜉
, 𝑎

𝜆,𝜉
) ∈ 𝑈

∗

𝜋
,

𝜌 (𝑎
𝜆,𝜁

, 𝑎
𝜁
) ∈ 𝑈

∗

𝜋

(7)

for each 𝜆 ∈ 𝐹
∗. From (6), (7), and (H1)we get that for every

𝜋 ∈ Π there is 𝑆 ∈ S
𝜉
such that for each 𝜁 ∈ 𝑆 there exists

𝐹
∗
∈ F with 𝜌(𝑎

𝜆,𝜁
, 𝑎

𝜆,𝜉
) ∈ 2𝑈

∗

𝜋
+ 𝑈

𝜋
whenever 𝜆 ∈ 𝐹

∗. Thus
the family (𝑎

𝜆,𝜉
)
𝜆,𝜉

is weakly (UF)-backward exhaustive at 𝜉.
This ends the proof.

Remark 7. Observe that Theorem 6 holds also if (ΞUF)-
convergence is replaced by (ΞUF)-forward convergence,
under the hypothesis that forward convergence implies back-
ward convergence (see also [10]). In general this last condition
is essential. Indeed, let Λ fl [1, +∞[ be endowed with the



Journal of Function Spaces 5

usual order, let F be a filter of Λ containing all half lines
[𝑐, +∞[ with 𝑐 ≥ 1, let Ξ fl [0, 1] be equipped with the
usual distance, letS

𝜉
, 𝜉 ∈ Ξ, be the filter of all neighborhoods

of 𝜉, let 𝑌 = R be endowed with the usual convergence,
𝑅 = [0, 1] × [0, 1], and let 𝜌∗ : 𝑅 × 𝑅 → R be defined by

𝜌
∗
((𝜉

1
, 𝜉

2
) , (𝜁

1
, 𝜁

2
))

=

{
{
{
{

{
{
{
{

{

0, if (𝜉
1
, 𝜉

2
) = (𝜁

1
, 𝜁

2
) ,

max {




𝜉
1
− 𝜁

1





,




𝜉
2
− 𝜁

2





} , if 𝜉

1
≤ 𝜁

1
, 𝜁

1
> 0,

1, otherwise.

(8)

It is not difficult to check that 𝜌
∗ is an asymmetric dis-

tance function. For every 𝜆 ∈ Λ and 𝜉 ∈ Ξ, set
𝑎
∗

𝜆,𝜉
fl (1/𝜆, 𝜉). Observe that 𝜌

∗
((0, 𝜉), (1/𝜆, 𝜉)) = 1/𝜆

and 𝜌
∗
((1/𝜆, 𝜉), (0, 𝜉)) = 1 for every 𝜆 ∈ Λ and 𝜉 ∈

Ξ. It is not difficult to see that the family (𝑎
∗

𝜆,𝜉
)
𝜆,𝜉

(ΞUF)-
forward converges to (𝑎

∗

𝜉
)
𝜉∈Ξ

, where 𝑎
∗

𝜉
= (0, 𝜉), 𝜉 ∈ Ξ,

but does not (ΞUF)-backward converge. Moreover, since
𝜌
∗
((0, 𝜁), (0, 0)) = 𝜌

∗
((0, 0), (0, 𝜁)) = 1, for every 𝜁 ∈ Ξ, 𝜁 ̸= 0,

the family (𝑎
∗

𝜁
)
𝜁∈Ξ

is neither (US
𝜉
)-backward nor (US

𝜉
)-

forward convergent to 𝑎
∗

0
as 𝜁 → 0. Furthermore, we get

𝜌
∗
(𝑎

∗

𝜆,𝜁
, 𝑎

∗

𝜆,0
) = 𝜌

∗
((

1

𝜆

, 𝜁) , (

1

𝜆

, 0)) = 𝜁

= 𝜌
∗
((

1

𝜆

, 0) , (

1

𝜆

, 𝜁)) = 𝜌
∗
(𝑎

∗

𝜆,0
, 𝑎

∗

𝜆,𝜁
)

(9)

for every 𝜆 ∈ Λ and 𝜁 ∈ Ξ. From (9) it is not difficult to
deduce that the family (𝑎

∗

𝜆,𝜉
)
𝜆,𝜉

is both weakly (UF)-forward
and weakly (UF)-backward exhaustive at 0 (see also [3,
Example 3.7], [10, Example 5.10]).

We now give some kinds of convergences for families,
which are some necessary and sufficient conditions for
exchange of limits, which extend to our context some results
proved in [1, 2, 4, 6, 9] about necessary and sufficient
conditions for continuity of the pointwise limit of continuous
functions. We extend to our setting the concepts of Arzelà,
Alexandroff, and strong uniform convergence given in [1, 15,
31, 32].

Definition 8. (a) Fix 𝜉 ∈ Ξ, and letS
𝜉
be a filter of Ξ. One says

that (𝑎
𝜆,𝜉

)
𝜆,𝜉

(UF)-forward strongly uniformly converges to

(𝑎
𝜉
)
𝜉
at 𝜉 (shortly, 𝑎

𝜆,𝜉

UF 𝑓𝑤−T𝑠

→ 𝑎
𝜉
) iff there exists a family

(𝑈
𝜋
)
𝜋
∈ U such that for each 𝜋 ∈ Π there is 𝐹 ∈ F such that

for every 𝜆 ∈ 𝐹 there is a set 𝑆
𝜆

∈ S
𝜉
with 𝜌(𝑎

𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑈

𝜋

whenever 𝜁 ∈ 𝑆
𝜆
.

(b) One says that (𝑎
𝜆,𝜉

)
𝜆,𝜉

is (UF)-forward Arzelà conver-

gent to (𝑎
𝜉
)
𝜉
at 𝜉 (in brief, 𝑎

𝜆,𝜉

UF 𝑓𝑤−𝐴𝑟𝑧.

→ 𝑎
𝜉
) iff there exists

a family (𝑈
𝜋
)
𝜋∈Π

∈ U such that for every 𝜋 ∈ Π and 𝐹 ∈ F
there are a finite set {𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑞
} ⊂ 𝐹 and a set 𝑆 ∈ S

𝜉
, such

that for each 𝜁 ∈ 𝑆 there is 𝑗 ∈ [1, 𝑞] with 𝜌(𝑎
𝜁
, 𝑎

𝜆
𝑗
,𝜁
) ∈ 𝑈

𝜋
.

(c) If S
𝜉
, 𝜉 ∈ Ξ, is a family of filters of Ξ, then one says

that a finitely uniform cover of Ξ is a family V of subsets of
Ξ such that Ξ = ⋃

𝑉∈V 𝑉, and for every 𝜉 ∈ Ξ there are a set

𝑆
𝜉
∈ S

𝜉
and a finite subsetY fl {𝑉

𝑙
1

, . . . , 𝑉
𝑙
𝑞

} ofV, such that
for each 𝜁 ∈ 𝑆

𝜉
there exists 𝑗 ∈ [1, 𝑞] with 𝜁 ∈ 𝑉

𝑙
𝑗

.
(d) The family (𝑎

𝜆,𝜉
)
𝜆,𝜉

is said to (UF)-forward strongly
uniformly (resp., (UF)-forward Arzelà) converge to (𝑎

𝜉
)
𝜉

on Ξ iff it (UF)-strongly uniformly (resp., (UF)-Arzelà)
converges to (𝑎

𝜉
)
𝜉
at 𝜉 for every 𝜉 ∈ Ξ with respect to a single

family U ∈ U, independent of 𝜉.
(e) One says that (𝑎

𝜆,𝜉
)
𝜆,𝜉

is (UF)-forward Alexandroff

convergent to (𝑎
𝜉
)
𝜉
on Ξ (shortly, 𝑎

𝜆,𝜉

UF 𝑓𝑤−𝐴𝑙.

→ 𝑎
𝜉
on Ξ) iff

there exists a family (𝑈
𝜋
)
𝜋
∈ U such that for each 𝜋 ∈ Π and

𝐹 ∈ F there are a nonempty set Λ
0
⊂ 𝐹 and a finitely uni-

form cover {𝑉
𝜆

: 𝜆 ∈ Λ
0
} of Ξ with 𝜌(𝑎

𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑈

𝜋
for any

𝜆 ∈ Λ
0
and 𝜁 ∈ 𝑉

𝜆
.

Note that, analogously as above, it is possible to formu-
late the corresponding concepts of (backward) filter strong
uniform, Arzelà, and Alexandroff convergence.

The next result extends [2, Theorem 3.9], [4, Theorems
2.9, 2.11 and Corollary 2.10], and [9, Proposition 3.5].

Theorem 9. Let 𝜉 ∈ Ξ be fixed, let S
𝜉
be a filter of Ξ, and

suppose that

(3.6.1) (ΛUS
𝜉
)lim

𝜁→𝜉
𝑎
𝜆,𝜁

= 𝑎
𝜆,𝜉
;

(3.6.2) the family (𝑎
𝜆,𝜁

)
𝜆,𝜁

(ΞUF)-converges to (𝑎
𝜁
)
𝜁
.

Then the following are equivalent:

(i) (𝑎
𝜁
)
𝜁
(US

𝜉
)-backward converges to 𝑎

𝜉
as 𝜁 → 𝜉.

(ii) 𝑎
𝜆,𝜉

UF 𝑓𝑤−T𝑠

→ 𝑎
𝜉
at 𝜉.

(iii) 𝑎
𝜆,𝜉

UF 𝑓𝑤−𝐴𝑟𝑧.

→ 𝑎
𝜉
at 𝜉.

Proof. (i) ⇒ (ii) Let (𝑈
𝜋
)
𝜋
, (𝑌

𝜋
)
𝜋
, and (𝑈

∗

𝜋
)
𝜋

∈ U be three
families associated with (i), (3.6.1), and (3.6.2), respectively,
and take arbitrarily 𝜋 ∈ Π. By (3.6.2), there is 𝐹 ∈ F with
𝜌(𝑎

𝜉
, 𝑎

𝜆,𝜉
) ∈ 𝑈

∗

𝜋
for all 𝜆 ∈ 𝐹. By (3.6.1) and (i), for each 𝜆 ∈ 𝐹

there is 𝑆
𝜆
∈ S

𝜉
with 𝜌(𝑎

𝜆,𝜉
, 𝑎

𝜆,𝜁
) ∈ 𝑌

𝜋
and 𝜌(𝑎

𝜁
, 𝑎

𝜉
) ∈ 𝑈

𝜋
for

any 𝜁 ∈ 𝑆
𝜆
. For such 𝜁’s, taking into account (H1), we have

𝜌(𝑎
𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑌

𝜋
+ 𝑈

∗

𝜋
+ 𝑈

𝜋
, getting (ii).

(ii) ⇒ (iii)Let (𝑈
𝜋
)
𝜋
∈ U be a family, according to (UF)-

strong uniform convergence. Choose arbitrarily 𝜋 ∈ Π and
𝐹 ∈ F, and let 𝐹

0
∈ F be associated with (UF)-strong

uniform convergence. Pick any finite set 𝑊 fl {𝜆
1
, . . . , 𝜆

𝑞
} ⊂

𝐹 ∩ 𝐹
0

∈ F: since F is a filter, 𝑊 does exist. For every
𝑗 ∈ [1, 𝑞], let 𝑆

𝜆
𝑗

∈ S
𝜉
be related to (UF)-strong uniform

convergence, and set 𝑆 = ⋂
𝑞

𝑗=1
𝑆
𝜆
𝑗

. Note that 𝑆 ∈ S
𝜉
. By

construction, for each 𝜁 ∈ 𝑆 and 𝑗 ∈ [1, 𝑞], we get𝜌(𝑎
𝜁
, 𝑎

𝜆
𝑗
,𝜁
) ∈

𝑈
𝜋
. Thus, we obtain (iii).
(iii) ⇒ (i) Let (𝑈

𝜋
)
𝜋
, (𝑌

𝜋
)
𝜋
, and (𝑍

𝜋
)
𝜋

∈ U be families
related to (iii), (3.6.1), and (3.6.2), respectively. By (3.6.2),
there is a set 𝐹 ∈ F with

𝜌 (𝑎
𝜆,𝜉

, 𝑎
𝜉
) ∈ 𝑍

𝜋
∀𝜆 ∈ 𝐹. (10)
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Choose arbitrarily 𝜋 ∈ Π. By (iii), in correspondence with 𝜋

and 𝐹, there exist a finite set {𝜆
1
, 𝜆

2
, . . . , 𝜆

𝑞
} ⊂ 𝐹 and a set

𝑆 ∈ S
𝜉
such that for every 𝜁 ∈ 𝑆

𝜉
there is 𝑗 ∈ [1, 𝑞] with

𝜌 (𝑎
𝜁
, 𝑎

𝜆
𝑗
,𝜁
) ∈ 𝑈

𝜋
. (11)

Thanks to (3.6.1), we find a set 𝑊 ∈ S
𝜉
, without loss of

generality𝑊 ⊂ 𝑆, with

𝜌 (𝑎
𝜆
𝑗
,𝜁
, 𝑎

𝜆
𝑗
,𝜉
) ∈ 𝑌

𝜋
(12)

for each 𝜁 ∈ 𝑊. From (10), (11), (12), and (H1) it follows that
𝜌(𝑎

𝜁
, 𝑎

𝜉
) ∈ 𝑈

𝜋
+ 𝑌

𝜋
+ 𝑍

𝜋
for every 𝜁 ∈ 𝑊

𝜉
, getting (i).

Remark 10. (a) In general, Theorem 9 does not hold, when
the involved “forward” convergences are replaced by the
corresponding “backward” ones. Indeed, for example, letΛ fl
N, F be any filter of N, let Ξ = [0, 1] be endowed with
the usual metric, 𝜉 = 1, and let S

𝜉
be the filter of all

neighborhoods of 1 contained in [0, 1], 𝑅 = 𝑌 = R, U fl
{({𝜁 ∈ R : 𝜁 ≤ 𝜀𝑢})

𝜀∈R+ : 𝑢 ∈ R+
}, 𝜌(𝑎, 𝑏) = 𝑏−𝑎, 𝑎, 𝑏 ∈ R. Put

𝑎
𝑛,𝜁

fl 𝜁
𝑛, 𝑛 ∈ N, 𝜁 ∈ [0, 1]. We get lim

𝜁→𝜉
𝑎
𝑛,𝜁

= 1 for every
𝑛 ∈ N, and

𝑎
𝜁
fl lim

𝑛
𝑎
𝑛,𝜁

=

{

{

{

0, if 0 ≤ 𝜁 < 1,

1, if 𝜁 = 1.

(13)

Note that for each 𝜀 > 0 and 𝑛 ∈ N we get

𝜌 (𝑎
𝑛,𝜁

, 𝑎
𝜁
) = 𝑎

𝜁
− 𝑎

𝑛,𝜁
=

{

{

{

−𝜁
𝑛
< 𝜀, if 0 ≤ 𝜁 < 1,

0 < 𝜀, if 𝜁 = 1.

(14)

Hence, 𝑎
𝑛,𝜉

UF 𝑏𝑤−T𝑠

→ 𝑎
𝜉
at 𝜉. On the other hand, for every

𝑛 ∈ N and for each neighborhood 𝑆 of 1 contained in [0, 1]

there is a real number 𝜁 ∈ 𝑆∩]0, 1[, close enough to 1, with
𝜁 > 1/2

1/𝑛, and hence

𝜌 (𝑎
𝜁
, 𝑎

𝑛,𝜁
) = 𝑎

𝑛,𝜁
− 𝑎

𝜁
= 𝜁

𝑛
>

1

2

. (15)

Thus, 𝑎
𝑛,𝜉

UF 𝑓𝑤−T𝑠

⟋→ 𝑎
𝜉
at 𝜉.The family (𝑎

𝜁
)
𝜁
(US

𝜉
)-forward,

but not backward, converges to 𝑎
𝜉
as 𝜁 → 𝜉: indeed for every

𝜁 ∈ [0, 1[ we have 𝜌(𝑎
𝜉
, 𝑎

𝜁
) = 𝑎

𝜁
− 𝑎

𝜉
= −1 < 𝜀 for each

𝜀 > 0, but 𝜌(𝑎
𝜁
, 𝑎

𝜉
) = 𝑎

𝜉
− 𝑎

𝜁
= 1. Note that the function

𝜁 → 𝑎
𝜁
, 𝜁 ∈ [0, 1], is upper semicontinuous, but not lower

semicontinuous, at 1.
(b) Observe that Theorem 9 does not hold, where in

(3.6.1) the involved convergence is replaced by the corre-
sponding backward or forward convergence (see also [2,
Example 3.3]).

LetΛ,F,𝑅,𝑌,U, and𝜌 be as in (a), letΞ fl Rbe endowed
with the usual metric, 𝜉 = 0, and let S

𝜉
be the filter of all

neighborhoods of 0. Set

𝑎
𝑛,𝜁

fl
{

{

{

0, if 𝜁 ∈ ]−∞, −

1

𝑛

] ∪ {0} ∪ [

1

𝑛

, +∞[ ,

1, otherwise.
(16)

Observe that 𝑎
𝜁
fl lim

𝑛
𝑎
𝑛,𝜁

= 0 for every 𝜁 ∈ R, so that (3.6.2)
holds, and condition (i) of Theorem 9 is fulfilled. Moreover
it is not difficult to see that, for each 𝑛 ∈ N, 𝑎

𝑛,𝜁
converges

backward, but not forward, to 𝑎
𝑛,0

= 0 as 𝜁 tends to 0, and
hence (3.6.1) is not verified. However, note that for every 𝑛 ∈

N and for every neighborhood 𝑈 of 0 there is 𝜁 ∈ 𝑈 with
𝑎
𝑛,𝜁

= 1, and hence 𝜌(𝑎
𝜁
, 𝑎

𝑛,𝜁
) = 𝑎

𝑛,𝜁
− 𝑎

𝜁
= 1. Thus, condition

(ii) of Theorem 9 is not satisfied.
Furthermore, if we define 𝑏

𝑛,𝜁
, 𝑛 ∈ N, 𝜁 ∈ R, by

𝑏
𝑛,𝜁

fl

{
{
{
{

{
{
{
{

{

1, if 𝜁 ∈ ]−∞, −

1

𝑛

] ∪ [

1

𝑛

, +∞[ ,

2, if 𝜁 = 0,

0, otherwise,

(17)

then

𝑏
𝜁
fl lim

𝑛
𝑏
𝑛,𝜁

=

{

{

{

1, if 𝜁 ̸= 0,

2, if 𝜁 = 0.

(18)

Hence, (3.6.2) is satisfied, but condition (i) ofTheorem 9 does
not hold. Observe that, for any 𝑛 ∈ N, 𝑏

𝑛,𝜁
converges forward,

but not backward, to 𝑏
𝑛,0

= 2 as 𝜁 tends to 0, and hence (3.6.1)
is not satisfied. On the other hand, since 𝜌(𝑏

𝜁
, 𝑏

𝑛,𝜁
) = 𝑏

𝑛,𝜁
−

𝑏
𝜁
≤ 0 for any 𝑛 ∈ N and 𝜁 ∈ R, we get that condition (ii) of

Theorem 9 is fulfilled.

We now turn to the main theorem in our abstract setting,
which extends [1, Theorems 4.7, 4.11], [2, Theorem 3.10], [4,
Theorem 2.12], and [6, Corollary 3.5] to our abstract unified
setting.

Theorem 11. Let S
𝜉
, 𝜉 ∈ Ξ, be a family of filters of Ξ, with the

property that 𝜉 ∈ 𝑆 for every 𝜉 ∈ Ξ and 𝑆 ∈ S
𝜉
. Suppose that

(3.6.2) holds and that

(3.8.1) (ΛUS
𝜉
)lim

𝜁→𝜉
𝑎
𝜆,𝜁

= 𝑎
𝜆,𝜉

for each 𝜉 ∈ Ξ with respect
to a single family Y ∈ U, independent of both 𝜆 and 𝜉.

Then the following are equivalent:

(i) (𝑎
𝜁
)
𝜁
(US

𝜉
)-backward converges to 𝑎

𝜉
as 𝜁 → 𝜉 for

every 𝜉 ∈ Ξ, with respect to a single family U ∈ U,
independent of 𝜉.

(ii) 𝑎
𝜆,𝜉

UF 𝑓𝑤−T𝑠

→ 𝑎
𝜉
on Ξ.

(iii) 𝑎
𝜆,𝜉

UF 𝑓𝑤−𝐴𝑙.

→ 𝑎
𝜉
on Ξ.

(iv) 𝑎
𝜆,𝜉

UF 𝑓𝑤−𝐴𝑟𝑧.

→ 𝑎
𝜉
on Ξ.

(v) (𝑎
𝜆,𝜉

)
𝜆,𝜉

is weakly (UF)-backward exhaustive on Ξ.

Proof. (i) ⇔ (v) It is similar to Theorem 6.
(i) ⇔ (ii) ⇔ (iv) It is similar to Theorem 9.
(ii) ⇒ (iii) Let (𝑊

𝜋
)
𝜋

∈ U be a family associated with
UF-T𝑠-convergence of (𝑎

𝜆,𝜉
)
𝜆,𝜉

to (𝑎
𝜉
)
𝜉
. Choose arbitrarily

𝜋 ∈ Π and 𝐹
0
∈ F. By (ii), for every 𝜉 ∈ Ξ, there exists a set

𝐹
𝜉

∈ F, such that for every 𝜆 ∈ 𝐹
𝜉
there is 𝑆

𝜆,𝜉
∈ S

𝜉
with
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𝜌(𝑎
𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑊

𝜋
for any 𝜁 ∈ 𝑆

𝜆,𝜉
. Set 𝐹 = ⋃

𝜉∈Ξ
𝐹
𝜉
: note that

Λ
0
∈ F, where Λ

0
fl 𝐹 ∩ 𝐹

0
̸= 0. For every 𝜆 ∈ Λ

0
, let

𝐸
𝜆
fl {𝜉 ∈ Ξ : 𝜌 (𝑎

𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑊

𝜋
for every 𝜁 ∈ 𝑆

𝜆,𝜉
} . (19)

Pick arbitrarily 𝜉 ∈ Ξ and choose 𝜆 ∈ Λ
0
. We have

𝜌(𝑎
𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑊

𝜋
whenever 𝜁 ∈ 𝑆

𝜆,𝜉
. Thus, Ξ = ⋃

𝜆∈Λ
0

𝐸
𝜆
.

For each 𝜆 ∈ Λ
0
, set 𝑆

𝜆
= ⋃

𝜉∈𝐸
𝜆

𝑆
𝜆,𝜉
. Note that V fl {𝑆

𝜆
:

𝜆 ∈ Λ
0
} is a cover of Ξ. For every 𝜆 ∈ Λ

0
and 𝜁 ∈ 𝑆

𝜆
there

is 𝜉 ∈ 𝐸
𝜆
with 𝜁 ∈ 𝑆

𝜆,𝜉
, and hence 𝜌(𝑎

𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑊

𝜋
. Now, in

correspondence with 𝜉 ∈ Ξ, choose an element 𝜆 ∈ 𝐹
𝜉
∩ 𝐹

0

and pick 𝑆
𝜆,𝜉
. Note that 𝑆

𝜆,𝜉
∈ S

𝜉
and 𝑆

𝜆,𝜉
⊂ 𝑆

𝜆
. Thus, V is

a finitely uniform cover of Ξ, with 𝑆
𝜉
= 𝑆

𝜆,𝜉
and Y = {𝑆

𝜆
}.

Therefore, (𝑎
𝜆,𝜉

)
𝜆,𝜉

(UF)-Alexandroff converges to (𝑎
𝜉
)
𝜉
.

(iii) ⇒ (iv) Let (𝑈
𝜋
)
𝜋∈Π

∈ U be a family associated with
(UF)-Alexandroff convergence of (𝑎

𝜆,𝜉
) to (𝑎

𝜉
)
𝜉
. Pick arbi-

trarily 𝜉 ∈ Ξ,𝜋 ∈ Π, and𝐹 ∈ F. By (iii), there are a nonempty
set Λ

0
⊂ 𝐹 and a finitely uniform cover V fl {𝑉

𝜆
: 𝜆 ∈ Λ

0
}

of Ξ, with 𝜌(𝑎
𝜁
, 𝑎

𝜆,𝜁
) ∈ 𝑈

𝜋
for each 𝜆 ∈ Λ

0
and 𝜉 ∈ 𝑉

𝜆
.

SinceV is a finitely uniform cover, in correspondence with 𝜉,
there exist a set 𝑆

𝜉
∈ S

𝜉
and a finite subset {𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑞
} ⊂

Λ
0
, such that for every 𝜁 ∈ 𝑆

𝜉
there is 𝑗 ∈ [1, 𝑞] with

𝜁 ∈ 𝑉
𝜆
𝑗

. Thus 𝜌(𝑎
𝜁
, 𝑎

𝜆
𝑗
,𝜁
) ∈ 𝑈

𝜋
, and so we obtain (iv).

This ends the proof.

Remark 12. Observe that when the function 𝜌 is symmetric,
Theorems 6, 9, and 11 can be viewed as necessary and
sufficient conditions in order to have exchange of limits (for
a related literature, see also [16, 26, 33]).

4. Applications to Set Functions

In this section, as consequences of Theorems 6, 9, and 11,
we will give some necessary and sufficient conditions for
some kind of continuity and semicontinuity of the limit of
set functions. We begin with proving a result on continuity
from below the limit measure. Note that, thanks to the limit
theorems existing in the literature, these conditions are often
fulfilled (for a comprehensive historical survey, see [16] and
its bibliography).However, we give an example inwhich these
properties do not hold in the setting of filter convergence.

Let Λ be any nonempty set, let F be any filter of Λ, let
𝐺 be any infinite set, let Σ be 𝜎-algebra of subsets of 𝐺, and
let (𝑅, 𝑌) be a (symmetric) cone metric semigroup, Ξ fl N ∪

{+∞}, 𝜉 fl +∞, S
𝜉
fl {𝐹 ∪ {+∞} : 𝐹 ∈ Fcofin}. It is not

difficult to check that S
𝜉
is a filter of Ξ. Moreover, letU be a

fixed Π-system associated with (𝑅, 𝑌).
A set function 𝑚 : Σ → 𝑅 is said to be

U-continuous from below (resp., from above) on Σ iff
(US

𝜉
)lim

𝑘
𝜌(𝑚(𝐶

𝑘
), 𝑚(𝐶)) = 0 for every increasing (resp.,

decreasing) sequence (𝐶
𝑘
)
𝑘
inΣwhose union (resp., intersec-

tion) is equal to 𝐶. A consequence ofTheorems 6 and 9 is the
following.

Theorem 13. Let 𝑚
𝜆

: Σ → 𝑅, 𝜆 ∈ Λ, be a family of set
functions, U-continuous from below on Σ, with respect to a
family U ∈ U independent of 𝜆. Suppose that
(4.1.1) 𝑚(𝐸) fl (UF)lim

𝜆
𝑚

𝜆
(𝐸), 𝐸 ∈ Σ, exists in 𝑅 with

respect to a family V ∈ U independent of 𝐸 ∈ Σ.

Then the following are equivalent:

(i) 𝑚 isU-continuous from below on Σ.
(ii) For every increasing sequence (𝐶

𝑘
)
𝑘
in Σ there is a

family (𝑊
𝜋
)
𝜋

∈ U such that for any 𝜋 ∈ Π there is
𝑘 ∈ N such that, for every 𝑘 ≥ 𝑘, there is a set 𝐹 ∈ F
with 𝜌(𝑚

𝜆
(𝐶

𝑘
), 𝑚

𝜆
(𝐶)) ∈ 𝑊

𝜋
for each 𝜆 ∈ 𝐹.

(iii) For any increasing sequence (𝐶
𝑘
)
𝑘
in Σ there is a family

(𝑈
𝜋
)
𝜋

∈ U such that for every 𝜋 ∈ Π there is 𝐹 ∈ F
such that for each 𝜆 ∈ 𝐹 there exists a positive integer
𝑘
𝜆
with 𝜌(𝑚(𝐶

𝑘
), (𝑚

𝜆
(𝐶

𝑘
)) for any 𝑘 ≥ 𝑘

𝜆
.

(iv) For every increasing sequence (𝐶
𝑘
)
𝑘
in Σ there is a

family (𝑌
𝜋
)
𝜋
∈ U such that for each 𝜋 ∈ Π and 𝐹 ∈ F

there are 𝜆
1
, . . . , 𝜆

𝑞
∈ 𝐹 and 𝑘 ∈ N such that for each

𝑘 ≥ 𝑘 there exists 𝑗 ∈ [1, 𝑞] with 𝜌(𝑚(𝐶
𝑘
), 𝑚

𝜆
𝑗

(𝐶
𝑘
)) ∈

𝑌
𝜋
.

Indeed, it is enough to take

𝑎
𝜆,𝜁

= 𝑚
𝜆
(𝐶

𝑘
) ,

𝑎
𝜁
= 𝑚 (𝐶

𝑘
) ,

𝑎
𝜆,𝜉

= 𝑚
𝜆
(𝐶) ,

𝑎
𝜉
= 𝑚 (𝐶) ,

(20)

where (𝐶
𝑘
)
𝑘
is a fixed increasing sequence in Σ, whose

union is 𝐶. Conditions (i) of Theorem 6 and (ii) and (iii)
of Theorem 9 become conditions (ii), (iii), and (iv) of
Theorem 13, respectively.

Remark 14. (a) Observe that results analogous toTheorem 13
hold when the involved set functions 𝑚

𝜆
, 𝜆 ∈ Λ, are U-

continuous from above or U-(𝑠)-bounded on Σ, that is, if
(U)lim

𝑘
𝜌(𝑚

𝜆
(𝐴

𝑘
), 0) = 0 for every disjoint sequence (𝐴

𝑘
)
𝑘

in Σ.
(b) Note that conditions (ii)–(iv) of Theorem 13 are just

satisfied, for example, when 𝑅 = 𝑌 is a Dedekind complete
lattice group, 𝜌(𝑎, 𝑏) = |𝑎 − 𝑏|, 𝑎, 𝑏 ∈ R, Λ = N, F =

Fcofin, and (𝑚
𝑛
)
𝑛
is a sequence of 𝜎-additive positive 𝑅-

valued measures, thanks to the classical limit theorems (see
also [16, 34, 35]).

Thenext step is to give necessary and sufficient conditions
for absolute continuity of the limit measure.

Let ] : Σ → R+

0
be a finitely additive measure. We endow

Σwith the Fréchet-Nikodým topology generated by the pseu-
dometric 𝜌](𝐷, 𝐸) fl |](𝐷)−](𝐸)|,𝐷,𝐸 ∈ Σ. Pick nowΞ = Σ,
and for each 𝐸 ∈ Σ let S

𝐸
be the filter generated by the base

W fl {{𝐷 ∈ Σ : 𝜌](𝐷, 𝐸) < 𝜂} : 𝜂 > 0}.
We say that (𝑚

𝜆
)
𝜆
is weakly (UF)-]-exhaustive at 𝐸 ∈ Σ

iff there is a family (𝑈
𝜋
)
𝜋
∈ U (depending on 𝐸) such that for

each 𝜋 ∈ Π there is 𝜂 > 0 such that for every 𝐷 ∈ Σ with
𝜌](𝐷, 𝐸) < 𝜂 there is a set 𝐹

𝐷
∈ F with 𝜌(𝑚

𝜆
(𝐷),𝑚

𝜆
(𝐸)) ∈

𝑈
𝜋
whenever 𝜆 ∈ 𝐹. We say that (𝑚

𝜆
)
𝜆
is weakly (UF)-]-

exhaustive on Σ iff it is weakly (UF)-]-exhaustive at every
𝐸 ∈ Σ with respect to a family X ∈ U independent of 𝐸 ∈ Σ.
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A measure 𝑚 : Σ → 𝑅 is said to be U-]-continuous at
𝐸 ∈ Σ iff there is a family (𝑈

𝜋
)
𝜋
∈ U (depending on 𝐸) such

that for every 𝜋 ∈ Π there is 𝜂 > 0 with 𝜌(𝑚(𝐷),𝑚(𝐸)) ∈

𝑈
𝜋
whenever 𝜌](𝐷, 𝐸) < 𝜂. We say that 𝑚 is globally U-]-

continuous on Σ with respect to ] iff it isU-]-continuous at 𝐸
with respect to ] for each 𝐸 ∈ Σ, relative to a family T ∈ U,
independent of 𝐸 ∈ Σ.

The next result is a consequence of Theorem 11.

Theorem 15. Let 𝑚
𝜆
: Σ → 𝑅, 𝜆 ∈ Λ, be a family of measures

U-]-continuous at a fixed set 𝐸 ∈ Σ (resp., globally U-]-
continuous on Σ) with respect to a family Z ∈ U independent
of 𝜆 and (ΞUF)-convergent to a measure 𝑚

0
: Σ → 𝑅. Then

the following are equivalent:

(i) The limit measure 𝑚
0
is U-]-continuous at 𝐸 (resp.,

globallyU-]-continuous on Σ).
(ii) The net 𝑚

𝜆
, 𝜆 ∈ Λ, is weakly (UF)-exhaustive at 𝐸

(resp., on Σ).
(iii) There is a family (𝑈

𝜋
)
𝜋
∈ U, depending on𝐸 ∈ Σ (resp.,

independent of 𝐸 ∈ Σ), such that for each 𝜋 ∈ Π there
is 𝐹 ∈ F such that for every 𝜆 ∈ 𝐹 there is 𝜂 > 0

with 𝜌(𝑚
0
(𝐷),𝑚

𝜆
(𝐷)) ∈ 𝑈

𝜋
for each 𝐷 ∈ Σ with

𝜌](𝐷, 𝐸) < 𝜂.
(iv) There is a family (𝑌

𝜋
)
𝜋
∈ U, depending on𝐸 ∈ Σ (resp.,

independent of 𝐸 ∈ Σ), such that for every 𝜋 ∈ N and
𝐹 ∈ F there are 𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑞
∈ 𝐹 and a positive real

number 𝜂 such that for any 𝐷 ∈ Σ with 𝜌](𝐷, 𝐸) < 𝜂

there exists 𝑗 ∈ [1, 𝑞] with 𝜌(𝑚
0
(𝐷),𝑚

𝜆
𝑗

(𝐷)) ∈ 𝑌
𝜋
.

Moreover, if 𝑚
𝜆
’s are globallyU-]-continuous, statements (i)–

(iv) are equivalent to the following:

(v) There is a family (𝑊
𝜋
)
𝜋

∈ U such that for any 𝜋 ∈ Π

and 𝐹 ∈ F there exist a nonempty set Λ
0

⊂ 𝐹 and
a finitely uniform cover {𝑉

𝜆
: 𝜆 ∈ Λ

0
} of Σ with

𝜌(𝑚
0
(𝐷),𝑚

𝜆
(𝐷)) ∈ 𝑊

𝜋
whenever 𝜆 ∈ Λ

0
and 𝐷 ∈

𝑉
𝜆
.

Remark 16. (a) Observe that when Λ = N, F = Fcofin, 𝑚𝑛
,

𝑛 ∈ N, are positive𝜎-additivemeasures,𝑅 is aDedekind com-
plete lattice group, and𝑌 = 𝑅, 𝜌(𝑎, 𝑏) = |𝑏−𝑎|, 𝑎, 𝑏 ∈ 𝑅, we get
that conditions (ii)–(v) of Theorem 15 are fulfilled, thanks to
the limit theorems existing in the literature (see also [16, 34,
35]).

(b) Let Σ = P(N) be the class of all subsets of N; letF be
a filter containingFcofin and ](𝐴) = ∑

𝑘∈𝐴
(1/2

𝑘
), 𝐴 ∈ Σ. For

each 𝑛 ∈ N, let us define the Dirac measure 𝛿
𝑛
: Σ → R by

𝛿
𝑛
(𝐴) fl

{

{

{

1, if 𝑛 ∈ 𝐴,

0, if 𝑛 ∈ N \ 𝐴.

(21)

It is not difficult to see that 𝛿
𝑛
is 𝜎-additive on Σ. Moreover,

𝛿
𝑛
is ]-continuous at 0 (i.e., ]-absolutely continuous): indeed,

if 𝜗
𝑛
= 1/2

𝑛 and ](𝐴) < 𝜗
𝑛
, then 𝑛 ∉ 𝐴, and hence 𝛿

𝑛
(𝐴) = 0.

We claim that the sequence (𝛿
𝑛
)
𝑛
is not weaklyF-exhaustive

at 0. Indeed, observe that for each 𝜗 > 0 there is a cofinite set
𝐷

𝜗
⊂ N with ](𝐷

𝜗
) < 𝜗. Note that since F contains Fcofin,

every element of F is infinite; otherwise 0 ∈ F, which is
impossible. Furthermore, observe that for every infinite sub-
set 𝐹 ⊂ N, and a fortiori for any 𝐹 ∈ F, there is a sufficiently
large integer 𝑛 ∈ 𝐹 ∩ 𝐷

𝜗
, so that 𝛿

𝑛
(𝐷

𝜗
) = 1. From this we

deduce that the sequence (𝛿
𝑛
)
𝑛
is not weaklyF-exhaustive at

0. If F is an ultrafilter of N containing Fcofin (the existence
of such ultrafilters follows from the Axiom of Choice; see
also [19, 36]), then for every 𝐴 ⊂ N we have

𝛿

(𝐴) fl (F) lim

𝑛
𝛿
𝑛
(𝐴) =

{

{

{

1, if 𝐴 ∈ F,

0, if 𝐴 ∉ F.

(22)

We claim that 𝛿 is not ]-continuous at 0. Indeed, fix arbitrar-
ily 𝜂 > 0 and let 𝑘 ∈ N be such that 1/2𝑘−1 ≤ 𝜂. Let 𝐴 be any
element ofF and set 𝐴∗ fl 𝐴 ∩ ([𝑘, +∞[); then 𝐴

∗
∈ F. We

get ](𝐴∗
) ≤ ∑

∞

𝑘=𝑘
(1/2

𝑘
) = 1/2

𝑘−1
≤ 𝜂 and 𝛿


(𝐴

∗
) = 1, getting

the claim.
Furthermore, in this case, conditions (i)–(iv) in Theo-

rem 13 do not hold. Indeed, choose a filterF ofN containing
Fcofin, and let𝐶𝑘

fl [1, 𝑘], 𝑘 ∈ N. Observe that, as said before,
every element ofF is infinite. For every 𝑘 and for any infinite
set 𝐹 ⊂ N there is 𝑛 ∈ 𝐹 \ 𝐶

𝑘
, and hence we get 𝛿

𝑛
(N) −

𝛿
𝑛
(𝐶

𝑘
) = 1. Thus, in this case, condition (ii) of Theorem 13

is not fulfilled. If F is an ultrafilter of N, then the measure
𝛿
 defined in (22) is not 𝜎-additive on Σ. Indeed, if 𝐴 is

any element ofF, then we get ∑
𝑛∈𝐴

𝛿

({𝑛}) = 0 and 𝛿


(𝐴) =

1.

When 𝑅 is a Dedekind complete lattice group, 𝑌 = 𝑅,
𝜌(𝑎, 𝑏) = 𝑏 − 𝑎, and U

(0)

𝑗
, 𝑗 = 1, 2, 3, are as in Example 3(c);

we obtain some results similar to the previous ones also for
semicontinuous set functions (for a related literature, see also
[20] and the references therein).

In this setting, the concepts of weak backward (resp.,
forward) filter exhaustiveness and lower (resp., upper) semi-
continuity are formulated as follows.

Definition 17. (a) One says that (𝑚
𝜆
)
𝜆
is weakly (UF)-]-

backward (resp., forward) exhaustive at 𝐸 ∈ Σ iff there is a
family (𝑈

𝜋
)
𝜋
∈ U (depending on 𝐸) such that for each 𝜋 ∈ Π

there is 𝜂 > 0 such that for every 𝐷 ∈ Σ with 𝜌](𝐷, 𝐸) < 𝜂

there is a set 𝐹
𝐷

∈ F with 𝑚
𝜆
(𝐸) − 𝑚

𝜆
(𝐷) (resp., 𝑚

𝜆
(𝐷) −

𝑚
𝜆
(𝐸)) ∈ 𝑈

𝜋
whenever 𝜆 ∈ 𝐹.

(b) One says that (𝑚
𝜆
)
𝜆
is weakly (UF)-]-backward

(resp., forward) exhaustive on Σ iff it is weakly (UF)-]-
backward (resp., forward) exhaustive at every 𝐸 ∈ Σ with
respect to a family X ∈ U independent of 𝐸 ∈ Σ.

(c) One says that (𝑚
𝜆
)
𝜆
is weakly (UF)-]-exhaustive at

𝐸 (resp., on Σ) iff it is weakly (UF)-]-backward and forward
exhaustive at 𝐸 (resp., on Σ).

(d) One says that 𝑚 : Σ → 𝑅 is U-]-lower (resp., upper)
semicontinuous at 𝐸 ∈ Σ iff there is a family (𝑈

𝜋
)
𝜋

∈ U
(depending on𝐸) such that for every𝜋 ∈ Π there is 𝜂 > 0with
𝑚(𝐸)−𝑚(𝐷) (resp.,𝑚(𝐷)−𝑚(𝐸)) ∈ 𝑈

𝜋
whenever 𝜌](𝐷, 𝐸) <

𝜂. We say that𝑚 is globallyU-]-lower (resp., upper) semicon-
tinuous on Σ iff it isU-]-lower (resp., upper) semicontinuous
at 𝐸 for each 𝐸 ∈ Σ with respect to a family T ∈ U,
independent of 𝐸 ∈ Σ.
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Similarly asTheorem 15, it is possible to prove the follow-
ing result about semicontinuity of the limit set function. The
next theorem is given in the case of lower semicontinuity; an
analogous result holds in the setting of upper semicontinuity.

Theorem18. Suppose that𝑚
𝜆
: Σ → 𝑅,𝜆 ∈ Λ, are globallyU-

]-continuous on Σ with respect to a family S ∈ U, independent
of 𝜆, and (ΣUF)-convergent to a set function 𝑚

0
: Σ → 𝑅.

Then the following are equivalent:

(i) 𝑚
0
isU-]-lower semicontinuous at𝐸 (resp., globallyU-

]-lower semicontinuous on Σ).
(ii) The family (𝑚

𝜆
)
𝜆
is weakly (UF)-backward exhaus-

tive at 𝐸 (resp., on Σ).
(iii) There is a family (𝑈

𝜋
)
𝜋

∈ U, depending on 𝐸 (resp.,
independent of 𝐸), such that for any 𝜋 ∈ Π there is
𝐹 ∈ F such that for every 𝜆 ∈ 𝐹 there is 𝜂 > 0 with
𝑚

𝜆
(𝐷) − 𝑚

0
(𝐷) ∈ 𝑈

𝜋
for each 𝐷 ∈ Σ with 𝜌](𝐷, 𝐸) <

𝜂.
(iv) There exists a family (𝑉

𝜋
)
𝜋
∈ U, depending on 𝐸 (resp.,

independent of 𝐸), such that for every 𝜋 ∈ Π and 𝐹 ∈

F there are 𝜆
1
, 𝜆

2
, . . . , 𝜆

𝑞
∈ 𝐹 and 𝜂 > 0 such that for

any 𝐷 ∈ Σ with 𝜌](𝐷, 𝐸) < 𝜂 there exists 𝑗 ∈ [1, 𝑞]

with 𝑚
𝜆
𝑗

(𝐷) − 𝑚
0
(𝐷) ∈ 𝑉

𝜋
.

Moreover, globalU-]-lower semicontinuity of𝑚
0
is equivalent

to the following condition:

(v) There is a family (𝑊
𝜋
)
𝜋
∈ U, such that for every 𝜋 ∈ Π

and 𝐹 ∈ F there exist a nonempty set Λ
0
⊂ 𝐹 and a

finitely uniform cover {𝑉
𝜆
: 𝜆 ∈ Λ

0
} of Σwith𝑚

𝜆
(𝐷)−

𝑚
0
(𝐷) ∈ 𝑊

𝜋
for all 𝜆 ∈ Λ

0
and 𝐷 ∈ 𝑉

𝜆
.

Remark 19. (a) LetF be an ultrafilter of N containingFcofin,
let ] be as in Remark 16(b) and let 𝛿

, 𝛿
𝑛
, 𝑛 ∈ N, be as in

(22) and (21), respectively. It is not difficult to check that the
sequence (𝛿

𝑛
)
𝑛
is weakly (F)-]-backward exhaustive but not

weakly (F)-]-forward exhaustive at 0 and that 𝛿 is ]-lower
semicontinuous but not ]-upper semicontinuous at 0.

(b) With the same techniques as above, it is possible to
prove similar results even when the involved setΞ is endowed
with a bornology, extending earlier theorems proved in [1, 6].
A bornology on Ξ is a family B of nonempty subsets of Ξ,
which covers Ξ, stable under finite unions and with 𝐵


∈ B

whenever 0 ̸= 𝐵

⊂ 𝐵 and 𝐵 ∈ B. Examples of bornologies

on Ξ are the classes of all finite nonempty subsets and of all
nonempty subsets ofΞ, the collection of all nonempty subsets
of Ξwith compact closure when Ξ is a topological space, and,
if (Ξ, 𝜌) is a metric space, the families of all nonempty 𝜌-
bounded subsets of Ξ and of all nonempty 𝜌-totally bounded
subsets of Ξ (see also [1, 14, 15] and the literature therein).

5. Conclusions

We studied the problem of finding conditions for preserving
continuity or semicontinuity of the limit family of a double-
indexed family of elements of a set endowed with an abstract
structure of convergence.

Our axiomatic approach includes symmetric and asym-
metric distance functions, topological and lattice groups,
cone (quasi)metric spaces, functions and measures, and nets
and filters.

We proved some theorems on exchange of limits, giving
some necessary and sufficient conditions in terms of weak
filter exhaustiveness, Alexandroff,Arzelà, and strong uniform
convergence. As a consequence, we proved some necessary
and sufficient conditions for continuity from above/below
and absolute continuity of the limit set function of a converg-
ing family. We showed that, different from the classical cases,
these conditions are not always fulfilled.

Open Problems. (a) Prove some similar results in some
other abstract contexts and with respect to other types of
convergence.

(b) Investigate some other properties of continuous or
semicontinuous functions/measures in abstract settings.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by Universities of Perugia and
Athens and the ItalianNational Group ofMathematical Anal-
ysis, Probability and Applications (GNAMPA).

References

[1] G. Beer, “The Alexandroff property and the preservation of
strong uniform continuity,” Applied General Topology, vol. 11,
no. 2, pp. 117–133, 2010.

[2] G. Beer, “Semicontinuous limits of nets of continuous func-
tions,” Mathematical Programming, vol. 139, no. 1-2, pp. 71–79,
2013.

[3] A. Boccuto and X. Dimitriou, “Ascoli-type theorems in cone
metric space setting,” Journal of Inequalities and Applications,
vol. 2014, p. 420, 2014.

[4] A. Boccuto and X. Dimitriou, “Semicontinuous filter limits of
nets of lattice group-valued functions,” in Proceedings of the 31st
Conference of the Hellenic Mathematical Society, pp. 1–10, Veria,
Greece, November 2014.

[5] A. Boccuto and X. Dimitriou, “Asymmetric Ascoli-type theo-
rems and filter exhaustiveness,” Applied Mathematical Sciences,
vol. 9, no. 108, pp. 5389–5398, 2014.

[6] A. Boccuto and X. Dimitriou, “Strong uniform continuity and
filter exhaustiveness of nets of cone metric space-valued fun-
ctions,” in Proceedings of the International Conference on Topol-
ogy and Its Applications, pp. 21–36, 2015.

[7] A. Boccuto and X. Dimitriou, “On Filter 𝛼-convergence and
exhaustiveness of function nets in lattice groups and applica-
tions,” Journal of Mathematics Research, vol. 7, no. 2, pp. 56–68,
2015.

[8] A. Caserta, “Decomposition of topologies which characterize
the upper and lower semicontinuous limits of functions,”
Abstract and Applied Analysis, vol. 2011, Article ID 857278, 9
pages, 2011.



10 Journal of Function Spaces

[9] A. Caserta, G. DiMaio, and L. Holá, “(Strong) weak exhaustive-
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The integral formula of dual 𝐿𝑝-geominimal surface area is given and the concept of dual 𝐿𝑝-geominimal surface area is
extended to dual 𝐿𝑝-mixed geominimal surface area. Properties for the dual 𝐿𝑝-mixed geominimal surface areas are established.
Some inequalities, such as analogues of Alexandrov-Fenchel inequalities, Blaschke-Santaló inequalities, and affine isoperimetric
inequalities for dual 𝐿𝑝-mixed geominimal surface areas, are also obtained.

1. Introduction

The concept of geominimal surface area was introduced by
Petty [1] about 40 years ago, and its 𝐿𝑝-extension was first
introduced by Lutwak [2, 3].They have been proved to be key
ingredients in connecting affinedifferential geometry, relative
differential geometry, and Minkowski geometry. The basic
theory concerning geominimal surface area is developed,
and a close connection is established between this theory
and affine differential geometry in [1]. The 𝐿𝑝-geominimal
surface area is now thought to be at the core of the rapidly
developing 𝐿𝑝-Brunn-Minkowski theory. Hence, it receives
a lot of attention and motivates extensions of some known
inequalities for geominimal surface areas to 𝐿𝑝-geominimal
surface areas. These new inequalities of 𝐿𝑝-type (𝑝 > 1) are
stronger than their classical counterparts.

However, finding an integral expression for the 𝐿𝑝-
geominimal surface area seems to be intractable. This also
leads to a big obstacle on extending the 𝐿𝑝-geominimal sur-
face area. Until more recently, Zhu et al. [4] provided an inte-
gral formula for 𝐿𝑝-geominimal surface area by 𝑝-Petty body
and introduced 𝐿𝑝-mixed geominimal surface areas which
extended the 𝐿𝑝-geominimal surface area. Thereout, they
established some new 𝐿𝑝-affine isoperimetric inequalities.

Recently, Wang and Qi [5] introduced a concept of dual
𝐿𝑝-geominimal surface area, which is a dual concept for

𝐿𝑝-geominimal surface area and belongs to the dual 𝐿𝑝-
Brunn-Minkowski theory for star bodies also developed by
Lutwak (see [6, 7]). The dual 𝐿𝑝-Brunn-Minkowski theory
for star bodies and a more extensive dual Orlicz-Brunn-
Minkowski theory for star bodies received considerable
attention (see, e.g., [8–21]), and they have been proved to
be very powerful in solving many geometric problems, for
instance, the Busemann-Petty problems (see, e.g., [6, 22–24]).

In this paper, we show that the infimum in the definition
of dual 𝐿𝑝-geominimal surface area is a minimum and
provide an integral formula for dual 𝐿𝑝-geominimal surface
area by dual 𝑝-Petty body. Moreover, we define the dual 𝐿𝑝-
mixed geominimal surface area and establish some new 𝐿𝑝-
affine isoperimetric inequalities for it.

Our paper is organized as follows. In Section 2, we
provide the necessary background, such as definitions and
known results which will be needed. Section 3 includes the
basic theory of dual 𝐿𝑝-geominimal surface area, such as
theoremof existence and uniqueness for dual𝐿𝑝-geominimal
surface area, as well as the integral definition of dual 𝐿𝑝-
geominimal surface area. In Section 4, we introduce the
dual 𝐿𝑝-mixed geominimal surface area and prove some
important properties, such as affine invariant properties.
We also obtain analogues of Alexandrov-Fenchel inequali-
ties, Blaschke-Santaló inequalities, and affine isoperimetric
inequalities for dual 𝐿𝑝-mixed geominimal surface areas.
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Finally, we investigate the dual 𝑖th 𝐿𝑝-mixed geominimal
surface areas and obtain analogues of Blaschke-Santaló and
affine isoperimetric inequalities in Section 5.

2. Preliminaries and Notations

Let K𝑛 denote the set of convex bodies (compact, convex
subsets with nonempty interiors) in Euclidean space R𝑛.
For the set of convex bodies containing the origin in their
interiors and the set of convex bodies whose centroids lie
at the origin in R𝑛, we write K𝑛

𝑜
and K𝑛

𝑐
, respectively. Let

𝑉(𝐾) denote the 𝑛-dimensional volume of a body 𝐾, and let
𝐵 denote the standard Euclidean unit ball in R𝑛 and write
𝜔𝑛 = 𝑉(𝐵) for its volume, and let 𝑆𝑛−1 denote the unit sphere
for 𝐵.

For 𝐾 ∈ K𝑛
𝑜
, its support function ℎ𝐾 = ℎ(𝐾, ⋅) :

R𝑛 \ {𝑜} → [0,∞) is defined by 𝑥 ∈ R𝑛 \ {𝑜}, ℎ(𝐾, 𝑥) =

max{⟨𝑥, 𝑦⟩ : 𝑦 ∈ 𝐾}, where ⟨⋅, ⋅⟩ is the standard inner product
onR𝑛. Associatedwith each𝐾 ∈ K𝑛

𝑜
, one can uniquely define

its polar body 𝐾∗ ∈ K𝑛
𝑜
by 𝐾∗ = {𝑥 ∈ R𝑛 : ⟨𝑥, 𝑦⟩ ≤ 1, ∀𝑦 ∈

𝐾}. It is easily verified that (𝐾∗)∗ = 𝐾 if𝐾 ∈ K𝑛
𝑜
.

For 𝐾, 𝐿 ∈ K𝑛 and 𝛼, 𝛽 ≥ 0 (not both zero), the
Minkowski linear combination 𝛼 ⋅ 𝐾 + 𝛽 ⋅ 𝐿 ∈ K𝑛 is defined
by

ℎ (𝛼 ⋅ 𝐾 + 𝛽 ⋅ 𝐿, ⋅) = 𝛼ℎ (𝐾, ⋅) + 𝛽ℎ (𝐿, ⋅) . (1)

The classical Brunn-Minkowski inequality (see [25])
states that for convex bodies 𝐾, 𝐿 ∈ K𝑛 and real 𝛼, 𝛽 ≥ 0

(not both zero), the volume of the bodies and the volume of
their Minkowski linear combination 𝛼 ⋅ 𝐾 + 𝛽 ⋅ 𝐿 ∈ K𝑛 are
related by

𝑉 (𝛼 ⋅ 𝐾 + 𝛽 ⋅ 𝐿)
1/𝑛

≥ 𝛼𝑉 (𝐾)
1/𝑛

+ 𝛽𝑉 (𝐿)
1/𝑛

, (2)

with equality if and only if 𝐾 and 𝐿 are homothetic.
For real 𝑝 ≥ 1, 𝐾, 𝐿 ∈ K𝑛

𝑜
, and 𝛼, 𝛽 ≥ 0 (not both zero),

the Firey linear combination, 𝛼 ⋅ 𝐾+𝑝 𝛽 ⋅ 𝐿, is defined by (see
[26])

ℎ (𝛼 ⋅ 𝐾+𝑝 𝛽 ⋅ 𝐿, ⋅)
𝑝

= 𝛼ℎ (𝐾, ⋅)
𝑝
+ 𝛽ℎ (𝐿, ⋅)

𝑝
. (3)

For the Firey linear combination 𝛼 ⋅ 𝐾+𝑝 𝛽 ⋅ 𝐿, Firey
[26] also established the𝐿𝑝-Brunn-Minkowski inequality (an
inequality that is also known as the Brunn-Minkowski-Firey
inequality, see [14]). If 𝑝 > 1, 𝛼, 𝛽 ≥ 0 (not both zero), and
𝐾, 𝐿 ∈ K𝑛

𝑜
, then

𝑉(𝛼 ⋅ 𝐾+𝑝 𝛽 ⋅ 𝐿)
𝑝/𝑛

≥ 𝛼𝑉 (𝐾)
𝑝/𝑛

+ 𝛽𝑉 (𝐿)
𝑝/𝑛

, (4)

with equality if and only if 𝐾 and 𝐿 are dilates.
A set 𝐾 in R𝑛 is star-shaped at 𝑜 if 𝑜 ∈ 𝐾 and for each

𝑥 ∈ R𝑛 \ {𝑜}, the intersection 𝐾 ∩ {𝑐𝑥 : 𝑐 ≥ 0} is a (possibly
degenerate) compact line segment. If𝐾 ⊂ R𝑛 is star-shaped at
the origin 𝑜, we define its radial function 𝜌𝐾 for 𝑥 ∈ R𝑛 \ {𝑜}

by 𝜌(𝐾, 𝑥) = max{𝜆 ≥ 0 : 𝜆𝑥 ∈ 𝐾}. If 𝜌𝐾 is positive and
continuous, then 𝐾 is called a star body about the origin. S𝑛

𝑜

denotes the set of star bodies (about the origin) in R𝑛. Two
star bodies 𝐾 and 𝐿 are dilates of one another if 𝜌𝐾(𝑢)/𝜌𝐿(𝑢)

is independent of 𝑢 ∈ 𝑆𝑛−1. Note that𝐾 ∈ S𝑛
𝑜
can be uniquely

determined by its radial function 𝜌𝐾(⋅) and vice versa. If 𝛼 >

0, we have

𝜌𝐾 (𝛼𝑥) = 𝛼
−1
𝜌𝐾 (𝑥) ,

𝜌𝛼𝐾 (𝑥) = 𝛼𝜌𝐾 (𝑥) .

(5)

More generally, from the definition of the radial function, it
follows immediately that for 𝜙 ∈ GL(𝑛) the radial function of
the image 𝜙𝐾 = {𝜙𝑦 : 𝑦 ∈ 𝐾} of𝐾 ∈ S𝑛

𝑜
is given by (see [27])

𝜌 (𝜙𝐾, 𝑥) = 𝜌 (𝐾, 𝜙
−1
𝑥) , ∀𝑥 ∈ R

𝑛
. (6)

Obviously, for𝐾, 𝐿 ∈ S𝑛
𝑜
,

𝐾 ⊆ 𝐿 iff 𝜌K ≤ 𝜌𝐿. (7)

The radial Hausdorff metric between the star bodies𝐾 and 𝐿
is

�̃� (𝐾, 𝐿) = max
𝑢∈𝑆𝑛−1

𝜌𝐾 (𝑢) − 𝜌𝐿 (𝑢)
 . (8)

A sequence {𝐾𝑖} of star bodies is said to be convergent to𝐾 if

�̃� (𝐾𝑖, 𝐾) → 0, as 𝑖 → ∞. (9)

Therefore, a sequence of star bodies 𝐾𝑖 converges to 𝐾 if
and only if the sequence of radial functions 𝜌(𝐾𝑖, ⋅) converges
uniformly to 𝜌(𝐾, ⋅) (see [28, Theorem 7.9]).

According to the definitions of the polar body for convex
body, support function, and radial function, it follows that for
𝐾 ∈ K𝑛

𝑜

ℎ𝐾∗ (𝑢) 𝜌𝐾 (𝑢) = 1,

𝜌𝐾∗ (𝑢) ℎ𝐾 (𝑢) = 1,

∀𝑢 ∈ 𝑆
𝑛−1

.

(10)

One of the most important inequalities in convex geom-
etry is the Blaschke-Santaló inequality about polar body (cf.
[1, 27, 29]): If 𝐾 ∈ K𝑛

𝑐
, then

𝑉 (𝐾)𝑉 (𝐾
∗
) ≤ 𝜔
2

𝑛
, (11)

where the equality holds if and only if𝐾 is an ellipsoid.
If𝐾, 𝐿 ∈ S𝑛

𝑜
and 𝛼, 𝛽 ≥ 0 (not both zero), then, for 𝑝 ≥ 1,

the radial harmonic 𝐿𝑝-combination, 𝛼 ⬦ 𝐾 +̂−𝑝 𝛽 ⬦ 𝐿 ∈ S𝑛
𝑜
,

is defined by (see [3])

𝜌 (𝛼 ⬦ 𝐾 +̂−𝑝 𝛽 ⬦ 𝐿, ⋅)
−𝑝

= 𝛼𝜌 (𝐾, ⋅)
−𝑝
+ 𝛽𝜌 (𝐿, ⋅)

−𝑝
. (12)

For 𝑝 ≥ 1 and 𝐾, 𝐿 ∈ S𝑛
𝑜
, the dual harmonic 𝐿𝑝-mixed

volume, �̃�−𝑝(𝐾, 𝐿), is defined by

−
𝑛

𝑝
�̃�−𝑝 (𝐾, 𝐿) = lim

𝜀→0+

𝑉(𝐾 +̂−𝑝 𝜀 ⬦ 𝐿) − 𝑉 (𝐾)

𝜀
. (13)
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Let 𝐾, 𝐿 ∈ S𝑛
𝑜
and 𝑝 ≥ 1. Then, the integral representation

of dual harmonic 𝐿𝑝-mixed volume of𝐾 and 𝐿, �̃�−𝑝(𝐾, 𝐿), is
given (see [3]):

�̃�−𝑝 (𝐾, 𝐿) =
1

𝑛
∫
𝑆𝑛−1

𝜌
𝑛+𝑝

𝐾
(𝑢) 𝜌
−𝑝

𝐿
(𝑢) d𝑆 (𝑢) . (14)

With (5) and (14) taken together, we obtain for 𝛼 > 0

�̃�−𝑝 (𝛼𝐾, 𝐿) = 𝛼
𝑛+𝑝

�̃�−𝑝 (𝐾, 𝐿) ,

�̃�−𝑝 (𝐾, 𝛼𝐿) = 𝛼
−𝑝
�̃�−𝑝 (𝐾, 𝐿) .

(15)

In [3], Lutwak proved the following: For 𝐾, 𝐿 ∈ S𝑛
𝑜
and

𝛼, 𝛽 ≥ 0, if 𝑝 ≥ 1, then, for 𝜙 ∈ GL(𝑛),

𝜙 (𝛼 ⬦ 𝐾 +̂𝑝 𝛽 ⬦ 𝐿) = 𝛼 ⬦ 𝜙𝐾 +̂𝑝 𝛽 ⬦ 𝜙𝐿. (16)

Since 𝑉(𝜙𝐾) = |det (𝜙)|𝑉(𝐾), for all 𝐾 ∈ S𝑛
𝑜
and 𝜙 ∈

GL(𝑛), the following follows from (6), (14), and (15).

Proposition 1. If 𝑝 ≥ 1 and 𝐾, 𝐿 ∈ S𝑛
𝑜
, then, for 𝜙 ∈ GL(𝑛),

�̃�−𝑝 (𝜙𝐾, 𝜙𝐿) =
det𝜙

 �̃�−𝑝 (𝐾, 𝐿) . (17)

The case 𝜙 ∈ SL(𝑛) of Proposition 1 reduces to the
following formula:

�̃�−𝑝 (𝜙𝐾, 𝜙𝐿) = �̃�−𝑝 (𝐾, 𝐿) . (18)

This integral representation of �̃�−𝑝(⋅, ⋅), with Hölder’s
inequality (see [30, p. 140]) togetherwith the polar coordinate
formula, immediately gives the following:

�̃�−𝑝 (𝐾, 𝐿)
𝑛
≥ 𝑉 (𝐾)

𝑛+𝑝
𝑉 (𝐿)
−𝑝
, (19)

with equality if and only if 𝐾 and 𝐿 are dilates.
The following result is an immediate consequence of (19).

Lemma 2. Suppose that 𝑝 ≥ 1 and U ⊂ S𝑛
𝑜
such that 𝐾, 𝐿 ∈

U. If for all 𝑄 ∈ U

�̃�−𝑝 (𝐾, 𝑄) = �̃�−𝑝 (𝐿, 𝑄)

or �̃�−𝑝 (𝑄,𝐾) = �̃�−𝑝 (𝑄, 𝐿) ,
(20)

then 𝐾 = 𝐿.

The continuity of the dual harmonic 𝐿𝑝-mixed volume
�̃�−𝑝 : S

𝑛

𝑜
×S𝑛
𝑜
→ (0,∞) is contained.

Lemma 3. Suppose that sequences {𝐾𝑖}, {𝐿𝑗} ⊂ S𝑛
𝑜
and 𝐾𝑖 →

𝐾 ∈ S𝑛
𝑜
, 𝐿𝑗 → 𝐿 ∈ S𝑛

𝑜
. If 𝑝 ≥ 1, then lim𝑖,𝑗→∞�̃�−𝑝(𝐾𝑖, 𝐿𝑗) =

�̃�−𝑝(𝐾, 𝐿).

Proof. Since𝐾𝑖 → 𝐾 and 𝐿𝑗 → 𝐿 are equivalent to 𝜌𝐾
𝑖

→ 𝜌𝐾

and 𝜌𝐿
𝑗

→ 𝜌𝐿, uniformly on 𝑆𝑛−1, and 𝜌𝐾, 𝜌𝐿 are positively
continuous on 𝑆𝑛−1, then 𝜌𝐾

𝑖

and 𝜌𝐿
𝑗

are uniformly bounded
on 𝑆𝑛−1 (see [28, Theorem 7.9]). Hence,

𝜌
𝑛+𝑝

𝐾
𝑖

→ 𝜌
𝑛+𝑝

𝐾
, uniformly on 𝑆

𝑛−1
,

𝜌
−𝑝

𝐿
𝑗

→ 𝜌
−𝑝

𝐿
, uniformly on 𝑆

𝑛−1
.

(21)

Hence,

∫
𝑆𝑛−1

𝜌
𝑛+𝑝

𝐾
𝑖

(𝑢) 𝜌
−𝑝

𝐿
𝑗

(𝑢) d𝑆 (𝑢)

→ ∫
𝑆𝑛−1

𝜌
𝑛+𝑝

𝐾
(𝑢) 𝜌
−𝑝

𝐿
(𝑢) d𝑆 (𝑢) , if 𝑖, 𝑗 → ∞.

(22)

Namely, lim𝑖,𝑗→∞�̃�−𝑝(𝐾𝑖, 𝐿𝑗) = �̃�−𝑝(𝐾, 𝐿).

The volume-normalized dual conical measure d�̃�∗
𝐾

of
𝐾 ∈ S𝑛

𝑜
is defined by 𝑉(𝐾)d�̃�∗

𝐾
= (1/𝑛)𝜌

𝑛

𝐾
d𝑆, where 𝑆

is Lebesgue measure on 𝑆𝑛−1. We shall make use of the fact
that the volume-normalized dual conical measure �̃�∗

𝐾
is a

probability measure on 𝑆𝑛−1.
The following lemma will be needed.

Lemma 4 (see [3]). Let C𝑛 denote the set of compact convex
subsets of Euclidean 𝑛-space R𝑛, and suppose 𝐾𝑖 ∈ K𝑛

𝑜
such

that 𝐾𝑖 → 𝐿 ∈ C𝑛. If the sequence 𝑉(𝐾∗
𝑖
) is bounded, then

𝐿 ∈ K𝑛
𝑜
.

3. The Dual 𝐿𝑝-Geominimal Surface Area

Based on the notion of dual 𝐿𝑝-mixed volumes,Wang andQi
[5] defined the dual 𝐿𝑝-geominimal surface area as follows:
For 𝐾 ∈ S𝑛

𝑜
, the dual 𝐿𝑝-geominimal surface area, �̃�−𝑝(𝐾),

of 𝐾 is defined by

𝜔
−𝑝/𝑛

𝑛
�̃�−𝑝 (𝐾)

= inf {𝑛�̃�−𝑝 (𝐾, 𝑄)𝑉 (𝑄
∗
)
−𝑝/𝑛

: 𝑄 ∈ K
𝑛

𝑜
} .

(23)

For this notion of𝐿𝑝-dual geominimal surface area,Wang
and Qi in [5] established the following affine isoperimetric
inequality and Blaschke-Santaló type inequality: For 𝐾 ∈ S𝑛

𝑜

and 𝑝 ≥ 1,

�̃�−𝑝 (𝐾) ≥ 𝑛𝜔
−𝑝/𝑛

𝑛
𝑉 (𝐾)

(𝑛+𝑝)/𝑛
, (24)

with equality if and only if 𝐾 is an ellipsoid centred at the
origin.

If 𝐾 ∈ K𝑛
𝑐
and 𝑝 ≥ 1, then

�̃�−𝑝 (𝐾) �̃�−𝑝 (𝐾
∗
) ≤ (𝑛𝜔𝑛)

2
, (25)

with equality if and only if 𝐾 is an ellipsoid.
By the homogeneity of volume and dual 𝐿𝑝-mixed vol-

ume, the dual 𝐿𝑝-geominimal surface area could also be
defined by

�̃�−𝑝 (𝐾)

= inf {𝑛�̃�−𝑝 (𝐾, 𝑄) : 𝑄 ∈ K
𝑛

𝑜
, 𝑉 (𝑄

∗
) = 𝜔𝑛} .

(26)

It will be shown that the infimum in the above definition
is attained.
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Theorem 5. If 𝐾 ∈ S𝑛
𝑜
and 𝑝 ≥ 1, then there exists a unique

body �̃� ∈ K𝑛
𝑜
such that

�̃�−𝑝 (𝐾) = 𝑛�̃�−𝑝 (𝐾, �̃�) ,

𝑉 (�̃�
∗
) = 𝜔𝑛.

(27)

Proof. From the definition of �̃�−𝑝(𝐾), there exists a sequence
{𝑀𝑖} ⊂ K𝑛

𝑜
such that 𝑉(𝑀∗

𝑖
) = 𝜔𝑛, with �̃�−𝑝(𝐾, 𝐵) ≥

�̃�−𝑝(𝐾,𝑀𝑖), for all 𝑖, and 𝑛�̃�−𝑝(𝐾,𝑀𝑖) → �̃�−𝑝(𝐾). To see that
the𝑀𝑖 ∈ K𝑛

𝑜
, 𝑖 = 1, 2, . . ., are uniformly bounded, let

𝑅𝑖 = 𝑅 (𝑀𝑖) = 𝜌 (𝑀𝑖, 𝑢𝑖)

= max {𝜌 (𝑀𝑖, 𝑢) : 𝑢 ∈ 𝑆
𝑛−1

} ,

(28)

where 𝑢𝑖 is any of the points in 𝑆
𝑛−1 at which this maximum

is attained. Let 𝑟𝐾 = min𝑆𝑛−1𝜌𝐾. Then, 𝑟𝐾𝐵 ⊆ 𝐾. From
definition (14) of dual harmonic 𝐿𝑝-mixed volume and
Jensen’s inequality, it follows that

�̃�−𝑝 (𝐾, 𝐵)

𝑉 (𝐾)
≥
�̃�−𝑝 (𝐾,𝑀𝑖)

𝑉 (𝐾)
= ∫
𝑆𝑛−1

(
𝜌𝐾 (𝑢)

𝜌𝑀
𝑖

(𝑢)
)

𝑝

d�̃�∗
𝐾

≥ (∫
𝑆𝑛−1

𝜌𝐾 (𝑢)

𝜌𝑀
𝑖

(𝑢)
d�̃�∗
𝐾
)

𝑝

≥ (∫
𝑆𝑛−1

𝜌𝐾 (𝑢)

𝑅𝑖
d�̃�∗
𝐾
)

𝑝

= (
1

𝑛𝑉 (𝐾) 𝑅𝑖
∫
𝑆𝑛−1

𝜌𝐾 (𝑢)
𝑛+1 d𝑆 (𝑢))

𝑝

≥ (
𝑟𝐾

𝑛𝑉 (𝐾) 𝑅𝑖
∫
𝑆𝑛−1

𝜌𝐾 (𝑢)
𝑛 d𝑆 (𝑢))

𝑝

= (
𝑟𝐾

𝑅𝑖
)

𝑝

.

(29)

Namely,

𝜔𝑛𝑟
𝑛

𝐾
(
𝑟𝐾

𝑅𝑖
)

𝑝

≤ �̃�−𝑝 (𝐾,𝑀𝑖) ≤ �̃�−𝑝 (𝐾, 𝐵) < ∞ (30)

for a fixed 𝐾 ∈ S𝑛
𝑜
; then, the sequence {𝑀𝑖} is uniformly

bounded.
Since the sequence {𝑀𝑖} is uniformly bounded, the

Blaschke selection theorem guarantees the existence of a
subsequence of 𝑀𝑖, which will also be denoted by 𝑀𝑖, and
a compact convex 𝐿 ∈ C𝑛, such that𝑀𝑖 → 𝐿. Since𝑉(𝑀∗

𝑖
) =

𝜔𝑛, Lemma 4 gives 𝐿 ∈ K𝑛
𝑜
. Now, 𝑀𝑖 → 𝐿 implies that

𝑀
∗

𝑖
→ 𝐿
∗, and since𝑉(𝑀∗

𝑖
) = 𝜔𝑛, it follows that𝑉(𝐿

∗
) = 𝜔𝑛.

Lemma 3 can now be used to conclude that 𝐿will serve as the
desired body �̃�.

The uniqueness of the minimizing body is easily demon-
strated as follows. Suppose 𝐿1, 𝐿2 ∈ K𝑛

𝑜
and 𝐿1 ̸= 𝐿2, such

that 𝑉(𝐿∗
1
) = 𝜔𝑛 = 𝑉(𝐿

∗

2
), and

�̃�−𝑝 (𝐾, 𝐿1) = �̃�−𝑝 (𝐾, 𝐿2) . (31)

Define 𝐿 ∈ K𝑛
𝑜
by

𝐿 =
1

2
⬦ 𝐿1+̂−1

1

2
⬦ 𝐿2. (32)

Since, obviously,

𝐿
∗
=
1

2
⋅ 𝐿
∗

1
+
1

2
⋅ 𝐿
∗

2
(33)

and 𝑉(𝐿∗
1
) = 𝜔𝑛 = 𝑉(𝐿

∗

2
), it follows from Brunn-Minkowski

inequality (2) that
𝑉 (𝐿
∗
) ≥ 𝜔𝑛, (34)

with equality if and only if 𝐿1 = 𝐿2.
By formula (14) of dual 𝐿𝑝-mixed volume, together with

the convexity of 𝜙(𝑡) = 𝑡𝑝 (𝑝 ≥ 1), we have

�̃�−𝑝 (𝐾, 𝐿) =
1

𝑛
∫
𝑆𝑛−1

(
𝜌𝐾 (𝑢)

𝜌1/2∘𝐿
1
+̃
−1
1/2∘𝐿

2

(𝑢)
)

𝑝

⋅ 𝜌𝐾 (𝑢)
𝑛 d𝑆 (𝑢) = 1

𝑛

⋅ ∫
𝑆𝑛−1

(
𝜌𝐾 (𝑢)

(1/2𝜌𝐿
1

(𝑢) + 1/2𝜌𝐿
2

(𝑢))
−1
)

𝑝

⋅ 𝜌𝐾 (𝑢)
𝑛 d𝑆 (𝑢) = 1

𝑛

⋅ ∫
𝑆𝑛−1

(
𝜌𝐾 (𝑢)

2𝜌𝐿
1

(𝑢)
+

𝜌𝐾 (𝑢)

2𝜌𝐿
2

(𝑢)
)

𝑝

𝜌𝐾 (𝑢)
𝑛 d𝑆 (𝑢)

≤
1

2𝑛
∫
𝑆𝑛−1

(
𝜌𝐾 (𝑢)

𝜌𝐿
1

(𝑢)
)

𝑝

𝜌𝐾 (𝑢)
𝑛 d𝑆 (𝑢) + 1

2𝑛

⋅ ∫
𝑆𝑛−1

(
𝜌𝐾 (𝑢)

𝜌𝐿
2

(𝑢)
)

𝑝

𝜌𝐾 (𝑢)
𝑛 d𝑆 (𝑢) = 1

2

⋅ �̃�−𝑝 (𝐾, 𝐿1) +
1

2
�̃�−𝑝 (𝐾, 𝐿2) = �̃�−𝑝 (𝐾, 𝐿1)

= �̃�−𝑝 (𝐾, 𝐿2) ,

(35)

with equality if and only if 𝐿1 = 𝐿2. Thus,

�̃�−𝑝 (𝐾, 𝐿)𝑉 (𝐿
∗
)
−𝑝/𝑛

< �̃�−𝑝 (𝐾, 𝐿1) 𝑉 (𝐿
∗

1
)
−𝑝/𝑛

= �̃�−𝑝 (𝐾, 𝐿2) 𝑉 (𝐿
∗

2
)
−𝑝/𝑛

(36)

is the contradiction that would arise if it were the case that
𝐿1 ̸= 𝐿2. This completes the proof.

The unique body whose existence is guaranteed by
Theorem 5 will be denoted by �̃�𝑝𝐾 and will be called the dual
𝑝-Petty body of𝐾. The polar body of �̃�𝑝𝐾will be denoted by
�̃�
∗

𝑝
𝐾 rather than (�̃�𝑝𝐾)

∗. Thus, for 𝐾 ∈ S𝑛
𝑜
, the body �̃�−𝑝𝐾

is defined by

�̃�−𝑝 (𝐾) = 𝑛�̃�−𝑝 (𝐾, �̃�𝑝𝐾) ,

𝑉 (�̃�
∗

𝑝
𝐾) = 𝜔𝑛.

(37)
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For 𝐾 ∈ K𝑛, there exists a unique point 𝑠(𝐾) in the
interior of𝐾, called the Santaló point of𝐾, such that (see [3])

𝑉 ((−𝑠 (𝐾) + 𝐾)
∗
)

= min {𝑉 ((−𝑥 + 𝐾)∗) : 𝑥 ∈ int𝐾} ,
(38)

or, for the unique 𝑠(𝐾) ∈ 𝐾, this is equivalent to

∫
𝑆𝑛−1

𝑢ℎ (−𝑠 (𝐾) + 𝐾, 𝑢)
−(𝑛+1) d𝑆 (𝑢) = 0. (39)

Let K𝑛
𝑠
denote the set of convex bodies having their

Santaló point at the origin in R𝑛. Thus, we have (see [3])

𝐾 ∈ K
𝑛

𝑠
iff 𝐾
∗
∈ K
𝑛

𝑐
. (40)

Let

T
𝑛
= {�̃� ∈ K

𝑛
: 𝑠 (𝐾) = 𝑜, 𝑉 (�̃�

∗

) = 𝜔𝑛} . (41)

The next result is an immediate consequence of
Theorem 5.

Theorem 6. For each 𝐾 ∈ S𝑛
𝑜
, there exists a unique body

�̃�𝑝𝐾 ∈ T𝑛 with �̃�−𝑝(𝐾) = 𝑛�̃�−𝑝(𝐾, �̃�𝑝𝐾).

The unique body �̃�𝑝𝐾 is called the dual 𝑝-Petty body of
𝐾.

ByTheorem 6 and the integral representation (14) of dual
harmonic 𝐿𝑝-mixed volume, we have the following integral
formula of �̃�−𝑝(𝐾).

Proposition 7. For each𝐾 ∈ S𝑛
𝑜
, there exists a unique convex

body �̃� = �̃�𝑝𝐾 ∈ T𝑛 with

�̃�−𝑝 (𝐾) = ∫
𝑆𝑛−1

𝜌
𝑛+𝑝

𝐾
(𝑝) 𝜌
−𝑝

�̃�
(𝑢) d𝑆 (𝑢) . (42)

4. The Dual 𝐿𝑝-Mixed Geominimal
Surface Area

Motivated by the definition of 𝐿𝑝-mixed geominimal surface
area of Zhu et al. (see [4]), we now define the dual 𝐿𝑝-mixed
geominimal surface area as follow: For each 𝐾𝑖 ∈ S𝑛

𝑜
, 𝑖 =

1, . . . , 𝑛, and 𝑝 ≥ 1, there exists a unique convex body (dual
𝑝-Petty body of𝐾𝑖) �̃�𝑖 = �̃�𝑝𝐾𝑖 ∈ T𝑛 (𝑖 = 1, . . . , 𝑛) with

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛) = ∫
𝑆𝑛−1

[𝜌
𝑛+𝑝

𝐾
1

(𝑝) 𝜌
−𝑝

�̃�
1

(𝑢) ⋅ ⋅ ⋅ 𝜌
𝑛+𝑝

𝐾
𝑛

(𝑢)

⋅ 𝜌
−𝑝

�̃�
𝑛

(𝑢)]
1/𝑛

d𝑆 (𝑢) .
(43)

�̃�−𝑝(𝐾1, . . . , 𝐾𝑛)will be called the dual𝐿𝑝-mixed geominimal
surface area of𝐾1, . . . , 𝐾𝑛 ∈ S𝑛

𝑜
.

Let 𝑔−𝑝(𝐾𝑖, 𝑢) = 𝜌
𝑛+𝑝

𝐾
𝑖

(𝑝)𝜌
−𝑝

�̃�
𝑖

(𝑢). Then, �̃�−𝑝(𝐾1, . . . , 𝐾𝑛)
can be written as follows:

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛)

= ∫
𝑆𝑛−1

[𝑔−𝑝 (𝐾1, 𝑢) ⋅ ⋅ ⋅ 𝑔−𝑝 (𝐾𝑛, 𝑢)]
1/𝑛

d𝑆 (𝑢) .
(44)

The following propositions will provide that the dual 𝐿𝑝-
mixed geominimal surface area is affine invariant.

Proposition 8. If 𝐾 ∈ S𝑛
𝑜
and every 𝜙 ∈ 𝐺𝐿(𝑛), then

�̃�−𝑝 (𝜙𝐾) =
det𝜙


(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝐾) . (45)

Proof. From definition (23) of dual 𝐿𝑝-geominimal surface
area and (18), for 𝜙 ∈ SL(𝑛), we have

�̃�−𝑝 (𝜙𝐾) = inf {𝑛�̃�−𝑝 (𝜙𝐾,𝑄) : 𝑄 ∈ K
𝑛

𝑜
, 𝑉 (𝑄

∗
)

= 𝜔𝑛} = inf {𝑛�̃�−𝑝 (𝐾, 𝜙
−1
𝑄) : 𝜙

−1
𝑄

∈ K
𝑛

𝑜
, 𝑉 ((𝜙

−1
𝑄)
∗

) = 𝑉 (𝜙
𝑡
𝑄
∗
) = 𝜔𝑛} = �̃�𝜙 (𝐾) .

(46)

On the other hand, for 𝜆 > 0, it follows from (23) that

�̃�−𝑝 (𝜆𝐾) = 𝜆
𝑛+𝑝

�̃�−𝑝 (𝐾) . (47)

Therefore, for every 𝜙 ∈ GL(𝑛), we have

�̃�−𝑝 (𝜙𝐾) =
det𝜙


(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝐾) . (48)

Proposition 9. If 𝐾 ∈ S𝑛
𝑜
, then, for 𝜙 ∈ 𝐺𝐿(𝑛),

det𝜙

1/𝑛

�̃�𝑝𝜙𝐾 = 𝜙�̃�𝑝𝐾. (49)

Proof. From the definition of �̃�𝑝 and Proposition 8, it follows
that
𝑛�̃�−𝑝 (𝐾, �̃�𝑝𝐾) = �̃�−𝑝 (𝐾)

=
det𝜙


−(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝜙𝐾)

=
det𝜙


−(𝑛+𝑝)/𝑛

𝑛�̃�−𝑝 (𝜙𝐾, �̃�𝑝𝜙𝐾) .

(50)

From the definition of �̃�𝑝, Proposition 9, and (15),

�̃�−𝑝 (𝐾, �̃�𝑝𝐾) =
det𝜙


−(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝜙𝐾, �̃�𝑝𝜙𝐾)

=
det𝜙


−1
�̃�−𝑝 (𝜙𝐾,

det𝜙

1/𝑛

�̃�𝑝𝜙𝐾)

= �̃�−𝑝 (𝐾, 𝜙
−1
(
det𝜙


1/𝑛

�̃�𝑝𝜙𝐾)) .

(51)

Namely, from Lemma 2, for each 𝜙 ∈ GL(𝑛),
det𝜙


1/𝑛

�̃�𝑝𝜙𝐾 = 𝜙�̃�𝑝𝐾. (52)

Proposition 10. If 𝑝 ≥ 1 and 𝐾1, . . . , 𝐾𝑛 ∈ S𝑛
𝑜
, then, for 𝜙 ∈

𝐺𝐿(𝑛),

�̃�−𝑝 (𝜙𝐾1, . . . , 𝜙𝐾𝑛)

=
det𝜙


(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛) .

(53)

In particular, if 𝜙 ∈ 𝑆𝐿(𝑛), then �̃�−𝑝(𝐾1, . . . , 𝐾𝑛) is affine
invariant; that is,

�̃�−𝑝 (𝜙𝐾1, . . . , 𝜙𝐾𝑛) = �̃�−𝑝 (𝐾1, . . . , 𝐾𝑛) . (54)
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Proof. Since𝐾 ∈ S𝑛
𝑜
, for 𝜙 ∈ GL(𝑛) and any 𝑢 ∈ 𝑆𝑛−1, we have

𝑔−𝑝 (𝜙𝐾, 𝑢) = 𝜌 (𝜙𝐾, 𝑢)
𝑛+𝑝

𝜌 (�̃�𝑝𝜙𝐾, 𝑢)
−𝑝

= 𝜌 (𝜙𝐾, 𝑢)
𝑛+𝑝

𝜌 (
det𝜙


−1/𝑛

𝜙�̃�𝑝𝐾, 𝑢)
−𝑝

=
det𝜙


𝑝/𝑛 

𝜙
−1
𝑢


−𝑛

𝜌𝐾 (V)
𝑛+𝑝

𝜌
�̃�
𝑝
𝐾
(V)−𝑝

=
det𝜙


𝑝/𝑛 

𝜙
−1
𝑢


−𝑛

𝑔−𝑝 (𝐾, V) ,

(55)

where V = (𝜙−1𝑢)/|𝜙−1𝑢| ∈ 𝑆𝑛−1. Therefore, for 𝜙 ∈ GL(𝑛), we
have

�̃�−𝑝 (𝜙𝐾1, . . . , 𝜙𝐾𝑛) =
det𝜙


𝑝/𝑛 

𝜙
−1
𝑢


−𝑛

∫
𝑆𝑛−1

[𝑔−𝑝 (𝐾1, 𝑢) ⋅ ⋅ ⋅ 𝑔−𝑝 (𝐾𝑛, 𝑢)]
1/𝑛

d𝑆(𝜙(𝜙
−1
𝑢

⋅
𝜙
−1
𝑢

𝜙
−1𝑢



))

=
det𝜙


(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛) .

(56)

The dual mixed volume �̃�(𝐾1, . . . , 𝐾𝑛) of sets 𝐾1, . . . ,
𝐾𝑛 ∈ S𝑛

𝑜
is defined by

�̃� (𝐾1, . . . , 𝐾𝑛) =
1

𝑛
∫
𝑆𝑛−1

𝜌𝐾
1

(𝑢) ⋅ ⋅ ⋅ 𝜌𝐾
𝑛

(𝑢) d𝑆 (𝑢) . (57)

The classical dual Alexandrov-Fenchel inequalities for
dual mixed volumes (cf. [27, 31, 32]) can be written as

�̃� (𝐾1, . . . , 𝐾𝑛)
𝑚

≤

𝑚−1

∏

𝑖=0

�̃� (𝐾1, . . . , 𝐾𝑛−𝑚, 𝐾𝑛−𝑖, . . . , 𝐾𝑛−𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

) ,

(58)

with equality if𝐾𝑛−𝑚+1, . . . , 𝐾𝑛 are dilates of each other. If𝑚 =

1, equality holds trivially.
In particular, taking 𝑚 = 𝑛 in the above inequality and

noticing that �̃�(𝐾) = 𝑉(𝐾), we have

�̃� (𝐾1, . . . , 𝐾𝑛)
𝑛
≤ 𝑉 (𝐾1) ⋅ ⋅ ⋅ 𝑉 (𝐾𝑛) , (59)

with equality if and only if 𝐾1, . . . , 𝐾𝑛 are dilates.
Take 𝐾1 = ⋅ ⋅ ⋅ = 𝐾𝑛−𝑖 = 𝐾, 𝐾𝑛−𝑖+1 = ⋅ ⋅ ⋅ = 𝐾𝑛 = 𝐵 in

�̃�(𝐾1, . . . , 𝐾𝑛), and

�̃� (𝐾, . . . , 𝐾⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑖

, 𝐵, . . . , 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

) fl �̃�𝑖 (𝐾) , (60)

where �̃�𝑖(𝐾) is called the 𝑖th dual quermassintegral of 𝐾 ∈

S𝑛
𝑜
.
The following inequalities are the analogous of dual

Alexandrov-Fenchel inequalities for dual 𝐿𝑝-mixed geomin-
imal surface area.

Theorem 11. If 𝑝 ≥ 1 and 𝐾1, . . . , 𝐾𝑛 ∈ S𝑛
𝑜
, then, for 1 ≤ 𝑚 ≤

𝑛,

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛)
𝑚

≤

𝑚−1

∏

𝑖=0

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛−𝑚, 𝐾𝑛−𝑖, . . . , 𝐾𝑛−𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

) ,

(61)

with equality if𝐾𝑛−𝑚+1, . . . , 𝐾𝑛 are dilates of each other. If𝑚 =

1, equality holds trivially.
In particular, if𝑚 = 𝑛 in the above inequality, then

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛)
𝑛
≤ �̃�−𝑝 (𝐾1) ⋅ ⋅ ⋅ �̃�−𝑝 (𝐾𝑛) , (62)

with equality if 𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛) are dilates of each other.

Proof. Let 𝑌0(𝑢) = [𝑔−𝑝(𝐾1, 𝑢) ⋅ ⋅ ⋅ 𝑔−𝑝(𝐾𝑛−𝑚, 𝑢)]
1/𝑛 and

𝑌𝑖+1(𝑢) = [𝑔−𝑝(𝐾𝑛−𝑖, 𝑢)]
1/𝑛 for 𝑖 = 0, . . . , 𝑚 − 1. By Hölder’s

inequality (cf. [30]), we have

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛)

= ∫
𝑆𝑛−1

[𝑔−𝑝 (𝐾1, 𝑢) ⋅ ⋅ ⋅ 𝑔−𝑝 (𝐾𝑛, 𝑢)]
1/𝑛

d𝑆 (𝑢)

= ∫
𝑆𝑛−1

𝑌0 (𝑢) 𝑌1 (𝑢) ⋅ ⋅ ⋅ 𝑌𝑚 (𝑢) d𝑆 (𝑢)

≤

𝑚−1

∏

𝑖=0

(𝑌0 (𝑢) 𝑌𝑖+1 (𝑢)
𝑚 d𝑆 (𝑢))1/𝑚

=

𝑚−1

∏

𝑖=0

�̃�
1/𝑚

−𝑝
(𝐾1, . . . , 𝐾𝑛−𝑚, 𝐾𝑛−𝑖, . . . , 𝐾𝑛−𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

) .

(63)

The equality in Hölder’s inequality holds if and only if
𝑌0(𝑢)𝑌

𝑚

𝑖+1
= 𝜆
𝑚

𝑖𝑗
𝑌0(𝑢)𝑌

𝑚

𝑗+1
for some 𝜆𝑖𝑗 > 0 and all 0 ≤

𝑖 ̸= 𝑗 ≤ 𝑚 − 1. This is equivalent to 𝜌
𝑛+𝑝

𝐾
𝑛−𝑖

(𝑢)𝜌
−𝑝

�̃�
𝑛−𝑖

(𝑢) =

𝜆
𝑛

𝑖𝑗
𝜌
𝑛+𝑝

𝐾
𝑛−𝑗

(𝑢)𝜌
−𝑝

�̃�
𝑛−𝑗

(𝑢). From Proposition 9, �̃�𝑝𝐾 = �̃�𝑝𝑐𝐾 for
constant 𝑐 > 0. Thus, the equality holds if 𝐾𝑛−𝑖 and 𝐾𝑛−𝑗 are
dilates of each other.

A lemma of the following type will be needed.

Lemma 12. If 𝐾 ∈ K𝑛
𝑐
and 𝑝 ≥ 1, then

�̃�−𝑝 (𝐾) ≤ 𝑛𝜔
(2𝑛−𝑝)/𝑛

𝑛
𝑉 (𝐾
∗
)
−(𝑛+𝑝)/𝑛

, (64)

with equality if and only if𝐾 is a ball centred at the origin.
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Proof. From definition (23) and inequality (19), we have

𝜔
−𝑝/𝑛

𝑛
𝑉 (𝐾
∗
)
(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝐾)

= inf {𝑛�̃�−𝑝 (𝐾, 𝑄)𝑉 (𝐾
∗
)
(𝑛+𝑝)/𝑛

𝑉 (𝑄
∗
)
−𝑝/𝑛

: 𝑄

∈ K
𝑛

𝑐
} ≤ inf {𝑛�̃�−𝑝 (𝐾, 𝑄) �̃�−𝑝 (𝐾

∗
, 𝑄
∗
) : 𝑄

∈ K
𝑛

𝑜
} .

(65)

Since𝐾 ∈ K𝑛
𝑜
, taking𝑄 = 𝐾, it follows from inequalities (65)

and (11) that

𝜔
−𝑝/𝑛

𝑛
𝑉 (𝐾
∗
)
(𝑛+𝑝)/𝑛

�̃�−𝑝 (𝐾)

≤ inf {𝑛𝑉 (𝐾)𝑉 (𝐾∗) : 𝐾 ∈ K
𝑛

𝑜
} ≤ 𝑛𝜔

2

𝑛
.

(66)

Namely,

�̃�−𝑝 (𝐾) ≤ 𝑛𝜔
(2𝑛−𝑝)/𝑛

𝑛
𝑉 (𝐾
∗
)
−(𝑛+𝑝)/𝑛

. (67)

By the equality condition of (19) and (65), we see that equality
holds in (64) if and only if𝐾 is a ball centred at the origin.

Now, we prove the affine isoperimetric inequalities for
dual 𝐿𝑝-mixed geominimal surface areas.

Theorem 13. Let 𝐾1, . . . , 𝐾𝑛 ∈ K𝑛
𝑐
and 𝑝 ≥ 1; then,

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛)

�̃�−𝑝 (𝐵, . . . , 𝐵)
≤ (

�̃� (𝐾
∗

1
, . . . , 𝐾

∗

𝑛
)

�̃� (𝐵, . . . , 𝐵)
)

−(𝑛+𝑝)/𝑛

, (68)

with equality if and only if 𝐾1, . . . , 𝐾𝑛 are balls centred at the
origin that are dilates of each other.

Proof. From (77) in Section 5, it follows that �̃�𝑝𝐵 = 𝐵. Then,
𝑔−𝑝(𝐵, 𝑢) = 1, �̃�−𝑝(𝐵) = 𝑛𝜔𝑛, and �̃�−𝑝(𝐵, . . . , 𝐵) = 𝑛𝜔𝑛. By
inequalities (62), (64), and (59), we have

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛)

�̃�−𝑝 (𝐵, . . . , 𝐵)
≤ (

𝑉 (𝐾
∗

1
)

𝑉 (𝐵)
⋅ ⋅ ⋅

𝑉 (𝐾
∗

𝑛
)

𝑉 (𝐵)
)

−(𝑛+𝑝)/𝑛

≤ (
�̃� (𝐾
∗

1
, . . . , 𝐾

∗

𝑛
)

�̃� (𝐵, . . . , 𝐵)
)

−(𝑛+𝑝)/𝑛

.

(69)

By the equality condition of (62), (64), and (59), we see that
equality holds in (68) if and only if 𝐾 is a ball centred at the
origin.

Corollary 14. Let 𝐾1, . . . , 𝐾𝑛 ∈ K𝑛
𝑐
and 𝑝 ≥ 1; then,

�̃�−𝑝 (𝐾1, . . . , 𝐾𝑛)

≤ 𝑛𝜔
(2𝑛+𝑝)/𝑛

𝑛
�̃� (𝐾
∗

1
, . . . , 𝐾

∗

𝑛
)
−(𝑛+𝑝)/𝑛

,

(70)

with equality if and only if 𝐾1, . . . , 𝐾𝑛 are balls centred at the
origin that are dilates of each other.

Take𝐾1 = ⋅ ⋅ ⋅ = 𝐾𝑛−𝑖 = 𝐾, 𝐾𝑛−𝑖+1 = ⋅ ⋅ ⋅ = 𝐾𝑛 = 𝐵 in (70),
and we write

�̃�−𝑝 (𝐾, . . . , 𝐾⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑖

, 𝐵, . . . , 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

) fl �̃�−𝑝,𝑖 (𝐾) . (71)

Corollary 15. Let𝐾 ∈ K𝑛
𝑐
and𝑝 ≥ 1; then, for 𝑖 = 0, 1, . . . , 𝑛−

1,

�̃�−𝑝,𝑖 (𝐾) ≤ 𝑛𝜔
(2𝑛+𝑝)/𝑛

𝑛
�̃�𝑖 (𝐾

∗
)
−(𝑛+𝑝)/𝑛

, (72)

with equality if and only if𝐾 is a ball centred at the origin.

5. The Dual 𝑖th 𝐿𝑝-Mixed Geominimal
Surface Area

This section is mainly dedicated to investigating the dual 𝑖th
𝐿𝑝-mixed geominimal surface area.

For 𝐾, 𝐿 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, and 𝑖 ∈ R, we define dual 𝑖th 𝐿𝑝-

mixed geominimal surface area, �̃�−𝑝(𝐾, 𝐿), of𝐾, 𝐿 as

�̃�−𝑝,𝑖 (𝐾, 𝐿)

= ∫
𝑆𝑛−1

𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑖)/𝑛

𝑔−𝑝 (𝐿, 𝑢)
𝑖/𝑛 d𝑆 (𝑢)

(73)

and write

�̃�−𝑝,𝑖 (𝐾, 𝐵) = �̃�−𝑝,𝑖 (𝐾) . (74)

ByTheorem 6, we have

�̃�−𝑝 (𝐵) = 𝑛�̃�−𝑝 (𝐵, �̃�𝑝𝐵) , (75)

and, obviously,

�̃�−𝑝 (𝐵) = 𝑛𝜔𝑛 = 𝑛�̃�−𝑝 (𝐵, 𝐵) . (76)

Thus, the above two equations and the uniqueness part of
Theorem 6 show that

�̃�𝑝𝐵 = 𝐵. (77)

Noticing that 𝑔−𝑝(𝐵, 𝑢) = 1 for 𝑢 ∈ 𝑆
𝑛−1, then

�̃�−𝑝,𝑖 (𝐾) = ∫
𝑆𝑛−1

𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑖)/𝑛 d𝑆 (𝑢) . (78)

By (44), (73), and (74), we have

�̃�−𝑝,0 (𝐾) = �̃�−𝑝 (𝐾) ,

�̃�−𝑝,𝑖 (𝐾,𝐾) = �̃�−𝑝 (𝐾) ,

(79)

�̃�−𝑝,0 (𝐾, 𝐿) = �̃�−𝑝 (𝐾) ,

�̃�−𝑝,𝑛 (𝐾, 𝐿) = �̃�−𝑝 (𝐿) .

(80)

The following cyclic inequality for the dual 𝑖th 𝐿𝑝-mixed
geominimal surface area will be established.
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Theorem 16. For 𝐾, 𝐿 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, 𝑖, 𝑗, 𝑘 ∈ R, and 𝑖 < 𝑗 < 𝑘,

we have

�̃�−𝑝,𝑖 (𝐾, 𝐿)
𝑘−𝑗

�̃�−𝑝,𝑘 (𝐾, 𝐿)
𝑗−𝑖

≥ �̃�−𝑝,𝑗 (𝐾, 𝐿)
𝑘−𝑖

, (81)

with equality if 𝐾 and 𝐿 are dilates of each other.

Proof. From definition (73) andHölder’s inequality, it follows
that, for 𝑝 ≥ 1,

�̃�−𝑝,𝑖 (𝐾, 𝐿)
(𝑘−𝑗)/(𝑘−𝑖)

�̃�−𝑝,𝑘 (𝐾, 𝐿)
(𝑗−𝑖)/(𝑘−𝑖)

= [∫
𝑆𝑛−1

𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑖)/𝑛

𝑔−𝑝 (𝐿, 𝑢)
𝑖/𝑛 d𝑆 (𝑢)]

(𝑘−𝑗)/(𝑘−𝑖)

⋅ [∫
𝑆𝑛−1

𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑘)/𝑛

𝑔−𝑝 (𝐿, 𝑢)
𝑘/𝑛 d𝑆 (𝑢)]

(𝑗−𝑖)/(𝑘−𝑖)

= {∫
𝑆𝑛−1

[𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑖)(𝑘−𝑗)/𝑛(𝑘−𝑖)

⋅ 𝑔−𝑝 (𝐿, 𝑢)
𝑖(𝑘−𝑗)/𝑛(𝑘−𝑖)

]
(𝑘−𝑖)/(𝑘−𝑗)

d𝑆 (𝑢)}
(𝑘−𝑗)/(𝑘−𝑖)

⋅ {∫
𝑆𝑛−1

[𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑘)(𝑗−𝑖)/𝑛(𝑘−𝑖)

⋅ 𝑔−𝑝 (𝐿, 𝑢)
𝑘(𝑗−𝑖)/𝑛(𝑘−𝑖)

]
(𝑘−𝑖)/(𝑗−𝑖)

d𝑆 (𝑢)}
(𝑗−𝑖)/(𝑘−𝑖)

≥ ∫
𝑆𝑛−1

𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑗)/𝑛(𝑘−𝑖)

𝑔−𝑝 (𝐿, 𝑢)
𝑗/𝑛 d𝑆 (𝑢)

= �̃�−𝑝,𝑗 (𝐾, 𝐿) .

(82)

That is,

�̃�−𝑝,𝑖 (𝐾, 𝐿)
𝑘−𝑗

�̃�−𝑝,𝑘 (𝐾, 𝐿)
𝑗−𝑖

≥ �̃�−𝑝,𝑗 (𝐾, 𝐿)
𝑘−𝑖

. (83)

We obtain inequality (81). By the condition of equality in
Hölder’s inequality, the equality holds in (81) if and only if,
for any 𝑢 ∈ 𝑆𝑛−1,

𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑖)/𝑛

𝑔−𝑝 (𝐿, 𝑢)
𝑖/𝑛

𝑔−𝑝 (𝐾, 𝑢)
(𝑛−𝑘)/𝑛

𝑔−𝑝 (𝐿, 𝑢)
𝑘/𝑛

(84)

is a constant; that is, 𝑔−𝑝(𝐾, 𝑢)/𝑔−𝑝(𝐿, 𝑢) is a constant for any
𝑢 ∈ 𝑆

𝑛−1. By the same argument in the proof of Theorem 11,
we conclude that equality holds if𝐾 and 𝐿 are dilates of each
other.

Taking 𝐿 = 𝐵 in Theorem 16 and using (74), we
immediately obtain the following.

Corollary 17. For 𝐾 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, 𝑖, 𝑗, 𝑘 ∈ R, and 𝑖 < 𝑗 < 𝑘,

then

�̃�−𝑝,𝑖 (𝐾)
𝑘−𝑗

�̃�−𝑝,𝑘 (𝐾)
𝑗−𝑖

≥ �̃�−𝑝,𝑗 (𝐾)
𝑘−𝑖

, (85)

with equality if 𝐾 is a ball centered at the origin.

Then, the followingMinkowski inequality for the dual 𝑖th
𝐿𝑝-mixed geominimal surface area will be obtained.

Theorem 18. For 𝐾, 𝐿 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, and 𝑖 ∈ R and then for

𝑖 < 0 or 𝑖 > 𝑛,

�̃�−𝑝,𝑖 (𝐾, 𝐿)
𝑛
≥ �̃�−𝑝 (𝐾)

𝑛−𝑖
�̃�−𝑝 (𝐿)

𝑖
, (86)

and for 0 < 𝑖 < 𝑛,

�̃�−𝑝,𝑖 (𝐾, 𝐿)
𝑛
≤ �̃�−𝑝 (𝐾)

𝑛−𝑖
�̃�−𝑝 (𝐿)

𝑖
. (87)

Each inequality holds as an equality if 𝐾 and 𝐿 are dilates of
each other. For 𝑖 = 0 or 𝑖 = 𝑛, (86) (or (87)) is identical.

Proof. (i) For 𝑖 < 0, let (𝑖, 𝑗, 𝑘) = (𝑖, 0, 𝑛) in Theorem 16; we
obtain

�̃�−𝑝,𝑖 (𝐾, 𝐿)
𝑛
�̃�−𝑝,𝑛 (𝐾, 𝐿)

−𝑖
≥ �̃�−𝑝,0 (𝐾, 𝐿)

𝑛−𝑖
, (88)

with equality if 𝐾 and 𝐿 are dilates of each other. From (80),
we can get

�̃�−𝑝,𝑖 (𝐾, 𝐿)
𝑛
≥ �̃�−𝑝 (𝐾)

𝑛−𝑖
�̃�−𝑝 (𝐿)

𝑖
, (89)

with equality if 𝐾 and 𝐿 are dilates of each other.
(ii) For 𝑖 > 𝑛, let (𝑖, 𝑗, 𝑘) = (0, 𝑛, 𝑖) in Theorem 16; we

obtain

�̃�−𝑝,0 (𝐾, 𝐿)
𝑖−𝑛

�̃�−𝑝,𝑖 (𝐾, 𝐿)
𝑛
≥ �̃�−𝑝,𝑛 (𝐾, 𝐿)

𝑖
, (90)

with equality if 𝐾 and 𝐿 are dilates of each other.
From (80), we can also get inequality (86).
(iii) For 0 < 𝑖 < 𝑛, let (𝑖, 𝑗, 𝑘) = (0, 𝑖, 𝑛) in Theorem 16; we

obtain

�̃�−𝑝,0 (𝐾, 𝐿)
𝑛−𝑖

�̃�−𝑝,𝑛 (𝐾, 𝐿)
𝑖
≥ �̃�−𝑝,𝑖 (𝐾, 𝐿)

𝑛
, (91)

with equality if 𝐾 and 𝐿 are dilates of each other.
From (80), we can get inequality (87).
(iv) For 𝑖 = 0 (or 𝑖 = 𝑛), by (80), one can see (86) (or (87))

is identical.

Let 𝐿 = 𝐵 in Theorem 18, �̃�−𝑝(𝐵) = 𝑛𝜔𝑛, and (74) will
lead to the following.

Corollary 19. For 𝐾 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, and 𝑖 ∈ R and then for

𝑖 < 0 or 𝑖 > 𝑛,

�̃�−𝑝,𝑖 (𝐾)
𝑛
≥ (𝑛𝜔𝑛)

𝑖
�̃�−𝑝 (𝐾)

𝑛−𝑖
, (92)

and for 0 < 𝑖 < 𝑛,

�̃�−𝑝,𝑖 (𝐾)
𝑛
≤ (𝑛𝜔𝑛)

𝑖
�̃�−𝑝 (𝐾)

𝑛−𝑖
. (93)

Each inequality holds as an equality if 𝐾 is a ball centered at
the origin. For 𝑖 = 0 or 𝑖 = 𝑛, (92) (or (93)) is identical.

Now we will give an extended form of inequality (24) as
follows.

Theorem 20. If 𝐾 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, 𝑖 ∈ R, and 𝑖 ≤ 0, then

�̃�−𝑝,𝑖 (𝐾) ≥ 𝑛𝜔
((𝑛−𝑝)𝑖−𝑛𝑝)/𝑛

2

𝑛
𝑉 (𝐾)

(𝑛+𝑝)(𝑛−𝑖)/𝑛
2

, (94)

with equality if and only if𝐾 is an ellipsoid centred at the origin.
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Proof. By inequalities (92) and (24), we can immediately
obtain inequality (94).

As the extension of inequality (25), we obtain an analogue
of Blaschke-Santaló inequality for the dual 𝑖th 𝐿𝑝-mixed
geominimal surface area.

Theorem 21. If 𝐾, 𝐿 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, 𝑖 ∈ R, and 0 ≤ 𝑖 ≤ 𝑛, then

�̃�−𝑝,𝑖 (𝐾, 𝐿) �̃�−𝑝,𝑖 (𝐾
∗
, 𝐿
∗
) ≤ (𝑛𝜔𝑛)

2
, (95)

and equality holds for 0 < 𝑖 < 𝑛 if𝐾 and 𝐿 are dilated ellipsoids
of each other centered at the origin. The inequality holds as an
equality for 𝑖 = 0 (or 𝑖 = 𝑛) if 𝐾 (or 𝐿) is an ellipsoid centered
at the origin.

Proof. Given (87) together with (25), it follows that

�̃�−𝑝,𝑖 (𝐾, 𝐿) �̃�−𝑝,𝑖 (𝐾
∗
, 𝐿
∗
)

≤ (�̃�−𝑝 (𝐾) �̃�−𝑝 (𝐾
∗
))
(𝑛−𝑖)/𝑛

(�̃�−𝑝 (𝐿) �̃�−𝑝 (𝐿
∗
))
𝑖/𝑛

≤ (𝑛𝜔𝑛)
2(𝑛−𝑖)/𝑛

(𝑛𝜔𝑛)
2𝑖/𝑛

= (𝑛𝜔𝑛)
2
.

(96)

The equality holds for 0 < 𝑖 < 𝑛 if 𝐾 and 𝐿 are dilated
ellipsoids of each other. The inequality holds as an equality
for 𝑖 = 0 (or 𝑖 = 𝑛) if 𝐾 (or 𝐿) is an ellipsoid.

Recall Ye’s isoperimetric inequality (see [33]): If 𝐾 ∈ S𝑛
𝑜
,

𝑝 ∈ (0,∞)∪ (−∞, −𝑛), and the dual 𝐿𝑝-surface area �̃�𝑝(𝐾) =
𝑛�̃�−𝑝(𝐾, 𝐵), then

�̃�𝑝 (𝐾)

�̃�𝑝 (𝐵)
≥ (

𝑉 (𝐾)

𝑉 (𝐵)
)

(𝑛+𝑝)/𝑛

. (97)

On the other hand, if 𝑝 ∈ (−𝑛, 0), then

�̃�𝑝 (𝐾)

�̃�𝑝 (𝐵)
≤ (

𝑉 (𝐾)

𝑉 (𝐵)
)

(𝑛+𝑝)/𝑛

. (98)

The equality in every inequality holds if and only if 𝐾 is an
origin-symmetric Euclidean ball.

We now establish generalized isoperimetric inequalities
for �̃�−𝑝,𝑖(𝐾).

Theorem 22. If 𝐾 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, and 𝑖 ∈ R, then we have the

following.
(i) If 𝑖 ≤ 0,

�̃�−𝑝,𝑖 (𝐾)

�̃�−𝑝,𝑖 (𝐵)
≥ (

𝑉 (𝐾)

𝑉 (𝐵)
)

(𝑛+𝑝)(𝑛−𝑖)/𝑛
2

, (99)

with equality if 𝐾 is a ball centered at the origin.
(ii) If 𝑖 ≥ 𝑛,

�̃�−𝑝,𝑖 (𝐾)

�̃�−𝑝,𝑖 (𝐵)
≤ (

𝑉 (𝐾)

𝑉 (𝐵)
)

(𝑛+𝑝)(𝑛−𝑖)/𝑛
2

, (100)

with equality if 𝐾 is a ball centered at the origin.

Proof. (i) For 𝑖 = 0, by (79) and (24), it follows that

�̃�−𝑝 (𝐾)

�̃�−𝑝 (𝐵)
≥ (

𝑉 (𝐾)

𝑉 (𝐵)
)

(𝑛+𝑝)/𝑛

. (101)

This is Wang’s inequality (24).
For 𝑖 = 𝑛, by (74), (79), and (80), the equality holds

trivially in (100).
For 𝑖 < 0, since �̃�−𝑝,𝑖(𝐵) = �̃�−𝑝(𝐵) = 𝑛𝜔𝑛, by (24), (92),

and (94), we have

�̃�−𝑝,𝑖 (𝐾)

�̃�−𝑝,𝑖 (𝐵)
≥ (

�̃�−𝑝 (𝐾)

�̃�−𝑝 (𝐵)
)

(𝑛−𝑖)/𝑛

. (102)

Hence, for 𝑖 < 0 and 𝑝 ≥ 1, the 𝐿𝑝-affine isoperimetric
inequalities (92) and (24) imply that

�̃�−𝑝,𝑖 (𝐾)

�̃�−𝑝,𝑖 (𝐵)
≥ (

�̃�−𝑝 (𝐾)

�̃�−𝑝 (𝐵)
)

(𝑛−𝑖)/𝑛

≥ (
𝑉 (𝐾)

𝑉 (𝐵)
)

(𝑛+𝑝)(𝑛−𝑖)/𝑛
2

,

(103)

with equality if 𝐾 is a ball centered at the origin.
(ii) For 𝑖 = 𝑛, by (74), (79), and (80), the equality holds

trivially in (100). We now prove the case 𝑖 > 𝑛. Inequality (93)
and the definition of dual 𝐿𝑝-geominimal surface area give
the following:

�̃�−𝑝,𝑖 (𝐾)

�̃�−𝑝,𝑖 (𝐵)
≤ (

�̃�−𝑝 (𝐾)

�̃�−𝑝 (𝐵)
)

(𝑛−𝑖)/𝑛

≤ (
𝑉 (𝐾)

𝑉 (𝐵)
)

(𝑛+𝑝)(𝑛−𝑖)/𝑛
2

,

(104)

with equality if 𝐾 is a ball centered at the origin.

The following results are interesting.

Theorem 23. Let 𝐾 ∈ S𝑛
𝑜
, 𝑝 ≥ 1, 𝑖 ∈ R, and 0 ≤ 𝑖 ≤ 𝑛; then,

�̃�−𝑝,𝑖 (𝐾)

�̃�−𝑝,𝑖 (𝐵)
≤ (

�̃�𝑝 (𝐾)

�̃�𝑝 (𝐵)
)

(𝑛−𝑖)/𝑛

, (105)

with equality if 𝐾 is a ball centered at the origin.

Proof. Inequality (93) and the definition of dual 𝐿𝑝-
geominimal surface area give the following:

(
�̃�−𝑝,𝑖 (𝐾)

�̃�−𝑝,𝑖 (𝐵)
)

𝑛

≤ (
�̃�−𝑝 (𝐾)

𝑛𝜔𝑛
)

𝑛−𝑖

≤ (
𝑛Ṽ−𝑝 (𝐾, 𝐵)
𝑛�̃�−𝑝 (𝐵, 𝐵)

)

𝑛−𝑖

= (
�̃�𝑝 (𝐾)

�̃�𝑝 (𝐵)
)

𝑛−𝑖

,

(106)

with equality if 𝐾 is a ball centered at the origin.
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I introduce some new classes ofI-convergent double sequences defined by a sequence of moduli over 𝑛-normed space. Study of
their algebraic and topological properties and some inclusion relations has also been done.

1. Introduction

The notion ofI-convergence was introduced by Kostyrko et
al. in [1]. It is known thatI-convergence is generalization of
the statistical convergence which was introduced by Fast [2].
It was further studied by Demirci [3], Das et al. [4], Šalát et
al. [5], and many others.

For a nonempty set 𝑋, the family of sets I ⊂ 2
𝑋, the

power set of 𝑋, is said to be an ideal if

(1) 𝜙 ∈ I;

(2) I is additive; that is, 𝐴, 𝐵 ∈ I ⇒ 𝐴 ∪ 𝐵 ∈ I;

(3) I is hereditary; that is, 𝐴 ∈ I, 𝐵 ⊆ 𝐴 ⇒ 𝐵 ∈ I.

A nontrivial idealI is called admissible if {{𝑥} : 𝑥 ∈ 𝑋} ⊆

I.I is maximal if there cannot exist any nontrivial ideal 𝐽 ̸=

I containingI as a subset.
Let N, R, and C denote the set of natural, real, and com-

plex numbers, respectively. A double sequence of complex
numbers is defined as a function from N ×N to C. A number
𝑎 ∈ C is called a limit of a double sequence (𝑥

𝑖𝑗
) if for

every 𝜖 > 0 there exists some 𝑁 = 𝑁(𝜖) ∈ N such that
|𝑥
𝑖𝑗

− 𝑎| < 𝜖, ∀𝑖, 𝑗 ≥ 𝑁. The set of all double sequences is
denoted by

2
𝜔. Any subset of the

2
𝜔 is called double sequence

space. A sequence (𝑥
𝑖𝑗

) ∈
2
𝜔 is said to beI-convergent to a

number𝐿 if, for every 𝜖 > 0, {(𝑖, 𝑗) ∈ N×N : |𝑥
𝑖𝑗

−𝐿| ≥ 𝜖} ∈ I.
In this case we writeI − lim𝑥

𝑖𝑗
= 𝐿.

A double sequence space 𝐸 is said to be solid or normal if
(𝑥
𝑖𝑗

) ∈ 𝐸 implies (𝛼
𝑖𝑗

𝑥
𝑖𝑗

) ∈ 𝐸 for all sequences of scalars (𝛼
𝑖𝑗

)

with |𝛼
𝑖𝑗

| < 1 for all 𝑖, 𝑗 ∈ N. Formore details please see [6–8].

Example 1. LetI
2
(𝑃) be the class of all subsets ofN×N such

that 𝐷 ∈ I
2
(𝑃) implies that there exists 𝑛

0
, 𝑘
0

∈ 𝑁 such that
𝐷 ⊂ N × N | {(𝑛, 𝑘) ∈ N × N : 𝑛 ≥ 𝑛

0
, 𝑘 ≥ 𝑘

0
}.

ThenI
2
(𝑃) is an ideal of N × N in the usual Pringsheim

sense of convergence of double sequences. If I
2
(𝑃) is

replaced byI(𝑓), the class of finite subsets of N, then we get
the usual regular convergence of double sequences.

The theory of 2-normed spaces was first introduced by
Gähler [9] in 1964. Later on it was extended to 𝑛-normed
spaces by Misiak [10]. Since then many mathematicians have
worked in this field and obtainedmany interesting results; for
instance see Gunawan [11, 12], Gunawan and Mashadi [13],
Mursaleen and Mohiuddine [14], Şahiner et al. [15, 16], and
Yamancı and Gürdal [17]. Let 𝑛 ∈ N and let 𝑋

𝑛 be a linear
metric space over the field K of real or complex numbers
of dimension 𝑑, where 𝑑 ≥ 𝑛 ≥ 2. A real valued function
‖⋅, . . . , ⋅‖ on 𝑋

𝑛 satisfying the following four conditions:

(1) ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ = 0 if and only if 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
are

linearly dependent;
(2) ‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ is invariant under permutation;

(3) ‖𝛼𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ = |𝛼|‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ for any 𝛼 ∈ K;

(4) ‖𝑥 + 𝑥

, 𝑥
2
, . . . , 𝑥

𝑛
‖ ≤ ‖𝑥, 𝑥

2
, . . . , 𝑥

𝑛
‖ + ‖𝑥


, 𝑥
2
, . . . , 𝑥

𝑛
‖
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is called an 𝑛-norm on 𝑋 and the pair (𝑋, ‖⋅, . . . , ⋅‖) is called
an 𝑛-normed space over the field K.

Example 2. If we take 𝑋 = R𝑛, equipped with Euclidean
𝑛-norm ‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖
𝐸

= Vol(𝑛 − dimparallelopiped)

spanned by vectors (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), then the 𝑛-norm may be

given by the formula ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖
𝐸

= |𝑥
𝑖𝑗

|, where (𝑥
𝑖𝑗

) =

(𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑛

) for 𝑖 = 1, 2, 3, . . . , 𝑛.

The standard 𝑛-norm on 𝑋 is defined as





𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛




𝐸

=



















⟨𝑥
1
, 𝑥
1
⟩ ⋅ ⋅ ⋅ ⟨𝑥

1
, 𝑥
𝑛
⟩

.

.

. ⋅ ⋅ ⋅

.

.

.

⟨𝑥
1
, 𝑥
1
⟩ ⋅ ⋅ ⋅ ⟨𝑥

1
, 𝑥
1
⟩



















1/2

, (1)

where ⟨⋅, ⋅⟩ denotes the inner product on 𝑋. If 𝑋 = R𝑛,
then this 𝑛-norm is exactly the same as the Euclidean 𝑛-norm
‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖
𝐸
mentioned earlier. For 𝑛 = 1 this 𝑛-norm is

the usual norm ‖𝑥‖ = ⟨𝑥
1
, 𝑥
1
⟩
1/2.

A sequence (𝑥
𝑘
) in an 𝑛-normed space (𝑋, ‖⋅, . . . , ⋅‖) is

said to converge to some 𝐿 ∈ K if

lim
𝑘→∞





𝑥
𝑘

− 𝐿, 𝑧
1
, . . . , 𝑧

𝑛−1






= 0

for every 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋.

(2)

A sequence (𝑥
𝑘
) in an 𝑛-normed space (𝑋, ‖⋅, . . . , ⋅‖) is

said to be Cauchy if

lim
𝑘,𝑝→∞






𝑥
𝑘

− 𝑥
𝑝

, 𝑧
1
, . . . , 𝑧

𝑛−1







= 0

for every 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋.

(3)

If every Cauchy sequence in 𝑋 converges to some 𝐿 ∈ 𝑋,
then 𝑋 is said to be complete with respect to the 𝑛-norm. Any
complete 𝑛- normed space is said to be an 𝑛-Banach space.

The concept of modulus function was introduced by
Nakano [18] in the year 1953. It was further studied by [7, 8,
19–21] andmanymore. It is defined as a function𝑓: [0, ∞) →

[0, ∞) satisfying the following conditions:

(1) 𝑓(𝑡) = 0 if and only if 𝑡 = 0,
(2) 𝑓(𝑡 + 𝑢) ≤ 𝑓(𝑡) + 𝑓(𝑢) for all 𝑡, 𝑢 ≥ 0,
(3) 𝑓 is increasing,
(4) 𝑓 is continuous from the right at zero.

Ruckle [22] used the idea of a modulus function 𝑓 to
construct the sequence space

𝑋 (𝑓) = {𝑥 = (𝑥
𝑘
) :

∞

∑

𝑘=1

𝑓 (




𝑥
𝑘





) < ∞} . (4)

The space 𝑋(𝑓) is closely related to the space 𝑙
1
which is an

𝑋(𝑓) space with 𝑓(𝑥) = 𝑥 for all real 𝑥 ≥ 0. Thus Ruckle
[23, 24] proved that, for any modulus 𝑓,

𝑋 (𝑓) ⊂ 𝑙
1
,

𝑋 (𝑓)
𝛼

= 𝑙
∞

.

(5)

The space 𝑋(𝑓) is a Banach space with respect to the norm

‖𝑥‖ =

∞

∑

𝑘=1

𝑓 (




𝑥
𝑘





) < ∞. (6)

After then Kolk [25, 26] gave an extension of 𝑋(𝑓) by
considering a sequence of modulus functions called the
sequence of moduli 𝐹 = (𝑓

𝑘
) and defined the sequence space:

𝑋 (𝐹) = {𝑥 = (𝑥
𝑘
) : (𝑓
𝑘

(




𝑥
𝑘





)) ∈ 𝑋} . (7)

From the above four properties of modulus function it can be
clearly seen that𝑓must be continuous everywhere on [0, ∞).
For a sequence of moduli, we have further two properties:

(5) sup
𝑘
𝑓
𝑘
(𝑡) < ∞ for all 𝑡 > 0;

(6) lim
𝑡→0

𝑓
𝑘
(𝑡) = 0 uniformly in 𝑋 and for 𝑘 ≥ 1.

Example 3. Let 𝑓 be a function from [0, ∞) to [0, ∞). If we
take 𝑓(𝑥) = 𝑥/(𝑥 + 1), then the function 𝑓 is a bounded
modulus function and if we take 𝑓(𝑥) = 𝑥

𝑝
, 0 < 𝑝 < 1,

then 𝑓 is an unbounded modulus function.

By a lacunary sequence 𝜃 = (𝑘
𝑟
); 𝑟 = 0, 1, 2, . . ., where

𝑘
0

= 0, we mean an increasing sequence of nonnegative
integers ℎ

𝑟
= (𝑘
𝑟

− 𝑘
𝑟−1

) → ∞ as (𝑟 → ∞). The intervals
determined by 𝜃 are denoted by 𝐼

𝑟
= (𝑘
𝑟

− 1, 𝑘
𝑟
] and the

ratio 𝑘
𝑟
/(𝑘
𝑟

− 1) will be denoted by 𝑞
𝑟
. The space of lacunary

strongly convergent sequence𝑁
𝜃
was defined by Freedman et

al. [27] as follows:

𝑁
𝜃

=

{

{

{

𝑥 = (𝑥
𝑘
) : lim
𝑟→∞

1

ℎ
𝑟

∑

𝑘∈𝐼
𝑟





𝑥
𝑘

− 𝐿





= 0, for some 𝐿

}

}

}

.

(8)

The double lacunary sequence was defined by Savaş and
Patterson [28]. A double sequence 𝜃

𝑟;𝑠
= {(𝑘

𝑟
, 𝑙
𝑠
)} is called

double lacunary if there exist two increasing sequences of
integers such that

𝑘
0

= 0,

ℎ
𝑟

= 𝑘
𝑟

− 𝑘
𝑟−1

→ ∞ as 𝑟 → ∞,

𝑙
0

= 0,

ℎ
𝑠

= 𝑙
𝑠

− 𝑙
𝑠−1

→ ∞ as 𝑠 → ∞.

(9)

The following interval is determined by 𝜃:

𝐼
𝑟,𝑠

= {(𝑘, 𝑙) : 𝑘
𝑟−1

< 𝑘 < 𝑘
𝑟
, 𝑙
𝑠−1

< 𝑙 < 𝑙
𝑠
} . (10)

The space of double lacunary strongly convergent sequence is
defined as follows:

𝑁
𝜃
𝑟,𝑠

=

{

{

{

𝑥 = (𝑥
𝑘𝑙

) : lim
𝑟,𝑠

1

ℎ
𝑟,𝑠

∑

(𝑘,𝑙)∈𝐼
𝑟,𝑠





𝑥
𝑘𝑙

− 𝐿





= 0, for some 𝐿

}

}

}

.

(11)
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2. New Classes of Double Sequences

Now, we will define the new classes of double sequences.
Let I be an admissible ideal, let 𝐹 = (𝑓

𝑖𝑗
) be a sequence

of moduli, let (𝑋, ‖⋅, . . . , ⋅‖) be an 𝑛-normed space, let 𝑝 =

(𝑝
𝑖𝑗

) be a sequence of positive real numbers, let 𝑢 = (𝑢
𝑖𝑗

) be
a sequence of strictly positive real numbers, and let

2
𝑤(𝑛 −

𝑋) be the space of all double sequences defined over the 𝑛-
normed space (𝑋, ‖⋅, . . . , ⋅‖); then for some 𝐿 ∈ K and every
𝑧
𝑖

∈ 𝑋, we define

(i) [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

𝑢
𝑖𝑗

[𝐹(‖𝑥 −

𝐿, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
‖)]
𝑝
𝑖𝑗

≥ 𝜖] ∈ I},

(ii) [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

𝑢
𝑖𝑗

[𝐹(‖𝑥
𝑖𝑗

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
‖)]
𝑝
𝑖𝑗

≥ 𝜖] ∈ I}.

Case 1. If 𝐹(𝑥) = 𝑥, then we get

(i) [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

𝑢
𝑖𝑗

(‖𝑥
𝑖𝑗

−

𝐿, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
‖)
𝑝
𝑖𝑗

≥ 𝜖] ∈ I},

(ii) [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

𝑢
𝑖𝑗

(‖𝑥
𝑖𝑗

, 𝑧
1
,

𝑧
2
, . . . , 𝑧

𝑛−1
‖)
𝑝
𝑖𝑗

≥ 𝜖] ∈ I}.

Case 2. If 𝑝 = (𝑝
𝑖𝑗

) = 1, then we get

(i) [
2
𝑁
𝜃
, 𝐹, 𝑢, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

𝑢
𝑖𝑗

[𝐹(‖𝑥
𝑖𝑗

−

𝐿, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
‖)] ≥ 𝜖] ∈ I},

(ii) [
2
𝑁
𝜃
, 𝐹, 𝑢, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

𝑢
𝑖𝑗

[𝐹(‖𝑥
𝑖𝑗

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
‖)] ≥ 𝜖] ∈ I}.

Case 3. If 𝑝 = (𝑝
𝑖𝑗

) = 1 and 𝑢 = (𝑢
𝑖𝑗

) = 1, then we get

(i) [
2
𝑁
𝜃
, 𝐹, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

[𝐹(‖𝑥
𝑖𝑗

− 𝐿, 𝑧
1
,

𝑧
2
, . . . , 𝑧

𝑛−1
‖)] ≥ 𝜖] ∈ I},

(ii) [
2
𝑁
𝜃
, 𝐹, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0

= {𝑥 = (𝑥
𝑖𝑗

) ∈
2
𝑤(𝑛 −

𝑋) : [(𝑟, 𝑠) ∈ N × N : (1/ℎ
𝑟,𝑠

) ∑
(𝑖,𝑗)∈𝐼

𝑟,𝑠

[𝐹(‖𝑥
𝑖𝑗

, 𝑧
1
, 𝑧
2
,

. . . , 𝑧
𝑛−1

‖)] ≥ 𝜖] ∈ I}.

The following inequality will be used throughout the paper. If
0 ≤ 𝑝
𝑖𝑗

≤ sup𝑝
𝑖𝑗

= 𝐻, 𝐾 = max(1, 2
𝐻−1

), then we have






𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗







𝑝
𝑖𝑗

≤ 𝐾 {






𝑎
𝑖𝑗







𝑝
𝑖𝑗

+






𝑏
𝑖𝑗







𝑝
𝑖𝑗

} (12)

for all 𝑎
𝑖𝑗

, 𝑏
𝑖𝑗

∈ C and (𝑖, 𝑗) ∈ N×N. Also |𝑎|
𝑝
𝑖𝑗

≤ max (1, |𝑎|
𝐻

)

for all 𝑎 ∈ C.

3. Main Results

Theorem 4. The sets [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I and

[
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0
are linear spaces over the field of

complex numbers C.

Proof. Let 𝑥 = (𝑥
𝑖𝑗

), 𝑦 = (𝑦
𝑖𝑗

) ∈ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I,

𝛼, 𝛽 ∈ C, and 𝐶 = max {1, (|𝛼|/(|𝛼| + |𝛽|))
𝐻

, (|𝛽|/(|𝛼| +

|𝛽|))
𝐻

}; then for every 𝑧
𝑖

∈ 𝑋 we can write

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (






𝑥
𝑖𝑗

− 𝐿
1
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1






)]

𝑝
𝑖𝑗

≤

𝜖

2𝐾𝐶

,

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (






𝑦
𝑖𝑗

− 𝐿
2
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1






)]

𝑝
𝑖𝑗

≤

𝜖

2𝐾𝐶

.

(13)

By the use of inequality (12), we have the following inequality:

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (






((𝛼𝑥
𝑖𝑗

+ 𝛽𝑦
𝑖𝑗

) − (𝛼𝐿
1

+ 𝛽𝐿
2
)) , 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1






)]

𝑝
𝑖𝑗

≤ 𝐾𝐶 (

𝜖

2𝐾𝐶

) < 𝜖. (14)

This inequality says to us that the inclusion

[

[

(𝑟, 𝑠) ∈ N × N :

1

ℎ
𝑟,𝑠

⋅ ∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

[𝐹 (




((𝛼𝑥 + 𝛽𝑦) − (𝛼𝐿

1
+ 𝛽𝐿
2
)) , 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

≥ 𝜖
]

]

⊆
[

[

(𝑟, 𝑠) ∈ N × N : 𝐾𝐶

1

ℎ
𝑟,𝑠

⋅ ∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (




(𝑥 − 𝐿

1
) , 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≥ 𝜖
]

]

∪
[

[

(𝑟, 𝑠) ∈ N × N : 𝐾𝐶

1

ℎ
𝑟,𝑠

⋅ ∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (




(𝑦 − 𝐿

2
) , 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≥ 𝜖
]

]

(15)
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holds. From here, since the right side belongs to I, the left
side also belongs toI. This completes the proof.

Lemma 5. Let 𝑓 be a modulus function and let 0 < 𝛿 < 1.
Then for each 𝑥 > 𝛿, one has

𝑓 (𝑥) ≤ 2𝑓 (1) 𝛿
−1

𝑥. (16)

Theorem 6. Let 𝐹 = (𝑓
𝑖𝑗

) be a sequence of moduli and 0 ≤

inf
𝑖,𝑗

𝑝
𝑖𝑗

= ℎ ≤ sup
𝑖,𝑗

𝑝
𝑖𝑗

= 𝐻 < ∞. Then the following
statements hold:

(i) [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

⊂ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖,

𝑋
𝑠
]
I,

(ii) [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0

⊂ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖,

𝑋
𝑠
]
I
0
.

Proof. For some 𝛿 > 0, choose 𝛿
0

> 0 such that
max {𝛿

ℎ

0
, 𝛿
𝐻

0
} < 𝛿. By the continuity of 𝐹 = (𝑓

𝑖𝑗
) for all

(𝑖, 𝑗) ∈ N × N, we can choose some 𝜖 ∈ (0, 1) such that for
every 𝑡 with 0 < 𝑡 ≤ 𝜖 we have

𝐹 (𝑡) < 𝛿
0

∀ (𝑖, 𝑗) ∈ N × N. (17)

Let 𝑥 = (𝑥
𝑖𝑗

) ∈ [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I; then for some 𝐿 >

0, 𝛿 > 0 and for every 𝑧
𝑖

∈ 𝑋, 𝑖 = 1, 2, 3, . . . , (𝑛 − 1), we have

𝐴 =

{

{

{

(𝑟, 𝑠) ∈ N

× N :

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≥ 𝜖
𝐻

}

}

}

∈ I.

(18)

Therefore for (𝑟, 𝑠) ∉ 𝐴, we have

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

< 𝜖
𝐻

,

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≤ 𝜖.

(19)

So, by inequality (17), we can write

𝐹
[

[

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)
]

]

𝑝
𝑖𝑗

≤ 𝛿
0
,

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

[𝐹 (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

< max {𝛿
ℎ

0
, 𝛿
𝐻

0
} < 𝛿,

{

{

{

(𝑟, 𝑠) ∈ N

× N :

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≥ 𝛿

}

}

}

∈ I.

(20)

This implies that 𝑥 ∈ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I. Hence

[
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

⊂ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

. The
inclusion is strict as for the reverse inclusion we need the
condition given in the next theorem. The other part can be
proved similarly.

Theorem 7. Let 𝐹 be a sequence of moduli. If
lim
𝑡
sup (𝑓

𝑖𝑗
(𝑡)/𝑡) = 𝐴 > 0 for all (𝑖, 𝑗) ∈ N × N, then

(i) [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

= [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖,

𝑋
𝑠
]
I,

(ii) [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0

= [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖,

𝑋
𝑠
]
I
0

.

Proof. (i) To prove [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

= [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝,

‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I, it is sufficient to show that [

2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝,

‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I

⊂ [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I. Let 𝑥 ∈ [

2
𝑁
𝜃
, 𝐹,

𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I; then, by the definition, we get

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

< 𝛿. (21)

By the given condition lim
𝑡
sup (𝑓

𝑖𝑗
(𝑡)/𝑡) = 𝐴 > 0 for all

(𝑖, 𝑗) ∈ N × N, we have 𝑓
𝑖𝑗

(𝑡) ≥ 𝐴𝑡 for all (𝑖, 𝑗); that is,

𝐹 (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)

≥ 𝐴 (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





) ,

(22)

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≥ 𝐴
𝐻 1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)
𝑝
𝑖𝑗

.

(23)

From inequalities (21) and (23), we get

𝛿 >

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹 (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≥ 𝐴
𝐻 1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)
𝑝
𝑖𝑗

(24)

which consequently implies that

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)
𝑝
𝑖𝑗

< 𝛿. (25)
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That is,

{

{

{

(𝑟, 𝑠) ∈ N

× N :

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]
𝑝
𝑖𝑗

≥ 𝛿

}

}

}

∈ I.

(26)

This implies that 𝑥 ∈ [
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I.

[
2
𝑁
𝜃
, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋

𝑠
]
I

⊆ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋

𝑠
]
I

.

(27)

Hence, from the previous theorem and inclusion (27), we
get the required result.The other part can be proved similarly.

Corollary 8. Let 𝐹


= (𝑓


𝑖𝑗
) and 𝐹


= (𝑓


𝑖𝑗
) be sequences of

moduli. If lim
𝑡
sup (𝑓



𝑖𝑗
(𝑡)/𝑓


𝑖𝑗
(𝑡)) < ∞ for all (𝑖, 𝑗) ∈ N × N,

then

(i) [
2
𝑁
𝜃
, 𝐹

, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I

= [
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . ,

⋅‖, 𝑋
𝑠
]
I,

(ii) [
2
𝑁
𝜃
, 𝐹

, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑠
]
I
0

= [
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . ,

⋅‖, 𝑋
𝑠
]
I
0
.

Theorem 9. Let (𝑋, ‖⋅, . . . , ⋅‖
𝑋
𝑆

) and (𝑋, ‖⋅, . . . , ⋅‖
𝑋
𝐸

) be the
standard and the Euclidean 𝑛-norm spaces, respectively. Then

[
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋

𝑆
]
I

∩ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋

𝐸
]
I

⊂ [
2
𝑁
𝜃
, 𝐹, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖𝑋

𝑆

+ ‖⋅, . . . , ⋅‖𝑋
𝐸

]

I
.

(28)

Proof. The proof of this result is easy, so it is omitted.

Theorem 10. Let 𝐹


= (𝑓


𝑖𝑗
) and 𝐹


= (𝑓


𝑖𝑗
) be sequences of

moduli; then

(i) [
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I

⊆ [
2
𝑁
𝜃
, 𝐹


∘ 𝐹


, 𝑢, 𝑝,

‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I,

(ii) [
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I
0

⊆ [
2
𝑁
𝜃
, 𝐹


∘ 𝐹


, 𝑢, 𝑝,

‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I
0
,

(iii) [
2
𝑁
𝜃
, 𝐹

, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑆
]
I

∩[
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖,
𝑋
𝑆
]
I

⊆ [
2
𝑁
𝜃
, 𝐹


+ 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋
𝑆
]
I,

(iv) [
2
𝑁
𝜃
, 𝐹

, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋

𝑆
]
I
0

∩[
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖,
𝑋
𝑆
]
I
0

⊆ [
2
𝑁
𝜃
, 𝐹


+ 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋
𝑆
]
I
0

.

Proof. (i) For some 𝜖 > 0, we choose 𝜖
0

> 0 such that
max 𝜖

𝐻

0
< 𝜖. Now as 𝐹

 is a sequence of modulus functions

which are always continuous, we can choose 𝛿 ∈ (0, 1) such
that, for every 𝑡 ∈ (0, 𝛿), we get 𝐹


(𝑡) < 𝜖

0
:

𝑥 = (𝑥
𝑖𝑗

) ∈ [
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋
𝑠
]

I
. (29)

Then, by the definition, we have

𝐴 =

{

{

{

(𝑟, 𝑠) ∈ N × N :

1

ℎ
𝑟,𝑠

⋅ ∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

≥ 𝛿
𝐻

}

}

}

∈ I.

(30)

Thus, for (𝑟, 𝑠) ∉ 𝐴, we get

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

< 𝛿
𝐻

,

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

≤ 𝛿.

(31)

Now, by the continuity of 𝐹
, we have

𝐹


[

[

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

]

]

< 𝜖,

(32)

which further implies that

[

[

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(𝐹
 




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

]

]

< max 𝜖
𝐻

< 𝜖,

(33)

which implies

{

{

{

(𝑟, 𝑠) ∈ N × N :

1

ℎ
𝑟,𝑠

⋅ ∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


∘ 𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

≥ 𝜖

}

}

}

∈ I.

(34)

Therefore 𝑥 ∈ [
2
𝑁
𝜃
, 𝐹


∘ 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖, 𝑋
𝑠
]
I. This

completes the proof.

(iii) Again consider

𝑥 ∈ [
2
𝑁
𝜃
, 𝐹

, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋

𝑠
]

I

∩ [
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋
𝑠
]

I
.

(35)



6 Journal of Function Spaces

Then by the definition of both the spaces, we get

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

< 𝜖,

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

< 𝜖.

(36)

Using the fact that (𝐹


+ 𝐹


)(𝑥) ≤ 𝐾𝐹

(𝑥) + 𝐾𝐹


(𝑥), we have

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[(𝐹


+ 𝐹


) (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

≤ 𝐾

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

+ 𝐾

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[𝐹


(




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

≤ 𝐾 (𝜖 + 𝜖) = 2𝐾𝜖 = 𝜖


(say) .

(37)

So we get

{

{

{

(𝑟, 𝑠) ∈ N × N :

1

ℎ
𝑟,𝑠

∑

(𝑖,𝑗)∈𝐼
𝑟,𝑠

𝑢
𝑖𝑗

[(𝐹


+ 𝐹


)

⋅ (




𝑥 − 𝐿, 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛−1





)]

𝑝
𝑖𝑗

≥ 𝜖

}

}

}

∈ I.

(38)

Therefore we have

𝑥 ∈ [
2
𝑁
𝜃
, 𝐹


+ 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋
𝑠
]

I
. (39)

Hence we have

[
2
𝑁
𝜃
, 𝐹

, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋

𝑆
]

𝐼

∩ [
2
𝑁
𝜃
, 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋
𝑆
]

I

⊆ [
2
𝑁
𝜃
, 𝐹


+ 𝐹


, 𝑢, 𝑝, ‖⋅, . . . , ⋅‖ , 𝑋
𝑆
]

I
.

(40)

4. Conclusion

A detailed study of some new classes of 𝐼-convergent double
sequences over 𝑛-normed spaces has been done. Some
algebraic and topological properties and inclusion relations
have been proved with supported examples.
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We discuss a new class of Banach spaces which are the generalization of uniformly extremely convex spaces introduced byWulede
and Ha. We prove that the new class of Banach spaces lies strictly between either the classes of 𝑘-uniformly rotund spaces and
𝑘-strongly convex spaces or classes of fully 𝑘-convex spaces and 𝑘-strongly convex spaces and has no inclusive relation with the
class of locally 𝑘-uniformly convex spaces. We obtain in addition some characterizations and properties of this new class of Banach
spaces. In particular, our results contain the main results of Wulede and Ha.

1. Introduction

Different uniformly convex spaces have been defined be-
tween the uniformly convex spaces [1] and the reflexivity of
the Banach spaces [2–6]. In the previous paper [7] we intro-
duce a new class of this type, namely, uniformly extremely
convex spaces. This new class of Banach spaces lies strictly
between either the classes of uniformly convex spaces and
strongly convex spaces or the classes of fully 𝑘-convex spaces
and strongly convex spaces.

Here we consider another new class of this type, namely,
𝑘-uniformly extremely convex spaces, as a generalization of
uniformly extremely convex spaces and discuss its relation
to the drop property, the 𝑘-uniformly rotund spaces, the full
𝑘-convex spaces, the 𝑘-strongly convex spaces, the nearly
uniformly convex spaces, and 𝑘-nearly uniformly convex
spaces. We also give some characterizations of 𝑘-uniformly
extremely convex spaces and find that this new class of
Banach spaces has the following features:

(1) 1-uniformly extremely convex spaces (indeed lower
case) coincide with uniformly extremely convex spa-
ces;

(2) 𝑘-uniformly extremely convex spaces possess the
drop linebreak property;

(3) 𝑘-uniformly extremely convex spaces are (𝑘 + 1)-
uniformly extremely convex spaces, but the converse
implication is not true.

Throughout this paper𝑋 denotes an infinite-dimensional
real Banach space with the norm ‖ ⋅ ‖.The symbol𝑋∗ denotes
the dual of the space𝑋.𝑈(𝑋) and 𝑆(𝑋) denote the closed unit
ball and the unit sphere of𝑋, respectively. The symbol 𝑆(𝑋∗)
denotes the unit sphere of 𝑋∗. The symbol 𝜎(𝑋,𝑋∗) denotes
the weak topology of𝑋.

Let 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
be norm-1 elements in Banach spaces

𝑋. The 𝑘-dimensional volume enclosed by 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
is

given by

𝑉 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
)

= sup

{{{{{{

{{{{{{

{



1 1 ⋅ ⋅ ⋅ 1

𝑓
1
(𝑥
1
) 𝑓
1
(𝑥
2
) ⋅ ⋅ ⋅ 𝑓

1
(𝑥
𝑘+1

)

.

.

.
.
.
. d

.

.

.

𝑓
𝑘
(𝑥
1
) 𝑓
𝑘
(𝑥
2
) ⋅ ⋅ ⋅ 𝑓

𝑘
(𝑥
𝑘+1

)



: 𝑓
1
, . . . , 𝑓

𝑘

∈ 𝑆 (𝑋
∗

)

}}}}}}

}}}}}}

}

.

(1)
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Here, and throughout the sequel, the symbol | ⋅ | denotes the
determinant.

Sullivan [6] has introduced the 𝑘-uniformly rotund
(𝑘UR) spaces and locally 𝑘-uniformly rotund (L𝑘UR) spaces.
Fan and Glicksberg [2] have introduced the fully 𝑘-convex
(𝑘R) Banach spaces. It is well known that 𝑘UR and 𝑘R spaces
imply reflexivity. About 𝑘UR and 𝑘R spaces, we have the
following chain of implications [2, 6, 8]:

UR = 1UR ⇒ ⋅ ⋅ ⋅ ⇒ 𝑘UR ⇒ (𝑘 + 1)UR;

2R ⇒ ⋅ ⋅ ⋅ ⇒ 𝑘R ⇒ (𝑘 + 1)R;

LUR = L1UR ⇒ ⋅ ⋅ ⋅ ⇒ L𝑘UR ⇒ 𝐿 (𝑘 + 1)UR.

(2)

A Banach space𝑋 is said to be a 𝑘UR space (𝑘 ≥ 1) [6] if,
for any 𝜖 > 0, there exists a 𝛿(𝜖) > 0 such that, for all norm-1
elements 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
and ‖𝑥

1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑘+1
‖ > (𝑘+1)−𝛿,

we have 𝑉(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘+1
) < 𝜖.

A Banach space 𝑋 is said to be a 𝑘R space (𝑘 ≥ 2) [2] if,
for any sequence {𝑥

𝑛
} in𝑋 such that lim

𝑛
1
,...,𝑛
𝑘
→∞

(1/𝑘)‖𝑥
𝑛
1

+

𝑥
𝑛
2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
𝑘

‖ = 1, then {𝑥
𝑛
} is a Cauchy sequence in 𝑋.

A point 𝑥
0
∈ 𝑆(𝑋) is said to be a denting point of 𝑈(𝑋)

[8] if 𝑥
0
∉ co(𝑀(𝑥

0
, 𝜖)) for all 𝜖 > 0, where𝑀(𝑥

0
, 𝜖) = {𝑦 :

𝑦 ∈ 𝑈(𝑋), ‖𝑦 − 𝑥
0
‖ ≥ 𝜖}.

Huff [3] has introduced the nearly uniformly convex
(NUC) spaces as a generalization of uniformly convexBanach
spaces and showed that the NUC spaces are equivalent to
reflexive spaces possessing the uniformKadec-Klee property.
The local version of NUC spaces, namely, locally nearly
uniformly convex (LNUC), was studied byKutzarova and Lin
[9]. Kutzarova [4] introduced the 𝑘-nearly uniformly convex
(𝑘NUC) spaces as a generalization of nearly uniformly convex
Banach spaces. In [4, 9], it is pointed out that NUC⇒ LNUC
and 𝑘NUC⇒ NUC for every 𝑘 ≥ 2.

A Banach space 𝑋 is said to be a NUC [3] space if, for
any 𝜖 > 0, there exists a 𝛿(𝜖) > 0 such that, for any sequence
{𝑥
𝑛
} ⊂ 𝑈(𝑋), sep(𝑥

𝑛
) > 𝜖, we have co({𝑥

𝑛
})∩(1−𝛿)𝑈(𝑋) ̸= 0,

where sep(𝑥
𝑛
) = inf{‖𝑥

𝑛
− 𝑥
𝑚
‖ : 𝑛 ̸= 𝑚} and co({𝑥

𝑛
})means

the convex hull of {𝑥
𝑛
}.

A Banach space 𝑋 is said to be a LNUC [9] space if, for
any norm-1 element 𝑥 and 𝜖 > 0, there exists a 𝛿 = 𝛿(𝜖, 𝑥) > 0
such that, for any sequence {𝑥

𝑛
} ⊂ 𝑈(𝑋), sep(𝑥

𝑛
) > 𝜖, we have

co({𝑥} ∪ {𝑥
𝑛
}) ∩ (1 − 𝛿)𝑈(𝑋) ̸= 0, where co({𝑥} ∪ {𝑥

𝑛
})means

the convex hull of {𝑥} and {𝑥
𝑛
}.

A Banach space𝑋 is said to be a 𝑘NUC [4] space, if for any
𝜖 > 0 there exists a 0 < 𝛿(𝜖) < 1 such that, for any sequence
{𝑥
𝑛
} ⊂ 𝑈(𝑋), sep(𝑥

𝑛
) > 𝜖, there are indices {𝑛

𝑖
} and scalars

𝜆
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑘, with ∑𝑘

𝑖=1
𝜆
𝑖
= 1 so that ‖∑𝑘

𝑖=1
𝜆
𝑖
𝑥
𝑛
𝑖

‖ ≤

1 − 𝛿.

Singer [10] has introduced the 𝑘-strictly convex spaces. It
is well known that 𝑘-strictly convex spaces are (𝑘 + 1)-strictly
convex spaces; 1-strictly convex spaces (indeed lower case)
coincide with strictly convex spaces; 𝑘R spaces are 𝑘-strictly
convex spaces andhave the drop property.Wu andLi [11] have
introduced the strongly convex spaces. Wulede and Wu [12]
introduced the 𝑘-strongly convex spaces as a generalization
of strongly convex Banach spaces and gave an equivalent def-
inition of 𝑘-strongly convex spaces (see Theorem 5 in [13]).

It is well known that 𝑘-strongly convex spaces are 𝑘-strictly
convex spaces; 1-strongly convex spaces (indeed lower case)
coincide with strongly convex spaces; 𝑘-strongly convex
spaces are (𝑘 + 1)-strongly convex spaces, but the converse
implication is not true.

A Banach space 𝑋 is said to be a 𝑘-strictly convex space
[10] if, for all norm-1 elements 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
such that

‖∑
𝑘+1

𝑖=1
𝑥
𝑖
‖ = 𝑘+1, then𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘+1
are linearly dependent.

A Banach space𝑋 is said to be a strongly convex space [11]
if, for any 𝑥 ∈ 𝑆(𝑋), {𝑥

𝑛
} ⊂ 𝑆(𝑋) and for a certain functional

𝑓 ∈ 𝑆
𝑥
such that 𝑓(𝑥

𝑛
) → 1 (𝑛 → ∞), then ‖𝑥

𝑛
− 𝑥‖ →

0 (𝑛 → ∞), where 𝑆
𝑥
= {𝑓 : 𝑓 ∈ 𝑆(𝑋

∗

), 𝑓(𝑥) = 1}.
A Banach space𝑋 is said to be a 𝑘-strongly convex space

[12] if, for any norm-1 element 𝑥, 𝜖 > 0 and for any functional
𝑓 ∈ 𝑆

𝑥
, there is a 𝛿(𝑥, 𝑓, 𝜖) > 0 such that, for all norm-1

elements 𝑥
1
, . . . , 𝑥

𝑘
and 𝑓(𝑥 + 𝑥

1
+ ⋅ ⋅ ⋅ + 𝑥

𝑘
) > (𝑘 + 1) − 𝛿, we

have 𝑉(𝑥, 𝑥
1
, . . . , 𝑥

𝑘
) < 𝜖.

Rolewicz [14] has defined the norm ‖ ⋅ ‖ to have the drop
property, if for every closed set 𝐶 ⊂ 𝑋 disjoint from 𝑈(𝑋)

there exists 𝑥 ∈ 𝐶 such that𝐷(𝑥,𝑈(𝑋)) ∩ 𝐶 = {𝑥}, where the
set 𝐷(𝑥,𝑈(𝑋)), the convex hull of 𝑥 and 𝑈(𝑋), is called the
drop generated by 𝑥 ∉ 𝑈(𝑋).

Lemma 1 (Kadec-Klee property). If any 𝑥 ∈ 𝑆(𝑋), {𝑥
𝑛
} ⊂

𝑆(𝑋) such that 𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞, and ‖𝑥
𝑛
‖ → ‖𝑥‖, 𝑛 → ∞,

then ‖𝑥
𝑛
− 𝑥‖ → 0, 𝑛 → ∞, where 𝑥

𝑛

𝑤

→ 𝑥, 𝑛 → ∞, means
that 𝑓(𝑥

𝑛
) → 𝑓(𝑥), 𝑛 → ∞, for all 𝑓 ∈ 𝑋

∗.

Lemma 2 (Montesinos [15]). Let 𝑋 be a Banach space. Then
𝑋 has the drop property if and only if𝑋 is reflexive and has the
Kadec-Klee property.

Lemma 3 (Nan and Wang [16]). 𝑋 is 𝑘-strictly convex space
if and only if, for any 𝑓 ∈ 𝑆(𝑋

∗

), one has dim𝐴
𝑓
≤ 𝑘, where

𝐴
𝑓
= {𝑥 : 𝑥 ∈ 𝑆(𝑋), 𝑓(𝑥) = 1}.

Lemma 4 (Wulede andWu [12], Zhang and Fang [17]). Let𝑋
be a Banach space.

(i) If𝑋 is 𝑘-strongly convex, then𝑋 is 𝑘-strictly convex and
has the Kadec-Klee property.

(ii) If 𝑋 is reflexive, 𝑘-strictly convex and has the Kadec-
Klee property, then𝑋 is 𝑘-strongly convex.

(iii) If𝑋 is 𝑘-strongly convex, {𝑥
𝑛
} ⊂ 𝑈(𝑋),𝑓 ∈ 𝑆(𝑋

∗

), and
𝑓(𝑥
𝑛
) → 1, 𝑛 → ∞, then dist(𝑥

𝑛
, 𝐴
𝑓
) → 0, 𝑛 → ∞.

Lemma5 (Zhang and Fang [17]). 𝑋 is 𝑘-strongly convex if and
only if, for any 𝑥 ∈ 𝑆(𝑋) and 𝑓 ∈ 𝑆

𝑥
, 𝜖 > 0, there exist 𝛿 > 0

and a compact set 𝐶 ⊂ 𝑋 with dim𝐶 ≤ 𝑘 such that 𝐹(𝑓, 𝛿) ⊂
{𝑥 : 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝐶) < 𝜖}, where the set 𝐹(𝑓, 𝛿) = {𝑥 : 𝑥 ∈

𝑈(𝑋), 𝑓(𝑥) ≥ 1 − 𝛿} is the slice generated by 𝑓 and 𝛿.

2. 𝑘-Uniformly Extremely Convex
Spaces and Drop Property

Definition 6 (see [7]). A Banach space 𝑋 is said to be
a uniformly extremely convex space if, for any sequences
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{𝑥
𝑛
}, {𝑦
𝑛
} consisting of elements of norm-1 and for a certain

functional 𝑓 of norm-1, lim
𝑛→∞

𝑓(𝑥
𝑛
) = lim

𝑛→∞
𝑓(𝑦
𝑛
) = 1

holds; then lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

On the base of uniformly extremely convex spaces, now
we introduce the notion of 𝑘-uniformly extremely convex
spaces as a generalization of uniformly extremely convex
spaces.

Definition 7. ABanach space𝑋 is said to be a 𝑘-uniformly ex-
tremely convex space if, for any sequences {𝑥(1)

𝑛
}, . . ., {𝑥(𝑘+1)

𝑛
}

consisting of elements of norm-1 and for a certain functional
𝑓 of norm-1, lim

𝑛→∞
𝑓(𝑥
(1)

𝑛
) = ⋅ ⋅ ⋅ = lim

𝑛→∞
𝑓(𝑥
(𝑘+1)

𝑛
) = 1

holds; then lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑘+1)

𝑛
) = 0.

We give first a simple result which shows that the notion
of 𝑘-uniformly extremely convex space is “coherent.”

Theorem 8. If 𝑋 is 𝑘-uniformly extremely convex space, then
𝑋 is (𝑘 + 1)-uniformly extremely convex space.

Proof. If, for any sequences {𝑥(1)
𝑛
}, . . . , {𝑥

(𝑘+2)

𝑛
} consisting of

elements of norm-1 and for a certain functional 𝑓 of norm-1,
lim
𝑛→∞

𝑓(𝑥
(1)

𝑛
) = ⋅ ⋅ ⋅ = lim

𝑛→∞
𝑓(𝑥
(𝑘+2)

𝑛
) = 1 holds, then, for

all 1 ≤ 𝑗 ≤ 𝑘 + 2, we have lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑗−1)

𝑛
, 𝑥
(𝑗+1)

𝑛
, . . .,

𝑥
(𝑘+2)

𝑛
) = 0 by the assumption that𝑋 is 𝑘-uniformly extremely

convex space. Furthermore, by the properties of determinant
we have

lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑘+2)

𝑛
)

≤ lim
𝑛→∞

𝑘+1

∑

𝑗=2

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑗−1)

𝑛
, 𝑥
(𝑗+1)

𝑛
, . . . , 𝑥

(𝑘+2)

𝑛
) = 0;

(3)

this shows that𝑋 is (𝑘+1)-uniformly extremely convex space.

Now we give a simple but useful lemma. By using this
lemma we can prove that any 𝑘-uniformly extremely convex
space has the drop property. And the fact that 𝑘-uniformly
extremely convex spaces include 𝑘-strongly convex spaces
can be easily found.We also show that 1-uniformly extremely
convex spaces coincide with uniformly extremely convex
spaces by using this lemma.

Lemma 9. 𝑋 is 𝑘-uniformly extremely convex if and only if,
for any 𝜖 > 0, 𝑓 ∈ 𝑆(𝑋

∗

), there exists a 𝛿(𝜖) > 0 such that, for
all norm-1 elements 𝑥

1
, . . . , 𝑥

𝑘+1
and 𝑓(∑𝑘+1

𝑖=1
𝑥
𝑖
) > (𝑘 + 1) − 𝛿,

one has 𝑉(𝑥
1
, . . . , 𝑥

𝑘+1
) < 𝜖.

Proof.
Necessity. Suppose the contrary.Then there exist 𝜖

0
> 0, 𝑓

0
∈

𝑆(𝑋
∗

) and {𝑥
𝑖
}
𝑘+1

𝑖=1
⊂ 𝑆(𝑋) such that, for any 𝛿 = 1/𝑛, 𝑛 ∈ 𝑁,

we have 𝑓
0
(∑
𝑘+1

𝑖=1
𝑥
𝑖
) > (𝑘 + 1) − 1/𝑛, but𝑉(𝑥

1
, . . . , 𝑥

𝑘+1
) ≥ 𝜖
0
.

Take 𝑥(𝑖)
𝑛

= 𝑥
𝑖
(𝑖 = 1, . . . , 𝑘 + 1); then {𝑥

(𝑖)

𝑛
}
𝑘+1

𝑖=1
⊂ 𝑆(𝑋)

and 𝑘 + 1 − 1/𝑛 < 𝑓
0
(∑
𝑘+1

𝑖=1
𝑥
(𝑖)

𝑛
) ≤ 𝑘 + 1. It follows that

lim
𝑛→∞

𝑓
0
(𝑥
(𝑖)

𝑛
) = 1. On the other hand, by the defini-

tion of the 𝑘-uniformly extremely convex space, we have
𝑉(𝑥
1
, . . . , 𝑥

𝑘+1
) → 0; this contradicts the statement that

𝑉(𝑥
1
, . . . , 𝑥

𝑘+1
) ≥ 𝜖
0
.

Sufficiency. If, for any sequences {𝑥(1)
𝑛
}, . . . , {𝑥

(𝑘+1)

𝑛
} consisting

of elements of norm-1 and for a certain functional𝑓 of norm-
1, lim
𝑛→∞

𝑓(𝑥
(1)

𝑛
) = ⋅ ⋅ ⋅ = lim

𝑛→∞
𝑓(𝑥
(𝑘+1)

𝑛
) = 1 holds, then

lim
𝑛→∞

𝑓(∑
𝑘+1

𝑖=1
𝑥
(𝑖)

𝑛
) = 𝑘 + 1. Therefore, for any 𝛿 > 0, there

exists an integer𝑁
0
∈ 𝑁 such that, for all 𝑛 ≥ 𝑁

0
, inequality

𝑓(∑
𝑘+1

𝑖=1
𝑥
(𝑖)

𝑛
) > (𝑘 + 1) − 𝛿 holds. For any 𝜖 > 0, by the

conditions given in Lemma 9, we have𝑉(𝑥(1)
𝑛
, . . . , 𝑥

(𝑘+1)

𝑛
) < 𝜖;

this means that lim
𝑛→∞

𝑉(𝑥
(1)

𝑛
, . . . , 𝑥

(𝑘+1)

𝑛
) = 0.

Remark 10. 1-uniformly extremely convex space (indeed
lower case) coincides with uniformly extremely convex space.

In fact, by Lemma 9 we know that 𝑋 is 1-uniformly
extremely convex space if and only if, for any 𝜖 > 0, 𝑓 ∈

𝑆(𝑋
∗

), there exists a 𝛿(𝜖, 𝑓) > 0 such that, for any norm-1
elements 𝑥, 𝑦 and 𝑓(𝑥 + 𝑦) > 2 − 𝛿, we have

𝑉 (𝑥, 𝑦) = sup{


1 1

𝑓 (𝑥) 𝑓 (𝑦)



: 𝑓 ∈ 𝑆 (𝑋
∗

)}

= sup
𝑓∈𝑆(𝑋

∗
)

𝑓 (𝑥) − 𝑓 (𝑦)
 =

𝑥 − 𝑦
 < 𝜖,

(4)

and also if and only if𝑋 is uniformly extremely convex space.

Theorem 11. 𝑋 is 𝑘-uniformly extremely convex space if and
only if 𝑋 is 𝑘-strictly convex space and has the drop property.

Proof.
Necessity. Suppose that 𝑋 is 𝑘-uniformly extremely convex
space; by the definition of 𝑘-strongly convex space and a
condition which characterizes 𝑘-uniformly extremely convex
space in Lemma 9, it is easy to see that𝑋 is 𝑘-strongly convex
space. From Lemma 4(i), we know that𝑋 is 𝑘-strictly convex
space and has the Kadec-Klee property.

Now we are going to prove that 𝑋 has the drop property.
In fact, from Lemma 2, it is sufficient to prove that 𝑋 is
reflexive. Suppose that 𝑋 is not reflexive. Using the well-
known James’ theorem, for each 0 < 𝜖 < 1, we can choose
0 < 𝜃 < 1 so that 𝜃 > 1 − 𝛿(𝜖)/(𝑘 + 1) and 𝜃

𝑘

> 𝜖, and
{𝑥
1
}, . . . , {𝑥

𝑘+1
} ⊂ 𝑆(𝑋), {𝑥∗

1
}, . . . , {𝑥

∗

𝑘+1
} ⊂ 𝑆(𝑋

∗

) so that

𝑥
∗

𝑗
(𝑥
𝑖
) =

{

{

{

𝜃 if 𝑗 ≤ 𝑖

0 if 𝑗 > 𝑖.
(5)

Here 𝛿(𝜖) is the function required in Lemma 9.
Now we have that

𝑥
∗

1
(𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘+1
) = (𝑘 + 1) 𝜃 > (𝑘 + 1) − 𝛿 (𝜖) . (6)
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On the other hand it is easy to check that

𝑉 (𝑥
1
, . . . , 𝑥

𝑘+1
)

≥



1 1 ⋅ ⋅ ⋅ 1

𝑥
∗

2
(𝑥
1
) 𝑥
∗

2
(𝑥
2
) ⋅ ⋅ ⋅ 𝑥

∗

2
(𝑥
𝑘+1

)

.

.

.
.
.
. d

.

.

.

𝑥
∗

𝑘+1
(𝑥
1
) 𝑥
∗

𝑘+1
(𝑥
2
) ⋅ ⋅ ⋅ 𝑥

∗

𝑘+1
(𝑥
𝑘+1

)



= 𝜃
𝑘

> 𝜖,

(7)

which gives the required contradiction.

Sufficiency. From the assumption that 𝑋 is 𝑘-strictly con-
vex space and has the drop property, we can deduce, by
Lemma 4(ii), that𝑋 is 𝑘-strongly convex space and reflexive.
Observing the definition of 𝑘-strongly convex space and a
condition which characterizes 𝑘-uniformly extremely convex
space in Lemma 9, by the reflexivity of𝑋, it is easy to see that
𝑋 is 𝑘-uniformly extremely convex space.

Corollary 12 (see [7]). 𝑋 is uniformly extremely convex space
if and only if 𝑋 is strictly convex space and has the drop
property.

Noticing the procedure of proving Theorem 11 we can
deduce the following.

Corollary 13. If𝑋 is 𝑘-uniformly extremely convex space, then
𝑋 is 𝑘-strongly convex space.

Now we are going to show that the converse to Corol-
lary 13 is not true. In [12], it is proved that L𝑘UR spaces are
𝑘-strongly convex spaces. In general, L𝑘UR spaces need not
be reflexive since L1UR is just the usual definition of LUR
space [18, 19]. It follows that there exists a 𝑘-strongly convex
space 𝑋 which is not reflexive. Hence𝑋 is not a 𝑘-uniformly
extremely convex space since𝑋 is not reflexive.

Corollary 14. 𝑋 is 𝑘-uniformly extremely convex space if and
only if 𝑋 is reflexive and, for any 𝑥 ∈ 𝑆(𝑋) and 𝑓 ∈ 𝑆

𝑥
, 𝜖 > 0,

there exist 𝛿 > 0 and a compact set 𝐶 ⊂ 𝑋 with dim𝐶 ≤ 𝑘

such that 𝐹(𝑓, 𝛿) ⊂ {𝑥 : 𝑥 ∈ 𝑋, 𝑑(𝑥, 𝐶) < 𝜖}, where the set
𝐹(𝑓, 𝛿) = {𝑥 : 𝑥 ∈ 𝑈(𝑋), 𝑓(𝑥) ≥ 1 − 𝛿} is the slice generated
by 𝑓 and 𝛿.

Proof. It is immediate from Corollary 13, Theorem 11, and
Lemmas 2, 4, and 5.

Theorem 15. 𝑋 is 𝑘-uniformly extremely convex space if and
only if𝑋 is reflexive and, for any𝑓 ∈ 𝑆(𝑋

∗

), one has dim𝐴
𝑓
≤

𝑘,𝐴
𝑓
∩ co(𝑈(𝑋) \𝑉

𝐴
𝑓

) = 0, where the set𝑉
𝐴
𝑓

, which includes
set 𝐴
𝑓
, is arbitrary open set with regard to norm topology

(𝑋, ‖ ⋅ ‖).

Proof.
Necessity. Suppose that 𝑋 is 𝑘-uniformly extremely convex
space; then byTheorem 11 we know that𝑋 is 𝑘-strictly convex
space and reflexive. For any 𝑓 ∈ 𝑆(𝑋

∗

), by the reflexivity of
𝑋, there exists 𝑥 ∈ 𝑆(𝑋) such that 𝑓(𝑥) = 1; hence 𝑥 ∈ 𝐴

𝑓
.

Combining the fact that 𝑋 is 𝑘-strictly convex space with
Lemma 3 we can deduce that dim𝐴

𝑓
≤ 𝑘.

Now we are going to prove the equality 𝐴
𝑓
∩ co(𝑈(𝑋) \

𝑉
𝐴
𝑓

) = 0.
Firstly, we will prove that, for any 𝑧 ∉ 𝑉

𝐴
𝑓

and every open
set 𝑉
𝐴
𝑓

(where 𝑉
𝐴
𝑓

⊃ 𝐴
𝑓
) with regard to norm topology

(𝑋, ‖ ⋅ ‖), there exists a scalar 𝑟 > 0 such that dist(𝑧, 𝐴
𝑓
) ≥ 𝑟.

Noticing that 𝐴
𝑓
is compact set in 𝑋, for any 𝑧 ∉ 𝑉

𝐴
𝑓

,
we can deduce that there exists 𝑥 ∈ 𝐴

𝑓
such that ‖𝑥 − 𝑧‖ =

dist(𝑧, 𝐴
𝑓
) = 𝑟

𝑧
. Now we claim that there exists minimum

value of 𝑟
𝑧
denoted by 𝑟, such that dist(𝑧, 𝐴

𝑓
) ≥ 𝑟 for any

𝑧 ∉ 𝑉
𝐴
𝑓

. In fact, if 𝑟
𝑧
does not have minimum value, then

1/𝑛 is impossible to be minimum value for any integer 𝑛.
Hence, there exist 𝑧

𝑛
∉ 𝑉
𝐴
𝑓

and 𝑥
𝑛
∈ 𝐴
𝑓
such that ‖𝑥

𝑛
−

𝑧
𝑛
‖ = dist(𝑧

𝑛
, 𝐴
𝑓
) < 1/𝑛. Since 𝐴

𝑓
is compact, the above

sequence {𝑥
𝑛
} has the convergent subsequence; without loss

of generality and letting the convergent subsequence be {𝑥
𝑛
}

itself, then 𝑥
𝑛
→ 𝑥
0
, 𝑥
0
∈ 𝐴
𝑓
. Noticing that ‖𝑥

𝑛
− 𝑧
𝑛
‖ =

dist(𝑧
𝑛
, 𝐴
𝑓
) < 1/𝑛, we can deduce that 𝑧

𝑛
→ 𝑥
0
, 𝑥
0
∈ 𝐴
𝑓
⊂

𝑉
𝐴
𝑓

.
On the other hand, combining the fact that 𝑋 \ 𝑉

𝐴
𝑓

is
closed set with 𝑧

𝑛
∈ 𝑋 \ 𝑉

𝐴
𝑓

, 𝑧
𝑛
→ 𝑥
0
, we can deduce that

𝑥
0
∈ 𝑋 \ 𝑉

𝐴
𝑓

.This contradicts 𝑥
0
⊂ 𝑉
𝐴
𝑓

.
Secondly, we will prove that for 𝑉

𝐴
𝑓

there exists a scalar
𝑚 > 0 such that the inequality 𝑓(𝑥) > 𝑓(𝑦) + 𝑚 holds for all
𝑥 ∈ 𝐴

𝑓
and 𝑦 ∈ 𝑈(𝑋) \ 𝑉

𝐴
𝑓

.
If the above inequality is not true, then there exists 𝑦

𝑛
∈

𝑈(𝑋) \ 𝑉
𝐴
𝑓

such that 𝑓(𝑦
𝑛
) → 𝑓(𝑥) = 1, 𝑛 → ∞.

By the condition given in Theorem 15, Corollary 13, and
Lemma 4(iii), we have dist(𝑦

𝑛
, 𝐴
𝑓
) → 0, 𝑛 → ∞. On

the other hand, by 𝑦
𝑛
∈ 𝑈(𝑋) \ 𝑉

𝐴
𝑓

, we can deduce that
dist(𝑦

𝑛
, 𝐴
𝑓
)  0, 𝑛 → ∞; this contradicts the statement

that dist(𝑦
𝑛
, 𝐴
𝑓
) → 0, 𝑛 → ∞. Hence we have

𝑓 (𝑥) − 𝑚 ≥ sup {𝑓 (𝑦) : 𝑦 ∈ 𝑈 (𝑋) \ 𝑉
𝐴
𝑓

}

= sup {𝑓 (𝑦) : 𝑦 ∈ co (𝑈 (𝑋) \ 𝑉
𝐴
𝑓

)} ;

(8)

this shows that 𝑥 ∉ co(𝑈(𝑋) \ 𝑉
𝐴
𝑓

). By the arbitrary of 𝑥 ∈

𝐴
𝑓
, we can deduce that 𝐴

𝑓
∩ co(𝑈(𝑋) \ 𝑉

𝐴
𝑓

) = 0.

Sufficiency.ByLemmas 2 and 3,Theorem 11, and the condition
given in Theorem 15, only we need to prove that 𝑋 has the
Kadec-Klee property. Let 𝑥 ∈ 𝑆(𝑋), {𝑥

𝑛
}
∞

𝑛=1
⊂ 𝑆(𝑋), and

𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞. By the well-known James’ theorem, there
exists 𝑓 ∈ 𝑆(𝑋

∗

) such that 𝑓(𝑥) = 1; it follows that 𝑥 ∈ 𝐴
𝑓
.

Case 1. If {𝑥
𝑛
}
∞

𝑛=1
∩𝐴
𝑓
= 0, then {𝑥

𝑛
}
∞

𝑛=1
is relatively compact.

Otherwise, every point of 𝐴
𝑓
is not accumulation point of

{𝑥
𝑛
}
∞

𝑛=1
. Hence, for any 𝑥 ∈ 𝐴

𝑓
there exists 𝜖

0
> 0 such

that {𝑦 ∈ 𝑋 : ‖𝑦 − 𝑥‖ < 𝜖
0
} does not contain any point of

{𝑥
𝑛
}
∞

𝑛=1
. We construct an open set 𝑉

𝐴
𝑓

= ⋃
𝑥∈𝐴
𝑓

{𝑦 ∈ 𝑋 :

‖𝑦 − 𝑥‖ < 𝜖
0
} with regard to norm topology (𝑋, ‖ ⋅ ‖); then

𝐴
𝑓
⊂ 𝑉
𝐴
𝑓

and 𝑉
𝐴
𝑓

∩ {𝑥
𝑛
}
∞

𝑛=1
= 0. Since co(𝑈(𝑋) \ 𝑉

𝐴
𝑓

)

is bounded closed convex set with regard to norm topology
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(𝑋, ‖ ⋅ ‖), co𝑤(𝑈(𝑋) \ 𝑉
𝐴
𝑓

) = co(𝑈(𝑋) \ 𝑉
𝐴
𝑓

). Noticing that
co𝑤(𝑈(𝑋)\𝑉

𝐴
𝑓

) is bounded set with regard to weak topology
𝜎(𝑋,𝑋

∗

), we know that co𝑤(𝑈(𝑋) \ 𝑉
𝐴
𝑓

) is compact set with
regard to weak topology 𝜎(𝑋,𝑋∗). Hence there is a function
𝑔 ∈ 𝑋

∗ which separates𝐴
𝑓
and co(𝑈(𝑋) \𝑉

𝐴
𝑓

); that is, there
is a scalar 𝑙 > 0 such that 𝑔(𝐴

𝑓
) − 𝑙 > sup𝑔(co(𝑈(𝑋) \

𝑉
𝐴
𝑓

)). Evidently, {𝑥
𝑛
}
∞

𝑛=1
⊂ co(𝑈(𝑋) \ 𝑉

𝐴
𝑓

); it follows that
𝑔(𝐴
𝑓
) − 𝑔({𝑥

𝑛
}
∞

𝑛=1
) > 𝑙. This contradicts the assumption that

𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞.

Case 2. If {𝑥
𝑛
}
∞

𝑛=1
∩ 𝐴
𝑓

̸= 0, then ({𝑥
𝑛
}
∞

𝑛=1
\ 𝐴
𝑓
) ∩

𝐴
𝑓
= 0. According to Case 1 we know that {𝑥

𝑛
}
∞

𝑛=1
\ 𝐴
𝑓

is relatively compact set. Hence {𝑥
𝑛
}
∞

𝑛=1
∩ 𝐴
𝑓
is compact

set since 𝐴
𝑓
is bounded closed convex set in certain finite

dimensional subspace of 𝑋. On the other hand, it is obvious
that {𝑥

𝑛
}
∞

𝑛=1
= ({𝑥
𝑛
}
∞

𝑛=1
\𝐴
𝑓
)∪({𝑥

𝑛
}
∞

𝑛=1
∩𝐴
𝑓
); hence {𝑥

𝑛
}
∞

𝑛=1
=

({𝑥
𝑛
}
∞

𝑛=1
\ 𝐴
𝑓
) ∪ ({𝑥

𝑛
}
∞

𝑛=1
∩ 𝐴
𝑓
). This shows that {𝑥

𝑛
}
∞

𝑛=1
is

relatively compact.
Consequently, in Cases 1 and 2, we always conclude that

{𝑥
𝑛
}
∞

𝑛=1
is relatively compact. Furthermore, by the assumption

that 𝑥
𝑛

𝑤

→ 𝑥, 𝑛 → ∞, we can deduce that ‖𝑥
𝑛
− 𝑥‖ →

0, 𝑛 → ∞. This completes the proof that 𝑋 has the Kadec-
Klee property.

In particular, considering the special case of Theorem 15
when 𝑘 = 1, we obtainedTheorem 2.5 in [7] as a corollary.

Corollary 16. 𝑋 is uniformly extremely convex space if and
only if𝑋 is reflexive and for any 𝑓 ∈ 𝑆(𝑋

∗

), one has dim𝐴
𝑓
=

1,𝐴
𝑓
∩ co(𝑈(𝑋) \𝑉

𝐴
𝑓

) = 0, where the set𝑉
𝐴
𝑓

, which includes
set 𝐴
𝑓
, is arbitrary open set with regard to norm topology

(𝑋, ‖ ⋅ ‖). In other words,𝑋 is uniformly extremely convex space
if and only if𝑋 is reflexive and every point of 𝑆(𝑋) is a denting
point of 𝑈(𝑋).

To show that the converse to Theorem 8 is not true, we
consider the following example.

Example 17. There exists a 𝑘-uniformly extremely convex
space 𝑋 which is not a (𝑘 − 1)-uniformly extremely convex
space.

Let 𝑘 ≥ 2 be an integer, and let 𝑖
1
< 𝑖
2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
. For each

𝑥 = (𝑎
1
, 𝑎
2
, . . .) ∈ 𝑙

2
, define

‖𝑥‖
2

𝑖
1
,...,𝑖
𝑘

= (

𝑘

∑

𝑗=1


𝑎
𝑖
𝑗


)

2

+ ∑

𝑖 ̸=𝑖
1
,...,𝑖
𝑘

𝑎
2

𝑖
. (9)

From [20] we know that 𝑋
𝑖
1
,...,𝑖
𝑘

= (𝑙
2
, ‖ ⋅ ‖

𝑖
1
,...,𝑖
𝑘

) is a
𝑘UR space. It is easy to see that 𝑘UR space is 𝑘-uniformly
extremely convex space from the definition of 𝑘UR space
and a condition which characterizes 𝑘-uniformly extremely
convex space in Lemma 9. Hence 𝑋

𝑖
1
,...,𝑖
𝑘

is a 𝑘-uniformly
extremely convex space. It follows from Theorem 11 that
𝑋
𝑖
1
,...,𝑖
𝑘

is a 𝑘-strictly convex space but is not a (𝑘 − 1)-strictly
convex space that follows from [16]. Hence 𝑋

𝑖
1
,...,𝑖
𝑘

is not a
(𝑘 − 1)-uniformly extremely convex space.

3. The Relations between 𝑘-Uniformly
Extremely Convex Space and Various
Other Types of Convex Space

Now we give a list of examples to distinguish 𝑘-uniformly
extremely convex spaces from 𝑘R, 𝑘UR, 𝑘NUC, and NUC
spaces.

(i) We are ready now to distinguish 𝑘-uniformly ex-
tremely convex and 𝑘R spaces.

Since 𝑘R spaces are 𝑘-strictly convex spaces and have the
drop property, it follows fromTheorem 11 that 𝑘R spaces are
𝑘-uniformly extremely convex, but the converse is not true.

Example 18. There exists a 𝑘-uniformly extremely convex
space𝑋 which is not a 𝑘R space for every 𝑘 ≥ 2.

Let 𝑘 ≥ 2 be an integer, and let 𝑖
1
< 𝑖
2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
. For each

𝑥 = (𝑎
1
, 𝑎
2
, . . .) ∈ 𝑙

2
, define

‖𝑥‖
2

𝑖
1
,...,𝑖
𝑘

= (

𝑘

∑

𝑗=1


𝑎
𝑖
𝑗


)

2

+ ∑

𝑖 ̸=𝑖
1
,...,𝑖
𝑘

𝑎
2

𝑖
, (10)

and let 𝑋
𝑖
1
,...,𝑖
𝑘

= (𝑙
2
, ‖ ⋅ ‖

𝑖
1
,...,𝑖
𝑘

). For 𝑥 ∈ 𝑙
2
, let ‖𝑥‖

𝑘
=

sup
𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘

‖𝑥‖
𝑖
1
,...,𝑖
𝑘

,𝑋
𝑘
= (𝑙
2
, ‖𝑥‖
𝑘
). It follows from [20] that

𝑋
𝑘
is a 𝑘UR space but is not a 𝑘R space. Hence 𝑋

𝑘
is a 𝑘-

uniformly extremely convex space since𝑋 is a 𝑘UR space.

(ii) We are ready now to distinguish 𝑘-uniformly
extremely convex and 𝑘UR spaces.

Example 19. For all 𝑘 ≥ 1, there exists a 𝑘-uniformly extreme-
ly convex space𝑋 which is not a 𝑘UR space.

Let 𝐸 = (𝑙
2
, ‖ ⋅ ‖); for 𝑥 = (𝑎

1
, 𝑎
2
, . . .) ∈ 𝐸, define

‖𝑥‖
2

= {
𝑎1
 + (𝑎

2

2
+ 𝑎
2

3
+ ⋅ ⋅ ⋅)

1/2

}

2

+ {(
𝑎
2

2
)

2

+ ⋅ ⋅ ⋅ + (
𝑎
𝑛

𝑛
)

2

+ ⋅ ⋅ ⋅}

2

.

(11)

It follows from [2] that 𝑋 = (∑⨁𝐸)
𝑙
2

is a 2R space; fur-
thermore, 𝑋 = (∑⨁𝐸)

𝑙
2

is a 𝑘-uniformly extremely convex
space but is not a 𝑘UR space [20].

(iii) We are ready now to distinguish 𝑘-uniformly ex-
tremely convex and L𝑘UR spaces.

We consider a nonreflexive L𝑘UR space 𝑋. Then 𝑋 is
not a 𝑘-uniformly extremely convex space since 𝑋 is not
reflexive. On the other hand, we consider Example 19; then
𝑋 = (∑⨁𝐸)

𝑙
2

is a 2R space and it follows that 𝑋 is a 𝑘-
uniformly extremely convex space for all 𝑘 ≥ 1. But 𝑋 is not
a L𝑘UR space that follows from [21].

(iv) We are ready now to distinguish 𝑘-uniformly ex-
tremely convex spaces and NUC or 𝑘NUC spaces.

Example 20. For all 𝑘 ≥ 1, there exists a 𝑘-uniformly ex-
tremely convex space𝑋 which is neither a NUC nor a 𝑘NUC
space for all 𝑘 ≥ 2.
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Let (𝑋, ‖ ⋅ ‖) be the 𝑙
2
-sum of {𝑙

𝑛
, 𝑛 ≥ 2}; then (𝑋, ‖ ⋅ ‖)

is a 2R space with normalized basis {𝑒
𝑛
}. Define, ∀𝑥 =

∑
∞

𝑛=1
𝑎
𝑛
𝑒
𝑛
∈ 𝑋,

‖|𝑥|‖ = {(
𝑎1
 +



∞

∑

𝑛=2

𝑎
𝑛
𝑒
𝑛



)

2

+

∞

∑

𝑛=2

(
𝑎
𝑛

𝑛
)

2

}

1/2

. (12)

By Theorem 4 in [9], we know that (𝑋, ‖| ⋅ |‖) is a 2R space
but is not a LNUC space. It follows that 𝑋 is a 𝑘-uniformly
extremely convex space for all 𝑘 ≥ 1 but is neither a NUC nor
a 𝑘NUC space for all 𝑘 ≥ 2.

Remark 21. (i) The class of 𝑘-uniformly extremely convex
spaces lies strictly between the classes of 𝑘UR spaces and the
𝑘-strongly convex spaces.

(ii) The class of 𝑘-uniformly extremely convex spaces lies
strictly between the classes of 𝑘R spaces and the class of 𝑘-
strongly convex spaces.

(iii)The class of 𝑘-uniformly extremely convex spaces has
no inclusive relation with the class of L𝑘UR spaces.

In particular, considering the special case of Remark 21
when 𝑘 = 1, we obtained the main conclusions of [7], that is,
Remarks 3.5 and 3.7 in [7].
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The boundedness and compactness of the product of differentiation and composition operators from Bloch spaces into 𝑄
𝐾
spaces

are discussed in this paper.

1. Introduction and Motivation

LetΔ be the open unit disk in the complex plane and let𝐻(Δ)
be the class of all analytic functions on Δ. Let 𝑑𝐴(𝑧) be the
Euclidean area element on Δ. The Bloch spaceB on Δ is the
space of all analytic functions 𝑓 on Δ such that

𝑓
B
=
𝑓 (0)

 + sup
𝑧∈Δ

(1 − |𝑧|
2
)

𝑓

(𝑧)

< ∞. (1)

Under the above norm,B is a Banach space. LetB
0
denote

the subspace ofB consisting of those 𝑓 ∈ B for which (1 −
|𝑧|
2
)𝑓

|𝑧| → 0 as |𝑧| → 1. This space is called the little Bloch

space.
Throughout this paper, we assume that 𝐾 : [0,∞) →

[0,∞) is a nondecreasing and right-continuous function. A
function 𝑓 ∈ 𝐻(Δ) is said to belong to 𝑄

𝐾
space (see [1]) if

𝑓


2

𝐾
= sup
𝑎∈Δ

∬
Δ


𝑓

(𝑧)

𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < ∞, (2)

where 𝑔(𝑧, 𝑎) is the Green function with logarithmic singu-
larity at 𝑎; that is, 𝑔(𝑧, 𝑎) = log(1/|𝜑

𝑎
(𝑧)|) (𝜑

𝑎
is a conformal

automorphism defined by 𝜑
𝑎
(𝑧) = (𝑎−𝑧)/(1−𝑎𝑧) for 𝑎 ∈ Δ).

𝑄
𝐾
is a Banach space under the norm

𝑓


2

𝑄𝐾
=
𝑓 (0)

 +
𝑓
𝐾
. (3)

From [1], we know that 𝑄
𝐾
⊆B if

∫

1/𝑒

0

𝐾(− log 𝑟) 𝑟 𝑑𝑟 < ∞. (4)

Let 𝜑 denote a nonconstant analytic self-map of Δ.
Associated with 𝜑 is the composition operator 𝐶

𝜑
defined by

𝐶
𝜑
(𝑓) = 𝑓 ∘ 𝜑 for 𝑓 ∈ 𝐻(Δ). The problem of characterizing

the boundedness and compactness of composition operators
on many Banach spaces of analytic functions has attracted
lots of attention recently, for example, [2] and the reference
therein.

Let 𝐷 be the differentiation operator on 𝐻(Δ); then we
have 𝐷𝑓(𝑧) = 𝑓(𝑧). For 𝑓 ∈ 𝐻(Δ), the products of dif-
ferentiation and composition operators 𝐷𝐶

𝜑
and 𝐶

𝜑
𝐷 are

defined by

𝐷𝐶
𝜑
(𝑓) = (𝑓 ∘ 𝜑)


= 𝑓

(𝜑) 𝜑

,

𝐶
𝜑
𝐷(𝑓) = 𝑓


(𝜑) ,

𝑓 ∈ 𝐻 (Δ) .

(5)

Operators 𝐶
𝜑
𝐷 as well as some other products of linear

operators were studied, for example, in [3–9] (see also the
references therein).

Recall that a linear operator 𝑇 : 𝑋 → 𝑌 is said to be
bounded if there exists a constant𝑀 > 0 such that ‖𝑇(𝑓)‖

𝑌
≤
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𝑀‖𝑓‖
𝑋
for all maps 𝑓 ∈ 𝑋. And𝑋 → 𝑌 is compact if it takes

bounded sets in 𝑋 to sets in 𝑌 which have compact closure.
For Banach spaces 𝑋 and 𝑌 of 𝐻(Δ), 𝑇 is compact from 𝑋
to 𝑌 if and only if for each sequence {𝑥

𝑛
} in 𝑋; the sequence

{𝑇𝑥
𝑛
} ∈ 𝑌 contains a subsequence converging to some limit

in 𝑌.
Considering the definition of 𝑄

𝐾
spaces and 𝑄

𝐾
⊆ B

with some conditions, it is difficult to study the operator
𝐶
𝜑
𝐷 from Bloch spaces to 𝑄

𝐾
spaces. In this paper, some

sufficient and necessary conditions for the boundedness and
compactness of this operator are given.

2. The Boundedness

Lemma 1 (see [10]). If all 𝑓 ∈B, then

sup
𝑧∈Δ

(1 − |𝑧|
2
)
𝑛 
𝑓
(𝑛)
+
𝑓 (0)

 +

𝑓

(0)

+

𝑓

(0)


+ ⋅ ⋅ ⋅ +

𝑓
(𝑛−1)(0)

≈
𝑓
B
, (𝑛 = 1, 2, . . .) .

(6)

Theorem 2. Let 𝜑 be an analytic self-map of Δ. Suppose𝐾 is a
nondecreasing and right-continuous function on [0, +∞) such
that

∫

1/𝑒

0

𝐾(− log 𝑟) 𝑟 𝑑𝑟 < +∞. (7)

Then the following statements are equivalent:

(a) 𝐶
𝜑
𝐷 :B→ 𝑄

𝐾
is bounded.

(b) 𝐶
𝜑
𝐷 :B

0
→ 𝑄
𝐾
is bounded.

(c)

sup
𝑎∈Δ

∬
Δ


𝜑

(𝑧)


2

(1 −
𝜑 (𝑧)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < ∞. (8)

Proof.

(c)⇒ (a). Suppose that (c)holds. For any 𝑧 ∈ Δ and𝑓(𝑧) ∈B,
we have

𝐶
𝜑
𝐷𝑓 (𝑧)



2

𝐾
= sup
𝑎∈Δ

∬
Δ


𝑓

(𝜑)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

= sup
𝑎∈Δ

∬
Δ


(𝜑

(𝑧)) 𝑓


(𝜑)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤
𝑓


2

B
sup
𝑎∈Δ

∬
Δ

(𝜑

(𝑧))
2

(1 −
𝜑 (𝑧)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

< +∞.

(9)

Thus (a) holds.

(a)⇒ (b). It is obvious.

(b)⇒ (c). Assume (b) holds; that is, there exists a constant 𝐶
such that ‖𝐶

𝜑
𝐷𝑓(𝑧)‖

𝐾
≤ 𝐶‖𝑓‖B for all 𝑓 ∈ B

0
. Conversely,

suppose that 𝐶
𝜑
𝐷 : B → 𝑄

𝐾
is bounded. Fix 𝑤 ∈ Δ and

assume that 𝜑(𝑤) ̸= 0. Consider the function 𝑓 defined by

𝑓
𝑤 (𝑧) =

(1 −
𝜑 (𝑤)



2
)
2

(1 − 𝜑 (𝑤)𝑧)
2
, (10)

for 𝑧 ∈ Δ; then

𝑓


𝑤
(𝑧) = 2𝜑 (𝑤)

(1 −
𝜑 (𝑤)



2
)
2

(1 − 𝜑 (𝑤)𝑧)
3
, (11)

for 𝑧 ∈ Δ. Since


𝑓


𝑤
(𝑧)

≤

2 (1 −
𝜑 (𝑤)



2
)
2

(1 −
𝜑 (𝑤)

 |𝑧|)
3
≤

2 (1 +
𝜑 (𝑤)



2
)
2

1 − |𝑧|

≤
8

1 − |𝑧|

(12)

for all 𝑧 ∈ Δ, 𝑓
𝑤
∈ B. Furthermore, it is clear that 𝑓

𝑤
∈ B
0
,

since
𝑓𝑤 (0)

 =


(1 −
𝜑 (𝑤)



2
)
2
≤ 4. (13)

Thus

𝑀
1
= sup {𝑓𝑤

B
: 𝑤 ∈ Δ} ≤ 12. (14)

Note that


𝑓


𝑤
(𝜑 (𝑤))


=

2
𝜑 (𝑤)



(1 −
𝜑 (𝑤)



2
)
2
. (15)

For this function 𝑓
𝑤
and this point 𝑤 we have


(𝐶
𝜑
𝐷𝑓
𝑤
)


(𝑤)

=

𝜑

(𝑤) 𝑓


𝑤
(𝜑 (𝑤))



=

2

𝜑

(𝑤)


𝜑 (𝑤)


2

(1 −
𝜑 (𝑤)



2
)
2
.

(16)

So

sup
𝑎∈Δ

∬
Δ

4

𝜑

(𝑤)


2 𝜑 (𝑤)


4

(1 −
𝜑 (𝑤)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤

𝐶
𝜑
𝐷𝑓
𝑤



2

𝐾
≤ 𝑀
1


𝐶
𝜑
𝐷


2

B→𝑄𝐾
< +∞,

(17)

for all 𝑤 ∈ Δ. Then we can imply

sup
𝑎∈Δ

∬
|𝜑(𝑤)|>1/2


𝜑

(𝑤)


2

(1 −
𝜑 (𝑤)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤ 16 sup
𝑎∈Δ

∬
|𝜑(𝑤)|>1/2


𝜑

(𝑤)


2 𝜑 (𝑤)


4

(1 −
𝜑 (𝑤)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤

𝐶
𝜑
𝐷𝑓
𝑤



2

𝐾
≤ 𝑀
1


𝐶
𝜑
𝐷


2

B→𝑄𝐾
< +∞.

(18)
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On the other hand, we note the functions 𝑓(𝑧) ≡ 𝑧2, which
belong toB

0
, and we get

2 sup
𝑎∈Δ

∬
Δ


𝜑

(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < ∞. (19)

Then

sup
𝑎∈Δ

∬
|𝜑(𝑤)|<1/2


𝜑

(𝑤)


2

(1 −
𝜑 (𝑤)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤ (
4

3
)

4

sup
𝑎∈Δ

∬
|𝜑(𝑤)|<1/2


𝜑

(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤ ∞.

(20)

So, we get

sup
𝑎∈Δ

∬
Δ


𝜑

(𝑤)


2

(1 −
𝜑 (𝑤)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 < ∞. (21)

By the arbitrary of 𝑤, we have

sup
𝑎∈Δ

∬
Δ

𝜑

(𝑧)

(1 −
𝜑 (𝑧)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 < ∞, (22)

for all 𝑧 ∈ Δ.
This completes the proof of this theorem.

3. The Compactness

The following lemma can be proved similarly to [11].

Lemma 3. Let 𝜑 be an analytic self-map of Δ. Then 𝐶
𝜑
𝐷 :

B→ 𝑄
𝐾
(orB

0
→ 𝑄
𝐾
) is compact if and only if𝐶

𝜑
𝐷 :B→

𝑄
𝐾
(orB

0
→ 𝑄
𝐾
) is bounded and for any bounded sequence

(𝑓
𝑛
)
𝑛∈𝑁

in B which converges to zero uniformly on compact
subsets of Δ; one has ‖𝐶

𝜑
𝐷𝑓
𝑛
‖
𝑄𝐾
→ 0 𝑎𝑠 𝑛 → ∞.

Lemma 4. Let 𝜑 be an analytic self-map of Δ. Suppose 𝐾 is a
nondecreasing and right-continuous function on [0, +∞) such
that

∫

1/𝑒

0

𝐾(− log 𝑟) 𝑟 𝑑𝑟 < +∞. (23)

If 𝐶
𝜑
𝐷 : B(B

0
) → 𝑄

𝐾
is compact, then for any 𝜖 > 0 there

exists a 𝛿, 0 < 𝛿 < 1 such that, for all 𝑓 in 𝐸,

sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


(𝐶
𝜑
𝐷𝑓)


(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜖 (24)

holds whenever 𝛿 < 𝑟 < 1, where 𝐸 is the unit ball ofB(B
0
).

Proof. For 𝑓 ∈ B
0
, let 𝑓

𝑡
(𝑧) = 𝑓(𝑡𝑧) (0 < 𝑡 < 1). Then

𝑓
𝑡
∈ B
0
, and 𝑓

𝑡
→ 𝑓 uniformly on compact subsets of Δ as

𝑡 → 1. Since 𝐶
𝜑
𝐷 is compact, ‖(𝐶

𝜑
𝐷𝑓
𝑡
− 𝐶
𝜑
𝐷𝑓)(𝑧)‖ → 0 as

𝑡 → 1. That is, for given 𝜀 > 0, there exists 𝑡 ∈ (0, 1) such that

sup
𝑎∈Δ

∬
Δ


((𝐶
𝜑
𝐷𝑓
𝑡
)


− (𝐶
𝜑
𝐷𝑓)) (𝑧)



2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜖.

(25)

For 𝑟 (0 < 𝑟 < 1), the triangle equality gives

sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


(𝐶
𝜑
𝐷𝑓)


(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤ sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


(𝐶
𝜑
𝐷𝑓
𝑡
)


(𝑧)


2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

+ sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


((𝐶
𝜑
𝐷𝑓
𝑡
)


− (𝐶
𝜑
𝐷𝑓)) (𝑧)



2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤ sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


𝑓


𝑡
(𝜑 (𝑧)) 𝜑


(𝑧)


2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) + 𝜀 ≤

𝑓


𝑡



2

∞

⋅ sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


𝜑

(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

+ 𝜀.

(26)

Then, we prove that for that given 𝜀 > 0 and ‖𝑓
𝑡
‖
2

∞
> 0 there

exists a 𝛿 ∈ (0, 1) such that if 𝛿 < 𝑟 < 1,


𝑓


𝑡



2

∞
sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


𝜑

(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜀. (27)

Choose 𝑓
𝑛
(𝑧) = 𝑧

𝑛
∈ B
0
, and we have 𝑛𝜑𝑛−1 ∈ 𝑄

𝐾
. Since

𝐶
𝜑
𝐷 is compact, lim

𝑛→∞
‖𝑛𝜑
𝑛−1
‖ = 0. Thus, for given 𝜀 > 0

and ‖𝑓
𝑡
‖
2

∞
> 0, there exists an𝑁 ∈ N such that


𝑓


𝑡



2

∞
sup
𝑎∈𝛿

∬
Δ

𝑛
2
(𝑛 − 1)

2 
𝜑
𝑛−2
(𝑧)


2 
𝜑

(𝑧)


2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜀,

(28)

whenever 𝑛 ≥ 𝑁. Hence, for 0 < 𝑟 < 1,

𝑁
2
(𝑁 − 1)

2 sup
𝑎∈𝛿

∬
Δ


𝜑
𝑁−2
(𝑧)


2 
𝜑

(𝑧)


2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) ≥ 𝑁
2
(𝑁 − 1)

2

⋅ sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


𝜑
𝑁−2
(𝑧)


2 
𝜑

(𝑧)


2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) ≥ 𝑁
2
(𝑁 − 1)

2

⋅ 𝑟
2(𝑁−2)sup

𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


𝜑

(𝑧)


2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) .

(29)

Therefore, for 𝑟 > (𝑁2 − 𝑁)−1/(𝑁−2),


𝑓


𝑡



2

∞
sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


𝜑

(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜀. (30)
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Thus we have already proved that, for any 𝜀 > 0 and 𝑓 ∈ B
0
,

there exists a 𝛿 = 𝛿(𝜀, 𝑓) such that

sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


𝑓

(𝜑 (𝑧)) 𝜑


(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

< 𝜖

(31)

holds whenever 𝛿 < 𝑟 < 1.
We finish our proof by showing that the above 𝛿 = 𝛿(𝜀, 𝑓),

in fact, is independent of 𝑓 ∈ B
0
. Since 𝐶

𝜑
𝐷 is compact,

𝐶
𝜑
𝐷(𝐸) is relatively compact in 𝑄

𝐾
. It means that there is a

finite collection of functions 𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
in 𝐸 such that, for

any 𝜀 > 0 and 𝑓 ∈ 𝐸, we can find 𝑓
𝑘
(1 ≤ 𝑘 ≤ 𝑚) satisfying

sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


((𝐶
𝜑
𝐷𝑓
𝑘
)


− (𝐶
𝜑
𝐷𝑓)) (𝑧)



2

⋅ 𝐾 (𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜀.

(32)

On the other hand, if max
1≤𝑘≤𝑚

𝛿
𝑘
(𝜀, 𝑓
𝑘
) = 𝛿 < 𝑟 < 1, we have

from the previous observation that, for all 𝑘 = 1, 2, . . . , 𝑚,

sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


(𝐶
𝜑
𝐷𝑓
𝑘
)


(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜀. (33)

By the triangle inequality we obtain that

sup
𝑎∈Δ

∬
|𝜑(𝑧)>𝑟|


(𝐶
𝜑
𝐷𝑓)


(𝑧)


2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜀 (34)

holds whenever 𝛿 < 𝑟 < 1. The proof is complete.

Theorem 5. Let 𝜑 be an analytic self-map of Δ. Suppose𝐾 is a
nondecreasing and right-continuous function on [0, +∞) such
that

∫

1/𝑒

0

𝐾(− log 𝑟) 𝑟 𝑑𝑟 < +∞. (35)

Then the following statements are equivalent:

(a) 𝐶
𝜑
𝐷 :B→ 𝑄

𝐾
is compact.

(b) 𝐶
𝜑
𝐷 :B

0
→ 𝑄
𝐾
is compact.

(c) 𝐶
𝜑
𝐷 :B→ 𝑄

𝐾
is bounded:

lim
𝑡→1

sup
𝑎∈Δ

∬
|𝜑(𝑧)|>𝑡


𝜑

(𝑧)


2

(1 −
𝜑 (𝑧)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

= 0.

(36)

Proof.

(c) ⇒ (a). Assume (c) holds. Without loss of generality, let
{𝑓
𝑛
}
𝑛∈𝑁

be a sequence in 𝐸 which converges to 0 uniformly
on compact subsets of Δ, as 𝑛 → +∞, where 𝐸 is the unit
ball of B. By Cauchy’s estimate, we know that {𝑓

𝑛
}
𝑛∈𝑁

also
converges to 0 uniformly on compact subsets of Δ. For the
sufficiency we will be verifying that {𝐶

𝜑
𝐷𝑓
𝑛
} converges to 0

in 𝑄
𝐾
norm. By the assumption, for any 𝜀 > 0, there exists a

𝑡
0
∈ (0, 1) such that

sup
𝑎∈Δ

∬
|𝜑(𝑧)|>𝑡0


𝜑

(𝑧)


2

(1 −
𝜑 (𝑧)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧) < 𝜀. (37)

Let 𝑇 = {𝑧 ∈ Δ : |𝜑(𝑧)| ≤ 𝑡
0
}; then we have


𝐶
𝜑
𝐷𝑓
𝑛



2

= sup
𝑎∈Δ

∬
Δ


𝜑

(𝑧) 𝑓


𝑛
(𝜑 (𝑧))



2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

= sup
𝑎∈Δ

∬
𝑇


𝜑

(𝑧) 𝑓


𝑛
(𝜑 (𝑧))



2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

+ sup
𝑎∈Δ

∬
Δ/𝑇


𝜑

(𝑧) 𝑓


𝑛
(𝜑 (𝑧))



2

𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤ sup {𝑓


𝑛
(𝜑 (𝑧))



2

: 𝑧 ∈ 𝑇}
𝜑 (𝑧)

𝐾
+
𝑓𝑛


2

B

⋅ sup
𝑎∈Δ

∬
Δ/𝑇


𝜑

(𝑧)


2

(1 −
𝜑 (𝑧)



2
)
4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

≤ sup {𝑓


𝑛
(𝜑 (𝑧))



2

: 𝑧 ∈ 𝑇}
𝜑 (𝑧)

𝐾
+
𝑓𝑛


2

B

⋅ 𝜀.

(38)

By 𝐶
𝜑
𝐷 is bounded, we know that 𝜑 ∈ 𝑄

𝐾
. It follows that

‖𝐶
𝜑
𝐷𝑓
𝑛
‖ → 0 since that sup{|𝑓

𝑛
(𝜑(𝑧))|

2
: 𝑧 ∈ 𝑇} → 0 as

𝑛 → ∞. By Lemma 1, we can obtain that 𝐶
𝜑
𝐷 : B → 𝑄

𝐾
is

compact.

(a)⇒ (b). It is obvious.

(b)⇒ (c). Suppose that 𝐶
𝜑
𝐷 :B

0
→ 𝑄
𝐾
is compact. Then it

is clear that 𝐶
𝜑
𝐷 : B

0
→ 𝑄
𝐾
is bounded. We know that

𝑓
𝜃
(𝑧) = (1/2) log(1/(1 − 𝑒−𝑖𝜃𝑧)) ∈ B for all 𝜃 ∈ [0, 2𝜋).

Choose a sequence {𝜆
𝑛
} inΔwhich converges to 1 as 𝑛 → ∞,

and let 𝑓
𝜃,𝑛
= 𝑓
𝜃
(𝜆
𝑛
𝑧) for 𝑛 ∈ N. Thus 𝑓

𝜃,𝑛
in 𝐸 for all 𝑛 ∈ N

and 𝜃 ∈ [0, 2𝜋), where 𝐸 is the unit ball ofB
0
. By Lemma 4,

for any 𝜀 > 0

sup
𝑎∈Δ

∬
|𝜑(𝑧)|>𝑡


𝜆
2

𝑛
𝜑

(𝑧)


2

(1 − 𝑒−𝑖𝜃𝜆
𝑛
𝜑 (𝑧))

4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

< 𝜀

(39)

holds for any 𝑛 ∈ N and 𝜃 ∈ [0, 2𝜋). That is,

lim
𝑡→1

sup
𝑎∈Δ

∬
|𝜑(𝑧)|>𝑡


𝜆
2

𝑛
𝜑

(𝑧)


2

(1 − 𝑒−𝑖𝜃𝜆
𝑛
𝜑 (𝑧))

4
𝐾(𝑔 (𝑧, 𝑎)) 𝑑𝐴 (𝑧)

= 0.

(40)

Thus, we obtain (c) by integrating, with respect to 𝜃,
the Fubini theorem, the Poisson formula, and the Fatou’s
lemma.
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