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As IoT services become vitalized, this leads to an explosion
of sensor nodes more and more. As the energy consumption
of a wireless network increases with the number of nodes,
it becomes critical to reduce the energy consumption of a
wireless network. �e sensor nodes are required to function
for from a fewmonths to a few years without recharging once
they are installed. In order to enlarge the lifetime of the nodes,
an energy efficient scheme is needed to save the energy of the
nodes. Now, the energy efficiency has become one of the key
criteria for designing wireless networks, not only because of
the environmental concerns, but also practical reasons of the
nodes inwireless networks. Even though a significant number
of studies taking evolutionary approaches are in progress to
give advancements of the energy efficient wireless networks,
much effort is still required to crystallize the energy efficient
wireless networks.

�e scope of this special issue is in line with recent
contributions from academia and industry to tackle the
technical challenges in order to concretize the energy efficient
wireless networks. For the current issue, we are pleased to
introduce a collection of papers covering a range of topics as
follows:

(i) Switching strategy for energy efficient wireless net-
works

(ii) Clustering protocol for energy efficient wireless net-
works

(iii) Transmission power control for energy efficient wire-
less networks

(iv) Vertical handover algorithm for energy efficient wire-
less networks

(v) Optimization of directional antennas for energy effi-
cient wireless networks

As always, we appreciate the high-quality submissions from
authors and the support of the community of reviewers.
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The Low-Efficiency Adaptive Clustering Hierarchical (LEACH) protocol, a hierarchical routing protocol, has the advantage of
simple implementation and can effectively balance network loads. However, to date there has been a lack of consideration for its
use in heterogeneous energy network environments. To solve this problem, the Energy-Coverage Ratio Clustering Protocol (E-
CRCP) is proposed, which is based on reducing the energy consumption of the system and utilizing the regional coverage ratio.
First, the energy model is designed. The optimal number of clusters is determined based on the principle of “minimum energy
consumption”, and the cluster head selection is based on the principle of “regional coveragemaximization”. In order to balance the
network load as much as possible, in the next iteration of cluster head selection, the cluster head with the lowest residual energy
and the highest energy consumption is replaced to prolong the network’s life. Our simulated results demonstrate that the proposed
method has some advantages in terms of longer network life, load balancing, and overall energy consumption in the environment
of a heterogeneous energy wireless sensor network.

1. Introduction

Wireless sensor networks are complex and changeable work-
ing environments, and they require a large number of sensor
nodes to complete measurement tasks cooperatively [1].
The reasonable placement of nodes and the optimization of
parameters according to different environments help improve
the overall efficiency and reduce wireless sensor network
(WSN) costs. In recent years, researchers have tried to solve
the energy consumption and life optimization problem of
wireless sensor networks from different angles, and they
have put forward many effective methods. Data routing is a
problem that must be considered in wireless sensor networks,
and one of the most important goals of data routing is energy
saving [2]. Therefore, many researchers have tried to explore
this issue from the aspects of low computational complexity,
energy balance, and efficient routing. Reference [3] proposes
a data decoding and fusion scheme for wireless sensor
networks, which achieves data fusion in resource-constrained
scenarios with low computational complexity. This method

has explicit form of state estimation and residuals and is suit-
able for online computing. However, this method is aimed at
the application of CEO (central evaluation officer) scenarios,
which limits the migration of the algorithm. Document [4]
studies the expansion state problem in data aggregation based
on mobile agents, but the algorithm needs to calculate the
dynamic migration path of mobile agents and deal with the
fault and passive nodes, which increases the computational
cost and hardware cost. Specific WSN software architecture
design is important for maximizing network lifetime [5].The
token-based wireless sensor network cluster communication
architecture in document [6] is to achieve energy-saving
goals from this aspect, but the cost factor is introduced in
the next hop node selection process, which increases the
computing cost. Data volume in wireless sensor networks
tends to grow continuously in both input and output [7].
Literature [8, 9] discussed the problem of reducing energy
consumption from aspect of reducing the scale of data fusion,
but literature [8] only considered the correlation of data and
did not consider the correlation of adjacent sensor nodes.
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Literature [9] used broadcasting mode to reduce the delay
rate and prolong the life but did not discuss the flooding
problem caused by broadcasting mechanism. The PED and
PAD protocols proposed in literature [10] are event-driven
and query-driven. The network load only becomes heavier
when triggering data conditions, and most other time is
lighter.Therefore, the energy consumption of network load is
reduced to a certain extent. However, dynamic switching of
network reporting schemes is needed in the implementation
process, which increases the control overhead. Reference [11]
proposes an energy-efficient cluster adaptive time division
multiple access protocol EA-TDMA, which is a communi-
cation protocol between sensors in railway transportation
system.This protocol improves energy efficiency by collecting
information about future data packets rather than dispatch-
ing data packet exchanges in the competition stage [12], it is
especially suitable for high-flow load characteristics of train
operation [13], but its universality needs further verification.

The above-mentioned literature has actively explored
and addressed the energy consumption of wireless sensor
networks from different perspectives, while other researchers
have studied this issue from the perspective of hierarchi-
cal mechanisms. The use of hierarchical mechanisms can
optimize data delay to increase network scalability, reduce
data redundancy and communication load, and optimize a
network’s lifespan [14]. Reference [15] studied the impact
of uniform and nonuniform clustering on the performance
of cluster sensor networks using numerical methods. It is
concluded that uniform clustering has lower probability of
decision-making errors than nonuniform clustering. Refer-
ence [16] implemented an efficient clustering protocol for
wireless sensor networks from the perspective of fuzzy search
to dynamically generate the optimal cluster number in each
round using decentralization mechanism. However, the
recalculation of the number of clusters per round increases
the computational overhead. The EACA protocol proposed
in [17] achieves better system lifetime prolongation effect,
but it only considers the energy consumed by cluster head
transmission and does not consider the condition that the
base station is located at the far end of the network and the
transmission energy consumption between cluster head and
intracluster nodes. Document [18] introduces cluster sender
for data transmission. Cluster heads are only responsible
for allocating the time slots of TDMA within the cluster,
which reduces the transmission burden of cluster heads and
prolongs the network lifetime. But this method increases the
election cost of cluster heads and cluster senders. From the
above literatures, it can be seen that layering or clustering
is an important technical means to reduce network energy
consumption and prolong network life.

The typical representative of the hierarchical clustering
routing protocol is the LEACH protocol [19] proposed by W.
R. Heintzelman. The basic idea of this algorithm is that the
cluster head nodes are randomly selected in a cyclic way, and
the energy load of the whole network is equally distributed to
each sensor node, which results in a reduction of the energy
load and low network energy consumption that improves the
overall network lifetime. The LEACH algorithm is divided
into three parts: (1) cluster head election; (2) cluster members

join clusters; and (3) cluster routing. At the time of election,
each node generates a random number between 0 and 1. If the
number is less than the threshold 𝑇(𝑛), the node will become
the cluster head. The formula to calculate 𝑇(𝑛) [19] is

𝑇 (𝑛)𝐿𝐸𝐴𝐶𝐻 = {{{
𝑝1 − 𝑝 (𝜃mod (1/𝑝)) 𝑖𝑓 𝑛 ∈ 𝐺

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)

where 𝑝 represents the cluster head ratio in the network;
that is, the ratio of the number of cluster head nodes to
the total number of nodes in the network. 𝜃 represents the
current number of iterations. The set G indicates the set
of nodes during the first 1/𝑝 iterations that are not cluster
heads. From (1), we know that all nodes have the same
probability of being selected as a cluster head. The energy
consumption of all nodes in the system is balanced, which
prolongs the life cycle of the system. Unfortunately, the
LEACH algorithm has the following shortcomings: (1) the
cluster head election is completely random, which may
cause the cluster heads to be distributed unevenly in the
monitored area. In turn, this will create an uneven global
energy consumption distribution, especially for the node
farthest away from the base station which may die early;
(2) the scalability is poor, and communication between the
cluster head and the base station is “single-hop”, which is
unsuitable for large-scale network applications; and (3) poor
adaptability, due to diverse applications of wireless sensor
networks, where the requirements of each may not be the
same. As the LEACH algorithm adopts a unified, whole-
network sampling and transmission period, it cannot be
applied to heterogeneous networks [20–22].

In view of the shortcomings of the LEACH algorithm,
considerable research has been done to address them. In
[23], based on the LEACH protocol, energy-efficient and
cooperative target tracking was regarded as a utility function
of a cross-layer cluster optimization problem, which can
obtain better simulation results, but does not involve any dis-
cussion of heterogeneous networks. A distributed algorithm
proposed in [24] was used as an extension of the LEACH
clustering algorithm. Although the lifetime of a network is
longer than that of a LEACH network, the LEACH algorithm
is only applicable to the problem of unit and nonunit circles,
which has its limitations. Hence, the NEAP (Novel Energy
Adaptive Protocol) energy-adaptive protocol was proposed
[25]. Unlike the LEACH protocol, the threshold of NEAP is a
function of the residual energy of the nodes, as shown in [25]
(2):

𝑇 (𝑛)𝑁𝐸𝐴𝑃 = 𝑝1 − 𝑝 (𝜃mod (1/𝑝))
× [𝐸𝑐𝑢𝑟𝐸𝑖𝑛𝑖

+ (𝑟𝑠div 1𝑝)(1 − 𝐸𝑐𝑢𝑟𝐸𝑖𝑛𝑖

)]
(2)

where𝐸𝑐𝑢𝑟 and 𝐸𝑖𝑛𝑖 represent the current and initial energy of
the nodes, respectively, and 𝑟𝑠 indicates the iterations where
nodes have not been selected as cluster heads. Compared
with the LEACH protocol, the NEAP protocol has better
performance when selecting cluster heads, but to date there
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has not been any discussion regarding energy optimization
when selecting cluster heads. The authors of [26] proposed
the Distributed Energy Efficient Cluster (DEEC) protocol,
which adopts a heterogeneous, two-level energy structure
network model, where each node chooses its cluster head
based on its own residual energy. However, it does not
consider the problem of system energy balance. The authors
of [27] proposed an improved DEEC algorithm called the
DDEEC (developed DEEC) protocol, which dynamically
changes the standard for selecting cluster heads and then
balances the energy consumed by the nodes. The authors
of [28] also proposed an improved DEEC protocol called
SEP (the Stable Election Protocol). The basic idea of SEP is
based on the different initial energies of the nodes, which are
divided into two categories: ordinary nodes and advanced
nodes. Advanced nodes have a higher initial energy than
ordinary nodes, and the probability of an advanced node
being selected as a cluster head is higher. Reference [29]
discussed the clustering protocol based on residual energy
and distance information. Although [28, 29] carried out
some useful explorations on the life cycle of wireless sen-
sor networks with heterogeneous energy, the heterogeneous
characteristics of node energy are not universal enough.

In view of the above problems, we propose a clustering
protocol that can be applied to a heterogeneous energy
wireless sensor network, the Energy-Coverage Ratio Clus-
tering Protocol (E-CRCP). E-CRCP is an improvement of
the LEACH protocol in terms of the selection of cluster
heads, where we consider the lowest energy consumption in
each communication iteration and the maximum cluster
head coverage ratio. E-CRCP balances both the cluster head
selection and the system energy load to extend the system’s
life cycle.

2. System Model

In order to simplify the problem, the following assumptions
are made in our study: (1) the wireless sensor network is
composed of a large number, N, of fixed sensor nodes; that
is, once the sensor nodes are arranged in a monitoring area,
the locations of the sensor nodes are no longer changed; (2)
the nodes arranged in the monitoring area are subjected to
a certain method to get their positional information (such
as GPS); (3) all nodes are basically synchronized in second
precision; (4) only one base station exists in the monitoring
area, and its position is fixed in region A, which is at the

center; (5) the N sensor nodes have heterogeneous energy
levels; i.e., they have different initial energies; (6) the system
routing model is based on a hierarchical routing protocol
cluster that consists a cluster head (CH) node and several
noncluster head (non-CH) nodes, which are called normal
nodes. First, the normal nodes transmit their sensing data to
their respective CHs, where each CH node is responsible for
fusing the data from the normal nodes and forwarding it to
the base station (BS).

2.1. System Timing. In this paper, we divide the system timing
into several rounds, where a cycle is called an iteration. The
initial and working stages are set for each iteration, as shown
in Figure 1. At the initial stage, CHs are selected, and clusters
are formed. Data are transmitted at the working stage. Data
transmission fromnon-CH toCHnodes follows the principle
of Code-Division Multiple Access (CDMA); that is to say, all
nodes share spectrum resources in the form of orthogonal
address codes; only nodes with the same orthogonal code
can transmit information between sender and receiver.Nodes
transmit data do not interfere with each other.

2.2. Energy Model. Each sensor node in the system needs
to receive and send information in the process of data
transmission. From the point of view of energy consumption,
the sensor node is simplified to consist of only a receiver
and an emitter, in which the emitter consists of an emitting
component and a power amplifier. During data transmission,
the sensor node will switch between emitting and receiving
states, which means that the node is in an emitting or
receiving state at any given moment. When a sensor node
emits or receives data, it consumes energy. The emitter
consumes energy when it runs the emitter components and
power amplifiers. Assuming that the receiving and sending
ends are placed at a distance 𝑑 away from each other, if 𝑑 is
small, the free space transmission model is adopted. When𝑑 is large, the multipath fading channel model is adopted.
Figure 2 shows the system radio energy consumption model.

Based on [30], we use the energy consumed by transmit-
ting a 𝑞𝑏𝑖𝑡𝑠message between the transmitter and receiver of𝑑 is

𝐸𝑡𝑟 (𝑞, 𝑑) = {{{
𝑞 × 𝐸𝑒𝑙 + 𝑞 × 𝐸𝑓𝑟𝑠𝑑2 𝑖𝑓 𝑑 < 𝑑0
𝑞 × 𝐸𝑒𝑙 + 𝑞 × 𝐸𝑡𝑤𝑜𝑟𝑎𝑦𝑑4 𝑖𝑓 𝑑 ≥ 𝑑0 (3)
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where 𝐸𝑒𝑙 represents the energy consumed per bit when the
emitter components are running, 𝐸𝑓𝑟𝑠 and 𝐸𝑡𝑤𝑜𝑟𝑎𝑦 represent
the energy consumed by the unit power amplifier in the
free space and the double path propagation model (two-ray
ground model), respectively, and 𝑑0 is as follows:

𝑑0 = √ (4𝜋)2 × 𝑙 × ℎ2𝑡 × ℎ2𝑟𝜆2 = √ 𝐸𝑓𝑟𝑠𝐸𝑡𝑤𝑜𝑟𝑎𝑦

(4)

In (4), ℎ𝑡 and ℎ𝑟 are the respective ground clearance of
the sending and receiving ends and 𝜆 is the wavelength.
Correspondingly, the energy consumed by receiving a 𝑞𝑏𝑖𝑡𝑠
message is

𝐸𝑟𝑒 (𝑞) = 𝑞 × 𝐸𝑒𝑙 (5)

2.3. Determination of the Optimal Number of Clusters.
Cluster-based hierarchical routing protocols first divide
nodes in the network into different clusters. How to assemble
the cluster and select CH nodes is the problem that needs
to be solved. The optimal probability 𝑝𝑜𝑝𝑡 of a node being
a CH is an important embodiment of the clustering results.
The authors of [31] proved that if the cluster number is
nonoptimal, the energy consumption of the system will
increase exponentially. Therefore, in this paper, we first
calculate the optimal number of clusters from the perspective
of the minimum energy consumption of the system. Routing
protocols follow point 6 at the beginning of Section 2.

Thenumber of nodes in the network and the initial energy
of each node are different. We assume that, in iteration Mth,
C-number of CHs are generated, and there are𝑁/𝐶−1 cluster
member nodes in each cluster.Then, the member nodes send
a 𝑞 𝑏𝑖𝑡𝑠 control message to the CH. The basic principle of
a cluster is that the communication cost of all nodes in the
cluster should be as low as possible. Generally, the CH is
located at the center of a cluster, and the distance from other
nodes to the CH is small. So, all member nodes that have a
close distance to a CH are generally added to that cluster. It is
assumed that the member nodes transmit the data to the CH
based on the free space channel model. Therefore, we can get
the energy consumption of each cluster member node that
sends a 𝑞𝑏𝑖𝑡𝑠 control message to the CHs, 𝐸𝑛𝑜𝑟𝑚𝑎𝑙−𝐶𝐻, as

𝐸𝑛𝑜𝑟𝑚𝑎𝑙−𝐶𝐻 = 𝑞 × 𝐸𝑒𝑙 + 𝑞 × 𝐸𝑓𝑟𝑠𝑑2𝐶𝐻 (6)

where 𝑑𝐶𝐻 is the average distance between the cluster mem-
bers and the CH.

Next, let us consider a general situation where a CH is
located far from the BS, and the message transmission model
is a multipath fading channel model. The CH receives 𝑞𝑏𝑖𝑡𝑠
control messages from the𝑁/𝐶−1 clustermember nodes and
performs data fusion.Then, the total energy consumed by the
transmission of the message to the base station is 𝐸𝐶𝐻−𝐵𝑆:

𝐸𝐶𝐻−𝐵𝑆 = 𝑞 × 𝐸𝑒𝑙 × (𝑁𝐶 − 1) + 𝑞 × 𝐸𝑑𝑎𝑡𝑎 × (𝑁𝐶 − 1)
+ 𝑞 × 𝐸𝑡𝑤𝑜𝑟𝑎𝑦𝑑4𝐵𝑆

(7)

The first term in (7) is the energy consumed by the 𝑞𝑏𝑖𝑡𝑠
control message from the 𝑁/𝐶 − 1 cluster member nodes.
The second term is the energy consumed when fusing the
data, and the last term is the energy used to transmit the
data to the base station. Among them, 𝐸𝑑𝑎𝑡𝑎 indicates the
energy consumed when fusing a one-bit message, and 𝑑𝐵𝑆
indicates the average distance from the CH to the base
station. Therefore, the total energy of a cluster message in a
communication iteration is 𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟:

𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐸𝐶𝐻−𝐵𝑆 + (𝑁𝐶 − 1) × 𝐸𝑛𝑜𝑟𝑚𝑎𝑙−𝐶𝐻 (8)

Then, in theMth iteration, the total energy consumed by the
network is 𝐸𝑟𝑜𝑢𝑛𝑑:

𝐸𝑟𝑜𝑢𝑛𝑑 = 𝐶 × 𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟

= 𝐶 × 𝐸𝐶𝐻−𝐵𝑆 + (𝑁 − 𝑐) × 𝐸𝑛𝑜𝑟𝑚𝑎𝑙 − 𝐶
= 𝑞 × 𝑁 × 𝐸𝑒𝑙 + 𝑞 × 𝑁 × 𝐸𝑑𝑎𝑡𝑎 + 𝑞 × 𝐶
× 𝐸𝑡𝑤𝑜𝑟𝑎𝑦 × 𝑑4𝐵𝑆 + (𝑁 − 𝐶) × 𝑞 × 𝐸𝑒𝑙

+ (𝑁 − 𝐶) × 𝑞 × 𝐸𝑓𝑟𝑠 × 𝑑2𝐶𝐻
= 2 × 𝑞 × 𝑁 × 𝐸𝑒𝑙 + 𝑞 × 𝑁 × 𝐸𝑑𝑎𝑡𝑎 + 𝑞 × 𝐶
× (𝐸𝑡𝑤𝑜𝑟𝑎𝑦 × 𝑑4𝐵𝑆 − 𝐸𝑒𝑙 − 𝐸𝑓𝑟𝑠 × 𝑑2𝐶𝐻)

(9)

It is hoped that the energy consumed by the network is
the lowest in every iteration. Therefore, we can obtain the
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partial derivative C through (9) and set it to 0; this will give
the optimal number of clusters𝐶𝑜𝑝𝑡. Accordingly, the optimal
cluster head ratio 𝑝𝑜𝑝𝑡 is

𝑝𝑜𝑝𝑡 = 𝐶𝑜𝑝𝑡𝑁 (10)

2.4. Cluster Head Selection Based on the Maximum Coverage
Ratio. Although implementation of the LEACH algorithm is
simple, the random selection of CHs may result in a high
density of them in one area, with other regions containing few
or even no CHs. Hence, the CHsmay be distributed unevenly
throughout the system. In the process of CH selection, we
should take account of the coverage ratio to prevent the
uneven distribution of CHs. Coverage generally refers to the
area coverage ratio [32]. Although all sensors may operate in
a system, it is difficult to ensure that the coverage ratio of
the target area is 100% [33]. In practical applications, small
monitoring vulnerabilities have little impact on the system
and are deemed acceptable. A coverage mechanism is used
to ensure that nodes are kept active while meeting coverage
expectations, and in this work we use the cluster coverage
ratio. Based on previous work [34], the CH selection process
is as follows.

2.4.1. Coverage ProblemDescription. Suppose themonitoring
area is a rectangle with a length of hmeters and a width of 𝑤
meters, and the area is ℎ ∗ 𝑤 m2. Taking h as the ordinate
and𝑤 as the abscissa when establishing the two-dimensional
coordinate system, we can get the coordinates of theN sensor
nodes in the two-dimensional coordinate system. Let us
further suppose that the sensing radius of each sensor is r, and
the communication radius is R. In order to ensure network
connectivity and wireless interference, 𝑅 = 2𝑟 [35]. Using𝑐𝑖 = {𝑥𝑖, 𝑦𝑖, 𝑟}, it is shown that a circle with a radius of 𝑟
is the center of the node coordinates {𝑥𝑖, 𝑦𝑖} (𝑖 ∈ 1, . . . , 𝑁).
Assuming that the monitoring target coordinates are (𝑥, 𝑦),
the distance between the target and sensor nodes is 𝑑(𝑐𝑖) =√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2. The event that the monitoring target
is covered by the sensor node is 𝑒𝑖, and the probability 𝑃{𝑒𝑖}
of the event is the probability that the target (𝑥, 𝑦) is covered
by the sensor node 𝑐𝑖. Next, we consider the monitoring
environment and noise interference, where the probability
distribution [36] of the sensor node measurement model in
the actual application is given as

𝑃𝑐𝑜V (𝑥, 𝑦, 𝑐𝑖)

=
{{{{{{{{{

1, 𝑖𝑓 𝑑 ≤ 𝑟 − 𝑟𝑒
𝑒−𝛼1𝜑1𝛽1/𝜑2𝛽2+𝛼2 , 𝑖𝑓 𝑟 − 𝑟𝑒 < 𝑑 < 𝑟 + 𝑟𝑒
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

(𝑖 ∈ 1, . . . ,𝑁)

(11)

where 𝑟𝑒 (0 < 𝑟𝑒 < r) is the measurement reliability param-
eter of the sensor nodes and 𝛼1, 𝛼2, 𝛽1, and 𝛽2 are measured

parameters related to the sensing node characteristics. 𝜑1 and𝜑2 are input parameters:

𝜑1 = 𝑟𝑒 − 𝑟 + 𝑑 (𝑐𝑖) , (𝑖 ∈ 1, . . . , 𝑁) (12)

𝜑2 = 𝑟𝑒 + 𝑟 − 𝑑 (𝑐𝑖) , (𝑖 ∈ 1, . . . , 𝑁) (13)

To improve the probability that a target is measured, mul-
tiple sensor nodes are used tomeasure targets simultaneously.
The combined measurement probability is as follows [29]:

𝑃𝑐𝑜V (𝐶𝑜V) = 1 − ∏
𝑐𝑖∈𝐶𝑜V

(1 − 𝑃𝑐𝑜V (𝑥, 𝑦, 𝑐𝑖)) ,
(𝑖 ∈ 1, . . . , 𝑁)

(14)

The monitoring area is a rectangle of ℎ ∗𝑤m2 and is dis-
cretized into pixels. The pixel size is determined according to
the actual application scenario. Whether each pixel is covered
or not is measured by the joint measurement probability of
node set 𝑃𝑐𝑜V(𝐶𝑜V). In this paper, the area coverage 𝑅𝑎𝑟𝑒𝑎(𝐶)
of node set C is defined as the ratio of the coverage area of
node set C to the total monitoring area:

𝑅𝑎𝑟𝑒𝑎 (𝐶) = ∑𝑁
𝑖=1 𝑃𝑐𝑜V (𝐶𝑜V)ℎ × 𝑤 (15)

Assuming that themonitoring area is a square of 20m∗20
m, it is divided into 100 pixels of equal size, and 20 sensor
nodes are put into the area. A diagram of the monitoring
area is shown in Figure 3, which shows the location of sensor
nodes in the area. The coverage problem is described as
follows: (1) use (11)-(13) to calculate the coverage of a sensor
node to each pixel; (2) use (14) to calculate the joint coverage
of the sensor nodes to each pixel; (3) repeat steps (1) to (2)
to calculate the joint coverage rate from the sensor nodes to
the pixel points; and (4) use (15) to calculate the area coverage
and consider (15) as the optimization objective function of the
coverage control algorithm.

2.4.2. Cluster Head Selection Algorithm. The N sensors in
the monitoring area are numbered as 1-N, and we randomly
select a node as the CH, assuming that the selected node
is K. According to the optimal number of CHs calculated
before, we need to select 𝐶𝑜𝑝𝑡 − 1 nodes from the remaining
N-1 nodes as CHs. The selection principle is to compute
the node coverage rate according to the steps mentioned
above, followed by the maximum coverage rate, which is
determined using (15). In the process of data communication,
the energy consumption of all CHs is recorded as 𝐸𝑐𝑜𝑛𝑖𝜗

(𝑖 ∈1, . . . , 𝐶𝑜𝑝𝑡, 𝜗 ∈ 1, . . . , 𝜃), which is calculated according to
(3)–(7). The cumulative energy consumption of the first𝜃 iterations is recorded as 𝐸𝑐𝑜𝑛𝑖

(𝑖 ∈ 1, . . . , 𝐶𝑜𝑝𝑡), and
the residual energy of each CH is recorded as 𝐸𝑟𝑒𝑚𝑖

(𝑖 ∈1, . . . , 𝐶𝑜𝑝𝑡), where
𝐸𝑐𝑜𝑛𝑖

= 𝜃∑
𝜗=1

𝐸𝑐𝑜𝑛𝑖𝜗
, (𝑖 ∈ 1, . . . , 𝐶𝑜𝑝𝑡, 𝜃 ∈ 1, . . . , 𝑅𝑛) , (16)

𝐸𝑟𝑒𝑚𝑖
= 𝐸0𝑖

− 𝐸𝑐𝑜𝑛𝑖
, (𝑖 ∈ 1, . . . , 𝐶𝑜𝑝𝑡) , (17)
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Figure 3: Random distribution of sensor nodes in 20 m ∗ 20 m
monitoring area.

where 𝐸0𝑖
is the initial energy of the sensor node, 𝜗 is

the current number of iterations, and 𝑅𝑛 is the number of
iterations at the point where the energy of the system is
exhausted or the maximum number of cycles assumed by the
algorithm has been reached.

Next, the CH vitality parameter 𝜂𝑖 is introduced, which is
defined as follows:

𝜂𝑖 = 𝐸𝑟𝑒𝑚𝑖𝐸𝑐𝑜𝑛𝑖

, (𝑖 ∈ 1, . . . , 𝐶𝑜𝑝𝑡) (18)

With the same energy consumption, the more the remaining
energy is, the greater 𝜂𝑖 is, and the higher the vitality of the
CH is, the longer will be the life cycle. For the same residual
energy, the more energy consumed by the current iteration
is and the smaller the 𝜂𝑖 is, the lower will be the vitality of
the CH and the shorter will be the life cycle. After the end
of a communication iteration, 𝜂𝑖 of 𝐶𝑜𝑝𝑡 CHs are sorted from
small to large. In order to extend the life cycle of the system
as long as possible, we hope that the greater the vitality of CH
nodes, the better.

The above algorithm is a one-iteration CH selection
algorithm. After a data communication iteration is finished,
the next iteration of CHs is selected. Because a CH needs to
collect data from common nodes first and then fuse the data
to send to the base station, the energy consumption of the
CHs will be far greater than that of ordinary nodes. In order
to balance the energy load of the whole system, we should try
to let every node have the chance of becoming aCH. So, when
the next iteration of CHs is selected, we need to replace the
local CH and retain as many of the strongest CHs as possible.
The replace proportion 𝜌 (𝜌 ∈ (0, 1]) is a pure decimal in
the (0,1] interval, where 𝜌 = 1 indicates that the 𝐶𝑜𝑝𝑡 CHs of
the current iteration are all replaced, and all the next iteration
CHs are selected from the noncluster head set G. A value of𝜌 = 0 indicates that all CHs remain unchanged in the next
iteration, which is not exist in this model, so 𝜌 ̸= 0. The
number of replaced CHs is 𝐶𝑟𝑒𝑝 = 𝐶𝑜𝑝𝑡

× 𝜌, so, we replace the

first 𝐶𝑟𝑒𝑝 CHs with 𝜂𝑖 from small to large, selecting the 𝐶𝑟𝑒𝑝

CHs from the non-CH setG tomaximize the region coverage
in (15) and complete the next CH selection iteration. Because
the data transmission of this model follows the CDMA, it can
be seen from Section 2.1 that each communication iteration
is divided into the initial stage of cluster head selection and
clustering and the data transmission process in the working
stage. The process of CH selection and clustering in the
initial stage is actually a computing process. By selecting
the control nodes with computing power to complete this
process, the time required in the application process is fast
and meets the needs. However, to ensure system efficiency,
the time proportion of CH selection to the clustering process
should not be too large in any communication iteration,
or else system throughput will be affected. Therefore, in
addition to the normal process of CH selection and clustering
calculation, the system sets a time upper limit 𝑡𝑐 for the
initial stage, which is the average time for CH selection
and clustering in the first 𝜃 communication iterations. If the
initial stage is not completed when the 𝑡𝑐 arrives, the system
randomly generates the remainingCHs that should have been
generated, but have not yet been generated. At this time,
part of the algorithm degenerates to the LEACH algorithm.
Figure 4 shows a flowchart of the CH selection algorithm.

In each CH selection iteration, the calculation process
for each CH is mainly divided into area coverage calculation
and low-energyCH replacement. In the process of calculating
the regional coverage, the joint measurement probability𝑃𝑐𝑜V(𝐶𝑜V) is correlated with 𝑁2 by (14), and the regional
coverage 𝑅𝑎𝑟𝑒𝑎(𝐶) is also correlated with 𝑁2 by (15), and
therefore the computational time complexity of the regional
coverage calculation is𝑂(𝑁2). In the process of CH selection
and replacement, (18) shows that the calculation process is
linearly related to 𝑁. Therefore, the time complexity of the
whole algorithm is 𝑂(𝑁2).
2.4.3. Clustering Process and Working Stage. After the 𝐶𝑜𝑝𝑡

CHnodes in one communication iteration have been elected,
the CHs broadcast request messages to other normal nodes to
join the cluster. After the non-CH nodes receive the message,
they choose the nearest cluster to join until the cluster process
terminates when the number of cluster nodes reaches𝑁/𝐶𝑜𝑝𝑡

or there are no remaining nodes. Because the value of𝑁/𝐶𝑜𝑝𝑡

may not be an integer, the number of nodes in the last cluster
may be less than𝑁/𝐶𝑜𝑝𝑡.

The working stage is also known as the data transmission
stage. The CH broadcasts a CDMA data stream to notify
its member nodes to start the data-acquisition process. The
cluster member nodes send data to the CH according to the
system timeing in Figure 1, where the CH collects the node
data and then transfers them to the base station. After the
data transmission is completed, the algorithm will enter the
next iteration of CH selection and form a new cluster. In the
working stage, data acquisition begins with the CH sending a
CDMA broadcast to its member nodes. The cluster members
send the collected data to their respective CHs during the
CDMAprocess. After receiving all the data, the CHs integrate
them to reduce the noise in the signal and then send the
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Figure 4: Cluster head selection algorithm flow chart.

Table 1: Simulation parameters.

Parameter Value Parameter Value
Size of monitoring area ℎ × 𝑤 100 m×100m Node energy coefficient 𝛼𝑖 Random number in (0,10), i ∈ [1,𝑁]
Number of nodes N 100 𝐸𝑒𝑙 50 nJ/bit
Node distribution Random distribution 𝐸𝑓𝑟𝑠 10 nJ/bit/(m2)
Sensing radius r 10 m 𝐸𝑡𝑤𝑜𝑟𝑎𝑦 0.013 pJ/bit/(m4)
Communication radius R 20 m 𝐸𝑑𝑎𝑡𝑎 5 nJ/bit/signal
BS position (50,50) Size of data package 525 bytes
Node initial essential energy E0 0.5 J Size of CDMA package 25 bytes

integrated data to the base station in a single-hop ormultihop
manner. Then, the network begins to choose new CHs and
form new clusters in the next iteration. When all nodes have
become CHs, the next cycle will start.

3. Simulation Analysis

3.1. Simulation Parameter Hypothesis. In this section, we
evaluate the performance of the proposed E-CRCP. The sim-
ulation was built using MATLAB R2016b and then compared
with the LEACH, DDEEC, and SEP protocols. The specific
simulation parameters are shown in Table 1.

In this experiment, the size of the monitoring area was
fixed at 100m × 100m, the coordinate axis range was [(0,0),
(100,100)], the number of sensor nodes 𝑁 was 100, and the
position coordinates were obtained by coordinate axis if they
were randomly distributed in the monitoring area. The base
station was located in the center of the monitoring area (50,

50). If the basic initial energy 𝐸0 = 0.5𝐽 and the energy
coefficient 𝛼𝑖 (𝑖 ∈ [1,𝑁]) is a random number in (0, 10), then
the initial energy of each node is

𝐸0𝑖 = 𝐸0 × 𝛼𝑖 (19)

where 𝐸𝑒𝑙, 𝐸𝑓𝑟𝑠, and 𝐸𝑡𝑤𝑜𝑟𝑎𝑦 follow the parametric inter-
pretation in Section 2.2 and 𝐸𝑑𝑎𝑡𝑎 follows the parametric
interpretation in Section 2.3.

3.2. Impact of the Cluster Head Replacement Ratio 𝜌 on
the Network Life Cycle. The purpose of the introduced CH
replacement ratio 𝜌 is to replace some low-vitality CHs in
each cluster to prolong the network life cycle and balance
the energy load of the whole system. The life cycle of the
network, namely, the number of network lives, is expressed
by the number of iterations. The value is equal to the iteration
number when the last node in the network dies.The influence
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Table 2: Comparison of several algorithms in terms of stability duration and network life cycle.

Stability duration Network life cycle
LEACH DDEEC SEP E-CRCP LEACH DDEEC SEP E-CRCP

1 934 1255 1399 1689 5530 5860 8621 8650
2 955 1253 1396 1679 5532 5858 8625 8648
3 969 1258 1402 1682 5535 5861 8628 8651
4 936 1261 1392 1699 5540 5863 8629 8650
5 978 1251 1395 1692 5538 5864 8624 8649
6 933 1258 1403 1695 5534 5858 8626 8656
7 922 1247 1398 1698 5536 5869 8628 8655
8 955 1262 1400 1690 5538 5870 8629 8658
9 948 1263 1402 1688 5535 5865 8630 8652
10 972 1260 1398 1695 5539 5868 8625 8654
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Figure 5: Impact of the cluster head replacement ratio 𝜌 on the
network life cycle.

of 𝜌 on the life cycle of the system network is shown in
Figure 5.

From Figure 5, we can see that 𝜌 has a great influence on
the life cycle of the network. A value of 𝜌 = 0 indicates that
all CHs in the next iteration are used in the local CH. In this
case, the lifetime of the network is only maintained at about
more than 3000 iterations, which is approximately half the
highest point that is more than 8000 iterations. This shows
that the life cycle of the CH nodes in the network determines
the life cycle of the system. If the CHs are not replaced by
other nodes, once all the CHs in the network are dead, the
network will no longer work. It can be seen that the network
without considering load energy consumption balance is not
applicable. From the graph, the number of network iterations
reaches the highest point near 𝜌 = 0.65, which will prolong
the life cycle of the network. A value of 𝜌 = 1 indicates that all
CHs in the current iteration are replaced, and the algorithm
is identical to the LEACH algorithm. It is seen that the value
of 𝜌 first rises, reaches a maximum near 𝜌 = 0.65, and then
decreases, which shows that a too-large or too-small 𝜌 has no

positive influence on the life cycle of the network. Only the
appropriate 𝜌 value can prolong the network life cycle.

3.3. Comparison of Several Algorithms in Terms of Network
Life Cycle. In this section, we analyze the performance of
the proposed E-CRCP algorithm in two aspects: stability
time and network lifetime. The stability time and network
lifetime are represented by the number of iterations. The
stability time is equal to the number of iterations from the
initial time to the iteration when the first node dies. The
network lifetime is equal to the number of iterations from the
initial time to the iteration when the last node dies. First, we
analyze the stability time and network lifetime of four kinds
of protocols: LEACH,DDEEC, SEP, and E-CRCP. Table 2 lists
the experimental data of the 10 tests. From Table 2, we can
see that the stability duration of LEACH, DDEEC, SEP, and
E-CRCP is 950.2, 1256.8, 1398.5, and 1690.7, respectively. The
average life spans of the networks are 5535.7, 5863.6, 8626.5,
and 8652.3, respectively. These indicate that the proposed E-
CRCP protocol can effectively extend the stability period and
the network lifetime.

From Table 2, we can see that the E-CRCP proposed in
this paper can extend the stability time and network lifetime
better than LEACH, DDEEC, and SEP. The reason is that the
LEACH protocol does not consider the residual energy of the
node and simply gives the same opportunity to each node,
whereas DDEEC only considers the residual energy of the
node, and SEP only considers the node energy level.However,
these considerations are not conducive to the selection of
a good CH. The proposed E-CRCP dynamically adjusts the
replacement ratio of the CHs, which promotes the E-CRCP
to select the best CH, reduces energy consumption, and thus
prolongs the stability time and network life. A prolonged
network lifetime means that more nodes can collect data,
which helps the base station receive more data packets.

3.4. Relationship between the Number of Active Nodes and
the Network Lifetime. An active node is a working node.
Once the energy of the node is exhausted, the node will
no longer work (i.e., it dies). As time goes on, there will
be fewer and fewer active nodes in the system. This section
compares the lifetime of different protocols in the network
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Figure 6: Relationship of the number of active nodes in the network
and the network lifetime.

when the number of active nodes is different. Figure 6 reflects
the influence of the number of active nodes on the network
lifetime.

Figure 6 illustrates the relationship between the number
of active nodes and the network lifetime. As we can see from
the graph, with decrease of the number of alive nodes in the
network, LEACH’s lifetime is about 6500 rounds, DDEEC’s
lifetime is about 7200 rounds, and SEP’s lifetime is about 8000
rounds. That is to say, LEACH, DDEEC, and SEP to prolong
the lifespan are failed. Conversely, the E-CRCP protocol can
prolong the life span as the number of nodes decreases. This
is because LEACH, DDEEC, and SEP do not take the cluster
coverage mechanism into account. Each node needs to send
all the collected environmental information to its CH nodes,
including redundant information, thus increasing the energy
consumption. The E-CRCP protocol not only considers the
network energy load balance, but also takes the maximum
coverage in the cluster into account, so that network life
increases with the number of nodes decrease.

3.5. Influence of the Number of Sensor Nodes on Network
Lifetime and Energy Consumption. To reveal the influence of
the number of sensor nodes on network lifetime and energy
consumption, the number of sensor nodes was chosen as𝑁 = 100, 50, and 25, and the system was given the same
average initial energy (assumed to be 0.5 J) under all three
models, with the other parameters set as in Table 1. Network
life was still measured by the number of iterations of network
operation. Figure 7 shows the relationship between network
lifetime and average residual energy for several protocols.

As can be seen from Figure 7, when the number of
nodes in the system is 100, 50, and 25, the average residual
energy of each protocol decreases as the number of iterations
increases. When 𝑁 = 100 and 50, the change trends of
several protocols are very similar. The curve of each protocol
shows a convex trend, but the curve shows a concave trend
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Figure 7: Influence of the number of sensor nodes on network
lifetime and energy consumption.

when 𝑁 = 25. When 𝑁 = 100, the number of iterations to
termination of the E-CRCP protocol was about 8500, whereas
the number of iterations to termination when 𝑁 = 50 was
about 6500. In other words, the average residual energy of
the system does not decrease synchronously as the number
of nodes decreases exponentially but moves horizontally on
the coordinate axis. This trend also exists for several other
protocols. Moreover, from the graph, the performance of the
proposed E-CRCP protocol is optimal when 𝑁 = 100 or𝑁 = 50.This shows that there should be an appropriate range
to determine the number of nodes in the monitoring area.
The appropriate number of sensor nodes in the monitoring
area is conducive to extending the life of the network system.
However, when N drops to 25, the performance of several
protocols is similar, and the average residual energy of the
system shows a rapid downward trend. The reason for this
is that when the number of nodes in the system is small, the
communication distance between nodes is generally longer.
The energy consumption transmission model of the nodes
therefore changes from a free space transmission model to
a multipath fading transmission model, which makes the
data transmission need more energy and makes the system
energy rapidly decay to 0. In addition, when N is small,
the E-CRCP algorithm proposed in this paper does not
have any advantages in the calculation of regional coverage
and optimal cluster number, which makes its performance
not necessarily superior to other protocols. Hence, when
N is appropriately chosen, the performance of the E-CRCP
algorithm proposed in this paper is better than that of other
algorithms.

3.6. Impact of Coverage Area on Network Life. To simplify the
model, it was assumed that the monitoring area was equal to
the coverage area, which was a square area with equal length
and width, and that the base station was located in the center
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of the area.The other parameters are listed in Table 1. Figure 8
shows the influence of changes in coverage area on network
lifetime.

From Figure 8, it is clear that, in the range of [(0,0),
(50,50)], changes in coverage have a strong influence on
network lifetime, but in the range of [(50,50), (150,150)], this
influence diminishes. In these two ranges, the influence of
coverage on network lifetime shows a linear trend. As the
coverage area continues to increase, there is no longer a
stable linear trend between coverage area and network life.
The reason for this is that the larger coverage area leads to
a change in the data transmission model between nodes,
making the state of the model unstable. It can be seen that
the appropriate choice of coverage area has a positive impact
on system stability.

4. Conclusions

In this paper, a CH selection protocol (E-CRCP), which is
effectively applied to heterogeneous energy wireless sensor
networks, is proposed as the solution to the CH selection
problem in wireless sensor networks. First, a system-wide
energy consumption model is established. The optimal num-
ber of system clusters is determined in the case of minimum
energy consumption. Next, CH nodes are selected under the
condition that the CH coverage is at a maximum, and CH
nodes that consume a large amount of energy are replaced in
the next communication iteration. The remaining members
of each cluster join their nearest cluster and send their
own data to the CH node. The CH node then sends the
data to the base station after the data of each member
node are fused, thus completing a single communication
iteration. Our simulated results show that the algorithm
proposed in this paper has obvious advantages over the
LEACH, DDEEC, and SEP protocols in terms of the network

lifetime of heterogeneous energy network applications. In the
process of CH selection, E-CRCP reduces the overall energy
consumption of the network, balances the network load, and
prolongs the network life.
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The Swedish Institute of Computer Science Parasitic Interference Directional Antenna (SPIDA) is an electrically switched
directional antenna that uses switched beamforming techniques to shape the antenna radiation pattern focusing the transmitted
power in a given direction, increasing the maximum gain, and simultaneously reducing interference in other directions. This work
extends the use of the SPIDA antenna, showing that using multiple director elements results in an improved performance in terms
of maximum gain, narrower Half Power Beamwidth (HPBW), and a lower module of the 𝑆

11
parameter. Measurements show that

using three directors improves the maximum gain about 1.4 dB (6.8 dBi for the single director element antenna against 8.2 dBi for
the antennawith three directors); the input impedancematchingwas also improved, obtaining amodule of 𝑆

11
parameter of -9.8 dB

at the central frequency (𝑓
𝑐
= 2.4525 GHz) against -7.5 dB for the antenna with a single director element. Finally, new intermediate

directions of transmission can be achieved by using two successive director elements, where the power is focused in the bisectrix
of the angle formed by the two directors. This converts a six-sector antenna like the SPIDA into a twelve-sector antenna without
changing the hardware.

1. Introduction

In the last decades lots of new applications have emerged
thanks to the availability of small devices capable of wire-
less communications, which allows sensing, processing, and
communicating multiple physical variables or interacting
with the physical world with a very low power consumption.
These devices are expected to be of low cost and small size and
to reach years of autonomy with small batteries, conforming
largeWireless Sensor Networks (WSNs) with low operational
and maintenance costs.

The IEEE 802.15.4 protocol is nowadays the most widely
accepted standard in the 2.4 GHz ISM band for WSN. For
the last decade most of the effort was in the development
and optimization of wireless communication protocols. In
comparison, the effort to improve the antenna of the WSN
nodes has been very small, which could have helped the
achievement of lower power consumptions and better effi-
ciency. Many of the commercial nodes come with integrated
omnidirectional antennas which radiate the energy in a

suboptimal way. Improving the antenna may provide better
gain and SNRwithout increasing the overall irradiated power
or may extend the battery lifetime, if the output power is
reduced, keeping the distance range and the received signal
strength. Another advantage of improving the antenna is
that it may reduce the interference with other nodes by
concentrating the radiated power in a certain direction, thus
reducing the congestion that is known to be a common
problem in multihop WSNs [1].

Also, directional antennas have been proposed as an
alternative to increase the security in WSN [2].

One of the prominent ways to optimize an antenna is
using dynamic beamforming. These techniques enable the
increase of the antenna gain in some directions selected
electronically on demand for each transmission [3, 4].

An example of this kind of antennas is the SPIDA antenna
[5], which is an electrically switched directional antenna
designed for WSN.This antenna has the advantage of having
a low cost and an easy fabrication process, and also it has a
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very small size that makes it very convenient to use in large
scale deployments.

In this work, the simulation stage, the building, and
characterization of a SPIDAantenna in the 2.4GHz ISMband
are described. During this process the use ofmultiple director
elements to enable a complete new set of beam patterns for
this antenna was explored. With the use of the professional
electromagnetic simulation tool Computer Simulation Tech-
nology (CST) (https://www.cst.com/.), the first steps of the
performance analysis were made. Finally the SPIDA antenna
with three directors was built and characterized, verifying
in this way the predicted improvements with respect to the
reference design antenna with only one director.

The main contributions of this work are (i) a complete
characterization, simulation, and measurement of the ref-
erence design (single director element), including radiation
pattern and 𝑆

11
parameter, the last one missing in the

bibliography; (ii) assessment of different configurations, by
means of simulations, analyzing the resulting performance
in terms of maximum gain in the main direction, Half
Power Beamwidth (HPBW), and 𝑆

11
parameter; and (iii)

measurement of the three director elements configuration,
identified as an equivalent to the reference but with improved
performance, to confirm the simulation results.

The rest of this document is organized as follows. In
Section 2 the main characteristics of the SPIDA antennas are
introduced and the innovative idea of usingmultiple elements
as directors is presented. In Section 3 the simulations and the
results for different configurations are described. Section 4
describes the fabrication and characterization of the antenna
and finally, in Section 5, the conclusions are summarized.

2. SPIDA Antenna

SPIDA antenna is a kind of antenna that allows us to perform
switched beamforming [5–7]. Being able of controlling the
beam direction dynamically is a very useful feature for
wireless communication systems, also present in a similar
kind of antennas based in this case in Electronically Steerable
Passive Array Radiators (ESPAR) [8–10]. Comparing SPIDA
antennas with ESPAR ones, the first are simpler and cheaper
to fabricate, which represents an important advantage.

Phase-shifting antennas are also widely used in commu-
nications systems, but their use of heavy signal processing
techniques makes them inadequate for WSN. In [11], a phase
shifting directional antenna for WSN is proposed, but this
antenna requires custom hardware to manage the signal
processing and cannot be used with regular sensor nodes.
In this aspect, the SPIDA antenna takes the lead as it can be
attached to any sensor node with six output pins available.

These dynamic beamforming features are a promising
alternative to optimize WSNs. This is the reason why several
researchers have been developing this area [12–15], and it is
the main motivation of this work.

2.1. SPIDA Baseline Design. The original antenna proposed
by Nilsson [6] has six parasitic elements; thus the legs are
separated 60∘ forming a hexagon. Figure 1 shows a sketch of

the constructed antenna. The overall size is such that in can
be fitted in a cylinder with radius 52𝑚𝑚 and height 60𝑚𝑚.

The antenna is composed of a planar structure in a sym-
metrical arrangement and a central vertical active element of
29.2 𝑚𝑚. Each of the six structures attached to the central
hexagon is formed by a “leg” (that resembles the leg of a
spider) with a vertical parasitic element. The length of this
element is 27 𝑚𝑚 and it can act either as a director, if it
is left isolated (i.e., not connected), or as a reflector, if it
is connected to ground. Each connection can be controlled
electronically by a RF-switch that allows a microcontroller to
manage dynamically the configuration of the antenna.

This antenna configuration has been characterized by
other works, featuring approximately between 4 and 7 dBi
in the principal direction with a 130∘ beamwidth [6, 13].
However, some important data, such as the 𝑆

11
parameter,

are missing in the corresponding reports. Thus, in this
work a complete characterization is included, consisting in
simulations and measurements.

2.2. SPIDA with Multiple Director Elements. Several works
explored the use of SPIDA antennas for WSNs; initial efforts
were in the antenna design itself [6], focusing, later, on
solving problems not present in omnidirectional antennas,
such as direction mismatch between main lobes of neighbor
nodes during discovery phase. All these works were based on
a six element SPIDA antenna with only one as a director. To
the best of our knowledge, there is not any published report
proposing the use of multiple director elements for this kind
of antennas.

In this work different configurations were considered
aiming to obtain higher gains in the main direction. Other
aspects to study are how the adoption of multiple director
elements affects the complete shape of the radiation pattern,
and the input impedance matching.

Table 1 lists the eight different configurations considered,
and Figure 2 depicts them graphically, where the direction
of maximum gain is aligned with the horizontal axis (0∘) for
experiments 1, 2, 3, 4, and 5. For experiments 6 and 7, the
direction ofmaximumgain is also alignedwith the horizontal
axis but equally high for 0∘ and 180∘, and experiment 8 is
omnidirectional. All these configurations were simulated in
order to assess their performance. Section 3 describes the
simulation results in detail. Among them, themost promising
configuration (using three director elements) was measured
and analyzed more deeply in Section 4.

3. Simulation

In order to assess the performance of the different configu-
rations, the CST tool was used to simulate the antenna. This
electromagnetic simulator was used to obtain the radiation
pattern and the 𝑆

11
parameter.

3.1. One Director (Conf. #1). This configuration, in which a
single element acts as director, corresponds to the original
configuration previously reported and is the reference design
for comparison. From the simulated radiation pattern results,
the maximum gain is 5.98 dBi with a HPBW of 129∘ and

https://www.cst.com/
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Table 1: List of eight different configurations simulated with the location of the director element(s).

# Description Location
1 One director 0∘

2 Two consecutive directors 30∘ and 330∘

3 Three consecutive directors 0∘, 60∘, and 300∘

4 Four consecutive directors 30∘, 90∘, 270∘, and 330∘

5 Five consecutive directors 0∘, 60∘, 120∘, 240∘, and 300∘

6 Two opposed directors 0∘ and 180∘

7 Four opposed directors 30∘, 150∘, 210∘, and 330∘

8 Six directors (all) -

Figure 1: SPIDA antenna model in CST.

Director element
Reflector element

1) 2) 3) 4)

5) 6) 7) 8)

Figure 2: Eight different experiments, showing the location of the
director and reflector element(s).

no side lobes, in agreement with previous reports (see the
curve “Reference SPIDA” in Figure 3(a)). The front-to-back
ratio (FTBR) is 21 dB and the 𝑆

11
parameter varies from 2

GHz to 3 GHz as what the curve “Reference SPIDA” shows
in Figure 3(b). These two curves are plotted together with
the simulation results of other configurations for comparison
purposes.

3.2. Two Consecutive Directors (Conf. #2). As shown in Fig-
ure 3(a), the radiation pattern inH plane of this configuration
presents a good directivity with a HPBW of 87∘, significantly
narrower than the 129∘ from the reference design. The max-
imum gain is 7.70 dBi, 1.72 dB higher than the configuration

with one director, but the FTBR is 9 dB, 12 dB lower than
the reference design. Figure 3(b) shows the 𝑆

11
parameter

over the Smith Diagram (SD) when it varies from 2 GHz to 3
GHz.The 𝑆

11
parameter in the central frequency of the IEEE

802.15.4 band 2.4525 GHz is -7.73 dB, about 4.00 dB lower
than the reference design. According to these simulation
results, this configuration outperforms the original one in
maximum gain, presenting a narrow beamwidth which could
be favorable in many scenarios, and having a better input
impedance matching.

Another interesting characteristic of this configuration
is that the main lobe direction is in the middle of the two
directors, so with a six element antenna and using two
consecutive directors it would be possible to direct the main
beam in 12 different directions.

3.3. Three Consecutive Directors (Conf. #3). The radiation
pattern in H plane of this configuration is shown in Fig-
ure 4(a). It can be observed that this configuration has an
even better directivity than that for one and two consecutive
directors, with a HPBW of 76∘ compared to the 129∘ of
the original design. The maximum gain is also better than
the corresponding one for one and two directors, achieving
8.35 dBi, 2.37 dB higher than the reference design. This
configuration presents a backlobe resulting in a FTBR of 13
dB, lower than that in the reference design but better than that
in the configuration with two directors. Figure 4(b) shows the
radiation pattern in E plane; for the sake of brevity E plane is
shown for this configuration only, since the others have very
similar characteristics.

The 𝑆
11
parameter is shown in Figure 4(c), which achieves

-11.25 dB at 2.4525 GHz, outperforming previous configura-
tions.

The main lobe direction is aligned with the central direc-
tor element (of the three used director elements), allowing the
directional transmission in any of the original six directions,
but with these improved characteristics.

These simulation results so far show that using two and
three directors can focus the main beam to 12 different direc-
tions with better performance, in terms of gain, directivity,
and impedance matching, than the original configuration
using only one director. An aspect to consider in these
configurations is that the FTBR is lower than the reference
design, resulting in the radiation of more energy in the
opposite direction.
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Table 2: Simulation results.

# Description Half Power Beamwidth (3 dB) Maximum Gain |𝑆
11
| at 2.4525 GHz FTBR

1 One director 129∘ 5.98 dBi -3.73 dB 21dB
2 Two consecutive directors 87∘ 7.70 dBi -7.73 dB 9 dB
3 Three consecutive directors 76∘ 8.35 dBi -11.25 dB 13 dB
4 Four consecutive directors 137∘ 6.42 dBi -11.94 dB 25 dB
5 Five consecutive directors 103∘ 5.65 dBi -8.39 dB -
6 Two opposed directors 70∘ 5.91 dBi -8.70 dB -
7 Four opposed directors 58∘ 7.40 dBi -12.20 dB -
8 Six directors (all) Omni 3.90 dBi -5.81 dB -

3.4. Four and Five Consecutive Directors (Confs. #4 and #5).
The remaining configurations using consecutive directors,
that is four and five (configurations #4 and #5, respectively),
do not show improvements, in terms of maximum gain, over
the two previous analyzed configurations, so these results are
not plotted for the sake of brevity.

3.5. Two and Four Opposed Directors (Confs. #6 and #7).
Configurations using opposing directors could be interesting
to be assessed, since these can be used to radiate simul-
taneously power in two opposite directions, in order to
minimize the broadcast transmissions in linear deployments.
The configuration #7 uses four opposed director elements.
The resulting radiation pattern in H plane is shown in
Figure 5(a). We observe that the power is actually radiated
in two opposite directions, each one with a gain of 7.40 dBi
(1.42 dB higher than the reference design).The 𝑆

11
parameter

is shown in Figure 5(b) presenting a value of -12.20 dB at
2.4525 GHz, about 8.47 dB lower than the reference design.
The HPBW is 58∘, being much narrower than the reference
design.

The results obtained for two opposed directors (conf. #6)
can be observed in Table 2; these are not better than the
corresponding ones for conf. #7.

3.6. Six Directors (Conf. #8). A special case is the configura-
tion with six director elements; obtaining an omnidirectional
pattern with a gain of 3.9 dBi, it is 1.8 dBd, which shows
an improvement in the radiation characteristics with respect
to the dipole, being in this way a very good option as an
omnidirectional antenna.

The use of a combination of directional antennas together
with omnidirectional antennas has been proposed in some
communication protocols [16–18], where the omnidirectional
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Figure 4: Three consecutive director elements (conf. #3).

antenna is adopted for broadcast messages.The configuration
with six directors can be adopted for obtaining omnidirec-
tionality.

Table 2 summarizes the main performance parameters of
the simulation for the different configurations of the SPIDA.
All configurations using consecutive directors outperform
the reference design in terms of input impedance matching.
The configurations with two, three, and five consecutive
directors (confs. #2, #3 and #5) present narrower beamwidth,
while the configuration with four directors (conf. #4) has
a wider beamwidth. In terms of maximum gain confs. #2,
#3, and #4 outperform the reference design. Considering
the FTBR, the reference antenna performs similar to the
one with four consecutive directors, but better than the

configurations with two and three consecutive director ele-
ments. Considering configurations with opposed directors,
confs. #6 and #7 outperform the reference design in terms
of input impedance matching and beam directivity in the
desired directions, with conf. #7 having a higher maximum
gain than the reference design and conf. #6 a lower one
than it. These configurations have the potential to direct RF
power to opposite directions with the benefit of enhanced
performance. Also this antenna can be used as an omni-
directional one, with a better gain than a dipole. The final
choice would depend on network design aspects, such as
medium access protocols requirements and sensor nodes
arrangement. Moreover, the increased RF power delivered to
the air due to better impedance matching (achieved in all the
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Figure 5: Four opposed director elements (conf. #7).

cases) represents an important improvement to the energy
efficiency of the system.

Measured and simulated values of S11 for the more
interesting cases are shown in Figures 3(b), 4(c), 5(b), and
7. If we take the criterion for the impedance bandwidth of
considering a VSWR lower than two (module of S11 in dB
lower than -9.54 dB), the configuration with three director
elements presents an impedance bandwidth of 310 MHz,
from 2180 MHz to 2490 MHz. For the band used in the
IEEE 802.15.4 standard (from 2400MHz to 2483.5 MHz), the
module of S11 in dB for this antenna configuration is always
lower than -9.7 dB, satisfying the selected criterion. During
the development of this research, it was observed that the
gain, directivity, and impedance bandwidth of the reference
antenna could be modified (and improved) by changing its
geometry, in particular changing the distance between the
parasitic and the active elements. But it is important to have
in mind that the number of director elements in use in
this antenna is selected dynamically, and any geometrical
optimization of this antenna has a different impact in each
of the possible configurations.

4. Fabrication and Characterization

From the simulation results analysis, it turns out that one
very promising configuration to improve the performance of
the reference design is using three directors. This particular
configuration is quite useful for our general research in the
WSN area, so we decided to measure the performance of this
configuration.

4.1. Fabrication. Two antennas were fabricated in a fixed
configuration: one with one director and another with three
directors. The first antenna is used as a reference for com-
parison with the second configuration in which the SPIDA
antenna uses multiple director elements. Both antennas were
built following the dimensions provided by [5, 6] and using
six “legs” and six parasitic elements.

The elements were made using copper wire of 1 𝑚𝑚2 of
section (the dielectric shield was removed). A central PCB
hexagon was used to fix the legs and connect them to ground.
This hexagon was made of standard two-layer 1.6 𝑚𝑚 FR4
PCB board of 35 𝜇𝑚 of copper thickness. Both copper layers
of the hexagon were connected using vias of 1𝑚𝑚2 of section,
welded with tin (the vias placement can be seen in Figure 6).
A SMA connector was welded to the lower copper layer of the
hexagon to feed the antenna through it. The active element of
the antenna (the central element) was connected through the
SMA connector to the central wire of the coaxial cable used to
feed the antenna. A coaxial cable with SMA connectors was
used to feed the antenna.

The hexagon was designed using CadSoft Eagle PCB
Design Software and fabricated with a LPKF ProtoMat
S63 circuit board plotter. The circuit board plotter features
a resolution of 0.5 𝜇𝑚 and an accuracy of ± 0.02 𝑚𝑚,
allowing a very precise fabrication. This equipment enables
the production of identical hexagons for the fabrication
of these antennas, which facilitates the fabrication process
repetitiveness.

The parasitic elements defined as directors were glued
with silicone and the parasitic elements defined as reflectors
were welded to its corresponding “legs” to ground (which



Wireless Communications and Mobile Computing 7

Figure 6: SPIDA antenna with three consecutive director elements.
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Figure 7: 𝑆
11
parameter for the fabricated SPIDA antenna with three consecutive director elements.

are connected to the hexagon and through it to the cable
shield). In a future work, switches will be inserted between
the parasitic elements and its corresponding “leg” in order
to have dynamic beamforming (controlled by their switches
which are able to connect the parasitic element to the “leg”
or not). According to chip manufacturer the typical switch
attenuation is less than 1.6 dB.

Figure 6 shows a photography of the fabricated antenna
with three directors.

4.2. Measurements and Results. For the characterization pro-
cess a vectorial network analyzer (Rohde & Schwarz ZVB 8
Vector Network Analyzer, 300 kHz - 8 GHz), a RF generator
(Agilent, E4438C, 250 kHz - 3 GHz, ESG Vector Signal
Generator), and a spectrum analyzer (Agilent Technologies,
EXA Signal Analyzer, N9010 A, 9 kHz - 7 GHz) were used.

During the antenna characterization the effort was con-
centrated on 𝑆

11
parameter and the radiation pattern in the

H and E planes for the case with three director elements. The
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Figure 8: Fabricated SPIDA antenna with three consecutive director elements.

measurements obtained can be, respectively, seen in Figures 7
and 8. In these figures the measurements and the simulations
are superimposed showing a good correspondence. The E
plane was only measured in five points near 0∘, as this is
the area of interest for the WSN applications that we are
considering, where all nodes are placed almost in the same
horizontal plane.

For the SPIDA antenna with three director elements, a
maximum gain of 8.2 dBi according to the measurements
(8.35 dBi according to the simulations) was obtained, being
1.4 dB higher than the gain for the single director antenna
taken as reference. A maximum gain of 8.2 dBi is a very
good result, being a better gain than somepreviously reported
results for similar antennas (e.g., in [6] (4.3 dBi), in [9] (5.1
dBi), and in [8] (8.08 dBi)).

According to the measurements, the HPBW for this
antenna is 59∘ (76∘ according to the simulations) against 113∘
for the reference antenna (129∘ according to simulations).

The module of the 𝑆
11

parameter according to the mea-
surements for this antenna was -9.8 dB (-11.25 dB according
to the simulations) against -7.5 dB for the reference antenna
(-3.73 dB according to the simulations).

All these results show a very important improvement
compared with the single director SPIDA antenna, which
justify the use of three director elements instead of only one
for this kind of antennas.

5. Conclusion

In this paper the advantages of using multiple director
elements were discussed. An improved radiation pattern was
obtained in this way, having an increase of the maximum
gain of approximately 1.4 dB, 6.8 dBi for the single director
element antenna against 8.2 dBi for the antenna with three

director elements. Also the input impedance matching was
improved having a module of 𝑆

11
parameter of -9.8 dB at the

central frequency (𝑓
𝑐
= 2.4525 GHz) for the three directors

antenna against -7.5 dB for the antenna with a single director.
By considering multiple director elements it was also shown
that the flexibility in the beam orientation can be duplicated
(having twelve beam directions instead of only six). Also
it was shown that the use of multiple director elements
can be very useful for specific situations as broadcast-
ing where omnidirectional radiation patterns are generally
better.

Once the director elements are controlled dynamically by
using switches, then a very flexible beamforming scheme is
obtained which can improve the performance of a wireless
sensor network significantly.
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International Journal of Electronics and Communications, vol.
70, no. 6, pp. 850–856, 2016.
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The convergence of communication and computing has led to the emergence of multi-access edge computing (MEC), where
computing resources (supported by virtual machines (VMs)) are distributed at the edge of the mobile network (MN), i.e., in base
stations (BSs), with the aim of ensuring reliable and ultra-low latency services. Moreover, BSs equipped with energy harvesting
(EH) systems can decrease the amount of energy drained from the power grid resulting into energetically self-sufficient MNs.The
combination of these paradigms is considered here. Specifically, we propose an online optimization algorithm, called Energy Aware
and Adaptive Management (ENAAM), based on foresighted control policies exploiting (short-term) traffic load and harvested
energy forecasts, where BSs and VMs are dynamically switched on/off towards energy savings and Quality of Service (QoS)
provisioning. Our numerical results reveal that ENAAM achieves energy savings with respect to the case where no energy
management is applied, ranging from 57% to 69%. Moreover, the extension of ENAAM within a cluster of BSs provides a further
gain ranging from 9% to 16% in energy savings with respect to the optimization performed in isolation for each BS.

1. Introduction

The full potential of 5G radio access technology can be
realized through the use of distributed intelligence, whereby
content, control, and computation aremoved closer tomobile
users, hereby referred to as the network edge. This evolution
has led to the emergence of the multi-access edge computing
(MEC) paradigm, which allows network functions to be vir-
tualized and then deployed at the network edge to guarantee
the low latency required by some applications. In this paper,
we consider a hybrid edge computing architecture where
computing servers are co-located with each base station
(BS), and a centralized controller (a point within range to
a set of BSs) is utilized to manage them, deciding upon the
allocation of their computing and transmission resources.
This type of architecture is in line with recent trends
[1].

The convergence of communication and computing
(MEC [2]) within the mobile space poses new challenges
related to energy consumption, as BSs are densely deployed
to maximize capacity and also empowered with computing
capabilities to minimize latency. To cope with these chal-
lenges, previous studies have put forward BS sleep modes
[3, 4], as BSs are dimensioned for the expected maximum
capacity, yet traffic varies during the day. In addition, energy
savings within the virtualized computing platform are of
great importance, as virtualization can also lead to energy
overheads. Therefore, a clear understanding and a precise
modeling of the server energy usage can provide a fun-
damental basis for server operational optimizations. The
experimental results in [5, 6] show that the locus of energy
consumption for the Virtualized Network Function (VNF)
components is the virtual machine (VM) instance where the
VNF is instantiated and executed. Thus, for a given expected
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traffic load, the energy consumption can be minimized by
launching an optimal number of VMs, a technique referred to
as VM soft-scaling, together with BS power saving methods,
i.e., BS sleep modes.

Along these lines, we propose a controller-based net-
work architecture for managing energy harvesting (EH)
BSs empowered with computation capabilities where on/off
switching strategies allow BSs and VMs to be dynamically
switched on/off, depending on the traffic load and the
harvested energy forecast, over a given look-ahead prediction
horizon. To solve the energy consumption minimization
problem in a distributed manner, the controller partitions
the BSs into clusters based on their location; then, for each
cluster, it minimizes a cost function capturing the individual
communication site energy consumption and the users’
Quality of Service (QoS). To manage the communication
sites, the controller performs online supervisory control
by forecasting the traffic load and the harvested energy
using a Long Short-Term Memory (LSTM) neural network
[7], which is utilized within a Limited Look-ahead Control
(LLC) policy (a predictive control approach [8]) to obtain
the system control actions that yield the desired trade-off
between energy consumption and QoS. This work is an
extension of [9], where we consider energy savings within a
single off-grid BS scenario (i.e., BS powered by either wind
or solar energy sources) taking into account the need for
MEC in remote/rural areas. In this paper, however, a dense
environment is considered, similar to an urbanor semi-urban
scenario, where each BS is powered by hybrid energy supplies
(solar and power grid) and empowered with computation
capabilities. Moreover, the optimization problem is extended
for multiple BSs where energy management procedures are
executed within a BS cluster in contrast with the single BS
case of [9].

The rest of the paper is structured as follows. The related
work is discussed in Section 2, and the system model is pre-
sented in Section 3. In Section 4, we detail the optimization
problem and the proposed LLC-based online algorithm for a
single communication site. The multiple BS communication
site case is addressed in Section 5. Our contribution is
evaluated in Section 6, and, lastly, concluding remarks are
given in Section 7.

2. Related Work and Paper Contribution

Next, we first provide a literature review related to BS sleep
modes techniques. Then, we review the mathematical tools
that we use in this paper, followed by the literature review
related to energy savings in virtualized computing platforms
(i.e., works related to soft-scaling). Finally, we put forward our
contributions and novelty of our work.

Sleep-Mode Strategies in Mobile Networks. Cellular net-
works are dimensioned to support traffic peaks; i.e., the
number of BSs deployed in a given area should be able
to provide the required QoS to the mobile subscribers
during the highest load conditions. However, during off-
peak periods the network may be underutilized, which leads
to an inefficient use of network resources and to excessive

energy consumption. For these reasons, sleep modes have
been proposed to dynamically turn off some of the BSs when
the traffic load is low.This has been extensively studied in the
literature; here we highlight the main applied techniques that
are related to this work.

Clustering algorithms have been proposed as a way of
switching off BSs to reduce the energy consumption. In [12],
centralized and distributed algorithms group BSs exhibiting
similar traffic profiles over time. In [13], a dynamic switching
on/off mechanism locally groups BSs into clusters based
on location and traffic load. The optimization problem is
formulated as a non-cooperative game aimed at minimizing
the BS energy consumption and the time required to serve
their traffic load. Simulation results show energy costs and
load reductions, while also providing insights of when and
how the cluster-based coordination is beneficial.

Reducing the energy consumption involves some trade-
offs in the optimization problem. QoS has been widely used
as a trade-off metric [14, 15]. The Quality of Experience
(QoE) is included in [16], where a dynamic programming
switching algorithm is put forward. Other parameters that
have been considered are the coverage probability and the
BS state stability parameter, i.e., the number of on/sleep
state transitions. For instance, a set of BSs switching patterns
engineered to provide full network coverage at all times, while
avoiding channel outage, is presented in [17]. According to
the BS state stability concept, a two-objective optimization
problem is formulated in [18] and solvedwith two algorithms:
(i) near optimal but not scalable and (ii) low complexity,
based on particle swarm optimization. The QoE is also
affected by the UE position due to channel propagation
phenomena. To this respect, in [19] the selection of the BSs
to be switched off is taken so as to minimize the impact on
the UEs’ QoE, according to the distance from the handed off
BSs.

To support sleep modes, neighboring cells must be
capable of serving the traffic from the switched off cells. To
achieve this, proper user association strategies are required. A
framework to characterize the performance (outage proba-
bility and spectral efficiency) of cellular systems with sleep-
ing techniques and user association rules is proposed in
[20]. In that paper, the authors devise a user association
scheme where a user selects its serving BS considering the
maximum expected channel access probability. This strategy
is compared against the traditional maximum SINR-based
user association approach and is found superior in terms
of spectral efficiency when the traffic load is inhomoge-
neous. User association mechanisms that maximize energy
efficiency in the presence of sleep modes are addressed in
[21]. There, a downlink HetNet scenario is considered, where
the energy efficiency is defined as the ratio between the
network throughput and the total energy consumption. Since
this leads to a rather complex integer optimization problem,
the authors propose a quantum particle swarm optimization
algorithm to obtain a suboptimal solution.

A marketing approach to foster the opportunistic uti-
lization of the unexploited small cell (SC) BS capacity in
dense heterogeneous networks (HetNets) is presented in [22].
There, an offloading mechanism is introduced, where the
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operators lease the capacity of a SC network owned by a
third party in order to switch off their BSs (macro-BSs) and
maximize their energy efficiency, when the traffic demand
is low. The allocation of the SC resources among a set of
competing operators is mathematically formulated as an
auction problem.

A comprehensive powermanagement model employing a
BS switching on/off mechanism, within a BS system powered
by green energy, is presented in [23]. The model considers
weather conditions, user mobility, different green energy
harvesting rates, energy storage with self-discharge effect,
and switching on/off frequency. The authors propose two
algorithms: the first decides which BSs are to be active based
on the minimum energy cost, i.e., the energy price per time
period, while the second one determines the active BSs by
first prioritizing the minimum power consumption of the
system and then the energy cost. The relationship between
installing a solar harvesting system to power a BS and the
energy management under varying demand is investigated in
[24]. The authors present a solar installation planning model
by explicitly modeling solar panels, batteries, inverters, and
charge controllers, aswell as the cellular network demand and
energy management. They found that the solar installation
and the energy management of the base stations are so
coupled that even the order in which these technologies are
introduced can have a major impact on the network cost and
performance.

The survey paper [25] presents taxonomy of existing
energy sustainable paradigms andmethods to address energy
savings in network elements (i.e., BSs) equipped with EH
capabilities. Here, the authors discuss the shortcomings of
previous studies related to efficient energy management
procedures, the lack of relevant discussion related to the
integration of EH into future networks, and, lastly, energy
self-sustainability in future networks. The current work is a
technical contribution where we address some of the short-
comings that were identified in [25], also proposing the use
of machine learning (ML) tools for pattern forecasting and
adaptive control schemes for decision-making. In addition,
this work is in line with the research topics which can be
found in our review paper [26].

Themajority of the works on BS switching offmechanism
considered clusters of BSs from a single mobile operator
perspective, where some functions of the BS can be switched
off and then the remaining active BSs handle the upcoming
traffic. A new approach is presented in [27] which exploits the
coexistence of multiple BSs from different mobile operators
in the same area. An intracell roaming-based infrastructure-
sharing strategy is proposed, followed by a distributed game-
theoretic switching off scheme that takes into account the
conflicts and interaction among the different operators.
Moreover, in [28], the authors investigate the energy and cost
efficiency of multiple HetNets (i.e., each HetNet is composed
of eNodeBs (eNBs) and SC BSs from one operator) that share
their infrastructure and also are able to switch off part of
it. Here, a form of roaming-based sharing is also adopted,
whereby the operator can roam its traffic to a rival operator
during a predefined period of time and area. An energy
efficient optimization problem is formulated and solved using

a cooperative greedy heuristic algorithm. Regarding the cost
efficiency, the cooperation and cost sharing decisions among
the operators are modeled using a Shapley Value based
bankruptcy game.

Pattern Forecasting along with Foresighted Optimization.
Control-theoretic and machine learning (ML) methods for
resource management have been successfully applied to
various problems, e.g., task scheduling, bandwidth allocation,
and network management policies. In the paradigm of super-
visory control for managing mobile networks (MNs), online
forecasting using ML techniques and the LLC method can
yield the desired system behavior when taking into account
the environmental expectations, i.e., traffic load and energy to
be harvested. Next, we briefly review the mathematical tools
that we use in this paper, namely, the LLCmethod and LSTM
neural network [7].

Control-theoretic algorithms and the LLC method have
been used to obtain control actions that optimize the system
behavior, by employing a forecasting mathematical model,
over a limited look-ahead prediction horizon. LLC is con-
ceptually similar to model predictive control (MPC) [29].
In [30], an online supervisory control scheme based on
LLC policies is proposed. Here, after the occurrence of an
event, the next control action is determined by estimating
the system behavior a few steps into the future, using the
currently available information as inputs. The control action
exploration is performed using a search tree assuming that
the controller knows all future possible states of the process
over the prediction horizon. Moreover, in [8], an online con-
trol framework for resource management in switching hybrid
systems is proposed, where the system’s control inputs are
finite.The relevant parameters of the operating environment,
e.g., workload arrival, are estimated and then used by the
system to forecast future behavior over a look-ahead horizon.
From this, the controller optimizes the predicted system
behavior following the specified QoS through the selection
of the system controls.

To model time series datasets, the LSTM network is
used as it is able to handle the long-term dependencies due
to its inherent capability of storing past information and
then recalling it. In [31], a distributed LSTM online method
based on the particle filtering algorithm is presented with
an aim of investigating the performance of online training
of LSTM architectures in a distributed network of nodes.
An LSTM based model for variable length data regression
is proposed and then put into a nonlinear state-space form
to train the model in an online fashion. Then, financial and
real life datasets are used for performance evaluation, and
it is observed that the distributed online approach yields
the same results that are obtained in the centralized case,
when considering the mean square errors as the performance
measure. Moreover, an LSTM forecasting method is utilized
in [9] within an LLC-based algorithm to obtain the system
control actions yielding the desired trade-off between energy
consumption and QoS, for a remote site powered by only
green energy.

Energy Savings in Virtualized Platforms through Soft-
Scaling. With the advent of virtualization, it is expected that
the Network Function Virtualization (NFV) framework can
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exploit the benefits of virtualization technologies to signifi-
cantly reduce the energy consumption of large scale network
infrastructures. In virtualized computing environments, the
locus of energy consumption for components is due to the
VMs running in the server(s). Thus, energy saving studies
within the virtualized computing environment have involved
the scaling down of the number of computing nodes/servers
(autoscaling [32]), VM migration [33] (movement of a VM
from one host to another), and soft resource scaling [34]
(shortening of the access time to physical resources), all
hereby referred to as VM soft-scaling, i.e., the reduction of
computing resources per time instance.

Algorithms for the dynamic on/off switching of servers
have been proposed as a way of minimizing energy consump-
tion in computing platforms. In [32], at the beginning of each
time slot computing resources are provisioned depending on
the expected server workloads via a reinforcement learning-
based resource management algorithm, which learns on-the-
fly the optimal policy for dynamic workload offloading and
the autoscaling of servers. Then in [9], computing resources
(VMs) are provisioned based on aLLCpolicy after forecasting
the future workloads and harvested energy. In [33], the Cen-
tral Processing Unit (CPU) utilization thresholds are used
to identify overutilized servers. Hence, migration policies,
enabled by the live VM migration method [35], are applied
for moving the VMs between physical nodes (servers). The
VMs are only moved to hosts that will accept them without
incurring high energy cost, i.e., without any increase in the
CPU utilization. Subsequently, the idle servers are switched
off.

Power management is also of interest in virtualized
computing platforms, i.e., data centers using virtualization
technologies. In [34], a power management approach called
VirtualPower is presented. The algorithm exploits hardware
power scaling, i.e., the dynamic powermanagement strategies
using Dynamic Voltage and Frequency Scaling (DVFS) [36,
37], and software-based methods, i.e., scaling the allocation
of physical resources to VMs using the hypervisor scheduler,
for controlling the power consumption of underlying plat-
forms. Due to the low power management benefits obtained
from hardware scaling, a soft resource scaling mechanism
is proposed whereby the scheduler shortens the maximum
resource usage time for each VM, i.e., the time slice allocated
for using the underlying physical resources.

Novelty of this Work. Here, we consider the aforemen-
tioned scenario, where eachBS is equippedwith EHhardware
(a solar panel for EH and an Energy Buffer (EB) for energy
storage) and a MEC server co-located with the BS for
computation purposes, under the management enabled by
the controller.

Motivated by the potential capabilities of EH and MEC
and the presence of the controller,

(1) we introduce the use of virtualization with the aim
of investigating how VMs can be soft-scaled based
on the forecasted server workloads, as VMs are the
source of energy consumption in computing environ-
ments;

(2) we put forward the edge controller-based architecture
for small cell BSs management, as one of the future
trends for small cells [1] in 5G MNs;

(3) we reconsider the BS sleeping control mechanism
under the new MEC paradigm, which has not been
sufficiently covered in the literature. In addition, we
use a clustering method for enabling energy savings
within the MN;

(4) we estimate the short-term future traffic load and
harvested energy in BSs, by using LSTM neural
network [38];

(5) we develop an online supervisory control algorithm
for the radio access (edge) network management
based on a predictive method, specifically the LLC
method, along with clustering and energy manage-
ment procedures. The main goal is to enable energy
savings (ES) strategies within the access network,
BS sleep modes, and VM soft-scaling, following
the energy efficiency requirements of a virtualized
infrastructure from [39]. The proposed management
algorithm is called Energy Aware and Adaptive Man-
agement (ENAAM) and is hosted in the edge con-
troller. The ENAAM algorithm considers the future
BS traffic load, onsite green energy in the EB, and
then provisions access network resources, per com-
munication site, based on the learned information;
i.e., energy saving decisions are made in a forward-
looking fashion.

The proposed optimization strategy leads to a con-
siderable reduction in the energy consumed by the edge
computing and communication facilities, promoting self-
sustainability within the mobile network through the use of
green energy. This is achieved under the controller guidance,
which makes use of forecasting, clustering, control theory,
and heuristics.

3. System Model

As a major deployment of MEC and in line with current
trends for future mobile networks as suggested by promi-
nent network operators (e.g., Huawei Technologies [1]), the
considered scenario is illustrated in Figure 1. It consists of a
densely deployed MN featuring 𝑁 BSs and colocated cache-
enabled MEC servers. Each MEC server hosts 𝑀 VMs.
Each communication site, i.e., the BS and the colocated
MEC server, is empowered with EH capabilities through a
solar panel and an EB that enables energy storage. Energy
supply from the power grid is also available. Moreover, the
Energy Manager (EM) is an entity responsible for selecting
the appropriate energy source and for monitoring the energy
level of the EB. All BSs communicate with a centralized entity
called the edge controller, which is responsible for managing
the access network apparatuses. The energy level information
is reported periodically to the edge controller through the
pull file transfer mode procedure (e.g., File Transfer Protocol
[40]). Moreover, we consider a discrete-time model, whereby
time is discretized as 𝑡 = 1, 2, . . ., and each time slot 𝑡 has a
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Figure 1: Edge network topology. The electromechanical switch
(SW) selects the appropriate source of energy.

fixed duration 𝜏.The list of symbols that are used in the paper
is reported in Table 1.

3.1. Traffic Load and Energy Consumption. Mobile traffic
volume exhibits temporal and spatial diversity and also
follows a diurnal behavior [41]. Therefore, traffic volume at
individual BSs can be estimated using historical mobile traffic
datasets. In this paper, real MN traffic load traces obtained
from the Big Data Challenge organized by Telecom Italia
Mobile (TIM) [10] are used to emulate the computational
load (in fact, the dataset is not a true representative of future
applications that require processing at the edge but contains
data that is exchanged with the purpose of communication.
We nevertheless use it due to the difficulties in finding
open datasets containing computing requests). Specifically,
the used data was collected in the city of Milan during
the month of November 2013, and it is the result of users
interaction within the TIMMN, based on Call Detail Record
(CDR) files for a day considering four BS sites representing
the traffic load profiles. A CDR file consists of SMS, Calls,
and Internet records with timestamps. To understand the
behavior of the mobile data, we have applied the X-means
clustering algorithm [42] to classify the load profiles into
several categories. In our numerical results, each BS 𝑛 =1, 2, . . . , 𝑁 is assigned a load profile 𝐿𝑛(𝑡), which is picked at
random as one of the four clusters (each cluster represents
a typical BS load profile) in Figure 2. 𝐿𝑛(𝑡) consists of
computationworkloads Γ𝑛(𝑡) ([MB]) and standardworkloadsΓ𝑛(𝑡) ([MB]). According to [43], we assume that 80% of 𝐿𝑛(𝑡)
is delay sensitive and, as such, requires processing at the edge,
i.e., Γ𝑛(𝑡) = 0.8𝐿𝑛(𝑡), whereas the remaining 20% pertains to
standard flows, delay tolerant traffic, i.e., Γ𝑛(𝑡) = 𝐿𝑛(𝑡) − Γ𝑛(𝑡).

The total energy consumption ([J]) for the communica-
tion site 𝑛 at time slot 𝑡 is formulated as follows, inspired by
[9, 44–47]

𝜃tot,𝑛 (𝑡) = 𝜃BS,𝑛 (𝑡) + 𝜃MEC,𝑛 (𝑡) + 𝜃TX,𝑛 (𝑡) , (1)

where 𝜃BS,𝑛(𝑡) is the BS energy consumption term, 𝜃MEC,𝑛(𝑡)
is the MEC server consumption term due to computation

Table 1: Notation: list of symbols used in the analysis.

Symbol Description
Input Parameters

𝑁 number of BSs, indexed by 𝑛
𝑀 maximum number of VMs hosted by each MEC

server
𝜏 time slot duration

𝐿𝑛(𝑡) BS 𝑛 traffic load profile in time slot 𝑡, 𝑛 is the BS
index

Γ𝑛(𝑡) workload handled by the MEC server at BS 𝑛 in time
slot 𝑡

Γ𝑛(𝑡) standard (non MEC) traffic at time 𝑡
𝜃0 BS load independent energy consumption or

operation energy
𝑓max maximum processing rate for VM𝑚
F a finite set of available processing rates for VM𝑚
𝜃ov𝑚 (𝑡) energy overheads incurred when turning on/off VMs
𝜃idle,𝑚(𝑡) static energy consumed by VM𝑚 in the idle state

𝜃max,𝑚(𝑡) maximum energy consumed by VM𝑚 at maximum
processing rate

𝛾𝑚(𝑡) workload fraction to be computed by the𝑚-th VM
𝛾max maximum computation load per-VM

Δ maximum per-slot and per-VM allowed processing
time

𝜃idle(𝑡) energy consumption of network interfaces in idle
mode

𝜃data(𝑡) energy cost of exchanging one unit of data between
the server and the BS

𝛽max maximum energy buffer capacity
𝛽up , 𝛽low upper and lower energy buffer thresholds

Variables

𝜃tot,𝑛(𝑡) total energy consumption for the communication
site 𝑛

𝜃BS,𝑛(𝑡) BS 𝑛 energy cost at 𝑡
𝜃MEC,𝑛(𝑡) server consumption due to computation activities

𝜃T𝑋,𝑛(𝑡) data transmission energy consumption between the
BS and the MEC server

𝜁𝑛(𝑡) BS 𝑛 switching status indicator at 𝑡
𝑀(𝑡) number of VMs to be active in time slot 𝑡
𝜃load(𝑡) total wireless transmission power
𝑓𝑚(𝑡) instantaneous processing rate
𝜃op𝑚 (𝑡) energy consumption of VM𝑚 operation
𝛼𝑚(𝑡) load dependent factor
𝜇𝑚(𝑡) the expected processing time
𝐵𝑛(𝑡) the total amount of load that is served by the BS site
𝛽𝑛(𝑡) energy buffer level in slot 𝑡
𝐻𝑛(𝑡) harvested energy profile in slot 𝑡
𝑄𝑛(𝑡) purchased grid energy in slot 𝑡

activities, and 𝜃TX,𝑛(𝑡) represents the data transmission
energy consumption between the BS and the MEC server.
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Figure 2: Example traces for normalized BS traffic loads. The data
from [10] has been split into four representative clusters.

BS Energy Consumption. 𝜃BS,𝑛(𝑡) = 𝜁𝑛(𝑡)𝜃0 + 𝜃load(𝑡),
where 𝜁𝑛(𝑡) ∈ {𝜀, 1} is the BS switching status indicator
(1 for active mode and 𝜀 for power saving mode) and 𝜃0
is a constant value (load independent), representing the
operation energy which includes baseband processing, radio
frequency power expenditures, etc. The constant 𝜀 ∈ (0, 1)
accounts for the fact that the baseband energy consumption
can be scaled down as well whenever there is no or little
channel activity, into a power saving mode. 𝜃load(𝑡) represents
the total wireless transmission (load dependent) power to
meet the target transmission rate from the BS to the served
user(s) and to guarantee low latency at the edge. Since we
assume a noise-limited channel and the guarantee of low
latency requirements at the edge, 𝜃load(𝑡) is obtained by using
the transmission model in [44] (see (5) in this reference).
Here, we neglect the imbalance of traffic volumes in uplink
and downlink, and also we do not account for the switching
energy cost for the BS mode transition [46] due to the fact
that future BS functions will be virtualized [48].

MEC Server Energy Consumption. It depends on the
number of VMs running in time slot 𝑡, named, 𝑀(𝑡) ≤ 𝑀,
and on the CPU frequency that is allotted to each virtual
machine. Specifically, VMs are instantiated on top of the
physical CPU cores, and each VM is given a share of the host
server CPU, memory, and network input/output interfaces.
The CPU is the main consumer of energy in the server [33]
due to the VM-to-CPU share mapping. Hence, in this work
we focus on the CPU utilization only. With 𝑓𝑚(𝑡) ∈ [0, 𝑓max]
wemean the instantaneous processing rate [49], expressed in
bits per second that are computed, and 𝑓max is the maximum
processing rate for VM 𝑚. In this paper, 𝑓𝑚(𝑡) is set within a
finite setF = {𝑓0, 𝑓1, . . . , 𝑓max} where 𝑓0 = 0 represents zero
speed of the VM (e.g., deep sleep or shutdown). At any given
time 𝑡, the total energy consumption of a virtualized server,
with𝑀(𝑡) running VMs, is

𝜃MEC,𝑛 (𝑡) = 𝑀(𝑡)∑
𝑚=1

(𝜃op𝑚 (𝑡) + 𝜃ov𝑚 (𝑡)) , (2)

where 𝜃op𝑚 (𝑡) is the energy consumption of VM 𝑚 operation
and 𝜃ov𝑚 (𝑡) ≥ 0 is the energy cost incurred through the turning
on/off the VM; i.e., 𝜃ov𝑚 (𝑡) > 0 only when VM 𝑚 is switched
on/off and it is zero otherwise. 𝜃op𝑚 (𝑡) is obtained using the
linear relationship between the CPU utilization contributed
by VM𝑚 and the energy consumption, from [49, 50] (see (4)
in the second reference):

𝜃op𝑚 (𝑡) = 𝜃idle,𝑚 (𝑡) + 𝛼𝑚 (𝑡) (𝜃max,𝑚 (𝑡) − 𝜃idle,𝑚 (𝑡)) , (3)

where 𝜃idle,𝑚(𝑡) represents the static energy drained by VM𝑚 in the idle state, and 𝜃max,𝑚(𝑡) is the maximum energy
it drains. The quantity, 𝛼𝑚(𝑡)(𝜃max,𝑚(𝑡) − 𝜃idle,𝑚(𝑡)), rep-
resents the dynamic energy component, where 𝛼𝑚(𝑡) =(𝑓𝑚(𝑡)/𝑓max)2 [8] is a load dependent factor. Note that 𝛼𝑚(𝑡)
and 𝑓𝑚(𝑡) are deterministically related as 𝑓max is a constant.𝜃ov𝑚 (𝑡) is obtained from [50] (see (5) in this reference) as a
constant and is typically limited to a few hundreds of mJ per
MHz2.

Conventionally, for each BS site, the hypervisor, i.e., the
software that provides the environment in which the VMs
operate, is in charge of allocating 𝑓𝑚(𝑡) and the workload
fraction to be computed by the𝑚-thVM, named 𝛾𝑚(𝑡). In our
setup, we have∑𝑀(𝑡)𝑚=1 𝛾𝑚(𝑡) ≤ Γ𝑛(𝑡), where equality is achieved
when the workload is fully served by𝑀(𝑡)VMs.We also note
that, in practical application scenarios, the maximum per-
VM computation load to be computed is generally limited up
to an assigned value, named 𝛾max. Motivated by the energy
efficient requirements from [39], i.e., the hypervisor’s ability
to accept and implement policies from a management entity,
in this paper, the edge controller usage is pursued. Here, the
edge controller determines the 𝑓𝑚(𝑡) value that will yield the
desired or expected processing time, 𝜇𝑚(𝑡) = 𝛾𝑚(𝑡)/𝑓𝑚(𝑡),
considering the workload 𝛾𝑚(𝑡) allotted to VM𝑚. 𝜇𝑚(𝑡)must
be less than or equal to the maximum per-slot and per-VM
processing time (in seconds), named, Δ; i.e., 𝜇𝑚(𝑡) ≤ Δ. Note
that Δ is also the server’s response time, i.e., the maximum
time allowed for processing the total computation load.

We remark that, as a result of the allocation procedure
that is developed in this paper, for anyBS site 𝑛, the processing
rates 𝑓𝑚(𝑡) shall be found, similar to [50] (see Remark 1 from
this reference). Then, the total amount of load that is served
by the BS site may be set as follows: 𝐵𝑛(𝑡) = ∑𝑀(𝑡)𝑚=1 𝛾𝑚(𝑡) ≤Γ𝑛(𝑡). The objective of the considered optimization is to
find the operating mode for the BS (either “on” or “power
saving”), the number of VMs 𝑀(𝑡) that are to be allocated
and, for each of them, the processing rate 𝑓𝑚(𝑡). In doing
so, (1) the amount of delay sensitive load that is not served
at the edge, Γ𝑛(𝑡) − ∑𝑀(𝑡)𝑚=1 𝛾𝑚(𝑡), shall be minimized, while
exploiting as much as possible the energy harvested from the
solar panels, so that the mobile network will be energetically
self-sufficient and (2) the load is computed in a time shorter
than or equal to Δ. The details of the proposed optimization
algorithm are provided in Section 4.

Data Transmission Energy Consumption. We assume that
the intercommunication between the BS and the MEC server
is bidirectional and symmetric. Hence, under steady-state
operating conditions, for the communication site 𝑛, 𝜃TX,𝑛(𝑡)
is obtained as 𝜃TX,𝑛(𝑡) = 𝜃idle(𝑡) + 𝜃data(𝑡)𝐵𝑛(𝑡) by using the
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Figure 3: Example traces for harvested solar energy from [11].

VM migration hint from [51], where 𝜃idle(𝑡) (fixed value in J)
is the energy drained by the network interfaces in idle mode
over a time slot 𝑡, 𝜃data (fixed value in J/byte) is the cost of
exchanging one byte of data between the MEC server and the
BS per time slot 𝑡, and 𝐵𝑛(𝑡) is the amount of data exchanged.
These parameters, 𝜃idle(𝑡) and 𝜃data(𝑡), are obtained from [51].
Note that 𝐵𝑛(𝑡) also corresponds to the amount of data to be
processed at the MEC server in bytes.

3.2. Energy Patterns and Storage. The energy buffer is charac-
terized by its maximum energy storage capacity 𝛽max. At the
beginning of each time slot 𝑡, the EMprovides the energy level
report to the edge controller through the local MEC server;
thus the EB level 𝛽𝑛(𝑡) is known, enabling the provision of
the required computation resources, i.e., theVMs.The energy
level report/file from the EM to theMEC server is transferred
using the pull mode procedure (e.g., File Transfer Protocol)
[40].

In this work, the amount of harvested energy 𝐻𝑛(𝑡) in
time slot 𝑡 in the communication site 𝑛 is obtained from
open source solar traces [11] (see Figure 3). The dataset is
the result of daily environmental records. In our numerical
results, 𝐻𝑛(𝑡) represents a daily solar radiation record for
three different areas. From the three solar profiles, each
communication site energy profile is picked at random to
represent the daily energy harvested and then scaled to fit
the EB capacity 𝛽max of 490 kJ. Thus, the available EB level𝛽𝑛(𝑡 + 1) at the beginning of time slot 𝑡 + 1 is calculated as
follows:

𝛽𝑛 (𝑡 + 1) = 𝛽𝑛 (𝑡) + 𝐻𝑛 (𝑡) − 𝜃tot,𝑛 (𝑡) + 𝑄𝑛 (𝑡) , (4)

where 𝛽𝑛(𝑡) is the energy level in the battery at the beginning
of time slot 𝑡, 𝜃tot,𝑛(𝑡) is the energy consumption of the
communication site over time slot 𝑡 (see (1)), and 𝑄𝑛(𝑡) ≥ 0
is the amount of energy purchased from the power grid. We
remark that 𝛽𝑛(𝑡) is updated at the beginning of time slot 𝑡
whereas𝐻𝑛(𝑡) and 𝜃tot,𝑛(𝑡) are only known at the end of it.

For decision-making in the edge controller, the received
EB level reports are compared with the following thresholds:𝛽low and 𝛽up, respectively termed the lower and the upper
energy threshold with 0 < 𝛽low < 𝛽up < 𝛽max. 𝛽up cor-
responds to the desired energy buffer level at the BS and𝛽low is the lowest EB level that any BS should ever reach. If𝛽𝑛(𝑡) < 𝛽low, then BS 𝑛 is said to be energy deficient and our
optimization in the following section makes sure that 𝛽𝑛(𝑡)
never falls below 𝛽low due to its transmission and computing
activities within a time slot. Instead, if for any time slot we
have 𝛽𝑛(𝑡) < 𝛽up, then the following amount of energy𝑄𝑛(𝑡) = 𝛽up − 𝛽𝑛(𝑡) is purchased from the energy grid to
compensate for the deviation from the desired EB level (due
to previous BS activity).

4. Optimization for a Single
Communication Site

In this section, we formulate an optimization problem to
obtain energy savings through short-term traffic load and
harvested energy predictions, alongwith energymanagement
procedures for a single communication site.The optimization
problem is defined in Section 4.1, and the communication site
management procedures are presented in Section 4.2.

4.1. Problem Formulation. At the beginning of each time
slot 𝑡, the edge controller receives the energy level report𝛽𝑛(𝑡) from each EM (via the MEC application responsible
for energy profiles in the MEC server), using the pull mode
file transfer. Here, we aim to minimize the overall energy
consumption in the communication site over time, i.e., the
consumption related to the BS transmission activity and
the MEC server, by applying BS power saving modes and
VM soft-scaling, i.e., tuning the number of active virtual
machines. To achieve this, we first consider the optimization
for a single communication site.We define two cost functions
as follows:

(F1) 𝜃tot,𝑛(𝑡), which weighs the energy consumption due to
transmission (BS) and computation (MEC server);

(F2) a quadratic term (Γ𝑛(𝑡) − 𝐵𝑛(𝑡))2, which accounts for
the QoS cost.

In fact, (F1) tends to push the system towards self-sustaina-
bility solutions; i.e., 𝜁𝑛(𝑡) → 𝜀. Instead, (F2) favors solutions
where the delay sensitive load is entirely processed by the
local MEC server; i.e., 𝐵𝑛(𝑡) → Γ𝑛(𝑡). A weight 𝜂 ∈ [0, 1]
is utilized to balance the two objectives (F1) and (F2). The
corresponding (weighted) cost function is defined as

𝐽 (𝜁, 𝛼, 𝑡) Δ= 𝜂𝜃tot,𝑛 (𝜁𝑛 (𝑡) , {𝛼𝑚 (𝑡)} , 𝑡)
+ 𝜂 (Γ𝑛 (𝑡) − 𝐵𝑛 (𝑡))2 ,

(5)

where 𝜂 Δ= 1−𝜂; with {𝛼𝑚(𝑡)}wemean the sequence of factors𝛼1(1), 𝛼2(1), . . . , 𝛼𝑀(𝑡)(1). Hence, letting 1 be the current time
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slot and 𝑇 be the time horizon, the following optimization
problem is formulated over time slots 1, . . . , 𝑇:

P1: min
𝜁,𝛼

𝑇∑
𝑡=1

𝐽 (𝜁, 𝛼, 𝑡)
subject to: C1: 𝜁𝑛 (𝑡) ∈ {𝜀, 1} ,

C2: 𝑏 ≤ 𝑀 (𝑡) ≤ 𝑀,
C3: 𝛽𝑛 (𝑡) ≥ 𝛽low,
C4: 0 ≤ 𝑓𝑚 (𝑡) ≤ 𝑓max,
C5: 0 ≤ 𝛾𝑚 (𝑡) ≤ 𝛾max,
C6: 𝜇𝑚 (𝑡) ≤ Δ, 𝑡 = 1, . . . , 𝑇,

(6)

where𝑚 = 1, . . . ,𝑀(𝑡) (VM index) and vectors 𝜁 (BS switch-
ing status in time slots 1, . . . , 𝑇) and𝛼 (load dependent factor)
contain the control actions for the considered time horizon,
per communication site; i.e., 𝜁 = [𝜁(1), 𝜁(2), . . . , 𝜁(𝑇)] and
𝛼 = [{𝛼𝑚(1)}, {𝛼𝑚(2)}, . . . , {𝛼𝑚(𝑇)}]. Constraint C1 specifies
the BS operation status (either power saving or active), C2
forces the required number of VMs, 𝑀(𝑡), to be always
greater than or equal to a minimum number 𝑏 ≥ 1: the
purpose of this is to be always able to handle mission critical
communications. C3 makes sure that the EB level is always
above or equal to a preset threshold 𝛽low, to guarantee energy
self-sustainability over time. Note that this constraint may
imply that in certain time slots the BS is to be switched
off, although the workload may be nonnegligible. When
managing a single BS site (the formulation in this section),
this implies that the load will not be served, but this fact
may be compensated for when multiple communication
sites are jointly managed, e.g., handing off the workload to
another, energy richer, and BS.This is dealt with in Section 5.
Furthermore, C4 and C5 bound the maximum processing
rate and workloads of each running VM 𝑚, with 𝑚 =1, . . . ,𝑀(𝑡), respectively. Constraint C6 represents a hard-
limit on the corresponding per-slot and per-VM processing
time.

To solve P1 in (6), we leverage the use of LLC [8, 30] and
heuristics, obtaining the controls 𝜍(𝑡) Δ= (𝜁(𝑡), {𝛼(𝑡)}) for 𝑡 =1, . . . , 𝑇. Note that (6) can iteratively be solved at any time slot𝑡 ≥ 1, by just redefining the time horizon as 𝑡 = 𝑡, 𝑡+1, . . . , 𝑡+𝑇 − 1.
4.2. Communication Site Management. In this subsection,
a traffic load and energy harvesting prediction method
and an online management algorithm are proposed to
solve the previously stated problem P1. In Section 4.2.1,
we discuss the prediction of the future (short-term) traffic
load and harvested energy processes, and then in Sec-
tion 4.2.2, we solve P1 by first constructing the state-
space behavior of the control system, where online con-
trol key concepts are introduced. Finally, the algorithm for
managing the single communication site is presented in
Section 4.2.3.

Modeling steps
Step 1: load and normalize the dataset
Step 2: split dataset into training and testing
Step 3: reshape input to be [samples, time steps, features]
Step 4: create and fit the LSTM network
Step 5: make predictions
Step 6: calculate performance measure

Box 1: LSTM prediction model steps.

4.2.1. Traffic Load and Energy Forecasting. ML techniques
constitute a promising solution for networkmanagement and
energy savings in cellular networks [52, 53]. In this work,
given a time slot duration of 𝜏 = 30 min, we perform
time series prediction; i.e., we obtain the 𝑇 = 3 estimates
of �̂�𝑛(𝑡) and �̂�𝑛(𝑡), by using an LSTM network developed
in Python using Keras deep learning libraries (Sequential,
Dense, LSTM) where the network has a visible layer with
one input, one hidden layer of four LSTM blocks or neurons,
and an output layer that makes a single value prediction.
This type of recurrent neural network uses backpropagation
through time for learning and memory blocks for regression
[7]. The dataset is split as 67% for training and 33% for
testing. The network is trained using 100 epochs (2,600
individual training trials) with batch size of one. As for the
performance measure of the model, we use the Root Mean
Square Error (RMSE). The prediction steps are outlined in
Box 1. Figures 4(a) and 4(b) show the prediction results that
will be discussed in Section 6.

4.2.2. Edge System Dynamics. We denote the system state
vector at time 𝑡 by x(𝑡) = (𝑀(𝑡), 𝛽𝑛(𝑡)), which contains the
number of active VMs, 𝑀(𝑡), and the EB level, 𝛽𝑛(𝑡), for the
BS site 𝑛. 𝜍(𝑡) = (𝜁(𝑡), {𝛼𝑚(𝑡)}) is the input vector, i.e., the
control action that drives the system behavior at time 𝑡. The
system evolution is described through a discrete-time state-
space equation, adopting the LLC principles [8, 30]:

x (𝑡 + 1) = Φ (x (𝑡) , 𝜍 (𝑡)) , (7)

whereΦ(⋅) is a behavior model that captures the relationship
between (x(𝑡), 𝜍(𝑡)), and the next state x(𝑡 + 1). Note that this
relationship accounts for (1) the amount of energy drained𝜃tot,𝑛(𝑡) that harvested 𝐻𝑛(𝑡) and that purchased from the
power grid 𝑄𝑛(𝑡), which together lead to the next buffer level𝛽𝑛(𝑡 + 1) through (4) and (2) to the traffic load 𝐿𝑛(𝑡), from
which we compute the server workloads Γ𝑛(𝑡) that leads to𝑀(𝑡) and to the control 𝜍(𝑡). The network management algo-
rithm in the edge controller, the ENAAM algorithm, finds
the best control action vector for the communication site,
following amodel predictive control approach. Specifically, for
each time slot 𝑡, problem (6) is solved, obtaining control
actions for the whole time horizon 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑇 − 1. The
control action that is applied at time 𝑡 is 𝜍∗(𝑡), which is the first
one in the retrieved control sequence. This control amounts
to setting the BS radio mode according to 𝜁∗(𝑡), i.e., either
active or power saving, and the number of instantiated VMs,



Wireless Communications and Mobile Computing 9

Real values
Predictions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 tr
af

fic
 lo

ad

5:00 10:00 15:00 20:00 24:001:00
Time [h]

(a) One-step ahead predictive mean value for 𝐿(𝑡)

Real values
Predictions

5:00 10:00 15:00 20:00 24:001:00
Time [h]

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 h
ar

ve
ste

d 
en

er
gy

(b) One-step ahead predictive mean value for𝐻(𝑡)

Figure 4: One-step online forecasting for both 𝐿(𝑡) and𝐻(𝑡) patterns.

𝑀∗(𝑡), along with their obtained {𝛼∗𝑚(𝑡)} values (see Remarks
1 and 2 below). This is repeated for the following time slots𝑡 + 1, 𝑡 + 2, . . ..
Remark 1 (role of prediction). State x(𝑡) and control 𝜍(𝑡) are,
respectively, measured and applied at the beginning of time
slot 𝑡, whereas the offered load 𝐿𝑛(𝑡) and the harvested energy𝐻𝑛(𝑡) are accumulated during the time slot and their value
becomes known only by the end of it. This means that, being
at the beginning of time slot 𝑡, the system state at the next
time slot 𝑡 + 1 can only be estimated, which we formally write
as

x̂ (𝑡 + 1) = Φ (x (𝑡) , 𝜍 (𝑡)) , (8)

and the same applies to the subsequent time slots in the
optimization horizon 𝑡 + 2, 𝑡 + 3, . . . , 𝑡 + 𝑇 − 1. For these
estimations we use the forecast values of load �̂�𝑛(𝑡) and
harvested energy �̂�𝑛(𝑡), from the LSTM forecasting module.

Remark 2 (VM number and workload allocation). A remark
on the provisioned VMs per time slot per-MEC server,𝑀(𝑡),
is in order. Specifically, the number of active VMs (i.e., the
VMcomputing cluster) depends on the predicted load, �̂�𝑛(𝑡+1), where the expected server workload is Γ̂𝑛(𝑡+1) = 0.8�̂�𝑛(𝑡+1). Each VM can compute an amount of up to 𝛾max. Then,
an estimate of the number of virtual machines that shall be
active in time slot 𝑡 to serve the predicted server workloads is
here obtained as follows:𝑀(𝑡) = [(Γ̂𝑛(𝑡 + 1)/𝛾max)], where ⌈⋅⌉
returns the nearest upper integer. We heuristically split the
workload among virtual machines by allocating a workload𝛾𝑚(𝑡) = 𝛾max to the first𝑀(𝑡) − 1 VMs, 𝑚 = 1, . . . ,𝑀(𝑡) − 1,
and the remainingworkload 𝛾𝑚(𝑡) = �̂�𝑛(𝑡+1)−(𝑀(𝑡)−1)𝛾max

to the last one 𝑚 = 𝑀(𝑡).

Controller Decision-Making.The controller is obtained by
estimating the relevant parameters of the operating environ-
ment, i.e., the BS load �̂�𝑛(𝑡) and the harvested energy �̂�𝑛(𝑡),
and subsequently using them to forecast the future system
behavior through (8) over a look-ahead time horizon of 𝑇
time slots. The control actions are picked by minimizing𝐽(𝜁, 𝛼, 𝑡) (see (5)). At the beginning of each time slot 𝑡 the
following process is iterated:

(1) Future system states, x̂(𝑡+𝑘), for a prediction horizon
of 𝑘 = 1, . . . , 𝑇 steps are estimated using (8). These
predictions depend on past inputs and outputs up
to time 𝑡, on the estimated load �̂�𝑛(⋅) and energy
harvesting �̂�𝑛(⋅) processes, and on the control 𝜍(𝑡+𝑘),
with 𝑘 = 0, . . . , 𝑇 − 1.

(2) The sequence of controls {𝜍(𝑡 + 𝑘)}𝑇−1𝑘=0 is obtained for
each step of the prediction horizon by optimizing the
weighted cost function 𝐽(⋅) (see (5)).

(3) The control 𝜍∗(𝑡) corresponding to the first control
action in the sequence with the minimum total cost
is the applied control for time 𝑡 and the other controls
𝜍∗(𝑡 + 𝑘) with 𝑘 = 1, . . . , 𝑇 − 1 are discarded.

(4) At the beginning of the next time slot 𝑡+1, the system
state x(𝑡 + 1) becomes known and the previous steps
are repeated.

4.2.3. The ENAAM Algorithm. Let 𝑡 be the current time.�̂�𝑛(𝑡+𝑘−1) is the forecast load in slot 𝑡+𝑘−1, with 𝑘 = 1, . . . , 𝑇,
i.e., over the prediction horizon. For the control to be feasible,
we need Γ𝑛(𝑡) ≤ 𝐵𝑛(𝑡) ≤ Γ̂𝑛(𝑡 + 𝑘 − 1), where Γ𝑛(𝑡) is the
smallest Γ such that round (Γ̂𝑛(𝑡 + 1)/𝛾max) = 𝑏. For the
buffer state, we heuristically set 𝜁(𝑡 + 𝑘 − 1) = 𝜀 if either𝛽𝑛(𝑡+𝑘−1) < 𝛽low or 𝐿𝑛(𝑡+𝑘−1) < 𝐿 low, and 𝜁(𝑡+𝑘−1) = 1;
otherwise 𝛽low and 𝐿 low are preset low thresholds for the EB
and the BS load, respectively. For slot 𝑡 + 𝑘 − 1, the feasibility
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Input: x(𝑡) (current state)
Output: 𝜍∗(𝑡) = (𝜁∗(𝑡), {𝛼∗𝑚(𝑡)})
01: Initialization of variables

S(𝑡) = {x(𝑡)}, Cost(x(𝑡)) = 0
02: for 𝑘 = 1, . . . , 𝑇 do

(i) forecast the load �̂�𝑛(𝑡 + 𝑘 − 1)
(ii) forecast the harvested energy Ĥ𝑛(𝑡 + 𝑘 − 1)
(iii) S(𝑡 + 𝑘) = 0

03: for all x ∈ S(𝑡 + 𝑘 − 1) do
04: for all 𝜍 = (𝜁, {𝛼𝑚(𝑡)}) ∈ A(𝑡 + 𝑘 − 1) do
05: x̂(𝑡 + 𝑘) = Φ(x(𝑡 + 𝑘 − 1), 𝜍)
06: Cost(x̂(𝑡 + 𝑘)) = 𝐽(𝜁, 𝛼, 𝑡 + 𝑘 − 1)+Cost(x(𝑡 + 𝑘 − 1), 𝜍)
07: S(𝑡 + 𝑘) = S(𝑡 + 𝑘) ∪ {x̂(𝑡 + 𝑘)}

end for
end for
end for

08: Find x̂min=argminx̂∈S(𝑡+𝑇)Cost(x̂)
09: 𝜍∗(𝑡) := control leading from x(𝑡) to x̂min
10: Return 𝜍∗(𝑡)

Algorithm 1: ENAAM.

setA(𝑡 + 𝑘 − 1) contains the control pairs (𝜁(𝑡), {𝛼𝑚(𝑡)}) that
obey these relations.

The algorithm is specified in Algorithm 1 as it uses
the technique in [8]: the search starts (line 01) from the
system state at time 𝑡, x(𝑡), and continues in a breadth-first
fashion, building a tree of all possible future states up to the
prediction depth 𝑇. A cost is initialized to zero (line 01) and
is accumulated as the algorithm travels through the tree (line
06), accounting for predictions, past outputs, and controls.
The set of states reached at every prediction depth 𝑡 + 𝑘 is
referred to as S(𝑡 + 𝑘). For every prediction depth 𝑡 + 𝑘, the
search continues from the set of states S(𝑡 + 𝑘 − 1) reached
at the previous step 𝑡 + 𝑘 − 1 (line 03), exploring all feasible
controls (line 04), obtaining the next system state from (8)
(line 05), updating the accumulated cost as the result of the
previous accumulated cost, plus the cost associated with the
current step (line 06), and updating the set of states reached
at step 𝑡+𝑘 (line 07).When the exploration finishes, the initial
action (at time 𝑡) that leads to the best final accumulated cost,
at time 𝑡 +𝑇− 1, is selected as the optimal control 𝜍∗(𝑡) (lines
08, 09, 10). Finally, for line 04, we note that Γ𝑛 belongs to the
continuous set [Γ𝑛, �̂�𝑛(𝑡 + 𝑘 − 1)]. To implement this search,
we quantized this interval into a number of equally spaced
points, obtaining a search over a finite set of controls.

ENAAM Complexity. The computation complexity of the
algorithm is 𝑂(𝑁𝑥𝑁𝜍𝑇), where 𝑁𝑥 Δ= |x(𝑡)| and 𝑁𝜍 Δ= |𝜍(𝑡)|,
respectively, represent the number of system states and the
number of feasible actions at time 𝑡. Note that state and action
space are, respectively, quantized into 𝑁𝑥 = 𝑀 × 𝑁𝛽 and𝑁𝜍 = 2 × 𝑀 × 𝑁𝛼 levels, where 𝑀 is the number of virtual
machines, 𝑁𝛽 is the number of quantization levels for the
energy buffer, and 𝑁𝛼 is the number of quantization levels
for the load variable 𝛼𝑚(𝑡). Such quantization facilitates the

search in Algorithm 1. Note that exhaustive search would
entail a complexity of 𝑂((𝑁𝑥𝑁𝜍)𝑇).
5. Multiple Communication Sites

In this section, we extend the work from Section 4 by
considering the energy savings for multiple communication
sites. We formulate an optimization problem to obtain energy
savings through short-term traffic load and harvested energy
predictions and clustering, along with energy management
procedures for the clustered BS sites. The problem for-
mulation for multiple communication sites is described in
Section 5.1; then cluster formation is discussed in Section 5.2,
and the edgemanagement procedure for each cluster, enabled
by the edge controller, is presented in Section 5.3.

5.1. Problem Formulation. Our objective is to improve the
overall energy savings of the network by clustering BSs based
on their location (or distance measures) similarity and then
optimizing the energy savings within each cluster by employ-
ing the single optimization case described in Section 4. From
an energy efficiency perspective, in a cluster of BS nodes,
one BS (or more) might have a preference of switching
off, by first offloading its (their) traffic load to its (their)
neighboring BS that have enough spare capacity for handling
extra traffic load and then switching off. The whole offloaded
traffic load from the BS, denoted by BS 𝑛, is allocated to the
neighboring cluster member (active BS) in which orthogonal
resource allocation helps mitigate intracluster interference,
such that the selected neighboring BS, denoted by BS 𝑛, is
allocated the incremental load, denoted by 𝐿𝑛𝑛(𝑡) Δ= 𝐿𝑛(𝑡).
Whenever a BS is switched off, it should maintain service
to its users via a reassociation process in order to offload
the users to the neighboring active BS having extra resources
for handling upcoming extra traffic load. The reassociation
process involves notifying the connected users to try and
connect to neighboring BSs with extra resources.

In the view of the above, we consider that all BSs are
grouped into sets of clustersO = {𝑂1, . . . , 𝑂|O|}. Here, a given
cluster𝑂𝑖 ∈ O, with 𝑖 = 1, . . . , |O|, consists of a set of BSs that
coordinate with the controller. The clustering mechanism is
discussed in Section 5.2. For each cluster 𝑂𝑖 ∈ O, we aim to
minimize the energy consumption, i.e., the consumption due
to BS transmission and the running VMs in the servers, using
BSpower savingmodes andVMsoft-scaling per active cluster
member. To do so, we define a cost function which captures
the individual communication site energy consumption and
its QoS. The (weighted) cost for each cluster member, BS𝑛 ∈ 𝑂𝑖, is redefined as follows:

𝐽𝑛 (𝜁, 𝛼, 𝑡) Δ= 𝜂𝜃tot,𝑛 (𝜁𝑛 (𝑡) , {𝛼𝑚 (𝑡)}𝑛 , 𝑡)
+ 𝜂 (Λ 𝑛 (𝑡) − 𝐵𝑛 (𝑡))2 ,

(9)

where 𝜁𝑛(𝑡) is the activity status of BS 𝑛 (either power saving
or active) and {𝛼𝑚(𝑡)}𝑛 is the set of factors for the allocated
VMs at BS 𝑛. Moreover, Λ 𝑛(𝑡) ← 𝐿𝑛(𝑡) if BS 𝑛 only handles
its own traffic, whereas Λ 𝑛(𝑡) ← 𝐿𝑛(𝑡) + Δ𝐿𝑛(𝑡), in case one
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(or multiple) BSs are switched off in time slot 𝑡 and its (their)
traffic is redirected (handed off) to BS 𝑛. The computation
of Δ𝐿𝑛(𝑡) is addressed in Section 5.3. The per cluster costΥ𝑂𝑖(𝜁𝑖,𝛼𝑖, 𝑡) is the aggregated cost of all cluster members,Υ𝑂𝑖(𝜁𝑖,𝛼𝑖, 𝑡) = ∑∀𝑛∈𝑂𝑖 𝐽𝑛(𝜁, 𝛼, 𝑡). Hence, over time horizon,𝑡 = 1, . . . , 𝑇, the following optimization problem is defined:

P2: min
E

∑
∀𝑂𝑖∈O

Υ𝑂𝑖 (𝜁𝑖,𝛼𝑖, 𝑡)
subject to: C1 − 𝐶6: from Eq. (6) ,

C7: 𝑂𝑖 ≥ 1, ∀𝑂𝑖 ∈ O,
C8: 𝑂𝑖 ∩ 𝑂𝑗 = 0,

∀𝑂𝑖, 𝑂𝑗 ∈ O, 𝑂𝑖 ̸= 𝑂𝑗,

(10)

where E
Δ= {𝜁𝑖,𝛼𝑖} is the collection of variables to be

reconfigured for all the BS clusters (the whole MN), for all
time slots 𝑡 = 1, . . . , 𝑇. As for the constraints, C7 and C8
ensure that each BS is part of only one cluster. Solving P2
in (10) involves BS clustering, the forecasting method from
Section 4.2.1, a heuristic rule for the selection of which BSs
have to be switched off, and the ENAAM algorithm from
Section 4.2.3. Once P2 is solved, the control action to be
applied at time 𝑡, per cluster 𝑂𝑖, corresponds to the elements
in {𝜁𝑖,𝛼𝑖} that are associated with the first time slot 1 in the
optimization horizon. As above, (10) can iteratively be solved
at any time slot 𝑡 ≥ 1, by just redefining the time horizon as𝑡 = 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑇 − 1.
5.2. Cluster Formation. Clustering algorithms have been
proposed as a way of enabling energy saving mechanisms
in BSs, where groups of inactive BSs or BSs with low loads
are switched off. With the advent of EH BSs, the BSs with𝛽𝑛(𝑡) < 𝛽low can be switched off, while still guaranteeing the
QoS through the other active BSs.That is, within each formed
cluster, the controller tries to minimize the cost function,
which captures the tradeoff between the energy efficiency and
the QoS of each cluster member. The key step in clustering
is to identify similarities or distance measures between BSs
in order to group BSs with similar characteristics. In this
paper, we use the location of the BSs as it defines the relative
neighborhood (the distance measures) with the other BSs.
Using the location of the BSs and the distance between
the BSs, we obtain a distance-based similarity matrix W𝑑.
In addition, we assume that the network topology is static
during the clustering algorithm execution.

In Section 5.2.1 we detail the clustering measure that
we use to obtain the similarities between BSs based on
location, followed by the distance-based clustering algorithm
in Section 5.2.2.

5.2.1. Relative Neighborhood Based on BS Adjacency and
Gaussian Similarity. Similar to [13], we model the MN as a
graph 𝐺 = (N, 𝐸), where N represents the set of BSs, while
the set 𝐸 contains the edges between any two BSs.There is an
edge (𝑛, 𝑛) ∈ 𝐸 if and only if 𝑛 and 𝑛 can mutually receive

each other’s transmission. In this case, we say that 𝑛 and 𝑛
are neighbors. We use a parameter 𝑟𝑛𝑛 to characterize the
presence of a link between nodes, where 𝑟𝑛𝑛 ∈ {0, 1}. Let 𝑦𝑛
be the coordinates of BS 𝑛 ∈ N in the Euclidean space. The
relative neighborhood of BS 𝑛 is defined by the nearness of
the BSs in its 𝑒𝑑-radio propagation space (or neighborhood):

Z𝑛 = {𝑛s.t. 𝑦𝑛 − 𝑦𝑛 ≤ 𝑒𝑑} . (11)

If 𝑛 ∈ Z𝑛 we say that BSs 𝑛 and 𝑛 are neighbors, and we set𝑟𝑛𝑛 = 1; otherwise 𝑟𝑛𝑛 = 0. The links between the vertices
in N are weighted based on their similarities. Based on the
distance between BS 𝑛 and 𝑛, we can classify the BSs based
on their location using the Gaussian similarity measure [13]
(a classification kernel function used in machine learning),
which is defined as

𝑤𝑑𝑛𝑛 = {{{{{
exp(−𝑦𝑛 − 𝑦𝑛22𝜎2

𝑑

) if 𝑦𝑛 − 𝑦𝑛 ≤ 𝑒𝑑,
0 otherwise,

(12)

where 2𝜎2𝑑 adjusts the impact of the neighborhood size. In
(12), we assume that the BSs located far from each other have
low similarities, compared to those that are close to each
other, as those that are close are more likely to cooperate
with each other. The distance-based similarity matrix W𝑑 is
formed using 𝑤𝑑𝑛𝑛 as the (𝑛, 𝑛)-th entry.

5.2.2. Distance-Based Clustering. The BS clustering is per-
formed after obtaining the similarity matrix W𝑑 of the MN
graph 𝐺 = (N, 𝐸). Given the matrix W𝑑, we employ
a centralized clustering method, specifically the K-means
[54], as the matrix provides the full location knowledge.
K-means partitions the set of nodes into clusters in which
each node belongs to the cluster with the nearest mean
distance. In addition, the value of 𝐾, i.e., the number of
clusters (|𝑂𝑖|), is known prior and is a design parameter. This
algorithm requires knowledge of all the BS locations; thus, it is
categorized as a centralized method. In our case, this process
does not incur any computation delay as the edge controller
is assumed to have high computation capabilities.

5.3. Edge Network Management. Our aim is to implement
and validate an LLC framework for dynamic resource pro-
visioning in multiple communication sites with the goal of
achieving energy savings within the access network through
BS sleep modes and VM soft-scaling. Given the formation
of clusters, load, and energy forecasting, our next goal is to
develop a mechanism for solving P2 (see (10)) where each
cluster of BSs adjusts its transmission parameters and its
computing cluster entities based on the forecast information.
In order to minimize the per cluster cost function, we
introduce the notion of network impact in Section 5.3.1,
whereas we describe the edge management procedure in
Section 5.3.2.

5.3.1. Network Impact. The dynamic BS switching off strate-
gies may have an impact on the network due to the traffic
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load that is offloaded to the neighboring BSs. To avoid this,
the BS to be switched off must be carefully identified within
a BS cluster. To determine whether a particular BS can be
switched off or not, we follow the work done in [55]. As an
example, we consider one cluster 𝑂𝑖, together with its cluster
members 𝑛 ∈ 𝑂𝑖, then from it we choose one BS, BS 𝑛,
where BS 𝑛 neighbors set is denoted byN𝑛. Note that the BS𝑛 ∈ N𝑛 is the BS to which the traffic load will be offloaded
to after turning off BS 𝑛. Also, BS 𝑛 can only be switched off
if there exists a neighboring BS 𝑛 that satisfies the following
feasibility constraint [55]:

𝐿𝑛 (𝑡) + 𝐿𝑛𝑛 (𝑡) ≤ 1, 𝑛 ∈ N𝑛, (13)

where 𝐿𝑛(𝑡) is the original BS 𝑛 traffic load and 𝐿𝑛𝑛(𝑡) is
the incremental traffic load from BS 𝑛 (the switched off BS)
to BS 𝑛 (the neighboring BS). We recall that the load 𝐿𝑛(𝑡)
is normalized with respect to the maximum load that a BS
can sustain, so the inequality in (13) means that it is feasible
for BS 𝑛 to take the extra load from BS 𝑛. To quantify how
the incremental system load affects the overall network load
due to the switching off process, we introduce the notion of
network impact. For every BS 𝑛within cluster𝑂𝑖, 𝑖 = 1, . . . , 𝐾,
its network impact due to the offloaded system load onto one
of the neighboring BSs is defined as follows:

𝐼𝑛 (𝑡) = max
𝑛∈N𝑛

[𝐿𝑛 (𝑡) + 𝐿𝑛𝑛 (𝑡)] , ∀𝑛 ∈ 𝑂𝑖. (14)

Here, the maximum network impact value 𝐼𝑛(𝑡) over the
neighboring BSs is considered as a measure for each BS
towards switching off and generating extra traffic loads for
its neighboring BSs. In this work, considering cluster 𝑂𝑖, we
switch off the BS 𝑛∗ that has the least network impact; i.e.,

𝑛∗ = argmin
𝑛∈𝑂𝑖

𝐼𝑛 (𝑡) . (15)

The BS that takes the load from 𝑛∗ is selected as the BS 𝑛
that minimizes 𝐿𝑛(𝑡) + 𝐿𝑛∗𝑛(𝑡) over the set of active BSs that
are on within the cluster 𝑂𝑖. For BS 𝑛, we then set 𝐿𝑛(𝑡) ←𝐿𝑛(𝑡) + 𝐿𝑛∗𝑛(𝑡). This procedure is sequentially repeated for
all the cluster members until there is no active BS whose
neighbors satisfy the feasibility condition of (13). Note that
here, we focus only on which BS to switch off, as for the BS
turning on state, we assume that the commitment time (time
configured so that the BS automatically wakes up without
external triggers) is a system parameter that is preconfigured
when the BS is switched off.

5.3.2. Edge Management Procedure. Here, we propose a
distributed edge network management procedure that makes
use of the ENAAM algorithm (see Section 4.2.3). The
decision-making criterion only depends on the BS informa-
tion and on its neighboring BSs; thus, the BS switching off
decision can be localized within each cluster. To decide which
BSs shall be switched off, we follow a sequential decision
process. While this is heuristic, it allows coping with the
high complexity associated with an optimal (all BSs are
jointly assessed) allocation approach. The edge management
procedure is as follows.

For each BS cluster 𝑂𝑖, with 𝑖 = 1, . . . , 𝐾, we have the
following:

(1) Initialize an allocation variable Δ𝐿𝑛(𝑡) = 0 for all
BSs 𝑛 ∈ 𝑂𝑖. Compute 𝐼𝑛(𝑡), using (14), for all BSs𝑛 and obtain the BS with the least network impact𝑛∗(𝑡), using (15). Switch off BS 𝑛∗(𝑡) and assign its
load to the neighboring BS 𝑛 ∈ 𝑂𝑖 that minimizes𝐿𝑛(𝑡)+Δ𝐿𝑛(𝑡)+𝐿𝑛∗𝑛(𝑡). Update the extra allocation
for BS 𝑛 asΔ𝐿𝑛(𝑡) ← Δ𝐿𝑛(𝑡)+𝐿𝑛∗𝑛(𝑡). Recompute𝐼𝑛(𝑡) for all the BSs that are still on and identify the
next BS that can be switched off, i.e., the one with the
least network impact. This procedure is repeated until
none of the BSs in the cluster verifies Eq. (13). At this
point, we have identified all the BSs 𝑛∗ that shall be
switched off in 𝑂𝑖.

(2) For each active BS 𝑛 ∈ 𝑂𝑖, the ENAAM algorithm is
executed using 𝐿𝑛(𝑡) + Δ𝐿𝑛(𝑡), where Δ𝐿𝑛(𝑡) = 0
if BS 𝑛 does not take extra load, whereas it is greater
than zero otherwise. Note that, Δ𝐿𝑛(𝑡) corresponds
to the total traffic that is handed over to BS 𝑛 , possibly
from multiple nearby BSs.

Edge Network Management Complexity. The algorithm is
independently executed for each cluster and the correspond-
ing time complexity is obtained as follows. Considering the
action Step (1), from above, the time complexity associated
with the computation of the BS having the least network
impact is linear with the size of the cluster |𝑂𝑖|. Once that
is computed, the complexity associated with updating the
load allocation for the active BSs is |𝑂𝑖| − 1, which leads to
a total complexity of |𝑂𝑖|(|𝑂𝑖| − 1) = 𝑂(|𝑂𝑖|2). Moreover,
such process is iterated for each BS that is switched off. In
the worst case, where all the BSs but one are switched off,
the final complexity of step 1 is𝑂(|𝑂𝑖|3). As for Step (2), from
above, the computation complexity depends on the ENAAM
algorithm,which is independently executed by each activeBS.
Thus, in the worst case (no BSs are switched off), the total
aggregated complexity is as follows: 𝑂(|𝑂𝑖|𝑁𝑥𝑁𝜍𝑇), which is
linear in all variables, namely, number of cluster members,
number of BS states, number of actions, and time horizon 𝑇.
6. Performance Evaluation

In this section, we show some selected numerical results for
the scenario of Section 3. The parameters that were used for
the simulations are listed in Table 2.

6.1. Simulation Setup. We consider multiple BSs, each one
colocatedwith aMEC server and a coverage radius of 40m. In
addition, we use a virtualized server with specifications from
[56] for a VMware ESXi 5.1-ProLiant DL380 Gen8. Our time
slot duration 𝜏 is set to 30 min and the time horizon is set to𝑇 = 3 time slots.The simulations are carried out by exploiting
the Python programming language.

6.2. Numerical Results. Pattern Forecasting. We show real and
predicted values for the traffic load and harvested energy
over time in Figures 4(a) and 4(b), where we track the
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(b) Mean energy savings for 𝜂 = 0 and 𝛾max = 10MB

Figure 5: Mean energy savings for the single BS case.

Table 2: System parameters.

Parameter Value
Total BSs, 𝑁 24
Max. number of VMs,𝑀 27
Min. number of VMs, 𝑏 1
Time slot duration, 𝜏 30min
Operating power, 𝜃0 10.6W
Energy overheads for switching VM, 𝜃ov𝑚 (𝑡) 0.05 J/MHz2

Max. computation workload per VM, 𝛾max {5, 10}MB
Max. allowed processing time, Δ 0.8 s
Energy cons. of network interfaces, 𝜃idle(𝑡) 3 J
Cost of exchanging one unit of data, 𝜃data(𝑡) 6 J/byte
Processing rate set,F {0, 4, 8, 12, 16, 20}
Static energy consumed by VM, 𝜃idle,𝑚(𝑡) 4 J
Max. energy cons. by VM at 𝑓max, 𝜃max,𝑚(𝑡) 10 J
Energy storage capacity, 𝛽max 490 kJ
Lower energy threshold, 𝛽low 30% of 𝛽max

Upper energy threshold, 𝛽up 70% of 𝛽max

Low traffic threshold, 𝐿 low 4MB

one-step predictive mean value at each step of the online
forecasting routine.Then, Table 3 shows the average RMSE of
the normalized harvested energy and traffic load processes,
for different time horizon values, 𝑇 ∈ {1, 2, 3}. Note that
the predictions for 𝐻(𝑡) are more accurate than those of𝐿(𝑡) (confirmed by comparing the average RMSE), due to
differences in the used dataset granularity. However, the
measured accuracy is deemed good enough for the proposed
optimization.

Single Communication Site. Figures 5(a) and 5(b) are
computed with 𝜂 = 0 using Cluster 1 and Solar 1 as traffic
load and harvested energy profiles for each BS (see Figures
2 and 3). Moreover, 𝛾max = 5 MB and 10 MB, respectively.

Table 3: Average prediction error (RMSE) for harvested energy and
traffic load processes, both normalized in [0, 1].

𝑇 = 1 𝑇 = 2 𝑇 = 3
𝐿(𝑡) 0.037 0.042 0.048
𝐻(𝑡) 0.011 0.016 0.021

They show the mean energy savings achieved over time when
on-demand and energy aware edge resource provisioning
are enabled (i.e., BS sleep modes and VM soft-scaling),
in comparison with the case where they are not applied.
Our edge network management algorithm (ENAAM) is
benchmarked with another one that heuristically selects the
amount of traffic that is to be processed locally, 𝐵𝑛(𝑡) ≤Γ𝑛(𝑡), depending on the expected load behavior. It is named
Dynamic and Energy-Traffic-Aware algorithm with Random
behavior (DETA-R). Both ENAAM and DETA-R are aware
of the predictions in future time slots (see Section 4.2.1);
however, DETA-R provisions edge resources using a heuristic
scheme. DETA-R heuristic works as follows: if the expected
load difference is �̂�(𝑡 + 1) − �̂�(𝑡) > 0, then the normalize
workload to be processed by BS 𝑛 in the current time slot 𝑡,𝐵𝑛(𝑡), is randomly selected in the range [0.6, 1]; otherwise, it
is picked evenly at random in the range (0, 0.6).

Average results for the ENAAM scheme show energy
savings of 69% (𝛾max = 10MB) and 57%(𝛾max = 5MB),while
DETA-R achieves 49% (𝛾max = 10 MB) and 43% (𝛾max =5 MB) on average, where these savings are with respect to
the case where no energy management is performed; i.e.,
the network is dimensioned for maximum expected capacity
(maximum value of 𝜃tot,𝑛(𝑡), with 𝑀 = 27 VMs, ∀𝑡). The
results show that the maximum load allocated to each VM,𝛾max, has an impact towards energy savings. An increase in
energy savings is observedwhen 𝛾max = 10MBdue to the fact
that the number of VMs demanded per time slot is reduced,
when compared to the allocation of 𝛾max = 5MB.
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Figure 6: Energy savings versus weight 𝜂 (single BS case).

The ESs evolution with respect to 𝜂 is presented in
Figure 6, taking into account the load allocated to each VM,𝛾max. The results were obtained using Cluster 1 and Solar 1 as
traffic load and harvested energy profiles (see Figures 2 and
3). As expected, a drop in energy savings is observed when
QoS is prioritized, i.e., 𝜂 → 1, as in this case the BS energy
consumption is no longer considered. It can be observed that
ENAAM achieves a 50% (or above) from 𝜂 = [0, 0.4] when𝛾max = 5MB and from 𝜂 = [0, 0.7] when 𝛾max = 10MB.This
shows that the higher the load allocated to eachVM, the lesser
the energy that is drained, as few VMs are running. DETA-R
operates at below 50% for all 𝜂 and 𝛾max values.

Multiple Communication Sites. Figures 7(a) and 7(b)
present the mean energy savings achieved with respect to
the cluster size and the weight 𝜂, using all the traffic load
and harvested energy profiles from Figures 2 and 3. Each
BS randomly picks its own traffic load and harvested energy
profile at the beginning of the optimization process. Here,
to select the BS to be switched off, we use the management
procedure of Section 5.3. As for DETA-R, a BS is randomly
selected to evolve its operating mode to power saving mode
and offload its load to a nearby BS (in this case, the least
loaded neighboring BS is selected), without taking into
account its network impact measure.

Figure 7(a) shows the average energy savings obtained
when clustering is adopted, i.e., here, the cluster size is
increased from |𝑂𝑖| = 1 to 10 and 𝜂 = 0. The obtained
energy savings are with respect to the case where all BSs
are dimensioned formaximum expected capacity (maximum
value of 𝜃tot,𝑛(𝑡), with 𝑀 = 27 VMs, ∀𝑡, ∀𝑛 ∈ 𝑂𝑖). It should
be noted that the energy savings increase as the size of the
cluster grows, thanks to the load balancing among active BSs,
which cannot be implemented in the single communication
site scenario (i.e., when BSs are independently managed).

Then, Figure 7(b) shows the average energy savings with
respect to 𝜂, when the cluster size is set to an intermediate

case (|𝑂𝑖| = 6). Again, here the energy savings are obtained
with respect to the case where all the BSs are dimensioned
for maximum capacity. As expected, there is a drop in the
energy savings achieved as the value of 𝜂 increases, as QoS is
prioritized. It can be observed that ENAAM achieves a value
of 50% or above when 𝜂 = [0, 0.8] (at 𝛾max = 10 MB) and
when 𝜂 = [0, 0.6] (at 𝛾max = 5 MB). DETA-R achieves value
above 50% or above when 𝜂 = [0, 0.4] (at 𝛾max = 10) and𝜂 = [0, 0.1] (at 𝛾max = 5MB).

Comparing Figures 6 and 7(b), an average gain of 9% on
the energy savings is observed when clustering is applied, by
considering the mean energy savings with respect 𝜂 achieved
withENAAMfor both cases. FromFigure 7(a) we see that this
gain can be as high as 16% for ENAAMwith 𝛾max = 5MB (red
curve) and bigger for the DETA-R approach. These results
support the notion that performing a clustering-based opti-
mization is beneficial thanks to the additional cooperation
within each neighborhood of BSs. This cooperation allows
switching off more BSs through load balancing, increasing
the energy savings while still controlling the users’ QoS.

7. Conclusions

In this paper, we have envisioned an edge network where
a group of BSs are managed by a controller, for ease of BS
organization and management, and also a mobile network
where the edge apparatuses are powered by hybrid supplies,
i.e., using green energy in order to promote energy self-
sustainability and the power grid as a backup. Within the
edge, each BS is endowed with computation capabilities to
guarantee low latency to mobile users, offloading their work-
loads locally. The combination of energy saving methods,
namely, BS sleep modes and VM soft-scaling, for single
and multiple BS sites helps to reduce the mobile network’s
energy consumption. An edge energy management algo-
rithm based on forecasting, clustering, control theory and
heuristics, is proposed with the objective of saving energy
within the access network, possibly making the BS system
self-sustainable. Numerical results, obtained with real-world
energy and traffic load traces, demonstrate that the proposed
algorithm achieves energy savings between 57% and 69%,
on average, for the single communication site case, and a
gain ranging from 9% to 16% on energy savings is observed
when clustering is applied, with respect to the allocated
maximum per-VM loads of 5 MB and 10 MB. The energy
saving results are obtained with respect to the case where no
energy management techniques are applied, either in one BS
or single cluster.

Data Availability

In this paper, we have used open source datasets for the
mobile network (MN) traffic load and the harvested solar
energy. The details are as follows: (1) the real MN traffic load
traces used to support the findings of this studywere obtained
from the Big Data Challenge organized by Telecom Italia
Mobile (TIM) and the data repository has been cited in this
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(a) Energy savings versus cluster size
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(b) Energy savings versus 𝜂 for |𝑂𝑖| = 6

Figure 7: Energy savings for the multiple BSs case.

article. (2) The real solar energy traces used to support the
findings of this study have also been cited in this article.
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Bandwidth and power hungry applications are proliferating in mobile networks at a rapid pace. However, mobile devices have been
suffering from a lack of sufficient battery capacity for the intensive/continuous use of these applications. In addition, the mobile
ecosystem is currently heterogeneous and comprises a plethora of networks with different technologies such as LTE, Wi-Fi, and
WiMaX. Hence, an issue must be addressed to ensure that quality of experience (QoE) is provided for the users in this scenario:
an energy-efficient strategy that is designed to extend the battery lifetime of mobile devices. This paper proposes an architecture
which provides an intelligent decision-making support system based on Fuzzy Logic for saving the energy of mobile devices within
an integrated LTE and Wi-Fi network. The simulated experiments show the benefits of the solution this architecture can provide
by using QoE metrics.

1. Introduction

The increasing demand for new services, technologies, and
content is changing the way users obtain access to the
Internet. According to Cisco, by 2021, 74% of the mobile
devices will generate 98% of the traffic data, and 78% of this
will originate from video traffic [1].The popularization of the
use of multimedia applications, together with the increase
in the number of mobile users, makes it essential to supply
services with a high transmission rate and improved quality.

Both in the current climate and in the future, the wireless
network environment will be based on the coexistence of
multiple networks that provide access to a wide range of
technologies such as Bluetooth, Wi-Fi, WiMAX, and LTE.
This will be a place where mobile users, equipped with
devices supporting multiple network interfaces, will be able
to obtain access to multimedia services through different
access networks by means of the radio. In other words,
the heterogeneity of a wireless environment provides the
opportunity to assess and select the best network from a
range of others, on the basis of the required conditions of a
multimedia service.

In light of this, handover is a procedure that allows a
mobile device to be disconnected from a network so that it
can be connected to another. Its goal is to allow mobile users
to be always connected (ABC, Always Best Connected [2])
to a network, so that their application can keep operating
while they are relocating between different places. When
the decoupling and connection involve the same network
technologies, the phenomenon is called horizontal handover,
whereas vertical handover involves the use of different tech-
nologies.

Since users want a better multimedia experience in their
mobile devices, the delivery of video of a high quality is a
more challenging task in wired networks. This is also owing
to restrictions and mobility behavior and the environment
of heterogeneous wireless networks itself; however, it mainly
lies in the challenge of meeting the required conditions for
multimedia applications with regard to the transfer of data
and ensuring low latency and an insignificant loss.

Thedecision ofwhen andwhere to carry out the handover
will depend on several factors or attributes such as the
following: QoS (Quality of Service), RSS (Received Signal
Strength), bandwidth, the battery consumption rate, and
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mobile user speed. The concept of Quality of Experience
(QoE) is becoming a key factor because it can measure
the degree of quality of a multimedia service through the
perception of the user. In other words, the satisfaction of the
user can be measured through required conditions based on
social psychology, cognitive science, and engineering science
[3].

Expectations about satisfaction for different services
and application vary among different users. The traditional
concept of QoS fails to take account of the fact that the
satisfactions of the user should be used as an indicator,
or, rather, it is only concerned with the network properties
through metrics designed for the delivery of content [14–16].
Thismeans that QoE should be an important attribute to take
into account in the handover decision-making process.

Another key factor that needs to be considered is the
level of power consumption of the mobile device, since video
applications consume a large amount of energy. Today, energy
saving is a concern that must be addressed, particularly in
heterogeneous wireless networks which provide a wide range
of opportunities to choose networks that allow improved
energy saving through vertical handover. However, it is a real
challenge to select an ideal network that takes account of the
users’ preferences and is, at the same time, energy efficient.

The different types of technology have different band-
width as well as different power consumption. Therefore,
there is a need for a balance between bandwidth and energy
consumption, because there will be times when the user opts
for a network with more bandwidth, reducing the battery life,
as there will be times when the user will choose to migrate to
a network with less bandwidth but with a longer battery life
[17, 18]. For this reason, the Fuzzy System will have as one of
its inputs the battery consumption.

This paper creates an algorithm for vertical handover
decision-making based on fuzzy logic and which takes
account of the following when selecting the best network:
QoE criteria, energy consumption and the mobility of the
user.

The paper is structured in the following way: The
Section 2 provides a brief overview of studies related to
vertical handover; The Section 3 describes the architec-
ture of the fuzzy logic system for heterogeneous wire-
less networks; The Section 4 provides the analysis of the
results and the Section 5 summarizes the conclusion of the
study and makes suggestions for further research in the
field.

2. Related Works

This section provides an overview of several related works
on heterogeneous architectures that provide QoE support,
together with seamless mobility for mobile users of dif-
ferent technologies or energy-saving strategies for battery
devices.

There are several researches in the literature such as
[4] that proposes a handover mechanism based on the
coordination between MIH (Media-Independent Handover)
and PMIPv6 (Proxy Mobile IPV6) to support user mobility.

The main focus of the research was the reduction of failed
handovers, packet loss, and QoS requirements. However, the
proposal does not consider support for energy saving and
QoE. The work [5] proposes an algorithm that uses the
parameters Time-to-Trigger (TTT) and Hysteresis Margin.
Such parameters offered improvements in energy efficiency
and Ping Pong Handover Ratio system. However, the pro-
posal itself does not take into consideration the quality of user
experience in its mechanism.

The Proposals [6, 7] Decision mechanisms use strategies
based on Multiple Attributes Decision-Making (MADM).
The proposal [6] developed a handover decision algorithm
with energy efficiency support based on the TOPSIS (Tech-
nique for Order Preference by Similarity to Ideal Solution),
which has the function of offering a rank of alternatives on
the best networks for the selection. This algorithm uses as
parameters power consumption, traffic class, and battery level
of each network interface of the mobile device. The work
of [7] presents a comparison of different MADM methods,
considering the battery level standard. The main methods
evaluated were AHP (The Analytic Hierarchy Process),
ANP (Analytical Network Process), Fuzzy AHP, and Fuzzy
ANP, where such methods were combined in 120 combina-
tions for evaluation, in which the research results conclude
that the best methods of combinations were Euclidian-
normalization-TOPSIS-FANP and Sumnormalization-GRA-
FANP. However, the proposals [6, 7], even considering the
energy consumption, could not enable a relation with the
standard of QoE.

The paper [8] proposes the use of the fuzzy system to
handover decision, and the strategy was the combination of
QoS parameters and QoE (Mean Opinion Score) indicators.
The proposal [9] uses the QoE to select the best connection;
the QoE was evaluated using Mean Opinion Score (MOS)
in real time, through the PSQA (Pseudosubjective Quality
Assessment) technique based on statistical learning through
RNN (Random Neural Network). In [10] a Software-Defined
Networking (SDN) architecture was proposed to implement
a handover decision strategy based on fuzzy system consid-
ering QoS and QoE requirements; the fuzzy system is able
to monitor a set of APs (Access Points) for the selection of
the best AP to the user. In [11], the proposal is a multicriteria
algorithm combining fuzzy system and utility function as
a decision strategy. The proposal uses the fuzzy system to
support the input imprecision information, while the utility
function is responsible for reducing the number of handovers.
The papers [8, 10], though proposing improvements to QoE,
do not provide support for energy consumption. Although
the proposal [11] considers multiple criteria such as delay,
available bandwidth, and received signal strength, however
the QoE and power consumption were not considered.

In [12], we proposed the vertical handover decision
algorithm, Artificial Neural Networks (ANN), which uses a
learning method based on neural network. The algorithm
considers the parameters of QoE and QoS in its decision
mechanism but does not have support in relation to the user
satisfaction.Despite the collected results, theANNobtained a
reduced number of handoffs performed, as well as the reduc-
tion of the delays. The proposal [13] uses a QoE evaluation
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Table 1: RelatedWorks.

Proposal QoE Energy
Efficiency Decision Strategy Proposal Focus

[4] No No Coordination between
MIH and PMIPv6

Reduce number of Ping Pong
events and handover failures

[5] No Yes Time-to-Trigger (TTT) and
Hysteresis Margin

Improve energy efficiency and
Reduce Ping Pong Handover

Ratio
[6] No Yes MADM - TOPSIS Reduce power consumption

[7] No Yes

MADM -
Euclidian-normalization-
TOPSIS-FANP and Sum

normalization-GRA-FANP

Support for reducing energy
consumption

[8] Yes No Fuzzy Logic System Selection of the best network
using QoE

[9] Yes No RNN (Random Neural
Network)

Selection of the best network
using QoE

[10] Yes No SDN and Fuzzy Logic
System QoS and QoE support

[11] No No Fuzzy Logic System and
Utility Function

Reduction in the number of
handoffs

[12] Yes No Artificial Neural Networks
(ANN)

Reduction in the number of
handoffs and delay

[13] Yes Yes RNN (Random Neural
Network)

Correlation between QoE and
QoS in heterogeneous networks

Current
Proposal Yes Yes Fuzzy Logic System

Selecting the best network
considering trade-off between
QoE and energy efficiency

mechanism based on RNN in order to search the mapping
relationship between QoS values and MOS (Mean Opinion
Score) values. In addition, a QoE-Q was proposed as a
vertical handover algorithm, considering Q-learning theory,
to maximize user experience quality. Simulation results point
to an increase in QoE performance as well as improvements
inmobile device energy consumption. However, the proposal
has, as main focus, a vertical handover mechanism based
on the correlation between QoE and QoS in heterogeneous
networks.

Therefore, none of them provides a joint approach that
involves a solution for both energy-saving and vertical han-
dover with QoE support. The proposal of this article is to
propose a handover decision mechanism which provides the
choice of the network taking into consideration the trade-off
between energy consumption and QoE. Table 1 compares the
related works in relation to the current proposal.

3. A Fuzzy Logic System for a Heterogeneous
Wireless Network Architecture with an
Energy-Efficiency Support System

This section presents a proposal with a Fuzzy System for
seamless handover and energy-efficient support for mobile
multimedia communication. The objective of the proposed
architecture is to save battery in heterogeneous environment

networks with multiple devices as expected for Future Inter-
net environments (see Figure 1).

3.1. Problem Statement and Major Contributions. One of the
main contributions made by this article is to examine a
dynamic heterogeneous architecture composed of an LTE
technology (which is currently being adopted as the standard
for 4G networks) and also formed of the IEEE 802.11n tech-
nology. This dynamic heterogeneous architecture is mobile-
oriented to Future Internet environments since it will offer
multiple connectivity options and allow the user to choose the
best network for a particular period of time. Even if the user
moves away fromhis starting place to a newdestination point,
the architecture will continue to offer multiple connectivity
options.

When the mobile device is within the area of coverage
of two or more networks, it has to select the network to
which it will be connected, although the devices do not have
any kind of mobile support or intelligence that can assist in
its decision-making. Not even the technology standards can
provide any kind of support for making decisions with regard
to the selection and connection of the network.

At first, the only adopted criterion is the RSSI, or, in other
words, themobile device will only be connected to the nearest
access point or base station. As a result, the lack of support
for decision-making when selecting the network can cause
the user problems since a mobile device with low battery
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Figure 1: A HeterogeneousWireless System Network.

power might be connected to a network which increases
its energy consumption and hence reduces its battery life.
Similarly, a user with a battery that has a prolonged life might
be connected to a network that is saturated and offers a low
bandwidth, and this can damage the user’s application.

User mobility can also impair the quality of experience
since users with high mobility can carry out excessive and
unnecessary handovers, as in the case of the ping-pong
handover. This means a mobile device will be connected to a
new network even though it will only remain within the area
of coverage of this new network for a short time, on account
of its high mobility; this means that it will have to reestablish
connection with the point of contact or previous base station.

Owing to the lack of mobile support or intelligence in
the devices, another contribution made by this article is
the Fuzzy Logic System which is oriented to heterogeneous
wireless environments to assist decision-making with regard
to the selection and connection of the network. However,
the technologies must have different features before they can
become a heterogeneous environment and, for this reason,
this article puts forward a Fuzzy Logic System with two sets
of rules. If the newly detected network is aWi-Fi network, the
Fuzzy system will be governed by a set of rules designed for
this technology, whereas if the newly detected network is an
LTE network, the Fuzzy system will also be governed by a set
of rules designed for this technology.

The Fuzzy Logic System that is guided by two sets of
rules that are applicable to each technology will allow the
rational use of the mobile device. This system will prevent
a mobile device with low energy from being connected to a
network with high energy consumption and thus reduce the
battery life. Similarly, the Fuzzy Logic System will prevent
a device with a high battery capacity from being connected

to a network that is saturated and hence has a low band-
width; in this way, the Fuzzy System can also carry out
load balancing by distributing the mobile devices among
the networks. In addition, the Fuzzy System will be able
to prevent high-mobility devices from being either rapidly
connected to the network or disconnected and hence avoid
the ping pong handover. For this reason, Fuzzy is unlike
traditional systems, since it was implemented with particular
technological features in mind and incorporates three input
variables: mobility, battery level and Quality of Experience.

The technologies have different battery consumption and
this needs to be taken into account; for this reason, this article
makes another contribution which is the use of a realistic
battery model that has specific battery discharge parameters
for each technology. The Wi-Fi and LTE technologies have
different battery levels and as well as this, each mobile device
status also has a different level of battery consumption. This
is because the battery discharge rate of a mobile device
which is transmitting messages is different from when it is
receiving them and in addition, is different when the mobile
device is idle. This explains why the battery model used in
the Simulator was Rakhmatov–Vrudhula, since the model
traditionally used in the simulators is the linear model which
has a single battery discharge rate regardless of its technology
or status.

Another contribution made by this article is the use of
Quality of Experience as an input metric of the Fuzzy Logic
System. A measurement algorithm that could be used for
Quality of Experience was implemented in the base stations
and access points. The mobile device provides information
(by means of network signaling messages) to the base station
and access point to which it is connected, together with the
level of quality of experience being offered.Thismeasurement
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is derived from the number of video packets received by the
mobile device, and this number allows the level of QoE being
offered, to be classified.

3.2.The Fuzzy Rules Architecture. Fuzzy logic is an extension
of conventional logic (binary). Unlike traditional logic that
works with exact values, fuzzy logic allows a degree of
uncertainty, by seeking to manipulate imprecise terms that
are normal in human language. This enables a digital system
to be designed, which only works with binary logic, can
mimic human thought and is able to process information in
a subjective way.

In a fuzzy system, the result appears in a range from 0 to1.
Thevalue 0means complete exclusion and a value 1means full
membership.Theother values represent intermediate degrees
of relevance. A certain element may also belong to two or
more fuzzy sets that are defined in the same universe, where
the values of themembership functions for each fuzzy setmay
be different. Thus, an element can belong more to one fuzzy
set and less to others.

The Fuzzy sets are usually defined in linguistic terms
Where the values represent the height of an individual, there
may be three fuzzy sets that are defined as follows: low,
medium, and high. If, for example, there are five fuzzy sets
in the universe, one possibility would be as follows: very low,
low, medium, high, and very high.

In this paper, three metrics were chosen as input: mobile
speed, the remaining battery power and QoE (Quality of
Experience). These metrics are used for the dynamic oper-
ations during the simulations. Mobile speed is also a very
important metric, since a user with a high speed can be
degraded if handover is performed within a small coverage
area of the network.TheQoE value indicates the video quality
of a link networkwith a current Base Station/Access Point and
it is an important metric to trigger the handover. The battery
consumption varies depending on which network is selected,
and there will be situations when the selected network should
not only take into account the QoS/QoE requirements, but
also the remaining degree of energy of the device.

It was decided to divide the speed (m/s), into three sets:
low speed (interval [0 to 6]), medium speed (interval [4 to
14]), and high speed (when the speed is higher than 12m/s).
Three sets were also defined for the QoE (dB): Low (interval
[0 25], medium (interval [22 31] and high (when the QoE is
higher than 31dB]. The battery power (in percentage terms)
is defined in three sets: Low [0%–25%], medium [20%-80%],
high [more than 70%]. These three fuzzy sets generate four
outputs: NOT to make handover, PROBABLY NOT to make
handover, PROBABLY YES to make handover and YES to
make handover (see Figure 2).

The architecture consists of two technologies: Wi-Fi (the
IEEE 802.11n) and 4G (the LTE); the Fuzzy Systemwill receive
the necessary information to decide what is the best connec-
tion for that moment. Precisely because the architecture is
behaved by two technologies, the Fuzzy System has two sets
of specific rules for each one that will be explained below.

The Fuzzy Rules determine when the mobile user will
change the network (handover). When the mobile user

Table 2: Wi-Fi Rules.

Speed QoE Energy Handover
Low Medium Medium ProbablyYes
Low Medium High ProbablyYes
Medium Medium Medium ProbablyYes
Medium Medium High ProbablyYes
Low Low High Yes
Low High Low Yes
Medium Low Low Yes
Medium Low Medium Yes
Medium Low High Yes
Medium Medium Low Yes
Medium High Low Yes
High Low Low Yes
High Low Medium Yes
High Low High Yes
High Medium Low Yes

Table 3: LTE Rules.

Speed QoE Energy Handover
Low Medium Medium ProbablyYes
Low Medium High ProbablyYes
Medium Medium Medium ProbablyYes
Medium Medium High ProbablyYes
Low Low Low Yes
Low Low Medium Yes
Low Low High Yes
Low Medium Low Yes
Low High Low Yes
Medium Low Low Yes
Medium Low Medium Yes
Medium Low High Yes
Medium Medium Low Yes
Medium High Low Yes
High Low Low Yes
High Low Medium Yes
High Low High Yes
High Medium Low Yes

is connected to a Wi-Fi network and detects a new LTE
network, the Fuzzy System will trigger the handover in the
situations (Table 2):

In general, a mobile user connected to theWi-Fi network
will change to an LTE network when in Wi-Fi network the
QoE is Low, or the energy level is medium/high and it has a
high speed.This situation prioritizes the quality of experience
for the mobile users.

When the mobile user is connected to an LTE network
and detects a new Wi-Fi network, the Fuzzy System will
trigger the handover in the situations (Table 3).

In general, a mobile user connected to the LTE network
will change to aWi-Fi networkwhen in LTE network theQoE
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Figure 2: Output Fuzzy System.

is Low, or energy level is low/medium and it has a low speed.
This situation prioritizes the energy level for themobile users.

3.3. The Rakhmatov–Vrudhula Model. The purpose of a
mathematical model for batteries is to study/predict their
performance or behavior. A battery is an assembly of electro-
chemical cells, each of which consists of two electrodes: one
with negative polarity nodes and a cathode which has positive
polarity. The electrochemical reactions generate electrons
that are released to provide electric power to the devices
causing the battery drain [19], the battery model used in this
paper was Rakhmatov–Vrudhula model.

The Rakhmatov–Vrudhula battery model [19] is more
realistic than the linear model because it takes account of the
transmission states, and for each state there is a different type
of electric discharge (see (1)). This model includes different
battery capacity and rates of recovery (in idle mode it is
possible to increase the lifetime of the battery) for different
types of batteries (alkaline, lithium ions).

𝛼 =
𝑛

∑
𝑘=1

2𝐼𝑘−1𝐴 (𝐿, 𝑡𝑘, 𝑡𝑘−1, 𝛽) (1)

where, 𝐼𝑘−1 = the current discharge during the period 𝑘 − 1,
A = calculates the discharge rate of the non-linear battery
model, L = battery lifetime, 𝑡𝑘= duration time of k period,
and 𝑡𝑘−1= duration time of k – 1 period.

3.4. The Distributed Mobility Management (DMM) Scheme.
In the application scenario, the handover decision-making is
shared between the mobile station and point of attachments
(POA) (e node B or access point). The Figure 3 illustrates the
vertical handover process between the current and the target
network in the proposed network architecture.

(1) When the MS detects a targeted neighbor network,
it sends a Link Detected message to the target network,
and this message allows the targeted network to recognize
the mobile station. (2) The targeted network replies with
a Link Parameters Report message, which contains network
information, such as RSSI and the level of Quality of Expe-
rience being offered by the new network. (3) The MS passes

the energy, the QoE and mobility information to the Fuzzy
System (Wi-Fi or LTE rules on the network detected). The
fuzzy output states whether the handover is necessary or not,
the decision is made based on the value of output inference,
the network that presents the highest value of inference will
be the one chosen by the mobile device. (4) After the Fuzzy
decision, the MS sends a Handover Initiate message to the
targeted network to trigger the vertical handover. (5)TheMS
sends the current network a Link Down message about the
need to change to a new network.

4. Evaluation of the Architecture

This section evaluates the architecture designed to provide
QoEwithmaximized battery power.The performance assess-
mentwas carried out throughNetwork Simulator 2 (NS2) and
Evalvid Tool (to transmit the video in the simulation) [20].
The objective is to demonstrate the benefits of the proposed
architecture in relation to the original architecture, as well
as to compare the performance of the proposal with other
papers researched in the literature. The proposal has been
compared in relation to papers [8–11]. The proposals [8–
11] were adapted for the NS-2 simulator to the performance
comparison. The mobility model used was Random Way
Point, so the movements and speed of the mobile users were
random in the simulation.

The video used in this simulation was “Sintel”, which
consists of 1253 frames with the YUV format, sampling 4:2:0
and dimensions of 1080x720, which was compressed through
a MPEG-4 CODEC and sent at a 30 frame/s rate [21]. The
videowas chosen because the “Sintel” video is high definition.

The simulated parameters that were configured for all the
experiments, are shown in Table 4 and represent the normal
values of IEEE 802.11n and LTE networks.

The simulation parameters for the evaluation of energy
consumption are described in Table 5. The initial battery
voltage was 1000 joules and different power transmission
and reception charges were adopted for each technological
system. In the case of Wi-Fi technology, the same values
were adopted as in [21] and the values used in [22] for
LTE.
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Mobile Station Target NetworkCurrent Network

1. LINK_DETECTED

2. LINK_PARAMETERS_REPORT

5. LINK_DOWN

3. Fuzzy System

4. HANDOVER_INITIATE

Figure 3: Handover signaling.

Table 4: Simulated Parameters.

IEEE 802.11n LTE
Rate transmission 108 Mbps 150 Mbps
Coverage area 100 m 1000 m

Videos

Resolution: 176 x 144 CIF
Resolution: 352 x 288 CIF
Resolution: 1080 x 720 CIF
Frames rate: 30 frames/s
Colour Mode: Y, U, V

Queue Drop Tail (40 ms delay)
Packet size 1052 bytes
Maximum Fragmentation packet 1024 bytes
Number of simulations 50
Confidence interval 95 %
Number of videos 3

Table 5: Energy Simulated Parameters.

Transmission (W) Reception (W)
WiFi 1.3 0.9
LTE 2.5 1.7

4.1.The Power Consumption Results. Initially, the results were
used to compare the battery life when the mobile user is
connected in the architecture without Fuzzy System (the
architecture with original protocols) with the mobile user
connected in the architecture with Fuzzy System, during the
simulations the mobile user performs handovers.

Themobile user in the architecture without Fuzzy System
(Original Architecture) was connected for approximately 47
minutes, in the paper [11] was 48,5 minutes, in the paper
[10] was 50,3 minutes, in the paper [9] was 51,2 minutes,
in the paper [8] was 52 minutes and while the mobile user
with an energy-saving policy was connected for 58 minutes
(Figure 4). There is a gain in energy because with the Fuzzy
System the handover in the network takes place when the
battery level of the device is low. In this case, there will be
a loss in quality for the user but an increase in the lifetime of
the battery.

4.2. QoS Results. This paper assesses the benefits of the
scheme in terms of the network throughput rate. In the first
situation, the mobile device was within the intersection of
areas of coverage, while in the simulation in the original
architecture without the Fuzzy Logic System, in the papers
[8–11], the mobile device chose the network that was nearest
even though it was saturated and offered a low quality of
service. However, in the simulation in the architecture with
the fuzzy system, the mobile device chose the network that
offered the best quality of service. In Graph (Figure 5), it can
be seen that the network throughput rate in the architecture
with the fuzzy system was superior. The average throughput
rate in the original architecture was 0,51 Mbps, in the paper
[11] was 0,65Mpbs, in the paper [10] was 0,76Mbps, in the
paper [9] was 1,6 Mbps, in the paper [8] was 1,8 Mbps and
while in the architecture with the fuzzy system the average
throughput rate was 2,23 Mbps.

In the second situation, the simulations had mobile
devices with high mobility within the coverage area of the
networks. In a scenario where the original architecture, the
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Figure 5: Throughput over Time.
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Figure 6: Throughput in ping-pong handover situation.

papers [8–11] had no mobile support for the selection of a
network, the high-mobility devices carried out the ping-pong
handover. In other words, they were connected to a new
network, (which was offering less bandwidth) and were later
connected again to their previous network. This unnecessary
exchange of network impaired the customer flow rate and for
this reason, in a situation where the architecture has a fuzzy
logic system, the high-mobility mobile devices failed to carry
out the ping-pong handover ormaintain its quality of service.
In Graph (Figure 6), it can be noted that there is a loss of
flow in the high-mobility mobile devices which carried out
the ping-pong handover.

4.3. QoE Results. This paper also analyses the simulations
with a video application. The video results are evaluated by
means of objective QoE metrics: (i) Peak Signal to Noise
Radio (PSNR), (ii) Structural Similarity Metric (SSIM) and
(iii) Video Quality Metric (VQM). The data are collected by
using the MSU Video Quality Measurement Tool (VQMT).
The PSNR is a traditional objective method to estimate the
standards of multimedia services based on the opinions
of the user. The SSIM index is a decimal value between
0 and 1, where 0 means there is a zero correlation with
the original image, and 1 means exactly the same image.
The VQM determines the level of multimedia quality based
on human eye perception and subjective factors, including
blurring, global noise, block distortion and colour distortion.
The results of the VQM estimates range from values of 0
to 5, where 0 is the best possible score. In accordance with
the network parameters, the Fuzzy system will keep the user
longer in the network that offers the best quality.
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The videos transmitted with the Fuzzy System were
superior to those transmitted without the Fuzzy System, to
the papers [8–11]. The PSNR value for a video without the
Fuzzy System was 28dB which can be rated as a fair video,
the PSNR value for video in paper [11] was 29dB and rated as
fair video, the PSNR value for video in paper [10] was 30dB
which can be rated as a fair video, the PSNR value for video in
paper [9] was 32dB and rated as good video, the PSNR value
for video in paper [8] was 34dB which can be rated as a good
video, whereas the PSNR value for the video with the Fuzzy
System was 37dB and rated as an excellent video. The video
transmitted with the fuzzy system had a better performance
during the transmission and kept a balance between energy
and QoE (see Figure 7).

The SSIM value for a video without the Fuzzy System was
0. 71, the SSIM value for video in paper [11] was 0,73, the SSIM
value for video in paper [10] was 0,79, the SSIM value for
video in paper [9] was 0,81, the SSIM value for video in paper
[11] was 0,85 and while the SSIM value for the video with the
Fuzzy System was 0. 93 (see Figure 8).

The VQMvalue for a video without the Fuzzy Systemwas
3.95, theVQMvalue for video in paper [11] was 3,02, theVQM
value for video in paper [10] was 2,8, the VQMvalue for video
in paper [9] was 2,41, the VQM value for video in paper [8]
was 2,1 and the VQM value for the video with Fuzzy System
was 1.44 (see Figure 9).

Figure 10 shows that the video transmittedwith the Fuzzy
Systemhad a better performance, since the delaywas less than
the video transmitted without the Fuzzy System, in the papers
[8–11]. The lower the delay, the faster and more efficient the
delivery of the frames, which confirms the superiority of the

0.60

0.70

0.80

0.90

1.00

1 75 14
9

22
3

29
7

37
1

44
5

51
9

59
3

66
7

74
1

81
5

88
9

96
3

10
37

11
11

11
85

SS
IM

Frames
Fuzzy Architecture Proposal
Paper [13]
Paper [14]
Paper [15]
Paper [16]
Original Architecture

Figure 8: SSIM over Frames.

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

1 75 14
9

22
3

29
7

37
1

44
5

51
9

59
3

66
7

74
1

81
5

88
9

96
3

10
37

11
11

11
85

VQ
M

Frames
Fuzzy Architecture Proposal
Paper [13]
Paper [14]
Paper [15]
Paper [16]
Original Architecture

Figure 9: VQM over Frames.

video transmittedwith the fuzzy scheme bymeans of theQoE
metrics (Figure 10).

The superiority of the video transmitted with the Fuzzy
System can also be determined by making a visual compari-
son of the frame transmitted with the mechanism (Figure 16),
and with a frame of the video transmitted without the
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Figure 11: Without the Fuzzy System.

mechanism (Figure 11), in the paper [11] (Figure 12), in the
paper [10] (Figure 13), in the paper [9] (Figure 14), in the
paper [8] (Figure 15).

5. Conclusion and Suggestions
for Future Work

Themobile devices for the new heterogeneous wireless com-
munication architecture need to be connected to networks
that are able to provide the best quality of experience.
However, there are occasions when it is important is to save
energy and extend the battery life, even if this reduces the
quality, to ensure continuity and avoid an abrupt termination
of the services.This paper proposes aHeterogeneousWireless

System formed of IEEE 802.11n and LTE networks that
makes use of Fuzzy Rules to support an energy-efficient
approach for saving battery power, while keeping QoE at
satisfactory levels. Simulation evaluations show the benefits
of this intelligent-based middleware solution for energy-
efficient seamless vertical handover.

In future studies, the architecture will include new tech-
nologies, inputs for the Fuzzy Systems, and battery models,
as well as dynamic scenarios with mobile users competing in
IEEE 802.11n and LTE networks.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 12: In the Paper [11].

Figure 13: In the Paper [10].

Figure 14: In the Paper [9].

Figure 15: In the Paper [8].
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Figure 16: With the Fuzzy System.
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Smart interference management methods are required to enhance the throughput, coverage, and energy efficiency of a dense
small cell network. In this paper, we propose a transmit power control for energy efficient operation of a dense small cell
network. We cast the power control problem as a noncooperative game to satisfy the design requirement that small cells do
not need any information exchange among them. We analyze the sufficient condition for the existence of a Nash equilibrium
(NE) state of the proposed game. We also analyze that the NE state is unique by transforming the original nonlinear fractional
programming problem into a nonlinear parametric programming problem. Through simulation studies, we verify our analysis
results. In addition, we show that the proposed method achieves higher energy efficiency of a network and balances the energy
efficiency among cells more evenly than the methods based on the AIMD (additive increase and multiplicative decrease)
algorithm.

1. Introduction

The amount of data traffic transferred through wireless
networks has been increased exponentially and the growth
rate is expected to increase in the future [1]. Various efforts
have been made to accommodate the ever increasing traffic
demand [2]. Massive MIMO (Multiple Input and Multiple
Output) and CoMP (Coordinated Multipoint/Reception)
increase the spectral efficiency of a wireless link [3, 4].
New spectrums for wireless networks and new radio access
technologies have been sought [5, 6]. Small cells are deployed
to increase the coverage and capacity of a network through
spatial reuse [7]. Among those, densifying small cells are
regarded as a promising way to enhance the spectral effi-
ciency of a network in a cost-effective way. However, the
interference among cells also increases as the cell density
increases. Thus, efficient interference management methods
have been devised to fully exploit the advantage of a dense
small cell network (DSCN) [8, 9]. In the meantime, not only
the interference but also the energy efficiency (EE) of a DSCN

becomes one of the key design requirements to reduce the
power consumption of a DSCN [10, 11].

Energy efficient DSCN operation methods can be clas-
sified into two categories. The methods belonging to the
first category utilize that the density of small cells is high.
Since a user equipment (UE) can be served by many cells, a
DSCN can accommodate the traffic demands in an energy
efficient way if some cells are running in a sleep mode
[12–15]. Thus, the schemes in this category attempt to find
an optimal set of active cells that maximizes the EE of a
DSCN for a given spatiotemporal traffic distribution. The
methods in the second category consider a set of active
cells and try to use network resources in an energy efficient
manner. Radio resource scheduling [16], association control
[17], cell clustering [18], and transmit power control belong to
this category. Usually, scheduling, clustering and association
management operate in a large timescale while the transmit
power control works in a small timescale. Thus, following the
timescale separation approach [18, 19], we focus on the power
control problem for energy efficient operation of a DSCN by
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assuming that the clusters of active cells and the service order
of UEs in each cell are determined.

For a single cell network, iterative algorithms are pro-
posed in [20, 21] that determine an optimal transmit power
maximizing EE. In [22, 23], a Markovian approach is taken
for energy efficient power control. The authors in [24] use
the parameter free fractional programming to derive an
energy efficient power allocation to maximize the system
energy efficiency and propose a power adaptation algorithm
based on the analysis result. In [25], authors formulate a
nonconvex optimization problem to maximize the energy
efficiency of a cell. By reforming the problem into a convex
optimization problem with the property of the parameter-
free fractional programming and the concept of perspective
function, they devise a distributed power control algo-
rithm that requires the minimum amount of information
to be exchanged among cells. A Nash bargaining cooper-
ative game-theoretic framework is proposed in [26]. After
showing the relationship between the energy efficiency and
the spectral efficiency, they formulate the energy efficiency
maximization problem. Then, they propose a distributed
algorithm that gives a suboptimal solution and guarantees
the efficiency and fairness. The authors in [27] propose
an energy-efficient power allocation and wireless backhaul
bandwidth allocation for a small cell network using OFDMA.
They devise algorithms for the original non-convex problem
so that each small cell can jointly determine the transmit
power for serving UEs and the bandwidth for backhauling.
In [28], a Stackelberg game model is adopted to increase the
energy efficiency of small cell networks. The authors propose
a pricing scheme between a macrocell and small cells and
devise a power control method by transforming the original
nonlinear fractional programming problem into a subtractive
form.

However, we note that the nature of aDSCN is amorphous
[29] because small cells are deployed in an unplanned
manner by different entities. Thus, it is difficult to expect
that small cells exchange information for cooperative control.
In addition, each small cell is selfish and rational in that it
attempts to increase its own EE in response to the environ-
ments. Therefore, in this paper, we design a power control
method by which each cell determines its transmit power
autonomously without any message exchange among cells.
To achieve the goal, we model the power control problem
for enhancing EE of a DSCN as a noncooperative game and
propose a power control algorithmbased on the best response
function. Furthermore, we provide a sufficient condition for
the existence of Nash equilibrium (NE) of the game. We also
prove that the NE of the proposed power control game is
unique.

The rest of the paper is organized as follows. In Section 2,
we describe the system model and formally define the energy
efficiency of a DSCN. In Section 3, we present the power
control game and analyze its property. We especially prove
that the proposed power control game has a unique NE.
After we verify that the proposed method is superior to the
other distributed method based on the additive increase and
multiplicative decrease algorithm in Section 4, we conclude
the paper in Section 5.

2. System Model

We consider the downlinks of a small cell network where
the spectrum reuse factor is one. We assume that radio
resources are divided into resource blocks which is the
smallest resource unit that can be allocated to an UE. We
assume the time is divided into a time slot with equal size.

Wedenote byC the set of cells interferingwith each other.
We also denote the set of UEs served by a cell 𝑖 byU𝑖. Let us
denote by 𝑝𝑖 the transmit power of a cell 𝑖. If we denote byP𝑖
the set of transmit power that each cell can choose from (i.e.,𝑝𝑖 ∈ P𝑖), the SINR at an UE 𝑢 ∈ U𝑖 can be given as

s𝑖,𝑢 = 𝑝𝑖ℎ𝑖,𝑢Σ𝑗 ̸=𝑖,𝑗∈C𝑝𝑗ℎ𝑗,𝑢 + 𝑁0 , (1)

where ℎ𝑖,𝑢 is the channel gain between a cell 𝑖 and a UE 𝑢 and𝑁0 is the noise power. Let us denote by 𝑏𝑖,𝑢 the number of
resource blocks that 𝑖 allocates to 𝑢.We also denote by𝑀𝑅 the
maximum number of resource blocks that a small cell has. If
we assume that small cells use a round-robin scheduler [30],𝑏𝑖,𝑢 becomes𝑀𝑅/|U𝑖|, where |𝑋| is the cardinality of a set 𝑋.
If the bandwidth of a resource block is 𝑊𝑅 and we denote
by 𝐵𝑖,𝑢 = 𝑏𝑖,𝑢𝑊𝑅, from the Shannon’s capacity formula, the
downlink data rate provided to a UE 𝑢 by a cell 𝑖 is expressed as

r𝑖,𝑢 = 𝐵𝑖,𝑢 log2 (1 + s𝑖,𝑢) . (2)

Therefore, the throughput of a cell 𝑖 can be given as

R𝑖 = ∑
𝑢∈U𝑖

r𝑖,𝑢. (3)

From the measurement studies, the authors in [31] pro-
poses a power consumption model for various cell types
which is composed of a load-independent part and a load-
dependent part. The resulting power consumption model of
a cell is expressed as follows.

P𝑖 = 𝑁𝐴𝑃0 + Δ𝑝𝑝𝑖, (4)

where𝑁𝐴 is the number of transmit antenna, 𝑃0 is the power
consumption at the minimum non-zero output power, andΔ𝑝 is the slope of the load-dependent power consumption.

Then, the energy efficiency of a cell 𝑖 is defined as

E𝑖 = R𝑖

P𝑖
= ∑𝑢∈U𝑖 𝐵𝑖,𝑢 log2 (1 + s𝑖,𝑢)𝑁𝐴𝑃0 + Δ𝑝𝑝𝑖 . (5)

An optimization problem that attempts to find a transmit
power vector maximizing the total energy efficiency of a
network (i.e., Σ𝑖∈CE𝑖) can be formulated and a central
controller can find a globally optimal solution. In terms
of implementation, all the channel conditions between all
UEs and cells are needed to solve the optimization problem.
However, the signaling overhead increases exponentiallywith
the number of cells.Thus, the signaling overhead for a central
controller to obtain the required channel information will
be prohibitive in a DSCN where the number of cells is very
large. In addition, since a DSCN is assumed to be composed
of autonomous cells, it is unlikely that there is a central
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controller gathering necessary information, solving the opti-
mization problem, and distributing the optimal transmit
power for each cell. Therefore, a distributed algorithm that
enables each cell to determine an optimal transmit power
using its local information is needed. To tackle the issue, in
this paper, we propose a noncooperative power control game
model for energy efficient operation of a DSCN even if each
cell behaves in a self-interested way without any message
exchange with other cells.

3. Power Control Game

The distributed power control game is defined as follows.

Γ = {C,S, (𝑔𝑖)𝑖∈C} , (6)

where C is the set of game players, S is the set of power
allocation profiles, and 𝑔𝑖 is the utility function of a cell 𝑖.
Since the power control game is played among small cells,
the set of players is the set of small cells. For each cell 𝑖,P𝑖 is
the set of strategies (i.e., transmit powers) that 𝑖 can choose.
Thus, a power allocation profile is a combination of strategies
of all playersS = ×𝑖∈CP𝑖. A utility function of a player maps
each strategy profile 𝑝 = (𝑝1, . . . , 𝑝|C|) ∈ S to a real number.
Since the purpose of the game is to determine the transmit
power of a cell to optimize the energy efficiency, we set the
utility function of a cell as E𝑖. We also denote the strategy
profile except𝑝𝑖 by𝑝−𝑖 = (𝑝1, . . . , 𝑝𝑖−1, 𝑝𝑖+1, . . . , 𝑝|C|) ∈ S−𝑖 =×𝑗∈C−{𝑖}P𝑗.

Then, in the noncooperative power control game Γ, each
cell 𝑖 attempting to maximize its utility faces the problem of
determining its best responsewhenother cells commit to play
𝑝−𝑖. The best response of a cell 𝑖 to the strategy profile 𝑝−𝑖 is
a strategy 𝑝∗𝑖 ∈ P𝑖 such that E𝑖(𝑝∗𝑖 ,𝑝−𝑖) ≥ E𝑖(𝑝𝑖,𝑝−𝑖) for
all 𝑝𝑖 ∈ P𝑖. Since a cell 𝑖measures the influence of 𝑝−𝑖 on E𝑖

during each time slot, it determines its transmit power for the𝑡-th time slot 𝑝∗𝑖 (𝑡) at the end of the (𝑡 − 1)-th time slot as

𝑝∗𝑖 (𝑡) = arg max
𝑝𝑖∈P𝑖

E𝑖 (𝑝𝑖,𝑝−𝑖) . (7)

For the noncooperative game, we analyze the existence
and the uniqueness of the Nash equilibrium (NE) as Propo-
sitions 1 and 2.

Proposition 1. �ere exists anNE in the game Γ if𝑝𝑖 < (2Ω𝑖,𝑢−1)/𝑧𝑖,𝑢 ∀𝑖 ∈ C, 𝑢 ∈ U𝑖, where

Ω𝑖,𝑢 = 1
log 2 𝑥 + Δ𝑝𝑝𝑖2Δ2𝑝

𝑧𝑖,𝑢 (2Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 3Δ𝑝𝑧𝑖,𝑢𝑝𝑖)(1 + 𝑧𝑖,𝑢𝑝𝑖)2 ,
𝑥 = 𝑁𝐴𝑃0,

𝑧𝑖,𝑢 = ℎ𝑖,𝑢∑𝑗 ̸=𝑖,𝑗∈C 𝑝𝑗ℎ𝑗,𝑢 + 𝑁0 .
(8)

Proof. We prove the existence of a NE in the game Γ by
showing thatP𝑖 is nonempty, convex, and compact subset in
an Euclidean space and E𝑖 is continuous and quasi-concave
in P𝑖 [32]. P𝑖 is the set of transmit power that a cell 𝑖 can
choose. Since the transmit power of a cell 𝑖 is bounded by the
minimum transmit power 𝑝𝑚 and the maximum power 𝑝𝑀,
P𝑖 is not empty, convex, and compact subset in an Euclidean
space 𝐸1. In addition, E𝑖 is a continuous function of 𝑝𝑖.

To show the concavity of E𝑖, we consider a UE 𝑢 ∈ U𝑖.
Then,

E𝑖,𝑢 = 𝐵𝑖,𝑢 log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)𝑥 + Δ𝑝𝑝𝑖 . (9)

Therefore,

𝜕E𝑖,𝑢𝜕𝑝𝑖 = (𝐵𝑖,𝑢/ log 2) (𝑧𝑖,𝑢/ (1 + 𝑧𝑖,𝑢𝑝𝑖)) (𝑥 + Δ𝑝𝑝𝑖) − 𝐵𝑖,𝑢Δ𝑝 log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)(𝑥 + Δ𝑝)2
= 𝐵𝑖,𝑢
log 2 𝑧𝑖,𝑢(1 + 𝑧𝑖,𝑢𝑝𝑖) (𝑥 + Δ𝑝𝑝𝑖) −

𝐵𝑖,𝑢Δ𝑝 log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)(𝑥 + Δ𝑝𝑝𝑖)2 . (10)

We let

𝑋𝑖,𝑢 = 𝑧𝑖,𝑢(1 + 𝑧𝑖,𝑢𝑝𝑖) (𝑥 + Δ𝑝𝑝𝑖)
𝑌𝑖,𝑢 = log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)(𝑥 + Δ𝑝𝑝𝑖)2

(11)

Then, 𝜕2E𝑖,𝑢(𝜕𝑝𝑖)2 =
𝐵𝑖,𝑢
log 2 𝜕𝑋𝑖,𝑢𝜕𝑝𝑖 − 𝐵𝑖,𝑢Δ𝑝

𝜕𝑌𝑖,𝑢𝜕𝑝𝑖
= 𝐵𝑖,𝑢 ( 1

log 2 𝜕𝑋𝑖,𝑢𝜕𝑝𝑖 − Δ𝑝
𝜕𝑌𝑖,𝑢𝜕𝑝𝑖 ) .

(12)

Since

𝜕𝑋𝑖,𝑢𝜕𝑝𝑖 = −𝑧𝑖,𝑢 (Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 2Δ𝑝𝑧𝑖,𝑢𝑝𝑖)(1 + 𝑧𝑖,𝑢𝑝𝑖)2 (𝑥 + Δ𝑝𝑝𝑖)2 (13)

and

𝜕𝑌𝑖,𝑢𝜕𝑝𝑖 = 1
(𝑥 + Δ𝑝𝑝𝑖)4 (

1
log 2 𝑧𝑖,𝑢 (𝑥 + Δ𝑝𝑝𝑖)

2

1 + 𝑧𝑖,𝑢𝑝𝑖
− log2 (1 + 𝑧𝑖,𝑢𝑝𝑖) 2 (𝑥 + Δ𝑝𝑝𝑖) Δ𝑝)
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= 1
(𝑥 + Δ𝑝𝑝𝑖)2 (

1
log 2 𝑧𝑖,𝑢1 + 𝑧𝑖,𝑢𝑝𝑖

− 2Δ𝑝 log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)𝑥 + Δ𝑝𝑝𝑖 )
(14)

thus (12) becomes

𝜕2E𝑖,𝑢(𝜕𝑝𝑖)2 = 𝐵𝑖,𝑢(−
𝑧𝑖,𝑢
log 2 Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 2Δ𝑝𝑧𝑖,𝑢𝑝𝑖(1 + 𝑧𝑖,𝑢𝑝𝑖)2 (𝑥 + Δ𝑝𝑝𝑖)2

− Δ𝑝
log 2 𝑧𝑖,𝑢1 + 𝑧𝑖,𝑢𝑝𝑖 1

(𝑥 + Δ𝑝𝑝𝑖)2

+ 2Δ2𝑝 log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)(𝑥 + Δ𝑝𝑝𝑖)3 )

= 𝐵𝑖,𝑢(𝑥 + Δ𝑝𝑝𝑖)2 (−
𝑧𝑖,𝑢
log 2 Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 2Δ𝑝𝑧𝑖,𝑢𝑝𝑖(1 + 𝑧𝑖,𝑢𝑝𝑖)2

− Δ𝑝
log 2 𝑧𝑖,𝑢1 + 𝑧𝑖,𝑢𝑝𝑖 +

2Δ2𝑝 log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)𝑥 + Δ𝑝𝑝𝑖 ) .

(15)

Therefore, the condition that makes 𝜕2E𝑖,𝑢/(𝜕𝑝𝑖)2 < 0
becomes

2Δ2𝑝 log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)𝑥 + Δ𝑝𝑝𝑖 < 𝑧𝑖,𝑢
log 2 Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 2Δ𝑝𝑧𝑖,𝑢𝑝𝑖(1 + 𝑧𝑖,𝑢𝑝𝑖)2

+ Δ𝑝
log 2 𝑧𝑖,𝑢1 + 𝑧𝑖,𝑢𝑝𝑖 = 1

log 2 𝑧𝑖,𝑢1 + 𝑧𝑖,𝑢𝑝𝑖
⋅ Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 2Δ𝑝𝑧𝑖,𝑢𝑝𝑖 + Δ𝑝 (1 + 𝑧𝑖,𝑢𝑝𝑖)1 + 𝑧𝑖,𝑢𝑝𝑖 = 1

log 2
⋅ 𝑧𝑖,𝑢 (2Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 3Δ𝑝𝑧𝑖,𝑢𝑝𝑖)(1 + 𝑧𝑖,𝑢𝑝𝑖)2 .

(16)

By rearranging (16), we obtain

log2 (1 + 𝑧𝑖,𝑢𝑝𝑖)
< 1
log 2 𝑥 + Δ𝑝𝑝𝑖2Δ2𝑝

𝑧𝑖,𝑢 (2Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 3Δ𝑝𝑧𝑖,𝑢𝑝𝑖)(1 + 𝑧𝑖,𝑢𝑝𝑖)2 . (17)

1: at the end of each time slot, each cell 𝑖 ∈ C:
2: 𝐼𝑛𝑖𝑡: 𝜖 > 0, 𝛿 > 𝜖, 𝑛 = 1
3: while 𝛿 > 𝜖 do
4: 𝑝𝑖(𝑛 + 1) = argmax𝑝𝑖∈P𝑖E𝑖(𝑝𝑖(𝑛),𝑝−𝑖(𝑛))
5: 𝛿 = |E𝑖(𝑝𝑖(𝑛 + 1),𝑝−𝑖(𝑛 + 1)) − E𝑖(𝑝𝑖(𝑛),𝑝−𝑖(𝑛))|
6: 𝑛 = 𝑛 + 1
7: if 𝑝𝑖(𝑛) ∈ P𝑖 then
8: 𝑝∗𝑖 = 𝑝𝑖(𝑛)
9: else
10: if 𝜕E𝑖/𝜕𝑝𝑖 > 0 then
11: 𝑝∗𝑖 = 𝑝𝑀
12: else
13: 𝑝∗𝑖 = 𝑝𝑚

Algorithm 1: Transmit power decision algorithm based on the best
response function.

If we let

Ω𝑖,𝑢 = 1
log 2 𝑥 + Δ𝑝𝑝i2Δ2𝑝

𝑧𝑖,𝑢 (2Δ𝑝 + 𝑥𝑧𝑖,𝑢 + 3Δ𝑝𝑧𝑖,𝑢𝑝𝑖)(1 + 𝑧𝑖,𝑢𝑝𝑖)2 , (18)

𝜕2E𝑖,𝑢/(𝜕𝑝𝑖)2 becomes negative if

𝑝𝑖 < 2Ω𝑖,𝑢 − 1𝑧𝑖,𝑢 . (19)

SinceE𝑖 = ∑𝑢∈U𝑖 E𝑖,𝑢, 𝜕2E𝑖/(𝜕𝑝𝑖)2 < 0 if 𝜕2E𝑖,𝑢/(𝜕𝑝𝑖)2 < 0 for
all 𝑖 ∈ C and 𝑢 ∈ U𝑖. Since E𝑖 is a strict concave function in𝑝𝑖 if 𝑝𝑖 < (2Ω𝑖,𝑢 −1)/𝑧𝑖,𝑢, there exits an NE in the game Γ.
Proposition 2. An NE in the game Γ is unique.
Proof. The transmit power of a cell 𝑖 is in P𝑖 which is a
compact and connected subset of an Euclidean space𝐸1 . Both
R𝑖 and P𝑖 are a continuous function of 𝑝𝑖 and produce real
numbers. In addition, since P𝑖 > 0, ∀𝑝𝑖 ∈ P𝑖, the nonlinear
fractional programming problem that maximizes E𝑖 (i.e.,
the problem in (7)) can be transformed into the following
nonlinear parametric programming problem.

𝐹 (𝑞) = max {R𝑖 (𝑝𝑖) − 𝑞P𝑖 (𝑝𝑖) | 𝑝𝑖 ∈ P𝑖} ,
∀𝑞 ∈ 𝐸1. (20)

Then, from the Lemma 4 in [33], 𝐹(𝑞) = 0 has a unique
solution 𝑞0. In addition, from the theorem in [33], 𝑞0 is
R𝑖(𝑝∗𝑖 )/P𝑖(𝑝∗𝑖 ) = maxE𝑖 if and only if 𝐹(𝑞) = 0. Therefore,
the NE of the game Γ is unique.

The transmission power control algorithm based on the
proposed noncooperative gamemodel can be summarized as
in Algorithm 1.
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4. Performance Evaluation

In this section, we compare the performance of the proposed
transmit power control method with the other method
that do not require a cell to exchange messages with
other cells when it determines its transmit power. One
of the most popular methods that determines a control
variable in a distributed manner is the AIMD (additive
increase and multiplicative decrease) adopted in TCP for
the congestion control. The basic idea of the AIMD is to
increase the current control variable linearly if a node does
not detect performance degradation. When a node detects
performance degradation, it considers that the competition
for the shared resources in a network is severe. Thus, the
node decreases its control variable multiplicatively to reduce
the competition level fast. Therefore, AIMD increases the
performance of each node opportunistically while stabilizing
a network by inducing an implicit cooperation among the
competing nodes without explicit message exchanges among
them.

In case of the transmit power control, the control variable
of a node is the transmit power of a cell and the performance
metric is the energy efficiency of a cell. Thus, when AIMD is
used, each cell 𝑖 determines the transmit power for the 𝑡-th
time slot denoted by 𝑝𝑖(𝑡) based on 𝑝𝑖(𝑡 − 1), E𝑖(𝑡 − 1) and
E𝑖(𝑡), where E𝑖(𝑡) is the energy efficiency of a cell 𝑖 at the
beginning of the time slot 𝑡when 𝑖 uses 𝑝𝑖(𝑡 − 1). Specifically,
if d𝑖(𝑡) = E𝑖(𝑡) −E𝑖(𝑡 − 1) < 0, 𝑝𝑖(𝑡) = 𝑝𝑖(𝑡 − 1)/2. If d𝑖(𝑡) > 0,𝑝𝑖(𝑡) = 𝑝𝑖(𝑡 − 1) + a. We consider two types of a. One is
a = 𝑝𝑀/10, and the other is a = 𝑝𝑀 − 𝑝𝑖(𝑘 − 1). Henceforth,
theAIMDusing the formal awill be referred as a static AIMD
and the AIMD using the latter a will be called a dynamic
AIMD.

We deployed𝑁𝑐 = 40 cells in 100𝑚×100𝑚 area according
to the homogeneous Poisson point process (HPPP) to reflect
the uncoordinated cell deployments. In the same area, we
positioned 𝑁𝑚 UEs following the HPPP and associate each
of them to its nearest cell. According to the 3GPP Pico base
station system specification [30], we configure the system
parameters of each cell as follows. The system bandwidth
is 10𝑀𝐻𝑧, the bandwidth of a resource block is 180𝑘𝐻𝑧,
an antenna height is set to be 10𝑚, and the antenna gain
is configured as 2𝑑𝐵𝑖. The maximum and the minimum
transmit power are set to 𝑝𝑀 = 24𝑑𝐵𝑚 and 𝑝𝑚 = −20𝑑𝐵𝑚,
respectively. The path loss model of 38 + 30 log10(𝑑)𝑑𝐵
is used, where 𝑑 is the distance between a sender and
a receiver in meters. The parameters related to the cell
power consumption are configured according to the Pico
cell parameters in [31]. Specifically, we set 𝑁𝑎 = 2, 𝑃0 =6.8𝑊, and Δ𝑝 = 4. The initial transmit power of each
cell is randomly selected from P𝑖 according to the uniform
distribution.

In Figure 1, we compare the energy efficiency of a
network over time with different 𝑁𝑚. The proposed method
represented as NonCoGame in the figure makes E to the
steady state fast. In case of AIMD, E also converges to
a steady point which is smaller than that of NonCoGame
case. However, Es obtained by AIMD increases in the
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Figure 1: Comparison of energy efficiency.

beginning of the simulation and decreases to the steady
state.

To scrutinize the phenomenon, we analyze the dynamics
of the total throughput of a network (i.e., R = Σ𝑖∈CR𝑖)
and the total power consumption of a network (i.e., P =Σ𝑖∈CP𝑖) in Figures 2 and 3, respectively. We choose 𝑝𝑖(0)
randomly at the start of the simulation. R𝑖 is determined
not only by the received signal power at the UEs in U𝑖
but also by the total interference imposed on these UEs. If𝑝𝑖(0) and 𝑝𝑗(0)(∀𝑗 ∈ C − {𝑖}) are not large enough, both
the received signal power at the UEs in U𝑖 and the total
interference on these UEs are small. Thus, E𝑖(0) is relatively
smaller than its maximum value achievable. In case of AIMD,
each cell gradually increases its power whenever E𝑖(𝑡 + 1) −
E𝑖(𝑡) > 0. By increasing 𝑝𝑖(∀𝑖 ∈ C), P increases and
R increases if 𝑝𝑖ℎ𝑖,𝑢 is bigger than ∑𝑗 ̸=𝑖∈C 𝑝𝑗ℎ𝑗,𝑢 + 𝑁0. If
the amount of the increment in R is larger than that in
P for a given 𝑝𝑖(𝑡) and 𝑝𝑖(𝑡 − 1), E increases. If a cell
detects E𝑖(𝑡 + 1) − E𝑖(𝑡) < 0, it decreases 𝑝𝑖 by half, which
decreases both R𝑖 and P𝑖. However, P𝑖 is a linear function
of 𝑝𝑖 while R𝑖 involves not only 𝑝𝑖 but also 𝑝𝑗(∀𝑗 ̸= 𝑖 ∈
C). We observe in Figure 3 that P does not change much
while R decreases sharply during the round 1 to 15. The
result indicates that the amount of increments in P by the
cells increasing transmit powers is close to the amount of
decrements in P by the cells who reduce their transmit
powers. Since AIMD decreases a transmit power multiplica-
tively, the received signal powers at the UEs in the cell that
decreases transmit power also reduces while the total inter-
ference experienced by these UEs increases because of the
other cells that increase transmit powers. Thus, R𝑖 reduces
abruptly which leads to sharp decrease in R during this
period.
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Figure 3: Comparison of total power consumption.

To inspect the effects of the fairness in terms of E𝑖, we
observe the Jain’s fairness indexJ𝑓𝑖 in Figure 4, whereJ𝑓𝑖 is
given as

J𝑓𝑖 = (∑𝑖∈C E𝑖)2|C| ∑𝑖∈C E2𝑖
(21)

As J𝑓𝑖 is closer to 1, E𝑖s are more similar to each other. We
can see that the proposed method can increase J𝑓𝑖. Since
cells and UEs are uniformly distributed, each cell can obtain
similar energy efficiency when the proposed method is used.

5. Conclusions

In this paper, we propose a noncooperative game model
for a cell to determine its transmit power autonomously

to optimize its energy efficiency. We provide a sufficient
condition for the existence of Nash equilibrium of the
proposed game.We also prove that the game has unique Nash
equilibrium by transforming the nonlinear fractional pro-
gramming problem into a parametric programming problem.
Through simulation studies that compare the performance of
the proposed method with those of the AIMD method, we
show that the proposed power control method can stabilize
a system at higher total energy efficiency and balance cell
energy efficiency more evenly than the AIMD methods.

Data Availability

The data used to support the findings of this study are
included within the article.
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Figure 4: Comparison of fairness index in terms of the energy
efficiency.
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[16] F. Héliot, T. Yang, and C. H. Foh, “Low-complexity green
scheduling for the coordinated downlink of HetNet system,”
in Proceedings of the 20th IEEE International Workshop on
Computer AidedModelling and Design of Communication Links
andNetworks, CAMAD 2015, pp. 216–220, UK, September 2015.

[17] H. Zhang, S.Huang, C. Jiang, K. Long, V. C.M. Leung, andH.V.
Poor, “Energy Efficient User Association and Power Allocation
in Millimeter-Wave-Based Ultra Dense Networks with Energy
Harvesting Base Stations,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 9, pp. 1936–1947, 2017.

[18] L. Liang, W. Wang, Y. Jia, and S. Fu, “A cluster-based energy-
efficient resource management scheme for ultra-dense net-
works,” IEEE Access, vol. 4, pp. 6823–6832, 2016.

[19] S. Samarakoon, M. Bennis, W. Saad, M. Debbah, andM. Latva-
Aho, “Ultra dense small cell networks: Turning density into
energy efficiency,” IEEE Journal on Selected Areas in Commu-
nications, vol. 34, no. 5, pp. 1267–1280, 2016.

[20] D.W. K. Ng, E. S. Lo, andR. Schober, “Energy-efficient resource
allocation in OFDMA systems with large numbers of base sta-
tion antennas,” IEEE Transactions on Wireless Communications,
vol. 11, no. 9, pp. 3292–3304, 2012.

[21] L. Sboui, Z. Rezki, and M.-S. Alouini, “Energy-efficient power
control for OFDMA cellular networks,” in Proceedings of
the 27th IEEE Annual International Symposium on Personal,
Indoor, andMobile Radio Communications, PIMRC 2016, Spain,
September 2016.

[22] G. Ozcan, M. Ozmen, and M. C. Gursoy, “QoS-driven energy-
efficientpower control with random arrivals and arbitrary input



8 Wireless Communications and Mobile Computing

distributions,” IEEE Transactions on Wireless Communications,
vol. 16, no. 1, pp. 376–388, 2017.

[23] M. Ozmen and M. C. Gursoy, “Energy-Efficient Power Control
in Fading Channels with Markovian Sources and QoS Con-
straints,” IEEE Transactions on Communications, vol. 64, no. 12,
pp. 5349–5364, 2016.

[24] A. Helmy, L. Musavian, and T. Le-Ngoc, “Energy-efficient
power adaptation over a frequency-selective fading channel
with delay and power constraints,” IEEE Transactions on Wire-
less Communications, vol. 12, no. 9, pp. 4529–4541, 2013.

[25] Y. Jiang, N. Lu, Y. Chen et al., “Energy-EfficientNoncooperative
Power Control in Small-Cell Networks,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 8, pp. 7540–7547, 2017.

[26] C. Yang, J. Li, Q. Ni, A. Anpalagan, and M. Guizani,
“Interference-aware energy efficiency maximization in 5G
ultra-dense networks,” IEEE Transactions on Communications,
vol. 65, no. 2, pp. 728–739, 2017.

[27] H. Zhang, H. Liu, J. Cheng, and V. C. M. Leung, “Downlink
energy efficiency of power allocation and wireless backhaul
bandwidth allocation in heterogeneous small cell networks,”
IEEE Transactions on Communications, vol. 66, no. 4, pp. 1716-
1705, 2017.

[28] M. Lashgari, B. Maham, and H. Kebriaei, “Energy Efficient
Price Based Power Allocation in a Small Cell Network by
Using a Stackelberg Game,” in Proceedings of the 2018 IEEE
International Black Sea Conference on Communications and
Networking (BlackSeaCom), pp. 1–5, Batumi, Georgia, June 2018.

[29] X. Guozhen, W. Sen, and C.-L. I, “On Amorphous Nature of
Ultra Dense Networks,” in Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC), pp. 1–6,
2016.

[30] 3GPP Radio Access (E-UTRA) Radio Frequency (RF) require-
ments for LTE Pico Node B, 3GPP TR 36.931 V9.0.0, May 2011.

[31] G. Auer, V. Giannini, C. Desset et al., “How much energy is
needed to run a wireless network?” IEEE Wireless Communi-
cations Magazine, vol. 18, no. 5, pp. 40–49, 2011.

[32] R. B. Myerson, Game �eory: Analysis of Conflict, Harvard
University Press, 1991.

[33] W. Dinkelbach, “On nonlinear fractional programming,” Man-
agement Science, vol. 13, no. 7, pp. 492–498, 1967.


