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Several cells and microorganisms, such as bacteria and somatic, have many essential features, one of which can be modeled by the
chemotaxis system, which we consider to be our main interest in this article. More precisely, we studied the hyperbolic system
derived from the chemotaxis model with fractional dissipation, which is a generalization for the hyperbolic system with classical
dissipation.Te results of this article are divided into two parts. In the frst part, we used energy methods to obtain the existence of
small solutions in the Besov spaces. Te second one deals with the optimal decay of perturbed solutions using a refned time-
weighted energy combined with the Littlewood-Paley decomposition technique. To the authors’ best knowledge, this type of
system (with fractional dissipation) has not been studied in the literature.

1. Introduction

Tis present article aims to study the hyperbolic chemotaxis
system, which is governed by the following Cauchy problem:

zt
􏽥p + ϖΛσ 􏽥p � div(􏽥pq) if (t, x) ∈ R+ × R

d
,

ztq + λΛσq � ∇ 􏽥p + λ|q|
2

􏼐 􏼑 if (t, x) ∈ R+ × R
d
,

(􏽥p, q)|t�0 � 􏽥p0, q0( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where 􏽥p(t, x) represents the cell density, q(t, x) � − (∇v/v)

with v is the chemical concentration,ϖ> 0 and λ≥ 0 describe
the cell and chemical difusion coefcients, respectively, and
the fractional operator Λσ � (− ∆)σ/2 denotes the fractional
Laplacian operator. In the whole spaceRd, the operatorΛσ is
defned via the following Fourier transform:

􏽤Λσf( 􏼁(ξ)≜ |ξ|
σ 􏽣(f)(ξ). (2)

Chemotaxis model (1) describes the ability of free-
moving organisms to react to chemical substances or
their concentration diferences with specifc, directed
movements. On the other hand, the fractional dissipation
has several applications in the molecular biology, we
mention as an example the anomalous difusion and
chemical attraction to organisms in semiconductor growth,
see for instance [1]. It is well known that the fractional
chemotaxis system (1) is derived from the following ca-
nonical formulation of the famous “Keller-Segel” model
[2, 3]:

ztu � − ϖΛσu − div(χu∇Ψ(v)) if (t, x) ∈ R+ × R
d
,

ztv � − λΛσv + f(u, v) if (t, x) ∈ R+ × R
d
,

(p, q)|t�0 � p0, q0( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)
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where χ is a constant that represents the chemosensitivity;
when the coefcient χ > 0, we say that the system is attractive
and in the case when the coefcient χ < 0, the system is
repulsive. Te function Ψ describes the mechanism of signal
detection. In the situation, when the function
Ψ(u) � ∇(Λ− σ/2u) with σ ∈ (1,2] Biler and Wu [4] in-
vestigated system (3) in the Besov spaces. In particular, they
have established the local existence and uniqueness of so-
lutions. Later, Zhai [5] studied the system in the case when
f(u, v) � u; more precisely, Zhai [5] showed that system (3)
admits a mild solutions. Tere is a large literature on the
analysis of system (3), we refer the reader to [6–10] and the
references therein. For the case, when λ � 0, then system (1)
turns out to be the hyperbolic-parabolic chemotaxis; in this
context, when the fractional Laplacian operator is
substituted by the classical Laplacian operator, Zhang and
Zhu [11] investigated the Cauchy problem for system (1) σ �

2, λ � 0 with small initial data. Lately, Jun et al. [12] explored
the global existence of system (1) σ � 2, λ � 0 with large
initial data. Recently, Hao [13] showed that system (1) σ �

2, λ � 0 admits a unique solution near to some constant
equilibrium state in the critical hybrid Besov spaces
Bd/2− 2(Rd) × Bd/2− 2,d/2− 1(Rd). In their very recent work Nie
and Yuan [14] investigated the well-posedness and the ill-
posednes in the critical Besov spaces
_B
d/2− 2
p,q (Rd) × _B

d/2− 1
p,q (Rd). For this hyperbolic-parabolic

system, there have been a large number of results con-
cerning the long-time dynamics to the solutions, blow-up
phenomenon, and the existence of global solutions (see for
instance, [15–19]). Here, we focus on the chemically dif-
fusible model corresponding to the case of λ> 0. As far as we
know, the results obtained for the Hyperbolic model (1) λ> 0
are less compared to Hyperbolic-Parabolic model (1) λ � 0.
In the situation, when the fractional Laplacian is changed by
the full Laplacian operator, Tao et al. [20] proved that system
(1) λ> 0 is globally well posed; moreover, they have obtained
the long-time behavior, and difusion limit of one-
dimensional large-amplitude classical solutions on fnite
intervals subject to the Neumann-Dirichlet boundary con-
ditions. Tereafter, in [21], Li and Zhao explored the same
issues of [20] but for the Dirichlet-Dirichlet boundary
conditions.Wang et al. [22] investigated the global existence,
asymptotic decay rates, and difusion convergence rate of
small solutions in the Sobolev framework. Recently, Mar-
tinez et al. [23] proved a set of results, such as, the global
asymptotic stability of constant ground states and the ex-
plicit decay rate of solutions. More recently, Wu and Su [24]
showed that system (1) σ � 2 admits global solution and also
they have obtained a decay rate of solutions in the Besov
spaces. For the traveling wave solution of problem (1) with
σ � 2 and its nonlinear stability, see the series of papers
[25–28].

Stimulated by the above works, especially with [24], the
main objective of this article is to investigate system (1) with

the fractional Laplacian operator Λσ , with σ ∈ (1, 2). To be
more precise, we have the following two outcomes:

Theorem 1. Assume that 1< σ < 2, d≥ 2 and υ ∈ [1,∞]. Let
(π0, q0) ∈ _B

α
2,υ. We assume that there exists a constant ϵ> 0

such that

π0
����

���� _B
α
2,υ

+ q0
����

���� _B
α
2,υ
≤ ϵ, (4)

where α � d/2 − σ + 1 and π0 � 􏽥p0 − p, for some equilibrium
state p> 0. Ten, system (1) admits a global unique solution
(􏽥p, q) satisfying for any T> 0:

􏽥p − p, q ∈ L
∞ 0, T; _B

(d/2)− σ+1
2,υ􏼒 􏼓∩ L

1 0, T; _B
(d/2)+1
2,υ􏼒 􏼓. (5)

Remark 1. From the identity _B
s

2,2 ≈ _H
s, then for υ � 2,

Teorem 1 implies the global well-posedness in the scale of
(homogeneous) Sobolev spaces.

Our existence theorem is based on the energy estimates.
Due to the presence of the terms div(􏽥pq) and ∇(|q|2), we
established with the help of Bony’s decomposition (see the
next section) a product estimates, thus we can get the a priori
estimates of our system, which leads us to get the global
small solutions in _B

(d/2)− σ+1
2,υ .

Te second result of this article deals with the time decay
rates of strong solutions for system (1), which is given as
follows:

Theorem 2. Let 1< σ < 2, d≥ 2 and υ ∈ [1,∞]. Let
(􏽥p0 − p, q0) ∈ Bα

2,1 ∩ _B
0
1,∞. Tere exists a constants ϵ> 0 such

that if

π0
����

����
Bα
2,1 ∩ _B

0
1,∞

+ q0
����

����
Bα
2,1 ∩ _B

0
1,∞
≤ ϵ, (6)

where α � (d/2) − σ + 1 and π0 � 􏽥p0 − p, then system (1) has
a unique global solution as follows:

π, q ∈ L
∞ 0, T; B

(d/2)− σ+1
2,1􏼐 􏼑, (7)

where π � 􏽥p − p. Furthermore, there exists a positive constant
M0 such that

‖(π, q)‖
B

(d/2)− σ+1
2,1
≤M0(1 + t)

− (d/2σ)
. (8)

Remark 2. Teorem 2 gives the optimal decay of solutions
for system (1) due to embedding B

(d/2)− σ+1
2,1 ⟶ L2.

Remark 3. In the sequel and for the simplicity we assume
(without loss of generality) λ � ϖ � p � 1.

Te content of this article is arranged as follows. We
introduced the notations and some useful defnitions and
results in Section 2, then we reformulated system (1) and we
established some useful a priori estimates in section 3.
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Section 4 is devoted to the proof of the existence of solutions.
Finally, we proved Teorem 2 in Section 5.

1.1. Notation. C or M stands for some positive constant and
may represent diferent values in diferent lines, the notation
X≲Y means that there exist a constant M0 > 0 such that
X≤M0Y, where M0 is a constant depending on the
initial data.

2. Preparatory

In this section, we recall some ingredients, such as the fa-
mous Littlewood–Paley operators and Bony decomposition,
also some function spaces will be introduced.

2.1. Littlewood–PaleyTeory. We start this section by giving
the defnition of the dyadic partition of unity.

Defnition 1. Tere exists (χ,ψ) ∈ D(R2) × D(R2
∗) such

that

For all ξ ∈ R2
, χ(ξ) + 􏽘

q∈N
ψ 2qξ( 􏼁 � 1.

(9)

For every f ∈ S′(Rd), we defned the operators _∆ς, and
_Sς as follows. Let ς ∈ Z

_∆ςb≜ψ 2− ς
z( 􏼁b,

_Sςb≜ χ 2− ς
z( 􏼁b,

(10)

and ∆ς as follows:

∆− 1b≜ χ(z)f, and  for all  ς≥ 0,∆ςb≜ψ 2− ς
z( 􏼁b. (11)

By the defnition of localization operators above, we have
some interesting properties as follows:

(1 )Te formal Littlewood–Paley decomposition:

b � 􏽘
ς∈Z

_∆ςb, for all b ∈ S′ Rd
􏼐 􏼑. (12)

(2 )Te quasiorthogonality:

(i) If |ς − κ|≥ 2, then _∆κ _∆ςb � 0;
(ii) if |ς − κ|≥ 5, then _∆κ( _Sςb

_∆ςb) � 0.

Te paradiferential calculus plays a key role in the
proof of the existence result, and its given by the
following defnition:

(i) Bony decomposition
For a, b ∈ S′(Rd), we have the following equation:

ab � T
.

ab + T
.

ba + R
.

(a, b), (13)

with

_Tab � 􏽘
q

_Sq− 1a
_∆qb,R

.

(a, b) � 􏽘
q

_∆q
􏽥_∆qb with  􏽥_∆q � _∆q− 1 + _∆q + _∆q+1. (14)

Te next result is the famous Bernstein inequality, for
the proof see [29].

Proposition 1. Let 1≤ θ≤ ϑ≤∞. Assume H ∈ Lθ, then for
every ι ∈ Nd, there exists constants M1, M2 such that

supp 􏽢H ⊂ |ξ|≤A02
q

􏼈 􏼉⇒ z
ι
H

����
����Lϑ ≤M12

q(|ι|+d(1/θ− 1/ϑ)
‖H‖Lθ ,

supp 􏽢H ⊂ A12
q ≤ |ξ|≤A02

q
􏼈 􏼉⇒‖H‖Lθ ≤M22

− qk sup|ι|�kz
k
‖H‖Lθ .

(15)

Now, we recall the defnitions of homogeneous and
nonhomogeneous Besov spaces.

Defnition 2. For (η, θ) ∈ R × [1, +∞] and 1≤ υ<∞. Te
homogeneous Besov space _B

η
θ,υ is defned as the set of all

tempered distributions a ∈ S′(Rd) such that:

‖a‖ _B
η
θ,υ
≜ 2qη _∆qa

�����

�����Lθ􏼒 􏼓
lυ(Z)
<∞. (16)

Besides, if υ �∞

‖a‖ _B
η
θ,∞
≜ supq∈Z 2qη _∆qa

�����

�����Lθ􏼒 􏼓<∞. (17)

Defnition 3. For (η, θ) ∈ R × [1, +∞] and 1≤ υ<∞. Te
nonhomogeneous Besov space B

η
θ,υ is defned as the set of all

tempered distributions a ∈ S′(Rd) such that

‖a‖B
η
θ,υ
≜ 2qη ∆qa

�����

�����Lθ􏼒 􏼓
lυ(Z)
<∞. (18)

Besides, if υ �∞

‖a‖B
η
θ,∞
≜ sup

q∈N∪ − 1{ }

2qη ∆qa
�����

�����Lθ􏼒 􏼓<∞. (19)

Te following spaces are introduced by Chemin and
Lerner in [30]:

Defnition 4. We assume that τ > 0 and ζ ≥ 1, the space
L
ζ
TB

η
θ,υ is the set of a ∈ S′(Rd) such that
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a
L
ζ
τ _B

η
θ,υ
≜

������

������ 2qη _∆qa
�����

�����Lθ􏼒 􏼓
lr(Z)

L
ζ
τ
<∞, (20)

and the space 􏽥L
ζ
τ

_B
η
θ,∞ is the space a ∈ S′(Rd) such that

‖a‖
􏽥L
ζ
τ

_B
η
θ,υ

≜ 2qη _∆qa
�����

�����L
ζ
τLθ􏼒 􏼓

lr(Z)
<∞. (21)

As a consequence of the last defnition, we have the
following embedding. Let ϵ> 0, then we have the following
equation:

L
ζ
τB

η
θ,υ→ 􏽥L

ζ
τ

_B
η
θ,υ,∀υ≥ ζ,

􏽥L
ζ
τ

_B
η
θ,υ→ L

ζ
τ

_B
η
θ,υ,∀ζ ≥ υ.

(22)

Te following Lemma is useful in our contribution, for
more details see [31].

Lemma 1. (i) Let ]1, ]2 > 0 satisfying max ]1, ]2􏼈 􏼉> 1. Ten

􏽚
τ′

0
1 + τ′ − τ􏼒 􏼓

− ]1
(1 + τ)

− ]2dτ ≤M]1 ,]2 1 + τ′􏼒 􏼓
− min ]1 ,]2{ }

,

τ′ > 0.

(23)

(ii) Let ]1, ]2 > 0 and b ∈ L∞((0,∞)). Ten

􏽚
τ′

0
1 + τ′ − τ􏼒 􏼓

− ]1
(1 + τ)

− ]2b(τ)dτ ≤M]1 ,]2 1 + τ′􏼒 􏼓
− min ]1 ,]2{ }

􏽚
τ′

0
|b(τ)dτ|, τ′ > 0. (24)

We fnished this section by establishing a product
estimate.

Lemma 2. Let σ ∈ (1, 2), υ ∈ [1,∞] and
u, v ∈ _B

(d/2)− σ+1
2,υ ∩ _B

(d/2)+1
2,υ . Ten uv ∈ _B

(d/2)− σ+2
2,υ and we have

the following equation:

‖uv‖ _B
(d/2)− σ+2
2,υ
≤C ‖u‖ _B

(d/2)− σ+1
2,υ

‖v‖ _B
(d/2)+1
2,υ

+‖v‖ _B
(d/2)− σ+1
2,υ

‖u‖ _B
(d/2)+1
2,υ

􏼒 􏼓.

(25)

Proof. By using the Bony decomposition (13), we split the
term uv as follows:

uv � T
.

uv + T
.

vu + R
.

(u, v). (26)

From the property (2) part (ii), we have the following
equation:

_∆κ(uv)
����

����L2 � 􏽘
|ς− κ|≤ 4

_∆κ _Sς− 1u
_∆ςv􏼐 􏼑

�����

�����L2 + 􏽘
|ς− κ|≤4

_∆κ _Sς− 1v
_∆ςu􏼐 􏼑

�����

�����L2

+ 􏽘

lς≥κ− 3
|ι|≤1

_∆κ _∆ςu _∆ς− ιv)‖L2.􏼐
�����

(27)

Multiplying equation (27) by 2κ((d/2)+2− σ) and taking the
l] norm we fnd out that

uv _B
(d/2)− σ+2
2,]
≤

������

������ 2k((d/2)− σ+2)
􏽘

|ς− κ|≤4

_∆κ _Sς− 1u
_∆ςv􏼐 􏼑

�����

�����L2⎛⎝ ⎞⎠

κ∈Z
lυ(Z)

+ 2κ((d/2)− σ+2)
􏽘

|ς− κ|≤4

_∆κ _Sς− 1v
_∆ςu􏼐 􏼑

�����

�����L2⎛⎝ ⎞⎠

κ ∈ Z

����������

����������lυ(Z)

+ 2κ((d/2)− σ+2)
􏽘

ς≥κ− 3|ι|≤1

_∆κ _∆ςu _∆ς− ιv􏼐 􏼑
�����

�����L2
⎛⎝ ⎞⎠κ ∈ Z

����������

����������lυ(Z)

≜K1 + K2 + K3.

(28)
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For the frst term K1 we used Hölder inequality and
Young inequality and obtained the following equation:

K1≲ 2κ((d/2)− σ+2)
􏽘

κ′≤κ− 2

_∆κ′u
����

����L∞
_∆κv

����
����L2

⎛⎝ ⎞⎠

κ∈Z

����������

����������
lυ(Z)

≤ 􏽘

κ′≤κ− 2

2 κ′− κ( )(σ− 1)2κ
′(1− σ) _∆κ′u

����
����L∞

2κ((d/2)+1) _∆κv
����

����L2
⎛⎝ ⎞⎠

κ∈Z

����������

����������
lυ(Z)

≤ u _B
1− σ
∞,∞

������

������v _B
(d/2)+1
2,υ

.

(29)

Similarly, we obtain the following equation:

K2 ≲ ‖u‖ _B
(d/2)+1
2,υ

‖v‖ _B
1− σ
∞,∞

. (30)

Taking advantage of Young inequality and the Hölder
inequality, it holds that

K3 ≲ 2κ((d/2)− σ+2)
􏽘

ς≥ κ− 3
|ι|≤ 1

_∆ςu
����

����L∞
_∆ς− ιv

����
����L2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
κ∈Z

�������������������

�������������������
lυ(Z)

≲ 􏽘
ς≥ κ− 3|ι|≤ 1

2(1− σ)ς _∆ςu
����

����L∞
2((d/2)+1)(ς− ι) _∆ς− ιv

����
����L22((d/2)+2− σ)(κ− ς)⎛⎝ ⎞⎠

κ∈Z

����������

����������lυ(Z)

≲ ‖u‖ _B
1− σ
∞,∞

‖v‖ _B
(d/2)+1
2,υ

.

(31)

By the Besov embedding _B
(d/2)− σ+1
2,υ → _B

− σ+1
∞,∞, we get the

desired result. □

3. Reformulation of System and the
a Priori Estimate

In this paragraph, we reformulated the original system (1),
where we will assume (without loss of generality) that the
equilibrium state p � 1 and we set π � 􏽥p − 1, the system
becomes as follows:

ztπ + Λσπ � div(πq) + divq if (t, x) ∈ R+ × R
d
,

ztq + Λσq � ∇ π +|q|
2

􏼐 􏼑 if (t, x) ∈ R+ × R
d
,

(π, q)|t�0 � π0, q0( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

We will study the a priori estimates for linearized system
(32) with general source term as follows:

ztπ + Λσπ − divq � F if (t, x) ∈ R+ × R
d
,

ztq + Λσq − ∇π � H if (t, x) ∈ R+ × R
d
,

(π, q)|t�0 � π0, q0( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

We note that system (33) is given by the following
equation:

ztV + LσV � G if (t, x) ∈ R+ × R
d
,

V |t�0 � V0,

⎧⎨

⎩ (34)

where V(t) � (π(t), q(t))T,G � (F, H)T and

Lσ �
Λσ − div

− ∇ ∆σ
􏼠 􏼡. (35)

Next, we prove the A priori estimate for system (32).

3.1. A Priori Estimate

Proposition 2. We assume that (π, q) is a regular solution
for the system (32), then for all t ∈[0,T),
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‖π‖ _B
(d/2)− σ+1
2,υ

+‖q‖ _B
(d/2)− σ+1
2,υ

+ 􏽚
t

0
‖π(τ)‖ _B

(d/2)+1
2,υ

+‖q(τ)‖ _B
(d/2)+1
2,υ

dτ

≲ π0
����

���� _B
(d/2)− σ+1
2,υ

+ q0
����

���� _B
(d/2)− σ+1
2,υ

+‖F‖
L1

t
_B
(d/2)− σ+1
2,υ

+‖H‖
L1

t
_B
(d/2)− σ+1
2,υ

.

(36)

Proof. Let k ∈ Z and we set (πk, qk) � ( _∆kπ, _∆kq) and
(Fk, Hk) � ( _∆k(divπq), _∆k(∇(|q|2)).

We observed that (πk, qk) solves the following system:

ztπk + Λσπk � divqk + Fk

ztqk + Λσqk � ∇πk + Hk.
􏼨 (37)

Taking the L2-scalar product of equation (37), we found
out that

1
2

d

dt
πk(t)‖

2
L2+

����
����Λσ/2πk(t)‖

2
L2 � divqk, πk( 􏼁 + Fk, πk( 􏼁

1
2

d

dt
qk(t)‖

2
L2+

����
����Λσ/2qk(t)‖

2
L2 � ∇πk, qk( 􏼁 + Hk, qk( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(38)

For simplicity, we set X2(t)≜ ‖πk(t)‖ 2
L2 + ‖qk(t)‖ 2

L2 .
According to the identity (∇πk, qk) � (divqk, πk) and
Bernstein’s Lemma, we get the following equation:

1
2

d

dt
X

2
(t) + 2σk

X
2
(t)≤ FkL2+

����
����HkL2􏼐 􏼑X(t). (39)

Tus,

1
2

d

dt
X(t) + 2σk

X(t)≤ FkL2+
����

����HkL2 . (40)

Multiplying equation (40) by 2k((d/2)− σ+1) and taking the
lυ norm over k ∈ Z, we obtained the following equation:

1
2

d

dt
‖π‖ _B

(d/2)− σ+1
2,υ

+‖q‖ _B
(d/2)− σ+1
2,υ

􏼒 􏼓 +‖π(t)‖ _B
(d/2)+1
2,υ

+‖q(t)‖ _B
(d/2)+1
2,υ

dτ ≲ ‖F‖ _B
(d/2)− σ+1
2,υ

+‖H‖ _B
(d/2)− σ+1
2,υ

.

(41)

Integrating the above estimate with respect to time,
hence, we get the desired result. □

4. Existence

For the proof of the existence part, we are going to use the
classical Friedrichs’ regularization method combined with
the energy method. First, we defne the spectral cutof as
follows. Let μ> 0

􏽢Jμa(ω)≜ 1Bμ
􏽢a(ω), (42)

where Bμ � x ∈ Rd/|x|≤ μ􏽮 􏽯 and 1Bμ
denotes the charac-

teristic function on the ball Bμ. We defne the following
equation:

L
2
μ ≜ a ∈ L

2
: supp􏽢a ⊂ B(0, μ)􏽮 􏽯. (43)

We consider the following approximate system:

ztπμ + Λσπμ � Fμ if (t, x) ∈ R+ × R
d
,

ztqμ + Λσqμ � ∇πμ + Hμ if (t, x) ∈ R+ × R
d
,

πμ, qμ􏼐 􏼑
|t�0 � Jμπ0, Jμq0􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(44)

where Fμ � Jμ(div(πq)) and Hμ � Jμ(∇(|q|2)).
Te usual (Cauchy Lipschitz) theorem guarantees that

system (44) admits a unique regular solution C([0, T∗μ) L2
μ).

Denote

‖(π, q)‖
X

(d/2),σ
t
≜ ‖(π, q)‖

L∞t
_B
(d/2)− σ+1
2,υ

+‖(π, q)‖
L1

t
_B
(d/2)+1
2,υ

. (45)

Let

Tμ ≜ sup T ∈ 0, T
∗
μ􏼐 􏼑: πμ, qμ􏼐 􏼑

�����

�����X(d/2),σ
t

≤M􏽥C π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

􏼚 􏼛,

(46)

where 􏽥C≥ 2 and M � (1/2C􏽥C
2
‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ

), thus we
have Tμ > 0. From Lemma 2.5, we deduce that

Fμ

�����

�����􏽥L
1
t

_B
(d/2)+1− σ
2,υ
≤C πμqμ

�����

�����􏽥L
1
t

_B
(d/2)+2− σ
2,υ

≤C qμ ‖􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

������

������πμ ‖􏽥L
1
t

_B
(d/2)+1
2,υ

+ πμ ‖􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

������

������qμ ‖􏽥L
1
t

_B
(d/2)+1
2,υ

􏼠 􏼡

≤C πμ, qμ􏼐 􏼑 ‖􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

������

������ πμ, qμ􏼐 􏼑 ‖􏽥L
1
t

_B
(d/2)+1
2,υ

.

(47)
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In a similar way,

Hμ

�����

�����􏽥L
1
t

_B
(d/2)+1− σ
2,υ
≤C qμqμ

�����

�����􏽥L
1
t

_B
(d/2)+2− σ
2,υ

≤C qμ

�����

�����􏽥L
∞
t

_B
(d/2)− σ+1
2,υ

qμ

�����

�����􏽥L
1
1

_B
(d/2)+1
2,υ

􏼠 􏼡.

(48)

Hence,

πμ, qμ􏼐 􏼑
�����

�����X(d/2),σ
t

≤ 􏽥C π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

+ C πη, qη􏼐 􏼑
�����

�����
2

X
(d/2),σ
t

􏼒 􏼓

≤ 􏽥C π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

1 + C(M􏽥C)
2 π0, q0( 􏼁
����

���� _B
(d/2)− σ+1
2,υ

􏼒 􏼓,

(49)

where C≥ 2. We choose ‖(π0, q0)‖ _B
(d/2)− σ+1
2,υ
< 1/4􏽥C

2
C. Tere-

fore, 1 + M2 􏽥C
2
C‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ
<M. Ten, for any T<Tμ,

we have ‖(πμ, qμ)‖
X

(d/2),σ
t
≤ 􏽥CM‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ
≤ (1/4). Our

next aim is to prove thatTμ � T⋆μ ; previously, we showed that
‖(πμ, qμ)‖

X
(d/2),σ
t
≤M􏽥C‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ

for all Tμ <T⋆μ . By the
continuity argument, we can get
‖(πμ, qμ)‖

X
(d/2),σ
t+δ
≤M􏽥C‖(π0, q0)‖ _B

(d/2)− σ+1
2,υ

, for a sufciently small
constant δ > 0, which contradicts the defnition of Tμ. Next,
we will show that system (44) admits global solutions. For
this aim, we assumed that T⋆ < +∞, we have
‖(πμ, qμ)

X
(d/2),σ
t
≤M􏽥C‖(π0, q0) _B

(d/2)− σ+1
2,υ

. On the other hand, we

have πμ, qμ ∈ 􏽥L
∞

([0, T⋆μ ); _B
(d/2)− σ+1
2,υ ), then we have

‖(πμ, qμ)‖L∞([0,T⋆μ );L2
μ)< +∞. By the Cauchy-Lipschitz Te-

orem we can continue the solution beyond the time T⋆μ and
this contradicts the defnition of T⋆μ . Hence, T⋆μ � +∞. By
standard arguments, we can show that (πμ, qμ)μ> 0 converges
to the solution (π, q) which solves system (32) and here we
omit the details.

5. Optimal Decay of Solutions

To know more about the asymptotic behavior of the solu-
tions obtained in the previous results, we studied in this
section the optimal temporal decay of perturbed solution in
terms of B

(d/2)− σ+1
2,1 − norm, where we will estimate low

frequencies and high frequencies separately. For the low
frequencies, we use the good behavior of the semigroup
Aσ(ρ). Regarding the high frequencies, we make use of the
Fourier localization method.

Proof of Teorem 2. We assume that V(t)≜ (π(t), q(t))T is
a smooth solution for system (33) and
(F, H)≜ (div(πq),∇(|q|2))T, Ten, employing Duhamel’s
principle, we found out that

V(ρ) � Aσ(ρ)V0 + 􏽚
ρ

0
Aσ(ρ)G(V(c))dc, (50)

where V0 � (π0, q0)
T,G(V(ρ)) � (F, H) and Aσ(ρ) is the

semigroup associated with the LHS of system (33), which is
given by the following equation:

Aσ(ρ)b � F
− 1

e
􏽢Lσ(ξ)􏽢b􏼒 􏼓, (51)

where

􏽢Lσ(ξ) �
|ξ|

σ
− iξ

− ξT |ξ|
σ
Id

􏼠 􏼡, (52)

where Id represents the identity matrix of the d dimension.
For convenience, we denoted the following equation:

Wlow(t)≜ sup
c∈[0,t]

(1 + c)
d/2σ ∆− 1V(c)

����
����L2

Whigh(t)≜ sup
c∈[0,t]

(1 + c)
d/2σ

􏽘
k≥ 0

2d/2− σ+1 ∆kV(c)
����

����L2,

(53)

therefore,

‖V(t)‖
B

(d/2)− σ+1
2,1
≤ (1 + c)

− d/2σ
Wlow(t) + Whigh(t)􏼐 􏼑. (54)

Since ∆k coincides with _∆k for all k≥ 0, then

Wlow(t)≤ sup
c∈[0,t]

(1 + t)
d/2σ

���������
Aσ(c)∆− 1V0

���������L2

+ sup
c∈[0,t]

(1 + t)
d/2σ

􏽚
c

0

���������
Aσ c − c

′
􏼒 􏼓∆− 1G V c

′
􏼒 􏼓􏼒 􏼓

���������
L2

,

Whigh(t)≤ sup
c∈[0,t]

(1 + t)
d/2σ

􏽘
k≥0

2d/2− σ+1
Aσ(τ) _∆kV0

���������L2

+ sup
c∈[0,t]

(1 + t)
d/2σ

􏽘
k≥0

2d/2− σ+1

���������
Aσ τ − τ′􏼒 􏼓 _∆kG V τ′􏼒 􏼓􏼒 􏼓

���������
L2 .

���������

(55)
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By virtue of [1], Lemma 2.4, we have the following
equation:

Aσ(t) _∆kV0
����

����L2 �
􏽤

Aσ(t) _∆kV0􏼐 􏼑L2 ≤Ce
− c0t2σk

������

������
_∆kV0

������L2
.

(56)

We also have the following equation:

Aσ(t)∆− 1V0
����

����L2 ≤ 􏽘

k′≤0

Aσ(t) _∆k′∆− 1V0
����

����L2

≤ 􏽘

k′≤0

Aσ(t) _∆k′V0
����

����L2.
(57)

In view of Bernstein’s Lemma, we obtained the following
equation:

Aσ(t)∆− 1V0
����

����L2 ≤ 􏽘

k′≤0

2k′d/2
e

− c0t2σk′
_∆k′V0

����
����L1. (58)

Multiplying both sides by td/2σ , according to [1], Lemma
2.35, we concluded that

t
d/2σ

Aσ(t)∆− 1V0
����

����L2 ≤C V0
����

���� _B
1
1,∞

􏽘

k′∈Z

t
d/2σ2k′d/2

e
− c0t2σk′

≤C V0
����

���� _B
1
1,∞

.

(59)

In a similar way, we also get the following equation:

Aσ(t)∆− 1V0
����

����L2 ≤ 􏽘

k′ ≤ 0

2k′d/2
e

− c0t2σk′
_∆k′V0

����
����L1

≤ V0
����

���� _B
1
1,∞

􏽘

k′≤0

2k′d/2

≤C V0
����

���� _B
1
1,∞

.

(60)

Summing up equations (59) and (60), we deduced the
following equation:

Aσ(t)∆− 1V0
����

����L2 ≤C(1 + t)
− d/2σ

V0
����

���� _B
0
1,∞

. (61)

For the high frequencies, we have the following equation:

t
d/2σ

􏽘
k≥0

Aσ(t) _∆kV0
����

����L2 ≤C 􏽘
k≥0

t
d/2σ

e
− c0t2σk

_∆kV0
����

����L2

≤C V0
����

���� _B
d/2− σ+1
2,1

.

(62)

Similarly, we get the following equation:

􏽘
k≥0

Aσ(t) _∆kV0
����

����L2 ≤C 􏽘
k≥0

e
− c0t2σk

_∆kV0
����

����L2

≤C V0
����

���� _B
d/2− σ+1
2,1

.

(63)

Consequently,

􏽘
k≥0

Aσ(t) _∆kV0
����

����L2 ≤C(1 + t)
d/2σ

V0
����

���� _B
d/2− σ+1
2,1

. (64)

According to Hölder inequality, we obtained the fol-
lowing equation:

‖G(V)‖L1 ≤ div(πq) ‖L1+
����

����∇ |q|
2

􏼐 􏼑 ‖L1

≤ ∇π ‖L2

����
����q ‖L2 + πL2

����
����divq ‖L2 + ∇q ‖L2

����
����q ‖L2

≤ J1 + J2 + J3.

(65)

By using the Besov embedding (Bs
2,1⟶ L2) for s≥ 0, we

found that

J1 ≤ ‖q‖ _B
(d/2)− σ+1
2,1

∆− 1∇π ‖L2+
����

���� 􏽘
κ≥0
∆κ∇π ‖

B
(d/2)
2,1

⎛⎝ ⎞⎠

≤ ‖q‖
B

(d/2)− σ+1
2,1

‖π‖
B

(d/2)− σ+1
2,1

+‖π‖ _B
(d/2)+1
2,1

􏼒 􏼓

≤ ‖V‖
B

(d/2)− σ+1
2,1

‖V‖
B

(d/2)− σ+1
2,1

+‖V‖ _B
(d/2)+1
2,1

􏼒 􏼓.

(66)

In a similar way, we bound J2, J3. Tus, we get the
following equation:

G(V)L1 ≤
����

����VB
(d/2)− σ+1
2,1

‖V‖
B

(d/2)− σ+1
2,1

+‖V‖ _B
(d/2)+1
2,1

􏼒 􏼓. (67)

According to equations (61) and (64) and Lemma 1, we
infer that

􏽚
c

0
Aσ

���� (c − z)∆− 1G(V(z))L2dz≤ 􏽚
c

0
(1 + c − z)

− d/2σ
‖G(V(z))‖ _B

0
∞,1

dz

≤ 􏽚
c

0
(1 + c − z)

− d/2σ
‖G(V(z))‖L1dz

≤ 􏽚
c

0
(1 + c − z)

− d/2σ
(1 + z)

− d/2σ
W(c) (1 + z)

− d/2σ
W(τ) +‖V‖ _B

d/2+1
2,1

􏼒 􏼓dz

≲(1 + c)
− d/2σ

W(τ)‖V‖
L1

t
_B
d/2+1
2,1

+(1 + c)
− d/2σ

W
2
(τ).

(68)

We used equations (47) and (48) with (υ � 1) and ob-
tained the following equation:

‖G(V(z))‖ _B
(d/2)− σ+1
2,1
≤ ‖div(πq)‖ _B

(d/2)− σ+1
2,1

+ ∇ |q|
2

􏼐 􏼑
�����

����� _B
(d/2)− σ+1
2,1

≲‖V‖
B

(d/2)− σ+1
2,1

‖V‖ _B
(d/2)+1
2,1

,

(69)
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where we have used also the embedding
_B
(d/2)− σ+1
2,1 ⟶ B

(d/2)− σ+1
2,1 . According to equation (64) and

Lemma 1, we found out that

􏽘
k≥0

2k((d/2)− σ+1)
􏽚

c

0
Aσ(c − z)∆kG(V(z))

����
����L2ds≤ 􏽚

c

0
(1 + c − z)

− (d/2σ)
‖G(V(z))‖ _B

(d/2)− σ+1
2,1

dz

≤ 􏽚
c

0
(1 + c − z)

− (d/2σ)
(1 + z)

− (d/2σ)
W(c)‖V(z)‖ _B

(d/2)+1
2,1

dz

≤ (1 + c)
− (d/2σ)

W(c)‖V(z)‖
L1

t
_B
(d/2)+1
2,1

.

(70)

In view of equations (61) and (64), we deduced the
following equation:

W(t)≤C V0
����

���� _B
0
∞,1 ∩ _B

(d/2)− σ+1
2,1

+ supc∈[0,t] 􏽚
c

0
∆− 1Aσ

���� (c − z)G(V(z))

�������L2
dz

+ supc∈[0,t] 􏽚
c

0
􏽘
k≥ 0

2k((d/2)− σ+1)
􏽚

c

0
Aσ(c − z)∆kG(V(z))

����
����L2dz.

(71)

Putting equations (68) and (70) into equation (71), we
obtained the following equation:

W(t)≲ V0
����

���� _B
0
∞,1 ∩ _B

(d/2)− σ+1
2,1

+ W(t) V0
����

���� _B
0
∞,1 ∩ _B

(d/2)− σ+1
2,1

+ W
2
(t).

(72)

A bootstrapping argument implies that there is ϵ> 0 such
that, if ‖V0‖ _B

0
∞,1 ∩ _B

(d/2)− σ+1
2,1
< ϵ, then for all t≥ 0,

W(t)≤M0ϵ, (73)

for some positive constant M0.Ten, the Proof ofTeorem 2
is now achieved. □

6. Conclusions

More or less recently, several methodologies have been
proposed to describe behaviors of some complex world
problems emerging in several applications, especially in
molecular biology. Te chemotaxis model gains increasing
interest from mathematicians; so far, the problem of exis-
tence and uniqueness of classical solutions to system (1)
(with fractional dissipation Λσ or classical dissipation − ∆) in
multidimensions d> 1 remains an open problem. In this
work, we were able to give a positive answer regarding the
existence of classical solutions with small initial data lying in
the Besov spaces; also, we managed to get the optimal
temporal decay of strong solutions. In the future direction, it
will be interesting to study the current model on recent
fractional derivatives, then demonstrate the efect of the
fractional order through some simulations.
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In this article, the analytical solutions of economically important model named as the Ivancevic option pricing model (IOPM)
along new defnition of derivative have been explored. For this purpose, expa function, extended sinh-Gordon equation expansion
(EShGEE) and extended (G′/G)-expansion methods have been utilized. Te resulting solutions are dark, bright, dark-bright,
periodic, singular, and other kinds of solutions. Tese solutions are obtained and also verifed by a Mathematica tool. Some of the
gained results are explained by 2-D, 3-D, and contour plots.

1. Introduction

Many mathematical models have been developed in many
areas of sciences in the form of nonlinear partial diferential
equations (NLPDEs). Numerous techniques are made to
gain exact solutions of NLPDEs such as generalized expo-
nential rational function scheme (GERFS) [1–4],
(m + 1/G)-expansion and Adomian decomposition schemes
[5], new generalized expansion method [6], simplest
equation and Kudryashov’s new function techniques [7],
modifed simple equation scheme [8], modifed Kudryashov
simple equation technique [9], frst integral technique [10],
Bäcklund transformation scheme [11], extended jacobi el-
liptic function expansion technique [12], and extended
(G/G)-expansion and improved (G′/G)-expansion schemes
[13].

In modern century, one of the most studied felds
from all over the world is the economy or fnance.
Terefore, such problems were studied to be explained

and investigated by using scientifc norms. Tus, such
works introduce more intellectual ways for the user.
Terefore, to observe fnancial market is highly impor-
tant. Deeper properties of the modeling of a global f-
nancial market produce global informative systems.
Especially, these dynamical systems can be used for deep
investigation of the productions. Te frst step is to
treatment its mathematical models being either complex-
valued or real values with wave function. Terefore, many
models were developed by experts in extracting their
wave distributions in today and future direction. In our
study, we use three methods expa function, extended
sinh-Gordon equation expansion (EShGEE), and ex-
tended (G′/G)-expansion methods. Tese methods have
various applications. Likely, some new kind of analytical
results of perturbed Gerdjikov–Ivanov model (pGIM)
have been achieved by using expa function and extended
tanh function expansion methods in [14]. By applying
expa function and hyperbolic function methods, various
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types of wave solutions of two nonlinear Schrödinger
equations are gained in [15]. New trigonometry and
hyperbolic function type soliton solutions of (2 + 1)-di-
mensional hyperbolic and cubic-quintic nonlinear
Schrödinger equations are achieved by applying extended
sinh-Gordon equation expansion technique in [16].
Bright, dark, and bright-dark soliton solutions of gen-
eralized nonlinear Schrödinger equation have been de-
termined by utilizing extended sinh-Gordon equation
expansion approach in [17]. Some exact solitons of
(2 + 1)-dimensional that improved the Eckhaus equation
are calculated by using extended (G′/G)-expansion
technique in [18]. Diferent types of exact solitons of
time-fractional parabolic equations are obtained by using
extended (G′/G)-expansion scheme in [19].

Our considering model is one of the important and
interesting economical models, namely, the Ivancevic
option pricing model (IOPM). It can be possible to derive
the Ivancevic option pricing model by using the Brow-
nian movement like the Black–Scholes option pricing
model. Te Ivancevic option pricing model is an adaptive-
wave model which is a nonlinear wave alternative for the
standard Black–Scholes option-pricing model, repre-
senting controlled Brownian behavior of fnancial mar-
kets, which is formally defned by adaptive nonlinear
Schrodinger (NLS) equations, defning the option-pricing
wave function in terms of the stock price and time. In the
literature, few techniques have been used on this model to
get diferent exact solutions. For example, new solutions
have been achieved in this model by applying the frac-
tionally reduced diferential transform technique in [20].
Dark, bright, dark-bright, complex, travelling, periodic,
trigonometric, and hyperbolic function solutions have
been achieved by applying rational sine-Gordon expan-
sion scheme and modifed exponential method in [21].
Rogue wave and dark wave solitons of the Ivancevic
option pricing equation have been obtained by using the
trial function method in [22].

Te fundamental purpose of the work is to explore
analytical solutions of the truncated M-fractional Ivancevic
option pricingmodel based on expa function, extended sinh-
Gordon equation expansion, and extended (G′/G)-expan-
sion methods.

Te paper is structured as follows:Te brief introduction
of model has been given in Section 2, together with other
useful properties and characterizations. Section 3 contains
the description of methodologies. Temathematical analysis
of model and its analytical solutions have been provided in
Section 4. Section 5 some solutions have been represented
through diferent types of graphics. Finally, Section 6
contains some discussion about the graphs and conclusion
of our research.

2. Model Description

Scholes and RobertMerton published their now-well-known
option pricing formula which would have an important
efect on the development of quantitative fnance. In their
model, typically known as Black–Scholes, the value of an

option depends on the future volatility of a stock rather than
on its expected return.Te Ivancevic option pricing model is
an adaptive-wave model which is a nonlinear wave alter-
native for the standard Black–Scholes option-pricing model,
representing controlled Brownian behavior of fnancial
markets, which is formally defned by adaptive nonlinear
Schrodinger (NLS) equations, defning the option-
pricing wave.

Let’s assume the M-fractional Ivancevic option pricing
model (IOPM) [22] given as follows:

ιDϵ,ϱM,tq +
δ
2

D
2ϵ,ϱ
M,2sq +Ω q|q|

2
� 0, ι �

���
−1

√
, (1)

where D
ε,ϱ
M,tq � limτ⟶ 0q(t Eϱ(τt1− ε)) − q(t)/τ, 0<

ε< 1, ϱ > 0.
Tis model was frst developed by Ivancevic [23] to fulfll

both behavioral and efcient markets. Here, q � q(s, t)

describes the option price wave profle. While t is time
variable and s is asset price of the model. Parameter δ
represents the volatility which shows either stochastic
process itself or only a constant. Where Ω � Ω(r,ω) is called
Landau coefcient which describes adaptive market potential.
In nonadaptive simplest case, Ω and r become equal which
shows the interest rate while in adaptive case,Ω(r,ω) may be
connected to market temperature and it depends on the set of
tractable parameters Wi􏼈 􏼉. In third term, |q|2 shows the
probability density function which denotes the potential feld.

3. Description of Methodologies

3.1. Summary of expa Function Scheme. Here, we will give
complete concept of this scheme.

Assuming the nonlinear partial diferential equation
(PDE),

G q, q
2
qt, qx, qtt, qxx, qxt, . . .􏼐 􏼑 � 0. (2)

Equation (2) transformed into nonlinear partial difer-
ential equation as follows:

Λ Q, Q
′
, Q
″
, . . . ,􏼒 􏼓 � 0. (3)

By using following transformations,

q(x, y, t) � Q(ζ), ζ � ax + by + rt. (4)

Considering root of equation (3) is shown in [24–27].

Q(ζ) �
α0 + α1d

ζ
+ . . . + αmd

mζ

β0 + β1d
ζ

+ · · · + βmd
mζ , d≠ 0, 1, (5)

where αi and βi(0≤ i≤m) are undetermined. Positive in-
tegral value of m is calculated by utilizing homogenous
balance technique in equation (3). Putting equation (5) into
equation (3) gives

℘ d
ζ

􏼐 􏼑 � l0 + l1d
ζ

+ · · · + ltd
tζ

� 0. (6)

Taking li (0≤ i≤ t) in equation (6) equal to 0, a set of
algebraic equations is gained which is given as
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li � 0,where i � 0, . . . , t. (7)

By using the got roots, we attain analytical results of
equation (2).

3.2. Detail of Extended Sinh-Gordon Equation Expansion
Method (EShGEEM). Here, we will describe main steps of
this technique.

Step 1:
Let a nonlinear partial diferential equation be given
as

Z f, D
α,c

M,tf
2
, f

2
fx, fy, fyy, fxx, fxy, fxt, . . .􏼐 􏼑 � 0,

(8)

where f � f(x, y, t) denotes the wave function.
Assuming the travelling wave transformation,

f(x, y, t) � F(ξ), ξ � x − ]y +
Γ(c + 1)

α
κt

α
( 􏼁. (9)

Inserting equation (9) into equation (8), we attain the
nonlinear ODE given as

Z F(ξ), F
2
(ξ)F
′
(ξ), F

″
(ξ), · · ·􏼒 􏼓 � 0. (10)

Step 2:
Assuming the results of equation (9) in the series form,

F(p) � α0 + 􏽘

m

i�1
βisinh(p) + αicosh(p)( 􏼁

i
. (11)

Here, α0, αi, and βi (i � 1, 2, 3, · · · , m) are unknowns.
Consider a function p of ξ that satisfes the following
equation:

dp

dζ
� sinh(p). (12)

Natural number m can be attained with the use of
homogenous balance approach. Equation (12) is gained
from sinh-Gordon equation as shown as

qxt � κ sinh(v). (13)

By what being present in [28], we get the results of
equation (13) given as follows:

sin hp(ξ) � ±csc h(ξ) or coshp(ξ) � ± coth(ξ). (14)

In addition,

sinhp(ξ) � ± ιsec h(ξ) or coshp(ξ) � ± tanh(ξ),

(15)

where ι2 � −1.
Step 3:
Using equation (11) with equation (13) into equation
(10), we get the algebraic equations involving
p′

k
(ξ)sinhl p (ξ)coshm p(ξ) (k � 0, 1; l � 0, 1; m �

0, 1, 2, . . .). We take the every coefcient of
p′

k
(ζ)sinhl p(ζ)coshm p(ζ) equal to 0, to attain system

of algebraic equations having ], κ, α0, αi and
βi(i � 1, 2, 3, . . . , m).
Step 4:
By solving the obtained system of algebraic equations,
one may obtain value of ], κ, α0, αi and βi.
Step 5:
By achieved solutions, equations (14) and (15), we get
the wave solitons of equation (10) shown as

F(ξ) � α0 + 􏽘

m

i�1
±βicsch(ξ) ± αicoth(ξ)( 􏼁

i
, (16)

F(ξ) � α0 + 􏽘
m

i�1
± ιβisec h(ξ) ± αitanh(ξ)( 􏼁

i
. (17)

3.3. Explanation of Extended (G′/G)−Expansion Method.
Here, we will represent some main steps of method given in
[13].

Step 1: Considering the nonlinear PDE,

Z f, D
α,c
M,tf, f

2
fx, fy, fyy, fxx, fxy, fxt, . . .􏼐 􏼑 � 0,

(18)

where f � f(x, y, t) denotes the wave profle.
Considering the travelling wave transformations:
Step 2:

f(x, y, t) � F(ξ), ξ � x − ]y +
Γ(c + 1)

α
κt

α
( 􏼁. (19)

Using equation (19) along equation (18), we attain the
nonlinear ODE as follows:

Z F(ξ), F
2
(ξ)F
′
(ξ), F

″
(ξ), . . .􏼒 􏼓 � 0. (20)

Step 3:
Assuming the results of equation (20) in the series form
given as

F(ξ) � 􏽘
m

i�−m

αi

G′(ξ)

G(ξ)
􏼠 􏼡

i

. (21)

In equation (21), α0 and αi, (i � ±1, ±2,±3, . . . , ±m)

are undetermined and αi ≠ 0. Applying homogenous
balance technique into equation (20), natural number
m can be obtained.
Function G � G(ξ) satisfes the Riccati diferential
equation.

dGG
″

− aG
2

− bGG
′
− c G

′
􏼒 􏼓

2
� 0, (22)

where a, b, c, and d are constants.
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Step 4:
Considering equation (22) has roots in the form:

When b≠ 0 and b2 + 4a(d − c)> 0, then

G
′
(ξ)

G(ξ)
⎛⎝ ⎞⎠ �

b

2(d − c)

+

�������������

−4a(c − d) + b
2

􏽱

2(d − c)

C1sinh ξ
�������������

−4ac + 4ad + b
2

􏽱

/2d􏼠 􏼡 + C2cosh ξ
�������������

−4a(c − d) + b
2

􏽱

/2d􏼒 􏼓

C1cosh ξ
�������������

−4ac + 4ad + b
2

􏽱

/2d􏼠 􏼡 + C2sinh ξ
�������������

−4ac + 4ad + b
2

􏽱

/2d􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

When b≠ 0 and b2 + 4ad − 4ac< 0, then

G
′
(ξ)

G(ξ)
⎛⎝ ⎞⎠ �

b

2(d − c)

+

������������
4ac − 4ad − b

2
􏽰

2(d − c)

C2 cos ξ
������������

4ac − 4ad − b
2

􏽱

/2d􏼠 􏼡 − C1 sin ξ
������������

4ac − 4ad − b
2

􏽱

/2d􏼠 􏼡

C1 cos ξ
������������

4ac − 4ad − b
2

􏽱

/2d􏼠 􏼡 + C2 sin ξ
������������

4ac − 4ad − b
2

􏽱

/2d􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(24)

When b≠ 0 and b2 + 4a(d − c) � 0, then

G
′
(ξ)

G(ξ)
⎛⎝ ⎞⎠ �

b

2(d − c)
+

dD

(d − c)(C − Dξ)
. (25)

When b � 0 and a(d − c)> 0, then

G
′
(ξ)

G(ξ)
⎛⎝ ⎞⎠ �

�������
ad − ac

√

(d − c)

C1sinh(ξ
�������
ad − ac

√
/d) + C2cosh(ξ

�������
a(d − c)

􏽰
/d)

C1cosh(ξ
�������
ad − ac

√
/d) + C2sinh(ξ

�������
a(d − c)

􏽰
/d)

􏼠 􏼡. (26)

When b � 0 and a(d − c)< 0, then

G
′
(ξ)

G(ξ)
⎛⎝ ⎞⎠ �

�������
a(c − d)

􏽰

d − c

C2 cos(ξ
�������
ac − ad

√
/d) − C1 sin(ξ

�������
a(c − d)

􏽰
/d)

C1 cos(ξ
�������
ac − ad

√
/d) + C2 sin(ξ

�������
a(c − d)

􏽰
/d)

􏼠 􏼡, (27)

where a, b, c, d, C1, and C2 are constants.
Step 5:
Putting equation (21) with equation (22) into equation
(20) and collecting coefcients of each power of
(G′(ξ)/G(ξ)). Taking every coefcient equal to 0, we

attain a set of algebraic equations involving ], κ,
αi, (i � 0, ±1, ±2, . . . , ±m), and other parameters.
Step 6:
Finding the gain system of equations with the use of
the tool.
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Step 7:
Putting the attained solutions into the equation (21)
and we gain analytical solutions of equation (18).

4. Mathematical Treatment of Model

Suppose the travelling wave transform given as

q(s, t) � Q(ζ) × exp ι
Γ(ϱ + 1)

ϵ
μs
ϵ

+ ρt
ϵ

( 􏼁􏼠 􏼡􏼠 􏼡, ζ �
Γ(ϱ + 1)

ϵ
λs
ϵ

+ τt
ϵ

( 􏼁, (28)

where Q(ζ) shows the amplitude of wave function while ρ
and τ represent the time velocity. Parameters μ and λ are
obtaining from asset price of the product.

Using equation (28) into equation (1), we gain real part
and imaginary part given as

Real part:

2ΩQ
3

+ δλ2Q″ − δμ2 + 2ρ􏼐 􏼑Q � 0. (29)

Imaginary part:

(δμλ + τ)Q
′

� 0. (30)

From equation (30), we get the velocity of wave function
given as follows:

τ � −δμλ. (31)

Utilizing the homogenous balance method into equation
(29), we achieve m � 1

Now, we will gain the exact solutions of equation (29) by
using three abovementioned methods.

4.1. Analytical Solutions via expa Function Technique.
Equation (5) changes into the following for m � 1:

Q(ζ) �
α0 + α1d

ζ

β0 + β1d
ζ . (32)

Inserting equation (32) into equation (29), a system of
equations is achieved. By solving the system, we obtain
diferent solution sets given as follows:

Set 1:

α0 � −
ιβ0

�
δ

√
λ log(d)

2
��
Ω

√ , α1 �
iβ1

�
δ

√
λ log(d)

2
��
Ω

√ , ρ � −
1
4
δ λ2 log2(d) + 2μ2􏼐 􏼑􏼨 􏼩. (33)

From equations (28), (32) and (33), we get

q(s, t) � −
ι

�
δ

√
λ log(d)

2
��
Ω

√
β0 − β1d

ζ

β0 + β1d
ζ

⎛⎝ ⎞⎠

× exp ι μ
Γ(ϱ + 1)

ε
s
ε

−
1
4
δ λ2 log2(d) + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ε
t
ε

􏼠 􏼡􏼠 􏼡.

(34)

Set 2:

α0 �
ιβ0

�
δ

√
λ log(d)

2
��
Ω

√ , α1 � −
iβ1

�
δ

√
λ log(d)

2
��
Ω

√ , ρ � −
1
4
δ λ2 log2(d) + 2μ2􏼐 􏼑􏼨 􏼩. (35)

From equations (28), (32) and (35), we get
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q(s, t) �
ι

�
δ

√
λ log(d)

2
��
Ω

√
β0 − β1d

ζ

β0 + β1d
ζ

⎛⎝ ⎞⎠

× exp ι μ
Γ(ϱ + 1)

ε
s
ε

−
1
4
δ λ2 log2(d) + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ε
t
ε

􏼠 􏼡􏼠 􏼡.

(36)

Where ζ � λΓ(ϱ + 1)/ε(sε − δμtε).

4.2. Exact Solutions through EShGEEM. For m � 1, equa-
tions (9), (16) and (17) and become

Q(ζ) � α0 ± β1csch(ζ) ± α1coth(ζ), (37)

Q(ζ) � α0 ± ιβ1sech(ζ) ± α1tanh(ζ), (38)

Q(ζ) � α0 + β1sinh(p) + α1cosh(p). (39)

Here, α0, α1, and β1 are undetermined. Utilizing equation
(39) into equation (29), we attain algebraic equations
containing α0, α1, β1 and other parameters. By using the
Mathematica tool, we get diferent solution sets given as

Set 1:

α0 � 0, α1 � −
ι

�
δ

√
λ

��
Ω

√ , β1 � 0, ρ � −
1
2
δ 2λ2 + μ2􏼐 􏼑􏼨 􏼩.

(40)

From equations (28), (37) and (40), we get

q1(s, t) � ∓
ι

�
δ

√
λ

��
Ω

√ coth(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
2
δ 2λ2 + μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(41)

From equations (28), (38), and (40), we get

q2(s, t) � ∓
ι

�
δ

√
λ

��
Ω

√ tanh(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
2
δ 2λ2 + μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(42)

Set 2:

α0 � 0, α1 �
ι

�
δ

√
λ

��
Ω

√ , β1 � 0, ρ � −
1
2
δ 2λ2 + μ2􏼐 􏼑􏼨 􏼩.

(43)

From equations (28), (37), and (43), we get

q1(s, t) � ±
ι

�
δ

√
λ

��
Ω

√ coth(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
2
δ 2λ2 + μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(44)

From equations (28), (38), and (43), we get

q2(s, t) � ±
i

�
δ

√
λ

��
Ω

√ tanh(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
2
δ 2λ2 + μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(45)

Set 3:

α0 � 0, α1 � −
ι

�
δ

√
λ

2
��
Ω

√ , β1 � −
ι

�
δ

√
λ

2
��
Ω

√ , ρ � −
1
4
δ λ2 + 2μ2􏼐 􏼑􏼨 􏼩.

(46)

From equations (28), (37), and (46) we get

q1(s, t) � ∓
ι

�
δ

√
λ

2
��
Ω

√ (coth(ζ) + csch(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(47)

From equations (28), (38), and (46), we get

q2(s, t) � ∓
ι

�
δ

√
λ

2
��
Ω

√ (ι sech(ζ) + tanh(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(48)

Set 4:

α0 � 0, α1 �
ι

�
δ

√
λ

2
��
Ω

√ , β1 � −
ι

�
δ

√
λ

2
��
Ω

√ , ρ � −
1
4
δ λ2 + 2μ2􏼐 􏼑􏼨 􏼩.

(49)

From equations (28), (37), and (49), we get
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q1(s, t) �
ι

�
δ

√
λ

2
��
Ω

√ (±coth(ζ)∓ csch(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(50)

From equations (28), (38), and (49), we get

q2(s, t) �
ι

�
δ

√
λ

2
��
Ω

√ (± tanh(ζ)∓ ι sech(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(51)

Set 5:

α0 � 0, α1 � −
ι

�
δ

√
λ

2
��
Ω

√ , β1 �
i

�
δ

√
λ

2
��
Ω

√ , ρ � −
1
4
δ λ2 + 2μ2􏼐 􏼑􏼨 􏼩.

(52)

From equations (28), (37), and (52), we get

q1(s, t) � −
ι

�
δ

√
λ

2
��
Ω

√ (±coth(ζ)∓ csch(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(53)

From equations (28), (38), and (52), we get

q2(s, t) � −
ι

�
δ

√
λ

2
��
Ω

√ (± tanh(ζ)∓ ι sech(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(54)

Set 6:

α0 � 0, α1 �
ι

�
δ

√
λ

2
��
Ω

√ , β1 �
ι

�
δ

√
λ

2
��
Ω

√ , ρ � −
1
4
δ λ2 + 2μ2􏼐 􏼑􏼨 􏼩.

(55)

From equations (28), (37), and (55), we get

q1(s, t) � ±
ι

�
δ

√
λ

2
��
Ω

√ (coth(ζ) + csch(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(56)

From equations (28), (38), and (55), we get

q2(s, t) � ±
ι

�
δ

√
λ

2
��
Ω

√ (ι sech(ζ) + tanh(ζ))

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
1
4
δ λ2 + 2μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(57)

Set 7:

α0 � 0, α1 � 0, β1 � −
ι

�
δ

√
λ

��
Ω

√ , ρ �
1
2
δ λ2 − μ2􏼐 􏼑􏼨 􏼩. (58)

By using equations (28), (37), and (58), we obtain

q1(s, t) � ∓
ιλ

�
δ

√

��
Ω

√ csch(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

+
1
2
δ λ2 − μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
.t
ϵ

􏼠 􏼡􏼠 􏼡.

(59)

From equations (28), (38) and (58), we get

q2(s, t) � ±
�
δ

√
λ

��
Ω

√ sech(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

+
1
2
δ λ2 − μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(60)

Set 8:

α0 � 0, α1 � 0, β1 �
ι

�
δ

√
λ

��
Ω

√ , ρ �
1
2
δ λ2 − μ2􏼐 􏼑􏼨 􏼩. (61)

From equations (28), (37) and (61), we get

q1(s, t) � ±
ι

�
δ

√
λ

��
Ω

√ csch(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

+
1
2
δ λ2 − μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡.

(62)

From equations (28), (38), and (61), we get

q2(s, t) � ∓
�
δ

√
λ

��
Ω

√ sech(ζ)

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

+
1
2
δ λ2 − μ2􏼐 􏼑

Γ(ϱ + 1)

ϵ
t
ϵ

􏼠 􏼡􏼠 􏼡,

(63)

where ζ � λΓ(ϱ + 1)/ϵ(sϵ − δμ)tϵ.

4.3. Analytical Solutions via Extended (G′/G)-Expansion
Technique. Equation (21) changes into following form for
m � 1:
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Q(ζ) � α−1
G′(ζ)

G(ζ)
􏼠 􏼡

− 1

+ α0 + α1
G
′
(ζ)

G(ζ)
⎛⎝ ⎞⎠, (64)

where α−1, α0 and α1 are undetermined.

Inserting equation (64) along equation (22) into equa-
tion (29) and manipulating the set having α−1, α0, α1 and
other parameters, we gain diferent sets of solutions given as

Set 1:

α−1 � −
ιa

�
δ

√
λ

d
��
Ω

√ , α0 � −
ιb

�
δ

√
λ

2d
��
Ω

√ , α1 � 0, ρ � −
δ 4aλ2(d − c) + b

2λ2 + 2d
2μ2􏼐 􏼑

4d
2

⎧⎨

⎩

⎫⎬

⎭. (65)

From equations (23), (28), (64), and (65), we get

q(s, t) � −
ι

�
δ

√
λ

d
��
Ω

√
b

2
+ a

b

2(d − c)
􏼠􏼠

+

�������������
−4ac + 4ad + b2

√

2(d − c)

C1sinh ζ
�������������
−4ac + 4ad + b2

√
/2d( 􏼁 + C2cosh ζ

��������������
− 4ac + 4ad + b2

√
/2d( 􏼁

C1cosh ζ
��������������
− 4ac + 4ad + b2

√
/2d( 􏼁 + C2sinh ζ

�������������
−4ac + 4ad + b2

√
/2d( 􏼁

􏼠 􏼡􏼡

− 1
⎞⎠

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
δ 4aλ2(d − c) + b

2λ2 + 2d
2μ2􏼐 􏼑

4d
2

Γ(ϱ + 1)

ϵ
t
ϵ⎛⎝ ⎞⎠⎛⎝ ⎞⎠.
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From equations (24), (28), (64), and (65), we get
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From equations (26), (28), (64), and (65), we get
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From equations (27), (28), (64), and (65), we get
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From equations (23), (28), (64), and (70), we get

q(s, t) �
ι

�
δ

√
λ

d
��
Ω

√
b

2
+ a

b

2(d − c)
􏼠􏼠

+

�������������
−4ac + 4ad + b2

√

2(d − c)

C1sinh ζ
�������������
−4ac + 4ad + b2

√
/2d( 􏼁 + C2cosh ζ

��������������
− 4ac + 4ad + b2

√
/2d( 􏼁

C1cosh ζ
��������������
− 4ac + 4ad + b2

√
/2d( 􏼁 + C2sinh ζ

�������������
−4ac + 4ad + b2

√
/2d( 􏼁

􏼠 􏼡􏼡

− 1
⎞⎠

× exp ι μ
Γ(ϱ + 1)

ϵ
s
ϵ

−
δ 4aλ2(d − c) + b

2λ2 + 2d
2μ2􏼐 􏼑

4d
2

Γ(ϱ + 1)

ϵ
t
ϵ⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(71)

From equations (24), (28), (64), and (70), we get
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From equations (26), (28), (64), and (70), we get
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From equations (27), (28), (64), and (70), we get
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Set 3:

α−1 � 0, α0 � −
ιb

�
δ

√
λ

2d
��
Ω

√ , α1 � −
ι

�
δ

√
λ(c − d)

d
��
Ω

√ , ρ � −
δ 4aλ2(d − c) + b

2λ2 + 2d
2μ2􏼐 􏼑

4d
2

⎧⎨

⎩

⎫⎬

⎭. (75)

From equations (23), (28), (64), and (75), we get
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From equations (24), (28), (64), and (75), we get
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From equations (26), (28), (64), and (75), we get
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From equations (27), (28), (64), and (75), we get
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From equations (23), (28), (64), and (80), we get
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From equations (24), (28), (64), and (80), we get
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From equations (26), (28), (64), and (80), we get
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From equations (27), (28), (64), and (80), we get
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Figure 1: Structure of (34) for δ � 0.5, λ � 0.3, ϱ � 0.1, μ � 2,Ω � 0.7, β0 � 0.1, β1 � 0.1, d � 0.1, ϵ � 1.
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Here, ζ � λΓ(ϱ + 1)/ε(sε − δμtε) for all above-
mentioned solutions.
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Figure 3: Structure of (66) for δ � 0.3, λ � 0.4, ϱ � 0.5, μ � 6,Ω � 0.4, d � 0.17, a � 0.1, c � 0.01, b � 0.4, C1 � 0.4, C2 � 0.5.

|q
 (s

, t
)|

|q
 (s

, t
)|

t=0
t=1
t=2

∊=0.8
∊=0.9
∊=1.0

0.22
0.24
0.26
0.28
0.30
0.32
0.34

-5 0 5 10-10
s

0.00
0.05
0.10
0.15
0.20
0.25
0.30

-5 0 5 10-10

-5 0 5 10-10

s

0

1

2

3

4

52.0
1.5

1.0
0.5

0.0

0.30

0.25
-10

-5
0

5
10

s

t

|q
 (s

, t
)|

Figure 2: Structure of (41) for δ � 0.5, λ � 0.1, ϱ � 0.5, μ � 1,Ω � 0.1, ϵ � 1.
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5. Illustrations with Graphics

In this portion, we will represent some 2-D, 3-D, and
contour structures that help us to classify the type of results.
Figures 1–3 show some of the analytical solutions. In Fig-
ure 1, we apply our technique to represent the plot of (34) for
δ � 0.5, λ � 0.3, ϱ � 0.1, μ � 2, Ω � 0.7, β0 � 0.1, β1 � 0.1,

d � 0.1, ϵ � 1. Furthermore, Figure 2 denotes the plot of (41)
δ � 0.5, λ � 0.1, ϱ � 0.5, μ � 1,Ω � 0.1, ϵ � 1. Finally, the
plot of (66) for δ � 0.3, λ � 0.4, ϱ � 0.5, μ � 6,Ω � 0.4, d �

0.17, a � 0.1, c � 0.01, b � 0.4, C1 � 0.4, C2 � 0.5 is pre-
sented in Figure 3. We see that the wave retains its shape
over time, moves to the right, and breaks by changing the
value of ϵ.

Trough our analysis of the forms presented in the
previous section, we can reach important results as follows:
First, in Figure 1, we apply the expa function technique to
represent the plot of (34) at δ � 0.5, λ � 0.3, ϱ � 0.1, μ � 2,

Ω � 0.7, β0 � 0.1, β1 � 0.1, d � 0.1, ϵ � 1. Further, Figure 2
denotes the plot of (41) at δ � 0.5, λ � 0.1, ϱ � 0.5, μ � 1,Ω �

0.1, ϵ � 1 using EShGEE technique. Finally, the plot of (66)
for δ � 0.3, λ � 0.4, ϱ � 0.5, μ � 6,Ω � 0.4, d � 0.17, a � 0.1,

c � 0.01, b � 0.4, C1 � 0.4, C2 � 0.5 presented in Figure 3
using the extended (G′/G)-expansion technique.

6. Conclusion

In this article, we obtain modernistic analytical
solutions to the Ivancevic option pricing model along M-
fractional derivative by utilizing expa function, extended
sinh-Gordon equation expansion, and extended
(G′/G)-expansion methods. Te achieved results are also
verifed and demonstrated with diferent plots by
Mathematica tool. Te obtained results are also explained
graphically by 2-dimensional, 3-dimensional, and con-
tour plots. Finally, it is suggested that to deal with the
other fractional nonlinear PDEs, the expa function, ex-
tended sinh-Gordon equation expansion, and extended
(G′/G)-expansion methods are very helpful, reliable, and
straight forward. Te results achieved in this paper may
be useful for the progress in the supplementary analyzing
of this model.
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Research focus on optimal control problems brought on by fractional diferential equations has been extensively applied in
practice. However, because they are still open ended and challenging, a number of problems with fractional mathematical
modeling and problems with optimal control require additional study. Using fractional-order derivatives defned in the
Atangana–Baleanu–Caputo sense, we alter the integer-order model that has been proposed in the literature. We prove the
solution’s existence, uniqueness, equilibrium points, fundamental reproduction number, and local stability of the equi-
librium points. Te operator’s numerical approach was put into practice to obtain a numerical simulation to back up the
analytical conclusions. Fractional optimum controls were incorporated into the model to identify the most efcient in-
tervention strategies for controlling the disease. Utilizing actual data from Ghana for the months of March 2020 to March
2021, the model is validated. Te simulation’s results show that the fractional operator signifcantly afected each com-
partment and that the incidence rate of the population rose when v≥ 0.6. Te examination of the most efective control
technique discovered that social exclusion and vaccination were both very efective methods for halting the development of
the illness.

1. Introduction

Te large family of viruses known as coronaviruses is re-
sponsible for a number of illnesses, including the Middle
East respiratory syndrome (MERS), common cold, and
severe acute respiratory syndrome (SARS-CoV-2). Never
have humans been previously exposed to this novel coro-
navirus strain [1]. When an infected person coughs,
breathes, sneezes, or talks, tiny droplets or particles, such as
aerosols, are discharged into the air and transmit the disease
[2, 3]. Te illness’s usual symptoms include fever, coughing,
exhaustion, shortness of breath, or other breathing prob-
lems, as well as loss of taste and smell [4–6]. Over 6 million

people had died, and there were over 513 million confrmed
infections worldwide as of May 1, 2022. Africa as a whole has
recorded 11million confrmed cases, with Ghana accounting
for 161, 173 of those cases [7].

Numerous scholars have created models for the re-
alization and control of the spread of transmissible illnesses
in a population [8]. Te representation of infectious diseases
using fractional calculus has attracted a lot of attention
lately. Examples include malaria [9], TB [10, 11], syphilis
[12], chickenpox [13], and most recently COVID-19
[8, 14–23]. Fractional calculus, which is a generalization of
diferentiation and integration of integer orders, has been
proposed to address several of the constraints of integer
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order derivatives [14]. Te fractional order may be able to
depict more complex dynamics and include memory efects,
which are prevalent in many real-world occurrences, in
comparison to the integer model [10, 15]. Using data from
China, Italy, and France, Bahloul et al. [16] proposed
a fractional-order SEIQRDP model to study the COVID-19
pandemic. To examine the illness transmission in Spain, the
researchers in Ref. [17] proposed a new SEIRS dynamical
model that uses the fractional-order derivative and adds the
vaccine rate. Te authors of Ref. [18] presented a Caputo
fractional SIR epidemic model taking a nonlinear incidence
rate into consideration. Regarding the fractal-fractional
Atangana–Baleanu derivative, Khan and Atangana [19]
considered a fractional model to describe the transmission of
COVID-19 while accounting for the isolation and quaran-
tine of individuals.

Tere are several real-world uses for research on opti-
mum control problems brought on by fractional diferential
equations. However, there are a number of difculties and
problems with fractional mathematical modeling as well as
challenges with optimal control that need further study. A
general formulation for the optimal control problem for
a family of fuzzy fractional diferential systems connected to
SIR and SEIR epidemic models was developed by Das and
Samanta [24] using real data from Italy and South Korea.
Khan et al. [8] explored a fractional COVID-19 epidemic
model that included fractional optimum control and had
a convex incidence rate in the sense of Atangana–Baleanu
and Caputo. Baba and Bilgehan [21] devised a fractional
optimum control issue that incorporates public awareness
and treatment for the disease outbreak using a mathematical
model with a fractional-order derivative in the Caputo sense.
Nabi et al. [22] created a compartmental model combining
all workable nonpharmaceutical intervention options using
the classical and Caputo–Fabrizio fractional-order de-
rivatives to study illness transmission in Bangladesh and
India. Te age structure and fractional-order derivatives
were used to create a more accurate version of the con-
ventional SEIR model [23].Tey expanded on their methods
by including follow-up controls, diagnostics, and awareness
programs. In Japan, Das and Samanta [24] suggested
a susceptible-asymptomatic-infectious-recovered (SAIR)
compartmental model inside a fractional-order framework
that included the best possible management of social
distance.

We propose a fractional-order derivative defned in the
Atangana–Baleanu–Caputo sense in the current study to
investigate the model presented in [20]. Te nonlocal
characteristic of the virus dynamics is not sufciently cap-
tured by the classical model proposed in [20]. Because the
Atangana–Baleanu and Caputo derivatives have a number of
desired properties, such as nonlocality and non-
singularity in their kernels, and because this operator can
only accurately represent the crossover behavior of the

model, it was decided to utilize them to design the model.
Other operators without similar qualities, such as Caputo
and Caputo–Fabrizio, may or may not adequately explain
the dynamics of the coronavirus [19]. Several articles
using the Atangana–Baleanu–Caputo derivation are
linked and can be found in [13, 25–27].

Te following sections then make up the remainder of
the paper. In Section 2, we create and analyze a mathe-
matical model that makes use of the fractional-order
derivative as established by Atangana, Baleanu, and
Caputo. Section 3 identifes the qualitative traits of the
model. We identify equilibrium locations, their stability,
and the fundamental reproduction number. We in-
corporate time-dependent optimal control into the con-
structed model and analyze the optimal control model in
Section 4. Te numerical framework of the fractional-
order model is provided in Section 5, and the numerical
analysis is then presented in Section 6. In section 7, the
numerical investigation of the optimal control model is
presented. Finally, in Section 8, we explain and illustrate
the results of our suggested model.

2. Model Formulation

In this section, utilizing the fractional-order derivatives
derived in the Atangana–Baleanu in Caputo sense, we alter
the model given in [20] to incorporate a compartment for
quarantine individuals. Te fractional-order operator is
defned as v, where 0< ]≤ 1. Susceptible individuals (S),
exposed (E), asymptomatic (IA), symptomatic (IS), vacci-
nated (V), quarantined (Q), and recovered (R) are the seven
classifcations that make up the model. Te main premise of
the model formulation is that, in contrast to [20], where only
the asymptomatic transmits the virus, both symptomatic
and asymptomatic persons spread the virus when they come
into touch with susceptible individuals. Other presumptions
in [20].

Te susceptible population are recruited at the rate Ω
and die at a rate μ. Tese individuals get exposed to the
disease when they come in contact with the asymptomatic
and symptomatic at a rate β. After being exposed to the
disease, they either progress to the asymptomatic class at
the rate (1 − α)φ or the symptomatic class at the rate αφ.
Both asymptomatic and symptomatic get quarantined at
the rates ρ and τ, respectively. Tose vaccinated according
to this model do not get infected but may join the sus-
ceptible class at a rate Γ. Te parameters μ and δ are the
natural and the disease-induced death rates, respectively.
Te parameters σ, θ, and c are the rate of recovery for the
asymptomatic, symptomatic, and quarantine class, re-
spectively. Te schematic diagram of the model is displayed
in Figure 1.

Te following fractional derivatives describe the model.
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(1)

with initial conditions S(0)≥ 0, E(0)≥ 0, IA(0)≥ 0, IS

(0)≥ 0, Q(0)≥ 0, V(0)≥ 0 and R(0)≥ 0.

2.1. Preliminaries. We go over the defnitions of the key
terms used in this work and those specifed in [10, 28] in
this part.

Defnition 1. Liouville and Caputo (LC) describe the frac-
tional derivative of the order v as in [10, 29] as

C
v D

v
t h(t) �

1
Γ(1 − v)

􏽚
t

0
(t − p)

− v
h(p)dp, 0< v≤ 1. (2)

Defnition 2. We provide the Liouville–Caputo sense def-
nition of the Atangana–Baleanu fractional derivative
[10, 28]:

ABC
v D

v
t h(t) �

B(v)

(1 − v)
􏽚

t

0
Ev − v

(t − p)
v

1 − v
􏼠 􏼡􏼠 􏼡h

•

(p)dp,

(3)

where B(v) � 1 − v + v/Γ(v) is the normalized function.

Defnition 3. Te Atangana–Baleanu–Caputo derivative’s
pertinent fractional integral is given by the defnition in
[10, 28]

ABC
v D

v
t h(t) �
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B(v)
h(t) +

v

B(v)Γ(v)
􏽚

t

0
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v− 1
h
•
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(4)

Tey calculated both derivatives’ Laplace transforms and
discovered the following:

L
ABC
0 D

v
0,th(t)􏽮 􏽯 �

B(v)H(q)q
v

− q
v− 1

h(0)

(1 − v) q
v

+ v/1 − v( 􏼁
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Theorem 1. :For a function h ∈ C[a, b], the following results
hold [10, 30]:

ABC
v D

v
t r(t)

����
����<

B(v)

(1 − v)
‖h(t)‖,where ‖h(t)‖ � maxa≤t≤b|h(t)|.

(6)

Additionally, the derivatives of Atangana, Baleanu, and
Caputo satisfy the Lipschitz criterion [10, 30].

ABC
v D

v
,th1(t)−

ABC
v D

v
t h2(t)

����
����<ω h1(t) − h2(t)

����
����. (7)

2.2. Existence and Uniqueness. Tis section establishes the
existence and distinctiveness of the solutions to the
system (1).

We denote a Banach space by D(G) with G � [0, b],
containing real-valued continuous function with sup norm
W � D(G)×D(G) × D(G)×D(G) × D(G) × D(G) × D(G)

and the given norm (S, E, IA, IS, Q, V, R) � S + E+

IA + IS + Q + V + R, where S � Supt∈G|S|, E � Supt∈G
|E|, IA � Supt∈G |IA|, IS � Supt∈G|IS|, Q � Supt∈G|Q|, V �

Supt∈G|V|, R � Supt∈G|R|. Using the ABC integral operator
on the system (1), we have

Ω
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ΓV

S E

IS

Q R

μE

(μ + δ)IA

μR
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(μ + δ)Q

γQ

IA

σIA

ρI A

τI
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ηΩ
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N

αφE

(1 − α)φE

θE

Figure 1: Flow chart of the COVID-19 fractional model.
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Now, from Defnition 1, we have
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B(v)Γ(v)
× 􏽚

t

0
(t − τ)

v− 1Φ2(v, τ, E(τ))dτ,

IA(t) − IA(0) �
1 − v

B(v)
Φ3 v, t, IA(t)( 􏼁 +

v

B(v)Γ(v)
× 􏽚

t

0
(t − τ)

v− 1Φ3 v, τ, IA(τ)( 􏼁dτ,

IS(t) − IS(0) �
1 − v

B(v)
Φ4 v, t, IS(t)( 􏼁 +

v

B(v)Γ(v)
× 􏽚

t

0
(t − τ)

v− 1Φ4 v, τ, IS(τ)( 􏼁dτ,

Q(t) − Q(0) �
1 − v

B(v)
Φ5(v, t, Q(t)) +

v

B(v)Γ(v)
× 􏽚

t

0
(t − τ)

v− 1Φ5(v, τ, Q(τ))dτ,

V(t) − V(0) �
1 − v

B(v)
Φ6(v, t, V(t)) +

v

B(v)Γ(v)
× 􏽚

t

0
(t − τ)

v− 1Φ6(v, τ, V(τ))dτ,

R(t) − R(0) �
1 − v

B(v)
Φ7(v, t, R(t)) +

v

B(v)Γ(v)
× 􏽚

t

0
(t − τ)

v− 1Φ7(v, τ, R(τ))dτ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(9)

where

4 Journal of Mathematics



Φ1(v, τ, S(t)) � 1 − ηv
( 􏼁Ωv

+ ΓvV − βv IA(t) + IS(t)

N(t)
􏼠 􏼡S(t) − μv

S(t),

Φ2(v, τ, E(t)) � βv IA(t) + IS(t)

N(t)
􏼠 􏼡S(t) − ϕv

+ μv
( 􏼁E(t),

Φ3 v, τ, IA(t)( 􏼁 � (1 − α)ϕv
E − δv

+ ρv
+ μv

+ σv
( 􏼁IA(t),

Φ4 v, τ, IS(t)( 􏼁 � αϕv
E(t) − δv

+ μv
+ θv

+ τv
( 􏼁IS(t),

Φ5(v, τ, Q(t)) � ρv
IA + τv

IS − δv
+ μv

+ c
v

( 􏼁Q(t),

Φ6(v, τ, V(t)) � ηvΩ − Γv + μv
( 􏼁V(t),

Φ7(v, τ, R(t)) � c
v
Q(t) + θv

IS(t) + σv
IA(t) − μv

R(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Furthermore, the Atangana–Baleanu–Caputo de-
rivatives fulfll the Lipschitz condition [10, 30] only if
S(t), E(t), IA(t), IS(t), Q(t), V(t) and R(t) possess an upper
bound.We suppose that S(t) and S∗(t) are couple functions,
then

Φ1(v, t, S(t)) − Φ1 v, t, S
∗
(t)( 􏼁

����
����

� − βv IA(t) + IS(t)

N(t)
􏼠 􏼡 − μv

􏼢 􏼣 S(t) − S
∗
(t)( 􏼁

��������

��������
.

(11)

Considering

d1 � − βv IA(t) + IS(t)

N(t)
􏼠 􏼡 − μv

􏼠 􏼡

��������

��������
, (12)

equation (11) simplifes to

Φ1(v, t, S(t)) − Φ1 v, t, S
∗
(t)( 􏼁

����
����≤ d1 S(t) − S

∗
(t)( 􏼁

����
����.

(13)

Similarly,

Φ2(v, t, E(t)) − Φ2 v, t, E
∗
(t)( 􏼁

����
����≤ d2 E(t) − E

∗
(t)( 􏼁

����
����,

Φ3 v, t, IA(t)( 􏼁 − Φ3 v, t, I
∗
A(t)( 􏼁

����
����≤ d3 IA(t) − I

∗
A(t)( 􏼁

����
����,

Φ4 v, t, IS(t)( 􏼁 − Φ4 v, t, I
∗
S (t)( 􏼁

����
����≤ d4 IS(t) − I

∗
S (t)( 􏼁

����
����,

Φ5(v, t, Q(t)) − Φ5 v, t, Q
∗
(t)( 􏼁

����
����≤ d5 Q(t) − Q

∗
(t)( 􏼁

����
����,

Φ6(v, t, V(t)) − Φ6 v, t, V
∗
(t)( 􏼁

����
����≤ d6 V(t) − V

∗
(t)( 􏼁

����
����,

Φ7(v, t, R(t)) − Φ7 v, t, R
∗
(t)( 􏼁

����
����≤ d7 R(t) − R

∗
(t)( 􏼁

����
����,

(14)

where
d2 � − ϕv

+ μv
( 􏼁

����
����,

d3 � − αϕv
+ μv

+ ρv
+ δv

+ σv
( 􏼁

����
����,

d4 � − δv
+ μv

+ τv
+ θv

( 􏼁
����

����,

d5 � − δv
+ μv

+ c
v

( 􏼁
����

����,

d6 � − Γv + μv
( 􏼁

����
����,

d7 � − μv
����

����.

(15)

Hence, the Lipschitz condition holds. Now, taking system
(9) in a reiterative manner gives
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Sn(t) − S(0) �
1 − v

B(v)
Φ1 v, t, Sn− 1(t)( 􏼁 +

v

B(v)Γ(v)
× 􏽚

t

0
(t − ϑ)

v− 1Φ1 v, ϑ, Sn− 1(ϑ)( 􏼁dϑ,

En(t) − E(0) �
1 − v

B(v)
Φ2 v, t, En− 1(t)( 􏼁 +

v

B(v)Γ(v)
× 􏽚

t

0
(t − ϑ)

v− 1Φ2 v, ϑ, En− 1(ϑ)( 􏼁dϑ,

IAn
(t) − IA(0) �

1 − v

B(v)
Φ3 v, t, IAn− 1

(t)􏼐 􏼑 +
v

B(v)Γ(v)
× 􏽚

t

0
(t − ϑ)

v− 1Φ3 v, ϑ, IAn− 1
(ϑ)􏼐 􏼑dϑ,

ISn
(t) − IS(0) �

1 − v

B(v)
Φ4 v, t, ISn− 1

(t)􏼐 􏼑 +
v

B(v)Γ(v)
× 􏽚

t

0
(t − ϑ)

v− 1Φ4 v, ϑ, ISn− 1
(ϑ)􏼐 􏼑dϑ,

Qn(t) − Q(0) �
1 − v

B(v)
Φ5 v, t, Qn− 1(t)( 􏼁 +

v

B(v)Γ(v)
× 􏽚

t

0
(t − ϑ)

v− 1Φ5 v, τ, Qn− 1(ϑ)( 􏼁dϑ,

Vn(t) − V(0) �
1 − v

B(v)
Φ6 v, t, Vn− 1(t)( 􏼁 +

v

B(v)Γ(v)
× 􏽚

t

0
(t − ϑ)

v− 1Φ5 v, τ, Vn− 1(ϑ)( 􏼁dϑ,

Rn(t) − R(0) �
1 − v

B(v)
Φ7 v, t, Rn− 1(t)( 􏼁 +

v

B(v)Γ(v)
× 􏽚

t

0
(t − ϑ)

v− 1Φ7 v, ϑ, Rn− 1(ϑ)( 􏼁dϑ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Diference of consecutive terms yields
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ΞSn
(t) � Sn(t) − Sn− 1(t) �

1 − v

B(v)
Φ1 v, t, Sn− 1(t)( 􏼁 − Φ1 v, t, Sn− 2(t)( 􏼁( 􏼁

+
v

B(v)Γ(v)
􏽚

t

0
(t − ϑ)

v− 1 Φ1 v, ϑ, Sn− 1(ϑ)( 􏼁 − Φ1 v, τ, Sn− 2(ϑ)( 􏼁( 􏼁dϑ

ΞEn
(t) � En(t) − En− 1(t) �

1 − v

B(v)
Φ2 v, t, En− 1(t)( 􏼁 − Φ2 v, t, En− 2(t)( 􏼁( 􏼁

+
v

B(v)Γ(v)
􏽚

t

0
(t − ϑ)

v− 1 Φ2 v, ϑ, En− 1(ϑ)( 􏼁 − Φ2 v, τ, En− 2(ϑ)( 􏼁( 􏼁dϑ

ΞIAn
(t) � IAn(t) − IAn− 1(t) �

1 − v

B(v)
Φ3 v, t, IA(n− 1)(t)􏼐 􏼑 − Φ3 v, t, IA(n− 2)(t)􏼐 􏼑􏼐 􏼑

+
v

B(v)Γ(v)
􏽚

t

0
(t − ϑ)

v− 1 Φ3 v, ϑ, IA(n− 1)(ϑ)􏼐 􏼑 − Φ3 v, τ, IA(n− 2)(ϑ)􏼐 􏼑􏼐 􏼑dϑ

ΞISn
(t) � ISn(t) − IS(n− 1)(t) �

1 − v

B(v)
Φ4 v, t, IS(n− 1)(t)􏼐 􏼑 − Φ4 v, t, IS(n− 2)(t)􏼐 􏼑􏼐 􏼑

+
v

B(v)Γ(v)
􏽚

t

0
(t − ϑ)

v− 1 Φ4 v, ϑ, IS(n− 1)(ϑ)􏼐 􏼑 − Φ4 v, τ, IS(n− 2)(ϑ)􏼐 􏼑􏼐 􏼑dϑ

ΞQn
(t) � Qn(t) − Qn− 1(t) �

1 − v

B(v)
Φ5 v, t, Qn− 1(t)( 􏼁 − Φ5 v, t, Qn− 2(t)( 􏼁( 􏼁

+
v

B(v)Γ(v)
􏽚

t

0
(t − ϑ)

v− 1 Φ5 v, ϑ, Qn− 1(ϑ)( 􏼁 − Φ5 v, τ, Qn− 2(ϑ)( 􏼁( 􏼁dϑ

ΞVn
(t) � Vn(t) − Vn− 1(t) �

1 − v

B(v)
Φ6 v, t, Vn− 1(t)( 􏼁 − Φ6 v, t, Vn− 2(t)( 􏼁( 􏼁

+
v

B(v)Γ(v)
􏽚

t

0
(t − ϑ)

v− 1 Φ6 v, ϑ, Vn− 1(ϑ)( 􏼁 − Φ6 v, τ, Vn− 2(ϑ)( 􏼁( 􏼁dϑ

ΞRn
(t) � Rn(t) − Rn− 1(t) �

1 − v

B(v)
Φ7 v, t, Rn− 1(t)( 􏼁 − Φ7 v, t, Rn− 2(t)( 􏼁( 􏼁

+
v

B(v)Γ(v)
􏽚

t

0
(t − ϑ)

v− 1 Φ7 v, ϑ, Rn− 1(ϑ)( 􏼁 − Φ7 v, τ, Rn− 2(ϑ)( 􏼁( 􏼁dϑ
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, (17)

where Sn(t) � 􏽐
n
i�0ΞSn

(t), En(t) � 􏽐
n
i�0ΞEn

(t), IAn

(t) � 􏽐
n
i�0ΞIAn

(t), ISn(t) � 􏽐
n
i�0ΞISn

(t), Qn (t) � 􏽐
n
i�0ΞQn

(t),

Vn(t) � 􏽐
n
i�0ΞVn

(t), Rn(t) � 􏽐
n
i�0ΞRn

(t). Taking into

consideration equations (12) –(13) and considering
ΞSn− 1

(t) � Sn− 1(t) − Sn− 2 (t),ΞEn− 1
(t) � En− 1(t) − En− 2

(t),ΞIA
(t) � IA(n− 1) (t) − IA(n− 2)(t), ΠIS

(t) � IS(n− 1) (t) −
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IS(n− 2)(t), ΞVn− 1
(t) � Vn− 1(t) − Vn− 2(t),ΞRn− 1

(t) � Rn− 1(t)−

Rn− 2(t),

ΞSn
(t)

�����

�����≤
1 − v

B(v)
d1 ΞSn− 1

(t)
�����

�����
v

B(v)Γ(v)
d1 × 􏽚

t

0
(t − ϑ)

v− 1 ΞSn− 1
(ϑ)

�����

�����dϑ,

ΞEn
(t)

�����

�����≤
1 − v

B(v)
d2 ΞEn− 1

(t)
�����

�����
v

B(v)Γ(v)
d2 × 􏽚

t

0
(t − ϑ)

v− 1 ΞEn− 1
(ϑ)

�����

�����dϑ,

ΞIAn
(t)

�����

�����≤
1 − v

B(v)
d3 ΞIAn− 1

(t)
�����

�����
v

B(v)Γ(v)
d3 × 􏽚

t

0
(t − ϑ)

v− 1 ΞIAn− 1
(ϑ)

�����

�����dϑ,

ΞISn
(t)

�����

�����≤
1 − v

B(v)
d4 ΞISn− 1

(t)
�����

�����
v

B(v)Γ(v)
d4 × 􏽚

t

0
(t − ϑ)

v− 1 ΞISn− 1
(ϑ)

�����

�����dϑ,

ΞQn
(t)

�����

�����≤
1 − v

B(v)
d5 ΞQn− 1

(t)
�����

�����
v

B(v)Γ(v)
d5 × 􏽚

t

0
(t − ϑ)

v− 1 ΞQn− 1
(ϑ)

�����

�����dϑ,

ΞVn
(t)

�����

�����≤
1 − v

B(v)
d6 ΞVn− 1

(t)
�����

�����
v

B(v)Γ(v)
d6 × 􏽚

t

0
(t − ϑ)

v− 1 ΞVn− 1
(ϑ)

�����

�����dϑ,

ΞRn
(t)

�����

�����≤
1 − v

B(v)
d7 ΞRn− 1

(t)
�����

�����
v

B(v)Γ(v)
d7 × 􏽚

t

0
(t − ϑ)

v− 1 ΞRn− 1
(ϑ)

�����

�����dϑ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(18)

Theorem 2. System (1) has a unique solution for t ∈ [0, b]

subject to the condition 1 − v/B(v)di + v/B(v)Γ(v)bvni

< 1, i � 1, 2, 3, . . . . . . , 7 hold [27].

Proof. Since S(t), E(t), IA(t), IS(t), Q(t), V(t) and R(t) are
bounded functions, equations (12) and (13) hold. In a re-
curring manner, (16) reaches
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ΞSn
(t)

�����

�����≤ So(t)
����

����
1 − v

B(v)
d1 +

vbv

B(v)Γ(v)
d1􏼠 􏼡

n

,

ΞEn
(t)

�����

�����≤ Eo(t)
����

����
1 − v

B(v)
d2 +

vbv

B(v)Γ(v)
d2􏼠 􏼡

n

,

ΞInn
(t)

�����

�����≤ IAo(t)
����

����
1 − v

B(v)
d3 +

vbv

B(v)Γ(v)
d3􏼠 􏼡

n

,

ΞISn
(t)

�����

�����≤ ISo(t)
����

����
1 − v

B(v)
d4 +

vbv

B(v)Γ(v)
d4􏼠 􏼡

n

,

ΞQn
(t)

�����

�����≤ Qo(t)
����

����
1 − v

B(v)
d5 +

vbv

B(v)Γ(v)
d5􏼠 􏼡

n

,

ΞVn
(t)

�����

�����≤ Vo(t)
����

����
1 − v

B(v)
d6 +

vbv

B(v)Γ(v)
d6􏼠 􏼡

n

,

ΞRn
(t)

�����

�����≤ Ro(t)
����

����
1 − v

B(v)
d7 +

vbv

B(v)Γ(v)
d7􏼠 􏼡

n

,
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(19)

and ‖ΞSn
(t)‖⟶ 0, ‖ΞEn

(t)‖⟶ 0, ‖ΞIAn
(t)‖⟶ 0, ‖ΞISn

(t)‖⟶ 0, ‖ΞQn
(t)‖⟶ 0, ‖ΞVn

(t)‖⟶ 0, ‖ΞRn
(t)‖⟶ 0

as n⟶∞. Incorporating the triangular inequality and for
any j, system (17) yields

Sn+j(t) − Sn(t)
�����

�����≤ 􏽘

n+j

i�n+1
T

j
1 �

T
n+1
1 − T

n+k+1
1

1 − T1
,

En+j(t) − En(t)
�����

�����≤ 􏽘

n+j

i�n+1
T

j
2 �

T
n+1
2 − T

n+k+1
2

1 − T2
,

IA(n+j)(t) − IAn(t)
�����

�����≤ 􏽘

n+j

i�n+1
T

j
3 �

T
n+1
3 − T

n+k+1
3

1 − T3
,

IS(n+j)(t) − ISn
(t)

�����

�����≤ 􏽘

n+j

i�n+1
T

j
4 �

T
n+1
4 − T

n+k+1
4

1 − T4
,

Qn+j(t) − Qn(t)
�����

�����≤ 􏽘

n+j

i�n+1
T

j
5 �

T
n+1
5 − T

n+k+1
5

1 − T5
,

Vn+j(t) − Vn(t)
�����

�����≤ 􏽘

n+j

i�n+1
T

j
6 �

T
n+1
6 − T

n+k+1
6

1 − T6
,

Rn+j(t) − Rn(t)
�����

�����≤ 􏽘

n+j

i�n+1
T

j
7 �

T
n+1
7 − T

n+k+1
7

1 − T7
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where Ti � 1 − v/B(v)di + v/B(v)Γ(v)bvdi < 1. Hence, there
exists a unique solution for system (1) □
3. Model Analyses

Te disease-free equilibrium (E0) is the steady state solution
where there is no infection in the population.Tis is given as

E0 � S
0
, E

0
, I

0
A, I

0
S, Q

0
, V

0
, R

0
􏼐 􏼑 �

Ωv Γv + μv 1 − ηv
( 􏼁( 􏼁

μv μv
+ Γv( 􏼁

, 0, 0, 0, 0,
ηvΩv

Γv + μv
( 􏼁

, 0􏼠 􏼡. (21)

Te endemic equilibrium (E1) of system (1) is repre-
sented by E1 � (S∗, E∗, V∗, I∗A, I∗S , Q∗, R∗),where

S
∗

�
1 − ηv

( 􏼁Ωv
+ ΓvV

∗

βv
I
∗
A + I
∗
S( 􏼁 + μv , E

∗
�
βv

S
∗

I
∗
A + I
∗
S( 􏼁

ϕv
+ μv , I

∗
A �

(1 − α)ϕv
E
∗

ρv
+ σv

+ μv
+ δv ,

I
∗
S �

αϕv
E
∗

ρv
+ σv

+ μv
+ δv, Q

∗
�
ρv

I
∗
A + τv

I
∗
S

c
v

+ μv
+ δv, V

∗
�

ηvΩv

Γv + μv, R
∗

�
θv

I
∗
S + σv

I
∗
A + c

v
Q
∗

μv .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

We now ascertain the basic reproduction number (R0)

of system (1). Te total number of secondary instances that
one sick person can bring about over the life of the infection
in a society that is entirely susceptible is the basic

reproduction number [31]. Using the next generation op-
erator technique, by denoting F and V as matrices repre-
senting the newly produced diseases and the transition
terms, we discover, respectively,
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F �

0 βv
S
0 βv

S
0 0

(1 − α)ϕv 0 0 0

αϕv 0 0 0

0 ρv τv 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

ϕv
+ μv 0 0 0

0 ρv
+ σv

+ μv
+ δv 0 0

0 0 θv
+ τv

+ μv
+ δv 0

0 0 0 c
v

+ μv
+ δv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Now, the basic reproductive number is given as the
spectrum radius of the matrix FV− 1.

R1 �
βvΩv Γv + μv 1 − ηv

( 􏼁( 􏼁

μv μv
+ Γv( 􏼁 ρv

+ σv
+ μv

+ δv
( 􏼁

and

R2 �
βvΩv Γv + μv 1 − ηv

( 􏼁( 􏼁

μv μv
+ Γv( 􏼁 θv

+ τv
+ μv

+ δv
( 􏼁

,

(24)

represents the reproduction number for system (1)
Te necessary conditions for the local stability of the

endemic equilibrium are established in Teorem 2.

Theorem 3. Te disease-free equilibrium is locally asymp-
totically stable if Ro < 1 and unstable for R0 > 1.

Proof. Te Jacobian matrix of system (1) is given as

J �

− μv 0 − βv
S − βv

S 0 Γv 0

βv
IA + IS( 􏼁 − ϕv

+ μv
( 􏼁 βv

S βv
S 0 0 0

0 (1 − α)ϕv
− ρv

+ σv
+ μv

+ δv
( 􏼁 0 0 0 0

0 αϕv 0 − θv
+ τv

+ μv
+ δv

( 􏼁 0 0 0

0 0 ρv τv
− c

v
+ μv

+ δv
( 􏼁 0 0

0 0 0 0 0 − Γv + μv
( 􏼁 0

0 0 σv θv
c

v 0 − μv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

Te Jacobian matrix evaluated at the disease-free equi-
librium point is given as

JE0 �

− μv 0 − βv
S
0

− βv
S
0 0 Γv 0

0 − ϕv
+ μv

( 􏼁 βv
S
0 βv

S
0 0 0 0

0 (1 − α)ϕv
− ρv

+ σv
+ μv

+ δv
( 􏼁 0 0 0 0

0 αϕv 0 − θv
+ τv

+ μv
+ δv

( 􏼁 0 0 0

0 0 ρv τv
− c

v
+ μv

+ δv
( 􏼁 0 0

0 0 0 0 0 − Γv + μv
( 􏼁 0

0 0 σv θv
c

v 0 − μv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

We need to show that all eigenvalues of system (23) are
negative. Te frst four eigenvalues are − μv, − (cv + μv + δv),
− (Γv + μv), and − μv. Te others are obtained from the
submatrix in system (24) formed by excluding the frst, ffth,
sixth, and seventh rows and columns of system (23). Hence,
we have

JE0 �

− ϕv
+ μv

( 􏼁 βv
S
0 βv

S
0

(1 − α)ϕv
− ρv

+ σv
+ μv

+ δv
( 􏼁 0

αϕv 0 − θv
+ τv

+ μv
+ δv

( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(27)

Te characteristic equation of system (24) is
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λ3 + A1λ
2

+ A2λ + A3 � 0, (28) where

A1 � ϕv
+ μv

( 􏼁 + ρv
+ σv

+ μv
+ δv

( 􏼁 + A,

A2 � ϕv
+ μv

( 􏼁 ρv
+ σv

+ μv
+ δv

( 􏼁 + A􏼂 􏼃 + ρv
+ σv

+ μv
+ δv

( 􏼁 A − μvϕv μv
+ Γv( 􏼁R0(􏼂 􏼃,

A3 � ρv
+ σv

+ μv
+ δv

( 􏼁 ϕv
+ μv

( 􏼁A + αvϕvβv
S
0

􏽨 􏽩 +(1 − α)ϕv
Aβv

S
0
,

A � θv
+ τv

+ μv
+ δv

( 􏼁.

(29)

From the Routh–Hurwitz stability criterion, if the
conditions A1 > 0, A3 > 0 and A1A2 − A3 > 0 are satisfed,
then all the roots of the characteristic equation have
a negative real part which means stable equilibrium. □

4. Fractional Optimal Control Problem

We add two control functions u1 and u2 into the system (1),
where control u1 and u2 are social distancing and vacci-
nation, respectively. We include the time-dependent con-
trols into system (1), and we have

v
ABC

D
v
t S � 1 − ηv

( 􏼁Ωv
+ ΓvV − 1 − u1( 􏼁βvS IA + IS( 􏼁

N
− μv

S − u2S,

v
ABC

D
v
t E � 1 − u1( 􏼁βvS IA + IS( 􏼁

N
− ϕv

+ μv
( 􏼁E,

v
ABC

D
v
t IA � (1 − α)ϕv

E − ρv
+ σv

+ μv
+ δv

( 􏼁IA,

v
ABC

D
v
t IS � αϕv

E − θv
+ τv

+ μv
+ δv

( 􏼁IS,

v
ABC

D
v
t Q � ρv

IA + τv
IS − c

v
+ μv

+ δv
( 􏼁Q,

v
ABC

D
v
t V � ηvΩv

− Γv + μv
( 􏼁V + u2S,

v
ABC

D
v
0,t[R(t)] � θv

IS + σv
IA + c

v
Q − μv

R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Te objective function for a fxed time tf is given as

J u1, u2( 􏼁 � 􏽚
tf

0
G1S(t) + G2E(t) + G3IA(t) + G4IS(t) + G5Q(t) +

1
2

T1u
2
1 + T2u

2
2􏼐 􏼑􏼔 􏼕dt, (31)

where T1 and T2 are the measures of the relative cost of
interventions associated with the controls u1 and u2. We fnd
optimal controls u1 and u2 that minimize the cost function

J u1, u2( 􏼁 � 􏽚
tf

0
ς S, E, IA, IS, Q, V, R( 􏼁dt, (32)
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subject to the constraint

v
ABC

D
v
t S(t) � ς1,

ABC
v D

v
t E(t) � ς2,

ABC
v D

v
t IA(t) � ς3,

ABC
v D

v
t IS(t) � ς4,

ABC
v D

v
t Q(t) � ς5

v
ABC

D
v
t V(t) � ς6,

ABC
v D

v
t R(t) � ς7,

(33)

where ςi � ς(S, E, IA, IS, Q, V, R), i � 1, 2, 3, . . . . . . , 7,
Φ � (u1, u2)|ui is a Lebesgue measurable on [0, 1] such that
0≤ (u1, u2)≤ 1,∀t ∈ [0, tf], where tf is the fnal time and

with initial conditions S(0) � So, E(0) � Eo, IA

(0) � IAo, IS(0) � Iso, Q(0) � Qo, V(0) � Vo, R(0) � Ro.
To defne the fractional optimal control, we consider the

following modifed cost function [10]:

J � 􏽚
tf

0
Hv S, E, IA, IS, Q, V, R, uj, t􏼐 􏼑 − 􏽘

7

i�1
λiςi S, E, IA, IS, Q, V, R, uj, t􏼐 􏼑⎡⎣ ⎤⎦dt, (34)

where i � 1, ........., 7 and j � 1, 2, 3. For the fractional optimal control, the Hamiltonian is

Hv S, E, IA, IS, Q, V, R, uj, t􏼐 􏼑 � ] S, E, IA, IS, Q, V, R, uj, t􏼐 􏼑 +􏽘
7

i�1
λiςi S, E, IA, IS, Q, V, R, uj, t􏼐 􏼑⎞⎠, (35)

where i � 1, . . . . . . , 7 and j � 1, 2, 3. Te following are es-
sential for the formulation of the fractional optimal control
[10, 27]:

v
ABC

D
v
tΛS �

zHv

zS
, v

ABC
D

v
tΛE �

zHv

zE
, v

ABC
D

v
tΛIA

�
zHv

zIA

, v
ABC

D
v
tΛIS

�
zHv

zIS

, v
ABC

D
v
tΛQ �

zHv

zQ
,

v
ABC

D
v
tΛV �

zHv

zV
, v

ABC
D

v
tΛR �

zHv

zR
,

(36)

0 �
zHv

zui

,

v
ABC

D
v
t S �

zHv

zΛS

, v
ABC

D
v
t E �

zHv

zΛE

, v
ABC

D
v
t IA �

zHv

zΛIA

, v
ABC

D
v
t IS �

zHv

zΛIS

, v
ABC

D
v
t Q �

zHv

zΛQ

,

v
ABC

D
v
t V �

zHv

zΛV

, v
ABC

D
v
t R �

zHv

zΛR

.

(37)

Moreover,

ΛS tf􏼐 􏼑 � ΛE tf􏼐 􏼑 � ΛIA
tf􏼐 􏼑 � ΛIS

tf􏼐 􏼑 � ΛQ tf􏼐 􏼑

� ΛV tf􏼐 􏼑 � ΛR tf􏼐 􏼑 � 0,
(38)

are the Lagrange multipliers. Equations (31) and (32) provide
the necessary conditions for the fractional optimal control in
terms of the Hamiltonian for the optimal control problem
defned previously. Te Hamiltonian, H, is defned by
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H � k1S
∗

+ k2E
∗

+ k3I
∗
A + k4I

∗
S + k5Q

∗
+
1
2

T1u
2
1 + T2u

2
2􏼐 􏼑

+ v
ABC

D
v
tΛS + v

ABC
D

v
tΛE + v

ABC
D

v
tΛIA

+ v
ABC

D
v
tΛIS

+ v
ABC

D
v
tΛQ + v

ABC
D

v
tΛV + v

ABC
D

v
tΛR.

(39)

Theorem 4. Given an optimal control (u∗1 , u∗2 ) and corre-
sponding solution S∗, E∗, I∗A, I∗S , Q∗, V∗, R∗ of the system (26)-
(27) that minimizes J(u) over U, there exist adjoint variables
ΛS,ΛE,ΛIA

,ΛIS
,ΛQ,ΛV, andΛR, satisfying [27]

−
dΛi

dt
�

zH

zi
, (40)

where i � S, E, IA, IS, Q, V, R with the transversality
conditions:

ΛS tf􏼐 􏼑 � ΛE tf􏼐 􏼑 � ΛIA
tf􏼐 􏼑 � ΛIS

tf􏼐 􏼑 � ΛQ tf􏼐 􏼑

� ΛV tf􏼐 􏼑 � ΛR tf􏼐 􏼑 � 0.
(41)

Proof. Te diferential equations characterized by the ad-
joint variables are obtained by considering the right-hand
side diferentiation of system (34) determined by the optimal
control. Te adjoint equations derived are given as

v
ABC

D
v
tΛS � βv

IA − IS( 􏼁 1 − u1( 􏼁 ΛS − ΛE􏼂 􏼃 + μv
+ u2( 􏼁ΛS + u2ΛV,

v
ABC

D
v
tΛE � ϕv

+ μv
( 􏼁ΛE − (1 − α)ϕvΛIA

− αϕvΛIS
,

v
ABC

D
v
tΛIA

� ρv
+ σv

+ μv
+ δv

( 􏼁ΛIA
+ 1 − u1( 􏼁βv

SΛS − ρvΛQ − σvΛR,

v
ABC

D
v
tΛIS

� θv
+ τv

+ μv
+ δv

( 􏼁ΛIS
+ 1 − u1( 􏼁βv

SΛS − τvΛQ − θvΛR,

v
ABC

D
v
tΛQS

� c
v

+ μv
+ δv

( 􏼁ΛQ − c
vΛR,

v
ABC

D
v
tΛVS

� − ΓvΛS + Γv + μv
( 􏼁ΛV,

v
ABC

D
v
tΛRS

� μvΛR.

(42)

By obtaining the solution for u∗1 and u∗2 subject to the
constraints, we have

0 �
zH

zu1
� − T1u1 + βv

S IA + IS( 􏼁 ΛE − ΛS􏼂 􏼃,

0 �
zH

zu2
� − T2u2 + S ΛS − ΛV􏼂 􏼃.

(43)

Tis gives

u
∗
1 � min 1, max 0,

βv
S IA + IS( 􏼁 ΛE − ΛS􏼂 􏼃

T1
􏼠 􏼡􏼠 􏼡,

u
∗
2 � min 1, max 0,

S ΛS − ΛV􏼂 􏼃

T2
􏼠 􏼡􏼠 􏼡.

(44)

□

5. Numerical Scheme of the
Fractional Derivative

We apply the scheme in [10] to system (1). Let us consider
the frst equation of system (1).

v
ABC

D
v
t [S(t)] � h(t, S(t)), S(0) � So. (45)

Applying the fundamental theorem of fractional calculus
to equation (40), we obtain

S(t) − S(0) �
1 − v

B(v)
h(t, S(t))

+
v

Γ(v)B(v)
􏽚

t

0
g(τ, S(τ))(t − τ)

v− 1dτ,

(46)

where B(v) � 1 − v + v/Γ(v) is a normalized function and at
tε+1, we have

Sε+1 � So +
(1 − v)Γ(v)

(1 − v)Γ(v) + v
h tε, S tε( 􏼁( 􏼁

+
v

Γ(v) + v(1 − Γ(v))
􏽘

ε

z�0
􏽚

tε

tz

h × tε+1 − ϑ( 􏼁
v− 1

.

(47)

Implementing two-step Lagrange’s interpolation poly-
nomial on the interval [tε, tε+1] [10, 32], we have

Y �
h tε, Sz( 􏼁

g
ϑ − tz− 1( 􏼁 −

h tz− 1, Sz− 1( 􏼁

g
ϑ − tz( 􏼁. (48)
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Equation (43) is replaced with equation (42), and by
performing the steps given in [10, 32], we obtain

S tε+1( 􏼁 � S t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, S tε( 􏼁( 􏼁 +

1
(v + 1)Γ(v) + v

􏽘

n

z�0
g

v
h tz, S tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − g

v
h tz− 1, S tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v).

(49)

To obtain high stability, we replace the step-size g in
equation (44) with ϑ(g) such that ϑ(g) � g + O(g2),

0< ϑ(g)≤ 1 [10, 31].

Te new scheme which is called the nonstandard two-
step Lagrange interpolation method (NS2LIM) is given as
follows:

S tε+1( 􏼁 � S t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, S tε( 􏼁( 􏼁 +

1
(v + 1)(1 − v)Γ(v) + v

􏽘

ε

z�0
ϑ(g)

v
h tz, S tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − ϑ(g)

v
h tz− 1, S tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v).

(50)

Similarly,

E tε+1( 􏼁 � E t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, E tε( 􏼁( 􏼁 +

1
(v + 1)(1 − v)Γ(v) + v

􏽘

ε

z�0
ϑ(g)

v
h tz, E tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − ϑ(g)

v
h tz− 1, E tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v),

IA tε+1( 􏼁 � IA t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, IA tε( 􏼁( 􏼁 +

1
(v + 1)(1 − v)Γ(v) + v

􏽘

ε

z�0
ϑ(g)

v
h tz, IA tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − ϑ(g)

v
h tz− 1, IA tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v),

IS tε+1( 􏼁 � IS t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, IS tε( 􏼁( 􏼁 +

1
(v + 1)(1 − v)Γ(v) + v

􏽘

ε

z�0
ϑ(g)

v
h tz, IS tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − ϑ(g)

v
h tz− 1, IS tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v),
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Q tε+1( 􏼁 � Q t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, Q tε( 􏼁( 􏼁 +

1
(v + 1)(1 − v)Γ(v) + v

􏽘

ε

z�0
ϑ(g)

v
h tz, Q tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − ϑ(g)

v
h tz− 1, Q tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v),

V tε+1( 􏼁 � V t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, V tε( 􏼁( 􏼁 +

1
(v + 1)(1 − v)Γ(v) + v

􏽘

ε

z�0
ϑ(g)

v
h tz, V tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − ϑ(g)

v
h tz− 1, V tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v),

R tε+1( 􏼁 � R t0( 􏼁 +
Γ(v)(1 − v)

Γ(v)(1 − v) + v
h tε, R tε( 􏼁( 􏼁 +

1
(v + 1)(1 − v)Γ(v) + v

􏽘

ε

z�0
ϑ(g)

v
h tz, R tz( 􏼁( 􏼁(ε + 1 − z)

v

×(ε − z + 2 + v) − (ε − z)
v
(ε − z + 2 + 2v) − ϑ(g)

v
h tz− 1, R tz− 1( 􏼁( 􏼁(ε + 1 − z)

v+1
(ε − z + 2 + v)

− (ε − z)
v
(ε − z + 1 + v).

(51)

6. Numerical Simulation

In this section, we validate the model using the parameter
values given in [20] and use the numerical scheme in [10].
Te parameter values are given in Table 1.

Using the initial conditions given in [20],
S(0) � 30800000, E(0) � 0, IA(0) � 2, IS (0) � 0, Q(0) � 0,

V(0) � 0, R(0) � 0, and setting the fractional operator
v ∈ [0.6, 1.0] at a step-size of 0.1, the simulations performed
are displayed in Figures 2–8. Te fgures depict the be-
haviour of all compartments for the frst 400 days since the
outbreak.

Figures 2–8 depict the behaviour of susceptible, exposed,
asymptomatic, symptomatic, quarantine, vaccinated, and
recovered individuals, respectively, for diferent values of
the fractional operator v for the period of 400 days. In
Figure 2, the population of susceptible decreases as the
value of the fractional operator v reduces. Te exposed,
asymptomatic, symptomatic, and quarantine population
is extinct when the fractional operator is 0.6 and below
(Figures 3–6). Again, exposed, asymptomatic, symp-
tomatic, and quarantine population is seen to reach an
early peak when the fractional operator value is reduced
from 1. Te number of exposed, asymptomatic, symp-
tomatic, and quarantine individuals decays faster at the
noninteger values. However, the number of immune in-
dividuals increases as v reduces from 1.0 to 0.6 (Figure 7).
On the other hand, the recovered population is seen to
become extinct at v � 0.6. Tis is so because the infections
in the population have also become extinct at the same
value of the fractional operator (Figure 8).

7. Numerical Simulation of the Fractional
Optimal Control

In this section, we analyze the numerical behavior of the
fractional optimal control model using the parameter values
given in Table 1 and the same initial conditions
S(0) � 30800000, E(0) � 0, IA(0) � 2, IS(0) � 0, Q(0) � 0,

V(0) � 0, R(0) � 0. Using MATLAB OD45 Ruge–Kutta
method, the results of the simulations are displayed in
Figures 9–20.

Figures 9–15 depict the behaviour of the susceptible,
exposed, asymptomatic, symptomatic, quarantine, immune,
and recovered individuals, respectively, when the optimal
control u1 is fully optimized while setting u2 � 0 for the
entire period of 400 days. With the social distancing control,
it takes a longer period of 350 days before a signifcant
decline in the susceptible population is observed as com-
pared to a situation without optimal control which is
250 days (Figure 9). In Figure 10, there is a drastic decline in
the number of individuals that get exposed to the disease
when social distancing is observed. Tis leads to a corre-
sponding decline in the number of asymptomatic, symp-
tomatic, and quarantine individuals (Figures 11–13). Te
social distancing measures have no efect on the immune
individuals as the population remains constant with or
without the optimal control (Figure 14). With a drastic fall in
the number of infections in the case of an optimal control,
the recovered population is also seen to decline when there is
an optimal control (Figure 15). Figures 16–22 describe the
dynamics of each compartment when the vaccination
control is implemented.
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Table 1: Parameter values and description.

Parameters Description Values Sources
Ω Recruitment rate 29.08 [20, 33]
β Transmission rate 0.9 [20, 27]
ϕ Te rate at which exposed individuals become infectious 0.25 [20, 27, 34]
μ Natural death rate 0.4252912 × 10− 4 [20, 27]
δ Disease-induced death rate 1.6728 × 10− 5 [20, 35]
θ Recovery rate of symptomatic individuals 1/14 [36]
Γ Rate at which vaccinated individuals lose their immunity 1.52 × 10− 7 [20]
σ Recovery rate of asymptomatic individuals 1/14 [20, 27]
c Recovery rate of quarantine individuals 1/14 [20]
τ Rate at which symptomatic individuals move to the quarantine class 0.01 [36]
ρ Rate at which asymptomatic individuals move to the quarantine class 1.026 × 10− 7 Assumed
η Rate at which susceptible individuals are vaccinated 0.01624 [20]
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Figure 2: Behaviour of the susceptible individuals at diferent values of v.

50 100 150 200 250 300 350 4000
Time (days)

0

2

4

6

8

10

12

E 
(t)

× 106

ν=1.0
ν=0.9
ν=0.8

ν=0.7
ν=0.6

Figure 3: Behaviour of the exposed individuals at diferent values of v.
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Figures 16–22 show the behaviour of the susceptible,
exposed, asymptomatic, symptomatic, quarantine, re-
covered, and immune individuals, respectively, when the
vaccination control u2 is fully optimized while setting u1 � 0
for the entire period of 400 days. With the vaccination
control, a signifcant decline in the number of susceptible
individuals is observed for the frst 300 days. However, after
the 300 days, there is a slow decline in the number when

compared with a situation without optimal control. Te
vaccination reduces the number of individuals susceptible to
the disease for the frst 300 days (Figure 16). Vaccinating the
susceptible individuals leads to a decline in the number of
exposed, asymptomatic, symptomatic, and quarantine in-
dividuals as compared with a situation without the optimal
control (Figures 17–20). Te decline in infections leads to
a decline in the recovered population (Figure 21). Tere are
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Figure 4: Behaviour of the asymptomatic individuals at diferent values of v.
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Figure 10: Behaviour of the exposed individuals with and without the optimal control.
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Figure 11: Behaviour of the asymptomatic individuals with and without the control.
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Figure 12: Behaviour of the symptomatic individuals with and without the control.
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Figure 13: Behaviour of the quarantine individuals with and without the control.
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Figure 14: Behaviour of the immune individuals with and without the control.
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Figure 15: Behaviour of the recovered individuals with and without the control.
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Figure 16: Behaviour of the susceptible individuals with and without the vaccination control.
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Figure 17: Behaviour of the exposed individuals with and without the vaccination control.
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Figure 18: Behaviour of the asymptomatic individuals with and without the vaccination control.
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Figure 19: Behaviour of the symptomatic individuals with and without the control.
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Figure 20: Behaviour of the quarantine individuals with and without the vaccination control.
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Figure 21: Behaviour of the recovered individuals with and without the vaccination control.
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a high number of individuals that develop immunity to the
disease due to the vaccination of susceptible individuals
(Figure 22).

8. Conclusion

In this study, the model in [20] has been modifed and
formulated using the fractional-order derivative defned in
the Atangana–Baleanu–Caputo sense. Te basic properties
such as the equilibrium points, basic reproduction number,
and uniqueness of the solutions have been explored.
Fractional optimal controls were incorporated into the
model to determine appropriate intervention strategies in
curbing the spread of the disease. Te model was validated
using the parameter values given in [20] for a period of
400 days. Te MATLAB software fourth-order Run-
ge–Kutta method was used for the simulations. Results of
the numerical simulation show that there is a signifcant
number of individuals who become exposed, asymptom-
atic, symptomatic, quarantine, and recovered when the
fractional operator v is above 0.6. Te number of immune
individuals increases with a reduction in the fractional
operator value from 1 to 0.6. Contrary to the number of
immune individuals, the number of susceptible individuals
declines as the fractional operator value decreases. Te
numerical simulation of the optimal control model dem-
onstrates that vaccination and social isolation are both very
successful strategies for preventing the spread of the dis-
ease. Social isolation had no impact on the immune
population, while vaccination controls produced a sizable
proportion of disease-immune individuals.
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Tis paper presents the study of a numerical scheme for the analytical solution of nonlinear gas dynamic equation.We use the idea
of Laplace–Carson transform and associate it with the homotopy perturbation method (HPM) for obtaining the series solution of
the equation. We show that this hybrid approach is excellent in agreement and converges to the exact solution very smoothly.
Further, HPM combined with He’s polynomial is utilized to minimize the numerical simulations in nonlinear conditions that
make it easy for the implementation of Laplace–Carson transform. We also exhibit a few graphical solutions to indicate that this
approach is extremely reliable and convenient for linear and nonlinear challenges.

1. Introduction

Te gas dynamic equation is mathematically modeled by
various physical laws such as energy, mass and momentum
conservation. Gas is a collection of numerous elements in
continuous chaotic motion such as molecules, atoms, ions, etc.
Te nonlinear gas dynamics equation is used in shock waves,
centered rarifed waves, contact fows, and connection dis-
continuities. Te study of gas motion and its impact on
structures using the principles of fuid dynamics and fuid
mechanics is known as “gas dynamic,” and it belongs to the
discipline of fuid dynamics [1, 2]. Numerous researchers has
studied the gas dynamic equation with diferent analysis [3, 4].
Srivastava and Saad [5] studied the theory of gas dynamic
equation and extended it with diferent models. Various ap-
proaches have been introduced to solve the gas dynamics
problems such as fractional reduced transform method [6],
Elzaki transform homotopy perturbation approach [7], q

-homotopy analysis [8], Adomian decomposition strategy [9],
variational iteration method [10, 11], fractional homotopy
analysis transform approach [12], homotopy perturbation

method using Laplace transform [13], Homotopy analysis
transformmethod [14] andnatural decompositionmethod [15].

He [16–18] demonstrated the strategy HPM for the
solution of nonlinear problems arising in complex models
and showed that this approach has an excellent performance
in obtaining the series solutions. Some scientists [19, 20]
modifed this study and coupled it with Laplace transform to
achieve the series solution of nonlinear diferential prob-
lems. Aggarwal and Kumar [21] applied Laplace–Carson to
Volterra integro-diferential problem of frst kind. After that,
Kumar and Qureshi [22] received the results of initial value
problems with the Caputo derivative in the shape of series
and showed the authenticity of this scheme. Tange and
Gade [23] studied a few defnitions of Laplace–Carson with
fractional order and used the convolution theorem which
was very complicated to obtain the iterations.

In this article, we study a novel scheme Laplace–Carson
homotopy perturbation method (Lc-PTM) which is con-
structed on the basis of Laplace–Carson andHPM.Wepoint out
that the present scheme is very connivent to use and reveals the
results in the shape of a series. Tis approach is an independent
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convolution theorem that may face complications during the
calculation of iterations. Tis article is designed as In Section 2,
we present the defnition of Laplace–Carson transform with
basic propositions. In Section 3, we study the fundamental
concept ofHPMwhich is used to split the nonlinear elements. In
Section 4, we present the numerical applications to show the
ability of Lc-PTM, and fnally, we discuss the obtained results
and conclusion in Sections 5 and 6 respectively.

2. Laplace and Laplace–Carson Transform

Defnition 1. Consider f(t) be a function with t≥ 0, so

L f(t)􏼈 􏼉 � F(s) � θ􏽚
∞

0
f(t)e

− stdt, (1)

is said to Laplace transform and s is transform function of θ.

Defnition 2. Aggarwal and Kumar [21] studied a theory
such that

Lc g(t)􏼈 􏼉 � R(θ) � θ􏽚
∞

0
g(t)e

− θtdt, k1 ≤ θ≤ k2. (2)

Here k1 and k2 are arbitrary constants andLc is termed
as Laplace–Carson transform. Now, if R(θ) is the Lap-
lace–Carson transform of a function g(t) then g(t) is the
inverse of R(θ) so that,

L
− 1
c R(θ){ } � g(t), L

− 1
c is said to be inverse Laplace − Carson transform. (3)

Defnition 3. If g(t) � tm, then Laplace–Carson transform is
utilized as

Lc g(t)􏼈 􏼉 � R(θ) �
m!

θm. (4)

Properties 1. If Lc g(t)􏼈 􏼉 � R(θ), then it has the following
diferential properties [21, 23].

(a) Lc g′(t)􏼈 􏼉 � θR(θ) − θG(0),
(b) Lc g″(t)􏼈 􏼉 � θ2R(θ) − θ2G(0) − θG′(0),
(c) Lc gm(t)􏼈 􏼉 � θmR(θ) − θmG(0) − θm− 1G′(0) − · · · −

θGm− 1(0).

3. Fundamental Concept of HPM

Tis segment presents the concept of HPM with the consid-
eration of a nonlinear functional equation [24, 25]. Consider

T(ϑ) − g(h) � 0, h ∈ Ω. (5)

With conditions

S ϑ,
zϑ
zn

􏼠 􏼡 � 0, h ∈ Γ. (6)

Here T and S are identifed as general functional and
boundary operator respectively, g(h) is source term with Γ
as a interval of the domain Ω. We can now split T such that
T1 is said to be a linear and T2 be a nonlinear operator.Tus,
we can write equation (5) as

T1(ϑ) + T2(ϑ) − g(h) � 0. (7)

Consider ϑ(h, θ): Ω × [0, 1]⟶ H such that it is suit-
able for

H(ϑ, θ) � (1 − θ) T1(ϑ) − T1 ϑ0( 􏼁􏼂 􏼃 + θ T1(ϑ) − T2(ϑ) − g(h)􏼂 􏼃,

(8)

or

H(ϑ, θ) � T1(ϑ) − T1 ϑ0( 􏼁 + qL ϑ0( 􏼁 + θ T2(ϑ) − g(h)􏼂 􏼃 � 0.

(9)

Here θ ∈ [0, 1] is homotopy element and ϑ0 is an initial
approximation of equation (5), which is appropriate for the
boundary conditions. Te study of HPM declares that θ is
assumed as a minimal variable and the result of equation (5)
cab be expressed in the shape of θ.

ϑ � ϑ0 + θϑ1 + θ2ϑ2 + θ3ϑ3 + · · · � 􏽘
∞

i�0
θiϑi. (10)

Consider θ � 1, we get particular of equation (10) as

ϑ � limθ⟶1ϑ � ϑ0 + ϑ1 + ϑ2 + ϑ3 + · · · � 􏽘
∞

i�0
ϑi. (11)

Te nonlinear terms are obtained as

T2ϑ(x, t) � 􏽘
∞

n�0
θn

Hn(ϑ), (12)

where Hn(ϑ) is defned as

Hn ϑ0 + ϑ1 + · · · + ϑn( 􏼁 �
1
n!

z
n

zθn T2 􏽘

∞

i�0
θiϑi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

θ�0

. n � 0, 1, 2, · · · . (13)
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Tis result in equation (12) generally converges as the
rate of convergence depends on the nonlinear operator T2
.

4. Numerical Applications

In this segment, we apply the scheme of Lc-PTM to obtain
the analytical results of nonlinear gas dynamic equation. We
express that this approach generates the series solution only
after iterations with excellent accuracy.

4.1.Example1. Consider the homogenous and nonlinear gas
dynamic equation

zϑ
zt

+ ϑ
zϑ
zx

− ϑ(1 − ϑ) � 0. (14)

With initial condition

ϑ(x, 0) � e
− x

. (15)

Using the Laplace–Carson transform to equation (14),
we get

Lc

zϑ
zt

+ ϑ
zϑ
zx

− ϑ(1 − ϑ)􏼢 􏼣 � 0,

Lc

zϑ
zt

􏼢 􏼣 � − Lc ϑ
zϑ
zx

− ϑ(1 − ϑ)􏼢 􏼣 � 0.

(16)

Employing the defnition of Laplace–Carson transform,
we get

θϑ(x, θ) − θϑ(x, 0) � − Lc ϑ
zϑ
zx

− ϑ(1 − ϑ)􏼢 􏼣. (17)

Which may be solved further as,

ϑ(x, θ) � ϑ(x, 0) −
1
θ
Lc ϑ

zϑ
zx

− ϑ + ϑ2􏼡􏼨 􏼩. (18)

Applying inverse Laplace–Carson transform, we get

ϑ(x, t) � ϑ(x, 0) − L
− 1
c

1
θ
Lc ϑ

zϑ
zx

− ϑ + ϑ2􏼡􏼨 􏼩􏼢 􏼣. (19)

Utilizing HPM on equation (19), we get

􏽘

∞

n�0
p

nϑn(x, t) � ϑ(x, 0) − pL
− 1
c

1
θ
Lc 􏽘

∞

n�0
p

nϑn(x, t)
z

zx
􏽘

∞

n�0
p

nϑn(x, t) − 􏽘
∞

n�0
p

nϑn(x, t) + 􏽘
∞

n�0
p

nϑ2n(x, t)
⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (20)

On comparing, the following iterations can be obtained,

p
0
: ϑ0(x, t) � e

− x
,

p
1
: ϑ1(x, t) � L

− 1
c

1
θ
Lc ϑ0

zϑ0
zx

− ϑ0 + ϑ20􏼨 􏼩􏼢 􏼣 � e
− xt

2

2!
,

p
2
: ϑ2(x, t) � L

− 1
c

1
θ
Lc ϑ0

zϑ1
zx

+ ϑ1
zϑ0
zx

− ϑ1 + 2ϑ0ϑ1􏼨 􏼩􏼢 􏼣 � e
− xt

3

3!
,

p
3
: ϑ3(x, t) � L

− 1
c

1
θ
Lc ϑ0

zϑ2
zx

+ ϑ1
zϑ1
zx

+ ϑ2
zϑ0
zx

− ϑ2 + ϑ21 + 2ϑ0ϑ2􏼨 􏼩􏼢 􏼣 � e
− xt

4

4!
,

⋮

(21)

Hence the solution can be expressed as

ϑ(x, t) � ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + · · · ,

ϑ(x, t) � e
− x

+ e
− xt

2

2!
+ e

− xt
3

3!
+ e

− xt
4

4!
+ · · · ,

ϑ(x, t) � e
t− x

.

(22)
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4.2. Example 2. Consider the non-homogenous and non-
linear gas dynamic equation

zϑ
zt

+ ϑ
zϑ
zx

− ϑ(1 − ϑ) � − e
t− x

. (23)

With initial condition

ϑ(x, 0) � 1 − e
− x

. (24)

Using the Laplace–Carson transform to equation (23),
we get

Lc

zϑ
zt

+ ϑ
zϑ
zx

− ϑ(1 − ϑ)􏼢 􏼣 � − Lc e
t− x

􏽨 􏽩,

Lc

zϑ
zt

􏼢 􏼣 � − Lc e
t− x

􏽨 􏽩 − Lc ϑ
zϑ
zx

− ϑ(1 − ϑ)􏼢 􏼣.

(25)

Employing the defnition of Laplace–Carson transform,
we get

θϑ(x, 0) − θϑ(x, 0) � −
e

− x

θ − 1
− Lc ϑ

zϑ
zx

− ϑ(1 − ϑ)􏼢 􏼣. (26)

Which may be solved further as,

ϑ(x, θ) � ϑ(x, 0) −
e

− x

θ − 1
−
1
θ
Lc ϑ

zϑ
zx

− ϑ + ϑ2􏼨 􏼩. (27)

Applying inverse Laplace–Carson transform, we get

ϑ(x, t) � ϑ(x, 0) − e
− x
L

− 1
c

1
θ − 1

􏼔 􏼕 − L
− 1
c

1
θ
Lc ϑ

zϑ
zx

− ϑ + ϑ2􏼨 􏼩􏼢 􏼣,

ϑ(x, t) � ϑ(x, 0) − e
t− x

+ e
− x

− L
− 1
c

1
θ
Lc ϑ

zϑ
zx

− ϑ + ϑ2􏼨 􏼩􏼢 􏼣,

ϑ(x, t) � 1 − e
− x

− e
t− x

+ e
− x

− L
− 1
c

1
θ
Lc ϑ

zϑ
zx

− ϑ + ϑ2􏼨 􏼩􏼢 􏼣,

ϑ(x, t) � 1 − e
t− x

− L
− 1
c

1
θ
Lc ϑ

zϑ
zx

− ϑ + ϑ2􏼨 􏼩􏼢 􏼣.

(28)

Utilizing HPM on equation (28), we get

􏽘

∞

n�0
p

nϑn(x, t) � 1 − e
t− x

− pL
− 1
c

1
θ
Lc 􏽘

∞

n�0
p

nϑn(x, t)
z

zx
􏽘

∞

n�0
p

nϑn(x, t) − 􏽘
∞

n�0
p

nϑn(x, t) + 􏽘
∞

n�0
p

nϑ2n(x, t)
⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (29)

On comparing, the following iterations can be obtained,

p
0
: ϑ0(x, t) � 1 − e

t− x
,

p
1
: ϑ1(x, t) � L

− 1
c

1
θ
Lc ϑ0

zϑ0
zx

− ϑ0 + ϑ20􏼨 􏼩􏼢 􏼣 � 0,

p
2
: ϑ2(x, t) � L

− 1
c

1
θ
Lc ϑ0

zϑ1
zx

+ ϑ1
zϑ0
zx

− ϑ1 + 2ϑ0ϑ1􏼨 􏼩􏼢 􏼣 � 0,

p
3
: ϑ3(x, t) � L

− 1
c

1
θ
Lc ϑ0

zϑ2
zx

+ ϑ1
zϑ1
zx

+ ϑ2
zϑ0
zx

− ϑ2 + ϑ21 + 2ϑ0ϑ2􏼨 􏼩􏼢 􏼣 � 0.

⋮

(30)
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Hence the solution can be expressed as

ϑ(x, t) � ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + ϑ3(x, t) + · · · ,

ϑ(x, t) � 1 − e
t− x

+ 0 + 0 + · · · ,

ϑ(x, t) � 1 − e
t− x

.

(31)

5. Results and Discussion

In this portion, we demonstrate the graphical represen-
tation of nonlinear gas dynamic equation. Figure 1(a)

represents the the approximate solution obtained by Lc

-PTM and Figure 1(b) represents the exact solution of the
nonlinear gas dynamic equation. In Figure 1, we compare
these graphical illustrations at − 1.5≤x≤ 1.5 and 0≤ t≤ 1

0.0
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5

0.5

1.0

-1

0

1

t

x

θ (x, t)

(a)

0.0
0

10

5
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t

x

θ (x, t)

(b)

Figure 1: Te surfaces solution of gas dynamic equation. (a) Te approximate surface solution of ϑ(x, t). (b) Te exact surface solution of
ϑ(x, t).

Exact
Approximate

1 2 3 4 5 6
x

2

4

6

t
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Figure 2: 2D plot for ϑ(x, t) with various parameter of t.
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and observe that both surface solutions are in full
agreement. Figure 2 represents the graphical error be-
tween the solutions obtained by Lc-PTM and the exact
solutions at 0≤ x≤ π. Table 1 presents the analysis of the
absolute error at diferent times t and shows that the
obtained values become closer to the exact solution with
the increase of time. Finally, the fgures and table dem-
onstrate that our approach has high authenticity of per-
formance and provides fast convergence results towards
the exact solution.

6. Conclusion

In this article, we have successfully applied a new schemeLc

-PTM to determine the approximate results of gas dynamic
equation. We obtained these results in the shape of series
instead of discretization, linearization, or assumptions. We
observe that when HPM is used with Laplace–Carson
transform, we can obtain a rapid convergent series solution
with less computation. We compute these iterations with the
help of Mathematica Software 11.0.1. We also compare the
approximate and the exact solution results and provide the
absolute error to examine the efciency of our suggested
approach. 2D plot and 3D surface solutions show that we
have strong agreement with the results of gas dynamic
equation. Terefore, we can say that Lc-PTM is more ef-
fcient and appropriate than other schemes. Tis approach is
also applicable to other nonlinear problems such as frac-
tional partial diferential equations and can be expanded in a
variety of scientifc and engineering applications in the
future.
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Te main idea of this study is to obtain the soliton-type solutions of the conformable time-fractional complex Ginzburg–Landau
equation with Kerr law nonlinearity. For this aim, the generalized and modifed Kudryashov methods are applied to the given
model. Te reason for using a conformable derivative is that the chain rule can be applied to this derivative. Tus, using the
suitable wave transform, the given equation is converted into an ordinary diferential equation. Ten, the proposed methods are
applied to the reduced equation. According to our results, both of the used methods are efective and powerful. Finally, 3D and
contour plots are given for some results with suitable variables. Our fndings in this paper are critical for explaining a wide range of
scientifc and physical applications. According to our knowledge, our results are new in the literature.

1. Introduction

Te exact solutions of the nonlinear partial diferential
equations (NLPDEs) have an important place in diferent
felds of science, such as fuid mechanics, plasma physics,
solid-state physics, and optical fbers. Tis being the case,
many methods were discovered to solve nonlinear partial
diferential equations, for example, the method of un-
determined coefcients [1], the Riccati equation mapping
approach [2], the trial equation method [3], the fnite

element method [4], the extended trial approach [5], the
Petrov–Galerkin method [6], the unifed and expa function
methods [7], the modifed extended tanh expansion method
[8], the modifed simple procedure [9], the exponential
rational function procedure [10], the Kudryashov method
[11], the ansatz method [12], and so on.

In this study, the following equation, called the con-
formable time-fractional complex Ginzburg–Landau equa-
tion, will be considered [13]:

iq
δ
t + ϵqxx + λF |q|

2
􏼐 􏼑q − |q|

2
q
∗

􏼐 􏼑
− 1

ρ|q|
2

|q|
2

􏼐 􏼑
xx

− σ |q|
2

􏼐 􏼑
x

􏽨 􏽩
2

􏼔 􏼕 − εq � 0, (1)

where δ ∈ (0, 1] represents the conformable derivative, q(x, t)

is a complex-valued function, the spatial coordinate is repre-
sented by x and the temporal coordinate is represented by t.Te
group velocity dispersions are represented by ϵ and λ, the
perturbation efects are represented by ρ, σ, and ε. F(|q|2) is

a function of |q|2 and F is a real-valued algebraic function that
must have the smoothness of the function F(|q|2)q: C⟶ C.
When the complex plane C is assumed as 2D linear space R2,
the F(|q|2)q is k times continuously diferentiable, namely,
F(|q|2)q ∈ ∪∞a,b�1C

k (− b, b) × (− a, a);R2).
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In literature, lots of researchers obtained the exact so-
lutions of the given model with the diferent types of
nonlinearity. Some researchers obtained the exact solutions
of the generalized derivative of the given model for example
Kudryashov applied the frst integral method to the equation
in [14], Das et al. applied the F-expansion to the model in
[15], the modifed (G′/G)-expansion method is applied to
the model by Wang et al. in [16], the modifed Jacobi elliptic
expansion method is applied by Hosseini et al. in [17],
Hosseini et al. implemented Kudryashov and exponential
methods to the model including the parabolic nonlinearity
in [18]. Some researchers obtained the exact solutions of
equation (1) with diferent kinds of fractional derivatives, for
example, Tozar obtained the analytical solutions of the
conformable time-fractional complex Ginzburg–Landau
equation with the help of the (1/G′) method in [19], optical
solutions were discovered with the help of the generalized
exponential rational function method in [20], Sulaiman et al.
explored the optical solitons with the help of the extended
sinh-Gordon equation expansion method in [21], the form
of the space-time conformable fractional complex Ginz-
burg–Landau equation is handled in [22], Sadaf et al. applied
the (w(ξ)/2) method to the model with the diferent types of
senses as the conformable, beta, truncated derivatives
in [23].

1.1. Te Conformable Derivative. In literature, fractional
derivatives have an essential role, so many defnitions of
fractional derivatives are discovered, for example, Rie-
mann–Liouville, Grunwald–Letnikov, the Caputo, Atanga-
na–Baleanu, and modifed Riemann–Liouville derivatives
[24, 25]. In this study, the conformable derivative will be
used, which is developed by Khalil et al. [26]. An important
feature of this derivative is that we can apply the chain rule so
we can reduce nonlinear diferential equations to ordinary
diferential equations with the help of wave transforms. Basic
defnitions of the conformable derivative are given as
follows:

When ψ: (0,∞)⟶ R, the conformable derivative of ψ
of order δ, 0< δ < 1, is defned as follows [27, 28]:

Tδ(ψ)(t) � lim
ε⟶0

ψ t + ϵt1− δ
􏼐 􏼑 − ψ(t)

ϵ
, (2)

for all t> 0. Te basic properties of the conformable de-
rivative are given as follows [29–31]:

(1) Tδ(aψ + bφ) � aTδ(ψ) + bTδ(φ), for all a, b ∈ R
(2) Tδ(tα) � αtα− δ, for all α ∈ R
(3) Tδ(ψφ) � ψTδ(φ) + φTδ(ψ)

(4) Tδ(ψ/φ) � (φTδ(ψ) − ψTδ(φ)/φ2)

(5) If ψ is diferentiable, then Tδ(ψ)(t) � t1− δdψ/dt

(6) ψ(t) � λ, Tδ(λ) � 0, for all constant functions
(7) Chain rule: Let ψ,φ: (0,∞)⟶ R be a diferentia-

ble and δ− diferentiable function then the chain rule
is given by the following:

Tδ(ψ ∘φ)(t) � t
1− αφ′(t)ψ′(φ(t)). (3)

In this paper, the conformable time-fractional complex
Ginzburg–Landau equation with Kerr law was solved by two
procedures, namely, the generalized Kudryashov and the
modifed Kudryashov procedures. For this aim, the main
ideas of generalized Kudryashov and the modifed
Kudryashov procedures were in Section 2. Ten, these
procedures were applied to the given model, and 3D and
contour plots of obtained solutions were given in Section 3.
Finally, conclusions were given.

2. The Procedures

In this section, the used procedures will be given. We take
into consideration a general nonlinear diferential equation
in the following form:

Φ q,
z
δ
q

zt
δ ,

zq

zx
,
z
2δ

q

zt
2δ ,

z
2
u

zx
2, . . .􏼠 􏼡 � 0, (4)

where q � q(x, t) is a complex-valued function and δ rep-
resents a conformable derivative. If we apply the following
wave transformation to equation (4):

q(x, t) � u(ζ)e
iφ

, (5)

where ζ � x − vtδ/δ and φ � − κx + ωtδ/δ + η, the following
ordinary diferential equation (ODE) is obtained:

ϕ u, u
′
, u
″
, . . . ,􏼒 􏼓 � 0, (6)

here prime represents the diferentiation of u with respect to ζ.

2.1. Te Generalized Kudryashov Procedure. According to
the method, we assume u(ζ) as follows (32, 33):

u(ζ) �
􏽐

N
n�0 anψ

n
(ζ)

􏽐
M
m�0 bmψ

m
(ζ)

, (7)

where an, bm(n � 0, 1, . . . N, m � 0, 1, . . . M) are constants
and they should be aN ≠ 0, bM ≠ 0 and the following ODE is
satisfed by ψ(ζ):

dψ
dζ

� ψ2
(ζ) − ψ(ζ), (8)

and ψ(ζ) is given as follows:

ψ(ξ) �
1

1 + χe
ζ , χ is integration constant, (9)

N and M are calculated by the homogeneous balance
principle at (6). We can calculate a polynomial of ψ by
substituting equation (7) into equation (6) without ig-
noring equation (8). Ten, all the coefcients of the
polynomial ψ are set to zero. If the obtained system is
solved, the values of the an, bm, κ, v,ω are obtained. Fi-
nally, the soliton-type solutions of the given model are
obtained.
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2.2. Te Modifed Kudryashov Procedure. According to the
method, the solutions of equation (6) are assumed as follows
[34–36]:

u(ζ) � 􏽘
M

m�0
ϖm(ψ(ζ))

m
, ϖM ≠ 0, (10)

where ϖm(m � 0, 1, . . . , M) are constants that will be de-
termined later, M is calculated by the homogeneous balance
principle, and the function ψ(ζ) is given by the following:

ψ(ζ) �
1

1 + χa
ζ , (11)

where (11) satisfes the following ODE:

ψ′(ζ) � ψ2
(ζ) − ψ(ζ)􏼐 􏼑ln a. (12)

Substituting equation (10) into equation (6) without
ignoring equation (12), a set of algebraic equations is ob-
tained for ϖm, a, χ, κ, v and ω. Finally, solving this obtained
system, the exact solutions of equation (2) are calculated.

3. The Applications

In this section, the used procedures will be applied to the
givenmodel. For this aim, the given model will be reduced to
the nonlinear diferential equation by the wave trans-
formation. If we implement the wave transformation,
namely, equation (5) to equation (1) then separate the real
and imaginary parts, we get the following ODE:

− ωu + ϵ u
″

− κ2u􏼒 􏼓 + λF u
2

􏼐 􏼑u − 2(ρ − 2σ)
u
′

􏼒 􏼓
2

u
− 2ρu

″
− εu � 0,

(13)

v � − 2ϵκ. (14)

If we take ρ � 2σ, equation (13) reduces to the following
ODE:

(ϵ − 4σ)u
″

− ω + ϵκ2 + ε􏼐 􏼑u + λF u
2

􏼐 􏼑u � 0. (15)

If we take F(u2) � u for the Kerr law nonlinearity,
equation (15) reduces to the following ODE:

(ϵ − 4σ)u
″

− ω + ϵκ2 + ε􏼐 􏼑u + λu
3

� 0. (16)

If we balance u″ and u3 in equation (16), the balance
number is obtained as 1.

3.1. First Method. In this subsection, the generalized
Kudryashov procedure will be applied to the equation (16).
According to the method, we assume

u �
a0 + a1ψ + a2ψ

2

b0 + b1ψ
. (17)

If we substitute the solution (17) without ignoring the (8)
in equation (16), we obtain an overdetermining equation

system. If the obtained system is solved, four solution
families are obtained as follows.

3.1.1. First Family. Te values of the arbitrary constants are
obtained as follows:

a0 � 0,

a1 � ± b1

�������

−
ϵ − 4σ
2λ

􏽲

,

a2 � ±
b1(ϵ − 4σ)

λ
���������
− ϵ − 4σ/2λ

√ ,

b0 � 0,

b1 � b1,

ω � − ϵκ2 −
ϵ
2

+ 2σ − ε.

(18)

Ten, the solutions of the given model are obtained as
follows:

q1,2(x, t) � ∓
χe

x− v tδ/δ( )( ) − 1􏼒 􏼓(ϵ − 4σ)

���������
− 2ϵ + 8σ/λ

√
1 + χe

x− vtδ/δ( )􏼒 􏼓λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠e

i − κx+ωtδ/δ+η( ).

(19)

3.1.2. Second Family. Te values of the arbitrary constants
are obtained as follows:

a0 � 0,

a1 � ± b0

���������

−
8ϵ − 32σ

λ

􏽲

,

a2 � ∓b0

���������

−
8ϵ − 32σ

λ

􏽲

,

b0 � b0,

b1 � − 2b0,

ω � − ϵκ2 + ε − 4σ − ε,

(20)

and the solutions are given by the following:

q3,4(x, t) � ±
2χe

x− vtδ/δ( )
���������
− 2ϵ + 8σ/λ

√

χ2e2 x− vtδ/δ( ) − 1􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠e

i − κx+ωtδ/δ+η( ).

(21)

3.1.3. Tird Family. Te values of the arbitrary constants are
obtained as follows:
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a0 � ±
b0(ϵ − 4σ)

λ
���������
− 2ϵ − 8σ/λ

√ ,

a1 � ∓
2b0 − b1( 􏼁(ϵ − 4σ)

λ
���������
− 2ϵ − 8σ/λ

√ ,

a2 � ± b1

��������

−
2ϵ − 8σ

λ

􏽲

,

b0 � b0,

b1 � b1,

ω � − ϵκ2 −
ϵ
2

+ 2σ − ε,

(22)

and the solutions are given as follows:

q5,6(x, t) � ±
(ϵ − 4σ) χe

x− vtδ/δ( ) − 1􏼒 􏼓

λ 1 + χe
x− vtδ/δ( )􏼒 􏼓

���������
− 2ϵ − 8σ/λ

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠e
i − κx+ωtδ/δ+η( ).

(23)

3.1.4. Fourth Family. Te values of the arbitrary constants
are obtained as follows:

a0 � ∓
b1(ϵ − 4σ)

λ
���������
− 2ϵ − 8σ/λ

√ ,

a1 � ±
2b1(ϵ − 4σ)

λ
���������
− 2ϵ − 8σ/λ

√ ,

a2 � ± b1
���������
− 2ϵ − 8σ/λ

√
,

b0 � −
b1

2
,

b1 � b1,

ω � − ϵκ2 − 2ϵ + 8σ − ε,

(24)

and the solutions are given as follows:

q7,8(x, t) � ±
2(ϵ − 4σ) χ2e2 x− vtδ/δ( ) + 1􏼒 􏼓

λ χ2e2 x− vtδ/δ( ) − 1􏼒 􏼓
���������
− 2ϵ − 8σ/λ

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠e
i − κx+ωtδ/δ+η( ). (25)

Te 3D and contour plots were given for (25) in Figure 1.

3.2. Second Method. In this subsection, the modifed
Kudryashov procedure will be applied to the equation (16).
According to the method, we assume

u(ζ) � ϖ0 + ϖ1ψ(ζ). (26)

If we substitute the solution (26) without ignoring
the (12) in equation (16) and collect the polynomial of
ψ(ζ), we get an overdetermining equation system as
follows:

3
2
1

0

-1

x
t

-1
-0.5

0.5
0

(a)

1

-1 -1

10.5
0.50

0
-0.5 -0.5 x

t

(b)

Figure 1: Te plot of the |(25)| for ϵ � 1, λ � 2, σ � 4, κ � − 2, η � 1, ε � 2, χ � 2, δ � 0.1: (a) 3D plot and (b) contour plot.
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ψ3
: 2(ln(a))

2ϖ1ϵ − 8ln(a)
2ϖ1σ + ϖ31λ,

ψ2
: − 3(ln(a))

2ϖ1ϵ + 12(ln(a))
2ϖ1σ + 3ϖ0ϖ

2
1λ,

ψ1
: (ln(a))

2ϖ1ϵ − 4 ln(a)
2

􏼐 􏼑ϖ1σ + 3ϖ20ϖ1λ − ϖ1ϵκ
2

− ϖ1ε − ϖ1ω,

ψ0
: λϖ30 − ϖ0ϵκ

2
− ϖ0ε − ϖ0ω.

(27)

If the above system is solved, the values of the arbitrary
constants are obtained as follows:

ϖ0 � ± ln(a)

�������

−
ϵ − 4σ
2λ

􏽲

,

ϖ1 � ±
ln(a)(ϵ − 4σ)

λ
���������
− ϵ − 4σ/2λ

√ ,

ω � −
(ln(a))

2ϵ
2

+ 2(ln(a))
2σ − κ2ϵ − ε.

(28)

Ten, the exact solutions are given by

q9,10(x, t) � ±
(4σ − ϵ)ln(a) χa

x− vtδ/δ( ) − 1􏼒 􏼓

λ
���������
− 2ϵ + 8σ/λ

√
1 + χa

x− vtδ/δ( )􏼒 􏼓

. (29)

Te 3D and contour plots were given for (29) in Figure 2.

4. Conclusions

In this study, the new soliton-type solutions of the con-
formable time-fractional complex Ginzburg–Landau equa-
tion with Kerr law nonlinearity were obtained with the help
of generalized and modifed Kudryashov methods. Firstly,
the given model was reduced to the nonlinear diferential
equation with the help of the wave transformation.Ten, the
balance number was calculated by the balance method. We
calculate the balance number for the generalized Kudrya-
shov method in a diferent way than usual. Te generalized
Kudryashov method was applied to the given model. Four
solution families were obtained. Te 3D and contour plots
were plotted for the latest family. Ten, another method was
applied to the given model. Also, the results of the modifed
Kudryashov method include the logarithmic solutions. Te
3D and contour plots were given the obtain solutions. Te
Maple software program was used for all obtained results

and fgures. According to our knowledge, our results are new
in the literature. If we can calculate the balance number, the
given methods provide soliton solutions for the nonlinear
partial diferential equations. All obtained results were
checked by Maple and they are diferent from each other.
Our fndings in this paper are critical for explaining a wide
range of scientifc and physical applications. Tanks to this
implementation, we contributed to the physical motions of
the waves and other related areas.Te proposed methods are
efective and powerful for fnding the soliton solutions of the
nonlinear diferential equations.

In new studies, the given equation can be solved with
a diferent kind of derivative and compared with our results,
or the usedmethods can be applied to the diferent nonlinear
partial diferential equations.
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In this paper, a new approach for solving the system of fractional integro-differential equation with weakly singular kernels is
introduced. The method is based on a class of symmetric orthogonal polynomials called shifted sixth-kind Chebyshev
polynomials. First, the operational matrices are constructed, and after that, the method is described. This method reduces a
system of weakly singular fractional integro-differential equations (WSFIDEs) by the collocation method into a system of
algebraic equations. Thereupon, an upper error bound for the proposed method is determined. Finally, some numerical
examples are prepared to test the accuracy and efficiency of the presented method.

1. Introduction

The study of fractional calculus has applications andpopularity
in various and wide fields of biology, physics, and fluid
mechanics. Fractional calculus is actually integration and dif-
ferentiation of arbitrary orders [1–4]. In various problems of
physics and engineering, the fractional differential equations
havebeenproved tobe valuable tools inmodeling ofmanyphe-
nomena [5, 6]. As we know,manymathematical models of real
phenomena (arising in engineering and physics) are described
as linear or nonlinear systems. It is worthmentioning that with
the development of fractional calculus, the behavior of many
systems can be described using the fractional differential and
fractional integro-differential system [7, 8]. In recent years, sys-
tems of the fractional differential and integral equations are the
subjects of extensive study due to their frequent appearance in
many engineering and scientific disciplines [9–11]. However,
most of the fractional-order equations and integral equations
do not have analytic solutions or are hard to find. So, it is essen-

tial tofindnumericalmethods to get approximate or exact solu-
tions of a system of integro-differential equations. So far,
researchers haveutilizeddiverse numericalmethods for solving
a systemof fractional integro-differential equations. In [12], the
homotopy perturbation method was proposed for solving lin-
ear and nonlinear systems of fractional integro-differential
equations. Heydari et al. have used the Chebyshev wavelet
method for solving a class of systems of nonlinear fractional
singular Volterra integro-differential equation in [13]. In the
next year, for the first time, the hybrid functions composed of
the Block-pulse functions and Bernoulli polynomials were
applied for problems with fractional-order differential equa-
tions in [14]. Also, a novel technique based on iterative refine-
ment was presented to analytically approximate a system of
linear fractional integro-differential equations [15]. In 2018,
Hesameddini and Shahbazi developed the concept of [14]
and used it to solve the FDIE system in [16]. Also, Xie and Yi
presented the simple and fast method based on the Block-
pulse function to solve a nonlinear system of fractional
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Volterra-Fredholm integro-differential equations in the same
year [17]. In [18], the authors implemented the new Jacobi
operational matrices to reduce the complexity of calculations
to solve WSFDIEs. Next, the Haar wavelet method was
employed to solve a coupled system of FIDEs, and the
Muntz-Legendre wavelets were introduced to solve FIDVFEs
in [19, 20]. Also, the other authors applied the Chebyshev
Pseudo spectral method for solving fractional-order nonlinear
system of Volterra integro-differential equations and a least
square collocation Chebyshev technique for solving a system
of linear fractional integro-differential equations [21, 22]. In
this paper, we consider the following system of weakly singular
integro-differential equations:

Dνi ui xð Þ =F i x, u1 xð Þ, u2 xð Þ,⋯, um xð Þð Þ

+ 〠
m

j=1
θij

ðx
0

Kij x, zð ÞGij z, uj zð ÞÀ Á
x − zð Þαi j dz

+ f i xð Þ, i = 1,⋯,m, u kð Þ
i 0+ð Þ = u kð Þ

0i , k = 0, 1,
⋯ , r − 1, r − 1 < νi ≤ r,

ð1Þ

where uiðxÞ ∈ Cr½0, 1�, i = 1,⋯,m, are the unknown func-
tions, F i : ½0, 1� × ðCr½0, 1�Þm ⟶ℝ, Gij : ½0, 1� × Cr½0, 1�
⟶ℝ, and Kijðx, zÞ: ½0, 1�2 ⟶ℝ are continuous operators
and functions that satisfy Lipschitz conditions, and Dνi is the
Caputo fractional derivative operator where νi ∈ ð0, 1�. The
parameters θij, αij ∈ℝ such that jθijj ≤ 1, 0 < αij < 1, and i, j
= 1, 2,⋯,m. Moreover, f iðxÞ, i = 1,⋯,m, are known and suf-
ficiently smooth functions.

As usual, a way for solving functional equations is to
express the solution as a linear combination of the so-called
basis functions. In most researches, various polynomials such
as the Legendre, Chebyshev, Taylor, Hermit, and Bernstein are
used as basis functions. Among all of them, the Chebyshev
polynomials are the most important in the analysis and
numerical analysis. Chebyshev polynomials are orthogonal
on the interval ½−1, 1� and have good properties that are used
widely in the approximation of the functions. For this reason,
many studies are done based on the different kinds of Cheby-
shev polynomials. In [23], Masjed-Jamei introduced two half-
trigonometric orthogonal Chebyshev polynomials, and he
named them as the Chebyshev polynomials of the fifth and
sixth kinds. The basic formulas and properties of this class of
polynomials are displayed in [24, 25]. Up to now, many
researchers have used various kinds of Chebyshev polyno-
mials for the fractional-order differential and integro-
differential equations (see [26, 27]). However, there are only
a few works that have used the sixth-kind Chebyshev polyno-
mials. The main aim of this work is to introduce these polyno-
mials as a new basis function for solving WSFDIEs. In the
current paper, we apply the orthogonal shifted sixth-kind
Chebyshev polynomials together with the collocation method
for solving a system of weakly singular integro-differential
equations with fractional derivatives that, to the best of our
knowledge, is proposed here for the first time. For solving
these equations, we derive the fractional operational matrices

of fractional and integer orders and the product operational
matrix, as well. Also, we introduce an operational matrix to
approximate the integral term that has the weakly singular
kernel in Equation (1). As far as we can tell, this operational
matrix is presented for the first time. By substituting appropri-
ate approximations in Equation (1), the original equations
convert into algebraic equations that each of the equations of
algebraic systems is collocated at N + 1 roots of the ðN + 1Þ
th shifted sixth-kind Chebyshev polynomials (SSKCPs). By
solving these algebraic systems, the approximate solutions of
the original system are obtained. Although the calculation of
the operational matrices may be complicated, we show that
the obtained results are equal to other methods or are even
more accurate. Implementing these matrices leads to a
decrease in the number of required computations, and there-
fore, the computation time will be reduced.

The rest of the paper is organized as follows. In section 2,
some essential preliminaries are mentioned briefly. Section 3 is
devoted to constructing the operational matrices of SSKCPs.
The proposed numerical procedure is described in Section 4.
The error analysis of the proposed method is discussed in Sec-
tion 5. Some numerical applications are indicated in Section 6,
and conclusions are presented in Section 7.

2. Preliminaries and Notations

In this section, we recall some definitions and properties of
fractional integral and derivative operators which will be
used later. After that, some necessary definitions and funda-
mental properties of the shifted sixth-kind Chebyshev poly-
nomials are reviewed briefly.

2.1. Some Essentials of the Fractional Calculus

Definition 1. The Riemann-Liouville fractional integral oper-
ator Jα of order α is given by [2]

Jα f xð Þ = 1
Γ αð Þ

ðx
0
x − zð Þα−1 f zð Þ dz, α > 0, x > 0: ð2Þ

Definition 2. Let α ∈ℝ, n − 1 < α ≤ n, n ∈ℕ, and f ðxÞ be a
real-valued continuous function defined on ½0,∞Þ. Then,
the Caputo fractional derivative of order α > 0 is defined by [2]

0Dα
x f xð Þ = 1

Γ n − αð Þ
ðx
0

f n zð Þ
x − zð Þα+1−n dz,

f nð Þ zð Þ, α = n,

8><
>: ð3Þ

where ΓðxÞ is the Gamma function as

Γ xð Þ =
ð∞
0
e−zzx−1 dz, Re zð Þ > 0,

Γ x + 1ð Þ = xΓ xð Þ,

B u, vð Þ =
ð1
0
zu−1 1 − zð Þv−1 dz = Γ uð ÞΓ vð Þ

Γ u + vð Þ , Re uð Þ > 0, Re vð Þ > 0:

ð4Þ
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The last integral is often called the Beta integral. For α1, α2 > 0,
the Riemann-Liouville integral and Caputo fractional deriva-
tive operators satisfy the following properties:

(1) Jα1ðJα2 f ðxÞÞ = Jα2ðJα1 f ðxÞÞ = Jα1+α2 f ðxÞ
(2) Jαðλ1 f ðxÞ + λ2gðxÞÞ = λ1 J

α f ðxÞ + λ2 J
αgðxÞ

(3) JαðDα f ðxÞÞ = f ðxÞ −∑n−1
i=0 f

ið0Þðxi/i!Þ, n − 1 < α ≤ n, x
> 0

(4) Dαxγ =
0, α > γ,
ðΓðγ + 1Þ/Γðγ − α + 1ÞÞxγ−α, otherwise

(

(5) Jαxv = ððΓðv + 1ÞÞ/ðΓðv + α + 1ÞÞÞxv+α, v > −1

2.2. Shifted Sixth-Kind Chebyshev Polynomials and Their
Properties (SSKCPs)

Definition 3. The sixth-kind Chebyshev polynomials are
orthogonal functions on the interval ½−1, 1� and can be
determined with the following recursive formula [23, 24]:

Sj xð Þ = xSj−1 xð Þ − j j + 1ð Þ + −1ð Þj 2j + 1ð Þ + 1
4j j + 1ð Þ Sj−2 xð Þ, j ≥ 2,

S0 xð Þ = 1,
S1 xð Þ = x:

ð5Þ

Definition 4. The shifted sixth-kind Chebyshev polynomials
on ½0, 1� is defined by [23, 24]

S∗j xð Þ = Sj 2x − 1ð Þ, j = 0, 1, 2,⋯: ð6Þ

These polynomials have the following explicit analytic
form:

S∗j xð Þ = 〠
j

k=0
ρkjx

k, ð7Þ

where

ρkj =

22k−j
2k + 1ð Þ! 〠

j/2

i= k+1ð Þ/2b c

−1ð Þ j/2ð Þ+i+k 2i + k + 1ð Þ!
2i − kð Þ! , j even,

22k−j+1
2k + 1ð Þ! j + 1ð Þ 〠

j−1/2

i= k/2b c

−1ð Þ j+1ð Þ/2ð Þ+i+k i + 1ð Þ 2i + k + 2ð Þ!
2i − k + 1ð Þ! , j odd:

8>>>>>><
>>>>>>:

ð8Þ

Moreover, the shifted polynomials S∗j ðxÞ are orthogonal on
½0, 1� with respect to the weight function VðxÞ = ð2x − 1Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
x − x2

p
in the sense that

ð1
0
S∗i xð ÞS∗j xð ÞV xð Þdx = λiδij, ð9Þ

λi =

π

22i+5 , i even,

π i + 3ð Þ
22i+5 i + 1ð Þ , i odd:

8>><
>>: ð10Þ

Now, let hðxÞ ∈ L2½0, 1�; then, hðxÞ can be approximated
in terms of S∗j ðxÞ as

h xð Þ ≈ 〠
N

j=0
ϱjS

∗
j xð Þ = FTS xð Þ = ST xð ÞF, ð11Þ

where

S xð Þ = S∗0 xð Þ, S∗1 xð Þ,⋯, S∗N xð Þ½ �T , F = ϱ0, ϱ1,⋯, ϱN½ �T , ð12Þ

where the coefficients ϱj are given by

ϱ j =
1
λj

ð1
0
h xð ÞS∗j xð ÞV xð Þdx, ð13Þ

and λj is defined in Equation (10). Similarly, any continuous
two-variable function, Fðx, zÞ, defined on ½0, 1� × ½0, 1� can
be approximated by means of the double-shifted sixth-kind
Chebyshev polynomials as

F x, zð Þ ≈ 〠
N

j=0
〠
N

i=0
FijS∗i xð ÞS∗j zð Þ = ST xð ÞFS zð Þ, ð14Þ

where F is a ðN + 1Þ × ðN + 1Þ matrix, and its entries are
given by

F ij =
1

λiλj

ð1
0

ð1
0
F x, zð ÞS∗i xð ÞS∗j zð ÞV xð ÞV zð Þdxdz: ð15Þ

3. Operational Matrices of SSKCPs

In this section, the formulas of operational matrices with the
fractional order will be derived for the sixth-kind Chebyshev
polynomials. The following are the required lemmas.

Lemma 5. If r ≥ l, l ∈ℕ, then we have

ð1
0
xrS∗l xð ÞV xð Þdx = 〠

l

m=0

ρml

ffiffiffi
π

p
Γ r +m + 3/2ð Þð Þ

2Γ r +m + 5ð Þ
m2 +m + r2 + 2rm + 3 + r
À Á

:

ð16Þ

Proof. From the properties of the orthogonal polynomials, if
r ≤ l, we have

ð1
0
xrS∗l xð ÞV xð Þ dx = 0: ð17Þ

Hence, we suppose r ≥ l. The lemma can be easily proved
by the integration of the analytic form of SSKCPs in Equa-
tion (7).
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Theorem 6. Let SðxÞ be the SSKCP vector given by Equation
(12) and μ ∈ℝ; then,

JμS xð Þ ≈P μð ÞS xð Þ, ð18Þ

where P ðμÞ is the ðN + 1Þ × ðN + 1Þ operational matrix of the
fractional integration of the order μ in the Riemann-Liouville
sense which is defined by

P μð Þ =

~a00 ~a01 ⋯ ~a0N

~a10 ~a11 ⋯ ~a1N

⋮ ⋮ ⋱ ⋮

~aN0 ~aN1 ⋯ ~aNN

2
666664

3
777775, ð19Þ

~aij = 〠
i

l=0
ϖijl, i = 0⋯N , j = 0⋯N: ð20Þ

ϖijl are given by

ϖijl = ρli
Γ l + 1ð Þ

λjΓ l + μ + 1ð Þ〠
j

k=0
ρkj

ffiffiffi
π

p
Γ k + μ + l + 3/2ð Þð Þ
2Γ k + μ + l + 5ð Þ × k + μð Þ2 + 2l + 1ð Þ k + μð Þ + l l + 1ð Þ + 3

À Á
, i = 0⋯N , j = 0⋯N:

ð21Þ

Proof. By applying the Riemann-Liouville integral operator
to the SSKCPs’ analytic form, we have

Jμ S∗i xð Þð Þ = 〠
i

l=0
ρli

Γ l + 1ð Þ
Γ l + μ + 1ð Þ x

μ+l: ð22Þ

Now, we can express xμ+l in terms of the shifted sixth-kind
Chebyshev polynomials as follows:

xμ+l ≈ 〠
N

j=0
~CljS

∗
j xð Þ, ð23Þ

where the coefficients ~Clj are given by

~Clj =
1
λj

ð1
0
xμ+lS∗j xð ÞV xð Þdx: ð24Þ

According to Lemma 5, we can rewrite Equation (22) as

where ~aij is given in Equation (20). Rewriting the last rela-
tion in the vector form gives

JμS∗j xð Þ = ~ai0, ~ai1,⋯, ~aiN½ �S∗j xð Þ, i = 0, 1,⋯,N: ð26Þ

This leads to the desired result.

In the following, some useful and applicable lemmas are
presented to get the Chebyshev operational matrix of
product.

Lemma 7. If S∗j ðxÞ and S∗i ðxÞ are jth and ith shifted sixth-
kind Chebyshev polynomials, respectively, then we can write
the product of S∗j ðxÞ and S∗i ðxÞ as

Qi+j xð Þ = S∗i xð ÞS∗j xð Þ = 〠
i+j

k=0
χ

i,jð Þ
k xk: ð27Þ

Proof. See [18].

Lemma 8. If S∗i ðxÞ, S∗j ðxÞ, and S∗k ðxÞ are ith, jth, and kth
shifted sixth-kind Chebyshev polynomials, then

dijk =
ð1
0
S∗i xð ÞS∗j xð ÞS∗k xð ÞV xð Þdx

= 〠
j+k

r=0
〠
i

l=0

ffiffiffi
π

p
ρliχ

i,jð Þ
k Γ r + l + 3/2ð Þð Þ
2Γ r + l + 5ð Þ l + rð Þ l + r + 1ð Þ + 3ð Þ,

ð28Þ
where χði,jÞ

k is obtained by Lemma 7.

Proof. According to Lemma 7, we can write

Qj+k xð Þ = S∗j xð ÞS∗k xð Þ = 〠
j+k

r=0
χ j,kð Þ
r xr: ð29Þ

Then,

dijk =
ð1
0
S∗i xð Þ〠

j+k

r=0
χ j,kð Þ
r xrV xð Þ dx = 〠

j+k

r=0
χ j,kð Þ
r

ð1
0
S∗i xð ÞxrV xð Þ dx:

ð30Þ

The value of the last integral is obtained by Lemma 5.

JμS ∗ð Þ
j xð Þ ≈ 〠

N

j=0
〠
i

l=0
ρli

Γ l + 1ð Þ
λjΓ l + μ + 1ð Þ ×〠

j

k=0
ρkj

ffiffiffi
π

p
Γ k + μ + l + 3/2ð Þð Þ
2Γ k + μ + l + 5ð Þ k + μð Þ2 + 2l + 1ð Þ k + μð Þ + l l + 1ð Þ + 3

À Á)
S∗j xð Þ = 〠

N

j=0
~aijS

∗
j xð Þ,

(
ð25Þ
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Assuming that E is a ðN + 1Þ × 1 vector, we have

S xð ÞST xð ÞE ≃ ~E S xð Þ, ð31Þ

where ~E is a ðN + 1Þ × ðN + 1Þ matrix called the product
operational matrix. The next theorem presents a general
form for entries of the matrix ~E.

Theorem 9. The entries of the matrix ~E in Equation (31) are
as follows:

~Ejk =
1
λk

〠
N

i=0
Ei dijk, j, k = 0, 1,⋯,N , ð32Þ

where dijk is obtained by Lemma 8 and Ei is the element of the
vector E.

Proof. See [18].

In the following, we get an approximation for the inte-
gral part with the singular kernel in Equation (1). Before
that, we present a theorem.

Theorem 10. The following relation is determined for 0 < κ
< 1:

ðx
0

zr

x − zð Þκ dz = Γ r + 1ð ÞΓ 1 − κð Þ
Γ r − κ + 2ð Þ xr−κ+1, r = 0, 1, 2,⋯: ð33Þ

Proof. By performing Equation (33) and the substitution of
z = ξx into Equation (33) and then using the definition of
the Beta function, we obtain

xr−κ+1
ð1
0
1 − ξð Þ−κξr dξ = Γ 1 − κð ÞΓ r + 1ð Þ

Γ r − κ + 2ð Þ xr−κ+1, r = 0, 1, 2,⋯:

ð34Þ

Now, we present an approximation for the integral part
with a weakly singular kernel. For this purpose, see the fol-
lowing theorem.

Theorem 11. Suppose that uðxÞ is a continuous function on
the interval ½0, 1� and κ ∈ ð0, 1Þ and uðxÞ ≈ STðxÞF = FTSðxÞ
where SðxÞ and F are defined by Equation (12), then we have

ðx
0

u zð Þ
x − zð Þκ dz ≈ FTI κð ÞS xð Þ, ð35Þ

where IðκÞ is a ðN + 1Þ × ðN + 1Þ matrix as follows:

I κð Þ =

σ00 σ01 ⋯ σ0N

σ10 σ11 ⋯ σ1N

⋮ ⋮ ⋱ ⋮

σN0 ~aN1 ⋯ σNN

2
666664

3
777775, ð36Þ

and its entries are determined as follows:

I
κð Þ
ij = σij = 〠

i

l=0
ρli

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ

�Cj l−κ+1ð Þ, i, j = 0, 1,⋯,N ,

ð37Þ

where the quantities ρli and �Cjðl−κ+1Þ are introduced by rela-
tion (8) and Lemma 5.

Proof. By the definition of vector SðxÞ and Lemma 5, we can
write

ST xð Þ = S∗0 xð Þ, S∗1 xð Þ,⋯, S∗N xð Þ½ � = 〠
0

l=0
ρl0x

l,⋯, 〠
N

l=0
ρlNx

l

" #
:

ð38Þ

By applying Theorem 10, we have

Now, we approximate xl−κ+1 in terms of SSKCPs as fol-
lows:

xl−κ+1 ≈ 〠
N

j=0
�Cj l−κ+1ð ÞS

∗
j xð Þ,

�Cj l−κ+1ð Þ =
1
λj

ð1
0
xl−κ+1S∗j xð ÞV xð Þ dx, j = 0, 1,⋯,N ,

ð40Þ

where �Cjðl−κ+1Þ is obtained by applying Lemma 5. Thus,

〠
i

l=0
ρli

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ xl−κ+1

≈ 〠
N

j=0
〠
i

l=0

ρliΓ l + 1ð ÞΓ 1 − κð Þ�Cj l−κ+1ð Þ
Γ l − κ + 2ð Þ

( )
S∗j xð Þ

= 〠
N

j=0
σijS

∗
j xð Þ, i = 0, 1,⋯,N:

ð41Þ

ðx
0

ST zð Þ
x − zð Þκ dz = 〠

0

l=0

ðx
0
ρl0

zl

x − zð Þκ dz,⋯, 〠
N

l=0
ρlN

ðx
0

zl

x − zð Þκ dz

" #
= 〠

0

l=0
ρl0

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ xl−κ+1,⋯, 〠

N

l=0
ρlN

Γ l + 1ð ÞΓ 1 − κð Þ
Γ l − κ + 2ð Þ xl−κ+1

" #
: ð39Þ
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Equation (39) is then represented as follows:

ðx
0

ST zð Þ
z − xð Þκ dz ≈

σ00 σ01 ⋯ σ0N

σ10 σ11 ⋯ σ1N

⋮ ⋮ ⋱ ⋮

σN0 ~aN1 ⋯ σNN

2
666664

3
777775

S∗0 xð Þ
S∗1 xð Þ
⋮

S∗N xð Þ

2
666664

3
777775 =I κð ÞS xð Þ:

ð42Þ

4. Numerical Procedure

We consider the system of fractional integro-differential
equation with weakly singular kernels described in Equation
(1). To solve the system, we approximate the function Dνiu
in a matrix form

Dνiui xð Þ ≈ ST xð ÞFi, Fi = ϱi0, ϱi1,⋯, ϱiN
Â ÃT , i = 1, 2,⋯,m:

ð43Þ

Then, according to the initial conditions of the problem,

we can approximate the known function H iðxÞ =∑r−1
k=0ðuðkÞ0i

xk/ðΓðk + 1ÞÞÞ, k = dνie as follows:

H i xð Þ ≈ ST xð ÞC i, i = 1, 2,⋯,m: ð44Þ

Using Equations (43) and (44), we compute an approxi-
mate for uiðxÞ:

ui xð Þ ≈ ST xð ÞP νið ÞFi + ST xð ÞC i = ST xð ÞUi, i = 1, 2,⋯,m,
ð45Þ

where P ðνiÞ is the integral operational matrix presented in
Theorem 6. We have the following approximations for the
rest of the system:

F i x, u1 xð Þ, u2 xð Þ,⋯, um xð Þð Þ ≈XT
i S xð Þ,

Gij x, uj xð ÞÀ Á
≈ ST xð ÞV ij, i, j = 1, 2,⋯,m,

Kij x, zð Þ ≈ ST xð ÞKijS zð Þ:
ð46Þ

Using Theorems 9 and 11, we have

ðx
0

Kij x, zð ÞGij z, yj zð Þ
� �

x − zð Þαi j dz

≈
ðx
0

ST xð ÞKijS zð ÞST zð ÞV ij

x − zð Þαi j dz

≈ ST xð ÞKij
~V ij

ðx
0

S zð Þ
x − zð Þαi j dz ≈ ST xð ÞKij

~V ijI
αi jð ÞS xð Þ:

ð47Þ

Now, by substituting Equations (43)-(47) into Equation

(1), we obtain

ST xð ÞFi −XT
i S xð Þ − 〠

m

j=0
θijS

T xð ÞKij
~V ijI

αi jð ÞS xð Þ

− f i xð Þ ≈ 0, i = 1, 2,⋯,m:

ð48Þ

Each equation of algebraic system (48) is collocated at
N + 1 roots of the ðN + 1Þth shifted sixth-kind Chebyshev
polynomials. Thus, an algebraic system, including mðN + 1
Þ equations, is acquired. By solving the resultant algebraic
system, we can obtain an approximation for unknown vec-
tors Fi, i = 1, 2,⋯,m, and by substituting the vector Fi into
Equation (45), we obtain an approximation for uiðxÞ, i = 1,
2,⋯,m.

5. Error Analysis

In this section, we prove some theorems. Then, we obtain an
upper error bound for the approximation error. For this aim,
we need the following norms:

fk kL2 Ið Þ =
ð
I
f xð Þj j2V xð Þ dx

� �1/2
,

Xk k1 = 〠
n

i=0
xij j,

ð49Þ

where f ∈ L2ðIÞ is a square integrable function on the inter-
val I = ½0, 1� and X = ½x0, x1,⋯, xn�T is a vector.

Theorem 12. Suppose that YNðxÞ =∑N
i=0EiS

∗
i ðxÞ is an

approximation in SSKCPs to the continuous function YðxÞ
on the interval ½0, 1�. Then, the coefficients Ei, for i = 0, 1,⋯
,N , are bounded as

Eij j ≤ MY

λi
〠
i

m=0
ρmi

ffiffiffi
π

p
Γ m + 3/2ð Þð Þ
2Γ m + 5ð Þ m2 +m + 3

À Á
, ð50Þ

where MY denotes the maximum value of jYðxÞj on the
interval ½0, 1�.

Proof. Using Equations (7) and (9) for i = 0, 1,⋯,N , we have

Ei =
1
λi

ð1
0
Y xð ÞS∗i xð ÞV xð Þ dx = 1

λi

ð1
0
Y xð Þ 〠

i

m=0
ρmix

mV xð Þ dx

= 1
λi

〠
i

m=0
ρmi

ð1
0
Y xð ÞxmV xð Þ dx:

ð51Þ

Since YðxÞ is a continuous function on the interval ½0, 1�,
so it is bounded and there is a constant MY such that

∀x ∈ 0, 1½ �, Y xð Þj j ≤MY : ð52Þ
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Using Equations (51) and (52), inequality (50) is deduced.

Theorem 13. Suppose that YðxÞ is a continuous function and
YNðxÞ is an approximation to YðxÞ in terms of SSKCPs.
Then, the error bound can be achieved as follows:

Y xð Þ − YN xð Þk kL2 ≤ 〠
∞

i=N+1
Ωi

 !1/2

=ΩN , ð53Þ

where

Ωi =
M2

Y

λi
〠
i

m=0
ρmi

ffiffiffi
π

p
Γ m + 3/2ð Þð Þ
2Γ m + 5ð Þ m2 +m + 3

À Á� �2

: ð54Þ

Proof. Assume YðxÞ is an arbitrary function. So, YðxÞ and
YNðxÞ have the following forms using SSKCP series:

Y xð Þ = 〠
∞

i=0
EiS

∗
i xð Þ,

YN xð Þ = 〠
N

i=0
EiS

∗
i xð Þ,

ð55Þ

so,

Y xð Þ − YN xð Þ = 〠
∞

i=N+1
EiS

∗
i xð Þ: ð56Þ

Using Equations (9) and (56) and Theorem 12, we have

Y xð Þ − YN xð Þk k2L2 =
ð1
0
Y xð Þ − YN xð Þj j2V xð Þ dx

=
ð1
0

〠
∞

i=N+1
EiS

∗
i xð Þ

 !2

V xð Þ dx

=
ð1
0

〠
∞

j=N+1
〠
∞

i=N+1
EiE jS

∗
i xð ÞS∗j xð ÞV xð Þ dx

= 〠
∞

i=N+1
E2

i λi ≤ 〠
∞

i=N+1
Ωi:

ð57Þ

Theorem 14. Suppose that the continuous two-variable func-
tion Hðx, yÞ is approximated on the interval ½0, 1� × ½0, 1� in
terms of SSKCPs as HNðx, yÞ =∑N

i=0∑
N
j=0H ijS

∗
i ðxÞS∗j ðyÞ;

then, the coefficients H ij, for i, j = 0, 1,⋯,N , can be bounded

as follows:

H ij

�� �� ≤ MHπ

4λiλj
〠
i

m=0

ρmiΓ m + 3/2ð Þð Þ
Γ m + 5ð Þ m2 +m + 3

À Á

〠
j

r=0

ρr jΓ r + 3/2ð Þð Þ
Γ r + 5ð Þ r2 + r + 3

À Á
,

ð58Þ

where MH denotes the maximum value of jHðx, yÞj on the
interval ½0, 1� × ½0, 1�.

Proof. Using Equations (7) and (15), we have

H ij =
1

λiλj

ð1
0

ð1
0
H x, yð ÞS∗i xð ÞS∗j yð ÞV xð ÞV yð Þ dxdy

= 1
λiλj

ð1
0
〠
i

m=0
ρmix

mV xð Þ
ð1
0
H x, yð Þ〠

j

r=0
ρr jy

rV yð Þdy
 !

dx

= 1
λiλj

〠
i

m=0
ρmi 〠

j

r=0
ρr j

ð1
0

ð1
0
xmH x, yð ÞyrV xð ÞV yð Þdxdy:

ð59Þ

Since Hðx, yÞ is a bounded and continuous function on
the interval ½0, 1� × ½0, 1�, so there is a constant MH such
that

∀ x, yð Þ ∈ 0, 1½ � × 0, 1½ �, H x, yð Þj j ≤MH : ð60Þ

Using Equations (59) and (60), Theorem 14 is proved.

Theorem 15. Suppose that Hðx, yÞ is a continuous function
with two variables and HNðx, yÞ is the approximation to H

ðx, yÞ using SSKCPs. Then, the error bound can be obtained
as

H x, yð Þ −HN x, yð Þk kL2 ≤ 〠
N

i=0
〠
∞

j=N+1
ς2ijλiλj

 !1/2

+ 〠
∞

i=N+1
〠
∞

j=0
ς2ijλiλj

 !1/2

=ΛH ,

ð61Þ

where

ςij =
MHπ

4λiλj
〠
i

m=0
ρmi

Γ m + 3/2ð Þð Þ
Γ m + 5ð Þ m2 +m + 3

À Á

〠
j

r=0
ρr j

Γ r + 3/2ð Þð Þ
Γ r + 5ð Þ r2 + r + 3

À Á
:

ð62Þ

Proof. Suppose that Hðx, yÞ is an arbitrary function. SSKCP
series of Hðx, yÞ and its approximation in terms of SSKCPs
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have the following form:

H x, yð Þ = 〠
∞

i=0
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ,HN x, yð Þ = 〠

N

i=0
〠
N

j=0
H ijS

∗
i xð ÞS∗j yð Þ:

ð63Þ

Thus,

H x, yð Þ −HN x, yð Þ = 〠
N

i=0
〠
∞

j=N+1
H ijS

∗
i xð ÞS∗j yð Þ + 〠

∞

i=N+1
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ:

ð64Þ

Using Equations (9) and (64) and Theorem 14, we conclude

In the following theorem, we obtain an upper error bound
of the proposed method. First, suppose that for the uiðxÞ, yið
xÞ ∈ Cr½0, 1�, i = 1, 2,⋯,m, there exist positive constants ξir ,
ηji > 0 such that the following Lipschitz conditions hold.

(1) k F iðx, u1ðxÞ, u2ðxÞ,⋯, umðxÞÞ −F iðx, y1ðxÞ, y2ðxÞ,
⋯, ymðxÞÞkL2 ≤ ξi1ku1ðxÞ − y1ðxÞkL2 + ξi2
ku2ðxÞ − y2ðxÞkL2 +⋯ + ξimkumðxÞ − ymðxÞkL2 , i = 1,
2,⋯,m

(2) kGijðz, ujðzÞÞ −Gijðz, yjðzÞÞkL2 ≤ ηjikujðzÞ − yjðzÞkL2
, i, j = 1, 2,⋯,m

Theorem 16. Suppose that ~UðxÞ = ð~u1ðxÞ, ~u2ðxÞ,⋯, ~umðxÞÞ is
a set of approximate solutions obtained from the SSKCP collo-
cation method, UðxÞ = ðu1ðxÞ, u2ðxÞ,⋯, umðxÞÞ is the set of
exact solutions of system (1), E = ðku1ðxÞ − ~u1ðxÞkL2 ,⋯,
kumðxÞ − ~umðxÞkL2Þ is the error vector of approximate solu-
tions, and also riðxÞ, i = 1, 2,⋯,m denote the residual func-
tions associated to the approximate solutions that are named
perturbation terms. Assume that Hypotheses (1) and (2) are
satisfied; then, a bound for the method error can be achieved as

Ek k1 ≤
Γ∗
N +∑m

i=1∑
m
j=1γ

i
j

1 − Δ∗
N

, 0 < Δ∗
N < 1: ð66Þ

Proof. First, we apply the Riemann-Liouville integral operator
on Equation (1) and obtain the following equation:

ui xð Þ = gi xð Þ + 1
Γ νið Þ

ðx
0
x − zð Þνi−1F i z, u1 zð Þ, u2 zð Þ,⋯, um zð Þð Þ dz

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi jKij x, zð ÞGij z, uj zð ÞÀ Á

dz,

ð67Þ

where

gi xð Þ = 〠
r−1

k=0

u kð Þ
0i

Γ k + 1ð Þ x
k + 1

Γ νið Þ
ðx
0
x − zð Þνi−1 f i zð Þ dz: ð68Þ

We can write the approximate equation of Equation (67)
as follows:

~ui xð Þ = gi xð Þ + 1
Γ νið Þ

ðx
0
x − zð Þνi−1F i z, ~u1 zð Þ, ~u2 zð Þ,⋯, ~um zð Þð Þ dz

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi j ~Kij x, zð ÞGij z, ~uj zð ÞÀ Á

dz

+ ri xð Þ,
ð69Þ

where riðxÞ is the perturbation term. We subtract Equation
(69) from Equation (67) and obtain the following result:

H x, yð Þ xð Þ −HN x, yð Þk kL2 ≤ 〠
N

i=0
〠
∞

j=N+1
H ijS

∗
i xð ÞS∗j yð Þ













L2

+ 〠
∞

i=N+1
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ













L2

=
ð1
0

ð1
0

〠
N

i=0
〠
∞

j=N+1
H ijS

∗
i xð ÞS∗j yð Þ

 !2

V xð ÞV yð Þdydx
 !1/2

+
ð1
0

ð1
0

〠
∞

i=N+1
〠
∞

j=0
H ijS

∗
i xð ÞS∗j yð Þ

 !2

V xð ÞV yð Þdydx
 !1/2

= 〠
N

i=0
〠
∞

j=N+1
H 2

ijλiλj

 !1/2

+ 〠
∞

i=N+1
〠
∞

j=0
H2

ijλiλj

 !1/2

≤ 〠
N

i=0
〠
∞

j=N+1
ς2ijλiλj

 !1/2

+ 〠
∞

i=N+1
〠
∞

j=0
ς2ijλiλj

 !1/2

:

ð65Þ

ri xð Þ = ui xð Þ − ~ui xð Þ + 1
Γ νið Þ

ðx
0
x − zð Þνi−1 F i z, u1 zð Þ, u2 zð Þ,⋯, um zð Þð Þ −F i z, ~u1 zð Þ, ~u2 zð Þ,⋯, ~um zð Þð Þð Þ dz

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi j Kij x, zð ÞGij z, uj zð ÞÀ Á

− ~Kij x, zð ÞGij z, ~uj zð ÞÀ ÁÀ Á
dz:

ð70Þ
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First, we obtain a bound for the perturbation term, so by
taking the L2-norm on Equation (70), we get the following
inequality:

Using Hypothesis 1 and Theorem 13, we have

where

Noting that Kijðx, zÞ and Gijðz, ujðzÞÞ are continuous
and known functions, thus, there are constants MKij

and

NGij
such that

Kij x, zð Þ

 


L2
≤MKij

, Gij z, uj zð ÞÀ Á

 


L2
≤NGij

: ð74Þ

From Hypothesis 2, Theorem 13, Theorem 15, and
Equation (74), the following inequality is obtained:

where

ri xð Þk kL2 ≤ ui xð Þ − ~ui xð Þk kL2 +
1

Γ νið Þ
ðx
0
x − zð Þνi−1 F i z, u1 zð Þ,⋯, um zð Þð Þ −F i z, ~u1 zð Þ,⋯, ~um zð Þð Þð Þ dz











L2

+ 〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á × ðx

0
x − zð Þνi−αi j Kij x, zð ÞGij z, uj zð ÞÀ Á

− ~Kij x, zð ÞGij z, ~uj zð ÞÀ ÁÀ Á
dz











L2
:

ð71Þ

1
Γ νið Þ

ðx
0
x − zð Þνi−1 F i z, u1 zð Þ, u2 zð Þ,⋯, um zð Þð Þ −F i z, ~u1 zð Þ, ~u2 zð Þ,⋯, ~um zð Þð Þð Þdz











L2
≤Ψνi

〠
m

j=1
ξij uj zð Þ − ~uj zð Þ

 



L2
≤Ψνi

〠
m

j=1
ξijΩ

j
N , ð72Þ

Ψνi
= 1
Γ νið Þ

4Γ 7/2ð ÞΓ 2νi − 1/2ð Þð Þ
Γ 2νi + 3ð Þ −

4Γ 5/2ð ÞΓ 2νi − 1/2ð Þð Þ
Γ 2νi + 2ð Þ + Γ 3/2ð ÞΓ 2νi − 1/2ð Þð Þ

Γ 2νi + 1ð Þ
� �1/2

: ð73Þ

〠
m

j=1
θij

Γ 1 − αij
À Á

Γ νi − αij + 1
À Á ðx

0
x − zð Þνi−αi j Kij x, zð ÞGij z, uj zð ÞÀ Á

− ~Kij x, zð ÞGij z, ~uj zð ÞÀ ÁÀ Á
dz











L2
≤

〠
m

j=1
θijΨνi−αi j MKij

ηij uj zð Þ − ~uj zð Þ

 


L2
+NGij

ΛKij

� �
≤ 〠

m

j=1
θijΨνi−αi j MKij

ηijΩ
j
N +NGij

ΛKij

� �
,

ð75Þ

Ψνi−αi j =
Γ 1 − αij
À Á

Γ νi − αij + 1
À Á × 4Γ 7/2ð ÞΓ 2 νi − αij

À Á
+ 3/2ð ÞÀ Á

Γ 2 νi − αij
À Á

+ 5
À Á −

4Γ 5/2ð ÞΓ 2 νi − αij
À Á

+ 3/2ð ÞÀ Á
Γ 2 νi − αij
À Á

+ 4
À Á +

Γ 3/2ð ÞΓ 2 νi − αij
À Á

+ 3/2ð ÞÀ Á
Γ 2 νi − αij
À Á

+ 3
À Á

 !1/2

: ð76Þ
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Here, Δi
j and γij can be introduced as below:

Δi
j =Ψνi

ξij +Ψνi−αi jθijMKij
ηij, ð77Þ

γij =Ψνi−αi jθijNGij
ΛKij

: ð78Þ
From Equations (72)-(78), we can get the following

upper bound for riðxÞ:

ri xð Þk kL2 ≤Ωi
N + 〠

m

j=1
Δi
jΩ

j
N + 〠

m

j=1
γij, i = 1, 2,⋯,m: ð79Þ

By adding the above m inequalities, we have

〠
m

i=1
ri xð Þk kL2 ≤ 〠

m

i=1
Ωi

N + 〠
m

i=1
〠
m

j=1
Δi
jΩ

j
N + 〠

m

i=1
〠
m

j=1
γij = Γ∗

N : ð80Þ

We define the vector R as

R = r1k kL2 , r2k kL2 ,⋯, rmk kL2½ �T : ð81Þ

Thus, we have

Rk k1 = 〠
m

i=1
rik kL2 ≤ Γ∗

N : ð82Þ

Again, we consider Equation (70). So we have

ui xð Þ − ~ui xð Þk kL2 ≤ ri xð Þk kL2 + 〠
m

j=1
Δi
j ui xð Þ − ~ui xð Þk kL2

+ 〠
m

j=1
γij, i = 1, 2,⋯,m:

ð83Þ

Adding the above m inequalities leads to the following
inequality:

〠
m

i=1
ui xð Þ − ~ui xð Þk kL2

≤ 〠
m

i=1
ri xð Þk kL2 + 〠

m

i=1
〠
m

j=1
Δi
j ui xð Þ − ~ui xð Þk kL2 + 〠

m

i=1
〠
m

j=1
γij

= Rk k1 + Δ1
1 u1 xð Þ − ~u1 xð Þk kL2+⋯+Δ1

m um xð Þ − ~um xð Þk kL2
À Á

+ Δ2
1 u1 xð Þ − ~u1 xð Þk kL2+⋯+Δ2

m um xð Þ − ~um xð Þk kL2
À Á

+⋯+ Δm
1 u1 xð Þ − ~u1 xð Þk kL2+⋯+Δm

m um xð Þ − ~um xð Þk kL2
À Á

+ 〠
m

i=1
〠
m

j=1
γij

= Rk k1 + Δ1
1 + Δ2

1+⋯+Δm
1

À Á
u1 xð Þ − ~u1 xð Þk kL2

+⋯+ Δ1
m + Δ2

m+⋯+Δm
m

À Á
um xð Þ − ~um xð Þk kL2 + 〠

m

i=1
〠
m

j=1
γij:

ð84Þ

By defining the following quantities

Δ∗
N =Max 〠

m

i=1
Δi
j, j = 1,⋯,m

( )
,

E = u1 xð Þ − ~u1 xð Þk kL2 , u2 xð Þ − ~u2 xð Þk kL2 ,⋯, um xð Þ − ~um xð Þk kL2
Â ÃT ,

ð85Þ

we obtain the following upper bound for the method error:

〠
m

i=1
ui xð Þ − ~ui xð Þk kL2 ≤ Rk k1 + Δ∗

N 〠
m

i=1
ui xð Þ − ~ui xð Þk kL2 + 〠

m

i=1
〠
m

j=1
γij,

Ek k1 ≤
Γ∗
N +∑m

i=1∑
m
j=1γ

i
j

1 − Δ∗
N

, 0 < Δ∗
N < 1:

ð86Þ

6. Numerical Applications

In this section, three linear and nonlinear examples are pre-
sented to illustrate the practical implementation of our
numerical method. Also, the comparison of results obtained
from the proposed method with those of the other methods
is shown. All calculations are done with mathematical soft-
ware Maple 18.

Example 1. Let us consider the following linear system of
WSFIDE:

Dν1u1 xð Þ + u1 xð Þ +
ðx
0

u1 zð Þ
x − zð Þ1/2 dz −

1
2

ðx
0

xu2 zð Þ
x − zð Þ1/2 dz = f1 xð Þ,

Dν2u2 xð Þ + u2 xð Þ + 1
3

ðx
0

x2zu1 zð Þ
x − zð Þ1/2 dz + 1

3

ðx
0

u2 zð Þ
x − zð Þ1/2 dz = f2 xð Þ,

8>>>><
>>>>:

ð87Þ

where

f1 xð Þ = 2x + x2 + 2
5 x

5/2,

f2 xð Þ = 1 + x + 32
105 x

11/2 + 4
9 x

3/2,
ð88Þ

and 0 < νi ≤ 1, i = 1, 2, and the initial conditions are u1ð0Þ
= u2ð0Þ = 0. The exact solutions are u1ðxÞ = x2 and u2ðxÞ =
x if ν1 = ν2 = 1. According to the procedure presented in
Section 4, we reach the following approximations:
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where ~U1 and ~U2 are the operational matrices of the prod-
uct, corresponding to the vectors U1 and U2, respectively.

Setting above approximations in system (87) leads to the fol-
lowing linear algebraic system.

Figures 1 and 2 show a comparison between the exact and
numerical solutions and absolute error functions for ν1 = ν2
= 1 and N = 20. The maximum absolute errors are listed in
Table 1 in versus of N. It can be seen that our proposed
method shows good consistency between the numerical results
and analytic solutions and also this method can achieve a
higher convergence result when N increases. Figure 3 shows

the behavior of the numerical solutions for N = 20 and νi =
0:8,0:9,1, i = 1, 2: As seen from Figure 3, as νi ⟶ 1, the
approximate solutions are ~uiðxÞ⟶ uiðxÞ for i = 1, 2.

Here, we calculate a numerical error bound for the first
example. This result could confirm the correctness of the
analytical error bound. This validation could be accom-
plished similarly for the other cases, but the calculations
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Figure 1: The graphs of the exact and approximate solutions and the absolute error function of ~u1ðxÞ for N = 20 and ν1 = ν2 = 1 of Example 1.

Dν1u1 xð Þ ≈ ST xð ÞF1, u1 xð Þ ≈ ST xð ÞP ν1ð ÞTF1 = ST xð ÞU1,

Dν2u2 xð Þ ≈ ST xð ÞF2, u2 xð Þ ≈ ST xð ÞP ν2ð ÞTF2 = ST xð ÞU2,
x ≈ ST xð ÞK12S zð Þ, x2z ≈ ST xð ÞK21S zð Þ,ðx

0

u1 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

UT
1 S zð Þ

x − zð Þ1/2 dz =UT
1

ðx
0

S zð Þ
x − zð Þ1/2 dz ≈UT

1I
1/2ð ÞS xð Þ,

ðx
0

xu2 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

ST xð ÞK12S zð ÞST zð ÞU2
x − zð Þ1/2 dz = ST xð ÞK12

ðx
0

S zð ÞST zð ÞU2
x − zð Þ1/2 dz ≈ ST xð ÞK12 ~U2

ðx
0

S zð Þ
x − zð Þ1/2 dz ≈ ST xð ÞK12 ~U2I

1/2ð ÞS xð Þ,
ðx
0

x2zu1 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

ST xð ÞK21S zð ÞST zð ÞU1
x − zð Þ1/2 dz = ST xð ÞK21

ðx
0

S zð ÞST zð ÞU1
x − zð Þ1/2 dz = ST xð ÞK21 ~U1

ðx
0

S zð Þ
x − zð Þ1/2 dz = ST xð ÞK21 ~U1I

1/2ð ÞS xð Þ,
ðx
0

u2 zð Þ
x − zð Þ1/2 dz ≈

ðx
0

UT
2 S zð Þ

x − zð Þ1/2 dz ≈UT
2

ðx
0

S zð Þ
x − zð Þ1/2 dz ≈UT

2I
1/2ð ÞS xð Þ,

ð89Þ

ST xð ÞF1 + ST xð ÞU1 +UT
1I

1/2ð ÞS xð Þ − 1
2 S

T xð ÞK12 ~U2I
1/2ð ÞS xð Þ − f1 xð Þ ≈ 0,

ST xð ÞF2 + ST xð ÞU2 +
1
3 S

T xð ÞK21 ~U1I
1/2ð ÞS xð Þ + 1

3U
T
2I

1/2ð ÞS xð Þ − f2 xð Þ ≈ 0:

8>><
>>: ð90Þ
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are long.

u1 xð Þ − ~u1 xð Þk kL2 = 8:93650018 × 10−9,
u2 xð Þ − ~u2 xð Þk kL2 = 1:81941246 × 10−8,

E = 8:93650018 × 10−9, 1:81941246 × 10−8
Â ÃT ,

Ek k1 = 2:71305687 × 10−8,

ξ11 = 0:4,
ξ12 = 0:3,
ξ21 = 0:8,
ξ22 = 0:62,

η11 = η21 = η12 = η22 = 1,
Ψν1

=Ψν2
= 0:31332853,

Ψν1−α11 =Ψν1−α12 = 0:31332834,
Ψν2−α21 =Ψν2−α22 = 0:31332834,

Δ1
1 = 0:43865995,

Δ2
1 = 0:25392268,

Δ1
2 = 0:12405832,

Δ2
2 = 0:29870654,

Δ∗
N =Max 〠

2

i=1
Δi
j, j = 1, 2

( )
= 0:69258263,

ΛK11
=ΛK12

=ΛK21
=ΛK22

= 14:31641021,

γ11 = 0:72969033,
γ12 = −0:43034788,
γ21 = 0:24323011,
γ22 = 0:28689859,

Γ∗
N = 2:71305877 × 10−8,

Γ∗
N +∑m

i=1∑
m
j=1γ

i
j

1 − Δ∗
N

= 2:69819226,

Ek k1 = 2:71305687 × 10−8 ≤ 2:69819226:

ð91Þ

Example 2. In this example, consider the following system of
linear WSFIDEs [13, 18]:

Dν1u1 xð Þ − u3 xð Þ −
ðx
0

xzu1 zð Þ
x − zð Þ1/2 dz −

ðx
0

u2 zð Þ
x − zð Þ1/2 dz = f1 xð Þ,

Dν2u2 xð Þ − u1 xð Þ −
ðx
0

u2 zð Þ
x − zð Þ1/3 dz −

ðx
0

u3 zð Þ
x − zð Þ1/3 dz = f2 xð Þ,

Dν3u3 xð Þ − u3 xð Þ −
ðx
0

u1 zð Þ
x − zð Þ1/4 dz −

ðx
0

x2zu2 zð Þ
x − zð Þ1/4 dz = f3 xð Þ,

ð92Þ

where 0 ≤ x ≤ 1 and

f1 xð Þ = 2x − 1 − x3 + 16
15 x

7/2 −
16
15 x

5/2 −
32
35 x

9/2,

f2 xð Þ = 2x − x x − 1ð Þ − 27
40 x

8/3 −
243
440 x

11/3,

f3 xð Þ = 3x2 − x3 + 16
21 x

7/4 −
128
231 x

11/4 −
512
1155 x

23/4,

ð93Þ

and 0 < νi ≤ 1, i = 1, 2, 3, the initial conditions are u1ð0Þ =
u2ð0Þ = u3ð0Þ = 0. The exact solutions are u1ðxÞ = xðx − 1Þ,
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Figure 2: The graphs of the exact and approximate solutions and the absolute error function of ~u2ðxÞ for N = 20 and ν1 = ν2 = 1 of Example 1.

Table 1: Maximum absolute errors for different values of N for
Example 1.

N u1 xð Þ u2 xð Þ CPU time

3 2:7867 × 10−5 3:0371 × 10−5 3.010

8 3:7450 × 10−6 4:7250 × 10−6 8.642

11 2:3054 × 10−7 7:7804 × 10−7 18.330

16 2:1369 × 10−7 3:0206 × 10−7 68.048

20 8:0541 × 10−8 1:1680 × 10−7 166.843
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u2ðxÞ = x2, u3ðxÞ = x3 if ν1 = ν2 = ν3 = 1. By assuming that
Dν1u1ðxÞ ≈ STðxÞF1, D

ν2u2ðxÞ ≈ STðxÞF2, and Dν3u3ðxÞ ≈
STðxÞF3 and using proper operational matrices, the follow-
ing approximations are obtained:

u1 xð Þ ≈ ST xð ÞP ν1ð ÞT F1 = ST xð ÞU1,

u2 xð Þ ≈ ST xð ÞP ν2ð ÞT F2 = ST xð ÞU2,

u3 xð Þ ≈ ST xð ÞP ν3ð ÞT F3 = ST xð ÞU3,

xz ≈ ST xð ÞK11S zð Þ, x2z ≈ ST xð ÞK32S zð Þ,ðx
0

xzu1 zð Þ
x − zð Þ1/2 dz +

ðx
0

u2 zð Þ
x − zð Þ1/2 dz ≈ ST xð ÞK11 ~U1I

1/2ð ÞS xð Þ +UT
2I

1/2ð ÞS xð Þ,
ðx
0

u2 zð Þ
x − zð Þ1/3

dz +
ðx
0

u3 zð Þ
x − zð Þ1/3

dz ≈UT
2I

1/3ð ÞS xð Þ +UT
3I

1/3ð ÞS xð Þ,
ðx
0

u1 zð Þ
x − zð Þ1/4 dz +

ðx
0

x2zu2 zð Þ
x − zð Þ1/4 dz ≈UT

1I
1/4ð ÞS xð Þ + ST xð ÞK32 ~U2I

1/4ð ÞS xð Þ,

ð94Þ

where ~U1 and ~U2 are the operational matrices of product,
corresponding to the vectors U1 and U2, respectively. By

substituting the above approximations into Equation (92),
we achieve the following algebraic system

ST xð ÞF1 − ST xð ÞU3 − ST xð ÞK11 ~U1I
1/2ð ÞS xð Þ −UT

2I
1/2ð ÞS xð Þ − f1 xð Þ ≈ 0,

ST xð ÞF2 − ST xð ÞU1 −UT
2I

1/3ð ÞS xð Þ −UT
3I

1/3ð ÞS xð Þ − f2 xð Þ ≈ 0,

ST xð ÞF3 − ST xð ÞU3 −UT
1I

1/4ð ÞS xð Þ − ST xð ÞK32 ~U2I
1/4ð ÞS xð Þ − f3 xð Þ ≈ 0:

ð95Þ

Solving the above system by the collocation method for
N = 9, we can determine the unknown vectors Fi, i = 1, 2, 3.
Table 2 displays the maximum absolute errors for various
N . The data in this table show that the numerical solutions
get close to the analytical solutions with the increase of
values of N . Table 3 shows a comparison between the SSKCP
collocation and Jacobi collocation methods. This table shows
that the results are approximately the same as reported by
[18]. Figures 4–6 display a graphical comparison between
approximate solutions and exact solutions and also absolute
error functions for N = 9. Figure 7 shows the behavior of the
numerical solutions for N = 9 and νi = 0:85,0:90,0:95,1, i =
1, 2, 3: From Figure 7, it can be seen that as νi ⟶ 1, the
approximate solutions are ~uiðxÞ⟶ uiðxÞ, i = 1, 2, 3:

Example 3. Consider the following nonlinear system of
WSFIDEs [13, 18]:

D3/4u1 xð Þ − u2 xð Þ −
ðx
0

u1 zð Þ
x − zð Þ1/2 dz −

ðx
0

u22 zð Þ
x − zð Þ1/2 dz = f1 xð Þ,

D1/2u2 xð Þ − u31 xð Þ −
ðx
0

u1 zð Þ
x − zð Þ2/3 dz −

ðx
0

u2 zð Þ
x − zð Þ2/3 dz = f2 xð Þ,

ð96Þ

where 0 ≤ x ≤ 1 and

f1 xð Þ = 2
Γ 9/4ð Þ x

5/4 − x3 −
Γ 3ð ÞΓ 1/2ð Þ
Γ 7/2ð Þ x5/2 −

Γ 7ð ÞΓ 1/2ð Þ
Γ 5/2ð Þ x13/2,

f2 xð Þ = Γ 4ð Þ
Γ 7/2ð Þ x

5/2 − x6 −
Γ 3ð ÞΓ 1/3ð Þ
Γ 10/3ð Þ x7/3 −

Γ 4ð ÞΓ 1/3ð Þ
Γ 13/3ð Þ x10/3:

ð97Þ
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Figure 3: Some illustrations for the exact and approximate solutions using different values of νi: νi = 0:8,0:9,1, i = 1, 2 in Example 1.

Table 2: Maximum absolute errors for different values of N for
Example 2.

N u1 xð Þ u2 xð Þ u3 xð Þ CPU time

4 8:1514 × 10−5 6:7763 × 10−5 1:0743 × 10−4 5.382

9 2:3334 × 10−6 1:8107 × 10−6 3:3112 × 10−6 17.457

12 6:8859 × 10−7 5:4537 × 10−7 1:1140 × 10−6 36.941

17 1:2296 × 10−7 9:5306 × 10−8 2:0253 × 10−7 115.316

20 5:9278 × 10−8 4:6454 × 10−8 1:0049 × 10−7 216.638

Table 3: Maximum absolute errors obtained by SSKCP collocation
and Jacobi collocation methods for N = 9, α = −1/2, and β = 1/2 in
Example 2.

Method u1 xð Þ u2 xð Þ u3 xð Þ
SSKCP collocation 2:3334 × 10−6 1:8107 × 10−6 3:3112 × 10−6

Jacobi collocation
[18]

2:0034 × 10−6 1:8376 × 10−6 2:0763 × 10−6
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Figure 4: The graphs of the exact and approximate solutions and the absolute error function of ~u1ðxÞ for N = 9 and ν1 = ν2 = ν3 = 1 of
Example 2.
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Figure 5: The graphs of the exact and approximate solutions and the absolute error function of ~u2ðxÞ for N = 9 and ν1 = ν2 = ν3 = 1 of
Example 2.
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Figure 6: The graphs of the exact and approximate solutions and the absolute error function of ~u3ðxÞ for N = 9 and ν1 = ν2 = ν3 = 1 of
Example 2.
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Figure 7: Some illustrations for the exact and approximate solutions using different values of νi: νi = 0:85,0:90,0:95,1, i = 1, 2, 3 for N = 9 in
Example 2.

Table 4: Comparison between absolute errors of SSKCP
collocation and Jacobi collocation methods at equally spaced
points for N = 12 in Example 3.

xi
SSKCP collocation method

Jacobi collocation method
[18]

Error u1ð Þ Error u2ð Þ Error u1ð Þ Error u2ð Þ
0.0 1:7182 × 10−5 9:8329 × 10−7 9:2840 × 10−6 6:2830 × 10−7

0.1 5:5657 × 10−6 3:3268 × 10−6 1:5202 × 10−6 1:6472 × 10−7

0.2 5:5935 × 10−6 6:9555 × 10−6 7:0504 × 10−7 9:8923 × 10−8

0.3 8:1095 × 10−6 1:2777 × 10−5 8:7678 × 10−7 2:9284 × 10−7

0.4 1:1355 × 10−5 2:2448 × 10−5 4:8193 × 10−7 4:5120 × 10−7

0.5 2:0566 × 10−5 3:9797 × 10−5 8:8367 × 10−7 7:7271 × 10−7

0.6 3:2387 × 10−5 7:0527 × 10−5 3:7500 × 10−7 1:3807 × 10−6

0.7 5:7063 × 10−5 1:2877 × 10−4 1:0664 × 10−6 2:4661 × 10−6

0.8 1:1121 × 10−4 2:5191 × 10−4 2:2537 × 10−6 4:8902 × 10−6

0.9 2:3722 × 10−4 5:4688 × 10−4 4:7116 × 10−6 1:0475 × 10−5

1.0 5:7984 × 10−4 1:3758 × 10−3 1:2704 × 10−5 2:6197 × 10−5

Table 5: Maximum absolute errors obtained by SSKCP collocation
method for different values of N in Example 3.

N Error u1ð Þ Error u2ð Þ CPU time

8 2:8334 × 10−3 6:7948 × 10−3 5.772

12 5:7819 × 10−4 1:3597 × 10−3 23.587

16 1:8841 × 10−4 4:4719 × 10−4 97.048

20 7:8006 × 10−5 1:8536 × 10−4 164.409

25 2:9931 × 10−5 6:1196 × 10−5 483.681

Table 6: Values of absolute errors at equally spaced points for N
= 25 in Example 3.

xi Error u1ð Þ Error u2ð Þ
0.0 1:3659 × 10−6 3:2865 × 10−8

0.1 2:6535 × 10−7 1:7914 × 10−7

0.2 3:1410 × 10−7 3:8266 × 10−7

0.3 4:3165 × 10−7 7:0524 × 10−7

0.4 6:3587 × 10−7 1:2387 × 10−6

0.5 9:6524 × 10−7 2:1315 × 10−6

0.6 1:5052 × 10−6 3:6310 × 10−6

0.7 2:8039 × 10−6 6:5226 × 10−6

0.8 5:5119 × 10−6 1:2576 × 10−6

0.9 1:1848 × 10−5 2:7085 × 10−5

1.0 2:8779 × 10−5 6:9756 × 10−5
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The initial conditions are u1ð0Þ = u2ð0Þ = 0 and the
exact solutions for this example are u1ðxÞ = x2 and u2ðxÞ
= x3. We use the following approximations and convert
the system (96) into an algebraic system, which will be
described below:

D3/4u1 xð Þ ≈ ST xð ÞF1, u1 xð Þ ≈ ST xð ÞP 3/4ð ÞTF1 = ST xð ÞU1,

D1/2u2 xð Þ ≈ ST xð ÞF2, u2 xð Þ ≈ ST xð ÞP 1/2ð ÞTF2 = ST xð ÞU2,

u31 xð Þ ≈ ST xð ÞU3, U3 ≈ ~U
2
1

� �T
U1,

u22 xð Þ ≈ ST xð ÞU4, U4 ≈ ~U
T
2U2,ðx

0

u1 zð Þ
x − zð Þ1/2 dz +

ðx
0

u22 zð Þ
x − zð Þ1/2 dz ≈UT

1I
1/2ð ÞS xð Þ +UT

4I
1/2ð ÞS xð Þ,

ðx
0

u1 zð Þ
x − zð Þ2/3 dz +

ðx
0

u2 zð Þ
x − zð Þ2/3 dz ≈UT

1I
2/3ð ÞS xð Þ +UT

2I
2/3ð ÞS xð Þ,

ð98Þ

where ~U1 and ~U2 are operational matrices of the product,

corresponding to the vectors U1 and U2, respectively. So
we have

ST xð ÞF1 − ST xð ÞU2 −UT
1I

1/2ð ÞS xð Þ −UT
4I

1/2ð ÞS xð Þ − f1 xð Þ ≈ 0,

ST xð ÞF2 − ST xð ÞU3 −UT
1I

2/3ð ÞS xð Þ −UT
2I

2/3ð ÞS xð Þ − f2 xð Þ ≈ 0:

(

ð99Þ

Table 4 shows a comparison between the absolute
errors of the SSKCP collocation method and the Jacobi
collocation method at equally spaced points xi = 0:1i, i = 0
, 1,⋯, 10 for N = 12, which shows that the absolute errors
of the Jacobi collocation method are less than the pre-
sented method, but with increasing N , the errors of the
proposed method decrease. Maximum absolute errors for
different values of N and numerical results for N = 25
reported in Tables 5 and 6 confirm that the results are
close to those reported by [18]. Figures 8 and 9 show
the comparison between the numerical results and the
exact solutions and also the absolute error functions of
u1ðxÞ, u2ðxÞ for N = 25, respectively.
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Figure 8: The graphs of the exact and approximate solutions and the absolute error function of ~u1ðxÞ for N = 25 of Example 3.
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7. Conclusion

In this paper, the shifted sixth-kind Chebyshev polynomials
together with the collocation method were used to solve a
class of the system of fractional integro-differential equa-
tions with weakly singular kernels. For this purpose, the
integral and product operational matrices were calculated,
and using the obtained approximations, the original system
of equations was transformed into a corresponding linear
and nonlinear system of algebraic equations that are easier
for solving. Choosing an appropriate value of N , each of
algebraic equations was collocated in the roots of S∗N+1ðxÞ,
and finally, for obtaining the unknown vectors Fi, i = 1, 2,
⋯,m, an algebraic system involving mðN + 1Þ algebraic
equations was solved. To eliminate the singularity of the ker-
nels of the equations under study, an operational matrix was
derived. Also, an error bound was determined for the pro-
posed method. To show the ability and efficiency of the pro-
posed method, three examples were presented and the
maximum absolute errors were calculated for different N ,
and graphs of the absolute error functions and numerical
solutions were plotted and numerical results showed a good
agreement between the approximate and exact solutions.
When the order of the fractional derivative ν was uncertain,
the numerical solutions for the various values of ν, 0 < ν ≤ 1,
were approached to the exact solutions as ν⟶ 1. The com-
parison of the proposed method with the Jacobi collocation
method [18] showed good implementation of SSKCP collo-
cation method for solving a system of linear fractional
integro-differential equations with weakly singular kernels
and for a system of nonlinear WSFIDEs; the error decreased
with increasing N . CPU times were computed for all exam-
ples. According to the numerical results which were
obtained in the relevant instances and compared with exact
solutions and those obtained from the Jacobi collocation
method, it can be concluded that the SSKCP collocation
method is very helpful to look for approximate solutions of
a system of WSFIDEs. This method can be applied to the
linear and nonlinear systems of fractional-order Volterra-
Fredholm integro-differential equations with weakly singu-
lar kernels, but additional operational matrices are required.
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All results have been obtained by conducting the numerical
procedure, and the ideas can be shared for the researchers.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] D. A. Miller, Fractional Calculus, Minor Thesis Part of PHD,
West Virginia University, 2004.

[2] I. Podlubny, Fractional Differential Equations, Elsevier, 1998.
[3] N. Sweilam, M. Khader, and R. Al-Bar, “Numerical studies for

a multi-order fractional differential equation,” Physics Letters
A, vol. 371, no. 1-2, pp. 26–33, 2007.

[4] D. Baleanu, A. Jajarmi, S. Sajjadi, and D. Mozyrska, “A new
fractional model and optimal control of a tumor-immune sur-
veillance with non-singular derivative operator,” Journal of
Nonlinear Science, vol. 29, no. 8, article 083127, 2019.

[5] Ş. Yüzbaşı, “A numerical approximation for Volterra's popula-
tion growth model with fractional order,” Applied Mathemat-
ical Modelling, vol. 37, no. 5, pp. 3216–3227, 2013.

[6] H. Sadeghian, H. Salarieh, A. Alasty, and A. Meghdari, “On the
fractional-order extended Kalman filter and its application to
chaotic cryptography in noisy environment,” Applied Mathe-
matical Modelling, vol. 38, no. 3, pp. 961–973, 2014.

[7] S. Kumar, “A new fractional modeling arising in engineering
sciences and its analytical approximate solution,” Alexandria
Engineering Journal, vol. 52, no. 4, pp. 813–819, 2013.

[8] L. Tabharit and Z. Dahmani, “Integro-differential equations of
arbitrary orders involving convergent series,” Journal of Inter-
disciplinary Mathematics, vol. 23, no. 5, pp. 935–953, 2020.

[9] E. Adams and H. Spreuer, “Uniqueness and stability for
boundary value problems with weakly coupled systems of non-
linear integro-differential equations and application to chemi-
cal reactions,” Journal of Mathematical Analysis and
Applications, vol. 49, no. 2, pp. 393–410, 1975.

[10] A. Kyselka, “Properties of systems of integro-differential equa-
tions in the statistics of polymer chains,” Polymer Science
USSR, vol. 19, no. 11, pp. 2852–2858, 1977.

[11] K. Holmåker, “Global asymptotic stability for a stationary
solution of a system of integro-differential equations describ-
ing the formation of liver zones,” SIAM Journal on Mathemat-
ical Analysis, vol. 24, no. 1, pp. 116–128, 1993.

[12] N. Sweilam, M. Khader, and R. Al-Bar, “Homotopy perturba-
tion method for linear and nonlinear system of fractional
integro-differential equations,” International Journal of Com-
putational Mathematics and Numerical Simulation, vol. 1,
no. 1, pp. 73–87, 2008.

[13] M. Heydari, M. Hooshmandasl, F. Mohammadi, and
C. Cattani, “Wavelets method for solving systems of nonlinear
singular fractional Volterra integro-differential equations,”
Communications in Nonlinear Science and Numerical Simula-
tion, vol. 19, no. 1, pp. 37–48, 2014.

[14] S. Mashayekhi and M. Razzaghi, “Numerical solution of non-
linear fractional integro-differential equations by hybrid func-
tions,” Engineering Analysis with Boundary Elements, vol. 56,
pp. 81–89, 2015.

[15] S. A. Deif and S. R. Grace, “Iterative refinement for a system of
linear integro-differential equations of fractional type,” Journal
of Computational and Applied Mathematics, vol. 294, pp. 138–
150, 2016.

[16] E. Hesameddini and M. Shahbazi, “Hybrid Bernstein block-
pulse functions for solving system of fractional integro-
differential equations,” International Journal of Computer
Mathematics, vol. 95, no. 11, pp. 2287–2307, 2018.

[17] J. Xie and M. Yi, “Numerical research of nonlinear system of
fractional Volterra-Fredholm integral-differential equations via
block-pulse functions and error analysis,” Journal of Computa-
tional and Applied Mathematics, vol. 345, pp. 159–167, 2019.

[18] J. Biazar and K. Sadri, “Solution of weakly singular fractional
integro-differential equations by using a new operational
approach,” Journal of Computational and Applied Mathemat-
ics, vol. 352, pp. 453–477, 2019.

[19] J. Xie, T. Wang, Z. Ren, J. Zhang, and L. Quan, “Haar wavelet
method for approximating the solution of a coupled system of

17Journal of Mathematics



fractional-order integral-differential equations,” Mathematics
and Computers in Simulation, vol. 163, pp. 80–89, 2019.

[20] F. Saemi, H. Ebrahimi, and M. Shafiee, “An effective scheme
for solving system of fractional Volterra-Fredholm integro-
differential equations based on the Muntz-Legendre wavelets,”
Journal of Computational and Applied Mathematics, vol. 374,
article 112773, 2020.

[21] P. Sunthrayuth, R. Ullah, A. Khan et al., “Numerical analysis of
the fractional-order nonlinear system of Volterra integro-
differential equations,” Journal of Function Spaces, vol. 2021,
Article ID 1537958, 10 pages, 2021.

[22] O. Taiye, T. O. Adebayo, A. A. James, I. A. Adam, and A. A.
Muhammed, “Numerical solution of system of linear frac-
tional integro-differential equations by least squares colloca-
tion Chebyshev technique,” Mathematics and Computational
Sciences, vol. 3, no. 2, pp. 10–21, 2022.

[23] M. Masjed-Jamei, Some New Classes of Orthogonal Polyno-
mials and Special Functions: A Symmetric Generalization of
Sturm-Liouville Problems and Its Consequences, Department
of Mathematics, University of Kassel, 2006.

[24] M. Masjed-Jamei, “A basic class of symmetric orthogonal
polynomials using the extended Sturm-Liouville theorem for
symmetric functions,” Journal of Mathematical Analysis and
Applications, vol. 325, no. 2, pp. 753–775, 2007.

[25] W. Abd-Elhameed and Y. Youssri, “Sixth-kind Chebyshev
spectral approach for solving fractional differential equations,”
International Journal of Nonlinear Sciences and Numerical
Simulation, vol. 20, no. 2, pp. 191–203, 2019.

[26] M. Khader and N. Sweilam, “On the approximate solutions for
system of fractional integro-differential equations using Che-
byshev pseudo-spectral method,” Applied Mathematical
Modelling, vol. 37, no. 24, pp. 9819–9828, 2013.

[27] E. Bargamadi, L. Torkzadeh, K. Nouri, and A. Jajarmi, “Solving
a system of fractional-order Volterra-Fredholm integro-
differential equations with weakly singular kernels via the sec-
ond Chebyshev wavelets method,” Fractal and Fractional,
vol. 5, no. 3, p. 70, 2021.

18 Journal of Mathematics



Research Article
Two Computational Strategies for the Approximate Solution of
the Nonlinear Gas Dynamic Equations

Muhammad Nadeem 1 and Mouad M. H. Ali 2

1School of Mathematics and Statistics, Qujing Normal University, 655011 Qujing, China
2Department of Computer Science and Engineering, Hodeidah University, Al-Hudaydah, Yemen

Correspondence should be addressed to Mouad M. H. Ali; mouad198080@hoduniv.net.ye

Received 14 August 2022; Revised 25 September 2022; Accepted 30 September 2022; Published 13 October 2022

Academic Editor: Arzu Akbulut

Copyright © 2022 Muhammad Nadeem and Mouad M. H. Ali. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this article, we propose an idea of Sawi homotopy perturbation transform method (SHPTM) to derive the analytical results of
nonlinear gas dynamic (GD) equations. The implementation of this numerical scheme is straightforward and produces the results
directly without any assumptions and hypothesis in the recurrence relation. Sawi transform (ST) has an advantage of reducing the
computational work and the error of estimated results towards the precise solution. The results obtained with this approach are in
the shape of an iteration that converges to the precise solution very gradually. We provide the validity and accuracy of this scheme
with the help of illustrated examples and their graphical results. This scheme has shown to be the simplest approach for achieving
the analytical results of nonlinear problems in science and engineering.

1. Introduction

In recent decades, nonlinear models are particularly describ-
ing various physical phenomena in engineering, physics,
chemistry, and other sciences. Numerous analytical and
numerical schemes have been broadly applied to these non-
linear problems. The procedure of obtaining the precise
results for the nonlinear problems is very complicated, and
it is still a challenging issue to solve these nonlinear PDEs
in most of the cases; besides this, there are various strategies
for their solution. As a result, various researchers and scien-
tists have studied multiple novel methods for getting the
analytical solution that are reasonably close to the precise
solutions such as the Jacobi elliptic function method [1],
Exp ð−Φ ðηÞÞ-expansion method [2], new Kudryashov’s
method [3], rank upgrading technique [4], modified expo-
nential rational method [5], Hermite-Ritz method [6], resid-
ual power series (RPS) method [7], and Adomian
decomposition method [8, 9].

He [10, 11] developed an idea of homotopy perturbation
method (HPM) to obtain the analytical solution of differen-
tial problems. Later, Khuri and Sayfy [12] combined Laplace

transform with HPM for the analytical results of differential
problems. Nadeem and Li [13] presented a combined
approach of Laplace transform with HPM for dealing the
analytical work of nonlinear vibration systems and nonlinear
wave problems. HPM provides the significant results to solve
linear and nonlinear equations of reaction-diffusion equa-
tions [14], heat transfer model [15], delay differential equa-
tions [16], integro-differential equation [17], and
Schrödinger equations [18].

Gas dynamic equations are mathematically modeled by
various physical laws such as energy, mass, and momentum
conservation. The study of gas motion and its impact on
structures using the principles of fluid dynamics and fluid
mechanics is known as “gas dynamic,” and it belongs to
the discipline of fluid dynamics [19–21]. Jafari [22] pre-
sented the idea of variational iteration method (VIM) on
the basis of Lagrange multipliers to investigate the analytical
solution of nonlinear gas dynamic equation and Stefan equa-
tion. Later, Matinfar et al. [23] used a simple procedure
using He’s polynomials to obtain the analytical results of
GD equation and provided the efficient results to show that
the suggested algorithm is quite suitable for such problems.
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Kumar and Rashidi [24] formulated a scheme based on
Laplace transform and the homotopy analysis scheme for
handling the time-fractional GD equations. Singh et al.
[25] provided the approximate solution of GD equation
and showed that HPM presents the excellent performance
in various nonlinear problems. Singh and Aggarwal [26]
introduced Sawi transform for population growth and decay
problems. Many authors provided that this transform has an
excellent performance in various differential problems
[27–29].

In this article, we combined Sawi transform and HPM to
formulate the idea of SHPTM and obtain the analytical
results of GD equations. HPM is used to handle nonlinear
components. Sawi transform has an advantage of reducing
the computational work and minimizing the error of the
estimated results towards the precise results. We observe
that HPM is very efficient technique in solving the nonlinear
phenomena. Results show that this strategy is very unique
and easy to implement than other approaches. This article
is presented as follows: in Section 2, we report the concept
of Sawi transform with some property functions. In Section
3, a basic idea of HPM is revealed to overcome the nonlinear
components. Section 4 demonstrates the basic idea of
SHPTM to handle the nonlinear problems. We illustrate
two numerical examples to sow the performance of SHPTM
and present the conclusion in Sections 5 and 6, respectively.

2. Sawi Transform

Definition 1. Consider f ðtÞ be a function with t ≥ 0, so

L f tð Þf g = F sð Þ = θ
ð∞
0
f tð Þe−stdt ð1Þ

is said to be Laplace transform.

Definition 2. Sawi transform is represented by Sð:Þ for a
function ϑðθÞ

S ϑ tð Þ½ � = R θð Þ = 1
θ2

ð∞
0
ϑ tð Þe−t/θdt, t ≥ 0, k1 ≤ θ ≤ k2: ð2Þ

Here, S is termed as Sawi transform and if RðθÞ is the Sawi
transform of a function ϑðtÞ. then ϑðtÞ is the inverse of Rðθ
Þ so that S−1½RðθÞ� = ϑðtÞ, S−1 is said to be inverse Sawi
transform.

Properties. If SfgðtÞg = RðθÞ, the following differential prop-
erties yield [26, 28]:

(a) Sfg′ðtÞg = ðRðθÞ/θÞ − ðGð0Þ/θ2Þ
(b) Sfg′′ðtÞg = ðRðθÞ/θ2Þ − ðGð0Þ/θ3Þ − ðG′ð0Þ/θ2Þ
(c) SfgmðtÞg = ðRðθÞ/θmÞ − ðGð0Þ/θm+1Þ − ðG′ð0Þ/θmÞ

−⋯−ðGm−1ð0Þ/θ2Þ

3. Fundamental Concept of HPM

This sector presents the strategy of HPM with the consider-
ation of a nonlinear functional equation [13]. Consider

T ϑð Þ − g hð Þ = 0, h ∈Ω, ð3Þ

with conditions

S ϑ, ∂ϑ
∂n

� �
= 0, h ∈ Γ: ð4Þ

Here, T is a general function and S is the boundary operator,
and gðhÞ is source term. We can now split T such that T1 is
said to be a linear and T2 be a nonlinear operator. Thus, we
can write Equation (3) as

T1 ϑð Þ + T2 ϑð Þ − g hð Þ = 0: ð5Þ

Consider ϑðh, θÞ: Ω × ½0, 1�⟶ℍ such that it is suitable
for

H ϑ, θð Þ = 1 − θð Þ T1 ϑð Þ − T1 ϑ0ð Þ½ � + θ T1 ϑð Þ − T2 ϑð Þ − g hð Þ½ �,
ð6Þ

or

H ϑ, θð Þ = T1 ϑð Þ − T1 ϑ0ð Þ + qL ϑ0ð Þ + θ T2 ϑð Þ − g hð Þ½ � = 0:
ð7Þ

Here, θ ∈ ½0, 1� is homotopy element and ϑ0 is the starting
approximation of Equation (3). The study of HPM declares
that θ is assumed as a minimal factor and the result of Equa-
tion (3) can be expressed in the shape of θ.

ϑ = ϑ0 + θϑ1 + θ2ϑ2 + θ3ϑ3+⋯ = 〠
∞

i=0
θiϑi: ð8Þ

Considering θ = 1, we get particular of Equation (3) as

ϑ = lim
θ⟶1

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3+⋯ = 〠
∞

i=0
ϑi: ð9Þ

The nonlinear terms are obtained as

T2ϑ x, tð Þ = 〠
∞

n=0
θnHn ϑð Þ, ð10Þ

where HnðϑÞ is defined as

Hn ϑ0 + ϑ1+⋯+ϑnð Þ = 1
n!

∂n

∂θn
T2 〠

∞

i=0
θiϑi

 ! !
θ=0

, n = 0, 1, 2,⋯:

ð11Þ

This result in Equation (10) generally converges as the
rate of convergence depends on the nonlinear operator T2.
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4. Formulation of SHPTM

This section reveals the construction of SHPTM for achiev-
ing the analytical results GD equation. Consider a nonlinear
differential problem such as

ϑ′ x, tð Þ + ϑ x, tð Þ + g ϑð Þ = g x, tð Þ, ð12Þ

with initial condition

ϑ x, 0ð Þ = a, ð13Þ

where ϑ is a function in time domain t, gðϑÞ represents non-
linear component, gðx, tÞ is known, and a is the constant.
Now, Equation (12) can reconsider as

ϑ′ x, tð Þ = −ϑ x, tð Þ − g ϑð Þ + g x, tð Þ: ð14Þ

Operating ST on Equation (14), we get

S ϑ′ x, tð Þ
h i

= S −ϑ x, tð Þ − g ϑð Þ + g x, tð Þ½ �: ð15Þ

Implementing the properties of ST, it yields

R θð Þ
θ

−
G 0ð Þ
θ2

= −S ϑ x, tð Þ + g ϑð Þ − g x, tð Þ½ �: ð16Þ

Thus, RðθÞ is found from Equation (16) as

R θ½ � = G 0ð Þ
θ

− θS ϑ x, tð Þ + g ϑð Þ − g x, tð Þ½ �: ð17Þ

Applying inverse ST on Equation (17), it yields

ϑ x, tð Þ =G x, tð Þ − S−1 θS ϑ x, tð Þ + g ϑð Þ½ �½ �, ð18Þ

Equation (18) is called the recurrence relation of Equa-
tion (12) where

G x, tð Þ = S−1
G 0ð Þ
θ

+ θg x, tð Þ
� �

: ð19Þ

According to the strategy of HPM, consider

ϑ tð Þ = 〠
∞

i=0
piϑi nð Þ = ϑ0 + p1ϑ1 + p2ϑ2+⋯, ð20Þ

and nonlinear terms gðϑÞ can be determined using an algo-
rithm

g ϑð Þ = 〠
∞

i=0
piHi ϑð Þ =H0 + p1H1 + p2H2+⋯, ð21Þ

where Hn ′s is He’s polynomial, and we calculate them by

using the following procedure.

Hn ϑ0 + ϑ1+⋯+ϑnð Þ = 1
n!

∂n

∂pn
g 〠

∞

i=0
piϑi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð22Þ

Putting Equations (20), (21), and (22) in Equation (18)
and equating the same components of p, we obtain the fol-
lowing iterations

p0 : ϑ0 x, tð Þ =G x, tð Þ,
p1 : ϑ1 x, tð Þ = −S−1 θS ϑ0 x, tð Þ +H0 ϑð Þf g½ �,
p2 : ϑ2 x, tð Þ = −S−1 θS ϑ1 x, tð Þ +H1 ϑð Þf g½ �,
p3 : ϑ3 x, tð Þ = −S−1 θS ϑ2 x, tð Þ +H2 ϑð Þf g½ �,

⋮

ð23Þ

By repeating the same manner, we can sum up this series
to obtain the analytical results such that

ϑ x, tð Þ = ϑ0 + ϑ1 + ϑ2+⋯ = 〠
∞

i=0
ϑi: ð24Þ

Thus, Equation (24) yields as an analytical result of dif-
ferential problem of Equation (12).

5. Numerical Applications

In this portion, we implement the idea of SHPTM in order
to obtain the analytical solution of nonlinear GD equations.
The solution series converges to the exact solution with few
iterations which shows the significance of this approach.

5.1. Example 1. Consider the homogenous and nonlinear GD
equation

∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ = 0, ð25Þ

with initial condition

ϑ x, 0ð Þ = e−x: ð26Þ

Taking the Sawi transform of Equation (25), we get

S
∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

= 0,

S
∂ϑ
∂t

� �
= −S ϑ

∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

= 0:
ð27Þ

Employing the properties of Sawi transform, we get

ϑ x, θð Þ
θ

−
ϑ x, 0ð Þ
θ2

= −S ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

, ð28Þ
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which may be solved further as

ϑ x, θð Þ = ϑ x, 0ð Þ
θ

− θS ϑ
∂ϑ
∂x

− ϑ + ϑ2
Á� �

: ð29Þ

Applying inverse Sawi transform, we get

ϑ x, tð Þ = ϑ x, 0ð Þ − S−1 θS ϑ
∂ϑ
∂x

− ϑ + ϑ2
Á� �� �

: ð30Þ

Utilizing HPM on Equation (30), we get

〠
∞

n=0
pnϑn x, tð Þ = ϑ x, 0ð Þ − pS−1

θS 〠
∞

n=0
pnϑn x, tð Þ ∂

∂x
〠
∞

n=0
pnϑn x, tð Þ − 〠

∞

n=0
pnϑn x, tð Þ + 〠

∞

n=0
pnϑ2n x, tð Þ

( )" #
:

ð31Þ

In comparing, the following iterations can be obtained:

p0 : ϑ0 x, tð Þ = e−x,

p1 : ϑ1 x, tð Þ = −S−1 θS ϑ0
∂ϑ0
∂x

− ϑ0 + ϑ20

� �� �
= e−xt

p2 : ϑ2 x, tð Þ = −S−1 θS ϑ0
∂ϑ1
∂x

+ ϑ1
∂ϑ0
∂x

− ϑ1 + 2ϑ0ϑ1
� �� �

= e−x
t2

2! ,

p3 : ϑ3 x, tð Þ = −S−1 θS ϑ0
∂ϑ2
∂x

+ ϑ1
∂ϑ1
∂x

+ ϑ2
∂ϑ0
∂x

− ϑ2 + ϑ21 + 2ϑ0ϑ2
� �� �

= e−x
t3

3! ,

⋮

ð32Þ

Hence, the solution can be expressed as

ϑ x, tð Þ = ϑ0 x, tð Þ + ϑ1 x, tð Þ + ϑ2 x, tð Þ + ϑ3 x, tð Þ+⋯,

ϑ x, tð Þ = e−x + e−xt + e−x
t2

2! + e−x
t3

3!+⋯,

ϑ x, tð Þ = et−x:

ð33Þ

In Figure 1, we show the analytical and exact solution
graphs of Problem 1 at −3:5 ≤ x ≤ 3:5 and 0 ≤ t ≤ 0:1. The
graphical results show that the analytical solution and the
exact solutions are very close to each other. In addition,
Figure 2 presents the graphical error with −π ≤ x ≤ π at t =
0:01, and it seems that the suggested approach is very effi-
cient and authentic for finding the analytical solution of
nonlinear GD equations.

5.2. Example 2. Consider the nonhomogenous and nonlinear
GD equation

∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ = −et−x, ð34Þ

with initial condition

ϑ x, 0ð Þ = 1 − e−x: ð35Þ
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(a) The analytical solution of ϑðx, tÞ
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(b) The exact solution of ϑðx, tÞ

Figure 1: The surface solution of GD equation for Example 1.
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Figure 2: 2D plot for ϑðx, tÞ with various parameter of t:
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Taking the Sawi transform of Equation (34), we get

S
∂ϑ
∂t

+ ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

= −S et−x
Â Ã

,

S
∂ϑ
∂t

� �
= −S et−x

Â Ã
− S ϑ

∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

:

ð36Þ

Employing the properties of Sawi transform, we get

ϑ x, θð Þ
θ

−
ϑ x, 0ð Þ
θ2

= −
e−x

θ 1 − θð Þ − S ϑ
∂ϑ
∂x

− ϑ 1 − ϑð Þ
� �

, ð37Þ

which may be solved further as

ϑ x, θð Þ = ϑ x, 0ð Þ
θ

−
e−x

1 − θ
− θS ϑ

∂ϑ
∂x

− ϑ + ϑ2
� �

: ð38Þ

Applying inverse Sawi transform, we get

ϑ x, tð Þ = ϑ x, 0ð Þ − e−xS−1
1

1 − θ

� �
− S−1 θS ϑ

∂ϑ
∂x

− ϑ + ϑ2
� �� �

:

ð39Þ

Utilizing HPM on Equation (39), we get

〠
∞

n=0
pnϑn x, tð Þ = 1 − et−x − pS−1

θS 〠
∞

n=0
pnϑn x, tð Þ ∂

∂x
〠
∞

n=0
pnϑn x, tð Þ − 〠

∞

n=0
pnϑn x, tð Þ + 〠

∞

n=0
pnϑ2n x, tð Þ

( )" #
:

ð40Þ

In comparing, the following iterations can be obtained:

p0 : ϑ0 x, tð Þ = 1 − et−x,

p1 : ϑ1 x, tð Þ = S−1 θS ϑ0
∂ϑ0
∂x

− ϑ0 + ϑ20

� �� �
= 0

p2 : ϑ2 x, tð Þ = S−1 θS ϑ0
∂ϑ1
∂x

+ ϑ1
∂ϑ0
∂x

− ϑ1 + 2ϑ0ϑ1
� �� �

= 0,

p3 : ϑ3 x, tð Þ = S−1 θS ϑ0
∂ϑ2
∂x

+ ϑ1
∂ϑ1
∂x

+ ϑ2
∂ϑ0
∂x

− ϑ2 + ϑ21 + 2ϑ0ϑ2
� �� �

= 0,

⋮

ð41Þ

Hence, the solution can be expressed as

ϑ x, tð Þ = ϑ0 x, tð Þ + ϑ1 x, tð Þ + ϑ2 x, tð Þ + ϑ3 x, tð Þ+⋯,
ϑ x, tð Þ = 1 − et−x + 0 + 0+⋯,

ϑ x, tð Þ = 1 − et−x:

ð42Þ

In Figure 3, we show the analytical and exact solution
graphs of Problem 1 at −5 ≤ x ≤ 5 and 0 ≤ t ≤ 0:03. The
graphical results show that the analytical solution and the
exact solutions are very close to each other. In addition,
Figure 4 presents the graphical error with −1 ≤ x1 at t =

–1.0 –0.5 0.5 1.0
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–1.0
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0.5

t
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Figure 4: 2D plot for ϑðx, tÞ with various parameter of t.
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Figure 3: The surface solution of GD equation for Example 2.
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0:01, and it seems that the suggested approach is very effi-
cient and authentic for finding the analytical solution of
nonlinear GD equations.

6. Conclusion

In this paper, we constructed a SHPTM to obtain the analyt-
ical solution of nonlinear GD equations. The conservation
characteristics of the numerical scheme are demonstrated
by theoretical analysis. Additionally, we determined the
error estimates to show that the obtained results are in quick
convergence. One observation is that if Sawi transform is
used with HPM, we do not need to digitize the GD equations
which leads to a high number of restrictions and assump-
tions. This is because Sawi transform is independent of
restrictive variable and considered as a direct approach for
the conservation law in both linear and nonlinear problems.
We use Mathematica software 11.0.1 for the numerical anal-
ysis and computation of the iterations of series solutions.
One can use this scheme for other nonlinear numerical
problems to obtain the excellent results that are stable and
accurate. However, our work can easily be modified to study
the theory of fractional calculus in science and engineering.
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Coronavirus has become a serious global phenomenon in recent times and has negative e­ects on the entire world economy. In
this study, a fractional mathematical model formulated in fractional conformable derivative is studied. �e model hinges on the
concept of mammal hosts and humans. �e basic properties of the coronavirus model are investigated. �e stability analysis is
carried out as well as sensitivity analysis based on the reproduction number. Numerical simulation is undertaken to give impetus
to the analytical results which indicate that both fractional conformable order derivative and fractional-order derivative have
serious consequences in numerical result outcomes.

1. Introduction

�e world has not been free of diseases since creation, and
mankind has not also done well in the immediate envi-
ronment. Technology and science have brought fast changes,
making lives easy and more comfortable [1, 2]. �e natural
environment is undergoing serious degradation in almost all
parts of the world. Humans’ advancement through science
and technology has brought a dramatic shift in many natural
certain, including marital principles, modernized agricul-
ture, transportation, education, culture and many more.
Currently, through technology, man has been able to de-
velop some genetically modi�ed foods [3–5]. Some of these
advancements have serious consequences in human en-
deavor. Many plants and animals are going into extinction
because of man’s overexploitation of the natural environ-
ment. Why does society, therefore, blame the occurrence of
epidemics and pandemic in the world? Are we not the
creation of our own problems? �ere have been several

pandemics in the past including the recent Ebola menace
which killed many people and totally destroyed many
countries’ economy [6, 7].

�e coronavirus is not an exception and would not
probably the last one man would ever encounter. �e
outbreak of the current pandemic begun at Wuhan in the
province of Hubei in the Republic of China. �e association
of the pandemic has to do with a seafood market centre
which dealt with live animals. It is believed that the virus was
associated with a host animal that humans infected [8].
Subsequently, human-to-human infection began. Due to
migration, as people are now very mobile, the disease has
spread to almost all parts of the continents. Notably,
countries that have su­ered severely are Italy, United
Kingdom, United States of America, France, South Korea,
and so on [1, 5]. Sub-Saharan Africa is not sped with this
menace. South Africa is the leading country, and most
countries have recorded the coronavirus infection. �ey
have fragile economies with poor health infrastructure and
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would have serious effect on patients if care is not taken
[1, 4, 5].

'e symptoms of the disease include the following:
severe headache, respiratory infection, and high tempera-
ture. 'e latent period of the disease is fourteen days, and
during this period, the person can infect others. Currently,
there is no cure for the disease; however, the WHO suggests
preventive mechanisms such as social distancing, frequent
washing of hands with running water, and application of
hand sanitizer [5]. Several research studies are currently
underway in the hope of obtaining drugs and vaccines to
prevent the spread and mortality of the disease. It is im-
portant that quantitative and qualitative information on
etiology be studied. It has been found that mathematical
modeling is capable of providing qualitative information on
many important parameters that are important for decision
making by health professionals. 'ere have been number of
mathematical models on many epidemics both current and
past [9, 10].

In recent times, non-integer models have gained tre-
mendous advancement due to their ability to predict
complex models or phenomena in light of engineering,
technology, economics, etc. Fractional derivatives and in-
tegrals possess the past memory and the present state of
phenomenon which helps in the accurate predictions of
models. 'ere are many fractional operators including
Liouville–Caputo, Grunwald–Letnikov, Atangana–Gomez,
Caputo–Fabrizio, Atangana–Baleanu, and others which are
commonly used by researchers [11–14].

'e recently introduced operator by Khalil et al. [15] has
attracted several researchers because of its applicability and
wide usefulness in many scientific problems. 'e operator
boasts of some interesting properties such as conformable
vectors, conformable partial derivatives, Taylor series ex-
pansion, Laplace transform, and others [16]. 'us, con-
formable fractional derivative is just local derivative in
Riemann–Liouville and Caputo sense whose purpose is to
give rise to non-local fractional derivative. Qureshi [17]
investigated the effects of vaccination on measles dynamics
under fractional conformable derivative with Liou-
ville–Caputo operator and obtained a threshold in con-
formable derivative form that reduces infection. Khan and
Aguilar [18] explored the dynamics of tuberculosis (TB)
model and presented results that prove superiority of the

conformable operator. 'is study is motivated by the ef-
fective and efficient results obtained by the previous authors
with the fractional conformable order derivative. Harir et al.
[19] employed conformable fractional-order derivative to
examine SIR epidemic model and obtained a result that
provided a qualitative information in 2021. In the same year,
Hosseini et al. [20] utilized conformable derivative to
demonstrate the effectiveness of numerical scheme result by
comparing it with the analytical solutions in a heat transfer
problem. 'en, Allahamou et al. [21] also used conformable
approach to study co-infection model of Hantavirus and
validated the model using European moles in 2021.

'e analytical and numerical results based on con-
formable derivative meet all the standard derivative criteria
and are easy to compute which makes the results more
efficient and reliable for predicting the model. 'e aim of
this paper is to employ the fractional conformable derivative
in Liouville–Caputo sense to examine the dynamics of the
coronavirus model and also to present some qualitative
information on coronavirus menace.

'e rest of the paper is arranged as follows. In Section 2,
mathematical preliminaries in both analysis and numerical
simulations of our model are presented. Section 3 is solely
devoted to the formulation of mathematical modeling. In the
next section, the existence of bounded solutions in a bio-
logically feasible region is presented. Section 5 contains the
disease-free equilibrium and its stability, and Section 6 deals
with the sensitivity analysis for the threshold quantity R0.
Sections 7 and 8 present numerical algorithms and simu-
lation results, respectively. MATLAB 2016a has been used to
obtain numerical solutions. Finally, the study ends up with a
conclusion.

2. Preliminarcies

Some of the basic results needed in the qualitative analysis
and numerical simulations of the proposed coronavirus
model (7) are presented.

Definition 1. 'e definition of fractional derivative pre-
sented by Riemann and Liouville of order α (RLα) in terms of
the power law type kernel (x − ξ)p− α− 1 with convolution of a
function z(ξ) [16] is as follows:

RLαD
α
a1 ,xz(x) �

1
Γ(p − α)

d
p

dx
p 􏽚

x

a1

(x − ξ)
p− α− 1

z(ξ)dξ , α ∈ (p − 1, p]. (1)

Definition 2. 'e definition of fractional derivative pre-
sented by Liouville and Caputo of order β (LCβ) in terms of

the power law type kernel (x − ξ)p− β− 1 with convolution of
the local derivative of a function z(ξ) is as follows:

LCβD
β
a1 ,xz(x) �

1
Γ(p − β)

􏽚
x

a1

(x − ξ)
p− β− 1 d

β

dξβ
z(ξ)dξ , β ∈ (p − 1, p]. (2)
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Definition 3. 'e conformable fractional derivative of order
α (CFDα) is defined as

CFDαD
α
a1 ,xz(x) � lim

ζ→0

z x + ζx
1− α

􏼐 􏼑 − z(x)

ζ
, t, α> 0. (3)

Remark 1. 'e relation between CFDα and local ordinary
derivative is

CFDαD
α
a1,xz(x) � x − a1( 􏼁

1− α d

dx
z(x). (4)

Definition 4. 'e CFDα in the sense of LCβ is defined as

β
CD

α
a1,xz(x) �

1
Γ(p − β)

􏽚
x

a1

x − a1( 􏼁
α

− ξ − a1( 􏼁
α

α
􏼢 􏼣

p− β− 1

·

p

CFDαD
α
a1 ,ξz(ξ)

ξ − a1( 􏼁
1− α dξ ,

β
CD

α
a1 ,xzx �

p− β
CF DI

α
a1 ,x

p

CFDαD
α
a1,xz(x)􏼐 􏼑,

(5)

where z(x) ∈ C
p
α,a1([a1, a2]), Re(β)≥ 0, and

p � 􏼆Re(β)􏼇 + 1.

3. Mathematical Model Formulation

'is section presents a coronavirus model of fractional con-
formable derivative version by Bonyah et al. [22] in which the
total host mammal population Na is apportioned into sus-
ceptible mammal class Sa, latent mammal class La, infected
mammal class Ia, and recovered mammal class Ra. Hence, total
host mammal population is denoted by
Na � Sa + La + Ia + Ra. Human total population is also sub-
divided into susceptible human class Sb, latent human class Lb,
infected human class Ib, and recovered human class Rb.
Mammal and human recruitment rates are Λa and Λb, re-
spectively. Natural mortality rate for humans and mammals is
μa and μb in that order. Effective contact rate between infected
mammals and susceptiblemammals is given by β1.'e effective
contact rate between infected mammals and susceptible human
is denoted by β2, β3.'ewaning rate of recovered human losses
immunity to be part of the susceptible class is c. 'e recovery
rate of human and mammal is τb and τa, respectively. 'e rate
human andmammalmove into infected classes is denoted by θb

and θa while human disease induced mortality rate is ω. With
initial conditions S0m � Sa(0), L0

a � La(0), I0a � I

a(0), R0
a � Ra(0), S0b � Sb(0), L0

b � Lb(0), I0b � Ib(0),

R0
b � Rb(0), the following non-linear differential equations

represent the interactions among the various compartments:

dSa

dt
� Λa − β1SaIa − μaSa,

dLa

dt
� β1SaIa − μa + θa( 􏼁La,

dIa

dt
� θaLa − τa + μa( 􏼁Ia,

dRa

dt
� τaIa − μaRa,

dSb

dt
� Λb − β2SbIa − β3SbIb + cRb − μbSb,

dLb

dt
� β2SbIa + β3SbIb − μb + θb( 􏼁Lb,

dIb

dt
� θhLb − τb + μb + ω( 􏼁Ib,

dRb

dt
� τbIb − μb + c( 􏼁Rb.

(6)

Now, replacing the integer-order derivatives in coro-
navirus system (6) with CFDα in the sense of LCβ, we obtain
the following system:

β
CD

α
0,tSa � Λa − β1SaIa − μaSa,

β
CD

α
0,tLa � β1SaIa − μa + θa( 􏼁La,

β
CD

α
0,tIa � θaLa − τa + μa( 􏼁Ia,

β
CD

α
0,tRa � τaIa − μaRa,

β
CD

α
0,tSb � Λb − β2SbIa − β3SbIb + cRb − μhSb,

β
CD

α
0,tLb � β2SbIa + β3SbIb − μb + θb( 􏼁Lb,

β
CD

α
0,tIb � θbLb − τb + μb + ω( 􏼁Ib,

β
CD

α
0,tRb � τbIb − μb + c( 􏼁Rb.

(7)

4. Existence of Bounded Solutions in a
Biologically Feasible Region

Here, we will study the boundedness of the solution of model
(7) in a positively invariant region.

Lemma 1. "e region Ω � (Sa(t), La(t), Ia(t),􏼈

Ra(t), Sb(t), Lb(t), Ib(t), Rb(t)) ∈ R8
+: Na(t)≤Λa/μa, Nb(t)

≤Λb/μb} is positively invariant for coronavirus model (7)
with CFDα in the sense of LCβ and initial conditions in R8

+.

Proof 1. Adding all the equations of the host mammal
population, we get

β
CD

α
0,tNa(t) � Λa − μaNa(t). (8)

By separating variables and integrating, we get

Na(t) �
1
μa

Λa − exp −
μa

α
t
α

􏼒 􏼓􏼒 􏼓. (9)
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'us, it is deduced that

lim
t⟶∞

supNa(t)≤
Λa

μa

. (10)

Now, similarly adding all the equations of the human
population, we obtain

lim
t⟶∞

supNb(t)≤
Λb

μb

. (11)

'ese results show that the solutions are bounded for
time and model (7) possesses the positively invariant region
Ω. □

5. Disease-Free Equilibrium (DFE) and
Its Stability

Solving model (7) under no infection condition, we obtain
the following disease-free steady state (DFSS) D0:

D0 � S
0
a, L

0
a, I

0
a, R

0
a, S

0
b, L

0
b, I

0
b, R

0
b􏼐 􏼑,

D0 �
Λa

μa

, 0, 0, 0,
Λb

μb

, 0, 0, 0􏼠 􏼡.

(12)

For the next generation method [23], we have

F �

0
β1Λa

μ
0 0

0 0 0 0

0
β2Λb

μb

0
β3Λb

μb

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

V �

μa + θa 0 0 0
− θa τa + μa 0 0
0 0 μb + θb 0
0 0 − θb τb + μb + ω

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

'erefore, the reproduction number is R0 � R1 + R2,
where R1 � β1θaΛa/μa(θa + μa)(μa + τa) and
R2 � β3θbΛb/μb(θb + μb)(ω + μb + τb).

Theorem 1. If R0 < 1, then D0 of coronavirus model (7)
satisfies Re(λj)< 0, for j � 1(1)8, and D0 is locally asymp-
totically stable (LAS), where Re(λ) represents the real part of
an eigenvalue of the corresponding Jacobian matrix of
coronavirus model (7) at D0.

Proof 2. For the required result, the corresponding Jacobian
matrix calculated at D0 is

JD0
�

− μa 0 −
β1Λa

μa

0 0 0 0 0

0 − θa − μa

β1Λa

μa

0 0 0 0 0

0 θa − μa − τa 0 0 0 0 0

0 0 τa − μa 0 0 0 0

0 0 −
β2Λh

μb

0 − μb 0 −
β3Λb

μb

c

0 0
β2Λb

μb

0 0 − θb − μb

β3Λb

μb

0

0 0 0 0 0 θb − ω − μb − τb 0

0 0 0 0 0 0 τb − c − μb

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Its corresponding characteristic equation is given by

λ + μb( 􏼁 λ + μb + c( 􏼁 λ + μa( 􏼁
2 λ4 + D1λ

3
+ D2λ

2
+ D3λ + D4􏼐 􏼑 � 0, (16)
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where the coefficients Dj for j � 1, 2, 3, 4 are given by

D1 � ω + θb + τb + 2μb + θa + τa + 2μa,

D2 � ω + θb + τb + 2μb( 􏼁 θa + τa + 2μa( 􏼁 + θa + μa( 􏼁 μa + τa( 􏼁 1 − R1( 􏼁

+ θb + μb( 􏼁 ω + τb + μb( 􏼁 1 − R2( 􏼁,

D3 � ω + θb + τb + 2μb( 􏼁 θa + μa( 􏼁 μa + τa( 􏼁 1 − R1( 􏼁

+ θa + τa + 2μa( 􏼁 θb + μb( 􏼁 ω + τb + μb( 􏼁 1 − R2( 􏼁,

D4 � θb + μb( 􏼁 ω + τb + μb( 􏼁 θa + μa( 􏼁 μa + τa( 􏼁 1 − R1( 􏼁 1 − R2( 􏼁.

(17)

Since the eigenvalues − μb, − μb, − μa, and − (μa + c) are
negative, all the other coefficients Dj for j � 1(1)4 of the
characteristic polynomial are positive if R0 < 1. 'e
Routh–Hurwitz [24] criteria Dj > 0 for j � 1(1)4 and
D1D2D3 >D2

1D4 + D2
3 can be satisfied easily. So, the DFSS

D0 of coronavirus model (7) is LAS if R0 < 1. □

Theorem 2. "e DFSS D0 of coronavirus model (7) is
globally asymptotically stable (GAS) for R0 < 1 and unstable
for R0 > 1.

Proof 3. For the proof, let us construct a Lyapunov function
at DFSS D0:

L(t) � C1La(t) + C2Ia(t) + C3Lb(t) + C4Ib(t), (18)

where the constantsCj > 0, for j � 1, 2, 3, 4and they are
chosen later. Calculating the CFDα in the sense of LCβ, we
get
β
CD

α
a1 ,xL(t) � C1

β
CD

α
0,tLa(t) + C2

β
CD

α
0,tIa(t)

+ C3
β
CD

α
0,tLb(t) + C4

β
CD

α
0,tIb(t).

(19)

Using the proposed coronavirus model (7), we obtain

β
CD

α
a1 ,t L(t) � C1 β1S

0
mIa − μa + θa( 􏼁La􏽮 􏽯 + C2 θaLa − τa + μa( 􏼁Ia􏼈 􏼉

+ C3 β2S
0
bIa + β3S

0
bIb − μb + θb( 􏼁Lb􏽮 􏽯 + C4 θhLb − τb + μb + ω( 􏼁Ib􏼈 􏼉,

� β1S
0
aC1 − τa + μ( 􏼁aC2 + β2S

0
bC3􏽮 􏽯Ia + − θa + μa( 􏼁C1 + θaC2􏼈 􏼉La

+ − θb + μb( 􏼁C3 + θbC4􏼈 􏼉Lb + β3S
0
bC3 − τb + μb + ω( 􏼁C4􏽮 􏽯Ib.

(20)

Now, choose C1 � θa, C2 � μa + θa, C3 � (μa + τa)􏼈

(μa + θa) − β1Λaθb/μa}μb/β2Λb, and C4 � (θb + μb)

(μa + τa)(μa + θa) − β1Λaθb/μa􏼈 􏼉μb/β2Λbθb. After simplifi-
cation, we obtain

β
CD

α
0,tL(t) �

μb

β2Λbθb

μa + τa( 􏼁 μa + θa( 􏼁 θb + μb( 􏼁 μb + τb + ω( 􏼁 1 − R1( 􏼁 R2 − 1( 􏼁. (21)

Clearly, if R0 < 1, then the derivative presented in
equation (21) is negative. □

6. Sensitivity Analysis for the Threshold
Quantity R0

In mathematical models of infectious diseases,R0 has a very
vital role in the prediction of an infectious disease that either
the infection will die out or remain in the population. In this

regard, it is good to know which parameter has more in-
fluence on the value of threshold quantity R0, for which we
use sensitivity indices for R0 known as forward sensitivity
indices [16] with the help of

􏽙

R0

ρ
�

zR0

zρ
×

ρ
R0

, (22)
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where ρ represents the biological parameters used in the
proposed coronavirus model (7). Using definition (22), we
obtain

􏽙

R1

β1

� 1, 􏽙

R1

Λa

� 1, 􏽙

R1

θa

�
μa

θa + μa

, 􏽙

R1

μa

� − 1 +
μa

θa + μa

+
μa

τa + μa

􏼨 􏼩,

􏽙

R1

τa

� −
τa

τa + μa

, 􏽙

R2

β3

� 1, 􏽙

R2

Λh

� 1, 􏽙

R2

θh

�
μb

θb + μb

,

􏽙

R2

μb

� − 1 −
μb

θb + μb

−
μb

τb + μb + ω
, 􏽙

R2

τb

� −
τb

τb + μb + ω
, 􏽙

R2

ω
� −

ω
τb + μb + ω

.

(23)

7. Numerical Algorithms and Results

Here, we derive the numerical schemes for coronavirus
model (7) with CFDα in the LCβ sense. An Adams–Moulton
iterative (AMI) technique [17] will be implemented for the
numerical approximations of state variables
(Sa, La, Ia, Ra, Sb, Lb, Ib, Rb) used in the proposed corona-
virus model (7).

Consider a Cauchy initial value problem with the op-
erator LCβ

β
LCβ

D0,tz(t) � h(t, z(t)), β> 0, t ∈ [0, T],

z
(q)

(0) � z
(q)
0 ,

(24)

where q � 0, 1, . . . , 􏼆β􏼇 − 1.'e Volterra integral equation of
the second kind can be obtained from the above-mentioned
Cauchy problem as follows:

z(t) � 􏽘

p− 1

q�0
z

(q)
0

t
q

q!
+

1
Γ(β)

􏽚
t

0
(t − τ)

β− 1
h(τ, z(τ))dτ , β ∈ (p − 1, p]. (25)

Discretize the interval [0, T] such that b � T − 0/P,
tk � kb, k � 0, 1, . . . , P with the CFDα. We obtain the fol-
lowing AMI scheme for the CFDα in the sense of LCβ:

z tp+1􏼐 􏼑 � z(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩

CFDαD
α
0,th tk, z tk( 􏼁( 􏼁, k ∈ [0, p], (26)

where

CFDαD
α
0,th tk, z tk( 􏼁( 􏼁 �

1
t
α− 1
k

d

dt
h tk, z tk( 􏼁( 􏼁, α> 0. (27)

Now, take X(tk) � (Sa(tk), La(tk), Ia(tk), Ra(tk), Sb(tk),

Lb(tk), Ib(tk), Rb(tk)) and using (25) and (26), we obtain the
following iterative schemes for the proposed coronavirus
model (7) with CFDα in the LCβ sense:
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Sa tp+1􏼐 􏼑 � Sa(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h1 X tk( 􏼁( 􏼁,

La tp+1􏼐 􏼑 � La(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h2 X tk( 􏼁( 􏼁,

Ia tp+1􏼐 􏼑 � Ia(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h3 X tk( 􏼁( 􏼁,

Ra tp+1􏼐 􏼑 � Ra(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h4 X tk( 􏼁( 􏼁,

Sb tp+1􏼐 􏼑 � Sb(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h5 X tk( 􏼁( 􏼁,

Lb tp+1􏼐 􏼑 � Lb(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h6 X tk( 􏼁( 􏼁,

Ib tp+1􏼐 􏼑 � Ib(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h7 X tk( 􏼁( 􏼁,

Rb tp+1􏼐 􏼑 � Rb(0) +
b
β

βΓ(β)
􏽘

p

k�0
(p + 1 − k)

β
− (p − k)

β
􏽨 􏽩h8 X tk( 􏼁( 􏼁,

(28)

where

h1 X tk( 􏼁( 􏼁 �
1

t
1− α
k

Λa − β1Sa tk( 􏼁Ia tk( 􏼁 − μaSa tk( 􏼁( 􏼁,

h2 X tk( 􏼁( 􏼁 �
1

t
1− α
k

β1Sa tk( 􏼁Ia tk( 􏼁 − μa + θa( 􏼁La tk( 􏼁( 􏼁,

h3 X tk( 􏼁( 􏼁 �
1

t
1− α
k

θaLa tk( 􏼁 − τa + μa( 􏼁Ia tk( 􏼁( 􏼁,

h4 X tk( 􏼁( 􏼁 �
1

t
1− α
k

τaIa tk( 􏼁 − μaRa tk( 􏼁( 􏼁,

h5 X tk( 􏼁( 􏼁 �
1

t
1− α
k

Λb − β2Sb tk( 􏼁Ia tk( 􏼁 − β3Sb tk( 􏼁Ib tk( 􏼁 + cRh tk( 􏼁 − μbSb tk( 􏼁( 􏼁,

h6 X tk( 􏼁( 􏼁 �
1

t
1− α
k

β2Sb tk( 􏼁Ia tk( 􏼁 + β3Sb tk( 􏼁Ib tk( 􏼁 − μb + θb( 􏼁Lb tk( 􏼁( 􏼁,

h7 X tk( 􏼁( 􏼁 �
1

t
1− α
k

θbLb tk( 􏼁 − τb + μb + ω( 􏼁Ib tk( 􏼁( 􏼁,

h8 X tk( 􏼁( 􏼁 �
1

t
1− α
k

τbIb tk( 􏼁 − μb + c( 􏼁Rb tk( 􏼁( 􏼁.

(29)
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Figure 1: Continued.
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8. Numerical Simulation Results

'e step size used for this work is 10− 2 and the time interval
considered is [0, 30] with the following initial conditions:
(1000, 80, 200, 3, 2000, 80, 200, 50). 'e parameter values
employed for the numerical simulation were obtained
in [25] as follows: Λa � 600,Λb � 9000, β1 � 0.009,

μa � 0.000474, θa � 0.1, τa � 0.9, β2 � 0.009, β3 � 0.009, c �

0.07, μb � 0.0009, θb � 0.9,ω � 0.8, τb � 0.5 In this work, β
represents the fractional conformable derivative order and
αdepicts the Liouville–Caputo operator order in equation
(7). In Figures 1(a)–1(h), the fractional conformable
derivative order β is varied while the fractional order α
derivative in Liouville–Caputo is kept constant. 'e
number of mammals in Figure 1(a) decreases as the
conformable fractional order β increases from 0.75 to 1

which implies that more mammals are getting infected
with the virus. In Figures 1(b)–1(d), the number of
mammals in these classes increases as the fractional
conformable order β increases from 0.75 to 1. Figure 1(f )
indicates that the number of latent humans increases as
fractional conformable order β increases from 0.75 to-
wards 1. For Figures 1(e), 1(g), and 1(h), the number of
humans in these classes reduces as the fractional con-
formable order β approaches 1 as the number of indi-
viduals reduces. Figures 2(a)–2(h) represent the
numerical simulation based on equation (7) with constant
fractional conformable derivative and a varied fractional
order α in sense of Liouville–Caputo. Figure 2(a) shows
that as the fractional order increases towards 1, the
number of susceptible mammals increases gradually. In
Figures 2(b)–2(d), the number of mammals in the
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Figure 1: Simulation of fractional conformable model (7), when β � 1, β � 0.90, β � 0.85, β � 0.75, and α � 1.
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respective classes eventually reduces as the fractional
order α increases towards 1. Figure 2(e) indicates that the
number of susceptible humans increase as the fractional
order α decreases and a similar situation can be seen in
Figure 2(g) for the infected humans class. 'e case is not
different from Figures 2(f ) and 2(h). As the fractional
order α increases, the number of humans in these classes
also increases, respectively.

9. Conclusions

In this work, a coronavirus model in the context of
fractional conformable derivative in light of Liou-
ville–Caputo sense was formulated. 'e basic property of
model boundedness was investigated. 'e asymptotic
stability of the steady states of the model has been studied.
Sensitivity analysis was undertaken to have some basic
idea about the parameter values involving the basic re-
production number. Numerical analysis based on the
Adams–Moulton scheme was carried out, and the results
indicated both fractional order conformable derivative
order have an effect on the dynamics of coronavirus. It is,
therefore, suggested that this derivative can be applied to
other complex physical phenomena. In the future, similar
models can be investigated using the fractional conformal
approach because it conforms to the principles of de-
rivatives and is easy to use. Other related models can be
studied using the fractional conformal stochastic mod-
eling approach. 'is could also be employed in financial
and economic models since it is easy to utilize.
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This article studies a pharmacokinetics problem, which is the mathematical modeling of a drug concentration variation in human
blood, starting from the injection time. Theories and applications of fractional calculus are the main tools through which we
establish main results. The psi-Caputo fractional derivative plays a substantial role in the study. We prove the existence and
uniqueness of the solution to the problem using the psi-Caputo fractional derivative. The application of the theoretical results
on two data sets shows the following results. For the first data set, a psi-Caputo with the kernel ψ = x + 1 is the best approach
as it yields a mean square error (MSE) of 0:04065. The second best is the simple fractional method whose MSE is 0:05814;
finally, the classical approach is in the third position with an MSE of 0:07299. For the second data set, a psi-Caputo with the
kernel ψ = x + 1 is the best approach as it yields an MSE of 0:03482. The second best is the simple fractional method whose
MSE is 0:04116 and, finally, the classical approach with an MSE of 0:048640.

1. Introduction

To treat an infection from a human being or even from an
animal, a suitable dose of medicine is substantial. Owing to
the amount of the drug in the blood plasma decreasing with
time, medicine must be given in multiple doses.

In phase I of clinical development, the time to achieve-
ment of steady state of a new regimen is routinely evaluated.
The time to the achievability of the steady state is the time
needed until the drug concentration is stable in the blood,
i.e., does not display an increasing tendency by drug accu-
mulation. If a drug is given at orderly dosing intervals, drug
sediment from preceding doses is accumulated. Stabilization
of the concentration occurs when the quantity of drug dis-
carded during the dosing interval equals the amount that
was given. In order to evaluate the time to achieve steady
state, blood is sampled at a certain time point within each
dosing interval see [1].

Following the drug concentrations at these time points [2]
Jordan et al. proposed amodel for the achievement of the steady
state of the drug concentration in plasma. Authors of [3] pro-
posed a model for the prediction of the “unbound brain-to-
plasma” drug concentration ratio. Zhang et al. [4] studied the
ratio of the drug concentration between tissues and plasma.

A simple and novel sensor was developed for the analysis
of clinical doxorubicin (DOX) concentration based on the
screen-printed electrode by evaluating the DOX concentra-
tion, see [5]. In [6] the authors evaluated the drug concen-
trations in postmortem blood samples where the value of
concentrations slightly differs depending on the sample site.
For more works on drug concentration in the blood, we refer
the reader to the references [7–11].

Fractional calculus (F.C) helps to describe models and
natural phenomena problems. Many researches have dedi-
cated their work in this branch (see, e.g., previous studies
[12–19]). The results obtained were significantly positive in
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different fields of Medicine and Biology. The foundation of
fractional calculus is laid on fractional integrals and deriva-
tives. The efficiency of the fractional order model over the
integer order is investigated by Bagley and Torvik [20].
Through fractional calculus, Djordjevic et al. [21] developed
a rheological model of airway smooth muscle cells, which
came as an alternative to the least square data fitting tech-
nique often used for this purpose. Recently, an application
of fractional calculus to nanotechnology was proposed in
[22]. These are just a few out of plenty examples of research
works in which fractional calculus has proven its efficiency
compared to existing classical approach.

This research article contributes to showing the power of
mathematical modeling using fractional calculus. In particu-
lar, a class of fractional derivatives called ψ-Caputo, intro-
duced by Almeida [23], has proven its efficiency in various
applications including a recent study by Awadalla et al.
[24]. A preliminary investigation on the topic of this study
was carried out by us. The results of the said investigation
are provided in this reference [25]. The main contribution
of this work to the literature is the reduction or further mini-
mization of the MSE in modeling the drug’s concentration
kinetics. The article starts with an introduction; then, some
preliminaries of fractional calculus are covered. Elements
of pharmacokinetics and the mathematical model of drug
concentration in the blood are discussed in the third section.
Main theoretical results are established in the fourth section
followed by application examples in the fifth section. Finally,
the last section provides concluding remarks on the overall
study.

More generally, realization of this work was motivated
by the aim to reduce modeling error in pharmacokinetics.

2. Preliminaries

This section is dedicated to preliminary tools that will enable
a smooth study in upcoming sections. Indeed, F.C theories
are built thanks to theorems, definitions, and lemmas. Simi-
lar to classical calculus, integrals and derivatives taken in the
fractional sense are the foundation of F.C. Concerning the
abovementioned sentences, selected definitions, theorems,
and notations are discussed in this section. They play impor-
tant roles in the rest of the paper.

Definition 1 (see [9]). The fractional integral of order ξ > 0 of
a function H : ½a, b�⟶Re taken in the Riemann-Liouville
sense is defined as

RLI
ξ
0+H

� �
ϱð Þ = 1

Γ ξð Þ
ðρ
0
ϱ − ϑð Þξ−1H ϑð Þdϑ: ð1Þ

Equation (1) holds only if the right-hand side of the
given integral is point-wise defined on �0, +∞½. Note that
the function Γ is the commonly-known gamma function,
which is defined as follows: ΓðuÞ = Ð +∞0 ϱu−1e−ϱdϱ, ∀u > 0.

Definition 2 (see [9]). The Caputo derivative of order ξ > 0 of
a function H : ½a, b�⟶Re is defined as

 
C Dξ0+H
� �

ϱð Þ =
1

Γ n − ξð Þ
ðϱ
0
ϱ − ϑð Þn−ξ−1H nð Þ ϑð Þdϑ, n − 1 < ξ < n, ξ ∈Re,

H nð Þ ϱð Þ, ξ ∈ℕ,

8><
>:

ð2Þ

where n = bξc + 1, bξc is the integer part of ξ.

Definition 3 (see [2]). Let ξ > 0, H ∈L1½a, b� and ψ ∈C1½a
, b� is selected to be an increasing function with ψ′ðxÞ ≠ 0,
∀x ∈ ½a, b�; then, the notation I

ξ,ψ
0+ HðϱÞ represents the frac-

tional integral of H with respect to another function ψ, and
it is defined by

I
ξ,ψ
0+ H ϱð Þ = 1

Γ ξð Þ
ðρ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1H ϑð Þdϑ: ð3Þ

The idea of integrating a function definition is known as
ψ − Caputo integral of the fractional integral is taken in the
Caputo sense. This is used in the sequel for formulating
the solution to the ψ − Caputo fractional model.

Definition 4 (see [2]). Let ξ > 0 and H , ψ ∈Cn½a, b� where ψ
is an increasing function and ψ′ðxÞ ≠ 0, ∀x ∈ ½a, b�. Then,
ð C D

ξ,ψ
0+ HÞðϱÞ denotes the fractional derivative of H with

respect to ψ. ψ − Caputo if the fractional derivative is
taken in the Caputo sense, and it is given by

CD
ξ,ψ
0+ H ϱð Þ = 1

Γ n − ξð Þ
ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þn−ξ−1 1

ψ′ ϑð Þ
d
dρ

 !n

H ϑð Þdϑ:

ð4Þ

Lemma 5 (see [2]). Let ξ > 0 and n be a positive integer
such that ξ ∈ �n − 1, n½. For every H , ψ ∈Cn½a, b�, we have

I
ξ,ψ
0+ CD

ξ,ψ
0+ H

� �
ϱð Þ =H ϱð Þ − 〠

n−1

p=0

1
p!

1

ψ′ ϑð Þ
d
dϱ

 !p

H 0ð Þ ψ ϱð Þ − ψ 0ð Þð Þp:

ð5Þ

3. Pharmacokinetics and Drug
Concentration Model

A brief definition and overview of pharmacokinetics are pro-
posed in this section. To treat an infection from a human
body, a suitable dose of medicine is substantial. Once a drug
is administrated to an individual through intravenous injec-
tion, it has an initial concentration that decreases over time.
The decrement appears as a result of metabolism and excre-
tion. Pharmacokinetics is a branch of medicine that studies
the dynamic (kinetics of drugs in a living body). Owing to
the amount of the drug in the human body decreasing with
time medicine must be given in multiple doses.

Two main streams of study exist in pharmacokinetics,
the theoretical approach and the experimental approach.
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The former approach focuses on the development of a phar-
macokinetics (mathematical) model that predicts drug con-
centration levels in the blood over time. The latter method
involves empirical development based on a biological sam-
ple, during which analytical methods for drugs and their
metabolites are measured. In this case, it is required to have
an adequate experimental setting for data collection and
handling. This article focuses in the sequel on the develop-
ment of a mathematical pharmacokinetics model. The entire
process of absorption, distribution, metabolism, and elimi-
nation (ADME) of a drug is illustrated in the next figure as
described in [26, 27].

Figure 1 represents the ADME process of a drug after it
has been administrated to a human. The process is governed
by a change in concentration over time. The change rate can
be denoted by ±dðconcentrationÞ/dϱ. More generally, let us
denote by Y the drug concentration in the body; then, the
mathematical model describing the rate change is given by

dY
dϱ

= −kY , ð6Þ

where k is a constant to be experimentally determined for
each drug. If a patient is given an initial drug dose,Y0, then,
the drug level in his body at any time is the solution of the
differential equation defined by Eq. (6), that is,

Y ϱð Þ =Y0e
−kϱ: ð7Þ

The objective of this work is to prove the advantages of
modeling drug concentration kinetics using fractional differ-
ential equations. Indeed, we will show empirically that
modeling results using F.C are better than those obtained
from classical calculus. The starting point is to build a frac-
tional counterpart of Eq. (6). The said equation is built as
follows

 
C D

ξ,ψ
0+ Y ϱð Þ = −kY ϱð Þ, ξ ∈ 0, 1� ½,Y 0ð Þ =Y0: ð8Þ

or simply

 
C D

ξ,ψ
0+ Y ϱð Þ =Q ϱ,Y ϱð Þð Þ, ξ ∈ 0, 1� ½,Y 0ð Þ =Y0: ð9Þ

The Lemma below is defined to introduce a general form
of the solution to Eq. (9) representing drug concentration
kinetics with initial condition.

Lemma 6. Let us consider Q, with the assumption that it is an
integrable function, which is defined over ½0,T �. It follows
that the solution of the fractional differential equation given
by Eq. (9) has a general form which can be expressed by the
following integral equation

Y ϱð Þ =Y0 +
1

Γ ξð Þ
ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1Q ϑ,Y ϑð Þð Þdϑ:

ð10Þ

It is worth to highlight in Eq. (10) from Lemma 6 the
presence of ψ-Caputo fractional integral.

Proof. Let us apply the operator I ξ,ψ
0+ to both sides of Eq. (9)

leads to YðϱÞ −Y0 =I
ξ,ψ
0+ Qðϱ,YðϱÞÞ.

Equation (10) can be rewritten in the following form

Y ϱð Þ =Y0Eξ −k ψ ϱð Þ − ψ 0ð Þð Þξ
h i

: ð11Þ

where EξðϱÞ =∑+∞
n=0ðϱn/Γðnξ + 1ÞÞ, ϱ ∈Re is the Mittag-

Leffler function.
In the application, Kernel functions are selected under

the data distribution. There is not a steady rule for that.
However, a linear kernel works well in many cases. Other
commonly used kernel includes but is not limited to

ffiffiffi
u

p
,

log u.

4. Main Result of Psi-Caputo Drug
Concentration Model

This section aims to investigate theoretical study around Eq.
(9). The final goal is to build prove of the existence and the
uniqueness of a solution to Eq. (9).

Let C ½0,T � be the space of real valued functions that are
continuous on ½0,T � endowed with the norm of the uniform
convergence: kYk∞ = supϱ∈½0,T �jYðϱÞj for every Y ∈C ½0,
T �. Then, Φ≔ ðC ½0,T �, k∙k∞Þ is a Banach space.

An operator T : Φ⟶Φ defined and attached to the
problem introduced by Eq. (9) can be built as

TY ϱð Þ =Y0 +
1

Γ ξð Þ
ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1Q ϑ,Y ϑð Þð Þdϑ:

ð12Þ

In what follows, the existence of a solution to Eq. (10) is
proved followed by a proof of the uniqueness of the said
solution. Before establishing the proof of the main results,
let us first establish the following statements. Indeed, the
statements are mathematical hypotheses that are used in
sections dedicated to proofs.

A1ð Þ The functionQ : 0,T½ � ×Re ⟶Re is continuous,j
ð13Þ

A2ð Þ
There existsLQ > 0 such that,

Q ϱ,Y1ð Þ −Q ϱ,Y2ð Þj j ≤LQ Y1 −Y2j j, ∀ϱ ∈ 0,T½ �,

�����
ð14Þ

A3ð Þ
There exists a functionH ∈C 0,T½ �,R+

eð Þ and a nondecreasing function,
χ : R+

e ⟶R+
e such that Q ϱ,Yð Þj j ≤H ϱð Þχ Yj jð Þ, ∀ ϱ,Yð Þ ∈ 0,T½ � ×Re:

�����
ð15Þ
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A4ð Þ
There exists a constantW > 0 such that,

W

Y0j j + Hk k∞χ λð Þ 1/Γ ξ + 1ð Þð Þ ψ Tð Þ − ψ 0ð Þð Þξ
� � > 1:

��������
ð16Þ

Existence of at least one solution to the problem Eq. (9)
is proved in the theorem below

Theorem 7. Let us assume that the three conditions ðA1Þ, ð
A3Þ, and ðA4Þ hold. Then, there exists at least one solution
to Eq. (9). The said solution is in the interval ½0,T �.

Proof. The proof of heorem 7 will be divided into several
steps. The first step consists of showing that the operator
T : Φ⟶Φ maps bounded sets of Φ into bounded sets of
Φ. Let Bλ ≔ fY ∈Φ ; kYk∞ ≤ λg be a bounded set of Φ.
Then

TY ϱð Þj j ≤ Y0j j + 1
Γ ξð Þ

ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1 Q ϑ,Y ϑð Þð Þj jdϑ

≤ Y0j j + 1
Γ ξð Þ

ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1H ϑð Þχ Yk k∞

À Á
dϑ

≤ Y0j j + Hk k∞χ Yk k∞
À Á 1

Γ ξ + 1ð Þ ψ ϱð Þ − ψ 0ð Þð Þξ:

ð17Þ

Applying the supremum on t on both sides of Eq. (17)
leads to

TYk k∞ ≤ Y0j j + Hk k∞χ λð Þ 1
Γ ξ + 1ð Þ ψ Tð Þ − ψ 0ð Þð Þξ:

ð18Þ

The second step of this proof is to show that the operator

T : Φ⟶Φ maps bounded sets of Φ into equi-continuous
sets of Φ.

Let ϱ1, ϱ2 ∈ ½0,T � with ϱ1 < ϱ2 and Y ∈Bλ. The relation
below holds as results of the assumptions ðA1Þ-ðA4Þ

TY ϱ2ð Þ −TY ϱ1ð Þj j
≤ χ Yk k∞
À Á 1

Γ ξð Þ
ðϱ1
0
ψ′ ϑð Þ

h
ψ ϱ2ð Þ − ψ ϑð Þð Þξ−1

����
− ψ ϱ1ð Þ − ψ ϑð Þð Þξ−1

i
H ϑð Þdϑ

+
1

Γ ξð Þ
ðϱ2
ϱ1

ψ′ ϑð Þ ψ ϱ2ð Þ − ψ ϑð Þð Þξ−1H ϑð Þdϑ
�����:

ð19Þ

The right-hand side of Eq. (19) tends to zero as ϱ1 ⟶ ϱ2.
That is jTYðϱ2Þ −TYðϱ1Þj⟶ 0 as ϱ1 ⟶ ϱ2.

It is worth observing that the right hand part of Eq. (19)
does not depend on Y ∈Bλ, this implies by Arzela-Ascoli
theorem that TðBλÞ is completely continuous.

The third step of the proof requires a last intermediate
step to complete the assumptions of the Leray-Schauder
nonlinear alternative theorem. This consists of showing the
boundedness of the set of all solutions to equation Y = δT
ðYÞ. Assume that Y is a solution Eq. (9), then, it follows
from Eq. (10) that

Y ϱð Þj j = δT Yð Þ ϱð Þj j ≤ δ Y0j j + Hk k∞χ λð Þ 1
Γ ξ + 1ð Þ ψ Tð Þ − ψ 0ð Þð Þξ

� �

≤ Y0j j + Hk k∞χ λð Þ 1
Γ ξ + 1ð Þ ψ Tð Þ − ψ 0ð Þð Þξ:

ð20Þ

Inverting both sides of Eq. (20) and dividing them by
R.H.S of Eq. (20) leads to the following relation

Yk k∞
Y0j j + Hk k∞χ λð Þ 1/Γ ξ + 1ð Þð Þ ψ Tð Þ − ψ 0ð Þð Þξ

≤ 1: ð21Þ

IntravenousOral

Absorption
Gastrointestinal transport
Gastrointestinal metabolism
Hepatic first-pass effect

Distribution
Intravascular space
Extravascular space
Protein binding

Drug administration to
living body

Metabolism
Liver transport
Phase I metabolism
Phase II metabolism

Renal excretion
Happens often by glomerular filtration
Efflux transport is also involved

Biliary excretion
Efflux transport

Intestinal excretion

Figure 1: ADME process.
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Recalling ðA4Þ, there exists a constant W > 0, which is
indeed such that W ≠Y . Moreover, let us construct the set
Ω = fY ∈Φ ; kYk∞ <Wg. It is obvious that the operator
T : �Ω⟶Φ is continuous and completely continuous.
Based on the constructed Ω, there exists Y ∈ ∂Ω such that
YδTðYÞ for some δ ∈ �0, 1½. Consequently, by the nonlinear
alternative of Leray-Schauder type, we deduce that T has a
fixed pointY ∈ �Ω which is a solution to the problem defined
by Eq. (10).

Theorem 8. Let us assume that conditions ðA1Þ and ðA2Þ
hold. Moreover, if the condition

LY

Γ ξ + 1ð Þ ψ Tð Þ − ψ 0ð Þð Þξ < 1, ð22Þ

holds; then, the problem defined by Eq. (9) has a solution
which is unique. The said solution belongs to the interval
½0,T �.

Proof. Let us consider the operator T defined in Eq. (12). Let
us also define a ball

Bλ ≔ Y ∈Φ ; Yk k∞ ≤ ε
È É

with ε ≥
Y0j j + MQ/Γ ξ + 1ð Þð Þ ψ Tð Þ − ψ 0ð Þð Þξ
1 − LY /Γ ξ + 1ð ÞÀ Á

ψ Tð Þ − ψ 0ð Þð Þξ
,

ð23Þ

where MQ ≔ sup0≤ϱ≤T jQðϱ, 0Þj.

First, let us show that TBε ⊂Bε. For any Y ∈Bε, ρ ∈
½0,T �, and using Eq. (12), we have the following relation

TY ϱð Þj j ≤ Y0j j + 1
Γ ξð Þ

ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1 Q ϑ,Y ϑð Þð Þj jdϑ:

ð24Þ

On the other hand,

Q ϑ,Y ϑð Þð Þj j ≤ Q ϑ,Y ϑð Þð Þ −Q ϑ, 0ð Þj j + Q ϑ, 0ð Þj j
≤LQ Yk k∞ +MQ ≤LQε +MQ:

ð25Þ

Substituting the appropriate fragment of equation in
Eq. (24) by Eq. (25) implies a new relation which is given
by

TYk k∞ ≤ Y0j j + 1
Γ ξ + 1ð Þ ψ Tð Þ − ψ 0ð Þð Þξ LQε +MQð Þ ≤ ε:

ð26Þ

Equation (26) is sufficient to conclude that TBε ⊂Bε.
The second step of the proof is to show that the consid-

ered operator is a contraction mapping. For every Y1, Y2

∈Φ, the following relation holds.

TY1 ϱð Þ −TY1 ϱð Þj j ≤ 1
Γ ξð Þ

ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1 Q ϑ,Y1 ϑð Þð Þj

−Q ϑ,Y2 ϑð Þð Þjdϑ
≤

1
Γ ξð Þ

ðϱ
0
ψ′ ϑð Þ ψ ϱð Þ − ψ ϑð Þð Þξ−1dϑ

� �
LQ Y1 −Y2k k∞

≤
LQ

Γ ξ + 1ð Þ ψ Tð Þ − ψ 0ð Þð Þξ
� �

Y1 −Y2k k∞:

ð27Þ

From Eq. (27), we deduce that T is a contraction. By the
Banach contraction mapping theorem, the problem defined
by Eq. (9) has a unique solution. The said solution belongs
to the interval ½0,T �.

5. Application Example

In this section, application examples are provided to support
the theoretical work developed above. Data set obtained
from real-life experiment were used. The classical method,
simple fractional method, and kernel fractional method were
used to fit the data set. Finally, a comparison of results is
done to support theoretical findings.

5.1. First Experimental Data Set. This data set was retrieved
from [28]. The author carried out an experiment in which
he measured a drug concentration in (mg/L) over 6 hours
of an antibiotic. A single dose of the said antibiotic was
administered intravenously to a 50-kilogram woman. The
dose level was 20mg/kg. A scatter plot of the concentration
data over time shows a decay. Three deterministic
approaches were used to fit the data set. The first approach
is what is referred to as the classical approach, in which
the general solution is defined by Eq. (7). The second and
third approaches are fractional differential method and ker-
nel fractional differential method, respectively, which gen-
eral solutions are given by Eq. (11), respectively, with
ψðxÞ = x, trivial kernel, and ψðxÞ ≠ x, pure kernel. The
selected pure kernel here is linear ψðxÞ = x + 1. It was
observed empirically that using any linear kernel ψðxÞ = x
+ a, with a ≠ 0, would produce a similar result to the case
where ψðxÞ = x + 1 is used.

Table 1 summarises one hand best estimates of the
parameters for both classical and fractional approaches. On
the other hand, it displays the MSE of each method. It is
observed that the fractional kernel method with ψðxÞ = x +
1 performed the best, followed by the fractional method with
ψðxÞ = x and lastly the classical method. It is worth high-
lighting consistency in the results. Indeed, the solution to
the classical approach is a first order differential equation;
therefore, one would expect the solution to its fractional
counterparts to be such that ξ ∈ ð0, 1Þ ∪ ð1, 2Þ.

Figure 2 is the graph of the original data set, the fitted
line is obtained from the classical model, and the fitted line
is obtained from the fractional method with ψðxÞ = x. Both
fitted lines overlap over each other at the beginning of the
plot but show a difference toward the end. The fractional
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method with ψðxÞ = x seems to be closer to the true data.
MSE in Table 1 is an evidence.

Figure 3 is the graph of the original data set, the fitted
line is obtained from the classical model, and the fitted line
is obtained from the fractional method with ψðxÞ = x + 1.
Similar to Figure 2, a close look at the figure reveals that
the fractional method with ψðxÞ = x + 1 does the job better
than the classical method. Moreover, recalling Figures 2

and 3 as well as Table 1, the ordinal classification (first : frac-
tional method with ψðxÞ = x + 1; second : fractional method
with ψðxÞ = x; and third : classical method) of the three
methods used in this work becomes explicit.

5.2. Second Experimental Data Set. In this experiment, a
newly developed drug was administrated to a patient. The
administration was done through an IV injection. A sample
of blood was taken regularly, and the drug plasma concen-
tration was determined. The data set was retrieved from [29].

Similar experimental procedures to those from the first
example are used. The best values of parameters as well as
MSE of each method are consigned in the table below.

Table 2 summarises and displays the results of the sec-
ond experiment. It is observed that the fractional kernel
method with ψðxÞ = x + 1 performed the best, followed by
the fractional method with ψðxÞ = x and lastly the classical
method. Moreover, the fractional order of derivatives is
always such that ξ ∈ ð0, 1Þ ∪ ð1, 2Þ, proving that the results
are in line with the first-order differential equation. Hence,
the results are consistent.

Figure 4 displays the original data, the classical solution,
and the fractional with the kernel ψðxÞ = x. The results in
Table 2 are reflected by the fact that the fractional approach
fits the original data points better than the classical approach
does.

Table 1: Results of the first experiment.

parameter
Method

k ξ MSE

Classical method 0.53355 0.07299

Fractional with ψ xð Þ = x 0.51749 1.13327 0.05814

Fractional with ψ xð Þ = x + 1 0.49621 1.11080 0.04065
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Figure 2: Original, classical, and fractional. ψðxÞ = x:
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Figure 3: Original, classical, and fractional. ψðxÞ = x + 1.

Table 2: Results of the second experiment.

parameter
Method

k ξ MSE

Classical method 0.34785 0.048640

Fractional with ψ xð Þ = x 0.34714 1.00456 0.04116

Fractional with ψ xð Þ = x + 1 0.34590 1.00360 0.03482
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Figure 4: Original, classical, and fract. ψðxÞ = x.
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Figure 5: Original, classical, and fract. ψðxÞ = x + 1.
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Figure 5 is the graph of the original data set, the fitted
line is obtained from the classical model, and the fitted line
is obtained from the fractional method with ψðxÞ = x + 1.
A close check of the figure reveals that the fractional method
with ψðxÞ = x + 1 does the job better than the classical
method.

6. Conclusion and Future Work

In this work, we studied the ψ-Caputo type of fractional dif-
ferential equation. This derivative is the fractional analog of
the so-called ðfogÞ′ derivative in classical calculus. The exis-
tence and uniqueness of the proposed method were dis-
cussed before the application examples. Experiment results
show that the ψ-Caputo method which uses a pure kernel
function performed the best, followed by a simple fractional
approach and finally the classical method. The fractional
order of derivative that allows to best fit the data is always
such that ξ ∈ ð0, 1Þ ∪ ð1, 2Þ, which is in line with the setup
of the studied problem since the classical approach solution
is a first-order differential equation. The experimental sec-
tion has revealed the following results:

For the first data set, a psi-Caputo with the kernel ψ =
x + 1 is the best approach as it yields a mean square error
(MSE) of 0:04065. The second best is the simple fractional
method whose MSE is 0:05814; finally, the classical
approach is in the third position with an MSE of 0:07299.

For the second data set, a psi-Caputo with the kernel ψ
= x + 1 is the best approach as it yields an MSE of 0:03482
. The second best is the simple fractional method whose
MSE is 0:04116 and, finally, the classical approach with an
MSE of 0:048640.

In future works, we aim to investigate if the obtained
results hold for all or most of existing fractional derivatives.
We may also study properties that can help in the selection
of a suitable kernel function. In the current study, the selec-
tion ψ function was done randomly, on a try and error basis,
until we found out that a family of linear functions could
well do the job.
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In this paper, we consider the fractional-stochastic Boussinesq-Burger system (FSBBS) generated by the multiplicative Brownian
motion. The Jacobi elliptic function techniques are used to create creative elliptic, hyperbolic, and rational fractional-stochastic
solutions for FSBBS. Furthermore, we draw 2D and 3D graphs by using the MATLAB Package for some obtained solutions of
FSBBS to discuss the influence of the Brownian motion on these solutions. Finally, we indicate that the Brownian motion
stabilizes the solutions of FSBBS around zero.

1. Introduction

Nonlinear partial differential equations (NLPDEs) have
grown in popularity in the area of nonlinear science, owing
to their large variety of uses in economics [1], engineering
[2], civil engineering [3], soilmechanics [4], physics [5], quan-
tummechanics [6], statistical mechanics [7], solid-state phys-
ics [8], population ecology [9], etc. Solitons are among the
most common in the setting of NLPDE solutions, and they
are essential for understanding nonlinear physical phenom-
ena. Solitons are utilized to understand the properties of non-
linear media in various areas including quantum electronics,
plasma physics, nonlinear optics, and fluid dynamics
[10–13]. Recently, the searching of exact soliton solutions to
NLPDEs has become an enthralling research topic in engi-
neering and applied sciences. Many techniques have been
used to determine exact solutions for NLPDE including
tanh-sech [14, 15], Darboux transformation [16], sine-
cosine [17, 18], exp ð−ϕðςÞÞ-expansion [19], ðG′/GÞ-expan-

sion [20–22], Lie symmetry analysis method [23], improved
F-expansion method [24, 25], Hirota’s function [26], the
Jacobi elliptic function [27, 28], and perturbation [29, 30].

The fractional differential equation is extensively used in
fluid mechanics, solid state physics, optical fibers, neural
physics, quantum field theory, mathematical biology, plasma
physics, and other areas [31–34]. Researchers recommend
fractional-order derivative over ordinary order derivative
because integer-order derivative is essentially a local opera-
tor, but fractional-order derivative is so much more. Also,
they explain physical phenomena such as quantum mechan-
ics, diffusion, gravity, heat, elasticity, fluid dynamics, electro-
dynamics, electrostatics, and sound. Recently, the exact
solutions with conformable derivative have been obtained
in many papers for instance [35–40].

On the other hand, a wide variety of complex nonlinear
physical phenomena can be represented using stochastic par-
tial differential equations (SPDEs). These kind of equations
can be found in many fields, such as physics and finance.
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On the other side, stochastic partial differential equa-
tions (SPDEs) can be used to represent a wide range of com-
plicated nonlinear physical processes. These kind of
equations appear in a variety of areas including engineering,
geophysical, biology, climate dynamics, finance, and physics
[41–43].

To realize a higher level of qualitative accord, we take the
following fractional-stochastic Boussinesq-Burger system
(FSBBS) perturbed in the itô sense by multiplicative noise:

dΦ + 2ΦDα
xΦ −

1
2D

α
xΨ

� �
dt = σΦdB, ð1Þ

dΨ + 2Dα
x ΦΨð Þ − 1

2D
3α
x Φ

� �
dt = σΨdB, ð2Þ

where Φðx, tÞ denotes the horizontal velocity field. Dα is the
conformable derivative (CD) [44].Ψðx, tÞ is the height of the
water surface above the bottom horizontal level. BðtÞ is a
Brownian motion (BM) and σ is the noise strength.

The Boussinesq–Burgers system (BBS), with α = 1 and
σ = 0, appears in fluid flow research and explains how shal-
low water waves spread. Due to the importance of BBS,
many researchers have created its exact solutions by using
various methods such as Hirota method [45], Lie symmetry
method [46], sine-Gordon expansion method [47], Jacobi
elliptic function method [48], extended homogeneous bal-
ance [49], Darboux transformation [50], The modified exp
ð−ϕðζÞÞ-expansion function method [51], and Exp-
function method [52]. On the other side, many techniques
have been documented for fractional BBS, including a
domain decomposition method [53] and generalized
Kudryashov method [54]. The exact solutions of the FSBBS
(1-2) have not yet been studied.

Our novelty of this paper is to find the exact fractional
stochastic solutions of FSBBS (1-2). In the presence of a sto-
chastic term and the fractional space, this study is the first to
obtain analytical solutions to the FSBBS (1-2). Numerous
solutions, including those involving elliptic, trigonometric,
rational, and hyperbolic functions, can be obtained using
the Jacobi elliptic function technique. Moreover, we utilize
MATLAB to build 2D and 3D figures for some of the
obtained solutions in this study to display how the BM influ-
ences on the solutions of FSBBS (1-2).

The layout of the document is as follows: in Sec. 2, we
define and give some properties of the CD and BM. In Sec.
3, we use an effective wave transformation to establish the
FSBBS (1-2) wave equation. In Sec.4, we use the Jacobi ellip-
tic function method to generate the analytic of FSBBS (1-2).
While, in Sec.5, the effect of the BM on the solutions
obtained is studied. In Sec. 6, the document’s conclusion is
shown.

2. Preliminaries

In this section, we define and clarify some characteristics of
the BM and CD. In the following, we define BM BðtÞ as:

Definition 1 (see [55]). Stochastic process fBðtÞgt≥0 is said a
BM if the following conditions satisfy: BðtÞ is continuous
function of t ≥ 0; Bð0Þ = 0; for τ1 < τ2,Bðτ2Þ − Bðτ1Þ is inde-
pendent; and Bðτ2Þ − Bðτ1Þ has a Gaussian distribution ℵð
0, τ2 − τ1Þ:

Lemma 2 (see [55]). EðeσBðtÞÞ = eðð1/2Þσ
2tÞ for σ ≥ 0:

Definition 3 (see [44]). Let ϕ : ð0,∞Þ⟶ℝ, then the CD of
ϕ of order α ∈ ð0, 1� is defined as

Dα
xϕ xð Þ = lim

κ⟶0

ϕ x + κx1−α
� �

− ϕ xð Þ
κ

: ð3Þ

Let us go through some of the CD’s features. If a, b are
constant, then

(1) Dα
x ½a� = 0,

(2) Dα
x ½xb� = bxb−α,

(3) Dα
x ½aΘ1ðxÞ + bΘ2ðxÞ� = aDα

xΘ1ðxÞ + bDα
xΘ2ðxÞ,

(4) Dα
xΘðxÞ = x1−αðdΘ/dxÞ,

(5) Dα
xðΘ1 ∘Θ2ÞðxÞ = x1−αΘ2′ðxÞΘ1′ðΘ2ðxÞÞ:

3. Wave Equation of FSBBS

The next wave transformation is used

Φ x, tð Þ = φ ξð Þe σB tð Þ− 1/2ð Þσ2tð Þð Þ,Ψ x, tð Þ
= ψ ξð Þe σB tð Þ− 1/2ð Þσ2tð Þð Þ, ξ = 1

α
xα + ωt,

ð4Þ

in order to attain the wave equation of FSBBS (1-2). Where
ω is a constant, φ and ψ are deterministic functions. Plug-
ging Equation (4) into Equations (1) and (2) and utilizing

dΦ = ωφ′dt + σφdB
h i

e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

dΨ = ωψ′dt + σψdB
h i

e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Dα
xΦ = φ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,Dα

xΨ = ψ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,
D3α

x Φ = φ′′′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,Dα
x ΦΨð Þ = φψð Þ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

ð5Þ

we get

ωφ′ + 2φφ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ − 1
2ψ

′ = 0, ð6Þ

ωψ′ + 2 φψð Þ′e σB tð Þ− 1/2ð Þσ2tð Þð Þ − 1
2φ

′′′ = 0: ð7Þ

Taking expectation Eð·Þ for Equations (6) and (7), we
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attain

ωφ′ + 2φφ′e− 1/2ð Þσ2tð ÞE eσB tð Þ
� �

−
1
2ψ

′ = 0, ð8Þ

ωψ′ + 2 φψð Þ′e− 1/2ð Þσ2tð ÞE eσB tð Þ
� �

−
1
2φ

′′′ = 0: ð9Þ

Since BðtÞ is a Gaussian distribution, then EðeσBðtÞÞ =
eððσ

2/2Þ tÞ: Now Equations (8) and (9) become

ωφ′ + 2φφ′ − 1
2ψ

′ = 0, ð10Þ

ωψ′ + φψð Þ′ − 1
2φ

′′′ = 0: ð11Þ

Integrating Equations (10) and (11) and putting the con-
stants of integration equal zero, we have

ψ = 2ωφ + 2φ2, ð12Þ

ωψ + 2 φψð Þ − 1
2φ

′′ = 0: ð13Þ

Plugging Equation (12) into (13), we attain

φ′′ − 8φ3 − 12ωφ2 − 4ω2φ = 0: ð14Þ

4. Exact Solutions of FSBBS

We use the Jacobi elliptic functions approach described by
Peng [56] to find the solutions of Equation (14). Conse-
quently, we can therefore derive the exact solutions of FSBBS
(1-2).

4.1. Jacobi Elliptic Functions Method. First, we suppose the
solutions of Equation (14) are

φ ξð Þ = 〠
N

i=1
aiχ

i, ð15Þ

where χ is the solution of

χ′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 pχ

4 + qχ2 + r

r
, ð16Þ

where r, q and p are real parameters.
We note from the next Table 1 that Equation (16) has

different types of solutions relying on r, q and p:
Where dnðξ,mÞ = dnðξ,mÞ, cnðξÞ = cnðξ,mÞ, snðξÞ = snð

ξ,mÞ, for 0 <m < 1 are the Jacobi elliptic functions (JEFs).
Ifm⟶ 1, then JEFs are converted into the hyperbolic func-
tions as follows:

dn ξð Þ⟶ sech ξð Þsn ξð Þ⟶ tanh ξð Þ, cn ξð Þ⟶ sech ξð Þ,
cs ξð Þ⟶ csch ξð Þ, ds⟶ csch ξð Þ:

ð17Þ

4.2. Solutions of FSBBS. By balancing φ′′ with φ3 in Equation
(14), we can calculate the parameter N as

N + 2 = 3N ⇒N = 1: ð18Þ

Hence, Equation (15) with N = 1 becomes

φ = a0 + a1χ: ð19Þ

Differentiating Equation (19) twice, we have, by using
(16),

φ′′ = a1qχ + a1pχ
3: ð20Þ

Substituting Equation (19) and Equation (20) into Equa-
tion (14) we obtain

a1p − 8a31
� �

χ3 − 24a0a21 + 12ωa21
� �

χ2

+ a1q − 24a20a1 − 24ωa0a1 − 4ω2a1
� �

χ

− 8a30 + 12ωa20 + 4ω2a0
� �

= 0:
ð21Þ

Equating each coefficient of χk, for k = 0, 1, 2, 3, to zero,

Table 1: All possible solutions for Equation (16).

Case p q r χ ξð Þ
1 2m 2 -(1 +m 2) 1 sn ξð Þ
2 2 2m 2-1 -m 2(1-m 2) ds ξð Þ
3 2 2-m 2 (1-m 2) cs ξð Þ
4 -2m 2 2m 2-1 (1-m 2) cn ξð Þ
5 -2 2-m 2 (m 2-1) dn ξð Þ

6 m2

2
m2 − 2
� �

2
1
4

sn ξð Þ
1 ± dn ξð Þ

7 m2

2
m2 − 2
� �

2
m2

4
sn ξð Þ

1 ± dn ξð Þ

8 −1
2

m2 + 1
� �

2
− 1 −m2� �2

4
mcn ξð Þ ± dn ξð Þ

9 m2 − 1
2

m2 + 1
� �

2
m2 − 1
� �

4
dn ξð Þ

1 ± sn ξð Þ

10 1 −m2

2
1 −m2� �

2
1 −m2� �

4
cn ξð Þ

1 ± sn ξð Þ

11 1 −m2� �2
2

1 −m2� �2
2

1
4

sn ξð Þ
dn ± cn ξð Þ

12 2 0 0
c
ξ

13 0 1 0 ceξ
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we have

a1p − 8a31 = 0,
24a0a21 + 12ωa21 = 0,

a1q − 24a20a1 − 24ωa0a1 − 4ω2a1 = 0,

ð22Þ

and

8a30 + 12ωa20 + 4ω2a0 = 0: ð23Þ

We get by solving these equations:

a0 =
1
2

ffiffiffiffiffiffiffiffiffi
−
1
2 q

r
, a1 = ±

ffiffiffi
p
8

r
, ω = ±

ffiffiffiffiffiffiffiffiffi
−
1
2 q

r
, ð24Þ

for p > 0 and q ≤ 0: Then, the Equation (14) has the

solutions:

φ ξð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
±

ffiffiffi
p
8

r
χ ξð Þ: ð25Þ

Therefore, by utilizing (4) and (12), the solution of the
FSBBS (2-1) are

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
χ ξð Þ

" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p

χ ξð Þ + p
4χ

2
� �

e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð26Þ

There are numerous cases, by using the previous Table 1,
for q ≤ 0, p > 0 and r as follows:
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Figure 1: 3D-graph of Equation (33) with σ = 0 and various values of α = 1,0:5:
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Figure 2: 3D-graph of Equation (34) with σ = 0 and various values of α = 1,0:5.
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Case 1. If q = −ð1 +m2Þ,p = 2m2 and r = 1, then χðξÞ = snðξÞ:
Therefore, the FSBBS (1-2) has the solution

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
sn

1
α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

ð27Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p

sn
xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 sn

2
"

xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
�e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð28Þ

If m⟶1, then Equations (27) and (28) degenerates to
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Figure 3: 3D-graph of Equation (33) with σ = 1, 2 and α = 1,0:5.

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
tanh 1

α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p tanh 1

α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 tanh2 1

α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð29Þ
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Case 2. If q = 2m2 − 1 for m ≤ ð1/√2Þ,p = 2 and r = −
m 2ð1 −m2Þ, then χðξÞ = dsðξÞ: So, the FSBBS (1-2) has the
solution:

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
ds

1
α
xα +

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

ð30Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p

ds
xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 ds

2
"

� xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
�e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð31Þ

If m⟶1, then Equations (30) and (31) degenerates to
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Figure 4: 3D-graph of Equation (34) with σ = 1, 2 and α = 1,0:5.

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r
csch xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p csch xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !
+ p
4 csc h2 xα

α
+

ffiffiffiffiffiffi
−q
2

r
t

 !" #
e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð32Þ
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Case 3. If q = ððm2 − 2Þ/2Þ,p = ðm2/2Þ and r = ð1/4Þ
ðor r = ðm2/4ÞÞ, then χðξÞ = ððsnðξÞÞ/ð1 ± dnðξÞÞÞ: There-
fore, the FSBBS (1-2) has the solution:

If m⟶ 1, then Equations (33) and (34) degenerates to

Case 4. If q = 0,p = 2 and r = 0, then χðξÞ = ðC/ξÞ: Hence, the
FSBBS (1-2) has the solution:

Φ x, tð Þ = αC
2 x−α

� �
e σB tð Þ− 1/2ð Þσ2tð Þð Þ,

Ψ x, tð Þ = αC
2 x−2α

� �
e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð37Þ

Remark 4. If we set σ = 0 and α = 1 in Equations (27) and
(36), then we get the same results as reported in [48].

5. The Influence of Fractional Derivative
and Noise

Here, the influence of noise on the achieved solutions of
FSBBS (1-2) is explained. For various values of α (the frac-
tional derivative order) and σ (noise strength), some graphs
are provided using the MATLAB tools.

Firstly the Fractional Derivative Influence. In Figures 1
and 2, if σ = 0 and m= 0:4, we can observe that the surface
shrinks when α is decreasing:

Secondly the Noise Influence. In Figures 3 and 4, when
noise is introduced, the surface flattens significantly if its
strength is increased σ = 1, 2

In Figure 5, we introduce 2D-graph of the Φðx, tÞ in (33)
with α = 1 and with σ = 0, 0:5,1, 2, which highlights the pre-
vious outcomes:

We may deduct from Figures 1–5 that:

(1) When the fractional-order α increases, the surface
expands,

(2) The multiplicative noise stabilizes the solutions of
FSBBS at zero.

This results show that it is important to add the stochas-
tic term into the Boussinesq-Burger equation in order to
obtain accurate solutions.

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r tanh 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

1 ± sech 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

2
4

3
5e σB tð Þ− 1/2ð Þσ2tð Þð Þ, ð35Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p tanh 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �
1 ± sech 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �++ p
4

tanh2 xα/αð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

1 ± sech xα/αð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �2

2
64

3
75e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð36Þ

Φ x, tð Þ =
ffiffiffiffiffiffiffiffiffi
−
1
8 q

r
+

ffiffiffi
p
8

r sn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

1 ± dn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi
−q/2ð Þp

t
� �� �

2
4

3
5e σB tð Þ− 1/2ð Þσ2tð Þð Þ, ð33Þ

Ψ x, tð Þ = −
3q
4 + ffiffiffiffiffiffiffiffi

−pq
p sn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �
1 ± dn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �++ p4
sn2 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �
1 ± dn 1/αð Þxαð Þ + ffiffiffiffiffiffiffiffiffiffiffiffiffi

−q/2ð Þp
t

� �� �2
2
64

3
75e σB tð Þ− 1/2ð Þσ2tð Þð Þ:

ð34Þ
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6. Conclusions

In this article, the exact fractional-stochastic solutions of the
fractional-stochastic Boussinesq-Burger system (1-2) driven
by multiplicative noise were successfully obtained by using
the Jacobi elliptic function method. Numerous analytical
solutions for FSBBS (1-2) including elliptic, trigonometric,
rational, and hyperbolic functions can be determined using
the Jacobi elliptic function method. Because of the impor-
tance of FSBBS in fluid flow research and in explaining the
propagation of shallow water waves, the acquired solutions
are far more beneficial and efficient in understanding several
critical complicated physical phenomena. In addition, we
utilized the MATLAB package to demonstrate how multipli-
cative noise and fractional derivative influenced the solu-
tions of FSBBS. As a result, we concluded that the
stabilization of the solutions of the FSBBS (1-2) is affected
by the multiplicative noise.
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A relatively new and e­cient approach based on a new iterative method and the Aboodh transform called the Aboodh transform
iterative method is proposed to solve space-time fractional di�erential equations, the fractional order is considered in the Caputo
sense. �is method is a combination of the Aboodh transform and the new iterative method and gives the solution in series form
with easily computable components.�e nonlinear term is easily handled by the new iterative method, to a­rm the simplicity and
performance of the proposed method, �ve examples were considered, and the solution plots were presented to show the e�ect of
the fractional order. �e outcome reveals that the approach is accurate and easy to implement.

1. Introduction

Fractional Calculus can be described as the �eld of math-
ematics that consists of ordinary and partial derivatives of
positive noninteger order. It is the generalization of classical
integral and di�erential equations [1, 2]. One major at-
tractive property of fractional calculus is the nonlocal
property.

Recently, various problems in Biology and Physics has
been modeled with fractional order derivative, an analytical
solution of the Fornberg–Whithan equation was presented
in [3], fractional model of the Rosenau–Hyman equation
which is a KdV-like equation was considered in [4], for
application of fractional derivative to Biology population
model see [5], the numerical study of HIV-1 infection of
CD4+ T-cell was presented in [6], Caputo–Fabrizio frac-
tional model of photocatalytic degradation of dyes was
studied in [7], a wavelet based numerical scheme for frac-
tional order SEIR epidemic of measles by using Genocchi
polynomials was presented in [8], and the investigation of
fractional order susceptible-infected-recovered epidemic

model of childhood disease was presented in [9]. �erefore,
it is extremely important to �nd an e�ective method of
solving fractional di�erential equations, as only the solutions
can give a better comprehension of the underlying problems.
Many researchers have presented di�erent methods for
solving fractional di�erential equations such as reproducing
kernel discretization method [10], Chebyshev wavelet col-
location method, [11] Tichonov regularization method [12],
Chebyshev collocation method, [13] q-homotopy analysis
Shehu transform method [14], Fractional di�erential
transform, [15] Fractional variational iterational method
[16], and iterative Laplace transform method [17].

In 2016, the new iterative method was presented by
Daftardar–Gejji and Jafari to solve functional equations [18],
but now the iterative method has been used to solve many
integral and fractional order di�erential equations.
[5, 19, 20] But most of these methods considered a single
term time-fractional order di�erential equations.

In this paper, the main objective is to extend the Aboodh
transform iterative method to solve space-time fractional
di�erential equations withmore than a single term fractional
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derivative. (e fractional derivative is considered in Caputo
sense both for time and space, when α � β � 1, the space-
time fractional differential equations becomes the classical
differential equations. (e rest of this paper is arranged as
follows: in Section 2, we gave some definitions and a pre-
liminary concept of Aboodh transform. In Section 3, we
described briefly the Aboodh transform iterative method for
space-time fractional derivative while in Section 4, a few
examples were considered to describe the efficiency of the
method. Finally, we concluded in Section 5.

2. Definitions and Preliminaries

In this section, we give some definitions and notions about
Aboodh transform.

Definition 1. Caputo time-fractional derivative of order
α> 0 for the function Q(x, t) is defined as follows [1, 2]:

D
α
t Q(x, t) �

1
Γ(n − α)

􏽚
t

0
(t − τ)

n− α−1
Q

(n)
(x, τ)dτ,

n − 1< α≤ n.

(1)

Similarly, the Caputo space fractional derivative of order
β> 0 for the function Q(x, t) is defined as follows:

D
β
xQ(x, t) �

1
Γ(n − β)

􏽚
x

0
(x − t)

n− β−1
Q

(n)
(x, t)dt,

n − 1< β≤ n.

(2)

Remark 1. Dα
t Q(x, t) � D

β
xQ(x, t) � 0, whenever Q(x, t) is

a constant.

Remark 2. Dα
t tb � (Γ(b + 1)/Γ(b − α + 1))􏼈 t

b− α
, if n − 1<

α≤ n, b> α − 1, 0, n − 1< α≤ n, b≤ α − 1.

Definition 2. One parameter Mittag-Leffler function is given
as follows [5]:

Eα(z) � 􏽘

∞

k�0

z
k

Γ(1 + kα)
, α, z ∈ CRe(α)≥ 0. (3)

Definition 3. (e Aboodh transform of Q(t) is defined as
follows [5]:

A[Q(t)] �
1
v

􏽚
∞

0
Q(t)e

−vtdt � A(v), t≥ 0. (4)

(e inverse Aboodh transform of function Q(t) if
A[Q(t)] � A(v) is defined as follows:

Q(t) � A
−1

[A(v)]. (5)

Remark 3. (e Aboodh transform of the function Q(t)

satisfy the linearity property [5].

Definition 4. (e Aboodh transform for Caputo time-
fractional derivative of order β is given as follows [5]:

A D
β
t Q(x, t); v􏽨 􏽩 � v

β
A[Q(x, t)] − 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−β+k

,

m − 1< β≤m.

(6)

3. Basic Idea of the Proposed Method

Consider the space-time fractional partial differential
equation of the form.

D
α
t Q(x,t) �Φ Q(x,t),D

β
xQ(x,t),D

2β
x Q(x,t),D

3β
x Q(x,t)􏼐 􏼑,

0<α,β≤1,

(7)

with the initial conditions

Q
(k)

(x, 0) � hk, k � 0, 1, . . . , m − 1, (8)

Q(x, t) is the unknown function to be determine and
Φ(Q(x, t), D

β
xQ(x, t), D

2β
x Q(x, t), D

3β
x Q(x, t)) can be linear

or nonlinear operator of Q(x, t), D
β
xQ(x, t), D

2β
x Q(x, t), and

D
3β
x Q(x, t) For convenience we represent Q(x, t) with Q, so

by applying the Aboodh transform to both sides of equation
(7) we have the following equation:

A[Q(x, t)]

�
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A Φ Q, D
β
xQ, D

2β
x Q, D

3β
x Q􏼐 􏼑􏽨 􏽩⎛⎝ ⎞⎠,

(9)

taking the inverse Aboodh transform, we get the following
equation:

Q(x,t)

�A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x,0)

v
2−α+k

+A Φ Q,D
β
xQ,D

2β
x Q,D

3β
x Q􏼐 􏼑􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(10)

(e Aboodh transform iterative method gives the so-
lution in form of an infinite series.

Q(x, t) � 􏽘
∞

i�0
Qi. (11)

Since Φ(Q, D
β
xQ, D

2β
x Q, D

3β
x Q) is either a linear or

nonlinear operator which can be decomposed as follows:
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Φ Q, D
β
xQ, D

2β
x Q, D

3β
x Q􏼐 􏼑 � Φ Q0, D

β
xQ0, D

2β
x Q0, D

3β
x Q0􏼐 􏼑

+ 􏽘
∞

i�0
Φ 􏽘

i

k�0
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Q􏼐 􏼑⎛⎝ ⎞⎠ −Φ 􏽘

i−1

k�1
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Q􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.
(12)

Substituting equations (12) and (11) into equation (10)
we obtain the following equation:

􏽘

∞

i�0
Qi(x, t) � A

−1 1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A Φ Q0, D
β
xQ0, D

2β
x Q0, D

3β
x Q0􏼐 􏼑􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ A
−1 1

v
α A 􏽘

∞

i�0
Φ 􏽘

i

k�0
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A
−1 1

v
α A Φ 􏽘

i−1

k�1
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(13)

Now, recursively, we compute the terms.

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎡⎣ ⎤⎦,

Q1(x, t) � A
−1 1

v
α A Φ Q0, D

β
xQ0, D

2β
x Q0, D

3β
x Q0􏼐 􏼑􏽨 􏽩􏼐 􏼑􏼔 􏼕,

⋮

Qm+1(x, t) � A
−1 1

v
α A 􏽘

∞

i�0
Φ 􏽘

i

k�0
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A
−1 1

v
α A 􏽘

∞

i�0
Φ 􏽘

i−1

k�1
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, m � 1, 2, . . . .

(14)

(e series converges rapidly, for convergence see
[18, 21]. So the m-term analytically approximate solution of
equation (7) is given by the following equation:

Q(x, t) ≈ 􏽘
m−1

i�0
Qi. (15)

4. Application

Here, the Aboodh transform iterative method is applied to
solve five distinct space-time fractional differential equations
with suitable initial conditions.

Example 1. Consider the fractional Airy’s-like equation with
an additional term [22].

D
α
t Q(x, t) � D

β
xQ + Q, 0< α, β≤ 1. (16)

With the initial condition,
Q(x, 0) � x

3
. (17)

Applying the Aboodh transform on both sides of
equation (16), we obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
xQ + Q􏽨 􏽩⎛⎝ ⎞⎠, (18)

taking the inverse Aboodh transform on equation (18), we
have the following equation:

Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
xQ + Q􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (19)
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Using the Aboodh transform iterative procedure, we
obtain the following equation:

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

� x
3
,

Q1(x, t) � A
−1 1

v
α A D

β
xQ0 + Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 Γ(4)x

3− β

v
2+αΓ(4 − β)

+
x
3

v
2+α􏼢 􏼣

�
Γ(4)x

3− β
t
α

Γ(α + 1)Γ(4 − β)
+

x
3
t
α

Γ(α + 1)
,

Q2(x, t) � A
−1 1

v
α A D

β
x Q0 + Q1( 􏼁 + Q0 + Q1( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕 − A

−1 1
v
α A D

β
xQ0 + Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 Γ(4)x

3− β

v
2+αΓ(4 − β)

+
Γ(4)x

3− 2β

v
2+2αΓ(4 − 2β)

+
2Γ(4)x

3− β

v
2+2αΓ(4 − β)

+
x
3

v
2+α +

x
3

v
2+2α􏼢 􏼣 − A

− 1 Γ(4)x
3− β

v
2+αΓ(4 − β)

+
x
3

v
2+α􏼢 􏼣

�
Γ(4)x

3− 2β
t
2α

Γ(2α + 1)Γ(4 − 2β)
+

2Γ(4)x
3− β

t
2α

Γ(4 − β)Γ(2α + 1)
+

x
3
t
2α

Γ(2α + 1)
,

⋮

(20)

and so on. (e series solution is given by the following
equation:

Q(x, t) � Q0 + Q1 + Q2 + · · · . (21)

Figure 1 represent the solution plots of equation (16)
when α � β � .02, .04, .06, .08, 2, .4, .6, .8 at x � 1 and t� 1,
respectively. While the remaining are the surface plots.

Example 2. Consider the nonlinear space-time fractional
Fokker–Planck equation [23].

D
α
t Q(x, t) � D

β
x

xQ

3
􏼒 􏼓 −

4
x

Q
2

􏼒 􏼓
x

+ Q
2

􏼐 􏼑
xx

, 0< α, β≤ 1.

(22)

With the initial condition,

Q(x, 0) � x
2
. (23)

Applying the Aboodh transform on equation (22), we
obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

x

3
Q􏼒 􏼓 −

4
x

Q
2

􏼒 􏼓
x

+ Q
2

􏼐 􏼑
xx

􏼔 􏼕⎛⎝ ⎞⎠, (24)

taking the inverse Aboodh transform, we have the following
equation:
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Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

x

3
Q􏼒 􏼓 −

4
x

Q
2

􏼒 􏼓
x

+ Q
2

􏼐 􏼑
xx

􏼔 􏼕⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (25)

Using the Aboodh transform iterative method proce-
dure, we obtain the following equation:
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Figure 1: Comparison of the solution at various values of alpha and beta.
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Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

� x
2
,

Q1(x, t) � A
−1 1

v
α A D

β
x

x

3
Q0􏼒 􏼓 −

4
x

Q
2
0􏼒 􏼓

x
+ Q

2
0􏼐 􏼑

xx
􏼔 􏼕􏼒 􏼓􏼔 􏼕

� A
−1 2x

3− β

Γ(4 − β)v
2+α􏼢 􏼣

�
2x

3− β
t
α

Γ(4 − β)Γ(α + 1)
,

Q2(x, t) � A
−1 1

v
α A D

β
x

x

3
Q0 + Q1( 􏼁􏼒 􏼓 −

4
x

Q0 + Q1( 􏼁
2

􏼒 􏼓
x

+ Q0 + Q1( 􏼁
2
xx􏼔 􏼕􏼒 􏼓􏼔 􏼕

− A
−1 1

v
α A D

β
x

x

3
Q0􏼒 􏼓 −

4
x

Q
2
0􏼒 􏼓

x
+ Q

2
0􏼐 􏼑

xx
􏼔 􏼕􏼒 􏼓􏼔 􏼕

� A
−1 2x

3− β

Γ(4 − β)v
2+α +

2Γ(3 − β)x
4− 2β

3Γ(4 − β)Γ(3 − 2β)v
2+2α −

(4 − β)16x
3− β

Γ(4 − β)v
2+2α􏼢 􏼣

− A
−1 (5 − 2β)16x

4− 2β

[Γ(4 − β)Γ(α + 1)]
2
v
2+3α +

4(5 − β)(4 − β)x
3− β

Γ(4 − β)v
2+2α􏼢 􏼣

+ A
−1 4(6 − 2β)(5 − 2β)Γ(2α + 1)x

4− 2β

[Γ(4 − β)Γ(α + 1)]
2
v
2+3α −

2x
3− β

Γ(4 − β)v
2+α􏼢 􏼣

�
2Γ(5 − β)x

4− 2β
t
2α

3Γ(4 − β)Γ(5 − 2β)Γ(2α + 1)
+

(4 − 4β)(4 − β)x
3− β

t
2α

Γ(4 − β)Γ(2α + 1)
+

(8 − 8β)(5 − 2β)Γ(2α + 1)x
4− 2β

t
3α

[Γ(4 − β)Γ(α + 1)]
2Γ(3α + 1)

,

⋮

(26)

and so on. (e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · ·

� x
2

+
2x

3− β
t
α

Γ(4 − β)Γ(α + 1)

+
2Γ(5 − β)x

4− 2β
t
2α

3Γ(4 − β)Γ(5 − 2β)Γ(2α + 1)

+
(4 − 4β)(4 − β)x

3− β
t
2α

Γ(4 − β)Γ(2α + 1)

+
(8 − 8β)(5 − 2β)Γ(2α + 1)x

4− 2β
t
3α

[Γ(4 − β)Γ(α + 1)]
2Γ(3α + 1)

+ · · · .

(27)

Setting β � 1 in equation (27), we obtain the following
equation:

Q(x, t) � x
2 1 +

t
α

Γ(α + 1)
+

t
2α

Γ(2α + 1)
+ · · ·􏼠 􏼡

� x
2

􏽘

∞

i�0

t
iα

Γ(iα + 1)
.

(28)

(e solution obtained in equation (28) converges to the
exact solution in a closed form as i⟶∞,

Q(x, t) � x
2 lim

i⟶∞
􏽘

∞

i�0

t
iα

Γ(iα + 1)

� x
2
Eα t

α
( 􏼁.

(29)
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So, by setting α � 1, we obtain the following equation:

Q(x, t) � x
2
e

t
. (30)

Which is the same solution obtained in [23]. Figure 2
represents the solution plots of equation (22) when α � β �

.02, .04, .06, .08, .2, .6, .8 at x � 1 and t� 1 respectively. While
the remaining are the surface plots.

Example 3. Consider the one-dimensional space-time dif-
fusion equation [24].

D
α
t � D

2β
x Q + D

β
x(xQ), 0< α, β≤ 1. (31)

With the initial condition,

Q(x, 0) � 1. (32)

Applying the Aboodh transform on equation (31), we
obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
2β
x Q + D

β
x(xQ)􏽨 􏽩⎛⎝ ⎞⎠.

(33)

Taking the Aboodh transform inverse of equation (33),
we obtain the following equation:

Q(x,t) �A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x,0)

v
2−α+k

+A D
2β
x Q + D

β
x(xQ)􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(34)

Using the Aboodh transform iterative procedure, we
obtain the following equation:

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

� 1,

Q1(x, t) � A
−1 1

v
α A D

2β
x Q0 + D

β
x xQ0( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 x

1− β

v
2+αΓ(2 − β)

􏼢 􏼣

�
x
1− β

t
α

Γ(α + 1)Γ(2 − β)
,

Q2(x, t) � A
−1 1

v
α A D

2β
x Q0 + Q1( 􏼁 + D

β
x x Q0 + Q1( 􏼁( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕 − A

−1 1
v
α A D

2β
x Q0 + D

β
x xQ0( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 x

1− β

Γ(2 − β)v
2+α +

Γ(3 − β)x
2− 2β

Γ(3 − 2β)Γ(2 − β)v
2+2α􏼢 􏼣 − A

−1 x
1− β

Γ(2 − β)v
2+α􏼢 􏼣

�
(2 − β)x

2− 2β
t
2α

Γ(3 − 2β)Γ(2α + 1)
.

(35)

(e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · ·

� 1 +
x
1− β

t
α

Γ(2 − β)Γ(α + 1)

+
(2 − β)x

2− 2β
t
α

Γ(3 − 2β)Γ(2α + 1)
+ · · · .

(36)

Setting β � 1 in equation (36), we obtain the following
equation:

Q(x, t) � 1 +
t
α

Γ(α + 1)
+

t
2α

Γ(2α + 1)
+ · · ·

� 􏽘
∞

i�0

t
iα

Γ(iα + 1)
.

(37)
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(e solution obtained in equation (37) converges to the
exact solution in a closed form as i⟶∞,

Q(x, t) � lim
i⟶∞

􏽘

∞

i�0

t
iα

Γ(iα + 1)

� Eα t
α

( 􏼁.

(38)

So, by setting α � (1/2), we obtain the following
equation:

Q(x, t) � E(1/2) t
(1/2)

􏼐 􏼑. (39)

Which is the solution obtained in [24] using the natural
transform method. Figure 3 represents the solution plots of
equation (31) when α � β � .02, .04, .06, .08, .2, .4, .6, .8 at

x � 1 and t� 1, respectively. While the remaining are the
surface plots.

Example 4. Consider the space-time fractional Airy’s partial
differential equations [22].

D
α
t Q(x, t) � D

3β
x Q, 0< α, β≤ 1. (40)

With the initial condition,

Q(x, 0) �
1
6
x
3
. (41)

Applying the Aboodh transform on equation (40), we get
the following equation:
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Figure 2: Comparison of the solution at various values of alpha and beta.
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A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
3β
x Q􏽨 􏽩⎛⎝ ⎞⎠, (42)

taking the inverse Aboodh transform of equation (42), we
get the following equation:

Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
3β
x Q􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (43)

Using the Aboodh transform iterative method proce-
dure, we obtain the following equation:

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

�
1
6
x
3
,

Q1(x, t) � A
−1 1

v
α A D

3β
x Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 x

3− 3β

Γ(4 − 3β)v
2+α􏼢 􏼣

�
x
3− 3β

t
α

Γ(4 − 3β)Γ(α + 1)
,

Q2(x, t) � A
−1 1

v
α A D

3β
x Q1 + Q0( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕 − A

−1 1
v
α A D

3β
x Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 Γ(4)x

3− 3β

6Γ(4 − 3β)v
2+α􏼢 􏼣 − A

− 1 x
3− 3β

Γ(4 − 3β)v
2+α􏼢 􏼣

� 0,

⋮

(44)

and so on. (e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · ·

�
1
6
x
3

+
x
3− 3β

t
α

Γ(4 − 3β)Γ(α + 1)
+ 0 + · · · ,

(45)

for all i> 1, Qi(x, t) � 0. Setting β � 1 in equation (45), we
obtain the following equation:

Q(x, t) �
1
6
x
3

+
t
α

Γ(α + 1)
+ 0 + 0 + · · ·

�
1
6
x
3

+
t
α

Γ(α + 1)
.

(46)

We obtain the exact solution when α � 1,

Q(x, t) �
1
6
x
3

+ t, (47)

which is the solution obtained in [22]. Figure 4 represents
the solution plots of equation (40) when
α � β � .02, .04, .06, .08, .2, .4, .6, .8 at x � 1 and t� 1 re-
spectively. While Figure 5 is the surface plots.

Example 5. Consider the nonlinear space-time fractional
Fokker–Planck equation which consists of a single term
time-fractional order and three terms of space fractional
order [23].

D
α
t Q(x,t) � D

β
x

xQ

3
􏼒 􏼓 − D

β
x

4Q
2

x
􏼠 􏼡 + D

2β
x Q

2
􏼐 􏼑, 0<α,β≤1.

(48)

Subject to the initial condition,

Q(x, 0) � x
2
. (49)

Applying the Aboodh transform on equation (48), we
obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

xQ

3
􏼒 􏼓 − D

β
x

4Q
2

x
􏼠 􏼡 + D

2β
x Q

2
􏼐 􏼑􏼢 􏼣⎛⎝ ⎞⎠, (50)

Journal of Mathematics 9



taking the inverse Aboodh transform, we get the following
equation:

Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

xQ

3
􏼒 􏼓 − D

β
x

4Q
2

x
􏼠 􏼡 + D

2β
x Q

2
􏼐 􏼑􏼢 􏼣⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (51)

Using Aboodh transform iterative procedure, we get the
following equation:
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Figure 3: Comparison of the solution at various values of alpha and beta.
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Q0(x, t) � A
−1 1
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and so on. (e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · · . (53)

Setting α � β � 1 we get the following equation:

Q(x, t) � x
2

+ x
2
t +

x
2
t
2

2
+ · · ·

� x
2 1 + t +

t
2

2
+ · · ·􏼠 􏼡.

(54)

Hence,

Q(x, t) � x
2

􏽘

∞

i�0

t
i

i!

� x
2
e

t
,

(55)

which agrees with the exact solution obtained in [23], also it
is similar to the solution obtained in Example 2. (e reason
being that in Example 2, only one space fractional derivative
term was considered while here three terms of space frac-
tional derivative was considered.

5. Conclusion and Future Work

We proposed the Aboodh transform iterative method for
the solution of space-time fractional differential equation
with fractional order derivative in more than one term.
(e proposed method is efficient and effective, the method
combined the Aboodh transform which is a modification
of the Laplace transform with the new iterative method.
To the best of our knowledge, no attempt has been
recorded regarding the approximate analytical solution of
space-time fractional differential equations using the
Aboodh transform iterative method which is the novelty
of this study.

(e new iterative method decomposes the linear and
nonlinear term. Some examples were considered, if α � β �

1 the fractional differential equations becomes the classical
differential equations. Aboodh transforms iterative method
yields closed form solutions in this study and exact solu-
tions in some cases. Also, the effect of the fractional orders
α and β are displayed in Figures 1 to 5, this is left for the
readers in different fields of study to transcribe for different
applications.

In the future, we hope to extend the Aboodh transform
iterative method to solve boundary value problems with
consideration for other fractional order differential equa-
tions which till date have not been solved either analytically
or numerically.
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This work concerns the numerical solutions of a category of nonlinear and linear time-fractional partial differential equations
(TFPDEs) that are called time-fractional inhomogeneous KdV and nonlinear time-fractional KdV equations, respectively. The
fractional derivative operators are of the Caputo type. Two-variable second-kind Chebyshev wavelets (SKCWs) are constructed
using one-variable ones; then, utilizing corresponding integral operational matrices leads to an approximate solution to the
problem under study. Also, it is found that the perturbation term tends to zero even if a finite number of the basis functions is
adopted. To exhibit the applicability and efficiency of the proposed scheme, two models of the KdV equations are given.

1. Introduction

Many scientists and researchers are interested in fractional
integral and derivative operators as mathematical tools for
modeling diverse physical, chemical, and biological phe-
nomena [1–5]. Fractional operators have the memory prop-
erty, and this characteristic converts them into a powerful
tool for studying real-world problems [6–8]. Different frac-
tional derivative operators have been introduced by
researchers for successfully and effectively modeling scien-
tific phenomena. For example, the fractional pseudohyper-
bolic telegraph partial differential equation employing the
Caputo fractional derivative was solved in [9] utilizing the
explicit finite difference method. Generalized Caputo and
Caputo fractional derivatives were studied in [10], and the
nonlinear heat equation in the sense of the generalized
Caputo derivative was solved by fractional Green’s func-
tions, the generalized Laplace transform, and generalized
Mellin transform. A type of the fractional diffusion equation
in the sense of the Grunwald–Letnikov derivative was solved
by Gorenflo and Abdel-Rehim in [11] using a difference
scheme. The ð2 + 1Þ-dimensional fractional Ablowitz–
Kanup–Newell–Segur equation in the sense of the conform-
able derivative was studied to extract general analytical wave
solutions in [12] implementing the exp ð−ϕðξÞÞ-expansion

method. A modified definition of the conformable fractional
derivative was presented in [13], and then, the exact solu-
tions of linear and nonlinear time- and space-fractional
mixed partial differential equations involving a new frac-
tional derivative were obtained applying the invariant sub-
space method. Abu-Shady and Kaabar proposed the
generalized fractional derivative (GFD) and showed that this
operator coincides with the Caputo and Riemann–Liouville
fractional derivatives [14, 15]. Therefore, this computational
tool can be used to model different scientific phenomena.
Nonlinear fractional partial differential equations (FPDEs)
have attracted wide attention for describing many phenom-
ena in engineering, physics, material science, and acoustics
[7, 16–19]. Korteweg and de Vries introduced a class of non-
linear evolution equations, namely, KdV equations, for the
first time in 1895, to describe the nonlinear shallow-water
waves [20]. The KdV equations emerge in diverse phenom-
ena of physics like the one-dimensional waves in shallow-
water waves; the Ferma-Pasto-Ulam problem in the contin-
uum limit; the evolution of long, ion-acoustic waves in a
plasma, and so on. Time-fractional KdV equations are
obtained by replacing the first-order time derivatives with
fractional ones of the arbitrary orders. Many works have
been done on the KdV and generalized KdV equations. For
example, Bagheri and Khani used rational functions,
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trigonometric functions, and hyperbolic functions, to reach
the exact solutions of a fractional model of the KdV equation
[21]. A balance method was given to obtain some closed
forms of solutions of the KdV equation in [22]. Authors in
[23] applied the q-homotopy analysis transform method to
study the modified coupled KdV equations. An extended
tanh-function method was used in [24] to achieve soliton
solutions of modified coupled KdV and generalized Hir-
ota–Satsuma coupled KdV equations. Sahoo and Saha
applied the ðG′/GÞ-expansion method to solve the time-
fractional KdV equation [25]. Kaya et al. applied radial basis
functions to KdV and mKdV equations [26]. Momani et al.
[27] utilized the variational iteration method for time-
fractional KdV. The analytical traveling wave solutions of
the nonlinear fractional KdV equation are obtained by intro-
ducing an approximate-analytical method in [28]. Authors
in [29] dealt with obtaining exact solutions to the fractional
KdV equation. In [30–34], the new iteration method, Ado-
mian decomposition method, variational iteration method,
and homotopy perturbation method were utilized to derive
approximate solutions to different forms of the KdV
equations.

The target of the current work is to achieve approximate
solutions for two models of the KdV by means of the
second-kind Chebyshev wavelets. From a viewpoint of com-
parison, the proposed method has a less computational size
compared to some existing methods. The orthogonal
second-kind Chebyshev polynomials are utilized as basis
functions in diverse methods to obtain approximate solu-
tions of integrodifferential equations [35], integral equations
[36, 37], ordinary differential equations [38, 39], and partial
differential equations [40, 41]. In the present paper, an
approach based on the second-kind Chebyshev polynomials
is presented to work out time-fractional inhomogeneous
KdV and nonlinear time-fractional KdV equations. Finding
analytic solutions to linear and especially nonlinear equa-
tions is hard; hence, presenting or modifying computational
methods to find an approximate solution to these problems
is noteworthy.

The main goal of this paper is to assess the numerical
solutions of the linear inhomogeneous fractional KdV equa-
tion and nonlinear time-fractional KdV equations. An
orthogonal collocation scheme is proposed based upon the
SKCW functions. Two-dimensional integral operational
matrices of fractional and integer orders are derived utilizing
one-dimensional ones. Resultant matrices accompanied by
the collocation method convert the main problem into an
algebraic equation by collocating this algebraic equation at
tensor points fðθi, ϑjÞg, i = 0, 1,⋯,M1, j = 0, 1,⋯,M2 lead-
ing to a linear or nonlinear algebraic system. θi and ϑj are
roots of the second-kind Chebyshev polynomials of degrees
M1 and M2, respectively. By solving the resulted system, an
approximate solution is achieved.

The organization of this paper is as follows: the frac-
tional operators, one- and two-variable second-kind Cheby-
shev wavelets are introduced, and then, operational matrices
of the integral are derived in Section 2. In Section 3, two
models of the equations under study are presented. Then,
it can be seen how using appropriate approximations results

in a residual function. In Section 4, some error bounds of the
resulted approximations are computed. The established
approach is utilized for two equations in Section 5, and a
conclusion is provided in the last section.

2. Fractional Operators and SKCWs

This section presented some definitions of the fractional cal-
culus, the SKCWs are introduced, and their integral opera-
tional matrices of integer and fractional orders are gained.

2.1. Fractional Operators

Definition 1. The Caputo fractional derivative operator of g
ðθ, ϑÞ ∈ CnðΩÞ with the order μ ∈ℝ is given as the following
[42]:

C
0D

μ

ϑg θ, ϑð Þ =
1

Γ n − μð Þ
ðϑ
0
ϑ − ηð Þn−μ−1 ∂

ng θ, ηð Þ
∂ηn

dη, n − 1 < μ < n, n ∈ℕ,

∂ng θ, ϑð Þ
∂ϑn

,  μ = n ∈ℕ:

8>>><
>>>:

ð1Þ

Definition 2. The Riemann-Liouville fractional integral oper-
ator of gðθ, ϑÞ ∈ CðΩÞ with the order μ ∈ℝ is given as [42]

RL
0 J

μ
ϑg θ, ϑð Þ =

1
Γ μð Þ

ðϑ
0
ϑ − ηð Þμ−1g θ, ηð Þdη,  μ > 0,

RL
0 J

0
ϑg θ, ϑð Þ = g θ, ϑð Þ:

8><
>:

ð2Þ

Some features of the above-mentioned operators are as fol-
lows:

RL
0 J

μ1
ϑ

RL
0 J

μ2
ϑ g θ, ϑð Þ = RL

0 J
μ2
ϑ

RL
0 J

μ1
ϑ g θ, ϑð Þ = RL

0 J
μ1+μ2
ϑ g θ, ϑð Þ,

RL
0 J

μ
ϑ t

σ = Γ σ + 1ð Þ
Γ σ + μ + 1ð Þ ϑ

σ+μ, σ > −1,

C
0D

μ
ϑϑ

σ =
0, μ > σb c,
Γ σ + 1ð Þ

Γ σ − μ + 1ð Þ ϑ
σ−μ,  σb c ≥ μ,

8><
>:

C
0D

μ

ϑ
RL
0 J

μ
ϑg θ, ϑð Þ

� �
= g θ, ϑð Þ,

RL
0 J

μ
ϑ

C
0D

μ

ϑg θ, ϑð Þ
� �

= g θ, ϑð Þ − g θ, 0ð Þ,  0 < μ ≤ 1:

ð3Þ

2.2. SKCWs. The one-variable second-kind Chebyshev wave-
let ψnmðϑÞ is defined on the interval J = ½0, 1Þ as

ψnm ϑð Þ = 2k/2~Um 2kϑ − 2n + 1
� �

, n − 1
2k−1

< ϑ < n

2k−1
,

0, otherwise,

8<
:

ð4Þ

2 Journal of Mathematics



where ~UmðϑÞ =
ffiffiffiffiffiffiffi
2/π

p
UmðϑÞ,m = 0, 1,⋯,M − 1. UmðϑÞ,m

= 0, 1,⋯,M − 1, are the Chebyshev polynomials of the sec-
ond kind which are orthogonal with respect to the weight

function ωðϑÞ = ð1 − ϑ2Þ1/2 on the interval ½−1, 1�; on the
other hand,

ð1
−1
Um ϑð ÞUk ϑð Þω ϑð Þdϑ =

π

2 , m = k,

0, m ≠ k:

8<
: ð5Þ

These polynomials are obtained from the following for-
mula:

Um+1 ϑð Þ = 2ϑUm ϑð Þ −Um−1 ϑð Þ, m = 1, 2,⋯,
U0 ϑð Þ = 1,U1 ϑð Þ = 2ϑ:

ð6Þ

From (4), ψnmðϑÞ involves four arguments, n = 1,⋯,
2k−1, k ∈ℕ,m is the degree of the second-kind Chebyshev
polynomials, and ϑ is the time variable. The SKCWs are
orthogonal with respect to the weight functions ωnðϑÞ = ωð

2kϑ − 2n + 1Þ, n = 1, 2,⋯, 2k−1, over the interval Jn = ½ðn −
1Þ/2k−1, n/2k−1Þ.

Every function g ∈ L2ωn
ðJnÞ can be expanded as

g ϑð Þ = 〠
∞

n=1
〠
∞

m=0
Gnmψnm ϑð Þ, ð7Þ

where

Gnm =
ð1
0
g ϑð Þψnm ϑð Þωn ϑð Þdϑ: ð8Þ

Using a truncated form of the series in (7), an approxi-
mation to gðϑÞ is gained as follows:

g ϑð Þ ≈ gm ϑð Þ = 〠
2k−1

n=1
〠
M−1

m=0
Gnmψnm ϑð Þ = �GT �Ψ ϑð Þ, ð9Þ

where �G and �ΨðϑÞ are ð2k−1MÞ-order vectors as follows:

The two-variable SKCWs can be defined on the interval
J = ½0, 1Þ × ½0, 1Þ using (4) as follows:

where ni = 1,⋯, 2ki−1,mi = 0, 1,⋯,Mi − 1, ki ∈ℕ, i = 1, 2: It
is clear that ψn1m1n2m2

ðθ, ϑÞ = ψn1m1
ðθÞψn2m2

ðϑÞ. Every

two-variable g ∈ L2Wn1n2
ðJÞ can be written as follows:

g θ, ϑð Þ = 〠
∞

n1=1
〠
∞

m1=0
〠
∞

n2=1
〠
∞

m2=0
Gn1m1n2m2

ψn1m1n2m2
θ, ϑð Þ, ð12Þ

where the coefficients Gn1m1n2m2
are computed as

Gn1m1n2m2
=
ð1
0

ð1
0
g θ, ϑð Þψn1m1n2m2

θ, ϑð ÞWn1n2
θ, ϑð Þdϑ dθ,

ð13Þ

and Wn1n2
ðθ, ϑÞ = ωn1

ðθÞωn2
ðϑÞ. By considering the trun-

cated series of the infinite series in (12), one gets the follow-
ing approximation to gðθ, ϑÞ:

g θ, ϑð Þ ≈ gM1M2
θ, ϑð Þ = 〠

2k1−1

n1=1
〠

M1−1

m1=0
〠
2k2−1

n2=1
〠

M2−1

m2=0
Gn1m1n2m2

ψn1m1n2m2
θ, ϑð Þ

=GTΔ θ, ϑð Þ =GT Ψ θð Þ ⊗Ψ ϑð Þð Þ,
ð14Þ

where G and Δ are ð2k1−1M1Þð2k2−1M2Þ × 1 vectors and ⊗
denotes the Kronecker product.

2.3. Operational Matrices of the Integration. The integration
of the one-variable basis in (10) can be approximated as

ðϑ
0
�Ψ ηð Þdη ≈P 1 �Ψ ϑð Þ, ð15Þ

�G = G10,G11,⋯,G1 M−1ð Þ,G20,G21,⋯,G2 M−1ð Þ,⋯,G2k−10,G2k−11,⋯,G2k−1 M−1ð Þ
h iT

,

�Ψ ϑð Þ = ψ10 ϑð Þ, ψ11 ϑð Þ,⋯, ψ1 M−1ð Þ ϑð Þ, ψ20 ϑð Þ, ψ21 ϑð Þ,⋯, ψ2 M−1ð Þ ϑð Þ,⋯, ψ2k−10 ϑð Þ, ψ2k−11 ϑð Þ,⋯, ψ2k−1 M−1ð Þ ϑð Þ
h iT

:

ð10Þ

ψn1m1n2m2
θ, ϑð Þ = 2 k1+k2ð Þ/2 ~Um1

2k1θ − 2n1 + 1
� �

~Um2
2k2ϑ − 2n2 + 1
� �

, n1 − 1
2k1−1

< θ < n1
2k1−1

, n2 − 1
2k2−1

< t < n2
2k2−1

,

0, otherwise,

8<
: ð11Þ
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where P 1 is the operational matrix of the integration, and its
entries are calculated as

P 1 i, j½ �≔
ðϑ
0
�Ψi ηð Þdη, �Ψj ϑð Þ

� �
ωn

,  i, j = 1, 2,⋯, 2k−1M:

ð16Þ

If RL
0 J

μ
ϑ is the fractional integral of order μ > 0 [7], then

the operational matrix of the integration of the fractional
order μ, P ðμÞ, is given as

RL
0 J

μ
ϑ
�Ψ ϑð Þ ≈P μð Þ �Ψ ϑð Þ, ð17Þ

where

Now, the two-dimensional operational matrices of the
integration are constructed using P 1 and P ðμÞ:

ðθ
0
Δ ξ, ϑð Þdξ ≈ Pθ Δ θ, ϑð Þ = P 1 ⊗ I

� �
Δ θ, ϑð Þ,

ðϑ
0
Δ θ, ηð Þdη ≈ PϑΔ θ, ϑð Þ = I ⊗P 1� �

Δ θ, ϑð Þ,

RL
0 J

μ
ϑΔ θ, ηð Þ ≈ P μð Þ

ϑ Δ θ, ϑð Þ = I ⊗P μð Þ
� �

Δ θ, ϑð Þ,

ð19Þ

where Pθ, Pϑ, and PðμÞ
ϑ are two-dimensional operational

matrices regarding the classic and fractional integral opera-
tors, respectively, and I is the ðM ×MÞ identity matrix.

3. Methodology

To show the applicability of the proposed scheme, the time-
fractional inhomogeneous KdV equation and nonlinear
time-fractional KdV equation are considered.

3.1. Time-Fractional Inhomogeneous KdV Equation. A form
of this model is given as follows [27]:

C
0D

μ

ϑu θ, ϑð Þ + p θ, ϑð Þ ∂u θ, ϑð Þ
∂θ

+ q θ, ϑð Þ ∂
3u θ, ϑð Þ
∂θ3

= f θ, ϑð Þ, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð20Þ

with

u θ, 0ð Þ = ρ1 θð Þ, u 0, ϑð Þ = ϕ1 ϑð Þ, ∂u 0, ϑð Þ
∂θ

= ϕ2 ϑð Þ, ∂
2u 0, ϑð Þ
∂θ2

= ϕ3 ϑð Þ, ð21Þ

where functions ρ1, ϕ1, ϕ2, ϕ3 are known continuous ones.
By considering the highest orders of derivative operators
regarding θ and ϑ, the following approximation is given:

∂4u θ, ϑð Þ
∂t∂θ3

≈ CTΔ θ, ϑð Þ: ð22Þ

Triple integrating (22) regarding θ and using conditions
(21) lead to the following approximations:

∂3u θ, ϑð Þ
∂ϑ∂θ2

≈CTPθΔ θ, ϑð Þ + ∂3u 0, ϑð Þ
∂ϑ∂θ2

=CTPθΔ θ, ϑð Þ
+ ϕ3′ ϑð Þ ≈ CTPθΔ θ, ϑð Þ + FT

1Δ θ, ϑð Þ,
ð23Þ

∂2u θ, ϑð Þ
∂ϑ∂θ

≈CT Pθð Þ2Δ θ, ϑð Þ + FT
1 PϑΔ θ, ϑð Þ + ϕ2′ ϑð Þ

≈CT Pθð Þ2Δ θ, ϑð Þ + FT
1 PϑΔ θ, ϑð Þ + FT

2Δ θ, ϑð Þ,
ð24Þ

∂u θ, ϑð Þ
∂t

≈CT Pθð Þ3Δ θ, ϑð Þ + FT
1 Pθð Þ2Δ θ, ϑð Þ + FT

2 PθΔ θ, ϑð Þ
+ ϕ1′ ϑð Þ ≈ CT Pθð Þ3Δ θ, ϑð Þ + FT

1 Pθð Þ2Δ θ, ϑð Þ
+ FT

2 PθΔ θ, ϑð Þ + FT
3Δ θ, ϑð Þ:

ð25Þ
Now, by integrating (23) regarding ϑ, an approximation

to uðθ, ϑÞ is obtained:

u θ, ϑð Þ ≈CT Pθð Þ3PϑΔ θ, ϑð Þ + FT
1 Pθð Þ2PϑΔ θ, ϑð Þ

+ FT
2 PθPϑΔ θ, ϑð Þ + FT

3 PϑΔ θ, ϑð Þ + ρ1 θð Þ
≈CT Pθð Þ3PϑΔ θ, ϑð Þ + FT

1 Pθð Þ2PϑΔ θ, ϑð Þ
+ FT

2 PθPϑΔ θ, ϑð Þ + FT
3 PϑΔ θ, ϑð Þ + FT

4Δ θ, ϑð Þ:
ð26Þ

Again, by integrating (22) regarding ϑ and θ, approxima-
tions to uθθ and uθ are obtained:

∂3u θ, ϑð Þ
∂θ3

≈CTPϑΔ θ, ϑð Þ + ρ1′′′ θð Þ ≈CTPϑΔ θ, ϑð Þ + FT
5Δ θ, ϑð Þ,

ð27Þ

RL
0 J

μ
ϑ
�Ψ ϑð Þ = RL

0 J
μ
ϑψ10 ϑð Þ,⋯, RL0 J

μ
ϑψ1 M−1ð Þ ϑð Þ,⋯, RL0 J

μ
ϑψ2k−10 ϑð Þ,⋯, RL0 J

μ
ϑψ2k−1 M−1ð Þ ϑð Þ

h iT
,

RL
0 J

μ
ϑψmn ϑð Þ = 2k/2RL0 J

μ
ϑ
~Um 2kϑ − 2n + 1
� �

,  n − 1
2k−1

< ϑ < n

2k−1
,

0, otherwise:

8<
:

ð18Þ

4 Journal of Mathematics



∂2u θ, ϑð Þ
∂θ2

≈CTPϑPθΔ θ, ϑð Þ + FT
5 PϑΔ θ, ϑð Þ + ϕ3 ϑð Þ

≈CTPϑPθΔ θ, ϑð Þ + FT
5 PθΔ θ, ϑð Þ + FT

6Δ θ, ϑð Þ,
ð28Þ

∂u θ, ϑð Þ
∂θ

≈ CTPϑ Pϑð Þ2Δ θ, ϑð Þ + FT
5 Pθð Þ2Δ θ, ϑð Þ

+ FT
6 PθΔ θ, ϑð Þ + ϕ2 ϑð Þ ≈CTPϑ Pθð Þ2Δ θ, ϑð Þ

+ FT
5 Pθð Þ2Δ θ, ϑð Þ + FT

6 PθΔ θ, ϑð Þ + FT
7Δ θ, ϑð Þ:

ð29Þ
Now, an approximation to C

0D
μ
ϑuðθ, ϑÞ is computed

using (23):

C
0D

μ
ϑu θ, ϑð ÞRL0 J

1−μ
ϑ

∂u θ, ϑð Þ
∂ϑ

	 

≈ RL

0 J
1−μ
ϑ CT Pθð Þ3Δ θ, ϑð Þ�

+ FT
1 Pθð Þ2Δ θ, ϑð Þ + FT

2 PθΔ θ, ϑð Þ + FT
3Δ θ, ϑð Þ�

≈ CT Pθð Þ3P 1−μð Þ
ϑ Δ θ, ϑð Þ + FT

1 Pθð Þ2P 1−μð Þ
ϑ Δ θ, ϑð Þ

+ FT
2 PθP

1−μð Þ
ϑ Δ θ, ϑð Þ + FT

3 P
1−μð Þ
ϑ Δ θ, ϑð Þ:

ð30Þ

Substituting approximations (27)–(30) into (20) yields
Rðθ, ϑÞ as the residual function as follows:

R θ, ϑð Þ =CT Pθð Þ3P 1−μð Þ
ϑ Δ θ, ϑð Þ + FT

1 Pθð Þ2P 1−μð Þ
ϑ Δ θ, ϑð Þ

+ FT
2 PθP

1−μð Þ
ϑ Δ θ, ϑð Þ + FT

3 P
1−μð Þ
ϑ Δ θ, ϑð Þ

+ p θ, ϑð Þ CTPϑ Pθð Þ2Δ θ, ϑð Þ + FT
5 Pθð Þ2Δ θ, ϑð Þ�

+ FT
6 PθΔ θ, ϑð Þ + FT

7Δ θ, ϑð Þ� + q θ, ϑð Þ CTPϑΔ θ, ϑð Þ�
+ FT

5Δ θ, ϑð Þ� − f θ, ϑð Þ:
ð31Þ

3.2. Time-Fractional Nonlinear KdV Equation. In this paper,
the following class of time-fractional nonlinear KdV equa-
tions is studied:

C
0D

μ

ϑu θ, ϑð Þ + 6u θ, ϑð Þ ∂u θ, ϑð Þ
∂θ

+ ∂3u θ, ϑð Þ
∂θ3

= 0, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð32Þ

with the conditions in (21). Substituting approximations
(26)–(30) into (32) yields the following residual function:

R θ, ϑð Þ =CT Pθð Þ3P 1−μð Þ
ϑ Δ θ, ϑð Þ + FT

1 Pθð Þ2P 1−μð Þ
ϑ Δ θ, ϑð Þ

+ FT
2 PθP

1−μð Þ
ϑ Δ θ, ϑð Þ + FT

3 P
1−μð Þ
θ Δ θ, ϑð Þ

+ CT Pθð Þ3PϑΔ θ, ϑð Þ + FT
1 Pθð Þ2PϑΔ θ, ϑð Þ�

+ FT
2 PθPϑΔ θ, ϑð Þ + FT

3 PθΔ θ, ϑð Þ + FT
4Δ θ, ϑð Þ�

× CTPϑ Pθð Þ2Δ θ, ϑð Þ + FT
5 Pθð Þ2Δ θ, ϑð Þ�

+ FT
6 PθΔ θ, ϑð Þ + FT

7Δ θ, ϑð Þ� + CTPϑΔ θ, ϑð Þ + FT
5Δ θ, ϑð Þ:

ð33Þ

Collocating residual functions (31) and (33) at points f
ðθi, ϑjÞg, i = 1, 2,⋯, 2k1−1M1, j = 1, 2,⋯, 2k2−1M2 results in
a system of algebraic equations, where θi and ϑj are roots

of ~U2k1−1M1
ðθÞ and ~U2k2−1M2

ðϑÞ, respectively. This algebraic
system can be handled by the Newton scheme. Therefore,
an approximate solution is acquired from (26).

Two models were solved by the variational iteration
method in [27], and some figures of approximate solutions
were depicted. The nonlinear time-fractional KdV equation
(32) was solved by El-Wakil et al. in [43] using He’s varia-
tional iteration method and presented a second-order solu-
tion including some parameters. Authors in [44] obtained
an approximate solution utilizing the iteration method after
spending many algebraic computational costs. Inc et al.
acquired new numerical solutions of fractional-time KdV
equation by a technique of fictitious time integration and
group preserving [45]. Authors in [46–48] used algebraic
computational methods such as the modified extended tanh
method, Sardar-subequation method, and He’s semi-inverse
variation method and the ansatz method to construct some
soliton solutions of the nonlinear time-fractional KdV
equation.

4. Error Bound

In this section, error bounds are derived for the residual
functions/perturbation terms for two given models in Sec-
tion 3. First, some error bounds are computed for approxi-
mation errors.

4.1. Time-Fractional Inhomogeneous KdV Equation. Con-
sider Equation (20) and suppose that uM1M2

ðθ, ϑÞ is its
approximate solution obtained from the presented algo-
rithm in Section 3. Thus, uM1M2

ðθ, ϑÞ satisfies the following
equations:

C
0D

μ

ϑuM1M2
θ, ϑð Þ + p θ, ϑð Þ ∂uM1M2

θ, ϑð Þ
∂θ

+ q θ, ϑð Þ ∂
3uM1M2

θ, ϑð Þ
∂θ3

= f θ, ϑð Þ −RM1M2
θ, ϑð Þ,

ð34Þ

where RM1M2
ðθ, ϑÞ is called the residual function/perturba-

tion term. By subtracting Equation (34) from Equation (20),
one gets

RM1M2
θ, ϑð Þ = C

0D
μ

ϑu θ, ϑð Þ−C
0D

μ
ϑuM1M2

θ, ϑð Þ
� �
+ p θ, ϑð Þ ∂u θ, ϑð Þ

∂θ
−
∂uM1M2

θ, ϑð Þ
∂θ

	 


+ q θ, ϑð Þ ∂3u θ, ϑð Þ
∂θ3

−
∂3uM1M2

θ, ϑð Þ
∂θ3

 !
:

ð35Þ

Suppose that pðθ, ϑÞ, qðθ, ϑÞ are continuous functions
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over J. By taking L2-norm on Equation (35), one has

RM1M2

�� ��
L2
≤ C

0D
μ

ϑu − C
0D

μ

ϑuM1M2

��� ���
L2
+ pk kL2

∂u
∂θ

−
∂uM1M2

∂θ

����
����
L2

+ qk kL2
∂3u
∂θ3

−
∂3uM1M2

∂θ3

�����
�����
L2

:

ð36Þ

First, error bounds are calculated for terms on the right-
hand side in (36). Assume that TM1M2

ðθ, ϑÞ is the Taylor

series expansion of uðθ, ϑÞ, Θ1 = max
ðθ,ϑÞ∈J

juðM1+M2−μÞðθ, ϑÞj,
and Jn1n2

= ½ðn1 − 1Þ/2k1−1, n1/2k1−1� × ½ðn2 − 1Þ/2k2−1, n2/
2k2−1�. One has,

So, one gets

C
0D

μ

ϑu − C
0D

μ

ϑuM1M2

��� ���
L2
≤

πΘ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ23

:

ð38Þ

In a similar way, if Θ2,l = max
ðθ,ϑÞ∈J

juðM1+M2−lÞðθ, ϑÞj, l = 0, 1
, 2, 3, one has

C
0D

μ

ϑu − C
0D

μ

ϑuM1M2

��� ���2
L2
=
ð1
0

ð1
0
D

μ
ϑu θ, ϑð Þ − C

0D
μ

ϑuM1M2
θ, ϑð Þ

� �2
W θ, ϑð Þdϑ dθ

= 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
D

μ
ϑu θ, ϑð Þ − C

0D
μ

ϑuM1M2
θ, ϑð Þ

� �2
Wn1n2

θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
D

μ
ϑu θ, ϑð Þ − C

0D
μ

ϑTM1M2
θ, ϑð Þ

� �2
Wn1n2

θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1

max
ξn1 ,ηn2ð Þ∈Jn1n2

u M1+M2−μð Þ ξn1
, ηn2

� ���� ���
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

0
BB@

1
CCA

2

Wn1n2
θ, ϑð Þdϑ dθ

≤
Θ1

M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2ð1
0

ð1
0
W θ, ϑð Þ|fflfflfflffl{zfflfflfflffl}
ω θð Þω ϑð Þ

dϑ dθ

= Θ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2ð1
0
θ1/2 1 − θð Þ1/2dθ

ð1
0
ϑ1/2 1 − ϑð Þ1/2dϑ

= Θ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2 π

8
� �2

:

ð37Þ

∂lu
∂θl

−
∂luM1M2

∂θl

�����
�����
2

L2

=
ð1
0

ð1
0

∂lu θ, ϑð Þ
∂θl

−
∂luM1M2

θ, ϑð Þ
∂θl

 !2

W θ, ϑð Þdϑ dθ

= 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
∂lu θ, ϑð Þ

∂θl
−
∂luM1M2

θ, ϑð Þ
∂θl

 !2

Wn1n2
θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
∂lu θ, ϑð Þ

∂θl
−
∂lTM1M2

θ, ϑð Þ
∂θl

 !2

Wn1n2
θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1

max
ξn1 ,ηn2ð Þ∈Jn1n2

u M1+M2−lð Þ ξn1
, ηn2

� ���� ���
M1 − lð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ

0
BB@

1
CCA

2

Wn1n2
θ, ϑð Þdϑ dθ

≤
Θ2,l

M1 − lð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2 π

8
� �2

:

ð39Þ
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Thus, one gets

∂lu
∂θl

−
∂luM1M2

∂θl

�����
�����
L2

≤
πΘ2,l

M1 − lð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
, l = 0, 1, 2, 3:

ð40Þ

Therefore, a bound is obtained for inequality (36) using
(37) and (39) as follows:

RM1M2

�� ��
L2

πΘ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ pk kL2
πΘ2,1

M1 − 1ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ qk kL2
πΘ2,3

M1 − 3ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
:

ð41Þ

It is evident from the right-hand side of (40) that
kRM1M2

k
L2
⟶ 0 when M1,M2 ⟶∞.

4.2. Time-Fractional Nonlinear KdV Equation. Consider
Equation (32) and suppose that uM1M2

ðθ, ϑÞ is its approxi-
mate solution obtained from the proposed method. Thus,
uM1M2

ðθ, ϑÞ satisfies the following equation:

C
0D

μ

ϑuM1M2
θ, ϑð Þ + 6uM1M2

θ, ϑð Þ ∂uM1M2
θ, ϑð Þ

∂θ

+
∂3uM1M2

θ, ϑð Þ
∂θ3

= −RM1M2
θ, ϑð Þ:

ð42Þ

Subtracting Equation (41) from (32) leads to the

Table 1: Maximum absolute errors for μ = 1 and different values of M1,M2 for Example 1.

M1 =M2 2 3 4 5

MAE 5:2885 × 10−3 7:0306 × 10−4 2:3882 × 10−5 2:0614 × 10−6

Table 2: Absolute errors for k1 = k2 = 1,M1 =M2 = 4 at equally spaced points for Example 1.

θi = ϑi μ = 0:7 μ = 0:8 μ = 0:9 μ = 1
0 4:8935 × 10−7 5:4663 × 10−7 4:4250 × 10−7 1:4522 × 10−11

0.2 6:1889 × 10−7 6:0321 × 10−7 4:6254 × 10−7 1:2627 × 10−7

0.4 8:5473 × 10−7 8:0229 × 10−7 7:3242 × 10−7 6:8164 × 10−7

0.6 5:8306 × 10−6 5:6182 × 10−6 3:6174 × 10−6 1:1872 × 10−6

0.8 1:7757 × 10−5 1:6597 × 10−5 1:0738 × 10−5 1:7657 × 10−6

1 9:7134 × 10−5 7:8075 × 10−5 3:3765 × 10−5 2:3881 × 10−5

9

8

7

6

5

0 0.2 0.4 0.6 0.8 1

x

𝜇 = 0.7
𝜇 = 0.8
𝜇 = 0.9

Exact solution
𝜇 = 1

Figure 1: Exact and approximate solutions for k1 = k2 = 1,M1 =M2 = 4, and μ = 0:7, 0:8, 0:9, 1 at time ϑ = 3 for Example 1.
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following equation:

RM1M2
θ, ϑð Þ = C

0D
μ
ϑu θ, ϑð Þ − C

0D
μ
ϑuM1M2

θ, ϑð Þ
� �
+ 6 u θ, ϑð Þ ∂u θ, ϑð Þ

∂θ
− uM1M2

θ, ϑð Þ ∂uM1M2
θ, ϑð Þ

∂θ

	 


+ ∂3u θ, ϑð Þ
∂θ3

−
∂3uM1M2

θ, ϑð Þ
∂θ3

 !
:

ð43Þ

The nonlinear term uuθ − uM1M2
uθM1M2

can be written
as

uuθ − uM1M2
uθM1M2

= u − uM1M2

� �
uθ

+ uθ − uθM1M2

� �
uM1M2

= u − uM1M2

� �
uθ − uθM1M2

+ uθM1M2

� �
+ uθ − uθM1M2

� �
uM1M2

= u − uM1M2

� �
uθ − uθM1M2

� �
+ u − uM1M2

� �
uθM1M2

+ uθ − uθM1M2

� �
uM1M2

:

ð44Þ

Now, using bounds obtained in the previous section, an
error bound of (42) can be calculated as follows:

RM1M2

�� ��
L2

πΘ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ 6 πΘ2,0
M1!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
�

× πΘ2,1
M1 − 1ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ uθM1M2

��� ���
L2

	 


+
πΘ2,1 uM1M2

�� ��
L2

M1 − 1ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23

#

+
πΘ2,3 uM1M2

�� ��
L2

M1 − 3ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
:

ð45Þ

Obviously, the right-hand side of (44) tends to zero,
when M1,M2 are sufficiently large.

xt
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0.4 0.4
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0.48
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0.44
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0 0

0.4 0.4
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xt
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0.4 0.4
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1. × 10–6

(c)

Figure 2: (a) Exact solution, (b) approximate solution, and (c) absolute error function for k1 = k2 = 1,M1 =M2 = 5, and μ = 1 for Example 2.
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5. Numerical Examples

The two models given in Section 3 are considered to illus-
trate the accuracy and applicability of the proposed scheme.
Maximum absolute errors are computed when the derivative
order is an integer (classical case). The results are compared
to the exact ones. Computations and simulations are han-
dled by Maple 16.

Example 1. As a first example, the following linear inhomo-
geneous time-fractional KdV equation:

C
0D

μ

ϑu θ, ϑð Þ + ∂u θ, ϑð Þ
∂θ

+ ∂3u θ, ϑð Þ
∂θ3

= 2ϑ2−μ
Γ 3 − μð Þ cos θð Þ, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð46Þ

subject to the initial and boundary conditions:

u θ, 0ð Þ = 0, u 0, ϑð Þ = 0, ∂u 0, ϑð Þ
∂θ

= 0, ∂
2u 0, ϑð Þ
∂θ2

= 0: ð47Þ

The exact solution is uðθ, ϑÞ = ϑ2 cos ðθÞ, if μ = 1. Maxi-
mum absolute errors (MAE) are listed in Table 1 for μ = 1,
k1 = k2 = 1,M1 =M2 = 2, 3, 4, 5. As seen, the errors decrease
when M1,M2 increase. Values of absolute errors of the
exact and numerical solutions, at equally spaced points θi
= ϑj = 0:2i, i = 0, 1,⋯, 5, are seen in Table 2 for k1 = k2 = 1,
M1 =M2 = 4, μ = 0:7,0:8,0:9,1. The results have more accu-
racy as μ⟶ 1. Plots of numerical solutions are depicted
in Figure 1 for k1 = k2 = 1,M1 =M2 = 4, μ = 0:7,0:8,0:9,1,
and ϑ = 3. It can be found that the approximate solutions
approach the exact one when μ⟶ 1.

Example 2. Consider the time-fractional nonlinear KdV
equation as follows:

C
0D

μ

ϑu θ, ϑð Þ + 6u θ, ϑð Þ ∂u θ, ϑð Þ
∂θ

+ ∂3u θ, ϑð Þ
∂θ3

= 0, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð48Þ

0 0.2 0.4 0.6 0.8 1

0.49

0.48

0.47

0.46

x

𝜇 = 0.3
𝜇 = 0.5
𝜇 = 0.7

𝜇 = 0.9

Exact solution
𝜇 = 1

Figure 3: Exact and approximate solutions for k1 = k2 = 1,M1 =M2 = 6, and μ = 0:3, 0:5, 0:7, 0:9, 1 at time ϑ = 0:45 for Example 2.

Table 3: Absolute errors for k1 = k2 = 1,M1 =M2 = 6 at equally spaced points for Example 2.

θi = ϑi μ = 0:3 μ = 0:5 μ = 0:7 μ = 0:9 μ = 1
0 6:6378 × 10−8 6:8466 × 10−8 5:5505 × 10−8 2:4525 × 10−8 1:3170 × 10−9

0.2 8:6724 × 10−5 6:7852 × 10−5 4:4262 × 10−5 1:5860 × 10−5 3:1335 × 10−9

0.4 6:5214 × 10−4 5:1748 × 10−4 3:4307 × 10−4 1:2522 × 10−4 3:7353 × 10−10

0.6 2:0195 × 10−3 1:6274 × 10−3 1:0975 × 10−3 4:0827 × 10−4 1:2169 × 10−8

0.8 4:2767 × 10−3 3:5051 × 10−3 2:4073 × 10−3 9:1284 × 10−4 3:0611 × 10−8

1 7:2448 × 10−3 6:0506 × 10−3 4:2372 × 10−3 1:6379 × 10−3 4:9306 × 10−8
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with

u θ, 0ð Þ = 1
2 sec h2 θ

2

	 

, u 0, ϑð Þ = 1

2 sec h2 ϑ

2

	 

, ∂u 0, ϑð Þ

∂θ
= 1
2 sec h2 ϑ

2

	 

tanh ϑ

2

	 

,

∂2u 0, ϑð Þ
∂θ2

= 1
2 sec h2 ϑ

2

	 

tanh2 ϑ

2

	 

+ 1
2 sec h2 ϑ

2

	 

−
1
2 + 1

2 tanh2 ϑ

2

	 
	 

:

ð49Þ

The exact solution is uðθ, ϑÞ = ð1/2Þ sec h2ðθ/2 − ϑ/2Þ, if
μ = 1. Plots of exact and approximate solutions and the abso-
lute error function are depicted in Figure 2 for k1 = k2 = 1,
M1 =M2 = 5, and μ = 1. A graphical comparison between
exact and approximate solutions is observed in Figure 3 for
k1 = k2 = 1 ;M1 =M2 = 4; μ = 0:3,0:5,0:7,0:9,1; and ϑ = 0:45.
It can be found that the approximate solutions approach
the exact one when μ⟶ 1. Values of absolute errors are
listed in Table 3 for M1 =M2 = 6 ; μ = 0:3,0:5,0:7,0:9,1; and
θi = ϑi = 0:2i, i = 0, 1,⋯, 5. It can be seen from Figure 3 and
Table 3 that the approximate solutions approach the exact
one when μ⟶ 1.

6. Conclusion

In this paper, the second-kind Chebyshev wavelets were
employed to solve time-fractional inhomogeneous KdV
and time-fractional nonlinear KdV equations. Using the pre-
sented scheme, the main problem was converted into a sys-
tem of algebraic equations wherein obtaining its solution is
easier than finding the solution of the problem under study.
In comparison with the Adomian decomposition, homotopy
analysis, and homotopy perturbation methods, the SKCW
method possesses fewer computational costs. The few num-
bers of the basis functions lead to an approximate solution
with appropriate accuracy. As seen from Table 1, by increas-
ing values of Mi, i = 1, 2, the maximum absolute errors
decrease. In Tables 2 and 3, values of absolute errors at
equally spaced points decrease as μ⟶ 1; then, approximate
solutions are getting close to exact ones. This can be seen in
Figures 1 and 3. It was seen from illustrative examples that
the method is an efficient numerical scheme to find an
approximate solution for linear or nonlinear PDEs. The
authors intend to test the proposed approach on other non-
linear fractional partial differential equations such as New-
ell–Whitehead–Segel and Phi-four.

Data Availability

Data are available on request.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

We would like to thank the reviewers for their thoughtful
comments and efforts toward improving our manuscript.

References

[1] J. M. Cruz-Duarte, J. R. Garcia, C. R. Correa-Cely, A. G. Perez,
and J. G. Avina-Cervantes, “A closed form expression for the
Gaussian-based Caputo-Fabrizio fractional derivative for sig-
nal processing applications,” Communications in Nonlinear
Science and Numerical Simulation, vol. 61, pp. 138–148, 2018.

[2] A. Esen, T. A. Sulaiman, H. Bulut, and H. M. Baskonus, “Opti-
cal solitons to the space-time fractional (1+1)-dimensional
coupled nonlinear Schrödinger equation,” Optik, vol. 167,
pp. 150–156, 2018.

[3] N. H. Sweilam, M. M. A. Hasan, and D. Baleanu, “New studies
for general fractional financial models of awareness and trial
advertising decisions,” Chaos, Solitons and Fractals, vol. 104,
pp. 772–784, 2017.

[4] D. Baleanu, G. C. Wu, and S. D. Zeng, “Chaos analysis and
asymptotic stability of generalized Caputo fractional differen-
tial equations,” Chaos, Solitons and Fractals, vol. 102, pp. 99–
105, 2017.

[5] P. Veeresha, D. G. Prakasha, and H. M. Baskonus, “New
numerical surfaces to the mathematical model of cancer che-
motherapy effect in Caputo fractional derivatives,” Chaos,
vol. 29, no. 1, article 013119, 2019.

[6] K. S. Miller and B. Ross,An Introduction to Fractional Calculus
and Fractional Differential Equations, Wiley, New York, NY,
USA, 1993.

[7] I. Podlubny, Fractional Differential Equations, Academic
Press, New York, NY, USA, 1999.

[8] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, Elsevier,
Amsterdam, The Netherlands, 2006.

[9] S. T. Abdulazeez and M. Modanli, “Solutions of fractional
order pseudo-hyperbolic telegraph partial differential equa-
tions using finite difference method,” Alexandria Engineering
Journal, vol. 61, no. 12, pp. 12443–12451, 2022.

[10] W. Sawangtong and P. Sawangtong, “An analytical solution
for the Caputo type generalized fractional evolution equation,”
Alexandria Engineering Journal, vol. 61, no. 7, pp. 5475–5483,
2022.

[11] R. Gorenflo and E. A. Abdel-Rehim, “Convergence of the
Grunwald-Letnikov scheme for time-fractional diffusion,”
Journal of computational and applied mathematics, vol. 205,
no. 2, pp. 871–881, 2007.

[12] N. H. M. Shahen, M. H. Bashar, and M. S. Ali, “Dynamical
analysis of long-wave phenomena for the nonlinear conform-
able space-time fractional ð2 + 1Þ-dimensional AKNS equa-
tion in water wave mechanics,” Heliyon, vol. 6, article
e05276, 2020.

[13] C. D. Vinodbhai and S. Dubey, “Investigation to analytic solu-
tions of modified conformable time-space fractional mixed
partial differential equations,” Partial Differential Equations
in Applied Mathematics, vol. 5, article 100294, 2022.

[14] M. Abu-Shady and M. K. A. Kaabar, “A generalized definition
of the fractional derivative with applications,” Mathematical
Problems in Engineering, vol. 2021, Article ID 9444803, 9
pages, 2021.

[15] M. Abu-Shady and M. K. A. Kaabar, “A novel computational
tool for the fractional-order special functions arising from
modeling scientific phenomena via Abu-Shady–Kaabar frac-
tional derivative,” Computational and Mathematical Methods
in Medicine, vol. 2022, Article ID 2138775, 5 pages, 2022.

10 Journal of Mathematics



[16] K. S. Miller and B. Ross, An Introduction to the Fractional Cal-
culus and Fractional Differential Equations, John Willy and
Sons, New York, 1993.

[17] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory
of Fractional Dynamic Systems, Cambridge Academic, Cam-
bridge, 2009.

[18] B. West, M. Bologna, and P. Grigolini, Physics of Fractal Oper-
ators, Springer, New York, 2003.

[19] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Inte-
grals and Derivatives: Theory and Applications, Gordon and
Breach, Yverdon, 1993.

[20] D. J. Korteweg and G. de Vries, “XLI. On the change of form of
long waves advancing in a rectangular canal, and on a new type
of long stationary waves,” Philosophical Magazine, vol. 39,
no. 240, pp. 422–443, 1895.

[21] M. Bagheri and A. Khani, “Analytical method for solving the
fractional order generalized KdV equation by a beta-
fractional derivative,” Advances in Mathematical Physics,
vol. 2020, Article ID 8819183, 18 pages, 2020.

[22] J. Liu, L. Yang, and K. Yang, “Jacobi elliptic function solutions
of some nonlinear PDEs,” Physics Letters A, vol. 325, no. 3-4,
pp. 268–275, 2004.

[23] L. Akinyemi and O. S. Iyiola, “A reliable technique to study non-
linear time-fractional coupled Korteweg–de Vries equations,”
Advances in Difference equations, vol. 2020, no. 1, Article ID
169, 2020.

[24] Z. Z. Ganji, D. D. Ganji, and Y. Rostamiyan, “Solitary wave
solutions for a time-fraction generalized Hirota-Satsuma
coupled KdV equation by an analytical technique,” Applied
Mathematical Modelling, vol. 33, no. 7, pp. 3107–3113, 2009.

[25] S. Sahoo and S. Saha Ray, “Solitary wave solutions for time
fractional third order modified KdV equation using two reli-
able techniques ðG′/GÞ-expansion method and improved ðG
′/GÞ-expansion method,” Physica A: Statistical Mechanics
and its Applications, vol. 448, pp. 265–282, 2016.

[26] D. Kaya, S. Gülbahar, A. Yokuş, and M. Gülbahar, “Solutions
of the fractional combined KdV–mKdV equation with colloca-
tion method using radial basis function and their geometrical
obstructions,” Advances in Difference Equations, vol. 2018,
no. 1, Article ID 77, 6 pages, 2018.

[27] S. Momani, Z. Odibat, and A. Alawneh, “Variational itera-
tion method for solving the space- and time-fractional
KdV equation,” Numerical Methods for Partial Differential
Equations: An International Journal, vol. 24, no. 1,
pp. 262–271, 2008.

[28] H. Thabet, S. Kendre, and J. Peters, “Traveling wave solutions
for fractional Korteweg-de Vries equations via an
approximate-analytical method,” AIMS Mathematics, vol. 4,
no. 4, 2019.

[29] X. J. Yang, J. A. T. Machado, D. Baleanu, and C. Cattani, “On
exact traveling-wave solutions for local fractional Korteweg-de
Vries equation,” Chaos, vol. 26, no. 8, 2016.

[30] B. R. Sontakke, A. Shaikh, and K. S. Nisar, “Approximate solu-
tions of a generalized Hirota-Satsuma coupled KdV and a
coupled mKdV systems with time fractional derivatives,”
Malaysian Journal of Mathematical Sciences, vol. 12, no. 2,
pp. 175–196, 2018.

[31] D. D. Ganji and M. Rafei, “Solitary wave solutions for a gener-
alized Hirota–Satsuma coupled KdV equation by homotopy
perturbation method,” Physics Letters A, vol. 356, no. 2,
pp. 131–137, 2006.

[32] S. Abbasbandy, “The application of homotopy analysis
method to solve a generalized Hirota-Satsuma coupled KdV
equation,” Physics Letters A, vol. 361, no. 6, pp. 478–483, 2007.

[33] Z. Guo-Zhong, Y. Xi-Jun, X. Yun, Z. Jiang, and W. Di,
“Approximate analytic solutions for a generalized Hirota
Satsuma coupled KdV equation and a coupled mKdV
equation,” Chinese Physics B, vol. 19, no. 8, article
080204, 2010.

[34] Q.Wang, “Homotopy perturbation method for fractional KdV
equation,” Applied Mathematics and Computation, vol. 190,
no. 2, pp. 1795–1802, 2007.

[35] S. Nemati, S. Sedaghat, and I. Mohammadi, “A fast numerical
algorithm based on the second kind Chebyshev polynomials
for fractional integro-differential equations with weakly singu-
lar kernels,” Journal of Computational and Applied Mathemat-
ics, vol. 308, pp. 231–242, 2016.

[36] K. Maleknejad, S. Sohrabi, and Y. Rostami, “Numerical solu-
tion of nonlinear Volterra integral equations of the second
kind by using Chebyshev polynomials,” Applied Mathematics
and Computation, vol. 188, no. 1, pp. 123–128, 2007.

[37] L. Zhu and Q. Fan, “Solving fractional nonlinear Fredholm
integro-differential equations by the second kind Chebyshev
wavelet,” Communications in nonlinear science and numerical
simulation, vol. 17, no. 6, pp. 2333–2341, 2012.

[38] Y. Wang and Q. Fan, “The second kind Chebyshev wavelet
method for solving fractional differential equations,” Applied
Mathematics and Computation, vol. 218, no. 17, pp. 8592–
8601, 2012.

[39] O. Baghani, “Second Chebyshev wavelets (SCWs) method for
solving finite-time fractional linear quadratic optimal control
problems,” Mathematics and Computers in Simulation,
vol. 190, pp. 343–361, 2021.

[40] F. Zhou and X. Xu, “Numerical solution of the convection dif-
fusion equations by the second kind Chebyshev wavelets,”
Applied Mathematics and Computation, vol. 247, pp. 353–
367, 2014.

[41] A. K. Gupta and S. Saha Ray, “Numerical treatment for the
solution of fractional fifth-order Sawada–Kotera equation
using second kind Chebyshev wavelet method,” Applied Math-
ematical Modelling, vol. 39, no. 17, pp. 5121–5130, 2015.

[42] J. Biazar and K. Sadri, “Two-variable Jacobi polynomials for
solving some fractional partial differential equations,” Journal
of Computational Mathematics, vol. 38, no. 6, pp. 849–873,
2020.

[43] S. A. El-Wakil, E. M. Abulwafa, M. A. Zahran, and A. A. Mah-
moud, “Time-fractional KdV equation: formulation and solu-
tion using variational methods,” Nonlinear Dynamics, vol. 65,
no. 1-2, pp. 55–63, 2011.

[44] S. A. El-Wakil, E. M. Abulwafa, E. K. El-Shewy, and A. A.
Mahmoud, “Time-fractional KdV equation for plasma of two
different temperature electrons and stationary ion,” Physics of
Plasmas, vol. 18, no. 9, article 092116, 2011.

[45] M. Inc, M. Parto-Haghighi, M. A. Akinlar, and Y. M. Chu,
“New numerical solutions of fractional-order Korteweg–de
Vries equation,” Results in Physics, vol. 19, article 103326,
2020.

[46] A. Taqi, M. Shallal, and B. Jomaa, “Soliton solutions for space-
time fractional Korteweg-de Vries equation,” in 2019 Interna-
tional Conference on Computing and Information Science and
Technology and Their Applications (ICCISTA), Kirkuk, Iraq,
2019.

11Journal of Mathematics



[47] H. U. Rehman, M. Inc, M. I. Asjad, and A. Habib, “New soliton
solutions for the space-time fractional modified third order
Korteweg–de Vries equation,” Journal of Ocean Engineering
and Science, 2022.

[48] E. M. Ozkan and A. Ozkan, “Bright soliton solutions for time
fractional Korteweg–de Vries equation,” in International Con-
ference on Analysis and Applied Mathematics, Mersin, Turkey,
2020.

12 Journal of Mathematics



Research Article
An Efficient Numerical Scheme for Solving Multiorder Tempered
Fractional Differential Equations via Operational Matrix

Abiodun Ezekiel Owoyemi ,1,2 Chang Phang ,1 and Yoke Teng Toh 3

1Department of Mathematics and Statistics, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
2Department of General Studies, Federal College of Agricultural Produce Technology, Kano, Nigeria
3Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

Correspondence should be addressed to Chang Phang; pchang@uthm.edu.my

Received 12 July 2022; Revised 22 August 2022; Accepted 29 August 2022; Published 19 September 2022

Academic Editor: Arzu Akbulut

Copyright © 2022 Abiodun Ezekiel Owoyemi et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In this paper, we extend the operational matrix method to solve the tempered fractional differential equation, via shifted Legendre
polynomial. Although the operational matrix method is widely used in solving various fractional calculus problems, it is yet to
apply in solving fractional differential equations defined in the tempered fractional derivatives. We first derive the analytical
expression for tempered fractional derivative for xp, hence, using it to derive the new operational matrix of fractional
derivative. By using a few terms of shifted Legendre polynomial and via collocation scheme, we were able to obtain a good
approximation for the solution of the multiorder tempered fractional differential equation. We illustrate it using some
numerical examples.

1. Introduction

Tempered fractional calculus is a type of fractional deriva-
tive/integral operator which multiplies an exponential factor
to its power law kernel. This type of exponential tempering
had been received increasing attention from researchers as
having both mathematical and practical advantages [1, 2].
Several phenomena were best described by using this tem-
pered fractional derivative/integral operator such as tem-
pered fractional Brownian motion [3], epidemic modelling
[4], and diffusion-wave equation [5]. Besides that, the tem-
pered fractional model also been proven superior to the
standard mechanism-based models in an experiment for
quantifying colloid fate and transport in complex soil-
vegetation systems [6].

In this research direction, reliable numerical schemes are
needed to obtain the approximation solution for tempered
fractional differential equations. This is because normally
there are no exact solution or the analytical solution for
these tempered fractional differential equations is difficult
to obtain. To date, limited researches are done to tackle this

problem, which include third-order semidiscretized schemes
[7], two-dimensional Gegenbauer wavelets method [8], pre-
dictor–corrector scheme [9], and finite difference iterative
method [10]. However, some of the established numerical
schemes which already been successfully applied to solve
fractional differential equations in the Caputo sense are still
not been employed to solve these tempered fractional differ-
ential equations, which include the operational matrix
method. Hence, in this paper, we aim to develop a reliable
numerical scheme that involves an operational matrix via
shifted Legendre polynomial to tackle this tempered frac-
tional differential equation. The tempered fractional differ-
ential equations will be transformed into a system of
algebraic equations; then, solving the system of algebraic
equation will solve multiorder tempered fractional differen-
tial equations as follows:

〠
l

r=1
qr

TD αr ,βrð Þ
x f xð Þ = h xð Þ,

f ið Þ 0ð Þ = di, i = 0, 1,⋯,m − 1,

ð1Þ

Hindawi
Journal of Mathematics
Volume 2022, Article ID 7628592, 9 pages
https://doi.org/10.1155/2022/7628592

https://orcid.org/0000-0001-5237-1442
https://orcid.org/0000-0002-0291-3327
https://orcid.org/0000-0001-8317-8901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7628592


where f ðxÞ is the unknown solution, TDðαr ,βrÞ
x is tempered

fractional derivatives, qr ∈ℝ, r = 1,⋯, l are constants, and
αr , βr ≥ 0 are real derivative orders which β denotes the tem-
pered coefficient, while hðxÞ is the unhomogeneous terms.

To date, various numerical or analytical methods were
derived to find the solution for different fractional calculus
problems, such as [11–13]. On top of that, the operational
matrix method via different types of the polynomial is one of
the common numerical schemes which had been widely used
in solving various types of fractional calculus problems, such
as the poly-Bernoulli operational matrix for solving fractional
delay differential equation [14], poly-Genocchi operational
matrix for solving fractional differential equation [15], Jacobi
wavelet operational matrix of fractional integration for solving
fractional integro-differential equation [16], and Fibonacci
wavelet operational matrix of integration for solving of non-
linear Stratonovich Volterra integral equations [17]. Recently,
the operational matrix method had been successfully extended
to solve other fractional operator problems, such as solving
Prabhakar fractional differential equation [18]. Although the
operational matrix method is widely used in solving various
fractional calculus problems, it is yet to apply in solving frac-
tional differential equations defined in the tempered fractional
derivatives. Hence, we hope it can fill in this research gap. The
main advantages of using this operational matrix method over
other existing methods are its simplicity of implementation
and programmable easily in using any computer algebra sys-
tem. Besides that, if the fractional differential equations are
in multiorder or having variable coefficients, operational
matrix method is also efficient in finding the numerical
solution.

The rest of this paper is as follows. Section 2 discusses
some important concepts for tempered fractional calculus.
Section 3 presents the shifted Legendre operational matrix
for tempered fractional derivative and is followed by the
procedure of solving tempered fractional differential equa-
tion via collocation scheme using this new shifted Legen-
dre operational matrix. Some numerical examples and
conclusion are presented in Sections 4 and 5.

2. Some Concepts regarding Tempered
Fractional Calculus

Definition 1 (see [19, 20]). For α ∈ ½0, 1� and α, β ∈ℂ where
Re ðαÞ > 0, Re ðβÞ ≥ 0, the tempered fractional integral of
order ðα, βÞ for a function f ∈ L1½a, b� is given by

T
0 I

α,βð Þ
x f xð Þ = 1

Γ αð Þ
ðx
0
x − uð Þα−1e−β x−uð Þ f uð Þ du

= e−βx

Γ αð Þ
ðx
0
x − uð Þα−1eβu f uð Þ du, x ∈ a, b½ �:

ð2Þ

Definition 2 (see [20]). For α, β ∈ℂ where Re ðαÞ > 0, Re ðβ
Þ ≥ 0, the Riemann-Liouville tempered fractional derivative
of order ðα, βÞ for a function f ∈ L1½a, b� is given by

RT
0 D α,βð Þ

x f xð Þ = e−βx T
0D

αð Þ
x eβx f xð Þ

� �
= e−βx

Γ n − αð Þ
dn

dxn

ðx
0
x − uð Þn−α−1eβ uð Þ f uð Þ du, x ∈ a, b½ �,

ð3Þ

where n = bαc + 1 and bαc is integer part of α.

For Caputo type of tempered fractional derivative, we take
the derivative of the function under the integral (3), and
we obtain Definition 3.

Definition 3 (see [20]). For α, β ∈ℂ where Re ðαÞ > 0, Re ðβ
Þ ≥ 0. The Caputo tempered fractional derivative of order ð
α, βÞ for a function f ∈ L1½a, b� is given by

CT
0 D α,βð Þ

x f xð Þ = 1
Γ n − αð Þ

ðx
0
x − uð Þn−α−1 d

neβ uð Þ f uð Þ
dun

du, x ∈ a, b½ �,

ð4Þ

where n = bαc + 1 and bαc is integer part of α.

The relationship between the tempered fractional deriv-
ative and tempered fractional integral is given by

T
0D

α,βð Þ
x f xð Þ = d

dx
+ β

� �n
T
0 I

n−α,βð Þ
x f xð Þ

� �
, ð5Þ

where n = bRe ðαÞc + 1.
The tempered fractional derivative for function xp,

where p is integer positive, we obtain

T
0D

α,βð Þ
x xp = e−βx

Γ n − αð Þ
ðx
0
x − uð Þn−α−1 dn

dun
eβuup
� �

du, x ∈ a, b½ �,

= e−βx

Γ n − αð Þ
ðx
0
x − uð Þn−α−1 dn

dun
〠
∞

k=0

βkuk+p

k!
du

= e−βx

Γ n − αð Þ
ðx
0
x − uð Þn−α−1 〠

∞

k=0

βk

k!
Γ k + p + 1ð Þuk+p−n
Γ k + p + 1 − nð Þ du

= e−βx

Γ n − αð Þ〠
∞

k=0

βk

k!
Γ k + p + 1ð Þ

Γ k + p + 1 − nð Þ
ðx
0
x − uð Þn−α−1uk+p−n du:

ð6Þ

By using integration
Ð x
0ðx − tÞa−1tb−1dt = Bða, bÞxa+b−1 =

ðΓðaÞΓðbÞ/Γða + bÞÞxa+b−1 where Bða, bÞ is beta function
and a, b > 0, we obtain

T0D
α,βð Þ
x xp = e−βx

Γ n − αð Þ〠
∞

k=0

βk

k!
Γ k + p + 1ð Þ

Γ k + p − n + 1ð Þ
Γ n − αð ÞΓ k + p − n + 1ð Þ
Γ n − α + k + p − n + 1ð Þ x

n−α+k+p−n

= e−βx 〠
∞

k=0

βk

k!
Γ k + p + 1ð Þ

Γ k + p − α + 1ð Þ x
k+p−α:

ð7Þ
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For the function f ðxÞ = ðx − aÞp with Re ðpÞ > −1, we
have [21],

TaD
α,βð Þ
x x − að Þk = x − að Þk−α Γ k + 1ð Þ

Γ k − α + 1ð Þ1
F1 −α ; k − α + 1;−β x − að Þð Þ:

ð8Þ

Here, we take k as positive integer number. For a = 0,
both expressions in (7) and (8) have the same result.

While using (8) to derive the operational matrix, we
need the following results related to the hypergeometric
function:

1F1 a ; c ; xð Þ = 〠
∞

k=0

Γ a + kð Þ
Γ að Þ

Γ cð Þ
Γ c + kð Þ

xk

k!
, ð9Þ

2F2 a, b ; c, d ; xð Þ = 〠
∞

k=0

Γ a + kð Þ
Γ að Þ

Γ b + kð Þ
Γ bð Þ

Γ cð Þ
Γ c + kð Þ

Γ dð Þ
Γ d + kð Þ

xk

k!
,

ð10Þ
ð1
01
F1 a ; c ; xð Þdx = c − 1

a − 11F1 a − 1 ; c − 1 ; xð Þ, ð11Þ

ð1
0
xl1F1 a ; c ;mxð Þdx = 1

l + 12F2 a, l + 1 ; c, l + 2 ;mð Þ:

ð12Þ
In another aspect, the solution for single tempered frac-

tional differential equation, i.e., TDα,β
x yðxÞ = κyðxÞ + hðxÞ for

α ∈ ð0, 1�, β > 0, and the initial condition is yð0Þ = y0 can be
expressed as follows [20]:

y xð Þ = y0e
−βxEα,1 κxαð Þ +

ðx
0
h x − sð Þe−βssα−1Eα,α κsαð Þds:

ð13Þ

where Ea,bðxÞ =∑∞
k=0x

k/Γðax + bÞ. However, this type of
solution may fail when there are involving multiorder tem-
pered fractional differential equations. Hence, we proposed
to solve these multiorder tempered fractional differential
equations via collocation scheme using shifted Legendre
operational matrix. Other types of polynomials can be used
also to derive the new operational matrix to tackle the tem-
pered fractional derivative.

3. Shifted Legendre Operational Matrix for
Tempered Fractional Derivative

3.1. Shifted Legendre Polynomials. The Legendre polyno-
mials is an orthogonal polynomial on the interval ½−1, 1�.
One of the ways to obtain Legendre polynomials is via recur-
rence relation as follows:

Li+1 tð Þ = 2i + 1
i + 1 tLi tð Þ −

i
i + 1 Li−1 tð Þ, i = 1, 2,⋯, ð14Þ

where L0ðtÞ = 1 and L1ðtÞ = t. The Legendre polynomials in
domain ½−1, 1� can be transformed into the domain of ½0, 1� by
using t = 2x − 1, which we get shifted Legendre polynomials, ~Li
ðxÞ as follows:

~Li+1 xð Þ = 2i + 1ð Þ 2x − 1ð Þ
i + 1

~Li xð Þ − i
i + 1

~Li−1 xð Þ, i = 1, 2,⋯,

ð15Þ

where ~L0ðxÞ = 1 and ~L1ðxÞ = 2x − 1. Besides that, the shifted
Legendre polynomials ~LiðxÞ of degree i can be obtained via the
analytical form:

~Li xð Þ = 〠
i

k=0
−1ð Þi+k i + kð Þ!xk

i − kð Þ! k!ð Þ2
, i = 0, 1, 2,⋯, ð16Þ

where ~Lið0Þ = ð−1Þi and ~Lið1Þ = 1. The orthogonality condition
is

ð1
0
~Li xð Þ~Lj xð Þdx =

1
2i + 1 , for i = j,

0, for i ≠ j:

8<
: ð17Þ

TheshiftedLegendrepolynomialshaveaniceproperty that is
useful for function approximation. In this case, a square integra-
ble function f ðxÞ ∈ L2½0, 1� can be expressed in terms of shifted
Legendre polynomials as follows:

f xð Þ = 〠
∞

j=0
cj~Lj xð Þ, ð18Þ

where the coefficients cj are given by

cj = 2j + 1ð Þ
ð1
0
f xð Þ~Lj xð Þdx, j = 0, 1, 2,⋯: ð19Þ

In order to use equation (18) to approximate the function,
normally, we truncated after ðN + 1Þ terms shifted Legendre
polynomials as follows:

f ∗N xð Þ = 〠
N

j=0
cj~Lj xð Þ = CTΦL xð Þ, ð20Þ

where the shifted Legendre coefficient vector, C is given by CT

= ½c0, c1,⋯, cN � and the shifted Legendre vector,ΦLðxÞ can be
expressed as

ΦL xð Þ = ~L0 xð Þ, ~L1 xð Þ,⋯,~LN xð Þ� �T
: ð21Þ

3.2. ShiftedLegendrePolynomialOperationalMatrix. In this sub-
section, we derive the new shifted Legendre operational matrix
for tacklingtemperedfractionalderivative.Wehavethefollowing
theorem.
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Theorem 4. Let Φ~LðxÞ be the shifted Legendre vector as
shown in (20). For n − 1 < α < n, n ∈ℕ, then,

T
0 D

α,βð Þ
x Φ~L xð Þ = Pα,β

x;~LΦ xð Þ, ð22Þ

where Pα,β
x is the N ×N operational matrix of tempered frac-

tional derivative of order α, β defined as

Pα,β
x =

0 0 ⋯ 0

⋮ ⋮ ⋯ ⋮

0 0 ⋯ 0

〠
αd e

k= αd e
ξ αd e,0,k 〠

αd e

k= αd e
ξ αd e,1,k ⋯ 〠

αd e

k= αd e
ξ αd e,N−1,k

⋮ ⋮ ⋯ ⋮

〠
i

k= αd e
ξi,0,k 〠

i

k= αd e
ξi,1,k ⋯ 〠

i

k= αd e
ξi,N−1,k

⋮ ⋮ ⋯ ⋮

〠
N−1

k= αd e
ξN−1,0,k 〠

N−1

k= αd e
ξN−1,1,k ⋯ 〠

N−1

k= αd e
ξN−1,N−1,k

2
66666666666666666666666664

3
77777777777777777777777775

,

ð23Þ

where ξi,j,k is given by

ξi,j,k = 2j + 1ð Þ −1ð Þi+k i + kð Þ!
i − kð Þ!k! k − αð Þ!〠

j

l=0

−1ð Þj+l j + lð Þ!
j − lð Þ!l!2 1 + k − α + lð Þ

× 2F2 −α, 1 + k − α + l ; k − α + 1, 2 + k − α + l;−βð Þ,
ð24Þ

where i = dαe,⋯,N − 1, j = 0, 1, 2,⋯,N − 1:

Proof. By using equation (8) and letting a = 0, the tempered
fractional derivative for xk is given as follows:

T
0D

α,βð Þ
x xk = xk−α

Γ k + 1ð Þ
Γ k − α + 1ð Þ1

F1 −α ; k − α + 1;−βxð Þ: ð25Þ

Using the expression as in (25), the explicit expression of
tempered fractional derivative of the i-th degree shifted
Legendre polynomials which is the ði + 1Þ-th element of
ΦLðxÞ is computed:

T
0D

α,βð Þ
x

~Li xð Þ = 〠
i

k=0

−1ð Þi+k i + kð Þ!
i − kð Þ!k!2

T
0D

α,βð Þ
x xk

� �
, i = 0, 1, 2,⋯

= 〠
i

k= αd e

−1ð Þi+k i + kð Þ!
i − kð Þ!k!2 xk−α

Γ k + 1ð Þ
Γ k − α + 1ð Þ1

F1 −α ; k − α + 1;−βxð Þ
� 	

= 〠
i

k= αd e

−1ð Þi+k i + kð Þ!
i − kð Þ!k!

xk−α

Γ k − α + 1ð Þ1
F1 −α ; k − α + 1;−βxð Þ

� 	
:

ð26Þ

The elements ρi,j of the operational matrix Pα,β
x;~L are com-

puted by taking inner product for the tempered fractional

derivative of shifted Legendre polynomials, T
0D

ðα,βÞ
x ~LiðxÞ

with shifted Legendre polynomials, ~LjðxÞ, j = 0, 1,⋯,N − 1:

T
0D

α,βð Þ
x

~Li xð Þ = 〠
N−1

j=0
ρi,j~Lj xð Þ, ð27Þ

ρi,j = T
0D

α,βð Þ
x

~Li xð Þ, ~Lj xð Þ
D E

= 〠
i

k= αd e

−1ð Þi+k i + kð Þ!
i − kð Þ!k!

1
Γ k − α + 1ð Þ xk−α1F1 −α ; k − α + 1;−βxð Þ, ~Lj xð Þ

D E� 	
,

ð28Þ
where the inner product can be computed as follows

xk−α1F1 −α ; k − α + 1;−βxð Þ, ~Lj xð Þ
D E

= 2j + 1ð Þ
ð1
0
xk−α1F1 −α ; k − α + 1;−βxð Þ〠

j

l=0

−1ð Þj+l j + lð Þ!
j − lð Þ!l!2

xldx

= 2j + 1ð Þ〠
j

l=0

−1ð Þj+l j + lð Þ!
j − lð Þ!l!2

ð1
0
xk−α1F1 −α ; k − α + 1;−βxð Þxldx

= 2j + 1ð Þ〠
j

l=0

−1ð Þj+l j + lð Þ!
j − lð Þ!l!2

2F2 −α, 1 + k − α + l ; k − α + 1, 2 + k − α + l;−βð Þ
1 + k − α + l

� �
:

ð29Þ

The integration in (29) can be obtained via the formula
in (10). Putting equation (29) into (28), we obtain

ρi,j = T
0D

α,βð Þ
x

~Li xð Þ, ~Lj xð Þ
D E

= 〠
i

k= αd e

−1ð Þi+k i + kð Þ!
i − kð Þ!k!

2j + 1ð Þ
Γ k − α + 1ð Þ
�

× 〠
j

l=0

−1ð Þ j+l j + lð Þ!
j − lð Þ!l!2

2F2 −α, 1 + k − α + l ; k − α + 1, 2 + k − α + l;−βð Þ
1 + k − α + l

� �#

= 2j + 1ð Þ 〠
i

k= αd e

−1ð Þi+k i + kð Þ!
i − kð Þ!k! k − αð Þ!〠

j

l=0

−1ð Þj+l j + lð Þ!
j − lð Þ!l!2 1 + k − α + lð Þ

× 2F2 −α, 1 + k − α + l ; k − α + 1, 2 + k − α + l;−βð Þ:
ð30Þ

Setting ρi,j =∑i
k=dαeξi,j,k

ξi,j,k = 2j + 1ð Þ −1ð Þi+k i + kð Þ!
i − kð Þ!k! k − αð Þ!〠

j

l=0

−1ð Þj+l j + lð Þ!
j − lð Þ!l!2 1 + k − α + lð Þ

× 2F2 −α, 1 + k − α + l ; k − α + 1, 2 + k − α + l;−βð Þ:
ð31Þ

Hence, each element of shifted Legendre operational
matrix for tempered fractional derivative is obtained.

To test the accuracy of the operational matrix derived in
Theorem 4, we use it to approximate tempered fractional
derivative for ~L2ðxÞ = 6x2 − 6x + 1 and ~L3ðxÞ = 20x3 − 30x2
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+ 12x − 1. For N = 4, we obtain the following operational

matrix Pα,β
x when α = 1/2, β = 1,

0:0 0:0 0:0 0:0,
1:786057010727 1:257808290370 −0:157033776306 0:090092226619,
−1:257808290370 1:678966426855 1:690298665024 −0:345920769399,
1:629023234421 −0:432490374653 2:103160984111 2:122192953652:

2
666664

3
777775

ð32Þ

Figures 1 and 2 show the comparison between the exact
solution for tempered fractional derivative for ~L2ðxÞ and ~L3
ðxÞ with the approximation using operational matrix as in
(32). Accuracy of the approximate can be increased with
increasing the N .

4. Solving Tempered Fractional Differential
Equation Using Shifted Legendre
Operational Matrix Method and
Error Analysis

This section consists of an explanation for the proposed
method that combines collocation scheme with shifted
Legendre polynomials operational matrix of tempered frac-
tional derivative to solve multiorder tempered fractional dif-
ferential equations.

〠
l

r=1
qr

TD αr ,βrð Þ
x f xð Þ = h xð Þ,

f ið Þ 0ð Þ = di, i = 0, 1,⋯,m − 1:

ð33Þ

Here, we present the general procedure for solving mul-
tiorder tempered fractional differential equations as in equa-
tion (33) via shifted Legendre operational matrix.

Step 1. The unknown function, i.e., the solution, f ðxÞ is
approximated by truncated shifted Legendre polynomials,

f xð Þ ≈ f N xð Þ ≈CT~L xð Þ, ð34Þ

where CT = ½c0, c1, c2,⋯, cN �: The tempered fractional deriv-
ative of equation (33) is approximated using the shifted
Legendre operational matrix of tempered fractional deriva-
tive as in equations (22)–(24).

TD α,βð Þ
x f xð Þ ≈CTP αr ,βrð Þ

x;~L Φ~L xð Þ: ð35Þ

Remark 5. The function, hðxÞ in the RHS of equation (33)
can also approximated in term of truncated shifted Legendre
polynomials as follows:

h xð Þ ≈HTΦ~L xð Þ, ð36Þ

where H = ½hi�T and the coefficients hi are computed using
equation (19). However, to increase the accuracy of the
method and also increase speed of its computer implementa-
tion, collocation scheme can be applied directly to these
known functions.

Step 2. From Step 1, the following is obtained:

〠
l

r=1
qrΦT

~L xð Þ P αr ,βrð Þ
x;~L

� �T
C = h xð Þ: ð37Þ

After some algebraic manipulations, we obtain ΦT
~L ðxÞ

ð∑l
r=1qrðPðαr ,βrÞ

x;~L ÞTCÞ − hðxÞ = 0: Thus, the residual is

R xð Þ =ΦT
~L xð Þ 〠

l

r=1
qr P αr ,βrð Þ

x;~L

� �T
C

 !
− h xð Þ = 0: ð38Þ

Step 3. Due to the set of shifted Legendre polynomials
basis, ΦT

~L ðxÞ = ½~L0ðxÞ~L1ðxÞ⋯ ~LNðxÞ� is linearly indepen-
dent, we obtain

ΦT
~L xð Þ〠

l

r=1
qr P αr ,βrð Þ

x;~L

� �T
C = h xð Þ: ð39Þ
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Figure 1: Comparison of the exact solution and approximation for
~L2ðxÞ.
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Figure 2: Comparison of the exact solution and approximation for
~L3ðxÞ.
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We obtain a system of N + 1 algebraic equations from
equation (39). The initial condition in equation (33) is also
approximated in term of shifted Legendre polynomials:

f ið Þ 0ð Þ = di, i = 0,⋯,m − 1,

ΦT
~L 0ð Þ Pi

0+;~L

� �T
C = di:

ð40Þ

Step 4. Select N −m equations from equation (39) and
combine with initial conditions from equation (40), we
obtain a system of N linear algebraic equations in term
of C. Hence, solve the system with using any suitable
numerical methods. Then, the approximate solution can
be computed by following equation:

f ∗ xð Þ =CTΦ~L xð Þ: ð41Þ

4.1. Error Analysis. To discuss the error analysis for our
method, we follow the approach done in [22] where the
alternating Legendre polynomials are applied to derive
the operational matrix to solve the fractional differential
equations problem defined in the classical Caputo sense.

Lemma 6. Suppose that f ðxÞ ∈ Cn+1ðΘÞ and f ðxÞ ≈ f NðxÞ ≈
CT~LðxÞ be its expansion in terms of shifted Legendre polyno-
mials, as described by equation (34). Then

f xð Þ − f N xð Þk k2 ≤
M

N + 1ð Þ!22N+1 , ð42Þ

where M is a constant such that j f ðN+1ÞðxÞj ≤M.

Proof. Assume that snðxÞ is the interpolating polynomials to
f ðxÞ at points xj, where xj be the roots of the shifted Cheby-
shev polynomials of degree n + 1, then

f xð Þ − sn xð Þ = f n+1ð Þ ςxð Þ
n + 1ð Þ!

Yn
j=0

x − xj

 �

, ςx ∈Θ = 0, 1½ �: ð43Þ

As proof in [22], the above approximation has the bound
as follows:

f xð Þ − sn xð Þj j ≤ M

n + 1ð Þ!22n+1 ,∀x ∈Θ: ð44Þ

Then, we have

f xð Þ − f N xð Þk k22 ≤ f xð Þ − sN xð Þk k22
=
ð1
0
f xð Þ − sN xð Þk k2dx =

ð1
0

M

N + 1ð Þ!22N+1

� �2
dx

= M

N + 1ð Þ!22N+1

� �2
:

ð45Þ

Hence, take the square root of both sides, we obtain

f xð Þ − f N xð Þk k2 ≤
M

N + 1ð Þ!22N+1 : ð46Þ

This completes the proof.

In order to perform the error estimation for this new
numerical scheme, we apply residual correction procedure.

From equation (39), i.e., RðxÞ =ΦT
~L ðxÞð∑l

r=1qrðPðαr ,βrÞ
x;~L ÞTCÞ

− hðxÞ = 0, hence

ΦT
~L xð Þ 〠

l

r=1
qr P αr ,βrð Þ

x;~L

� �T
C

 !
− h xð Þ = 0: ð47Þ

If N ⟶∞, using the operational matrix via shifted
Legendre polynomials to approximate multiorder tempered
fractional derivative and approximate hðxÞ via shifted
Legendre polynomials, we obtain

ΦT
~L xð Þ〠

l

r=1
qr P αr ,βrð Þ

x;~L

� �T
N×Nð Þ

− 〠
l

r=1
qr

TD αr ,βrð Þ
x f xð Þ

�����
����� ≈ 0,N ⟶∞:

ð48Þ

For our proposed method, N is finite. Hence, suppose m
term of shifted Legendre polynomials had been used, then,
small error, em, is inevitable.

〠
l

r=1
D αr ,βrð Þ
x f xð Þ − P αr ,βrð Þ

x;L

��� ���
2
= em,N =m: ð49Þ

Let e∗m is the approximation solution of equation (1)
obtained by the shifted Legendre operational matrix method,
if kem − e∗mk < ε is sufficiently small; then, the absolute errors
em can be estimated by e∗m. Hence, we obtain the optimal
value m (i.e., N).

Table 1: Absolute errors obtained by proposed method with N =
4, 6 for Example 1.

x Exact solution Abs. error (N = 4) Abs. error (N = 6)
0.1 0.402 1.61661E-02 2.72390E-03

0.2 0.816 1.87810E-02 6.74832E-03

0.3 1.254 1.25442E-02 6.06411E-03

0.4 1.728 2.15555E-02 1.63810E-03

0.5 2.250 7.68546E-02 2.20223E-03

0.6 2.832 1.22791E-02 1.38416E-03

0.7 3.486 6.92580E-03 4.29494E-03

0.8 4.224 1.30742E-02 7.55223E-03

0.9 5.058 5.24204E-02 9.99599E-03

1.0 6.000 1.15813E-02 8.14496E-02
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5. Numerical Examples

In this section, we will apply the new operational matrix for
tempered fractional derivative to solve the tempered frac-
tional differential equations.

Example 1. Consider the multiorder tempered fractional dif-
ferential equation as follows:

T
OD

1/2,1/2ð Þ
x y xð Þ + T

0D
1/2,1/4ð Þ
x y xð Þ

= x2y xð Þ − 2x5 − 4x3 +
ffiffiffi
2

p
x3 + 3x2 − x



+ 5Þ erf
ffiffiffi
x
2

r !
+ 2xffiffiffiffiffiffi

πx
p e−x/2 x2 + 2x − 1


 �

+ x3 + 6x2 − 10x + 28

 �

erf
ffiffiffi
x

p
2

� �

+ 2xffiffiffiffiffiffi
πx

p e−x/4 x2 + 4x − 10

 �

,

ð50Þ

with initial condition yð0Þ = 0. The exact solution is known
as yðxÞ = 2x3 + 4x.

Solution: by using N = 4, 6, we have the following
numerical result as shown in Table 1 and Figure 3. Only
using few terms of shifted Legendre polynomials, we were
able to obtain good result for this multiorder tempered frac-
tional differential equation.

Example 2. Consider a simple tempered fractional differen-
tial equation as follows:

T
OD

1/2,3/4ð Þ
x y xð Þ
= −2:0 x15/2 + 1:128379167 e−0:75 xx5 + 3:009011112 e−0:75 xx4

+ 1:732050807 x11/2 erf 0:8660254038
ffiffiffi
x

p
 �
+ 5:773502692 x9/2 erf 0:8660254038

ffiffiffi
x

p
 �
− 6:018022225 e−0:75 xx3

− 7:698003593 x7/2 erf 0:8660254038
ffiffiffi
x

p
 �
+ 15:39600718 x5/2 erf 0:8660254038

ffiffiffi
x

p
 �
+ 13:37338272 e−0:75 xx2

− 25:66001197 x3/2 erf 0:8660254038
ffiffiffi
x

p
 �
+ 23:94934450 erf 0:8660254038

ffiffiffi
x

p
 �
� ffiffiffi

x
p

− 23:40341976 e−0:75 xx,
ð51Þ

with initial condition yð0Þ = 0. The exact solution is known
as yðxÞ = 2x5.

Solution: by using N = 6, 8, we have the following
numerical result as shown in Table 2 and Figure 4. Again,
by only using few terms of shifted Legendre polynomials,
we were able to obtain good result for this tempered frac-
tional differential equation.

Example 3. Consider the tempered fractional differential
equation taken from [23] as follows:

T
0D

α,βð Þ
x y xð Þ = e−βx

Γ 6ð Þ
Γ 6 − αð Þ x

5−α − e−βxx10 + eβxy2 xð Þ
� �

, 0 < α < 1,

ð52Þ
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Figure 3: The comparison result of the approximate and exact solutions for Example 1 (N = 4, 6).

Table 2: Absolute errors obtained by proposed method with N =
6, 8 for Example 2.

x Exact solution Abs. error (N = 6) Abs. error (N = 8)
0.1 0.00002 6.44679E-05 2.57668E-07

0.2 0.00064 2.17039E-05 4.92156E-07

0.3 0.00486 8.06877E-06 6.44773E-07

0.4 0.02048 3.64403E-06 5.63021E-07

0.5 0.06250 3.18313E-05 5.17865E-07

0.6 0.15552 3.62011E-05 3.12227E-07

0.7 0.33614 5.94866E-07 9.34225E-07

0.8 0.65536 3.47375E-05 2.46696E-07

0.9 1.18098 7.69841E-05 8.54648E-08

1.0 2.00000 6.15397E-04 4.12816E-05
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with initial condition dyð0Þ/dx = 0. The exact solution is
given as yðxÞ = e−βxx5. This can be verified by using the pro-
cedure as in equations (6) and (7), where ones should get

T
0D

α,βð Þ
x e−βxxp = p + 1

Γ p − α + 1ð Þ e
−βxxp−α, α > −1: ð53Þ

Solution: by using N = 6, 8, 10 and α = 0:4, we have the
following numerical result for β = 0, 3, as shown in
Table 3. We compare our solution with Jacobi-predictor-
corrector algorithm [23]. Again, only using few terms of
shifted Legendre polynomials, we were able to obtain good
results compare with Jacobi-predictor-corrector algorithm.
More specifically, say if N = 10 has been used, the size of
each subinterval is 0:1, which is equivalent to the iteration
Jacobi-predictor-corrector algorithm with stepsize 1/10. For
β = 3, our absolute error is 4.779320E-07, ðN = 10Þ, which
is comparable with 7.4482E-07, stepsize = 1/10.

Example 4. Consider the multiorder tempered fractional dif-
ferential equation as follows:

T
0D

0:5,0:5ð Þ
x y xð Þ+T

0D
0:25,0:5ð Þ
x y xð Þ = 16

3
e−x/2x3/2ffiffiffi

π
p + 64

21
e−x/2x7/4ffiffiffiffiffiffiffi

3/4
p ,

ð54Þ

with initial condition yð0Þ = 0. The exact solution is given as
yðxÞ = 2e−x/2x2.

Solution: by using N = 6, 8, 10, we have the following
numerical result as shown in Table 4. Again, for the relative
absolute errors presented, it is obvious that by only using few
terms of shifted Legendre polynomials via its operational
matrix, we able to obtain good results for this multiorder
tempered fractional differential equations.

6. Conclusion

In this paper, we manage to derive a new operational matrix
for tempered fractional derivatives. Hence, we use it to solve
tempered fractional differential equations. The proposed
method is easy to apply and yet able to give accurate results.
The accuracy of the method can be improved by increasing
the number of the term of shifted Legendre polynomials.
The proposed method should extend to solve some other
tempered fractional calculus problems, such as tempered
fractional partial differential equations. Besides that, this
operational matrix also can be extended to solve other kinds
of fractional calculus problems such as those in [24–27].
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Figure 4: The comparison result of the approximate and exact solutions for Example 2 (N = 6, 8).

Table 3: Comparison of errors for proposed method with Jacobi-
predictor-corrector algorithm [23] for Example 3 with α = 0:4.

β N Max abs. error Stepsize (iteration) Error

0 6 1.06818E-04 1/10 2.4208E-04

0 8 4.10270E-06 1/20 4.9371E-06

0 10 3.37294E-07 1/40 1.0390E-07

3 6 2.43410E-04 1/10 7.4482E-07

3 8 8.27866E-06 1/20 6.8759E-08

3 10 4.77932E-07 1/40 3.1715E-09

Table 4: Relative absolute errors obtained by proposed method
with N = 6, 8, 10 for Example 4.

x Exact solution RAE (N = 6) RAE (N = 8) RAE (N = 10)
0.2 0.0725173321 1.80058E-03 9.61065E-04 2.41946E-04

0.4 0.2620226201 1.09846E-04 6.15192E-05 9.17638E-06

0.6 0.5332522504 2.56602E-04 4.80993E-05 2.88812E-05

0.8 0.8586273304 7.19889E-04 7.26678E-05 2.39416E-06
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The major objective of this study is to derive fractional series solutions of the time-fractional Swift-Hohenberg equations
(TFSHEs) in the sense of conformable derivative using the conformable Shehu transform (CST) and the Daftardar-Jafari
approach (DJA). We call it the conformable Shehu Daftardar-Jafari approach (CSDJA). One of the universal equations used in
the description of pattern formation in spatially extended dissipative systems is the Swift-Hohenberg equation. To assess the
effectiveness and consistency of the suggested approach, the numerical results are compared with those obtained by the Elzaki
decomposition method (EDM) in the sense of relative and absolute error functions, proving that the CSDJA is an effective
substitute for techniques that use He’s or Adomian polynomials to solve TFSHEs. The transition from the imprecise solution
to the precise solution at various values of fractional-order derivatives is shown using the recurrence error function.
Furthermore, the exact and approximative solutions are compared using 2D and 3D graphics and also numerically in the form
of relative and absolute error functions. The results show that the procedure is quick, precise, and easy to implement, and it
yields outstanding results. The recommended approach’s strength, which gives it an advantage over the Adomian
decomposition and homotopy perturbation methods, is its algorithm for dealing with nonlinear problems without the use of
Adomian polynomials or He’s polynomials. The advantage of this method is that it does not make any assumptions about
physical parameters. As a result, it can be used to solve both weakly and strongly nonlinear problems and circumvent some of
the drawbacks of perturbation techniques.

1. Introduction

A more than the 300-year-old extension of traditional calcu-
lus is fractional calculus (FC). Leibniz and L’Hospital started
the FC as a result of a correspondence that lasted for several
months in 1695. Leibniz addressed a letter to L’Hospital in
that year, posing the following query [1].

Is it possible to generalize the definition of derivatives
with integer orders to derivatives with noninteger orders?
The preceding query piqued L’Hopital’s interest, so it asked
Leibniz another straightforward query in response: “What if
the order is 1/2?” In a letter dated September 30, 1695, Leib-

niz said, “It will lead to a paradox, from which one-day valu-
able conclusions will be deduced.”

That date is regarded as the actual birthday of the FC.
The fractional-order differential equations (FODEs), frac-
tional dynamics, and other practical disciplines have all
benefited greatly from the rapid development of the theory
of FC since the 19th century. These days, FC is used in a
wide variety of applications. It is safe to argue that nearly
no field of contemporary engineering or research is unaf-
fected by the methods and instruments of FC. For instance,
mechanical engineering, electrical engineering, control the-
ory, viscoelasticity, optics, rheology, chemistry, physics,
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statistics, robotics, and bioengineering are just a few fields
with numerous and fruitful applications [2–5]. In fact, it
may be argued that fractional-order systems in general char-
acterize real-world processes. The success of FC applications
is mostly due to the fact that these new fractional-order
models are frequently more accurate than integer-order ones
since they have more degrees of freedom than the corre-
sponding classical ones. The fact that fractional derivatives
are not a local number is one of the subject’s interesting
aspects. The nonlocal and distributed effects frequently
observed in technical and natural phenomena can be mod-
eled by all fractional operators since they consider the whole
history of the activity under consideration. In order to
describe the memory and hereditary characteristics of vari-
ous materials and processes, FC is a great collection of tools.

Examples of fractional derivative definitions used in a
range of natural phenomena and applications include Hada-

mard, Grunwald, Riemann-Liouville, Letnikov, Riesz, and
Caputo derivatives [6–10]. In contrast to past formulations,
the conformable derivative (CD), which Khalil et al. pro-
posed [11], is a new formulation of the fractional operators
that is far simpler to compute. The main benefits of CD
are as follows [12–17]: in contrast to the previous fractional
formulations, it satisfies all the concepts and guidelines of an
ordinary derivative, including the chain, product, and quo-
tient criteria. It is easily and quickly adaptable to solve exact
and numerical FODEs and systems. It simplifies the well-
known transforms, like the Sumudu and Laplace transforms,
which are used as tools to explain some FODEs. Class con-
formable fractional operators, modified conformable frac-
tional operators, fuzzy generalized conformable fractional
operators, deformable fractional operators, M-conformable
fractional operators, and Katugampola fractional operators
are just a few examples of the new definitions that can be
created and expanded upon. In a variety of applications, it
produces new comparisons between CD and the earlier frac-
tional definitions. Researchers have shown a great deal of
interest in CD due to the numerous applications and
phenomena that it may represent and the necessity to
address them.

Various integral transforms are used with other analyti-
cal, numerical, or homotopy-based methods to handle
FODEs. The Laplace transform (LT) [18], the Elzaki trans-
form (ET) [19], the traveling wave transform (TWT) [20],
the Yang transform (YT) [21], the Aboodh transform (AT)
[22], the fractional complex transform (FCT) [23], and the
natural transform (NT) [24] are all transformations that
can be used to solve FODEs. The Shehu transform (ST),
which has been used by numerous academics for the solu-
tions of FODEs, has recently piqued the curiosity of many
mathematicians [25–27].

The significant advantages of ST include the following:

(i) The ET, SIT, and NT are all more challenging to
understand than the ST

(ii) When variable n = 1 is used, the ST becomes LT,
and when variable m = 1 is used, it becomes YT
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Figure 1: The 2D plot of the 5th-step approximate solution and
exact solution of Example 3 for various quantities of υ in the
interval t ∈ ½0, 1:0� when x = 1:0 is shown.
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Figure 2: The 5th iteration’s approximate and exact solutions for
Example 3 are shown in a 2D graphic for various values of υ in
the interval x ∈ ½0, 1:0� with t = 0:1.
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Figure 3: The 2D plot of the absolute error graph of f ðx, tÞ for the
5th iteration approximate solution in the interval t ∈ ½0,0:5� when
υ = 1:0 and x = 1:0 in Example 3.
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(iii) It is an extension of the LT and SIT

(iv) It can be used efficiently to find exact and numerical
solutions to FODEs

We understand that the majority of engineering issues
are nonlinear and that addressing them analytically is chal-
lenging. Obtaining closed form or approximate solutions to
nonlinear FODEs remains a fundamental topic in physics
and mathematics, requiring innovative ways to locate exact
or approximate solutions. As a result of the foregoing,
researchers have devised a variety of numerical strategies
for solving nonlinear FODEs. A few examples include the
Elzaki residual power series method [28], the Haar Wavelet
method [29], the operational Matrix Technique [30], the
reduced differential transform method [31], the spectral
Tau approach [32], the reproducing kernel technique [33],
and the fractional power series technique [34].

Finding the solutions to TFSHEs is an interesting and
important field for researchers [35–39]. Each of these tech-

niques has distinct restrictions and flaws. These techniques
have long run times and enormous computational demands.
In this study, we used CNDJM to acquire approximate and
closed-form results of TFSHEs in the sense of CD. The recur-
rence, relative, and absolute error analyses among the exact
solution and approximate solution of five linear-nonlinear
problems have been used to demonstrate the accuracy and
efficacy of the proposed method. The results obtained using
the recommended method show excellent agreement with
EDM [36], proving that the CSDJA is an acceptable substitute
tool for the He’s or Adomian polynomial-based methods used
to solve FODEs. The effectiveness of the CSDJA has been
demonstrated by results in both graphs and numerically. The
approximate solutions achieved using CSDJA are in perfect
agreement with the corresponding precise solutions, as can
be seen from the graphs and tables. The numerical evidence
for the convergence of the approximative solution to the exact
solution is presented in the tables. The absolute, relative, and
recurrence error analyses have demonstrated a more accurate
and faster convergence.
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Figure 4: The 2D plot of the relative error graph of f ðx, tÞ for the 5th iteration approximate solution in the interval t ∈ ½0, 0:5� when υ = 1:0
and x = 1:0 in Example 3.
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Figure 5: The 3D plot of the absolute error graph of f = ðx, tÞ for
the 5th iteration approximate solution when υ = 1:0 with x ∈ ½0,
0:5� and t ∈ ½0, 0:3� in Example 3.
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Figure 6: The 3D plot of the relative error graph of f = ðx, tÞ for the
5th iteration approximate solution when υ = 1:0 and x ∈ ½0, 0:5� and
t ∈ ½0, 0:3� in Example 3.
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Many applications of the TFSHEs are found in engineer-
ing and science, including physics, biology, laser studies,
fluids, and hydrodynamics. In fluid layers restricted between
horizontal well-conducting barriers, the Swift-Hohenberg

(SH) equations play a significant role in pattern creation the-
ory. There are numerous uses for this equation in the model-
ing of pattern generation and its many difficulties, such as
pattern selection, noise effects on bifurcations, defect

Table 1: Absolute and relative error in the 4th-step approximate solution of f ðx, tÞ when υ = 1:0, Y = 3, and Θ = 2 for Example 3.

x, tð Þ f 4 x, tð Þ f x, tð Þ Abs:error = f − f 4
�� �� Re l:error = f − f 4

�� ��/ fj j
0:02, 0:02ð Þ 1:040810774165092 1:0408107741923882 2:729616532803902 × 10−11 2:622586737653570 × 10−11

0:12, 0:12ð Þ 1:271248911766325 1:2712491503214047 2:385550796901725 × 10−7 1:8765407208324160 × 10−7

0:22, 0:22ð Þ 1:552701664430785 1:5527072185113360 0:00000555408055080697 0:00000357703016034920
0:32, 0:32ð Þ 1:896440220522181 1:8964808793049515 0:00004065878276993118 0:00002143906812539674
0:42, 0:42ð Þ 2:316188883508124 2:3163669767810915 0:00017809327296758326 0:00007688474009203334
0:52, 0:52ð Þ 2:828634231524732 2:8292170143515600 0:00058278282682744380 0:00020598731870733296
0:62, 0:62ð Þ 3:454033558387693 3:4556134647626755 0:00157990637498217620 0:00045719997074113760
0:72, 0:72ð Þ 4:216940784284310 4:2206958169965520 0:00375503271224175700 0:00088967148428948830
0:82, 0:82ð Þ 5:303822828551244 5:1551695122346800 0:00809833753451094700 0:00157091585743035090
0:92, 0:92ð Þ 6:280329876306269 6:2965382610266570 0:01620838472038777000 0:00257417394264272700

Table 2: Absolute and relative error in the 5th iteration approximate solution of f ðx, tÞ when υ = 1:0, Y = 3, and Θ = 2 for Example 3.

x, tð Þ f 5 x, tð Þ f x, tð Þ Abs:error = f − f 5
�� �� Re l:error = f − f 5

�� ��/ fj j
0:02, 0:02ð Þ 1:0408107741922974 1:0408107741923882 9:08162434143378 × 10−14 8:725528757598248 × 10−14

0:12, 0:12ð Þ 1:2712491455640722 1:2712491503214047 4:757332527915992 × 10−9 3:742250310816896 × 10−9

0:22, 0:22ð Þ 1:5527070159482126 1:5527072185113360 2:025631233859570 × 10−7 1:304580290289145 × 10−7

0:32, 0:32ð Þ 1:8592962781683804 1:8964808793049515 0:00000215149950033577 0:00000113446938685945
0:42, 0:42ð Þ 2:3163546393670910 2:3163669767810915 0:00001233741400064047 0:00000532619145597775
0:52, 0:52ð Þ 2:8291671596033580 2:8292170143515600 0:00004985474820173863 0:00001762139416978059
0:62, 0:62ð Þ 3:4554527458972446 3:4556134647626755 0:00016071886543089775 0:00004650950318077187
0:72, 0:72ð Þ 4:2202534168201780 4:2206958169965520 0:00044240017637431350 0:00010481688222894147
0:82, 0:82ð Þ 5:1540858809814400 5:1551695122346800 0:00108363125324029140 0:00021020283633128398
0:92, 0:92ð Þ 6:2941117674091895 6:2965382610266570 0:00242649361746760660 0:00038536947079107625

Table 3: The recurrence error for f ðx, tÞ at various values of υ for Example 3.

x, tð Þ υ = 0:7 υ = 0:8 υ = 0:9 υ = 1:0
0:03, 0:03ð Þ 2:389361050347296 × 10−7 2:122670930232615 × 10−8 2:04023732018427 × 10−9 2:086670431255871 × 10−10

0:13, 0:13ð Þ 0:00004472893622536946 0:00000827180924889488 0:00000165504411671953 3:523658391081241 × 10−7

0:23, 0:23ð Þ 0:00036413607844953396 0:00008957109715237295 0:00002383796620121089 0:000006750651136424606
0:33, 0:33ð Þ 0:00142378535825781070 0:00041950945889177800 0:00013373223882468582 0:000045363403631587120
0:43, 0:43ð Þ 0:00397388024822836750 0:00133656248951324060 0:00048636339807192120 0:000188324862522390530
0:53, 0:53ð Þ 0:00912998728886662200 0:00340916776057963170 0:00137728461232044700 0:000592071528646969300
0:63, 0:63ð Þ 0:01847676778128128800 0:00752205562040674600 0:00331317368190818600 0:001552841126987777000
0:73, 0:73ð Þ 0:03419743526328207000 0:01498632791930036700 0:00710549027016691900 0:003584825550795332800
0:83, 0:83ð Þ 0:05923335025813710600 0:02767869489816617700 0:01399336113675867500 0:007527896437711811000
0:93, 0:93ð Þ 0:09747937634589607000 0:04821636669617927000 0:02580318662074363600 0:014693571306273750000
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dynamics, and spatiotemporal chaos. The general form of
the S-H equation is given by [40]

∂
∂t

f x, tð Þ =wf x, tð Þ − 1 + ∇2� �2
f x, tð Þ − f 3 x, tð Þ, ð1Þ

where x ∈ R,t > 0,w is bifurcation parameter, and f ðx, tÞ is a
scaler function of x and t defined on the line or the plane.

The following is how this study is structured: first, in
Section 2, we use crucial terminology and findings from
FC theory. Next, in Section 3, we described how to solve
TFSHEs using the CSDJA. In Section 4, to assess the effi-
ciency of the CSDJA, we solved five numerical problems
with a conclusion remark. Finally, we summarize our results
in the conclusion.

Table 4: The absolute and relative error in various approaches for Example 3 at υ = 1:0.

x, tð Þ Abs:error
CSDJAð Þ

Abs:error EDMð Þ [36] Re l:error
CSDJAð Þ

Re l:error EDMð Þ [36]

0:06, 0:06ð Þ 6:940115149234316 × 10−11 6:940115149234316 × 10−11 6:15532995902626 × 10−11 6:15532995902626 × 10−11

0:16, 0:16ð Þ 2:798253562197317 × 10−8 2:798253562197317 × 10−8 2:031949129677607 × 10−8 2:031949129677607 × 10−8

0:26, 0:26ð Þ 5:778071316964173 × 10−7 5:778071316964173 × 10−7 3:435182125572402 × 10−7 3:435182125572402 × 10−7

0:36, 0:36ð Þ 0:0000045667026689066 0:0000045667026689066 0:0000022228528263887 0:0000022228528263887
0:46, 0:46ð Þ 0:0000222971843411023 0:0000222971843411023 0:0000088858525225007 0:0000088858525225007
0:56, 0:56ð Þ 0:0000814362943066804 0:0000814362943066804 0:0000265710173812450 0:0000265710173812450
0:66, 0:66ð Þ 0:0002449136020046261 0:0002449136020046261 0:0000654250690270498 0:0000654250690270498
0:76, 0:76ð Þ 0:0006408613764907756 0:0006408613764907756 0:0001401640009270912 0:0001401640009270912
0:86, 0:86ð Þ 0:0015103634891575624 0:0015103634891575624 0:0002704549719496070 0:0002704549719496070
0:96, 0:96ð Þ 0:0032809722748394776 0:0032809722748394776 0:0004810133780481200 0:0004810133780481200
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Figure 7: The 2D plot of the 5th step exact solution and
approximate solution of Example 4 for various values of υ in the
interval t ∈ ½0, 1:0�, when x = 2:0 is shown.
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Figure 8: The 2D plot of the 5th iteration approximate and exact
solutions of Example 4 for different values of υ in the interval x ∈
½0, 1:0�, with t = 0:2.
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Figure 9: The 2D plot of the absolute error graph of f ðx, tÞ for the
5th iteration approximate solution in the interval t ∈ ½0,0:5� when
υ = 1:0 and x = 2:0 in Example 4.
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2. Preliminaries

The definitions, theorems, and mathematical foundations of
CD and CST that will be used in this work are reviewed in
this part.

Definition 1. Assumed a function f : ½0,∞Þ⟶ R as well the
CD of f order υ is defined as follows [41]:

Τυ
t f tð Þ = lim

∈⟶0

f t+∈t1−υ
� �

− f tð Þ
∈

, ð2Þ

for t > 0 and υ ∈ ð0, 1�: If f is υ − differentiable in some ð0,
PÞ,P > 0, and lim

t⟶0+
ðΤυ f ÞðtÞ, happen afterward, it is drawn as

Τυ fð Þ 0ð Þ = lim
t⟶0+

Τυ fð Þ tð Þ: ð3Þ

Theorem 2. Let f1 and f2 be υ − differentiable at a point t > 0
. Then, for υ ∈ ð0, 1�, we take the following [42]:

(i) Τυ
t ðe1 f1 + e2 f2Þ = e1Τ

υ
t ð f1Þ + e2Τ

υ
t ð f2Þ, ∀e1, e2 ∈ R

(ii) Τυ
t ðteÞ = ete−υ, ∀e ∈ RΤυ

t ðeÞ = 0, where e ∈ R

(iii) Τυ
t ð f1 f2Þ = f1Τ

υ
t ð f2Þ + f2Τ

υ
t ð f1Þ

(iv) Τυ
t ð f1/f2Þ = ð f2Τυ

t ð f1Þ − f1Τ
υ
t ð f2ÞÞ/ð f2Þ2

Definition 3. Let 0 < υ ≤ 1 and f : ½0,∞Þ⟶ R be a real
value function. Then, the CST of order υ is defined by [43]:

Iυ f tð Þ½ � = Rυ m, nð Þ =
ð∞
0
e− mtυ/nυð Þ f tð Þtυ−1dt, ð4Þ

assuming the integral is present.

Theorem 4. Let ½0,∞Þ⟶ R be differentiable function and
0 < υ ≤ 1: Then, we have the following [44]:

Iυ Τ
υ
t f x, tð Þ½ � = m

n
Iυ f x, tð Þ½ � − f x, 0ð Þ: ð5Þ
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Figure 10: The 2D plot of the relative error graph of f ðx, tÞ for the 5th iteration approximate solutions in the interval t ∈ ½0, 0:5� when
υ = 1:0 and x = 2:0 in Example 4.
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Figure 11: The 3D plot of the absolute error graph of f = ðx, tÞ for
the 5th iteration approximate solutions when υ = 1:0 with x ∈ ½0,
0:4� and t ∈ ½0, 0:3� in Example 4.
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Figure 12: The 3D plot of the relative error graph of f = ðx, tÞ for
the 5th iteration approximate solutions when υ = 1:0 and x ∈ ½0,
0:4� and t ∈ ½0, 0:3� in Example 4.

6 Journal of Mathematics



Theorem 5. Let e, a ∈ R and 0 < υ ≤ 1: After that, we have the
following [45]:

(i) Iυ½e� = ne/m,m > 0

(ii) Iυ½eaðt
υ/υÞ� = 1/ðn − amÞ,m > an

(iii) Iυ½sin ðaðtυ/υÞÞ� = an/ðm2 + a2n2Þ,m > 0

(iv) Iυ½cos ðaðtυ/υÞÞ� =m/ðm2 + a2n2Þ,m > 0

(v) Iυ½sinh ðaðtυ/υÞÞ� = an/ðm2 − a2n2Þ,m > janj

(vi) Iυ½cosh ðaðtυ/υÞÞ� =m/ðm2 − a2n2Þ,m > janj

(vii) Iυ½te� = υðe/υÞΓððe/υÞ + 1Þðn/mÞðe/υÞ+1,m > 0

In the succeeding part, we generate the foremost sugges-
tion of the CSDJA to obtain the results for linear and nonlin-
ear TFSHEs.

3. The Methodology of the CSDJA for
the TFSHEs

To show a detailed understanding of the CSDJA for the
TFSHEs, we consider the following problem in common
operator systems with the preliminary condition [35, 40]:

Tυ
t f x, tð Þ + L f x, tð Þð Þ +N f x, tð Þð Þ =Χ x, tð Þ,  0 < υ ≤ 1,

f0 x, tð Þ = f x, 0ð Þ =Μ xð Þ,

(

ð6Þ

where Tυ
t is the CD, Lð f ðx, tÞÞ is a linear operator, Nð f ðx, tÞÞ

is nonlinear operator, Xðx, tÞ is a source operator, andΜðxÞ
is a function of x.

Considering CST over both sides of Equation (6), we get
the following:

Iυ T
υ
t f x, tð Þ + L f x, tð Þð Þ +N f x, tð Þð Þ½ � =Iυ X x, tð Þ½ �: ð7Þ

Table 5: Relative and absolute error in the 4th-step approximate solution of f ðx, tÞ when υ = 1:0, Y = 3, and Θ = 2 for Example 4.

x, tð Þ f 4 x, tð Þ f x, tð Þ Re l:error = f − f 4
�� ��/ fj j Abs:error = f − f 4

�� ��
0:03, 0:03ð Þ 1:0618365463356450 1:0618365465453596 1:975018572683782 × 10−10 2:097146900581492 × 10−10

0:13, 0:13ð Þ 1:2969297265212163 1:2969300866657718 2:776900306454735 × 10−7 3:601445555112548 × 10−7

0:23, 0:23ð Þ 1:5683052371426760 1:5840739849944818 0:00000443046196873528 0:00000701817954618100
0:33, 0:33ð Þ 1:9347443533545630 1:9347923344020317 0:00002479906841452054 0:05280880783415465000
0:43, 0:43ð Þ 2:3629579963630247 2:3631606937057947 0:00008577382964683130 0:00020269734277000850
0:53, 0:53ð Þ 2:8857223796091587 2:8863709892679585 0:00022471458492741108 0:00064860965879987020
0:63, 0:63ð Þ 3:5236896816699144 3:5254214873653824 0:00049123365863474670 0:00173180569546804720
0:73, 0:73ð Þ 4:3018885509799105 4:3059595283452060 0:00094542861782547080 0:00407097736529582500
0:83, 0:83ð Þ 5:2506040155785140 5:2593108444468980 0:00165550756095314270 0:00870682886838469700
0:93, 0:93ð Þ 6:4064239349551840 6:4237367714291350 0:00269513479303095400 0:01731283647395098800

Table 6: Relative and absolute error in the 5th-step approximate solution of f ðx, tÞ when υ = 1:0, Y = 3, and Θ = 2 for Example 4.

x, tð Þ f 5 x, tð Þ f x, tð Þ Re l:error = f − f 5
�� ��/ fj j Abs:error = f − f 5

�� ��
0:03, 0:03ð Þ 1:0618365465443120 1:0618365465453596 9:865985960312264 × 10−13 1:047606446036297 × 10−12

0:13, 0:13ð Þ 1:2969300788870555 1:2969300866657718 5:997791567719124 × 10−9 7:778716337725200 × 10−9

0:23, 0:23ð Þ 1:5840737174660720 1:5840739849944818 1:688863098591869 × 10−7 2:675284098696551 × 10−7

0:33, 0:33ð Þ 1:9347897167581944 1:9347923344020317 0:00000135293271050344 0:00000261764383724383
0:43, 0:43ð Þ 2:3631463212255475 2:3631606937057947 0:00000608188866950595 0:00001437248024727111
0:53, 0:53ð Þ 2:8863144511378060 2:8863709892679585 0:00001958796369660575 0:00005653813015271680
0:63, 0:63ð Þ 3:5252425227969020 3:5254214873653824 0:00005076402045020574 0:00017896456848021103
0:73, 0:73ð Þ 4:3054733765307050 4:3059595283452060 0:00011290208635281496 0:00048615181450095690
0:83, 0:83ð Þ 5:2581319120162260 5:2593108444468980 0:00022416100997668992 0:00117893243067257460
0:93, 0:93ð Þ 6:4211175062614570 6:4237367714291350 0:00040774789828359850 0:00261926516767729820
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Table 7: The recurrence error for f ðx, tÞ at various values of υ for Example 4.

x, tð Þ υ = 0:7 υ = 0:8 υ = 0:9 υ = 1:0
0:04, 0:04ð Þ 6:605570054968454 × 10−7 6:776111811148356 × 10−8 7:520521323907584 × 10−9 8:88158527310838 × 10−10

0:14, 0:14ð Þ 0:00005855687695655334 0:000011237823043034677 0:000002333369918901773 5:155373796638246 × 10−7

0:24, 0:24ð Þ 0:00042687289116174175 0:000107261647058368440 0:000029159996674309360 0:000008435399161940688
0:34, 0:34ð Þ 0:00159648516526208390 0:000477468374476977100 0:000154497500358521600 0:000053195324562529430
0:44, 0:44ð Þ 0:00435013258370755200 0:001480025155353154600 0:000544794636100933600 0:000213388842878693700
0:54, 0:54ð Þ 0:00984522698715773800 0:003710760102727795500 0:001513202834688249000 0:000656608610049396100
0:64, 0:64ð Þ 0:01972000093709039600 0:008091651751701122000 0:003592233495567985300 0:001696942365438352200
0:74, 0:74ð Þ 0:03622575866606469000 0:015983563638428833000 0:007630040833314809000 0:003875745658449868000
0:84, 0:84ð Þ 0:06238977506975238000 0:029328734766364786000 0:014916617684664520000 0:008072769438923630000
0:94, 0:94ð Þ 0:10221458141443295000 0:050829641468808535000 0:027347545964240397000 0:015656505501509240000

Table 8: The absolute and relative error in different methods for Example 4 at υ = 1:0.

x, tð Þ Abs:errors
CSDJAð Þ

Abs:errors EDMð Þ [36] Re l:errors
CSDJAð Þ

Re l:errors EDMð Þ [36]

0:07, 0:07ð Þ 1:770170676707039 × 10−10 1:770170676707039 × 10−10 1:538912455856741 × 10−10 1:538912455856741 × 10−10

0:17, 0:17ð Þ 4:072256909459781 × 10−8 4:072256909459781 × 10−8 2:898511614818456 × 10−8 2:898511614818456 × 10−8

0:27, 0:27ð Þ 7:330046871700802 × 10−7 7:330046871700802 × 10−7 4:271572004303072 × 10−7 4:271572004303072 × 10−7

0:37, 0:37ð Þ 0:0000054448562791797 0:0000054448562791797 0:0000025978166988087 0:0000025978166988087
0:47, 0:47ð Þ 0:0000256617119771540 0:0000256617119771540 0:0000100241790012295 0:0000100241790012295
0:57, 0:57ð Þ 0:0000916097361671752 0:0000916097361671752 0:0000292985362098356 0:0000292985362098356
0:67, 0:67ð Þ 0:0002711490539653027 0:0002711490539653027 0:0000709992053204676 0:0000709992053204676
0:77, 0:77ð Þ 0:0007012039032332495 0:0007012039032332495 0:0001503248651000401 0:0001503248651000401
0:87, 0:87ð Þ 0:0016376884224653665 0:0016376884224653665 0:0002874477279969388 0:0002874477279969388
0:97, 0:97ð Þ 0:0035321427112258164 0:0035321427112258164 0:0005075828587816742 0:0005075828587816742
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Figure 13: The 2D plot of the 5th iteration approximate and exact
solutions of Example 5 for different values of υ in the interval t ∈
½0, 1:0�, when x = 3:0 is shown.
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Figure 14: The 2D plot of the 5th iteration approximate and exact
solutions of Example 5 for different values of υ in the interval x ∈
½0, 1:0�, with t = 0:3 is shown.
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We acquire the following by simplifying Equation (7).

Iυ f x, tð Þ½ � = n
m
f x, 0ð Þ + n

m
Iυ X x, tð Þ½ � − n

m
Iυ L f x, tð Þð Þ½ �

−
n
m
Iυ N f x, tð Þð Þ½ �:

ð8Þ

We obtain the following when we use the inverse CST on
both sides of Equation (8).

f x, tð Þ =I−1
υ

n
m

f x, 0ð Þ + n
m
Iυ X x, tð Þ½ �

n o
−I−1

υ

n
m
Iυ L f x, tð Þð Þ½ �

n o
−I−1

υ

n
m
Iυ Nf x, tð Þð Þ½ �

n o
:

ð9Þ

Next, assume the following:

A f x, tð Þð Þ =I−1
υ

n
m
f x, 0ð Þ + n

m
Iυ X x, tð Þ½ �

n o
:

B f x, tð Þð Þ =I−1
υ

n
m
Iυ L f x, tð Þð Þ½ �

n o
:

C f x, tð Þð Þ =I−1
υ

n
m
Iυ N f x, tð Þð Þ½ �

n o
:

ð10Þ
As a result, Equation (9) can be written as

f x, tð Þ = A f x, tð Þð Þ + B f x, tð Þð Þ + C f x, tð Þð Þ, ð11Þ

where B and C are given as linear and nonlinear operators of
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Figure 15: The 2D plot of the absolute error graph of f ðx, tÞ for the 5th iteration approximate solution in the intervals t ∈ ½0,0:5� when υ
= 1:0 and x = 3:0 in Example 5.
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Figure 16: The 2D plot of the relative error graph of f ðx, tÞ for the 5th iteration approximate solution in the interval t ∈ ½0, 0:5� when υ = 1:0
and x = 3:0 in Example 5.
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Figure 17: The 3D plot of the absolute error graph of f = ðx, tÞ for
the 5th iteration approximate solution when υ = 1:0 with x ∈ ½0, 0:3�
and t ∈ ½0, 0:3� in Example 5.
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f ðx, tÞ, respectively, where Að f ðx, tÞÞ is a known function.
The solution to Equation (6) can be expressed in the follow-
ing expansion form:

f x, tð Þ = 〠
∞

i=0
f i x, tð Þ: ð12Þ

Assume the following:

B 〠
∞

i=0
f i x, tð Þ

 !
= 〠

∞

i=0
B f i x, tð Þð Þ: ð13Þ

Decompose the nonlinear operator as [45]

C 〠
∞

i=0
f i x, tð Þ

 !
= C f0 x, tð Þð Þ + 〠

∞

i=0
C 〠

i

κ=0
f κ x, tð Þ

 !
− C 〠

i−1

κ=0
f κ x, tð Þ

 !( )
:

ð14Þ

As a result, Equation (6) can be considered the following
arrangement.

〠
∞

i=0
f i x, tð Þ = A f x, tð Þð Þ + 〠

∞

i=0
B f i x, tð Þð Þ + C f0 x, tð Þð Þ + 〠

∞

i=0
CC 〠

i−1

κ=0
f κ x, tð Þ

 !( )
:

ð15Þ

Use Equation (15) to define the recurrence relation.

f0 x, tð Þ = A f x, tð Þð Þ,

f1 x, tð Þ = B f0 x, tð Þð Þ + C f0 x, tð Þð Þ,

f j+1 x, tð Þ = B f k x, tð Þ + C f0 x, tð Þ + f1 x, tð Þ+⋯+f j x, tð Þ
� ��

− C f0 x, tð Þ + f1 x, tð Þ+⋯+f j−1 x, tð Þ
� �

:

ð16Þ

As a result, we have the following:

f1 x, tð Þ + f2 x, tð Þ+⋯+f j+1 x, tð Þ
� �

= B f0 x, tð Þ + f1 x, tð Þ+⋯+f j x, tð Þ
� �
+ C f0 x, tð Þ + f1 x, tð Þ+⋯+f j x, tð Þ
� �

:

ð17Þ

Particularly,

〠
∞

i=0
f i x, tð Þ = A 〠

∞

i=0
f i x, tð Þ

 !
+ B 〠

∞

i=0
f i x, tð Þ

 !
+ C 〠

∞

i=0
f i x, tð Þ

 !
:

ð18Þ

Equation (6) has jth approximate solution, which is
given by

f j x, tð Þ = f0 x, tð Þ + f1 x, tð Þ++f j−1 x, tð Þ: ð19Þ

In the next section, we will assess the suitability of the
suggested approach by solving numerical problems.

4. Numerical Examples and
Concluding Remarks

In this section, five TFSHEs in the CD sense are solved in
order to assess the effectiveness and suitability of the sug-
gested approach.

Example 1. Take the following SH equation, which is linear
and time-fractional [36]:

Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

= 0, 0 < υ ≤ 1,

ð20Þ

with the initial condition:

f x, 0ð Þ = sin x: ð21Þ

The results of applying CST to both sides of Equation
(20) are as follows:

Iυ Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

" #
= 0:

ð22Þ

By using the method described in Section 3, we achieve
the following outcome:

Iυ f x, tð Þ½ � = n
m

sin x −
n
m
Iυ 1 −ϒð Þf x, tð Þ½ � − n

m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #
−

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #
:

ð23Þ
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Figure 18: The 3D plot of the relative error graph of f = ðx, tÞ for
the 5th iteration approximate solution when υ = 1:0 and x ∈ ½0, 0:3
� and t ∈ ½0, 0:3� in Example 5.
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Table 10: Absolute and relative error in the 5th-step approximate solution of f ðx, tÞ when υ = 1:0 for Example 5.

x, tð Þ f 5 x, tð Þ f x, tð Þ Rel:error = f − f 5
�� ��/ fj j Abs:error = f − f 5

�� ��
0:05, 0:05ð Þ 1:1051709180526696 1:1051709180756477 2:079141200717798 × 10−11 2:297806389606194 × 10−11

0:15, 0:15ð Þ 1:3498587887940425 1:3498588075760032 1:391401867217576 × 10−8 1:878196065341342 × 10−8

0:25, 0:25ð Þ 1:6487208192578820 1:6487212707001282 2:738135634414047 × 10−7 4:514422462520429 × 10−7

0:35, 0:35ð Þ 2:0137488949836050 2:0137527074704766 0:00000189322495130197 0:00000381248687153501
0:45, 0:45ð Þ 2:4595837922127695 2:4596031111569500 0:00000785449656196916 0:00001931894418039093
0:55, 0:55ð Þ 3:0040937695882923 3:0041660239464334 0:00002405138649632585 0:00007225435814106618
0:65, 0:65ð Þ 3:6690757551727438 3:6692966676192444 0:00006020566514836269 0:00022091244650068730
0:75, 0:75ð Þ 4:4811039658285040 4:4816890703380645 0:00013055446292173030 0:00058510450956017480
0:85, 0:85ð Þ 5:4725555812700595 5:4739473917272000 0:00025426083912386135 0:00139181045714043000
0:95, 0:95ð Þ 6:6828487579188190 6:6858944422792685 0:00045553880438038890 0:00304568436044938550

Table 9: Absolute and relative error in the 4th-step approximate solution of f ðx, tÞ when υ = 1:0 for Example 5.

x, tð Þ f 4 x, tð Þ f x, tð Þ Re l:error = f − f 4
�� ��/ fj j Abs:error = f − f 4

�� ��
0:05, 0:05ð Þ 1:1051709153149847 1:1051709180756477 2:497951209498041 × 10−9 2:760663031509125 × 10−9

0:15, 0:15ð Þ 1:3498580535708110 1:3498588075760032 5:585807849316814 × 10−7 7:540051922827473 × 10−7

0:25, 0:25ð Þ 1:6487103698322902 1:6487212707001282 0:00000661171056119114 0:00001090086783794852
0:35, 0:35ð Þ 2:0136867849099350 2:0137527074704766 0:00003273617475320743 0:00006592256054149814
0:45, 0:45ð Þ 2:4593426274569340 2:4596031111569500 0:00010590476928346425 0:00026048370001596766
0:55, 0:55ð Þ 3:0033668369534470 3:0041660239464334 0:00026602624043272600 0:00079918699298620060
0:65, 0:65ð Þ 3:6672236017846527 3:6692966676192444 0:00056497634897884670 0:00207306583459176960
0:75, 0:75ð Þ 4:4769175156003390 4:4816890703380645 0:00106467777278576500 0:00477155473772583600
0:85, 0:85ð Þ 5:4639046334569470 5:4739473917272000 0:00183464647201958890 0:01004275827025313800
0:95, 0:95ð Þ 6:6661756508830850 6:6858944422792685 0:00294931240186632400 0:01971879139618337700

Table 11: The recurrence error for f ðx, tÞ at various values of υ for Example 5.

x, tð Þ υ = 0:7 υ = 0:8 υ = 0:9 υ = 1:0
0:05, 0:05ð Þ 0:000001456928681921672 1:6709504069900890 × 10−7 2:073413635883548 × 10−8 2:7376851468125640 × 10−9

0:15, 0:15ð Þ 0:000075299507010213980 0:000014958154942352114 0:000003214852447088009 7:3522323172649170 × 10−7

0:25, 0:25ð Þ 0:000497384451313588700 0:000127556464740409500 0:000035392387988058570 0:000010449425591534353
0:35, 0:35ð Þ 0:001784718714941603100 0:000541556864447976400 0:000177793334429172840 0:000062110073669809540
0:45, 0:45ð Þ 0:004753405550388819000 0:001635503172715662700 0:000608828586232166100 0:000241164755835960970
0:55, 0:55ð Þ 0:010603761039668216000 0:004033495177363797000 0:001659970134744652700 0:000726932634845213500
0:65, 0:65ð Þ 0:021028907727128978000 0:008695882418547608000 0:003890520650822312500 0:001852153388091293700
0:75, 0:75ð Þ 0:038349864797284756000 0:017034709587258750000 0:008186584586292290000 0:004186450228164713000
0:85, 0:85ð Þ 0:065681808688387200000 0:031059526557876346000 0:015890650727901650000 0:008650947813112190000
0:95, 0:95ð Þ 0:107137357433544080000 0:053560299636793150000 0:028969579299671387000 0:016673107035735170000
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Apply the inverse CST on both sides of Equation (23).

f x, tð Þ =I−1
υ

n
m

sin x
n o

−I−1
υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )
−I−1

υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )
:

ð24Þ

The procedure described in Section 3 leads to the follow-
ing outcome:

B f x, tð Þð Þ = −I−1
υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )

−I−1
υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )
,

ð25Þ

〠
∞

i=0
f i x, tð Þ =I−1

υ

n
m

sin x
n o

−I−1
υ

n
m
Iυ 1 −ϒð Þ〠

∞

i=0
f i x, tð Þ

" #( )

−I−1
υ

n
m
Iυ 2 ∂2

∂x2
〠
∞

i=0
f i x, tð Þ

" #( )

−I−1
υ

n
m
Iυ

∂4

∂x4
〠
∞

i=0
f i x, tð Þ

" #( )
:

ð26Þ

Here, we will discuss the following two cases.

Case 1. ϒ ≠ 0.

Using the iteration process outlined in Section 3, the
results from Equation (26) are as follows:

f0 x, tð Þ = sin x,

f1 x, tð Þ = sin x ϒ − 1ð Þ + 1ð Þ tυ

1!υ1 ,

f2 x, tð Þ = sin x ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1
� � t2υ

2!υ2 ,

f3 x, tð Þ = sin x ϒ − 1ð Þ3 + ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1
� � t3υ

3!υ3 ,

f4 x, tð Þ = sin x ϒ − 1ð Þ4 + ϒ − 1ð Þ3 + ϒ − 1ð Þ2�
+ ϒ − 1ð Þ + 1Þ t4υ

4!υ4 ,

f5 x, tð Þ = sin x ϒ − 1ð Þ5 + ϒ − 1ð Þ4 + ϒ − 1ð Þ3 + ϒ − 1ð Þ2�
+ ϒ − 1ð Þ + 1Þ t5υ

5!υ5 :

ð27Þ

As a result, we get the 5th step approximate solution to
Equations (20) and (21) obtained from the 5th iteration as
follows:

f 5ð Þ x, tð Þ = sin x + sin x ϒ − 1ð Þ + 1ð Þ tυ

1!υ1 + sin x ϒ − 1ð Þ2�
+ ϒ − 1ð Þ + 1Þ t2υ

2!υ2 + sin x ϒ − 1ð Þ3 + ϒ − 1ð Þ2�
+ ϒ − 1ð Þ + 1Þ t3υ

3!υ3 + sin x ϒ − 1ð Þ4 + ϒ − 1ð Þ3�
+ ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1
� � t4υ

4!υ4 + sin x ϒ − 1ð Þ5�
+ ϒ − 1ð Þ4 + ϒ − 1ð Þ3 + ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1

� t5υ

5!υ5 :

ð28Þ

Table 12: The absolute and relative error in various approaches for Example 5 at υ = 1:0.

x, tð Þ Abs:errors
CSDJAð Þ

Abs:errors EDMð Þ [36] Re l:errors
CSDJAð Þ

Re l:errors EDMð Þ [36]

0:08, 0:08ð Þ 3:989657493264076 × 10−10 3:989657493264076 × 10−10 3:399761852987486 × 10−10 3:399761852987486 × 10−10

0:18, 0:18ð Þ 5:804326486114064 × 10−8 5:804326486114064 × 10−8 4:049541178148838 × 10−8 4:049541178148838 × 10−8

0:28, 0:28ð Þ 9:222621923932195 × 10−7 9:222621923932195 × 10−7 5:268045235400865 × 10−7 5:268045235400865 × 10−7

0:38, 0:38ð Þ 0:0000064634844112454 0:0000064634844112454 0:0000030227546606414 0:0000030227546606414
0:48, 0:48ð Þ 0:0000294538494971519 0:0000294538494971519 0:0000112776694370410 0:0000112776694370410
0:58, 0:58ð Þ 0:0001028641032836397 0:0001028641032836397 0:0000322464748883020 0:0000322464748883020
0:68, 0:68ð Þ 0:0002997943734013297 0:0002997943734013297 0:0000769454568034897 0:0000769454568034897
0:78, 0:78ð Þ 0:0007664534267357581 0:0007664534267357581 0:0001610595118526153 0:0001610595118526153
0:88, 0:88ð Þ 0:0017743428907426306 0:0017743428907426306 0:0003052665810132136 0:0003052665810132136
0:98, 0:98ð Þ 0:0038001237563074497 0:0038001237563074497 0:0005352794316180174 0:0005352794316180174
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We get the following exact solution to Equations (20)
and (21):

f x, tð Þ = −
1
ϒ

sin x lim
j⟶∞

〠
j

i=0
1 − ϒ − 1ð Þi+1� � tiυ

i!υi
: ð29Þ

Case 2. ϒ = 0.

Using the iteration process outlined in Section 3, the
results from Equation (26) are as follows.

f0 x, tð Þ = sin x,
f1 x, tð Þ = 0,
f2 x, tð Þ = 0,
f i x, tð Þ = 0:i = 3, 4,⋯:

ð30Þ

Hence, the solution to Equations (20) and (21) is

f x, tð Þ = sin x: ð31Þ

As a consequence, the solution of Equations (20) and
(21) is

f x, tð Þ = −
1
ϒ

sin x lim
j⟶∞

〠
j

i=0
1 − ϒ − 1ð Þi+1� � tiυ

i!υi
, ϒ ≠ 0,

sin x ϒ = 0:

8><
>:

ð32Þ

Example 2. Take the following SH equation, which is linear
and time-fractional [37]:

Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

= 0, 0 < υ ≤ 1,

ð33Þ

subject to the initial condition:

f x, 0ð Þ = cos x: ð34Þ

When CST is applied to both sides of an equation (33),
we get the following:

Iυ Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

" #
= 0:

ð35Þ

By using the method described in Section 3, we achieve

the following outcome:

Iυ f x, tð Þ½ � = n
m

cos x − n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

−
n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #
−

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #
:

ð36Þ

Consider the inverse of CST on both sides of Equation
(33).

f x, tð Þ =I−1
υ

n
m

cos x
n o

−I−1
υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )
−I−1

υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )
:

ð37Þ

We obtain the following outcome by following the pro-
cedure described in Section 3:

B f x, tð Þð Þ = −I−1
υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )

−I−1
υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )
:

ð38Þ

〠
∞

i=0
f i x, tð Þ =I−1

υ

n
m

sin x
n o

−I−1
υ

n
m
Iυ 1 −ϒð Þ〠

∞

i=0
f i x, tð Þ

" #( )

−I−1
υ

n
m
Iυ 2 ∂2

∂x2
〠
∞

i=0
f i x, tð Þ

" #( )

−I−1
υ

n
m
Iυ

∂4

∂x4
〠
∞

i=0
f i x, tð Þ

" #( )
:

ð39Þ
Here, we will deal with the following two situations:

Case 1. ϒ ≠ 0.

The outcomes of Equation (39) are as follows when
applying the iteration procedure described in Section 3:

f0 x, tð Þ = cos x,

f1 x, tð Þ = cos x ϒ − 1ð Þ + 1ð Þ tυ

1!υ1 ,

f2 x, tð Þ = cos x ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1
� � t2υ

2!υ2 ,

f3 x, tð Þ = cos x ϒ − 1ð Þ3 + ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1
� � t3υ

3!υ3 ,

f4 x, tð Þ = cos x ϒ − 1ð Þ4 + ϒ − 1ð Þ3 + ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1
� � t4υ

4!υ4 ,
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f5 x, tð Þ = cos x ϒ − 1ð Þ5 + ϒ − 1ð Þ4 + ϒ − 1ð Þ3 + ϒ − 1ð Þ2�
+ ϒ − 1ð Þ + 1Þ t5υ

5!υ5 :
ð40Þ

As a result, we get the 5th step approximate solution to
Equations (33) and (34) obtained from the 5th iteration as
follows:

f 5ð Þ x, tð Þ = cos x + cos x ϒ − 1ð Þ + 1ð Þ tυ

1!υ1 + cos x ϒ − 1ð Þ2�
+ ϒ − 1ð Þ + 1Þ t2υ

2!υ2 + cos x ϒ − 1ð Þ3 + ϒ − 1ð Þ2�
+ ϒ − 1ð Þ + 1Þ t3υ

3!υ3 + cos x ϒ − 1ð Þ4 + ϒ − 1ð Þ3�
+ ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1

� t4υ

4!υ4 + cos x ϒ − 1ð Þ5�
+ ϒ − 1ð Þ4 + ϒ − 1ð Þ3 + ϒ − 1ð Þ2 + ϒ − 1ð Þ + 1

� t5υ

5!υ5 :

ð41Þ

We get the following exact solution to Equations (33) and
(34).

f x, tð Þ = −
1
ϒ

cos x lim
j⟶∞

〠
j

i=0
1 − ϒ − 1ð Þi+1� � tiυ

i!υi
: ð42Þ

Case 2. ϒ = 0.

Using the iteration process outlined in Section 3, the
results from Equation (39) are as follows.

f0 x, tð Þ = cos x
f1 x, tð Þ = 0,
f2 x, tð Þ = 0,
f i x, tð Þ = 0:i = 3, 4,⋯:

ð43Þ

Hence, the solution to Equations (33) and (34) is

f x, tð Þ = cos x: ð44Þ

As a consequence, the solution of Equations (33) and
(34) is

f x, tð Þ = −
1
ϒ

cos x lim
j⟶∞

〠
j

i=0
1 − ϒ − 1ð Þi+1� � tiυ

i!υi
, ϒ ≠ 0,

cos x, ϒ = 0:

8><
>:

ð45Þ

Example 3. Consider the following SH equation, which is lin-
ear and time-fractional [36]:

Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

−Θ
∂3 f x, tð Þ

∂x3
= 0, 0 < υ ≤ 1,

ð46Þ

with the initial condition:

f x, 0ð Þ = ex: ð47Þ

Using CST on both sides of Equation (46),

Iυ Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

−Θ
∂3 f x, tð Þ

∂x3

" #
= 0:

ð48Þ

We obtain the following result from Equation (48) by
carrying out the processes outlined in Section 3.

Iυ f x, tð Þ½ � = n
m
ex −

n
m
Iυ 1 −ϒð Þf x, tð Þ½ � − n

m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #

−
n
m
Iυ

∂4 f x, tð Þ
∂x4

" #
+ n
m
Iυ Θ

∂3 f x, tð Þ
∂x3

" #
:

ð49Þ

Use inverse CST on both sides of Equation (49).

f x, tð Þ =I−1
υ

n
m
ex

n o
−I−1

υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )
−I−1

υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )

+I−1
υ

n
m
Iυ Θ

∂3 f x, tð Þ
∂x3

" #( )
:

ð50Þ

By following the steps indicated in Section 3, we obtain
the following outcome:

A f x, tð Þð Þ =I−1
υ

n
m
ex

n o
, ð51Þ

B f x, tð Þð Þ = −I−1
υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o
−I−1

υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )

−I−1
υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )
+I−1

υ

n
m
Iυ Θ

∂3 f x, tð Þ
∂x3

" #( )
,

ð52Þ

〠
∞

i=0
f i x, tð Þ =I−1

υ

n
m
ex

n o
−I−1

υ

n
m
Iυ 1 −ϒð Þ〠

∞

i=0
f i x, tð Þ

" #( )

−I−1
υ

n
m
Iυ 2 ∂2

∂x2
〠
∞

i=0
f i x, tð Þ

" #( )

+I−1
υ

n
m
Iυ Θ

∂3

∂x3
〠
∞

i=0
f i x, tð Þ

" #( )

−I−1
υ

n
m
Iυ

∂4

∂x4
〠
∞

i=0
f i x, tð Þ

" #( )
:

ð53Þ
The findings from Equation (53) are as follows using the
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iteration method described in Section 3:

f0 x, tð Þ = ex,

f1 x, tð Þ = ex ϒ − 4 +Θð Þ1 t1υ

1!υ1 :

f2 x, tð Þ = ex ϒ − 4 +Θð Þ2 t2υ

2!υ2 :

f3 x, tð Þ = ex ϒ − 4 +Θð Þ3 t3υ

3!υ3 :

f4 x, tð Þ = ex ϒ − 4 +Θð Þ4 t4υ

4!υ4 :

f5 x, tð Þ = ex ϒ − 4 +Θð Þ5 t5υ

5!υ5 :

ð54Þ

As a result, we get the approximate solution to Equations
(46) and (47) obtained from the 5th iteration as follows:

f 5ð Þ x, tð Þ = ex + ex ϒ − 4 +Θð Þ1 t1υ

1!υ1 + ex ϒ − 4 +Θð Þ2 t2υ

2!υ2

+ ex ϒ − 4 +Θð Þ3 t3υ

3!υ3 + ex ϒ − 4 +Θð Þ4 t4υ

4!υ4

+ ex ϒ − 4 +Θð Þ5 t5υ

5!υ5 :

ð55Þ

When υ = 1 is employed in Equation (55), we get the fol-
lowing exact solution to Equations (46) and (47):

f x, tð Þ = ex+ Θ+ϒ−4ð Þt: ð56Þ

We compare the numerical and graphical results of the
exact and approximative solutions to the models presented
in Examples 3–5. Error functions can be used to evaluate the
numerical method’s accuracy and capabilities. It is important
to provide the error of the analytical approximate solution that
CSDJA offers in terms of an infinite fractional power series.
We employed the recurrence, absolute, and relative error func-
tions to show the accuracy and efficiency of CSDJA.

The 2D graph of the comparison between the exact solu-
tion and the approximation is shown in Figures 1 and 2
obtained by the proposed method in Example 3. Figure 1
represents the 2D graph of the exact solution and the 5th
iteration approximate solution attained by CSDJA
atυ = 0:6, 0:7, 0:8, 0:9, andυ = 1:0withx = 1:0,Y = 3, and Θ =
2in the intervalt ∈ ½0, 1:0�for Example 3. Figure 2 represents
the 2D graph of the exact solution and 5th iteration approx-
imate solution attained by CSDJA at υ = 0:6, 0:7, 0:8, 0:9,
and υ = 1:0 with t = 0:1, Y = 3, and Θ = 2 in the interval
x ∈ ½0,1:0� for Example 3. These graphs show how effec-
tive the approximative solution provided by the CSDJA
is when υ⟶ 1:0. The approximate solution corresponds
with the precise solution at υ = 1:0, which proves the sug-
gested method’s effectiveness and precision.

Figures 3 and 4 show the 2D graph of the comparative
study of the approximate solution obtained from the five

iterations and the exact solution obtained by the proposed
method in the form of absolute and relative error with υ =
1:0 at x = 1:0, Y = 3, and Θ = 2 in the interval t ∈ ½0, 0:5� to
Example 3, respectively. The comparison has shown that
the suggested method’s fifth-step approximation and precise
solution are extremely close. The relative and absolute error
comparison of the approximate and exact solutions on a
graph demonstrates the superior accuracy of CSDJA.

Figures 5 and 6 display the 3D graphs of the comparison
research in terms of absolute and relative error for the
approximate solution produced by the suggested method in
the fifth stage and the exact solution at υ = 1:0, Y = 3, and
Θ = 2 in the intervals x ∈ ½0, 0:5� and t ∈ ½0, 0:3� to Example
3, respectively. The comparison has proven that the sug-
gested method’s fifth-step approximation solution is quite
near to the precise solution, and this proves the effectiveness
and precision of the suggested method.

Tables 1 and 2 show that the approximate solution for the
fourth phase has very low relative and absolute error to Example
3. The relative and absolute error will be even smaller if we con-
sider the fifth-step approximation. The relative and absolute error
processes demonstrate the precision of our suggested strategy,
and as a result, the approximation is quickly approaching the
exact solution.We anticipate that our approach will be a key step
in the management of several FODEs with engineering and
applied mathematics fields of physical interest.

Recurrence error has been used to quantitatively demon-
strate how the approximate solution for Example 3 con-
verges to the exact solution for suitably specified grid
locations in the intervals x ∈ ½0, 1:0� and t ∈ ½0, 1:0� when Y
= 3 and Θ = 2 as in Table 3. From Table 3, we see that the
approximate solution obtained by the proposed method in
the fifth step quickly approaches the exact solution as the
order of the fractional-order derivative increases. The
increased degree of accuracy and convergence rates have
been proven by the recurrence error analysis. We conclude
that the proposed method is a viable and efficient algorithm
for solving particular classes of FODEs with minimal calcu-
lations and iterative phases.

Table 4 also compares the absolute and relative error of the
approximation from the fifth iterations obtained by the
CSDJA of Example 3 at plausible short-listed grid points in
the range x ∈ ½0,1:0� and t ∈ ½0,1:0�when Y = 3 andΘ = 2 with
the absolute and relative error of the 5th-step approximation
obtained by EDM [36]. The comparison has proven that the
suggested procedure and EDM yield the same results. Because
of the comparison, we concluded that CSDJA can be used as a
substitute for method EDM to solve TFSHEs.

Example 4. Consider the following SH equation, which is
nonlinear and time-fractional [36]:

Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

−Θ
∂3 f x, tð Þ

∂x3

− f 2 x, tð Þ + ∂f x, tð Þ
∂x

� �2
= 0, 0 < υ ≤ 1,

ð57Þ
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subject to the following initial conditions:

f x, 0ð Þ = ex: ð58Þ

Using CST on both sides of Equation (57),

Iυ Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

"

−Θ
∂3 f x, tð Þ

∂x3
− f 2 x, tð Þ + ∂f x, tð Þ

∂x

� �2
#
= 0:

ð59Þ

We obtain the following result from Equation (59) by
carrying out the processes outlined in Section 3.

Iυ f x, tð Þ½ � = n
m
ex −

n
m
Iυ 1 −ϒð Þf x, tð Þ½ � − n

m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #

−
n
m
Iυ

∂4 f x, tð Þ
∂x4

" #
+ n
m
Iυ Θ

∂3 f x, tð Þ
∂x3

" #

+ n
m
Iυ f 2 x, tð Þ	 


−
n
m
Iυ

∂f x, tð Þ
∂x

� �2
" #

:

ð60Þ

Use inverse CST on both sides of Equation (60).

f x, tð Þ =I−1
υ

n
m
ex

n o
−I−1

υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )
−I−1

υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )

+I−1
υ

n
m
Iυ Θ

∂3 f x, tð Þ
∂x3

" #( )
+I−1

υ

n
m
Iυ f 2 x, tð Þ	 
n o

−I−1
υ

n
m
Iυ

∂f x, tð Þ
∂x

� �2
" #( )

:

ð61Þ

By following the steps indicated in Section 3, we obtain
the following outcome:

B f x, tð Þð Þ = −I−1
υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o
−I−1

υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )

−I−1
υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )
+I−1

υ

n
m
Iυ Θ

∂3 f x, tð Þ
∂x3

" #( )
,

ð62Þ

C f x, tð Þð Þ =I−1
υ

n
m
Iυ f 2 x, tð Þ	 
n o

−I−1
υ

n
m
Iυ

∂f x, tð Þ
∂x

� �2
" #( )

,

ð63Þ

〠
∞

i=0
f i x, tð Þ =I−1

υ

n
m
ex

n o
−I−1

υ

n
m
Iυ 1 −ϒð Þ〠

∞

i=0
f i x, tð Þ

" #( )

−I−1
υ

n
m
Iυ 2 ∂2

∂x2
〠
∞

i=0
f i x, tð Þ

" #( )

+I−1
υ

n
m
Iυ Θ

∂3

∂x3
〠
∞

i=0
f i x, tð Þ

" #( )

+I−1
υ

n
m
Iυ

∂4

∂x4
〠
∞

i=0
f i x, tð Þ

" #( )

+I−1
υ

n
m
Iυ 〠

∞

i=0
f i x, tð Þ

" #2( )

−I−1
υ

n
m
Iυ

∂
∂x

〠
∞

i=0
f i x, tð Þ

 !2" #( )
:

ð64Þ
The findings from Equation (64) are as follows using the

iteration method described in Section 3:

f0 x, tð Þ = ex,

f1 x, tð Þ = ex ϒ − 4 +Θð Þ1 t1υ

1!υ1 ,

f2 x, tð Þ = ex ϒ − 4 +Θð Þ2 t2υ

2!υ2 ,

f3 x, tð Þ = ex ϒ − 4 +Θð Þ3 t3υ

3!υ3 ,

f4 x, tð Þ = ex ϒ − 4 +Θð Þ4 t4υ

4!υ4 ,

f5 x, tð Þ = ex ϒ − 4 +Θð Þ5 t5υ

5!υ5 :

ð65Þ

As a result, we get the approximate solution to Equations
(46) and (47) obtained from the 5th iteration as follows:

f 5ð Þ x, tð Þ = ex + ex ϒ − 4 +Θð Þ1 t1υ

1!υ1 + ex ϒ − 4 +Θð Þ2 t2υ

2!υ2

+ ex ϒ − 4 +Θð Þ3 t3υ

3!υ3 + ex ϒ − 4 +Θð Þ4 t4υ

4!υ4

+ ex ϒ − 4 +Θð Þ5 t5υ

5!υ5 :

ð66Þ

When υ = 1 is employed in Equation (66), we get the fol-
lowing exact solution to Equations (57) and (58):

f x, tð Þ = ex+ Θ+ϒ−4ð Þt : ð67Þ

Figure 7 represents the 2D graph of the exact solution
and 5th iteration approximate solution attained by CSDJA
at υ = 0:6, 0:7, 0:8, 0:9, and υ = 1:0 with x = 2:0 in the interval
t ∈ ½0,1:0� for Example 4. Figure 8 represents the 2D graph of
the 5th-step approximate and the exact solutions obtained
by CSDJA at υ = 0:6, 0:7, 0:8, 0:9, and υ = 1:0 with t = 0:2,
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Y = 3, and Θ = 2 in the interval x ∈ ½0, 1:0� for Example 4.
These figures display that the approximate solution attained
through CSDJA approach the exact solution when υ⟶ 1:0.
The approximate solution corresponds with the precise solu-
tion at υ = 1:0, demonstrating the precision and effectiveness
of the suggested approach.

Figures 9 and 10 show the 2D graph of the comparative
study of the approximate solution obtained from the five
iterations and exact solution obtained by the proposed
method in the form of absolute and relative error with υ
=1.0 at x = 2:0,Y = 3, and Θ = 2 in the interval t ∈ ½0, 0:5�
for Example 4, respectively. The comparison has proven that
the suggested method’s fifth-step approximation is quite
near to the exact solution. Lastly, we draw the conclusion
from the graphical results that the suggested method pro-
vides a solution in the form of a fractional series with high
accuracy and few calculations.

Figures 11 and 12 display a 3D graph of the comparison
research that compares the approximate solution and exact
solution achieved in the fifth stage using the suggested
method at υ = 1:0, Y = 3, and Θ = 2 in the intervals x ∈ ½0,
0:4� and t ∈ ½0, 0:3� to Example 4, respectively. The compar-
ison has proven that the suggested method’s fifth-step
approximations are quite near to the precise solutions. As
a result, the suggested approach is a methodical, potent,
and useful tool for analytic approximations and precise solu-
tions to FODEs.

Tables 5 and 6 demonstrate that Example 4’s absolute
and relative error for the fourth phase is quite small. If we
consider the fifth-step approximation, the absolute and rela-
tive error will be even lower. The approximation is rapidly
getting closer to the exact solution as a result of the accuracy
of our suggested method being shown by the absolute and
relative error processes. We anticipate that our approach will
be a key step in obtaining solutions to numerous FODEs
with a physical interest in the domains of applied mathemat-
ics and engineering.

Recurrence error has been used to numerically demon-
strate the convergence of the approximate solution to the
exact solution for Example 4 for appropriately set grid loca-
tions in the interval x ∈ ½0, 1:0� and t ∈ ½0, 1:0� when Y = 3,
and Θ = 2 as in Table 7. Table 6 demonstrates how the
approximate solution found by the suggested method in
the fifth step progressively approaches the exact solution as
the order of the fractional-order derivative increases. Higher
degrees of accuracy and convergence rates have been shown
for the recurrent error analysis. We conclude that the sug-
gested approach is a practical and efficient procedure for
resolving specific classes of FODEs with a minimum number
of calculations and iterations.

Table 8 also compares the absolute and relative error of
the approximations from the fifth iterations obtained by
the CSDJA of Example 4 at plausible short-listed grid points
in the range x ∈ ½0,1:0� and t ∈ ½0,1:0� when Y = 3 and Θ = 2
with the absolute and relative error of the 5th-step approxi-
mations obtained by EDM [36]. The comparison has shown
that the suggested method and EDM have the same out-
comes. The comparison led us to the conclusion that CSDJA
can be used in place of EDM to solve TFSHEs.

Example 5. Consider the following SH equation, which is
nonlinear and time-fractional [36]:

Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

− f 2 x, tð Þ

+ ∂f x, tð Þ
∂x

� �2
= 0, 0 < υ ≤ 1,

ð68Þ

with the initial condition:

f x, 0ð Þ = ex: ð69Þ

Using CST on both sides of Equation (68),

Iυ Tυ
t f x, tð Þ + 1 −ϒð Þf x, tð Þ + 2 ∂

2 f x, tð Þ
∂x2

+ ∂4 f x, tð Þ
∂x4

"

− f 2 x, tð Þ + ∂f x, tð Þ
∂x

� �2
#
= 0:

ð70Þ

We get the following result from the Equation (70) by
following the processes outlined in Section 3.

Iυ f x, tð Þ½ � = n
m
ex −

n
m
Iυ 1 −ϒð Þf x, tð Þ½ � − n

m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #

−
n
m
Iυ

∂4 f x, tð Þ
∂x4

" #
+ n
m
Iυ f 2 x, tð Þ	 


−
n
m
Iυ

∂f x, tð Þ
∂x

� �2
" #

:

ð71Þ

Applying inverse CST to Equation (71),

f x, tð Þ =I−1
υ

n
m
ex

n o
−I−1

υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )
−I−1

υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )

+I−1
υ

n
m
Iυ f 2 x, tð Þ	 
n o

−I−1
υ

n
m
Iυ

∂f x, tð Þ
∂x

� �2
" #( )

:

ð72Þ

Following the procedure given in Section 3 yields the fol-
lowing result:

B f x, tð Þð Þ = −I−1
υ

n
m
Iυ 1 −ϒð Þf x, tð Þ½ �

n o

−I−1
υ

n
m
Iυ 2 ∂

2 f x, tð Þ
∂x2

" #( )

−I−1
υ

n
m
Iυ

∂4 f x, tð Þ
∂x4

" #( )
,

ð73Þ
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C f x, tð Þð Þ =I−1
υ

n
m
Iυ f 2 x, tð Þ	 
n o

−I−1
υ

n
m
Iυ
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ð75Þ
Using the iteration process given in Section 3, the follow-

ing results are obtained from Equation (75):

f0 x, tð Þ = ex,

f1 x, tð Þ = ex ϒ − 4ð Þ1 t1υ

1!υ1 ,

f2 x, tð Þ = ex ϒ − 4ð Þ2 t2υ

2!υ2 ,

f3 x, tð Þ = ex ϒ − 4ð Þ3 t3υ

3!υ3 ,

f4 x, tð Þ = ex ϒ − 4ð Þ4 t4υ

4!υ4 ,

f5 x, tð Þ = ex ϒ − 4ð Þ5 t5υ

5!υ5 :

ð76Þ

As a result, we get the approximate solution to Equations
(68) and (69) obtained from the 5th iteration as follows:

f 5ð Þ x, tð Þ = ex + ex ϒ − 4ð Þ1 tυ

1!υ1 + ex ϒ − 4ð Þ2 t2υ

2!υ2

+ ex ϒ − 4ð Þ3 t3υ

3!υ3 + ex ϒ − 4ð Þ4 t4υ

4!υ4

+ ex ϒ − 4ð Þ5 t5υ

5!υ5 :

ð77Þ

When υ = 1 is employed in Equation (77), we get the fol-
lowing precise solution to Equations (68) and (69):

f x, tð Þ = ex+ ϒ−4ð Þt: ð78Þ

Figure 13 represents the 2D graph of the 5th-step
approximate and the exact solutions obtained by CSDJA at
υ = 0:6, 0:7, 0:8, 0:9, and υ = 1:0 with x = 3:0 in the interval
t ∈ ½0,1:0� for Example 5. Figure 14 represents the 2D graph
of the 5th-step approximate and the exact solutions obtained
by CSDJA at υ = 0:6, 0:7, 0:8, 0:9, and υ = 1:0 with Y = 5

and t = 0:3 in the interval x ∈ ½0, 1:0� for Example 5. One
can notice the identical conclusions described for Examples
3 and 4.

Figures 15 and 16 show the 2D graph of the comparative
study of the approximate solution obtained from the five
iterations and exact solution obtained by the proposed
method in the form of absolute and relative error with υ =
1:0 at x = 3:0 and Y = 5 in the interval t ∈ ½0, 0:5� to Example
5, respectively. One can notice the identical conclusions
described for Examples 3 and 4.

The accuracy of the fifth step approximation obtained
using the suggested method and the precise solution is
shown in a 3D graph in Figures 17 and 18 together with
the absolute and relative error at υ = 1:0 and Y = 5 in the
intervals x ∈ ½0, 0:3� and t ∈ ½0, 0:3�, to Example 5, respec-
tively. From Figures 17 and 18, we yield the same outcomes
as in Examples 3 and 4.

From Tables 9 and 10, one can observe the correspond-
ing findings portrayed for Examples 3 and 4.

Recurrence error has been used to quantitatively demon-
strate how the approximate solution for Example 5 con-
verges to the exact solution for suitably specified grid
locations in the interval x ∈ ½0, 1:0� and t ∈ ½0, 1:0� as in
Table 11. One can perceive the equivalent verdicts depicted
for Examples 3 and 4.

Table 12 also compares the absolute and relative error of
the approximations from the fifth iterations obtained by the
CSDJA of Example 5 at plausible short-listed grid points in
the range x ∈ ½0,1:0� and t ∈ ½0,1:0� with the absolute and rel-
ative error of the 5th-step approximations obtained by EDM
[36]. One can notice the identical conclusions described for
Examples 3 and 4.

Finally, the primary advantages of the CSDJA are as fol-
lows, as shown by the numerical and graphical results: the
suggested approach is a methodical, potent, and useful tool
for both precise and approximate analytical solutions to
FODEs. The strength of the suggested method is its modest
size of computation, which allows it to be more efficient than
existing numerical methods with fewer computations. In the
form of absolute and relative error, the numerical results
acquired by CSDJA are also contrasted with the other results
obtained by EDM. Because of the comparison’s great agree-
ment with this method, CSDJA can be used as a substitute
for the method EDM to solve TFSHEs. The higher degrees
of accuracy and convergence rates were confirmed by the
error analysis, demonstrating the suggested method’s effi-
cacy and reliability.

5. Conclusion

In this study, we solved TFSHEs in the sense of CD using the
CSDJA. We were able to successfully solve both linear and
nonlinear TFSHEs using the aforementioned approach.
Results in graphs and numerical information have been used
to prove the CSDJA’s efficacy. According to Table 2, the
magnitude of absolute and relative error ranges from
9:08162434143378 × 10−14 to 0:00242649361746760660 and
from 8:72552875759824810−14 to 0:00038536947079107625,
respectively, in Example 3. According to Table 6, the
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magnitude of absolute and relative error ranges from
1:047606446036297 × 10−12 to 0:00261926516767729820
and from 9:865985960312264 × 10−13 to 0:00040774789828
359850, respectively, in Example 4. According to Table 10,
the magnitude of absolute and relative error ranges from
2:297806389606194 × 10−11 to 0:00304568436044938550
and from 2:079141200717798 × 10−11 to 0:00045553880438
038890, respectively, in Example 5.

The results of the CSDJA are also contrasted with the
EDM in the sense of absolute and relative error. Moreover,
the numerical evidence for the convergence of the approxi-
mative solution to the exact solution is presented
numerically.

The following are the main advantages of the CSDJA, as
illustrated by the results obtained using the proposed tech-
nique, which demonstrates excellent agreement with EDM.
The CSDJA is a suitable replacement tool for the He or Ado-
mian polynomial-based methods used to solve FODEs. The
pattern between the coefficients of the series solution made
it simple to find accurate solution to numerical problems,
and we did so to achieve the exact solutions as indicated in
the five applications. The greater degree of accuracy and
convergence rates have been proven by the absolute, relative,
and recurrence error analysis. Making any large or small
physical parametric assumptions about the problem is not
necessary. So, it applies to both weak and strongly nonlinear
systems, overcoming some of the inherent limits of standard
perturbation techniques. The CSDJA can solve nonlinear
problems without the aid of He’s or Adomian polynomials.
The number of calculations needed to solve nonlinear
TFSHEs is extremely low. As a result, it performs far better
than homotopy analysis and Adomian decomposition
methods. As a solution to problems, the CSDJA provides a
quick and simple procedure for figuring out the values of
the fractional power series. Finally, the CSDJA can generate
expansion solutions for linear and nonlinear TFSHEs with-
out the need for perturbation, linearization, or discretization,
in contrast to traditional analytic approximation methods.
The results led us to the conclusion that our technique is
easy to use, accurate, flexible, and effective. We intend to
use the CSDJA to address other FODE systems that develop
in different contexts in the future.
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�e goal of this study is to examine the heat-mass e�ects of a third grade nano�uid �ow through a triply strati�ed medium
containing nanoparticles and gyrostatic microorganisms swimming in the �ow.�e heat and mass �uxes are considered as a non-
Fourier model.�e governingmodels are constructed as a partial di�erential system. Using correct transformations, these systems
are converted to an ordinary di�erential model. Ordinary systems are solved using convergent series solutions. �e e�ects of
physical parameters for �uid velocity, �uid temperature, nanoparticle volume percentage, motile microbe density, skin friction
coe�cients, local Nusselt number, and local Sherwood number are all illustrated in detail. When the values of the bioconvection
Lewis number increase, the entropy rate also rises. �e porosity parameter and modi�ed Hartmann number show the opposite
behaviour in the velocity pro�le.

1. Introduction

Researchers are interested in learning more about how to
increase heat transmission because it is so important in
design and business. �ermal transfer of convectional liq-
uids such as ethylene glycol, water, and oil can be used in a
variety of mechanical assemblies, electrical devices, and heat
dissipates. Despite this, the thermal conductivity of these
base �uids is weak. To counter this �aw, experts from several
sectors are attempting to improve the heat conductivity of
newly cited �uids by incorporating a unique type of
nanosized particle into a new �uid known as “nano�uid,” see
Choi [1]. Nano�uid �ow on a �at surface was examined by
Khan and Pop [2]. �ey see that the mass transfer gradient
reduces for enhancing the thermophoresis parameter.
Barnoon and Toghraie [3] analyze the impact of a non-
Newtonian nano�uid on aporous medium. Natural con-
vective �ow of nano�uid past a heated porous plate was
demonstrated by Ghalambaz et al. [4], and they concluded
that the �uid velocity creases when increasing the ther-
mophoresis parameter. Aziz and Khan [5] demonstrated the

characteristics of natural convective �ow of nano�uids over
a plate. �ey identi�ed that heat transfer reduced by the
impact of Brownian motion parameter. �e nano�uid �ow
over a thin needle was addressed by Ahmad et al. [6]. �ey
proved that the Brownian motion parameter leads to sup-
pressing the nano�uid concentration. Prasannakumara et al.
[7] addressed the consequences of multiple slips of MHD
Je�ery nano�uid past a surface. �ey detected that the
thermal boundary layer thickness thickens when enriching
the thermophoresis parameter.

�e bioconvection phenomenon is a �uid dynamic
mechanism that occurs in macroscopic convective �uid �ow
generated by a �uid density gradient established by collective
swimming of microorganisms. Because of their motility,
these bacteria are classi�ed as chemotactic, oxytactic, or
gyrotactic. Near the top of the �uid layer, these self-pro-
pelled motile bacteria clump together, forming a dense
upper surface that is unstable or unstabilized. Bioconvection
is used in a variety of industrial applications, including
microbial improved oil recovery, sustainable fuel cell
technologies, water treatment facilities, polymer synthesis,
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and so on. (e 2D radiative flow of tangent hyperbolic
nanofluid past a Riga plate with gyrotactic microorganisms
was disclosed byWaqas et al. [8].(ey noted that the density
of motile microorganisms decays when enriching the bio-
convection Lewis number. Uddin et al. [9] portrayed the
consequences of Stefan blowing of bioconvective flow of
nanofluid past a porous medium.(ey see that the density of
motile microorganisms enriches when strengthening the
wall suction parameter. MHD flow of cross nanofluids with
gyrotactic motile microorganisms past wedge was scruti-
nized by Alshomrani et al. [10]. (ey noted that the motile
microorganisms suppress when escalating the Peclet num-
ber. Muhammad et al. [11] developed the mathematical
model for the unsteady MHD flow of Carreau nanofluids
with bioconvection. (ey detected that the density of local
motile number depresses when enhancing the Peclet
parameter.

Due to its numerous industrial and engineering uses,
such as cooling nuclear reactors, power generation, cooling
of electronic equipment, energy production, and many
others, the process of heat transfer has gotten a lot of at-
tention from modern scholars. Fourier [12] was the first to
present the heat transfer law. However, this law has the
disadvantage of producing a parabolic energy equation. To
address this flaw, Cattaneo [13] rewrote the Fourier
equation by including the relaxation time heat flux com-
ponent. In addition, Christov [14] tweaked the Cattaneo
model by incorporating thermal relaxation time and used
the Oldroyd upper convective model. (e heat transport
analysis of 2D flow cross nanofluid Cattaneo–Christov
theory was investigated by Salahuddin et al. [15], and they
proved that concentration relaxation leads to downfall of
the nanofluid concentration. Farooq et al. [16] examined
the impact of MHD flow of radiative nanofluids with
Cattaneo–Christov theory. (ey revealed that the fluid
temperature diminishes when raising the thermal relaxa-
tion parameter. (ermally radiative flow of hybrid nano-
liquids with Cattaneo–Christov heat flux theory was
implemented by Waqas et al. [17].

Despite the fact that nanofluids have been widely in-
vestigated, the third grade nanofluid flow over a stretching
sheet with entropy optimization was examined by Loga-
nathan et al. [18]. (is study is extended with the effects of
including the mixed convective flow of third grade nano-
fluids over a Riga plate with triple stratification and
swimming microorganisms. (e thermal radiative flow of
third grade nanofluids containing microorganisms owing to
the movement of the Riga plate is shown in this study to
achieve this goal.

(i) (e modified Fourier’s law is used to frame energy
and nanoparticle concentration equations

(ii) (e homotopy analysis method is used to compute
the non-linear equations analytically

(iii) (e results of the simulations might have unique
implications in the fields of thermal processes, heat
transfer industry, energy systems, nuclear systems,
and so on

2. Problem Development

For an incompressible fluid model with body forces, the
continuity and motion equations are

div v
∗

� 0,

ρ
dv

dt
� divT + ρb + J + B,

(1)

where ρ is the “fluid density,” v∗ is the “velocity field,” b is
the “body forces,” J is the “electric current,” and T is the
“third–grade incompressible fluids Cauchy stress tensor” [19].

T � −pI + μH1 + A
∗
1H2 + A

∗
2H

2
1 + c1H3

+ c2 H1, H2 + H2H1( 􏼁 + c3 trH
2
1􏼐 􏼑H1,

(2)

where μ, (H1, H2, H3) and A∗1 , ci –“viscosity coefficient”,
“kinematics tensors” and “material modulis”

H1 � L + (L)
T
,

Hn �
d
dt

Hn−1 + Hn−1L + (L)
T
Hn−1, n � 2, 3,

L � ∇v∗,

(3)

d/dt is expressed as the material time derivative

d( )

dt
�

z( )

zt
+ v
∗

· ∇( ). (4)

(e relationship between the Clausius–Duhem in-
equality and the thermodynamically compatible fluid is
described by Fosdick and Rajagopal. [20].

μ≥ 0,

A
∗
1 ≥ 0,

c1 � c2 � 0,

c3 ≥ 0,

A
∗
1 + A
∗
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 2

����
6μc3

􏽰
,

T � −pI + μH1 + A
∗
1H2 + A

∗
2H

2
1 + c3 trH

2
1􏼐 􏼑H1.

(5)
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Figure 1: h-curves for (hf, hθ, hϕ, and hχ).
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Pakdemirli [21] took into consideration the Boussinesq
and normal boundary layer approximations.

(e representation of steady flow of third grade nano-
fluids containing motile microorganisms is assumed. (e
surface is linearly stretched via velocity uw � ax, in positive
x direction in its own path. Moreover, the flow is considered
along the sheet while v is perpendicular, and B0 magnetic

field is taken vertical to the flow direction. (e wall tem-
perature Tw, wall concentration Cw, and motile microor-
ganisms’ wall concentration Nw are defined. Figure 1
portrays the flow geometry of the problem. (e governing
equations are extended from Loganathan et al. [18] as
follows:
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(6)

With the boundary points

u � uw � ax,

v � 0,

T � Tw � T0 + b1x,

C � CW � C0 + d1x,

N � Nw � N0 + e1x aty � 0,

u⟶ 0,

T � T∞ � T0 + b2x,

C � C∞

N � N∞ � N0 + e2x asy⟶∞.

(7)

Here, b1, b2, d1, d2, e1, and e2 are the dimensional con-
stants, and T0 and C0 are the “reference temperature and
concentrations,” respectively. u and v are the “velocity
components” in x andy directions, ρ is the “fluid density,” υ
is the “fluid kinematics viscosity,” kp is the “permeability of
the porous medium,” Cb is the “drag coefficient,” J0 is the
“current density applied to the electrodes,” M0 is the
“magnetic property of the permanent magnets,” a1 is the
“magnets positioned in the interval separating the elec-
trodes,” σ∗ is the “Stefen-Boltzmann constant,” Cp is the
“specific heat capacity of the fluid,” and k is the “thermal
conductivity.”

Transformations are declared as follows:
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η � y
a

]
􏼒 􏼓

1/2
,

ψ � (a])
1/2

f(η),

u �
zψ
zy

,

v � −
zψ
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,

u � uwf′(η),
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1/2

f(η),

θ �
T − T∞
Tw − T0

,

ϕ(η) �
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,

χ(η) �
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.

(8)

(e nonlinear governing equations are
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(9)
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Figure 2: Velocity profile for different values of α1, α2, Ha, Pm, Pe, Nr, Rb, and S1.
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(e boundary conditions are specified in the following
manner:

f(0) � 0,

f′(0) � 1,

θ(0) � 1 − S1,

ϕ(0) � 1 − S2,

χ(0) � 1 − S3,

f′(∞) � 0,

θ(∞) � 0,

ϕ(∞) � 0,

χ(∞) � 0, (10)

(e nondimensional variables are
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∗
1

]
, α2 �

aA
∗
2

]
, β �

aβ∗1
]

􏼠 􏼡,

Reynolds number(Re) �
uwx

]
,

Porousmedium Pm( 􏼁 �
]

kpa
,

Forchheimer number(Fr) �
Cb��
kp

􏽱 ,

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

η

θ 
(η

)

Ha = 0.0, 0.5, 1.0, 1.5
Rb = 0, 1, 2, 3

(a)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

η

θ 
(η

)

S1 = 0.0, 0.1, 0.2, 0.3
λ = 0.0, 0.1, 0.2, 0.3

(b)

η
0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

θ 
(η

)

Fr = 0.0, 1.0, 2.0, 3.0
Pm = 0.0, 0.5, 1.0, 1.5

(c)

Figure 3: Temperature profile for different values of Ha, Rb, S1, λ, Fr, and Pm.
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Figure 4: Nanoparticle concentration profile for different values of Ha, Rb, S1, λ, Fr, and Pm.
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Application of physical entitles are

CfRe
− 0.5

� f″(0) + α1f′(0)f″′(0) + βRe f″(0)􏼂 􏼃
3
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4
3
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� −χ′(0).

(12)

3. Modelling of Entropy Generation

For the third grade nanoliquid, the entropy generation rate is
as follows:
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Equation (13) was changed by using the boundary layer
approximation.
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(e typical entropy generation rate S″
′
0 is given by
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Figure 5: Microorganism profile for different values of Pe,Ω, Nr, andLb.
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S
″′
0 �

K1

T
2
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(ΔT)
2

l
2􏼪 􏼫. (15)

As a consequence, the dimensionless entropy generation
number may be calculated by using the following formula:

EG �
S
″′
gen

S
″′
0

. (16)

As a result, the total entropy generation number has the
corresponding dimensionless form:
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4
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Expression of the Bejan number is

Be �
NT + NC + Nm

EG

. (18)

4. Homotopy Solutions

(e governing equations are solved analytically by applying
the HAM scheme [18, 22–32]. In this regard, initially, we fix
the initial approximation

f0(η) � 1 − e
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(e linear operator is

L
∧

f �
d
∧ 3

f

dη3
−
df

dη
,

L
∧
θ �

d
∧ 2

θ
dη2

− θ,

L
∧
ϕ �

d
∧ 2

ϕ
dη2

− ϕ,

L
∧
χ �

d
∧ 2

χ
dη2

− χ,

(20)

with the property
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Figure 6: Entropy generation profile for different values of Ha, Rd, Γ1, and Lb.
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Here, Ψi[i � 1 − 9] are the arbitrary constants.
After utilizing the jth order HAM, we get

fj(η) � f
∗
j (η) + Ψ1 + Ψ2e

η
+ Ψ3e

−η
,

θj(η) � θ∗j (η) + Ψ4e
η

+ Ψ5e
− η

,

ϕj(η) � ϕ∗j (η) + Ψ6e
η

+ Ψ7e
− η

,

χj(η) � χ∗j (η) + Ψ8e
η

+ Ψ9e
− η

.

(22)

Here, f∗j (η), θ∗j (η), ϕ∗j (η), and χ∗j (η) are the particular
solutions.

(e HAM includes the auxiliary parameters
(hf, hθ, hϕ, and hχ), and these are the responsible for solu-
tion convergence.

5. Convergence Analysis

(e convergence values are of hf, hθ, hϕ, and hχ , are
plotted in Figure 1. (e range of convergence is
−0.4≤ hf ≤ −0.1, −0.5≤ hθ, hϕ ≤ − 0.1, −0.5≤ hϕ ≤ 0.0, and
−0.55≤ hχ ≤ −0.2. Table 1 observes f″(0), θ′(0), ϕ′(0),
and χ′(0) for the 15th order of estimation. (e conver-
gence range of the current solution is hf � 0.35 and
hθ � hϕ � hχ � −0.30.

6. Results and Discussion

(is section focused on the effects of divergent physical
factors on fluid velocity, fluid temperature, nanoparticle
volume fraction, motile microbe density, skin friction co-
efficients, local Nusselt number, and local Sherwood num-
ber. Table 1 provides the validation of the present analysis
with previously published results [18, 22]. From this com-
parison, we found that the current computation is an op-
timum one.

In this section, we focused on the variations of fluid
velocity, fluid temperature, nanoparticle volume fraction,
motile microorganism density, skin friction coefficients,
local Nusselt number, and local Sherwood number for di-
vergent physical parameters. Figures 2(a)–2(d)) provide the
impact of α1, α2, Ha, Pm, Pe, Nr, Rb, and S1 on the velocity
profile. It is detected that the fluid velocity enriches when
escalating the quantity of α1, α2, Ha, andPe, and it downfalls
when enhancing the quantity of Pm, Nr, Rb, and S1. Physi-
cally, the modified Hartmann number leads to strengthening
the external electric field, and this causes to increase the fluid
velocity. (e temperature variations of Ha, Rb, S1, λ, Fr, and
Pm are presented in Figures 3(a)–3(c)). It is seen that the
fluid temperature escalates when raising the quantity of
Rb, Fr, andPm, and the opposite behaviour was attained
when varying the values of Ha, S1, and λ. Figures 4(a) and
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Figure 7: Bejan number profile for different values of Fr, S1, Γ2, and Pe.
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4(b)) portray the consequences of Rb, S2, Γ2, and λ on the
concentration profile. It is concluded that the fluid con-
centration increases when rising the quantity of Rb, and it
reduces when strengthening the values of S2, Γ2, and λ. (e
microorganism profile for various values of
Pe,Ω, Nr, and Lb is illustrated in Figures 5(a) and 5(b) and
found that the microorganism profile suppresses when
enhancing the Pe,Ω, andLb quantities, and it escalates when
escalating the values of Nr.

Figures 6(a)–6(d) display the consequences of
Ha, Rd, Γ1, and Lb on the entropy generation profile. It is
seen that the entropy generation diminishes near the plate
and upturns away from the plate for varying the Ha and Γ1
values, and the opposite behavior occurs for enhancing the

Rd values. In addition, the Lb leads to enrich the entropy
generation. (e changes of the Bejan number for different
values of Fr, S1, Γ2, and Pe are presented in Figures 7(a)–7(d)
and seen that the Bejan number upturns near the plate and
downfalls away from the plate for changing the Γ2 and s

values. (e quite opposite trend attains for varying the Fr

values. (e S1 values lead to reduce the Bejan number.
Fig. 8(a) reveals the collective effect of Ha and λ on

[Nu]_ x with other parameters are kept fixed heat transfer rate
[Nu]_ x is abridged with growing amounts of both Ha and λ.
Figure 8(b) explores the graphical assessment of Sherwood
number Shx against the variations in Cr and Γ2 with other
parameters are retained fixed. (e Sherwood number Shx is
improved with the enhancement in Cr and Γ2. Figure 8(c)
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Figure 8: (a) “Nusselt number” for Ha and λ, (b) “Sherwood number” for Γ2 andCr, and (c) “Microorganism density number” forΩ andRb.
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describes the graphical evaluation of the microorganism
density number Nnx against the variations in Rb and Ω with
other parameters as taken fixed. (e microorganism density
number Nnx is improved with the enhancement in Rb andΩ.

7. Conclusions

In this article, we analyse the performance of heat-mass
effects of third grade nanofluid flow through a triply
stratified medium with swimming of nanoparticles, and
gyrostatic microorganisms are swum into this flow.(e non-
Fourier heat and mass flux’s theory were used to frame the
energy and nanoparticle concentration equations. (e re-
duced models were analytically solved by applying the HAM
scheme. (e major outcomes are summarized as follows:

(i) (e fluid velocity enhances when raising the
modified Hartmann number, and it suppresses for a
larger quantity of the thermal relaxation parameter.

(ii) (e fluid temperature rises when enhancing the
Forchheimer number and downfalls when in-
creasing the bioconvection parameter.

(iii) (e fluid concentration decays when strengthening
the solutal relaxation time and stratification
parameters.

(iv) (emicroorganism profile reduces when improving
the quantity of Pe,Ω, andLb, and it escalates when
escalating the values of Nr.

(v) (e entropy rate is enhanced for higher values of the
heat thermal relaxation parameter and bio-
convection Lewis number.

(vi) (e Bejan number diminishes for the solutal
thermal relaxation parameter, thermal stratification,
and bioconvection Peclet number.
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In light of a certain sort of fractional calculus, a generalized symmetric fractional di�erential operator based on Raina’s function is
built. �e generalized operator is then used to create a formula for analytic functions of type normalized. We use the ideas of
subordination and superordination to show a collection of inequalities using the suggested di�erential operator. �e new Raina’s
operator is also used to the generalized kinematic solutions (GKS). Using the concepts of subordination and superordination, we
provide analytic solutions for GKS. As a consequence, a certain hypergeometric function provides the answer. A fractional
coe�cient di�erential operator is also created. �e geometric and analytic properties of the object are being addressed. �e
symmetric di�erential operator in a complex domain is shown to be a generalized fractional di�erential operator. Finally, we
explore the characteristics of the Raina’s symmetric di�erential operator.

1. Introduction

Symmetry is both an abstract basis of attractiveness and an
applied tool for resolving convoluted problems. As a con-
sequence, symmetry is a well-known foundation in nu-
merous �elds of physics. Despite a well-developed abstract
theory of analytic symmetry, symmetry in real-world
complex networks has established little attention [1]. Many
scientists in many domains of mathematical sciences have
been interested in learning more about the theory of sym-
metric operators. A special class of symmetric operators is
de�ned by using some special functions, which are satisfying
the symmetric behavior. �e Mittag–Le�er function and its
extensions, including Raina’s functions, are solutions for all
categories of fractional di�erential equations (see [2–8]).

We examine how Raina’s function may utilize to expand
a symmetric fractional di�erential operator in a complex
domain in this research. A range of new normalized analytic

functions are explained using the fractional symmetric
operator. �e idea of di�erential subordination and
superordination is applied to study a collection of di�er-
ential inequalities.�e geometric behavior of the generalized
kinematic solution (GKS), a family of analytic solutions, is
also studied. A variety of applications employ the new
convolution linear operator.

2. Methods and Techniques

We will go through the strategies we used in this part.

2.1.GeometricConcepts. We start by the following de�nition
[9]:

Concept 2.1. �e analytic functions ψ1,ψ2 in
U: � ξ ∈ C: |ξ|< 1{ } are subordinated ψ1≺ψ2 or
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ψ1(ξ)≺ψ2(ξ), ξ ∈ U. (1)

If for an analytic function υ, |υ|≤ |ξ|< 1 owning

ψ1(ξ) � ψ2(υ(ξ)), ξ ∈ U. (2)

Concept 2.2. Consider the subclass of analytic functions
Λ by

ψ(ξ) � ξ + 􏽘
∞

n�2
φnξ

n
, η ∈ U, (3)

satisfying ψ(0) � 0,ψ′(0) � 1.
Furthermore, the functions ψ1,ψ2 ∈ Λ are called con-
voluted (ψ1 ∗ψ2) if they admin the operation [10]

ψ1 ∗ψ2( 􏼁(ξ) � ξ + 􏽘
∞

n�2
ϕnξ

n⎛⎝ ⎞⎠∗ ξ + 􏽘
∞

n�2
φnξ

n⎛⎝ ⎞⎠

� ξ + 􏽘
∞

n�2
ϕnφnξ

n
.

(4)

Concept 2.3. )e S∗ class of star-like functions and the
C class of convex univalent functions are both related
to the class of normalized analytic functions (Λ). In
addition, we require the class of analytic functions

P ≔ ϱ: ϱ(ξ) � 1 + ϱ1ξ + ϱ2ξ
2

+ . . . , ξ ∈ U􏽮 􏽯. (5)

2.2. Modified Special Function. Special functions include
integrals and the outputs of many different types of dif-
ferential equations. )erefore, most integral sets include
special duty descriptions, and these duties include the ele-
mentary integrals. Since symmetries are important in real
life, the philosophy of special functions is tightly linked to
various mathematical physics topics [11]. We will start with
a well-known special function, the Mittag–Leffler function.

Concept 2.4. )e extended Mittag–Leffler function is
formulated by the series [12]

T
υ
α,β(ξ) � 􏽘

∞

n�0

(υ)n

Γ(αn + β)
􏼠 􏼡

ξn

n!
, (6)

such that (υ)n � Γ(υ + n)/Γ(υ). Clearly, for υ � 1,
implies that

T
1
α,β(ξ) � 􏽘

∞

n�0

ξn

Γ(β + αn)
. (7)

After that, we will go through Raina’s function.
Concept 2.5. Raina’s function is determined by the
power series as follows [12]:

I
υ
α,β(ξ) � 􏽘

∞

n�0

υ(n)

Γ(αn + β)
ξn

, ξ ∈ U, (8)

such that α ∈ (0,∞), β ∈ [1,∞) and
υ: � υ(0), υ(1), . . . , υ(n){ } is a collection of real or
complex numbers.
Notice 2.6. We have the following well-known special
cases:

(i) υ(n) � 1⟹T1
α,β(ξ)

(ii) υ(n) � ((υ)n/n!)⟹Tυ
α,β(ξ)

(iii) α � 1, β � 1, υ(n) �

((x)n(y)n/(s)n)⟹ 2Θ1(x, y; s; ξ) �

􏽐
∞
n�0((x)n(y)n/(s)n)(ξn/Γ(n + 1))

Employing the functional Iυ
α,β(ξ), we get the convo-

lution operator, for ψ ∈ Λ

I
υ
α,βψ(ξ) �

Γ(α + β)

υ(1)
􏼠 􏼡 I

υ
α,β ∗ψ􏼐 􏼑(ξ)

�
Γ α + tβ( 􏼁

υ(1)
􏼠 􏼡υ(0) + ξ􏼠

+ 􏽘

∞

n�2

Γ(α + β)

υ(1)
􏼠 􏼡

υ(n)

Γ(αn + β)
􏼠 􏼡ξn⎞⎠∗ ξ + 􏽘

∞

n�2
anξ

n⎛⎝ ⎞⎠

� ξ + 􏽘
∞

n�2

Γ(α + β)

Γ(β + αn)
􏼠 􏼡

υ(n)

υ(1)
􏼠 􏼡anξ

n

≔ ξ + 􏽘

∞

n�2
ςnanξ

n
,

(9)

such that

ςn ≔
Γ(α + β)

Γ(β + αn)
􏼠 􏼡

υ(n)

υ(1)
􏼠 􏼡

(ξ ∈ U,ψ ∈ Λ, α ∈ (0,∞), β ∈ [1,∞), υ � υ(0), . . . , υ(n){ }).

(10)

Clearly, Iυα,βψ(ξ) ∈ Λ. From the above structure, the
fractional differential operator can be viewed geometrically.

Note that the operator Iυα,βψ(ξ) is a new type of the
convoluted Carlson–Shaffer operator [13] satisfying
α � β � 1, and υ(n) � ((1)n(y)n/(s)n),∀n, with

I
υ
α,βψ(ξ) � 􏽘

∞

n�0

(1)n(y)n

Γ(n + 1)(s)n

􏼠 􏼡anξ
n
. (11)

Moreover, when υ(n) � Γ(β + αn) for all n≥ 1, we have
the Sàlàgean operator [14]:

I
υ
α,βψ(ξ) � ξ + 􏽘

∞

n�2
nanξ

n
. (12)

2.3. Arguments. )e following precursors are utilized to
develop the results of this inquiry into differential subor-
dination theory:
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Argument 2.7 (see [9]). Suppose that f1(ξ) and f2(ξ)

are convex univalent in U with f1(0) � f2(0). )en,
for a fixed value η≠ 0,R(η)≥ 0, the subordination

f1(ξ) +
1
η

􏼠 􏼡ξf1′(ξ)≺f2(ξ), (13)

gives

f1(ξ)≺f2(ξ). (14)

Argument 2.8 (see [9]). Consider the class of hol-
omorphic functions as follows:

Π[b, n] � φ: φ(ξ) � b + bnξ
n

+ bn+1ξ
n+1

+ · · ·􏽮 􏽯, (15)

where b ∈ C and n ∈ Z+. )e condition ı ∈ R implies

R φ(ξ) + ıξφ′(ξ)􏼈 􏼉> 0⇒R(φ(ξ))> 0. (16)

In addition, if ı> 0 and φ ∈ Π[1, n], then for
η1, η2 ∈ (0,∞) satisfying

φ(ξ) + ıξφ′(ξ)≺
1 + ξ
1 − ξ

􏼠 􏼡

η1
⇒φ(ξ)≺

1 + ξ
1 − ξ

􏼠 􏼡

η2
. (17)

Argument 2.9 (see [15]). Let Z,φ ∈ Π[b, n], where
φ ∈ C and for w1, w2 ∈ C, w2 ≠ 0. )en, the
subordination

w1Z(ξ) + w2ξZ′(ξ)≺w1φ(ξ) + w2ξφ′(ξ), (18)

yields

Z(ξ)≺φ(ξ). (19)

Argument 2.10 (see [16]). Let φ,ϕ ∈ Π[b, n], where
ϕ ∈ C and the functional φ(ξ) + vξφ′(ξ) is univalent
for some positive fixed number v. )en the differential
inequality

ϕ(ξ) + vξϕ′(ξ)≺φ(ξ) + vξφ′(ξ), (20)

implies

ϕ(ξ)≺φ(ξ). (21)

3. Consequences

)e next class of normalized analytic functions is defined in
this paper, and its features are investigated employing dif-
ferential subordination and superordination theory.

Concept 3.1. A function ψ ∈ Λ aims to be in the class
Ωμα,β(λ, ρ) if it fulfills the inequality

1 − λ
ξ

􏼠 􏼡 I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′≺ρ(ξ),

(ξ ∈ U, λ ∈ (0, 1], ρ(0) � 1, α ∈ (0,∞), β ∈ [1,∞)),

(22)

whenever ρ ∈ C.

Eventually, the convexity of the univalent function

ρ(ξ) �
Aξ + 1
Bξ + 1

, (23)

implies that

ρ ∈ P ≔ ρ ∈ U: ρ(ξ) � 1 + 􏽘

∞

n�1
ρiξ

n
⎧⎨

⎩

⎫⎬

⎭. (24)

Consider the functional Σλψ: U⟶ U, as in the following
structure:

Σλψ(ξ) ≔
1 − λ
ξ

􏼠 􏼡 I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

μ
α,βψ(ξ)􏼔 􏼕

′. (25)

Consequently, in view of Concept 3.1, we get the next
inequality

Σλψ(ξ)≺
Aξ + 1
Bξ + 1

, ξ ∈ U. (26)

We proceed to investigate the geometric possessions of
the suggested operators.

3.1. Results of Subordination Formula. We begin with the
following outcome.

Proposition 1. Assume that ψ ∈ Ωμα,β(λ, ρ). If

R Σλψ(ξ)􏽮 􏽯 � R

1 − λ
ξ

􏼠 􏼡 I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′􏼨 􏼩

≔ R 1 + 􏽘
∞

n�1
ςn

⎧⎨

⎩

⎫⎬

⎭ > 0,

(27)

then the upper bound of the coefficients ςn is determined by the
probability measure dω:

ςn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
≤ 􏽚

2π

0
e

− inτ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dω(τ). (28)

In addition, if

R e
iτΣλψ(ξ)􏼐 􏼑> 0, ξ ∈ U, τ ∈ R, (29)

then ψ ∈ Ωμα,β(Aξ + 1/Bξ + 1) and

Σλψ(ξ) �
Aξ + 1
Bξ + 1

, ξ ∈ U. (30)

Proof. Suppose that

R Σλψ(ξ)􏼐 􏼑 � R 1 + 􏽘
∞

n�1
ςnξ

n⎛⎝ ⎞⎠> 0. (31)

Continuously, the Carathéodory positivist lemma entails
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ςn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 2􏽚

2π

0
e

− inτ
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌dω(τ), (32)

where dω is a probability measure. Besides, if

R e
iτΣλψ(ξ)􏼐 􏼑> 0, ξ ∈ U, τ ∈ R, (33)

then according to )eorem 1.6 in [10] and for a fixed
number τ ∈ R, we have

Σλψ(ξ) �
Aξ + 1
Bξ + 1

, ξ ∈ U. (34)

Hence, ψ ∈ Ωμα,β(λ, (Aξ + 1/Bξ + 1)).
)e following findings reveal the functional sandwich

theory’s required and adequate methodology. □

Proposition 2. Suppose that

λξ I
υ
α,βψ(ξ)􏽨 􏽩″ + I

υ
α,βψ(ξ)􏽨 􏽩′≺F2(ξ) + ξF2′(ξ), (35)

where F2(0) � 1 and convex in U. Moreover, let Σλψ(ξ) be
univalent in U with Σψ ∈ Π[F1(0), 1]∩D, where D indicates
the class of all univalent analytic functions F having the limit
limξ∈zDF≠∞ and

F1(ξ) + ξF1′(ξ)≺λξ I
υ
α,βψ(ξ)􏽨 􏽩″ + I

υ
α,βψ(ξ)􏽨 􏽩′. (36)

)en

F1(ξ)≺Σλψ(ξ)≺F2(ξ), (37)

and F1(ξ) is the best subdominant and F2(ξ) is the best
dominant.

Proof. Putting

Σλψ(ξ) �
1 − λ
ξ

􏼠 􏼡 I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′, (38)

a calculation yields

Σλψ(ξ) + ξ Σλψ(ξ)􏼐 􏼑′ � λ I
υ
α,βψ(ξ)􏽨 􏽩′

+
ξ λξ I

υ
α,βψ(ξ)􏽨 􏽩″ − (λ − 1) I

υ
α,βψ(ξ)􏽨 􏽩′􏼐 􏼑 +(λ − 1) I

υ
α,βψ(ξ)􏽨 􏽩

ξ

+
(1 − λ) I

υ
α,βψ(ξ)􏽨 􏽩

ξ

� λξ I
υ
α,βψ(ξ)􏽨 􏽩″ + I

υ
α,βψ(ξ)􏽨 􏽩′.

(39)

As a consequence, the double inequality produced is as
follows:

F1(ξ) + ξF1′(ξ)≺Σλψ(ξ) + ξ Σλψ(ξ)􏼐 􏼑′≺F2(ξ) + ξF2′(ξ). (40)

Finally, Arguments 2.9 and 2.10 provide the required
outcome. □ □

Proposition 3. Assume that

Σλψ(ξ) �
(1 − λ)

ξ
I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′. (41)

"en this leads to

I
υ
α,βψ(ξ)􏽨 􏽩′

ξ
⎛⎝ ⎞⎠ε1 + I

υ
α,βψ(ξ)􏽨 􏽩 ε1 + 3ε2􏼂 􏼃 + ε2ξ I

υ
α,βψ(ξ)􏽨 􏽩″≺

1 + ξ
1 − ξ

􏼠 􏼡

c1

⇒Σλψ(ξ)≺
1 + ξ
1 − ξ

􏼠 􏼡

c2

,

c1 > 0, c2 > 0, ε1 � 1 − λ, ε2 � λ> 0( 􏼁.

(42)

Proof. A calculation gives that
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Σλψ(ξ) + ξ Σλψ(ξ)􏼐 􏼑′ �
(1 − λ)

ξ
I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′

+ ξ
(1 − λ)

ξ
I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′􏼠 􏼡

′

�
I
υ
α,βψ(ξ)􏽨 􏽩′

ξ
⎛⎝ ⎞⎠ε1 + ε1 + 3ε2􏼂 􏼃 I

υ
α,βψ(ξ)􏽨 􏽩 + ε2ξ I

υ
α,βψ(ξ)􏽨 􏽩″

≺
1 + ξ
1 − ξ

􏼠 􏼡

c1

.

(43)

In view of Argument 2.8, we obtain

Σλψ(ξ)≺
1 + ξ
1 − ξ

􏼠 􏼡

c2

. (44)
□

3.2. Fractional Differential Equation with Kinematic
Solutions. We will use the generalized differential operator
to continue our research in this section. A generalized
formula for the kinematic solutions (GKS) is presented using
the suggested operator. Kinematic behaviors describe the
motion of an item with constant acceleration in a dynamic
system.

We aim to utilize the class Ωμα,β(λ, (1 + ξ/1 − ξ)) to ex-
tend GKSs. We deal with the upper bound solution, for the
fractional differential equation

1 − λ
ξ

􏼠 􏼡 I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′ �

Aξ + 1
Bξ + 1

,

I
υ
α,βψ(0)􏽨 􏽩 � 0, ς ∈ [0, 1], ξ ∈ U􏼐 􏼑.

(45)

)e outcome of (45) is formulated as follows.

Proposition 4. Let ξ ∈ Ωυα,β(ς, (1 + ξ/1 − ξ)). "en (45) has
a solution expressed by

I
υ
α,βψ(ξ)􏽨 􏽩 � cξ(λ− 1)/λ

+
2ξ22Θ1(1, 1 + 1/λ; 2 + 1/λ; ξ)

λ + 1

+
λξ

λ + 1
+

ξ
λ + 1

,

(46)

where c is a constant and 2Θ1(x, y, s; ξ) is the hypergeometric
function.

Proof. Let ξ ∈ Ωυα,β(ς, (1 + ξ/1 − ξ)). )us, we obtain

1 − λ
ξ

􏼠 􏼡 I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′ �

φ(ξ) + 1
1 − φ(ξ)

, (47)

where |χ|≤ |ξ|< 1 and χ(0) � 0. As a result, we get the in-
tegral formula

I
υ
α,βψ(ξ)􏽨 􏽩 � ξ(λ− 1)/λ

􏽚
ξ

0
− η1/(λ− 1) χ(η) + 1

λ(χ(η) − 1)
􏼠 􏼡dη. (48)

In view of Schwarz lemma, we get χ(ξ) � wξ, |w| � 1 (see
)eorem 5.34 in [17]). )erefore, by assuming χ(ξ) � ξ, we
obtain the differential equation

(1 − λ)

ξ
I
υ
α,βψ(ξ)􏽨 􏽩 + λ I

υ
α,βψ(ξ)􏽨 􏽩′ �

1 + ξ
1 − ξ

. (49)

If we reorganize the previous equation, we conclude that

I
υ
α,βψ(ξ)􏽨 􏽩′ +

1 − λ
λξ

I
υ
α,βψ(ξ)􏽨 􏽩 �

1
λ

􏼒 􏼓
1 + ξ
1 − ξ

􏼠 􏼡. (50)

)en multiplying by the functional

T(ξ) � exp 􏽚
1 − λ
λξ

dξ􏼠 􏼡 � ξ1/(λ− 1)
, (51)

we obtain

ξ1/(λ− 1)
I
υ
α,βψ(ξ)􏽨 􏽩′ −

I
υ
α,βψ(ξ)􏽨 􏽩 (1 − λ)ξ1/(λ− 2)

􏼐 􏼑

λ

�
ξ1/(λ− 1)

λ
􏼠 􏼡

1 + ξ
1 − ξ

􏼠 􏼡.

(52)

As a result, we receive the solution

I
υ
α,βψ(ξ)􏽨 􏽩 � cξ(λ− 1)/λ

+
2ξ22Θ1(1, 1 + 1/λ; 2 + 1/λ; ξ)

λ + 1

+
λξ

λ + 1
+

ξ
λ + 1

.

(53)

□

Example 1. Let ψ ∈ Ωυα,β(λ, (1 + ξ/1 − ξ)), where λ � 1/2
and c � 0. According to Proposition 5, we have

I
υ
α,βψ(ξ)􏽨 􏽩 � ξ

2ξ2Θ1(1, 1 +(1/λ), 2 +(1/λ), ξ)

λ + 1
+ 1􏼠 􏼡,

c � 0 � ξ
4ξ2Θ1(1, 3, 4, ξ)

3
+ 1􏼠 􏼡,

λ �
1
2

� ξ + ξ2 + ξ3 + ξ4 + · · · + O ξ7􏼐 􏼑, |ξ|< 1.

(54)
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Let ψ(ξ) � (ξ/1 − ξ). )en

I
υ
α,βψ(ξ)􏽨 􏽩 � ξ + 􏽘

∞

n�2

Γ(α + β)

Γ(β + αn)
􏼠 􏼡

υ(n)

υ(1)
􏼠 􏼡ξn

. (55)

Comparing the right sides of the above equations, we
obtain that υ(n) � Γ(β + αn), ∀n. But ψ(ξ) � (ξ/1 − ξ) is the
optimal convex function in the open unit disk; thus, the

operator [Iυα,βψ(ξ)] is convex whenever ψ is convex (see
Figure 1).

3.3. Symmetric Differential Operator. )e Raina’s convo-
luted operator is assumed to present an extended symmetric
differential operator.

M
0
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 � I

υ
α,βψ(ξ)􏽨 􏽩

M
1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 � ℓξ I

υ
α,βψ(ξ)􏽨 􏽩′ − (1 − ℓ)ξ I

υ
α,βψ(− ξ)􏽨 􏽩′

� ℓ ξ + 􏽘
∞

n�2
nanςnξ

n⎛⎝ ⎞⎠ − (1 − ℓ) − ξ + 􏽘
∞

n�2
n(− 1)

n
anςnξ

n⎛⎝ ⎞⎠

� ξ + 􏽘
∞

n�2
n ℓ − (1 − ℓ)(− 1)

n
( 􏼁􏼂 􏼃anςnξ

n

M
2
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 � M

1
ℓ M

1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩􏽨 􏽩

� ξ + 􏽘
∞

n�2
n ℓ − (1 − ℓ)(− 1)

n
( 􏼁􏼂 􏼃

2
anςnξ

n

⋮

M
k
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 � M

1
ℓ M

k− 1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩􏽨 􏽩

� ξ + 􏽘
∞

n�2
n ℓ − (1 − ℓ)(− 1)

n
( 􏼁􏼂 􏼃

kςnanξ
n
.

(56)

When ςn � 1,∀n, we have the symmetric operator in
[18]. Moreover, when ςn � 1 and ℓ � 1, we receive the
Sàlàgean integral operator [14].

)e following classes will be studied:

Concept. Let ψ ∈ Λ. )en, we define the subclass of
star-like functions:

(i) ψ ∈ S∗υ,k
α,β,ℓ(Z) if and only if there occurs a convex

function Z ∈ C satisfying the subordination

ξ M
k
ℓ I

υ
α,βψ(ξ)􏽨 􏽩􏼐 􏼑′

M
k
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

≺Z(ξ). (57)

(ii) ψ ∈ J♮ℓ(A, B, k) if and only if

1 +
1
♮

2Mk+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

M
k
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 − M

k
ℓ I

υ
α,βψ(− ξ)􏽨 􏽩

⎛⎝ ⎞⎠≺
1 + Aξ
1 + Bξ

,

(ξ ∈ U, − 1≤B<A≤ 1, k � 1, 2, . . . , ♮ ∈ C∖ 0{ }, ℓ ∈ [0, 1]).

(58)

Proposition 5. Consider ψ ∈ S∗υ,k
α,β,ℓ(Z). "en

M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩≺ξe

􏽚
ξ

0
(Z(y(z)) − 1/z)dz􏼠 􏼡

,
(59)

where y(ξ) is analytic in U with y(0) � 0 and |y(ξ)|< 1.
Additionally, for |ξ| � ℵ, Mk+1

ℓ [Iυα,βψ(ξ)] satisfies the
inequality

exp 􏽚
1

0

Z(y(− ℵ)) − 1
ℵ

􏼠 􏼡dℵ≤
M

k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

ξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ exp 􏽚
1

0

Z(y(ℵ)) − 1
ℵ

􏼠 􏼡dℵ.

(60)

Proof. Because ψ ∈ S
∗μ,k

α,β,ℓ(Z), then we conclude that

ξ M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩􏼐 􏼑′

M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

⎛⎝ ⎞⎠≺Z(ξ), ξ ∈ U. (61)

)is leads to the existence of a Schwarz function with
y(0) � 0 and |y(ξ)|< 1 such that

ξ M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩􏼐 􏼑′

M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

� Z(y(ξ)), ξ ∈ U, (62)
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which implies that

M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩􏼐 􏼑′

M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

−
1
ξ

�
Z(y(ξ)) − 1

ξ
. (63)

Integration implies that

log M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 − log ξ � 􏽚

ξ

0

Z(y(z)) − 1
z

dz. (64)

A computation brings

log
M

k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

ξ
⎛⎝ ⎞⎠ � 􏽚

ξ

0

Z(y(z)) − 1
z

dz. (65)
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Figure 1: Plots of GKS of equation (45). (a)ψ(ξ) � ξ/(1 − ξ). (b) (1 + ξ)/(1 − ξ). (c) [Iυα,βψ(ξ)], when λ � 0.5, c � 0. (d) [Iυα,βψ(ξ)], when
λ � 0.25, c � 0. (e) [Iυα,βψ(ξ)], when λ � 0.5, c � 1. (f ) [Iυα,βψ(ξ)], when λ � 0.25, c � 1.
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)e subordination yields

M
k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩≺ξ exp 􏽚

ξ

0

Z(y(z)) − 1
z

dz􏼠 􏼡. (66)

Moreover, the disk is mapped by Z(ξ). When we apply
0< |ξ|<ℵ< 1 to an area that is convex and symmetric with
respect to the real axis, we get

Z(− ℵ|ξ|)≤R(Z(y(ℵξ)))≤ Z(ℵ|ξ|), ℵ ∈ (0, 1), (67)

which brings

Z(− ℵ)≤ Z(− ℵ|ξ|), Z(ℵ|ξ|)≤ Z(ℵ),

􏽚
1

0

Z(y(− ℵ|ξ|)) − 1
ℵ

dℵ≤R 􏽚
1

0

Z(y(ℵ)) − 1
ℵ

dℵ􏼠 􏼡≤ 􏽚
1

0

Z(y(ℵ|ξ|)) − 1
ℵ

dℵ.

(68)

Employing equation (65), we obtain

􏽚
1

0

Z(y(− ℵ|ξ|)) − 1
ℵ

dℵ≤ log
M

k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

ξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 􏽚

1

0

Z(y(ℵ|ξ|)) − 1
ℵ

dℵ. (69)

As a result, we get the inequality

exp 􏽚
1

0

Z(y(− ℵ|ξ|)) − 1
ℵ

dℵ􏼠 􏼡≤
M

k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

ξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ exp 􏽚

1

0

Z(y(ℵ|ξ|)) − 1
ℵ

dℵ􏼠 􏼡. (70)

Hence, we receive

exp 􏽚
1

0

Z(y(− ℵ)) − 1
ℵ

􏼠 􏼡dℵ≤
M

k+1
ℓ I

υ
α,βψ(ξ)􏽨 􏽩

ξ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ exp 􏽚

1

0

Z(y(ℵ)) − 1
ℵ

􏼠 􏼡dℵ. (71)

□
Proposition 6. Suppose that ψ ∈ J♮ℓ(A, B, k) then the odd
function

L(ξ) �
1
2

[ψ(ξ) − ψ(− ξ)], ξ ∈ U, (72)

fulfills the inequality

1 +
1
♮

M
k+1
ℓ I

υ
α,βL(ξ)􏽨 􏽩

M
k
ℓ I

υ
α,βL(ξ)􏽨 􏽩

− 1⎛⎝ ⎞⎠≺
1 + Aξ
1 + Bξ

,

R
ξL(ξ)′
L(ξ)

􏼠 􏼡≥
1 − η2

1 + η2
, |ξ| � η< 1,

(ξ ∈ U, − 1≤B<A≤ 1, k � 1, 2, . . . , ♮ ∈ C∖ 0{ }, ℓ ∈ [0, 1]).

(73)

Proof. By the condition ψ ∈ J♮ℓ(A, B, k), we obtain the ex-
istence of a function G ∈ J(A, B) such that
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♮(G(ξ) − 1) �
2Mk+1

ℓ I
υ
α,βψ(ξ)􏽨 􏽩

M
k
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 − M

k
ℓ I

μ
α,βψ(− ξ)􏼔 􏼕

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

♮(G(− ξ) − 1) �
− 2Mk+1

ℓ I
υ
α,βψ(− ξ)􏽨 􏽩

M
k
ℓ I

υ
α,βψ(ξ)􏽨 􏽩 − M

k
ℓ I

υ
α,βψ(− ξ)􏽨 􏽩

⎛⎝ ⎞⎠.

(74)

)is leads to

1 +
1
♮

M
k+1
ℓ I

υ
α,βL(ξ)􏽨 􏽩

M
k
ℓ I

υ
α,βL(ξ)􏽨 􏽩

− 1⎛⎝ ⎞⎠ �
G(ξ) + G(− ξ)

2
. (75)

Also, because

G(ξ)≺
1 + Aξ
1 + Bξ

, (76)

where (1 + Aξ/1 + Bξ) is univalent, then the above subor-
dination yields

1 +
1
♮

M
k+1
ℓ I

υ
α,βL(ξ)􏽨 􏽩

M
k
ℓ I

υ
α,βL(ξ)􏽨 􏽩

− 1⎛⎝ ⎞⎠≺
1 + Aξ
1 + Bξ

. (77)

Additionally, the function L(ξ) is star-like in U, which
gives the inequality

ξL(ξ)′
L(ξ)
≺
1 − ξ2

1 + ξ2
. (78)

As a consequence, we confirm the existence of Schwarz
function ℘ ∈ U, |℘(ξ)|≤ |ξ|< 1,℘(0) � 0 such that

Υ(ξ) ≔
ξL(ξ)′
L(ξ)
≺
1 − ℘(ξ)

2

1 + ℘(ξ)
2, (79)

which yields that there is ξ, |ξ| � η< 1 such that

℘2(ξ) �
1 − Υ(ξ)

1 + Υ(ξ)
, ξ ∈ U. (80)

By rearranging the above inequality, we receive

1 − Υ(ξ)

1 + Υ(ξ)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� |℘(ξ)|

2 ≤ |ξ|
2
. (81)

Hence, we have the following conclusion:

Υ(ξ) −
1 +|ξ|4

1 − |ξ|4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

≤
4|ξ|

4

1 − |ξ|
4

􏼐 􏼑
2, (82)

or

Υ(ξ) −
1 +|ξ|

4

1 − |ξ|
4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

2|ξ|
2

1 − |ξ|
4

􏼐 􏼑
. (83)

)is yields

R(Υ(ξ))≥
1 − η2

1 + η2
, |ξ| � η< 1. (84)

As a result, we obtain the next outcomes. □

Corollary 1 (see [18]). Let μ(n) � Γ(αn + β) in Proposition
6. "en

1 +
1
♮

M
k+1
ℓ I

υ
α,βL(ξ)􏽨 􏽩

M
k
ℓ I

υ
α,βL(ξ)􏽨 􏽩

− 1⎛⎝ ⎞⎠ � 1 +
1
♮

M
k+1
ℓ [L(ξ)]

M
k
ℓ[L(ξ)]

− 1⎛⎝ ⎞⎠

≺
1 + Aξ
1 + Bξ

.

(85)

Corollary 2 (see [19]). Let ℓ � 1 and υ(n) � Γ(αn + β) in
"eorem 3.9. "en

1 +
1
♮

M
k+1
1 I

υ
α,βL(ξ)􏽨 􏽩

M
k
1 I

υ
α,βL(ξ)􏽨 􏽩

− 1⎛⎝ ⎞⎠ � 1 +
1
♮

M
k+1
1 [L(ξ)]

M
k
1[L(ξ)]

− 1⎛⎝ ⎞⎠

≺
1 + Aξ
1 + Bξ

.

(86)

Corollary 3 (see [20]). Let ℓ � 1, k � 1 and υ(n) � Γ(αn +

β) in "eorem 3.9. "en

1 +
1
♮

M
2
1 I

μ
α,βL(ξ)􏼔 􏼕

M
1
1 I

μ
α,βL(ξ)􏼔 􏼕

− 1⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ � 1 +

1
♮

M
2
1[L(ξ)]

M
1
1[L(ξ)]

− 1􏼠 􏼡

≺
1 + Aξ
1 + Bξ

.

(87)

Corollary 4. Let k � 0, ℓ � 1 and υ(n) � Γ(αn + β) in
"eorem 3.9. "en

1 +
1
♮

M
1
1 I

υ
α,βL(ξ)􏽨 􏽩

I
υ
α,βL(ξ)􏽨 􏽩

− 1⎛⎝ ⎞⎠≺
1 + Aξ
1 + Bξ

. (88)

4. Conclusion

)e preceding study used symmetric derivative and Jack-
son’s calculus to generalize Raina’s transformations inU. We
used the suggested linear convolution operator on the
normalized subclass. )e operator is utilized to analyze the
outcome of a specific form of GKS, which is utilized as an
application. )e hypergeometric function was used to de-
termine the behavior of solutions. We further stressed that
the answer belongs to the normalized analytic functions
category.
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­is paper presents the approximate solution of the nonlinear acoustic wave propagation model is known as the modi�ed
Camassa–Holm (mCH) equation with the Caputo fractional derivative. We examine this study utilizing the Laplace transform (L
T) coupled with the homotopy perturbation method (HPM) to construct the strategy of the Laplace transform homotopy
perturbation method (L T-HPM). Since the Laplace transform is suitable only for a linear di�erential equation, therefore L

T-HPM is the suitable approach to decompose the nonlinear problems. ­is scheme produces an iterative formula for �nding the
approximate solution of illustrated problems that leads to a convergent series without any small perturbation and restriction.
Graphical results demonstrate thatL T-HPM is simple, straightforward, and suitable for other nonlinear problems of fractional
order in science and engineering.

1. Introduction

In the recent century, fractional di�erential problems have
caught much attention towards the researchers and scientists
due to their precise representation of the physical appearance.
Many physical phenomena have been reported across the
nonlinear models such as engineering, geophysics, astron-
omy, medicine, hydrology, chemical engineering, and as-
trophysics [1–4]. Most of the nonlinear problems of fractional
order are di�cult to solve. ­erefore, these models are very
much important to examine the exact and numerical solu-
tions. Currently, many authors have examined the direct
correlation and interrelated work on nonlinear problems and
symmetry [5]. Integral transform methods are extremely
e�ective in reducing the complexity of these nonlinear
fractional problems. ­ere are a number of popular and ef-
fective schemes to tackle the nonlinear appearance of these
models with fractional order such as the Laplace transform
[6], Fourier series approach [7], F-Expansion scheme [8],
Residual power series method [9], (G

�
/G)-expansion approach

[10], Trial equation approach [11], Sinc–Bernoulli collocation
method [12], Variational iteration scheme [13], Subequation
[14], Homotopy perturbation method [15], spline collocation
approach [16], and so on.

In this paper, we consider a family of modi�ed β-model
of the aspect [17].

Dαut − uxxt +(β + 1)u2ux − βuxuxx − uuxxx � 0, (1)

Setting β � 2 in equation (1), and we obtain the fractional
modi�ed Camassa–Holm (mCH) model of the shape.

Dαut − uxxt + 3u2ux − 2uxuxx − uuxxx � 0, (2)

where u represents the horizontal component of the ¥uid
velocity, x and t indicate the spatial and temporal elements.
­e mCH model appears in shallow water that was dis-
covered to be entirely integrable with a Lax pair as an ap-
proximation to the incompressible Euler equation [18].
Islam et al. [19] obtained the solitary wave solution of the
simpli�ed modi�ed Camassa–Holm equation. Zul�qar and
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Ahmad [20] used the Exp-function scheme to investigate the
solitary wave solutions of the fractional simplified mCH
model. Khatun et al. [21] studied the explicit solutions of the
mCH equation with fractional order. Labidi and Omrani
[22] studied the variational iteration method and the
homotopy perturbation method for solving the mCH
equation and found the results in good agreement.

Another powerful technique was introduced to solve the
nonlinear problem by He [23, 24] with some recent de-
velopments. Kashkari and El-Tantawy [25] applied the
homotopy perturbation method for the dissipative soliton
collisions in a collisional complex unmagnetized plasma.
Later many authors showed the validity and accuracy of this
approach [26, 27]. Gupta et al. [28] obtained the approxi-
mate solution of the family of the mCH equation with
fractional time derivative. Khuri and Sayfy [29] introduced a
strategy for specific kinds of differential problems. Later,
Anjum and He [30] adopted this scheme for the solution of
the nonlinear oscillator problem. Nadeem and Li [31]
present a hybrid approach for the solution of nonlinear
vibration systems and then Zhang et al. [32] extended this
approach for obtaining the solution of nonlinear time
fractional differential problems but all these have some
limitations and assumptions.

In the present study, we propose an approach, called L

T-HPM which removes these disadvantages and elaborates
our scheme to achieve the approximate solution of this
nonlinear problem. *e implementation of L T coupled
with HPM makes them easier for the construction of this
approach for the solution of mCHwith fractional order.*is
approach can also be considered for fractals theory [33, 34].
*is article is summarized as follows: in Section 2, we recall
the definition of fractional calculus theory. In Section 3, we

construct the idea ofL T-HPM to solve the mCH equation.
In Section 4, we test the validity and accuracy of L T-HPM
illustrating a numerical problem with the help of graphs. At
last, we represent the conclusion in Section 5.

2. Basic Concept of Fractional Theory

In this section, we present some fractional properties to
understand the physical nature of calculus theory.

Definition 1. *e fractional view of u(t) is described as
follows [32]:

D
α
u(x) � J

h− α
D

h
u(x) �

1
Γ(h − α)

􏽚
t

0
(t − τ)

h− α− 1
f

h
(t)dt,

for h − 1< α≤ h, h ∈ N, t> 0, u ∈ C
h
−1.

(3)

Definition 2. *e fractional view of L[u(t)] is [1, 35]

L D
nα
x u(x, t)􏼂 􏼃 � s

nα
F(s) − 􏽘

n−1

k�0
s

nα− k− 1
u

(k)
x (0, t),

n − 1< α≤ n.

(4)

Definition 3. Let u(t) � tα, so L T is [32]

L t
α

􏼂 􏼃 � 􏽚
∞

0
e

− st
t
αdt �
Γ(α + 1)

s
(α+1)

. (5)

Definition 4. *e Caputo-sense becomes as for order α> 0,

D
c
u(x, t) �

1
Γ(h − α)

􏽚
t

0
(t − τ)

h− α− 1z
h
u(x, t)

zτh
dτ, h − 1< α< h,

z
h
u(x, t)

zt
h

, α � h ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

3. Fundamental Concept of L T-HPM

In this segment, we construct the fundamental concept ofL
T-HPM. Let us consider the following FPDEs:

D
α
t u(x, t) � T1[u(x, t)] + T2[u(x, t)] + g(x, t),

x ∈ R, n − 1< α≤ n,
(7)

where Dα
t � (zα/ztα) is taken in Caputo sense, T1 and T2 are

linear and nonlinear operators whereas g(x, t) represents as
a source term.

By applying L T to equation (7), it follows,

L D
α
t u(x, t)􏼂 􏼃 � L T1u(x, t) + T2u(x, t) + g(x, t)􏼂 􏼃. (8)

Applying L T, we obtain the following equation:

s
α
L[u(x, t)] − s

α− 1
[u(x, 0)]

� L T1u(x, t) + T2u(x, t) + g(x, t)􏼂 􏼃.
(9)

On applying Inverse L T, we receive,

u(x, t) � W(x, t) + L
− 1 1

s
α L T1u(x, t) + T2u(x, t)􏼈 􏼉􏼔 􏼕,

(10)

where W(x, t) � L− 1[(1/s)u(x, 0) + (1/sα)L g(x, t)􏼈 􏼉].
*e approximate solution of equation (7) can be

expressed in terms of the following power series:

u(x, t) � 􏽘
∞

n�0
p

n
un(x, t), (11)
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where p is called the homotopy parameter. According to
HPM [23], *e nonlinear terms can be calculated as follows:

T2u(x, t) � 􏽘
∞

n�0
p

n
Hn(u). (12)

*en, He’s polynomials Hn(u) can be obtained using the
following formula:

Hn u0 + u1 + · · · + un( 􏼁 �
1
n!

z
n

zp
n T2 􏽘

∞

i�0
p

i
ui

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

p�0

, n � 0, 1, 2, . . . . (13)

Now putting equations (11) and (12) in equation (10), we
obtain the following equation:

􏽘

∞

n�0
p

n
un(x, t) � W(x, t) + p L

− 1 1
s
α L T1 􏽘

∞

n�0
p

n
un(x, t) + 􏽘

∞

n�0
p

n
Hn(u)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦. (14)

Equating the values of p, we obtain the following
equation:

p
0
: u0(x, t) � W(x, t),

p
1
: u1(x, t) � −L

− 1 1
s
α L T1u0(x, t) + H0􏼈 􏼉􏼔 􏼕,

p
2
: u2(x, t) � −L

− 1 1
s
α L T1u1(x, t) + H1􏼈 􏼉􏼔 􏼕,

p
3
: u3(x, t) � −L

− 1 1
s
α L T1u2(x, t) + H2􏼈 􏼉􏼔 􏼕,

⋮.

(15)

by continuing this process, we are able to identify the exact
solution of this problems such as

u(x, t) � lim
N⟶∞

􏽘

N

n�0
un(x, t). (16)

Generally, this series converges very rapidly.

4. Numerical Applications

In this section, we implement the idea of L T-HPM for
obtaining the smooth solitary wave and singular wave so-
lutions. We see that this scheme presents good results only
after a few terms. We compute the values of iterations with
the help of Mathematical Software 11.0.1. We present some
2D and 3D graphs for a better understanding of the behavior
of the mCH model.

4.1. Example 1. Considering the mCH equation with frac-
tional order α such as

z
α
u

zt
α −

z

zt

z
2
u

zx
2􏼠 􏼡 + 3u

2zu

zx
− 2

zu

zx

z
2
u

zx
2 − u

z
3
u

zx
3 � 0, (17)

with initial condition

u(x, 0) �
1
3

1 − 4sech2 x
�
6

√􏼠 􏼡􏼢 􏼣. (18)

Employing the L T on equation (17), we get the fol-
lowing equation:

L
z
α
u

zt
α􏼢 􏼣 � L

z

zt

z
2
u

zx
2􏼠 􏼡 − 3u

2zu

zx
+ 2

zu

zx

z
2
u

zx
2 + u

z
3
u

zx
3􏼢 􏼣,

s
α
L[u(x, t)] − s

α− 1
[u(x, 0)] � L

z

zt

z
2
u

zx
2􏼠 􏼡 − 3u

2zu

zx
+ 2

zu

zx

z
2
u

zx
2 + u

z
3
u

zx
3􏼢 􏼣,

L[u] �
u(x, 0)

s
+
1
s
α L

z

zt

z
2
u

zx
2􏼠 􏼡 − 3u

2zu

zx
+ 2

zu

zx

z
2
u

zx
2 + u

z
3
u

zx
3􏼢 􏼣.

(19)
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Using the inverse L T property,

u � u(x, 0) + L
− 1 1

s
α L

z

zt

z
2
u

zx
2􏼠 􏼡 − 3u

2zu

zx
+ 2

zu

zx

z
2
u

zx
2 + u

z
3
u

zx
3􏼨 􏼩􏼢 􏼣.

(20)

*e description of L T-HPM presents as follows:

􏽘

∞

n�0
p

n
un � u(x, 0) + L

− 1 1
s
α L 􏽘

∞

n�0
p

n z

zt

z
2
un

zx
2􏼠 􏼡 − 3 􏽘

∞

n�0
p

n
u
2
n 􏽘

∞

n�0
p

nzun

zx
+ 2 􏽘
∞

n�0
p

nzun

zx

⎧⎨

⎩
⎡⎣ 􏽘

∞

n�0
p

nz
2
un

zx
2 +􏽘
∞

n�0
p

n
un 􏽘

∞

n�0
p

nz
3
un

zx
3

⎫⎬

⎭
⎤⎦.

(21)

Equating the values of p, we obtain the following
equation:

p
0
: u0 � u(x, 0)

�
1
3

1 − 4sech2 x
�
6

√􏼠 􏼡􏼢 􏼣,

p
1
: u1 � L

− 1 1
s
α L

z

zt

z
2
u0

zx
2􏼠 􏼡 − 3u

2
0
zu0

zx
+ 2

zu0

zx

z
2
u0

zx
2 + u0

z
3
u0

zx
3􏼨 􏼩􏼢 􏼣

� −
1
27

�
2
3

􏽲

sin h

�
3
2

􏽲

x􏼠 􏼡 + 25 sin h
x
�
6

√􏼠 􏼡􏼢 􏼣sech5 x
�
6

√􏼠 􏼡
t
α

Γ(1 + α)
,

⋮.

(22)

*us, all the findings are expressed as follows:

u(x, t) � u0 + u1 + u2 · · · ,

u(x, t) �
1
3

1 − 4sech2 x
�
6

√􏼠 􏼡􏼢 􏼣 −
1
27

�
2
3

􏽲

sin h

�
3
2

􏽲

x􏼠 􏼡 + 25 sin h
x
�
6

√􏼠 􏼡􏼢 􏼣sech5 x
�
6

√􏼠 􏼡
t
α

Γ(1 + α)
+ · · · .

(23)

Finally, *is series of solutions provide the smooth
solitary wave solution for α � 1.

u(x, t) �
1
3

1 − 4sech2 1
�
6

√ x −
t

3
􏼒 􏼓􏼢 􏼣. (24)

It is noted that we calculate the results only up to two
terms for obtaining the smooth solitary wave solution of
equation (17) with initial condition (18). In Figure 1, we
provide the graphical comparison between the obtained
results ofL T-HPM and the exact solution at −5≤x≤ 5 and
t � 1. We see that only two term solutions by using L

T-HPM are near with the exact solution at α � 1. We also
sketch a 2D plot of L T-HPM and the exact solution at

t � 0.05 to show the graphical error in Figure 2. Hence we
remark that the solutions with L T-HPM are in good
agreement.

4.2. Example 2. Considering equation (17) with the initial
condition,

u(x, 0) �
1
3

−3 + 4 cot h
2 x

�
6

√􏼠 􏼡􏼢 􏼣. (25)

Applying L T-HPM as described in equation (21) and
equating the values of p, we obtain the following equation:
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p0: u0 � u(x, 0)

�
1
3
−3 + 4 cot h2

x�
6

√( )[ ],

p1: u1 �L
− 1 1

sα
L

z

zt

z2u0
zx2

( ) − 3u20
zu0
zx

+ 2
zu0
zx

z2u0
zx2

+ u0
z3u0
zx3

{ }[ ]

�
1
27

�
2
3

√
cosh

�
3
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­us, all the �ndings are expressed as follows:
u(x, t) � u0 + u1 + u2 · · · ,

u(x, t) �
1
3
−3 + 4 cot h2

x�
6

√( )[ ]

+
1
27

�
2
3

√
cos h

�
3
2

√
x( ) − 25 cos h

x�
6

√( )[ ]

× csch
x�
6

√( )
5

tα

Γ(1 + α)
+ · · · .

(27)

Finally,­is series of solutions provide the singular wave
solution for α � 1.

u(x, t) �
1
3
−3 + 4 cot h2

1�
6

√ x −
t

3
( )[ ]. (28)

It is noted that we calculate the results only up to two
terms for obtaining the smooth solitary wave solution of
equation (17) with initial condition (25). In Figure 3, we
provide the graphical comparison between the obtained
results of L T-HPM and the exact solution at −5≤x≤ 5
and t � 1. We see that only two term solutions by usingL
T-HPM are near with the exact solution at α � 1. We also
sketch a 2D plot of L T-HPM and the exact solution at
t � 0.05 to show the graphical error in Figure 4. Hence, we
remark that the solutions with L T-HPM are in good
agreement.
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Figure 1: Surface solution between the proximate and the exact solutions w.r.t initial condition (18), when α � 1. (a) Approximate solution.
(b) Exact solution.
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Figure 4: Error distribution between the approximate solution and the exact solution at.α � 1.
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Figure 2: Error distribution between the approximate solution and the exact solution at α � 1.

0.40

0.35

6

8

10 0.0

0.5

1.0

X

t

u (x, t)

(a)

0.40

0.45

0.35

6

8

10 0.0

0.5

1.0

X

t

u (x, t)

(b)

Figure 3: Surface solution between the proximate and the exact solutions w.r.t initial condition (25), when α � 1. (a) ­e approximate
solution. (b) ­e exact solution.
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5. Conclusion

In this study, we successfully applied L T-HPM to obtain
the approximate solution of the mCH equation with frac-
tional order. *e most important benefit of this approach is
that it does not consider any trivial perturbation and re-
strictions of variables for the solution of nonlinear problems
with fractional order but also maintains an extreme au-
thenticity of the solution. We observe that the obtained
results are very close to the exact solution that confirms the
accuracy and validity of this approach. We also present our
solution results both in two-dimensional and three-di-
mensional graphs to show the accuracy of L T-HPM. On
the other hand, L T-HPM plays a significant meaning in
finding the simple solution process. *is scheme can also be
applied to other differential equations including fractal
derivatives in our future applications.
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